metadata
dict
text
stringlengths
60
3.49M
{ "source": "JinlongXuHIT/DjangoB2CDemo", "score": 2 }
#### File: celery_tasks/sms/tasks.py ```python import logging from celery_tasks.main import app from .yuntongxun.sms import CCP logger = logging.getLogger('django') # 验证码模板 SMS_CODE_TEMP_ID = 1 @app.task(name = 'send_sms_code') def send_sms_code(mobile,sms_code,expires): try: ccp = CCP() result = ccp.send_template_sms(mobile,[sms_code,expires],SMS_CODE_TEMP_ID) except Exception as e: logger.error('发送验证码短信[异常][mobile: %s,message: %s ]' % (mobile,e)) else: if result==0: logger.info('送验证码短信[正常][mobile: %s ]' % (mobile)) else: logger.warning('送验证码短信[失败][mobile: %s ]' % mobile) ``` #### File: apps/oauth/views.py ```python from django.shortcuts import render from rest_framework.response import Response from rest_framework.views import APIView from QQLoginTool.QQtool import OAuthQQ from django.conf import settings from rest_framework_jwt.settings import api_settings from .utils import generate_save_user_token from .models import OAuthQQUser # Create your views here. # url(r'^qq/authorization/$', views.QQAuthURLView.as_view()), class QQAuthURLView(APIView): def get(self, request): # 1. 获取next餐朱 # 2. 创建 oauth对象\ # 3. 生成额login_url # 4. 返回login_url next = request.query_params.get('next', '/') oauth = OAuthQQ(client_id=settings.QQ_CLIENT_ID, client_secret=settings.QQ_CLIENT_SECRET, redirect_uri=settings.QQ_REDIRECT_URI, state=next) login_url = oauth.get_qq_url() return Response({ "login_url": login_url }) # url(r'^qq/user/$', views.QQAuthUserView.as_view()), class QQAuthUserView(APIView): def get(self, request): """ 客户端端会发送code参数 1. 获取code 2. 获取access_token 3. 获取openid 4. 查询 OAuthQQUser 是否有openid=openid的这一条记录 5. 如果有: 返回 username,user_id,token 6. 如果没有: 返回 access_token ---> 被加密openid :param request: :return: """ code = request.query_params.get('code', None) if not code: return Response({'message': '必须提交code'}, status=400) oauth = OAuthQQ(client_id=settings.QQ_CLIENT_ID, client_secret=settings.QQ_CLIENT_SECRET, redirect_uri=settings.QQ_REDIRECT_URI, state=next) access_token = oauth.get_access_token(code) openid = oauth.get_open_id(access_token) users = OAuthQQUser.objects.filter(openid=openid) # 判断是否绑定了本地用户 if users: # 已经绑定就返回token oauth_user = users[0] username = oauth_user.user.username user_id = oauth_user.user.id jwt_payload_handler = api_settings.JWT_PAYLOAD_HANDLER jwt_encode_handler = api_settings.JWT_ENCODE_HANDLER payload = jwt_payload_handler(oauth_user.user) token = jwt_encode_handler(payload) return Response({ 'username': username, 'user_id': user_id, 'token': token }) else: return Response({ 'access_token': generate_save_user_token(openid) # 加密 }) def post(self,request): """ 客户端提交的数据 1. mobile,password,sms_code,access_token :param request: :return: """ pass ```
{ "source": "jinlxz/CommandArgsParser", "score": 4 }
#### File: jinlxz/CommandArgsParser/cmd_arg_parser.py ```python import sys class cmd_arg_parser(object): def __init__(self,cmd_args): self.index=1 """dictionary to store all command line arguments after parsing the command line successfully. the dictionary stores switch-styled options, key-value pair options, list of positional arguments. you can refer to all the command line options by referring to this variable as follows: cmd_arg_parser.real_cmd_options[option1] cmd_arg_parser.real_cmd_options[option2] cmd_arg_parser.real_cmd_options["position_arg_list"] the option1,option2 keys are defined by devepers in self.cmd_args_list, refer to self.cmd_args_list for more information. the value for position_arg_list key is a list of all positional arguments. switch-styled options have the value True or False """ self.real_cmd_options={} #the original list of command line arguments. self.cmd_args_list=cmd_args """dictionary to represent all valid command line options, developer can add user-defined options here to add the options to the application. adding a switch-styled option refer to the following format. <option_name_cmd>:(self.process_bool_option,"<option_name_internal>") adding a option of key-value pair refer to the following format. <option_name_cmd>:(self.process_keyvalue_option,"<option_name_internal>") option_name_cmd is the name of the option used in command line, type string. option_name_internal is the name of the option as a key to stored in the self.real_cmd_options dictionary, type string. """ self.cmd_args_map={ "--help":(self.display_help,"help"), "-h":(self.display_help,"help"), "--version":(self.display_version,"version"), "-ver":(self.display_version,"version"), "--openfile":(self.process_keyvalue_option,"openfile"), "--enable-smp":(self.process_bool_option,"enable-smp"), "--":(self.process_option_separator,"separator") } def get_cmd_function(self,arg): if self.cmd_args_map.get(arg) is not None: return self.cmd_args_map.get(arg) else: if arg.startswith("-"): print "invalid option {0}".format(arg) return (self.display_help,"help") else: return (self.get_position_arg_list,"position_arg_list") def process_bool_option(self,name): self.real_cmd_options[name]=True; self.index+=1 def process_keyvalue_option(self,name): self.index+=1 self.real_cmd_options[name]=self.cmd_args_list[self.index] self.index+=1 def display_help(self,name): print "help information" sys.exit(0) def display_version(self,name): print "version 1.0" sys.exit(0) def get_position_arg_list(self,name): self.real_cmd_options[name]=self.cmd_args_list[self.index:] self.index=len(self.cmd_args_list) def process_option_separator(self,name): self.index+=1 self.get_position_arg_list(name) def parse_cmd_args(self): while self.index<len(self.cmd_args_list): p_arg = self.cmd_args_list[self.index] arg_process_func,arg_name=self.get_cmd_function(p_arg) arg_process_func(arg_name) if __name__=="__main__": cmd_parser=cmd_arg_parser(sys.argv) cmd_parser.parse_cmd_args() print cmd_parser.real_cmd_options ```
{ "source": "jinlygenius/sparrow_cloud", "score": 2 }
#### File: management/commands/rabbitmq_consumer.py ```python from django.core.management.base import BaseCommand from ._sparrow_rabbitmq_consumer import rabbitmq_consumer import logging logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'sparrow_rabbitmq_consumer' def add_arguments(self, parser): parser.add_argument('--queue', dest="queue", default='', type=str) def handle(self, *args, **kwargs): import pdb;pdb.set_trace() queue = kwargs.get('queue', None) if queue: rabbitmq_consumer(queue=queue) else: logger.error('请在调用命令时传入参数:--queue') print('请在调用命令时传入参数:--queue') ``` #### File: sparrow_cloud/restclient/requests_client.py ```python import requests import logging from django.conf import settings from sparrow_cloud.utils.build_url import build_url from sparrow_cloud.utils.get_acl_token import get_acl_token from requests.exceptions import ConnectTimeout, ConnectionError, ReadTimeout from sparrow_cloud.registry.service_discovery import consul_address logger = logging.getLogger(__name__) def get_settings_service_name(): """获取settings中的配置""" value = getattr(settings, 'SERVICE_CONF', '') if value == '': return '' service_name = value.get('NAME', '') return service_name def request(method, service_conf, api_path, timeout, retry_times, *args, **kwargs): error_message = None service_name = get_settings_service_name() request_service = service_conf['VALUE'] acl_token = get_acl_token(service_name) if acl_token is not None: params = kwargs.get('params', {}) params['acl_token'] = acl_token kwargs['params'] = params address_list = consul_address(service_conf) exclude_addr = [] _address = None for _ in range(int(retry_times)): if len(address_list) > 1 and isinstance(address_list, list): [address_list.remove(_) for _ in exclude_addr if _ in address_list] try: url, address = build_url(address_list, api_path) _address = address res = requests.request(method=method, url=url, timeout=timeout, *args, **kwargs) return res except (ConnectionError, ConnectTimeout, ReadTimeout)as ex: exclude_addr.append(_address) error_message = ex.__str__() logger.error("requests_client error,service_name:{}, request_service:{}, api_path:{}, message:{}, retry:{}" .format(service_name, request_service, api_path, error_message, int(_) + 1)) raise Exception("requests_client error, service_name: {}, request_service:{}, api_path:{}, message: {}" .format(service_name, request_service, api_path, error_message)) def get(service_conf, api_path, timeout=10, retry_times=3, *args, **kwargs): return request('get', service_conf, api_path, timeout, retry_times, *args, **kwargs) def post(service_conf, api_path, timeout=10, retry_times=3, *args, **kwargs): return request('post', service_conf, api_path, timeout, retry_times, *args, **kwargs) def put(service_conf, api_path, timeout=10, retry_times=3, *args, **kwargs): return request('put', service_conf, api_path, timeout, retry_times, *args, **kwargs) def delete(service_conf, api_path, timeout=10, retry_times=3, *args, **kwargs): return request('delete', service_conf, api_path, timeout, retry_times, *args, **kwargs) ``` #### File: sparrow_cloud/utils/validation_acl.py ```python import jwt import logging from django.conf import settings logger = logging.getLogger(__name__) def get_acl_public_key(): """get acl public """ acl_middleware_value = getattr(settings, 'ACL_MIDDLEWARE', None) if acl_middleware_value: acl_private_key = acl_middleware_value.get('ACL_PUBLIC_KEY', None) if acl_private_key is None or acl_private_key == '': logging.error('sparrow_cloud error: ACL_PUBLIC_KEY not configured in ACL_MIDDLEWARE') raise Exception("sparrow_cloud error: ACL_PUBLIC_KEY not configured in ACL_MIDDLEWARE") return acl_private_key logging.error('sparrow_cloud error: ACL_MIDDLEWARE not configured') raise Exception("sparrow_cloud error: ACL_MIDDLEWARE not configured") def validation_acl(acl_token): """validation acl token""" public_key = get_acl_public_key() try: payload = jwt.decode(acl_token, public_key, algorithms='RS256') logging.info('sparrow_cloud: acl_validated:{}'.format(payload)) return True, payload except Exception as ex: logging.info('sparrow_cloud: validation error, acl_token:{}'.format(acl_token)) return False, {} ``` #### File: sparrow_cloud/tests/test_acl_middleware.py ```python import os import jwt import time import unittest from django.conf import settings from django.test import RequestFactory from sparrow_cloud.middleware.acl_middleware import ACLMiddleware from django.http import JsonResponse os.environ["DJANGO_SETTINGS_MODULE"] = "tests.mock_settings" def token(): private_key = settings.PRIVATE_KEY payload = { "service_name": 'test', "ALL": 1, "permission": [], "exp": int(time.time() + 60*60), "iat": int(time.time()), "iss": "ACL" } acl_token = jwt.encode(payload, private_key, algorithm='RS256') return acl_token class TestACLMiddleware(unittest.TestCase): rf = RequestFactory() TOKEN = token() def setUp(self): os.environ["DJANGO_SETTINGS_MODULE"] = "tests.mock_settings" def test_acl(self): """测试 没有remote_user 和错误的 acl token """ request = self.rf.get('/acl', {'acl_token': '<KEY>'}) self.assertEqual(ACLMiddleware().process_request(request).status_code, JsonResponse({"message": "ACL验证未通过"}, status=403).status_code) def test_acl1(self): """测试 没有remote_user 和正确的 acl token """ request = self.rf.get('/acl', {'acl_token': self.TOKEN}) self.assertEqual(ACLMiddleware().process_request(request), None) def test_acl2(self): """测试 有remote_user 和正确的 acl token """ rf1 = RequestFactory(REMOTE_USER='sssssssss') request = rf1.get('/acl', {'acl_token': self.TOKEN}) self.assertEqual(ACLMiddleware().process_request(request), None) def test_acl3(self): """测试 有remote_user 和错误的 acl token """ rf1 = RequestFactory(REMOTE_USER='sssssssss') request = rf1.get('/acl', {'acl_token': '123dsafsafaq321dsknfdsj358q744'}) self.assertEqual(ACLMiddleware().process_request(request).status_code, JsonResponse({"message": "ACL验证未通过"}, status=403).status_code) def test_acl4(self): """测试 没有 acl token """ request = self.rf.get('/acl') self.assertEqual(ACLMiddleware().process_request(request), None) def tearDown(self): del os.environ["DJANGO_SETTINGS_MODULE"] if __name__ == '__main__': unittest.main() ``` #### File: sparrow_cloud/tests/test_get_acl_token.py ```python import os import time import unittest from django.conf import settings from sparrow_cloud.utils.get_hash_key import get_hash_key from sparrow_cloud.utils.get_acl_token import get_acl_token class TestGetACLToken(unittest.TestCase): def setUp(self): os.environ["DJANGO_SETTINGS_MODULE"] = "tests.mock_settings" def test_get_acl_token_from_settings(self): acl_token_key = get_hash_key() setattr(settings, acl_token_key, {'acl_token': 'ACL_TOKEN<PASSWORD>', 'time': time.time()}) self.assertEqual(get_acl_token('acl_test'), 'ACL_TOKEN8<PASSWORD>') def test_get_acl_token_from_cache(self): from django.core.cache import cache acl_token_key = get_hash_key() cache.set(acl_token_key, {'acl_token': 'ACL_TOKEN<PASSWORD>', 'time': time.time()}) self.assertEqual(get_acl_token('acl_test'), 'ACL_TOKEN1<PASSWORD>') def test_settings_not_acl_conf(self): settings.ACL_MIDDLEWARE = None self.assertEqual(get_acl_token('acl_test'), None) ``` #### File: sparrow_cloud/tests/test_register_command.py ```python import unittest from unittest import mock import django from io import StringIO from django.core.management import call_command import os from django.conf.urls import url from django.http import HttpResponse def detail(request, question_id): return HttpResponse("You're looking at question %s." % question_id) urlpatterns = [ url(r'^/ssss/xxx/$', detail), url(r'^/ssuuu/xxddx/$', detail), ] class RestClientTestCase(unittest.TestCase): def setUp(self): os.environ["DJANGO_SETTINGS_MODULE"] = "tests.mock_settings" @mock.patch('sparrow_cloud.restclient.rest_client.post', return_value={}) def test_register_command_list(self, mock_post): from django.conf import settings self.setup_settings(settings) django.setup() out = StringIO() os.environ["PERMISSION_SERVICE_HOST"] = "127.0.0.1:8001" call_command('register_api_permission', '-d', '2', '-l', stdout=out) self.assertEqual(out.read(), '') @mock.patch('sparrow_cloud.restclient.rest_client.post', return_value={}) def test_register_command(self, mock_post): from django.conf import settings self.setup_settings(settings) django.setup() out = StringIO() os.environ["PERMISSION_SERVICE_HOST"] = "127.0.0.1:8001" call_command('register_api_permission', '-d', '2', stdout=out) self.assertEqual(out.read(), '') def tearDown(self): del os.environ["PERMISSION_SERVICE_HOST"] def setup_settings(self, settings): settings.XX = "1" settings.SECRET_KEY = "ss" settings.ROOT_URLCONF = __name__ settings.SPARROW_PERMISSION_REGISTER_CONF = { "PERMISSION_SERVICE": { "ENV_NAME": "PERMISSION_SERVICE_HOST", "VALUE": "xxxxx-svc" }, "API_PATH": "/api/permission_i/register/" } settings.SERVICE_CONF = { "NAME": "permiss" } settings.CONSUL_CLIENT_ADDR = { "HOST": os.environ.get("CONSUL_IP", "127.0.0.1"), # 在k8s上的环境变量类型:变量/变量引用 "PORT": os.environ.get("CONSUL_PORT", 8500) } ```
{ "source": "jinmang2/boostcamp_ai_tech_2", "score": 2 }
#### File: nlp/ch04_rnn_variant/rnn_variant.py ```python import math import numbers from typing import Optional, Tuple, Sequence, Union, Any import torch import torch.nn as nn _TensorOrTensors = Union[torch.Tensor, Sequence[torch.Tensor]] """ @TODO - check code (h_torch, c_torch) = _VF.lstm_cell( x, hx, weight_ih, weight_hh, bias_ih, bias_hh ) h_torch = _VF.gru_cell( x, hx, weight_ih, weight_hh, bias_ih, bias_hh ) """ class LSTMCell(nn.Module): """ LSTM Cell class torch.nn.modules.rnn.LSTMCell 대비 훨씬 느림 atol=1e-8, rtol=1e-4 안에서 기존 LSTMCell의 연산과 동일 학습 목적으로 보길 바랍니다! """ __constants__ = ['input_size', 'hidden_size', 'bias'] def __init__(self, input_size: int, hidden_size: int, bias: bool = True, device=None, dtype=None): super().__init__() factory_kwargs = {'device': device, 'dtype': dtype} self.input_size = input_size self.hidden_size = hidden_size self.bias = bias # Weight와 Bias 선언! # projected version이 아니라 전부 따로 구현! # parameter 초기화 부분을 제외하면 `nn.Linear`와 동일함 # torch의 Linear는 weight를 kaiming uniform, # bias를 1 / math.sqrt(fan_in)의 bound를 가지는 단순 uniform으로 초기화 # rnn의 초기화는 아래 `reset_parameters` 메서드를 참고. num_chunks = 4 self.weight_ih = nn.Parameter(torch.empty((num_chunks * hidden_size, input_size), **factory_kwargs)) self.weight_hh = nn.Parameter(torch.empty((num_chunks * hidden_size, hidden_size), **factory_kwargs)) if bias: self.bias_ih = nn.Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs)) self.bias_hh = nn.Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs)) else: # bias를 사용하지 않더라도 접근할 수 있도록 등록 self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) # 파라미터 초기화 self.reset_parameters() def forward( self, input: torch.Tensor, hidden: Optional[Tuple[torch.Tensor]] = None ) -> torch.Tensor: """ .. math:: \begin{array}{ll} \\ i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\ g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\ o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\ c_t = f_t \odot c_{t-1} + i_t \odot g_t \\ h_t = o_t \odot \tanh(c_t) \\ \end{array} where :math:`h_t` is the hidden state at time `t`, :math:`c_t` is the cell state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{t-1}` is the hidden state of the layer at time `t-1` or the initial hidden state at time `0`, and :math:`i_t`, :math:`f_t`, :math:`g_t`, :math:`o_t` are the input, forget, cell, and output gates, respectively. :math:`\sigma` is the sigmoid function, and :math:`\odot` is the Hadamard product. """ # initial hidden state가 없을 경우 zeros로 초기화 # direction, layer별 전부 초기 은닉 상태가 있어야 한다. if hidden is None: zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) hidden = (zeros, zeros) i = torch.sigmoid(self.gate_wo_act(x, hx[0], 0)) # input gate f = torch.sigmoid(self.gate_wo_act(x, hx[0], 1)) # forget gate g = torch.tanh(self.gate_wo_act(x, hx[0], 2)) # gate gate o = torch.sigmoid(self.gate_wo_act(x, hx[0], 3)) # output gate next_cell = f * hx[1] + i * g next_hidden = o * torch.tanh(c) return (next_hidden, next_cell) def gate_wo_act(self, x: torch.Tensor, hx: torch.Tensor, i: int) -> torch.Tensor: w_ih = self.weight_ih[i*self.hidden_size:(i+1)*hidden_size, :] w_hh = self.weight_hh[i*self.hidden_size:(i+1)*hidden_size, :] b_ih, b_hh = torch.zeros(2, device=x.device, dtype=x.dtype) if self.bias: b_ih = self.bias_ih[i*self.hidden_size:(i+1)*hidden_size] b_hh = self.bias_hh[i*self.hidden_size:(i+1)*hidden_size] return x @ w_ih.T + hx @ w_hh.T + b_ih + b_hh @torch.no_grad() def backward(self, grad_outputs: _TensorOrTensors): """ Elman LSTMCell의 backward pass torch.autograd.Function없이 naive하게 구현 """ return None def extra_repr(self) -> str: s = '{input_size}, {hidden_size}' if 'bias' in self.__dict__ and self.bias is not True: s += ', bias={bias}' return s.format(**self.__dict__) def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): torch.nn.init.uniform_(weight, -stdv, stdv) class GRUCell(nn.Module): """ GRU Cell class torch.nn.modules.rnn.GRUCell 대비 훨씬 느림 atol=1e-8, rtol=1e-4 안에서 기존 LSTMCell의 연산과 동일 학습 목적으로 보길 바랍니다! """ __constants__ = ['input_size', 'hidden_size', 'bias'] def __init__(self, input_size: int, hidden_size: int, bias: bool = True, device=None, dtype=None): super().__init__() factory_kwargs = {'device': device, 'dtype': dtype} self.input_size = input_size self.hidden_size = hidden_size self.bias = bias # Weight와 Bias 선언! # projected version이 아니라 전부 따로 구현! # parameter 초기화 부분을 제외하면 `nn.Linear`와 동일함 # torch의 Linear는 weight를 kaiming uniform, # bias를 1 / math.sqrt(fan_in)의 bound를 가지는 단순 uniform으로 초기화 # rnn의 초기화는 아래 `reset_parameters` 메서드를 참고. num_chunks = 3 self.weight_ih = nn.Parameter(torch.empty((num_chunks * hidden_size, input_size), **factory_kwargs)) self.weight_hh = nn.Parameter(torch.empty((num_chunks * hidden_size, hidden_size), **factory_kwargs)) if bias: self.bias_ih = nn.Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs)) self.bias_hh = nn.Parameter(torch.empty(num_chunks * hidden_size, **factory_kwargs)) else: # bias를 사용하지 않더라도 접근할 수 있도록 등록 self.register_parameter('bias_ih', None) self.register_parameter('bias_hh', None) # 파라미터 초기화 self.reset_parameters() def forward( self, input: torch.Tensor, hidden: Optional[Tuple[torch.Tensor]] = None ) -> torch.Tensor: """ .. math:: \begin{array}{ll} r_t = \sigma(W_{ir} x_t + b_{ir} + W_{hr} h_{(t-1)} + b_{hr}) \\ z_t = \sigma(W_{iz} x_t + b_{iz} + W_{hz} h_{(t-1)} + b_{hz}) \\ n_t = \tanh(W_{in} x_t + b_{in} + r_t * (W_{hn} h_{(t-1)}+ b_{hn})) \\ h_t = (1 - z_t) * n_t + z_t * h_{(t-1)} \end{array} where :math:`h_t` is the hidden state at time `t`, :math:`x_t` is the input at time `t`, :math:`h_{(t-1)}` is the hidden state of the layer at time `t-1` or the initial hidden state at time `0`, and :math:`r_t`, :math:`z_t`, :math:`n_t` are the reset, update, and new gates, respectively. :math:`\sigma` is the sigmoid function, and :math:`*` is the Hadamard product. """ # initial hidden state가 없을 경우 zeros로 초기화 # direction, layer별 전부 초기 은닉 상태가 있어야 한다. if hidden is None: zeros = torch.zeros(input.size(0), self.hidden_size, dtype=input.dtype, device=input.device) hidden = zeros r = torch.sigmoid(self.gate_wo_act(x, hx, 0)) # reset gate z = torch.sigmoid(self.gate_wo_act(x, hx, 1)) # update gate n = torch.tanh(self.gate_wo_act(x, hx, 2, reset=r)) # candidate activation vector next_hidden = (1 - z) * n + z * hx return next_hidden def gate_wo_act( self, x: torch.Tensor, hx: torch.Tensor, i: int, reset: Optional[torch.Tensor] = None ) -> torch.Tensor: w_ih = self.weight_ih[i*self.hidden_size:(i+1)*hidden_size, :] w_hh = self.weight_hh[i*self.hidden_size:(i+1)*hidden_size, :] b_ih, b_hh = torch.zeros(2, device=x.device, dtype=x.dtype) if self.bias: b_ih = self.bias_ih[i*self.hidden_size:(i+1)*hidden_size] b_hh = self.bias_hh[i*self.hidden_size:(i+1)*hidden_size] x_part = x @ w_ih.T + b_ih h_part = hx @ w_hh.T + b_hh if reset is None: reset = torch.ones_like(h_part, dtype=h_part.dtype, device=h_part.device) return x_part + reset * h_part @torch.no_grad() def backward(self, grad_outputs: _TensorOrTensors): """ Elman LSTMCell의 backward pass torch.autograd.Function없이 naive하게 구현 """ return None def extra_repr(self) -> str: s = '{input_size}, {hidden_size}' if 'bias' in self.__dict__ and self.bias is not True: s += ', bias={bias}' return s.format(**self.__dict__) def reset_parameters(self): stdv = 1.0 / math.sqrt(self.hidden_size) for weight in self.parameters(): torch.nn.init.uniform_(weight, -stdv, stdv) ``` #### File: pytorch/ch05_dataset/samplers.py ```python import numpy as np import torch from torch._six import int_classes as _int_classes from torch import Tensor from typing import Iterator, Optional, Sequence, List, TypeVar, Generic, Sized T_co = TypeVar('T_co', covariant=True) class Sampler(Generic[T_co]): """ 모든 Sampler의 Base class """ def __init__(self, data_source: Optional[Sized]) -> None: pass def __iter__(self) -> Iterator[T_co]: raise NotImplementedError class SequentialSampler(Sampler[int]): """ 요소를 같은 순서로 sequentially하게 샘플링 """ data_source: Sized def __init__(self, data_source): self.data_source = data_source def __iter__(self): return iter(range(len(self.data_source))) def __len__(self) -> int: return len(self.data_source) class RandomSampler(Sampler[int]): """ 요소를 임의로 추출! w/o replacement --> shuffled dataset에서 샘플링 with replacement -> :attr:`num_samples`를 지정하여 draw 가능 """ data_source: Sized replacement: bool def __init__(self, data_source: Sized, replacement: bool = False, num_samples: Optional[int] = None, generator=None) -> None: self.data_source = data_source self.replacement = replacement self._num_samples = num_samples self.generator = generator if not isinstance(self.replacement, bool): raise TypeError("replacement should be a boolean value, but got " "replacement={}".format(self.replacement)) if self._num_samples is not None and not replacement: raise ValueError("With replacement=False, num_samples should not be specified, " "since a random permute will be performed.") if not isinstance(self.num_samples, int) or self.num_samples <= 0: raise ValueError("num_samples should be a positive integer " "value, but got num_samples={}".format(self.num_samples)) @property def num_samples(self) -> int: # dataset size might change at runtime if self._num_sample is None: return len(self.data_source) return self._num_samples def __iter__(self): n = len(self.data_source) if self.generator is None: generator = torch.Generator() generator.manual_seed(int(torch.empty((), dtype=torch.int64).random_().item())) else: generator = self.generator if self.replacement: for _ in range(self.num_samples // 32): yield from torch.randint(high=n, size=(32,), dtype=torch.int64, generator=generator).tolist() yield from torch.randint(high=n, size=(self.num_samples % 32,), dtype=torch.int64, generator=generator).tolist() else: yield from torch.randperm(n, generator=self.generator).tolist() def __len__(self): return self.num_samples class SubsetRandomSampler(Sampler[int]): """ replacement없이 주어진 index list에서 요소를 임의로 추출 """ indices: Sequence[int] def __init__(self, indices: Sequence[int], generator=None) -> None: self.indices = indices self.generator = generator def __iter__(self): return (self.indices[i] for i in torch.randperm(len(self.indices), generator=self.generator)) def __len__(self): return len(self.indices) class WeightedRandomSampler(Sampler[int]): """ 주어진 확률로 [0,...,len(weights)-1]에서 요소를 추출! % weights의 합이 1일 필욘 없음! """ weights: Tensor num_samples: int replacement: bool def __init__(self, weights: Sequence[float], num_samples: int, replacementL bool = True, generator=None) -> None: if not isinstance(num_samples, _int_classes) or isinstance(num_samples, bool) or \ num_samples <= 0: raise ValueError("num_samples should be a positive integer " "value, but got num_samples={}".format(num_samples)) if not isinstance(replacement, bool): raise ValueError("replacement should be a boolean value, but got " "replacement={}".format(replacement)) self.weights = torch.as_tensor(weights, dtype=torch.double) self.num_samples = num_samples self.replacement = replacement self.generator = genearator def __iter__(self): rand_tensor = torch.multinomial( inputs=self.weights, num_samples=self.num_samples, replacement=self.replacement, generator=self.generator, ) return iter(rand_tensor.tolist()) def __len__(self): return self.num_samples # https://github.com/doc2dial/sharedtask-dialdoc2021/blob/master/scripts/subtask2/utils.py def sortish_sampler_indices( data: List, batch_size: int, shuffle: bool = True ) -> np.array: if not shuffle: return np.argsort(np.array(data) * -1) def key_fn(i): return data[i] idxs = np.random.permutation(len(data)) sz = batch_size * 50 ck_idx = [idxs[i:i+sz] for i in range(0, len(idxs), sz)] sort_idx = np.concatenate([sorted(s, key=key_fn, reverse=True) for s in ck_idx]) sz = batch_size ck_idx = [idxs[i:i+sz] for i in range(0, len(sort_idx), sz)] max_ck = np.argmax([key_fn(ck[0]) for ck in ck_idx]) # find the chunk with the largest key, ck_idx[0], ck_idx[max_ck] = ck_idx[max_ck], ck_idx[0] # then make sure it goes first. sort_idx = np.concatenate(np.random.permutation(ck_idx[1:])) if len(ck_idx) > 1 else np.array([], dtype=np.int) sort_idx = np.concatenate((ck_idx[0], sort_idx)) return sort_idx # fastai에서 가져온 클래스 class SortishSampler(Sampler): """ sequence length순으로 정렬된 text data를 추출! (+ a bit of randomness) """ def __init__(self, data, batch_size, shuffle=True): self.data = data # src_len의 list! self.batch_size = batch_size self.shuffle = shuffle def __len__(self) -> int: return len(self.data) def __iter__(self): return iter(sortish_sampler_indices(self.data, self.batch_size, self.shuffle)) class BatchSampler(Sampler[List[int]]): """ 다른 Sampler를 mini-batch화 시켜주는 Wrapper class """ def __init__(self, sampler: Sampler[int], batch_size: int, drop_last: bool) -> None: # Since collections.abc.Iterable does not check for `__getitem__`, which # is one way for an object to be an iterable, we don't do an `isinstance` # check here. if not isinstance(batch_size, _int_classes) or isinstance(batch_size, bool) or \ batch_size <= 0: raise ValueError("batch_size should be a positive integer value, " "but got batch_size={}".format(batch_size)) if not isinstance(drop_last, bool): raise ValueError("drop_last should be a boolean value, but got " "drop_last={}".format(drop_last)) self.sampler = sampler self.batch_size = batch_size self.drop_last = drop_last def __iter__(self): batch = [] for idx in self.sampler: batch.append(idx) if len(batch) == self.batch_size: yield batch batch = [] if len(batch) > 0 and not self.drop_last: yield batch def __len__(self): # Can only be called if self.sampler has __len__ implemented # We cannot enforce this condition, so we turn off typechecking for the # implementation below. # Somewhat related: see NOTE [ Lack of Default `__len__` in Python Abstract Base Classes ] if self.drop_last: return len(self.sampler) // self.batch_size # type: ignore else: return (len(self.sampler) + self.batch_size - 1) // self.batch_size ```
{ "source": "jinmang2/DOOLY", "score": 2 }
#### File: dooly/converters/kobart_utils.py ```python import os import sys import hashlib import importlib def is_available_boto3(): return importlib.util.find_spec("boto3") if is_available_boto3(): import boto3 from botocore import UNSIGNED from botocore.client import Config else: raise ModuleNotFoundError("Please install boto3 with: `pip install boto3`.") class AwsS3Downloader(object): def __init__( self, aws_access_key_id=None, aws_secret_access_key=None, ): self.resource = boto3.Session( aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, ).resource("s3") self.client = boto3.client( "s3", aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, config=Config(signature_version=UNSIGNED), ) def __split_url(self, url: str): if url.startswith("s3://"): url = url.replace("s3://", "") bucket, key = url.split("/", maxsplit=1) return bucket, key def download(self, url: str, local_dir: str): bucket, key = self.__split_url(url) filename = os.path.basename(key) file_path = os.path.join(local_dir, filename) os.makedirs(os.path.dirname(file_path), exist_ok=True) meta_data = self.client.head_object(Bucket=bucket, Key=key) total_length = int(meta_data.get("ContentLength", 0)) downloaded = 0 def progress(chunk): nonlocal downloaded downloaded += chunk done = int(50 * downloaded / total_length) sys.stdout.write( "\r{}[{}{}]".format(file_path, "█" * done, "." * (50 - done)) ) sys.stdout.flush() try: with open(file_path, "wb") as f: self.client.download_fileobj(bucket, key, f, Callback=progress) sys.stdout.write("\n") sys.stdout.flush() except Exception as e: # E722 do not use bare 'except' print(f"Exception occured: {e}.\ndownloading file is failed. {url}") return file_path def download(url, chksum=None, cachedir=".cache"): cachedir_full = os.path.join(os.getcwd(), cachedir) os.makedirs(cachedir_full, exist_ok=True) filename = os.path.basename(url) file_path = os.path.join(cachedir_full, filename) if os.path.isfile(file_path): if hashlib.md5(open(file_path, "rb").read()).hexdigest()[:10] == chksum: print(f"using cached model. {file_path}") return file_path, True s3 = AwsS3Downloader() file_path = s3.download(url, cachedir_full) if chksum: assert ( chksum == hashlib.md5(open(file_path, "rb").read()).hexdigest()[:10] ), "corrupted file!" return file_path, False ``` #### File: dooly/models/__init__.py ```python import json from packaging import version from contextlib import contextmanager from typing import Optional import torch import transformers from transformers.configuration_utils import PretrainedConfig from transformers.modeling_utils import PreTrainedModel from .modeling_bart import BartForConditionalGeneration from .modeling_fsmt import FSMTForConditionalGeneration from .modeling_roberta import ( RobertaForDependencyParsing, RobertaForSpanPrediction, RobertaForSequenceTagging, RobertaForSequenceClassification, ) from ..build_utils import ( download_from_hf_hub, CONFIG_USER_AGENT, HUB_NAME, MODEL_USER_AGENT, CONFIG_NAME, WEIGHTS_NAME, ) DoolyModelHub = { "dp": { "ko": {"posbert.base": RobertaForDependencyParsing}, }, "mrc": { "ko": {"brainbert.base": RobertaForSpanPrediction}, }, "mt": { "multi": { "transformer.large.mtpg": FSMTForConditionalGeneration, "transformer.large.fast.mtpg": FSMTForConditionalGeneration, }, }, "ner": { "ko": {"charbert.base": RobertaForSequenceTagging}, "en": {"roberta.base": RobertaForSequenceTagging}, "ja": {"jaberta.base": RobertaForSequenceTagging}, "zh": {"zhberta.base": RobertaForSequenceTagging}, }, "nli": { "ko": {"brainbert.base": RobertaForSequenceClassification}, "en": {"roberta.base": RobertaForSequenceClassification}, "ja": {"jaberta.base": RobertaForSequenceClassification}, "zh": {"zhberta.base": RobertaForSequenceClassification}, }, "qg": { "ko": {"kobart.base": BartForConditionalGeneration}, }, "wsd": { "ko": {"transformer.large": FSMTForConditionalGeneration}, }, } DoolyModelHub["bt"] = DoolyModelHub["mt"] DoolyModelHub["zero_topic"] = DoolyModelHub["nli"] available_tasks = list(DoolyModelHub.keys()) _init_weights = True @contextmanager def no_init_weights(_enable=True): global _init_weights if _enable: _init_weights = False try: yield finally: _init_weights = True class DoolyModel: """ Dooly Model """ @classmethod def build_model(cls, task: str, lang: str, n_model: str, **kwargs): assert ( task in available_tasks ), f"Task `{task}` is not available. See here {available_tasks}." available_langs = DoolyModelHub[task] assert lang in available_langs, ( f"Language `{lang}` is not available in this task {task}. " f"See here {available_langs}." ) available_models = available_langs[lang] assert n_model in available_models, ( f"Model `{n_model}` is not available in this task-lang pair. " f"See here {available_models}." ) model_class = available_models[n_model] return cls._build_model(task, lang, n_model, model_class, **kwargs) @classmethod def _build_model_config( cls, task: str, lang: str, n_model: str, config_class: PretrainedConfig, revision: Optional[str] = None, cache_dir: Optional[str] = None, force_download: bool = False, resume_download: bool = False, **kwargs, ) -> PretrainedConfig: # Load from URL or cache if already cached resolved_config_file = download_from_hf_hub( model_id=HUB_NAME, filename=CONFIG_NAME, subfolder=f"{task}/{lang}/{n_model}", revision=revision, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, user_agent=CONFIG_USER_AGENT, ) # _dict_from_json_file with open(resolved_config_file, "r", encoding="utf-8") as reader: text = reader.read() config_dict = json.loads(text) return config_class.from_dict(config_dict, **kwargs) @classmethod def _build_model( cls, task: str, lang: str, n_model: str, model_class: PreTrainedModel, revision: Optional[str] = None, cache_dir: Optional[str] = None, force_download: bool = False, resume_download: bool = False, low_cpu_mem_usage: bool = False, _fast_init: bool = True, **kwargs, ) -> PreTrainedModel: if low_cpu_mem_usage: assert version.parse(torch.__version__) > version.parse("1.9"), ( "torch>=1.9 is required for a normal functioning of this module" f"using the low_cpu_mem_usage=={low_cpu_mem_usage}, " f"but found torch=={torch.__version__}" ) config_class: PretrainedConfig = model_class.config_class config = cls._build_model_config( task=task, lang=lang, n_model=n_model, config_class=config_class, revision=revision, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, **kwargs, ) # Load from URL or cache if already cached resolved_archive_file = download_from_hf_hub( model_id=HUB_NAME, filename=WEIGHTS_NAME, subfolder=f"{task}/{lang}/{n_model}", revision=revision, cache_dir=cache_dir, force_download=force_download, resume_download=resume_download, user_agent=MODEL_USER_AGENT, ) state_dict = torch.load(resolved_archive_file, map_location="cpu") if low_cpu_mem_usage: loaded_state_dict_keys = [k for k in state_dict.keys()] del state_dict # free CPU memory - will reload again later with no_init_weights(_enable=_fast_init): model = model_class(config, **kwargs) # There was an update to the from_pretrained method of models in v4.18.0. # See fetch below. # ref. https://github.com/huggingface/transformers/releases/tag/v4.18.0 # ref. https://github.com/huggingface/transformers/pull/16343 if low_cpu_mem_usage: kwargs = dict( model=model, loaded_state_dict_keys=loaded_state_dict_keys, resolved_archive_file=resolved_archive_file, ) if version.parse(transformers.__version__) >= version.parse("4.18.0"): load_pretrained_model = model_class._load_pretrained_model_low_mem else: load_pretrained_model = model_class._load_state_dict_into_model_low_mem load_pretrained_model(**kwargs) else: kwargs = dict( model=model, state_dict=state_dict, pretrained_model_name_or_path=HUB_NAME, ignore_mismatched_sizes=False, _fast_init=_fast_init, ) if version.parse(transformers.__version__) >= version.parse("4.18.0"): kwargs.update(dict(resolved_archive_file=resolved_archive_file)) load_pretrained_model = model_class._load_pretrained_model if version.parse(transformers.__version__) >= version.parse("4.19.0"): # Note that: `is_shared` 파라미터는 지원하지 않을 예정. # 그리고 향후 v5로 업데이트되며 문제가 생길 수 있는 코드임 # 추가로 지금 코드가 너무 지저분함... # 해결 방안 # 1. transformers에서 PreTrainedModel 클래스의 from_pretrained # 메서드에서 tokenizer처럼 subfolder를 지원하도록 PR 때린다. # 2. 내부 loading script method에 접근할 수 있는 방법을 찾아본다. kwargs.update(dict(loaded_keys=[k for k in state_dict.keys()])) else: load_pretrained_model = model_class._load_state_dict_into_model model, _, _, _, _ = load_pretrained_model(**kwargs) # make sure token embedding weights are still tied if needed model.tie_weights() # Set model in evaluation mode to deactivate DropOut modules by default model.eval() return model ``` #### File: dooly/models/modeling_fsmt.py ```python import math import random import torch.nn as nn from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.models.fsmt.modeling_fsmt import ( SinusoidalPositionalEmbedding, EncoderLayer, DecoderLayer, FSMTModel as _FSMTModel, FSMTForConditionalGeneration as _FSMTForConditionalGeneration, ) from transformers.modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, # Seq2SeqLMOutput, # Seq2SeqModelOutput, ) from transformers.deepspeed import is_deepspeed_zero3_enabled def invert_mask(attention_mask): """Turns 1->0, 0->1, False->True, True-> False""" assert attention_mask.dim() == 2 return attention_mask.eq(0) class FSMTConfig(FSMTConfig): def __init__( self, encoder_pre_layernorm=False, decoder_pre_layernorm=False, **kwargs, ): self.encoder_pre_layernorm = encoder_pre_layernorm self.decoder_pre_layernorm = decoder_pre_layernorm super().__init__(**kwargs) class FSMTEncoderLayer(EncoderLayer): def __init__(self, config: FSMTConfig): super().__init__(config) self.pre_layernorm = config.encoder_pre_layernorm def forward( self, x, encoder_padding_mask, layer_head_mask, output_attentions=False ): """ Args: x (`torch.Tensor`): input to the layer of shape *(seq_len, batch, embed_dim)* encoder_padding_mask (`torch.ByteTensor`): binary ByteTensor of shape *(batch, src_len)* where padding elements are indicated by `1`. for t_tgt, t_src is excluded (or masked out), =0 means it is included in attention layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size *(config.encoder_attention_heads,)*. Returns: encoded output of shape *(seq_len, batch, embed_dim)* """ residual = x if self.pre_layernorm: x = self.self_attn_layer_norm(x) x, attn_weights = self.self_attn( query=x, key=x, key_padding_mask=encoder_padding_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) x = nn.functional.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.pre_layernorm: x = self.self_attn_layer_norm(x) residual = x if self.pre_layernorm: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = nn.functional.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.pre_layernorm: x = self.final_layer_norm(x) return x, attn_weights class FSMTDecoderLayer(DecoderLayer): def __init__(self, config: FSMTConfig): super().__init__(config) self.pre_layernorm = config.decoder_pre_layernorm def forward( self, x, encoder_hidden_states, encoder_attn_mask=None, layer_state=None, causal_mask=None, layer_head_mask=None, cross_attn_layer_head_mask=None, decoder_padding_mask=None, output_attentions=False, ): residual = x if layer_state is None: layer_state = {} if self.pre_layernorm: x = self.self_attn_layer_norm(x) # Self Attention x, self_attn_weights = self.self_attn( query=x, key=x, layer_state=layer_state, # adds keys to layer state key_padding_mask=decoder_padding_mask, attn_mask=causal_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, ) x = nn.functional.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.pre_layernorm: x = self.self_attn_layer_norm(x) # Cross attention residual = x assert self.encoder_attn.cache_key != self.self_attn.cache_key if self.pre_layernorm: x = self.encoder_attn_layer_norm(x) x, cross_attn_weights = self.encoder_attn( query=x, key=encoder_hidden_states, key_padding_mask=encoder_attn_mask, layer_state=layer_state, # mutates layer state layer_head_mask=cross_attn_layer_head_mask, output_attentions=output_attentions, ) x = nn.functional.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.pre_layernorm: x = self.encoder_attn_layer_norm(x) # Fully Connected residual = x if self.pre_layernorm: x = self.final_layer_norm(x) x = self.activation_fn(self.fc1(x)) x = nn.functional.dropout(x, p=self.activation_dropout, training=self.training) x = self.fc2(x) x = nn.functional.dropout(x, p=self.dropout, training=self.training) x = residual + x if not self.pre_layernorm: x = self.final_layer_norm(x) return ( x, self_attn_weights, layer_state, cross_attn_weights, ) # layer_state = cache for decoding class FSMTEncoder(nn.Module): """ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a [`EncoderLayer`]. Args: config: FSMTConfig """ def __init__(self, config: FSMTConfig, embed_tokens): super().