metadata
dict
text
stringlengths
60
3.49M
{ "source": "JinYAnGHe/openvino_training_extensions", "score": 2 }
#### File: pytorch_toolkit/face_recognition/train_16landmarks.py ```python import argparse import datetime import os.path as osp import numpy as np import glog as log from tensorboardX import SummaryWriter import torch import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import DataLoader from torchvision.transforms import transforms from datasets import IBUG from model.common import models_landmarks # from utils import landmarks_augmentation from utils import landmarks_augmentation16 from utils.utils import save_model_cpu, load_model_state from losses.alignment import AlignmentLoss from evaluate_landmarks import evaluate def train(args): """Launches training of landmark regression model""" drops_schedule = [380] dataset = IBUG(args.train, args.t_land) val_dataset = IBUG(args.train, args.t_land, test=True) log.info('Use alignment for the train data') # dataset.transform = transforms.Compose([ # landmarks_augmentation16.Rescale((70, 70)), # landmarks_augmentation16.Blur(k=3, p=.2), # landmarks_augmentation16.HorizontalFlip(p=.5), # landmarks_augmentation16.RandomRotate(30), # landmarks_augmentation16.RandomScale(.8, .9, p=.4), # landmarks_augmentation16.RandomCrop(64), # landmarks_augmentation16.ToTensor(switch_rb=True)]) dataset.transform = transforms.Compose([landmarks_augmentation16.Rescale((112, 112)), landmarks_augmentation16.RandomErasing(), landmarks_augmentation16.ToTensor(switch_rb=True)]) val_dataset.transform = transforms.Compose([landmarks_augmentation16.Rescale((112, 112)), landmarks_augmentation16.ToTensor(switch_rb=True)]) train_loader = DataLoader(dataset, batch_size=args.train_batch_size, num_workers=4, shuffle=True) val_loader = DataLoader(val_dataset, batch_size=24, num_workers=4, shuffle=False) writer = SummaryWriter('./logs_landm/{:%Y_%m_%d_%H_%M}_'.format(datetime.datetime.now()) + args.snap_prefix) model = models_landmarks['mobilelandnet']() # print(model) if args.snap_to_resume is not None: log.info('Resuming snapshot ' + args.snap_to_resume + ' ...') model = load_model_state(model, args.snap_to_resume, args.device, eval_state=False) model = torch.nn.DataParallel(model, device_ids=[0, 1]) cudnn.enabled = True cudnn.benchmark = True # else: # model = torch.nn.DataParallel(model, device_ids=[0]) # model.cuda() # model.train() # cudnn.enabled = True # cudnn.benchmark = True else: model = torch.nn.DataParallel(model, device_ids=[0, 1]) model.cuda() model.train() cudnn.enabled = True cudnn.benchmark = True log.info('Face landmarks model:') log.info(model) criterion = AlignmentLoss('l1') # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay) optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) scheduler = optim.lr_scheduler.MultiStepLR(optimizer, drops_schedule) # scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, 100) for epoch_num in range(args.epoch_total_num): scheduler.step() # print("*****************************************") # if epoch_num > 300: # model.module.set_dropout_ratio(0.) for i, data in enumerate(train_loader, 0): iteration = epoch_num * len(train_loader) + i data, gt_landmarks = data['img'].cuda(), data['landmarks'].cuda() # print(gt_landmarks) predicted_landmarks = model(data) # print(predicted_landmarks) optimizer.zero_grad() loss = criterion(predicted_landmarks, gt_landmarks) loss.backward() optimizer.step() if i % 10 == 0: log.info('Iteration %d, Loss: %.4f' % (iteration, loss)) log.info('Learning rate: %f' % scheduler.get_lr()[0]) writer.add_scalar('Loss/train_loss', loss.item(), iteration) writer.add_scalar('Learning_rate', scheduler.get_lr()[0], iteration) if iteration % args.val_step == 0: snapshot_name = osp.join(args.snap_folder, args.snap_prefix + '_{0}.pt'.format(iteration)) log.info('Saving Snapshot: ' + snapshot_name) save_model_cpu(model, optimizer, snapshot_name, epoch_num) model.eval() log.info('Evaluating Snapshot: ' + snapshot_name) avg_err, per_point_avg_err, failures_rate = evaluate(val_loader, model) # weights = per_point_avg_err / np.sum(per_point_avg_err) # criterion.set_weights(weights) # log.info(str(weights)) log.info('Avg train error: {}'.format(avg_err)) log.info('Train failure rate: {}'.format(failures_rate)) writer.add_scalar('Quality/Avg_error', avg_err, iteration) writer.add_scalar('Quality/Failure_rate', failures_rate, iteration) model.train() def main(): """Creates a command line parser""" parser = argparse.ArgumentParser(description='Training Landmarks detector in PyTorch') parser.add_argument('--train_data_root', dest='train', required=True, type=str, help='Path to train data.') parser.add_argument('--train_list', dest='t_list', required=False, type=str, help='Path to train data image list.') parser.add_argument('--train_landmarks', default='', dest='t_land', required=False, type=str, help='Path to landmarks for the train images.') parser.add_argument('--train_batch_size', type=int, default=256, help='Train batch size.') parser.add_argument('--epoch_total_num', type=int, default=400, help='Number of epochs to train.') parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate.') parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.') parser.add_argument('--val_step', type=int, default=200, help='Evaluate model each val_step during each epoch.') parser.add_argument('--weight_decay', type=float, default=0.000001, help='Weight decay.') parser.add_argument('--device', '-d', default=0, type=int) parser.add_argument('--snap_folder', type=str, default='./snapshots/', help='Folder to save snapshots.') parser.add_argument('--snap_prefix', type=str, default='LandNet-68single', help='Prefix for snapshots.') parser.add_argument('--snap_to_resume', type=str, default=None, help='Snapshot to resume.') parser.add_argument('--dataset', choices=['vgg', 'celeb', 'ngd', 'ibug'], type=str, default='ibug', help='Dataset.') arguments = parser.parse_args() with torch.cuda.device(arguments.device): train(arguments) if __name__ == '__main__': main() ```
{ "source": "JinyangLi01/mlinspect", "score": 3 }
#### File: demo/feature_overview/missing_embeddings.py ```python import dataclasses from typing import Iterable, List from mlinspect import FunctionInfo from mlinspect.inspections import Inspection, InspectionInputUnaryOperator @dataclasses.dataclass(frozen=True, eq=True) class MissingEmbeddingsInfo: """ Info about potentially missing embeddings """ missing_embedding_count: int missing_embeddings_examples: List[str] class MissingEmbeddings(Inspection): """ A simple example inspection """ def __init__(self, example_threshold=10): self._is_embedding_operator = False self._missing_embedding_count = 0 self._missing_embeddings_examples = [] self.example_threshold = example_threshold def visit_operator(self, inspection_input) -> Iterable[any]: """ Visit an operator """ # pylint: disable=too-many-branches, too-many-statements if isinstance(inspection_input, InspectionInputUnaryOperator) and \ inspection_input.operator_context.function_info == \ FunctionInfo('example_pipelines.healthcare.healthcare_utils', 'MyW2VTransformer'): # TODO: Are there existing word embedding transformers for sklearn we can use this for? self._is_embedding_operator = True for row in inspection_input.row_iterator: # Count missing embeddings embedding_array = row.output[0] is_zero_vector = not embedding_array.any() if is_zero_vector: self._missing_embedding_count += 1 if len(self._missing_embeddings_examples) < self.example_threshold: self._missing_embeddings_examples.append(row.input[0]) yield None else: for _ in inspection_input.row_iterator: yield None def get_operator_annotation_after_visit(self) -> any: if self._is_embedding_operator: assert self._missing_embedding_count is not None # May only be called after the operator visit is finished result = MissingEmbeddingsInfo(self._missing_embedding_count, self._missing_embeddings_examples) self._missing_embedding_count = 0 self._is_embedding_operator = False self._missing_embeddings_examples = [] return result return None @property def inspection_id(self): return self.example_threshold ``` #### File: mlinspect/monkeypatching/_patch_sklearn.py ```python import gorilla import numpy import pandas from sklearn import preprocessing, compose, tree, impute, linear_model, model_selection from sklearn.feature_extraction import text from sklearn.linear_model._stochastic_gradient import DEFAULT_EPSILON from sklearn.metrics import accuracy_score from tensorflow.keras.wrappers import scikit_learn as keras_sklearn_external # pylint: disable=no-name-in-module from tensorflow.python.keras.wrappers import scikit_learn as keras_sklearn_internal # pylint: disable=no-name-in-module from mlinspect.backends._backend import BackendResult from mlinspect.backends._sklearn_backend import SklearnBackend from mlinspect.inspections._inspection_input import OperatorContext, FunctionInfo, OperatorType from mlinspect.instrumentation._dag_node import DagNode, BasicCodeLocation, DagNodeDetails, CodeReference from mlinspect.instrumentation._pipeline_executor import singleton from mlinspect.monkeypatching._mlinspect_ndarray import MlinspectNdarray from mlinspect.monkeypatching._monkey_patching_utils import execute_patched_func, add_dag_node, \ execute_patched_func_indirect_allowed, get_input_info, execute_patched_func_no_op_id, \ get_optional_code_info_or_none, get_dag_node_for_id, add_train_data_node, \ add_train_label_node, add_test_label_node, add_test_data_dag_node @gorilla.patches(preprocessing) class SklearnPreprocessingPatching: """ Patches for sklearn """ # pylint: disable=too-few-public-methods @gorilla.name('label_binarize') @gorilla.settings(allow_hit=True) def patched_label_binarize(*args, **kwargs): """ Patch for ('sklearn.preprocessing._label', 'label_binarize') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(preprocessing, 'label_binarize') def execute_inspections(op_id, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('sklearn.preprocessing._label', 'label_binarize') input_info = get_input_info(args[0], caller_filename, lineno, function_info, optional_code_reference, optional_source_code) operator_context = OperatorContext(OperatorType.PROJECTION_MODIFY, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result) new_return_value = backend_result.annotated_dfobject.result_data classes = kwargs['classes'] description = "label_binarize, classes: {}".format(classes) dag_node = DagNode(op_id, BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails(description, ["array"]), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) return new_return_value return execute_patched_func(original, execute_inspections, *args, **kwargs) @gorilla.patches(model_selection) class SklearnModelSelectionPatching: """ Patches for sklearn """ # pylint: disable=too-few-public-methods @gorilla.name('train_test_split') @gorilla.settings(allow_hit=True) def patched_train_test_split(*args, **kwargs): """ Patch for ('sklearn.model_selection._split', 'train_test_split') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(model_selection, 'train_test_split') def execute_inspections(op_id, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('sklearn.model_selection._split', 'train_test_split') input_info = get_input_info(args[0], caller_filename, lineno, function_info, optional_code_reference, optional_source_code) operator_context = OperatorContext(OperatorType.TRAIN_TEST_SPLIT, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result) # We ignore the test set for now train_backend_result = BackendResult(backend_result.annotated_dfobject, backend_result.dag_node_annotation) test_backend_result = BackendResult(backend_result.optional_second_annotated_dfobject, backend_result.optional_second_dag_node_annotation) description = "(Train Data)" columns = list(result[0].columns) dag_node = DagNode(op_id, BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails(description, columns), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], train_backend_result) description = "(Test Data)" columns = list(result[1].columns) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails(description, columns), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], test_backend_result) new_return_value = (train_backend_result.annotated_dfobject.result_data, test_backend_result.annotated_dfobject.result_data) return new_return_value return execute_patched_func(original, execute_inspections, *args, **kwargs) class SklearnCallInfo: """ Contains info like lineno from the current Transformer so indirect utility function calls can access it """ # pylint: disable=too-few-public-methods transformer_filename: str or None = None transformer_lineno: int or None = None transformer_function_info: FunctionInfo or None = None transformer_optional_code_reference: CodeReference or None = None transformer_optional_source_code: str or None = None column_transformer_active: bool = False call_info_singleton = SklearnCallInfo() @gorilla.patches(compose.ColumnTransformer) class SklearnComposePatching: """ Patches for sklearn ColumnTransformer""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, transformers, *, remainder='drop', sparse_threshold=0.3, n_jobs=None, transformer_weights=None, verbose=False): """ Patch for ('sklearn.compose._column_transformer', 'ColumnTransformer') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(compose.ColumnTransformer, '__init__') def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=attribute-defined-outside-init original(self, transformers, remainder=remainder, sparse_threshold=sparse_threshold, n_jobs=n_jobs, transformer_weights=transformer_weights, verbose=verbose) self.mlinspect_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_indirect_allowed(execute_inspections) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.compose._column_transformer', 'ColumnTransformer') """ # pylint: disable=no-method-argument call_info_singleton.transformer_filename = self.mlinspect_filename call_info_singleton.transformer_lineno = self.mlinspect_lineno call_info_singleton.transformer_function_info = FunctionInfo('sklearn.compose._column_transformer', 'ColumnTransformer') call_info_singleton.transformer_optional_code_reference = self.mlinspect_optional_code_reference call_info_singleton.transformer_optional_source_code = self.mlinspect_optional_source_code call_info_singleton.column_transformer_active = True original = gorilla.get_original_attribute(compose.ColumnTransformer, 'fit_transform') result = original(self, *args, **kwargs) call_info_singleton.column_transformer_active = False return result @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.compose._column_transformer', 'ColumnTransformer') """ # pylint: disable=no-method-argument call_info_singleton.transformer_filename = self.mlinspect_filename call_info_singleton.transformer_lineno = self.mlinspect_lineno call_info_singleton.transformer_function_info = FunctionInfo('sklearn.compose._column_transformer', 'ColumnTransformer') call_info_singleton.transformer_optional_code_reference = self.mlinspect_optional_code_reference call_info_singleton.transformer_optional_source_code = self.mlinspect_optional_source_code call_info_singleton.column_transformer_active = True original = gorilla.get_original_attribute(compose.ColumnTransformer, 'transform') result = original(self, *args, **kwargs) call_info_singleton.column_transformer_active = False return result @gorilla.name('_hstack') @gorilla.settings(allow_hit=True) def patched_hstack(self, *args, **kwargs): """ Patch for ('sklearn.compose._column_transformer', 'ColumnTransformer') """ # pylint: disable=no-method-argument, unused-argument, too-many-locals original = gorilla.get_original_attribute(compose.ColumnTransformer, '_hstack') if not call_info_singleton.column_transformer_active: return original(self, *args, **kwargs) input_tuple = args[0] function_info = FunctionInfo('sklearn.compose._column_transformer', 'ColumnTransformer') input_infos = [] for input_df_obj in input_tuple: input_info = get_input_info(input_df_obj, self.mlinspect_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) input_infos.append(input_info) operator_context = OperatorContext(OperatorType.CONCATENATION, function_info) input_annotated_dfs = [input_info.annotated_dfobject for input_info in input_infos] backend_input_infos = SklearnBackend.before_call(operator_context, input_annotated_dfs) # No input_infos copy needed because it's only a selection and the rows not being removed don't change result = original(self, *args, **kwargs) backend_result = SklearnBackend.after_call(operator_context, backend_input_infos, result) result = backend_result.annotated_dfobject.result_data dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_filename, self.mlinspect_lineno), operator_context, DagNodeDetails(None, ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) input_dag_nodes = [input_info.dag_node for input_info in input_infos] add_dag_node(dag_node, input_dag_nodes, backend_result) return result @gorilla.patches(preprocessing.StandardScaler) class SklearnStandardScalerPatching: """ Patches for sklearn StandardScaler""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, *, copy=True, with_mean=True, with_std=True, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.preprocessing._data', 'StandardScaler') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.StandardScaler, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'copy': copy, 'with_mean': with_mean, 'with_std': with_std} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, copy=copy, with_mean=with_mean, with_std=with_std) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._data.StandardScaler', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.StandardScaler, 'fit_transform') function_info = FunctionInfo('sklearn.preprocessing._data', 'StandardScaler') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data assert isinstance(new_return_value, MlinspectNdarray) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Standard Scaler: fit_transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._data.StandardScaler', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(preprocessing.StandardScaler, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.preprocessing._data', 'StandardScaler') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data assert isinstance(new_return_value, MlinspectNdarray) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Standard Scaler: transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(text.HashingVectorizer) class SklearnHasingVectorizerPatching: """ Patches for sklearn StandardScaler""" # pylint: disable=too-few-public-methods, redefined-builtin, too-many-locals @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, *, input='content', encoding='utf-8', decode_error='strict', strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=r"(?u)\b\w\w+\b", ngram_range=(1, 1), analyzer='word', n_features=(2 ** 20), binary=False, norm='l2', alternate_sign=True, dtype=numpy.float64, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.feature_extraction.text', 'HashingVectorizer') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(text.HashingVectorizer, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'input': input, 'encoding': encoding, 'decode_error': decode_error, 'strip_accents': strip_accents, 'lowercase': lowercase, 'preprocessor': preprocessor, 'tokenizer': tokenizer, 'stop_words': stop_words, 'token_pattern': token_pattern, 'ngram_range': ngram_range, 'analyzer': analyzer, 'n_features': n_features, 'binary': binary, 'norm': norm, 'alternate_sign': alternate_sign, 'dtype': dtype} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.feature_extraction.text.HashingVectorizer', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(text.HashingVectorizer, 'fit_transform') function_info = FunctionInfo('sklearn.feature_extraction.text', 'HashingVectorizer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Hashing Vectorizer: fit_transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._data.StandardScaler', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(text.HashingVectorizer, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.feature_extraction.text', 'HashingVectorizer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Hashing Vectorizer: transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(preprocessing.KBinsDiscretizer) class SklearnKBinsDiscretizerPatching: """ Patches for sklearn KBinsDiscretizer""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, n_bins=5, *, encode='onehot', strategy='quantile', mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.preprocessing._discretization', 'KBinsDiscretizer') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.KBinsDiscretizer, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'n_bins': n_bins, 'encode': encode, 'strategy': strategy} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._discretization.KBinsDiscretizer', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.KBinsDiscretizer, 'fit_transform') function_info = FunctionInfo('sklearn.preprocessing._discretization', 'KBinsDiscretizer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data assert isinstance(new_return_value, MlinspectNdarray) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("K-Bins Discretizer: fit_transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._discretization.KBinsDiscretizer', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(preprocessing.KBinsDiscretizer, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.preprocessing._discretization', 'KBinsDiscretizer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data assert isinstance(new_return_value, MlinspectNdarray) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("K-Bins Discretizer: transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(preprocessing.OneHotEncoder) class SklearnOneHotEncoderPatching: """ Patches for sklearn OneHotEncoder""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, *, categories='auto', drop=None, sparse=True, dtype=numpy.float64, handle_unknown='error', mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.preprocessing._encoders', 'OneHotEncoder') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.OneHotEncoder, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'categories': categories, 'drop': drop, 'sparse': sparse, 'dtype': dtype, 'handle_unknown': handle_unknown} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._encoders.OneHotEncoder', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.OneHotEncoder, 'fit_transform') function_info = FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("One-Hot Encoder: fit_transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing._encoders.OneHotEncoder', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(preprocessing.OneHotEncoder, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("One-Hot Encoder: transform", ['array']), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(impute.SimpleImputer) class SklearnSimpleImputerPatching: """ Patches for sklearn SimpleImputer""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, *, missing_values=numpy.nan, strategy="mean", fill_value=None, verbose=0, copy=True, add_indicator=False, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.impute._base', 'SimpleImputer') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(impute.SimpleImputer, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'missing_values': missing_values, 'strategy': strategy, 'fill_value': fill_value, 'verbose': verbose, 'copy': copy, 'add_indicator': add_indicator} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.impute._base.SimpleImputer', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(impute.SimpleImputer, 'fit_transform') function_info = FunctionInfo('sklearn.impute._base', 'SimpleImputer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data if isinstance(input_infos[0].result_data, pandas.DataFrame): columns = list(input_infos[0].result_data.columns) else: columns = ['array'] dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Simple Imputer: fit_transform", columns), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.impute._base.SimpleImputer', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(impute.SimpleImputer, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.impute._base', 'SimpleImputer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data if isinstance(input_infos[0].result_data, pandas.DataFrame): columns = list(input_infos[0].result_data.columns) else: columns = ['array'] dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Simple Imputer: transform", columns), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(preprocessing.FunctionTransformer) class SklearnFunctionTransformerPatching: """ Patches for sklearn FunctionTransformer""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, func=None, inverse_func=None, *, validate=False, accept_sparse=False, check_inverse=True, kw_args=None, inv_kw_args=None, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_fit_transform_active=False): """ Patch for ('sklearn.preprocessing_function_transformer', 'FunctionTransformer') """ # pylint: disable=no-method-argument, attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.FunctionTransformer, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_fit_transform_active = mlinspect_fit_transform_active self.mlinspect_non_data_func_args = {'validate': validate, 'accept_sparse': accept_sparse, 'check_inverse': check_inverse, 'kw_args': kw_args, 'inv_kw_args': inv_kw_args} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, func=func, inverse_func=inverse_func, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, func=func, inverse_func=inverse_func, **self.mlinspect_non_data_func_args) @gorilla.name('fit_transform') @gorilla.settings(allow_hit=True) def patched_fit_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing_function_transformer.FunctionTransformer', 'fit_transform') """ # pylint: disable=no-method-argument self.mlinspect_fit_transform_active = True # pylint: disable=attribute-defined-outside-init original = gorilla.get_original_attribute(preprocessing.FunctionTransformer, 'fit_transform') function_info = FunctionInfo('sklearn.preprocessing_function_transformer', 'FunctionTransformer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data if isinstance(input_infos[0].result_data, pandas.DataFrame): columns = list(input_infos[0].result_data.columns) else: columns = ['array'] dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Function Transformer: fit_transform", columns), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) self.mlinspect_fit_transform_active = False # pylint: disable=attribute-defined-outside-init return new_return_value @gorilla.name('transform') @gorilla.settings(allow_hit=True) def patched_transform(self, *args, **kwargs): """ Patch for ('sklearn.preprocessing_function_transformer.FunctionTransformer', 'transform') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(preprocessing.FunctionTransformer, 'transform') if not self.mlinspect_fit_transform_active: function_info = FunctionInfo('sklearn.preprocessing_function_transformer', 'FunctionTransformer') input_info = get_input_info(args[0], self.mlinspect_caller_filename, self.mlinspect_lineno, function_info, self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code) operator_context = OperatorContext(OperatorType.TRANSFORMER, function_info) input_infos = SklearnBackend.before_call(operator_context, [input_info.annotated_dfobject]) result = original(self, input_infos[0].result_data, *args[1:], **kwargs) backend_result = SklearnBackend.after_call(operator_context, input_infos, result, self.mlinspect_non_data_func_args) new_return_value = backend_result.annotated_dfobject.result_data if isinstance(input_infos[0].result_data, pandas.DataFrame): columns = list(input_infos[0].result_data.columns) else: columns = ['array'] dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Function Transformer: transform", columns), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [input_info.dag_node], backend_result) else: new_return_value = original(self, *args, **kwargs) return new_return_value @gorilla.patches(tree.DecisionTreeClassifier) class SklearnDecisionTreePatching: """ Patches for sklearn DecisionTree""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, *, criterion="gini", splitter="best", max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0., max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0., min_impurity_split=None, class_weight=None, presort='deprecated', ccp_alpha=0.0, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_estimator_node_id=None): """ Patch for ('sklearn.tree._classes', 'DecisionTreeClassifier') """ # pylint: disable=no-method-argument, attribute-defined-outside-init, too-many-locals original = gorilla.get_original_attribute(tree.DecisionTreeClassifier, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_estimator_node_id = mlinspect_estimator_node_id self.mlinspect_non_data_func_args = {'criterion': criterion, 'splitter': splitter, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'min_weight_fraction_leaf': min_weight_fraction_leaf, 'max_features': max_features, 'random_state': random_state, 'max_leaf_nodes': max_leaf_nodes, 'min_impurity_decrease': min_impurity_decrease, 'min_impurity_split': min_impurity_split, 'class_weight': class_weight, 'presort': presort, 'ccp_alpha': ccp_alpha} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code self.mlinspect_estimator_node_id = None return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit') @gorilla.settings(allow_hit=True) def patched_fit(self, *args, **kwargs): """ Patch for ('sklearn.tree._classes.DecisionTreeClassifier', 'fit') """ # pylint: disable=no-method-argument, too-many-locals original = gorilla.get_original_attribute(tree.DecisionTreeClassifier, 'fit') function_info = FunctionInfo('sklearn.tree._classes', 'DecisionTreeClassifier') data_backend_result, train_data_node, train_data_result = add_train_data_node(self, args[0], function_info) label_backend_result, train_labels_node, train_labels_result = add_train_label_node(self, args[1], function_info) # Estimator operator_context = OperatorContext(OperatorType.ESTIMATOR, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) original(self, train_data_result, train_labels_result, *args[2:], **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, None, self.mlinspect_non_data_func_args) self.mlinspect_estimator_node_id = singleton.get_next_op_id() # pylint: disable=attribute-defined-outside-init dag_node = DagNode(self.mlinspect_estimator_node_id, BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Decision Tree", []), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [train_data_node, train_labels_node], estimator_backend_result) return self @gorilla.name('score') @gorilla.settings(allow_hit=True) def patched_score(self, *args, **kwargs): """ Patch for ('sklearn.tree._classes.DecisionTreeClassifier', 'score') """ # pylint: disable=no-method-argument def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('sklearn.tree._classes.DecisionTreeClassifier', 'score') data_backend_result, test_data_node, test_data_result = add_test_data_dag_node(args[0], function_info, lineno, optional_code_reference, optional_source_code, caller_filename) label_backend_result, test_labels_node, test_labels_result = add_test_label_node(args[1], caller_filename, function_info, lineno, optional_code_reference, optional_source_code) operator_context = OperatorContext(OperatorType.SCORE, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) # Same as original, but captures the test set predictions predictions = self.predict(test_data_result) # pylint: disable=no-member result = accuracy_score(test_labels_result, predictions, **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, predictions, self.mlinspect_non_data_func_args) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails("Decision Tree", []), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) estimator_dag_node = get_dag_node_for_id(self.mlinspect_estimator_node_id) add_dag_node(dag_node, [estimator_dag_node, test_data_node, test_labels_node], estimator_backend_result) return result return execute_patched_func_indirect_allowed(execute_inspections) @gorilla.patches(linear_model.SGDClassifier) class SklearnSGDClassifierPatching: """ Patches for sklearn SGDClassifier""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, loss="hinge", *, penalty='l2', alpha=0.0001, l1_ratio=0.15, fit_intercept=True, max_iter=1000, tol=1e-3, shuffle=True, verbose=0, epsilon=DEFAULT_EPSILON, n_jobs=None, random_state=None, learning_rate="optimal", eta0=0.0, power_t=0.5, early_stopping=False, validation_fraction=0.1, n_iter_no_change=5, class_weight=None, warm_start=False, average=False, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_estimator_node_id=None): """ Patch for ('sklearn.linear_model._stochastic_gradient', 'SGDClassifier') """ # pylint: disable=no-method-argument, attribute-defined-outside-init, too-many-locals original = gorilla.get_original_attribute(linear_model.SGDClassifier, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_estimator_node_id = mlinspect_estimator_node_id self.mlinspect_non_data_func_args = {'loss': loss, 'penalty': penalty, 'alpha': alpha, 'l1_ratio': l1_ratio, 'fit_intercept': fit_intercept, 'max_iter': max_iter, 'tol': tol, 'shuffle': shuffle, 'verbose': verbose, 'epsilon': epsilon, 'n_jobs': n_jobs, 'random_state': random_state, 'learning_rate': learning_rate, 'eta0': eta0, 'power_t': power_t, 'early_stopping': early_stopping, 'validation_fraction': validation_fraction, 'n_iter_no_change': n_iter_no_change, 'class_weight': class_weight, 'warm_start': warm_start, 'average': average} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code self.mlinspect_estimator_node_id = None return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit') @gorilla.settings(allow_hit=True) def patched_fit(self, *args, **kwargs): """ Patch for ('sklearn.linear_model._stochastic_gradient', 'fit') """ # pylint: disable=no-method-argument, too-many-locals original = gorilla.get_original_attribute(linear_model.SGDClassifier, 'fit') function_info = FunctionInfo('sklearn.linear_model._stochastic_gradient', 'SGDClassifier') data_backend_result, train_data_node, train_data_result = add_train_data_node(self, args[0], function_info) label_backend_result, train_labels_node, train_labels_result = add_train_label_node(self, args[1], function_info) # Estimator operator_context = OperatorContext(OperatorType.ESTIMATOR, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) original(self, train_data_result, train_labels_result, *args[2:], **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, None, self.mlinspect_non_data_func_args) self.mlinspect_estimator_node_id = singleton.get_next_op_id() # pylint: disable=attribute-defined-outside-init dag_node = DagNode(self.mlinspect_estimator_node_id, BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("SGD Classifier", []), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [train_data_node, train_labels_node], estimator_backend_result) return self @gorilla.name('score') @gorilla.settings(allow_hit=True) def patched_score(self, *args, **kwargs): """ Patch for ('sklearn.linear_model._stochastic_gradient.SGDClassifier', 'score') """ # pylint: disable=no-method-argument def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('sklearn.linear_model._stochastic_gradient.SGDClassifier', 'score') # Test data data_backend_result, test_data_node, test_data_result = add_test_data_dag_node(args[0], function_info, lineno, optional_code_reference, optional_source_code, caller_filename) # Test labels label_backend_result, test_labels_node, test_labels_result = add_test_label_node(args[1], caller_filename, function_info, lineno, optional_code_reference, optional_source_code) # Score operator_context = OperatorContext(OperatorType.SCORE, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) # Same as original, but captures the test set predictions predictions = self.predict(test_data_result) # pylint: disable=no-member result = accuracy_score(test_labels_result, predictions, **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, predictions, self.mlinspect_non_data_func_args) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails("SGD Classifier", []), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) estimator_dag_node = get_dag_node_for_id(self.mlinspect_estimator_node_id) add_dag_node(dag_node, [estimator_dag_node, test_data_node, test_labels_node], estimator_backend_result) return result return execute_patched_func_indirect_allowed(execute_inspections) @gorilla.patches(linear_model.LogisticRegression) class SklearnLogisticRegressionPatching: """ Patches for sklearn LogisticRegression""" # pylint: disable=too-few-public-methods @gorilla.name('__init__') @gorilla.settings(allow_hit=True) def patched__init__(self, penalty='l2', *, dual=False, tol=1e-4, C=1.0, # pylint: disable=invalid-name fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='lbfgs', max_iter=100, multi_class='auto', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_estimator_node_id=None): """ Patch for ('sklearn.linear_model._logistic', 'LogisticRegression') """ # pylint: disable=no-method-argument, attribute-defined-outside-init, too-many-locals original = gorilla.get_original_attribute(linear_model.LogisticRegression, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_estimator_node_id = mlinspect_estimator_node_id self.mlinspect_non_data_func_args = {'penalty': penalty, 'dual': dual, 'tol': tol, 'C': C, 'fit_intercept': fit_intercept, 'intercept_scaling': intercept_scaling, 'class_weight': class_weight, 'random_state': random_state, 'solver': solver, 'max_iter': max_iter, 'multi_class': multi_class, 'verbose': verbose, 'warm_start': warm_start, 'n_jobs': n_jobs, 'l1_ratio': l1_ratio} def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, **self.mlinspect_non_data_func_args) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, **self.mlinspect_non_data_func_args) @gorilla.name('fit') @gorilla.settings(allow_hit=True) def patched_fit(self, *args, **kwargs): """ Patch for ('sklearn.linear_model._logistic.LogisticRegression', 'fit') """ # pylint: disable=no-method-argument, too-many-locals original = gorilla.get_original_attribute(linear_model.LogisticRegression, 'fit') function_info = FunctionInfo('sklearn.linear_model._logistic', 'LogisticRegression') data_backend_result, train_data_node, train_data_result = add_train_data_node(self, args[0], function_info) label_backend_result, train_labels_node, train_labels_result = add_train_label_node(self, args[1], function_info) # Estimator operator_context = OperatorContext(OperatorType.ESTIMATOR, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) original(self, train_data_result, train_labels_result, *args[2:], **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, None, self.mlinspect_non_data_func_args) self.mlinspect_estimator_node_id = singleton.get_next_op_id() # pylint: disable=attribute-defined-outside-init dag_node = DagNode(self.mlinspect_estimator_node_id, BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Logistic Regression", []), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [train_data_node, train_labels_node], estimator_backend_result) return self @gorilla.name('score') @gorilla.settings(allow_hit=True) def patched_score(self, *args, **kwargs): """ Patch for ('sklearn.linear_model._logistic.LogisticRegression', 'score') """ # pylint: disable=no-method-argument def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('sklearn.linear_model._logistic.LogisticRegression', 'score') # Test data data_backend_result, test_data_node, test_data_result = add_test_data_dag_node(args[0], function_info, lineno, optional_code_reference, optional_source_code, caller_filename) # Test labels label_backend_result, test_labels_node, test_labels_result = add_test_label_node(args[1], caller_filename, function_info, lineno, optional_code_reference, optional_source_code) # Score operator_context = OperatorContext(OperatorType.SCORE, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) # Same as original, but captures the test set predictions predictions = self.predict(test_data_result) # pylint: disable=no-member result = accuracy_score(test_labels_result, predictions, **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, predictions, self.mlinspect_non_data_func_args) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails("Logistic Regression", []), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) estimator_dag_node = get_dag_node_for_id(self.mlinspect_estimator_node_id) add_dag_node(dag_node, [estimator_dag_node, test_data_node, test_labels_node], estimator_backend_result) return result return execute_patched_func_indirect_allowed(execute_inspections) class SklearnKerasClassifierPatching: """ Patches for tensorflow KerasClassifier""" # pylint: disable=too-few-public-methods @gorilla.patch(keras_sklearn_internal.BaseWrapper, name='__init__', settings=gorilla.Settings(allow_hit=True)) def patched__init__(self, build_fn=None, mlinspect_caller_filename=None, mlinspect_lineno=None, mlinspect_optional_code_reference=None, mlinspect_optional_source_code=None, mlinspect_estimator_node_id=None, **sk_params): """ Patch for ('tensorflow.python.keras.wrappers.scikit_learn', 'KerasClassifier') """ # pylint: disable=no-method-argument, attribute-defined-outside-init, too-many-locals, too-many-arguments original = gorilla.get_original_attribute(keras_sklearn_internal.BaseWrapper, '__init__') self.mlinspect_caller_filename = mlinspect_caller_filename self.mlinspect_lineno = mlinspect_lineno self.mlinspect_optional_code_reference = mlinspect_optional_code_reference self.mlinspect_optional_source_code = mlinspect_optional_source_code self.mlinspect_estimator_node_id = mlinspect_estimator_node_id self.mlinspect_non_data_func_args = sk_params def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ original(self, build_fn=build_fn, **sk_params) self.mlinspect_caller_filename = caller_filename self.mlinspect_lineno = lineno self.mlinspect_optional_code_reference = optional_code_reference self.mlinspect_optional_source_code = optional_source_code return execute_patched_func_no_op_id(original, execute_inspections, self, build_fn=build_fn, **sk_params) @gorilla.patch(keras_sklearn_external.KerasClassifier, name='fit', settings=gorilla.Settings(allow_hit=True)) def patched_fit(self, *args, **kwargs): """ Patch for ('tensorflow.python.keras.wrappers.scikit_learn.KerasClassifier', 'fit') """ # pylint: disable=no-method-argument, too-many-locals original = gorilla.get_original_attribute(keras_sklearn_external.KerasClassifier, 'fit') function_info = FunctionInfo('tensorflow.python.keras.wrappers.scikit_learn', 'KerasClassifier') data_backend_result, train_data_dag_node, train_data_result = add_train_data_node(self, args[0], function_info) label_backend_result, train_labels_dag_node, train_labels_result = add_train_label_node(self, args[1], function_info) # Estimator operator_context = OperatorContext(OperatorType.ESTIMATOR, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) original(self, train_data_result, train_labels_result, *args[2:], **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, None, self.mlinspect_non_data_func_args) self.mlinspect_estimator_node_id = singleton.get_next_op_id() # pylint: disable=attribute-defined-outside-init dag_node = DagNode(self.mlinspect_estimator_node_id, BasicCodeLocation(self.mlinspect_caller_filename, self.mlinspect_lineno), operator_context, DagNodeDetails("Neural Network", []), get_optional_code_info_or_none(self.mlinspect_optional_code_reference, self.mlinspect_optional_source_code)) add_dag_node(dag_node, [train_data_dag_node, train_labels_dag_node], estimator_backend_result) return self @gorilla.patch(keras_sklearn_external.KerasClassifier, name='score', settings=gorilla.Settings(allow_hit=True)) def patched_score(self, *args, **kwargs): """ Patch for ('tensorflow.python.keras.wrappers.scikit_learn.KerasClassifier', 'score') """ # pylint: disable=no-method-argument original = gorilla.get_original_attribute(keras_sklearn_external.KerasClassifier, 'score') def execute_inspections(_, caller_filename, lineno, optional_code_reference, optional_source_code): """ Execute inspections, add DAG node """ # pylint: disable=too-many-locals function_info = FunctionInfo('tensorflow.python.keras.wrappers.scikit_learn.KerasClassifier', 'score') # Test data data_backend_result, test_data_node, test_data_result = add_test_data_dag_node(args[0], function_info, lineno, optional_code_reference, optional_source_code, caller_filename) # Test labels label_backend_result, test_labels_node, test_labels_result = add_test_label_node(args[1], caller_filename, function_info, lineno, optional_code_reference, optional_source_code) # Score operator_context = OperatorContext(OperatorType.SCORE, function_info) input_dfs = [data_backend_result.annotated_dfobject, label_backend_result.annotated_dfobject] input_infos = SklearnBackend.before_call(operator_context, input_dfs) # This currently calls predict twice, but patching here is complex. Maybe revisit this in future work predictions = self.predict(test_data_result) # pylint: disable=no-member result = original(self, test_data_result, test_labels_result, *args[2:], **kwargs) estimator_backend_result = SklearnBackend.after_call(operator_context, input_infos, predictions, self.mlinspect_non_data_func_args) dag_node = DagNode(singleton.get_next_op_id(), BasicCodeLocation(caller_filename, lineno), operator_context, DagNodeDetails("Neural Network", []), get_optional_code_info_or_none(optional_code_reference, optional_source_code)) estimator_dag_node = get_dag_node_for_id(self.mlinspect_estimator_node_id) add_dag_node(dag_node, [estimator_dag_node, test_data_node, test_labels_node], estimator_backend_result) return result return execute_patched_func_indirect_allowed(execute_inspections) ``` #### File: test/checks/test_no_bias_introduced_for.py ```python import math from inspect import cleandoc from pandas import DataFrame from testfixtures import compare from mlinspect import DagNode, BasicCodeLocation, OperatorContext, OperatorType, FunctionInfo, DagNodeDetails, \ OptionalCodeInfo from mlinspect._pipeline_inspector import PipelineInspector from mlinspect.checks import CheckStatus, NoBiasIntroducedFor, \ NoBiasIntroducedForResult from mlinspect.checks._no_bias_introduced_for import BiasDistributionChange from mlinspect.instrumentation._dag_node import CodeReference def test_no_bias_introduced_for_merge(): """ Tests whether RowLineage works for joins """ test_code = cleandoc(""" import pandas as pd df_a = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c', 'cat_b'], 'B': [1, 2, 4, 5, 7]}) df_b = pd.DataFrame({'B': [1, 2, 3, 4, 5], 'C': [1, 5, 4, 11, None]}) df_merged = df_a.merge(df_b, on='B') """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_check(NoBiasIntroducedFor(['A'])) \ .execute() check_result = inspector_result.check_to_check_results[NoBiasIntroducedFor(['A'])] expected_result = get_expected_check_result_merge() compare(check_result, expected_result) def test_no_bias_introduced_simple_imputer(): """ Tests whether RowLineage works for joins """ test_code = cleandoc(""" import pandas as pd from sklearn.impute import SimpleImputer import numpy as np df = pd.DataFrame({'A': ['cat_a', np.nan, 'cat_a', 'cat_c']}) imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imputed_data = imputer.fit_transform(df) """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_check(NoBiasIntroducedFor(['A'])) \ .execute() check_result = inspector_result.check_to_check_results[NoBiasIntroducedFor(['A'])] expected_result = get_expected_check_result_simple_imputer() compare(check_result, expected_result) def get_expected_check_result_merge(): """ Expected result for the code snippet in test_no_bias_introduced_for_merge""" failing_dag_node = DagNode(2, BasicCodeLocation('<string-source>', 5), OperatorContext(OperatorType.JOIN, FunctionInfo('pandas.core.frame', 'merge')), DagNodeDetails("on 'B'", ['A', 'B', 'C']), OptionalCodeInfo(CodeReference(5, 12, 5, 36), "df_a.merge(df_b, on='B')")) change_df = DataFrame({'sensitive_column_value': ['cat_a', 'cat_b', 'cat_c'], 'count_before': [2, 2, 1], 'count_after': [2, 1, 1], 'ratio_before': [0.4, 0.4, 0.2], 'ratio_after': [0.5, 0.25, 0.25], 'relative_ratio_change': [(0.5 - 0.4) / 0.4, (.25 - 0.4) / 0.4, (0.25 - 0.2) / 0.2]}) expected_distribution_change = BiasDistributionChange(failing_dag_node, False, (.25 - 0.4) / 0.4, change_df) expected_dag_node_to_change = {failing_dag_node: {'A': expected_distribution_change}} failure_message = 'A Join causes a min_relative_ratio_change of \'A\' by -0.37500000000000006, a value below the ' \ 'configured minimum threshold -0.3!' expected_result = NoBiasIntroducedForResult(NoBiasIntroducedFor(['A']), CheckStatus.FAILURE, failure_message, expected_dag_node_to_change) return expected_result def get_expected_check_result_simple_imputer(): """ Expected result for the code snippet in test_no_bias_introduced_for_simple_imputer""" imputer_dag_node = DagNode(1, BasicCodeLocation('<string-source>', 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.impute._base', 'SimpleImputer')), DagNodeDetails('Simple Imputer: fit_transform', ['A']), OptionalCodeInfo(CodeReference(6, 10, 6, 72), "SimpleImputer(missing_values=np.nan, strategy='most_frequent')")) change_df = DataFrame({'sensitive_column_value': ['cat_a', 'cat_c', math.nan], 'count_before': [2, 1, 1], 'count_after': [3, 1, 0], 'ratio_before': [0.5, 0.25, 0.25], 'ratio_after': [0.75, 0.25, 0.], 'relative_ratio_change': [0.5, 0., -1.]}) expected_distribution_change = BiasDistributionChange(imputer_dag_node, True, 0., change_df) expected_dag_node_to_change = {imputer_dag_node: {'A': expected_distribution_change}} expected_result = NoBiasIntroducedForResult(NoBiasIntroducedFor(['A']), CheckStatus.SUCCESS, None, expected_dag_node_to_change) return expected_result ``` #### File: test/example_pipelines/test_compas.py ```python import ast from mlinspect.testing._testing_helper_utils import run_and_assert_all_op_outputs_inspected from example_pipelines import COMPAS_PY, COMPAS_PNG def test_py_pipeline_runs(): """ Tests whether the .py version of the pipeline works """ with open(COMPAS_PY) as file: text = file.read() parsed_ast = ast.parse(text) exec(compile(parsed_ast, filename="<ast>", mode="exec")) def test_instrumented_py_pipeline_runs(): """ Tests whether the pipeline works with instrumentation """ dag = run_and_assert_all_op_outputs_inspected(COMPAS_PY, ['sex', 'race'], COMPAS_PNG) assert len(dag) == 39 ``` #### File: test/inspections/test_arg_capturing.py ```python from inspect import cleandoc import numpy from testfixtures import compare from mlinspect import OperatorType, DagNode, BasicCodeLocation, OperatorContext, FunctionInfo, DagNodeDetails, \ OptionalCodeInfo, CodeReference from mlinspect.inspections import ArgumentCapturing from mlinspect.instrumentation import _pipeline_executor def test_arg_capturing_sklearn_decision_tree(): """ Tests whether ArgumentCapturing works for the sklearn DecisionTreeClassifier """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import label_binarize, StandardScaler from sklearn.tree import DecisionTreeClassifier import numpy as np df = pd.DataFrame({'A': [0, 1, 2, 3], 'B': [0, 1, 2, 3], 'target': ['no', 'no', 'yes', 'yes']}) train = StandardScaler().fit_transform(df[['A', 'B']]) target = label_binarize(df['target'], classes=['no', 'yes']) clf = DecisionTreeClassifier() clf = clf.fit(train, target) test_df = pd.DataFrame({'A': [0., 0.6], 'B': [0., 0.6], 'target': ['no', 'yes']}) test_labels = label_binarize(test_df['target'], classes=['no', 'yes']) test_score = clf.score(test_df[['A', 'B']], test_labels) assert test_score == 1.0 """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) classifier_node = list(inspector_result.dag.nodes)[7] score_node = list(inspector_result.dag.nodes)[14] expected_classifier = DagNode(7, BasicCodeLocation("<string-source>", 11), OperatorContext(OperatorType.ESTIMATOR, FunctionInfo('sklearn.tree._classes', 'DecisionTreeClassifier')), DagNodeDetails('Decision Tree', []), OptionalCodeInfo(CodeReference(11, 6, 11, 30), 'DecisionTreeClassifier()')) expected_score = DagNode(14, BasicCodeLocation("<string-source>", 16), OperatorContext(OperatorType.SCORE, FunctionInfo('sklearn.tree._classes.DecisionTreeClassifier', 'score')), DagNodeDetails('Decision Tree', []), OptionalCodeInfo(CodeReference(16, 13, 16, 56), "clf.score(test_df[['A', 'B']], test_labels)")) compare(classifier_node, expected_classifier) compare(score_node, expected_score) expected_args = {'criterion': 'gini', 'splitter': 'best', 'max_depth': None, 'min_samples_split': 2, 'min_samples_leaf': 1, 'min_weight_fraction_leaf': 0.0, 'max_features': None, 'random_state': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'class_weight': None, 'presort': 'deprecated', 'ccp_alpha': 0.0} inspection_results_tree = inspector_result.dag_node_to_inspection_results[classifier_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[score_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_sklearn_sgd_classifier(): """ Tests whether ArgumentCapturing works for the sklearn SGDClassifier """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import label_binarize, StandardScaler from sklearn.linear_model import SGDClassifier import numpy as np df = pd.DataFrame({'A': [0, 1, 2, 3], 'B': [0, 1, 2, 3], 'target': ['no', 'no', 'yes', 'yes']}) train = StandardScaler().fit_transform(df[['A', 'B']]) target = label_binarize(df['target'], classes=['no', 'yes']) clf = SGDClassifier(loss='log', random_state=42) clf = clf.fit(train, target) test_df = pd.DataFrame({'A': [0., 0.6], 'B': [0., 0.6], 'target': ['no', 'yes']}) test_labels = label_binarize(test_df['target'], classes=['no', 'yes']) test_score = clf.score(test_df[['A', 'B']], test_labels) assert test_score == 1.0 """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) classifier_node = list(inspector_result.dag.nodes)[7] score_node = list(inspector_result.dag.nodes)[14] expected_classifier = DagNode(7, BasicCodeLocation("<string-source>", 11), OperatorContext(OperatorType.ESTIMATOR, FunctionInfo('sklearn.linear_model._stochastic_gradient', 'SGDClassifier')), DagNodeDetails('SGD Classifier', []), OptionalCodeInfo(CodeReference(11, 6, 11, 48), "SGDClassifier(loss='log', random_state=42)")) expected_score = DagNode(14, BasicCodeLocation("<string-source>", 16), OperatorContext(OperatorType.SCORE, FunctionInfo('sklearn.linear_model._stochastic_gradient.SGDClassifier', 'score')), DagNodeDetails('SGD Classifier', []), OptionalCodeInfo(CodeReference(16, 13, 16, 56), "clf.score(test_df[['A', 'B']], test_labels)")) compare(classifier_node, expected_classifier) compare(score_node, expected_score) expected_args = {'loss': 'log', 'penalty': 'l2', 'alpha': 0.0001, 'l1_ratio': 0.15, 'fit_intercept': True, 'max_iter': 1000, 'tol': 0.001, 'shuffle': True, 'verbose': 0, 'epsilon': 0.1, 'n_jobs': None, 'random_state': 42, 'learning_rate': 'optimal', 'eta0': 0.0, 'power_t': 0.5, 'early_stopping': False, 'validation_fraction': 0.1, 'n_iter_no_change': 5, 'class_weight': None, 'warm_start': False, 'average': False} inspection_results_tree = inspector_result.dag_node_to_inspection_results[classifier_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[score_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_sklearn_keras_classifier(): """ Tests whether ArgumentCapturing works for the sklearn KerasClassifier """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import StandardScaler, OneHotEncoder from tensorflow.keras.wrappers.scikit_learn import KerasClassifier from tensorflow.keras.layers import Dense from tensorflow.keras.models import Sequential from tensorflow.python.keras.optimizer_v2.gradient_descent import SGD import tensorflow as tf import numpy as np df = pd.DataFrame({'A': [0, 1, 2, 3], 'B': [0, 1, 2, 3], 'target': ['no', 'no', 'yes', 'yes']}) train = StandardScaler().fit_transform(df[['A', 'B']]) target = OneHotEncoder(sparse=False).fit_transform(df[['target']]) def create_model(input_dim): clf = Sequential() clf.add(Dense(2, activation='relu', input_dim=input_dim)) clf.add(Dense(2, activation='relu')) clf.add(Dense(2, activation='softmax')) clf.compile(loss='categorical_crossentropy', optimizer=SGD(), metrics=["accuracy"]) return clf np.random.seed(42) tf.random.set_seed(42) clf = KerasClassifier(build_fn=create_model, epochs=15, batch_size=1, verbose=0, input_dim=2) clf = clf.fit(train, target) test_df = pd.DataFrame({'A': [0., 0.8], 'B': [0., 0.8], 'target': ['no', 'yes']}) test_labels = OneHotEncoder(sparse=False).fit_transform(test_df[['target']]) test_score = clf.score(test_df[['A', 'B']], test_labels) assert test_score == 1.0 """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) classifier_node = list(inspector_result.dag.nodes)[7] score_node = list(inspector_result.dag.nodes)[14] expected_classifier = DagNode(7, BasicCodeLocation("<string-source>", 25), OperatorContext(OperatorType.ESTIMATOR, FunctionInfo('tensorflow.python.keras.wrappers.scikit_learn', 'KerasClassifier')), DagNodeDetails('Neural Network', []), OptionalCodeInfo(CodeReference(25, 6, 25, 93), 'KerasClassifier(build_fn=create_model, epochs=15, batch_size=1, ' 'verbose=0, input_dim=2)')) expected_score = DagNode(14, BasicCodeLocation("<string-source>", 30), OperatorContext(OperatorType.SCORE, FunctionInfo('tensorflow.python.keras.wrappers.scikit_learn.' 'KerasClassifier', 'score')), DagNodeDetails('Neural Network', []), OptionalCodeInfo(CodeReference(30, 13, 30, 56), "clf.score(test_df[['A', 'B']], test_labels)")) compare(classifier_node, expected_classifier) compare(score_node, expected_score) expected_args = {'epochs': 15, 'batch_size': 1, 'verbose': 0, 'input_dim': 2} inspection_results_tree = inspector_result.dag_node_to_inspection_results[classifier_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[score_node] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_standard_scaler(): """ Tests whether ArgumentCapturing works for the sklearn StandardScaler """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import StandardScaler import numpy as np df = pd.DataFrame({'A': [1, 2, 10, 5]}) standard_scaler = StandardScaler() encoded_data = standard_scaler.fit_transform(df) test_df = pd.DataFrame({'A': [1, 2, 10, 5]}) encoded_data = standard_scaler.transform(test_df) expected = np.array([[-1.], [-0.71428571], [1.57142857], [0.14285714]]) assert np.allclose(encoded_data, expected) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[1] transform_node = list(inspector_result.dag.nodes)[3] expected_fit_transform = DagNode(1, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._data', 'StandardScaler')), DagNodeDetails('Standard Scaler: fit_transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 34), 'StandardScaler()')) expected_transform = DagNode(3, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._data', 'StandardScaler')), DagNodeDetails('Standard Scaler: transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 34), 'StandardScaler()')) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'copy': True, 'with_mean': True, 'with_std': True} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_hashing_vectorizer(): """ Tests whether ArgumentCapturing works for the sklearn HasingVectorizer """ test_code = cleandoc(""" import pandas as pd from sklearn.feature_extraction.text import HashingVectorizer from scipy.sparse import csr_matrix import numpy as np df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) vectorizer = HashingVectorizer(ngram_range=(1, 3), n_features=2**2) encoded_data = vectorizer.fit_transform(df['A']) expected = csr_matrix([[-0., 0., 0., -1.], [0., -1., -0., 0.], [0., 0., 0., -1.], [0., 0., 0., -1.]]) assert np.allclose(encoded_data.A, expected.A) test_df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) encoded_data = vectorizer.transform(test_df['A']) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[2] transform_node = list(inspector_result.dag.nodes)[5] expected_fit_transform = DagNode(2, BasicCodeLocation("<string-source>", 7), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.feature_extraction.text', 'HashingVectorizer')), DagNodeDetails('Hashing Vectorizer: fit_transform', ['array']), OptionalCodeInfo(CodeReference(7, 13, 7, 67), 'HashingVectorizer(ngram_range=(1, 3), n_features=2**2)')) expected_transform = DagNode(5, BasicCodeLocation("<string-source>", 7), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.feature_extraction.text', 'HashingVectorizer')), DagNodeDetails('Hashing Vectorizer: transform', ['array']), OptionalCodeInfo(CodeReference(7, 13, 7, 67), 'HashingVectorizer(ngram_range=(1, 3), n_features=2**2)')) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'input': 'content', 'encoding': 'utf-8', 'decode_error': 'strict', 'strip_accents': None, 'lowercase': True, 'preprocessor': None, 'tokenizer': None, 'stop_words': None, 'token_pattern': '(?<KEY>', 'ngram_range': (1, 3), 'analyzer': 'word', 'n_features': 4, 'binary': False, 'norm': 'l2', 'alternate_sign': True, 'dtype': numpy.float64} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_kbins_discretizer(): """ Tests whether ArgumentCapturing works for the sklearn KBinsDiscretizer """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import KBinsDiscretizer import numpy as np df = pd.DataFrame({'A': [1, 2, 10, 5]}) discretizer = KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform') encoded_data = discretizer.fit_transform(df) test_df = pd.DataFrame({'A': [1, 2, 10, 5]}) encoded_data = discretizer.transform(test_df) expected = np.array([[0.], [0.], [2.], [1.]]) assert np.allclose(encoded_data, expected) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[1] transform_node = list(inspector_result.dag.nodes)[3] expected_fit_transform = DagNode(1, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._discretization', 'KBinsDiscretizer')), DagNodeDetails('K-Bins Discretizer: fit_transform', ['array']), OptionalCodeInfo(CodeReference(6, 14, 6, 78), "KBinsDiscretizer(n_bins=3, encode='ordinal', strategy='uniform')")) expected_transform = DagNode(3, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._discretization', 'KBinsDiscretizer')), DagNodeDetails('K-Bins Discretizer: transform', ['array']), OptionalCodeInfo(CodeReference(6, 14, 6, 78), "KBinsDiscretizer(n_bins=3, encode='ordinal', " "strategy='uniform')")) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'n_bins': 3, 'encode': 'ordinal', 'strategy': 'uniform'} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_one_hot_encoder(): """ Tests whether ArgumentCapturing works for the sklearn OneHotEncoder """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import label_binarize, OneHotEncoder import numpy as np df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) one_hot_encoder = OneHotEncoder(sparse=False) encoded_data = one_hot_encoder.fit_transform(df) expected = np.array([[1., 0., 0.], [0., 1., 0.], [1., 0., 0.], [0., 0., 1.]]) print(encoded_data) assert np.allclose(encoded_data, expected) test_df = pd.DataFrame({'A': ['cat_a', 'cat_b', 'cat_a', 'cat_c']}) encoded_data = one_hot_encoder.transform(test_df) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[1] transform_node = list(inspector_result.dag.nodes)[3] expected_fit_transform = DagNode(1, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder')), DagNodeDetails('One-Hot Encoder: fit_transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 45), 'OneHotEncoder(sparse=False)')) expected_transform = DagNode(3, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing._encoders', 'OneHotEncoder')), DagNodeDetails('One-Hot Encoder: transform', ['array']), OptionalCodeInfo(CodeReference(6, 18, 6, 45), 'OneHotEncoder(sparse=False)')) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'categories': 'auto', 'drop': None, 'sparse': False, 'dtype': numpy.float64, 'handle_unknown': 'error'} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_simple_imputer(): """ Tests whether ArgumentCapturing works for the sklearn SimpleImputer """ test_code = cleandoc(""" import pandas as pd from sklearn.impute import SimpleImputer import numpy as np df = pd.DataFrame({'A': ['cat_a', np.nan, 'cat_a', 'cat_c']}) imputer = SimpleImputer(missing_values=np.nan, strategy='most_frequent') imputed_data = imputer.fit_transform(df) test_df = pd.DataFrame({'A': ['cat_a', np.nan, 'cat_a', 'cat_c']}) imputed_data = imputer.transform(test_df) expected = np.array([['cat_a'], ['cat_a'], ['cat_a'], ['cat_c']]) assert np.array_equal(imputed_data, expected) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[1] transform_node = list(inspector_result.dag.nodes)[3] expected_fit_transform = DagNode(1, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.impute._base', 'SimpleImputer')), DagNodeDetails('Simple Imputer: fit_transform', ['A']), OptionalCodeInfo(CodeReference(6, 10, 6, 72), "SimpleImputer(missing_values=np.nan, strategy='most_frequent')")) expected_transform = DagNode(3, BasicCodeLocation("<string-source>", 6), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.impute._base', 'SimpleImputer')), DagNodeDetails('Simple Imputer: transform', ['A']), OptionalCodeInfo(CodeReference(6, 10, 6, 72), "SimpleImputer(missing_values=np.nan, strategy='most_frequent')")) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'missing_values': numpy.nan, 'strategy': 'most_frequent', 'fill_value': None, 'verbose': 0, 'copy': True, 'add_indicator': False} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) def test_arg_capturing_function_transformer(): """ Tests whether ArgumentCapturing works for the sklearn FunctionTransformer """ test_code = cleandoc(""" import pandas as pd from sklearn.preprocessing import FunctionTransformer import numpy as np def safe_log(x): return np.log(x, out=np.zeros_like(x), where=(x!=0)) df = pd.DataFrame({'A': [1, 2, 10, 5]}) function_transformer = FunctionTransformer(lambda x: safe_log(x)) encoded_data = function_transformer.fit_transform(df) test_df = pd.DataFrame({'A': [1, 2, 10, 5]}) encoded_data = function_transformer.transform(test_df) expected = np.array([[0.000000], [0.693147], [2.302585], [1.609438]]) assert np.allclose(encoded_data, expected) """) inspector_result = _pipeline_executor.singleton.run(python_code=test_code, track_code_references=True, inspections=[ArgumentCapturing()]) fit_transform_node = list(inspector_result.dag.nodes)[1] transform_node = list(inspector_result.dag.nodes)[3] expected_fit_transform = DagNode(1, BasicCodeLocation("<string-source>", 9), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing_function_transformer', 'FunctionTransformer')), DagNodeDetails('Function Transformer: fit_transform', ['A']), OptionalCodeInfo(CodeReference(9, 23, 9, 65), 'FunctionTransformer(lambda x: safe_log(x))')) expected_transform = DagNode(3, BasicCodeLocation("<string-source>", 9), OperatorContext(OperatorType.TRANSFORMER, FunctionInfo('sklearn.preprocessing_function_transformer', 'FunctionTransformer')), DagNodeDetails('Function Transformer: transform', ['A']), OptionalCodeInfo(CodeReference(9, 23, 9, 65), 'FunctionTransformer(lambda x: safe_log(x))')) compare(fit_transform_node, expected_fit_transform) compare(transform_node, expected_transform) expected_args = {'validate': False, 'accept_sparse': False, 'check_inverse': True, 'kw_args': None, 'inv_kw_args': None} inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_fit_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) inspection_results_tree = inspector_result.dag_node_to_inspection_results[expected_transform] captured_args = inspection_results_tree[ArgumentCapturing()] compare(captured_args, expected_args) ``` #### File: test/inspections/test_completeness_of_columns.py ```python from inspect import cleandoc from testfixtures import compare from mlinspect._pipeline_inspector import PipelineInspector from mlinspect.inspections import CompletenessOfColumns def test_completeness_merge(): """ Tests whether CompletenessOfColumns works for joins """ test_code = cleandoc(""" import numpy as np import pandas as pd df_a = pd.DataFrame({'A': ['cat_a', None, 'cat_a', 'cat_c', None], 'B': [1, 2, 4, 5, 7]}) df_b = pd.DataFrame({'B': [1, 2, 3, 4, np.nan], 'C': [1, 5, 4, 11, None]}) df_merged = df_a.merge(df_b, on='B') """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(CompletenessOfColumns(['A', 'B'])) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) completeness_output = inspection_results[0][CompletenessOfColumns(['A', 'B'])] expected_completeness = {'A': 0.6, 'B': 1.0} compare(completeness_output, expected_completeness) completeness_output = inspection_results[1][CompletenessOfColumns(['A', 'B'])] expected_completeness = {'B': 0.8} compare(completeness_output, expected_completeness) completeness_output = inspection_results[2][CompletenessOfColumns(['A', 'B'])] expected_completeness = {'A': 2/3, 'B': 1.0} compare(completeness_output, expected_completeness) def test_completeness_projection(): """ Tests whether CompletenessOfColumns works for projections """ test_code = cleandoc(""" import pandas as pd import numpy as np pandas_df = pd.DataFrame({'A': ['cat_a', 'cat_b', None, 'cat_c', 'cat_b'], 'B': [1, None, np.nan, None, 7], 'C': [2, 2, 10, 5, 7]}) pandas_df = pandas_df[['B', 'C']] pandas_df = pandas_df[['C']] """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(CompletenessOfColumns(['A', 'B'])) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) completeness_output = inspection_results[0][CompletenessOfColumns(['A', 'B'])] expected_completeness = {'A': 0.8, 'B': 0.4} compare(completeness_output, expected_completeness) completeness_output = inspection_results[1][CompletenessOfColumns(['A', 'B'])] expected_completeness = {'B': 0.4} compare(completeness_output, expected_completeness) completeness_output = inspection_results[2][CompletenessOfColumns(['A', 'B'])] expected_completeness = {} compare(completeness_output, expected_completeness) ``` #### File: test/inspections/test_count_distinct_of_columns.py ```python from inspect import cleandoc from testfixtures import compare from mlinspect._pipeline_inspector import PipelineInspector from mlinspect.inspections import CountDistinctOfColumns def test_count_distinct_merge(): """ Tests whether CountDistinctOfColumns works for joins """ test_code = cleandoc(""" import numpy as np import pandas as pd df_a = pd.DataFrame({'A': ['cat_a', None, 'cat_a', 'cat_c', None], 'B': [1, 2, 4, 5, 7]}) df_b = pd.DataFrame({'B': [1, 2, 3, 4, np.nan], 'C': [1, 5, 4, 11, None]}) df_merged = df_a.merge(df_b, on='B') """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(CountDistinctOfColumns(['A', 'B'])) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) count_distinct_output = inspection_results[0][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {'A': 3, 'B': 5} compare(count_distinct_output, expected_count_distinct) count_distinct_output = inspection_results[1][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {'B': 5} compare(count_distinct_output, expected_count_distinct) count_distinct_output = inspection_results[2][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {'A': 2, 'B': 3} compare(count_distinct_output, expected_count_distinct) def test_count_distinct_projection(): """ Tests whether CountDistinctOfColumns works for projections """ test_code = cleandoc(""" import pandas as pd import numpy as np pandas_df = pd.DataFrame({'A': ['cat_a', 'cat_b', None, 'cat_c', 'cat_b'], 'B': [1, None, np.nan, None, 7], 'C': [2, 2, 10, 5, 7]}) pandas_df = pandas_df[['B', 'C']] pandas_df = pandas_df[['C']] """) inspector_result = PipelineInspector \ .on_pipeline_from_string(test_code) \ .add_required_inspection(CountDistinctOfColumns(['A', 'B'])) \ .execute() inspection_results = list(inspector_result.dag_node_to_inspection_results.values()) count_distinct_output = inspection_results[0][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {'A': 4, 'B': 5} compare(count_distinct_output, expected_count_distinct) count_distinct_output = inspection_results[1][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {'B': 5} compare(count_distinct_output, expected_count_distinct) count_distinct_output = inspection_results[2][CountDistinctOfColumns(['A', 'B'])] expected_count_distinct = {} compare(count_distinct_output, expected_count_distinct) ```
{ "source": "jinyangpeter/nucs349_final", "score": 3 }
#### File: nucs349_final/src/implement_cf.py ```python from src.collaborative_filtering import collaborative_filtering from utils import data import numpy as np import pandas as pd import os import matplotlib.pyplot as plt def load_global(): BASE_PATH = './COVID-19/csse_covid_19_data/' confirmed = os.path.join( BASE_PATH, 'csse_covid_19_time_series', 'time_series_covid19_confirmed_global.csv') return data.load_csv_data(confirmed) def ind_replace_by_number(confirmed_cases, number): threshold_ind = [] for i in range(confirmed_cases.shape[0]): temp = np.argmax(confirmed_cases[i] > number) threshold_ind.append([True]*temp + [False]*(len(confirmed_cases[i]) - temp)) return np.array(threshold_ind) def ind_replace_by_percent(confirmed_cases, percent): threshold = confirmed_cases[:, -1] * percent ind = [] for i in range(confirmed_cases.shape[0]): ind.append(confirmed_cases[i] <= threshold[i]) return np.array(ind) # # Get the date on which a region first reported any case # first_case = np.argmax((confirmed_cases != 0), axis=1) # threshold_ind = [] # # Get the corresponding threshold number of cases; thresholds # # will be determined by the quantile used # for i in range(len(first_case)): # temp = confirmed_cases[i][first_case[i]:] # temp = np.quantile(temp, quantile) # # Get the first date above threshold, and then create vector of 0, 1 # temp = np.argmax(confirmed_cases[i] > temp) # threshold_ind.append([True]*temp + [False]*(len(confirmed_cases[i]) - temp)) # return np.array(threshold_ind) def dhs_growth_rate(data): t_0 = data[:, :-1] t_1 = data[:, 1:] denominator = 0.5*(t_0 + t_1) numerator = t_1 - t_0 denominator[denominator == 0] = 1 return numerator/denominator def rate_to_number(rate_, raw, ind): rate = np.copy(rate_) matrix = (raw * (1 - ind)).astype(float) for i in range(matrix.shape[0]): for j in range(matrix.shape[1] - 2, 0, -1): if ind[i, j - 1] == 1: matrix[i, j - 1] = matrix[i, j] * (1 - rate[i, j - 1]/2)/(1 + rate[i, j - 1]/2) return matrix # rate = np.copy(rate_) # temp = raw[:, 1:] # num = np.zeros(temp.shape) # # If rate is 2, i.e. it jumps from 0 to nonzero, just use the original raw data # num[rate == 2] = temp[rate == 2] # rate[rate == 2] = -2 # temp = raw[:, :-1] # num = num + temp * (1 + rate/2)/(1 - rate/2) # num = np.concatenate([raw[:, 0].reshape(-1, 1), num], axis=1) # return num def random_drop(data, index, rows_drop, days_drop): ind = np.copy(index) data_dropped = np.copy(data) np.random.seed(0) rows = np.random.choice(data.shape[0], rows_drop, replace=False) # ind_drop = np.random.randint(days_drop, size=rows_drop) for i in range(rows_drop): temp = ind[rows[i]][ind[rows[i]] == 0] temp[0:days_drop] = 1 temp2 = [0] * len(ind[rows[i]] == 1) + list(temp) ind[rows[i]][ind[rows[i]] == 0] = temp data_dropped[rows[i]][temp2] = 0 return ind, data_dropped confirmed = load_global() confirmed_cases = confirmed.drop(confirmed.columns[0:4], axis=1) confirmed_cases = confirmed_cases.to_numpy() quantile_ind = ind_replace_by_percent(confirmed_cases, 0.05) confirmed_rate = dhs_growth_rate(confirmed_cases) number_ind = ind_replace_by_number(confirmed_cases, 0) number_ind_dropped, confirmed_cases_dropped = random_drop(confirmed_cases, number_ind, int(confirmed_cases.shape[0]/10), 10) confirmed_rate_dropped = dhs_growth_rate(confirmed_cases_dropped) np.random.seed(0) mse = [] for dis in ['euclidean', 'cosine', 'manhattan']: imputed_rate = collaborative_filtering(confirmed_rate_dropped, 3, number_ind_dropped[:, :-1], distance_measure=dis, aggregator="median") imputed_cases = rate_to_number(imputed_rate, confirmed_cases_dropped, number_ind_dropped) test_ind = number_ind_dropped.astype(int) - number_ind.astype(int) test_ind = test_ind.astype(bool) m = (confirmed_cases[test_ind] - imputed_cases[test_ind])**2 mse.append(np.mean(m)) mse = np.array(mse) print(mse) print("Best is", ['euclidean', 'cosine', 'manhattan'][np.argmin(mse)]) np.random.seed(0) mse = [] for agg in ['mean', 'mode', 'median']: imputed_rate = collaborative_filtering(confirmed_rate_dropped, 3, number_ind_dropped[:, :-1], distance_measure="manhattan", aggregator=agg) imputed_cases = rate_to_number(imputed_rate, confirmed_cases_dropped, number_ind_dropped) test_ind = number_ind_dropped.astype(int) - number_ind.astype(int) test_ind = test_ind.astype(bool) m = (confirmed_cases[test_ind] - imputed_cases[test_ind]) ** 2 mse.append(np.mean(m)) mse = np.array(mse) print(mse) print("Best is", ['mean', 'mode', 'median'][np.argmin(mse)]) np.random.seed(0) mse = [] for k in range(1, 31): imputed_rate = collaborative_filtering(confirmed_rate_dropped, k, number_ind_dropped[:, :-1], distance_measure="manhattan", aggregator="mean") imputed_cases = rate_to_number(imputed_rate, confirmed_cases_dropped, number_ind_dropped) test_ind = number_ind_dropped.astype(int) - number_ind.astype(int) test_ind = test_ind.astype(bool) m = (confirmed_cases[test_ind] - imputed_cases[test_ind]) ** 2 mse.append(np.mean(m)) mse = np.array(mse) print("Best is", range(1, 31)[np.argmin(mse)]) plt.title("MSE for K in range(1, 31)") plt.ylabel("MSE") plt.plot(range(1, 31), mse) plt.savefig("final_mse.png") ############################### number_ind_0 = ind_replace_by_number(confirmed_cases, 10) imputed_rate = collaborative_filtering(confirmed_rate, 2, number_ind_0[:, :-1], distance_measure="manhattan", aggregator="mean") imputed_cases = rate_to_number(imputed_rate, confirmed_cases, number_ind_0) imputed_cases = np.rint(imputed_cases).astype(int) temp = (imputed_rate != confirmed_rate) print(np.sum(temp)) temp = (imputed_cases != confirmed_cases) print(np.sum(imputed_cases - confirmed_cases)) print(np.sum(temp)) temp = np.argwhere(imputed_cases != confirmed_cases) temp = imputed_cases- confirmed_cases temp = np.sum(temp, axis=1) print(np.sum(temp != 0)) top_name = list(confirmed[confirmed.columns[1]][np.argsort(-temp)[0:4]]) top = np.argsort(-temp)[0:4] date = list(confirmed.columns[4:]) # date = pd.to_datetime(date, format="%m/%d/%y") date = [d[:-3] for d in date] cut = np.argmin(number_ind_0, axis=1)[top] days_more = 10 for i, l in enumerate(top_name): fig, ax = plt.subplots() ax.set_title("Confirmed vs Imputed (Until 2%): " + l, fontsize=12) ax.set_ylabel("Total Reported Cases") ax.set_xlabel("Date") ax.plot(date[:cut[i]+days_more], confirmed_cases[top[i]][:cut[i]+days_more], color="black", label="Confirmed") ax.plot(date[:cut[i]+days_more], imputed_cases[top[i]][:cut[i]+days_more], "--", color="red", label="Imputed") tick = (len(date[:cut[i]+days_more]) // 20) if tick == 0: tick = range(0, len(date[:cut[i] + days_more])) else: tick = range(0, len(date[:cut[i]+days_more]), tick) plt.xticks(list(tick), [date[:cut[i]+days_more][k] for k in tick], rotation=45) ax.legend(loc='upper left') ax.set_yscale('log') fig.savefig(f"{l}_2%.png", bbox_inches='tight') total_cases = np.sum(confirmed_cases, axis=0) total_imputed_cases = np.sum(imputed_cases, axis=0) fig, ax = plt.subplots() ax.plot(date, total_cases, color="black", label="Confirmed") ax.plot(date, total_imputed_cases, "--", color="red", label="Imputed") ax.set_title("Confirmed vs Imputed: Global Total", fontsize=16) ax.set_ylabel('Total Reported Cases') ax.set_xlabel("Time (days since Jan 22, 2020)") ax.set_yscale('log') plt.xticks(range(date), range(date), rotation=45) ax.legend(loc='upper left') plt.tight_layout() plt.savefig('results/cases_by_country.png') ```
{ "source": "jin-yc10/ImageTagging", "score": 3 }
#### File: ImageTagging/public/extract_item.py ```python import os,sys import csv import locale def sort_tuple_by_pinyin(datalist): return sorted(datalist,cmp = tuple_cmp) def tuple_cmp(x,y): locale.setlocale(locale.LC_COLLATE, '<EMAIL>') return locale.strcoll(x[1],y[1]) def usage(): print '-Usage:' print '\tpython extract_item.py itemDir [outputfilepath(.csv)]' if len(sys.argv) < 2: usage() else: itemDir = sys.argv[1] if len(sys.argv) < 3: if itemDir.endswith('/'): itemDir = itemDir[0:-1] outputFilePath = itemDir + '.csv' else: outputFilePath = sys.argv[2] dirs = os.listdir(itemDir) flists = [] for dir in dirs: if dir.startswith('.'): continue dirpath = os.path.join(itemDir,dir) if os.path.isdir(dirpath): splitdir = os.listdir(dirpath) for splitd in splitdir: if splitd.startswith('.'): continue obj_path = os.path.join(dirpath,splitd) files = os.listdir(obj_path) for file in files: if file.startswith('.'): continue path = os.path.join(obj_path,file) slug = splitd flists.append((slug,path)) with open(outputFilePath, 'w') as csvfile: fieldnames = ['slug','path'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames) flists = sort_tuple_by_pinyin(flists) for slug,path in flists: print slug,path writer.writerow({'slug': slug, 'path':path}) ```
{ "source": "jinyeom/detectron2-tensorrt", "score": 2 }
#### File: jinyeom/detectron2-tensorrt/retinanet.py ```python from pathlib import Path from typing import Union, List, Tuple import torch from torch import nn from detectron2.config import CfgNode from detectron2.modeling.box_regression import Box2BoxTransform from detectron2.layers import batched_nms, cat from detectron2.structures import Boxes, Instances, pairwise_iou from utils.tensorrt import TensorRTModule class RetinaNetRT(nn.Module): def __init__(self, cfg: CfgNode): super().__init__() # fmt: off self.num_classes = cfg.MODEL.RETINANET.NUM_CLASSES self.score_threshold = cfg.MODEL.RETINANET.SCORE_THRESH_TEST self.topk_candidates = cfg.MODEL.RETINANET.TOPK_CANDIDATES_TEST self.nms_threshold = cfg.MODEL.RETINANET.NMS_THRESH_TEST self.max_detections_per_image = cfg.TEST.DETECTIONS_PER_IMAGE # fmt: on self.model = TensorRTModule( cfg.MODEL.DEPLOY.ONNX_PATH, cfg.MODEL.DEPLOY.ENGINE_PATH, max_batch_size=cfg.MODEL.DEPLOY.MAX_BATCH_SIZE, max_workspace_size=cfg.MODEL.DEPLOY.MAX_WORKSPACE_SIZE, fp16_mode=cfg.MODEL.DEPLOY.FP16_MODE, force_rebuild=cfg.MODEL.DEPLOY.FORCE_REBUILD, ) self.anchors = torch.load(cfg.MODEL.DEPLOY.ANCHORS_PATH) self.anchors = [anchor.cuda() for anchor in self.anchors] self.box2box_transform = Box2BoxTransform( weights=cfg.MODEL.RPN.BBOX_REG_WEIGHTS ) self.image_size = cfg.MODEL.DEPLOY.INPUT_SHAPE[-2:] def forward(self, inputs: torch.Tensor): outputs = self.model([inputs]) return self.postprocess(outputs) def postprocess(self, outputs: List[torch.Tensor]) -> torch.Tensor: results = [] for img_idx in range(len(outputs[0])): box_cls_per_image = [] box_reg_per_image = [] for o in outputs: box_cls_per_image.append(o[img_idx, ..., 4:]) box_reg_per_image.append(o[img_idx, ..., :4]) results_per_image = self.postprocess_single_image( box_cls_per_image, box_reg_per_image, ) results.append(results_per_image) return results def postprocess_single_image(self, box_cls, box_delta): boxes_all = [] scores_all = [] class_idxs_all = [] # Iterate over every feature level for box_cls_i, box_reg_i, anchors_i in zip(box_cls, box_delta, self.anchors): box_cls_i = box_cls_i.flatten() # (HxWxAxK,) # Keep top k top scoring indices only. num_topk = min(self.topk_candidates, box_reg_i.size(0)) # torch.sort is actually faster than .topk (at least on GPUs) predicted_prob, topk_idxs = box_cls_i.sort(descending=True) predicted_prob = predicted_prob[:num_topk] topk_idxs = topk_idxs[:num_topk] # filter out the proposals with low confidence score keep_idxs = predicted_prob > self.score_threshold predicted_prob = predicted_prob[keep_idxs] topk_idxs = topk_idxs[keep_idxs] anchor_idxs = topk_idxs // self.num_classes classes_idxs = topk_idxs % self.num_classes box_reg_i = box_reg_i[anchor_idxs] anchors_i = anchors_i[anchor_idxs] predicted_boxes = self.box2box_transform.apply_deltas(box_reg_i, anchors_i) boxes_all.append(predicted_boxes) scores_all.append(predicted_prob) class_idxs_all.append(classes_idxs) boxes_all, scores_all, class_idxs_all = [ cat(x) for x in [boxes_all, scores_all, class_idxs_all] ] keep = batched_nms(boxes_all, scores_all, class_idxs_all, self.nms_threshold) keep = keep[: self.max_detections_per_image] result = Instances(self.image_size) result.pred_boxes = Boxes(boxes_all[keep]) result.scores = scores_all[keep] result.pred_classes = class_idxs_all[keep] return result ```
{ "source": "jinyeom/dreamer", "score": 3 }
#### File: dreamer/dreamer/modules.py ```python from typing import Optional, Tuple, Sequence import torch from torch import Tensor, nn from torch.nn import functional as F from torch.distributions.one_hot_categorical import OneHotCategoricalStraightThrough class MLP(nn.Sequential): """ Multilayer perceptron with exponential linear unit activations. Parameters: in_dim (int): Number of input features out_dim (int): Number of outputs hid_dims (int): An optional sequence of numbers of hidden units """ def __init__( self, in_dim: int, out_dim: int, hid_dims: Optional[Sequence[int]] = None ) -> None: if hid_dims is None or len(hid_dims) == 0: net = [nn.Linear(in_dim, out_dim)] else: net = [nn.Linear(in_dim, hid_dims[0]), nn.ELU(inplace=True)] for in_features, out_features in zip(hid_dims[:-1], hid_dims[1:]): net.append(nn.Linear(in_features, out_features)) net.append(nn.ELU(inplace=True)) net.append(nn.Linear(hid_dims[-1], out_dim)) super().__init__(*net) class Encoder(nn.Module): """ Convolutional encoder for visual observation data. Note that the encoder expects the input shape of (B, 3, 64, 64). Parameters: x_dim (int): Size of the observation embedding """ def __init__(self, x_dim: int) -> None: super().__init__() self.x_dim = x_dim self.conv1 = nn.Conv2d(3, 32, 4, stride=2) self.conv2 = nn.Conv2d(32, 64, 4, stride=2) self.conv3 = nn.Conv2d(64, 128, 4, stride=2) self.conv4 = nn.Conv2d(128, 256, 4, stride=2) self.embed = nn.Linear(1024, self.x_dim) def forward(self, x: Tensor) -> Tensor: x = F.elu_(self.conv1(x)) x = F.elu_(self.conv2(x)) x = F.elu_(self.conv3(x)) x = F.elu_(self.conv4(x)) x = torch.flatten(x, start_dim=1) x = self.embed(x) return x class RSSM(nn.Module): """ Recurrent State-Space Model (RSSM) is composed of three models: 1) a recurrent model, which updates a deterministic recurrent state, 2) a representation model, which computes a posterior stochastic state, and 3) a transition model, which computes a prior stochastic state that tries to predict the posterior without access to the current observation. Parameters: x_dim (int): Size of the observation embedding h_dim (int): Size of the deterministic model state z_num_var (int): Number of categorical variables for the stochastic state z_var_dim (int): Size of each categorical variable for the stochastic state a_dim (int): Size of the action vector """ def __init__( self, x_dim: int, h_dim: int, z_num_var: int, z_var_dim: int, a_dim: int ) -> None: super().__init__() self.x_dim = x_dim self.h_dim = h_dim self.z_num_var = z_num_var self.z_var_dim = z_var_dim self.z_dim = z_num_var * z_var_dim self.a_dim = a_dim self.recurrent = nn.GRUCell(self.z_dim + self.a_dim, self.h_dim) self.representation = MLP(self.x_dim + self.h_dim, self.z_dim, (1024, 1024)) self.transition = MLP(self.h_dim, self.z_dim, (1024, 1024)) def compute_posterior(self, x: Tensor, h: Tensor) -> Tensor: z_logits = self.representation(torch.cat([x, h], dim=1)) z_logits = z_logits.reshape(-1, self.z_num_var, self.z_var_dim) z_dist = OneHotCategoricalStraightThrough(logits=z_logits) z = z_dist.rsample() return z def compute_prior(self, h: Tensor) -> Tensor: z_hat_logits = self.transition(h) z_hat_logits = z_hat_logits.reshape(-1, self.z_num_var, self.z_var_dim) z_hat_dist = OneHotCategoricalStraightThrough(logits=z_hat_logits) z_hat = z_hat_dist.rsample() return z_hat def step( self, action: Tensor, states: Optional[Tuple[Tensor, Tensor]] = None ) -> Tuple[Tensor, Tensor]: if states is None: states = ( torch.zeros(action.size(0), self.h_dim).to(action.device), torch.zeros(action.size(0), self.z_dim).to(action.device), ) h, z = states h = self.recurrent(torch.cat([z, action], dim=1), h) z = self.compute_prior(h) return h, z def forward( self, x: Tensor, action: Tensor, states: Optional[Tuple[Tensor, Tensor]] = None ) -> Tuple[Tensor, Tensor, Tensor]: if states is None: states = ( torch.zeros(x.size(0), self.h_dim).to(x.device), torch.zeros(x.size(0), self.z_dim).to(x.device), ) h, z = states h = self.recurrent(torch.cat([z, action], dim=1), h) z = self.compute_posterior(x, h) z_hat = self.compute_prior(h) return h, z, z_hat class Decoder(nn.Module): """ Deconvolutional decoder for reconstructing visual observations from model states. Parameters: h_dim (int): Size of the deterministic model state z_dim (int): Size of the stochstic model state """ def __init__(self, h_dim: int, z_dim: int) -> None: super().__init__() self.h_dim = h_dim self.z_dim = z_dim self.fc = nn.Linear(h_dim + z_dim, 1024) self.deconv1 = nn.ConvTranspose2d(1024, 128, 5, stride=2) self.deconv2 = nn.ConvTranspose2d(128, 64, 5, stride=2) self.deconv3 = nn.ConvTranspose2d(64, 32, 6, stride=2) self.deconv4 = nn.ConvTranspose2d(32, 3, 6, stride=2) def forward(self, h: Tensor, z: Tensor) -> Tensor: x = torch.cat([h, z], dim=1) x = x.view(x.size(0), x.size(1), 1, 1) x = F.elu_(self.fc(x)) x = F.elu_(self.deconv1(x)) x = F.elu_(self.deconv2(x)) x = F.elu_(self.deconv3(x)) x = torch.sigmoid(self.deconv4(x)) return x ```
{ "source": "jinyeom/evomini", "score": 2 }
#### File: examples/cartpole_swingup/es_main.py ```python import argparse import numpy as np from evomini.es import OpenaiES from evomini.nn import Module, Linear, LSTM from evomini.eval import Evaluator from cartpole_swingup import CartPoleSwingUpEnv parser = argparse.ArgumentParser() parser.add_argument("--seed", type=int, default=0) parser.add_argument("--num-workers", type=int, default=16) parser.add_argument("--models-per-worker", type=int, default=16) parser.add_argument("--num-gen", type=int, default=1000) parser.add_argument("--num-evals", type=int, default=1) parser.add_argument("--precision", type=int, default=4) parser.add_argument("--sigma", type=float, default=0.1) parser.add_argument("--stepsize", type=float, default=0.03) args = parser.parse_args() np.random.seed(args.seed) class Model(Module): # small world model agent def __init__(self, obs_size, action_size, hidden_size): super().__init__() self.obs_size = obs_size self.action_size = action_size self.hidden_size = hidden_size self.register_module("C", Linear(obs_size + hidden_size, action_size)) self.register_module("M", LSTM(obs_size + action_size, hidden_size)) def __call__(self, *args, module="C"): if module == "C": obs, h = args x = np.concatenate([obs, h]) action = self.C(x) return action if module == "M": obs, action = args x = np.concatenate([obs, action]) h = self.M(x) return h class CartPoleSwingUpEvaluator(Evaluator): def _build_env(self): return CartPoleSwingUpEnv() def _build_model(self): return Model(5, 1, 16) def _evaluate_once(self, env, model): obs = env.reset() h = model.M.reset() rewards = 0 done = False while not done: action = model(obs, h, module="C") obs, reward, done, _ = env.step(action) h = model(obs, action, module="M") rewards += reward return rewards env = CartPoleSwingUpEnv() es = OpenaiES(len(Model(5, 1, 16)), sigma=args.sigma, stepsize=args.stepsize) global_best_fitness = -np.inf with CartPoleSwingUpEvaluator(args.num_workers, args.models_per_worker, args.precision) as evaluator: popsize = len(evaluator) for gen in range(args.num_gen): seeds, solutions = es.sample(popsize) fitness, success = evaluator.evaluate(seeds, solutions, args.num_evals) assert success, f"evaluation failed at generation {gen}" es.step(fitness) best_fitness = np.max(fitness) if best_fitness > global_best_fitness: print(f"improvement detected: {global_best_fitness} -> {best_fitness}") best = solutions[np.argmax(fitness)] np.save("model_final.npy", best) global_best_fitness = best_fitness stats = { "gen": gen, "fitness_mean": np.mean(fitness), "fitness_std": np.std(fitness), "fitness_max": np.max(fitness), "fitness_min": np.min(fitness), } print(stats) ```
{ "source": "jinyeom/general-bipedal-walker", "score": 3 }
#### File: general-bipedal-walker/general_bipedal_walker/color.py ```python import numpy as np class Color: BLACK = np.array((0.000, 0.000, 0.000)) DARK_BLUE = np.array((0.114, 0.169, 0.325)) DARK_PURPLE = np.array((0.494, 0.145, 0.325)) DARK_GREEN = np.array((0.000, 0.529, 0.318)) BROWN = np.array((0.671, 0.322, 0.212)) DARK_GRAY = np.array((0.373, 0.341, 0.310)) LIGHT_GRAY = np.array((0.761, 0.765, 0.780)) WHITE = np.array((1.000, 0.945, 0.910)) RED = np.array((1.000, 0.000, 0.302)) ORANGE = np.array((1.000, 0.639, 0.000)) YELLOW = np.array((1.000, 0.925, 0.153)) GREEN = np.array((0.000, 0.894, 0.212)) BLUE = np.array((0.161, 0.678, 1.000)) INDIGO = np.array((0.514, 0.463, 0.612)) PINK = np.array((1.000, 0.467, 0.659)) PEACH = np.array((1.000, 0.800, 0.667)) @staticmethod def darker(color, scale=1): return np.clip(color - scale * 0.1, 0, 1) @staticmethod def lighter(color, scale=1): return np.clip(color + scale * 0.1, 0, 1) @staticmethod def rand(rng=None, include_grays=False): colors = [ 'DARK_BLUE', 'DARK_PURPLE', 'DARK_GREEN', 'BROWN', 'RED', 'ORANGE', 'YELLOW', 'GREEN', 'BLUE', 'INDIGO', 'PINK', 'PEACH', ] if include_grays: colors += [ 'BLACK', 'DARK_GRAY', 'LIGHT_GRAY', 'WHITE', ] if rng: return Color.__dict__[rng.choice(colors)] return Color.__dict__[np.random.choice(colors)] ``` #### File: general-bipedal-walker/general_bipedal_walker/simulation.py ```python import math import numpy as np import Box2D from Box2D.b2 import ( edgeShape, circleShape, fixtureDef, polygonShape, revoluteJointDef, contactListener ) from .color import Color class Terrain: GRASS = 0 STUMP = 1 STAIRS = 2 PIT = 3 @staticmethod def rand(np_random=None, include_grass=False): if np_random is None: np_random = np.random options = [Terrain.STUMP, Terrain.STAIRS, Terrain.PIT] if include_grass: options.append(Terrain.GRASS) return np_random.choice(options) class Simulation: _FPS = 50 _SCALE = 30.0 _VIEWPORT_WIDTH = 600 _VIEWPORT_HEIGHT = 400 _TERRAIN_STEP = 14 / _SCALE _TERRAIN_LENGTH = 200 _TERRAIN_HEIGHT = _VIEWPORT_HEIGHT / _SCALE / 4 _TERRAIN_GRASS = 10 _TERRAIN_STARTPAD = 20 _FRICTION = 2.5 _BIPED_LIMIT = 1600 _BIPED_HARDCORE_LIMIT = 2000 def __init__(self, np_random, hardcore): self.np_random = np_random self.hardcore = hardcore self.world = Box2D.b2World() self.terrain = None self.fd_polygon = fixtureDef( shape=polygonShape(vertices=[(0, 0), (1, 0), (1, -1), (0, -1)]), friction=self._FRICTION ) self.fd_edge = fixtureDef( shape=edgeShape(vertices=[(0, 0), (1, 1)]), friction=self._FRICTION, categoryBits=0x0001 ) @property def fps(self): return self._FPS @property def scale(self): return self._SCALE @property def viewport_width(self): return self._VIEWPORT_WIDTH @property def viewport_height(self): return self._VIEWPORT_HEIGHT @property def scaled_width(self): return self.viewport_width / self.scale @property def scaled_height(self): return self.viewport_height / self.scale @property def terrain_step(self): return self._TERRAIN_STEP @property def terrain_length(self): return self._TERRAIN_LENGTH @property def terrain_height(self): return self._TERRAIN_HEIGHT @property def terrain_grass(self): return self._TERRAIN_GRASS @property def terrain_startpad(self): return self._TERRAIN_STARTPAD @property def limit(self): return self._BIPED_HARDCORE_LIMIT if self.hardcore else self._BIPED_LIMIT def generate_terrain(self): state = Terrain.GRASS velocity = 0.0 y = self.terrain_height counter = self.terrain_startpad oneshot = False self.terrain = [] self.terrain_x = [] self.terrain_y = [] for i in range(self.terrain_length): x = i * self.terrain_step self.terrain_x.append(x) if state == Terrain.GRASS and not oneshot: sign = np.sign(self.terrain_height - y) velocity = 0.8 * velocity + sign * 0.01 if i > self.terrain_startpad: noise = self.np_random.uniform(-1, 1) velocity += noise / self.scale y += velocity elif state == Terrain.PIT and oneshot: color1 = Color.rand() color2 = Color.BLACK counter = self.np_random.randint(3, 5) poly = [ (x, y), (x + self.terrain_step, y), (x + self.terrain_step, y - 4 * self.terrain_step), (x, y - 4 * self.terrain_step) ] self.fd_polygon.shape.vertices = poly t = self.world.CreateStaticBody(fixtures=self.fd_polygon) t.color1 = color1 t.color2 = color2 self.terrain.append(t) self.fd_polygon.shape.vertices = [(x + self.terrain_step * counter, y) for x, y in poly] t = self.world.CreateStaticBody(fixtures=self.fd_polygon) t.color1 = color1 t.color2 = color2 self.terrain.append(t) counter += 2 original_y = y elif state == Terrain.PIT and not oneshot: y = original_y if counter > 1: y -= 4 * self.terrain_step elif state == Terrain.STUMP and oneshot: counter = self.np_random.randint(1, 3) poly = [ (x, y), (x + counter * self.terrain_step, y), (x + counter * self.terrain_step, y + counter * self.terrain_step), (x, y + counter * self.terrain_step), ] self.fd_polygon.shape.vertices = poly t = self.world.CreateStaticBody(fixtures=self.fd_polygon) t.color1 = Color.rand() t.color2 = Color.BLACK self.terrain.append(t) elif state == Terrain.STAIRS and oneshot: color1 = Color.rand() color2 = Color.BLACK stair_steps = self.np_random.randint(3, 5) stair_width = self.np_random.randint(4, 5) stair_height = 1 if self.np_random.rand() > 0.5 else -1 original_y = y for s in range(stair_steps): self.fd_polygon.shape.vertices = [ (x + (s * stair_width) * self.terrain_step, y + (s * stair_height) * self.terrain_step), (x + ((1 + s) * stair_width) * self.terrain_step, y + (s * stair_height) * self.terrain_step), (x + ((1 + s) * stair_width) * self.terrain_step, y + (s * stair_height - 1) * self.terrain_step), (x + (s * stair_width) * self.terrain_step, y + (s * stair_height - 1) * self.terrain_step) ] t = self.world.CreateStaticBody(fixtures=self.fd_polygon) t.color1 = color1 t.color2 = color2 self.terrain.append(t) counter = stair_steps * stair_width elif state == Terrain.STAIRS and not oneshot: s = stair_steps * stair_width - counter - stair_height n = s / stair_width y = original_y + (n * stair_height) * self.terrain_step self.terrain_y.append(y) oneshot = False counter -= 1 if counter == 0: counter = self.np_random.randint(self.terrain_grass / 2, self.terrain_grass) if state == Terrain.GRASS and self.hardcore: state = Terrain.rand(np_random=self.np_random) else: state = Terrain.GRASS oneshot = True self.terrain_poly = [] for i in range(self.terrain_length - 1): poly = [ (self.terrain_x[i], self.terrain_y[i]), (self.terrain_x[i+1], self.terrain_y[i+1]) ] self.fd_edge.shape.vertices = poly t = self.world.CreateStaticBody(fixtures=self.fd_edge) t.color1 = Color.WHITE if i % 2 == 0 else Color.BLACK t.color2 = Color.WHITE if i % 2 == 0 else Color.BLACK self.terrain.append(t) poly += [(poly[1][0], 0), (poly[0][0], 0)] self.terrain_poly.append((poly, Color.DARK_GREEN)) self.terrain.reverse() def destroy(self): if not self.terrain: return self.world.contactListener = None for t in self.terrain: self.world.DestroyBody(t) self.terrain = [] def step(self): self.world.Step(1.0 / self.fps, 6 * 30, 2 * 30) ```
{ "source": "jinyeom/npne", "score": 3 }
#### File: jinyeom/npne/npes.py ```python import multiprocessing as mp import numpy as np ############# # Utilities # ############# class Seeder: def __init__(self, seed=0): self.seed = seed self._rs = np.random.RandomState(seed=seed) def __call__(self, size): seeds = self._rs.randint(2 ** 31 - 1, size=size, dtype=int) return seeds.tolist() class Evaluator: def __init__(self, num_workers=None): if num_workers is None: num_workers = mp.cpu_count() self.num_workers = num_workers def evaluate(self, solution, seed): raise NotImplementedError def __call__(self, solutions, seeds): results = [] with mp.Pool(self.num_workers) as pool: for solution, seed in zip(solutions, seeds): func = self.evaluate args = (solution, seed) results.append(pool.apply_async(func, args=args)) fitness = [r.get() for r in results] return np.array(fitness) ############## # Optimizers # ############## class Optimizer: def __init__(self, theta): self.theta = theta self.t = 0 def update(self, grad): self.t += 1 self.theta += self._step(grad) return np.array(self.theta) def _step(self, grad): raise NotImplementedError class SGD(Optimizer): def __init__(self, theta, alpha, beta=0.9): super().__init__(theta) self.alpha = alpha self.beta = beta self.v = np.zeros_like(theta) def _step(self, grad): self.v = self.beta * self.v + (1 - self.beta) * grad return -self.alpha * self.v class Adam(Optimizer): def __init__(self, theta, alpha, beta1=0.9, beta2=0.999): super().__init__(theta) self.alpha = alpha self.beta1 = beta1 self.beta2 = beta2 self.m = np.zeros_like(theta) self.v = np.zeros_like(theta) def _step(self, grad): self.m = self.beta1 * self.m + (1 - self.beta1) * grad self.v = self.beta2 * self.v + (1 - self.beta2) * grad ** 2 m_corr = 1 - self.beta1 ** self.t v_corr = np.sqrt(1 - self.beta2 ** self.t) alpha = self.alpha * v_corr / m_corr return -alpha * self.m / (np.sqrt(self.v) + 1e-8) ######################## # Evolution strategies # ######################## class ES: def __init__(self, optim, sigma): self.optim = optim self.mu = np.array(optim.theta) self.sigma = sigma self.epsilon = None def sample(self, popsize): assert popsize % 2 == 0 eps_split = np.random.randn(popsize // 2, len(self.mu)) self.epsilon = np.concatenate([eps_split, -eps_split], axis=0) return self.mu + self.sigma * self.epsilon def update(self, fitness): rank = np.empty_like(fitness, dtype=np.long) rank[np.argsort(fitness)] = np.arange(len(fitness)) fitness = rank.astype(fitness.dtype) / (len(fitness) - 1) - 0.5 fitness = (fitness - np.mean(fitness)) / (np.std(fitness) + 1e-8) grad = 1 / (len(fitness) * self.sigma) * (self.epsilon.T @ fitness) self.mu = self.optim.update(-grad) ```
{ "source": "jinyeom/ppo", "score": 3 }
#### File: jinyeom/ppo/env.py ```python import numpy as np import torch as pt import gym class NormalizeObservation(gym.ObservationWrapper): def observation(self, observation): mean = np.mean(observation) std = np.std(observation) return (observation - mean) / (std + 1e-8) class TorchObservation(gym.ObservationWrapper): def observation(self, observation): observation = observation.astype(np.float32) return pt.from_numpy(observation) class TorchAction(gym.ActionWrapper): def action(self, action): action = action.squeeze() return action.cpu().numpy() class TorchReward(gym.RewardWrapper): def reward(self, reward): reward = reward.astype(np.float32) reward = reward[:, np.newaxis] return pt.from_numpy(reward) class TorchDone(gym.Wrapper): def step(self, action): observation, reward, done, info = self.env.step(action) return observation, reward, self.done(done), info def done(self, done): done = done.astype(np.float32) done = done[:, np.newaxis] return pt.from_numpy(done) def make_env(env_id, *wrappers, num_envs=1): if num_envs == 1: env = gym.make(env_id) for wrapper in wrappers: env = wrapper(env) return env env = gym.vector.make( env_id, num_envs=num_envs, wrappers=wrappers ) env = TorchObservation(env) env = TorchAction(env) env = TorchReward(env) env = TorchDone(env) return env ``` #### File: jinyeom/ppo/main.py ```python import os import gym import torch as pt from torch.utils.tensorboard import SummaryWriter import numpy as np from tqdm import tqdm from utils import pretty_args, export_args, mkdir_exp, TensorBook from env import make_env, NormalizeObservation from agent import ContinuousPolicyAgent from ppo import ProximalPolicyOptimization from play import play def main(args): exp_path = mkdir_exp(f'{args.env_id}_PPO') export_args(args, os.path.join(exp_path, 'config.json')) np.random.seed(args.seed) pt.random.manual_seed(args.seed) print("== Creating a training environment...") env = make_env(args.env_id, NormalizeObservation, num_envs=args.num_envs) print("== Creating a evaluation environment...") eval_env = make_env(args.env_id, NormalizeObservation, num_envs=1) obs_dim = eval_env.observation_space.shape[0] act_dim = eval_env.action_space.shape[0] print("== Creating an agent....") device = pt.device('cuda' if pt.cuda.is_available() else 'cpu') agent = ContinuousPolicyAgent(obs_dim, act_dim, args.hid_dim).to(device) print("== Creating a data storage...") data = TensorBook(args.env_id, args.rollout_steps) print("== Creating a PPO optimizer...") optimizer = ProximalPolicyOptimization( agent, device, num_epochs=args.num_epochs, batch_size=args.batch_size, lr_max=args.lr_max, lr_min=args.lr_min, eps=args.eps, gamma=args.gamma, lam=args.lam, alpha=args.alpha, value_coef=args.value_coef, entropy_coef=args.entropy_coef, max_grad_norm=args.max_grad_norm, target_kldiv=args.target_kldiv ) print("== Creating a TensorBoard summary writer...") writer = SummaryWriter(log_dir=exp_path) print("IT'S DANGEROUS TO GO ALONE! TAKE THIS.") obs = env.reset().to(device) best_perf = -np.inf num_updates = args.num_steps // args.rollout_steps // args.num_envs for i in tqdm(range(num_updates)): obs = agent.rollout(obs, env, data) info = optimizer.update(data) lr = optimizer.update_lr(i, num_updates) # Compute mean total reward during the rollout. reward = data.reward.sum(dim=0).mean(dim=0).item() # Evaluate the agent. perf = play(eval_env, agent, device, repeat=args.num_eval) if perf > best_perf: model_path = os.path.join(exp_path, f'{agent.__class__.__name__}.pt') pt.save(agent.state_dict(), model_path) best_perf = perf # Log training progress. step = i * args.rollout_steps * args.num_envs writer.add_scalar('Train/lr', lr, step) writer.add_scalar('Train/epochs', info['num_epochs'], step) writer.add_scalar('Train/loss/policy', info['policy_loss'], step) writer.add_scalar('Train/loss/value', info['value_loss'], step) writer.add_scalar('Train/loss/entropy', info['entropy'], step) writer.add_scalar('Train/loss/total', info['total_loss'], step) writer.add_scalar('Train/reward/mean', reward, step) writer.add_scalar('Eval/reward/mean', perf, step) writer.add_scalar('Eval/reward/best', best_perf, step) env.close() eval_env.close() writer.close() if __name__ == '__main__': import argparse parser = argparse.ArgumentParser() parser.add_argument('--env-id', type=str, default='BipedalWalker-v2') parser.add_argument('--seed', type=int, default=0) parser.add_argument('--num-envs', type=int, default=8) parser.add_argument('--hid-dim', type=int, default=64) parser.add_argument('--num-steps', type=int, default=4000000) parser.add_argument('--rollout-steps', type=int, default=2048) parser.add_argument('--num-epochs', type=int, default=10) parser.add_argument('--batch-size', type=int, default=64) parser.add_argument('--lr_max', type=float, default=3e-4) parser.add_argument('--lr_min', type=float, default=1e-4) parser.add_argument('--eps', type=float, default=0.2) parser.add_argument('--gamma', type=float, default=0.99) parser.add_argument('--lam', type=float, default=0.95) parser.add_argument('--alpha', type=float, default=0.0) parser.add_argument('--value-coef', type=float, default=0.5) parser.add_argument('--entropy-coef', type=float, default=0.0) parser.add_argument('--max-grad-norm', type=float, default=0.5) parser.add_argument('--target-kldiv', type=float, default=0.02) parser.add_argument('--num-eval', type=int, default=5) args = parser.parse_args(); pretty_args(args) main(args) ```
{ "source": "jinyeom/torchrt", "score": 2 }
#### File: torchrt/torchrt/convert.py ```python from pathlib import Path from typing import Union from torch import nn from .onnx import export_onnx from .tensorrt import TensorRTModule def convert( model: nn.Module, onnx_path: Union[str, Path], engine_path: Union[str, Path], input_shape: Tuple[int, ...], opset_version: int = 11, verbose: bool = False, simplify: bool = True, max_batch_size: int = 1, max_workspace_size: int = 1 << 25, fp16_mode: bool = False, force_rebuild: bool = False, ) -> TensorRTModule: input_shape = (max_batch_size, *input_shape) onnx_path = export_onnx( model, onnx_path, input_shape, opset_version=opset_version, verbose=verbose, simplify=simplify, ) rt_module = TensorRTModule( onnx_path, engine_path, max_batch_size=max_batch_size, max_workspace_size=max_workspace_size, fp16_mode=fp16_mode, force_rebuild=force_rebuild, ) return rt_module ```
{ "source": "jinyiabc/china_stock_lib", "score": 3 }
#### File: src/helper/mysql_dbconnection.py ```python import sys import os from importlib import resources from _mysql_connector import MySQLInterfaceError from sqlalchemy import create_engine import config # from helper import config with resources.path('helper', 'mysql.cfg') as p: resource_path = str(p) if os.path.isfile('mysql.cfg'): cfg = config.Config('mysql.cfg') else: cfg = config.Config(resource_path) def mysql_dbconnection(database=None): ''' database_url = mysql+mysqlconnector://<user>:<password>@<host>[:<port>]/<dbname> ''' if database is None: database_url = 'mysql+mysqlconnector://{}:{}@{}?charset=utf8mb4'.format(cfg['user'], cfg['password'], cfg['host']) else: database_url = 'mysql+mysqlconnector://{}:{}@{}/{}?charset=utf8mb4'.format(cfg['user'], cfg['password'], cfg['host'], database) sqlEngine = create_engine(database_url, pool_recycle=3600) if cfg['password'] == "<PASSWORD>": print(f"Please modify mysql.cfg file under {resource_path} to connect mysql properly.") sys.exit() return sqlEngine.connect() if __name__ == '__main__': import pandas as pd test = 'READ' # Set to 'WRITE' to test. if test == 'WRITE': userVitals = {"UserId": ["xxxxx", "yyyyy", "zzzzz", "aaaaa", "bbbbb", "ccccc", "ddddd"], "UserFavourite": ["Greek Salad", "Philly Cheese Steak", "Turkey Burger", "Crispy Orange Chicken", "Atlantic Salmon", "Pot roast", "Banana split"], "MonthlyOrderFrequency": [5, 1, 2, 2, 7, 6, 1], "HighestOrderAmount": [30, 20, 16, 23, 20, 26, 9], "LastOrderAmount": [21, 20, 4, 11, 7, 7, 7], "LastOrderRating": [3, 3, 3, 2, 3, 2, 4], "AverageOrderRating": [3, 4, 2, 1, 3, 4, 3], "OrderMode": ["Web", "App", "App", "App", "Web", "Web", "App"], "InMedicalCare": ["No", "No", "No", "No", "Yes", "No", "No"]}; tableName = "UserVitals" dataFrame = pd.DataFrame(data=userVitals) dbConnection = mysql_dbconnection(database='test1') try: frame = dataFrame.to_sql(tableName, dbConnection, if_exists='fail'); except ValueError as vx: print(vx) except Exception as ex: print(ex) else: print("Table %s created successfully." % tableName); finally: dbConnection.close() pass if test == 'READ': dbConnection = mysql_dbconnection('test1') frame = pd.read_sql("select * from uservitals", dbConnection); pd.set_option('display.expand_frame_repr', False) print(frame) dbConnection.close() ``` #### File: src/helper/script.py ```python import argparse from helper.WSDLoader import WSDLoader from helper.WSETLoader import WSETLoader from helper.WSSLoader import WSSLoader from helper.mysql_dbconnection import mysql_dbconnection def parse_args(args=None): parser = argparse.ArgumentParser( description='Wind API.') parser.add_argument('-s', '--start_date', # action='store_true', dest='start_date', required=True, help='start date') parser.add_argument('-e', '--end_date', # action='store_true', dest='end_date', required=True, help='end date') parser.add_argument('-t', '--table_name', # action='store_true', dest='table_name', required=True, help='table name') parser.add_argument('-d', '--database', # action='store_true', dest='database', required=True, help='database') parser.add_argument('-se', '--sector', # action='store_true', dest='sector', required=False, help='sector') parser.add_argument('--github', action='store_true', default=False, help='Updoad to Github') parser.add_argument('--wind_codes', '-w', action='store', required=False, default='000001.SZ,110034.SH,110055.SH', help='wind codes') return parser.parse_args(args) def run_wsd(args=None): res = parse_args(args) loader = WSDLoader(res.start_date, res.end_date, res.database, res.table_name) wind_codes = loader.get_windcodes() if type(wind_codes) is not int: loader.fetch_historical_data(wind_codes) else: print('ErrorCode:', wind_codes) def run_wset(args=None): res = parse_args(args) loader = WSETLoader(res.start_date, res.end_date, res.database, res.table_name, res.sector) loader.fetch_historical_data(UPLOAD_GITHUB=res.github) def run_wss(args=None): res = parse_args(args) wind_codes = res.wind_codes.split(sep=',') loader = WSSLoader(res.start_date, res.end_date, res.database, res.table_name) loader.fetch_historical_data(wind_codes) keyarg = {'table_name': res.table_name} set_data_type = ( "ALTER TABLE {table_name} MODIFY `wind_code` VARCHAR(10);" ).format(**keyarg) set_primary = ( "ALTER TABLE {table_name} ADD PRIMARY KEY (`rpt_date`,`wind_code`);" ).format(**keyarg) db_engine = mysql_dbconnection(database=res.database) with db_engine.connect() as con: con.execute(set_data_type) con.execute(set_primary) ``` #### File: test/bond/test_time_factor.py ```python from src.helper.bond import time_factors def test_d30360e(): settlement_date = (2018, 12, 15) coupon_schedule = [(2019,3,1), (2020,3,1), (2021,3,1), (2022,3,1), (2023,3,1)] coupon_freq = 1 time_factors0 = time_factors(settlement_date, coupon_schedule, coupon_freq, convention='d30360e') print(time_factors0) # 0.2111111111111111 assert time_factors0[0] == 0.2111111111111111 def test_act_isda(): settlement_date = (2018, 12, 15) coupon_schedule = [(2019,3,1), (2020,3,1), (2021,3,1), (2022,3,1), (2023,3,1)] coupon_freq = 1 time_factors0 = time_factors(settlement_date, coupon_schedule, coupon_freq, convention='act_isda') print(time_factors0) # 0.2054794520547945 assert time_factors0[0] == 0.2054794520547945 def test_act_afb(): settlement_date = (2018, 12, 15) coupon_schedule = [(2019,3,1), (2020,3,1), (2021,3,1), (2022,3,1), (2023,3,1)] coupon_freq = 1 time_factors0 = time_factors(settlement_date, coupon_schedule, coupon_freq, convention='act_afb') # unexpected keyword argument 'matu' print(time_factors0) # 0.2054794520547945 assert time_factors0[0] == 0.2054794520547945 def test_30365(): settlement_date = (2018, 12, 15) coupon_schedule = [(2019,3,1), (2020,3,1), (2021,3,1), (2022,3,1), (2023,3,1)] coupon_freq = 1 time_factors0 = time_factors(settlement_date, coupon_schedule, coupon_freq, convention='30365') # unexpected keyword argument 'matu' print(time_factors0) # 0.20821917808219179 assert time_factors0[0] == 0.20821917808219179 def test_default(): settlement_date = (2018, 12, 15) coupon_schedule = [(2019,3,1), (2020,3,1), (2021,3,1), (2022,3,1), (2023,3,1)] coupon_freq = 1 time_factors0 = time_factors(settlement_date, coupon_schedule, coupon_freq) print(time_factors0) # 0.2111111111111111 assert time_factors0[0] == 0.2111111111111111 ```
{ "source": "jinyiabc/machine_learning", "score": 3 }
#### File: jinyiabc/machine_learning/homework5-8and9.py ```python import numpy as np # machine limits epsilon eps = np.finfo(float).eps def gradient_descent(w, x, y): "Logistic regression: e(w) = ln(1+e**(-y*wT*x)" err0 = -y*x[0]/(1 + np.exp(y*np.dot(w, x))) err1 = -y*x[1]/(1 + np.exp(y*np.dot(w, x))) err2 = -y*x[2]/(1 + np.exp(y*np.dot(w, x))) return np.array([err0, err1, err2]) sum_out = 0 sum_iter = 0 for i in range(100): data_set = np.random.uniform(low=-1, high=1.0+eps, size=(2,2)) # y = m*x + c A = np.column_stack((data_set[:,0], np.ones(2))) y = data_set[:,1] m, c = np.linalg.lstsq(A, y, rcond=None)[0] w0 = np.array([m, -1, c]) sample = np.random.uniform(low=-1, high=1.0+eps, size=(100,2)) X = np.column_stack((sample, np.ones(100))) Y = np.sign(np.dot(X, w0)) cur_w = np.zeros(3) pre_w1 = np.ones(3) precison = 0.01 iter = 0 while np.linalg.norm((pre_w1 - cur_w)) >= precison: pre_w1 = cur_w shuffle = np.random.choice(100, 100, replace=False) eta = 0.01 for i in shuffle: pre_w = cur_w GD = gradient_descent(pre_w, X[i], Y[i]) cur_w = pre_w - eta*GD iter +=1 #print(cur_w, np.linalg.norm((pre_w - cur_w))) A0 = np.column_stack((data_set, np.ones(2))) #print("test:",np.dot(A0, cur_w),np.dot(A0, w0)) #print("precision", np.linalg.norm((pre_w - cur_w))) #print("iteration:", iter) sum_iter = sum_iter + iter def err(w, x, y): "cross entropy" result = np.log((1+np.exp(-y*np.dot(w, x)))) return result N1 = 100 out_of_sample = np.random.uniform(low=-1, high=1.0+eps, size=(N1, 2)) #X2 = out_of_sample[:,0] #Y2 = out_of_sample[:,1] #YY = np.sign(Y2 - m*X2 - c) XX = np.column_stack((out_of_sample, np.ones(N1))) YY = np.sign(np.dot(XX, w0)) sum_err = 0 for j in range(N1): sum_err = sum_err + err(cur_w, XX[j], YY[j]) #print("E_out:", sum_err/N1) sum_out = sum_out + sum_err/N1 print("E_out:", sum_out/100) print("iteration:", sum_iter/100) # E_out: 0.10693970292826682 # iteration: 336.27 ``` #### File: jinyiabc/machine_learning/homeworks6-6.py ```python import numpy as np import pandas as pd from numpy.linalg import inv from numpy import transpose, matmul, dot df1 = pd.read_csv('in.csv') df2 = pd.read_csv('out.csv') #df1['x1'] #df1.loc[32] c = np.ones(35) x1 = df1['x1'] x2 = df1['x2'] x1_power = df1['x1']**2 x2_power = df1['x2']**2 x1x2 = df1['x1']*df1['x2'] x1_x2 = abs(df1['x1'] - df1['x2']) x1__x2 = abs(df1['x1'] + df1['x2']) y = df1['y'] # df2 = pd.DataFrame(np.column_stack((c, x1, x2, x1_power, x2_power, x1x2, x1_x2, x1__x2)), columns=['1', 'x1', 'x2', 'x1_power', 'x2_power', 'x1x2', 'x1-x2', 'x1+x2']) A = np.column_stack((c, x1, x2, x1_power, x2_power, x1x2, x1_x2, x1__x2)) # A*w = y #E_IN = np.count_nonzero(np.sign(np.dot(A, w)) != y)/35.0 #print(E_IN) #k = -1 def err(z, y, w, k): result = np.dot(np.transpose(np.dot(z, w) - y), (np.dot(z, w) - y))/(y.size) lamda = 10**k #lamda = 0 result+=lamda/y.size*np.dot(w, w) return result def der(z, y, w): result = np.dot(np.transpose(z), (np.dot(z, w) - y))/(y.size) return result k = 1 cur_w = np.linalg.lstsq(A, y, rcond=None)[0] pre_w = np.zeros(8) #cur_w = np.zeros(8) #print("initialization E_IN", err(A, y, cur_w, k)) eta = 0.01 precision = 10**(-7) N = y.size lamda = 10**(-k) max_iters = 10000 itr = 0 # Slides 12: 11/21 temp = inv(dot(transpose(A), A) + lamda*np.identity(8)) cur_w = matmul(matmul(temp, transpose(A)), y) E_IN = np.count_nonzero(np.sign(np.dot(A, cur_w)) != y)/35.0 print("E_IN:", E_IN) #print("regression err:", err(A, y, cur_w, -k)) print("k:", -k, "iteration:", itr) c = np.ones(250) x1 = df2['x1'] x2 = df2['x2'] x1_power = df2['x1']**2 x2_power = df2['x2']**2 x1x2 = df2['x1']*df2['x2'] x1_x2 = abs(df2['x1'] - df2['x2']) x1__x2 = abs(df2['x1'] + df2['x2']) y = df2['y'] A = np.column_stack((c, x1, x2, x1_power, x2_power, x1x2, x1_x2, x1__x2)) E_OUT = np.count_nonzero(np.sign(np.dot(A, cur_w)) != y)/250.0 print("E_OUT:", E_OUT) #E_IN: 0.02857142857142857 #k: -1 iteration: 0 #E_OUT: 0.056 ```
{ "source": "jinyier/ai_pointnet_attack", "score": 2 }
#### File: jinyier/ai_pointnet_attack/attack.py ```python import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import argparse import importlib import logging import os import re import sys import numpy as np import random as rd import tensorflow as tf import argsutils import meshio import modelnet_dataset from tf_ops.grouping import tf_grouping from tf_ops.interpolation_3d import tf_interpolate from tf_ops.sampling import tf_sampling def load_graph(frozen_graph, raw_num_points, num_points, random_distortions): graph = tf.Graph() with graph.as_default(): # Input placeholders # Point cloud (Point set) # The placeholder has no batch axis since we only deal with a pointcloud in each attack process pointcloud_pl = tf.placeholder(tf.float32, shape=(raw_num_points, 3), name='pointcloud_orig') # Normal vector of point clouds pointnormal_pl = tf.placeholder(tf.float32, shape=(raw_num_points, 3), name='pointnormal_orig') # Rotation angle in degree [0, 360), used for random distortion rotate_matrix_pl = tf.placeholder(tf.float32, shape=(None, 3, 3), name='rotate_matrix') # Used for batch normalization layer is_training_pl = tf.placeholder_with_default(False, shape=(), name='is_training_default') # L0 mask for perturbation l0_mask_pl = tf.placeholder(tf.float32, shape=(raw_num_points), name='l0_mask') l0_mask = tf.stack([l0_mask_pl] * 3, axis=-1) # Variable to optimize perturb = tf.Variable(np.zeros((raw_num_points, 3)), dtype=tf.float32, name='perturb') # l0 masked perturbation perturb_masked = perturb * l0_mask # Modified point clouds pointcloud = tf.math.add(pointcloud_pl, perturb_masked) # Output of adversarial pointclouds assert pointcloud.shape[0].value == raw_num_points pointcloud_output = tf.identity(pointcloud, name='pointcloud_pert') # Random sample for model input assert pointcloud.shape[0].value == raw_num_points pointcloud_sampled = random_sample_pointcloud(pointcloud, num_samples=num_points) pointcloud_sampled = tf.identity(pointcloud_sampled, name='pointcloud_sampled') # Random sample for knn distance assert pointcloud.shape[0].value == raw_num_points pointcloud_knn_sampled = tf.identity(pointcloud_sampled, name='pointcloud_knn_sampled') # Normalize assert pointcloud_sampled.shape[0].value == num_points pointcloud = normalize_pointcloud(pointcloud_sampled) if random_distortions > 0: batch_size = tf.shape(rotate_matrix_pl)[0] pointclouds = tf.broadcast_to(pointcloud, shape=(batch_size, num_points, 3)) pointclouds = tf.linalg.matmul(pointclouds, rotate_matrix_pl) else: pointclouds = tf.expand_dims(pointcloud, axis=0) assert pointclouds.shape[1].value == num_points graphdef = tf.GraphDef() with tf.io.gfile.GFile(frozen_graph, 'rb') as fid: serialized_graph = fid.read() graphdef.ParseFromString(serialized_graph) tf.import_graph_def(graphdef, name='', input_map={ 'pointclouds': pointclouds, 'is_training': is_training_pl}) with graph.as_default(): feats = graph.get_tensor_by_name('fc2/BiasAdd:0') feats = tf.identity(feats, name='feats') logits = graph.get_tensor_by_name('fc3/BiasAdd:0') logits = tf.identity(logits, name='logits') probs = tf.nn.softmax(logits, axis=-1, name='probs') with graph.as_default(): tensors = {'pc_orig': graph.get_tensor_by_name('pointcloud_orig:0'), 'pc_pert': graph.get_tensor_by_name('pointcloud_pert:0'), 'pc_samp': graph.get_tensor_by_name('pointcloud_sampled:0'), 'knn_samp': graph.get_tensor_by_name('pointcloud_knn_sampled:0'), 'nv_orig': graph.get_tensor_by_name('pointnormal_orig:0'), 'rot_mat': graph.get_tensor_by_name('rotate_matrix:0'), 'l0_mask': graph.get_tensor_by_name('l0_mask:0'), 'logits': graph.get_tensor_by_name('logits:0'), 'probs': graph.get_tensor_by_name('probs:0'), 'feats': graph.get_tensor_by_name('feats:0'), 'pert': perturb} return graph, tensors def detect_model_parameters(frozen_graph): graph = tf.Graph() with graph.as_default(): graph_def = tf.GraphDef() with tf.io.gfile.GFile(frozen_graph, 'rb') as fid: serialized_graph = fid.read() graph_def.ParseFromString(serialized_graph) tf.import_graph_def(graph_def, name='imported') ph = graph.get_tensor_by_name('imported/pointclouds:0') num_points = ph.get_shape()[1].value use_normal = (ph.get_shape()[2].value == 6) return num_points, use_normal def load_pointcloud(fn, shape2id, logger): logger.info('Reading file {}...'.format(fn)) bn = os.path.basename(fn) shapename = re.split('[._]', bn)[0] groundtruth = shape2id[shapename] logger.info(' Groundtruth: {}'.format(shapename)) pointcloud = meshio.loadmesh(fn) pointnormal = pointcloud[..., 3:] pointcloud = pointcloud[..., :3] if pointnormal.size == 0: logger.warning(' Warning: Input data has no normal information') logger.warning(' -> Fill them with all zeros') pointnormal = np.zeros_like(pointcloud) return groundtruth, pointcloud, pointnormal def random_sample_and_add_points(points, normals, raw_num_points, logger): # raw_num_points: final number of points num_points = points.shape[0] num_adds = raw_num_points - num_points if num_adds > 0: logger.info(' Expected #points > current #points. Points added: {}'.format(num_adds)) round_add = num_adds // num_points + 1 points = np.concatenate([points] * round_add, axis=0) normals = np.concatenate([normals] * round_add, axis=0) ind_fixed = np.arange(num_points) ind_range = np.arange(points.shape[0], dtype=np.int32) np.random.shuffle(ind_range) ind_range = np.concatenate([ind_fixed, ind_range], axis=0) points = points[ind_range[:raw_num_points]] normals = normals[ind_range[:raw_num_points]] else: logger.info(' Expected #points <= current #points. Choose a subset') ind_range = np.arange(points.shape[0], dtype=np.int32) np.random.shuffle(ind_range) points = points[ind_range[:raw_num_points]] normals = normals[ind_range[:raw_num_points]] return points, normals def random_sample_pointcloud(points, num_samples): # points: shape n x 3, where n is num_points num_pts = points.get_shape()[0].value ind = tf.range(num_pts) rind = tf.random_shuffle(ind)[:num_samples] rpoints = tf.gather(points, rind, axis=0) return rpoints def normalize_pointcloud(points): # points: shape n x 3, where n is num_points # tf implementation of modelnet_dataset.pc_normalize() num_pts = points.get_shape()[0].value centroid = tf.reduce_mean(points, axis=0) points = points - centroid max_pts = tf.reduce_max(tf.reduce_sum(tf.square(points), axis=1)) points = tf.math.divide(points, max_pts) return points def chamfer_distance(points_x, points_y): # chamfer distance from point set x to point set y # x will be stack to have shape [#pt_x, #pt_y, 3] num_points = tf.shape(points_y)[0] points_x = tf.expand_dims(points_x, axis=1) points_x = tf.tile(points_x, multiples=[1, num_points, 1]) chamfer = tf.square(points_x - points_y) # n x n x 3 chamfer = tf.reduce_sum(chamfer, axis=-1) # n x n chamfer = tf.reduce_min(chamfer, axis=-1) # n chamfer = tf.reduce_sum(chamfer, axis=-1) # 1 return chamfer def knn_outlier_distance(points, points_all, k=5, alpha=1.05): # points: shape n x 3, where n is num_points num_points = points_all.shape[0].value points_now = tf.expand_dims(points, axis=1) points_now = tf.tile(points_now, multiples=[1, num_points, 1]) distance = tf.square(points_now - points_all) # n x n x 3 distance = tf.reduce_sum(distance, axis=-1) # n x n values, indices = tf.nn.top_k(tf.negative(distance), k=k+1) values, indices = values[..., 1:], indices[..., 1:] # n x k values = tf.negative(values) avg_distance = tf.reduce_mean(values, axis=-1) # n knn_mean = tf.reduce_mean(avg_distance) # 1 knn_stddev = tf.math.reduce_std(avg_distance) # 1 threshold = knn_mean + alpha * knn_stddev condition = tf.math.greater_equal(avg_distance, threshold) penalty = tf.where(condition, avg_distance, tf.zeros_like(avg_distance)) penalty = tf.reduce_sum(penalty) return penalty def gradients_clipping(gradvars, normals): # gradvars: a list returned by tf.train.Optimizer.compute_gradients() # normals: shape n x 3, normal vector of the object assert len(gradvars) == 1 # w.r.t. perturbation gradvalue = gradvars[0][0] gradname = gradvars[0][1] inner_prod = tf.reduce_sum(tf.multiply(tf.negative(gradvalue), normals)) preserved = tf.math.greater_equal(inner_prod, tf.constant(0.0)) gradvalue = tf.where(preserved, gradvalue, tf.zeros_like(gradvalue)) return [(gradvalue, gradname)] def generate_random_rotations(batch_size): degs = [] mats = [] for i in range(batch_size): degs.append(rd.randrange(0, 360)) for deg in degs: rad = np.deg2rad(deg) cosval = np.cos(rad) sinval = np.sin(rad) mats.append([ [ cosval, 0.0, sinval], [ 0.0, 1.0, 0.0], [-sinval, 0.0, cosval]]) return np.array(mats) def build_perturbation_clipping_network(graph, tensors, project='dir'): if project not in ['dir', 'norm', 'none']: raise ValueError('Invalid projection type: {}'.format(project)) with graph.as_default(): cc_linf_pl = tf.placeholder(tf.float32, shape=(), name='cc_linf') tensors['cc_linf'] = cc_linf_pl normal = tensors['nv_orig'] perturb = tensors['pert'] # compute inner product inner_prod = tf.reduce_sum(normal * perturb, axis=-1) # shape: n condition_inner = tf.math.greater_equal(inner_prod, tf.constant(0.0)) if project == 'dir': # 1) vng = Normal x Perturb # 2) vref = vng x Normal # 3) Project Perturb onto vref # Note that the length of vref should be greater than zero vng = tf.linalg.cross(normal, perturb) vng_len = tf.sqrt(tf.reduce_sum(tf.square(vng), axis=-1)) vref = tf.linalg.cross(vng, normal) vref_len = tf.sqrt(tf.reduce_sum(tf.square(vref), axis=-1)) vref_len_stack = tf.stack([vref_len] * 3, axis=-1) # add 1e-6 to avoid dividing by zero perturb_projected = perturb * vref / (vref_len_stack + 1e-6) # if the length of vng < 1e-6, let projected vector = (0, 0, 0) # it means the Normal and Perturb are just in opposite direction condition_vng = tf.math.greater(vng_len, tf.constant(1e-6)) perturb_projected = tf.where(condition_vng, perturb_projected, tf.zeros_like(perturb_projected)) # if inner_prod < 0, let perturb be the projected ones perturb = tf.where(condition_inner, perturb, perturb_projected) elif project == 'norm': # 1) Project Perturb onto normal # 2) Choose based on inner product normal_len = tf.sqrt(tf.reduce_sum(tf.square(normal), axis=-1)) normal_len_stacked = tf.stack([normal_len] * 3, axis=-1) # the length of normal vector should always be one perturb_projected = perturb * normal / (normal_len_stacked + 1e-6) # if inner_prod < 0, let perturb be the projected ones perturb = tf.where(condition_inner, perturb_projected, tf.zeros_like(perturb_projected)) else: # without projection, let the perturb be (0, 0, 0) if inner_prod < 0 perturb = tf.where(condition_inner, perturb, tf.zeros_like(perturb)) # compute vector length # if length > cc_linf, clip it lengths = tf.sqrt(tf.reduce_sum(tf.square(perturb), axis=-1)) lengths_stacked = tf.stack([lengths] * 3, axis=-1) # shape: n x 3 # scale the perturbation vectors to length cc_linf # except the ones with zero length condition = tf.math.greater(lengths, tf.constant(1e-6)) perturb_scaled = tf.where(condition, perturb / lengths_stacked * cc_linf_pl, tf.zeros_like(perturb)) # check the length and clip if necessary condition = tf.math.less_equal(lengths, cc_linf_pl) perturb = tf.where(condition, perturb, perturb_scaled) # assign operatior for updating the perturbation variable perturb_assign = tf.assign(tensors['pert'], perturb) tensors['pert_assign'] = perturb_assign return graph, tensors def build_normal_estimate_network(graph, tensors, k=3): # k: number of neighbors used in kNN algorithm with graph.as_default(): # Note that the first dimension should be the same between points_orig and normals_orig points_pert = tf.placeholder(tf.float32, shape=(3), name='points_pert_single') points_orig = tensors['pc_orig'] normals_orig = tensors['nv_orig'] distance = tf.square(points_orig - points_pert) distance = tf.reduce_sum(distance, axis=-1) values, indices = tf.nn.top_k(tf.negative(distance), k=k) values = tf.negative(values) # k normals_top1 = tf.gather(normals_orig, indices[0]) # 3 avg1_normals = tf.identity(normals_top1) normals_topk = tf.gather(normals_orig, indices) # k x 3 avgk_normals = tf.reduce_mean(normals_topk, axis=0) # 3 avgk_lengths = tf.sqrt(tf.reduce_sum(tf.square(avgk_normals), axis=-1)) avgk_lengths = tf.stack([avgk_lengths] * 3, axis=-1) avgk_normals = tf.divide(avgk_normals, avgk_lengths) # 3 (normalize the vector) # If the points are not modified (distance = 0), use the normal directly from the original # one. Otherwise, use the mean of the normals of the k-nearest points. exact = tf.math.less(tf.math.abs(values[0]), tf.constant(1e-6)) normals_pert = tf.where(exact, avg1_normals, avgk_normals) normals_pert = tf.identity(normals_pert, 'pointnormal_pert') tensors['pc_pert_single'] = points_pert tensors['nv_pert'] = normals_pert return graph, tensors def build_knn_centroid_network(graph, tensors, k=5): with graph.as_default(): points_inp = tf.placeholder(tf.float32, shape=(None, 3), name='knn_res') points_ref = tf.placeholder(tf.float32, shape=(None, 3), name='knn_ref') num_inp = tf.shape(points_inp)[0] num_ref = tf.shape(points_ref)[0] tiled_inp = tf.expand_dims(points_inp, axis=1) tiled_inp = tf.tile(tiled_inp, multiples=[1, num_ref, 1]) distance = tf.square(tiled_inp - points_ref) # np x no x 3 distance = tf.reduce_sum(distance, axis=-1) # np x no values, indices = tf.nn.top_k(tf.negative(distance), k=k) ref_points = tf.gather(points_ref, indices) ref_points = tf.reduce_mean(ref_points, axis=1) ref_points = tf.identity(ref_points, name='knn_cent_pt') tensors['knn_inp'] = points_inp tensors['knn_ref'] = points_ref tensors['knn_cent'] = ref_points return graph, tensors def get_feat_vectors(sess, graph, tensors, guide_points): feats = sess.run(tensors['feats'], feed_dict={ tensors['pc_orig']: guide_points, tensors['l0_mask']: np.zeros(guide_points.shape[0])}) return feats[0] def filter_inputfiles(inputfiles): filtered_inputs = [] for fn in inputfiles: success = True try: data = meshio.loadmesh(fn) except: success = False if success: filtered_inputs.append(fn) return filtered_inputs def random_select(iterable): length = len(iterable) i = rd.randint(0, length - 1) return iterable[i] def create_logger(logfile): log_format = '%(asctime)s %(levelname)5s %(message)s' logging.basicConfig(level=logging.INFO, format=log_format, filename=logfile) return logging.getLogger(__name__) def attack(inputfiles, model_path, raw_num_points, shape_names, attack_target, **kwargs): # Uncomment this line for more logs from Tensorflow tf.logging.set_verbosity(tf.logging.ERROR) logfile = kwargs.get('logfile') logger = create_logger(logfile) normalize = kwargs.get('normalize') clip_grad = kwargs.get('clip_grad') loss_type = kwargs.get('loss_type') random_distortions = kwargs.get('random_distortions') logits_lower_bound = kwargs.get('logits_lower_bound') update_period = kwargs.get('update_period') optim_method = kwargs.get('optim_method') max_iter = kwargs.get('max_iter') learning_rate = kwargs.get('learning_rate') cc_knn = kwargs.get('cc_knn') cc_chamfer = kwargs.get('cc_chamfer') cc_feats = kwargs.get('cc_feats') cc_linf = kwargs.get('cc_linf') outputdir = kwargs.get('outputdir') batch_size = max(random_distortions, 1) logger.info('Batch size: {} ({} random distortions)'.format( batch_size, 'with' if random_distortions > 0 else 'without')) if cc_linf is None: cc_linf = 1e6 logger.info('Number of points selected from point clouds: {}'.format(raw_num_points)) logger.info('Loading graph at {}...'.format(model_path)) num_points, normal_channel = detect_model_parameters(model_path) graph, tensors = load_graph(model_path, raw_num_points, num_points, random_distortions) num_classes = len(shape_names) shape2id = {} for idx, name in enumerate(shape_names): shape2id[name] = idx logger.info('Build attack network...') with graph.as_default(): # Input placeholders pointcloud_pl = tensors['pc_orig'] pointnormal_pl = tensors['nv_orig'] rotate_matrix_pl = tensors['rot_mat'] l0_mask_pl = tensors['l0_mask'] # Groundtruth labels label_pl = tf.placeholder(tf.int32, shape=(), name='label') tensors['label'] = label_pl # Attack type targeted_attack_pl = tf.placeholder(tf.bool, shape=(), name='targeted_attack') tensors['targeted'] = targeted_attack_pl # Feature guide guide_pl = tf.placeholder(tf.float32, shape=(256,), name='pointcloud_guide_pl') clean_pl = tf.placeholder(tf.float32, shape=(256,), name='pointcloud_orig_feats_pl') # Logits & probs layer logits = tensors['logits'] probs = tensors['probs'] # Define losses losses = {} # Define logits loss logger.info(' Logit loss type: {}'.format( '<NAME>' if loss_type == 'cw' else 'Cross Entropy')) target_onehot = tf.one_hot(label_pl, depth=num_classes) if loss_type == 'cw': real = tf.reduce_sum(logits * target_onehot, axis=-1) other = tf.reduce_max(logits * (1.0 - target_onehot) - 1e6 * target_onehot, axis=-1) logits_loss_untarget = tf.reduce_mean(real - other) logits_loss_target = tf.reduce_mean(other - real) logits_loss = tf.where(targeted_attack_pl, logits_loss_target, logits_loss_untarget) logits_loss = tf.math.maximum(logits_loss, tf.constant(logits_lower_bound, dtype=tf.float32)) else: ce_untarget = tf.argmax(logits - 1e6 * target_onehot, axis=-1) ce_untarget = tf.one_hot(ce_untarget, depth=num_classes) logits_loss_untarget = tf.losses.softmax_cross_entropy(onehot_labels=ce_untarget, logits=logits) logits_loss_target = tf.losses.softmax_cross_entropy(onehot_labels=target_onehot, logits=logits) logits_loss = tf.where(targeted_attack_pl, logits_loss_target, logits_loss_untarget) losses['logits'] = logits_loss feats = tensors['feats'] feats_target = tf.reduce_mean(tf.abs(feats - guide_pl)) feats_orig = tf.reduce_mean(tf.abs(feats - clean_pl)) feats_loss = tf.math.maximum(feats_target - feats_orig, tf.constant(0.0)) feats_loss = tf.where(targeted_attack_pl, feats_loss, tf.zeros_like(feats_loss)) losses['feat'] = cc_feats * feats_loss # Define loss using Chamfer pseudo distance pc_orig = tensors['pc_orig'] pc_pert = tensors['pc_samp'] # To avoid using a lot of memory, only consider sampled points chamfer = chamfer_distance(pc_pert, pc_orig) # only consider distance of pert -> orig chamfer_loss = cc_chamfer * chamfer losses['chamfer'] = chamfer_loss pc_pert = tensors['knn_samp'] pc_all = tensors['pc_pert'] knn_distance = knn_outlier_distance(pc_pert, pc_all, k=5, alpha=1.05) knn_loss = cc_knn * knn_distance losses['knn'] = knn_loss # Total attack loss attack_loss = tf.add_n(list(losses.values())) losses['total'] = attack_loss # Define optimizer if optim_method == 'adadelta': optimizer = tf.train.AdadeltaOptimizer(learning_rate=learning_rate) elif optim_method == 'adagrad': optimizer = tf.train.AdagradOptimizer(learning_rate=learning_rate) elif optim_method == 'adam': optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) elif optim_method == 'graddesc': optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) elif optim_method == 'momentum': optimizer = tf.train.MomentumOptimizer(learning_rate=learning_rate) elif optim_method == 'rmsprop': optimizer = tf.train.RMSPropOptimizer(learning_rate=learning_rate) else: raise ValueError('Unsupported optimizer: {}'.format(optim_method)) if clip_grad: gradvars = optimizer.compute_gradients(attack_loss, var_list=[tensors['pert']]) gradvars = gradients_clipping(gradvars, pointnormal_pl) train_step = optimizer.apply_gradients(gradvars) else: train_step = optimizer.minimize(attack_loss, var_list=[tensors['pert']]) tensors['pert_init'] = tf.variables_initializer([tensors['pert']]) tensors['optim_init'] = tf.variables_initializer(optimizer.variables()) tensors['init'] = tf.group([tensors['pert_init'], tensors['optim_init']]) # Build perturbation clipping network graph, tensors = build_perturbation_clipping_network(graph, tensors) # Build normal estimation network graph, tensors = build_normal_estimate_network(graph, tensors) # Create a Tensorflow session logger.info('Create Tensorflow session...') config = tf.ConfigProto() config.gpu_options.allow_growth = True config.allow_soft_placement = True config.log_device_placement = False with graph.as_default(): tensors['global_init'] = tf.global_variables_initializer() sess = tf.Session(graph=graph, config=config) sess.run(tensors['global_init']) for fn in inputfiles: # First initialize the variables including perturbation and the state of the optimizer sess.run(tensors['global_init']) l0_mask = np.ones(raw_num_points, dtype=np.float32) # Prepare input data (one point cloud a time) # Note that the point clouds returned may have different shapes (num_points) # Always load normal channels groundtruth, pointcloud, pointnormal = load_pointcloud(fn, shape2id, logger) pointcloud, pointnormal = random_sample_and_add_points( pointcloud, pointnormal, raw_num_points, logger) attack_target_name = str(attack_target).lower() if attack_target is None or attack_target.lower() == 'none': attack_target = -1 logger.info('Untargeted attack (attack target: {})'.format(attack_target_name)) elif attack_target_name in shape_names: attack_target = shape2id[attack_target.lower()] logger.info('Targeted attack (attack target: {})'.format(attack_target_name)) else: raise ValueError('Attack target cannot be recognized: {}'.format(attack_target)) if attack_target == -1: label = groundtruth is_targeted = False else: label = attack_target is_targeted = True groundtruth_text = shape_names[groundtruth] if attack_target_name == groundtruth_text: logger.warning('Attack target is equal to groundtruth, skipped') continue # Get guide feats clean_points_path = './data/modelnet40_normal_resampled/' target_shape_name = shape_names[label] target_file = os.listdir(os.path.join(clean_points_path, target_shape_name)) target_file = os.path.join(clean_points_path, target_shape_name, random_select(target_file)) guide_points = meshio.loadmesh(target_file)[..., :3] guide_feats = get_feat_vectors(sess, graph, tensors, guide_points) clean_feats = get_feat_vectors(sess, graph, tensors, pointcloud) # Optimize for it in range(0, max_iter + 1): if it % update_period == 0: logger.info('File {} > Target {} > Iter {} / {}:'.format( os.path.basename(fn), attack_target_name, it, max_iter)) rot_matrix = generate_random_rotations(batch_size) sess.run(train_step, feed_dict={ pointcloud_pl: pointcloud, pointnormal_pl: pointnormal, rotate_matrix_pl: rot_matrix, l0_mask_pl: l0_mask, label_pl: label, guide_pl: guide_feats, clean_pl: clean_feats, targeted_attack_pl: is_targeted}) if it % update_period == 0: sess.run(tensors['pert_assign'], feed_dict={ tensors['nv_orig']: pointnormal, tensors['cc_linf']: cc_linf}) # show modified new infinity norm newpert = sess.run(tensors['pert']) newpert = np.max(np.sqrt(np.sum(np.square(newpert), axis=-1))) logger.info(' Current infinity norm: {}'.format(newpert)) if it % update_period == 0: loss_value = sess.run(losses, feed_dict={ pointcloud_pl: pointcloud, pointnormal_pl: pointnormal, rotate_matrix_pl: rot_matrix, l0_mask_pl: l0_mask, label_pl: label, guide_pl: guide_feats, clean_pl: clean_feats, targeted_attack_pl: is_targeted}) logger.info(' Loss: {}'.format(loss_value)) if it % update_period == 0: prob_value = sess.run(probs, feed_dict={ pointcloud_pl: pointcloud, pointnormal_pl: pointnormal, rotate_matrix_pl: rot_matrix, l0_mask_pl: l0_mask}) predict_id = np.argmax(prob_value, axis=-1) predict_text = [shape_names[predid] for predid in predict_id] predict_string = ' '.join(['({}, {})'.format(i, t) for i, t in zip(predict_id, predict_text)]) logger.info(' Predictions: {}'.format(predict_string)) if outputdir is not None: logger.info('Writing result to directory: {}'.format(outputdir)) os.makedirs(outputdir, exist_ok=True) # Get perturbed point cloud pointcloud_update, pointcloud_perturb = sess.run( [tensors['pc_pert'], tensors['pert']], feed_dict={ pointcloud_pl: pointcloud, l0_mask_pl: l0_mask}) # Get estimated point normals pointnormal_update = [] for i in range(raw_num_points): est_normal = sess.run(tensors['nv_pert'], feed_dict={ tensors['pc_pert_single']: pointcloud_update[i], tensors['pc_orig']: pointcloud, tensors['nv_orig']: pointnormal}) pointnormal_update.append(est_normal) pointnormal_update = np.array(pointnormal_update) pointcloud = pointcloud_update pointnormal = pointnormal_update # Concatenate pointcloud = np.concatenate([pointcloud, pointnormal], axis=-1) logger.info(' Output pointcloud shape: {}'.format(pointcloud.shape)) outfnid = re.split('[._]', os.path.basename(fn))[1] outfn = '{}_{}_{}.xyz'.format(groundtruth_text, attack_target_name, outfnid) outfn = os.path.join(outputdir, outfn) logger.info(' Write file {} to {}'.format(fn, outfn)) meshio.savemesh(outfn, pointcloud) sess.close() return def main(): # Argument Parser parser = argparse.ArgumentParser(description='Adversarial Attack against PointNet++', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--model', type=str, required=True, help='Path to the model checkpoint') parser.add_argument('--raw-num-points', type=int, default=10000, help='Number of points to select from the input point clouds') parser.add_argument('--without-normalize', action='store_true', help='No mormalization will be applied on the input point clouds') parser.add_argument('--optimizer', type=str, default='adam', choices=['adadelta', 'adagrad', 'adam', 'graddesc', 'momentum', 'rmsprop'], help='Optimizer to use (from Tensorflow)') parser.add_argument('--learning-rate', type=float, default=1e-3, help='Learning rate for the optimizer') parser.add_argument('--clip-grad', action='store_true', help='Clip the gradients to prevent moving points inside the object') parser.add_argument('--target', type=str, default=None, help='Attack target class for targeted attack') parser.add_argument('--loss-type', type=str, default='cw', choices=['cw', 'ce'], help='Loss to use, cw: Carlini and Wagner, ce: cross entropy') parser.add_argument('--max-iter', type=int, default=2500, help='Max iterations for optimization') parser.add_argument('--random-distortions', type=int, default=0, help='Number of random distortions (rotations) applied when optimizing, 0 to disable') parser.add_argument('--logits-lower-bound', type=float, default=(-15.0), help='Lower bound of the attack confidence') parser.add_argument('--update-period', type=int, default=10, help='Number of iterations to print information') parser.add_argument('--cc-knn', type=float, default=5.0, help='Coefficient for kNN smoothing loss') parser.add_argument('--cc-chamfer', type=float, default=3.0, help='Coefficient for Chamfer distance') parser.add_argument('--cc-feats', type=float, default=0.0, help='Coefficient for feature vector loss') parser.add_argument('--cc-linf', type=float, default=0.1, help='Coefficient for infinity norm') parser.add_argument('--outputdir', type=str, default=None, help='Output directory') parser.add_argument('--log', type=str, default=None, help='Path to log file') parser.add_argument('files', type=str, nargs='+', help='Point cloud files to process') args = parser.parse_args() shape_names = [line.strip() for line in open('./labels/shape_names.txt')] model_path = args.model raw_num_points = args.raw_num_points normalize = (not args.without_normalize) attack_target = args.target.lower() if args.target is not None else None inputfiles = argsutils.get_input_files(args.files) attack(inputfiles, model_path, raw_num_points, shape_names, attack_target, optim_method=args.optimizer, learning_rate=args.learning_rate, normalize=normalize, clip_grad=args.clip_grad, loss_type=args.loss_type, max_iter=args.max_iter, random_distortions=args.random_distortions, logits_lower_bound=args.logits_lower_bound, update_period=args.update_period, cc_knn=args.cc_knn, cc_chamfer=args.cc_chamfer, cc_feats=args.cc_feats, cc_linf=args.cc_linf, outputdir=args.outputdir, logfile=args.log) if __name__ == '__main__': main() ```
{ "source": "jinyier/EMSim", "score": 3 }
#### File: src/Current Analysis/logic_cell_modeling.py ```python import argparse import re import sys import multiprocessing as mp import numpy as np import time import math start = time.process_time() def get_cell_pin_info(parasitic_netlist_path): """ Get the pin locations of each logic cell :param parasitic_netlist_path: the path to the parasitic netlist used to create the file :return: cell name, x and y pins """ parasitic_netlist_file = open(parasitic_netlist_path, 'r') # cell name in the parasitic netlist name = [] # cell pin_x X = [] # cell pin_y Y = [] for line in parasitic_netlist_file.readlines(): # search the instance pin line if re.search('\*|I \(X.*', line): # split on spaces split_line = line.split(" ") if len(split_line) > 6: # judge if the line has string 'VDD' or 'VSS' judge_false = "VDD" == split_line[3] or "VSS" == split_line[3] # judge if the line has string 'X..' (cell name) judge_true = "X" in split_line[2] # exclude the line with string 'VDD' and 'VSS' judge_true_again = "X" in split_line[4] # exclude the parasitic transistor if judge_false: continue elif judge_true and judge_true_again: # update data name.append(split_line[2]) X.append(float(split_line[6])) Y.append(float(split_line[7].strip(')\n'))) parasitic_netlist_file.close() X = np.asarray(X) Y = np.asarray(Y) name_reorder = [] X_reorder = [] Y_reorder = [] name_classify = list(set(name)) # exclude the repetitive data for current_num_classify in range(len(name_classify)): index_list = [index for index, item in enumerate(name) if item == name_classify[current_num_classify]] # the minimum data is preserved X_min = np.min(X[index_list]) Y_min = np.min(Y[index_list]) name_reorder.append(name[index_list[0]]) X_reorder.append(X_min) Y_reorder.append(Y_min) assert len(X_reorder) == len(Y_reorder), "Error: please check the instance reordering" return name_reorder, X_reorder, Y_reorder def match_cell_info(def_path, cell_name, cell_pin_X, cell_pin_Y): ''' mathch the cell infor from parasistic file and def file :param def_file: design.def :param cell_name: cell name of the design :param cell_pin_X: x pins of all cell :param cell_pin_Y: y pins of all cell :return: hierarchical instance ''' # open and read the def file def_file = open(def_path, 'r') # create an empty list instance_hierarchy = [] instance_type = [] instance_x0 = [] instance_y0 = [] # initialize the counter for instance instance_count = 0 start_component = False for line in def_file: # the end of the component lines to check if re.match(r'END COMPONENTS', line): start_component = False if start_component: if 'FILL' in line: continue split_line = line.split(" ") # check if the data length > 7 if len(split_line) > 7 and split_line[5] in ['TIMING', 'DIST']: instance_hierarchy.append(split_line[1]) instance_type.append(split_line[2]) instance_x0.append(float(split_line[9])/2000) instance_y0.append(float(split_line[10])/2000) instance_count += 1 elif len(split_line) > 7: instance_hierarchy.append(split_line[1]) instance_type.append(split_line[2]) instance_x0.append(float(split_line[6])/2000) instance_y0.append(float(split_line[7])/2000) instance_count += 1 else: continue # the beginning of the component lines to check elif re.match(r'COMPONENTS [\d]+', line): start_component = True print('Total number of logic cells:', instance_count) instance_y0 = np.asarray(instance_y0) instance_x0 = np.asarray(instance_x0) instance_hierarchy = np.asarray(instance_hierarchy) # the index of sorted data, from small to large sort_index_vertical = np.argsort(instance_y0) instance_y0_reorder = instance_y0[sort_index_vertical] instance_x0_reorder = instance_x0[sort_index_vertical] instance_hierarchy_reorder = instance_hierarchy[sort_index_vertical] # the unique data without repetition sort_unique = np.unique(instance_y0_reorder) cell_name = np.asarray(cell_name) cell_pin_X= np.asarray(cell_pin_X) cell_pin_Y= np.asarray(cell_pin_Y) # the index of sorted data, from small to large sort_index_vertical = np.argsort(cell_pin_Y) cell_pin_Y_reorder = cell_pin_Y[sort_index_vertical] cell_pin_X_reorder = cell_pin_X[sort_index_vertical] cell_name_reorder = cell_name[sort_index_vertical] # match the cell name and the hierarchy instance name end_num = 0 for current_num in range(len(sort_unique)): start_num = end_num end_num = start_num + np.count_nonzero(instance_y0_reorder == sort_unique[current_num]) tmp_x0 = instance_x0_reorder[start_num: end_num] tmp_instance_hierarchy = instance_hierarchy_reorder[start_num: end_num] sort_index_horizontal = np.argsort(tmp_x0) instance_x0_reorder[start_num: end_num] = tmp_x0[sort_index_horizontal] instance_hierarchy_reorder[start_num: end_num] = tmp_instance_hierarchy[sort_index_horizontal] tmp_pin_X = cell_pin_X_reorder[start_num: end_num] tmp_cell_name = cell_name_reorder[start_num: end_num] sort_index_horizontal = np.argsort(tmp_pin_X) cell_pin_X_reorder[start_num: end_num] = tmp_pin_X[sort_index_horizontal] cell_name_reorder[start_num: end_num] = tmp_cell_name[sort_index_horizontal] return cell_name_reorder, instance_hierarchy_reorder def process_time_interval_use(desired_time_interval, desired_time_scale): """ process the time interval to use :param desired_time_interval: desired time interval to use :param desired_time_scale: desired time scale used in power analysis :return: final time interval for subsequent step """ if desired_time_scale < 1: intermediate = '%e' % desired_time_scale multiple = math.pow(10, int(intermediate.partition('-')[2])) final_time_interval = int(desired_time_interval * multiple) final_time_divider = int(desired_time_scale * multiple) else: final_time_interval = int(desired_time_interval) final_time_divider = int(desired_time_scale) return final_time_interval, final_time_divider def process_power_report_use(num_plaintexts, start_time_point, desired_time_interval, power_report_init_path, power_report_path): """ process the power report from power analysis :param num_plaintexts: the number of the plaintexts :param start_time_point: start time point in the initial power report :param desired_time_interval: final time interval for subsequent step :param power_report_init_path: path to the init power report file :param power_report_path: path to the power report file :return: combined power report """ power_report_file = open(power_report_path, 'w', newline='\n') # create patterns used to extract parameters pattern_power = r'[\d]+ [\d]+.*' pattern_time_point = r'^\d+\n$' start_enable = True for current_num in range(num_plaintexts): power_report_init_file = open(power_report_init_path + str(current_num) + '.out', 'r') left_time_interval = start_time_point if current_num == 0: for line in power_report_init_file.readlines(): if re.match(pattern_time_point, line): current_time_point = int(line.strip('\n')) - left_time_interval if current_time_point >= desired_time_interval: start_enable = False break elif current_time_point < 0: start_enable = False else: start_enable = True new_time_point = current_time_point + desired_time_interval * current_num power_report_file.write(str(new_time_point) + "\n") elif start_enable: power_report_file.write(line) else: for line in power_report_init_file.readlines(): if re.match(pattern_time_point, line): current_time_point = int(line.strip('\n')) - left_time_interval if current_time_point >= desired_time_interval: start_enable = False break elif current_time_point < 0: start_enable = False else: start_enable = True new_time_point = current_time_point + desired_time_interval * current_num power_report_file.write(str(new_time_point) + "\n") elif re.match(pattern_power, line) and start_enable: power_report_file.write(line) power_report_init_file.close() power_report_file.close() def logic_cell_modeling(top_cell, num_plaintexts, desired_time_interval, final_time_divider, power_report_path, instance_hierarchy, power_supply_voltage): """ modeling the current waveform of logic cells :param top_cell: top cell in the design :param num_plaintexts: the number of the plaintexts :param desired_time_interval: final time interval for subsequent step :param final_time_divider: final time divider used for final time interval :param power_report_path: the path to the power_report used to create the file :param instance_hierarchy: instance with design hierarchy :param power_supply_voltage: supply voltage for logic cells :return: the current waveform of logic cells """ power_file = open(power_report_path, 'r') print("Load power data, finished.") # create empty list for cell name, keyword and time point cell_hierarchy = [] cell_keyword = [] time_point = [] # create patterns used to extract parameters pattern_keyword = r'.index Pc\(.*?\) [\d]+ Pc' pattern_time_point = r'^\d+\n$' # add matched parameters into list for line in power_file.readlines(): if re.match(pattern_keyword, line): tmp = line.split() cell_hierarchy.append(tmp[1]) cell_keyword.append(int(tmp[2])) elif re.match(pattern_time_point, line): time_point.append(int(line.strip('\n'))) power_file.seek(0) # create the map list between the cell hierarchy (from .out file) and instance_hierarchy (from .dspf or .def file) cell_map = [] for current_num in range(len(instance_hierarchy)): tmp = 'Pc(' + str(top_cell) + '/' + str(instance_hierarchy[current_num]) + ')' try: cell_map.append(cell_hierarchy.index(tmp)) except ValueError: continue # print("The amount of the logic cells is ", len(cell_map)) print("The maximum of the time points is ", time_point[-1]) time_point = np.asarray(time_point) cell_keyword = np.asarray(cell_keyword) # create array for all power traces clock_period = desired_time_interval-0 off_clock_cycles = 1 start_time_point = 0 power_trace_all = np.full((len(cell_keyword), num_plaintexts, int(clock_period/final_time_divider)), 1e-11, dtype=np.float32) # print("The shape of the current trace is ", np.shape(power_trace_all)) # create pattern used to extract power traces pattern_power = r'[\d]+ [\d]+.*' tracked_time_point = 0 num_plaintexts_recorded = 0 # add matched power values into the array for line in power_file.readlines(): if num_plaintexts_recorded > num_plaintexts: break if re.match(pattern_time_point, line): current_time_point = int(line.strip('\n')) tracked_time_point = current_time_point - start_time_point - (clock_period * off_clock_cycles * num_plaintexts_recorded) if current_time_point > start_time_point + num_plaintexts * off_clock_cycles * clock_period: break elif tracked_time_point >= clock_period: num_plaintexts_recorded += 1 tracked_time_point = current_time_point - start_time_point - (clock_period * off_clock_cycles * num_plaintexts_recorded) if re.match(pattern_power, line): if tracked_time_point < 0: continue tmp = line.split() current_keyword = int(tmp[0]) - 1 power_trace_all[current_keyword, num_plaintexts_recorded, int(tracked_time_point/final_time_divider)] = float(tmp[1]) power_file.close() # map power traces for required cell power_trace_all = power_trace_all[cell_map, :, :] # post-process the power trace (replace the 0 value) # pool = mp.Pool(mp.cpu_count()-1) for current_time_point in range(np.shape(power_trace_all)[2]): for plaintext in range(num_plaintexts): vertical = np.asarray(power_trace_all[:, plaintext, current_time_point] == 1e-11).nonzero() if current_time_point >= 1: power_trace_all[vertical, plaintext, current_time_point] = power_trace_all[vertical, plaintext, current_time_point - 1] else: power_trace_all[vertical, plaintext, current_time_point] = power_trace_all[vertical, plaintext, current_time_point] power_trace_all = power_trace_all / power_supply_voltage print("The shape of the current trace is ", np.shape(power_trace_all)) return power_trace_all def main(top_cell, parasitic_netlist_path, def_path, power_report_path, num_plaintexts, start_time_point, desired_time_interval, desired_time_scale, power_report_init_path, power_supply_voltage): cell_name, cell_pin_X, cell_pin_Y = get_cell_pin_info(parasitic_netlist_path) cell_name, instance_hierarchy = match_cell_info(def_path, cell_name, cell_pin_X, cell_pin_Y) final_time_interval, final_time_divider = process_time_interval_use(desired_time_interval, desired_time_scale) process_power_report_use(num_plaintexts, start_time_point, final_time_interval, power_report_init_path, power_report_path) current_trace = logic_cell_modeling(top_cell, num_plaintexts, final_time_interval, final_time_divider, power_report_path, instance_hierarchy, power_supply_voltage) np.save('instance_hierarchy.npy', instance_hierarchy) np.save('cell_name.npy', cell_name) np.save("current_trace.npy", current_trace) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--top_cell", type=str, default="aes_top", help="Top cell in the design") parser.add_argument("--parasitic_netlist_path", type=str, default="aes_top.dspf", help="Path to the parasitic info file, should end in .dspf") parser.add_argument("--def_path", type=str, default="aes_top.def", help="Path to the def file, should end in .def") parser.add_argument("--power_report_path", type=str, default="vcd_to_use.out", help="Path to the power report file, should end in .out") parser.add_argument("--num_plaintexts", type=int, default=10, help="Number of required plaintexts") parser.add_argument("--start_time_point", type=int, default=(1120 + 6880 - 1120 - 6880)*10, help="Start time point in the initial power report") parser.add_argument("--desired_time_interval", type=int, default=40, help="Desired time interval to use, timescale 1ns/1ns") parser.add_argument("--desired_time_scale", type=float, default=0.4, help="Desired time scale used in power analysis") parser.add_argument("--power_report_init_path", type=str, default="power_reports/vcd_", help="Path to the init power report file, should end in vcd_") parser.add_argument("--power_supply_voltage", type=float, default=1.8, help="Supply voltage for logic cells") args = parser.parse_args() top_cell = args.top_cell parasitic_netlist_path = args.parasitic_netlist_path def_path = args.def_path power_report_path = args.power_report_path num_plaintexts = args.num_plaintexts start_time_point = args.start_time_point desired_time_interval = args.desired_time_interval desired_time_scale = args.desired_time_scale power_report_init_path = args.power_report_init_path power_supply_voltage = args.power_supply_voltage start_time = time.time() try: sys.exit(main(top_cell, parasitic_netlist_path, def_path, power_report_path, num_plaintexts, start_time_point, desired_time_interval, desired_time_scale, power_report_init_path, power_supply_voltage)) except KeyboardInterrupt: sys.exit() finally: print("Running time:", time.time() - start_time, "seconds") ```
{ "source": "jinyiY/desitarget", "score": 2 }
#### File: py/desitarget/uratmatch.py ```python import os import numpy as np import fitsio import requests import pickle from pkg_resources import resource_filename from time import time from astropy.io import ascii from glob import glob import healpy as hp from desitarget.internal import sharedmem from desimodel.footprint import radec2pix from desitarget.geomask import add_hp_neighbors, radec_match_to # ADM set up the DESI default logger from desiutil.log import get_logger log = get_logger() # ADM start the clock start = time() # ADM columns contained in our version of the URAT fits files. uratdatamodel = np.array([], dtype=[ ('URAT_ID', '>i8'), ('RA', '>f8'), ('DEC', '>f8'), ('APASS_G_MAG', '>f4'), ('APASS_G_MAG_ERROR', '>f4'), ('APASS_R_MAG', '>f4'), ('APASS_R_MAG_ERROR', '>f4'), ('APASS_I_MAG', '>f4'), ('APASS_I_MAG_ERROR', '>f4'), ('PMRA', '>f4'), ('PMDEC', '>f4'), ('PM_ERROR', '>f4') ]) def _get_urat_dir(): """Convenience function to grab the URAT environment variable. Returns ------- :class:`str` The directory stored in the $URAT_DIR environment variable. """ # ADM check that the $URAT_DIR environment variable is set. uratdir = os.environ.get('URAT_DIR') if uratdir is None: msg = "Set $URAT_DIR environment variable!" log.critical(msg) raise ValueError(msg) return uratdir def _get_urat_nside(): """Grab the HEALPixel nside to be used throughout this module. Returns ------- :class:`int` The HEALPixel nside number for URAT file creation and retrieval. """ nside = 32 return nside def scrape_urat(url="http://cdsarc.u-strasbg.fr/ftp/I/329/URAT1/v12/", nfiletest=None): """Retrieve the binary versions of the URAT files. Parameters ---------- url : :class:`str` The web directory that hosts the archived binary URAT files. nfiletest : :class:`int`, optional, defaults to ``None`` If an integer is sent, only retrieve this number of files, for testing. Returns ------- Nothing But the archived URAT files are written to $URAT_DIR/binary. Notes ----- - The environment variable $URAT_DIR must be set. - Runs in about 50 minutes for 575 URAT files. """ # ADM check that the URAT_DIR is set and retrieve it. uratdir = _get_urat_dir() # ADM construct the directory to which to write files. bindir = os.path.join(uratdir, 'binary') # ADM the directory better be empty for the wget! if os.path.exists(bindir): if len(os.listdir(bindir)) > 0: msg = "{} should be empty to wget URAT binary files!".format(bindir) log.critical(msg) raise ValueError(msg) # ADM make the directory, if needed. else: log.info('Making URAT directory for storing binary files') os.makedirs(bindir) index = requests.get(url) # ADM retrieve any file name that starts with z. # ADM the [1::2] pulls back just the odd lines from the split list. garbled = index.text.split("z")[1::2] filelist = ["z{}".format(g[:3]) for g in garbled] # ADM if nfiletest was passed, just work with that number of files. test = nfiletest is not None if test: filelist = filelist[:nfiletest] nfiles = len(filelist) # ADM loop through the filelist. start = time() for nfile, fileinfo in enumerate(filelist): # ADM make the wget command to retrieve the file and issue it. cmd = 'wget -q {} -P {}'.format(os.path.join(url, fileinfo), bindir) print(cmd) os.system(cmd) if nfile % 25 == 0 or test: elapsed = time() - start rate = nfile / elapsed log.info( '{}/{} files; {:.1f} files/sec; {:.1f} total mins elapsed' .format(nfile+1, nfiles, rate, elapsed/60.) ) log.info('Done...t={:.1f}s'.format(time()-start)) return def urat_binary_to_csv(): """Convert files in $URAT_DIR/binary to files in $URAT_DIR/csv. Returns ------- Nothing But the archived URAT binary files in $URAT_DIR/binary are converted to CSV files in the $URAT_DIR/csv. Notes ----- - The environment variable $URAT_DIR must be set. - Relies on the executable urat/fortran/v1dump, which is only tested at NERSC and might need compiled by the user. - Runs in about 40 minutes for 575 files. """ # ADM check that the URAT_DIR is set. uratdir = _get_urat_dir() # ADM a quick check that the csv directory is empty before writing. csvdir = os.path.join(uratdir, 'csv') if os.path.exists(csvdir): if len(os.listdir(csvdir)) > 0: msg = "{} should be empty to make URAT files!".format(csvdir) log.critical(msg) raise ValueError(msg) # ADM make the directory, if needed. else: log.info('Making URAT directory for storing CSV files') os.makedirs(csvdir) log.info('Begin converting URAT files to CSV...t={:.1f}s' .format(time()-start)) # ADM check the v1dump executable has been compiled. readme = resource_filename('desitarget', 'urat/fortran/README') cmd = resource_filename('desitarget', 'urat/fortran/v1dump') if not (os.path.exists(cmd) and os.access(cmd, os.X_OK)): msg = "{} must have been compiled (see {})".format(cmd, readme) log.critical(msg) raise ValueError(msg) # ADM execute v1dump. os.system(cmd) log.info('Done...t={:.1f}s'.format(time()-start)) return def urat_csv_to_fits(numproc=5): """Convert files in $URAT_DIR/csv to files in $URAT_DIR/fits. Parameters ---------- numproc : :class:`int`, optional, defaults to 5 The number of parallel processes to use. Returns ------- Nothing But the archived URAT CSV files in $URAT_DIR/csv are converted to FITS files in the directory $URAT_DIR/fits. Also, a look-up table is written to $URAT_DIR/fits/hpx-to-files.pickle for which each index is an nside=_get_urat_nside(), nested scheme HEALPixel and each entry is a list of the FITS files that touch that HEAPixel. Notes ----- - The environment variable $URAT_DIR must be set. - if numproc==1, use the serial code instead of the parallel code. - Runs in about 10 minutes with numproc=25 for 575 files. """ # ADM the resolution at which the URAT HEALPix files should be stored. nside = _get_urat_nside() # ADM check that the URAT_DIR is set. uratdir = _get_urat_dir() log.info("running on {} processors".format(numproc)) # ADM construct the directories for reading/writing files. csvdir = os.path.join(uratdir, 'csv') fitsdir = os.path.join(uratdir, 'fits') # ADM make sure the output directory is empty. if os.path.exists(fitsdir): if len(os.listdir(fitsdir)) > 0: msg = "{} should be empty to make URAT FITS files!".format(fitsdir) log.critical(msg) raise ValueError(msg) # ADM make the output directory, if needed. else: log.info('Making URAT directory for storing FITS files') os.makedirs(fitsdir) # ADM construct the list of input files. infiles = glob("{}/*csv*".format(csvdir)) nfiles = len(infiles) # ADM the critical function to run on every file. def _write_urat_fits(infile): """read an input name for a csv file and write it to FITS""" outbase = os.path.basename(infile) outfilename = "{}.fits".format(outbase.split(".")[0]) outfile = os.path.join(fitsdir, outfilename) # ADM astropy understands without specifying format='csv'. fitstable = ascii.read(infile) # ADM map the ascii-read csv to typical DESI quantities. nobjs = len(fitstable) done = np.zeros(nobjs, dtype=uratdatamodel.dtype) # ADM have to do this one-by-one, given the format. done["RA"] = fitstable['col1']/1000./3600. done["DEC"] = fitstable['col2']/1000./3600. - 90. done["PMRA"] = fitstable['col16']/10. done["PMDEC"] = fitstable['col17']/10. done["PM_ERROR"] = fitstable['col18']/10. done["APASS_G_MAG"] = fitstable['col36']/1000. done["APASS_R_MAG"] = fitstable['col37']/1000. done["APASS_I_MAG"] = fitstable['col38']/1000. done["APASS_G_MAG_ERROR"] = fitstable['col41']/1000. done["APASS_R_MAG_ERROR"] = fitstable['col42']/1000. done["APASS_I_MAG_ERROR"] = fitstable['col43']/1000. done["URAT_ID"] = fitstable['col46'] fitsio.write(outfile, done, extname='URATFITS') # ADM return the HEALPixels that this file touches. pix = set(radec2pix(nside, done["RA"], done["DEC"])) return [pix, os.path.basename(outfile)] # ADM this is just to count processed files in _update_status. nfile = np.zeros((), dtype='i8') t0 = time() def _update_status(result): """wrapper function for the critical reduction operation, that occurs on the main parallel process""" if nfile % 25 == 0 and nfile > 0: rate = nfile / (time() - t0) elapsed = time() - t0 log.info( '{}/{} files; {:.1f} files/sec; {:.1f} total mins elapsed' .format(nfile, nfiles, rate, elapsed/60.) ) nfile[...] += 1 # this is an in-place modification return result # - Parallel process input files... if numproc > 1: pool = sharedmem.MapReduce(np=numproc) with pool: pixinfile = pool.map(_write_urat_fits, infiles, reduce=_update_status) # ADM ...or run in serial. else: pixinfile = list() for file in infiles: pixinfile.append(_update_status(_write_urat_fits(file))) # ADM create a list for which each index is a HEALPixel and each # ADM entry is a list of files that touch that HEALPixel. npix = hp.nside2npix(nside) pixlist = [[] for i in range(npix)] for pixels, file in pixinfile: for pix in pixels: pixlist[pix].append(file) # ADM write out the HEALPixel->files look-up table. outfilename = os.path.join(fitsdir, "hpx-to-files.pickle") outfile = open(outfilename, "wb") pickle.dump(pixlist, outfile) outfile.close() log.info('Done...t={:.1f}s'.format(time()-t0)) return def urat_fits_to_healpix(numproc=5): """Convert files in $URAT_DIR/fits to files in $URAT_DIR/healpix. Parameters ---------- numproc : :class:`int`, optional, defaults to 5 The number of parallel processes to use. Returns ------- Nothing But the archived URAT FITS files in $URAT_DIR/fits are rearranged by HEALPixel in the directory $URAT_DIR/healpix. The HEALPixel sense is nested with nside=_get_urat_nside(), and each file in $URAT_DIR/healpix is called healpix-xxxxx.fits, where xxxxx corresponds to the HEALPixel number. Notes ----- - The environment variable $URAT_DIR must be set. - if numproc==1, use the serial code instead of the parallel code. - Runs in about 10 minutes with numproc=25. """ # ADM the resolution at which the URAT HEALPix files should be stored. nside = _get_urat_nside() # ADM check that the URAT_DIR is set. uratdir = _get_urat_dir() # ADM construct the directories for reading/writing files. fitsdir = os.path.join(uratdir, 'fits') hpxdir = os.path.join(uratdir, 'healpix') # ADM make sure the output directory is empty. if os.path.exists(hpxdir): if len(os.listdir(hpxdir)) > 0: msg = "{} should be empty to make URAT HEALPix files!".format(hpxdir) log.critical(msg) raise ValueError(msg) # ADM make the output directory, if needed. else: log.info('Making URAT directory for storing HEALPix files') os.makedirs(hpxdir) # ADM read the pixel -> file look-up table. infilename = os.path.join(fitsdir, "hpx-to-files.pickle") infile = open(infilename, "rb") pixlist = pickle.load(infile) npixels = len(pixlist) # ADM include the pixel number explicitly in the look-up table. pixlist = list(zip(np.arange(npixels), pixlist)) # ADM the critical function to run on every file. def _write_hpx_fits(pixlist): """from files that touch a pixel, write out objects in each pixel""" pixnum, files = pixlist # ADM only proceed if some files touch a pixel. if len(files) > 0: # ADM track if it's our first time through the files loop. first = True # ADM Read in files that touch a pixel. for file in files: filename = os.path.join(fitsdir, file) objs = fitsio.read(filename) # ADM only retain objects in the correct pixel. pix = radec2pix(nside, objs["RA"], objs["DEC"]) if first: done = objs[pix == pixnum] first = False else: done = np.hstack([done, objs[pix == pixnum]]) # ADM construct the name of the output file. outfilename = 'healpix-{:05d}.fits'.format(pixnum) outfile = os.path.join(hpxdir, outfilename) # ADM write out the file. hdr = fitsio.FITSHDR() hdr['HPXNSIDE'] = nside hdr['HPXNEST'] = True fitsio.write(outfile, done, extname='URATHPX', header=hdr) return # ADM this is just to count processed files in _update_status. npix = np.zeros((), dtype='i8') t0 = time() def _update_status(result): """wrapper function for the critical reduction operation, that occurs on the main parallel process""" if npix % 500 == 0 and npix > 0: rate = npix / (time() - t0) elapsed = time() - t0 log.info( '{}/{} files; {:.1f} files/sec; {:.1f} total mins elapsed' .format(npix, npixels, rate, elapsed/60.) ) npix[...] += 1 # this is an in-place modification return result # - Parallel process input files... if numproc > 1: pool = sharedmem.MapReduce(np=numproc) with pool: _ = pool.map(_write_hpx_fits, pixlist, reduce=_update_status) # ADM ...or run in serial. else: for pix in pixlist: _update_status(_write_hpx_fits(pix)) log.info('Done...t={:.1f}s'.format(time()-t0)) return def make_urat_files(numproc=5, download=False): """Make the HEALPix-split URAT files in one fell swoop. Parameters ---------- numproc : :class:`int`, optional, defaults to 5 The number of parallel processes to use. download : :class:`bool`, optional, defaults to ``False`` If ``True`` then wget the URAT binary files from Vizier. Returns ------- Nothing But produces: - URAT DR1 binary files in $URAT_DIR/binary (if download=True). - URAT CSV files with all URAT columns in $URAT_DIR/csv. - FITS files with columns from `uratdatamodel` in $URAT_DIR/fits. - FITS files reorganized by HEALPixel in $URAT_DIR/healpix. The HEALPixel sense is nested with nside=_get_urat_nside(), and each file in $URAT_DIR/healpix is called healpix-xxxxx.fits, where xxxxx corresponds to the HEALPixel number. Notes ----- - The environment variable $URAT_DIR must be set. - if numproc==1, use the serial, instead of the parallel, code. - Runs in about 2 hours with numproc=25 if download is ``True``. - Runs in about 1 hour with numproc=25 if download is ``False``. """ t0 = time() log.info('Begin making URAT files...t={:.1f}s'.format(time()-t0)) # ADM check that the URAT_DIR is set. uratdir = _get_urat_dir() # ADM a quick check that the fits and healpix directories are empty # ADM before embarking on the slower parts of the code. csvdir = os.path.join(uratdir, 'csv') fitsdir = os.path.join(uratdir, 'fits') hpxdir = os.path.join(uratdir, 'healpix') for direc in [csvdir, fitsdir, hpxdir]: if os.path.exists(direc): if len(os.listdir(direc)) > 0: msg = "{} should be empty to make URAT files!".format(direc) log.critical(msg) raise ValueError(msg) if download: scrape_urat() log.info('Retrieved URAT files from Vizier...t={:.1f}s' .format(time()-t0)) urat_binary_to_csv() log.info('Converted binary files to CSV...t={:.1f}s'.format(time()-t0)) urat_csv_to_fits(numproc=numproc) log.info('Converted CSV files to FITS...t={:.1f}s'.format(time()-t0)) urat_fits_to_healpix(numproc=numproc) log.info('Rearranged FITS files by HEALPixel...t={:.1f}s'.format(time()-t0)) return def find_urat_files(objs, neighbors=True, radec=False): """Find full paths to URAT healpix files for objects by RA/Dec. Parameters ---------- objs : :class:`~numpy.ndarray` Array of objects. Must contain the columns "RA" and "DEC". neighbors : :class:`bool`, optional, defaults to ``True`` Also return all pixels that touch the files of interest to prevent edge effects (e.g. if a URAT source is 1 arcsec away from a primary source and so in an adjacent pixel). radec : :class:`bool`, optional, defaults to ``False`` If ``True`` then the passed `objs` is an [RA, Dec] list instead of a rec array that contains "RA" and "DEC". Returns ------- :class:`list` A list of all URAT files to read to account for objects at the passed locations. Notes ----- - The environment variable $URAT_DIR must be set. """ # ADM the resolution at which the URAT HEALPix files are stored. nside = _get_urat_nside() # ADM check that the URAT_DIR is set and retrieve it. uratdir = _get_urat_dir() hpxdir = os.path.join(uratdir, 'healpix') # ADM which flavor of RA/Dec was passed. if radec: ra, dec = objs else: ra, dec = objs["RA"], objs["DEC"] # ADM convert RA/Dec to co-latitude and longitude in radians. theta, phi = np.radians(90-dec), np.radians(ra) # ADM retrieve the pixels in which the locations lie. pixnum = hp.ang2pix(nside, theta, phi, nest=True) # ADM if neighbors was sent, then retrieve all pixels that touch each # ADM pixel covered by the provided locations, to prevent edge effects... if neighbors: pixnum = add_hp_neighbors(nside, pixnum) # ADM reformat file names in the URAT healpix format. uratfiles = [os.path.join(hpxdir, 'healpix-{:05d}.fits'.format(pn)) for pn in pixnum] # ADM restrict to only files/HEALPixels actually covered by URAT. uratfiles = [fn for fn in uratfiles if os.path.exists(fn)] return uratfiles def match_to_urat(objs, matchrad=1., radec=False): """Match objects to URAT healpix files and return URAT information. Parameters ---------- objs : :class:`~numpy.ndarray` Must contain at least "RA" and "DEC". matchrad : :class:`float`, optional, defaults to 1 arcsec The radius at which to match in arcseconds. radec : :class:`bool`, optional, defaults to ``False`` If ``True`` then the passed `objs` is an [RA, Dec] list instead of a rec array. Returns ------- :class:`~numpy.ndarray` The matching URAT information for each object. The returned format is as for desitarget.uratmatch.uratdatamodel with and extra column "URAT_SEP" which is the matching distance in ARCSECONDS. Notes ----- - For objects that do NOT have a match in URAT, the "URAT_ID" and "URAT_SEP" columns are -1, and other columns are zero. - Retrieves the CLOSEST match to URAT for each passed object. - Because this reads in HEALPixel split files, it's (far) faster for objects that are clumped rather than widely distributed. """ # ADM parse whether a structure or coordinate list was passed. if radec: ra, dec = objs else: ra, dec = objs["RA"], objs["DEC"] # ADM set up an array of URAT information for the output. nobjs = len(ra) done = np.zeros(nobjs, dtype=uratdatamodel.dtype) # ADM objects without matches should have URAT_ID, URAT_SEP of -1. done["URAT_ID"] = -1 urat_sep = np.zeros(nobjs) - 1 # ADM determine which URAT files need to be scraped. uratfiles = find_urat_files([ra, dec], radec=True) nfiles = len(uratfiles) # ADM catch the case of no matches to URAT. if nfiles > 0: # ADM loop through the URAT files and find matches. for ifn, fn in enumerate(uratfiles): if ifn % 500 == 0 and ifn > 0: log.info('{}/{} files; {:.1f} total mins elapsed' .format(ifn, nfiles, (time()-start)/60.)) urat = fitsio.read(fn) idurat, idobjs, dist = radec_match_to( [urat["RA"], urat["DEC"]], [ra, dec], sep=matchrad, radec=True, return_sep=True) # ADM update matches whenever we have a CLOSER match. ii = (urat_sep[idobjs] == -1) | (urat_sep[idobjs] > dist) done[idobjs[ii]] = urat[idurat[ii]] urat_sep[idobjs[ii]] = dist[ii] # ADM add the separation distances to the output array. dt = uratdatamodel.dtype.descr + [("URAT_SEP", ">f4")] output = np.zeros(nobjs, dtype=dt) for col in uratdatamodel.dtype.names: output[col] = done[col] output["URAT_SEP"] = urat_sep return output ```
{ "source": "jinyiyexing518/DAL", "score": 3 }
#### File: DAL/utils/box_coder.py ```python import numpy as np import torch class BoxCoder(object): """ This class encodes and decodes a set of bounding boxes into the representation used for training the regressors. """ def __init__(self, weights=(10., 10., 10., 5., 15.)): self.weights = weights def encode(self, ex_rois, gt_rois): #输入的是ROI坐标,x1y1 x2y2 angle五个参数 ex_widths = ex_rois[:, 2] - ex_rois[:, 0] #计算宽度 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] #计算高度 ex_widths = torch.clamp(ex_widths, min=1) #宽度最小为1 ex_heights = torch.clamp(ex_heights, min=1) #高度最小为1 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths #计算中心坐标xy ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights ex_thetas = ex_rois[:, 4] #角度 gt_widths = gt_rois[:, 2] - gt_rois[:, 0] gt_heights = gt_rois[:, 3] - gt_rois[:, 1] gt_widths = torch.clamp(gt_widths, min=1) gt_heights = torch.clamp(gt_heights, min=1) #获得gt宽和高 gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths #获得gt的中心坐标 gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights gt_thetas = gt_rois[:, 4] #获得gt的角度 wx, wy, ww, wh, wt = self.weights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * torch.log(gt_widths / ex_widths) targets_dh = wh * torch.log(gt_heights / ex_heights) targets_dt = wt * (torch.tan(gt_thetas / 180.0 * np.pi) - torch.tan(ex_thetas / 180.0 * np.pi)) targets = torch.stack( (targets_dx, targets_dy, targets_dw, targets_dh, targets_dt), dim=1 ) return targets #计算偏移 def decode(self, boxes, deltas, mode='xywht'): widths = boxes[:, :, 2] - boxes[:, :, 0] heights = boxes[:, :, 3] - boxes[:, :, 1] widths = torch.clamp(widths, min=1) heights = torch.clamp(heights, min=1) ctr_x = boxes[:, :, 0] + 0.5 * widths ctr_y = boxes[:, :, 1] + 0.5 * heights thetas = boxes[:, :, 4] wx, wy, ww, wh, wt = self.weights dx = deltas[:, :, 0] / wx dy = deltas[:, :, 1] / wy dw = deltas[:, :, 2] / ww dh = deltas[:, :, 3] / wh dt = deltas[:, :, 4] / wt pred_ctr_x = ctr_x if 'x' not in mode else ctr_x + dx * widths pred_ctr_y = ctr_y if 'y' not in mode else ctr_y + dy * heights pred_w = widths if 'w' not in mode else torch.exp(dw) * widths pred_h = heights if 'h' not in mode else torch.exp(dh) * heights pred_t = thetas if 't' not in mode else torch.atan(torch.tan(thetas / 180.0 * np.pi) + dt) / np.pi * 180.0 pred_boxes_x1 = pred_ctr_x - 0.5 * pred_w pred_boxes_y1 = pred_ctr_y - 0.5 * pred_h pred_boxes_x2 = pred_ctr_x + 0.5 * pred_w pred_boxes_y2 = pred_ctr_y + 0.5 * pred_h pred_boxes = torch.stack([ pred_boxes_x1, pred_boxes_y1, pred_boxes_x2, pred_boxes_y2, pred_t], dim=2 ) return pred_boxes #返回真实的预测框,两个坐标以及角度 ```
{ "source": "JinyongJeong/Deeplabv3_pytorch_Cityscape_and_Apolloscape", "score": 2 }
#### File: JinyongJeong/Deeplabv3_pytorch_Cityscape_and_Apolloscape/inference_apolloscape.py ```python import sys import os default_path = os.path.dirname(os.path.abspath(__file__)) from datasets_apolloscape import DatasetTrain, DatasetVal # (this needs to be imported before torch, because cv2 needs to be imported before torch for some reason) sys.path.append(os.path.join(default_path,'model')) from deeplabv3_apolloscape_class_8 import DeepLabV3 sys.path.append(os.path.join(default_path,'utils')) from utils import add_weight_decay from utils import label_img_to_color from utils import label_img_to_color_apolloscape import torch import torch.utils.data import torch.nn as nn from torch.autograd import Variable import torch.optim as optim import torch.nn.functional as F import numpy as np import pickle import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import cv2 import time import glob def getEpoch(checkpoint_name): filename_w_ext = os.path.basename(checkpoint_name) filename, file_extension = os.path.splitext(filename_w_ext) filenames = filename.split("_") return filenames[3] # NOTE! NOTE! change this to not overwrite all log data when you train the model: model_ids = [2,3,5,6,9] eval_batch_size = 1 for model_id in model_ids: print("model_id: " + str(model_id)) logs_dir = os.path.join(default_path, 'training_logs') checkpoints_dir = os.path.join(default_path, 'training_logs', 'model_' + str(model_id), 'checkpoints') model_dir = os.path.join(default_path, 'training_logs', 'model_' + str(model_id)) #network = DeepLabV3(model_id, project_dir=default_path).cuda() network = DeepLabV3(model_id, project_dir=default_path) network = nn.DataParallel(network) network = network.cuda() #check last checkpoint data_list = glob.glob(os.path.join(checkpoints_dir,'model_'+str(model_id)+'_*.pth')) #find latest checkpoint start_epoch = 0 for name in list(data_list): if start_epoch < int(getEpoch(name)): start_epoch = int(getEpoch(name)) if start_epoch != 0: network.load_state_dict(torch.load(os.path.join(checkpoints_dir,"model_" + str(model_id) +"_epoch_" + str(start_epoch) + ".pth"))) print("Recorver check point of epoch: " + str(start_epoch)) else: print("Can't find checkpoint for loading") quit() val_dataset = DatasetVal() val_loader = torch.utils.data.DataLoader(dataset=val_dataset, batch_size=eval_batch_size, shuffle=False, num_workers=30) ############################################################################ # inference: ############################################################################ network.eval() # (set in evaluation mode, this affects BatchNorm and dropout) save_path = os.path.join(default_path,'inference/apolloscape', 'model_' + str(model_id)) if not os.path.exists(save_path): os.makedirs(save_path) img_index = 0 print("Start inference") for step, (imgs, label_imgs) in enumerate(val_loader): print("Eval step: " + str(step)) with torch.no_grad(): # (corresponds to setting volatile=True in all variables, this is done during inference to reduce memory consumption) imgs = Variable(imgs).cuda() # (shape: (batch_size, 3, img_h, img_w)) #label_imgs = Variable(label_imgs.type(torch.LongTensor)).cuda() # (shape: (batch_size, img_h, img_w)) outputs = network(imgs) # (shape: (batch_size, num_classes, img_h, img_w)) # compute the loss: #outputs = outputs.data.cpu().numpy() # (shape: (batch_size, num_classes, img_h, img_w)) outputs = torch.argmax(outputs, dim=1) #pred_label_imgs = np.argmax(outputs, axis=1) # (shape: (batch_size, img_h, img_w)) pred_label_imgs = outputs.data.cpu().numpy() pred_label_imgs = pred_label_imgs.astype(np.uint8) for i in range(pred_label_imgs.shape[0]): pred_label_img = pred_label_imgs[i] # (shape: (img_h, img_w)) img = imgs[i] # (shape: (3, img_h, img_w)) img = img.data.cpu().numpy() img = np.transpose(img, (1, 2, 0)) # (shape: (img_h, img_w, 3)) img = img*np.array([0.229, 0.224, 0.225]) img = img + np.array([0.485, 0.456, 0.406]) img = img*255.0 img = img.astype(np.uint8) pred_label_img_color = label_img_to_color_apolloscape(pred_label_img) overlayed_img = 0.35*img + 0.65*pred_label_img_color overlayed_img = overlayed_img.astype(np.uint8) save_file_path = os.path.join(save_path, str(img_index) + '.png') cv2.imwrite(save_file_path, overlayed_img) img_index += 1 ```
{ "source": "jinyonglner00/crawl-zsxq2", "score": 3 }
#### File: jinyonglner00/crawl-zsxq2/crawl.py ```python import re import requests import json import os import pdfkit from bs4 import BeautifulSoup from urllib.parse import quote html_template = """ <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> </head> <body> <h1>{title}</h1> <p>{text}</p> </body> </html> """ htmls = [] num = 0 def get_data(url): global htmls, num headers = { 'Authorization': '<PASSWORD>', 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/67.0.3396.99 Safari/537.36' } rsp = requests.get(url, headers=headers) with open('test.json', 'w', encoding='utf-8') as f: # 将返回数据写入 test.json 方便查看 f.write(json.dumps(rsp.json(), indent=2, ensure_ascii=False)) with open('test.json', encoding='utf-8') as f: for topic in json.loads(f.read()).get('resp_data').get('topics'): content = topic.get('question', topic.get('talk', topic.get('task', topic.get('solution')))) # print(content) text = content.get('text', '') text = re.sub(r'<[^>]*>', '', text).strip() text = text.replace('\n', '<br>') title = str(num) + text[:9] num += 1 if content.get('images'): soup = BeautifulSoup(html_template, 'html.parser') for img in content.get('images'): url = img.get('large').get('url') img_tag = soup.new_tag('img', src=url) soup.body.append(img_tag) html_img = str(soup) html = html_img.format(title=title, text=text) else: html = html_template.format(title=title, text=text) if topic.get('question'): answer = topic.get('answer').get('text', "") soup = BeautifulSoup(html, 'html.parser') answer_tag = soup.new_tag('p') answer_tag.string = answer soup.body.append(answer_tag) html_answer = str(soup) html = html_answer.format(title=title, text=text) htmls.append(html) next_page = rsp.json().get('resp_data').get('topics') if next_page: create_time = next_page[-1].get('create_time') if create_time[20:23] == "000": end_time = create_time[:20]+"999"+create_time[23:] else : res = int(create_time[20:23])-1 end_time = create_time[:20]+str(res).zfill(3)+create_time[23:] # zfill 函数补足结果前面的零,始终为3位数 end_time = quote(end_time) if len(end_time) == 33: end_time = end_time[:24] + '0' + end_time[24:] next_url = start_url + '&end_time=' + end_time print(next_url) get_data(next_url) return htmls def make_pdf(htmls): html_files = [] for index, html in enumerate(htmls): file = str(index) + ".html" html_files.append(file) with open(file, "w", encoding="utf-8") as f: f.write(html) options = { "user-style-sheet": "test.css", "page-size": "Letter", "margin-top": "0.75in", "margin-right": "0.75in", "margin-bottom": "0.75in", "margin-left": "0.75in", "encoding": "UTF-8", "custom-header": [("Accept-Encoding", "gzip")], "cookie": [ ("cookie-name1", "cookie-value1"), ("cookie-name2", "cookie-value2") ], "outline-depth": 10, } try: pdfkit.from_file(html_files, "电子书.pdf", options=options) except Exception as e: pass for file in html_files: os.remove(file) print("已制作电子书在当前目录!") if __name__ == '__main__': start_url = 'https://api.zsxq.com/v1.10/groups/8424258282/topics?scope=digests&count=20' make_pdf(get_data(start_url)) ```
{ "source": "jinyoungbang/CS501_Haverhill", "score": 3 }
#### File: haverhill_311_function/modules/qalert.py ```python from io import BytesIO from . import settings from . import db import requests import ijson def pull(): """ Makes a GET request to fetch 311 Data from QAlert API and returns the data. """ data = [] if settings.TEST: url = settings.QALERT_REQUEST_ENDPOINT_TEST else: url = "{endpoint}?key={api_key}&count={count}&sort={sort}".format( endpoint=settings.QALERT_REQUEST_ENDPOINT, api_key=settings.QALERT_API_KEY, count=-1, sort="[createdate] asc," ) with db.QAlertAuditDB() as audit_db: latest_request = audit_db.get_latest_request() if latest_request is not None: url += f"&createDateMin={latest_request.create_date}" payload = {} headers = {'User-Agent': 'Custom'} response = requests.request( "GET", url, headers=headers, data=payload ) if response.status_code != 200: return data data = ijson.items(BytesIO(response.content), 'item') return data ``` #### File: tests/unit/test_db.py ```python from haverhill_311_function.modules import db import pytest @pytest.fixture def qalert_db(): return db.QAlertDB( host='localhost', port=5432, user='docker', password='<PASSWORD>', database='qalert_test' ) def test_init(qalert_db): assert getattr(qalert_db, 'session', None) is None assert qalert_db.host == 'localhost' assert qalert_db.port == 5432 assert qalert_db.user == 'docker' assert qalert_db.password == '<PASSWORD>' assert qalert_db.database == 'qalert_test' def test_connection(qalert_db): with qalert_db: assert(qalert_db.session is not None) def test_save(qalert_db): qalert_request = db.QAlertRequest( id=1, latitude=1.1, longitude=1.1 ) with qalert_db: qalert_db.save(qalert_request) saved_qalert_request = qalert_db.get(request_id=1) assert saved_qalert_request == qalert_request def test_save_many(qalert_db): qalert_requests = [ db.QAlertRequest( id=1, latitude=1.1, longitude=1.1 ), db.QAlertRequest( id=2, latitude=1.1, longitude=1.1 ), db.QAlertRequest( id=3, latitude=1.1, longitude=1.1 ), ] with qalert_db: qalert_db.save_many(qalert_requests) assert qalert_db.get(request_id=1) is not None assert qalert_db.get(request_id=2) is not None assert qalert_db.get(request_id=3) is not None ``` #### File: tests/unit/test_qalert.py ```python from haverhill_311_function.modules import settings from haverhill_311_function.modules import qalert def test_valid_format(): settings.TEST = True res = qalert.pull() for qalert_request in res: assert type(qalert_request) == dict def test_using_endpoint(): settings.TEST = True res = qalert.pull() assert res is not None def test_actual_endpoint(): settings.TEST = False res = qalert.pull() print(res) assert res == [] ```
{ "source": "jinyuanliu23/DCRNN_PyTorch", "score": 2 }
#### File: model/pytorch/dcrnn_cell.py ```python import numpy as np import torch # from MultiGAT import GAT from lib import utils from gatl import GAT device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class LayerParams: def __init__(self, rnn_network: torch.nn.Module, layer_type: str): self._rnn_network = rnn_network self._params_dict = {} self._biases_dict = {} self._type = layer_type def get_weights(self, shape): if shape not in self._params_dict: nn_param = torch.nn.Parameter(torch.empty(*shape, device=device)) torch.nn.init.xavier_normal_(nn_param) self._params_dict[shape] = nn_param self._rnn_network.register_parameter('{}_weight_{}'.format(self._type, str(shape)), nn_param) return self._params_dict[shape] def get_biases(self, length, bias_start=0.0): if length not in self._biases_dict: biases = torch.nn.Parameter(torch.empty(length, device=device)) torch.nn.init.constant_(biases, bias_start) self._biases_dict[length] = biases self._rnn_network.register_parameter('{}_biases_{}'.format(self._type, str(length)), biases) return self._biases_dict[length] class GAGRUCell(torch.nn.Module): def __init__(self, num_units, adj_mx, num_nodes, nonlinearity='tanh', use_ga_for_ru=True): """ :param num_units: :param adj_mx: :param max_diffusion_step: :param num_nodes: :param nonlinearity: :param filter_type: "laplacian", "random_walk", "dual_random_walk". :param use_gc_for_ru: whether to use Graph convolution to calculate the reset and update gates. """ super().__init__() self._activation = torch.tanh if nonlinearity == 'tanh' else torch.relu # support other nonlinearities up here? self._num_nodes = num_nodes self._num_units = num_units self.multi_head_nums = 3 self._supports = [] self._use_ga_for_ru = use_ga_for_ru self.adj_mx = adj_mx supports = [] # if filter_type == "laplacian": # supports.append(utils.calculate_scaled_laplacian(adj_mx, lambda_max=None)) # elif filter_type == "random_walk": # supports.append(utils.calculate_random_walk_matrix(adj_mx).T) # elif filter_type == "dual_random_walk": # supports.append(utils.calculate_random_walk_matrix(adj_mx).T) # supports.append(utils.calculate_random_walk_matrix(adj_mx.T).T) # else: # supports.append(utils.calculate_scaled_laplacian(adj_mx)) # for support in supports: # self._supports.append(self._build_sparse_matrix(support)) self._fc_params = LayerParams(self, 'fc') self._gat_params = LayerParams(self, 'gat') @staticmethod # def _build_sparse_matrix(L): # L = L.tocoo() # indices = np.column_stack((L.row, L.col)) # indices = indices.astype(float) # numpy强制类型转换 # # # this is to ensure row-major ordering to equal torch.sparse.sparse_reorder(L) # indices = indices[np.lexsort((indices[:, 0], indices[:, 1]))] # L = torch.sparse_coo_tensor(indices.T, L.data, L.shape, device=device) # # return L def forward(self, inputs, hx): """Gated recurrent unit (GRU) with Graph Convolution. :param inputs: (B, num_nodes * input_dim) :param hx: (B, num_nodes * rnn_units) :return - Output: A `2-D` tensor with shape `(B, num_nodes * rnn_units)`. """ output_size = 2 * self._num_units if self._use_ga_for_ru: fn = self._GAT else: fn = self._fc value = torch.sigmoid(fn(inputs, hx, output_size,bias_start=1.0)) value = torch.reshape(value, (-1, self._num_nodes, output_size)) r, u = torch.split(tensor=value, split_size_or_sections=self._num_units, dim=-1) r = torch.reshape(r, (-1, self._num_nodes * self._num_units)) u = torch.reshape(u, (-1, self._num_nodes * self._num_units)) c = self._GAT(inputs, r * hx, self._num_units) if self._activation is not None: c = self._activation(c) new_state = u * hx + (1.0 - u) * c return new_state @staticmethod def _concat(x, x_): x_ = x_.unsqueeze(0) return torch.cat([x, x_], dim=0) def _fc(self, inputs, state, output_size, bias_start=0.0): batch_size = inputs.shape[0] inputs = torch.reshape(inputs, (batch_size * self._num_nodes, -1)) state = torch.reshape(state, (batch_size * self._num_nodes, -1)) inputs_and_state = torch.cat([inputs, state], dim=-1) input_size = inputs_and_state.shape[-1] weights = self._fc_params.get_weights((input_size, output_size)) value = torch.sigmoid(torch.matmul(inputs_and_state, weights)) biases = self._fc_params.get_biases(output_size, bias_start) value += biases return value def _GAT(self, inputs, state, output_size, bias_start=0.0): # Reshape input and state to (batch_size, num_nodes, input_dim/state_dim) batch_size = inputs.shape[0] inputs = torch.reshape(inputs, (batch_size, self._num_nodes, -1)) state = torch.reshape(state, (batch_size, self._num_nodes, -1)) inputs_and_state = torch.cat([inputs, state], dim=2) input_size = inputs_and_state.size(2) x = inputs_and_state model = GAT(x.size(1) ,x.size(1) ,x.size(1),self.multi_head_nums ) x = model(x , self.adj_mx) # x = torch.tensor(x) weights = self._gat_params.get_weights((input_size, output_size)) x = torch.sigmoid(torch.matmul(x, weights)) # (batch_size * self._num_nodes, output_size) biases = self._gat_params.get_biases(output_size, bias_start) x += biases # Reshape res back to 2D: (batch_size, num_node, state_dim) -> (batch_size, num_node * state_dim) return torch.reshape(x, [batch_size, self._num_nodes * output_size]) ```
{ "source": "JinyuanSun/Codes_for_FoldX", "score": 3 }