__init__() self.dropout = config.dropout self.layerdrop = config.encoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.embed_tokens = embed_tokens embed_dim = embed_tokens.embedding_dim self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 self.embed_positions = SinusoidalPositionalEmbedding( config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList( [FSMTEncoderLayer(config) for _ in range(config.encoder_layers)] ) self.pre_layernorm = config.encoder_pre_layernorm if self.pre_layernorm: self.layer_norm = nn.LayerNorm(embed_dim) def forward( self, input_ids, attention_mask=None, head_mask=None, output_attentions=False, output_hidden_states=False, return_dict=True, ): """ Args: input_ids (`torch.LongTensor`): tokens in the source language of shape *(batch, src_len)* attention_mask (`torch.LongTensor`): indicating which indices are padding tokens head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. Returns: BaseModelOutput or Tuple comprised of: - **x** (`torch.Tensor`): the last encoder layer's output of shape *(src_len, batch, embed_dim)* - **encoder_states** (`Tuple(torch.FloatTensor`)): all intermediate hidden states of shape *(src_len, batch, embed_dim)*. Only populated if *output_hidden_states:* is True. - **all_attentions** (`Tuple(torch.FloatTensor`)): Attention weights for each layer. During training might not be of length n_layers because of layer dropout. """ # check attention mask and invert if attention_mask is not None: attention_mask = invert_mask(attention_mask) inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale embed_pos = self.embed_positions(input_ids) x = inputs_embeds + embed_pos x = nn.functional.dropout(x, p=self.dropout, training=self.training) # B x T x C -> T x B x C x = x.transpose(0, 1) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None # check if head_mask has a correct number of layers specified if desired if head_mask is not None: assert head_mask.size()[0] == ( len(self.layers) ), f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}." for idx, encoder_layer in enumerate(self.layers): if output_hidden_states: x = x.transpose(0, 1) # T x B x C -> B x T x C encoder_states += (x,) x = x.transpose(0, 1) # B x T x C -> T x B x C # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) dropout_probability = random.uniform(0, 1) if self.training and ( dropout_probability < self.layerdrop ): # skip the layer attn = None else: x, attn = encoder_layer( x, attention_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), output_attentions=output_attentions, ) if output_attentions: all_attentions = all_attentions + (attn,) if self.pre_layernorm: x = self.layer_norm(x) # T x B x C -> B x T x C x = x.transpose(0, 1) if output_hidden_states: encoder_states += (x,) if not return_dict: return tuple( v for v in [x, encoder_states, all_attentions] if v is not None ) return BaseModelOutput( last_hidden_state=x, hidden_states=encoder_states, attentions=all_attentions ) class FSMTDecoder(nn.Module): """ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`DecoderLayer`] Args: config: FSMTConfig embed_tokens (nn.Embedding): output embedding """ def __init__(self, config: FSMTConfig, embed_tokens: nn.Embedding): super().__init__() self.dropout = config.dropout self.layerdrop = config.decoder_layerdrop self.padding_idx = embed_tokens.padding_idx self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 self.embed_tokens = embed_tokens embed_dim = embed_tokens.embedding_dim self.embed_positions = SinusoidalPositionalEmbedding( config.max_position_embeddings + self.padding_idx + 1, embed_dim, self.padding_idx, ) self.layers = nn.ModuleList( [FSMTDecoderLayer(config) for _ in range(config.decoder_layers)] ) self.pre_layernorm = config.decoder_pre_layernorm if self.pre_layernorm: self.layer_norm = nn.LayerNorm(embed_dim) if is_deepspeed_zero3_enabled(): import deepspeed with deepspeed.zero.GatheredParameters( self.embed_tokens.weight, modifier_rank=None ): embed_tokens_weight_shape = self.embed_tokens.weight.shape else: embed_tokens_weight_shape = self.embed_tokens.weight.shape self.output_projection = nn.Linear( embed_tokens_weight_shape[1], embed_tokens_weight_shape[0], bias=False ) self.output_projection.weight = self.embed_tokens.weight def forward( self, input_ids, encoder_hidden_states, encoder_padding_mask, decoder_padding_mask, decoder_causal_mask, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=False, output_attentions=False, output_hidden_states=False, return_dict=True, ): """ Includes several features from "Jointly Learning to Align and Translate with Transformer Models" (Garg et al., EMNLP 2019). Args: input_ids (`torch.LongTensor` of shape `(batch, tgt_len)`): previous decoder outputs for teacher forcing encoder_hidden_states: output from the encoder, used for encoder-side attention encoder_padding_mask: for ignoring pad tokens past_key_values (dict or None): dictionary used for storing state during generation head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. Returns: BaseModelOutputWithPast or tuple: - the decoder's features of shape *(batch, tgt_len, embed_dim)* - the cache - hidden states - attentions """ # check attention mask and invert if encoder_padding_mask is not None: encoder_padding_mask = invert_mask(encoder_padding_mask) # embed positions positions = self.embed_positions(input_ids) # , use_cache=use_cache) if use_cache: input_ids = input_ids[:, -1:] positions = positions[:, -1:] # happens after we embed them # assert input_ids.ne(self.padding_idx).any() x = self.embed_tokens(input_ids) * self.embed_scale x += positions x = nn.functional.dropout(x, p=self.dropout, training=self.training) # Convert to FSMT output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim) x = x.transpose(0, 1) encoder_hidden_states = encoder_hidden_states.transpose(0, 1) # decoder layers all_hidden_states = () if output_hidden_states else None all_self_attns = () if output_attentions else None all_cross_attns = () if output_attentions else None next_decoder_cache = [] # check if head_mask has a correct number of layers specified if desired for attn_mask, mask_name in zip( [head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"] ): if attn_mask is not None: assert attn_mask.size()[0] == len(self.layers), ( f"The `{mask_name}` should be specified for {len(self.layers)} layers, " f"but it is for {head_mask.size()[0]}." ) for idx, decoder_layer in enumerate(self.layers): # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) if output_hidden_states: x = x.transpose(0, 1) all_hidden_states += (x,) x = x.transpose(0, 1) dropout_probability = random.uniform(0, 1) if self.training and (dropout_probability < self.layerdrop): continue layer_state = past_key_values[idx] if past_key_values is not None else None x, layer_self_attn, layer_past, layer_cross_attn = decoder_layer( x, encoder_hidden_states, encoder_attn_mask=encoder_padding_mask, decoder_padding_mask=decoder_padding_mask, layer_state=layer_state, causal_mask=decoder_causal_mask, layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=( cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None ), output_attentions=output_attentions, ) if use_cache: next_decoder_cache.append(layer_past.copy()) if output_attentions: all_self_attns += (layer_self_attn,) all_cross_attns += (layer_cross_attn,) if self.pre_layernorm: x = self.layer_norm(x) # add hidden states from the last decoder layer if output_hidden_states: x = x.transpose(0, 1) all_hidden_states += (x,) x = x.transpose(0, 1) # Convert to standard output format: (seq_len, BS, model_dim) -> (BS, seq_len, model_dim) x = x.transpose(0, 1) encoder_hidden_states = encoder_hidden_states.transpose(0, 1) x = self.output_projection(x) next_cache = next_decoder_cache if use_cache else None if not return_dict: return tuple( v for v in [ x, next_cache, all_hidden_states, all_self_attns, all_cross_attns, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=x, past_key_values=next_cache, hidden_states=all_hidden_states, attentions=all_self_attns, cross_attentions=all_cross_attns, ) class FSMTModel(_FSMTModel): def __init__(self, config: FSMTConfig): super(_FSMTModel, self).__init__(config) padding_idx = config.pad_token_id encoder_embed_tokens = nn.Embedding( config.src_vocab_size, config.d_model, padding_idx ) decoder_embed_tokens = nn.Embedding( config.tgt_vocab_size, config.d_model, padding_idx ) self.encoder = FSMTEncoder(config, encoder_embed_tokens) self.decoder = FSMTDecoder(config, decoder_embed_tokens) # Initialize weights and apply final processing self.post_init() class FSMTForConditionalGeneration(_FSMTForConditionalGeneration): def __init__(self, config: FSMTConfig): super(_FSMTForConditionalGeneration, self).__init__(config) self.model = FSMTModel(config) ``` #### File: dooly/models/modeling_roberta.py ```python import random from packaging import version import torch import torch.nn as nn from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.models.roberta.modeling_roberta import ( # noqa # pylint: disable=unused-import RobertaModel, RobertaPooler, RobertaEncoder, RobertaPreTrainedModel, RobertaForQuestionAnswering, RobertaForSequenceClassification, ) from .utils.modeling_heads import ( SpanPredictionHead, ClassificationHead, DependencyParseHead, SlotGenerator, ) from .utils.modeling_outputs import ( BaseModelOutputWithPoolingAndCrossAttentions, TokenClassifierOutput, DependencyParsingOutput, DialogueStateTrackingOutput, ) from .utils.modeling_utils import masked_cross_entropy_for_value class RobertaForDPConfig(RobertaConfig): def __init__( self, num_segments: int = 52, classifier_num_attention_heads: int = 8, **kwargs ): super().__init__(**kwargs) self.num_segments = num_segments self.classifier_num_attention_heads = classifier_num_attention_heads class RobertaForDSTConfig(RobertaConfig): def __init__( self, teacher_forcing: float = 0.5, parallel_decoding: bool = True, **kwargs ): super().__init__(**kwargs) self.teacher_forcing = teacher_forcing self.parallel_decoding = parallel_decoding class RobertaForSpanPrediction(RobertaForQuestionAnswering): def __init__(self, config): # Initialize on RobertaPreTrainedModel super(RobertaForQuestionAnswering, self).__init__(config) config.num_labels = 2 self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.qa_outputs = SpanPredictionHead(config) self.init_weights() class RobertaForSequenceTagging(RobertaPreTrainedModel): _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = RobertaModel(config, add_pooling_layer=False) self.classifier = ClassificationHead(config) self.init_weights() def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels), ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) class SegmentRobertaEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ # Copied from transformers.models.bert.modeling_bert.BertEmbeddings.__init__ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding( config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id ) self.num_segments = config.num_segments if config.num_segments > 0: self.segment_embeddings = nn.Embedding( config.num_segments, config.hidden_size, padding_idx=None ) self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size ) self.token_type_embeddings = nn.Embedding( config.type_vocab_size, config.hidden_size ) # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load # any TensorFlow checkpoint file self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr( config, "position_embedding_type", "absolute" ) self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)) ) if version.parse(torch.__version__) > version.parse("1.6.0"): self.register_buffer( "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False, ) # End copy self.padding_idx = config.pad_token_id self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx, ) def forward( self, input_ids=None, segment_labels=None, token_type_ids=None, position_ids=None, inputs_embeds=None, past_key_values_length=0, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids( input_ids, self.padding_idx, past_key_values_length ) else: position_ids = self.create_position_ids_from_inputs_embeds( inputs_embeds ) if input_ids is not None: input_shape = input_ids.size() else: input_shape = inputs_embeds.size()[:-1] seq_length = input_shape[1] # Setting the token_type_ids to the registered buffer in constructor where # it is all zeros, which usually occurs when its auto-generated, # registered buffer helps users when tracing the model without passing token_type_ids, # solves issue #5664 if token_type_ids is None: if hasattr(self, "token_type_ids"): buffered_token_type_ids = self.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand( input_shape[0], seq_length ) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=self.position_ids.device ) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_embeds + token_type_embeddings if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings += position_embeddings if segment_labels is not None and self.num_segments > 0: segment_embeddings = self.segment_embeddings(segment_labels) embeddings += segment_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device, ) return position_ids.unsqueeze(0).expand(input_shape) class SegmentRobertaModel(RobertaModel): _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config, add_pooling_layer=True): super(RobertaModel, self).__init__(config) self.config = config self.embeddings = SegmentRobertaEmbeddings(config) self.encoder = RobertaEncoder(config) self.pooler = RobertaPooler(config) if add_pooling_layer else None # Initialize weights and apply final processing if hasattr(self, "post_init"): self.post_init() else: self.init_weights() def forward( self, input_ids=None, segment_labels=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) if self.config.is_decoder: use_cache = use_cache if use_cache is not None else self.config.use_cache else: use_cache = False if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds") batch_size, seq_length = input_shape device = input_ids.device if input_ids is not None else inputs_embeds.device # past_key_values_length past_key_values_length = ( past_key_values[0][0].shape[2] if past_key_values is not None else 0 ) if attention_mask is None: attention_mask = torch.ones( ((batch_size, seq_length + past_key_values_length)), device=device ) if token_type_ids is None: if hasattr(self.embeddings, "token_type_ids"): buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length] buffered_token_type_ids_expanded = buffered_token_type_ids.expand( batch_size, seq_length ) token_type_ids = buffered_token_type_ids_expanded else: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=device ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = self.get_extended_attention_mask( attention_mask, input_shape, device ) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask( encoder_attention_mask ) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) embedding_output = self.embeddings( input_ids=input_ids, segment_labels=segment_labels, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, past_key_values_length=past_key_values_length, ) encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = ( self.pooler(sequence_output) if self.pooler is not None else None ) if not return_dict: return (sequence_output, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, pooler_output=pooled_output, past_key_values=encoder_outputs.past_key_values, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) class RobertaForDependencyParsing(RobertaPreTrainedModel): config_class = RobertaForDPConfig _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.roberta = SegmentRobertaModel(config, add_pooling_layer=False) self.classifier = DependencyParseHead(config) self.init_weights() def forward( self, input_ids=None, segment_labels=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict ) outputs = self.roberta( input_ids, segment_labels=segment_labels, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] classifier_attn, logits = self.classifier(sequence_output, attention_mask) loss = None if labels is not None: loss_fct = nn.CrossEntropyLoss() # Only keep active parts of the loss if attention_mask is not None: active_loss = attention_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels) active_labels = torch.where( active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels), ) loss = loss_fct(active_logits, active_labels) else: loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return DependencyParsingOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, classifier_attention=classifier_attn, ) class RobertaForDialogueStateTracking(RobertaPreTrainedModel): config_class = RobertaForDSTConfig _keys_to_ignore_on_load_unexpected = [r"pooler"] _keys_to_ignore_on_load_missing = [r"position_ids"] def __init__(self, config): super().__init__(config) self.teacher_forcing = config.teacher_forcing self.roberta = RobertaModel(config, add_pooling_layer=True) self.decoder = SlotGenerator(config) self.post_init() def _tie_weights(self): # Share the embedding layer for both encoder and decoder self.decoder.embed.weight = self.roberta.embeddings.word_embeddings.weight def forward( self, input_ids=None, attention_mask=None, token_type_ids=None, position_ids=None, gating_ids=None, head_mask=None, inputs_embeds=None, labels=None, target_ids=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): outputs = self.roberta( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) encoder_output = outputs[0] # last_hidden_state pooler_output = outputs[1].unsqueeze(0) # pooler_output max_len, teacher = 10, None if target_ids is not None: max_len = target_ids.size(-1) if self.teacher_forcing > 0.0 and random.random() < self.teacher_forcing: teacher = target_ids all_point_outputs, all_gate_outputs = self.decoder( input_ids=input_ids, encoder_output=encoder_output, hidden=pooler_output, input_masks=attention_mask, max_len=max_len, teacher=teacher, ) loss = None if target_ids is not None: # generation loss loss_gen = masked_cross_entropy_for_value( all_point_outputs.contiguous(), target_ids.contiguous().view(-1), self.decoder.pad_token_id, ) # gate loss loss_fct = nn.CrossEntropyLoss() loss_gate = loss_fct( all_gate_outputs.contiguous().view(-1, self.decoder.num_gates), gating_ids.contiguous().view(-1), ) # total loss = generation loss + gate loss loss = loss_gen + loss_gate if not return_dict: output = ( all_point_outputs, all_gate_outputs, ) + outputs[2:] return ((loss,) + output) if loss is not None else output return DialogueStateTrackingOutput( loss=loss, point_outputs=all_point_outputs, gate_outputs=all_gate_outputs, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) def create_position_ids_from_input_ids( input_ids, padding_idx, past_key_values_length=0 ): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = ( torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length ) * mask return incremental_indices.long() + padding_idx ``` #### File: dooly/tasks/question_generation.py ```python from typing import List, Dict, Union, Optional from transformers import PreTrainedModel, PreTrainedTokenizerBase from .base import DoolyTaskConfig, Seq2Seq from ..tokenizers import Tokenizer as _Tokenizer from .base.wikipedia2vec import ( WhooshIndex, Wikipedia2Vec, SimilarWords, ) Tokenizer = Union[_Tokenizer, PreTrainedTokenizerBase] class QuestionGeneration(Seq2Seq): """ Question generation using BART model Korean (`kobart.base.ko.qg`) - dataset: KorQuAD 1.0 (Lim et al. 2019) + AI hub Reading Comprehension corpus + AI hub Commonsense corpus - metric: Model base evaluation using PororoMrc (`brainbert.base`) - EM (82.59), F1 (94.06) - ref: https://www.aihub.or.kr/aidata/86 - ref: https://www.aihub.or.kr/aidata/84 Args: answer (str): answer text context (str): source article beam (int): beam search size temperature (float): temperature scale top_k (int): top-K sampling vocabulary size top_p (float): top-p sampling ratio no_repeat_ngram_size (int): no repeat ngram size len_penalty (float): length penalty ratio n_wrong (int): number of wrong answer candidate return_context (bool): return context together or not Returns: str : question (if `n_wrong` < 1) Tuple[str, List[str]] : question, wrong_answers (if `n_wrong` > 1) """ task: str = "qg" available_langs: List[str] = ["ko"] available_models: Dict[str, List[str]] = { "ko": ["kobart.base"], } misc_files: Dict[str, List[str]] = { "ko": ["kowiki_20200720_100d.pkl", "ko_indexdir.zip"] } def __init__( self, config: DoolyTaskConfig, tokenizer: Tokenizer, model: PreTrainedModel, ): super().__init__(config=config) self._tokenizer = tokenizer self._model = model self._max_length = model.config.max_position_embeddings or 1024 # set sentence tokenizer self._tokenizer._set_sent_tokenizer() self._start_hl_token = "<unused0>" self._end_hl_token = "<unused1>" self._sim_words = SimilarWords( model=Wikipedia2Vec(config.misc_tuple[0], self.device), idx=WhooshIndex.open_dir(config.misc_tuple[1]), ) self.finalize() @property def start_hl_token(self): """ Get start highlight token """ return self._start_hl_token @start_hl_token.setter def start_hl_token(self, val): """ Set start highlight token """ self._start_hl_token = val @property def end_hl_token(self): """ Get end highlight token """ return self._end_hl_token @end_hl_token.setter def end_hl_token(self, val): """ Set end highlight token """ self._end_hl_token = val @property def max_length(self): return self._max_length def _focus_answer(self, context: str, answer: str, truncate: bool = True): """ add answer start and end token and truncate context text to make inference speed fast Args: context (str): context string answer (str): answer string truncate (bool): truncate or not Returns: context (str): preprocessed context string """ start_idx = context.find(answer) end_idx = start_idx + len(answer) + len(self.start_hl_token) # insert highlight tokens context = context[:start_idx] + self.start_hl_token + context[start_idx:] context = context[:end_idx] + self.end_hl_token + context[end_idx:] if len(context) < self.max_length or not truncate: return context sentences = self.tokenizer.sent_tokenize(context) answer_sent_idx = None for i in range(len(sentences)): if self.start_hl_token in sentences[i]: answer_sent_idx = i break i, j = answer_sent_idx, answer_sent_idx truncated_context = [sentences[answer_sent_idx]] while len(" ".join(truncated_context)) < self.max_length: prev_context_length = len(" ".join(truncated_context)) i -= 1 j += 1 if i > 0: truncated_context = [sentences[i]] + truncated_context if j < len(sentences): truncated_context = truncated_context + [sentences[j]] if len(" ".join(truncated_context)) == prev_context_length: break truncated_context = " ".join(truncated_context) if len(truncated_context) > self.max_length: if start_idx < len(context) // 2: truncated_context = truncated_context[: self.max_length] else: truncated_context = truncated_context[ len(truncated_context) - self.max_length : # noqa ] return truncated_context def __call__( self, answer: Union[List[str], str], context: Union[List[str], str], add_special_tokens: bool = True, do_sent_split: bool = True, beams: int = 5, max_len_a: int = 1, max_len_b: int = 50, temperature: float = 1.0, top_k: Optional[int] = None, top_p: Optional[float] = None, no_repeat_ngram_size: int = 4, length_penalty: float = 1.0, return_context: bool = False, batch_size: int = 32, verbose: bool = True, n_wrong: int = 0, **kwargs, ): assert isinstance(n_wrong, int) if isinstance(answer, str) and isinstance(context, str): context = [self._focus_answer(context, answer)] elif isinstance(answer, list) and isinstance(context, str): context = [self._focus_answer(context, a) for a in answer] elif isinstance(answer, str) and isinstance(context, list): context = [self._focus_answer(c, answer) for c in context] elif isinstance(answer, list) and isinstance(context, list): assert len(answer) == len( context ), "length of answer list and context list must be same." context = [self._focus_answer(c, a) for c, a in zip(context, answer)] generated = self.generate( text=context, add_special_tokens=add_special_tokens, beams=beams, max_len_a=max_len_a, max_len_b=max_len_b, temperature=temperature, top_k=top_k, top_p=top_p, no_repeat_ngram_size=no_repeat_ngram_size, length_penalty=length_penalty, batch_size=batch_size, verbose=verbose, **kwargs, ) if issubclass(self.tokenizer.__class__, PreTrainedTokenizerBase): decoded_text = self.tokenizer.batch_decode( generated, skip_special_tokens=True, clean_up_tokenization_spaces=True, ) else: decoded_text = self.tokenizer.decode(generated) output = [self._postprocess(text) for text in decoded_text] if n_wrong > 0: if isinstance(context, str) and isinstance(answer, str): wrong_answers = self._sim_words._extract_wrongs(answer) output = output, wrong_answers[:n_wrong] elif isinstance(context, list) and isinstance(answer, str): wrong_answers = self._sim_words._extract_wrongs(answer)[:n_wrong] output = [(o, wrong_answers) for o in output] elif isinstance(context, str) and isinstance(answer, list): wrong_answers = [ self._sim_words._extract_wrongs(a)[:n_wrong] for a in answer ] output = [(output, w) for w in wrong_answers] else: wrong_answers = [ self._sim_words._extract_wrongs(a)[:n_wrong] for a in answer ] output = [(o, w) for o, w in zip(output, wrong_answers)] return output def _postprocess(self, text: str): text = text.strip() if not text.endswith("?"): text += "?" return text ``` #### File: dooly/tokenizers/base.py ```python import re import torch import unicodedata from abc import abstractmethod from typing import List, Union, Dict, Set, Optional from .import_utils import ( is_available_kss, is_available_nltk, ) SPACE_NORMALIZER = re.compile(r"\s+") InputTexts = Union[str, List[str]] TokenizedOutput = Union[List[str], List[List[str]]] EncodedOutput = Union[List[int], List[List[int]], torch.Tensor] PaddedOutput = Union[List[List[int]], torch.Tensor] DecodedOutput = Union[str, List[str]] class _BaseTokenizer: def __init__( self, lang: str, vocab: Dict[str, int], cls_token: str = "<s>", sep_token: str = "</s>", pad_token: str = "<pad>", unk_token: str = "<unk>", padding_side: str = "right", max_seq_length: int = 512, ): assert padding_side in ["right", "left"] self.lang = lang self.vocab = vocab self.pos_vocab = None self.id2token = {i: tok for tok, i in vocab.items()} self.cls_token = cls_token self.sep_token = sep_token self.pad_token = pad_token self.unk_token = unk_token self.padding_side = padding_side self.max_seq_length = max_seq_length self._langtok_style = "basic" self.sub_tokenizer = {} @property def cls_token_id(self) -> int: return self.vocab[self.cls_token] @property def sep_token_id(self) -> int: return self.vocab[self.sep_token] @property def pad_token_id(self) -> int: return self.vocab[self.pad_token] @property def unk_token_id(self) -> int: return self.vocab[self.unk_token] @property def nspecial(self) -> int: return 4 # cls, sep, pad, unk @property def langtok_style(self): return self._langtok_style @langtok_style.setter def langtok_style(self, val: str): self._langtok_style = val def _langtok(self, lang: str): # https://github.com/pytorch/fairseq/blob/master/fairseq/data/multilingual/multilingual_utils.py#L34 langtok = "" if self.langtok_style == "basic": langtok = f"[{lang.upper()}]" elif self.langtok_style == "mbart": mapping = {"en": "_XX", "ja": "_XX", "ko": "_KR", "zh": "_CN"} langtok = f"[{lang + mapping[lang]}]" elif self.langtok_style == "multilingual": langtok = f"__{lang}__" return langtok def _set_sub_tokenizer(self, lang: str, tokenizer_object): self.sub_tokenizer[lang] = tokenizer_object def __call__( self, text: InputTexts, text_pair: Optional[InputTexts] = None, src_lang: Optional[InputTexts] = None, tgt_lang: Optional[InputTexts] = None, padding: Union[str, bool] = False, return_tokens: bool = False, return_tags: bool = True, return_tensors: Union[str, bool] = False, return_attention_mask: bool = True, add_special_tokens: bool = True, no_separator: bool = False, ) -> Union[TokenizedOutput, Dict[str, EncodedOutput]]: return self.encode( text=text, text_pair=text_pair, src_lang=src_lang, tgt_lang=tgt_lang, padding=padding, return_tokens=return_tokens, return_tags=return_tags, return_tensors=return_tensors, return_attention_mask=return_attention_mask, add_special_tokens=add_special_tokens, no_separator=no_separator, ) def _normalize(self, text: str) -> str: """ Unicode normalization and whitespace removal (often needed for context) """ text = unicodedata.normalize("NFKC", text) text = self._normalize_space(text) return text @staticmethod def _normalize_space(text: str) -> str: return SPACE_NORMALIZER.sub(" ", text).strip() @abstractmethod def _tokenize(self, text: str, *args, **kwargs) -> List[str]: pass def tokenize( self, text: str, text_pair: Optional[str] = None, src_lang: Optional[str] = None, tgt_lang: Optional[str] = None, return_tags: bool = True, add_special_tokens: bool = False, no_separator: bool = False, ) -> List[str]: """ If you want to use `src_lang` and `tgt_lang` parameters, plz overrides! """ if self.pos_vocab is None: return_tags = False tokenized = self._tokenize(text) if return_tags: tokenized, tags = tokenized if add_special_tokens: tokenized = [self.cls_token] + tokenized + [self.sep_token] if return_tags: tags = [self.cls_token] + tags + [self.sep_token] if text_pair is not None: tokenized += [self.sep_token] if not no_separator else [] tokenized_pair = self._tokenize(text_pair) if return_tags: tags += [self.sep_token] if no_separator else [] tokenized_pair, tags_pair = tokenized_pair tags += tags_pair tokenized += tokenized_pair if add_special_tokens: tokenized += [self.sep_token] if return_tags: tags += [self.sep_token] if return_tags: return tokenized, tags return tokenized def encode_line( self, tokenized: List[str], add_special_tokens: bool = False, use_pos_vocab: bool = False, ) -> List[int]: vocab = self.vocab if use_pos_vocab and self.pos_vocab is not None: vocab = self.pos_vocab encoded = [] for token in tokenized: encoded.append(vocab.get(token, self.unk_token_id)) if add_special_tokens: encoded = [self.cls_token_id] + encoded + [self.sep_token_id] return encoded def encode( self, text: InputTexts, text_pair: Optional[InputTexts] = None, src_lang: Optional[InputTexts] = None, tgt_lang: Optional[InputTexts] = None, padding: Union[str, bool] = False, return_tokens: bool = False, return_tags: bool = True, return_tensors: Union[str, bool] = False, return_attention_mask: bool = True, add_special_tokens: bool = True, no_separator: bool = False, ) -> Union[TokenizedOutput, Dict[str, EncodedOutput]]: """ Encode tokens to ids, used for single or batched sentence """ assert isinstance(return_tensors, bool) or return_tensors == "pt" return_tensors = (return_tensors == "pt") or return_tensors assert text_pair is None or type(text) == type(text_pair) if (src_lang is None) ^ (tgt_lang is None): src_lang = tgt_lang = None if not hasattr(self, "pos_tagger"): return_tags = False if isinstance(text, str): return self.encode( text=[text], text_pair=[text_pair], src_lang=[src_lang], tgt_lang=[tgt_lang], padding=padding, return_tokens=return_tokens, return_tags=return_tags, return_tensors=return_tensors, return_attention_mask=return_attention_mask, add_special_tokens=add_special_tokens, no_separator=no_separator, ) if text_pair is None: text_pair = [None] * len(text) if src_lang is None: src_lang = [None] * len(text) if tgt_lang is None: tgt_lang = [None] * len(text) assert len(text) == len(text_pair) assert len(src_lang) == len(tgt_lang) if len(src_lang) == 1: src_lang = src_lang * len(text) tgt_lang = tgt_lang * len(text) assert len(text) == len(src_lang) texts, text_pairs = text, text_pair src_langs, tgt_langs = src_lang, tgt_lang input_ids = [] segment_labels = [] for text, text_pair, src_lang, tgt_lang in zip( texts, text_pairs, src_langs, tgt_langs ): tokenized = self.tokenize( text=text, text_pair=text_pair, src_lang=src_lang, tgt_lang=tgt_lang, return_tags=return_tags, no_separator=no_separator, add_special_tokens=add_special_tokens, ) encoded = None encoded_tags = None if return_tags: tokenized, tags = tokenized if not return_tokens: encoded = self.encode_line(tokenized=tokenized) if return_tags: encoded_tags = self.encode_line(tokenized=tags, use_pos_vocab=True) input_ids.append(tokenized if return_tokens else encoded) if return_tags: segment_labels.append(tags if return_tokens else encoded_tags) if return_tokens: input_ids = input_ids if len(texts) > 1 else input_ids[0] if return_tags: segment_labels = segment_labels if len(texts) > 1 else segment_labels[0] return input_ids, segment_labels return input_ids attention_mask = None if return_tensors or padding: padded = self.pad( sequences={"input_ids": input_ids}, padding=padding, return_tensors=return_tensors, ) input_ids = padded["input_ids"] attention_mask = padded["attention_mask"] if return_tags: segment_labels = self.pad( sequences={"input_ids": segment_labels}, padding=padding, return_tensors=return_tensors, )["input_ids"] batch_encoding = {"input_ids": input_ids} if return_attention_mask and attention_mask is not None: batch_encoding.update({"attention_mask": attention_mask}) if return_tags: batch_encoding.update({"segment_labels": segment_labels}) return batch_encoding def decode_line(self, ids: List[int], ignore_symbols: Set[int] = {}) -> str: sent = [] for _id in ids: if _id not in ignore_symbols: sent.append(self.id2token.get(_id, self.unk_token)) return " ".join(sent) def _recover_original(self, decoded_text: str) -> str: return decoded_text def decode( self, ids: EncodedOutput, ignore_symbols: List[int] = [], recover_original: bool = True, ) -> DecodedOutput: if isinstance(ids, torch.Tensor): ids = ids.detach().cpu().tolist() if isinstance(ids[0], int): return self.decode( ids=[ids], ignore_symbols=ignore_symbols, recover_original=recover_original, ) ignore_symbols = set(None or ignore_symbols) ignore_symbols.update([self.cls_token_id, self.sep_token_id, self.pad_token_id]) list_of_ids = ids decoded_texts = [] for ids in list_of_ids: decoded = self.decode_line(ids, ignore_symbols) if recover_original: decoded = self._recover_original(decoded) decoded_texts.append(decoded) if len(decoded_texts) == 1: decoded_texts = decoded_texts[0] return decoded_texts def pad( self, sequences: Dict[str, EncodedOutput], padding: Union[str, bool] = True, return_tensors: bool = True, pad_to_multiple_of: Union[int, bool] = False, # match to hf pad method ) -> Dict[str, PaddedOutput]: """Pad batched sequences. if return_tensors, then return torch.LongTensor object. """ input_ids = sequences.get("input_ids") assert input_ids is not None if isinstance(input_ids[0], int): input_ids = [input_ids] max_length = -1 if padding == "max_length": max_length = self.max_seq_length else: max_length = max(len(ids) for ids in input_ids) padded = {"input_ids": [], "attention_mask": []} for ids in input_ids: seq_len = len(ids) if self.padding_side == "right": ids = ids + [self.pad_token_id] * (max_length - seq_len) attn_mask = [1] * seq_len + [0] * (max_length - seq_len) else: ids = [self.pad_token_id] * (max_length - seq_len) + ids attn_mask = [0] * (max_length - seq_len) + [1] * seq_len padded["input_ids"].append(ids) padded["attention_mask"].append(attn_mask) if return_tensors: for k, v in padded.items(): padded[k] = torch.LongTensor(v) return padded class SentTokenizeMixin: """ Sentence Tokenization Mixin """ def _set_sent_tokenizer(self): if self.lang in ["ko", "multi"]: if is_available_kss(): from kss import split_sentences self._ko_sent_tokenizer = split_sentences else: raise ModuleNotFoundError("Please install kss with: `pip install kss`.") if self.lang in ["en", "multi"]: if is_available_nltk(): import nltk try: nltk.data.find("tokenizers/punkt") except LookupError: nltk.download("punkt") from nltk.tokenize import sent_tokenize self._en_sent_tokenizer = sent_tokenize else: raise ModuleNotFoundError( "Please install nltk with: `pip install nltk`." ) def sent_tokenize( self, texts: InputTexts, langs: Optional[InputTexts] = None, ) -> List[List[str]]: if isinstance(texts, str): texts = [texts] if langs is None: langs = self.lang elif self.lang != "multi": # F632 raise AttributeError("`langs` parameter is only used for `multi` model.") if isinstance(langs, str): langs = [langs] * len(texts) do_per_sample = False if len(set(langs)) == 1 and langs[0] == "ko": # korean sentence splitter can be batched if not hasattr(self, "_ko_sent_tokenizer"): raise AttributeError try: sentences = self._ko_sent_tokenizer(texts) except Exception: do_per_sample = True else: do_per_sample = True if do_per_sample: sentences = [] for text, lang in zip(texts, langs): if lang in "ko": if not hasattr(self, "_ko_sent_tokenizer"): raise AttributeError sentences.append(self._ko_sent_tokenizer(text)) elif lang == "en": if not hasattr(self, "_en_sent_tokenizer"): raise AttributeError sentences.append(self._en_sent_tokenizer(text)) else: # lang in ["ja", "zh"] text = text.replace("。", "。[SEP]") text = text.replace("!", "![SEP]") text = text.replace("?", "?[SEP]") if "[SEP]" in text: sents = text.split("[SEP]") sents = sents[:-1] else: sents = [text] sentences.append(sents) num_sentences = [len(sents) for sents in sentences] return sentences, num_sentences class Tokenizer(_BaseTokenizer, SentTokenizeMixin): """ Whitespace Base Tokenizer with sentence tokenizer """ pass ``` #### File: jinmang2/DOOLY/setup.py ```python import re import shutil from pathlib import Path from setuptools import setup, find_packages VERSION = {} # type: ignore with open("dooly/__version__.py", "r") as version_file: exec(version_file.read(), VERSION) # Remove stale dooly.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "dooly.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated dooly, this is expected,\n" "but it may prevent dooly from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) _deps = [ "black~=22.0", "flake8>=3.8.3", "dataclasses", "datasets", "numpy>=1.17", "fugashi>=1.0", "filelock", "huggingface-hub>=0.1.0,<1.0", "importlib_metadata", "jieba", "requests", "regex", "packaging>=20.0", "pyyaml>=5.1", "pororo", "boto3", "whoosh", "ipadic>=1.0.0,<2.0", "tqdm>=4.27", "torch>=1.0", "tokenizers>=0.11.1,!=0.11.3", "transformers>=4.8.2", "kss>=3.4.2", "nltk", ] deps = { b: a for a, b in (re.findall(r"^(([^!=<>~]+)(?:[!=<>~].*)?$)", x)[0] for x in _deps) } def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] extras = {} extras["ja"] = deps_list("fugashi", "ipadic") extras["zh"] = deps_list("jieba") extras["search"] = deps_list("whoosh") extras["convert"] = deps_list("pororo", "boto3") extras["quality"] = deps_list("black", "flake8") extras["all"] = extras["ja"] + extras["zh"] + extras["search"] + extras["quality"] extras["pororo"] = extras["all"] + extras["convert"] install_requires = [ deps["dataclasses"] + ";python_version<'3.7'", # dataclasses for Python versions that don't have it deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads deps["huggingface-hub"], deps["datasets"], deps["numpy"], deps["torch"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["pyyaml"], # used for the model cards metadata deps["regex"], # for OpenAI GPT deps["requests"], # for downloading models over HTTPS deps["tokenizers"], deps["transformers"], deps["tqdm"], # progress bars in model download and training scripts deps["kss"], deps["nltk"], ] setup( name="dooly", version=VERSION["version"], url="https://github.com/jinmang2/DOOLY", author="jinmang2", author_email="<EMAIL>", description="A library that handles everything with 🤗 and supports batching to models in PORORO", python_requires=">=3.6.0", packages=find_packages(exclude=["tests"]), long_description=open("README.md", encoding="utf-8").read(), long_description_content_type="text/markdown", extras_require=extras, install_requires=install_requires, zip_safe=False, classifiers=[ "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "License :: OSI Approved :: Apache Software License", ], ) ```
{ "source": "jinmang2/hierarchical-transformer-1d", "score": 3 }
#### File: hierarchical-transformer-1d/src/configuration_htransformer1d.py ```python from math import log2 from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class HTransformer1DConfig(PretrainedConfig): r""" [DESCRIPTION] Args: Example:: """ model_type = "h-transformer-1d" def __init__( self, vocab_size=50000, hidden_size=768, num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, block_size=128, # this is the Nr in the paper - Nb = (max_seq_len / tokens_per_block) reversible=True, # use reversibility, to save on memory with increased depth shift_tokens=True, # whether to shift half the feature space by one along the sequence dimension, for faster convergence (experimental feature) attention_probs_dropout_prob=0.1, max_position_embeddings=8192, # dim_head 정보로 parameterization # 얘는 max_seq_len으로 사용 type_vocab_size=2, initializer_range=0.02, layer_norm_eps=1e-12, attn_eps=1e-8, pad_token_id=0, rotary_value=False, # value도 rotary를 적용할 지 안할지 rotary_theta=10000, learned_freq=False, # use_cache=True, position_embedding_type="rotary", **kwargs ): super().__init__(pad_token_id=pad_token_id, **kwargs) assert (max_position_embeddings % block_size) == 0, ( 'maximum sequence length must be divisible by the block size' ) num_blocks = max_position_embeddings // block_size assert log2(max_position_embeddings // block_size).is_integer(), ( f'number of blocks {num_blocks} must be a power of 2' ) assert (hidden_size % num_attention_heads) == 0, ( 'hidden size must be divisible by the number of attention heads' ) assert position_embedding_type in ['absolute', 'rotary'], ( 'position embedding type must be either \'absolute\' or \'rotary\'' ) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.dim_head = hidden_size // num_attention_heads self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.block_size = block_size self.num_blocks = num_blocks self.reversible = reversible self.shift_tokens = shift_tokens self.max_position_embeddings = max_position_embeddings self.type_vocab_size = type_vocab_size self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.attn_eps = attn_eps self.rotary_value = rotary_value self.rotary_theta = rotary_theta self.learned_freq = learned_freq # self.use_cache = use_cache self.position_embedding_type = position_embedding_type ```
{ "source": "jinmang2/PRML", "score": 2 }