#### File: Codes_for_FoldX/GUI/GUI.py ```python import os import ssl import urllib import urllib.request from tkinter import * from tkinter import messagebox ssl._create_default_https_context = ssl._create_unverified_context ''' LARGE_FONT= ("Verdana", 12) NORM_FONT = ("Helvetica", 10) SMALL_FONT = ("Helvetica", 8) ''' os.system("mkdir EasyFoldx") sourcePath = "EasyFoldx" os.chdir(sourcePath) def mutation(): inputname = pdb_text.get() chainid = pdb_text.get()[5] pdbname = inputname.split(".")[0] + "_Repair.pdb" mut = mutation_text.get() l = mut[0] + chainid + mut[1:] print(l) o = "command=PositionScan\npdb=" + pdbname + "\npositions=" + l of_name = "MT_" + mut + ".cfg" of = open(of_name, "w+") of = open(of_name, "a+") print(o, file=of) #cmd = "./foldx --config " + of_name #os.system("./foldx -f " + of_name) os.system("nohup ./foldx -f " + of_name+" &") def analyze(): inputname = pdb_text.get() filename = "PS_"+inputname+"_Repair_scanning_output.txt" ''' file = open(filename) l = '' for x in file: l = l +x+"\n" mut_out.insert(END,l) ''' data = [] with open(filename) as f: for line in f: data += line.split() #Create your listbox here. for i in range(len(data)): mut_out.insert(i+1, data[i]) #print("./foldx -f " + of_name) # def PS(): inputname = pdb_text.get() pdbname = inputname.split(".")[0] + "_Repair.pdb" print(pdbname) # pdbname = args.pdbfile nt = int(nt_text.get()) # nt = 20 # pdbname="6QG9_A_Repair.pdb" import os try: file = open("SO_" + pdbname.replace("pdb", "fxout"), "r") except FileNotFoundError: os.system("./foldx --command=SequenceOnly --pdb=" + pdbname) file = open("SO_" + pdbname.replace("pdb", "fxout"), "r") lst = [] for line in file: l = line.replace("\n", "").split("\t") if len(l) > 3: lst.append(l[3] + "a") t = len(lst) // (nt - 1) n = 0 for i in range(0, len(lst), t): b = lst[i:i + t] l = "" for x in b: l = l + x + "," n = n + 1 o = "command=PositionScan\npdb=" + pdbname + "\npositions=" + l of_name = "PS_" + str(n) + ".cfg" of = open(of_name, "w+") of = open(of_name, "a+") print(o[:-1], file=of) os.system("nohup ./foldx -f " + of_name + " &") def populate_list(): print("populate") def getpdb(): if len(pdb_text.get()) < 5: pdbid = pdb_text.get() pdb = pdbid + ".pdb" urllib.request.urlretrieve('https://files.rcsb.org/download/' + pdb, pdb) cwd = os.getcwd() + "/" + pdb messagebox.showinfo("Done", "The pdb file " + pdbid + " has been downloaded to " + cwd) oname = pdbid else: pdbid = pdb_text.get()[0:4] pdb = pdbid + ".pdb" urllib.request.urlretrieve('https://files.rcsb.org/download/' + pdb, pdb) pdbfile = open(pdb) oname = pdb_text.get() + ".pdb" opdb = open(oname, "w+") opdb = open(oname, "a+") chainid = pdb_text.get()[5] for line in pdbfile: if line.startswith("ATOM"): l = line.split() if l[4] == chainid: print(line, end="", file=opdb) cwd = os.getcwd() + "/" + oname messagebox.showinfo("Done", "The pdb file " + oname + " has been downloaded to " + cwd) return oname # os.system("") def repair_pdb(): inputname = pdb_text.get()+".pdb" pdbname = inputname.split(".")[0] + "_Repair.pdb" os.system("./foldx --command=RepairPDB --pdb=" + inputname) cwd = os.getcwd() + "/" + pdbname messagebox.showinfo("Done", "The Repaired pdb file " + pdbname + " has been saved to " + cwd) # create window object app = Tk() # pdb pdb_text = StringVar() pdb_lable = Label(app, text='PDB ID', font=('bold', 14), pady=20) pdb_lable.grid(row=0, column=0, sticky=W) pdb_entry = Entry(app, textvariable=pdb_text) pdb_entry.grid(row=0, column=1) # mutation mutation_text = StringVar() mutation_lable = Label(app, text='Mutation', font=('bold', 14)) mutation_lable.grid(row=2, column=0, sticky=W) mutation_entry = Entry(app, textvariable=mutation_text) mutation_entry.grid(row=2, column=1) # chain inpdb_text = StringVar() inpdb_lable = Label(app, text='Input PDB', font=('bold', 14)) inpdb_lable.grid(row=1, column=0, sticky=W) inpdb_entry = Entry(app, textvariable=pdb_text) inpdb_entry.grid(row=1, column=1) # PS nt_text = StringVar() nt_lable = Label(app, text='Number of Threads', font=('bold', 14)) nt_lable.grid(row=3, column=0, sticky=W) nt_entry = Entry(app, textvariable=nt_text) nt_entry.grid(row=3, column=1) # mutation out mut_out = Listbox(app, height=8, width=50, border=0) mut_out.grid(row=4, column=0, columnspan=3, rowspan=6, pady=20, padx=20) # creat scrollbar scrollbar = Scrollbar(app) scrollbar.grid(row=4, column=3) # Buttons fetch_btn = Button(app, text='Fetch', width=12, command=getpdb) fetch_btn.grid(row=0, column=2, ) repair_btn = Button(app, text='Foldx Repair', width=12, command=repair_pdb) repair_btn.grid(row=1, column=2) Position_Scan_btn = Button(app, text='Foldx Position Scan', width=15, command=PS) Position_Scan_btn.grid(row=3, column=2) mutation_btn = Button(app, text='Foldx Mutation', width=12, command=mutation) mutation_btn.grid(row=2, column=2) analyze_btn = Button(app, text='Show', width=12, command=analyze) analyze_btn.grid(row=5, column=0) def pwd(): print(os.getcwd()) pwd_btn = Button(app, text='pwd', width=12, command=pwd) pwd_btn.grid(row=2, column=3) # set scroll to listbox # mut_out.configure(yscrollcommand=scrollbar.set) # scrollbar.configure(command=mut_out.yview) app.title('Easy FoldX') app.geometry('700x500') # populate populate_list() # start program app.mainloop() ``` #### File: Codes_for_FoldX/GUI/prepare4scan.py ```python import argparse parser = argparse.ArgumentParser(description='prepare for PositionScan in FoldX') parser.add_argument("-i", help="input a fasta file") parser.add_argument("-p", help="the a pdb file corresponding to the fasta file, a repaired pdbfile mostly") args = parser.parse_args() inf = open(args.i) pdbid = args.p def readseq(fasta): seq = '' for line in fasta: line = line.strip('\n') if not line.startswith('>'): seq += line return seq ofile = open('config_scan.cfg', "w") print('command=PositionScan' + '\n' + 'pdb=' + pdbid + '\n' + 'positions=', end='', file=ofile) seq = readseq(inf) for i in range(len(seq)): if i < len(seq) - 1: new_word = seq[i] + 'A' + str(i + 1) + 'a,' print(new_word, end='', file=ofile) else: new_word = seq[i] + 'A' + str(i + 1) + 'a' print(new_word, end='', file=ofile) ``` #### File: test/md/dcd2pdb.py ```python def dcd2pdb(dcd_file, topol_file, out_file, stride=1, noWater=True, superimpose=True): top = mt.load(topol_file) if noWater: indices = top.topology.select("protein") else: indices = top.topology.select("all") traj = mt.load_dcd(dcd_file, top=topol_file, stride=stride, atom_indices=indices) if superimpose: print("INFO: Superimposing to topology ......") CA_indices = top.topology.select("protein and name CA") traj.superpose(top, ref_atom_indices=CA_indices, atom_indices=CA_indices) traj.save_pdb(out_file) return None if __name__ == '__main__': import sys import mdtraj as mt dcd_file, topol_file, out_file = sys.argv[1:] dcd2pdb(dcd_file, topol_file, out_file) ```
{ "source": "JinyuanSun/DDGScan", "score": 2 }
#### File: DDGScan/utils/abacus.py ```python import os import time def run_abacus(pdbfilename): try: os.mkdir("abacus_jobs") os.chdir("abacus_jobs") start_time = time.time() print("[INFO]: ABACUS started at %s" % (time.ctime())) os.system("cp ../%s ./" % (pdbfilename)) print("[INFO]: Running ABACUS_prepare.") os.system("ABACUS_prepare %s" % (pdbfilename)) print("[INFO]: Running ABACUS_S1S2.") os.system("ABACUS_S1S2 %s" % (pdbfilename)) prepare_end = time.time() prepare_time = prepare_end - start_time print("[INFO]: ABACUS prepare took %f seconds." % (prepare_time)) print("[INFO]: Running ABACUS_singleMutationScan.") os.system("ABACUS_singleMutationScan %s abacus_output.txt" % (pdbfilename)) scan_end = time.time() scan_time = scan_end - prepare_end print("[INFO]: ABACUS scan took %f seconds." % (scan_time)) os.chdir("../") return prepare_time, scan_time except FileExistsError: os.chdir("abacus_jobs") if os.path.exists("./abacus_output.txt"): print("[INFO]: ABACUS results found. Skipping.") os.chdir("../") return 0, 0 def runOneJob(varlist): def _1_2_3(x): d = { "C": "CYS", "D": "ASP", "S": "SER", "Q": "GLN", "K": "LYS", "I": "ILE", "P": "PRO", "T": "THR", "F": "PHE", "N": "ASN", "G": "GLY", "H": "HIS", "L": "LEU", "R": "ARG", "W": "TRP", "A": "ALA", "V": "VAL", "E": "GLU", "Y": "TYR", "M": "MET", } return d[x] # me varlist as foldx.runOneJob pdb, wild, chain, aa, resNum = varlist MUT = _1_2_3(aa) output = ( os.popen("singleMutation %s %s %s %s" % (pdb, chain, str(resNum), MUT)) .read() .split() ) # print(output) s1 = float(output[6]) s2 = float(output[8]) pack = float(output[10]) total = s1 + s2 + pack # self.abacus2_results["_".join([wild, str(resNum), aa])] = total # print(all_results) # A 42 GLU->TRP SAI: 0.966 S1: 1.748 S2: 0.212 PACK: -0.009 HB: 0.000 return "_".join([wild, str(resNum), aa]), total def parse_abacus_out(): try: os.mkdir("abacus_results") except FileExistsError: pass longer_names = { "ALA": "A", "ARG": "R", "ASN": "N", "ASP": "D", "CYS": "C", "GLU": "E", "GLN": "Q", "GLY": "G", "HIS": "H", "ILE": "I", "LEU": "L", "LYS": "K", "MET": "M", "PHE": "F", "PRO": "P", "SER": "S", "THR": "T", "TRP": "W", "TYR": "Y", "VAL": "V", } with open("tempfile", "w") as tem: with open("abacus_jobs/abacus_output.txt") as abacusfile: for line in abacusfile: if line.startswith("site"): wildAA = line.strip().split()[4] wildAAnum = line.strip().split()[1] else: tem.write(wildAA + " " + wildAAnum + " " + line) with open("abacus_results/All_ABACUS.score", "w+") as complete: complete.write( "#Score file formatted by GRAPE from ABACUS.\n#mutation\tscore\tstd\n" ) with open("tempfile") as abacusfile: for line in abacusfile: wildAA1 = line.strip().split()[0] if wildAA1 in longer_names: wildAAabr = longer_names[wildAA1] wildAAnum1 = line.strip().split()[1] mutAA = line.strip().split()[2] if mutAA in longer_names: mutAAabr = longer_names[mutAA] sef_energy = line.strip().split()[11] complete.write( wildAAabr + "_" + wildAAnum1 + "_" + mutAAabr + "\t" + sef_energy + "\t" + str(0) + "\n" ) tem.close() complete.close() os.remove("tempfile") if __name__ == "__main__": print("Running") parse_abacus_out() ``` #### File: DDGScan/utils/autofix.py ```python import os from openmm import app from pdbfixer import PDBFixer ################################################################################ # ref:https://python.hotexamples.com/site/file?hash=0xc5901342b2c339b10661d6508\ # 4166c386ffc205460660dd91e9b1ce00555c106&fullName=openmmtools/data/prepare_pdb\ # .py&project=choderalab/openmmtools ################################################################################ def write_file(filename, contents): outfile = open(filename, 'w') outfile.write(contents) outfile.close() ################################################################################ # SET UP SYSTEM ################################################################################ def autofix(pdb, chain_ids_to_keep, risky=False): os.system("cp %s %s.raw" % (pdb, pdb)) fixer = PDBFixer(filename=pdb) fixer_1 = PDBFixer(filename=pdb) fixer_2 = PDBFixer(filename=pdb) # Build a list of chains to remove. print('Removing all chains but %s' % chain_ids_to_keep) # all_chains = list(fixer.topology.chains()) chain_id_list = [c.id for c in fixer.topology.chains()] chain_ids_to_remove = set(chain_id_list) - set(chain_ids_to_keep) fixer.removeChains(chainIds=chain_ids_to_remove) fixer_1.removeChains(chainIds=chain_ids_to_remove) fixer_2.removeChains(chainIds=chain_ids_to_remove) if risky: # Replace nonstandard residues. print('Replacing nonstandard residues...') print("It is risky to replace ncAA using pdbfixer!") # logging.WARNING("It is risky to replace ncAA using pdbfixer!") fixer.findNonstandardResidues() fixer.replaceNonstandardResidues() # Add missing atoms. print('Adding backbone missing atoms only!') fixer.findMissingResidues() # modeller = app.Modeller(self.topology, self.positions) # modeller.delete(toDelete) fixer.findMissingAtoms() print(f"MISSING ATOMS 000: {fixer.missingAtoms}") missing_atoms = fixer.missingAtoms # print(missing_atoms) need_atoms = {} for residue, atoms in missing_atoms.items(): for atom in atoms: if atom.name in ["C", "N", "CA", "O"]: # keep mainchain residues only need_atoms[residue] = [atom] fixer_1.missingAtoms = need_atoms print(f"MISSING ATOMS 111: {fixer_1.missingAtoms}") print(f"MISSING terminals: =======\n {fixer.missingTerminals} ======\n") fixer_1.missingTerminals = fixer.missingTerminals fixer_1.missingResidues = need_atoms.keys() fixer_1.addMissingAtoms() # Remove heterogens. print('Removing heterogens...') fixer_1.removeHeterogens(keepWater=False) # Write PDB file. output_filename = pdb.replace(".pdb", "_fixed.pdb") print('Writing PDB file to "%s"...' % output_filename) app.PDBFile.writeFile(fixer_2.topology, fixer_2.positions, open(output_filename, 'w')) return output_filename if __name__ == '__main__': pdb = '../test_bak/1NWW.pdb' # PDB ID to retrieve chain_ids_to_keep = ['A'] # chains to keep autofix(pdb, chain_ids_to_keep) ``` #### File: DDGScan/utils/grape_phaseI.py ```python import distutils.dir_util import glob import json import logging import os import time import pandas as pd from joblib import Parallel, delayed import utils.foldx as foldx import utils.io as io import utils.rosetta as rosetta from utils import abacus # from utils import autofix from utils import judge from utils.common import * logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s %(message)s') class GRAPE: def __init__(self): self.repaired_pdbfile: str self.relaxed_prot: str self.running_time = { "foldx_repair": 0.0, "foldx_scan": 0.0, "rosetta_relax": 0.0, "rosetta_scan": 0.0, "abacus_prepare": 0.0, "abacus_scan": 0.0, "abacus2": 0.0, "MD simulations": 0.0, } self.abacus2_results = {} # self.repaired_pdbfile: str pass def run_foldx(self, pdb, threads, chain, numOfRuns): print("[INFO]: FoldX started at %s" % (time.ctime())) prot_foldx = foldx.FoldX(pdb, "", threads) repair_start = time.time() self.repaired_pdbfile = prot_foldx.repairPDB() repair_end = time.time() repair_time = repair_end - repair_start self.running_time["foldx_repair"] = repair_time print("[INFO]: FoldX Repair took %f seconds." % (repair_time)) prot = io.Protein(self.repaired_pdbfile, chain) seq, resNumList = io.Protein.pdb2seq(prot) distutils.dir_util.mkpath(FOLDX_JOBS_DIR) all_results = [] job_list = [] for i, res in enumerate(seq): resNum = resNumList[i] wild = res for j, aa in enumerate("QWERTYIPASDFGHKLCVNM"): if aa != wild: jobID = FOLDX_JOBS_DIR + "_".join([wild, str(resNum), aa]) job_list.append( [ self.repaired_pdbfile, wild, chain, aa, resNum, jobID, numOfRuns, ] ) # print("[INFO]: FoldX started at %s" %(time.ctime())) scan_start = time.time() Parallel(n_jobs=threads)(delayed(prot_foldx.runOneJob)(var) for var in job_list) scan_end = time.time() scan_time = scan_end - scan_start self.running_time["foldx_scan"] = scan_time print("[INFO]: FoldX Scan took %f seconds." % (scan_time)) return all_results def run_rosetta(self, pdb, threads, chain, relax_num, exe, rosettadb): print("Rosetta started at %s" % (time.ctime())) # relax_num = 200 prot_rosetta = rosetta.Rosetta(pdb, relax_num, threads, exe, rosettadb) relax_start = time.time() relaxed_prot = prot_rosetta.relax() relax_end = time.time() relax_time = relax_end - relax_start self.running_time["rosetta_relax"] = relax_time print("[INFO]: Rosetta Relax took %f seconds." % (relax_time)) prot = io.Protein(pdb, chain) seq, resNumList = io.Protein.pdb2seq(prot) distutils.dir_util.mkpath(ROSETTA_JOBS_DIR) # all_results = [] job_list = [] for i, res in enumerate(seq): resNum = resNumList[i] wild = res for j, aa in enumerate("QWERTYIPASDFGHKLCVNM"): if aa != wild: jobID = ROSETTA_JOBS_DIR + "_".join([wild, str(resNum), aa]) job_list.append([wild, aa, str(i + 1), jobID]) scan_start = time.time() Parallel(n_jobs=threads)( delayed(prot_rosetta.runOneJob)(var) for var in job_list ) scan_end = time.time() scan_time = scan_end - scan_start self.running_time["rosetta_scan"] = scan_time print("[INFO]: Rosetta cartesian_ddg Scan took %f seconds." % (scan_time)) return prot_rosetta def run_abacus2(self, pdb, threads, chain): print("[INFO]: ABACUS2 started at %s" % (time.ctime())) distutils.dir_util.mkpath(ABACUS2_JOBS_DIR) distutils.dir_util.mkpath(ABACUS2_RESULTS_DIR) prot = io.Protein(pdb, chain) seq, resNumList = io.Protein.pdb2seq(prot) # all_results = {} job_list = [] for i, res in enumerate(seq): resNum = resNumList[i] wild = res for j, aa in enumerate("QWERTYIPASDFGHKLCVNM"): if aa != wild: # mutationName = "_".join([wild, str(resNum), aa]) # all_results[mutationName] = 0 job_list.append( [ pdb, wild, chain, aa, resNum ] ) # print("[INFO]: FoldX started at %s" %(time.ctime())) scan_start = time.time() abacus2_results = Parallel(n_jobs=threads)(delayed(abacus.runOneJob)(var) for var in job_list) # mutations, scores = zip(*result) scan_end = time.time() scan_time = scan_end - scan_start self.running_time["abacus2"] = scan_time print("[INFO]: ABACUS2 Scan took %f seconds." % (scan_time)) # print(self.abacus2_results) # ABACUS2_RESULTS_DIR + ABACUS2_SCORE_FILE with open(ABACUS2_RESULTS_DIR + ABACUS2_SCORE_FILE, "w+") as complete: complete.write( "#Score file formatted by GRAPE from ABACUS2.\n#mutation\tscore\tstd\n" ) for pair in abacus2_results: complete.write("\t".join([pair[0], str(round(pair[1], 4)), "0"]) + "\n") complete.close() return self.abacus2_results def Analysis_foldx(self, pdb, chain, foldx1): self.repaired_pdbfile = pdb.replace(".pdb", "_Repair.pdb") distutils.dir_util.mkpath(FOLDX_RESULTS_DIR) prot = io.Protein(pdb, chain) seq, resNumList = io.Protein.pdb2seq(prot) all_results = [] for i, res in enumerate(seq): resNum = resNumList[i] wild = res for j, aa in enumerate("QWERTYIPASDFGHKLCVNM"): # jobID = "foldx_jobs/" + str(i) + "_" + str(j) + "/" if aa != wild: jobID = FOLDX_JOBS_DIR + "_".join([wild, str(resNum), aa]) all_results.append( foldx1.calScore(wild, resNum, aa, self.repaired_pdbfile, jobID) ) with open(FOLDX_RESULTS_DIR + FOLDX_SCORE_FILE, "w+") as foldxout: foldxout.write( "#Score file formatted by GRAPE from FoldX.\n#mutation\tscore\tstd\n" ) for line in all_results: foldxout.write("\t".join([line[0], str(line[1]), str(line[2])]) + "\n") foldxout.close() return all_results def Analysis_rosetta(self, pdb, chain, prot_rosetta): distutils.dir_util.mkpath(ROSETTA_RESULTS_DIR) prot = io.Protein(pdb, chain) seq, resNumList = io.Protein.pdb2seq(prot) all_results = [] for i, res in enumerate(seq): resNum = resNumList[i] wild = res for j, aa in enumerate("QWERTYIPASDFGHKLCVNM"): if aa != wild: # jobID = "foldx_jobs/" + str(i) + "_" + str(j) + "/" # "_".join([wild, str(resNum), mutation]) rosettaddgfile = ( ROSETTA_JOBS_DIR + "_".join([wild, str(resNum), aa]) + "/mtfile.ddg" ) all_results.append( ["_".join([wild, str(resNum), aa])] + prot_rosetta.read_rosetta_ddgout(rosettaddgfile) ) with open(ROSETTA_RESULTS_DIR + ROSETTA_SCORE_FILE, "w+") as rosettaout: rosettaout.write( "#Score file formatted by GRAPE from Rosetta.\n#mutation\tscore\tstd\n" ) for line in all_results: rosettaout.write( "\t".join([line[0], str(line[1]), str(line[2])]) + "\n" ) rosettaout.close() return all_results def analysisGrapeScore(self, scoreFile, cutoff, result_dir): result_dict = {"mutation": [], "energy": [], "SD": [], "position": []} with open(scoreFile, "r") as scorefile: for line in scorefile: if line[0] != "#": lst = line.strip().split("\t") result_dict["mutation"].append(lst[0].replace("_", "")) result_dict["energy"].append(float(lst[1])) result_dict["SD"].append(float(lst[2])) result_dict["position"].append(int(lst[0].split("_")[1])) scorefile.close() # print(result_dict) CompleteList_df = pd.DataFrame(result_dict) CompleteList_SortedByEnergy_df = CompleteList_df.sort_values( "energy" ).reset_index(drop=True) def BetsPerPosition(df): position_list = [] length = df.shape[0] for i in range(length): if df["position"][i] in position_list: df = df.drop(index=i) else: position_list.append(df["position"][i]) return df.reset_index(drop=True) def BelowCutOff(df, cutoff): # position_list = [] length = df.shape[0] for i in range(length): if float(df["energy"][i]) > float(cutoff): df = df.drop(index=i) else: continue return df.reset_index(drop=True) BestPerPosition_SortedByEnergy_df = BetsPerPosition( CompleteList_SortedByEnergy_df ) BestPerPosition_df = BetsPerPosition(CompleteList_SortedByEnergy_df) BelowCutOff_df = BelowCutOff(CompleteList_df, cutoff) BelowCutOff_SortedByEnergy_df = BelowCutOff( CompleteList_SortedByEnergy_df, cutoff ) BestPerPositionBelowCutOff_SortedByEnergy_df = BelowCutOff( BestPerPosition_SortedByEnergy_df, cutoff ) BestPerPositionBelowCutOff_df = BelowCutOff(BestPerPosition_df, cutoff) def out_tab_file(df, name, result_dir): filename = result_dir + "/MutationsEnergies_" + name[:-3] + ".tab" with open(filename, "w+") as of: of.write( df.to_csv( columns=["mutation", "energy", "SD"], sep="\t", index=False ) ) of.close() out_tab_file(CompleteList_df, "CompleteList_df", result_dir) out_tab_file( CompleteList_SortedByEnergy_df, "CompleteList_SortedByEnergy_df", result_dir ) out_tab_file( BestPerPosition_SortedByEnergy_df, "BestPerPosition_SortedByEnergy_df", result_dir, ) out_tab_file(BestPerPosition_df, "BestPerPosition_df", result_dir) out_tab_file(BelowCutOff_df, "BelowCutOff_df", result_dir) out_tab_file( BelowCutOff_SortedByEnergy_df, "BelowCutOff_SortedByEnergy_df", result_dir ) out_tab_file( BestPerPositionBelowCutOff_SortedByEnergy_df, "BestPerPositionBelowCutOff_SortedByEnergy_df", result_dir, ) out_tab_file( BestPerPositionBelowCutOff_df, "BestPerPositionBelowCutOff_df", result_dir ) def readfasta(fastafile): seq = "" with open(fastafile) as fasta: for line in fasta: if line.startswith(">"): continue else: seq += line.strip() fasta.close() def checkseq(seq): for aa in seq: if aa in "QWERTYIPASDFGHKLCVNM": continue else: logging.error("Non-canonical amino acids found in sequence!") exit() checkseq(seq) return seq def selectpdb4md(pdb, softlist, MD): distutils.dir_util.mkpath("selectpdb/") selected_dict = {"mutation": [], "score": [], "sd": [], "soft": []} for soft in softlist: with open("%s_results/MutationsEnergies_BelowCutOff.tab" % (soft)) as scorefile: for line in scorefile: linelist = line.strip().split() if linelist[0] != "mutation": selected_dict["mutation"].append(linelist[0]) selected_dict["score"].append(linelist[1]) selected_dict["sd"].append(linelist[2]) selected_dict["soft"].append(soft) scorefile.close() selected_df = pd.DataFrame(selected_dict) selected_df.to_csv("Selected_Mutation.csv") if MD: for mutation in set(selected_dict["mutation"]): mutation = "_".join([mutation[0], mutation[1:-1], mutation[-1]]) mut_pdb = pdb.replace(".pdb", "_Repair_1_0.pdb") # WORKING_DIR = os.getcwd() # print(WORKING_DIR) # print("%s/selectpdb"%WORKING_DIR) os.system( f"cp {FOLDX_JOBS_DIR}/%s/%s selectpdb/%s.pdb" % (mutation, mut_pdb, mutation) ) # os.chdir("%s/selectpdb"%WORKING_DIR) return selected_dict else: logging.info("Switching to FoldX sampled structures!") for mutation in set(selected_dict["mutation"]): mutation = "_".join([mutation[0], mutation[1:-1], mutation[-1]]) mut_pdb = os.path.join(FOLDX_JOBS_DIR, mutation, pdb.replace(".pdb", "_Repair_1_*.pdb")) ref_mut_pdb = pdb.replace(".pdb", "_Repair_1_0.pdb") os.system( f"cp {FOLDX_JOBS_DIR}/%s/%s selectpdb/%s.pdb" % (mutation, ref_mut_pdb, mutation) ) for index, foldx_pdb_file_name in enumerate(glob.glob(mut_pdb)): logging.info(f"Copyying file {foldx_pdb_file_name}!") os.system(f"cp {foldx_pdb_file_name} selectpdb/{mutation}_sample_{index}.pdb") def runMD(platform, selected_dict, md_threads=None): from utils import mdrelax os.chdir("selectpdb") def one_md(mutation): # repeat 5 100ps mds mutation = "_".join([mutation[0], mutation[1:-1], mutation[-1]]) mutant = mutation + ".pdb" for i in range(5): mdrelax.main(mutant, mutation + f"_sample_{i}.pdb", platform) os.system(f"rm {mutation}__tip3p.dcd") if platform == "CUDA": for mutation in set(selected_dict["mutation"]): one_md(mutation) if platform == "CPU": Parallel(n_jobs=md_threads)(delayed(one_md)(mutation) for mutation in set(selected_dict["mutation"])) os.system("rm *dcd") os.chdir("../") def main1(args): pdb = args.pdb chain = args.chain threads = int(args.threads) numOfRuns = str(args.numofruns) relax_num = args.relax_number foldx_cutoff = -float(args.foldx_cutoff) rosetta_cutoff = -float(args.rosetta_cutoff) abacus_cutoff = -float(args.abacus_cutoff) abacus2_cutoff = -float(args.abacus2_cutoff) softlist = args.engine preset = args.preset md = args.molecular_dynamics platform = args.platform fillloop = args.fill_break_in_pdb seqfile = args.sequence logging.info("Started at %s" % (time.ctime())) def checkpdb(pdb, chain, seqfile=None): """ only breaks in middle of the chain will be fixed, C- and N- terminal missing will be ignored! """ if not bool(seqfile): logging.warning("No sequence provided!") if fillloop: # if no missing loop found, don't do anything if judge.main(pdb, chain, None): from utils import modeller_loop _seq = modeller_loop.main(pdb, chain) # exit() else: # print("No sequence provided!") seq = readfasta(seqfile) if judge.main(pdb, chain, seq): # break found if fillloop: from utils import modeller_loop _seq = modeller_loop.main(pdb, chain, seq) logging.warning(f"The patched sequence is {_seq}, we modelling the missing part according it!") # exit() else: # print("PDB check Failed!") logging.warning("Gaps found in your pdb file. PDB check failed. However, the job will continue.") # exit() else: logging.warning("PDB check passed!") return pdb if args.mode == "test": checkpdb(pdb, chain, seqfile) exit() exe_dict = {"foldx": "", "relax": "", "cartddg": "", "pmut": "", "abacus": "", "abacus2": ""} foldx_exe = os.popen("which foldx").read().replace("\n", "") exe_dict["foldx"] = foldx_exe pmut_scan_parallel_exe = ( os.popen("which pmut_scan_parallel.mpi.linuxgccrelease") .read() .replace("\n", "") ) # rosettadb = "/".join(pmut_scan_parallel_exe.split("/")[:-3]) + "/database/" exe_dict["pmut"] = pmut_scan_parallel_exe for release in ["", ".static", ".mpi", ".default"]: cartesian_ddg_exe = ( os.popen("which cartesian_ddg%s.linuxgccrelease" % (release)) .read() .replace("\n", "") ) if cartesian_ddg_exe != "": exe_dict["cartddg"] = cartesian_ddg_exe break relax_exe = os.popen("which relax.mpi.linuxgccrelease").read().replace("\n", "") rosettadb = os.popen("echo $ROSETTADB").read().replace("\n", "") if not rosettadb: rosettadb = "/".join(relax_exe.split("/")[:-4]) + "/database/" exe_dict["relax"] = relax_exe abacus_prep = os.popen("which ABACUS_prepare").read().replace("\n", "") exe_dict["abacus"] = abacus_prep singleMutation = os.popen("which singleMutation").read().replace("\n", "") exe_dict["abacus2"] = singleMutation for soft in softlist: if soft == "rosetta": if exe_dict["relax"] == "": logging.error("Cannot find Rosetta: relax.mpi.linuxgccrelease!") exit() if preset == "slow": if exe_dict["cartddg"] == "": logging.error( "Cannot find Rosetta: any cartesian_ddg.linuxgccrelease (mpi nor default nor static)!") exit() if preset == "fast": if exe_dict["pmut"] == "": logging.error("Cannot find Rosetta: pmut_scan_parallel.mpi.linuxgccrelease!") exit() else: if exe_dict[soft] == "": logging.error("Cannot find %s!" % (soft)) exit() mode = args.mode grape = GRAPE() foldx1 = foldx.FoldX(pdb, foldx_exe, threads) rosetta1 = rosetta.Rosetta(pdb, relax_num, threads, cartesian_ddg_exe, rosettadb) if mode == "rerun": os.system("rm -rf *_jobs") os.system("rm -rf *_results") os.system("rm -rf *_relax") os.system("rm -rf selectpdb") mode = "run" if mode == "run": pdb = checkpdb(pdb, chain, seqfile) # FoldX if "foldx" in softlist: grape.run_foldx(pdb, threads, chain, numOfRuns) grape.Analysis_foldx(pdb, chain, foldx1) grape.analysisGrapeScore( FOLDX_RESULTS_DIR + FOLDX_SCORE_FILE, foldx_cutoff, FOLDX_RESULTS_DIR ) if preset == "slow": if "rosetta" in softlist: prot_rosetta = grape.run_rosetta(pdb, threads, chain, relax_num, cartesian_ddg_exe, rosettadb) grape.Analysis_rosetta(pdb, chain, prot_rosetta) grape.analysisGrapeScore( ROSETTA_RESULTS_DIR + ROSETTA_SCORE_FILE, rosetta_cutoff, ROSETTA_RESULTS_DIR, ) if preset == "fast": if "rosetta" in softlist: relaxed_pdb = rosetta1.relax() distutils.dir_util.mkpath(ROSETTA_JOBS_DIR) os.chdir(ROSETTA_JOBS_DIR) os.system("cp ../%s/%s ./" % (ROSETTA_RELAX_DIR, relaxed_pdb)) pmut_time = rosetta1.pmut_scan(relaxed_pdb) grape.running_time["rosetta_scan"] = pmut_time logging.warning("Rosetta pmut_scan_parallel took %f seconds." % (pmut_time)) os.chdir("..") distutils.dir_util.mkpath(ROSETTA_RESULTS_DIR) os.chdir(ROSETTA_RESULTS_DIR) rosetta1.pmut_scan_analysis(f"../{ROSETTA_JOBS_DIR}pmut.out") os.chdir("..") grape.analysisGrapeScore( ROSETTA_RESULTS_DIR + ROSETTA_SCORE_FILE, rosetta_cutoff, ROSETTA_RESULTS_DIR, ) # prot_rosetta = grape.run_rosetta(pdb, threads, chain, relax_num) # grape.Analysis_rosetta(pdb, chain, prot_rosetta) # grape.analysisGrapeScore('rosetta_results/All_rosetta.score', rosetta_cutoff, "rosetta_results/") if "abacus" in softlist: abacus_prepare_time, abacus_scan_time = abacus.run_abacus(pdb) grape.running_time["abacus_prepare"] = abacus_prepare_time grape.running_time["abacus_scan"] = abacus_scan_time abacus.parse_abacus_out() grape.analysisGrapeScore( ABACUS_RESULTS_DIR + ABACUS_SCORE_FILE, abacus_cutoff, ABACUS_RESULTS_DIR ) if "abacus2" in softlist: grape.run_abacus2(pdb, threads, chain) grape.analysisGrapeScore( ABACUS2_RESULTS_DIR + ABACUS2_SCORE_FILE, abacus2_cutoff, ABACUS2_RESULTS_DIR ) if mode == "analysis": # FoldX if "foldx" in softlist: # pdb = pdb.replace(".pdb", "_Repair.pdb") grape.Analysis_foldx(pdb, chain, foldx1) grape.analysisGrapeScore( FOLDX_RESULTS_DIR + FOLDX_SCORE_FILE, foldx_cutoff, FOLDX_RESULTS_DIR ) if preset == "slow": if "rosetta" in softlist: prot_rosetta = rosetta.Rosetta(pdb, relax_num, threads, cartesian_ddg_exe, rosettadb) grape.Analysis_rosetta(pdb, chain, prot_rosetta) grape.analysisGrapeScore( ROSETTA_RESULTS_DIR + ROSETTA_SCORE_FILE, rosetta_cutoff, ROSETTA_RESULTS_DIR, ) if preset == "fast": if "rosetta" in softlist: distutils.dir_util.mkpath(ROSETTA_JOBS_DIR) os.chdir(ROSETTA_JOBS_DIR) rosetta1.pmut_scan_analysis(f"../{ROSETTA_JOBS_DIR}pmut.out") os.chdir("..") grape.analysisGrapeScore( ROSETTA_RESULTS_DIR + ROSETTA_SCORE_FILE, rosetta_cutoff, ROSETTA_RESULTS_DIR, ) if "abacus" in softlist: # abacus.run_abacus(pdb) abacus.parse_abacus_out() grape.analysisGrapeScore( ABACUS_RESULTS_DIR + ABACUS_SCORE_FILE, abacus_cutoff, ABACUS_RESULTS_DIR ) if "abacus2" in softlist: grape.analysisGrapeScore( ABACUS2_RESULTS_DIR + ABACUS2_SCORE_FILE, abacus2_cutoff, ABACUS2_RESULTS_DIR ) logging.info(f"Finished calculation in {mode} mode of grape-fast in {time.ctime()}.\n") # if md: selected_dict = selectpdb4md(pdb, softlist, md) md_start = time.time() if platform == "CUDA": runMD(platform, selected_dict) if platform == 'CPU': md_job_num = int(threads) // 2 runMD(platform, selected_dict, md_job_num) md_end = time.time() grape.running_time["MD simulations"] = md_end - md_start logging.info("All MDs took %f seconds." % (md_end - md_start)) else: selectpdb4md(pdb, softlist, md) logging.warning("No MDs!") json_running_time = json.dumps(grape.running_time, indent=4) with open("timing.json", "w+") as timing: timing.write(json_running_time) timing.close() if __name__ == "__main__": args = io.Parser().get_args() main1(args) logging.info("Ended at %s" % (time.ctime())) ``` #### File: DDGScan/utils/mdrelax.py ```python from __future__ import print_function import os os.environ["OPENMM_CPU_THREADS"] = "2" from openmm import app import openmm as mm from openmm import unit from pdbfixer import PDBFixer from openmm.app import PDBFile import mdtraj as mt from sys import stdout def fix(pdbfile): fixed = pdbfile.replace(".pdb", "_fixed.pdb") fixer = PDBFixer(pdbfile) numChains = len(list(fixer.topology.chains())) fixer.removeChains(range(1, numChains)) fixer.findMissingResidues() # only add missing residues in the middle of the chain, do not add terminal ones chains = list(fixer.topology.chains()) keys = fixer.missingResidues.keys() missingResidues = dict() for key in keys: chain = chains[key[0]] if not (key[1] == 0 or key[1] == len(list(chain.residues()))): missingResidues[key] = fixer.missingResidues[key] fixer.missingResidues = missingResidues fixer.findMissingAtoms() fixer.addMissingAtoms() PDBFile.writeFile( fixer.topology, fixer.positions, open(pdbfile.replace(".pdb", "_fixed.pdb"), "w"), ) return fixed def produciton(pdbfilename, platform="CUDA"): # load in input PDB file and force field XML files pdb = app.PDBFile(pdbfilename) forcefield = app.ForceField("amber99sbildn.xml", "tip3p.xml") # use app.Modeller to add hydrogens and solvent modeller = app.Modeller(pdb.topology, pdb.positions) modeller.addHydrogens(forcefield) modeller.addSolvent(forcefield, model="tip3p", padding=1.0 * unit.nanometers) topname = pdbfilename.replace("fixed", "modeller_tip3p") app.PDBFile.writeFile(modeller.topology, modeller.positions, open(topname, "w")) # prepare system and integrator system = forcefield.createSystem( modeller.topology, nonbondedMethod=app.PME, nonbondedCutoff=1.0 * unit.nanometers, constraints=app.HBonds, rigidWater=True, ewaldErrorTolerance=0.0005, ) integrator = mm.LangevinIntegrator( 300 * unit.kelvin, 1.0 / unit.picoseconds, 2.0 * unit.femtoseconds ) integrator.setConstraintTolerance(0.00001) # prepare simulation if platform == "CUDA": platform = mm.Platform.getPlatformByName(platform) properties = {"CudaPrecision": "mixed"} simulation = app.Simulation( modeller.topology, system, integrator, platform, properties ) else: platform = mm.Platform.getPlatformByName("CPU") simulation = app.Simulation(modeller.topology, system, integrator, platform) simulation.context.setPositions(modeller.positions) # minimize print("Minimizing...") simulation.minimizeEnergy() # equilibrate for 100 steps simulation.context.setVelocitiesToTemperature(300 * unit.kelvin) print("Equilibrating...") simulation.step(100) # append reporters dcdname = pdbfilename.replace("fixed.pdb", "_tip3p.dcd") simulation.reporters.append(app.DCDReporter(dcdname, 1000)) simulation.reporters.append( app.StateDataReporter( stdout, 1000, step=True, potentialEnergy=True, temperature=True, progress=True, remainingTime=True, speed=True, totalSteps=50000, separator="\t", ) ) # run 100 ps of production simulation print("Running Production...") simulation.step(50000) print("Done!") return topname, dcdname def dcd2pdb(dcd_file, topol_file, out_file, stride=100, noWater=True, superimpose=True): top = mt.load(topol_file) if noWater: indices = top.topology.select("protein") else: indices = top.topology.select("all") traj = mt.load_dcd(dcd_file, top=topol_file, stride=stride, atom_indices=indices) if superimpose: print("INFO: Superimposing to topology ......") CA_indices = top.topology.select("protein and name CA") traj.superpose(top, ref_atom_indices=CA_indices, atom_indices=CA_indices) no_hydrogen_indices = traj.topology.select("protein and symbol != H") no_hydrogen = traj.atom_slice(no_hydrogen_indices) no_hydrogen.save_pdb(out_file) return None def main(pdbfile, out_file, platform): fixed = fix(pdbfile) topname, dcdname = produciton(fixed, platform) dcd2pdb(dcdname, topname, out_file) if __name__ == "__main__": import sys pdbfile, out_file, platform = sys.argv[1:] main(pdbfile, out_file, platform) ``` #### File: DDGScan/utils/rosetta.py ```python import distutils.dir_util import os import time import numpy as np import utils.common as common # from .common import * class Rosetta: def __init__( self, pdbName, relax_num, numThreads, exe, rosettadb, ): self.exe = exe self.pdbname = pdbName self.relax_num = relax_num self.threads = numThreads # self.relaxedpdb = pdbName #for test self.rosettadb = rosettadb self.relaxedpdb: str # for test # self.cutoff = cutOff self.result = [] def relax(self): distutils.dir_util.mkpath(common.ROSETTA_RELAX_DIR) os.system("cp " + self.pdbname + " " + common.ROSETTA_RELAX_DIR) os.chdir(common.ROSETTA_RELAX_DIR) # try: # os.mkdir("rosetta_relax") # os.system("cp " + self.pdbname + " rosetta_relax/") # os.chdir("rosetta_relax") # except FileExistsError: # os.system("cp " + self.pdbname + " rosetta_relax/") # os.chdir("rosetta_relax") # pass with open("cart2.script", "w+") as cart2: cart2.write("switch:cartesian\n") cart2.write("repeat 2\n") cart2.write("ramp_repack_min 0.02 0.01 1.0 50\n") cart2.write("ramp_repack_min 0.250 0.01 0.5 50\n") cart2.write("ramp_repack_min 0.550 0.01 0.0 100\n") cart2.write("ramp_repack_min 1 0.00001 0.0 200\n") cart2.write("accept_to_best\n") cart2.write("endrepeat") cart2.close() relax_threads = min([int(self.threads), int(self.relax_num)]) relax_cmd = "".join( [ "mpirun --allow-run-as-root -n " + str(relax_threads) + " relax.mpi.linuxgccrelease -s " + self.pdbname + " -use_input_sc", " -constrain_relax_to_start_coords -ignore_unrecognized_res", " -nstruct " + str(self.relax_num), " -relax:coord_constrain_sidechains", " -relax:cartesian -score:weights ref2015_cart ", " -relax:min_type lbfgs_armijo_nonmonotone", " -relax:script cart2.script 1>/dev/null && sort -nk2 score.sc |head -n 1|awk '{print$22}'", ] ) print("==" * 20) print(" Relaxing your Protein: ") # os.system(relax_cmd) relaxed_pdb_name = os.popen(relax_cmd).read() print(" Finished relax! ") print("==" * 20) relaxed_pdb_name = os.popen( "sort -nk2 score.sc |head -n 1|awk '{print$22}'" ).read() self.relaxedpdb = relaxed_pdb_name.replace("\n", "") + ".pdb" os.chdir("../") return relaxed_pdb_name.replace("\n", "") + ".pdb" def read_rosetta_ddgout(self, rosettaddgfilename): ddg_dict = {} ddg_array = [] with open(rosettaddgfilename) as rosettaddg: for line in rosettaddg: # print(line.split(":")[2]) if line.split(":")[2].strip() == "WT": dg_ref = float(line.split(":")[3][1:10]) else: ddg = float(line.split(":")[3][1:10]) - dg_ref ddg_array.append(ddg) rosettaddg.close() return [ round(np.array(ddg_array).mean(), 4), round(np.array(ddg_array).std(), 4), ] def runOneJob(self, varlist: list): wild, mutation, resNum, jobID = varlist distutils.dir_util.mkpath(jobID) os.chdir(jobID) # try: # os.mkdir(jobID) # os.chdir(jobID) # except FileExistsError: # os.chdir(jobID) # os.popen('cp ../../rosetta_relax/' + self.relaxedpdb + ' ./') os.system("cp ../../" + common.ROSETTA_RELAX_DIR + self.relaxedpdb + " ./") with open("mtfile", "w+") as mtfile: mtfile.write("total 1\n") mtfile.write("1\n") mtfile.write(wild + " " + str(resNum) + " " + mutation + "\n") mtfile.close() argument_list = [ self.exe, "-database", self.rosettadb, "-use_input_sc", "-s", self.relaxedpdb, "-ddg:mut_file", "mtfile", "-ddg:iterations", "3", "-ddg::cartesian", "-ddg::dump_pdbs", "true", "-ddg:bbnbrs", "1", "-score:weights", "ref2015_cart", "-relax:cartesian", "-relax:min_type", "lbfgs_armijo_nonmonotone", "-flip_HNQ", "-crystal_refine", "-fa_max_dis", "9.0", "1>/dev/null", ] cartddg_cmd = " ".join(argument_list) starttime = time.time() os.system(cartddg_cmd) finishtime = time.time() print( "[DEBUG]: Rosetta mutation %s_%s_%s took %f seconds." % (wild, resNum, mutation, finishtime - starttime) ) # print(cartddg_cmd) os.chdir("../../") # return pid, '_'.join([wild, str(trueResNum), mutation]) def pmut_scan(self, relaxed_pdb): if os.path.isfile("pmut.out"): pass else: pmut_scan_exe = ( os.popen("which pmut_scan_parallel.mpi.linuxgccrelease") .read() .replace("\n", "") ) rosettadb = "/".join(pmut_scan_exe.split("/")[:-3]) + "/database/" arg_list = [ "mpirun", "-np", str(self.threads), pmut_scan_exe, "-database", rosettadb, "-s", relaxed_pdb, "-ex1", "-ex2", "-extrachi_cutoff 1", "-use_input_sc", "-ignore_unrecognized_res", "-no_his_his_pairE", "-multi_cool_annealer", "10", "-mute", "basic", "core" ">", "pmut.out && ls pmut.out", ] print("[INFO]: Running pmut_scan_parallel") pmut_start = time.time() print(" ") os.system(" ".join(arg_list)) pmut_end = time.time() pmut_time = pmut_end - pmut_start return pmut_time def pmut_scan_analysis(self, pmutoutfile): with open(pmutoutfile) as pmut_out: i = -1 start_line = 0 for line in pmut_out: i += 1 line = line.replace("\x1b[0m", "") if line.endswith( "mutation mutation_PDB_numbering average_ddG average_total_energy\n" ): start_line = 1 if "protocol took" in line: start_line = 0 if start_line == 1: mutinfo = line.replace("\n", "").split(")")[1].split() if mutinfo[2] == "average_ddG": with open(common.ROSETTA_SCORE_FILE, "w") as scorefile: scorefile.write( "#Score file formatted by GRAPE from Rosetta.\n#mutation\tscore\tstd\n" ) scorefile.close() else: with open(common.ROSETTA_SCORE_FILE, "a+") as scorefile: mut = mutinfo[0].split("-")[1] scorefile.write( "_".join([mut[0], mut[1:-1], mut[-1]]) + "\t" + mutinfo[2] + "\t" + "0\n" ) scorefile.close() pmut_out.close() class rosetta_binder: def __init__(self): pass @staticmethod def relax(pdbname, threads, relax_num): distutils.dir_util.mkpath(common.ROSETTA_RELAX_DIR) os.system("cp " + pdbname + " " + common.ROSETTA_RELAX_DIR) os.chdir(common.ROSETTA_RELAX_DIR) with open("cart2.script", "w+") as cart2: cart2.write("switch:cartesian\n") cart2.write("repeat 2\n") cart2.write("ramp_repack_min 0.02 0.01 1.0 50\n") cart2.write("ramp_repack_min 0.250 0.01 0.5 50\n") cart2.write("ramp_repack_min 0.550 0.01 0.0 100\n") cart2.write("ramp_repack_min 1 0.00001 0.0 200\n") cart2.write("accept_to_best\n") cart2.write("endrepeat") cart2.close() relax_cmd = "".join( [ "mpirun -n " + threads + " relax.mpi.linuxgccrelease -s " + pdbname + " -use_input_sc", " -constrain_relax_to_start_coords -ignore_unrecognized_res", " -nstruct " + relax_num, " -relax:coord_constrain_sidechains", " -relax:cartesian -score:weights ref2015_cart ", " -relax:min_type lbfgs_armijo_nonmonotone", " -relax:script cart2.script 1>/dev/null && sort -nk2 score.sc |head -n 1|awk '{print$22}'", ] ) print("==" * 20) print(" Relaxing your Protein: ") # os.system(relax_cmd) relaxed_pdb_name = os.popen(relax_cmd).read() print(" Finished relax! ") print("==" * 20) relaxed_pdb_name = os.popen( "sort -nk2 score.sc |head -n 1|awk '{print$22}'" ).read() relaxedpdb = relaxed_pdb_name.replace("\n", "") + ".pdb" os.chdir("../") return relaxedpdb @staticmethod def read_rosetta_ddgout(rosettaddgfilename, wild, mutation, resNum): ddg_array = [] with open(rosettaddgfilename, 'r') as rosettaddg: for line in rosettaddg: # print(line.split(":")[2]) if line.split(":")[2].strip() == "WT": dg_ref = float(line.split(":")[3][1:10]) else: ddg = float(line.split(":")[3][1:10]) - dg_ref ddg_array.append(ddg) rosettaddg.close() return [ "_".join([wild, str(resNum), mutation]), str(round(np.array(ddg_array).mean(), 4)), str(round(min(np.array(ddg_array)), 4)), str(round(np.array(ddg_array).std(), 4)) ] @staticmethod def run_one_job(varlist: list): wild, mutation, resNum, jobID, relaxedpdb, exe, rosettadb = varlist path_job_id = common.ROSETTA_JOBS_DIR + jobID distutils.dir_util.mkpath(path_job_id) os.chdir(path_job_id) # try: # os.mkdir(jobID) # os.chdir(jobID) # except FileExistsError: # os.chdir(jobID) # os.popen('cp ../../rosetta_relax/' + self.relaxedpdb + ' ./') os.system("cp ../../" + common.ROSETTA_RELAX_DIR + relaxedpdb + " ./") with open("mtfile", "w+") as mtfile: mtfile.write("total 1\n") mtfile.write("1\n") mtfile.write(wild + " " + str(resNum) + " " + mutation + "\n") mtfile.close() argument_list = [ exe, "-database", rosettadb, "-use_input_sc", "-s", relaxedpdb, "-ddg:mut_file", "mtfile", "-ddg:iterations", "3", "-ddg::cartesian", "-ddg::dump_pdbs", "true", "-ddg:bbnbrs", "1", "-score:weights", "ref2015_cart", "-relax:cartesian", "-relax:min_type", "lbfgs_armijo_nonmonotone", "-flip_HNQ", "-crystal_refine", "-fa_max_dis", "9.0", "1>/dev/null", ] cartddg_cmd = " ".join(argument_list) starttime = time.time() os.system(cartddg_cmd) finishtime = time.time() print( "[DEBUG]: Rosetta mutation %s_%s_%s took %f seconds." % (wild, resNum, mutation, finishtime - starttime) ) result = rosetta_binder.read_rosetta_ddgout('mtfile.ddg', wild, mutation, resNum) # print(cartddg_cmd) os.chdir("../../") return result if __name__ == "__main__": print("run") # pdbname = '1PGA.pdb' # chain = 'A' # threads = 24 # relax_num = 200 # prot = Rosetta(pdbname, relax_num, 'numThreads') # score, std = prot.read_rosetta_ddgout('rosetta_jobs/0_1_/mtfile.ddg') # print(score, std) # relax_pdb_name = prot.relax(pdbname, threads) # print("Using: " + relax_pdb_name) # os.mkdir('rosetta_jobs') # prot.runOneJob(relax_pdb_name, "M", chain, "Q", 1, 'rosetta_jobs/0_1/') ```
{ "source": "JinyuanSun/DEPECT", "score": 3 }
#### File: DEPECT/backup/auto_blast_align_analysis.py ```python import os import numpy as np import pandas as pd # In[ ]: #1. blastp against the therbase db = "" evalue = "1e-5" cutoff = 30 seqname = "" def _blast(seqname,db,evalue,cutoff): outfile = seqname+"_out.txt" cmd = "blastp -query "+seqname+" -db "+db+" -evalue "+evalue+" -outfmt 6 -out "+outfile os.system(cmd) l = os.popen("wc -l "+outfile) ll = l.read() print("blast finished, total "+ll+" thermostable sequences found") blastout = read(outfile) hmhits = [] h = 0 for line in blastout: w = line.replace("\n","").split("\t") identity = float(w[2]) if identity > cutoff: hmhits += w[1] h = h + 1 print("find "+h+" homoglous sequences") subdb_name = seqname+".prodb" subdb = open(subdb_name,"w+") outline = '' for x in hmhits:#extract seq from db for align outline += x+"\n" outline += hot_dic.get(x)+"\n" print(outline,file = subdb) os.system("cat "+seqname+" "+subdb_name+" > seq_hot.fasta") print("File seq_hot.fasta written!"+"\n"+"Alignment starts!") return subdb_name # In[ ]: # In[ ]: def Align_analyze(seqname): ali_filename = seqname+".ali" os.system("/usr/local/bin/mafft"+" --localpair --maxiterate 16 --clustalout "+subdb_name+" > "+ali_filename) ali_file = open(ali_filename) next(ali_file) seq_dic = {} mark = "" for line in ali_file: if line.startswith(" "): mark = mark + line[16:].replace("\n", "") if line.startswith("\n"): continue else: head = line[0:15] #print(head) seq = line[16:].replace("\n", "") #print(seq) try: seq_dic[head] += seq except KeyError: seq_dic[head] = seq return seq_dic, mark # In[ ]: seq_dic = Ali_analyze("/Users/jsun/MHET/mhet_30.ali")[0] mark = Ali_analyze("/Users/jsun/MHET/mhet_30.ali")[1] #print(Ali_analyze("mhet_30.ali")[1]) import numpy as np import pandas as pd import math import matplotlib target = "sp|A0A0K8P6T7|P" def ali_array(seq_dic,mark,target): l = len(mark) lst = [] for k in seq_dic: ls = list(seq_dic[k]) lst.append(ls) df = pd.DataFrame(lst) t = seq_dic[target] target = [] mark_lst = [] cdict = {} n = 0 s = 0 mapdic = {} for x in t: if x == "-": s = s + 1 else: target += x mark_lst += mark[n] c = mark[n] mapdic[n] = s n = n + 1 if c == ".": cdict[n] = x+"_." if c == ":": cdict[n] = x+"_:" if c == "*": cdict[n] = x+"_*" return df,target,mark_lst,cdict,mapdic df = ali_array(seq_dic,mark,target)[0] t = ali_array(seq_dic,mark,target)[1] m = ali_array(seq_dic,mark,target)[2] #print(ali_array(seq_dic,mark,"sp|A0A0K8P6T7|P")[3]) #print(t,"\n",m) cuttoff = 0.9 n = 0 print("position","WT","MUT") for i in range(len(df.columns)): dic = df[i][0:19].value_counts().to_dict() x = df[i][20] if x == "-": continue else: n = n + 1 for k in dic: p = int(dic[k])/19 if p > cuttoff: if k == "-": continue if k == x: continue else: print(n,x,k) ``` #### File: DEPECT/enzde/depect_cst.py ```python import math import numpy as np import os import struct def readpdb(pdbfilename): pdb_format = '6s5s1s4s1s3s1s1s4s1s3s8s8s8s6s6s10s2s3s' protein_pdbdict = {} ligand_pdbdict = {} pdbfile = open(pdbfilename) for line in pdbfile: #try: #print(type(line)) try: tmpline = struct.unpack(pdb_format, line.encode()) #print(tmpline) if tmpline[0].decode().strip() == "ATOM": #record_name = line[0:6].replace(" ","") atom_num = tmpline[1].decode().strip() atom = tmpline[3].decode().strip() altLoc = tmpline[4].decode().strip() res = tmpline[5].decode().strip() chainid = tmpline[7].decode().strip() resseq = tmpline[8].decode().strip() icode = tmpline[10].decode().strip() x = float(tmpline[11].decode().strip()) y = float(tmpline[12].decode().strip()) z = float(tmpline[13].decode().strip()) occ = tmpline[14].decode().strip() tfactor = tmpline[15].decode().strip() element = tmpline[17].decode().strip() charge = tmpline[18].decode().strip() try: protein_pdbdict[chainid][resseq][atom] = np.array([x,y,z]) except KeyError: try: protein_pdbdict[chainid][resseq] = {} protein_pdbdict[chainid][resseq]["res"] = res protein_pdbdict[chainid][resseq][atom] = np.array([x,y,z]) except KeyError: protein_pdbdict[chainid] = {resseq:{atom:np.array([x,y,z])}} if tmpline[0].decode().strip() == "HETATM": #record_name = line[0:6].replace(" ","") atom_num = tmpline[1].decode().strip() atom = tmpline[3].decode().strip() altLoc = tmpline[4].decode().strip() res = tmpline[5].decode().strip() chainid = tmpline[7].decode().strip() resseq = tmpline[8].decode().strip() icode = tmpline[10].decode().strip() x = tmpline[11].decode().strip() y = tmpline[12].decode().strip() z = tmpline[13].decode().strip() occ = tmpline[14].decode().strip() tfactor = tmpline[15].decode().strip() element = tmpline[17].decode().strip() charge = tmpline[18].decode().strip() try: ligand_pdbdict[chainid][atom_num][atom] = np.array([x,y,z]) except KeyError: try: ligand_pdbdict[chainid][atom_num] = {} ligand_pdbdict[chainid][atom_num]["res"] = res ligand_pdbdict[chainid][atom_num][atom] = np.array([x,y,z]) except KeyError: ligand_pdbdict[chainid] = {resseq:{atom:np.array([x,y,z])}} except struct.error: pdb_format = '6s5s1s4s1s3s1s1s4s1s3s8s8s8s6s6s10s2s1s' try: tmpline = struct.unpack(pdb_format, line.encode()) if tmpline[0].decode().strip() == "ATOM": #record_name = line[0:6].replace(" ","") atom_num = tmpline[1].decode().strip() atom = tmpline[3].decode().strip() altLoc = tmpline[4].decode().strip() res = tmpline[5].decode().strip() chainid = tmpline[7].decode().strip() resseq = tmpline[8].decode().strip() icode = tmpline[10].decode().strip() x = float(tmpline[11].decode().strip()) y = float(tmpline[12].decode().strip()) z = float(tmpline[13].decode().strip()) occ = tmpline[14].decode().strip() tfactor = tmpline[15].decode().strip() element = tmpline[17].decode().strip() charge = tmpline[18].decode().strip() try: protein_pdbdict[chainid][resseq][atom] = np.array([x,y,z]) except KeyError: try: protein_pdbdict[chainid][resseq] = {} protein_pdbdict[chainid][resseq]["res"] = res protein_pdbdict[chainid][resseq][atom] = np.array([x,y,z]) except KeyError: protein_pdbdict[chainid] = {resseq:{atom:np.array([x,y,z])}} except struct.error: #print(line) continue return {"protein":protein_pdbdict, "ligand":ligand_pdbdict} def readpdbqt(pdbqtfilename): pdbqtfile = open(pdbqtfilename) pdbqt_dic = {} for line in pdbqtfile: try: tmp = line.split() type = tmp[0] atom_num = tmp[1] atom = tmp[2] lig = tmp[3] coordx = float(tmp[5]) coordy = float(tmp[6]) coordz = float(tmp[7]) if type == "HETATM": pdbqt_dic[atom_num] = np.array([coordx,coordy,coordz]) except IndexError: continue except ValueError: continue return pdbqt_dic def readcstfile(cstfilename): cstfile = open(cstfilename) cstparadict = {} #liganddict = readpdbqt(ligandfilename) #proteindict = readpdb(proteinfilename) for line in cstfile: atomlst = [] tmp = line.replace("\n","").split(":") head = tmp[0] atoms = tmp[1].split(",") for atom in atoms: atmp = atom.split("|") if atmp[0] == "protein": #coordlst.append(proteindict["protein"][atmp[1]][atmp[2]][atmp[3]]) atomlst.append(["protein",atmp[1],atmp[2],atmp[3]]) if atmp[0] == "ligand": atomlst.append(["ligand",atmp[1]]) cstparadict[head] = atomlst return cstparadict def cal_dihedral(p): """Praxeolitic formula 1 sqrt, 1 cross product""" p0 = p[0] p1 = p[1] p2 = p[2] p3 = p[3] b0 = -1.0*(p1 - p0) b1 = p2 - p1 b2 = p3 - p2 # normalize b1 so that it does not influence magnitude of vector # rejections that come next b1 /= np.linalg.norm(b1) # vector rejections # v = projection of b0 onto plane perpendicular to b1 # = b0 minus component that aligns with b1 # w = projection of b2 onto plane perpendicular to b1 # = b2 minus component that aligns with b1 v = b0 - np.dot(b0, b1)*b1 w = b2 - np.dot(b2, b1)*b1 # angle between v and w in a plane is the torsion angle # v and w may not be normalized but that's fine since tan is y/x x = np.dot(v, w) y = np.dot(np.cross(b1, v), w) return np.degrees(np.arctan2(y, x)) def getcoords(cstparadict,proteindict,liganddict): cstcoorddict = {} for head in cstparadict: atomlst = cstparadict[head] coordlst = [] for atom in atomlst: if atom[0] == "protein": coordlst.append(proteindict["protein"][atom[1]][atom[2]][atom[3]]) if atom[0] == "ligand": coordlst.append(liganddict[atom[1]]) cstcoorddict[head] = coordlst return cstcoorddict def calgeovalue(cstcoorddict,proteindict,liganddict): geovaldict = {} for key in cstcoorddict: coordlst = cstcoorddict[key] #print(coordlst) if len(coordlst) == 2: geovaldict[key] = str(round(np.linalg.norm(coordlst[0]-coordlst[1]),3)) if len(coordlst) == 3: geovaldict[key] = str(round(math.acos(getcos(coordlst[0]-coordlst[1], coordlst[1]-coordlst[2])) * 180 / math.pi,3)) if len(coordlst) == 4: geovaldict[key] = str(round(cal_dihedral(coordlst),3)) return geovaldict def run_geo_cst(depectfilename,cstfilename,ligand): depectfile = open(depectfilename) cstparadict = readcstfile(cstfilename) cstfile = open(cstfilename) #liganddict = readpdbqt(ligandfilename) head_line = '' for line in cstfile: head_line = head_line+","+line.split(":")[0] for line in depectfile: if line.startswith("#"): with open("depect_enzde_geo.sc","w+") as newoutfile: newoutfile.write("#receptor,vina_affinity"+head_line+"\n") newoutfile.close() else: tmp = line.split(",") receptor = proteinfilename = tmp[0] ligandfilename = ligand.replace(".pdbqt","@_"+receptor+"_out.pdbqt") #print(ligandfilename) #ligandfile = ligand.replace(".pdbqt",receptor+"_out.pdbqt") proteindict = readpdb(proteinfilename) liganddict = readpdbqt(ligandfilename) cstcoorddict = getcoords(cstparadict,proteindict,liganddict) #print(cstcoorddict) geovaldict = calgeovalue(cstcoorddict,proteindict,liganddict) #print(geovaldict) with open("depect_enzde_geo.sc","a+") as newoutfile: newoutfile.write(line.replace("\n",","+",".join(list(geovaldict.values()))+"\n")) newoutfile.close() #cstparadict = readcstfile(cstfilename,ligandfilename,proteinfilename) #geovaldict = calgeovalue(cstparadict) if __name__ == '__main__': import sys try: depectfilename = sys.argv[1] cstfilename = sys.argv[2] ligand = sys.argv[3] run_geo_cst(depectfilename,cstfilename,ligand) except IndexError: print("Usage: python3 depect_cst.py depect_enzde.sc zlj.cst RPBE_ref.pdbqt") #try: #depectfilename = sys.argv[1] #cstfilename = sys.argv[2] #ligand = sys.argv[3] ''' try: open(depectfilename) except FileNotFoundError: print("Trying to run demo!") depectfilename = "depect_enzde.sc" cstfilename = "zlj.cst" ligand = "RPBE_ref.pdbqt" run_geo_cst(depectfilename,cstfilename,ligand) ''' ``` #### File: DEPECT/hybrid_redesign/ca2mutfile.py ```python import os import argparse def ca2mutfilelist(depectcafile): cafile = open(depectcafile) i = 0 mutfilelist = [] for line in cafile: if line.startswith("#"): continue else: lst = line.split("\t") mut_unit = lst[0]+" "+lst[1]+" "+lst[2] i = i + 1 mutfilelist.append(mut_unit) return mutfilelist def mutfilelist2rosettamutfile(mutfilelist,mutfilename): #mutfilename = depectcafile.split(".")[0]+".mutfile" mutfile = open(mutfilename,"w+") with open(mutfilename,"a+") as mutfile: mutfile.write("total "+str(len(mutfilelist))+"\n") for mutunit in mutfilelist: mutfile.write("1\n"+mutunit+"\n") mutfile.close() def chunk(lst,nt,prefix): outfilenamelist = [] t = len(lst)//(int(nt)-1) n = 0 for i in range(0,len(lst),t): b=lst[i:i+t] n = n + 1 mutfilelist2rosettamutfile(b,prefix+"_"+str(n)+".mutfile") c = prefix+"_"+str(n)+".mutfile" outfilenamelist.append(c) return outfilenamelist def get_parser(): parser = argparse.ArgumentParser(description='convert depect consensus analysis output .ca file to rosetta mutfile') #parser.parse_args() parser.add_argument("-in", "--input", help="depect consensus analysis output .ca file") parser.add_argument("-nt", "--number_splited", help="number of output mutfile, default is 1",default=1) return parser if __name__ == '__main__': parser = get_parser() args = parser.parse_args() depectcafile = args.input nt = int(args.number_splited) mutfilelist = ca2mutfilelist(depectcafile) #print(nt) outfilename = prefix = depectcafile.split(".")[0] if nt == 1: mutfilelist2rosettamutfile(mutfilelist,outfilename) if nt > 1: chunk(mutfilelist,nt,prefix) ``` #### File: DEPECT/hybrid_redesign/hybrid_redesign.py ```python import os import math import argparse import time import depect_ca_local as dcl #import rosetta_cartddg_filter import ca2mutfile #cartesian_ddg.linuxgccrelease -s 4eb0_clean.pdb @cart_ddg_flag -ddg:mut_file 4EB01.mutfile Cartesian_ddG_exe = "cartesian_ddg.linuxgccrelease" Cartesian_ddG_opt = "-ddg:iterations 1 -ddg::cartesian -ddg::dump_pdbs true -ddg:bbnbrs 1 -fa_max_dis 9.0 -score:weights ref2015_cart" def get_parser(): parser = argparse.ArgumentParser(description='consensus analysis based on relative entropy score and fruther filter by ddg') #parser.parse_args() parser.add_argument("-s", "--structure", help="target structure which must be provided") parser.add_argument("-cid", "--chain", help="chain id for sequence extraction, default is A",default = "A") parser.add_argument("-db", "--database", help="database name for blastp") parser.add_argument("-ic", '--identity_cutoff',default=30, help='the identity cutoff when build the sub-database') parser.add_argument("-e", '--evalue', default=1e-5, help='the evalue cutoff when blast') parser.add_argument("-ds", "--dataset", help="dataset to do consensus analysis") parser.add_argument("-sc", '--score_cutoff', default=2, help='the score cutoff for selection, default is 2') parser.add_argument("-nt", '--num_threads', default=8, help='number of threads used to run blastp and ddg calculation software, default is 8') parser.add_argument("-m", '--mode', help='blast mode require input -ic, -db and -e, analysis mode require -ds') parser.add_argument("-en", '--engine', default="rcd", help='software used for ddg calculation, currently supporting FoldX (f) and Rosetta_Cartesian_ddG (rcd). Default is Rosetta_Cartesian_ddG') parser.add_argument("-dc", '--ddg_cutoff', help='cutoff of ddg for output') #args = parser.parse_args() return parser def pdb2seq(structure,chain): pdbfile = open(structure) seq = '' #pdb_seq_out_dict = {} longer_names = {'ALA': 'A', 'ARG': 'R', 'ASN': 'N', 'ASP': 'D', 'CYS': 'C', 'GLU': 'E', 'GLN': 'Q', 'GLY': 'G', 'HIS': 'H', 'ILE': 'I', 'LEU': 'L', 'LYS': 'K', 'MET': 'M', 'PHE': 'F', 'PRO': 'P', 'SER': 'S', 'THR': 'T', 'TRP': 'W', 'TYR': 'Y', 'VAL': 'V'} #pdb = open(pdbname) resseqlst = [] for line in pdbfile: if line.startswith("ATOM") and "CA" in line.split(): amino_acid = line[17:20] resseq = int(line[22:26].replace(" ","")) if chain == line[21:22] and resseq not in resseqlst: resseqlst.append(resseq) seq = seq + longer_names[amino_acid] #if line[0:3] == "TER": #seq = seq + "\n" #pdb_seq_out_dict[chain] = seq[:-1] seqfilename = structure.replace("pdb","fasta") with open(seqfilename,"w+") as seqfile: seqfile.write(">seq\n"+seq+"\n") seqfile.close() return seqfilename def runconsensusanalysis(seq,db_name,identity_cutoff,evalue,nt,score_cutoff,mode): #parser = dcl.get_parser() #args = parser.parse_args() #struct = args.structure #chain = args.chain #seq = pdb2seq(struct,chain) ##seq = args.structure.replace("pdb","fasta") #db_name = args.database #identity_cutoff = args.identity_cutoff #evalue = args.evalue #score_cutoff = args.score_cutoff #mode = args.mode #nt = str(args.num_threads) if mode == "blast": t0 =time.time() aln = dcl.build_sub_db(seq,db_name,identity_cutoff,evalue,nt) print("Blast search finished in",str(time.time()-t0)[0:3]+"s") score_dict,map_dict,raw_target = dcl.build_matrix(aln,seq) outlist = dcl.select(score_dict,map_dict,score_cutoff,raw_target) curtime = time.asctime( time.localtime(time.time())) depectcafile = seq+".ca" with open(depectcafile,"w+") as outf: outf.write("#Back-to-consensus mutations suggested by DEPECT consensus analysis.\n#"+curtime+"\n#wildtype\tnumber\tback-to-consensus\tscore"+"\n") outf.close() with open(depectcafile,"a+") as outf: for mutations in outlist: outf.write(mutations+"\n") outf.close() #print(out_line) if mode == "analysis": dataset = args.dataset os.system("cat "+seq+" "+dataset+" > "+seq+".db") os.system("muscle -in "+seq+".db -out "+seq+".aln -maxiters 99") aln = seq+".aln" score_dict,map_dict,raw_target = dcl.build_matrix(aln,seq) outlist = dcl.select(score_dict,map_dict,score_cutoff,raw_target) curtime = time.asctime( time.localtime(time.time())) depectcafile = seq+".ca" with open(depectcafile,"w+") as outf: outf.write("#Back-to-consensus mutations suggested by DEPECT consensus analysis.\n#"+curtime+"\n#wildtype\tnumber\tback-to-consensus\tscore"+"\n") outf.close() with open(depectcafile,"a+") as outf: for mutations in outlist: outf.write(mutations+"\n") outf.close() return depectcafile def generaterosettamutfile(depectcafile,nt): #parser = dcl.get_parser() #args = parser.parse_args() nt = int(nt) mutfilelist = ca2mutfile.ca2mutfilelist(depectcafile) #print(nt) outfilename = prefix = depectcafile.split(".")[0] if nt == 1: ca2mutfile.mutfilelist2rosettamutfile(mutfilelist,outfilename) if nt > 1: mutfilenamelist = ca2mutfile.chunk(mutfilelist,nt,prefix) return mutfilenamelist def runrosetta(mutfilenamelist,struct): #parser = dcl.get_parser() #args = parser.parse_args() #struct = args.structure for mutfile in mutfilenamelist: os.system("nohup "+Cartesian_ddG_exe+" -s "+struct+" "+Cartesian_ddG_opt+" -ddg:mut_file "+mutfile+" &") if __name__ == '__main__': print( """ ######################################################### # DEPECT # # thermostability hybrid redesign # # Design and Engineering of Proteins and Enzymes # # by Computational Tools # # # # Author: <NAME> # # E-mail: <EMAIL> # ######################################################### """ ) parser = get_parser() parser = get_parser() args = parser.parse_args() struct = args.structure chain = args.chain seq = pdb2seq(struct,chain) #seq = args.structure.replace("pdb","fasta") db_name = args.database identity_cutoff = args.identity_cutoff evalue = args.evalue score_cutoff = args.score_cutoff mode = args.mode nt = str(args.num_threads) depectcafile = runconsensusanalysis(seq,db_name,identity_cutoff,evalue,nt,score_cutoff,mode) mutfilenamelist = generaterosettamutfile(depectcafile,nt) runrosetta(mutfilenamelist,struct) ```
{ "source": "JinyuanSun/DETECT", "score": 2 }
#### File: DETECT/enzde/fvdesign.py ```python import os import time import numpy as np import pandas as pd import argparse from joblib import Parallel, delayed class FoldX: def __init__(self, exe=""): if exe: self.exe = exe else: self.exe = os.popen("which foldx").read().replace("\n", "") # AlaScan # AnalyseComplex # BuildModel # CrystalWaters # Dihedrals # DNAContact # DNAScan # RNAScan # MetalBinding # Optimize # PDBFile # PositionScan # PrintNetworks # Pssm # QualityAssessment # ReconstructSideChains # RepairPDB # Rmsd # SequenceDetail # SequenceOnly # Stability def repair(self, input_file): cmd_list = [self.exe, "--command=RepairPDB", "--pdb=%s" % input_file] def build_model(self, input_file, mutation, numberOfRuns=1): # mutation = "A_126_M" start_time = time.time() cmd_list = [ self.exe, "--command=BuildModel", "--pdb=%s" % input_file, "--mutant-file=individual_list.txt", "--numberOfRuns=%s 1>/dev/null" % str(numberOfRuns), ] with open("individual_list.txt", "w+") as indifile: indifile.write(mutation + ";\n") indifile.close() # os.popen(" ".join(cmd_list)) if test_on_mac: print(" ".join(cmd_list)) else: os.system(" ".join(cmd_list)) end_time = time.time() return round(end_time - start_time, 3) class Autodock: def __init__(self, pythonsh_path, ADTU_path, box_cache, ligand_cache): # /home/jsun/MGLTools-1.5.6/MGLToolsPckgs/AutoDockTools/Utilities24 self.ADTU_path = ADTU_path self.pythonsh_path = pythonsh_path self.box_cache = box_cache self.ligand_cache = ligand_cache def run_local_dock(self, receptor, i): os.system( "%s %s/prepare_receptor4.py -r %s -A checkhydrogens" % (self.pythonsh_path, self.ADTU_path, receptor) ) # os.popen("pythonsh %s/prepare_ligand.py -l %s " %(self.ADTU_path, ligand)) with open("box.cfg", "w+") as box: box.write(self.box_cache) box.close() with open("ligand.pdbqt", "w+") as ligand: ligand.write(self.ligand_cache) ligand.close() local_out = os.popen( "vina --config box.cfg --receptor=%s --ligand=ligand.pdbqt --local_only --cpu=1 --out=local_docked_%s.pdbqt" % (receptor + "qt", str(i)) ) for line in local_out.read().split("\n"): if line.startswith("Affinity:"): affinity = line.split(":")[1].split("(")[0].strip() return affinity def _3_2_1(x): d = { "CYS": "C", "ASP": "D", "SER": "S", "GLN": "Q", "LYS": "K", "ILE": "I", "PRO": "P", "THR": "T", "PHE": "F", "ASN": "N", "GLY": "G", "HIS": "H", "LEU": "L", "ARG": "R", "TRP": "W", "ALA": "A", "VAL": "V", "GLU": "E", "TYR": "Y", "MET": "M", } assert x in d, "%s is not in 20 canonical amino acids!" % (x) return d[x] def __remove_chain_from_individual_list_mutation(mutation): # EB243Q -> [[E,B,243,Q]] # EA243Q,EB243Q -> [[E,A,243,Q],[E,B,243,Q]] mutation_list = mutation.split(",") converted = [] for mut in mutation_list: wild_type = mut[0] mut_type = mut[-1] chain = mut[1] num = mut[2:-1] converted.append([wild_type, chain, num, mut_type]) return converted class Pipeline: def __init__( self, position_list_filename, enzyme_wildtype_structure_filename, substrate_filename, chain_list, numberOfRuns, box_cfg, ADTU_path="", pythonsh_path="", verbose=False, ): self.text = 0 self.position_list_filename = position_list_filename self.chain_dict = {} self.root_dir = os.getcwd() self.enzyme = "/".join([self.root_dir, enzyme_wildtype_structure_filename]) self.substrate = "/".join([self.root_dir, substrate_filename]) self.lig = open(self.substrate, "r").read() self.verbose = verbose self.cachefile = open(enzyme_wildtype_structure_filename, "r").read() # self.docking_score = {} self.box_cache = open(box_cfg, "r").read() self.numberOfRuns = numberOfRuns self.chain_list = chain_list # self.foldx_energy = {} if ADTU_path: self.ADTU_path = ADTU_path else: self.ADTU_path = ( os.popen("locate MGLToolsPckgs/AutoDockTools/Utilities24") .read() .split("\n")[0] ) if pythonsh_path: self.pythonsh_path = pythonsh_path else: self.pythonsh_path = os.popen("which pythonsh").read().replace("\n", "") def read_in_positions(self): # mutation list generated from "pymol selection sele, output=S" with open(self.position_list_filename, "r") as pos_file: for line in pos_file: if line[0] != "#": protein_name, chain, wild_type_3l, res_num = line.replace( "\n", "" ).split("/") # self.position_list.append([chain, wild_type, res_num]) if chain in self.chain_dict: self.chain_dict[chain].append((wild_type_3l, res_num)) else: self.chain_dict[chain] = [(wild_type_3l, res_num)] pos_file.close() def generate_all_mutation(self): # Automate determine how many chains to use depending on input list file docking_score = {} foldx_energy = {} if self.chain_list: chains = self.chain_list.split(",") else: chains = list(self.chain_dict.keys()) poses = [] for chain in self.chain_dict: poses += self.chain_dict[chain] all_mutation = [] for pos in poses: pos_mutation_info = [] wild_type_3l, res_num = pos wild_type_1l = _3_2_1(wild_type_3l) for mut_type in "QWERTYIPASDFGHKLCVNM": if mut_type != wild_type_1l: a_mutation = [] for chain in chains: a_mutation.append( "".join([wild_type_1l, chain, res_num, mut_type]) ) pos_mutation_info.append(",".join(a_mutation)) docking_score[",".join(a_mutation)] = np.zeros( self.numberOfRuns ) foldx_energy[",".join(a_mutation)] = {} all_mutation += pos_mutation_info return all_mutation, docking_score, foldx_energy def convert_mut_file_to_mutations(self): pass def calScore(self, mutation, foldx_energy): # fxout_name = jobID + "/Dif_" + pdbfile.replace(".pdb", ".fxout") fxout_name = os.popen("ls Dif*.fxout").read().replace("\n", "") # print(fxout_name) df = pd.read_table(fxout_name, sep="\t", skiprows=8) score = round(df["total energy"].mean(), 4) sd = round(df["total energy"].std(), 4) foldx_energy[mutation] = {"score": score, "SD": sd} with open("foldx_energy.txt", 'w+') as output: output.write("\t".join([mutation, str(score), str(sd)]) + "\n") output.close() # return ["_".join([wild, str(resNum), mutation]), score, sd] def build_model(self, varlist): mutation, docking_score, foldx_energy = varlist os.mkdir(mutation) os.chdir(mutation) os.mkdir("build_model") os.chdir("build_model") with open("WT_protein.pdb", "w+") as enzymefile: enzymefile.write(self.cachefile) enzymefile.close() runtime = FoldX().build_model("WT_protein.pdb", mutation, self.numberOfRuns) self.calScore(mutation, foldx_energy) if self.substrate: i = 0 aff_arr = np.zeros(self.numberOfRuns) while i in range(self.numberOfRuns): affinity = Autodock( pythonsh_path=self.pythonsh_path, ADTU_path=self.ADTU_path, box_cache=self.box_cache, ligand_cache=self.lig, ).run_local_dock("WT_protein_1_%s.pdb" % str(i), i) # docking_score[mutation][i] = affinity aff_arr[i] = affinity i += 1 with open("docking_energy.txt", 'w+') as output: output.write("\t".join([mutation, str(round(aff_arr.mean(), 4)), str(round(aff_arr.std(), 4))]) + "\n") os.chdir("../") if self.verbose: print("[DEBUG]: ") def build_scan(self, mutations, docking_score, foldx_energy, threads): Parallel(n_jobs=threads)( delayed(self.build_model)([mutation, docking_score, foldx_energy]) for mutation in mutations ) return 0 def get_args(): parser = argparse.ArgumentParser( description="Run FoldX, AutoDock Vina for substrate binding pocket redesign." ) parser.add_argument("enzyme", help="Input enzyme PDB") parser.add_argument( "chain_list", help='list of chains, capital letters seperated with comma: "A,B"' ) parser.add_argument("substrate", help="Input substrate PDBQT") parser.add_argument("box_cfg", help="box information for local docking") parser.add_argument("position_list", help="position list file output from pymol") parser.add_argument("-T", "--threads", help="Number of threads to use", default=16) parser.add_argument( "-N", "--num_of_runs", help="Number of model foldx to build for each mutation", default=5, ) parser.add_argument("-mp", "--mgltools_path", help="path to mgltools") args = parser.parse_args() return args if __name__ == "__main__": args = get_args() test_on_mac = False position_list_filename = args.position_list enzyme_wildtype_structure_filename = args.enzyme substrate_filename = args.substrate box_cfg = args.box_cfg chain_list = args.chain_list numberOfRuns = int(args.num_of_runs) threads = int(args.threads) mgltools_path = args.mgltools_path scan_pipeline = Pipeline( position_list_filename, enzyme_wildtype_structure_filename, substrate_filename, chain_list, numberOfRuns, box_cfg, mgltools_path, ) def scan_and_dock(): scan_pipeline.read_in_positions() all_mutations, docking_score, foldx_energy = scan_pipeline.generate_all_mutation() scan_pipeline.build_scan(all_mutations[:6], docking_score, foldx_energy, threads) scan_and_dock() ```
{ "source": "JinyuanSun/MarBGC", "score": 3 }
#### File: JinyuanSun/MarBGC/gbk2fasta.py ```python def gbkfile2fasta(gbkfilename): idlist = [] seqlist = [] with open(gbkfilename,'r') as gbkfile: filetext = gbkfile.read() feature_list = filetext.split("FEATURES")[1].replace(" ","").split("\n/") #print(feature_list) for ele in feature_list: if "=" in ele: ele_list = ele.split("=") key = ele_list[0] if key == 'protein_id': try: value = ele_list[1].replace(" ","").replace("\n","").split('"')[1] idlist.append(value) #seqlist.append(value) except IndexError: value = ele_list[1].replace(" ","").replace("\n","").split('"')[0] idlist.append(value) #seqlist.append(value) if key == 'translation': try: value = ele_list[1].replace(" ","").replace("\n","").split('"')[1] #idlist.append(key) seqlist.append(value) except IndexError: value = ele_list[1].replace(" ","").replace("\n","").split('"')[0] #idlist.append(key) seqlist.append(value) #print(key,value) gbkfile.close() #print(idlist) fastafilename = gbkfilename.split(".")[0]+".fasta" i = 0 with open(fastafilename,"a+") as fastafile: while i in range(len(idlist)): fastafile.write(">"+idlist[i]+"\n"+seqlist[i]+"\n") i += 1 fastafile.close() with open("gbk.txt","r") as f: for line in f: filename=line.strip() gbkfile2fasta(filename) ```
{ "source": "JinyuanSun/my_bio_script", "score": 3 }
#### File: my_bio_script/basic/fasta.py ```python def fasta2dic(fastafilename): #read a fasta file into a dict fasta_dict = {} with open(fastafilename) as fastafile: for line in fastafile: if line[0] == ">": head = line.strip() fasta_dict[head] = '' else: fasta_dict[head] += line.strip() fastafile.close() return fasta_dict def output_single_fa(fasta_dict): #split a fastadict into fasta file of single seq for key in fasta_dict: filename = key[1:]+".fa" with open(filename, "w+") as outfile: outfile.write(key+"\n"+fasta_dict[key]+"\n") outfile.close() return filename def split_fasta(fastafilename): output_single_fa(fasta2dic(fastafilename)) def read_a3m(): return [] def align_2_seq(raw_seq1,raw_seq2): from Bio import pairwise2 import pickle with open("BLOSUM62.pkl", "rb") as tf: matrix = pickle.load(tf) tf.close() seq1 = raw_seq1 seq2 = raw_seq2 alignments = pairwise2.align.globalds(seq1, seq2, matrix, -10, -0.5) seq1 = alignments[0][0] seq2 = alignments[0][1] resnum = 0 #index = 0 aligned_seq2 = '' for index in range(len(seq1)): if seq1[index] == "-": continue else: aligned_seq2 += seq2[index] resnum += 1 if seq1[index] == seq2[index]: continue #else: #print(seq1[index],resnum,seq2[index]) index += 1 #print(raw_seq1+"\n"+aligned_seq2) return aligned_seq2 ``` #### File: my_bio_script/explore/explore_motif_diversity.py ```python import argparse import re parser = argparse.ArgumentParser(description='a code to explore motif explore motif diversity') parser.add_argument("-i", '--input', help="input a fasta file") parser.add_argument("-m", '--motif', help="input a motif in regular expression") parser.add_argument("-o", '--output', help="the out put file name") args = parser.parse_args() inf = open(args.input) ouf = args.output motif = args.motif regex = re.compile(motif) def readseq(fasta):# return a dict in which headers are keys and sequences are value seq = {} for line in fasta: if line.startswith(">"): name = line.replace('>','').split()[0] seq[name] = '' else: seq[name]+=line.replace('\n','').strip() return seq seq = readseq(inf) ofile = open(ouf,'w') print('header'+' '+'tax',file=ofile) for key in seq: sequence = str(seq[key]) if re.search(regex,str(seq[key])) != None: fragment = re.findall(regex,str(seq[key]))[0] header = key.split('|')[1] #This line is to deal with raw uniprot ID :>tr|ID|annotations print(header+' '+fragment[-3:],file=ofile) ofile.close() ```
{ "source": "JinyuanSun/SeqDDG", "score": 3 }
#### File: seqddg/utilities/feature_maker.py ```python import pandas as pd import numpy as np class feature: __a = """AAa H V P IP HT ST GSI F0 F1 F2 C B EC A -0.171 −0.677 −0.680 −0.170 0.900 −0.476 −0.350 −0.044 −0.234 −0.269 0.587 −0.099 0.829 D -0.767 −0.281 −0.417 −0.900 −0.155 −0.635 −0.213 −0.103 0.900 0.014 −0.475 −0.082 0.247 C 0.508 −0.359 −0.329 −0.114 −0.652 0.476 −0.140 −0.642 −0.773 −0.035 −0.433 0.094 −0.388 E -0.696 −0.058 −0.241 −0.868 0.900 −0.582 −0.230 0.347 0.480 0.021 −0.900 0.105 0.565 F 0.646 0.412 0.373 −0.272 0.155 0.318 0.363 −0.863 −0.504 −0.113 −0.673 0.721 0.035 G -0.342 −0.900 −0.900 −0.179 −0.900 −0.900 −0.900 0.701 0.527 −0.050 0.378 −0.900 0.829 H −0.271 0.138 0.110 0.195 −0.031 −0.106 0.384 −0.480 −0.186 −0.255 −0.297 0.115 −0.088 I 0.652 −0.009 −0.066 −0.186 0.155 0.688 0.900 −0.332 −0.662 −0.411 −0.288 0.879 −0.900 K −0.889 0.163 0.066 0.727 0.279 −0.265 −0.088 0.339 0.844 0.900 −0.375 0.317 0.547 L 0.596 −0.009 −0.066 −0.186 0.714 −0.053 0.213 −0.590 −0.115 −0.064 −0.288 0.879 0.865 M 0.337 0.087 0.066 −0.262 0.652 −0.001 0.110 −0.738 −0.900 −0.893 −0.205 0.370 0.724 N −0.674 −0.243 −0.329 −0.075 −0.403 −0.529 −0.213 0.516 0.242 0.000 −0.166 0.031 0.265 P 0.055 −0.294 −0.900 −0.010 −0.900 0.106 0.247 0.059 0.868 0.014 0.900 0.487 0.212 Q −0.464 −0.020 −0.110 −0.276 0.528 −0.371 −0.230 0.870 0.416 −0.319 −0.403 0.192 0.529 R −0.900 0.466 0.373 0.900 0.528 −0.371 0.105 −0.066 0.416 −0.206 0.430 0.175 −0.106 S −0.364 −0.544 −0.637 −0.265 −0.466 −0.212 −0.337 0.900 0.575 −0.050 −0.024 −0.300 0.600 T −0.199 −0.321 −0.417 −0.288 −0.403 0.212 0.402 0.192 0.599 0.028 −0.212 0.323 0.406 V 0.331 −0.232 −0.285 −0.191 −0.031 0.900 0.677 −0.480 −0.385 −0.120 −0.127 0.896 0.794 W 0.900 0.900 0.900 −0.209 0.279 0.529 0.479 −0.900 −0.464 −0.900 −0.074 0.900 0.900 Y 0.188 0.541 0.417 −0.274 −0.155 0.476 0.363 −0.634 −0.361 −0.659 −0.738 0.546 0.582""" vloumn = {"A":88.6,"R":173.4,"N":114.1,"D":111.1,"C":108.5, "Q":143.8,"E":138.4,"G":60.1,"H":153.2,"I":166.7, "L":166.7,"K":168.6,"M":162.9,"F":189.9,"P":112.7, "S":89.0,"T":116.1,"W":227.8,"Y":193.6,"V":140.0} hydropathy_index = {"R":-2.5,"K":-1.5,"D":-0.9,"Q":-0.85,"N":-0.78, "E":-0.74,"H":-0.4,"S":-0.18,"T":-0.05,"P":0.12, "Y":0.26,"C":0.29,"G":0.48,"A":0.62,"M":0.64, "W":0.81,"L":1.1,"V":1.1, "F":1.2,"I":1.4} def get_al_dd(self): al_dd = {"A":{},"D":{},"C":{},"E":{},"F":{}, "G":{},"H":{},"I":{},"K":{},"L":{}, "M":{},"N":{},"P":{},"Q":{},"R":{}, "S":{},"T":{},"V":{},"W":{},"Y":{}} for line in self.__a.replace("−","-").split("\n"): lst = line.split() if lst[0] == "AAa": name_lst = lst[1:] else: al_dd[lst[0]] = dict(zip(name_lst,lst[1:])) #al_df = pd.DataFrame(al_dd).T return al_dd feature = feature() al_dd = feature.get_al_dd() vloumn = feature.vloumn hydropathy_index = feature.hydropathy_index alphabet = "ARNDCQEGHILKMFPSTWYV-" states = len(alphabet) a2n = {} for a,n in zip(alphabet,range(states)): a2n[a] = n def get_MSA(seqa3m): import string rm_lc = str.maketrans(dict.fromkeys(string.ascii_lowercase)) ali_dict = {} a3mfile = open(seqa3m) for line in a3mfile: if line[0] == ">": head = line.strip() ali_dict[head] = "" #print(line.strip()) else: line = line.translate(rm_lc).strip() lst = [] for x in line: lst.append(x) ali_dict[head] = lst #print(lst) df = pd.DataFrame(ali_dict) seq_length = df.shape[0] seq_num = df.shape[1] df_msa = df.T alphabet = "ARNDCQEGHILKMFPSTWYV-" p_msa = np.zeros([21,seq_length]) for p in range(seq_length): for num,AA in enumerate(alphabet): if AA != "-": count = df_msa[p].value_counts().get(AA) if count == None: p_msa[num][p] = 0 else: p_msa[num][p] = count/seq_num #print(num,p,count/seq_num) p = p + 1 return p_msa def getSeq(fasta): fasta = open(fasta) seq = '' for line in fasta: if line[0] == ">": continue else: seq += line.strip().replace("X","A") return seq def getStatic(wpm): dP = 0.5*(-float(al_dd[wpm[0]]['P'])+float(al_dd[wpm[2]]['P'])) dF1 = -0.5*(-float(al_dd[wpm[0]]['F1'])+float(al_dd[wpm[2]]['F1'])) dB = 0.5*(-float(al_dd[wpm[0]]['B'])+float(al_dd[wpm[2]]['B'])) dST = 0.5*(-float(al_dd[wpm[0]]['ST'])+float(al_dd[wpm[2]]['ST'])) dHT = 0.5*(-float(al_dd[wpm[0]]['HT'])+float(al_dd[wpm[2]]['HT'])) dV = -0.007*(vloumn[wpm[0]]-vloumn[wpm[2]]) dH = -0.25*(hydropathy_index[wpm[0]]-hydropathy_index[wpm[2]]) return [dP, dF1, dB, dST, dHT, dV, dH] def getStatical(msa,v_out,w_out,seq,mutation): wild = mutation[0] pos = int(mutation[1]) mut = mutation[2] wild_score = [] mut_score = [] i = 0 wild_v = v_out[pos-1][a2n[wild]] mut_v = v_out[pos-1][a2n[mut]] for aa in seq: wild_score.append(w_out[i][pos-1][:-1].reshape(21,21)[a2n[aa]][a2n[wild]]) mut_score.append(w_out[i][pos-1][:-1].reshape(21,21)[a2n[aa]][a2n[mut]]) i += 1 return [-0.1*(wild_v-mut_v), -0.5*(msa[a2n[wild]][pos-1]-msa[a2n[mut]][pos-1]), -0.5*(max(wild_score) - max(mut_score)), 0.5*(min(wild_score) - min(mut_score)), -0.15*(sum(wild_score) - sum(mut_score)), -0.1*(np.linalg.norm((np.array(wild_score)), ord=1)-np.linalg.norm((np.array(mut_score)), ord=1)), -0.5*(np.linalg.norm((np.array(wild_score)), ord=2)-np.linalg.norm((np.array(mut_score)), ord=2))] if __name__ == '__main__': feature = feature() al_dd = feature.get_al_dd() seq = feature.getSeq(fasta) msa = feature.get_MSA(seqa3m) static_features = feature.getStatic(wpm) statical_features = feature.getStatical(msa,v_out,w_out,seq,mutation) ``` #### File: seqddg/utilities/HHsearch.py ```python from os import popen import subprocess import time #subprocess.call('a.exe') def hhsearch(seqfilename, iter_num, path_to_database, num_threads): searchcmd = "hhblits -i " + seqfilename + " -o " + seqfilename + ".hhr -oa3m " + seqfilename + ".a3m -n " + str( iter_num) + " -d " + path_to_database + " -cpu " + str(num_threads) # print("grep \">\" " + seqfilename + ".a3m|wc -l") search = subprocess.Popen(searchcmd,shell=True) while search.poll() != 0: time.sleep(1) #if search.poll() == 0: hits_num = popen("grep \">\" " + seqfilename + ".a3m|wc -l").read() print("Found " + hits_num + "hits!") a3mfilename = seqfilename + ".a3m" return a3mfilename #else: #search.wait(1) if __name__ == '__main__': # print_hi('PyCharm') seqfilename = "g.fasta" iter_num = "3" path_to_database = "/ydata/jsun/database/UniRef30_2020_03" num_threads = 8 hhsearch(seqfilename, iter_num, path_to_database, num_threads) ``` #### File: seqddg/utilities/parsermodule.py ```python import argparse def get_parser(): parser = argparse.ArgumentParser(description='sequence based ∆∆G prediction') parser.add_argument("-s", "--sequence", help="target sequence which must be provided") parser.add_argument("-a", "--a3mfile", help="the sequence alignment file in a3m format") parser.add_argument("-db", "--database", help="path/to/UniRep30_2020_03 for hhblits") parser.add_argument("-ni", '--iteration_number', default=3, help='the iteration number of hhblits search') parser.add_argument("-nt", '--num_threads', default=4, help='number of threads used to run hhblist, default is 4') parser.add_argument("-m", '--mutation', help='mutation to predict, in form of wild_resnum_mut, like A_24_G') parser.add_argument("-ml", '--mutation_list', help='list of mutation to predict, one mutation per line') return parser if __name__ == '__main__': parser = get_parser() args = parser.parse_args() seqfilename = args.sequence a3mfilename = args.a3mfile path_to_database = args.database iter_num = args.iteration_number num_threads = args.num_threads mutation = args.mutation mutation_list = args.mutation_list print(seqfilename,a3mfilename) ```
{ "source": "JinyuanSun/song_of_fire", "score": 2 }
#### File: JinyuanSun/song_of_fire/many_models.py ```python import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns get_ipython().run_line_magic('matplotlib', 'inline') from sklearn import model_selection from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from matplotlib.colors import ListedColormap df = pd.read_csv("data4",sep="\t") df.head() print(df.describe()) print(df[df['target']=='unstable'].describe()) print(df[df['target']=='stable'].describe()) print(df[df['target']=='unchanged'].describe()) # In[27]: df.plot(kind = 'box', subplots = True, layout = (4, 4), sharex = False, sharey = False) plt.show() # In[28]: df.hist() his = plt.gcf() his.set_size_inches(12, 6) plt.show() # In[29]: sns.set_style('whitegrid') sns.FacetGrid(df, hue = 'target', size = 6).map(plt.scatter, ':', '*').add_legend() plt.show() # In[30]: plt.close() sns.pairplot(df, hue = 'target', height = 2, diag_kind = 'kde') plt.show() # In[31]: plt.figure(figsize=(15,10)) plt.subplot(2,2,1) sns.violinplot(x='target',y='+',data=df) plt.subplot(2,2,2) sns.violinplot(x='target',y='.',data=df) plt.subplot(2,2,3) sns.violinplot(x='target',y=':',data=df) plt.subplot(2,2,4) sns.violinplot(x='target',y='*',data=df) plt.show() # In[32]: # Import modules from sklearn import model_selection from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC from matplotlib.colors import ListedColormap # In[33]: df.head() # In[34]: plt.figure(figsize=(7,5)) sns.heatmap(df.corr(),annot=True,cmap='RdYlGn_r') plt.show() # In[35]: #spliting the data test_size = 0.30 seed = 7 score = 'accuracy' # Implementation of different ML Algorithms def models(X_train, Y_train,score): clfs = [] result = [] names = [] clfs.append(('LR', LogisticRegression())) clfs.append(('LDA', LinearDiscriminantAnalysis())) clfs.append(('KNN', KNeighborsClassifier())) clfs.append(('CART', DecisionTreeClassifier())) clfs.append(('NB', GaussianNB())) clfs.append(('SVM', SVC())) for algo_name, clf in clfs: k_fold = model_selection.KFold(n_splits=10, random_state=seed) cv_score = model_selection.cross_val_score(clf, X_train, Y_train, cv=k_fold, scoring=score) #result = "%s: %f (%f)" % (algo_name, cv_score.mean(), cv_score.std()) result.append((algo_name,cv_score.mean(), cv_score.std())) names.append(algo_name) return (result) # In[36]: X_all = df.iloc[:,:4] Y_all = df.iloc[:,4] # In[37]: X_train_all, X_test_all, Y_train_all, Y_test_all = model_selection.train_test_split(X_all, Y_all, test_size=test_size, random_state=14) # In[38]: models(X_train_all, Y_train_all, score) # In[39]: # Evaluation of the Classifier # Predictions on test dataset svm = SVC() svm.fit(X_train_all, Y_train_all) pred = svm.predict(X_test_all) print(accuracy_score(Y_test_all, pred)) print(confusion_matrix(Y_test_all, pred)) print(classification_report(Y_test_all, pred)) # In[19]: X_sep = df[['*','.']] Y_sep = df.target # In[20]: X_train_sep, X_test_sep, Y_train_sep, Y_test_sep = model_selection.train_test_split(X_sep, Y_sep, test_size=test_size, random_state=seed) models(X_train_sep, Y_train_sep, score) # In[22]: svm = SVC() svm.fit(X_train_sep, Y_train_sep) pred = svm.predict(X_test_sep) print(accuracy_score(Y_test_sep, pred)) print(confusion_matrix(Y_test_sep, pred)) print(classification_report(Y_test_sep, pred)) # In[23]: from keras.models import Sequential from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline # In[24]: a = pd.read_csv('data4',sep="\t", header = None) i = pd.DataFrame(a) mut = i.values # In[104]: print(mut) X = mut[1:, 0:4].astype(float) print(X) Y = mut[1:, 4] print(Y) # In[25]: X[0:5] # In[106]: Y[0:5] # In[131]: from sklearn.model_selection import train_test_split x=df.iloc[:,:-1] y=df.iloc[:,4] x_train,x_test, y_train, y_test=train_test_split(x,y) print(x_train,x_test,y_train,y_test) from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(max_iter=100) # In[114]: mlp = MLPClassifier(solver='sgd', activation='relu',alpha=1e-4,hidden_layer_sizes=(50,50), random_state=1,max_iter=10,verbose=10,learning_rate_init=.1) mlp.fit(x_train, y_train) # In[115]: print(mlp.score(x_test,y_test)) # In[116]: from sklearn.neural_network import MLPClassifier mlp = MLPClassifier(max_iter=100) parameter_space = { 'hidden_layer_sizes': [(50,50,50), (50,100,50), (100,)], 'activation': ['tanh', 'relu'], 'solver': ['sgd', 'adam'], 'alpha': [0.0001, 0.05], 'learning_rate': ['constant','adaptive'], } from sklearn.model_selection import GridSearchCV clf = GridSearchCV(mlp, parameter_space, n_jobs=-1, cv=3) clf.fit(x_train, y_train) # In[117]: # Best paramete set print('Best parameters found:\n', clf.best_params_) # All results means = clf.cv_results_['mean_test_score'] stds = clf.cv_results_['std_test_score'] for mean, std, params in zip(means, stds, clf.cv_results_['params']): print("%0.3f (+/-%0.03f) for %r" % (mean, std * 2, params)) # In[118]: y_true, y_pred = y_test , clf.predict(x_test) print(set(y_test) - set(y_pred)) from sklearn.metrics import classification_report print('Results on the test set:') print(classification_report(y_test, y_pred)) # In[133]: svm = SVC() svm.fit(x_train, y_train) pred = svm.predict(x_test) print(set(y_test) - set(y_pred)) print(accuracy_score(y_test, pred)) print(confusion_matrix(y_test, pred)) print(classification_report(y_test, pred)) # In[ ]: ```
{ "source": "JinyuGuan/JINYU", "score": 3 }
#### File: JinyuGuan/JINYU/BiliBiliaidGrapeTest1.py ```python import requests import math from bs4 import BeautifulSoup import csv import random from selenium import webdriver import time Tp = 59 #The total page number i = 2 #The start page number aidArray = [0 for x in range(2000)] #Define an array for storing aids path = "C:/Users/guanj/Documents/PythonEx/chromedriver_win32/chromedriver.exe" #Get Chromedriver.exe path driver = webdriver.Chrome(executable_path=path) #Drive Chrome while i < Tp + 1 : # j = 0 s = str(i) # The current page url = "https://space.bilibili.com/10330740?from=search&seid=12264074931239145067#/video?tid=0&page=" + s + "&keyword=&order=pubdate" #The homepage link for one upper whose uid is 10330740 driver.get(url) #Load the url time.sleep(5) #Delay 5s while 1 : #Check out HTML entire page source codes for each page pageSourceThree = driver.page_source PageSourceHtml = BeautifulSoup(pageSourceThree,"html.parser") PageSourceBodyHtml = PageSourceHtml.find('ul', attrs={'class': 'list-list'}) #Find out the information of all videos under lable '<ul> class = 'list-list' if(str(PageSourceBodyHtml) == 'None'): #If that information cannot be obtain, delay 5s, return back and do again. time.sleep(5) else: detial = PageSourceBodyHtml.findAll('li', attrs = {'class':'list-item clearfix fakeDanmu-item'}) #If got that information, find all videos' detials under lable <li> class = 'list-item clearfix fakeDanmu-item' if(str(detial) != '[]'): #If the detial is not empty, break the loop and start next page's work. break else: #If it is, sleep 5s time.sleep(5) i = i + 1 #The current page number plus one. while j < 30 : #Find all 30 aids from each page's HTML source codes aidStart = str(detial[j]).find('aid') + 5 aidEnd = str(detial[j]).find('"><a') aid = '' index = 0 while index < (aidEnd - aidStart): aid = aid + str(detial[j])[aidStart + index] index += 1 aidArray[j+30*(i-3)] = int(aid) j = j + 1 time.sleep(random.randrange(9)) ####################################################################### #Get Reply Number #Create CSV file first csvFile = open("C:/Users/guanj/Documents/PythonEx/testnetg.csv",'w+', newline = "") writer = csv.writer(csvFile) def REPLYG(str): DOWNLOAD_URL = 'http://api.bilibili.com/archive_stat/stat?aid=' + str data = requests.get(DOWNLOAD_URL).content soup = BeautifulSoup(data, "html.parser", from_encoding='utf-8') text = soup.get_text() num_r = text.find('reply') num_f = text.find(',"favorite"') index = 0 replyc = '' while index < (num_f - (num_r + 7)) : replyc = replyc + text[num_r + 7 + index] index += 1 return replyc i = 0 while i < (Tp - 1)*30 : s = str(aidArray[i]) r = REPLYG(s) writer.writerow([aidAray[i], int(r)]) i = i + 1 ``` #### File: JinyuGuan/JINYU/BilibiliAid.py ```python import requests import math from bs4 import BeautifulSoup import datetime import random from selenium import webdriver import time #upper_id = '10330740' def aid_tget(upper_id, Tp): #aidArray is used to stroe aids #Tp = 2 aidArray = [] #you can download other upper's video by changing this parameter path = "./chromedriver.exe" #Get Chromedriver.exe path driver = webdriver.Chrome(executable_path=path) #Drive Chrome #print('stage 1: obtain aids') print('opening the chrmodriver...') for page in range(1, Tp + 1) : # page_video = 0 #video index in current page print('opening page: ' + str(page)) url = "https://space.bilibili.com/" + upper_id + "?from=search&seid=12264074931239145067#/video?tid=0&page=" + str(page) + "&keyword=&order=pubdate" #The homepage link for one upper whose uid is 10330740 driver.get(url) #Load the url time.sleep(5) #Delay 5s while True : #Check out HTML entire page source codes for each page pageSourceThree = driver.page_source PageSourceHtml = BeautifulSoup(pageSourceThree,"html.parser") PageSourceBodyHtml = PageSourceHtml.find('ul', attrs={'class': 'list-list'}) #Find out the information of all videos under lable '<ul> class = 'list-list' if(str(PageSourceBodyHtml) == 'None'): #If that information cannot be obtain, delay 0.5s, return back and do again. time.sleep(0.5) else: #If got that information, find all videos' detials under lable <li> class = 'list-item clearfix fakeDanmu-item' detial_old = PageSourceBodyHtml.findAll('li', attrs = {'class':'list-item clearfix fakeDanmu-item'}) detial = PageSourceBodyHtml.findAll('li', attrs = {'class':'list-item clearfix fakeDanmu-item new'}) #Add videos under lable <new> detial = detial + detial_old if(str(detial) != '[]'): #If the detial is not empty, break the loop and start next page's work. break else: #If it is, sleep 0.5s time.sleep(0.5) print('Finished Page:' + str(page)) while True: try : #Find all aids from each page's HTML source codes aidStart = str(detial[page_video]).find('aid') + 5 aidEnd = str(detial[page_video]).find('"><a') #find the aid of this video aid = str(detial[page_video])[aidStart : aidEnd] aidArray.append(str(detial[page_video])[aidStart : aidEnd]) #print('found video number: ' + aid) page_video = page_video + 1 #time.sleep(0.5) except: #if all the video aids are already found, break and go to the next page break return aidArray ```
{ "source": "Jin-Yuhan/manimpy", "score": 3 }
#### File: manimpy/manimpy/right_angle.py ```python from manimlib.imports import * class RightAngle(VGroup): CONFIG = { 'size': 0.25, 'stroke_color': WHITE, 'stroke_width': 3.2, 'fill_color': BLUE, 'fill_opacity': 0.5, 'on_the_right': True, } def __init__(self, corner=ORIGIN, angle=0, **kwargs): VGroup.__init__(self, **kwargs) self.corner = ORIGIN self.angle = 0 r = UR if self.on_the_right else UL self.add( Polygon(ORIGIN, RIGHT * self.size * r, UR * self.size * r, UP * self.size * r, stroke_width=0, fill_color=self.fill_color, fill_opacity=self.fill_opacity), Line(RIGHT * self.size * r, UR * self.size * r + UP * self.stroke_width / 100 / 2 * 0.8, stroke_width=self.stroke_width, stroke_color=self.stroke_color), Line(UR * self.size * r + RIGHT * self.stroke_width / 100 / 2 * r * 0.8, UP * self.size * r, stroke_width=self.stroke_width, stroke_color=self.stroke_color), ) self.move_corner_to(corner) self.change_angle_to(angle) def move_corner_to(self, new_corner): self.shift(new_corner - self.corner) self.corner = new_corner return self def change_angle_to(self, new_angle): self.rotate(new_angle - self.angle, about_point=self.corner) self.angle = new_angle return self ``` #### File: manimpy/manimpy/trail.py ```python from manimlib.imports import * from manimpy.vectors import * class Trail(VGroup): class Position: def __init__(self, pos, life_time): super().__init__() self.pos = pos self.time = life_time self.life_time = life_time def update_life_time(self, dt): self.time -= dt def get_opacity(self): return self.time / self.life_time @property def should_remove(self): return self.life_time <= 0 CONFIG = { 'life_time': 1, #* 拖尾的生命周期,以秒为单位 'min_width': 5, #* 最小的宽度 'trail_color': None, #* 默认使用目标对象的颜色 'width': None, #* 默认目标对象的宽度,如果它大于min_width 'rate_func': linear } def __init__(self, obj: Mobject, **kwargs): super().__init__(obj, VGroup(), **kwargs) self.all_pos = [] self.last_pos = obj.get_center() if self.trail_color is None: self.trail_color = obj.color if not self.width: self.width = obj.get_width() if obj.get_width() > self.min_width else self.min_width def update_point_list(self, dt, pos=None): for i in range(len(self.all_pos)): self.all_pos[i].update_life_time(dt) while len(self.all_pos) > 0 and self.all_pos[0].should_remove: self.all_pos.pop(0) if not (pos is None): self.all_pos.append(Trail.Position(pos, self.life_time)) return self def get_path(self): return VGroup(*[ Line( self.all_pos[i].pos, self.all_pos[i + 1].pos, stroke_color=self.trail_color, stroke_opacity=self.rate_func(self.all_pos[i].get_opacity()), plot_depth=self.rate_func(self.all_pos[i].get_opacity()), stroke_width=self.width * self.rate_func(self.all_pos[i].get_opacity()) ) for i in range(len(self.all_pos) - 1) ]) if len(self.all_pos) > 1 else VGroup() def update_trail(self, trail, dt): pos = self[0].get_center() self.update_point_list(dt, pos if sqr_distance(pos, self.last_pos) > 0 else None) self.last_pos = pos trail.become(self.get_path()) def enable(self): self[1].add_updater(self.update_trail) return self def disable(self): self[1].remove_updater(self.update_trail) return self ``` #### File: manimpy/manimpy/vectors.py ```python from manimlib.imports import * from typing import Union def random_direction(scale: Union[float, np.ndarray] = 1, allow_z_directions: bool = False) -> np.ndarray: """ 获取一个随机的位移向量 :param scale: 对向量大小的缩放 :param allow_z_directions: 是否允许返回z轴的位移向量 :return: 随机的位移向量 """ dirs = [LEFT, RIGHT, UP, DOWN, UR, UL, DR, DL] if allow_z_directions: dirs.append(IN) dirs.append(OUT) return random.choice(dirs) * scale def vec(*args: float) -> np.ndarray: """ 构建一个n维向量 :param args: 向量的所有分量 :return: 根据参数构建的n维向量 """ return np.array(args) def sqr_magnitude(v: np.ndarray) -> float: """ 计算向量的模长的平方 :param v: 向量 :return: 向量的模长的平方 """ result = 0 for i in range(len(v)): result += v[i] ** 2 return result def magnitude(v: np.ndarray) -> float: """ 计算向量的模长 :param v: 向量 :return: 向量的模长 """ return np.sqrt(sqr_magnitude(v)) def normalize(v: np.ndarray) -> np.ndarray: """ 计算归一化向量(方向不变,模长为1) :param v: 向量 :return: 归一化后的向量 """ return v / magnitude(v) def sqr_distance(a: np.ndarray, b: np.ndarray) -> float: """ 计算两个点间距离的平方 :param a: 点1 :param b: 点2 :return: a和b的距离的平方 """ return sqr_magnitude(a - b) def distance(a: np.ndarray, b: np.ndarray) -> float: """ 计算两个点间距离 :param a: 点1 :param b: 点2 :return: a和b的距离 """ return np.sqrt(sqr_distance(a, b)) def dot(v1: np.ndarray, v2: np.ndarray) -> float: """ 计算两个向量的点乘 :param v1: 向量1 :param v2: 向量2 :return: v1, v2的点乘结果 """ result = 0. for i in range(np.min(len(v1), len(v2))): result += v1[i] * v2[i] return result def angle(v1: np.ndarray, v2: np.ndarray) -> float: """ 计算两个向量的夹角度数(弧度制) :param v1: 向量1 :param v2: 向量2 :return: v1和v2间的角度 """ dot_product = dot(v1, v2) cos_value = dot_product / np.sqrt(sqr_magnitude(v1) * sqr_magnitude(v2)) return np.arccos(cos_value) def reflect(in_dir: np.ndarray, normal=DOWN) -> np.ndarray: """ 计算反射向量 :param in_dir: 入射向量 :param normal: 法线向量 :return: 反射向量 """ return (-2 * dot(in_dir, normalize(normal))) * normal + in_dir def cross(v1: np.ndarray, v2: np.ndarray) -> np.ndarray: """ 计算两个三维向量的叉乘 :param v1: 向量1 :param v2: 向量2 :return: v1和v2的叉乘 """ return vec(v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]) def vertical_vec(v: np.ndarray) -> np.ndarray: """ 计算与当前向量垂直的向量 :param v: 向量 :return: 与当前向量垂直的向量 """ return vec(v[1], -v[0], v[2]) def x_of(v: np.ndarray) -> float: """ 获取向量的x分量 :param v: 向量 :return: 向量的x分量 """ return v[0] def y_of(v: np.ndarray) -> float: """ 获取向量的y分量 :param v: 向量 :return: 向量的y分量 """ return v[1] def z_of(v: np.ndarray) -> float: """ 获取向量的z分量 :param v: 向量 :return: 向量的z分量 """ return v[2] ```
{ "source": "JinyuJinyuJinyu/masterproject", "score": 2 }
#### File: JinyuJinyuJinyu/masterproject/utils.py ```python import os import numpy as np from sklearn.model_selection import train_test_split from tqdm import tqdm import cv2 import time image_size = (224,224) # training images path img_path = 'imageNet_val/ILSVRC2010_images_val/val' # validation images path img_val_path = '/home/jinyu/Downloads/ILSVRC2010_images_test/test' img2resize_path = ['/home/jinyu/Downloads/imageNet_val/ILSVRC2010_images_val/val'] def resize_images(path,name): img_ = os.path.join(path,name) print(img_) exit() img = cv2.imread(img_) img = cv2.resize(img, image_size) cv2.imwrite(os.path.join(path , name),img) def subract_one_lable(): # in case of some ground truth label is start from 1 not 0, need to convert label start from 0 ground_truth_path = 'imageNet_val/test_grond_truth.txt' output_path = 'test_grond_truth_zero.txt' f = open(ground_truth_path, 'r') with open(output_path, 'w') as of: for label in f: of.write(str(int(label)-1) + '\n') def load_dat(): training_labels = 'imageNet_val/ILSVRC2010_validation_ground_truth.txt' validation_labels = 'test_grond_truth_zero.txt' ttl2load = len(os.listdir(img_path)) ttl2load +=len(os.listdir(img_val_path)) pbar = tqdm(total=ttl2load) # training images label path f = open(training_labels,'r') # validation images label path f_val = open(validation_labels,'r') dat_x = [] dat_y = [] for lable in f: dat_y.append(lable) for f_n in os.listdir(img_path): img_ = os.path.join(img_path, f_n) img = cv2.imread(img_) dat_x.append(img) pbar.update(1) dat_x = np.array(dat_x) dat_y = np.array(dat_y) dat_y = dat_y.astype('int32') val_x = [] val_y = [] for f_n in os.listdir(img_val_path): img_ = os.path.join(img_val_path,f_n) img = cv2.imread(img_) val_x.append(img) pbar.update(1) for lable in f_val: val_y.append(lable) val_x = np.array(val_x) val_y = np.array(val_y) val_y = val_y.astype('int32') print('done') return dat_x ,val_x,dat_y ,val_y def main(): ttl2resize = 0 for i in range(len(img2resize_path)): ttl2resize += len(os.listdir(img2resize_path[i])) pbar = tqdm(total=ttl2resize) for i in range(len(img2resize_path)): for f_n in os.listdir(img2resize_path[i]): resize_images(img2resize_path[i],f_n) pbar.update(1) if __name__ == '__main__': main() # subract_one_lable() ```
{ "source": "jinyuKING/Paddle", "score": 2 }
#### File: unittests/mkldnn/test_matmul_mkldnn_op.py ```python from __future__ import print_function import unittest, os import numpy as np from paddle.fluid.tests.unittests.op_test import OpTest, skip_check_grad_ci @skip_check_grad_ci(reason="DNNL's MatMul doesn't implemend grad kernel.") class TestDnnlMatMulOp(OpTest): def generate_data(self): self.x = np.random.random((25, 2, 2)).astype("float32") self.y = np.random.random((25, 2, 2)).astype("float32") self.alpha = 1.0 self.out = self.alpha * np.matmul(self.x, self.y) def set_attributes(self): self.alpha = self.alpha if hasattr(self, 'alpha') else 1.0 self.attrs = {'alpha': self.alpha} def setUp(self): # Set max isa, otherwise fails on SKX and earlier os.environ["DNNL_MAX_CPU_ISA"] = "AVX" self.op_type = "matmul" self._cpu_only = True self.use_mkldnn = True self.generate_data() self.set_attributes() self.attrs['use_mkldnn'] = True self.inputs = {'X': self.x, 'Y': self.y} self.outputs = {'Out': self.out} def test_check_output(self): self.check_output() class TestDnnlMatMulOpAlpha(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((17, 2, 3)).astype("float32") self.y = np.random.random((17, 3, 2)).astype("float32") self.alpha = 2.0 self.out = self.alpha * np.matmul(self.x, self.y) class TestDnnlMatMulOp2D(TestDnnlMatMulOp): def print_tensor(self, name, tensor): print(name) print(tensor) def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((9, 12)).astype("float32") self.out = np.matmul(self.x, self.y) class TestDnnlMatMulOpTransposeX(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((12, 9)).astype("float32") self.out = np.matmul(np.transpose(self.x), self.y) def set_attributes(self): self.attrs = {'transpose_X': True} class TestDnnlMatMulOpTransposeY(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((12, 9)).astype("float32") self.y = np.random.random((12, 9)).astype("float32") self.out = np.matmul(self.x, np.transpose(self.y)) def set_attributes(self): self.attrs = {'transpose_Y': True} class TestDnnlMatMulOpTransposeY3D(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((17, 3, 2)).astype("float32") self.y = np.random.random((17, 3, 2)).astype("float32") self.out = np.matmul(self.x, np.transpose(self.y, (0, 2, 1))) def set_attributes(self): self.attrs = {'transpose_Y': True} class TestDnnlMatMulOpInt8NoScales(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.random((12, 9)).astype("int8") self.y = np.random.random((9, 12)).astype("int8") self.out = np.matmul(self.x, self.y) class TestDnnlMatMulOpInt8(TestDnnlMatMulOp): def quantize(self, tensor): scale = 127. / np.abs(np.amax(tensor)) quantized = np.round(scale * tensor).astype("int8") return scale, quantized def generate_data(self): x_float = np.random.random((12, 9)).astype("float32") self.x_scale, self.x = self.quantize(x_float) y_float = np.random.random((9, 12)).astype("float32") self.y_scale, self.y = self.quantize(y_float) out_float = np.matmul(x_float, y_float) self.out_scale, self.out = self.quantize(out_float) def set_attributes(self): self.attrs = { 'Scale_x': self.x_scale, 'Scale_y': self.y_scale, 'Scale_out': self.out_scale, } def test_check_output(self): int_atol = 1 self.check_output(atol=int_atol) class TestDnnlMatMulOpInt8ForceFP32(TestDnnlMatMulOpInt8): def generate_data(self): x_float = np.random.random((12, 9)).astype("float32") self.x_scale, self.x = self.quantize(x_float) y_float = np.random.random((9, 12)).astype("float32") self.y_scale, self.y = self.quantize(y_float) out_float = np.matmul(x_float, y_float) self.out = out_float def set_attributes(self): self.attrs = { 'Scale_x': self.x_scale, 'Scale_y': self.y_scale, 'force_fp32_output': True } class TestDnnlMatMulOpInt8ForceFP32BasicScales(TestDnnlMatMulOp): def generate_data(self): self.x = np.random.randint(0, 3, (12, 9)).astype("int8") self.y = np.random.randint(0, 3, (9, 12)).astype("int8") self.out = np.matmul(self.x, self.y).astype("float32") def set_attributes(self): self.attrs = {'force_fp32_output': True} if __name__ == "__main__": unittest.main() ``` #### File: tests/unittests/test_dyn_rnn.py ```python from __future__ import print_function import paddle.fluid as fluid import paddle import unittest import numpy from paddle.fluid.framework import Program, program_guard from paddle.fluid.layers.control_flow import lod_rank_table from paddle.fluid.layers.control_flow import max_sequence_len from paddle.fluid.layers.control_flow import lod_tensor_to_array from paddle.fluid.layers.control_flow import array_to_lod_tensor from paddle.fluid.layers.control_flow import shrink_memory from fake_reader import fake_imdb_reader class TestDynamicRNN(unittest.TestCase): def setUp(self): self.word_dict_len = 5147 self.BATCH_SIZE = 2 reader = fake_imdb_reader(self.word_dict_len, self.BATCH_SIZE * 100) self.train_data = paddle.batch(reader, batch_size=self.BATCH_SIZE) def _train(self, main_program, startup_program, feed_list, fetch_list, is_nested=False, max_iters=1): place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_program) feeder = fluid.DataFeeder(feed_list=feed_list, place=place) data = next(self.train_data()) for iter_id in range(max_iters): fetch_outs = exe.run(main_program, feed=feeder.feed(data), fetch_list=fetch_list, return_numpy=False) if len(fetch_list) == 3: rnn_in_seq = fetch_outs[0] rnn_out_seq = fetch_outs[1] if not is_nested: # Check for lod set in runtime. When lod_level is 1, # the lod of DynamicRNN's output should be the same as input. self.assertEqual(rnn_in_seq.lod(), rnn_out_seq.lod()) loss_i = numpy.array(fetch_outs[2]) elif len(fetch_list) == 1: loss_i = numpy.array(fetch_outs[0]) #print(loss_i) self.assertEqual((1, ), loss_i.shape) self.assertFalse(numpy.isnan(loss_i)) if iter_id == 0: loss_0 = loss_i if max_iters > 10: # loss should be small after 10 mini-batch self.assertLess(loss_i[0], loss_0[0]) def test_plain_while_op(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=1) sent_emb = fluid.layers.embedding( input=sentence, size=[self.word_dict_len, 32], dtype='float32') rank_table = lod_rank_table(x=sent_emb) sent_emb_array = lod_tensor_to_array(x=sent_emb, table=rank_table) seq_len = max_sequence_len(rank_table=rank_table) i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) i.stop_gradient = False boot_mem = fluid.layers.fill_constant_batch_size_like( input=fluid.layers.array_read( array=sent_emb_array, i=i), value=0, shape=[-1, 100], dtype='float32') boot_mem.stop_gradient = False mem_array = fluid.layers.array_write(x=boot_mem, i=i) cond = fluid.layers.less_than(x=i, y=seq_len) cond.stop_gradient = False while_op = fluid.layers.While(cond=cond) out = fluid.layers.create_array(dtype='float32') with while_op.block(): mem = fluid.layers.array_read(array=mem_array, i=i) ipt = fluid.layers.array_read(array=sent_emb_array, i=i) mem = shrink_memory(x=mem, i=i, table=rank_table) hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh') fluid.layers.array_write(x=hidden, i=i, array=out) fluid.layers.increment(x=i, in_place=True) fluid.layers.array_write(x=hidden, i=i, array=mem_array) fluid.layers.less_than(x=i, y=seq_len, cond=cond) result_all_timesteps = array_to_lod_tensor(x=out, table=rank_table) last = fluid.layers.sequence_last_step(input=result_all_timesteps) logits = fluid.layers.fc(input=last, size=1, act=None) label = fluid.layers.data(name='label', shape=[1], dtype='float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(loss) sgd = fluid.optimizer.SGD(1e-4) sgd.minimize(loss=loss) # Check for lod_level set in compile-time. self.assertEqual(sent_emb.lod_level, result_all_timesteps.lod_level) self._train( main_program=main_program, startup_program=startup_program, feed_list=[sentence, label], fetch_list=[sent_emb, result_all_timesteps, loss], is_nested=False, max_iters=1) def test_train_dynamic_rnn(self): main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=1) sent_emb = fluid.layers.embedding( input=sentence, size=[self.word_dict_len, 32], dtype='float32') drnn = fluid.layers.DynamicRNN() with drnn.block(): in_ = drnn.step_input(sent_emb) mem = drnn.memory(shape=[100], dtype='float32') out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh') drnn.update_memory(mem, out_) drnn.output(out_) drnn_result = drnn() last = fluid.layers.sequence_last_step(input=drnn_result) logits = fluid.layers.fc(input=last, size=1, act=None) label = fluid.layers.data(name='label', shape=[1], dtype='float32') loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(loss) sgd = fluid.optimizer.Adam(1e-3) sgd.minimize(loss=loss) # Check for lod_level set in compile-time. self.assertEqual(sent_emb.lod_level, drnn_result.lod_level) self._train( main_program=main_program, startup_program=startup_program, feed_list=[sentence, label], fetch_list=[sent_emb, drnn_result, loss], is_nested=False, max_iters=100) def _fake_reader(self): seq_len, label = [[2, 2]], [0, 1] data = [] for ele in seq_len: for j in ele: data.append([numpy.random.randint(30) for _ in range(j)]) while True: yield data, label # this unit test is just used to the two layer nested dyn_rnn. def test_train_nested_dynamic_rnn(self): word_dict = [i for i in range(30)] main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=2) label = fluid.layers.data( name='label', shape=[1], dtype='float32', lod_level=1) drnn0 = fluid.layers.DynamicRNN() with drnn0.block(): in_0 = drnn0.step_input(sentence) assert in_0.lod_level == 1, "the lod level of in_ should be 1" sentence_emb = fluid.layers.embedding( input=in_0, size=[len(word_dict), 32], dtype='float32') out_0 = fluid.layers.fc(input=sentence_emb, size=100, act='tanh') drnn1 = fluid.layers.DynamicRNN() with drnn1.block(): in_1 = drnn1.step_input(out_0) assert in_1.lod_level == 0, "the lod level of in_1 should be 0" out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh') drnn1.output(out_1) drnn1_result = drnn1() last_1 = fluid.layers.sequence_last_step(input=drnn1_result) drnn0.output(last_1) last = drnn0() logits = fluid.layers.fc(input=last, size=1, act=None) loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(loss) sgd = fluid.optimizer.SGD(1e-3) sgd.minimize(loss=loss) train_data_orig = self.train_data self.train_data = paddle.batch(self._fake_reader, batch_size=2) self._train( main_program=main_program, startup_program=startup_program, feed_list=[sentence, label], fetch_list=[loss], is_nested=True, max_iters=100) self.train_data = train_data_orig # this unit test is just used to the two layer nested dyn_rnn. def test_train_nested_dynamic_rnn2(self): word_dict = [i for i in range(30)] hidden_size = 32 main_program = fluid.Program() startup_program = fluid.Program() with fluid.program_guard(main_program, startup_program): sentence = fluid.layers.data( name='word', shape=[1], dtype='int64', lod_level=2) label = fluid.layers.data( name='label', shape=[1], dtype='float32', lod_level=1) drnn0 = fluid.layers.DynamicRNN() with drnn0.block(): in_0 = drnn0.step_input(sentence) sentence_emb = fluid.layers.embedding( input=in_0, size=[len(word_dict), hidden_size], dtype='float32') input_forward_proj = fluid.layers.fc(input=sentence_emb, size=hidden_size * 4, act=None, bias_attr=False) forward, _ = fluid.layers.dynamic_lstm( input=input_forward_proj, size=hidden_size * 4, use_peepholes=False) drnn1 = fluid.layers.DynamicRNN() with drnn1.block(): in_1 = drnn1.step_input(forward) out_1 = fluid.layers.fc(input=[in_1], size=100, act='tanh') drnn1.output(out_1) last = fluid.layers.sequence_last_step(input=drnn1()) drnn0.output(last) last = drnn0() logits = fluid.layers.fc(input=last, size=1, act=None) loss = fluid.layers.sigmoid_cross_entropy_with_logits( x=logits, label=label) loss = fluid.layers.mean(loss) sgd = fluid.optimizer.SGD(1e-3) sgd.minimize(loss=loss) train_data_orig = self.train_data self.train_data = paddle.batch(self._fake_reader, batch_size=2) self._train( main_program=main_program, startup_program=startup_program, feed_list=[sentence, label], fetch_list=[loss], is_nested=True, max_iters=100) self.train_data = train_data_orig class TestDynamicRNNErrors(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): init = fluid.layers.zeros(shape=[1], dtype='float32') shape = 'shape' sentence = fluid.data( name='sentence', shape=[None, 32], dtype='float32', lod_level=1) # The type of Input(shape) in API(memory) must be list or tuple def input_shape_type_of_memory(): drnn = fluid.layers.DynamicRNN() with drnn.block(): res = drnn.memory(init, shape) self.assertRaises(TypeError, input_shape_type_of_memory) # The type of element of Input(*outputs) in API(output) must be Variable. def outputs_type_of_output(): drnn = fluid.layers.DynamicRNN() with drnn.block(): word = drnn.step_input(sentence) memory = drnn.memory(shape=[10], dtype='float32', value=0) hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh') out = np.ones(1).astype('float32') drnn.update_memory(ex_mem=memory, new_mem=hidden) drnn.output(hidden, out) self.assertRaises(TypeError, outputs_type_of_output) if __name__ == '__main__': unittest.main() ```
{ "source": "JinyuSun-csu/D-GCAN", "score": 2 }
#### File: D-GCAN/Discussion/GNN.py ```python import timeit import numpy as np import math import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import pickle from sklearn.metrics import roc_auc_score,roc_curve from sklearn.metrics import confusion_matrix import preprocess as pp import pandas as pd import matplotlib.pyplot as plt class MolecularGraphNeuralNetwork(nn.Module): def __init__(self, N_fingerprints, dim, layer_hidden, layer_output): super(MolecularGraphNeuralNetwork, self).__init__() self.embed_fingerprint = nn.Embedding(N_fingerprints, dim) self.W_fingerprint = nn.ModuleList([nn.Linear(dim, dim) for _ in range(layer_hidden)]) self.W_output = nn.ModuleList([nn.Linear(dim, dim) for _ in range(layer_output)]) self.W_property = nn.Linear(dim, 2) def pad(self, matrices, pad_value): """Pad the list of matrices with a pad_value (e.g., 0) for batch processing. For example, given a list of matrices [A, B, C], we obtain a new matrix [A00, 0B0, 00C], where 0 is the zero (i.e., pad value) matrix. """ shapes = [m.shape for m in matrices] M, N = sum([s[0] for s in shapes]), sum([s[1] for s in shapes]) zeros = torch.FloatTensor(np.zeros((M, N))).to(device) pad_matrices = pad_value + zeros i, j = 0, 0 for k, matrix in enumerate(matrices): m, n = shapes[k] pad_matrices[i:i+m, j:j+n] = matrix i += m j += n return pad_matrices def update(self, matrix, vectors, layer): hidden_vectors = torch.relu(self.W_fingerprint[layer](vectors)) return hidden_vectors + torch.matmul(matrix, hidden_vectors) def sum(self, vectors, axis): sum_vectors = [torch.sum(v, 0) for v in torch.split(vectors, axis)] return torch.stack(sum_vectors) def gnn(self, inputs): """Cat or pad each input data for batch processing.""" Smiles,fingerprints, adjacencies, molecular_sizes = inputs fingerprints = torch.cat(fingerprints) adjacencies = self.pad(adjacencies, 0) """GNN layer (update the fingerprint vectors).""" fingerprint_vectors = self.embed_fingerprint(fingerprints) for l in range(layer_hidden): hs = self.update(adjacencies, fingerprint_vectors, l) fingerprint_vectors = F.normalize(hs, 2, 1) # normalize. """Molecular vector by sum or mean of the fingerprint vectors.""" molecular_vectors = self.sum(fingerprint_vectors, molecular_sizes) return Smiles,molecular_vectors def mlp(self, vectors): """Classifier based on multilayer perceptron给予多层感知器的分类器.""" for l in range(layer_output): vectors = torch.relu(self.W_output[l](vectors)) outputs = torch.sigmoid(self.W_property(vectors)) return outputs def forward_classifier(self, data_batch, train): inputs = data_batch[:-1] correct_labels = torch.cat(data_batch[-1]) if train: Smiles,molecular_vectors = self.gnn(inputs) predicted_scores = self.mlp(molecular_vectors) loss = F.cross_entropy(predicted_scores, correct_labels.long()) predicted_scores = predicted_scores.to('cpu').data.numpy() predicted_scores = [s[1] for s in predicted_scores] correct_labels = correct_labels.to('cpu').data.numpy() return loss,predicted_scores, correct_labels else: with torch.no_grad(): Smiles,molecular_vectors = self.gnn(inputs) predicted_scores = self.mlp(molecular_vectors) loss = F.cross_entropy(predicted_scores, correct_labels.long()) predicted_scores = predicted_scores.to('cpu').data.numpy() predicted_scores = [s[1] for s in predicted_scores] correct_labels = correct_labels.to('cpu').data.numpy() return Smiles,loss,predicted_scores, correct_labels class Trainer(object): def __init__(self, model): self.model = model self.optimizer = optim.Adam(self.model.parameters(), lr=lr) def train(self, dataset): np.random.shuffle(dataset) N = len(dataset) loss_total = 0 P, C = [], [] for i in range(0, N, batch_train): data_batch = list(zip(*dataset[i:i+batch_train])) loss,predicted_scores, correct_labels= self.model.forward_classifier(data_batch, train=True) P.append(predicted_scores) C.append(correct_labels) self.optimizer.zero_grad() loss.backward() self.optimizer.step() loss_total += loss.item() tru=np.concatenate(C) pre=np.concatenate(P) AUC = roc_auc_score(tru, pre) pred = [1 if i >0.4 else 0 for i in pre] predictions =np.stack((tru,pred,pre)) return AUC, loss_total,predictions class Tester(object): def __init__(self, model): self.model = model def test_classifier(self, dataset): N = len(dataset) loss_total = 0 SMILES,P, C ='', [], [] for i in range(0, N, batch_test): data_batch = list(zip(*dataset[i:i+batch_test])) (Smiles,loss,predicted_scores,correct_labels) = self.model.forward_classifier( data_batch, train=False) SMILES += ' '.join(Smiles) + ' ' loss_total += loss.item() P.append(predicted_scores) C.append(correct_labels) SMILES = SMILES.strip().split() tru=np.concatenate(C) pre=np.concatenate(P) AUC = roc_auc_score(tru, pre) pred = [1 if i >0.4 else 0 for i in pre] # Tru=map(str,np.concatenate(C)) # Pre=map(str,np.concatenate(P)) # predictions = '\n'.join(['\t'.join(x) for x in zip(SMILES, Tru, Pre)]) predictions =np.stack((tru,pred,pre)) return AUC, loss_total,predictions def save_result(self, result, filename): with open(filename, 'a') as f: f.write(result + '\n') def save_predictions(self, predictions, filename): with open(filename, 'w') as f: f.write('Smiles\tCorrect\tPredict\n') f.write(predictions + '\n') def save_model(self, model, filename): torch.save(model.state_dict(), filename) def split_dataset(dataset, ratio): """Shuffle and split a dataset.""" np.random.seed(111) # fix the seed for shuffle. np.random.shuffle(dataset) n = int(ratio * len(dataset)) return dataset[:n], dataset[n:] def edit_dataset(drug,non_drug,task): np.random.seed(111) # fix the seed for shuffle. if task =='balance': #np.random.shuffle(non_drug) non_drug=non_drug[0:len(drug)] else: np.random.shuffle(non_drug) np.random.shuffle(drug) dataset_train_drug, dataset_test_drug = split_dataset(drug, 0.9) # dataset_train_drug,dataset_dev_drug = split_dataset(dataset_train_drug, 0.9) dataset_train_no, dataset_test_no = split_dataset(non_drug, 0.9) # dataset_train_no,dataset_dev_no = split_dataset(dataset_train_no, 0.9) dataset_train = dataset_train_drug+dataset_train_no dataset_test= dataset_test_drug+dataset_test_no # dataset_dev = dataset_dev_drug+dataset_dev_no return dataset_train, dataset_test def dump_dictionary(dictionary, filename): with open(filename, 'wb') as f: pickle.dump(dict(dictionary), f) if __name__ == "__main__": radius=1 dim=65 layer_hidden=0 layer_output=5 batch_train=48 batch_test=48 lr=3e-4 lr_decay=0.85 decay_interval=10#下降间隔 iteration=140 N=5000 (radius, dim, layer_hidden, layer_output, batch_train, batch_test, decay_interval, iteration) = map(int, [radius, dim, layer_hidden, layer_output, batch_train, batch_test, decay_interval, iteration]) lr, lr_decay = map(float, [lr, lr_decay]) if torch.cuda.is_available(): device = torch.device('cuda') print('The code uses a GPU!') else: device = torch.device('cpu') print('The code uses a CPU...') print('-'*100) # print('Preprocessing the', dataset, 'dataset.') print('Just a moment......') print('-'*100) path='E:/code/drug/drugnn/' dataname='' dataset_train = pp.create_dataset('data_train.txt',path,dataname) dataset_test = pp.create_dataset('data_test.txt',path,dataname) #dataset_train, dataset_test = edit_dataset(dataset_drug, dataset_nondrug,'balance') #dataset_train, dataset_dev = split_dataset(dataset_train, 0.9) print('The preprocess has finished!') print('# of training data samples:', len(dataset_train)) #print('# of development data samples:', len(dataset_dev)) print('# of test data samples:', len(dataset_test)) print('-'*100) print('Creating a model.') torch.manual_seed(111) model = MolecularGraphNeuralNetwork( N, dim, layer_hidden, layer_output).to(device) trainer = Trainer(model) tester = Tester(model) print('# of model parameters:', sum([np.prod(p.size()) for p in model.parameters()])) print('-'*100) file_result = path+'AUC'+'.txt' # file_result = '../output/result--' + setting + '.txt' result = 'Epoch\tTime(sec)\tLoss_train\tLoss_test\tAUC_train\tAUC_test' file_test_result = path+ 'test_prediction'+ '.txt' file_predictions = path+'train_prediction' +'.txt' file_model = path+'model'+'.h5' with open(file_result, 'w') as f: f.write(result + '\n') print('Start training.') print('The result is saved in the output directory every epoch!') np.random.seed(111) start = timeit.default_timer() for epoch in range(iteration): epoch += 1 if epoch % decay_interval == 0: trainer.optimizer.param_groups[0]['lr'] *= lr_decay #[‘amsgrad’, ‘params’, ‘lr’, ‘betas’, ‘weight_decay’, ‘eps’] prediction_train,loss_train,train_res= trainer.train(dataset_train) #prediction_dev,dev_res = tester.test_classifier(dataset_dev) prediction_test,loss_test,test_res = tester.test_classifier(dataset_test) time = timeit.default_timer() - start if epoch == 1: minutes = time * iteration / 60 hours = int(minutes / 60) minutes = int(minutes - 60 * hours) print('The training will finish in about', hours, 'hours', minutes, 'minutes.') print('-'*100) print(result) result = '\t'.join(map(str, [epoch, time, loss_train, loss_test,prediction_train,prediction_test])) tester.save_result(result, file_result) print(result) loss = pd.read_table(file_result) plt.plot(loss['Loss_train'], color='r',label='Loss of train set') plt.plot(loss['Loss_test'], color='y',label='Loss of train set') plt.plot(loss['AUC_train'], color='y',label='AUC of train set') plt.plot(loss['AUC_test'], color='b',label='AUC of test set') # plt.plot(loss['AUC_test'], color='y',label='AUC of test set') plt.ylabel('AUC') plt.xlabel('Epoch') plt.legend() plt.savefig(path+'loss.tif',dpi=300) plt.show() colors = ['#00CED1','#DC143C' ] target_names=np.array(['druglike','not-drug']) lw=2 res_test = test_res.T for color,i,target_name in zip(colors,[1,0],target_names): plt.scatter((res_test[res_test[:,0]==i,0]),(res_test[res_test[:,0]==i,2]),color = color,alpha=.8,lw=lw,label=target_name) plt.legend(loc='best',shadow=False,scatterpoints=1) plt.title('the results of gnn classification') res_train = train_res.T cn_matrix=confusion_matrix(res_train[:,0], res_train[:,1]) cn_matrix tn1 = cn_matrix[0,0] tp1 = cn_matrix[1,1] fn1 = cn_matrix[1,0] fp1 = cn_matrix[0,1] bacc_train = ((tp1/(tp1+fn1))+(tn1/(tn1+fp1)))/2#balance accurance pre_train = tp1/(tp1+fp1)#precision/q+ rec_train = tp1/(tp1+fn1)#recall/se sp_train=tn1/(tn1+fp1) q__train=tn1/(tn1+fn1) f1_train = 2*pre_train*rec_train/(pre_train+rec_train)#f1score mcc_train = ((tp1*tn1) - (fp1*fn1))/math.sqrt((tp1+fp1)*(tp1+fn1)*(tn1+fp1)*(tn1+fn1))#Matthews correlation coefficient acc_train=(tp1+tn1)/(tp1+fp1+fn1+tn1)#accurancy fpr_train, tpr_train, thresholds_train =roc_curve(res_train[:,0],res_train[:,1]) print('bacc_train:',bacc_train) print('pre_train:',pre_train) print('rec_train:',rec_train) print('f1_train:',f1_train) print('mcc_train:',mcc_train) print('sp_train:',sp_train) print('q__train:',q__train) print('acc_train:',acc_train) ''' res_dev = dev_res.T cn_matrix=confusion_matrix(res_dev[:,0], res_dev[:,1]) cn_matrix tn2 = cn_matrix[0,0] tp2 = cn_matrix[1,1] fn2 = cn_matrix[1,0] fp2 = cn_matrix[0,1] bacc_dev = ((tp2/(tp2+fn2))+(tn2/(tn2+fp2)))/2#balance accurance pre_dev= tp2/(tp2+fp2)#precision/q+ rec_dev = tp2/(tp2+fn2)#recall/se sp_dev=tn2/(tn2+fp2) q__dev=tn2/(tn2+fn2) f1_dev = 2*pre_dev*rec_dev/(pre_dev+rec_dev)#f1score mcc_dev = ((tp2*tn2) - (fp2*fn2))/math.sqrt((tp2+fp2)*(tp2+fn2)*(tn2+fp2)*(tn2+fn2))#Matthews correlation coefficient acc_dev=(tp2+tn2)/(tp2+fp2+fn2+tn2)#accurancy fpr_dev, tpr_dev, thresholds_dev =roc_curve(res_dev[:,0],res_dev[:,1]) print('bacc_dev:',bacc_dev) print('pre_dev:',pre_dev) print('rec_dev:',rec_dev) print('f1_dev:',f1_dev) print('mcc_dev:',mcc_dev) print('sp_dev:',sp_dev) print('q__dev:',q__dev) print('acc_dev:',acc_dev) ''' cnf_matrix=confusion_matrix(res_test[:,0], res_test[:,1]) cnf_matrix tn = cnf_matrix[0,0] tp = cnf_matrix[1,1] fn = cnf_matrix[1,0] fp = cnf_matrix[0,1] bacc = ((tp/(tp+fn))+(tn/(tn+fp)))/2#balance accurance pre = tp/(tp+fp)#precision/q+ rec = tp/(tp+fn)#recall/se sp=tn/(tn+fp) q_=tn/(tn+fn) f1 = 2*pre*rec/(pre+rec)#f1score mcc = ((tp*tn) - (fp*fn))/math.sqrt((tp+fp)*(tp+fn)*(tn+fp)*(tn+fn))#Matthews correlation coefficient acc=(tp+tn)/(tp+fp+fn+tn)#accurancy fpr, tpr, thresholds =roc_curve(res_test[:,0], res_test[:,1]) print('bacc:',bacc) print('pre:',pre) print('rec:',rec) print('f1:',f1) print('mcc:',mcc) print('sp:',sp) print('q_:',q_) print('acc:',acc) print('auc:',prediction_test) ```
{ "source": "JinyuXu/langevin_dynamics", "score": 3 }
#### File: langevin_dynamics/langevin_dynamics/langevin_dynamics.py ```python import numpy as np import scipy.stats as ss import matplotlib.pyplot as plt import argparse def getinput(): input = argparse.ArgumentParser() input.add_argument('--initial_position', type = float, default = 0, help = 'Initial position of the particle, default = 0' ) input.add_argument('--initial_velocity', type = float, default = 0, help = 'Initial velocity of the particle, default = 0' ) input.add_argument('--temperature', type = float, default = 300, help = 'Temperature of the molecule, default = 300' ) input.add_argument('--damping_coefficient', type = float, default = 0.1, help = 'Damping Coefficient of the molecule, default = 0.1' ) input.add_argument('--time_step', type = float, default = 0.2, help = 'Time interval of the simulation, default = 0.01' ) input.add_argument('--wall_size', type = float, default = 5, help = 'Wall size of the simulation, default = 5' ) input.add_argument('--total_time', type = float, default = 1000, help = 'Total time of the simulation, default = 1000' ) inp = input.parse_args() return inp def acceleration(gamma=0.1,velocity=0,temperature=300,timestep=0.1,mass=1): sigma=np.sqrt(2*temperature*gamma*1*timestep) return (-gamma*velocity/mass + np.random.normal(0,sigma))*timestep def checkwall(position, wallsize): if position >= wallsize or position<=0: return True else: return False def lgmotion(velocity,timestep): return velocity*timestep def integrate(position=0,velocity=0,temperature=300,gamma=0.1,timestep=0.1,wallsize=5,totaltime=1000,mass=1): timepass=0 indexnum=0 index=[] while timepass < totaltime : indexnum +=1 index.append([indexnum,timepass,position,velocity]) timepass+=timestep velocity += acceleration(gamma, velocity, temperature, timestep) position += lgmotion(velocity, timestep) if checkwall(position,wallsize): if position >= wallsize: position = wallsize index.append([indexnum+1,timepass,position,velocity]) else: position= 0 index.append([indexnum+1,timepass,position,velocity]) break return timepass,index def filecreation(index): indexf=np.array(index) timef=indexf[:,1] positionf=indexf[:,2] velocityf=indexf[:,3] with open('Langevin_Motion.txt','w+') as file: file.write('Index Time Position Velocity \n') for i in range(len(timef)): file.write('{} {:.3f} {:.5f} {:.5f} \n'.format(i,timef[i],positionf[i],velocityf[i])) def histogram(arr): plt.figure(0) plt.hist(arr,bins=20) plt.title('100 runs of Langevin Motion') plt.xlabel('Time passed') plt.ylabel('Number of runs') plt.savefig('histogram.png') def trajectory(x,y): plt.figure(1) plt.plot(x,y) plt.title('Position vs Time') plt.xlabel('Time passed') plt.ylabel('Position') plt.savefig('trajectory.png') def main(): #get input for simulation inp=getinput() #run for 100 times, collecting all the relavant data t_arr=[] #time for i in range(100): t,idx=integrate(position=inp.initial_position,velocity=inp.initial_velocity,temperature=inp.temperature,gamma=inp.damping_coefficient,timestep=inp.time_step,wallsize=inp.wall_size,totaltime=inp.total_time,mass=1) t_arr.append(t) #plot the histogram of 100 runs histogram(t_arr) #plot the position vs time plot of the last run trjdata=np.array(idx) xdata=trjdata[:,1] ydata=trjdata[:,2] trajectory(xdata,ydata) #write the index in to a txt file of the first run filecreation(idx) if __name__ == '__main__': main() ```
{ "source": "jinyyy666/splendor", "score": 3 }
#### File: jinyyy666/splendor/model.py ```python from enum import Enum import csv import random from util import greater_than_or_equal_to class Gem(Enum): RED = 'r' GREEN = 'g' BLUE = 'b' WHITE = 'w' BLACK = 'k' GOLD = 'o' class Card(object): def __init__(self, id, level, gem, reputation, cost): self.id = id self.level = level self.gem = gem self.reputation = reputation self.cost = cost class Noble(object): def __init__(self, id, reputation, cost): self.id = id self.reputation = reputation self.cost = cost def can_attract(self, card_summary): '''Returns whether a player can attract the noble''' return greater_than_or_equal_to(card_summary, self.cost) ``` #### File: splendor/strategies/aggressive_strategy.py ```python import functools, operator, math from strategies.strategy import Strategy from copy import deepcopy from player import ( Action, ActionParams, ) from model import ( Gem ) from util import ( greater_than_or_equal_to ) class CardValue(object): def __init__(self, card_id, card_rep, can_afford, value, dist, req_gems): self.card_id = card_id self.card_reputation = card_rep self.can_afford = can_afford self.value = value self.dist = dist self.req_gems = req_gems ''' Aggressive Strategy: - It looks at other players as well - It will try to collect the most common gems - It will try to purchase the cards from low to high if it can afford ''' class AggressiveStrategy(Strategy): def __init__(self, board, player): self.steps = 0 self.player = player #self.other_players = other_players super().__init__(board, [player]) ## just pick the top three most common gems def recommend_gems_to_pick(self, gems_on_board, sorted_card_values): gem_scores = {gem : 0 for gem in Gem} for c_v in sorted_card_values: for g, c in c_v.req_gems.items(): if g == Gem.GOLD: import pdb; pdb.set_trace() gem_scores[g] += math.log(1 + c_v.value) * c sorted_v = sorted(gem_scores.items(), key=lambda kv: kv[1], reverse=True) gems_to_pick = {} for gem, _ in sorted_v: if gem == Gem.GOLD: continue if gems_on_board[gem] > 0: if gem == Gem.GOLD: import pdb; pdb.set_trace() gems_to_pick[gem] = 1 if len(gems_to_pick) == 3: break return gems_to_pick def compute_distance(self, eff_gems, cost): gems_to_pay = {} gold_count = eff_gems.get(Gem.GOLD, 0) dist = 0 for g, v in cost.items(): eff_gem = eff_gems.get(g, 0) if (eff_gem < v): dist += v - eff_gem gems_to_pay[g] = v - eff_gem dist = max(0, dist - gold_count) if gold_count > 0: for g, c in gems_to_pay.items(): if c > 0: while (gold_count > 0) and (gems_to_pay[g] > 0): gems_to_pay[g] -= 1 gold_count -= 1 if gold_count == 0: break cost_to_pay = 0 for _, c in gems_to_pay.items(): cost_to_pay += c if dist != cost_to_pay: import pdb; pdb.set_trace() assert (dist == cost_to_pay) return dist, gems_to_pay def get_card_value(self, card_gem, card_rep, can_afford, dist, ply_card_summary): aff_score = 2 if can_afford else 0 dist_score = math.exp(-1 * dist) sum_c = 0 n_c = 0 for g, c in ply_card_summary.items(): if c > 0: n_c += 1 sum_c += c mean_c = 0 if n_c == 0 else 1.0 * sum_c / n_c var_new = 0 var_old = 0 for g, c in ply_card_summary.items(): if c > 0: var_old += abs(c - mean_c) ** 2 if g != card_gem: var_new += abs(c - mean_c) ** 2 else: var_new += abs((c + 1) - mean_c) ** 2 card_gem_score = 1 if var_old > var_new else 0 card_rep_score = math.log( 1 + card_rep ) return aff_score + dist_score + card_gem_score + card_rep_score def get_current_cards_summary(self, cards): summary = [] eff_gems = self.player.card_summary_plus_current_gems() ply_card_summary = self.player.card_summary() for card in cards: dist, diff = self.compute_distance(eff_gems, card.cost) can_afford = self.player.can_afford(card) value = self.get_card_value(card.gem, card.reputation, can_afford, dist, ply_card_summary) summary.append(CardValue(card.id, card.reputation, can_afford, round(value, 2), dist, diff)) return summary def next_step(self): # print(f'In step: {self.steps}') self.steps = self.steps + 1 cards = self.board.get_cards() cards_list = functools.reduce(operator.iconcat, cards, []) gems_on_board = self.board.get_gems() # get a collective view of the current cards # try to get the best value one # if we cannot buy, we just fetch the gems so that we can buy it later card_values = self.get_current_cards_summary(cards_list) sorted_card_vals = sorted(card_values, key=lambda c: c.value, reverse=True) # only for debugging: # print([ (c.card_id, c.card_reputation, c.can_afford, c.value, c.req_gems, c.dist) for c in sorted_card_vals ]) # try to buy the top 5 cards for sorted_value in sorted_card_vals[:5]: if sorted_value.can_afford: # print(f'buy card: {sorted_value.card_id}') return ActionParams(self.player.id, Action.BUY_CARD, None, sorted_value.card_id) # if we cannot afford them, let's collect gems to get closer gems_to_pick = self.recommend_gems_to_pick(gems_on_board, sorted_card_vals[:5]) if greater_than_or_equal_to(gems_on_board, gems_to_pick) and len(gems_to_pick) > 0: # print(f'pick three gems - 1: {gems_to_pick}') return ActionParams(self.player.id, Action.PICK_THREE, gems_to_pick, None) else: # print(f'Reserve card: {cards_list[0].id}') return ActionParams(self.player.id, Action.RESERVE_CARD, None, cards_list[0].id) ``` #### File: splendor/test/player_test.py ```python import unittest from copy import deepcopy from board import Board from player import Player from model import ( Gem, Card, ) class PlayerTest(unittest.TestCase): def _check_board_gems(self, current_gems, orginal_gems): for gem, cnt in current_gems.items(): self.assertEqual(cnt, orginal_gems[gem]) def test_player_sanity(self): player1 = Player(0) player2 = Player(1) self.assertEqual(player1.get_id(), 0) self.assertEqual(player2.get_id(), 1) self.assertEqual(player1.card_summary(), {}) def test_can_afford(self): player = Player(0) card = Card( 0, 1, Gem.GREEN, 0, {Gem.GREEN : 1, Gem.RED : 1, Gem.BLACK : 1} ) self.assertEqual(player.can_afford(card), False) player.set_gems({Gem.GREEN : 1, Gem.RED: 1, Gem.BLACK: 1}) self.assertEqual(player.can_afford(card), True) player.set_gems({Gem.GOLD : 3}) self.assertEqual(player.can_afford(card), True) player.set_gems({Gem.GOLD : 1, Gem.RED: 1, Gem.BLACK: 1}) self.assertEqual(player.can_afford(card), True) player.set_gems({Gem.GOLD : 1, Gem.RED: 1, Gem.BLACK: 0}) self.assertEqual(player.can_afford(card), False) player.set_gems({Gem.GOLD : 1, Gem.RED: 1, Gem.BLUE: 2}) self.assertEqual(player.can_afford(card), False) def test_pick_same_gems(self): my_board = Board(2) player1 = Player(0) player2 = Player(1) gems = { Gem.RED : 2 } player1.pick_same_gems(gems, None, my_board) self.assertEqual(player1.get_gems()[Gem.RED], 2) self.assertEqual(player2.get_gems()[Gem.RED], 0) self.assertEqual(my_board.get_gems()[Gem.RED], 2) self.assertEqual(my_board.get_gems()[Gem.GREEN], 4) self.assertEqual(my_board.get_gems()[Gem.BLUE], 4) self.assertEqual(my_board.get_gems()[Gem.WHITE], 4) self.assertEqual(my_board.get_gems()[Gem.BLACK], 4) gems = { Gem.BLUE : 2 } player2.pick_same_gems(gems, None, my_board) self.assertEqual(player2.get_gems()[Gem.BLUE], 2) self.assertEqual(player1.get_gems()[Gem.BLUE], 0) self.assertEqual(my_board.get_gems()[Gem.BLUE], 2) self.assertEqual(my_board.get_gems()[Gem.RED], 2) self.assertEqual(my_board.get_gems()[Gem.GREEN], 4) self.assertEqual(my_board.get_gems()[Gem.WHITE], 4) self.assertEqual(my_board.get_gems()[Gem.BLACK], 4) def test_pick_different_gems(self): my_board = Board(2) player1 = Player(0) player2 = Player(1) gems = { Gem.RED : 1, Gem.GREEN : 1, Gem.BLACK : 1, } player1.pick_different_gems(gems, None, my_board) self.assertEqual(player1.get_gems()[Gem.RED], 1) self.assertEqual(player1.get_gems()[Gem.GREEN], 1) self.assertEqual(player1.get_gems()[Gem.BLACK], 1) self.assertEqual(my_board.get_gems()[Gem.RED], 3) self.assertEqual(my_board.get_gems()[Gem.GREEN], 3) self.assertEqual(my_board.get_gems()[Gem.BLACK], 3) self.assertEqual(my_board.get_gems()[Gem.BLUE], 4) self.assertEqual(my_board.get_gems()[Gem.WHITE], 4) gems = { Gem.BLUE : 1, Gem.GREEN : 1, Gem.BLACK : 1, } player2.pick_different_gems(gems, None, my_board) self.assertEqual(player2.get_gems()[Gem.BLUE], 1) self.assertEqual(player2.get_gems()[Gem.GREEN], 1) self.assertEqual(player2.get_gems()[Gem.BLACK], 1) self.assertEqual(my_board.get_gems()[Gem.BLUE], 3) self.assertEqual(my_board.get_gems()[Gem.GREEN], 2) self.assertEqual(my_board.get_gems()[Gem.BLACK], 2) self.assertEqual(my_board.get_gems()[Gem.RED], 3) self.assertEqual(my_board.get_gems()[Gem.WHITE], 4) gems = { Gem.BLACK: 3, } with self.assertRaises(ValueError): player1.pick_same_gems(gems, None, my_board) def test_buy_board_card(self): my_board = Board(2) orginal_board_gems = deepcopy(my_board.get_gems()) player1 = Player(0) cards = my_board.get_cards() # get level 1 card card = cards[0][0] expensive_card = cards[2][0] # just let player1 pick enough gems to buy the card player1.pick_different_gems(card.cost, None, my_board) player1.buy_board_card(None, card, my_board) self.assertEqual(player1.get_cards(), {card}) self.assertEqual(player1.card_summary()[card.gem], 1) # check if board gems are back to initial value current_gems = my_board.get_gems() self._check_board_gems(current_gems, orginal_board_gems) # try to buy without any gems at hand: with self.assertRaises(ValueError): player1.buy_board_card(None, expensive_card, my_board) def test_reserve_card(self): my_board = Board(2) gold_original = my_board.get_gems()[Gem.GOLD] player1 = Player(0) cards = my_board.get_cards() # get level 1 card card = cards[0][1] player1.reserve_card(None, card, my_board) self.assertEqual(player1.get_gems()[Gem.GOLD], 1) self.assertEqual(player1.get_rev_cards(), {card}) self.assertEqual(player1.reserve_count, 1) # try to reverse more: player1.reserve_card(None, cards[1][0], my_board) player1.reserve_card(None, cards[1][1], my_board) self.assertEqual(my_board.get_gems()[Gem.GOLD], gold_original - 3) with self.assertRaises(ValueError): player1.reserve_card(None, cards[2][0], my_board) def test_buy_reserve_card(self): my_board = Board(2) orginal_board_gems = deepcopy(my_board.get_gems()) player1 = Player(0) cards = my_board.get_cards() # get level 1 card and reserve it card = cards[0][0] player1.reserve_card(None, card, my_board) cost = deepcopy(card.cost) # test if we can use the gold for g, c in cost.items(): if c > 0: cost[g] -= 1 break player1.pick_different_gems(cost, None, my_board) player1.buy_reserve_card(None, card, my_board) self.assertEqual(player1.get_cards(), {card}) self.assertEqual(player1.card_summary()[card.gem], 1) self.assertEqual(player1.reserve_count, 0) # check if board gems are back to initial value current_gems = my_board.get_gems() self._check_board_gems(current_gems, orginal_board_gems) def test_reserve_card_and_buy_card(self): my_board = Board(2) player1 = Player(0) cards = my_board.get_cards() # get level 1 card and reserve it card1 = cards[0][0] card2 = cards[0][1] player1.reserve_card(None, card1, my_board) player1.reserve_card(None, card2, my_board) self.assertEqual(player1.reserve_count, 2) card = cards[0][2] cost = deepcopy(card.cost) # test if we can use two golds to buy a simple card times = 2 for g, c in cost.items(): if c > 0 and times > 0: cost[g] -= 1 times -= 1 player1.pick_different_gems(cost, None, my_board) player1.buy_board_card(None, card, my_board) self.assertEqual(player1.get_cards(), {card}) def test_buy_card_and_use_card_gem(self): my_board = Board(2) orginal_board_gems = deepcopy(my_board.get_gems()) player1 = Player(0) cards = my_board.get_cards() # just let player1 pick enough gems and use them to buy cards for i in range(4): card = cards[0][i] player1.pick_different_gems(card.cost, None, my_board) player1.buy_board_card(None, card, my_board) # get a new card from the refreshed board card = my_board.get_cards()[0][0] cost = deepcopy(card.cost) card_summary = player1.card_summary() # use the gems to adjust the cost for g, c in cost.items(): c = max(0, c - card_summary.get(g, 0)) player1.pick_different_gems(cost, None, my_board) player1.buy_board_card(None, card, my_board) self.assertEqual(len(player1.get_cards()), 5) # check if board gems are back to initial value current_gems = my_board.get_gems() self._check_board_gems(current_gems, orginal_board_gems) if __name__ == "__main__": unittest.main() ```
{ "source": "jinzaizhichi/gandalf", "score": 2 }
#### File: gandalf/gandalf/__init__.py ```python import os from flask import Flask from gandalf.api import api __version__ = '0.3' def create_app(): app = Flask(__name__) token = os.getenv('GITHUB_AUTH_TOKEN') if token is None: raise EnvironmentError( 'Environment Variable $GITHUB_AUTH_TOKEN must be set ' 'to use the github reporter.') app.config['GITHUB_AUTH_TOKEN'] = token app.register_blueprint(api, url_prefix='/api') return app ```
{ "source": "jinzcdev/occupied-gpu", "score": 3 }
#### File: occupied-gpu/occupiedgpus/core.py ```python r''' The programming is used to occupy free video memories at the corresponding gpu_id. $ python train.py --gpu-ids 0,1,2,3 --epochs 120 --options 0 $ python -m occupiedgpus.core --gpu-ids 0,1,2,3 --epochs 120 --options 0 ''' import argparse import pynvml import time import torch import torch.nn as nn from threading import Thread pynvml.nvmlInit() class ComputeThread(Thread): ''' 分线程计算张量的主函数, 定时3秒钟计算一次 *name* is the thead name. *target* is a callable object to be invoked by the `run()`. *args* is the argument tuple for the target invocation. ''' def __init__(self, name, *args, target=None): super(ComputeThread, self).__init__() self.name = name self.target = target self._args = args def run(self): print(f'starting {self.name}') try: self.target(*self._args) # 输入两个参数 (x, delay) except RuntimeError as e: print(str(e)) def get_used_free_memory(gpu_id: int): ''' used与free的单位: 字节(B) 2^30 = 1073741824 return: 指定显卡的剩余显存容量, 单位GB ''' if gpu_id < pynvml.nvmlDeviceGetCount(): handle = pynvml.nvmlDeviceGetHandleByIndex(gpu_id) mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle) return mem_info.used // 1073741824, mem_info.free // 1073741824 else: return -1, -1 def init_args(): ''' 初始化输入参数, 假装输入一些训练参数, 如 epochs ''' parser = argparse.ArgumentParser( description='sum the integers at the command line') parser.add_argument( '--gpu-ids', default='0', type=str, help='gpu ids to be used') parser.add_argument( '--epochs', default=1000, type=int, help='the number of epoch') parser.add_argument( '--options', default=0, type=int, help='options: whether to occupy the free video memory forcefully' ) args = parser.parse_args() return args class Compute(nn.Module): def __init__(self, thread_id=0, delay=3): super(Compute, self).__init__() self.thread_id = thread_id self.delay = delay def forward(self, x): i = 0 while True: time.sleep(self.delay) for _ in range(3): x = x @ x @ x i += 1 if i == 100: print(f'Thread {self.thread_id} is running.') i = 0 def allocate(gids, is_forced=False): num_gpus, cnt = len(gids), 0 is_allocated = {} while cnt != num_gpus: for i, gid in enumerate(gids): if not is_allocated.get(gid, False): used, free = get_used_free_memory(gid) # 向下取整, used==0 denotes 显存使用不足1GB. if used != -1 and ((is_forced and free > 1) or (not is_forced and used == 0)): x = torch.randn( (2 * (free-1), 512*(256-2**abs(i-num_gpus//2)), 16, 16)) x = x.to(f'cuda:{gid}') compute = Compute(thread_id=i, delay=3) compute = compute.to(f'cuda:{gid}') ComputeThread(f'Thread-{i}-GPU{gid}', x, target=compute).start() is_allocated[gid] = True cnt += 1 def main(): args = init_args() try: gids = list(map(int, args.gpu_ids.split(','))) allocate(gids, args.options != 0) except Exception as e: print(str(e)) ''' if __name__ == '__main__': python -m occupiedgpus.core --gpu-ids 0,1,2,3 --epochs 120 --options 0 main() ''' main() ```
{ "source": "jinzh154/CertifiedReLURobustness", "score": 3 }
#### File: jinzh154/CertifiedReLURobustness/save_nlayer_weights.py ```python import numpy as np import os import pickle import gzip import argparse import urllib.request from tensorflow.contrib.keras.api.keras.models import Sequential from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Activation, Flatten from tensorflow.contrib.keras.api.keras.layers import Conv2D, MaxPooling2D from tensorflow.contrib.keras.api.keras.models import load_model from tensorflow.contrib.keras.api.keras import backend as K class NLayerModel: def __init__(self, params, restore = None, session=None, use_log=False, image_size=28, image_channel=1): self.image_size = image_size self.num_channels = image_channel self.num_labels = 10 model = Sequential() model.add(Flatten(input_shape=(image_size, image_size, image_channel))) # list of all hidden units weights self.U = [] for param in params: # add each dense layer, and save a reference to list U self.U.append(Dense(param)) model.add(self.U[-1]) # ReLU activation model.add(Activation('relu')) self.W = Dense(10) model.add(self.W) # output log probability, used for black-box attack if use_log: model.add(Activation('softmax')) if restore: model.load_weights(restore) layer_outputs = [] for layer in model.layers: if isinstance(layer, Conv2D) or isinstance(layer, Dense): layer_outputs.append(K.function([model.layers[0].input], [layer.output])) self.layer_outputs = layer_outputs self.model = model def predict(self, data): return self.model(data) if __name__ == "__main__": import scipy.io as sio parser = argparse.ArgumentParser(description='save n-layer MNIST and CIFAR weights') parser.add_argument('--model', default="mnist", choices=["mnist", "cifar"], help='model name') parser.add_argument('--modelfile', default="", help='override the model filename, use user specied one') parser.add_argument('layer_parameters', nargs='+', help='number of hidden units per layer') args = parser.parse_args() nlayers = len(args.layer_parameters) + 1 import tensorflow as tf with tf.Session() as sess: # if a model file is not specified, use a manual override if not args.modelfile: args.modelfile = "models/"+args.model+"_"+str(nlayers)+"layer_relu" if args.model == "mnist": model = NLayerModel(args.layer_parameters, args.modelfile, sess) #model = NLayerModel(args.layer_parameters, "models/mnist_"+str(nlayers)+"layer_relu") elif args.model == "cifar": model = NLayerModel(args.layer_parameters, args.modelfile, sess, image_size=32, image_channel=3) else: raise(RuntimeError("Unknow model")) [W, bias_W] = model.W.get_weights() save_dict = {'W': W, 'bias_W': bias_W} print("Output layer shape:", W.shape) U = model.U for i, Ui in enumerate(U): # save hidden layer weights, layer by layer [weight_Ui, bias_Ui] = Ui.get_weights() print("Hidden layer {} shape: {}".format(i, weight_Ui.shape)) save_dict['U'+str(i+1)] = weight_Ui save_dict['bias_U'+str(i+1)] = bias_Ui save_name = args.model + "_" + str(nlayers) + "layers" print('saving to {}.mat with matrices {}'.format(save_name, save_dict.keys())) # results saved to mnist.mat or cifar.mat sio.savemat(save_name, save_dict) ``` #### File: jinzh154/CertifiedReLURobustness/utils.py ```python import numpy as np import random import os import pandas as pd from PIL import Image random.seed(1215) np.random.seed(1215) def linf_dist(x, y): return np.linalg.norm(x.flatten() - y.flatten(), ord=np.inf) def l2_dist(x, y): return np.linalg.norm(x.flatten() - y.flatten(), ord=2) def l1_dist(x, y): return np.linalg.norm(x.flatten() - y.flatten(), ord=1) def l0_dist(x, y): return np.linalg.norm(x.flatten() - y.flatten(), ord=0) def show(img, name = "output.png"): """ Show MNSIT digits in the console. """ np.save('img', img) fig = np.around((img + 0.5)*255) fig = fig.astype(np.uint8).squeeze() pic = Image.fromarray(fig) # pic.resize((512,512), resample=PIL.Image.BICUBIC) pic.save(name) remap = " .*#"+"#"*100 img = (img.flatten()+.5)*3 return if len(img) != 784: return print("START") for i in range(28): print("".join([remap[int(round(x))] for x in img[i*28:i*28+28]])) def generate_data(data, samples, targeted=True, random_and_least_likely = False, skip_wrong_label = True, start=0, ids = None, target_classes = None, target_type = 0b1111, predictor = None, imagenet=False, remove_background_class=False, save_inputs=False, model_name=None, save_inputs_dir=None): """ Generate the input data to the attack algorithm. data: the images to attack samples: number of samples to use targeted: if true, construct targeted attacks, otherwise untargeted attacks start: offset into data to use ids: true IDs of images in the dataset, if given, will use these images target_classes: a list of list of labels for each ids inception: if targeted and inception, randomly sample 100 targets intead of 1000 """ inputs = [] targets = [] true_labels = [] true_ids = [] information = [] target_candidate_pool = np.eye(data.test_labels.shape[1]) target_candidate_pool_remove_background_class = np.eye(data.test_labels.shape[1] - 1) print('generating labels...') if ids is None: ids = range(samples) else: ids = ids[start:start+samples] if target_classes: target_classes = target_classes[start:start+samples] start = 0 total = 0 for i in ids: total += 1 if targeted: predicted_label = -1 # unknown if random_and_least_likely: # if there is no user specified target classes if target_classes is None: original_predict = np.squeeze(predictor(np.array([data.test_data[start+i]]))) num_classes = len(original_predict) predicted_label = np.argmax(original_predict) least_likely_label = np.argmin(original_predict) top2_label = np.argsort(original_predict)[-2] start_class = 1 if (imagenet and not remove_background_class) else 0 random_class = predicted_label new_seq = [least_likely_label, top2_label, predicted_label] while random_class in new_seq: random_class = random.randint(start_class, start_class + num_classes - 1) new_seq[2] = random_class true_label = np.argmax(data.test_labels[start+i]) seq = [] if true_label != predicted_label and skip_wrong_label: seq = [] else: if target_type & 0b10000: for c in range(num_classes): if c != predicted_label: seq.append(c) information.append('class'+str(c)) else: if target_type & 0b0100: # least seq.append(new_seq[0]) information.append('least') if target_type & 0b0001: # top-2 seq.append(new_seq[1]) information.append('top2') if target_type & 0b0010: # random seq.append(new_seq[2]) information.append('random') else: # use user specified target classes seq = target_classes[total - 1] information.extend(len(seq) * ['user']) else: if imagenet: if remove_background_class: seq = random.sample(range(0,1000), 10) else: seq = random.sample(range(1,1001), 10) information.extend(data.test_labels.shape[1] * ['random']) else: seq = range(data.test_labels.shape[1]) information.extend(data.test_labels.shape[1] * ['seq']) print("[DATAGEN][L1] no = {}, true_id = {}, true_label = {}, predicted = {}, correct = {}, seq = {}, info = {}".format(total, start + i, np.argmax(data.test_labels[start+i]), predicted_label, np.argmax(data.test_labels[start+i]) == predicted_label, seq, [] if len(seq) == 0 else information[-len(seq):])) for j in seq: # skip the original image label if (j == np.argmax(data.test_labels[start+i])): continue inputs.append(data.test_data[start+i]) if remove_background_class: targets.append(target_candidate_pool_remove_background_class[j]) else: targets.append(target_candidate_pool[j]) true_labels.append(data.test_labels[start+i]) if remove_background_class: true_labels[-1] = true_labels[-1][1:] true_ids.append(start+i) else: true_label = np.argmax(data.test_labels[start+i]) original_predict = np.squeeze(predictor(np.array([data.test_data[start+i]]))) num_classes = len(original_predict) predicted_label = np.argmax(original_predict) if true_label != predicted_label and skip_wrong_label: continue else: inputs.append(data.test_data[start+i]) if remove_background_class: # shift target class by 1 print(np.argmax(data.test_labels[start+i])) print(np.argmax(data.test_labels[start+i][1:1001])) targets.append(data.test_labels[start+i][1:1001]) else: targets.append(data.test_labels[start+i]) true_labels.append(data.test_labels[start+i]) if remove_background_class: true_labels[-1] = true_labels[-1][1:] true_ids.append(start+i) information.extend(['original']) inputs = np.array(inputs) targets = np.array(targets) true_labels = np.array(true_labels) true_ids = np.array(true_ids) print('labels generated') print('{} images generated in total.'.format(len(inputs))) if save_inputs: if not os.path.exists(save_inputs_dir): os.makedirs(save_inputs_dir) save_model_dir = os.path.join(save_inputs_dir,model_name) if not os.path.exists(save_model_dir): os.makedirs(save_model_dir) info_set = list(set(information)) for info_type in info_set: save_type_dir = os.path.join(save_model_dir,info_type) if not os.path.exists(save_type_dir): os.makedirs(save_type_dir) counter = 0 for i in range(len(information)): if information[i] == info_type: df = inputs[i,:,:,0] df = df.flatten() np.savetxt(os.path.join(save_type_dir,'point{}.txt'.format(counter)),df,newline='\t') counter += 1 target_labels = np.array([np.argmax(targets[i]) for i in range(len(information)) if information[i]==info_type]) np.savetxt(os.path.join(save_model_dir,model_name+'_target_'+info_type+'.txt'),target_labels,fmt='%d',delimiter='\n') return inputs, targets, true_labels, true_ids, information ```
{ "source": "jinzhang21/mlflow", "score": 2 }
#### File: examples/pmdarima/train.py ```python import mlflow import json import numpy as np from pmdarima import auto_arima from pmdarima.datasets import load_wineind from pmdarima import model_selection ARTIFACT_PATH = "model" def calculate_cv_metrics(model, endog, metric, cv): cv_metric = model_selection.cross_val_score(model, endog, cv=cv, scoring=metric, verbose=0) return cv_metric[~np.isnan(cv_metric)].mean() with mlflow.start_run(): data = load_wineind() train, test = model_selection.train_test_split(data, train_size=150) print("Training AutoARIMA model...") arima = auto_arima( train, error_action="ignore", trace=False, suppress_warnings=True, maxiter=5, seasonal=True, m=12, ) print("Model trained. \nExtracting parameters...") parameters = arima.get_params(deep=True) metrics = {x: getattr(arima, x)() for x in ["aicc", "aic", "bic", "hqic", "oob"]} # Cross validation backtesting cross_validator = model_selection.RollingForecastCV(h=10, step=20, initial=60) for x in ["smape", "mean_absolute_error", "mean_squared_error"]: metrics[x] = calculate_cv_metrics(arima, data, x, cross_validator) print(f"Metrics: \n{json.dumps(metrics, indent=2)}") print(f"Parameters: \n{json.dumps(parameters, indent=2)}") mlflow.pmdarima.log_model(pmdarima_model=arima, artifact_path=ARTIFACT_PATH) mlflow.log_params(parameters) mlflow.log_metrics(metrics) model_uri = mlflow.get_artifact_uri(ARTIFACT_PATH) print(f"Model artifact logged to: {model_uri}") loaded_model = mlflow.pmdarima.load_model(model_uri) forecast = loaded_model.predict(30) print(f"Forecast: \n{forecast}") ``` #### File: mlflow/paddle/_paddle_autolog.py ```python import paddle import mlflow from mlflow.utils.autologging_utils import ( ExceptionSafeAbstractClass, BatchMetricsLogger, MlflowAutologgingQueueingClient, get_autologging_config, ) class __MLflowPaddleCallback(paddle.callbacks.Callback, metaclass=ExceptionSafeAbstractClass): """ Callback for auto-logging metrics and parameters. """ def __init__(self, client, metrics_logger, run_id, log_models, log_every_n_epoch): super().__init__() self.early_stopping = False self.client = client self.metrics_logger = metrics_logger self.run_id = run_id self.log_models = log_models self.log_every_n_epoch = log_every_n_epoch self.epoch = 0 def _log_metrics(self, logs, current_epoch): metrics = { key: (metric[0] if isinstance(metric, list) else metric) for key, metric in logs.items() } self.metrics_logger.record_metrics(metrics, current_epoch) def on_epoch_end(self, epoch, logs=None): if self.model is not None and epoch % self.log_every_n_epoch == 0: self._log_metrics(logs, epoch) self.epoch = epoch def on_train_begin(self, logs=None): params = { "optimizer_name": self.model._optimizer.__class__.__name__, "learning_rate": self.model._optimizer._learning_rate, } self.client.log_params(self.run_id, params) self.client.flush(synchronous=True) def on_train_end(self, logs=None): self.metrics_logger.flush() self.client.flush(synchronous=True) def on_eval_end(self, logs=None): eval_logs = { "eval_" + key: (metric[0] if isinstance(metric, list) else metric) for key, metric in logs.items() } self._log_metrics(eval_logs, self.epoch) def _log_early_stop_params(early_stop_callback, client, run_id): """ Logs early stopping configuration parameters to MLflow. :param early_stop_callback: The early stopping callback instance used during training. :param client: An `MlflowAutologgingQueueingClient` instance used for MLflow logging. :param run_id: The ID of the MLflow Run to which to log configuration parameters. """ client.log_params( run_id, { p: getattr(early_stop_callback, p) for p in ["monitor", "patience", "min_delta", "baseline"] if hasattr(early_stop_callback, p) }, ) def _log_early_stop_metrics(early_stop_callback, client, run_id): """ Logs early stopping behavior results (e.g. stopped epoch) as metrics to MLflow. :param early_stop_callback: The early stopping callback instance used during training. :param client: An `MlflowAutologgingQueueingClient` instance used for MLflow logging. :param run_id: The ID of the MLflow Run to which to log configuration parameters. """ if early_stop_callback.stopped_epoch == 0: return metrics = { "stopped_epoch": early_stop_callback.stopped_epoch, "best_value": early_stop_callback.best_value, } client.log_metrics(run_id, metrics) def patched_fit(original, self, *args, **kwargs): run_id = mlflow.active_run().info.run_id tracking_uri = mlflow.get_tracking_uri() client = MlflowAutologgingQueueingClient(tracking_uri) metrics_logger = BatchMetricsLogger(run_id, tracking_uri) log_models = get_autologging_config(mlflow.paddle.FLAVOR_NAME, "log_models", True) log_every_n_epoch = get_autologging_config(mlflow.paddle.FLAVOR_NAME, "log_every_n_epoch", 1) early_stop_callback = None mlflow_callback = __MLflowPaddleCallback( client, metrics_logger, run_id, log_models, log_every_n_epoch ) if "callbacks" in kwargs: callbacks = kwargs["callbacks"] for callback in callbacks: if isinstance(callback, paddle.callbacks.EarlyStopping): early_stop_callback = callback _log_early_stop_params(early_stop_callback, client, run_id) break kwargs["callbacks"].append(mlflow_callback) else: kwargs["callbacks"] = [mlflow_callback] client.flush(synchronous=False) result = original(self, *args, **kwargs) if early_stop_callback is not None: _log_early_stop_metrics(early_stop_callback, client, run_id) mlflow.log_text(str(self.summary()), "model_summary.txt") if log_models: registered_model_name = get_autologging_config( mlflow.paddle.FLAVOR_NAME, "registered_model_name", None ) mlflow.paddle.log_model( pd_model=self, artifact_path="model", registered_model_name=registered_model_name ) client.flush(synchronous=True) return result ``` #### File: mlflow/pyfunc/mlserver.py ```python import os from typing import Tuple, Dict MLServerMLflowRuntime = "mlserver_mlflow.MLflowRuntime" MLServerDefaultModelName = "mlflow-model" def get_cmd( model_uri: str, port: int = None, host: str = None, nworkers: int = None ) -> Tuple[str, Dict[str, str]]: cmd = f"mlserver start {model_uri}" cmd_env = os.environ.copy() if port: cmd_env["MLSERVER_HTTP_PORT"] = str(port) if host: cmd_env["MLSERVER_HOST"] = host cmd_env["MLSERVER_MODEL_NAME"] = MLServerDefaultModelName if nworkers: cmd_env["MLSERVER_MODEL_PARALLEL_WORKERS"] = str(nworkers) cmd_env["MLSERVER_MODEL_IMPLEMENTATION"] = MLServerMLflowRuntime cmd_env["MLSERVER_MODEL_URI"] = model_uri return cmd, cmd_env ``` #### File: store/artifact/mlflow_artifacts_repo.py ```python from urllib.parse import urlparse, urlunparse import re from mlflow.store.artifact.http_artifact_repo import HttpArtifactRepository from mlflow.tracking._tracking_service.utils import get_tracking_uri from mlflow.exceptions import MlflowException def _check_if_host_is_numeric(hostname): if hostname: try: float(hostname) return True except ValueError: return False else: return False def _validate_port_mapped_to_hostname(uri_parse): # This check is to catch an mlflow-artifacts uri that has a port designated but no # hostname specified. `urllib.parse.urlparse` will treat such a uri as a filesystem # definition, mapping the provided port as a hostname value if this condition is not # validated. if uri_parse.hostname and _check_if_host_is_numeric(uri_parse.hostname) and not uri_parse.port: raise MlflowException( "The mlflow-artifacts uri was supplied with a port number: " f"{uri_parse.hostname}, but no host was defined." ) def _validate_uri_scheme(scheme): allowable_schemes = {"http", "https"} if scheme not in allowable_schemes: raise MlflowException( f"The configured tracking uri scheme: '{scheme}' is invalid for use with the proxy " f"mlflow-artifact scheme. The allowed tracking schemes are: {allowable_schemes}" ) class MlflowArtifactsRepository(HttpArtifactRepository): """Scheme wrapper around HttpArtifactRepository for mlflow-artifacts server functionality""" def __init__(self, artifact_uri): super().__init__(self.resolve_uri(artifact_uri, get_tracking_uri())) @classmethod def resolve_uri(cls, artifact_uri, tracking_uri): base_url = "/api/2.0/mlflow-artifacts/artifacts" track_parse = urlparse(tracking_uri) uri_parse = urlparse(artifact_uri) # Check to ensure that a port is present with no hostname _validate_port_mapped_to_hostname(uri_parse) # Check that tracking uri is http or https _validate_uri_scheme(track_parse.scheme) if uri_parse.path == "/": # root directory; build simple path resolved = f"{base_url}{uri_parse.path}" elif uri_parse.path == base_url: # for operations like list artifacts resolved = base_url else: resolved = f"{track_parse.path}/{base_url}/{uri_parse.path}" resolved = re.sub("//+", "/", resolved) resolved_artifacts_uri = urlunparse( ( # scheme track_parse.scheme, # netloc uri_parse.netloc if uri_parse.netloc else track_parse.netloc, # path resolved, # params "", # query "", # fragment "", ) ) return resolved_artifacts_uri.replace("///", "/").rstrip("/") ``` #### File: tracking/context/databricks_command_context.py ```python from mlflow.tracking.context.abstract_context import RunContextProvider from mlflow.utils import databricks_utils from mlflow.utils.mlflow_tags import MLFLOW_DATABRICKS_NOTEBOOK_COMMAND_ID class DatabricksCommandRunContext(RunContextProvider): def in_context(self): return databricks_utils.get_job_group_id() is not None def tags(self): job_group_id = databricks_utils.get_job_group_id() tags = {} if job_group_id is not None: tags[MLFLOW_DATABRICKS_NOTEBOOK_COMMAND_ID] = job_group_id return tags ``` #### File: mlflow/utils/class_utils.py ```python import importlib def _get_class_from_string(fully_qualified_class_name): module, class_name = fully_qualified_class_name.rsplit(".", maxsplit=1) return getattr(importlib.import_module(module), class_name) ``` #### File: mlflow/utils/string_utils.py ```python def strip_prefix(original, prefix): if original.startswith(prefix): return original[len(prefix) :] return original def strip_suffix(original, suffix): if original.endswith(suffix) and suffix != "": return original[: -len(suffix)] return original def is_string_type(item): return isinstance(item, str) def truncate_str_from_middle(s, max_length): assert max_length > 5 if len(s) <= max_length: return s else: left_part_len = (max_length - 3) // 2 right_part_len = max_length - 3 - left_part_len return f"{s[:left_part_len]}...{s[-right_part_len:]}" ``` #### File: pylint_plugins/pytest_raises_without_match/__init__.py ```python import astroid from pylint.interfaces import IAstroidChecker from pylint.checkers import BaseChecker class PytestRaisesWithoutMatch(BaseChecker): __implements__ = IAstroidChecker name = "pytest-raises-without-match" msgs = { "W0001": ( "`pytest.raises` must be called with `match` argument` ", name, "Use `pytest.raises(<exception>, match=...)`", ), } priority = -1 @staticmethod def _is_pytest_raises_call(node: astroid.Call): if not isinstance(node.func, astroid.Attribute) or not isinstance( node.func.expr, astroid.Name ): return False return node.func.expr.name == "pytest" and node.func.attrname == "raises" @staticmethod def _called_with_match(node: astroid.Call): # Note `match` is a keyword-only argument: # https://docs.pytest.org/en/latest/reference/reference.html#pytest.raises return any(k.arg == "match" for k in node.keywords) def visit_call(self, node: astroid.Call): if not PytestRaisesWithoutMatch._is_pytest_raises_call(node): return if not PytestRaisesWithoutMatch._called_with_match(node): self.add_message(self.name, node=node) ``` #### File: tests/pyfunc/test_warn_dependency_requirement_mismatches.py ```python from unittest import mock import pytest import cloudpickle import sklearn from mlflow.pyfunc import _warn_dependency_requirement_mismatches import mlflow.utils.requirements_utils from tests.helper_functions import AnyStringWith @pytest.mark.large def test_warn_dependency_requirement_mismatches(tmpdir): req_file = tmpdir.join("requirements.txt") req_file.write(f"cloudpickle=={cloudpickle.__version__}\nscikit-learn=={sklearn.__version__}\n") with mock.patch("mlflow.pyfunc._logger.warning") as mock_warning: # Test case: all packages satisfy requirements. _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_not_called() mock_warning.reset_mock() original_get_installed_version_fn = mlflow.utils.requirements_utils._get_installed_version def gen_mock_get_installed_version_fn(mock_versions): def mock_get_installed_version_fn(package, module=None): if package in mock_versions: return mock_versions[package] else: return original_get_installed_version_fn(package, module) return mock_get_installed_version_fn # Test case: multiple mismatched packages with mock.patch( "mlflow.utils.requirements_utils._get_installed_version", gen_mock_get_installed_version_fn( { "scikit-learn": "999.99.11", "cloudpickle": "999.99.22", } ), ): _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_called_once_with( """ Detected one or more mismatches between the model's dependencies and the current Python environment: - cloudpickle (current: 999.99.22, required: cloudpickle=={cloudpickle_version}) - scikit-learn (current: 999.99.11, required: scikit-learn=={sklearn_version}) """.strip().format( sklearn_version=sklearn.__version__, cloudpickle_version=cloudpickle.__version__ ) ) mock_warning.reset_mock() req_file.write("scikit-learn>=0.8,<=0.9") # Test case: requirement with multiple version specifiers is satisfied with mock.patch( "mlflow.utils.requirements_utils._get_installed_version", gen_mock_get_installed_version_fn({"scikit-learn": "0.8.1"}), ): _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_not_called() mock_warning.reset_mock() # Test case: requirement with multiple version specifiers is not satisfied with mock.patch( "mlflow.utils.requirements_utils._get_installed_version", gen_mock_get_installed_version_fn({"scikit-learn": "0.7.1"}), ): _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_called_once_with( AnyStringWith(" - scikit-learn (current: 0.7.1, required: scikit-learn>=0.8,<=0.9)") ) mock_warning.reset_mock() # Test case: required package is uninstalled. req_file.write("uninstalled-pkg==1.2.3") _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_called_once_with( AnyStringWith( " - uninstalled-pkg (current: uninstalled, required: uninstalled-pkg==1.2.3)" ) ) mock_warning.reset_mock() # Test case: requirement without version specifiers req_file.write("mlflow") _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_not_called() mock_warning.reset_mock() # Test case: an unexpected error happens while detecting mismatched packages. with mock.patch( "mlflow.pyfunc._check_requirement_satisfied", side_effect=RuntimeError("check_requirement_satisfied_fn_failed"), ): _warn_dependency_requirement_mismatches(model_path=tmpdir) mock_warning.assert_called_once_with( AnyStringWith( "Encountered an unexpected error " "(RuntimeError('check_requirement_satisfied_fn_failed')) while " "detecting model dependency mismatches" ) ) ``` #### File: artifact/utils/test_model_utils.py ```python import pytest from unittest import mock from mlflow.exceptions import MlflowException from mlflow.store.artifact.utils.models import _parse_model_uri, get_model_name_and_version from mlflow.tracking import MlflowClient from mlflow.entities.model_registry import ModelVersion @pytest.mark.parametrize( "uri, expected_name, expected_version", [ ("models:/AdsModel1/0", "AdsModel1", 0), ("models:/Ads Model 1/12345", "Ads Model 1", 12345), ("models:/12345/67890", "12345", 67890), ("models://profile@databricks/12345/67890", "12345", 67890), ], ) def test_parse_models_uri_with_version(uri, expected_name, expected_version): (name, version, stage) = _parse_model_uri(uri) assert name == expected_name assert version == expected_version assert stage is None @pytest.mark.parametrize( "uri, expected_name, expected_stage", [ ("models:/AdsModel1/Production", "AdsModel1", "Production"), ("models:/AdsModel1/production", "AdsModel1", "production"), # case insensitive ("models:/AdsModel1/pROduction", "AdsModel1", "pROduction"), # case insensitive ("models:/Ads Model 1/None", "Ads Model 1", "None"), ("models://scope:key@databricks/Ads Model 1/None", "Ads Model 1", "None"), ], ) def test_parse_models_uri_with_stage(uri, expected_name, expected_stage): (name, version, stage) = _parse_model_uri(uri) assert name == expected_name assert version is None assert stage == expected_stage @pytest.mark.parametrize( "uri, expected_name", [ ("models:/AdsModel1/latest", "AdsModel1"), ("models:/AdsModel1/Latest", "AdsModel1"), # case insensitive ("models:/AdsModel1/LATEST", "AdsModel1"), # case insensitive ("models:/Ads Model 1/latest", "Ads Model 1"), ("models://scope:key@databricks/Ads Model 1/latest", "Ads Model 1"), ], ) def test_parse_models_uri_with_latest(uri, expected_name): (name, version, stage) = _parse_model_uri(uri) assert name == expected_name assert version is None assert stage is None @pytest.mark.parametrize( "uri", [ "notmodels:/NameOfModel/12345", # wrong scheme with version "notmodels:/NameOfModel/StageName", # wrong scheme with stage "models:/", # no model name "models:/Name/Stage/0", # too many specifiers "models:Name/Stage", # missing slash "models://Name/Stage", # hostnames are ignored, path too short ], ) def test_parse_models_uri_invalid_input(uri): with pytest.raises(MlflowException, match="Not a proper models"): _parse_model_uri(uri) def test_get_model_name_and_version_with_version(): with mock.patch.object( MlflowClient, "get_latest_versions", return_value=[] ) as mlflow_client_mock: assert get_model_name_and_version(MlflowClient(), "models:/AdsModel1/123") == ( "AdsModel1", "123", ) mlflow_client_mock.assert_not_called() def test_get_model_name_and_version_with_stage(): with mock.patch.object( MlflowClient, "get_latest_versions", return_value=[ ModelVersion( name="mv1", version="10", creation_timestamp=123, current_stage="Production" ), ModelVersion( name="mv2", version="15", creation_timestamp=124, current_stage="Production" ), ], ) as mlflow_client_mock: assert get_model_name_and_version(MlflowClient(), "models:/AdsModel1/Production") == ( "AdsModel1", "15", ) mlflow_client_mock.assert_called_once_with("AdsModel1", ["Production"]) def test_get_model_name_and_version_with_latest(): with mock.patch.object( MlflowClient, "get_latest_versions", return_value=[ ModelVersion( name="mv1", version="10", creation_timestamp=123, current_stage="Production" ), ModelVersion(name="mv3", version="20", creation_timestamp=125, current_stage="None"), ModelVersion(name="mv2", version="15", creation_timestamp=124, current_stage="Staging"), ], ) as mlflow_client_mock: assert get_model_name_and_version(MlflowClient(), "models:/AdsModel1/latest") == ( "AdsModel1", "20", ) mlflow_client_mock.assert_called_once_with("AdsModel1", None) # Check that "latest" is case insensitive. assert get_model_name_and_version(MlflowClient(), "models:/AdsModel1/lATest") == ( "AdsModel1", "20", ) ``` #### File: mlflow/tests/test_exceptions.py ```python import json from mlflow.exceptions import MlflowException, RestException from mlflow.protos.databricks_pb2 import ( INVALID_PARAMETER_VALUE, INVALID_STATE, ENDPOINT_NOT_FOUND, INTERNAL_ERROR, RESOURCE_ALREADY_EXISTS, IO_ERROR, ) class TestMlflowException: def test_error_code_constructor(self): assert ( MlflowException("test", error_code=INVALID_PARAMETER_VALUE).error_code == "INVALID_PARAMETER_VALUE" ) def test_default_error_code(self): assert MlflowException("test").error_code == "INTERNAL_ERROR" def test_serialize_to_json(self): mlflow_exception = MlflowException("test") deserialized = json.loads(mlflow_exception.serialize_as_json()) assert deserialized["message"] == "test" assert deserialized["error_code"] == "INTERNAL_ERROR" def test_get_http_status_code(self): assert MlflowException("test default").get_http_status_code() == 500 assert MlflowException("code not in map", error_code=IO_ERROR).get_http_status_code() == 500 assert MlflowException("test", error_code=INVALID_STATE).get_http_status_code() == 500 assert MlflowException("test", error_code=ENDPOINT_NOT_FOUND).get_http_status_code() == 404 assert ( MlflowException("test", error_code=INVALID_PARAMETER_VALUE).get_http_status_code() == 400 ) assert MlflowException("test", error_code=INTERNAL_ERROR).get_http_status_code() == 500 assert ( MlflowException("test", error_code=RESOURCE_ALREADY_EXISTS).get_http_status_code() == 400 ) def test_rest_exception(): mlflow_exception = MlflowException("test", error_code=RESOURCE_ALREADY_EXISTS) json_exception = mlflow_exception.serialize_as_json() deserialized_rest_exception = RestException(json.loads(json_exception)) assert deserialized_rest_exception.error_code == "RESOURCE_ALREADY_EXISTS" assert "test" in deserialized_rest_exception.message ``` #### File: tracking/context/test_databricks_job_context.py ```python from unittest import mock from mlflow.entities import SourceType from mlflow.utils.mlflow_tags import ( MLFLOW_SOURCE_NAME, MLFLOW_SOURCE_TYPE, MLFLOW_DATABRICKS_JOB_ID, MLFLOW_DATABRICKS_JOB_RUN_ID, MLFLOW_DATABRICKS_JOB_TYPE, MLFLOW_DATABRICKS_WEBAPP_URL, MLFLOW_DATABRICKS_WORKSPACE_URL, MLFLOW_DATABRICKS_WORKSPACE_ID, ) from mlflow.tracking.context.databricks_job_context import DatabricksJobRunContext from tests.helper_functions import multi_context def test_databricks_job_run_context_in_context(): with mock.patch("mlflow.utils.databricks_utils.is_in_databricks_job") as in_job_mock: assert DatabricksJobRunContext().in_context() == in_job_mock.return_value def test_databricks_job_run_context_tags(): patch_job_id = mock.patch("mlflow.utils.databricks_utils.get_job_id") patch_job_run_id = mock.patch("mlflow.utils.databricks_utils.get_job_run_id") patch_job_type = mock.patch("mlflow.utils.databricks_utils.get_job_type") patch_webapp_url = mock.patch("mlflow.utils.databricks_utils.get_webapp_url") patch_workspace_url = mock.patch( "mlflow.utils.databricks_utils.get_workspace_url", return_value="https://dev.databricks.com", ) patch_workspace_url_none = mock.patch( "mlflow.utils.databricks_utils.get_workspace_url", return_value=None ) patch_workspace_info = mock.patch( "mlflow.utils.databricks_utils.get_workspace_info_from_dbutils", return_value=("https://databricks.com", "123456"), ) with multi_context( patch_job_id, patch_job_run_id, patch_job_type, patch_webapp_url, patch_workspace_url, patch_workspace_info, ) as ( job_id_mock, job_run_id_mock, job_type_mock, webapp_url_mock, workspace_url_mock, workspace_info_mock, ): assert DatabricksJobRunContext().tags() == { MLFLOW_SOURCE_NAME: "jobs/{job_id}/run/{job_run_id}".format( job_id=job_id_mock.return_value, job_run_id=job_run_id_mock.return_value ), MLFLOW_SOURCE_TYPE: SourceType.to_string(SourceType.JOB), MLFLOW_DATABRICKS_JOB_ID: job_id_mock.return_value, MLFLOW_DATABRICKS_JOB_RUN_ID: job_run_id_mock.return_value, MLFLOW_DATABRICKS_JOB_TYPE: job_type_mock.return_value, MLFLOW_DATABRICKS_WEBAPP_URL: webapp_url_mock.return_value, MLFLOW_DATABRICKS_WORKSPACE_URL: workspace_url_mock.return_value, MLFLOW_DATABRICKS_WORKSPACE_ID: workspace_info_mock.return_value[1], } with multi_context( patch_job_id, patch_job_run_id, patch_job_type, patch_webapp_url, patch_workspace_url_none, patch_workspace_info, ) as ( job_id_mock, job_run_id_mock, job_type_mock, webapp_url_mock, workspace_url_mock, workspace_info_mock, ): assert DatabricksJobRunContext().tags() == { MLFLOW_SOURCE_NAME: "jobs/{job_id}/run/{job_run_id}".format( job_id=job_id_mock.return_value, job_run_id=job_run_id_mock.return_value ), MLFLOW_SOURCE_TYPE: SourceType.to_string(SourceType.JOB), MLFLOW_DATABRICKS_JOB_ID: job_id_mock.return_value, MLFLOW_DATABRICKS_JOB_RUN_ID: job_run_id_mock.return_value, MLFLOW_DATABRICKS_JOB_TYPE: job_type_mock.return_value, MLFLOW_DATABRICKS_WEBAPP_URL: webapp_url_mock.return_value, MLFLOW_DATABRICKS_WORKSPACE_URL: workspace_info_mock.return_value[0], # fallback value MLFLOW_DATABRICKS_WORKSPACE_ID: workspace_info_mock.return_value[1], } def test_databricks_job_run_context_tags_nones(): patch_job_id = mock.patch("mlflow.utils.databricks_utils.get_job_id", return_value=None) patch_job_run_id = mock.patch("mlflow.utils.databricks_utils.get_job_run_id", return_value=None) patch_job_type = mock.patch("mlflow.utils.databricks_utils.get_job_type", return_value=None) patch_webapp_url = mock.patch("mlflow.utils.databricks_utils.get_webapp_url", return_value=None) patch_workspace_info = mock.patch( "mlflow.utils.databricks_utils.get_workspace_info_from_dbutils", return_value=(None, None) ) with patch_job_id, patch_job_run_id, patch_job_type, patch_webapp_url, patch_workspace_info: assert DatabricksJobRunContext().tags() == { MLFLOW_SOURCE_NAME: None, MLFLOW_SOURCE_TYPE: SourceType.to_string(SourceType.JOB), } ``` #### File: tests/utils/test_gorilla.py ```python import pytest from mlflow.utils import gorilla class Delegator: def __init__(self, delegated_fn): self.delegated_fn = delegated_fn def __get__(self, instance, owner): return self.delegated_fn def delegate(delegated_fn): return lambda fn: Delegator(delegated_fn) def gen_class_A_B(): class A: def f1(self): pass def f2(self): pass def delegated_f3(self): pass @delegate(delegated_f3) def f3(self): pass class B(A): def f1(self): pass return A, B @pytest.fixture def gorilla_setting(): return gorilla.Settings(allow_hit=True, store_hit=True) def test_basic_patch_for_class(gorilla_setting): A, B = gen_class_A_B() original_A_f1 = A.f1 original_A_f2 = A.f2 original_B_f1 = B.f1 def patched_A_f1(self): # pylint: disable=unused-argument pass def patched_A_f2(self): # pylint: disable=unused-argument pass def patched_B_f1(self): # pylint: disable=unused-argument pass patch_A_f1 = gorilla.Patch(A, "f1", patched_A_f1, gorilla_setting) patch_A_f2 = gorilla.Patch(A, "f2", patched_A_f2, gorilla_setting) patch_B_f1 = gorilla.Patch(B, "f1", patched_B_f1, gorilla_setting) assert gorilla.get_original_attribute(A, "f1") is original_A_f1 assert gorilla.get_original_attribute(B, "f1") is original_B_f1 assert gorilla.get_original_attribute(B, "f2") is original_A_f2 gorilla.apply(patch_A_f1) assert A.f1 is patched_A_f1 assert gorilla.get_original_attribute(A, "f1") is original_A_f1 assert gorilla.get_original_attribute(B, "f1") is original_B_f1 gorilla.apply(patch_B_f1) assert A.f1 is patched_A_f1 assert B.f1 is patched_B_f1 assert gorilla.get_original_attribute(A, "f1") is original_A_f1 assert gorilla.get_original_attribute(B, "f1") is original_B_f1 gorilla.apply(patch_A_f2) assert A.f2 is patched_A_f2 assert B.f2 is patched_A_f2 assert gorilla.get_original_attribute(A, "f2") is original_A_f2 assert gorilla.get_original_attribute(B, "f2") is original_A_f2 gorilla.revert(patch_A_f2) assert A.f2 is original_A_f2 assert B.f2 is original_A_f2 assert gorilla.get_original_attribute(A, "f2") == original_A_f2 assert gorilla.get_original_attribute(B, "f2") == original_A_f2 gorilla.revert(patch_B_f1) assert A.f1 is patched_A_f1 assert B.f1 is original_B_f1 assert gorilla.get_original_attribute(A, "f1") == original_A_f1 assert gorilla.get_original_attribute(B, "f1") == original_B_f1 gorilla.revert(patch_A_f1) assert A.f1 is original_A_f1 assert B.f1 is original_B_f1 assert gorilla.get_original_attribute(A, "f1") == original_A_f1 assert gorilla.get_original_attribute(B, "f1") == original_B_f1 def test_patch_for_descriptor(gorilla_setting): A, _ = gen_class_A_B() original_A_f3_raw = object.__getattribute__(A, "f3") def patched_A_f3(self): # pylint: disable=unused-argument pass patch_A_f3 = gorilla.Patch(A, "f3", patched_A_f3, gorilla_setting) assert gorilla.get_original_attribute(A, "f3") is A.delegated_f3 assert ( gorilla.get_original_attribute(A, "f3", bypass_descriptor_protocol=True) is original_A_f3_raw ) gorilla.apply(patch_A_f3) assert A.f3 is patched_A_f3 assert gorilla.get_original_attribute(A, "f3") is A.delegated_f3 assert ( gorilla.get_original_attribute(A, "f3", bypass_descriptor_protocol=True) is original_A_f3_raw ) gorilla.revert(patch_A_f3) assert A.f3 is A.delegated_f3 assert gorilla.get_original_attribute(A, "f3") is A.delegated_f3 assert ( gorilla.get_original_attribute(A, "f3", bypass_descriptor_protocol=True) is original_A_f3_raw ) # test patch a descriptor @delegate(patched_A_f3) def new_patched_A_f3(self): # pylint: disable=unused-argument pass new_patch_A_f3 = gorilla.Patch(A, "f3", new_patched_A_f3, gorilla_setting) gorilla.apply(new_patch_A_f3) assert A.f3 is patched_A_f3 assert object.__getattribute__(A, "f3") is new_patched_A_f3 assert gorilla.get_original_attribute(A, "f3") is A.delegated_f3 assert ( gorilla.get_original_attribute(A, "f3", bypass_descriptor_protocol=True) is original_A_f3_raw ) @pytest.mark.parametrize("store_hit", [True, False]) def test_patch_on_inherit_method(store_hit): A, B = gen_class_A_B() original_A_f2 = A.f2 def patched_B_f2(self): # pylint: disable=unused-argument pass gorilla_setting = gorilla.Settings(allow_hit=True, store_hit=store_hit) patch_B_f2 = gorilla.Patch(B, "f2", patched_B_f2, gorilla_setting) gorilla.apply(patch_B_f2) assert B.f2 is patched_B_f2 assert gorilla.get_original_attribute(B, "f2") is original_A_f2 gorilla.revert(patch_B_f2) assert B.f2 is original_A_f2 assert gorilla.get_original_attribute(B, "f2") is original_A_f2 assert "f2" not in B.__dict__ # assert no side effect after reverting @pytest.mark.parametrize("store_hit", [True, False]) def test_patch_on_attribute_not_exist(store_hit): A, _ = gen_class_A_B() def patched_fx(self): # pylint: disable=unused-argument return 101 gorilla_setting = gorilla.Settings(allow_hit=True, store_hit=store_hit) fx_patch = gorilla.Patch(A, "fx", patched_fx, gorilla_setting) gorilla.apply(fx_patch) a1 = A() assert a1.fx() == 101 gorilla.revert(fx_patch) assert not hasattr(A, "fx") ``` #### File: tests/utils/test_validation.py ```python import copy import pytest import mlflow from mlflow.exceptions import MlflowException from mlflow.entities import Metric, Param, RunTag from mlflow.protos.databricks_pb2 import ErrorCode, INVALID_PARAMETER_VALUE from mlflow.utils.validation import ( _is_numeric, _validate_metric_name, _validate_param_name, _validate_tag_name, _validate_run_id, _validate_batch_log_data, _validate_batch_log_limits, _validate_experiment_artifact_location, _validate_db_type_string, _validate_experiment_name, ) GOOD_METRIC_OR_PARAM_NAMES = [ "a", "Ab-5_", "a/b/c", "a.b.c", ".a", "b.", "a..a/._./o_O/.e.", "a b/c d", ] BAD_METRIC_OR_PARAM_NAMES = [ "", ".", "/", "..", "//", "a//b", "a/./b", "/a", "a/", ":", "\\", "./", "/./", ] def test_is_numeric(): assert _is_numeric(0) assert _is_numeric(0.0) assert not _is_numeric(True) assert not _is_numeric(False) assert not _is_numeric("0") assert not _is_numeric(None) def test_validate_metric_name(): for good_name in GOOD_METRIC_OR_PARAM_NAMES: _validate_metric_name(good_name) for bad_name in BAD_METRIC_OR_PARAM_NAMES: with pytest.raises(MlflowException, match="Invalid metric name") as e: _validate_metric_name(bad_name) assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) def test_validate_param_name(): for good_name in GOOD_METRIC_OR_PARAM_NAMES: _validate_param_name(good_name) for bad_name in BAD_METRIC_OR_PARAM_NAMES: with pytest.raises(MlflowException, match="Invalid parameter name") as e: _validate_param_name(bad_name) assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) def test_validate_tag_name(): for good_name in GOOD_METRIC_OR_PARAM_NAMES: _validate_tag_name(good_name) for bad_name in BAD_METRIC_OR_PARAM_NAMES: with pytest.raises(MlflowException, match="Invalid tag name") as e: _validate_tag_name(bad_name) assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) def test_validate_run_id(): for good_id in [ "a" * 32, "f0" * 16, "abcdef0123456789" * 2, "a" * 33, "a" * 31, "a" * 256, "A" * 32, "g" * 32, "a_" * 32, "abcdefghijklmnopqrstuvqxyz", ]: _validate_run_id(good_id) for bad_id in ["a/bc" * 8, "", "a" * 400, "*" * 5]: with pytest.raises(MlflowException, match="Invalid run ID") as e: _validate_run_id(bad_id) assert e.value.error_code == ErrorCode.Name(INVALID_PARAMETER_VALUE) def test_validate_batch_log_limits(): too_many_metrics = [Metric("metric-key-%s" % i, 1, 0, i * 2) for i in range(1001)] too_many_params = [Param("param-key-%s" % i, "b") for i in range(101)] too_many_tags = [RunTag("tag-key-%s" % i, "b") for i in range(101)] good_kwargs = {"metrics": [], "params": [], "tags": []} bad_kwargs = { "metrics": [too_many_metrics], "params": [too_many_params], "tags": [too_many_tags], } match = r"A batch logging request can contain at most \d+" for arg_name, arg_values in bad_kwargs.items(): for arg_value in arg_values: final_kwargs = copy.deepcopy(good_kwargs) final_kwargs[arg_name] = arg_value with pytest.raises(MlflowException, match=match): _validate_batch_log_limits(**final_kwargs) # Test the case where there are too many entities in aggregate with pytest.raises(MlflowException, match=match): _validate_batch_log_limits(too_many_metrics[:900], too_many_params[:51], too_many_tags[:50]) # Test that we don't reject entities within the limit _validate_batch_log_limits(too_many_metrics[:1000], [], []) _validate_batch_log_limits([], too_many_params[:100], []) _validate_batch_log_limits([], [], too_many_tags[:100]) def test_validate_batch_log_data(): metrics_with_bad_key = [ Metric("good-metric-key", 1.0, 0, 0), Metric("super-long-bad-key" * 1000, 4.0, 0, 0), ] metrics_with_bad_val = [Metric("good-metric-key", "not-a-double-val", 0, 0)] metrics_with_bool_val = [Metric("good-metric-key", True, 0, 0)] metrics_with_bad_ts = [Metric("good-metric-key", 1.0, "not-a-timestamp", 0)] metrics_with_neg_ts = [Metric("good-metric-key", 1.0, -123, 0)] metrics_with_bad_step = [Metric("good-metric-key", 1.0, 0, "not-a-step")] params_with_bad_key = [ Param("good-param-key", "hi"), Param("super-long-bad-key" * 1000, "but-good-val"), ] params_with_bad_val = [ Param("good-param-key", "hi"), Param("another-good-key", "but-bad-val" * 1000), ] tags_with_bad_key = [ RunTag("good-tag-key", "hi"), RunTag("super-long-bad-key" * 1000, "but-good-val"), ] tags_with_bad_val = [ RunTag("good-tag-key", "hi"), RunTag("another-good-key", "but-bad-val" * 1000), ] bad_kwargs = { "metrics": [ metrics_with_bad_key, metrics_with_bad_val, metrics_with_bool_val, metrics_with_bad_ts, metrics_with_neg_ts, metrics_with_bad_step, ], "params": [params_with_bad_key, params_with_bad_val], "tags": [tags_with_bad_key, tags_with_bad_val], } good_kwargs = {"metrics": [], "params": [], "tags": []} for arg_name, arg_values in bad_kwargs.items(): for arg_value in arg_values: final_kwargs = copy.deepcopy(good_kwargs) final_kwargs[arg_name] = arg_value with pytest.raises(MlflowException, match=r".+"): _validate_batch_log_data(**final_kwargs) # Test that we don't reject entities within the limit _validate_batch_log_data( metrics=[Metric("metric-key", 1.0, 0, 0)], params=[Param("param-key", "param-val")], tags=[RunTag("tag-key", "tag-val")], ) def test_validate_experiment_artifact_location(): _validate_experiment_artifact_location("abcde") _validate_experiment_artifact_location(None) with pytest.raises(MlflowException, match="Artifact location cannot be a runs:/ URI"): _validate_experiment_artifact_location("runs:/blah/bleh/blergh") def test_validate_experiment_name(): _validate_experiment_name("validstring") bytestring = b"test byte string" _validate_experiment_name(bytestring.decode("utf-8")) for invalid_name in ["", 12, 12.7, None, {}, []]: with pytest.raises(MlflowException, match="Invalid experiment name"): _validate_experiment_name(invalid_name) def test_validate_list_experiments_max_results(): client = mlflow.tracking.MlflowClient() client.list_experiments(max_results=50) with pytest.raises(MlflowException, match="It must be at most 50000"): client.list_experiments(max_results=50001) for invalid_num in [-12, 0]: with pytest.raises(MlflowException, match="It must be at least 1"): client.list_experiments(max_results=invalid_num) def test_db_type(): for db_type in ["mysql", "mssql", "postgresql", "sqlite"]: # should not raise an exception _validate_db_type_string(db_type) # error cases for db_type in ["MySQL", "mongo", "cassandra", "sql", ""]: with pytest.raises(MlflowException, match="Invalid database engine") as e: _validate_db_type_string(db_type) assert "Invalid database engine" in e.value.message ```
{ "source": "jinzhao3611/Political_Stance_Prediction", "score": 3 }
#### File: Political_Stance_Prediction/reader/data.py ```python import random from typing import ( Tuple, Optional, Generator, Union, overload, List, Iterable, TypeVar, Any, Iterator, NamedTuple, Dict, ) import attr import pandas as pd def _to_tokens(items: Iterable[str]) -> Tuple["Token", ...]: return tuple(Token.from_text(item) for item in items) class Token(NamedTuple): text: str is_special: bool is_hashtag: bool is_mention: bool is_url: bool @staticmethod def from_text(text: str) -> "Token": is_hashtag = text.startswith("#") is_mention = text.startswith("@") or text.startswith(".@") is_url = text.startswith("http") is_special = any([is_hashtag, is_mention, is_url]) return Token(text, is_special, is_hashtag, is_mention, is_url,) def __str__(self) -> str: return self.text def __repr__(self) -> str: return self.text @attr.s(frozen=True, slots=True) class Sentence(Iterable[Tuple[Token, str]]): id: int = attr.ib() stance: str = attr.ib() tokens: Tuple[Token, ...] = attr.ib() tags: Tuple[str, ...] = attr.ib() @staticmethod def create( instance_id: int, stance: str, tokens: List[str], tags: List[str] ) -> "Sentence": return Sentence(instance_id, stance, _to_tokens(tokens), tuple(tags)) @property def token_strs(self) -> Tuple[str, ...]: return tuple(token.text for token in self.tokens) def __iter__(self) -> Iterator[Tuple[Token, str]]: yield from zip(self.tokens, self.tags) @overload def __getitem__(self, i: int) -> Tuple[Token, str]: raise NotImplementedError @overload def __getitem__(self, i: slice) -> Tuple[Tuple[Token, ...], Tuple[str, ...]]: raise NotImplementedError def __getitem__( self, i: Union[int, slice] ) -> Tuple[Union[Token, Tuple[Token, ...]], Union[str, Tuple[str, ...]]]: return self.tokens[i], self.tags[i] def copy_with_stance(self, stance: str) -> "Sentence": return Sentence(self.id, stance, self.tokens, self.tags) @attr.s(frozen=True) class Corpus(Iterable[Sentence]): instances: Tuple[Sentence, ...] = attr.ib() def __len__(self) -> int: return len(self.instances) def __iter__(self) -> Iterator[Sentence]: return iter(self.instances) @overload def __getitem__(self, i: int) -> Sentence: raise NotImplementedError @overload def __getitem__(self, i: slice) -> "Corpus": raise NotImplementedError def __getitem__(self, i: Union[int, slice]) -> Union[Sentence, "Corpus"]: if isinstance(i, slice): return Corpus(self.instances[i]) else: return self.instances[i] @property def stances(self) -> Generator[str, None, None]: return (instance.stance for instance in self.instances) def shuffled(self, seed: Optional[int]) -> "Corpus": if seed is not None: random.seed(seed) insts = tuple(self.instances) random.shuffle(insts) return Corpus(insts) def load_corpus_csv(file: pd.DataFrame, bias_only, addi_mapping) -> Corpus: return Corpus(tuple(_gen_instances(file, bias_only, None, addi_mapping))) def load_corpus(path: str, bias_only: bool, addi_mapping: Optional[Dict]) -> Corpus: if path.endswith(".csv"): return load_corpus_csv(pd.read_csv(path), bias_only, addi_mapping) else: raise ValueError(f"File should be of CSV format!") def _gen_instances( file: pd.DataFrame, bias_only: bool, tokenizer: Any, addi_mapping: Dict ) -> Generator[Sentence, None, None]: file_data = file.values for idx, line in enumerate(file_data): if tokenizer: tokens = tokenizer(line[0]) else: tokens = line[0].split() if addi_mapping: addi_tokens = [] for token in tokens: token = token.lower() for key in addi_mapping: if key.endswith("*"): if token.startswith(key[:-1]): addi_tokens.extend(addi_mapping[key]) else: if token == key: addi_tokens.extend(addi_mapping[key]) tokens.extend(addi_tokens) tags = ["Other"] * len( tokens ) # in the future we might use token level annotation stance = line[1] if bias_only and stance == "Cannot-decide": continue yield Sentence.create(idx, stance, tokens, tags) if __name__ == "__main__": # with open("../data/moral_dict.pkl", "rb") as f: # moral_dict_mapping = pickle.load(f) cp = load_corpus( "../data/gold-split/test/combined.csv", bias_only=False, addi_mapping=None ) ``` #### File: Political_Stance_Prediction/scripts/corpus_analysis.py ```python from collections import defaultdict, Counter import csv import random import json from nltk.metrics import agreement # constants HITID = "HITId" LABEL = "Answer.political bias.label" WORKERID = "WorkerId" WORKTIME = "WorkTimeInSeconds" APPROVE = "Approve" TEXT = "Input.text" sample_path = "amt_output_csv/abortion_batch_results.csv" class CorpusAnalysis(object): def __init__(self, data_path): self.table_titiles = list() # ['HITId', 'HITTypeId', 'Title', 'Description', 'Keywords', 'Reward', 'CreationTime', 'MaxAssignments', 'RequesterAnnotation', 'AssignmentDurationInSeconds', 'AutoApprovalDelayInSeconds', 'Expiration', 'NumberOfSimilarHITs', 'LifetimeInSeconds', 'AssignmentId', 'WorkerId', 'AssignmentStatus', 'AcceptTime', 'SubmitTime', 'AutoApprovalTime', 'ApprovalTime', 'RejectionTime', 'RequesterFeedback', 'WorkTimeInSeconds', 'LifetimeApprovalRate', 'Last30DaysApprovalRate', 'Last7DaysApprovalRate', 'Input.video_title', 'Input.policy', 'Input.media', 'Input.text', 'Answer.political bias.label', 'Approve', 'Reject'] self.full_table = list() self.hitid_labels = defaultdict(list) self.hitid_goldlabel = defaultdict(str) self.hitid_majoritylabel = defaultdict(str) self.hit_adjudicate = defaultdict(list) with open(data_path, mode="r") as infile: reader = csv.reader(infile) for i, row in enumerate(reader): if i == 0: self.table_titiles = row else: self.full_table.append(row) self.hitid_labels[row[0]].append(row[-1]) self.title_index = {k: v for v, k in enumerate(self.table_titiles)} self.policy = self.full_table[0][self.title_index["Input.policy"]] def populate_hitid_goldlabel(self): # get the majority voting as the gold label in hit_goldlabel # me as adjudicator breaking ties manually in hit_adjudicate for k, v in self.hitid_labels.items(): majority_label = Counter(v).most_common()[0][0] majority_label_count = Counter(v).most_common()[0][1] if len(v) == 3 and majority_label_count != 1: self.hitid_goldlabel[k] = majority_label self.hitid_majoritylabel[k] = majority_label else: self.hit_adjudicate[k] = v # get Majority aggregation/ties # print(len(self.hit_goldlabel)) # print(len(self.hit_adjudicate.keys())) ##TODO:change this when get full data and manually adjudicated for k, v in self.hit_adjudicate.items(): self.hitid_goldlabel[k] = v[0] # adjudicate, get the gold labels for row in self.full_table: hit_id = row[self.title_index[HITID]] label = row[self.title_index[LABEL]] if label == self.hitid_goldlabel.get(hit_id, "non-exist"): row.append("Approved") else: row.append("Rejected") # get label distribution: # print(Counter(self.hit_goldlabel.values())) # print("*****************************************") def turker_accuracy(self): # get how many turkers got it right/wrong adjudication_list = list() for row in self.full_table: adjudication_list.append(row[-1]) # print("*****************************************") # print(Counter(adjudication_list)) worker_app_rej = defaultdict(list) for row in self.full_table: if row[self.title_index[APPROVE]] == "Approved": if worker_app_rej[row[self.title_index[WORKERID]]]: worker_app_rej[row[self.title_index[WORKERID]]][0] += 1 else: worker_app_rej[row[self.title_index[WORKERID]]].append(1) worker_app_rej[row[self.title_index[WORKERID]]].append(0) else: if worker_app_rej[row[self.title_index[WORKERID]]]: worker_app_rej[row[self.title_index[WORKERID]]][1] += 1 else: worker_app_rej[row[self.title_index[WORKERID]]].append(0) worker_app_rej[row[self.title_index[WORKERID]]].append(1) worker_error_rate = { k: [v[0] / (v[0] + v[1]), v[0] + v[1]] for k, v in worker_app_rej.items() } sorted_worker_error_rate = { k: v for k, v in sorted( worker_error_rate.items(), key=lambda item: item[1][1], reverse=True ) } with open("turker_accuracy/{}.json".format(self.policy), "w") as f: json.dump(sorted_worker_error_rate, f, indent=2) x = sum(a[0] for a in sorted_worker_error_rate.values()) y = sum(a[1] for a in sorted_worker_error_rate.values()) length = len(sorted_worker_error_rate) return x / length, y / length # def get_iaa(self): # iaa_data = list() # prev_hitid = full_table[0][title_index[HITID]] # for i in range(0, len(full_table), 3): # iaa_data.append([0, full_table[i][title_index[HITID]], full_table[i][title_index[LABEL]]]) # iaa_data.append([1, full_table[i+1][title_index[HITID]], full_table[i+1][title_index[LABEL]]]) # iaa_data.append([2, full_table[i+2][title_index[HITID]], full_table[i+2][title_index[LABEL]]]) # # task = agreement.AnnotationTask(data=iaa_data) # print(task.kappa()) # print(task.alpha()) def get_data(self): self.hitid_text = defaultdict(str) for row in self.full_table: self.hitid_text[row[self.title_index[HITID]]] = row[self.title_index[TEXT]] text_adjudicate = set() for id in self.hit_adjudicate: text_adjudicate.add(self.hitid_text[id]) # print(text_adjudicate) # with open('tied_sents/{}.txt'.format(self.policy), 'w') as f: # f.write("\n\n".join(text_adjudicate)) def get_training_data(self): data = [["text", "label"]] for id, label in self.hitid_goldlabel.items(): data.append([self.hitid_text[id], label]) with open("unsplitted_data/{}.csv".format(self.policy), "w") as out: csv_out = csv.writer(out) for row in data: csv_out.writerow(row) def get_avg_accuracy(self): agreed = 0 disagreed = 0 for id, labels_list in self.hitid_labels.items(): for label in labels_list: if label == self.hitid_goldlabel[id]: agreed += 1 else: disagreed += 1 return agreed / (agreed + disagreed) def get_wawa(self): agreed = 0 disagreed = 0 for id, labels_list in self.hitid_labels.items(): for label in labels_list: if label == self.hitid_majoritylabel[id]: agreed += 1 else: disagreed += 1 return agreed / (agreed + disagreed) def get_random_sampling_accuracy(self, num_sample=100): keys = random.sample(self.hitid_labels.keys(), num_sample) agreed = 0 disagreed = 0 for id in keys: for label in self.hitid_labels[id]: if label == self.hitid_goldlabel[id]: agreed += 1 else: disagreed += 1 return agreed / (agreed + disagreed) if __name__ == "__main__": policies = [ "healthcare", "economic", "immigration", "education", "abortion", "LGBTQ", "gun", "environment", ] data_paths = [ "amt_output_csv/{}_batch_results.csv".format(policy) for policy in policies ] for path in data_paths: ca = CorpusAnalysis(path) ca.populate_hitid_goldlabel() print(ca.turker_accuracy()) ca.get_data() ca.get_training_data() # print("*******************************") # print(ca.get_avg_accuracy()) # print(ca.get_wawa()) # print(ca.get_random_sampling_accuracy()) # path = '/Users/jinzhao/Desktop/4th_semester/thesis/thesis/amt_output_csv/healthcare_batch_results.csv' # ca = CorpusAnalysis(path) # ca.populate_hitid_goldlabel() # ca.turker_accuracy() # ca.get_data() # ca.get_training_data() ``` #### File: Political_Stance_Prediction/text_cnn/vocab.py ```python import numpy as np from typing import List from reader.data import Corpus, Sentence from tensorflow.keras.preprocessing.sequence import pad_sequences from sklearn.model_selection import train_test_split class Vocabulary(object): def __init__(self, train_corpus: Corpus): self.UNK = "<UNK>" self.PAD = "<PAD>" self.vocab_index = self._get_vocab_index(train_corpus) @staticmethod def _instance_tokens(instance: Sentence) -> List[str]: return [token.text for token in instance.tokens] def _get_vocab_index(self, corpus: Corpus): self.vocab = set() for ins in corpus: self.vocab.update(self._instance_tokens(ins)) vocab_index = {v: i for i, v in enumerate(self.vocab, 2)} vocab_index[self.UNK] = 0 vocab_index[self.PAD] = 1 return vocab_index def add_word(self, word: str): if word in self.vocab: return else: self.vocab.add(word) self.vocab_index[word] = len(self.vocab_index) class DataTransformer(object): def __init__(self, corpus: Corpus, max_len=25, vocab: Vocabulary = None): self.max_len = max_len self.label_encoding = {"Cannot-decide": 0, "Left-leaning": 1, "Right-leaning": 2} if isinstance(vocab, Vocabulary): self.vocab = vocab else: self.vocab = Vocabulary(corpus) data = [] labels = [] for ins in corpus: data.append(self._instance_tokens(ins)) labels.append(ins.stance) self.data = self._compose(data) self.labels = self._label2idx(labels) @staticmethod def _instance_tokens(instance: Sentence) -> List[str]: return [token.text for token in instance.tokens] def train_val_split(self, val_size=0.1, shuffle=True, random_state=521): X_train, X_test, y_train, y_test = train_test_split( self.data, self.labels, test_size=val_size, shuffle=shuffle, random_state=random_state, ) return (X_train, y_train), (X_test, y_test) def _token2idx(self, tokens: List[str]): unk_idx = self.vocab.vocab_index[self.vocab.UNK] token_idx = [self.vocab.vocab_index.get(t, unk_idx) for t in tokens] return token_idx def _label2idx(self, labels: List[str]): label_idx = np.array([self.label_encoding[label] for label in labels]) return label_idx def _compose(self, data: List[List[str]]): data_lst = [] for line in data: data_lst.append(self._token2idx(line)) data = self._padding(data_lst) return data def _padding(self, idx_matrix: List[List[str]]): pad_value = self.vocab.vocab_index[self.vocab.PAD] padded = pad_sequences( idx_matrix, maxlen=self.max_len, padding="post", value=pad_value ) return padded if __name__ == "__main__": pass ``` #### File: jinzhao3611/Political_Stance_Prediction/train_CNN.py ```python import argparse from text_cnn import TextCNN, cross_entropy_loss, cnn_config from text_cnn import Vocabulary, DataTransformer from text_cnn import accuracy, evaluation, load_fasttext_text from reader.data import load_corpus, Corpus from reader.scoring import score_corpus import tensorflow as tf import os import datetime def get_timestamp(): return datetime.datetime.today().strftime("%Y%m%d-%H%M") def train( model, train_data: DataTransformer, dev_data: DataTransformer, test_data: DataTransformer, out_name, ): train_X = train_data.data train_y = train_data.labels train_dataset = ( tf.data.Dataset.from_tensor_slices((train_X, train_y)) .repeat() .shuffle(buffer_size=10000) ) train_dataset = train_dataset.batch(batch_size=cnn_config["batch_size"]).prefetch( buffer_size=1 ) dev_X = dev_data.data dev_y = dev_data.labels test_X = test_data.data test_y = test_data.labels optimizer = tf.optimizers.Adam(cnn_config["lr"]) def run_optimization(x, y): # Wrap computation inside a GradientTape for automatic differentiation with tf.GradientTape() as g: # Forward pass pred = model(x, use_softmax=False) # Compute loss loss = cross_entropy_loss(pred, y) # Variables to update trainable_variables = model.trainable_variables # Compute gradients gradients = g.gradient(loss, trainable_variables) # Update W and b following gradients optimizer.apply_gradients(zip(gradients, trainable_variables)) highest_val_f1 = -1 early_stop = 0 for step, (batch_x, batch_y) in enumerate(train_dataset.take(cnn_config["steps"]), 1): # Run the optimization to update W and b values run_optimization(batch_x, batch_y) if step % 100 == 0: pred = model(batch_x, use_softmax=True) loss = cross_entropy_loss(pred, batch_y) acc = accuracy(pred, batch_y) dev_pred = model(dev_X, use_softmax=True) val_pre, val_recall, val_f1 = evaluation(dev_pred, dev_y) if step % 100 == 0: print( f"step: {step:03} loss: {loss:.6f}\ttrain acc: {acc:.4f}\tF1: {val_f1:.4f}\tP: {val_pre:.4f}\tR: {val_recall:.4f}" ) if val_f1 > highest_val_f1: highest_val_f1 = val_f1 early_stop = 0 model.save_weights(filepath=out_name) test_pred = model(test_X, use_softmax=True) pred_out = tf.argmax(test_pred, 1).numpy() test_pre, test_recall, test_f1 = evaluation(test_pred, test_y) print( f"On Test: F1: {test_f1:.4f}\tP: {test_pre:.4f}\tR: {test_recall:.4f}" ) else: early_stop += 1 if early_stop > 5: break def predict(model, max_len, test_corpus: Corpus, vocab, ckpt_path=None) -> Corpus: if ckpt_path is not None: model.load_weights(ckpt_path) label_encoding = {"Cannot-decide": 0, "Left-leaning": 1, "Right-leaning": 2} rev_label_encoding = {v: k for k, v in label_encoding.items()} test_data = DataTransformer(test_corpus, max_len=max_len, vocab=vocab) pred = model(test_data.data, use_softmax=True) pre, rec, f1 = evaluation(pred, test_data.labels) print(f"On Test: F1: {f1:.4f}\tP: {pre:.4f}\tR: {rec:.4f}") pred = tf.argmax(pred, 1).numpy() return Corpus( tuple( instance.copy_with_stance(rev_label_encoding[pred]) for instance, pred in zip(test_corpus, pred) ) ) def main(): parser = argparse.ArgumentParser() parser.add_argument("train_path") parser.add_argument("dev_path") parser.add_argument("test_path") parser.add_argument("embed_path") args = parser.parse_args() MODEL_DIR = "cnn_output" train_corpus = load_corpus(args.train_path, bias_only=False, addi_mapping=None) dev_corpus = load_corpus(args.dev_path, bias_only=False, addi_mapping=None) test_corpus = load_corpus(args.test_path, bias_only=False, addi_mapping=None) vocab = Vocabulary(train_corpus) embed = load_fasttext_text(args.embed_path, vocab.vocab_index, dim=300) fs = [3, 4, 5] train_tr = DataTransformer(train_corpus, max_len=30, vocab=vocab) dev_tr = DataTransformer(dev_corpus, max_len=30, vocab=vocab) test_tr = DataTransformer(test_corpus, max_len=30, vocab=vocab) senti_cnn = TextCNN( embed=embed, filter_nums=100, filter_sizes=fs, max_sent_len=30, num_classes=3, ) ts = get_timestamp() train( senti_cnn, train_tr, dev_tr, test_tr, out_name=os.path.join(MODEL_DIR, ts, f'cnn_{cnn_config["embed_dim"]}.ckpt'), ) senti_cnn = TextCNN( embed=embed, filter_nums=100, filter_sizes=fs, max_sent_len=30, num_classes=3 ) pred_corpus = predict( senti_cnn, 30, test_corpus, os.path.join(MODEL_DIR, ts, f'cnn_{cnn_config["embed_dim"]}.ckpt'), ) score = score_corpus(test_corpus, pred_corpus) print(score) if __name__ == "__main__": main() ```
{ "source": "jinzhengyu1212/Clovers", "score": 3 }
#### File: Clovers/Python/test1.py ```python def f(n): ret=1 for i in range(1,n+1): ret*=i return ret A=input().split() n=int(A[0]); m=int(A[1]) print(int(f(n+m)/f(n)/f(m))) ```
{ "source": "jinzhijie/authlib-injector-updater", "score": 2 }
#### File: jinzhijie/authlib-injector-updater/cliui.py ```python from colorama import init, Fore, Back, Style __author__ = 'SkEy' __all__ = ['Fore', 'Back', 'Style', 'UIPrinter'] class _InternalColors: ''' 内部颜色组 ''' CAPTION = Style.RESET_ALL + Fore.LIGHTBLACK_EX PRINT = Style.NORMAL NOTE = Fore.LIGHTBLUE_EX WAIT = Fore.LIGHTBLACK_EX SUCC = Fore.LIGHTGREEN_EX WARN = Fore.BLACK + Back.YELLOW FAIL = Fore.LIGHTWHITE_EX + Back.RED ASK = Fore.WHITE + Back.BLUE CONFIRM = Fore.LIGHTRED_EX + Back.YELLOW NO = Fore.LIGHTWHITE_EX + Back.LIGHTBLACK_EX END = Style.RESET_ALL COLORAMA_INITED = False class UIPrinter(_InternalColors): ''' 基础用户交互接口 ''' def __init__(self, name): global COLORAMA_INITED if not COLORAMA_INITED: init() COLORAMA_INITED = True self.cprint = lambda prompt, msg, no_new_line = False: print(prompt + f'{self.CAPTION} {name}{self.END}:' , msg, end = '' if no_new_line else None) def print(self, msg): '''一般消息''' self.cprint(f'{self.PRINT}[ ]', msg) def note(self, msg): '''提示''' self.cprint(f'{self.NOTE}[*]', msg) def wait(self, msg): '''请稍候''' self.cprint(f'{self.WAIT}[.]', msg) def succ(self, msg): '''成功''' self.cprint(f'{self.SUCC}[+]', msg) def warn(self, msg): '''警告''' self.cprint(f'{self.WARN}[!]', msg) def fail(self, msg): '''错误''' self.cprint(f'{self.FAIL}[-]', msg) def ask(self, msg): '''一般询问''' self.cprint(f'{self.ASK}[?]', msg, no_new_line=True) def no(self, msg): '''操作未完成''' self.cprint(f'{self.NO}[=]', msg) def confirm(self, msg): '''确认询问''' self.cprint(f'{self.CONFIRM}[?]', msg, no_new_line=True) ```
{ "source": "jinzhuoran/CogKGE", "score": 2 }
#### File: cogkge/core/sampler.py ```python import torch class UnifNegativeSampler(): def __init__(self, triples, entity_dict_len, relation_dict_len, node_lut=None, device=torch.device('cuda:0')): # tensor(len,3) self.triples = triples self.entity_dict_len = entity_dict_len self.relation_dict_len = relation_dict_len self.device = device self.node_lut = node_lut def tuple_to_dict(self, data_tuple): data_dict = { "h": data_tuple[0], "r": data_tuple[1], "t": data_tuple[2], } if len(data_tuple) == 3: pass elif len(data_tuple) == 5: # time info data_dict.update({ "start": data_tuple[3], "end": data_tuple[4], }) elif len(data_tuple) == 6: # type info data_dict.update({ "h_type": data_tuple[3], "t_type": data_tuple[4], "r_type": data_tuple[5], }) elif len(data_tuple) == 7: # descriptions info data_dict.update({ "h_token": data_tuple[3], "t_token": data_tuple[4], "h_mask": data_tuple[5], "t_mask": data_tuple[6], }) else: raise ValueError("Length of data_tuple {} unexpected!".format(len(data_tuple))) return data_dict def create_negative(self, batch_pos_tuple): batch_pos_dict = self.tuple_to_dict(batch_pos_tuple) batch_neg_dict = self._create_negative(batch_pos_dict) return list(tuple(batch_neg_dict.values())) def _create_negative(self, batch_pos_dict): # {"h":tensor(batch,),"r":tensor(batch,),"t":tensor(batch,),...} h, r, t = batch_pos_dict["h"], batch_pos_dict["r"], batch_pos_dict["t"] batch_pos = torch.cat((h.unsqueeze(1), r.unsqueeze(1), t.unsqueeze(1)), dim=1).to( self.device) # tensor(batch,3) batch_neg = batch_pos.clone().to(self.device) entity_number = torch.randint(self.entity_dict_len, (batch_neg.size()[0],)).to(self.device) mask = torch.rand(batch_neg.size()[0]) head_mask = (mask > 0.5).to(self.device) tail_mask = (mask <= 0.5).to(self.device) batch_neg[head_mask, 0] = entity_number[head_mask].to(self.device) batch_neg[tail_mask, 2] = entity_number[tail_mask].to(self.device) index_dict = {"h": 0, "t": 2} batch_neg_dict = {} for key, values in batch_pos_dict.items(): if len(key.split("_")) > 1 and key != "r_type": index, attribute = key.split("_") lut_values = getattr(self.node_lut, attribute) batch_neg_dict.update({key: lut_values[batch_neg[:, index_dict[index]]]}) else: batch_neg_dict.update({key: batch_pos_dict[key]}) batch_neg_dict.update({"h": batch_neg[:, 0], "r": batch_neg[:, 1], "t": batch_neg[:, 2]}) return batch_neg_dict class BernNegativeSampler(): def __init__(self, triples, entity_dict_len, relation_dict_len, device=torch.device('cuda:0')): # tensor(len,3) self.triples = triples self.entity_dict_len = entity_dict_len self.relation_dict_len = relation_dict_len self.device = device h_r_uniq, t_count = torch.unique(triples[:, :-1], return_counts=True, dim=0) r_t_uniq, h_count = torch.unique(triples[:, 1:], return_counts=True, dim=0) self.P_remove_head = torch.zeros(self.relation_dict_len) for r in range(self.relation_dict_len): idx = h_r_uniq[:, 1] == r tph = torch.mean(t_count[idx].type(torch.FloatTensor)) idx = r_t_uniq[:, 0] == r hpt = torch.mean(h_count[idx].type(torch.FloatTensor)) self.P_remove_head[r] = tph / (tph + hpt) def create_negative(self, batch_pos): # tensor(batch,3) batch_neg = batch_pos.clone() entity_number = torch.randint(self.entity_dict_len, (batch_neg.size()[0],)).to(self.device) relation = batch_pos[:, 1] mask = torch.rand(batch_neg.size()[0]) head_mask = (mask < self.P_remove_head[relation]).to(self.device) tail_mask = (mask >= self.P_remove_head[relation]).to(self.device) batch_neg[head_mask, 0] = entity_number[head_mask].to(self.device) batch_neg[tail_mask, 2] = entity_number[tail_mask].to(self.device) return batch_neg class AdversarialSampler: def __init__(self, triples, entity_dict_len, relation_dict_len, neg_per_pos, device=torch.device('cuda:0')): # tensor(len,3) self.triples = triples self.entity_dict_len = entity_dict_len self.relation_dict_len = relation_dict_len self.neg_per_pos = neg_per_pos self.device = device def create_negative(self,batch_pos_tuple): batch_pos_dict = self.tuple_to_dict(batch_pos_tuple) batch_neg_dict = self._create_negative(batch_pos_dict) return list(batch_neg_dict.values()) def _create_negative(self, batch_pos_dict): """ batch_pos:(batch,3) return: batch_neg(batch * neg_per_pos,3) """ h,r,t = batch_pos_dict["h"],batch_pos_dict["r"],batch_pos_dict["t"] batch_pos = torch.cat((h.unsqueeze(1), r.unsqueeze(1), t.unsqueeze(1)), dim=1).to(self.device) # tensor(batch,3) batch_neg = torch.cat([self.__create_negative(batch_pos) for i in range(self.neg_per_pos)], dim=0) index_dict = {"h":0,"t":2} batch_neg_dict = {} for key,values in batch_pos_dict.items(): if len(key.split("_")) > 1 and key != "r_type": index,attribute = key.split("_") lut_values = getattr(self.node_lut,attribute) batch_neg_dict.update({key:lut_values[batch_neg[:,index_dict[index]]]}) else: batch_neg_dict.update({key:batch_pos_dict[key]}) batch_neg_dict.update({"h": batch_neg[:, 0], "r": batch_neg[:, 1], "t": batch_neg[:, 2]}) return batch_neg_dict def __create_negative(self, batch_pos): batch_neg = batch_pos.clone() entity_number = torch.randint(self.entity_dict_len, (batch_neg.size()[0],)).to(self.device) mask = torch.rand(batch_neg.size()[0]) head_mask = (mask > 0.5).bool().to(self.device) tail_mask = (mask <= 0.5).bool().to(self.device) batch_neg[head_mask, 0] = entity_number[head_mask].to(self.device) batch_neg[tail_mask, 2] = entity_number[tail_mask].to(self.device) return batch_neg def tuple_to_dict(self,data_tuple): data_dict = { "h":data_tuple[0], "r":data_tuple[1], "t":data_tuple[2], } if len(data_tuple) == 3: pass elif len(data_tuple) == 5: # time info data_dict.update({ "start":data_tuple[3], "end":data_tuple[4], }) elif len(data_tuple) == 6: # type info data_dict.update({ "h_type":data_tuple[3], "t_type":data_tuple[4], "r_type":data_tuple[5], }) elif len(data_tuple) == 7: # descriptions info data_dict.update({ "h_token":data_tuple[3], "t_token":data_tuple[4], "h_mask":data_tuple[5], "t_mask":data_tuple[6], }) else: raise ValueError("Length of data_tuple {} unexpected!".format(len(data_tuple))) return data_dict if __name__ == "__main__": fake_triples = torch.tensor([[1, 0, 0], [1, 0, 4], [1, 0, 3], [5, 0, 3], [2, 1, 5], [4, 2, 2]]).to("cuda:0") batch_pos = torch.tensor([[4, 2, 1], [0, 3, 4]]).to("cuda:0") data_batch = (batch_pos[:,0],batch_pos[:,1],batch_pos[:,2]) # sampler=UnifNegativeSampler(fake_triples,5,4) # batch_neg=sampler.create_negative(batch_pos) # sampler = BernNegativeSampler(fake_triples, 6, 3) # batch_neg = sampler.create_negative(batch_pos) sampler=AdversarialSampler(fake_triples,5,4,3) batch_neg=sampler.create_negative(data_batch) print(batch_neg) ``` #### File: data/loader/codexmloader.py ```python from .baseloader import BaseLoader class CODEXMLoader(BaseLoader): def __init__(self, dataset_path, download=False): super().__init__(dataset_path, download, raw_data_path="CODEXM/raw_data", processed_data_path="CODEXM/processed_data", train_name="train.txt", valid_name="valid.txt", test_name="test.txt", data_name="CODEXM") def download_action(self): self.downloader.CODEXM() ``` #### File: data/loader/fb15k237loader.py ```python from .baseloader import BaseLoader class FB15K237Loader(BaseLoader): def __init__(self,dataset_path,download=False): super().__init__(dataset_path, download, raw_data_path="FB15K237/raw_data", processed_data_path="FB15K237/processed_data", train_name="train.txt", valid_name="valid.txt", test_name="test.txt", data_name="FB15K237" ) def download_action(self): self.downloader.FB15K237() ``` #### File: data/processor/codexlprocessor.py ```python from .baseprocessor import BaseProcessor class CODEXLProcessor(BaseProcessor): def __init__(self, node_lut, relation_lut, reprocess): super().__init__("CODEXL", node_lut, relation_lut, reprocess) ``` #### File: data/processor/cskgprocessor.py ```python from .baseprocessor import BaseProcessor class CSKGProcessor(BaseProcessor): def __init__(self, node_lut, relation_lut, reprocess): super().__init__("CSKG", node_lut, relation_lut, reprocess) ``` #### File: data/processor/fb15k237processor.py ```python from .baseprocessor import BaseProcessor class FB15K237Processor(BaseProcessor): def __init__(self, node_lut, relation_lut, reprocess): super().__init__("FB15K237", node_lut, relation_lut, reprocess) ``` #### File: cogkge/models/rescal.py ```python import torch import torch.nn as nn import torch.nn.functional as F from cogkge.models.basemodel import BaseModel class Rescal(BaseModel): def __init__(self, entity_dict_len, relation_dict_len, embedding_dim, penalty_weight=0.0): super().__init__(model_name="Rescal", penalty_weight=penalty_weight) self.entity_dict_len = entity_dict_len self.relation_dict_len = relation_dict_len self.embedding_dim = embedding_dim self.entity_embedding = nn.Embedding(entity_dict_len, embedding_dim) self.relation_embedding = nn.Embedding(relation_dict_len, embedding_dim * embedding_dim) self._reset_param() def _reset_param(self): # 重置参数 nn.init.xavier_uniform_(self.entity_embedding.weight.data) nn.init.xavier_uniform_(self.relation_embedding.weight.data) def get_realation_embedding(self, relation_ids): # 得到关系的embedding return self.r_embedding(relation_ids) def get_entity_embedding(self, entity_ids): # 得到实体的embedding return self.e_embedding(entity_ids) def get_triplet_embedding(self, data): # 得到三元组的embedding h_embedding = self.e_embedding(data[0]) r_embedding = self.r_embedding(data[1]) t_embedding = self.e_embedding(data[2]) return h_embedding, r_embedding, t_embedding def forward(self, data): batch_h, batch_r, batch_t = data[ 0], data[1], data[2] A = self.entity_embedding(batch_h) # (batch,embedding) A = F.normalize(A, p=2, dim=-1) R = self.relation_embedding(batch_r).view(-1, self.embedding_dim,self.embedding_dim) # (batch,embedding,embedding) A_T = self.entity_embedding(batch_t).view(-1, self.embedding_dim, 1) # (batch,embedding,1) A_T = F.normalize(A_T, p=2, dim=1) tr = torch.matmul(R, A_T) # (batch,embedding_dim,1) tr = tr.view(-1, self.embedding_dim) # (batch,embedding_dim) return -torch.sum(A * tr, dim=-1) # (batch,) def loss(self, data): # 计算损失 pos_data = data pos_data = self.data_to_device(pos_data) neg_data = self.model_negative_sampler.create_negative(data) neg_data = self.data_to_device(neg_data) pos_score = self.forward(pos_data) neg_score = self.forward(neg_data) return self.model_loss(pos_score, neg_score) + self.penalty(data) ``` #### File: cogkge/utils/kr_utils.py ```python import datetime import os import random import numpy as np import torch # import the specified class def import_class(name): components = name.split('.') mod = __import__(components[0]) for comp in components[1:]: mod = getattr(mod, comp) return mod # compute the output path from the data path def cal_output_path(data_path, model_name): output_path = os.path.join(*data_path.split("/")[:], "experimental_output", model_name + str(datetime.datetime.now())[:-4]).replace( ':', '-').replace(' ', '--') return output_path def init_cogkge(device_id, seed): """ cogkge初始化 :param device_id: 使用GPU:比如输入GPU编号 "0,1"或者“cuda:0,cuda:1”;使用CPU:输入“cpu” :param seed: 随机数种子 :return: device """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) device_list = str(device_id).strip().lower().replace('cuda:', '') cpu = device_list == 'cpu' if cpu: os.environ['CUDA_VISIBLE_DEVICES'] = '-1' # force torch.cuda.is_available() = False elif device_list: # non-cpu device requested os.environ['CUDA_VISIBLE_DEVICES'] = device_list # set environment variable assert torch.cuda.is_available(), f'CUDA unavailable, invalid device {device_list} requested' # check availability device = torch.device('cuda' if torch.cuda.is_available() == True else "cpu") return device ```
{ "source": "jinzitian/HMM", "score": 3 }
#### File: HMM/hmmtool/hmm.py ```python import numpy as np class HMM(object): def __init__(self, state_num, observe_num, train_params = 'ste'): self.s_n = state_num self.o_n = observe_num self.A = np.random.rand(self.s_n, self.s_n) self.A = self.A/self.A.sum(axis = 1).reshape([-1,1]) self.B = np.random.rand(self.s_n, self.o_n) self.B = self.B/self.B.sum(axis = 1).reshape([-1,1]) self.pi = np.random.rand(self.s_n) self.pi = self.pi/sum(self.pi) self.train_data = [] self.train_params = train_params #input_data 格式为 [[o1,o2,o3,...,ox], [o1,o2,o3,...,oy]] #支持多观测序列输入,观测序列的输入是index化后的值,需要提前根据实际的观测值字典去映射,解码出的隐状态值也是一样,都是index数据,需要再根据映射还原 def add_data(self, input_data): self.train_data.extend(input_data) #计算所有的前向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def forward(self, o_seqs): self.alpha = [] for seq in o_seqs: alpha = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): alpha[0,i] = self.pi[i] * self.B[i,seq[0]] for r in range(1,len(seq)): for i in range(self.s_n): alpha[r,i] = sum([alpha[r-1,j]*self.A[j,i] for j in range(self.s_n)])*self.B[i,seq[r]] self.alpha.append(alpha) #计算所有的后向概率 # [[o1,o2,o3,...,ot1], [o1,o2,o3,...,ot2]] # [t1 * s_n, t2 * s_n] def backward(self, o_seqs): self.beta = [] for seq in o_seqs: beta = np.zeros((len(seq),self.s_n)) for i in range(self.s_n): beta[len(seq)-1,i] = 1 for r in range(len(seq)-2,-1,-1): for i in range(self.s_n): beta[r,i] = sum([self.A[i,j]*self.B[j,seq[r+1]]*beta[r+1,j] for j in range(self.s_n)]) self.beta.append(beta) #给定模型参数和观测序列,时刻t的状态为xx的概率 # t * s_n # 多条观测序列输入 则为[t1 * s_n, t2 * s_n, ... , tk * s_n] def gamma_matrix(self): self.gamma = [] for i in range(len(self.alpha)): alpha = self.alpha[i] beta = self.beta[i] self.gamma.append(alpha*beta/sum(alpha[len(alpha)-1])) #给定模型参数和观测序列,时刻t的状态为xx,且t+1的状态为yy的概率 # t * s_n * s_n # 多条观测序列输入 则为[t1-1 * s_n * s_n, t2-1 * s_n * s_n, ... , tk-1 * s_n * s_n] def ksi_matrix(self): self.ksi = [] for i in range(len(self.train_data)): seq = self.train_data[i] alpha = self.alpha[i] beta = self.beta[i] ksi = np.zeros((len(seq)-1, self.s_n, self.s_n)) for t in range(len(seq)-1): for i in range(self.s_n): for j in range(self.s_n): ksi[t,i,j] = alpha[t,i]*self.A[i,j]*self.B[j,seq[t+1]]*beta[t+1,j]/sum(alpha[len(alpha)-1]) self.ksi.append(ksi) #EM思想 Baum-Welch算法 def train(self, maxStep = 10, delta = 0.01): step = 0 while step < maxStep: print("=============== step {} ===============".format(step)) #固定模型参数计算隐含数据 ''' self.forward(self.train_data) ''' #这里estimate_prob中计算了forward,所以 不用单独计算一次forward log_prob = [np.log(p) for p in self.estimate_prob(self.train_data)] self.backward(self.train_data) self.gamma_matrix() self.ksi_matrix() #固定隐含数据计算模型参数 new_pi = sum([gamma[0] for gamma in self.gamma])/len(self.gamma) new_A = sum([ksi.sum(axis = 0) for ksi in self.ksi])/np.reshape(sum([gamma[:-1].sum(axis = 0) for gamma in self.gamma]), [-1,1]) sn_on_list = [] for i in range(len(self.train_data)): seq = np.array(self.train_data[i]) gamma = self.gamma[i] sn_on = [] for o in range(self.o_n): sn_o = (np.reshape(seq == o, [-1,1]) * gamma).sum(axis = 0).reshape([-1,1]) sn_on.append(sn_o) sn_on_list.append(np.concatenate(sn_on,axis = 1)) new_B = sum(sn_on_list)/np.reshape(sum([gamma.sum(axis = 0) for gamma in self.gamma]), [-1,1]) #误差小也停止 pi_error = np.sum(np.square(new_pi - self.pi)) A_error = np.sum(np.square(new_A - self.A)) B_error = np.sum(np.square(new_B - self.B)) print("pi_error is {}".format(pi_error)) print("A_error is {}".format(A_error)) print("B_error is {}".format(B_error)) print("log_prob is {}".format(log_prob)) if pi_error < delta and A_error < delta and B_error < delta: if 's' in self.train_params: self.pi = new_pi if 't' in self.train_params: self.A = new_A if 'e' in self.train_params: self.B = new_B break if 's' in self.train_params: self.pi = new_pi if 't' in self.train_params: self.A = new_A if 'e' in self.train_params: self.B = new_B step += 1 #viterbi算法 #单条输入:[[o1,o2,o3,...,ot1]] #多条输入:[[o1,o2,o3,...,ot1],[o1,o2,o3,...,ot2]] #输出:[(prob1, [s1,s2,s3,...,st1]), (prob2, [s1,s2,s3,...,st2])] def decode(self, o_seq): result = [] for i in range(len(o_seq)): seq = o_seq[i] last_max_state = [[-1]*self.s_n] max_state_prob_now = [self.pi[s]*self.B[s,seq[0]] for s in range(self.s_n)] for o in seq[1:]: current_last_max_state = [0]*self.s_n max_state_prob_new = [0]*self.s_n for ns in range(self.s_n): candidates = [max_state_prob_now[bs]*self.A[bs,ns]*self.B[ns,o] for bs in range(self.s_n)] max_index = np.argmax(candidates) current_last_max_state[ns] = max_index max_state_prob_new[ns] = candidates[max_index] last_max_state.append(current_last_max_state) max_state_prob_now = max_state_prob_new #状态回溯 hidden_state = [] current_state = np.argmax(max_state_prob_now) max_prob = max_state_prob_now[current_state] hidden_state.append(current_state) for current_t in range(len(seq)-1,0,-1): current_state = last_max_state[current_t][current_state] hidden_state.append(current_state) result.append((max_prob, hidden_state[::-1])) return result #计算概率 P(O|λ) #单条[[o1,o2,o3,...,ot1]] #多条[[o1,o2,o3,...,ot1],[o1,o2,o3,...,ot2]] #输出:[prob1, prob2] def estimate_prob(self, o_seq): self.forward(o_seq) result = [] for alpha in self.alpha: result.append(sum(alpha[len(alpha)-1])) return result if __name__ == '__main__': s1 = np.random.randint(6,size = 60) s2 = np.random.randint(6,size = 40) s = np.concatenate([s1,s2]) sh = s.reshape([-1,1]) myhmm = HMM(3,6) myhmm.add_data([s]) myhmm.train(maxStep=50,delta=0.001) print(myhmm.pi) print(myhmm.A) print(myhmm.B) print(myhmm.estimate_prob([s])) from hmmlearn import hmm model = hmm.MultinomialHMM(n_components=3, n_iter=50, tol=0.01) model.fit(sh,lengths=[60,40]) print(model.startprob_) print(model.transmat_) print(model.emissionprob_) print(np.e**model.score(sh)) ''' model = hmm.MultinomialHMM(n_components=3) model.startprob_=myhmm.pi model.transmat_=myhmm.A model.emissionprob_=myhmm.B ''' ss = np.random.randint(6,size = 14) max_hidden_prob, hidden_state = myhmm.decode([ss])[0] print(max_hidden_prob, hidden_state) o_prob = myhmm.estimate_prob([ss])[0] print(o_prob) d = model.decode(ss.reshape([-1,1]), algorithm="viterbi") max_hidden_prob, hidden_state = np.e**d[0], list(d[1]) print(max_hidden_prob, hidden_state) o_prob = np.e**(model.score(ss.reshape([-1,1]))) print(o_prob) ```
{ "source": "Jinzy/PIconnect", "score": 2 }
#### File: PIconnect/PIconnect/AFSDK.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os # pragma pylint: enable=unused-import import sys from builtins import ( ascii, bytes, chr, dict, filter, hex, input, int, list, map, next, object, oct, open, pow, range, round, str, super, zip, ) try: import clr # Get the installation directory from the environment variable or fall back # to the Windows default installation path PIAF_SDK = os.getenv("PIHOME", "C:\\Program Files\\PIPC") PIAF_SDK += "\\AF\\PublicAssemblies\\4.0\\" if not os.path.isdir(PIAF_SDK): raise ImportError("PIAF SDK not found in %s, check installation" % PIAF_SDK) sys.path.append(PIAF_SDK) clr.AddReference("OSIsoft.AFSDK") # pylint: disable=no-member from OSIsoft import AF # pylint: wrong-import-position AF_SDK_VERSION = AF.PISystems().Version print("OSIsoft(r) AF SDK Version: {}".format(AF_SDK_VERSION)) except ImportError: import enum import warnings warnings.warn("Can't import the PI AF SDK, running in test mode", ImportWarning) AF_SDK_VERSION = "2.7_compatible" # pragma pylint: disable=invalid-name, unused-argument, too-few-public-methods class AF: """Mock class of the AF namespace""" class Data: """Mock class of the AF.Data namespace""" class AFBoundaryType(enum.IntEnum): """Mock class of the AF.Data.AFBoundaryType enumeration""" Inside = 0 Outside = 1 Interpolated = 2 class PI: """Mock class of the AF.PI namespace""" class PIPoint: """Mock class of the AF.PI.PIPoint class""" @staticmethod def FindPIPoints(connection, query, source, attribute_names): """Stub to mock querying PIPoints""" return [] class PIServer: """Mock class of the AF.PI.PIServer class""" def __init__(self, name): self.Name = name def Connect(self, retry): """Stub for connecting to test server""" pass def Disconnect(self): """Stub for disconnecting from test server""" pass class PIServers: """Mock class of the AF.PI.PIServers class""" DefaultPIServer = None def __init__(self): self._init() def _init(self): if not self.DefaultPIServer: self.DefaultPIServer = AF.PI.PIServer("Testing") def __iter__(self): self._init() return (x for x in [self.DefaultPIServer]) class AFElement: """Mock class of the AF.AFElement class""" def __init__(self, name): self.Name = name class AFDatabase: """Mock class of the AF.AFDatabase class""" def __init__(self, name): self.Name = name self.Elements = [AF.AFElement("TestElement")] class PISystem: """Mock class of the AF.PISystem class""" class InternalDatabases: """Mock class for the AF.PISystem.Databases property""" def __init__(self): self.DefaultDatabase = AF.AFDatabase("TestDatabase") def __iter__(self): return (x for x in [self.DefaultDatabase]) def __init__(self, name): self.Name = name self.Databases = AF.PISystem.InternalDatabases() def Connect(self): """Stub to connect to the testing system""" pass def Disconnect(self): """Stub to disconnect from the testing system""" pass class PISystems: """Mock class of the AF.PISystems class""" DefaultPISystem = None Version = "0.0.0.0" def __init__(self): self._init() def _init(self): if not self.DefaultPISystem: self.DefaultPISystem = AF.PISystem("TestingAF") def __iter__(self): self._init() return (x for x in [self.DefaultPISystem]) class Time: """Mock class of the AF.Time namespace""" class AFTimeRange: """Mock class of the AF.Time.AFTimeRange class""" def __init__(self, start_time, end_time): pass class AFTimeSpan: """Mock class of the AF.Time.AFTimeSpan class""" def __init__(self): pass @staticmethod def Parse(interval): """Stub for parsing strings that should return a AFTimeSpan""" return AF.Time.AFTimeSpan() # pragma pylint: enable=invalid-name, unused-argument, too-few-public-methods ``` #### File: PIconnect/PIconnect/config.py ```python class PIConfigContainer: _default_timezone = "UTC" @property def DEFAULT_TIMEZONE(self): return self._default_timezone @DEFAULT_TIMEZONE.setter def DEFAULT_TIMEZONE(self, value): import pytz if value not in pytz.all_timezones: raise ValueError("{v!r} not found in pytz.all_timezones".format(v=value)) self._default_timezone = value PIConfig = PIConfigContainer() ``` #### File: PIconnect/PIconnect/_operators.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from builtins import ( bytes, dict, int, list, object, range, str, ascii, chr, hex, input, next, oct, open, pow, round, super, filter, map, zip, ) try: from __builtin__ import str as BuiltinStr except ImportError: BuiltinStr = str # pragma pylint: enable=unused-import from collections import namedtuple import wrapt def operate(operator, operand): """Create a decorator to apply an operator to the function and a given operand. Operand can be either a constant or a function which accepts the same arguments as the base function to which the decorator is applied. Operator must be a function of two arguments. """ @wrapt.decorator def operate_(func, instance, args, kwargs): # pylint: disable=unused-argument """Decorate function to apply an operator to the function and a given operand.""" if hasattr(operand, func.__name__): func2 = getattr(operand, func.__name__) return operator(func(*args, **kwargs), func2(*args, **kwargs)) return operator(func(*args, **kwargs), operand) return operate_ def decorate(decorator, base, *args, **kwargs): """Return function decorated with the operate decorator. Inline replacement for @*decorator(*args, **kwargs)* """ return decorator(*args, **kwargs)(base) def add_operators(operators, members, newclassname, attributes): """Return a class decorator to add operators which patch each of a list of members. Keyword arguments: operators -- a list of tuples containing the function name to be added to the class, a definition of the operator (as a function of two arguments), and a docstring for the new function. members -- a list of strings with the names of the class members that must be decorated. newclassname -- the name of the new class that will be returned by the patched versions of *members*. attributes -- a list of attributes that are extracted from the original object and passed as arguments to <newclassname>.__init__. """ def build_operator_method(method, operator, docstring, cls): """Return a method definition for a numerical operator. Keyword arguments: method -- name of the operator method of a subclass of *cls*, will used for <operator>.__name__ for clean output in the class documentation. operator -- function of two arguments that is applied to the original function result and a given operand. docstring -- docstring for the new operator method. cls -- class of which the new dynamic class will be subclassed. """ def patch_members(self, other): """Return new object of class *newclassname* with patched members. Creates a new virtual class with the members in *members* patched to apply the given *operator* to the original function definition. """ newmembers = { member: decorate( decorator=operate, base=getattr(self, member), operator=operator, operand=other, ) for member in members } newclass = type(BuiltinStr(newclassname), (cls,), newmembers) return newclass(*[getattr(self, attr) for attr in attributes]) patch_members.__name__ = BuiltinStr(method) patch_members.__doc__ = docstring return patch_members def add_numops_(cls): """Decorate a class to add a function for each operator in a list of operators.""" for operator in operators: setattr( cls, operator.method, build_operator_method( method=operator.method, operator=operator.operator, docstring=operator.docstring, cls=cls, ), ) return cls return add_numops_ Operator = namedtuple("Operator", ["method", "operator", "docstring"]) OPERATORS = [ Operator("__add__", lambda x, y: x + y, """Add value(s) to PIPoint"""), Operator( "__radd__", lambda x, y: y + x, """Add PIPoint to value(s) (reverse order)""" ), Operator("__sub__", lambda x, y: x - y, """Subtract value(s) from PIPoint"""), Operator( "__rsub__", lambda x, y: y - x, """Subtract PIPoint from value(s) (reverse order)""", ), Operator("__mul__", lambda x, y: x * y, """Multiply PIPoint by value(s)"""), Operator( "__rmul__", lambda x, y: y * x, """Multiply value(s) by PIPoint (reverse order)""", ), # # Removed for now, Python 3 only # Operator('__matmul__', # lambda x, y: x @ y, # """Matrix multiply"""), # # Removed for now, Python 3 only # Operator('__rmatmul__', # lambda x, y: y @ x, # """Matrix multiply (reverse order)"""), Operator("__div__", lambda x, y: x / y, """Divide PIPoint by value(s)"""), Operator( "__rdiv__", lambda x, y: y / x, """Divide value(s) by PIPoint (reverse order)""" ), Operator("__truediv__", lambda x, y: x / y, """Divide PIPoint by value(s)"""), Operator( "__rtruediv__", lambda x, y: y / x, """Divide value(s) by PIPoint (reverse order)""", ), Operator( "__floordiv__", lambda x, y: x // y, """Floordivide PIPoint by value(s)""" ), Operator( "__rfloordiv__", lambda x, y: y // x, """Floordivide value(s) by PIPoint (reverse order)""", ), Operator("__mod__", lambda x, y: x % y, """Modulo PIPoint by value(s)"""), Operator( "__rmod__", lambda x, y: y % x, """Modulo value(s) by PIPoint (reverse order)""" ), Operator( "__divmod__", divmod, # This is already a function of x and y """Return divmod of PIPoint by value(s). divmod(a, b) returns a tuple of the floordivision of a and b, a // b, and the modulo of a and b, a % b. For integers this is faster than when the operations are performed separately. """, ), Operator( "__rdivmod__", lambda x, y: divmod(y, x), """Return divmod of value(s) by PIPoint (reverse order). divmod(a, b) returns a tuple of the floordivision of a and b, a // b, and the modulo of a and b, a % b. For integers this is faster than when the operations are performed separately. """, ), ] ``` #### File: PIconnect/PIconnect/PIConsts.py ```python from enum import IntEnum try: from enum import IntFlag except ImportError: IntFlag = IntEnum class UpdateMode(IntEnum): """Indicates how to treat duplicate values in the archive, when supported by the Data Reference. Detailed information is available at :afsdk:`AF.Data.AFUpdateOption <T_OSIsoft_AF_Data_AFUpdateOption.htm>` """ #: Add the value to the archive. #: If any values exist at the same time, will overwrite one of them and set its Substituted flag. REPLACE = 0 #: Add the value to the archive. Any existing values at the same time are not overwritten. INSERT = 1 #: Add the value to the archive only if no value exists at the same time. #: If a value already exists for that time, the passed value is ignored. NO_REPLACE = 2 #: Replace an existing value in the archive at the specified time. #: If no existing value is found, the passed value is ignored. REPLACE_ONLY = 3 #: Add the value to the archive without compression. #: If this value is written to the snapshot, the previous snapshot value will be written to the archive, #: without regard to compression settings. #: Note that if a subsequent snapshot value is written without the InsertNoCompression option, #: the value added with the InsertNoCompression option is still subject to compression. INSERT_NO_COMPRESSION = 5 #: Remove the value from the archive if a value exists at the passed time. REMOVE = 6 class BufferMode(IntEnum): """Indicates buffering option in updating values, when supported by the Data Reference. Detailed information is available at :afsdk:`AF.Data.AFBufferOption <T_OSIsoft_AF_Data_AFBufferOption.htm>` """ #: Updating data reference values without buffer. DO_NOT_BUFFER = 0 #: Try updating data reference values with buffer. #: If fails (e.g. data reference AFDataMethods does not support Buffering, or its Buffering system is not available), #: then try updating directly without buffer. BUFFER_IF_POSSIBLE = 1 # Updating data reference values with buffer. BUFFER = 2 class AuthenticationMode(IntEnum): """AuthenticationMode indicates how a user authenticates to a PI Server Detailed information is available at :afsdk:`AF.PI.PIAuthenticationMode <T_OSIsoft_AF_PI_PIAuthenticationMode.htm>`. """ #: Use Windows authentication when making a connection WINDOWS_AUTHENTICATION = 0 #: Use the PI User authentication mode when making a connection PI_USER_AUTHENTICATION = 1 class CalculationBasis(IntEnum): """CalculationBasis indicates how values should be weighted over a time range Detailed information is available at :afsdk:`AF.Data.AFCalculationBasis <T_OSIsoft_AF_Data_AFCalculationBasis.htm>`. """ #: Each event is weighted according to the time over which it applies. TIME_WEIGHTED = 0 #: Each event is weighted equally. EVENT_WEIGHTED = 1 #: Each event is time weighted, but interpolation is always done as if it is continous data. TIME_WEIGHTED_CONTINUOUS = 2 #: Each event is time weighted, but interpolation is always done as if it is discrete, stepped, data. TIME_WEIGHTED_DISCRETE = 3 #: Each event is weighted equally, except data at the end of the interval is excluded. EVENT_WEIGHTED_EXCLUDE_MOST_RECENT = 4 #: Each event is weighted equally, except data at the beginning of the interval is excluded. EVENT_WEIGHTED_EXCLUDE_EARLIEST = 5 #: Each event is weighted equally, data at both boundaries of the interval are explicitly included. EVENT_WEIGHTED_INCLUDE_BOTH_ENDS = 6 class ExpressionSampleType(IntEnum): """ExpressionSampleType indicates how expressions are evaluated over a time range. Detailed information is available at :afsdk:`AF.Data.AFSampleType <T_OSIsoft_AF_Data_AFSampleType.htm>`. """ #: The expression is evaluated at each archive event. EXPRESSION_RECORDED_VALUES = 0 #: The expression is evaluated at a sampling interval, passed as a separate argument. INTERVAL = 1 class RetrievalMode(IntEnum): """RetrievalMode indicates which recorded value should be returned Detailed information is available at :afsdk:`AF.Data.AFRetrievalMode <T_OSIsoft_AF_Data_AFRetrievalMode.htm>`. """ #: Autmatic detection AUTO = 0 #: At the exact time if available, else the first before the requested time AT_OR_BEFORE = 1 #: The first before the requested time BEFORE = 6 #: At the exact time if available, else the first after the requested time AT_OR_AFTER = 2 #: The first after the requested time AFTER = 7 #: At the exact time if available, else return an error EXACT = 4 class SummaryType(IntFlag): """SummaryType indicates which types of summary should be calculated. Based on :class:`enum.IntEnum` in Python 3.5 or earlier. `SummaryType`'s can be or'ed together. Python 3.6 or higher returns a new `IntFlag`, while in previous versions it will be casted down to `int`. >>> SummaryType.MINIMUM | SummaryType.MAXIMUM # Returns minimum and maximum <SummaryType.MAXIMUM|MINIMUM: 12> # On Python 3.6+ 12 # On previous versions Detailed information is available at :afsdk:`AF.Data.AFSummaryTypes <T_OSIsoft_AF_Data_AFSummaryTypes.htm>`. """ #: No summary data NONE = 0 #: A total over the time span TOTAL = 1 #: Average value over the time span AVERAGE = 2 #: The minimum value in the time span MINIMUM = 4 #: The maximum value in the time span MAXIMUM = 8 #: The range of the values (max-min) in the time span RANGE = 16 #: The sample standard deviation of the values over the time span STD_DEV = 32 #: The population standard deviation of the values over the time span POP_STD_DEV = 64 #: The sum of the event count (when the calculation is event weighted). The sum of the event time duration (when the calculation is time weighted.) COUNT = 128 #: The percentage of the data with a good value over the time range. Based on time for time weighted calculations, based on event count for event weigthed calculations. PERCENT_GOOD = 8192 #: The total over the time span, with the unit of measurement that's associated with the input (or no units if not defined for the input). TOTAL_WITH_UOM = 16384 #: A convenience to retrieve all summary types ALL = 24831 #: A convenience to retrieve all summary types for non-numeric data ALL_FOR_NON_NUMERIC = 8320 class TimestampCalculation(IntEnum): """ TimestampCalculation defines the timestamp returned for a given summary calculation Detailed information is available at :afsdk:`AF.Data.AFTimeStampCalculation <T_OSIsoft_AF_Data_AFTimestampCalculation.htm>`. """ #: The timestamp is the event time of the minimum or maximum for those summaries or the beginning of the interval otherwise. AUTO = 0 #: The timestamp is always the beginning of the interval. EARLIEST_TIME = 1 #: The timestamp is always the end of the interval. MOST_RECENT_TIME = 2 class EventFrameSearchMode(IntEnum): """EventFrameSearchMode EventFrameSearchMode defines the interpretation and direction from the start time when searching for event frames. Detailed information is available at https://techsupport.osisoft.com/Documentation/PI-AF-SDK/html/T_OSIsoft_AF_EventFrame_AFEventFrameSearchMode.htm, including a graphical display of event frames that are returned for a given search mode. """ #: Uninitialized NONE = 0 #: Backward from start time, also known as starting before BACKWARD_FROM_START_TIME = 1 STARTING_BEFORE = 1 #: Forward from start time, also known as starting after FORWARD_FROM_START_TIME = 2 STARTING_AFTER = 2 #: Backward from end time, also known as ending before BACKWARD_FROM_END_TIME = 3 ENDING_BEFORE = 3 #: Forward from end time, also known as ending after FORWARD_FROM_END_TIME = 4 ENDING_AFTER = 4 #: Backward in progress, also known as starting before and in progress BACKWARD_IN_PROGRESS = 5 STARTING_BEFORE_IN_PROGRESS = 5 #: Forward in progress, also known as starting after and in progress FORWARD_IN_PROGRESS = 6 STARTING_AFTER_IN_PROGRESS = 6 def get_enumerated_value(enumeration, value, default): if not value: return default return enumeration(value) ``` #### File: PIconnect/PIconnect/PI.py ```python from __future__ import absolute_import, division, print_function, unicode_literals from builtins import ( ascii, bytes, chr, dict, filter, hex, input, int, list, map, next, object, oct, open, pow, range, round, str, super, zip, ) try: from __builtin__ import str as BuiltinStr except ImportError: BuiltinStr = str # pragma pylint: enable=unused-import, redefined-builtin from warnings import warn from PIconnect._operators import OPERATORS, add_operators from PIconnect._utils import classproperty from PIconnect.AFSDK import AF from PIconnect.PIConsts import AuthenticationMode from PIconnect.PIData import PISeriesContainer from PIconnect.time import timestamp_to_index _NOTHING = object() class PIServer(object): # pylint: disable=useless-object-inheritance """PIServer is a connection to an OSIsoft PI Server Args: server (str, optional): Name of the server to connect to, defaults to None username (str, optional): can be used only with password as well password (str, optional): -//- todo: domain, auth timeout (int, optional): the maximum seconds an operation can take .. note:: If the specified `server` is unknown a warning is thrown and the connection is redirected to the default server, as if no server was passed. The list of known servers is available in the `PIServer.servers` dictionary. """ version = "0.2.2" #: Dictionary of known servers, as reported by the SDK _servers = _NOTHING #: Default server, as reported by the SDK _default_server = _NOTHING def __init__( self, server=None, username=None, password=<PASSWORD>, domain=None, authentication_mode=AuthenticationMode.PI_USER_AUTHENTICATION, timeout=None, ): if server and server not in self.servers: message = 'Server "{server}" not found, using the default server.' warn(message=message.format(server=server), category=UserWarning) if bool(username) != bool(password): raise ValueError( "When passing credentials both the username and password must be specified." ) if domain and not username: raise ValueError( "A domain can only specified together with a username and password." ) if username: from System.Net import NetworkCredential from System.Security import SecureString secure_pass = SecureString() for c in password: secure_pass.AppendChar(c) cred = [username, secure_pass] + ([domain] if domain else []) self._credentials = (NetworkCredential(*cred), int(authentication_mode)) else: self._credentials = None self.connection = self.servers.get(server, self.default_server) if timeout: from System import TimeSpan # System.TimeSpan(hours, minutes, seconds) self.connection.ConnectionInfo.OperationTimeOut = TimeSpan(0, 0, timeout) @classproperty def servers(self): if self._servers is _NOTHING: i, failures = 0, 0 self._servers = {} from System import Exception as dotNetException # type: ignore for i, server in enumerate(AF.PI.PIServers(), start=1): try: self._servers[server.Name] = server except Exception: failures += 1 except dotNetException: failures += 1 if failures: warn( "Could not load {} PI Server(s) out of {}".format(failures, i), ResourceWarning, ) return self._servers @classproperty def default_server(self): if self._default_server is _NOTHING: self._default_server = None try: self._default_server = AF.PI.PIServers().DefaultPIServer except Exception: warn("Could not load the default PI Server", ResourceWarning) return self._default_server def __enter__(self): if self._credentials: self.connection.Connect(*self._credentials) else: # Don't force to retry connecting if previous attempt failed force_connection = False self.connection.Connect(force_connection) return self def __exit__(self, *args): self.connection.Disconnect() def __repr__(self): return "%s(\\\\%s)" % (self.__class__.__name__, self.server_name) @property def server_name(self): """server_name Name of the connected server """ return self.connection.Name def search(self, query, source=None): """search Search PIPoints on the PIServer Args: query (str or [str]): String or list of strings with queries source (str, optional): Defaults to None. Point source to limit the results Returns: list: A list of :class:`PIPoint` objects as a result of the query .. todo:: Reject searches while not connected """ if isinstance(query, list): return [y for x in query for y in self.search(x, source)] # elif not isinstance(query, str): # raise TypeError('Argument query must be either a string or a list of strings,' + # 'got type ' + str(type(query))) return [ PIPoint(pi_point) for pi_point in AF.PI.PIPoint.FindPIPoints( self.connection, BuiltinStr(query), source, None ) ] @add_operators( operators=OPERATORS, members=["_current_value", "interpolated_values"], newclassname="VirtualPIPoint", attributes=["pi_point"], ) class PIPoint(PISeriesContainer): """PIPoint Reference to a PI Point to get data and corresponding metadata from the server. Args: pi_point (AF.PI.PIPoint): Reference to a PIPoint as returned by the SDK """ version = "0.3.0" def __init__(self, pi_point): super().__init__() self.pi_point = pi_point self.tag = pi_point.Name self.__attributes_loaded = False self.__raw_attributes = {} def __repr__(self): return "%s(%s, %s; Current Value: %s %s)" % ( self.__class__.__name__, self.tag, self.description, self.current_value, self.units_of_measurement, ) @property def last_update(self): """Return the time at which the last value for this PI Point was recorded.""" return timestamp_to_index(self.pi_point.CurrentValue().Timestamp.UtcTime) @property def raw_attributes(self): """Return a dictionary of the raw attributes of the PI Point.""" self.__load_attributes() return self.__raw_attributes @property def units_of_measurement(self): """Return the units of measument in which values for this PI Point are reported.""" return self.raw_attributes["engunits"] @property def description(self): """Return the description of the PI Point. .. todo:: Add setter to alter displayed description """ return self.raw_attributes["descriptor"] @property def created(self): """Return the creation datetime of a point.""" return timestamp_to_index(self.raw_attributes["creationdate"]) def __load_attributes(self): """Load the raw attributes of the PI Point from the server""" if not self.__attributes_loaded: self.pi_point.LoadAttributes([]) self.__attributes_loaded = True self.__raw_attributes = { att.Key: att.Value for att in self.pi_point.GetAttributes([]) } @property def name(self): return self.tag def _current_value(self): """Return the last recorded value for this PI Point (internal use only).""" return self.pi_point.CurrentValue().Value def _interpolated_value(self, time): """Return a single value for this PI Point""" return self.pi_point.InterpolatedValue(time) def _recorded_value(self, time, retrieval_mode): """Return a single value for this PI Point""" return self.pi_point.RecordedValue(time, int(retrieval_mode)) def _update_value(self, value, update_mode, buffer_mode): return self.pi_point.UpdateValue(value, update_mode, buffer_mode) def _recorded_values(self, time_range, boundary_type, filter_expression): include_filtered_values = False return self.pi_point.RecordedValues( time_range, boundary_type, filter_expression, include_filtered_values ) def _interpolated_values(self, time_range, interval, filter_expression): """Internal function to actually query the pi point""" include_filtered_values = False return self.pi_point.InterpolatedValues( time_range, interval, filter_expression, include_filtered_values ) def _summary(self, time_range, summary_types, calculation_basis, time_type): return self.pi_point.Summary( time_range, summary_types, calculation_basis, time_type ) def _summaries( self, time_range, interval, summary_types, calculation_basis, time_type ): return self.pi_point.Summaries( time_range, interval, summary_types, calculation_basis, time_type ) def _filtered_summaries( self, time_range, interval, filter_expression, summary_types, calculation_basis, filter_evaluation, filter_interval, time_type, ): return self.pi_point.FilteredSummaries( time_range, interval, filter_expression, summary_types, calculation_basis, filter_evaluation, filter_interval, time_type, ) def _normalize_filter_expression(self, filter_expression): return filter_expression.replace("%tag%", self.tag) ``` #### File: PIconnect/PIconnect/time.py ```python from datetime import datetime import pytz from PIconnect.AFSDK import AF from PIconnect.config import PIConfig def to_af_time_range(start_time, end_time): """Convert a combination of start and end time to a time range. Both `start_time` and `end_time` can be either a :any:`datetime.datetime` object or a string. `datetime` objects are first converted to a string, before being passed to :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`. It is also possible to specify either end as a `datetime` object, and then specify the other boundary as a relative string. Args: start_time (str | datetime): Start time of the time range. end_time (str | datetime): End time of the time range. Returns: :afsdk:`AF.Time.AFTimeRange <M_OSIsoft_AF_Time_AFTimeRange__ctor_1.htm>`: Time range covered by the start and end time. """ if isinstance(start_time, datetime): start_time = start_time.isoformat() if isinstance(end_time, datetime): end_time = end_time.isoformat() return AF.Time.AFTimeRange(start_time, end_time) def to_af_time(time): """Convert a time to a AFTime value. Args: time (str | datetime): Time to convert to AFTime. Returns: :afsdk:`AF.Time.AFTime <M_OSIsoft_AF_Time_AFTime__ctor_7.htm>`: Time range covered by the start and end time. """ if isinstance(time, datetime): time = time.isoformat() return AF.Time.AFTime(time) def timestamp_to_index(timestamp): """Convert AFTime object to datetime in local timezone. Args: timestamp (`System.DateTime`): Timestamp in .NET format to convert to `datetime`. Returns: `datetime`: Datetime with the timezone info from :data:`PIConfig.DEFAULT_TIMEZONE <PIconnect.config.PIConfigContainer.DEFAULT_TIMEZONE>`. """ local_tz = pytz.timezone(PIConfig.DEFAULT_TIMEZONE) return ( datetime( timestamp.Year, timestamp.Month, timestamp.Day, timestamp.Hour, timestamp.Minute, timestamp.Second, timestamp.Millisecond * 1000, ) .replace(tzinfo=pytz.utc) .astimezone(local_tz) ) ```
{ "source": "jiobu1/CodeSignal_Arcade", "score": 4 }
#### File: Intro/Level 5/areEquallyStrong.py ```python def areEquallyStrong(yourLeft, yourRight, friendsLeft, friendsRight): if ((yourLeft == friendsLeft) or (yourLeft == friendsRight)) and ((yourRight == friendsLeft) or (yourRight == friendsRight)): return True return False def areEquallyStrong(yourLeft, yourRight, friendsLeft, friendsRight): return {yourLeft, yourRight} == {friendsLeft, friendsRight} ```
{ "source": "jiobu1/CPI-Calculator", "score": 4 }
#### File: CPI-Calculator/cpi/calculator_class.py ```python class Year: """ This is a Year class Params: This takes a year value and then looks up consumer price index for the year Returns: It returns the inflation rate for the year selected """ def __init__(self, value): self.year = value self.inflation_rate = self.get_inflation_rate() def get_inflation_rate(self): cpi_dictionary = {1992: 140.3, 1993: 144.5, 1994: 148.2, 1995: 152.4, 1996: 156.9, 1997: 160.5, 1998: 163.0, 1999: 166.6, 2000: 172.2, 2001: 177.1, 2002: 179.9, 2003: 184.0, 2004: 188.9, 2005: 195.3, 2006: 201.6, 2007: 207.3, 2008: 215.303, 2009: 214.537, 2010: 218.056, 2011: 224.939, 2012: 229.594, 2013: 232.957, 2014: 236.736, 2015: 237.017, 2016: 240.007, 2017: 245.120, 2018: 251.107, 2019: 255.657 } return cpi_dictionary[self.year] class Conversion_Year(Year): """ This is the conversion year class. This class inherits from the year class. Params: This utilizes the year's cpi get inflation rate function and needs an dollar famount. Returns: A literal that converts dollar amounts using inflation rate. """ def __init__(self, value, amount): super().__init__(value) self.amount = amount def get_dollars(self, year_instance): output = self.amount * \ (year_instance.inflation_rate / self.inflation_rate) return (f' If you had ${self.amount} in {self.year}, you would have ${output:.2f} in {year_instance.year} dollars.') amount = int(input("Please choose a number (e.g. 10540) ")) starting_year = int(input("[Start] Choose a year between 1992 and 2019 ")) conversion_year = int(input("[Conversion] Choose a year between 1992 and 2019 ")) conversion_year_instance = Year(conversion_year) year_instance =Conversion_Year(starting_year, amount) dollars = year_instance.get_dollars(conversion_year_instance) print(dollars) ```
{ "source": "jiobu1/CS_Build_Week_1", "score": 3 }
#### File: KNN/Workspace/work_place.py ```python import numpy as np import pandas as pd from scipy import stats from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import scale def euclidean_distance(point1, point2, length): """ """ distance = 0 for x in range(length): distance += (point1[x]-point2[x])**2 return np.sqrt(distance) def get_distances(X_test, X_train): """ """ length = X_test.shape[1] # Initialize empty distance array distances = [] for idx in range(len(X_test)): distances.append([ X_test[idx], [] ]) # Loop through each row in x_train for row in X_train: #find the euclidean distance and append to distance list dist = euclidean_distance(row, X_test[idx], length) distances[idx][1].append(dist) return distances def get_labels(distances, y_train, k): labels = [] for row in range(len(distances)): # sort distances distance = distances[row] y_indices = np.argsort(distance[1])[:k] #sort distances and record up to k values #find the classes that correspond with nearest neighbors k_nearest_classes = [y_train[i%len(y_train)] for i in y_indices] # make a predication based on the mode of the classes y_pred = [stats.mode(k_nearest_classes)][0][0][0] labels.append(y_pred) return labels X_train = np.array([[0,3,0],[2,0,0],[9,4,2],[1,7,4],[8,12,3]]) # X_train = pd.DataFrame(X_train) X_test = np.array([[9,4,2], [0,3,0]]) # X_test = pd.DataFrame(X_test) y_train = ['a','a','l', 'a','l'] y_train = np.array(y_train) # # Load Data # iris = load_iris() # # Separate into target from features # #Scale features # X = scale(iris.data) # y = iris.target # classes # # Train/Test split # X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state=42) # for reproducible results distances = get_distances(X_test, X_train) print("Distances: ", distances) labels = get_labels(distances, y_train, 3) print("Labels: ", labels) ```
{ "source": "jiobu1/labspt15-cityspire-g-ds", "score": 3 }
#### File: app/tests/test_db.py ```python import os import requests import json from jsonschema import validate from jsonschema import Draft6Validator #All Cities Test def test_temperature_check_status_code_equals_200(): response = requests.get("http://127.0.0.1:8000/all_cities") assert response.status_code == 200 all_cities_schema = { "$schema": "https://json-schema.org/schema#", "city": "string", "state": "string" } def test_weather_data_validates_json_resonse_schema(): response = requests.get("http://127.0.0.1:8000/all_cities") # Validate response headers and body contents, e.g. status code. assert response.status_code == 200 # Validate response content type header assert response.headers["Content-Type"] == "application/json" resp_body = response.json() # Validate will raise exception if given json is not # what is described in schema. validate(instance=resp_body, schema=all_cities_schema) ``` #### File: app/tests/test_functions.py ```python import unittest def parse_grades(grades_string): GRADES = ['PK', 'K', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', 'Ungraded'] # Remove & for grades list grades_string = grades_string.replace(' &', ',') # Grades list - will add to separated grade string to grades grades = [] # split strings based on ',' string_list = grades_string.split(',') # look for sections of list with '-' dash = "-" for i in range(len(string_list)): clean_string = string_list[i].strip() if dash in clean_string: # split using '-', loop and add to grades variable start_grade, end_grade = clean_string.split(dash) grades += GRADES[GRADES.index(start_grade) : GRADES.index(end_grade)+ 1] else: # add string to grades grades.append(clean_string) return grades unique_grades_combination = ['9-12', '6-8', 'K-4', '5-8', '4-5', 'K-5', '4-6', '7-12', 'K-6', '4-8', 'K-8', '1-6', 'PK-3', '6-12', 'K-3', 'PK-K', 'PK', 'PK-8', 'PK-6', '4-12', 'PK-6 & Ungraded', '1-8', 'K', 'PK-5', 'PK-12', '7-11', '3-6', 'K-12', '3-8', '2-10', 'K-1, 5-8', 'PK-4', 'Ungraded', '1-12', '2-5', '3-5', '10-12', 'PK-1 & Ungraded', 'K-11', 'K-2', 'K-1', '9-10', 'K-7', '1-5', 'PK-1', 'PK-K, 2', 'PK-2', '7-8', 'PK-11', '9', 'K-9', '2-11', '2-12', '2-9', '8-12', 'K-10', 'PK & Ungraded', '7-9', '6', '5-6', '2, 5-6, 8-9, 11-12', '11-12', '3-12', 'K-1, 3-4, 6-7, 9, 11', '1-11', '5-12', '6-10', '11', '3-7', '7-10', 'PK-10', 'PK-12 & Ungraded', 'PK-9', '6-9', '4-9', '9-11', '6-7', '5-12 & Ungraded', '8-11', '2-8', '3, 5, 7-11', 'PK, 8', 'PK-7', '6, 9-12', '1-3', 'K-3, 5-10, 12', 'PK-8 & Ungraded', '5', '12', 'K-8, 10-12', '1-9', '1-5, 7-8', '9, 12', '5-7', '8', '3-10', '1-12 & Ungraded', '5, 7-8, 10-12', 'PK, 1-4', '1-4', '3, 6-7, 10, 12', '3-4, 6, 9-12', '1-2', '8-9', '4', 'PK-3, 5-7', 'K-1, 4, 6, 8', '5-10', '6-12 & Ungraded', '6-11', 'K, 5-12', 'K-6, 8', 'PK-4 & Ungraded', 'PK-1, 3-5', 'PK-1, 3', '10-12 & Ungraded', 'K-3, 5-9, 11-12', 'PK-K, 2-4, 6-8', 'PK, 3-4', '1-7', '1-10', 'PK, 2', '2, 4, 7, 9-10, 12', 'PK, 1', '1-3, 5, 8', '1-3, 5-6, 8', 'K, 3, 5-12', '4-11', 'K-4, 7-8', '7-8, 10-12', 'PK, 1, 3-12', '7, 9-12', 'PK-2, 6, 8', '2-6', 'PK-8, 10-11', '2-3', '3-4', 'PK, 3-5', '3-9', 'PK-4, 6', 'PK, 1-6', 'PK-4, 8', 'PK-K, 9-12', '3-11', 'PK-3 & Ungraded', 'PK-3, 5-6', '2-7', '2-12 & Ungraded', 'PK-K, 2-7', '8-10', '2-4', 'PK-4, 6-8', 'PK-K, 3-5, 7', '7, 11', 'K-5, 7, 9-10, 12', 'PK-K, 2-4, 6 & Ungraded', '2', 'PK-7, 11', 'K, 2, 4-9, 12', 'PK-1, 4, 6', '9-12 & Ungraded', '4-6, 8', '2-4, 6, 9-12', '4-7', 'PK-3, 5-8', '1-2, 4-8', 'PK, 12', '10', '3-5, 9-10, 12', '5-11', '2-3, 5, 10-12', '3-10, 12', 'K-12 & Ungraded', '4-10', 'PK-1, 3, 5', 'PK-1, 5, 7, 9', 'PK-K, 2-5', 'K, 2-7, 9', 'K-7, 9-12', '2, 6-7', '6-10, 12', 'K-5, 7-9, 11', '2, 4, 6, 8, 10, 12', 'K-2, 4-12', 'PK, 7-12', '1, 3-4, 6-12', 'K-6, 8-11', '2-5, 7-12', '1, 4-10, 12', 'PK-2, 4, 6, 8', 'K-10, 12', '9 & Ungraded', 'PK-5 & Ungraded', 'PK-3, 5', '1, 3-5, 7', 'PK, 2, 4-7, 9-10, 12', 'K, 2, 5-12', 'PK-4, 6-12', '3', '4, 10', '2, 5-6, 8-12', 'K-6, 8-12', 'PK, 3-6, 8, 10, 12', 'K-3, 6-8', '3-9, 11-12', 'PK-5, 7-12', 'K, 2-4, 7-12', '1-4, 6-8', 'PK-3, 5-12', '1-3, 5-9', '1, 3-8', '9-11 & Ungraded', '5-9', 'K, 4-5, 7-8', 'PK, 1-5', '3-12 & Ungraded', 'K-8 & Ungraded', '2-3, 5-8', '1-6, 9-12', 'PK-8, 10-12', 'PK-K, 4-8', 'K-1, 7-12', 'K-4, 6-7, 9-12', '9-10, 12', 'K-5, 7', 'K, 2-8', '1, 4, 7, 10-11', 'K, 2-3, 5-6', 'K-5, 7, 11-12', '7', 'PK-4, 7-12', 'K-9, 11-12', 'K-4, 6-8, 10', '1, 3-5, 7-12', 'K-2, 5-7', 'K, 3, 6-8, 10, 12', 'K, 3, 7-8, 12', 'PK, 9-12', 'K-2, 4-10, 12', '12 & Ungraded', 'PK-6, 8-10', 'PK-1, 3-8', '1, 3', 'K-8, 12', '3-4, 6-9, 12', '5, 7-8', 'PK-K, 2-3', 'K-1, 3-12', '1, 5-9, 12', '5, 7-8, 10-11', 'PK-5, 7-8', '4, 7, 10-12', 'PK-1, 3-4', 'PK-2, 4-6', 'K-8, 10', '10-11', '6, 9', 'PK-2, 4', 'K-4, 6', 'K-2, 6-7, 12', 'PK-6, 8', '3-4, 7, 10-12', '1, 3-7', 'K-5, 8', '2, 4-5, 7, 9-11', '1-3, 5, 7-8', '1-2, 9-12', 'K-1, 3-5, 7-8', 'K, 2-8, 10', 'PK, 1-3, 6', '7-8, 10-11', '7, 10-12', '3, 5, 8-9, 11-12', '1-3, 5', 'K-5, 7-12', '1-7, 9-10, 12', '2, 4-8', 'K-3, 6-12', 'PK, 5-8', '6-8, 10', 'PK-5, 7', 'PK, 1, 5', 'PK, 1-4, 6', '3, 5, 10, 12', 'PK-6, 8-12', '4-5, 7-12', 'PK-1, 6-7, 9-11', '2-7, 9-11', 'K-1, 6, 8, 11', '7, 9, 11-12', '1-3, 5-10', 'K-5, 7-9', '1', 'K-5, 7-11', '7-12 & Ungraded', '1-6 & Ungraded', '3, 12', 'PK-8, 11', 'K-5, 7-9, 12', 'K-1, 4, 7-9, 11', '1-2, 4-12', 'PK-9, 11-12'] class TestParseGrades(unittest.TestCase): def test_join_string_grades_success(self): actual = parse_grades('2, 4, 6, 8, 10, 12') expected = ['2','4','6','8','10','12'] self.assertEqual(actual, expected) def test_parse_grades_success(self): actual = parse_grades('K-4') expected = ['K', '1', '2', '3', '4'] self.assertEqual(actual, expected) def test_multiple_separators(self): actual = parse_grades('2-4, 6, 9-12') expected = ['2', '3', '4', '6', '9', '10', '11', '12'] self.assertEqual(actual, expected) def test_grades_list_with_ampersand(self): actual = parse_grades('6-12 & Ungraded') expected = ['6', '7', '8', '9', '10', '11', '12', 'Ungraded'] self.assertEqual(actual, expected) def test_small_lists(self): actual = parse_grades('PK-K') expected = ['PK', 'K'] self.assertEqual(actual, expected) def test_multiple_separators2(self): actual = parse_grades('PK-K, 2-4, 6 & Ungraded') expected = ['PK', 'K', '2', '3', '4', '6', 'Ungraded'] self.assertEqual(actual, expected) def test_multiple_separators3(self): actual = parse_grades('5-10') expected = ['5', '6', '7', '8', '9', '10'] self.assertEqual(actual, expected) def test_multiple_separators4(self): actual = parse_grades('K, 5-12') expected = ['K', '5', '6', '7', '8', '9', '10', '11', '12'] self.assertEqual(actual, expected) def test_multiple_separators5(self): actual = parse_grades( 'PK-3, 5-7') expected = ['PK', 'K', '1', '2', '3', '5', '6', '7'] self.assertEqual(actual, expected) def test_complete_dataset(self): # create a loop that goes thru dataset and invoke parse_grades with each element # used this to create dictionary of grade combo and parsed_grades separated_grades_list = [] for i in unique_grades_combination: separated_grades_list.append(parse_grades(i)) return separated_grades_list ```
{ "source": "jiocloudDSS/python-sdk", "score": 2 }
#### File: jcsclient/dss_api/dss_bucket_ops.py ```python from dss_op import * from dss_auth import * from jcsclient import utils import os import sys import time import hmac import json import base64 import requests import exceptions from email.utils import formatdate import xml.sax class BucketOp(DSSOp): def __init__(self): DSSOp.__init__(self) def parse_args(self, options): self.dss_op_path = '/' + self.bucket_name def validate_args(self): pass def execute(self): resp = self.make_request() return resp def process_result(self, result, response_json=None): if result is not None: status = result.status_code if status != 200 and status != 204: response_json = {"headers": result.headers, "status_code": result.status_code, "status_message": result.reason, "error_message": result.text} else: response_json = {"headers": result.headers, "status_code": result.status_code, "status_message": result.reason, "content": result.content} else: response_json = {"status_code": "500", "error_message": "Connection not established"} return response_json class ListBucketsOp(BucketOp): def __init__(self): BucketOp.__init__(self) self.dss_op_path = '/' self.http_method = 'GET' def parse_args(self, options): pass class CreateBucketOp(BucketOp): def __init__(self, name): BucketOp.__init__(self) self.http_method = 'PUT' self.bucket_name = name class DeleteBucketOp(BucketOp): def __init__(self, name): BucketOp.__init__(self) self.bucket_name = name self.http_method = 'DELETE' class HeadBucketOp(BucketOp): def __init__(self, name): DSSOp.__init__(self) self.http_method = 'HEAD' self.bucket_name = name class ListObjectsOp(BucketOp): def __init__(self, name): DSSOp.__init__(self) self.http_method = 'GET' self.bucket_name = name def parse_args(self, args_dict): params = {} is_query_params_set = False self.dss_query_str = '' self.dss_op_path = '/' + self.bucket_name if (args_dict is None): return if(args_dict['prefix'] is not None): self.dss_query_str = 'prefix=' + args_dict['prefix'] is_query_params_set = True if(args_dict['marker'] is not None): if(not is_query_params_set): self.dss_query_str += 'marker=' + args_dict['marker'] is_query_params_set = True else: self.dss_query_str += '&marker=' + args_dict['marker'] if(args_dict['max-keys'] is not None): if(not is_query_params_set): self.dss_query_str += 'max-keys=' + args_dict['max-keys'] is_query_params_set = True else: self.dss_query_str += '&max-keys=' + args_dict['max-keys'] if(args_dict['delimiter'] is not None): if(not is_query_params_set): self.dss_query_str += 'delimiter=' + args_dict['delimiter'] is_query_params_set = True else: self.dss_query_str += '&delimiter=' + args_dict['delimiter'] if(self.dss_query_str == ''): self.dss_query_str = None class ListMPUploadsOp(BucketOp): def __init__(self, buckname): BucketOp.__init__(self) self.http_method = 'GET' self.dss_query_str_for_signature = 'uploads' self.dss_query_str = 'uploads' self.bucket_name = buckname ``` #### File: src/jcsclient/dss_connection.py ```python from jcsclient.dss_api.dss_bucket_ops import * from jcsclient.dss_api.dss_object_ops import * from jcsclient.config import * class DSSConnection(object): """DSS main class, each cli command is processed here Object is created from inside the dss Controller """ def __init__(self, url, access_key, secret_key, secure, debug): setup_config_handler(url, access_key, secret_key, secure, debug) def operate(self, op, options=None): op.parse_args(options) op.validate_args() result = op.execute() processed_result = op.process_result(result) return processed_result def main(self): pass def create_bucket(self, bucketName): op = CreateBucketOp(bucketName) result = self.operate(op) return result def delete_bucket(self, bucketName): op = DeleteBucketOp(bucketName) result = self.operate(op) return result def head_bucket(self, bucketName): op = HeadBucketOp(bucketName) result = self.operate(op) return result def list_buckets(self): op = ListBucketsOp() result = self.operate(op) return result def delete_object(self, buckName, objName): op = DeleteObjectOp(buckName, objName) result = self.operate(op, options=None) return result def get_object(self, buckName, objName, path=None): op = GetObjectOp(buckName, objName, path) result = self.operate(op, options=None) return result def list_objects(self, buckName, options=None): op = ListObjectsOp(buckName) result = self.operate(op, options) return result def head_object(self, buckName, objName): op = HeadObjectOp(buckName, objName) result = self.operate(op, options=None) return result def put_object(self, buckName, objName, path, encryption=False): op = PutObjectOp(buckName, objName, path, encryption) result = self.operate(op) return result def init_multipart_upload(self, bucketname, keyname): op = InitMPUploadOp(bucketname, keyname) result = self.operate(op) return result def upload_multipart_parts(self, buckname, keyname, args_dict, data_path, size): op = UploadPartOp(buckname=buckname, objname=keyname) op.parse_args(args_dict) res = op.execute(fp=data_path, size=size) result = op.process_result(res) return result def complete_multipart_upload(self, bucketname, keyname, args_dict): op = CompleteMPUploadOp(bucketname, keyname) result = self.operate(op, args_dict) return result def cancel_multipart_upload(self, bucketname, keyname, uploadId): op = CancelMPUploadOp(bucketname, keyname, uploadId) result = self.operate(op, options=None) return result def list_multipart_parts(self, bucketname, keyname, upload_id, outfile=None): op = ListPartsOp(bucketname, keyname, upload_id, outfile) op.parse_args(args_dict=None) op.validate_args() result = op.execute() processed_result = op.process_result(result, outfile) return processed_result def list_multipart_uploads(self, buckname): op = ListMPUploadsOp(buckname) result = self.operate(op) return result def copy_object(self, buckname, keyname, sourceName): op = CopyObjectOp(buckname=buckname, objname=keyname, copysource=sourceName) result = self.operate(op, options=None) return result def get_presigned_url(self, buckname, objname, expiry): op = GetPresignedURLOp(buckname=buckname, objname=objname, expiry=expiry) result = self.operate(op, options=None) return result def rename_object(self, buckname, objname, newName): op = RenameObjectOp(buckname=buckname, objname=objname, newName=newName) result = self.operate(op, options=None) return result ```
{ "source": "JioCloudVPC/compute-ec2-api-vagrant", "score": 2 }
#### File: ec2api/api/clients.py ```python from novaclient import client as novaclient from novaclient import exceptions as nova_exception from oslo_config import cfg from oslo_log import log as logging import oslo_messaging as messaging from ec2api import context as ec2_context from ec2api.i18n import _, _LW logger = logging.getLogger(__name__) ec2_opts = [ cfg.StrOpt('cinder_service_type', default='volumev2', help='Service type of Cinder Volume API, registered in Keystone catalog.'), cfg.StrOpt('volume_api_version', default='2', help='volume api version'), ] service_catalog_opts = [ cfg.StrOpt('compute', default='http://localhost:8774/v2/TENANT_ID', help='Endpoint for Compute Service '), cfg.StrOpt('image', default='http://localhost:9292', help='Endpoint for Image Service '), cfg.StrOpt('volumev2', default='http://localhost:8776/v2/TENANT_ID', help='Endpoint for Volume Service '), cfg.StrOpt('network', default='http://localhost:9696', help='Endpoint for Network Service '), ] SERVICE_CATALOG_GROUP = 'service_catalog' CONF = cfg.CONF CONF.register_opts(service_catalog_opts, SERVICE_CATALOG_GROUP) CONF.register_opts(ec2_opts) try: from neutronclient.v2_0 import client as neutronclient except ImportError: neutronclient = None logger.info(_('neutronclient not available')) try: from cinderclient import client as cinderclient except ImportError: cinderclient = None logger.info(_('cinderclient not available')) try: from glanceclient import client as glanceclient except ImportError: glanceclient = None logger.info(_('glanceclient not available')) # Nova API's 2.3 microversion provides additional EC2 compliant instance # properties _novaclient_vertion = '2.3' _nova_service_type = 'compute' def nova(context): args = { 'auth_url': CONF.keystone_url, 'auth_token': context.auth_token, # NOTE(ft): These parameters are not used for authentification, # but are required by novaclient < v2.18 which may be installed in # Icehouse deployment 'username': None, 'api_key': None, 'project_id': None, 'insecure': CONF.ssl_insecure, 'cacert': CONF.ssl_ca_file } global _novaclient_vertion, _nova_service_type bypass_url = _url_for(context, service_type=_nova_service_type) if not bypass_url and _nova_service_type == 'computev21': # NOTE(ft): partial compatibility with pre Kilo OS releases: # if computev21 isn't provided by Nova, use compute instead logger.warning(_LW("Nova server doesn't support v2.1, use v2 instead. " "A lot of useful EC2 compliant instance properties " "will be unavailable.")) _nova_service_type = 'compute' return nova(context) try: return novaclient.Client(_novaclient_vertion, bypass_url=bypass_url, **args) except nova_exception.UnsupportedVersion: if _novaclient_vertion == '2': raise # NOTE(ft): partial compatibility with Nova client w/o microversion # support logger.warning(_LW("Nova client doesn't support v2.3, use v2 instead. " "A lot of useful EC2 compliant instance properties " "will be unavailable.")) _novaclient_vertion = '2' return nova(context) def neutron(context): if neutronclient is None: return None args = { 'auth_url': CONF.keystone_url, 'service_type': 'network', 'token': context.auth_token, 'endpoint_url': _url_for(context, service_type='network'), 'insecure': CONF.ssl_insecure, 'cacert': CONF.ssl_ca_file } return neutronclient.Client(**args) def glance(context): if glanceclient is None: return None args = { 'auth_url': CONF.keystone_url, 'service_type': 'image', 'token': context.auth_token, 'insecure': CONF.ssl_insecure, 'cacert': CONF.ssl_ca_file } return glanceclient.Client( "1", endpoint=_url_for(context, service_type='image'), **args) def cinder(context): if cinderclient is None: return nova(context, CONF.cinder_service_type) args = { 'service_type': CONF.cinder_service_type, 'auth_url': CONF.keystone_url, 'username': None, 'api_key': None, 'insecure': CONF.ssl_insecure, 'cacert': CONF.ssl_ca_file } _cinder = cinderclient.Client(CONF.volume_api_version, **args) management_url = _url_for(context, service_type=CONF.cinder_service_type) _cinder.client.auth_token = context.auth_token _cinder.client.management_url = management_url return _cinder def keystone(context): keystone_client_class = ec2_context.get_keystone_client_class() return keystone_client_class( token=context.auth_token, project_id=context.project_id, tenant_id=context.project_id, auth_url=CONF.keystone_url, insecure=CONF.ssl_insecure, cacert=CONF.ssl_ca_file) def nova_cert(context): _cert_api = _rpcapi_CertAPI(context) return _cert_api def _url_for(context, **kwargs): service_type = kwargs['service_type'] if service_type == 'compute': url = CONF.service_catalog.compute url = url.replace('TENANT_ID', context.project_id) elif service_type == 'image': url = CONF.service_catalog.image elif service_type == 'network': url = CONF.service_catalog.network elif service_type == 'volumev2': url = CONF.service_catalog.volumev2 url = url.replace('TENANT_ID', context.project_id) else: logger.warning(_LW("Unknown service type in JCS Layer.")) return url class _rpcapi_CertAPI(object): '''Client side of the cert rpc API.''' def __init__(self, context): super(_rpcapi_CertAPI, self).__init__() target = messaging.Target(topic=CONF.cert_topic, version='2.0') self.client = _rpc_get_client(target) self.context = context def decrypt_text(self, text): cctxt = self.client.prepare() return cctxt.call(self.context, 'decrypt_text', project_id=self.context.project_id, text=text) _rpc_TRANSPORT = None def _rpc_init(conf): global _rpc_TRANSPORT # NOTE(ft): set control_exchange parameter to use Nova cert topic messaging.set_transport_defaults('nova') _rpc_TRANSPORT = messaging.get_transport(conf) def _rpc_get_client(target): if not _rpc_TRANSPORT: _rpc_init(CONF) assert _rpc_TRANSPORT is not None serializer = _rpc_RequestContextSerializer() return messaging.RPCClient(_rpc_TRANSPORT, target, serializer=serializer) class _rpc_RequestContextSerializer(messaging.NoOpSerializer): def serialize_context(self, context): return context.to_dict() def deserialize_context(self, context): return ec2_context.RequestContext.from_dict(context) ``` #### File: ec2api/api/cloud.py ```python import collections import itertools from oslo_config import cfg from oslo_log import log as logging from ec2api.api import address from ec2api.api import availability_zone from ec2api.api import dhcp_options from ec2api.api import image from ec2api.api import instance from ec2api.api import internet_gateway from ec2api.api import key_pair from ec2api.api import network_interface from ec2api.api import route_table from ec2api.api import security_group from ec2api.api import snapshot from ec2api.api import subnet from ec2api.api import tag from ec2api.api import volume from ec2api.api import vpc from ec2api import exception from metricgenerator import publish as metricPublish CONF = cfg.CONF LOG = logging.getLogger(__name__) metriclog_opt = cfg.StrOpt('monitoring_config', default='/tmp/config.cfg', help='Config for details on emitting metrics') CONF.register_opt(metriclog_opt) metric_publisher = metricPublish.Publish("jcs-api", CONF.monitoring_config) def module_and_param_types(module, *args, **kwargs): """Decorator to check types and call function.""" param_types = args def wrapped(func): def func_wrapped(*args, **kwargs): impl_func = getattr(module, func.func_name) context = args[1] params = collections.OrderedDict(itertools.izip( func.func_code.co_varnames[2:], param_types)) param_num = 0 mandatory_params_num = (func.func_code.co_argcount - 2 - len(func.func_defaults or [])) for param_name, param_type in params.items(): param_value = kwargs.get(param_name) if param_value is not None: validator = module.Validator(param_name, func.func_name, params) validation_func = getattr(validator, param_type) validation_func(param_value) param_num += 1 elif param_num < mandatory_params_num: raise exception.MissingParameter(param=param_name) return impl_func(context, **kwargs) return func_wrapped return wrapped class CloudController(object): """Cloud Controller Provides the critical dispatch between inbound API calls through the endpoint and messages sent to the other nodes. """ def __init__(self): pass def __str__(self): return 'CloudController' @metric_publisher.ReportLatency("run_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'jmi_id', 'int', 'str255', 'sg_ids', 'str', 'dummy', 'subnet_id', 'ip') def run_instances(self, context, image_id, instance_count=1, key_name=None, security_group_id=None, instance_type_id=None, block_device_mapping=None, subnet_id=None, private_ip_address=None): """Launches the specified number of instances using an AMI. Args: context (RequestContext): The request context. image_id (str): The ID of the AMI. instance_count (int): The number of instances to launch. key_name (str): The name of the key pair. security_group_id (list of str): One or more security group IDs. instance_type_id (str): The instance type. block_device_mapping (list of dict): Dict can contain: device_name (str): The device name exposed to the instance (for example, /dev/sdh or xvdh). snapshot_id (str): The ID of the snapshot. volume_size (str): The size of the volume, in GiBs. delete_on_termination (bool): Indicates whether to delete the volume on instance termination. subnet_id (str): The ID of the subnet to launch the instance into. private_ip_address (str): The primary IP address. You must specify a value from the IP address range of the subnet. Returns: The instance set that was created. If you don't specify a security group when launching an instance, EC2 uses the default security group. """ @metric_publisher.ReportLatency("describe_instance_types-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'dummy') def describe_instance_types(self, context, instance_type_id=None): """Describes one or more of instance types. Args: context(RequestConext): The request context. instance_type_id (list of str): One or more of instance type ids. Returns: A list of instance types, """ @metric_publisher.ReportLatency("describe_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_ids', 'filter', 'int', 'str') def describe_instances(self, context, instance_id=None, filter=None, max_results=None, next_token=None): """Describes one or more of your instances. Args: context (RequestContext): The request context. instance_id (list of str): One or more instance IDs. filter (list of filter dict): You can specify filters so that the response includes information for only certain instances. max_results (int): The maximum number of items to return. Not used now. next_token (str): The token for the next set of items to return. Not used now. Returns: A list of reservations. If you specify one or more instance IDs, Amazon EC2 returns information for those instances. If you do not specify instance IDs, you receive information for all relevant instances. If you specify an invalid instance ID, you receive an error. If you specify an instance that you don't own, we don't include it in the results. """ @metric_publisher.ReportLatency("terminate_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_ids') def terminate_instances(self, context, instance_id): """Shuts down one or more instances. Args: context (RequestContext): The request context. instance_id (list of str): One or more instance IDs. Returns: A list of instance state changes. This operation is idempotent; if you terminate an instance more than once, each call succeeds. """ @metric_publisher.ReportLatency("reboot_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_ids') def reboot_instances(self, context, instance_id): """Requests a reboot of one or more instances. Args: context (RequestContext): The request context. instance_id (list of str): One or more instance IDs. Returns: true if the request succeeds. """ @metric_publisher.ReportLatency("stop_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_ids', 'bool') def stop_instances(self, context, instance_id, force=False): """Stops one or more instances. Args: context (RequestContext): The request context. instance_id (list of str): One or more instance IDs. force (boolean): Forces the instances to stop. The instances do not have an opportunity to flush file system caches or file system metadata. Not used now. Equivalent value is True. Returns: true if the request succeeds. """ @metric_publisher.ReportLatency("start_instances-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_ids') def start_instances(self, context, instance_id): """Starts one or more instances. Args: context (RequestContext): The request context. instance_id (list of str): One or more instance IDs. Returns: true if the request succeeds. """ @metric_publisher.ReportLatency("describe_key_pairs-compute", listOfKeys = '{"1":["request_id"]}') # AK - Comment out filtersa and keynames from describe keypairs for now #@module_and_param_types(key_pair, 'str255s', 'filter') #def describe_key_pairs(self, context, key_name=None, filter=None): @module_and_param_types(key_pair) def describe_key_pairs(self, context): """Describes one or more of your key pairs. Args: context (RequestContext): The request context. key_name (list of str): On or more keypair names. filter (list of filter dict): On or more filters. Returns: Specified keypairs. """ @metric_publisher.ReportLatency("create_key_pair-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(key_pair, 'str255') def create_key_pair(self, context, key_name): """Creates a 2048-bit RSA key pair with the specified name. Args: context (RequestContext): The request context. key_name (str): A unique name for the key pair. Returns: Created keypair. """ @metric_publisher.ReportLatency("delete_key_pair-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(key_pair, 'str255') def delete_key_pair(self, context, key_name): """Deletes the specified key pair. Args: context (RequestContext): The request context. key_name (str): Name of the keypair. Returns: Returns true if the request succeeds. """ @metric_publisher.ReportLatency("import_key_pair-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(key_pair, 'str255', 'str') def import_key_pair(self, context, key_name, public_key_material): """Imports the public key from an existing RSA key pair. Args: context (RequestContext): The request context. key_name (str): A unique name for the key pair. public_key_material (str): The public key. You must base64 encode the public key material before sending it. Returns: Imported keypair. """ @metric_publisher.ReportLatency("describe_account_attributes-compute",\ listOfKeys = '{"1":["request_id"]}') @module_and_param_types(availability_zone, 'strs') def describe_account_attributes(self, context, attribute_name=None): """Describes attributes of your EC2 account. Args: context (RequestContext): The request context. attribute_name (list of str): One or more account attribute names. The following are the supported account attributes: supported-platforms | default-vpc | max-instances | vpc-max-security-groups-per-interface (unsupported now) | max-elastic-ips (unsupported now) | vpc-max-elastic-ips (unsupported now) Returns: Information about one or more account attributes. """ @metric_publisher.ReportLatency("show_delete_on_termination_flag-compute",\ listOfKeys = '{"1":["request_id"]}') @module_and_param_types(volume, 'dummy') def show_delete_on_termination_flag(self, context, volume_id): """Get the delete on termination flag on the volume id to the given value. Args: volume_id: The ID of the volume to update Returns: The dict showing the volume id, attached instance id, and delete on termination flag """ @metric_publisher.ReportLatency("update_delete_on_termination_flag-compute",\ listOfKeys = '{"1":["request_id"]}') @module_and_param_types(volume, 'dummy', 'bool') def update_delete_on_termination_flag(self, context, volume_id, delete_on_termination): """Update the delete on termination flag on the volume id to the given value. Args: volume_id: The ID of the volume to update delete_on_termination: Bool to set the flag Returns: The dict showing the volume id, attached instance id, and delete on termination flag """ @metric_publisher.ReportLatency("describe_images-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(image, 'jmijrijki_ids') def describe_images(self, context, image_id=None): """Describes one or more of the images available to you. Args: context (RequestContext): The request context. image_id (list of str): One or more image IDs. Returns: A list of images. """ @metric_publisher.ReportLatency("attach_volume-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(volume, 'dummy', 'i_id', 'str') def attach_volume(self, context, volume_id, instance_id, device): """Attaches an EBS volume to a running or stopped instance. Args: context (RequestContext): The request context. volume_id (str): The ID of the volume. instance_id (str): The ID of the instance. device_name (str): The device name to expose to the instance. Returns: Information about the attachment. The instance and volume must be in the same Availability Zone. """ @metric_publisher.ReportLatency("detach_volume-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(volume, 'dummy', 'i_id', 'str') def detach_volume(self, context, volume_id, instance_id=None, device=None, force=None): """Detaches an EBS volume from an instance. Args: context (RequestContext): The request context. volume_id (str): The ID of the volume. instance_id (str): The ID of the instance. Not used now. device (str): The device name. Not used now. force (boolean): Forces detachment. Not used now. Returns: Information about the detachment. """ @metric_publisher.ReportLatency("get_password_data-compute", listOfKeys = '{"1":["request_id"]}') @module_and_param_types(instance, 'i_id') def get_password_data(self, context, instance_id): """Retrieves the encrypted administrator password for Windows instance. Args: context (RequestContext): The request context. instance_id (str): ID of the Windows instance Returns: The password of the instance, timestamp and instance id. The password is encrypted using the key pair that you specified when you launched the instance. """ """ LegacyCloudController has the APIs that we will not support in first phase of launch. We can enable them using the legacy_support flag """ class LegacyCloudController(CloudController): """VPC Cloud Controller Adds full VPC functionality which requires Neutron to work. """ @module_and_param_types(vpc, 'vpc_cidr', 'str255') def create_vpc(self, context, cidr_block, instance_tenancy='default'): """Creates a VPC with the specified CIDR block. Args: context (RequestContext): The request context. cidr_block (str): The CIDR block for the VPC (for example, 10.0.0.0/16). instance_tenancy (str): The supported tenancy options for instances launched into the VPC. Valid values: default | dedicated Not used now. Returns: Information about the VPC. The smallest VPC you can create uses a /28 netmask (16 IP addresses), and the largest uses a /16 netmask. """ @module_and_param_types(vpc, 'vpc_id') def delete_vpc(self, context, vpc_id): """Deletes the specified VPC. Args: context (RequestContext): The request context. vpc_id (str): The ID of the VPC. Returns: true if the request succeeds. You must detach or delete all gateways and resources that are associated with the VPC before you can delete it. For example, you must terminate all instances running in the VPC, delete all security groups associated with the VPC (except the default one), delete all route tables associated with the VPC (except the default one), and so on. """ return vpc.delete_vpc(context, vpc_id) @module_and_param_types(vpc, 'vpc_ids', 'filter') def describe_vpcs(self, context, vpc_id=None, filter=None): """Describes one or more of your VPCs. Args: context (RequestContext): The request context. vpc_id (list of str): One or more VPC IDs. Default: Describes all your VPCs. filter (list of filter dict): You can specify filters so that the response includes information for only certain VPCs. Returns: A list of VPCs. """ return vpc.describe_vpcs(context, vpc_id, filter) @module_and_param_types(internet_gateway) def create_internet_gateway(self, context): """Creates an Internet gateway for use with a VPC. Args: context (RequestContext): The request context. Returns: Information about the Internet gateway. """ @module_and_param_types(internet_gateway, 'igw_id', 'vpc_id') def attach_internet_gateway(self, context, internet_gateway_id, vpc_id): """Attaches an Internet gateway to a VPC. Args: context (RequestContext): The request context. internet_gateway_id (str): The ID of the Internet gateway. vpc_id (str): The ID of the VPC. Returns: Returns true if the request succeeds. Attaches an Internet gateway to a VPC, enabling connectivity between the Internet and the VPC. """ @module_and_param_types(internet_gateway, 'igw_id', 'vpc_id') def detach_internet_gateway(self, context, internet_gateway_id, vpc_id): """Detaches an Internet gateway from a VPC. Args: context (RequestContext): The request context. internet_gateway_id (str): The ID of the Internet gateway. vpc_id (str): The ID of the VPC. Returns: Returns true if the request succeeds. Detaches an Internet gateway from a VPC, disabling connectivity between the Internet and the VPC. The VPC must not contain any running instances with Elastic IP addresses. """ @module_and_param_types(internet_gateway, 'igw_id') def delete_internet_gateway(self, context, internet_gateway_id): """Deletes the specified Internet gateway. Args: context (RequestContext): The request context. internet_gateway_id (str): The ID of the Internet gateway. Returns: Returns true if the request succeeds. You must detach the Internet gateway from the VPC before you can delete it. """ @module_and_param_types(internet_gateway, 'igw_ids', 'filter') def describe_internet_gateways(self, context, internet_gateway_id=None, filter=None): """Describes one or more of your Internet gateways. Args: context (RequestContext): The request context. internet_gateway_id (list of str): One or more Internet gateway IDs. Default: Describes all your Internet gateways. filter (list of filter dict): You can specify filters so that the response includes information for only certain Internet gateways. Returns: A list of Internet gateways. """ @module_and_param_types(subnet, 'vpc_id', 'subnet_cidr', 'str255') def create_subnet(self, context, vpc_id, cidr_block, availability_zone=None): """Creates a subnet in an existing VPC. Args: context (RequestContext): The request context. vpc_id (str): The ID of the VPC. cidr_block (str): The CIDR block for the subnet. For example, 10.0.0.0/24. availability_zone (str): The Availability Zone for the subnet. If None or empty EC2 selects one for you. Returns: Information about the subnet. The subnet's CIDR block can be the same as the VPC's CIDR block, or a subset of the VPC's CIDR block. If you create more than one subnet in a VPC, the subnets' CIDR blocks must not overlap. The smallest subnet you can create uses a /28 netmask (16 IP addresses), and the largest uses a /16 netmask. EC2 reserves both the first four and the last IP address in each subnet's CIDR block. They're not available for use. If you add more than one subnet to a VPC, they're set up in a star topology with a logical router in the middle. """ @module_and_param_types(subnet, 'subnet_id') def delete_subnet(self, context, subnet_id): """Deletes the specified subnet. Args: context (RequestContext): The request context. subnet_id (str): The ID of the subnet. Returns: true if the request succeeds. You must terminate all running instances in the subnet before you can delete the subnet. """ @module_and_param_types(subnet, 'subnet_ids', 'filter') def describe_subnets(self, context, subnet_id=None, filter=None): """Describes one or more of your subnets. Args: context (RequestContext): The request context. subnet_id (list of str): One or more subnet IDs. Default: Describes all your subnets. filter (list of filter dict): You can specify filters so that the response includes information for only certain subnets. Returns: A list of subnets. """ @module_and_param_types(route_table, 'vpc_id') def create_route_table(self, context, vpc_id): """Creates a route table for the specified VPC. Args: context (RequestContext): The request context. vpc_id (str): The ID of the VPC. Returns: Information about the route table. After you create a route table, you can add routes and associate the table with a subnet. """ @module_and_param_types(route_table, 'rtb_id', 'cidr', 'igw_id', 'i_id', 'eni_id', 'dummy') def create_route(self, context, route_table_id, destination_cidr_block, gateway_id=None, instance_id=None, network_interface_id=None, vpc_peering_connection_id=None): """Creates a route in a route table within a VPC. Args: context (RequestContext): The request context. route_table_id (str): The ID of the route table for the route. destination_cidr_block (str): The CIDR address block used for the destination match. Routing decisions are based on the most specific match. gateway_id (str): The ID of an Internet gateway or virtual private gateway attached to your VPC. instance_id (str): The ID of a NAT instance in your VPC. The operation fails if you specify an instance ID unless exactly one network interface is attached. network_interface_id (str): The ID of a network interface. vpc_peering_connection_id (str): The ID of a VPC peering connection. Returns: true if the requests succeeds. The route's target can be an Internet gateway or virtual private gateway attached to the VPC, a VPC peering connection, or a NAT instance in the VPC. """ @module_and_param_types(route_table, 'rtb_id', 'cidr', 'igw_id', 'i_id', 'eni_id', 'dummy') def replace_route(self, context, route_table_id, destination_cidr_block, gateway_id=None, instance_id=None, network_interface_id=None, vpc_peering_connection_id=None): """Replaces an existing route within a route table in a VPC. Args: context (RequestContext): The request context. route_table_id (str): The ID of the route table for the route. destination_cidr_block (str): The CIDR address block used for the destination match. Routing decisions are based on the most specific match. gateway_id (str): The ID of an Internet gateway or virtual private gateway attached to your VPC. instance_id (str): The ID of a NAT instance in your VPC. The operation fails if you specify an instance ID unless exactly one network interface is attached. network_interface_id (str): The ID of a network interface. vpc_peering_connection_id (str): The ID of a VPC peering connection. Returns: true if the requests succeeds. """ @module_and_param_types(route_table, 'rtb_id', 'cidr') def delete_route(self, context, route_table_id, destination_cidr_block): """Deletes the specified route from the specified route table. Args: context (RequestContext): The request context. route_table_id (str): The ID of the route table. destination_cidr_block (str): The CIDR range for the route. The value you specify must match the CIDR for the route exactly. Returns: true if the requests succeeds. """ @module_and_param_types(route_table, 'rtb_id', 'subnet_id') def associate_route_table(self, context, route_table_id, subnet_id): """Associates a subnet with a route table. Args: context (RequestContext): The request context. route_table_id (str): The ID of the route table. subnet_id (str): The ID of the subnet. Returns: The route table association ID The subnet and route table must be in the same VPC. This association causes traffic originating from the subnet to be routed according to the routes in the route table. The action returns an association ID, which you need in order to disassociate the route table from the subnet later. A route table can be associated with multiple subnets. """ @module_and_param_types(route_table, 'rtbassoc_id', 'rtb_id') def replace_route_table_association(self, context, association_id, route_table_id): """Changes the route table associated with a given subnet in a VPC. Args: context (RequestContext): The request context. association_id (str): The association ID. route_table_id (str): The ID of the new route table to associate with the subnet. Returns: The ID of the new association. After the operation completes, the subnet uses the routes in the new route table it's associated with. You can also use this action to change which table is the main route table in the VPC. """ @module_and_param_types(route_table, 'rtbassoc_id') def disassociate_route_table(self, context, association_id): """Disassociates a subnet from a route table. Args: context (RequestContext): The request context. association_id (str): The association ID. Returns: true if the requests succeeds. After you perform this action, the subnet no longer uses the routes in the route table. Instead, it uses the routes in the VPC's main route table. """ @module_and_param_types(route_table, 'rtb_id') def delete_route_table(self, context, route_table_id): """Deletes the specified route table. Args: context (RequestContext): The request context. route_table_id (str): The ID of the route table. You must disassociate the route table from any subnets before you can delete it. You can't delete the main route table. Returns: true if the requests succeeds. """ @module_and_param_types(route_table, 'rtb_ids', 'filter') def describe_route_tables(self, context, route_table_id=None, filter=None): """Describes one or more of your route tables. Args: context (RequestContext): The request context. route_table_id (str): One or more route table IDs. filter (list of filter dict): You can specify filters so that the response includes information for only certain tables. Returns: A list of route tables """ @module_and_param_types(dhcp_options, 'key_value_dict_list') def create_dhcp_options(self, context, dhcp_configuration): """Creates a set of DHCP options for your VPC. Args: context (RequestContext): The request context. dhcp_configuration (list of dict): Dict can contain 'key' (str) and 'value' (str) for each option. You can specify the following options: - domain-name-servers: up to 4 DNS servers, IPs are in value separated by commas - domain-name: domain name - ntp-servers: up to 4 NTP servers - netbios-name-servers: up to 4 NetBIOS name servers - netbios-node-type: the NetBIOS node type (1,2,4 or 8) Returns: A set of DHCP options """ @module_and_param_types(dhcp_options, 'dopt_ids', 'filter') def describe_dhcp_options(self, context, dhcp_options_id=None, filter=None): """Describes the specified DHCP options. Args: context (RequestContext): The request context. dhcp_options_id (list of str): DHCP options id. filter (list of filter dict): You can specify filters so that the response includes information for only certain DHCP options. Returns: DHCP options. """ @module_and_param_types(dhcp_options, 'dopt_id') def delete_dhcp_options(self, context, dhcp_options_id): """Deletes the specified set of DHCP options Args: context (RequestContext): The request context. dhcp_options_id (str): DHCP options id Returns: true if the request succeeds You must disassociate the set of DHCP options before you can delete it. You can disassociate the set of DHCP options by associating either a new set of options or the default set of options with the VPC. """ @module_and_param_types(dhcp_options, 'dopt_id_or_default', 'vpc_id') def associate_dhcp_options(self, context, dhcp_options_id, vpc_id): """Associates a set of DHCP options with the specified VPC. Args: context (RequestContext): The request context. dhcp_options_id (str): DHCP options id or "default" to associate no DHCP options with the VPC Returns: true if the request succeeds """ @module_and_param_types(network_interface, 'subnet_id', 'ip', 'dummy', 'int', 'str', 'sg_ids') def create_network_interface(self, context, subnet_id, private_ip_address=None, private_ip_addresses=None, secondary_private_ip_address_count=None, description=None, security_group_id=None): """Creates a network interface in the specified subnet. Args: subnet_id (str): The ID of the subnet to associate with the network interface. private_ip_address (str): The primary private IP address of the network interface. If you don't specify an IP address, EC2 selects one for you from the subnet range. private_ip_addresses (list of dict): Dict can contain 'private_ip_address' (str) and 'primary' (boolean) for each address. The private IP addresses of the specified network interface and indicators which one is primary. Only one private IP address can be designated as primary. You can't specify this parameter when private_ip_addresses['primary'] is true if you specify private_ip_address. secondary_private_ip_address_count (integer): The number of secondary private IP addresses to assign to a network interface. EC2 selects these IP addresses within the subnet range. For a single network interface, you can't specify this option and specify more than one private IP address using private_ip_address and/or private_ip_addresses. description (str): A description for the network interface. security_group_id (list of str): The list of security group IDs for the network interface. Returns: The network interface that was created. """ @module_and_param_types(network_interface, 'eni_id') def delete_network_interface(self, context, network_interface_id): """Deletes the specified network interface. Args: context (RequestContext): The request context. network_interface_id (str): The ID of the network interface. Returns: true if the request succeeds. You must detach the network interface before you can delete it. """ @module_and_param_types(network_interface, 'eni_ids', 'filter') def describe_network_interfaces(self, context, network_interface_id=None, filter=None): """Describes one or more of your network interfaces. Args: context (RequestContext): The request context. network_interface_id (list of str): One or more network interface IDs. Default: Describes all your network interfaces. filter (list of filter dict): You can specify filters so that the response includes information for only certain interfaces. Returns: A list of network interfaces. """ return network_interface.describe_network_interfaces( context, network_interface_id, filter) @module_and_param_types(network_interface, 'eni_id', 'str') def describe_network_interface_attribute(self, context, network_interface_id, attribute): """Describes the specified attribute of the specified network interface. Args: context (RequestContext): The request context. network_interface_id: Network interface ID. attribute: The attribute of the network interface. Returns: Specified attribute. You can specify only one attribute at a time. """ return network_interface.describe_network_interface_attribute( context, network_interface_id, attribute) @module_and_param_types(network_interface, 'eni_id', 'str', 'bool', 'sg_ids', 'dummy') def modify_network_interface_attribute(self, context, network_interface_id, description=None, source_dest_check=None, security_group_id=None, attachment=None): """Modifies the specified attribute of the specified network interface. Args: context (RequestContext): The request context. network_interface_id: Network interface ID. description: New description. source_dest_check: Indicates whether source/destination checking is enabled. A value of true means checking is enabled, and false means checking is disabled. This value must be false for a NAT instance to perform NAT. security_group_id [list of str]: List of secuirity groups to attach attachment: Information about the interface attachment. If modifying the 'delete on termination' attribute, you must specify the ID of the interface attachment. Returns: true if the request succeeds. You can specify only one attribute at a time. """ @module_and_param_types(network_interface, 'eni_id', 'str') def reset_network_interface_attribute(self, context, network_interface_id, attribute): """Resets the specified attribute of the specified network interface. Args: context (RequestContext): The request context. network_interface_id: Network interface ID. attribute: The attribute to reset. Valid values "SourceDestCheck" (reset to True) Returns: true if the request succeeds. """ @module_and_param_types(network_interface, 'eni_id', 'i_id', 'int') def attach_network_interface(self, context, network_interface_id, instance_id, device_index): """Attach a network interface to an instance. Args: context (RequestContext): The request context. network_interface_id (str): The ID of the network interface. instance_id (str): The ID of the instance. device_index (int): The index of the device for the network interface attachment. Returns: Attachment Id """ @module_and_param_types(network_interface, 'eni_attach_id', 'bool') def detach_network_interface(self, context, attachment_id, force=None): """Detach a network interface from an instance. Args: context (RequestContext): The request context. attachment_id (str): The ID of the attachment. force (boolean): Specifies whether to force a detachment Returns: true if the request succeeds. """ @module_and_param_types(network_interface, 'eni_id', 'ips', 'int', 'bool') def assign_private_ip_addresses(self, context, network_interface_id, private_ip_address=None, secondary_private_ip_address_count=None, allow_reassignment=False): """Assigns secondary private IP addresses to the network interface. Args: network_interface_id (str): The ID of the network interface. private_ip_address (list of str): List of IP addresses to assign. secondary_private_ip_address_count (integer): The number of secondary private IP addresses to assign. EC2 selects these IP addresses within the subnet range. Returns: true if the request succeeds. """ @module_and_param_types(network_interface, 'eni_id', 'ips') def unassign_private_ip_addresses(self, context, network_interface_id, private_ip_address=None): """Unassigns secondary IP addresses from the network interface. Args: network_interface_id (str): The ID of the network interface. private_ip_address (list of str): List of secondary private IP addresses to unassign. Returns: true if the request succeeds. """ @module_and_param_types(address, 'str255') def allocate_address(self, context, domain=None): """Acquires an Elastic IP address. Args: context (RequestContext): The request context. domain (str): Set to vpc to allocate the address for use with instances in a VPC. Default: The address is for use in EC2-Classic. Valid values: vpc Returns: The Elastic IP address information. An Elastic IP address is for use either in the EC2-Classic platform or in a VPC. """ @module_and_param_types(address, 'ip', 'i_id', 'eipalloc_id', 'eni_id', 'ip', 'bool') def associate_address(self, context, public_ip=None, instance_id=None, allocation_id=None, network_interface_id=None, private_ip_address=None, allow_reassociation=False): """Associates an Elastic IP with an instance or a network interface. Args: context (RequestContext): The request context. public_ip (str): The Elastic IP address. Required for Elastic IP addresses for use with instances in EC2-Classic. instance_id (str): The ID of the instance. The operation fails if you specify an instance ID unless exactly one network interface is attached. Required for EC2-Classic. allocation_id (str): The allocation ID. Required for EC2-VPC. network_interface_id (str): The ID of the network interface. private_ip_address (str): The primary or secondary private IP. allow_reassociation (boolean): Allows an Elastic IP address that is already associated to be re-associated. Otherwise, the operation fails. Returns: true if the request succeeds. [EC2-VPC] The ID that represents the association of the Elastic IP. For a VPC, you can specify either instance_id or network_interface_id, but not both. If the instance has more than one network interface, you must specify a network interface ID. If no private IP address is specified, the Elastic IP address is associated with the primary private IP address. [EC2-Classic, default VPC] If the Elastic IP address is already associated with a different instance, it is disassociated from that instance and associated with the specified instance. This is an idempotent operation. """ @module_and_param_types(address, 'ip', 'eipassoc_id') def disassociate_address(self, context, public_ip=None, association_id=None): """Disassociates an Elastic IP address. Args: context (RequestContext): The request context. public_ip (str): The Elastic IP address. Required for EC2-Classic. assossiation_id (str): The association ID. Required for EC2-VPC Returns: true if the request succeeds. Disassociates an Elastic IP address from the instance or network interface it's associated with. This is an idempotent action. """ @module_and_param_types(address, 'ip', 'eipalloc_id') def release_address(self, context, public_ip=None, allocation_id=None): """Releases the specified Elastic IP address. Args: context (RequestContext): The request context. public_ip (str): The Elastic IP address. allocation_id (str): The allocation ID. Returns: true if the requests succeeds. If you attempt to release an Elastic IP address that you already released, you'll get an AuthFailure error if the address is already allocated to another AWS account. [EC2-Classic, default VPC] Releasing an Elastic IP address automatically disassociates it from any instance that it's associated with. [Nondefault VPC] You must use DisassociateAddress to disassociate the Elastic IP address before you try to release it. """ @module_and_param_types(address, 'ips', 'eipalloc_ids', 'filter') def describe_addresses(self, context, public_ip=None, allocation_id=None, filter=None): """Describes one or more of your Elastic IP addresses. Args: context (RequestContext): The request context. public_ip (list of str): One or more Elastic IP addresses. allocation_id (list of str): One or more allocation IDs. filter (list of filter dict): You can specify filters so that the response includes information for only certain Elastic IP addresses. Returns: A list of Elastic IP addresses. """ @module_and_param_types(security_group, 'security_group_strs', 'sg_ids', 'filter') def describe_security_groups(self, context, group_name=None, group_id=None, filter=None): """Describes one or more of your security groups. Args: context (RequestContext): The request context. group_name (list of str): One or more security group names. group_id (list of str): One or more security group IDs. filter (list of filter dict): You can specify filters so that the response includes information for only certain security groups. Returns: A list of security groups. """ @module_and_param_types(security_group, 'security_group_str', 'security_group_str', 'vpc_id') def create_security_group(self, context, group_name, group_description, vpc_id=None): """Creates a security group. Args: context (RequestContext): The request context. group_name (str): The name of the security group. group_description (str): A description for the security group. vpc_id (str): [EC2-VPC] The ID of the VPC. Returns: true if the requests succeeds. The ID of the security group. You can have a security group for use in EC2-Classic with the same name as a security group for use in a VPC. However, you can't have two security groups for use in EC2-Classic with the same name or two security groups for use in a VPC with the same name. You have a default security group for use in EC2-Classic and a default security group for use in your VPC. If you don't specify a security group when you launch an instance, the instance is launched into the appropriate default security group. A default security group includes a default rule that grants instances unrestricted network access to each other. group_name and group_description restrictions: up to 255 characters in length, EC2-Classic: ASCII characters, EC2-VPC: a-z, A-Z, 0-9, spaces, and ._-:/()#,@[]+=&;{}!$* """ @module_and_param_types(security_group, 'security_group_str', 'sg_id') def delete_security_group(self, context, group_name=None, group_id=None): """Deletes a security group. Args: context (RequestContext): The request context. group_name (str): The name of the security group. group_id (str): The ID of the security group. Returns: true if the requests succeeds. [EC2-Classic, default VPC] You can specify either GroupName or GroupId If you attempt to delete a security group that is associated with an instance, or is referenced by another security group, the operation fails. """ @module_and_param_types(security_group, 'sg_id', 'security_group_str', 'dummy') def authorize_security_group_ingress(self, context, group_id=None, group_name=None, ip_permissions=None): """Adds one or more ingress rules to a security group. Args: context (RequestContext): The request context. group_id (str): The ID of the security group. group_name (str): [EC2-Classic, default VPC] The name of the security group. ip_permissions (list of dicts): Dict can contain: ip_protocol (str): The IP protocol name or number. Use -1 to specify all. For EC2-Classic, security groups can have rules only for TCP, UDP, and ICMP. from_port (str): The start of port range for the TCP and UDP protocols, or an ICMP type number. For the ICMP type number, you can use -1 to specify all ICMP types. to_port (str): The end of port range for the TCP and UDP protocols, or an ICMP code number. For the ICMP code number, you can use -1 to specify all ICMP codes for the ICMP type. groups (list of dicts): Dict can contain: group_id (str): The ID of the source security group. You can't specify a source security group and a CIDR IP address range. user_id (str): [EC2-Classic] The ID of the AWS account that owns the source security group, if it's not the current AWS account. cidr_ip (str): The CIDR IP address range. You can't specify this parameter when specifying a source security group. Returns: true if the requests succeeds. """ @module_and_param_types(security_group, 'sg_id', 'security_group_str', 'dummy') def revoke_security_group_ingress(self, context, group_id=None, group_name=None, ip_permissions=None): """Removes one or more ingress rules from a security group. Args: context (RequestContext): The request context. group_id (str): The ID of the security group. group_name (str): [EC2-Classic, default VPC] The name of the security group. ip_permissions (list of dicts): See authorize_security_group_ingress Returns: true if the requests succeeds. The values that you specify in the revoke request (for example, ports) must match the existing rule's values for the rule to be removed. """ @module_and_param_types(security_group, 'sg_id', 'dummy') def authorize_security_group_egress(self, context, group_id, ip_permissions=None): """Adds one or more egress rules to a security group for use with a VPC. Args: context (RequestContext): The request context. group_id (str): The ID of the security group. ip_permissions (list of dicts): See authorize_security_group_ingress Returns: true if the requests succeeds. This action doesn't apply to security groups for use in EC2-Classic. """ @module_and_param_types(security_group, 'sg_id', 'dummy') def revoke_security_group_egress(self, context, group_id, ip_permissions=None): """Removes one or more egress rules from a security group for EC2-VPC. Args: context (RequestContext): The request context. group_id (str): The ID of the security group. ip_permissions (list of dicts): See authorize_security_group_ingress Returns: true if the requests succeeds. The values that you specify in the revoke request (for example, ports) must match the existing rule's values for the rule to be revoked. This action doesn't apply to security groups for use in EC2-Classic. """ @module_and_param_types(instance, 'i_id', 'str255') def describe_instance_attribute(self, context, instance_id, attribute): """Describes the specified attribute of the specified instance. Args: context (RequestContext): The request context. instance_id (str): The ID of the instance. attribute (str): The instance attribute. Valid values: blockDeviceMapping | disableApiTermination | ebsOptimized (unsupported now) | groupSet | instanceInitiatedShutdownBehavior | instanceType | kernel | productCodes (unsupported now) | ramdisk | rootDeviceName | sourceDestCheck (unsupported now) | sriovNetSupport (unsupported now) | userData Returns: Specified attribute. """ @module_and_param_types(availability_zone, 'strs', 'filter') def describe_availability_zones(self, context, zone_name=None, filter=None): """Describes one or more of the available Availability Zones. Args: context (RequestContext): The request context. zone_name (list of str): On or more zone names. filter (list of filter dict): On or more filters. Returns: Specified availability zones. """ @module_and_param_types(availability_zone, 'strs', 'filter') def describe_regions(self, context, region_name=None, filter=None): """Describes one or more regions that are currently available to you. Args: context (RequestContext): The request context. region_name (list of str): On or more region names. filter (list of filter dict): On or more filters. Returns: Specified regions. """ @module_and_param_types(instance, 'i_id_or_ids') def get_console_output(self, context, instance_id): """Gets the console output for the specified instance. Args: context (RequestContext): The request context. instance_id (str): ID of the instance Returns: The console output of the instance, timestamp and instance id. """ @module_and_param_types(image, 'i_id', 'str', 'str', 'bool', 'dummy') def create_image(self, context, instance_id, name=None, description=None, no_reboot=False, block_device_mapping=None): """Creates an EBS-backed AMI from an EBS-backed instance. Args: context (RequestContext): The request context. instance_id (str): The ID of the instance. name (str): A name for the new image. It's required by AWS but optional for legacy Nova EC2 API. description (str): A description for the new image. Not used now. no_reboot (boolean): When the parameter is set to false, EC2 attempts to shut down the instance cleanly before image creation and then reboots the instance. block_device_mapping (list of dict): Dict can contain: device_name (str): The device name exposed to the instance (for example, /dev/sdh or xvdh). virtual_name (str): The virtual device name (ephemeral[0..3]). ebs (dict): Dict can contain: volume_id (str): The ID of the volume (Nova extension). snapshot_id (str): The ID of the snapshot. volume_size (str): The size of the volume, in GiBs. volume_type (str): The volume type. Not used now. delete_on_termination (bool): Indicates whether to delete the volume on instance termination. iops (int): he number of IOPS to provision for the volume. Not used now. encrypted (boolean): Whether the volume is encrypted. Not used now. no_device (str): Suppresses the device mapping. Returns: The ID of the new AMI. """ return image.create_image(context, instance_id, name, description, no_reboot, block_device_mapping) @module_and_param_types(image, 'str', 'str', 'str', 'str', 'str', 'dummy', 'str', 'aki_id', 'ari_id', 'str') def register_image(self, context, name=None, image_location=None, description=None, architecture=None, root_device_name=None, block_device_mapping=None, virtualization_type=None, kernel_id=None, ramdisk_id=None, sriov_net_support=None): """Registers an AMI. Args: context (RequestContext): The request context. name (str): A name for your AMI. It's required by AWS but optional for legacy Nova EC2 API. image_location (str): The full path to AMI manifest in S3 storage. description (str): A description for your AMI. Not used now. architecture (str): The architecture of the AMI. Not used now. root_device_name (str): The name of the root device block_device_mapping (list of dict): Dict can contain: device_name (str): The device name exposed to the instance (for example, /dev/sdh or xvdh). virtual_name (str): The virtual device name (ephemeral[0..3]). ebs (dict): Dict can contain: volume_id (str): The ID of the volume (Nova extension). snapshot_id (str): The ID of the snapshot. volume_size (str): The size of the volume, in GiBs. volume_type (str): The volume type. Not used now. delete_on_termination (bool): Indicates whether to delete the volume on instance termination. iops (int): he number of IOPS to provision for the volume. Not used now. encrypted (boolean): Whether the volume is encrypted. Not used now. no_device (str): Suppresses the device mapping. virtualization_type (str): The type of virtualization. Not used now. kernel_id (str): The ID of the kernel. Not used now. ramdisk_id (str): The ID of the RAM disk. Not used now. sriov_net_support (str): SR-IOV mode for networking. Not used now. Returns: The ID of the new AMI. """ @module_and_param_types(image, 'jmijrijki_id') def deregister_image(self, context, image_id): """Deregisters the specified AMI. Args: context (RequestContext): The request context. image_id (str): The ID of the AMI. Returns: true if the request succeeds. """ @module_and_param_types(image, 'jmijrijki_id', 'str') def describe_image_attribute(self, context, image_id, attribute): """Describes the specified attribute of the specified AMI. Args: context (RequestContext): The request context. image_id (str): The ID of the image. attribute (str): The attribute of the network interface. Valid values: description (unsupported now)| kernel | ramdisk | launchPermission | productCodes (unsupported now)| blockDeviceMapping | rootDeviceName (Nova EC2 extension) Returns: Specified attribute. """ return image.describe_image_attribute(context, image_id, attribute) @module_and_param_types(image, 'jmijrijki_id', 'str', 'strs', 'str', 'str', 'dummy', 'dummy', 'dummy', 'str') def modify_image_attribute(self, context, image_id, attribute=None, user_group=None, operation_type=None, description=None, launch_permission=None, product_code=None, user_id=None, value=None): """Modifies the specified attribute of the specified AMI. Args: context (RequestContext): The request context. image_id (str): The ID of the image. attribute (str): The name of the attribute to modify. user_group (list of str): One or more user groups. Only 'all' group is supported now. operation_type (str): The operation type. Only 'add' and 'remove' operation types are supported now. description: A description for the AMI. launch_permission: : A launch permission modification. product_code: : Not supported now. user_id: : Not supported now. value: : The value of the attribute being modified. This is only valid when modifying the description attribute. Returns: true if the request succeeds. """ @module_and_param_types(image, 'jmijrijki_id', 'str') def reset_image_attribute(self, context, image_id, attribute): """Resets an attribute of an AMI to its default value. Args: context (RequestContext): The request context. image_id (str): The ID of the image. attribute (str): The attribute to reset (currently you can only reset the launch permission attribute). Returns: true if the request succeeds. """ @module_and_param_types(tag, 'ec2_ids', 'key_value_dict_list') def create_tags(self, context, resource_id, tag): """Adds or overwrites one or more tags for the specified resources. Args: context (RequestContext): The request context. resource_id (list of str): The IDs of one or more resources to tag. tag (list of dict): Dict can contain: key (str): The key of the tag. value (str): The value of the tag. Returns: true if the request succeeds. """ @module_and_param_types(tag, 'ec2_ids', 'dummy') def delete_tags(self, context, resource_id, tag=None): """Deletes the specified tags from the specified resources. Args: context (RequestContext): The request context. resource_id (list of str): The IDs of one or more resources to tag. tag (list of dict): One or more tags to delete. Dict can contain: key (str): The key of the tag. value (str): The value of the tag. Returns: true if the request succeeds. If you omit the value in tag parameter, we delete the tag regardless of its value. If you specify this parameter with an empty string as the value, we delete the key only if its value is an empty string. """ @module_and_param_types(tag, 'filter', 'int', 'str') def describe_tags(self, context, filter=None, max_results=None, next_token=None): """Describes one or more of the tags for your EC2 resources. Args: context (RequestContext): The request context. filter (list of filter dict): You can specify filters so that the response includes information for only certain tags. max_results (int): The maximum number of items to return. Not used now. next_token (str): The token for the next set of items to return. Not used now. Returns: A list of tags. """ @module_and_param_types(volume, 'str', 'int', 'snap_id', 'str', 'int', 'bool', 'str') def create_volume(self, context, availability_zone=None, size=None, snapshot_id=None, volume_type=None, iops=None, encrypted=None, kms_key_id=None): """Creates an EBS volume. Args: context (RequestContext): The request context. availability_zone (str): The Availability Zone in which to create the volume. It's required by AWS but optional for legacy Nova EC2 API. instance_id (str): The size of the volume, in GiBs. Valid values: 1-1024 If you're creating the volume from a snapshot and don't specify a volume size, the default is the snapshot size. snapshot_id (str): The snapshot from which to create the volume. Required if you are creating a volume from a snapshot. volume_type (str): The volume type. One of volume types created in used Block Storage. iops (int): The number of IOPS to provision for the volume. Valid values: Range is 100 to 4,000. Not used now. encrypted (boolean): Whether the volume should be encrypted. Not used now. kms_key_id (str): The full ARN of AWS KMS master key to use when creating the encrypted volume. Not used now. Returns: Information about the volume. You can create a new empty volume or restore a volume from an EBS snapshot. """ @module_and_param_types(volume, 'dummy') def delete_volume(self, context, volume_id): """Deletes the specified EBS volume. Args: context (RequestContext): The request context. volume_id (str): The ID of the volume. Returns: Returns true if the request succeeds. The volume must be in the available state. """ @module_and_param_types(volume, 'dummy', 'filter', 'int', 'str') def describe_volumes(self, context, volume_id=None, filter=None, max_results=None, next_token=None): """Describes the specified EBS volumes. Args: context (RequestContext): The request context. volume_id (list of str): One or more volume IDs. filter (list of filter dict): You can specify filters so that the response includes information for only certain volumes. max_results (int): The maximum number of items to return. Not used now. next_token (str): The token for the next set of items to return. Not used now. Returns: A list of volumes. """ @module_and_param_types(snapshot, 'vol_id', 'str') def create_snapshot(self, context, volume_id, description=None): """Creates a snapshot of an EBS volume. Args: context (RequestContext): The request context. volume_id (str): The ID of the volume. description (str): A description for the snapshot. Returns: Information about the snapshot. """ @module_and_param_types(snapshot, 'snap_id') def delete_snapshot(self, context, snapshot_id): """Deletes the specified snapshot. Args: context (RequestContext): The request context. snapshot_id (str): The ID of the snapshot. Returns: Returns true if the request succeeds. """ @module_and_param_types(snapshot, 'snap_ids', 'strs', 'strs', 'filter') def describe_snapshots(self, context, snapshot_id=None, owner=None, restorable_by=None, filter=None): """Describes one or more of the snapshots available to you. Args: context (RequestContext): The request context. snapshot_id (list of str): One or more snapshot IDs. owner (list of str): Returns the snapshots owned by the specified owner. Not used now. restorable_by (list of str): One or more accounts IDs that can create volumes from the snapshot. Not used now. filter (list of filter dict): You can specify filters so that the response includes information for only certain snapshots. Returns: A list of snapshots. """ ``` #### File: tests/unit/base.py ```python import copy import itertools from cinderclient import client as cinderclient from glanceclient import client as glanceclient import mock from novaclient import client as novaclient from oslo_config import fixture as config_fixture from oslotest import base as test_base import ec2api.api.apirequest from ec2api.api import ec2utils import ec2api.db.sqlalchemy.api from ec2api.tests.unit import fakes from ec2api.tests.unit import matchers from ec2api.tests.unit import tools import ec2api.wsgi def skip_not_implemented(test_item): def decorator(test_item): test_item.skip('The feature is not yet implemented') return decorator class ApiTestCase(test_base.BaseTestCase): ANY_EXECUTE_ERROR = object() NOVACLIENT_SPEC_OBJ = novaclient.Client('2') def setUp(self): super(ApiTestCase, self).setUp() neutron_patcher = mock.patch('neutronclient.v2_0.client.Client', autospec=True) self.neutron = neutron_patcher.start().return_value self.addCleanup(neutron_patcher.stop) nova_patcher = mock.patch('novaclient.client.Client') self.nova = mock.create_autospec(self.NOVACLIENT_SPEC_OBJ) self.novaclient_getter = nova_patcher.start() self.novaclient_getter.return_value = self.nova self.addCleanup(nova_patcher.stop) glance_patcher = mock.patch('glanceclient.client.Client') self.glance = mock.create_autospec( glanceclient.Client(endpoint='/v1')) glance_patcher.start().return_value = self.glance self.addCleanup(glance_patcher.stop) cinder_patcher = mock.patch('cinderclient.client.Client') self.cinder = mock.create_autospec(cinderclient.Client('1')) cinder_patcher.start().return_value = self.cinder self.addCleanup(cinder_patcher.stop) db_api_patcher = mock.patch('ec2api.db.api.IMPL', autospec=ec2api.db.sqlalchemy.api) self.db_api = db_api_patcher.start() self.addCleanup(db_api_patcher.stop) isotime_patcher = mock.patch('oslo_utils.timeutils.isotime') self.isotime = isotime_patcher.start() self.addCleanup(isotime_patcher.stop) self._conf = self.useFixture(config_fixture.Config()) self.configure(fatal_exception_format_errors=True) def execute(self, action, args): status_code, response = self._execute(action, args) self.assertEqual(200, status_code, self._format_error_message(status_code, response)) return response def assert_execution_error(self, error_code, action, args): status_code, response = self._execute(action, args) if error_code == self.ANY_EXECUTE_ERROR: self.assertLessEqual(400, status_code) else: self.assertEqual(400, status_code) self.assertEqual(error_code, response['Error']['Code'], self._format_error_message(status_code, response)) def assert_any_call(self, func, *args, **kwargs): calls = func.mock_calls for call in calls: call_args = call[1] if matchers.ListMatches(call_args, args, orderless_lists=True): return self.assertEqual(False, True) def set_mock_db_items(self, *items): self._db_items = copy.copy(items) self.db_api.get_items.side_effect = ( tools.get_db_api_get_items(*self._db_items)) self.db_api.get_item_by_id.side_effect = ( tools.get_db_api_get_item_by_id(*self._db_items)) self.db_api.get_items_by_ids.side_effect = ( tools.get_db_api_get_items_by_ids(*self._db_items)) self.db_api.get_items_ids.side_effect = ( tools.get_db_api_get_items_ids(*self._db_items)) def add_mock_db_items(self, *items): merged_items = items + tuple(item for item in self._db_items if all(i['id'] != item['id'] for i in items)) self.set_mock_db_items(*merged_items) def configure(self, **kwargs): self._conf.config(**kwargs) def check_filtering(self, operation, resultset_key, filters): for name, value in filters: resp = self.execute(operation, {'Filter.1.Name': name, 'Filter.1.Value.1': str(value)}) self.assertTrue(resp[resultset_key] is not None and len(resp[resultset_key]) > 0, 'Filter by %s does not work' % name) resp = self.execute(operation, {'Filter.1.Name': name, 'Filter.1.Value.1': 'dummy filter value'}) self.assertTrue(resp[resultset_key] is None or len(resp[resultset_key]) == 0) def check_tag_support(self, operation, resultset_key, sample_item_id, id_key, item_kinds=[]): self.db_api.get_tags = tools.CopyingMock( return_value=[{'item_id': sample_item_id, 'key': 'fake_key', 'value': 'fake_value'}]) ec2_tags = [{'key': 'fake_key', 'value': 'fake_value'}] resp = self.execute(operation, {}) tag_found = False if type(resultset_key) is list: resp_items = itertools.chain(*(r[resultset_key[1]] for r in resp[resultset_key[0]])) else: resp_items = resp[resultset_key] resultset_key = [resultset_key] for resp_item in resp_items: if resp_item.get(id_key) == sample_item_id: self.assertIn('tagSet', resp_item) self.assertThat(resp_item['tagSet'], matchers.ListMatches(ec2_tags)) tag_found = True else: self.assertTrue('tagSet' not in resp_item or resp_item['tagSet'] == []) self.assertTrue(tag_found) if not item_kinds: item_kinds = (ec2utils.get_ec2_id_kind(sample_item_id),) self.assertTrue(self.db_api.get_tags.call_count == 1 and (self.db_api.get_tags.mock_calls[0] in (mock.call(mock.ANY, item_kinds, set()), mock.call(mock.ANY, item_kinds, None)))) self.db_api.reset_mock() id_param = '%s%s.1' % (id_key[0].capitalize(), id_key[1:]) resp = self.execute(operation, {id_param: sample_item_id}) self.assertTrue( self.db_api.get_tags.call_count == 1 and (self.db_api.get_tags.mock_calls[0] in (mock.call(mock.ANY, item_kinds, set([sample_item_id])), mock.call(mock.ANY, item_kinds, [sample_item_id])))) self.check_filtering( operation, resultset_key[0], [('tag-key', 'fake_key'), ('tag-value', 'fake_value'), ('tag:fake_key', 'fake_value')]) def _create_context(self, auth_token=None): return ec2api.context.RequestContext( fakes.ID_OS_USER, fakes.ID_OS_PROJECT, auth_token=auth_token, service_catalog=[{'type': 'network', 'endpoints': [{'publicUrl': 'fake_url'}]}]) def _execute(self, action, args): ec2_request = ec2api.api.apirequest.APIRequest(action, 'fake_v1', args) ec2_context = self._create_context() environ = {'REQUEST_METHOD': 'FAKE', 'ec2.request': ec2_request, 'ec2api.context': ec2_context} request = ec2api.wsgi.Request(environ) response = request.send(ec2api.api.Executor()) return (response.status_code, self._check_and_transform_response(response, action)) def _check_and_transform_response(self, response, action): body = tools.parse_xml(response.body) if response.status_code == 200: action_tag = '%sResponse' % action self.assertIn(action_tag, body) body = body.pop(action_tag) self.assertIn('requestId', body) body.pop('requestId') else: self.assertIn('Response', body) body = body.pop('Response') self.assertIn('RequestID', body) body.pop('RequestID') self.assertEqual(1, len(body)) self.assertIn('Errors', body) body = body.pop('Errors') self.assertEqual(1, len(body)) self.assertIn('Error', body) self.assertEqual(2, len(body['Error'])) return body def _format_error_message(self, status_code, response): if status_code >= 400: return '%s: %s' % (response['Error']['Code'], response['Error']['Message']) else: return '' ``` #### File: rally-scenarios/plugins/ec2api_plugin.py ```python import functools from rally.benchmark.scenarios import base from rally.common import log as logging from ec2api.tests.functional import botocoreclient LOG = logging.getLogger(__name__) class AtomicActionWithoutFirst(base.AtomicAction): def __init__(self, scenario_instance, name): super(AtomicActionWithoutFirst, self).__init__(scenario_instance, name) self.scenario_instance = scenario_instance self.name = name def __exit__(self, type, value, tb): args = self.scenario_instance.context['user']['ec2args'] if self.name in args: super(AtomicActionWithoutFirst, self).__exit__(type, value, tb) else: args[self.name] = True class EC2APIPlugin(base.Scenario): def _get_client(self, is_nova): args = self.context['user']['ec2args'] url = args['nova_url'] if is_nova else args['url'] client = botocoreclient.APIClientEC2( url, args['region'], args['access'], args['secret']) return client def _run_both(self, base_name, func): client = self._get_client(True) with AtomicActionWithoutFirst(self, base_name + '_nova'): func(self, client) client = self._get_client(False) with AtomicActionWithoutFirst(self, base_name + '_ec2api'): func(self, client) def _run_ec2(self, base_name, func): client = self._get_client(False) with AtomicActionWithoutFirst(self, base_name + '_ec2api'): func(self, client) def _runner(run_func): def wrap(func): @functools.wraps(func) def runner(self, *args, **kwargs): run_func(self, func.__name__, func) return runner return wrap @base.scenario() @_runner(_run_both) def describe_instances(self, client): resp, data = client.DescribeInstances() assert 200 == resp.status_code @base.scenario() @_runner(_run_both) def describe_addresses(self, client): resp, data = client.DescribeAddresses() assert 200 == resp.status_code @base.scenario() @_runner(_run_both) def describe_security_groups(self, client): resp, data = client.DescribeSecurityGroups() assert 200 == resp.status_code @base.scenario() @_runner(_run_both) def describe_regions(self, client): resp, data = client.DescribeRegions() assert 200 == resp.status_code @base.scenario() @_runner(_run_both) def describe_images(self, client): resp, data = client.DescribeImages() assert 200 == resp.status_code @base.scenario() @_runner(_run_ec2) def describe_vpcs(self, client): resp, data = client.DescribeVpcs() assert 200 == resp.status_code @base.scenario() @_runner(_run_ec2) def describe_subnets(self, client): resp, data = client.DescribeSubnets() assert 200 == resp.status_code @base.scenario() @_runner(_run_ec2) def describe_network_interfaces(self, client): resp, data = client.DescribeNetworkInterfaces() assert 200 == resp.status_code @base.scenario() @_runner(_run_ec2) def describe_route_tables(self, client): resp, data = client.DescribeRouteTables() assert 200 == resp.status_code _instance_id_by_client = dict() @base.scenario() @_runner(_run_both) def describe_one_instance(self, client): client_id = client.get_url() instance_id = self._instance_id_by_client.get(client_id) if not instance_id: resp, data = client.DescribeInstances() assert 200 == resp.status_code instances = data['Reservations'][0]['Instances'] index = len(instances) / 3 instance_id = instances[index]['InstanceId'] self._instance_id_by_client[client_id] = instance_id LOG.info("found instance = %s for client %s" % (instance_id, client_id)) resp, data = client.DescribeInstances(InstanceIds=[instance_id]) assert 200 == resp.status_code @base.scenario() def describe_all_in_one(self): self.describe_addresses() self.describe_instances() self.describe_security_groups() self.describe_one_instance() self.describe_vpcs() self.describe_subnets() self.describe_network_interfaces() self.describe_route_tables() @base.scenario() def describe_networks(self): self.describe_vpcs() self.describe_subnets() self.describe_network_interfaces() self.describe_route_tables() ```
{ "source": "jiohyoo/gamelanpy", "score": 2 }
#### File: gamelanpy/gamelanpy/coreset.py ```python import logging import numpy as np import scipy.linalg import scipy.cluster import scipy.spatial import time def get_coreset(data, num_clusters, coreset_size, delta=0.1): ''' Parameters ---------- data: array-like, (num_frames, num_vars) num_clusters: int, number of clusters coreset_size: int, number of coreset samples delta: float, default=0.1 Return ------ samples: coreset samples weights: coreset weights ''' logger = logging.getLogger() if len(data.shape) == 1: logger.debug('Input data is 1-D, converting it to 2-D') data = data[:, np.newaxis] num_frames, num_vars = data.shape if coreset_size < num_clusters: raise ValueError("coreset_size %d is less than num_mixtures %d" % (coreset_size, num_clusters)) if num_frames < coreset_size: raise ValueError("num_frames %d is less than coreset_size %d" % (num_frames, num_clusters)) data_remain = data.copy() samples = np.zeros((0, num_vars)) # first, do the subsampling : pick core samples, and remove closest point to # it logger.debug('Before Coreset random sampling') num_iters = 0 num_single_samples = int(1.0 * num_vars * num_clusters * np.log(1.0 / delta)) logger.debug('num_single_samples: %d', num_single_samples) while data_remain.shape[0] > num_single_samples: cur_time = time.time() logger.debug('Starting iteration %d', num_iters) num_frames_remain = data_remain.shape[0] idx = np.random.permutation(num_frames_remain)[:num_single_samples] single_samples = data_remain[idx, :] prev_time = cur_time cur_time = time.time() logger.debug('After random sampling (took %.3f sec)', cur_time - prev_time) # Here we define similarity matrix, based on some measure of # similarity or kernel. Feel free to change dists = scipy.spatial.distance.cdist(data_remain, single_samples) prev_time = cur_time cur_time = time.time() logger.debug('After evaluating cdist (took %.3f sec)', cur_time - prev_time) # minimum distance from random samples min_dists = np.min(dists, axis=1) # median distance v = np.median(min_dists) # remove rows with distance <= median distance remove_idx = np.where(min_dists <= v)[0] # remove rows of remove_idx data_remain = np.delete(data_remain, remove_idx, 0) samples = np.vstack((samples, single_samples)) logger.debug('Shape of the coreset samples so far (%d, %d)', samples.shape) logger.debug('Shape of the remaining samples (%d, %d)', data_remain.shape) prev_time = cur_time cur_time = time.time() logger.debug('End of iteration %d (took %.3f sec)', (num_iters, cur_time - prev_time)) num_iters += 1 # end of while loop logger.debug('Shape of the final remaining samples (%d, %d)', data_remain.shape) samples = np.vstack((samples, data_remain)) logger.debug('Shape of the final coreset samples (%d, %d)', samples.shape) # now compute the weights of all the points, according to how close they # are to the closest core-sample. db_size = np.zeros(samples.shape[0]) min_dists = np.zeros(num_frames) closest_sample_idx = np.zeros(num_frames) for i in xrange(num_frames): dists = scipy.spatial.distance.cdist(data[i:i+1, :], samples) min_dist = np.min(dists) min_idx = np.argmin(dists) min_dists[i] = min_dist closest_sample_idx[i] = min_idx for i in xrange(num_frames): # for each datapoint, Ix[i] is the index of the coreset point # it is assigned to. db_size[closest_sample_idx[i]] += 1 sq_sum_min_dists = (min_dists ** 2).sum() m = np.zeros(num_frames) for i in xrange(num_frames): m[i] = np.ceil(5.0 / db_size[closest_sample_idx[i]] + (min_dists[i] ** 2) / sq_sum_min_dists) m_sum = m.sum() cdf = (1.0 * m / m_sum).cumsum() samples = np.zeros((coreset_size, num_vars)) weights = np.zeros(coreset_size) # Now, sample from the weighted points, to generate final corset # and the corresponding weights for i in xrange(coreset_size): r = np.random.rand() idx = (cdf <= r).sum() samples[i, :] = data[idx, :] weights[i] = m_sum / (coreset_size * m[idx]) return samples, weights ``` #### File: gamelanpy/gamelanpy/json_util.py ```python import base64 import json import numpy as np from sparse_gmm import SparseGMM from nonparanormal import NPNTransformer class GamelanPyEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, SparseGMM): dct = obj.__dict__ dct['__sparse_gmm__'] = True return dct if isinstance(obj, NPNTransformer): print 'hello' dct = obj.__dict__ dct['__npn_transformer__'] = True return dct if isinstance(obj, np.ndarray): data_base64 = base64.b64encode(obj.data) return dict(__ndarray__=data_base64, dtype=str(obj.dtype), shape=obj.shape) return json.JSONEncoder(self, obj) def gamelan_json_obj_hook(dct): if isinstance(dct, dict) and '__ndarray__' in dct: data = base64.b64decode(dct['__ndarray__']) return np.frombuffer(data, dct['dtype']).reshape(dct['shape']) if isinstance(dct, dict) and '__sparse_gmm__' in dct: sgmm = SparseGMM() sgmm.__dict__ = dct return sgmm if isinstance(dct, dict) and '__npn_transformer__' in dct: npn = NPNTransformer() npn.__dict__ = dct return npn return dct ```
{ "source": "JiongDong/Insect-classification-based-on-images", "score": 3 }
#### File: JiongDong/Insect-classification-based-on-images/Classify.py ```python from LoadImage import LoadImage from FeatureExtractor import FeatureExtractor from BOW import BOW from pybrain.datasets.supervised import SupervisedDataSet from pybrain.tools.shortcuts import buildNetwork from pybrain.supervised.trainers import BackpropTrainer import cv2 import numpy as np import os class Classify: def __init__(self): pass def algoSVM(self,trainingPath, testPath, featureExtraType): ''' Using Support Vector Machine algorithm to classify insect images :param trainingPath: the path of training images :param testPath: he path of testing images :param featureExtraType: the feature type : sift or surf :return: ''' loadImage = LoadImage() featureExtra = FeatureExtractor() bow = BOW() #get the species,the name of all insects, the path of all insect images insectSpecies, names, trainingPaths = loadImage.loadTrainImage(trainingPath) print insectSpecies print "Le bombre d'espece :", len(insectSpecies) dictionarySize = len(insectSpecies) insect = {} num = 1 for name in insectSpecies: insect[name] = num num += 1 #get the descriptors of all training images descriptors = bow.getDescriptors(trainingPaths, featureExtraType) #get Bag of Words dictionary bowDictionary = bow.getBowDictionary(dictionarySize, descriptors, featureExtraType) print "bow dictionary" #train data trainDesc = [] #train response trainLabels = [] i = 0 #initialize train datas and train responses for p in trainingPaths: trainDesc.extend(featureExtra.getSingleFeature(p, bowDictionary, featureExtraType)) trainLabels.append(insect[names[i]]) i = i + 1 svm = cv2.SVM() #training svm.train(np.array(trainDesc), np.array(trainLabels)) testInsectNames = os.listdir(testPath) # Initialize a zero matrix to save the classification results result = np.zeros((dictionarySize, dictionarySize)) print "result zero" count = 0 #classify all the test immages for test in testInsectNames: testingImage = os.listdir(testPath + "\\" + test) for p in testingImage: #get feature from a test image feature = featureExtra.getSingleFeature(testPath + "\\" + test + "\\" + p, bowDictionary, featureExtraType) #predict p = svm.predict(feature) #save the result in the result matrix result[count, p - 1] += 1 count += 1 return result def algoANN(self, trainingPath, testPath, featureExtraType, epochs): ''' Using Artificial Neural Network algorithm to classify insect images :param trainingPath: the path of training images :param testPath: the path of testing images :param featureExtraType: the feature type:sift or surf :param epochs: the numbre of training for neural network :return: the classification results ''' loadImage = LoadImage() featureExtra = FeatureExtractor() bow = BOW() # get the species,the name of all insects, the path of all insect images insectNames, names, trainingPaths = loadImage.loadTrainImage(trainingPath) insectSpecies = len(insectNames) print "insect species:", insectSpecies #get all descriptos of training images trainDescriptors = bow.getDescriptors(trainingPaths, featureExtraType) #get the BoW dictionary of trianing images trainBowDictionary = bow.getBowDictionary(insectSpecies, trainDescriptors, featureExtraType) #initialize a Neural Network net = buildNetwork(insectSpecies, 100, 100, insectSpecies) #initialize a data set ds = SupervisedDataSet(insectSpecies, insectSpecies) species = 0 #add all datas in data set for p in insectNames: trainingPaths = os.listdir(trainingPath + "\\" + p) for j in trainingPaths: #add data ds.addSample(featureExtra.getSingleFeature(trainingPath + "\\" + p + "\\" + j, trainBowDictionary, featureExtraType)[0], (species,)) species += 1 #initialize a trainer trainer = BackpropTrainer(net, ds, learningrate=0.01, momentum=0.1, weightdecay=0.01) #training for i in range(1, epochs): traError = trainer.train() print 'after %d epochs,train error:%f' % (i, traError) testInsectNames, testNames, testingPaths = loadImage.loadTrainImage(testPath) testDescriptors = bow.getDescriptors(testingPaths, featureExtraType) testBowDictionary = bow.getBowDictionary(insectSpecies, testDescriptors, featureExtraType) # Initializes a zero matrix to save the classification results result = np.zeros((insectSpecies, insectSpecies)) count = 0 # classify all the test immages for m in testInsectNames: testPaths = os.listdir(testPath + "\\" + m) for n in testPaths: test = net.activate(featureExtra.getSingleFeature(testPath + "\\" + m + "\\" + n, testBowDictionary, featureExtraType)[0]) target = map(lambda x: (x), test) # numpy.array to list result[count, target.index(max(target))] += 1 count += 1 return result ``` #### File: JiongDong/Insect-classification-based-on-images/LoadImage.py ```python import os class LoadImage: def __init__(self): pass def loadTrainImage(self,path): ''' load all train images from the path :param path: the images' path :return: the type and the name of all insects, the path of all insect images ''' # get all species' names insectSpecies = os.listdir(path) trainingPaths = [] names = [] # get full list of all training images for p in insectSpecies: paths = os.listdir(path + "\\" + p) for j in paths: trainingPaths.append(path + "\\" + p + "\\" + j) names.append(p) return insectSpecies,names,trainingPaths ```
{ "source": "Jiongqi/RectAngle", "score": 3 }
#### File: rectangle/utils/io.py ```python import torch from torch import nn import numpy as np import random def train_val_test(file, ratio=(0.6, 0.2, 0.2)): """ Generate list of keys for file based on index values Input arguments: file : h5py File object Loaded using h5py.File(path : string) ratio : tuple(int), default = (0.6,0.2,0.2) Ratios of train/val/test for splitting data in h5py File. """ keys = [key.split('_') for key in file.keys()] num_subjects = int(keys[-1][1]) assert 1.0 * sum(ratio) == 1.0 sum_ratio = list(ratio) if sum_ratio[1] > 0: sum_ratio[1] += sum_ratio[0] if sum_ratio[2] > 0: sum_ratio[2] += sum_ratio[1] scaled_ratio = [int(round(val * num_subjects)) for val in sum_ratio] ix = np.linspace(0, num_subjects, num_subjects+1, dtype=int) train_ix = ix[:scaled_ratio[0]] if scaled_ratio[1] > 0: val_ix = ix[scaled_ratio[0]:scaled_ratio[1]] else: val_ix = 0 if scaled_ratio[2] > 0: test_ix = ix[scaled_ratio[1]:scaled_ratio[2]] else: test_ix = 0 return train_ix, val_ix, test_ix def key_gen(file, ix): """ Generate list of keys for file based on index values Input arguments: file : h5py File object Loaded using h5py.File(path : string) ix : list[int] List of index values to find file keys for. """ keys = list(file.keys()) split_keys = [key.split('_') for key in keys] new_keys = [] for i, key in enumerate(split_keys): if int(key[1]) in ix: new_keys.append(keys[i]) return new_keys class H5DataLoader(torch.utils.data.Dataset): def __init__(self, file, keys=None, label='random'): """ Dataloader for hdf5 files. Input arguments: file : h5py File object Loaded using h5py.File(path : string) keys : list, default = None Keys from h5py file to use. Useful for train-val-test split. If None, keys generated from entire file. label : string, default = 'random' Method for loading segmentation labels. Options: * 'random' - randomly select one of the available labels * 'vote' - calculate pixel-wise majority vote from available labels """ super().__init__() self.file = file if not keys: keys = list(file.keys()) split_keys = [key.split('_') for key in keys] start_subj = int(split_keys[0][1]) last_subj = int(split_keys[-1][1]) self.num_subjects = last_subj - start_subj self.subjects = np.linspace(start_subj, last_subj, self.num_subjects+1, dtype=int) self.label = label if label.split('_')[0] == 'combine': self.label_loop = label def __len__(self): return self.num_subjects def __getitem__(self, index): subj_ix = self.subjects[index] label_ix = random.randint(0, 2) image = torch.unsqueeze(torch.tensor( self.file['frame_%05d' % (subj_ix, )][()].astype('float32')), dim=0) if self.label_loop.split('_')[0] == 'combine': label_percent = int(self.label_loop.split('_')[1]) if index < int(self.num_subjects*label_percent/100): self.label = 'vote' else: self.label = 'random' if self.label == 'random': label = torch.unsqueeze(torch.tensor( self.file['label_%05d_%02d' % (subj_ix, label_ix )][()].astype(int)), dim=0) elif self.label == 'vote': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%05d_%02d' % (subj_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label_mean = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) label = torch.round(label_mean).int() elif self.label == 'mean': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%05d_%02d' % (subj_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) return(image, label) class ClassifyDataLoader(torch.utils.data.Dataset): def __init__(self, file, keys=None): """ Dataloader for hdf5 files, with labels converted to classifier labels Input arguments: file : h5py File object Loaded using h5py.File(path : string) keys : list, default = None Keys from h5py file to use. Useful for train-val-test split. If None, keys generated from entire file. """ super().__init__() self.file = file if not keys: keys = list(file.keys()) split_keys = [key.split('_') for key in keys] start_subj = int(split_keys[0][1]) last_subj = int(split_keys[-1][1]) self.num_subjects = last_subj - start_subj self.subjects = np.linspace(start_subj, last_subj, self.num_subjects+1, dtype=int) num_frames = [] for subj in range(start_subj, last_subj): subj_string = str(subj).zfill(4) frames = [key[2] for key in split_keys if key[1] == subj_string] num_frames.append(int(frames[-1])) self.num_frames = num_frames def __len__(self): return self.num_subjects def __getitem__(self, index): subj_ix = self.subjects[index] frame_ix = random.randint(0, self.num_frames[index]) image = torch.unsqueeze(torch.tensor( self.file['frame_%04d_%03d' % (subj_ix, frame_ix )][()].astype('float32')), dim=0) label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label_vote = torch.sum(label_batch, dim=(1,2)) sum_vote = torch.sum(label_vote != 0) if sum_vote >= 2: label = torch.tensor([1.0]) else: label = torch.tensor([0.0]) return(image, label) class TestPlotLoader(torch.utils.data.Dataset): def __init__(self, file, keys=None, label='vote'): """ Dataloader for hdf5 files, always fixed to first frame to compare plots Input arguments: file : h5py File object Loaded using h5py.File(path : string) keys : list, default = None Keys from h5py file to use. Useful for train-val-test split. If None, keys generated from entire file. label : string, default = 'random' Method for loading segmentation labels. Options: * 'random' - randomly select one of the available labels * 'vote' - calculate pixel-wise majority vote from available labels """ super().__init__() self.file = file if not keys: keys = list(file.keys()) split_keys = [key.split('_') for key in keys] start_subj = int(split_keys[0][1]) last_subj = int(split_keys[-1][1]) self.num_subjects = last_subj - start_subj self.subjects = np.linspace(start_subj, last_subj, self.num_subjects+1, dtype=int) num_frames = [] for subj in range(start_subj, last_subj): subj_string = str(subj).zfill(4) frames = [key[2] for key in split_keys if key[1] == subj_string] num_frames.append(int(frames[-1])) self.num_frames = num_frames self.label = label def __len__(self): return self.num_subjects def __getitem__(self, index): subj_ix = self.subjects[index] frame_ix = 0 label_ix = random.randint(0, 2) image = torch.unsqueeze(torch.tensor( self.file['frame_%04d_%03d' % (subj_ix, frame_ix )][()].astype('float32')), dim=0) if self.label == 'random': label = torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype(int)), dim=0) elif self.label == 'vote': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label_mean = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) label = torch.round(label_mean).int() elif self.label == 'mean': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) return(image, label) class PreScreenLoader(torch.utils.data.Dataset): def __init__(self, model, file, keys=None, label='random', threshold=0.5): """ Dataloader for hdf5 files. Input arguments: model : Torch nn.Module object file : h5py File object Loaded using h5py.File(path : string) keys : list, default = None Keys from h5py file to use. Useful for train-val-test split. If None, keys generated from entire file. label : string, default = 'random' Method for loading segmentation labels. Options: * 'random' - randomly select one of the available labels * 'vote' - calculate pixel-wise majority vote from available labels """ super().__init__() self.file = file if not keys: keys = list(file.keys()) split_keys = [key.split('_') for key in keys] start_subj = int(split_keys[0][1]) last_subj = int(split_keys[-1][1]) self.num_subjects = last_subj - start_subj self.subjects = np.linspace(start_subj, last_subj, self.num_subjects+1, dtype=int) num_frames = [] for subj in range(start_subj, last_subj): subj_string = str(subj).zfill(4) frames = [key[2] for key in split_keys if key[1] == subj_string] num_frames.append(int(frames[-1])) self.num_frames = num_frames self.label = label self.model = model self.threshold = threshold def __len__(self): return self.num_subjects def __getitem__(self, index): subj_ix = self.subjects[index] label_ix = random.randint(0, 2) prostate = 'no' while prostate == 'no': frame_ix = random.randint(0, self.num_frames[index]) image = torch.unsqueeze(torch.tensor( self.file['frame_%04d_%03d' % (subj_ix, frame_ix )][()].astype('float32')), dim=0) image_screen = torch.unsqueeze(image, dim=0) device = next(self.model.parameters()).device image_screen = image_screen.to(device) with torch.no_grad(): self.model.eval() screen_pred = self.model(image_screen) if screen_pred.item() > self.threshold: prostate = 'yes' if self.label == 'random': label = torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype(int)), dim=0) elif self.label == 'vote': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label_mean = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) label = torch.round(label_mean).int() elif self.label == 'mean': label_batch = torch.cat([torch.unsqueeze(torch.tensor( self.file['label_%04d_%03d_%02d' % (subj_ix, frame_ix, label_ix )][()].astype('float32')), dim=0) for label_ix in range(3)]) label = torch.unsqueeze(torch.mean(label_batch, dim=0), dim=0) return(image, label) ```
{ "source": "jionie/CPM-Huggingface", "score": 3 }
#### File: jionie/CPM-Huggingface/test.py ```python import torch from transformers import GPT2LMHeadModel from data_utils.tokenization import GPT2Tokenizer def main(): print("loading tokenizer") tokenizer = GPT2Tokenizer('bpe_3w_new/vocab.json', 'bpe_3w_new/chinese_vocab.model') print("loading tokenizer finished") src = "您好" input_ids = torch.tensor([tokenizer.encode(src)]).cuda() print("loading model") model = GPT2LMHeadModel.from_pretrained("model/CPM/") model.cuda() print("loading model finished") # generate text until the output length (which includes the context length) reaches 50 print("testing greedy") greedy_output = model.generate(input_ids, max_length=50) print("Output:\n" + 100 * '-') print(tokenizer.decode(greedy_output[0].tolist())) print("testing greedy finished") # set no_repeat_ngram_size to 2 print("testing beam search") beam_output = model.generate( input_ids, max_length=50, num_beams=5, no_repeat_ngram_size=2, early_stopping=True ) print("Output:\n" + 100 * '-') print(tokenizer.decode(beam_output[0].tolist())) print("testing beam search finished") # set top_k = 50 and set top_p = 0.95 and num_return_sequences = 3 print("testing sampling") sample_outputs = model.generate( input_ids, do_sample=True, max_length=50, top_k=50, top_p=0.95, num_return_sequences=3 ) print("Output:\n" + 100 * '-') for i, sample_output in enumerate(sample_outputs): print("{}: {}".format(i, tokenizer.decode(sample_output.tolist()))) print("testing sampling finished") return if __name__ == "__main__": main() ```
{ "source": "jionie/Django-website", "score": 2 }
#### File: testsite/ShowResults/views.py ```python from __future__ import unicode_literals from imageUpload.models import Img from django import forms from django.shortcuts import render_to_response from django.http import HttpResponse,HttpResponseRedirect from django.template import RequestContext from django.conf import settings from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render import os from random_choose import choose from django.contrib import messages from ShowResults.models import Result_Img # Create your views here. @csrf_exempt def analyze(request): request.session.set_expiry(0) #fo = open("form.txt", "a") if request.method == "POST": check_box_list = request.POST.getlist("check_box_list") list0 = request.session.get('list0') if not list0: queryset = [] for i in range(len(list0)): img0 = Img.objects.get(img_name__exact=list0[i]) queryset.append(img0) messages.error(request, "Please upload an image.") return render(request, 'list.html', {'queryset': queryset, 'check_box_list': check_box_list}) if check_box_list: # for i in range(len(list0)): # fo.write(str(list0[i])) list = ','.join(check_box_list) print list #fo.write("OK") url_pro = choose(list0[0]) Result_images = [] for i in range(len(url_pro)): img = Result_Img() r = [] for j in range(2, len(url_pro[i])): r.append(url_pro[i][j]) img.Result_probability = url_pro[i][0] img.Result_name = url_pro[i][1] img.Result_path= r Result_images.append(img) queryset = [] for i in range(len(list0)): img0 = Img.objects.get(img_name__exact=list0[i]) queryset.append(img0) return render(request, 'conclusion.html', {'Result_images': Result_images, 'queryset': queryset, 'list':list}) else: # for i in range(len(list0)): # fo.write(str(list0[i])) #fo.write("NO") messages.warning(request, "Please choose a measure.") queryset = [] for i in range(len(list0)): img0 = Img.objects.get(img_name__exact=list0[i]) queryset.append(img0) return render(request, 'list.html', {'queryset': queryset, 'check_box_list': check_box_list}) else: check_box_list = [] list0 = request.session.get('list0') queryset = [] for i in range(len(list0)): img0 = Img.objects.get(img_name__exact=list0[i]) queryset.append(img0) return render_to_response('list.html', {'queryset': queryset, 'check_box_list': check_box_list}) @csrf_exempt def continue_img(request): request.session.set_expiry(0) list0 = request.session.get('list0') #fo = open("form.txt", "a") #fo.write("3") return HttpResponseRedirect('/image') @csrf_exempt def delete_image(request, id): request.session.set_expiry(0) id = int(id) list0 = request.session.get('list0') img0 = Img.objects.get(img_name__exact=list0[id]) os.remove(settings.MEDIA_ROOT + '/' + str(img0.img)) Img.objects.get(img_name__exact=list0[id]).delete() list0.remove(list0[id]) request.session['list0'] = list0 return HttpResponseRedirect('/result') @csrf_exempt def refresh(request): request.session.set_expiry(0) list0 = request.session.get('list0') for i in range(len(list0)): img0 = Img.objects.get(img_name__exact = list0[i]) os.remove(settings.MEDIA_ROOT + '/' + str(img0.img)) Img.objects.get(img_name__exact = list0[i]).delete() queryset = [] request.session['list0'] = [] check_box_list = [] return render_to_response('list.html', {'queryset': queryset, 'check_box_list': check_box_list}) @csrf_exempt def logout(request): list0 = request.session.get('list0') for i in range(len(list0)): img0 = Img.objects.get(img_name__exact = list0[i]) os.remove(settings.MEDIA_ROOT + '/' + str(img0.img)) Img.objects.get(img_name__exact = list0[i]).delete() del request.session['account'] #删除session del request.session['list0'] return HttpResponseRedirect('/login') ```
{ "source": "jion/python-scraper", "score": 3 }
#### File: jion/python-scraper/main_example.py ```python import sys sys.path.append('./src') from scraper.operations import CountNumberOfElements, ListOcurrences from scraper.resultprinters import ConsolePrinter from scraper.scraper import defaultUrlScraper as Scraper url = "http://ordergroove.com/company" def main(): """ This runs an example petition to the scraper asking for the number of html elements and the 5 most used tags on the page that is stored in global variable "url"). Scraper was made in a way to be extendable by Operations, and also the output was decoupled using an abstract printer (only consoleOutput was implemented by now) """ # Setting up & Running the Scraper scraper = Scraper(url) scraper.addOperation(CountNumberOfElements()) scraper.addOperation(ListOcurrences(limit=5)) scraper.run() # Printing results consolePrinter = ConsolePrinter() scraper.printResults(consolePrinter) if __name__ == '__main__': main() ``` #### File: src/helpers/observerpattern.py ```python class Observable(object): """ This class implements the observer design pattern. You just need to inherit from this class to add the ability to the class of be observable. """ observers= {} def subscribe(self, action, observer): if action not in self.observers: self.observers[action] = [] self.observers[action].append( observer ) def _trigger(self, action, eventData=None): if action not in self.observers: return # No suscribers for this event e = { 'action': action, 'data': eventData } for observer in self.observers[action]: observer.notify(e) class Observer(object): def notify(self, eventData): pass ``` #### File: src/scraper/dombuilder.py ```python from helpers.observerpattern import Observable from HTMLParser import HTMLParser class DomBuilder(Observable, HTMLParser): """ This class is on charge of parse the plainHTML provided via a Reader and construct a dom representation with it. DOM structure is decoupled from this class and need to be passed at the time of construction. """ # Some elements don't have a closing tag ( https://www.w3.org/TR/html51/syntax.html#void-elements ) voidTags = ["area", "base", "br", "col", "embed", "hr", "img", "input", "keygen", "link", "menuitem", "meta", "param", "source", "track", "wbr"] # const def __init__(self, dom): HTMLParser.__init__(self) self.dom = dom self.actualParent = [None,] def _finishParsing(self): self._trigger("ParsingFinished", { 'dom': self.dom }) def handle_starttag(self, tag, attrs): element = (tag, attrs, self.actualParent[-1]) nodeIndex = self.dom.addNode( element ) if tag not in self.voidTags: self.actualParent.append( nodeIndex ) def handle_endtag(self, tag): if tag in self.voidTags: return # We already did the job actualParent = self.actualParent.pop() if self.dom.getNode( actualParent )[0] != tag: raise Exception("DomBuilder - Closing tag is missing") # TODO: Custom error object. (ParseEror ?) if self.actualParent[-1] == None: self._finishParsing() ``` #### File: src/scraper/scraper.py ```python from dombuilder import DomBuilder from dom import SimpleDOM from urllib2 import urlopen, URLError, HTTPError # Scraper responsability: # orquestate the steps of the scraping process: # Construction phase: # 1. create the proper reader (input) # 2. construct the HTML parser # 3. customize the HTML parser adding operations # 4. construct the Printer # # Running phase: # 1. obtain an html input # 2. pass the input to de HTML parser # 3. Run the purser. # 4. Print the results def simpleUrlReader(url, consumer): """ This function handle the process of reading from an url and passing data to a consumer (via a feed method on the consumer). I would wish to do this asynchronic, but for now it takes the whole HTML at once and just then pass it to the consumer. The function is decoupled for the Scraper class in order to be able to support another types of feeding (maybe html file, etc) """ try: handler = urlopen(url) html = handler.read() except HTTPError, e: raise Exception("There was a problem getting the specified url - HTTP code %s" % e.code) except URLError, e: raise Exception("There was a problem getting the specified url: %s" % str(e)) else: ##################### consumer.feed(html) # ##################### def defaultUrlScraper(url): reader = simpleUrlReader dom = SimpleDOM() domBuilder = DomBuilder(dom) scraper = Scraper(reader, domBuilder) scraper.setUrl(url) return scraper class Scraper(object): """ This class orchestrates the whole proccess of Scrapping the specified HTML. You can customize the proccess adding Operations that will be executed on the fly while the DOM object is created from parsing the HTML page. When results are ready this will output the results in a decoupled fashion passing the desired implementation of a printer to the printResults function. The initializer receives an object that accepts file protocol. """ url = None def __init__(self, reader, domBuilder): self.operations = [] self.domBuilder = domBuilder self.reader = reader def setUrl(self, url): self.url = url def addOperation(self, operation): operation.attachTo(self.domBuilder.dom) self.operations.append(operation) return self def _feed_parser(self): """ This is the core method of all the scraper application. It feeds the builder with the HTML data, who will build a dom representation and doing analysis on the fly. """ self.reader(self.url, self.domBuilder) def run(self): if self.url == None: raise Exception("Scraper Error - URL missing") self._feed_parser() def printResults(self, printer): for operation in self.operations: printer.printResults( operation ) ```
{ "source": "jiosec/tdameritrade", "score": 3 }
#### File: tdameritrade/orders/order_builder.py ```python from .constants import (ComplexOrderStrategyType, Duration, Instruction, OrderStrategyType, OrderType, Session) from .leg_builder import create_equity_order_leg, create_option_order_leg from .models.orders import Order def build_buy_market_stock_order(symbol, quantity): """Build Buy Market Stock Order Buy {quantity} shares of {smybol} at the Market good for the Day. Simple sample from https://developer.tdameritrade.com/content/place-order-samples Args: symbol: symbol you want to trade quantity: How much of the stock to trade """ # Constants order_type = OrderType.MARKET session = Session.NORMAL duration = Duration.DAY order_strategy_type = OrderStrategyType.SINGLE # Can be changed to handle Buy and Sell for Equities _instruction = Instruction.BUY _order_leg = create_equity_order_leg( instruction=_instruction, quantity=quantity, symbol=symbol, ) order_leg_collection = [_order_leg] return Order( orderType=order_type, session=session, duration=duration, orderStrategyType=order_strategy_type, orderLegCollection=order_leg_collection, ) def build_market_stock_order(symbol, quantity): """Build Buy Market Stock Order Buy {quantity} shares of {smybol} at the Market good for the Day. Simple sample from https://developer.tdameritrade.com/content/place-order-samples Args: symbol: symbol you want to trade quantity: How much of the stock to trade """ # Constants order_type = OrderType.MARKET session = Session.NORMAL duration = Duration.DAY order_strategy_type = OrderStrategyType.SINGLE # Can be changed to handle Buy and Sell for Equities _instruction = Instruction.BUY if quantity < 0: _instruction = Instruction.SELL quantity = - quantity _order_leg = create_equity_order_leg( instruction=_instruction, quantity=quantity, symbol=symbol, ) order_leg_collection = [_order_leg] return Order( orderType=order_type, session=session, duration=duration, orderStrategyType=order_strategy_type, orderLegCollection=order_leg_collection, ) def build_buy_limit_option_order(symbol, quantity, price): """Build Buy Limit: Single Option Buy to open {quanity} contracts of the {symbol with date and option info} at a Limit of {price} good for the Day. Args: symbol: symbol you want to trade. Includes date e.g., XYZ_032015C49 quantity: Amount you want to buy price: Amount you want to buy the option for Note: May want to add expiry date and type of option (CALL, PUT) and create completed symbol """ # Constants complex_order_strategy_type = ComplexOrderStrategyType.NONE order_type = OrderType.LIMIT session = Session.NORMAL duration = Duration.DAY order_strategy_type = OrderStrategyType.SINGLE _instruction = Instruction.BUY_TO_OPEN _order_leg = create_option_order_leg( instruction=_instruction, quantity=quantity, symbol=symbol, ) order_leg_collection = [_order_leg] return Order( complexOrderStrategyType=complex_order_strategy_type, orderType=order_type, session=session, price=price, duration=duration, orderStrategyType=order_strategy_type, orderLegCollection=order_leg_collection, ) def build_buy_limit_vertical_call_spread_order( buy_symbol, sell_symbol, quantity, price ): """Buy Limit: Vertical Call Spread Buy to open 10 contracts of the XYZ Jan 15, 2016 $40 Call and Sell to open 10 contracts of the XYZ Jan 15, 2016 $42.5 Call for a Net Debit of $1.20 good for the Day. Args: buy_symbol: symbol you want to buy. Includes date e.g., XYZ_011516C40 sell_symbol: symbol you want to buy. Includes date e.g., XYZ_011516C42.5 quantity: Amount you want to buy. price: Amount you want to buy the spread for """ # Constants order_type = OrderType.NET_DEBIT session = Session.NORMAL duration = Duration.DAY order_strategy_type = OrderStrategyType.SINGLE _buy_order_leg = create_option_order_leg( instruction=Instruction.BUY_TO_OPEN, quantity=quantity, symbol=buy_symbol, ) _sell_order_leg = create_option_order_leg( instruction=Instruction.SELL_TO_OPEN, quantity=quantity, symbol=sell_symbol, ) order_leg_collection = [ _buy_order_leg, _sell_order_leg, ] return Order( orderType=order_type, session=session, price=price, duration=duration, orderStrategyType=order_strategy_type, orderLegCollection=order_leg_collection, ) def build_custom_option_spread_order( buy_symbol, sell_symbol, buy_quantity, sell_quantity ): """Custom Option Spread Buy to open 2 contracts of the XYZ Jan 17, 2020 $43 Put and Sell to open 1 contracts of the XYZ Jan 18, 2019 $45 Put at the Market good for the Day. """ # Constants order_strategy_type = OrderStrategyType.SINGLE order_type = OrderType.MARKET session = Session.NORMAL duration = Duration.DAY complex_order_strategy_type = ComplexOrderStrategyType.CUSTOM _buy_order_leg = create_option_order_leg( instruction=Instruction.BUY_TO_OPEN, quantity=buy_quantity, symbol=buy_symbol, ) _sell_order_leg = create_option_order_leg( instruction=Instruction.SELL_TO_OPEN, quantity=sell_quantity, symbol=sell_symbol, ) order_leg_collection = [ _sell_order_leg, _buy_order_leg, ] return Order( orderStrategyType=order_strategy_type, orderType=order_type, orderLegCollection=order_leg_collection, complexOrderStrategyType=complex_order_strategy_type, duration=duration, session=session, ) ``` #### File: orders/models/test_base.py ```python from tdameritrade.orders.models import base def test_base_order_json(): base_order = base.BaseOrder() base_order.some_field = 123 assert base_order.json() == "{}" ```
{ "source": "jiosue/PythonGames", "score": 4 }
#### File: src/game/board.py ```python from words import random_words class Board: """ Deal with the words on the board """ def __init__(self): """ initialize 25 random words and empty covers """ self._words, self._cover = random_words(), [""] * 25 self._words_dict = { self.get_word(r, c): (r, c) for r in range(5) for c in range(5) } def _get_index(self, row, col): if row not in range(5) or col not in range(5): raise ValueError("Row or Column out of range") return 5*row + col def get_word(self, row, col): return self._words[self._get_index(row, col)] def word_location(self, word): return self._words_dict.get(word, (-1, -1)) def get_cover(self, row, col): return self._cover[self._get_index(row, col)] def correct_guess(self, row, col): self._cover[self._get_index(row, col)] = "g" def p1_incorrect_guess(self, row, col): self._cover[self._get_index(row, col)] = "1" def p2_incorrect_guess(self, row, col): self._cover[self._get_index(row, col)] = "2" def black_guess(self, row, col): self._cover[self._get_index(row, col)] = "b" def get_words(self): return self._words def get_covers(self): return self._cover def __str__(self): return "words: " + str(self._words) + "\ncovers: " + str(self._cover) ``` #### File: src/game/gameplay.py ```python from .board import Board from .grid import Grid, TOTAL_NUM_GREENS from random import randint _NUM_TURNS = 9 class Game: def __init__(self, rand_turn=False): self._board, self._grid = Board(), Grid() self._greens_remaining = TOTAL_NUM_GREENS self._turn = 1 # player two always gives the clue first self._turns_remaining = _NUM_TURNS self._black_guessed = False if rand_turn: self._turn = randint(1, 2) def guess(self, word): if self._game_state() != "ongoing": return r, c = self._board.word_location(word) if r == -1 and c == -1: return # see if it's already been picked co = self._board.get_cover(r, c) if co and co in "bg" + str(self._turn): return if self._turn == 1: color = self._grid.get_p2_color(r, c) else: color = self._grid.get_p1_color(r, c) if color == "g": self._board.correct_guess(r, c) self._greens_remaining -= 1 elif color == "b": self._board.black_guess(r, c) self._black_guessed = True self.turn_complete() else: if self._turn == 1: self._board.p1_incorrect_guess(r, c) else: self._board.p2_incorrect_guess(r, c) self.turn_complete() def get_turn(self): return self._turn def turn_complete(self): self._turns_remaining -= 1 old_turn = self._turn self._turn = 1 if old_turn == 2 else 2 # for r in range(5): # for c in range(5): # cg = self._grid.get_color(r, c, old_turn) # cb = self._board.get_cover(r, c) # if cg == "g" and cb != "g": return # # self._turn = old_turn def _game_state(self): if self._greens_remaining == 0: return "victory" elif self._black_guessed or not self._turns_remaining: return "defeat" else: return "ongoing" def get_update_info(self): return { "turns_remaining": self._turns_remaining, "greens_remaining": self._greens_remaining, "turn": self._turn, "covers": self._board.get_covers(), "game_state": self._game_state() } def get_game_info(self, player): d = self.get_update_info() d.update({ "words": self._board.get_words(), "grid": self._grid.display_p1() if player == 1 else self._grid.display_p2(), "player": player }) return d def new_game(self): self.__init__(True) ``` #### File: CodenamesDuet/src/player.py ```python import socket from threading import Thread import tkinter as tk from ui import Display def recv(clientsocket, display): while True: msg = clientsocket.recv(8192).decode() display.recv(msg) def create_clientsocket(): hostname = input("Enter hostname/IP to connect to: ") port = int(input("Enter port: ")) clientsocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) clientsocket.connect((hostname, port)) return clientsocket def main(): clientsocket = create_clientsocket() root = tk.Tk() display = Display(clientsocket, root) display.pack() thread_recv = Thread(target=recv, args=(clientsocket, display)) thread_recv.start() root.mainloop() if __name__ == "__main__": main() ``` #### File: PythonGames/PenguinDrop/PenguinDrop.py ```python ### Adjust window ### SCREEN = 1200, 700 #Canvas size in pixels. ### Adjust difficulty ### MAX_PENGUINS = 10 #Max number of penguins before ice breaks. ### Adjust controls ### GAME_CONTROLS = LEFT, RIGHT, SHOOT = "<Left>", "<Right>", "<space>" RESTART = "<Return>" ### Adjust movement of objects ### FALLING_SPEED = 1.2 #Speed that penguins fall. G = 0.1 #Acceleration of cannonball down due to gravity. START_VELOCITY = 23 #Magnitude of velocity of cannonball when first shot. ### Adjust relative sizes of objects ### PERCENT_ICE = 0.15 #Ice height in terms of percent of screen. PERCENT_PENGUIN = 0.05 #Penguin height in terms of percent of screen. PERCENT_PARACHUTE = 0.07 #Parachute height in terms of percent of screen. PERCENT_CANNONBALL = 0.007 #Cannonball radius in terms of percent of screen. PERCENT_CANNON = 0.08 #Cannon height in terms of percent of screen. ## Penguin, parachute, and cannon images are scaled to keep their aspect ratios. ## Ice image is set at size = (SCREEN[0], PERCENT_ICE*SCREEN[1]) ### Adjust frame rate ### SPEED = 20 #Milliseconds between screen redraw. ############################################################################### import os, math, random from PIL import Image, ImageTk if os.sys.version_info.major > 2: xrange = range import tkinter as tk else: import Tkinter as tk #### Image filenames #### FAVICON = "images/favicon.ico" ICE = "images/ice.png" PENGUIN = "images/penguin.png" PARACHUTE = "images/parachute.png" ## There are multiple cannon images, each named with an ## integer that represents the angle that they are offset. CANNON_DIRECTORY = "images/cannon/" CANNON = CANNON_DIRECTORY + "%d.png" #%d is for the angle. ## i.e. a cannon image at 100 degrees has filename = CANNON % 100 #### Colors #### SKY_COLOR = "#9fd7fb" CANNONBALL_COLOR = "white" #Snowball! #### Method for creating and sizing PIL.Images #### def create_image(filename, width=0, height=0): """ Returns a PIL.Image object from filename - sized according to width and height parameters. filename: str. width: int, desired image width. height: int, desired image height. 1) If neither width nor height is given, image will be returned as is. 2) If both width and height are given, image will resized accordingly. 3) If only width or only height is given, image will be scaled so specified parameter is satisfied while keeping image's original aspect ratio the same. """ #Create a PIL image from the file. img = Image.open(filename, mode="r") #Resize if necessary. if not width and not height: return img elif width and height: return img.resize((int(width), int(height)), Image.ANTIALIAS) else: #Keep aspect ratio. w, h = img.size scale = width/float(w) if width else height/float(h) return img.resize((int(w*scale), int(h*scale)), Image.ANTIALIAS) #### Create cannon PIL images and sort them based on angle #### def create_cannons(): """ returns tuple of length 2: first argument: list of sorted angles (in radians). second argument: list of PIL images that map to their list of angles. Each cannon image has an integer name that represents the angle (in degrees) that it is offset. """ angles = [] for filename in os.listdir(CANNON_DIRECTORY): try: if os.path.isfile(CANNON_DIRECTORY+filename): angles.append(int(filename.split(".")[0])) except ValueError: pass angles.sort() images = [] for a in angles: images.append(create_image(CANNON % a, height=PERCENT_CANNON*SCREEN[1])) return [math.radians(a) for a in angles], images #### On screen objects #### class Parachute(object): """ Deals with the animation of a parachute on canvas. canvas: tk.Canvas object to draw on. initial_position: tuple, initial position of center of image (x, y). """ #Create image just once upon class creation. Use same image throughout. image = create_image(PARACHUTE, height=PERCENT_PARACHUTE*SCREEN[1]) def __init__(self, canvas, initial_position): self.x, self.y = initial_position self.can = canvas #Must be created AFTER main window has been opened. photo = ImageTk.PhotoImage(image=Parachute.image) #So the photo doesn't disappear!! self.label = tk.Label(image=photo) self.label.image = photo #Draw parachute on canvas. self.parachute = self.can.create_image((self.x, self.y), image=photo) def destroy(self): """ Destroy the parachute on canvas and the label remembering it. """ if self.parachute: self.can.delete(self.parachute) self.label.destroy() self.parachute, self.label = False, False def update(self): """ Update the parachutes position and redraw it. """ self.y += FALLING_SPEED self.can.coords(self.parachute, self.x, self.y) class Penguin(object): """ Deals with the animation of the penguin on canvas. canvas: tk.Canvas object to draw on. """ #Create image just once upon class creation. Use same image throughout. image = create_image(PENGUIN, height=PERCENT_PENGUIN*SCREEN[1]) def __init__(self, canvas): self.can = canvas self.w, self.h = Penguin.image.size #Must be created AFTER main window has been opened. photo = ImageTk.PhotoImage(image=Penguin.image) #So the photo doesn't disappear!! self.label = tk.Label(image=photo) self.label.image = photo #Initial position: above screen at random x value. self.x, self.y = random.randint(0, SCREEN[0]), -self.h #Draw on canvas. self.penguin = self.can.create_image((self.x, self.y), image=photo) #Create the parachute animation that goes with the penguin. self.parachute = Parachute(self.can, (self.x, self.y-self.h)) def destroy_parachute(self): """ Destroy the parachute """ self.parachute.destroy() self.parachute = False def update(self): """ Update the penguins position, redraw penguin and parachute. """ self.y += FALLING_SPEED self.can.coords(self.penguin, self.x, self.y) if self.parachute: self.parachute.update() def destroy(self): """ Destroy both the parachute and the penguin. """ self.can.delete(self.penguin) self.label.destroy() self.destroy_parachute() def get_overlapping(self): """ Return list of canvas objects that are overlapping the penguin. """ x0, y0 = self.x - self.w/2, self.y - self.h/2 x1, y1 = self.x + self.w/2, self.y + self.h/2 return self.can.find_overlapping(x0, y0, x1, y1) def off_screen(self): """ Returns True if penguin has fallen below the screen, else False. """ #Add a little cushion; make sure it's completely off screen. return self.y - self.h - PERCENT_PARACHUTE*SCREEN[1] > SCREEN[1] class Ice(object): """ Deals with the ice. canvas: tk.Canvas object to draw on. """ #Create image just once upon class creation. Use same image throughout. image = create_image(ICE, width=SCREEN[0], height=PERCENT_ICE*SCREEN[1]) def __init__(self, canvas): self.can = canvas #Must be created AFTER main window has been opened. photo = ImageTk.PhotoImage(image=Ice.image) #So the photo doesn't disappear!! label = tk.Label(image=photo) label.image = photo height = Ice.image.size[1] self.x, self.y = SCREEN[0]/2, SCREEN[1]-height/2 self.ice = self.can.create_image((self.x, self.y), image=photo) #Keeps track of penguins standing on the ice. self.penguins = [] def fall(self): """ When too many penguins are on the ice, the ice breaks and all the penguins fall. If the ice and penguins have fallen below screen already, do nothing. """ ## Should be faster than ## if not all(p.off_screen() for p in self.penguins): if any(not p.off_screen() for p in self.penguins): self.y += FALLING_SPEED self.can.coords(self.ice, self.x, self.y) for p in self.penguins: p.update() def get_ice(self): """ Returns tk.Canvas.create_image object. """ return self.ice def add_penguin(self, penguin): """ Add another penguin standing on the ice. """ self.penguins.append(penguin) def get_num_penguins(self): """ Returns number of penguins standing on the ice. """ return len(self.penguins) class Cannonball(object): """ Deals with the animation of the cannonballs. canvas: tk.Canvas object to draw on. initial_position: tuple, (x, y). initial_velocity: tuple, (vx, vy). """ def __init__(self, canvas, initial_position, initial_velocity): self.can = canvas self.x, self.y = initial_position self.vx, self.vy = initial_velocity self.w = PERCENT_CANNONBALL*min(SCREEN) self.cannonball = self.can.create_oval(self.x-self.w, self.y-self.w, self.x+self.w, self.y+self.w, fill=CANNONBALL_COLOR) def destroy(self): """ Destroys the cannonball from the canvas. """ self.can.delete(self.cannonball) def update(self): """ Updates position on screen. """ self.x += self.vx self.vy += G self.y += self.vy self.can.coords(self.cannonball, self.x-self.w, self.y-self.w, self.x+self.w, self.y+self.w) def off_screen(self): """ Returns True if the cannonball is off the screen; else False. """ return (self.x - self.w > SCREEN[0] or self.x + self.w < 0 or self.y - self.w > SCREEN[1] or self.y + self.w < 0) def get_cannonball(self): """ Returns a tk.Canvas.create_oval object. """ return self.cannonball class Home(object): """ Deals with all the penguins and cannonballs. Adds new penguins at increasing frequency. canvas: tk.Canvas object to draw on. ice: Ice object. """ def __init__(self, canvas, ice): self.can, self.ice = canvas, ice #Starting probability of new penguins and how much to increase it by. self.prob, self.increment = 0.02, 0.005 #Starting count and at what count to increment the probability. self.count, self.max_count = 0, 10000/SPEED self.score = 0 #Everytime cannonball hits a penguin, score + 1. self.penguins = [Penguin(self.can)] #list of Penguin objects. self.cannonballs = [] #list of Cannonball objects. def update_cannonballs(self): """ Update cannonball positions, destroy if off screen. """ i = 0 while i < len(self.cannonballs): b = self.cannonballs[i] b.update() if b.off_screen(): #if it's off screen, destroy. b.destroy() self.cannonballs.pop(i) else: i += 1 def update_penguins(self): """ Update positions of penguins and check if hit by cannonball. Destroys both penguin and cannonball when hit. """ i = 0 while i < len(self.penguins): p = self.penguins[i] p.update() overlapping = p.get_overlapping() #if it's on the ice, add it to self.ice. if self.ice.get_ice() in overlapping: p.destroy_parachute() self.ice.add_penguin(p) self.penguins.pop(i) i -= 1 elif p.off_screen(): p.destroy() self.penguins.pop(i) i -= 1 else: #Check if any cannonballs are hitting the penguin. for n in xrange(len(self.cannonballs)): if self.cannonballs[n].get_cannonball() in overlapping: self.score += 1 self.cannonballs[n].destroy() self.cannonballs.pop(n) p.destroy() self.penguins.pop(i) i -= 1 break #Only one cannonball is destroyed per penguin. i += 1 def update(self): """ Update cannonballs, penguins, game. """ self.update_cannonballs() self.update_penguins() ## Update game difficulty and/or add penguins. self.count += 1 if random.random() <= self.prob: self.penguins.append(Penguin(self.can)) if self.count >= self.max_count: if self.prob + self.increment < 1: self.prob += self.increment else: self.prob = 1 self.count = 0 def add_cannonball(self, cannonball): """ cannonball: Cannonball object. """ self.cannonballs.append(cannonball) def get_score(self): """ Score: int, how many penguins have been killed. """ return self.score class Cannon(object): """ Deals with the cannon animation the screen. When fired, adds cannonball to Home class. canvas: tk.Canvas object/ home: Home object. """ #Create images just once upon class creation. Use same images throughout. #angles (in radians) is sorted and maps directly to its image in images. angles, images = create_cannons() def __init__(self, canvas, home): self.can, self.home = canvas, home self.position = (SCREEN[0]/2, #x = middle of screen. SCREEN[1]-(SCREEN[1]*PERCENT_ICE)) #y = ontop of ice. #Cannon.angles and self.photos indices map accordingly. self.photos = [ImageTk.PhotoImage(image=img) for img in Cannon.images] ### For example: Cannon.angles[i] == angle of self.photos[i] ### #self.index follows what photo and angle is current. self.index = len(Cannon.angles)//2 #start in the middle. self.current_image = False self.draw() def destroy(self): """ Deletes any cannon image from the canvas. """ if self.current_image: self.can.delete(self.current_image) def draw(self): self.destroy() self.current_image = self.can.create_image( self.position, image=self.photos[self.index] ) def rotate_ccw(self): """ Changes current cannon to next one ccw """ if self.index + 1 < len(self.angles): self.index += 1 self.draw() def rotate_cw(self): """ Changes current cannon to next one ccw """ if self.index > 0: self.index -= 1 self.draw() def shoot_cannonball(self): """ Computes the initial position and initial velocity of the cannonball based on the current cannon position and angle. With that, creates a Cannonball object and adds it to self.home to be integrated into game. """ angle = Cannon.angles[self.index] vx = START_VELOCITY * math.cos(angle) vy = -START_VELOCITY * math.sin(angle) #Get approximate length of barrel. l = SCREEN[1]*PERCENT_CANNON/2.0 x = self.position[0] + (math.cos(angle)*l) y = self.position[1] - (math.sin(angle)*l/2.0) self.home.add_cannonball(Cannonball(self.can, (x, y), (vx, vy))) class Game(object): """ Creates a tk.Frame and a tk.Canvas to draw on. Initializes Ice, Home, and Cannon objects. Binds game keys. Updates the game every SPEED milliseconds. master: tk.Tk window. """ def __init__(self, master): self.frame = tk.Frame(master) self.frame.pack() self.can = tk.Canvas(self.frame, width=SCREEN[0], height=SCREEN[1], bg=SKY_COLOR) self.can.pack() self.ice = Ice(self.can) self.home = Home(self.can, self.ice) self.cannon = Cannon(self.can, self.home) #Binding game keys to rotate and fire cannon. master.bind(SHOOT, lambda event: self.cannon.shoot_cannonball()) master.bind(LEFT, lambda event: self.cannon.rotate_ccw()) master.bind(RIGHT, lambda event: self.cannon.rotate_cw()) self.master, self.playing = master, False def restart(self): """ Destroys the current frame, makes a new one, begins game. """ self.frame.destroy() self.__init__(self.master) self.start() def update(self): """ Update self.home which updates all the penguins and cannonballs. Check if game is lost - if so, destroy the cannon image and unbind cannon operators (GAME_CONTROLS). Start making the ice fall. """ self.home.update() self.master.title("Penguin Drop - %d" % self.home.get_score()) if self.ice.get_num_penguins() > MAX_PENGUINS: #If game is lost. self.ice.fall() #If it's just been lost, destroy the cannon and take away controls. if self.playing: self.playing = False self.cannon.destroy() for key in GAME_CONTROLS: self.master.unbind(key) self.frame.after(SPEED, self.update) def start(self): """ Begin Game """ self.playing = True self.update() def main(): """ Open a window - Play Game """ root = tk.Tk() root.wm_iconbitmap(FAVICON) root.resizable(0, 0) game = Game(root) #Bind RESTART key to restart game at any time. root.bind(RESTART, lambda event: game.restart()) #Place window in center of screen. #root.eval('tk::PlaceWindow %s center'%root.winfo_pathname(root.winfo_id())) game.start() root.mainloop() if __name__ == "__main__": main() ``` #### File: PythonGames/Roomba/Rumba.py ```python from collections import deque import random import os if os.sys.version_info.major > 2: xrange = range import tkinter as tk else: import Tkinter as tk #### METHODS #### def scale_vector(vector, velocity): """ Create unit vector. Multiply each component of unit vector by the magnitude of the desired vector (velocity). """ try: x = float(vector[0])/((vector[0]**2+vector[1]**2)**.5) y = float(vector[1])/((vector[0]**2+vector[1]**2)**.5) return int(x*velocity), int(y*velocity) except ZeroDivisionError: return None, None def get_random_velocity(velocity): """ Create random direction vector. Scale direction vector with scale_vector method. """ vx, vy = None, None while vx == None and vy == None: vector = (random.random()*random.choice([-1, 1]), random.random()*random.choice([-1, 1])) vx, vy = scale_vector(vector, velocity) return vx, vy def make_grid(furniture, dimension): """ Scale actual (x, y) positions down to a grid (dictionary) with keys (Nx*1, Ny*1) where Nx and Ny range from 1 to dimension[0] and 1 to dimension[1] respectively. The keys are mapped to a boolean indicating whether that tile is occupied with furniture (True) or not (False). furniture: list with pixle locations. Each element ~ (x, y, x+dx, y+dy). dimension: tuple, x by y dimensions (x, y). returns: grid = {(1, 1): False, (2, 1): True, ...} """ #dx, dy are width and height of tiles. dx = furniture[0][2] - furniture[0][0] dy = furniture[0][3] - furniture[0][1] w, h = dx*dimension[0], dy*dimension[1] grid = {} for y in xrange(1, dimension[1]+1): for x in xrange(1, dimension[0]+1): grid[(x, y)] = False y_grid = 0 for y in xrange(dy//2, h, dy): y_grid += 1 x_grid = 0 for x in xrange(dx//2, w, dx): x_grid += 1 for element in furniture: if x >= element[0] and x <= element[2] \ and y >= element[1] and y <= element[3]: grid[(x_grid, y_grid)] = True break return grid def get_neighbors(position): """ Generator. Yields positions to the left, to the right, above, and below the current position. """ deltas = [(1, 0), (-1, 0), (0, 1), (0, -1)] for d in deltas: yield position[0]+d[0], position[1]+d[1] #def find_accessable_tiles_RECURSIVE(grid, position, l=set()): # """ # Finds all non-furniture locations that are accessable # when starting at position 'position'. # *** Mutates l *** # Assumes position is not at a point such that grid[position] == True. # In other words, the initial positions is valid and is not occupied. # grid: dict mapping a Grid to booleans (tiles with/without furniture). # i.e. grid = {(1, 1): False, (2, 1): True, ...} # position: tuple (x, y) # l: list # """ # l.add(position) # for n in get_neighbors(position): # if n in grid and n not in l and not grid[n]: # find_accessable_tiles(grid, n, l) # return l def find_accessable_tiles(grid, position): """ Finds all tiles that are accessable from starting position. Returns a set of all accessable tiles. """ accessable = set() accessable.add(position) tile_queue = deque() #imported from collections tile_queue.append(position) while tile_queue: current = tile_queue.popleft() for n in get_neighbors(current): if n in grid and n not in accessable and not grid[n]: accessable.add(n) tile_queue.append(n) return accessable def is_furniture_valid(furniture, dimension): """ Checks to see if all non-furniture tiles can be accessed when starting initially at position (1, 1). furniture: list of (x, y, x+dx, y+dy). dimension: tuple, x by y dimensions (x, y). """ if not furniture: #Rooms with no furniture are valid. return True grid = make_grid(furniture, dimension) #Start position is (1, 1). accessable_tiles = find_accessable_tiles(grid, (1, 1)) #Compare accessable tiles to all non-furniture tiles. for element in grid: #if a tile doesn't have furniture AND is not accessible - not valid. if not grid[element] and element not in accessable_tiles: return False return True #### OBJECT DEFINITIONS #### class Rumba(object): """ Dealing with the actual Rumba robot on the screen - red square. canvas: tk.Canvas object. position: tuple (x, y). width: int width of square. """ def __init__(self, canvas, position, width): self.can, self.width = canvas, width self.Draw(position) def Draw(self, position): x, y = position x1, y1 = x + self.width, y + self.width x2, y2 = x + self.width, y - self.width x3, y3 = x - self.width, y - self.width x4, y4 = x - self.width, y + self.width self.vacuum = self.can.create_polygon(x1, y1, x2, y2, x3, y3, x4, y4, fill="red") self.line1 = self.can.create_line(x1, y1, x2, y2, fill="black") self.line2 = self.can.create_line(x2, y2, x3, y3, fill="black") self.line3 = self.can.create_line(x3, y3, x4, y4, fill="black") self.line4 = self.can.create_line(x1, y1, x4, y4, fill="black") def update_position(self, new_position): x, y = new_position x1, y1 = x + self.width, y + self.width x2, y2 = x + self.width, y - self.width x3, y3 = x - self.width, y - self.width x4, y4 = x - self.width, y + self.width self.can.coords(self.vacuum, x1, y1, x2, y2, x3, y3, x4, y4) self.can.coords(self.line1, x1, y1, x2, y2) self.can.coords(self.line2, x2, y2, x3, y3) self.can.coords(self.line3, x3, y3, x4, y4) self.can.coords(self.line4, x1, y1, x4, y4) class Grid(object): """ The grid that the vacuum will clean. canvas: tk.Canvas object. dimension: tuple of number of tiles (x, y). screen: tuple of size of canvas (w, h). furniture: boolean - if room will have furniture. """ def __init__(self, canvas, dimension, screen, furniture=True): self.can, self.dimension = canvas, dimension self.w, self.h = screen self.create_tiles(furniture) def create_tiles(self, furniture): """ Finds a valid configuration of furniture and tiles. Then, calls self.draw_tiles to draw configuration. """ #dx, dy are width and height of tiles. dx, dy = self.w//self.dimension[0], self.h//self.dimension[1] #adjust screen size for discrepincies in forcing int divition. self.w, self.h = self.dimension[0]*dx, self.dimension[1]*dy self.can.config(width=self.w, height=self.h) valid = False while not valid: tiles, furniture_tiles = [], [] for y in xrange(0, self.h, dy): for x in xrange(0, self.w, dx): #(0, 0) is always a non-furniture tile. if not furniture or random.random() <= 0.8 or (x, y) == (0, 0): tiles.append((x, y, x+dx, y+dy)) else: furniture_tiles.append((x, y, x+dx, y+dy)) valid = is_furniture_valid(furniture_tiles, self.dimension) self.draw_tiles(tiles, furniture_tiles) def draw_tiles(self, tiles, furniture_tiles): """ Draws a configuration of furniture and tiles. tiles: list of position tuples, (x, y, x+dx, y+dy). furniture_tiles: same as tiles but only for furniture. """ self.furniture = furniture_tiles for element in self.furniture: x, y = element[0], element[1] dx, dy = element[2] - x, element[3] - y self.can.create_rectangle(x, y, x+dx, y+dy, fill="green") self.tiles = {} for element in tiles: x, y = element[0], element[1] dx, dy = element[2] - x, element[3] - y self.tiles[element] = [4, self.can.create_rectangle(x, y, x+dx, y+dy, fill="black")] def get_tile(self, position): x, y = position for element in self.tiles: if (x >= element[0] and x <= element[2] and y >= element[1] and y <= element[3]): return element def clean_tile(self, position): """ Takes 4 times to clean a tile. Usually, vacuum will clean 2 at a time though. *** On some screens, 'dark grey' is lighter than 'grey'. *** """ tile = self.get_tile(position) self.tiles[tile][0] -= 1 if self.tiles[tile][0] == 0: self.can.itemconfig(self.tiles[tile][1], fill="white") elif self.tiles[tile][0] == 1: self.can.itemconfig(self.tiles[tile][1], fill="light grey") elif self.tiles[tile][0] == 2: self.can.itemconfig(self.tiles[tile][1], fill="grey") elif self.tiles[tile][0] == 3: self.can.itemconfig(self.tiles[tile][1], fill="dark grey") def is_grid_cleaned(self): for element in self.tiles.values(): if element[0] > 0: return False return True def get_dimension(self): return self.dimension def get_grid_size(self): return (self.w, self.h) def get_furniture(self): return self.furniture class Robot(object): """ Completes the numerical simulation. grid: a Grid object. canvas: a tk.Canvas object. v: int speed of robot. """ def __init__(self, grid, canvas, v): self.grid = grid self.w, self.h = self.grid.get_grid_size() self.furniture = self.grid.get_furniture() self.v = v self.set_random_velocity() average_size = sum(self.grid.get_grid_size())/2 average_dimension = sum(self.grid.get_dimension())/2 self.robot_width = int((average_size/average_dimension)*0.3) #initial position self.x, self.y = self.robot_width, self.robot_width self.rumba = Rumba(canvas, (self.x, self.y), self.robot_width) def is_valid_position(self, position): x, y = position if x + self.robot_width >= self.w or x - self.robot_width <= 0: return False elif y + self.robot_width >= self.h or y - self.robot_width <= 0: return False for element in self.furniture: #element is of the form (x, y, x+dx, y+dy) if x >= element[0] and x <= element[2]: if y >= element[1] and y <= element[3]: return False elif y + self.robot_width >= element[1] and y + self.robot_width <= element[3]: return False elif y - self.robot_width >= element[1] and y - self.robot_width <= element[3]: return False elif x + self.robot_width >= element[0] and x + self.robot_width <= element[2]: if y >= element[1] and y <= element[3]: return False elif y + self.robot_width >= element[1] and y + self.robot_width <= element[3]: return False elif y - self.robot_width >= element[1] and y - self.robot_width <= element[3]: return False elif x - self.robot_width >= element[0] and x - self.robot_width <= element[2]: if y >= element[1] and y <= element[3]: return False elif y + self.robot_width >= element[1] and y + self.robot_width <= element[3]: return False elif y - self.robot_width >= element[1] and y - self.robot_width <= element[3]: return False return True def set_random_velocity(self): self.vx, self.vy = get_random_velocity(self.v) def update(self): """ Checks to see if current direction is valid. If it is, continues, if not, picks new, random directions until it finds a valid direction. """ x, y = self.x+self.vx, self.y+self.vy while (x, y) == (self.x, self.y) or not self.is_valid_position((x, y)): self.set_random_velocity() x, y = self.x+self.vx, self.y+self.vy self.x, self.y = x, y self.rumba.update_position((self.x, self.y)) self.grid.clean_tile((self.x, self.y)) #### OBJECTS MANAGER #### class Home(object): """ Manages Simulation. master: tk.Tk object. screen: tuple (width, height). dimension: tuple, dimension of the grid. """ def __init__(self, master, screen, dimension): frame = tk.Frame(master) frame.pack() v = sum(screen)//(2*sum(dimension)) canvas = tk.Canvas(frame, width=screen[0], height=screen[1]) canvas.pack() grid = Grid(canvas, dimension, screen) robot = Robot(grid, canvas, v) master.title("Roomba Robot - Steps: 0") master.bind('<Return>', self.restart) master.bind('<Up>', self.fast) master.bind('<Down>', self.slow) #initialize class variables. self.master, self.frame = master, frame self.screen, self.dimension = screen, dimension self.robot, self.grid = robot, grid #self.speed adjusts frame rate. Can be manipulated with arrow keys. #self.count keeps track of steps. self.speed, self.count = 100, 0 self.update() def restart(self, callback=False): """ Enter/Return Key """ self.frame.destroy() self.__init__(self.master, self.screen, self.dimension) def fast(self, callback=False): """ Up arrow key """ if self.speed > 5: self.speed -= 5 else: self.speed = 1 def slow(self, callback=False): """ Down arrow key """ self.speed += 5 def update(self): self.robot.update() self.count += 1 self.master.title("Rumba Robot - Steps: %d" % self.count) if not self.grid.is_grid_cleaned(): self.frame.after(self.speed, self.update) else: self.frame.bell() #### SIMULATION #### def simulate(screen, dimension): """ screen: tuple, screen size in pixles: (width, height). dimension: tuple, dimension of grid: (x, y). """ root = tk.Tk() root.resizable(0, 0) try: root.wm_iconbitmap("ploticon.ico") except: pass Home(root, screen, dimension) #Center window on screen. #root.eval('tk::PlaceWindow %s center' % root.winfo_pathname(root.winfo_id())) root.mainloop() if __name__ == "__main__": """ Tip: Up/Down arrow keys will speed/slow the simulation. Enter/Return will restart with the same screen and dimension attributes. *** Large dimensions may take a few minutes to generate *** """ screen = 1000, 700 dimension = 30, 20 simulate(screen, dimension) ```
{ "source": "jiosue/QAOAPython", "score": 3 }