#### File: nn/array/ones.py ```python from prml.nn.array.array import Array from prml.nn.config import config import numpy as np def ones(size): return Array(np.ones(size, dtype=config.dtype)) ``` #### File: nn/math/add.py ```python import numpy as np from prml.nn.function import Function class Add(Function): enable_auto_broadcast = True @staticmethod def _forward(x, y): return x + y @staticmethod def _backward(delta, x, y): return delta, delta class AddBias(Function): @staticmethod def _forward(x, y): return x + y @staticmethod def _backward(delta, x, y): dx = delta dy = np.sum(delta, axis=tuple(i for i in range(x.ndim - 1))) return dx, dy class AddScalar(Function): @staticmethod def _forward(x, y): return x + y @staticmethod def _backward(delta, x, y): dx = delta dy = np.atleast_1d(np.sum(delta)) return dx, dy def add(x, y): return Add().forward(x, y) # x = Function._convert2array(x) # y = Function._convert2array(y) # if x.shape == y.shape: # return Add().forward(x, y) # elif x.size == 1: # return AddScalar().forward(y, x) # elif y.size == 1: # return AddScalar().forward(x, y) # elif x.shape[-1] == y.shape[-1]: # if x.ndim == 1: # return AddBias().forward(y, x) # elif y.ndim == 1: # return AddBias().forward(x, y) # else: # raise ValueError ``` #### File: nn/math/matmul.py ```python from prml.nn.function import Function class Matmul(Function): @staticmethod def _forward(x, y): return x @ y @staticmethod def _backward(delta, x, y): dx = delta @ y.T dy = x.T @ delta return dx, dy def matmul(x, y): return Matmul().forward(x, y) def rmatmul(x, y): return Matmul().forward(y, x) ``` #### File: nn/math/multiply.py ```python import numpy as np from prml.nn.function import Function class Multiply(Function): enable_auto_broadcast = True @staticmethod def _forward(x, y): return x * y @staticmethod def _backward(delta, x, y): dx = delta * y dy = delta * x return dx, dy def multiply(x, y): return Multiply().forward(x, y) ``` #### File: nn/math/sqrt.py ```python import numpy as np from prml.nn.function import Function class Sqrt(Function): def _forward(self, x): self.output = np.sqrt(x) return self.output def _backward(self, delta, x): return 0.5 * delta / self.output def sqrt(x): return Sqrt().forward(x) ``` #### File: nn/normalization/batch_normalization.py ```python import numpy as np from prml.nn.array.ones import ones from prml.nn.array.zeros import zeros from prml.nn.config import config from prml.nn.function import Function from prml.nn.network import Network class BatchNormalizationFunction(Function): def _forward(self, x): self.mean = x.mean(axis=0) self.xc = x - self.mean self.var = np.mean(self.xc ** 2, axis=0) self.std = np.sqrt(self.var + 1e-7) return self.xc / self.std def _backward(self, delta, x): # dstd = -np.mean((delta * self.xc) / (self.std ** 2), axis=0) dxc = delta / self.std - self.xc * np.mean((delta * self.xc) / (self.std ** 3), axis=0) return dxc - np.mean(dxc, axis=0) # dstd = -np.mean((delta * self.xc) / (self.std ** 2), axis=0) # dxc = delta / self.std + self.xc * dstd / self.std # return dxc - np.mean(dxc, axis=0) # dxn = delta # dxc = dxn / self.std # dstd = -np.sum((dxn * self.xc) / (self.std ** 2), axis=0) # dvar = 0.5 * dstd / self.std # dxc += 2.0 * self.xc * dvar / delta.shape[0] # dmu = np.sum(dxc, axis=0) # dx = dxc - dmu / delta.shape[0] # return dx class BatchNormalization(Network): def __init__(self, ndim, scale=None, bias=None, momentum=0.9): super().__init__() self.momentum = momentum with self.set_parameter(): self.mean = zeros(ndim) self.var = ones(ndim) def __call__(self, x): shape = x.shape x = x.reshape(-1, x.shape[-1]) if config.is_updating_bn: func = BatchNormalizationFunction() out = func.forward(x) self.mean.value = self.momentum * self.mean.value + (1 - self.momentum) * func.mean self.var.value = self.momentum * self.var.value + (1 - self.momentum) * func.var del func.mean del func.var else: xc = x - self.mean out = xc / np.sqrt(self.var.value + 1e-7) return out.reshape(*shape) ``` #### File: nn/optimizer/ada_delta.py ```python import numpy as np from prml.nn.config import config from prml.nn.optimizer.optimizer import Optimizer class AdaDelta(Optimizer): """ AdaDelta optimizer """ def __init__(self, parameter: dict, rho=0.95, epsilon=1e-8): super().__init__(parameter, None) self.rho = rho self.epsilon = epsilon self.mean_squared_deriv = {} self.mean_squared_update = {} for key, param in self.parameter.items(): self.mean_squared_deriv[key] = np.zeros(param.shape, dtype=config.dtype) self.mean_squared_update[key] = np.zeros(param.shape, dtype=config.dtype) def update(self): for key in self.parameter: param = self.parameter[key] if param.grad is None: continue msd = self.mean_squared_deriv[key] msu = self.mean_squared_update[key] grad = param.grad msd *= self.rho msd += (1 - self.rho) * grad ** 2 delta = np.sqrt((msu + self.epsilon) / (msd + self.epsilon)) * grad msu *= self.rho msu *= (1 - self.rho) * delta ** 2 param.value += delta ``` #### File: nn/optimizer/gradient.py ```python from prml.nn.optimizer.optimizer import Optimizer class Gradient(Optimizer): def __init__(self, parameter, learning_rate=1e-3): super().__init__(parameter, learning_rate) def update(self): for param in self.parameter.values(): param.value += self.learning_rate * param.grad ``` #### File: test/test_linear/test_linear_regression.py ```python import unittest import numpy as np from prml.linear import LinearRegression class TestLinearRegression(unittest.TestCase): def test_fit(self): x_train = np.array([-1, 0, 1]).reshape(-1, 1) y_train = np.array([-2, 0, 2]) model = LinearRegression() model.fit(x_train, y_train) self.assertTrue( np.allclose(model.w, np.array([2])), ) def test_predict(self): x_train = np.array([-1, 0, 1]).reshape(-1, 1) y_train = np.array([-2, 0, 2]) model = LinearRegression() model.fit(x_train, y_train) actual = model.predict(np.array([[3]])) self.assertTrue(np.allclose(actual, np.array([6]))) if __name__ == '__main__': unittest.main() ``` #### File: test/test_linear/test_logistic_regression.py ```python import unittest import numpy as np from prml.linear import LogisticRegression class TestLogisticRegression(unittest.TestCase): def test_fit_classify_proba(self): x_train = np.array([-3, -2, -1, 1, 2, 3]).reshape(-1, 1) y_train = np.array([0, 0, 1, 0, 1, 1]) model = LogisticRegression() model.fit(x_train, y_train) self.assertTrue(np.allclose(model.w, np.array([0.73248753]))) actual = model.classify(np.array([[-5], [5]])) self.assertTrue(np.allclose(actual, np.array([0, 1]))) actual = model.proba(np.array([[0], [4]])) self.assertTrue(np.allclose(actual, np.array([0.5, 0.94930727]))) if __name__ == '__main__': unittest.main() ``` #### File: test_nn/test_image/test_convolve2d.py ```python import unittest import numpy as np from scipy.ndimage.filters import correlate import prml.nn as nn class TestConvolve2d(unittest.TestCase): def test_convolve2d_forward(self): img = np.random.randn(1, 5, 5, 1) kernel = np.random.randn(3, 3, 1, 1) output = nn.convolve2d(img, kernel) self.assertTrue( np.allclose( output.value[0, ..., 0], correlate(img[0, ..., 0], kernel[..., 0, 0])[1:-1, 1:-1] ) ) self.assertEqual(nn.config.dtype, np.float32) self.assertEqual(output.value.dtype, nn.config.dtype) def test_convolve2d_backward(self): x = nn.random.normal(0, 1, (1, 5, 5, 1)) w = nn.random.normal(0, 1, (3, 3, 1, 1)) for _ in range(1000): x.cleargrad() w.cleargrad() output = nn.convolve2d(x, w, (2, 2), (1, 1)) output.backward(2 * (output.value - 1)) x.value -= x.grad * 0.01 w.value -= w.grad * 0.01 self.assertTrue(np.allclose(output.value, 1)) self.assertEqual(nn.config.dtype, np.float32) self.assertEqual(x.dtype, nn.config.dtype) self.assertEqual(w.dtype, nn.config.dtype) self.assertEqual(output.dtype, nn.config.dtype) def test_convolve2d_network(self): x = nn.random.normal(0, 1, (1, 5, 5, 1)) kernel = nn.random.normal(0, 1, (3, 3, 1, 1)) conv = nn.image.Convolve2d(kernel, (1, 1), (0, 0)) for _ in range(1000): x.cleargrad() conv.clear() output = conv(x) output.backward(2 * (output.value - 1)) x.value -= x.grad * 0.01 for param in conv.parameter.values(): param.value -= param.grad * 0.01 self.assertTrue(np.allclose(output.value, 1)) if __name__ == "__main__": unittest.main() ``` #### File: test_nn/test_math/test_add.py ```python import unittest import numpy as np import prml.nn as nn class TestAdd(unittest.TestCase): def test_add(self): npa = np.random.randn(4, 5) npb = np.random.randn(4, 5) a = nn.asarray(npa) b = nn.asarray(npb) c = a + b self.assertTrue(np.allclose(c.value, npa + npb)) npg = np.random.randn(4, 5) c.backward(npg) self.assertTrue(np.allclose(a.grad, npg)) self.assertTrue(np.allclose(b.grad, npg)) def test_add_bias(self): npa = np.random.randn(4, 3) npb = np.random.randn(3) a = nn.asarray(npa) b = nn.asarray(npb) c = a + b self.assertTrue(np.allclose(c.value, npa + npb)) npg = np.random.randn(4, 3) c.backward(npg) self.assertTrue(np.allclose(a.grad, npg)) self.assertTrue(np.allclose(b.grad, npg.sum(axis=0))) def test_add_scalar(self): npa = np.random.randn(5, 6) npb = 2 a = nn.asarray(npa) b = nn.asarray(npb) c = a + b self.assertTrue(np.allclose(c.value, npa + npb)) npg = np.random.randn(5, 6) c.backward(npg) self.assertTrue(np.allclose(a.grad, npg)) self.assertTrue(np.allclose(b.grad, np.sum(npg))) if __name__ == "__main__": unittest.main() ```
{ "source": "jinmang2/RetroReader", "score": 2 }
#### File: jinmang2/RetroReader/app.py ```python import streamlit as st import io import os import yaml import pyarrow import tokenizers os.environ["TOKENIZERS_PARALLELISM"] = "true" # SETTING PAGE CONFIG TO WIDE MODE st.set_page_config(layout="wide") @st.cache def from_library(): from retro_reader import RetroReader from retro_reader import constants as C return C, RetroReader C, RetroReader = from_library() # https://stackoverflow.com/questions/70274841/streamlit-unhashable-typeerror-when-i-use-st-cache my_hash_func = { io.TextIOWrapper: lambda _: None, pyarrow.lib.Buffer: lambda _: 0, tokenizers.Tokenizer: lambda _: None, tokenizers.AddedToken: lambda _: None } # @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True) # def load_ko_roberta_large_model(): # config_file = "configs/inference_ko_roberta_large.yaml" # return RetroReader.load(config_file=config_file) @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True) def load_ko_electra_small_model(): config_file = "configs/inference_ko_electra_small.yaml" return RetroReader.load(config_file=config_file) # @st.cache(hash_funcs=my_hash_func, allow_output_mutation=True) # def load_en_electra_large_model(): # config_file = "configs/inference_en_electra_large.yaml" # return RetroReader.load(config_file=config_file) RETRO_READER_HOST = { # "klue/roberta-large": load_ko_roberta_large_model(), "monologg/koelectra-small-v3-discriminator": load_ko_electra_small_model(), # "google/electra-large-discriminator": load_en_electra_large_model(), } def main(): st.title("Retrospective Reader Demo") st.markdown("## Model name") option = st.selectbox( label="Choose the model used in retro reader", options=( "[ko_KR] klue/roberta-large", "[ko_KR] monologg/koelectra-small-v3-discriminator", "[en_XX] google/electra-large-discriminator" ), index=1, ) lang_code, model_name = option.split(" ") retro_reader = RETRO_READER_HOST[model_name] # retro_reader = load_model() lang_prefix = "KO" if lang_code == "[ko_KR]" else "EN" height = 300 if lang_code == "[ko_KR]" else 200 retro_reader.null_score_diff_threshold = st.sidebar.slider( label="null_score_diff_threshold", min_value=-10.0, max_value=10.0, value=0.0, step=1.0, help="ma!", ) retro_reader.rear_threshold = st.sidebar.slider( label="rear_threshold", min_value=-10.0, max_value=10.0, value=0.0, step=1.0, help="ma!", ) retro_reader.n_best_size = st.sidebar.slider( label="n_best_size", min_value=1, max_value=50, value=20, step=1, help="ma!", ) retro_reader.beta1 = st.sidebar.slider( label="beta1", min_value=-10.0, max_value=10.0, value=1.0, step=1.0, help="ma!", ) retro_reader.beta2 = st.sidebar.slider( label="beta2", min_value=-10.0, max_value=10.0, value=1.0, step=1.0, help="ma!", ) retro_reader.best_cof = st.sidebar.slider( label="best_cof", min_value=-10.0, max_value=10.0, value=1.0, step=1.0, help="ma!", ) return_submodule_outputs = st.sidebar.checkbox('return_submodule_outputs', value=False) st.markdown("## Demonstration") with st.form(key="my_form"): query = st.text_input( label="Type your query", value=getattr(C, f"{lang_prefix}_EXAMPLE_QUERY"), max_chars=None, help=getattr(C, f"{lang_prefix}_QUERY_HELP_TEXT"), ) context = st.text_area( label="Type your context", value=getattr(C, f"{lang_prefix}_EXAMPLE_CONTEXTS"), height=height, max_chars=None, help=getattr(C, f"{lang_prefix}_CONTEXT_HELP_TEXT"), ) submit_button = st.form_submit_button(label="Submit") if submit_button: with st.spinner("Please wait.."): outputs = retro_reader( query=query, context=context, return_submodule_outputs=return_submodule_outputs, ) answer, score = outputs[0]["id-01"], outputs[1] if not answer: answer = "No answer" st.markdown("## Results") st.write(answer) st.markdown("### Rear Verification Score") st.json(score) if return_submodule_outputs: score_ext, nbest_preds, score_diff = outputs[2:] st.markdown("### Sketch Reader Score (score_ext)") st.json(score_ext) st.markdown("### Intensive Reader Score (score_diff)") st.json(score_diff) st.markdown("### N Best Predictions (from intensive reader)") st.json(nbest_preds) if __name__ == "__main__": main() ```
{ "source": "jinmeiib/dnstap-receiver", "score": 2 }
#### File: dnstap-receiver/dnstap_receiver/receiver.py ```python import argparse import logging import asyncio import socket import yaml import sys import re import ssl import pkgutil import ipaddress from datetime import datetime, timezone # python3 -m pip dnspython import dns.rcode import dns.rdatatype import dns.message # wget https://raw.githubusercontent.com/dnstap/dnstap.pb/master/dnstap.proto # wget https://github.com/protocolbuffers/protobuf/releases/download/v3.13.0/protoc-3.13.0-linux-x86_64.zip # python3 -m pip install protobuf # bin/protoc --python_out=. dnstap.proto from dnstap_receiver import dnstap_pb2 # more informations on dnstap http://dnstap.info/ from dnstap_receiver import fstrm # framestreams decoder from dnstap_receiver import output_stdout from dnstap_receiver import output_syslog from dnstap_receiver import output_tcp from dnstap_receiver import output_metrics DNSTAP_TYPE = { 1: 'AUTH_QUERY', 2: 'AUTH_RESPONSE', 3: 'RESOLVER_QUERY', 4: 'RESOLVER_RESPONSE', 5: 'CLIENT_QUERY', 6: 'CLIENT_RESPONSE', 7: 'FORWARDER_QUERY', 8: 'FORWARDER_RESPONSE', 9: 'STUB_QUERY', 10: 'STUB_RESPONSE', 11: 'TOOL_QUERY', 2: 'TOOL_RESPONSE' } DNSTAP_FAMILY = {1: 'IP4', 2: 'IP6'} DNSTAP_PROTO = {1: 'UDP', 2: 'TCP'} # command line arguments definition parser = argparse.ArgumentParser() parser.add_argument("-l", help="IP of the dnsptap server to receive dnstap payloads (default: %(default)r)", default="0.0.0.0") parser.add_argument("-p", type=int, help="Port the dnstap receiver is listening on (default: %(default)r)", default=6000) parser.add_argument("-u", help="read dnstap payloads from unix socket") parser.add_argument('-v', action='store_true', help="verbose mode") parser.add_argument("-c", help="external config file") import dns.exception import dns.opcode import dns.flags class _WireReader(dns.message._WireReader): def read(self): """issue fixed - waiting fix with dnspython 2.1""" if self.parser.remaining() < 12: raise dns.message.ShortHeader (id, flags, qcount, ancount, aucount, adcount) = \ self.parser.get_struct('!HHHHHH') factory = dns.message._message_factory_from_opcode(dns.opcode.from_flags(flags)) self.message = factory(id=id) self.message.flags = flags self.initialize_message(self.message) self.one_rr_per_rrset = \ self.message._get_one_rr_per_rrset(self.one_rr_per_rrset) self._get_question(dns.message.MessageSection.QUESTION, qcount) return self.message def from_wire(wire, question_only=True): """decode wire message - waiting fix with dnspython 2.1""" raise_on_truncation=False def initialize_message(message): message.request_mac = b'' message.xfr = False message.origin = None message.tsig_ctx = None reader = _WireReader(wire, initialize_message, question_only=question_only, one_rr_per_rrset=False, ignore_trailing=False, keyring=None, multi=False) try: m = reader.read() except dns.exception.FormError: if reader.message and (reader.message.flags & dns.flags.TC) and \ raise_on_truncation: raise dns.message.Truncated(message=reader.message) else: raise # Reading a truncated message might not have any errors, so we # have to do this check here too. if m.flags & dns.flags.TC and raise_on_truncation: raise dns.message.Truncated(message=m) return m async def cb_ondnstap(dnstap_decoder, payload, cfg, queue, metrics): """on dnstap""" # decode binary payload dnstap_decoder.ParseFromString(payload) dm = dnstap_decoder.message # filtering by dnstap identity ? tap_ident = dnstap_decoder.identity.decode() if not len(tap_ident): tap_ident = "-" if cfg["filter"]["dnstap-identities"] is not None: if re.match(cfg["filter"]["dnstap-identities"], dnstap_decoder.identity.decode()) is None: del dm return tap = { "identity": tap_ident, "query-name": "-", "query-type": "-", "source-ip": "-"} # decode type message tap["message"] = DNSTAP_TYPE.get(dm.type, "-") tap["protocol"] = DNSTAP_FAMILY.get(dm.socket_family, "-") tap["transport"] = DNSTAP_PROTO.get(dm.socket_protocol, "-") # decode query address if len(dm.query_address) and dm.socket_family == 1: tap["source-ip"] = socket.inet_ntoa(dm.query_address) if len(dm.query_address) and dm.socket_family == 2: tap["source-ip"] = socket.inet_ntop(socket.AF_INET6, dm.query_address) tap["source-port"] = dm.query_port if tap["source-port"] == 0: tap["source-port"] = "-" # handle query message if (dm.type % 2 ) == 1 : dnstap_parsed = from_wire(dm.query_message, question_only=True) tap["length"] = len(dm.query_message) d1 = dm.query_time_sec + (round(dm.query_time_nsec ) / 1000000000) tap["timestamp"] = datetime.fromtimestamp(d1, tz=timezone.utc).isoformat() # handle response message if (dm.type % 2 ) == 0 : dnstap_parsed = from_wire(dm.response_message, question_only=True) tap["length"] = len(dm.response_message) d2 = dm.response_time_sec + (round(dm.response_time_nsec ) / 1000000000) tap["timestamp"] = datetime.fromtimestamp(d2, tz=timezone.utc).isoformat() # common params if len(dnstap_parsed.question): tap["query-name"] = dnstap_parsed.question[0].name tap["query-type"] = dns.rdatatype.to_text(dnstap_parsed.question[0].rdtype) tap["code"] = dns.rcode.to_text(dnstap_parsed.rcode()) # filtering by qname ? if cfg["filter"]["qname-regex"] is not None: if re.match(cfg["filter"]["qname-regex"], tap["query-name"]) is None: del dm; del tap; return # update metrics metrics.record_dnstap(dnstap=tap) # finally add decoded tap message in queue for outputs # except for metrics # if cfg["output"]["metrics"]["enable"]: # return queue.put_nowait(tap) async def cb_onconnect(reader, writer, cfg, queue, metrics): """callback when a connection is established""" # get peer name peername = writer.get_extra_info('peername') if not len(peername): peername = "(unix-socket)" logging.debug(f"Input handler: new connection from {peername}") # access control list check if len(writer.get_extra_info('peername')): acls_network = [] for a in cfg["input"]["tcp-socket"]["access-control-list"]: acls_network.append(ipaddress.ip_network(a)) acl_allow = False for acl in acls_network: if ipaddress.ip_address(peername[0]) in acl: acl_allow = True if not acl_allow: writer.close() logging.debug("Input handler: checking acl refused") return logging.debug("Input handler: checking acl allowed") # prepare frame streams decoder fstrm_handler = fstrm.FstrmHandler() loop = asyncio.get_event_loop() dnstap_decoder = dnstap_pb2.Dnstap() try: # syntax only works with python 3.8 # while data := await reader.read(fstrm_handler.pending_nb_bytes()) running = True while running: # read bytes data = await reader.read(fstrm_handler.pending_nb_bytes()) if not len(data): running = False break # append data to the buffer fstrm_handler.append(data=data) # process the buffer, check if we have received a complete frame ? if fstrm_handler.process(): # Ok, the frame is complete so let's decode it fs, payload = fstrm_handler.decode() # handle the DATA frame if fs == fstrm.FSTRM_DATA_FRAME: loop.create_task(cb_ondnstap(dnstap_decoder, payload, cfg, queue, metrics)) # handle the control frame READY if fs == fstrm.FSTRM_CONTROL_READY: logging.debug(f"Input handler: control ready received from {peername}") ctrl_accept = fstrm_handler.encode(fs=fstrm.FSTRM_CONTROL_ACCEPT) # respond with accept only if the content type is dnstap writer.write(ctrl_accept) await writer.drain() logging.debug(f"Input handler: sending control accept to {peername}") # handle the control frame READY if fs == fstrm.FSTRM_CONTROL_START: logging.debug(f"Input handler: control start received from {peername}") # handle the control frame STOP if fs == fstrm.FSTRM_CONTROL_STOP: logging.debug(f"Input handler: control stop received from {peername}") fstrm_handler.reset() except asyncio.CancelledError: logging.debug(f'Input handler: {peername} - closing connection.') writer.close() await writer.wait_closed() except asyncio.IncompleteReadError: logging.debug(f'Input handler: {peername} - disconnected') finally: logging.debug(f'Input handler: {peername} - closed') class Metrics: def prepare(self): """prepare stats""" self.stats = {"total-queries": 0} self.queries = {} self.rtype = {} self.rcode = {} self.clients = {} self.nxdomains = {} self.proto = {} self.family = {} def reset(self): """reset statistics""" del self.stats del self.queries del self.rtype del self.rcode del self.clients del self.nxdomains del self.proto del self.family self.prepare() def record_dnstap(self, dnstap): """add dnstap message""" self.stats["total-queries"] += 1 if dnstap["transport"] not in self.proto: self.proto[dnstap["transport"]] = 1 else: self.proto[dnstap["transport"]] += 1 if dnstap["protocol"] not in self.family: self.family[dnstap["protocol"]] = 1 else: self.family[dnstap["protocol"]] += 1 if dnstap["query-name"] not in self.queries: self.queries[dnstap["query-name"]] = 1 else: self.queries[dnstap["query-name"]] += 1 if dnstap["source-ip"] not in self.clients: self.clients[dnstap["source-ip"]] = 1 else: self.clients[dnstap["source-ip"]] += 1 if dnstap["query-type"] not in self.rtype: self.rtype[dnstap["query-type"]] = 1 else: self.rtype[dnstap["query-type"]] += 1 if dnstap["code"] not in self.rcode: self.rcode[dnstap["code"]] = 1 else: self.rcode[dnstap["code"]] += 1 def start_receiver(): """start dnstap receiver""" # Handle command-line arguments. args = parser.parse_args() # set default config try: cfg = yaml.safe_load(pkgutil.get_data(__package__, 'dnstap.conf')) except FileNotFoundError: logging.error("default config file not found") sys.exit(1) except yaml.parser.ParserError: logging.error("invalid default yaml config file") sys.exit(1) # update default config with command line arguments cfg["verbose"] = args.v cfg["input"]["unix-socket"]["path"] = args.u cfg["input"]["tcp-socket"]["local-address"] = args.l cfg["input"]["tcp-socket"]["local-port"] = args.p # overwrite config with external file ? if args.c: try: with open(args.c) as file: cfg.update( yaml.safe_load(file) ) except FileNotFoundError: logging.error("external config file not found") sys.exit(1) except yaml.parser.ParserError: logging.error("external invalid yaml config file") sys.exit(1) # init logging level = logging.INFO if cfg["verbose"]: level = logging.DEBUG logging.basicConfig(format='%(asctime)s %(message)s', stream=sys.stdout, level=level) # start receiver and get event loop logging.debug("Start receiver...") loop = asyncio.get_event_loop() # prepare output queue = asyncio.Queue() metrics = Metrics() metrics.prepare() if cfg["output"]["syslog"]["enable"]: logging.debug("Output handler: syslog") loop.create_task(output_syslog.handle(cfg["output"]["syslog"], queue, metrics)) if cfg["output"]["tcp-socket"]["enable"]: logging.debug("Output handler: tcp") loop.create_task(output_tcp.handle(cfg["output"]["tcp-socket"], queue, metrics)) if cfg["output"]["stdout"]["enable"]: logging.debug("Output handler: stdout") loop.create_task(output_stdout.handle(cfg["output"]["stdout"], queue, metrics)) if cfg["output"]["metrics"]["enable"]: logging.debug("Output handler: metrics") loop.create_task(output_metrics.handle(cfg["output"]["metrics"], queue, metrics)) # asynchronous unix socket if cfg["input"]["unix-socket"]["path"] is not None: logging.debug("Input handler: unix socket") logging.debug("Input handler: listening on %s" % args.u) socket_server = asyncio.start_unix_server(lambda r, w: cb_onconnect(r, w, cfg, queue, metrics), path=cfg["input"]["unix-socket"]["path"], loop=loop) # default mode: asynchronous tcp socket else: logging.debug("Input handler: tcp socket") ssl_context = None if cfg["input"]["tcp-socket"]["tls-support"]: ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_context.load_cert_chain(certfile=cfg["input"]["tcp-socket"]["tls-server-cert"], keyfile=cfg["input"]["tcp-socket"]["tls-server-key"]) logging.debug("Input handler - tls support enabled") logging.debug("Input handler: listening on %s:%s" % (cfg["input"]["tcp-socket"]["local-address"], cfg["input"]["tcp-socket"]["local-port"])), socket_server = asyncio.start_server(lambda r, w: cb_onconnect(r, w, cfg, queue, metrics), cfg["input"]["tcp-socket"]["local-address"], cfg["input"]["tcp-socket"]["local-port"], ssl=ssl_context, loop=loop) # run until complete loop.run_until_complete(socket_server) # run event loop try: loop.run_forever() except KeyboardInterrupt: pass ``` #### File: dnstap-receiver/tests/test_receiver_unixsocket.py ```python import time import unittest import subprocess import dns.resolver my_resolver = dns.resolver.Resolver(configure=False) my_resolver.nameservers = ['127.0.0.1'] import shlex class TestUnixSocket(unittest.TestCase): def test1_listening(self): """test listening unix socket""" cmd = 'su - _dnsdist -s /bin/bash -c \'python3 -c "from dnstap_receiver.receiver import start_receiver; start_receiver()" -u /var/run/dnsdist/dnstap.sock -v\'' args = shlex.split(cmd) with subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as proc: time.sleep(2) proc.terminate() o = proc.stdout.read() print(o) self.assertRegex(o, b"listening on /var/run/dnsdist/dnstap.sock") def test2_incoming_dnstap(self): """test to receive dnstap message""" cmd = 'su - _dnsdist -s /bin/bash -c \'python3 -c "from dnstap_receiver.receiver import start_receiver; start_receiver()" -u /var/run/dnsdist/dnstap.sock -v\'' args = shlex.split(cmd) with subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) as proc: for i in range(10): r = my_resolver.resolve('www.github.com', 'a') time.sleep(1) proc.terminate() o = proc.stdout.read() print(o) self.assertRegex(o, b"dnsdist-unix CLIENT_RESPONSE") ```
{ "source": "jinmel/Text2Colors", "score": 2 }
#### File: jinmel/Text2Colors/util.py ```python import numpy as np import torch import torch.nn as nn import warnings from skimage.color import lab2rgb, rgb2lab # ======================== For text embeddings ======================== # SOS_token = 0 EOS_token = 1 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class Dictionary: def __init__(self): self.word2index = {} self.word2count = {} self.index2word = {0: "SOS", 1: "EOS"} self.n_words = 2 self.max_len = 0 def index_elements(self, data): for element in data: self.max_len = len(data) if self.max_len < len(data) else self.max_len self.index_element(element) def index_element(self, element): if element not in self.word2index: self.word2index[element] = self.n_words self.word2count[element] = 1 self.index2word[self.n_words] = element self.n_words += 1 else: self.word2count[element] += 1 def load_pretrained_embedding(dictionary, embed_file, embed_dim): if embed_file is None: return None pretrained_embed = {} with open(embed_file, 'r', encoding='utf-8') as f: for line in f: tokens = line.split(' ') word = tokens[0] entries = tokens[1:] if word == '<unk>': continue pretrained_embed[word] = entries f.close() vocab_size = len(dictionary) + 2 W_emb = np.random.randn(vocab_size, embed_dim).astype('float32') n = 0 for word, index in dictionary.items(): if word in pretrained_embed: W_emb[index, :] = pretrained_embed[word] n += 1 print ("%d/%d vocabs are initialized with GloVe embeddings." % (n, vocab_size)) return W_emb class Embed(nn.Module): def __init__(self, vocab_size, embed_dim, W_emb, train_emb): super(Embed, self).__init__() self.embed = nn.Embedding(vocab_size, embed_dim) if W_emb is not None: print ("Using pre-trained word embeddings...") self.embed.weight = nn.Parameter(W_emb) if train_emb == False: print ("Not training word embeddings...") self.embed.requires_grad = False def forward(self, doc): doc = self.embed(doc) return doc # ======================== For processing data ======================== # def process_image(image_data, batch_size, imsize): input = torch.zeros(batch_size, 1, imsize, imsize) labels = torch.zeros(batch_size, 2, imsize, imsize) images_np = image_data.numpy().transpose((0, 2, 3, 1)) for k in range(batch_size): img_lab = rgb2lab(images_np[k], illuminant='D50') img_l = img_lab[:, :, 0] / 100 input[k] = torch.from_numpy(np.expand_dims(img_l, 0)) img_a_scale = (img_lab[:, :, 1:2] + 88) / 185 img_b_scale = (img_lab[:, :, 2:3] + 127) / 212 img_ab_scale = np.concatenate((img_a_scale, img_b_scale), axis=2) labels[k] = torch.from_numpy(img_ab_scale.transpose((2, 0, 1))) return input, labels def process_palette_ab(pal_data, batch_size): img_a_scale = (pal_data[:, :, 1:2] + 88) / 185 img_b_scale = (pal_data[:, :, 2:3] + 127) / 212 img_ab_scale = np.concatenate((img_a_scale, img_b_scale), axis=2) ab_for_global = torch.from_numpy(img_ab_scale).float() ab_for_global = ab_for_global.view(batch_size, 10).unsqueeze(2).unsqueeze(2) return ab_for_global def process_palette_lab(pal_data, batch_size): img_l = pal_data[:, :, 0:1] / 100 img_a_scale = (pal_data[:, :, 1:2] + 88) / 185 img_b_scale = (pal_data[:, :, 2:3] + 127) / 212 img_lab_scale = np.concatenate((img_l, img_a_scale, img_b_scale), axis=2) lab_for_global = torch.from_numpy(img_lab_scale).float() lab_for_global = lab_for_global.view(batch_size, 15).unsqueeze(2).unsqueeze(2) return lab_for_global def process_global_ab(input_ab, batch_size, always_give_global_hint): X_hist = input_ab if always_give_global_hint: B_hist = torch.ones(batch_size, 1, 1, 1) else: B_hist = torch.round(torch.rand(batch_size, 1, 1, 1)) for l in range(batch_size): if B_hist[l].numpy() == 0: X_hist[l] = torch.rand(10) global_input = torch.cat([X_hist, B_hist], 1) return global_input def process_global_lab(input_lab, batch_size, always_give_global_hint): X_hist = input_lab if always_give_global_hint: B_hist = torch.ones(batch_size, 1, 1, 1) else: B_hist = torch.round(torch.rand(batch_size, 1, 1, 1)) for l in range(batch_size): if B_hist[l].numpy() == 0: X_hist[l] = torch.rand(15) global_input = torch.cat([X_hist, B_hist], 1) return global_input def process_global_sampling_ab(palette, batch_size, imsize, hist_mean, hist_std): X_hist = palette.to(device) B_hist = torch.ones(batch_size, 1, 1, 1).to(device) global_input = torch.cat([X_hist, B_hist], 1) return global_input def process_global_sampling_lab(palette, batch_size, imsize, hist_mean, hist_std): X_hist = palette.to(device) B_hist = torch.ones(batch_size, 1, 1, 1).to(device) global_input = torch.cat([X_hist, B_hist], 1) return global_input # ============================= Etc. ============================= # def KL_loss(mu, logvar): KLD_element = mu.pow(2).add_(logvar.exp()).mul_(-1).add_(1).add_(logvar) KLD = torch.mean(KLD_element).mul_(-0.5) return KLD def lab2rgb_1d(in_lab, clip=True): warnings.filterwarnings("ignore") tmp_rgb = lab2rgb(in_lab[np.newaxis, np.newaxis, :], illuminant='D50').flatten() if clip: tmp_rgb = np.clip(tmp_rgb, 0, 1) return tmp_rgb def init_weights_normal(m): if type(m) == nn.Conv1d: m.weight.data.normal_(0.0, 0.05) if type(m) == nn.Linear: m.weight.data.normal_(0.0, 0.05) ```
{ "source": "jinmingda/MicroorganismSearchEngine", "score": 3 }
#### File: mse/tests/test_controllers.py ```python import unittest import datetime from turbogears import testutil from mse.controllers import Root from mse.model import User class TestPages(testutil.TGTest): root = Root def test_method(self): """The index method should return a datetime.datetime called 'now'""" response = self.app.get('/') assert isinstance(response.raw['now'], datetime.datetime) def test_index_title(self): """"The index page should have the right title.""" response = self.app.get('/') assert "<title>Welcome to TurboGears</title>" in response.body def test_login_title(self): """The login page should have the right title.""" response = self.app.get('/login') assert "<title>Login</title>" in response assert "Please log in." in response assert "session cookies" not in response assert "credentials" not in response assert "not correct" not in response def test_login_errors(self): """The login page should display the right errors.""" login = '/login?user_name=nobody&password=<PASSWORD>&login=Login' response = self.app.get(login) assert "<title>Login</title>" in response assert "session cookies" in response cookie = ', '.join(map(str, response.cookies_set.values())) response = self.app.get(login, headers=dict(Cookie=cookie)) assert "<title>Login</title>" in response assert "credentials" in response assert "not correct" in response def test_login_and_logout(self): """Login with correct credentials and then logout.""" u = User(user_name=u"scott", password=u"<PASSWORD>", display_name=u"<NAME>", email_address=u"<EMAIL>") response = self.app.get('/') assert "<title>Welcome to TurboGears</title>" in response assert 'href="/login"' in response assert 'href="/logout"' not in response response = self.app.get('/login') assert "<title>Login</title>" in response assert 'Please log in.' in response cookie = ', '.join(map(str, response.cookies_set.values())) login = '/login?user_name=scott&password=<PASSWORD>&login=Login' headers = dict(Cookie=cookie) response = self.app.get(login, headers=headers, status=302) location = response.headers['Location'] response = self.app.get(location, headers=headers) assert "<title>Welcome to TurboGears</title>" in response assert "Welcome <NAME>" in response assert 'href="/login"' not in response assert 'href="/logout"' in response response = self.app.get('/', headers=headers) assert "<title>Welcome to TurboGears</title>" in response assert "Welcome <NAME>" in response assert 'href="/login"' not in response assert 'href="/logout"' in response response = self.app.get('/logout', headers=headers, status=302) location = response.headers['Location'] response = self.app.get(location, headers=headers) assert "<title>Welcome to TurboGears</title>" in response assert 'href="/login"' in response assert 'href="/logout"' not in response ``` #### File: mse/tests/test_model.py ```python from turbogears.testutil import DBTest from turbogears.util import get_model # import the User class defined in the model so we can use it here try: from mse.model import User, create_tables, create_default_user except ImportError: import warnings warnings.warn("Identity model not found. Not running identity tests!") User = None from sqlobject import SQLObjectNotFound from sqlobject.dberrors import OperationalError def _create_test_user(): obj = User(user_name=u"creosote", email_address=u"<EMAIL>", display_name=u"<NAME>", password=u"<PASSWORD>") return obj class TestUser(DBTest): if User: def test_user_creation(self): """Object creation should set the name.""" obj = _create_test_user() retrieved_user = User.by_email_address(u'<EMAIL>') assert retrieved_user, \ 'User should have been found by email address' assert retrieved_user.user_name == u'creosote', \ "User name should have been creosote, not '%s'" % retrieved_user.user_name assert obj.display_name == u"<NAME>" class TestBootstrap(DBTest): def setUp(self): if not self.model: self.model = get_model() if not self.model: raise Exception("Unable to run database tests without a model") if User: def test_create_tables(self): """Test that model.create_tables correctly creates all database tables.""" self.assertRaises(OperationalError, User.by_user_name, u'test') create_tables() assert _create_test_user() create_tables() assert User.by_user_name(u'creosote') create_tables(drop_all=True) try: user = User.by_user_name(u'creosote') except SQLObjectNotFound: user = None assert user is None def test_create_default_user(self): "Test that the default user is created correctly" create_tables() create_default_user(u'creosote', u'secret') retrieved_user = User.by_email_address(u'<EMAIL>' % u'creosote') assert retrieved_user assert retrieved_user.user_name == u'creosote' assert retrieved_user.display_name == u'Default User' assert retrieved_user.password ```
{ "source": "Jinming-Su/SGNet", "score": 2 }
#### File: SGNet/datasets/generate_vp_label_dist_culane.py ```python import numpy as np import cv2 import matplotlib.pyplot as plt from glob import glob import os import random import traceback import tqdm import traceback import torch color_list = [(0, 0, 255), (0, 255, 0), (0, 255, 255), (255, 0, 255),] img_dir = 'datasets/culane/' seg_label_dir = 'datasets/culane/laneseg_label_w16_new/' #seg_line_label_dir ='dataset/seg_line_label' rpn_label_dir = 'datasets/culane/rpn_label_new' vp_label_dir = 'datasets/culane/vp_label_new_32' H = 590 W = 1640 def plt_show(img): plt.figure(figsize=(40, 40)) im2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(im2) def get_anno(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return (None, None, None) #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] #得到覆盖标注的最小矩形 w_annos = [] for seg_label in seg_labels[1:]: rect, box_points = get_min_rect(seg_img_gray, seg_label) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] ## ## ## w_annos.append(min(w, h)) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) #只有一条车道线的情况 if(len(lines) == 1): x_anno = x_center - max(w, h)/2 * np.cos(angle_x*np.pi/180) y_l = y_r = y_center - max(w, h)/2 * np.sin(angle_x*np.pi/180) if show: cv2.circle(seg_img, (int(x_anno), int(y_l)), 3, (0, 255, 0), thickness=3) plt_show(seg_img) return (y_l, y_r, [[x_anno, w_annos[0], angle_x]]) #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify_0 = seg_img.copy() y_l = y_inter_list[0] y_r = y_inter_list[0] # cv2.line(seg_img_modify_0, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (255, 0, 0), 3) y_l = y_inter_list[0] y_r = y_inter_list[0] if show: cv2.line(seg_img, (0, y_l), (seg_img.shape[1], y_r), (0, 0 , 255), 3 ) cv2.circle(seg_img, (x_inter_list[0], y_l), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img) return ( y_l, y_r, [[x_inter_list[0], w_annos[0], 0]] ) #得到 y=kx+b 的[k, b] #kx-y+b=0 else: line_anno_list = [] x_annos = [] seg_img_modify_10 = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify_10, offset=offset) for line, w_anno in zip(lines, w_annos): #print(line, horizon_line) x_anno, _ = get_inter_point(line[0], line[1], line[2], horizon_line[0], -1, horizon_line[1]) x_annos.append(x_anno) # x ,w ,theta line_anno_list.append([ x_anno , w_anno, line[3]]) if show: cv2.line(seg_img, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (0, 0 , 255), 3 ) for line, x_anno in zip(lines, x_annos): #矩形代表直线在水平分割线上交点 y_anno = (-line[2] + -line[0] * x_anno)/line[1] cv2.circle(seg_img, (int(x_anno), int(y_anno)), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img) return (y_l, y_r, line_anno_list) def plt_show(img): im2 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) plt.imshow(im2) def show_bounding_boxes(seg_anno_file): img = cv2.imread(seg_anno_file) img = img * 50 img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(img_gray)) #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: x,y,w,h =get_boundingRect(img_gray, seg_label) cv2.rectangle(img, (x, y), (x+w, y+h), (255, 0, 0), 5) _, box_points = get_min_rect(img_gray, seg_label) cv2.drawContours(img, [box_points], 0, (0, 0, 255), 2) plt_show(img) def get_boundingRect(img_gray, seg_label): #画最小标准形 cnt = (img_gray==seg_label).astype(np.uint8) #cnt 二维图像或点集 x, y, w, h = cv2.boundingRect(cnt) return x,y,w,h # cv2.minAreaRect返回的width,height,angle比较难理解 # https://stackoverflow.com/questions/24073127/opencvs-rotatedrect-angle-does-not-provide-enough-information # https://stackoverflow.com/questions/15956124/minarearect-angles-unsure-about-the-angle-returned/21427814#21427814 # 得到由y轴逆时针转到直线的角度 def angle_convert(width, height, angle): assert width!=height return 180+angle if width>height else angle + 90 return angle # 得到由x轴正方向夹角 def angle_convert_x(width, height, angle): assert width!=height return 90-angle if width>height else -angle return angle # 返回在cv2的坐标下与y轴的夹角, 由点斜式 # angle是由y轴转到x轴的方向转到直线的角度 def get_line_equation(y0, x0, angle): if angle == 90: return (0, 1, -y0); else: k=np.tan(angle*np.pi/180) #两点式 #x-x0=k(y-y0) #x-ky+ky0-x0=0 return (1, -k, k*y0-x0) def get_line_equation_x(x0, y0, angle): if angle == 90: return (0, 1, -y0); else: k=np.tan(angle*np.pi/180) #两点式 #x-x0=k(y-y0) #x-ky+ky0-x0=0 return (k, 1, -k*x0-y0) def draw_line_equation_ori(img, A, B, C, y_max, color=(0, 255, 0), x_max=None): #首先处理垂直y轴, A=0时需要x_max if A == 0: assert x_max for x in range(x_max): cv2.circle(img, (x, -int(C)), 5, color, 4) return for y in range(y_max): x = (-B*y - C)/A cv2.circle(img, (int(x), y), 1, color, 4) # TODO : 考虑直线与矩形的相交具体怎么样, cv2.line 能画两个点在图外吗 def draw_line_equation(img, A, B, C, y_max, color = (0, 255, 0), x_max = None): #def draw_line_equation(img, A, B, C, y_max = H, color = (0, 255, 0), x_max = None): assert (A!=0 or B!=0) if A==0: y_lr = -C/B cv2.line(img, (0, y_lr), (x_max, y_lr), color, 3) else: x1 = (-B*0 - C)/A x2 = (-B*y_max - C)/A cv2.line(img, (int(x1), 0), (int(x2), y_max), color, 3) def get_inter_point(A1, B1, C1, A2, B2, C2): #基于一般式,一般式 A,B不全为0 assert (A1!=0 or B1!=0) and (A2!=0 or B2!