#### File: QAOAPython/qc/cirq_helper.py ```python import cirq from numpy import pi, eye # define pi so that in string gates we can have pi as an angle. # Because we use eval for string gates. For example, gate = "rz(pi/2, 1)". #TODO: add all. PARAMETER_FREE_GATES = {"h", "cnot", "x", "y", "z", "cz", "ccx", "ccz"} def get_gate_info(gate): """ gate: str, string gate. ie H(0), or "cx(1, 0)". returns: tuple, (gate_name (str), gate_args (tuple)). """ g = gate.strip().lower() i = g.index("(") gate_name, gate_args = g[:i], eval(g[i:]) try: len(gate_args) except TypeError: gate_args = gate_args, if gate_name == "cx": gate_name = "cnot" return gate_name, gate_args def get_num_qubits(algorithm): """ Determine the max qubit value used in the algorithm. algorithm: iterable, each element must be a string gate, as in apply_string_gate above. ie, algorithm = ["h(0)", "cx(0, 1)", "rx(pi/4, 1)",..] returns: int, max qubit value in algorithm. """ #TODO: support more of the cirq gate set m = 0 for gate in algorithm: gate_name, gate_args = get_gate_info(gate) if gate_name in PARAMETER_FREE_GATES: m = max((m,) + gate_args) elif gate_name in ("rx", "ry", "rz"): _, qubit = gate_args m = max((m, qubit)) elif gate_name == "measure": qubit = gate_args[0] m = max((m, qubit)) else: raise NotImplementedError("%s gate not supported" % gate_name) return m + 1 def make_gate(gate, qubits): """ Convert str gate to cirq gate. gate: str, gate of the form "cx(0, 1)" for example. qubits: list of ints, qubits that algorithm is running on. returns: cirq.Gate object applied on the correct qubits to be appended to a cirq.Circuit object. """ #TODO: support more of the cirq gate set gate_name, gate_args = get_gate_info(gate) if gate_name in PARAMETER_FREE_GATES: args = "(%s)" % ", ".join("qubits[%d]" for _ in range(len(gate_args))) return eval("cirq." + gate_name.upper() + args % gate_args) elif gate_name in ("rx", "ry", "rz"): angle, qubit = gate_args r = eval( "cirq.%sPowGate(exponent=%g)" % (gate_name[1].upper(), angle/pi) ) return r(qubits[qubit]) elif gate_name == "measure": return cirq.measure(qubits[gate_args[0]], key=str(gate_args[1])) else: raise NotImplementedError("%s gate not supported" % gate_name) def make_circuit(algorithm, num_qubits): """ Make cirq.Circuit object from algorithm. If measure is not in the algorithm then by default all qubits will be measured. algorithm: list of strs, gates to apply. num_qubits: int, number of qubits to run the algorithm on. returns: cirq.Circuit object. """ qs = [cirq.GridQubit(i, 0) for i in range(num_qubits)] circuit = cirq.Circuit() measure = False for gate in algorithm: circuit.append(make_gate(gate, qs), strategy=cirq.InsertStrategy.EARLIEST) if "measure" in gate.lower(): measure = True if not measure: for i in range(len(qs)): circuit.append(make_gate("measure(%d, %d)" % (i, i), qs), strategy=cirq.InsertStrategy.EARLIEST) return circuit class Result(dict): """ Just a dictionary that automatically gives default values = 0.0 """ def __getitem__(self, key): """ Return 0.0 if key not in result dictionary """ return self.get(key, 0.0) def cirq_output_to_Result(cirq_output): """ Take the output of cirq.simulator.run and convert it to Result dictionary. For example, if the cirq_output is res.measurements = {"0": [True, False], "1": [True, True]} This means that the 0th qubit was 1 then 0, and the 1st qubit was 1 then 1. So this function should return Result({"11": 0.5, "01": 0.5}) """ qubits = sorted(int(x) for x in cirq_output.measurements.keys()) counts = {} for i in range(cirq_output.repetitions): state = "" for j in qubits: state += "1" if cirq_output.measurements[str(j)][i] else "0" if state in counts: counts[state] += 1 else: counts[state] = 1 for state in counts: counts[state] /= cirq_output.repetitions return Result(counts) def run(algorithm, num_qubits=None, num_samples=8000): """ Create a quantum circuit, run the algorithm, return the resulting probability distribution. algorithm: algorithm (list of strings) or list of algorithms, each string is a gate, ie "cx(0, 1)" or rz(pi/2, 0) num_qubits: int, number of qubits to run each algorithm on. Can be None, in which case the algorithm will be run on the minimum number of qubits required. num_samples: int, number of samples to take from the quantum computer in in order to determine the probabilities for each state. returns: dict (common.Result), keys are states, values are probabilities found to be in that state. """ multiple = bool(algorithm and isinstance(algorithm[0], list)) if not multiple: algorithm = [algorithm] if num_qubits is None: num_qubits = max(get_num_qubits(a) for a in algorithm) circuits = [make_circuit(a, num_qubits) for a in algorithm] sim = cirq.Simulator() results = [sim.run(c, repetitions=num_samples) for c in circuits] if multiple: return [cirq_output_to_Result(r) for r in results] else: return cirq_output_to_Result(results[0]) def algorithm_unitary(algorithm, num_qubits=None): """ Find the unitary corresponding to the algorithm. algorithm: list of strings, each string is a gate in GATE_ARGUMENTS.keys() with whatever arguments required to define the gate. num_qubits: int, number of qubits to run the algorithm on. returns: np.array, unitary matrix corresponding to the algorithm. """ if num_qubits is None: num_qubits = get_num_qubits(algorithm) if not algorithm: return eye(2**num_qubits) circuit = make_circuit(algorithm, num_qubits) return circuit.to_unitary_matrix() if __name__ == "__main__": ## Examples # `run` returns a dictionary mapping states to probabilities, ie # run(["h(0)", "cx(0, 1)"]) should return {"00":0.5, "11": 0.5}. # if no "measure" is included in alg, then by default everything will # be measured. alg = ["H(0)", "CX(0, 1)"] print(run(alg, 3, num_samples=10000)) # since a measure is included, only that register will be measured. alg = ["H(0)", "CX(0, 1)", "measure(0, 0)"] # print(run(alg, 3, num_samples=1000, backend="ibmqx4")) # run multiple circuits at once alg0 = ["h(0)", "cx(0, 1)", "measure(1, 0)"] alg1 = ["x(0)", "H(1)", "ccx(0, 1, 2)", "rz(pi/2, 2)"] print(run([alg0, alg1])) # convert alg to its unitary respresentation. alg = ["h(0)", "cx(0, 1)", "rx(0, 1)", "rz(pi, 0)"] print(algorithm_unitary(alg, 2)) ``` #### File: QAOAPython/qc/qiskit_helper.py ```python import qiskit, time from numpy import pi # define pi so that in string gates we can have pi as an angle. # Because we use eval for string gates. For example, gate = "rz(pi/2, 1)". name = "IBM" simulators = simulator, unitary_simulator, state_simulator = ( "qasm_simulator", "unitary_simulator", "statevector_simulator" ) quantum_computer = "ibmqx4" def apply_credentials(): print("\nApplying credentials...\n") # with open("qSonify/qc/APItoken.txt") as f: APItoken = f.read().strip() try: # qiskit.IBMQ.enable_account(APItoken) qiskit.IBMQ.load_accounts() print('Available backends:') print(qiskit.IBMQ.backends()) print(qiskit.Aer.backends()) print("\nCredientials applied\n") except: print('Something went wrong.\nDid you enter a correct token?') #### String algorithm methods #### # With this, we can write an algorithm as a list with any of the keys in # GATE_ARGUMENTS. So, for example, # alg = ["H(0)", "RX(pi/2, 1)", "CX(1, 2)", "u3(pi/2, pi/4, .2, 0)"] # then apply it to a qiskit.QuantumCircuit and qiskit.QuantumRegister qc and r # respectively by calling # apply_string_algorithm(alg, r, qc). p = lambda x: ("reg[%d]",)*x a = lambda x: ("%g",)*x b = lambda x, y: "(" + ", ".join(a(x)+p(y)) + ")" GATE_PARAMS = { ## The first number is the number of parameters, ## The second number is the number of qubit arguments. "ccx": (0, 3), "ch": (0, 2), "crz": (1, 2), "cswap": (0, 3), "cu1": (1, 2), "cu3": (3, 2), "cx": (0, 2), "cx_base": (0, 2), "cy": (0, 2), "cz": (0, 2), "h": (0, 1), "iden": (0, 1), "rx": (1, 1), "ry": (1, 1), "rz": (1, 1), "rzz": (1, 2), "s": (0, 1), "sdg": (0, 1), "swap": (0, 2), "t": (0, 1), "tdg": (0, 1), "u0": (1, 1), "u1": (1, 1), "u2": (2, 1), "u3": (3, 1), "u_base": (3, 1), "x": (0, 1), "y": (0, 1), "z": (0, 1), } GATE_ARGUMENTS = {gate: b(*args) for gate, args in GATE_PARAMS.items()} GATE_ARGUMENTS["measure"] = "(reg[%d], c_reg[%d])" def get_gate_info(gate): """ gate: str, string gate. ie H(0), or "cx(1, 0)". returns: tuple, (gate_name (str), gate_args (tuple)). """ gate = gate.strip().lower().replace("cnot", "cx") i = gate.index("(") gate_name, gate_args = gate[:i], eval(gate[i:]) try: len(gate_args) except TypeError: gate_args = gate_args, return gate_name, gate_args def get_num_qubits(algorithm): """ Determine the max qubit value used in the algorithm. algorithm: iterable, each element must be a string gate, as in apply_string_gate above. ie, algorithm = ["h(0)", "cx(0, 1)", "rx(pi/4, 1)",..] returns: int, max qubit value in algorithm. """ n = -1 for gate in algorithm: gate_name, gate_args = get_gate_info(gate) if gate_name == "measure": m = gate_args[0] # elif sum(GATE_PARAMS[gate_name]) == 1: m = gate_args else: m = max(gate_args[GATE_PARAMS[gate_name][0]:]) n = max(n, m) return n + 1 def apply_string_gate(gate, reg, cir, c_reg=None): """ gate: str, one of the elements in GATE_ARGUMENTS.keys() + a tuple of arguments. ie, for a rx rotation by pi/2 radians on qubit 0, gate = "rx(pi/2, 0)". reg: qiskit.QuantumRegister, register to apply gate to. cir: qiskit.QuantumCircuit, circuit to add gate to. c_reg: qiskit.ClassicalRegister, must be supplied if gate is a measurement. Classical register to measure to. returns: int, if gate is a measure gate, then return the integer corresponding to the classical register to measure to, otherwise returns -1. """ gate_name, gate_args = get_gate_info(gate) # apply gate eval("cir." + gate_name + GATE_ARGUMENTS[gate_name] % gate_args) # value of the classical register to measure to if "measure" in gate: return gate_args[-1] else: return -1 def apply_string_algorithm(algorithm, reg, cir, c_reg=None): """ algorithm: iterable, each element must be a string gate, as in apply_string_gate above. ie, algorithm = ["h(0)", "cx(0, 1)", "rx(pi/4, 1)",..] reg: qiskit.QuantumRegister, register to apply algorithm to. cir: qiskit.QuantumCircuit, circuit to add gates in algorithm to. c_reg: qiskit.ClassicalRegister, must be supplied if gate is a measurement. Classical register to measure to. returns: int, if the algorithm has any measure gates, then returns the integer corresponding to the largest index of the classical register that is measured to, otherwise returns -1. """ if not algorithm: return -1 return max(apply_string_gate(gate, reg, cir, c_reg) for gate in algorithm) def _make_job(qc, backend, num_samples): """ Begin the execution of the circuit qc on the backend with shots=num_samples qc: qiskit.QuantumCircuit or list of circuits, circuits to run. backend: str, IBM backend to run circuit on. Can be 'ibmqx4', 'ibmqx5', 'local_qasm_simulator', 'local_unitary_simulator', etc. num_samples: int, number of samples to take from the quantum computer in in order to determine the probabilities for each state. returns: qiskit Job object from qiskit.backends. """ if backend in simulators: f = qiskit.Aer else: f = qiskit.IBMQ try: return qiskit.execute(qc, backend=f.get_backend(backend), shots=num_samples, max_credits=3) except LookupError: apply_credentials() return qiskit.execute(qc, backend=f.get_backend(backend), shots=num_samples, max_credits=3) class Result(dict): """ Just a dictionary that automatically gives default values = 0.0 """ def __getitem__(self, key): """ Return 0.0 if key not in result dictionary """ return self.get(key, 0.0) def run(algorithm, num_qubits=None, num_samples=8000, backend=simulator): """ Create a quantum circuit, run the algorithm, return the resulting probability distribution. algorithm: algorithm (list of strings) or list of algorithms, each string is a gate in GATE_ARGUMENTS.keys() with whatever arguments required to define the gate. num_qubits: int, number of qubits to run each algorithm on. Can be None, in which case the algorithm will be run on the minimum number of qubits required. num_samples: int, number of samples to take from the quantum computer in in order to determine the probabilities for each state. backend: str, IBM backend to run the algorithm on. If backend is not a local simulator then credentials must have already been applied. returns: dict (common.Result), keys are states, values are probabilities found to be in that state. """ multiple = bool(algorithm and isinstance(algorithm[0], list)) if not multiple: algorithm = [algorithm] n = len(algorithm) if num_qubits is None: num_qubits = max(get_num_qubits(a) for a in algorithm) q = qiskit.QuantumRegister(num_qubits) c = [qiskit.ClassicalRegister(num_qubits) for _ in range(n)] qc = [qiskit.QuantumCircuit(q, c[j]) for j in range(n)] for j in range(n): i = apply_string_algorithm(algorithm[j], q, qc[j], c[j]) if i == -1: qc[j].measure(q, c[j]) else: c[j].size = i + 1 job_exp = _make_job(qc, backend, num_samples) # Often there are random queue errors that have happened to # me that cause the job to never complete. Two things I have # encountered: I lose connection or something, and I get an # error, or for some reason their server tells me that the # job is running indefinitely, ie it just get stuck running. # So if either of those things happen, we reset and # reinitialize our job(s) into the queue. if backend not in simulators: lapse, interval = 0, 30 done = False while not done: str_status = str(job_exp.status()) queue_position = job_exp.queue_position() error = job_exp.error_message() print('\nStatus @ %d seconds' % (interval * lapse)) print("queue position =", queue_position) print(str_status) done = queue_position is not None and queue_position < 1 if error: print("\nEncountered an error") print(error) print("reentering job into queue\n") job_exp.cancel() job_exp = _make_job(qc, backend, num_samples) lapse = 0 lapse += 1 time.sleep(interval) res = job_exp.result() ## qiskit orders their bits opposite to Cirq nad ProjectQ, and in my ## opinion in a much less intuitive way. So I flip the order of the bits ## here. if multiple: return [ Result( {k[::-1]: v/num_samples for k, v in res.get_counts(cir).items()} ) for cir in qc ] else: return Result( {k[::-1]: v/num_samples for k, v in res.get_counts(qc[0]).items()} ) def algorithm_unitary(algorithm, num_qubits=None): """ Find the unitary corresponding to the algorithm. algorithm: list of strings, each string is a gate in GATE_ARGUMENTS.keys() with whatever arguments required to define the gate. num_qubits: int, number of qubits to run the algorithm on. returns: np.array, unitary matrix corresponding to the algorithm. """ if num_qubits is None: num_qubits = get_num_qubits(algorithm) if not algorithm: algorithm = ["iden(0)"] ## qiskit orders their bits opposite to Cirq nad ProjectQ, and in my ## opinion in a much less intuitive way. So I flip the order of the bits ## here. a = [] for gate in algorithm: gate_name, gate_args = get_gate_info(gate) i = GATE_PARAMS[gate_name][0] params = gate_args[:i] qubits = gate_args[i:] qubits = tuple(num_qubits-q-1 for q in qubits) a.append(gate_name + str(params + qubits)) q = qiskit.QuantumRegister(num_qubits) qc = qiskit.QuantumCircuit(q) apply_string_algorithm(a, q, qc) return qiskit.execute( qc, backend=qiskit.Aer.get_backend(unitary_simulator) ).result().get_data(qc)["unitary"] def prepare_state(state): """ state: string, string of 0's and 1's. returns: algorithm (list of strings), algorithm to prepare the state. """ return ["x(%d)" % i for i in range(len(state)) if state[i] == "1"] def sample(algorithm, num_qubits=None, num_samples=1, backend=simulator): """ Get a list of all the outputs from an algorithm. Differs from `run` because `run` returns the determined probabilities of each state, but `sample` returns a list of the outputs. algorithm: algorithm (list of strings), NOT a list of algorithms, each string is a gate in GATE_ARGUMENTS.keys() with whatever arguments required to define the gate. num_qubits: int, number of qubits to run each algorithm on. num_samples: int, number of samples to take from the quantum computer. backend: str, IBM backend to run the algorithm on. If backend is not a local simulator then credentials must have already been applied. returns: list, each element is the measured state. """ d = run([algorithm]*num_samples, num_qubits=num_qubits, num_samples=1, backend=backend) return [list(x.keys())[0] for x in d] def single_sample(algorithm, num_qubits=None, backend=simulator): """ Same as `sample` with one sample, but returns a state instead of a list of one state. """ return sample(algorithm, num_qubits, 1, backend)[0] def markovian_sample(algorithm, num_qubits=None, num_samples=1, backend=simulator): """ Get a list of all the outputs from an algorithm, where the previous output is prepared as the starting point for the next algorithm; ie the measurement of the algorithm is input to run the algorithm again. algorithm: algorithm (list of strings), NOT a list of algorithms, each string is a gate in GATE_ARGUMENTS.keys() with whatever arguments required to define the gate. num_qubits: int, number of qubits to run each algorithm on. num_samples: int, number of samples to take from the quantum computer. backend: str, IBM backend to run the algorithm on. If backend is not a local simulator then credentials must have already been applied. returns: list, each element is the measured state. """ if num_samples < 1: raise ValueError("Must have >= 1 sample") if num_qubits is None: num_qubits = get_num_qubits(algorithm) args = num_qubits, backend res = [single_sample(algorithm, *args)] for _ in range(num_samples-1): res.append(single_sample(prepare_state(res[-1])+algorithm, *args)) return res if __name__ == "__main__": ## Examples # `run` returns a dictionary mapping states to probabilities, ie # run(["h(0)", "cx(0, 1)"]) should return {"00":0.5, "11": 0.5}. # if no "measure" is included in alg, then by default everything will # be measured. alg = ["H(0)", "CX(0, 1)", "u3(pi, pi/2, pi/4, 0)"] print(run(alg, 3, num_samples=10000)) # since a measure is included, only that register will be measured. alg = ["H(0)", "CX(0, 1)", "u3(pi, pi/2, pi/4, 0)", "measure(0, 0)"] # print(run(alg, 3, num_samples=1000, backend="ibmqx4")) # run multiple circuits at once alg0 = ["h(0)", "cx(0, 1)", "measure(0, 0)", "measure(1, 1)"] alg1 = ["x(0)", "H(1)", "ccx(0, 1, 2)"] print(run([alg0, alg1])) # convert alg to its unitary respresentation. alg = ["h(0)", "cx(0, 1)"] print(algorithm_unitary(alg, 2)) ```
{ "source": "jiosue/qSonify", "score": 4 }
#### File: qSonify/maps/frequencymapping.py ```python from qSonify.sonify import Song, freq_to_note def frequencymapping(low_freq=300, base=2): """ map output of algorithm to two tracks """ def f(res, name, tempo): """ res: list, list of output states of the qc. name: str, name of song. tempo: int, tempo of song. return: Song object. """ s = Song(name=name, tempo=tempo) for x in res: note = freq_to_note(int(x, base=base) + low_freq) s.addNote(note, duration=.5) return s return f ``` #### File: qSonify/sonify/song.py ```python from midiutil.MidiFile import MIDIFile import os def _create_midi_mapping(): """ Create a dictionary that maps note name to midi note integer """ middle_c = 60 notes = "c", "c#", "d", "d#", "e", "f", "f#", "g", "g#", "a", "a#", "b" equiv = (("c#", "db"), ("d#", "eb"), ("f#", "gb"), ("g#", "ab"), ("a#", "bb")) m = {} j, o = len(notes)-1, 3 for v in range(middle_c-1, -1, -1): for e in equiv: m[notes[j].replace(*e) + str(o)] = v if j == 0: o -= 1 j = (j - 1) % len(notes) j, o = 0, 4 for v in range(middle_c, 128): for e in equiv: m[notes[j].replace(*e) + str(o)] = v j = (j + 1) % len(notes) if j == 0: o += 1 return m _midi_mapping = _create_midi_mapping() class Song(MIDIFile): _valid = tuple, list, type(x for x in range(1)) def __init__(self, name="test", tempo=100, num_tracks=1): """ Intialize Song object. name: str, name of song/file. tempo: int, bpm of song. num_tracks: int, number of tracks for the midi file to have. """ super().__init__(num_tracks) self.name, self.tempo, self.volume = name, tempo, 100 self.filename = "%s.mid" % name self.path = "" track, self.channel = 0, 0 self.time = [0]*num_tracks # start each track at the beginning self.addTempo(track, self.time[0], self.tempo) def addNote(self, notes, duration=4, track=0): """ Overrides MIDIFile's addNote method, but uses it as a subroutine. Adds a note or notes with a duration to the specified track, then increments the time by that duration. notes: str or tuple of strs, notes to add at the current location of of the track. duration: float, number of beats for the note/chord. track: int, which track to add to. """ if not isinstance(notes, Song._valid): notes = notes, for note in notes: note = note.lower() if note in _midi_mapping: pitch = _midi_mapping[note] elif note+"4" in _midi_mapping: pitch = _midi_mapping[note+"4"] else: raise ValueError("Note not valid:", note) super().addNote(track, self.channel, pitch, self.time[track], duration, self.volume) self.time[track] += duration self.need_to_write = True def addRest(self, duration=1, track=0): """ Add a rest to the track, just corresponds to adjusting the time. duration: float, number of beats the rest lasts. track: int, which track to add the rest to. """ self.time[track] += duration self.need_to_write = True def addText(self, text, track=0): """ Add text to a track at the current time. For it to be visible, there must be a note at the current time on this track. text: str, text to add. track: int, which track to add the text to. """ super().addText(track, self.time[track], str(text)) self.need_to_write = True def writeFile(self, path=""): """ Write the current midi track to a file path: str, path to write the file to. Must end with a "/"! """ if not self.need_to_write: return try: with open(path+self.filename, "wb") as f: super().writeFile(f) except FileNotFoundError: os.mkdir(path) with open(path+self.filename, "wb") as f: super().writeFile(f) self.need_to_write = False self.path = path def play(self, path=""): """ Write the midi file, then call on the system's default midi player. On Windows, this is probably Windows Media Player. THIS ONLY WORKS ON WINDOWS, IF YOU WANT TO USE IT YOU MUST CHANGE THE SYSTEM CALL. path: str, where to save the file to. Must end with a "/"! """ if not path and self.path: path = self.path self.writeFile(path) os.system("start %s" % (self.path+self.filename)) def __str__(self): """ Return the string name of the song """ return self.filename if __name__ == "__main__": s = Song(name="helloworld", tempo=110, path="") s.addNote("c") s.addNote("d") s.addNote(("c", "d", "e")) s.view() ```
{ "source": "jiosue/Quantum-Computer-Simulator-with-Algorithms", "score": 3 }
#### File: PythonImplementation/QuantumSimulator/gates.py ```python import numpy as np exp, PI, cos, sin = np.exp, np.pi, np.cos, np.sin sigma_x = [[0, 1], [1, 0]] sigma_y = [[0, -1j], [1j, 0]] sigma_z = [[1, 0], [0, -1]] class Gate: def __init__(self, unitary, qubits): """ unitary is list of list representing unitary matrix qubits is tuple in order of qubits that unitary acts on """ self.unitary, self.qubits = np.array(unitary), qubits self.dimension, self.num_qubits = len(unitary), len(qubits) def __getitem__(self, item): """ Gate[i][j] gets the (i, j) element of the unitary matrix """ return self.unitary[item] def __call__(self, register): """ Apply gate to register. :param register: Register object to apply the gate to :return: the register, so that we can string gate function calls. ie, gate1(gate2(gate3(register))) """ register.apply_gate(self) return register def full_unitary(self, num_qubits): """ Find the full unitary matrix of the gate on the full Hilbert space of dimension 2^num_qubits. ONLY WORKS FOR SINGLE QUBIT GATES RIGHT NOW """ unitary = np.kron(np.eye(1 << self.qubits[0]), self.unitary) unitary = np.kron(unitary, np.eye(1 << (num_qubits-self.qubits[0]-1))) return unitary def __pow__(self, power): return Gate([list(x) for x in np.array(self.unitary)**power], self.qubits) # def __mul__(self, other): # """ self * other """ class H(Gate): c = 1.0/2.0**0.5 + 0.0j unitary = np.array([ [c, c], [c, -c] ]) def __init__(self, qubit): super().__init__(H.unitary, (qubit,)) def __str__(self): return "H(%d)" % self.qubits[0] class CX(Gate): unitary = np.array([ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0], [0.0, 0.0, 1.0, 0.0] ]) def __init__(self, control_qubit, target_qubit): # qubits should be tuple (control, target) super().__init__(CX.unitary, (control_qubit, target_qubit)) def __str__(self): return "CX" + str(self.qubits) class X(Gate): unitary = np.array(sigma_x) def __init__(self, qubit): super().__init__(X.unitary, (qubit,)) def __str__(self): return "X%d" % self.qubits[0] class Y(Gate): unitary = np.array(sigma_y) def __init__(self, qubit): super().__init__(Y.unitary, (qubit,)) def __str__(self): return "Y%d" % self.qubits[0] class Z(Gate): unitary = np.array(sigma_z) def __init__(self, qubit): super().__init__(Z.unitary, (qubit,)) def __str__(self): return "Z%d" % self.qubits[0] class T(Gate): unitary = [[0.0]*8 for _ in range(8)] for i in range(6): unitary[i][i] = 1.0 unitary[6][7] = 1.0 unitary[7][6] = 1.0 unitary = np.array(unitary) def __init__(self, *qubits): """ qubits should be a tuple of length 3 """ super().__init__(T.unitary, qubits) def __str__(self): return "T" + str(self.qubits) class S(Gate): unitary = np.array([ [1.0, 0.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0] ]) def __init__(self, *qubits): """ swap two qubits. qubits should be tuple of length 2 """ super().__init__(S.unitary, qubits) def __str__(self): return "S" + str(self.qubits) class P(Gate): """ Phase shift P = |0><0| + exp(i theta) |1><1| """ unitary = lambda angle: np.array([ [1.0, 0.0], [0.0, exp(1.0j*angle)] ]) def __init__(self, angle, qubit): super().__init__(P.unitary(angle), (qubit,)) self.angle = angle def __str__(self): return "P" + str((self.angle,) + self.qubits) class CP(Gate): unitary = lambda angle: np.array([ [1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, exp(1.0j*angle)] ]) def __init__(self, angle, control_qubit, target_qubit): qubits = (control_qubit, target_qubit) super().__init__(CP.unitary(angle), qubits) self.angle = angle def __str__(self): return "CP" + str((self.angle,) + self.qubits) class RX(Gate): unitary = lambda angle: np.array([ [cos(angle/2), -1.0j*sin(angle/2)], [-1.0j*sin(angle/2), cos(angle/2)] ]) def __init__(self, angle, qubit): """ rotate the qubit around the x axis by an angle """ super().__init__(RX.unitary(angle), (qubit,)) self.angle = angle def __str__(self): return "RX" + str((self.angle,) + self.qubits) class RY(Gate): unitary = lambda angle: np.array([ [cos(angle/2), -sin(angle/2)], [sin(angle/2), cos(angle/2)] ]) def __init__(self, angle, qubit): """ rotate the qubit around the y axis by an angle """ super().__init__(RY.unitary(angle), (qubit,)) self.angle = angle def __str__(self): return "RY" + str((self.angle,) + self.qubits) class RZ(Gate): unitary = lambda angle: np.array([ [exp(-1.0j*angle/2), 0.0], [0.0, exp(1.0j*angle/2)] ]) def __init__(self, angle, qubit): """ rotate the qubit around the z axis by an angle """ super().__init__(RZ.unitary(angle), (qubit,)) self.angle = angle def __str__(self): return "RZ" + str((self.angle,) + self.qubits) class U3(Gate): """ u3(th, phi, lam) = Rz(phi)Ry(th)Rz(lam), see arxiv:1707.03429 """ unitary = lambda theta, phi, lam: np.array([ [exp(-1j*(phi+lam)/2)*cos(theta/2), -exp(-1j*(phi-lam)/2)*sin(theta/2)], [exp(1j*(phi-lam)/2)*sin(theta/2), exp(1j*(phi+lam)/2)*cos(theta/2)] ]) def __init__(self, theta, phi, lam, qubit): super().__init__(U3.unitary(theta, phi, lam), (qubit,)) self.params = theta, phi, lam def __str__(self): return "U3" + str(self.params + self.qubits) def string_to_gate(string): return eval(string.upper()) def apply_gate(string, register): """ apply the gate represented by string to the register """ string_to_gate(string)(register) def apply_algorithm(algorithm, register): for gate in algorithm: apply_gate(gate, register) ```
{ "source": "jiosue/testing_actions", "score": 2 }
#### File: jiosue/testing_actions/setup.py ```python import setuptools from setuptools.command.build_ext import build_ext try: from Cython.Build import cythonize USE_CYTHON, ext = True, '.pyx' except ImportError: def cythonize(e): return e USE_CYTHON, ext = False, '.c' with open('README.rst') as f: README = f.read() with open("requirements.txt") as f: REQUIREMENTS = [line.strip() for line in f if line.strip()] # get __version__, __author__, etc. with open("testing_actions/_version.py") as f: exec(f.read()) extensions = cythonize([ setuptools.Extension( name='testing_actions._c_extension', sources=['./testing_actions/_c_extension' + ext, './testing_actions/src/c_extension.c'], include_dirs=['./testing_actions/src/'], language='c' ) ]) setuptools.setup( name="testing_actions", version=__version__, author=__author__, author_email=__authoremail__, description=__description__, long_description=README, long_description_content_type='text/x-rst', url=__sourceurl__, license=__license__, packages=setuptools.find_packages(exclude=("tests", "docs")), ext_modules=extensions, test_suite="tests", install_requires=REQUIREMENTS, zip_safe=False, cmdclass=dict(build_ext=build_ext), include_package_data=True, classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", ], project_urls={ "Source": __sourceurl__ } ) ```
{ "source": "JiovaniLedesma/holographicM", "score": 3 }
#### File: holographicM/holographicMicroscope/cunwrap.py ```python import numpy as np import math as m def cunwrap(Psi, options): a = Psi.shape if len(a) > 2: print('CUNWRAP: input Psi must be 2D-array') else: ny, nx = Psi.shape[0], Psi.shape[1] if nx < 2 || ny < 2: print('CUNWRAP: size of Psi must be langer than 2') else: if 'roundk' in options: roundk = false if 'verbose' in options: verbose = true w1 = np.ones((ny, 1)) w1[0], w1[-1] = 0.5, 0.5 w2 = np.ones((1, nx)) w2[0], w2[-1] = 0.5, 0,5 weight = w1*w2 if 'weight' in options: weight = weight if 'maxblocksize' in options: blocksize = 125 if 'overlap' in options: p = 0.25 p = max(min(p,1),0) def splitidx(blocksize, n, p): if blocksize >= n: ilist = [1, n] blocksize = n else: q = 1-p # Number of blocks k = (n/blocksize-p)/q k = np.ceil(k) # Readjust the block size, float blocksize = n/((k*q) + p) # first index firstidx = np.round(np.linspace(1, n - np.ceil(blocksize)+1, k)) lastidx = np.round(firstidx+blocksize-1) lastidx[-1] = n # Make sure they are overlapped lastidx[0:-1] = max(lastidx[0:-1], firstidx[1:]) # Put the indexes of k blocks into cell array ilist = np.ceil(1, len(firstidx)) for k in range(0,len(ilist)): ilist[k] = firstidx[k]:lastidx[k] blocksize = np.round(blocksize) return ilist, blocksize def mydisplay(verbose, arg): if verbose == "verbose": print(arg) ``` #### File: holographicM/holographicMicroscope/thorcam.py ```python import numpy as np import os.path import time from ctypes import * class CameraOpenError(Exception): def __init__(self, mesg): self.mesg = mesg def __str__(self): return self.mesg class Camera(object): def __init__(self): uc480_file = 'C:\\Program Files\\Thorlabs\\Scientific Imaging\\ThorCam\\uc480_64.dll' if os.path.isfile(uc480_file): self.bit_depth = None self.roi_shape = None self.camera = None self.handle = None self.meminfo = None self.exposure = None self.roi_pos = None self.frametime = None self.uc480 = windll.LoadLibrary(uc480_file) else: raise CameraOpenError("ThorCam drivers not available.") def open(self, bit_depth=8, roi_shape=(1024, 1024), roi_pos=(0,0), camera="ThorCam FS", exposure = 0.01, frametime = 10.0): self.bit_depth = bit_depth self.roi_shape = roi_shape self.camera = camera self.roi_pos = roi_pos is_InitCamera = self.uc480.is_InitCamera is_InitCamera.argtypes = [POINTER(c_int)] self.handle = c_int(0) i = is_InitCamera(byref(self.handle)) if i == 0: print("ThorCam opened successfully.") pixelclock = c_uint(43) #set pixel clock to 43 MHz (fastest) is_PixelClock = self.uc480.is_PixelClock is_PixelClock.argtypes = [c_int, c_uint, POINTER(c_uint), c_uint] is_PixelClock(self.handle, 6 , byref(pixelclock), sizeof(pixelclock)) #6 for setting pixel clock self.uc480.is_SetColorMode(self.handle, 6) # 6 is for monochrome 8 bit. See uc480.h for definitions self.set_roi_shape(self.roi_shape) self.set_roi_pos(self.roi_pos) self.set_frametime(frametime) self.set_exposure(exposure) else: raise CameraOpenError("Opening the ThorCam failed with error code "+str(i)) def close(self): if self.handle != None: self.stop_live_capture() i = self.uc480.is_ExitCamera(self.handle) if i == 0: print("ThorCam closed successfully.") else: print("Closing ThorCam failed with error code "+str(i)) else: return def get_image(self, buffer_number=None): #buffer number not yet used #if buffer_number is None: # buffer_number = self.epix.pxd_capturedBuffer(1) im = np.frombuffer(self.meminfo[0], c_ubyte).reshape(self.roi_shape[1], self.roi_shape[0]) return im def get_frame_number(self): #not implemented for thorcam_fs #return self.epix.pxd_capturedBuffer(0x1,1)-1 return 1 def finished_live_sequence(self): #not implemented for thorcam_fs #return self.epix.pxd_goneLive(0x1) == 0 return 0 def start_continuous_capture(self, buffersize = None): ''' buffersize: number of frames to keep in rolling buffer ''' self.uc480.is_CaptureVideo(self.handle, 1) def start_sequence_capture(self, n_frames): #not implemented for thorcam_fs print 'sequence capture started' #self.epix.pxd_goLiveSeq(0x1,1,n_frames,1,n_frames,1) def stop_live_capture(self, ): print 'unlive now' #self.epix.pxd_goUnLive(0x1) self.uc480.is_StopLiveVideo(self.handle, 1) def initialize_memory(self): if self.meminfo != None: self.uc480.is_FreeImageMem(self.handle, self.meminfo[0], self.meminfo[1]) xdim = self.roi_shape[0] ydim = self.roi_shape[1] imagesize = xdim*ydim memid = c_int(0) c_buf = (c_ubyte * imagesize)(0) self.uc480.is_SetAllocatedImageMem(self.handle, xdim, ydim, 8, c_buf, byref(memid)) self.uc480.is_SetImageMem(self.handle, c_buf, memid) self.meminfo = [c_buf, memid] def set_bit_depth(self, set_bit_depth = 8): if set_bit_depth != 8: print("only 8-bit images supported") def set_roi_shape(self, set_roi_shape): class IS_SIZE_2D(Structure): _fields_ = [('s32Width', c_int), ('s32Height', c_int)] AOI_size = IS_SIZE_2D(set_roi_shape[0], set_roi_shape[1]) #Width and Height is_AOI = self.uc480.is_AOI is_AOI.argtypes = [c_int, c_uint, POINTER(IS_SIZE_2D), c_uint] i = is_AOI(self.handle, 5, byref(AOI_size), 8 )#5 for setting size, 3 for setting position is_AOI(self.handle, 6, byref(AOI_size), 8 )#6 for getting size, 4 for getting position self.roi_shape = [AOI_size.s32Width, AOI_size.s32Height] if i == 0: print("ThorCam ROI size set successfully.") self.initialize_memory() else: print("Set ThorCam ROI size failed with error code "+str(i)) def set_roi_pos(self, set_roi_pos): class IS_POINT_2D(Structure): _fields_ = [('s32X', c_int), ('s32Y', c_int)] AOI_pos = IS_POINT_2D(set_roi_pos[0], set_roi_pos[1]) #Width and Height is_AOI = self.uc480.is_AOI is_AOI.argtypes = [c_int, c_uint, POINTER(IS_POINT_2D), c_uint] i = is_AOI(self.handle, 3, byref(AOI_pos), 8 )#5 for setting size, 3 for setting position is_AOI(self.handle, 4, byref(AOI_pos), 8 )#6 for getting size, 4 for getting position self.roi_pos = [AOI_pos.s32X, AOI_pos.s32Y] if i == 0: print("ThorCam ROI position set successfully.") else: print("Set ThorCam ROI size failed with error code "+str(i)) def set_exposure(self, exposure): #exposure should be given in ms exposure_c = c_double(exposure) is_Exposure = self.uc480.is_Exposure is_Exposure.argtypes = [c_int, c_uint, POINTER(c_double), c_uint] is_Exposure(self.handle, 12 , exposure_c, 8) #12 is for setting exposure self.exposure = exposure_c.value def set_frametime(self, frametime): #must reset exposure after setting framerate #frametime should be givin in ms. Framerate = 1/frametime is_SetFrameRate = self.uc480.is_SetFrameRate if frametime == 0: frametime = 0.001 set_framerate = c_double(0) is_SetFrameRate.argtypes = [c_int, c_double, POINTER(c_double)] is_SetFrameRate(self.handle, 1.0/(frametime/1000.0), byref(set_framerate)) self.frametime = (1.0/set_framerate.value*1000.0) ```
{ "source": "JipengSun/NLP_Project_2", "score": 3 }
#### File: JipengSun/NLP_Project_2/transformation_cuisine.py ```python import pandas as pd import nltk #nltk.download('punkt') #nltk.download('averaged_perceptron_tagger') import itertools import spacy import get_recipe_json import tools_methods import tools_methods_1 nlp=spacy.load('en_core_web_sm') def get_indian_recipe(url): #data = get_recipe_json.get_recipe_json("https://www.allrecipes.com/recipe/23600/worlds-best-lasagna/") #data = get_recipe_json.get_recipe_json("https://www.allrecipes.com/recipe/276206/stuffed-turkey-meatloaf/") data = get_recipe_json.get_recipe_json(url) print("The Original Recipe is: ") print(data) tools_methods_1.get_tools_recipe(url) tools_methods.get_methods_recipe(url) text_recipe_name = data['name'] dict_ = { "pork sausage":"tofu", "chicken sausage":"tofu", "pork ribs":"chicken", "clams":"fish", "pecans":"almonds", "grits":"corn", "extra virgin olive oil":"vegetable oil", "extra-virgin olive oil":"vegetable oil", "virgin olive oil":"vegetable oil", "balsamic vinegar":"lemon juice", "pasta":"rice", "pasta sauce":"garlic chutney", "oregano":"marva leaves", "italian-seasoned":"garam masala", "romano cheese":"amul cheese", "spaghetti":"rice", "prosciutto":"chicken", "capers":"peas", "porcini mushrooms":"mushrooms", "basil":"mint", "italian cheese":"amul cheese", "rabbit" : "eggs", "rosemary leaves":"marva leaves", "dipping sauce":"garlic chutney", "chipotle peppers":"green peppers", "pancetta":"chicken", "celery":"green onion", "tarragon":"mint", "italian":"indian", "spanish":"indian", "manicotti pasta":"rice", "marsala wine":"lemon juice", "sherry":"garlic chutney", "wine sherry":"lemon juice", "cayenne pepper":"green pepper", "fillets cod fillets": "fish", "brandy":"tomato puree", "bottle dry red wine":"lemon juice", "white wine":"lemon juice", "sofrito":"onions", "jamón ibérico":"chicken", "jamon iberico":"chicken", "sherry vinegar":"lemon juice", "olives":"peas", "cod fish":"fish", "red wine":"lemon juice", "fettuccine pasta":"rice", "tortillas":"rotis", "parmesan cheese":"amul cheese", "shrimp":"fish", "kale":"cabbage", "whipping cream":"curd", "noodles":"rice", "mozzarella cheese":"amul cheese", "chorizo":"chicken", "ricotta cheese":"amul cheese", "marinara sauce":"garlic chutney", "rice vinegar":"lemon juice", "mirin":"honey", "miso paste":"garlic chutney", "sesame oil":"vegetable oil", "soba noodles":"rice", "monosodium glutamate":"maggie bhuna masala", "aji-no-moto":"maggie bhuna masala", "tenkasu":"bread crumps", "sake":"lemon juice", "sea bass":"fish", "canola oil":"vegetable oil", "nori seaweed":"cabbage", "avocado":"almond", "crabmeat":"chicken", "sriracha hot sauce":"chilly garlic paste", "sriracha":"chilly garlic paste", "sriracha sauce":"chilly garlic paste", "nori":"cabbage", "dashi kombu":"mushrooms", "dashi granules":"mushrooms", "wakame":"spinach", "wakame seaweed":"spinach", "bonito flakes":"mushrooms", "shichimi togarashi":"maggie bhuna masala", "dark soy sauce":"chilly garlic paste", "shaoxing wine":"lemon juice", "oyster sauce":"mushroom sauce", "ground white pepper":"pepper", "red caviar":"peas", "wasabi paste":"ginger paste", "veal":"chicken", "pesto":"mint chutney", "salsa":"garlic chutney", "mussels":"prawns", "baby squid":"fish", "asturian fabada":"chickpeas", "lima beans":"chickpeas", "nutmeg":"almonds", "cheese tortellini":"cheese cubes", "broccoli":"cauliflower", "asparagus":"spinach", "italian herb seasoning":"garam masala", "italian-style":"indian style", "collard greens":"spinach", "pumpkin":"potatoes", "turkey breast":"chicken", "shallot":"onions", "brussels sprouts":"peas", "prime rib roast":"wheat bread", "margarine":"butter", "soy sauce":"vegetable curry", "ground beef":"chicken", "beef":"chicken", "italian seasoning":"masala", "italian seasoned":"masala", "parsley":"corriander", "meat sauce":"schezwan sauce", "szechuan peppercorns":"corriander seeds", "bacon":"chicken", "turkey":"chicken", "worcestershire sauce":"schezwan sauce", "dijon":"mustard paste", "brown sugar":"sugar", "olive oil":"vegetable oil", "thai basil leaves":"mint", "thai":"indian", "black bean sauce":"schezwan sauce", "white soy sauce":"schezwan sauce", "gochujang":"chilly garlic paste", "chives":"onions", "dumpling wrappers":"paani poori", "beans":"chickpeas", "limes":"lemon juice", "jalapenos":"red chillies", "pumpkin seeds":"sesame seeds", "adobo sauce":"schezwan sauce", "enchilada sauce":"schezwan sauce", "hominy":"chickpeas", "chipotle sauce":"schezwan sauce", "masa harina":"wheat flour", "taco seasoning mix":"maggie bhuna masala", "chipotle chiles":"green chillies", "ancho chiles":"green chillies", "guajillo chiles":"green chillies", "sour cream":"curd", "cheddar cheese":"amul cheese", "fajita seasoning":"maggie bhuna masala", "monterey jack cheese":"amul cheese", "fish sauce":"schezwan sauce", "palm sugar":"sugar", "makham piak":"tamarind juice" } ingredients_l=[] mapping = dict_ for d in mapping: text_recipe_name = text_recipe_name.lower().replace(d,mapping[d]) for i,ingredient in enumerate(data['ingredients']): #print("NAME",ingredient['name']) if d in ingredient['name'].lower(): data['ingredients'][i]['name'] = ingredient['name'].lower().replace(d,mapping[d]) for i,ingredient in enumerate(data['ingredients']): ingredients_l.append(str(data['ingredients'][i]['quantity'])+" "+str(data['ingredients'][i]['unit'])+" "+data['ingredients'][i]['name']) print("\nThe transformed Recipe (Indian Cuisine) is:") print(text_recipe_name) #print(data['ingredients']) print("\nThe transformed ingredients are: ") print(ingredients_l) text=data["steps"] list_stepwise_ing=[] #INDIVIDUAL TRANSFORMED STEPS: original_rec=text #OVERALL TRANSFORMED STEPS new_steps = [] for ing in mapping: text = [w.lower().replace(ing,mapping[ing]) for w in text] for ing in mapping: for i1,t in enumerate(text): #t_list = t.split() S1 = t.split(", ") S1 = ' '.join(S1) S1 = S1.split(".") S1 = ' '.join(S1) S1 = S1.split() if mapping[ing] in S1: print("The list of Transformed Ingredients are:") print({ing:mapping[ing]}) print("\nThe transformed recipe steps are: ") print(text) for i1,t in enumerate(text): list_in = [] dict_ = {} for i in data['ingredients']: #split_=i['name'].split() S1 = set(i['name'].split()) S2 = set(t.split(", ")) S2 = ' '.join(S2) S2 = S2.split(" ") #print(len(S1.intersection(S2))) if len(S1.intersection(S2))>0: list_in.append(i['name']) dict_["original_step"]=original_rec[i1] dict_["transformed_step"]=t dict_["ingredients"]=list_in list_stepwise_ing.append(dict_) print("\nThe step-wise transformation of the recipe is ") print(list_stepwise_ing) # get_indian_recipe("https://www.allrecipes.com/recipe/276206/stuffed-turkey-meatloaf/") ```
{ "source": "jiper/easydo", "score": 2 }
#### File: Algorithm/M1809/crawling_finance_table_v1_7.py ```python ''' 类名:crawling_finance_table_v1.5 作者:徐抒田 日期:2018-1-10 描述: 1.修改BEAUTIFULSOUP的解析表达式->soup.select('table#BalanceSheetNewTable0 tbody tr td') 2.删除部分的无用代码 3.添加部分注释 版本号:V1.5 ''' ''' 类名:crawling_finance_table_v1.6 作者:徐抒田 日期:2018-1-11 描述: 封装成类 版本号:V1.6 ''' ''' 类名:crawling_finance_table_v1.7 作者:徐抒田 日期:2018-1-15 描述: 解决部分股票代码无法爬取 增加股票代码字段 版本号:V1.7 ''' # ============================================================================= # import re # import json # import numpy as np # ============================================================================= import pandas as pd import requests from requests.exceptions import RequestException from bs4 import BeautifulSoup class crawling_finance: ''' 一个帮助你获取股票财报数据的小伙伴 ''' def __init__(self,work_path, stock_code): self.work_path = work_path self.stock_code = stock_code def get_one_page(self,url): headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36'} try: response = requests.get(url,headers = headers) response.encoding = 'GB2312' #解决中文乱码 if response.status_code == 200: #判断是否爬取网页成功 return response.text return None except RequestException: return None # ============================================================================= # def parse_one_page_zhengze(html): # try: # pattern = re.compile('>(.*?)".*?>(.*?)</td><td',re.S) # items = re.findall(pattern,html) # except: # pass # print(items) # ============================================================================= def parse_one_page_zichanfuzhai(self,html): try: soup = BeautifulSoup(html,'html5lib') lls = soup.select('table#BalanceSheetNewTable0 tbody tr td') stock_raw_data = [] #记得初始化,否则append会一直叠加 stock_data=[] data = [] senson_one=[] senson_two=[] senson_three=[] senson_four=[] for l in lls: if (l.get_text().strip()) != '流动资产' and (l.get_text().strip()) != '非流动资产' and (l.get_text().strip()) != '流动负债' and (l.get_text().strip()) != '非流动负债' and (l.get_text().strip()) != '所有者权益': stock_raw_data.append(l.get_text().strip()) # print(len(stock_raw_data)) #调试使用 if len(stock_raw_data) > 0 and len(stock_raw_data) < 160: #一个季度 stock_data = stock_raw_data[2:] #原数据中去除日期 dates = stock_raw_data[1:2] #原数据中选取日期 features = stock_data[::2] #选取所有字段名 senson_one = stock_data[1::2] #选取第一季度所有数据 data.append(senson_one) if len(stock_raw_data) > 160 and len(stock_raw_data) < 240: #两个季度 stock_data = stock_raw_data[3:] #原数据中去除日期 dates = stock_raw_data[1:3] #原数据中选取日期 features = stock_data[::3] #选取所有字段名 senson_one = stock_data[1::3] #选取第一季度所有数据 senson_two = stock_data[2::3] #选取第二季度所有数据 data.append(senson_one) data.append(senson_two) if len(stock_raw_data) > 240 and len(stock_raw_data) < 320: #两个季度 stock_data = stock_raw_data[4:] #原数据中去除日期 dates = stock_raw_data[1:4] #原数据中选取日期 features = stock_data[::4] #选取所有字段名 senson_one = stock_data[1::4] #选取第一季度所有数据 senson_two = stock_data[2::4] #选取第二季度所有数据 senson_three = stock_data[3::4] #选取第三季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) if len(stock_raw_data) > 320 and len(stock_raw_data) < 400: stock_data = stock_raw_data[5:] #原数据中去除日期 dates = stock_raw_data[1:5] #原数据中选取日期 features = stock_data[::5] #选取所有字段名 senson_one = stock_data[1::5] #选取第一季度所有数据 senson_two = stock_data[2::5] #选取第二季度所有数据 senson_three = stock_data[3::5] #选取第三季度所有数据 senson_four = stock_data[4::5] #选取第四季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) data.append(senson_four) df = pd.DataFrame(data, index=dates, columns= features) #转为dataframe结构 return df except: pass def parse_one_page_xianjinliuliang(self,html): try: soup = BeautifulSoup(html,'html5lib') lls = soup.select('table#ProfitStatementNewTable0 tbody tr td') stock_raw_data = [] #记得初始化,否则append会一直叠加 stock_data=[] data = [] senson_one=[] senson_two=[] senson_three=[] senson_four=[] for l in lls: if (l.get_text().strip()) != '一、经营活动产生的现金流量' and (l.get_text().strip()) != '二、投资活动产生的现金流量' and (l.get_text().strip()) != '三、筹资活动产生的现金流量' and (l.get_text().strip()) != '附注': stock_raw_data.append(l.get_text().strip()) # print(len(stock_raw_data)) #调试使用 if len(stock_raw_data) > 0 and len(stock_raw_data) < 150: #一个季度 stock_data = stock_raw_data[2:] #原数据中去除日期 dates = stock_raw_data[1:2] #原数据中选取日期 features = stock_data[::2] #选取所有字段名 senson_one = stock_data[1::2] #选取第一季度所有数据 data.append(senson_one) if len(stock_raw_data) > 150 and len(stock_raw_data) < 220: #两个季度 stock_data = stock_raw_data[3:] #原数据中去除日期 dates = stock_raw_data[1:3] #原数据中选取日期 features = stock_data[::3] #选取所有字段名 senson_one = stock_data[1::3] #选取第一季度所有数据 senson_two = stock_data[2::3] #选取第二季度所有数据 data.append(senson_one) data.append(senson_two) if len(stock_raw_data) > 220 and len(stock_raw_data) < 300: #两个季度 stock_data = stock_raw_data[4:] #原数据中去除日期 dates = stock_raw_data[1:4] #原数据中选取日期 features = stock_data[::4] #选取所有字段名 senson_one = stock_data[1::4] #选取第一季度所有数据 senson_two = stock_data[2::4] #选取第二季度所有数据 senson_three = stock_data[3::4] #选取第三季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) if len(stock_raw_data) > 300 and len(stock_raw_data) < 370: stock_data = stock_raw_data[5:] #原数据中去除日期 dates = stock_raw_data[1:5] #原数据中选取日期 features = stock_data[::5] #选取所有字段名 senson_one = stock_data[1::5] #选取第一季度所有数据 senson_two = stock_data[2::5] #选取第二季度所有数据 senson_three = stock_data[3::5] #选取第三季度所有数据 senson_four = stock_data[4::5] #选取第四季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) data.append(senson_four) df = pd.DataFrame(data, index=dates, columns= features) return df except: pass def parse_one_page_lirunbiao(self,html): try: soup = BeautifulSoup(html,'html5lib') lls = soup.select('table#ProfitStatementNewTable0 tbody tr td') stock_raw_data = [] #记得初始化,否则append会一直叠加 stock_data=[] data = [] senson_one=[] senson_two=[] senson_three=[] senson_four=[] for l in lls: if (l.get_text().strip()) != '六、每股收益': stock_raw_data.append(l.get_text().strip()) # print(len(stock_raw_data)) #调试使用 if len(stock_raw_data) > 0 and len(stock_raw_data) < 60: #一个季度 stock_data = stock_raw_data[2:] #原数据中去除日期 dates = stock_raw_data[1:2] #原数据中选取日期 features = stock_data[::2] #选取所有字段名 senson_one = stock_data[1::2] #选取第一季度所有数据 data.append(senson_one) if len(stock_raw_data) > 60 and len(stock_raw_data) < 90: #两个季度 stock_data = stock_raw_data[3:] #原数据中去除日期 dates = stock_raw_data[1:3] #原数据中选取日期 features = stock_data[::3] #选取所有字段名 senson_one = stock_data[1::3] #选取第一季度所有数据 senson_two = stock_data[2::3] #选取第二季度所有数据 data.append(senson_one) data.append(senson_two) if len(stock_raw_data) > 90 and len(stock_raw_data) < 120: #两个季度 stock_data = stock_raw_data[4:] #原数据中去除日期 dates = stock_raw_data[1:4] #原数据中选取日期 features = stock_data[::4] #选取所有字段名 senson_one = stock_data[1::4] #选取第一季度所有数据 senson_two = stock_data[2::4] #选取第二季度所有数据 senson_three = stock_data[3::4] #选取第三季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) if len(stock_raw_data) > 120 and len(stock_raw_data) < 150: stock_data = stock_raw_data[5:] #原数据中去除日期 dates = stock_raw_data[1:5] #原数据中选取日期 features = stock_data[::5] #选取所有字段名 senson_one = stock_data[1::5] #选取第一季度所有数据 senson_two = stock_data[2::5] #选取第二季度所有数据 senson_three = stock_data[3::5] #选取第三季度所有数据 senson_four = stock_data[4::5] #选取第四季度所有数据 data.append(senson_one) data.append(senson_two) data.append(senson_three) data.append(senson_four) df = pd.DataFrame(data, index=dates, columns= features) return df except: pass def crawling_update(self): date=[] html = self.get_one_page('http://money.finance.sina.com.cn/corp/go.php/vFD_BalanceSheet/stockid/'+self.stock_code+'/ctrl/2017/displaytype/4.phtml') soup = BeautifulSoup(html,'html5lib') lls = soup.select('div#con02-1 table tbody tr td a') for l in lls: item = l.get_text().strip() try: item = int(item) date.append(item) except: pass zichanfuzhai = pd.DataFrame() for i in range(date[len(date)-1],date[0]+1): url = 'http://money.finance.sina.com.cn/corp/go.php/vFD_BalanceSheet/stockid/'+self.stock_code+'/ctrl/'+str(i)+'/displaytype/4.phtml' html = self.get_one_page(url) df = self.parse_one_page_zichanfuzhai(html) df['stock_code'] = self.stock_code # print(df) zichanfuzhai = pd.concat([zichanfuzhai,df]) #两个dataframe做连接,类似数据库的union all # print(zichanfuzhai) zichanfuzhai.to_csv(self.work_path + '/'+self.stock_code +'_'+'balance_sheet.csv', encoding='gbk') xianjinliuliang = pd.DataFrame() for i in range(date[len(date)-1],date[0]+1): url = 'http://money.finance.sina.com.cn/corp/go.php/vFD_CashFlow/stockid/'+self.stock_code+'/ctrl/'+str(i)+'/displaytype/4.phtml' html = self.get_one_page(url) df = self.parse_one_page_xianjinliuliang(html) df['stock_code'] = self.stock_code # print(df) xianjinliuliang = pd.concat([xianjinliuliang,df]) #两个dataframe做连接,类似数据库的union all # print(xianjinliuliang) xianjinliuliang.to_csv(self.work_path + '/'+self.stock_code + '_'+'cash_flow.csv', encoding='gbk') lirunbiao = pd.DataFrame() for i in range(date[len(date)-1],date[0]+1): url = 'http://money.finance.sina.com.cn/corp/go.php/vFD_ProfitStatement/stockid/'+self.stock_code+'/ctrl/'+str(i)+'/displaytype/4.phtml' html = self.get_one_page(url) df = self.parse_one_page_lirunbiao(html) df['stock_code'] = self.stock_code # print(df) lirunbiao = pd.concat([lirunbiao,df]) #两个dataframe做连接,类似数据库的union all # print(lirunbiao) lirunbiao.to_csv(self.work_path+'/'+self.stock_code + '_'+'profit.csv', encoding='gbk') print('finish update', self.stock_code) if __name__ == '__main__': path = '../history_data/' cbfx = crawling_finance(path,'600660') cbfx.crawling_update() ``` #### File: Algorithm/M1809/get_dividends_history.py ```python import pandas as pd import requests from requests.exceptions import RequestException from bs4 import BeautifulSoup headers = {'User-Agent':'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/61.0.3163.79 Safari/537.36'} def get_one_page(url): try: response = requests.get(url,headers = headers) response.encoding = 'GB2312' if response.status_code == 200: return response.text return None except RequestException: return None def parse(html): raw_data = [] try: year_raw = [] year = [] bonus_share = [] bonus_convert = [] profit_send = [] ex_rights = [] register_day = [] soup = BeautifulSoup(html,'html5lib') l = soup.select('table#sharebonus_1') ls = l[0].tbody lls = ls.select('td') for l in lls: if (l.get_text().strip()) != '预案' and \ (l.get_text().strip()) != '实施' and \ (l.get_text().strip()) != '不分配' and \ (l.get_text().strip()) != '查看': raw_data.append(l.get_text().strip()) year_raw = raw_data[::7] # print(raw_data) #出错的话请检查此处的输出 # print(year_raw) #出错的话请检查此处的输出 for item in year_raw: a = pd.to_datetime(item).year - 1 year.append(a) bonus_share = raw_data[1::7] bonus_convert = raw_data[2::7] profit_send = raw_data[3::7] ex_rights = raw_data[4::7] register_day = raw_data[5::7] # print(register_day) data = {'年度':year, '送股':bonus_share, '转股':bonus_convert, '派息':profit_send, '除权日':ex_rights, '登记日':register_day } frame = pd.DataFrame(data) return frame except: print('cannot parse this page') def parse_single_year(html,Year): raw_data = [] try: year_raw = [] year = [] bonus_share = [] bonus_convert = [] profit_send = [] ex_rights = [] register_day = [] # print('it is ',Year) soup = BeautifulSoup(html,'html5lib') l = soup.select('table#sharebonus_1') ls = l[0].tbody lls = ls.select('td') for l in lls: if (l.get_text().strip()) != '预案' and \ (l.get_text().strip()) != '实施' and \ (l.get_text().strip()) != '不分配' and \ (l.get_text().strip()) != '查看': raw_data.append(l.get_text().strip()) year_raw = raw_data[::7] # print(raw_data) #出错的话请检查此处的输出 # print(year_raw) #出错的话请检查此处的输出 for item in year_raw: a = pd.to_datetime(item).year - 1 year.append(a) bonus_share = raw_data[1::7] bonus_convert = raw_data[2::7] profit_send = raw_data[3::7] ex_rights = raw_data[4::7] register_day = raw_data[5::7] # print(register_day) data = {'年度':year, '送股':bonus_share, '转股':bonus_convert, '派息':profit_send, '除权日':ex_rights, '登记日':register_day } frame = pd.DataFrame(data) Len=len(frame) for i in range(Len): s=int(frame.iloc[i]['年度']) date2=frame.iloc[i]['登记日'] # print(s,date2) if s == Year: px=float(frame.iloc[i]['派息']) date2=date2[:4]+date2[5:7]+date2[8:] # print(s,'px money is ',px,date2) return px,date2 return (-1,-1) except: print('cannot parse this page') def test(html,Year): raw_data = [] year_raw = [] year = [] bonus_share = [] bonus_convert = [] profit_send = [] ex_rights = [] register_day = [] # print('it is ',Year) soup = BeautifulSoup(html,'html5lib') l = soup.select('table#sharebonus_1') ls = l[0].tbody lls = ls.select('td') for l in lls: if (l.get_text().strip()) != '预案' and \ (l.get_text().strip()) != '实施' and \ (l.get_text().strip()) != '不分配' and \ (l.get_text().strip()) != '查看': raw_data.append(l.get_text().strip()) year_raw = raw_data[::7] # print(raw_data) #出错的话请检查此处的输出 # print(year_raw) #出错的话请检查此处的输出 for item in year_raw: a = pd.to_datetime(item).year - 1 year.append(a) bonus_share = raw_data[1::7] bonus_convert = raw_data[2::7] profit_send = raw_data[3::7] ex_rights = raw_data[4::7] register_day = raw_data[5::7] # print(register_day) data = {'年度':year, '送股':bonus_share, '转股':bonus_convert, '派息':profit_send, '除权日':ex_rights, '登记日':register_day } frame = pd.DataFrame(data) # print (frame) Len=len(frame) for i in range(Len): s=int(frame.iloc[i]['年度']) # Date=frame.iloc[i,[2]] # print (Date) # return # date2=Date.loc[u'登记日'] date2=frame.iloc[i]['登记日'] # print(s,date2) # return if s == Year: px=float(frame.iloc[i]['派息']) date2=date2[:4]+date2[5:7]+date2[8:] # print(s,'px money is ',px,date2) return px,date2 return -1 #获取每10股派现金,及股权登记日 def get_px_single_year(id,Year): url = 'http://vip.stock.finance.sina.com.cn/corp/go.php/vISSUE_ShareBonus/stockid/' url += str(id) url += '.phtml' html = get_one_page(url) return parse_single_year(html,Year) # 提供给用户的函数,输入ID,解析出历史分红列表 def get_bonus_table(id): url = 'http://vip.stock.finance.sina.com.cn/corp/go.php/vISSUE_ShareBonus/stockid/' url += str(id) url += '.phtml' html = get_one_page(url) return parse(html) ############################################################################### ############################################################################### if __name__ =='__main__': # APP示例代码,用完了请关闭 600066 s = get_bonus_table('601012') print(s) #2017年的派息实际是在2018派发,所以登记日时间上是2018年 #测试股息率 PX,Date = get_px_single_year('601012',2016) print(PX,Date) ``` #### File: Algorithm/M1809/m1809_API.py ```python import os from datetime import datetime from dateutil.parser import parse from dateutil.relativedelta import relativedelta from crawling_finance_table_v1_7 import crawling_finance from CoreAnalyse import CoreAnalyse from getData import GetData class M1809: def __init__(self, company_id_list, DataSource='SQL', LocalStore='ON'): self.company_id_list = company_id_list self.DataSource = DataSource self.LocalStore = LocalStore self.BasePath = '.\\easydo\\Algorithm\\M1809' self.HstPath = os.path.join(self.BasePath, "history_data") # 历史数据路径 self.OutPath = os.path.join(self.BasePath, "output") # 输出文档路径 if (DataSource != "SQL" and DataSource != 'sql'): self.DataSource = "CSV" # 从CSV文件中读取数据#从数据库中读取数据 if (os.path.exists(self.HstPath)): pass else: os.mkdir(self.HstPath) else: self.DataSource = "SQL" # 从数据库中读取数据 if (LocalStore != 'OFF' and LocalStore != 'off'): self.LocalStore = 'ON' # getdata数据输出到文本 if (os.path.exists(self.OutPath)): pass else: os.mkdir(self.OutPath) else: self.LocalStore = 'OFF' # 不输出到文本 print("History Data save in:" + self.HstPath) print("Outcome Data save in:" + self.OutPath) def M1809_Init(self): ''' 本地模式配置 只需要提供感兴趣的对比公司即可,如果只有一个,说明只进行自主分析 ''' global cur global parameter print('please wait, start init...') if len(self.company_id_list) < 2: print('最少需要输入2个id作为对比') return # 此处增加id合法性检查 if self.DataSource == "CSV": # 从CSV文件中读取数据 HisPath = self.BasePath + "history_data" if (os.path.exists(HisPath)): print("Folder creation failed!") return for item in self.company_id_list: try: file_name = os.path.join(self.HstPath, item + '_profit.csv') # print (file_name) with open(file_name, 'r') as fh: content = fh.readlines() s = content[-1].split(',') latest_record = parse(s[0]) # 获取最新时间 current_day = datetime.now() - relativedelta( months=+12) if latest_record > current_day: pass else: cbfx = crawling_finance(self.HstPath, item) cbfx.crawling_update() except Exception: cbfx = crawling_finance(self.HstPath, item) cbfx.crawling_update() else: # test = mysql.sql() # BASE_DIR = os.path.dirname( # os.path.dirname(os.path.abspath(__file__))) # SQL_DIR = BASE_DIR + r'\Mysql' # s = test.init_by_cfg_file(SQL_DIR + r'\sql_config.json') # M1809_Update(cur, company_list) pass print('finish init!') def M1809_GetData(self): # self_result = self.AnalyseObj.Compare2Themself(self.company_id_list[0], # self.DataSource) # 自身对比 GetDataObj = GetData(self.DataSource, self.HstPath) self_result = GetDataObj.Compare2Themself(self.company_id_list[0]) b1 = GetDataObj.Compare2Industry(self.company_id_list) #同行业对比 compare_result = GetDataObj.data_normalize(b1) #归一化的同行业对比 if self.LocalStore == 'ON': SelfResultPath = os.path.join(self.OutPath+'\\compare_self.csv') ComparePath = os.path.join(self.OutPath+'\\compare_industry.csv') NomalizePath = os.path.join(self.OutPath+'\\normalize.csv') self_result.to_csv(SelfResultPath, encoding='gbk') b1.to_csv(ComparePath, encoding='gbk') compare_result.to_csv(NomalizePath, encoding='gbk') return self_result, compare_result def M1809_Analyse(self): ''' 对比分析,并输出 1. ../output/文件夹下会生成诊断报告 2. 控制台输出对比图像(之后可以考虑保存图片) ''' AnalyseObj = CoreAnalyse() self_result, compare_result = self.M1809_GetData() AnalyseObj.Analyse(self_result, compare_result,self.company_id_list[0],self.OutPath) AnalyseObj.PlotAnalyse(self_result) def M1809_Run(self): self.M1809_Init() self.M1809_Analyse() if __name__ == '__main__': company_id_list = ['000651', '000333'] DataSource = "CSV" AObject = M1809(company_id_list, DataSource) AObject.M1809_Run() ``` #### File: Algorithm/M1809/M1809_finance_weight.py ```python import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import preprocessing from sklearn.model_selection import cross_val_score from sklearn.datasets import make_blobs from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn import metrics import lightgbm as lgb ''' 修改成从数据库中读取文件 ''' result_yinli = pd.read_csv('D:/999github/anack/M1809/xst/result_yinli.csv') result_yingyun = pd.read_csv('D:/999github/anack/M1809/xst/result_yingyun.csv') result_chengzhang = pd.read_csv('D:/999github/anack/M1809/xst/result_chengzhang.csv') result_changzhai = pd.read_csv('D:/999github/anack/M1809/xst/result_changzhai.csv') result_xianjin = pd.read_csv('D:/999github/anack/M1809/xst/result_xianjin.csv') df_final = pd.read_csv('D:/999github/anack/M1809/xst/target.csv') df_final = df_final[(df_final.firstincrase > 0.1) & (df_final.secondincrase > 0.1)] df_final = pd.DataFrame({'code' : df_final['code'], 'label' : 1, }) data = result_yinli data = pd.merge(data, result_yingyun, on=['code','name']) data = pd.merge(data, result_chengzhang, on=['code','name']) data = pd.merge(data, result_changzhai, on=['code','name']) data = pd.merge(data, result_xianjin, on=['code','name']) data = pd.merge(data, df_final, on='code',how = 'left') # ============================================================================= # null_counts = data.isnull().sum() # print(null_counts) # ============================================================================= data = data.fillna(0) data = data.dropna(axis=0) orig_columns = data.columns drop_columns = [] for col in orig_columns: col_series = data[col].dropna().unique() if len(col_series) == 1: drop_columns.append(col) data = data.drop(drop_columns, axis=1) print(drop_columns) target = data['label'] code = data['code'] name = data['name'] features = data.drop(['code','name','label'],axis=1) features[features.currentratio20161 == '--'] = 0 features[features.quickratio20161=='--']=0 features[features.cashratio20161=='--']=0 features[features.icratio20161=='--']=0 features[features.sheqratio20161=='--']=0 features[features.adratio20161=='--']=0 features[features.currentratio20162=='--']=0 features[features.quickratio20162=='--']=0 features[features.cashratio20162=='--']=0 features[features.icratio20162=='--']=0 features[features.sheqratio20162=='--']=0 features[features.adratio20162=='--']=0 features[features.currentratio20163=='--']=0 features[features.quickratio20163=='--']=0 features[features.cashratio20163=='--']=0 features[features.icratio20163=='--']=0 features[features.sheqratio20163=='--']=0 features[features.adratio20163=='--']=0 features[features.currentratio20164=='--']=0 features[features.quickratio20164=='--']=0 features[features.cashratio20164=='--']=0 features[features.icratio20164=='--']=0 features[features.currentratio20171=='--']=0 features[features.quickratio20171=='--']=0 features[features.cashratio20171=='--']=0 features[features.icratio20171=='--']=0 features[features.sheqratio20171=='--']=0 features[features.adratio20171=='--']=0 features[features.currentratio20172=='--']=0 features[features.quickratio20172=='--']=0 features[features.cashratio20172=='--']=0 features[features.icratio20172=='--']=0 features[features.currentratio20173=='--']=0 features[features.quickratio20173=='--']=0 features[features.cashratio20173=='--']=0 features[features.icratio20173=='--']=0 features[features.currentratio20174=='--']=0 features[features.quickratio20174=='--']=0 features[features.cashratio20174=='--']=0 features[features.icratio20174=='--']=0 features[features.currentratio20181=='--']=0 features[features.quickratio20181=='--']=0 features[features.cashratio20181=='--']=0 features[features.icratio20181=='--']=0 features = features.astype('float64') ##基于树的方法不用做标准化、归一化处理 ''' 资产负债比,营业税增长率,营业现金增长率,现金增长净额,期末现金 ''' features = features[['targ20174','nav20174','gross_profit_rate20174','cashflowratio20174','net_profit_ratio20174','mbrg20174','currentratio20174','currentasset_turnover20174','inventory_days20174']] def aucfun(act,pred): fpr,tpr,thresholds = metrics.roc_curve(act,pred) plt.plot(fpr, tpr, color='darkorange',lw=2) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') # ============================================================================= # print(fpr) # print(tpr) # print(thresholds) # ============================================================================= return metrics.auc(fpr,tpr) def ml_for_weight(features,target): min_max_scaler = preprocessing.MinMaxScaler() features_new = min_max_scaler.fit_transform(features) features = pd.DataFrame(features_new, columns=features.columns) X_train,X_test,y_train,y_test = train_test_split(features,target,test_size=0.25,random_state=42) ''' 调参 ''' clf = lgb.LGBMClassifier( boosting_type='gbdt', num_leaves=31, reg_alpha=0, reg_lambda=1, max_depth=-1, n_estimators=800, objective='binary', subsample=0.7, colsample_bytree=0.7, subsample_freq=2, learning_rate=0.05, min_child_weight=20, random_state=2018, n_jobs=-1,class_weight = 'balanced' ) clf = clf.fit(X_train, y_train, eval_set=[(X_train, y_train),(X_test, y_test)], eval_names = ['train','test'],eval_metric='auc',early_stopping_rounds=100) y_pre = clf.predict(X_test) y_pre_pro = clf.predict_proba(X_test)[:, 1] # ============================================================================= # print(y_pre_pro) # ============================================================================= print(classification_report(y_test,y_pre)) print(metrics.roc_auc_score(y_test,y_pre_pro)) #预测Y值得分 aucfun(y_test,y_pre_pro) importances = clf.feature_importances_ indices = np.argsort(importances)[::-1] print("Feature ranking:") for f in range(features.shape[1]): print("%d. feature %d (%f): %s" % (f + 1, indices[f], importances[indices[f]] , features.columns[indices[f]] )) return features.columns,importances a,b = ml_for_weight(features,target) # ============================================================================= # y_pre_pro_f = clf.predict_proba(features)[:, 1] # # y_pre_pro_f = pd.DataFrame({'code' : code, # 'name' : name, # 'gailv' : y_pre_pro_f # }) # # y_pre_pro_f.to_csv('D:/999github/anack/M1809/y_pre_pro_f.csv',index =False) # ============================================================================= ``` #### File: easydo/Data/SinaApp.py ```python import requests import json import pandas as pd from datetime import datetime from datetime import timedelta import os,sys BASE_DIR=os.path.dirname(os.path.dirname(os.path.abspath(__file__))) sys.path.append(BASE_DIR) import Miscellaneous.TimeConverter as TimeConverter class SinaApp: ''' @类名:SinaApp @描述:从新浪财经获取的数据 @已提供API列表: >>UpdateKday:更新指定个股的k线数据,如果没有则自动创建,结果持久化到本地或者数据库 >>GetInfo:获取指定个股某一天的交易数据(close,high,low,open,volume) >>get_k_day:获取指定个股指定天数的K线数据,以DataFrame格式返回 >>ClosePrice:获取指定个股某一天的收盘价 ''' def __init__(self): ''' @用户配置: data_path:csv文件保存的默认地址 compatible:兼容模式,开启后使用更方便(效率显著降低) 兼容模式下:自动检查更新,自动检查输入数据类型并自动切换 ''' self.data_path = BASE_DIR + '\\Data\\raw_data\\' #默认文件保存地址 if os.path.exists(self.data_path) == False: os.makedirs(self.data_path) self.compatible = True #默认打开,方便使用,想要禁止,请设置为False self.log = True #调试语句和显示语句使能开关 def UpdateKday(self, mid, mode = 'CSV'): ''' @用户接口API: @描述:输入一个id列表或者单个id,自动获取其所有的k线历史并自动存档 @ ''' if isinstance(mid, str): self.update_one(mid,mode) elif isinstance(mid, list): for item in mid: self.update_one(item,mode) def update_one(self, id_str,mode = 'CSV'): ''' @描述:检查指定路径下是否包含最新的资源,如果不包含,则更新 1. 检查是否有该文件 2. 检查是否为最新记录,不是则更新 3. 根据mode指定是保存到本地CSV还是到数据库 @输入:id_str(str)->更新标的,必须是单个股票,且格式固定为: 'sh600660' mode->更新方式, CSV:存本地, SQL:存数据库 @输出:./Data/raw_data/文件夹下自动建立id_str.csv文件 ''' if self.log == True: print('checking ...') file_name = self.data_path + id_str + '.csv' try: content = pd.read_csv(file_name) latest_record = content.iloc[-1] get_today_data = self.get_k_day(id_str,1) #获取最新网络数据 today_str = get_today_data.iloc[-1]['day'] #今天 today = TimeConverter.str2dtime(today_str) record_str = latest_record['day'] #最新记录的日期 latest = TimeConverter.str2dtime(record_str) if latest == today: #已经是最新的 if self.log == True: print('%s already the latest' % id_str) else: #append方式更新 if self.log == True: print('update %s,please wait...' % id_str) update_day = abs(today-latest) update_day = update_day.days #更新时间 b = self.get_k_day(id_str, update_day) for i in range(len(b)): day = b.iloc[i]['day'] day = TimeConverter.str2dtime(day) if day > latest: index = i break append_item = b[b.index >= index] #最终要更新的内容 append_item.to_csv(file_name,mode='a', header=False, index = False) except: print('no record yet, creating %s.csv,please wait...' % id_str) a = self.get_k_day(id_str) a.to_csv(file_name,index = False) if self.log == True: print('finished') def GetInfo(self, id_str, date): ''' @描述:读取csv文件并获取某一天的参数(价格/成交量等) @输入:id_str(str)->想要查找的id, 格式如下:'sh600660' date(str): 非兼容模式下必须为str类型且为'xxxx-xx-xx'格式,兼容模式下随意 item(str):获取什么信息,默认获取收盘价 item(str) = close/open/high/low/volume @输出: 对应的查询信息,类型为float或者int ''' if self.compatible == True: if isinstance(date, datetime): date = TimeConverter.dtime2str(date,'-') elif isinstance(date, str): date = TimeConverter.str2dtime(date) date = TimeConverter.dtime2str(date,'-') self.UpdateKday(id_str) #自动更新 file_name = self.data_path + id_str + '.csv' content = pd.read_csv(file_name) result = content[content.day == date] return result def ClosePrice(self, id_str, date): ''' @描述:获取指定一天的收盘价 @输入:id_str(str)->‘sh600660’ date(datetime, str)都可以 @输出:price(float), 返回0代表没有数据 ''' info = self.GetInfo(id_str, date) try: price = info.iloc[-1]['close'] except: price = 0 return price def get_k_day(self, id_str,day=9999): ''' @描述:获取指定ID的K线数据,并以DateFrame形式返回(此为辅助函数,用户禁止直接调用) @输入: id_str-> str类型的id,尤其注意,必须带sh/sz前缀,如:"sh600660" day->返回的天数,默认是最大值,返回全部历史记录 @输出: DateFrame形式的K线数据,全部为str类型 close day high low open volume 0 22.090 2018-12-14 22.290 21.900 22.090 7427246 1 22.190 2018-12-17 22.310 21.810 22.050 5286448 ''' import re prefix = 'http://money.finance.sina.com.cn/quotes_service/api/json_v2.php/CN_MarketData.getKLineData?symbol=' tail = '&scale=240&ma=no&datalen=' if isinstance(day,int): day = str(day) url = prefix + id_str + tail + day response = requests.get(url) if response.status_code == 200: html = response.content html_str = html.decode() pattern = r'(?<=[{,])(\w+)' #可以找到 content = re.sub(pattern, lambda i: '\"'+i.group(1)+'\"', html_str) result = json.loads(content) detail_column = ['close', 'day', 'high', 'low', 'open', 'volume'] data = pd.DataFrame(columns=detail_column) for item in result: data = data.append(item, ignore_index=True) return data else: return 0 def add_black_price(self, id_str,day_formate = '%Y-%m-%d'): ''' @描述:给定一个k线csv文件,填充空白的时间,便于快速查找价格 @备注:此为辅助函数,用户禁止调用 @输入: file_name->文件全名 day_formate->时间格式转换的参数,默认为'xx-xx-xx',可以改为'xx/xx/xx' @输出:out.csv文件, DataFrame格式的变量以备查验 ''' file_name = self.data_path + id_str + '.csv' content = pd.read_csv(file_name) if self.log == True: print(content) ilen = len(content) i = 0 today = datetime.strptime(content.iloc[0]['day'],day_formate) yesterday = today for i in range(ilen): today = datetime.strptime(content.iloc[i]['day'],day_formate) a = today.strftime(day_formate) d_index = list(content.columns).index('day') content.iloc[i,d_index] = a for i in range(1, ilen): today = content.iloc[i]['day'] today = datetime.strptime(today,day_formate) if yesterday + timedelta(1) != today: cur_day = yesterday + timedelta(1) while cur_day < today: s = content.iloc[i-1].copy() s['day'] = cur_day.strftime(day_formate) content = content.append(s, ignore_index=True) cur_day += timedelta(1) yesterday = today content = content.sort_values(by='day') content.to_csv('out.csv', index = False) return content ############################################################################### #print(test.get_k_day('sh600660',10)) #url = 'http://money.finance.sina.com.cn/quotes_service/api/json_v2.php/CN_MarketData.getKLineData?symbol=sz000651&scale=240&ma=no&datalen=2' if __name__ == '__main__': ''' 1. 先检查是否有csv或者mysql的数据,如果没有,则自动重新爬取 2. 爬取的数据存为csv 3. 每次获取都统一从k_day.csv一个文件中获取,没有就append进去 ''' test = SinaApp() # test.update_one('sh600660') ll = ['sh600660','sh601012','sh600377','sh000001'] #更新k线数据 test.UpdateKday(ll) #获取指定一天的数据 a = test.GetInfo('sh600660','2019/01/08') #获取指定一天的价格 # a = test.ClosePrice('sh600660','2019-01-08') # print(a) ```
{ "source": "Jip-Hop/polargraph-optimizer", "score": 3 }
#### File: Jip-Hop/polargraph-optimizer/lib.py ```python from __future__ import print_function import sys, math, re min_penup_travel_distance = 1 # in mm, shorter travels will be removed pendown_value = 'G0 F500.000 Z160.000' penup_value = 'G0 F500.000 Z90.000' feedrate_value = 'F60.000' def calculate_distance(coordinates1, coordinates2): x1 = coordinates1[0] y1 = coordinates1[1] x2 = coordinates2[0] y2 = coordinates2[1] dist = math.sqrt((x2 - x1)**2 + (y2 - y1)**2) return dist def replace_text_between(original_text, delimeter_a, delimeter_b, replacement_text): # parts = original_text.split(delimeter_a) # leadingText = parts.pop(0) # keep everything beofe first delimterA # parts = delimeter_a.join(parts).split(delimeter_b) # parts.pop(0) # remove everything before first delimeter_b # trailingText = delimeter_b.join(parts) # keep everything after first delimeter_b # return leadingText + delimeter_a + replacement_text + delimeter_b + trailingText reg = "(?<=%s).*?(?=%s)" % (delimeter_a, delimeter_b) r = re.compile(reg,re.DOTALL) result = r.sub(replacement_text, original_text) return result class Instruction(): def __init__(self, line): self.line = line.rstrip() self.typecode = self.line.split(' ')[0] self.typename = self._typename() self.coords = self._coords() def distance_to(self, other): # return max(abs(other.coords[0] - self.coords[0]), abs(other.coords[1] - self.coords[1])) return calculate_distance(self.coords, other.coords) def _typename(self): if pendown_value in self.line: return 'pendown' elif penup_value in self.line: return 'penup' elif self.typecode == "G0" or self.typecode == "G1": return 'move' else: return 'other' def _coords(self): try: # Try to extract coordinates. x = self.line.split('X')[1].split(" ")[0] y = self.line.split('Y')[1].split(" ")[0] return (float(x), float(y)) except IndexError: return None class Glyph(): def __init__(self, instructions): self._reversed = False try: self.start = instructions[0].coords self.end = instructions[-2].coords except IndexError: self.start = None self.end = None if self.start == None or self.end == None: print("Problem with instructions in glyph:", file=sys.stderr) for i in instructions: print("%s (%s)" % (i.line, i.typename), file=sys.stderr) self.instructions = instructions def distance_to(self, other): """ Compute distance between two glyphs """ # return max(abs(other.start[0] - self.end[0]), abs(other.start[1] - self.end[1])) return calculate_distance(self.end, other.start) def distance_to_if_other_reversed(self, other): # return max(abs(other.end[0] - self.end[0]), abs(other.end[1] - self.end[1])) return calculate_distance(self.end, other.end) def _reversed_instructions(self): """ A generator of the reversed instructions. Typical instructions look like this (normal ordering): G1 F100.000 X250.066 Y-439.295 <-- startpoint (assumed pen is up) G0 F500.000 Z160.000 <-- pendown G0 F60.000 X250.409 Y-439.954 <-- drawing moves ... G0 X248.001 Y-441.921 G0 X245.314 Y-443.391 <-- last move G0 F500.000 Z90.000 <-- penup So a reversed ordering would print in this order: startpoint, G1, but with coordinates from last move pendown other moves in reversed order last move, G0, but with coordinates from startpoint penup """ original_order = iter(self.instructions) reverse_order = reversed(self.instructions) startpoint = next(original_order) pendown = next(original_order) penup = next(reverse_order) endpoint = next(reverse_order) endpoint.line = replace_text_between(startpoint.line, "X", " ", str(endpoint.coords[0])) endpoint.line = replace_text_between(startpoint.line, "Y", " ", str(endpoint.coords[1])) startpoint.line = replace_text_between(endpoint.line, "X", " ", str(startpoint.coords[0])) startpoint.line = replace_text_between(endpoint.line, "Y", " ", str(startpoint.coords[1])) endpoint.typecode = endpoint.line.split(' ')[0] startpoint.typecode = startpoint.line.split(' ')[0] yield endpoint yield pendown for i in reverse_order: if not i.typename == 'move': break yield i yield startpoint yield penup def ordered_instructions(self): if self._reversed: return self._reversed_instructions() else: return iter(self.instructions) def reversed_copy(self): if not hasattr(self, '_reversed_copy'): from copy import copy new = copy(self) new.start = self.end new.end = self.start new._reversed = True new._reversed_copy = self self._reversed_copy = new return self._reversed_copy def __hash__(self): return hash("\n".join([i.line for i in self.instructions])) def total_penup_travel(gs): """ Compute total distance traveled in a given ordering """ def distance_between_each_pair(gs): gs = iter(gs) prev = next(gs) for g in gs: yield prev.distance_to(g) prev = g return sum(distance_between_each_pair(gs)) def total_travel(gs): def iter_moves(gs): for g in gs: for i in g.ordered_instructions(): if i.typename == 'move': yield i def distance_between_moves(moves): moves = iter(moves) prev = next(moves) for m in moves: yield prev.distance_to(m) prev = m return sum(distance_between_moves(iter_moves(gs))) def reorder_greedy(gs, index=0): """ Greedy sorting: pick a starting glyph, then find the glyph which starts nearest to the previous ending point. This is O(n^2). Pretty sure it can't be optimized into a sort. """ from operator import itemgetter gs = list(gs) ordered = [gs.pop(index)] prev = ordered[0] def dist_reverse_iterator(gs): for g in gs: yield (prev.distance_to(g), False, g) yield (prev.distance_to_if_other_reversed(g), True, g) while len(gs) > 0: (dist, reverse, nearest) = min(dist_reverse_iterator(gs), key=itemgetter(0, 1)) gs.remove(nearest) if reverse: prev = nearest.reversed_copy() else: prev = nearest ordered.append(prev) return ordered def prune_small_distance_penups(instructions): instructions = iter(instructions) try: prev = next(instructions) except StopIteration: raise ValueError("instructions empty") # The first instruction should always be a penup, so we send it straight # through. yield prev try: while True: current = next(instructions) if current.typename == 'penup': last_down = prev penup = current # Get all moves while the pen is up. There should only ever be # one, but you never know these days. :-) moves = [] try: while True: penup_move = next(instructions) if penup_move.typename == 'pendown': pendown = penup_move break else: moves.append(penup_move) except StopIteration: # If we reach the end of the instructions while looking for # a pendown, raise the pen and call it good. yield penup raise StopIteration if calculate_distance(moves[-1].coords, last_down.coords) <= min_penup_travel_distance: # The penup move(s) didn't travel the minimum desired distance, # so we remove them from the list of instructions and continue # to the next instruction. continue else: # The penup move(s) DID move enough, so we keep them. yield penup for move in moves: yield move yield pendown else: yield current prev = current except StopIteration: pass def clean_instructions(instructions): cleaned = [] is_pen_up = True clean_instructions.prev = None def keep_instruction(instruction): if (instruction.typecode == "G0" and instruction.coords is not None): if ((clean_instructions.prev.typename == 'pendown') and clean_instructions.prev is not None) and ("F" not in instruction.line): # Insert feed rate for first pendown move instruction.line = replace_text_between(instruction.line, "G0 ", "X", feedrate_value + " ") elif ("F" in instruction.line): # Remove feed rate for next moves instruction.line = replace_text_between(instruction.line, "G0 ", "X", "") clean_instructions.prev = instruction cleaned.append(instruction) for instruction in instructions: if instruction.typename == 'penup': is_pen_up = True elif instruction.typename == 'pendown': is_pen_up = False if (instruction.typecode == "G1"): if is_pen_up: # Keep G1 instruction if pen is up keep_instruction(instruction) else: # If pen is down, it should be a G0 move. # Only keep if it travels a distance if(clean_instructions.prev is not None and clean_instructions.prev.coords): if calculate_distance(clean_instructions.prev.coords, instruction.coords) > 0: instruction.typecode = "G0" instruction.line = instruction.line.replace("G1", "G0") keep_instruction(instruction) else: if instruction.typecode == "G0" and instruction.coords is not None and clean_instructions.prev is not None and clean_instructions.prev.coords is not None: if not (calculate_distance(clean_instructions.prev.coords, instruction.coords) > 0): # Skip duplicate instruction continue # Keep these instructions keep_instruction(instruction) return cleaned def dedupe(gs): "Use Glyph.__hash__() to dedupe the list of glyphs" seen = set() for g in gs: h = hash(g) if h not in seen: yield g seen.add(h) def iter_instructions(gs): # be sure to start with a penup yield Instruction(penup_value) for g in gs: for i in g.ordered_instructions(): yield i ```
{ "source": "Ji-Ping-Dai/CosmoCl", "score": 2 }
#### File: pycamb/camb/nonlinear.py ```python from .baseconfig import dll_import from ctypes import c_int # ---Parameters in halofit_ppf.f90 halofit_original = 1 halofit_bird = 2 halofit_peacock = 3 halofit_takahashi = 4 halofit_mead = 5 halofit_halomodel = 6 halofit_default = halofit_takahashi halofit_version_names = ['original','bird','peacock','takahashi','mead','halomodel'] halofit_version = dll_import(c_int, "nonlinear", "halofit_version") # halofit_version.value = halofit_default def set_halofit_version(version = 'takahashi'): """ Set the halofit model for non-linear corrections. :param version: One of - original: `astro-ph/0207664 <http://arxiv.org/abs/astro-ph/0207664>`_ - bird: `arXiv:1109.4416 <http://arxiv.org/abs/1109.4416>`_ - peacock: `Peacock fit <http://www.roe.ac.uk/~jap/haloes/>`_ - takahashi: `arXiv:1208.2701 <http://arxiv.org/abs/1208.2701>`_ - mead: `arXiv:1505.07833 <http://arxiv.org/abs/1505.07833>`_ - halomodel: basic halomodel """ halofit_version.value = halofit_version_names.index(version) + 1 ``` #### File: pycamb/camb/reionization.py ```python from .baseconfig import CAMB_Structure, dll_import from ctypes import c_bool, c_int, c_double # ---Variables in reionization.f90 # To set the value please just put # variablename.value = newvalue # logical include_helium_fullreion = dll_import(c_bool, "reionization", "include_helium_fullreion") # include_helium_fullreion.value = True # logical Reionization_AccuracyBoost = dll_import(c_bool, "reionization", "reionization_accuracyboost") # Reionization_AccuracyBoost.value = 1. Rionization_zexp = dll_import(c_bool, "reionization", "rionization_zexp") # ---Derived Types in reionization.f90 class ReionizationParams(CAMB_Structure): """ Hold sparameters for the reionization model. """ _fields_ = [ ("Reionization", c_int), # logical ("use_optical_depth", c_int), # logical ("redshift", c_double), ("delta_redshift", c_double), ("fraction", c_double), ("optical_depth", c_double), ("helium_redshift", c_double), # helium_redshift = 3.5_dl ("helium_delta_redshift", c_double), # helium_delta_redshift = 0.5 ("helium_redshiftstart", c_double) # helium_redshiftstart = 5._dl ] def set_tau(self, tau, delta_redshift=None): """ Set the optical depth :param tau: optical depth :param delta_redshift: delta z for reionization :return: self """ self.use_optical_depth = True self.optical_depth = tau if delta_redshift is not None: self.delta_redshift = delta_redshift return self class ReionizationHistory(CAMB_Structure): """ Internally calculated parameters. """ _fields_ = [ ("tau_start", c_double), ("tau_complete", c_double), ("akthom", c_double), ("fHe", c_double), ("WindowVarMid", c_double), ("WindowVarDelta", c_double) ] ```
{ "source": "Ji-Ping-Dai/ML_exercise_Andrew_Ng_Python", "score": 3 }
#### File: ML_exercise_Andrew_Ng_Python/machine-learning-ex2/func.py ```python import numpy as np import matplotlib.pyplot as plt plt.rc('text',usetex=True) plt.rc('font',family='Times New Roman') def plotdata(X,y,ax): '''PLOTDATA Plots the data points x and y into a new figure''' plt.xticks(fontsize=20) plt.yticks(fontsize=20) ax.plot(X[(y==1).flatten(),0], X[(y==1).flatten(),1], 'kx') ax.plot(X[(y==0).flatten(),0], X[(y==0).flatten(),1], 'yo') return def sigmoid(z): '''sigmoid function, output between 0-1''' sigmoid = 1/(1+np.exp(-z)) return sigmoid def costfunc(theta,x,y): '''Compute cost for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) z = x@theta J = -1/m*([email protected](sigmoid(z))+(1-y)[email protected](1-sigmoid(z))) return J def costfuncReg(theta,x,y,lam): '''Compute cost for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) J=np.zeros([len(theta),1]) z = x@theta J = -1/m*([email protected](sigmoid(z))+(1-y)[email protected](1-sigmoid(z)))+lam/2/m*theta.T[:,1:]@theta[1:,:] return J def grid(theta,x,y): '''Compute gradient for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) z = x@theta grid = 1/m*(x.T@(sigmoid(z)-y)) return grid.flatten() def gridReg(theta,x,y,lam): '''Compute gradient for Logistic Regression''' m = len(y) theta = theta.reshape(-1,1) grid=np.zeros([len(theta),1]) z = x@theta grid[0,:] = 1/m*(x.T@(sigmoid(z)-y))[0,:] grid[1:,:] = 1/m*(x.T@(sigmoid(z)-y))[1:,:] + lam/m*theta[1:,:] return grid.flatten() def gradientDescent(x,y,theta,iterations,alpha): '''Performs gradient descent to learn theta''' m = len(y) cost = np.zeros(iterations) for i in range(iterations): z = x@theta theta = theta-1/m*alpha*x.T@(sigmoid(z)-y) cost[i] = costfunc(theta,x,y) return theta, cost def plotboundary(X,y,theta,ax): '''Plots the Decision Boundary''' plotdata(X,y,ax) if len(theta)<=3: px=np.linspace(np.min(X[:,0])-2,np.max(X[:,0])+2,100) py=(-theta[0]-theta[1]*px)/theta[2] ax.plot(px,py,ls='--',color='b') else: px=np.linspace(-1,1.5,100) py=np.linspace(-1,1.5,100) cost=np.zeros([100,100]) for i in range(len(px)): for j in range(len(py)): cost[i,j]=mapX(px[i],py[j])@theta cost=cost.T PX,PY=np.meshgrid(px,py) ax.contour(PX,PY,cost,[0],colors='k') return def predict(x,theta): '''Predict whether the label is 0 or 1 using learned logistic ''' p = sigmoid([email protected](-1,1)) p[p>=0.5]=1 p[p<0.5]=0 return p def mapX(x1,x2): '''Feature mapping function to polynomial features''' order = 6 X = np.ones([x1.size,1]) order=6 for i in range(1,order+1): for j in range(i+1): newcol = (x1**(i-j)*x2**(j)).reshape(-1,1) X = np.concatenate([X,newcol],axis=1) return X ``` #### File: ML_exercise_Andrew_Ng_Python/machine-learning-ex6/func.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.optimize import minimize from scipy.optimize import fmin_cg from sklearn.svm import SVC plt.rc('text',usetex=True) plt.rc('font',family='Times New Roman') def plotdata(X,y,ax): '''PLOTDATA Plots the data points x and y into a new figure''' plt.xticks(fontsize=20) plt.yticks(fontsize=20) ax.plot(X[np.ravel(y==1),0],X[np.ravel(y==1),1],'kx') ax.plot(X[np.ravel(y==0),0],X[np.ravel(y==0),1],'ro') return def dataset3Params(X,y,Xval,yval): '''returns the optimal choice of C and sigma ''' C = np.array([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) sigma = np.array([0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30]) m = len(C) error = np.zeros([m,m]) for i in range(m): for j in range(m): model = SVC(kernel='rbf', C=C[i], gamma=1/2/sigma[j]**2) model.fit(X,y.ravel()) error[i,j] = sum(model.predict(Xval) == yval.ravel()) maxarg = np.unravel_index(np.argmax(error),error.shape) return C[maxarg[0]],sigma[maxarg[1]] def processEmail(file_contents): '''preprocesses a the body of an email and returns a list of word_indices''' import pandas as pd import re from nltk import PorterStemmer stemmer = PorterStemmer() vocabList = pd.read_table('data/vocab.txt',header=None, names=['index'],index_col=1) word_indices = [] file_contents = file_contents.lower() pattern = re.compile(r'\n') file_contents = pattern.sub(" ", file_contents) file_contents pattern = re.compile(r'[0-9]+') file_contents = pattern.sub("number", file_contents) pattern = re.compile(r'(http|https)://.*?\s') file_contents = pattern.sub("httpaddr", file_contents) file_contents pattern = re.compile(r'[^\s]+@[^\s]+') file_contents = pattern.sub("emailaddr", file_contents) pattern = re.compile(r'[$]+') file_contents = pattern.sub("dollar", file_contents) file_contents = file_contents.split(' ') for i in range(len(file_contents)): if file_contents[i].isalpha(): words = stemmer.stem(file_contents[i]) if words in vocabList.index: word_indices.append(int(vocabList.loc[words])) return word_indices ```
{ "source": "Jipje/local_smart_grid_simulation", "score": 3 }
#### File: local_smart_grid_simulation/environment/NetworkEnvironment.py ```python class NetworkEnvironment(object): def __init__(self, verbose_lvl=2): self.network_objects = [] self.verbose_lvl = verbose_lvl self.network_object_parameters = [] self.number_of_steps = 0 def add_object(self, network_object, action_parameters): self.network_objects.append(network_object) self.network_object_parameters.append(action_parameters) def take_step(self, environment_step) -> int: self.number_of_steps += 1 total_network_step = 0 for object_index in range(len(self.network_objects)): network_object = self.network_objects[object_index] action_parameters = self.network_object_parameters[object_index] total_network_step += network_object.take_step(environment_step, action_parameters) return self.check_action(total_network_step) def check_action(self, network_step): if self.verbose_lvl > 2: print('Network is measuring: {}'.format(network_step)) return network_step def done_in_mean_time(self, curr_msg=None): res_msg = '' for network_object in self.network_objects: res_msg = res_msg + network_object.done_in_mean_time() + '\n\t' res_msg = res_msg[:-2] if curr_msg is not None: res_msg = curr_msg + res_msg return res_msg def end_of_environment_message(self, environment_additions): num_of_ptus = self.number_of_steps / 15 num_of_days = num_of_ptus / 96 res_msg = 'Environment: ' \ f'\n\tNumber of 1m timesteps: {self.number_of_steps}' \ f'\n\tNumber of PTUs: {num_of_ptus}' \ f'\n\tNumber of days: {num_of_days}' for msg in environment_additions: res_msg = res_msg + '\n\t' + msg for network_object in self.network_objects: res_msg = res_msg + network_object.end_of_environment_message(num_of_days) return res_msg def end_of_environment_metrics(self, current_metrics): res_dict = current_metrics for object_index in range(len(self.network_objects)): network_object = self.network_objects[object_index] res_dict.update(network_object.end_of_environment_metrics()) return res_dict ``` #### File: evolutionary_algorithm/fitness_functions/PureMoneyFitnessNoCongestion.py ```python from environment.ImbalanceEnvironment import ImbalanceEnvironment from environment.NetworkEnvironment import NetworkEnvironment from environment.TotalNetworkCapacityTracker import TotalNetworkCapacityTracker from evolutionary_algorithm.Fitness import Fitness from evolutionary_algorithm.individuals.StrategyIndividual import StrategyIndividual from main import run_simulation_from_dict_of_df from network_objects.Battery import Battery from network_objects.RenewableEnergyGenerator import RenewableEnergyGenerator from network_objects.control_strategies.StrategyWithLimitedChargeCapacityControlTower import \ StrategyWithLimitedChargeCapacityControlTower class PureMoneyFitnessNoCongestion(Fitness): def __init__(self, verbose_lvl=-1, transportation_kw=2000, congestion_kw=14000, congestion_safety_margin=0.99): super().__init__(verbose_lvl, transportation_kw, congestion_kw, congestion_safety_margin) def run_simulation(self, individual): # Initialise environment imbalance_environment = NetworkEnvironment(verbose_lvl=self.verbose_lvl) ImbalanceEnvironment(imbalance_environment, mid_price_index=2, max_price_index=1, min_price_index=3) TotalNetworkCapacityTracker(imbalance_environment, self.congestion_kw) # Initialise solar farm solarvation = RenewableEnergyGenerator('Solarvation solar farm', 19000, verbose_lvl=self.verbose_lvl) # Initialise battery battery = Battery('Wombat', 30000, 14000, battery_efficiency=0.9, starting_soc_kwh=1600, verbose_lvl=self.verbose_lvl) # Initialise random strategy money_earning_strategy = individual.value strategy_limited_charge_controller = StrategyWithLimitedChargeCapacityControlTower( name="Wombat Battery Controller", network_object=battery, strategy=money_earning_strategy, verbose_lvl=self.verbose_lvl, transportation_kw=self.transportation_kw) imbalance_environment.add_object(solarvation, [1, 3, 4]) imbalance_environment.add_object(strategy_limited_charge_controller, [1, 3, 4]) res_dict = run_simulation_from_dict_of_df(self.starting_timestep, self.number_of_steps, scenario=self.scenario, verbose_lvl=self.verbose_lvl, simulation_environment=imbalance_environment, dict_of_df=self.scenario_df) return res_dict def fitness(self, individual): if individual.fitness is not None: return individual.fitness res_dict = self.run_simulation(individual) fitness_value = res_dict['wombat_battery_revenue'] individual.set_fitness(fitness_value) return fitness_value if __name__ == '__main__': random_individual = StrategyIndividual(init_params={'number_of_points': 4}) fitness = PureMoneyFitnessNoCongestion(verbose_lvl=1) fitness.set_month(4) print(fitness.fitness(random_individual)) ``` #### File: evolutionary_algorithm/populations/TournamentSelectionPopulation.py ```python import random from evolutionary_algorithm.Population import Population class TournamentSelectionPopulation(Population): def __init__(self, size, fitness, individual_class, init_params, tournament_size): super().__init__(size, fitness, individual_class, init_params) self.tournament_size = tournament_size def get_parents(self, num_of_partners): pop_max_index = len(self.individuals) - 1 selection = [] while len(selection) < 2 * num_of_partners: best = self.individuals[random.randint(0, pop_max_index)] for _ in range(self.tournament_size - 1): contestant = self.individuals[random.randint(0, pop_max_index)] if contestant.fitness < best.fitness: best = contestant selection.append(best) mothers = selection[:num_of_partners] fathers = selection[num_of_partners:] return mothers, fathers ``` #### File: local_smart_grid_simulation/helper_objects/ImbalancePriceReader.py ```python import pandas as pd import datetime as dt import dateutil.tz ams = dateutil.tz.gettz('Europe/Amsterdam') utc = dateutil.tz.UTC class ImbalancePriceReader(object): def __init__(self, market_data='../data/tennet_balans_delta/tennet_balans_delta_15m.csv'): market_df = pd.read_csv(market_data, parse_dates=True) market_df.index = pd.to_datetime(market_df['time'], utc=True) market_df = market_df.drop('time', axis=1) self.market_df = market_df def get_day(self, day=None): if day is None: day = dt.datetime(2020, 12, 27, tzinfo=utc) else: day = day.replace(hour=0, minute=0, second=0, microsecond=0) start_of_day = day end_of_day = day + dt.timedelta(days=1) return self.get_specific_time(start_of_day, end_of_day) def get_specific_time(self, start_of_time=None, end_of_time=None): if start_of_time is None: start_of_time = dt.datetime(2020, 12, 27, tzinfo=utc) if end_of_time is None: end_of_time = start_of_time + dt.timedelta(days=1) filtered_df = self.market_df[(self.market_df.index > start_of_time) & (self.market_df.index <= end_of_time)] return filtered_df if __name__ == '__main__': imbalance_price_reader = ImbalancePriceReader() print(imbalance_price_reader.get_day()) print(imbalance_price_reader.get_specific_time()) ``` #### File: helper_objects/strategies/CsvStrategy.py ```python import pandas as pd from helper_objects.strategies.Strategy import Strategy class CsvStrategy(Strategy): def __init__(self, name, strategy_csv, price_step_size=5): super().__init__(name, price_step_size) self.upload_strategy(strategy_csv) def update_max_and_min_price(self, strategy_df): assert(strategy_df['state_from'].min() == 0) assert(strategy_df['state_until'].max() == 100) highest_price = strategy_df['price_from'].drop_duplicates(keep='last').nlargest(1).iloc[0] + self.price_step_size lowest_price = strategy_df['price_until'].drop_duplicates(keep='last').nsmallest(1).iloc[0] - self.price_step_size self.max_price = highest_price self.min_price = lowest_price def upload_strategy(self, strategy_csv): strategy_df = pd.read_csv(strategy_csv) self.update_max_and_min_price(strategy_df) self.initialize_strategy_matrix() strategy_matrix = self.strategy_matrix for _, strategy_line in strategy_df.iterrows(): if strategy_line.command not in ['CHARGE', 'WAIT', 'DISCHARGE']: raise ValueError('Strategies should only contain the following commands: CHARGE, WAIT, DISCHARGE') if strategy_line.price_from != 9999 and strategy_line.price_from != -9999: if strategy_line.price_from % 5 != 0: raise ValueError('Strategies should be defined in price steps of 5. Found price: {}'.format(strategy_line.price_from)) if strategy_line.price_until != 9999 and strategy_line.price_until != -9999: if strategy_line.price_until % 5 != 0: raise ValueError('Strategies should be defined in price steps of 5. Found price: {}'.format(strategy_line.price_until)) current_soc = strategy_line.state_from if strategy_line.state_until == 100: strategy_line.state_until = 101 while current_soc < strategy_line.state_until: current_soc_index = current_soc for current_price in range(self.min_price, self.max_price + self.price_step_size, self.price_step_size): current_price_index = self.price_index(current_price) if strategy_line.price_from <= current_price <= strategy_line.price_until: strategy_matrix[current_soc_index][current_price_index] = strategy_line.command current_soc += 1 self.uploaded = True self.strategy_matrix = strategy_matrix ``` #### File: helper_objects/strategies/RandomStrategyGenerator.py ```python import random import sys from helper_objects.strategies.PointBasedStrategy import PointBasedStrategy from one_time_scripts.visualisations.strategy_visualisation import visualize_strategy def generate_fully_random_strategy(seed=None, name=None, strategy_price_step_size=None, number_of_points=None, flag_visualise=None): if seed is None: seed = random.randrange(sys.maxsize) if flag_visualise is None: flag_visualise = True random.seed(seed) if flag_visualise is None: flag_visualise = False if name is None: name = 'Randomly generated strategy. Seed={}'.format(seed) if strategy_price_step_size is None: price_step_size = 5 else: price_step_size = int(strategy_price_step_size) if number_of_points is None: number_of_points = random.randint(1, 5) else: number_of_points = int(number_of_points) point_based_strat = PointBasedStrategy(name, price_step_size=price_step_size) for _ in range(number_of_points): state_of_charge_perc = random.randint(6, 95) imbalance_price = random.randrange(-100, 400, price_step_size) point_based_strat.add_point((state_of_charge_perc, imbalance_price, 'CHARGE')) state_of_charge_perc = random.randint(6, 95) imbalance_price = random.randrange(-100, 400, price_step_size) point_based_strat.add_point((state_of_charge_perc, imbalance_price, 'DISCHARGE')) point_based_strat.upload_strategy() if flag_visualise: visualize_strategy(point_based_strat) return point_based_strat def generate_random_discharge_relative_strategy(seed=None, name=None, number_of_points=None, strategy_price_step_size=None, flag_visualise=None): if seed is None: seed = random.randrange(sys.maxsize) if flag_visualise is None: flag_visualise = True random.seed(seed) if flag_visualise is None: flag_visualise = False if name is None: name = 'Randomly generated strategy. Seed={}'.format(seed) if number_of_points is None: number_of_points = random.randint(2, 4) else: number_of_points = int(number_of_points) if strategy_price_step_size is None: strategy_price_step_size = 5 else: strategy_price_step_size = int(strategy_price_step_size) point_based_strat = PointBasedStrategy(name, price_step_size=strategy_price_step_size) soc_step_size = int(89/number_of_points) price_step_size = int(500/number_of_points) if price_step_size % strategy_price_step_size != 0: price_step_size = price_step_size - (price_step_size % strategy_price_step_size) charge_soc = 5 charge_price = 401 charge_price = charge_price + (strategy_price_step_size - charge_price % strategy_price_step_size) max_charge_price = charge_price discharge_soc = 0 discharge_price = charge_price for i in range(1, number_of_points): charge_soc = random.randint(charge_soc + 1, i * soc_step_size) charge_price = random.randrange(max_charge_price - i * price_step_size, charge_price - 1, strategy_price_step_size) point_based_strat.add_point((charge_soc, charge_price, 'CHARGE')) discharge_soc = min(max(charge_soc, discharge_soc) + random.randint(5, soc_step_size), 94) discharge_price = random.randrange(charge_price, discharge_price - 1, strategy_price_step_size) point_based_strat.add_point((discharge_soc, discharge_price, 'DISCHARGE')) charge_soc = 95 charge_min_price = -105 charge_min_price = charge_min_price - charge_min_price % strategy_price_step_size charge_price = random.randrange(charge_min_price, charge_price - 1, strategy_price_step_size) point_based_strat.add_point((charge_soc, charge_price, 'CHARGE')) discharge_soc = 95 discharge_price = random.randrange(charge_price, discharge_price - 1, strategy_price_step_size) point_based_strat.add_point((discharge_soc, discharge_price, 'DISCHARGE')) point_based_strat.upload_strategy() if flag_visualise: visualize_strategy(point_based_strat) return point_based_strat if __name__ == '__main__': fully_random = generate_fully_random_strategy(strategy_price_step_size=2, flag_visualise=True) random_strategy = generate_random_discharge_relative_strategy(strategy_price_step_size=2, flag_visualise=True) ``` #### File: network_objects/control_strategies/NaiveControlTower.py ```python from network_objects.Battery import Battery from network_objects.NetworkObject import NetworkObject class NaiveControlTower(NetworkObject): def __init__(self, name, network_object: Battery, verbose_lvl=3): super().__init__(name) self.battery = network_object self.verbose_lvl = verbose_lvl def take_step(self, environment_step, action_parameters) -> int: if self.verbose_lvl > 3: print(f'\t{self.battery.name} battery is taking a step. Current SoC: {self.battery.state_of_charge_kwh}kWh') self.progress_battery(environment_step, action_parameters) action, action_kw = self.determine_step(environment_step, action_parameters) action_kw = self.battery.take_action(action, action_kw) return action_kw def determine_step(self, environment_step, action_parameters) -> (str, int): return 'WAIT', 0 def progress_battery(self, environment_step, action_parameters): charge_price = environment_step[action_parameters[0]] discharge_price = environment_step[action_parameters[1]] self.battery.update_step(charge_price, discharge_price) def done_in_mean_time(self): return self.battery.done_in_mean_time() def end_of_environment_message(self, num_of_days=None): return self.battery.end_of_environment_message(num_of_days) def end_of_environment_metrics(self): return self.battery.end_of_environment_metrics() ``` #### File: network_objects/control_strategies/StrategyControlTower.py ```python from network_objects.Battery import Battery from network_objects.control_strategies.NaiveControlTower import NaiveControlTower class StrategyControlTower(NaiveControlTower): def __init__(self, name, network_object: Battery, verbose_lvl=3, strategy=None): super().__init__(name, network_object, verbose_lvl) self.strategy = strategy def determine_step(self, environment_step, action_parameters): charge_price = environment_step[action_parameters[0]] discharge_price = environment_step[action_parameters[1]] soc_perc = int(self.battery.state_of_charge_kwh / self.battery.max_kwh * 100) if self.strategy is None: raise NotImplementedError('You did not specify a strategy.') action = self.strategy.make_decision(charge_price, discharge_price, soc_perc) if self.verbose_lvl > 3: print(f'\t\t{self.strategy.name} tells the battery to {action}') return action, self.battery.max_kw ``` #### File: one_time_scripts/helper_objects/solarvation_loader.py ```python import datetime as dt import pandas as pd import dateutil.tz utc = dateutil.tz.tzutc() def date_parser(string): return dt.datetime.strptime(string, '%Y-%m-%d %H:%M:%S%z').replace(tzinfo=utc) def load_solarvation_data(solarvation_filename='../../data/environments/lelystad_1_2021.csv'): solarvation_df = pd.read_csv(solarvation_filename, parse_dates=[0], date_parser=date_parser) try: solarvation_df.index = pd.to_datetime(solarvation_df['time_utc'], errors='coerce', utc=True) except KeyError: solarvation_df.index = pd.to_datetime(solarvation_df['time_ams'], errors='coerce', utc=True) solarvation_df = solarvation_df.drop('time_ams', axis=1) solarvation_df['time_utc'] = solarvation_df.index solarvation_df['hour_of_production'] = solarvation_df.index.hour solarvation_df['time'] = solarvation_df['time_utc'].apply(lambda x: x.replace(year=1970, month=1, day=1)) return solarvation_df ``` #### File: solar_scripts/solar_old/solar_runner.py ```python import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import numpy as np import datetime as dt import dateutil.tz ams = dateutil.tz.gettz('Europe/Amsterdam') utc = dateutil.tz.tzutc() def date_parser(string): return dt.datetime.strptime(string, '%Y-%m-%dT%H:%M:%S%z').replace(tzinfo=utc) if __name__ == '__main__': solar_power_mw_df = pd.read_csv('../../../data/solar_data/solar_power/cleaned_solar_production.csv', parse_dates=[0], date_parser=date_parser) solar_power_mw_df.index = pd.to_datetime(solar_power_mw_df['time'], errors='coerce', utc=True) solar_power_mw_df = solar_power_mw_df.drop('time', axis=1) # print(solar_power_mw_df) radiation_df = pd.read_csv( '../../../data/solar_data/radiation_with_forecast/cleaned_radiation_forecast_and_values.csv', parse_dates=[0], date_parser=date_parser) radiation_df.index = pd.to_datetime(radiation_df['time'], errors='coerce', utc=True) radiation_df = radiation_df.drop('time', axis=1) # print(radiation_df) # First design decision, pad or interpolate 1h radiation data? # radiation_df = radiation_df.resample('15T').pad() radiation_df = radiation_df.resample('15T').interpolate() res_df = solar_power_mw_df.merge(radiation_df, how='inner', left_index=True, right_index=True) # print(res_df) my_solar_farm_m2 = 10 # Second method res_df['solar_farms_m2'] = res_df['solar_mw'] * 1000 / res_df['radiation'] # Third method res_df['cloud_coverage'] = res_df['solar_mw'] / res_df['solar_mw'].max() # Fourth method res_df['cloud_coverage_rolling'] = res_df['solar_mw'] / res_df['solar_mw'].rolling(180).max() # First method - Simply take radiation res_df['kw_my_solar_farm'] = my_solar_farm_m2 * res_df['radiation'] # However that does not take into account the efficiency of our solar panels. # It assumes all power that reaches them is translated into energy, that is not the case. # The total solar production offers us data on how efficient the solar panels are running # Second method - Based on m2 of windfarms res_df['kw_my_solar_farm_2'] = my_solar_farm_m2 / res_df['solar_farms_m2'] * res_df['solar_mw'] * 1000 res_df['kw_my_solar_farm_2'].replace(np.NaN, 0, inplace=True) # Third method res_df['kw_my_solar_farm_3'] = res_df['cloud_coverage'] * my_solar_farm_m2 * res_df['radiation'] # Fourth method res_df['kw_my_solar_farm_4'] = res_df['cloud_coverage_rolling'] * my_solar_farm_m2 * res_df['radiation'] res_df['hour_of_production'] = res_df.index.hour plt.scatter(res_df['hour_of_production'], res_df['kw_my_solar_farm_4']) plt.ylabel('Generated power 15m (kW)') plt.xlabel('Hour in which power was generated (UTC)') plt.title('Scatterplot of generated power by generic solar farm') plt.show() start_of_set = dt.datetime(2021, 7, 15, tzinfo=utc) end_of_set = dt.datetime(2021, 7, 19, tzinfo=utc) res_df = res_df[start_of_set:end_of_set] # print(res_df.to_string()) plt.plot(res_df.index, res_df['kw_my_solar_farm'], label='Radiation method') plt.plot(res_df.index, res_df['kw_my_solar_farm_2'], label='m2 of solar farms') plt.plot(res_df.index, res_df['kw_my_solar_farm_3'], label='Cloud coverage large max') plt.plot(res_df.index, res_df['kw_my_solar_farm_4'], label='Cloud coverage rolling window') ax = plt.gca() max_formatter = mdates.DateFormatter('%d-%m') ax.xaxis.set_major_locator(mdates.DayLocator(interval=1)) ax.xaxis.set_major_formatter(max_formatter) plt.ylabel('Genrated power (kW)') plt.xlabel('Time (UTC)') plt.title('Generated power for {}m2 solar farm.'.format(my_solar_farm_m2)) plt.legend(loc='lower right') plt.show() ``` #### File: one_time_scripts/visualisations/baselines_visualisation.py ```python import random import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy import stats from one_time_scripts.visualisations.visualise_ea_runs import convert_file_into_dict month_shorts = ['jan', 'feb', 'mar', 'apr', 'may', 'june', 'july', 'aug', 'sep', 'oct', 'nov', 'dec'] month_long = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] pretty_colours = [(0.15, 0.81, 0.82), (1, 0.24, 0.22), (0.52, 0.86, 0.39), (0.87, 0.34, 0.74), (0.11, 0.47, 0.76), (1, 0.69, 0), (0.29, 0.21, 0.28)] try: baseline_df = pd.read_csv('../../data/baseline_earnings/overview.csv', delimiter=';') except FileNotFoundError: baseline_df = pd.read_csv('../../../data/baseline_earnings/overview.csv', delimiter=';') # 0 Solarvation only discharging # 1 Wombat disregard congestion (with base money s... # 2 Wombat disregard congestion GIGA Baseline # 3 Wombat only solve congestion # 4 Wombat yearly timing (with base money strat) # 5 Wombat yearly timing GIGA Baseline # 6 Wombat conservative monthly timed (with base m... # 7 Wombat conservative monthly timed GIGA Baseline # 8 Wombat smart monthly timed (with base money st... # 9 Wombat smart monthly timed GIGA Baseline # 10 Wombat max smart monthly timed (with base mone... # 11 Wombat max smart monthly timed GIGA Baseline # 12 Wombat avg smart monthly timed (with base mone... # 13 Wombat avg smart monthly timed GIGA Baseline def make_list_of_monthly_earnings(single_run, few_months=None): if few_months is None: few_months = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] res = [] for i in few_months: month_label = month_shorts[i] + '_earning' res.append(single_run[month_label]) return res def make_mean_and_std_per_month_from_folder(source_folder='../../data/ea_runs/giga_baseline/', suffix='', few_months=None): if few_months is None: few_months = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] res_mean = [] res_error = [] for i in few_months: month_filename = source_folder + month_long[i] + suffix + '.csv' dict_of_runs, num_of_runs = convert_file_into_dict(month_filename) arr_of_best_individuals = [] for run_num in range(num_of_runs): run_label = f'run_{run_num}_best_individual' arr_of_best_individuals.append(dict_of_runs[run_label][-1]) arr_of_best_individuals = np.array(arr_of_best_individuals) res_mean.append(np.mean(arr_of_best_individuals)) res_error.append(np.std(arr_of_best_individuals)) return res_mean, res_error def make_arr_of_best_individuals_per_month_from_folder(source_folder='../../data/ea_runs/giga_baseline/', suffix='', few_months=None): if few_months is None: few_months = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11] res = [] for i in few_months: month_filename = source_folder + month_long[i] + suffix + '.csv' dict_of_runs, num_of_runs = convert_file_into_dict(month_filename) arr_of_best_individuals = [] for run_num in range(num_of_runs): run_label = f'run_{run_num}_best_individual' arr_of_best_individuals.append(dict_of_runs[run_label][-1]) arr_of_best_individuals = np.array(arr_of_best_individuals) res.append(arr_of_best_individuals) return res def statistic_tests(baseline_indices, source_folders, few_months=None, suffixes=None): res_dict = {} for source_folder_index in range(len(source_folders)): source_folder = source_folders[source_folder_index] if suffixes is not None: assert len(suffixes) == len(source_folders), 'Please supply as many suffixes as folders' suffix = suffixes[source_folder_index] else: suffix = '' arr_of_arr_of_best_individuals = make_arr_of_best_individuals_per_month_from_folder(source_folder, suffix=suffix, few_months=few_months) res_dict[source_folder_index] = arr_of_arr_of_best_individuals for source_folder_index in range(len(source_folders) - 1): suffix_one = suffixes[source_folder_index] suffix_other = suffixes[source_folder_index + 1] print(f'Comparing performance of {suffix_one} with {suffix_other} with T-Test') for month in range(len(few_months)): one = res_dict[source_folder_index][month] other = res_dict[source_folder_index + 1][month] t_value, p_value = stats.ttest_ind(one, other) print(f'Running test for month {few_months[month] + 1}') print('\tTest statistic is %f'%float("{:.6f}".format(t_value))) print('\tp-value for two tailed test is %f'%p_value) alpha = 0.05 if p_value <= alpha: print('\tConclusion','n','Since p-value(=%f)'%p_value,'<','alpha(=%.2f)'%alpha,'''We reject the null hypothesis H0.\n\t\tSo we conclude that the effect of the tested parameter are not equal i.e., μ1 = μ2 at %.2f level of significance.'''%alpha) else: print('\tConclusion','n','Since p-value(=%f)'%p_value,'>','alpha(=%.2f)'%alpha,'''We do not reject the null hypothesis H0.''') def make_bar_graph(baseline_indices, source_folders, few_months=None, suffixes=None, num_of_source_folder_baselines=0): for _ in range(len(baseline_indices) + num_of_source_folder_baselines): pretty_colours.append('#%06X' % random.randint(0, 0xFFFFFF)) month_labels = [] if few_months is None: max_x = 130 for month in month_shorts: month_labels.append(month.capitalize()) else: max_x = 10 + len(few_months) * 10 for month_index in few_months: month = month_long[month_index] month_labels.append(month.capitalize()) x_axis = np.array(list(range(10, max_x, 10))) num_of_items = len(baseline_indices) + len(source_folders) offsets = [] if num_of_items == 2: offsets = [-2, 2] elif num_of_items == 3: offsets = [-2, 0, 2] elif num_of_items == 4: offsets = [-3, -1, 1, 3] elif num_of_items == 5: offsets = [-3, -1.5, 0, 1.5, 3] elif num_of_items == 6: offsets = [-3.125, -1.875, -0.625, 0.625, 1.875, 3.125] width = offsets[-1] - offsets[-2] offset_tracker = -1 colour_index = len(source_folders) - num_of_source_folder_baselines + 1 for i in range(len(baseline_indices)): single_run = baseline_df.loc[baseline_indices[i]] single_run_y = make_list_of_monthly_earnings(single_run, few_months) hatch = '' alpha = 1 if single_run['time_steps_with_congestion'] > 1: alpha = 0.75 hatch = '///' plt.bar(x_axis + offsets[i], single_run_y, width, label=single_run['name'], hatch=hatch, alpha=alpha, color=pretty_colours[colour_index + i]) offset_tracker = i colour_index = colour_index + num_of_source_folder_baselines flag_colour_index_reset = False for source_folder_index in range(len(source_folders)): if num_of_source_folder_baselines == 0 and not flag_colour_index_reset: colour_index = 0 flag_colour_index_reset = True source_folder = source_folders[source_folder_index] if suffixes is not None: assert len(suffixes) == len(source_folders), 'Please supply as many suffixes as folders' suffix = suffixes[source_folder_index] else: suffix = '' offset_tracker = offset_tracker + 1 y_values, y_errors = make_mean_and_std_per_month_from_folder(source_folder, suffix=suffix, few_months=few_months) plt.bar(x_axis + offsets[offset_tracker], y_values, width, label=source_folder + suffix, color=pretty_colours[colour_index]) plt.errorbar(x_axis + offsets[offset_tracker], y_values, yerr=y_errors, fmt='o', markersize=width, elinewidth=width*0.5) num_of_source_folder_baselines = num_of_source_folder_baselines - 1 colour_index = colour_index + 1 plt.xticks(x_axis, month_labels) plt.xlabel('Month (2021)') plt.ylabel('Total EUR') plt.title('Comparing monthly performance') plt.legend(fontsize=6) plt.show() if __name__ == '__main__': label_indexes = [8, 13] source_folder_1 = '../../data/new_ea_runs/giga_baseline_with_congestion/' source_folder_2 = '../../data/ea_runs/random_init_first_runs/' make_bar_graph(label_indexes, source_folders=[source_folder_1, source_folder_2]) label_indexes = [2, 13] make_bar_graph(label_indexes, source_folders=[], suffixes=[]) label_indexes = [2, 13] make_bar_graph(label_indexes, source_folders=['../../data/new_ea_runs/default_runs_money/', '../../data/new_ea_runs/default_runs/']) label_indexes = [] source_folder_3 = '../../data/ea_runs/sorting_investigation/' source_folders = [source_folder_1, source_folder_3, source_folder_3, source_folder_3, source_folder_3] all_suffix = ['', '_sort_none', '_sort_1', '_sort_2', '_sort_3'] few_months = [2, 3, 10] make_bar_graph(label_indexes, source_folders=source_folders, suffixes=all_suffix, few_months=few_months, num_of_source_folder_baselines=1) statistic_tests([], [source_folder_3, source_folder_3], few_months=[2, 3, 10], suffixes=['_sort_none', '_sort_1']) ``` #### File: local_smart_grid_simulation/one_time_scripts/windnet_data_cleaner.py ```python import dateutil.tz import pandas as pd ams = dateutil.tz.gettz('Europe/Amsterdam') utc = dateutil.tz.tzutc() def correct_dates_windnet_csv(): base_windnet_df = pd.read_csv('../data/windnet/base_windnet_data_sep_2020_sep_2021.csv') base_windnet_df.index = pd.to_datetime(base_windnet_df['date'], utc=False, errors='coerce', dayfirst=True) base_windnet_df.index = base_windnet_df.index.tz_localize(ams, ambiguous='infer') base_windnet_df.index = base_windnet_df.index.tz_convert(utc) base_windnet_df = base_windnet_df.drop('date', axis=1) print(base_windnet_df) base_windnet_df.to_csv('../data/windnet/corrected_dates_windnet_data_sep_2020_sep_2021.csv') def add_power_to_base_windnet(): base_windnet_df = pd.read_csv('../data/windnet/corrected_dates_windnet_data_sep_2020_sep_2021.csv') base_windnet_df.index = pd.to_datetime(base_windnet_df['date'], utc=True) base_windnet_df = base_windnet_df.drop('date', axis=1) base_windnet_df['nht_usage_kw'] = base_windnet_df['nht_usage_kwh'] * 12 base_windnet_df['nht_production_kw'] = base_windnet_df['nht_production_kwh'] * 12 base_windnet_df['mmt_usage_kw'] = base_windnet_df['mmt_usage_kwh'] * 12 base_windnet_df['mmt_production_kw'] = base_windnet_df['mmt_production_kwh'] * 12 print(base_windnet_df) base_windnet_df.to_csv('../data/windnet/cleaned_windnet_data_aug_2020_sep_2021.csv') if __name__ == '__main__': correct_dates_windnet_csv() add_power_to_base_windnet() ``` #### File: local_smart_grid_simulation/one_time_scripts/windnet_interpolation.py ```python import datetime as dt import dateutil.tz import pandas as pd import matplotlib.pyplot as plt ams = dateutil.tz.gettz('Europe/Amsterdam') utc = dateutil.tz.tzutc() start_graph = dt.datetime(2021, 3, 20, 18, tzinfo=utc) end_graph = start_graph + dt.timedelta(minutes=240) def trivial_interpolation_windnet(): base_windnet_df = pd.read_csv('../data/windnet/cleaned_windnet_data_aug_2020_sep_2021.csv') base_windnet_df.index = pd.to_datetime(base_windnet_df['date'], utc=True, errors='coerce') base_windnet_df.index = base_windnet_df.index - dt.timedelta(minutes=5) base_windnet_df = base_windnet_df.drop(['date'], axis=1) base_windnet_df['nht_usage_kwh'] = base_windnet_df['nht_usage_kwh'] / 5 base_windnet_df['nht_production_kwh'] = base_windnet_df['nht_production_kwh'] / 5 base_windnet_df['mmt_usage_kwh'] = base_windnet_df['mmt_usage_kwh'] / 5 base_windnet_df['mmt_production_kwh'] = base_windnet_df['mmt_production_kwh'] / 5 base_windnet_df = base_windnet_df.resample('1T').pad() return base_windnet_df def pandas_linear_interpolation_windnet(): base_windnet_df = pd.read_csv('../data/windnet/cleaned_windnet_data_aug_2020_sep_2021.csv') base_windnet_df.index = pd.to_datetime(base_windnet_df['date'], utc=True, errors='coerce') base_windnet_df.index = base_windnet_df.index - dt.timedelta(minutes=5) base_windnet_df = base_windnet_df.drop(['date', 'nht_usage_kwh', 'nht_production_kwh', 'mmt_usage_kwh', 'mmt_production_kwh'], axis=1) base_windnet_df = base_windnet_df.resample('1T').interpolate() base_windnet_df['nht_usage_kwh'] = base_windnet_df['nht_usage_kw'] / 60 base_windnet_df['nht_production_kwh'] = base_windnet_df['nht_production_kw'] / 60 base_windnet_df['mmt_usage_kwh'] = base_windnet_df['mmt_usage_kw'] / 60 base_windnet_df['mmt_production_kwh'] = base_windnet_df['mmt_production_kw'] / 60 return base_windnet_df def csv_maker(): trivial_df = trivial_interpolation_windnet() pandas_df = pandas_linear_interpolation_windnet() print(trivial_df) print(pandas_df) trivial_df.to_csv('../data/windnet/trivial_interpolation_windnet.csv') pandas_df.to_csv('../data/windnet/pandas_interpolation_windnet.csv') def make_simple_graph(filtered_df, title): plt.plot(filtered_df.index, filtered_df['nht_production_kw'], marker='o') plt.title(title) plt.xlabel('Time') plt.ylabel('Produced power (kW)') plt.show() if __name__ == '__main__': # csv_maker() original_df = pd.read_csv('../data/windnet/cleaned_windnet_data_aug_2020_sep_2021.csv') original_df.index = pd.to_datetime(original_df['date'], utc=True, errors='coerce') original_df.index = original_df.index - dt.timedelta(minutes=5) original_df = original_df.drop(['date'], axis=1) trivial_df = pd.read_csv('../data/windnet/trivial_interpolation_windnet.csv') trivial_df.index = pd.to_datetime(trivial_df['date']) pandas_df = pd.read_csv('../data/windnet/pandas_interpolation_windnet.csv') pandas_df.index = pd.to_datetime(pandas_df['date']) original_df = original_df[original_df.index.to_series().between(start_graph, end_graph)] trivial_df = trivial_df[trivial_df.index.to_series().between(start_graph, end_graph)] pandas_df = pandas_df[pandas_df.index.to_series().between(start_graph, end_graph)] make_simple_graph(original_df, title='Original data') make_simple_graph(trivial_df, title='Trivial interpolation.') make_simple_graph(pandas_df, title='Pandas interpolation.') # csv_maker() ```
{ "source": "Jipolie01/nfl-playbook-creator", "score": 3 }
#### File: Jipolie01/nfl-playbook-creator/parser.py ```python from formations import * from routes import * from offense import * class parser(): def parse_formation(self, formation): play_dictionary = { "I_FORMATION" : i_formation(), "SINGLE_BACK_SET": single_back_set(), "PRO_SET": pro_set(), "SHOTGUN_STANDARD": shotgun_standard(), "SHOTGUN_TRIPS": shotgun_trips(), "SPREAD": spread()} return play_dictionary.get(formation) def parse_receiver(self, receiver): receiver_parsing = receiver.split("=") route_direction = False #print(receiver_parsing) if(receiver_parsing[1] == "T"): route_direction = True receiver_dictionary = { "SLANT" : slant(route_direction), "FLAT": flat(route_direction), "CURL" : curl(), "COMEBACK": comeback(route_direction), "QUICK_OUT": quick_out(route_direction), "MEDIUM_OUT": medium_out(route_direction), "DEEP_OUT": deep_out(route_direction), "CORNER" : corner(route_direction), "POST": post(route_direction), "SKINNY_POST" : skinny_post(route_direction), "GO": go(), "FADE": fade(route_direction), "SHOOT": shoot(route_direction) } return receiver_dictionary.get(receiver_parsing[0]) def parse_play(self, single_line): single_line = single_line.replace("\n", "") play_indicators = single_line.split(";") play_formation = self.parse_formation(play_indicators[1]) receiver_list = [] for i in range(2, 7): receiver_list.append(self.parse_receiver(play_indicators[i])) #print(receiver_list) return offense(play_indicators[0], quarterback(), receiver(receiver_list[0]), receiver(receiver_list[1]), receiver(receiver_list[2]), receiver(receiver_list[3]), receiver(receiver_list[4]), play_formation) #Example: {"SUPER_PLAY" : offense object} class playbook_file(): def __init__(self, play_dict): self.offense_plays_dict = play_dict def get_full_playbook_play(self, play_name): return self.offense_plays_dict.get(play_name) def get_number_of_plays(self): return len(self.offense_plays_dict) class playbook(): def __init__(self, path): self.factory_parsing = parser() self.offensive_playbook = self.convert_lines_to_playbook(self.read_file(path)) def convert_lines_to_playbook(self, lines): plays = [] for i in range(0, len(lines)): plays.append(self.factory_parsing.parse_play(lines[i])) return plays def read_file(self, path): line_list = [] with open(path, 'r') as file: line_list = file.readlines() return line_list def get_number_of_plays(self): return len(self.offensive_playbook) def get_play(self, index): return self.offensive_playbook[index] ``` #### File: Jipolie01/nfl-playbook-creator/routes.py ```python class route(): def __init__(self, height, top_route, x_top_route): self.height = height self.top_route = top_route self.x_top_route = x_top_route class slant(route): def __init__(self, breaks_left = True): route.__init__(self, -75, -50, -100 if breaks_left else 100) class flat(route): def __init__(self, breaks_left = True): route.__init__(self, -75, 0, -100 if breaks_left else 100) class curl(route): def __init__(self): route.__init__(self, -100, 20, 15) class comeback(route): def __init__(self, breaks_left = True): route.__init__(self, -150, 45, -30 if breaks_left else 30) class quick_out(route): def __init__(self, breaks_left = True): route.__init__(self, -60, 0, -100 if breaks_left else 100) class medium_out(route): def __init__(self, breaks_left = True): route.__init__(self, -120, 0, -100 if breaks_left else 100) class deep_out(route): def __init__(self, breaks_left = True): route.__init__(self, -200, 0, -100 if breaks_left else 100) class corner(route): def __init__(self, breaks_left = True): route.__init__(self, -200, -100, -100 if breaks_left else 100) class post(route): def __init__(self, breaks_left = True): route.__init__(self, -150, -150, -60 if breaks_left else 60) class skinny_post(route): def __init__(self, breaks_left = True): route.__init__(self, -150, -150, -30 if breaks_left else 30) class go(route): def __init__(self): route.__init__(self, -150, -150, 0) class fade(route): def __init__(self, breaks_left = True): route.__init__(self, -10, -50, -40 if breaks_left else 40) class shoot(route): def __init__(self, breaks_left = True): route.__init__(self, -2, -50, -150 if breaks_left else 150 ) """ TODO Multiple cut routes class crosser(route): pass class over(route): pass class drag(route): pass class sit(route): pass """ # TODO Play protection for routes. Like: Post and corner, basically the same. But make sure # Corner is always going away from the quarterback, same for the out ```
{ "source": "jiportilla/ontology", "score": 2 }
#### File: core/dmo/label_formatter.py ```python import os class LabelFormatter(object): """ string utility methods """ def __init__(self, is_debug: bool = False): """ Updated: 18-Mar-2019 <EMAIL> * renamed from 'string-util' * externalized formats to YAML """ self.is_debug = is_debug self.d_format = self._load() @staticmethod def _load() -> dict: from . import FileIO path = os.path.join(os.environ["CODE_BASE"], "resources/ontology/filters/entity_formatting.yml") return FileIO.file_to_yaml(path) def _camel_case(self, a_single_token: str, len_threshold=2): # lookup in formatter if a_single_token.lower() in self.d_format: return self.d_format[a_single_token.lower()] return self.camel_case(a_single_token, len_threshold) @staticmethod def camel_case(a_single_token: str, len_threshold: int = 2, split_tokens: bool = False, enforce_upper_case: bool = True): # don't format small tokens if len(a_single_token) <= len_threshold: if enforce_upper_case: return a_single_token.upper() if a_single_token.lower() == 'ibm': return 'IBM' return a_single_token if split_tokens and ' ' in a_single_token: results = [] for token in a_single_token.split(' '): results.append(LabelFormatter.camel_case(a_single_token=token, len_threshold=len_threshold, split_tokens=False, enforce_upper_case=False)) return ' '.join(results) # perform camel casing return "{}{}".format(a_single_token[:1].upper(), a_single_token[1:].lower()) def process(self, a_token: str) -> str: a_token = a_token.replace("_", " ") tokens = [self._camel_case(x) for x in a_token.split(" ")] tokens = [x for x in tokens if x] return " ".join(tokens) ``` #### File: core/dmo/redis_client.py ```python import os import re import redis class RedisClient(object): """ Redis Client """ WIKI_AUGMENTED_DB = 3 WIKI_PAGE_DB = 4 WIKI_SEARCH_DB = 5 def __init__(self, db: int = 0, decode_responses: bool = True): """ Created: 29-May-2019 <EMAIL> Updated: 04-Dec-2019 <EMAIL> * Use CredentialsFromJson Updated: 23-Jan-2020 <EMAIL> * Honor de DB parameter even when using an url. from_url ignores its param if already specified in the url """ from ..dto import CredentialsFromJson url = None ca_file = None if 'REDIS_JSON_CREDENTIALS' in os.environ: credentials = CredentialsFromJson(os.environ['REDIS_JSON_CREDENTIALS'], 'rediss') url = credentials.url ca_file = credentials.ca_file if not url: url = 'redis://localhost:6379/0' url = re.sub(r'/\d*$', f'/{db}', url) options = { 'decode_responses': decode_responses } if url.startswith('rediss:') and ca_file: options['ssl_ca_certs'] = ca_file self.redis = redis.from_url(url, **options) self.url = CredentialsFromJson.sanitize_url(url, 'rediss') def size(self) -> int: return self.redis.dbsize() def clear(self): for key in self.redis.keys(): self.redis.delete(key) def set(self, a_key: str, value: str) -> None: self.redis.set(a_key, value) def get(self, key) -> str: return self.redis.get(key) def has(self, key) -> bool: return self.redis.exists(key) def set_list(self, a_key: str, a_list: list) -> None: if not self.has(a_key): self.redis.rpush(a_key, *a_list) def get_list(self, a_key: str) -> list: return self.redis.lrange(a_key, 0, 9999999) # I don't like this either ... def set_dict(self, a_key: str, a_dict: dict) -> None: if not self.has(a_key): self.redis.hmset(a_key, a_dict) def get_dict(self, a_key: str) -> dict: return self.redis.hgetall(a_key) ``` #### File: badges/bp/badge_analysis_api.py ```python import time from base import BaseObject IS_DEBUG = True class BadgeAnalysisAPI(BaseObject): """ API for Manifest based badge analysis activities """ def __init__(self, manifest_name: str, activity_name: str, first: int=-1, last: int=-1): """ Created: 10-Jan-2020 <EMAIL> """ from cendalytics.badges.svc import BadgeAnalysisManifestData BaseObject.__init__(self, __name__) self.analyzer = BadgeAnalysisManifestData(manifest_name, activity_name, first, last, is_debug=IS_DEBUG) def analyze_per_badge(self): self.analyzer.process() def analyze_distribution(self): self.analyzer.analyze_distribution() def flush_target(self): return self.analyzer.flush_target() def get_sources(self): return self.analyzer.source_collections() def call_badge_analysis_api(manifest_name, activity_name, action, first, last): first = int(first) if first else -1 last = int(last) if last else -1 print(f"API Parameters " f"(manifest-name={manifest_name}, " f"activity-name={activity_name}, " f"action={action}, " f"first={first}, last={last})") if manifest_name.startswith("badge-analysis"): api = BadgeAnalysisAPI(manifest_name, activity_name, first, last) return getattr(api, action)() else: raise ValueError(f"Unrecognized Manifest: {manifest_name}") ``` #### File: badges/dmo/badge_entity_analysis.py ```python from typing import Dict from base import BaseObject from nlutext.core.bp import TextParser class BadgeEntityAnalysis(BaseObject): """ Generate a sorted array of cendant tags and weights from the badge name and the supplied ingested tags """ __cache:Dict[str,list] = {} __parser = None def __init__(self, badge_name: str, raw_tags: list, is_debug: bool = False): """ Created: 19-Apr-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/97 Updated: 15-Aug-2019 <EMAIL> * add mongo host as a param; driven by https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/767 Updated: 22-Aug-2019 <EMAIL> * remove text-parser caching https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/796#issuecomment-14041159 Updated: 12-Jan-2020 <EMAIL> * changed the interface to get badge name + array of tags and return a sorted array of (tag, weight) * keep TextParser cached """ BaseObject.__init__(self, __name__) self._text_snipnets = raw_tags + [badge_name] self._is_debug = is_debug @classmethod def _parse(cls, some_tag: str, is_debug: bool) -> list: if some_tag in cls.__cache: return cls.__cache[some_tag] if not cls.__parser: cls.__parser = TextParser(is_debug=is_debug) cls.__cache[some_tag] = cls.__parser.process(some_tag)['tags']['supervised'] return cls.__cache[some_tag] def process(self) -> list: tag_weights:Dict[str, float] = {} for snipnet in self._text_snipnets: tags = self._parse(snipnet, self._is_debug) for tag, weight in tags: if not tag in tag_weights: tag_weights[tag] = -1 if weight > tag_weights[tag]: tag_weights[tag] = weight def sort_by_key(tag_weight_tuple): return tag_weight_tuple[1] return sorted(tag_weights.items(), key=sort_by_key, reverse=True) ``` #### File: badges/svc/badge_analysis_manifest_data.py ```python from collections import Counter from statistics import mean from statistics import stdev import pprint import typing from pymongo.operations import UpdateOne from pymongo.errors import BulkWriteError from base import BaseObject from base import MandatoryParamError from datamongo.core.dmo import BaseMongoClient from datamongo.core.bp import CendantCollection from dataingest.core.dmo import ManifestConnectorForMongo class BadgeAnalysisManifestData(BaseObject): """Tag and calc distribution values for badges input records: { "_id": "Containers, K8s and Istio on IBM Cloud", "key_field":"Containers, K8s and Istio on IBM Cloud"}, "fields":[ {"agent":"system", "type":"text", "name":"strategy_tags", "value":["cloud"], "transformations":["tag_list"] }, {"agent":"system", "type":"text", "name":"category_tags", "value":["knowledge"], "transformations":["tag_list"] } ] } resulting records: { "_id": "Containers, K8s and Istio on IBM Cloud", "badge":"Containers, K8s and Istio on IBM Cloud"}, "ingested_tags": ["knowledge", "cloud], "tags":[["cloud", 99], ["ibm cloud", 95.2], ["container", 91.7]], "owners":{ "count": 1133, "zScore": -0.129 } } Created: 13-Jan-2020 <EMAIL> Updated: 14-Jan-2020 <EMAIL> * Using a query to count the number of owners of each badge could be asking too much from mongodb when running lots of processes in parallel. We now walk the supply collection one instead. """ def __init__(self, manifest: str, activity: str, first: int = -1, last: int = -1, is_debug: bool = False): BaseObject.__init__(self, __name__) from dataingest.core.dmo import ManifestActivityFinder if not manifest: raise MandatoryParamError("Manifest Name") if not activity: raise MandatoryParamError("Activity Name") self._is_debug = is_debug self._mongo_client = BaseMongoClient() self._manifest = ManifestActivityFinder(manifest, activity).process() self._first = first self._last = last def _source(self) -> CendantCollection: if self._is_debug: self.logger.debug('\n'.join([ "Retrieved Source Manifest", pprint.pformat(self._manifest["source"])])) return ManifestConnectorForMongo(self._manifest["source"], some_base_client=self._mongo_client, is_debug=self._is_debug).process() def _target(self) -> CendantCollection: if self._is_debug: self.logger.debug('\n'.join([ "Retrieved Target Manifest", pprint.pformat(self._manifest["target"])])) return ManifestConnectorForMongo(self._manifest["target"], some_base_client=self._mongo_client, is_debug=self._is_debug).process() def _owners(self) -> CendantCollection: if self._is_debug: self.logger.debug('\n'.join([ "Retrieved Badge Owners Manifest", pprint.pformat(self._manifest["badge_owners"])])) return ManifestConnectorForMongo(self._manifest["badge_owners"], some_base_client=self._mongo_client, is_debug=self._is_debug).process() def _input_records(self) -> list: collection = self._source() if self._first < 0: records = collection.all() else: limit = self._last - self._first + 1 records = collection.skip_and_limit(self._first, limit) return records def _badges_and_ingested_tags(self, input_records: list) -> list: records = [] for input_record in input_records: raw_tags: typing.Set[str] = set() for element in input_record['fields']: if element['name'] in ['category_tags', 'skills_tags', 'strategy_tags']: # just in case raw_tags.update(element['value']) records.append({ '_id': input_record['_id'], 'badge': input_record['key_field'], 'ingested_tags': list(raw_tags) }) return records def _add_parsed_tags(self, output_records: list) -> list: from cendalytics.badges.dmo import BadgeEntityAnalysis for record in output_records: cendant_tags = BadgeEntityAnalysis(record['badge'], record['ingested_tags']).process() record['tags'] = cendant_tags return output_records def _persist_target(self, output_records: list) -> None: try: collection = self._target() self.logger.debug(f'Persiting {len(output_records)} in {collection.collection_name}...') actions = [] for record in output_records: actions.append(UpdateOne({'_id': record['_id']}, {'$set': record}, upsert=True)) results = collection.collection.bulk_write(actions, ordered=False) return self.logger.debug(f'Persisted to {collection.collection_name}' f'matched={results.matched_count}. ' f'inserted={results.inserted_count}. ' f'upserted={results.upserted_count}. ' f'modified={results.modified_count}') except BulkWriteError as xcpt: self.logger.error(xcpt.details) raise def source_collections(self) -> list: collection = self._source() return [(collection.collection_name, collection.count())] def flush_target(self) -> None: collection = self._target() collection.delete(keep_indexes=False) def process(self) -> None: input_records = self._input_records() output_records = self._badges_and_ingested_tags(input_records) output_records = self._add_parsed_tags(output_records) self._persist_target(output_records) def _get_number_of_owners(self) -> Counter: counter: typing.Counter[str] = Counter() collection = self._owners() for chunk in collection.by_chunks(chunk_size=2000): # print('.', end='', flush=True) for record in chunk: for field in record['fields']: if field['type'] == 'badge': counter.update({field['value']: 1}) return counter def _get_zScores(self, counter_of_owners: Counter) -> list: counts = [x[1] for x in counter_of_owners.items()] count_mean = mean(counts) count_stdev = stdev(counts) del counts def zScore(count): z = (count - count_mean) / count_stdev return round(z, 3) records = [] for badge, count in counter_of_owners.items(): records.append({ '_id': badge, 'owners': { 'count': count, 'zScore': zScore(count) } }) return records def analyze_distribution(self) -> None: counter_of_owners = self._get_number_of_owners() output_records = self._get_zScores(counter_of_owners) self._persist_target(output_records) ``` #### File: budapest/dmo/data_transformer_for_conference.py ```python from pandas import DataFrame from base import BaseObject from base import LabelFormatter class DataTransformerForConference(BaseObject): """ Transforms a conference DataFrame to a normalized JSON dictionary """ def __init__(self, some_df: DataFrame): """ Created: 5-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) self.df = some_df @staticmethod def _cleanse(a_str: str) -> str: return str(a_str).replace("'", "") def _result(self, a_row, column_name: str, unknown="unknown") -> str: some_result = self._cleanse(a_row[column_name]) if not some_result or not len(some_result): return unknown return some_result @staticmethod def _name(a_row) -> str: first_name = a_row["first_name"] last_name = a_row["last_name"] return "{} {}".format(LabelFormatter.camel_case(first_name), LabelFormatter.camel_case(last_name)) def _country_code(self, a_row) -> str: return self._cleanse(a_row["country_code"]) def _department(self, a_row) -> str: return self._cleanse(a_row["department"]) def _division(self, a_row) -> str: return self._cleanse(a_row["division"]) def _organization(self, a_row) -> str: return self._cleanse(a_row["organization"]) def _group(self, a_row) -> str: return self._cleanse(a_row["group"]) def _ebu_code(self, a_row) -> str: return self._cleanse(a_row["ebu_code"]) def _geography(self, a_row) -> str: return self._result(a_row, "geography", unknown="Other Geo") def _region(self, a_row) -> str: return self._result(a_row, "region", unknown="Other Region") def _country_name(self, a_row) -> str: return self._result(a_row, "country_name", unknown="Other Country") def _job_role_id(self, a_row) -> str: return self._result(a_row, "job_role_id", unknown="0") def _bu_code(self, a_row) -> str: return self._result(a_row, "bu_code", unknown="Other BU") def _bu_name(self, a_row) -> str: return self._result(a_row, "bu_name", unknown="Other BU Name") def _lob_code(self, a_row) -> str: return self._result(a_row, "lob_code", unknown="Other LOB") def process(self): records = [] for i, row in self.df.iterrows(): records.append({ "name": self._name(row), "country_code": self._country_code(row), "department": self._department(row), "division": self._division(row), "organization": self._organization(row), "group": self._group(row), "ebu_code": self._ebu_code(row), "geography": self._geography(row), "region": self._region(row), "country_name": self._country_name(row), "job_role_id": self._job_role_id(row), "bu_code": self._bu_code(row), "bu_name": self._bu_name(row), "lob_code": self._lob_code(row), }) self.logger.debug("\n".join([ "Transformed Dataframe to Records", "\ttlen: {}".format(len(records)) ])) return records ``` #### File: budapest/dmo/data_transformer_for_jrs.py ```python from base import BaseObject from datamongo import CendantCollection class DataTransformerForJrs(BaseObject): """ Transforms a parsed JRS record set """ def __init__(self): """ Created: 5-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) @staticmethod def _records(): return CendantCollection(some_db_name="cendant", some_collection_name="jrs_parsed").all() def process(self) -> list: l_records = [] blacklist = ["is_shortlist", "indirect_jrll"] for record in self._records(): d_record = {} for field in record["fields"]: if field["name"] in blacklist: continue def _tags(): if "tags" in field: return sorted(set(field["tags"]["supervised"] + field["tags"]["unsupervised"])) d_record[field["name"]] = { "value": field["value"], "tags": _tags() } l_records.append(d_record) return l_records ``` #### File: core/svc/generate_meta_sentiment.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class GenerateMetaSentiment(BaseObject): """ Retrieve Source Records for Feedback Sentiment Processing """ def __init__(self, df_summary: DataFrame, is_debug: bool = False): """ Created: 16-Jan-2020 <EMAIL> * the refactoring of a notebook from https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1746 :param df_summary: DataFrame of this Report: 'feedback_tag_<DATE>-summary-<TS>.csv' e.g., 'feedback_tag_20191202-summary-1575690754.csv' :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._df_summary = df_summary def _summarize(self) -> DataFrame: record_ids = sorted(self._df_summary['RecordID'].unique()) master = [] for record_id in record_ids: df2 = self._df_summary[self._df_summary['RecordID'] == record_id] def _region(): country = df2['Country'].unique()[0] region = df2['Region'].unique()[0] if region.lower() == 'africa': return "mea" if region.lower() == 'middle east': return "mea" if region.lower() == 'asia': return "ap" if country.lower() in ["australia", "new zealand", "sri lanka", "india"]: return "ap" if country.lower() in ["china", "hong kong", "taiwan"]: return "gcg" return region cons = len(df2[df2['Category'] == 'Cons']) pros = len(df2[df2['Category'] == 'Pros']) suggestions = len(df2[df2['Category'] == 'Suggestions']) def adjudicate(): if cons >= pros - 1 and cons > suggestions: return "Cons" if pros > cons and pros > suggestions + 1: return "Pros" return "Suggestions" for i in range(0, 10): master.append({ "Category": adjudicate(), "Country": df2['Country'].unique()[0], "Leadership": df2['Leadership'].unique()[0], "RecordID": df2['RecordID'].unique()[0], "Region": _region(), "Schema": df2['Schema'].unique()[0], "Tag": df2['Tag'].unique()[0], "Tenure": df2['Tenure'].unique()[0]}) df_output = pd.DataFrame(master) return df_output def process(self) -> DataFrame: return self._summarize() ``` #### File: core/svc/generate_polarity_report.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject from base import LabelFormatter class GeneratePolarityReport(BaseObject): """ Generate a Summary of Sentiment Tags Sample Output: +----+-------------+-----------+--------------+--------------------------------------+---------------+-----------------------+----------+ | | Category | Country | Leadership | RecordID | Schema | Tag | Tenure | |----+-------------+-----------+--------------+--------------------------------------+---------------+-----------------------+----------| | 0 | Suggestions | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Education | Test | | 1 | Suggestions | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Career Conversation | Test | | 2 | Suggestions | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Collaboration | Career Conversation | Test | | 3 | Suggestions | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Promotion | Career Conversation | Test | | 4 | Pros | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Positive Leadership | Test | | 5 | Pros | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Supportive | Test | | 6 | Pros | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Positive Team Culture | Test | | 7 | Other | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Request | Test | | 8 | Cons | Test | Test | 8d30ec64-0e74-11ea-b45d-acde48001122 | Test | Career Growth | Test | +----+-------------+-----------+--------------+--------------------------------------+---------------+-----------------------+----------+ """ __l_pros = [ 'positive team culture', 'positive leadership', 'supportive', 'appreciation', 'satisfied', ] __l_cons = [ 'career growth', 'no conversation', 'no career growth', 'improve culture', 'promotion', 'pay raise', 'churn', 'employee churn', 'no change', 'age', 'argument', 'bad process', 'bad quality', 'behavior', 'benefit', 'benefit pay', 'bias', 'bonus pay', 'cost cutting', 'cost of living', 'cost reduction', ] __l_suggestions = [ 'education', 'career conversation', 'appraisal', 'checkpoint', 'clients', 'collaborative culture', 'collaboration', 'customer support', 'customer experience' ] def __init__(self, df_report: DataFrame, is_debug: bool = False): """ Created: 23-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1441 :param df_report: a DataFrame that contains text with associated tags :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._df_report = df_report def _categorize(self, tag: str) -> str or None: tag = tag.lower().strip() if tag in self.__l_pros: return "Pros" if tag in self.__l_cons: return "Cons" if tag in self.__l_suggestions: return "Suggestions" @staticmethod def _case(input_text: str) -> str: return LabelFormatter.camel_case(input_text, split_tokens=True) def process(self, log_threshold: int = 1000) -> DataFrame: from cendalytics.feedback.core.dto import SentimentRecordStructure master = [] record_ids = self._df_report['RecordID'].unique() ctr = 0 total_records = len(record_ids) for record_id in record_ids: df_by_record_id = self._df_report[self._df_report['RecordID'] == record_id] ctr += 1 if ctr % log_threshold == 0: self.logger.debug(f"Status: {ctr}-{total_records}") for _, row in df_by_record_id.iterrows(): def _categorize(): category = self._categorize(row['Tag']) if category: return category for schema in row['Schema']: category = self._categorize(schema) if category: return category return 'Other' d_row = SentimentRecordStructure.deep_copy(row) d_row['Tag'] = self._case(row['Tag']) d_row['Category'] = self._case(_categorize()) master.append(d_row) return pd.DataFrame(master).sort_values(by=['RecordID'], ascending=False) ``` #### File: core/svc/retrieve_source_records.py ```python from base import BaseObject from datamongo import CendantCollection class RetrieveSourceRecords(BaseObject): """ Retrieve Source Records for Feedback Sentiment Processing """ def __init__(self, collection_name: str, is_debug: bool = False): """ Created: 23-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1441 :param collection_name: the name of the collection to retrieve the records from :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._collection = CendantCollection(some_collection_name=collection_name) def process(self, total_records:int=None) -> list: def records(): if not total_records: return self._collection.all() return self._collection.all(limit=total_records) records = records() if self._is_debug: self.logger.debug('\n'.join([ f"Retrieved Records (total={len(records)})", f"\tCollection Name: {self._collection.collection_name}"])) return records ``` #### File: geo/svc/generate_missing_geo.py ```python import csv import os from base import BaseObject GEO_BASE_PATH = "resources/output" class GenerateMissingGeo(BaseObject): """ Auto Generate missing city or country csv""" _city_missing_count_dict = {} _country_missing_count_dict = {} def __init__(self): """ Created: 12-September-2019 <EMAIL> * collect missing count for city and country * generate missing cities, countries csv https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/863 """ BaseObject.__init__(self, __name__) @staticmethod def collect_missing_count(data_type, value): """ Collect missing entry in country and city :param data_type: city/country :param value: value :return: """ missing_dict = None if data_type == "city": missing_dict = GenerateMissingGeo._city_missing_count_dict if data_type == "country": missing_dict = GenerateMissingGeo._country_missing_count_dict if not missing_dict: missing_dict[value] = 1 if value in missing_dict.keys(): missing_dict[value] = missing_dict[value] + 1 else: missing_dict[value] = 1 @staticmethod def generate_missing_data(some_datatype): """ generate csv for missing entry city/country counts :param some_datatype: :return: """ missing_dict = None filename = None csv_file_path = os.path.join(os.environ["GTS_BASE"], GEO_BASE_PATH) if some_datatype == "city": filename = 'missing-city.csv' missing_dict = GenerateMissingGeo._city_missing_count_dict if some_datatype == "country": filename = 'missing-country.csv' missing_dict = GenerateMissingGeo._country_missing_count_dict csv_columns = ['name', 'missing-count'] try: with open(csv_file_path + '/' + filename, 'w') as csvfile: writer = csv.DictWriter(csvfile, fieldnames=csv_columns) writer.writeheader() for key, value in missing_dict.items(): writer.writerow({'name': key, 'missing-count': value}) except IOError: raise IOError(f"I/O Error while generating geo csvs") ``` #### File: core/bp/report_api.py ```python from base import BaseObject from cendalytics.report.core.svc import GenerateFeedbackReport from datamongo import BaseMongoClient class ReportAPI(BaseObject): """ """ def __init__(self, mongo_client: BaseMongoClient = None, is_debug: bool = False): """ Created: 13-Nov-2019 <EMAIL> :param mongo_client: :param is_debug: """ BaseObject.__init__(self, __name__) if not mongo_client: mongo_client = BaseMongoClient() self._is_debug = is_debug self._mongo_client = mongo_client def report(self): class Facade(object): @classmethod def by_serial_number(cls, serial_number: str, collection_date: str = "latest") -> GenerateFeedbackReport: return GenerateFeedbackReport(key_field=serial_number, source_data_name="supply", collection_date=collection_date, mongo_client=self._mongo_client, is_debug=self._is_debug) @classmethod def by_openseat_id(cls, openseat_id: str, collection_date: str = "latest") -> GenerateFeedbackReport: return GenerateFeedbackReport(key_field=openseat_id, source_data_name="demand", collection_date=collection_date, mongo_client=self._mongo_client, is_debug=self._is_debug) @classmethod def by_learning_id(cls, learning_id: str, collection_date: str = "latest") -> GenerateFeedbackReport: return GenerateFeedbackReport(key_field=learning_id, source_data_name="learning", collection_date=collection_date, mongo_client=self._mongo_client, is_debug=self._is_debug) return Facade() ``` #### File: core/dmo/ranking_report_writer.py ```python from openpyxl.worksheet.worksheet import Worksheet COLUMNS = {"A": 20, "B": 10, "C": 10, "D": 10, "E": 10, "F": 10, "G": 10, "H": 10, "I": 10} class RankingReportWriter(object): def __init__(self, some_excel_worksheet: Worksheet, some_source_dimension: list, some_target_dimensions: list, some_final_ranking: list): """ :param some_excel_worksheet: the excel worksheet to write to """ from . import WorksheetHelper if not some_excel_worksheet: raise ValueError("Mandatory Param: Excel Worksheet") if not some_source_dimension: raise ValueError("Mandatory Param: Source Dimension") if not some_target_dimensions: raise ValueError("Mandatory Param: Target Dimemsion") if not some_final_ranking: raise ValueError("Mandatory Param: Final Ranking") self.worksheet = some_excel_worksheet self.source_dimension = some_source_dimension self.target_dimensions = some_target_dimensions self.final_ranking = some_final_ranking self.helper = WorksheetHelper def _write_value(self, some_column: str, some_row: int, some_text: str, some_named_format: str): """ :param some_column: :param some_row: :param some_text: :param some_named_format: """ cell = "{}{}".format(some_column, some_row) self.worksheet[cell].value = some_text self.worksheet[cell].style = some_named_format def _write_records(self, source_weights: list, source_values: list): """ writes records by row and column """ def _dimension_value(value: str) -> dict: return self.helper.struct(value, "dimension_value_source") def _dimension_weight(value: str) -> dict: return self.helper.struct(value, "dimension_weight_source") def _header_dimension(value: str) -> dict: return self.helper.struct(value, "header_dimension") def _header_other(value: str) -> dict: return self.helper.struct(value, "header_other") def _field_key(value: str) -> dict: return self.helper.struct(value, "keyfield") def _field_weight(value: str) -> dict: return self.helper.struct(value, "field_weight_source") def _field_rank(value: str) -> dict: return self.helper.struct(value, "field_rank") d_row_1 = { "A1": _header_other("Open Seat ID"), "B1": _header_dimension("Cloud"), "C1": _header_dimension("Database"), "D1": _header_dimension("System Administrator"), "E1": _header_dimension("Hard Skill"), "F1": _header_dimension("Project Management"), "G1": _header_dimension("Service Management"), "H1": _header_dimension("Soft Skill"), "I1": _header_other("Rank")} d_row_2 = { "A2": self.helper.struct(self.source_dimension[0]["key_field"], "keyfield_value_source"), "B2": _dimension_value(source_values[0]), "C2": _dimension_value(source_values[1]), "D2": _dimension_value(source_values[6]), "E2": _dimension_value(source_values[2]), "F2": _dimension_value(source_values[3]), "G2": _dimension_value(source_values[4]), "H2": _dimension_value(source_values[5])} d_row_3 = { "A3": self.helper.struct("Weight", "dimension_weight_text"), "B3": _dimension_weight(source_weights[0]), "C3": _dimension_weight(source_weights[1]), "D3": _dimension_weight(source_weights[6]), "E3": _dimension_weight(source_weights[2]), "F3": _dimension_weight(source_weights[3]), "G3": _dimension_weight(source_weights[4]), "H3": _dimension_weight(source_weights[5])} def _field_weight_value(target_dimension: dict, slot_name: str) -> str: return target_dimension["slots"][slot_name]["weight"] l_values = [] for i in range(0, len(self.target_dimensions)): l_values.append({ "A{}".format(i + 5): _field_key( self.target_dimensions[i]["key_field"]), "B{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "cloud")), "C{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "database")), "D{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "system administrator")), "E{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "hard skill")), "F{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "project management")), "G{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "service management")), "H{}".format(i + 5): _field_weight( _field_weight_value(self.target_dimensions[i], "soft skill")), "I{}".format(i + 5): _field_rank( self.final_ranking[i])}) self.helper.generate(self.worksheet, [d_row_1, d_row_2, d_row_3]) self.helper.generate(self.worksheet, l_values) def process(self): """ Processes the logs from the input directory @input: Base directory containing the input and output subdirs. @output: None """ def _weights(some_records: list) -> list: weights = [] for record in some_records: weights.append([record["slots"][x]["weight"] for x in record["slots"]]) return weights def _values(some_records: list) -> list: values = [] for record in some_records: values.append([record["slots"][x]["z_score"] for x in record["slots"]]) return values source_weights = _weights(self.source_dimension)[0] source_values = _values(self.source_dimension)[0] self.helper.column_widths(self.worksheet, COLUMNS) self._write_records(source_weights, source_values) ``` #### File: core/dmo/record_retriever.py ```python from tabulate import tabulate from base import BaseObject from datamongo import BaseMongoClient from datamongo import CendantCollection from datamongo import CendantXdm from datamongo import TransformCendantRecords class RecordRetriever(BaseObject): def __init__(self, key_field: str, mongo_client: BaseMongoClient, collection_names: dict, is_debug: bool = False): """ Created: 13-Nov-2019 <EMAIL> * refactored out of 'generate-feedback-report' Updated: 14-Nov-2019 <EMAIL> * added random record capability https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1331#issuecomment-16009658 :param key_field: the value of the keyfield to process (e.g. the actual Serial Number or Open Seat ID) :param collection_names: a dictionary containing a complete set of collection names Sample Input: { 'src': 'supply_src_20191025', 'tag': 'supply_tag_20191025', 'xdm': 'supply_xdm_20191029' } :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._key_field = key_field self._mongo_client = mongo_client self._collection_names = collection_names def _retrieve_record(self, collection_name: str): collection = CendantCollection(is_debug=self._is_debug, some_base_client=self._mongo_client, some_collection_name=collection_name) if self._key_field.lower().strip() == "random": # GIT-1331-16009658 return collection.random(total_records=1)[0] return collection.by_key_field(self._key_field) def _tag_record(self) -> dict or None: tag_record = self._retrieve_record(self._collection_names["tag"]) if not self._collection_names["tag"]: self.logger.warning('\n'.join([ "TAG Collection Not Found", f"\t{self._collection_names}"])) return None if not tag_record: self.logger.warning('\n'.join([ f"TAG Record Not Found (" f"key-field={self._key_field})"])) return None if self._is_debug: df_record = TransformCendantRecords.to_dataframe(a_record=tag_record, include_text=False) self.logger.debug('\n'.join([ f"Retrieved TAG Record (" f"key-field={self._key_field})", tabulate(df_record, tablefmt='psql', headers='keys')])) return tag_record def _xdm_record(self) -> dict or None: if not self._collection_names["xdm"]: self.logger.warning('\n'.join([ "XDM Collection Not Found", f"\t{self._collection_names}"])) return None xdm_record = self._retrieve_record(self._collection_names["xdm"]) if not xdm_record: self.logger.warning('\n'.join([ f"XDM Record Not Found (" f"key-field={self._key_field})"])) return None if self._is_debug: self.logger.debug('\n'.join([ f"Retrieved XDM Record (" f"key-field={self._key_field})", tabulate(CendantXdm.dataframe(xdm_record), tablefmt='psql', headers='keys')])) return xdm_record def process(self) -> dict: svcresult = { "tag": self._tag_record(), "xdm": self._xdm_record()} if self._is_debug: self.logger.debug('\n'.join([ "Records Retrieved", f"\tKey Field: {self._key_field}", f"\tTAG Collection: {self._collection_names['tag']}", f"\tXDM Collection: {self._collection_names['xdm']}"])) return svcresult ``` #### File: core/dmo/tag_report_writer.py ```python from openpyxl.worksheet.worksheet import Worksheet from base import BaseObject from datadict import FindDimensions from datadict import FindRelationships COLUMNS = {"A": 25, "B": 25, "C": 45, "D": 45, "E": 25, "F": 25, "G": 25, "H": 25, "I": 25} class TagReportWriter(BaseObject): def __init__(self, key_field: str, excel_worksheet: Worksheet, tag_record: dict, is_debug: bool = False): """ Created: 12-Nov-2019 <EMAIL> * based on 'feedback-report-writer' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1331#issuecomment-15953128 :param key_field: the value of the keyfield to process (e.g. the actual Serial Number or Open Seat ID) :param excel_worksheet: the excel worksheet to write to :param tag_record: :param is_debug: """ BaseObject.__init__(self, __name__) from . import WorksheetHelper self._is_debug = is_debug self._key_field = key_field self._tag_record = tag_record self._excel_worksheet = excel_worksheet self._helper = WorksheetHelper self._rel_finder = FindRelationships() self._supply_finder = FindDimensions("supply") self._learning_finder = FindDimensions("learning") def _write_value(self, some_column: str, some_row: int, some_text: str, some_named_format: str): """ :param some_column: :param some_row: :param some_text: :param some_named_format: """ cell = "{}{}".format(some_column, some_row) self._excel_worksheet[cell].value = some_text self._excel_worksheet[cell].style = some_named_format def _parent_hierarchy(self, tag: str) -> str: """ Purpose: Show the entity ancestry back to root this is useful for demonstrating the tag's context in the Ontology Example 1: Input: 'W3C standard' Output: 'standard, entity' Example 2: Input: 'deep learning' Output: 'cognitive skill, technical skill, skill' 'statistical algorithm, technical skill, skill' :param tag: any input tag :return: a string value representing the ancestry of the input tag """ return '\n'.join([', '.join(x) for x in self._rel_finder.ancestors(tag)]) def _supply_schema(self, tag: str) -> str: """ Purpose: Find the associated supply schema elements :param tag: any tag from a mongoDB field :return: the result as a comma-separated string """ return ', '.join(self._supply_finder.find(tag)) def _learning_schema(self, tag: str) -> str: """ Purpose: Find the associated learning schema elements :param tag: any tag from a mongoDB field :return: the result as a comma-separated string """ return ', '.join(self._learning_finder.find(tag)) @staticmethod def _field_data(a_field: dict) -> str: """ Purpose: Format a field meta-data expression Format: Field Name (Field Type) Sample Output: position_description (long-text) :param a_field: any field of a mongoDB record :return: the formatted text """ return f"{a_field['name']} ({a_field['type']})\n{a_field['field_id']}" @staticmethod def _original_text(a_field: dict) -> str: """ Purpose: Return the original text as a string :param a_field: any field of a mongoDB record :return: the normalized text """ if type(a_field["value"]) == list: return " ".join([str(x) for x in a_field["value"]]) return a_field["value"] def _normalized_text(self, a_field: dict) -> str: """ Purpose: Conditionally return the normalized text Conditions 1. Normalized Text must exist 2. Normalized Text must not be equivalent to Original Text :param a_field: any field of a mongoDB record :return: the normalized text """ if "normalized" not in a_field: return "" normalized_text = " ".join(a_field["normalized"]) if normalized_text == self._original_text(a_field): return "" return normalized_text @staticmethod def _tags(a_field: dict) -> dict: """ Purpose: Key Tags by Confidence Level in descending order Sample Output: { 91.5: [ 'artificial neural network'], 78.2: [ 'deploy', 'google', 'tensorflow'], 88.2: [ 'team lead'] } :param a_field: any field of a mongoDB record :return: a dictionary keyed by Confidence levrel """ d = {} for x in a_field["tags"]["supervised"]: if x[1] not in d: d[x[1]] = [] d[x[1]].append(x[0]) return d def _write_records(self): """ writes records by row and column """ def _header_other(value: str) -> dict: return self._helper.struct(value, "header_other") def _collection_name(value: str) -> dict: return self._helper.struct(value, "collection_name") def _collection_value(value: str) -> dict: return self._helper.struct(value, "collection_value") def _collection_text(value: str) -> dict: return self._helper.struct(value, "collection_text") d_row_1 = { "A1": _header_other(self._tag_record["key_field"]), "B1": _header_other("Field MetaData"), "C1": _header_other("Original"), "D1": _header_other("Normalized"), "E1": _header_other("Tag"), "F1": _header_other("Confidence"), "G1": _header_other("Parents"), "H1": _header_other(f"Supply Schema"), "I1": _header_other(f"Learning Schema")} row = 2 l_structs = [] for field in self._tag_record["fields"]: field_data = self._field_data(a_field=field) original_text = self._original_text(a_field=field) normalized_text = self._normalized_text(a_field=field) if "tags" in field: tag_ctr = 1 d_tags = self._tags(a_field=field) for tag_confidence in sorted(d_tags.keys()): for tag_name in d_tags[tag_confidence]: parents = self._parent_hierarchy(tag_name) supply_schema = self._supply_schema(tag_name) learning_schema = self._learning_schema(tag_name) if tag_ctr == 1: l_structs.append({ "A{}".format(row): _collection_value(field["collection"]["name"]), "B{}".format(row): _collection_value(field_data), "C{}".format(row): _collection_text(original_text), "D{}".format(row): _collection_text(normalized_text), "E{}".format(row): _collection_value(tag_name), "F{}".format(row): _collection_value(tag_confidence), "G{}".format(row): _collection_value(parents), "H{}".format(row): _collection_value(supply_schema), "I{}".format(row): _collection_value(learning_schema)}) elif tag_ctr > 1: l_structs.append({ "A{}".format(row): _collection_text(""), "B{}".format(row): _collection_text(""), "C{}".format(row): _collection_text(""), "D{}".format(row): _collection_text(""), "E{}".format(row): _collection_value(tag_name), "F{}".format(row): _collection_value(tag_confidence), "G{}".format(row): _collection_value(parents), "H{}".format(row): _collection_value(supply_schema), "I{}".format(row): _collection_value(learning_schema)}) tag_ctr += 1 row += 1 else: l_structs.append({ "A{}".format(row): _collection_name(field["collection"]["name"]), "B{}".format(row): _collection_text(original_text), "C{}".format(row): _collection_text(normalized_text), "D{}".format(row): _collection_text(""), "E{}".format(row): _collection_text(""), "F{}".format(row): _collection_text(""), "G{}".format(row): _collection_text(""), "H{}".format(row): _collection_text(""), "I{}".format(row): _collection_text("")}) self._helper.generate(worksheet=self._excel_worksheet, l_structs=[d_row_1]) self._helper.generate(worksheet=self._excel_worksheet, l_structs=l_structs) def process(self): self._helper.column_widths(worksheet=self._excel_worksheet, d_columns=COLUMNS) self._write_records() ``` #### File: core/dmo/worksheet_helper.py ```python import string from openpyxl.worksheet.worksheet import Worksheet class WorksheetHelper: @classmethod def column_letters(cls) -> list: """ Purpose: Generate all possible excel column letters Sample Output: [ 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'AA', 'AB', 'AC', ... 'ZX', 'ZY', 'ZZ'] :return: list of excel column letters """ alphabet = [x for x in string.ascii_uppercase] for ch in string.ascii_uppercase: [alphabet.append(alpha) for alpha in [f"{ch}{x}" for x in string.ascii_uppercase]] return alphabet @classmethod def column_widths(cls, worksheet: Worksheet, d_columns: dict) -> None: """ :param worksheet: an active Excel worksheet :param d_columns: a dictionary of columns and widths e.g. { 'A': 10, 'B': 10 } """ def _update(alpha: str): worksheet.column_dimensions[alpha].width = d_columns[alpha] [_update(alpha) for alpha in d_columns] @classmethod def struct(cls, value: str, style: str) -> dict: return {"value": value, "style": style} @classmethod def generate(cls, worksheet: Worksheet, l_structs: list) -> None: """ :param worksheet: an active Excel worksheet :param l_structs: a list of structures e.g. [ { 'value': 'Some Text Value', 'style': 'predefined-style' }, ... { 'value': 'Another Text Value', 'style': 'some-other-style' } ] """ for d in l_structs: for k in d: worksheet[k].value = d[k]["value"] worksheet[k].style = d[k]["style"] ``` #### File: consumer/recipes/tag_search_tutorial.py ```python from base import BaseObject from cendalytics.skills.core.bp import SkillsReportAPI from datamongo import CendantCollectionRegistry class TagSearchTutorial(BaseObject): """ """ def __init__(self, is_debug: bool = False): """ Created: 13-Nov-2019 <EMAIL> """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._api = SkillsReportAPI(is_debug=is_debug) self._collection_registry = CendantCollectionRegistry(is_debug=self._is_debug) def single_tag_single_division(self) -> None: """ Purpose: Find Ansible Skills in GBS :return: """ collection_name = self._collection_registry.by_date("20191025").supply().tag() searcher = self._api.search(collection_name=collection_name) searcher.tags(tags=["Ansible"], div_field="GBS").process() def main(): TagSearchTutorial(is_debug=True).single_tag_single_division() if __name__ == "__main__": main() ``` #### File: core/fcd/skills_report_on_certifications.py ```python from typing import Optional from base import BaseObject from base import DataTypeError from base import MandatoryParamError from cendalytics.skills.core.svc import FindSelfReportedCertifications class SkillsReportOnCertifications(BaseObject): """ Facade: Service that finds Self-Reported Certifications in user CVs and HR data """ def __init__(self, collection_name: str, exclude_vendors: Optional[list], add_normalized_text: bool = True, aggregate_data: bool = False, mongo_database_name: str = 'cendant', is_debug: bool = False): """ Created: 8-Nov-2019 <EMAIL> * refactored out of skills-report-api https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1293 :param collection_name: the collection from which to query data this should be the most recent annotation run against 'supply-tag' (e.g., supply_tag_20190801) :param exclude_vendors: Optional a list of vendors to exclude this is not case sensitive for example, ['ibm'] will exclude all IBM certifications from this feedback :param add_normalized_text: add the normalized (pre-processed) field text to the dataframe result Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/815#issuecomment-14125072 :param aggregate_data: if True return aggregate data only +----+-------------------------------------------------+-------------+----------------+ | | Certification | Frequency | Vendor | |----+-------------------------------------------------+-------------+----------------| | 0 | ITIL Certification | 8176 | Axelos | | 1 | ITIL Foundation Certification | 15450 | Axelos | | 2 | IBM Certification | 21062 | IBM | | 3 | CCNA Certification | 4899 | Cisco | | 4 | Java Certification | 2224 | Oracle | | 5 | Project Management Professional | 1660 | PMI | | 6 | Level 3 Certification | 415 | IBM | | 7 | CCNA Security | 142 | Cisco | | 8 | Microsoft Certification | 1880 | Microsoft | +----+-------------------------------------------------+-------------+----------------+ if False return individual level data +----+-------------------------------------------------+----------------+----------------+ | | Certification | SerialNumber | Vendor | |----+-------------------------------------------------+----------------+----------------| | 0 | ITIL Certification | 123456 | Axelos | | 1 | ITIL Foundation Certification | 227232 | Axelos | | 2 | IBM Certification | 9483223 | IBM | | 3 | CCNA Certification | 9483223 | Cisco | | 4 | Java Certification | 9483223 | Oracle | | 5 | Project Management Professional | 923823 | Oracle | | 6 | Level 3 Certification | 009238323 | IBM | | 7 | CCNA Security | 009238323 | Cisco | | 8 | Microsoft Certification | 2371221 | Microsoft | +----+-------------------------------------------------+----------------+----------------+ :param mongo_database_name: the database containing the MongoDB collections (e.g., cendant) :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._aggregate_data = aggregate_data self._collection_name = collection_name self._mongo_database_name = mongo_database_name self._add_normalized_text = add_normalized_text self._exclude_vendors = self._transform_exclude_vendors(exclude_vendors) @staticmethod def _transform_exclude_vendors(exclude_vendors: Optional[list]) -> list: if not exclude_vendors: return [] return exclude_vendors def _validate(self) -> None: if not self._collection_name: raise MandatoryParamError("Collection Name") if type(self._collection_name) != str: raise DataTypeError def initialize(self) -> FindSelfReportedCertifications: """ Purpose: Execute the Report to find "Self-Reported Certifications" :return: a pandas DataFrame with the results """ # Step: Perform Data Validation self._validate() self.logger.info('\n'.join([ "Instantiate Self-Reported Certifications Report", f"\tAggregate Data: {self._aggregate_data}", f"\tExclude Vendors: {self._exclude_vendors}", f"\tAdd Normalized Text: {self._add_normalized_text}", f"\tCollection: {self._collection_name}"])) # Step: Instantiate Service return FindSelfReportedCertifications(exclude_vendors=self._exclude_vendors, aggregate_data=self._aggregate_data, add_normalized_text=self._add_normalized_text, collection_name=self._collection_name, mongo_database_name=self._mongo_database_name, is_debug=self._is_debug) ``` #### File: core/fcd/skills_utility_to_csv.py ```python from pandas import DataFrame from base import BaseObject from cendalytics.skills.core.svc import GenerateCsvReport class SkillsUtilityToCSV(BaseObject): """ Facade: Service that generates a CSV feedback from a Skills-based pandas DataFrame """ def __init__(self, df_results: DataFrame, hash_serial_number: bool = False, is_debug: bool = False): """ Created: 8-Nov-2019 <EMAIL> * refactored out of skills-report-api https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1293 :param df_results: a DataFrame of search results :param hash_serial_number: if True (default) return an MD5 hash of the serial number if False return the actual Serial Number note - individual Serial Numbers are exposed internally to all employees in Bluepages :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._df_results = df_results self._hash_serial_number = hash_serial_number def _validator(self) -> None: from cendalytics.skills.core.dto import SkillsReportValidator if type(self._df_results) != DataFrame: SkillsReportValidator.expected(self._df_results, "pandas.DataFrame") if type(self._hash_serial_number) != bool: SkillsReportValidator.expected(self._hash_serial_number, "bool") def initialize(self) -> GenerateCsvReport: """ :return: an instantiated service """ # Step: Perform Data Validation self._validator() self.logger.info('\n'.join([ "Instantiate CSV Report Generator", f"\tDF: {len(self._df_results)}", f"\tHash Serial Number? {self._hash_serial_number}"])) # Step: Instantiate Service return GenerateCsvReport(df=self._df_results, hash_serial_number=self._hash_serial_number) ``` #### File: core/svc/find_self_reported_certifications.py ```python import time from typing import Union from pandas import DataFrame from base import BaseObject from datadict import FindCertifications from datamongo import BaseMongoClient from datamongo import CendantTag class FindSelfReportedCertifications(BaseObject): """ Purpose: Service that finds Self-Reported Certifications in user CVs and HR data a "self-reported" certification is one that cannot be externally verifiable. Examples: 1. an IBM employee may earn a Level 2 badge Certification from IBM for Architecture. This can be verified using data we have. 2. an IBM employee can earn a certification that results in a badge. This can be verified - IF - IBM has access to that particular badge data (IBM can access some, but not all, badges) 3. an IBM employee can earn a Microsoft certification While this can be verified through a Microsoft directory, we likely will not have access to that data and therefore can provide an automated system confirmation. Thus, this would remain an example of a "self-reported certification" meaning there is no automated independent verification possible. Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/606 Prereq: a populated "Supply_Tag_***" collection (e.g., 'supply_tag_20190801') """ def __init__(self, collection_name: str, exclude_vendors: list, add_normalized_text: bool, aggregate_data: bool, mongo_database_name: str, server_alias: str = 'cloud', is_debug: bool = False): """ Created: 5-Aug-2019 <EMAIL> Purpose: Execute the Report to find "Self-Reported Certifications" :param collection_name: the collection from which to query data this should be the most recent annotation run against 'supply-tag' (e.g., supply_tag_20190801) :param add_normalized_text: add the normalized (pre-processed) field text to the dataframe result Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/815#issuecomment-14125072 :param aggregate_data: if True return aggregate data only [Certification, Vendor, Frequency] :param exclude_vendors: Optional a list of vendors to exclude this is not case sensitive for example, ['ibm'] will exclude all IBM certifications from this feedback :param mongo_database_name: the database containing the MongoDB collections (e.g., cendant) :param mongo_host_name: deprecated/ignored :return: a pandas DataFrame with the results :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._aggregate_data = aggregate_data self._exclude_vendors = exclude_vendors self._add_normalized_text = add_normalized_text self._cert_finder = FindCertifications() self._collection = CendantTag(collection_name=collection_name, database_name=mongo_database_name, mongo_client=BaseMongoClient(server_alias=server_alias), is_debug=True) if self._is_debug: self.logger.debug('\n'.join([ f"\tInitialize FindSelfReportedCertifications: ", f"\tDatabase Name: {mongo_database_name}", f"\tCollection Name: {collection_name}", f"\tAggregate Data: {self._aggregate_data}", f"\tExclude Vendors: {self._exclude_vendors}", f"\tAdd Normalized Text: {self._add_normalized_text}"])) def _result(self) -> Union[DataFrame, None]: """ Purpose: 1. Individual Dataframe (default) https://github.ibm.com/-cdo/unstructured-analytics/issues/617 This dataframe returns a feedback record-by-record +----+-------------------------------------------------+----------------+----------------+ | | Certification | SerialNumber | Vendor | |----+-------------------------------------------------+----------------+----------------| | 0 | ITIL Certification | 123456 | Axelos | | 1 | ITIL Foundation Certification | 227232 | Axelos | | 2 | IBM Certification | 9483223 | IBM | | 3 | CCNA Certification | 9483223 | Cisco | | 4 | Java Certification | 9483223 | Oracle | | 5 | Project Management Professional | 923823 | Oracle | | 6 | Level 3 Certification | 009238323 | IBM | | 7 | CCNA Security | 009238323 | Cisco | | 8 | Microsoft Certification | 2371221 | Microsoft | +----+-------------------------------------------------+----------------+----------------+ Each Serial Number, Certification and Vendor is represented 2. Aggregated dataframe https://github.ibm.com/-cdo/unstructured-analytics/issues/606 This dataframe returns aggregated statistics at the Certificatiomn level +----+-------------------------------------------------+-------------+----------------+ | | Certification | Frequency | Vendor | |----+-------------------------------------------------+-------------+----------------| | 0 | ITIL Certification | 8176 | Axelos | | 1 | ITIL Foundation Certification | 15450 | Axelos | | 2 | IBM Certification | 21062 | IBM | | 3 | CCNA Certification | 4899 | Cisco | | 4 | Java Certification | 2224 | Oracle | | 5 | Project Management Professional | 1660 | PMI | | 6 | Level 3 Certification | 415 | IBM | | 7 | CCNA Security | 142 | Cisco | | 8 | Microsoft Certification | 1880 | Microsoft | +----+-------------------------------------------------+-------------+----------------+ Serial Numbers are left out of this. :return: the result Dataframe """ from cendalytics.skills.core.dmo import CertificationAggregateReport from cendalytics.skills.core.dmo import CertificationIndividualReport if self._aggregate_data: if self._is_debug: self.logger.debug("Running Aggregate Report") return CertificationAggregateReport(collection=self._collection, is_debug=self._is_debug).process() if self._is_debug: self.logger.debug("Running Individual Report") return CertificationIndividualReport(collection=self._collection, is_debug=self._is_debug).process() def _exclusions(self, dataframe: DataFrame) -> DataFrame: """ Purpose: Exclude Blacklisted Vendors https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/624 :param dataframe: the original dataframe :return: the modified dataframe """ for vendor in self._exclude_vendors: dataframe = dataframe[dataframe.Vendor != vendor] return dataframe def _subsumptions(self, dataframe: DataFrame) -> DataFrame: """ Purpose: Remove Subsumed Certifications https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/623 :param dataframe: the original dataframe :return: the modified dataframe """ from cendalytics.skills.core.svc import RemoveSubsumedCertifications return RemoveSubsumedCertifications(dataframe=dataframe, is_debug=self._is_debug).process() def _label_transformation(self, dataframe: DataFrame) -> DataFrame: """ Purpose: Perform Certification Labelling https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/981 :param dataframe: the original dataframe :return: the modified dataframe """ from cendalytics.skills.core.svc import PerformCertificationLabelling return PerformCertificationLabelling(dataframe=dataframe, is_debug=self._is_debug).process() def process(self) -> DataFrame: start = time.time() df_results = self._result() if df_results is None or df_results.empty: raise ValueError(f"No Records Found " f"(collection={self._collection.collection.collection_name})") df_results = self._exclusions(df_results) df_results = self._subsumptions(df_results) if self._is_debug: end_time = time.time() - start self.logger.debug(f"Generated Report: " f"Time={end_time}, " f"Total={len(df_results)}") return df_results.sort_values(by=['Confidence'], ascending=False) ``` #### File: core/svc/generate_division_distribution.py ```python from collections import Counter import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject from base import MandatoryParamError from datamongo import BaseMongoClient from datamongo import CendantCollection class GenerateDivisionDistribution(BaseObject): """ Purpose: Generate a record counter by distribution Sample Output: +----+---------+------------+ | | Count | Division | |----+---------+------------| | 1 | 96773 | gbs | | 0 | 85485 | | | 3 | 26969 | fno | | 2 | 15203 | cloud | | 4 | 12311 | systems | | 5 | 11177 | chq_oth | +----+---------+------------+ """ def __init__(self, collection_name: str, host_name: str = None, # deprecated/ignored is_debug: bool = True): """ Created: 28-Oct-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1209 :param collection_name: any valid collection name that contains a 'div_field' at the record root :param host_name: deprecated/ignored :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) if not collection_name: raise MandatoryParamError("Collection Name") self._is_debug = is_debug self._collection = CendantCollection(is_debug=self._is_debug, some_collection_name=collection_name, some_base_client=BaseMongoClient()) @staticmethod def _count(records: list) -> Counter: c = Counter() for record in records: c.update({record["div_field"]: 1}) return c @staticmethod def _to_dataframe(c: Counter) -> DataFrame: results = [] for k in c: results.append({"Division": k, "Count": float(c[k])}) return pd.DataFrame(results).sort_values(by=['Count'], ascending=False) def process(self) -> DataFrame: df = self._to_dataframe( self._count( self._collection.all())) if self._is_debug: self.logger.debug('\n'.join([ "Division Distributed Generated", tabulate(df, headers='keys', tablefmt='psql')])) return df ``` #### File: core/svc/perform_certification_labelling.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject from datadict import FindCertifications class PerformCertificationLabelling(BaseObject): """ Purpose: Proper Label Certification Report e.g., transform 'itil certification' => 'ITIL Certification' Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/981 """ def __init__(self, dataframe: DataFrame, is_debug: bool = False): """ Created: 23-Sept-2019 <EMAIL> Purpose: Execute the Report to find "Self-Reported Certifications" :param dataframe: dataframe :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._dataframe = dataframe if self._is_debug: self.logger.debug(f"Initialize PerformCertificationLabelling") def process(self) -> DataFrame: print (self._dataframe.head(5)) return self._dataframe ``` #### File: sna/bp/social_network_analysis_api.py ```python from base import BaseObject from base import MandatoryParamError class SocialNetworkAnalysisAPI(BaseObject): """ API to Persist Data in DB2 """ def __init__(self): """ Created: - 13-July-2019 - <EMAIL> """ BaseObject.__init__(self, __name__) @staticmethod def socialnetworkanalysis(url, intranet_id, intranet_pass): from cendalytics.sna import SocialNetworkOrchestrator from cendalytics.sna import InputCredentials # set credentials InputCredentials.set_config_details(intranet_id, intranet_pass) social_network_api = SocialNetworkOrchestrator(url) sentiment_analysis = social_network_api.process() return sentiment_analysis @staticmethod def process(blog_url, username='', password='', db2username='', db2password=''): import getpass try: print("Enter credentials:\n") if not username: username = input("Intranet ID: ") if not password: password = getpass.getpass(prompt='Your Intranet password: ') # db2username = input("DB2 Username: ") # db2password = getpass.getpass(prompt='DB2 Password: ') except Exception as err: print('ERROR:', err) else: print("\n".join([ "API Parameters", "\tIntranet-id: {}".format(username)])) print("\n".join([ "API Parameters", "\tblog_url: {}".format(blog_url) ])) if not username: raise MandatoryParamError("Intranet id") if not password: raise MandatoryParamError("Intranet Password") # if not db2username: # raise MandatoryParamError("DB2 Username") # if not db2password: # raise MandatoryParamError("DB2 Password") if blog_url.startswith("http"): sentiment_analysis_json = SocialNetworkAnalysisAPI.socialnetworkanalysis(blog_url, username, password) else: raise ValueError("\n".join([ "Unrecognized Input", f"\tname: {blog_url}"])) return sentiment_analysis_json if __name__ == "__main__": sentiment_data = SocialNetworkAnalysisAPI.process( "https://w3-connections.ibm.com/blogs/0d86cb37-869b-435e-8ffc-f2f16949d5ee/entry/GTS_Academy?lang=en_us") ``` #### File: subk/bp/subk_analysis_orchestrator.py ```python from pandas import DataFrame from base import BaseObject from dataingest import ExcelReader class SubkAnalysisOrchestrator(BaseObject): """ Orchestrate the Subk (Sub-Contractor) Analysis Business Process """ def __init__(self, input_spreadsheet:str, is_debug: bool = True): """ Created: 16-Jan-2020 <EMAIL> * Reference https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1740#issuecomment-17198891 :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._input_spreadsheet = input_spreadsheet def process(self, overwrite_files:bool=True): from cendalytics.subk.svc import AnalyzeSkillsForSubk from cendalytics.subk.svc import ClusterInputSkills from cendalytics.subk.svc import ClusterSkillsForGTS AnalyzeSkillsForSubk(is_debug=self._is_debug, input_file=self._input_spreadsheet).process() def main(): IS_DEBUG = True input_spreadsheet = "/Users/craig.trimibm.com/Box/GTS CDO Workforce Transformation/04. Documentation/Cendant Tasks/GIT-1740/GTS Labs Subk's - skill details.xlsx" orchestrator = SubkAnalysisOrchestrator(is_debug=IS_DEBUG, input_spreadsheet=input_spreadsheet) orchestrator.process(overwrite_files=False) if __name__ == "__main__": main() ``` #### File: subk/dmo/skill_file_writer.py ```python import os from pandas import DataFrame from base import BaseObject class SkillFileWriter(BaseObject): """ Common Domain Component to Write DataFrames to File """ def __init__(self, df_output: DataFrame, output_file_name: str, is_debug: bool = True): """ Created: 20-Jan-2020 <EMAIL> :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._df_output = df_output self._output_file_name = output_file_name def process(self) -> None: full_path = os.path.join(os.environ['GTS_BASE'], 'resources/output/subk') if not os.path.exists(full_path): os.makedirs(full_path, exist_ok=True) output_path = os.path.join(full_path, self._output_file_name) self._df_output.to_csv(output_path, encoding="utf-8", sep="\t") if self._is_debug: self.logger.debug('\n'.join([ "Wrote To File", f"\tOutput Path: {output_path}", f"\tTotal Records: {len(self._df_output)}"])) ``` #### File: consumer/recipe/create_and_invert_all.py ```python from base import BaseObject from cendalytics.tfidf.core.bp import VectorSpaceAPI from datamongo import BaseMongoClient from datamongo import CendantCollection class CreateAndInvertAll(BaseObject): """ Purpose: Given a Collection, 1. Create a Vector Space for the entire collection and invert this Vector Space 2. For each division represented in the Vector Space, create a Vector Space and invert this Vector Space """ def __init__(self, collection_name: str): BaseObject.__init__(self, __name__) self._collection_name = collection_name def process(self): vectorspace_api = VectorSpaceAPI(is_debug=False) mongo_client = BaseMongoClient() collection = CendantCollection(some_base_client=mongo_client, some_collection_name=self._collection_name) for division in collection.distinct("div_field"): vs_fpath = vectorspace_api.tfidf().create(division=division, mongo_client=mongo_client, collection_name=self._collection_name).process() print(f"VS Library Path: {vs_fpath}") vs_library_name = vs_fpath.split('/')[-1] print(f"VS Library Name: {vs_library_name}") inversion_fpath = vectorspace_api.inversion().create(vs_library_name).process(top_n=3) print(f"Inversion Library Path: {inversion_fpath}") inversion_library_name = inversion_fpath.split('/')[-1] print(f"Inversion Library Name: {inversion_library_name}") def main(): COLLECTION_NAME = 'supply_tag_20191025' CreateAndInvertAll(collection_name=COLLECTION_NAME).process() if __name__ == "__main__": main() ``` #### File: core/dmo/vectorspace_library_loader.py ```python import os import time import pandas as pd from pandas import DataFrame from base import BaseObject from base import FileIO class VectorSpaceLibraryLoader(BaseObject): """ Load Vector Space """ __df_vectorspace = None __columns = {"Number": int, "Doc": str, "DocsWithTerm": int, "IDF": float, "TF": float, "TFIDF": float, "Term": str, "TermFrequencyInCorpus": int, "TermFrequencyInDoc": int, "TermsInDoc": int, "TotalDocs": int} def __init__(self, library_name: str, is_debug: bool = False): """ Created: 10-Jul-2019 <EMAIL> * search the skills vector space Updated: 5-Nov-2019 <EMAIL> * renamed from 'skills-vectorspace-loader' and refactored out of nlusvc project https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1261 :param library_name: :param is_debug: """ BaseObject.__init__(self, __name__) self.is_debug = is_debug self._library_name = library_name def _library_path(self): fname = f"resources/confidential_input/vectorspace/{self._library_name}" return os.path.join(os.environ["GTS_BASE"], fname) def _process(self) -> None: start = time.time() _input_path = FileIO.absolute_path(self._library_path()) df = pd.read_csv( _input_path, delim_whitespace=False, sep='\t', error_bad_lines=False, skip_blank_lines=True, skiprows=1, comment='#', encoding='utf-8', names=self.__columns.keys(), dtype=self.__columns, na_values=['none'], usecols=self.__columns.keys()) df.fillna(value='', inplace=True) end = time.time() if self.is_debug: self.logger.debug("\n".join([ "Read CSV File", "\tPath: {}".format(_input_path), "\tTotal Time: {}".format(end - start)])) self.__df_vectorspace = df def df(self) -> DataFrame: if self.__df_vectorspace is None: self._process() return self.__df_vectorspace ``` #### File: core/fcd/vectorspace_create.py ```python import time from base import BaseObject from base import DataTypeError from base import MandatoryParamError from cendalytics.tfidf.core.svc import CreateCollectionVectorSpace from datamongo import BaseMongoClient class VectorSpaceCreate(BaseObject): """ VectorSpace Function Facade """ def __init__(self, parent, is_debug: bool = False): """ Created: 6-Nov-2019 <EMAIL> """ BaseObject.__init__(self, __name__) self._parent = parent self._is_debug = is_debug @staticmethod def validate(collection_name: str, mongo_client: BaseMongoClient, division: str = None, limit: int = 0) -> None: if not collection_name: raise MandatoryParamError("Collection Name") if 'tag' not in collection_name.lower(): raise ValueError("Tag Collection Expected") if not mongo_client: raise MandatoryParamError("Mongo Client") if division and type(division) != str: raise DataTypeError("Division") if limit and type(limit) != int: raise DataTypeError("Limit") def create(self, collection_name: str, division: str or None, mongo_client: BaseMongoClient, limit: int = None) -> CreateCollectionVectorSpace: """ Purpose: Generate a Vector Space via TF-IDF Metrics Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1261#issuecomment-15732844 :param collection_name: the name of the tag collection to build the vector space across :param division: the division to focus on :param mongo_client: an instantiated mongoDB connection instance :param limit: Optional the number of records to return :return: an instantiated GenerateVectorSpace Sample Output: +-------+-----------+----------------+----------+---------+-----------+---------------------+-------------------------+----------------------+--------------+-------------+ | | Doc | DocsWithTerm | IDF | TF | TFIDF | Term | TermFrequencyInCorpus | TermFrequencyInDoc | TermsInDoc | TotalDocs | |-------+-----------+----------------+----------+---------+-----------+---------------------+-------------------------+----------------------+--------------+-------------| | 0 | 0697A5744 | 159 | 2.39904 | 0.06667 | 0.02779 | cloud service | 186 | 1 | 15 | 1751 | | 1 | 0697A5744 | 1094 | 0.47035 | 0.06667 | 0.14174 | management | 2573 | 1 | 15 | 1751 | | 2 | 0697A5744 | 2006 | -0.13596 | 0.06667 | -0.49036 | agile | 2194 | 1 | 15 | 1751 | | 3 | 0697A5744 | 2995 | -0.53676 | 0.06667 | -0.1242 | ibm | 5857 | 1 | 15 | 1751 | | 4 | 0697A5744 | 513 | 1.22767 | 0.06667 | 0.0543 | data science | 745 | 1 | 15 | 1751 | ... | 97480 | 04132K744 | 479 | 1.29624 | 0.01754 | 0.01353 | maintenance | 945 | 1 | 57 | 1751 | +-------+-----------+----------------+----------+---------+-----------+---------------------+-------------------------+----------------------+--------------+-------------+ """ start = time.time() self.validate(collection_name=collection_name, mongo_client=mongo_client, division=division, limit=limit) gen = CreateCollectionVectorSpace(limit=limit, division=division, is_debug=self._is_debug, mongo_client=mongo_client, collection_name=collection_name) if self._is_debug: self.logger.debug(f"Instantiated Generator (" f"collection={collection_name}, " f"time={round(time.time() - start, 2)}s)") return gen ``` #### File: core/svc/read_inversion_library.py ```python from pandas import DataFrame from base import BaseObject class ReadInversionLibrary(BaseObject): """ Purpose: Read an Inversion Library Sample Input: +------+------------+-------------------------------------------+ | | KeyField | Tag | |------+------------+-------------------------------------------| | 0 | 0697A5744 | cloud service | | 1 | 0697A5744 | data science | | 2 | 0697A5744 | solution design | | 3 | 05817Q744 | kubernetes | | 4 | 05817Q744 | bachelor of engineering | | 5 | 05817Q744 | developer | ... | 1328 | 249045760 | electrical engineering | +------+------------+-------------------------------------------+ Sample Output (given 'data science' as a term param) ['0697A5744'] """ def __init__(self, library_name: str, is_debug: bool = False): """ Created: 5-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1261#issuecomment-15732844 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._library_name = library_name def _load_dataframe(self) -> DataFrame: from cendalytics.tfidf.core.dmo import InversionLibraryLoader return InversionLibraryLoader(is_debug=self._is_debug, library_name=self._library_name).df() def process(self, term: str) -> list: """ Purpose: for a given term (skill) find the key fields (serial numbers) for which this term is the most discriminating :param term: any annotation tag within the Cendant Ontology :return: a list of key fields (e.g., Serial Numbers) """ df = self._load_dataframe() df2 = df[df['Term'] == term.lower()] key_fields = sorted(df2['KeyField'].unique()) if self._is_debug: self.logger.debug('\n'.join([ f"Inversion Search Completed (total-results={len(key_fields)})", f"\tTerm: {term}", f"\tKey Fields: {key_fields}"])) return key_fields ``` #### File: ingest/dmo/dbpedia_taxonomy_extractor.py ```python import re from typing import Optional from base import BaseObject from base import FileIO class DBpediaTaxonomyExtractor(BaseObject): """ Extract latent 'is-a' hierarchy from unstructured text """ __isa_patterns = None __clause_patterns = None def __init__(self, input_text: str, is_debug: bool = False): """ Created: 7-Jan-2020 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1706 Updated: 7-Feb-2020 <EMAIL> * moved dictionaries to CSV resources https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1837 """ BaseObject.__init__(self, __name__) if self.__isa_patterns is None: self.__isa_patterns = FileIO.file_to_lines_by_relative_path( "resources/config/dbpedia/patterns_isa.csv") self.__isa_patterns = [x.lower().strip() for x in self.__isa_patterns] if self.__clause_patterns is None: self.__clause_patterns = FileIO.file_to_lines_by_relative_path( "resources/config/dbpedia/patterns_clause.csv") self.__clause_patterns = [x.lower().strip() for x in self.__clause_patterns] self._input_text = input_text self._is_debug = is_debug @staticmethod def _remove_parens(input_text: str) -> str: """ Purpose: Remove parens Sample Input: A drug (/drɑːɡ/) is any substance Sample Output: A drug is any substance :return: text without parens """ if '(' not in input_text and ')' not in input_text: return input_text x = input_text.index('(') y = input_text.index(')') + 2 return f"{input_text[0:x]}{input_text[y:]}" @staticmethod def _remove_akas(input_text: str) -> str: """ Purpose: Remove AKA sections Sample Input: Lung cancer, also known as lung carcinoma, is a malignant lung tumor Sample Output: Lung cancer is a malignant lung tumor :return: text without AKA """ patterns = [', also known as ', ', or ', ', formerly known as'] for pattern in patterns: if pattern in input_text: x = input_text.index(pattern) y = input_text[:(x + len(pattern))].index(',') + x + len(pattern) + 4 input_text = f"{input_text[:x]}{input_text[y:]}" return input_text def _cleanse_text(self, input_text: str) -> str: original_input_text = input_text input_text = self._remove_parens(input_text) input_text = self._remove_akas(input_text) if self._is_debug and original_input_text != input_text: self.logger.debug('\n'.join([ "Text Cleansing Completed", f"\tOriginal: {original_input_text}", f"\tNormalized: {input_text}"])) return input_text def _segmenter(self, input_text: str) -> list: from nlutext.core.svc import PerformSentenceSegmentation segmenter = PerformSentenceSegmentation(is_debug=self._is_debug) return segmenter.process(some_input_text=input_text, remove_wiki_references=True) def _isa_normalizer(self, input_text: str) -> str: input_text = input_text.lower().strip() for pattern in self.__isa_patterns: if pattern in input_text: input_text = input_text.replace(pattern, 'is_a') return input_text def _clause_inducer(self, input_text: str) -> str: regex = re.compile(r"[A-Za-z]+\s+(in|of)\s+", re.IGNORECASE) target = ', ' input_text = input_text.lower().strip() for candidate in self.__clause_patterns: k_mid = f" {candidate} " k_start = f"{candidate} " k_end = f" {candidate}" if input_text.startswith(k_start): input_text = input_text.replace(k_start, target) elif k_mid in input_text: input_text = input_text.replace(k_mid, target) elif input_text.endswith(k_end): input_text = input_text.replace(k_end, target) while True: search_result = regex.search(input_text) if not search_result: break input_text = input_text.replace(search_result.group(), target) input_text = input_text.strip().replace(f' {target}', target).replace(' ', ' ') if input_text.startswith(', '): input_text = input_text[2:].strip() return input_text def process(self) -> Optional[str]: if not self._input_text: self.logger.warning("SubClass Extraction Failed: No Input") return None normalized = self._isa_normalizer(self._input_text) if 'is_a' not in normalized: self.logger.warning('\n'.join([ "SubClass Extraction Failed: No IS-A", f"\tOriginal Text: {self._input_text}", f"\tNormalized: {normalized}"])) return None x = normalized.index('is_a') + len('is_a') normalized = normalized[x:].strip() normalized = self._clause_inducer(normalized) normalized = normalized.replace(',', '.') normalized = normalized.replace(';', '.') sentences = self._segmenter(normalized) subclass = sentences[0].replace('.', '').strip() if not subclass: self.logger.warning('\n'.join([ "SubClass Extraction Failed: No SubClass", f"\tOriginal Text: {self._input_text}", f"\tNormalized: {normalized}", f"\tSentences: {sentences}"])) return None if self._is_debug: self.logger.debug('\n'.join([ "SubClass Extraction Completed", f"\tResult: {subclass}", f"\tOriginal Text: {self._input_text}", f"\tNormalized: {normalized}", f"\tSentences: {sentences}"])) return subclass ``` #### File: ingest/svc/compare_dbpedia_entries.py ```python from base import BaseObject from nlusvc import TextAPI class CompareDBPediaEntries(BaseObject): """ Compare Categories between two dbPedia entities """ _filtered_categories = None def __init__(self, entity_name_1: str, entity_name_2: str, ontology_name: str, is_debug: bool = False): """ Created: 8-Jan-2020 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1710#issuecomment-17017220 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._text_api = TextAPI(is_debug=is_debug, ontology_name=ontology_name) self._entity_name_1 = entity_name_1 self._entity_name_2 = entity_name_2 def _find(self, entity_name: str) -> dict: from cendalytics.wikipedia.ingest.svc import FindDbPediaEntryRedis from cendalytics.wikipedia.ingest.svc import PostProcessDBPediaPageRedis finder_1 = FindDbPediaEntryRedis(is_debug=self._is_debug) entry = finder_1.process(entity_name=entity_name, ignore_cache=False) finder_2 = PostProcessDBPediaPageRedis(is_debug=self._is_debug) entry = finder_2.process(entry=entry, ignore_cache=False) return entry def _categories(self, entity_name: str) -> set: d_entry = self._find(entity_name=entity_name) categories = set(d_entry['categories']) if self._is_debug: self.logger.debug('\n'.join([ "Entity Resolved", f"\tParam Name: {entity_name}", f"\tResolved Name: {d_entry['title']}", f"\tCategories {categories}"])) return categories def process(self) -> list: categories_1 = self._categories(self._entity_name_1) categories_2 = self._categories(self._entity_name_2) common = sorted(categories_1.intersection(categories_2)) self.logger.debug('\n'.join([ "Entity Comparison Completed", f"\tEntity 1: {self._entity_name_1}", f"\tEntity 2: {self._entity_name_2}", f"\tCommon Entities (total={len(common)})", f"\t\t{common}"])) return common ``` #### File: ingest/svc/find_dbpedia_entry.py ```python from typing import Optional from wikipedia import WikipediaPage from base import BaseObject class FindDbPediaEntry(BaseObject): """ for a given input find the associated dbPedia entry """ def __init__(self, is_debug: bool = False): """ Created: 9-Jul-2019 <EMAIL> Updated: 8-Jan-2020 <EMAIL> * major refactoring * redis doesn't belong in this stage; remove https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1710#issuecomment-17015882 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug def process(self, some_input: str) -> Optional[dict]: from cendalytics.wikipedia.ingest.dmo import DBpediaPageFinder from cendalytics.wikipedia.ingest.svc import TransformDBPediaPage from cendalytics.wikipedia.ingest.dmo import DBpediaEntityResolution def _entity_resolver(an_input: str) -> DBpediaEntityResolution: """ resolve ambiguous title inputs """ return DBpediaEntityResolution(some_title=an_input, is_debug=self._is_debug) def _page(some_title: str) -> Optional[WikipediaPage]: try: return DBpediaPageFinder(some_title=some_title, is_debug=self._is_debug).process() except Exception: return None the_title = _entity_resolver(some_input).most_likely_result() the_page = _page(the_title) if not the_page: return None the_entry = TransformDBPediaPage(some_page=the_page, some_title=the_title, is_debug=self._is_debug).process() is_valid_entry = the_entry is not None or the_entry != {} or len(the_entry) > 0 if not is_valid_entry: return None return the_entry ``` #### File: ingest/svc/find_dbpedia_entry_redis.py ```python from typing import Optional import jsonpickle from base import BaseObject from base import RedisClient class FindDbPediaEntryRedis(BaseObject): """ for a given input find the associated dbPedia entry """ _prefix = "wiki_page_" _redis = RedisClient(RedisClient.WIKI_PAGE_DB) def __init__(self, is_debug: bool = False): """ Created: 8-Jan-2020 <EMAIL> * moved redis to a separate service https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1710#issuecomment-17015882 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug def process(self, entity_name: str, ignore_cache: bool = False) -> Optional[dict]: from cendalytics.wikipedia.ingest.svc import FindDbPediaEntry _key = self._prefix + entity_name if not self._redis.has(_key) or ignore_cache: try: entry = FindDbPediaEntry(is_debug=self._is_debug).process(entity_name) if not entry: return None self._redis.set(_key, jsonpickle.encode(entry)) except Exception as e: self.logger.exception(e) return None else: self.logger.debug(f"Retrieved Entity (name={entity_name}, ignore-cache={ignore_cache})") return jsonpickle.decode(self._redis.get(_key)) ``` #### File: ingest/svc/transform_dbpedia_page.py ```python from wikipedia import WikipediaPage from base import BaseObject from cendalytics.wikipedia.ingest.dmo import DBPediaContentNormalizer from nlusvc import TextAPI class TransformDBPediaPage(BaseObject): """ for a given dbPedia page, create a JSON structure """ _text_api = None def __init__(self, some_title: str, some_page: WikipediaPage, is_debug: bool = False): """ Created: 9-Jul-2019 <EMAIL> * refactored out of dbpedia-entity-lookup Updated: 8-Jan-2020 <EMAIL> * add additional content normalization https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1710#issuecomment-17014878 * renamed from 'dbpedia-page-transform' """ BaseObject.__init__(self, __name__) self._page = some_page self._title = some_title self.is_debug = is_debug self._text_api = TextAPI(is_debug=self.is_debug) def _normalized(self, content: list or str) -> list: try: if type(content) == str: content = [content] return DBPediaContentNormalizer(is_debug=self.is_debug, ontology_name='biotech', content=content).process() except Exception as e: self.logger.error(e) def _summary(self, some_page: WikipediaPage) -> list: return self._normalized(some_page.summary) def _content(self, some_page: WikipediaPage) -> list: return self._normalized(some_page.content) def process(self) -> dict: def _references(): try: return self._page.references except Exception as e: self.logger.error(e) def _categories(): try: return self._page.categories except Exception as e: self.logger.error(e) def _sections(): try: return self._page.sections except Exception as e: self.logger.error(e) def _parent_id(): try: return str(self._page.parent_id) except Exception as e: self.logger.error(e) def _page_id(): try: return str(self._page.pageid) except Exception as e: self.logger.error(e) def _revision_id(): try: return str(self._page.revision_id) except Exception as e: self.logger.error(e) def _url(): try: return self._page.url except Exception as e: self.logger.error(e) def _links(): try: return self._page.links except Exception as e: self.logger.error(e) def _title(): try: return self._page.title except Exception as e: self.logger.error(e) def _original_title(): try: return self._page.original_title except Exception as e: self.logger.error(e) return {"key": self._title, "url": _url(), "title": _title(), "links": _links(), "content": self._content(self._page), "page_id": _page_id(), "summary": self._summary(self._page), "sections": _sections(), "parent_id": _parent_id(), "categories": _categories(), "references": _references(), "revision_id": _revision_id(), "original_title": _original_title()} ``` #### File: wikipedia/scripts/create_multiple_cendant_entities.py ```python import codecs def main(): from cendalytics.wikipedia.etl.svc import CreateCendantEntity terms = [ # 'ATP synthase', # 'Acetone–butanol–ethanol fermentation', # 'Acid', # 'Actin', # 'Active site', # 'Adaptive immune system', # 'Adenine', # 'Adenosine triphosphate', # 'Adenylate kinase', # 'Aerobic respiration', # 'Alanine', # 'Albumin', # 'Alpha carbon', # 'Alpha helix', # 'Alternative splicing', # 'Amino', # 'Amino acid', # 'Amino acid synthesis', # 'Amino acids', # 'Aminoacyl tRNA synthetase', # 'Anabolism', # 'Anaerobic respiration', # 'Angiogenin', # 'Animal shell', # 'Anoxygenic photosynthesis', # 'Antibodies', # 'Antibody', # 'Anticodon', # 'Antigen', # 'Archaea', # 'Aspartate', # 'Aspartokinase', # 'Assay', # 'Atom', # 'Atomic mass unit', # 'B cell', # 'Bacteria', # 'Bacterial display', # 'Bacterial transcription', # 'Base pair', # 'Beta oxidation', # 'Beta sheet', # 'Bibcode', # 'Binding site', # 'Biochemistry', # 'Bioenergetics', # 'Bioinformatics', # 'Bioinorganic chemistry', # 'Biological tissue', # 'Biomolecule', # 'Blood', # 'Bradford protein assay', # 'C-terminus', # 'CHON', # 'Carbohydrate', # 'Carbohydrate catabolism', # 'Carbohydrate metabolism', # 'Carbon fixation', # 'Carboxyl', # '<NAME>', # 'Cartesian coordinates', # 'Cartilage', # 'Catabolism', # 'Catalysis', # 'Cell (biology)', # 'Cell adhesion', # 'Cell biology', # 'Cell cycle', # 'Cell membrane', # 'Cell nucleus', # 'Cell signaling', # 'Cellular compartment', # 'Central dogma of molecular biology', # 'Chaperone (protein)', # 'Chemical bond', # 'Chemical conformation', # 'Chemical ligation', # 'Chemical polarity', # 'Chemosynthesis', # 'Chimera (protein)', # 'Chirality (chemistry)', # 'Cholera', # 'Chromatin immunoprecipitation', # 'Chromatography', # 'Circular dichroism', # 'Cis-regulatory element', # 'Citric acid cycle', # 'ClustalW', # 'Coagulate', # 'Codon', # 'Cofactor (biochemistry)', # 'Collagen', # 'Colloid', # 'Conformational change', # 'Connecticut Agricultural Experiment Station', # 'Connective tissue', # 'Coplanar', # 'Crude lysate', # 'Cryo-electron microscopy', # 'Cryoelectron microscopy', # 'Crystallize', # 'Cyclol', # 'Cytolysis', # 'Cytoplasm', # 'Cytoskeleton', # 'DNA', # 'DNA-binding protein', # 'DNA repair', # 'DNA replication', # 'DNA sequence', # 'Dehydration', # 'Dehydron', # 'Denaturation (biochemistry)', # 'Deproteination', # 'Diet (nutrition)', # 'Diffraction-limited system', # 'Diffusion', # 'Digestion', # 'Digital object identifier', # 'Dihedral angle', # 'Dirigent protein', # 'Dissociation constant', # 'Distance geometry', # 'Distributed computing', # 'Disulfide bond', # 'Docking (molecular)', # 'Double-bond', # 'Downregulation and upregulation', # 'Drug design', # 'Dual-polarization interferometry', # 'Dual polarisation interferometry', # 'Dynein', # 'Edestin', # 'Eicosanoid metabolism', # 'Elastin', # 'Electrofocusing', # 'Electron crystallography', # 'Electron microscope', # 'Electron transport chain', # 'Electrophoresis', # 'Elemental analysis', # 'Empirical formula', # 'Endoplasmic reticulum', # 'Enzyme', # 'Enzyme assay', # 'Enzyme catalysis', # 'Enzyme kinetics', # 'Epigenetics', # 'Escherichia coli', # 'Essential amino acid', # 'Essential amino acids', # 'Essential fatty acid', # 'Ethanol fermentation', # 'Ethanol metabolism', # 'Eukaryote', # 'Eukaryotic Linear Motif resource', # 'Eukaryotic transcription', # 'Eukaryotic translation', # 'Evolution', # 'Experiment', # 'Fatty acid degradation', # 'Fatty acid metabolism', # 'Fatty acid synthesis', # 'Feather', # 'Fermentation', # 'Fibrin', # 'Fibrous protein', # 'Five-prime cap', # 'Flavor', # 'Flocculation', # 'Fluorescent', # 'Folding@home', # 'Food additive', # 'Food chemistry', # 'Food coloring', # 'Food fortification', # 'Fructolysis', # 'Fusion protein', # 'Galactolysis', # 'Gel electrophoresis', # 'Gel electrophoresis of proteins', # 'Gene', # 'Gene expression', # 'Gene ontology', # 'Gene regulatory network', # 'Genes', # 'Genetic code', # 'Genetic engineering', # 'Genome', # 'Genomic imprinting', # 'Genomics', # '<NAME>', # 'Globular protein', # 'Globular proteins', # 'Globulin', # 'Gluconeogenesis', # 'Glucose', # 'Glutamic acid', # 'Glutamine synthetase', # 'Gluten', # 'Glycogenesis', # 'Glycogenolysis', # 'Glycolysis', # 'Glycosylation', # 'Graphics processing unit', # 'Greek language', # 'Green fluorescent protein', # 'Guanine', # 'HIV', # 'HOPES', # 'Haemoglobin', # 'Hair', # 'Half-life', # 'Heme', # 'Heme group', # 'Hemoglobin', # '<NAME>', # 'Hexokinase', # 'His-tag', # 'Histidine', # 'Histone acetylation and deacetylation', # 'History of molecular biology', # 'Homology modeling', # 'Hoof', # 'Hormone', # 'Human', # 'Human genome', # 'Human iron metabolism', # 'Hydrogen bond', # 'Hydrogen bonding', # 'Hydrolysis', # 'Hydrophobic', # 'Hydrophobic core', # 'Immunoelectron microscopy', # 'Immunoglobulin G', # 'Immunohistochemistry', # 'Immunoprecipitation', # 'Immunostaining', # 'In-gel digestion', # 'In silico', # 'In vitro', # 'In vivo', # 'Indirect immunofluorescence', # 'Insulin', # 'Integrated Authority File', # 'Intein', # 'Interactome', # 'Intracellular transport', # 'Intrinsically disordered proteins', # 'Introduction to genetics', # 'Ion channel', # 'Isoelectric point', # 'Isoleucine', # 'Isopycnic centrifugation', # 'Isothermal titration calorimetry', # 'Keratin', # 'Ketosis', # 'Kinase', # 'Kinesin', # 'Kingdom (biology)', # 'Laboratory rat', # 'Lac operon', # 'Lactic acid fermentation', # '<NAME>', # 'Lectins', # 'Leucine', # 'Ligand', # '<NAME>', # 'Lipid', # 'Lipid metabolism', # 'Lipogenesis', # 'Lipolysis', # 'Lung', # 'Lymphoblastoid', # 'Lysine', # 'MRNA display', # 'Macromolecular Assembly', # 'Macromolecular docking', # 'Macromolecule', # 'Mass spectrometry', # 'Mathematical model', # '<NAME>', # 'Membrane protein', # 'Messenger RNA', # 'Metabolic network', # 'Metabolic pathway', # 'Metabolism', # 'Methionine', # 'MicroRNA', # 'Microorganism', # 'Microscale thermophoresis', # 'Microscopy', # 'Mineral (nutrient)', # 'Molecular dynamics', # 'Molecular mass', # 'Molecular mechanics', # 'Molecular modeling on GPU', # 'Molecular recognition', # 'Monte Carlo method', # 'Motility', # 'Motor protein', # 'Muscle', # 'Mycoplasma', # 'Myoglobin', # 'Myosin', # 'N-linked glycosylation', # 'N-terminus', # 'Nail (anatomy)', # 'National Diet Library', # 'Native conformation', # 'Nickel', # 'Nuclear magnetic resonance', # 'Nuclear magnetic resonance spectroscopy of proteins', # 'Nuclear membrane', # 'Nucleic acid', # 'Nucleic acid metabolism', # 'Nucleoid', # 'Nucleotide', # 'Nucleotide salvage', # 'Nucleotide sequence', # 'O-linked glycosylation', # 'Oligomer', # 'Oligopeptide', # 'Onconase', # 'Open reading frame', # 'Optical microscope', # 'Organelle', # 'Organic synthesis', # 'Organism', # 'Orotate decarboxylase', # 'Oxidative phosphorylation', # 'Oxygen', # 'P-bodies', # 'Pentose phosphate pathway', # 'Peptide', # 'Peptide bond', # 'Peptide mass fingerprinting', # 'Peptide sequence', # 'Peptide synthesis', # 'Phage display', # 'Phosphorylation', # 'Photoactivated localization microscopy', # 'Photosynthesis', # 'Phylogenetic tree', # 'Plasma cell', # 'Polyadenylation', # 'Polyamide', # 'Polymer', # 'Polypeptide', # 'Polysaccharide', # 'Post-transcriptional modification', # 'Post-transcriptional regulation', # 'Post-translational modification', # 'Post-translational regulation', # 'Posttranslational modification', # 'Potassium', # 'Precipitation (chemistry)', # 'Precursor mRNA', # 'Primary nutritional groups', # 'Primary structure', # 'Prion', # 'Prokaryote', # 'Prokaryotic translation', # 'Proline', # 'Promoter (genetics)', # 'Prosthetic group', # 'Protease', # 'Proteasome', # 'Protein (disambiguation)', # 'Protein (nutrient)', # 'Protein Data Bank', # 'Protein NMR', # 'Protein biosynthesis', # 'Protein catabolism', # 'Protein complex', # 'Protein conformation', # 'Protein design', # 'Protein domain', # 'Protein engineering', # 'Protein folding', # 'Protein mass spectrometry', # 'Protein metabolism', # 'Protein methods', # 'Protein microarray', # 'Protein purification', # 'Protein quality', # 'Protein quinary structure', # 'Protein sequencing', # 'Protein structure', # 'Protein structure prediction', # 'Protein subunit', # 'Protein superfamily', # 'Protein targeting', # 'Protein translocation', # 'Protein turnover', # 'Proteinogenic amino acid', # 'Proteins', # 'Protein–DNA interaction', # 'Protein–carbohydrate interaction', # 'Protein–lipid interaction', # 'Protein–protein interaction', # 'Protein–protein interaction prediction', # 'Proteolysis', # 'Proteome', # 'Proteomics', # 'Proteopathy', # 'Proteopedia', # 'PubMed Central', # 'PubMed Identifier', # 'Purine metabolism', # 'Pyrimidine metabolism', # 'Pyrrolysine', # 'Pyruvate dehydrogenase', # 'Quantum mechanics', # 'Quaternary structure', # 'RNA', # 'RNA-dependent RNA polymerase', # 'RNA polymerase', # 'RNA splicing', # 'Radiotrophic fungus', # 'Reaction mechanism', # 'Receptor (biochemistry)', # 'Regulation of gene expression', # 'Reporter gene', # 'Residue (biochemistry)', # 'Resonance (chemistry)', # 'Restriction enzyme', # 'Reverse cholesterol transport', # 'Reverse transcription', # 'Rhodopsin', # 'Ribbon diagram', # 'Ribonuclease A', # 'Ribonuclease inhibitor', # 'Ribosome', # 'Ribosome-nascent chain complex', # 'Ribosome display', # 'SH3 domain', # 'Saccharomyces cerevisiae', # 'Salt bridge (protein)', # 'Salting out', # 'Sarcomere', # 'Scaffolding', # 'Scleroprotein', # 'Secondary structure', # 'Secrete', # 'Secretion assay', # 'Selenocysteine', # 'Semipermeable membrane', # 'Sequence alignment', # 'Sequence homology', # 'Sequence profiling tool', # 'Sequence space (evolution)', # 'Serum albumin', # 'Sexual reproduction', # 'Side chain', # 'Signal transduction', # 'Site-directed mutagenesis', # 'Slaughterhouse', # 'Small molecule', # 'Sodium', # 'Soluble', # 'Spectroscopy', # 'Spermatozoon', # 'Sphingolipid metabolism', # 'Spirochaete', # 'Staphylococcus aureus', # 'Starvation', # 'Stereochemistry', # 'Steroid', # 'Structural alignment', # 'Structural domain', # 'Structural genomics', # 'Substrate-level phosphorylation', # 'Substrate (biochemistry)', # 'Super-resolution microscopy', # 'Surface plasmon resonance', # 'Tertiary structure', # 'Threonine', # 'Titin', # 'Toxin', # 'Transcription (biology)', # 'Transcription (genetics)', # 'Transcription factor', # 'Transcriptional regulation', # 'Transfer RNA', # 'Translation (biology)', # 'Translation (genetics)', # 'Translational regulation', # 'Transmembrane protein', # 'Triose phosphate isomerase', # 'Tubulin', # 'Turn (biochemistry)', # 'Two-dimensional gel electrophoresis', # 'Two-hybrid screening', # 'Ultracentrifugation', # 'Uracil', # 'Urea cycle', # 'Urease', # 'Valine', # 'Vertebrate', # 'Vertico spatially modulated illumination', # 'Villin', # 'Virus', # 'Viruses', # 'Vitamin', # 'X-ray crystallography', # 'Xylose metabolism', # 'Yeast', # 'Yeast display' "Pancreatitis", ] d_master = {} for term in terms: try: d_results = CreateCendantEntity(is_debug=True, invalidate_cache=False).process(term) for k in d_results: if k not in d_master: d_master[k] = [] d_master[k].append(d_results[k]) except KeyError as e: print(e) continue except TypeError as e: print(e) continue except Exception as e: print(e) print(f"Failed on Term: {term}") raise ValueError target = codecs.open("/Users/craig.trimibm.com/Desktop/cendant-results.txt", encoding="utf-8", mode="a") for k in d_master: for item in d_master[k]: target.write(item) target.write('\n\n') target.write('\n\n') target.write('\n\n') target.close() if __name__ == "__main__": main() ``` #### File: wikipedia/scripts/print_cache_stats.py ```python from base import RedisClient def main(): def _db_size(a_db: int) -> None: size = RedisClient(a_db).size() print(f"DB (name={a_db}): {size}") _db_size(RedisClient.WIKI_SEARCH_DB) _db_size(RedisClient.WIKI_PAGE_DB) _db_size(RedisClient.WIKI_AUGMENTED_DB) if __name__ == "__main__": import plac plac.call(main) ``` #### File: wikipedia/scripts/run_spacy_ner.py ```python import spacy IS_DEBUG = True IGNORE_CACHE = True ONTOLOGY_NAME = "biotech" def main(): nlp = spacy.load("en_core_web_sm") # doc = nlp("Apple is looking at buying U.K. startup for $1 billion") # for token in doc: # print(token.text, token.lemma_, token.pos_, token.tag_, token.dep_, # token.shape_, token.is_alpha, token.is_stop) input_text = """ The investment arm of biotech giant Amgen has led a new $6 million round of funding in GNS Healthcare, CEO <NAME> tells Xconomy. """.strip() doc = nlp(input_text) for chunk in doc.noun_chunks: print(chunk.text, chunk.root.text, chunk.root.dep_, chunk.root.head.text) print ('------------------------------------------') for ent in doc.ents: print(ent.text, ent.start_char, ent.end_char, ent.label_) if __name__ == "__main__": import plac plac.call(main) ``` #### File: batch/dmo/dimension_comparator.py ```python import numpy as np from scipy import stats from base import BaseObject from base import MandatoryParamError class DimensionComparator(BaseObject): """ """ def __init__(self, source_dimension: list, target_dimensions: list, is_debug=False): """ Created: 28-Mar-2019 <EMAIL> :param source_dimension: :param target_dimensions: """ BaseObject.__init__(self, __name__) if not source_dimension: raise MandatoryParamError("Source Dimension") if not target_dimensions: raise MandatoryParamError("Target Dimension") self.is_debug = is_debug self.source_dimension = source_dimension self.target_dimensions = target_dimensions def process(self) -> list: source = np.array(self.source_dimension) target = np.matrix(self.target_dimensions) def _matmul() -> list: _sums = [] for i in range(0, len(target)): _sums.append(np.matmul(target[i], source)) return _sums _mat_mul = _matmul() _z_score = list(stats.zscore(_mat_mul)) _final_scores = [] for x in _z_score: def _round(): result = round(x[0][0], 0) if result == 0: return 0 return int(result) _final_scores.append(_round()) if self.is_debug: self.logger.debug("\n".join([ "Generated Values", "\tMat.Mul: len={}".format(_mat_mul), "\tZ-Score: {}".format(_z_score), "\tFinal: {}".format(_final_scores) ])) return _final_scores ``` #### File: batch/dmo/record_extractor.py ```python from base import BaseObject from base import MandatoryParamError from datamongo import CendantCollection class RecordExtractor(BaseObject): """ Perform incremental record extraction for dimensional computation this is only useful when we want to perform dimensionality on successive subsets of the data """ def __init__(self, some_manifest: dict, total_records: int, is_debug=False): """ Created: 28-Mar-2019 <EMAIL> * refactored out of 'transform-parsed-data' :param some_manifest: the manifest definition driving this component :param total_records: (optional) the total records to process """ BaseObject.__init__(self, __name__) if not some_manifest: raise MandatoryParamError("Manifest") self.is_debug = is_debug self.d_manifest = some_manifest self.total_records = total_records def _source_collection(self) -> CendantCollection: return CendantCollection(self.d_manifest["source"]["database"], self.d_manifest["source"]["collection"]) def _target_collection(self) -> CendantCollection: return CendantCollection(self.d_manifest["target"]["database"], self.d_manifest["target"]["collection"]) def _next_record_batch(self, source_records: list, target_records: list): """ this function will ensure the next batch of records contains records that do not yet exist in the target collection :return: the next batch of records the size is determined by the value for 'total-records' """ # load the keyfields for both source and target collections source_key_fields = set([x["key_field"] for x in source_records]) target_key_fields = set([x["key_field"] for x in target_records]) # find the untreated records diff = source_key_fields.difference(target_key_fields) # limit the size of the 'diff' set using 'total-records' if len(diff) > self.total_records: diff = list(diff)[:self.total_records] # return all the source records that are in the 'diff' set return [x for x in source_records if x["key_field"] in diff] def process(self) -> list: """ :return: the next set of records to process """ source_collection = self._source_collection() source_records = source_collection.all() if not self.total_records: if self.is_debug: self.logger.debug("\n".join([ "Source Records Located", "\tTotal Source Records: {}".format(len(source_records))])) return source_records target_collection = self._target_collection() target_records = target_collection.all() records = self._next_record_batch(source_records, target_records) if self.is_debug: self.logger.debug("\n".join([ "Records Located", "\tTotal Source Records: {}".format(len(source_records)), "\tTotal Target Records: {}".format(len(target_records)), "\tTotal Current Records: {}".format(len(records))])) return records ``` #### File: batch/dmo/single_record_locator.py ```python from base import BaseObject from base import RecordUnavailableRecord from datamongo import BaseMongoClient from datamongo import CendantCollection class SingleRecordLocator(BaseObject): """ locate a single source record """ def __init__(self, collection_name: str, base_mongo_client: BaseMongoClient = None, is_debug: bool = False): """ Created: 15-May-2019 <EMAIL> * refactored out of process-single-record https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/243 Updated: 16-Jul-2019 <EMAIL> * use 'manifest-connnector-for-mongo' to access collections via env vars https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/450 Updated: 15-Oct-2019 <EMAIL> * don't pass the manifest in; use explicit source-collection-name instead https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1116#issuecomment-15308894 Updated: 15-Nov-2019 <EMAIL> * modify to return a single dict instead of a list https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1331#issuecomment-16030068 """ BaseObject.__init__(self, __name__) if not base_mongo_client: base_mongo_client = BaseMongoClient() self._is_debug = is_debug self._collection_name = collection_name self._base_mongo_client = base_mongo_client if self._is_debug: self.logger.debug("Instantiated SingleRecordLocator") def _source_collection(self) -> CendantCollection: return CendantCollection(is_debug=self._is_debug, some_base_client=self._base_mongo_client, some_collection_name=self._collection_name) def process(self, key_field: str) -> dict: """ Purpose: Retrieve a Single Record :param key_field: a key field to search on e.g., Serial Number :return: dict a single result """ collection = self._source_collection() def _record() -> dict: # GIT-1331-16030068 if key_field.lower() == "random": return collection.random(total_records=1)[0] return collection.by_key_field(key_field) record = _record() if not record: raise RecordUnavailableRecord(f"Record Not Found " f"collection={collection.collection_name}, " f"key-field={key_field})") return record ``` #### File: batch/svc/generate_metrics.py ```python import pprint from collections import Counter from base import BaseObject from base import MandatoryParamError class GenerateMetrics(BaseObject): """ """ def __init__(self, d_results: dict, is_debug=False): """ Created: 29-Mar-2019 <EMAIL> * refactored out of 'dimension-computation-orchestrator' """ BaseObject.__init__(self, __name__) if not d_results: raise MandatoryParamError("Service Result") self.is_debug = is_debug self.d_results = d_results def _type_counter(self, type_name: str) -> Counter: """ provide a simple distribution of either schema or parent types """ c = Counter() for key in self.d_results: for tag in self.d_results[key]["tags"]: c.update({tag["type"][type_name]: 1}) return c def _other_counter(self) -> Counter: """ provide a distribution on tags parents that are classified as 'other' in the schema """ c = Counter() for key in self.d_results: for tag in self.d_results[key]["tags"]: if tag["type"]["schema"] == "other": c.update({tag["type"]["parent"]: 1}) return c def _entity_counter(self) -> Counter: """ provide a distribution of the entities used to derive tags use both single entities and entity formations""" c = Counter() for key in self.d_results: for tag in self.d_results[key]["tags"]: entities = tag["provenance"]["entities"] [c.update({x: 1}) for x in entities] # entity by entities c.update({"-".join(entities): 1}) # single formation return c def process(self) -> None: schema_count = pprint.pformat(self._type_counter("schema"), indent=4) parent_count = pprint.pformat(self._type_counter("parent"), indent=4) other_count = pprint.pformat(self._other_counter(), indent=4) entity_count = pprint.pformat(self._entity_counter(), indent=4) if self.is_debug: self.logger.debug("\n".join([ "Service Result Metrics", "\tSchema: {}".format(schema_count), "\tParent: {}".format(parent_count), "\tOther: {}".format(other_count), "\tEntities: {}".format(entity_count)])) ``` #### File: runtime/svc/find_dimension_records_by_sum.py ```python from base import BaseObject from datamongo import BaseMongoClient from datamongo import CendantXdm from datamongo import CollectionFinder class FindDimensionRecordsBySum(BaseObject): def __init__(self, mongo_client: BaseMongoClient = None, is_debug: bool = False): """ Created: 13-May-2019 <EMAIL> * refactored out of dimensions-api Updated: 8-Aug-2019 <EMAIL> * removed -dimensions in favor of cendant-xdm https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/674 """ BaseObject.__init__(self, __name__) if not mongo_client: mongo_client = BaseMongoClient() self._is_debug = is_debug self.mongo_client = mongo_client def process(self, source_name: str, minimum_value_sum: int, maximum_value_sum: int, key_fields_only: bool) -> list: cendant_xdm = CendantXdm(collection_name=CollectionFinder.find_xdm(source_name), mongo_client=self.mongo_client, is_debug=self._is_debug) return cendant_xdm.by_value_sum(minimum_value_sum=minimum_value_sum, maximum_value_sum=maximum_value_sum, key_fields_only=key_fields_only) ``` #### File: runtime/svc/schema_elements_frequency.py ```python import sys from collections import Counter import pandas as pd from tabulate import tabulate from base import BaseObject from datadict import FindDimensions from datamongo import BaseMongoClient from datamongo import CendantTag class SchemaElementsFrequency(BaseObject): """ Purpose: For a given collection, generate the Schemas and Tags with their relative frequencies by order of appearance Rationale: Useful for testing to continually hone in on 'unlisted' and 'other' categories Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1205#issuecomment-15589827 Sample Output: +------+---------+-----------------------------+-------------------------------------------------------------------+ | | Count | Schema | Tag | |------+---------+-----------------------------+-------------------------------------------------------------------| | 0 | 8496 | unlisted | ibm | | 1 | 5469 | unlisted | problem solving | | 2 | 4641 | unlisted | project | | 3 | 4399 | service management | support | | 4 | 4361 | unlisted | implement | | 5 | 3827 | project management | management | | 2158 | 1 | database | db2 bind | +------+---------+-----------------------------+-------------------------------------------------------------------+ """ def __init__(self, xdm_schema: str, collection_name_tag: str, mongo_client: BaseMongoClient, database_name: str = 'cendant', is_debug: bool = False): """ Created: 28-Oct-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1205#issuecomment-15589827 Updated: 29-Oct-2019 <EMAIL> * remove 'entity-schema-finder' in favor of new approach https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/916#issuecomment-15620801 Updated: 31-Oct-2019 <EMAIL> * renamed from TestSchemaElements to SchemaElementsFrequency so that py.test did not try to executes :param xdm_schema: the name of the schema to perform the type lookup Notes: - typically either 'supply' or 'learning' - the full list is on path 'resources/config/dimensionality' :param collection_name_tag: a MongoDB collection :param database_name: a MongoDB database :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._dim_finder = FindDimensions(xdm_schema) self._collection = CendantTag( is_debug=self._is_debug, mongo_client=mongo_client, database_name=database_name, collection_name=collection_name_tag) def process(self, skip: int = None, limit: int = None, most_common: int = None): def _records(): if skip or limit: return self._collection.collection.skip_and_limit(skip=skip, limit=limit) return self._collection.all() records = _records() if self._is_debug: self.logger.debug('\n'.join([ f"Retrieved Records (" f"skip={skip}, " f"limit={limit}, " f"total-records={len(records)})"])) c = Counter() for record in records: for field in record["fields"]: if "tags" in field: if "supervised" in field["tags"]: for tag in field["tags"]["supervised"]: c.update({tag[0]: 1}) def _counter_elements() -> dict: if most_common: return dict(c.most_common(most_common)) return dict(c.most_common(sys.maxsize)) results = [] d = _counter_elements() for tag in d: count = d[tag] for schema in self._dim_finder.find(tag): results.append({ "Tag": tag, "Count": count, "Schema": schema}) df = pd.DataFrame(results) if self._is_debug: self.logger.debug('\n'.join([ "Schema Element Test Completed", tabulate(df, headers='keys', tablefmt='psql')])) return df if __name__ == "__main__": print(SchemaElementsFrequency(is_debug=True, xdm_schema="learning", collection_name_tag="supply_tag_20191025", mongo_client=BaseMongoClient()).process()) ``` #### File: core/dmo/db2_credential_retrieval.py ```python import getpass import os from base import BaseObject from base import CryptoBase class Db2CredentialRetrieval(BaseObject): """ Set Input Credentials """ def __init__(self, db2_username_env: str, db2_password_env: str): """ Created: 18-July-2019 <EMAIL> Updated: 1-Aug-2019 <EMAIL> * retrieve username/password from the environment, if available https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/563 Updated: 3-August-2019 <EMAIL> * added db2 env params to fetch appropriate username/password for different data sources https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/587 Updated: 9-Oct-2019 <EMAIL> * rename from 'db-credentials-api' and move to 'dmo' folder https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1080 :param db2_username_env: the name of the env for db2 username :param db2_password_env: the name of the env for db2 password """ BaseObject.__init__(self, __name__) self._db2_username_env = db2_username_env self._db2_password_env = db2_password_env def _from_env_vars(self): username = None password = None try: username = CryptoBase.decrypt_str(os.environ[self._db2_username_env]) password = CryptoBase.decrypt_str(os.environ[self._db2_password_env]) except KeyError as err: self.logger.warning('\n'.join([ "Unable to retrieve Username and Password from the environment", "You will be prompted for this information"])) return username, password def _from_system_prompt(self): username = None password = <PASSWORD> try: print("Enter credentials:\n") username = input("DB2 Username: ") password = get<PASSWORD>(prompt='DB2 Password: ') except Exception as err: self.logger.error(f"API Connection Error: {err}") return username, password def process(self): def credentials(): u, p = self._from_env_vars() if u and p: return u, p u, p = self._from_system_prompt() if u and p: return u, p self.logger.error("DB2 LUR Credentials Inaccessible") username, password = credentials() if username: self.logger.info(f"API Parameters (db2-user = {username})") return username, password ``` #### File: core/svc/build_db2_url.py ```python import os from base import BaseObject from base import CryptoBase from base import FileIO from datadb2.core.dmo import BaseDB2Client class BuildDb2Url(BaseObject): """ Create a DB2 connection """ __config_path = 'resources/config/db2/schemas.yml' def __init__(self, is_debug: bool = False): """ Created: 9-Oct-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1080 :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._config = FileIO.file_to_yaml_by_relative_path(self.__config_path) @staticmethod def _values(d_config: dict): username = CryptoBase.decrypt_str(os.environ[d_config['username'][1:]]) password = CryptoBase.decrypt_str(os.environ[d_config['password'][1:]]) return { 'host': d_config['host'].strip(), 'database': d_config['database'].strip(), 'port': d_config['port'], 'username': username.strip(), 'password': password.strip()} @staticmethod def _connect(d_config: dict) -> BaseDB2Client: return BaseDB2Client(some_database_name=d_config['database'], some_hostname=d_config['host'], some_port=d_config['port'], some_username=d_config['username'], some_password=d_config['password']) def wft_dev(self) -> BaseDB2Client: """ Purpose: Connect to DB2 WFT DEV :return: """ return self._connect(self._values(self._config['wft_dev'])) def cendant(self) -> BaseDB2Client: """ :return: """ return self._connect(self._values(self._config['cendant'])) if __name__ == "__main__": # BuildDb2Url().wft_dev() # BuildDb2Url().wft_prod() BuildDb2Url().cendant() ``` #### File: core/svc/find_country_code.py ```python from base import BaseObject from datadict.core.os import the_country_code_dict class FindCountryCode(BaseObject): """ One-Stop-Shop Service API for Country Code queries """ _d_country_codes = the_country_code_dict _l_known_unknowns = ["NAN", "NONE"] def __init__(self): """ Created: 14-May-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/254 """ BaseObject.__init__(self, __name__) def find_by_code(self, some_code): some_code = some_code.upper().strip() if some_code in self._l_known_unknowns: return "unknown" if some_code not in self._d_country_codes: self.logger.warning(f"Unknown Country: code={some_code}") return "unknown" return self._d_country_codes[some_code].lower() ``` #### File: core/svc/find_dimensions.py ```python from typing import Optional from base import BaseObject from base import RecordUnavailableRecord class FindDimensions(BaseObject): """ Act as a Controller in front of all Dimesionality Dictionaries """ __unlisted = "unlisted" __blacklist = ['activity', 'agent', 'company', 'entity', 'industry', 'language', 'learning', 'provenance', 'role', 'situation', 'skill', 'state', 'root', 'telecommunication'] @classmethod def sentiment(cls, is_debug: bool = False) -> __name__: return FindDimensions(schema='sentiment', is_debug=is_debug) def __init__(self, schema: str, ontology_name: str = 'base', is_debug: bool = False): """ Created: 29-Oct-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/916#issuecomment-15618121 Updated: 1-Nov-2019 <EMAIL> * add ability to search with or without underscores https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1151#issuecomment-15693382 Updated: 14-Nov-2019 <EMAIL> * update inner loop traversal https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1367#issuecomment-16010583 Updated: 21-Nov-2019 <EMAIL> * updates for see-also dict changes https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1195#issuecomment-16167608 Updated: 13-Dec-2019 <EMAIL> * load dictionaries by ontology name https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582 Updated: 14-Dec-2019 <EMAIL> * add biotech dimenmsionality schema https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1609 """ BaseObject.__init__(self, __name__) from datadict import FindSynonym from datadict import FindRelationships self._is_debug = is_debug self._d_schema = self._load_schema(schema) self._syn_finder = FindSynonym(is_debug=is_debug, ontology_name=ontology_name) self._rel_finder = FindRelationships(is_debug=is_debug, ontology_name=ontology_name) @staticmethod def _load_schema(schema: str) -> dict: if schema.lower() == "learning": from datadict import the_dimesionality_learning_dict return the_dimesionality_learning_dict elif schema.lower() == "supply": from datadict import the_dimesionality_supply_dict return the_dimesionality_supply_dict elif schema.lower() == "degrees": from datadict import the_dimesionality_degrees_dict return the_dimesionality_degrees_dict elif schema.lower() == "majors": from datadict import the_dimesionality_majors_dict return the_dimesionality_majors_dict elif schema.lower() == "sentiment": from datadict import the_dimesionality_sentiment_dict return the_dimesionality_sentiment_dict elif schema.lower() == "biotech": from datadict import the_dimesionality_biotech_dict return the_dimesionality_biotech_dict raise NotImplementedError(schema) def children(self, some_parent: str) -> list: some_parent = some_parent.lower().strip() if some_parent in self._d_schema: return self._d_schema[some_parent] raise RecordUnavailableRecord(some_parent) def top_level_entities(self) -> list: return sorted(self._d_schema.keys()) def _find_in_schema(self, input_text: str) -> set: matches = set() for k in self._d_schema: if k.lower() == input_text: matches.add(k) for v in self._d_schema[k]: if v.lower() == input_text: matches.add(k) return matches @staticmethod def _cleanse_results(results: list) -> list: results = sorted(results) if not len(results): results = ["other"] if results == ['other', 'unlisted']: results = ['unlisted'] if len(results) > 1 and 'unlisted' in results: results.remove('unlisted') if len(results) > 1 and 'other' in results: results = results.pop(results.index('other')) return results def find(self, input_text: str) -> list: cache = set() def _inner_find(some_input_text: str) -> Optional[list]: matches = set() if some_input_text in self.__blacklist: matches.add(self.__unlisted) schema_matches = self._find_in_schema(some_input_text) if len(schema_matches): matches = matches.union(schema_matches) else: if ' ' in some_input_text: some_input_text = some_input_text.replace(' ', '_') elif '_' in some_input_text: some_input_text = some_input_text.replace('_', ' ') schema_matches = self._find_in_schema(some_input_text) if len(schema_matches): matches = matches.union(schema_matches) else: for see_also in self._syn_finder.see_also(some_input_text): # GIT-1195-16167608 if see_also not in cache: cache.add(see_also) matches = matches.union(_inner_find(see_also.lower().strip())) some_input_text = some_input_text.replace('_', ' ') # GIT-1367-16010583 parents = [x.lower().strip() for x in self._rel_finder.parents(some_input_text) if x not in cache] for parent in parents: cache.add(parent) matches = matches.union(_inner_find(parent)) return matches results = _inner_find(input_text.lower().strip()) results = self._cleanse_results(results) if self._is_debug: self.logger.debug(f"Located Schema (" f"input={input_text}, " f"schema={results})") return results ``` #### File: core/svc/find_patterns.py ```python from typing import ValuesView from base import BaseObject class FindPatterns(BaseObject): """ One-Stop-Shop Service API for entity patterns (variations) """ _d_patterns = None _long_distance = None def __init__(self, ontology_name: str = 'base', is_debug: bool = False): """ Created: 26-Mar-2019 <EMAIL> * based on 'find-entity' Updated: 15-Jul-2019 <EMAIL> * add 'find' method Updated: 13-Dec-2019 <EMAIL> * load dictionaries by ontology name https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582 """ BaseObject.__init__(self, __name__) from datadict.core.dmo import DictionaryLoader _loader = DictionaryLoader(is_debug=is_debug, ontology_name=ontology_name) self._d_patterns = _loader.taxonomy().patterns() def find(self, input_text: str, include_patterns: bool = True) -> list or None: input_text = input_text.lower().strip() def _results(a_key: str): if include_patterns: return self._d_patterns[a_key] return [x for x in self._d_patterns[a_key] if "+" not in x] for k in self._d_patterns: if k.lower() == input_text: return _results(k) def long_distance(self) -> ValuesView[list]: """ sample input: { 'Aix 5.2 Workload': [ 'aix+5.2+workload', 'aix_5.2_workload' ], 'Aix 5.2 Workload Partitions': [ 'aix+5.2+workload+partitions', 'aix_5.2_workload_partitions' ], ... } sample output: [ { "pattern": [aix, 5.2], "label": 'Aix 5.2 Workload' }, { "pattern": [aix, 5.2, workload, partitions], "label": 'Aix 5.2 Workload Partitions' } ... } this dictionary is typically used in long-distance matching algorithms in NLU :return: a dictionary with tuples as keys and values as the actual label """ if self._long_distance is None: d_long_distance = {} for k in self._d_patterns: patterns = [x for x in self._d_patterns[k] if "+" in x] patterns = [[y.strip().lower() for y in x.split("+") if y] for x in patterns if x] for pattern in patterns: key = "".join(sorted(set(pattern))) if key not in d_long_distance: d_long_distance[key] = [] d_long_distance[key].append({ "pattern": pattern, "label": k }) self._long_distance = d_long_distance.values() return self._long_distance ``` #### File: core/svc/find_synonym.py ```python import re import time from typing import Optional from base import BaseObject PROV_WILDCARD = "synonyms" class FindSynonym(BaseObject): """ Act as a controller in front of all synonym dictionaries """ __syns = None __by_word_length = None __seealso_lcase = None __longest_ngram = 0 def __init__(self, ontology_name: str = 'base', is_debug: bool = False): """ Created: 24-Mar-2017 <EMAIL> Updated: 2-Aug-2017 <EMAIL> * use config-based provenance https://github.ibm.com/abacus-implementation/Abacus/issues/1721#issuecomment-3080923 Updated: 27-Sep-2017 <EMAIL> * migrate to abacus-att remove any references to flows Updated: 21-Feb-2019 <EMAIL> * migrated to text Updated: 11-April-2019 <EMAIL> * add reverse synonym dictionary Updated: 7-Aug-2019 <EMAIL> * use singleton and lazy loading for synonyms dictionary https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/661 Updated: 27-Sept-2019 <EMAIL> * integrate 'see-also' capabilities https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1020 Updated: 11-Oct-2019 <EMAIL> * reversed changes from 7-Aug-2019 Updated: 22-Oct-2019 <EMAIL> * enable to look for synonyms of a given word length Updated: 13-Dec-2019 <EMAIL> * load dictionaries by ontology name https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582 * remove reverse-regex-syns https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583#issuecomment-16612774 """ BaseObject.__init__(self, __name__) from datadict.core.dmo import DictionaryLoader start = time.time() self._is_debug = is_debug _loader = DictionaryLoader(ontology_name=ontology_name) self._d_see_also = _loader.synonyms().seeAlso() self._d_rev_synonyms = _loader.synonyms().rev() if not self.__syns: self._build_static_dictionaries(_loader.synonyms().fwd()) total_time = str(time.time() - start)[:4] if is_debug: self.logger.debug('\n'.join([ "Initialized FindSynonym", f"\tTime: {total_time}s", f"\tOntology Name: {ontology_name}"])) def _build_static_dictionaries(self, d_synonyms: dict): if self._is_debug: self.logger.debug("Loading Synonyms Dictionary") self.__syns = d_synonyms self.__by_word_length = {'with_regexp': {}} for key, values in d_synonyms.items(): key = key.replace(',', '') for value in values: if '[' in value: self._update_regexp_dictionary(self.__by_word_length['with_regexp'], value, key) else: word_length = len(value.split()) if not word_length in self.__by_word_length: self.__by_word_length[word_length] = {} if not key in self.__by_word_length[word_length]: self.__by_word_length[word_length][key] = [] self.__by_word_length[word_length][key].append(value) self.__longest_ngram = max(self.__longest_ngram, word_length) for word_length in range(1, self.__longest_ngram + 1): if word_length not in self.__by_word_length: self.__by_word_length[word_length] = {} @staticmethod def _update_regexp_dictionary(regexp_dict, pattern, replacement): if "(?:^" not in pattern: pattern = f'(?:^|\\s){pattern}' if "(?:$" not in pattern: pattern = f'{pattern}(?:$|\\s)' compiled = re.compile(pattern) regexp_dict[compiled] = f' {replacement} ' def dict(self) -> dict: return self.__syns def all(self, lower: bool = True, keep_regexp: bool = False, transform_spans: bool = True) -> list: """ Purpose: return all words in the synonyms list :param lower: force lowercase :param keep_regexp: return regular expressions :param transform_spans: transform word span "alpha_beta_gamma" to "alpha beta gamma" """ words = set() for k in self.dict(): words.add(k) for value in self.dict()[k]: words.add(value) if lower: words = [x.lower().strip() for x in words] if not keep_regexp: words = [x for x in words if "[" not in x] words = [x for x in words if "+" not in x] if transform_spans: words = [x.replace("_", " ") for x in words] return sorted(words) def canon(self, some_input: str) -> str: """ Purpose: Find the Canonical form for a Synonym :param some_input: some term :return: the canonical form """ _input = some_input.lower() if _input in self._d_rev_synonyms: return self._d_rev_synonyms[_input] if ' ' in _input: canon_form = ' '.join([self.canon(x) for x in _input.split(' ')]) if canon_form != _input: return canon_form def keys_in_swap_level(self, swap_level: int): return self.__by_word_length[swap_level].keys() def synonyms_in_swap_level(self, known_key: str, swap_level: int): return self.__by_word_length[swap_level][known_key] def regexps_with_synonyms(self): return self.__by_word_length['with_regexp'] def max_ngram(self) -> int: return self.__longest_ngram def synonyms(self, some_input: str, known: bool = False) -> Optional[list]: """ Purpose: Given a head (canonical) form, find the synonyms (variations) :param some_input: any head (canonical) form e.g., 'Project Manager' :param known: indicates the input parameter is a known dictionary key this is an optimization that places the burden of exception handling on the caller :return: a list of synonyms (variations) e.g., [ 'PM', 'Proj. Mgr' ] """ if known: return self.dict()[some_input] some_token = some_input.lower().strip() if some_token in self.dict(): return self.dict()[some_token] if ' ' in some_token: some_token = some_token.replace(" ", "_") if some_token in self.dict(): return self.dict()[some_token] def see_also(self, some_input: str) -> list: """ :param some_input: :return: """ def _cleanse(a_token: str) -> str: return a_token.lower().strip() for k in self._d_see_also: if _cleanse(k) == _cleanse(some_input): return self._d_see_also[k] return [] def exists(self, some_input: str) -> bool: """ :param some_input: any head (canonical) form to the dictionary NOTE: No string manipulation is performed for this lookup the input fAorm is case sensitive :return: True if the input exists as a dictionary key False the input does not exist as a dictionary key """ return self.synonyms(some_input) is not None ``` #### File: dmo/builder/assigner_node_builder.py ```python from typing import Optional from pandas import DataFrame from base import BaseObject from datagit.graph.dmo.util import GraphNodeDefGenerator from datagit.graph.dmo.util import GraphNodeIdGenerator from datagit.graph.dmo.util import GraphTextSplitter from datagit.graph.dmo.util import SocialNodeSizeGenerator from datamongo import CendantRecordParser class AssignerNodeBuilder(BaseObject): """ Build a GitHub Assigner Node for Graphviz """ def __init__(self, d_record: dict, stylesheet_path: str, df_social_entity_analysis: Optional[DataFrame], is_debug: bool = True): """ Created: 25-Dec-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1646\ Updated: 30-Dec-2019 <EMAIL> * refactored state and node building in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1678 Updated: 31-Dec-2019 <EMAIL> * add cendant-record-parser https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16873873 * refactor node-id https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877316 Updated: 2-Jan-2020 <EMAIL> * use social entity analysis data frame to influence nodesize https://github.ibm.com/-cdo/unstructured-analytics/issues/1680#issuecomment-16901723 :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._d_record = d_record self._df_social_entity_analysis = df_social_entity_analysis self._line_generator = GraphNodeDefGenerator(is_debug=self._is_debug, stylesheet_path=stylesheet_path) self.state = {} self._build_state() def _nodesize(self, person_name: str) -> dict: generator = SocialNodeSizeGenerator(is_debug=self._is_debug, df=self._df_social_entity_analysis) return generator.process(person_name) def _build_assignee_node(self): parser = CendantRecordParser(is_debug=self._is_debug) person_name = parser.field_value_by_names(self._d_record, ['Assigner']) def node_id() -> str: return GraphNodeIdGenerator(a_type='person', a_label=person_name).process() def label() -> str: the_label = person_name.replace('-', ' ') return GraphTextSplitter.split_text(the_label, threshold=5) node_id = node_id() label = label() nodesize = self._nodesize(person_name) def lines() -> list: return self._line_generator.process(node_id=node_id, node_type='person', node_label=label, height=nodesize['height'], width=nodesize['width'], comment=str(self.__class__.__name__)) return { "lines": lines(), "node_id": node_id, "person_name": person_name} def _build_state(self): self.state["assigner"] = self._build_assignee_node() ``` #### File: dmo/builder/commit_node_builder.py ```python from base import BaseObject from datagit.graph.dmo.util import GraphNodeDefGenerator from datagit.graph.dmo.util import GraphNodeIdGenerator from datagit.graph.dmo.util import GraphTextSplitter from datamongo import CendantRecordParser class CommitNodeBuilder(BaseObject): """ Build a GitHub Commit Node for Graphviz """ # generate mean and stdev via # GIT-1661-16820534 __commit_total_mean = 6350.46756302521 __commit_total_stdev = 26842.71482111913 def __init__(self, d_record: dict, stylesheet_path: str, is_debug: bool = True): """ Created: 19-Dec-2019 <EMAIL> * refactored out of 'graph-github-issue' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1631 Updated: 20-Dec-2019 <EMAIL> * detect merge commits https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1633#issuecomment-16768132 Updated: 25-Dec-2019 <EMAIL> * update node line generation https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1654 Updated: 26-Dec-2019 <EMAIL> * perform dynamic node sizing via https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1661#issuecomment-16820534 Updated: 27-Dec-2019 <EMAIL> * remove relative sizing https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1669#issue-11256101 Updated: 31-Dec-2019 <EMAIL> * add cendant-record-parser https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16873873 Updated: 31-Dec-2019 <EMAIL> * use node line generator to support stylesheet pathing https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877187 * refactor node-id https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877316 Updated: 2-Jan-2020 <EMAIL> * refactor code into state/build-state standard https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877328 :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._d_record = d_record self._parser = CendantRecordParser(is_debug=self._is_debug) self._line_generator = GraphNodeDefGenerator(is_debug=self._is_debug, stylesheet_path=stylesheet_path) self.state = {} self._build_state() self.is_merge_commit = self._is_merge_commit() # GIT-1633-16768132 def _is_merge_commit(self): """ Purpose: Naive Method to Detect a Merge Commit Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1633#issuecomment-16768132 :return: True the commit record is a merge False not a merge commit """ title = self._parser.field_value_by_name(a_record=self._d_record, a_field_name='Title').lower().strip() return 'merge' in title def _build_state(self): def node_id() -> str: commit_id = self._d_record['key_field'] return GraphNodeIdGenerator(a_type='commit', a_label=commit_id).process() def label() -> str: additions = self._parser.field_value_by_name(self._d_record, "Additions") deletions = self._parser.field_value_by_name(self._d_record, "Deletions") total = self._parser.field_value_by_name(self._d_record, "Total") title = self._parser.field_value_by_name(self._d_record, "Title") title = GraphTextSplitter.split_text(title, threshold=10) template = "{{#LABEL}|{Total\\n#TOTAL|{Additions\\n#ADD|{Deletions\\n#DEL}}}}" template = template.replace("#LABEL", title) template = template.replace("#TOTAL", str(total)) template = template.replace("#ADD", str(additions)) template = template.replace("#DEL", str(deletions)) return template label = label() node_id = node_id() def lines() -> list: return self._line_generator.process(node_id=node_id, node_type='commit', node_label=label, comment=str(self.__class__.__name__)) return { "lines": lines(), "node_id": node_id} ``` #### File: dmo/util/graph_edgedef_generator.py ```python from typing import Optional from pandas import DataFrame from base import BaseObject class GraphEdgeDefGenerator(BaseObject): """ Build and Style all the Graphviz Edges """ __default_keys = ["subject", "predicate", "object", "label"] def __init__(self, triples: list, stylesheet_path: str, df_social_rel_analysis: Optional[DataFrame], is_debug: bool = True): """ Created: 24-Dec-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1645 Updated: 26-Dec-2019 <EMAIL> * dynamic label capability https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1648#issuecomment-16817744 * edge style attributes derived entirely from stylesheet https://github.ibm.com/-cdo/unstructured-analytics/issues/1657 Updated: 27-Dec-2019 <EMAIL> * refactor into kwargs https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1669#issue-11256101 Updated: 31-Dec-2019 <EMAIL> * renamed from 'graph-edge-builder' in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877277 * use stylesheet-pathing as param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1684 Updated: 2-Jan-2020 <EMAIL> * import df-social-rel-analysis as param https://github.ibm.com/-cdo/unstructured-analytics/issues/1680#issuecomment-16901723 :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) from datagit.graph.dmo.util import GraphEdgeStyleFinder self._triples = triples self._is_debug = is_debug self._df_social_rel_analysis = df_social_rel_analysis self._edge_style_finder = GraphEdgeStyleFinder(is_debug=self._is_debug, stylesheet_path=stylesheet_path) def _weight(self, person_a: str, person_b: str) -> float: from datagit.graph.dmo.util import SocialRelWeightGenerator generator = SocialRelWeightGenerator(is_debug=self._is_debug, df=self._df_social_rel_analysis) return generator.social_collocation(person_a, person_b) def process(self) -> list: lines = [] for triple in self._triples: d_edge_style = self._edge_style_finder.process(triple['predicate']) existing_keys = set(self.__default_keys) lines.append(f"\t{triple['subject']} -> {triple['object']}") lines.append(f"[") # Add Label (Optional) def _label() -> Optional[str]: display_label = bool(d_edge_style["display_label"]) has_label = 'label' in triple and triple['label'] is not None if display_label: if has_label: # User Defined Label return f"\tlabel=\"{triple['label']}\"" # Predicate Label return f"\tlabel=\"{triple['predicate']}\"" # No Label lines.append(_label()) if 'subject_name' in triple and 'object_name' in triple: weight = self._weight(triple['subject_name'], triple['object_name']) weight = 1.0 + weight lines.append(f"\tweight=\"{weight}\"") # Add User Keys (Overrides Stylesheet) keys = [key for key in triple.keys() if key not in existing_keys] for key in keys: existing_keys.add(key) lines.append(f"\t{key}=\"{triple[key]}\"") # Add Stylesheet Keys style_keys = [key for key in d_edge_style.keys() if key not in existing_keys] for key in style_keys: lines.append(f"\t{key}=\"{d_edge_style[key]}\"") lines.append("]\n") lines = [line for line in lines if line and len(line.strip())] return lines ``` #### File: dmo/util/graph_nodeid_generator.py ```python from base import BaseObject class GraphNodeIdGenerator(BaseObject): """ Build a GitHub Node for Graphviz """ def __init__(self, a_type: str, a_label: str, is_debug: bool = True): """ Created: 19-Dec-2019 <EMAIL> * refactored out of 'graph-github-issue' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1631 Updated: 31-Dec-2019 <EMAIL> * renamed from 'node-id-generator' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1681#issuecomment-16877277 :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._type = a_type self._label = a_label self._is_debug = is_debug def process(self) -> str: a_type = self._type.lower().strip() a_label = self._label.upper().strip() a_label = a_label.replace('.', '_') a_label = a_label.replace('-', '_') a_label = a_label.replace('=', '_') a_label = a_label.replace('/', '_') def generate_label() -> str: if a_type == "issue": return f"NODE_ISSUE_{a_label}" elif a_type == "pull_request": return f"NODE_PR_{a_label}" elif a_type == "commit": return f"NODE_COMMIT_{a_label}" elif a_type == "file_commit": return f"NODE_FILE_COMMIT_{a_label}" elif a_type == "file_folder": return f"PYTHON_FILE_FOLDER_{a_label}" elif a_type == "file_path": return f"PYTHON_FILE_PATH_{a_label}" elif a_type == "file_name": return a_label elif a_type == "person": return f"PERSON_{a_label}" raise NotImplementedError def make_hash(some_label: str) -> str: # return f"GN_{BaseHash.hash(some_label)}" return f"GN_{some_label}" label = generate_label() if not label: raise NotImplementedError return make_hash(label) ``` #### File: core/dmo/collection_name_generator.py ```python from datetime import datetime from base import BaseObject class CollectionNameGenerator(BaseObject): """ GitHub Ingestion Orchestrator """ def __init__(self, repo_name: str, collection_type: str, is_debug: bool = False): """ Created: 6-Dec-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1532 :param repo_name: name of the Github repo e.g., 'unstructured-analytics' :param collection_type: the type of collection to generate e.g., 'src' or 'tag' """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._repo_name = repo_name self._collection_type = collection_type def _repo_abbrev(self) -> str: if self._repo_name.lower() == "unstructured-analytics": return "una" if self._repo_name.lower() == "cdo-workforce-transformation": return "cdo" self.logger.warning(f"Unrecognized Repository: " f"{self._repo_name}") return self._repo_name.replace('-', '_') @staticmethod def _date() -> str: def _current_day() -> str: x = datetime.now().day if x < 10: return f"0{x}" return str(x) def _current_month() -> str: x = datetime.now().month if x < 10: return f"0{x}" return str(x) current_year = datetime.now().year return f"{current_year}{_current_month()}{_current_day()}" def process(self) -> str: collection_name = f"github-{self._repo_abbrev()}_{self._collection_type}_{self._date()}" if self._is_debug: self.logger.debug('\n'.join([ "Generated Collection Name", f"\tName: {collection_name}", f"\tRepo: {self._repo_name}"])) return collection_name ``` #### File: core/dmo/zenhub_url_generator.py ```python from base import BaseObject class ZenHubURLGenerator(BaseObject): """ prepare url for ZenHub repo API calls returns the url for coresponding repo owner & repo name """ def __init__(self, repo_id: int, repo_name: str, repo_owner: str, is_debug: bool = False): """ Created: 7-Dec-2019 <EMAIL> * generated via https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1511 * refactored in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1553#issue-11089485 :param repo_id: the numeric identifier of the GitHub repository :param repo_owner: name of the Github repo owner e.g., 'GTS-CDO' :param repo_name: name of the Github repo e.g., 'unstructured-analytics' """ BaseObject.__init__(self, __name__) from datagit.ingest.core.dmo import GitHubTokenLoader self._is_debug = is_debug self._repo_id = repo_id self._repo_id = repo_id self._repo_name = repo_name self._repo_owner = repo_owner self._token_loader = GitHubTokenLoader(is_debug=self._is_debug) def url(self): class Facade(object): @staticmethod def base(): """ Create a base ZenHub URL :return: a properly formatted URL """ return self._token_loader.urls().zenhub() @staticmethod def issue(number: int): """ Make url for ZenHub repo issues :param number: :return: a properly formatted issues URL for the specified repository """ token = self._token_loader.user_tokens().zenhub() return f"{Facade().base()}{self._repo_id}/issues/{number}?{token}" @staticmethod def epic(number: int): """ Make url for ZenHub epic issues Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1667#issuecomment-16821516 :param number: :return: a properly formatted issues URL for the specified repository """ token = self._token_loader.user_tokens().zenhub() return f"{Facade().base()}{self._repo_id}/epics/{number}?{token}" @staticmethod def pull(number: int): """ Make url for ZenHub repo pull requests :param number: :return: a properly formatted pull URL for the specified repository """ token = self._token_loader.user_tokens().zenhub() return f"{Facade().base()}{self._repo_id}/pull/{number}?{token}" return Facade() ``` #### File: github/bp/github_ingest_api.py ```python import sys from base import BaseObject class GithubIngestAPI(BaseObject): """ GitHub Ingestion Orchestrator """ def __init__(self, is_debug: bool = False): """ Created: 20-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/574 Updated: 29-Nov-2019 <EMAIL> * update for n2n flow https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1476 Updated: 6-Dec-2019 <EMAIL> * add collection name generator https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1532 Updated: 7-Dec-2019 <EMAIL> * github-user-name no longer needed from environment https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1551#issuecomment-16473682 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._github_usertoken = self._load_github_usertoken() def _load_github_usertoken(self): from datagit.ingest.core.dmo import GitHubTokenLoader return GitHubTokenLoader(is_debug=self._is_debug).user_tokens().github() def _target_collection_name(self, repo_name: str, collection_type: str) -> str: from datagit import CollectionNameGenerator return CollectionNameGenerator(is_debug=self._is_debug, repo_name=repo_name, collection_type=collection_type).process() def ingest(self): class Facade(object): @classmethod def by_name(cls, repo_name: str, repo_owner: str, start_issue: int, end_issue: int): from datagit.ingest.github.bp import GitHubIngestOrchestrator target_collection_name = self._target_collection_name(repo_name=repo_name, collection_type='src') GitHubIngestOrchestrator(flush_records=False, persist_records=True, is_debug=self._is_debug, repo_name=repo_name, repo_owner=repo_owner, github_usertoken=self._github_usertoken, collection_name=target_collection_name).process(start_issue=start_issue, end_issue=end_issue) @classmethod def cendant(cls): return cls.by_name(repo_owner="GTS-CDO", repo_name="unstructured-analytics", start_issue=1, end_issue=sys.maxsize) @classmethod def cdo_workforce(cls): return cls.by_name(repo_owner="GTS-CDO", repo_name="CDO-Workforce-Transformation", start_issue=1, end_issue=sys.maxsize) return Facade() ``` #### File: github/svc/transform_github_structure.py ```python import pprint from typing import Optional from base import BaseObject from base import MandatoryParamError class TransformGitHubStructure(BaseObject): """ Transform a GitHub Object to a Cendant Record Structure """ __keystructs_issue = [ 'assignee,assignees,author_association,body,closed_at,closed_by,comments,comments_url,created_at,events_url,html_url,id,labels,labels_url,locked,milestone,node_id,number,repository_url,state,title,updated_at,url,user'] __keystructs_comment = [ 'author_association,body,created_at,html_url,id,issue_url,node_id,updated_at,url,user'] __keystructs_commit_comment = [ "author_association,body,commit_id,created_at,html_url,id,line,node_id,path,position,updated_at,url,user"] __keystructs_pr_event = [ "actor,commit_id,commit_url,created_at,event,id,node_id,requested_reviewer,review_requester,url", "actor,assignee,assigner,commit_id,commit_url,created_at,event,id,node_id,url", "actor,commit_id,commit_url,created_at,event,id,label,node_id,url"] __keystructs_merge = [ "author,committer,html_url,message,node_id,parents,sha,tree,url,verification"] __keystructs_pr_issue = [ "_links,additions,assignee,assignees,author_association,base,body,changed_files,closed_at,comments,comments_url,commits,commits_url,created_at,deletions,diff_url,head,html_url,id,issue_url,labels,locked,maintainer_can_modify,merge_commit_sha,mergeable,mergeable_state,merged,merged_at,merged_by,milestone,node_id,number,patch_url,rebaseable,requested_reviewers,requested_teams,review_comment_url,review_comments,review_comments_url,state,statuses_url,title,updated_at,url,user", "assignee,assignees,author_association,body,closed_at,closed_by,comments,comments_url,created_at,events_url,html_url,id,labels,labels_url,locked,milestone,node_id,number,pull_request,repository_url,state,title,updated_at,url,user"] __keystructs_commits = [ "author,comments_url,commit,committer,files,html_url,node_id,parents,sha,stats,url"] __keystructs_mentions = [ "actor,commit_id,commit_url,created_at,event,id,node_id,url"] __keystructs_milestone = [ "actor,commit_id,commit_url,created_at,event,id,milestone,node_id,url"] __keystructs_renamed = [ "actor,commit_id,commit_url,created_at,event,id,node_id,rename,url"] __keystructs_review_dismissed = [ "actor,commit_id,commit_url,created_at,dismissed_review,event,id,node_id,url"] __keystructs_tree = [ "sha,tree,truncated,url"] def __init__(self, issue_id: int or str, parent_id: str, manifest_name: str, repo_name: str, repo_owner: str, svcresult: dict or list, is_debug: bool = False, log_structures: bool = True): """ Created: 26-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1459 Updated: 3-Dec-2019 <EMAIL> * add further differentiation based on structural attributes https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1509#issue-11034406 Updated: 7-Dec-2019 <EMAIL> * renamed from 'transform-github-data' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1553#issue-11089485 * integrate zenhub access https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1511 Updated: 26-Dec-2019 <EMAIL> * update zenhub access pattern for pics https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1667 :param issue_id: this is a provenance link to the source issue in this case it would be the original GitHub Issue ID the comments are linked to :param repo_name: the name of the repository the data is drawn from :param manifest_name: this is a provenance link to the source data in this case it would be the original GitHub URL the data was taken from :param svcresult: a list of data retrieved from GitHub :param is_debug: :param log_structures: write JSON structures to log file these objects are potentially LARGE - best to keep this value False for production runs """ BaseObject.__init__(self, __name__) from datagit.ingest.github.svc import AccessZenHubURL if not parent_id: raise MandatoryParamError self._issue_id = issue_id self._parent_id = parent_id self._is_debug = is_debug self._svcresult = svcresult self._repo_name = repo_name self._repo_owner = repo_owner self._manifest_name = manifest_name self._log_structures = log_structures self._zenhub_access = AccessZenHubURL(is_debug=self._is_debug, repo_name=self._repo_name, repo_owner=self._repo_owner) def _log_result(self, structure_name: str, svcresult: dict or list) -> None: if self._log_structures: self.logger.debug('\n'.join([ f"{structure_name} Structure Detected", "------------------------------------------------------------------------------------------", ','.join(sorted(svcresult.keys())), pprint.pformat(svcresult), "------------------------------------------------------------------------------------------"])) def _analyze_structure(self, svcresult: dict) -> list or None: from datagit.ingest.github.dmo import IssueTransformation from datagit.ingest.github.dmo import AssignmentTransformation from datagit.ingest.github.dmo import CommentsTransformation from datagit.ingest.github.dmo import CommitsTransformation from datagit.ingest.github.dmo import PullRequestEventTransformation from datagit.ingest.github.dmo import PullRequestIssueTransformation from datagit.ingest.github.dmo import MentionsTransformation from datagit.ingest.github.dmo import CommitCommentTransformation from datagit.ingest.github.dmo import MergeEventTransformation key_struct = ','.join(sorted(svcresult.keys())) def issue_transformation() -> list: self._log_result("Issues", svcresult) d_zenhub_result = self._zenhub_access.process(issue_id=self._issue_id) def _zenhub_epic() -> Optional[dict]: if d_zenhub_result['is_epic']: return self._zenhub_access.process(issue_id=self._issue_id, as_epic=True) return IssueTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, zenhub_result=d_zenhub_result, zenhub_epic=_zenhub_epic(), manifest_name=self._manifest_name).process() def comments_transformation() -> list: self._log_result("Comments", svcresult) return CommentsTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def pull_request_issues() -> list: self._log_result("Pull Request Issue", svcresult) return PullRequestIssueTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def merge_request_event() -> list: self._log_result("Merge Request Event", svcresult) return MergeEventTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def pull_request_events() -> list: self._log_result("Pull Request Event", svcresult) return PullRequestEventTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def commit_comment_transformation() -> list: self._log_result("Commit Comment", svcresult) return CommitCommentTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def assignment_transformation() -> list: self._log_result("Assignment", svcresult) return AssignmentTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def commits_transformation() -> list: self._log_result("Commit", svcresult) return CommitsTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def mentions_transformation() -> list: self._log_result("Mentions", svcresult) return MentionsTransformation(svcresult=svcresult, is_debug=self._is_debug, issue_id=self._issue_id, parent_id=self._parent_id, repo_name=self._repo_name, manifest_name=self._manifest_name).process() def unrecognized() -> None: self.logger.warning('\n'.join([ "Unrecognized GitHub Object", f"\tIssue #{self._issue_id}", f"\tKeys: {key_struct}", "--------------------------------------------------", pprint.pformat(svcresult, indent=4), "--------------------------------------------------"])) raise NotImplementedError # Controller Logic if key_struct in self.__keystructs_milestone: # GIT-1509-16376091 pass # not interested elif key_struct in self.__keystructs_renamed: # GIT-1509-16376485 pass # not interested elif key_struct in self.__keystructs_review_dismissed: # GIT-1509-16376649 pass # not interested elif key_struct in self.__keystructs_issue: return issue_transformation() elif key_struct in self.__keystructs_merge: return merge_request_event() elif key_struct in self.__keystructs_comment: return comments_transformation() elif key_struct in self.__keystructs_commit_comment: return commit_comment_transformation() elif key_struct in self.__keystructs_pr_issue: return pull_request_issues() elif key_struct in self.__keystructs_pr_event: if 'event' not in svcresult: return pull_request_events() elif svcresult['event'] == 'assigned': # GIT-1509-11034406 return assignment_transformation() elif svcresult['event'] == 'referenced': return pull_request_events() elif key_struct in self.__keystructs_commits: return commits_transformation() elif key_struct in self.__keystructs_mentions: if svcresult["event"] == "pinned" or \ svcresult["event"] == "unpinned": # GIT-1509-16375937 pass # not interested elif svcresult["event"] == "locked" or \ svcresult["event"] == "unlocked": # GIT-1509-16375958 pass # not interested elif svcresult["event"] == "merged": # GIT-1509-16376390 pass # not interested elif svcresult["event"] == "closed": # GIT-1509-16376401 pass # not interested else: return mentions_transformation() elif key_struct in self.__keystructs_tree: # GIT-1537-16466899 pass # not interested else: unrecognized() def _analyze(self, svcresult: list or dict) -> list or None: """ Purpose: Analyze the service result (svcresult) from GitHub :param svcresult: the incoming svcresult may be either: list multiple structures dict a single structure :return: a list of records """ if type(svcresult) == list: master_records = [] for inner_structure in list(svcresult): if not inner_structure: raise ValueError results = self._analyze_structure(inner_structure) if results and len(results): master_records += results return master_records elif type(svcresult) == dict: return self._analyze_structure(dict(svcresult)) raise NotImplementedError def process(self) -> list: return self._analyze(self._svcresult) ``` #### File: scripts/graph/social_graph_all_ibm.py ```python import os from base import FileIO from datagit.analyze.bp import GitHubAnalysisOrchestrator from datagit.graph.svc import GraphSocialNetwork from datagit.navigate.bp import GitHubNavigationAPI def generate_output_path(issue_number_x, issue_number_y) -> str: filename = f"G_{issue_number_x}-{issue_number_y}_SOCIAL-IBM.giz" return os.path.join(os.environ['DESKTOP'], filename) def main(): issue_number_x = 0 issue_number_y = 1700 IS_DEBUG = False COLLECTION_NAME = "github-IBMCodeContent_src_20200104" output_path = generate_output_path(issue_number_x, issue_number_y) orchestrator = GitHubAnalysisOrchestrator(is_debug=IS_DEBUG) social_analysis = orchestrator.distributions(collection_name=COLLECTION_NAME).social(write_to_file=True) lines = ["digraph GitHubSNA {"] api = GitHubNavigationAPI(is_debug=IS_DEBUG) for issue in range(int(issue_number_x), int(issue_number_y)): svcresult = api.navigate(COLLECTION_NAME).by_issue(issue_id=issue) if svcresult: lines += GraphSocialNetwork(is_debug=IS_DEBUG, pattern=svcresult['pattern'], d_index=svcresult['index'], df_social_entity_analysis=social_analysis['ent'], df_social_relationship_analysis=social_analysis['rel']).lines() lines.append("}") FileIO.lines_to_file(lines, output_path) print('\n'.join([ "Wrote to File", f"\tOutput Path: {output_path}"])) if __name__ == "__main__": import plac plac.call(main) ``` #### File: datagit/tests/find_repo_id_test.py ```python import unittest from datagit.ingest.core.svc import FindRepoID class FindRepoIDTest(unittest.TestCase): def test_unstructured_analytics(self): repo_id = FindRepoID(is_debug=True, repo_owner="GTS-CDO", repo_name="unstructured-analytics").process() self.assertEquals(repo_id, 508363) if __name__ == '__main__': unittest.main() ``` #### File: graphviz/dmo/digraph_edge_generator.py ```python from graphviz import Digraph from base import BaseObject class DigraphEdgeGenerator(BaseObject): """ Purpose: Edge Generation for a graphviz.Digraph object Notes: - 'digraph-edge-generator' is not the same as 'graphviz-edge-generator' - this module generates a library-specific Digraph edge element - the graphviz-edge-generator creates a string value that conforms to the Graphviz format Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1426#issuecomment-16165027 """ __s_unique = set() def __init__(self, graph_style: dict, is_debug: bool = True): """ Created: 21-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1426#issuecomment-16165027 :param graph_style: a graph style defined in a graph stylesheet e.g.: - resources/config/graph/graphviz_nlp_graph.yml - resources/config/graph/graphviz_big_graph.yml :param is_debug: True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) from datagraph.graphviz.dmo import DigraphTextCleanser from datagraph.graphviz.dmo import EdgeStyleMatcher self.is_debug = is_debug self._edge_style_matcher = EdgeStyleMatcher(is_debug=self.is_debug, graph_style=graph_style) self._text_cleanser = DigraphTextCleanser(graph_style=graph_style, is_debug=self.is_debug) def process(self, graph: Digraph, a_subject: str, a_predicate: str, a_object: str) -> Digraph: if not a_subject or not a_predicate or not object: return graph uid = " ".join(sorted([a_subject.lower(), a_object.lower()])) def _is_valid(): if "unlisted" in uid: return False return uid not in self.__s_unique and a_subject != a_object if _is_valid(): self.__s_unique.add(uid) d_edge = self._edge_style_matcher.process(a_subject=a_subject, a_predicate=a_predicate, a_object=a_object) if "display_label" in d_edge: if not d_edge["display_label"]: a_predicate = '' graph.edge(tail_name=self._text_cleanser.process(a_subject), head_name=self._text_cleanser.process(a_object), label=self._text_cleanser.process(a_predicate), **d_edge["style"]) return graph ``` #### File: graphviz/dmo/digraph_text_cleanser.py ```python from base import BaseObject class DigraphTextCleanser(BaseObject): """ Purpose: Edge Generation for a graphviz.Digraph object Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1426#issuecomment-16165027 """ def __init__(self, graph_style: dict, is_debug: bool = True): """ Created: 21-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1426#issuecomment-16165027 :param graph_style: a graph style defined in a graph stylesheet e.g.: - resources/config/graph/graphviz_nlp_graph.yml - resources/config/graph/graphviz_big_graph.yml :param is_debug: True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._graph_style = graph_style def process(self, some_text: str) -> str: """ Purpose: determine whether to split the text for readability :param some_text: input text :return: (optionally) processed text """ if "graph" not in self._graph_style: return some_text if "split_text" not in self._graph_style["graph"]: return some_text if not self._graph_style["graph"]["split_text"]: return some_text if " " not in some_text: return some_text tokens = some_text.split(" ") return "{}\\n{}".format(tokens[0], " ".join(tokens[1:])) ``` #### File: graphviz/dmo/graph_style_loader.py ```python from base import BaseObject from base import FileIO class GraphStyleLoader(BaseObject): """ Purpose: Load a Graphviz Stylesheet Traceability: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1426#issuecomment-16165027 Prereq: """ def __init__(self, style_name: str = "nlp", is_debug: bool = True): """ Created: 21-Nov-2019 <EMAIL> :param style_name: the name of the graph stylesheet to use :param is_debug: if True increase log output at DEBUG level """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._style_name = self._load(style_name) def style(self) -> dict: return self._style_name @staticmethod def _load(some_style_name) -> dict: def _relative_path(): if "nlp" in some_style_name.lower(): return "resources/config/graph/graphviz_nlp_graph.yml" if "big" in some_style_name.lower(): return "resources/config/graph/graphviz_big_graph.yml" if "sentiment" in some_style_name.lower(): return "resources/config/graph/graphviz_sentiment_graph.yml" raise NotImplementedError return FileIO.file_to_yaml_by_relative_path( _relative_path()) ``` #### File: neo/bp/graph_api.py ```python import time class GraphAPI: """ API for Graph functionality Created: 25-Feb-2019 <EMAIL> * refactored from various services """ @classmethod def initialize_neo_graph(cls): from datagraph import OwlGraphConnector from datagraph import InitializeNeoGraph start = time.time() owlg = OwlGraphConnector("cendant").process() print("\n".join([ "Loaded Graphs: {}".format( time.time() - start)])) InitializeNeoGraph(some_owl_graph=owlg).process() def main(param1): if param1 == "init": GraphAPI.initialize_neo_graph() if __name__ == "__main__": import plac plac.call(main) ``` #### File: neo/dmo/neo_graph_connector.py ```python import os from py2neo.database import Graph from base import FileIO class NeoGraphConnector: """ Created: 25-Feb-2019 <EMAIL> """ @classmethod def _load_creds(cls, connection): path = os.path.join(os.environ["CODE_BASE"], "resources/config/config.yml") doc = FileIO.file_to_yaml(path) return doc["neo"][connection] @classmethod def _neo_graph(cls, neo_creds): return Graph(neo_creds["url"], auth=(neo_creds["username"], neo_creds["password"])) @classmethod def connect(cls, connection_type="remote") -> Graph: return cls._neo_graph(cls._load_creds(connection_type)) ``` #### File: neo/dmo/neo_relationship_generator.py ```python from py2neo import Relationship from py2neo import Transaction from base import BaseObject from . import NeoGraphContext class NeoRelationshipGenerator(BaseObject): """ """ def __init__(self, source_records: list, some_tx: Transaction, context: NeoGraphContext, ): """ Created: 5-Apr-2019 <EMAIL> * refactored out of 'initialize-neo-graph' :param some_tx: an active Neo transaction :param context: an existing graph context """ BaseObject.__init__(self, __name__) self.tx = some_tx self.context = context self.source_records = source_records def process(self) -> NeoGraphContext: """ generate all the relationships """ for source_record in self.source_records: for field in source_record: if not field["create_node"]: continue def _field_value() -> str: if type(field["value"]) == list: return " ".join(field["value"]) return field["value"] _subject = self.context.find_or_create_node(self.tx, _field_value(), field["name"], ) for rel in field["relationships"]: def _rel_value() -> str: if type(rel["value"]) == list: return " ".join(rel["value"]) return rel["value"] _object = self.context.find_or_create_node(self.tx, _rel_value(), rel["name"]) self.tx.create(Relationship(_subject, rel["type"], _object, activity="Known Relationship")) return self.context ``` #### File: neo/svc/find_common_relationships.py ```python import pandas as pd from pyparsing import ParseException from rdflib import Graph from rdflib import Literal from rdflib.query import ResultRow from base import BaseObject from base import LabelFormatter from datadict import FindDimensions from datadict import FindEntity class FindCommonRelationships(BaseObject): """ Query the Cendant Ontology given alpha implies gamma beta implies gamma thus alpha <-> beta more generically ?a ?p ?z ?b ?p ?z where ?p != rdf:type and ?p != rdfs:subClassOf """ _s_terms = set() _d_results = {} def __init__(self, graph: Graph = None, xdm_schema: str = 'supply', ontology_name: str = 'base', is_debug: bool = False): """ Created: 18-Jul-2019 <EMAIL> * refactored out of generate-dataframe-rels https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/455#issuecomment-12884783 Updated: 22-Jul-2019 <EMAIL> * deprecated this runs to slow -- it's hard to control SPARQL query algebra in the wild I have added additional properties to 'find-relationships' Updated: 29-Oct-2019 <EMAIL> * remove 'entity-schema-finder' in favor of new approach https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/916#issuecomment-15620801 Updated: 13-Dec-2019 <EMAIL> * load dictionaries by ontology name https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582 :param graph: :param xdm_schema: the name of the schema to perform the type lookup Notes: - typically either 'supply' or 'learning' - the full list is on path 'resources/config/dimensionality' :param is_debug: """ BaseObject.__init__(self, __name__) from datagraph.neo.dmo import OwlGraphConnector if not graph: graph = OwlGraphConnector(is_debug=is_debug, ontology_name="cendant").process() self._graph = graph self._is_debug = is_debug self._entity_finder = FindEntity(is_debug=is_debug, ontology_name=ontology_name) self._dim_finder = FindDimensions(schema=xdm_schema, is_debug=is_debug, ontology_name=ontology_name) @staticmethod def _query(term: str) -> str: return """ SELECT ?a_label ?p WHERE { { cendant:#1 ?p ?c . ?a rdfs:label ?a_label . ?a ?p ?c . } UNION { ?z rdfs:subClassOf cendant:#1 . ?z ?p ?c . ?a rdfs:label ?a_label . ?a ?p ?c . } UNION { cendant:#1 ?p ?c . ?a rdfs:subClassOf ?c . ?a rdfs:label ?a_label . } } """.strip().replace("#1", term) def _normalize_term(self, term: str) -> str: original_term = term term = term.lower().replace("!", "") term = term.lower().replace("/", "_") term = term.lower().replace("_", " ") term = "_".join([LabelFormatter.camel_case(token) for token in term.split(" ")]) self.logger.debug("\n".join([ f"Term Manipulation (original={original_term}, normalized={term}"])) return term def _related_terms(self, term: str) -> list: term = self._normalize_term(term) def _to_result_set(): try: sparql_query = self._query(term) return self._graph.query(sparql_query) except ParseException as e: self.logger.error("\n".join([ "Query Parse Exception", f"\tTerm: {term}"])) result_set = _to_result_set() def _literal_extraction(a_label: Literal): if "http" in a_label: return str(a_label).split("'")[-1].split("'")[0].strip() return a_label.title() def _valid_href(a_row: ResultRow) -> bool: p = str(a_row[1].title()).lower() if "type" in p or "subclassof" in p or "owl" in p or "rdf-schema#" in p: return False # if "ownedby" in p: # return False return True def _results() -> list: s = set() rows = [row for row in result_set if _valid_href(row)] for row in rows: literals = [x for x in row if x and type(x) == Literal] for literal in literals: s.add(_literal_extraction(literal)) _predicate = row[1] _object = row[0] self.logger.debug("\n".join([ "Located Relationship", f"\tSubject: {term}", f"\tPredicate: {_predicate}", f"\tObject: {_object}"])) return sorted(s) results = _results() results = [result for result in results if result.lower().replace("_", " ") != term.lower().replace("_", " ")] self.logger.debug("\n".join([ "Find Related Terms Complete", f"\tOriginal Term: {term}", f"\tResults: {results}"])) self._d_results[term] = results return results def process(self, term: str): for related_term in self._related_terms(term): if related_term not in self._s_terms: self._s_terms.add(related_term) self._related_terms(related_term) results = [] for key in self._d_results: for explicit_schema in self._dim_finder.find(key): for value in self._d_results[key]: for implicit_schema in self._dim_finder.find(value): results.append({ "ExplicitSchema": explicit_schema, "ExplicitTag": key, "ImplicitSchema": implicit_schema, "ImplicitTag": value, "IsPrimary": True, "IsVariant": False, "Relationship": "Implication"}) df = pd.DataFrame(results) return df ``` #### File: neo/svc/generate_similarity_metric.py ```python from py2neo import Transaction from base import BaseObject from base import MandatoryParamError from datagraph.neo.dmo import NeoGraphContext from datagraph.neo.dmo import NeoUtils class GenerateSimilarityMetric(BaseObject): """ """ def __init__(self, some_tx: Transaction, some_graph_context: NeoGraphContext, use_categorical_relationships=True): """ Created: 19-Mar-2019 <EMAIL> * refactored out of 'load-neo-from-manifest-2' :param some_tx: an active neo transaction :param some_graph_context: an active neo transaction :param use_categorical_relationships: if True, use relationships like 'lowest-similarity', 'is-similar', ... 'highest-similarity' if False, just use 'is-similar' """ BaseObject.__init__(self, __name__) if not some_tx: raise MandatoryParamError("Neo Transaction") if not some_graph_context: raise MandatoryParamError("Graph Context") self.tx = some_tx self.graph_context = some_graph_context self.categorical_relationships = use_categorical_relationships def _relationship_name(self, total: int) -> str: def _to_categorical(): switcher = { 1: "lowest-similarity", 2: "low-similarity", 3: "is-similar", 4: "high-similarity", 5: "highest-similarity" } if total > 5: return switcher[5] return switcher[total] if self.categorical_relationships: return _to_categorical() return "is-similar" def _similarity_metric(self, d_tags: dict): # create similarity metric s_complete = set() for tag1 in d_tags: for tag2 in d_tags: if tag1 == tag2: continue total = len(set(tag1.split(" ")).intersection(set(tag2.split(" ")))) if total > 1: # prevent dupes (e.g. bidirectional flows) key = "".join(sorted({tag1, tag2})) if key in s_complete: continue s_complete.add(key) _s = self.graph_context.find_or_create_node(self.tx, tag1, d_tags[tag1]) _p = self._relationship_name(total) _o = self.graph_context.find_or_create_node(self.tx, tag2, d_tags[tag2]) NeoUtils.define_relationship(_s, _p, _o, activity="Probabilistic Relationship", entity="Vector Space") def _generate_graph_dictionary(self) -> dict: """ the graph_context contains a dictionary of actual neo4j nodes this routine takes that dictionary and creates a simple key:value dictionary of graph nodes to graph types for example: { 'Server Support Specialist': 'Domain Term', 'AIX': 'Operating System' } etc :return: """ d_graph = {} keys = sorted(self.graph_context.node_lookup.keys()) for node_key in keys: node_name = node_key.split("-")[0].strip() node_type = node_key.split("-")[-1].strip() d_graph[node_name] = node_type return d_graph def process(self): self._similarity_metric( self._generate_graph_dictionary()) ``` #### File: neo/svc/initialize_neo_graph.py ```python import rdflib from py2neo import Node from py2neo import Relationship from py2neo import Transaction from base import BaseObject from base import MandatoryParamError from datadict import FindDimensions from datadict import FindEntity from datadict import FindRelationships class InitializeNeoGraph(BaseObject): """ Initialize the neo4j graph with the ontology model **** WARNING **** Running this service will wipe all existing data from the neo4j graph """ def __init__(self, some_owl_graph: rdflib.Graph, some_connection_type: str = 'local', xdm_schema: str = 'supply'): """ Created: 21-Feb-2019 <EMAIL> Updated: 23-Feb-2019 <EMAIL> * added yml creds Updated: 25-Feb-2019 <EMAIL> * invoke from API Updated: 26-Mar-2019 <EMAIL> * updated based on large-scale MDA changes Updated: 29-Oct-2019 <EMAIL> * remove 'entity-schema-finder' in favor of new approach https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/916#issuecomment-15620801 :param some_owl_graph: :param some_connection_type: :param xdm_schema: the name of the schema to perform the type lookup Notes: - typically either 'supply' or 'learning' - the full list is on path 'resources/config/dimensionality' """ BaseObject.__init__(self, __name__) if not some_owl_graph: raise MandatoryParamError("Owl Graph") self._owlg = some_owl_graph self._entity_finder = FindEntity() self._connection_type = some_connection_type self._rel_finder = FindRelationships() self._dim_finder = FindDimensions(xdm_schema) @staticmethod def _add_rels_by_name(tx: Transaction, nodes: dict, some_rels_dict: dict, the_rel_name: str) -> None: """ create relationships between nodes in neo :param tx: an open neo transaction :param nodes: the previously created neo4j nodes that will be used to form these relationships :param some_rels_dict: the dictionary that contains the subject/object values :param the_rel_name: the name of the relationship in neo """ for k in some_rels_dict: if k not in nodes: continue s = nodes[k] for value in some_rels_dict[k]: o = nodes[value] tx.create(Relationship(s, the_rel_name, o)) @staticmethod def _add_relationships(tx: Transaction, node_lookup: dict, some_rel_dict: dict, some_rel_name: str): for k in some_rel_dict: s = node_lookup[k] for value in some_rel_dict[k]: o = node_lookup[value] tx.create(Relationship(s, some_rel_name, o)) def _add_all_relationships(self, tx: Transaction, node_lookup: dict) -> None: self._add_relationships(tx, node_lookup, self._rel_finder.all_owns(bidirectional=False), "owns") self._add_relationships(tx, node_lookup, self._rel_finder.all_implies(bidirectional=False), "implies") self._add_relationships(tx, node_lookup, self._rel_finder.all_versions(bidirectional=False), "hasVersion") self._add_relationships(tx, node_lookup, self._rel_finder.all_requires(bidirectional=False), "requires") self._add_relationships(tx, node_lookup, self._rel_finder.all_similar(bidirectional=False), "similarTo") self._add_relationships(tx, node_lookup, self._rel_finder.all_parts(bidirectional=False), "partOf") self._add_relationships(tx, node_lookup, self._rel_finder.all_defines(bidirectional=False), "definedBy") def _add_child_of_rels(self, tx: Transaction, node_lookup: dict): for parent in self._entity_finder.d_parents_revmap(): for child in self._entity_finder.children(parent): s = node_lookup[child] o = node_lookup[parent] tx.create(Relationship(s, "childOf", o)) def _define_all_nodes(self, tx: Transaction) -> dict: """ define all the nodes that will be used in the graph """ node_lookup = {} root_lookup = {} def _schema_entity(some_input: str) -> str: return [x.replace(' ', '') for x in self._dim_finder.find(some_input)][0] d_parents = self._entity_finder.d_parents_revmap() for k in d_parents: root_lookup[k] = _schema_entity(k) for value in d_parents[k]: root_lookup[value] = _schema_entity(value) for k in d_parents: node_lookup[k] = Node(root_lookup[k], name=k) for value in d_parents[k]: node_lookup[value] = Node(root_lookup[value], name=value) [tx.create(x) for x in node_lookup.values() if x] return node_lookup def process(self) -> dict: from datagraph.neo.dmo import NeoGraphConnector neog = NeoGraphConnector.connect(connection_type=self._connection_type) tx = neog.begin() neog.delete_all() nodes = self._define_all_nodes(tx) self.logger.debug(f"Initialized Graph (" f"total-nodes={len(nodes)})") self._add_child_of_rels(tx, nodes) self._add_all_relationships(tx, nodes) tx.commit() return nodes if __name__ == "__main__": from datagraph import OwlGraphConnector owlg = OwlGraphConnector("cendant").process() InitializeNeoGraph(owlg).process() ``` #### File: assemble/svc/assemble_manifest_data.py ```python import os import pprint from typing import Iterator from pymongo.operations import UpdateOne from pymongo.errors import BulkWriteError from base import BaseObject from base import MandatoryParamError from dataingest.core.dmo import ManifestConnectorForMongo from datamongo import BaseMongoClient from datamongo import CendantCollection from datamongo import CreateTextIndex class BulkWriteResultTracker(object): def __init__(self): self.inserted_count = 0 self.matched_count = 0 self.modified_count = 0 self.upserted_count = 0 def update(self, result): self.inserted_count += result.inserted_count self.matched_count += result.matched_count self.modified_count += result.modified_count self.upserted_count += result.upserted_count def __str__(self): return f'matched={self.matched_count}. ' \ f'inserted={self.inserted_count}. ' \ f'upserted={self.upserted_count}. ' \ f'modified={self.modified_count}' class AssembleManifestData(BaseObject): """ Assemble all the Manifest Data from multiple source collections into a single target collection """ def __init__(self, some_manifest_name: str, some_activity_name: str, single_collection: str='', first: int=-1, last: int=-1, is_debug: bool = False): """ Created: 12-Mar-2019 <EMAIL> Updated: 10-May-2019 <EMAIL> * added 'div-field' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/236 Updated: 25-Jun-2019 <EMAIL> * added create-text-index Updated: 16-Jul-2019 <EMAIL> * added debug param * change collection name access method per https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/450 Updated: 1-Aug-2019 <EMAIL> * ensure consistent use of manifest-connector-for-mongo * added 'bulk-insert-threshold' function and env var * update logging Updated: 15-Oct-2019 <EMAIL> * update index creation strategy https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1122 Updated: 24-Nov-2019 <EMAIL> * more logging * try to decrease the memory footprint by deleting a dict of large collections once we are done using it Updated: 11-Dec-2019 <EMAIL> * try to decrease the memory footprint by processing input collections one at a time, rather than having them all in memory at the same time https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1567 Updated: 07-Jan-2020 <EMAIL> * use $addToSet instead of $push, to prevent re-adding the same fields * allow to ignore field traceability (required for badges) :param some_manifest_name: the name of the manifest :param some_activity_name: the name of the activity within the manifest """ BaseObject.__init__(self, __name__) from dataingest.core.dmo import ManifestActivityFinder if not some_manifest_name: raise MandatoryParamError("Manifest Name") if not some_activity_name: raise MandatoryParamError("Activity Name") self._is_debug = is_debug self._mongo_client = BaseMongoClient() self._threshold = self._bulk_insert_threshold() self._manifest = ManifestActivityFinder(some_manifest_name, some_activity_name).process() self._single_collection = single_collection self._first = first self._last = last self._log_hint = '' if not single_collection else f'{single_collection}_{first}-{last} ' def _bulk_insert_threshold(self, default_value: int = 1000): """ :param default_value: default insert threshold if the environment variable isn't set :return: the bulk insert amount for mongoDB """ try: return int(os.environ["ASSEMBLE_API_BULK_INSERT_THRESHOLD"]) except KeyError as err: self.logger.error(f"Environment Variable Not Found: " f"$ASSEMBLE_API_BULK_INSERT_THRESHOLD") except ValueError as err: self.logger.error(f"Invalid Environment Variable Value: " f"$ASSEMBLE_API_BULK_INSERT_THRESHOLD") return default_value def source_collections(self) -> list: sources = [] for name, value in self._source_collections().items(): sources.append((name, value['collection'].count())) return sources def flush_target(self, target_collection=None) -> None: if not target_collection: target_collection = self._target_collection() target_collection.delete(keep_indexes=False) def index_target(self, target_collection=None) -> None: if not target_collection: target_collection = self._target_collection() index_options = { 'background': True } self.logger.debug("Creating text indexes...") text_index_creator = CreateTextIndex(target_collection.collection, is_debug=True) text_index_creator.process(field_name=self._manifest['target']['index'], index_options=index_options) def _source_collections(self) -> dict: d = {} for source in self._manifest["sources"]: if self._single_collection and \ self._single_collection != source['collection']: continue collection = ManifestConnectorForMongo(source, some_base_client=self._mongo_client, is_debug=self._is_debug).process() d[source["collection"]] = {"collection": collection, "fields": source["fields"], "div_field": source["div_field"], "key_field": source["key_field"]} return d def _target_collection(self) -> CendantCollection: if self._is_debug: self.logger.debug('\n'.join([ "Retrieved Target Manifest", pprint.pformat(self._manifest["target"])])) return ManifestConnectorForMongo(self._manifest["target"], some_base_client=self._mongo_client, is_debug=self._is_debug).process() def _load_records(self, d_source_collections: dict) -> Iterator[dict]: """ generator that loads one collection at a time :param d_source_collections: a dictionary of mongoDB collections :yields: a dictionary of records per collection """ grand_total = 0 for index, source_collection in enumerate(d_source_collections): collection = d_source_collections[source_collection]["collection"] d_records = {} if self._first < 0: records = collection.all() limit = collection.count() else: limit = self._last - self._first + 1 records = collection.skip_and_limit(self._first, limit) self.logger.debug(f"Loading {limit} records from {source_collection}. " f"Collection {index + 1} of {len(d_source_collections)}") d_records[source_collection] = { "records": records, "fields": d_source_collections[source_collection]["fields"], "div_field": d_source_collections[source_collection]["div_field"], "key_field": d_source_collections[source_collection]["key_field"]} total_records = len(d_records[source_collection]["records"]) grand_total += total_records self.logger.debug(f"Loaded " f"{total_records} total records " f"from {source_collection}") yield d_records self.logger.debug(f"Loaded a grand total of " f"{grand_total} records " f"across {len(d_source_collections)} source collections") def process(self) -> None: from dataingest.core.dmo import SourceRecordMerger target_collection = self._target_collection() if not self._single_collection: self.flush_target(target_collection) fields_as_a_list = self._manifest['target'].get('allow_duplicate_fields', True) push_or_addToSet = '$push' if fields_as_a_list else '$addToSet' try: total_inserted = 0 for d_records in self._load_records(self._source_collections()): d_index_by_key = SourceRecordMerger(d_records, field_traceability=fields_as_a_list).process() records = [] bulk_res_tracker = BulkWriteResultTracker() for key_field in d_index_by_key: fields = d_index_by_key[key_field]["fields"] div_field = d_index_by_key[key_field]["div_field"] d_index_by_key[key_field] = None records.append(UpdateOne({'_id': key_field}, { '$set': { '_id': key_field, 'key_field': key_field, 'div_field': div_field }, push_or_addToSet: {'fields': {'$each': fields}} }, upsert=True)) if len(records) % self._threshold == 0: result = target_collection.collection.bulk_write(records, ordered=False) bulk_res_tracker.update(result) self.logger.debug(f"Progress {self._log_hint}" f"{bulk_res_tracker} of {len(d_index_by_key)}") records = [] if len(records): result = target_collection.collection.bulk_write(records, ordered=False) bulk_res_tracker.update(result) self.logger.debug(f"Progress {self._log_hint}" f"{bulk_res_tracker} of {len(d_index_by_key)}") total_inserted += (bulk_res_tracker.modified_count + bulk_res_tracker.upserted_count) self.logger.debug(f'DONE {self._log_hint} {bulk_res_tracker}') if not self._single_collection: self.index_target(target_collection) self.logger.debug(f"Assembled {total_inserted} records {self._log_hint}") except BulkWriteError as xcpt: self.logger.error(xcpt.details) raise ``` #### File: core/dmo/ingest_data_extractor.py ```python import os.path import time import pandas as pd from pandas import DataFrame from base import BaseObject from base import MandatoryParamError class IngestDataExtractor(BaseObject): """ ingest data from a provenance manifest """ def __init__(self, some_manifest: dict): """ Created: 11-Mar-2019 <EMAIL> :param some_manifest: the name of the ingestion activity """ BaseObject.__init__(self, __name__) if not some_manifest: raise MandatoryParamError("Manifest") self.manifest = some_manifest @staticmethod def _field_to_columns(l_fields: list) -> dict: """ transform the field definitions section of the manifest to a pandas compatible columns dictionary :param l_fields: multiple fields of this format: - target_name: first_name source_name: FRST_NM data_type: str - target_name: last_name source_name: LST_NM data_type: str :return: a dictionary that looks like this { "FRST_NM": str, "LST_NM": str } """ def _data_type(a_field): if a_field["data_type"] == "int": return "int" elif a_field["data_type"] == "float": return "float" # elif a_field["data_type"] == "date": # return "date" return "str" cols = {} for field in l_fields: cols[field["source_name"]] = _data_type(field) return cols @staticmethod def _fields_to_position(l_fields: list) -> list: """ transform the field definitions section of the manifest to a list of positions for CSV importing :param l_fields: multiple fields of this format: - target_name: first_name source_name: FRST_NM data_type: str position: 4 - target_name: last_name source_name: LST_NM data_type: str position: 8 :return: a list that looks like this [ 4, 8 ] """ return [x["position"] for x in l_fields if "position" in x] def _excel_source_as_df(self, path: str, cols: dict, skiprows=0, position=None, sheet_name=None) -> DataFrame: from dataingest.core.dmo import ExcelReader start = time.time() def _sheet_name(): """ if no sheet name supplied in params take the first one from the spreadsheet """ if sheet_name: return sheet_name return ExcelReader.sheet_names(path)[0] sheet_name = _sheet_name() df = ExcelReader.read_excel(some_input_path=path, some_sheet_name=sheet_name, skiprows=skiprows, usecols=position, column_names=cols) if len(df) == 0: raise ValueError("\n".join([ "No Records Loaded", "\tinput-path: {}".format(path), "\tsheet-name: {}".format(sheet_name), ])) self.logger.debug("\n".join([ "Loaded Source Excel File as DataFrame", "\tinput-path: {}".format(path), "\tsheet-name: {}".format(sheet_name), "\ttotal-records: {}".format(len(df)), "\ttotal-time: ~{}s".format(int(time.time() - start)) ])) return df def _csv_source_as_df(self, path: str, cols: dict, positions: list, delim: str, skiprows=0, sheet_name=None) -> DataFrame: start = time.time() # Remind analyst to double check use of positioning parameter # in the ingest manifest self.logger.info("\n".join([ "Adivsory: Manifest Column Positioning is 0-Based", "\tPositions: {}".format(positions)])) df = pd.read_csv(path, engine="python", delim_whitespace=False, sep=delim, error_bad_lines=False, warn_bad_lines=True, parse_dates=True, infer_datetime_format=True, skip_blank_lines=True, skiprows=skiprows, comment='#', encoding='utf-8', names=list(cols.keys()), dtype=cols, na_values=['none', 'None'], usecols=positions) # # df = pd.read_csv(path, # engine="python", # sep=delim, # skiprows=skiprows, # names=list(cols.keys()), # usecols=positions) if len(df) == 0: raise ValueError("\n".join([ "No Records Loaded (path={}, name={})".format( path, sheet_name)])) df.fillna(value='', inplace=True) self.logger.debug("\n".join([ "Loaded Source CSV File as DataFrame", "\tInput Path: {}".format(path), "\tSheet Name: {}".format(sheet_name), "\tTotal Records: {}".format(len(df)), "\tTotal Time: ~{}s".format(int(time.time() - start))])) return df def process(self) -> DataFrame: d_source = self.manifest["source"] d_fields = self.manifest["fields"] skiprows = d_source["skiprows"] d_source["path"] = os.path.expandvars(d_source["path"]) if not os.path.isfile(d_source["path"]): raise ValueError("\n".join([ "File Not Found", "\tInput Path: {}".format(d_source["path"])])) if d_source["type"].lower() == "excel": field_position = ",".join(self._fields_to_position(d_fields)) if len(field_position) == 0: field_position = None if field_position: self.logger.debug("\n".join([ "Field Positions", "\t{}".format(field_position)])) return self._excel_source_as_df(path=d_source["path"], position=field_position, cols=self._field_to_columns(d_fields), skiprows=skiprows) elif d_source["type"].lower() == "csv": return self._csv_source_as_df(path=d_source["path"], cols=self._field_to_columns(d_fields), positions=self._fields_to_position(d_fields), delim=d_source["delim"], skiprows=skiprows) raise NotImplementedError("\n".join([ "Source Type Not Implemented", "\tType: {}".format(d_source["type"])])) ``` #### File: core/dmo/ingest_data_rules.py ```python from pandas import DataFrame from base import BaseObject class IngestDataRules(BaseObject): """ Apply any data rules specified in the ingest manifest failure to meet these rules typically halts the ingest process with an error """ def __init__(self): """ Created: 26-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) def process(self, d_manifest: dict, df_src: DataFrame) -> None: """ Purpose: apply rules for missing data and halt the ingest if rules are broken :param d_manifest: the manifest :param df_src: the ingested dataframe prior to flows or transformation """ if "missing_data" not in d_manifest["source"]: return for rule in d_manifest["source"]["missing_data"]: total_missing = 0 total_missing += (df_src[rule["source_name"]].values == '').sum() total_missing += (df_src[rule["source_name"]].values == 'none').sum() total_missing += (df_src[rule["source_name"]].values == 'None').sum() total_missing += (df_src[rule["source_name"]].values == '0').sum() if total_missing > rule["tolerance"]: raise ValueError("\n".join([ "Missing Data Exceeds Tolerance Level", "\tRule: {}".format(rule), "\tTotal Missing: {}".format(total_missing)])) self.logger.debug("\n".join([ "Missing Data Rule Requirements Met", "\tRule: {}".format(rule), "\tTotal Missing: {}".format(total_missing)])) ``` #### File: core/dmo/sql_query_reader.py ```python import os.path from base import BaseObject from base import MandatoryParamError class SQLQueryReader(BaseObject): """ Prepare SQL Queries """ def __init__(self, some_manifest_name: str, some_activity_name: str): """ Created: - 26-June-2019 - <EMAIL> - prepare sql query - Reference: <https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/370> Updated: - 27-July-2019 - <EMAIL> - added condition for gbs & cv data ingestion :param some_manifest_name: the name of the ingestion activity :param some_activity_name: Updated: 06-September-2019 <EMAIL> * added cloud ingestion * Reference: https://github.ibm.com/-cdo/unstructured-analytics/issues/869 Updated: 14-Oct-2019 <EMAIL> * renamed from 'prepare-ingestion-sql-query' Rationale: microservice naming standard is 1. DMO components to be 'NOUN-VERB' 2. SVC components to be 'VERB-NOUN' Updated: 17-October-2019 <EMAIL> * added CHQ/OTH ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1135 Updated: 29-October-2019 <EMAIL> * added Security BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1182 Updated: 4-November-2019 <EMAIL> * added GLMKT BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1245 Updated: 14-November-2019 <EMAIL> * added Watson Health BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1348 Updated: 19-November-2019 <EMAIL> * added Research BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1395 Updated: 03-December-2019 <EMAIL> * added Digital Sales BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1497 Updated: 23-December-2019 <EMAIL> * added Industry Plat BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1638 Updated: 21-Jan-2019 <EMAIL> * added GF BU ingestion * Reference: https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1773 """ BaseObject.__init__(self, __name__) if not some_activity_name: raise MandatoryParamError("Activity") self.manifest_name = some_manifest_name self.activity = some_activity_name @staticmethod def read_sql(sql_file_name) -> str: path = os.path.join(os.environ["CODE_BASE"], "resources/manifest/queries", "{}.sql".format(sql_file_name)) # read from sql file sql_file = open(path, 'r') sql_stmt = sql_file.read() sql_file.close() return sql_stmt def process(self) -> str: sql_file_name = self.activity.lower().replace(" ", "_") # add postfix gbs| | cloud| systems| chq/oth| f&o| security| glmkt| cognitive apps| watson health| # digital sales| research| industry plat for cv ingestion if self.manifest_name == "ingest-manifest-cv-gbs": sql_file_name = sql_file_name + "_gbs" if self.manifest_name == "ingest-manifest-cv-": sql_file_name = sql_file_name + "_" if self.manifest_name == "ingest-manifest-cv-cloud": sql_file_name = sql_file_name + "_cloud" if self.manifest_name == "ingest-manifest-cv-systems": sql_file_name = sql_file_name + "_systems" if self.manifest_name == "ingest-manifest-cv-fno": sql_file_name = sql_file_name + "_fno" if self.manifest_name == "ingest-manifest-cv-chq-oth": sql_file_name = sql_file_name + "_chq_oth" if self.manifest_name == "ingest-manifest-cv-security": sql_file_name = sql_file_name + "_security" if self.manifest_name == "ingest-manifest-cv-glmkt": sql_file_name = sql_file_name + "_glmkt" if self.manifest_name == "ingest-manifest-cv-cognitive-apps": sql_file_name = sql_file_name + "_cognitive_apps" if self.manifest_name == "ingest-manifest-cv-watson-health": sql_file_name = sql_file_name + "_watson_health" if self.manifest_name == "ingest-manifest-cv-research": sql_file_name = sql_file_name + "_research" if self.manifest_name == "ingest-manifest-cv-digital-sales": sql_file_name = sql_file_name + "_digital_sales" if self.manifest_name == "ingest-manifest-cv-industry-plat": sql_file_name = sql_file_name + "_industry_plat" if self.manifest_name == "ingest-manifest-cv-gf": sql_file_name = sql_file_name + "_gf" sql_query = self.read_sql(sql_file_name) # add unrestricted access to db if "with ur" not in sql_query.lower(): sql_query = f"{sql_query} WITH UR" self.logger.debug('\n'.join([ "SQL Query Modified to add Unrestricted Access (UR)", sql_query])) if sql_query is None: raise NotImplementedError("SQL Query not found") return sql_query ``` #### File: core/svc/ingest_bluepages_cv.py ```python import requests import textract import time import sys import os import re import shutil import tempfile import plac from datamongo import BaseMongoClient from datamongo import CendantCollection from base import BaseObject from base import MandatoryParamError class ExtractBluepagesCV(): """ Extract CVs from Bluepages Storage The list of records that have a CV listed in bluepages are extracted from "ingest_bluepages_api" collection and then iterated over to download the CV to a created /tmp folder beofre calling a parse function which leverage textract to read the contents into a dictionary and write the contents to collectionname defined Takes 1 parameters whether to purge the collection of documents eg The below will delete any existing documents in the ingest_bluepages_cv collection python ingest_bluepages_cv.py 0 50 purge The below items need to be installed or configured for textract: - antiword - sudo apt install antiword - tesseract - sudo apt-get install tesseract-ocr - unrtf - sudo apt install unrtf - textract - pip install git+https://github.com/deanmalmgren/textract.git (conda only has an old version) """ script_Start = time.time() baseurl = "https://w3-services1.w3-969.ibm.com/myw3/unified-profile/v1/resume/" collectionname = "ingest_bluepages_cv" # Generate a unique temporary folder to download and process the files to under /tmp with tempfile.TemporaryDirectory() as CVdirectory: print('created temporary directory', CVdirectory) def __init__(self): BaseObject.__init__(self, __name__) def exists(obj, chain): _key = chain.pop(0) if _key in obj: return ExtractBluepagesCV.exists(obj[_key], chain) if chain else obj[_key] def getcnumlist(self,mongo_client): """ Builds a list of CNUMS which contain a resume and shoulc be used in ingest bluepages CV routine. """ self.logger.info("Reading data from ingest_bluepages_api collection") cc = CendantCollection(some_collection_name='ingest_bluepages_api',some_base_client=mongo_client) records = cc.all(as_list=True) self.logger.info("Building list of CNUMs with resume attached in bluepages") resumelist = [] for i in range(len(records)): if ExtractBluepagesCV.exists(records[i], ['data', 'content', 'user', 'expertise', 'resume']): resumelist.append(records[i]['id']) self.logger.info(str(len(resumelist)) + " records downloaded from ingest_bluepages_api collection ") return resumelist def parseCV(self, documents): """Function to parse downloaded CVs""" # iterate over fles in the download directory and use textract to extract the body of text and clean it of basic # items before inserting to the list of records for file in os.listdir(self.CVdirectory): self.logger.info("Iterating over downloaded CV " + file +" and adding to collection for DB loading") filename, file_extension = os.path.splitext(os.fsdecode(file)) file = self.CVdirectory +"/"+ filename+file_extension try: text = textract.process(file, method="pdfminer", encoding='utf_8').decode("utf8") clean = text.replace('\n', ' ').replace('\r', ' ').replace('\'', '').replace('\t', '') d = next(item for item in documents if item['CNUM'] == filename) d['body'] = clean except: self.logger.error("Error on " + filename+file_extension + ", Removing from collection") documents = [i for i in documents if not (i['CNUM'] == filename)] continue return documents def downloadCV(self, cnums, urltemplate, downloadlist): """ Function to download CV from bluepages """ count = 0 regex = r'filename=\"((.+)\.(.+))\"' # regex that matches filename and extension noextregex = r'\"(.+)\"' # regex to be used if there is no extension # Check if output folder exists, if not then create if not os.path.exists(self.CVdirectory): os.mkdir(self.CVdirectory) for row in cnums: CVurl = urltemplate + row r = requests.get(CVurl,stream=True) self.logger.info("Downloading CV for " + row + " -- status code: " + str(r.status_code)) # if the requests object gives a status code other than 404 then we process the download if r.status_code == 200: count += 1 content_disposition = r.headers.get('Content-Disposition') extension = re.findall(regex, content_disposition) # using the regex find the extension type if not extension: # if the regex to find filename and extension is empty it usually means that the file was saved with # no extention and therefore we force the extention to be .txt and create the extension list based on it noextension = re.findall(noextregex, content_disposition) extension = [(noextension[0], noextension[0], 'txt')] # generate the filename ot be a combination of cnum and the previously defined ext filename = self.CVdirectory + "/" + row + "." + extension[0][2] with open(filename, 'wb') as f: f.write(r.content) #Generate the list of files that have been downloaded based on the above and default the body to blank filerecord = {"CNUM": row, "file_name": extension[0][0], "file_type": extension[0][2], "source": urltemplate + row, "ts": time.time(), "body": ""} downloadlist.append(filerecord.copy()) self.logger.info(str(count) + " CVs downloaded") return downloadlist def deletecollectioncontent(self,mongo_client): """ Function to delete the collection documents from the mongo DB""" col = CendantCollection(some_db_name="cendant", some_collection_name=self.collectionname, some_base_client=mongo_client) col.delete() def writebluepagescvstodb(self, listofcvs, mongo_client): """ Function to write downloaded and parsed CVs in a list to the mongo DB""" # connect to the Cendent MongoDB and write records to the collections defined earlier total_persisted = 0 col = CendantCollection(some_db_name="cendant", some_collection_name=self.collectionname, some_base_client=mongo_client) col.insert_many(listofcvs) total_persisted += len(listofcvs) self.logger.info("Number of records persisted " + str(total_persisted)) def removedownloads(self): # remove all html and subfolders created in the CVdirectory folder shutil.rmtree(self.CVdirectory) def main (clear_existing): self = ExtractBluepagesCV() self.logger.info('=========================================================') self.logger.info(' Download of CVs from Bluepages started ') self.logger.info('=========================================================') mongo_client_cloud = BaseMongoClient(server_alias="CLOUD") cnumlist = ExtractBluepagesCV.getcnumlist(self,mongo_client_cloud) bpcvcollection = [] bpcvcollection = ExtractBluepagesCV.downloadCV(self,cnumlist,self.baseurl,bpcvcollection) bpcvcollection = ExtractBluepagesCV.parseCV(self,bpcvcollection) if not bpcvcollection: self.logger.info("The list of data to be written to the DB is empty, script exiting and removing downloaded files") ExtractBluepagesCV.removedownloads(self) sys.exit(1) else: clear_existing = str(clear_existing).lower() if clear_existing == "purge": numpurged = ExtractBluepagesCV.deletecollectioncontent(self,mongo_client_cloud) self.logger.info(str(numpurged) + " Records purged from : " + str(self.collectionname)) elif clear_existing == "nopurge": self.logger.info("No Records to be purged from : " + str(self.collectionname)) else: raise MandatoryParamError("Select \"purge\" or \"nopurge\" for the existing collection") ExtractBluepagesCV.writebluepagescvstodb(self,bpcvcollection,mongo_client_cloud) ExtractBluepagesCV.removedownloads(self) self.script_End = time.time() self.logger.info("Overall Script Duration: {:.2f} minutes".format((self.script_End - self.script_Start) / 60)) if __name__ == '__main__': plac.call(main) ``` #### File: feedback/dmo/regional_rollup_mapper.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class RegionalRollupMapper(BaseObject): """ Perform a rollup from Countries to Regions based on an explicit mapping file """ __input_path = "resources/config/other/sentiment-regional-rollups.csv" def __init__(self, is_debug: bool = False): """ Created: 26-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1449 :param is_debug: """ BaseObject.__init__(self, __name__) self._df = self._load() self._is_debug = is_debug def _load(self) -> DataFrame: return pd.read_csv(self.__input_path, encoding='utf-8', sep=',', skiprows=0, names=['Country', 'Region']) def lookup(self, country: str) -> str: if type(country) != str: self.logger.warning(f"Unrecognized Country (" f"value={country}, " f"type={type(country)})") return "Other" df_region = self._df[self._df['Country'] == country.lower()] if df_region.empty: self.logger.error(f"Country Not Found (name={country})") raise NotImplementedError return df_region['Region'].unique()[0] ``` #### File: feedback/dmo/tenure_value_mapper.py ```python from base import BaseObject class TenureValueMapper(BaseObject): """ Perform a rollup from Countries to Regions based on an explicit mapping file """ def __init__(self, is_debug: bool = False): """ Created: 26-Nov-2019 <EMAIL> * refactored out of 'ingest-internal-feedback' while in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1449 :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug def lookup(self, tenure: str) -> int: if type(tenure) != str: self.logger.warning(f"Unrecognized Tenure (" f"value={tenure}, " f"type={type(tenure)})") return 0 tenure = tenure.lower().strip() if "<6" in tenure or "< 6" in tenure: return 1 if "6mos" in tenure or "6 mos" in tenure: return 2 if "1-2" in tenure: return 3 if "3-5" in tenure: return 4 if "6-10" in tenure: return 5 if "11-15" in tenure: return 6 if "16-20" in tenure: return 7 if "21-25" in tenure: return 8 if "26-30" in tenure: return 9 if "31" in tenure: return 10 self.logger.error(f"Unrecognized Tensure: {tenure}") raise NotImplementedError ``` #### File: feedback/svc/ingest_internal_feedback.py ```python import os import pandas as pd from pandas import DataFrame from base import BaseObject from base import FieldStructure from dataingest.feedback.dmo import RegionalRollupMapper from dataingest.feedback.dmo import TenureValueMapper from datamongo import CendantCollection class IngestInternalFeedback(BaseObject): """ NOTE this input file will not exist on the server for reasons of confidentiality """ __input_file = 'WW GTS Comments October 2019_For Peter.xlsx' def __init__(self, collection_name: str, is_debug: bool = False): """ Created: 22-Nov-2019 <EMAIL> * refactored out of 'generate-sentiment-graph' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1419#issuecomment-16183547 Updated: 26-Nov-2019 <EMAIL> * add sentence segmentation https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1452 Updated: 16-Jan-2020 <EMAIL> * minor updates to logging and initialization https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1745 :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._collection_name = collection_name self._tenure_mapper = TenureValueMapper(is_debug=self._is_debug) self._region_mapper = RegionalRollupMapper(is_debug=self._is_debug) def _read(self) -> DataFrame: inpath = os.path.join(os.environ['CODE_BASE'], 'resources/confidential_input', self.__input_file) df = pd.read_excel(inpath) self.logger.debug('\n'.join([ "Feedback Spreadsheet Loaded", f"\Total Records: {len(df)}", f"\tInput Path: {self.__input_file}"])) return df def process(self): df_input = self._read() record_ctr = 0 div_field = '' target_records = [] for _, row in df_input.iterrows(): fields = [] tenure = self._tenure_mapper.lookup(row['tenure']) region = self._region_mapper.lookup(row['country']) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="text", field_name='market', field_value=row['market'], transformations=[])) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="text", field_name='country', field_value=row['country'], transformations=[])) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="text", field_name='region', field_value=region, transformations=['region-mapper'])) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="text", field_name='leadership', field_value=row['leadership'], transformations=[])) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="text", field_name='tenure', field_value=tenure, transformations=['tenure-mapper'])) fields.append(FieldStructure.generate_src_field(agent_name="user", field_type="long-text", field_name='comments', field_value=row['what_else_to_share'], transformations=[])) target_records.append({ "fields": fields, "key_field": record_ctr, "div_field": div_field, "manifest": { "name": self.__input_file}}) record_ctr += 1 collection = CendantCollection(some_collection_name=self._collection_name) collection.delete() collection.insert_many(target_records) def main(): # not going to make this more robust; # feedback ingestion is not considered a repeatable process IngestInternalFeedback(collection_name="feedback_src_20200116").process() if __name__ == "__main__": main() ``` #### File: grammar/dmo/python_loc_parser.py ```python import pprint from base import BaseObject from base import FileIO class PythonLOCParser(BaseObject): """ Parse T/LOC from a Python File """ def __init__(self, file_path: str, is_debug: bool = False): """ Created: 24-Dec-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1637#issuecomment-16802191 :param file_path: link to a python file :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._file_path = file_path def _lines(self) -> list: lines = FileIO.file_to_lines(self._file_path, use_sort=False) return lines def process(self) -> dict: lines = self._lines() loc = len(lines) tloc = len([line for line in lines if line and len(line.strip())]) d_result = { "Provenance": str(self.__class__.__name__), "FilePath": self._file_path, "LOC": str(loc), "TLOC": str(tloc)} if self._is_debug: self.logger.debug('\n'.join([ "LOC Parsing Complete", pprint.pformat(d_result, indent=4)])) return d_result ``` #### File: grammar/svc/parse_python_file.py ```python import pprint from base import BaseObject class ParsePythonFile(BaseObject): """ Parse a single Python Code File """ def __init__(self, file_path: str, is_debug: bool = False): """ Created: 24-Dec-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1637#issuecomment-16802139 :param file_path: a path to a single Python file :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._file_path = file_path def _merge(self, d_loc: dict, d_classname: dict, d_path_segmentation: dict) -> dict: def _classname() -> str: if d_classname: return d_classname['ClassName'] return d_path_segmentation['FileName'].split('.')[0].strip() d_result = { 'LOC': d_loc['LOC'], 'TLOC': d_loc['TLOC'], 'ClassName': _classname(), 'FilePath': self._file_path, 'SOAType': d_path_segmentation['SOAType'], 'FileName': d_path_segmentation['FileName'], 'RelativePath': d_path_segmentation['RelativePath']} keys = [k for k in d_path_segmentation.keys() if k.startswith('D')] for key in keys: d_result[key] = d_path_segmentation[key] return d_result def process(self) -> list: from dataingest.grammar.dmo import PythonLOCParser from dataingest.grammar.dmo import PythonClassNameParser from dataingest.grammar.dmo import PythonPathSegmentation results = [] d_classname = PythonClassNameParser(is_debug=self._is_debug, file_path=self._file_path).process() d_loc = PythonLOCParser(is_debug=self._is_debug, file_path=self._file_path).process() d_path_segmentation = PythonPathSegmentation(is_debug=self._is_debug, file_path=self._file_path).process() results.append(self._merge(d_classname=d_classname, d_loc=d_loc, d_path_segmentation=d_path_segmentation)) if self._is_debug: self.logger.warning('\n'.join([ "Python Parsing Complete", pprint.pformat(results, indent=4)])) return results ``` #### File: grammar/svc/parse_python_imports.py ```python import os import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject class ParsePythonImports(BaseObject): """ Extract and Augment Imports from Python Files """ def __init__(self, files: list, df_files: DataFrame, is_debug: bool = False): """ Created: 24-Dec-2019 <EMAIL> * refactored and augmented from existing code https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1642 :param files: a list of paths to python files in a workspace :param is_debug: """ BaseObject.__init__(self, __name__) self._files = files self._df_files = df_files self._is_debug = is_debug self._base_path = os.environ["CODE_BASE"] def _log(self, import_type: str, df_imports: DataFrame) -> None: def _sample() -> DataFrame: if len(df_imports) > 3: return df_imports.sample(3) return df_imports self.logger.debug('\n'.join([ f"{import_type} Imports Created", tabulate(_sample(), headers='keys', tablefmt='psql')])) def _generate(self): from dataingest.grammar.dmo import PythonImportParser external_imports = [] # a class imports a third-party component internal_imports = [] # a class imports another component within the workspace for file in self._files: imports = PythonImportParser(file_path=file, is_debug=self._is_debug).process() for an_import in imports: import_classname = an_import['Import'] df2 = self._df_files[self._df_files['ClassName'] == import_classname] if df2.empty: d_external = { "FilePath": file, "Import": import_classname} if 'L0' in an_import: d_external["From"] = an_import['L0'] external_imports.append(d_external) else: for _, row in df2.iterrows(): internal_imports.append({ "SourceFilePath": file, "TargetFilePath": row['FilePath']}) return pd.DataFrame(external_imports), pd.DataFrame(internal_imports) def process(self) -> dict: df_external_imports, df_internal_imports = self._generate() if self._is_debug: if not df_external_imports.empty: self._log("External", df_external_imports) if not df_internal_imports.empty: self._log("Internal", df_internal_imports) return { "external": df_external_imports, "internal": df_internal_imports} ``` #### File: graph/dmo/graph_field_mapping.py ```python import pprint from base import BaseObject from base import MandatoryParamError class GraphFieldMapping(BaseObject): """ """ def __init__(self, some_manifest_fields: list, some_source_records: list): """ Created: 15-Mar-2019 <EMAIL> * refactored out of 'load-neo-from-manifest-2' :param some_manifest_fields: the field definitions in the manifest :param some_source_records: the source records from mongoDB """ BaseObject.__init__(self, __name__) if not some_manifest_fields: raise MandatoryParamError("Manifest Fields") if not some_source_records: raise MandatoryParamError("Source Records") self.manifest_fields = some_manifest_fields self.source_records = some_source_records def _transform_source_record(self, source_record: dict) -> dict: """ map a single source record from mongo with a corresponding manifest record sample input: Manifest: - source_name: job_role target_name: JobRole - source_name: job_role_id target_name: JobRoleId relationships: - partOf: - job_role - source_name: skill_set target_name: SkillSet Source Record: [ { 'name': 'job_role', 'type': 'text', 'value': 'Application Database Administrator' }, { 'name': 'job_role_id', 'type': 'text', 'value': '042523' }, { 'name': 'skill_set', 'type': 'text', 'value': 'Application Database Administrator' }] sample output: [ { 'functional_community': { 'field': [ { 'name': 'functional_community', 'type': 'text', 'value': 'GTS Delivery' } ], 'manifest': { 'source_name': 'functional_community', 'target_name': 'FunctionalCommunity' }}, 'job_category': { 'field': [ { 'name': 'job_category', 'type': 'text', 'value': 'Technical Specialist' } ], 'manifest': { 'source_name': 'job_category', 'target_name': 'JobCategory' }}, ... 'job_role': { 'field': [ { 'name': 'job_role', 'type': 'text', 'value': 'Application Database Administrator' } ], 'manifest': { 'source_name': 'job_role', 'target_name': 'JobRole' }}, }] :param source_record: a single record (JSON dictionary) from MongoDB :return: a dictionary of mongoDB records mapped to Manifest fields """ d_record = {} for manifest_field in self.manifest_fields: source_field = [source_field for source_field in source_record["fields"] if source_field["name"] == manifest_field["source_name"]] if not len(source_field): self.logger.warn("\n".join([ "Source Field Not Found", pprint.pformat(source_field) ])) continue if not source_field[0]["value"]: continue # hack start text = source_field[0]["value"] if ".0" in text: text = text.split(".0")[0].strip() source_field[0]["value"] = text # hack end d_record[manifest_field["source_name"]] = { "field": source_field, "manifest": manifest_field } return d_record def process(self) -> list: """ map mongo fields to manifest fields merges each source record from mongo with a manifest record """ l_records = [self._transform_source_record(x) for x in self.source_records] self.logger.debug("\n".join([ "Mapped Source Records to Manifest Fields", "\ttotal-records: {}".format(len(l_records)) ])) return l_records ``` #### File: graph/svc/load_neo_from_manifest.py ```python from py2neo import Relationship from py2neo import Transaction from base import BaseObject from base import MandatoryParamError from datagraph import NeoGraphConnector from datagraph import NeoGraphContext from nlutext import TextParser class LoadNeoFromManifest(BaseObject): """ """ def __init__(self, some_manifest_name: str, some_activity_name: str): """ Created: 14-Mar-2019 <EMAIL> Updated: 26-Mar-2019 <EMAIL> * updates based on MDA changes :param some_manifest_name: the name of the manifest :param some_activity_name: the name of the activity within the manifest """ BaseObject.__init__(self, __name__) if not some_manifest_name: raise MandatoryParamError("Manifest Name") if not some_activity_name: raise MandatoryParamError("Activity Name") self.manifest_name = some_manifest_name self.activity_name = some_activity_name self.text_parser = TextParser() self.graph_context = NeoGraphContext() @staticmethod def _mongo_sources(d_manifest: dict) -> list: """ return all the defined mongo sources""" def _is_mongo(a_source): return a_source["source"]["description"]["type"].lower().strip() == "mongo" return [source["source"] for source in d_manifest["sources"] if _is_mongo(source)] @staticmethod def _mongo_collections(mongo_sources: list) -> dict: """ instantiate all the mongoDB connections """ from dataingest.core.dmo import ManifestConnectorForMongo d_coll = {} for mongo_source in mongo_sources: conn = ManifestConnectorForMongo(mongo_source["description"]).process() d_coll[mongo_source["description"]["collection"]] = conn return d_coll def _generate_nodes(self, tx: Transaction, mapped_source_records: list, mongo_source: dict): """ generate all the nodes""" node_entity = "{} - {}".format(mongo_source["description"]["database"], mongo_source["description"]["collection"]) for source_record in mapped_source_records: for field in source_record: sentence = " ".join(field["value"]) field_node = self.graph_context.find_or_create_node(tx, sentence, field["name"], some_entity=node_entity) for tag in field["tags"]: tag_node = self.graph_context.find_or_create_node(tx, tag["name"], "DomainTerm", some_activity=tag["type"], some_entity=tag["provenance"]) tx.create(Relationship(field_node, "implies-type1", tag_node, activity="Known Relationship", entity="")) # add subsumes implications for tag in field["tags"]: _s = self.graph_context.find_or_create_node(tx, tag["name"], "DomainTerm", some_activity=tag["type"], some_entity=tag["provenance"]) for tag_link in tag["links"]: _o = self.graph_context.find_or_create_node(tx, tag_link, "DomainTerm", some_activity=tag["type"], some_entity=tag["provenance"]) tx.create(Relationship(_s, "implies-type2", _o, activity="Inferred Relationship", entity="Vector Space")) def _generate_relationships(self, tx: Transaction, mapped_source_records: list): """ generate all the relationships """ for source_record in mapped_source_records: for field in source_record: _subject = self.graph_context.find_or_create_node(tx, " ".join(field["value"]), field["name"], ) for rel in field["relationships"]: _object = self.graph_context.find_or_create_node(tx, " ".join(rel["value"]), rel["name"]) tx.create(Relationship(_subject, rel["type"], _object, activity="Known Relationship")) def process(self): from dataingest.core.dmo import ManifestActivityFinder from dataingest.graph.dmo import GraphDataExtractor from dataingest.graph.dmo import GraphFieldMapping from dataingest.graph.dmo import GraphDataTransform from datagraph import GenerateSimilarityMetric d_manifest = ManifestActivityFinder(self.manifest_name, self.activity_name).process() mongo_sources = self._mongo_sources(d_manifest) mongo_collections = self._mongo_collections(mongo_sources) neog = NeoGraphConnector().connect(connection_type="local") neog.delete_all() tx = neog.begin() for mongo_source in mongo_sources: source_records = GraphDataExtractor(mongo_collections, mongo_source).process() # retrieve fields by manifest manifest_fields = [manifest_field for manifest_field in mongo_source["fields"]] mapped_source_records = GraphFieldMapping(manifest_fields, source_records).process() mapped_source_records = GraphDataTransform(mapped_source_records, tag_min_threshold=2).process() # create all the nodes self._generate_nodes(tx, mapped_source_records, mongo_source) self._generate_relationships(tx, mapped_source_records) GenerateSimilarityMetric(tx, self.graph_context).process() tx.commit() self.logger.info("\n".join([ "Neo Graph Ingest Completed", "\ttotal-nodes: {}".format(self.graph_context.total_nodes()) ])) ``` #### File: parse/dmo/parse_data_extractor.py ```python from base import BaseObject from base import MandatoryParamError from datamongo import BaseMongoClient from datamongo import CendantCollection class ParseDataExtractor(BaseObject): """ """ def __init__(self, some_manifest: dict, mongo_client: BaseMongoClient, is_debug: bool = True): """ Created: 12-Mar-2019 <EMAIL> Updated: 2-Aug-2019 <EMAIL> * added mongo client as a parameter https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/588 Updated: 17-Dec-2019 <EMAIL> * removed unused code * tweaked skip and limit params. E.g. first=4 and last=5, means skip=4 and limit=5-4+1 :param some_manifest: the parse manifest """ BaseObject.__init__(self, __name__) if not some_manifest: raise MandatoryParamError("Manifest") self._is_debug = is_debug self._manifest = some_manifest self._mongo_client = mongo_client def _source_collection(self) -> CendantCollection: """ :return: a connection to the MongoDB collection with source data """ from dataingest.core.dmo import ManifestConnectorForMongo if self._is_debug: self.logger.debug("Loading Manifest Source Connector") connector = ManifestConnectorForMongo(some_base_client=self._mongo_client, some_manifest_entry=self._manifest["source"], is_debug=True) return connector.process() def process(self, start_record: int, end_record: int) -> list: """ :param start_record: :param end_record: :return: source records """ source_collection = self._source_collection() source_records = source_collection.skip_and_limit(start_record, (end_record - start_record + 1)) self.logger.info("\n".join([ "Loaded Source Records", f"\tTotal: {len(source_records)}", f"\tName: {source_collection.collection.name}", f"\tStart Record: {start_record}", f"\tEnd Record: {end_record}", f"\tTotal Records: {len(source_records)}"])) return source_records ``` #### File: parse/dmo/source_record_filter.py ```python from base import BaseObject class SourceRecordFilter(BaseObject): """ Remove non-Annotatable Source Records from a list """ def __init__(self, source_records: list, is_debug: bool = False): """ Created: 30-Sept-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1026 :param source_records: a list of records from the source collection :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._source_records = source_records self.logger.debug("Instantiate SourceRecordFilter") def process(self) -> list: """ Purpose: Do not process records without long-text fields Rationale: 1. a record is composd of 0..* fields 2. each field has a type (text, long-text, badge, tc 3. only long-text fields are annotated 4. only annotated records have value value in the XDM collection Therefore: 1. if a record is not annotated, it has no value going forward and should be discarded :return: an updated list of source records """ master = [] for source_record in self._source_records: total_long_text_fields = [field for field in source_record["fields"] if field["type"] == "long-text"] if total_long_text_fields == 0: continue master.append(source_record) if len(master) != len(self._source_records): self.logger.info(f"Source Record Filtering Complete " f"(original={len(self._source_records)}, " f"filtered={len(master)})") return master ``` #### File: parse/svc/parse_manifest_data.py ```python import os import pprint from base import BaseObject from base import MandatoryParamError from datamongo import BaseMongoClient from datamongo import CendantCollection from datamongo import CreateTextIndex from datamongo import CreateFieldIndex from nlutext import TextParser class ParseManifestData(BaseObject): """ given a parse manifest: 1. take data from a source mongo collection 2. parse it 3. and write it to a target mongo collection """ def __init__(self, some_manifest_name: str, some_activity_name: str, first: int = -1, last: int = -1, is_debug: bool = False): """ Created: 12-Mar-2019 <EMAIL> Updated 3-Apr-2019 <EMAIL> * one sentence per field Updated: 4-Apr-2019 <EMAIL> * incremental parse capability Updated: 24-Jun-2019 <EMAIL> * added text index https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/371 Updated: 2-Aug-2019 <EMAIL> * added mongo connection as parameter to manifest connectors https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/588 Updated: 2-Sep-2019 <EMAIL> * added incremental-retrieval and documentation to source-records Updated: 17-Dec-2019 <EMAIL> * removed incremental-retrieval and documentation to source-records * adapted to kubernetes and RQ :param some_manifest_name: the name of the manifest :param some_activity_name: the name of the activity within the manifest """ from dataingest.core.dmo import ManifestActivityFinder from dataingest.core.dmo import ManifestConnectorForMongo BaseObject.__init__(self, __name__) if not some_manifest_name: raise MandatoryParamError("Manifest Name") if not some_activity_name: raise MandatoryParamError("Activity Name") self.is_debug = is_debug self.text_parser = TextParser(is_debug=is_debug) self.manifest_name = some_manifest_name self.activity_name = some_activity_name self.first = first self.last = last self._mongo_client = BaseMongoClient() self._manifest_data = ManifestActivityFinder(self.manifest_name, self.activity_name).process() self._manifest_connector_class = ManifestConnectorForMongo if self.is_debug: self.logger.debug("Instantiate ParseManifestData") def _target_collection(self) -> CendantCollection: if self.is_debug: self.logger.debug("\n".join([ "Loading Manifest Target Connector", f"{pprint.pformat(self._manifest_data['target'], indent=4)}"])) connector = self._manifest_connector_class(some_base_client=self._mongo_client, some_manifest_entry=self._manifest_data["target"], is_debug=self.is_debug) return connector.process() def _source_records(self) -> list: from dataingest.parse.dmo import ParseDataExtractor data_extractor = ParseDataExtractor(self._manifest_data, mongo_client=self._mongo_client, is_debug=self.is_debug) some_source_records = data_extractor.process(start_record=self.first, end_record=self.last) self.logger.debug(f"Returning Source Records " f"(type=2, total={len(some_source_records)})") return some_source_records def _parse_records(self, target_collection: CendantCollection, source_records: list) -> int: from dataingest.parse.svc import ParseRecordsFromMongo parser = ParseRecordsFromMongo(target_collection=target_collection, source_records=source_records, is_debug=self.is_debug) return parser.process(threshold=5) def source_collections(self) -> list: collection = self._manifest_connector_class(self._manifest_data['source'], some_base_client=self._mongo_client, is_debug=self.is_debug).process() return [(collection.collection_name, collection.count())] def flush_target(self) -> None: target_collection = self._target_collection() target_collection.delete(keep_indexes=False) def index_target(self) -> None: index_options = { 'background': True } self.logger.debug("Creating text indexes...") target_collection = self._target_collection() field_indexer = CreateFieldIndex(is_debug=self.is_debug, collection=target_collection.collection) text_indexer = CreateTextIndex(is_debug=self.is_debug, collection=target_collection.collection) text_indexer.process(field_name='fields.normalized', index_options=index_options) field_indexer.process(field_name='div_field', index_options=index_options) field_indexer.process(field_name='key_field', index_options=index_options) def process(self) -> int: """ :param start_record: :param end_record: :param flush_records: if true wipe target mongo collection if false append to mongo note: no duplicate checking occurs :return: """ target_collection = self._target_collection() source_records = self._source_records() if not source_records or not len(source_records): self.logger.warn("\n".join([ "No Source Records Found", f"\tSource: {self._manifest_data['source']}, " f"{os.environ[self._manifest_data['source']['collection'][1:]]}", f"\tTarget: {self._manifest_data['target']}, " f"{os.environ[self._manifest_data['target']['collection'][1:]]}", f"\tStart Record: {self.first}", f"\tEnd Record: {self.last}"])) return 0 handled_records = self._parse_records(target_collection, source_records) if self.is_debug: self.logger.debug("\n".join([ "Manifest Parsing Complete", f"\tURL: {target_collection.base_client.url}", f"\tCollection Name: {target_collection.collection_name}", f"\tTotal Records: {handled_records}"])) return handled_records ``` #### File: patents/dmo/joined_record_transformer.py ```python import math import pandas as pd from base import BaseObject from base import FieldStructure class JoinedRecordTransformer(BaseObject): """ Transforms a "Joined" Patent Record into a "Source" Patent Record A "joined" Record is a Row in a DataFrame that has merged USPTO + BluePages Patent Information A "source" Record is a single entry within the 'patents_src_<date>' collection """ def __init__(self, row: pd.Series, is_debug: bool = False): """ Created: 24-Oct-2019 <EMAIL> * https://github.ibm.com/-cdo/unstructured-analytics/issues/1196 """ BaseObject.__init__(self, __name__) self._row = row self._is_debug = is_debug @staticmethod def _field(field_name: str, field_value: str, field_type="text", transformations=None) -> dict or None: def cleanse() -> str or int or None: if not field_value: return None if (type(field_value) == int or type(field_value) == float) and math.isnan(field_value): return None if field_type == "int": return int(field_value) return field_value.strip() field_value = cleanse() if not field_value: return None return FieldStructure.generate_src_field(agent_name="System", field_type=field_type, field_name=field_name, field_value=field_value, transformations=transformations) def process(self) -> dict: fields = [ self._field(field_name="patent_title", field_value=self._row["Title"], field_type="long-text"), self._field(field_name="patent_abstract", field_value=self._row["Abstract"], field_type="long-text"), self._field(field_name="patent_id", field_value=self._row["ID"], field_type="text"), self._field(field_name="patent_country", field_value=self._row["Country"], field_type="text"), self._field(field_name="patent_date", field_value=self._row["Date"], field_type="text"), self._field(field_name="patent_filename", field_value=self._row["Filename"], field_type="text"), self._field(field_name="patent_kind", field_value=self._row["Kind"], field_type="text"), self._field(field_name="patent_number_of_claims", field_value=self._row["NumberOfClaims"], field_type="int"), self._field(field_name="patent_type", field_value=self._row["Type"], field_type="text"), self._field(field_name="patent_withdrawn", field_value=self._row["Withdrawn"], field_type="int")] fields = [x for x in fields if x] return { "fields": fields, "key_field": self._row["SerialNumber"], "manifest": { "name": "patents"}} ``` #### File: push/bp/persist_api.py ```python from base import BaseObject from datamongo import BaseMongoClient class PersistAPI(BaseObject): """ API to Persist Data in DB2 """ def __init__(self, is_debug: bool = False): """ Created: 3-July-2019 <EMAIL> Updated: 30-September-2019 <EMAIL> * updated `is_truncate` parameter https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1018 Updated: 1-Nov-2019 <EMAIL> * added push-<name>-collection methods https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1238#issue-10682083 Updated: 11-Nov-2019 <EMAIL> * added persist collection to be executed from admin.sh https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1312 Updated: 23-Feb-2020 <EMAIL> * Folded PushTagCollection and PushXdmCollection into PushCollection """ BaseObject.__init__(self, __name__) self._is_debug = is_debug @staticmethod def persist(input_data, schema_name, table_name): from dataingest.push.dmo import PersistDatatoDB from datadb2.core.bp import DBCredentialsAPI db2username, db2password = DBCredentialsAPI("WFT_USER_NAME", "WFT_PASS_WORD").process() PersistDatatoDB(db2username, db2password).process(input_data, schema_name, table_name, is_truncate=True) def push_collection(self, mongo_collection_name: str, transformation_type: str, target_db2_table: str, target_db2_schema: str = 'Cendant', tag_confidence_threshold: float = None, mongo_client: BaseMongoClient = None) -> None: """ Purpose: Push a collection into DB2 :param mongo_collection_name: the name of the source collection to extract the data from :param target_db2_table: the name of the target table in DB2 to write the transformed data into :param target_db2_schema: the name of the DB2 Schema to write to :param mongo_client: an instantiated mongoDB client instance """ from dataingest.push.svc import PushCollection from dataingest.push.dmo import FieldsRecordTransformation from dataingest.push.dmo import TagRecordTransformation from dataingest.push.dmo import XdmRecordTransformation transformation_type = transformation_type.lower() transformation = { "fields": FieldsRecordTransformation, "tag": TagRecordTransformation, "xdm": XdmRecordTransformation } pusher = PushCollection(mongo_collection_name=mongo_collection_name, transformation_class=transformation[transformation_type], transformation_type=transformation_type, db2_table_name=target_db2_table, db2_schema_name=target_db2_schema, mongo_client=mongo_client, tag_confidence_threshold=tag_confidence_threshold, is_debug=self._is_debug) pusher.process() def main(transformation_type, data, schema, table, tag_confidence_threshold): def _action(tag_confidence_threshold): print(transformation_type) if transformation_type in ["tag", "xdm", "fields"]: PersistAPI(is_debug=True).push_collection(mongo_collection_name=data, transformation_type=transformation_type, target_db2_table=table, target_db2_schema=schema, mongo_client=BaseMongoClient(), tag_confidence_threshold=tag_confidence_threshold) elif not transformation_type: PersistAPI(is_debug=True).persist(data, schema, table) else: raise NotImplementedError("\n".join([ "Unknown Param: {}".format(transformation_type)])) if tag_confidence_threshold: tag_confidence_threshold = float(tag_confidence_threshold) else: tag_confidence_threshold = 0 _action(tag_confidence_threshold) if __name__ == "__main__": import plac plac.call(main) ``` #### File: push/bp/run_manifest_data_command.py ```python import os from base import BaseObject from base import MandatoryParamError class RunManifestDataCommand(BaseObject): """Runs commands specified by a manifest activity""" def __init__(self, some_manifest_name: str, some_activity_name: str, is_debug: bool = False): from dataingest.core.dmo import ManifestActivityFinder BaseObject.__init__(self, __name__) if not some_manifest_name: raise MandatoryParamError("Manifest Name") if not some_activity_name: raise MandatoryParamError("Activity Name") self.is_debug = is_debug self.command = ManifestActivityFinder(some_manifest_name, some_activity_name).process()['command'] def process(self) -> int: return os.system(self.command) def run_manifest_command(manifest_name: str, activity_name: str): runner = RunManifestDataCommand(manifest_name, activity_name) command = runner.command rc = runner.process() if rc: raise Exception(f"Error {rc} executing '{command}'") ``` #### File: push/dmo/tag_record_transformation.py ```python import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject class TagRecordTransformation(BaseObject): """ Purpose: Transform nested TAG record into a flat DataFrame Sample Input: { 'div_field': '', 'ts': '84d58ab8-f7a7-11e9-bab8-066122a69d41', 'fields': [ ... { 'agent': 'user', 'collection': {'name': 'ingest_cv_education_', 'type': 'ingest_cv_education'}, 'field_id': 'ff6d19a4-f75b-11e9-91a8-066122a69d41-0', 'name': 'major', 'normalized': ['electronics and communication'], 'tags': {'supervised': [['communication', 96.2]], unsupervised': []}, 'transformations': [], 'type': 'long-text', 'value': ['Electronics and Communication']}, { 'agent': 'user', 'collection': {'name': 'ingest_cv_education_', 'type': 'ingest_cv_education'}, 'field_id': 'ff6d1ad0-f75b-11e9-91a8-066122a69d41-0', 'name': 'degree_name', 'normalized': ['bachelor_of_engineering'], 'tags': {'supervised': [['bachelor of engineering', 99.4]], unsupervised': []}, 'transformations': [], 'type': 'long-text', 'value': ['Diploma in Electronics and Communication']}, { 'agent': 'user', 'collection': {'name': 'ingest_cv_education_', 'type': 'ingest_cv_education'}, 'field_id': 'ff6d1c06-f75b-11e9-91a8-066122a69d41-0', 'name': 'thesis_title', 'normalized': ['thesis_title bachelor_of_engineering and communicationyear of complete 2005'], 'tags': {'supervised': [['bachelor of engineering', 96.3]], unsupervised': []}, 'transformations': [], 'type': 'long-text', 'value': ['Thesis title Diploma in Electronics and CommunicationYear of completion 2005']}], 'key_field': '05817Q744'} Sample Output: +----+---------------------+--------------+----------------------------------------+--------------+------------+-----------------------------------------------------------------------------+--------------------------------------------------------------------------------+-------------------------+--------------------------------------+-------------------------+ | | Collection | Confidence | FieldId | FieldName | KeyField | NormalizedText | OriginalText | PriorCollection | RecordId | Tag | |----+---------------------+--------------+----------------------------------------+--------------+------------+-----------------------------------------------------------------------------+--------------------------------------------------------------------------------+-------------------------+--------------------------------------+-------------------------| | 0 | supply_tag_20191025 | 96.2 | ff6d19a4-f75b-11e9-91a8-066122a69d41-0 | major | 05817Q744 | electronics and communication | Electronics and Communication | ingest_cv_education_ | 84d58ab8-f7a7-11e9-bab8-066122a69d41 | communication | | 1 | supply_tag_20191025 | 99.4 | ff6d1ad0-f75b-11e9-91a8-066122a69d41-0 | degree_name | 05817Q744 | bachelor_of_engineering | Diploma in Electronics and Communication | ingest_cv_education_ | 84d58ab8-f7a7-11e9-bab8-066122a69d41 | bachelor of engineering | | 2 | supply_tag_20191025 | 96.3 | ff6d1c06-f75b-11e9-91a8-066122a69d41-0 | thesis_title | 05817Q744 | thesis_title bachelor_of_engineering and communicationyear of complete 2005 | Thesis title Diploma in Electronics and CommunicationYear of completion 2005 | ingest_cv_education_ | 84d58ab8-f7a7-11e9-bab8-066122a69d41 | bachelor of engineering | +----+---------------------+--------------+----------------------------------------+--------------+------------+-----------------------------------------------------------------------------+--------------------------------------------------------------------------------+-------------------------+--------------------------------------+-------------------------+ """ def __init__(self, records: list, collection_name: str, is_debug: bool = False): """ Created: 1-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1238#issuecomment-15696868 Updated: 19-Feb-2020 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1862 * updated record_id :param records: :param is_debug: """ BaseObject.__init__(self, __name__) self._records = records self._is_debug = is_debug self._collection_name = collection_name def process(self, tag_confidence_threshold: float = None) -> DataFrame: master = [] for record in self._records: key_field = record["key_field"] fields = [x for x in record["fields"] if x["type"] == "long-text" and "tags" in x] for field in fields: field_id = field["field_id"] def _tag_tuples(): if tag_confidence_threshold: return [tag for tag in field["tags"]["supervised"] if tag[1] >= tag_confidence_threshold] return [tag for tag in field["tags"]["supervised"]] for tag_tuple in _tag_tuples(): master.append({ "KeyField": key_field, "FieldId": field_id, "Tag": tag_tuple[0], "Confidence": tag_tuple[1]}) df = pd.DataFrame(master) if self._is_debug and not df.empty: self.logger.debug("\n".join([ f"TAG Transformation Complete (collection={self._collection_name}, total={len(df)})", tabulate(df.sample(), tablefmt='psql', headers='keys')])) return df ``` #### File: datamongo/collections/cendant_collection_registry.py ```python from base import BaseObject from ..core.dmo import BaseMongoClient class CendantCollectionRegistry(BaseObject): """ Service to Provide access to the Cendant Collection Registry """ class CollectionNamesLoader(object): def __init__(self, mongo_client: BaseMongoClient): self._client = mongo_client def names(self) -> list: return self._client.client.cendant.list_collection_names() def __init__(self, collection_names_loader=None, is_debug: bool = True): """ Created: 13-Nov-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1342 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug if not collection_names_loader: collection_names_loader = CendantCollectionRegistry.CollectionNamesLoader(BaseMongoClient()) self._config = self._load(collection_names_loader) def _load(self, collection_names_loader) -> dict: template = { "src": "", "tag": "", "xdm": "" } config = { "demand": { "latest": dict(template) }, "learning": { "latest": dict(template) }, "supply": { "latest": dict(template) } } for collection in collection_names_loader.names(): for key in config.keys(): fragments = collection.split('_') if len(fragments) != 3: continue category, kind, date = tuple(fragments) if category == key: if date not in config[key]: config[category][date] = dict(template) config[category][date][kind] = collection if collection > config[category]['latest'][kind]: config[category]['latest'][kind] = collection return config def _by_name(self, facade, name: str): name = name.lower().strip() if name == "supply": return facade.supply() elif name == "demand": return facade.demand() elif name == "learning": return facade.learning() raise NotImplementedError(f"Name Not Recognized (" f"name={name})") @staticmethod def by_type(a_dict: dict): class Facade(object): @staticmethod def src() -> str: return a_dict["src"] @staticmethod def tag() -> str: return a_dict["tag"] @staticmethod def xdm() -> str: return a_dict["xdm"] @staticmethod def all() -> dict: return a_dict return Facade() def list(self): def _cleanse(keys: list): return sorted([x for x in keys if x != "latest"]) class Facade(object): @classmethod def supply(cls): return _cleanse(self._config["supply"].keys()) @classmethod def demand(cls): return _cleanse(self._config["demand"].keys()) @classmethod def learning(cls): return _cleanse(self._config["learning"].keys()) @classmethod def by_name(cls, name: str): return self._by_name(cls, name) return Facade() def latest(self): def _latest(a_name: str): return self._config[a_name]["latest"] class Facade(object): @classmethod def supply(cls): return self.by_type(_latest("supply")) @classmethod def demand(cls): return self.by_type(_latest("demand")) @classmethod def learning(cls): return self.by_type(_latest("learning")) @classmethod def by_name(cls, name: str): return self._by_name(cls, name) return Facade() def by_date(self, a_date: str): def _by_date(a_name: str): if a_date not in self._config[a_name]: raise ValueError(f"Date Not Found (" f"name={a_name}, " f"date={a_date})") return self._config[a_name][a_date] class Facade(object): @staticmethod def supply(): return self.by_type(_by_date("supply")) @staticmethod def demand(): return self.by_type(_by_date("demand")) @staticmethod def learning(): return self.by_type(_by_date("learning")) @classmethod def by_name(cls, name: str): return self._by_name(cls, name) return Facade() if __name__ == "__main__": print(CendantCollectionRegistry().list().supply()) print(CendantCollectionRegistry().list().demand()) print(CendantCollectionRegistry().list().learning()) print(CendantCollectionRegistry().list().by_name("learning")) print(CendantCollectionRegistry().latest().supply().tag()) print(CendantCollectionRegistry().latest().demand().all()) print(CendantCollectionRegistry().latest().learning().all()) print(CendantCollectionRegistry().latest().by_name("supply").all()) print(CendantCollectionRegistry().by_date("20190913").by_name("supply").all()) ``` #### File: datamongo/collections/cendant_xdm.py ```python import pprint import pandas as pd from pandas import DataFrame from base import BaseObject from base import MandatoryParamError from datamongo.core.bp import CendantCollection from datamongo.core.dmo import BaseMongoClient class CendantXdm(BaseObject): """ Collection Wrapper over MongoDB XDM (Dimemsionality) Collections * supply-xdm * demand-xdm * learning-xdm """ _records = None def __init__(self, collection_name: str, mongo_client: BaseMongoClient = None, database_name: str = "cendant", is_debug: bool = True): """ Created: 7-Aug-2019 <EMAIL> * based on 'cendant-tag' and 'cendant-src' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/649 Updated: 30-Sept-2019 <EMAIL> * filter out records without a JRS ID https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1028 Updated: 31-Oct-2019 <EMAIL> * add 'dataframe' method https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1227#issuecomment-15665110 """ BaseObject.__init__(self, __name__) if not collection_name: raise MandatoryParamError("Collection Name") if not mongo_client: mongo_client = BaseMongoClient() self.is_debug = is_debug self.mongo_client = mongo_client self.collection = CendantCollection(some_base_client=mongo_client, some_db_name=database_name, some_collection_name=collection_name, is_debug=self.is_debug) def random(self, total_records: int = 1) -> list: """ Purpose: Return Random Record(s) :param total_records: the number of random records to return :return: a list of random records with a cardinality of 0..* """ return self.collection.random(total_records) @staticmethod def dataframe(record: dict) -> DataFrame: results = [] key_field = record["key_field"] for slot_name in record["slots"]: results.append({ "Id": key_field, "Slot": slot_name, "Weight": record["slots"][slot_name]["weight"], "zScore": record["slots"][slot_name]["z_score"], "zScoreNorm": record["slots"][slot_name]["z_score_norm"]}) return pd.DataFrame(results) def by_value_sum(self, minimum_value_sum: int = None, maximum_value_sum: int = None, key_fields_only: bool = False) -> list: from datamongo.slots.dmo import SlotValueFilter slot_value_filter = SlotValueFilter(some_records=self.collection.all()) return slot_value_filter.process(minimum_value_sum=minimum_value_sum, maximum_value_sum=maximum_value_sum, key_fields_only=key_fields_only) def by_slot_value(self, region: str, slot_name: str, minimum_value_sum: float = None, maximum_value_sum: float = None, minimum_band_level: int = None, maximum_band_level: int = None) -> list: from datamongo.slots.svc import GenerateSlotQuery slot_query = GenerateSlotQuery(is_debug=self.is_debug) d_query = slot_query.process(region=region, slot_name=slot_name, minimum_value_sum=minimum_value_sum, maximum_value_sum=maximum_value_sum, minimum_band_level=minimum_band_level, maximum_band_level=maximum_band_level) results = self.collection.find_by_query(d_query) if not results: results = [] self.logger.debug("\n".join([ f"Slot Value Query (total={len(results)}): ", pprint.pformat(d_query, indent=4)])) return results ``` #### File: datamongo/collections/employees_band_region.py ```python from base import BaseObject from base import RecordUnavailableRecord from datamongo.core.bp import CendantCollection from datamongo.core.dmo import BaseMongoClient class BandRegion(BaseObject): """ Collection Wrapper over MongoDB Collection for "_employees_band_region" """ def __init__(self, some_base_client=None): """ Created: 16-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) if not some_base_client: some_base_client = BaseMongoClient() self.collection = CendantCollection(some_base_client=some_base_client, some_db_name="cendant", some_collection_name="ingest_band_region") @staticmethod def _reverse(some_d: dict) -> dict: d_reversed = {} for k in some_d: v = some_d[k] if v not in d_reversed: d_reversed[v] = [] d_reversed[v].append(k) return d_reversed def all_region_by_cnum(self, reverse=False): records = self.collection.all() d_index = {} ctr = 0 for record in records: ctr += 1 cnum = [x["value"] for x in record["fields"] if x["name"] == "serial_number"][0] value = [x["value"] for x in record["fields"] if x["name"] == "region"][0] if value: d_index[cnum] = value if reverse: return self._reverse(d_index) return d_index def all_band_by_cnum(self, reverse=False): records = self.collection.all() d_index = {} for record in records: cnum = [x["value"] for x in record["fields"] if x["name"] == "serial_number"][0] value = [x["value"] for x in record["fields"] if x["name"] == "band"][0] if value: d_index[cnum] = value if reverse: return self._reverse(d_index) return d_index def _record_by_cnum(self, some_serial_number: str, raise_error: bool): record = self.collection.by_field("fields.value", some_serial_number) if not record: error = "\n".join([ "Record Not Found (serial-number={})".format( some_serial_number)]) if raise_error: raise RecordUnavailableRecord(error) self.logger.error(error) return record def band_by_cnum(self, some_serial_number: str, raise_error: bool = True) -> int: record = self._record_by_cnum(some_serial_number, raise_error) if not record: return -1 for field in record["fields"]: if field["name"] == "band": return int(field["value"]) def region_by_cnum(self, some_serial_number: str, raise_error: bool = True) -> str: record = self._record_by_cnum(some_serial_number, raise_error) if not record: return "Unknown" for field in record["fields"]: if field["name"] == "region": return field["value"] ``` #### File: datamongo/collections/github_src.py ```python from base import BaseObject from datamongo.core.bp import CendantCollection class GitHubSrc(BaseObject): """ GitHub Src Collection Wrapper """ def __init__(self, collection_name: str, is_debug: bool = False): """ Created: 7-Dec-2019 <EMAIL> * renamed from 'github-data-loader' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1553 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._collection = CendantCollection(is_debug=self._is_debug, some_collection_name=collection_name) def flush(self): self._collection.delete() def create_indices(self): from datamongo.text.svc import CreateFieldIndex field_index_creator = CreateFieldIndex(is_debug=self._is_debug, collection=self._collection.collection) field_index_creator.process(field_name="key_field") field_index_creator.process(field_name="key_field_parent") field_index_creator.process(field_name="div_field") def insert(self, source_records: list) -> None: if not len(source_records): self.logger.warning("No Records Provided") return if len(source_records): self._collection.insert_many(documents=source_records, some_caller=str(__name__), ordered_but_slower=True) if self._is_debug and len(source_records): self.logger.debug('\n'.join([ "GitHub Loading Completed", f"\tTotal Records: {len(source_records)}", f"\tCollection Name: {self._collection.collection_name}"])) ``` #### File: core/dmo/base_mongo_client.py ```python import os import warnings from pymongo import MongoClient from base import BaseObject from base import CredentialsFromJson from base import CryptoBase class BaseMongoClient(BaseObject): """ Create a MongoDB connection """ def __init__(self, some_mongo_host: str = None, server_alias: str = None, is_debug: bool = False): """ Created: 14-Apr-2019 <EMAIL> * based on 'base-mongo-client-1' Updated: 6-Jun-2019 <EMAIL> * enable username/password authentication https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/336 Updated: 15-Aug-2019 <EMAIL> * added 'log' function Updated: 04-Dec-2019 <EMAIL> * moved code to CredentialsFromJson Updated: 15-Jan-2020 <EMAIL> * added server_alias param Updated: 13-Feb-2020 <EMAIL> * default instantiation to 'cloud' if no parameter provided https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1855 Updated: 23-Feb-2020 <EMAIL> * Ignore server alias when running on kubernetes. This is a quick hack because the skills api is breaking in kuberentes. Proper solution would be to remove server alias from everywhere and migrate our servers to the cloud instance. """ BaseObject.__init__(self, __name__) if some_mongo_host: warning_txt = 'the some_mongo_host parameter is ignored; set MONGO_JSON_CREDENTIALS instead' # Do not use DeprecationWarning because it is hidden by jupyter and REPL warnings.warn(warning_txt, Warning) # if not some_mongo_host and not server_alias: # server_alias = 'CLOUD' # GIT-1855-17765027 if 'KUBERNETES_SERVICE_HOST' in os.environ: server_alias = None if server_alias: server_alias = server_alias.upper() if server_alias not in ['WFTAG', 'CLOUD']: raise ValueError('Invalid server alias') url = None ca_file = None if server_alias or 'MONGO_JSON_CREDENTIALS' in os.environ: env_var_name = f'MONGO_JSON_CREDENTIALS_{server_alias}' if server_alias else 'MONGO_JSON_CREDENTIALS' credentials = CredentialsFromJson(os.environ[env_var_name], 'mongodb') url = credentials.url ca_file = credentials.ca_file if not url: host = os.environ["MONGO_HOST"] port = int(os.environ["MONGO_PORT"]) username = CryptoBase.decrypt_str(os.environ["MONGO_USER_NAME"]) password = CryptoBase.decrypt_str(os.environ["MONGO_PASS_WORD"]) url = f"mongodb://{username}:{password}@{host}:{port}/" if not url: raise RuntimeError("Bad MONGO_ environment variables") self.client = MongoClient(url, ssl_ca_certs=ca_file) self.url = CredentialsFromJson.sanitize_url(url, 'mongodb') if is_debug: self.logger.debug('\n'.join([ "MongoDB Connection Opened", f"\tURL: {self.url}"])) def log(self) -> str: return f"Connected on {self.url}" ``` #### File: core/dto/cendant_enums.py ```python import os from enum import Enum class CendantCollectionCategory(Enum): DEMAND = 1 SUPPLY = 2 LEARNING = 3 @staticmethod def find(some_name: str) -> __name__: some_name = some_name.lower() # high precision match if some_name == "demand": return CendantCollectionCategory.DEMAND if some_name == "supply": return CendantCollectionCategory.SUPPLY if some_name == "learning": return CendantCollectionCategory.LEARNING # partial precision match if "demand" in some_name: return CendantCollectionCategory.DEMAND if "supply" in some_name: return CendantCollectionCategory.SUPPLY if "learning" in some_name: return CendantCollectionCategory.LEARNING raise NotImplementedError(f"Unrecognized Category: {some_name}") class CendantCollectionType(Enum): SRC = 1 TAG = 2 XDM = 3 @staticmethod def find(some_name: str) -> __name__: some_name = some_name.lower() # high precision match if some_name == "src": return CendantCollectionType.SRC if some_name == "tag": return CendantCollectionType.TAG if some_name == "xdm": return CendantCollectionType.XDM # partial precision match if "src" in some_name: return CendantCollectionType.SRC if "tag" in some_name: return CendantCollectionType.TAG if "xdm" in some_name: return CendantCollectionType.XDM raise NotImplementedError(f"Unrecognized Type: {some_name}") class CendantCollectionUsage(Enum): BUILD = 1 USE = 2 @staticmethod def find(some_name: str) -> __name__: some_name = some_name.lower() # high precision match if some_name == "build": return CendantCollectionUsage.BUILD if some_name == "use": return CendantCollectionUsage.USE # partial precision match if "build" in some_name: return CendantCollectionUsage.BUILD if "use" in some_name: return CendantCollectionUsage.USE raise NotImplementedError(f"Unrecognized Type: {some_name}") class CollectionFinder(object): @staticmethod def find_xdm(collection_category: CendantCollectionCategory or str, collection_usage: CendantCollectionUsage = CendantCollectionUsage.USE) -> str: if type(collection_category) == str: collection_category = CendantCollectionCategory.find(collection_category) return __class__.find(collection_type=CendantCollectionType.XDM, collection_category=collection_category, collection_usage=collection_usage) @staticmethod def find_tag(collection_category: CendantCollectionCategory or str, collection_usage: CendantCollectionUsage = CendantCollectionUsage.USE) -> str: if type(collection_category) == str: collection_category = CendantCollectionCategory.find(collection_category) return __class__.find(collection_type=CendantCollectionType.TAG, collection_category=collection_category, collection_usage=collection_usage) @staticmethod def find_src(collection_category: CendantCollectionCategory or str, collection_usage: CendantCollectionUsage = CendantCollectionUsage.USE) -> str: if type(collection_category) == str: collection_category = CendantCollectionCategory.find(collection_category) return __class__.find(collection_type=CendantCollectionType.SRC, collection_category=collection_category, collection_usage=collection_usage) @staticmethod def find( collection_type: CendantCollectionType, collection_category: CendantCollectionCategory, collection_usage: CendantCollectionUsage = CendantCollectionUsage.USE) -> str: def supply_key() -> str: if CendantCollectionType.SRC == collection_type: if CendantCollectionUsage.USE == collection_usage: return "SUPPLY_SRC_USE" return "SUPPLY_SRC_BUILD" elif CendantCollectionType.TAG == collection_type: if CendantCollectionUsage.USE == collection_usage: return "SUPPLY_TAG_USE" return "SUPPLY_TAG_BUILD" elif CendantCollectionType.XDM == collection_type: if CendantCollectionUsage.USE == collection_usage: return "SUPPLY_XDM_USE" return "SUPPLY_XDM_BUILD" def demand_key(): if CendantCollectionType.SRC == collection_type: if CendantCollectionUsage.USE == collection_usage: return "DEMAND_SRC_USE" return "DEMAND_SRC_BUILD" elif CendantCollectionType.TAG == collection_type: if CendantCollectionUsage.USE == collection_usage: return "DEMAND_TAG_USE" return "DEMAND_TAG_BUILD" elif CendantCollectionType.XDM == collection_type: if CendantCollectionUsage.USE == collection_usage: return "DEMAND_XDM_USE" return "DEMAND_XDM_BUILD" def learning_key(): if CendantCollectionType.SRC == collection_type: if CendantCollectionUsage.USE == collection_usage: return "LEARNING_SRC_USE" return "LEARNING_SRC_BUILD" elif CendantCollectionType.TAG == collection_type: if CendantCollectionUsage.USE == collection_usage: return "LEARNING_TAG_USE" return "LEARNING_TAG_BUILD" elif CendantCollectionType.XDM == collection_type: if CendantCollectionUsage.USE == collection_usage: return "LEARNING_XDM_USE" return "LEARNING_XDM_BUILD" def key(): if CendantCollectionCategory.SUPPLY == collection_category: return supply_key() elif CendantCollectionCategory.DEMAND == collection_category: return demand_key() elif CendantCollectionCategory.LEARNING == collection_category: return learning_key() key = key() value = os.environ[key] print(f"Located Cendant Collection: " f"(type={collection_type}, " f"category={collection_category}, " f"key={key}, " f"collection={value})") return value ``` #### File: core/svc/delete_record.py ```python from base import BaseObject from base import MandatoryParamError class DeleteRecord(BaseObject): """ API for Deleting a Record (or series of Records) from MongoDB """ def __init__(self, some_collection): """ Created: 28-Nov-2018 <EMAIL> Updated: 15-Mar-2019 <EMAIL> * add strict typing """ BaseObject.__init__(self, __name__) if not some_collection: raise MandatoryParamError("Collection") self.collection = some_collection def all(self, is_debug: bool = False) -> int: """ :return: the total records delete """ records_deleted = self.collection.delete_many({}).deleted_count if is_debug: self.logger.debug("\n".join([ "Deleted Records (all)", "\ttotal: {0}".format(records_deleted), "\tcollection: {0}".format(self.collection.name) ])) return records_deleted def by_id(self, some_id: str, is_debug: bool = False) -> int: """ :param some_id: the ID of the dialog structure to delete :param is_debug: :return: the total records delete """ query = {"_id": some_id} records_deleted = self.collection.delete_many( query).deleted_count if is_debug: self.logger.debug("\n".join([ "Deleted Records (by id)", "\tId: {0}".format(some_id), "\tTotal: {0}".format(records_deleted), "\tCollection: {0}".format(self.collection.name)])) return records_deleted def by_query(self, some_query: dict, is_debug: bool = False) -> int: """ :param some_query: the query pattern to delete :param is_debug: :return: the total records delete """ records_deleted = self.collection.delete_many( some_query).deleted_count if is_debug: self.logger.debug("\n".join([ "Deleted Records (by id)", "\tQuery: {0}".format(some_query), "\tTotal: {0}".format(records_deleted), "\tCollection: {0}".format(self.collection.name)])) return records_deleted def by_ts(self, tts, is_debug: bool = False) -> int: """ :param tts: the timestamp :param is_debug: :return: the total records delete """ query = {"ts": tts} records_deleted = self.collection.delete_many( query).deleted_count if is_debug: self.logger.debug("\n".join([ "Deleted Records (by ts)", "\tttts: {0}".format(tts), "\ttotal: {0}".format(records_deleted), "\tcollection: {0}".format(self.collection.name) ])) return records_deleted ``` #### File: slots/dmo/reverse_slot_index.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject from base import MandatoryParamError class ReverseSlotIndex(BaseObject): """ Create a Reverse Index for a given slot """ _records = None def __init__(self, some_records: list, some_slot_name: str): """ Created: 1-May-2019 <EMAIL> * refactored out of -learning-dimensions """ BaseObject.__init__(self, __name__) if not some_slot_name: raise MandatoryParamError("Records") if not some_slot_name: raise MandatoryParamError("Slot Name") self.records = some_records self.slot_name = some_slot_name def _results(self): results = [] for record in self.records: for slot in record["slots"]: if slot != self.slot_name: continue value = record["slots"][slot] if value <= 0: continue results.append({"KeyField": record["key_field"], "Value": value}) return results def process(self, sort_ascending: bool = True) -> DataFrame: df = pd.DataFrame(self._results()) if sort_ascending and len(df): df = df.sort_values(['Value'], ascending=[False]) return df ``` #### File: text/dmo/text_query_windower.py ```python import string import pandas as pd from pandas import DataFrame from base import BaseObject class TextQueryWindower(BaseObject): """ Window Text Query Results """ __exclude = set(string.punctuation) def __init__(self, query_results: dict, is_debug: bool = False): """ Created: <EMAIL> 16-Oct-2019 * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1122#issuecomment-15340437 :param text_parser_results the text parser results :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._query_results = query_results def _to_text(self): """ Purpose: Transform Query results into pure text :return: return a list of text results only """ values = set() for cnum in self._query_results: [values.add(d['value']) for d in self._query_results[cnum]] return sorted(values) def _tokens(self, term: str, input_text: str) -> list: input_text = input_text.lower().replace('\t', ' ') input_text = ''.join(ch for ch in input_text if ch not in self.