=0) m=A1*B2-A2*B1 if m==0: return (-1000, -1000) else: x=(C2*B1-C1*B2)/m y=(C1*A2-C2*A1)/m return x,y #在点集的两边增加点集最小x,最大x的两个在一条水平线上的点 def modify_points(x_inter_list, y_inter_list, seg_img, draw = False, offset=0): y_inter_center = np.mean(y_inter_list) x_inter_min = np.min(x_inter_list) - offset x_inter_max = np.max(x_inter_list) + offset horizon_line = np.polyfit(x_inter_list, y_inter_list, deg=1) x_inter_list.append(x_inter_min) y_inter_list.append(y_inter_center) x_inter_list.append(x_inter_max) y_inter_list.append(y_inter_center) horizon_line = np.polyfit(x_inter_list, y_inter_list, deg=1) y_l = horizon_line[1] y_r = horizon_line[0] * seg_img.shape[1] + horizon_line[1] if draw: cv2.circle(seg_img, (int(x_inter_min),int(y_inter_center)), 3, (0, 255, 255), thickness=3) cv2.circle(seg_img, (int(x_inter_max),int(y_inter_center)), 3, (0, 255, 255), thickness=3) cv2.line(seg_img, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (255, 0, 0), 3) return horizon_line , y_l, y_r #对比不同方法得到的horizon_line def contrast_horizon_line(frame_mp4_number, display, path2write = None): """ display : 0, nothin; 1, show; 2, write """ ori_img = cv2.imread(os.path.join(img_dir, frame_mp4_number+'.jpg')) seg_anno_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_anno_file) seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) if len(seg_labels) == 1: return -1,-1 #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: x,y,w,h =get_boundingRect(seg_img_gray, seg_label) # if display>0: # cv2.rectangle(img, (x, y), (x+w, y+h), (0, 0, 255), 2) rect, box_points = get_min_rect(seg_img_gray, seg_label) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] angle = rect[2] if display>0: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 1) #求这个矩形代表的直线 angle = angle_convert(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle) if display>0: draw_line_equation(seg_img, A, B ,C, seg_img.shape[0]) lines.append([A, B, C]) #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)): for j in range(i+1, len(lines)): x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) if display>0: cv2.circle(seg_img, (int(x_inter),int(y_inter)), 3, (0, 255, 0), thickness=3) #改进前 seg_img_copy = seg_img.copy() horizon_line = np.polyfit(x_inter_list, y_inter_list, deg=1) y_l = horizon_line[1] y_r = horizon_line[0] * seg_img.shape[1] + horizon_line[1] cv2.line(seg_img_copy, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (255, 0, 0), 3) #改进前 #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify_0 = seg_img.copy() y_l = y_inter_list[0] y_r = y_inter_list[0] cv2.line(seg_img_modify_0, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (255, 0, 0), 3) y_l = y_inter_list[0] y_r = y_inter_list[0] if display==1: plt_show(np.vstack(( np.hstack((seg_img_ori, seg_img_copy)), np.hstack((ori_img, seg_img_modify_0)) )) ) elif display == 2: if not os.path.exists(path2write): os.makedirs(path2write) cv2.imwrite(os.path.join(path2write, '_'.join(name_split_list[-3:])), \ np.vstack(( np.hstack((seg_img_ori, seg_img_copy)), np.hstack((ori_img, seg_img_modify_0)) )) ) #得到 y=kx+b 的[k, b] #kx-y+b=0 else: #添加点集左右两边的点 seg_img_modify_0 = seg_img.copy() modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify_0 ) #offset 5 seg_img_modify_5 = seg_img.copy() modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify_5, 5) #offset 10 seg_img_modify_10 = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify_10, 20) if display==1: plt_show(np.vstack((np.hstack((seg_img_ori, seg_img_copy, seg_img_modify_0)), \ np.hstack((ori_img, seg_img_modify_5, seg_img_modify_10))))) elif display == 2: if not os.path.exists(path2write): os.makedirs(path2write) cv2.imwrite(os.path.join(path2write, '_'.join(name_split_list[-3:])), \ np.vstack((np.hstack((seg_img_ori, seg_img_copy, seg_img_modify_0)), \ np.hstack((ori_img, seg_img_modify_5, seg_img_modify_10))))) return y_l, y_r # y1, y2 # x1, w1, \theta def get_anno(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) H, W = seg_img.shape[:2] seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return (None, None, None) #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] #得到覆盖标注的最小矩形 w_annos = [] for seg_label in seg_labels[1:]: rect, box_points, (x3, x4) = get_min_rect(seg_img_gray, seg_label) cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] angle = rect[2] if display>0: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 1) #求这个矩形代表的直线 angle = angle_convert(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle) if display>0: draw_line_equation(seg_img, A, B ,C, seg_img.shape[0]) lines.append([A, B, C]) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) plt_show(seg_img) #只有一条车道线的情况 if(len(lines) == 1): x_anno = x_center - max(w, h)/2 * np.cos(angle_x*np.pi/180) y_l = y_r = y_center - max(w, h)/2 * np.sin(angle_x*np.pi/180) if show: cv2.circle(seg_img, (int(x_anno), int(y_l)), 3, (0, 255, 0), thickness=3) plt_show(seg_img) return (y_l, y_r, [[x_anno, w_annos[0], angle_x]]) #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify_0 = seg_img.copy() y_l = y_inter_list[0] y_r = y_inter_list[0] # cv2.line(seg_img_modify_0, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (255, 0, 0), 3) y_l = y_inter_list[0] y_r = y_inter_list[0] if show: cv2.line(seg_img, (0, y_l), (seg_img.shape[1], y_r), (0, 0 , 255), 3 ) cv2.circle(seg_img, (x_inter_list[0], y_l), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img) return ( y_l, y_r, [[x_inter_list[0], w_annos[0], 0]] ) #得到 y=kx+b 的[k, b] #kx-y+b=0 else: line_anno_list = [] x_annos = [] seg_img_modify_10 = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify_10, offset=offset) for line, w_anno in zip(lines, w_annos): #print(line, horizon_line) x_anno, _ = get_inter_point(line[0], line[1], line[2], horizon_line[0], -1, horizon_line[1]) x_annos.append(x_anno) # x ,w ,theta line_anno_list.append([ x_anno , w_anno, line[3]]) if show: cv2.line(seg_img, (0, int(y_l)), (seg_img.shape[1], int(y_r)), (0, 0 , 255), 3 ) for line, x_anno in zip(lines, x_annos): #矩形代表直线在水平分割线上交点 y_anno = (-line[2] + -line[0] * x_anno)/line[1] cv2.circle(seg_img, (int(x_anno), int(y_anno)), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img) return (y_l, y_r, line_anno_list) def distance(p1, p2): return np.linalg.norm(np.array(p1)-np.array(p2)) def draw_rot_rect(rect, img): box_points = cv2.boxPoints(rect) box_points = np.int0(box_points) #draw contour里 x坐标在y前, 两列交换 box_points = box_points[:, ::-1] cv2.drawContours(img, [box_points], 0, color_list[0], 2) #求在图内的最小矩形 def get_min_rect(img_gray, seg_label, seg_img): points = np.where(img_gray==seg_label) points = np.stack(points, axis=1) #输入点集 rect = cv2.minAreaRect(points) box_points = cv2.boxPoints(rect) box_points = np.int0(box_points) #draw contour里 x坐标在y前, 两列交换 box_points = box_points[:, ::-1] y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] w_anno = min(w, h) h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) x_upper_center = x_center - h_anno/2 * np.cos(angle_x * np.pi / 180) y_upper_center = y_center - h_anno/2 * np.sin(angle_x * np.pi / 180) #短边与x轴的夹角 angle_v_x = angle_x + 90 if angle_x < 90 else angle_x - 90 x1 = x_upper_center + w_anno/2 * np.cos(angle_v_x * np.pi / 180) x2 = x_upper_center - w_anno/2 * np.cos(angle_v_x * np.pi / 180) y1 = y_upper_center + w_anno/2 * np.sin(angle_v_x * np.pi / 180) y2 = y_upper_center - w_anno/2 * np.sin(angle_v_x * np.pi / 180) #check短边两点是否正确 # cv2.circle(seg_img, (int(x_upper_center),int(y_upper_center)), 1, (0, 255, 0), thickness=2) # cv2.circle(seg_img, (int(x1),int(y1)), 1, (0, 255, 0), thickness=2) # cv2.circle(seg_img, (int(x2),int(y2)), 1, (0, 255, 0), thickness=2) line_1 = get_line_equation(y1, x1, angle_y) line_2 = get_line_equation(y2, x2, angle_y) #draw_line_equation(img, A, B, C, y_max = H, color = (0, 255, 0), x_max = None): #def get_inter_point(A1, B1, C1, A2, B2, C2): # draw_line_equation(seg_img, line_1[0], line_1[1], line_1[2], x_max = W) # draw_line_equation(seg_img, line_2[0], line_2[1], line_2[2], x_max = W) #与y=H-1交点 x_inter_1_h, y_inter_1_h = get_inter_point(line_1[0], line_1[1], line_1[2], 0, 1, -H+1) x_inter_2_h, y_inter_2_h = get_inter_point(line_2[0], line_2[1], line_2[2], 0, 1, -H+1) #与x=0或W-1交点 W_or_0 = 0 if w>h else W-1 x_inter_1_w, y_inter_1_w = get_inter_point(line_1[0], line_1[1], line_1[2], 1, 0, -W_or_0) x_inter_2_w, y_inter_2_w = get_inter_point(line_2[0], line_2[1], line_2[2], 1, 0, -W_or_0) # cv2.circle(seg_img, (int(x_inter_1),int(y_inter_1)), 1, (0, 255, 0), thickness=2) # cv2.circle(seg_img, (int(x_inter_2),int(y_inter_2)), 1, (0, 255, 0), thickness=2) if distance([x1,y1], [x_inter_1_h, y_inter_1_h]) < distance([x1,y1], [x_inter_1_w, y_inter_1_w]): x_inter_1, y_inter_1 = x_inter_1_h, y_inter_1_h distance_1 = distance([x1,y1], [x_inter_1_h, y_inter_1_h]) else: x_inter_1, y_inter_1 = x_inter_1_w, y_inter_1_w distance_1 = distance([x1,y1], [x_inter_1_w, y_inter_1_w]) if distance([x2,y2], [x_inter_2_h, y_inter_2_h]) < distance([x2,y2], [x_inter_2_w, y_inter_2_w]): x_inter_2, y_inter_2 = x_inter_2_h, y_inter_2_h distance_2 = distance([x2, y2], [x_inter_2_h, y_inter_2_h]) else: x_inter_2, y_inter_2 = x_inter_2_w, y_inter_2_w distance_2 = distance([x2,y2], [x_inter_2_w, y_inter_2_w]) if distance_1 < distance_2 : cut_h = h_anno - distance_1 x3, y3 = x_inter_1, y_inter_1 x4 = x3 - w_anno * np.cos(angle_v_x * np.pi / 180) y4 = y3 - w_anno * np.sin(angle_v_x * np.pi / 180) else: cut_h = h_anno - distance_2 x4, y4 = x_inter_2, y_inter_2 x3 = x4 + w_anno * np.cos(angle_v_x * np.pi / 180) y3 = y4 + w_anno * np.sin(angle_v_x * np.pi / 180) #cv2.circle(seg_img, (int(x3),int(y3)), 3, (0, 255, 0), thickness=2) #cv2.circle(seg_img, (int(x4),int(y4)), 3, (0, 0, 255), thickness=2) # print('x3, y3', x3, y3) # print('x4, y4', x4, y4) if min(distance_1, distance_2) <= h_anno: new_x_center = x_center - cut_h / 2 * np.cos(angle_x * np.pi / 180) new_y_center = y_center - cut_h / 2 * np.sin(angle_x * np.pi / 180) if w>h: new_rect = ((new_y_center, new_x_center), (w-cut_h, h), angle) else: new_rect = ((new_y_center, new_x_center), (w, h-cut_h), angle) new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] return new_rect, new_box_points else: return rect, box_points #求在图内的最小矩形, 求与矩形的交点连线 def get_min_rect_v2(img_gray, seg_label, seg_img): points = np.where(img_gray==seg_label) points = np.stack(points, axis=1) #输入点集 rect = cv2.minAreaRect(points) box_points = cv2.boxPoints(rect) box_points = np.int0(box_points) #draw contour里 x坐标在y前, 两列交换 box_points = box_points[:, ::-1] #cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 1) #plt_show(seg_img) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] w_anno = min(w, h) h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) x_upper_center = x_center - h_anno/2 * np.cos(angle_x * np.pi / 180) y_upper_center = y_center - h_anno/2 * np.sin(angle_x * np.pi / 180) #长边中心线 line = get_line_equation(y_center, x_center, angle_y) #draw_line_equation(seg_img, line[0], line[1], line[2], W) #与y=H-1交点 x_inter_h, y_inter_h = get_inter_point(line[0], line[1], line[2], 0, 1, -H+1) #与x=0或W-1交点 W_or_0 = 0 if w>h else W-1 x_inter_w, y_inter_w = get_inter_point(line[0], line[1], line[2], 1, 0, -W_or_0) if distance([x_center,y_center], [x_inter_h, y_inter_h]) < distance([x_center, y_center], [x_inter_w, y_inter_w]): x_inter, y_inter = x_inter_h, y_inter_h short_d = distance([x_center, y_center], [x_inter_h, y_inter_h]) else: x_inter, y_inter = x_inter_w, y_inter_w short_d = distance([x_center, y_center], [x_inter_w, y_inter_w]) new_x_center = (x_upper_center + x_inter) /2 new_y_center = (y_upper_center + y_inter) /2 if w>h: w = short_d + w/2 else: h = short_d + h/2 new_rect = ((new_y_center, new_x_center), (w, h), angle) new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] return new_rect, new_box_points #根据矩形的长边变化的宽度,变化旋转矩形 def modify_rect(rect, x_inter, y_inter): x_center = rect[0][1] y_center = rect[0][0] w=rect[1][0] h=rect[1][1] angle = rect[2] add_h = distance([x_center, y_center], [x_inter, y_inter]) - max(w, h)/2 angle_x = angle_convert_x(w, h, angle) new_x_center = x_center - add_h / 2 * np.cos(angle_x * np.pi / 180) new_y_center = y_center - add_h / 2 * np.sin(angle_x * np.pi / 180) if w>h: w=w+add_h else: h=h+add_h new_rect = ((new_y_center , new_x_center), (w, h), rect[2]) return new_rect def rect2anchor(rect): """ rect : opencv 形式 anchor : [x_u, y_u, w, h, angle_x] w指较短的一边 """ y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] w_anno = min(w, h) h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_x = angle_convert_x(w, h, angle) x_upper_center = x_center - h_anno/2 * np.cos(angle_x * np.pi / 180) y_upper_center = y_center - h_anno/2 * np.sin(angle_x * np.pi / 180) return [x_upper_center, y_upper_center, w_anno, h_anno, angle_x] def get_anno_rpn(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) H, W = seg_img.shape[:2] seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) print(seg_labels) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return None #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] rects = [] #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: print(seg_label) #rect, box_points = get_min_rect_ori(seg_img_gray, seg_label) #cv2.drawContours(seg_img, [box_points], 0, (0, 255, 0), 2) try: rect, box_points = get_min_rect_v2(seg_img_gray, seg_label, seg_img) except: continue if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) rects.append(rect) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] # w_anno = min(w, h) # h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) #plt_show(seg_img) #只有一条车道线的情况 if(len(lines) == 1): if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) plt_show(seg_img) return rects #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify = seg_img.copy() new_rects=[] for rect in rects: new_rect = modify_rect(rect, x_inter_list[0], y_inter_list[0]) new_rects.append(new_rect) if show: cv2.circle(seg_img_modify, (int(x_inter_list[0]),int(y_inter_list[0])), 3, (0, 255, 0), thickness=2) new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, (0, 0, 255), 2) plt_show(seg_img_modify) return new_rects #得到 y=kx+b 的[k, b] #kx-y+b=0 else: new_rects = [] line_anno_list = [] x_annos = [] seg_img_modify = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify, offset=offset) for i, (line, rect) in enumerate(zip(lines, rects)): #print(line, horizon_line) x_anno, y_anno = get_inter_point(line[0], line[1], line[2], horizon_line[0], -1, horizon_line[1]) if show: cv2.circle(seg_img_modify, (int(x_anno),int(y_anno)), 3, (0, 255, 0), thickness=2) new_rect = modify_rect(rect, x_anno, y_anno) new_rects.append(new_rect) if show: new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, color_list[i], 2) if show: for line, x_anno in zip(lines, x_annos): #矩形代表直线在水平分割线上交点 y_anno = (-line[2] + -line[0] * x_anno)/line[1] cv2.circle(seg_img_modify, (int(x_anno), int(y_anno)), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img_modify) return new_rects #得到上顶点,x,y,w,h,theta(与x轴) def get_anno_rpn_anchor(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) H, W = seg_img.shape[:2] seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return None #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] rects = [] #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: #rect, box_points = get_min_rect_ori(seg_img_gray, seg_label) #cv2.drawContours(seg_img, [box_points], 0, (0, 255, 0), 2) try: rect, box_points = get_min_rect_v2(seg_img_gray, seg_label, seg_img) except: print(frame_mp4_number) continue if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) rects.append(rect) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] # w_anno = min(w, h) # h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) #plt_show(seg_img) #只有一条车道线的情况 if(len(lines) == 1): if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) plt_show(seg_img) anchor = rect2anchor(rects[0]) return [anchor[1], anchor[1], [anchor]] #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify = seg_img.copy() new_rects=[] for rect in rects: new_rect = modify_rect(rect, x_inter_list[0], y_inter_list[0]) new_rects.append(new_rect) if show: cv2.circle(seg_img_modify, (int(x_inter_list[0]),int(y_inter_list[0])), 3, (0, 255, 0), thickness=2) new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, (0, 0, 255), 2) plt_show(seg_img_modify) anchors = [rect2anchor(rect) for rect in new_rects] return [y_inter_list[0],y_inter_list[0], anchors] #得到 y=kx+b 的[k, b] #kx-y+b=0 else: new_rects = [] line_anno_list = [] x_annos = [] seg_img_modify = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify, offset=offset) for i, (line, rect) in enumerate(zip(lines, rects)): #print(line, horizon_line) x_anno, y_anno = get_inter_point(line[0], line[1], line[2], horizon_line[0], -1, horizon_line[1]) if show: cv2.circle(seg_img_modify, (int(x_anno),int(y_anno)), 3, (0, 255, 0), thickness=2) new_rect = modify_rect(rect, x_anno, y_anno) new_rects.append(new_rect) if show: new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, color_list[i], 2) if show: for line, x_anno in zip(lines, x_annos): #矩形代表直线在水平分割线上交点 y_anno = (-line[2] + -line[0] * x_anno)/line[1] cv2.circle(seg_img_modify, (int(x_anno), int(y_anno)), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img_modify) anchors = [rect2anchor(rect) for rect in new_rects] return [y_l, y_r, anchors] #得到上顶点,x,y,w,h,theta(与x轴) def get_anno_rpn_anchor(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) H, W = seg_img.shape[:2] seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return None #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] rects = [] #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: #rect, box_points = get_min_rect_ori(seg_img_gray, seg_label) #cv2.drawContours(seg_img, [box_points], 0, (0, 255, 0), 2) rect, box_points = get_min_rect_v2(seg_img_gray, seg_label, seg_img) if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) rects.append(rect) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] # w_anno = min(w, h) # h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) #plt_show(seg_img) #只有一条车道线的情况 if(len(lines) == 1): if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) plt_show(seg_img) anchor = rect2anchor(rects[0]) return [anchor[1], anchor[1], [anchor]] #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) #一个点直接回归直线 if(len(x_inter_list) == 1): seg_img_modify = seg_img.copy() new_rects=[] for rect in rects: new_rect = modify_rect(rect, x_inter_list[0], y_inter_list[0]) new_rects.append(new_rect) if show: cv2.circle(seg_img_modify, (int(x_inter_list[0]),int(y_inter_list[0])), 3, (0, 255, 0), thickness=2) new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, (0, 0, 255), 2) plt_show(seg_img_modify) anchors = [rect2anchor(rect) for rect in new_rects] return [y_inter_list[0],y_inter_list[0], anchors] #得到 y=kx+b 的[k, b] #kx-y+b=0 else: new_rects = [] line_anno_list = [] x_annos = [] seg_img_modify = seg_img.copy() horizon_line ,y_l, y_r = modify_points(x_inter_list.copy(), y_inter_list.copy(), seg_img_modify, offset=offset) for i, (line, rect) in enumerate(zip(lines, rects)): #print(line, horizon_line) x_anno, y_anno = get_inter_point(line[0], line[1], line[2], horizon_line[0], -1, horizon_line[1]) if show: cv2.circle(seg_img_modify, (int(x_anno),int(y_anno)), 3, (0, 255, 0), thickness=2) new_rect = modify_rect(rect, x_anno, y_anno) new_rects.append(new_rect) if show: new_box_points = cv2.boxPoints(new_rect) new_box_points = np.int0(new_box_points) #draw contour里 x坐标在y前, 两列交换 new_box_points = new_box_points[:, ::-1] cv2.drawContours(seg_img_modify, [new_box_points], 0, color_list[i], 2) if show: for line, x_anno in zip(lines, x_annos): #矩形代表直线在水平分割线上交点 y_anno = (-line[2] + -line[0] * x_anno)/line[1] cv2.circle(seg_img_modify, (int(x_anno), int(y_anno)), 3, (0, 255, 0), thickness=3 ) plt_show(seg_img_modify) anchors = [rect2anchor(rect) for rect in new_rects] return [y_l, y_r, anchors] #得到上顶点,x,y,w,h,theta(与x轴) def get_anno_vp(frame_mp4_number, seg_width = 16, show = False, path2write = None, offset = 10): """ display : 0, nothin; 1, show; 2, write return : (y1, y2, x1, w1, \theta) """ #得到frame/mp4/number seg_img_file = os.path.join(seg_label_dir, frame_mp4_number+'.png') seg_img = cv2.imread(seg_img_file) H, W = seg_img.shape[:2] seg_img = seg_img * 50 seg_img_ori = seg_img.copy() seg_img_gray = cv2.cvtColor(seg_img, cv2.COLOR_BGR2GRAY) #得到标注中有几条线,及其label seg_labels = np.sort(np.unique(seg_img_gray)) #图中没有车道线 if len(seg_labels) == 1: if(show): plt_show(seg_img) return None #保存直线参数的list,一条直线用3个参数表示[A,B, C] lines = [] rects = [] #得到覆盖标注的最小矩形 for seg_label in seg_labels[1:]: #rect, box_points = get_min_rect_ori(seg_img_gray, seg_label) #cv2.drawContours(seg_img, [box_points], 0, (0, 255, 0), 2) try: rect, box_points = get_min_rect_v2(seg_img_gray, seg_label, seg_img) except: print(frame_mp4_number) REFINE_LIST.append(frame_mp4_number) continue if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) rects.append(rect) y_center = rect[0][0]; x_center = rect[0][1]; w=rect[1][0] h=rect[1][1] # w_anno = min(w, h) # h_anno = max(w, h) angle = rect[2] #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) A, B, C = get_line_equation(y_center, x_center, angle_y) lines.append([A, B, C, angle_x]) #plt_show(seg_img) #只有一条车道线的情况 if(len(lines) == 1): if show: cv2.drawContours(seg_img, [box_points], 0, (0, 0, 255), 2) plt_show(seg_img) rect = rects[0] y_center = rect[0][0] x_center = rect[0][1] w=rect[1][0] h=rect[1][1] w_anno = min(w, h) h_anno = max(w, h) angle = rect[2] #+ 0.001 #求这个矩形代表的直线 angle_y = angle_convert(w, h, angle) angle_x = angle_convert_x(w, h, angle) #print(angle_y, angle_x) x_upper_center = x_center - h_anno/2 * np.cos(angle_x * np.pi / 180) y_upper_center = y_center - h_anno/2 * np.sin(angle_x * np.pi / 180) #anchor = rect2anchor(rects[0]) return (int(round(x_upper_center)), int(round(y_upper_center))) #求交点 x_inter_list=[] y_inter_list=[] for i in range(len(lines)-1): for j in range(i+1, len(lines)): #print(lines[i], lines[j]) x_inter, y_inter = get_inter_point(lines[i][0], lines[i][1], lines[i][2], lines[j][0], lines[j][1], lines[j][2]) x_inter_list.append(x_inter) y_inter_list.append(y_inter) return (int(round(np.mean(x_inter_list))), int(round(np.mean(y_inter_list)))) path2write = vp_label_dir if not os.path.exists(path2write): os.makedirs(path2write) offset = 10 cnt = 0 def write_anno_vp(seg_img_file): global cnt with lock: cnt += 1 if cnt %10000 == 0: print(cnt) try: name_split_list = seg_img_file.split('/') frame_mp4_number = '/'.join(name_split_list[-3:])[:-4] vp_img_path = os.path.join(path2write, frame_mp4_number+ '.png') # if os.path.exists(txt_path): # continue dirname = os.path.dirname(vp_img_path ) if not os.path.exists(dirname): os.makedirs(dirname) annos = get_anno_vp(frame_mp4_number, seg_width=16, path2write = path2write, offset=10) vp_img = np.zeros((H, W), dtype=np.uint8) if annos is not None: cv2.circle(vp_img, annos, 16, 255, -1) vp_img[vp_img>0] = 1 assert (vp_img>1).sum() == 0 cv2.imwrite(vp_img_path, vp_img) except Exception as e: print(seg_img_file, "出现如下异常%s"%e, traceback.format_exc()) from multiprocessing.dummy import Pool, Lock pool = Pool() lock = Lock() seg_img_list = glob(seg_label_dir + '/*/*/*png') #write_anno_vp(seg_img_list) pool.map(write_anno_vp, seg_img_list) pool.close() pool.join() ``` #### File: bbox/iou_calculators/riou_calculator.py ```python import torch from .builder import IOU_CALCULATORS from maskrcnn_benchmark.structures.rboxlist_ops import box_iou from mmdet.core.bbox.bbox_dis import get_roi2align @IOU_CALCULATORS.register_module() class RboxOverlaps2D(object): """2D IoU Calculator.""" def __call__(self, bboxes1, bboxes2, mode='iou', is_aligned=False): """Calculate IoU between 2D bboxes. Args: bboxes1 (Tensor): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, or shape (m, 5) in <x1, y1, x2, y2, score> format. bboxes2 (Tensor): bboxes have shape (m, 4) in <x1, y1, x2, y2> format, shape (m, 5) in <x1, y1, x2, y2, score> format, or be empty. If is_aligned is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union) or iof (intersection over foreground). Returns: ious(Tensor): shape (m, n) if is_aligned == False else shape (m, 1) """ assert bboxes1.size(-1) in [0, 4, 5] assert bboxes2.size(-1) in [0, 4, 5] if bboxes2.size(-1) == 5: bboxes2 = bboxes2[..., :4] if bboxes1.size(-1) == 5: bboxes1 = bboxes1[..., :4] bboxes12align = get_roi2align(bboxes1, 590, 1640) bboxes22align = get_roi2align(bboxes2, 590, 1640) return box_iou(bboxes12align, bboxes22align) def __repr__(self): """str: a string describing the module""" repr_str = self.__class__.__name__ + '()' return repr_str ``` #### File: lib/datasets/lane_dataset.py ```python import logging import cv2 import numpy as np import imgaug.augmenters as iaa from imgaug.augmenters import Resize from torchvision.transforms import ToTensor from torch.utils.data.dataset import Dataset from scipy.interpolate import InterpolatedUnivariateSpline from imgaug.augmentables.lines import LineString, LineStringsOnImage from imgaug.augmentables.segmaps import SegmentationMapsOnImage from lib.lane import Lane from .culane import CULane from .tusimple import TuSimple from .llamas import LLAMAS from .ziyan import Ziyan from .nolabel_dataset import NoLabelDataset GT_COLOR = (255, 0, 0) PRED_HIT_COLOR = (0, 255, 0) PRED_MISS_COLOR = (0, 0, 255) IMAGENET_MEAN = np.array([0.485, 0.456, 0.406]) IMAGENET_STD = np.array([0.229, 0.224, 0.225]) class LaneDataset(Dataset): def __init__(self, S=72, dataset='tusimple', augmentations=None, normalize=False, img_size=(360, 640), aug_chance=1., **kwargs): super(LaneDataset, self).__init__() if dataset == 'tusimple': self.dataset = TuSimple(**kwargs) elif dataset == 'culane': self.dataset = CULane(**kwargs) elif dataset == 'ziyan': self.dataset = Ziyan(**kwargs) elif dataset == 'llamas': self.dataset = LLAMAS(**kwargs) elif dataset == 'nolabel_dataset': self.dataset = NoLabelDataset(**kwargs) else: raise NotImplementedError() self.n_strips = S - 1 self.n_offsets = S self.normalize = normalize self.img_h, self.img_w = img_size self.strip_size = self.img_h / self.n_strips self.logger = logging.getLogger(__name__) # y at each x offset self.offsets_ys = np.arange(self.img_h, -1, -self.strip_size) self.transform_annotations() if augmentations is not None: # add augmentations augmentations = [getattr(iaa, aug['name'])(**aug['parameters']) for aug in augmentations] # add augmentation else: augmentations = [] transformations = iaa.Sequential([Resize({'height': self.img_h, 'width': self.img_w})]) self.to_tensor = ToTensor() ''' augmentations: - name: Affine parameters: translate_px: x: !!python/tuple [-25, 25] y: !!python/tuple [-10, 10] rotate: !!python/tuple [-6, 6] scale: !!python/tuple [0.85, 1.15] - name: HorizontalFlip parameters: p: 0.5 ''' self.transform = iaa.Sequential([iaa.Sometimes(then_list=augmentations, p=aug_chance), transformations]) self.max_lanes = self.dataset.max_lanes @property def annotations(self): return self.dataset.annotations def transform_annotations(self): self.logger.info("Transforming annotations to the model's target format...") #print(self.transform_annotation) #print(self.dataset.annotations) self.dataset.annotations = np.array(list(map(self.transform_annotation, self.dataset.annotations))) self.logger.info('Done.') def filter_lane(self, lane): assert lane[-1][1] <= lane[0][1] filtered_lane = [] used = set() for p in lane: if p[1] not in used: filtered_lane.append(p) used.add(p[1]) return filtered_lane def transform_annotation(self, anno, img_wh=None): if img_wh is None: img_h = self.dataset.get_img_heigth(anno['path']) img_w = self.dataset.get_img_width(anno['path']) else: img_w, img_h = img_wh old_lanes = anno['lanes'] # rpn_proposals = anno['rpn_proposals'] # for i in range(4): # if len(old_lane[i]) < 2: # pass # removing lanes with less than 2 points #print('&&', len(old_lanes)) # if len(old_lanes) ==5: # print(old_lanes) old_lanes = filter(lambda x: len(x) > 1, old_lanes) # sort lane points by Y (bottom to top of the image) old_lanes = [sorted(lane, key=lambda x: -x[1]) for lane in old_lanes] #print('***', len(old_lanes)) # remove points with same Y (keep first occurrence) old_lanes = [self.filter_lane(lane) for lane in old_lanes] #print('****', len(old_lanes)) # normalize the annotation coordinates 对于线上的点在这里进行resize处理,其它在get_item的transform里 old_lanes = [[[x * self.img_w / float(img_w), y * self.img_h / float(img_h)] for x, y in lane] for lane in old_lanes] # 对消失点与角度进行normalize CCTODO #print('*****', len(old_lanes)) # create tranformed annotations 车道线上面的部分取-10000,对下面的部分进行补充 lanes = np.ones((self.dataset.max_lanes, 2 + 1 + 1 + 1 + self.n_offsets), dtype=np.float32) * -1e5 # 2 scores, 1 start_y, 1 start_x, 1 length, S+1 coordinates # lanes are invalid by default lanes[:, 0] = 1 lanes[:, 1] = 0 for lane_idx, lane in enumerate(old_lanes[:4]): try: xs_outside_image, xs_inside_image = self.sample_lane(lane, self.offsets_ys) except AssertionError: continue if len(xs_inside_image) == 0: continue all_xs = np.hstack((xs_outside_image, xs_inside_image)) lanes[lane_idx, 0] = 0 lanes[lane_idx, 1] = 1 #归一化的y lanes[lane_idx, 2] = len(xs_outside_image) / self.n_strips lanes[lane_idx, 3] = xs_inside_image[0] lanes[lane_idx, 4] = len(xs_inside_image) lanes[lane_idx, 5:5 + len(all_xs)] = all_xs #增加rpn_proposals new_anno = {'path': anno['path'], 'label': lanes, 'rpn_proposals': anno['rpn_proposals'], 'vp_idx': anno['vp_idx'], 'old_anno': anno} return new_anno def sample_lane(self, points, sample_ys): # this function expects the points to be sorted points = np.array(points) if not np.all(points[1:, 1] < points[:-1, 1]): raise Exception('Annotaion points have to be sorted') x, y = points[:, 0], points[:, 1] # interpolate points inside domain assert len(points) > 1 interp = InterpolatedUnivariateSpline(y[::-1], x[::-1], k=min(3, len(points) - 1)) domain_min_y = y.min() domain_max_y = y.max() sample_ys_inside_domain = sample_ys[(sample_ys >= domain_min_y) & (sample_ys <= domain_max_y)] assert len(sample_ys_inside_domain) > 0 interp_xs = interp(sample_ys_inside_domain) # extrapolate lane to the bottom of the image with a straight line using the 2 points closest to the bottom two_closest_points = points[:2] extrap = np.polyfit(two_closest_points[:, 1], two_closest_points[:, 0], deg=1) extrap_ys = sample_ys[sample_ys > domain_max_y] extrap_xs = np.polyval(extrap, extrap_ys) all_xs = np.hstack((extrap_xs, interp_xs)) # separate between inside and outside points inside_mask = (all_xs >= 0) & (all_xs < self.img_w) xs_inside_image = all_xs[inside_mask] xs_outside_image = all_xs[~inside_mask] return xs_outside_image, xs_inside_image def label_to_lanes(self, label): lanes = [] for l in label: if l[1] == 0: continue xs = l[5:] / self.img_w ys = self.offsets_ys / self.img_h start = int(round(l[2] * self.n_strips)) length = int(round(l[4])) if length == 1: start = start - 1 length = 2 xs = xs[start:start + length][::-1] ys = ys[start:start + length][::-1] xs = xs.reshape(-1, 1) ys = ys.reshape(-1, 1) points = np.hstack((xs, ys)) lanes.append(Lane(points=points)) return lanes def draw_annotation(self, idx, label=None, pred=None, img=None, rpn_proposals = None, gt_vp = None, pred_vp=None): # Get image if not provided if img is None: # print(self.annotations[idx]['path']) img, label, _, _, _,_ = self.__getitem__(idx) label = self.label_to_lanes(label) img = img.permute(1, 2, 0).numpy() if self.normalize: img = img * np.array(IMAGENET_STD) + np.array(IMAGENET_MEAN) img = (img * 255).astype(np.uint8) else: _, label, _, _, _,_ = self.__getitem__(idx) try: label = self.label_to_lanes(label) except: import pdb pdb.set_trace() img = cv2.resize(img, (self.img_w, self.img_h)) img_h, _, _ = img.shape # Pad image to visualize extrapolated predictions pad = 0 if pad > 0: img_pad = np.zeros((self.img_h + 2 * pad, self.img_w + 2 * pad, 3), dtype=np.uint8) img_pad[pad:-pad, pad:-pad, :] = img img = img_pad data = [(None, None, label)] if pred is not None: # print(len(pred), 'preds') fp, fn, matches, accs = self.dataset.get_metrics(pred, idx) # print('fp: {} | fn: {}'.format(fp, fn)) # print(len(matches), 'matches') # print(matches, accs) assert len(matches) == len(pred) data.append((matches, accs, pred)) else: fp = fn = None #画出rpn_proposals # import pdb # pdb.set_trace() # for line_i in range(4): # proposal = rpn_proposals[line_i] # end_point_y = proposal[1] + 200 # end_point_x = (end_point_y - proposal[1]) / np.tan(proposal[3] * np.pi / 180) + proposal[0] # cv2.line(img, tuple(proposal[:2].astype(np.int)), (int(round(end_point_x)), int(end_point_y )), (0, 255, 255), 2) for matches, accs, datum in data: for i, l in enumerate(datum): if matches is None: color = GT_COLOR elif matches[i]: color = PRED_HIT_COLOR else: color = PRED_MISS_COLOR points = l.points points[:, 0] *= img.shape[1] points[:, 1] *= img.shape[0] points = points.round().astype(int) points += pad xs, ys = points[:, 0], points[:, 1] for curr_p, next_p in zip(points[:-1], points[1:]): img = cv2.line(img, tuple(curr_p), tuple(next_p), color=color, thickness=2 if matches is None else 2) # if 'start_x' in l.metadata: # start_x = l.metadata['start_x'] * img.shape[1] # start_y = l.metadata['start_y'] * img.shape[0] # cv2.circle(img, (int(start_x + pad), int(img_h - 1 - start_y + pad)), # radius=5, # color=(0, 0, 255), # thickness=-1) # if len(xs) == 0: # print("Empty pred") # if len(xs) > 0 and accs is not None: # cv2.putText(img, # '{:.0f} ({})'.format(accs[i] * 100, i), # (int(xs[len(xs) // 2] + pad), int(ys[len(xs) // 2] + pad)), # fontFace=cv2.FONT_HERSHEY_COMPLEX, # fontScale=0.7, # color=color) # cv2.putText(img, # '{:.0f}'.format(l.metadata['conf'] * 100), # (int(xs[len(xs) // 2] + pad), int(ys[len(xs) // 2] + pad - 50)), # fontFace=cv2.FONT_HERSHEY_COMPLEX, # fontScale=0.7, # color=(255, 0, 255)) # cv2.circle(img, tuple(gt_vp), 5, GT_COLOR, -1) # cv2.circle(img, tuple(pred_vp), 5, (255, 255, 255), -1) cv2.circle(img, tuple(int(x) for x in gt_vp), 5, GT_COLOR, -1) cv2.circle(img, tuple(int(x) for x in pred_vp), 5, (255, 255, 255), -1) img = cv2.resize(img, (self.dataset.img_w, self.dataset.img_h)) return img, fp, fn def draw_annotation_point(self, idx, label=None, pred=None, img=None, rpn_proposals = None, gt_vp = None, pred_vp=None): # Get image if not provided if img is None: # print(self.annotations[idx]['path']) img, label, _, _, _,_ = self.__getitem__(idx) label = self.label_to_lanes(label) img = img.permute(1, 2, 0).numpy() if self.normalize: img = img * np.array(IMAGENET_STD) + np.array(IMAGENET_MEAN) img = (img * 255).astype(np.uint8) else: _, label, _, _, _,_ = self.__getitem__(idx) try: label = self.label_to_lanes(label) except: import pdb pdb.set_trace() img = cv2.resize(img, (self.dataset.img_w, self.dataset.img_h)) ori_img = img.copy() img_h, _, _ = img.shape # Pad image to visualize extrapolated predictions pad = 0 if pad > 0: img_pad = np.zeros((self.img_h + 2 * pad, self.img_w + 2 * pad, 3), dtype=np.uint8) img_pad[pad:-pad, pad:-pad, :] = img img = img_pad data = [(None, None, label)] if pred is not None: # print(len(pred), 'preds') fp, fn, matches, accs = self.dataset.get_metrics(pred, idx) # print('fp: {} | fn: {}'.format(fp, fn)) # print(len(matches), 'matches') # print(matches, accs) assert len(matches) == len(pred) data.append((matches, accs, pred)) else: fp = fn = None for matches, accs, datum in data: for i, l in enumerate(datum): if matches is None: color = GT_COLOR continue elif matches[i]: color = PRED_HIT_COLOR else: color = PRED_MISS_COLOR points = l.points points[:, 0] *= img.shape[1] points[:, 1] *= img.shape[0] points = points.round().astype(int) points += pad xs, ys = points[:, 0], points[:, 1] for point in points: img = cv2.circle(img, tuple(point), color=color, radius=5, thickness=-1) img = cv2.resize(img, (self.dataset.img_w, self.dataset.img_h)) return ori_img, img, fp, fn def lane_to_linestrings(self, lanes): lines = [] for lane in lanes: lines.append(LineString(lane)) return lines def linestrings_to_lanes(self, lines): lanes = [] for line in lines: lanes.append(line.coords) return lanes def __getitem__(self, idx): item = self.dataset[idx] print(item['path']) print(self.dataset.img_w,self.dataset.img_h) img_org = cv2.imread(item['path']) img_vp = cv2.imread(item['old_anno']['vp_lbpth'], cv2.IMREAD_GRAYSCALE) seg_img = cv2.imread(item['old_anno']['seg_lbpth'], cv2.IMREAD_GRAYSCALE) if self.dataset.__class__.__name__ == 'Ziyan': img_org = cv2.resize(img_org, (self.dataset.img_w, self.dataset.img_h)) img_vp = cv2.resize(img_vp, (self.dataset.img_w, self.dataset.img_h)) seg_img = cv2.resize(seg_img, (self.dataset.img_w, self.dataset.img_h)) #seg_img = self.dataset.convert_labels(img_vp) img_vp = self.dataset.convert_vp_labels(img_vp) seg_img = self.dataset.convert_labels(seg_img) #print(item['path']) line_strings_org = self.lane_to_linestrings(item['old_anno']['lanes']) #print('*', len(line_strings_org)) line_strings_org = LineStringsOnImage(line_strings_org, shape=img_org.shape) rpn_proposals = item['rpn_proposals'] vp_idx = item['vp_idx'] rpn_proposals = np.array(rpn_proposals) #print(item['old_anno']['seg_lbpth']) try: vp_lane_segmap = SegmentationMapsOnImage(np.stack((img_vp, seg_img), axis=2), shape=img_vp.shape) except: seg_img = cv2.resize(seg_img, (1920, 1080)) vp_lane_segmap = SegmentationMapsOnImage(np.stack((img_vp, seg_img), axis=2), shape=img_vp.shape) print('1088') for i in range(30): img, line_strings, vp_lane_label = self.transform(image=img_org.copy(), line_strings=line_strings_org, segmentation_maps = vp_lane_segmap) # print('**', len(line_strings_org)) # print('****', len(line_strings), line_strings) vp_label = vp_lane_label.arr[:, :, 0] lane_label = vp_lane_label.arr[:, :, 1] #因为transform 4条线成了5条, 一条弯线被截断,中间的一部分成了图片外面 line_strings.clip_out_of_image_() # print('*****', len(line_strings), line_strings) new_anno = {'path': item['path'], 'lanes': self.linestrings_to_lanes(line_strings), 'rpn_proposals': item['rpn_proposals'], 'vp_idx' : item['vp_idx']} #print('***', len(self.linestrings_to_lanes(line_strings))) try: label = self.transform_annotation(new_anno, img_wh=(self.img_w, self.img_h))['label'] break except: if (i + 1) == 30: self.logger.critical('Transform annotation failed 30 times :(') exit() #label = self.transform_annotation(new_anno, img_wh=(self.img_w, self.img_h))['label'] img = img / 255. if self.normalize: img = (img - IMAGENET_MEAN) / IMAGENET_STD img = self.to_tensor(img.astype(np.float32)) vp_label = vp_label.astype(np.int64) lane_label = lane_label.astype(np.int64) return (img, label, np.array([0, 0]), np.array([0, 0]), vp_label, lane_label) def __len__(self): return len(self.dataset) ``` #### File: lib/datasets/tusimple.py ```python import os import json import random import logging import numpy as np from utils.tusimple_metric import LaneEval from .lane_dataset_loader import LaneDatasetLoader SPLIT_FILES = { 'train+val': ['label_data_0313.json', 'label_data_0601.json', 'label_data_0531.json'], 'train': ['label_data_0313.json', 'label_data_0601.json'], 'val': ['label_data_0531.json'], 'test': ['test_label.json'], } class TuSimple(LaneDatasetLoader): def __init__(self, split='train', max_lanes=None, root=None): if 'train' in split: split = 'train+val' self.split = split print('TuSimple split ****' , split, root) self.root = root self.logger = logging.getLogger(__name__) if split not in SPLIT_FILES.keys(): raise Exception('Split `{}` does not exist.'.format(split)) self.anno_files = [os.path.join(self.root, path) for path in SPLIT_FILES[split]] if root is None: raise Exception('Please specify the root directory') if split == 'train' or split == 'train+val' or split =='val': self.vp_path = './datasets/tusimple/training/vp_label_32' self.lane_seg_path = './datasets/tusimple/training/gt_binary_image' else: self.vp_path = './datasets/tusimple-test/testing/vp_label_32' self.lane_seg_path = './datasets/tusimple-test/testing/gt_binary_image' with open('./datasets/vp.json', 'r') as fr: labels_info = json.load(fr) self.vplb_map = {el['id']: el['trainId'] for el in labels_info} #tusimple使用二值分割的车道线掩码 with open('./datasets/vp.json', 'r') as fr: labels_info = json.load(fr) self.lb_map = {el['id']: el['trainId'] for el in labels_info} self.img_w, self.img_h = 1280, 720 self.annotations = [] self.load_annotations() # Force max_lanes, used when evaluating testing with models trained on other datasets if max_lanes is not None: self.max_lanes = max_lanes def get_img_heigth(self, _): return 720 def get_img_width(self, _): return 1280 def get_metrics(self, lanes, idx): label = self.annotations[idx] org_anno = label['old_anno'] pred = self.pred2lanes(org_anno['path'], lanes, org_anno['y_samples']) _, fp, fn, matches, accs, _ = LaneEval.bench(pred, org_anno['org_lanes'], org_anno['y_samples'], 0, True) return fp, fn, matches, accs def pred2lanes(self, path, pred, y_samples): ys = np.array(y_samples) / self.img_h lanes = [] for lane in pred: xs = lane(ys) invalid_mask = xs < 0 lane = (xs * self.get_img_width(path)).astype(int) lane[invalid_mask] = -2 lanes.append(lane.tolist()) return lanes def load_annotations(self): self.logger.info('Loading TuSimple annotations...') self.annotations = [] max_lanes = 0 for anno_file in self.anno_files: with open(anno_file, 'r') as anno_obj: lines = anno_obj.readlines() for line in lines: data = json.loads(line) y_samples = data['h_samples'] gt_lanes = data['lanes'] lanes = [[(x, y) for (x, y) in zip(lane, y_samples) if x >= 0] for lane in gt_lanes] lanes = [lane for lane in lanes if len(lane) > 0] max_lanes = max(max_lanes, len(lanes)) self.annotations.append({ 'path': os.path.join(self.root, data['raw_file']), 'org_path': data['raw_file'], 'org_lanes': gt_lanes, 'lanes': lanes, 'aug': False, 'y_samples': y_samples, 'rpn_proposals': None, 'vp_idx': None, 'vp_lbpth': os.path.join(self.vp_path, data['raw_file'].replace('jpg', 'png')), 'seg_lbpth': os.path.join(self.lane_seg_path, data['raw_file'].replace('jpg', 'png')) }) if self.split == 'train': random.shuffle(self.annotations) self.max_lanes = max_lanes self.logger.info('%d annotations loaded, with a maximum of %d lanes in an image.', len(self.annotations), self.max_lanes) def transform_annotations(self, transform): self.annotations = list(map(transform, self.annotations)) def pred2tusimpleformat(self, idx, pred, runtime): runtime *= 1000. # s to ms img_name = self.annotations[idx]['old_anno']['org_path'] h_samples = self.annotations[idx]['old_anno']['y_samples'] lanes = self.pred2lanes(img_name, pred, h_samples) output = {'raw_file': img_name, 'lanes': lanes, 'run_time': runtime} return json.dumps(output) def save_tusimple_predictions(self, predictions, filename, runtimes=None): if runtimes is None: runtimes = np.ones(len(predictions)) * 1.e-3 lines = [] for idx, (prediction, runtime) in enumerate(zip(predictions, runtimes)): line = self.pred2tusimpleformat(idx, prediction, runtime) lines.append(line) with open(filename, 'w') as output_file: output_file.write('\n'.join(lines)) def eval_predictions(self, predictions, output_basedir, runtimes=None): pred_filename = os.path.join(output_basedir, 'tusimple_predictions.json') self.save_tusimple_predictions(predictions, pred_filename, runtimes) result = json.loads(LaneEval.bench_one_submit(pred_filename, self.anno_files[0])) table = {} for metric in result: table[metric['name']] = metric['value'] return table def convert_labels(self, label): for k, v in self.lb_map.items(): label[label == k] = v return label def convert_vp_labels(self, label): for k, v in self.vplb_map.items(): label[label == k] = v return label def __getitem__(self, idx): return self.annotations[idx] def __len__(self): return len(self.annotations) ``` #### File: SGNet/lib/experiment.py ```python import os import re import json import logging import subprocess import torch from torch.utils.tensorboard import SummaryWriter class Experiment: def __init__(self, exp_name, args=None, mode='train', exps_basedir='experiments', tensorboard_dir='tensorboard'): self.name = exp_name self.exp_dirpath = os.path.join(exps_basedir, exp_name) self.models_dirpath = os.path.join(self.exp_dirpath, 'models') self.results_dirpath = os.path.join(self.exp_dirpath, 'results') self.cfg_path = os.path.join(self.exp_dirpath, 'config.yaml') self.code_state_path = os.path.join(self.exp_dirpath, 'code_state.txt') self.log_path = os.path.join(self.exp_dirpath, 'log_{}.txt'.format(mode)) self.tensorboard_writer = SummaryWriter(os.path.join(tensorboard_dir, exp_name)) self.cfg = None self.setup_exp_dir() self.setup_logging() if args is not None: self.log_args(args) def setup_exp_dir(self): if not os.path.exists(self.exp_dirpath): os.makedirs(self.exp_dirpath) os.makedirs(self.models_dirpath) os.makedirs(self.results_dirpath) self.save_code_state() def save_code_state(self): state = "Git hash: {}".format( subprocess.run(['git', 'rev-parse', 'HEAD'], stdout=subprocess.PIPE, check=False).stdout.decode('utf-8')) state += '\n*************\nGit diff:\n*************\n' state += subprocess.run(['git', 'diff'], stdout=subprocess.PIPE, check=False).stdout.decode('utf-8') with open(self.code_state_path, 'w') as code_state_file: code_state_file.write(state) def setup_logging(self): formatter = logging.Formatter("[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s") file_handler = logging.FileHandler(self.log_path) file_handler.setLevel(logging.DEBUG) file_handler.setFormatter(formatter) stream_handler = logging.StreamHandler() stream_handler.setLevel(logging.INFO) stream_handler.setFormatter(formatter) logging.basicConfig(level=logging.DEBUG, handlers=[file_handler, stream_handler]) self.logger = logging.getLogger(__name__) def log_args(self, args): self.logger.debug('CLI Args:\n %s', str(args)) def set_cfg(self, cfg, override=False): assert 'model_checkpoint_interval' in cfg self.cfg = cfg if not os.path.exists(self.cfg_path) or override: with open(self.cfg_path, 'w') as cfg_file: cfg_file.write(str(cfg)) def get_last_checkpoint_epoch(self): pattern = re.compile('model_(\\d+).pt') last_epoch = -1 for ckpt_file in os.listdir(self.models_dirpath): result = pattern.match(ckpt_file) if result is not None: epoch = int(result.groups()[0]) if epoch > last_epoch: last_epoch = epoch return last_epoch def get_checkpoint_path(self, epoch): return os.path.join(self.models_dirpath, 'model_{:04d}.pt'.format(epoch)) def get_epoch_model(self, epoch): return torch.load(self.get_checkpoint_path(epoch))['model'] def load_last_train_state(self, model, optimizer, scheduler): epoch = self.get_last_checkpoint_epoch() train_state_path = self.get_checkpoint_path(epoch) train_state = torch.load(train_state_path) if hasattr(model, 'module') : model.module.load_state_dict(train_state['model']) else: model.load_state_dict(train_state['model'], strict= False) optimizer.load_state_dict(train_state['optimizer']) scheduler.load_state_dict(train_state['scheduler']) return epoch, model, optimizer, scheduler def save_train_state(self, epoch, model, optimizer, scheduler): train_state_path = self.get_checkpoint_path(epoch) state = model.module.state_dict() if hasattr(model, 'module') else model.state_dict() torch.save( { 'epoch': epoch, 'model': state, 'optimizer': optimizer.state_dict(), 'scheduler': scheduler.state_dict() }, train_state_path) def iter_end_callback(self, epoch, max_epochs, iter_nb, max_iter, loss, loss_components): line = 'Epoch [{}/{}] - Iter [{}/{}] - Loss: {:.5f} - '.format(epoch, max_epochs, iter_nb, max_iter, loss) line += ' - '.join( ['{}: {:.5f}'.format(component, loss_components[component]) for component in loss_components]) self.logger.debug(line) overall_iter = (epoch * max_iter) + iter_nb self.tensorboard_writer.add_scalar('loss/total_loss', loss, overall_iter) for key in loss_components: self.tensorboard_writer.add_scalar('loss/{}'.format(key), loss_components[key], overall_iter) def epoch_start_callback(self, epoch, max_epochs): self.logger.debug('Epoch [%d/%d] starting.', epoch, max_epochs) def epoch_end_callback(self, epoch, max_epochs, model, optimizer, scheduler, rank=0): if rank == 0: self.logger.debug('Epoch [%d/%d] finished.', epoch, max_epochs) if epoch % self.cfg['model_checkpoint_interval'] == 0: self.save_train_state(epoch, model, optimizer, scheduler) def train_start_callback(self, cfg): self.logger.debug('Beginning training session. CFG used:\n%s', str(cfg)) def train_end_callback(self): self.logger.debug('Training session finished.') def eval_start_callback(self, cfg): self.logger.debug('Beginning testing session. CFG used:\n%s', str(cfg)) def eval_end_callback(self, dataset, predictions, epoch_evaluated): metrics = self.save_epoch_results(dataset, predictions, epoch_evaluated) self.logger.debug('Testing session finished on model after epoch %d.', epoch_evaluated) self.logger.info('Results:\n %s', str(metrics)) def save_epoch_results(self, dataset, predictions, epoch): # setup dirs epoch_results_path = os.path.join(self.results_dirpath, 'epoch_{:04d}'.format(epoch)) predictions_dir = os.path.join(epoch_results_path, '{}_predictions'.format(dataset.split)) os.makedirs(predictions_dir, exist_ok=True) # eval metrics metrics = dataset.eval_predictions(predictions, output_basedir=predictions_dir) # log tensorboard metrics for key in metrics: self.tensorboard_writer.add_scalar('{}_metrics/{}'.format(dataset.split, key), metrics[key], epoch) # save metrics metrics_path = os.path.join(epoch_results_path, '{}_metrics.json'.format(dataset.split)) with open(metrics_path, 'w') as results_file: json.dump(metrics, results_file) # save the cfg used with open(os.path.join(epoch_results_path, 'config.yaml'), 'w') as cfg_file: cfg_file.write(str(self.cfg)) return metrics ``` #### File: lib/models/laneatt_vp.py ```python import math import cv2 import torch import numpy as np import torch.nn as nn from torchvision.models import resnet18, resnet34 from nms import nms from lib.lane import Lane from lib.focal_loss import FocalLoss #from .resnet import resnet122 as resnet122_cifar from .resnet import Resnet50 from .matching import match_proposals_with_targets from time import * from torch.nn import BatchNorm2d import torch.nn.functional as F from .loss import OhemCELoss, OhemCELoss_weighted class ConvBNReLU(nn.Module): def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, dilation=1, *args, **kwargs): super(ConvBNReLU, self).