__exclude) tokens = input_text.split(' ') tokens = [x.strip() for x in tokens if x and len(x.strip())] tokens = [x.lower() for x in tokens] if ' ' not in term: # return unigrams return tokens if term.count(' ') == 1: # return bigrams s = set() for i in range(0, len(tokens)): if i + 1 < len(tokens): s.add(f"{tokens[i]} {tokens[i + 1]}") return sorted(s) raise NotImplementedError def process(self, term: str, window_size: int = 5) -> DataFrame: """ :param term: :param window_size: :return: """ master = [] term = term.lower().strip() for input_text in self._to_text(): tokens = self._tokens(term, input_text) n = tokens.index(term) def pos_x(): if n - window_size >= 0: return n - window_size return 0 def pos_y(): if n + window_size < len(tokens): return n + window_size return len(tokens) x = pos_x() y = pos_y() def l_context(): return ' '.join(tokens[x:n]).strip() def r_context(): return ' '.join(tokens[n + 1:y]).strip() master.append({ "A": l_context(), "B": tokens[n], "C": r_context()}) return pd.DataFrame(master).sort_values( by=['A'], ascending=False) ``` #### File: text/svc/create_field_index.py ```python import pymongo from pymongo.collection import Collection from pymongo.errors import OperationFailure from base import BaseObject class CreateFieldIndex(BaseObject): """ Creates a basic Field Index on a MongoDB Collection """ _records = None def __init__(self, collection: Collection, is_debug: bool = False): """ Created: 5-Dec-2019 <EMAIL> * based on 'create-text-index' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1515#issuecomment-16439788 Updated: 6-Dec-2019 abhbasu3 * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1529 Updated: 17-Dec-2019 <EMAIL> * Allow options. Do not force foreground indexing """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._collection = collection def process(self, field_name: str, sort_order: int = pymongo.ASCENDING, default_language: str = 'english', index_options = None) -> None: def _field_name(): return field_name.replace('.', '_') try: if index_options is None: index_options = {} field_index = [(field_name, sort_order)] self._collection.create_index(field_index, name=_field_name(), default_language=default_language, **index_options) except OperationFailure as err: self.logger.error('\n'.join([ f"Index Creation Error", f"\tField Name: {field_name}", f"\tSort Order: {sort_order}", f"\tDefault Language: {default_language}", f"\tCollection: {self._collection.name}"])) self.logger.exception(err) # raise ValueError ``` #### File: text/svc/search_source_collection.py ```python from pandas import DataFrame from tabulate import tabulate from base import BaseObject from datamongo import CendantSrc from datamongo.core.dmo import BaseMongoClient class SearchSourceCollection(BaseObject): """ Perform a Text Query on a Cendant Source Collection Sample Output: +-----+---------------------------------------+--------+---------------------------------+ | | A | B | C | |-----+---------------------------------------+--------+---------------------------------| | 0 | an MVP for | coffee | recommendation based | | 1 | a chain of | coffee | retailers within | | 2 | while installing new | coffee | machines, tea | | 3 | plan events - | coffee | with leaders | | 4 | taekwondo, karate, handicrafts | coffee | making. She | | 5 | Town Hall session, | coffee | session, 1-to-1 | ... | 558 | for forecast of | coffee | and tea | +-----+---------------------------------------+--------+---------------------------------+ """ _records = None def __init__(self, name: str, term: str, window_size: int, mongo_client: BaseMongoClient, is_debug: bool = False): """ Created: 16-Oct-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1122 :param mongo_client: the instantiated connection to mongoDB :param is_debug: True write debug statements to the console """ BaseObject.__init__(self, __name__) self._name = name self._term = term self._is_debug = is_debug self._window_size = window_size self._mongo_client = mongo_client def _cendant_src(self): return CendantSrc(collection_name=self._name, mongo_client=self._mongo_client, is_debug=self._is_debug) def _full_text_search(self, cendant_src: CendantSrc) -> dict: d_results = cendant_src.full_text_search(some_term=self._term) if self._is_debug: self.logger.debug('\n'.join([ "Full Text Search Completed", f"\tCollection Name: {self._name}", f"\tSearch Term: {self._term}", f"\tResults: {len(d_results)}"])) return d_results def _window_query(self, d_results: dict): from datamongo.text.dmo import TextQueryWindower windower = TextQueryWindower(query_results=d_results, is_debug=self._is_debug) df_results = windower.process(term=self._term, window_size=self._window_size) if self._is_debug: self.logger.debug('\n'.join([ f"Query Results (term={self._term}, total={len(df_results)})", tabulate(df_results, headers='keys', tablefmt='psql')])) return df_results def process(self) -> DataFrame: """ :return: a DataFrame of results """ cendant_src = self._cendant_src() d_results = self._full_text_search(cendant_src) df_results = self._window_query(d_results) return df_results ``` #### File: core/dmo/event_message_parser.py ```python import pprint from slack import RTMClient from slack import WebClient from base import BaseObject class EventMessageParser(BaseObject): """ Parse a Message Event """ def __init__(self, payload: dict): """ Created: 18-Jul-2019 <EMAIL> * references: https://pypi.org/project/slackclient/ * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/453 """ BaseObject.__init__(self, __name__) self.payload = payload self.event = payload['data'] def _attr(self, key_name: str): if key_name in self.event: return self.event[key_name] if 'message' in self.event: if key_name in self.event['message']: return self.event['message'][key_name] self.logger.warning("\n".join([ pprint.pformat(self.payload)])) raise NotImplementedError("\n".join([ "Unexpected Message Event Structure (key={})".format( key_name)])) def web_client(self) -> WebClient: return self.payload['web_client'] def rtm_client(self) -> RTMClient: return self.payload['rtm_client'] def user(self): return self._attr("user") def text(self): return self._attr("text") def channel(self): return self.event['channel'] def ts(self): return self.event['ts'] ``` #### File: core/svc/predict_intents.py ```python import pprint from base import BaseObject from datamongo import BaseMongoClient from datamongo import SlackEventCollection from nlusvc import TextAPI class PredictIntents(BaseObject): _text_api = None def __init__(self, min_confidence: int, trigger_ts: float = None, key_by_flows: bool = False, preprocess_text: bool = True, persist_result: bool = True, base_mongo_client: BaseMongoClient = None, is_debug: bool = False): """ Created: 18-Jul-2019 <EMAIL> * refactored out of abacus-mapping-api https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/453 :param min_confidence: int the minimum confidence threshold to deal with :param trigger_ts: float (Optional) the timestamp of the event that triggered this request :param persist_result: if True persist the result to MongoDB :param preprocess_text: if True perform preprocessing on the input text :param key_by_flows: if True the service result will look like { FLOW_NAME_1: 80, FLOW_NAME_2: 80, FLOW_NAME_3: 75 } if False the service result will look like { 80: [ FLOW_NAME_1, FLOW_NAME_2 ] 75: [ FLOW_NAME_3 } :param is_debug: """ BaseObject.__init__(self, __name__) self.is_debug = is_debug self.trigger_ts = trigger_ts self.key_by_flows = key_by_flows self.persist_result = persist_result self.min_confidence = min_confidence self.preprocess_text = preprocess_text self.mapping_event_collection = SlackEventCollection(base_mongo_client=base_mongo_client, collection_name="event_mapping") def service_result(self, svcresult: dict, input_text_original: str, input_text: str, input_tags: list or None) -> dict: if not input_tags: input_tags = [] svcresult = { "ts": BaseObject.generate_tts(), "trigger_ts": self.trigger_ts, "input": { "tags": input_tags, "text": { "original": input_text_original, "normalized": input_text}}, "output": svcresult, "options": { "preprocess_text": self.preprocess_text, "min_confidence": self.min_confidence, "key_by_flows": self.key_by_flows}} return svcresult def _by_text(self, input_text: str) -> dict: from nluflows.mapping.bp import ServiceCatalogMapper from nluflows.summarize.bp import ServiceCatalogSummarizer if not self._text_api: self._text_api = TextAPI() original_text = input_text # Step: Tag the Input Text if self.preprocess_text: input_text = self._text_api.preprocess(input_text, lowercase=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=True, no_currency_symbols=True, no_punct=True, no_contractions=True, no_accents=True, remove_inside_brackets=True) def _intent_not_tagged(): return self.service_result(svcresult=self._intent_not_tagged(), input_text=input_text, input_text_original=original_text, input_tags=None) def _intent_not_mapped(some_input_tags: list): return self.service_result(svcresult=self._intent_not_mapped(), input_text=input_text, input_text_original=original_text, input_tags=some_input_tags) def _intent_mapped(analysis: dict, some_input_tags: list): return self.service_result(svcresult=analyses, input_text=input_text, input_text_original=original_text, input_tags=some_input_tags) # Step: Parse the Input Text df_results = self._text_api.parse(input_text) if df_results.empty: return _intent_not_tagged() input_tags = sorted(df_results.Tag.unique()) # Step: Map Tags to Intents analyses = ServiceCatalogMapper(some_tags=input_tags, is_debug=self.is_debug).process() if not analyses or not len(analyses): return _intent_not_mapped(some_input_tags=input_tags) # Step: Summarize Mapping Results analyses = ServiceCatalogSummarizer(some_analyses=analyses, is_debug=self.is_debug).process() if not analyses or not len(analyses): return _intent_not_mapped(some_input_tags=input_tags) # Step: Normalize Results analyses = self._normalize(analyses) if not analyses or not len(analyses): return _intent_not_mapped(some_input_tags=input_tags) # Step: Return Final Results return _intent_mapped(analyses, input_tags) @staticmethod def _intent_not_tagged() -> dict: return {'100': "UNKNOWN_NOT_TAGGED"} @staticmethod def _intent_not_mapped() -> dict: return {'100': "UNKNOWN_NOT_MAPPED"} def _normalize(self, analyses: dict) -> dict: d_normal = {} for k in analyses: if k >= self.min_confidence: d_normal[str(int(k))] = analyses[k] return d_normal def process(self, input_text: str) -> dict: """ :param input_text: :return: { 'input': { 'tags': ['Hello'], 'text': { 'normalized': 'hello', 'original': 'Hello <@ULLURKNFR>' }}, 'options': { 'key_by_flows': False, 'min_confidence': 80, 'preprocess_text': True }, 'output': { '80': ['CHITCHAT_GREETING'] }, 'trigger_ts': '1563491078.019700', 'ts': '1563491080.2059991' } """ svcresult = self._by_text(input_text=input_text) if self.is_debug: self.logger.debug("\n".join([ "Intent Prediction Completed", pprint.pformat(svcresult)])) if self.persist_result: self.mapping_event_collection.save(svcresult) return svcresult ``` #### File: mapping/dmo/flag_computer.py ```python from base import BaseObject class FlagComputer(BaseObject): def __init__(self, some_analyses: dict, is_debug: bool = False): """ Created: 17-Jul-2019 <EMAIL> * refactored out of 'compute-confidence-levels' :param some_analyses: """ BaseObject.__init__(self, __name__) self.analyses = some_analyses self.is_debug = is_debug def _manage_deductions(self) -> float: """ Manage the Deduction Flag :return: a Confidence Score Penalty (or boost) """ total = self.analyses["analysis"]["flags"]["deduction"] if self.is_debug: self.logger.debug("\n".join([ "Deduction Rule", "\tName: Match", "\tPenalty: {}".format(total)])) return total def _manage_discrimin_flag(self) -> float: """ Manage the Discriminatory Flag :return: a Confidence Score Penalty (or boost) """ total = (self.analyses["analysis"]["flags"]["discriminatory"] * 10) if self.is_debug: self.logger.debug("\n".join([ "Discriminatory Flag Rule", "\tName: Match", "\tPenalty: {}".format(total)])) return total def process(self) -> float: total = 0 total -= self._manage_deductions() total += self._manage_discrimin_flag() return total ``` #### File: mapping/dmo/high_match_computer.py ```python from base import BaseObject class HighMatchComputer(BaseObject): def __init__(self, some_analyses: dict, is_debug: bool = False): """ Create: 6-Apr-2017 <EMAIL> * refactored out of svc:ComputeConfidenceLevels Updated: 17-Jul-2019 <EMAIL> * migrated from abacus-att <EMAIL>:abacus-implementation/abacus-att.git :param some_analyses: """ BaseObject.__init__(self, __name__) self.analyses = some_analyses self.is_debug = is_debug def process(self): """ Purpose: 1. if a mapping exist that contains an empty 'include-all-of' section then this is mapping is very imprecise and a deduction will exist for that 2. if a mappping exists that contains an 'include-all-of' section a confidence boost will occur for each match Example: mapping-1 include-all-of [alpha, beta, gamma, delta] mapping-2 include-all-of [alpha] UPS: [alpha, beta, gamma, delta] This UPS will match both mapping-1 mapping-2 but higher confidence should be granted to mapping-1 since more tags were matched :return: """ contains = self.analyses["analysis"]["include_all_of"]["contains"] total_include_all_of = len(contains) if total_include_all_of > 0: total = total_include_all_of * 5 if self.is_debug: self.logger.debug("\n".join([ "High Match Rule", "\tName: Boost", "\tScore: {}".format(total)])) return total if total_include_all_of == 0: if self.is_debug: self.logger.debug("\n".join([ "High Match Rule", "\tName: Full Inclusion Not Found", "\tPenalty: -25"])) return -25 if self.is_debug: self.logger.debug("\n".join([ "High Match Rule", "\tName: Fall Through", "\tPenalty: 0"])) return 0 ``` #### File: summarize/dmo/analysis_summary_generator.py ```python from base import BaseObject class AnalysisSummaryGenerator(BaseObject): def __init__(self, some_analyses): """ given sample input: [ { 'process': 'UC4_SC5_NETWORK_DRIVE-ALPHAT1', 'analysis': { 'include-all-of': { 'contains': ['alphatag1', 'network drive'], 'missing': ['alphatag2'], 'total': ['alphatag1', 'alphatag2', 'network drive'] }, 'include-one-of': True }, 'confidence': 67.0, 'direct-match': False}, { 'process': 'UC4_SC5_NETWORK_DRIVE-LOW_DISK_SPACE', 'analysis': { 'include-all-of': { 'contains': ['network drive'], 'missing': ['hard disk space'], 'total': ['hard disk space', 'network drive'] }, 'include-one-of': True }, 'confidence': 50.0, 'direct-match': False}] return: { 67: ['UC4_SC5_NETWORK_DRIVE'], 50: ['UC4_SC5_NETWORK_DRIVE-LOW_DISK_SPACE'] } Updated: 17-Jul-2019 <EMAIL> * migrated from abacus-att <EMAIL>:abacus-implementation/abacus-att.git :param some_analyses: """ BaseObject.__init__(self, __name__) self.analyses = some_analyses @staticmethod def normalize(some_dict): ndict = {} for key in some_dict: ndict[key] = list(some_dict[key]) return ndict def process(self): rdict = {} for analysis in self.analyses: confidence = analysis["confidence"] if confidence not in rdict: rdict[confidence] = set() rdict[confidence].add(analysis["process"]) return self.normalize(rdict) ``` #### File: summarize/dmo/confidence_normalizer_by_value.py ```python from base import BaseObject # all confidence levels less than the threshold will be ignored MIN_CONFIDENCE_THRESHOLD = 0 class ConfidenceNormalizerByValue(BaseObject): def __init__(self, some_summarized_mapping): """ Purpose: given sample input: { 67: ['UC4_SC5_NETWORK_DRIVE'], 50: ['UC4_SC5_NETWORK_DRIVE'], 40: ['UC1_TOKEN_ISSUE_VDI_FROM_CLASS'], 0: ['UC2_SC3_GOOD_WORK_INTERPRETED_AS']} return: { 67: ['UC4_SC5_NETWORK_DRIVE'], 40: ['UC1_TOKEN_ISSUE_VDI_FROM_CLASS']} Updated: 30-Mar-2017 <EMAIL> * renamed from 'ConfidenceLevelNormalizer' Updated: 17-Jul-2019 <EMAIL> * migrated from abacus-att <EMAIL>:abacus-implementation/abacus-att.git :param some_summarized_mapping: """ BaseObject.__init__(self, __name__) self.summarized_mapping = some_summarized_mapping @staticmethod def normalize_confidence_level(some_mapping): """ :return: """ ndict = {} for key in some_mapping: confidence_level = int(key) if confidence_level <= MIN_CONFIDENCE_THRESHOLD: continue ndict[key] = some_mapping[key] return ndict @staticmethod def create_rev_map(some_normalized_mapping_dict): """ :return: """ revmap = {} for key in some_normalized_mapping_dict: for some_flow in some_normalized_mapping_dict[key]: if some_flow not in revmap: revmap[some_flow] = [] revmap[some_flow].append(key) return revmap @staticmethod def remove_dupe_flows_by_confidence(some_revmap): """ :param some_revmap: :return: """ for flow in some_revmap: if len(some_revmap[flow]) < 2: some_revmap[flow] = some_revmap[flow][0] continue max_level = 0 for confidence_level in some_revmap[flow]: if confidence_level > max_level: max_level = confidence_level some_revmap[flow] = max_level return some_revmap @staticmethod def unwind_rev_map(some_revmap): """ :param some_revmap: :return: """ ndict = {} for flow in some_revmap: confidence_level = some_revmap[flow] if confidence_level not in ndict: ndict[confidence_level] = [] ndict[confidence_level].append(flow) return ndict def process(self): """ { 67: ['UC4_SC5_NETWORK_DRIVE'], 50: ['UC4_SC5_NETWORK_DRIVE'], 40: ['UC1_TOKEN_ISSUE_VDI_FROM_CLASS'], 0: ['UC2_SC3_GOOD_WORK_INTERPRETED_AS']} """ normalized_mapping_dict = self.normalize_confidence_level(self.summarized_mapping) """ { 67: ['UC4_SC5_NETWORK_DRIVE'], 50: ['UC4_SC5_NETWORK_DRIVE'], 40: ['UC1_TOKEN_ISSUE_VDI_FROM_CLASS']} """ reversed_mapping_dict = self.create_rev_map(normalized_mapping_dict) """ { 'UC4_SC5_NETWORK_DRIVE': [50, 67], 'UC1_TOKEN_ISSUE_VDI_FROM_CLASS': [40]} """ reversed_mapping_dict = self.remove_dupe_flows_by_confidence(reversed_mapping_dict) """ { 'UC4_SC5_NETWORK_DRIVE': 67, 'UC1_TOKEN_ISSUE_VDI_FROM_CLASS': 40} """ normalized_mapping_dict = self.unwind_rev_map(reversed_mapping_dict) """ { 67: ['UC4_SC5_NETWORK_DRIVE'], 40: ['UC1_TOKEN_ISSUE_VDI_FROM_CLASS']} """ return normalized_mapping_dict ``` #### File: core/dmo/evidence_extractor.py ```python from typing import Union import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject from base import DataTypeError from base import EvidenceStructure from base import MandatoryParamError from datadict import FindDimensions class EvidenceExtractor(BaseObject): """ Generates a Dataframe of 'Evidence' for a given Serial Number (or other Key Field) Given this input key-field = 1812546302 schema-name = dim Generate this Dataframe +-----+----------------------------------+--------------------+--------------------+-------------+-----------------------+--------------+ | | Collection | FieldName | NormalizedText | OriginalText | Schema | Tag | TagType | +-----+----------------------------------+--------------------+--------------------+-------------+-----------------------+--------------+ | 0 | ingest_badges | badge_name | Mainframe Operator | Mainframe Operator | hard skill | Communications Server | supervised | +-----+----------------------------------+--------------------+--------------------+-------------+-----------------------+--------------+ Note that actual Dataframe will may be large and span hundreds of rows, with column lengths for unstructed text fields (such as OriginalText and NormalizedText) being in excess of several hundred characters """ __valid_tag_dtypes = [tuple, list] def __init__(self, xdm_schema: str, some_records: Union[list, dict], is_debug: bool = False): """ Created: 3-May-2019 <EMAIL> * refactored out of tag-extractor with Jupyter notebooks in mind Updated: 25-Aug-2019 <EMAIL> * incorporate use of tag tuples https://github.ibm.com/-cdo/unstructured-analytics/issues/818 Updated: 15-Oct-2019 <EMAIL> * add work-around for tag iteration defect https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1124#issue-10473464 Updated: 17-Oct-2019 <EMAIL> * refactor component in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1142#issuecomment-15370141 Updated: 25-Oct-2019 <EMAIL> * minor defect fix https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1199#issue-10601102 Updated: 29-Oct-2019 <EMAIL> * remove 'entity-schema-finder' in favor of new approach https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/916#issuecomment-15620801 * remove learning-pattern class (hasn't been used for a while) Updated: 14-Nov-2019 <EMAIL> * add key-field to dataframe result https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1359#issue-10828085 * add transform-records https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1359#issuecomment-16009176 :param some_records: :param xdm_schema: :param is_debug: """ BaseObject.__init__(self, __name__) if not some_records: raise MandatoryParamError("Records") self._is_debug = is_debug self._records = self._transform_records(some_records) self._xdm_finder = FindDimensions(schema=xdm_schema) @staticmethod def _transform_records(some_records: Union[dict, list]) -> list: """ Purpose: - Evidence Extraction is called by multiple APIs, and it's challenging to control the data types across Cendant - Input to this class may be a dictionary (single record) list of dictionaries (multiple records) list of lists where an inner list is composed of a list of records or where an inner list is composed of a single record - This function will transform all these various inputs into a flat list :param some_records: a variety of possibilities as noted above :return: a flat list """ if type(some_records) == dict: return [some_records] elif type(some_records) == list: master = [] for record in sorted(some_records): if type(record) == list: master += sorted(record) elif type(record) == dict: master.append(record) else: raise DataTypeError return master raise DataTypeError def _schema(self, some_input: str) -> list: if not some_input: return [] return self._xdm_finder.find(some_input) @staticmethod def _field_value(a_field: dict, a_field_name: str) -> str: if a_field_name in a_field: if type(a_field[a_field_name]) == list and len(a_field[a_field_name]) > 0: return a_field[a_field_name][0] return a_field[a_field_name] @staticmethod def _supervised_tags(a_field: dict) -> list: if "supervised" in a_field["tags"] and a_field["tags"]["supervised"]: return [x for x in a_field["tags"]["supervised"] if x] return [] @staticmethod def _unsupervised_tags(a_field: dict) -> list: if "unsupervised" in a_field["tags"]: return [x for x in a_field["tags"]["unsupervised"] if x] return [] def _build_result(self, field: dict, key_field: str, a_tag_name: str or None, a_tag_score: float or None, a_tag_type: str or None) -> dict: original_text = self._field_value(field, "value") def _normalized() -> str: if "normalized" in field: return self._field_value(field, "normalized") return original_text normalized_text = _normalized() def _collection_name(): # 1199#issue-10601102 if type(field["collection"]) == dict: return field["collection"]["type"] return field["collection"] for schema_element in self._schema(a_tag_name): return EvidenceStructure.generate( key_field=key_field, collection_name=_collection_name(), field_name=field["name"], normalized_text=normalized_text, original_text=original_text, tag_name=a_tag_name, tag_score=a_tag_score, tag_type=a_tag_type, schema_name=schema_element) def _validate(self, a_tag_tuple) -> bool: """ :param a_tag_tuple: a candidate tag tuple :return: False if the param is an invalid tuple this is common in older collections """ if not a_tag_tuple: raise ValueError("Tag Tuple Expected") if type(a_tag_tuple) not in self.__valid_tag_dtypes: raise DataTypeError(f"Tuple (or List) Expected: {a_tag_tuple}") return True def _extract_results_from_field(self, key_field: str, field: dict) -> list: if "tags" not in field: return [] results = [] def _analyze_tags(a_tag_type: str): tag_tuples = [x for x in field["tags"][a_tag_type] if self._validate(x)] for tag_tuple in tag_tuples: results.append(self._build_result(field=field, key_field=key_field, a_tag_name=tag_tuple[0], a_tag_score=tag_tuple[1], a_tag_type=a_tag_type)) for tag_type in ["supervised", "unsupervised"]: if field["tags"][tag_type] is not None: # 1124#issuecomment-15320883 _analyze_tags(tag_type) return results def process(self) -> DataFrame or None: results = [] for record in self._records: key_field = record["key_field"] for field in record["fields"]: results += self._extract_results_from_field(field=field, key_field=key_field) df_evidence = pd.DataFrame(results) if self._is_debug: self.logger.debug("\n".join([ "Evidence API Complete", "\n{}".format(tabulate(df_evidence, headers='keys', tablefmt='psql'))])) if df_evidence.empty: self.logger.warning("No Evidence Found") return None return df_evidence ``` #### File: core/dmo/fuzzywuzzy_matcher.py ```python from statistics import mean from nltk import stem from base import BaseObject class FuzzyWuzzyMatcher(BaseObject): """ """ stemmer = stem.PorterStemmer() def __init__(self): """ Created: 21-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) @staticmethod def process(s1: str, s2: str, basic: bool, q_ratio: bool, w_ratio: bool, uq_ratio: bool, uw_ratio: bool, partial_ratio: bool, token_sort_ratio: bool) -> dict: from fuzzywuzzy import fuzz s1 = s1.lower().strip() s2 = s2.lower().strip() d_result = {"text": { "s1": s1, "s2": s2}, "ratios": {}} def _basic() -> float: return fuzz.ratio(s1, s2) def _q_ratio() -> float: return fuzz.QRatio(s1, s2, force_ascii=True, full_process=True) def _w_ratio() -> float: return fuzz.WRatio(s1, s2, force_ascii=True, full_process=True) def _uq_ratio() -> float: return fuzz.UQRatio(s1, s2, full_process=True) def _uw_ratio() -> float: return fuzz.UWRatio(s1, s2, full_process=True) def _partial_ratio() -> float: return fuzz.partial_ratio(s1, s2) def _token_sort_ratio() -> float: return fuzz.token_sort_ratio(s1, s2, force_ascii=True, full_process=True) ratios = [] def _add_ratio(ratio_type: str, ratio_value: float): ratios.append(ratio_value) d_result["ratios"][ratio_type] = ratio_value if basic: _add_ratio("basic", _basic()) if partial_ratio: _add_ratio("partial", _partial_ratio()) if token_sort_ratio: _add_ratio("token_sort", _token_sort_ratio()) if q_ratio: _add_ratio("q", _q_ratio()) if w_ratio: _add_ratio("w", _w_ratio()) if uq_ratio: _add_ratio("uq", _uq_ratio()) if uw_ratio: _add_ratio("uw", _uw_ratio()) if len(ratios): d_result["ratios"]["mean"] = round(mean(ratios), 1) return d_result ``` #### File: core/dmo/generate_noun_variations.py ```python from pandas import DataFrame from base import BaseObject class GenerateNounVariations(BaseObject): """ Given a Part-of-Speech (POS) tagged DataFrame, generate Noun variations """ def __init__(self, is_debug: bool = False): """ Created: 9-Jul-2019 <EMAIL> :param is_debug: """ BaseObject.__init__(self, __name__) self.is_debug = is_debug @staticmethod def _extract_adj_nouns(df_part_of_speech: DataFrame) -> dict: """ Purpose: Find and Return ADJ/NOUN combinations Sample Input: The (OTHER) Quick (ADJ) Brown (ADJ) Fox (NOUN) Sample Output: Quick Fox, Brown Fox, Quick Brown Fox, Brown Quick Fox :param df_part_of_speech: a part-of-speech tagged DataFrame :return: generated variations """ adjs = [] nouns = [] d_terms = {} def _generate(): if len(adjs) and len(nouns): _noun = " ".join(nouns) _adj = " ".join(adjs) key = "{} {}".format(_adj, _noun) if key not in d_terms: d_terms[key] = set() d_terms[key].add(_noun) d_terms[key].add("{} {}".format(" ".join(reversed(adjs)), _noun)) for adj in adjs: d_terms[key].add("{} {}".format(adj, _noun)) for _, row in df_part_of_speech.iterrows(): meta_tag = row["PartOfSpeechMeta"] if meta_tag == "ADJ": adjs.append(row["Lemma"]) elif meta_tag == "NOUN": nouns.append(row["Lemma"]) else: _generate() adjs = [] nouns = [] _generate() return d_terms @staticmethod def _extract_verb_nouns(df: DataFrame) -> dict: d_terms = {} metas = list(df['PartOfSpeechMeta']) if "VERB CONNECT NOUN" not in " ".join(metas): return d_terms lemmas = list(df['Lemma']) x = metas.index("VERB") if metas[x + 1] == "CONNECT" and metas[x + 2] == "NOUN": key = "{} {} {}".format(lemmas[x], lemmas[x + 1], lemmas[x + 2]) if key not in d_terms: d_terms[key] = set() d_terms[key].add("{} {}".format(lemmas[x + 2], lemmas[x])) d_terms[key].add("{} {}".format(lemmas[x], lemmas[x + 2])) return d_terms @staticmethod def _seq(a: list, n: int = 3) -> list: """ Extract Contiguous Numerical Sequences from a List Sample Input: [1, 2, 4, 7, 8, 12, 13, 14, 16, 17, 19] Sample Output (n=2): [[12, 13], [13, 14]] Sample Output (n=3): [[12, 13, 14]] :param a: the input list of integers :param n: the contiguous sequence size :return: the list of sequences """ if n == 1: return [[x] for x in a] seqs = [] for i in range(0, len(a)): if i + n >= len(a): continue def _match(): s = set() for j in range(0, n): if a[i + j] + 1 == a[i + j + 1]: s.add(a[i + j]) s.add(a[i + j + 1]) else: s = set() if len(s) == n: return sorted(s) m = _match() if m: seqs.append(m) return seqs def _extract_noun_sequences(self, df: DataFrame, n: int) -> set: lemmas = list(df['Lemma']) metas = list(df['PartOfSpeechMeta']) indices = [i for i, x in enumerate(metas) if x == "NOUN"] sequences = self._seq(indices, n=n) terms = set() for seq in sequences: terms.add(" ".join(lemmas[seq[0]:seq[len(seq) - 1] + 1])) return terms def process(self, df_part_of_speech: DataFrame) -> dict: return { "NN2": self._extract_noun_sequences(df_part_of_speech, n=2), "NN3": self._extract_noun_sequences(df_part_of_speech, n=3), "NN4": self._extract_noun_sequences(df_part_of_speech, n=4), "ADJNN": self._extract_adj_nouns(df_part_of_speech), "VCN": self._extract_verb_nouns(df_part_of_speech)} ``` #### File: core/svc/perform_pos_tagging.py ```python import pandas as pd import spacy from pandas import DataFrame from tabulate import tabulate from base import BaseObject from base import DataTypeError class PerformPosTagging(BaseObject): """ Perform Part-of-Speech (POS) tagging based on spaCy https://spacy.io/usage/linguistic-features """ _nlp = spacy.load('en') def __init__(self, is_debug: bool = False): """ Created: 9-Jul-2019 <EMAIL> :param is_debug: """ BaseObject.__init__(self, __name__) self.is_debug = is_debug @staticmethod def _upper_pos(part_of_speech: str) -> str: part_of_speech = part_of_speech.upper() adjectives = ["ADJ"] nouns = ["PROPN", "NOUN"] phrases = ["ADP", "CCONJ"] verbs = ["VERB"] if part_of_speech in adjectives: return "ADJ" if part_of_speech in nouns: return "NOUN" if part_of_speech in phrases: return "CONNECT" if part_of_speech in verbs: return "VERB" return "OTHER" @staticmethod def _normalize_pos(lemma: str, part_of_speech: str): """ Purpose: we almost always accept spaCy's decision about part-of-speech tagging this function will encode all exceptions :param lemma: the text being tagged :param part_of_speech: spaCy part-of-speech :return: a normalized part-of-speech """ if lemma == "®": return "OTHER" return part_of_speech def _tagger(self, input_text: str) -> DataFrame: input_text = input_text doc = self._nlp(input_text) results = [] for token in doc: _normalized_pos = self._normalize_pos(token.lemma_, token.pos_) _upper_pos = self._upper_pos(_normalized_pos) results.append({ "Lemma": token.lemma_, "PartOfSpeech": _normalized_pos, "PartOfSpeechMeta": _upper_pos, "Tag": token.tag_, "Dependency": token.dep_, "Shape": token.shape_, "IsAlpha": token.is_alpha, "Stopword": token.is_stop}) df = pd.DataFrame(results) if self.is_debug: self.logger.debug("\n".join([ "Part-of-Speech Output", tabulate(df, headers='keys', tablefmt='psql')])) return df def _from_str(self, input_text: str) -> DataFrame: if type(input_text) != str: raise DataTypeError("\n".join([ "Invalid DataType"])) return self._tagger(input_text) def _from_list(self, multiple_inputs: list): if type(multiple_inputs) != list: raise DataTypeError("\n".join([ "Invalid DataType"])) results = [] [results.append(self._tagger(x)) for x in multiple_inputs] return results def process(self, some_input: str or list): def inner(): if type(some_input) == str: return self._from_str(some_input) if type(some_input) == list: return self._from_list(some_input) self.logger.error('\n'.join([ "Unrecognized Input", f"\tInput: {some_input}", f"\tType: {type(some_input)}"])) raise DataTypeError results = inner() return results ``` #### File: displacy/dmo/displacy_span_extractor.py ```python import pprint from base import BaseObject from datadict import FindSynonym from nlusvc.core.bp import TextAPI from nlusvc.displacy.dto import DisplacyEntityGenerator class DisplacySpanExtractor(BaseObject): """ """ def __init__(self, d_cluster: dict, input_text: str, ontology_name: str, is_debug: bool = False): """ Created: 11-Oct-2019 <EMAIL> * refactored out of 'generate-displacy-spans' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1093 Updated: 17-Oct-2019 <EMAIL> * replace has-match function with TextAPI version https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1142#issuecomment-15377548 Updated: 13-Dec-2019 <EMAIL> * load dictionaries by ontology name https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582 Updated: 14-Dec-2019 <EMAIL> * adjustment to synonym decomposition strategy https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1613#issuecomment-16624966 Updated: 13-Jan-2020 <EMAIL> * Replace code with Coordinate Extraction service https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1722 :param d_cluster: a dictionary that clusters the tags around the chosen dimensions Sample Input: { 'activity': ['activity'], 'agent': [], 'anatomy': ['natural killer cell'], 'artifact': [], 'biology': [], 'compound': [], 'device': [], 'disease': [], 'organism': [], 'other': ['memory cd8 t cell', 'cytotoxicity'], 'pathology': [], 'situation': [], 'study': [], 'tech': []} :param input_text: :param ontology_name: the ontology name used to process the text e.g., 'biotext', 'base', etc :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._d_cluster = d_cluster self._input_text = input_text self._ontology_name = ontology_name self._text_api = TextAPI(is_debug=is_debug, ontology_name=ontology_name) self._synonym_finder = FindSynonym(is_debug=is_debug, ontology_name=ontology_name) if self._is_debug: self.logger.debug('\n'.join([ "Instantiated DisplacySpanExtractor", f"\tInput Text: {self._input_text}", f"\tOntology Name: {self._ontology_name}"])) def process(self) -> list: """ :return: Sample Output [ { 'end': 26, 'label': 'ACTIVITY', 'start': 18, 'text': 'activity', 'type': 'tag'}, { 'end': 55, 'label': 'NATURAL KILLER CELL', 'start': 30, 'text': 'natural killer (nk) cells', 'type': 'inner-syn'}, { 'end': 17, 'label': 'CYTOTOXICITY', 'start': 8, 'text': 'cytotoxic', 'type': 'syn'}, { 'end': 70, 'label': 'MEMORY CD8 T CELL', 'start': 4, 'text': 'the cytotoxic activity of natural killer (nk) cells and memory cd8', 'type': 'inner-syn'} ] """ entities = [] input_text = self._input_text.lower() for key in self._d_cluster: for tag in self._d_cluster[key]: d_coords = self._text_api.coords(input_text=input_text, entity_text=tag) if not d_coords: continue entities.append(DisplacyEntityGenerator.generate( text=tag, entity_type='tag', label=key, start=d_coords['x'], end=d_coords['y'])) if self._is_debug: self.logger.debug('\n'.join([ "Displacy Span Extraction Complete", f"\tTotal Spans: {len(entities)}", f"\tOntology Name: {self._ontology_name}", f"{pprint.pformat(entities, indent=4)}"])) return entities ``` #### File: displacy/dmo/displacy_tag_generator.py ```python from typing import Optional from typing import Tuple from base import BaseObject from base import DataTypeError from nlutext import MultiTextParser class DisplacyTagGenerator(BaseObject): """ Annotate the Input Text Sample Input: +----+--------------+------------------------+-----------------------+------------+----------------+ | | Confidence | InputText | NormalizedText | Ontology | Tag | |----+--------------+------------------------+-----------------------+------------+----------------| | 0 | 97.3 | exocrine gland red hat | exocrine_gland redhat | base | redhat | | 1 | 98.3 | exocrine gland red hat | exocrine_gland redhat | biotech | exocrine gland | +----+--------------+------------------------+-----------------------+------------+----------------+ Sample Output: [ 'redhat', 'exocrine gland' ] :return: a list of tag tuples [ (redhat, 97.3, base), (exocrine gland, 98.3, biotech) ] """ def __init__(self, input_text: str, ontology_names: list, is_debug: bool = False): """ Created: 14-Dec-2019 <EMAIL> * refactored out of 'generate-display-spans' in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1594 :param input_text: :param is_debug: """ BaseObject.__init__(self, __name__) if type(ontology_names) != list: raise DataTypeError("Ontology Names, list") self._is_debug = is_debug self._input_text = input_text self._ontology_names = ontology_names def process(self) -> Tuple[list, str]: parser = MultiTextParser(ontology_names=self._ontology_names, is_debug=self._is_debug) a_df = parser.process(original_ups=self._input_text, use_profiler=self._is_debug, as_dataframe=True) tags = [] for _, row in a_df.iterrows(): tags.append((row["Tag"], row["Confidence"], row["Ontology"])) def _normalized_text() -> Optional[str]: if not a_df.empty: return str(a_df.iloc[0]['NormalizedText']) return tags, _normalized_text() ``` #### File: nltk/svc/find_edit_distance.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class FindEditDistance(BaseObject): """ Perform Edit Distance Matching across multiple strings """ def __init__(self, is_debug: bool = False): """ Created: 21-Apr-2019 <EMAIL> Updated: 6-Feb-2020 <EMAIL> * minor updates in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1829 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug def multiple(self, input_text: str, candidate_matches: list) -> DataFrame: """ Sample Input: Input Text: cristae Candidate Matches: 'Conosa', 'Corallochytrea', 'Corbihelia', 'Crenarchaeota', 'Crista', 'Cristae', 'Cristidiscoidea', 'Cryptista', 'Cryptophyta', 'Ctenophora', 'Cutaneous amoebiasis', 'Cutosa', 'Cutosea', 'Cyanobacteria' Sample Output: +----+----------------------+------------+---------+ | | Candidate | Distance | Input | |----+----------------------+------------+---------| | 4 | crista | 0 | cristae | | 5 | cristae | 0 | cristae | | 7 | cryptista | 3 | cristae | | 0 | conosa | 4 | cristae | | 11 | cutosa | 4 | cristae | | 12 | cutosea | 4 | cristae | | 2 | corbihelia | 6 | cristae | | 8 | cryptophyta | 7 | cristae | | 9 | ctenophora | 8 | cristae | | 3 | crenarchaeota | 9 | cristae | | 6 | cristidiscoidea | 9 | cristae | | 1 | corallochytrea | 10 | cristae | | 13 | cyanobacteria | 10 | cristae | | 10 | cutaneous amoebiasis | 13 | cristae | +----+----------------------+------------+---------+ :param input_text: an input string :param candidate_matches: a list of one-or-more matches to compare against :return: a measure of the distance between the two terms """ results = [] input_text = input_text.lower().strip() candidate_matches = [x.lower().strip() for x in candidate_matches] for candidate_match in candidate_matches: result = self.single(input_text=input_text, candidate_match=candidate_match) results.append({ "Input": input_text, "Candidate": candidate_match, "Distance": result}) df = pd.DataFrame(results) return df.sort_values(by=['Distance'], ascending=True) def single(self, input_text: str, candidate_match: str) -> int: """ :param input_text: an input string :param candidate_match: a single match to compare against :return: a measure of the distance between the two terms """ from nlusvc.nltk.dmo import NltkEditDistance dmo = NltkEditDistance(is_debug=self._is_debug) return dmo.process(s1=input_text, s2=candidate_match) ``` #### File: spacy/svc/perform_pos_parse.py ```python import pandas as pd from pandas import DataFrame from spacy.lang.en import English from tabulate import tabulate from base import BaseObject class PerformPosParse(BaseObject): """ Perform POS (Part-of-Speech) Parse with spaCy Sample Input: Amoebozoa is a major taxonomic group containing about 2,400 described species of amoeboid protists, often possessing blunt, fingerlike, lobose pseudopods and tubular mitochondrial cristae. Sample Output: +----+----------+-----------+----------+---------------+-------+---------+-------+---------------+ | | Dep | IsAlpha | IsStop | Lemma | POS | Shape | Tag | Text | |----+----------+-----------+----------+---------------+-------+---------+-------+---------------| | 0 | nsubj | True | False | amoebozoa | PROPN | Xxxxx | NNP | Amoebozoa | | 1 | ROOT | True | True | be | VERB | xx | VBZ | is | | 2 | det | True | True | a | DET | x | DT | a | | 3 | amod | True | False | major | ADJ | xxxx | JJ | major | | 4 | amod | True | False | taxonomic | ADJ | xxxx | JJ | taxonomic | | 5 | attr | True | False | group | NOUN | xxxx | NN | group | | 6 | acl | True | False | contain | VERB | xxxx | VBG | containing | | 7 | quantmod | True | True | about | ADV | xxxx | RB | about | | 8 | nummod | False | False | 2,400 | NUM | d,ddd | CD | 2,400 | | 9 | amod | True | False | describe | VERB | xxxx | VBN | described | | 10 | dobj | True | False | specie | NOUN | xxxx | NNS | species | | 11 | prep | True | True | of | ADP | xx | IN | of | | 12 | compound | True | False | amoeboid | NOUN | xxxx | NN | amoeboid | | 13 | pobj | True | False | protist | NOUN | xxxx | NNS | protists | | 14 | punct | False | False | , | PUNCT | , | , | , | | 15 | advmod | True | True | often | ADV | xxxx | RB | often | | 16 | acl | True | False | possess | VERB | xxxx | VBG | possessing | | 17 | dobj | True | False | blunt | ADJ | xxxx | JJ | blunt | | 18 | punct | False | False | , | PUNCT | , | , | , | | 19 | conj | True | False | fingerlike | NOUN | xxxx | NN | fingerlike | | 20 | punct | False | False | , | PUNCT | , | , | , | | 21 | amod | True | False | lobose | VERB | xxxx | VB | lobose | | 22 | conj | True | False | pseudopod | NOUN | xxxx | NNS | pseudopods | | 23 | cc | True | True | and | CCONJ | xxx | CC | and | | 24 | amod | True | False | tubular | ADJ | xxxx | JJ | tubular | | 25 | amod | True | False | mitochondrial | NOUN | xxxx | NN | mitochondrial | | 26 | conj | True | False | cristae | VERB | xxxx | VBN | cristae | | 27 | punct | False | False | . | PUNCT | . | . | . | +----+----------+-----------+----------+---------------+-------+---------+-------+---------------+ Reference: https://spacy.io/usage/linguistic-features """ def __init__(self, nlp: English, input_text: str, is_debug: bool = False): """ Created: 6-Feb-2020 <EMAIL> * in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1829 """ BaseObject.__init__(self, __name__) self._nlp = nlp self._is_debug = is_debug self._input_text = input_text def process(self, log_sample_size: int = 500) -> DataFrame: """ Purpose: Perform spaCY pos-tagging on input text :param log_sample_size: :return: a dataframe with the following columns: Text: The original word text. Lemma: The base form of the word. POS: The simple part-of-speech tag. Tag: The detailed part-of-speech tag. Dep: Syntactic dependency, i.e. the relation between tokens. Shape: The word shape – capitalization, punctuation, digits. IsAlpha: Is the token an alpha character? IsStop: Is the token part of a stop list, i.e. the most common words of the language? """ doc = self._nlp(self._input_text) results = [] for token in doc: results.append({ "Text": token.text, "Lemma": token.lemma_, "POS": token.pos_, "Tag": token.tag_, "Dep": token.dep_, "Shape": token.shape_, "IsAlpha": token.is_alpha, "IsStop": token.is_stop}) df = pd.DataFrame(results) if self._is_debug: self.logger.debug('\n'.join([ "Part-of-Speech DataFrame Generated", f"\tSize: {len(df)}", tabulate(df.head(log_sample_size), tablefmt='psql', headers='keys')])) return df ``` #### File: nlusvc/tests/test_displacy_tag_clusterer.py ```python import unittest from typing import Optional from datamongo import BaseMongoClient IS_DEBUG = True class TestDisplacyTagClusterer(unittest.TestCase): __mongo_client = BaseMongoClient() @staticmethod def _get_label(tag_name: str, d_result: dict) -> Optional[str]: for k in d_result: for tag in d_result[k]: if tag == tag_name: return k def _execute_by_name(self, a_tag_tuple: tuple, expected_label: str, xdm_schema: str, ontology_name: str) -> None: from nlusvc.displacy.dmo import DisplacyTagClusterer d_result = DisplacyTagClusterer(tags=[a_tag_tuple], xdm_schema=xdm_schema, ontology_name=ontology_name, mongo_client=self.__mongo_client, is_debug=IS_DEBUG).process() self.assertIsNotNone(d_result) self.assertEquals(type(d_result), dict) self.assertTrue(len(d_result)) actual_label = self._get_label(d_result=d_result, tag_name=a_tag_tuple[0]) self.assertEquals(actual_label, expected_label) def _execute_base(self, a_tag_tuple: tuple, expected_label: str) -> None: self._execute_by_name(xdm_schema='supply', ontology_name='base', a_tag_tuple=a_tag_tuple, expected_label=expected_label) def _execute_biotech(self, a_tag_tuple: tuple, expected_label: str) -> None: self._execute_by_name(xdm_schema='biotech', ontology_name='biotech', a_tag_tuple=a_tag_tuple, expected_label=expected_label) def test_biotech_01(self): self._execute_biotech(('cytotoxic activity', 100), 'activity') self._execute_biotech(('cell', 100), 'anatomy') self._execute_biotech(('blood cell', 100), 'anatomy') self._execute_biotech(('white blood cell', 100), 'anatomy') self._execute_biotech(('lymphocyte', 100), 'anatomy') self._execute_biotech(('t cell', 100), 'anatomy') self._execute_biotech(('memory t cell', 100), 'anatomy') def test_process(self): self.test_biotech_01() if __name__ == '__main__': unittest.main() ``` #### File: nlusvc/tests/test_remove_stop_words.py ```python import unittest from nlusvc import RemoveStopWords IS_DEBUG = True class TestRemoveStopWords(unittest.TestCase): def execute(self, some_input: str or list, expected_result: str or list) -> None: rsw = RemoveStopWords(is_debug=True) actual_result = rsw.process(input_text=some_input, aggressive=False) self.assertEqual(actual_result, expected_result) def test_process(self): self.execute(["and plan to learn"], ["plan learn"]) self.execute("and plan to learn", "plan learn") self.execute("and and plan to to learn", "plan learn") self.execute("to and and plan to to learn and to and to plan to and", "plan learn plan") self.execute("plan andlearn toplan", "plan andlearn toplan") self.execute( "apply learn orient business_analyst which include analytics a client have plan train and no_skills_growth human_performance and delivery requirement which is follow by create plan strategy for a comprehensive approach to human_performance increase", "learn orient business_analyst analytics client plan train no_skills_growth human_performance delivery requirement create plan strategy comprehensive approach human_performance increase") if __name__ == '__main__': unittest.main() ``` #### File: nlusvc/tests/test_text_string_matcher.py ```python import unittest class TestTextStringMatcher(unittest.TestCase): @staticmethod def _execute(match_token: str, input_text: str) -> bool: from nlusvc.core.svc import TextStringMatcher return TextStringMatcher(is_debug=True, a_token=match_token, some_text=input_text).process() def test_process(self): match_token = "bright <PASSWORD>" input_text = """Abstract: The current study detects different morphologies related to prostate pathology using deep learning models; these models were evaluated on 2,121 hematoxylin and eosin (H&E) stain histology images captured using bright field microscopy,,,,which spanned a variety of image qualities, origins (whole slide, tissue micro array, whole mount, Internet), scanning machines, timestamps, H&E staining protocols, and institutions.""".strip() self.assertTrue(self._execute(match_token, input_text)) if __name__ == '__main__': unittest.main() ``` #### File: textacy/dmo/textacy_topic_model.py ```python import pprint import time import spacy from scipy.sparse.csr import csr_matrix from textacy import Corpus from textacy.tm import TopicModel from textacy.vsm import Vectorizer from base import BaseObject from base import MandatoryParamError class TextacyTopicModeler(BaseObject): """ https://chartbeat-labs.github.io/textacy/getting_started/quickstart.html#analyze-a-corpus """ _nlp = spacy.load("en_core_web_sm", disable=('parser', 'tagger')) _topic_model_types = ['nmf', 'lda', 'lsa'] def __init__(self, some_values: list, number_of_topics=10, terms_per_topic=10, is_debug=True): """ Created: 3-Apr-2019 <EMAIL> """ BaseObject.__init__(self, __name__) if not some_values: raise MandatoryParamError("Input Values") self.is_debug = is_debug self.values = some_values self.terms_per_topic = terms_per_topic self.number_of_topics = number_of_topics @staticmethod def _vectorizer() -> Vectorizer: return Vectorizer(tf_type='linear', apply_idf=True, idf_type='smooth', norm='l2', min_df=2, max_df=0.95) def _doc_term_matrix(self, vectorizer: Vectorizer, corpus: Corpus) -> csr_matrix: start = time.time() doc_term_matrix = vectorizer.fit_transform((doc.to_terms_list(ngrams=1, named_entities=True, as_strings=True) for doc in corpus)) if self.is_debug: self.logger.debug("\n".join([ "Generated Document/Term Matrix", "\trepr: {}".format(repr(doc_term_matrix)), "\tTotal Time: {}".format(time.time() - start) ])) return doc_term_matrix def _topic_model(self, doc_term_matrix: csr_matrix, topic_model_type='nmf') -> TopicModel: start = time.time() if topic_model_type not in self._topic_model_types: raise NotImplementedError("\n".join([ "Topic Model Type Not Recognized", "\tname: {}".format(topic_model_type) ])) model = TopicModel(topic_model_type, n_topics=self.number_of_topics) try: model.fit(doc_term_matrix) except IndexError as e: raise ValueError("\n".join([ "Model Fit Error", "\t{}".format(str(e)), "\tTry decreasing topic-size and/or terms-per-topic" ])) doc_topic_matrix = model.transform(doc_term_matrix) if self.is_debug: self.logger.debug("\n".join([ "Generated Topic Model", "\tShape: {}".format(doc_topic_matrix.shape), "\tTotal Time: {}".format(time.time() - start) ])) return model def _result_set(self, vectorizer: Vectorizer, model: TopicModel) -> list: l_results = [] for topic_idx, top_terms in model.top_topic_terms(vectorizer.id_to_term, top_n=self.terms_per_topic): l_results.append({ "topic_idx": topic_idx, "top_terms": top_terms }) return l_results def process(self) -> list: from nlusvc.textacy.dmo import TextactyUtils start = time.time() corpus = TextactyUtils.corpus(spacy_model=self._nlp, some_values=self.values, is_debug=self.is_debug) vectorizer = self._vectorizer() doc_term_matrix = self._doc_term_matrix(vectorizer, corpus) model = self._topic_model(doc_term_matrix) results = self._result_set(vectorizer, model) if self.is_debug: self.logger.debug("\n".join([ "Topic Modeling Complete", "\tTotal Time: {}".format(time.time() - start), pprint.pformat(results) ])) return results ``` #### File: textacy/dmo/textacy_util.py ```python import logging import time import spacy import textacy import textacy.extract import textacy.keyterms from textacy import Corpus from datadict import LoadStopWords class TextactyUtils: """ """ logger = logging.getLogger(__name__) stopwords = LoadStopWords().load() @classmethod def spacy_model(cls): return spacy.load("en_core_web_sm") @classmethod def lines_to_doc(cls, some_lines: list, remove_stopwords=True) -> textacy.doc: """ :param some_lines: :param remove_stopwords: :return: lines """ _lines = [] some_lines = [x.lower().strip() for x in some_lines] for line in some_lines: _line = [] for token in line.split(" "): if remove_stopwords: if token not in cls.stopwords: _line.append(token) else: _line.append(token) _lines.append(" ".join(_line)) svcresult = " ".join(_lines) return textacy.make_spacy_doc(svcresult) @classmethod def doc(cls, spacy_model, some_text: str, no_numbers=True, is_debug=False) -> textacy.doc: """ use textacy to preprocess the text prior to creating a doc :return: a textacy doc """ original_text = some_text some_text = textacy.preprocess_text(some_text, # fix_unicode=True, lowercase=True, no_urls=True, no_emails=True, no_phone_numbers=True, no_numbers=no_numbers, no_currency_symbols=True, no_punct=True, no_contractions=True, no_accents=True) if no_numbers: # textact replaces numbers and years with 'numb' and 'year' respectively # for topic modeling these are best removed some_text = some_text.replace("number", " ") some_text = some_text.replace("numb", " ") some_text = some_text.replace("years", " ") some_text = some_text.replace("year", " ") if is_debug: cls.logger.debug("\n".join([ "Textacy Preprocessed Text", "\toriginal: {}".format(original_text), "\tpreprocessed: {}".format(some_text) ])) return textacy.make_spacy_doc(spacy_model(some_text)) @classmethod def corpus(cls, spacy_model, some_values: list, is_debug=True) -> Corpus: """ A textacy.Corpus is an ordered collection of textacy.Docs, all processed by the same spacy language pipeline. :return: a textacy corpus of docs """ start = time.time() docs = [] [docs.append(cls.doc(spacy_model, x)) for x in some_values] corpus = textacy.Corpus(spacy_model) corpus.docs = docs if is_debug: cls.logger.debug("\n".join([ "Generated Corpus", "\tTotal Documents: {}".format(corpus.n_docs), "\tTotal Sentences: {}".format(corpus.n_sents), "\tTotal Tokens: {}".format(corpus.n_tokens), "\tTotal Time: {}".format(time.time() - start) ])) return corpus ``` #### File: core/bp/perform_deep_nlu.py ```python from spacy.tokens import Doc from base import BaseObject from nlutag.core.dmo import EntityToTagGenerator class PerformDeepNLU(BaseObject): """ Purpose: Given the preprocessed UPS structure, perform 1. tagging (aka annotation) via CitiProductAnnotator 2. inference via CitiInference """ def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 13-Feb-2017 <EMAIL> * extrapolated out of an increasingly complex function within pipeline_orchestrator.py Updated: 28-Feb-2017 <EMAIL> * replaced single dict param with individual parameters this makes service design more consistent Updated: 24-Mar-2017 <EMAIL> - sending 'normalized' instead of 'original' now - supporting <928#issuecomment-1947787> and potentially other defects Updated: 12-Mar-2019 <EMAIL> * migrate to text and remove dead code Updated: 25-Apr-2019 <EMAIL> * add strict typing and more logging statements with is-debug flag * change instantiation strategy """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_name = ontology_name if self._is_debug: self.logger.debug('\n'.join([ "Instantiate PerformDeepNLU", f"\tOntology Name: {self._ontology_name}"])) @staticmethod def _to_structure(some_original_ups: str, some_normalized_ups: str, some_tokenation_result: dict) -> dict: """ Purpose: combine normalization+tokenization into a single data structure Notes: there's no real reason for this except that this service was re-factored out of a messy business process and the domain components below require this structure as input :param some_original_ups: the original UPS :param some_normalized_ups: the normalized UPS :param some_tokenation_result: the tokens to perform inference on :return: """ return { "original": some_original_ups, "normalized": some_normalized_ups, "tokens": some_tokenation_result} def process(self, doc: Doc, some_original_ups: str, some_normalized_ups: str, some_tokenation_result: dict): """ :return: normalized matches (aka entities, tags) """ from nlutag.core.svc import AbacusAnnotator preprocessed = self._to_structure(some_original_ups, some_normalized_ups, some_tokenation_result) # Step: Execute the annotation pipeline annotator = AbacusAnnotator(doc=doc, d_input=preprocessed, is_debug=self._is_debug, ontology_name=self._ontology_name) the_matches = annotator.process() the_tags = EntityToTagGenerator(self._is_debug).process(the_matches) return None, the_tags ``` #### File: core/dmo/entity_to_tag_generator.py ```python import os import pprint from base import BaseObject from nlutag.core.dto.token_match import TokenMatches class EntityToTagGenerator(BaseObject): def __init__(self, is_debug: bool = False): """ Created: 9-Feb-2017 <EMAIL> * generate simple string-based tags from more complex entity matches Updated: 21-Feb-2019 <EMAIL> * migrated from -text * rewritten from the ground up (simplified) Updated: 25-Apr-2019 <EMAIL> * changed instantiation strategy Updated: 21-Aug-2019 <EMAIL> * put tag-confidence-threshold into environment https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/796 """ BaseObject.__init__(self, __name__) self.is_debug = is_debug self._threshold = float(os.environ['TAG_CONFIDENCE_THRESHOLD']) if self.is_debug: self.logger.debug("Instantiate EntityToTagGenerator¬") @staticmethod def _list_by_confidence(token_matches: TokenMatches) -> list: """ Purpose: filter out entities with low confidence Sample Input: 'steady state support' may have been located via two match patterns 'steadi+state+supporting', confidence=20% 'steady state support', confidence=90% Implementation: - the first match pattern is a long-distance formation with low confidence the low match will be discarded - the second match pattern is an exact match with high confidence the high match will be kept Sample Output: 'steady state support' will be considered a valid entity :return: a list of tuple values (tag, confidence) [ ('pmi', 100), ('plan', 100), ('rational test', 94), ... ('rational tester', 94), ('test plan', 7) ] """ valid_labels = [] for label in token_matches.get_keys(): entity_structure = token_matches.get_by_key(label) max_confidence = max([x["confidence"] for x in entity_structure["matches"]]) valid_labels.append((label, max_confidence)) return valid_labels def process(self, entities: TokenMatches) -> list: result = self._list_by_confidence(entities) if self.is_debug: self.logger.debug("\n".join([ "Entity to Tag Generation Results", "\t{}".format(pprint.pformat(result, indent=4))])) return result ``` #### File: core/bp/multi_text_parser.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class MultiTextParser(BaseObject): """ Parse Incoming Text using 1..* Ontologies """ def __init__(self, ontology_names: list, is_debug: bool = False): """ Created: 13-Dec-2019 <EMAIL> * https://github.ibm.com/-cdo/unstructured-analytics/issues/1590#issuecomment-16614898 :param ontology_names: an ordered list of Ontology Names """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_names = ontology_names if self._is_debug: self.logger.debug('\n'.join([ "Instantiate MultiTextParser", f"\tOntology Names: {ontology_names}"])) @staticmethod def _to_dict(input_text: str, normalized_text: str, d_supervised_tags: dict) -> dict: """ Sample Output: { 'tags': { 'supervised': [ ('redhat', {'confidence': 97.3, 'ontology': 'base'}), ('exocrine gland', {'confidence': 98.3, 'ontology': 'biotech'})]}, 'total_tags': 2, 'ups': { 'normalized': 'exocrine_gland redhat', 'original': 'exocrine gland red hat'}} :param input_text: :param normalized_text: :param d_supervised_tags: """ def to_tuples() -> list: results = [] for k in d_supervised_tags: results.append((k, d_supervised_tags[k])) return results return { 'tags': { 'supervised': to_tuples(), 'unsupervised': {}}, 'total_tags': len(d_supervised_tags), 'ups': { 'normalized': normalized_text, 'original': input_text}} @staticmethod def _to_dataframe(input_text: str, normalized_text: str, d_supervised_tags: dict) -> DataFrame: """ Sample Output: +----+--------------+------------------------+-----------------------+------------+----------------+ | | Confidence | InputText | NormalizedText | Ontology | Tag | |----+--------------+------------------------+-----------------------+------------+----------------| | 0 | 97.3 | exocrine gland red hat | exocrine_gland redhat | base | redhat | | 1 | 98.3 | exocrine gland red hat | exocrine_gland redhat | biotech | exocrine gland | +----+--------------+------------------------+-----------------------+------------+----------------+ :param input_text: :param normalized_text: :param d_supervised_tags: """ results = [] for key in d_supervised_tags: results.append({ "Tag": key, "InputText": input_text, "NormalizedText": normalized_text, "Ontology": d_supervised_tags[key]["ontology"], "Confidence": d_supervised_tags[key]["confidence"]}) return pd.DataFrame(results) def process(self, original_ups: str, use_profiler: bool = False, as_dataframe: bool = False) -> dict or DataFrame: from nlutext.core.bp import TextParser d_supervised_tags = {} normalized_text = original_ups for ontology_name in self._ontology_names: text_parser = TextParser(is_debug=self._is_debug, ontology_name=ontology_name) svcresult = text_parser.process(as_dataframe=False, use_profiler=use_profiler, original_ups=normalized_text) # Step: Update Normalized Text normalized_text = svcresult["ups"]["normalized"] # Step: Update Tag Dictionary for tag in svcresult["tags"]["supervised"]: if tag[0] in d_supervised_tags: # tag exists ... if d_supervised_tags[tag[0]]["confidence"] < tag[1]: # ... and has lower confidence d_supervised_tags[tag[0]]["confidence"] = tag[1] # update confidence else: # tag does not exist d_supervised_tags[tag[0]] = {"confidence": tag[1], "ontology": ontology_name} if not as_dataframe: return self._to_dict(input_text=original_ups, normalized_text=normalized_text, d_supervised_tags=d_supervised_tags) return self._to_dataframe(input_text=original_ups, normalized_text=normalized_text, d_supervised_tags=d_supervised_tags) ``` #### File: core/dmo/apostrophe_expansion.py ```python from base import BaseObject from base import MandatoryParamError class ApostropheExpansion(BaseObject): """ """ def __init__(self, the_input_text: str, is_debug: bool = False): """ Created: 14-Mar-2017 <EMAIL> * used 'expand_enclictics' as a template Updated: 19-Apr-2017 <EMAIL> * renamed from "ExpandApostrophes" Updated: 26-Feb-2019 <EMAIL> * migrated to -text Updated: 13-Dec-2019 <EMAIL> * cleanup params in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1582#issuecomment-16611092 :param the_input_text: """ BaseObject.__init__(self, __name__) if not the_input_text: raise MandatoryParamError("Input Text") self._is_debug = is_debug self._input_text = the_input_text self._apostrophes = self.get_apostrophes_dict() @staticmethod def get_apostrophes_dict() -> list: from datadict import the_apostrophes_dict return the_apostrophes_dict def process(self) -> str: normalized = self._input_text.lower() for apostrophe in self._apostrophes: the_genitive_pattern = u"{0}s".format(apostrophe) while the_genitive_pattern in normalized: normalized = normalized.replace(the_genitive_pattern, " has") if self._is_debug and self._input_text != normalized: self.logger.debug("\n".join([ "Processing Complete", f"\tInput: {self._input_text}", f"\tOutput: {normalized}"])) return normalized ``` #### File: core/dmo/compute_skipgrams.py ```python import logging from base import BaseObject def to_list(results): """ Purpose: Simplify the ComputeSkipGrams result set :param results: a ComputeSkipsGrams result set looks like this [(u'Problems', u'installing'), (u'Problems', u'adobe'), (u'Problems', u'acrobat'), ... ,] :return: a list of results looks like this ["Problems installing", "Problems adobe", "Problems acrobat", ... ,] """ the_list = [] for result in list(results): the_list.append(" ".join(list(result))) return the_list class ComputeSkipGrams(BaseObject): def __init__(self): """ Reference: <http://stackoverflow.com/questions/31847682/how-to-compute-skipgrams-in-python> """ BaseObject.__init__(self, __name__) @staticmethod def pad_sequence(sequence, n, pad_left=False, pad_right=False, pad_symbol=None): from itertools import chain if pad_left: sequence = chain((pad_symbol,) * (n - 1), sequence) if pad_right: sequence = chain(sequence, (pad_symbol,) * (n - 1)) return sequence def process(self, sequence, n, k, pad_left=False, pad_right=False, pad_symbol=None): from itertools import combinations sequence_length = len(sequence) sequence = iter(sequence) sequence = self.pad_sequence(sequence, n, pad_left, pad_right, pad_symbol) if sequence_length + pad_left + pad_right < k: raise Exception("The length of sentence + padding(s) < skip") if n < k: raise Exception("Degree of Ngrams (n) needs to be bigger than skip (k)") history = [] nk = n + k # Return point for recursion. if nk < 1: return # If n+k longer than sequence, reduce k by 1 and recur elif nk > sequence_length: for ng in self.process(list(sequence), n, k - 1): yield ng while nk > 1: # Collects the first instance of n+k length history history.append(next(sequence)) nk -= 1 # Iterative drop first item in history and picks up the next # while yielding skipgrams for each iteration. for item in sequence: history.append(item) current_token = history.pop(0) # Iterates through the rest of the history and # pick out all combinations the n-1grams for idx in list(combinations(range(len(history)), n - 1)): ng = [current_token] for _id in idx: ng.append(history[_id]) yield tuple(ng) # Recursively yield the skigrams for the rest of seqeunce where # len(sequence) < n+k for ng in list(self.process(history, n, k - 1)): yield ng ``` #### File: core/dmo/skipgram_generator.py ```python from base import BaseObject class SkipgramGenerator(BaseObject): def __init__(self, some_tokens): """ Created: 12-Feb-2017 <EMAIL> * refactored out of TokenizeText.py Updated: 21-Feb-2017 <EMAIL> * is this module still necessary? - does long-distance tag matching evolve away from skip-gram usage? - where are skip-grams actually used? Updated: 3-Apr-2017 <EMAIL> * don't log full results (they are VERY large) :param some_tokens: """ BaseObject.__init__(self, __name__) self.tokens = some_tokens @staticmethod def perform_semantic_tokenization(tokens): from nlutext import PerformSemanticSegmentation the_sem_tokens = set() for a_token in tokens: the_sem_tokens.add(PerformSemanticSegmentation(a_token).process()) return list(the_sem_tokens) def compute_skipgrams(self, tokens, n, k): from nlutext import ComputeSkipGrams try: return self.perform_semantic_tokenization( ComputeSkipGrams().process( tokens, n, k)) except: return [] def process(self): result = { "n2k2": self.compute_skipgrams(self.tokens, 2, 2), "n3k2": self.compute_skipgrams(self.tokens, 3, 2), "n3k3": self.compute_skipgrams(self.tokens, 3, 3), "n4k3": self.compute_skipgrams(self.tokens, 4, 3)} return result ``` #### File: core/dmo/trigram_generator.py ```python import string from base import BaseObject from base import MandatoryParamError from datadict import the_stopwords_dict class TrigramGenerator(BaseObject): """ perform trigram generation on unstructured text """ def __init__(self, some_injected_stopwords: list, some_gram_length: int = 3, is_debug: bool = False): """ Created: 7-Mar-2019 <EMAIL> * refactored out of unstructured-data-parser :param some_injected_stopwords: stopwords that are customized to this particular parsing instance :param some_gram_length: gram length e.g. 3 = Trigrams 2 = Bigrams 1 = Unigrams """ BaseObject.__init__(self, __name__) if not some_gram_length: raise MandatoryParamError("Gram Length") if some_gram_length < 1 or some_gram_length > 4: raise MandatoryParamError("Mandatory Gram Length is 1-4") self.is_debug = is_debug self.gram_length = some_gram_length self.stop_words = the_stopwords_dict self.injected_stop_words = some_injected_stopwords @staticmethod def _is_valid(values: list) -> bool: """ determine if a candidate trigram is valid :param values: three string values to form a candidate trigram :return: True candidate trigram is valid False candidate trigram is not valid """ def _has_num() -> bool: for v in values: if v.startswith("no_"): return True return False def _has_digit() -> bool: for v in values: if v.isdigit(): return True return False if _has_digit() or _has_num(): return False return True def _tokenize(self, input_text: str) -> list: """ :param input_text: an input string of any length :return: a list of tokens (with invalid tokens redacted) """ def _is_valid(token: str): if not token: return False if len(token) < 3: return False if len(token) > 25: return False if token in self.stop_words: return False if token in self.injected_stop_words: return False return True input_text = input_text.translate((None, string.punctuation)) return [x.strip().lower() for x in input_text.split(" ") if _is_valid(x)] def _quadgrams(self, tokens: list, total_tokens: int) -> list: grams = [] for i in range(0, total_tokens): if i + 3 < total_tokens + 1: t0 = tokens[i] t1 = tokens[i + 1] t2 = tokens[i + 2] t3 = tokens[i + 3] if self._is_valid([t0, t1, t2, t3]): grams.append("{} {} {} {}".format(t0, t1, t2, t3)) return grams def _trigrams(self, tokens: list, total_tokens: int) -> list: grams = [] for i in range(0, total_tokens): if i + 2 < total_tokens + 1: t0 = tokens[i] t1 = tokens[i + 1] t2 = tokens[i + 2] if self._is_valid([t0, t1, t2]): grams.append("{} {} {}".format(t0, t1, t2)) return grams def _bigrams(self, tokens: list, total_tokens: int) -> list: grams = [] for i in range(0, total_tokens): if i + 1 < total_tokens + 1: t0 = tokens[i] t1 = tokens[i + 1] if self._is_valid([t0, t1]): grams.append("{} {}".format(t0, t1)) return grams def _unigrams(self, tokens: list, total_tokens: int) -> list: grams = [] for i in range(0, total_tokens): if i < total_tokens + 1: t0 = tokens[i] if self._is_valid([t0]): grams.append(t0) return grams def process(self, input_text: str) -> list: """ :return: a list of trigrams created from the input text """ tokens = self._tokenize(input_text) total_tokens = len(tokens) - 1 def _grams(): if self.gram_length == 4: return self._quadgrams(tokens, total_tokens) if self.gram_length == 3: return self._trigrams(tokens, total_tokens) if self.gram_length == 2: return self._bigrams(tokens, total_tokens) if self.gram_length == 1: return self._unigrams(tokens, total_tokens) raise NotImplementedError("\n".join([ "Gram Length Not Implemented", f"\tlength: {self.gram_length}"])) grams = _grams() if self.is_debug: self.logger.debug("\n".join([ "Created Input Grams: ", f"\tinput-text: {input_text}", f"\tlength: {self.gram_length}", f"\tInput Trigrams: {grams}"])) return grams ``` #### File: core/svc/perform_supervised_parsing.py ```python from spacy.lang.en import English from base import BaseObject from nlutag import PerformDeepNLU class PerformSupervisedParsing(BaseObject): """ parse manifest data using supervised techniques supervised parsing takes a known entity for example Aix 5.3 Workload: type: Software scoped: TRUE provenance: - GTS patterns: - 'aix_5.3_workload' - '5.3+aix+workload' and finds these patterns in the unstructured text and if a match is found correlates to the known entity tag 'AIX 5.3 Workload' """ __nlp = English() def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 12-Mar-2019 <EMAIL> the name of the activity within the manifest Updated: 14-Mar-2019 <EMAIL> * renamed from 'svc:perform-supervised-parsing' Updated: 16-May-2019 <EMAIL> * add 'is_debug' param Updated: 21-Aug-2019 <EMAIL> * eschew the use of tokenizers for spaCy doc instead https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/796 Updated: 13-Dec-2019 <EMAIL> * pass in ontology name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/pull/1587 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_name = ontology_name if self._is_debug: self.logger.debug("Instantiate PerformSupervisedParsing") def process(self, original_ups: str, normalized_ups: str) -> list: from nlutext.core.svc import PerformDeepTokenization # tokenize the UPS doc = self.__nlp(normalized_ups) # perform deeper tokenization (includes spell correction) deep_tok = PerformDeepTokenization(doc=doc, is_debug=self._is_debug, ontology_name=self._ontology_name) tokenization_result = deep_tok.process() deep_nlu = PerformDeepNLU(is_debug=self._is_debug, ontology_name=self._ontology_name) _, tags = deep_nlu.process(doc=doc, some_original_ups=original_ups, some_normalized_ups=normalized_ups, some_tokenation_result=tokenization_result) return [x for x in tags if x] ``` #### File: core/svc/remove_overlapping_tags.py ```python from base import BaseObject class RemoveOverlappingTags(BaseObject): """ Purpose: Some Annotations (tags) overlap with other Annotations (tags) Example 1: The tag "Windows Server 2003" overlaps with: "Windows" "Windows Server" "Server 2003" Assuming the annotation model produces all four tags: [ "Windows", "Windows Server", "Server 2003", "Windows Server 2003"] This function will remove all the overlapped tags, to leave only: [ "Windows Server 2003"] Example 2: The reality is slightly more complicated because each tag has an associated confidence level generated by the annotation model The actual input to this function is a list of tag tuples: [ ('windows', 100), ('windows server', 90), ('server 2003', 85), ('windows server 2003', 70) ] The tuple is composed of 1. the tag tuple[0] 2. the confidence level tuple[1] The function will find overlapping tags, but only remove the smaller tags if the confidence level of the larger tags is sufficiently high To take an extreme example, the tag ("AWS Certification for Cloud Computing", 45) certainly overlaps with ("Cloud Computing", 95) but the longer tag only has 45% chance of being accurate and the shorter tag has a 95% chance of being accurate. because the delta between these two tags is sufficiently high, they are not considered to be overlapping """ __results = [] def __init__(self, tag_tuples: list, score_interval: int = 10, is_debug: bool = False): """ Created: 21-Aug-2019 <EMAIL> * refactored out of text-parser https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/796 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._score_interval = score_interval self._process(tag_tuples) def results(self) -> list: return self.__results def _compare_scores(self, tuple_1: tuple, tuple_2: tuple) -> bool: """ Purpose: Compare the confidence scores of two tags :param tuple_1: the first tuple (tag, score) :param tuple_2: the second tuple (tag, score) :return: True if the interval is within the defined tag-delta False if the interval is outside the defined tag-delta """ score_1 = tuple_1[1] # (tag, score) score_2 = tuple_2[1] # (tag, score) return abs(score_1 - score_2) < self._score_interval def _process(self, tag_tuples: list) -> None: """ :param tag_tuples: a list of tag tuples Sample Input: [ ('aws', 100), ('aws certification', 73), ('plan', 73), ('financial plan', 73) ] Sample Results: [ ('aws certification', 73), ('financial plan', 73) ] """ subsumed = set() for tt1 in tag_tuples: for tt2 in tag_tuples: if tt1[0] == tt2[0]: continue if tt1[0] in tt2[0] and self._compare_scores(tt1, tt2): subsumed.add(tt1) subsumed_tags = [x[0] for x in subsumed] tag_tuples = [x for x in tag_tuples if x[0] not in subsumed_tags] self.__results = tag_tuples ``` #### File: core/svc/batch_task_factories.py ```python import abc import os # ASSEMBLE_CHUNK_SIZE = int(os.environ['RQ_CHUNK_SIZE_ASSEMBLE']) # BADGE_CHUNK_SIZE = int(os.environ['RQ_CHUNK_SIZE_BADGE']) # PARSE_CHUNK_SIZE = int(os.environ['RQ_CHUNK_SIZE_PARSE']) # XDM_CHUNK_SIZE = int(os.environ['RQ_CHUNK_SIZE_XDM']) class StageTasks(abc.ABC): @abc.abstractmethod def create_tasks(self, manifest_name, manifest_activity): def a_func(a, b): return a+b return [('string_for_the task_id', a_func, (1, 2))] def opening_message(self): return '' def closing_message(self): return '' @staticmethod def chunks(total, chunk_size): chunks = [] first = 0 while first < total: last = first + chunk_size - 1 if (first + chunk_size) < total else total - 1 chunks.append((str(first), str(last))) first += chunk_size return chunks @staticmethod def is_activity_under_focus(manifest_activity): if 'RQ_FOCUS_ONLY_ON' in os.environ and \ manifest_activity.lower() not in os.environ['RQ_FOCUS_ONLY_ON'].lower(): focus_on = os.environ['RQ_FOCUS_ONLY_ON'] print(f'Skipping "{manifest_activity}" because we are focusing on "{focus_on}"') return False else: return True class IngestsTasks(StageTasks): def __init__(self): from dataingest import call_ingest_api self.function = call_ingest_api self.count = 0 def create_tasks(self, manifest_name, manifest_activity): delay_range = 0 self.count += 1 return [ ('', self.function, (manifest_name, manifest_activity, 'true', str(delay_range))) ] def opening_message(self): return 'Starting ingestion...' def closing_message(self): return 'Done with ingestion.' class AssembleApiTasks(StageTasks): def __init__(self): from dataingest import call_assemble_api self.function = call_assemble_api self.activity_names = set() class PreAssembleTasks(AssembleApiTasks): def create_tasks(self, manifest_name, manifest_activity): return [ ('flush_target', self.function, (manifest_name, manifest_activity, 'flush_target', '', '', '')) ] class AssembleTasks(AssembleApiTasks): def create_tasks(self, manifest_name, manifest_activity): tasks = [] task_specs = self.function(manifest_name, manifest_activity, 'get_sources', '', '', '') for collection, count in task_specs: if not count: print(f'Skipping empty collection {collection}') continue for first, last in self.chunks(count, int(os.environ['RQ_CHUNK_SIZE_ASSEMBLE'])): tasks.append( (f'assemble_{collection}_{first}-{last}', self.function, (manifest_name, manifest_activity, 'assemble', collection, first, last)) ) return tasks class PostAssembleTasks(AssembleApiTasks): def create_tasks(self, manifest_name, manifest_activity): self.activity_names.add(manifest_activity) return [ ('index_target', self.function, (manifest_name, manifest_activity, 'index_target', '', '', '')) ] def closing_message(self): return f'Done with collection assembly.\nCompleted activities {self.activity_names}.' class BadgeAnalysisApiTasks(StageTasks): def __init__(self): from cendalytics.badges.bp import call_badge_analysis_api self.function = call_badge_analysis_api class PreBadgeAnalysisTasks(BadgeAnalysisApiTasks): def create_tasks(self, manifest_name, manifest_activity): return [ ('flush_target', self.function, (manifest_name, manifest_activity, 'flush_target', '', '')) ] class BadgeTaggingTasks(BadgeAnalysisApiTasks): def create_tasks(self, manifest_name, manifest_activity): tasks = [] task_specs = self.function(manifest_name, manifest_activity, 'get_sources', '', '') for collection, count in task_specs: if not count: print(f'Skipping empty collection {collection}') continue for first, last in self.chunks(count, int(os.environ['RQ_CHUNK_SIZE_BADGE'])): tasks.append( (f'badge_tagging_{collection}_{first}-{last}', self.function, (manifest_name, manifest_activity, 'analyze_per_badge', first, last)) ) return tasks class BadgeDistributionTasks(BadgeAnalysisApiTasks): def create_tasks(self, manifest_name, manifest_activity): return [ ('analyze_distribution', self.function, (manifest_name, manifest_activity, 'analyze_distribution', '', '')) ] def closing_message(self): return f'Done with badges analysis' class ParseApiTasks(StageTasks): def __init__(self): from dataingest import call_parse_api self.function = call_parse_api self.collection_set = set() class PreParseTasks(ParseApiTasks): def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] return [ ('flush_target', self.function, (manifest_name, manifest_activity, 'flush_target', '', '')) ] class ParseTasks(ParseApiTasks): def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] to_fix = ['Patent', 'Feedback', 'JRS'] if manifest_activity in to_fix: print("TO-DO. Fix patents/feedback/JRS parsing") return [] tasks = [] task_specs = self.function(manifest_name, manifest_activity, 'get_sources', '', '') for collection, count in task_specs: if not count: print(f'Skipping empty collection {collection}') continue self.collection_set.add(collection) for first, last in self.chunks(count, int(os.environ['RQ_CHUNK_SIZE_PARSE'])): tasks.append( (f'parse_{collection}_{first}-{last}', self.function, (manifest_name, manifest_activity, 'parse', first, last)) ) return tasks def closing_message(self): return f'Done with collection parsing.\nCompleted tagging of {self.collection_set}.' class PostParseTasks(ParseApiTasks): def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] return [ ('index_target', self.function, (manifest_name, manifest_activity, 'index_target', '', '')) ] def closing_message(self): return 'Done indexing the tagged collections' class XdmApiTasks(StageTasks): def __init__(self): from cendantdim.batch.bp import call_dimensions_api self.function = call_dimensions_api self.collection_set = set() class PreXdmTasks(XdmApiTasks): def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] return [ ('flush_target', self.function, (manifest_name, manifest_activity, 'flush_target', '', '')) ] class XdmTasks(XdmApiTasks): def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] tasks = [] task_specs = self.function(manifest_name, manifest_activity, 'get_sources', '', '') for collection, count in task_specs: if not count: print(f'Skipping empty collection {collection}') continue self.collection_set.add(collection) for first, last in self.chunks(count, int(os.environ['RQ_CHUNK_SIZE_XDM'])): tasks.append( (f'parse_{collection}_{first}-{last}', self.function, (manifest_name, manifest_activity, 'parse', first, last)) ) return tasks def closing_message(self): return f'Done with dimension analysis.\nCompleted XDM processing of {self.collection_set}.\nDEALLOCATE THE WORKERPOOL' class ToDB2Tasks(StageTasks): def __init__(self): from dataingest import run_manifest_command self.function = run_manifest_command def create_tasks(self, manifest_name, manifest_activity): if not self.is_activity_under_focus(manifest_activity): return [] params = (manifest_name, manifest_activity) return [ ('', self.function, params) ] def closing_message(self): return f'Done transfering collections to DB2' ``` #### File: core/svc/batch_worker_environment_vars.py ```python import os from base import BaseObject from base import RedisClient class BatchWorkerEnvironmentVars(BaseObject): _vars = [ 'RQ_CHUNK_SIZE_ASSEMBLE', 'RQ_CHUNK_SIZE_BADGE', 'RQ_CHUNK_SIZE_PARSE', 'RQ_CHUNK_SIZE_XDM', 'RQ_FOCUS_ONLY_ON', 'RQ_MAX_WIP_ASSEMBLE', 'RQ_MAX_WIP_INGEST', 'RQ_STOP_AFTER', 'RQ_TIMEOUT_MINUTES_JOB', 'RQ_WORKER_PROCESSES', 'ASSEMBLE_BADGES_BUILD', # to-do: rename this 'SUPPLY_SRC_BUILD', 'SUPPLY_TAG_BUILD', 'SUPPLY_XDM_BUILD', 'DEMAND_SRC_BUILD', 'DEMAND_TAG_BUILD', 'DEMAND_XDM_BUILD', 'LEARNING_SRC_BUILD', 'LEARNING_TAG_BUILD', 'LEARNING_XDM_BUILD', 'FEEDBACK_SRC_BUILD', 'FEEDBACK_TAG_BUILD', 'FEEDBACK_XDM_BUILD', 'PATENT_SRC_BUILD', 'PATENT_TAG_BUILD', ] _PREFIX = 'workers_env:' def __init__(self): BaseObject.__init__(self, __name__) self.redis = RedisClient(decode_responses=True).redis def keys(self): return self.redis.keys(pattern=f'{self._PREFIX}*') def clean(self): keys = self.keys() if keys: self.logger.debug(f'Deleting keys {keys}...') self.redis.delete(*keys) def push(self): self.clean() env_dict = {f'{self._PREFIX}{env_var}': os.environ[env_var] for env_var in self._vars if env_var in os.environ} if env_dict: self.logger.debug(f'Pushing environment:\n{env_dict}') self.redis.mset(env_dict) else: self.logger.warn('No environment to push to rqWorkers') def pull(self): keys = self.keys() if keys: values = self.redis.mget(*keys) for ii in range(len(keys)): key = keys[ii].replace(self._PREFIX, '') self.logger.debug(f'Setting {key} to "{values[ii]}"') os.environ[key] = values[ii] else: self.logger.warn('No environment pulled for rqWorkers') ``` #### File: core/svc/count_mongo_collections.py ```python import datetime import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject from datamongo import BaseMongoClient from datamongo import CendantCollection class CountMongoCollections(BaseObject): """ Provide a convenient way to count the total records in MongoDB collections """ def __init__(self, is_debug: bool = False): """ Created: 4-Oct-2019 <EMAIL> Updated: 26-Nov-2019 <EMAIL> * add filter-by-date functionality """ BaseObject.__init__(self, __name__) self._is_debug = is_debug @staticmethod def _aggregate(names: list): return { "src": sorted([name for name in names if "src" in name]), "tag": sorted([name for name in names if "tag" in name]), "xdm": sorted([name for name in names if "xdm" in name])} @staticmethod def _filter(filter_name: str, names: list) -> list: return [name for name in names if name.startswith(filter_name)] @staticmethod def _filter_by_date(names: list) -> list: mydate = datetime.datetime.now() # '2019-11-26 08:13:58.660388' tokens = str(mydate).split(' ')[0].split('-') # ['2019', '11', '26'] pattern = f"{tokens[0]}{tokens[1]}" # '201911' return [name for name in names if pattern in name] def _find_names(self, base_mongo_client: BaseMongoClient) -> dict: """ Purpose: Generate a dictionary object that aggregates collections by type and stage Sample Output: {'demand': {'src': ['demand_src_20190913', ... 'demand_src_20190909'], 'tag': ['demand_tag_20190917', ... 'demand_tag_20191003'], 'xdm': ['demand_xdm_20190927']}, 'learning': {'src': ['learning_src_20190806', ... 'learning_src_20191002'], 'tag': ['learning_tag_20190806', ... 'learning_tag_20191004'], 'xdm': []}, 'supply': {'src': ['supply_src_20190801', ... 'supply_src_20190814'], 'tag': ['supply_tag_20190913', ... 'supply_tag_20190817'], 'xdm': ['supply_xdm_20190917', ... 'supply_xdm_20190807']}} :param base_mongo_client: an instantiated mongoDB client instance :return: a dictionary of collections """ client = base_mongo_client.client names = sorted(dict((db, [collection for collection in client[db].collection_names()]) for db in client.database_names()).values())[0] names = self._filter_by_date(names) d_collections = {} for filter_name in ["supply", "demand", "learning", "feedback", "patent", "github"]: d_collections[filter_name] = self._aggregate(names=self._filter(filter_name, names=names)) return d_collections def _count_sizes(self, base_mongo_client: BaseMongoClient, d_collections: dict) -> DataFrame: """ Purpose: Count Collection Sizes and Generate DataFrame of output Sample Output: +----+------------+---------+-----------------------+----------+ | | Category | Count | Name | Type | |----+------------+---------+-----------------------+----------| | 0 | src | 207169 | supply_src_20190801 | supply | | 1 | src | 238246 | supply_src_20190814 | supply | ...s | 40 | tag | 174660 | learning_tag_20190923 | learning | | 41 | tag | 169517 | learning_tag_20191004 | learning | +----+------------+---------+-----------------------+----------+ :param base_mongo_client: an instantiated mongoDB client instance :param d_collections: output produced by the prior step :return: a DataFrame of output """ results = [] for collection_type in d_collections: for collection_category in d_collections[collection_type]: for collection_name in d_collections[collection_type][collection_category]: total = CendantCollection(some_collection_name=collection_name, some_base_client=base_mongo_client).count() if self._is_debug: self.logger.debug(f"Collection Counted " f"(name={collection_name}, total={total})") results.append({ "Type": collection_type, "Category": collection_category, "Name": collection_name, "Count": total}) return pd.DataFrame(results) def process(self): base_mongo_client = BaseMongoClient(is_debug=True) d_collections = self._find_names(base_mongo_client) df = self._count_sizes(base_mongo_client, d_collections) self.logger.debug('\n'.join([ "Cendant Collection Counting Completed", tabulate(df, headers='keys', tablefmt='psql')])) def main(): CountMongoCollections().process() if __name__ == "__main__": import plac plac.call(main) ``` #### File: augment/svc/add_language_variability.py ```python import pprint from collections import Counter from base import BaseObject from datadict import LoadStopWords from nlusvc import TextAPI class AddLanguageVariability(BaseObject): """ Service to Augment the Synonyms ('Language Variability') file with new entries all output from this file represents net-new non-duplicated entries into KB """ _text_api = TextAPI(is_debug=False) _stopwords = LoadStopWords(is_debug=True).load(refresh_cache=True) def __init__(self, is_debug: bool = True): """ Created: 25-Jul-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/493 Updated: 10-Aug-2019 <EMAIL> * completely reritten in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/701 * Developer's Note: it's likely that we'll end up with multiple recipes for language variability each recipe will be a separate domain component and all will be orchestrated via a service Updated: 13-Jan-2020 """ BaseObject.__init__(self, __name__) self.is_debug = is_debug def _count_tokens(self, terms: list) -> Counter: """ Purpose: Tokenize input and count the tokens :param terms: a list of unstructured text the list may be of any size each item in the list may be of any size :return: a collection.Counter instance containing a count of tokens in the list """ c = Counter() for term in terms: [c.update({x: 1}) for x in term.lower().split(' ') if x not in self._stopwords] return c @staticmethod def _filter_tokens_by_count(c: Counter, min_threshold: int = 1) -> Counter: """ Purpose: filter a collection.Counter instance by count :param c: a collection.Counter instance :param min_threshold: the minimium valid count :return: a new collection.Counter instance """ return Counter({x: c[x] for x in c if c[x] >= min_threshold}) @staticmethod def _subsumed(c: Counter) -> set: """ Purpose: Find Subsumed Tokens Sample Input: [ 'redhat_certified_system_administrator', 'open_stack', 'system_administrator', 'redhat' ] Sample Output: [ 'redhat_certified_system_administrator', 'system_administrator', 'redhat' ] a 'subsumed' token is one that contains another known token as a sub-string :param c: a collection.Counter instance :return: a set of subsumed tokens """ subsumed = set() for t1 in c: for t2 in c: if t1 == t2: continue if t1 in t2 or t2 in t1: subsumed.add(t1) subsumed.add(t2) return subsumed @staticmethod def _patterns(delta: set, subsumed: set) -> list: """ Purpose: Create a list of patterns for token formation :param delta: a set of tokens that are not subsumed by any other token Sample Input: { 'open_stack' } :param subsumed: a set of subsumed tokens (generated from the 'subsumed' function) Sample Input: { 'redhat_certified_system_administrator', 'system_administrator', 'redhat' } :return: a list of candidate patterns """ s = set() for t1 in subsumed: for t2 in delta: if t1 == t2: continue s.add(f"{t1}+{t2}") s.add(f"{t1}_{t2}") return sorted(s) def process(self, terms: list, min_threshold: int = 2) -> list: """ Purpose: Given a list of terms, create variations for the synonyms_kb.csv file :param terms: any list of terms or phrases :param min_threshold: the minimum token count that is acceptable any token beneath this threshold is typically considered low-value perhaps useful only for outlier and edge patterns :return: the variations """ c = self._count_tokens(terms) if self.is_debug: self.logger.debug('\n'.join([ "Token Count:", pprint.pformat(c.most_common(25))])) c = self._filter_tokens_by_count(c, min_threshold) if self.is_debug: self.logger.debug('\n'.join([ f"Token Filter (min-threshold={min_threshold}):", pprint.pformat(c.most_common(25))])) tokens = set([x for x in c]) subsumed = self._subsumed(c) if self.is_debug: self.logger.debug(f"Token Subsumption: {subsumed}") delta = tokens.difference(subsumed) if self.is_debug: self.logger.debug(f"Token Delta: {delta}") patterns = self._patterns(delta, subsumed) if self.is_debug: self.logger.debug(f"Pattern Generation: {patterns}") return patterns ``` #### File: mda/dmo/entity_dict_generator.py ```python from nltk.stem.snowball import SnowballStemmer from base import BaseObject stemmer = SnowballStemmer("english", ignore_stopwords=False) class EntityDictGenerator(BaseObject): def __init__(self, some_df): """ Updated: 12-Apr-2017 <EMAIL> * renamed from "ProductDictGenerator" Updated: 25-May-2017 <EMAIL> * created 'get_params' method Updated: 2-Aug-2017 <EMAIL> * modify entity generation using provenance as a dictionary key <https://github.ibm.com/abacus-implementation/Abacus/issues/1721#issuecomment-3080923> Updated: 19-Mar-2018 <EMAIL> * moved static methods to "private class" * stemmer should only operate on unigrams Updated: 21-Feb-2019 <EMAIL> * migrated from text Updated: 26-Mar-2019 <EMAIL> * removed 'id' from attributes (only needed as key) :param some_df: """ BaseObject.__init__(self, __name__) self.df = some_df def generate_tuple_l2(self, tokens): t0 = self.stem(tokens[0]) t1 = self.stem(tokens[1]) if t0 != t1: return [(t0, t1)] return [] def generate_tuple_l3(self, tokens): return [( self.stem(tokens[0]), self.stem(tokens[1]), self.stem(tokens[2]))] def generate_tuple_l4(self, tokens): return [( self.stem(tokens[0]), self.stem(tokens[1]), self.stem(tokens[2]), self.stem(tokens[3]))] def get_variation(self, some_token): if "+" in some_token: tmp = [x.lower().strip() for x in some_token.split("+")] if 2 == len(tmp): return self.generate_tuple_l2(tmp) elif 3 == len(tmp): return self.generate_tuple_l3(tmp) elif 4 == len(tmp): return self.generate_tuple_l4(tmp) raise ValueError( "Unrecognized Tuple (value = {0})".format(some_token)) return [some_token] @staticmethod def add_to_set(the_set, the_value): if the_value is None: return if not isinstance(the_value, tuple): the_value = the_value.strip().lower() if len(the_value) == 0: return the_set.add(the_value) def get_expanded_variations(self, some_label, some_list): if some_list.startswith('"') and some_list.endswith('"'): some_list = some_list[1:len(some_list) - 1] the_set = set() if 0 == len(some_label.split(" ")): the_variant = stemmer.stem(some_label.lower()) self.add_to_set(the_set, the_variant) else: self.add_to_set(the_set, some_label.lower()) for token in some_list.split(","): try: for variant in self.get_variation(token): self.add_to_set(the_set, variant) except ValueError: continue # return list(sorted(the_set)) return list(the_set) @staticmethod def get_params(row): d = {} param = row["param"].strip() # default param to 'type=label' if 0 == len(param): key = row["type"].strip().lower() d[key] = row["label"].strip().lower() return d for p in param.split(","): tokens = [x.lower().strip() for x in p.split("=")] d[tokens[0]] = tokens[1] return d def process(self): the_master_dict = {} prov_list = filter(lambda x: len(x) > 0, self.df.prov.unique()) for prov in prov_list: df2 = self.df[self.df.prov == prov] for i, row in df2.iterrows(): the_label = row["label"].strip() the_id = self.key(the_label) the_type = self.key(row["type"].strip()) the_params = self.get_params(row) the_scope = row["scope"].strip() the_variants = self.get_expanded_variations( some_label=the_label, some_list=row["variations"].strip()) the_master_dict[the_id] = { # "id": the_id, "label": the_label, "type": the_type, # "params": the_params, "variations": the_variants # "scope": the_scope } return the_master_dict @staticmethod def key(value): return value.replace(" ", "_").lower().strip() @staticmethod def stem(some_token): """ Purpose: perform stemming operation using Snowball Rules: 1. Only stem unigrams non-unigrams contain 1..* whitespace tokens 2. Do not stem patterns patterns start with "$" 3. Do not stem pre-compounded tokens e.g. "contract_number" is pre-compounded in a prior stage running this through the stemmer would generate "contract_numb" """ if " " in some_token: return some_token if "_" in some_token: return some_token if some_token.startswith("$"): return some_token # entity matching is supposed to have both “exact” and “partial” matching but # perhaps the partial matching was removed by accident so commenting out this line to stop the stemming # return stemmer.stem(some_token.strip()) return some_token ``` #### File: mda/dmo/entity_pattern_generator.py ```python from rdflib import Graph from base import BaseObject from datagraph import OwlGraphConnector class EntityPatternGenerator(BaseObject): """ Generate the NLU Variations for each token into a file that is used by the NLU Parser at runtime """ # NOTE: no variables should be placed here (ref GIT-1601) def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 26-Mar-2019 <EMAIL> Updated: 1-Apr-2019 <EMAIL> * added 'see-also' Updated: 11-Apr-2019 <EMAIL> * change 'synonyms' from set to dictionary and add key/value for injection into synonyms generator downstream Updated: 8-May-2019 <EMAIL> * added exception handling I had a funky label in the cendant OWL file and it took forever to trace down to this particular MDA function Updated: 16-Jul-2019 <EMAIL> * removed 'go-words' (the input file was empty) * read patterns from the synonyms.csv file https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/440 Updated: 21-Nov-2019 <EMAIL> * account for new expansion pattern developed here https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1424#issue-10910179 Updated: 13-Dec-2019 <EMAIL> * pass in ontology name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583#issuecomment-16612838 Updated: 14-Dec-2019 <EMAIL> * all variables initialized in __init__ statement https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1601 """ BaseObject.__init__(self, __name__) from taskmda.mda.dmo import OntologyLabelGenerator self._d_patterns = {} self._d_synonyms = {} self._is_debug = is_debug self._ontology_name = ontology_name self._label_generator = OntologyLabelGenerator(self._owlg()) self._invalid_patterns = ["for", "and", "-", "with", "of", "&"] def _owlg(self) -> Graph: return OwlGraphConnector(is_debug=self._is_debug, ontology_name=self._ontology_name).process() def _patterns(self, label: str) -> None: """ Sample Input: 'Redhat Data Virtualization Certification' Sample Output: [ 'redhat+data+virtualization+certification', 'redhat_data_virtualization_certification'] Update Synonyms: { 'redhat_data_virtualization_certification': [ 'redhat data virtualization certification' ]} Update Patterns: { 'redhat_data_virtualization_certification': [ 'redhat+data+virtualization+certification' ]} :param label: any entity input """ label = label.lower().strip() label = label.replace("/", "") tokens = [x.strip().lower() for x in label.split() if x] tokens = [x for x in tokens if x not in self._invalid_patterns] p1 = "+".join(tokens) p2 = "_".join(tokens) if p2 not in self._d_patterns: self._d_patterns[p2] = [] if p1 not in self._d_patterns[p2]: self._d_patterns[p2].append(p1) if p2 not in self._d_synonyms: self._d_synonyms[p2] = [] if label not in self._d_synonyms[p2]: self._d_synonyms[p2].append(label) def _patterns_from_synonyms_file(self) -> None: """ Purpose: Extract explicit patterns from the Synonyms file Sample Input: redhat_data_virtualization_certification ~ ex450, redhat data virtual certification, redhat data virtualization certification, redhat+data+certification, redhat+virtualization+certification Sample Output: { 'redhat_data_virtualization_certification': [ 'redhat+data+certification', 'redhat+virtualization+certification' ]} """ from taskmda.mda.dmo import SynonymsKbReader df_synonyms = SynonymsKbReader.by_name(self._ontology_name).read_csv() for _, row in df_synonyms.iterrows(): canon = row['canon'] variants = row['variants'].replace('!', '+') # GIT-1424-10910179 variants = variants.split(',') variants = [x.strip() for x in variants if x and "+" in x] if not len(variants): continue if canon not in self._d_patterns: self._d_patterns[canon] = [] [self._d_patterns[canon].append(x) for x in variants if x not in self._d_patterns[canon]] def _patterns_from_owl_file(self) -> None: """ Purpose: Generate implicit patterns from the OWL file (e.g., the Cendant Ontology) Sample Entity: 'Redhat Data Virtualization Certification' Sample Patterns: [ 'redhat+data+virtualization+certification', 'redhat_data_virtualization_certification' ] """ owl_labels = self._label_generator.labels() for label in owl_labels: if "'" in label: # GIT-1829-17642326 label = label.replace("'", "") self._patterns(label) try: [self._patterns(x) for x in self._label_generator.see_also_by_label(label)] [self._patterns(x) for x in self._label_generator.infinitive_by_label(label)] except Exception as e: self.logger.error('\n'.join([ "Failed to Generate Label", f"\tLabel: {label}"])) self.logger.exception(e) raise ValueError("Entity Pattern Generation Failure") def process(self) -> dict: self._patterns_from_owl_file() self._patterns_from_synonyms_file() self.logger.debug(f"Generated Variations " f"(total={len(self._d_patterns)})") return { "patterns": self._d_patterns, "synonyms": self._d_synonyms} ``` #### File: mda/dmo/entity_revmap_generator.py ```python from base import BaseObject class EntityRevmapGenerator(BaseObject): def __init__(self, some_dict): """ Updated: 8-Dec-2016 <EMAIL> * change from key:value to key:list Updated: 12-Apr-2017 <EMAIL> * renamed from "ProductEntityRevmapGeneratorevmapGenerator" Updated: 2-Aug-2017 <EMAIL> * clean up params/init section * iterate dictionary by prov: <https://github.ibm.com/abacus-implementation/Abacus/issues/1721#issuecomment-3080923> """ BaseObject.__init__(self, __name__) if some_dict is None: raise ValueError self.dict = some_dict @staticmethod def normalize(some_revmap): the_normalized_map = {} for key in some_revmap: the_normalized_map[key] = list(some_revmap[key]) return the_normalized_map def create(self): d = {} for key in self.dict: for variant in self.dict[key]["variations"]: if variant not in d: d[variant] = set() d[variant].add(key) return self.normalize(d) def process(self): return self.create() ``` #### File: mda/dto/kb_paths.py ```python import logging logger = logging.getLogger(__name__) BASE_PATH = "python/datadict/core" class KbPaths(object): """ Purpose: paths for generated dictionaries these are output file paths used in MDA.sh process specifies which directories the generated files are placed in Updated: 13-Dec-2019 <EMAIL> * add ontology-name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583 """ @staticmethod def rel_implies(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_implies_kb.py" @staticmethod def rel_owns(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_owns_kb.py" @staticmethod def rel_requires(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_requires_kb.py" @staticmethod def rel_produces(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_produces_kb.py" @staticmethod def rel_runson(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_runson_kb.py" @staticmethod def rel_versions(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_versions_kb.py" @staticmethod def country_codes(): return "{0}/os/{1}".format(BASE_PATH, "country_codes.py") @staticmethod def city_to_region(): return "{0}/os/{1}".format(BASE_PATH, "city_region_kb.py") @staticmethod def country_to_region(): return "{0}/os/{1}".format(BASE_PATH, "country_region_kb.py") @staticmethod def rel_infinitive(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_infinitive_kb.py" @staticmethod def rel_similarity(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_similarity_kb.py" @staticmethod def rel_parts(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_parts_kb.py" @staticmethod def rel_defines(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/rel_defines_kb.py" @staticmethod def stopwords(): return "{0}/os/{1}".format(BASE_PATH, "stopwords_kb.py") @staticmethod def synonyms(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/synonym.py" @staticmethod def seealso(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/seealso.py" @staticmethod def dimesionality(a_name: str): return "{0}/os/{1}".format(BASE_PATH, f"dimensionality_{a_name}_kb.py") @staticmethod def references(): return f"{BASE_PATH}/os/seealso.py" @staticmethod def jrs_lookup(): return "{0}/os/{1}".format(BASE_PATH, "jrs_lookup.py") @staticmethod def mapping(): return "{0}/os/{1}".format(BASE_PATH, "mapping_table.py") @staticmethod def mapping_rev(): return "{0}/os/{1}".format(BASE_PATH, "mapping_rev.py") @staticmethod def reverse_synonyms(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/reverse_synonym.py" @staticmethod def reverse_regex_synonyms(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/reverse_regex_synonym.py" @staticmethod def taxonomy(): return "{0}/os/{1}".format(BASE_PATH, "taxonomy_kb.py") @staticmethod def taxonomy_revmap(): return "{0}/os/{1}".format(BASE_PATH, "taxonomy_revmap_kb.py") @staticmethod def patterns(ontology_name:str): return f"{BASE_PATH}/os/{ontology_name}/patterns.py" @staticmethod def certifications(): return "{0}/os/{1}".format(BASE_PATH, "certifications_kb.py") @staticmethod def certs_hierarchy(): return "{0}/os/{1}".format(BASE_PATH, "certification_hierarchy_kb.py") @staticmethod def labels(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/labels.py" @staticmethod def badges(): return "{0}/os/{1}".format(BASE_PATH, "badges.py") @staticmethod def ngrams(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/ngrams.py" @staticmethod def parents(ontology_name: str): return f"{BASE_PATH}/os/{ontology_name}/parents.py" @staticmethod def badge_analytics(): return "{0}/os/{1}".format(BASE_PATH, "badge_analytics.py") @staticmethod def badge_distribution(): return "{0}/os/{1}".format(BASE_PATH, "badge_distribution.py") ``` #### File: mda/svc/generate_entity_ngrams.py ```python import os import pprint from base import BaseObject from base import FileIO from base import MandatoryParamError class GenerateEntityNgrams(BaseObject): def __init__(self, ontology_name: str, some_labels: list, some_patterns: dict, is_debug: bool = False): """ Updated: 1-Aug-2017 <EMAIL> * added output-file param so this can be controlled by orchestrating service <https://github.ibm.com/abacus-implementation/Abacus/issues/1721#issuecomment-3069168> Updated: 21-Feb-2019 <EMAIL> * migrated to text Updated: 28-Mar-2019 <EMAIL> * updated to add labels and patterns Updated: 13-Dec-2019 <EMAIL> * add ontology-name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583 """ BaseObject.__init__(self, __name__) if not some_labels: raise MandatoryParamError("Labels") if not some_patterns: raise MandatoryParamError("Patterns") self._is_debug = is_debug self._labels = some_labels self._patterns = some_patterns self._ontology_name = ontology_name def process(self): from taskmda.mda.dmo import GenericTemplateAccess from taskmda.mda.dmo import EntityNgramDictGenerator from taskmda.mda.dto import KbNames from taskmda.mda.dto import KbPaths dictionary = EntityNgramDictGenerator().process(self._labels, list(self._patterns.values())) the_json_result = pprint.pformat(dictionary, indent=4) the_json_result = "{0} = {{\n {1}".format( KbNames.entity_ngrams(), the_json_result[1:]) the_template_result = GenericTemplateAccess.process() the_template_result = the_template_result.replace( "CONTENT", the_json_result) path = os.path.join(os.environ["CODE_BASE"], KbPaths.ngrams(ontology_name=self._ontology_name)) FileIO.text_to_file(path, the_template_result) return dictionary ``` #### File: mda/svc/generate_flow_taxonomy.py ```python import os import pprint from base import BaseObject from base import FileIO class GenerateFlowTaxonomy(BaseObject): def __init__(self, is_debug: bool = False): """ Created: 17-Jul-2019 <EMAIL> * based on 'taxonomy-dict-generator' from the abacus-att project <EMAIL>:abacus-implementation/abacus-att.git * reference https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/453 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug @staticmethod def _lines(): """ TODO: in the abacus-att project there was a file called flow_taxonomy_kb.csv this explicit taxonomy was loaded and transformed into JSON *** WE DON'T NEED TO MAINTAIN AN EXPLICIT TAXONOMY *** we can dynamically re-create what that file looked like based on analyzing the current flow mapping definitions :return: """ return ['CONTRACT_VALIDATE_NUMBER_NOT_RED', 'CHITCHAT_GREETING'] @staticmethod def get_revmap(some_dict): revmap = {} for key in some_dict: for value in some_dict[key]: revmap[value] = key return revmap @staticmethod def _to_file(d_result: dict, kb_name: str, kb_path: str): from taskmda.mda.dmo import GenericTemplateAccess the_json_result = pprint.pformat(d_result, indent=4) the_json_result = "{0} = {{\n {1}".format( kb_name, the_json_result[1:]) the_template_result = GenericTemplateAccess.process() the_template_result = the_template_result.replace( "CONTENT", the_json_result) path = os.path.join(os.environ["CODE_BASE"], kb_path) FileIO.text_to_file(path, the_template_result) def process(self): from taskmda.mda.dto import KbNames from taskmda.mda.dto import KbPaths from taskmda.mda.dmo import TaxonomyDictGenerator the_taxonomy_dict = TaxonomyDictGenerator(self._lines()).process() the_taxonomy_revmap = self.get_revmap(the_taxonomy_dict) self._to_file(the_taxonomy_dict, KbNames.flow_taxonomy(), KbPaths.taxonomy()) self._to_file(the_taxonomy_revmap, KbNames.flow_taxonomy_revmap(), KbPaths.taxonomy_revmap()) ``` #### File: mda/svc/generate_metrics.py ```python import pprint import time from base import BaseObject from datadict import DictionaryLoader from datamongo import CendantCollection class GenerateMetrics(BaseObject): """ Generate Metrics """ def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 4-Apr-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/60 Updated: 13-Dec-2019 <EMAIL> * major refactoring from the ground-up in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583#issuecomment-16612838 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_name = ontology_name self._dict_loader = DictionaryLoader(is_debug=self._is_debug, ontology_name=self._ontology_name) self.collection = self._collection() @staticmethod def _collection(): return CendantCollection(some_db_name="cendant", some_collection_name="metrics_mda") @staticmethod def _count_keys_values(d: dict) -> dict: total_keys = len(d) total_values = 0 for k in d: if type(d[k]) == list: total_values += len(d[k]) elif type(d[k]) == dict: total_values += sum([len(d[k][x]) for x in d]) return {"keys": total_keys, "values": total_values} @staticmethod def _count_keys(d: dict) -> dict: total_keys = len(d) return {"keys": total_keys} def process(self): label_count = self._count_keys(self._dict_loader.taxonomy().labels()) ngram_count = self._count_keys_values(self._dict_loader.taxonomy().ngrams()) parent_count = self._count_keys_values(self._dict_loader.taxonomy().parents()) pattern_count = self._count_keys_values(self._dict_loader.taxonomy().patterns()) defines_count = self._count_keys_values(self._dict_loader.relationships().defines()) implies_count = self._count_keys_values(self._dict_loader.relationships().implies()) infinitive_count = self._count_keys_values(self._dict_loader.relationships().infinitive()) owns_count = self._count_keys_values(self._dict_loader.relationships().owns()) parts_count = self._count_keys_values(self._dict_loader.relationships().parts()) requires_count = self._count_keys_values(self._dict_loader.relationships().requires()) similarity_count = self._count_keys_values(self._dict_loader.relationships().similarity()) versions_count = self._count_keys_values(self._dict_loader.relationships().versions()) svcresult = { "tts": str(time.time()), "owl": self._ontology_name, "entities": { "labels": label_count, "ngrams": ngram_count, "parents": parent_count, "patterns": pattern_count}, "rels": { "defines": defines_count, "implies": implies_count, "infinitive": infinitive_count, "owns": owns_count, "parts": parts_count, "requires": requires_count, "similarity": similarity_count, "versions": versions_count}} self.logger.info("\n".join([ "Generated MDA Metrics", pprint.pformat(svcresult, indent=4)])) self._collection().save(svcresult) ``` #### File: mda/svc/generate_ontology_dictionaries.py ```python from base import BaseObject class GenerateOntologyDictionaries(BaseObject): """ Generates all dictionaries for a given Ontology """ def __init__(self, ontology_name: str, syns_only: bool = False, is_debug: bool = False): """ Created: 13-Dec-2019 <EMAIL> * refactored out of 'mda-orchestrator' https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583 Updated: 14-Jan-2020 <EMAIL> * ensure synonym generation uses see-also dictionary https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1734 :param ontology_name: the name of the Ontology (e.g., 'base' or 'biotech') :param syns_only: True only generate synonym dictionaries False generate all dictionaries """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._syns_only = syns_only self._ontology_name = ontology_name if self._is_debug: self.logger.debug('\n'.join([ "Initialize Ontology Generation", f"\tSyns Only? {self._syns_only}", f"\tOntology Name: {self._ontology_name}"])) def _generate_syn_dictionaries(self) -> dict: from taskmda import GenerateSynonyms from taskmda import GenerateSeeAlso from taskmda import GeneratePatterns see_also_generation = GenerateSeeAlso(is_debug=self._is_debug, ontology_name=self._ontology_name) pattern_generation = GeneratePatterns(is_debug=self._is_debug, ontology_name=self._ontology_name) synonym_generation = GenerateSynonyms(is_debug=self._is_debug, ontology_name=self._ontology_name) # the 'injected synonyms' dictionary # these do NOT come from the synonyms file d_synonyms = {} # GIT-1734-17146514 def _merge(some_dict: dict) -> None: for k in some_dict: if k not in d_synonyms: d_synonyms[k] = [] [d_synonyms[k].append(x) for x in some_dict[k]] _merge(see_also_generation.process()) _merge(pattern_generation.process()["synonyms"]) synonym_generation.process(d_synonyms) return d_synonyms def _generate_dictionaries(self, d_patterns: dict) -> None: from taskmda import GenerateRelationships from taskmda import GenerateLabels from taskmda import GenerateParents from taskmda import GenerateEntityNgrams from taskmda import GenerateMetrics from taskmda import GenerateSeeAlso parents_gen = GenerateParents(is_debug=self._is_debug, ontology_name=self._ontology_name) ontology_gen = GenerateRelationships(is_debug=self._is_debug, ontology_name=self._ontology_name) label_gen = GenerateLabels(is_debug=self._is_debug, ontology_name=self._ontology_name) metrics_gen = GenerateMetrics(is_debug=self._is_debug, ontology_name=self._ontology_name) see_also = GenerateSeeAlso(is_debug=self._is_debug, ontology_name=self._ontology_name) parents_gen.process() ontology_gen.process() labels = label_gen.process() see_also.process() GenerateEntityNgrams(some_labels=labels, is_debug=self._is_debug, some_patterns=d_patterns, ontology_name=self._ontology_name).process() metrics_gen.process() def process(self) -> None: """ Purpose Generate Dictionaries from an Ontology """ d_patterns = self._generate_syn_dictionaries() if not self._syns_only: self._generate_dictionaries(d_patterns) ``` #### File: mda/svc/generate_parents.py ```python import os import pprint from base import BaseObject from base import FileIO class GenerateParents(BaseObject): """ Generate the parent (type) for each term this is the SINGLE SOURCE OF TRUTH for parents in the entire system this generated file can also be used to find ancestry via transitive lookups """ def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 26-Mar-2019 <EMAIL> Updated: 13-Dec-2019 <EMAIL> * add ontology-name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_name = ontology_name def process(self): from taskmda.mda.dmo import EntityParentGenerator from taskmda.mda.dto import KbNames from taskmda.mda.dto import KbPaths from taskmda.mda.dmo import GenericTemplateAccess labels = EntityParentGenerator(ontology_name=self._ontology_name).process() the_json_result = pprint.pformat(labels, indent=4) the_json_result = "{0} = {{\n {1}".format( KbNames.parents(), the_json_result[1:]) the_template_result = GenericTemplateAccess.process() the_template_result = the_template_result.replace( "CONTENT", the_json_result) relative_path = KbPaths.parents(ontology_name=self._ontology_name) absolute_path = os.path.join(os.environ["CODE_BASE"], relative_path) FileIO.text_to_file(absolute_path, the_template_result) ``` #### File: mda/svc/generate_relationships.py ```python import os import pprint from base import BaseObject from base import FileIO from datagraph import OwlGraphConnector from taskmda.mda.dmo import GenericTemplateAccess from taskmda.mda.dmo import OntologyDictGenerator from taskmda.mda.dto import KbNames from taskmda.mda.dto import KbPaths class GenerateRelationships(BaseObject): def __init__(self, ontology_name: str, is_debug: bool = False): """ Created: 21-Feb-2019 <EMAIL> * migrated to text Updated: 28-Mar-2019 <EMAIL> * removed dead code * updated logging statements Updated: 13-Dec-2019 <EMAIL> * add ontology-name as a param https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1583 * also renamed from 'generate-ontology-dict' Updated: 14-Dec-2019 <EMAIL> * major refactoring in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/1606 """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._ontology_name = ontology_name self._graph = OwlGraphConnector(is_debug=self._is_debug, ontology_name=self._ontology_name).process() @classmethod def _write_dictionary(cls, results: dict, dictionary_name: str, dictionary_path: str): the_json_result = pprint.pformat(results, indent=4) the_json_result = "{0} = {{\n {1}".format( dictionary_name, the_json_result[1:]) the_template_result = GenericTemplateAccess.process() the_template_result = the_template_result.replace( "CONTENT", the_json_result) path = os.path.join(os.environ["CODE_BASE"], dictionary_path) FileIO.text_to_file(path, the_template_result) def _ontology_dict_generator(self, query_name: str) -> dict: return OntologyDictGenerator(some_graph=self._graph, is_debug=self._is_debug, ontology_name=self._ontology_name, some_query_name=query_name).process() def _generate_implies_dictionary(self): results = self._ontology_dict_generator("find_implies_query.txt") self._write_dictionary(results, KbNames.rel_implies(), KbPaths.rel_implies(self._ontology_name)) def _generate_ownership_dictionary(self): results = self._ontology_dict_generator("find_owners_query.txt") self._write_dictionary(results, KbNames.rel_owns(), KbPaths.rel_owns(self._ontology_name)) def _generate_requires_dictionary(self): results = self._ontology_dict_generator("find_requires_query.txt") self._write_dictionary(results, KbNames.rel_requires(), KbPaths.rel_requires(self._ontology_name)) def _generate_produces_dictionary(self): results = self._ontology_dict_generator("find_produces_query.txt") self._write_dictionary(results, KbNames.rel_produces(), KbPaths.rel_produces(self._ontology_name)) def _generate_runson_dictionary(self): results = self._ontology_dict_generator("find_runson_query.txt") self._write_dictionary(results, KbNames.rel_runson(), KbPaths.rel_runson(self._ontology_name)) def _generate_version_dictionary(self): results = self._ontology_dict_generator("find_version_query.txt") self._write_dictionary(results, KbNames.rel_versions(), KbPaths.rel_versions(self._ontology_name)) def _generate_infinitive_dictionary(self): results = self._ontology_dict_generator("find_infinitive_query.txt") self._write_dictionary(results, KbNames.rel_infinitive(), KbPaths.rel_infinitive(self._ontology_name)) def _generate_similarity_dictionary(self): results = self._ontology_dict_generator("find_similarity_query.txt") self._write_dictionary(results, KbNames.rel_similarity(), KbPaths.rel_similarity(self._ontology_name)) def _generate_partof_dictionary(self): results = self._ontology_dict_generator("find_parts_query.txt") self._write_dictionary(results, KbNames.rel_parts(), KbPaths.rel_parts(self._ontology_name)) def _generate_defined_by_dictionary(self): results = self._ontology_dict_generator("find_definedBy_query.txt") print(results) self._write_dictionary(results, KbNames.rel_defines(), KbPaths.rel_defines(self._ontology_name)) def process(self): self._generate_defined_by_dictionary() self.logger.debug("Generated Defines Dictionary") self._generate_implies_dictionary() self.logger.debug("Generated Implications Dictionary") self._generate_infinitive_dictionary() self.logger.debug("Generated Infinitive Dictionary") self._generate_similarity_dictionary() self.logger.debug("Generated Similarity Dictionary") self._generate_ownership_dictionary() self.logger.debug("Generated Ownership Dictionary") self._generate_partof_dictionary() self.logger.debug("Generated Partonomy Dictionary") self._generate_requires_dictionary() self.logger.debug("Generated Requires Dictionary") self._generate_produces_dictionary() self.logger.debug("Generated Produces Dictionary") self._generate_runson_dictionary() self.logger.debug("Generated Runs-On Dictionary") self._generate_version_dictionary() self.logger.debug("Generated Versions Dictionary") ``` #### File: python/tests/test_find_dimensions.py ```python import unittest from datadict import FindDimensions IS_DEBUG = True class TestFindDimensions(unittest.TestCase): def _execute_by_name(self, tag_name: str, expected_result: str, xdm_schema: str, ontology_name: str): dim_finder = FindDimensions(schema=xdm_schema, ontology_name=ontology_name, is_debug=IS_DEBUG) results = dim_finder.find(input_text=tag_name) self.assertIsNotNone(results) self.assertTrue(len(results)) actual_result = results[0] self.assertEquals(actual_result, expected_result) def _execute_biotech(self, tag_name: str, expected_result: str): self._execute_by_name(tag_name=tag_name, expected_result=expected_result, xdm_schema='biotech', ontology_name='biotech') def test_biotech_01(self): self._execute_biotech('anatomy', 'anatomy') self._execute_biotech('cell', 'anatomy') self._execute_biotech('bacteria', 'anatomy') self._execute_biotech('blood cell', 'anatomy') self._execute_biotech('white blood cell', 'anatomy') self._execute_biotech('Lymphocyte', 'anatomy') self._execute_biotech('t cell', 'anatomy') # the actual ontology label self._execute_biotech('memory t cell', 'anatomy') # rdfs:seeAlso relationship to 'memory t cell' self._execute_biotech('memory cd8 t cell', 'anatomy') # I am suprised this works, but OK ... self._execute_biotech('memory cd8 t_cell', 'anatomy') def test_biotech_02(self): self._execute_biotech('Interleukin 15', 'molecule') def test_process(self): self.test_biotech_01() self.test_biotech_02() if __name__ == '__main__': unittest.main() ``` #### File: certifications/bp/certification_regression_api.py ```python from base import BaseObject from base import FileIO from testsuite.certifications.svc import RunRegressionSuite class CertificationRegressionAPI(BaseObject): """ Regression API for Certifications """ def __init__(self, config: list, regression_name: str, segment_by_vendor: bool = True, is_debug: bool = False, log_results: bool = False): """ Created: 13-Aug-2019 <EMAIL> * refactored out of regression-orchestrator :param regression_name: a particular regression suite to run :param segment_by_vendor: :param is_debug: :param log_results: """ BaseObject.__init__(self, __name__) self._config = config self._is_debug = is_debug self._log_results = log_results self._regression_name = regression_name self._segment_by_vendor = segment_by_vendor def _run_regression_suite(self, regression: dict, vendor_name: str = None) -> dict: return RunRegressionSuite( regression=regression, vendor_name=vendor_name, is_debug=self._is_debug, log_results=self._log_results, segment_by_vendor=self._segment_by_vendor).svcresult() def all(self) -> dict or ValueError: """ :return: the results from a single regression suite """ for regression in self._config: if regression['suite'].lower() == self._regression_name.lower(): return self._run_regression_suite(regression) raise ValueError(f"Regression Suite Not Found " f"(name={self._regression_name})") def by_vendor(self, vendor_name: str) -> dict or ValueError: """ :param vendor_name: a particular vendor within the regression suite to focus on :return: the results from a single regression suite """ for regression in self._config: if regression['suite'].lower() == self._regression_name.lower(): return self._run_regression_suite(regression=regression, vendor_name=vendor_name) raise ValueError(f"Regression Suite Not Found " f"(name={self._regression_name}, " f"vendor={vendor_name})") ``` #### File: certifications/dmo/regression_analysis_summary.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class RegressionAnalysisSummary(BaseObject): """ An analysis of the regression results will produce two DataFrames: 1. Gold Regression Analysis 2. Standard Regression Analysis The Summarized DataFrame may be segmented by Vendor like this: +----+----------+--------------------+------------------+---------------+---------+----------+ | | Failed | RegressionSuite | RegressionType | SuccessRate | Total | Vendor | |----+----------+--------------------+------------------+---------------+---------+----------| | 0 | 3 | self_certification | Gold | 50 | 6 | SAP | | 1 | 1 | self_certification | Gold | 66.7 | 3 | Redhat | | 2 | 12 | self_certification | Standard | 55.6 | 27 | SAP | | 3 | 6 | self_certification | Standard | 45.5 | 11 | Redhat | +----+----------+--------------------+------------------+---------------+---------+----------+ Or just fully summarized across the board: +----+----------+--------------------+------------------+---------------+---------+ | | Failed | RegressionSuite | RegressionType | SuccessRate | Total | |----+----------+--------------------+------------------+---------------+---------| | 0 | 4 | self_certification | Gold | 55.6 | 9 | | 1 | 18 | self_certification | Standard | 52.6 | 38 | +----+----------+--------------------+------------------+---------------+---------+ In either event, we know at a glance how the Gold Regression fared and how the Standard Regression fared The vendor-segmented view helps shows where immediate action should be focused e.g., in the example above, the Gold Standard for SAP is doing poorly """ __df_summary = None def __init__(self, regression_suite_name: str, df_gold_analysis: DataFrame, df_standard_analysis: DataFrame, segment_by_vendor: bool, is_debug: bool = False): """ Created: 12-Aug-2019 <EMAIL> * refactored out of 'run-regression-suite' in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/717 :param regression_suite_name: the name of the regression suite this is for (e.g., 'synonyms' or 'self-certification') :param segment_by_vendor: True segment (summarize) the DataFrames by Vendor False summarize across the board :param df_gold_analysis: the Gold Analysis regression results :param df_standard_analysis: the Standard Analysis regression results """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._process(regression_suite_name=regression_suite_name, segment_by_vendor=segment_by_vendor, df_gold_analysis=df_gold_analysis, df_standard_analysis=df_standard_analysis) def summary(self) -> DataFrame: return self.__df_summary @staticmethod def _accuracy(total_records: float, total_failed_records: float) -> float: if total_failed_records == 0: return float(100.0) if total_failed_records == total_records: return float(0.0) f_total = float(total_records) f_fails = float(total_failed_records) x = float((f_total - f_fails) / f_total) * 100.0 return round(x, ndigits=1) def _summarize_by_vendor(self, regression_type: str, regression_suite_name: str, df_analysis: DataFrame) -> list: """ Purpose: Perform Summarization (Segmentation) by Vendor :param regression_type: the type of regression analysis being summarized (e.g., Gold or Standard) :param regression_suite_name: the name of the regression suite (e.g., self_certification) :param df_analysis: the analysis dataframe (e.g., Gold Regression Analysis) :return: a list of results """ results = [] for vendor in df_analysis['Vendor'].unique(): print ("VENDOR ---> ",vendor) df_vendor = df_analysis[df_analysis['Vendor'] == vendor] total = 0 failed = 0 for _, row in df_vendor.iterrows(): total += row["Total"] failed += row["Failed"] if total == 0: continue success_rate = self._accuracy(total_records=total, total_failed_records=failed) results.append({ "Vendor": vendor, "Total": total, "Failed": failed, "SuccessRate": success_rate, "RegressionType": regression_type, "RegressionSuite": regression_suite_name}) return results @staticmethod def _summarize(regression_type: str, regression_suite_name: str, df_analysis: DataFrame) -> list: """ Purpose: Perform Summarization :param regression_type: the type of regression analysis being summarized (e.g., Gold or Standard) :param regression_suite_name: the name of the regression suite (e.g., self_certification) :param df_analysis: the analysis dataframe (e.g., Gold Regression Analysis) :return: a list of results """ results = [] for _, row in df_analysis[df_analysis['Result'] == 'Summary'].iterrows(): results.append({ "Total": row["Total"], "Failed": row["Failed"], "SuccessRate": row["SuccessRate"], "RegressionType": regression_type, "RegressionSuite": regression_suite_name}) return results def _process(self, regression_suite_name: str, df_gold_analysis: DataFrame, df_standard_analysis: DataFrame, segment_by_vendor: bool) -> None: """ Purpose: Summarize the Regression Analysis DataFrames :param regression_suite_name: the name of the regression suite (e.g., 'self_certifications') :param df_gold_analysis: the Gold Regression Analysis results :param df_standard_analysis: the Standard Regression Analysis results :param segment_by_vendor: True segment (summarize) the DataFrames by Vendor False summarize across the board :return: a summarized DataFrame """ results = [] if segment_by_vendor: results += self._summarize_by_vendor(regression_type="Gold", regression_suite_name=regression_suite_name, df_analysis=df_gold_analysis) results += self._summarize_by_vendor(regression_type="Standard", regression_suite_name=regression_suite_name, df_analysis=df_standard_analysis) else: results += self._summarize(regression_type="Gold", regression_suite_name=regression_suite_name, df_analysis=df_gold_analysis) results += self._summarize(regression_type="Standard", regression_suite_name=regression_suite_name, df_analysis=df_standard_analysis) self.__df_summary = pd.DataFrame(results) ``` #### File: certifications/dmo/regression_result_analysis.py ```python import pandas as pd from pandas import DataFrame from tabulate import tabulate from base import BaseObject class RegressionResultAnalysis(BaseObject): """ Analyzes Regression Result DataFrames and provides Descriptive Statistics on results The incoming DataFrame 'df-result' looks something like this: +----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------+ | | ActualResults | ExpectedResult | InputText | NormalizedText | Pass | |----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------| | 0 | Certification, SAP Business One | ABAP for SAP HANA 2.0 | sap hana abap 2.0 certification from sap | sap_business_one abap 2 0 certification from sap_center | False | | 1 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | SAP Certified Development Specialist - ABAP for SAP HANA 2.0 | sap_center certification development specialist abap for sap_business_one 2 0 | False | | 2 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | The "SAP Certified Development Specialist - ABAP for SAP HANA 2.0" certification exam | the sap_business_one certification development specialist abap for sap_business_one 2 0 professional_certification | False | | 3 | Certification, SAP Business One | ABAP for SAP HANA 2.0 | ABAP for SAP HANA cert | abap for sap_business_one certification | False | | 4 | SAP Business One | ABAP for SAP HANA 2.0 | ABAP for SAP HANA 2.0. Exam Code | abap for sap_business_one 2 0 exam code | False | | 5 | Certification, Online, SAP Business One | ABAP for SAP HANA 2.0 | SAP ABAP for HANA Certification Online Practice | sap_business_one abap for hana certification online practice | False | | 6 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | Certified Development Specialist - ABAP for SAP HANA 2.0 | certification development specialist abap for sap_business_one 2 0 | False | +----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------+ This DataFrame contains the results of a regression suite run against a CSV. This component will analyze a given DataFrame and generate descriptive statistics into an analysis DataFrame +----+----------+-----------------------+---------------+---------+ | | Failed | Result | SuccessRate | Total | |----+----------+-----------------------+---------------+---------| | 0 | 0 | ABAP for SAP HANA 2.0 | 100 | 6 | +----+----------+-----------------------+---------------+---------+ """ def __init__(self, df_result: DataFrame, is_debug: bool = False): """ Created: 9-Aug-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/683 :param df_result: the results of a regression analysis Example: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._df_results = self._process(df_result) def results(self) -> DataFrame: return self._df_results @staticmethod def _accuracy(total_records: float, total_failed_records: float) -> float: if total_failed_records == 0: return float(100.0) if total_failed_records == total_records: return float(0.0) f_total = float(total_records) f_fails = float(total_failed_records) x = float((f_total - f_fails) / f_total) * 100.0 return round(x, ndigits=1) def _add_summary(self, total_records: float, total_failed_records: float) -> dict: summarized_accuracy = self._accuracy(total_records=total_records, total_failed_records=total_failed_records) return { "Result": "Summary", "Vendor": None, "Total": total_records, "Failed": total_failed_records, "SuccessRate": summarized_accuracy} def _process(self, df_result: DataFrame) -> DataFrame: results = [] all_total = 0 all_failure = 0 for key in df_result['ExpectedResult'].unique(): df2 = df_result[df_result['ExpectedResult'] == key] vendor = list(df2['Vendor'].unique())[0] total_records = len(df2) all_total += total_records total_fails = len(df2[df2['Pass'] == False]) all_failure += total_fails accuracy = self._accuracy(total_records=total_records, total_failed_records=total_fails) results.append({ "Result": key, "Vendor": vendor, "Total": total_records, "Failed": total_fails, "SuccessRate": accuracy}) results.append(self._add_summary(total_records=all_total, total_failed_records=all_failure)) df_analysis = pd.DataFrame(results) if self._is_debug: self.logger.debug('\n'.join([ "Analysis Results", tabulate(df_analysis, headers='keys', tablefmt='psql')])) return df_analysis ``` #### File: certifications/svc/analyze_regression_suite.py ```python import pandas as pd from pandas import DataFrame from base import BaseObject class AnalyzeRegressionSuite(BaseObject): __df_gold_analysis = None __df_standard_analysis = None def __init__(self, df_results: DataFrame, is_debug: bool = False): """ Created: 12-Aug-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/680 :param df_results: the regression test results """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._process(df_results) def results(self) -> (DataFrame, DataFrame): return self.__df_gold_analysis, self.__df_standard_analysis def _process(self, df_results: DataFrame) -> None: """ Purpose: Split the Regression Results into Gold vs. Standard and perform a summarized analysis on each :param df_results: the regression test results """ from testsuite.certifications.dmo import RegressionTestSplitter from testsuite.certifications.dmo import RegressionResultAnalysis df_gold, df_standard = RegressionTestSplitter(df_results).results() def analyze_gold_regression(): if df_gold.empty: self.logger.warning("Gold Regression is empty") return pd.DataFrame([{ "Result": None, "Vendor": None, "Total": 0, "Failed": 0, "SuccessRate": 0}]) return RegressionResultAnalysis(df_gold, is_debug=self._is_debug).results() def analyze_standard_regression(): if df_standard.empty: self.logger.warning("Standard Regression is empty") return pd.DataFrame([{ "Result": None, "Vendor": None, "Total": 0, "Failed": 0, "SuccessRate": 0}]) return RegressionResultAnalysis(df_standard, is_debug=self._is_debug).results() self.__df_gold_analysis = analyze_gold_regression() self.__df_standard_analysis = analyze_standard_regression() ``` #### File: certifications/svc/run_regression_suite.py ```python from tabulate import tabulate from base import BaseObject class RunRegressionSuite(BaseObject): def __init__(self, regression: dict, segment_by_vendor: bool, vendor_name: str = None, log_results: bool = False, is_debug: bool = False): """ Created: 9-Aug-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/680 Updated: 13-Aug-2019 <EMAIL> * add 'vendor-name' as a parameter https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/729 :param regression: :param segment_by_vendor: :param vendor_name: the vendor to perform the regression on e.g., vendor='SAP' will only run the regression on SAP Certifications None run regression on all certifications :param log_results: :param is_debug: """ BaseObject.__init__(self, __name__) self._is_debug = is_debug self._log_results = log_results self._segment_by_vendor = segment_by_vendor self._svcresult = self._process(regression=regression, vendor_name=vendor_name) def svcresult(self) -> dict: return self._svcresult def _process(self, regression: dict, vendor_name: str = None) -> dict: """ Purpose: Execute a Regression Suite :param regression: the configuration for a regression suite is a dictionary with three entries: { 'name': 'self-reported certifications', 'file': 'regressions/certifications.csv', 'suite': 'self_certification' } :param vendor_name: the vendor to perform the regression on e.g., vendor='SAP' will only run the regression on SAP Certifications None run regression on all certifications :return: a dictionary of output { 'results': <the results DataFrame>, 'analysis': <the analysis DataFrame> } the 'results' DataFrame contains something like this: +----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------+ | | ActualResults | ExpectedResult | InputText | NormalizedText | Pass | |----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------| | 0 | Certification, SAP Business One | ABAP for SAP HANA 2.0 | sap hana abap 2.0 certification from sap | sap_business_one abap 2 0 certification from sap_center | False | | 1 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | SAP Certified Development Specialist - ABAP for SAP HANA 2.0 | sap_center certification development specialist abap for sap_business_one 2 0 | False | | 2 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | The "SAP Certified Development Specialist - ABAP for SAP HANA 2.0" certification exam | the sap_business_one certification development specialist abap for sap_business_one 2 0 professional_certification | False | | 3 | Certification, SAP Business One | ABAP for SAP HANA 2.0 | ABAP for SAP HANA cert | abap for sap_business_one certification | False | | 4 | SAP Business One | ABAP for SAP HANA 2.0 | ABAP for SAP HANA 2.0. Exam Code | abap for sap_business_one 2 0 exam code | False | | 5 | Certification, Online, SAP Business One | ABAP for SAP HANA 2.0 | SAP ABAP for HANA Certification Online Practice | sap_business_one abap for hana certification online practice | False | | 6 | Certification, SAP Business One, Specialist | ABAP for SAP HANA 2.0 | Certified Development Specialist - ABAP for SAP HANA 2.0 | certification development specialist abap for sap_business_one 2 0 | False | +----+---------------------------------------------+-----------------------+---------------------------------------------------------------------------------------+--------------------------------------------------------------------------------------------------------------------+--------+ the 'analysis' DataFrame contains something like this: +----+----------+-----------------------+---------------+---------+ | | Failed | Result | SuccessRate | Total | |----+----------+-----------------------+---------------+---------| | 0 | 0 | ABAP for SAP HANA 2.0 | 100 | 6 | +----+----------+-----------------------+---------------+---------+ """ from testsuite.certifications.dmo import RegressionInputTransformer from testsuite.certifications.dmo import RegressionAnalysisSummary from testsuite.certifications.svc import AnalyzeRegressionSuite from testsuite.certifications.svc import RegressionSuiteController controller = RegressionSuiteController() df_input = RegressionInputTransformer( regression['file'], vendor_name=vendor_name, is_debug=self._is_debug).dataframe() fn = getattr(controller, regression['suite']) df_results = fn(df_input) if self._log_results: self.logger.debug('\n'.join([ f"Regression Suite Results (name={regression['suite']})", tabulate(df_results, headers='keys', tablefmt='psql')])) df_gold_analysis, df_standard_analysis = AnalyzeRegressionSuite( df_results, is_debug=self._is_debug).results() df_summary = RegressionAnalysisSummary( regression_suite_name=regression['suite'], df_gold_analysis=df_gold_analysis, segment_by_vendor=self._segment_by_vendor, df_standard_analysis=df_standard_analysis, is_debug=self._is_debug).summary() return { "results": df_results, "summary": df_summary, "gold": df_gold_analysis, "standard": df_standard_analysis} ``` #### File: dimensions/bp/dimension_regression_api.py ```python import os from base import BaseObject class DimensionRegressionAPI(BaseObject): """ Regression API for Dimensionality """ def __init__(self, config: list, is_debug: bool = False, log_results: bool = False): """ Created: 20-Aug-2019 <EMAIL> :param config: :param is_debug: :param log_results: """ BaseObject.__init__(self, __name__) self._config = config self._is_debug = is_debug self._log_results = log_results self._input_file = self._find_input_file() def _find_input_file(self) -> str: """ :return: the input file for the regression suite """ for regression in self._config: if regression['suite'] == 'dimensions': file_path = regression['file'] if not os.path.exists(file_path): raise FileNotFoundError(f"Dimemsions Input File Path Not Found: " f"{file_path}") return file_path raise ValueError("Dimemsions Input File Path Not Defined") def by_serial_number(self, serial_number: str): """ Purpose: Load the Regression Test into a DataFrame :param serial_number: Optionally filter the regression test by Serial Number None load all regressions :return: """ from testsuite.dimensions.svc import RunRegressionSuite svc = RunRegressionSuite(input_file=self._input_file, is_debug=self._is_debug) return svc.by_serial_answer(serial_number) ```
{ "source": "jipp/mqttSensorApp", "score": 2 }
#### File: jipp/mqttSensorApp/moveBinary.py ```python Import("env") from shutil import copyfile import os def after_bin(source, target, env): version = "" print("source: " + str(source[0])) print("target: " + str(target[0])) cppdefines = env.ParseFlags(env['BUILD_FLAGS']).get("CPPDEFINES") for arr in cppdefines: if len(arr) == 2: if arr[0] == "VERSION": version = arr[1] if version == "": version = "mqttSensorApp" path = "bin" srcFile = str(target[0]) dstFile = os.path.join(path, version.strip('\\"') + ".bin") if not os.path.exists(path): os.makedirs(path) print("src: " + srcFile) print("dst: " + dstFile) copyfile(srcFile, dstFile) print("Current build targets", map(str, BUILD_TARGETS)) env.AddPostAction("$BUILD_DIR/firmware.bin", after_bin) ```
{ "source": "jippo015/Sub-Zero.bundle", "score": 2 }
#### File: Code/interface/advanced.py ```python import datetime import StringIO import glob import os import traceback import urlparse from zipfile import ZipFile, ZIP_DEFLATED from subzero.language import Language from subzero.lib.io import FileIO from subzero.constants import PREFIX, PLUGIN_IDENTIFIER from menu_helpers import SubFolderObjectContainer, debounce, set_refresh_menu_state, ZipObject, ObjectContainer, route from main import fatality from support.helpers import timestamp, pad_title from support.config import config from support.lib import Plex from support.storage import reset_storage, log_storage, get_subtitle_storage from support.scheduler import scheduler from support.items import set_mods_for_part, get_item_kind_from_rating_key from support.i18n import _ @route(PREFIX + '/advanced') def AdvancedMenu(randomize=None, header=None, message=None): oc = SubFolderObjectContainer( header=header or _("Internal stuff, pay attention!"), message=message, no_cache=True, no_history=True, replace_parent=False, title2=_("Advanced")) if config.lock_advanced_menu and not config.pin_correct: oc.add(DirectoryObject( key=Callback( PinMenu, randomize=timestamp(), success_go_to=_("advanced")), title=pad_title(_("Enter PIN")), summary=_("The owner has restricted the access to this menu. Please enter the correct pin"), )) return oc oc.add(DirectoryObject( key=Callback(TriggerRestart, randomize=timestamp()), title=pad_title(_("Restart the plugin")), )) oc.add(DirectoryObject( key=Callback(GetLogsLink), title=_("Get my logs (copy the appearing link and open it in your browser, please)"), summary=_("Copy the appearing link and open it in your browser, please"), )) oc.add(DirectoryObject( key=Callback(TriggerBetterSubtitles, randomize=timestamp()), title=pad_title(_("Trigger find better subtitles")), )) oc.add(DirectoryObject( key=Callback(SkipFindBetterSubtitles, randomize=timestamp()), title=pad_title(_("Skip next find better subtitles (sets last run to now)")), )) oc.add(DirectoryObject( key=Callback(SkipRecentlyAddedMissing, randomize=timestamp()), title=pad_title(_("Skip next find recently added with missing subtitles (sets last run to now)")), )) oc.add(DirectoryObject( key=Callback(TriggerStorageMaintenance, randomize=timestamp()), title=pad_title(_("Trigger subtitle storage maintenance")), )) oc.add(DirectoryObject( key=Callback(TriggerStorageMigration, randomize=timestamp()), title=pad_title(_("Trigger subtitle storage migration (expensive)")), )) oc.add(DirectoryObject( key=Callback(TriggerCacheMaintenance, randomize=timestamp()), title=pad_title(_("Trigger cache maintenance (refiners, providers and packs/archives)")), )) oc.add(DirectoryObject( key=Callback(ApplyDefaultMods, randomize=timestamp()), title=pad_title(_("Apply configured default subtitle mods to all (active) stored subtitles")), )) oc.add(DirectoryObject( key=Callback(ReApplyMods, randomize=timestamp()), title=pad_title(_("Re-Apply mods of all stored subtitles")), )) oc.add(DirectoryObject( key=Callback(LogStorage, key="tasks", randomize=timestamp()), title=pad_title(_("Log the plugin's scheduled tasks state storage")), )) oc.add(DirectoryObject( key=Callback(LogStorage, key="ignore", randomize=timestamp()), title=pad_title(_("Log the plugin's internal ignorelist storage")), )) oc.add(DirectoryObject( key=Callback(LogStorage, key=None, randomize=timestamp()), title=pad_title(_("Log the plugin's complete state storage")), )) oc.add(DirectoryObject( key=Callback(ResetStorage, key="tasks", randomize=timestamp()), title=pad_title(_("Reset the plugin's scheduled tasks state storage")), )) oc.add(DirectoryObject( key=Callback(ResetStorage, key="ignore", randomize=timestamp()), title=pad_title(_("Reset the plugin's internal ignorelist storage")), )) oc.add(DirectoryObject( key=Callback(ResetStorage, key="menu_history", randomize=timestamp()), title=pad_title(_("Reset the plugin's menu history storage")), )) oc.add(DirectoryObject( key=Callback(InvalidateCache, randomize=timestamp()), title=pad_title(_("Invalidate Sub-Zero metadata caches (subliminal)")), )) oc.add(DirectoryObject( key=Callback(ResetProviderThrottle, randomize=timestamp()), title=pad_title(_("Reset provider throttle states")), )) return oc def DispatchRestart(): Thread.CreateTimer(1.0, Restart) @route(PREFIX + '/advanced/restart/trigger') @debounce def TriggerRestart(randomize=None): set_refresh_menu_state(_("Restarting the plugin")) DispatchRestart() return fatality( header=_("Restart triggered, please wait about 5 seconds"), force_title=" ", only_refresh=True, replace_parent=True, no_history=True, randomize=timestamp()) @route(PREFIX + '/advanced/restart/execute') @debounce def Restart(randomize=None): Plex[":/plugins"].restart(PLUGIN_IDENTIFIER) @route(PREFIX + '/storage/reset', sure=bool) @debounce def ResetStorage(key, randomize=None, sure=False): if not sure: oc = SubFolderObjectContainer( no_history=True, title1=_("Reset subtitle storage"), title2=_("Are you sure?")) oc.add(DirectoryObject( key=Callback( ResetStorage, key=key, sure=True, randomize=timestamp()), title=pad_title(_("Are you really sure?")), )) return oc reset_storage(key) if key == "tasks": # reinitialize the scheduler scheduler.init_storage() scheduler.setup_tasks() return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("Information Storage (%s) reset", key) ) @route(PREFIX + '/storage/log') def LogStorage(key, randomize=None): log_storage(key) return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("Information Storage (%s) logged", key) ) @route(PREFIX + '/triggerbetter') @debounce def TriggerBetterSubtitles(randomize=None): scheduler.dispatch_task("FindBetterSubtitles") return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("FindBetterSubtitles triggered") ) @route(PREFIX + '/skipbetter') @debounce def SkipFindBetterSubtitles(randomize=None): task = scheduler.task("FindBetterSubtitles") task.last_run = datetime.datetime.now() return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("FindBetterSubtitles skipped") ) @route(PREFIX + '/skipram') @debounce def SkipRecentlyAddedMissing(randomize=None): task = scheduler.task("SearchAllRecentlyAddedMissing") task.last_run = datetime.datetime.now() return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("SearchAllRecentlyAddedMissing skipped") ) @route(PREFIX + '/triggermaintenance') @debounce def TriggerStorageMaintenance(randomize=None): scheduler.dispatch_task("SubtitleStorageMaintenance") return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("SubtitleStorageMaintenance triggered") ) @route(PREFIX + '/triggerstoragemigration') @debounce def TriggerStorageMigration(randomize=None): scheduler.dispatch_task("MigrateSubtitleStorage") return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("MigrateSubtitleStorage triggered") ) @route(PREFIX + '/triggercachemaintenance') @debounce def TriggerCacheMaintenance(randomize=None): scheduler.dispatch_task("CacheMaintenance") return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("TriggerCacheMaintenance triggered") ) def apply_default_mods(reapply_current=False, scandir_generic=False): storage = get_subtitle_storage() subs_applied = 0 try: for fn in storage.get_all_files(scandir_generic=scandir_generic): data = storage.load(None, filename=fn) if data: video_id = data.video_id item_type = get_item_kind_from_rating_key(video_id) if not item_type: continue for part_id, part in data.parts.iteritems(): for lang, subs in part.iteritems(): current_sub = subs.get("current") if not current_sub: continue sub = subs[current_sub] if not sub.content: continue current_mods = sub.mods or [] if not reapply_current: add_mods = list(set(config.default_mods).difference(set(current_mods))) if not add_mods: continue else: if not current_mods: continue add_mods = [] try: set_mods_for_part(video_id, part_id, Language.fromietf(lang), item_type, add_mods, mode="add") except: Log.Error("Couldn't set mods for %s:%s: %s", video_id, part_id, traceback.format_exc()) continue subs_applied += 1 except OSError: return apply_default_mods(reapply_current=reapply_current, scandir_generic=True) storage.destroy() Log.Debug("Applied mods to %i items" % subs_applied) @route(PREFIX + '/applydefaultmods') @debounce def ApplyDefaultMods(randomize=None): Thread.CreateTimer(1.0, apply_default_mods) return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("This may take some time ...") ) @route(PREFIX + '/reapplyallmods') @debounce def ReApplyMods(randomize=None): Thread.CreateTimer(1.0, apply_default_mods, reapply_current=True) return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("This may take some time ...") ) @route(PREFIX + '/get_logs_link') def GetLogsLink(): if not config.plex_token: oc = ObjectContainer( title2=_("Download Logs"), no_cache=True, no_history=True, header=_("Sorry, feature unavailable"), message=_("Universal Plex token not available")) return oc # try getting the link base via the request in context, first, otherwise use the public ip req_headers = Core.sandbox.context.request.headers get_external_ip = True link_base = "" if "Origin" in req_headers: link_base = req_headers["Origin"] Log.Debug("Using origin-based link_base") get_external_ip = False elif "Referer" in req_headers: parsed = urlparse.urlparse(req_headers["Referer"]) link_base = "%s://%s%s" % (parsed.scheme, parsed.hostname, (":%s" % parsed.port) if parsed.port else "") Log.Debug("Using referer-based link_base") get_external_ip = False if get_external_ip or "plex.tv" in link_base: ip = Core.networking.http_request("http://www.plexapp.com/ip.php", cacheTime=7200).content.strip() link_base = "https://%s:32400" % ip Log.Debug("Using ip-based fallback link_base") logs_link = "%s%s?X-Plex-Token=%s" % (link_base, PREFIX + '/logs', config.plex_token) oc = ObjectContainer( title2=logs_link, no_cache=True, no_history=True, header=_("Copy this link and open this in your browser, please"), message=logs_link) return oc @route(PREFIX + '/logs') def DownloadLogs(): buff = StringIO.StringIO() zip_archive = ZipFile(buff, mode='w', compression=ZIP_DEFLATED) logs = sorted(glob.glob(config.plugin_log_path + '*')) + [config.server_log_path] for path in logs: data = StringIO.StringIO() data.write(FileIO.read(path)) zip_archive.writestr(os.path.basename(path), data.getvalue()) zip_archive.close() return ZipObject(buff.getvalue()) @route(PREFIX + '/invalidatecache') @debounce def InvalidateCache(randomize=None): from subliminal.cache import region if config.new_style_cache: region.backend.clear() else: region.invalidate() return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("Cache invalidated") ) @route(PREFIX + '/pin') def PinMenu(pin="", randomize=None, success_go_to="channel"): oc = ObjectContainer( title2=_("Enter PIN number ") + str(len(pin) + 1), no_cache=True, no_history=True, skip_pin_lock=True) if pin == config.pin: Dict["pin_correct_time"] = datetime.datetime.now() config.locked = False if success_go_to == "channel": return fatality( force_title=_("PIN correct"), header=_("PIN correct"), no_history=True) elif success_go_to == "advanced": return AdvancedMenu(randomize=timestamp()) for i in range(10): oc.add(DirectoryObject( key=Callback( PinMenu, randomize=timestamp(), pin=pin + str(i), success_go_to=success_go_to), title=pad_title(str(i)), )) oc.add(DirectoryObject( key=Callback( PinMenu, randomize=timestamp(), success_go_to=success_go_to), title=pad_title(_("Reset")), )) return oc @route(PREFIX + '/pin_lock') def ClearPin(randomize=None): Dict["pin_correct_time"] = None config.locked = True return fatality(force_title=_("Menu locked"), header=" ", no_history=True) @route(PREFIX + '/reset_throttle') def ResetProviderThrottle(randomize=None): Dict["provider_throttle"] = {} Dict.Save() return AdvancedMenu( randomize=timestamp(), header=_("Success"), message=_("Provider throttles reset") ) ``` #### File: Code/support/data.py ```python import traceback def dispatch_migrate(): try: migrate() except: Log.Error("Migration failed: %s" % traceback.format_exc()) del Dict["subs"] Dict.Save() def migrate(): """ some Dict/Data migrations here, no need for a more in-depth migration path for now :return: """ # migrate subtitle history from Dict to Data if "history" in Dict and Dict["history"].get("history_items"): Log.Debug("Running migration for history data") from support.history import get_history history = get_history() for item in reversed(Dict["history"]["history_items"]): history.add(item.item_title, item.rating_key, item.section_title, subtitle=item.subtitle, mode=item.mode, time=item.time) del Dict["history"] history.destroy() Dict.Save() # migrate subtitle storage from Dict to Data if "subs" in Dict: from support.storage import get_subtitle_storage from subzero.subtitle_storage import StoredSubtitle from support.plex_media import get_item subtitle_storage = get_subtitle_storage() for video_id, parts in Dict["subs"].iteritems(): try: item = get_item(video_id) except: continue if not item: continue stored_subs = subtitle_storage.load_or_new(item) stored_subs.version = 1 Log.Debug(u"Migrating %s" % video_id) stored_any = False for part_id, lang_dict in parts.iteritems(): part_id = str(part_id) Log.Debug(u"Migrating %s, %s" % (video_id, part_id)) for lang, subs in lang_dict.iteritems(): lang = str(lang) if "current" in subs: current_key = subs["current"] provider_name, subtitle_id = current_key sub = subs.get(current_key) if sub and sub.get("title") and sub.get("mode"): # ditch legacy data without sufficient info stored_subs.title = sub["title"] new_sub = StoredSubtitle(sub["score"], sub["storage"], sub["hash"], provider_name, subtitle_id, date_added=sub["date_added"], mode=sub["mode"]) if part_id not in stored_subs.parts: stored_subs.parts[part_id] = {} if lang not in stored_subs.parts[part_id]: stored_subs.parts[part_id][lang] = {} Log.Debug(u"Migrating %s, %s, %s" % (video_id, part_id, current_key)) stored_subs.parts[part_id][lang][current_key] = new_sub stored_subs.parts[part_id][lang]["current"] = current_key stored_any = True if stored_any: subtitle_storage.save(stored_subs) subtitle_storage.destroy() del Dict["subs"] Dict.Save() ``` #### File: Code/support/i18n.py ```python import inspect from support.config import config core = getattr(Data, "_core") # get original localization module in order to access its base classes later on def get_localization_module(): cls = getattr(core.localization, "__class__") return inspect.getmodule(cls) plex_i18n_module = get_localization_module() def old_style_placeholders_count(s): # fixme: incomplete, use regex return sum(s.count(c) for c in ["%s", "%d", "%r", "%f", "%i"]) def check_old_style_placeholders(k, args): # replace escaped %'s? k = k.__str__().replace("%%", "") if "%(" in k: Log.Error(u"%r defines named placeholders for formatting" % k) return "NEEDS NAMED ARGUMENTS" placeholders_found = old_style_placeholders_count(k) if placeholders_found and not args: Log.Error(u"%r requires a arguments for formatting" % k) return "NEEDS FORMAT ARGUMENTS" elif not placeholders_found and args: Log.Error(u"%r doesn't define placeholders for formatting" % k) return "HAS NO FORMAT ARGUMENTS" elif placeholders_found and placeholders_found != len(args): Log.Error(u"%r wrong amount of arguments supplied for formatting" % k) return "WRONG FORMAT ARGUMENT COUNT" class SmartLocalStringFormatter(plex_i18n_module.LocalStringFormatter): """ this allows the use of dictionaries for string formatting, also does some sanity checking on the keys and values """ def __init__(self, string1, string2, locale=None): if isinstance(string2, tuple): # dictionary passed if len(string2) == 1 and hasattr(string2[0], "iteritems"): string2 = string2[0] if config.debug_i18n: if "%(" not in string1.__str__().replace("%%", ""): Log.Error(u"%r: dictionary for non-named format string supplied" % string1.__str__()) string1 = "%s" string2 = "NO NAMED ARGUMENTS" # arguments elif len(string2) >= 1 and config.debug_i18n: msg = check_old_style_placeholders(string1, string2) if msg: string1 = "%s" string2 = msg setattr(self, "_string1", string1) setattr(self, "_string2", string2) setattr(self, "_locale", locale) def local_string_with_optional_format(key, *args, **kwargs): if kwargs: args = (kwargs,) else: args = tuple(args) if args: # fixme: may not be the best idea as this evaluates the string early try: return unicode(SmartLocalStringFormatter(plex_i18n_module.LocalString(core, key, Locale.CurrentLocale), args)) except (TypeError, ValueError): Log.Exception("Broken translation!") Log.Debug("EN string: %s", plex_i18n_module.LocalString(core, key, "en")) Log.Debug("%s string: %r", Locale.CurrentLocale, unicode(plex_i18n_module.LocalString(core, key, Locale.CurrentLocale))) return unicode(SmartLocalStringFormatter(plex_i18n_module.LocalString(core, key, "en"), args)) # check string instances for arguments if config.debug_i18n: msg = check_old_style_placeholders(key, args) if msg: return msg try: return unicode(plex_i18n_module.LocalString(core, key, Locale.CurrentLocale)) except TypeError: Log.Exception("Broken translation!") return unicode(plex_i18n_module.LocalString(core, key, "en")) _ = local_string_with_optional_format def is_localized_string(s): return hasattr(s, "localize") ``` #### File: Code/support/ignore.py ```python from subzero.lib.dict import DictProxy from config import config class ExcludeDict(DictProxy): store = "ignore" # single item keys returned by helpers.items.getItems mapped to their parents translate_keys = { "section": "sections", "show": "series", "movie": "videos", "episode": "videos", "season": "seasons", } # getItems types mapped to their verbose names keys_verbose = { "sections": "Section", "series": "Series", "videos": "Item", "seasons": "Season", } key_order = ("sections", "series", "videos", "seasons") def __len__(self): try: return sum(len(self.Dict[self.store][key]) for key in self.key_order) except KeyError: # old version self.Dict[self.store] = self.setup_defaults() return 0 def translate_key(self, name): return self.translate_keys.get(name) def verbose(self, name): return self.keys_verbose.get(self.translate_key(name) or name) def get_title_key(self, kind, key): return "%s_%s" % (kind, key) def add_title(self, kind, key, title): self["titles"][self.get_title_key(kind, key)] = title def remove_title(self, kind, key): title_key = self.get_title_key(kind, key) if title_key in self.titles: del self.titles[title_key] def get_title(self, kind, key): title_key = self.get_title_key(kind, key) if title_key in self.titles: return self.titles[title_key] def save(self): Dict.Save() def setup_defaults(self): return {"sections": [], "series": [], "videos": [], "titles": {}, "seasons": []} class IncludeDict(ExcludeDict): store = "include" exclude_list = ExcludeDict(Dict) include_list = IncludeDict(Dict) def get_decision_list(): return include_list if config.include else exclude_list ``` #### File: Code/support/scheduler.py ```python import datetime import logging import traceback from config import config def parse_frequency(s): if s == "never" or s is None: return None, None kind, num, unit = s.split() return int(num), unit class DefaultScheduler(object): queue_thread = None scheduler_thread = None running = False registry = None def __init__(self): self.queue_thread = None self.scheduler_thread = None self.running = False self.registry = [] self.tasks = {} self.init_storage() def init_storage(self): if "tasks" not in Dict: Dict["tasks"] = {"queue": []} Dict.Save() if "queue" not in Dict["tasks"]: Dict["tasks"]["queue"] = [] def get_task_data(self, name): if name not in Dict["tasks"]: raise NotImplementedError("Task missing! %s" % name) if "data" in Dict["tasks"][name]: return Dict["tasks"][name]["data"] def clear_task_data(self, name=None): if name is None: # full clean Log.Debug("Clearing previous task data") if Dict["tasks"]: for task_name in Dict["tasks"].keys(): if task_name == "queue": Dict["tasks"][task_name] = [] continue Dict["tasks"][task_name]["data"] = {} Dict["tasks"][task_name]["running"] = False Dict.Save() return if name not in Dict["tasks"]: raise NotImplementedError("Task missing! %s" % name) Dict["tasks"][name]["data"] = {} Dict["tasks"][name]["running"] = False Dict.Save() Log.Debug("Task data cleared: %s", name) def register(self, task): self.registry.append(task) def setup_tasks(self): # discover tasks; self.tasks = {} for cls in self.registry: task = cls() try: task_frequency = Prefs["scheduler.tasks.%s.frequency" % task.name] except KeyError: task_frequency = getattr(task, "frequency", None) self.tasks[task.name] = {"task": task, "frequency": parse_frequency(task_frequency)} def run(self): self.running = True self.scheduler_thread = Thread.Create(self.scheduler_worker) self.queue_thread = Thread.Create(self.queue_worker) def stop(self): self.running = False def task(self, name): if name not in self.tasks: return None return self.tasks[name]["task"] def is_task_running(self, name): task = self.task(name) if task: return task.running def last_run(self, task): if task not in self.tasks: return None return self.tasks[task]["task"].last_run def next_run(self, task): if task not in self.tasks or not self.tasks[task]["task"].periodic: return None frequency_num, frequency_key = self.tasks[task]["frequency"] if not frequency_num: return None last = self.tasks[task]["task"].last_run use_date = last now = datetime.datetime.now() if not use_date: use_date = now return max(use_date + datetime.timedelta(**{frequency_key: frequency_num}), now) def run_task(self, name, *args, **kwargs): task = self.tasks[name]["task"] if task.running: Log.Debug("Scheduler: Not running %s, as it's currently running.", name) return False Log.Debug("Scheduler: Running task %s", name) try: task.prepare(*args, **kwargs) task.run() except Exception, e: Log.Error("Scheduler: Something went wrong when running %s: %s", name, traceback.format_exc()) finally: try: task.post_run(Dict["tasks"][name]["data"]) except: Log.Error("Scheduler: task.post_run failed for %s: %s", name, traceback.format_exc()) Dict.Save() config.sync_cache() def dispatch_task(self, *args, **kwargs): if "queue" not in Dict["tasks"]: Dict["tasks"]["queue"] = [] Dict["tasks"]["queue"].append((args, kwargs)) def signal(self, name, *args, **kwargs): for task_name in self.tasks.keys(): task = self.task(task_name) if not task: Log.Error("Scheduler: Task %s not found (?!)" % task_name) continue if not task.periodic: continue if task.running: Log.Debug("Scheduler: Sending signal %s to task %s (%s, %s)", name, task_name, args, kwargs) try: status = task.signal(name, *args, **kwargs) except NotImplementedError: Log.Debug("Scheduler: Signal ignored by %s", task_name) continue if status: Log.Debug("Scheduler: Signal accepted by %s", task_name) else: Log.Debug("Scheduler: Signal not accepted by %s", task_name) continue Log.Debug("Scheduler: Not sending signal %s to task %s, because: not running", name, task_name) def queue_worker(self): Thread.Sleep(10.0) while 1: if not self.running: break # single dispatch requested? if Dict["tasks"]["queue"]: # work queue off queue = Dict["tasks"]["queue"][:] Dict["tasks"]["queue"] = [] Dict.Save() for args, kwargs in queue: Log.Debug("Queue: Dispatching single task: %s, %s", args, kwargs) Thread.Create(self.run_task, True, *args, **kwargs) Thread.Sleep(5.0) Thread.Sleep(1) def scheduler_worker(self): Thread.Sleep(10.0) while 1: if not self.running: break # scheduled tasks for name in self.tasks.keys(): now = datetime.datetime.now() info = self.tasks.get(name) if not info: Log.Error("Scheduler: Task %s not found (?!)" % name) continue task = info["task"] if name not in Dict["tasks"] or not task.periodic: continue if task.running: continue frequency_num, frequency_key = info["frequency"] if not frequency_num: continue # run legacy SARAM once if name == "SearchAllRecentlyAddedMissing" and ("hasRunLSARAM" not in Dict or not Dict["hasRunLSARAM"]): task = self.tasks["LegacySearchAllRecentlyAddedMissing"]["task"] task.last_run = None name = "LegacySearchAllRecentlyAddedMissing" Dict["hasRunLSARAM"] = True Dict.Save() if not task.last_run or (task.last_run + datetime.timedelta(**{frequency_key: frequency_num}) <= now): # fixme: scheduled tasks run synchronously. is this the best idea? Thread.Create(self.run_task, True, name) #Thread.Sleep(5.0) #self.run_task(name) Thread.Sleep(5.0) Thread.Sleep(1) scheduler = DefaultScheduler() ``` #### File: Shared/asio/file_opener.py ```python class FileOpener(object): def __init__(self, file_path, parameters=None): self.file_path = file_path self.parameters = parameters self.file = None def __enter__(self): self.file = ASIO.get_handler().open( self.file_path, self.parameters.handlers.get(ASIO.get_handler()) ) return self.file def __exit__(self, exc_type, exc_val, exc_tb): if not self.file: return self.file.close() self.file = None ``` #### File: asio/interfaces/base.py ```python from asio.file import DEFAULT_BUFFER_SIZE class Interface(object): @classmethod def open(cls, file_path, parameters=None): raise NotImplementedError() @classmethod def get_size(cls, fp): raise NotImplementedError() @classmethod def get_path(cls, fp): raise NotImplementedError() @classmethod def seek(cls, fp, pointer, distance): raise NotImplementedError() @classmethod def read(cls, fp, n=DEFAULT_BUFFER_SIZE): raise NotImplementedError() @classmethod def close(cls, fp): raise NotImplementedError() ``` #### File: interfaces/windows/__init__.py ```python from asio.file import File, DEFAULT_BUFFER_SIZE from asio.interfaces.base import Interface import os NULL = 0 if os.name == 'nt': from asio.interfaces.windows.interop import WindowsInterop class WindowsInterface(Interface): @classmethod def open(cls, file_path, parameters=None): """ :type file_path: str :rtype: asio.interfaces.windows.WindowsFile """ if not parameters: parameters = {} return WindowsFile(WindowsInterop.create_file( file_path, parameters.get('desired_access', WindowsInterface.GenericAccess.READ), parameters.get('share_mode', WindowsInterface.ShareMode.ALL), parameters.get('creation_disposition', WindowsInterface.CreationDisposition.OPEN_EXISTING), parameters.get('flags_and_attributes', NULL) )) @classmethod def get_size(cls, fp): """ :type fp: asio.interfaces.windows.WindowsFile :rtype: int """ return WindowsInterop.get_file_size(fp.handle) @classmethod def get_path(cls, fp): """ :type fp: asio.interfaces.windows.WindowsFile :rtype: str """ if not fp.file_map: fp.file_map = WindowsInterop.create_file_mapping(fp.handle, WindowsInterface.Protection.READONLY) if not fp.map_view: fp.map_view = WindowsInterop.map_view_of_file(fp.file_map, WindowsInterface.FileMapAccess.READ, 1) file_name = WindowsInterop.get_mapped_file_name(fp.map_view) return file_name @classmethod def seek(cls, fp, offset, origin): """ :type fp: asio.interfaces.windows.WindowsFile :type offset: int :type origin: int :rtype: int """ return WindowsInterop.set_file_pointer( fp.handle, offset, origin ) @classmethod def read(cls, fp, n=DEFAULT_BUFFER_SIZE): """ :type fp: asio.interfaces.windows.WindowsFile :type n: int :rtype: str """ return WindowsInterop.read(fp.handle, n) @classmethod def read_into(cls, fp, b): """ :type fp: asio.interfaces.windows.WindowsFile :type b: str :rtype: int """ return WindowsInterop.read_into(fp.handle, b) @classmethod def close(cls, fp): """ :type fp: asio.interfaces.windows.WindowsFile :rtype: bool """ if fp.map_view: WindowsInterop.unmap_view_of_file(fp.map_view) if fp.file_map: WindowsInterop.close_handle(fp.file_map) return bool(WindowsInterop.close_handle(fp.handle)) class GenericAccess(object): READ = 0x80000000 WRITE = 0x40000000 EXECUTE = 0x20000000 ALL = 0x10000000 class ShareMode(object): READ = 0x00000001 WRITE = 0x00000002 DELETE = 0x00000004 ALL = READ | WRITE | DELETE class CreationDisposition(object): CREATE_NEW = 1 CREATE_ALWAYS = 2 OPEN_EXISTING = 3 OPEN_ALWAYS = 4 TRUNCATE_EXISTING = 5 class Attribute(object): READONLY = 0x00000001 HIDDEN = 0x00000002 SYSTEM = 0x00000004 DIRECTORY = 0x00000010 ARCHIVE = 0x00000020 DEVICE = 0x00000040 NORMAL = 0x00000080 TEMPORARY = 0x00000100 SPARSE_FILE = 0x00000200 REPARSE_POINT = 0x00000400 COMPRESSED = 0x00000800 OFFLINE = 0x00001000 NOT_CONTENT_INDEXED = 0x00002000 ENCRYPTED = 0x00004000 class Flag(object): WRITE_THROUGH = 0x80000000 OVERLAPPED = 0x40000000 NO_BUFFERING = 0x20000000 RANDOM_ACCESS = 0x10000000 SEQUENTIAL_SCAN = 0x08000000 DELETE_ON_CLOSE = 0x04000000 BACKUP_SEMANTICS = 0x02000000 POSIX_SEMANTICS = 0x01000000 OPEN_REPARSE_POINT = 0x00200000 OPEN_NO_RECALL = 0x00100000 FIRST_PIPE_INSTANCE = 0x00080000 class Protection(object): NOACCESS = 0x01 READONLY = 0x02 READWRITE = 0x04 WRITECOPY = 0x08 EXECUTE = 0x10 EXECUTE_READ = 0x20, EXECUTE_READWRITE = 0x40 EXECUTE_WRITECOPY = 0x80 GUARD = 0x100 NOCACHE = 0x200 WRITECOMBINE = 0x400 class FileMapAccess(object): COPY = 0x0001 WRITE = 0x0002 READ = 0x0004 ALL_ACCESS = 0x001f EXECUTE = 0x0020 class WindowsFile(File): platform_handler = WindowsInterface def __init__(self, handle, *args, **kwargs): super(WindowsFile, self).__init__(*args, **kwargs) self.handle = handle self.file_map = None self.map_view = None def readinto(self, b): return self.get_handler().read_into(self, b) def __str__(self): return "<asio_windows.WindowsFile file: %s>" % self.handle ``` #### File: babelfish/converters/__init__.py ```python import collections from pkg_resources import iter_entry_points, EntryPoint from ..exceptions import LanguageConvertError, LanguageReverseError # from https://github.com/kennethreitz/requests/blob/master/requests/structures.py class CaseInsensitiveDict(collections.MutableMapping): """A case-insensitive ``dict``-like object. Implements all methods and operations of ``collections.MutableMapping`` as well as dict's ``copy``. Also provides ``lower_items``. All keys are expected to be strings. The structure remembers the case of the last key to be set, and ``iter(instance)``, ``keys()``, ``items()``, ``iterkeys()``, and ``iteritems()`` will contain case-sensitive keys. However, querying and contains testing is case insensitive: cid = CaseInsensitiveDict() cid['English'] = 'eng' cid['ENGLISH'] == 'eng' # True list(cid) == ['English'] # True If the constructor, ``.update``, or equality comparison operations are given keys that have equal ``.lower()``s, the behavior is undefined. """ def __init__(self, data=None, **kwargs): self._store = dict() if data is None: data = {} self.update(data, **kwargs) def __setitem__(self, key, value): # Use the lowercased key for lookups, but store the actual # key alongside the value. self._store[key.lower()] = (key, value) def __getitem__(self, key): return self._store[key.lower()][1] def __delitem__(self, key): del self._store[key.lower()] def __iter__(self): return (casedkey for casedkey, mappedvalue in self._store.values()) def __len__(self): return len(self._store) def lower_items(self): """Like iteritems(), but with all lowercase keys.""" return ( (lowerkey, keyval[1]) for (lowerkey, keyval) in self._store.items() ) def __eq__(self, other): if isinstance(other, collections.Mapping): other = CaseInsensitiveDict(other) else: return NotImplemented # Compare insensitively return dict(self.lower_items()) == dict(other.lower_items()) # Copy is required def copy(self): return CaseInsensitiveDict(self._store.values()) def __repr__(self): return '%s(%r)' % (self.__class__.__name__, dict(self.items())) class LanguageConverter(object): """A :class:`LanguageConverter` supports converting an alpha3 language code with an alpha2 country code and a script code into a custom code .. attribute:: codes Set of possible custom codes """ def convert(self, alpha3, country=None, script=None): """Convert an alpha3 language code with an alpha2 country code and a script code into a custom code :param string alpha3: ISO-639-3 language code :param country: ISO-3166 country code, if any :type country: string or None :param script: ISO-15924 script code, if any :type script: string or None :return: the corresponding custom code :rtype: string :raise: :class:`~babelfish.exceptions.LanguageConvertError` """ raise NotImplementedError class LanguageReverseConverter(LanguageConverter): """A :class:`LanguageConverter` able to reverse a custom code into a alpha3 ISO-639-3 language code, alpha2 ISO-3166-1 country code and ISO-15924 script code """ def reverse(self, code): """Reverse a custom code into alpha3, country and script code :param string code: custom code to reverse :return: the corresponding alpha3 ISO-639-3 language code, alpha2 ISO-3166-1 country code and ISO-15924 script code :rtype: tuple :raise: :class:`~babelfish.exceptions.LanguageReverseError` """ raise NotImplementedError class LanguageEquivalenceConverter(LanguageReverseConverter): """A :class:`LanguageEquivalenceConverter` is a utility class that allows you to easily define a :class:`LanguageReverseConverter` by only specifying the dict from alpha3 to their corresponding symbols. You must specify the dict of equivalence as a class variable named SYMBOLS. If you also set the class variable CASE_SENSITIVE to ``True`` then the reverse conversion function will be case-sensitive (it is case-insensitive by default). Example:: class MyCodeConverter(babelfish.LanguageEquivalenceConverter): CASE_SENSITIVE = True SYMBOLS = {'fra': 'mycode1', 'eng': 'mycode2'} """ CASE_SENSITIVE = False def __init__(self): self.codes = set() self.to_symbol = {} if self.CASE_SENSITIVE: self.from_symbol = {} else: self.from_symbol = CaseInsensitiveDict() for alpha3, symbol in self.SYMBOLS.items(): self.to_symbol[alpha3] = symbol self.from_symbol[symbol] = (alpha3, None, None) self.codes.add(symbol) def convert(self, alpha3, country=None, script=None): try: return self.to_symbol[alpha3] except KeyError: raise LanguageConvertError(alpha3, country, script) def reverse(self, code): try: return self.from_symbol[code] except KeyError: raise LanguageReverseError(code) class CountryConverter(object): """A :class:`CountryConverter` supports converting an alpha2 country code into a custom code .. attribute:: codes Set of possible custom codes """ def convert(self, alpha2): """Convert an alpha2 country code into a custom code :param string alpha2: ISO-3166-1 language code :return: the corresponding custom code :rtype: string :raise: :class:`~babelfish.exceptions.CountryConvertError` """ raise NotImplementedError class CountryReverseConverter(CountryConverter): """A :class:`CountryConverter` able to reverse a custom code into a alpha2 ISO-3166-1 country code """ def reverse(self, code): """Reverse a custom code into alpha2 code :param string code: custom code to reverse :return: the corresponding alpha2 ISO-3166-1 country code :rtype: string :raise: :class:`~babelfish.exceptions.CountryReverseError` """ raise NotImplementedError class ConverterManager(object): """Manager for babelfish converters behaving like a dict with lazy loading Loading is done in this order: * Entry point converters * Registered converters * Internal converters .. attribute:: entry_point The entry point where to look for converters .. attribute:: internal_converters Internal converters with entry point syntax """ entry_point = '' internal_converters = [] def __init__(self): #: Registered converters with entry point syntax self.registered_converters = [] #: Loaded converters self.converters = {} def __getitem__(self, name): """Get a converter, lazy loading it if necessary""" if name in self.converters: return self.converters[name] for ep in iter_entry_points(self.entry_point): if ep.name == name: self.converters[ep.name] = ep.load()() return self.converters[ep.name] for ep in (EntryPoint.parse(c) for c in self.registered_converters + self.internal_converters): if ep.name == name: # `require` argument of ep.load() is deprecated in newer versions of setuptools if hasattr(ep, 'resolve'): plugin = ep.resolve() elif hasattr(ep, '_load'): plugin = ep._load() else: plugin = ep.load(require=False) self.converters[ep.name] = plugin() return self.converters[ep.name] raise KeyError(name) def __setitem__(self, name, converter): """Load a converter""" self.converters[name] = converter def __delitem__(self, name): """Unload a converter""" del self.converters[name] def __iter__(self): """Iterator over loaded converters""" return iter(self.converters) def register(self, entry_point): """Register a converter :param string entry_point: converter to register (entry point syntax) :raise: ValueError if already registered """ if entry_point in self.registered_converters: raise ValueError('Already registered') self.registered_converters.insert(0, entry_point) def unregister(self, entry_point): """Unregister a converter :param string entry_point: converter to unregister (entry point syntax) """ self.registered_converters.remove(entry_point) def __contains__(self, name): return name in self.converters ``` #### File: Shared/babelfish/script.py ```python from collections import namedtuple from pkg_resources import resource_stream # @UnresolvedImport from . import basestr #: Script code to script name mapping SCRIPTS = {} #: List of countries in the ISO-15924 as namedtuple of code, number, name, french_name, pva and date SCRIPT_MATRIX = [] #: The namedtuple used in the :data:`SCRIPT_MATRIX` IsoScript = namedtuple('IsoScript', ['code', 'number', 'name', 'french_name', 'pva', 'date']) f = resource_stream('babelfish', 'data/iso15924-utf8-20131012.txt') f.readline() for l in f: l = l.decode('utf-8').strip() if not l or l.startswith('#'): continue script = IsoScript._make(l.split(';')) SCRIPT_MATRIX.append(script) SCRIPTS[script.code] = script.name f.close() class Script(object): """A human writing system A script is represented by a 4-letter code from the ISO-15924 standard :param string script: 4-letter ISO-15924 script code """ def __init__(self, script): if script not in SCRIPTS: raise ValueError('%r is not a valid script' % script) #: ISO-15924 4-letter script code self.code = script @property def name(self): """English name of the script""" return SCRIPTS[self.code] def __getstate__(self): return self.code def __setstate__(self, state): self.code = state def __hash__(self): return hash(self.code) def __eq__(self, other): if isinstance(other, basestr): return self.code == other if not isinstance(other, Script): return False return self.code == other.code def __ne__(self, other): return not self == other def __repr__(self): return '<Script [%s]>' % self def __str__(self): return self.code ``` #### File: Shared/babelfish/tests.py ```python from __future__ import unicode_literals import re import sys import pickle from unittest import TestCase, TestSuite, TestLoader, TextTestRunner from pkg_resources import resource_stream # @UnresolvedImport from babelfish import (LANGUAGES, Language, Country, Script, language_converters, country_converters, LanguageReverseConverter, LanguageConvertError, LanguageReverseError, CountryReverseError) if sys.version_info[:2] <= (2, 6): _MAX_LENGTH = 80 def safe_repr(obj, short=False): try: result = repr(obj) except Exception: result = object.__repr__(obj) if not short or len(result) < _MAX_LENGTH: return result return result[:_MAX_LENGTH] + ' [truncated]...' class _AssertRaisesContext(object): """A context manager used to implement TestCase.assertRaises* methods.""" def __init__(self, expected, test_case, expected_regexp=None): self.expected = expected self.failureException = test_case.failureException self.expected_regexp = expected_regexp def __enter__(self): return self def __exit__(self, exc_type, exc_value, tb): if exc_type is None: try: exc_name = self.expected.__name__ except AttributeError: exc_name = str(self.expected) raise self.failureException( "{0} not raised".format(exc_name)) if not issubclass(exc_type, self.expected): # let unexpected exceptions pass through return False self.exception = exc_value # store for later retrieval if self.expected_regexp is None: return True expected_regexp = self.expected_regexp if isinstance(expected_regexp, basestring): expected_regexp = re.compile(expected_regexp) if not expected_regexp.search(str(exc_value)): raise self.failureException('"%s" does not match "%s"' % (expected_regexp.pattern, str(exc_value))) return True class _Py26FixTestCase(object): def assertIsNone(self, obj, msg=None): """Same as self.assertTrue(obj is None), with a nicer default message.""" if obj is not None: standardMsg = '%s is not None' % (safe_repr(obj),) self.fail(self._formatMessage(msg, standardMsg)) def assertIsNotNone(self, obj, msg=None): """Included for symmetry with assertIsNone.""" if obj is None: standardMsg = 'unexpectedly None' self.fail(self._formatMessage(msg, standardMsg)) def assertIn(self, member, container, msg=None): """Just like self.assertTrue(a in b), but with a nicer default message.""" if member not in container: standardMsg = '%s not found in %s' % (safe_repr(member), safe_repr(container)) self.fail(self._formatMessage(msg, standardMsg)) def assertNotIn(self, member, container, msg=None): """Just like self.assertTrue(a not in b), but with a nicer default message.""" if member in container: standardMsg = '%s unexpectedly found in %s' % (safe_repr(member), safe_repr(container)) self.fail(self._formatMessage(msg, standardMsg)) def assertIs(self, expr1, expr2, msg=None): """Just like self.assertTrue(a is b), but with a nicer default message.""" if expr1 is not expr2: standardMsg = '%s is not %s' % (safe_repr(expr1), safe_repr(expr2)) self.fail(self._formatMessage(msg, standardMsg)) def assertIsNot(self, expr1, expr2, msg=None): """Just like self.assertTrue(a is not b), but with a nicer default message.""" if expr1 is expr2: standardMsg = 'unexpectedly identical: %s' % (safe_repr(expr1),) self.fail(self._formatMessage(msg, standardMsg)) else: class _Py26FixTestCase(object): pass class TestScript(TestCase, _Py26FixTestCase): def test_wrong_script(self): self.assertRaises(ValueError, lambda: Script('Azer')) def test_eq(self): self.assertEqual(Script('Latn'), Script('Latn')) def test_ne(self): self.assertNotEqual(Script('Cyrl'), Script('Latn')) def test_hash(self): self.assertEqual(hash(Script('Hira')), hash('Hira')) def test_pickle(self): self.assertEqual(pickle.loads(pickle.dumps(Script('Latn'))), Script('Latn')) class TestCountry(TestCase, _Py26FixTestCase): def test_wrong_country(self): self.assertRaises(ValueError, lambda: Country('ZZ')) def test_eq(self): self.assertEqual(Country('US'), Country('US')) def test_ne(self): self.assertNotEqual(Country('GB'), Country('US')) self.assertIsNotNone(Country('US')) def test_hash(self): self.assertEqual(hash(Country('US')), hash('US')) def test_pickle(self): for country in [Country('GB'), Country('US')]: self.assertEqual(pickle.loads(pickle.dumps(country)), country) def test_converter_name(self): self.assertEqual(Country('US').name, 'UNITED STATES') self.assertEqual(Country.fromname('UNITED STATES'), Country('US')) self.assertEqual(Country.fromcode('UNITED STATES', 'name'), Country('US')) self.assertRaises(CountryReverseError, lambda: Country.fromname('ZZZZZ')) self.assertEqual(len(country_converters['name'].codes), 249) class TestLanguage(TestCase, _Py26FixTestCase): def test_languages(self): self.assertEqual(len(LANGUAGES), 7874) def test_wrong_language(self): self.assertRaises(ValueError, lambda: Language('zzz')) def test_unknown_language(self): self.assertEqual(Language('zzzz', unknown='und'), Language('und')) def test_converter_alpha2(self): self.assertEqual(Language('eng').alpha2, 'en') self.assertEqual(Language.fromalpha2('en'), Language('eng')) self.assertEqual(Language.fromcode('en', 'alpha2'), Language('eng')) self.assertRaises(LanguageReverseError, lambda: Language.fromalpha2('zz')) self.assertRaises(LanguageConvertError, lambda: Language('aaa').alpha2) self.assertEqual(len(language_converters['alpha2'].codes), 184) def test_converter_alpha3b(self): self.assertEqual(Language('fra').alpha3b, 'fre') self.assertEqual(Language.fromalpha3b('fre'), Language('fra')) self.assertEqual(Language.fromcode('fre', 'alpha3b'), Language('fra')) self.assertRaises(LanguageReverseError, lambda: Language.fromalpha3b('zzz')) self.assertRaises(LanguageConvertError, lambda: Language('aaa').alpha3b) self.assertEqual(len(language_converters['alpha3b'].codes), 418) def test_converter_alpha3t(self): self.assertEqual(Language('fra').alpha3t, 'fra') self.assertEqual(Language.fromalpha3t('fra'), Language('fra')) self.assertEqual(Language.fromcode('fra', 'alpha3t'), Language('fra')) self.assertRaises(LanguageReverseError, lambda: Language.fromalpha3t('zzz')) self.assertRaises(LanguageConvertError, lambda: Language('aaa').alpha3t) self.assertEqual(len(language_converters['alpha3t'].codes), 418) def test_converter_name(self): self.assertEqual(Language('eng').name, 'English') self.assertEqual(Language.fromname('English'), Language('eng')) self.assertEqual(Language.fromcode('English', 'name'), Language('eng')) self.assertRaises(LanguageReverseError, lambda: Language.fromname('Zzzzzzzzz')) self.assertEqual(len(language_converters['name'].codes), 7874) def test_converter_scope(self): self.assertEqual(language_converters['scope'].codes, set(['I', 'S', 'M'])) self.assertEqual(Language('eng').scope, 'individual') self.assertEqual(Language('und').scope, 'special') def test_converter_type(self): self.assertEqual(language_converters['type'].codes, set(['A', 'C', 'E', 'H', 'L', 'S'])) self.assertEqual(Language('eng').type, 'living') self.assertEqual(Language('und').type, 'special') def test_converter_opensubtitles(self): self.assertEqual(Language('fra').opensubtitles, Language('fra').alpha3b) self.assertEqual(Language('por', 'BR').opensubtitles, 'pob') self.assertEqual(Language.fromopensubtitles('fre'), Language('fra')) self.assertEqual(Language.fromopensubtitles('pob'), Language('por', 'BR')) self.assertEqual(Language.fromopensubtitles('pb'), Language('por', 'BR')) # Montenegrin is not recognized as an ISO language (yet?) but for now it is # unofficially accepted as Serbian from Montenegro self.assertEqual(Language.fromopensubtitles('mne'), Language('srp', 'ME')) self.assertEqual(Language.fromcode('pob', 'opensubtitles'), Language('por', 'BR')) self.assertRaises(LanguageReverseError, lambda: Language.fromopensubtitles('zzz')) self.assertRaises(LanguageConvertError, lambda: Language('aaa').opensubtitles) self.assertEqual(len(language_converters['opensubtitles'].codes), 607) # test with all the LANGUAGES from the opensubtitles api # downloaded from: http://www.opensubtitles.org/addons/export_languages.php f = resource_stream('babelfish', 'data/opensubtitles_languages.txt') f.readline() for l in f: idlang, alpha2, _, upload_enabled, web_enabled = l.decode('utf-8').strip().split('\t') if not int(upload_enabled) and not int(web_enabled): # do not test LANGUAGES that are too esoteric / not widely available continue self.assertEqual(Language.fromopensubtitles(idlang).opensubtitles, idlang) if alpha2: self.assertEqual(Language.fromopensubtitles(idlang), Language.fromopensubtitles(alpha2)) f.close() def test_converter_opensubtitles_codes(self): for code in language_converters['opensubtitles'].from_opensubtitles.keys(): self.assertIn(code, language_converters['opensubtitles'].codes) def test_fromietf_country_script(self): language = Language.fromietf('fra-FR-Latn') self.assertEqual(language.alpha3, 'fra') self.assertEqual(language.country, Country('FR')) self.assertEqual(language.script, Script('Latn')) def test_fromietf_country_no_script(self): language = Language.fromietf('fra-FR') self.assertEqual(language.alpha3, 'fra') self.assertEqual(language.country, Country('FR')) self.assertIsNone(language.script) def test_fromietf_no_country_no_script(self): language = Language.fromietf('fra-FR') self.assertEqual(language.alpha3, 'fra') self.assertEqual(language.country, Country('FR')) self.assertIsNone(language.script) def test_fromietf_no_country_script(self): language = Language.fromietf('fra-Latn') self.assertEqual(language.alpha3, 'fra') self.assertIsNone(language.country) self.assertEqual(language.script, Script('Latn')) def test_fromietf_alpha2_language(self): language = Language.fromietf('fr-Latn') self.assertEqual(language.alpha3, 'fra') self.assertIsNone(language.country) self.assertEqual(language.script, Script('Latn')) def test_fromietf_wrong_language(self): self.assertRaises(ValueError, lambda: Language.fromietf('xyz-FR')) def test_fromietf_wrong_country(self): self.assertRaises(ValueError, lambda: Language.fromietf('fra-YZ')) def test_fromietf_wrong_script(self): self.assertRaises(ValueError, lambda: Language.fromietf('fra-FR-Wxyz')) def test_eq(self): self.assertEqual(Language('eng'), Language('eng')) def test_ne(self): self.assertNotEqual(Language('fra'), Language('eng')) self.assertIsNotNone(Language('fra')) def test_nonzero(self): self.assertFalse(bool(Language('und'))) self.assertTrue(bool(Language('eng'))) def test_language_hasattr(self): self.assertTrue(hasattr(Language('fra'), 'alpha3')) self.assertTrue(hasattr(Language('fra'), 'alpha2')) self.assertFalse(hasattr(Language('bej'), 'alpha2')) def test_country_hasattr(self): self.assertTrue(hasattr(Country('US'), 'name')) self.assertTrue(hasattr(Country('FR'), 'alpha2')) self.assertFalse(hasattr(Country('BE'), 'none')) def test_country(self): self.assertEqual(Language('por', 'BR').country, Country('BR')) self.assertEqual(Language('eng', Country('US')).country, Country('US')) def test_eq_with_country(self): self.assertEqual(Language('eng', 'US'), Language('eng', Country('US'))) def test_ne_with_country(self): self.assertNotEqual(Language('eng', 'US'), Language('eng', Country('GB'))) def test_script(self): self.assertEqual(Language('srp', script='Latn').script, Script('Latn')) self.assertEqual(Language('srp', script=Script('Cyrl')).script, Script('Cyrl')) def test_eq_with_script(self): self.assertEqual(Language('srp', script='Latn'), Language('srp', script=Script('Latn'))) def test_ne_with_script(self): self.assertNotEqual(Language('srp', script='Latn'), Language('srp', script=Script('Cyrl'))) def test_eq_with_country_and_script(self): self.assertEqual(Language('srp', 'SR', 'Latn'), Language('srp', Country('SR'), Script('Latn'))) def test_ne_with_country_and_script(self): self.assertNotEqual(Language('srp', 'SR', 'Latn'), Language('srp', Country('SR'), Script('Cyrl'))) def test_hash(self): self.assertEqual(hash(Language('fra')), hash('fr')) self.assertEqual(hash(Language('ace')), hash('ace')) self.assertEqual(hash(Language('por', 'BR')), hash('pt-BR')) self.assertEqual(hash(Language('srp', script='Cyrl')), hash('sr-Cyrl')) self.assertEqual(hash(Language('eng', 'US', 'Latn')), hash('en-US-Latn')) def test_pickle(self): for lang in [Language('fra'), Language('eng', 'US'), Language('srp', script='Latn'), Language('eng', 'US', 'Latn')]: self.assertEqual(pickle.loads(pickle.dumps(lang)), lang) def test_str(self): self.assertEqual(Language.fromietf(str(Language('eng', 'US', 'Latn'))), Language('eng', 'US', 'Latn')) self.assertEqual(Language.fromietf(str(Language('fra', 'FR'))), Language('fra', 'FR')) self.assertEqual(Language.fromietf(str(Language('bel'))), Language('bel')) def test_register_converter(self): class TestConverter(LanguageReverseConverter): def __init__(self): self.to_test = {'fra': 'test1', 'eng': 'test2'} self.from_test = {'test1': 'fra', 'test2': 'eng'} def convert(self, alpha3, country=None, script=None): if alpha3 not in self.to_test: raise LanguageConvertError(alpha3, country, script) return self.to_test[alpha3] def reverse(self, test): if test not in self.from_test: raise LanguageReverseError(test) return (self.from_test[test], None) language = Language('fra') self.assertFalse(hasattr(language, 'test')) language_converters['test'] = TestConverter() self.assertTrue(hasattr(language, 'test')) self.assertIn('test', language_converters) self.assertEqual(Language('fra').test, 'test1') self.assertEqual(Language.fromtest('test2').alpha3, 'eng') del language_converters['test'] self.assertNotIn('test', language_converters) self.assertRaises(KeyError, lambda: Language.fromtest('test1')) self.assertRaises(AttributeError, lambda: Language('fra').test) def suite(): suite = TestSuite() suite.addTest(TestLoader().loadTestsFromTestCase(TestScript)) suite.addTest(TestLoader().loadTestsFromTestCase(TestCountry)) suite.addTest(TestLoader().loadTestsFromTestCase(TestLanguage)) return suite if __name__ == '__main__': TextTestRunner().run(suite()) ``` #### File: Shared/enzyme/subtitle.py ```python from .exceptions import ReadError from .parsers import ebml from .mkv import MKV from .parsers import ebml import logging import codecs import os import io __all__ = ['Subtitle'] logger = logging.getLogger(__name__) class Subtitle(object): """Subtitle extractor for Matroska Video File. Currently only SRT subtitles stored without lacing are supported """ def __init__(self, stream): """Read the available subtitles from a MKV file-like object""" self._stream = stream #Use the MKV class to parse the META information mkv = MKV(stream) self._timecode_scale = mkv.info.timecode_scale self._subtitles = mkv.get_srt_subtitles_track_by_language() def has_subtitle(self, language): return language in self._subtitles def write_subtitle_to_stream(self, language): """Write a single subtitle to stream or return None if language not available""" if language in self._subtitles: subtitle = self._subtitles[language] return _write_track_to_srt_stream(self._stream,subtitle.number,self._timecode_scale) logger.info("Writing subtitle for language %s to stream",language) else: logger.info("Subtitle for language %s not found",language) def write_subtitles_to_stream(self): """Write all available subtitles as streams to a dictionary with language as the key""" subtitles = dict() for language in self._subtitles: subtitles[language] = self.write_subtitle_to_stream(language) return subtitles def _write_track_to_srt_stream(mkv_stream, track, timecode_scale): srt_stream = io.StringIO() index = 0 for cluster in _parse_segment(mkv_stream,track): for blockgroup in cluster.blockgroups: index = index + 1 timeRange = _print_time_range(timecode_scale,cluster.timecode,blockgroup.block.timecode,blockgroup.duration) srt_stream.write(str(index) + '\n') srt_stream.write(timeRange + '\n') srt_stream.write(codecs.decode(blockgroup.block.data.read(),'utf-8') + '\n') srt_stream.write('\n') return srt_stream def _parse_segment(stream,track): stream.seek(0) specs = ebml.get_matroska_specs() # Find all level 1 Cluster elements and its subelements. Speed up this process by excluding all other currently known level 1 elements try: segments = ebml.parse(stream, specs,include_element_names=['Segment','Cluster','BlockGroup','Timecode','Block','BlockDuration',],max_level=3) except ReadError: pass clusters = [] for cluster in segments[0].data: _parse_cluster(track, clusters, cluster) return clusters def _parse_cluster(track, clusters, cluster): blockgroups = [] timecode = None for child in cluster.data: if child.name == 'BlockGroup': _parse_blockgroup(track, blockgroups, child) elif child.name == 'Timecode': timecode = child.data if len(blockgroups) > 0 and timecode != None: clusters.append(Cluster(timecode, blockgroups)) def _parse_blockgroup(track, blockgroups, blockgroup): block = None duration = None for child in blockgroup.data: if child.name == 'Block': block = Block.fromelement(child) if block.track != track: block = None elif child.name == 'BlockDuration': duration = child.data if duration != None and block != None: blockgroups.append(BlockGroup(block, duration)) def _print_time_range(timecode_scale,clusterTimecode,blockTimecode,duration): timecode_scale_ms = timecode_scale / 1000000 #Timecode rawTimecode = clusterTimecode + blockTimecode startTimeMilleSeconds = (rawTimecode) * timecode_scale_ms endTimeMilleSeconds = (rawTimecode + duration) * timecode_scale_ms return _print_time(startTimeMilleSeconds) + " --> " + _print_time(endTimeMilleSeconds) def _print_time(timeInMilleSeconds): timeInSeconds, milleSeconds = divmod(timeInMilleSeconds, 1000) timeInMinutes, seconds = divmod(timeInSeconds, 60) hours, minutes = divmod(timeInMinutes, 60) return '%d:%02d:%02d,%d' % (hours,minutes,seconds,milleSeconds) class Cluster(object): def __init__(self,timecode=None, blockgroups=[]): self.timecode = timecode self.blockgroups = blockgroups class BlockGroup(object): def __init__(self,block=None,duration=None): self.block = block self.duration = duration class Block(object): def __init__(self, track=None, timecode=None, invisible=False, lacing=None, flags=None, data=None): self.track = track self.timecode = timecode self.invisible = invisible self.lacing = lacing self.flags = flags self.data = data @classmethod def fromelement(cls,element): stream = element.data track = ebml.read_element_size(stream) timecode = ebml.read_element_integer(stream,2) flags = ord(stream.read(1)) invisible = bool(flags & 0x8) if (flags & 0x6): lacing = 'EBML' elif (flags & 0x4): lacing = 'fixed-size' elif (flags & 0x2): lacing = 'Xiph' else: lacing = None if lacing: raise ReadError('Laced blocks are not implemented yet') data = ebml.read_element_binary(stream, element.size - stream.tell()) return cls(track,timecode,invisible,lacing,flags,data) def __repr__(self): return '<%s track=%d, timecode=%d, invisible=%d, lacing=%s>' % (self.__class__.__name__, self.track,self.timecode,self.invisible,self.lacing) class SimpleBlock(Block): def __init__(self, track=None, timecode=None, keyframe=False, invisible=False, lacing=None, flags=None, data=None, discardable=False): super(SimpleBlock,self).__init__(track,timecode,invisible,lacing,flags,data) self.keyframe = keyframe self.discardable = discardable def fromelement(cls,element): simpleblock = super(SimpleBlock, cls).fromelement(element) simpleblock.keyframe = bool(simpleblock.flags & 0x80) simpleblock.discardable = bool(simpleblock.flags & 0x1) return simpleblock def __repr__(self): return '<%s track=%d, timecode=%d, keyframe=%d, invisible=%d, lacing=%s, discardable=%d>' % (self.__class__.