__init__() self.conv = nn.Conv2d(in_chan, out_chan, kernel_size = ks, stride = stride, padding = padding, dilation = dilation, bias = True) self.bn = BatchNorm2d(out_chan) self.relu = nn.ReLU(inplace=True) self.init_weight() def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.relu(x) return x def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) class ASPP(nn.Module): def __init__(self, in_chan=2048, out_chan=256, with_gp=True, *args, **kwargs): super(ASPP, self).__init__() self.with_gp = with_gp self.conv1 = ConvBNReLU(in_chan, out_chan, ks=1, dilation=1, padding=0) self.conv2 = ConvBNReLU(in_chan, out_chan, ks=3, dilation=6, padding=6) self.conv3 = ConvBNReLU(in_chan, out_chan, ks=3, dilation=12, padding=12) self.conv4 = ConvBNReLU(in_chan, out_chan, ks=3, dilation=18, padding=18) if self.with_gp: self.avg = nn.AdaptiveAvgPool2d((1, 1)) self.conv1x1 = ConvBNReLU(in_chan, out_chan, ks=1) self.conv_out = ConvBNReLU(out_chan*5, out_chan, ks=1) else: self.conv_out = ConvBNReLU(out_chan*4, out_chan, ks=1) self.init_weight() def forward(self, x): H, W = x.size()[2:] feat1 = self.conv1(x) feat2 = self.conv2(x) feat3 = self.conv3(x) feat4 = self.conv4(x) if self.with_gp: avg = self.avg(x) feat5 = self.conv1x1(avg) feat5 = F.interpolate(feat5, (H, W), mode='bilinear', align_corners=True) feat = torch.cat([feat1, feat2, feat3, feat4, feat5], 1) else: feat = torch.cat([feat1, feat2, feat3, feat4], 1) feat = self.conv_out(feat) return feat def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) class Decoder(nn.Module): def __init__(self, n_classes, low_chan=256, *args, **kwargs): super(Decoder, self).__init__() #self.conv_low = ConvBNReLU(low_chan, 48, ks=1, padding=0) self.conv_cat = nn.Sequential( ConvBNReLU(256, 256, ks=3, padding=1), ConvBNReLU(256, 256, ks=3, padding=1), ) self.conv_out_6classes = nn.Conv2d(256, n_classes, kernel_size=1, bias=False) self.init_weight() def forward(self, feat_aspp): # H, W = feat_low.size()[2:] # feat_low = self.conv_low(feat_low) # feat_aspp_up = F.interpolate(feat_aspp, (H, W), mode='bilinear', # align_corners=True) # feat_cat = torch.cat([feat_low, feat_aspp_up], dim=1) feat_out = self.conv_cat(feat_aspp) logits = self.conv_out_6classes(feat_out) return logits def init_weight(self): for ly in self.children(): if isinstance(ly, nn.Conv2d): nn.init.kaiming_normal_(ly.weight, a=1) if not ly.bias is None: nn.init.constant_(ly.bias, 0) class LaneATTVP(nn.Module): def __init__(self, backbone='resnet34', pretrained_backbone=False, S=72, img_w=640, img_h=360, w_interval=10., on_line=False, weighted_loss = False, anchors_freq_path=None, topk_anchors=None, anchor_feat_channels=64): super(LaneATTVP, self).__init__() # Some definitions self.weighted_loss = weighted_loss # backbone_nb_channels = 2048 # self.stride = 16 # self.feature_extractor = Resnet50(stride=self.stride) self.feature_extractor, backbone_nb_channels, self.stride = get_backbone(backbone, pretrained_backbone) self.grid_pixel = 20 self.grid_strips = int(self.grid_pixel / (img_h / S) * 2 + 1) angles = torch.arange(0.0, 180.0 + w_interval, w_interval).clamp(1, 179) self.img_w = img_w self.img_h = img_h self.n_strips = S - 1 self.n_offsets = S self.fmap_h = img_h // self.stride fmap_w = img_w // self.stride self.fmap_w = fmap_w self.anchor_ys = torch.linspace(1, 0, steps=self.n_offsets, dtype=torch.float32) self.anchor_cut_ys = torch.linspace(1, 0, steps=self.fmap_h, dtype=torch.float32) self.anchor_feat_channels = anchor_feat_channels # Anchor angles, same ones used in Line-CNN self.left_angles = [72., 60., 49., 39., 30., 22.] self.right_angles = [108., 120., 131., 141., 150., 158.] self.bottom_angles = [165., 150., 141., 131., 120., 108., 100., 90., 80., 72., 60., 49., 39., 30., 15.] self.vp_base_anchors = self.gen_vp_base_anchors(angles, self.grid_pixel, img_h / S, on_line) self.n_proposal = self.vp_base_anchors.shape[0] # # Generate anchors # # anchor与anchor在feature map上的坐标 # self.anchors, self.anchors_cut = self.generate_anchors(lateral_n=72, bottom_n=128) # # Filter masks if `anchors_freq_path` is provided # if anchors_freq_path is not None: # anchors_mask = torch.load(anchors_freq_path).cpu() # assert topk_anchors is not None # ind = torch.argsort(anchors_mask, descending=True)[:topk_anchors] # self.anchors = self.anchors[ind] # self.anchors_cut = self.anchors_cut[ind] # # Pre compute indices for the anchor pooling # # cut的时候将cut的坐标都变成n * 1维,比分batch cut更好 # self.cut_zs, self.cut_ys, self.cut_xs, self.invalid_mask = self.compute_anchor_cut_indices( # self.anchor_feat_channels, fmap_w, self.fmap_h) self.cut_zs, self.cut_ys = self.compute_anchor_cut_indices_proposals_ys_zs(self.anchor_feat_channels, self.fmap_w, self.fmap_h) # Setup and initialize layers self.conv1 = nn.Conv2d(backbone_nb_channels, self.anchor_feat_channels, kernel_size=1) self.cls_layer = nn.Linear(2 * self.anchor_feat_channels * self.fmap_h, 2) self.reg_layer = nn.Linear(2 * self.anchor_feat_channels * self.fmap_h, self.n_offsets + 1) #self.attention_layer = nn.Linear(self.anchor_feat_channels * self.fmap_h, len(self.anchors) - 1) self.attention_layer = nn.Linear(self.anchor_feat_channels * self.fmap_h, self.n_proposal - 1) self.initialize_layer(self.attention_layer) self.initialize_layer(self.conv1) self.initialize_layer(self.cls_layer) self.initialize_layer(self.reg_layer) #新增消失点 #channel = 256 #新增预测消失点、条数、角度 self.aspp = ASPP(in_chan=backbone_nb_channels, out_chan=256, with_gp=False) self.decoder = Decoder(2, low_chan=256) n_min = 8 * self.img_w * self.img_h // 16 if weighted_loss: print('weighted') self.vp_criteria = OhemCELoss_weighted(thresh=0.7, n_min=n_min, n_classes=2).cuda() else: self.vp_criteria = OhemCELoss(thresh=0.7, n_min=n_min).cuda() def forward(self, x, rpn_proposals = None, vp=None, conf_threshold=None, nms_thres=0, nms_topk=3000): mini_batch, _, H, W = x.size() batch_features = self.feature_extractor(x) #消失点计算 feat_aspp = self.aspp(batch_features) vp_logits = self.decoder(feat_aspp) vp_logits = F.interpolate(vp_logits, (self.img_h, self.img_w), mode='bilinear', align_corners=True) vp_probs = F.softmax(vp_logits, 1) vp_preds = torch.argmax(vp_probs, 1) pred_vps = [] for pred_i in range(len(vp_preds)): vp_x_y = torch.mean(torch.nonzero(vp_preds[pred_i], as_tuple=False).float(), 0) pred_vps.append(vp_x_y) pred_vps = torch.stack(pred_vps)[:, [1, 0]] #预测出没有消失点的分割图,消失点设为0 mask = (pred_vps[:, 0] > -1000).reshape(-1, 1, 1) pred_vps[:, 0] = torch.where(torch.isnan(pred_vps[:, 0]), torch.tensor(0.0, device = pred_vps.device), pred_vps[:, 0]) pred_vps[:, 1] = torch.where(torch.isnan(pred_vps[:, 1]), torch.tensor(0.0, device = pred_vps.device), pred_vps[:, 1]) batch_features = self.conv1(batch_features) batch_size = len(x) #begin_time = time() anchors, anchors_cut = self.gen_vp_edge_anchors(pred_vps) # import pdb # pdb.set_trace() anchors = anchors.reshape(batch_size, self.n_proposal, -1) anchors_cut = anchors_cut.reshape(batch_size, self.n_proposal, -1) anchors = mask * anchors + (~mask) * torch.zeros_like(anchors) anchors_cut = mask * anchors_cut + (~mask) * torch.zeros_like(anchors_cut) cut_xs, invalid_mask = self.compute_anchor_cut_indices_proposals_xs(anchors, anchors_cut, self.anchor_feat_channels, self.fmap_w, self.fmap_h) #end_time = time() #print('cut耗时', end_time - begin_time) #begin_time = time() # (batch_size, n_proposals, n_fmaps, self.fmap_h, 1()) batch_anchor_features = self.cut_anchor_features_proposals(batch_features, cut_xs, invalid_mask, self.cut_zs, self.cut_ys) # Join proposals from all images into a single proposals features batch batch_anchor_features = batch_anchor_features.view(-1, self.anchor_feat_channels * self.fmap_h) # Add attention features softmax = nn.Softmax(dim=1) scores = self.attention_layer(batch_anchor_features) attention = softmax(scores).reshape(x.shape[0], self.n_proposal, -1) attention_matrix = torch.eye(attention.shape[1], device=x.device).repeat(x.shape[0], 1, 1) non_diag_inds = torch.nonzero(attention_matrix == 0., as_tuple=False) attention_matrix[:] = 0 attention_matrix[non_diag_inds[:, 0], non_diag_inds[:, 1], non_diag_inds[:, 2]] = attention.flatten() batch_anchor_features = batch_anchor_features.reshape(x.shape[0], self.n_proposal , -1) attention_features = torch.bmm(torch.transpose(batch_anchor_features, 1, 2), torch.transpose(attention_matrix, 1, 2)).transpose(1, 2) attention_features = attention_features.reshape(-1, self.anchor_feat_channels * self.fmap_h) batch_anchor_features = batch_anchor_features.reshape(-1, self.anchor_feat_channels * self.fmap_h) batch_anchor_features = torch.cat((attention_features, batch_anchor_features), dim=1) # Predict cls_logits = self.cls_layer(batch_anchor_features) reg = self.reg_layer(batch_anchor_features) # Undo joining cls_logits = cls_logits.reshape(x.shape[0], -1, cls_logits.shape[1]) reg = reg.reshape(x.shape[0], -1, reg.shape[1]) # Add offsets to anchors reg_proposals = torch.zeros((*cls_logits.shape[:2], 5 + self.n_offsets), device=x.device) reg_proposals += anchors reg_proposals[:, :, :2] = cls_logits reg_proposals[:, :, 4:] += reg # Apply nms proposals_list = self.nms(reg_proposals, attention_matrix, nms_thres, nms_topk, conf_threshold, anchors) #end_time = time() return proposals_list, vp_logits, pred_vps, None def nms(self, batch_proposals, batch_attention_matrix, nms_thres, nms_topk, conf_threshold, anchors=None): softmax = nn.Softmax(dim=1) proposals_list = [] for batch_idx, (proposals, attention_matrix) in enumerate(zip(batch_proposals, batch_attention_matrix)): anchor_inds = torch.arange(batch_proposals.shape[1], device=proposals.device) anchor = anchors[batch_idx] # The gradients do not have to (and can't) be calculated for the NMS procedure with torch.no_grad(): scores = softmax(proposals[:, :2])[:, 1] #默认为none,不为none的话有问题 if conf_threshold is not None: # apply confidence threshold above_threshold = scores > conf_threshold proposals = proposals[above_threshold] scores = scores[above_threshold] anchor_inds = anchor_inds[above_threshold] if proposals.shape[0] == 0: proposals_list.append((proposals[[]], anchors[[]], attention_matrix[[]], None)) continue keep, num_to_keep, _ = nms(proposals, scores, overlap=nms_thres, top_k=nms_topk) keep = keep[:num_to_keep] proposals = proposals[keep] anchor_inds = anchor_inds[keep] attention_matrix = attention_matrix[anchor_inds] proposals_list.append((proposals, anchors[batch_idx][keep], attention_matrix, anchor_inds)) return proposals_list def loss(self, proposals_list, vp_logits, vp_preds, targets, vp_labels= None, lane_logits=None, lane_labels = None, cls_loss_weight=10): vp_loss = self.vp_criteria(vp_logits, vp_labels) with torch.no_grad(): gt_vps = [] for gt_i in range(len(targets)): vp_x_y = torch.mean(torch.nonzero(vp_labels[gt_i], as_tuple=False).float(), 0) gt_vps.append(vp_x_y) gt_vps = torch.stack(gt_vps)[:, [1, 0]] gt_vps[:, 0] = torch.where(torch.isnan(gt_vps[:, 0]), torch.tensor(-0.0, device = gt_vps.device), gt_vps[:, 0]) gt_vps[:, 1] = torch.where(torch.isnan(gt_vps[:, 1]), torch.tensor(-0.0, device = gt_vps.device), gt_vps[:, 1]) vp_dis = torch.mean(torch.abs(vp_preds - gt_vps)) focal_loss = FocalLoss(alpha=0.25, gamma=2.) smooth_l1_loss = nn.SmoothL1Loss() cls_loss = 0 reg_loss = 0 valid_imgs = len(targets) total_positives = 0 for (proposals, anchors, _, _), target in zip(proposals_list, targets): # Filter lanes that do not exist (confidence == 0) target = target[target[:, 1] == 1] if len(target) == 0: # If there are no targets, all proposals have to be negatives (i.e., 0 confidence) cls_target = proposals.new_zeros(len(proposals)).long() cls_pred = proposals[:, :2] # import pdb # pdb.set_trace() cls_loss += focal_loss(cls_pred, cls_target).sum() continue if len(proposals) == 0: continue # Gradients are also not necessary for the positive & negative matching with torch.no_grad(): # import pdb # pdb.set_trace() try: positives_mask, invalid_offsets_mask, negatives_mask, target_positives_indices = match_proposals_with_targets( self, anchors, target) except: import pdb pdb.set_trace() positives = proposals[positives_mask] num_positives = len(positives) total_positives += num_positives negatives = proposals[negatives_mask] num_negatives = len(negatives) # Handle edge case of no positives found if num_positives == 0: cls_target = proposals.new_zeros(len(proposals)).long() cls_pred = proposals[:, :2] # import pdb # pdb.set_trace() cls_loss += focal_loss(cls_pred, cls_target).sum() continue # Get classification targets all_proposals = torch.cat([positives, negatives], 0) cls_target = proposals.new_zeros(num_positives + num_negatives).long() cls_target[:num_positives] = 1. cls_pred = all_proposals[:, :2] # Regression targets reg_pred = positives[:, 4:] with torch.no_grad(): target = target[target_positives_indices] positive_starts = (positives[:, 2] * self.n_strips).round().long() target_starts = (target[:, 2] * self.n_strips).round().long() target[:, 4] -= positive_starts - target_starts all_indices = torch.arange(num_positives, dtype=torch.long) ends = (positive_starts + target[:, 4] - 1).round().long() invalid_offsets_mask = torch.zeros((num_positives, 1 + self.n_offsets + 1), dtype=torch.int) # length + S + pad invalid_offsets_mask[all_indices, 1 + positive_starts] = 1 invalid_offsets_mask[all_indices, 1 + ends + 1] -= 1 invalid_offsets_mask = invalid_offsets_mask.cumsum(dim=1) == 0 invalid_offsets_mask = invalid_offsets_mask[:, :-1] invalid_offsets_mask[:, 0] = False reg_target = target[:, 4:] reg_target[invalid_offsets_mask] = reg_pred[invalid_offsets_mask] # Loss calc reg_loss += smooth_l1_loss(reg_pred, reg_target) cls_loss += focal_loss(cls_pred, cls_target).sum() / num_positives # Batch mean cls_loss /= valid_imgs reg_loss /= valid_imgs loss = reg_loss + cls_loss * cls_loss_weight + vp_loss * 5 return loss, {'vp_loss': vp_loss, 'vp_dis': vp_dis, 'cls_loss': cls_loss, 'reg_loss': reg_loss, 'batch_positives': total_positives} def compute_anchor_cut_indices(self, n_fmaps, fmaps_w, fmaps_h): # definitions n_proposals = len(self.anchors_cut) # indexing unclamped_xs = torch.flip((self.anchors_cut[:, 5:] / self.stride).round().long(), dims=(1,)) unclamped_xs = unclamped_xs.unsqueeze(2) unclamped_xs = torch.repeat_interleave(unclamped_xs, n_fmaps, dim=0).reshape(-1, 1) cut_xs = torch.clamp(unclamped_xs, 0, fmaps_w - 1) unclamped_xs = unclamped_xs.reshape(n_proposals, n_fmaps, fmaps_h, 1) invalid_mask = (unclamped_xs < 0) | (unclamped_xs > fmaps_w) cut_ys = torch.arange(0, fmaps_h) cut_ys = cut_ys.repeat(n_fmaps * n_proposals)[:, None].reshape(n_proposals, n_fmaps, fmaps_h) cut_ys = cut_ys.reshape(-1, 1) cut_zs = torch.arange(n_fmaps).repeat_interleave(fmaps_h).repeat(n_proposals)[:, None] return cut_zs, cut_ys, cut_xs, invalid_mask def compute_anchor_cut_indices_proposals(self, anchors, anchors_cut, n_fmaps, fmaps_w, fmaps_h): n_proposals = self.n_proposal anchors_cut = anchors_cut.reshape(-1, anchors_cut.shape[-1]) unclamped_xs = torch.flip((anchors_cut[:, 5:] / self.stride).round().long(), dims=(1,)) unclamped_xs = unclamped_xs.unsqueeze(2) unclamped_xs = torch.repeat_interleave(unclamped_xs, n_fmaps, dim=0).reshape(-1, 1) cut_xs = torch.clamp(unclamped_xs, 0, fmaps_w - 1) cut_xs = cut_xs.reshape(anchors.shape[0], -1, 1) unclamped_xs = unclamped_xs.reshape(anchors.shape[0], n_proposals, n_fmaps, fmaps_h, 1) invalid_mask = (unclamped_xs < 0) | (unclamped_xs > fmaps_w) cut_ys = torch.arange(0, fmaps_h) cut_ys = cut_ys.repeat(n_fmaps * n_proposals)[:, None].reshape(n_proposals, n_fmaps, fmaps_h) cut_ys = cut_ys.reshape(-1, 1) cut_zs = torch.arange(n_fmaps).repeat_interleave(fmaps_h).repeat(n_proposals)[:, None] return cut_zs, cut_ys, cut_xs, invalid_mask def compute_anchor_cut_indices_proposals_xs(self, anchors, anchors_cut, n_fmaps, fmaps_w, fmaps_h): n_proposals = self.n_proposal anchors_cut = anchors_cut.reshape(-1, anchors_cut.shape[-1]) unclamped_xs = torch.flip((anchors_cut[:, 5:] / self.stride).round().long(), dims=(1,)) unclamped_xs = unclamped_xs.unsqueeze(2) unclamped_xs = torch.repeat_interleave(unclamped_xs, n_fmaps, dim=0).reshape(-1, 1) cut_xs = torch.clamp(unclamped_xs, 0, fmaps_w - 1) cut_xs = cut_xs.reshape(anchors.shape[0], -1, 1) unclamped_xs = unclamped_xs.reshape(anchors.shape[0], n_proposals, n_fmaps, fmaps_h, 1) invalid_mask = (unclamped_xs < 0) | (unclamped_xs > fmaps_w) return cut_xs, invalid_mask def compute_anchor_cut_indices_proposals_ys_zs(self, n_fmaps, fmaps_w, fmaps_h): n_proposals = self.n_proposal cut_ys = torch.arange(0, fmaps_h) cut_ys = cut_ys.repeat(n_fmaps * n_proposals)[:, None].reshape(n_proposals, n_fmaps, fmaps_h) cut_ys = cut_ys.reshape(-1, 1) cut_zs = torch.arange(n_fmaps).repeat_interleave(fmaps_h).repeat(n_proposals)[:, None] return cut_zs, cut_ys def cut_anchor_features(self, features): # definitions batch_size = features.shape[0] n_proposals = len(self.anchors) n_fmaps = features.shape[1] batch_anchor_features = torch.zeros((batch_size, n_proposals, n_fmaps, self.fmap_h, 1), device=features.device) # actual cutting for batch_idx, img_features in enumerate(features): rois = img_features[self.cut_zs, self.cut_ys, self.cut_xs].view(n_proposals, n_fmaps, self.fmap_h, 1) rois[self.invalid_mask] = 0 batch_anchor_features[batch_idx] = rois return batch_anchor_features def cut_anchor_features_proposals(self, features, cut_xs, invalid_mask, cut_zs, cut_ys): # definitions batch_size = features.shape[0] n_proposals = self.n_proposal n_fmaps = features.shape[1] batch_anchor_features = torch.zeros((batch_size, n_proposals, n_fmaps, self.fmap_h, 1), device=features.device) # actual cutting for batch_idx, img_features in enumerate(features): rois = img_features[cut_zs, cut_ys, cut_xs[batch_idx]].view(n_proposals, n_fmaps, self.fmap_h, 1) rois[invalid_mask[batch_idx]] = 0 batch_anchor_features[batch_idx] = rois return batch_anchor_features def generate_anchors(self, lateral_n, bottom_n): left_anchors, left_cut = self.generate_side_anchors(self.left_angles, x=0., nb_origins=lateral_n) right_anchors, right_cut = self.generate_side_anchors(self.right_angles, x=1., nb_origins=lateral_n) bottom_anchors, bottom_cut = self.generate_side_anchors(self.bottom_angles, y=1., nb_origins=bottom_n) return torch.cat([left_anchors, bottom_anchors, right_anchors]), torch.cat([left_cut, bottom_cut, right_cut]) def generate_side_anchors(self, angles, nb_origins, x=None, y=None): if x is None and y is not None: starts = [(x, y) for x in np.linspace(1., 0., num=nb_origins)] elif x is not None and y is None: starts = [(x, y) for y in np.linspace(1., 0., num=nb_origins)] else: raise Exception('Please define exactly one of `x` or `y` (not neither nor both)') n_anchors = nb_origins * len(angles) # each row, first for x and second for y: # 2 scores, 1 start_y, start_x, 1 lenght, S coordinates, score[0] = negative prob, score[1] = positive prob anchors = torch.zeros((n_anchors, 2 + 2 + 1 + self.n_offsets)) anchors_cut = torch.zeros((n_anchors, 2 + 2 + 1 + self.fmap_h)) for i, start in enumerate(starts): for j, angle in enumerate(angles): k = i * len(angles) + j anchors[k] = self.generate_anchor(start, angle) anchors_cut[k] = self.generate_anchor(start, angle, cut=True) return anchors, anchors_cut def _meshgrid(self, x, y, row_major=True): """Generate mesh grid of x and y. Args: x (torch.Tensor): Grids of x dimension. y (torch.Tensor): Grids of y dimension. row_major (bool, optional): Whether to return y grids first. Defaults to True. Returns: tuple[torch.Tensor]: The mesh grids of x and y. """ xx = x.repeat(len(y)) yy = y.view(-1, 1).repeat(1, len(x)).view(-1) if row_major: return xx, yy else: return yy, xx def gen_vp_edge_anchors(self, vps): """ :param vps: (batch_size, 2) :self.vp_base_anchors : (n_proposal, 3) :return: """ vps = torch.cat((vps, torch.zeros_like(vps[:, 0:1])), dim=-1) #(batch_size, n_proposal, (x, y, angle)) vps_proposals = vps.unsqueeze(1) + self.vp_base_anchors.unsqueeze(0) x_y_angles = vps_proposals.reshape(-1, 3) #转换为从图像边界出发 x_y_angles = get_inter_with_border_mul(x_y_angles, self.img_h, self.img_w) x_y_angles[:, :2] = x_y_angles[:, :2] / torch.tensor([self.img_w, self.img_h], device = vps.device) return self.generate_anchor_parallel(x_y_angles, False), \ self.generate_anchor_parallel(x_y_angles, True) def generate_anchor_parallel(self, x_y_angles, cut=False): if cut: anchor_ys = self.anchor_cut_ys anchor = torch.zeros(x_y_angles.shape[0], 2 + 2 + 1 + self.fmap_h, device=x_y_angles.device) else: anchor_ys = self.anchor_ys anchor = torch.zeros(x_y_angles.shape[0], 2 + 2 + 1 + self.n_offsets, device=x_y_angles.device) angle = x_y_angles[:, 2] * math.pi / 180. # degrees to radians start_x, start_y = x_y_angles[:, 0], x_y_angles[:, 1] anchor[:, 2] = 1 - start_y anchor[:, 3] = start_x anchor[:, 5:] = (start_x * self.img_w).unsqueeze(1) - ( 1 - anchor_ys.unsqueeze(0) - 1 + start_y.unsqueeze(1)) / torch.tan(angle).unsqueeze(1) * self.img_h return anchor def gen_vp_base_anchors(self, angles, grid_pixels, step, on_line=False): x_range = torch.arange(-grid_pixels, grid_pixels + step, step) if on_line: y_range = torch.arange(-0, 0 + step, step) else: y_range = torch.arange(-grid_pixels, grid_pixels + step, step) shift_xx, shift_yy = self._meshgrid(x_range, y_range) shift_ww = torch.zeros_like(shift_xx) shifts = torch.stack([shift_xx, shift_yy, shift_ww], dim=-1) cws = torch.tensor([0.0, 0.0]) cws = cws.repeat(len(angles), 1) angles = angles.unsqueeze(1).float() base_anchors = torch.cat([cws, angles], dim=1) #以一个点为矩形的anchors vp_base_anchors = base_anchors[None, :, :] + shifts[:, None, :] vp_base_anchors = vp_base_anchors.view(-1, 3) return vp_base_anchors def _angle_enum(self, cw, angles): cw = cw.repeat(len(angles), 1).float() angles = angles.unsqueeze(1).float() return torch.cat([cw, angles], dim=1) #start是归一化的 def generate_anchor(self, start, angle, cut=False): if cut: if angle < -1000: return -1e6 * torch.ones(2 + 2 + 1 + self.fmap_h) anchor_ys = self.anchor_cut_ys anchor = torch.zeros(2 + 2 + 1 + self.fmap_h) else: if angle < -1000: return -1e6 * torch.ones(2 + 2 + 1 +self.n_offsets) anchor_ys = self.anchor_ys anchor = torch.zeros(2 + 2 + 1 + self.n_offsets) angle = angle * math.pi / 180. # degrees to radians start_x, start_y = start anchor[2] = 1 - start_y anchor[3] = start_x anchor[5:] = start_x * self.img_w - (1 - anchor_ys - 1 + start_y) / math.tan(angle) * self.img_h return anchor def draw_anchors(self, img_w, img_h, k=None): base_ys = self.anchor_ys.numpy() img = np.zeros((img_h, img_w, 3), dtype=np.uint8) i = -1 for anchor in self.anchors: i += 1 if k is not None and i != k: continue anchor = anchor.numpy() xs = anchor[5:] ys = base_ys * img_h points = np.vstack((xs, ys)).T.round().astype(int) for p_curr, p_next in zip(points[:-1], points[1:]): img = cv2.line(img, tuple(p_curr), tuple(p_next), color=(0, 255, 0), thickness=5) return img @staticmethod def initialize_layer(layer): if isinstance(layer, (nn.Conv2d, nn.Linear)): torch.nn.init.normal_(layer.weight, mean=0., std=0.001) if layer.bias is not None: torch.nn.init.constant_(layer.bias, 0) def proposals_to_pred(self, proposals): self.anchor_ys = self.anchor_ys.to(proposals.device) self.anchor_ys = self.anchor_ys.double() lanes = [] for lane in proposals: lane_xs = lane[5:] / self.img_w start = int(round(lane[2].item() * self.n_strips)) length = int(round(lane[4].item())) end = start + length - 1 end = min(end, len(self.anchor_ys) - 1) # end = label_end # if the proposal does not start at the bottom of the image, # extend its proposal until the x is outside the image mask = ~((((lane_xs[:start] >= 0.) & (lane_xs[:start] <= 1.)).cpu().numpy()[::-1].cumprod()[::-1]).astype(np.bool)) lane_xs[end + 1:] = -2 lane_xs[:start][mask] = -2 lane_ys = self.anchor_ys[lane_xs >= 0] lane_xs = lane_xs[lane_xs >= 0] lane_xs = lane_xs.flip(0).double() lane_ys = lane_ys.flip(0) if len(lane_xs) <= 1: continue points = torch.stack((lane_xs.reshape(-1, 1), lane_ys.reshape(-1, 1)), dim=1).squeeze(2) lane = Lane(points=points.cpu().numpy(), metadata={ 'start_x': lane[3], 'start_y': lane[2], 'conf': lane[1] }) lanes.append(lane) return lanes def decode(self, proposals_list, as_lanes=False): softmax = nn.Softmax(dim=1) decoded = [] for proposals, _, _, _ in proposals_list: proposals[:, :2] = softmax(proposals[:, :2]) proposals[:, 4] = torch.round(proposals[:, 4]) if proposals.shape[0] == 0: decoded.append([]) continue if as_lanes: pred = self.proposals_to_pred(proposals) else: pred = proposals decoded.append(pred) return decoded def cuda(self, device=None): cuda_self = super().cuda(device) cuda_self.vp_base_anchors = cuda_self.vp_base_anchors .cuda(device) cuda_self.anchor_ys = cuda_self.anchor_ys.cuda(device) cuda_self.anchor_cut_ys = cuda_self.anchor_ys.cuda(device) cuda_self.cut_zs = cuda_self.cut_zs.cuda(device) cuda_self.cut_ys = cuda_self.cut_ys.cuda(device) cuda_self.cut_xs = cuda_self.cut_xs.cuda(device) cuda_self.invalid_mask = cuda_self.invalid_mask.cuda(device) return cuda_self def to(self, *args, **kwargs): device_self = super().to(*args, **kwargs) # device_self.anchors = device_self.anchors.to(*args, **kwargs) device_self.vp_base_anchors = device_self.vp_base_anchors.to(*args, **kwargs) device_self.anchor_ys = device_self.anchor_ys.to(*args, **kwargs) device_self.anchor_cut_ys = device_self.anchor_cut_ys.to(*args, **kwargs) device_self.cut_zs = device_self.cut_zs.to(*args, **kwargs) device_self.cut_ys = device_self.cut_ys.to(*args, **kwargs) # device_self.cut_xs = device_self.cut_xs.to(*args, **kwargs) # device_self.invalid_mask = device_self.invalid_mask.to(*args, **kwargs) return device_self def get_backbone(backbone, pretrained=False): if backbone == 'resnet122': backbone = resnet122_cifar() fmap_c = 64 stride = 4 elif backbone == 'resnet34': back = resnet34(pretrained=pretrained) back.load_state_dict(torch.load('resnet34-333f7ec4.pth')) backbone = torch.nn.Sequential(*list(back.children())[:-2]) fmap_c = 512 stride = 32 elif backbone == 'resnet18': backbone = torch.nn.Sequential(*list(resnet18(pretrained=pretrained).children())[:-2]) fmap_c = 512 stride = 32 else: raise NotImplementedError('Backbone not implemented: `{}`'.format(backbone)) return backbone, fmap_c, stride def get_inter_with_border_mul(bboxes, H, W): """ 并行得到N个anchor与边界的交点 bboxes : torch.Tensor (N, 4) in (x, y, w, a) """ #bboxes = bboxes.float() k1 = (H-1-bboxes[:, 1]) / (-bboxes[:, 0] + 1e-6) k2 = (H-1-bboxes[:, 1]) / (W-1-bboxes[:, 0] + 1e-6) k = torch.tan(bboxes[:, 2] * np.pi / 180) mask1 = ((bboxes[:, 2] >= 90) & (k >= k1)).reshape((-1, 1)) mask3 = ((bboxes[:, 2] < 90) & (k <=k2)).reshape((-1, 1)) mask2 = (~(mask1 | mask3)).reshape((-1, 1)) #print('mask', mask1, mask2, mask3) #左边交点的y p_l = torch.zeros_like(bboxes[:, :2]) p_d = torch.zeros_like(p_l) p_r = torch.zeros_like(p_l) p_l[:, 1] = -k*bboxes[:, 0] + bboxes[:, 1] #下边交点的x p_d[:, 1].fill_(H-1) p_d[:, 0] = (H-1-bboxes[:, 1]) / (k + 1e-6) + bboxes[:, 0] #右边交点的y p_r[:, 0].fill_(W-1) p_r[:, 1] = k*(W-1-bboxes[:, 0]) + bboxes[:, 1] inter_p = mask1 * p_l + mask2 * p_d + mask3 * p_r return torch.cat((inter_p, bboxes[:, 2:3]), 1) ```
{ "source": "jinmingteo/pytorch-image-models", "score": 3 }
#### File: jinmingteo/pytorch-image-models/classification_model.py ```python import os import time import logging import numpy as np import torch from torchvision import transforms from timm.models import create_model, apply_test_time_pool from timm.data import ImageDataset, create_loader, resolve_data_config from timm.utils import AverageMeter, setup_default_logging torch.backends.cudnn.benchmark = True class Classifier_Model: def __init__(self, model_name, checkpoint_file, num_classes, test_time_pool=False, img_size=None, mean=None, std=None): self.model = create_model(model_name=model_name, num_classes=num_classes, in_chans=3, checkpoint_path=checkpoint_file) self.logger = logging.getLogger('inference') self.logger.info('Model %s created, param count: %d' % (model_name, sum([m.numel() for m in self.model.parameters()]))) self.config = resolve_data_config(args=dict( img_size=img_size, mean=mean, std=std ), model=self.model) if test_time_pool: self.model , self.test_time_pool = apply_test_time_pool(self.model, self.config) self.model.cuda() self.model.eval() def predict(self, img): ''' img: A cv2 image in RGB format output: classification ''' data_transforms = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(self.config['mean'], self.config['std']) ]) img = data_transforms(img).cuda().unsqueeze(0) self.model.eval() labels = self.model(img) labels = torch.nn.functional.softmax(labels) labels = labels.detach().cpu().numpy() return labels.argmax(), labels.max() if __name__ == '__main__': import cv2 model = Classifier_Model('resnet50', 'weights/resnet50_model_best.pth.tar', num_classes=5) img = cv2.imread('imagenette2-160/train/n01440764/ILSVRC2012_val_00000293.JPEG') print (model.predict(img)) ```
{ "source": "jinmingyi1998/pytorch-OpCounter", "score": 2 }
#### File: pytorch-OpCounter/thop/fx_profile.py ```python import torch import torch as th import torch.nn as nn from distutils.version import LooseVersion if LooseVersion(torch.__version__) < LooseVersion("1.8.0"): logging.warning( f"torch.fx requires version higher than 1.8.0. "\ f"But You are using an old version PyTorch {torch.__version__}. ") def count_clamp(input_shapes, output_shapes): return 0 def count_mul(input_shapes, output_shapes): # element-wise return output_shapes[0].numel() def count_nn_linear(input_shapes, output_shapes): in_shape = input_shapes[0] out_shape = output_shapes[0] in_features = in_shape[-1] num_elements = out_shape.numel() return in_features * num_elements count_map = { nn.Linear: count_nn_linear, "clamp": count_clamp, "<built-in function mul>": count_mul, "<built-in function truediv>": count_mul, } from torch.fx import symbolic_trace from torch.fx.passes.shape_prop import ShapeProp def null_print(*args, **kwargs): return def fx_profile(m: nn.Module, input: th.Tensor, verbose=True): gm : torch.fx.GraphModule = symbolic_trace(m) g = gm.graph ShapeProp(gm).propagate(input) fprint = null_print if verbose: fprint = print v_maps = {} total_flops = 0 for node in gm.graph.nodes: # print(f"{node.target},\t{node.op},\t{node.meta['tensor_meta'].dtype},\t{node.meta['tensor_meta'].shape}") fprint(f"NodeOP:{node.op},\tTarget:{node.target},\tNodeName:{node.name},\tNodeArgs:{node.args}") node_op_type = str(node.target).split(".")[-1] node_flops = None input_shapes = [] output_shapes = [] fprint("input_shape:", end="\t") for arg in node.args: if str(arg) not in v_maps: continue fprint(f"{v_maps[str(arg)]}", end="\t") input_shapes.append(v_maps[str(arg)]) fprint() fprint(f"output_shape:\t{node.meta['tensor_meta'].shape}") output_shapes.append(node.meta['tensor_meta'].shape) if node.op in ["output", "placeholder"]: node_flops = 0 elif node.op == "call_function": # torch internal functions if str(node.target) in count_map: node_flops = count_map[str(node.target)](input_shapes, output_shapes) pass elif node.op == "call_method": # torch internal functions # print(str(node.target) in count_map, str(node.target), count_map.keys()) if str(node.target) in count_map: node_flops = count_map[str(node.target)](input_shapes, output_shapes) elif node.op == "call_module": # torch.nn modules m = getattr(net, node.target, None) fprint(type(m), type(m) in count_map) if type(m) in count_map: node_flops = count_map[type(m)](input_shapes, output_shapes) if node_op_type not in ["relu", "maxpool", "avgpool"]: fprint(f"weight_shape: {net.state_dict()[node.target + '.weight'].shape}") else: fprint(f"weight_shape: None") v_maps[str(node.name)] = node.meta['tensor_meta'].shape fprint(f"NodeFlops: {node_flops}") if node_flops is not None: total_flops += node_flops fprint("==" * 20) return total_flops if __name__ == '__main__': class MyOP(nn.Module): def forward(self, input): return input / 1 class MyModule(torch.nn.Module): def __init__(self): super().__init__() self.linear1 = torch.nn.Linear(5, 3) self.linear2 = torch.nn.Linear(5, 3) self.myop = MyOP() def forward(self, x): out1 = self.linear1(x) out2 = self.linear2(x).clamp(min=0.0, max=1.0) return self.myop(out1 + out2) net = MyModule() data = th.randn(20, 5) flops = fx_profile(net, data, verbose=False) print(flops) ``` #### File: pytorch-OpCounter/thop/onnx_profile.py ```python import torch import torch.nn import onnx from onnx import numpy_helper import numpy as np from thop.vision.onnx_counter import onnx_operators class OnnxProfile(): def __init__(self) -> None: pass def calculate_params(self, model: onnx.ModelProto): onnx_weights = model.graph.initializer params = 0 for onnx_w in onnx_weights: try: weight = numpy_helper.to_array(onnx_w) params += np.prod(weight.shape) except Exception as _: pass return params def create_dict(self, weight, input, output): diction = {} for w in weight: dim = np.array(w.dims) diction[str(w.name)] = dim if (dim.size == 1): diction[str(w.name)] = np.append(1, dim) for i in input: # print(i.type.tensor_type.shape.dim[0].dim_value) dim = np.array(i.type.tensor_type.shape.dim[0].dim_value) # print(i.type.tensor_type.shape.dim.__sizeof__()) #name2dims[str(i.name)] = [dim] dim = [] for key in i.type.tensor_type.shape.dim: dim = np.append(dim, int(key.dim_value)) # print(key.dim_value) # print(dim) diction[str(i.name)] = dim if(dim.size == 1): diction[str(i.name)] = np.append(1, dim) for o in output: dim = np.array(o.type.tensor_type.shape.dim[0].dim_value) diction[str(o.name)] = [dim] if(dim.size == 1): diction[str(o.name)] = np.append(1, dim) return diction def nodes_counter(self, diction, node): if node.op_type not in onnx_operators: print("Sorry, we haven't add ", node.op_type, "into dictionary.") return 0, None, None else: fn = onnx_operators[node.op_type] return fn(diction, node) def calculate_macs(self, model: onnx.ModelProto) -> torch.DoubleTensor: macs = 0 name2dims = {} weight = model.graph.initializer nodes = model.graph.node input = model.graph.input output = model.graph.output name2dims = self.create_dict(weight, input, output) macs = 0 for n in nodes: macs_adding, out_size, outname = self.nodes_counter(name2dims, n) name2dims[outname] = out_size macs += macs_adding return np.array(macs[0]) ``` #### File: thop/vision/onnx_counter.py ```python import torch import numpy as np from onnx import numpy_helper from thop.vision.basic_hooks import zero_ops from .counter import counter_matmul, counter_zero_ops,\ counter_conv, counter_mul, counter_norm, counter_pow,\ counter_sqrt, counter_div, counter_softmax, counter_avgpool def onnx_counter_matmul(diction, node): input1 = node.input[0] input2 = node.input[1] input1_dim = diction[input1] input2_dim = diction[input2] out_size = np.append(input1_dim[0:-1], input2_dim[-1]) output_name = node.output[0] macs = counter_matmul(input1_dim, out_size[-2:]) return macs, out_size, output_name def onnx_counter_add(diction, node): if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size: out_size = diction[node.input[1]] else: out_size = diction[node.input[0]] output_name = node.output[0] macs = counter_zero_ops() # if '140' in diction: # print(diction['140'],output_name) return macs, out_size, output_name def onnx_counter_conv(diction, node): # print(node) # bias,kernelsize,outputsize dim_bias = 0 input_count = 0 for i in node.input: input_count += 1 if (input_count == 3): dim_bias = 1 dim_weight = diction[node.input[1]] else: dim_weight = diction[node.input[1]] for attr in node.attribute: # print(attr) if(attr.name == 'kernel_shape'): dim_kernel = attr.ints # kw,kh if(attr.name == 'strides'): dim_stride = attr.ints if(attr.name == 'pads'): dim_pad = attr.ints if(attr.name == 'dilations'): dim_dil = attr.ints if(attr.name == 'group'): group = attr.i # print(dim_dil) dim_input = diction[node.input[0]] output_size = np.append( dim_input[0:-np.array(dim_kernel).size-1], dim_weight[0]) hw = np.array(dim_input[-np.array(dim_kernel).size:]) for i in range(hw.size): hw[i] = int((hw[i]+2*dim_pad[i]-dim_dil[i] * (dim_kernel[i]-1)-1)/dim_stride[i]+1) output_size = np.append(output_size, hw) macs = counter_conv(dim_bias, np.prod(dim_kernel), np.prod(output_size), dim_weight[1], group) output_name = node.output[0] # if '140' in diction: # print("conv",diction['140'],output_name) return macs, output_size, output_name def onnx_counter_constant(diction, node): # print("constant",node) macs = counter_zero_ops() output_name = node.output[0] output_size = [1] #print(macs, output_size, output_name) return macs, output_size, output_name def onnx_counter_mul(diction, node): if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size: input_size = diction[node.input[1]] else: input_size = diction[node.input[0]] macs = counter_mul(np.prod(input_size)) output_size = diction[node.input[0]] output_name = node.output[0] return macs, output_size, output_name def onnx_counter_bn(diction, node): input_size = diction[node.input[0]] macs = counter_norm(np.prod(input_size)) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_relu(diction, node): input_size = diction[node.input[0]] macs = counter_zero_ops() output_name = node.output[0] output_size = input_size #print(macs, output_size, output_name) # if '140' in diction: # print("relu",diction['140'],output_name) return macs, output_size, output_name def onnx_counter_reducemean(diction, node): keep_dim = 0 for attr in node.attribute: if('axes' in attr.name): dim_axis = np.array(attr.ints) elif('keepdims' in attr.name): keep_dim = attr.i input_size = diction[node.input[0]] macs = counter_zero_ops() output_name = node.output[0] if (keep_dim == 1): output_size = input_size else: output_size = np.delete(input_size, dim_axis) #output_size = input_size return macs, output_size, output_name def onnx_counter_sub(diction, node): input_size = diction[node.input[0]] macs = counter_zero_ops() output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_pow(diction, node): if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size: input_size = diction[node.input[1]] else: input_size = diction[node.input[0]] macs = counter_pow(np.prod(input_size)) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_sqrt(diction, node): input_size = diction[node.input[0]] macs = counter_sqrt(np.prod(input_size)) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_div(diction, node): if np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size: input_size = diction[node.input[1]] else: input_size = diction[node.input[0]] macs = counter_div(np.prod(input_size)) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_instance(diction, node): input_size = diction[node.input[0]] macs = counter_norm(np.prod(input_size)) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_softmax(diction, node): input_size = diction[node.input[0]] dim = node.attribute[0].i nfeatures = input_size[dim] batch_size = np.prod(input_size) / nfeatures macs = counter_softmax(nfeatures, batch_size) output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_pad(diction, node): # # TODO add constant name and output real vector # if # if (np.array(diction[node.input[1]]).size >= np.array(diction[node.input[0]]).size): # input_size = diction[node.input[1]] # else: # input_size = diction[node.input[0]] input_size = diction[node.input[0]] macs = counter_zero_ops() output_name = node.output[0] output_size = input_size return macs, output_size, output_name def onnx_counter_averagepool(diction, node): # TODO add support of ceil_mode and floor macs = counter_avgpool(np.prod(diction[node.input[0]])) output_name = node.output[0] dim_pad = None for attr in node.attribute: # print(attr) if(attr.name == 'kernel_shape'): dim_kernel = attr.ints # kw,kh elif(attr.name == 'strides'): dim_stride = attr.ints elif(attr.name == 'pads'): dim_pad = attr.ints elif(attr.name == 'dilations'): dim_dil = attr.ints # print(dim_dil) dim_input = diction[node.input[0]] hw = dim_input[-np.array(dim_kernel).size:] if dim_pad is not None: for i in range(hw.size): hw[i] = int((hw[i]+2*dim_pad[i]-dim_kernel[i])/dim_stride[i]+1) output_size = np.append(dim_input[0:-np.array(dim_kernel).size], hw) else: for i in range(hw.size): hw[i] = int((hw[i]-dim_kernel[i])/dim_stride[i]+1) output_size = np.append(dim_input[0:-np.array(dim_kernel).size], hw) #print(macs, output_size, output_name) return macs, output_size, output_name def onnx_counter_flatten(diction, node): # print(node) macs = counter_zero_ops() output_name = node.output[0] axis = node.attribute[0].i input_size = diction[node.input[0]] output_size = np.append(input_size[axis-1], np.prod(input_size[axis:])) # print("flatten",output_size) return macs, output_size, output_name def onnx_counter_gemm(diction, node): # print(node) # Compute Y = alpha * A' * B' + beta * C input_size = diction[node.input[0]] dim_weight = diction[node.input[1]] # print(input_size,dim_weight) macs = np.prod(input_size) * dim_weight[1] + dim_weight[0] output_size = np.append(input_size[0:-1], dim_weight[0]) output_name = node.output[0] return macs, output_size, output_name pass def onnx_counter_maxpool(diction, node): # TODO add support of ceil_mode and floor # print(node) macs = counter_zero_ops() output_name = node.output[0] dim_pad = None for attr in node.attribute: # print(attr) if(attr.name == 'kernel_shape'): dim_kernel = attr.ints # kw,kh elif(attr.name == 'strides'): dim_stride = attr.ints elif(attr.name == 'pads'): dim_pad = attr.ints elif(attr.name == 'dilations'): dim_dil = attr.ints # print(dim_dil) dim_input = diction[node.input[0]] hw = dim_input[-np.array(dim_kernel).size:] if dim_pad is not None: for i in range(hw.size): hw[i] = int((hw[i]+2*dim_pad[i]-dim_kernel[i])/dim_stride[i]+1) output_size = np.append(dim_input[0:-np.array(dim_kernel).size], hw) else: for i in range(hw.size): hw[i] = int((hw[i]-dim_kernel[i])/dim_stride[i]+1) output_size = np.append(dim_input[0:-np.array(dim_kernel).size], hw) #print(macs, output_size, output_name) return macs, output_size, output_name def onnx_counter_globalaveragepool(diction, node): macs = counter_zero_ops() output_name = node.output[0] input_size = diction[node.input[0]] output_size = input_size return macs, output_size, output_name def onnx_counter_concat(diction, node): # print(node) # print(diction[node.input[0]]) axis = node.attribute[0].i input_size = diction[node.input[0]] for i in node.input: dim_concat = diction[i][axis] output_size = input_size output_size[axis] = dim_concat output_name = node.output[0] macs = counter_zero_ops() return macs, output_size, output_name def onnx_counter_clip(diction, node): macs = counter_zero_ops() output_name = node.output[0] input_size = diction[node.input[0]] output_size = input_size return macs, output_size, output_name onnx_operators = { 'MatMul': onnx_counter_matmul, 'Add': onnx_counter_add, 'Conv': onnx_counter_conv, 'Mul': onnx_counter_mul, 'Constant': onnx_counter_constant, 'BatchNormalization': onnx_counter_bn, 'Relu': onnx_counter_relu, 'ReduceMean': onnx_counter_reducemean, 'Sub': onnx_counter_sub, 'Pow': onnx_counter_pow, 'Sqrt': onnx_counter_sqrt, 'Div': onnx_counter_div, 'InstanceNormalization': onnx_counter_instance, 'Softmax': onnx_counter_softmax, 'Pad': onnx_counter_pad, 'AveragePool': onnx_counter_averagepool, 'MaxPool': onnx_counter_maxpool, 'Flatten': onnx_counter_flatten, 'Gemm': onnx_counter_gemm, 'GlobalAveragePool': onnx_counter_globalaveragepool, 'Concat': onnx_counter_concat, 'Clip': onnx_counter_clip, None: None, } ```
{ "source": "jinminhao/cloud-native-ernie", "score": 2 }
#### File: cloud-native-ernie/doc/simple-case.py ```python import sys sys.path.append('./ERNIE') import numpy as np from sklearn.metrics import f1_score import paddle as P import paddle.fluid as F import paddle.fluid.layers as L import paddle.fluid.dygraph as D from ernie.tokenizing_ernie import ErnieTokenizer from ernie.modeling_ernie import ErnieModelForSequenceClassification BATCH=32 MAX_SEQLEN=300 LR=5e-5 EPOCH=10 D.guard().__enter__() ernie = ErnieModelForSequenceClassification.from_pretrained('ernie-1.0', num_labels=3) optimizer = F.optimizer.Adam(LR, parameter_list=ernie.parameters()) tokenizer = ErnieTokenizer.from_pretrained('ernie-1.0') def make_data(path): data = [] for i, l in enumerate(open(path)): if i == 0: continue l = l.strip().split('\t') text, label = l[0], int(l[1]) text_id, _ = tokenizer.encode(text) text_id = text_id[:MAX_SEQLEN] text_id = np.pad(text_id, [0, MAX_SEQLEN-len(text_id)], mode='constant') label_id = np.array(label+1) data.append((text_id, label_id)) return data train_data = make_data('./chnsenticorp/train/part.0') test_data = make_data('./chnsenticorp/dev/part.0') def get_batch_data(data, i): d = data[i*BATCH: (i + 1) * BATCH] feature, label = zip(*d) feature = np.stack(feature) label = np.stack(list(label)) feature = D.to_variable(feature) label = D.to_variable(label) return feature, label for i in range(EPOCH): np.random.shuffle(train_data) #train for j in range(len(train_data) // BATCH): feature, label = get_batch_data(train_data, j) loss, _ = ernie(feature, labels=label) loss.backward() optimizer.minimize(loss) ernie.clear_gradients() if j % 10 == 0: print('train %d: loss %.5f' % (j, loss.numpy())) # evaluate if j % 100 == 0: all_pred, all_label = [], [] with D.base._switch_tracer_mode_guard_(is_train=False): ernie.eval() for j in range(len(test_data) // BATCH): feature, label = get_batch_data(test_data, j) loss, logits = ernie(feature, labels=label) all_pred.extend(L.argmax(logits, -1).numpy()) all_label.extend(label.numpy()) ernie.train() f1 = f1_score(all_label, all_pred, average='macro') acc = (np.array(all_label) == np.array(all_pred)).astype(np.float32).mean() print('acc %.5f' % acc) ```
{ "source": "jinmoo21/PWDriver", "score": 3 }
#### File: PWDriver/pwdriver/util.py ```python import os def parse_boolean(arg): return arg.lower() in ['true', 'y', 'yes'] def get_pattern_matched_file(path, regex): import re file_list = [] pattern = re.compile(regex) for file in os.listdir(path): if pattern.match(file): file_list.append(file) return file_list def set_file_executable(path): if os.path.isfile(path) and not os.access(path, os.X_OK): import stat os.chmod(path, os.stat(path).st_mode | stat.S_IEXEC) def get_logger(name=None): import logging logger = logging.getLogger(name) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s %(levelname)-5s [%(name)s] ' '%(funcName)s(%(pathname)s:%(lineno)d): %(message)s') console = logging.StreamHandler() from pwdriver.val import LOG_DIR, LOG_NAME, ROOT_DIR if not os.path.exists(os.path.join(ROOT_DIR, LOG_DIR)): os.makedirs(os.path.join(ROOT_DIR, LOG_DIR)) file_handler = logging.FileHandler(os.path.join(ROOT_DIR, LOG_DIR, LOG_NAME)) console.setLevel(logging.INFO) file_handler.setLevel(logging.INFO) console.setFormatter(formatter) file_handler.setFormatter(formatter) logger.addHandler(console) logger.addHandler(file_handler) return logger ```
{ "source": "Jinmun-Park/covid19_korea", "score": 3 }
#### File: covid19_korea/routes/trend_route.py ```python import pandas as pd import datetime as dt from src.utils.api import flask_category # ====================== Flask Blueprint ====================== # from flask import Blueprint, render_template df, df_category, df_channeltitle, df_category_view_per, df_category_like_per, df_category_comment_per, df_top_channel, df_top_category, df_top_comment = flask_category(command='daily') bp = Blueprint('latest_trend', __name__, url_prefix='/latest_trend') # ======================== Flask Route ======================== # @bp.route('/', methods=["GET"]) def trend(): # Chart figures category = [i for i in df_category.index] category_rate = [i for i in df_category.카테고리] category_view_per = [i for i in df_category_view_per.조회수] category_like_per = [i for i in df_category_like_per.좋아요수] category_comment_per = [i for i in df_category_comment_per.댓글수] # Table category_channel = df.groupby(['카테고리', '채널명']).sum().sort_values('조회수', ascending=False).reset_index() category_channel['조회수'] = category_channel['조회수'].map("{:,}".format) category_channel['좋아요수'] = category_channel['좋아요수'].map("{:,}".format) category_channel['댓글수'] = category_channel['댓글수'].map("{:,}".format) # Chart Basic information figures category_top_channel = df_top_channel.채널명.iloc[0] category_top_category = df_top_category.카테고리.iloc[0] category_top_comment = format(df_top_comment.댓글수.iloc[0], ",") return render_template('latest_trend.html', category=category, category_rate=category_rate, category_channel=category_channel, category_view_per=category_view_per, category_like_per=category_like_per, category_comment_per=category_comment_per, category_top_channel=category_top_channel, category_top_category=category_top_category, category_top_comment=category_top_comment ) @bp.route('/category', methods=["GET"]) def trend_category(): # Chart figures category = [i for i in df_category.index] category_rate = [i for i in df_category.카테고리] category_view_per = [i for i in df_category_view_per.조회수] category_like_per = [i for i in df_category_like_per.좋아요수] category_comment_per = [i for i in df_category_comment_per.댓글수] # Table category_channel = df.groupby(['카테고리', '채널명']).sum().sort_values('조회수', ascending=False).reset_index() category_channel['조회수'] = category_channel['조회수'].map("{:,}".format) category_channel['좋아요수'] = category_channel['좋아요수'].map("{:,}".format) category_channel['댓글수'] = category_channel['댓글수'].map("{:,}".format) # Chart basic information figures category_top_channel = df_top_channel.채널명.iloc[0] category_top_category = df_top_category.카테고리.iloc[0] category_top_comment = format(df_top_comment.댓글수.iloc[0], ",") return render_template('category.html', category=category, category_rate=category_rate, category_channel=category_channel, category_view_per=category_view_per, category_like_per=category_like_per, category_comment_per=category_comment_per, category_top_channel=category_top_channel, category_top_category=category_top_category, category_top_comment=category_top_comment ) @bp.route('/channel', methods=["GET"]) def trend_channel(): # Importing function if 'flask_channel' in globals(): pass else: from src.utils.api import flask_channel global flask_channel flask_channel = flask_channel(command='daily') # Channel names channel_label = [i for i in flask_channel.채널명] channel_view = [i for i in (flask_channel.채널총조회수)/1000] channel_subs = [i for i in (flask_channel.채널구독수)] # Top channel information figures top_channel_select = flask_channel[flask_channel['채널총조회수'] == flask_channel['채널총조회수'].max()] top_channel = top_channel_select.채널명.iloc[0] top_channel_num = format(int(top_channel_select.채널총조회수.iloc[0]), ",") # Top channel top right information top_channel_url = top_channel_select.썸네일.iloc[0] top_channel_videoid = top_channel_select.동영상아이디.iloc[0] top_channel_channelid = top_channel_select.채널아이디.iloc[0] top_channel_publish = top_channel_select.채널개설날짜.iloc[0] top_channel_cateogry = top_channel_select.카테고리.iloc[0] top_channel_like = format(int(top_channel_select.좋아요수.iloc[0]), ",") top_channel_comment = format(int(top_channel_select.댓글수.iloc[0]), ",") # Top channel subscriptions top_subs_num = format(int(flask_channel[flask_channel['채널구독수'] == flask_channel['채널구독수'].max()].채널구독수.iloc[0]), ",") top_subs = flask_channel[flask_channel['채널구독수'] == flask_channel['채널구독수'].max()].채널명.iloc[0] # Latest published channel latest_channel_select = flask_channel.sort_values(by='채널개설날짜').tail(1) latest_channel = latest_channel_select.채널명.iloc[0] latest_channel_num = latest_channel_select.채널개설날짜.iloc[0] # Top channel top right information latest_channel_url = latest_channel_select.썸네일.iloc[0] latest_channel_videoid = latest_channel_select.동영상아이디.iloc[0] latest_channel_channelid = latest_channel_select.채널아이디.iloc[0] #latest_channel_publish = latest_channel_select.채널개설날짜.iloc[0] latest_channel_cateogry = latest_channel_select.카테고리.iloc[0] latest_channel_like = format(int(latest_channel_select.좋아요수.iloc[0]), ",") latest_channel_comment = format(int(latest_channel_select.댓글수.iloc[0]), ",") # trend_channel_chart channel_table = flask_channel[['동영상', '날짜', '채널명', '채널개설날짜', '카테고리', '채널총조회수', '채널구독수', '채널비디오수']] return render_template('channel.html', channel_label=channel_label, channel_view=channel_view, channel_subs=channel_subs, top_channel=top_channel, top_channel_num=top_channel_num, top_channel_url=top_channel_url, top_channel_videoid=top_channel_videoid, top_channel_channelid=top_channel_channelid, top_channel_publish= top_channel_publish, top_channel_cateogry=top_channel_cateogry, top_channel_like=top_channel_like, top_channel_comment=top_channel_comment, top_subs=top_subs, top_subs_num=top_subs_num, latest_channel=latest_channel, latest_channel_num=latest_channel_num, latest_channel_url=latest_channel_url, latest_channel_videoid=latest_channel_videoid, latest_channel_channelid=latest_channel_channelid, latest_channel_cateogry=latest_channel_cateogry, latest_channel_like=latest_channel_like, latest_channel_comment=latest_channel_comment, channel_table=channel_table ) @bp.route('/timeframe', methods=["GET"]) def trend_timeframe(): db = flask_channel return render_template('timeframe.html', db=db) ``` #### File: src/models/bert_load.py ```python import pandas as pd import re import torch from transformers import BertTokenizer from transformers import BertForSequenceClassification, AdamW, BertConfig from keras.preprocessing.sequence import pad_sequences import numpy as np from datetime import datetime, date # GOOGLE CLOUD BUCKET import os from google.cloud import storage #pip install --upgrade google-cloud-storage import io # ====================== FUNCTION SETUP ====================== # #print(torch.cuda.memory_allocated()) #print(torch.cuda.memory_reserved()) def read_pickle(file_name: str) -> pd.DataFrame: return pd.read_pickle('Pickle/' + file_name) def sentiment_score(x): """ SECTION : sentiment DESCRIPTION : Return text feeling0s from sentiment scores """ if x == 0: return("공포") elif x == 1: return("놀람") elif x == 2: return("분노") elif x == 3: return("슬픔") elif x == 4: return("중립") elif x == 5: return("행복") else: return("혐오") def setup_device(): """ SECTION : sentiment USAGE : Select GPU or CPU DESCRIPTION : Choose the device based on Torch library installation """ # Setup device (CPU or GPU) if torch.cuda.is_available(): # Remove memory torch.cuda.empty_cache() # Set GPU device = torch.device("cuda") print('There are %d GPU(s) available.' % torch.cuda.device_count()) print('We will use the GPU:', torch.cuda.get_device_name(0)) else: # Set CPU device = torch.device("cpu") print('No GPU available, using the CPU instead.') return device def load_model_bucket(): """ WARNING : 'load_model_bucket' is depreciated due to time management SECTION : sentiment USAGE : Connection to Google Storage Bucket """ # ====================== Setup ====================== # pd.options.mode.chained_assignment = None # Off warning messages, default='warn' starttime = datetime.now() print(starttime) print('Started loading Traiend BERT Model from Google Cloud') # GOOGLE CREDENTIALS & SECRET MANAGER os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = "config/youtubeapi-314206-46ffa30d1127.json" # Initiate storage storage_client = storage.Client() bucket = storage_client.get_bucket('bert_ver2') # Get blob en_model_blob = bucket.get_blob('bert_model_gpu_v2.pth') en_model = en_model_blob.download_as_string() # Because model downloaded into string, need to convert it back buffer = io.BytesIO(en_model) # ====================== End time ====================== # print('Successfully loaded Trained BERT Model from Google Cloud') endtime = datetime.now() print(endtime) timetaken = endtime - starttime print('Time taken : ' + timetaken.__str__()) return buffer def load_model(path, device): """ SECTION : sentiment DESCRIPTION : 1. path : Loading trained BERT Model from 'bert_save.py' We support two ways to call model. One is loading from google bucket or just from local directory. 2. device : Loading device (CPU or GPU) from 'setup_device' function """ # ====================== Setup ====================== # pd.options.mode.chained_assignment = None # Off warning messages, default='warn' # Model setup model = BertForSequenceClassification.from_pretrained("bert-base-multilingual-cased", num_labels=7) model.load_state_dict(torch.load(path, map_location='cpu')) model.to(device) model.eval() tokenizer = BertTokenizer.from_pretrained('bert-base-multilingual-cased', do_lower_case=False) return model, tokenizer def run_model(model, tokenizer, sentences, device): """ SECTION : sentiment DESCRIPTION : 1. sentences : put sentences extracted from youtube. Please note that the sentence should be in the nested list format 2. device : run setup_device() function """ # ====================== Setup ====================== # pd.options.mode.chained_assignment = None # Off warning messages, default='warn' # Pytorch evaluating model model.eval() # Tokenization tokenized_texts = [tokenizer.tokenize(sent) for sent in sentences] # Set the max length of sentence MAX_LEN = 128 # Convert Tokens into index(array) input_ids = [tokenizer.convert_tokens_to_ids(x) for x in tokenized_texts] # 문장을 MAX_LEN 길이에 맞게 자르고, 모자란 부분을 패딩 0으로 채움 input_ids = pad_sequences(input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post") # Set attention mask attention_masks = [] # 어텐션 마스크를 패딩이 아니면 1, 패딩이면 0으로 설정 # 패딩 부분은 BERT 모델에서 어텐션을 수행하지 않아 속도 향상 for seq in input_ids: seq_mask = [float(i > 0) for i in seq] attention_masks.append(seq_mask) # Converting data into pytorch tensor inputs = torch.tensor(input_ids) masks = torch.tensor(attention_masks) # Inserting batch into GPU b_input_ids = inputs.to(device) b_input_mask = masks.to(device) # No gradient calculation with torch.no_grad(): # Running Forward outputs = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask) # Calculating loss logits = outputs[0] # Transferring data into CPU logits = logits.detach().cpu().numpy() return int(np.argmax(logits)) def run_sentiment(model, tokenizer, device): """ SECTION : sentiment DESCRIPTION 1: Running sentiment analysis using comments from 'video_comment.pkl' DESCRIPTION 2: Calling 'run_model' function to run BERT model """ # ====================== Setup ====================== # pd.options.mode.chained_assignment = None # Off warning messages, default='warn' starttime = datetime.now() print(starttime) # Read comment pickle after running youtube comment api df = read_pickle('video_comment.pkl') print("Successfully loaded video comments") # Cleaning comment after the extraction df_comment = df[['comment']] df_comment['comment'] = [re.sub('[^가-힣 ]', '', s) for s in df_comment['comment']] df_comment['comment'] = df_comment.comment.str.strip() idx = df_comment[df_comment['comment'] == ''].index df_comment = df_comment.drop(idx).reset_index(drop=True) # Perform sentiment analysis using model print("Started running sentiment analysis") predict = [] for i in range(len(df_comment)): score = run_model(sentences=[df_comment['comment'][i]], model=model, tokenizer=tokenizer, device=device) predict.append(score) # Converting sentiment scores to language # result[0] has to be adjusted in the future in API print("Started putting results into dataframe") result = pd.DataFrame(predict) result = result[0].apply(pd.Series) result = result.merge(df_comment, left_index=True, right_index=True) result = result.rename(columns={0: 'emotion'}, inplace=False) result['emotion'] = result['emotion'].apply(sentiment_score) # ====================== End time ====================== # endtime = datetime.now() print(endtime) timetaken = endtime - starttime print('Time taken : ' + timetaken.__str__()) return result # ====================== RUNNING MODEL ====================== # def run_predict(): """ SECTION : sentiment WARNING : Using Google Bucket takes extra 5 minutes. 'load_model_bucket' is depreciated. USAGE : run_predict() DESCRIPTION : Running sentinment analysis and store the result into dataframe. """ device = setup_device() # buffer = load_model_bucket() # model, tokenizer = load_model(path=buffer, device=device) model, tokenizer = load_model(path='bert_model_gpu_v2.pth', device=device) result = run_sentiment(model=model, tokenizer=tokenizer, device=device) return result ``` #### File: src/models/covid_eda.py ```python import pandas as pd # ====================== DEFINE FUNCTION ====================== # def read_pickle(file_name: str) -> pd.DataFrame: return pd.read_pickle('Pickle/' + file_name) # ====================== DATA.GO.KR API RUNNING ====================== # # Korea Government API #run_covid_api() # ==================================================================== # # ====================== LOAD PICKLES ====================== # df_age_sex = read_pickle('covid_age_sex.pkl') df_vaccines = read_pickle('covid_vaccines.pkl') df_city = read_pickle('covid_city.pkl') df_cases = read_pickle('covid_cases.pkl') ```
{ "source": "jinmuovo/python-learning", "score": 3 }
#### File: python-learning/06_tool/logger.py ```python import logging def get_logger(name, log_file=None, log_level='DEBUG'): """ logger :param name: 模块名称 :param log_file: 日志文件,如无则输出到标准输出 :param log_level: 日志级别 :return: """ logger = logging.getLogger(name) logger.setLevel(log_level.upper()) formatter = logging.Formatter('[%(levelname)7s %(asctime)s %(module)s:%(lineno)d] %(message)s', datefmt='%Y%m%d %I:%M:%S') if log_file: f_handle = logging.FileHandler(log_file) f_handle.setFormatter(formatter) logger.addHandler(f_handle) handle = logging.StreamHandler() handle.setFormatter(formatter) logger.addHandler(handle) return logger logger = get_logger(__name__, log_file=None, log_level='DEBUG') def set_log_level(log_level='INFO'): logger.setLevel(log_level.upper()) if __name__ == '__main__': logger.debug('hi') logger.info('hi') logger.error('hi') logger.warning('hi') set_log_level('info') logger.debug('hi') # ignore logger.info('hi') logger.error('hi') logger.warning('hi') ``` #### File: python-learning/06_tool/profile_demo.py ```python def is_prime(num): for factor in range(2, int(num ** 0.5) + 1): if num % factor == 0: return False return True class PrimeIter: def __init__(self, total): self.counter = 0 self.current = 1 self.total = total def __iter__(self): return self def __next__(self): if self.counter < self.total: self.current += 1 while not is_prime(self.current): self.current += 1 self.counter += 1 return self.current raise StopIteration() if __name__ == '__main__': list(PrimeIter(10000)) ```
{ "source": "jinmyeonglee/LKVOLearner", "score": 2 }
#### File: LKVOLearner/cropImage/crop_image.py ```python from libsmop import * from get_projection_mask import * # crop_image.m # Crops the given image to use only the portion where the projected depth # image exists. # Args: # img - either a HxW image or a HxWxD image. # Returns: # img - a cropped version of the image. @function def crop_image(img=None,*args,**kwargs): # varargin = crop_image.varargin # nargin = crop_image.nargin mask,sz=get_projection_mask(nargout=2) # crop_image.m:10 if 2 == ndims(img): img=reshape(img(mask),sz) # crop_image.m:13 else: D=size(img,3) # crop_image.m:15 img=reshape(img,concat([dot(480,640),D])) # crop_image.m:16 img=reshape(img(mask,arange()),concat([sz,D])) # crop_image.m:17 return img if __name__ == '__main__': pass ``` #### File: LKVOLearner/cropImage/location_signal_maker.py ```python from libsmop import * # location_signal_maker.m @function def location_signal_maker(signal_number=None,*args,**kwargs): # varargin = location_signal_maker.varargin # nargin = location_signal_maker.nargin location_signal=zeros(signal_number,2) mesh_size=ceil(sqrt(dot(2,signal_number))) mesh_x,mesh_y=meshgrid(arange(- mesh_size + 1,mesh_size - 1),arange(0,mesh_size - 1),nargout=2) mesh_x=ravel(mesh_x) mesh_y=ravel(mesh_y) mesh_dist_value=(mesh_x ** 2 + mesh_y ** 2) + mesh_y / mesh_size + mesh_x / (mesh_size ** 2) mesh_dist_value=mesh_dist_value + dot(signal_number,double(logical_and((mesh_y == 0),(mesh_x < 0)))) mesh_dist_sort=sort(mesh_dist_value) for index in arange(1,signal_number).reshape(-1): index_location=find(mesh_dist_value == mesh_dist_sort(index)) location_signal[index,1]=mesh_y(index_location) location_signal[index,2]=mesh_x(index_location) return location_signal ``` #### File: LKVOLearner/DEN/dataset.py ```python import os import pickle from torch.utils import data import numpy as np from PIL import Image from skimage import transform class NyuV2(data.Dataset): def __init__(self, root_dir, transform=None): self.root_dir = root_dir self.transform = transform def __len__(self): return len(os.listdir(os.path.join(self.root_dir, 'images'))) def __getitem__(self, index): with open(os.path.join(self.root_dir, 'images', '{:05d}.p'.format(index)), 'rb') as f_img: img = pickle.load(f_img) with open(os.path.join(self.root_dir, 'depths', '{:05d}.p'.format(index)), 'rb') as f_depth: depth = pickle.load(f_depth) sample = {'image': img, 'depth': depth} if self.transform: sample = self.transform(sample) return sample class KITTIdataset(data.Dataset): """KITTIdataset""" def __init__(self, list_file='train.txt', data_root_path='/data/prepared_raw_kitti', img_size=[128, 416], bundle_size=3, transform=None, isDen=True): self.gt_root_path='/data/prepared_annotated_kitti' self.data_root_path = data_root_path self.img_size = img_size self.bundle_size = bundle_size self.frame_pathes = [] self.transform = transform self.isDen = isDen list_file = os.path.join(data_root_path, list_file) with open(list_file) as file: for line in file: frame_path = line.strip() seq_path, frame_name = frame_path.split(" ") if seq_path in ['2011_09_26_drive_0119_sync_02', '2011_09_28_drive_0225_sync_02', '2011_09_29_drive_0108_sync_02', '2011_09_30_drive_0072_sync_02', '2011_10_03_drive_0058_sync_02', '2011_09_29_drive_0108_sync_03']: print(seq_path) continue frame_path = os.path.join(seq_path, frame_name) self.frame_pathes.append(frame_path) def __len__(self): return len(self.frame_pathes) def __getitem__(self, item): # read camera intrinsics cam_file = os.path.join(self.data_root_path, self.frame_pathes[item]+'_cam.txt') with open(cam_file) as file: cam_intrinsics = [float(x) for x in next(file).split(',')] camparams = np.asarray(cam_intrinsics) # read image bundle img_file = os.path.join(self.data_root_path, self.frame_pathes[item]+'.jpg') seq, frame = self.frame_pathes[item].split("/") gt_file = os.path.join(self.gt_root_path,self.frame_pathes[item]+'.jpg') frames_cat = np.array(Image.open(img_file)) depth_cat = np.array(Image.open(gt_file)) depth_cat = np.expand_dims(depth_cat,axis=2) #depth_cat = transform.resize(depth_cat, frames_cat.shape, mode='reflect', anti_aliasing=True) # slice the image into #bundle_size number of images frame_list = [] depth_list = [] print(gt_file) for i in range(self.bundle_size): frame_list.append(frames_cat[:,i*self.img_size[1]:(i+1)*self.img_size[1],:]) #crop image by (height * 416)*3 depth_list.append(depth_cat[:,i*self.img_size[1]:(i+1)*self.img_size[1],:]) #print(frame_list[i].shape, depth_list[i].shape) #print(frame_list[i].shape, depth_list[i].shape) #frames = np.asarray(frame_list).astype(float).transpose(0, 3, 1, 2) frames = np.asarray(frame_list).astype(float) #depth = np.asarray(depth_list).astype(float) sample = {'frames': frames, 'depth':depth_list} if self.transform: sample = self.transform(sample) # : 3*128*416->3*4*128*416 if self.isDen: return sample else: frames = np.asarray(frame_list).astype(float).transpose(0, 3, 1, 2) lkvosample = {'frames': frames, 'stacked_images': sample['stacked_images']} return lkvosample, camparams ``` #### File: LKVOLearner/DEN/prepare_gt_data.py ```python from __future__ import division import argparse import scipy.misc import numpy as np from glob import glob from joblib import Parallel, delayed import os parser = argparse.ArgumentParser() parser.add_argument("--dataset_dir", type=str, required=True, help="where the dataset is stored") parser.add_argument("--dump_root", type=str, required=True, help="Where to dump the data") parser.add_argument("--seq_length", type=int, required=True, help="Length of each training sequence") parser.add_argument("--img_height", type=int, default=128, help="image height") parser.add_argument("--img_width", type=int, default=416, help="image width") parser.add_argument("--num_threads", type=int, default=4, help="number of threads to use") args = parser.parse_args() def concat_image_seq(seq): res = None for i, im in enumerate(seq): if i == 0: res = im else: res = np.hstack((res, im)) return res def dump_example(n, args): if n % 2000 == 0: print('Progress %d/%d....' % (n, data_loader.num_train)) example = data_loader.get_train_example_with_idx(n) if example == False: return if example['image_seq'] is None: print(example['file_name']) raise Exception image_seq = concat_image_seq(example['image_seq']) dump_dir = os.path.join(args.dump_root, example['folder_name']) # if not os.path.isdir(dump_dir): # os.makedirs(dump_dir, exist_ok=True) try: os.makedirs(dump_dir) except OSError: if not os.path.isdir(dump_dir): raise dump_img_file = dump_dir + '/%s.jpg' % example['file_name'] try: scipy.misc.imsave(dump_img_file, image_seq.astype(np.uint8)) print(dump_img_file, "saved!") except Exception as E: print("There is no", dump_img_file) print(E) def main(): if not os.path.exists(args.dump_root): os.makedirs(args.dump_root) global data_loader from kitti_gt_loader import kitti_gt_loader data_loader = kitti_gt_loader(args.dataset_dir, split='eigen', img_height=args.img_height, img_width=args.img_width, seq_length=args.seq_length) Parallel(n_jobs=args.num_threads)(delayed(dump_example)(n, args) for n in range(data_loader.num_train)) # Split into train/val # subfolders = os.listdir(args.dump_root) # with open(args.dump_root + 'train.txt', 'w') as tf: # with open(args.dump_root + 'val.txt', 'w') as vf: # for s in subfolders: # if not os.path.isdir(args.dump_root + '/%s' % s): # continue # imfiles = glob(os.path.join(args.dump_root, s, '*.jpg')) # frame_ids = [os.path.basename(fi).split('.')[0] for fi in imfiles] # for frame in frame_ids: # if np.random.random() < 0.1: # vf.write('%s %s\n' % (s, frame)) # else: # tf.write('%s %s\n' % (s, frame)) 깔깔!ㅉㅉ main() ``` #### File: LKVOLearner/src/LKVOLearnerFinetune.py ```python from DirectVOLayer import DirectVO from networks import VggDepthEstimator, PoseNet, FDCDepthEstimator from ImagePyramid import ImagePyramidLayer import torch.nn as nn import torch import numpy as np from torch.autograd import Variable from timeit import default_timer as timer class FlipLR(nn.Module): def __init__(self, imW, dim_w): super(FlipLR, self).__init__() inv_indices = torch.arange(imW-1, -1, -1).long() self.register_buffer('inv_indices', inv_indices) self.dim_w = dim_w def forward(self, input): return input.index_select(self.dim_w, Variable(self.inv_indices)) class LKVOLearner(nn.Module): def __init__(self, img_size=[128, 416], ref_frame_idx=1, lambda_S=.5, use_ssim=True, smooth_term = 'lap', gpu_ids=[4]): super(LKVOLearner, self).__init__() self.lkvo = nn.DataParallel(LKVOKernel(img_size, smooth_term = smooth_term), device_ids=gpu_ids) self.ref_frame_idx = ref_frame_idx self.lambda_S = lambda_S self.use_ssim = use_ssim def forward(self, frames, camparams, max_lk_iter_num=10, lk_level=1): cost, photometric_cost, smoothness_cost, ref_frame, ref_inv_depth \ = self.lkvo.forward(frames, camparams, self.ref_frame_idx, self.lambda_S, max_lk_iter_num=max_lk_iter_num, use_ssim=self.use_ssim, lk_level=lk_level) return cost.mean(), photometric_cost.mean(), smoothness_cost.mean(), ref_frame, ref_inv_depth def save_model(self, file_path): torch.save(self.cpu().lkvo.module.depth_net.state_dict(), file_path) self.cuda() def load_model(self, depth_net_file_path, pose_net_file_path): self.lkvo.module.depth_net.load_state_dict(torch.load(depth_net_file_path)) self.lkvo.module.pose_net.load_state_dict(torch.load(pose_net_file_path)) def init_weights(self): self.lkvo.module.depth_net.init_weights() def get_parameters(self): return self.lkvo.module.depth_net.parameters() class LKVOKernel(nn.Module): """ only support single training isinstance """ def __init__(self, img_size=[128, 416], smooth_term = 'lap'): super(LKVOKernel, self).__init__() self.img_size = img_size self.fliplr_func = FlipLR(imW=img_size[1], dim_w=3) self.vo = DirectVO(imH=img_size[0], imW=img_size[1], pyramid_layer_num=4) self.pose_net = PoseNet(3) #self.depth_net = VggDepthEstimator(img_size) self.depth_net = FDCDepthEstimator(img_size) self.pyramid_func = ImagePyramidLayer(chan=1, pyramid_layer_num=4) self.smooth_term = smooth_term def forward(self, frames, camparams, ref_frame_idx, lambda_S=.5, do_data_augment=True, use_ssim=True, max_lk_iter_num=10, lk_level=1): assert(frames.size(0) == 1 and frames.dim() == 5) frames = frames.squeeze(0) camparams = camparams.squeeze(0).data if do_data_augment: if np.random.rand()>.5: # print("fliplr") frames = self.fliplr_func(frames) camparams[2] = self.img_size[1] - camparams[2] # camparams[5] = self.img_size[0] - camparams[5] bundle_size = frames.size(0) src_frame_idx = tuple(range(0,ref_frame_idx)) + tuple(range(ref_frame_idx+1,bundle_size)) # ref_frame = frames[ref_frame_idx, :, :, :] # src_frames = frames[src_frame_idx, :, :, :] frames_pyramid = self.vo.pyramid_func(frames) ref_frame_pyramid = [frame[ref_frame_idx, :, :, :] for frame in frames_pyramid] src_frames_pyramid = [frame[src_frame_idx, :, :, :] for frame in frames_pyramid] self.vo.setCamera(fx=camparams[0], cx=camparams[2], fy=camparams[4], cy=camparams[5]) inv_depth_pyramid = self.depth_net.forward((frames-127)/127) inv_depth_mean_ten = inv_depth_pyramid[0].mean()*0.1 inv_depth_norm_pyramid = [depth/inv_depth_mean_ten for depth in inv_depth_pyramid] inv_depth0_pyramid = self.pyramid_func(inv_depth_norm_pyramid[0], do_detach=False) ref_inv_depth_pyramid = [depth[ref_frame_idx, :, :] for depth in inv_depth_norm_pyramid] ref_inv_depth0_pyramid = [depth[ref_frame_idx, :, :] for depth in inv_depth0_pyramid] src_inv_depth_pyramid = [depth[src_frame_idx, :, :] for depth in inv_depth_norm_pyramid] src_inv_depth0_pyramid = [depth[src_frame_idx, :, :] for depth in inv_depth0_pyramid] self.vo.init(ref_frame_pyramid=ref_frame_pyramid, inv_depth_pyramid=ref_inv_depth0_pyramid) # init_pose with pose CNN p = self.pose_net.forward((frames.view(1, -1, frames.size(2), frames.size(3))-127) / 127) rot_mat_batch = self.vo.twist2mat_batch_func(p[0,:,0:3]).contiguous() trans_batch = p[0,:,3:6].contiguous()#*inv_depth_mean_ten # fine tune pose with direct VO rot_mat_batch, trans_batch = self.vo.update_with_init_pose(src_frames_pyramid[0:lk_level], max_itr_num=max_lk_iter_num, rot_mat_batch=rot_mat_batch, trans_batch=trans_batch) # rot_mat_batch, trans_batch = \ # self.vo.forward(ref_frame_pyramid, src_frames_pyramid, ref_inv_depth0_pyramid, max_itr_num=max_lk_iter_num) photometric_cost = self.vo.compute_phtometric_loss(self.vo.ref_frame_pyramid, src_frames_pyramid, ref_inv_depth_pyramid, src_inv_depth_pyramid, rot_mat_batch, trans_batch, levels=[0,1,2,3], use_ssim=use_ssim) smoothness_cost = self.vo.multi_scale_image_aware_smoothness_cost(inv_depth0_pyramid, frames_pyramid, levels=[2,3], type=self.smooth_term) \ + self.vo.multi_scale_image_aware_smoothness_cost(inv_depth_norm_pyramid, frames_pyramid, levels=[2,3], type=self.smooth_term) cost = photometric_cost + lambda_S*smoothness_cost return cost, photometric_cost, smoothness_cost, self.vo.ref_frame_pyramid[0], ref_inv_depth0_pyramid[0]*inv_depth_mean_ten if __name__ == "__main__": from KITTIdataset import KITTIdataset from torch.utils.data import DataLoader from torch import optim from torch.autograd import Variable dataset = KITTIdataset() dataloader = DataLoader(dataset, batch_size=3, shuffle=True, num_workers=2, pin_memory=True) lkvolearner = LKVOLearner(gpu_ids = [0]) def weights_init(m): classname = m.__class__.__name__ if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.ConvTranspose2d): # m.weight.data.normal_(0.0, 0.02) m.bias.data = torch.zeros(m.bias.data.size()) lkvolearner.apply(weights_init) lkvolearner.cuda() optimizer = optim.Adam(lkvolearner.parameters(), lr=.0001) for ii, data in enumerate(dataloader): t = timer() optimizer.zero_grad() frames = Variable(data[0].float().cuda()) # print(data[1]) camparams = Variable(data[1]) a = lkvolearner.forward(frames, camparams) print(timer()-t) # print(a) ``` #### File: LKVOLearner/src/networks.py ```python import torch import torch.nn as nn from torch.nn import init import functools from torch.autograd import Variable import numpy as np from skimage import transform import sys sys.path.insert(0, '/root/LKVOLearner/DEN') import modeling import fdc import den sys.path.insert(0,"~/LKVOLearner/src/util") import util DISP_SCALING = 10 MIN_DISP = 0.01 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class ConvBlock(nn.Module): def __init__(self, input_nc, output_nc, kernel_size): super(ConvBlock, self).__init__() p = int(np.floor((kernel_size - 1) / 2)) self.activation_fn = nn.ELU() self.conv1 = Conv(input_nc, output_nc, kernel_size, 1, p, self.activation_fn) # self.conv2 = Conv(output_nc, output_nc, kernel_size, 2, p) self.conv2 = Conv(output_nc, output_nc, kernel_size, 1, p, None) def forward(self, input): x = self.conv1(input) x = self.conv2(x) padding = [0, int(np.mod(input.size(-1), 2)), 0, int(np.mod(input.size(-2), 2))] x_pad = torch.nn.ReplicationPad2d(padding)(x) return torch.nn.AvgPool2d(kernel_size=2, stride=2, padding=0)(self.activation_fn(x_pad)) class UpConv(nn.Module): def __init__(self, input_nc, output_nc, kernel_size): super(UpConv, self).__init__() self.deconv = nn.ConvTranspose2d(in_channels=input_nc, out_channels=output_nc, kernel_size=2, bias=True, stride=2, padding=0) self.activation_fn = nn.ELU() def forward(self, input): return self.activation_fn(self.deconv(input)) class Conv(nn.Module): def __init__(self, input_nc, output_nc, kernel_size, stride, padding, activation_func=nn.ELU()): super(Conv, self).__init__() self.conv = nn.Conv2d(in_channels=input_nc, out_channels=output_nc, kernel_size=kernel_size, stride=stride, padding=0, bias=True) self.activation_fn = activation_func self.pad_fn = nn.ReplicationPad2d(padding) def forward(self, input): if self.activation_fn == None: return self.conv(self.pad_fn(input)) else: return self.activation_fn(self.conv(self.pad_fn(input))) class FDCInverseDepthMap(fdc.FDC): def getInverseDepthMap(self, batch): predictions = fdc.FDC.__call__(self, batch) # print("predictions shape: ", len(predictions)) for i in range(len(predictions)): for j in range(predictions[i].shape[0]): predictions[i][j] = torch.tensor(list(map(lambda x: 0 if 1 / x == float('inf') else 1 / x, predictions[i][j]))) return predictions class VggDepthEstimator(nn.Module): def __init__(self, input_size=None): super(VggDepthEstimator, self).__init__() self.conv_layers = nn.ModuleList([ConvBlock(3, 32, 7)]) self.conv_layers.append(ConvBlock(32, 64, 5)) self.conv_layers.append(ConvBlock(64, 128, 3)) self.conv_layers.append(ConvBlock(128, 256, 3)) self.conv_layers.append(ConvBlock(256, 512, 3)) self.conv_layers.append(ConvBlock(512, 512, 3)) self.conv_layers.append(ConvBlock(512, 512, 3)) # print(conv_feat_sizes) self.upconv_layers = nn.ModuleList([UpConv(512, 512, 3)]) self.iconv_layers = nn.ModuleList([Conv(512*2, 512, 3, 1, 1)]) self.upconv_layers.append(UpConv(512, 512, 3)) self.iconv_layers.append(Conv(512*2, 512, 3, 1, 1)) self.invdepth_layers = nn.ModuleList([Conv(512, 1, 3, 1, 1, nn.Sigmoid())]) self.upconv_layers.append(UpConv(512, 256, 3)) self.iconv_layers.append(Conv(256*2, 256, 3, 1, 1)) self.invdepth_layers.append(Conv(256, 1, 3, 1, 1, nn.Sigmoid())) self.upconv_layers.append(UpConv(256, 128, 3)) self.iconv_layers.append(Conv(128*2, 128, 3, 1, 1)) self.invdepth_layers.append(Conv(128, 1, 3, 1, 1, nn.Sigmoid())) self.upconv_layers.append(UpConv(128, 64, 3)) self.iconv_layers.append(Conv(64*2+1, 64, 3, 1, 1)) self.invdepth_layers.append(Conv(64, 1, 3, 1, 1, nn.Sigmoid())) self.upconv_layers.append(UpConv(64, 32, 3)) self.iconv_layers.append(Conv(32*2+1, 32, 3, 1, 1)) self.invdepth_layers.append(Conv(32, 1, 3, 1, 1, nn.Sigmoid())) self.upconv_layers.append(UpConv(32, 16, 3)) self.iconv_layers.append(Conv(16+1, 16, 3, 1, 1)) self.invdepth_layers.append(Conv(16, 1, 3, 1, 1, nn.Sigmoid())) # self.invdepth_layers.append(InvDepth(16)) def init_weights(self): def weights_init(m): classname = m.__class__.__name__ if isinstance(m, torch.nn.Conv2d) or isinstance(m, torch.nn.ConvTranspose2d): # m.weight.data.normal_(0.0, 0.02) m.bias.data = torch.zeros(m.bias.data.size()) self.apply(weights_init) def forward(self, input): conv_feat = self.conv_layers[0].forward(input) self.conv_feats = [conv_feat] for i in range(1, len(self.conv_layers)): conv_feat = self.conv_layers[i].forward(self.conv_feats[i-1]) self.conv_feats.append(conv_feat) upconv_feats = [] invdepth_pyramid = [] for i in range(0, len(self.upconv_layers)): if i==0: x = self.upconv_layers[i].forward(self.conv_feats[-1]) else: x = self.upconv_layers[i].forward(upconv_feats[i-1]) if i<len(self.upconv_layers)-1: if x.size(-1) != self.conv_feats[-2-i].size(-1): x = x[:, :, :, :-1] if x.size(-2) != self.conv_feats[-2-i].size(-2): x = x[:, :, :-1, :] if i==(len(self.upconv_layers)-1): x = torch.cat((x, nn.Upsample(scale_factor=2, mode='bilinear')(invdepth_pyramid[-1])), 1) elif i > 3: x = torch.cat((x, self.conv_feats[-(2+i)], nn.Upsample(scale_factor=2, mode='bilinear')(invdepth_pyramid[-1])), 1) else: x = torch.cat((x, self.conv_feats[-(2+i)]), 1) upconv_feats.append(self.iconv_layers[i].forward(x)) if i>0: # invdepth_pyramid.append(self.invdepth_layers[i-1].forward(upconv_feats[-1])*DISP_SCALING+MIN_DISP) invdepth_pyramid.append(self.invdepth_layers[i-1].forward(upconv_feats[-1])) # invdepth_pyramid.append(self.invdepth_layers[i-1].forward(upconv_feats[-1])) invdepth_pyramid = invdepth_pyramid[-1::-1] invdepth_pyramid = invdepth_pyramid[0:5] # conv_feats_output = conv_feats_output[0:5] for i in range(len(invdepth_pyramid)): # *10 + 0.01 print(i,': before squeeze',invdepth_pyramid[i].shape) invdepth_pyramid[i] = invdepth_pyramid[i].squeeze(1)*DISP_SCALING+MIN_DISP print(i,': after squeeze',invdepth_pyramid[i].shape) print() return invdepth_pyramid class FDCDepthEstimator(nn.Module): def __init__(self, input_size=None): super(FDCDepthEstimator, self).__init__() den_ = den.DEN() den_ = den_.to(device) den_.eval() self.fdc_model = FDCInverseDepthMap(den_) self.fdc_model.load_weights('/root/LKVOLearner/DEN/models/FDC/den_dbe/') def forward(self, input): sizes = [(128, 416), (64, 208), (32, 104), (16, 52), (8, 26)] invdepth_pyramid = [[] for _ in range(len(sizes))] origin_indepth_map = self.fdc_model.getInverseDepthMap(input) # util.save_image(origin_indepth_map, "/data/log/checkpoints/origin_invdepth_map_%d.mat" % (self.index)) # self.index += 1 for i in range(len(sizes)): # num_pyrimid: 5 for j in range(len(origin_indepth_map)): invdepth_pyramid[i].append(transform.resize(origin_indepth_map[j].numpy(), sizes[i], mode='reflect', anti_aliasing=True, preserve_range=True).astype('float32')) invdepth_pyramid[i] = torch.tensor(invdepth_pyramid[i]).cuda() invdepth_pyramid[i] = invdepth_pyramid[i]*DISP_SCALING+MIN_DISP return invdepth_pyramid def init_weights(self): # already loaded in intializing. pass class PoseNet(nn.Module): def __init__(self, bundle_size): super(PoseNet, self).__init__() self.bundle_size = bundle_size model = [nn.Conv2d(bundle_size*3, 16, kernel_size=7, stride=2, padding=3, bias=True), nn.ReLU(True), nn.Conv2d(16, 32, kernel_size=5, stride=2, padding=2, bias=True), nn.ReLU(True), nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(256, 6*(bundle_size-1), kernel_size=3, stride=2, padding=1, bias=True) ] self.model = nn.Sequential(*model) def forward(self, input): assert(self.bundle_size*3 == input.size(1)) p = self.model.forward(input) p = p.view(input.size(0), 6*(self.bundle_size-1), -1).mean(2) return p.view(input.size(0), self.bundle_size-1, 6) * 0.01 class PoseExpNet(nn.Module): def __init__(self, bundle_size): super(PoseExpNet, self).__init__() self.bundle_size = bundle_size self.convlyr1 = nn.Sequential(*[nn.Conv2d(bundle_size*3, 16, kernel_size=7, stride=2, padding=3, bias=True), nn.ReLU(True)]) self.convlyr2 = nn.Sequential(*[nn.Conv2d(16, 32, kernel_size=5, stride=2, padding=2, bias=True), nn.ReLU(True)]) self.convlyr3 = nn.Sequential(*[nn.Conv2d(32, 64, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True)]) self.convlyr4 = nn.Sequential(*[nn.Conv2d(64, 128, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True)]) self.convlyr5 = nn.Sequential(*[nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True)]) self.poselyr = nn.Sequential(*[nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(256, 256, kernel_size=3, stride=2, padding=1, bias=True), nn.ReLU(True), nn.Conv2d(256, 6*(bundle_size-1), kernel_size=3, stride=2, padding=1, bias=True)]) self.uplyr5 = nn.Sequential(*[nn.ConvTranspose2d(in_channels=256, out_channels=256, kernel_size=2, bias=True, stride=2, padding=0), nn.ReLU(True)]) self.uplyr4 = nn.Sequential(*[nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=2, bias=True, stride=2, padding=0), nn.ReLU(True)]) self.uplyr3 = nn.Sequential(*[nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=2, bias=True, stride=2, padding=0), nn.ReLU(True)]) self.uplyr2 = nn.Sequential(*[nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=2, bias=True, stride=2, padding=0), nn.ReLU(True)]) self.uplyr1 = nn.Sequential(*[nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=2, bias=True, stride=2, padding=0), nn.ReLU(True)]) self.explyr4 = nn.Sequential(*[nn.Conv2d(128, bundle_size, kernel_size=3, stride=1, padding=1, bias=True), nn.Sigmoid()]) self.explyr3 = nn.Sequential(*[nn.Conv2d(64, bundle_size, kernel_size=3, stride=1, padding=1, bias=True), nn.Sigmoid()]) self.explyr2 = nn.Sequential(*[nn.Conv2d(32, bundle_size, kernel_size=3, stride=1, padding=1, bias=True), nn.Sigmoid()]) self.explyr1 = nn.Sequential(*[nn.Conv2d(16, bundle_size, kernel_size=3, stride=1, padding=1, bias=True), nn.Sigmoid()]) def forward(self, input): conv1 = self.convlyr1(input) conv2 = self.convlyr2(conv1) conv3 = self.convlyr3(conv2) conv4 = self.convlyr4(conv3) conv5 = self.convlyr5(conv4) # output pose p = self.poselyr.forward(conv5) p = p.view(input.size(0), 6*(self.bundle_size-1), -1).mean(2) # multiply predicted pose with a small constant p = p.view(input.size(0), self.bundle_size-1, 6) * 0.01 # predict multi-scale explainable mask upcnv5 = self.uplyr5(conv5) upcnv4 = self.uplyr4(upcnv5) upcnv3 = self.uplyr3(upcnv4) upcnv2 = self.uplyr2(upcnv3) upcnv1 = self.uplyr1(upcnv2) mask4 = self.explyr4(upcnv4) mask3 = self.explyr3(upcnv3) mask2 = self.explyr2(upcnv2) mask1 = self.explyr1(upcnv1) return p, [mask1, mask2, mask3, mask4] if __name__ == "__main__": model = PoseExpNet(3).cuda() x = Variable(torch.randn(1,9,128,416).cuda()) p, masks = model.forward(x) for i in range(4): print(masks[i].size()) dnet = VggDepthEstimator([128,416]).cuda() I = Variable(torch.randn(1,3,128,416).cuda()) invdepth_pyramid = dnet.forward(I) for i in range(len(invdepth_pyramid)): print(invdepth_pyramid[i].size()) ```
{ "source": "JinnaBalu/vibhuvi-infinite-containers", "score": 3 }