__name__, self.track,self.timecode,self.keyframe,self.invisible,self.lacing,self.discardable) ``` #### File: enzyme/tests/test_mkv.py ```python from datetime import timedelta, datetime from enzyme.mkv import MKV, VIDEO_TRACK, AUDIO_TRACK, SUBTITLE_TRACK import io import os.path import requests import unittest import zipfile # Test directory TEST_DIR = os.path.join(os.path.dirname(__file__), os.path.splitext(__file__)[0]) def setUpModule(): if not os.path.exists(TEST_DIR): r = requests.get('http://downloads.sourceforge.net/project/matroska/test_files/matroska_test_w1_1.zip') with zipfile.ZipFile(io.BytesIO(r.content), 'r') as f: f.extractall(TEST_DIR) class MKVTestCase(unittest.TestCase): def test_test1(self): stream = io.open(os.path.join(TEST_DIR, 'test1.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(minutes=1, seconds=27, milliseconds=336)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 7, 23, 3)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.10.0 + libmatroska2 v0.10.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.5.5 ru from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.1.1 (\'Bouncin\' Back\') built on Jul 3 2010 22:54:08') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == True) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MS/VFW/FOURCC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 854) self.assertTrue(mkv.video_tracks[0].height == 480) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width is None) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == True) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_MPEG/L3') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Big Buck Bunny - test 1') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File1, basic MPEG4.2 and MP3 with only SimpleBlock') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test2(self): stream = io.open(os.path.join(TEST_DIR, 'test2.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=47, milliseconds=509)) self.assertTrue(mkv.info.date_utc == datetime(2011, 6, 2, 12, 45, 20)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.21.0 + libmatroska2 v0.22.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.8.3 ru from libebml2 v0.10.0 + libmatroska2 v0.10.1 + mkclean 0.5.5 ru from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.1.1 (\'Bouncin\' Back\') built on Jul 3 2010 22:54:08') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == True) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MPEG4/ISO/AVC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 1024) self.assertTrue(mkv.video_tracks[0].height == 576) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width == 1354) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == True) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_AAC') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Elephant Dream - test 2') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 2, 100,000 timecode scale, odd aspect ratio, and CRC-32. Codecs are AVC and AAC') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test3(self): stream = io.open(os.path.join(TEST_DIR, 'test3.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=49, milliseconds=64)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 21, 43, 25)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.11.0 + libmatroska2 v0.10.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.5.5 ro from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.1.1 (\'Bouncin\' Back\') built on Jul 3 2010 22:54:08') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == True) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MPEG4/ISO/AVC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 1024) self.assertTrue(mkv.video_tracks[0].height == 576) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width is None) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'eng') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == True) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_MPEG/L3') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Elephant Dream - test 3') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 3, header stripping on the video track and no SimpleBlock') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test5(self): stream = io.open(os.path.join(TEST_DIR, 'test5.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=46, milliseconds=665)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 18, 6, 43)) self.assertTrue(mkv.info.muxing_app == 'libebml v1.0.0 + libmatroska v1.0.0') self.assertTrue(mkv.info.writing_app == 'mkvmerge v4.0.0 (\'The Stars were mine\') built on Jun 6 2010 16:18:42') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == True) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MPEG4/ISO/AVC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 1024) self.assertTrue(mkv.video_tracks[0].height == 576) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width == 1024) self.assertTrue(mkv.video_tracks[0].display_height == 576) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio tracks self.assertTrue(len(mkv.audio_tracks) == 2) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == True) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_AAC') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) self.assertTrue(mkv.audio_tracks[1].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[1].number == 10) self.assertTrue(mkv.audio_tracks[1].name == 'Commentary') self.assertTrue(mkv.audio_tracks[1].language == 'eng') self.assertTrue(mkv.audio_tracks[1].enabled == True) self.assertTrue(mkv.audio_tracks[1].default == False) self.assertTrue(mkv.audio_tracks[1].forced == False) self.assertTrue(mkv.audio_tracks[1].lacing == True) self.assertTrue(mkv.audio_tracks[1].codec_id == 'A_AAC') self.assertTrue(mkv.audio_tracks[1].codec_name is None) self.assertTrue(mkv.audio_tracks[1].sampling_frequency == 22050.0) self.assertTrue(mkv.audio_tracks[1].channels == 1) self.assertTrue(mkv.audio_tracks[1].output_sampling_frequency == 44100.0) self.assertTrue(mkv.audio_tracks[1].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 8) self.assertTrue(mkv.subtitle_tracks[0].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[0].number == 3) self.assertTrue(mkv.subtitle_tracks[0].name is None) self.assertTrue(mkv.subtitle_tracks[0].language == 'eng') self.assertTrue(mkv.subtitle_tracks[0].enabled == True) self.assertTrue(mkv.subtitle_tracks[0].default == True) self.assertTrue(mkv.subtitle_tracks[0].forced == False) self.assertTrue(mkv.subtitle_tracks[0].lacing == False) self.assertTrue(mkv.subtitle_tracks[0].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[0].codec_name is None) self.assertTrue(mkv.subtitle_tracks[1].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[1].number == 4) self.assertTrue(mkv.subtitle_tracks[1].name is None) self.assertTrue(mkv.subtitle_tracks[1].language == 'hun') self.assertTrue(mkv.subtitle_tracks[1].enabled == True) self.assertTrue(mkv.subtitle_tracks[1].default == False) self.assertTrue(mkv.subtitle_tracks[1].forced == False) self.assertTrue(mkv.subtitle_tracks[1].lacing == False) self.assertTrue(mkv.subtitle_tracks[1].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[1].codec_name is None) self.assertTrue(mkv.subtitle_tracks[2].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[2].number == 5) self.assertTrue(mkv.subtitle_tracks[2].name is None) self.assertTrue(mkv.subtitle_tracks[2].language == 'ger') self.assertTrue(mkv.subtitle_tracks[2].enabled == True) self.assertTrue(mkv.subtitle_tracks[2].default == False) self.assertTrue(mkv.subtitle_tracks[2].forced == False) self.assertTrue(mkv.subtitle_tracks[2].lacing == False) self.assertTrue(mkv.subtitle_tracks[2].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[2].codec_name is None) self.assertTrue(mkv.subtitle_tracks[3].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[3].number == 6) self.assertTrue(mkv.subtitle_tracks[3].name is None) self.assertTrue(mkv.subtitle_tracks[3].language == 'fre') self.assertTrue(mkv.subtitle_tracks[3].enabled == True) self.assertTrue(mkv.subtitle_tracks[3].default == False) self.assertTrue(mkv.subtitle_tracks[3].forced == False) self.assertTrue(mkv.subtitle_tracks[3].lacing == False) self.assertTrue(mkv.subtitle_tracks[3].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[3].codec_name is None) self.assertTrue(mkv.subtitle_tracks[4].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[4].number == 8) self.assertTrue(mkv.subtitle_tracks[4].name is None) self.assertTrue(mkv.subtitle_tracks[4].language == 'spa') self.assertTrue(mkv.subtitle_tracks[4].enabled == True) self.assertTrue(mkv.subtitle_tracks[4].default == False) self.assertTrue(mkv.subtitle_tracks[4].forced == False) self.assertTrue(mkv.subtitle_tracks[4].lacing == False) self.assertTrue(mkv.subtitle_tracks[4].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[4].codec_name is None) self.assertTrue(mkv.subtitle_tracks[5].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[5].number == 9) self.assertTrue(mkv.subtitle_tracks[5].name is None) self.assertTrue(mkv.subtitle_tracks[5].language == 'ita') self.assertTrue(mkv.subtitle_tracks[5].enabled == True) self.assertTrue(mkv.subtitle_tracks[5].default == False) self.assertTrue(mkv.subtitle_tracks[5].forced == False) self.assertTrue(mkv.subtitle_tracks[5].lacing == False) self.assertTrue(mkv.subtitle_tracks[5].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[5].codec_name is None) self.assertTrue(mkv.subtitle_tracks[6].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[6].number == 11) self.assertTrue(mkv.subtitle_tracks[6].name is None) self.assertTrue(mkv.subtitle_tracks[6].language == 'jpn') self.assertTrue(mkv.subtitle_tracks[6].enabled == True) self.assertTrue(mkv.subtitle_tracks[6].default == False) self.assertTrue(mkv.subtitle_tracks[6].forced == False) self.assertTrue(mkv.subtitle_tracks[6].lacing == False) self.assertTrue(mkv.subtitle_tracks[6].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[6].codec_name is None) self.assertTrue(mkv.subtitle_tracks[7].type == SUBTITLE_TRACK) self.assertTrue(mkv.subtitle_tracks[7].number == 7) self.assertTrue(mkv.subtitle_tracks[7].name is None) self.assertTrue(mkv.subtitle_tracks[7].language == 'und') self.assertTrue(mkv.subtitle_tracks[7].enabled == True) self.assertTrue(mkv.subtitle_tracks[7].default == False) self.assertTrue(mkv.subtitle_tracks[7].forced == False) self.assertTrue(mkv.subtitle_tracks[7].lacing == False) self.assertTrue(mkv.subtitle_tracks[7].codec_id == 'S_TEXT/UTF8') self.assertTrue(mkv.subtitle_tracks[7].codec_name is None) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Big Buck Bunny - test 8') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 8, secondary audio commentary track, misc subtitle tracks') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test6(self): stream = io.open(os.path.join(TEST_DIR, 'test6.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=87, milliseconds=336)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 16, 31, 55)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.10.1 + libmatroska2 v0.10.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.5.5 r from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.0.0 (\'The Stars were mine\') built on Jun 6 2010 16:18:42') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == False) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MS/VFW/FOURCC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 854) self.assertTrue(mkv.video_tracks[0].height == 480) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width is None) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == False) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_MPEG/L3') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Big Buck Bunny - test 6') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 6, random length to code the size of Clusters and Blocks, no Cues for seeking') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test7(self): stream = io.open(os.path.join(TEST_DIR, 'test7.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=37, milliseconds=43)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 17, 0, 23)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.10.1 + libmatroska2 v0.10.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.5.5 r from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.0.0 (\'The Stars were mine\') built on Jun 6 2010 16:18:42') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == False) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MPEG4/ISO/AVC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 1024) self.assertTrue(mkv.video_tracks[0].height == 576) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width is None) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == False) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_AAC') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Big Buck Bunny - test 7') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 7, junk elements are present at the beggining or end of clusters, the parser should skip it. There is also a damaged element at 451418') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def test_test8(self): stream = io.open(os.path.join(TEST_DIR, 'test8.mkv'), 'rb') mkv = MKV(stream) # info self.assertTrue(mkv.info.title is None) self.assertTrue(mkv.info.duration == timedelta(seconds=47, milliseconds=341)) self.assertTrue(mkv.info.date_utc == datetime(2010, 8, 21, 17, 22, 14)) self.assertTrue(mkv.info.muxing_app == 'libebml2 v0.10.1 + libmatroska2 v0.10.1') self.assertTrue(mkv.info.writing_app == 'mkclean 0.5.5 r from libebml v1.0.0 + libmatroska v1.0.0 + mkvmerge v4.0.0 (\'The Stars were mine\') built on Jun 6 2010 16:18:42') # video track self.assertTrue(len(mkv.video_tracks) == 1) self.assertTrue(mkv.video_tracks[0].type == VIDEO_TRACK) self.assertTrue(mkv.video_tracks[0].number == 1) self.assertTrue(mkv.video_tracks[0].name is None) self.assertTrue(mkv.video_tracks[0].language == 'und') self.assertTrue(mkv.video_tracks[0].enabled == True) self.assertTrue(mkv.video_tracks[0].default == False) self.assertTrue(mkv.video_tracks[0].forced == False) self.assertTrue(mkv.video_tracks[0].lacing == False) self.assertTrue(mkv.video_tracks[0].codec_id == 'V_MPEG4/ISO/AVC') self.assertTrue(mkv.video_tracks[0].codec_name is None) self.assertTrue(mkv.video_tracks[0].width == 1024) self.assertTrue(mkv.video_tracks[0].height == 576) self.assertTrue(mkv.video_tracks[0].interlaced == False) self.assertTrue(mkv.video_tracks[0].stereo_mode is None) self.assertTrue(mkv.video_tracks[0].crop == {}) self.assertTrue(mkv.video_tracks[0].display_width is None) self.assertTrue(mkv.video_tracks[0].display_height is None) self.assertTrue(mkv.video_tracks[0].display_unit is None) self.assertTrue(mkv.video_tracks[0].aspect_ratio_type is None) # audio track self.assertTrue(len(mkv.audio_tracks) == 1) self.assertTrue(mkv.audio_tracks[0].type == AUDIO_TRACK) self.assertTrue(mkv.audio_tracks[0].number == 2) self.assertTrue(mkv.audio_tracks[0].name is None) self.assertTrue(mkv.audio_tracks[0].language == 'und') self.assertTrue(mkv.audio_tracks[0].enabled == True) self.assertTrue(mkv.audio_tracks[0].default == False) self.assertTrue(mkv.audio_tracks[0].forced == False) self.assertTrue(mkv.audio_tracks[0].lacing == True) self.assertTrue(mkv.audio_tracks[0].codec_id == 'A_AAC') self.assertTrue(mkv.audio_tracks[0].codec_name is None) self.assertTrue(mkv.audio_tracks[0].sampling_frequency == 48000.0) self.assertTrue(mkv.audio_tracks[0].channels == 2) self.assertTrue(mkv.audio_tracks[0].output_sampling_frequency is None) self.assertTrue(mkv.audio_tracks[0].bit_depth is None) # subtitle track self.assertTrue(len(mkv.subtitle_tracks) == 0) # chapters self.assertTrue(len(mkv.chapters) == 0) # tags self.assertTrue(len(mkv.tags) == 1) self.assertTrue(len(mkv.tags[0].simpletags) == 3) self.assertTrue(mkv.tags[0].simpletags[0].name == 'TITLE') self.assertTrue(mkv.tags[0].simpletags[0].default == True) self.assertTrue(mkv.tags[0].simpletags[0].language == 'und') self.assertTrue(mkv.tags[0].simpletags[0].string == 'Big Buck Bunny - test 8') self.assertTrue(mkv.tags[0].simpletags[0].binary is None) self.assertTrue(mkv.tags[0].simpletags[1].name == 'DATE_RELEASED') self.assertTrue(mkv.tags[0].simpletags[1].default == True) self.assertTrue(mkv.tags[0].simpletags[1].language == 'und') self.assertTrue(mkv.tags[0].simpletags[1].string == '2010') self.assertTrue(mkv.tags[0].simpletags[1].binary is None) self.assertTrue(mkv.tags[0].simpletags[2].name == 'COMMENT') self.assertTrue(mkv.tags[0].simpletags[2].default == True) self.assertTrue(mkv.tags[0].simpletags[2].language == 'und') self.assertTrue(mkv.tags[0].simpletags[2].string == 'Matroska Validation File 8, audio missing between timecodes 6.019s and 6.360s') self.assertTrue(mkv.tags[0].simpletags[2].binary is None) def suite(): suite = unittest.TestSuite() suite.addTest(unittest.TestLoader().loadTestsFromTestCase(MKVTestCase)) return suite if __name__ == '__main__': unittest.TextTestRunner().run(suite()) ``` #### File: Shared/guessit/options.py ```python import json import os import pkgutil import shlex from argparse import ArgumentParser import six def build_argument_parser(): """ Builds the argument parser :return: the argument parser :rtype: ArgumentParser """ opts = ArgumentParser() opts.add_argument(dest='filename', help='Filename or release name to guess', nargs='*') naming_opts = opts.add_argument_group("Naming") naming_opts.add_argument('-t', '--type', dest='type', default=None, help='The suggested file type: movie, episode. If undefined, type will be guessed.') naming_opts.add_argument('-n', '--name-only', dest='name_only', action='store_true', default=None, help='Parse files as name only, considering "/" and "\\" like other separators.') naming_opts.add_argument('-Y', '--date-year-first', action='store_true', dest='date_year_first', default=None, help='If short date is found, consider the first digits as the year.') naming_opts.add_argument('-D', '--date-day-first', action='store_true', dest='date_day_first', default=None, help='If short date is found, consider the second digits as the day.') naming_opts.add_argument('-L', '--allowed-languages', action='append', dest='allowed_languages', default=None, help='Allowed language (can be used multiple times)') naming_opts.add_argument('-C', '--allowed-countries', action='append', dest='allowed_countries', default=None, help='Allowed country (can be used multiple times)') naming_opts.add_argument('-E', '--episode-prefer-number', action='store_true', dest='episode_prefer_number', default=None, help='Guess "serie.213.avi" as the episode 213. Without this option, ' 'it will be guessed as season 2, episode 13') naming_opts.add_argument('-T', '--expected-title', action='append', dest='expected_title', default=None, help='Expected title to parse (can be used multiple times)') naming_opts.add_argument('-G', '--expected-group', action='append', dest='expected_group', default=None, help='Expected release group (can be used multiple times)') input_opts = opts.add_argument_group("Input") input_opts.add_argument('-f', '--input-file', dest='input_file', default=None, help='Read filenames from an input text file. File should use UTF-8 charset.') output_opts = opts.add_argument_group("Output") output_opts.add_argument('-v', '--verbose', action='store_true', dest='verbose', default=None, help='Display debug output') output_opts.add_argument('-P', '--show-property', dest='show_property', default=None, help='Display the value of a single property (title, series, video_codec, year, ...)') output_opts.add_argument('-a', '--advanced', dest='advanced', action='store_true', default=None, help='Display advanced information for filename guesses, as json output') output_opts.add_argument('-s', '--single-value', dest='single_value', action='store_true', default=None, help='Keep only first value found for each property') output_opts.add_argument('-l', '--enforce-list', dest='enforce_list', action='store_true', default=None, help='Wrap each found value in a list even when property has a single value') output_opts.add_argument('-j', '--json', dest='json', action='store_true', default=None, help='Display information for filename guesses as json output') output_opts.add_argument('-y', '--yaml', dest='yaml', action='store_true', default=None, help='Display information for filename guesses as yaml output') conf_opts = opts.add_argument_group("Configuration") conf_opts.add_argument('-c', '--config', dest='config', action='append', default=None, help='Filepath to the configuration file. Configuration contains the same options as ' 'those command line options, but option names have "-" characters replaced with "_". ' 'If not defined, guessit tries to read a configuration default configuration file at ' '~/.guessit/options.(json|yml|yaml) and ~/.config/guessit/options.(json|yml|yaml). ' 'Set to "false" to disable default configuration file loading.') conf_opts.add_argument('--no-embedded-config', dest='no_embedded_config', action='store_true', default=None, help='Disable default configuration.') information_opts = opts.add_argument_group("Information") information_opts.add_argument('-p', '--properties', dest='properties', action='store_true', default=None, help='Display properties that can be guessed.') information_opts.add_argument('-V', '--values', dest='values', action='store_true', default=None, help='Display property values that can be guessed.') information_opts.add_argument('--version', dest='version', action='store_true', default=None, help='Display the guessit version.') return opts def parse_options(options=None, api=False): """ Parse given option string :param options: :type options: :param api :type boolean :return: :rtype: """ if isinstance(options, six.string_types): args = shlex.split(options) options = vars(argument_parser.parse_args(args)) elif options is None: if api: options = {} else: options = vars(argument_parser.parse_args()) elif not isinstance(options, dict): options = vars(argument_parser.parse_args(options)) return options argument_parser = build_argument_parser() class ConfigurationException(Exception): """ Exception related to configuration file. """ pass def load_config(options): """ Load configuration from configuration file, if defined. :param options: :type options: :return: :rtype: """ config_files_enabled = True custom_config_files = None if options.get('config') is not None: custom_config_files = options.get('config') if not custom_config_files \ or not custom_config_files[0] \ or custom_config_files[0].lower() in ['0', 'no', 'false', 'disabled']: config_files_enabled = False configurations = [] if config_files_enabled: home_directory = os.path.expanduser("~") cwd = os.getcwd() yaml_supported = False try: import yaml # pylint: disable=unused-variable yaml_supported = True except ImportError: pass config_file_locations = get_config_file_locations(home_directory, cwd, yaml_supported) config_files = [f for f in config_file_locations if os.path.exists(f)] if custom_config_files: config_files = config_files + custom_config_files for config_file in config_files: config_file_options = load_config_file(config_file) if config_file_options: configurations.append(config_file_options) if not options.get('no_embedded_config'): embedded_options_data = pkgutil.get_data('guessit', 'config/options.json').decode("utf-8") embedded_options = json.loads(embedded_options_data) configurations.append(embedded_options) if configurations: configurations.append(options) return merge_configurations(*configurations) return options def merge_configurations(*configurations): """ Merge configurations into a single options dict. :param configurations: :type configurations: :return: :rtype: """ merged = {} for options in configurations: pristine = options.get('pristine') if pristine: if pristine is True: merged = {} else: for to_reset in pristine: if to_reset in merged: del merged[to_reset] for (option, value) in options.items(): if value is not None and option != 'pristine': if option in merged.keys() and isinstance(merged[option], list): merged[option].extend(value) elif isinstance(value, list): merged[option] = list(value) else: merged[option] = value return merged def load_config_file(filepath): """ Load a configuration as an options dict. Format of the file is given with filepath extension. :param filepath: :type filepath: :return: :rtype: """ if filepath.endswith('.json'): with open(filepath) as config_file_data: return json.load(config_file_data) if filepath.endswith('.yaml') or filepath.endswith('.yml'): try: import yaml with open(filepath) as config_file_data: return yaml.load(config_file_data) except ImportError: # pragma: no cover raise ConfigurationException('Configuration file extension is not supported. ' 'PyYAML should be installed to support "%s" file' % ( filepath,)) raise ConfigurationException('Configuration file extension is not supported for "%s" file.' % (filepath,)) def get_config_file_locations(homedir, cwd, yaml_supported=False): """ Get all possible locations for configuration file. :param homedir: user home directory :type homedir: basestring :param cwd: current working directory :type homedir: basestring :return: :rtype: list """ locations = [] configdirs = [(os.path.join(homedir, '.guessit'), 'options'), (os.path.join(homedir, '.config', 'guessit'), 'options'), (cwd, 'guessit.options')] configexts = ['json'] if yaml_supported: configexts.append('yaml') configexts.append('yml') for configdir in configdirs: for configext in configexts: locations.append(os.path.join(configdir[0], configdir[1] + '.' + configext)) return locations ``` #### File: rules/common/numeral.py ```python from rebulk.remodule import re digital_numeral = r'\d{1,4}' roman_numeral = r'(?=[MCDLXVI]+)M{0,4}(?:CM|CD|D?C{0,3})(?:XC|XL|L?X{0,3})(?:IX|IV|V?I{0,3})' english_word_numeral_list = [ 'zero', 'one', 'two', 'three', 'four', 'five', 'six', 'seven', 'eight', 'nine', 'ten', 'eleven', 'twelve', 'thirteen', 'fourteen', 'fifteen', 'sixteen', 'seventeen', 'eighteen', 'nineteen', 'twenty' ] french_word_numeral_list = [ 'zéro', 'un', 'deux', 'trois', 'quatre', 'cinq', 'six', 'sept', 'huit', 'neuf', 'dix', 'onze', 'douze', 'treize', 'quatorze', 'quinze', 'seize', 'dix-sept', 'dix-huit', 'dix-neuf', 'vingt' ] french_alt_word_numeral_list = [ 'zero', 'une', 'deux', 'trois', 'quatre', 'cinq', 'six', 'sept', 'huit', 'neuf', 'dix', 'onze', 'douze', 'treize', 'quatorze', 'quinze', 'seize', 'dixsept', 'dixhuit', 'dixneuf', 'vingt' ] def __build_word_numeral(*args): """ Build word numeral regexp from list. :param args: :type args: :param kwargs: :type kwargs: :return: :rtype: """ re_ = None for word_list in args: for word in word_list: if not re_: re_ = r'(?:(?=\w+)' else: re_ += '|' re_ += word re_ += ')' return re_ word_numeral = __build_word_numeral(english_word_numeral_list, french_word_numeral_list, french_alt_word_numeral_list) numeral = '(?:' + digital_numeral + '|' + roman_numeral + '|' + word_numeral + ')' __romanNumeralMap = ( ('M', 1000), ('CM', 900), ('D', 500), ('CD', 400), ('C', 100), ('XC', 90), ('L', 50), ('XL', 40), ('X', 10), ('IX', 9), ('V', 5), ('IV', 4), ('I', 1) ) __romanNumeralPattern = re.compile('^' + roman_numeral + '$') def __parse_roman(value): """ convert Roman numeral to integer :param value: Value to parse :type value: string :return: :rtype: """ if not __romanNumeralPattern.search(value): raise ValueError('Invalid Roman numeral: %s' % value) result = 0 index = 0 for num, integer in __romanNumeralMap: while value[index:index + len(num)] == num: result += integer index += len(num) return result def __parse_word(value): """ Convert Word numeral to integer :param value: Value to parse :type value: string :return: :rtype: """ for word_list in [english_word_numeral_list, french_word_numeral_list, french_alt_word_numeral_list]: try: return word_list.index(value.lower()) except ValueError: pass raise ValueError # pragma: no cover _clean_re = re.compile(r'[^\d]*(\d+)[^\d]*') def parse_numeral(value, int_enabled=True, roman_enabled=True, word_enabled=True, clean=True): """ Parse a numeric value into integer. :param value: Value to parse. Can be an integer, roman numeral or word. :type value: string :param int_enabled: :type int_enabled: :param roman_enabled: :type roman_enabled: :param word_enabled: :type word_enabled: :param clean: :type clean: :return: Numeric value, or None if value can't be parsed :rtype: int """ # pylint: disable=too-many-branches if int_enabled: try: if clean: match = _clean_re.match(value) if match: clean_value = match.group(1) return int(clean_value) return int(value) except ValueError: pass if roman_enabled: try: if clean: for word in value.split(): try: return __parse_roman(word.upper()) except ValueError: pass return __parse_roman(value) except ValueError: pass if word_enabled: try: if clean: for word in value.split(): try: return __parse_word(word) except ValueError: # pragma: no cover pass return __parse_word(value) # pragma: no cover except ValueError: # pragma: no cover pass raise ValueError('Invalid numeral: ' + value) # pragma: no cover ``` #### File: guessit/rules/__init__.py ```python from rebulk import Rebulk from .markers.path import path from .markers.groups import groups from .properties.episodes import episodes from .properties.container import container from .properties.format import format_ from .properties.video_codec import video_codec from .properties.audio_codec import audio_codec from .properties.screen_size import screen_size from .properties.website import website from .properties.date import date from .properties.title import title from .properties.episode_title import episode_title from .properties.language import language from .properties.country import country from .properties.release_group import release_group from .properties.streaming_service import streaming_service from .properties.other import other from .properties.size import size from .properties.edition import edition from .properties.cds import cds from .properties.bonus import bonus from .properties.film import film from .properties.part import part from .properties.crc import crc from .properties.mimetype import mimetype from .properties.type import type_ from .processors import processors def rebulk_builder(): """ Default builder for main Rebulk object used by api. :return: Main Rebulk object :rtype: Rebulk """ rebulk = Rebulk() rebulk.rebulk(path()) rebulk.rebulk(groups()) rebulk.rebulk(episodes()) rebulk.rebulk(container()) rebulk.rebulk(format_()) rebulk.rebulk(video_codec()) rebulk.rebulk(audio_codec()) rebulk.rebulk(screen_size()) rebulk.rebulk(website()) rebulk.rebulk(date()) rebulk.rebulk(title()) rebulk.rebulk(episode_title()) rebulk.rebulk(language()) rebulk.rebulk(country()) rebulk.rebulk(release_group()) rebulk.rebulk(streaming_service()) rebulk.rebulk(other()) rebulk.rebulk(size()) rebulk.rebulk(edition()) rebulk.rebulk(cds()) rebulk.rebulk(bonus()) rebulk.rebulk(film()) rebulk.rebulk(part()) rebulk.rebulk(crc()) rebulk.rebulk(processors()) rebulk.rebulk(mimetype()) rebulk.rebulk(type_()) def customize_properties(properties): """ Customize default rebulk properties """ count = properties['count'] del properties['count'] properties['season_count'] = count properties['episode_count'] = count return properties rebulk.customize_properties = customize_properties return rebulk ``` #### File: rules/properties/audio_codec.py ```python from rebulk.remodule import re from rebulk import Rebulk, Rule, RemoveMatch from ..common import dash from ..common.validators import seps_before, seps_after audio_properties = ['audio_codec', 'audio_profile', 'audio_channels'] def audio_codec(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE, abbreviations=[dash]).string_defaults(ignore_case=True) def audio_codec_priority(match1, match2): """ Gives priority to audio_codec :param match1: :type match1: :param match2: :type match2: :return: :rtype: """ if match1.name == 'audio_codec' and match2.name in ['audio_profile', 'audio_channels']: return match2 if match1.name in ['audio_profile', 'audio_channels'] and match2.name == 'audio_codec': return match1 return '__default__' rebulk.defaults(name="audio_codec", conflict_solver=audio_codec_priority) rebulk.regex("MP3", "LAME", r"LAME(?:\d)+-?(?:\d)+", value="MP3") rebulk.regex('Dolby', 'DolbyDigital', 'Dolby-Digital', 'DD', 'AC3D?', value='AC3') rebulk.regex("DolbyAtmos", "Dolby-Atmos", "Atmos", value="DolbyAtmos") rebulk.string("AAC", value="AAC") rebulk.string('EAC3', 'DDP', 'DD+', value="EAC3") rebulk.string("Flac", value="FLAC") rebulk.string("DTS", value="DTS") rebulk.regex("True-?HD", value="TrueHD") rebulk.defaults(name="audio_profile") rebulk.string("HD", value="HD", tags="DTS") rebulk.regex("HD-?MA", value="HDMA", tags="DTS") rebulk.string("HE", value="HE", tags="AAC") rebulk.string("LC", value="LC", tags="AAC") rebulk.string("HQ", value="HQ", tags="AC3") rebulk.defaults(name="audio_channels") rebulk.regex(r'(7[\W_][01](?:ch)?)(?:[^\d]|$)', value='7.1', children=True) rebulk.regex(r'(5[\W_][01](?:ch)?)(?:[^\d]|$)', value='5.1', children=True) rebulk.regex(r'(2[\W_]0(?:ch)?)(?:[^\d]|$)', value='2.0', children=True) rebulk.regex('7[01]', value='7.1', validator=seps_after, tags='weak-audio_channels') rebulk.regex('5[01]', value='5.1', validator=seps_after, tags='weak-audio_channels') rebulk.string('20', value='2.0', validator=seps_after, tags='weak-audio_channels') rebulk.string('7ch', '8ch', value='7.1') rebulk.string('5ch', '6ch', value='5.1') rebulk.string('2ch', 'stereo', value='2.0') rebulk.string('1ch', 'mono', value='1.0') rebulk.rules(DtsRule, AacRule, Ac3Rule, AudioValidatorRule, HqConflictRule, AudioChannelsValidatorRule) return rebulk class AudioValidatorRule(Rule): """ Remove audio properties if not surrounded by separators and not next each others """ priority = 64 consequence = RemoveMatch def when(self, matches, context): ret = [] audio_list = matches.range(predicate=lambda match: match.name in audio_properties) for audio in audio_list: if not seps_before(audio): valid_before = matches.range(audio.start - 1, audio.start, lambda match: match.name in audio_properties) if not valid_before: ret.append(audio) continue if not seps_after(audio): valid_after = matches.range(audio.end, audio.end + 1, lambda match: match.name in audio_properties) if not valid_after: ret.append(audio) continue return ret class AudioProfileRule(Rule): """ Abstract rule to validate audio profiles """ priority = 64 dependency = AudioValidatorRule consequence = RemoveMatch def __init__(self, codec): super(AudioProfileRule, self).__init__() self.codec = codec def when(self, matches, context): profile_list = matches.named('audio_profile', lambda match: self.codec in match.tags) ret = [] for profile in profile_list: codec = matches.previous(profile, lambda match: match.name == 'audio_codec' and match.value == self.codec) if not codec: codec = matches.next(profile, lambda match: match.name == 'audio_codec' and match.value == self.codec) if not codec: ret.append(profile) return ret class DtsRule(AudioProfileRule): """ Rule to validate DTS profile """ def __init__(self): super(DtsRule, self).__init__("DTS") class AacRule(AudioProfileRule): """ Rule to validate AAC profile """ def __init__(self): super(AacRule, self).__init__("AAC") class Ac3Rule(AudioProfileRule): """ Rule to validate AC3 profile """ def __init__(self): super(Ac3Rule, self).__init__("AC3") class HqConflictRule(Rule): """ Solve conflict between HQ from other property and from audio_profile. """ dependency = [DtsRule, AacRule, Ac3Rule] consequence = RemoveMatch def when(self, matches, context): hq_audio = matches.named('audio_profile', lambda match: match.value == 'HQ') hq_audio_spans = [match.span for match in hq_audio] hq_other = matches.named('other', lambda match: match.span in hq_audio_spans) if hq_other: return hq_other class AudioChannelsValidatorRule(Rule): """ Remove audio_channel if no audio codec as previous match. """ priority = 128 consequence = RemoveMatch def when(self, matches, context): ret = [] for audio_channel in matches.tagged('weak-audio_channels'): valid_before = matches.range(audio_channel.start - 1, audio_channel.start, lambda match: match.name == 'audio_codec') if not valid_before: ret.append(audio_channel) return ret ``` #### File: rules/properties/country.py ```python import babelfish from rebulk import Rebulk from ..common.words import COMMON_WORDS, iter_words def country(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().defaults(name='country') rebulk.functional(find_countries, #  Prefer language and any other property over country if not US or GB. conflict_solver=lambda match, other: match if other.name != 'language' or match.value not in [babelfish.Country('US'), babelfish.Country('GB')] else other, properties={'country': [None]}) return rebulk COUNTRIES_SYN = {'ES': ['españa'], 'GB': ['UK'], 'BR': ['brazilian', 'bra'], 'CA': ['québec', 'quebec', 'qc'], # FIXME: this one is a bit of a stretch, not sure how to do it properly, though... 'MX': ['Latinoamérica', 'latin america']} class GuessitCountryConverter(babelfish.CountryReverseConverter): # pylint: disable=missing-docstring def __init__(self): self.guessit_exceptions = {} for alpha2, synlist in COUNTRIES_SYN.items(): for syn in synlist: self.guessit_exceptions[syn.lower()] = alpha2 @property def codes(self): # pylint: disable=missing-docstring return (babelfish.country_converters['name'].codes | frozenset(babelfish.COUNTRIES.values()) | frozenset(self.guessit_exceptions.keys())) def convert(self, alpha2): if alpha2 == 'GB': return 'UK' return str(babelfish.Country(alpha2)) def reverse(self, name): # pylint:disable=arguments-differ # exceptions come first, as they need to override a potential match # with any of the other guessers try: return self.guessit_exceptions[name.lower()] except KeyError: pass try: return babelfish.Country(name.upper()).alpha2 except ValueError: pass for conv in [babelfish.Country.fromname]: try: return conv(name).alpha2 except babelfish.CountryReverseError: pass raise babelfish.CountryReverseError(name) babelfish.country_converters['guessit'] = GuessitCountryConverter() def is_allowed_country(country_object, context=None): """ Check if country is allowed. """ if context and context.get('allowed_countries'): allowed_countries = context.get('allowed_countries') return country_object.name.lower() in allowed_countries or country_object.alpha2.lower() in allowed_countries return True def find_countries(string, context=None): """ Find countries in given string. """ ret = [] for word_match in iter_words(string.strip().lower()): word = word_match.value if word.lower() in COMMON_WORDS: continue try: country_object = babelfish.Country.fromguessit(word) if is_allowed_country(country_object, context): ret.append((word_match.span[0], word_match.span[1], {'value': country_object})) except babelfish.Error: continue return ret ``` #### File: rules/properties/crc.py ```python from rebulk.remodule import re from rebulk import Rebulk from ..common.validators import seps_surround def crc(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE) rebulk.defaults(validator=seps_surround) rebulk.regex('(?:[a-fA-F]|[0-9]){8}', name='crc32', conflict_solver=lambda match, other: match if other.name in ['episode', 'season'] else '__default__') rebulk.functional(guess_idnumber, name='uuid', conflict_solver=lambda match, other: match if other.name in ['episode', 'season'] else '__default__') return rebulk _DIGIT = 0 _LETTER = 1 _OTHER = 2 _idnum = re.compile(r'(?P<uuid>[a-zA-Z0-9-]{20,})') # 1.0, (0, 0)) def guess_idnumber(string): """ Guess id number function :param string: :type string: :return: :rtype: """ # pylint:disable=invalid-name ret = [] matches = list(_idnum.finditer(string)) for match in matches: result = match.groupdict() switch_count = 0 switch_letter_count = 0 letter_count = 0 last_letter = None last = _LETTER for c in result['uuid']: if c in '0123456789': ci = _DIGIT elif c in 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ': ci = _LETTER if c != last_letter: switch_letter_count += 1 last_letter = c letter_count += 1 else: ci = _OTHER if ci != last: switch_count += 1 last = ci # only return the result as probable if we alternate often between # char type (more likely for hash values than for common words) switch_ratio = float(switch_count) / len(result['uuid']) letters_ratio = (float(switch_letter_count) / letter_count) if letter_count > 0 else 1 if switch_ratio > 0.4 and letters_ratio > 0.4: ret.append(match.span()) return ret ``` #### File: rules/properties/edition.py ```python from rebulk.remodule import re from rebulk import Rebulk from ..common import dash from ..common.validators import seps_surround def edition(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE, abbreviations=[dash]).string_defaults(ignore_case=True) rebulk.defaults(name='edition', validator=seps_surround) rebulk.regex('collector', 'collector-edition', 'edition-collector', value='Collector Edition') rebulk.regex('special-edition', 'edition-special', value='Special Edition', conflict_solver=lambda match, other: other if other.name == 'episode_details' and other.value == 'Special' else '__default__') rebulk.string('se', value='Special Edition', tags='has-neighbor') rebulk.regex('criterion-edition', 'edition-criterion', value='Criterion Edition') rebulk.regex('deluxe', 'deluxe-edition', 'edition-deluxe', value='Deluxe Edition') rebulk.regex('limited', 'limited-edition', value='Limited Edition', tags=['has-neighbor', 'release-group-prefix']) rebulk.regex(r'theatrical-cut', r'theatrical-edition', r'theatrical', value='Theatrical Edition') rebulk.regex(r"director'?s?-cut", r"director'?s?-cut-edition", r"edition-director'?s?-cut", 'DC', value="Director's Cut") rebulk.regex('extended', 'extended-?cut', 'extended-?version', value='Extended', tags=['has-neighbor', 'release-group-prefix']) rebulk.regex('alternat(e|ive)(?:-?Cut)?', value='Alternative Cut', tags=['has-neighbor', 'release-group-prefix']) for value in ('Remastered', 'Uncensored', 'Uncut', 'Unrated'): rebulk.string(value, value=value, tags=['has-neighbor', 'release-group-prefix']) rebulk.string('Festival', value='Festival', tags=['has-neighbor-before', 'has-neighbor-after']) return rebulk ``` #### File: rules/properties/film.py ```python from rebulk import Rebulk, AppendMatch, Rule from rebulk.remodule import re from ..common.formatters import cleanup from ..common.validators import seps_surround def film(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE, validate_all=True, validator={'__parent__': seps_surround}) rebulk.regex(r'f(\d{1,2})', name='film', private_parent=True, children=True, formatter=int) rebulk.rules(FilmTitleRule) return rebulk class FilmTitleRule(Rule): """ Rule to find out film_title (hole after film property """ consequence = AppendMatch properties = {'film_title': [None]} def when(self, matches, context): bonus_number = matches.named('film', lambda match: not match.private, index=0) if bonus_number: filepath = matches.markers.at_match(bonus_number, lambda marker: marker.name == 'path', 0) hole = matches.holes(filepath.start, bonus_number.start + 1, formatter=cleanup, index=0) if hole and hole.value: hole.name = 'film_title' return hole ``` #### File: rules/properties/video_codec.py ```python from rebulk.remodule import re from rebulk import Rebulk, Rule, RemoveMatch from ..common import dash from ..common.validators import seps_after, seps_before, seps_surround def video_codec(): """ Builder for rebulk object. :return: Created Rebulk object :rtype: Rebulk """ rebulk = Rebulk().regex_defaults(flags=re.IGNORECASE, abbreviations=[dash]).string_defaults(ignore_case=True) rebulk.defaults(name="video_codec", tags=['format-suffix', 'streaming_service.suffix']) rebulk.regex(r"Rv\d{2}", value="Real") rebulk.regex("Mpeg2", value="Mpeg2") rebulk.regex("DVDivX", "DivX", value="DivX") rebulk.regex("XviD", value="XviD") rebulk.regex("[hx]-?264(?:-?AVC(HD)?)?", "MPEG-?4(?:-?AVC(HD)?)", "AVC(?:HD)?", value="h264") rebulk.regex("[hx]-?265(?:-?HEVC)?", "HEVC", value="h265") rebulk.regex('(?P<video_codec>hevc)(?P<video_profile>10)', value={'video_codec': 'h265', 'video_profile': '10bit'}, tags=['video-codec-suffix'], children=True) # http://blog.mediacoderhq.com/h264-profiles-and-levels/ # http://fr.wikipedia.org/wiki/H.264 rebulk.defaults(name="video_profile", validator=seps_surround) rebulk.regex('10.?bits?', 'Hi10P?', 'YUV420P10', value='10bit') rebulk.regex('8.?bits?', value='8bit') rebulk.string('BP', value='BP', tags='video_profile.rule') rebulk.string('XP', 'EP', value='XP', tags='video_profile.rule') rebulk.string('MP', value='MP', tags='video_profile.rule') rebulk.string('HP', 'HiP', value='HP', tags='video_profile.rule') rebulk.regex('Hi422P', value='Hi422P', tags='video_profile.rule') rebulk.regex('Hi444PP', value='Hi444PP', tags='video_profile.rule') rebulk.string('DXVA', value='DXVA', name='video_api') rebulk.rules(ValidateVideoCodec, VideoProfileRule) return rebulk class ValidateVideoCodec(Rule): """ Validate video_codec with format property or separated """ priority = 64 consequence = RemoveMatch def when(self, matches, context): ret = [] for codec in matches.named('video_codec'): if not seps_before(codec) and \ not matches.at_index(codec.start - 1, lambda match: 'video-codec-prefix' in match.tags): ret.append(codec) continue if not seps_after(codec) and \ not matches.at_index(codec.end + 1, lambda match: 'video-codec-suffix' in match.tags): ret.append(codec) continue return ret class VideoProfileRule(Rule): """ Rule to validate video_profile """ consequence = RemoveMatch def when(self, matches, context): profile_list = matches.named('video_profile', lambda match: 'video_profile.rule' in match.tags) ret = [] for profile in profile_list: codec = matches.previous(profile, lambda match: match.name == 'video_codec') if not codec: codec = matches.next(profile, lambda match: match.name == 'video_codec') if not codec: ret.append(profile) return ret ``` #### File: guessit/test/test_api_unicode_literals.py ```python from __future__ import unicode_literals import os import pytest import six from ..api import guessit, properties, GuessitException __location__ = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) def test_default(): ret = guessit('Fear.and.Loathing.in.Las.Vegas.FRENCH.ENGLISH.720p.HDDVD.DTS.x264-ESiR.mkv') assert ret and 'title' in ret def test_forced_unicode(): ret = guessit(u'Fear.and.Loathing.in.Las.Vegas.FRENCH.ENGLISH.720p.HDDVD.DTS.x264-ESiR.mkv') assert ret and 'title' in ret and isinstance(ret['title'], six.text_type) def test_forced_binary(): ret = guessit(b'Fear.and.Loathing.in.Las.Vegas.FRENCH.ENGLISH.720p.HDDVD.DTS.x264-ESiR.mkv') assert ret and 'title' in ret and isinstance(ret['title'], six.binary_type) def test_unicode_japanese(): ret = guessit('[阿维达].Avida.2006.FRENCH.DVDRiP.XViD-PROD.avi') assert ret and 'title' in ret def test_unicode_japanese_options(): ret = guessit("[阿维达].Avida.2006.FRENCH.DVDRiP.XViD-PROD.avi", options={"expected_title": ["阿维达"]}) assert ret and 'title' in ret and ret['title'] == "阿维达" def test_forced_unicode_japanese_options(): ret = guessit(u"[阿维达].Avida.2006.FRENCH.DVDRiP.XViD-PROD.avi", options={"expected_title": [u"阿维达"]}) assert ret and 'title' in ret and ret['title'] == u"阿维达" # TODO: This doesn't compile on python 3, but should be tested on python 2. """ if six.PY2: def test_forced_binary_japanese_options(): ret = guessit(b"[阿维达].Avida.2006.FRENCH.DVDRiP.XViD-PROD.avi", options={"expected_title": [b"阿维达"]}) assert ret and 'title' in ret and ret['title'] == b"阿维达" """ def test_properties(): props = properties() assert 'video_codec' in props.keys() def test_exception(): with pytest.raises(GuessitException) as excinfo: guessit(object()) assert "An internal error has occured in guessit" in str(excinfo.value) assert "Guessit Exception Report" in str(excinfo.value) assert "Please report at https://github.com/guessit-io/guessit/issues" in str(excinfo.value) ``` #### File: Shared/json_tricks/decoders.py ```python from datetime import datetime, date, time, timedelta from fractions import Fraction from importlib import import_module from collections import OrderedDict from decimal import Decimal from logging import warning from json_tricks import NoPandasException, NoNumpyException class DuplicateJsonKeyException(Exception): """ Trying to load a json map which contains duplicate keys, but allow_duplicates is False """ class TricksPairHook(object): """ Hook that converts json maps to the appropriate python type (dict or OrderedDict) and then runs any number of hooks on the individual maps. """ def __init__(self, ordered=True, obj_pairs_hooks=None, allow_duplicates=True): """ :param ordered: True if maps should retain their ordering. :param obj_pairs_hooks: An iterable of hooks to apply to elements. """ self.map_type = OrderedDict if not ordered: self.map_type = dict self.obj_pairs_hooks = [] if obj_pairs_hooks: self.obj_pairs_hooks = list(obj_pairs_hooks) self.allow_duplicates = allow_duplicates def __call__(self, pairs): if not self.allow_duplicates: known = set() for key, value in pairs: if key in known: raise DuplicateJsonKeyException(('Trying to load a json map which contains a' + ' duplicate key "{0:}" (but allow_duplicates is False)').format(key)) known.add(key) map = self.map_type(pairs) for hook in self.obj_pairs_hooks: map = hook(map) return map def json_date_time_hook(dct): """ Return an encoded date, time, datetime or timedelta to it's python representation, including optional timezone. :param dct: (dict) json encoded date, time, datetime or timedelta :return: (date/time/datetime/timedelta obj) python representation of the above """ def get_tz(dct): if not 'tzinfo' in dct: return None try: import pytz except ImportError as err: raise ImportError(('Tried to load a json object which has a timezone-aware (date)time. ' 'However, `pytz` could not be imported, so the object could not be loaded. ' 'Error: {0:}').format(str(err))) return pytz.timezone(dct['tzinfo']) if isinstance(dct, dict): if '__date__' in dct: return date(year=dct.get('year', 0), month=dct.get('month', 0), day=dct.get('day', 0)) elif '__time__' in dct: tzinfo = get_tz(dct) return time(hour=dct.get('hour', 0), minute=dct.get('minute', 0), second=dct.get('second', 0), microsecond=dct.get('microsecond', 0), tzinfo=tzinfo) elif '__datetime__' in dct: tzinfo = get_tz(dct) return datetime(year=dct.get('year', 0), month=dct.get('month', 0), day=dct.get('day', 0), hour=dct.get('hour', 0), minute=dct.get('minute', 0), second=dct.get('second', 0), microsecond=dct.get('microsecond', 0), tzinfo=tzinfo) elif '__timedelta__' in dct: return timedelta(days=dct.get('days', 0), seconds=dct.get('seconds', 0), microseconds=dct.get('microseconds', 0)) return dct def json_complex_hook(dct): """ Return an encoded complex number to it's python representation. :param dct: (dict) json encoded complex number (__complex__) :return: python complex number """ if isinstance(dct, dict): if '__complex__' in dct: parts = dct['__complex__'] assert len(parts) == 2 return parts[0] + parts[1] * 1j return dct def numeric_types_hook(dct): if isinstance(dct, dict): if '__decimal__' in dct: return Decimal(dct['__decimal__']) if '__fraction__' in dct: return Fraction(numerator=dct['numerator'], denominator=dct['denominator']) return dct class ClassInstanceHook(object): """ This hook tries to convert json encoded by class_instance_encoder back to it's original instance. It only works if the environment is the same, e.g. the class is similarly importable and hasn't changed. """ def __init__(self, cls_lookup_map=None): self.cls_lookup_map = cls_lookup_map or {} def __call__(self, dct): if isinstance(dct, dict) and '__instance_type__' in dct: mod, name = dct['__instance_type__'] attrs = dct['attributes'] if mod is None: try: Cls = getattr((__import__('__main__')), name) except (ImportError, AttributeError) as err: if not name in self.cls_lookup_map: raise ImportError(('class {0:s} seems to have been exported from the main file, which means ' 'it has no module/import path set; you need to provide cls_lookup_map which maps names ' 'to classes').format(name)) Cls = self.cls_lookup_map[name] else: imp_err = None try: module = import_module('{0:}'.format(mod, name)) except ImportError as err: imp_err = ('encountered import error "{0:}" while importing "{1:}" to decode a json file; perhaps ' 'it was encoded in a different environment where {1:}.{2:} was available').format(err, mod, name) else: if not hasattr(module, name): imp_err = 'imported "{0:}" but could find "{1:}" inside while decoding a json file (found {2:}'.format( module, name, ', '.join(attr for attr in dir(module) if not attr.startswith('_'))) Cls = getattr(module, name) if imp_err: if 'name' in self.cls_lookup_map: Cls = self.cls_lookup_map[name] else: raise ImportError(imp_err) try: obj = Cls.__new__(Cls) except TypeError: raise TypeError(('problem while decoding instance of "{0:s}"; this instance has a special ' '__new__ method and can\'t be restored').format(name)) if hasattr(obj, '__json_decode__'): obj.__json_decode__(**attrs) else: obj.__dict__ = dict(attrs) return obj return dct def json_set_hook(dct): """ Return an encoded set to it's python representation. """ if isinstance(dct, dict): if '__set__' in dct: return set((tuple(item) if isinstance(item, list) else item) for item in dct['__set__']) return dct def pandas_hook(dct): if '__pandas_dataframe__' in dct or '__pandas_series__' in dct: # todo: this is experimental if not getattr(pandas_hook, '_warned', False): pandas_hook._warned = True warning('Pandas loading support in json-tricks is experimental and may change in future versions.') if '__pandas_dataframe__' in dct: try: from pandas import DataFrame except ImportError: raise NoPandasException('Trying to decode a map which appears to represent a pandas data structure, but pandas appears not to be installed.') from numpy import dtype, array meta = dct.pop('__pandas_dataframe__') indx = dct.pop('index') if 'index' in dct else None dtypes = dict((colname, dtype(tp)) for colname, tp in zip(meta['column_order'], meta['types'])) data = OrderedDict() for name, col in dct.items(): data[name] = array(col, dtype=dtypes[name]) return DataFrame( data=data, index=indx, columns=meta['column_order'], # mixed `dtypes` argument not supported, so use duct of numpy arrays ) elif '__pandas_series__' in dct: from pandas import Series from numpy import dtype, array meta = dct.pop('__pandas_series__') indx = dct.pop('index') if 'index' in dct else None return Series( data=dct['data'], index=indx, name=meta['name'], dtype=dtype(meta['type']), ) return dct def nopandas_hook(dct): if isinstance(dct, dict) and ('__pandas_dataframe__' in dct or '__pandas_series__' in dct): raise NoPandasException(('Trying to decode a map which appears to represent a pandas ' 'data structure, but pandas support is not enabled, perhaps it is not installed.')) return dct def json_numpy_obj_hook(dct): """ Replace any numpy arrays previously encoded by NumpyEncoder to their proper shape, data type and data. :param dct: (dict) json encoded ndarray :return: (ndarray) if input was an encoded ndarray """ if isinstance(dct, dict) and '__ndarray__' in dct: try: from numpy import asarray import numpy as nptypes except ImportError: raise NoNumpyException('Trying to decode a map which appears to represent a numpy ' 'array, but numpy appears not to be installed.') order = 'A' if 'Corder' in dct: order = 'C' if dct['Corder'] else 'F' if dct['shape']: return asarray(dct['__ndarray__'], dtype=dct['dtype'], order=order) else: dtype = getattr(nptypes, dct['dtype']) return dtype(dct['__ndarray__']) return dct def json_nonumpy_obj_hook(dct): """ This hook has no effect except to check if you're trying to decode numpy arrays without support, and give you a useful message. """ if isinstance(dct, dict) and '__ndarray__' in dct: raise NoNumpyException(('Trying to decode a map which appears to represent a numpy array, ' 'but numpy support is not enabled, perhaps it is not installed.')) return dct ``` #### File: plex_activity/sources/base.py ```python from pyemitter import Emitter from threading import Thread import logging log = logging.getLogger(__name__) class Source(Emitter): name = None def __init__(self): self.thread = Thread(target=self._run_wrapper) def start(self): self.thread.start() def run(self): pass def _run_wrapper(self): try: self.run() except Exception as ex: log.error('Exception raised in "%s" activity source: %s', self.name, ex, exc_info=True) ``` #### File: s_logging/parsers/base.py ```python from plex.lib.six.moves import urllib_parse as urlparse from plex_activity.core.helpers import str_format from pyemitter import Emitter import logging import re log = logging.getLogger(__name__) LOG_PATTERN = r'^.*?\[\w+\]\s\w+\s-\s{message}$' REQUEST_HEADER_PATTERN = str_format(LOG_PATTERN, message=r"Request: (\[(?P<address>.*?):(?P<port>\d+)[^]]*\]\s)?{method} {path}.*?") IGNORE_PATTERNS = [ r'error parsing allowedNetworks.*?', r'Comparing request from.*?', r'(Auth: )?We found auth token (.*?), enabling token-based authentication\.', r'(Auth: )?Came in with a super-token, authorization succeeded\.', r'(Auth: )?Refreshing tokens inside the token-based authentication filter\.', r'\[Now\] Updated play state for .*?', r'Play progress on .*? - got played .*? ms by account .*?!', r'(Statistics: )?\(.*?\) Reporting active playback in state \d+ of type \d+ \(.*?\) for account \d+', r'Request: \[.*?\] (GET|PUT) /video/:/transcode/.*?', r'Received transcode session ping for session .*?' ] IGNORE_REGEX = re.compile(str_format(LOG_PATTERN, message='(%s)' % ('|'.join('(%s)' % x for x in IGNORE_PATTERNS))), re.IGNORECASE) PARAM_REGEX = re.compile(str_format(LOG_PATTERN, message=r' \* (?P<key>.*?) =\> (?P<value>.*?)'), re.IGNORECASE) class Parser(Emitter): def __init__(self, core): self.core = core def read_parameters(self, *match_functions): match_functions = [self.parameter_match] + list(match_functions) info = {} while True: line = self.core.read_line_retry(timeout=5) if not line: log.info('Unable to read log file') return {} # Run through each match function to find a result match = None for func in match_functions: match = func(line) if match is not None: break # Update info dict with result, otherwise finish reading if match: info.update(match) elif match is None and IGNORE_REGEX.match(line.strip()) is None: log.debug('break on "%s"', line.strip()) break return info def process(self, line): raise NotImplementedError() @staticmethod def parameter_match(line): match = PARAM_REGEX.match(line.strip()) if not match: return None match = match.groupdict() return {match['key']: match['value']} @staticmethod def regex_match(regex, line): match = regex.match(line.strip()) if not match: return None return match.groupdict() @staticmethod def query(match, value): if not value: return try: parameters = urlparse.parse_qsl(value, strict_parsing=True) except ValueError: return for key, value in parameters: match.setdefault(key, value) ``` #### File: plex/core/idict.py ```python from plex.lib.six import string_types class idict(dict): def __init__(self, initial=None): if initial: self.update(initial) def get(self, k, d=None): if isinstance(k, string_types): k = k.lower() if super(idict, self).__contains__(k): return self[k] return d def update(self, E=None, **F): if E: if hasattr(E, 'keys'): # Update with `E` dictionary for k in E: self[k] = E[k] else: # Update with `E` items for (k, v) in E: self[k] = v # Update with `F` dictionary for k in F: self[k] = F[k] def __contains__(self, k): if isinstance(k, string_types): k = k.lower() return super(idict, self).__contains__(k) def __delitem__(self, k): if isinstance(k, string_types): k = k.lower() super(idict, self).__delitem__(k) def __getitem__(self, k): if isinstance(k, string_types): k = k.lower() return super(idict, self).__getitem__(k) def __setitem__(self, k, value): if isinstance(k, string_types): k = k.lower() super(idict, self).__setitem__(k, value) ``` #### File: plex/objects/detail.py ```python from plex.objects.core.base import Descriptor, Property from plex.objects.container import Container class Detail(Container): myplex = Property(resolver=lambda: Detail.construct_myplex) transcoder = Property(resolver=lambda: Detail.construct_transcoder) friendly_name = Property('friendlyName') machine_identifier = Property('machineIdentifier') version = Property platform = Property platform_version = Property('platformVersion') allow_camera_upload = Property('allowCameraUpload', [int, bool]) allow_channel_access = Property('allowChannelAccess', [int, bool]) allow_sync = Property('allowSync', [int, bool]) certificate = Property(type=[int, bool]) multiuser = Property(type=[int, bool]) sync = Property(type=[int, bool]) start_state = Property('startState') silverlight = Property('silverlightInstalled', [int, bool]) soundflower = Property('soundflowerInstalled', [int, bool]) flash = Property('flashInstalled', [int, bool]) webkit = Property(type=[int, bool]) cookie_parameters = Property('requestParametersInCookie', [int, bool]) @staticmethod def construct_myplex(client, node): return MyPlexDetail.construct(client, node, child=True) @staticmethod def construct_transcoder(client, node): return TranscoderDetail.construct(client, node, child=True) class MyPlexDetail(Descriptor): enabled = Property('myPlex', type=bool) username = Property('myPlexUsername') mapping_state = Property('myPlexMappingState') signin_state = Property('myPlexSigninState') subscription = Property('myPlexSubscription', [int, bool]) class TranscoderDetail(Descriptor): audio = Property('transcoderAudio', [int, bool]) video = Property('transcoderVideo', [int, bool]) video_bitrates = Property('transcoderVideoBitrates') video_qualities = Property('transcoderVideoQualities') video_resolutions = Property('transcoderVideoResolutions') active_video_sessions = Property('transcoderActiveVideoSessions', int) ``` #### File: library/extra/director.py ```python from plex.objects.core.base import Descriptor, Property class Director(Descriptor): id = Property(type=int) tag = Property @classmethod def from_node(cls, client, node): return cls.construct(client, cls.helpers.find(node, 'Director'), child=True) ``` #### File: library/metadata/album.py ```python from plex.objects.core.base import Property from plex.objects.directory import Directory from plex.objects.library.container import ChildrenContainer from plex.objects.library.extra.genre import Genre from plex.objects.library.metadata.base import Metadata from plex.objects.library.metadata.artist import Artist from plex.objects.mixins.rate import RateMixin class Album(Directory, Metadata, RateMixin): artist = Property(resolver=lambda: Album.construct_artist) genres = Property(resolver=lambda: Genre.from_node) index = Property(type=int) year = Property(type=int) originally_available_at = Property('originallyAvailableAt') track_count = Property('leafCount', int) viewed_track_count = Property('viewedLeafCount', int) def children(self): return self.client['library/metadata'].children(self.rating_key) @staticmethod def construct_artist(client, node): attribute_map = { 'key': 'parentKey', 'ratingKey': 'parentRatingKey', 'title': 'parentTitle', 'thumb': 'parentThumb' } return Artist.construct(client, node, attribute_map, child=True) class AlbumChildrenContainer(ChildrenContainer): artist = Property(resolver=lambda: AlbumChildrenContainer.construct_artist) album = Property(resolver=lambda: AlbumChildrenContainer.construct_album) key = Property @staticmethod def construct_artist(client, node): attribute_map = { 'title': 'grandparentTitle' } return Artist.construct(client, node, attribute_map, child=True) @staticmethod def construct_album(client, node): attribute_map = { 'index': 'parentIndex', 'title': 'parentTitle', 'year' : 'parentYear' } return Album.construct(client, node, attribute_map, child=True) def __iter__(self): for item in super(ChildrenContainer, self).__iter__(): item.artist = self.artist item.album = self.album yield item ``` #### File: objects/library/video.py ```python from plex.objects.core.base import Property from plex.objects.directory import Directory from plex.objects.library.extra.director import Director from plex.objects.library.extra.writer import Writer from plex.objects.library.media import Media from plex.objects.mixins.session import SessionMixin class Video(Directory, SessionMixin): director = Property(resolver=lambda: Director.from_node) media = Property(resolver=lambda: Media.from_node) writers = Property(resolver=lambda: Writer.from_node) view_count = Property('viewCount', type=int) view_offset = Property('viewOffset', type=int) chapter_source = Property('chapterSource') duration = Property(type=int) @property def seen(self): return self.view_count and self.view_count >= 1 ``` #### File: Shared/pyga/__init__.py ```python from pyga.requests import Q def shutdown(): ''' Fire all stored GIF requests One by One. You should call this if you set Config.queue_requests = True ''' map(lambda func: func(), Q.REQ_ARRAY) ``` #### File: Shared/pysrt/srtitem.py ```python from pysrt.srtexc import InvalidItem, InvalidIndex from pysrt.srttime import SubRipTime from pysrt.comparablemixin import ComparableMixin from pysrt.compat import str, is_py2 import re class SubRipItem(ComparableMixin): """ SubRipItem(index, start, end, text, position) index -> int: index of item in file. 0 by default. start, end -> SubRipTime or coercible. text -> unicode: text content for item. position -> unicode: raw srt/vtt "display coordinates" string """ ITEM_PATTERN = str('%s\n%s --> %s%s\n%s\n') TIMESTAMP_SEPARATOR = '-->' def __init__(self, index=0, start=None, end=None, text='', position=''): try: self.index = int(index) except (TypeError, ValueError): # try to cast as int, but it's not mandatory self.index = index self.start = SubRipTime.coerce(start or 0) self.end = SubRipTime.coerce(end or 0) self.position = str(position) self.text = str(text) @property def duration(self): return self.end - self.start @property def text_without_tags(self): RE_TAG = re.compile(r'<[^>]*?>') return RE_TAG.sub('', self.text) @property def characters_per_second(self): characters_count = len(self.text_without_tags.replace('\n', '')) try: return characters_count / (self.duration.ordinal / 1000.0) except ZeroDivisionError: return 0.0 def __str__(self): position = ' %s' % self.position if self.position.strip() else '' return self.ITEM_PATTERN % (self.index, self.start, self.end, position, self.text) if is_py2: __unicode__ = __str__ def __str__(self): raise NotImplementedError('Use unicode() instead!') def _cmpkey(self): return (self.start, self.end) def shift(self, *args, **kwargs): """ shift(hours, minutes, seconds, milliseconds, ratio) Add given values to start and end attributes. All arguments are optional and have a default value of 0. """ self.start.shift(*args, **kwargs) self.end.shift(*args, **kwargs) @classmethod def from_string(cls, source): return cls.from_lines(source.splitlines(True)) @classmethod def from_lines(cls, lines): if len(lines) < 2: raise InvalidItem() lines = [l.rstrip() for l in lines] index = None if cls.TIMESTAMP_SEPARATOR not in lines[0]: index = lines.pop(0) start, end, position = cls.split_timestamps(lines[0]) body = '\n'.join(lines[1:]) return cls(index, start, end, body, position) @classmethod def split_timestamps(cls, line): timestamps = line.split(cls.TIMESTAMP_SEPARATOR) if len(timestamps) != 2: raise InvalidItem() start, end_and_position = timestamps end_and_position = end_and_position.lstrip().split(' ', 1) end = end_and_position[0] position = end_and_position[1] if len(end_and_position) > 1 else '' return (s.strip() for s in (start, end, position)) ``` #### File: Shared/rebulk/chain.py ```python import itertools from .loose import call, set_defaults from .match import Match, Matches from .pattern import Pattern, filter_match_kwargs from .remodule import re class _InvalidChainException(Exception): """ Internal exception raised when a chain is not valid """ pass class Chain(Pattern): """ Definition of a pattern chain to search for. """ def __init__(self, rebulk, chain_breaker=None, **kwargs): call(super(Chain, self).__init__, **kwargs) self._kwargs = kwargs self._match_kwargs = filter_match_kwargs(kwargs) self._defaults = {} self._regex_defaults = {} self._string_defaults = {} self._functional_defaults = {} if callable(chain_breaker): self.chain_breaker = chain_breaker else: self.chain_breaker = None self.rebulk = rebulk self.parts = [] def defaults(self, **kwargs): """ Define default keyword arguments for all patterns :param kwargs: :type kwargs: :return: :rtype: """ self._defaults = kwargs return self def regex_defaults(self, **kwargs): """ Define default keyword arguments for functional patterns. :param kwargs: :type kwargs: :return: :rtype: """ self._regex_defaults = kwargs return self def string_defaults(self, **kwargs): """ Define default keyword arguments for string patterns. :param kwargs: :type kwargs: :return: :rtype: """ self._string_defaults = kwargs return self def functional_defaults(self, **kwargs): """ Define default keyword arguments for functional patterns. :param kwargs: :type kwargs: :return: :rtype: """ self._functional_defaults = kwargs return self def chain(self): """ Add patterns chain, using configuration from this chain :return: :rtype: """ # pylint: disable=protected-access chain = self.rebulk.chain(**self._kwargs) chain._defaults = dict(self._defaults) chain._regex_defaults = dict(self._regex_defaults) chain._functional_defaults = dict(self._functional_defaults) chain._string_defaults = dict(self._string_defaults) return chain def regex(self, *pattern, **kwargs): """ Add re pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ set_defaults(self._kwargs, kwargs) set_defaults(self._regex_defaults, kwargs) set_defaults(self._defaults, kwargs) pattern = self.rebulk.build_re(*pattern, **kwargs) part = ChainPart(self, pattern) self.parts.append(part) return part def functional(self, *pattern, **kwargs): """ Add functional pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ set_defaults(self._kwargs, kwargs) set_defaults(self._functional_defaults, kwargs) set_defaults(self._defaults, kwargs) pattern = self.rebulk.build_functional(*pattern, **kwargs) part = ChainPart(self, pattern) self.parts.append(part) return part def string(self, *pattern, **kwargs): """ Add string pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ set_defaults(self._kwargs, kwargs) set_defaults(self._functional_defaults, kwargs) set_defaults(self._defaults, kwargs) pattern = self.rebulk.build_string(*pattern, **kwargs) part = ChainPart(self, pattern) self.parts.append(part) return part def close(self): """ Close chain builder to continue registering other pattern :return: :rtype: """ return self.rebulk def _match(self, pattern, input_string, context=None): # pylint: disable=too-many-locals,too-many-nested-blocks chain_matches = [] chain_input_string = input_string offset = 0 while offset < len(input_string): chain_found = False current_chain_matches = [] valid_chain = True is_chain_start = True for chain_part in self.parts: try: chain_part_matches, raw_chain_part_matches = Chain._match_chain_part(is_chain_start, chain_part, chain_input_string, context) Chain._fix_matches_offset(chain_part_matches, input_string, offset) Chain._fix_matches_offset(raw_chain_part_matches, input_string, offset) if raw_chain_part_matches: grouped_matches_dict = dict() for match_index, match in itertools.groupby(chain_part_matches, lambda m: m.match_index): grouped_matches_dict[match_index] = list(match) grouped_raw_matches_dict = dict() for match_index, raw_match in itertools.groupby(raw_chain_part_matches, lambda m: m.match_index): grouped_raw_matches_dict[match_index] = list(raw_match) for match_index, grouped_raw_matches in grouped_raw_matches_dict.items(): chain_found = True offset = grouped_raw_matches[-1].raw_end chain_input_string = input_string[offset:] if not chain_part.is_hidden: grouped_matches = grouped_matches_dict.get(match_index, []) if self._chain_breaker_eval(current_chain_matches + grouped_matches): current_chain_matches.extend(grouped_matches) except _InvalidChainException: valid_chain = False if current_chain_matches: offset = current_chain_matches[0].raw_end break is_chain_start = False if not chain_found: break if current_chain_matches and valid_chain: match = self._build_chain_match(current_chain_matches, input_string) chain_matches.append(match) return chain_matches def _match_parent(self, match, yield_parent): """ Handle a parent match :param match: :type match: :param yield_parent: :type yield_parent: :return: :rtype: """ ret = super(Chain, self)._match_parent(match, yield_parent) original_children = Matches(match.children) original_end = match.end while not ret and match.children: last_pattern = match.children[-1].pattern last_pattern_children = [child for child in match.children if child.pattern == last_pattern] last_pattern_groups_iter = itertools.groupby(last_pattern_children, lambda child: child.match_index) last_pattern_groups = {} for index, matches in last_pattern_groups_iter: last_pattern_groups[index] = list(matches) for index in reversed(list(last_pattern_groups)): last_matches = list(last_pattern_groups[index]) for last_match in last_matches: match.children.remove(last_match) match.end = match.children[-1].end if match.children else match.start ret = super(Chain, self)._match_parent(match, yield_parent) if ret: return True match.children = original_children match.end = original_end return ret def _build_chain_match(self, current_chain_matches, input_string): start = None end = None for match in current_chain_matches: if start is None or start > match.start: start = match.start if end is None or end < match.end: end = match.end match = call(Match, start, end, pattern=self, input_string=input_string, **self._match_kwargs) for chain_match in current_chain_matches: if chain_match.children: for child in chain_match.children: match.children.append(child) if chain_match not in match.children: match.children.append(chain_match) chain_match.parent = match return match def _chain_breaker_eval(self, matches): return not self.chain_breaker or not self.chain_breaker(Matches(matches)) @staticmethod def _fix_matches_offset(chain_part_matches, input_string, offset): for chain_part_match in chain_part_matches: if chain_part_match.input_string != input_string: chain_part_match.input_string = input_string chain_part_match.end += offset chain_part_match.start += offset if chain_part_match.children: Chain._fix_matches_offset(chain_part_match.children, input_string, offset) @staticmethod def _match_chain_part(is_chain_start, chain_part, chain_input_string, context): chain_part_matches, raw_chain_part_matches = chain_part.pattern.matches(chain_input_string, context, with_raw_matches=True) chain_part_matches = Chain._truncate_chain_part_matches(is_chain_start, chain_part_matches, chain_part, chain_input_string) raw_chain_part_matches = Chain._truncate_chain_part_matches(is_chain_start, raw_chain_part_matches, chain_part, chain_input_string) Chain._validate_chain_part_matches(raw_chain_part_matches, chain_part) return chain_part_matches, raw_chain_part_matches @staticmethod def _truncate_chain_part_matches(is_chain_start, chain_part_matches, chain_part, chain_input_string): if not chain_part_matches: return chain_part_matches if not is_chain_start: separator = chain_input_string[0:chain_part_matches[0].initiator.raw_start] if separator: return [] j = 1 for i in range(0, len(chain_part_matches) - 1): separator = chain_input_string[chain_part_matches[i].initiator.raw_end: chain_part_matches[i + 1].initiator.raw_start] if separator: break j += 1 truncated = chain_part_matches[:j] if chain_part.repeater_end is not None: truncated = [m for m in truncated if m.match_index < chain_part.repeater_end] return truncated @staticmethod def _validate_chain_part_matches(chain_part_matches, chain_part): max_match_index = -1 if chain_part_matches: max_match_index = max([m.match_index for m in chain_part_matches]) if max_match_index + 1 < chain_part.repeater_start: raise _InvalidChainException @property def match_options(self): return {} @property def patterns(self): return [self] def __repr__(self): defined = "" if self.defined_at: defined = "@%s" % (self.defined_at,) return "<%s%s:%s>" % (self.__class__.__name__, defined, self.parts) class ChainPart(object): """ Part of a pattern chain. """ def __init__(self, chain, pattern): self._chain = chain self.pattern = pattern self.repeater_start = 1 self.repeater_end = 1 self._hidden = False def chain(self): """ Add patterns chain, using configuration from this chain :return: :rtype: """ return self._chain.chain() def hidden(self, hidden=True): """ Hide chain part results from global chain result :param hidden: :type hidden: :return: :rtype: """ self._hidden = hidden return self @property def is_hidden(self): """ Check if the chain part is hidden :return: :rtype: """ return self._hidden def regex(self, *pattern, **kwargs): """ Add re pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ return self._chain.regex(*pattern, **kwargs) def functional(self, *pattern, **kwargs): """ Add functional pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ return self._chain.functional(*pattern, **kwargs) def string(self, *pattern, **kwargs): """ Add string pattern :param pattern: :type pattern: :param kwargs: :type kwargs: :return: :rtype: """ return self._chain.string(*pattern, **kwargs) def close(self): """ Close the chain builder to continue registering other patterns :return: :rtype: """ return self._chain.close() def repeater(self, value): """ Define the repeater of the current chain part. :param value: :type value: :return: :rtype: """ try: value = int(value) self.repeater_start = value self.repeater_end = value return self except ValueError: pass if value == '+': self.repeater_start = 1 self.repeater_end = None if value == '*': self.repeater_start = 0 self.repeater_end = None elif value == '?': self.repeater_start = 0 self.repeater_end = 1 else: match = re.match(r'\{\s*(\d*)\s*,?\s*(\d*)\s*\}', value) if match: start = match.group(1) end = match.group(2) if start or end: self.repeater_start = int(start) if start else 0 self.repeater_end = int(end) if end else None return self def __repr__(self): return "%s({%s,%s})" % (self.pattern, self.repeater_start, self.repeater_end) ``` #### File: Shared/rebulk/debug.py ```python import inspect import logging import os from collections import namedtuple DEBUG = False LOG_LEVEL = logging.DEBUG class Frame(namedtuple('Frame', ['lineno', 'package', 'name', 'filename'])): """ Stack frame representation. """ __slots__ = () def __repr__(self): return "%s#L%s" % (os.path.basename(self.filename), self.lineno) def defined_at(): """ Get definition location of a pattern or a match (outside of rebulk package). :return: :rtype: """ if DEBUG: frame = inspect.currentframe() while frame: try: if frame.f_globals['__package__'] != __package__: break except KeyError: # pragma:no cover # If package is missing, consider we are in. Workaround for python 3.3. break frame = frame.f_back ret = Frame(frame.f_lineno, frame.f_globals.get('__package__'), frame.f_globals.get('__name__'), frame.f_code.co_filename) del frame return ret ``` #### File: Shared/rebulk/pattern.py ```python from abc import ABCMeta, abstractmethod, abstractproperty import six from . import debug from .loose import call, ensure_list, ensure_dict from .match import Match from .remodule import re, REGEX_AVAILABLE from .utils import find_all, is_iterable, get_first_defined @six.add_metaclass(ABCMeta) class Pattern(object): """ Definition of a particular pattern to search for. """ def __init__(self, name=None, tags=None, formatter=None, value=None, validator=None, children=False, every=False, private_parent=False, private_children=False, private=False, private_names=None, ignore_names=None, marker=False, format_all=False, validate_all=False, disabled=lambda context: False, log_level=None, properties=None, post_processor=None, **kwargs): """ :param name: Name of this pattern :type name: str :param tags: List of tags related to this pattern :type tags: list[str] :param formatter: dict (name, func) of formatter to use with this pattern. name is the match name to support, and func a function(input_string) that returns the formatted string. A single formatter function can also be passed as a shortcut for {None: formatter}. The returned formatted string with be set in Match.value property. :type formatter: dict[str, func] || func :param value: dict (name, value) of value to use with this pattern. name is the match name to support, and value an object for the match value. A single object value can also be passed as a shortcut for {None: value}. The value with be set in Match.value property. :type value: dict[str, object] || object :param validator: dict (name, func) of validator to use with this pattern. name is the match name to support, and func a function(match) that returns the a boolean. A single validator function can also be passed as a shortcut for {None: validator}. If return value is False, match will be ignored. :param children: generates children instead of parent :type children: bool :param every: generates both parent and children. :type every: bool :param private: flag this pattern as beeing private. :type private: bool :param private_parent: force return of parent and flag parent matches as private. :type private_parent: bool :param private_children: force return of children and flag children matches as private. :type private_children: bool :param private_names: force return of named matches as private. :type private_names: bool :param ignore_names: drop some named matches after validation. :type ignore_names: bool :param marker: flag this pattern as beeing a marker. :type private: bool :param format_all if True, pattern will format every match in the hierarchy (even match not yield). :type format_all: bool :param validate_all if True, pattern will validate every match in the hierarchy (even match not yield). :type validate_all: bool :param disabled: if True, this pattern is disabled. Can also be a function(context). :type disabled: bool|function :param log_lvl: Log level associated to this pattern :type log_lvl: int :param post_process: Post processing function :type post_processor: func """ # pylint:disable=too-many-locals,unused-argument self.name = name self.tags = ensure_list(tags) self.formatters, self._default_formatter = ensure_dict(formatter, lambda x: x) self.values, self._default_value = ensure_dict(value, None) self.validators, self._default_validator = ensure_dict(validator, lambda match: True) self.every = every self.children = children self.private = private self.private_names = private_names if private_names else [] self.ignore_names = ignore_names if ignore_names else [] self.private_parent = private_parent self.private_children = private_children self.marker = marker self.format_all = format_all self.validate_all = validate_all if not callable(disabled): self.disabled = lambda context: disabled else: self.disabled = disabled self._log_level = log_level self._properties = properties self.defined_at = debug.defined_at() if not callable(post_processor): self.post_processor = None else: self.post_processor = post_processor @property def log_level(self): """ Log level for this pattern. :return: :rtype: """ return self._log_level if self._log_level is not None else debug.LOG_LEVEL def _yield_children(self, match): """ Does this match has children :param match: :type match: :return: :rtype: """ return match.children and (self.children or self.every) def _yield_parent(self): """ Does this mat :param match: :type match: :return: :rtype: """ return not self.children or self.every def _match_parent(self, match, yield_parent): """ Handle a parent match :param match: :type match: :param yield_parent: :type yield_parent: :return: :rtype: """ if not match or match.value == "": return False pattern_value = get_first_defined(self.values, [match.name, '__parent__', None], self._default_value) if pattern_value: match.value = pattern_value if yield_parent or self.format_all: match.formatter = get_first_defined(self.formatters, [match.name, '__parent__', None], self._default_formatter) if yield_parent or self.validate_all: validator = get_first_defined(self.validators, [match.name, '__parent__', None], self._default_validator) if validator and not validator(match): return False return True def _match_child(self, child, yield_children): """ Handle a children match :param child: :type child: :param yield_children: :type yield_children: :return: :rtype: """ if not child or child.value == "": return False pattern_value = get_first_defined(self.values, [child.name, '__children__', None], self._default_value) if pattern_value: child.value = pattern_value if yield_children or self.format_all: child.formatter = get_first_defined(self.formatters, [child.name, '__children__', None], self._default_formatter) if yield_children or self.validate_all: validator = get_first_defined(self.validators, [child.name, '__children__', None], self._default_validator) if validator and not validator(child): return False return True def matches(self, input_string, context=None, with_raw_matches=False): """ Computes all matches for a given input :param input_string: the string to parse :type input_string: str :param context: the context :type context: dict :param with_raw_matches: should return details :type with_raw_matches: dict :return: matches based on input_string for this pattern :rtype: iterator[Match] """ # pylint: disable=too-many-branches matches = [] raw_matches = [] for pattern in self.patterns: yield_parent = self._yield_parent() match_index = -1 for match in self._match(pattern, input_string, context): match_index += 1 match.match_index = match_index raw_matches.append(match) yield_children = self._yield_children(match) if not self._match_parent(match, yield_parent): continue validated = True for child in match.children: if not self._match_child(child, yield_children): validated = False break if validated: if self.private_parent: match.private = True if self.private_children: for child in match.children: child.private = True if yield_parent or self.private_parent: matches.append(match) if yield_children or self.private_children: for child in match.children: child.match_index = match_index matches.append(child) matches = self._matches_post_process(matches) self._matches_privatize(matches) self._matches_ignore(matches) if with_raw_matches: return matches, raw_matches return matches def _matches_post_process(self, matches): """ Post process matches with user defined function :param matches: :type matches: :return: :rtype: """ if self.post_processor: return self.post_processor(matches, self) return matches def _matches_privatize(self, matches): """ Mark matches included in private_names with private flag. :param matches: :type matches: :return: :rtype: """ if self.private_names: for match in matches: if match.name in self.private_names: match.private = True def _matches_ignore(self, matches): """ Ignore matches included in ignore_names. :param matches: :type matches: :return: :rtype: """ if self.ignore_names: for match in list(matches): if match.name in self.ignore_names: matches.remove(match) @abstractproperty def patterns(self): # pragma: no cover """ List of base patterns defined :return: A list of base patterns :rtype: list """ pass @property def properties(self): """ Properties names and values that can ben retrieved by this pattern. :return: :rtype: """ if self._properties: return self._properties return {} @abstractproperty def match_options(self): # pragma: no cover """ dict of default options for generated Match objects :return: **options to pass to Match constructor :rtype: dict """ pass @abstractmethod def _match(self, pattern, input_string, context=None): # pragma: no cover """ Computes all matches for a given pattern and input :param pattern: the pattern to use :param input_string: the string to parse :type input_string: str :param context: the context :type context: dict :return: matches based on input_string for this pattern :rtype: iterator[Match] """ pass def __repr__(self): defined = "" if self.defined_at: defined = "@%s" % (self.defined_at,) return "<%s%s:%s>" % (self.__class__.__name__, defined, self.__repr__patterns__) @property def __repr__patterns__(self): return self.patterns class StringPattern(Pattern): """ Definition of one or many strings to search for. """ def __init__(self, *patterns, **kwargs): super(StringPattern, self).__init__(**kwargs) self._patterns = patterns self._kwargs = kwargs self._match_kwargs = filter_match_kwargs(kwargs) @property def patterns(self): return self._patterns @property def match_options(self): return self._match_kwargs def _match(self, pattern, input_string, context=None): for index in find_all(input_string, pattern, **self._kwargs): yield Match(index, index + len(pattern), pattern=self, input_string=input_string, **self._match_kwargs) class RePattern(Pattern): """ Definition of one or many regular expression pattern to search for. """ def __init__(self, *patterns, **kwargs): super(RePattern, self).__init__(**kwargs) self.repeated_captures = REGEX_AVAILABLE if 'repeated_captures' in kwargs: self.repeated_captures = kwargs.get('repeated_captures') if self.repeated_captures and not REGEX_AVAILABLE: # pragma: no cover raise NotImplementedError("repeated_capture is available only with regex module.") self.abbreviations = kwargs.get('abbreviations', []) self._kwargs = kwargs self._match_kwargs = filter_match_kwargs(kwargs) self._children_match_kwargs = filter_match_kwargs(kwargs, children=True) self._patterns = [] for pattern in patterns: if isinstance(pattern, six.string_types): if self.abbreviations and pattern: for key, replacement in self.abbreviations: pattern = pattern.replace(key, replacement) pattern = call(re.compile, pattern, **self._kwargs) elif isinstance(pattern, dict): if self.abbreviations and 'pattern' in pattern: for key, replacement in self.abbreviations: pattern['pattern'] = pattern['pattern'].replace(key, replacement) pattern = re.compile(**pattern) elif hasattr(pattern, '__iter__'): pattern = re.compile(*pattern) self._patterns.append(pattern) @property def patterns(self): return self._patterns @property def __repr__patterns__(self): return [pattern.pattern for pattern in self.patterns] @property def match_options(self): return self._match_kwargs def _match(self, pattern, input_string, context=None): names = dict((v, k) for k, v in pattern.groupindex.items()) for match_object in pattern.finditer(input_string): start = match_object.start() end = match_object.end() main_match = Match(start, end, pattern=self, input_string=input_string, **self._match_kwargs) if pattern.groups: for i in range(1, pattern.groups + 1): name = names.get(i, main_match.name) if self.repeated_captures: for start, end in match_object.spans(i): child_match = Match(start, end, name=name, parent=main_match, pattern=self, input_string=input_string, **self._children_match_kwargs) main_match.children.append(child_match) else: start, end = match_object.span(i) if start > -1 and end > -1: child_match = Match(start, end, name=name, parent=main_match, pattern=self, input_string=input_string, **self._children_match_kwargs) main_match.children.append(child_match) yield main_match class FunctionalPattern(Pattern): """ Definition of one or many functional pattern to search for. """ def __init__(self, *patterns, **kwargs): super(FunctionalPattern, self).__init__(**kwargs) self._patterns = patterns self._kwargs = kwargs self._match_kwargs = filter_match_kwargs(kwargs) @property def patterns(self): return self._patterns @property def match_options(self): return self._match_kwargs def _match(self, pattern, input_string, context=None): ret = call(pattern, input_string, context, **self._kwargs) if ret: if not is_iterable(ret) or isinstance(ret, dict) \ or (is_iterable(ret) and hasattr(ret, '__getitem__') and isinstance(ret[0], int)): args_iterable = [ret] else: args_iterable = ret for args in args_iterable: if isinstance(args, dict): options = args options.pop('input_string', None) options.pop('pattern', None) if self._match_kwargs: options = self._match_kwargs.copy() options.update(args) yield Match(pattern=self, input_string=input_string, **options) else: kwargs = self._match_kwargs if isinstance(args[-1], dict): kwargs = dict(kwargs) kwargs.update(args[-1]) args = args[:-1] yield Match(*args, pattern=self, input_string=input_string, **kwargs) def filter_match_kwargs(kwargs, children=False): """ Filters out kwargs for Match construction :param kwargs: :type kwargs: dict :param children: :type children: Flag to filter children matches :return: A filtered dict :rtype: dict """ kwargs = kwargs.copy() for key in ('pattern', 'start', 'end', 'parent', 'formatter', 'value'): if key in kwargs: del kwargs[key] if children: for key in ('name',): if key in kwargs: del kwargs[key] return kwargs ``` #### File: rebulk/test/test_introspector.py ```python from ..rebulk import Rebulk from .. import introspector from .default_rules_module import RuleAppend2, RuleAppend3 def test_string_introspector(): rebulk = Rebulk().string('One', 'Two', 'Three', name='first').string('1', '2', '3', name='second') introspected = introspector.introspect(rebulk, None) assert len(introspected.patterns) == 2 first_properties = introspected.patterns[0].properties assert len(first_properties) == 1 first_properties['first'] == ['One', 'Two', 'Three'] second_properties = introspected.patterns[1].properties assert len(second_properties) == 1 second_properties['second'] == ['1', '2', '3'] properties = introspected.properties assert len(properties) == 2 assert properties['first'] == first_properties['first'] assert properties['second'] == second_properties['second'] def test_string_properties(): rebulk = Rebulk()\ .string('One', 'Two', 'Three', name='first', properties={'custom': ['One']})\ .string('1', '2', '3', name='second', properties={'custom': [1]}) introspected = introspector.introspect(rebulk, None) assert len(introspected.patterns) == 2 assert len(introspected.rules) == 2 first_properties = introspected.patterns[0].properties assert len(first_properties) == 1 first_properties['custom'] == ['One'] second_properties = introspected.patterns[1].properties assert len(second_properties) == 1 second_properties['custom'] == [1] properties = introspected.properties assert len(properties) == 1 assert properties['custom'] == ['One', 1] def test_various_pattern(): rebulk = Rebulk()\ .regex('One', 'Two', 'Three', name='first', value="string") \ .string('1', '2', '3', name='second', value="digit") \ .string('4', '5', '6', name='third') \ .string('private', private=True) \ .functional(lambda string: (0, 5), name='func', value='test') \ .regex('One', 'Two', 'Three', name='regex_name') \ .regex('(?P<one>One)(?P<two>Two)(?P<three>Three)') \ .functional(lambda string: (6, 10), name='func2') \ .string('7', name='third') introspected = introspector.introspect(rebulk, None) assert len(introspected.patterns) == 8 assert len(introspected.rules) == 2 first_properties = introspected.patterns[0].properties assert len(first_properties) == 1 first_properties['first'] == ['string'] second_properties = introspected.patterns[1].properties assert len(second_properties) == 1 second_properties['second'] == ['digit'] third_properties = introspected.patterns[2].properties assert len(third_properties) == 1 third_properties['third'] == ['4', '5', '6'] func_properties = introspected.patterns[3].properties assert len(func_properties) == 1 func_properties['func'] == ['test'] regex_name_properties = introspected.patterns[4].properties assert len(regex_name_properties) == 1 regex_name_properties['regex_name'] == [None] regex_groups_properties = introspected.patterns[5].properties assert len(regex_groups_properties) == 3 regex_groups_properties['one'] == [None] regex_groups_properties['two'] == [None] regex_groups_properties['three'] == [None] func2_properties = introspected.patterns[6].properties assert len(func2_properties) == 1 func2_properties['func2'] == [None] append_third_properties = introspected.patterns[7].properties assert len(append_third_properties) == 1 append_third_properties['third'] == [None] properties = introspected.properties assert len(properties) == 9 assert properties['first'] == first_properties['first'] assert properties['second'] == second_properties['second'] assert properties['third'] == third_properties['third'] + append_third_properties['third'] assert properties['func'] == func_properties['func'] assert properties['regex_name'] == regex_name_properties['regex_name'] assert properties['one'] == regex_groups_properties['one'] assert properties['two'] == regex_groups_properties['two'] assert properties['three'] == regex_groups_properties['three'] assert properties['func2'] == func2_properties['func2'] def test_rule_properties(): rebulk = Rebulk(default_rules=False).rules(RuleAppend2, RuleAppend3) introspected = introspector.introspect(rebulk, None) assert len(introspected.rules) == 2 assert len(introspected.patterns) == 0 rule_properties = introspected.rules[0].properties assert len(rule_properties) == 1 assert rule_properties['renamed'] == [None] rule_properties = introspected.rules[1].properties assert len(rule_properties) == 1 assert rule_properties['renamed'] == [None] properties = introspected.properties assert len(properties) == 1 assert properties['renamed'] == [None] ``` #### File: Shared/rebulk/utils.py ```python from collections import MutableSet from types import GeneratorType def find_all(string, sub, start=None, end=None, ignore_case=False, **kwargs): """ Return all indices in string s where substring sub is found, such that sub is contained in the slice s[start:end]. >>> list(find_all('The quick brown fox jumps over the lazy dog', 'fox')) [16] >>> list(find_all('The quick brown fox jumps over the lazy dog', 'mountain')) [] >>> list(find_all('The quick brown fox jumps over the lazy dog', 'The')) [0] >>> list(find_all( ... 'Carved symbols in a mountain hollow on the bank of an inlet irritated an eccentric person', ... 'an')) [44, 51, 70] >>> list(find_all( ... 'Carved symbols in a mountain hollow on the bank of an inlet irritated an eccentric person', ... 'an', ... 50, ... 60)) [51] :param string: the input string :type string: str :param sub: the substring :type sub: str :return: all indices in the input string :rtype: __generator[str] """ #pylint: disable=unused-argument if ignore_case: sub = sub.lower() string = string.lower() while True: start = string.find(sub, start, end) if start == -1: return yield start start += len(sub) def get_first_defined(data, keys, default_value=None): """ Get the first defined key in data. :param data: :type data: :param keys: :type keys: :param default_value: :type default_value: :return: :rtype: """ for key in keys: if key in data: return data[key] return default_value def is_iterable(obj): """ Are we being asked to look up a list of things, instead of a single thing? We check for the `__iter__` attribute so that this can cover types that don't have to be known by this module, such as NumPy arrays. Strings, however, should be considered as atomic values to look up, not iterables. We don't need to check for the Python 2 `unicode` type, because it doesn't have an `__iter__` attribute anyway. """ # pylint: disable=consider-using-ternary return hasattr(obj, '__iter__') and not isinstance(obj, str) or isinstance(obj, GeneratorType) def extend_safe(target, source): """ Extends source list to target list only if elements doesn't exists in target list. :param target: :type target: list :param source: :type source: list """ for elt in source: if elt not in target: target.append(elt) class _Ref(object): """ Reference for IdentitySet """ def __init__(self, value): self.value = value def __eq__(self, other): return self.value is other.value def __hash__(self): return id(self.value) class IdentitySet(MutableSet): # pragma: no cover """ Set based on identity """ def __init__(self, items=None): # pylint: disable=super-init-not-called if items is None: items = [] self.refs = set(map(_Ref, items)) def __contains__(self, elem): return _Ref(elem) in self.refs def __iter__(self): return (ref.value for ref in self.refs) def __len__(self): return len(self.refs) def add(self, value): self.refs.add(_Ref(value)) def discard(self, value): self.refs.discard(_Ref(value)) def update(self, iterable): """ Update set with iterable :param iterable: :type iterable: :return: :rtype: """ for elem in iterable: self.add(elem) def __repr__(self): # pragma: no cover return "%s(%s)" % (type(self).__name__, list(self)) ``` #### File: Shared/retry/compat.py ```python import functools try: from decorator import decorator except ImportError: def decorator(caller): """ Turns caller into a decorator. Unlike decorator module, function signature is not preserved. :param caller: caller(f, *args, **kwargs) """ def decor(f): @functools.wraps(f) def wrapper(*args, **kwargs): return caller(f, *args, **kwargs) return wrapper return decor ``` #### File: stevedore/tests/test_hook.py ```python from stevedore import hook from stevedore.tests import utils class TestHook(utils.TestCase): def test_hook(self): em = hook.HookManager( 'stevedore.test.extension', 't1', invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) self.assertEqual(len(em.extensions), 1) self.assertEqual(em.names(), ['t1']) def test_get_by_name(self): em = hook.HookManager( 'stevedore.test.extension', 't1', invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) e_list = em['t1'] self.assertEqual(len(e_list), 1) e = e_list[0] self.assertEqual(e.name, 't1') def test_get_by_name_missing(self): em = hook.HookManager( 'stevedore.test.extension', 't1', invoke_on_load=True, invoke_args=('a',), invoke_kwds={'b': 'B'}, ) try: em['t2'] except KeyError: pass else: assert False, 'Failed to raise KeyError' ``` #### File: subliminal_patch/providers/legendastv.py ```python import logging import rarfile import os from subliminal.exceptions import ConfigurationError from subliminal.providers.legendastv import LegendasTVSubtitle as _LegendasTVSubtitle, \ LegendasTVProvider as _LegendasTVProvider, Episode, Movie, guess_matches, guessit, sanitize, region, type_map, \ raise_for_status, json, SHOW_EXPIRATION_TIME, title_re, season_re, datetime, pytz, NO_VALUE, releases_key, \ SUBTITLE_EXTENSIONS, language_converters from subzero.language import Language logger = logging.getLogger(__name__) class LegendasTVSubtitle(_LegendasTVSubtitle): def __init__(self, language, type, title, year, imdb_id, season, archive, name): super(LegendasTVSubtitle, self).__init__(language, type, title, year, imdb_id, season, archive, name) self.archive.content = None self.release_info = archive.name self.page_link = archive.link def make_picklable(self): self.archive.content = None return self def get_matches(self, video, hearing_impaired=False): matches = set() # episode if isinstance(video, Episode) and self.type == 'episode': # series if video.series and (sanitize(self.title) in ( sanitize(name) for name in [video.series] + video.alternative_series)): matches.add('series') # year if video.original_series and self.year is None or video.year and video.year == self.year: matches.add('year') # imdb_id if video.series_imdb_id and self.imdb_id == video.series_imdb_id: matches.add('series_imdb_id') # movie elif isinstance(video, Movie) and self.type == 'movie': # title if video.title and (sanitize(self.title) in ( sanitize(name) for name in [video.title] + video.alternative_titles)): matches.add('title') # year if video.year and self.year == video.year: matches.add('year') # imdb_id if video.imdb_id and self.imdb_id == video.imdb_id: matches.add('imdb_id') # name matches |= guess_matches(video, guessit(self.name, {'type': self.type, 'single_value': True})) return matches class LegendasTVProvider(_LegendasTVProvider): languages = {Language(*l) for l in language_converters['legendastv'].to_legendastv.keys()} subtitle_class = LegendasTVSubtitle def __init__(self, username=None, password=<PASSWORD>): # Provider needs UNRAR installed. If not available raise ConfigurationError try: rarfile.custom_check([rarfile.UNRAR_TOOL], True) except rarfile.RarExecError: raise ConfigurationError('UNRAR tool not available') if any((username, password)) and not all((username, password)): raise ConfigurationError('Username and password must be specified') self.username = username self.password = password self.logged_in = False self.session = None @staticmethod def is_valid_title(title, title_id, sanitized_title, season, year, imdb_id): """Check if is a valid title.""" if title["imdb_id"] and title["imdb_id"] == imdb_id: logger.debug(u'Matched title "%s" as IMDB ID %s', sanitized_title, title["imdb_id"]) return True if title["title2"] and sanitize(title['title2']) == sanitized_title: logger.debug(u'Matched title "%s" as "%s"', sanitized_title, title["title2"]) return True return _LegendasTVProvider.is_valid_title(title, title_id, sanitized_title, season, year) @region.cache_on_arguments(expiration_time=SHOW_EXPIRATION_TIME, should_cache_fn=lambda value: value) def search_titles(self, title, season, title_year, imdb_id): """Search for titles matching the `title`. For episodes, each season has it own title :param str title: the title to search for. :param int season: season of the title :param int title_year: year of the title :return: found titles. :rtype: dict """ titles = {} sanitized_titles = [sanitize(title)] ignore_characters = {'\'', '.'} if any(c in title for c in ignore_characters): sanitized_titles.append(sanitize(title, ignore_characters=ignore_characters)) for sanitized_title in sanitized_titles: # make the query if season: logger.info('Searching episode title %r for season %r', sanitized_title, season) else: logger.info('Searching movie title %r', sanitized_title) r = self.session.get(self.server_url + 'legenda/sugestao/{}'.format(sanitized_title), timeout=10) raise_for_status(r) results = json.loads(r.text) # loop over results for result in results: source = result['_source'] # extract id title_id = int(source['id_filme']) # extract type title = {'type': type_map[source['tipo']], 'title2': None, 'imdb_id': None} # extract title, year and country name, year, country = title_re.match(source['dsc_nome']).groups() title['title'] = name if "dsc_nome_br" in source: name2, ommit1, ommit2 = title_re.match(source['dsc_nome_br']).groups() title['title2'] = name2 # extract imdb_id if source['id_imdb'] != '0': if not source['id_imdb'].startswith('tt'): title['imdb_id'] = 'tt' + source['id_imdb'].zfill(7) else: title['imdb_id'] = source['id_imdb'] # extract season if title['type'] == 'episode': if source['temporada'] and source['temporada'].isdigit(): title['season'] = int(source['temporada']) else: match = season_re.search(source['dsc_nome_br']) if match: title['season'] = int(match.group('season')) else: logger.debug('No season detected for title %d (%s)', title_id, name) # extract year if year: title['year'] = int(year) elif source['dsc_data_lancamento'] and source['dsc_data_lancamento'].isdigit(): # year is based on season air date hence the adjustment title['year'] = int(source['dsc_data_lancamento']) - title.get('season', 1) + 1 # add title only if is valid # Check against title without ignored chars if self.is_valid_title(title, title_id, sanitized_titles[0], season, title_year, imdb_id): logger.debug(u'Found title: %s', title) titles[title_id] = title logger.debug('Found %d titles', len(titles)) return titles def query(self, language, title, season=None, episode=None, year=None, imdb_id=None): # search for titles titles = self.search_titles(title, season, year, imdb_id) subtitles = [] # iterate over titles for title_id, t in titles.items(): logger.info('Getting archives for title %d and language %d', title_id, language.legendastv) archives = self.get_archives(title_id, language.legendastv, t['type'], season, episode) if not archives: logger.info('No archives found for title %d and language %d', title_id, language.legendastv) # iterate over title's archives for a in archives: # compute an expiration time based on the archive timestamp expiration_time = (datetime.utcnow().replace(tzinfo=pytz.utc) - a.timestamp).total_seconds() # attempt to get the releases from the cache cache_key = releases_key.format(archive_id=a.id, archive_name=a.name) releases = region.get(cache_key, expiration_time=expiration_time) # the releases are not in cache or cache is expired if releases == NO_VALUE: logger.info('Releases not found in cache') # download archive self.download_archive(a) # extract the releases releases = [] for name in a.content.namelist(): # discard the legendastv file if name.startswith('Legendas.tv'): continue # discard hidden files if os.path.split(name)[-1].startswith('.'): continue # discard non-subtitle files if not name.lower().endswith(SUBTITLE_EXTENSIONS): continue releases.append(name) # cache the releases region.set(cache_key, releases) # iterate over releases for r in releases: subtitle = self.subtitle_class(language, t['type'], t['title'], t.get('year'), t.get('imdb_id'), t.get('season'), a, r) logger.debug('Found subtitle %r', subtitle) subtitles.append(subtitle) return subtitles def list_subtitles(self, video, languages): season = episode = None if isinstance(video, Episode): titles = [video.series] + video.alternative_series season = video.season episode = video.episode else: titles = [video.title] + video.alternative_titles for title in titles: subtitles = [s for l in languages for s in self.query(l, title, season=season, episode=episode, year=video.year, imdb_id=video.imdb_id)] if subtitles: return subtitles return [] def download_subtitle(self, subtitle): super(LegendasTVProvider, self).download_subtitle(subtitle) subtitle.archive.content = None def get_archives(self, title_id, language_code, title_type, season, episode): return super(LegendasTVProvider, self).get_archives.original(self, title_id, language_code, title_type, season, episode) ``` #### File: subliminal_patch/providers/shooter.py ```python from subliminal.providers.shooter import ShooterProvider as _ShooterProvider, ShooterSubtitle as _ShooterSubtitle class ShooterSubtitle(_ShooterSubtitle): def __init__(self, language, hash, download_link): super(ShooterSubtitle, self).__init__(language, hash, download_link) self.release_info = hash self.page_link = download_link class ShooterProvider(_ShooterProvider): subtitle_class = ShooterSubtitle ``` #### File: subliminal_patch/refiners/common.py ```python import logging import os from guessit import guessit from subliminal import Episode from subliminal_patch.core import remove_crap_from_fn logger = logging.getLogger(__name__) def update_video(video, fn): guess_from = remove_crap_from_fn(fn) logger.debug(u"Got original filename: %s", guess_from) # guess hints = { "single_value": True, "type": "episode" if isinstance(video, Episode) else "movie", } guess = guessit(guess_from, options=hints) for attr in ("release_group", "format",): if attr in guess: value = guess.get(attr) logger.debug(u"%s: Filling attribute %s: %s", video.name, attr, value) setattr(video, attr, value) video.original_name = os.path.basename(guess_from) ``` #### File: subliminal_patch/refiners/omdb.py ```python import os import subliminal import base64 import zlib from subliminal import __short_version__ from subliminal.refiners.omdb import OMDBClient, refine class SZOMDBClient(OMDBClient): def __init__(self, version=1, session=None, headers=None, timeout=10): super(SZOMDBClient, self).__init__(version=version, session=session, headers=headers, timeout=timeout) def get_params(self, params): self.session.params['apikey'] = \ zlib.decompress(base64.b16decode(os.environ['U1pfT01EQl9LRVk']))\ .decode('cm90MTM=\n'.decode("base64")) \ .decode('YmFzZTY0\n'.decode("base64")).split("x")[0] return dict(self.session.params, **params) def get(self, id=None, title=None, type=None, year=None, plot='short', tomatoes=False): # build the params params = {} if id: params['i'] = id if title: params['t'] = title if not params: raise ValueError('At least id or title is required') params['type'] = type params['y'] = year params['plot'] = plot params['tomatoes'] = tomatoes # perform the request r = self.session.get(self.base_url, params=self.get_params(params)) r.raise_for_status() # get the response as json j = r.json() # check response status if j['Response'] == 'False': return None return j def search(self, title, type=None, year=None, page=1): # build the params params = {'s': title, 'type': type, 'y': year, 'page': page} # perform the request r = self.session.get(self.base_url, params=self.get_params(params)) r.raise_for_status() # get the response as json j = r.json() # check response status if j['Response'] == 'False': return None return j omdb_client = SZOMDBClient(headers={'User-Agent': 'Subliminal/%s' % __short_version__}) subliminal.refiners.omdb.omdb_client = omdb_client ``` #### File: subliminal/providers/addic7ed.py ```python import logging import re from babelfish import Language, language_converters from guessit import guessit from requests import Session from . import ParserBeautifulSoup, Provider from .. import __short_version__ from ..cache import SHOW_EXPIRATION_TIME, region from ..exceptions import AuthenticationError, ConfigurationError, DownloadLimitExceeded from ..score import get_equivalent_release_groups from ..subtitle import Subtitle, fix_line_ending, guess_matches from ..utils import sanitize, sanitize_release_group from ..video import Episode logger = logging.getLogger(__name__) language_converters.register('addic7ed = subliminal.converters.addic7ed:Addic7edConverter') # Series cell matching regex show_cells_re = re.compile(b'<td class="version">.*?</td>', re.DOTALL) #: Series header parsing regex series_year_re = re.compile(r'^(?P<series>[ \w\'.:(),*&!?-]+?)(?: \((?P<year>\d{4})\))?$') class Addic7edSubtitle(Subtitle): """Addic7ed Subtitle.""" provider_name = 'addic7ed' def __init__(self, language, hearing_impaired, page_link, series, season, episode, title, year, version, download_link): super(Addic7edSubtitle, self).__init__(language, hearing_impaired=hearing_impaired, page_link=page_link) self.series = series self.season = season self.episode = episode self.title = title self.year = year self.version = version self.download_link = download_link @property def id(self): return self.download_link def get_matches(self, video): matches = set() # series name if video.series and sanitize(self.series) in ( sanitize(name) for name in [video.series] + video.alternative_series): matches.add('series') # season if video.season and self.season == video.season: matches.add('season') # episode if video.episode and self.episode == video.episode: matches.add('episode') # title of the episode if video.title and sanitize(self.title) == sanitize(video.title): matches.add('title') # year if video.original_series and self.year is None or video.year and video.year == self.year: matches.add('year') # release_group if (video.release_group and self.version and any(r in sanitize_release_group(self.version) for r in get_equivalent_release_groups(sanitize_release_group(video.release_group)))): matches.add('release_group') # resolution if video.resolution and self.version and video.resolution in self.version.lower(): matches.add('resolution') # format if video.format and self.version and video.format.lower() in self.version.lower(): matches.add('format') # other properties matches |= guess_matches(video, guessit(self.version), partial=True) return matches class Addic7edProvider(Provider): """Addic7ed Provider.""" languages = {Language('por', 'BR')} | {Language(l) for l in [ 'ara', 'aze', 'ben', 'bos', 'bul', 'cat', 'ces', 'dan', 'deu', 'ell', 'eng', 'eus', 'fas', 'fin', 'fra', 'glg', 'heb', 'hrv', 'hun', 'hye', 'ind', 'ita', 'jpn', 'kor', 'mkd', 'msa', 'nld', 'nor', 'pol', 'por', 'ron', 'rus', 'slk', 'slv', 'spa', 'sqi', 'srp', 'swe', 'tha', 'tur', 'ukr', 'vie', 'zho' ]} video_types = (Episode,) server_url = 'http://www.addic7ed.com/' subtitle_class = Addic7edSubtitle def __init__(self, username=None, password=None): if any((username, password)) and not all((username, password)): raise ConfigurationError('Username and password must be specified') self.username = username self.password = password self.logged_in = False self.session = None def initialize(self): self.session = Session() self.session.headers['User-Agent'] = 'Subliminal/%s' % __short_version__ # login if self.username and self.password: logger.info('Logging in') data = {'username': self.username, 'password': self.password, 'Submit': 'Log in'} r = self.session.post(self.server_url + 'dologin.php', data, allow_redirects=False, timeout=10) if r.status_code != 302: raise AuthenticationError(self.username) logger.debug('Logged in') self.logged_in = True def terminate(self): # logout if self.logged_in: logger.info('Logging out') r = self.session.get(self.server_url + 'logout.php', timeout=10) r.raise_for_status() logger.debug('Logged out') self.logged_in = False self.session.close() @region.cache_on_arguments(expiration_time=SHOW_EXPIRATION_TIME) def _get_show_ids(self): """Get the ``dict`` of show ids per series by querying the `shows.php` page. :return: show id per series, lower case and without quotes. :rtype: dict """ # get the show page logger.info('Getting show ids') r = self.session.get(self.server_url + 'shows.php', timeout=10) r.raise_for_status() # LXML parser seems to fail when parsing Addic7ed.com HTML markup. # Last known version to work properly is 3.6.4 (next version, 3.7.0, fails) # Assuming the site's markup is bad, and stripping it down to only contain what's needed. show_cells = re.findall(show_cells_re, r.content) if show_cells: soup = ParserBeautifulSoup(b''.join(show_cells), ['lxml', 'html.parser']) else: # If RegEx fails, fall back to original r.content and use 'html.parser' soup = ParserBeautifulSoup(r.content, ['html.parser']) # populate the show ids show_ids = {} for show in soup.select('td.version > h3 > a[href^="/show/"]'): show_ids[sanitize(show.text)] = int(show['href'][6:]) logger.debug('Found %d show ids', len(show_ids)) return show_ids @region.cache_on_arguments(expiration_time=SHOW_EXPIRATION_TIME) def _search_show_id(self, series, year=None): """Search the show id from the `series` and `year`. :param str series: series of the episode. :param year: year of the series, if any. :type year: int :return: the show id, if found. :rtype: int """ # addic7ed doesn't support search with quotes series = series.replace('\'', ' ') # build the params series_year = '%s %d' % (series, year) if year is not None else series params = {'search': series_year, 'Submit': 'Search'} # make the search logger.info('Searching show ids with %r', params) r = self.session.get(self.server_url + 'search.php', params=params, timeout=10) r.raise_for_status() soup = ParserBeautifulSoup(r.content, ['lxml', 'html.parser']) # get the suggestion suggestion = soup.select('span.titulo > a[href^="/show/"]') if not suggestion: logger.warning('Show id not found: no suggestion') return None if not sanitize(suggestion[0].i.text.replace('\'', ' ')) == sanitize(series_year): logger.warning('Show id not found: suggestion does not match') return None show_id = int(suggestion[0]['href'][6:]) logger.debug('Found show id %d', show_id) return show_id def get_show_id(self, series, year=None, country_code=None): """Get the best matching show id for `series`, `year` and `country_code`. First search in the result of :meth:`_get_show_ids` and fallback on a search with :meth:`_search_show_id`. :param str series: series of the episode. :param year: year of the series, if any. :type year: int :param country_code: country code of the series, if any. :type country_code: str :return: the show id, if found. :rtype: int """ series_sanitized = sanitize(series).lower() show_ids = self._get_show_ids() show_id = None # attempt with country if not show_id and country_code: logger.debug('Getting show id with country') show_id = show_ids.get('%s %s' % (series_sanitized, country_code.lower())) # attempt with year if not show_id and year: logger.debug('Getting show id with year') show_id = show_ids.get('%s %d' % (series_sanitized, year)) # attempt clean if not show_id: logger.debug('Getting show id') show_id = show_ids.get(series_sanitized) # search as last resort if not show_id: logger.warning('Series %s not found in show ids', series) show_id = self._search_show_id(series) return show_id def query(self, show_id, series, season, year=None, country=None): # get the page of the season of the show logger.info('Getting the page of show id %d, season %d', show_id, season) r = self.session.get(self.server_url + 'show/%d' % show_id, params={'season': season}, timeout=10) r.raise_for_status() if not r.content: # Provider returns a status of 304 Not Modified with an empty content # raise_for_status won't raise exception for that status code logger.debug('No data returned from provider') return [] soup = ParserBeautifulSoup(r.content, ['lxml', 'html.parser']) # loop over subtitle rows match = series_year_re.match(soup.select('#header font')[0].text.strip()[:-10]) series = match.group('series') year = int(match.group('year')) if match.group('year') else None subtitles = [] for row in soup.select('tr.epeven'): cells = row('td') # ignore incomplete subtitles status = cells[5].text if status != 'Completed': logger.debug('Ignoring subtitle with status %s', status) continue # read the item language = Language.fromaddic7ed(cells[3].text) hearing_impaired = bool(cells[6].text) page_link = self.server_url + cells[2].a['href'][1:] season = int(cells[0].text) episode = int(cells[1].text) title = cells[2].text version = cells[4].text download_link = cells[9].a['href'][1:] subtitle = self.subtitle_class(language, hearing_impaired, page_link, series, season, episode, title, year, version, download_link) logger.debug('Found subtitle %r', subtitle) subtitles.append(subtitle) return subtitles def list_subtitles(self, video, languages): # lookup show_id titles = [video.series] + video.alternative_series show_id = None for title in titles: show_id = self.get_show_id(title, video.year) if show_id is not None: break # query for subtitles with the show_id if show_id is not None: subtitles = [s for s in self.query(show_id, title, video.season, video.year) if s.language in languages and s.episode == video.episode] if subtitles: return subtitles else: logger.error('No show id found for %r (%r)', video.series, {'year': video.year}) return [] def download_subtitle(self, subtitle): # download the subtitle logger.info('Downloading subtitle %r', subtitle) r = self.session.get(self.server_url + subtitle.download_link, headers={'Referer': subtitle.page_link}, timeout=10) r.raise_for_status() if not r.content: # Provider returns a status of 304 Not Modified with an empty content # raise_for_status won't raise exception for that status code logger.debug('Unable to download subtitle. No data returned from provider') return # detect download limit exceeded if r.headers['Content-Type'] == 'text/html': raise DownloadLimitExceeded subtitle.content = fix_line_ending(r.content) ``` #### File: subliminal/providers/napiprojekt.py ```python import logging from babelfish import Language from requests import Session from . import Provider from .. import __short_version__ from ..subtitle import Subtitle logger = logging.getLogger(__name__) def get_subhash(hash): """Get a second hash based on napiprojekt's hash. :param str hash: napiprojekt's hash. :return: the subhash. :rtype: str """ idx = [0xe, 0x3, 0x6, 0x8, 0x2] mul = [2, 2, 5, 4, 3] add = [0, 0xd, 0x10, 0xb, 0x5] b = [] for i in range(len(idx)): a = add[i] m = mul[i] i = idx[i] t = a + int(hash[i], 16) v = int(hash[t:t + 2], 16) b.append(('%x' % (v * m))[-1]) return ''.join(b) class NapiProjektSubtitle(Subtitle): """NapiProjekt Subtitle.""" provider_name = 'napiprojekt' def __init__(self, language, hash): super(NapiProjektSubtitle, self).__init__(language) self.hash = hash self.content = None @property def id(self): return self.hash def get_matches(self, video): matches = set() # hash if 'napiprojekt' in video.hashes and video.hashes['napiprojekt'] == self.hash: matches.add('hash') return matches class NapiProjektProvider(Provider): """NapiProjekt Provider.""" languages = {Language.fromalpha2(l) for l in ['pl']} required_hash = 'napiprojekt' server_url = 'http://napiprojekt.pl/unit_napisy/dl.php' subtitle_class = NapiProjektSubtitle def __init__(self): self.session = None def initialize(self): self.session = Session() self.session.headers['User-Agent'] = 'Subliminal/%s' % __short_version__ def terminate(self): self.session.close() def query(self, language, hash): params = { 'v': 'dreambox', 'kolejka': 'false', 'nick': '', 'pass': '', 'napios': 'Linux', 'l': language.alpha2.upper(), 'f': hash, 't': get_subhash(hash)} logger.info('Searching subtitle %r', params) r = self.session.get(self.server_url, params=params, timeout=10) r.raise_for_status() # handle subtitles not found and errors if r.content[:4] == b'NPc0': logger.debug('No subtitles found') return None subtitle = self.subtitle_class(language, hash) subtitle.content = r.content logger.debug('Found subtitle %r', subtitle) return subtitle def list_subtitles(self, video, languages): return [s for s in [self.query(l, video.hashes['napiprojekt']) for l in languages] if s is not None] def download_subtitle(self, subtitle): # there is no download step, content is already filled from listing subtitles pass ``` #### File: subliminal/providers/podnapisi.py ```python import io import logging import re from babelfish import Language, language_converters from guessit import guessit try: from lxml import etree except ImportError: try: import xml.etree.cElementTree as etree except ImportError: import xml.etree.ElementTree as etree from requests import Session from zipfile import ZipFile from . import Provider from .. import __short_version__ from ..exceptions import ProviderError from ..subtitle import Subtitle, fix_line_ending, guess_matches from ..utils import sanitize from ..video import Episode, Movie logger = logging.getLogger(__name__) class PodnapisiSubtitle(Subtitle): """Podnapisi Subtitle.""" provider_name = 'podnapisi' def __init__(self, language, hearing_impaired, page_link, pid, releases, title, season=None, episode=None, year=None): super(PodnapisiSubtitle, self).__init__(language, hearing_impaired=hearing_impaired, page_link=page_link) self.pid = pid self.releases = releases self.title = title self.season = season self.episode = episode self.year = year @property def id(self): return self.pid def get_matches(self, video): matches = set() # episode if isinstance(video, Episode): # series if video.series and (sanitize(self.title) in ( sanitize(name) for name in [video.series] + video.alternative_series)): matches.add('series') # year if video.original_series and self.year is None or video.year and video.year == self.year: matches.add('year') # season if video.season and self.season == video.season: matches.add('season') # episode if video.episode and self.episode == video.episode: matches.add('episode') # guess for release in self.releases: matches |= guess_matches(video, guessit(release, {'type': 'episode'})) # movie elif isinstance(video, Movie): # title if video.title and (sanitize(self.title) in ( sanitize(name) for name in [video.title] + video.alternative_titles)): matches.add('title') # year if video.year and self.year == video.year: matches.add('year') # guess for release in self.releases: matches |= guess_matches(video, guessit(release, {'type': 'movie'})) return matches class PodnapisiProvider(Provider): """Podnapisi Provider.""" languages = ({Language('por', 'BR'), Language('srp', script='Latn')} | {Language.fromalpha2(l) for l in language_converters['alpha2'].codes}) server_url = 'https://www.podnapisi.net/subtitles/' subtitle_class = PodnapisiSubtitle def __init__(self): self.session = None def initialize(self): self.session = Session() self.session.headers['User-Agent'] = 'Subliminal/%s' % __short_version__ def terminate(self): self.session.close() def query(self, language, keyword, season=None, episode=None, year=None): # set parameters, see http://www.podnapisi.net/forum/viewtopic.php?f=62&t=26164#p212652 params = {'sXML': 1, 'sL': str(language), 'sK': keyword} is_episode = False if season and episode: is_episode = True params['sTS'] = season params['sTE'] = episode if year: params['sY'] = year # loop over paginated results logger.info('Searching subtitles %r', params) subtitles = [] pids = set() while True: # query the server r = self.session.get(self.server_url + 'search/old', params=params, timeout=10) r.raise_for_status() xml = etree.fromstring(r.content) # exit if no results if not int(xml.find('pagination/results').text): logger.debug('No subtitles found') break # loop over subtitles for subtitle_xml in xml.findall('subtitle'): # read xml elements pid = subtitle_xml.find('pid').text # ignore duplicates, see http://www.podnapisi.net/forum/viewtopic.php?f=62&t=26164&start=10#p213321 if pid in pids: continue language = Language.fromietf(subtitle_xml.find('language').text) hearing_impaired = 'n' in (subtitle_xml.find('flags').text or '') page_link = subtitle_xml.find('url').text releases = [] if subtitle_xml.find('release').text: for release in subtitle_xml.find('release').text.split(): release = re.sub(r'\.+$', '', release) # remove trailing dots release = ''.join(filter(lambda x: ord(x) < 128, release)) # remove non-ascii characters releases.append(release) title = subtitle_xml.find('title').text season = int(subtitle_xml.find('tvSeason').text) episode = int(subtitle_xml.find('tvEpisode').text) year = int(subtitle_xml.find('year').text) if is_episode: subtitle = self.subtitle_class(language, hearing_impaired, page_link, pid, releases, title, season=season, episode=episode, year=year) else: subtitle = self.subtitle_class(language, hearing_impaired, page_link, pid, releases, title, year=year) logger.debug('Found subtitle %r', subtitle) subtitles.append(subtitle) pids.add(pid) # stop on last page if int(xml.find('pagination/current').text) >= int(xml.find('pagination/count').text): break # increment current page params['page'] = int(xml.find('pagination/current').text) + 1 logger.debug('Getting page %d', params['page']) return subtitles def list_subtitles(self, video, languages): season = episode = None if isinstance(video, Episode): titles = [video.series] + video.alternative_series season = video.season episode = video.episode else: titles = [video.title] + video.alternative_titles for title in titles: subtitles = [s for l in languages for s in self.query(l, title, season=season, episode=episode, year=video.year)] if subtitles: return subtitles return [] def download_subtitle(self, subtitle): # download as a zip logger.info('Downloading subtitle %r', subtitle) r = self.session.get(self.server_url + subtitle.pid + '/download', params={'container': 'zip'}, timeout=10) r.raise_for_status() # open the zip with ZipFile(io.BytesIO(r.content)) as zf: if len(zf.namelist()) > 1: raise ProviderError('More than one file to unzip') subtitle.content = fix_line_ending(zf.read(zf.namelist()[0])) ``` #### File: Shared/subzero/analytics.py ```python import struct import binascii from pyga.requests import Event, Page, Tracker, Session, Visitor, Config def track_event(category=None, action=None, label=None, value=None, identifier=None, first_use=None, add=None, noninteraction=True): anonymousConfig = Config() anonymousConfig.anonimize_ip_address = True tracker = Tracker('UA-86466078-1', 'none', conf=anonymousConfig) visitor = Visitor() # convert the last 8 bytes of the machine identifier to an integer to get a "unique" user visitor.unique_id = struct.unpack("!I", binascii.unhexlify(identifier[32:]))[0]/2 if add: # add visitor's ip address (will be anonymized) visitor.ip_address = add if first_use: visitor.first_visit_time = first_use session = Session() event = Event(category=category, action=action, label=label, value=value, noninteraction=noninteraction) path = u"/" + u"/".join([category, action, label]) page = Page(path.lower()) tracker.track_event(event, session, visitor) tracker.track_pageview(page, session, visitor) ``` #### File: Shared/subzero/history_storage.py ```python import datetime import logging import traceback import types from subzero.language import Language from constants import mode_map logger = logging.getLogger(__name__) class SubtitleHistoryItem(object): item_title = None section_title = None rating_key = None provider_name = None lang_name = None lang_data = None score = None thumb = None time = None mode = "a" def __init__(self, item_title, rating_key, section_title=None, subtitle=None, thumb=None, mode="a", time=None): self.item_title = item_title self.section_title = section_title self.rating_key = str(rating_key) self.provider_name = subtitle.provider_name self.lang_name = str(subtitle.language.name) self.lang_data = str(subtitle.language.alpha3), \ str(subtitle.language.country) if subtitle.language.country else None, \ str(subtitle.language.script) if subtitle.language.script else None self.score = subtitle.score self.thumb = thumb self.time = time or datetime.datetime.now() self.mode = mode @property def title(self): return u"%s: %s" % (self.section_title, self.item_title) @property def language(self): if self.lang_data: lang_data = [s if s != "None" else None for s in self.lang_data] if lang_data[0]: return Language(lang_data[0], country=lang_data[1], script=lang_data[2]) @property def mode_verbose(self): return mode_map.get(self.mode, "Unknown") def __repr__(self): return unicode(self) def __unicode__(self): return u"%s (Score: %s)" % (unicode(self.item_title), self.score) def __str__(self): return str(self.rating_key) def __hash__(self): return hash((self.rating_key, self.score)) def __eq__(self, other): return (self.rating_key, self.score) == (other.rating_key, other.score) def __ne__(self, other): # Not strictly necessary, but to avoid having both x==y and x!=y # True at the same time return not (self == other) class SubtitleHistory(object): size = 100 storage = None threadkit = None def __init__(self, storage, threadkit, size=100): self.size = size self.storage = storage self.threadkit = threadkit def add(self, item_title, rating_key, section_title=None, subtitle=None, thumb=None, mode="a", time=None): with self.threadkit.Lock(key="sub_history_add"): items = self.items item = SubtitleHistoryItem(item_title, rating_key, section_title=section_title, subtitle=subtitle, thumb=thumb, mode=mode, time=time) # insert item items.insert(0, item) # clamp item amount items = items[:self.size] # store items self.storage.SaveObject("subtitle_history", items) @property def items(self): try: items = self.storage.LoadObject("subtitle_history") or [] except: items = [] logger.error("Failed to load history storage: %s" % traceback.format_exc()) if not isinstance(items, types.ListType): items = [] else: items = items[:] return items def destroy(self): self.storage = None self.threadkit = None ``` #### File: subzero/lib/dict.py ```python class DictProxy(object): store = None def __init__(self, d): self.Dict = d super(DictProxy, self).__init__() if self.store not in self.Dict or not self.Dict[self.store]: self.Dict[self.store] = self.setup_defaults() self.save() self.__initialized = True def __getattr__(self, name): if name in self.Dict[self.store]: return self.Dict[self.store][name] return getattr(super(DictProxy, self), name) def __setattr__(self, name, value): if not self.__dict__.has_key( '_DictProxy__initialized'): # this test allows attributes to be set in the __init__ method return object.__setattr__(self, name, value) elif self.__dict__.has_key(name): # any normal attributes are handled normally object.__setattr__(self, name, value) else: if name in self.Dict[self.store]: self.Dict[self.store][name] = value return object.__setattr__(self, name, value) def __cmp__(self, d): return cmp(self.Dict[self.store], d) def __contains__(self, item): return item in self.Dict[self.store] def __setitem__(self, key, item): self.Dict[self.store][key] = item self.Dict.Save() def __iter__(self): return iter(self.Dict[self.store]) def __getitem__(self, key): if key in self.Dict[self.store]: return self.Dict[self.store][key] def __repr__(self): return repr(self.Dict[self.store]) def __str__(self): return str(self.Dict[self.store]) def __len__(self): return len(self.Dict[self.store].keys()) def __delitem__(self, key): del self.Dict[self.store][key] def save(self): self.Dict.Save() def clear(self): del self.Dict[self.store] return None def copy(self): return self.Dict[self.store].copy() def has_key(self, k): return k in self.Dict[self.store] def pop(self, k, d=None): return self.Dict[self.store].pop(k, d) def update(self, *args, **kwargs): return self.Dict[self.store].update(*args, **kwargs) def keys(self): return self.Dict[self.store].keys() def values(self): return self.Dict[self.store].values() def items(self): return self.Dict[self.store].items() def __unicode__(self): return unicode(repr(self.Dict[self.store])) def setup_defaults(self): raise NotImplementedError class Dicked(object): """ mirrors a dictionary; readonly """ _entries = None def __init__(self, **entries): self._entries = entries or None for key, value in entries.iteritems(): self.__dict__[key] = (Dicked(**value) if isinstance(value, dict) else value) def __repr__(self): return str(self) def __unicode__(self): return unicode(self.__digged__) def __str__(self): return str(self.__digged__) def __lt__(self, d): return self._entries < d def __le__(self, d): return self._entries <= d def __eq__(self, d): if d is None and not self._entries: return True return self._entries == d def __ne__(self, d): return self._entries != d def __gt__(self, d): return self._entries > d def __ge__(self, d): return self._entries >= d def __getattr__(self, name): # fixme: this might be wildly stupid; maybe implement stuff like .iteritems() directly return getattr(self._entries, name, Dicked()) @property def __digged__(self): return {key: value for key, value in self.__dict__.iteritems() if key != "_entries"} def __len__(self): return len(self.__digged__) def __nonzero__(self): return bool(self.__digged__) def __iter__(self): return iter(self.__digged__) def __hash__(self): return hash(self.__digged__) def __getitem__(self, name): if name in self._entries: return getattr(self, name) raise KeyError(name) ``` #### File: modification/processors/__init__.py ```python class Processor(object): """ Processor base class """ name = None parent = None supported = None enabled = True def __init__(self, name=None, parent=None, supported=None): self.name = name self.parent = parent self.supported = supported if supported else lambda parent: True @property def info(self): return self.name def process(self, content, debug=False, **kwargs): return content def __repr__(self): return "Processor <%s %s>" % (self.__class__.__name__, self.info) def __str__(self): return repr(self) def __unicode__(self): return unicode(repr(self)) class FuncProcessor(Processor): func = None def __init__(self, func, name=None, parent=None, supported=None): super(FuncProcessor, self).__init__(name=name, supported=supported) self.func = func def process(self, content, debug=False, **kwargs): return self.func(content) ``` #### File: wraptor/context/throttle.py ```python import time from wraptor.context import maybe class throttle(maybe): def __init__(self, seconds=1): self.seconds = seconds self.last_run = 0 def predicate(): now = time.time() if now > self.last_run + self.seconds: self.last_run = now return True return False maybe.__init__(self, predicate) ``` #### File: decorators/test/test_exception_catcher.py ```python from wraptor.decorators import exception_catcher import threading import pytest def test_basic(): @exception_catcher def work(): raise Exception() t = threading.Thread(target=work) t.start() t.join() with pytest.raises(Exception): work.check() ``` #### File: Shared/xdg/MenuEditor.py ```python from xdg.Menu import * from xdg.BaseDirectory import * from xdg.Exceptions import * from xdg.DesktopEntry import * from xdg.Config import * import xml.dom.minidom import os import re # XML-Cleanups: Move / Exclude # FIXME: proper reverte/delete # FIXME: pass AppDirs/DirectoryDirs around in the edit/move functions # FIXME: catch Exceptions # FIXME: copy functions # FIXME: More Layout stuff # FIXME: unod/redo function / remove menu... # FIXME: Advanced MenuEditing Stuff: LegacyDir/MergeFile # Complex Rules/Deleted/OnlyAllocated/AppDirs/DirectoryDirs class MenuEditor: def __init__(self, menu=None, filename=None, root=False): self.menu = None self.filename = None self.doc = None self.parse(menu, filename, root) # fix for creating two menus with the same name on the fly self.filenames = [] def parse(self, menu=None, filename=None, root=False): if root == True: setRootMode(True) if isinstance(menu, Menu): self.menu = menu elif menu: self.menu = parse(menu) else: self.menu = parse() if root == True: self.filename = self.menu.Filename elif filename: self.filename = filename else: self.filename = os.path.join(xdg_config_dirs[0], "menus", os.path.split(self.menu.Filename)[1]) try: self.doc = xml.dom.minidom.parse(self.filename) except IOError: self.doc = xml.dom.minidom.parseString('<!DOCTYPE Menu PUBLIC "-//freedesktop//DTD Menu 1.0//EN" "http://standards.freedesktop.org/menu-spec/menu-1.0.dtd"><Menu><Name>Applications</Name><MergeFile type="parent">'+self.menu.Filename+'</MergeFile></Menu>') except xml.parsers.expat.ExpatError: raise ParsingError('Not a valid .menu file', self.filename) self.__remove_whilespace_nodes(self.doc) def save(self): self.__saveEntries(self.menu) self.__saveMenu() def createMenuEntry(self, parent, name, command=None, genericname=None, comment=None, icon=None, terminal=None, after=None, before=None): menuentry = MenuEntry(self.__getFileName(name, ".desktop")) menuentry = self.editMenuEntry(menuentry, name, genericname, comment, command, icon, terminal) self.__addEntry(parent, menuentry, after, before) sort(self.menu) return menuentry def createMenu(self, parent, name, genericname=None, comment=None, icon=None, after=None, before=None): menu = Menu() menu.Parent = parent menu.Depth = parent.Depth + 1 menu.Layout = parent.DefaultLayout menu.DefaultLayout = parent.DefaultLayout menu = self.editMenu(menu, name, genericname, comment, icon) self.__addEntry(parent, menu, after, before) sort(self.menu) return menu def createSeparator(self, parent, after=None, before=None): separator = Separator(parent) self.__addEntry(parent, separator, after, before) sort(self.menu) return separator def moveMenuEntry(self, menuentry, oldparent, newparent, after=None, before=None): self.__deleteEntry(oldparent, menuentry, after, before) self.__addEntry(newparent, menuentry, after, before) sort(self.menu) return menuentry def moveMenu(self, menu, oldparent, newparent, after=None, before=None): self.__deleteEntry(oldparent, menu, after, before) self.__addEntry(newparent, menu, after, before) root_menu = self.__getXmlMenu(self.menu.Name) if oldparent.getPath(True) != newparent.getPath(True): self.__addXmlMove(root_menu, os.path.join(oldparent.getPath(True), menu.Name), os.path.join(newparent.getPath(True), menu.Name)) sort(self.menu) return menu def moveSeparator(self, separator, parent, after=None, before=None): self.__deleteEntry(parent, separator, after, before) self.__addEntry(parent, separator, after, before) sort(self.menu) return separator def copyMenuEntry(self, menuentry, oldparent, newparent, after=None, before=None): self.__addEntry(newparent, menuentry, after, before) sort(self.menu) return menuentry def editMenuEntry(self, menuentry, name=None, genericname=None, comment=None, command=None, icon=None, terminal=None, nodisplay=None, hidden=None): deskentry = menuentry.DesktopEntry if name: if not deskentry.hasKey("Name"): deskentry.set("Name", name) deskentry.set("Name", name, locale = True) if comment: if not deskentry.hasKey("Comment"): deskentry.set("Comment", comment) deskentry.set("Comment", comment, locale = True) if genericname: if not deskentry.hasKey("GnericNe"): deskentry.set("GenericName", genericname) deskentry.set("GenericName", genericname, locale = True) if command: deskentry.set("Exec", command) if icon: deskentry.set("Icon", icon) if terminal == True: deskentry.set("Terminal", "true") elif terminal == False: deskentry.set("Terminal", "false") if nodisplay == True: deskentry.set("NoDisplay", "true") elif nodisplay == False: deskentry.set("NoDisplay", "false") if hidden == True: deskentry.set("Hidden", "true") elif hidden == False: deskentry.set("Hidden", "false") menuentry.updateAttributes() if len(menuentry.Parents) > 0: sort(self.menu) return menuentry def editMenu(self, menu, name=None, genericname=None, comment=None, icon=None, nodisplay=None, hidden=None): # Hack for legacy dirs if isinstance(menu.Directory, MenuEntry) and menu.Directory.Filename == ".directory": xml_menu = self.__getXmlMenu(menu.getPath(True, True)) self.__addXmlTextElement(xml_menu, 'Directory', menu.Name + ".directory") menu.Directory.setAttributes(menu.Name + ".directory") # Hack for New Entries elif not isinstance(menu.Directory, MenuEntry): if not name: name = menu.Name filename = self.__getFileName(name, ".directory").replace("/", "") if not menu.Name: menu.Name = filename.replace(".directory", "") xml_menu = self.__getXmlMenu(menu.getPath(True, True)) self.__addXmlTextElement(xml_menu, 'Directory', filename) menu.Directory = MenuEntry(filename) deskentry = menu.Directory.DesktopEntry if name: if not deskentry.hasKey("Name"): deskentry.set("Name", name) deskentry.set("Name", name, locale = True) if genericname: if not deskentry.hasKey("GenericName"): deskentry.set("GenericName", genericname) deskentry.set("GenericName", genericname, locale = True) if comment: if not deskentry.hasKey("Comment"): deskentry.set("Comment", comment) deskentry.set("Comment", comment, locale = True) if icon: deskentry.set("Icon", icon) if nodisplay == True: deskentry.set("NoDisplay", "true") elif nodisplay == False: deskentry.set("NoDisplay", "false") if hidden == True: deskentry.set("Hidden", "true") elif hidden == False: deskentry.set("Hidden", "false") menu.Directory.updateAttributes() if isinstance(menu.Parent, Menu): sort(self.menu) return menu def hideMenuEntry(self, menuentry): self.editMenuEntry(menuentry, nodisplay = True) def unhideMenuEntry(self, menuentry): self.editMenuEntry(menuentry, nodisplay = False, hidden = False) def hideMenu(self, menu): self.editMenu(menu, nodisplay = True) def unhideMenu(self, menu): self.editMenu(menu, nodisplay = False, hidden = False) xml_menu = self.__getXmlMenu(menu.getPath(True,True), False) for node in self.__getXmlNodesByName(["Deleted", "NotDeleted"], xml_menu): node.parentNode.removeChild(node) def deleteMenuEntry(self, menuentry): if self.getAction(menuentry) == "delete": self.__deleteFile(menuentry.DesktopEntry.filename) for parent in menuentry.Parents: self.__deleteEntry(parent, menuentry) sort(self.menu) return menuentry def revertMenuEntry(self, menuentry): if self.getAction(menuentry) == "revert": self.__deleteFile(menuentry.DesktopEntry.filename) menuentry.Original.Parents = [] for parent in menuentry.Parents: index = parent.Entries.index(menuentry) parent.Entries[index] = menuentry.Original index = parent.MenuEntries.index(menuentry) parent.MenuEntries[index] = menuentry.Original menuentry.Original.Parents.append(parent) sort(self.menu) return menuentry def deleteMenu(self, menu): if self.getAction(menu) == "delete": self.__deleteFile(menu.Directory.DesktopEntry.filename) self.__deleteEntry(menu.Parent, menu) xml_menu = self.__getXmlMenu(menu.getPath(True, True)) xml_menu.parentNode.removeChild(xml_menu) sort(self.menu) return menu def revertMenu(self, menu): if self.getAction(menu) == "revert": self.__deleteFile(menu.Directory.DesktopEntry.filename) menu.Directory = menu.Directory.Original sort(self.menu) return menu def deleteSeparator(self, separator): self.__deleteEntry(separator.Parent, separator, after=True) sort(self.menu) return separator """ Private Stuff """ def getAction(self, entry): if isinstance(entry, Menu): if not isinstance(entry.Directory, MenuEntry): return "none" elif entry.Directory.getType() == "Both": return "revert" elif entry.Directory.getType() == "User" \ and (len(entry.Submenus) + len(entry.MenuEntries)) == 0: return "delete" elif isinstance(entry, MenuEntry): if entry.getType() == "Both": return "revert" elif entry.getType() == "User": return "delete" else: return "none" return "none" def __saveEntries(self, menu): if not menu: menu = self.menu if isinstance(menu.Directory, MenuEntry): menu.Directory.save() for entry in menu.getEntries(hidden=True): if isinstance(entry, MenuEntry): entry.save() elif isinstance(entry, Menu): self.__saveEntries(entry) def __saveMenu(self): if not os.path.isdir(os.path.dirname(self.filename)): os.makedirs(os.path.dirname(self.filename)) fd = open(self.filename, 'w') fd.write(re.sub("\n[\s]*([^\n<]*)\n[\s]*</", "\\1</", self.doc.toprettyxml().replace('<?xml version="1.0" ?>\n', ''))) fd.close() def __getFileName(self, name, extension): postfix = 0 while 1: if postfix == 0: filename = name + extension else: filename = name + "-" + str(postfix) + extension if extension == ".desktop": dir = "applications" elif extension == ".directory": dir = "desktop-directories" if not filename in self.filenames and not \ os.path.isfile(os.path.join(xdg_data_dirs[0], dir, filename)): self.filenames.append(filename) break else: postfix += 1 return filename def __getXmlMenu(self, path, create=True, element=None): if not element: element = self.doc if "/" in path: (name, path) = path.split("/", 1) else: name = path path = "" found = None for node in self.__getXmlNodesByName("Menu", element): for child in self.__getXmlNodesByName("Name", node): if child.childNodes[0].nodeValue == name: if path: found = self.__getXmlMenu(path, create, node) else: found = node break if found: break if not found and create == True: node = self.__addXmlMenuElement(element, name) if path: found = self.__getXmlMenu(path, create, node) else: found = node return found def __addXmlMenuElement(self, element, name): node = self.doc.createElement('Menu') self.__addXmlTextElement(node, 'Name', name) return element.appendChild(node) def __addXmlTextElement(self, element, name, text): node = self.doc.createElement(name) text = self.doc.createTextNode(text) node.appendChild(text) return element.appendChild(node) def __addXmlFilename(self, element, filename, type = "Include"): # remove old filenames for node in self.__getXmlNodesByName(["Include", "Exclude"], element): if node.childNodes[0].nodeName == "Filename" and node.childNodes[0].childNodes[0].nodeValue == filename: element.removeChild(node) # add new filename node = self.doc.createElement(type) node.appendChild(self.__addXmlTextElement(node, 'Filename', filename)) return element.appendChild(node) def __addXmlMove(self, element, old, new): node = self.doc.createElement("Move") node.appendChild(self.__addXmlTextElement(node, 'Old', old)) node.appendChild(self.__addXmlTextElement(node, 'New', new)) return element.appendChild(node) def __addXmlLayout(self, element, layout): # remove old layout for node in self.__getXmlNodesByName("Layout", element): element.removeChild(node) # add new layout node = self.doc.createElement("Layout") for order in layout.order: if order[0] == "Separator": child = self.doc.createElement("Separator") node.appendChild(child) elif order[0] == "Filename": child = self.__addXmlTextElement(node, "Filename", order[1]) elif order[0] == "Menuname": child = self.__addXmlTextElement(node, "Menuname", order[1]) elif order[0] == "Merge": child = self.doc.createElement("Merge") child.setAttribute("type", order[1]) node.appendChild(child) return element.appendChild(node) def __getXmlNodesByName(self, name, element): for child in element.childNodes: if child.nodeType == xml.dom.Node.ELEMENT_NODE and child.nodeName in name: yield child def __addLayout(self, parent): layout = Layout() layout.order = [] layout.show_empty = parent.Layout.show_empty layout.inline = parent.Layout.inline layout.inline_header = parent.Layout.inline_header layout.inline_alias = parent.Layout.inline_alias layout.inline_limit = parent.Layout.inline_limit layout.order.append(["Merge", "menus"]) for entry in parent.Entries: if isinstance(entry, Menu): layout.parseMenuname(entry.Name) elif isinstance(entry, MenuEntry): layout.parseFilename(entry.DesktopFileID) elif isinstance(entry, Separator): layout.parseSeparator() layout.order.append(["Merge", "files"]) parent.Layout = layout return layout def __addEntry(self, parent, entry, after=None, before=None): if after or before: if after: index = parent.Entries.index(after) + 1 elif before: index = parent.Entries.index(before) parent.Entries.insert(index, entry) else: parent.Entries.append(entry) xml_parent = self.__getXmlMenu(parent.getPath(True, True)) if isinstance(entry, MenuEntry): parent.MenuEntries.append(entry) entry.Parents.append(parent) self.__addXmlFilename(xml_parent, entry.DesktopFileID, "Include") elif isinstance(entry, Menu): parent.addSubmenu(entry) if after or before: self.__addLayout(parent) self.__addXmlLayout(xml_parent, parent.Layout) def __deleteEntry(self, parent, entry, after=None, before=None): parent.Entries.remove(entry) xml_parent = self.__getXmlMenu(parent.getPath(True, True)) if isinstance(entry, MenuEntry): entry.Parents.remove(parent) parent.MenuEntries.remove(entry) self.__addXmlFilename(xml_parent, entry.DesktopFileID, "Exclude") elif isinstance(entry, Menu): parent.Submenus.remove(entry) if after or before: self.__addLayout(parent) self.__addXmlLayout(xml_parent, parent.Layout) def __deleteFile(self, filename): try: os.remove(filename) except OSError: pass try: self.filenames.remove(filename) except ValueError: pass def __remove_whilespace_nodes(self, node): remove_list = [] for child in node.childNodes: if child.nodeType == xml.dom.minidom.Node.TEXT_NODE: child.data = child.data.strip() if not child.data.strip(): remove_list.append(child) elif child.hasChildNodes(): self.__remove_whilespace_nodes(child) for node in remove_list: node.parentNode.removeChild(node) ```
{ "source": "jipp/theEye", "score": 2 }
#### File: RaspberryPi/systemd/main.py ```python import paho.mqtt.client as mqtt import paho.mqtt.publish as publish import json import logging import time import sys import ConfigParser import paramiko import picamera import platform #logging.basicConfig(level=logging.WARNING) logging.basicConfig(level=logging.INFO) #logging.basicConfig(level=logging.DEBUG) logging.getLogger("paramiko.transport").setLevel(logging.INFO) #paramiko.util.log_to_file('/tmp/paramiko.log') try: camera = picamera.PiCamera() except Exception as e: print(e) sys.exit('interrupted') id = platform.node() client = mqtt.Client() config = ConfigParser.ConfigParser() config.read('/data/theEye/RaspberryPi/theEye.ini') try: local_folder = config.get('local', 'folder') local_description = config.get('local', 'description') mqtt_host = config.get('mqtt', 'host') mqtt_username = config.get('mqtt', 'username') mqtt_password = config.get('mqtt', 'password') mqtt_nodes = config.get('mqtt', 'nodes').split(',') mqtt_status = config.get('mqtt', 'status') camera.rotation = config.get('camera', 'rotation') camera.hflip = config.getboolean('camera', 'hflip') camera.vflip = config.getboolean('camera', 'vflip') camera.resolution = (config.getint('camera', 'width'), config.getint('camera', 'height')) camera.led = config.getboolean('camera', 'led') remote_enabled = config.getboolean('remote', 'enable') remote_host = config.get('remote', 'host') remote_username = config.get('remote', 'username') remote_password = config.get('remote', 'password') remote_folder = config.get('remote', 'folder') except Exception as e: print(e) sys.exit('interrupted') def takePhoto(picture, sensor, trigger): output = "{0}/{1}".format(local_folder, picture) camera.capture(output) logging.info('saving output: ' + output) publish.single(mqtt_status + "/status", "{\"id\":" + id + ",\"description\":" + local_description + ",\"sensor\":" + sensor + ",\"trigger\":" + trigger + ",\"picture\":" + picture + ",\"upload\":" + str(remote_enabled) + "}", hostname = mqtt_host, auth = {'username': mqtt_username, 'password': <PASSWORD>}) if (remote_enabled): upload(picture) def upload(picture): localfile = "{0}/{1}".format(local_folder, picture) remotefile = "{0}/{1}".format(remote_folder, picture) transport = paramiko.Transport((remote_host, 22)) transport.connect(username = remote_username, password = <PASSWORD>_password) sftp = paramiko.SFTPClient.from_transport(transport) try: sftp.put(localfile, remotefile) except Exception as e: print(e) print('host: ' + remote_host + '; username: ' + remote_username + '; password: ' + remote_password) print(localfile + ' -> ' + remotefile) sftp.close() transport.close() def get_picture_name(): timestr = time.strftime("%Y%m%d-%H%M%S") picture = "{0}-{1}.jpg".format(id, timestr) return picture def on_connect(client, userdata, flags, rc): logging.info('on_connect rc: ' + str(rc)) client.subscribe(id + "/value") for node in mqtt_nodes: client.subscribe(node + "/value") def on_disconnect(client, userdata, rc): logging.info('on_disconnect rc: ' + str(rc)) def on_message(client, userdata, message): logging.info('topic: ' + message.topic + ', qos: ' + str(message.qos) + ', payload: ' + str(message.payload)) try: payload = json.loads(message.payload) sensor = message.topic.split("/")[0] for key in payload: if key != 'vcc': if payload[key]: logging.info(key + ' triggered') picture = get_picture_name() takePhoto(picture, sensor, key) except Exception as e: print(e) def on_subscribe(client, userdata, mid, granted_qos): logging.info('mid: ' + str(mid) + ', granted_qos: ' + str(granted_qos)) def on_log(client, userdata, level, buf): logging.debug(buf) def main(): # client = mqtt.Client() client.on_connect = on_connect client.on_disconnect = on_disconnect client.on_message = on_message client.on_subscribe = on_subscribe client.on_log = on_log client.username_pw_set(username=mqtt_username, password=<PASSWORD>) client.connect(mqtt_host) client.loop_forever() if __name__ == '__main__': try: main() except KeyboardInterrupt: camera.close() client.disconnect() sys.exit('interrupted') ```
{ "source": "JiPRA/openlierox", "score": 2 }
#### File: gamedir/scripts/pwn0meter.py ```python import sys, time, cgi, os, random, traceback, re f = open("pwn0meter.txt","r") w = open("pwn0meter.html","w") #w = sys.stdout w.write("<html><HEAD>\n") w.write("<META HTTP-EQUIV=\"content-type\" CONTENT=\"text/html; charset=utf-8\">\n") w.write("<TITLE>Pwn0meter</TITLE>\n") w.write("</HEAD>\n<BODY>\n<H2>Pwn0meter</H2>\n") w.write("<p>updated on %s</p>\n" % time.asctime()) # make random chat quotes # doesn't matter if it fails, so surround by try/catch try: # really hacky way to get latest logfile (assume that ls sorts by name) lastlogfile = "logs/" + os.popen("ls logs").read().splitlines()[-1] chatlogmark = "n: CHAT: " chatlines = os.popen("tail -n 10000 \"" + lastlogfile + "\" | grep \"" + chatlogmark + "\"").read().splitlines() chatstr = "<h3>Random chat quotes</h3><p>" rndstart = random.randint(0, len(chatlines) - 5) for i in xrange(rndstart, rndstart + 5): chatstr += cgi.escape(chatlines[i].replace(chatlogmark, "")) + "<br>" chatstr += "</p>" w.write(chatstr) except: print "Unexpected error:", traceback.format_exc() pass killers = {} deaders = {} clan_killers = {} clan_deaders = {} clans = {} re_clans = ( re.compile("^\[\[\[(?P<clan>.+)\]\]\].+$"), re.compile("^\[(?P<clan>.+)\].+$"), re.compile("^.+\[(?P<clan>.+)\]$"), re.compile("^\((?P<clan>.+)\).+$"), re.compile("^.+\((?P<clan>.+)\)$"), re.compile("^-=(?P<clan>.+)=-.+$"), re.compile("^-(?P<clan>.+)-.+$"), re.compile("^\<(?P<clan>.+)\>.+$"), re.compile("^\{(?P<clan>.+)\}.+$"), re.compile("^.+\{(?P<clan>.+)\}$"), re.compile("^\|(?P<clan>.+)\|.+$"), re.compile("^.+\[(?P<clan>.+)\]$"), re.compile("^\|(?P<clan>.+)\|.+$"), re.compile("^.+\[(?P<clan>.+)\]$"), ) def clan_of(name): for m in [r.match(name) for r in re_clans]: if m: return m.group("clan") return "Clanfree" for l in f.readlines(): l = l.strip() if l == "": continue try: ( time, deader, killer ) = l.split("\t") except: continue if killer.find("[CPU]") >= 0: continue if killer.find("The Third") >= 0: continue if killer.find("OpenLieroXor") >= 0: continue if not killer in killers: killers[killer] = {} if not deader in deaders: deaders[deader] = {} killers[killer][deader] = killers[killer].get(deader,0) + 1 deaders[deader][killer] = deaders[deader].get(killer,0) + 1 clankiller = clan_of(killer) clandeader = clan_of(deader) #if clankiller == clandeader: continue # ignore that if not clankiller in clan_killers: clan_killers[clankiller] = {} if not clandeader in clan_deaders: clan_deaders[clandeader] = {} clan_killers[clankiller][clandeader] = clan_killers[clankiller].get(clandeader,0) + 1 clan_deaders[clandeader][clankiller] = clan_deaders[clandeader].get(clankiller,0) + 1 if not clankiller in clans: clans[clankiller] = set() clans[clankiller].add(killer) f.close() #print killers def printRanks(killers, deaders): sorted = killers.keys() def sortFunc(s1, s2): kills1 = sum(killers[s1].itervalues()) - killers[s1].get(s1,0) kills2 = sum(killers[s2].itervalues()) - killers[s2].get(s2,0) if kills1 < kills2: return 1 if kills1 > kills2: return -1 try: deaths1 = sum(deaders[s1].itervalues()) except: deaths1 = 0 try: deaths2 = sum(deaders[s2].itervalues()) except: deaths2 = 0 if deaths1 < deaths2: return -1 if deaths1 > deaths2: return 1 return 0 sorted.sort(cmp=sortFunc) i = 1 for k in sorted: kills = sum(killers[k].itervalues()) try: deaths = sum(deaders[k].itervalues()) except: deatsh = 0 suicides = killers[k].get(k,0) kills -= suicides deaths -= suicides w.write("%i. <B>%s</B>: %i kills %i deaths %i suicides, killed:" % ( i, cgi.escape(k), kills, deaths, suicides )) # Ugly killer sorting killedMax = {} for f in killers[k]: if not killers[k][f] in killedMax: killedMax[killers[k][f]] = [] if killedMax[killers[k][f]].count(f) == 0: killedMax[killers[k][f]].append(f) killedMax1 = killedMax.keys() killedMax1.sort(reverse=True) count = 0 for f in killedMax1: for f1 in killedMax[f]: if f1 == k: # Don't write suicides continue count += 1 if count >= 5: break if count != 1: w.write(",") w.write(" %s - %i" % ( cgi.escape(f1), f ) ) w.write("<BR>\n") i += 1 w.write("<a href=\"#players\">go directly to player ranks</a>") w.write("<h2>Clans</h2>\n") printRanks(clan_killers, clan_deaders) w.write("<h2>Players</h2>") w.write("<a name=\"players\"></a>\n") printRanks(killers, deaders) w.write("<h2>Clan members</h2>\n") for c in clans.iterkeys(): if c == "Clanfree": continue # ignore w.write("<b>%s</b>: " % cgi.escape(c)) w.write("%s<br>\n" % cgi.escape(", ".join(list(clans[c])))) w.write("</BODY>\n</html>\n") w.close() ``` #### File: gamedir/scripts/simulator.py ```python import sys, os, re if len(sys.argv) < 2: print "usage:", sys.argv[0], "<script>" exit(1) script = sys.argv[1] sin, sout = os.popen2(script) def olxdir(): try: from win32com.shell import shellcon, shell homedir = shell.SHGetFolderPath(0, shellcon.CSIDL_MYDOCUMENTS, 0, 0) except ImportError: homedir = os.path.expanduser("~") if os.name == "nt": p = "OpenLieroX" elif os.name == "mac": p = "Library/Application Support/OpenLieroX" else: p = ".OpenLieroX" return homedir + "/" + p def getwritefullfilename(fn): return olxdir() + "/" + fn def getvar(var): var = var.lower() if var == "gameoptions.network.forceminversion": return "OpenLieroX/0.58_rc1" # no special handling yet; assume its a string and return empty return "" def handle(cmd, params): if cmd == "getwritefullfilename" or cmd == "getfullfilename": return getwritefullfilename(params[0]) if cmd == "listmaps": # some scripts need some output here return ["CastleStrike.lxl"] if cmd == "getvar": return [ getvar(params[0]) ] if cmd == "nextsignal": while True: ret = re.findall("[^ \t\"]+", raw_input("Enter signal: ").strip()) if len(ret) > 0: break return ret # unknown/not handled, just return empty list return [] while True: l = sout.readline().strip() print "Script:", l cmd = re.findall("[^ \t\"]+", l) if len(cmd) > 0: ret = [] try: ret = handle(cmd[0].lower(), cmd[1:]) except: print "Error while handling", cmd print sys.exc_info() for rl in ret: sin.write(":" + str(rl) + "\n") sin.write(".\n") sin.flush() else: break ``` #### File: DedicatedServerVideo/gdata/client.py ```python __author__ = '<EMAIL> (<NAME>)' import re import atom.client import atom.core import atom.http_core import gdata.gauth import gdata.data class Error(Exception): pass class RequestError(Error): status = None reason = None body = None headers = None class RedirectError(RequestError): pass class CaptchaChallenge(RequestError): captcha_url = None captcha_token = None class ClientLoginTokenMissing(Error): pass class MissingOAuthParameters(Error): pass class ClientLoginFailed(RequestError): pass class UnableToUpgradeToken(RequestError): pass class Unauthorized(Error): pass class BadAuthenticationServiceURL(RedirectError): pass class BadAuthentication(RequestError): pass class NotModified(RequestError): pass def error_from_response(message, http_response, error_class, response_body=None): """Creates a new exception and sets the HTTP information in the error. Args: message: str human readable message to be displayed if the exception is not caught. http_response: The response from the server, contains error information. error_class: The exception to be instantiated and populated with information from the http_response response_body: str (optional) specify if the response has already been read from the http_response object. """ if response_body is None: body = http_response.read() else: body = response_body error = error_class('%s: %i, %s' % (message, http_response.status, body)) error.status = http_response.status error.reason = http_response.reason error.body = body error.headers = http_response.getheaders() return error def get_xml_version(version): """Determines which XML schema to use based on the client API version. Args: version: string which is converted to an int. The version string is in the form 'Major.Minor.x.y.z' and only the major version number is considered. If None is provided assume version 1. """ if version is None: return 1 return int(version.split('.')[0]) class GDClient(atom.client.AtomPubClient): """Communicates with Google Data servers to perform CRUD operations. This class is currently experimental and may change in backwards incompatible ways. This class exists to simplify the following three areas involved in using the Google Data APIs. CRUD Operations: The client provides a generic 'request' method for making HTTP requests. There are a number of convenience methods which are built on top of request, which include get_feed, get_entry, get_next, post, update, and delete. These methods contact the Google Data servers. Auth: Reading user-specific private data requires authorization from the user as do any changes to user data. An auth_token object can be passed into any of the HTTP requests to set the Authorization header in the request. You may also want to set the auth_token member to a an object which can use modify_request to set the Authorization header in the HTTP request. If you are authenticating using the email address and password, you can use the client_login method to obtain an auth token and set the auth_token member. If you are using browser redirects, specifically AuthSub, you will want to use gdata.gauth.AuthSubToken.from_url to obtain the token after the redirect, and you will probably want to updgrade this since use token to a multiple use (session) token using the upgrade_token method. API Versions: This client is multi-version capable and can be used with Google Data API version 1 and version 2. The version should be specified by setting the api_version member to a string, either '1' or '2'. """ # The gsessionid is used by Google Calendar to prevent redirects. __gsessionid = None api_version = None # Name of the Google Data service when making a ClientLogin request. auth_service = None # URL prefixes which should be requested for AuthSub and OAuth. auth_scopes = None def request(self, method=None, uri=None, auth_token=None, http_request=None, converter=None, desired_class=None, redirects_remaining=4, **kwargs): """Make an HTTP request to the server. See also documentation for atom.client.AtomPubClient.request. If a 302 redirect is sent from the server to the client, this client assumes that the redirect is in the form used by the Google Calendar API. The same request URI and method will be used as in the original request, but a gsessionid URL parameter will be added to the request URI with the value provided in the server's 302 redirect response. If the 302 redirect is not in the format specified by the Google Calendar API, a RedirectError will be raised containing the body of the server's response. The method calls the client's modify_request method to make any changes required by the client before the request is made. For example, a version 2 client could add a GData-Version: 2 header to the request in its modify_request method. Args: method: str The HTTP verb for this request, usually 'GET', 'POST', 'PUT', or 'DELETE' uri: atom.http_core.Uri, str, or unicode The URL being requested. auth_token: An object which sets the Authorization HTTP header in its modify_request method. Recommended classes include gdata.gauth.ClientLoginToken and gdata.gauth.AuthSubToken among others. http_request: (optional) atom.http_core.HttpRequest converter: function which takes the body of the response as it's only argument and returns the desired object. desired_class: class descended from atom.core.XmlElement to which a successful response should be converted. If there is no converter function specified (converter=None) then the desired_class will be used in calling the atom.core.parse function. If neither the desired_class nor the converter is specified, an HTTP reponse object will be returned. redirects_remaining: (optional) int, if this number is 0 and the server sends a 302 redirect, the request method will raise an exception. This parameter is used in recursive request calls to avoid an infinite loop. Any additional arguments are passed through to atom.client.AtomPubClient.request. Returns: An HTTP response object (see atom.http_core.HttpResponse for a description of the object's interface) if no converter was specified and no desired_class was specified. If a converter function was provided, the results of calling the converter are returned. If no converter was specified but a desired_class was provided, the response body will be converted to the class using atom.core.parse. """ if isinstance(uri, (str, unicode)): uri = atom.http_core.Uri.parse_uri(uri) # Add the gsession ID to the URL to prevent further redirects. # TODO: If different sessions are using the same client, there will be a # multitude of redirects and session ID shuffling. # If the gsession ID is in the URL, adopt it as the standard location. if uri is not None and uri.query is not None and 'gsessionid' in uri.query: self.__gsessionid = uri.query['gsessionid'] # The gsession ID could also be in the HTTP request. elif (http_request is not None and http_request.uri is not None and http_request.uri.query is not None and 'gsessionid' in http_request.uri.query): self.__gsessionid = http_request.uri.query['gsessionid'] # If the gsession ID is stored in the client, and was not present in the # URI then add it to the URI. elif self.__gsessionid is not None: uri.query['gsessionid'] = self.__gsessionid # The AtomPubClient should call this class' modify_request before # performing the HTTP request. #http_request = self.modify_request(http_request) response = atom.client.AtomPubClient.request(self, method=method, uri=uri, auth_token=auth_token, http_request=http_request, **kwargs) # On success, convert the response body using the desired converter # function if present. if response is None: return None if response.status == 200 or response.status == 201: if converter is not None: return converter(response) elif desired_class is not None: if self.api_version is not None: return atom.core.parse(response.read(), desired_class, version=get_xml_version(self.api_version)) else: # No API version was specified, so allow parse to # use the default version. return atom.core.parse(response.read(), desired_class) else: return response # TODO: move the redirect logic into the Google Calendar client once it # exists since the redirects are only used in the calendar API. elif response.status == 302: if redirects_remaining > 0: location = (response.getheader('Location') or response.getheader('location')) if location is not None: m = re.compile('[\?\&]gsessionid=(\w*)').search(location) if m is not None: self.__gsessionid = m.group(1) # Make a recursive call with the gsession ID in the URI to follow # the redirect. return self.request(method=method, uri=uri, auth_token=auth_token, http_request=http_request, converter=converter, desired_class=desired_class, redirects_remaining=redirects_remaining-1, **kwargs) else: raise error_from_response('302 received without Location header', response, RedirectError) else: raise error_from_response('Too many redirects from server', response, RedirectError) elif response.status == 401: raise error_from_response('Unauthorized - Server responded with', response, Unauthorized) elif response.status == 304: raise error_from_response('Entry Not Modified - Server responded with', response, NotModified) # If the server's response was not a 200, 201, 302, or 401, raise an # exception. else: raise error_from_response('Server responded with', response, RequestError) Request = request def request_client_login_token( self, email, password, source, service=None, account_type='HOSTED_OR_GOOGLE', auth_url=atom.http_core.Uri.parse_uri( 'https://www.google.com/accounts/ClientLogin'), captcha_token=None, captcha_response=None): service = service or self.auth_service # Set the target URL. http_request = atom.http_core.HttpRequest(uri=auth_url, method='POST') http_request.add_body_part( gdata.gauth.generate_client_login_request_body(email=email, password=password, service=service, source=source, account_type=account_type, captcha_token=captcha_token, captcha_response=captcha_response), 'application/x-www-form-urlencoded') # Use the underlying http_client to make the request. response = self.http_client.request(http_request) response_body = response.read() if response.status == 200: token_string = gdata.gauth.get_client_login_token_string(response_body) if token_string is not None: return gdata.gauth.ClientLoginToken(token_string) else: raise ClientLoginTokenMissing( 'Recieved a 200 response to client login request,' ' but no token was present. %s' % (response_body,)) elif response.status == 403: captcha_challenge = gdata.gauth.get_captcha_challenge(response_body) if captcha_challenge: challenge = CaptchaChallenge('CAPTCHA required') challenge.captcha_url = captcha_challenge['url'] challenge.captcha_token = captcha_challenge['token'] raise challenge elif response_body.splitlines()[0] == 'Error=BadAuthentication': raise BadAuthentication('Incorrect username or password') else: raise error_from_response('Server responded with a 403 code', response, RequestError, response_body) elif response.status == 302: # Google tries to redirect all bad URLs back to # http://www.google.<locale>. If a redirect # attempt is made, assume the user has supplied an incorrect # authentication URL raise error_from_response('Server responded with a redirect', response, BadAuthenticationServiceURL, response_body) else: raise error_from_response('Server responded to ClientLogin request', response, ClientLoginFailed, response_body) RequestClientLoginToken = request_client_login_token def client_login(self, email, password, source, service=None, account_type='HOSTED_OR_GOOGLE', auth_url=atom.http_core.Uri.parse_uri( 'https://www.google.com/accounts/ClientLogin'), captcha_token=None, captcha_response=None): """Performs an auth request using the user's email address and password. In order to modify user specific data and read user private data, your application must be authorized by the user. One way to demonstrage authorization is by including a Client Login token in the Authorization HTTP header of all requests. This method requests the Client Login token by sending the user's email address, password, the name of the application, and the service code for the service which will be accessed by the application. If the username and password are correct, the server will respond with the client login code and a new ClientLoginToken object will be set in the client's auth_token member. With the auth_token set, future requests from this client will include the Client Login token. For a list of service names, see http://code.google.com/apis/gdata/faq.html#clientlogin For more information on Client Login, see: http://code.google.com/apis/accounts/docs/AuthForInstalledApps.html Args: email: str The user's email address or username. password: str The password for the user's account. source: str The name of your application. This can be anything you like but should should give some indication of which app is making the request. service: str The service code for the service you would like to access. For example, 'cp' for contacts, 'cl' for calendar. For a full list see http://code.google.com/apis/gdata/faq.html#clientlogin If you are using a subclass of the gdata.client.GDClient, the service will usually be filled in for you so you do not need to specify it. For example see BloggerClient, SpreadsheetsClient, etc. account_type: str (optional) The type of account which is being authenticated. This can be either 'GOOGLE' for a Google Account, 'HOSTED' for a Google Apps Account, or the default 'HOSTED_OR_GOOGLE' which will select the Google Apps Account if the same email address is used for both a Google Account and a Google Apps Account. auth_url: str (optional) The URL to which the login request should be sent. captcha_token: str (optional) If a previous login attempt was reponded to with a CAPTCHA challenge, this is the token which identifies the challenge (from the CAPTCHA's URL). captcha_response: str (optional) If a previous login attempt was reponded to with a CAPTCHA challenge, this is the response text which was contained in the challenge. Returns: None Raises: A RequestError or one of its suclasses: BadAuthentication, BadAuthenticationServiceURL, ClientLoginFailed, ClientLoginTokenMissing, or CaptchaChallenge """ service = service or self.auth_service self.auth_token = self.request_client_login_token(email, password, source, service=service, account_type=account_type, auth_url=auth_url, captcha_token=captcha_token, captcha_response=captcha_response) ClientLogin = client_login def upgrade_token(self, token=None, url=atom.http_core.Uri.parse_uri( 'https://www.google.com/accounts/AuthSubSessionToken')): """Asks the Google auth server for a multi-use AuthSub token. For details on AuthSub, see: http://code.google.com/apis/accounts/docs/AuthSub.html Args: token: gdata.gauth.AuthSubToken or gdata.gauth.SecureAuthSubToken (optional) If no token is passed in, the client's auth_token member is used to request the new token. The token object will be modified to contain the new session token string. url: str or atom.http_core.Uri (optional) The URL to which the token upgrade request should be sent. Defaults to: https://www.google.com/accounts/AuthSubSessionToken Returns: The upgraded gdata.gauth.AuthSubToken object. """ # Default to using the auth_token member if no token is provided. if token is None: token = self.auth_token # We cannot upgrade a None token. if token is None: raise UnableToUpgradeToken('No token was provided.') if not isinstance(token, gdata.gauth.AuthSubToken): raise UnableToUpgradeToken( 'Cannot upgrade the token because it is not an AuthSubToken object.') http_request = atom.http_core.HttpRequest(uri=url, method='GET') token.modify_request(http_request) # Use the lower level HttpClient to make the request. response = self.http_client.request(http_request) if response.status == 200: token._upgrade_token(response.read()) return token else: raise UnableToUpgradeToken( 'Server responded to token upgrade request with %s: %s' % ( response.status, response.read())) UpgradeToken = upgrade_token def get_oauth_token(self, scopes, next, consumer_key, consumer_secret=None, rsa_private_key=None, url=gdata.gauth.REQUEST_TOKEN_URL): """Obtains an OAuth request token to allow the user to authorize this app. Once this client has a request token, the user can authorize the request token by visiting the authorization URL in their browser. After being redirected back to this app at the 'next' URL, this app can then exchange the authorized request token for an access token. For more information see the documentation on Google Accounts with OAuth: http://code.google.com/apis/accounts/docs/OAuth.html#AuthProcess Args: scopes: list of strings or atom.http_core.Uri objects which specify the URL prefixes which this app will be accessing. For example, to access the Google Calendar API, you would want to use scopes: ['https://www.google.com/calendar/feeds/', 'http://www.google.com/calendar/feeds/'] next: str or atom.http_core.Uri object, The URL which the user's browser should be sent to after they authorize access to their data. This should be a URL in your application which will read the token information from the URL and upgrade the request token to an access token. consumer_key: str This is the identifier for this application which you should have received when you registered your application with Google to use OAuth. consumer_secret: str (optional) The shared secret between your app and Google which provides evidence that this request is coming from you application and not another app. If present, this libraries assumes you want to use an HMAC signature to verify requests. Keep this data a secret. rsa_private_key: str (optional) The RSA private key which is used to generate a digital signature which is checked by Google's server. If present, this library assumes that you want to use an RSA signature to verify requests. Keep this data a secret. url: The URL to which a request for a token should be made. The default is Google's OAuth request token provider. """ http_request = None if rsa_private_key is not None: http_request = gdata.gauth.generate_request_for_request_token( consumer_key, gdata.gauth.RSA_SHA1, scopes, rsa_key=rsa_private_key, auth_server_url=url, next=next) elif consumer_secret is not None: http_request = gdata.gauth.generate_request_for_request_token( consumer_key, gdata.gauth.HMAC_SHA1, scopes, consumer_secret=consumer_secret, auth_server_url=url, next=next) else: raise MissingOAuthParameters( 'To request an OAuth token, you must provide your consumer secret' ' or your private RSA key.') response = self.http_client.request(http_request) response_body = response.read() if response.status != 200: raise error_from_response('Unable to obtain OAuth request token', response, RequestError, response_body) if rsa_private_key is not None: return gdata.gauth.rsa_token_from_body(response_body, consumer_key, rsa_private_key, gdata.gauth.REQUEST_TOKEN) elif consumer_secret is not None: return gdata.gauth.hmac_token_from_body(response_body, consumer_key, consumer_secret, gdata.gauth.REQUEST_TOKEN) GetOAuthToken = get_oauth_token def get_access_token(self, request_token, url=gdata.gauth.ACCESS_TOKEN_URL): """Exchanges an authorized OAuth request token for an access token. Contacts the Google OAuth server to upgrade a previously authorized request token. Once the request token is upgraded to an access token, the access token may be used to access the user's data. For more details, see the Google Accounts OAuth documentation: http://code.google.com/apis/accounts/docs/OAuth.html#AccessToken Args: request_token: An OAuth token which has been authorized by the user. url: (optional) The URL to which the upgrade request should be sent. Defaults to: https://www.google.com/accounts/OAuthAuthorizeToken """ http_request = gdata.gauth.generate_request_for_access_token( request_token, auth_server_url=url) response = self.http_client.request(http_request) response_body = response.read() if response.status != 200: raise error_from_response( 'Unable to upgrade OAuth request token to access token', response, RequestError, response_body) return gdata.gauth.upgrade_to_access_token(request_token, response_body) GetAccessToken = get_access_token def modify_request(self, http_request): """Adds or changes request before making the HTTP request. This client will add the API version if it is specified. Subclasses may override this method to add their own request modifications before the request is made. """ http_request = atom.client.AtomPubClient.modify_request(self, http_request) if self.api_version is not None: http_request.headers['GData-Version'] = self.api_version return http_request ModifyRequest = modify_request def get_feed(self, uri, auth_token=None, converter=None, desired_class=gdata.data.GDFeed, **kwargs): return self.request(method='GET', uri=uri, auth_token=auth_token, converter=converter, desired_class=desired_class, **kwargs) GetFeed = get_feed def get_entry(self, uri, auth_token=None, converter=None, desired_class=gdata.data.GDEntry, etag=None, **kwargs): http_request = atom.http_core.HttpRequest() # Conditional retrieval if etag is not None: http_request.headers['If-None-Match'] = etag return self.request(method='GET', uri=uri, auth_token=auth_token, http_request=http_request, converter=converter, desired_class=desired_class, **kwargs) GetEntry = get_entry def get_next(self, feed, auth_token=None, converter=None, desired_class=None, **kwargs): """Fetches the next set of results from the feed. When requesting a feed, the number of entries returned is capped at a service specific default limit (often 25 entries). You can specify your own entry-count cap using the max-results URL query parameter. If there are more results than could fit under max-results, the feed will contain a next link. This method performs a GET against this next results URL. Returns: A new feed object containing the next set of entries in this feed. """ if converter is None and desired_class is None: desired_class = feed.__class__ return self.get_feed(feed.find_next_link(), auth_token=auth_token, converter=converter, desired_class=desired_class, **kwargs) GetNext = get_next # TODO: add a refresh method to re-fetch the entry/feed from the server # if it has been updated. def post(self, entry, uri, auth_token=None, converter=None, desired_class=None, **kwargs): if converter is None and desired_class is None: desired_class = entry.__class__ http_request = atom.http_core.HttpRequest() http_request.add_body_part( entry.to_string(get_xml_version(self.api_version)), 'application/atom+xml') return self.request(method='POST', uri=uri, auth_token=auth_token, http_request=http_request, converter=converter, desired_class=desired_class, **kwargs) Post = post def update(self, entry, auth_token=None, force=False, **kwargs): """Edits the entry on the server by sending the XML for this entry. Performs a PUT and converts the response to a new entry object with a matching class to the entry passed in. Args: entry: auth_token: force: boolean stating whether an update should be forced. Defaults to False. Normally, if a change has been made since the passed in entry was obtained, the server will not overwrite the entry since the changes were based on an obsolete version of the entry. Setting force to True will cause the update to silently overwrite whatever version is present. Returns: A new Entry object of a matching type to the entry which was passed in. """ http_request = atom.http_core.HttpRequest() http_request.add_body_part( entry.to_string(get_xml_version(self.api_version)), 'application/atom+xml') # Include the ETag in the request if present. if force: http_request.headers['If-Match'] = '*' elif hasattr(entry, 'etag') and entry.etag: http_request.headers['If-Match'] = entry.etag return self.request(method='PUT', uri=entry.find_edit_link(), auth_token=auth_token, http_request=http_request, desired_class=entry.__class__, **kwargs) Update = update def delete(self, entry_or_uri, auth_token=None, force=False, **kwargs): http_request = atom.http_core.HttpRequest() # Include the ETag in the request if present. if force: http_request.headers['If-Match'] = '*' elif hasattr(entry_or_uri, 'etag') and entry_or_uri.etag: http_request.headers['If-Match'] = entry_or_uri.etag # If the user passes in a URL, just delete directly, may not work as # the service might require an ETag. if isinstance(entry_or_uri, (str, unicode, atom.http_core.Uri)): return self.request(method='DELETE', uri=entry_or_uri, http_request=http_request, auth_token=auth_token, **kwargs) return self.request(method='DELETE', uri=entry_or_uri.find_edit_link(), http_request=http_request, auth_token=auth_token, **kwargs) Delete = delete #TODO: implement batch requests. #def batch(feed, uri, auth_token=None, converter=None, **kwargs): # pass # TODO: add a refresh method to request a conditional update to an entry # or feed. def _add_query_param(param_string, value, http_request): if value: http_request.uri.query[param_string] = value class Query(object): def __init__(self, text_query=None, categories=None, author=None, alt=None, updated_min=None, updated_max=None, pretty_print=False, published_min=None, published_max=None, start_index=None, max_results=None, strict=False): """Constructs a Google Data Query to filter feed contents serverside. Args: text_query: Full text search str (optional) categories: list of strings (optional). Each string is a required category. To include an 'or' query, put a | in the string between terms. For example, to find everything in the Fitz category and the Laurie or Jane category (Fitz and (Laurie or Jane)) you would set categories to ['Fitz', 'Laurie|Jane']. author: str (optional) The service returns entries where the author name and/or email address match your query string. alt: str (optional) for the Alternative representation type you'd like the feed in. If you don't specify an alt parameter, the service returns an Atom feed. This is equivalent to alt='atom'. alt='rss' returns an RSS 2.0 result feed. alt='json' returns a JSON representation of the feed. alt='json-in-script' Requests a response that wraps JSON in a script tag. alt='atom-in-script' Requests an Atom response that wraps an XML string in a script tag. alt='rss-in-script' Requests an RSS response that wraps an XML string in a script tag. updated_min: str (optional), RFC 3339 timestamp format, lower bounds. For example: 2005-08-09T10:57:00-08:00 updated_max: str (optional) updated time must be earlier than timestamp. pretty_print: boolean (optional) If True the server's XML response will be indented to make it more human readable. Defaults to False. published_min: str (optional), Similar to updated_min but for published time. published_max: str (optional), Similar to updated_max but for published time. start_index: int or str (optional) 1-based index of the first result to be retrieved. Note that this isn't a general cursoring mechanism. If you first send a query with ?start-index=1&max-results=10 and then send another query with ?start-index=11&max-results=10, the service cannot guarantee that the results are equivalent to ?start-index=1&max-results=20, because insertions and deletions could have taken place in between the two queries. max_results: int or str (optional) Maximum number of results to be retrieved. Each service has a default max (usually 25) which can vary from service to service. There is also a service-specific limit to the max_results you can fetch in a request. strict: boolean (optional) If True, the server will return an error if the server does not recognize any of the parameters in the request URL. Defaults to False. """ self.text_query = text_query self.categories = categories or [] self.author = author self.alt = alt self.updated_min = updated_min self.updated_max = updated_max self.pretty_print = pretty_print self.published_min = published_min self.published_max = published_max self.start_index = start_index self.max_results = max_results self.strict = strict def modify_request(self, http_request): _add_query_param('q', self.text_query, http_request) if self.categories: http_request.uri.query['categories'] = ','.join(self.categories) _add_query_param('author', self.author, http_request) _add_query_param('alt', self.alt, http_request) _add_query_param('updated-min', self.updated_min, http_request) _add_query_param('updated-max', self.updated_max, http_request) if self.pretty_print: http_request.uri.query['prettyprint'] = 'true' _add_query_param('published-min', self.published_min, http_request) _add_query_param('published-max', self.published_max, http_request) if self.start_index is not None: http_request.uri.query['start-index'] = str(self.start_index) if self.max_results is not None: http_request.uri.query['max-results'] = str(self.max_results) if self.strict: http_request.uri.query['strict'] = 'true' ModifyRequest = modify_request class GDQuery(atom.http_core.Uri): def _get_text_query(self): return self.query['q'] def _set_text_query(self, value): self.query['q'] = value text_query = property(_get_text_query, _set_text_query, doc='The q parameter for searching for an exact text match on content') ``` #### File: tools/OLXLogAnalyser/logins.py ```python import sys,os,re opts = [ opt for opt in sys.argv[1:] if not os.path.exists(opt) ] files = [ f for f in sys.argv[1:] if f not in opts ] def Stream(files): for fn in files: for l in open(fn, "r"): yield l.strip("\n") reJoin = re.compile("^H: Worm joined: (?P<name>.*) \\(id (?P<id>[0-9]+), from (?P<ip>[0-9.]+):[0-9]+\\((?P<version>.*)\\)\\)$") def Joins(stream): for l in stream: m = reJoin.match(l) if m: yield m.groupdict() ips = dict() for j in Joins(Stream(files)): ip = j["ip"] name = j["name"] if not ip in ips: ips[ip] = dict() #names ips[ip][name] = j print "Total IPs:", len(ips) for i in range(2,100): ipsfilter = [ d for d in ips.itervalues() if len(d) > i ] print "IPs used by more than", i, "nicks:", len(ipsfilter) if len(ipsfilter) == 0: break N = 4 print "IPs used by more than", N, "nicks:" ipsfilter = [ d for d in ips.iteritems() if len(d[1]) > N ] for d in ipsfilter: #print " ", d[0], ":" print "-------------" for name in d[1]: print " ", name ```
{ "source": "jiptool/jip", "score": 2 }