#### File: jupyter/python-sample/scrape-justdial.py ```python from bs4 import BeautifulSoup import urllib import request import urllib.request import requests import csv def innerHTML(element): return element.decode_contents(formatter="html") def get_name(body): return body.find('span', {'class':'jcn'}).a.string def which_digit(html): mappingDict={'icon-ji':9, 'icon-dc':'+', 'icon-fe':'(', 'icon-hg':')', 'icon-ba':'-', 'icon-lk':8, 'icon-nm':7, 'icon-po':6, 'icon-rq':5, 'icon-ts':4, 'icon-vu':3, 'icon-wx':2, 'icon-yz':1, 'icon-acb':0, } return mappingDict.get(html,'') def get_phone_number(body): i=0 phoneNo = "No Number!" try: for item in body.find('p',{'class':'contact-info'}): i+=1 if(i==2): phoneNo='' try: for element in item.find_all(class_=True): classes = [] classes.extend(element["class"]) phoneNo+=str((which_digit(classes[1]))) except: pass except: pass body = body['data-href'] soup = BeautifulSoup(body, 'html.parser') for a in soup.find_all('a', {"id":"whatsapptriggeer"} ): # print (a) phoneNo = str(a['href'][-10:]) return phoneNo def get_rating(body): rating = 0.0 text = body.find('span', {'class':'star_m'}) if text is not None: for item in text: rating += float(item['class'][0][1:])/10 return rating def get_rating_count(body): text = body.find('span', {'class':'rt_count'}).string # Get only digits rating_count =''.join(i for i in text if i.isdigit()) return rating_count def get_address(body): return body.find('span', {'class':'mrehover'}).text.strip() def get_location(body): text = body.find('a', {'class':'rsmap'}) if text == None: return text_list = text['onclick'].split(",") latitutde = text_list[3].strip().replace("'", "") longitude = text_list[4].strip().replace("'", "") return latitutde + ", " + longitude page_number = 1 service_count = 1 fields = ['Name', 'Phone', 'Rating', 'Rating Count', 'Address', 'Location'] out_file = open('hardware.csv','w') csvwriter = csv.DictWriter(out_file, delimiter=',', fieldnames=fields) # Write fields first #csvwriter.writerow(dict((fn,fn) for fn in fields)) while True: # Check if reached end of result if page_number > 50: break url="https://www.justdial.com/Medak/Hardware-Shops/nct-10243514/page-%s" % (page_number) print(url) req = urllib.request.Request(url, headers={'User-Agent' : "Mozilla/5.0 (Windows NT 6.1; Win64; x64)"}) page = urllib.request.urlopen( req ) # page=urllib2.urlopen(url) soup = BeautifulSoup(page.read(), "html.parser") services = soup.find_all('li', {'class': 'cntanr'}) # Iterate through the 10 results in the page for service_html in services: # Parse HTML to fetch data dict_service = {} name = get_name(service_html) print(name); phone = get_phone_number(service_html) rating = get_rating(service_html) count = get_rating_count(service_html) address = get_address(service_html) location = get_location(service_html) if name != None: dict_service['Name'] = name if phone != None: print('getting phone number') dict_service['Phone'] = phone if rating != None: dict_service['Rating'] = rating if count != None: dict_service['Rating Count'] = count if address != None: dict_service['Address'] = address if location != None: dict_service['Address'] = location # Write row to CSV csvwriter.writerow(dict_service) print("#" + str(service_count) + " " , dict_service) service_count += 1 page_number += 1 out_file.close() ```
{ "source": "JinneGeelen/ML-MoCap", "score": 3 }
#### File: ML-MoCap/camera/app.py ```python import asyncio import threading import websockets import os import json import logging import signal import time from datetime import datetime, timedelta from camera import CameraController logging.basicConfig(level=logging.INFO) camera_controller = CameraController() logger = logging.getLogger() class GracefulKiller: kill_now = False def __init__(self): signal.signal(signal.SIGINT, self.exit_gracefully) signal.signal(signal.SIGTERM, self.exit_gracefully) def exit_gracefully(self, signum, frame): self.kill_now = True async def main(): killer = GracefulKiller() camera_controller.start_uv4l() uri = 'ws://{}:3000/v1/cameras/connect/{}'.format( os.environ['CONTROLLER_HOST'], os.environ['ID']) async with websockets.connect(uri) as websocket: logger.info('Connected to {}'.format(uri)) while not websocket.closed and not killer.kill_now: data = await websocket.recv() message = json.loads(data) if 'error' in message: logger.error( "Error received from controller: {}".format(message['error'])) continue if not 'event' in message: logger.error( 'Received message from controller with no "event" in it...') continue event_method = 'on_{}'.format(message.get('event')) logger.info("Received event {} with data {}".format( event_method, message.get('data'))) threading.Thread(target=getattr(camera_controller, event_method), args=[message.get('data')], daemon=True).start() logger.info('Disconnected from websocket') await camera_controller.force_stop() # Start the application if __name__ == '__main__': logger.info('Starting event loop...') asyncio.run(main()) ``` #### File: controller/controllers/participants.py ```python import logging import sqlalchemy import shortuuid import asyncio import time from datetime import datetime, timedelta from rx.subject import Subject from db import get_db, metadata from controllers.controller import Controller logger = logging.getLogger() participants = sqlalchemy.Table('participants', metadata, sqlalchemy.Column( 'id', sqlalchemy.String, primary_key=True), sqlalchemy.Column( 'study_id', sqlalchemy.ForeignKey('studies.id')), sqlalchemy.Column('number', sqlalchemy.String), sqlalchemy.Column( 'dominant_hand', sqlalchemy.String), sqlalchemy.Column('age', sqlalchemy.Integer), sqlalchemy.Column('gender', sqlalchemy.String), sqlalchemy.Column( 'consent_video', sqlalchemy.Boolean), ) class ParticipantsController(Controller): def parse_row(self, row): return { 'id': row['id'], 'study_id': row['study_id'], 'number': row['number'], 'dominant_hand': row['dominant_hand'], 'age': row['age'], 'gender': row['gender'], 'consent_video': row['consent_video'], } async def get_all(self): query = participants.select() results = await self.db.fetch_all(query) return [self.parse_row(result) for result in results] async def create(self, participant): participant_id = shortuuid.uuid() query = participants.insert().values( id=participant_id, study_id=participant.get('study_id'), number=participant.get('number'), dominant_hand=participant.get('dominant_hand'), age=participant.get('age'), gender=participant.get('gender'), consent_video=participant.get('consent_video'), ) await self.db.execute(query) participant = await self.get(participant_id) await self.broadcast({ 'event': 'create', 'entity': participant }) return participant async def get(self, participant_id): query = participants.select().where(participants.c.id == participant_id) participant = await self.db.fetch_one(query) if participant: return self.parse_row(participant) async def update(self, participant): query = participants.update().where(participants.c.id == participant.get('id')).values( id=participant.get('id'), study_id=participant.get('study_id'), number=participant.get('number'), dominant_hand=participant.get('dominant_hand'), age=participant.get('age'), gender=participant.get('gender'), consent_video=participant.get('consent_video'), ) await self.db.execute(query) participant = await self.get(participant.get('id')) await self.broadcast({ 'event': 'update', 'entity': participant }) return participant async def delete(self, participant_id): participant = await self.get(participant_id) query = participants.delete().where(participants.c.id == participant_id) await self.db.execute(query) await self.broadcast({ 'event': 'delete', 'entity': participant }) return participant participant_controller = ParticipantsController() ``` #### File: controller/controllers/recordings.py ```python import logging import sqlalchemy import shortuuid import json import os import time import asyncio import threading import shutil from datetime import datetime, timedelta, timezone from rx.subject import Subject from db import get_db, metadata from config import LOCAL_STORAGE_PATH, REMOTE_STORAGE_PATH from controllers.controller import Controller from controllers.participants import participant_controller from controllers.cameras import camera_controller from controllers.studies import studies_controller from gpiozero import LED #trigger for TMSi Porti, pin1 = 3.3V (GND = pin6) trigger = LED("GPIO21") #LED("BOARD40") led_red = LED("GPIO5") #LED("BOARD29") led_yellow = LED("GPIO6") #LED("BOARD31") led_green = LED("GPIO13") #LED("BOARD33") led_blue = LED("GPIO19") #LED("BOARD35") led_white = LED("GPIO26") #LED("BOARD") logging.basicConfig(level=logging.DEBUG, format='%(relativeCreated)6d %(threadName)s %(message)s') logger = logging.getLogger() database = get_db() recordings = sqlalchemy.Table('recordings', metadata, sqlalchemy.Column( 'id', sqlalchemy.String, primary_key=True), sqlalchemy.Column( 'participant_id', sqlalchemy.ForeignKey('participants.id')), sqlalchemy.Column('name', sqlalchemy.String), sqlalchemy.Column( 'file_path', sqlalchemy.String), sqlalchemy.Column( 'start_time', sqlalchemy.String), sqlalchemy.Column('end_time', sqlalchemy.String), sqlalchemy.Column('state', sqlalchemy.String), sqlalchemy.Column( 'cameras_recorded', sqlalchemy.String), sqlalchemy.Column( 'cameras_processing', sqlalchemy.String), sqlalchemy.Column( 'cameras_processed', sqlalchemy.String), ) class RecordingController(Controller): sessions = {} observable = Subject() def parse_row(self, row): return { 'id': row['id'], 'participant_id': row['participant_id'], 'name': row['name'], 'file_path': row['file_path'], 'start_time': row['start_time'], 'end_time': row['end_time'], 'state': row['state'], 'cameras_recorded': json.loads(row['cameras_recorded']), 'cameras_processing': json.loads(row['cameras_processing']), 'cameras_processed': json.loads(row['cameras_processed']), } async def get_recording_metadata(self, recording): participant = await participant_controller.get(recording.get('participant_id')) study = await studies_controller.get(participant.get('study_id')) return { 'recording_name': recording.get('name'), 'start_time': recording.get('start_time'), 'end_time': recording.get('end_time'), 'participant_number': participant.get('number'), 'study_name': study.get('name'), 'researcher': study.get('researcher'), } async def get_recording_path(self, recording): participant = await participant_controller.get(recording.get('participant_id')) study = await studies_controller.get(participant.get('study_id')) path = '{}_{}_{}'.format(study.get('name'), participant.get('number'), recording.get('name')) return path.replace(' ', '_').replace(':', '_').replace('-', '_') async def get_local_storage_path(self, recording): recording_path = await self.get_recording_path(recording) return '{}/{}'.format(LOCAL_STORAGE_PATH, recording_path) async def get_remote_storage_path(self, recording): recording_path = await self.get_recording_path(recording) return '{}/{}'.format(REMOTE_STORAGE_PATH, recording_path) async def get_camera_file_path(self, recording, camera_id): local_path = await self.get_local_storage_path(recording) camera = await camera_controller.get(camera_id) return '{}_{}.mp4'.format(local_path, camera.get('name', camera_id).replace(' ', '_')) #new start async def sendtrigger(self, recording): start_time = recording.get('start_time') current_time = datetime.now().astimezone() while current_time < start_time and self.recording: time.sleep(0.001) current_time = datetime.now().astimezone() trigger.on() time.sleep(2) trigger.off() #new end async def start(self, recording_id): async with self.db.transaction(): recording = await self.get(recording_id) if not recording: return recording['start_time'] = ( datetime.now() + timedelta(seconds=3)).astimezone().isoformat() recording['end_time'] = None recording['state'] = 'recording' recording['cameras_processed'] = [] recording['cameras_processing'] = [] cameras_recorded = await camera_controller.send_command({ 'event': 'start_recording', 'data': recording, }) recording['cameras_recorded'] = cameras_recorded recording = await self.update(recording) #send trigger to TMSi Porti thread = threading.Thread( target=self.sendtrigger, args=(recording), daemon=True) thread.start() return recording async def stop(self, recording_id): async with self.db.transaction(): recording = await self.get(recording_id) if not recording: return await camera_controller.send_command({ 'event': 'stop_recording', 'data': recording, }) recording['end_time'] = datetime.now().astimezone().isoformat() recording['state'] = 'unprocessed' recording = await self.update(recording) return recording async def discard(self, recording_id): async with self.db.transaction(): recording = await self.get(recording_id) if not recording: return await camera_controller.send_command({ 'event': 'discard_recording', 'data': recording, }) recording['start_time'] = None recording['end_time'] = None recording['cameras_recorded'] = [] recording['state'] = 'empty' recording = await self.update(recording) return recording async def process(self, recording_id): async with self.db.transaction(): await self.db.execute('LOCK TABLE recordings IN SHARE ROW EXCLUSIVE MODE') recording = await self.get(recording_id) if not recording: return local_storage_path = await self.get_local_storage_path(recording) remote_storage_path = await self.get_remote_storage_path(recording) if not os.path.exists(remote_storage_path): os.makedirs(remote_storage_path) recording_metadata = await self.get_recording_metadata(recording) metadata_path = '{}/metadata.json'.format(remote_storage_path) with open(metadata_path, 'w') as file: file.write(json.dumps(recording_metadata, indent=2)) cameras_processing = await camera_controller.send_command({ 'event': 'process_recording', 'data': recording, }) recording['cameras_processing'] = cameras_processing recording['cameras_processed'] = [] recording['state'] = 'processing' recording = await self.update(recording) return recording async def processed(self, recording_id, camera_id): recording = await self.get(recording_id) camera = await camera_controller.get(camera_id) source = await self.get_camera_file_path(recording, camera_id) base_path = await self.get_remote_storage_path(recording) dest = '{}/{}.mp4'.format(base_path, camera.get('name', camera_id)) thread = threading.Thread( target=self.upload, args=(source, dest), daemon=True) thread.start() async with self.db.transaction(): await self.db.execute('LOCK TABLE recordings IN SHARE ROW EXCLUSIVE MODE') recording = await self.get(recording.get('id')) if not recording: return recording['cameras_processing'].remove(camera_id) recording['cameras_processed'].append(camera_id) if len(recording['cameras_processing']) == 0: recording['state'] = 'processed' recording = await self.update(recording) return recording def upload(self, source, dest): logger.info('Upload {} to {}'.format(source, dest)) shutil.move(source, dest) logger.info('Done uploading {}'.format(dest)) async def get_all(self): query = recordings.select() results = await self.db.fetch_all(query) return [self.parse_row(result) for result in results] async def create(self, recording): recording_id = shortuuid.uuid() query = recordings.insert().values( id=recording_id, participant_id=recording.get('participant_id'), name=recording.get('name'), file_path=recording.get('file_path'), start_time=recording.get('start_time'), end_time=recording.get('end_time'), cameras_recorded=json.dumps([]), cameras_processing=json.dumps([]), cameras_processed=json.dumps([]), state='empty', ) await self.db.execute(query) recording = await self.get(recording_id) await self.broadcast({ 'event': 'create', 'entity': recording }) return recording async def get(self, recording_id): query = recordings.select().where(recordings.c.id == recording_id) result = await self.db.fetch_one(query) if result: return self.parse_row(result) async def update(self, recording): query = recordings.update().where(recordings.c.id == recording.get('id')).values( id=recording.get('id'), participant_id=recording.get('participant_id'), name=recording.get('name'), file_path=recording.get('file_path'), start_time=recording.get('start_time'), end_time=recording.get('end_time'), cameras_recorded=json.dumps(recording.get('cameras_recorded')), cameras_processing=json.dumps(recording.get('cameras_processing')), cameras_processed=json.dumps(recording.get('cameras_processed')), state=recording.get('state'), ) await self.db.execute(query) recording = await self.get(recording.get('id')) await self.broadcast({ 'event': 'update', 'entity': recording }) return recording async def delete(self, recording_id): recording = await self.get(recording_id) query = recordings.delete().where(recordings.c.id == recording_id) await self.db.execute(query) await self.broadcast({ 'event': 'delete', 'entity': recording }) return recording recording_controller = RecordingController() ``` #### File: controller/db/database.py ```python from databases import Database from sqlalchemy import create_engine, MetaData metadata = MetaData() _db = None def get_db(url = None): global _db if url: if _db: _db.disconnect() _db = Database(url) return _db async def init_tables(url): engine = create_engine(url) # metadata.drop_all(bind=engine) metadata.create_all(bind=engine, checkfirst=True) ```
{ "source": "jinnerbichler/FARM", "score": 2 }
#### File: FARM/farm/infer.py ```python import os import torch import logging import multiprocessing as mp import numpy as np from contextlib import ExitStack from functools import partial from torch.utils.data.sampler import SequentialSampler from tqdm import tqdm from farm.data_handler.dataloader import NamedDataLoader from farm.modeling.adaptive_model import AdaptiveModel from farm.utils import initialize_device_settings from farm.data_handler.processor import Processor, InferenceProcessor from farm.utils import set_all_seeds from farm.utils import log_ascii_workers from farm.data_handler.utils import grouper logger = logging.getLogger(__name__) class Inferencer: """ Loads a saved AdaptiveModel from disk and runs it in inference mode. Can be used for a model with prediction head (down-stream predictions) and without (using LM as embedder). Example usage: .. code-block:: python # down-stream inference basic_texts = [ {"text": "Schartau sagte dem Tagesspiegel, dass Fischer ein Idiot sei"}, {"text": "<NAME> spielt Handball in Berlin"}, ] model = Inferencer.load(your_model_dir) model.inference_from_dicts(dicts=basic_texts) # LM embeddings model.extract_vectors(dicts=basic_texts) """ def __init__( self, model, processor, batch_size=4, gpu=False, name=None, return_class_probs=False ): """ Initializes Inferencer from an AdaptiveModel and a Processor instance. :param model: AdaptiveModel to run in inference mode :type model: AdaptiveModel :param processor: A dataset specific Processor object which will turn input (file or dict) into a Pytorch Dataset. :type processor: Processor :param batch_size: Number of samples computed once per batch :type batch_size: int :param gpu: If GPU shall be used :type gpu: bool :param name: Name for the current Inferencer model, displayed in the REST API :type name: string :param return_class_probs: either return probability distribution over all labels or the prob of the associated label :type return_class_probs: bool :return: An instance of the Inferencer. """ # Init device and distributed settings device, n_gpu = initialize_device_settings(use_cuda=gpu, local_rank=-1, fp16=False) self.processor = processor self.model = model self.model.eval() self.batch_size = batch_size self.device = device self.language = self.model.language_model.language # TODO adjust for multiple prediction heads if len(self.model.prediction_heads) == 1: self.prediction_type = self.model.prediction_heads[0].model_type # self.label_map = self.processor.label_maps[0] elif len(self.model.prediction_heads) == 0: self.prediction_type = "embedder" # else: # raise NotImplementedError("A model with multiple prediction heads is currently not supported by the Inferencer") self.name = name if name != None else f"anonymous-{self.prediction_type}" self.return_class_probs = return_class_probs model.connect_heads_with_processor(processor.tasks, require_labels=False) set_all_seeds(42, n_gpu) @classmethod def load( cls, load_dir, batch_size=4, gpu=False, embedder_only=False, return_class_probs=False, ): """ Initializes Inferencer from directory with saved model. :param load_dir: Directory where the saved model is located. :type load_dir: str :param batch_size: Number of samples computed once per batch :type batch_size: int :param gpu: If GPU shall be used :type gpu: bool :param embedder_only: If true, a faster processor (InferenceProcessor) is loaded. This should only be used for extracting embeddings (no downstream predictions). :type embedder_only: bool :return: An instance of the Inferencer. """ device, n_gpu = initialize_device_settings(use_cuda=gpu, local_rank=-1, fp16=False) model = AdaptiveModel.load(load_dir, device) if embedder_only: # model.prediction_heads = [] processor = InferenceProcessor.load_from_dir(load_dir) else: processor = Processor.load_from_dir(load_dir) name = os.path.basename(load_dir) return cls( model, processor, batch_size=batch_size, gpu=gpu, name=name, return_class_probs=return_class_probs, ) def inference_from_file(self, file): dicts = self.processor.file_to_dicts(file) preds_all = self.inference_from_dicts(dicts, rest_api_schema=False) return preds_all def inference_from_dicts(self, dicts, rest_api_schema=False, use_multiprocessing=True): """ Runs down-stream inference using the prediction head. :param dicts: Samples to run inference on provided as a list of dicts. One dict per sample. :type dicts: [dict] :param rest_api_schema: whether conform to the schema used for dicts in the HTTP API for Inference. :type rest_api_schema: bool :return: dict of predictions :param use_multiprocessing: time incurred in spawning processes could outweigh performance boost for very small number of dicts, eg, HTTP APIs for inference. This flags allows to disable multiprocessing for such cases. """ if self.prediction_type == "embedder": raise TypeError( "You have called inference_from_dicts for a model without any prediction head! " "If you want to: " "a) ... extract vectors from the language model: call `Inferencer.extract_vectors(...)`" f"b) ... run inference on a downstream task: make sure your model path {self.name} contains a saved prediction head" ) num_cpus = mp.cpu_count() or 1 dicts_per_cpu = np.ceil(len(dicts) / num_cpus) # automatic adjustment of multiprocessing chunksize # for small files (containing few dicts) we want small chunksize to ulitize all available cores but never less # than 2, because we need it to sample another random sentence in LM finetuning # for large files we want to minimize processor spawning without giving too much data to one process, so we # clip it at 5k multiprocessing_chunk_size = int(np.clip((np.ceil(dicts_per_cpu / 5)), a_min=2, a_max=5000)) dict_batches_to_process = int(len(dicts) / multiprocessing_chunk_size) num_cpus_used = min(mp.cpu_count(), dict_batches_to_process) or 1 if use_multiprocessing: with ExitStack() as stack: p = stack.enter_context(mp.Pool(processes=num_cpus_used)) logger.info( f"Got ya {num_cpus_used} parallel workers to do inference on {len(dicts)}dicts (chunksize = {multiprocessing_chunk_size})..." ) log_ascii_workers(num_cpus_used, logger) results = p.imap( partial(self._multiproc, processor=self.processor, rest_api_schema=rest_api_schema), grouper(dicts, multiprocessing_chunk_size), 1, ) preds_all = [] with tqdm(total=len(dicts), unit=" Dicts") as pbar: for dataset, tensor_names, sample in results: preds_all.extend(self._run_inference(dataset, tensor_names, sample)) pbar.update(multiprocessing_chunk_size) else: chunk = next(grouper(dicts, len(dicts))) dataset, tensor_names, sample = self._multiproc(chunk, processor=self.processor, rest_api_schema=rest_api_schema) preds_all = self._run_inference(dataset, tensor_names, sample) return preds_all @classmethod def _multiproc(cls, chunk, processor, rest_api_schema): dicts = [d[1] for d in chunk] index = chunk[0][0] dataset, tensor_names = processor.dataset_from_dicts(dicts, index, rest_api_schema) samples = [] for d in dicts: samples.extend(processor._dict_to_samples(d)) return dataset, tensor_names, samples def _run_inference(self, dataset, tensor_names, samples): data_loader = NamedDataLoader( dataset=dataset, sampler=SequentialSampler(dataset), batch_size=self.batch_size, tensor_names=tensor_names ) preds_all = [] for i, batch in enumerate(data_loader): batch = {key: batch[key].to(self.device) for key in batch} batch_samples = samples[i * self.batch_size : (i + 1) * self.batch_size] with torch.no_grad(): logits = self.model.forward(**batch) preds = self.model.formatted_preds( logits=logits, samples=batch_samples, # TODO batch_samples and logits are not aligned tokenizer=self.processor.tokenizer, return_class_probs=self.return_class_probs, **batch, ) preds_all += preds return preds_all def extract_vectors(self, dicts, extraction_strategy="cls_token", extraction_layer=-1): """ Converts a text into vector(s) using the language model only (no prediction head involved). :param dicts: Samples to run inference on provided as a list of dicts. One dict per sample. :type dicts: [dict] :param extraction_strategy: Strategy to extract vectors. Choices: 'cls_token' (sentence vector), 'reduce_mean' (sentence vector), reduce_max (sentence vector), 'per_token' (individual token vectors) :type extraction_strategy: str :param extraction_layer: number of layer from which the embeddings shall be extracted. Default: -1 (very last layer). :type: int :return: dict of predictions """ dataset, tensor_names = self.processor.dataset_from_dicts(dicts, rest_api_schema=True) samples = [] for dict in dicts: samples.extend(self.processor._dict_to_samples(dict)) data_loader = NamedDataLoader( dataset=dataset, sampler=SequentialSampler(dataset), batch_size=self.batch_size, tensor_names=tensor_names ) preds_all = [] for i, batch in enumerate(data_loader): batch = {key: batch[key].to(self.device) for key in batch} batch_samples = samples[i * self.batch_size : (i + 1) * self.batch_size] with torch.no_grad(): preds = self.model.language_model.formatted_preds( extraction_strategy=extraction_strategy, samples=batch_samples, tokenizer=self.processor.tokenizer, extraction_layer=extraction_layer, **batch, ) preds_all += preds return preds_all class FasttextInferencer: def __init__(self, model, name=None): self.model = model self.name = name if name != None else f"anonymous-fasttext" self.prediction_type = "embedder" @classmethod def load(cls, load_dir, batch_size=4, gpu=False, embedder_only=True): import fasttext if os.path.isfile(load_dir): return cls(model=fasttext.load_model(load_dir)) else: logger.error(f"Fasttext model file does not exist at: {load_dir}") def extract_vectors(self, dicts, extraction_strategy="reduce_mean"): """ Converts a text into vector(s) using the language model only (no prediction head involved). :param dicts: Samples to run inference on provided as a list of dicts. One dict per sample. :type dicts: [dict] :param extraction_strategy: Strategy to extract vectors. Choices: 'reduce_mean' (mean sentence vector), 'reduce_max' (max per embedding dim), 'CLS' :type extraction_strategy: str :return: dict of predictions """ preds_all = [] for d in dicts: pred = {} pred["context"] = d["text"] if extraction_strategy == "reduce_mean": pred["vec"] = self.model.get_sentence_vector(d["text"]) else: raise NotImplementedError preds_all.append(pred) return preds_all ``` #### File: farm/modeling/prediction_head.py ```python import json import logging import os import numpy as np from scipy.special import expit import torch from transformers.modeling_bert import BertForPreTraining, BertLayerNorm, ACT2FN from torch import nn from torch.nn import CrossEntropyLoss, MSELoss, BCEWithLogitsLoss from farm.data_handler.utils import is_json from farm.utils import convert_iob_to_simple_tags logger = logging.getLogger(__name__) class PredictionHead(nn.Module): """ Takes word embeddings from a language model and generates logits for a given task. Can also convert logits to loss and and logits to predictions. """ subclasses = {} def __init_subclass__(cls, **kwargs): """ This automatically keeps track of all available subclasses. Enables generic load() for all specific PredictionHead implementation. """ super().__init_subclass__(**kwargs) cls.subclasses[cls.__name__] = cls @classmethod def create(cls, prediction_head_name, layer_dims, class_weights=None): """ Create subclass of Prediction Head. :param prediction_head_name: Classname (exact string!) of prediction head we want to create :type prediction_head_name: str :param layer_dims: describing the feed forward block structure, e.g. [768,2] :type layer_dims: List[Int] :param class_weights: The loss weighting to be assigned to certain label classes during training. Used to correct cases where there is a strong class imbalance. :type class_weights: list[Float] :return: Prediction Head of class prediction_head_name """ # TODO make we want to make this more generic. # 1. Class weights is not relevant for all heads. # 2. Layer weights impose FF structure, maybe we want sth else later # Solution: We could again use **kwargs return cls.subclasses[prediction_head_name]( layer_dims=layer_dims, class_weights=class_weights ) def save_config(self, save_dir, head_num=0): """ Saves the config as a json file. :param save_dir: Path to save config to :type save_dir: str :param head_num: Which head to save :type head_num: int """ output_config_file = os.path.join( save_dir, f"prediction_head_{head_num}_config.json" ) with open(output_config_file, "w") as file: json.dump(self.config, file) def save(self, save_dir, head_num=0): """ Saves the prediction head state dict. :param save_dir: path to save prediction head to :type save_dir: str :param head_num: which head to save :type head_num: int """ output_model_file = os.path.join(save_dir, f"prediction_head_{head_num}.bin") torch.save(self.state_dict(), output_model_file) self.save_config(save_dir, head_num) def generate_config(self): """ Generates config file from Class parameters (only for sensible config parameters). """ config = {} for key, value in self.__dict__.items(): if is_json(value) and key[0] != "_": config[key] = value config["name"] = self.__class__.__name__ self.config = config @classmethod def load(cls, config_file): """ Loads a Prediction Head. Infers the class of prediction head from config_file. :param config_file: location where corresponding config is stored :type config_file: str :return: PredictionHead :rtype: PredictionHead[T] """ config = json.load(open(config_file)) prediction_head = cls.subclasses[config["name"]](**config) model_file = cls._get_model_file(config_file=config_file) logger.info("Loading prediction head from {}".format(model_file)) prediction_head.load_state_dict(torch.load(model_file, map_location=torch.device("cpu"))) return prediction_head def logits_to_loss(self, logits, labels): """ Implement this function in your special Prediction Head. Should combine logits and labels with a loss fct to a per sample loss. :param logits: logits, can vary in shape and type, depending on task :type logits: object :param labels: labels, can vary in shape and type, depending on task :type labels: object :return: per sample loss as a torch.tensor of shape [batch_size] """ raise NotImplementedError() def logits_to_preds(self, logits): """ Implement this function in your special Prediction Head. Should combine turn logits into predictions. :param logits: logits, can vary in shape and type, depending on task :type logits: object :return: predictions as a torch.tensor of shape [batch_size] """ raise NotImplementedError() def prepare_labels(self, **kwargs): """ Some prediction heads need additional label conversion. E.g. NER needs word level labels turned into subword token level labels. :param kwargs: placeholder for passing generic parameters :type kwargs: object :return: labels in the right format :rtype: object """ # TODO maybe just return **kwargs to not force people to implement this raise NotImplementedError() @classmethod def _get_model_file(cls, config_file): if "config.json" in config_file and "prediction_head" in config_file: head_num = int("".join([char for char in os.path.basename(config_file) if char.isdigit()])) model_file = os.path.join(os.path.dirname(config_file), f"prediction_head_{head_num}.bin") else: raise ValueError(f"This doesn't seem to be a proper prediction_head config file: '{config_file}'") return model_file def _set_name(self, name): self.task_name = name class RegressionHead(PredictionHead): def __init__( self, layer_dims, loss_ignore_index=-100, loss_reduction="none", task_name="regression", **kwargs, ): super(RegressionHead, self).__init__() # num_labels could in most cases also be automatically retrieved from the data processor self.layer_dims = layer_dims # TODO is this still needed? self.feed_forward = FeedForwardBlock(self.layer_dims) self.num_labels = 2 self.ph_output_type = "per_sequence_continuous" self.model_type = "regression" self.loss_fct = MSELoss(reduction="none") self.task_name = task_name self.generate_config() def forward(self, x): logits = self.feed_forward(x) return logits def logits_to_loss(self, logits, **kwargs): # Squeeze the logits to obtain a coherent output size label_ids = kwargs.get(self.label_tensor_name) return self.loss_fct(logits.squeeze(), label_ids.float()) def logits_to_preds(self, logits, **kwargs): preds = logits.cpu().numpy() #rescale predictions to actual label distribution preds = [x * self.label_list[1] + self.label_list[0] for x in preds] return preds def prepare_labels(self, **kwargs): label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids.cpu().numpy() label_ids = [x * self.label_list[1] + self.label_list[0] for x in label_ids] return label_ids def formatted_preds(self, logits, samples, **kwargs): preds = self.logits_to_preds(logits) contexts = [sample.clear_text["text"] for sample in samples] assert len(preds) == len(contexts) res = {"task": "regression", "predictions": []} for pred, context in zip(preds, contexts): res["predictions"].append( { "context": f"{context}", "pred": pred[0] } ) return res class TextClassificationHead(PredictionHead): def __init__( self, layer_dims, class_weights=None, loss_ignore_index=-100, loss_reduction="none", task_name="text_classification", **kwargs, ): super(TextClassificationHead, self).__init__() # num_labels could in most cases also be automatically retrieved from the data processor self.layer_dims = layer_dims self.feed_forward = FeedForwardBlock(self.layer_dims) self.num_labels = self.layer_dims[-1] self.ph_output_type = "per_sequence" self.model_type = "text_classification" self.task_name = task_name #used for connecting with the right output of the processor self.class_weights = class_weights if class_weights: logger.info(f"Using class weights for task '{self.task_name}': {self.class_weights}") #TODO must balanced weight really be an instance attribute? self.balanced_weights = nn.Parameter( torch.tensor(class_weights), requires_grad=False ) else: self.balanced_weights = None self.loss_fct = CrossEntropyLoss( weight=self.balanced_weights, reduction=loss_reduction, ignore_index=loss_ignore_index, ) self.generate_config() def forward(self, X): logits = self.feed_forward(X) return logits def logits_to_loss(self, logits, **kwargs): label_ids = kwargs.get(self.label_tensor_name) return self.loss_fct(logits, label_ids.view(-1)) def logits_to_probs(self, logits, return_class_probs, **kwargs): softmax = torch.nn.Softmax(dim=1) probs = softmax(logits) if return_class_probs: probs = probs else: probs = torch.max(probs, dim=1)[0] probs = probs.cpu().numpy() return probs def logits_to_preds(self, logits, **kwargs): logits = logits.cpu().numpy() pred_ids = logits.argmax(1) preds = [self.label_list[int(x)] for x in pred_ids] return preds def prepare_labels(self, **kwargs): label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids.cpu().numpy() labels = [self.label_list[int(x)] for x in label_ids] return labels def formatted_preds(self, logits, samples, return_class_probs=False, **kwargs): preds = self.logits_to_preds(logits) probs = self.logits_to_probs(logits, return_class_probs) contexts = [sample.clear_text["text"] for sample in samples] assert len(preds) == len(probs) == len(contexts) res = {"task": "text_classification", "predictions": []} for pred, prob, context in zip(preds, probs, contexts): if not return_class_probs: pred_dict = { "start": None, "end": None, "context": f"{context}", "label": f"{pred}", "probability": prob, } else: pred_dict = { "start": None, "end": None, "context": f"{context}", "label": "class_probabilities", "probability": prob, } res["predictions"].append(pred_dict) return res class MultiLabelTextClassificationHead(PredictionHead): def __init__( self, layer_dims, class_weights=None, loss_reduction="none", task_name="text_classification", pred_threshold=0.5, **kwargs, ): super(MultiLabelTextClassificationHead, self).__init__() # num_labels could in most cases also be automatically retrieved from the data processor self.layer_dims = layer_dims self.feed_forward = FeedForwardBlock(self.layer_dims) self.num_labels = self.layer_dims[-1] self.ph_output_type = "per_sequence" self.model_type = "multilabel_text_classification" self.task_name = task_name #used for connecting with the right output of the processor self.class_weights = class_weights self.pred_threshold = pred_threshold if class_weights: logger.info(f"Using class weights for task '{self.task_name}': {self.class_weights}") #TODO must balanced weight really be a instance attribute? self.balanced_weights = nn.Parameter( torch.tensor(class_weights), requires_grad=False ) else: self.balanced_weights = None self.loss_fct = BCEWithLogitsLoss(pos_weight=self.balanced_weights, reduction=loss_reduction) self.generate_config() def forward(self, X): logits = self.feed_forward(X) return logits def logits_to_loss(self, logits, **kwargs): label_ids = kwargs.get(self.label_tensor_name).to(dtype=torch.float) loss = self.loss_fct(logits.view(-1, self.num_labels), label_ids.view(-1, self.num_labels)) per_sample_loss = loss.mean(1) return per_sample_loss def logits_to_probs(self, logits, **kwargs): sigmoid = torch.nn.Sigmoid() probs = sigmoid(logits) probs = probs.cpu().numpy() return probs def logits_to_preds(self, logits, **kwargs): probs = self.logits_to_probs(logits) #TODO we could potentially move this to GPU to speed it up pred_ids = [np.where(row > self.pred_threshold)[0] for row in probs] preds = [] for row in pred_ids: preds.append([self.label_list[int(x)] for x in row]) return preds def prepare_labels(self, **kwargs): label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids.cpu().numpy() label_ids = [np.where(row == 1)[0] for row in label_ids] labels = [] for row in label_ids: labels.append([self.label_list[int(x)] for x in row]) return labels def formatted_preds(self, logits, samples, **kwargs): preds = self.logits_to_preds(logits) probs = self.logits_to_probs(logits) contexts = [sample.clear_text["text"] for sample in samples] assert len(preds) == len(probs) == len(contexts) res = {"task": "text_classification", "predictions": []} for pred, prob, context in zip(preds, probs, contexts): res["predictions"].append( { "start": None, "end": None, "context": f"{context}", "label": f"{pred}", "probability": prob, } ) return res class TokenClassificationHead(PredictionHead): def __init__(self, layer_dims, task_name="ner", **kwargs): super(TokenClassificationHead, self).