#### File: jip/jip/commands.py ```python import os import sys import shutil import stat import inspect import warnings from string import Template from jip import repos_manager, index_manager, logger,\ __version__, __path__, pool, cache_manager from jip.maven import Pom, Artifact from jip.util import get_lib_path, get_virtual_home ## command dictionary {name: function} commands = {} ## options [(name, nargs, description, option_type), ...] def command(register=True, options=[]): def _command(func): ## init default repos before running command def wrapper(*args, **kwargs): repos_manager.init_repos() index_manager.initialize() func(*args, **kwargs) index_manager.finalize() ## register in command dictionary if register: commands[func.__name__.replace('_','-')] = wrapper wrapper.__doc__ = inspect.getdoc(func) wrapper.__raw__ = func ### inspect arguments args = inspect.getargspec(func) defaults = list(args[3]) if args[3] else [] wrapper.args = [] for argidx in range(len(args[0])-1, -1, -1): if args[0][argidx] != 'options': default_value = defaults.pop() if defaults else None wrapper.args.append((args[0][argidx], default_value)) wrapper.args.reverse() else: ## options should have default value {} ## so remove this one for counter defaults.pop() ### addtional options wrapper.options = options return wrapper return _command def _find_pom(artifact, verify=True): """ find pom and repos contains pom """ ## lookup cache first if cache_manager.is_artifact_in_cache(artifact): pom = cache_manager.get_artifact_pom(artifact) return (pom, cache_manager.as_repos()) else: for repos in repos_manager.repos: pom = repos.download_pom(artifact, verify) ## find the artifact if pom is not None: cache_manager.put_artifact_pom(artifact, pom) return (pom, repos) return None @command(options=[ ("dry-run", 0, "perform a command without actual download", bool), ("copy-pom", 0, "copy pom to library directory", bool), ("exclude", "+", "exclude artifacts in install, for instance, 'junit:junit'", str), ("insecure", 0, "do not verify the server's TLS certificate", bool) ]) def install(artifact_id, options={}): """ Install a package identified by "groupId:artifactId:version" """ artifact = Artifact.from_id(artifact_id) _install([artifact], options=options) def _resolve_artifacts(artifacts, exclusions=[], verify=True): ## download queue download_list = [] ## dependency_set contains artifact objects to resolve dependency_set = set() for a in artifacts: dependency_set.add(a) while len(dependency_set) > 0: artifact = dependency_set.pop() ## to prevent multiple version installed ## TODO we need a better strategy to resolve this if index_manager.is_same_installed(artifact)\ and artifact not in download_list: continue pominfo = _find_pom(artifact, verify) if pominfo is None: logger.error("[Error] Artifact not found: %s", artifact) sys.exit(1) if not index_manager.is_installed(artifact): pom, repos = pominfo # repos.download_jar(artifact, get_lib_path()) artifact.repos = repos # skip excluded artifact if not any(map(artifact.is_same_artifact, exclusions)): download_list.append(artifact) index_manager.add_artifact(artifact) pom_obj = Pom(pom) for r in pom_obj.get_repositories(): repos_manager.add_repos(*r) more_dependencies = pom_obj.get_dependencies(verify) for d in more_dependencies: d.exclusions.extend(artifact.exclusions) if not index_manager.is_same_installed(d): dependency_set.add(d) return download_list def _install(artifacts, exclusions=[], options={}): dryrun = options.get("dry-run", False) verify = not options.get("insecure", True) if not verify: warnings.filterwarnings("ignore", category=Warning) _exclusions = options.get('exclude', []) copy_pom = options.get('copy-pom', False) if _exclusions: _exclusions = map(lambda x: Artifact(*(x.split(":"))), _exclusions) exclusions.extend(_exclusions) download_list = _resolve_artifacts(artifacts, exclusions, verify) if not dryrun: ## download to cache first for artifact in download_list: if artifact.repos != cache_manager.as_repos(): artifact.repos.download_jar(artifact, cache_manager.get_jar_path(artifact), verify) pool.join() for artifact in download_list: cache_manager.get_artifact_jar(artifact, get_lib_path()) if copy_pom: cache_manager.get_artifact_pom(artifact, get_lib_path()) index_manager.commit() logger.info("[Finished] dependencies resolved") else: logger.info("[Install] Artifacts to install:") for artifact in download_list: logger.info(artifact) @command() def clean(): """ Remove all downloaded packages """ logger.info("[Deleting] remove java libs in %s" % get_lib_path()) shutil.rmtree(get_lib_path()) index_manager.remove_all() index_manager.commit() logger.info("[Finished] all downloaded files erased") ## another resolve task, allow jip to resovle dependencies from a pom file. @command(options=[ ("dry-run", 0, "perform a command without actual download", bool) ]) def resolve(pomfile, options={}): """ Resolve and download dependencies in pom file """ pomfile = open(pomfile, 'r') pomstring = pomfile.read() pom = Pom(pomstring) ## custom defined repositories repositories = pom.get_repositories() for repos in repositories: repos_manager.add_repos(*repos) dependencies = pom.get_dependencies() _install(dependencies, options=options) @command() def update(artifact_id): """ Update a snapshot artifact, check for new version """ artifact = Artifact.from_id(artifact_id) artifact = index_manager.get_artifact(artifact) if artifact is None: logger.error('[Error] Can not update %s, please install it first' % artifact) sys.exit(1) if artifact.is_snapshot(): selected_repos = artifact.repos installed_file = os.path.join(get_lib_path(), artifact.to_jip_name()) if os.path.exists(installed_file): lm = os.stat(installed_file)[stat.ST_MTIME] ## find the repository contains the new release ts = selected_repos.last_modified(artifact) if ts is not None and ts > lm : ## download new jar selected_repos.download_jar(artifact, get_lib_path()) ## try to update dependencies pomstring = selected_repos.download_pom(artifact) pom = Pom(pomstring) dependencies = pom.get_dependencies() _install(dependencies) else: logger.error('[Error] Artifact not installed: %s' % artifact) sys.exit(1) else: logger.error('[Error] Can not update non-snapshot artifact') return @command() def version(): """ Display jip version """ logger.info('[Version] jip %s, jython %s' % (__version__, sys.version)) @command(options=[ ("dry-run", 0, "perform a command without actual download", bool) ]) def deps(artifact_id, options={}): """ Install dependencies for a given artifact coordinator """ artifact = Artifact.from_id(artifact_id) pominfo = _find_pom(artifact) if pominfo is not None: pom = Pom(pominfo[0]) _install(pom.get_dependencies(), options=options) else: logger.error('[Error] artifact %s not found in any repository' % artifact_id) sys.exit(1) @command(options=[ ('group', '?', "group name", str), ('artifact', '?', "artifact name", str) ]) def search(query="", options={}): """ Search maven central repository with keywords""" from .search import searcher if query is not None and len(query) > 0: logger.info('[Searching] "%s" in Maven central repository...' % query) results = searcher.search(query) else: g = options.get('group', '') a = options.get('artifact', '') logger.info('[Searching] "%s:%s" in Maven central repository...' % (g,a)) results = searcher.search_group_artifact(g, a) if len(results) > 0: for item in results: g,a,v,p = item logger.info("%s-%s (%s)\n\t%s:%s:%s" % (a,v,p,g,a,v)) else: logger.info('[Finished] nothing returned by criteria "%s"' % query) @command() def list(): """ List current installed artifacts """ index_manager.keep_consistent() for a in index_manager.installed: logger.info("%s" % a) @command() def remove(artifact_id): """ Remove an artifact from library path """ logger.info('[Checking] %s in library index' % artifact_id) artifact = Artifact.from_id(artifact_id) artifact_path = os.path.join(get_lib_path(), artifact.to_jip_name()) if index_manager.is_installed(artifact) and os.path.exists(artifact_path): os.remove(artifact_path) index_manager.remove_artifact(artifact) index_manager.commit() logger.info('[Finished] %s removed from library path' % artifact_id) else: logger.error('[Error] %s not installed' % artifact_id) sys.exit(1) @command() def freeze(): """ Dump current configuration to a pom file """ dependencies = index_manager.to_pom() repositories = repos_manager.to_pom() template = Template(open(os.path.join(__path__[0], '../data/pom.tpl'), 'r').read()) logger.info( template.substitute({'dependencies': dependencies, 'repositories': repositories})) ``` #### File: jip/jip/util.py ```python import os import sys import time try: from io import StringIO except ImportError: from StringIO import StringIO try: import queue except ImportError: import Queue as queue import threading from jip import __version__, logger JIP_USER_AGENT = 'jip/%s' % __version__ BUF_SIZE = 4096 class DownloadException(Exception): pass def download(url, target, non_blocking=False, close_target=False, quiet=True, verify=True): import requests ### download file to target (target is a file-like object) if non_blocking: pool.submit(url, target, verify) else: try: t0 = time.time() source = requests.get(url, verify=verify, headers={'User-Agent': JIP_USER_AGENT}) source.raise_for_status() size = source.headers['Content-Length'] if not quiet: logger.info('[Downloading] %s %s bytes to download' % (url, size)) for buf in source.iter_content(BUF_SIZE): target.write(buf) source.close() if close_target: target.close() t1 = time.time() if not quiet: logger.info('[Downloading] Download %s completed in %f secs' % (url, (t1-t0))) except requests.exceptions.RequestException: _, e, _ = sys.exc_info() raise DownloadException(url, e) def download_string(url, verify=True): import requests try: response = requests.get(url, verify=verify, headers={'User-Agent': JIP_USER_AGENT}) response.raise_for_status() return response.text except requests.exceptions.RequestException: _, e, _ = sys.exc_info() raise DownloadException(url, e) class DownloadThreadPool(object): def __init__(self, size=3): self.queue = queue.Queue() self.workers = [threading.Thread(target=self._do_work) for _ in range(size)] self.initialized = False def init_threads(self): for worker in self.workers: worker.setDaemon(True) worker.start() self.initialized = True def _do_work(self): while True: url, target, verify = self.queue.get() download(url, target, close_target=True, quiet=False, verify=verify) self.queue.task_done() def join(self): self.queue.join() def submit(self, url, target, verify=True): if not self.initialized: self.init_threads() self.queue.put((url, target, verify)) pool = DownloadThreadPool(3) def get_virtual_home(): if 'VIRTUAL_ENV' in os.environ: JYTHON_HOME = os.environ['VIRTUAL_ENV'] else: ## fail back to use current directory JYTHON_HOME = os.getcwd() return JYTHON_HOME def get_lib_path(): JYTHON_HOME = get_virtual_home() DEFAULT_JAVA_LIB_PATH = os.path.join(JYTHON_HOME, 'javalib') if not os.path.exists(DEFAULT_JAVA_LIB_PATH): os.mkdir(DEFAULT_JAVA_LIB_PATH) return DEFAULT_JAVA_LIB_PATH ```
{ "source": "JIQ1314an/nlp-case", "score": 3 }
#### File: nlp-case/sample/helpers.py ```python from collections import Counter from . import core import pandas as pd def read(path): corpus = [] with open(path) as f: for line in f.readlines(): corpus.append(line.rstrip('\n')) # print(corpus) return corpus def split_sentence(corpus: list): """split corpus :param corpus: list type sentence :return: word_list: two-dimensional list """ word_list = list() for i in range(len(corpus)): word_list.append(corpus[i].split(' ')) return word_list def count_word_num(corpus: list): """Count words :param corpus: two-dimensional list :return: list, the element is Count type """ word_list = split_sentence(corpus) count_list = [] unrepeated_word_list = [] for i in range(len(word_list)): # The Counter type is similar to a dict, returns 0 for nonexistent keys count_list.append(Counter(word_list[i])) unrepeated_word_list.extend(word_list[i]) return pd.Series(unrepeated_word_list).unique(), count_list def get_text_vector(corpus: list): text_vector = {} # Get words and statistics for all articles unrepeated_word_list, count_list = count_word_num(corpus) # print(unrepeated_word_list) for i, count in enumerate(count_list): # Get words and statistics for the current article print("TF-IDF statistics for Document {}".format(i + 1)) scores = {word: core.tf_idf(word, count, count_list) for word in count} # print(scores.keys()) # Sort in descending order by value sorted_words = sorted(scores.items(), key=lambda x: x[1], reverse=True) for word, score in sorted_words: print("word: {}, TF-IDF: {}\t".format(word, round(score, 5))) # get text vector for w in unrepeated_word_list: if w in scores.keys(): fill_text_vector(text_vector, w, round(scores[w], 5)) else: fill_text_vector(text_vector, w, 0) # print(text_vector) print() return pd.DataFrame(text_vector).values def fill_text_vector(text_vector, w, score): temp_list = text_vector.get(w) # Key=w If not exists, then return None if temp_list: temp_list.append(score) text_vector[w] = temp_list else: text_vector[w] = [score] ```
{ "source": "JiQi535/pymatgen-analysis-diffusion", "score": 2 }
#### File: aimd/tests/test_pathway.py ```python __author__ = "<NAME>" __date__ = "01/16" import json import os import unittest import numpy as np from pymatgen.core import Structure from pymatgen.io.vasp import Chgcar from pymatgen.analysis.diffusion.aimd.pathway import ProbabilityDensityAnalysis, SiteOccupancyAnalyzer from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer tests_dir = os.path.dirname(os.path.abspath(__file__)) class ProbabilityDensityTest(unittest.TestCase): def test_probability(self): traj_file = os.path.join(tests_dir, "cNa3PS4_trajectories.npy") struc_file = os.path.join(tests_dir, "cNa3PS4.cif") trajectories = np.load(traj_file) structure = Structure.from_file(struc_file, False) # ProbabilityDensityAnalysis object pda = ProbabilityDensityAnalysis(structure, trajectories, interval=0.5) dV = pda.structure.lattice.volume / pda.lens[0] / pda.lens[1] / pda.lens[2] Pr_tot = np.sum(pda.Pr) * dV self.assertAlmostEqual(pda.Pr.max(), 0.030735573102, 12) self.assertAlmostEqual(pda.Pr.min(), 0.0, 12) self.assertAlmostEqual(Pr_tot, 1.0, 12) def test_probability_classmethod(self): file = os.path.join(tests_dir, "cNa3PS4_pda.json") data = json.load(open(file)) diff_analyzer = DiffusionAnalyzer.from_dict(data) # ProbabilityDensityAnalysis object pda = ProbabilityDensityAnalysis.from_diffusion_analyzer(diffusion_analyzer=diff_analyzer, interval=0.5) dV = pda.structure.lattice.volume / pda.lens[0] / pda.lens[1] / pda.lens[2] Pr_tot = np.sum(pda.Pr) * dV self.assertAlmostEqual(pda.Pr.max(), 0.0361594977596, 8) self.assertAlmostEqual(pda.Pr.min(), 0.0, 12) self.assertAlmostEqual(Pr_tot, 1.0, 12) def test_generate_stable_sites(self): file = os.path.join(tests_dir, "cNa3PS4_pda.json") data = json.load(open(file)) diff_analyzer = DiffusionAnalyzer.from_dict(data) # ProbabilityDensityAnalysis object pda = ProbabilityDensityAnalysis.from_diffusion_analyzer(diffusion_analyzer=diff_analyzer, interval=0.1) pda.generate_stable_sites(p_ratio=0.25, d_cutoff=1.5) self.assertEqual(len(pda.stable_sites), 50) self.assertAlmostEqual(pda.stable_sites[1][2], 0.24113475177304966, 8) self.assertAlmostEqual(pda.stable_sites[7][1], 0.5193661971830985, 8) s = pda.get_full_structure() self.assertEqual(s.num_sites, 178) self.assertEqual(s.composition["Na"], 48) self.assertEqual(s.composition["X"], 50) self.assertAlmostEqual(s[177].frac_coords[2], 0.57446809) def test_to_chgcar(self): file = os.path.join(tests_dir, "cNa3PS4_pda.json") data = json.load(open(file)) diff_analyzer = DiffusionAnalyzer.from_dict(data) # ProbabilityDensityAnalysis object pda = ProbabilityDensityAnalysis.from_diffusion_analyzer(diffusion_analyzer=diff_analyzer, interval=0.1) pda.to_chgcar("CHGCAR.PDA") chgcar = Chgcar.from_file("CHGCAR.PDA") self.assertEqual(pda.structure.species, chgcar.structure.species) os.remove("CHGCAR.PDA") class SiteOccupancyTest(unittest.TestCase): def test_site_occupancy(self): traj_file = os.path.join(tests_dir, "cNa3PS4_trajectories.npy") struc_file = os.path.join(tests_dir, "cNa3PS4.cif") trajectories = np.load(traj_file) structure = Structure.from_file(struc_file, False) coords_ref = [ss.frac_coords for ss in structure if ss.specie.symbol == "Na"] # SiteOccupancyAnalyzer object socc = SiteOccupancyAnalyzer(structure, coords_ref, trajectories, species=("Li", "Na")) site_occ = socc.site_occ self.assertAlmostEqual(np.sum(site_occ), len(coords_ref), 12) self.assertAlmostEqual(site_occ[11], 0.98, 12) self.assertAlmostEqual(site_occ[15], 0.875, 12) self.assertEqual(len(coords_ref), 48) def test_site_occupancy_classmethod(self): file = os.path.join(tests_dir, "cNa3PS4_pda.json") data = json.load(open(file)) diff_analyzer = DiffusionAnalyzer.from_dict(data) structure = diff_analyzer.structure coords_ref = [ss.frac_coords for ss in structure if ss.specie.symbol == "Na"] # SiteOccupancyAnalyzer object socc = SiteOccupancyAnalyzer.from_diffusion_analyzer(coords_ref, diffusion_analyzer=diff_analyzer) site_occ = socc.site_occ self.assertAlmostEqual(np.sum(site_occ), len(coords_ref), 12) self.assertAlmostEqual(site_occ[1], 0.98, 12) self.assertAlmostEqual(site_occ[26], 0.97, 12) self.assertEqual(len(coords_ref), 48) if __name__ == "__main__": unittest.main() ``` #### File: diffusion/tests/test_analyzer.py ```python import csv import json import os import random import unittest import numpy as np import scipy.constants as const from pymatgen.core.lattice import Lattice from pymatgen.core.structure import Structure from pymatgen.util.testing import PymatgenTest from pymatgen.analysis.diffusion.analyzer import DiffusionAnalyzer, fit_arrhenius, get_conversion_factor module_dir = os.path.dirname(os.path.abspath(__file__)) class FuncTest(PymatgenTest): def test_get_conversion_factor(self): s = PymatgenTest.get_structure("LiFePO4") # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(41370704.343540139, get_conversion_factor(s, "Li", 600), delta=20) def test_fit_arrhenius(self): Ea = 0.5 k = const.k / const.e c = 12 temps = np.array([300, 1000, 500]) diffusivities = c * np.exp(-Ea / (k * temps)) diffusivities *= np.array([1.00601834013, 1.00803236262, 0.98609720824]) r = fit_arrhenius(temps, diffusivities) self.assertAlmostEqual(r[0], Ea) self.assertAlmostEqual(r[1], c) self.assertAlmostEqual(r[2], 0.000895566) # when not enough values for error estimate r2 = fit_arrhenius([1, 2], [10, 10]) self.assertAlmostEqual(r2[0], 0) self.assertAlmostEqual(r2[1], 10) self.assertEqual(r2[2], None) class DiffusionAnalyzerTest(PymatgenTest): def test_init(self): # Diffusion vasprun.xmls are rather large. We are only going to use a # very small preprocessed run for testing. Note that the results are # unreliable for short runs. with open(os.path.join(module_dir, "DiffusionAnalyzer.json")) as f: dd = json.load(f) d = DiffusionAnalyzer.from_dict(dd) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.chg_conductivity, 232.8278799754324, 4) self.assertAlmostEqual(d.diffusivity, 1.16083658794e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 3.64565578208e-06, 7) self.assertAlmostEqual(d.conductivity_std_dev, 0.0097244677795984488, 7) self.assertAlmostEqual(d.diffusivity_std_dev, 9.1013023085561779e-09, 7) self.assertAlmostEqual(d.chg_diffusivity_std_dev, 7.20911399729e-10, 5) self.assertAlmostEqual(d.haven_ratio, 0.31854161048867402, 7) self.assertArrayAlmostEqual(d.conductivity_components, [45.7903694, 26.1651956, 150.5406140], 3) self.assertArrayAlmostEqual( d.diffusivity_components, [7.49601236e-07, 4.90254273e-07, 2.24649255e-06], ) self.assertArrayAlmostEqual(d.conductivity_components_std_dev, [0.0063566, 0.0180854, 0.0217918]) self.assertArrayAlmostEqual( d.diffusivity_components_std_dev, [8.9465670e-09, 2.4931224e-08, 2.2636384e-08], ) self.assertArrayAlmostEqual(d.mscd[0:4], [0.69131064, 0.71794072, 0.74315283, 0.76703961]) self.assertArrayAlmostEqual( d.max_ion_displacements, [ 1.4620659693989553, 1.2787303484445025, 3.419618540097756, 2.340104469126246, 2.6080973517594233, 1.3928579365672844, 1.3561505956708932, 1.6699242923686253, 1.0352389639563648, 1.1662520093955808, 1.2322019205885841, 0.8094210554832534, 1.9917808504954169, 1.2684148391206396, 2.392633794162402, 2.566313049232671, 1.3175030435622759, 1.4628945430952793, 1.0984921286753002, 1.2864482076554093, 0.655567027815413, 0.5986961164605746, 0.5639091444309045, 0.6166004192954059, 0.5997911580422605, 0.4374606277579815, 1.1865683960470783, 0.9017064371676591, 0.6644840367853767, 1.0346375380664645, 0.6177630142863979, 0.7952002051914302, 0.7342686123054011, 0.7858047956905577, 0.5570732369065661, 1.0942937746885417, 0.6509372395308788, 1.0876687380413455, 0.7058162184725, 0.8298306317598585, 0.7813913747621343, 0.7337655232056153, 0.9057161616236746, 0.5979093093186919, 0.6830333586985015, 0.7926500894084628, 0.6765180009988608, 0.8555866032968998, 0.713087091642237, 0.7621007695790749, ], ) self.assertEqual(d.sq_disp_ions.shape, (50, 206)) self.assertEqual(d.lattices.shape, (1, 3, 3)) self.assertEqual(d.mscd.shape, (206,)) self.assertEqual(d.mscd.shape, d.msd.shape) self.assertAlmostEqual(d.max_framework_displacement, 1.18656839605) ss = list(d.get_drift_corrected_structures(10, 1000, 20)) self.assertEqual(len(ss), 50) n = random.randint(0, 49) n_orig = n * 20 + 10 self.assertArrayAlmostEqual( ss[n].cart_coords - d.structure.cart_coords + d.drift[:, n_orig, :], d.disp[:, n_orig, :], ) d = DiffusionAnalyzer.from_dict(d.as_dict()) self.assertIsInstance(d, DiffusionAnalyzer) # Ensure summary dict is json serializable. json.dumps(d.get_summary_dict(include_msd_t=True)) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="max", ) self.assertAlmostEqual(d.conductivity, 74.165372613735684, 4) self.assertAlmostEqual(d.diffusivity, 1.14606446822e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.318541610489, 6) self.assertAlmostEqual(d.chg_conductivity, 232.8278799754324, 4) self.assertAlmostEqual(d.chg_diffusivity, 3.64565578208e-06, 7) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed=False, ) self.assertAlmostEqual(d.conductivity, 27.20479170406027, 4) self.assertAlmostEqual(d.diffusivity, 4.25976905436e-07, 7) self.assertAlmostEqual(d.chg_diffusivity, 1.6666666666666667e-17, 3) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) self.assertAlmostEqual(d.chg_conductivity, 1.06440821953e-09, 4) # Can't average over 2000 steps because this is a 1000-step run. self.assertRaises( ValueError, DiffusionAnalyzer, d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=2000, ) d = DiffusionAnalyzer.from_structures( list(d.get_drift_corrected_structures()), d.specie, d.temperature, d.time_step, d.step_skip, smoothed=d.smoothed, avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 47.404056230438741, 4) self.assertAlmostEqual(d.diffusivity, 7.4226016496716148e-07, 7) d.export_msdt("test.csv") with open("test.csv") as f: data = [] for row in csv.reader(f): if row: data.append(row) data.pop(0) data = np.array(data, dtype=np.float64) self.assertArrayAlmostEqual(data[:, 1], d.msd) self.assertArrayAlmostEqual(data[:, -1], d.mscd) os.remove("test.csv") def test_init_npt(self): # Diffusion vasprun.xmls are rather large. We are only going to use a # very small preprocessed run for testing. Note that the results are # unreliable for short runs. with open(os.path.join(module_dir, "DiffusionAnalyzer_NPT.json")) as f: dd = json.load(f) d = DiffusionAnalyzer.from_dict(dd) # large tolerance because scipy constants changed between 0.16.1 and 0.17 self.assertAlmostEqual(d.conductivity, 499.1504129387108, 4) self.assertAlmostEqual(d.chg_conductivity, 1219.5959181678043, 4) self.assertAlmostEqual(d.diffusivity, 8.40265434771e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 2.05305709033e-05, 6) self.assertAlmostEqual(d.conductivity_std_dev, 0.10368477696021029, 7) self.assertAlmostEqual(d.diffusivity_std_dev, 9.1013023085561779e-09, 7) self.assertAlmostEqual(d.chg_diffusivity_std_dev, 1.20834853646e-08, 6) self.assertAlmostEqual(d.haven_ratio, 0.409275240679, 7) self.assertArrayAlmostEqual(d.conductivity_components, [455.178101, 602.252644, 440.0210014], 3) self.assertArrayAlmostEqual( d.diffusivity_components, [7.66242570e-06, 1.01382648e-05, 7.40727250e-06], ) self.assertArrayAlmostEqual(d.conductivity_components_std_dev, [0.1196577, 0.0973347, 0.1525400]) self.assertArrayAlmostEqual( d.diffusivity_components_std_dev, [2.0143072e-09, 1.6385239e-09, 2.5678445e-09], ) self.assertArrayAlmostEqual( d.max_ion_displacements, [ 1.13147881, 0.79899554, 1.04153733, 0.96061850, 0.83039864, 0.70246715, 0.61365911, 0.67965179, 1.91973907, 1.69127386, 1.60568746, 1.35587641, 1.03280378, 0.99202692, 2.03359655, 1.03760269, 1.40228350, 1.36315080, 1.27414979, 1.26742035, 0.88199589, 0.97700804, 1.11323184, 1.00139511, 2.94164403, 0.89438909, 1.41508334, 1.23660358, 0.39322939, 0.54264064, 1.25291806, 0.62869809, 0.40846708, 1.43415505, 0.88891241, 0.56259128, 0.81712740, 0.52700441, 0.51011733, 0.55557882, 0.49131002, 0.66740277, 0.57798671, 0.63521025, 0.50277142, 0.52878021, 0.67803443, 0.81161269, 0.46486345, 0.47132761, 0.74301293, 0.79285519, 0.48789600, 0.61776836, 0.60695847, 0.67767756, 0.70972268, 1.08232442, 0.87871177, 0.84674206, 0.45694693, 0.60417985, 0.61652272, 0.66444583, 0.52211986, 0.56544134, 0.43311443, 0.43027547, 1.10730439, 0.59829728, 0.52270635, 0.72327608, 1.02919775, 0.84423208, 0.61694764, 0.72795752, 0.72957755, 0.55491631, 0.68507454, 0.76745343, 0.96346584, 0.66672645, 1.06810107, 0.65705843, ], ) self.assertEqual(d.sq_disp_ions.shape, (84, 217)) self.assertEqual(d.lattices.shape, (1001, 3, 3)) self.assertEqual(d.mscd.shape, (217,)) self.assertEqual(d.mscd.shape, d.msd.shape) self.assertAlmostEqual(d.max_framework_displacement, 1.43415505156) ss = list(d.get_drift_corrected_structures(10, 1000, 20)) self.assertEqual(len(ss), 50) n = random.randint(0, 49) n_orig = n * 20 + 10 self.assertArrayAlmostEqual( ss[n].cart_coords - d.structure.cart_coords + d.drift[:, n_orig, :], d.disp[:, n_orig, :], ) d = DiffusionAnalyzer.from_dict(d.as_dict()) self.assertIsInstance(d, DiffusionAnalyzer) # Ensure summary dict is json serializable. json.dumps(d.get_summary_dict(include_msd_t=True)) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="max", ) self.assertAlmostEqual(d.conductivity, 499.1504129387108, 4) self.assertAlmostEqual(d.diffusivity, 8.40265434771e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.409275240679, 7) self.assertAlmostEqual(d.chg_diffusivity, 2.05305709033e-05, 7) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed=False, ) self.assertAlmostEqual(d.conductivity, 406.5964019770787, 4) self.assertAlmostEqual(d.diffusivity, 6.8446082e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 1.03585877962e-05, 6) self.assertAlmostEqual(d.haven_ratio, 0.6607665413, 6) d = DiffusionAnalyzer( d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 425.77884571149525, 4) self.assertAlmostEqual(d.diffusivity, 7.167523809142514e-06, 7) self.assertAlmostEqual(d.chg_diffusivity, 9.33480892187e-06, 6) self.assertAlmostEqual(d.haven_ratio, 0.767827586952, 6) self.assertAlmostEqual(d.chg_conductivity, 554.5240271992852, 6) # Can't average over 2000 steps because this is a 1000-step run. self.assertRaises( ValueError, DiffusionAnalyzer, d.structure, d.disp, d.specie, d.temperature, d.time_step, d.step_skip, smoothed="constant", avg_nsteps=2000, ) d = DiffusionAnalyzer.from_structures( list(d.get_drift_corrected_structures()), d.specie, d.temperature, d.time_step, d.step_skip, smoothed=d.smoothed, avg_nsteps=100, ) self.assertAlmostEqual(d.conductivity, 425.7788457114952, 4) self.assertAlmostEqual(d.diffusivity, 7.1675238091425148e-06, 7) self.assertAlmostEqual(d.haven_ratio, 0.767827586952, 7) self.assertAlmostEqual(d.chg_conductivity, 554.5240271992852, 6) d.export_msdt("test.csv") with open("test.csv") as f: data = [] for row in csv.reader(f): if row: data.append(row) data.pop(0) data = np.array(data, dtype=np.float64) self.assertArrayAlmostEqual(data[:, 1], d.msd) self.assertArrayAlmostEqual(data[:, -1], d.mscd) os.remove("test.csv") def test_from_structure_NPT(self): coords1 = np.array([[0.0, 0.0, 0.0], [0.5, 0.5, 0.5]]) coords2 = np.array([[0.0, 0.0, 0.0], [0.6, 0.6, 0.6]]) coords3 = np.array([[0.0, 0.0, 0.0], [0.7, 0.7, 0.7]]) lattice1 = Lattice.from_parameters(a=2.0, b=2.0, c=2.0, alpha=90, beta=90, gamma=90) lattice2 = Lattice.from_parameters(a=2.1, b=2.1, c=2.1, alpha=90, beta=90, gamma=90) lattice3 = Lattice.from_parameters(a=2.0, b=2.0, c=2.0, alpha=90, beta=90, gamma=90) s1 = Structure(coords=coords1, lattice=lattice1, species=["F", "Li"]) s2 = Structure(coords=coords2, lattice=lattice2, species=["F", "Li"]) s3 = Structure(coords=coords3, lattice=lattice3, species=["F", "Li"]) structures = [s1, s2, s3] d = DiffusionAnalyzer.from_structures( structures, specie="Li", temperature=500.0, time_step=2.0, step_skip=1, smoothed=None, ) self.assertArrayAlmostEqual( d.disp[1], np.array([[0.0, 0.0, 0.0], [0.21, 0.21, 0.21], [0.40, 0.40, 0.40]]), ) if __name__ == "__main__": unittest.main() ```
{ "source": "JiQi535/pymatgen", "score": 2 }
#### File: gb/tests/test_grain.py ```python __author__ = "<NAME>" __copyright__ = "Copyright 2018, The Materials Virtual Lab" __email__ = "<EMAIL>" __date__ = "07/30/18" import os import unittest import warnings import numpy as np from pymatgen import Structure from pymatgen.analysis.gb.grain import GrainBoundary, GrainBoundaryGenerator from pymatgen.util.testing import PymatgenTest test_dir = os.path.join( os.path.dirname(__file__), "..", "..", "..", "..", "test_files", "grain_boundary" ) class Test_GrainBoundary(PymatgenTest): @classmethod def setUpClass(cls): warnings.filterwarnings("ignore") cls.Cu_conv = Structure.from_file( os.path.join(test_dir, "Cu_mp-30_conventional_standard.cif") ) GB_Cu_conv = GrainBoundaryGenerator(cls.Cu_conv) cls.Cu_GB1 = GB_Cu_conv.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=4, vacuum_thickness=1.5, ab_shift=[0.0, 0.0], plane=[1, 3, 1], rm_ratio=0.0, ) cls.Cu_GB2 = GB_Cu_conv.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=4, vacuum_thickness=1.5, ab_shift=[0.2, 0.2], rm_ratio=0.0, ) @classmethod def tearDownClass(cls): warnings.simplefilter("default") def test_init(self): self.assertAlmostEqual(self.Cu_GB1.rotation_angle, 123.74898859588858) self.assertAlmostEqual(self.Cu_GB1.vacuum_thickness, 1.5) self.assertListEqual(self.Cu_GB2.rotation_axis, [1, 2, 3]) self.assertArrayAlmostEqual( np.array(self.Cu_GB1.ab_shift), np.array([0.0, 0.0]) ) self.assertArrayAlmostEqual( np.array(self.Cu_GB2.ab_shift), np.array([0.2, 0.2]) ) self.assertListEqual(self.Cu_GB1.gb_plane, [1, 3, 1]) self.assertListEqual(self.Cu_GB2.gb_plane, [1, 2, 3]) self.assertArrayAlmostEqual( np.array(self.Cu_GB1.init_cell.lattice.matrix), np.array(self.Cu_conv.lattice.matrix), ) def test_copy(self): Cu_GB1_copy = self.Cu_GB1.copy() self.assertAlmostEqual(Cu_GB1_copy.sigma, self.Cu_GB1.sigma) self.assertAlmostEqual(Cu_GB1_copy.rotation_angle, self.Cu_GB1.rotation_angle) self.assertListEqual(Cu_GB1_copy.rotation_axis, self.Cu_GB1.rotation_axis) self.assertListEqual(Cu_GB1_copy.gb_plane, self.Cu_GB1.gb_plane) self.assertArrayAlmostEqual( Cu_GB1_copy.init_cell.lattice.matrix, self.Cu_GB1.init_cell.lattice.matrix ) self.assertArrayAlmostEqual( Cu_GB1_copy.oriented_unit_cell.lattice.matrix, self.Cu_GB1.oriented_unit_cell.lattice.matrix, ) self.assertArrayAlmostEqual( Cu_GB1_copy.lattice.matrix, self.Cu_GB1.lattice.matrix ) def test_sigma(self): self.assertAlmostEqual(self.Cu_GB1.sigma, 9) self.assertAlmostEqual(self.Cu_GB2.sigma, 9) def test_top_grain(self): self.assertAlmostEqual( self.Cu_GB1.num_sites, self.Cu_GB1.top_grain.num_sites * 2 ) self.assertArrayAlmostEqual( self.Cu_GB1.lattice.matrix, self.Cu_GB1.top_grain.lattice.matrix ) def test_bottom_grain(self): self.assertAlmostEqual( self.Cu_GB1.num_sites, self.Cu_GB1.bottom_grain.num_sites * 2 ) self.assertArrayAlmostEqual( self.Cu_GB1.lattice.matrix, self.Cu_GB1.bottom_grain.lattice.matrix ) def test_coincidents(self): self.assertAlmostEqual( self.Cu_GB1.num_sites / self.Cu_GB1.sigma, len(self.Cu_GB1.coincidents) ) self.assertAlmostEqual( self.Cu_GB2.num_sites / self.Cu_GB2.sigma, len(self.Cu_GB2.coincidents) ) def test_as_dict_and_from_dict(self): d1 = self.Cu_GB1.as_dict() d2 = self.Cu_GB2.as_dict() Cu_GB1_new = GrainBoundary.from_dict(d1) Cu_GB2_new = GrainBoundary.from_dict(d2) self.assertAlmostEqual(Cu_GB1_new.sigma, self.Cu_GB1.sigma) self.assertAlmostEqual(Cu_GB1_new.rotation_angle, self.Cu_GB1.rotation_angle) self.assertListEqual(Cu_GB1_new.rotation_axis, self.Cu_GB1.rotation_axis) self.assertListEqual(Cu_GB1_new.gb_plane, self.Cu_GB1.gb_plane) self.assertArrayAlmostEqual( Cu_GB1_new.init_cell.lattice.matrix, self.Cu_GB1.init_cell.lattice.matrix ) self.assertArrayAlmostEqual( Cu_GB1_new.oriented_unit_cell.lattice.matrix, self.Cu_GB1.oriented_unit_cell.lattice.matrix, ) self.assertArrayAlmostEqual( Cu_GB1_new.lattice.matrix, self.Cu_GB1.lattice.matrix ) self.assertAlmostEqual(Cu_GB2_new.sigma, self.Cu_GB2.sigma) self.assertAlmostEqual(Cu_GB2_new.rotation_angle, self.Cu_GB2.rotation_angle) self.assertListEqual(Cu_GB2_new.rotation_axis, self.Cu_GB2.rotation_axis) self.assertListEqual(Cu_GB2_new.gb_plane, self.Cu_GB2.gb_plane) self.assertArrayAlmostEqual( Cu_GB2_new.init_cell.lattice.matrix, self.Cu_GB2.init_cell.lattice.matrix ) self.assertArrayAlmostEqual( Cu_GB2_new.oriented_unit_cell.lattice.matrix, self.Cu_GB2.oriented_unit_cell.lattice.matrix, ) self.assertArrayAlmostEqual( Cu_GB2_new.lattice.matrix, self.Cu_GB2.lattice.matrix ) class GrainBoundaryGeneratorTest(PymatgenTest): @classmethod def setUpClass(cls): warnings.filterwarnings("ignore") cls.Cu_prim = Structure.from_file( os.path.join(test_dir, "Cu_mp-30_primitive.cif") ) cls.GB_Cu_prim = GrainBoundaryGenerator(cls.Cu_prim) cls.Cu_conv = Structure.from_file( os.path.join(test_dir, "Cu_mp-30_conventional_standard.cif") ) cls.GB_Cu_conv = GrainBoundaryGenerator(cls.Cu_conv) cls.Be = Structure.from_file( os.path.join(test_dir, "Be_mp-87_conventional_standard.cif") ) cls.GB_Be = GrainBoundaryGenerator(cls.Be) cls.Pa = Structure.from_file( os.path.join(test_dir, "Pa_mp-62_conventional_standard.cif") ) cls.GB_Pa = GrainBoundaryGenerator(cls.Pa) cls.Br = Structure.from_file( os.path.join(test_dir, "Br_mp-23154_conventional_standard.cif") ) cls.GB_Br = GrainBoundaryGenerator(cls.Br) cls.Bi = Structure.from_file( os.path.join(test_dir, "Bi_mp-23152_primitive.cif") ) cls.GB_Bi = GrainBoundaryGenerator(cls.Bi) @classmethod def tearDownClass(cls): warnings.simplefilter("default") def test_gb_from_parameters(self): # from fcc primitive cell,axis[1,2,3],sigma 9. gb_cu_123_prim1 = self.GB_Cu_prim.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=2 ) lat_mat1 = gb_cu_123_prim1.lattice.matrix c_vec1 = np.cross(lat_mat1[0], lat_mat1[1]) / np.linalg.norm( np.cross(lat_mat1[0], lat_mat1[1]) ) c_len1 = np.dot(lat_mat1[2], c_vec1) vol_ratio = gb_cu_123_prim1.volume / self.Cu_prim.volume self.assertAlmostEqual(vol_ratio, 9 * 2 * 2, 8) # test expand_times and vacuum layer gb_cu_123_prim2 = self.GB_Cu_prim.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=4, vacuum_thickness=1.5 ) lat_mat2 = gb_cu_123_prim2.lattice.matrix c_vec2 = np.cross(lat_mat2[0], lat_mat2[1]) / np.linalg.norm( np.cross(lat_mat2[0], lat_mat2[1]) ) c_len2 = np.dot(lat_mat2[2], c_vec2) self.assertAlmostEqual((c_len2 - 1.5 * 2) / c_len1, 2) # test normal gb_cu_123_prim3 = self.GB_Cu_prim.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=2, normal=True ) lat_mat3 = gb_cu_123_prim3.lattice.matrix c_vec3 = np.cross(lat_mat3[0], lat_mat3[1]) / np.linalg.norm( np.cross(lat_mat3[0], lat_mat3[1]) ) ab_len3 = np.linalg.norm(np.cross(lat_mat3[2], c_vec3)) self.assertAlmostEqual(ab_len3, 0) # test normal in tilt boundary # The 'finfo(np.float32).eps' is the smallest representable positive number in float32, # which has been introduced because comparing to just zero or one failed the test by rounding errors. gb_cu_010_conv1 = self.GB_Cu_conv.gb_from_parameters( rotation_axis=[0, 1, 0], rotation_angle=36.8698976458, expand_times=1, vacuum_thickness=1.0, ab_shift=[0.0, 0.0], rm_ratio=0.0, plane=[0, 0, 1], normal=True, ) self.assertTrue( np.all(-np.finfo(np.float32).eps <= gb_cu_010_conv1.frac_coords) ) self.assertTrue( np.all(1 + np.finfo(np.float32).eps >= gb_cu_010_conv1.frac_coords) ) # from fcc conventional cell,axis [1,2,3], siamg 9 gb_cu_123_conv1 = self.GB_Cu_conv.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=4, vacuum_thickness=1.5 ) lat_mat1 = gb_cu_123_conv1.lattice.matrix self.assertAlmostEqual(np.dot(lat_mat1[0], [1, 2, 3]), 0) self.assertAlmostEqual(np.dot(lat_mat1[1], [1, 2, 3]), 0) # test plane gb_cu_123_conv2 = self.GB_Cu_conv.gb_from_parameters( [1, 2, 3], 123.74898859588858, expand_times=2, vacuum_thickness=1.5, normal=False, plane=[1, 3, 1], ) lat_mat2 = gb_cu_123_conv2.lattice.matrix self.assertAlmostEqual(np.dot(lat_mat2[0], [1, 3, 1]), 0) self.assertAlmostEqual(np.dot(lat_mat2[1], [1, 3, 1]), 0) # from hex cell,axis [1,1,1], sigma 21 gb_Be_111_1 = self.GB_Be.gb_from_parameters( [1, 1, 1], 147.36310249644626, ratio=[5, 2], expand_times=4, vacuum_thickness=1.5, plane=[1, 2, 1], ) lat_priv = self.Be.lattice.matrix lat_mat1 = np.matmul(gb_Be_111_1.lattice.matrix, np.linalg.inv(lat_priv)) self.assertAlmostEqual(np.dot(lat_mat1[0], [1, 2, 1]), 0) self.assertAlmostEqual(np.dot(lat_mat1[1], [1, 2, 1]), 0) # test volume associated with sigma value gb_Be_111_2 = self.GB_Be.gb_from_parameters( [1, 1, 1], 147.36310249644626, ratio=[5, 2], expand_times=4 ) vol_ratio = gb_Be_111_2.volume / self.Be.volume self.assertAlmostEqual(vol_ratio, 19 * 2 * 4) # test ratio = None, axis [0,0,1], sigma 7 gb_Be_111_3 = self.GB_Be.gb_from_parameters( [0, 0, 1], 21.786789298261812, ratio=[5, 2], expand_times=4 ) gb_Be_111_4 = self.GB_Be.gb_from_parameters( [0, 0, 1], 21.786789298261812, ratio=None, expand_times=4 ) self.assertTupleEqual(gb_Be_111_3.lattice.abc, gb_Be_111_4.lattice.abc) self.assertTupleEqual(gb_Be_111_3.lattice.angles, gb_Be_111_4.lattice.angles) gb_Be_111_5 = self.GB_Be.gb_from_parameters( [3, 1, 0], 180.0, ratio=[5, 2], expand_times=4 ) gb_Be_111_6 = self.GB_Be.gb_from_parameters( [3, 1, 0], 180.0, ratio=None, expand_times=4 ) self.assertTupleEqual(gb_Be_111_5.lattice.abc, gb_Be_111_6.lattice.abc) self.assertTupleEqual(gb_Be_111_5.lattice.angles, gb_Be_111_6.lattice.angles) # gb from tetragonal cell, axis[1,1,1], sigma 15 gb_Pa_111_1 = self.GB_Pa.gb_from_parameters( [1, 1, 1], 151.92751306414706, ratio=[2, 3], expand_times=4, max_search=10 ) vol_ratio = gb_Pa_111_1.volume / self.Pa.volume self.assertAlmostEqual(vol_ratio, 17 * 2 * 4) # gb from orthorhombic cell, axis[1,1,1], sigma 83 gb_Br_111_1 = self.GB_Br.gb_from_parameters( [1, 1, 1], 131.5023374652235, ratio=[21, 20, 5], expand_times=4, max_search=10, ) vol_ratio = gb_Br_111_1.volume / self.Br.volume self.assertAlmostEqual(vol_ratio, 83 * 2 * 4) # gb from rhombohedra cell, axis[1,2,0], sigma 63 gb_Bi_120_1 = self.GB_Bi.gb_from_parameters( [1, 2, 0], 63.310675060280246, ratio=[19, 5], expand_times=4, max_search=5 ) vol_ratio = gb_Bi_120_1.volume / self.Bi.volume self.assertAlmostEqual(vol_ratio, 59 * 2 * 4) def test_get_ratio(self): # hexagnal Be_ratio = self.GB_Be.get_ratio(max_denominator=2) self.assertListEqual(Be_ratio, [5, 2]) Be_ratio = self.GB_Be.get_ratio(max_denominator=5) self.assertListEqual(Be_ratio, [12, 5]) # tetragonal Pa_ratio = self.GB_Pa.get_ratio(max_denominator=5) self.assertListEqual(Pa_ratio, [2, 3]) # orthorombic Br_ratio = self.GB_Br.get_ratio(max_denominator=5) self.assertListEqual(Br_ratio, [21, 20, 5]) # orthorombic Bi_ratio = self.GB_Bi.get_ratio(max_denominator=5) self.assertListEqual(Bi_ratio, [19, 5]) def test_enum_sigma_cubic(self): true_100 = [5, 13, 17, 25, 29, 37, 41] true_110 = [3, 9, 11, 17, 19, 27, 33, 41, 43] true_111 = [3, 7, 13, 19, 21, 31, 37, 39, 43, 49] sigma_100 = list(GrainBoundaryGenerator.enum_sigma_cubic(50, [1, 0, 0]).keys()) sigma_110 = list(GrainBoundaryGenerator.enum_sigma_cubic(50, [1, 1, 0]).keys()) sigma_111 = list(GrainBoundaryGenerator.enum_sigma_cubic(50, [1, 1, 1]).keys()) sigma_222 = list(GrainBoundaryGenerator.enum_sigma_cubic(50, [2, 2, 2]).keys()) sigma_888 = list(GrainBoundaryGenerator.enum_sigma_cubic(50, [8, 8, 8]).keys()) self.assertListEqual(sorted(true_100), sorted(sigma_100)) self.assertListEqual(sorted(true_110), sorted(sigma_110)) self.assertListEqual(sorted(true_111), sorted(sigma_111)) self.assertListEqual(sorted(true_111), sorted(sigma_222)) self.assertListEqual(sorted(true_111), sorted(sigma_888)) def test_enum_sigma_hex(self): true_100 = [17, 18, 22, 27, 38, 41] true_001 = [7, 13, 19, 31, 37, 43, 49] true_210 = [10, 11, 14, 25, 35, 49] sigma_100 = list( GrainBoundaryGenerator.enum_sigma_hex(50, [1, 0, 0], [8, 3]).keys() ) sigma_001 = list( GrainBoundaryGenerator.enum_sigma_hex(50, [0, 0, 1], [8, 3]).keys() ) sigma_210 = list( GrainBoundaryGenerator.enum_sigma_hex(50, [2, 1, 0], [8, 3]).keys() ) sigma_420 = list( GrainBoundaryGenerator.enum_sigma_hex(50, [4, 2, 0], [8, 3]).keys() ) sigma_840 = list( GrainBoundaryGenerator.enum_sigma_hex(50, [8, 4, 0], [8, 3]).keys() ) self.assertListEqual(sorted(true_100), sorted(sigma_100)) self.assertListEqual(sorted(true_001), sorted(sigma_001)) self.assertListEqual(sorted(true_210), sorted(sigma_210)) self.assertListEqual(sorted(true_210), sorted(sigma_420)) self.assertListEqual(sorted(true_210), sorted(sigma_840)) def test_enum_sigma_tet(self): true_100 = [5, 37, 41, 13, 3, 15, 39, 25, 17, 29] true_331 = [9, 3, 21, 39, 7, 31, 43, 13, 19, 37, 49] sigma_100 = list( GrainBoundaryGenerator.enum_sigma_tet(50, [1, 0, 0], [9, 1]).keys() ) sigma_331 = list( GrainBoundaryGenerator.enum_sigma_tet(50, [3, 3, 1], [9, 1]).keys() ) self.assertListEqual(sorted(true_100), sorted(sigma_100)) self.assertListEqual(sorted(true_331), sorted(sigma_331)) def test_enum_sigma_ort(self): true_100 = [41, 37, 39, 5, 15, 17, 13, 3, 25, 29] sigma_100 = list( GrainBoundaryGenerator.enum_sigma_ort(50, [1, 0, 0], [270, 30, 29]).keys() ) self.assertListEqual(sorted(true_100), sorted(sigma_100)) def test_enum_sigma_rho(self): true_100 = [7, 11, 43, 13, 41, 19, 47, 31] sigma_100 = list( GrainBoundaryGenerator.enum_sigma_rho(50, [1, 0, 0], [15, 4]).keys() ) self.assertListEqual(sorted(true_100), sorted(sigma_100)) def test_enum_possible_plane_cubic(self): all_plane = GrainBoundaryGenerator.enum_possible_plane_cubic(4, [1, 1, 1], 60) self.assertEqual(len(all_plane["Twist"]), 1) self.assertEqual(len(all_plane["Symmetric tilt"]), 6) self.assertEqual(len(all_plane["Normal tilt"]), 12) def test_get_trans_mat(self): mat1, mat2 = GrainBoundaryGenerator.get_trans_mat( [1, 1, 1], 95.55344419565849, lat_type="o", ratio=[10, 20, 21], surface=[21, 20, 10], normal=True, ) self.assertAlmostEqual(np.dot(mat1[0], [21, 20, 10]), 0) self.assertAlmostEqual(np.dot(mat1[1], [21, 20, 10]), 0) self.assertAlmostEqual(np.linalg.det(mat1), np.linalg.det(mat2)) ab_len1 = np.linalg.norm(np.cross(mat1[2], [1, 1, 1])) self.assertAlmostEqual(ab_len1, 0) def test_get_rotation_angle_from_sigma(self): true_angle = [12.680383491819821, 167.3196165081802] angle = GrainBoundaryGenerator.get_rotation_angle_from_sigma( 41, [1, 0, 0], lat_type="o", ratio=[270, 30, 29] ) self.assertArrayAlmostEqual(true_angle, angle) close_angle = [36.86989764584403, 143.13010235415598] angle = GrainBoundaryGenerator.get_rotation_angle_from_sigma( 6, [1, 0, 0], lat_type="o", ratio=[270, 30, 29] ) self.assertArrayAlmostEqual(close_angle, angle) if __name__ == "__main__": unittest.main() ``` #### File: ext/tests/test_jhu.py ```python import os import unittest from pymatgen.ext.jhu import get_kpoints from pymatgen.io.vasp.inputs import Incar from pymatgen.io.vasp.sets import MPRelaxSet from pymatgen.util.testing import PymatgenTest __author__ = "<NAME>" __copyright__ = "Copyright 2017, The Materials Project" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "June 22, 2017" test_dir = os.path.join(os.path.dirname(__file__), "..", "..", "..", "test_files") class JhuTest(PymatgenTest): _multiprocess_shared_ = True def test_get_kpoints(self): si = PymatgenTest.get_structure("Si") input_set = MPRelaxSet(si) kpoints = get_kpoints(si, incar=input_set.incar) if __name__ == "__main__": unittest.main() ```
{ "source": "jiqialin/comet.fms", "score": 2 }
#### File: comet/util/runAndUpload.py ```python import os import requests from httprunner.api import HttpRunner from comet.util.parserIni import getConfigValue from comet.util.DataCombing import dataManipulation class RunCaseAndUpload(object): def __init__(self, **kwargs): self.runner = HttpRunner() self.summary = self._runTestCase() self.section = kwargs.get('section') self.build_id = kwargs.get('buildId') # noinspection SpellCheckingInspection def _runTestCase(self, dot_env_path=None, maping=None): """ Run the test case in the specified directory based on the parameters. :param dot_env_path: Empty runs the default environment, otherwise the corresponding environment :param maping: ignore :return: test case result. """ path = getConfigValue(self.section, 'autoTest.casePath') if not path: print("test path nonentity or not find files 'properties.ini'") raise FileNotFoundError elif os.getenv("TEST_ENV") == 'txy': self.runner.run(path, dot_env_path=dot_env_path, mapping=maping) return self.runner.summary elif os.getenv("TEST_ENV") == 'docker': self.runner.run(path, dot_env_path='doc.env', mapping=maping) return self.runner.summary def uploadDataToStargazing(self): """ Processing is completed the processing of the results will be uploaded to stargazing platform. :return: """ headers = {'Content-Type': 'application/json'} url = getConfigValue('stargazing', 'total') data = dataManipulation(self.summary, self.section, buildId=self.build_id) # noinspection PyBroadException try: response = requests.post(url, json=data, headers=headers) print("upload success: {}".format(response.json() if response.status_code == 200 else "upload failed:", response.content)) except Exception as e: print(f'Upload Exception:{e}') ``` #### File: jiqialin/comet.fms/setup.py ```python import os, sys from shutil import rmtree from setuptools import setup, find_packages, Command APP_NAME = 'comet' VERSION = '0.1.2' DESCRIPTION = """ Used to integrate the httpRunner framework, join up CI/CD to the platform, and upload the results to the platform """ PROJECTS = 'https://github.com/jiqialin/comet.fms' HERE = os.path.abspath(os.path.dirname(__file__)) __version__ = None about = dict() if not VERSION: with open(os.path.join(HERE, APP_NAME, 'models\__version__.py'), 'rb') as f: exec(f.read(), about) else: about['__version__'] = VERSION # Get the long description from the README file with open(os.path.join(HERE, "README.md"), encoding="utf-8") as f: long_description = f.read() class UploadCommand(Command): """Support setup.py upload.""" ... def run(self): try: self.status('Removing previous builds…') rmtree(os.path.join(HERE, 'dist')) except OSError: pass self.status('Building Source and Wheel (universal) distribution…') os.system('{0} setup.py sdist bdist_wheel --universal'.format(sys.executable)) self.status('Uploading the package to PyPI via Twine…') os.system('twine upload dist/*') self.status('Pushing git tags…') os.system('git tag v{0}'.format(about['__version__'])) os.system('git push --tags') sys.exit() setup( name='comet.fms', version=VERSION, description=DESCRIPTION, long_description=f'Just Enjoy:{long_description}', classifiers=[ # Get strings from http://pypi.python.org/pypi?%3Aaction=list_classifiers "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: Apache Software License", # supported python versions "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries", ], keywords='python httpRunner jenkins comet.fms terminal CI/CD', author='Angst', author_email='<EMAIL>', url=PROJECTS, license='Apache-2.0', packages=find_packages(), include_package_data=True, zip_safe=True, install_requires=[ 'requests', 'httprunner', 'pymysql', 'requests-toolbelt' ], entry_points={ 'console_scripts': [ 'comet.fms = comet.comet:MainRun' ] }, ) print("\nWelcome to Comet!") print("If you have any questions, please visit our documentation page: {}\n".format(PROJECTS)) ```
{ "source": "JiqianDong/BDD-100-CV", "score": 2 }
#### File: JiqianDong/BDD-100-CV/decision_generator_model.py ```python from imports import * class MHSA(nn.Module): def __init__(self, emb_dim, kqv_dim, num_heads=1): super(MHSA, self).__init__() self.emb_dim = emb_dim self.kqv_dim = kqv_dim self.num_heads = num_heads self.w_k = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_q = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_v = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_out = nn.Linear(kqv_dim * num_heads, emb_dim) def forward(self, x): b, t, _ = x.shape e = self.kqv_dim h = self.num_heads keys = self.w_k(x).view(b, t, h, e) values = self.w_v(x).view(b, t, h, e) queries = self.w_q(x).view(b, t, h, e) keys = keys.transpose(2, 1) queries = queries.transpose(2, 1) values = values.transpose(2, 1) dot = queries @ keys.transpose(3, 2) dot = dot / np.sqrt(e) dot = nn.functional.softmax(dot, dim=3) out = dot @ values out = out.transpose(1,2).contiguous().view(b, t, h * e) out = self.w_out(out) return out class MHSA2(nn.Module): def __init__(self, emb_dim, kqv_dim, output_dim=10, num_heads=8): super(MHSA2, self).__init__() self.emb_dim = emb_dim self.kqv_dim = kqv_dim self.num_heads = num_heads self.w_k = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_q = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_v = nn.Linear(emb_dim, kqv_dim * num_heads, bias=False) self.w_out = nn.Linear(kqv_dim * num_heads, output_dim) def forward(self, x): b, t, _ = x.shape e = self.kqv_dim h = self.num_heads keys = self.w_k(x).view(b, t, h, e) values = self.w_v(x).view(b, t, h, e) queries = self.w_q(x).view(b, t, h, e) keys = keys.transpose(2, 1) queries = queries.transpose(2, 1) values = values.transpose(2, 1) dot = queries @ keys.transpose(3, 2) dot = dot / np.sqrt(e) dot = nn.functional.softmax(dot, dim=3) out = dot @ values out = out.transpose(1,2).contiguous().view(b, t, h * e) out = self.w_out(out) return out class DecisionGenerator(nn.Module): def __init__(self,faster_rcnn_model,device,batch_size,select_k=1,action_num=4,explanation_num=21,freeze_rcnn=True): super().__init__() self.rcnn = faster_rcnn_model self.batch_size = batch_size if freeze_rcnn: for param in self.rcnn.parameters(): param.requires_grad = False self.rcnn.eval() self.object_attention = MHSA(1024, kqv_dim=10, num_heads=5) self.roi_pooling_conv = nn.Conv1d(in_channels=1000,out_channels=select_k,kernel_size=1) self.action_branch = nn.Sequential( nn.Linear(select_k*1024, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, action_num)) self.explanation_branch = nn.Sequential( nn.Linear(select_k*1024, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, explanation_num)) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): if self.training: assert targets is not None target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) with torch.no_grad(): self.rcnn.eval() batch_size = len(images) images,_ = self.rcnn.transform(images) features = self.rcnn.backbone(images.tensors) proposals, _ = self.rcnn.rpn(images, features) box_features = self.rcnn.roi_heads.box_roi_pool(features,proposals,images.image_sizes) box_features = self.rcnn.roi_heads.box_head(box_features).view(batch_size, -1, 1024) #(B, num_proposal, 1024) box_features = self.object_attention(box_features) #(B, num_proposal, 1024) # feature_polled,_ = torch.max(box_features,1) feature_polled = self.roi_pooling_conv(box_features) # print(feature_polled.shape) feature_polled = torch.flatten(feature_polled,start_dim=1) # print(feature_polled.shape) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} class DecisionGenerator_v1(nn.Module): def __init__(self,faster_rcnn_model,device,batch_size,action_num=4,explanation_num=21,freeze_rcnn=True): super().__init__() self.rcnn = faster_rcnn_model self.batch_size = batch_size if freeze_rcnn: for param in self.rcnn.parameters(): param.requires_grad = False self.rcnn.eval() self.object_attention = MHSA(1024, kqv_dim=10, num_heads=5) self.action_branch = nn.Linear(1024,action_num) self.explanation_branch = nn.Linear(1024, explanation_num) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): if self.training: target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) with torch.no_grad(): self.rcnn.eval() batch_size = len(images) images,_ = self.rcnn.transform(images) features = self.rcnn.backbone(images.tensors) proposals, _ = self.rcnn.rpn(images, features) box_features = self.rcnn.roi_heads.box_roi_pool(features,proposals,images.image_sizes) box_features = self.rcnn.roi_heads.box_head(box_features).view(batch_size, -1, 1024) #(B, num_proposal, 1024) box_features = self.object_attention(box_features) #(B, num_proposal, 1024) feature_polled,_ = torch.max(box_features,1) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} class DecisionGenerator_v3(nn.Module): # hard attention def __init__(self,faster_rcnn_model,device,batch_size,select_k=5s,action_num=4,explanation_num=21,freeze_rcnn=True): super().__init__() self.rcnn = faster_rcnn_model self.batch_size = batch_size self.select_k = select_k if freeze_rcnn: for param in self.rcnn.parameters(): param.requires_grad = False self.rcnn.eval() self.attention_score = nn.Sequential(nn.Linear(1024,512), nn.ReLU(), nn.Linear(512,1), nn.Softmax(dim=1)) self.roi_pooling_conv = nn.Conv1d(in_channels=1000,out_channels=select_k,kernel_size=1) self.action_branch = nn.Sequential( nn.Linear(select_k*1024, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, action_num)) self.explanation_branch = nn.Sequential( nn.Linear(select_k*1024, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, explanation_num)) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): if self.training: assert targets is not None target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) with torch.no_grad(): self.rcnn.eval() batch_size = len(images) images,_ = self.rcnn.transform(images) features = self.rcnn.backbone(images.tensors) proposals, _ = self.rcnn.rpn(images, features) box_features = self.rcnn.roi_heads.box_roi_pool(features,proposals,images.image_sizes) box_features = self.rcnn.roi_heads.box_head(box_features).view(batch_size, -1, 1024) #(B, num_proposal, 1024) score = self.attention_score(box_features) #(B, num_proposal, 1024) _,ind = torch.topk(score,k=self.select_k,dim=1) ### cnn for dimensional reduction # box_features = box_features * score # feature_polled = self.roi_pooling_conv(box_features) feature_polled = torch.gather(box_features,1,ind.expand(ind.size(0),ind.size(1),box_features.size(2))) #select_top_k feature_polled = torch.flatten(feature_polled,start_dim=1) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} class DecisionGenerator_v4(nn.Module): def __init__(self,faster_rcnn_model,device,batch_size,select_k=2,action_num=4,explanation_num=21,freeze_rcnn=True): super().__init__() self.rcnn = faster_rcnn_model self.batch_size = batch_size if freeze_rcnn: for param in self.rcnn.parameters(): param.requires_grad = False self.rcnn.eval() self.object_attention = MHSA2(1024, kqv_dim=10, num_heads=8, output_dim=10) self.action_branch = nn.Sequential( nn.Linear(10000, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, action_num)) self.explanation_branch = nn.Sequential( nn.Linear(10000, 1024), nn.ReLU(), # nn.Dropout(), nn.Linear(1024, explanation_num)) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): if self.training: assert targets is not None target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) with torch.no_grad(): self.rcnn.eval() batch_size = len(images) images,_ = self.rcnn.transform(images) features = self.rcnn.backbone(images.tensors) proposals, _ = self.rcnn.rpn(images, features) box_features = self.rcnn.roi_heads.box_roi_pool(features,proposals,images.image_sizes) box_features = self.rcnn.roi_heads.box_head(box_features).view(batch_size, -1, 1024) #(B, num_proposal, 1024) box_features = self.object_attention(box_features) #(B, num_proposal, 10) # feature_polled,_ = torch.max(box_features,1) # print(feature_polled.shape) feature_polled = torch.flatten(box_features,start_dim=1) # print(feature_polled.shape) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} class DecisionGenerator_whole_attention(nn.Module): def __init__(self, encoder, encoder_dims, device, num_heads=8, \ attention_out_dim=10, action_num=4, explanation_num=21): super().__init__() """ encoder_dims = (F,H,W) F:Feature shape (1280 for mobile net, 2048 for resnet) H,W = image feature height, width """ self.encoder = encoder assert len(encoder_dims) == 3, "encoder_dims has to be a triplet with shape (F,H,W)" F,H,W = encoder_dims self.MHSA = MHSA2(emb_dim=F,kqv_dim=10,output_dim=attention_out_dim,num_heads=num_heads) T = H*W self.action_branch = nn.Sequential( nn.Linear(attention_out_dim*T,64), nn.ReLU(), # nn.Dropout(), nn.Linear(64,action_num)) self.explanation_branch = nn.Sequential( nn.Linear(attention_out_dim*T,64), nn.ReLU(), # nn.Dropout(), nn.Linear(64, explanation_num)) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): images = torch.stack(images) if self.training: assert targets is not None target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) # print(images.shape) features = self.encoder(images) # # print(features.shape) B,F,H,W = features.shape # print(features.view(B,F,H*W).transpose(1,2).shape) transformed_feature = self.MHSA(features.view(B,F,H*W).transpose(1,2)) #(B, H, T, 10) # print(transformed_feature.shape) feature_polled = torch.flatten(transformed_feature,start_dim=1) # print(feature_polled.shape) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} class DecisionGenerator_no_attention(nn.Module): def __init__(self, encoder, encoder_dims, device, action_num=4, explanation_num=21): super().__init__() """ encoder_dims = (F,H,W) F:Feature shape (1280 for mobile net, 2048 for resnet) H,W = image feature height, width """ self.encoder = encoder assert len(encoder_dims) == 3, "encoder_dims has to be a triplet with shape (F,H,W)" F,H,W = encoder_dims in_dim = H*W*F self.action_branch = nn.Sequential( nn.Linear(in_dim,12), nn.ReLU(), # nn.Dropout(), nn.Linear(12,action_num)) self.explanation_branch = nn.Sequential( nn.Linear(in_dim,12), nn.ReLU(), # nn.Dropout(), nn.Linear(12, explanation_num)) self.action_loss_fn, self.reason_loss_fn = self.loss_fn(device) def loss_fn(self,device): class_weights = [1, 1, 2, 2] w = torch.FloatTensor(class_weights).to(device) action_loss = nn.BCEWithLogitsLoss(pos_weight=w).to(device) explanation_loss = nn.BCEWithLogitsLoss().to(device) return action_loss,explanation_loss def forward(self,images,targets=None): images = torch.stack(images) if self.training: assert targets is not None target_reasons = torch.stack([t['reason'] for t in targets]) target_actions = torch.stack([t['action'] for t in targets]) # print(images.shape) features = self.encoder(images) # # print(features.shape) B,F,H,W = features.shape # print(features.view(B,F,H*W).transpose(1,2).shape) # print(transformed_feature.shape) feature_polled = torch.flatten(features,start_dim=1) # print(feature_polled.shape) # print(feature_polled.shape) actions = self.action_branch(feature_polled) reasons = self.explanation_branch(feature_polled) if self.training: action_loss = self.action_loss_fn(actions, target_actions) reason_loss = self.reason_loss_fn(reasons, target_reasons) loss_dic = {"action_loss":action_loss, "reason_loss":reason_loss} return loss_dic else: return {"action":torch.sigmoid(actions),"reasons":torch.sigmoid(reasons)} ``` #### File: JiqianDong/BDD-100-CV/evaluation_baseline.py ```python import pickle import time from cfg import * from coco_eval import CocoEvaluator from coco_utils import get_coco_api_from_dataset from datasets.bdd import * from datasets.idd import * from imports import * device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") print("Loading files") if ds in ["idd_non_hq", "idd_hq"]: print("Evaluation on India Driving dataset") with open("datalists/idd_images_path_list.txt", "rb") as fp: idd_image_path_list = pickle.load(fp) with open("datalists/idd_anno_path_list.txt", "rb") as fp: idd_anno_path_list = pickle.load(fp) val_img_paths = [] with open(idd_path + "val.txt") as f: val_img_paths = f.readlines() for i in range(len(val_img_paths)): val_img_paths[i] = val_img_paths[i].strip("\n") val_img_paths[i] = val_img_paths[i] + ".jpg" val_img_paths[i] = os.path.join(idd_path + "JPEGImages", val_img_paths[i]) val_anno_paths = [] for i in range(len(val_img_paths)): val_anno_paths.append(val_img_paths[i].replace("JPEGImages", "Annotations")) val_anno_paths[i] = val_anno_paths[i].replace(".jpg", ".xml") val_img_paths, val_anno_paths = sorted(val_img_paths), sorted(val_anno_paths) assert len(val_img_paths) == len(val_anno_paths) val_img_paths = val_img_paths[:10] val_anno_paths = val_anno_paths[:10] val_dataset = IDD(val_img_paths, val_anno_paths, None) val_dl = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=True, num_workers=4, collate_fn=utils.collate_fn, ) if ds == "bdd100k": print("Evaluation on Berkeley Deep Drive") root_img_path = os.path.join(bdd_path,"bdd100k", "images", "100k") root_anno_path = os.path.join(bdd_path, "bdd100k", "labels") val_img_path = root_img_path + "/val/" val_anno_json_path = root_anno_path + "/bdd100k_labels_images_val.json" with open("datalists/bdd100k_val_images_path.txt", "rb") as fp: bdd_img_path_list = pickle.load(fp) # bdd_img_path_list = bdd_img_path_list[:10] val_dataset = BDD(bdd_img_path_list, val_anno_json_path) val_dl = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=True, num_workers=0, collate_fn=utils.collate_fn, pin_memory=True, ) if ds == "Cityscapes": with open("datalists/cityscapes_val_images_path.txt", "rb") as fp: images = pickle.load(fp) with open("datalists/cityscapes_val_targets_path.txt", "rb") as fp: targets = pickle.load(fp) val_dataset = Cityscapes(images, targets) val_dl = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=True, num_workers=4, collate_fn=utils.collate_fn, ) ###################################################################################################3 def get_model(num_classes): model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=False) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor( in_features, num_classes ) # replace the pre-trained head with a new one return model.cuda() model = get_model(12) model.to(device) params = [p for p in model.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1) checkpoint = torch.load("saved_models/" + 'download.pth') model.load_state_dict(checkpoint["model"]) print("Model Loaded successfully") print("##### Dataloader is ready #######") print("Getting coco api from dataset") coco = get_coco_api_from_dataset(val_dl.dataset) print("Done") print("Evaluation in progress") evaluate(model, val_dl, device=device) ``` #### File: JiqianDong/BDD-100-CV/train_decision_generator.py ```python from imports import * from datasets.bdd_oia import BDD_OIA from decision_generator_model import * def get_encoder(model_name): if model_name == 'mobile_net': md = torchvision.models.mobilenet_v2(pretrained=True) encoder = nn.Sequential(*list(md.children())[:-1]) elif model_name == 'resnet': md = torchvision.models.resnet50(pretrained=True) encoder = nn.Sequential(*list(md.children())[:-2]) return encoder def get_model(num_classes,image_mean=None,image_std=None): # model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True, # image_mean=image_mean, # image_std=image_std) model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True) in_features = model.roi_heads.box_predictor.cls_score.in_features model.roi_heads.box_predictor = torchvision.models.detection.faster_rcnn.FastRCNNPredictor(in_features,num_classes) return model def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def train_one_epoch2(model, optimizer, data_loader, device, epoch, print_freq): global num_iters model.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) header = "Epoch: [{}]".format(epoch) for images, targets in metric_logger.log_every(data_loader, print_freq, header): if len(images)!=len(targets): continue images = list(image.to(device) for image in images) targets = [{k: v.to(device) for k, v in t.items()} for t in targets] loss_dict = model(images, targets) num_iters += 1 losses = sum(loss for loss in loss_dict.values()) # reduce losses over all GPUs for logging purposes loss_dict_reduced = utils.reduce_dict(loss_dict) losses_reduced = sum(loss for loss in loss_dict_reduced.values()) loss_value = losses_reduced.item() writer.add_scalar("Loss/train", loss_value, num_iters) writer.add_scalar("Learning rate", optimizer.param_groups[0]["lr"], num_iters) if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_dict_reduced) sys.exit(1) optimizer.zero_grad() losses.backward() optimizer.step() metric_logger.update(loss=losses_reduced, **loss_dict_reduced) metric_logger.update(lr=optimizer.param_groups[0]["lr"]) return loss_value def get_loader(version): ## Data loader image_dir = './data/bdd_oia/lastframe/data/' label_dir = './data/bdd_oia/lastframe/labels/' if version == "whole_attention" or "no_attention": bdd_oia_dataset = BDD_OIA(image_dir,label_dir+'train_25k_images_actions.json', label_dir+'train_25k_images_reasons.json', image_min_size=180) else: bdd_oia_dataset = BDD_OIA(image_dir,label_dir+'train_25k_images_actions.json', label_dir+'train_25k_images_reasons.json') training_loader = DataLoader(bdd_oia_dataset, shuffle=True, batch_size=batch_size, num_workers=0, drop_last=True, collate_fn=utils.collate_fn) return training_loader if __name__ == "__main__": # model_name = "whole_attention_v1_" # version = "whole_attention" # encoder_name = "mobile_net" # encoder_dims=(1280,6,10) ########################################################################## # model_name = "whole_attention_resnet_" # version = "whole_attention" # encoder_name = "resnet" # encoder_dims=(2048,6,10) ########################################################################## model_name = "no_attention_resnet_" version = "no_attention" encoder_name = "resnet" encoder_dims = (2048,6,10) ########################################################################## # model_name = 'v4_mhsa_test' # version = 'v4' # sel_k = 10 ########################################################################## device = torch.device("cuda:0") batch_size = 10 training_loader = get_loader(version) num_iters = 0 if version == 'whole_attention': encoder = get_encoder(encoder_name) decision_generator = DecisionGenerator_whole_attention(encoder, encoder_dims=encoder_dims, device=device) writer = SummaryWriter('./runs/whole_attention/'+model_name+'/') elif version == "no_attention": encoder = get_encoder(encoder_name) decision_generator = DecisionGenerator_no_attention(encoder, encoder_dims=encoder_dims, device=device) writer = SummaryWriter('./runs/whole_attention/'+model_name+'/') else: fastercnn = get_model(10) checkpoint = torch.load('saved_models/bdd100k_24.pth') fastercnn.load_state_dict(checkpoint['model']) writer = SummaryWriter('./runs/'+model_name+'/') if version == 'v3': decision_generator = DecisionGenerator_v3(fastercnn,device,batch_size, select_k=sel_k) elif version == 'v1': decision_generator = DecisionGenerator_v1(fastercnn,device, batch_size) elif version == 'v4': decision_generator = DecisionGenerator_v4(fastercnn,device, batch_size) else: decision_generator = DecisionGenerator(fastercnn,device,batch_size, select_k=sel_k) decision_generator = decision_generator.to(device) #### continue training # checkpoint = torch.load("/home/ai/Desktop/Jiqian work/work4/saved_models/v3_hard_sel_1039.pth") # decision_generator.load_state_dict(checkpoint["model"]) params = [p for p in decision_generator.parameters() if p.requires_grad] optimizer = torch.optim.SGD(params, lr=0.001, momentum=0.9, weight_decay=0.0005) # optimizer = torch.optim.Adam(params,lr=0.001, weight_decay=5e-5) # lr_scheduler = torch.optim.lr_scheduler.CyclicLR(optimizer, base_lr=1e-3, max_lr=6e-3) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer) num_epochs = 40 for epoch in tqdm(range(num_epochs)): # try: loss_value = train_one_epoch2(decision_generator, optimizer, training_loader, device, epoch, print_freq=200) lr_scheduler.step(loss_value) # except Exception as e: # print(e) # train_one_epoch2(decision_generator, optimizer, training_loader, device, epoch, print_freq=200) if (epoch+1)%20==0: if version == "whole_attention": save_name = "../saved_models/whole_attention/%s"%model_name + str(epoch) + ".pth" else: save_name = "../saved_models/%s"%model_name + str(epoch) + ".pth" torch.save( {"model": decision_generator.state_dict(), "optimizer": optimizer.state_dict(),}, save_name, ) print("Saved model", save_name) ``` #### File: JiqianDong/BDD-100-CV/train_soft_attention.py ```python from imports import * from datasets.bdd_oia import BDD_OIA_NLP from soft_attention_model import * def get_encoder(model_name): if model_name == 'mobile_net': md = torchvision.models.mobilenet_v2(pretrained=True) encoder = nn.Sequential(*list(md.children())[:-1]) elif model_name == 'resnet': md = torchvision.models.resnet50(pretrained=True) encoder = nn.Sequential(*list(md.children())[:-2]) return encoder def train_one_epoch2(encoder, decoder, decoder_optimizer, data_loader, device, epoch, print_freq, encoder_optimizer=None): global num_iters encoder.train() decoder.train() metric_logger = utils.MetricLogger(delimiter=" ") metric_logger.add_meter("lr", utils.SmoothedValue(window_size=1, fmt="{value:.6f}")) header = "Epoch: [{}]".format(epoch) for image_batch, labels_batch in metric_logger.log_every(data_loader, print_freq, header): if len(image_batch)!=len(labels_batch): continue reasons_batch = [l['reason'].to(device) for l in labels_batch] image_features = encoder(torch.stack(image_batch).to(device)) loss , scores, attention_weights, hs = decoder(image_features, reasons_batch) num_iters += 1 loss_value = loss.item() # print(loss_value) # reduce losses over all GPUs for logging purposes writer.add_scalar("Loss/train", loss_value, num_iters) writer.add_scalar("Decoder earning rate", decoder_optimizer.param_groups[0]["lr"], num_iters) if not math.isfinite(loss_value): print("Loss is {}, stopping training".format(loss_value)) print(loss_value) sys.exit(1) decoder_optimizer.zero_grad() loss.backward() decoder_optimizer.step() metric_logger.update(loss=loss_value) metric_logger.update(lr=decoder_optimizer.param_groups[0]["lr"]) return loss_value def get_loader(batch_size): ## Data loader image_dir = './data/bdd_oia/lastframe/data/' label_dir = './data/bdd_oia/lastframe/labels/' bdd_oia_dataset = BDD_OIA_NLP(image_dir, label_dir+'no_train.pkl', label_dir+'ind_to_word.pkl',image_min_size=180) training_loader = DataLoader(bdd_oia_dataset, shuffle=True, batch_size=batch_size, num_workers=0, drop_last=True, collate_fn=utils.collate_fn) NULL_INDEX = bdd_oia_dataset.word_to_ind['NULL'] DICT_SIZE = len(bdd_oia_dataset.word_to_ind.keys()) return training_loader,NULL_INDEX,DICT_SIZE if __name__ == "__main__": encoder_model = 'resnet' image_f_dim = 2048 using_gate = False model_name = 'soft_attention_resnet_nogate' # encoder_model = 'mobile_net' # image_f_dim = 1280 # model_name = 'soft_attention' version = 'v1' num_epochs = 15 DEVICE = torch.device("cuda:1") batch_size = 10 training_loader,NULL_INDEX,DICT_SIZE = get_loader(batch_size) writer = SummaryWriter('./runs/soft_attention/'+model_name+'/') encoder = get_encoder(encoder_model) decoder = ReasonDecoder(image_f_dim=image_f_dim,\ embedding_dim=128, \ hidden_dim=128, \ dict_size=DICT_SIZE, \ device=DEVICE,\ null_index=NULL_INDEX, \ using_gate=using_gate) encoder.to(DEVICE) decoder.to(DEVICE) #### continue training # checkpoint = torch.load("/home/ai/Desktop/Jiqian work/work4/saved_models/v3_hard_sel_1039.pth") # decision_generator.load_state_dict(checkpoint["model"]) decoder_params = [p for p in decoder.parameters() if p.requires_grad] # print(len(decoder_params)) decoder_optimizer = torch.optim.SGD(decoder_params, lr=0.001, momentum=0.9, weight_decay=0.0005) lr_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(decoder_optimizer) for epoch in tqdm(range(num_epochs)): # try: loss_value = train_one_epoch2(encoder, decoder, decoder_optimizer, training_loader, DEVICE, epoch, print_freq=200) lr_scheduler.step(loss_value) # except Exception as e: # print(e) # train_one_epoch2(decision_generator, optimizer, training_loader, device, epoch, print_freq=200) if (epoch+1)%5==0: save_name = "../saved_models/soft_attention/%s"%model_name + str(epoch) + ".pth" torch.save( {"encoder": encoder.state_dict(), "decoder":decoder.state_dict(), "decoder_optimizer": decoder_optimizer.state_dict()}, save_name, ) print("Saved model", save_name) ```
{ "source": "jiqirenno1/centerpoint123", "score": 2 }
#### File: det3d/datasets/dataset_factory.py ```python from .nuscenes import NuScenesDataset from .waymo import WaymoDataset from .kitti import KittiDataset dataset_factory = { "KITTI": KittiDataset, "NUSC": NuScenesDataset, "WAYMO": WaymoDataset } def get_dataset(dataset_name): return dataset_factory[dataset_name] ```
{ "source": "jiqiujia/DeepCTR-Torch", "score": 2 }
#### File: DeepCTR-Torch/deepctr_torch/inputs.py ```python from collections import OrderedDict, namedtuple from itertools import chain import torch from .layers.utils import concat_fun class SparseFeat(namedtuple('SparseFeat', ['name', 'dimension', 'use_hash', 'dtype', 'embedding_name', 'embedding'])): __slots__ = () def __new__(cls, name, dimension, use_hash=False, dtype="int32", embedding_name=None, embedding=True): if embedding and embedding_name is None: embedding_name = name return super(SparseFeat, cls).__new__(cls, name, dimension, use_hash, dtype, embedding_name, embedding) class DenseFeat(namedtuple('DenseFeat', ['name', 'dimension', 'dtype'])): __slots__ = () def __new__(cls, name, dimension=1, dtype="float32"): return super(DenseFeat, cls).__new__(cls, name, dimension, dtype) class VarLenSparseFeat(namedtuple('VarLenFeat', ['name', 'dimension', 'maxlen', 'combiner', 'use_hash', 'dtype', 'embedding_name', 'embedding'])): __slots__ = () def __new__(cls, name, dimension, maxlen, combiner="mean", use_hash=False, dtype="float32", embedding_name=None, embedding=True): if embedding_name is None: embedding_name = name return super(VarLenSparseFeat, cls).__new__(cls, name, dimension, maxlen, combiner, use_hash, dtype, embedding_name, embedding) def get_feature_names(feature_columns): features = build_input_features(feature_columns) return list(features.keys()) def get_inputs_list(inputs): return list(chain(*list(map(lambda x: x.values(), filter(lambda x: x is not None, inputs))))) def build_input_features(feature_columns): features = OrderedDict() start = 0 for feat in feature_columns: feat_name = feat.name if feat_name in features: continue if isinstance(feat, SparseFeat): features[feat_name] = (start, start + 1) start += 1 elif isinstance(feat, DenseFeat): features[feat_name] = (start, start + feat.dimension) start += feat.dimension elif isinstance(feat,VarLenSparseFeat): features[feat_name] = (start, start + feat.maxlen) start += feat.maxlen else: raise TypeError("Invalid feature column type,got",type(feat)) return features def get_dense_input(features, feature_columns): dense_feature_columns = list(filter(lambda x: isinstance( x, DenseFeat), feature_columns)) if feature_columns else [] dense_input_list = [] for fc in dense_feature_columns: dense_input_list.append(features[fc.name]) return dense_input_list def combined_dnn_input(sparse_embedding_list, dense_value_list): if len(sparse_embedding_list) > 0 and len(dense_value_list) > 0: sparse_dnn_input = torch.flatten( torch.cat(sparse_embedding_list, dim=-1), start_dim=1) dense_dnn_input = torch.flatten( torch.cat(dense_value_list, dim=-1), start_dim=1) return concat_fun([sparse_dnn_input, dense_dnn_input]) elif len(sparse_embedding_list) > 0: return torch.flatten(torch.cat(sparse_embedding_list, dim=-1), start_dim=1) elif len(dense_value_list) > 0: return torch.flatten(torch.cat(dense_value_list, dim=-1), start_dim=1) else: raise NotImplementedError ``` #### File: deepctr_torch/models/fibinet.py ```python import torch import torch.nn as nn import torch.nn.functional as F from .basemodel import BaseModel from ..inputs import combined_dnn_input, SparseFeat, DenseFeat, VarLenSparseFeat from ..layers import SENETLayer,BilinearInteraction,DNN class FiBiNET(BaseModel): """Instantiates the Feature Importance and Bilinear feature Interaction NETwork architecture. :param linear_feature_columns: An iterable containing all the features used by linear part of the model. :param dnn_feature_columns: An iterable containing all the features used by deep part of the model. :param embedding_size: positive integer,sparse feature embedding_size :param bilinear_type: str,bilinear function type used in Bilinear Interaction Layer,can be ``'all'`` , ``'each'`` or ``'interaction'`` :param reduction_ratio: integer in [1,inf), reduction ratio used in SENET Layer :param dnn_hidden_units: list,list of positive integer or empty list, the layer number and units in each layer of DNN :param l2_reg_linear: float. L2 regularizer strength applied to wide part :param l2_reg_embedding: float. L2 regularizer strength applied to embedding vector :param l2_reg_dnn: float. L2 regularizer strength applied to DNN :param init_std: float,to use as the initialize std of embedding vector :param seed: integer ,to use as random seed. :param dnn_dropout: float in [0,1), the probability we will drop out a given DNN coordinate. :param dnn_activation: Activation function to use in DNN :param task: str, ``"binary"`` for binary logloss or ``"regression"`` for regression loss :param device: str, ``"cpu"`` or ``"cuda:0"`` :return: A PyTorch model instance. """ def __init__(self, linear_feature_columns, dnn_feature_columns, embedding_size=8, bilinear_type='interaction', reduction_ratio=3, dnn_hidden_units=(128, 128), l2_reg_linear=1e-5, l2_reg_embedding=1e-5, l2_reg_dnn=0, init_std=0.0001, seed=1024, dnn_dropout=0, dnn_activation=F.relu, task='binary', device='cpu'): super(FiBiNET, self).__init__(linear_feature_columns, dnn_feature_columns, embedding_size=embedding_size, dnn_hidden_units=dnn_hidden_units, l2_reg_linear=l2_reg_linear, l2_reg_embedding=l2_reg_embedding, l2_reg_dnn=l2_reg_dnn, init_std=init_std, seed=seed, dnn_dropout=dnn_dropout, dnn_activation=dnn_activation, task=task, device=device) self.linear_feature_columns = linear_feature_columns self.dnn_feature_columns = dnn_feature_columns self.filed_size = len(self.embedding_dict) self.SE = SENETLayer(self.filed_size, reduction_ratio, seed, device) self.Bilinear = BilinearInteraction(self.filed_size,embedding_size, bilinear_type, seed, device) self.dnn = DNN(self.compute_input_dim(dnn_feature_columns, embedding_size), dnn_hidden_units, activation=dnn_activation, l2_reg=l2_reg_dnn, dropout_rate=dnn_dropout, use_bn=False, init_std=init_std, device=device) self.dnn_linear = nn.Linear(dnn_hidden_units[-1], 1, bias=False).to(device) def compute_input_dim(self, feature_columns, embedding_size, include_sparse=True, include_dense=True): sparse_feature_columns = list( filter(lambda x: isinstance(x, (SparseFeat,VarLenSparseFeat)), feature_columns)) if len(feature_columns) else [] dense_feature_columns = list( filter(lambda x: isinstance(x, DenseFeat), feature_columns)) if len(feature_columns) else [] field_size = len(sparse_feature_columns) dense_input_dim = sum(map(lambda x: x.dimension, dense_feature_columns)) sparse_input_dim = field_size * (field_size - 1) * embedding_size input_dim = 0 if include_sparse: input_dim += sparse_input_dim if include_dense: input_dim += dense_input_dim return input_dim def forward(self, X): sparse_embedding_list, dense_value_list = self.input_from_feature_columns(X, self.dnn_feature_columns, self.embedding_dict) sparse_embedding_input = torch.cat(sparse_embedding_list, dim=1) senet_output = self.SE(sparse_embedding_input) senet_bilinear_out = self.Bilinear(senet_output) bilinear_out = self.Bilinear(sparse_embedding_input) linear_logit = self.linear_model(X) temp = torch.split(torch.cat((senet_bilinear_out,bilinear_out), dim = 1), 1, dim = 1) dnn_input = combined_dnn_input(temp, dense_value_list) dnn_output = self.dnn(dnn_input) dnn_logit = self.dnn_linear(dnn_output) if len(self.linear_feature_columns) > 0 and len(self.dnn_feature_columns) > 0: # linear + dnn final_logit = linear_logit + dnn_logit elif len(self.linear_feature_columns) == 0: final_logit = dnn_logit elif len(self.dnn_feature_columns) == 0: final_logit = linear_logit else: raise NotImplementedError y_pred = self.out(final_logit) return y_pred ``` #### File: tests/models/ONN_test.py ```python import pytest from deepctr_torch.models import ONN from ..utils import check_model, get_test_data, SAMPLE_SIZE @pytest.mark.parametrize( 'hidden_size,sparse_feature_num', [((8,), 2)] ) def test_NFFM(hidden_size, sparse_feature_num): model_name = "NFFM" sample_size = SAMPLE_SIZE x, y, feature_columns = get_test_data( sample_size, sparse_feature_num, sparse_feature_num, hash_flag=True) model = ONN(feature_columns, feature_columns, embedding_size=4, dnn_hidden_units=[32, 32], dnn_dropout=0.5) check_model(model, model_name, x, y) if __name__ == "__main__": pass ```
{ "source": "JiQThon/Syllabus_Embedding_Network", "score": 3 }
#### File: Syllabus_Embedding_Network/function/AvgSimilarity.py ```python import sys import operator import time import getopt ## Regex Modules import re ## File I/O Modules import csv from string import digits import copy import json import math import networkx ## Encoding UTF-8 Setting reload(sys) sys.setdefaultencoding('UTF8') def cal7_recal_simil(): ids_file = open("./ids.txt", 'r') mjs_file = open("./mjs.txt", 'r') mat_file = open("./mat.txt", 'r') std_file = open("./mjs_standards.txt", 'r') ids = [] mjs = [] mat = [] std = [] for chunk in iter(lambda: ids_file.readline(), ''): ids.append(chunk.replace("\n","")) for chunk in iter(lambda: mjs_file.readline(), ''): mjs.append(chunk.replace("\n","").replace("u","").replace("\'", "")) for chunk in iter(lambda: mat_file.readline(), ''): mat.append( [round(float(f),5) for f in chunk.replace("\n","").split(",")] ) for chunk in iter(lambda: std_file.readline(), ''): std.append( chunk.replace("\n","") ) print "read" print std out_within = open("./recal_simil_within.txt", 'w') out_across = open("./recal_simil_across.txt", 'w') for i in range(0, len(ids)): for j in range(i+1, len(ids)): if (str(mjs[i]) in std) and (str(mjs[j]) in std) and (mjs[i] == mjs[j]): out_within.write( repr(mat[i][j])+"\n") elif (str(mjs[i]) in std) and (str(mjs[j]) in std) and (mjs[i] != mjs[j]): out_across.write( repr(mat[i][j])+"\n") #out.write(repr(k) + "," + ",".join(str(x) for x in ratios) + "\n") #out2.write(repr(k) + "," + ",".join(str(x) for x in coeffs) + "\n") def main(argv=None): if argv is None: argv = sys.argv # parse command line options try: opts, args = getopt.getopt(sys.argv[1:], "h", ["help"]) except getopt.error, msg: print msg print "for help use --help" sys.exit(2) # process options """ ## give documentation for o, a in opts: if o in ("-h", "--help"): print __doc__ sys.exit(0) """ # process arguments cal7_recal_simil() if __name__ == "__main__": main() ```
{ "source": "jir322/sea_cli", "score": 2 }
#### File: sea_cli/sea_cli/sea.py ```python __author__ = 'mnowotka' import os import sys import re import hashlib from optparse import OptionParser import requests import BeautifulSoup #------------------------------------------------------------------------------- PAGE_REGEX = re.compile(r"&lt;&lt;\s?&lt;\s?(?P<current_page>\d+) of (?P<total_pages>\d+)\s?&gt;\s?&gt;&gt;") REQUESTS_HEADERS = { 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:30.0) Gecko/20100101 Firefox/30.0', 'Accept-Language': 'en-US,en;q=0.5', 'Accept-Encoding': 'gzip, deflate', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Connection': 'keep-alive', 'Host': 'sea.bkslab.org', } #------------------------------------------------------------------------------- def meta_redirect(content): soup = BeautifulSoup.BeautifulSoup(content) result = soup.meta['content'] if result: wait, text = result.split(";") if text.lower().startswith("url="): url = text[4:] return url return None #------------------------------------------------------------------------------- def get_similarity(smitxt, descriptor, reference, orderby, sort): s = requests.session() s.headers.update(REQUESTS_HEADERS) payload = {'descriptor': descriptor, 'reference': reference, 'smitxt': smitxt} url = 'http://sea.bkslab.org/search/index.php' r = s.get(url, allow_redirects=True) if r.ok: redirected = r.url else: redirected = url s.headers.update({'Referer': redirected, 'Content-Type': 'application/x-www-form-urlencoded'}) res = s.post(url, data=payload, allow_redirects=True) if not res.ok: print "Error searching similarity, url = %s" % url print "payload: %s" % payload print "Error code: %s" % res.status_code print "Message: %s" % res.text return table_url = meta_redirect(res.content) if not table_url: print "no url for table..." return res = s.get(table_url) soup = BeautifulSoup.BeautifulSoup(res.content) m = PAGE_REGEX.search(soup.text) if not m: print "can't find page number in %s" % soup.text return total_pages = int(m.groupdict().get('total_pages', '1')) return scrape_table(table_url, total_pages, s, orderby, sort) #------------------------------------------------------------------------------- def scrape_table(table_url, total_pages, session, orderby, sort): table = [] for i in range(total_pages): payload = {'page': i, 'orderby': orderby, 'sort': sort} r = session.get(table_url, params=payload) if not r.ok: print "Error retrieving page %s, base url = %s" % (i, table_url) print "payload: %s" % payload print "Error code: %s" % r.status_code print "Message: %s" % r.text continue soup = BeautifulSoup.BeautifulSoup(r.content) tab = soup.find("table", {"class": "main"}) for row in tab.findAll('tr')[1:]: col = row.findAll('td') if len(col) >= 7: num = col[1].text code = col[2].text num_ligands = col[3].text ref_name = col[4].text e_value = col[5].text max_tc = col[6].text table.append((num, code, num_ligands, ref_name, e_value, max_tc)) return table #------------------------------------------------------------------------------- def get_file_descriptor(path, mode): filename, file_extension = os.path.splitext(path) if file_extension == '.gz': import gzip return gzip.open(path, mode + 'b' if mode in ('r', 'w') else mode) elif file_extension == '.bz2': import bz2 return bz2.BZ2File(path, mode + 'b' if mode in ('r', 'w') else mode) elif file_extension == '.zip': import zipfile return zipfile.ZipFile(path, mode + 'b' if mode in ('r', 'w') else mode) else: return open(path, mode + 'U' if mode == 'r' else mode) #------------------------------------------------------------------------------- def write_table(smiles, table, o): if o: o.write('\n%s\n\n' % smiles) else: print '\n%s\n' % smiles for row in table: if o: o.write('\t'.join(row) + '\n') else: print '\t'.join(row) if o: o.write('\n####\n') else: print '\n####' #------------------------------------------------------------------------------- def get_smiles_id_pair(smiles): m = hashlib.md5() m.update(smiles) return "%s %s\n" % (smiles, m.hexdigest()) #------------------------------------------------------------------------------- def main(): usage = "usage: %prog [options] SMILES" parser = OptionParser(usage) parser.add_option("-d", "--descriptor", dest="descriptor", default='ecfp4', help="molecular descriptor") parser.add_option("-r", "--reference", default='chembl16', dest="reference", help="Database to search against") parser.add_option("-i", "--input", default=None, dest="input", help="Input file with smiles") parser.add_option("-o", "--output", default=None, dest="output", help="Output file") parser.add_option("-b", "--order_by", default='zscore', dest="order_by", help="Column to order by") parser.add_option("-s", "--sort", default='desc', dest="sort", help="Sorting order (asc/desc)") (options, args) = parser.parse_args() if options.input: if not os.path.isfile(options.input): print "%s is not a file" % options.input sys.exit(1) i = get_file_descriptor(options.input, 'r') else: i = None if options.output: o = get_file_descriptor(options.output, 'w') else: o = None descriptor = options.descriptor reference = options.reference orderby = options.order_by sort = options.sort if i: smitxt = '' for line in i: if line.strip(): chunk = line.strip().split()[0] smitxt += get_smiles_id_pair(chunk) else: table = get_similarity(smitxt, descriptor, reference, orderby, sort) write_table(chunk, table, o) smitxt = '' if smitxt: table = get_similarity(smitxt, descriptor, reference, orderby, sort) write_table(chunk, table, o) elif len(args) == 1: smitxt = get_smiles_id_pair(args[0]) table = get_similarity(smitxt, descriptor, reference, orderby, sort) write_table(args[0], table, o) else: parser.print_help() sys.exit(1) if i: i.close() if o: o.close() #------------------------------------------------------------------------------- if __name__ == "__main__": main() #------------------------------------------------------------------------------- ```
{ "source": "Jirapongs55/PythonBootcamp2021", "score": 4 }
#### File: Jirapongs55/PythonBootcamp2021/01_TestGUItranslator.py ```python from tkinter import * from tkinter import ttk # Googletrans Library from googletrans import Translator translator = Translator() GUI = Tk() GUI.geometry("500x300") GUI.title("โปรแกรมแปลคำศัพท์ by K'Jirapong") # ------Config------- font_1 = ("Century Gothic", 12) font_2 = ("Century Gothic", 24) # ------Label 1------ L1 = ttk.Label(GUI, text = "กรุณากรอกคำศัพท์ที่ต้องการ", font = font_1) L1.pack() # ------Entry (ปุ่มให้ user กรอกคำที่ต้องการแปล)------ v_vocab = StringVar() E1 = ttk.Entry(GUI, textvariable = v_vocab, font = font_1, width = 24) E1.pack(pady = 10) def translate(): vocab = v_vocab.get() # ดึงข้อมูลจากตัวแปรที่เก็บค่าที่ u ser กรอกเข้ามา meaning = translator.translate(vocab, dest = "th") # ใช้ฟังก์ชันแปลคำศัพท์จาก googletrans v_result.set(meaning.text) # assign ค่าที่แปลได้เข้าไปในตัวแปรที่แสดงผลใน Label 2 # ------Button (ปุ่มคำสั่งให้กดแปล)------ B1 = ttk.Button(GUI, text = "Translate", command = translate) B1.pack(ipadx = 20, ipady = 10) # ------Label 2------ v_result = StringVar() L2 = ttk.Label(GUI, textvariable = v_result, font = font_2, foreground = "crimson" ) L2.pack() GUI.mainloop() # คำสั่งในการให้ GUI รันตลอดเวลา (ใช้เป็นบรรทัดจบ) ``` #### File: Jirapongs55/PythonBootcamp2021/02_GUIWiki.py ```python import wikipedia # python to docx from docx import Document def wiki(keyword, lang = "th"): wikipedia.set_lang(lang) # summary เอาแค่สรุปบทความ data = wikipedia.summary(keyword) # page + content เอาเนื้อหาทั้งหน้าบทความ data2 = wikipedia.page(keyword) data2 = data2.content # ส่งข้อมูล และจัดการในไฟล์ docx docx = Document() # สร้างไฟล์ word docx.add_heading(keyword,0) docx.add_paragraph(data2) docx.save(keyword + ".docx") print("Completed generating",keyword,"file") # เปลี่ยนภาษา wikipedia.set_lang("th") # GUI from tkinter import * from tkinter import ttk from tkinter import messagebox GUI = Tk() GUI.title("โปรแกรม wikipedia by K'Jirapong") GUI.geometry("600x300") # Config font_1 = ("TH Sarabun New",16) # คำอธิบาย L1 = ttk.Label(GUI, text = "กรุณากรอกสิ่งที่ต้องการค้นหา", font = font_1) L1.pack() # ช่องค้นหาข้อมูล v_search = StringVar() # กล่องสำหรับเก็บ keyword E1 = ttk.Entry(GUI, textvariable = v_search, width = 42, font = font_1) E1.pack(pady = 10) def search(): keyword = v_search.get() # .get() คือคำสั่งในการดึงข้อมูลจากตัวแปรเข้ามา (ใช้ได้เฉพาะ StringVar()เท่านั้น !!! IntVar(), FloatVar() ใช้ไม่ได้) try: # ลองค้นหาดูว่าได้ผลลัพธ์หรือไม่ หากได้ให้ผ่านไป else lang = v_radio.get() # th/en/zh wiki(keyword, lang) except: # หากไม่ได้หรือมีปัญหา ให้แสดง message box แจ้งเตือนuser messagebox.showwarning("Alert message", "please try keyword again") else: # หากได้ต้องการให้ขึ้น message box แสดงว่าเสร็จแล้ว messagebox.showinfo("Completed message", "Completed generating the " + keyword + " file") ''' print(wikipedia.search(keyword)) result = wikipedia.summary(keyword) print(result) ''' # ปุ่มค้นหา B1 = ttk.Button(GUI, text = "Search", command = search) B1.pack(ipadx = 20, ipady = 10, pady =10) # เมนูเลือกภาษา F1 = Frame(GUI) F1.pack() v_radio = StringVar() # เป็นช่องเก็บข้อมูลภาษา RB1 = ttk.Radiobutton(F1, text = "ภาษาไทย", variable = v_radio, value = "th") RB2 = ttk.Radiobutton(F1, text = "ภาษาอังกฤษ", variable = v_radio, value = "en") RB3 = ttk.Radiobutton(F1, text = "ภาษาจีน", variable = v_radio, value = "zh") RB1.invoke() RB1.grid(row = 0, column = 0) RB2.grid(row = 0, column = 1) RB3.grid(row = 0, column = 2) GUI.mainloop() ```
{ "source": "jiratmanasuksanti/Funkinv.0.01", "score": 3 }
#### File: jiratmanasuksanti/Funkinv.0.01/Funkin.py ```python import os,sys import pygame import math import time ################# pygame.init() Width = 800 Height = 600 screen = pygame.display.set_mode((Width,Height), pygame.FULLSCREEN) mainloop = True current_selected_menu = 1 ############################Game Object Storage############################## bopeebo_inst = pygame.mixer.music.load("./assets/music/Bopeebo_Inst.ogg") bopeebo_voices = pygame.mixer.music.load("./assets/music/Bopeebo_Voices.ogg") exitbutton_image = pygame.image.load("assets/images/exit_button.png") pressed_exitbutton_image = pygame.image.load("assets/images/pressed_exit_button.png") menu_music = pygame.mixer.music.load("./assets/music/freakyMenu.ogg") confirmMenu_sounds = pygame.mixer.Sound("./assets/sounds/confirmMenu.ogg") maximumMenu = 1 minimumMenu = 1 ################Main Game Loop################# def create_button(self): if self == "exit" screen.blit(exitbutton_image,(Width/2,Height/2)) def confirmMenu(): confirmMenu_sounds.play() def BacktoMenu(): if menu_music_play == False: menu_music_play = True pygame.mixer.music.stop() menu_music.play() def press_Exit(): for counter in range(1,10): screen.blit(pressed_exitbutton_image,(Width/2,Height/2)) screen.blit(exitbutton_image,(Width/2,Height/2)) pygame.display.update() menu_music_play = False BacktoMenu() while mainloop: for event in pygame.event.get(): if event.type == pygame.QUIT: exit() if event.type == pygame.KEYDOWN: if event.key == pygame.K_DOWN: if not maximumMenu == current_selected_menu: current_selected_menu = current_selected_menu + 1 if event.key == pygame.K_UP: if not minimumMenu == current_selected_menu: current_selected_menu = current_selected_menu - 1 if event.key == pygame.K_ENTER: if current_selected_menu == 1: confirmMenu() press_Exit() exit() create_button("exit") pygame.display.update() ```
{ "source": "jiratmanasuksanti/Land-Scape", "score": 3 }
#### File: jiratmanasuksanti/Land-Scape/menu_data.py ```python import pygame start_button_image = pygame.image.load("lib/assets/images/start_button.png") start_buttonx = 680 start_buttony = 400 def show_menu(): screen.blit(start_button_image,(start_buttonx,start_buttony)) ```
{ "source": "jiratQ/discord-bot", "score": 3 }
#### File: src/utils/utils.py ```python from difflib import SequenceMatcher commands = ['$hello', '$poker', '$voice', '$disconnect'] async def guess_command(client, message): similar_commands = [] if (message.content.startswith('$')) & (message.content.split()[0] not in commands): print(f'{message.author}: {message.content}') for command in commands: similar_ratio = SequenceMatcher( None, message.content, command).ratio() if similar_ratio >= 0.6: similar_commands.append([command, similar_ratio]) similar_commands = sorted( similar_commands, key=lambda l: l[1], reverse=True) await message.channel.send(f'คุณกำลังจะพิมพ์ {similar_commands[0][0]} หรือเปล่า') ```
{ "source": "Jireh012/SignInSetForPython", "score": 2 }
#### File: Jireh012/SignInSetForPython/run.py ```python import os import sys import time import traceback try: from utils.config import load_config from utils.log import get_logger from utils.ftqq import send_to_ftqq from utils.email import send_to_email from utils import cliwait from utils.version import check_script_update from utils.version import SCRIPT_VERSION from signin.WuAiPoJie import variable_52pj from signin.WuAiPoJie import conventional_52pj from signin.HouQiJun import variable_hqj from signin.HouQiJun import conventional_hqj from signin.WuAiProgrammer import variable_52cxy from signin.WuAiProgrammer import conventional_52cxy from signin.Smzdm import variable_smzdm from signin.Smzdm import conventional_smzdm except ImportError as e: print(e) print('导入模块出错,请执行 pip install -r requirements.txt 安装所需的依赖库') cliwait() exit() logger = get_logger('Run') def conventional(): pojie52 = CFG['52pojie'] houqijun = CFG['houqijun'] wuaicxy = CFG['52cxy'] smzdm = CFG['smzdm'] mcfg = CFG['main'] ftqq = CFG['ftqq'] # 执行签到函数 conventional_52pj(pojie52, ftqq['skey']) conventional_hqj(houqijun, ftqq['skey']) conventional_52cxy(wuaicxy, ftqq['skey']) conventional_smzdm(smzdm, ftqq['skey']) data = [] logger.info(f'脚本版本:[{SCRIPT_VERSION}]') data.append(f'#### {"=" * 30}\n' f'#### 脚本版本:[{SCRIPT_VERSION}]') end_time = time.time() logger.info(f'脚本耗时:[{round(end_time - start_time, 4)}]s') data.append(f'#### 任务耗时:[{round(end_time - start_time, 4)}]s') message = '\n'.join(data) title = '自动签到脚本' if mcfg['check_update']: logger.info('检查脚本更新……') result = check_script_update() if result: latest_version, detail, download_url = result logger.info(f'-->脚本有更新<--' f'最新版本[{latest_version}]' f'更新内容[{detail}]' f'下载地址[{download_url}]') data.append('') data.append = (f'### 脚本有更新\n' f'#### 最新版本[{latest_version}]\n' f'#### 下载地址:[GitHub]({download_url})\n' f'#### 更新内容\n' f'{detail}\n' f'> 如果碰到问题欢迎联系QQ**814046228**') title += '【有更新】' else: logger.info(f'脚本已是最新,当前版本{SCRIPT_VERSION}') else: logger.info(f'检查脚本更新已禁用,当前版本{SCRIPT_VERSION}') logger.info('推送统计信息……') message_push(title, message, True) logger.info('脚本执行完毕') def variable(): SCKEY = os.environ.get('SCKEY') mcfg = CFG['main'] data = [] cookie_52pj = os.environ.get('cookie_52pj') username_houqijun = os.environ.get('username_houqijun') password_houqijun = os.environ.get('password_hou<PASSWORD>') cookie_52cxy = os.environ.get('cookie_52cxy') cookie_smzdm = os.environ.get('cookie_smzdm') # 执行签到函数 variable_52pj(cookie_52pj, SCKEY) variable_hqj(username_houqijun, password_houqijun, SCKEY) variable_52cxy(cookie_52cxy, SCKEY) variable_smzdm(cookie_smzdm, SCKEY) end_time = time.time() logger.info(f'脚本耗时:[{round(end_time - start_time, 4)}]s') data.append(f'#### 任务耗时:[{round(end_time - start_time, 4)}]s') message = '\n'.join(data) title = '自动签到脚本' if mcfg['check_update']: logger.info('检查脚本更新……') result = check_script_update() if result: latest_version, detail, download_url = result logger.info(f'-->脚本有更新<--' f'最新版本[{latest_version}]' f'更新内容[{detail}]' f'下载地址[{download_url}]') data.append('') data.append = (f'### 脚本有更新\n' f'#### 最新版本[{latest_version}]\n' f'#### 下载地址:[GitHub]({download_url})\n' f'#### 更新内容\n' f'{detail}\n' f'> 如果碰到问题欢迎加QQ**814046228**') title += '【有更新】' else: logger.info(f'脚本已是最新,当前版本{SCRIPT_VERSION}') else: logger.info('检查脚本更新已禁用,当前版本{SCRIPT_VERSION}') logger.info('推送统计信息……') message_push(title, message, True) logger.info('脚本执行完毕') def message_push(title: str, message: str, error: bool = False): ''' 推送通知 ''' ftqq = CFG['ftqq'] email = CFG['email'] if ftqq['enable']: if (ftqq['only_on_error'] == True and error) or (ftqq['only_on_error'] == False): result = send_to_ftqq(title, message, ftqq) if result: logger.info('FTQQ推送成功') else: logger.warning('[*] FTQQ推送失败') if email['enable']: if (email['only_on_error'] == True and error) or (email['only_on_error'] == False): result = send_to_email(title, message, email) if result: logger.info('邮件推送成功') else: logger.warning('[*] 邮件推送失败') if __name__ == '__main__': run_type = sys.argv[1] start_time = time.time() if "1" in run_type: try: logger.info('载入配置文件') CFG = load_config() except FileNotFoundError: logger.error('[*] 配置文件[config.toml]不存在,请参考[README.md]生成配置') cliwait() except ValueError: logger.error('[*] 尚未配置有效的账户凭据,请添加到[config.toml]中') cliwait() except Exception as e: logger.error(f'[*] 载入配置文件出错,请检查[config.toml] [{e}]') cliwait() exit() try: conventional() except KeyboardInterrupt: logger.info('[*] 手动终止运行') cliwait() except Exception as e: logger.error(f'遇到未知错误 [{e}]', exc_info=True) title = '脚本执行遇到未知错误' message = (f'#### 脚本版本:[{SCRIPT_VERSION}]\n' f'#### 系统信息:[{os.name}]\n' f'#### Python版本: [{sys.version}]\n' f'#### {"=" * 30}\n' f'#### 错误信息: {traceback.format_exc()}\n' f'#### {"=" * 30}\n' '#### 联系信息:\n' '* QQ: 814046228\n' '* TG群: https://t.me/joinchat/HTtNrSJLz7s2A-0N\n' '* 邮箱: <EMAIL>\n' '> 如果需要帮助请附带上错误信息') message_push(title, message, True) cliwait() elif "2" in run_type: try: variable() except KeyboardInterrupt: logger.info('[*] 手动终止运行') cliwait() except Exception as e: logger.error(f'遇到未知错误 [{e}]', exc_info=True) title = '脚本执行遇到未知错误' message = (f'#### 脚本版本:[{SCRIPT_VERSION}]\n' f'#### 系统信息:[{os.name}]\n' f'#### Python版本: [{sys.version}]\n' f'#### {"=" * 30}\n' f'#### 错误信息: {traceback.format_exc()}\n' f'#### {"=" * 30}\n' '#### 联系信息:\n' '* QQ: 814046228\n' '* TG群: https://t.me/joinchat/HTtNrSJLz7s2A-0N\n' '* 邮箱: <EMAIL>\n' '> 如果需要帮助请附带上错误信息') message_push(title, message, True) cliwait() else: print('该启动方式不存在:', run_type) ``` #### File: SignInSetForPython/signin/HouQiJun.py ```python import requests, os import json import random import string class randoms(): # 获取26个大小写字母 letters = string.ascii_letters # 获取26个小写字母 Lowercase_letters = string.ascii_lowercase # 获取26个大写字母 Capital = string.ascii_uppercase # 获取阿拉伯数字 digits = string.digits def sign_in_hqj(username: str, password: str, SCKEY: str): msg = "" try: s = requests.Session() headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/88.0.4298.4 Safari/537.36', 'Cookie': 'PHPSESSID=' + code(), 'ContentType': 'text/html;charset=gbk', 'DNT': '1' } url = "http://www.houqijun.vip/Passport_runLogin.html" loginData = { "from": "http://www.houqijun.vip/", "username": username, "password": password, } login = s.post(url=url, data=loginData, headers=headers) msg += "登录成功!," a = s.get('http://www.houqijun.vip/Center_runQiandao.html', headers=headers) data = json.loads(a.text) if data['code'] == 1: msg += username + " 后期菌签到成功!," print(username + " 后期菌签到成功") elif data['code'] == 0: msg += username + " 后期菌重复签到!," print(username + " 后期菌重复签到") else: if SCKEY: scurl = f"https://sc.ftqq.com/{SCKEY}.send" data = { "text": username + " 后期菌签到异常", "desp": data } requests.post(scurl, data=data) print(data) except Exception as e: print('repr(e):', repr(e)) msg += '运行出错,repr(e):' + repr(e) return msg + "\n" def code(): # s是小写字母和数字的集合 s = randoms.Lowercase_letters + randoms.digits # 生成28位小写和数字的集合,并将列表转字符串 code = ''.join(random.sample(s, 28)) return code def variable_hqj(usernames, passwords, SCKEY): msg = "" ulist = usernames.split("\n") plist = passwords.split("\n") if len(ulist) == len(plist): print("----------后期菌开始尝试签到----------") i = 0 while i < len(ulist): msg += f"第 {i + 1} 个账号开始执行任务\n" username = ulist[i] password = plist[i] msg += sign_in_hqj(username, password, SCKEY) i += 1 else: msg = "账号密码个数不相符" print(msg) print("----------后期菌签到执行完毕----------") def conventional_hqj(houqijun: dict, SCKEY): if houqijun: print("----------后期菌开始尝试签到----------") msg = "" for i, item in enumerate(houqijun, 1): msg += f"第 {i + 1} 个账号开始执行任务\n" msg += sign_in_hqj(item['username'], item['password'], SCKEY) print("----------后期菌签到执行完毕----------") ``` #### File: SignInSetForPython/utils/config.py ```python import os import toml import chardet from utils.log import get_logger, init_logger logger = get_logger('Setting') SCRIPT_PATH = f'{os.path.split(os.path.realpath(__file__))[0][:-5]}' DEFAULT_PATH = f'{SCRIPT_PATH}config.toml' CFG = {} def get_script_path() -> str: ''' 获取脚本所在路径 返回: str: 脚本所在路径 ''' return (SCRIPT_PATH) def get_config(key: str) -> dict: ''' 获取某一项配置 参数: key: 要获取的设置键名 返回: dict: 配置信息字典 ''' return (CFG.get(key)) def get_all_config() -> dict: ''' 获取全部配置 返回: dict: 配置信息字典 ''' return (CFG) def load_config(path: str = DEFAULT_PATH) -> dict: ''' 读取并验证配置 参数: [path]: 配置文件路径,默认为config.toml 返回: dict: 验证过的配置字典 ''' global CFG try: logger.debug('开始读取配置') with open(path, 'rb') as f: content = f.read() detect = chardet.detect(content) encode = detect.get('encode', 'utf-8') raw_cfg = dict(toml.loads(content.decode(encode))) CFG = verify_config(raw_cfg) debug = os.environ.get('mode', 'release').lower() level = 0 if debug == 'debug' else 20 init_logger(level) logger.debug('配置验证通过') return (CFG) except FileNotFoundError: logger.error(f'[*] 配置文件[{path}]不存在') raise FileNotFoundError(f'[*] 配置文件[{path}]不存在') except ValueError as e: logger.error(f'[*] 配置文件验证失败 [{e}]', exc_info=True) def verify_config(cfg: dict) -> dict: ''' 验证配置 参数: cfg: 配置字典 返回: dict: 验证过的配置字典,剔除错误的和不必要的项目 ''' vcfg = {'main': {'check_update': False, 'debug': False}, 'ftqq': {'enable': False, 'skey': '', 'only_on_error': False}, 'email': {'port': 465, 'server': '', 'password': '', 'user': '', 'recvaddr': '', 'sendaddr': '', 'only_on_error': False}, '52pojie': [], 'houqijun': [], '52cxy': [], 'smzdm': [], } wuaipojie = cfg.get('52pojie', {}) houqijun = cfg.get('houqijun', {}) wuaicxy = cfg.get('52cxy', {}) smzdm = cfg.get('smzdm', {}) vcfg['52pojie'] = wuaipojie vcfg['houqijun'] = houqijun vcfg['52cxy'] = wuaicxy vcfg['smzdm'] = smzdm main = cfg.get('main', {}) if main and isinstance(main, dict): debug = bool(main.get('debug', False)) check_update = bool(main.get('check_update', True)) vcfg['main'] = {'check_update': check_update, 'debug': debug} else: logger.debug('[main]节配置有误或者未配置,将使用默认配置') ftqq = cfg.get('ftqq', {}) if ftqq and isinstance(ftqq, dict): enable = bool(ftqq.get('enable', False)) skey = ftqq.get('skey', "") only_on_error = bool(ftqq.get('only_on_error', False)) if enable and not skey: raise ValueError('开启了FTQQ模块,但是未指定SKEY,请检查配置文件') vcfg['ftqq'] = {'enable': enable, 'skey': skey, 'only_on_error': only_on_error} else: logger.debug('[ftqq]节配置有误或者未配置,将使用默认配置') email = cfg.get('email', {}) if email and isinstance(email, dict): enable = bool(email.get('enable', False)) try: port = int(email.get('port', 0)) except ValueError: port = 465 logger.warning('[*] [email]节port必须为数字') server = email.get('server', '') password = email.get('password', '') user = email.get('user', '') recvaddr = email.get('recvaddr', '') sendaddr = email.get('sendaddr', '') only_on_error = bool(email.get('only_on_error', False)) if enable and not (port and server and password and user and recvaddr and sendaddr): raise ValueError('开启了email模块,但是配置不完整,请检查配置文件') vcfg['email'] = {'enable': enable, 'port': port, 'server': server, 'password': password, 'user': user, 'recvaddr': recvaddr, 'sendaddr': sendaddr, 'only_on_error': only_on_error} else: logger.debug('[email]节配置有误或者未配置,将使用默认配置') return (vcfg) ```
{ "source": "jirehbak/subway-place", "score": 3 }
#### File: subway-place/appointment/appointment.py ```python import pandas as pd import numpy as np import re #%% class basic(): def __init__(self, df): self.df = df #% 지하철 경로 함수 정의 def intersect(self, a, b): return list(set(a) & set(b)) def union(self, a, b): return list(set(a) | set(b)) def a_not_in_b(self, a, b): for i in self.intersect(a , b): a.remove(i) def transfer(self, code): if type(code)==list: pass else: code = [code] trans_list = [] for i in code: nm = self.df[self.df['station_cd']== i]['station_nm'].unique()[0] trns = self.df[self.df['station_nm']== nm]['station_cd'].unique().tolist() if len(trns) > 1: for j in trns: if i != j: trans_list.append([i, j]) else: pass else: pass return trans_list def code_to_name(self, code): if type(code)==list: pass else: code = [code] return self.df[self.df['station_cd'].isin(code)]['station_nm'].unique().tolist() def extract_station(self, text): # stn = re.compile('\w+') stn = re.compile('[ㄱ-ㅎ가-힣]+') st1 = stn.findall(text)[0] st2 = stn.findall(text)[1] return st1, st2 class route_between_sub: # df = sub_dist; start = '합정'; destination = '삼성' def __init__(self, df, sub_index, start, destination): self.df = df self.sub_index = sub_index self.start = start self.destination = destination self.start_cd_list = self.df[self.df['statnfnm'] == self.start]['statnf_cd'].unique() self.dest_cd_list = self.df[self.df['statntnm'] == self.destination]['statnt_cd'].unique().tolist() self.start_line_list = self.df[self.df['statnfnm'] == self.start]['statnf_line'].unique() self.dest_line_list = self.df[self.df['statntnm'] == self.destination]['statnt_line'].unique() self.step = 0 self.route_list = [] self.basic = basic(self.df) def common_lines(self): return self.basic.intersect(self.start_line_list, self.dest_line_list) def union_lines(self): return self.basic.union(self.start_line_list, self.dest_line_list) def next_stations(self, sub_list): couple = self.df[self.df['statnf_cd'].isin(sub_list)][['statnf_cd', 'statnt_cd']] couple.columns = [self.step, self.step+1] return couple def expand_route(self, route_df, sub_list): self.step += 1 route_df = pd.merge(route_df, self.next_stations(sub_list), how = 'left', on = self.step) route_df = route_df.dropna() sub_list = self.df[self.df['statnf_cd'].isin(sub_list)]['statnt_cd'].unique().tolist() # 중복 제거 for ss in range(2): self.basic.a_not_in_b(sub_list, route_df[self.step - ss]) return route_df, sub_list def extract_code_with_samelines(self, code_list,line_list): stations = self.sub_index[self.sub_index['station_cd'].isin(code_list)] stations_in_lines = stations[stations['line_num'].isin(line_list)] return stations_in_lines['station_cd'].tolist() def expand_route_to_commonline(self, route_df, sub_list): self.step += 1 next_stnt = self.next_stations(sub_list) next_stations_in_lines = self.extract_code_with_samelines(next_stnt[self.step+1], self.common_lines()) couple_in_lines = next_stnt[next_stnt[self.step+1].isin(next_stations_in_lines)] route_df = pd.merge(route_df, couple_in_lines, how = 'left', on = self.step) route_df = route_df.dropna() sub_list = self.df[self.df['statnf_cd'].isin(sub_list)]['statnt_cd'].unique().tolist() # 중복 제거 for ss in range(2): self.basic.a_not_in_b(sub_list, route_df[self.step - ss]) return route_df, sub_list def expand_route_to_union_line(self, route_df, sub_list): self.step += 1 next_stnt = self.next_stations(sub_list) next_stations_in_lines = self.extract_code_with_samelines(next_stnt[self.step+1], self.union_lines()) couple_in_lines = next_stnt[next_stnt[self.step+1].isin(next_stations_in_lines)] route_df = pd.merge(route_df, couple_in_lines, how = 'left', on = self.step) route_df = route_df.dropna() sub_list = self.df[self.df['statnf_cd'].isin(sub_list)]['statnt_cd'].unique().tolist() # 중복 제거 for ss in range(2): self.basic.a_not_in_b(sub_list, route_df[self.step - ss]) return route_df, sub_list def extract_route_for_destination(self, route_df): #필요한 경로만 추출 route_df = route_df.reset_index(drop = True) route_a = route_df[route_df[self.step+1].isin(self.dest_cd_list)] for jj in route_a.index: route_a = route_df.loc[jj].tolist() self.route_list.append(route_a) def routes_to_destination_without_transfer(self, route_df, sub_list): self.step = 0 t = 0 if len(self.common_lines()) > 0: while len(self.route_list) <= 1: if t >= 1: break else: if len(self.route_list) == 0: while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: # 최종 목적지 도달여부 확인 route_df, sub_list = self.expand_route_to_commonline(route_df, sub_list) if self.step > 70: t+= 1 break if t == 0: #필요한 경로만 추출 self.extract_route_for_destination(route_df) else: pass else: route_df, sub_list = self.expand_route_to_commonline(route_df, sub_list) while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: route_df, sub_list = self.expand_route_to_commonline(route_df, sub_list) if self.step > 70: t+= 1 break if t == 0: #필요한 경로만 추출 self.extract_route_for_destination(route_df) else: pass else: pass def routes_to_destination_with_1_transfer(self, route_df, sub_list): self.step = 0 t = 0 while len(self.route_list) <= 1: if t >= 1: break else: if len(self.route_list) == 0: while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: # 최종 목적지 도달여부 확인 route_df, sub_list = self.expand_route_to_union_line(route_df, sub_list) if self.step > 70: t += 1 break #필요한 경로만 추출 if t == 0: self.extract_route_for_destination(route_df) else: pass else: route_df, sub_list = self.expand_route_to_union_line(route_df, sub_list) while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: route_df, sub_list = self.expand_route_to_union_line(route_df, sub_list) if self.step > 70: t += 1 break #필요한 경로만 추출 if t == 0: self.extract_route_for_destination(route_df) else: pass def routes_to_destination(self, route_df, sub_list): self.step = 0 t = 0 while len(self.route_list) <= 5: if t>= 1: break else: if len(self.route_list) == 0: while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: # 최종 목적지 도달여부 확인 route_df, sub_list = self.expand_route(route_df, sub_list) if self.step > 50: t+=1 break if t == 0: #필요한 경로만 추출 self.extract_route_for_destination(route_df) else: pass else: route_df, sub_list = self.expand_route(route_df, sub_list) while len(self.basic.intersect(route_df[self.step+1], self.dest_cd_list)) == 0: route_df, sub_list = self.expand_route(route_df, sub_list) if self.step > 50: t += 1 break if t== 0: #필요한 경로만 추출 self.extract_route_for_destination(route_df) else: pass #start = '삼성'; destination = '성수' def calculate_route_between_sub(df, sub_index, start, destination): sub_dist = df R = route_between_sub(sub_dist, sub_index, start, destination) if len(R.start_cd_list) >= 1: # 출발지 입력 제대로 했는지 판별 route_df = R.next_stations(R.start_cd_list) sub_list = route_df[1].unique().tolist() # 환승 없는 경로 R3 = route_between_sub(sub_dist, sub_index, start, destination) R3.routes_to_destination_without_transfer(route_df, sub_list) route_list_b = R3.route_list # 한번 환승하는 경로 R4 = route_between_sub(sub_dist, sub_index, start, destination) R4.routes_to_destination_with_1_transfer(route_df, sub_list) route_list_c = R4.route_list # 환승 포함 경로 R2 = route_between_sub(sub_dist, sub_index, start, destination) R2.routes_to_destination(route_df, sub_list) route_list_a = R2.route_list for jj in route_list_b: route_list_a.append(jj) for jj in route_list_c: route_list_a.append(jj) route_list = route_list_a rst_route = [] rst = pd.DataFrame() # route_list 중 최적 경로 선택 try: # 각 경로별로 dataframe 생성 for ind in range(len(route_list)): # ind = 1 route_b = route_list[ind] df_route = pd.DataFrame(columns = sub_dist.columns) for k in range(len(route_b)-1): st = route_b[k] d = route_b[k+1] rt = sub_dist[(sub_dist['statnt_cd'] == d) & (sub_dist['statnf_cd'] == st)] if len(rt) == 1: pass elif len(rt) > 1: rt = rt[rt['statnf_cd'].isin(df_route['statnt_cd'])==False] df_route = df_route.append(rt) # 중복 제거 df_route = df_route.reset_index(drop = True) df_route = df_route.sort_values(by = 'sctntime', ascending = True) df_route = df_route.drop_duplicates(['statnfnm', 'statntnm'], keep = 'first').reset_index(drop = False) df_route = df_route.sort_values(by = 'index', ascending = True).drop('index', axis = 1) rst_route.append(df_route) # rst num_station = len(route_b) num_transfer = len(df_route['statnt_line'].unique())-1 time = df_route['sctntime'].astype(int).sum() time_tot = time rst.loc[ind, '정류장수'] = num_station rst.loc[ind, '환승횟수'] = num_transfer rst.loc[ind, '총 소요시간'] = time_tot except (IndexError): pass # print(step) try: least_time = rst.loc[rst.sort_values('총 소요시간', ascending = True)[:1].index] least_transfer = rst.loc[rst.sort_values(['환승횟수', '총 소요시간'], ascending = [True, True])[:1].index] least_time_ = rst_route[rst.sort_values('총 소요시간', ascending = True)[:1].index[0]] least_transfer_ = rst_route[rst.sort_values(['환승횟수', '총 소요시간'], ascending = [True, True])[:1].index[0]] rst = least_time.append(least_transfer) rst_route = [] rst_route.append(least_time_) rst_route.append(least_transfer_) return rst, rst_route except: return "입력 오류", "입력 오류" else: print("출발지 입력 오류") return "입력 오류", "입력 오류" def interactive_route(df, sub_index, x,y): # x = input("출발: ") # y = input("도착: ") j, k = calculate_route_between_sub(df,sub_index, x, y) if type(j) != str: try: t = j['총 소요시간'].min() k[0] = k[0][k[0]['transfer'] == '0'] stnt = len(k[0]) + 1 trans = j['환승횟수'].min() route = k[0]['statnfnm'].tolist() + [y] # route.reverse() # print("총 소요시간: %d분" %(t)) # print("환승 횟수: %d회" %(trans)) # print("경로: %s" %(route)) return t, stnt, trans, route except KeyError: return "입력 오류", "입력 오류", "입력 오류", "입력 오류" else: return "입력 오류", "입력 오류", "입력 오류", "입력 오류" #% 중간 장소 산출 함수 def center_point(df, sub_index, s1, s2, dest_list): t_df = pd.DataFrame() it = 0 for dest_ in dest_list: it += 1 print(it, dest_) rst1, route1 = calculate_route_between_sub(df, sub_index, start = s1, destination = dest_) time1 = rst1['총 소요시간'].min() num_transfer1 = len(route1[0]['statnt_line'].unique())-1 rst2, route2 = calculate_route_between_sub(df, sub_index, start = s2, destination = dest_) time2 = rst2['총 소요시간'].min() num_transfer2 = len(route2[0]['statnt_line'].unique())-1 t_dif = np.abs(time1-time2) t_sum = np.abs(time1+time2) t_df.loc[dest_, '시간_' + s1] = time1 t_df.loc[dest_, '시간_' + s2] = time2 t_df.loc[dest_, '시간차이'] = t_dif t_df.loc[dest_, '시간합'] = t_sum a = t_df[t_df['시간차이'] <= 10] a = a.sort_values(by = ['시간합'], ascending = True) center = a[:5].reset_index(drop = False) return center ``` #### File: subway-place/pre-build/integrate_route_from_gcs.py ```python import pandas as pd import os from tqdm import tqdm from google.cloud import storage def main(): # gcs 인증 os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = os.path.dirname(os.path.abspath(os.path.dirname(__file__)))+ '/key/level-district.json' # 이름 설정 bucket_name = 'j-first-bucket' save_path = 'route/' file_name = 'route_all.txt' # blob list blobs = list_blob(bucket_name) # blobs to dataframe data = blobs_to_dataframe(blobs) # upload data to gcs upload_blob(bucket_name, save_path + file_name, data) def list_blob(bucket_name): storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blobs = list(bucket.list_blobs()) return blobs def blobs_to_dataframe(blobs): df = pd.DataFrame() for bl in blobs: if 'rev' in bl.name: with open("tmp.txt", "wb") as file_obj: bl.download_to_file(file_obj) df = df.append(pd.read_csv("tmp.txt")) print(bl.name) else: pass return df def upload_blob(bucket_name, destination_blob_name, df): global credentials """Uploads a file to the bucket. bucket_name = "your-bucket-name" destination_blob_name = "storage-object-name" df = dataframe to save """ storage_client = storage.Client() bucket = storage_client.bucket(bucket_name) blob = bucket.blob(destination_blob_name) storage.blob._MAX_MULTIPART_SIZE = 5 * 1024 * 1024 # 5 MB blob.chunk_size = 5 * 1024 * 1024 # Set 5 MB blob size df.to_csv("route_all.txt", encoding = 'utf-8', index = False) blob.upload_from_filename("route_all.txt", content_type='text/csv') # blob.upload_from_filename(source_file_name) print( "File uploaded to {}.".format( destination_blob_name ) ) if __name__ == '__main__': main() ```
{ "source": "jireh-father/automl", "score": 2 }
#### File: automl/efficientdet/afp_to_coco_ori.py ```python import json import argparse import sys import glob import os import datetime from pycocotools import mask import imagesize def parse_args(): parser = argparse.ArgumentParser(description='End-to-end inference') parser.add_argument('--image_dir', dest='image_dir', default=None, type=str) parser.add_argument('--output_path', dest='output_path', default=None, type=str) parser.add_argument('--label_dir', dest='label_dir', default=None, type=str) parser.add_argument('--start_idx', dest='start_idx', default=1, type=int) parser.add_argument('--train_ratio', dest='train_ratio', default=0.9, type=float) # parser.add_argument('--output_image_dir', dest='output_image_dir', default=None, type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() def init_coco_annotation(label_dir, start_idx): coco_output = {} coco_output["info"] = { "description": "This is stable 1.0 version of the 2014 MS COCO dataset.", "url": "http://mscoco.org", "version": "1.0", "year": 2014, "contributor": "Microsoft COCO group", "date_created": "2015-01-27 09:11:52.357475" } coco_output["type"] = "instances" coco_output["license"] = [{ "url": "http://creativecommons.org/licenses/by-nc-sa/2.0/", "id": 1, "name": "Attribution-NonCommercial-ShareAlike License" }] coco_output["images"] = [] coco_output["annotations"] = [] if label_dir is None: coco_output["categories"] = [{ "supercategory": "eye", "id": 1, "name": "eye" }, ] else: label_dirs = glob.glob(os.path.join(label_dir, "*")) label_dirs.sort() coco_output["categories"] = [ {"supercategory": os.path.basename(dname), "id": i + start_idx, "name": os.path.basename(dname)} for i, dname in enumerate(label_dirs)] return coco_output if __name__ == '__main__': args = parse_args() os.makedirs(os.path.dirname(args.output_path), exist_ok=True) # os.makedirs(args.output_image_dir, exist_ok=True) coco_output = init_coco_annotation(args.label_dir, args.start_idx) image_id_map = {} bbox_id_map = {} anno_sample = {"segmentation": [], "area": 100.0, "iscrowd": 0, "image_id": 1, "bbox": [1, 1, 1, 1], "category_id": 1, "id": 1} polygon_files = [] if args.image_dir: polygon_files = glob.glob(os.path.join(args.image_dir, "*.xy")) for i, polygon_file in enumerate(polygon_files): image_file = os.path.splitext(polygon_file)[0] if not os.path.isfile(image_file): print("not image file", image_file) continue segmentation = [ [float(coord.strip()) for coord in open(polygon_file).readline().split(" ")[1:] if coord and coord.strip()]] width, height = imagesize.get(image_file) rles = mask.frPyObjects(segmentation, height, width) rle = mask.merge(rles) bbox = mask.toBbox(rle) area = mask.area(rle) image_fn = os.path.basename(image_file) if image_fn not in image_id_map: image_id_map[image_fn] = len(image_id_map) + 1 coco_output["images"].append({ "license": 1, "url": "", "file_name": image_fn, "height": height, "width": width, "date_captured": datetime.datetime.today().strftime("%Y-%m-%d %H:%M:%S"), "id": image_id_map[image_fn] }) coco_output["annotations"].append({ "segmentation": segmentation, "area": int(area), "iscrowd": 0, "image_id": i + 1, "bbox": list(bbox), "category_id": 1, "id": image_id_map[image_fn] }) json.dump(coco_output, open(args.output_path, "w+")) print("complete") ``` #### File: automl/efficientdet/infer_and_extract_bbox_tflite.py ```python import numpy as np import tensorflow as tf from absl import flags from absl import app import glob import time from PIL import Image import os import shutil import json import random flags.DEFINE_string('input_image', None, 'Input image path for inference.') flags.DEFINE_string('label_dir', None, 'Input image path for inference.') flags.DEFINE_string('output_path', None, 'Output dir for inference.') flags.DEFINE_string('output_image_dir', None, 'Output dir for inference.') flags.DEFINE_string('vis_image_dir', None, 'Output dir for inference.') flags.DEFINE_string('real_image_dir', None, 'Output dir for inference.') flags.DEFINE_float('min_score_thresh', 0.3, 'Score threshold to show box.') flags.DEFINE_integer('target_label_idx', None, 'Score threshold to show box.') flags.DEFINE_string('tflite_path', None, 'Path for exporting tflite file.') flags.DEFINE_integer('start_index', 1, 'Path for exporting tflite file.') flags.DEFINE_integer('random_seed', 1, 'Path for exporting tflite file.') flags.DEFINE_boolean('use_bbox_aug', False, 'Path for exporting tflite file.') flags.DEFINE_float('bbox_aug_ratio', 0.1, 'Path for exporting tflite file.') FLAGS = flags.FLAGS def resize_and_crop_image(img, output_size): height, width = img.shape[:2] scale = output_size / float(max(width, height)) if scale != 1.0: height = int(round(height * scale)) width = int(round(width * scale)) interpolation = cv2.INTER_LINEAR img = cv2.resize(img, (width, height), interpolation=interpolation) img = cv2.copyMakeBorder(img, 0, output_size - height, 0, output_size - width, cv2.BORDER_CONSTANT, value=0) return img, width, height def main(_): model_path = FLAGS.tflite_path interpreter = tf.lite.Interpreter(model_path=model_path) interpreter.allocate_tensors() if FLAGS.random_seed: random.seed(FLAGS.random_seed) input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() input_shape = input_details[0]['shape'] image_file_list = glob.glob(FLAGS.input_image) label_dirs = glob.glob(os.path.join(FLAGS.label_dir, "*")) label_dirs.sort() label_dict = {os.path.basename(dname): i + FLAGS.start_index for i, dname in enumerate(label_dirs)} image_file_list.sort() if os.path.dirname(FLAGS.output_path): os.makedirs(os.path.dirname(FLAGS.output_path), exist_ok=True) os.makedirs(FLAGS.output_image_dir, exist_ok=True) os.makedirs(FLAGS.vis_image_dir, exist_ok=True) real_image_dict = {} for image_file in image_file_list: splitext = os.path.splitext(image_file) ext = splitext[1] fp = splitext[0] real_file_name = "_".join(os.path.basename(fp).split("_")[1:-1]) searched = glob.glob(os.path.join(FLAGS.real_image_dir, real_file_name + ".*")) if len(searched) == 1: real_file_path = searched[0] else: real_file_name = "_".join(os.path.basename(fp).split("_")[:-1]) real_file_path = os.path.join(FLAGS.real_image_dir, real_file_name + ext) if not os.path.isfile(real_file_path): real_file_path = os.path.join(FLAGS.real_image_dir, real_file_name + ".jpeg") if not os.path.isfile(real_file_path): real_file_path = os.path.join(FLAGS.real_image_dir, real_file_name + ".png") if not os.path.isfile(real_file_path): real_file_path = os.path.join(FLAGS.real_image_dir, real_file_name + ".bmp") if real_file_path not in real_image_dict: real_image_dict[real_file_path] = [] bbox_idx = int(os.path.basename(fp).split("_")[-1]) label_dir = os.path.basename(os.path.dirname(image_file)) real_image_dict[real_file_path].append([bbox_idx, label_dict[label_dir]]) annotations = {} total_exec_time = 0. for i, image_file in enumerate(real_image_dict): bbox_idx_and_labels = real_image_dict[image_file] print(image_file, bbox_idx_and_labels) bbox_idxs = [item[0] for item in bbox_idx_and_labels] labels = [item[1] for item in bbox_idx_and_labels] pil_im = Image.open(image_file).convert("RGB") o_w, o_h = pil_im.size image_fn = os.path.basename(image_file) annotations[image_fn] = {"width": o_w, "height": o_h, "bbox": []} # im = np.array(pil_im.resize((input_shape[2], input_shape[1]))) im = np.array(pil_im) # im = normalize_image(np.array(pil_im)) im, r_w, r_h = resize_and_crop_image(im, input_shape[1]) im = np.expand_dims(im, axis=0) interpreter.set_tensor(input_details[0]['index'], im) start = time.time() interpreter.invoke() output_data = interpreter.get_tensor(output_details[0]['index']) exec_time = time.time() - start print(i, len(real_image_dict), image_file, exec_time) total_exec_time += exec_time r_h = input_shape[1] r_w = input_shape[2] if FLAGS.target_label_idx is not None: eye_indexes = np.squeeze(np.argwhere(output_data[0, :, 6] == FLAGS.target_label_idx), 1) eye_indexes = np.squeeze(np.argwhere(output_data[0][eye_indexes][:, 5] > 0.), 1) else: eye_indexes = np.squeeze(np.argwhere(output_data[0, :, 5] > 0.), 1) if len(eye_indexes) > 0: top_k = 30 top_k_indexes = output_data[0][eye_indexes][:, 5].argsort()[::-1][:top_k] scores = output_data[0][top_k_indexes][:, 5] bboxes = output_data[0][top_k_indexes][:, 1:5] eyes_bboxes = [] for j, score in enumerate(scores): if score < FLAGS.min_score_thresh: print("skip", score, "<", FLAGS.min_score_thresh) break r_y1, r_x1, r_y2, r_x2 = bboxes[j] y1 = r_y1 / r_h * o_h y2 = r_y2 / r_h * o_h x1 = r_x1 / r_w * o_w x2 = r_x2 / r_w * o_w print(o_w, o_h, (x1, y1, x2, y2)) eyes_bboxes.append({"x1": x1, "y1": y1, "x2": x2, "y2": y2}) crop_im = pil_im.crop((x1, y1, x2, y2)) output_filename = "{}_{}.jpg".format(os.path.splitext(os.path.basename(image_file))[0], j) output_path = os.path.join(FLAGS.vis_image_dir, output_filename) crop_im.save(output_path) print(eyes_bboxes) if eyes_bboxes: if not os.path.isfile(os.path.join(FLAGS.output_image_dir, os.path.basename(image_file))): shutil.copy(image_file, FLAGS.output_image_dir) dup_idx = False if len(set(bbox_idxs)) < len(bbox_idxs): dup_idx = True bbox_idx_map = {} for j, bbox_idx in enumerate(bbox_idxs): if bbox_idx >= len(eyes_bboxes): raise Exception("invalid bbox index!", bbox_idx, eyes_bboxes) bbox = eyes_bboxes[bbox_idx] bbox["label"] = labels[j] if dup_idx and FLAGS.use_bbox_aug and bbox_idx in bbox_idx_map: w = bbox["x2"] - bbox["x1"] h = bbox["y2"] - bbox["y1"] w_aug_max = round(w * FLAGS.bbox_aug_ratio) h_aug_max = round(h * FLAGS.bbox_aug_ratio) x1_aug = random.randint(0, w_aug_max) - (w_aug_max // 2) x2_aug = random.randint(0, w_aug_max) - (w_aug_max // 2) y1_aug = random.randint(0, h_aug_max) - (h_aug_max // 2) y2_aug = random.randint(0, h_aug_max) - (h_aug_max // 2) bbox["x1"] += x1_aug bbox["x2"] += x2_aug bbox["y1"] += y1_aug bbox["y2"] += y2_aug bbox_idx_map[bbox_idx] = True annotations[image_fn]["bbox"].append(bbox) else: print("no eyes") json.dump(annotations, open(FLAGS.output_path, "w+")) print("avg exec time", total_exec_time / len(real_image_dict), "total images", len(real_image_dict)) if __name__ == '__main__': # tf.disable_eager_execution() app.run(main) ```
{ "source": "jireh-father/Detectron", "score": 2 }
#### File: jireh-father/Detectron/split_hash_dict.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import os import sys import json from itertools import islice def chunks(data, SIZE=10000): it = iter(data) for i in range(0, len(data), SIZE): yield {k: data[k] for k in islice(it, SIZE)} def parse_args(): parser = argparse.ArgumentParser(description='End-to-end inference') parser.add_argument( '--image_hash_dict_file', dest='image_hash_dict_file', help='image_hash_dict_file', type=str ) parser.add_argument( '--num_processes', dest='num_processes', help='num_processes', default=4, type=int ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() if __name__ == '__main__': args = parse_args() image_hash_dict = json.load(open(args.image_hash_dict_file)) num_chunks = len(image_hash_dict) // args.num_processes hash_dict_chunks = list(chunks(image_hash_dict, num_chunks)) if len(hash_dict_chunks) > args.num_processes: hash_dict_chunks[0].update(hash_dict_chunks[-1]) hash_dict_chunks = hash_dict_chunks[:-1] output_dir = os.path.dirname(args.image_hash_dict_file) for i, hash_dict_chunk in enumerate(hash_dict_chunks): json.dump(hash_dict_chunk, open(os.path.join(output_dir, "image_hash_dict_chunk_%d.json" % i), "w+")) ``` #### File: Detectron/tools/merge_dicts.py ```python import json import argparse import pickle import sys import glob import os def merge_dict(dict1, dict2): ''' Merge dictionaries and keep values of common keys in list''' dict3 = {**dict1, **dict2} for key, value in dict3.items(): if key in dict1 and key in dict2: dict3[key] = value + dict1[key] return dict3 def parse_args(): parser = argparse.ArgumentParser(description='End-to-end inference') parser.add_argument( '--dict_dir', dest='dict_dir', default=None, type=str ) if len(sys.argv) == 1: parser.print_help() sys.exit(1) return parser.parse_args() if __name__ == '__main__': args = parse_args() detection_json_files = "" json_files = glob.glob(os.path.join(args.dict_dir, "*.json")) image_hash_map = {} for i, json_file in enumerate(json_files): tmp_hash_map = json.load(open(json_file, "r")) image_hash_map = merge_dict(image_hash_map, tmp_hash_map) json.dump(image_hash_map, open(os.path.join(args.dict_dir, "merged_dict.json"), "w+")) ```
{ "source": "jireh-father/InsightFace_Pytorch", "score": 2 }
#### File: jireh-father/InsightFace_Pytorch/inference_dog_eyes_verification.py ```python import argparse import cv2 from PIL.JpegImagePlugin import JpegImageFile cv2.ocl.setUseOpenCL(False) import albumentations as al from albumentations.pytorch import ToTensorV2 import numpy as np import torch from backbone import Backbone def get_test_transforms(input_size=None, use_random_crop=False, use_gray=False, use_center_crop=False, center_crop_ratio=0.8): if use_random_crop: compose = [al.Resize(int(input_size * 1.1), int(input_size * 1.1)), al.CenterCrop(input_size, input_size)] elif use_center_crop: compose = [al.Resize(int(input_size * (2.0 - center_crop_ratio)), int(input_size * (2.0 - center_crop_ratio))), al.CenterCrop(input_size, input_size)] else: compose = [al.Resize(input_size, input_size)] return al.Compose(compose + [ al.ToGray(p=1.0 if use_gray else 0.0), al.Normalize(), ToTensorV2() ]) def to_numpy(tensor): return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy() class DogEyesVerifier(object): def __init__(self, input_size=112, model_path=None, pos_thr=None, neg_thr=None, drop_ratio=0.6, net_depth=50, use_random_crop=False, use_gray=False, use_center_crop=False, center_crop_ratio=0.8, device='CPU', use_onnx=False): assert model_path is not None self.pos_thr = pos_thr self.neg_thr = neg_thr self.input_size = input_size self.transforms = get_test_transforms(input_size, use_random_crop=use_random_crop, use_gray=use_gray, use_center_crop=use_center_crop, center_crop_ratio=center_crop_ratio) self.use_onnx = use_onnx if use_onnx: import onnxruntime self.model = onnxruntime.InferenceSession(model_path) else: self.model = Backbone(net_depth, drop_ratio, 'ir_se').to(device) self.model.eval() if device == 'cpu': self.model.load_state_dict(torch.load(model_path, map_location=device), strict=True) else: self.model.load_state_dict(torch.load(model_path), strict=True) self.use_cuda = device == "cuda" def is_same(self, img1, img2, is_same_side, pos_thr=None, neg_thr=None, use_pos_low_thr=False): if pos_thr is None: pos_thr = self.pos_thr if neg_thr is None: neg_thr = self.neg_thr if pos_thr is None and neg_thr is None: raise ValueError("pos_thr and neg_thr are None.") if isinstance(img1, str): img1 = cv2.imread(img1, cv2.IMREAD_COLOR) img1 = cv2.cvtColor(img1, cv2.COLOR_BGR2RGB) elif isinstance(img1, JpegImageFile): if img1.mode != "RGB": img1 = img1.convert("RGB") img1 = np.array(img1) if isinstance(img2, str): img2 = cv2.imread(img2, cv2.IMREAD_COLOR) img2 = cv2.cvtColor(img2, cv2.COLOR_BGR2RGB) elif isinstance(img2, JpegImageFile): if img2.mode != "RGB": img2 = img2.convert("RGB") img2 = np.array(img2) img1 = self.transforms(image=img1)['image'].unsqueeze(0) img2 = self.transforms(image=img2)['image'].unsqueeze(0) if self.use_cuda: img1 = img1.cuda() img2 = img2.cuda() if self.use_onnx: input1 = {self.model.get_inputs()[0].name: to_numpy(img1)} input2 = {self.model.get_inputs()[0].name: to_numpy(img2)} embedding1 = self.model.run(None, input1)[0] embedding2 = self.model.run(None, input2)[0] else: with torch.set_grad_enabled(False): embedding1 = self.model(img1).cpu().data.numpy() embedding2 = self.model(img2).cpu().data.numpy() dist = np.sum(np.square(np.subtract(embedding1, embedding2)), 1)[0] if is_same_side: return dist < pos_thr else: if use_pos_low_thr: return dist < neg_thr else: return False if __name__ == '__main__': parser = argparse.ArgumentParser(description='for common image metric learning') parser.add_argument("-depth", "--net_depth", help="how many layers [50,100,152]", default=50, type=int) parser.add_argument('--input_size', type=int, default=112) parser.add_argument('--use_random_crop', default=False, action="store_true") parser.add_argument('--model_path', default=None, type=str) parser.add_argument('--use_gpu', default=False, action="store_true") # onnx 모델 사용할지 parser.add_argument('--use_onnx', default=False, action="store_true") # 미리 두 눈 이미지를 left vs right 모델로 돌려서 동일한 쪽의 눈인지 체크해줘야 한다. parser.add_argument('--is_same_side', default=False, action="store_true") # left vs right 모델이 오탐할 경우에도 두 눈의 vector거리가 가까우면 동일한 눈으로 취급한다. # 전체적으로 정확도가 더 높아짐. 사용하는것을 추천. parser.add_argument('--use_pos_low_thr', default=False, action="store_true") parser.add_argument('--img1', default=None, type=str) parser.add_argument('--img2', default=None, type=str) # positive pair(is_same_side가 true) 일때의 threshold값 parser.add_argument('--pos_thr', default=None, type=float) # negative pair(is_same_side가 false) 인데 use_pos_low_thr 옵션을 사용할 경우 이 negative threshold값을 사용하여 판단 parser.add_argument('--neg_thr', default=None, type=float) args = parser.parse_args() verifier = DogEyesVerifier(input_size=args.input_size, model_path=args.model_path, pos_thr=args.pos_thr, neg_thr=args.neg_thr, use_random_crop=args.use_random_crop, device="cuda" if args.use_gpu else "cpu", use_onnx=args.use_onnx) result = verifier.is_same(args.img1, args.img2, args.is_same_side, pos_thr=args.pos_thr, neg_thr=args.neg_thr, use_pos_low_thr=args.use_pos_low_thr) print("result", result) ``` #### File: jireh-father/InsightFace_Pytorch/make_font_val_dataset.py ```python import os import argparse import glob import json import random from multiprocessing import Pool import traceback from PIL import Image from data.online_dataset import OnlineFontDataset import gen_params, transforms if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-o', '--output_dir', type=str, default="/home/irelin/resource/font_recognition/val_dataset") parser.add_argument('-f', '--font_dir', type=str, default="/home/irelin/resource/font_recognition/font") parser.add_argument('--font_list', type=str, default="./db/val_font_list.json") parser.add_argument('--bg_dir', type=str, default="/home/irelin/resource/font_recognition/val_bg") parser.add_argument('--train_dataset_param_func', type=str, default='get_train_params', # get_params_noraml required=False) # func or gen_param.json parser.add_argument('--train_transform_func_name', type=str, default='get_train_transforms', # get_train_transforms_normal required=False) # func or gen_param.json parser.add_argument('--num_sample_each_class', type=int, default=10) parser.add_argument('--min_num_chars', type=int, default=1) parser.add_argument('--max_num_chars', type=int, default=6) parser.add_argument('--han_unicode_file', type=str, default="db/union_korean_unicodes.json") parser.add_argument('--eng_unicode_file', type=str, default="db/eng_unicodes.json") parser.add_argument('--num_unicode_file', type=str, default="db/number_unicodes.json") parser.add_argument('--han_prob', type=float, default=0.4) parser.add_argument('--eng_prob', type=float, default=0.3) parser.add_argument('--num_prob', type=float, default=0.3) parser.add_argument('--mix_prob', type=float, default=0.25) parser.add_argument('--simple_img_prob', type=float, default=0.2) parser.add_argument('--font_size_range', type=str, default='10,220') parser.add_argument('--same_text_in_batch_prob', default=0., type=float) parser.add_argument('--same_font_size_in_batch_prob', default=0., type=float) parser.add_argument('--same_text_params_in_batch_prob', default=0., type=float) parser.add_argument('--use_text_persp_trans_prob', default=0.1, type=float) parser.add_argument('--use_img_persp_trans_prob', default=0.4, type=float) parser.add_argument('-w', '--num_processes', type=int, default=8) parser.add_argument('--seed', type=int, default=None) args = parser.parse_args() for arg in vars(args): print(arg, getattr(args, arg)) random.seed(args.seed) bg_list = glob.glob(os.path.join(args.bg_dir, "*")) generation_params = getattr(gen_params, args.train_dataset_param_func)() train_transform_func = getattr(transforms, args.train_transform_func_name) train_transforms = train_transform_func(use_online=False) han_unicodes = json.load(open(args.han_unicode_file)) eng_unicodes = json.load(open(args.eng_unicode_file)) num_unicodes = json.load(open(args.num_unicode_file)) font_size_range = args.font_size_range.split(",") font_size_range = list(range(int(font_size_range[0]), int(font_size_range[1]) + 1)) font_list = [os.path.join(args.font_dir, font_name) for font_name in json.load(open(args.font_list))] font_list.sort() feed_data = [] for i in range(len(font_list)): font_name = os.path.splitext(os.path.basename(font_list[i]))[0] class_dir = os.path.join(args.output_dir, font_name) file_cnt = len(glob.glob(os.path.join(class_dir, "*"))) if file_cnt >= args.num_sample_each_class: print(font_name, "skip") continue for j in range(args.num_sample_each_class): feed_data.append([i, j]) dataset = OnlineFontDataset(font_list, transform=train_transforms, generation_params=generation_params, bg_list=bg_list, num_sample_each_class=args.num_sample_each_class, min_chars=args.min_num_chars, max_chars=args.max_num_chars, hangul_unicodes=han_unicodes, eng_unicodes=eng_unicodes, number_unicodes=num_unicodes, hangul_prob=args.han_prob, eng_prob=args.eng_prob, num_prob=args.num_prob, mix_prob=args.mix_prob, simple_img_prob=args.simple_img_prob, font_size_range=font_size_range, same_text_in_batch_prob=args.same_text_in_batch_prob, same_font_size_in_batch_prob=args.same_font_size_in_batch_prob, same_text_params_in_batch_prob=args.same_text_params_in_batch_prob, use_text_persp_trans_prob=args.use_text_persp_trans_prob, use_img_persp_trans_prob=args.use_img_persp_trans_prob, skip_exception=True, use_debug=True, change_font_in_error=False, use_random_idx=False ) def _main(feed_item): font_idx = feed_item[0] text_idx = feed_item[1] font_path = font_list[font_idx] font_name = os.path.splitext(os.path.basename(font_path))[0] class_dir = os.path.join(args.output_dir, font_name) print(font_idx, text_idx, font_name) os.makedirs(class_dir, exist_ok=True) tried = 0 try: im = None while True: try: dataset._sampling_text() im = dataset.create_text_image(font_idx) break except Exception as e: tried += 1 if tried > 6: raise e pass # im, _ = dataset.__getitem__(font_idx) # print("debug", _, font_idx) if len(glob.glob(os.path.join(class_dir, "*"))) >= args.num_sample_each_class: print(font_name, "skip") return False fp = os.path.join(class_dir, "%09d.jpg" % text_idx) while os.path.isfile(fp): text_idx += 1 fp = os.path.join(class_dir, "%09d.jpg" % text_idx) Image.fromarray(im).save(os.path.join(class_dir, "%09d.jpg" % text_idx), quality=100) except Exception: print("gen error", font_name, font_idx) traceback.print_exc() with Pool(args.num_processes) as pool: # ThreadPool(8) as pool: print("start multi processing") pool.map(_main, feed_data) print("end of making") ``` #### File: jireh-father/InsightFace_Pytorch/test_landmark_dacon.py ```python from config import get_config from Learner import face_learner import argparse import random import transforms from pathlib import Path import torch from PIL import Image import os import glob import csv from torch.nn import functional as F # python train.py -net mobilefacenet -b 200 -w 4 class CustomDataset(torch.utils.data.Dataset): """__init__ and __len__ functions are the same as in TorchvisionDataset""" def __init__(self, root, transform=None): self.transform = transform self.samples = [] for image_dir in glob.glob(os.path.join(root, "*")): for image_file in glob.glob(os.path.join(image_dir, "*")): self.samples.append(image_file) def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ path = self.samples[index] sample = np.array(Image.open(path).convert("RGB")) if self.transform is not None: sample = self.transform(image=sample)['image'] return sample, os.path.splitext(os.path.basename(path))[0] def __len__(self): return len(self.samples) if __name__ == '__main__': parser = argparse.ArgumentParser(description='for common image metric learning') parser.add_argument("-e", "--epochs", help="training epochs", default=20, type=int) parser.add_argument("-net", "--net_mode", help="which network, [ir, ir_se, mobilefacenet]", default='ir_se', type=str) parser.add_argument("-depth", "--net_depth", help="how many layers [50,100,152]", default=50, type=int) parser.add_argument('-lr', '--lr', help='learning rate', default=1e-3, type=float) parser.add_argument("-b", "--batch_size", help="batch_size", default=96, type=int) parser.add_argument("-w", "--num_workers", help="workers number", default=3, type=int) parser.add_argument("-d", "--data_mode", help="use which database, [vgg, ms1m, emore, concat]", default='common', type=str) parser.add_argument("--embedding_size", help="embedding_size", default=512, type=int) parser.add_argument("-t", "--test_img_dir", default=None, type=str) parser.add_argument("--label_file", default=None, type=str) parser.add_argument("--max_positive_cnt", default=1000, type=int) parser.add_argument("--val_batch_size", default=256, type=int) parser.add_argument('--pin_memory', default=False, action="store_true") parser.add_argument("--not_use_pos", default=False, action='store_true') parser.add_argument("--not_use_neg", default=False, action='store_true') parser.add_argument('--work_path', type=str, default=None, required=False) parser.add_argument('--seed', type=int, default=None) parser.add_argument('--benchmark', default=False, action="store_true") parser.add_argument('--val_img_dirs', type=str, default='{"val":"path"}', required=False) parser.add_argument('--train_transform_func_name', type=str, default='get_train_common_transforms', # get_train_transforms_normal required=False) # func or gen_param.json parser.add_argument('--val_transform_func_name', type=str, default='get_val_common_transforms', # get_train_transforms_normal required=False) # func or gen_param.json parser.add_argument('--input_size', type=int, default=112) parser.add_argument('--use_random_crop', default=False, action="store_true") parser.add_argument('--use_center_crop', default=False, action="store_true") parser.add_argument('--center_crop_ratio', default=0.8, type=float) parser.add_argument('--use_gray', default=False, action="store_true") parser.add_argument('--only_use_pixel_transform', default=False, action="store_true") parser.add_argument('--use_blur', default=False, action="store_true") parser.add_argument('--use_flip', default=False, action="store_true") parser.add_argument('--optimizer', default='sgd', type=str) parser.add_argument('--pooling', default='GeM', type=str) parser.add_argument('--last_fc_dropout', type=float, default=0.0) parser.add_argument('--pretrained', default=False, action="store_true") parser.add_argument('--loss_module', default='arcface', type=str) parser.add_argument('--s', type=float, default=30.0) parser.add_argument('--margin', type=float, default=0.3) parser.add_argument('--ls_eps', type=float, default=0.0) parser.add_argument('--theta_zero', type=float, default=1.25) parser.add_argument('--wd', type=float, default=1e-5) parser.add_argument('--restore_suffix', default=None, type=str) parser.add_argument('--train', default=False, action="store_true") parser.add_argument('--no_transforms', default=False, action="store_true") parser.add_argument('--ft_model_path', default=None, type=str) parser.add_argument('--no_strict', default=False, action="store_true") args = parser.parse_args() conf = get_config() for arg in vars(args): print(arg, getattr(args, arg)) setattr(conf, arg, getattr(args, arg)) conf.work_path = Path(conf.work_path) conf.model_path = conf.work_path / 'models' conf.log_path = conf.work_path / 'log' conf.save_path = conf.work_path / 'save' if args.net_mode == 'mobilefacenet': conf.use_mobilfacenet = True else: conf.net_mode = args.net_mode conf.net_depth = args.net_depth if args.seed is not None: import numpy as np import torch random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) torch.cuda.manual_seed(args.seed) transforms = transforms.get_test_transforms_v2(args.input_size, use_crop=args.use_crop, center_crop_ratio=args.center_crop_ratio, use_gray=args.use_gray) dataset = CustomDataset(args.test_img_dir, transforms) dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=args.pin_memory) learner = face_learner(conf, inference=True) for imgs, labels in self.loader: imgs = imgs.to(conf.device) labels = labels.to(conf.device) self.optimizer.zero_grad() embeddings = self.model(imgs) thetas = self.head(embeddings, labels) device = 'cuda' total_scores = [] total_indices = [] total_file_names = [] for step, (imgs, file_names) in enumerate(dataloader): if step > 0 and step % args.log_step_interval == 0: print(step, len(dataloader)) imgs = imgs.to(device) total_file_names += list(file_names) with torch.set_grad_enabled(False): embeddings = learner.model(imgs) outputs = learner.head(embeddings, labels) scores, indices = torch.max(F.softmax(outputs, 1), dim=1) total_indices += list(indices.cpu().numpy()) total_scores += list(scores.cpu().numpy()) rows = zip(total_file_names, total_indices, total_scores) output_dir = os.path.dirname(args.output_csv_path) if output_dir: os.makedirs(output_dir, exist_ok=True) with open(args.output_csv_path, "w") as f: writer = csv.writer(f) writer.writerow(["id", "landmark_id", "conf"]) for row in rows: writer.writerow(row) print("done") ``` #### File: jireh-father/InsightFace_Pytorch/transforms.py ```python import cv2 cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) import albumentations as al from albumentations.augmentations import functional as F from albumentations.pytorch import ToTensorV2 def get_common_train_transforms(): return [ # al.OneOf([ # al.RandomRotate90(), # al.Rotate(limit=90, border_mode=cv2.BORDER_CONSTANT), # ], p=0.1), al.ShiftScaleRotate(border_mode=cv2.BORDER_CONSTANT, rotate_limit=30, p=0.05), al.OpticalDistortion(border_mode=cv2.BORDER_CONSTANT, distort_limit=5.0, shift_limit=0.1, p=0.05), al.ElasticTransform(border_mode=cv2.BORDER_CONSTANT, alpha_affine=15, p=0.05), al.OneOf([ al.RandomGamma(), al.HueSaturationValue(), al.RGBShift(), al.CLAHE(), al.ChannelShuffle(), al.InvertImg(), ], p=0.1), al.RandomSnow(p=0.05), al.RandomRain(p=0.05), # al.RandomFog(p=0.05), # al.RandomSunFlare(p=0.05), al.RandomShadow(p=0.05), al.RandomBrightnessContrast(p=0.2), al.GaussNoise(p=0.2), al.ISONoise(p=0.05), al.ToGray(p=0.05), al.OneOf([ # al.MotionBlur(blur_limit=4), al.Blur(blur_limit=2), # al.MedianBlur(blur_limit=4), # al.GaussianBlur(blur_limit=4), ], p=0.05), al.CoarseDropout(p=0.05), al.Downscale(p=0.05), al.ImageCompression(quality_lower=60, p=0.2), ] def _get_train_pixel_transforms(use_gray=False, use_blur=False): return [ al.RandomGamma(p=0.05), al.HueSaturationValue(p=0.05), al.RGBShift(p=0.05), al.CLAHE(p=0.05), al.ChannelShuffle(p=0.05), al.InvertImg(p=0.05), al.RandomSnow(p=0.05), al.RandomRain(p=0.05), al.RandomFog(p=0.05), al.RandomSunFlare(p=0.05, num_flare_circles_lower=1, num_flare_circles_upper=2, src_radius=110), al.RandomShadow(p=0.05), al.RandomBrightnessContrast(p=0.05), al.GaussNoise(p=0.05), al.ISONoise(p=0.05), al.MultiplicativeNoise(p=0.05), al.ToGray(p=1.0 if use_gray else 0.05), al.ToSepia(p=0.05), al.Solarize(p=0.05), al.Equalize(p=0.05), al.Posterize(p=0.05), al.FancyPCA(p=0.05), al.OneOf([ al.MotionBlur(blur_limit=1), al.Blur(blur_limit=1), al.MedianBlur(blur_limit=1), al.GaussianBlur(blur_limit=1), ], p=0.05 if use_blur else 0.), al.CoarseDropout(p=0.05), al.Cutout(p=0.05), al.GridDropout(p=0.05), al.ChannelDropout(p=0.05), al.Downscale(p=0.1), al.ImageCompression(quality_lower=60, p=0.1), ] def _get_train_transforms(use_gray=False, only_use_pixel_transform=False, use_flip=False, use_blur=False): pixel_transforms = _get_train_pixel_transforms(use_gray, use_blur) if only_use_pixel_transform: return pixel_transforms else: return [ al.Flip(p=0.5 if use_flip else 0.), al.OneOf([ al.Rotate(limit=90, border_mode=cv2.BORDER_CONSTANT), ], p=0.05), al.ShiftScaleRotate(border_mode=cv2.BORDER_CONSTANT, rotate_limit=30, p=0.05), al.OpticalDistortion(border_mode=cv2.BORDER_CONSTANT, distort_limit=5.0, shift_limit=0.1, p=0.05), al.GridDistortion(border_mode=cv2.BORDER_CONSTANT, p=0.05), al.ElasticTransform(border_mode=cv2.BORDER_CONSTANT, alpha_affine=15, p=0.05), al.RandomGridShuffle(p=0.05), ] + pixel_transforms def get_train_transforms(input_size=None, use_random_crop=False, use_gray=False, use_online=True, use_same_random_crop_in_batch=False, use_normalize=True, only_use_pixel_transform=False, use_flip=False, use_blur=False): if not use_online: return al.Compose(_get_train_transforms(use_gray, only_use_pixel_transform, use_flip, use_blur)) def resize_image(img, interpolation=cv2.INTER_LINEAR, **params): height, width = img.shape[:2] if width >= height: img = F.smallest_max_size(img, max_size=input_size, interpolation=interpolation) else: img = F.longest_max_size(img, max_size=input_size, interpolation=interpolation) pad_width = input_size - img.shape[:2][1] left = pad_width // 2 right = pad_width - left img = F.pad_with_params(img, 0, 0, left, right, border_mode=cv2.BORDER_CONSTANT, value=0) return img def left_crop(img, **params): height, width = img.shape[:2] if width > input_size: img = img[:, :input_size, :] return img if use_same_random_crop_in_batch: compose = _get_train_transforms(use_gray, only_use_pixel_transform, use_flip, use_blur) else: if use_random_crop: crop = al.RandomCrop(input_size, input_size) else: crop = al.Lambda(left_crop) compose = [ # al.SmallestMaxSize(input_size), al.Lambda(resize_image), crop] + _get_train_transforms(use_gray, only_use_pixel_transform, use_flip, use_blur) if use_normalize: return al.Compose(compose + [ al.Normalize(), ToTensorV2() ]) else: return al.Compose(compose) def get_train_common_transforms(input_size=None, use_random_crop=False, use_gray=False, only_use_pixel_transform=False, use_flip=False, use_blur=False, no_transforms=False, use_center_crop=False, center_crop_ratio=0.8): if use_random_crop: compose = [al.Resize(int(input_size * 1.1), int(input_size * 1.1)), al.RandomCrop(input_size, input_size)] elif use_center_crop: compose = [al.Resize(int(input_size * (2.0 - center_crop_ratio)), int(input_size * (2.0 - center_crop_ratio))), al.CenterCrop(input_size, input_size)] else: compose = [al.Resize(input_size, input_size)] if no_transforms: return al.Compose(compose + [ al.Normalize(), ToTensorV2() ]) return al.Compose(compose + _get_train_transforms(use_gray, only_use_pixel_transform, use_flip, use_blur) + [ al.Normalize(), ToTensorV2() ]) def get_train_transforms_simple(input_size=None, use_random_crop=False, use_gray=False, only_use_pixel_transform=False, use_flip=False, use_blur=False, no_transforms=False, use_center_crop=False, center_crop_ratio=0.8): return al.Compose( [ al.Resize(input_size, input_size, p=1.0), al.HorizontalFlip(p=0.5), al.Normalize(), ToTensorV2() ]) def get_train_transforms_mmdetection(input_size=None, use_random_crop=False, use_gray=False, only_use_pixel_transform=False, use_flip=False, use_blur=False, no_transforms=False, use_center_crop=False, center_crop_ratio=0.8): return al.Compose( [ al.RandomResizedCrop(height=input_size, width=input_size, scale=(0.4, 1.0), interpolation=0, p=0.5), al.Resize(input_size, input_size, p=1.0), al.HorizontalFlip(p=0.5), al.OneOf([ al.ShiftScaleRotate(border_mode=0, shift_limit=(-0.2, 0.2), scale_limit=(-0.2, 0.2), rotate_limit=(-20, 20)), al.OpticalDistortion(border_mode=0, distort_limit=[-0.5, 0.5], shift_limit=[-0.5, 0.5]), al.GridDistortion(num_steps=5, distort_limit=[-0., 0.3], border_mode=0), al.ElasticTransform(border_mode=0), al.IAAPerspective(), al.RandomGridShuffle() ], p=0.1), al.Rotate(limit=(-25, 25), border_mode=0, p=0.1), al.OneOf([ al.RandomBrightnessContrast( brightness_limit=(-0.2, 0.2), contrast_limit=(-0.2, 0.2)), al.HueSaturationValue(hue_shift_limit=(-20, 20), sat_shift_limit=(-30, 30), val_shift_limit=(-20, 20)), al.RandomGamma(gamma_limit=(30, 150)), al.RGBShift(), al.CLAHE(clip_limit=(1, 15)), al.ChannelShuffle(), al.InvertImg(), ], p=0.1), al.RandomSnow(p=0.05), al.RandomRain(p=0.05), al.RandomFog(p=0.05), al.RandomSunFlare(num_flare_circles_lower=1, num_flare_circles_upper=2, src_radius=110, p=0.05), al.RandomShadow(p=0.05), al.GaussNoise(var_limit=(10, 20), p=0.05), al.ISONoise(color_shift=(0, 15), p=0.05), al.MultiplicativeNoise(p=0.05), al.OneOf([ al.ToGray(p=1. if use_gray else 0.05), al.ToSepia(p=0.05), al.Solarize(p=0.05), al.Equalize(p=0.05), al.Posterize(p=0.05), al.FancyPCA(p=0.05), ], p=0.05), al.OneOf([ al.MotionBlur(blur_limit=(3, 7)), al.Blur(blur_limit=(3, 7)), al.MedianBlur(blur_limit=3), al.GaussianBlur(blur_limit=3), ], p=0.05), al.CoarseDropout(p=0.05), al.Cutout(num_holes=30, max_h_size=37, max_w_size=37, fill_value=0, p=0.05), al.GridDropout(p=0.05), al.ChannelDropout(p=0.05), al.Downscale(scale_min=0.5, scale_max=0.9, p=0.1), al.ImageCompression(quality_lower=60, p=0.2), al.Normalize(), ToTensorV2() ]) def get_val_common_transforms(input_size=None, use_random_crop=False, use_gray=False, use_center_crop=False, center_crop_ratio=0.8): if use_random_crop: compose = [al.Resize(int(input_size * 1.1), int(input_size * 1.1)), al.CenterCrop(input_size, input_size)] elif use_center_crop: compose = [al.Resize(int(input_size * (2.0 - center_crop_ratio)), int(input_size * (2.0 - center_crop_ratio))), al.CenterCrop(input_size, input_size)] else: compose = [al.Resize(input_size, input_size)] return al.Compose(compose + [ al.ToGray(p=1.0 if use_gray else 0.0), al.Normalize(), ToTensorV2() ]) def get_simple_transforms(input_size=224, use_random_crop=False, use_same_random_crop_in_batch=False, use_gray=False): def resize_image(img, interpolation=cv2.INTER_LINEAR, **params): height, width = img.shape[:2] if width >= height: img = F.smallest_max_size(img, max_size=input_size, interpolation=interpolation) else: img = F.longest_max_size(img, max_size=input_size, interpolation=interpolation) pad_width = input_size - img.shape[:2][1] left = pad_width // 2 right = pad_width - left img = F.pad_with_params(img, 0, 0, left, right, border_mode=cv2.BORDER_CONSTANT, value=0) return img def left_crop(img, **params): height, width = img.shape[:2] if width > input_size: img = img[:, :input_size, :] return img if use_same_random_crop_in_batch: compose = [] else: if use_random_crop: crop = al.RandomCrop(input_size, input_size) else: crop = al.Lambda(left_crop) compose = [ # al.SmallestMaxSize(input_size), al.Lambda(resize_image), crop] if use_gray: return al.Compose(compose + [ al.ToGray(p=1.0 if use_gray else 0.05), al.Normalize(), ToTensorV2() ]) else: return al.Compose(compose + [ al.Normalize(), ToTensorV2() ]) def get_val_transforms(input_size=224, use_gray=False): def resize_image(img, interpolation=cv2.INTER_LINEAR, **params): height, width = img.shape[:2] if width >= height: img = F.smallest_max_size(img, max_size=input_size, interpolation=interpolation) else: img = F.longest_max_size(img, max_size=input_size, interpolation=interpolation) pad_width = input_size - img.shape[:2][1] left = pad_width // 2 right = pad_width - left img = F.pad_with_params(img, 0, 0, left, right, border_mode=cv2.BORDER_CONSTANT, value=0) return img def left_crop(img, **params): height, width = img.shape[:2] if width > input_size: img = img[:, :input_size, :] return img crop = al.Lambda(left_crop) compose = [ # al.SmallestMaxSize(input_size), al.Lambda(resize_image), crop] if use_gray: return al.Compose(compose + [ al.ToGray(p=1.0 if use_gray else 0.05), al.Normalize(), ToTensorV2() ]) else: return al.Compose(compose + [ al.Normalize(), ToTensorV2() ]) def get_test_transforms(input_size, use_gray=False): # return transforms.Compose([ # transforms.Resize(input_size), # transforms.ToTensor(), # transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) # ]) return al.Compose([ al.SmallestMaxSize(input_size), al.ToGray(p=1.0 if use_gray else 0.0), al.Normalize(), ToTensorV2() ]) def get_test_transforms_v2(input_size, use_crop=False, center_crop_ratio=0.9, use_gray=False): if use_crop: resize = [al.Resize(int(input_size * (2 - center_crop_ratio)), int(input_size * (2 - center_crop_ratio))), al.CenterCrop(height=input_size, width=input_size)] else: resize = [al.Resize(input_size, input_size)] return al.Compose(resize + [ al.ToGray(p=1. if use_gray else 0.), al.Normalize(), ToTensorV2() ]) ```
{ "source": "jireh-father/keras", "score": 2 }
#### File: keras/dtensor/optimizers.py ```python from keras.dtensor import dtensor_api as dtensor from keras.optimizers.optimizer_experimental import adadelta from keras.optimizers.optimizer_experimental import adagrad from keras.optimizers.optimizer_experimental import adam from keras.optimizers.optimizer_experimental import optimizer as optimizer_lib from keras.optimizers.optimizer_experimental import rmsprop from keras.optimizers.optimizer_experimental import sgd from keras.optimizers.schedules import learning_rate_schedule import tensorflow.compat.v2 as tf # pylint: disable=protected-access,missing-class-docstring class Optimizer(optimizer_lib._BaseOptimizer): """DTensor specific optimizers. The major changes for this class are: All the variable init logic will be mesh/layout aware. Note that we didn't subclass optimizer_lib.Optimizer since it contains the extra logic of handling distribution strategy, which we don't need for DTensor """ def __init__(self, name, mesh=None): """Create a new Optimizer. Args: name: String. The name of the optimizer, which will appear in all the state variables created by this optimizer. mesh: dtensor.Mesh. The optional Mesh which will be used to create the states. Note that usually the state variable will use the layout from the corresponding model variables. This mesh only used for global variables like globle steps, learning rate, etc. """ # TODO(scottzhu): Skip the gradients_clip_option and ema_option for now, and # will cover them in future if really needed. # TODO(scottzhu): We might want to make mesh to be required in future. self._mesh = mesh super().__init__(name=name) def _create_iteration_variable(self): init_val = tf.constant(0, dtype=tf.int64) if self._mesh: init_val = dtensor.copy_to_mesh( init_val, dtensor.Layout.replicated(self._mesh, rank=0)) with tf.init_scope(): # Lift the variable creation to init scope to avoid environment issue. self._iterations = dtensor.DVariable(init_val, name='iteration') ################## Override methods from keras.Optimizer ################ def add_variable_from_reference(self, model_variable, variable_name, initial_value=None): """Create an optimizer variable from model variable. Create an optimizer variable based on the information of model variable. For example, in SGD optimizer momemtum, for each model variable, a corresponding momemtum variable is created of the same shape and dtype. Args: model_variable: The corresponding model variable to the optimizer variable to be created. variable_name: The name prefix of the optimizer variable to be created. The create variables name will follow the pattern `{variable_name}/{model_variable.name}`, e.g., `momemtum/dense_1`. initial_value: The initial value of the optimizer variable, if None, the value will be default to 0. Returns: An optimizer variable. """ if initial_value is None: # Use tf.zeros_like which will propagate the layout information from the # model weights if any. initial_value = tf.zeros_like(model_variable) elif isinstance(initial_value, tf.Tensor): initial_value = dtensor.copy_to_mesh( initial_value, dtensor.Layout.replicated(self._mesh, rank=initial_value.shape.rank)) return dtensor.DVariable( initial_value=initial_value, name=f'{variable_name}/{model_variable._shared_name}', dtype=model_variable.dtype, trainable=False) def aggregate_gradients(self, grads_and_vars): # Hide the aggregate_gradients from Optimizer.aggregate_gradients raise NotImplementedError( 'Dtensor doesn\'t need to manually aggregate gradients') def _var_key(self, variable): """Get a unique identifier of the given variable.""" return optimizer_lib._BaseOptimizer._var_key(self, variable) def apply_gradients(self, grads_and_vars): """Apply gradients to variables. Args: grads_and_vars: List of (gradient, variable) pairs. Returns: None Raises: TypeError: If `grads_and_vars` is malformed. """ # Explicitly call the _BaseOptimizer to avoid any chance of using # Optimizers.apply_gradients which contains distribution strategy logic. optimizer_lib._BaseOptimizer.apply_gradients(self, grads_and_vars) def _internal_apply_gradients(self, grads_and_vars): """Helper function of apply gradients. This is required for separating out distributed training logic. Args: grads_and_vars: List of (gradient, variable) pairs. """ # Explicitly call the _BaseOptimizer to avoid any chance of using # Optimizers.apply_gradients which contains distribution strategy logic. optimizer_lib._BaseOptimizer._internal_apply_gradients(self, grads_and_vars) def _overwrite_model_variables_with_average_value_helper(self, var_list): """Helper function to _overwrite_model_variables_with_average_value.""" (optimizer_lib._BaseOptimizer. _overwrite_model_variables_with_average_value_helper(self, var_list)) def _build_learning_rate(self, learning_rate): if isinstance(learning_rate, learning_rate_schedule.LearningRateSchedule): # Create a variable to hold the current learning rate. # Note that the init value `learning_rate(self.iterations)` should have # the correct layout information from self.iterations. self._current_learning_rate = dtensor.DVariable( learning_rate(self.iterations), name='learning_rate', dtype=tf.float32) return learning_rate init_val = tf.constant(learning_rate, dtype=tf.float32) if self._mesh: init_val = dtensor.copy_to_mesh( init_val, dtensor.Layout.replicated(self._mesh, rank=0)) return dtensor.DVariable(init_val, name='learning_rate') class Adadelta(Optimizer, adadelta.Adadelta): def __init__(self, learning_rate=0.001, rho=0.95, epsilon=1e-7, gradients_clip_option=None, ema_option=None, name='Adadelta', mesh=None): # Skip the adam.Adadelta.__init__ and only call the Optimizer.__init__ # this is to skip the keras.Optimizer.__init__, which contains the logic # of distribution strategy. Same for all the optimizers subclasses. Optimizer.__init__(self, name=name, mesh=mesh) self._learning_rate = self._build_learning_rate(learning_rate) self.rho = rho self.epsilon = epsilon class Adagrad(Optimizer, adagrad.Adagrad): def __init__(self, learning_rate=0.001, initial_accumulator_value=0.1, epsilon=1e-7, gradients_clip_option=None, ema_option=None, name='Adagrad', mesh=None): Optimizer.__init__(self, name=name, mesh=mesh) self._learning_rate = self._build_learning_rate(learning_rate) self.initial_accumulator_value = initial_accumulator_value self.epsilon = epsilon class Adam(Optimizer, adam.Adam): def __init__(self, learning_rate=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-7, amsgrad=False, gradients_clip_option=None, ema_option=None, name='Adam', mesh=None): Optimizer.__init__(self, name=name, mesh=mesh) self._learning_rate = self._build_learning_rate(learning_rate) self.beta_1 = beta_1 self.beta_2 = beta_2 self.epsilon = epsilon self.amsgrad = amsgrad class RMSprop(Optimizer, rmsprop.RMSprop): def __init__(self, learning_rate=0.001, rho=0.9, momentum=0.0, epsilon=1e-7, centered=False, gradients_clip_option=None, ema_option=None, jit_compile=False, name='RMSprop', mesh=None): Optimizer.__init__(self, name=name, mesh=mesh) self._learning_rate = self._build_learning_rate(learning_rate) self.rho = rho self.momentum = momentum self.epsilon = epsilon self.centered = centered class SGD(Optimizer, sgd.SGD): def __init__(self, learning_rate=0.01, momentum=0.0, nesterov=False, amsgrad=False, gradients_clip_option=None, ema_option=None, jit_compile=False, name='SGD', mesh=None): Optimizer.__init__(self, name=name, mesh=mesh) self._learning_rate = self._build_learning_rate(learning_rate) self.momentum = momentum self.nesterov = nesterov if isinstance(momentum, (int, float)) and (momentum < 0 or momentum > 1): raise ValueError('`momentum` must be between [0, 1].') ```
{ "source": "jireh-father/KoBERT", "score": 2 }
#### File: jireh-father/KoBERT/ht_train_extractive_summary.py ```python import argparse import random from kobert.pytorch_kobert import get_pytorch_kobert_model import jsonlines from torch.utils import data from gluonnlp.data import SentencepieceTokenizer from kobert.utils import get_tokenizer from torch.nn.utils.rnn import pad_sequence from torch.optim import lr_scheduler import datetime import time from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import f1_score, accuracy_score, precision_score, recall_score import matplotlib.pyplot as plt import itertools from functools import partial import numpy as np import os import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from ray import tune from ray.tune import CLIReporter from ray.tune.schedulers import ASHAScheduler from model import ExtractiveModel default_config = { "optimizer": tune.choice(['adam', 'sgd']), # tune.grid_search(['adam', 'sgd']), "lr": tune.loguniform(1e-4, 1e-1), # tune.loguniform(1e-4, 1e-1), "weight_decay": tune.loguniform(1e-6, 1e-3), "scheduler": tune.choice(['step', 'cosine']), # tune.grid_search(['cosine', 'step']), "max_word_dropout_ratio": tune.quniform(0.1, 0.5, 0.05), # tune.choice([0.1, 0.2, 0.3]), "word_dropout_prob": tune.quniform(0.0, 1.0, 0.1), "label_smoothing": tune.choice([0.1, 0.0]), # tune.grid_search([0.1, 0.0]), "use_multi_class": False, # tune.grid_search([True, False]), "freeze_bert": tune.choice([False, True]), "use_bert_sum_words": tune.choice([True, False]), # tune.grid_search([True, False]), "use_pos": tune.choice([True, False]), # True, # tune.grid_search([True, False]), "use_media": tune.choice([True, False]), # tune.grid_search([True, False]), "simple_model": tune.choice([False, True]), # tune.grid_search([True, False]), "max_token_cnt": tune.choice([200, 300, 400, 500]), "dim_feedforward": tune.choice([512, 768, 1024]), "dropout": tune.choice([0.0, 0.1, 0.2, 0.3, 0.4]), "weighted_loss": tune.quniform(1.0, 10.0, 1.0) } def freeze_params(model): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def non_freeze_params(model): """Set requires_grad=False for each of model.parameters()""" for par in model.parameters(): par.requires_grad = False def init_optimizer(optimizer_name, model, lr, wd, lr_restart_step=1, lr_decay_gamma=0.9, scheduler="step", nesterov=False, num_epochs=None, steps_per_epoch=None): if optimizer_name == "sgd": optimizer_ft = optim.SGD(model.parameters(), lr=lr, momentum=0.9, weight_decay=wd, nesterov=nesterov) elif optimizer_name == "adam": optimizer_ft = optim.Adam(model.parameters(), lr=lr, weight_decay=wd) elif optimizer_name == "adamp": from adamp import AdamP optimizer_ft = AdamP(model.parameters(), lr=lr, betas=(0.9, 0.999), weight_decay=wd) # 1e-2) elif optimizer_name == "sgdp": from adamp import SGDP optimizer_ft = SGDP(model.parameters(), lr=lr, weight_decay=wd, momentum=0.9, nesterov=nesterov) # else: # opt_attr = getattr(toptim, optimizer_name) # if opt_attr: # optimizer_ft = opt_attr(model.parameters()) # else: # raise Exception("unknown optimizer name", optimizer_name) if scheduler == "cosine": exp_lr_scheduler = lr_scheduler.CosineAnnealingWarmRestarts(optimizer_ft, lr_restart_step) use_lr_schedule_steps = True elif scheduler == "cycle": exp_lr_scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer_ft, max_lr=lr, steps_per_epoch=steps_per_epoch, epochs=num_epochs, pct_start=0.1) use_lr_schedule_steps = False elif scheduler == "step": exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=lr_restart_step, gamma=lr_decay_gamma) use_lr_schedule_steps = False return optimizer_ft, exp_lr_scheduler, use_lr_schedule_steps def reduce_loss(loss, reduction='mean'): return loss.mean() if reduction == 'mean' else loss.sum() if reduction == 'sum' else loss def linear_combination(x, y, epsilon): return epsilon * x + (1 - epsilon) * y class LabelSmoothingCrossEntropy(nn.Module): def __init__(self, epsilon=0.1, reduction='mean'): super().__init__() self.epsilon = epsilon self.reduction = reduction def forward(self, preds, target): n = preds.size()[-1] log_preds = F.log_softmax(preds, dim=-1) loss = reduce_loss(-log_preds.sum(dim=-1), self.reduction) nll = F.nll_loss(log_preds, target, reduction=self.reduction) return linear_combination(loss / n, nll, self.epsilon) class SentenceDataset(data.Dataset): """__init__ and __len__ functions are the same as in TorchvisionDataset""" def __init__(self, samples, vocab, media_map, word_dropout_prob=0.0, max_word_dropout_ratio=0.0, max_token_cnt=300): self.tokenizer = SentencepieceTokenizer(get_tokenizer()) self.vocab = vocab self.samples = samples self.targets = [s[1] for s in samples] self.media_map = media_map self.word_dropout_prob = word_dropout_prob self.max_word_dropout_ratio = max_word_dropout_ratio self.max_token_cnt = max_token_cnt # self.classes = classes # self.class_to_idx = class_to_idx def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (sample, target) where target is class_index of the target class. """ sentence, target, pos_idx, media = self.samples[index] media = self.media_map[media] tokens = self.tokenizer(sentence) token_ids = self.vocab.to_indices(tokens) if random.random() < self.word_dropout_prob: dropout_cnt = round(self.max_word_dropout_ratio * len(token_ids)) for i in range(dropout_cnt): dropout_idx = random.randint(0, len(token_ids) - 1) del token_ids[dropout_idx] if len(token_ids) > self.max_token_cnt: token_ids = token_ids[:self.max_token_cnt] return torch.tensor(token_ids, dtype=torch.long), target, pos_idx, media def __len__(self): return len(self.samples) def pad_collate(batch): token_ids_batch, target_batch, pos_idx_batch, media_batch = zip(*batch) token_ids_batch = pad_sequence(token_ids_batch, batch_first=True, padding_value=0) return token_ids_batch, torch.tensor(target_batch, dtype=torch.long), \ torch.tensor(pos_idx_batch, dtype=torch.long), torch.tensor(media_batch, dtype=torch.long), def save_model(model, model_path): if hasattr(model, 'module'): model = model.module print("save model", model_path) torch.save(model.state_dict(), model_path) def train(config, args): # 문장 최대 갯수 100개 # import unicodedata # unicodedata.normalize('NFKC', '한국어로는 안되?ㅋ') samples_dict = {} medias = set() with jsonlines.open(args.train_file) as f: for line in f.iter(): media = line['media'] medias.add(media) extractive = line['extractive'] for i, sentence in enumerate(line['article_original']): if i in extractive: if config['use_multi_class']: label = extractive.index(i) else: label = 0 else: if config['use_multi_class']: label = 3 else: label = 1 if label not in samples_dict: samples_dict[label] = [] samples_dict[label].append([sentence.replace('\n', '').strip(), label, i, media]) medias = list(medias) medias.sort() media_map = {m: i for i, m in enumerate(medias)} print("medias", media_map) os.makedirs(os.path.join(args.work_dir, "saved_models"), exist_ok=True) train_samples = [] val_samples = [] class_cnt = [] num_classes = 4 if config['use_multi_class'] else 2 for label in range(num_classes): random.shuffle(samples_dict[label]) val_cnt = round(len(samples_dict[label]) * args.val_ratio) val_samples += samples_dict[label][:val_cnt] tmp_train_samples = samples_dict[label][val_cnt:] class_cnt.append(len(tmp_train_samples)) if args.use_all_train: train_samples += samples_dict[label] elif args.train_val_data: train_samples += val_samples else: train_samples += tmp_train_samples print('class_cnt', class_cnt) random.shuffle(train_samples) train_targets = [t[1] for t in train_samples] print("total samples", len(train_samples) + len(val_samples)) print("train samples", len(train_samples)) print("val samples", len(val_samples)) bert_model, vocab = get_pytorch_kobert_model() if config['freeze_bert']: freeze_params(bert_model.embeddings) freeze_params(bert_model.encoder) freeze_params(bert_model.pooler) else: non_freeze_params(bert_model.embeddings) non_freeze_params(bert_model.encoder) non_freeze_params(bert_model.pooler) train_dataset = SentenceDataset(train_samples, vocab, media_map, word_dropout_prob=config['word_dropout_prob'], max_word_dropout_ratio=config['max_word_dropout_ratio'], max_token_cnt=config['max_token_cnt']) val_dataset = SentenceDataset(val_samples, vocab, media_map, max_token_cnt=config['max_token_cnt']) weights = 1. / torch.tensor(class_cnt, dtype=torch.float) print('weights', weights) samples_weights = weights[train_targets] sampler = torch.utils.data.sampler.WeightedRandomSampler(samples_weights, len(train_samples)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.train_batch_size, num_workers=args.num_workers, pin_memory=args.train_pin_memory, collate_fn=pad_collate, sampler=sampler ) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size * 2, num_workers=args.num_workers, shuffle=False, pin_memory=args.val_pin_memory, collate_fn=pad_collate) model = ExtractiveModel(bert_model, 100, 11, 768, use_bert_sum_words=config["use_bert_sum_words"], use_pos=config["use_pos"], use_media=config['use_media'], simple_model=config['simple_model'], num_classes=num_classes, dim_feedforward=config['dim_feedforward'], dropout=config['dropout']) if args.checkpoint_path is not None and os.path.isfile(args.checkpoint_path): state_dict = torch.load(args.checkpoint_path) model.load_state_dict(state_dict) if torch.cuda.device_count() > 1 and args.data_parallel: print("Let's use", torch.cuda.device_count(), "GPUs!") model = nn.DataParallel(model) device = "cuda" model.to(device) steps_per_epoch = len(train_samples) // args.train_batch_size if len(train_samples) % args.train_batch_size > 0: steps_per_epoch += 1 optimizer, scheduler, use_lr_schedule_steps = init_optimizer(config['optimizer'], model, config['lr'], config['weight_decay'], args.lr_restart_step, args.lr_decay_gamma, config['scheduler'], nesterov=args.nesterov, num_epochs=args.num_epochs, steps_per_epoch=steps_per_epoch) if config['weighted_loss'] > 0: weights = [config['weighted_loss'], 1.] class_weights = torch.FloatTensor(weights).to(device) criterion = torch.nn.CrossEntropyLoss(weight=class_weights) elif config['label_smoothing'] > 0: criterion = LabelSmoothingCrossEntropy(epsilon=config['label_smoothing']) else: criterion = torch.nn.CrossEntropyLoss() criterion = criterion.to(device) os.makedirs(args.work_dir, exist_ok=True) print('train_loader', len(train_loader)) for epoch in range(args.num_epochs): if args.train: print("Epoch %d/%d, LR: %f" % (epoch, args.num_epochs, np.array(scheduler.get_lr()).mean())) epoch_start_time = time.time() model.train() epoch_labels = [] epoch_preds = [] epoch_loss = 0. for step, (token_ids_batch, labels, pos_idx_batch, media_batch) in enumerate(train_loader): batch_start_time = time.time() epoch_labels += list(labels.numpy()) labels = labels.to(device) token_ids_batch = token_ids_batch.to(device) pos_idx_batch = pos_idx_batch.to(device) media_batch = media_batch.to(device) if use_lr_schedule_steps: scheduler.step(epoch - 1 + step / len(train_loader)) # zero the parameter gradients optimizer.zero_grad() # forward # track history if only in train with torch.set_grad_enabled(True): outputs = model(token_ids_batch, pos_idx_batch, media_batch) loss = criterion(outputs, labels) _, preds = torch.max(outputs, 1) epoch_preds += list(preds.cpu().numpy()) # backward + optimize only if in training phase loss.backward() optimizer.step() epoch_loss += loss.item() * token_ids_batch.size(0) batch_elapsed_time = time.time() - batch_start_time if step >= 0 and (step + 1) % args.log_step_interval == 0: current_datetime = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') f1 = f1_score(labels.cpu().numpy(), preds.cpu().numpy(), average='macro') acc = accuracy_score(labels.cpu().numpy(), preds.cpu().numpy()) print("[train-epoch:%02d/%02d,step:%d/%d,%s] batch_elapsed: %f" % (epoch, args.num_epochs, step, len(train_loader), current_datetime, batch_elapsed_time)) print("loss: %f, acc: %f, f1: %f, lr: %f" % ( loss.item(), acc, f1, np.array(scheduler.get_lr()).mean())) if not use_lr_schedule_steps: scheduler.step() epoch_loss = epoch_loss / len(train_loader.dataset) epoch_elapsed_time = time.time() - epoch_start_time current_datetime = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') epoch_f1 = f1_score(epoch_labels, epoch_preds, average='macro') epoch_acc = accuracy_score(epoch_labels, epoch_preds) print( "[result:train-epoch:%02d/%02d,%s] epoch_elapsed: %s, loss: %f, acc: %f, f1: %f, lr: %f" % ( epoch, args.num_epochs, current_datetime, epoch_elapsed_time, epoch_loss, epoch_acc, epoch_f1, scheduler.get_lr()[0])) if args.val: model.eval() # Set model to evaluate mode epoch_start_time = time.time() epoch_preds = [] epoch_labels = [] epoch_loss = 0. for step, (token_ids_batch, labels, pos_idx_batch, media_batch) in enumerate(val_loader): batch_start_time = time.time() epoch_labels += list(labels.numpy()) labels = labels.to(device) token_ids_batch = token_ids_batch.to(device) pos_idx_batch = pos_idx_batch.to(device) media_batch = media_batch.to(device) # forward # track history if only in train with torch.set_grad_enabled(False): start = time.time() outputs = model(token_ids_batch, pos_idx_batch, media_batch) # print("batch speed", time.time() - start) _, preds = torch.max(outputs, 1) epoch_preds += list(preds.cpu().numpy()) loss = criterion(outputs, labels) # statistics epoch_loss += loss.item() * token_ids_batch.size(0) batch_elapsed_time = time.time() - batch_start_time if step >= 0 and (step + 1) % args.log_step_interval == 0: current_datetime = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') f1 = f1_score(labels.cpu().numpy(), preds.cpu().numpy(), average='macro') acc = accuracy_score(labels.cpu().numpy(), preds.cpu().numpy()) print("[val-epoch:%d, step:%d/%d,%s] batch_elapsed: %f" % (epoch, step, len(val_loader), current_datetime, batch_elapsed_time)) print("loss: %f, acc: %f, f1: %f" % (loss.item(), acc, f1)) epoch_loss = epoch_loss / len(val_loader.dataset) current_datetime = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') epoch_acc = accuracy_score(epoch_labels, epoch_preds) epoch_f1 = f1_score(epoch_labels, epoch_preds, pos_label=0) epoch_precision = precision_score(epoch_labels, epoch_preds, pos_label=0) epoch_recall = recall_score(epoch_labels, epoch_preds, pos_label=0) epoch_elapsed = time.time() - epoch_start_time with tune.checkpoint_dir(epoch) as checkpoint_dir: path = os.path.join(checkpoint_dir, "checkpoint") torch.save((model.state_dict(), optimizer.state_dict()), path) epoch_cm = confusion_matrix(epoch_labels, epoch_preds) np_epoch_labels = np.unique(np.array(epoch_labels)) np_epoch_labels.sort() print("confusion matrix") print(epoch_cm) tune.report(loss=epoch_loss, f1=epoch_f1, acc=epoch_acc, pos_acc=epoch_cm[0], neg_acc=epoch_cm[1], precision=epoch_precision, recall=epoch_recall) print( "[result_val-epoch:%d,%s] epoch_elapsed: %s, loss: %f, acc: %f, f1: %f, pre: %f, recall: %f" % ( epoch, current_datetime, epoch_elapsed, epoch_loss, epoch_acc, epoch_f1, epoch_precision, epoch_recall)) cls_report = classification_report(epoch_labels, epoch_preds) # , target_names=classes) print(cls_report) # np.save(os.path.join(log_dir, "confusion_matrix_%s_epoch_%d.npy" % (val_name, epoch)), epoch_cm) epoch_cm = epoch_cm.astype('float') / epoch_cm.sum(axis=1)[:, np.newaxis] epoch_cm = epoch_cm.diagonal() print("each accuracies") print(epoch_cm) if not args.train and args.val: print("The end of evaluation.") break def test_accuracy(model, use_multi_class, max_token_cnt, device, args): samples_dict = {} medias = set() with jsonlines.open(args.train_file) as f: for line in f.iter(): media = line['media'] medias.add(media) extractive = line['extractive'] for i, sentence in enumerate(line['article_original']): if i in extractive: if use_multi_class: label = extractive.index(i) else: label = 0 else: if use_multi_class: label = 3 else: label = 1 if label not in samples_dict: samples_dict[label] = [] samples_dict[label].append([sentence.replace('\n', '').strip(), label, i, media]) medias = list(medias) medias.sort() media_map = {m: i for i, m in enumerate(medias)} print("medias", media_map) train_samples = [] val_samples = [] class_cnt = [] num_classes = 4 if use_multi_class else 2 for label in range(num_classes): random.shuffle(samples_dict[label]) val_cnt = round(len(samples_dict[label]) * args.val_ratio) val_samples += samples_dict[label][:val_cnt] tmp_train_samples = samples_dict[label][val_cnt:] class_cnt.append(len(tmp_train_samples)) if args.use_all_train: train_samples += samples_dict[label] elif args.train_val_data: train_samples += val_samples else: train_samples += tmp_train_samples print('class_cnt', class_cnt) random.shuffle(train_samples) train_targets = [t[1] for t in train_samples] print("total samples", len(train_samples) + len(val_samples)) print("train samples", len(train_samples)) print("val samples", len(val_samples)) _, vocab = get_pytorch_kobert_model() val_dataset = SentenceDataset(val_samples, vocab, media_map, max_token_cnt=max_token_cnt) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=args.val_batch_size * 2, num_workers=args.num_workers, shuffle=False, pin_memory=args.val_pin_memory, collate_fn=pad_collate) model.eval() # Set model to evaluate mode epoch_start_time = time.time() epoch_preds = [] epoch_labels = [] for step, (token_ids_batch, labels, pos_idx_batch, media_batch) in enumerate(val_loader): batch_start_time = time.time() epoch_labels += list(labels.numpy()) token_ids_batch = token_ids_batch.to(device) pos_idx_batch = pos_idx_batch.to(device) media_batch = media_batch.to(device) # forward # track history if only in train with torch.set_grad_enabled(False): start = time.time() outputs = model(token_ids_batch, pos_idx_batch, media_batch) # print("batch speed", time.time() - start) _, preds = torch.max(outputs, 1) epoch_preds += list(preds.cpu().numpy()) current_datetime = datetime.datetime.now().strftime('%Y/%m/%d %H:%M:%S') epoch_acc = accuracy_score(epoch_labels, epoch_preds) epoch_f1 = f1_score(epoch_labels, epoch_preds, average='macro') epoch_elapsed = time.time() - epoch_start_time print( "[result_val,%s] epoch_elapsed: %s, acc: %f, f1: %f" % ( current_datetime, epoch_elapsed, epoch_acc, epoch_f1)) cls_report = classification_report(epoch_labels, epoch_preds) # , target_names=classes) print(cls_report) epoch_cm = confusion_matrix(epoch_labels, epoch_preds) print("confusion matrix") print(epoch_cm) # np.save(os.path.join(log_dir, "confusion_matrix_%s_epoch_%d.npy" % (val_name, epoch)), epoch_cm) epoch_cm = epoch_cm.astype('float') / epoch_cm.sum(axis=1)[:, np.newaxis] epoch_cm = epoch_cm.diagonal() print("each accuracies") print(epoch_cm) return epoch_f1 def main(args=None): # config = { # "optimizer": 'adam', # tune.grid_search(['adam', 'sgd']), # "lr": 0.001, # tune.loguniform(1e-4, 1e-1), # "scheduler": 'step', # tune.grid_search(['cosine', 'step']), # "max_word_dropout_ratio": 0.0, # "word_dropout_prob": 0.0, # "label_smoothing": tune.grid_search([0.1, 0.0]), # "use_multi_class": False, # tune.grid_search([True, False]), # "freeze_bert": tune.grid_search([True, False]), # "use_bert_sum_words": tune.grid_search([True, False]), # "use_pos": tune.grid_search([True, False]), # "use_media": tune.grid_search([True, False]), # "simple_model": tune.grid_search([True, False]) # } config = { "optimizer": tune.grid_search(['adam', 'sgd']), # tune.grid_search(['adam', 'sgd']), "lr": tune.grid_search([0.1, 0.01, 0.001, 0.0001]), # tune.loguniform(1e-4, 1e-1), "scheduler": tune.grid_search(['step', 'cosine']), # tune.grid_search(['cosine', 'step']), "max_word_dropout_ratio": tune.grid_search([0.1, 0.2, 0.3]), "word_dropout_prob": tune.grid_search([0.5, 0.0, 0.25, 0.75, 1.0]), "label_smoothing": 0.0, # tune.grid_search([0.1, 0.0]), "use_multi_class": False, # tune.grid_search([True, False]), "freeze_bert": tune.grid_search([True, False]), "use_bert_sum_words": False, # tune.grid_search([True, False]), "use_pos": True, # tune.grid_search([True, False]), "use_media": False, # tune.grid_search([True, False]), "simple_model": True, # tune.grid_search([True, False]) } # config = { # "optimizer": tune.grid_search(['adam', 'sgd']), # tune.grid_search(['adam', 'sgd']), # "lr": tune.grid_search([0.001, 0.0001, 0.1, 0.01]), # tune.loguniform(1e-4, 1e-1), # "scheduler": tune.grid_search(['cosine', 'step']), # tune.grid_search(['cosine', 'step']), # "max_word_dropout_ratio": tune.grid_search([0.3, 0.2, 0.1]), # "word_dropout_prob": tune.grid_search([1.0, 0.75, 0.25, 0.0, 0.5]), # "label_smoothing": tune.grid_search([0.0, 0.1]), # "use_multi_class": False, # tune.grid_search([True, False]), # "freeze_bert": tune.grid_search([False, True]), # "use_bert_sum_words": False, # tune.grid_search([True, False]), # "use_pos": tune.grid_search([False, True]), # "use_media": tune.grid_search([False, True]), # "simple_model": tune.grid_search([False, True]) # } scheduler = ASHAScheduler( metric="f1", mode="max", max_t=args.num_epochs, grace_period=1, reduction_factor=2) reporter = CLIReporter( # parameter_columns=["l1", "l2", "lr", "batch_size"], metric_columns=["loss", "f1", "training_iteration"]) result = tune.run( partial(train, args=args), resources_per_trial={"cpu": args.num_workers, "gpu": args.gpus_per_trial}, config=config, num_samples=args.num_tune_samples, scheduler=scheduler, progress_reporter=reporter, local_dir=args.work_dir) best_trial = result.get_best_trial("f1", "max", "last") print("Best trial config: {}".format(best_trial.config)) print("Best trial final validation loss: {}".format( best_trial.last_result["loss"])) print("Best trial final validation accuracy: {}".format( best_trial.last_result["accuracy"])) bert_model, vocab = get_pytorch_kobert_model() num_classes = 4 if best_trial.config["use_multi_class"] else 2 best_trained_model = ExtractiveModel(bert_model, 100, 11, 768, use_bert_sum_words=best_trial.config["use_bert_sum_words"], use_pos=best_trial.config["use_pos"], use_media=best_trial.config['use_media'], simple_model=best_trial.config['simple_model'], num_classes=num_classes, dim_feedforward=best_trial.config['dim_feedforward'], dropout=best_trial.config['dropout']) if torch.cuda.is_available(): device = "cuda" # if args.gpus_per_trial > 1: # best_trained_model = nn.DataParallel(best_trained_model) best_trained_model.to(device) best_checkpoint_dir = best_trial.checkpoint.value model_state, optimizer_state = torch.load(os.path.join( best_checkpoint_dir, "checkpoint")) best_trained_model.load_state_dict(model_state) test_acc = test_accuracy(best_trained_model, best_trial.config["use_multi_class"], device) print("Best trial test set f1: {}".format(test_acc)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-l', '--work_dir', type=str, default='./log') parser.add_argument('-c', '--checkpoint_path', type=str, default=None, required=False, help='checkpoint path') parser.add_argument('--train_file', default='/media/irelin/data_disk/dataset/dacon_summury/abstractive/train.jsonl', type=str) parser.add_argument('--val_ratio', type=float, default=0.1) parser.add_argument('--lr_restart_step', type=int, default=1) parser.add_argument('-e', '--num_epochs', type=int, default=100) parser.add_argument('--log_step_interval', type=int, default=100) parser.add_argument('--train_batch_size', type=int, default=32) parser.add_argument('--val_batch_size', type=int, default=64) parser.add_argument('-w', '--num_workers', type=int, default=8) parser.add_argument('--max_token_cnt', type=int, default=300) parser.add_argument('--lr_decay_gamma', type=float, default=0.9) # parser.add_argument('-d', '--weight_decay', type=float, default=1e-5) parser.add_argument('--seed', type=int, default=1) parser.add_argument('-t', '--train', default=False, action="store_true") parser.add_argument('-v', '--val', default=False, action="store_true") parser.add_argument('--use_all_train', default=False, action="store_true") parser.add_argument('--train_val_data', default=False, action="store_true") parser.add_argument('--data_parallel', default=False, action="store_true") parser.add_argument('--train_pin_memory', default=False, action="store_true") parser.add_argument('--val_pin_memory', default=False, action="store_true") parser.add_argument('--use_benchmark', default=False, action="store_true") parser.add_argument('--nesterov', default=False, action="store_true") parser.add_argument('--gpus_per_trial', type=int, default=2) parser.add_argument('--num_tune_samples', type=int, default=1) args = parser.parse_args() for arg in vars(args): print(arg, getattr(args, arg)) if args.seed: np.random.seed(args.seed) random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): torch.cuda.manual_seed_all(args.seed) if args.use_benchmark: torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = True main(args) ```
{ "source": "jireh-father/mmdetection_210507", "score": 3 }
#### File: mmdetection_210507/tools/crop_center_bbox.py ```python import argparse import os from PIL import Image import glob import numpy as np import time def parse_args(): parser = argparse.ArgumentParser(description='Evaluate metric of the ' 'results saved in pkl format') parser.add_argument('--output_dir', type=str, default=None) parser.add_argument('--image_dir', type=str, default=None) args = parser.parse_args() return args def main(): args = parse_args() os.makedirs(args.output_dir, exist_ok=True) image_files = glob.glob(os.path.join(args.image_dir, "*")) total_w = [] total_h = [] total_time = 0. for i, image_file in enumerate(image_files): if i % 10 == 0: print(i, len(image_files), image_file) start = time.time() im = Image.open(image_file) bbox = im.getbbox() im = im.crop(bbox) exec_time = time.time() - start w, h = im.size if w == 1280 and h == 720: continue total_time += exec_time total_w.append(w) total_h.append(h) im.save(os.path.join(args.output_dir, os.path.splitext(os.path.basename(image_file))[0] + ".jpg")) total_h = np.array(total_h) total_w = np.array(total_w) print("total_w.mean(), total_w.max(), total_w.min(), total_w.var(), total_w.std()") print(total_w.mean(), total_w.max(), total_w.min(), total_w.var(), total_w.std()) print("total_h.mean(), total_h.max(), total_h.min(), total_h.var(), total_h.std()") print(total_h.mean(), total_h.max(), total_h.min(), total_h.var(), total_h.std()) print("cropped cnt", len(total_h)) print("avg time", total_time / len(total_h)) print("done") if __name__ == '__main__': main() ``` #### File: tools/model_converters/convert_pytorch_to_android.py ```python import torch import torch.nn as nn import argparse import os from mmdet.apis import inference_detector, init_detector model_classifier_map = { 'alexnet': ['classifier', 6], 'vgg': ['classifier', 6], 'mobilenet': ['classifier', 1], 'mnasnet': ['classifier', 6], 'resnet': ['fc'], 'inception': ['fc'], 'googlenet': ['fc'], 'shufflenet': ['fc'], 'densenet': ['classifier'], 'resnext': ['fc'], 'wide_resnet': ['fc'], 'efficientnet': ['_fc'], 'bagnet': ['fc'], 'rexnet': ['output', 1], } def init_model(model_name, num_classes): if model_name.startswith("efficientnet"): from efficientnet_pytorch import EfficientNet model = EfficientNet.from_pretrained(model_name, num_classes=num_classes) return model from torchvision import models for m_key in model_classifier_map: if m_key in model_name: model_fn = getattr(models, model_name) cls_layers = model_classifier_map[m_key] if model_name.startswith("inception"): # input_size = 299 model = model_fn(aux_logits=False) else: # input_size = 224 model = model_fn() if len(cls_layers) == 1: in_features = getattr(model, cls_layers[0]).in_features setattr(model, cls_layers[0], nn.Linear(in_features, num_classes)) else: classifier = getattr(model, cls_layers[0]) in_features = classifier[cls_layers[1]].in_features classifier[cls_layers[1]] = nn.Linear(in_features, num_classes) return model def main(args): device = 'cpu' model = init_model(args.model_name, args.num_classes) if args.model_name.startswith("efficientnet"): model.set_swish(memory_efficient=False) checkpoint_dict = torch.load(args.model_path, map_location=device) pretrained_dict = checkpoint_dict['state_dict'] try: model.load_state_dict(pretrained_dict) except: model = torch.nn.DataParallel(model) model.load_state_dict(pretrained_dict) model = model.module model = init_detector(args.config, args.checkpoint, device=args.device) model = model.to(device) model.eval() example = torch.rand(1, 3, args.input_size, args.input_size) ret = model(example) print(ret, ret.shape) traced_script_module = torch.jit.trace(model, example) os.makedirs(os.path.dirname(args.output_path), exist_ok=True) traced_script_module.save(args.output_path) print("done") if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--model_path', default=None, type=str) parser.add_argument('--output_path', default=None, type=str) parser.add_argument('--model_name', default=None, type=str) parser.add_argument('--num_classes', default=None, type=int) parser.add_argument('--input_size', default=224, type=int) main(parser.parse_args()) ```
{ "source": "jireh-father/pymetric", "score": 2 }
#### File: modeling/layers/soa.py ```python import torch import torch.nn as nn import metric.core.net as net from metric.core.config import cfg class SOABlock(nn.Module): def __init__(self, in_ch): super(SOABlock, self).__init__() self.in_ch = in_ch self.out_ch = in_ch self.mid_ch = in_ch // 2 print('Num channels: in out mid') print(' {:>4d} {:>4d} {:>4d}'.format(self.in_ch, self.out_ch, self.mid_ch)) self.f = nn.Sequential( nn.Conv2d(self.in_ch, self.mid_ch, (1, 1), (1, 1)), nn.BatchNorm2d(self.mid_ch, eps=cfg.BN.EPS, momentum=cfg.BN.MOM), nn.ReLU()) self.g = nn.Sequential( nn.Conv2d(self.in_ch, self.mid_ch, (1, 1), (1, 1)), nn.BatchNorm2d(self.mid_ch, eps=cfg.BN.EPS, momentum=cfg.BN.MOM), nn.ReLU()) self.h = nn.Conv2d(self.in_ch, self.mid_ch, (1, 1), (1, 1)) self.v =nn.Conv2d(self.mid_ch, self.out_ch, (1, 1), (1, 1)) self.softmax = nn.Softmax(dim=-1) for conv in [self.f, self.g, self.h]: #, self.v]: conv.apply(net.init_weights) self.v.apply(net.init_weights_classifier) def forward(self, x): B, C, H, W = x.shape f_x = self.f(x).view(B, self.mid_ch, H * W) # B * mid_ch * N, where N = H*W g_x = self.g(x).view(B, self.mid_ch, H * W) # B * mid_ch * N, where N = H*W h_x = self.h(x).view(B, self.mid_ch, H * W) # B * mid_ch * N, where N = H*W z = torch.bmm(f_x.permute(0, 2, 1), g_x) # B * N * N, where N = H*W attn = self.softmax((self.mid_ch ** -.50) * z) z = torch.bmm(attn, h_x.permute(0, 2, 1)) # B * N * mid_ch, where N = H*W z = z.permute(0, 2, 1).view(B, self.mid_ch, H, W) # B * mid_ch * H * W z = self.v(z) z = z + x return z ``` #### File: metric/eval/clustering_classes_ssl.py ```python import os import sys import numpy as np import torch import metric.core.config as config from metric.core.config import cfg import glob from sklearn import cluster from sklearn import mixture import shutil from sklearn.decomposition import PCA import matplotlib.pyplot as plt import pandas as pd from scipy.spatial import distance from PIL import Image def extract(feature_dir): feature_files = glob.glob(os.path.join(feature_dir, "*res5avg_features.npy")) feature_list = [] for ff in feature_files: embeds = np.load(open(ff, "rb")) embeds = np.squeeze(embeds) feature_list += list(embeds) return feature_list # im = cv2.imread(imgpath) # im = im.astype(np.float32, copy=False) # im = preprocess(im) # im_array = np.asarray(im, dtype=np.float32) # input_data = torch.from_numpy(im_array) # if torch.cuda.is_available(): # input_data = input_data.cuda() # fea = model(input_data, targets=None) # fea = pool_layer(fea) # embedding = to_numpy(fea.squeeze()) # # print("fea_shape: ", embedding.shape) # return embedding cluster_algos = { "KMeans": cluster.KMeans, "SpectralClustering": cluster.SpectralClustering, "MeanShift": cluster.MeanShift, "AffinityPropagation": cluster.AffinityPropagation, "AgglomerativeClustering": cluster.AgglomerativeClustering, "FeatureAgglomeration": cluster.FeatureAgglomeration, "MiniBatchKMeans": cluster.MiniBatchKMeans, "DBSCAN": cluster.DBSCAN, "OPTICS": cluster.OPTICS, "SpectralBiclustering": cluster.SpectralBiclustering, "SpectralCoclustering": cluster.SpectralCoclustering, "Birch": cluster.Birch, "GaussianMixture": mixture.GaussianMixture, "BayesianGaussianMixture": mixture.BayesianGaussianMixture } def main(model_path, output_dir, image_root, use_pca, pool_layer, use_norm, num_clusters, num_pca_comps, random_state, feature_dir): total_embeddings = extract(feature_dir) embed_idx = 0 class_dirs = glob.glob(os.path.join(image_root, "*")) class_dirs.sort() os.makedirs(output_dir, exist_ok=True) for i, class_dir in enumerate(class_dirs): print(i, class_dir) image_files = glob.glob(os.path.join(class_dir, '*')) image_files.sort() from_idx = embed_idx for image_file in image_files: try: Image.open(image_file) except: continue embed_idx += 1 to_idx = embed_idx embeddings = np.array(total_embeddings[from_idx: to_idx]) # print(embeddings.shape) # if use_norm: # embeddings = np.linalg.norm(embeddings, ord=2) cdist = distance.cdist(embeddings, embeddings, 'euclidean') cdist_exlfile = os.path.join(output_dir, "{}.xlsx".format(os.path.basename(class_dir))) df = pd.DataFrame(cdist, columns=[os.path.basename(f).split("_")[-1].split(".")[0] for f in image_files]) df = df.set_index(df.columns) df.to_excel(cdist_exlfile) print(embeddings.shape) for j, key in enumerate(cluster_algos): print(j, len(cluster_algos), key) try: if key in ["AffinityPropagation", "GaussianMixture", "BayesianGaussianMixture"]: clustered = cluster_algos[key](random_state=random_state) elif key in ["MeanShift", "DBSCAN", "OPTICS"]: clustered = cluster_algos[key]() elif key in ["AgglomerativeClustering", "FeatureAgglomeration", "Birch"]: clustered = cluster_algos[key](n_clusters=num_clusters) else: clustered = cluster_algos[key](n_clusters=num_clusters, random_state=random_state) if use_pca: pca = PCA(n_components=num_pca_comps, random_state=random_state) embeddings = pca.fit_transform(embeddings) if key in ["GaussianMixture", "BayesianGaussianMixture"]: labels = clustered.fit_predict(embeddings) elif key in ["SpectralBiclustering", "SpectralCoclustering"]: clustered.fit(embeddings) labels = clustered.row_labels_ else: clustered.fit(embeddings) labels = clustered.labels_ # kmeans.fit(embeddings) for j, label in enumerate(labels): cur_output_dir = os.path.join(output_dir, "{}_{}".format(os.path.basename(class_dir), key), "{}".format(label)) os.makedirs(cur_output_dir, exist_ok=True) shutil.copy(image_files[j], cur_output_dir) if not use_pca: pca = PCA(n_components=2, random_state=random_state) embeddings = pca.fit_transform(embeddings) plt.figure() plt.scatter(embeddings[:, 0], embeddings[:, 1], edgecolor='none', alpha=0.5) plt.xlabel('component 1') plt.ylabel('component 2') plt.colorbar() output_file = os.path.join(output_dir, "{}_{}.png".format(os.path.basename(class_dir), key)) plt.savefig(output_file) except: import traceback traceback.print_exc() print("done") def load_checkpoint(checkpoint_file, model, optimizer=None): """Loads the checkpoint from the given file.""" err_str = "Checkpoint '{}' not found" assert os.path.exists(checkpoint_file), err_str.format(checkpoint_file) # Load the checkpoint on CPU to avoid GPU mem spike checkpoint = torch.load(checkpoint_file, map_location="cpu") try: state_dict = checkpoint["model_state"] except KeyError: state_dict = checkpoint # Account for the DDP wrapper in the multi-gpu setting ms = model model_dict = ms.state_dict() pretrained_dict = {k: v for k, v in state_dict.items() if k in model_dict and model_dict[k].size() == v.size()} if len(pretrained_dict) == len(state_dict): print('All params loaded') else: print('construct model total {} keys and pretrin model total {} keys.'.format(len(model_dict), len(state_dict))) print('{} pretrain keys load successfully.'.format(len(pretrained_dict))) not_loaded_keys = [k for k in state_dict.keys() if k not in pretrained_dict.keys()] print(('%s, ' * (len(not_loaded_keys) - 1) + '%s') % tuple(not_loaded_keys)) model_dict.update(pretrained_dict) ms.load_state_dict(model_dict) # ms.load_state_dict(checkpoint["model_state"]) # Load the optimizer state (commonly not done when fine-tuning) if optimizer: optimizer.load_state_dict(checkpoint["optimizer_state"]) # return checkpoint["epoch"] return checkpoint if __name__ == '__main__': print(sys.argv) args = config.load_cfg_and_args("Extract feature.") config.assert_and_infer_cfg() cfg.freeze() # if args.pool == "maxpool": # pool_layer = nn.AdaptiveMaxPool2d(1) # else: # pool_layer = GeneralizedMeanPoolingP() # pool_layer.cuda() main(cfg.INFER.MODEL_WEIGHTS, cfg.INFER.OUTPUT_DIR, args.image_root, args.use_pca, None, args.use_norm, args.num_clusters, args.num_pca_comps, args.random_state, args.feature_dir) ```