__init__() self.layer_dims = layer_dims self.feed_forward = FeedForwardBlock(self.layer_dims) self.num_labels = self.layer_dims[-1] self.loss_fct = CrossEntropyLoss(reduction="none") self.ph_output_type = "per_token" self.model_type = "token_classification" self.task_name = task_name self.generate_config() def forward(self, X): logits = self.feed_forward(X) return logits def logits_to_loss( self, logits, initial_mask, padding_mask=None, **kwargs ): label_ids = kwargs.get(self.label_tensor_name) # Todo: should we be applying initial mask here? Loss is currently calculated even on non initial tokens active_loss = padding_mask.view(-1) == 1 active_logits = logits.view(-1, self.num_labels)[active_loss] active_labels = label_ids.view(-1)[active_loss] loss = self.loss_fct( active_logits, active_labels ) # loss is a 1 dimemnsional (active) token loss return loss def logits_to_preds(self, logits, initial_mask, **kwargs): preds_word_all = [] preds_tokens = torch.argmax(logits, dim=2) preds_token = preds_tokens.detach().cpu().numpy() # used to be: padding_mask = padding_mask.detach().cpu().numpy() initial_mask = initial_mask.detach().cpu().numpy() for idx, im in enumerate(initial_mask): preds_t = preds_token[idx] # Get labels and predictions for just the word initial tokens preds_word_id = self.initial_token_only(preds_t, initial_mask=im) preds_word = [self.label_list[pwi] for pwi in preds_word_id] preds_word_all.append(preds_word) return preds_word_all def logits_to_probs(self, logits, initial_mask, return_class_probs, **kwargs): # get per token probs softmax = torch.nn.Softmax(dim=2) token_probs = softmax(logits) if return_class_probs: token_probs = token_probs else: token_probs = torch.max(token_probs, dim=2)[0] token_probs = token_probs.cpu().numpy() # convert to per word probs all_probs = [] initial_mask = initial_mask.detach().cpu().numpy() for idx, im in enumerate(initial_mask): probs_t = token_probs[idx] probs_words = self.initial_token_only(probs_t, initial_mask=im) all_probs.append(probs_words) return all_probs def prepare_labels(self, initial_mask, **kwargs): label_ids = kwargs.get(self.label_tensor_name) labels_all = [] label_ids = label_ids.cpu().numpy() for label_ids_one_sample, initial_mask_one_sample in zip( label_ids, initial_mask ): label_ids = self.initial_token_only( label_ids_one_sample, initial_mask_one_sample ) labels = [self.label_list[l] for l in label_ids] labels_all.append(labels) return labels_all @staticmethod def initial_token_only(seq, initial_mask): ret = [] for init, s in zip(initial_mask, seq): if init: ret.append(s) return ret def formatted_preds(self, logits, initial_mask, samples, return_class_probs=False, **kwargs): preds = self.logits_to_preds(logits, initial_mask) probs = self.logits_to_probs(logits, initial_mask,return_class_probs) # align back with original input by getting the original word spans spans = [] for sample, sample_preds in zip(samples, preds): word_spans = [] span = None for token, offset, start_of_word in zip( sample.tokenized["tokens"], sample.tokenized["offsets"], sample.tokenized["start_of_word"], ): if start_of_word: # previous word has ended unless it's the very first word if span is not None: word_spans.append(span) span = {"start": offset, "end": offset + len(token)} else: # expand the span to include the subword-token span["end"] = offset + len(token.replace("##", "")) word_spans.append(span) spans.append(word_spans) assert len(preds) == len(probs) == len(spans) res = {"task": "ner", "predictions": []} for preds_seq, probs_seq, sample, spans_seq in zip( preds, probs, samples, spans ): tags, spans_seq = convert_iob_to_simple_tags(preds_seq, spans_seq) seq_res = [] for tag, prob, span in zip(tags, probs_seq, spans_seq): context = sample.clear_text["text"][span["start"] : span["end"]] seq_res.append( { "start": span["start"], "end": span["end"], "context": f"{context}", "label": f"{tag}", "probability": prob, } ) res["predictions"].extend(seq_res) return res class BertLMHead(PredictionHead): def __init__(self, hidden_size, vocab_size, hidden_act="gelu", task_name="lm", **kwargs): super(BertLMHead, self).__init__() self.hidden_size = hidden_size self.hidden_act = hidden_act self.vocab_size = vocab_size self.loss_fct = CrossEntropyLoss(reduction="none", ignore_index=-1) self.num_labels = vocab_size # vocab size # TODO Check if weight init needed! # self.apply(self.init_bert_weights) self.ph_output_type = "per_token" self.model_type = "language_modelling" self.task_name = task_name self.generate_config() # NN Layers # this is the "transform" module in the pytorch-transformers repo self.dense = nn.Linear(self.hidden_size, self.hidden_size) self.transform_act_fn = ACT2FN[self.hidden_act] self.LayerNorm = BertLayerNorm(self.hidden_size, eps=1e-12) # this is the "decoder" in the pytorch-transformers repo # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(hidden_size, vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(vocab_size)) @classmethod def load(cls, pretrained_model_name_or_path): if os.path.exists(pretrained_model_name_or_path) \ and "config.json" in pretrained_model_name_or_path \ and "prediction_head" in pretrained_model_name_or_path: config_file = os.path.exists(pretrained_model_name_or_path) # a) FARM style model_file = cls._get_model_file(config_file) config = json.load(open(config_file)) prediction_head = cls(**config) logger.info("Loading prediction head from {}".format(model_file)) prediction_head.load_state_dict(torch.load(model_file, map_location=torch.device("cpu"))) else: # b) pytorch-transformers style # load weights from bert model # (we might change this later to load directly from a state_dict to generalize for other language models) bert_with_lm = BertForPreTraining.from_pretrained(pretrained_model_name_or_path) # init empty head head = cls(hidden_size=bert_with_lm.config.hidden_size, vocab_size=bert_with_lm.config.vocab_size, hidden_act=bert_with_lm.config.hidden_act) # load weights head.dense.load_state_dict(bert_with_lm.cls.predictions.transform.dense.state_dict()) head.LayerNorm.load_state_dict(bert_with_lm.cls.predictions.transform.LayerNorm.state_dict()) head.decoder.load_state_dict(bert_with_lm.cls.predictions.decoder.state_dict()) head.bias.data.copy_(bert_with_lm.cls.predictions.bias) del bert_with_lm return head def set_shared_weights(self, shared_embedding_weights): self.decoder.weight = shared_embedding_weights def forward(self, hidden_states): hidden_states = self.dense(hidden_states) hidden_states = self.transform_act_fn(hidden_states) hidden_states = self.LayerNorm(hidden_states) lm_logits = self.decoder(hidden_states) + self.bias return lm_logits def logits_to_loss(self, logits, **kwargs): lm_label_ids = kwargs.get(self.label_tensor_name) batch_size = lm_label_ids.shape[0] masked_lm_loss = self.loss_fct( logits.view(-1, self.num_labels), lm_label_ids.view(-1) ) per_sample_loss = masked_lm_loss.view(-1, batch_size).mean(dim=0) return per_sample_loss def logits_to_preds(self, logits, **kwargs): logits = logits.cpu().numpy() lm_label_ids = kwargs.get(self.label_tensor_name).cpu().numpy() lm_preds_ids = logits.argmax(2) # apply mask to get rid of predictions for non-masked tokens assert lm_preds_ids.shape == lm_label_ids.shape lm_preds_ids[lm_label_ids == -1] = -1 lm_preds_ids = lm_preds_ids.tolist() preds = [] # we have a batch of sequences here. we need to convert for each token in each sequence. for pred_ids_for_sequence in lm_preds_ids: preds.append( [self.label_list[int(x)] for x in pred_ids_for_sequence if int(x) != -1] ) return preds def prepare_labels(self, **kwargs): label_ids = kwargs.get(self.label_tensor_name) label_ids = label_ids.cpu().numpy().tolist() labels = [] # we have a batch of sequences here. we need to convert for each token in each sequence. for ids_for_sequence in label_ids: labels.append([self.label_list[int(x)] for x in ids_for_sequence if int(x) != -1]) return labels class NextSentenceHead(TextClassificationHead): """ Almost identical to a TextClassificationHead. Only difference: we can load the weights from a pretrained language model that was saved in the pytorch-transformers style (all in one model). """ @classmethod def load(cls, pretrained_model_name_or_path): if os.path.exists(pretrained_model_name_or_path) \ and "config.json" in pretrained_model_name_or_path \ and "prediction_head" in pretrained_model_name_or_path: config_file = os.path.exists(pretrained_model_name_or_path) # a) FARM style #TODO validate saving/loading after switching to processor.tasks model_file = cls._get_model_file(config_file) config = json.load(open(config_file)) prediction_head = cls(**config) logger.info("Loading prediction head from {}".format(model_file)) prediction_head.load_state_dict(torch.load(model_file, map_location=torch.device("cpu"))) else: # b) pytorch-transformers style # load weights from bert model # (we might change this later to load directly from a state_dict to generalize for other language models) bert_with_lm = BertForPreTraining.from_pretrained(pretrained_model_name_or_path) # init empty head head = cls(layer_dims=[bert_with_lm.config.hidden_size, 2], loss_ignore_index=-1, task_name="nextsentence") # load weights head.feed_forward.feed_forward[0].load_state_dict(bert_with_lm.cls.seq_relationship.state_dict()) del bert_with_lm return head class FeedForwardBlock(nn.Module): """ A feed forward neural network of variable depth and width. """ def __init__(self, layer_dims, **kwargs): # Todo: Consider having just one input argument super(FeedForwardBlock, self).__init__() # If read from config the input will be string n_layers = len(layer_dims) - 1 layers_all = [] # TODO: IS this needed? self.output_size = layer_dims[-1] for i in range(n_layers): size_in = layer_dims[i] size_out = layer_dims[i + 1] layer = nn.Linear(size_in, size_out) layers_all.append(layer) self.feed_forward = nn.Sequential(*layers_all) def forward(self, X): logits = self.feed_forward(X) return logits class QuestionAnsweringHead(PredictionHead): """ A question answering head predicts the start and end of the answer on token level. """ def __init__(self, layer_dims, task_name="question_answering", **kwargs): """ :param layer_dims: dimensions of Feed Forward block, e.g. [768,2], for adjusting to BERT embedding. Output should be always 2 :type layer_dims: List[Int] :param kwargs: placeholder for passing generic parameters :type kwargs: object """ super(QuestionAnsweringHead, self).__init__() self.layer_dims = layer_dims self.feed_forward = FeedForwardBlock(self.layer_dims) self.num_labels = self.layer_dims[-1] self.ph_output_type = "per_token_squad" self.model_type = ( "span_classification" ) # predicts start and end token of answer self.task_name = task_name self.generate_config() def forward(self, X): """ One forward pass through the prediction head model, starting with language model output on token level :param X: Output of language model, of shape [batch_size, seq_length, LM_embedding_dim] :type X: torch.tensor :return: (start_logits, end_logits), logits for the start and end of answer :rtype: tuple[torch.tensor,torch.tensor] """ logits = self.feed_forward(X) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1) end_logits = end_logits.squeeze(-1) return (start_logits, end_logits) def logits_to_loss(self, logits, start_position, end_position, **kwargs): """ Combine predictions and labels to a per sample loss. :param logits: (start_logits, end_logits), logits for the start and end of answer :type logits: tuple[torch.tensor,torch.tensor] :param start_position: tensor with indices of START positions per sample :type start_position: torch.tensor :param end_position: tensor with indices of END positions per sample :type end_position: torch.tensor :param kwargs: placeholder for passing generic parameters :type kwargs: object :return: per_sample_loss: Per sample loss : ) :rtype: torch.tensor """ (start_logits, end_logits) = logits if len(start_position.size()) > 1: start_position = start_position.squeeze(-1) if len(end_position.size()) > 1: end_position = end_position.squeeze(-1) # sometimes the start/end positions (the labels read from file) are outside our model predictions, we ignore these terms ignored_index = start_logits.size(1) start_position.clamp_(0, ignored_index) end_position.clamp_(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index, reduction="none") start_loss = loss_fct(start_logits, start_position) end_loss = loss_fct(end_logits, end_position) per_sample_loss = (start_loss + end_loss) / 2 return per_sample_loss def logits_to_preds(self, logits, **kwargs): """ Get the predicted index of start and end token of the answer. :param logits: (start_logits, end_logits), logits for the start and end of answer :type logits: tuple[torch.tensor,torch.tensor] :param kwargs: placeholder for passing generic parameters :type kwargs: object :return: (start_idx, end_idx), start and end indices for all samples in batch :rtype: (torch.tensor,torch.tensor) """ (start_logits, end_logits) = logits start_logits = start_logits.cpu().numpy() end_logits = end_logits.cpu().numpy() num_batches = start_logits.shape[0] no_answer_sum = start_logits[:,0] + end_logits[:,0] best_answer_sum = np.zeros(num_batches) # check if start or end point to the context. Context starts at segment id == 1 (question comes before at segment ids == 0) segment_ids = kwargs['segment_ids'].data.cpu().numpy() context_start = np.argmax(segment_ids,axis=1) start_proposals = self._get_best_indexes(start_logits, 3) end_proposals = self._get_best_indexes(end_logits, 3) best_indices = np.zeros((num_batches,2),dtype=int) # dimension [:,0] is start, [:,1] is end for i_batch in range(num_batches): # for each sample create mesh of possible start + end combinations and their score as sum of logits mesh_idx = np.meshgrid(start_proposals[i_batch,:],end_proposals[i_batch]) start_comb = mesh_idx[0].flatten() end_comb = mesh_idx[1].flatten() scores = start_logits[i_batch,start_comb] + end_logits[i_batch,end_comb] #iterate over combinations and eliminate impossible ones for idx in np.argsort(scores)[::-1]: start = start_comb[idx] end = end_comb[idx] if(start < context_start[i_batch]): #TODO check for context end as well continue if(end < context_start[i_batch]): continue if(start > end): continue # maybe need check: end - start > max answer len. How to set max answer len? # maybe need check weather start/end idx refers to start of word and not to a ##... continuation best_indices[i_batch,0] = start best_indices[i_batch,1] = end best_answer_sum[i_batch] = scores[idx] break # TODO upweight no answers here? idx_no_answer = no_answer_sum >= best_answer_sum best_indices[idx_no_answer,:] = 0 probabilities = np.zeros(num_batches) for i_batch in range(num_batches): # huggingface takes the softmax of sum of both logits for their n best predictions. # Since we have only one prediction for now, it makes sense to take the mean of both start + end probs probabilities[i_batch] = (expit(start_logits[i_batch, best_indices[i_batch, 0]]) + expit(end_logits[i_batch, best_indices[i_batch, 1]])) / 2 return (best_indices[:,0], best_indices[:,1], probabilities) def prepare_labels(self, start_position, end_position, **kwargs): """ We want to pack labels into a tuple, to be compliant with later functions :param start_position: indices of answer start positions (in token space) :type start_position: torch.tensor :param end_position: indices of answer end positions (in token space) :type end_position: torch.tensor :param kwargs: placeholder for passing generic parameters :type kwargs: object :return: tuplefied positions :rtype: tuple(torch.tensor,torch.tensor) """ return (start_position, end_position) def formatted_preds(self, logits, samples, segment_ids, **kwargs) -> [str]: """ Format predictions into actual answer strings (substrings of context). Used for Inference! :param logits: (start_logits, end_logits), logits for the start and end of answer :type logits: tuple[torch.tensor,torch.tensor] :param samples: converted samples, to get a hook onto the actual text :type samples: FARM.data_handler.samples.Sample :param segment_ids: used to separate question and context tokens :type segment_ids: torch.tensor :param kwargs: placeholder for passing generic parameters :type kwargs: object :return: Answers to the (ultimate) questions :rtype: list(str) """ all_preds = [] # TODO fix inference bug, model.forward is somehow packing logits into list # logits = logits[0] start_idx, end_idx, probs = self.logits_to_preds(logits=logits, segment_ids=segment_ids) # we have char offsets for the context passage in samples.tokenized # we have start and end idx for the selected answer, but with the question tokens in front # lets shift this by the index of first segment ID corresponding to context segment_ids = segment_ids.cpu().numpy() shifts = np.argmax(segment_ids > 0, axis=1) start_idx = start_idx - shifts start_idx[start_idx < 0] = 0 end_idx = end_idx - shifts end_idx[end_idx < 0] = 0 end_idx = end_idx + 1 # slicing up to and including end result = {} result["task"] = "qa" # TODO features and samples might not be aligned. We still sometimes split a sample into multiple features for i, sample in enumerate(samples): pred = {} pred["context"] = sample.clear_text["question_text"] pred["probability"] = probs[i] try: #char offsets or indices might be out of range, then we just return no answer start = sample.tokenized["offsets"][start_idx[i]] end = sample.tokenized["offsets"][end_idx[i]] pred["start"] = start pred["end"] = end answer = " ".join(sample.clear_text["doc_tokens"])[start:end] answer = answer.strip() except Exception as e: answer = "" logger.info(e) pred["label"] = answer all_preds.append(pred) result["predictions"] = all_preds return result def _get_best_indexes(self, logits, n_best_size): """Get the n-best logits from a numpy array.""" idx = np.argsort(logits,axis=1)[:,-n_best_size:] return idx ```
{ "source": "jinnerbichler/home-automflashion", "score": 2 }
#### File: config/custom_components/coffee_state_listener.py ```python import logging from homeassistant.helpers.event import track_state_change _LOGGER = logging.getLogger(__name__) DOMAIN = 'coffee_state_listener' SINGLE_COFFEE_SCRIPT = 'script.coffee_single' DOUBLE_COFFEE_SCRIPT = 'script.coffee_double' INIT_COFFEE_SCRIPT = 'script.coffee_init' FUND_COFFEE_SCRIPT = 'script.coffee_fund' CLOSE_COFFEE_SCRIPT = 'script.coffee_close' BALANCE_COFFEE_SENSOR = 'sensor.coffee_machine_balance' ADDRESSES_COFFEE_SENSOR = 'sensor.coffee_machine_addresses' PROVIDER_TRANSACTION = 'weblink.coffee_provider_transaction' COFFEE_TRANSACTION = 'weblink.coffee_machine_transaction' COFFEE_FLASH_SERVER = 'weblink.coffee_flash_server' PROVIDER_FLASH_SERVER = 'weblink.provider_flash_server' def setup(hass, config): def coffee_state_changed(entity_id, old_state, new_state): _LOGGER.info('{} changed to {}'.format(entity_id, new_state.state)) if new_state.state in ['unknown', 'INITIALISING', 'UNINITIALISED', 'ERROR']: # hide all but init hide_entity(hass, entity_id=INIT_COFFEE_SCRIPT, hidden=False) for e in [SINGLE_COFFEE_SCRIPT, DOUBLE_COFFEE_SCRIPT, FUND_COFFEE_SCRIPT, ADDRESSES_COFFEE_SENSOR, CLOSE_COFFEE_SCRIPT, BALANCE_COFFEE_SENSOR, PROVIDER_TRANSACTION, COFFEE_TRANSACTION, COFFEE_FLASH_SERVER, PROVIDER_FLASH_SERVER]: hide_entity(hass, entity_id=e, hidden=True) elif new_state.state == 'INITIALISED': hide_entity(hass, entity_id=INIT_COFFEE_SCRIPT, hidden=True) hide_entity(hass, entity_id=FUND_COFFEE_SCRIPT, hidden=False) hide_entity(hass, entity_id=BALANCE_COFFEE_SENSOR, hidden=True) hide_entity(hass, entity_id=ADDRESSES_COFFEE_SENSOR, hidden=False) elif new_state.state == 'FUNDED': hide_entity(hass, entity_id=FUND_COFFEE_SCRIPT, hidden=True) hide_entity(hass, entity_id=BALANCE_COFFEE_SENSOR, hidden=False) hide_entity(hass, entity_id=CLOSE_COFFEE_SCRIPT, hidden=False) hide_entity(hass, entity_id=SINGLE_COFFEE_SCRIPT, hidden=False) hide_entity(hass, entity_id=DOUBLE_COFFEE_SCRIPT, hidden=False) hide_entity(hass, entity_id=ADDRESSES_COFFEE_SENSOR, hidden=False) elif new_state.state == 'CLOSING': hide_entity(hass, entity_id=SINGLE_COFFEE_SCRIPT, hidden=True) hide_entity(hass, entity_id=DOUBLE_COFFEE_SCRIPT, hidden=True) elif new_state.state == 'CLOSED': hide_entity(hass, entity_id=INIT_COFFEE_SCRIPT, hidden=False) # hide all but init and transaction for e in [SINGLE_COFFEE_SCRIPT, DOUBLE_COFFEE_SCRIPT, FUND_COFFEE_SCRIPT, ADDRESSES_COFFEE_SENSOR, CLOSE_COFFEE_SCRIPT, BALANCE_COFFEE_SENSOR, COFFEE_TRANSACTION, PROVIDER_TRANSACTION]: hide_entity(hass, entity_id=e, hidden=True) elif new_state.state in ['NO_FUNDS', 'NO_ADDRESSES_LEFT']: for e in [SINGLE_COFFEE_SCRIPT, DOUBLE_COFFEE_SCRIPT, FUND_COFFEE_SCRIPT, INIT_COFFEE_SCRIPT, PROVIDER_TRANSACTION, COFFEE_TRANSACTION]: hide_entity(hass, entity_id=e, hidden=True) hide_entity(hass, entity_id=CLOSE_COFFEE_SCRIPT, hidden=False) hide_entity(hass, entity_id=BALANCE_COFFEE_SENSOR, hidden=False) track_state_change(hass, entity_ids=['sensor.coffee_machine_state'], action=coffee_state_changed) return True def hide_entity(hass, entity_id, hidden): _LOGGER.info("Changing hidden state of {} to {}".format(entity_id, hidden)) entity = hass.states.get(entity_id) if entity: attributes = {k: v for k, v in entity.attributes.items()} attributes['hidden'] = hidden hass.states.set(entity_id, entity.state, attributes, force_update=True) ``` #### File: home-automflashion/iri-node/fabfile.py ```python import time from fabric.api import run, env, task, put, cd, local, sudo env.use_ssh_config = True env.hosts = ['iota_node'] @task(default=True) def iri(): run('mkdir -p /srv/private-tangle/') with cd('/srv/private-tangle'): put('.', '.') run('docker-compose --project-name private-tangle pull') run('docker-compose --project-name private-tangle up -d --force-recreate iri') @task def tools(): with cd('/srv/private-tangle'): put('.', '.') run('docker-compose --project-name private-tangle pull') run('docker-compose --project-name private-tangle up -d --no-deps --force-recreate coordinator explorer') run('docker-compose --project-name private-tangle logs -f --tail 100 coordinator explorer') @task def stop(): with cd('/srv/private-tangle'): run('docker-compose --project-name private-tangle stop') @task def stop_coord(): with cd('/srv/private-tangle'): run('docker-compose --project-name private-tangle stop coordinator') @task def down(): with cd('/srv/private-tangle'): run('docker-compose --project-name private-tangle down -v') @task def logs(): with cd('/srv/private-tangle'): run('docker-compose --project-name private-tangle logs -f --tail 100') @task def logs_coord(): with cd('/srv/private-tangle'): run('docker-compose --project-name private-tangle logs -f --tail 100 coordinator') @task def logs_all(): with cd('/srv/private-tangle'): run('docker-compose logs -f') @task def reset(): # stop services and delete database down() time.sleep(1) run('rm -rf /srv/private-tangle/testnet_db/') # restart all services iri() time.sleep(5) tools() ```
{ "source": "jinnerbichler/neural-politician", "score": 2 }
#### File: neural-politician/intelligence/speech_data.py ```python import pickle import time import urllib from pathlib import Path from typing import List import spacy import feedparser import re import unicodedata import itertools import logging from datetime import datetime from time import mktime import requests import sys from bs4 import BeautifulSoup from collections import defaultdict, namedtuple, OrderedDict, Counter import os from spacy.tokens import Doc import numpy as np from keras.utils import to_categorical, Sequence logging.basicConfig(stream=sys.stdout, level=logging.INFO, format='%(asctime)s %(name)s %(levelname)s: %(message)s') logger = logging.getLogger('scraper') logger.setLevel(logging.DEBUG) DROPBOX_TOKEN = os.getenv('DROPBOX_TOKEN', '') DROPBOX_SESSION_PATH = Path('/neural-politician') \ .joinpath(datetime.now().strftime('%Y-%m-%d_%H:%M:%S')) PARLAMENT_BASE_URL = 'https://www.parlament.gv.at' POLITICIANS = ['kurz', 'kern', 'strache', 'strolz'] SPEECHES_FILE = './data/speeches.pickle' VOCAB_VECTORS_FILE = './data/word_vectors.pickle' DATASET_FILE = './data/dataset.pickle' PERIOD_FEEDS = { 'XXIV': 'https://www.parlament.gv.at/PAKT/PLENAR/filter.psp?view=RSS&RSS=RSS&jsMode=RSS&xdocumentUri=%2FPAKT%2FPLENAR%2Findex.shtml&view=RSS&NRBRBV=NR&GP=XXIV&R_SISTEI=SI&LISTE=Anzeigen&listeId=1070&FBEZ=FP_007', 'XXV': 'https://www.parlament.gv.at/PAKT/PLENAR/filter.psp?view=RSS&RSS=RSS&jsMode=RSS&xdocumentUri=%2FPAKT%2FPLENAR%2Findex.shtml&view=RSS&NRBRBV=NR&GP=XXV&R_SISTEI=SI&LISTE=Anzeigen&listeId=1070&FBEZ=FP_007', 'XXVI': 'https://www.parlament.gv.at/PAKT/PLENAR/filter.psp?view=RSS&RSS=RSS&jsMode=RSS&xdocumentUri=%2FPAKT%2FPLENAR%2Findex.shtml&view=RSS&NRBRBV=NR&GP=XXVI&R_SISTEI=SI&LISTE=Anzeigen&listeId=1070&FBEZ=FP_007', } Sentence = namedtuple('Sentence', ['words', 'politician', 'speech_id', 'sent_id']) WordVector = namedtuple('WordVector', ['id', 'word', 'vector']) def collect(): """ Fetches the RSS feed for each period and extracts protocols of executed sessions. Collected speeches a stored in a pickle file for later usage. """ all_speeches = defaultdict(list) for period, feed_url in PERIOD_FEEDS.items(): logger.info('Processing period {} ({})'.format(period, feed_url)) feed = feedparser.parse(feed_url) fetched_sessions = [] # avoid fetching a session twice for session_iter, session in enumerate(reversed(feed['items']), start=1): # extract session information title = session['title'] published = datetime.fromtimestamp(mktime(session['published_parsed'])) session_url = session['link'] # check if sessions has already been fetched if title in fetched_sessions: continue fetched_sessions.append(title) logger.info('Fetching session "{}" {}/{} ({})'.format( title, session_iter, len(feed['items']), session_url)) # fetch description of session response = requests.get(session_url) soup = BeautifulSoup(response.text, 'html5lib') lists = soup.find_all('li') # check if protocol is available for li in [l for l in lists if 'Stenographisches Protokoll' in str(l)]: for a in [a for a in li.find_all('a') if 'html' in str(a).lower()]: # parse protocol protocol_url = PARLAMENT_BASE_URL + a.attrs['href'] logger.debug('Fetching protocol {}'.format(protocol_url)) sessions_speeches = parse_protocol(protocol_url) # enrich extracted speeches with session information for politication, speeches in sessions_speeches.items(): for speech in speeches: speech.update({'session': {'period': period, 'title': title, 'published': published, 'url': session_url}}) all_speeches[politication].extend(speeches) num_speeches = sum([len(s) for s in all_speeches.values()]) logger.info('Current speech count: {}'.format(num_speeches)) # store speeches with open(SPEECHES_FILE, 'wb') as pickle_file: pickle.dump(all_speeches, pickle_file) # convert to separate text file split() num_speeches = sum([len(s) for s in all_speeches.values()]) logger.info('Total speech count: {}'.format(num_speeches)) def parse_protocol(url): """ :param url: Url of created protocol :return: dictionary, which maps a politician to a list of speeches """ # fetch protocol response = requests.get(url) response_text = response.text.replace('&shy;', '') # remove hyphens soup = BeautifulSoup(response_text, 'html5lib') speeches = defaultdict(list) # first n sections a part of the table of content for section_iter in itertools.count(start=3): # extract relevant pargraphs section = soup.find('div', class_='WordSection{}'.format(section_iter)) if not section: break first_paragraph = section.find('p', class_='StandardRB') other_paragraphs = section.find_all('p', class_='MsoNormal') # extract speech speech = first_paragraph.get_text() if first_paragraph else '' for paragraph in other_paragraphs: speech = '{} {}'.format(speech, paragraph.get_text()) speech = unicodedata.normalize('NFKC', speech) speech = speech.replace('\n', ' ') # extract name and role prefix = re.match(r'^(.*?): ', speech) prefix = prefix.group() if prefix else '' speech = speech.replace(prefix, '') prefix = prefix.strip() match = re.match(r'^([\w\-]+) (.*?)[(|:]', prefix) role = name = None if match: role = match.group(1).strip() name = match.group(2).strip() party = re.search(r'\((.*?)\)', prefix) party = party.group(1) if party else None # remove parenthesis in speech speech = re.sub(r'\([^)]*\)', '', speech) speech = re.sub(' +', ' ', speech) # remove double spaces section_iter += 1 if not role or not name or not speech: continue # collect speeches of targeted politicians for politician in POLITICIANS: # 'Kurzmann' collides with 'Kurz' if politician in name.lower() and 'Kurzmann' not in name: logger.debug('Found speech (name: {}, role: {}, party: {})'.format( name, role, party)) speeches[politician].append({'name': name, 'role': role, 'party': party, 'speech': speech}) return speeches def split(): """ Loads pickleds speeches and splits them in to separate textfiles (i.e. on per politician). """ with open(SPEECHES_FILE, 'rb') as pickle_file: speeches = pickle.load(pickle_file) for politician, speeches in speeches.items(): filename = './data/{}.txt'.format(politician) with open(filename, 'wt', encoding='utf8') as speeches_file: num_char = 0 num_words = 0 for speech in speeches: # write header and text of speech to file session = speech['session'] header = '# {period:} - {title:} am {published:} ({url:})\n'.format( **session) speeches_file.write(header) # write speech speech_text = speech['speech'].replace('- - ', '') # parenthesis artifcat speeches_file.write(speech_text + '\n\n') # count metrics num_char += len(speech['speech']) num_words += len(speech['speech'].split()) logger.info('Metrics of {}: chars: {}, words: {}'.format( politician, num_char, num_words)) def read_speeches(politician): # type: (str) -> List(str) single_speeches = [] with open('./data/{}.txt'.format(politician), 'rt', encoding='utf8') as speeches_file: for line in speeches_file.readlines(): # ignore comments and empty lines if line.startswith('#') or len(line) < 2: continue # clean speech text speech = re.sub(r'\[[^)]*\]', '', line) # remove [] speech = speech.replace('\\', '') # replace @ sign speech = speech.replace('@', 'at') # replace @ sign speech = speech.replace('&', 'und') # replace and sigh # speech = speech.replace('?', '.') # replace question mark # speech = speech.replace('!', '.') # replace exlamation mark speech = speech.replace('\n', '') # remove new line speech = speech.replace('(', '').replace(')', '') # remove last parenthesis speech = speech.replace('%', 'Prozent') # replace percentage sign speech = speech.replace('_i', 'I') # replace gender-related underscores speech = speech.replace('*', '') # remove invalid star speech = speech.replace('+', '') # remove invalid plus speech = speech.replace('’', '') # replace appostrove speech = speech.replace('‘', '') # replace appostrove speech = speech.replace('`', '') # replace appostrove speech = speech.replace('“', '\'') # replace appostrove speech = speech.replace('„', '\'') # replace appostrove speech = speech.replace('–', '-') # replace proper hyphen speech = speech.replace('‐', '-') # replace proper hyphen speech = speech.replace('§', '') # remove paragrap sign speech = speech.replace('‚', ',') # replace poper comma speech = speech.replace(';', ',') # replace poper semi colon speech = speech.replace('ê', 'e') # remove invalid derivative of e speech = speech.replace('é', 'e') # remove invalid derivative of e speech = speech.replace('à', 'a') # remove invalid derivative of a speech = speech.replace('á', 'a') # remove invalid derivative of a speech = speech.replace('í', 'i') # remove invalid derivative of i speech = speech.replace('ć', 'c') # remove invalid derivative of c speech = speech.replace('ğ', 'g') # remove invalid derivative of g speech = speech.replace('ń', 'n') # remove invalid derivative of c speech = speech.replace('š', 's') # remove invalid derivative of s speech = speech.replace('ž', 'z') # remove invalid derivative of z speech = speech.replace('!', '.') speech = speech.replace('?', '.') speech = re.sub(' +', ' ', speech) # remove consecutive spaces single_speeches.append(speech) return single_speeches def extract_sentences(try_cached=True): # type: (bool) -> List(Sentence) sentences = [] sents_file = Path('./data/sentences.pickle') if Path(sents_file).exists() and try_cached: logger.info('Loading sentences from cache %s', sents_file) with open(str(sents_file), 'rb') as pickle_file: sentences = pickle.load(pickle_file) logger.info('Loaded %d sentences from cache', len(sentences)) else: nlp = spacy.load('de') for politician in POLITICIANS: logger.info('Extracting sentences of %s...', politician) speeches = read_speeches(politician=politician) for speech_id, speech in enumerate(speeches): doc = nlp(speech) # type: Doc sent_id = 0 for sent in doc.sents: # check if valid sentence if sent.text.startswith('-') or len(sent) < 3: continue sent_id += 1 words = [e.text for e in sent] sentences.append(Sentence(words=words, politician=politician, sent_id=sent_id, speech_id=speech_id)) logger.info('Extracted sentences. Current count %d', len(sentences)) with open(str(sents_file), 'wb') as pickle_file: pickle.dump(sentences, pickle_file) logger.info('Saved extracted sentences to %s', str(sents_file)) return sentences def merge(): # extract all single speeches all_speeches = [] for politician in POLITICIANS: speeches = read_speeches(politician=politician) all_speeches.extend(speeches) # merge speeches logger.info('Merging %d speeches', len(all_speeches)) merged_speeches = ' '.join(all_speeches) # write to file with open('./data/merged.txt', 'wt', encoding='utf8') as speeches_file: speeches_file.write(merged_speeches) return merged_speeches def extract_word_vectors(sentences, try_cached=True): # check if already extracted if Path(VOCAB_VECTORS_FILE).exists() and try_cached: with open(VOCAB_VECTORS_FILE, 'rb') as pickle_file: return pickle.load(pickle_file) # creating dictionary words_speeches = {w.lower() for s in sentences for w in s.words} # download word vectors if necessary local_vec_file = Path('wiki.de.vec').absolute() if not local_vec_file.exists(): logger.info('Downloading word vectors. This might take a while... ') download_word_vectors(str(local_vec_file)) # extract necessary word vectors word_vectors = OrderedDict() vec_iter = 0 with open(str(local_vec_file), 'r') as vector_file: for line in vector_file: columns = line.split() if len(columns) == 301: # word plus vector word = columns[0] if word in words_speeches: if word in word_vectors: # word may appear twice continue vector = [float(v) for v in columns[-300:]] word_vec = WordVector(id=len(word_vectors), word=word, vector=vector) word_vectors[word] = word_vec vec_iter += 1 if vec_iter % 50000 == 0: logger.info('Checked {} words. Matches: {}'.format( vec_iter, len(word_vectors))) logger.info('Matches: {}. Not found: {}'.format( len(word_vectors), len(words_speeches) - len(word_vectors))) # store extracted vectors with open(VOCAB_VECTORS_FILE, 'wb') as pickle_file: pickle.dump(word_vectors, pickle_file) logger.info( 'Wrote {} word vectors to {}'.format(len(word_vectors), VOCAB_VECTORS_FILE)) return word_vectors def download_word_vectors(local_file): def reporthook(count, block_size, total_size): global start_time if count == 0: start_time = time.time() return duration = time.time() - start_time progress_size = int(count * block_size) speed = int(progress_size / (1024 * duration)) percent = int(count * block_size * 100 / total_size) sys.stdout.write("\r...%d%%, %d MB, %d KB/s, %d seconds passed" % (percent, progress_size / (1024 * 1024), speed, duration)) sys.stdout.flush() logger.info('Downloading word vectors. This might take a while... ') wordvec_url = 'https://s3-us-west-1.amazonaws.com/fasttext-vectors/wiki.de.vec' urllib.request.urlretrieve(wordvec_url, local_file, reporthook) class SpeechSequence(Sequence): def __init__(self, sentences, output_size, batch_size, word_vectors, sequence_len, oov_token=None): self.batch_size = batch_size self.sequence_length = sequence_len self.oov_token = oov_token or '<UNK>' self.raw_sentences = None self.input_encoded = None self.sequences = None self.next_words = None self.corpus_size = None self.input_words = None self.output_encoded = None self.words_raw = [w.lower() for sent in sentences for w in sent.words] # build input vocabulary logger.debug('Building input vocabulary...') self.word_vectors = word_vectors.copy() self.word_vectors[self.oov_token] = WordVector(word=self.oov_token, id=len(word_vectors), vector=[0.0] * 300) self.input_vocab = {w: wv.id for w, wv in self.word_vectors.items()} self.input_word_ids = {v: k for k, v in self.input_vocab.items()} self.input_vocab_size = len(self.word_vectors) self.input_unk_id = len(word_vectors) # tokenize and build OUTPUT vocabulary logger.debug('Building output vocabulary...') word_counts_raw = Counter(self.words_raw) most_com = word_counts_raw.most_common(output_size - 1) # oov token will be added output_w = sorted([tup[0] for tup in most_com]) self.output_vocab = {w: i for i, w in enumerate(output_w) if i < output_size} self.output_vocab[self.oov_token] = len(self.output_vocab) # last element is oov self.output_word_ids = {v: k for k, v in self.output_vocab.items()} self.output_unk_id = self.output_vocab[self.oov_token] self.output_vocab_size = len(self.output_vocab) self.output_word_counts = {w: c for w, c in most_com} output_unks = sum([v for k, v in word_counts_raw.items() if k not in self.output_vocab]) self.output_word_counts[self.oov_token] = output_unks logger.debug('Tokenizied OUTPUT words. Vocab size: %d, Corpus size: %d, Unks %d', self.output_vocab_size, len(self.words_raw), output_unks) # encoding words logger.debug('Encoding words...') input_words = [] for word in self.words_raw: input_word = word if word in self.word_vectors else self.oov_token input_words.append(input_word) # count words in vocabulary self.input_word_counts = Counter(input_words) self.input_vocab_size = len(self.input_word_counts) input_corpus_size = len(input_words) logger.debug('Tokenizied INPUT words. Vocab size: %d, Corpus size: %d, Unks %d', self.input_vocab_size, input_corpus_size, self.input_word_counts[self.oov_token]) def save(self, path=None): path = path or DATASET_FILE with open(path, 'wb') as pickle_file: pickle.dump(self, pickle_file) @staticmethod def load(path): path = path or DATASET_FILE with open(path, 'rb') as pickle_file: return pickle.load(pickle_file) def adapt(self, sentences): # encode words words = [w.lower() for sent in sentences for w in sent.words] # filter single letter words def map_words(word): if len(word) == 1 and word not in ['.', ',']: return self.oov_token return word words = list(map(map_words, words)) logger.info('Adapting {} words'.format(len(words))) self.input_encoded = [self.input_vocab.get(w, self.input_unk_id) for w in words] self.output_encoded = [self.output_vocab.get(w, self.output_unk_id) for w in words] # create word sequences input_sequences = list() output_sequences = list() logger.debug('Creating training sequences...') for i in range(self.sequence_length, len(self.input_encoded)): input_sequence = self.input_encoded[i - self.sequence_length:i + 1] input_sequences.append(input_sequence) output_sequence = self.output_encoded[i - self.sequence_length:i + 1] output_sequences.append(output_sequence) logger.debug('Created sequences. Total Sequences: %d' % len(input_sequences)) # split into x and y elements input_sequences = np.array(input_sequences) output_sequences = np.array(output_sequences) self.sequences, self.next_words = input_sequences[:, :-1], output_sequences[:, -1] def in_to_out(self, word_id): word = self.input_word_ids.get(word_id, self.oov_token) return self.output_vocab.get(word, self.output_unk_id) def out_to_in(self, word_id): word = self.output_word_ids.get(word_id, self.oov_token) return self.input_vocab.get(word, self.input_unk_id) def decode_input(self, encoded): return [self.input_word_ids[e] for e in encoded] def decode_input_string(self, encoded): return ' '.join(self.decode_input(encoded)) def decode_output(self, encoded): return [self.output_word_ids[e] for e in encoded] def decode_output_string(self, encoded): return ' '.join(self.decode_output(encoded)) def encode_output(self, words): return [self.output_vocab.get(w.lower(), self.output_unk_id) for w in words] def encode_input(self, words): return [self.input_vocab.get(w.lower(), self.input_unk_id) for w in words] def __len__(self): return int(np.ceil(len(self.sequences) / float(self.batch_size))) def __getitem__(self, idx): batch_x = self.sequences[idx * self.batch_size:(idx + 1) * self.batch_size] next_words = self.next_words[idx * self.batch_size:(idx + 1) * self.batch_size] batch_y = to_categorical(next_words, num_classes=self.output_vocab_size) return batch_x, batch_y def convert_vocab(): with open('./data/dataset.pickle', 'rb') as pickle_file: dataset = pickle.load(pickle_file) # type: SpeechSequence vocab = {'input': dataset.input_vocab, 'output': dataset.output_vocab} with open('./data/raw_vocab.pickle', 'wb') as pickle_file: pickle.dump(vocab, pickle_file) logger.info('Converted vobabulary') if __name__ == '__main__': # collect data from open data portal # collect() # splits data into text files for each politician # pre_process() # merges all speeches into one text file # merge() # extracts sentences and assign them to politicians sentences = extract_sentences(try_cached=True) word_vecs = extract_word_vectors(sentences) # # dataset = SpeechSequence(sentences=sentences, output_size=5000, batch_size=50, # word_vectors=word_vecs, sequence_len=15, oov_token='<UNK>') # dataset.adapt(sentences=sentences) # convert_vocab() ```
{ "source": "jinniahn/curl_parser", "score": 3 }
#### File: curl_parser/curl_parser/parser.py ```python from pprint import pprint from argparse import ArgumentParser from urllib.parse import parse_qsl from http import cookies import shlex def parse(cmd): # split cmd = shlex.split(cmd)[1:] # make argument parser to parse parser = ArgumentParser() parser.add_argument("-H", dest="headers", action="append") parser.add_argument('url') parser.add_argument('--data', dest="data") parser.add_argument('--compressed', action='store_true') try: args = parser.parse_args(cmd) ret = vars(args) except Exception as e: pprint(e) return None # fix(??) if args.data and args.data[0] == '$': args.data = args.data[1:] if args.data: ret['data'] = parse_qsl(args.data) headers = {} for i in args.headers: k, v = tuple(map(str.strip, i.split(':', 1))) if k in headers: headers[k] = list(headers[k]) headers[k].append(v) else: headers[k] = v # cookie if "Cookie" in headers: C = cookies.SimpleCookie() C.load(headers['Cookie']) c = dict(( (k,C[k].value) for k in C )) headers['Cookie'] = None ret["cookies"] = c ret["headers"] = headers return ret ```
{ "source": "jinniahn/jsh", "score": 4 }
#### File: jsh/jsh/loghandler.py ```python class LineHandler(): '''Print Log line by line''' def __init__(self): self.last_line = None self.first = True def write(self, msg): if self.first: self.first = False self.on_start() lines = msg.split('\n') if lines: self.last_line = lines[-1] lines = lines[:-1] for l in lines: self.on_line(l) def close(self): if self.last_line: self.on_line(l) self.on_end() def on_line(self, line): pass def on_start(self): pass def on_end(self): pass ```
{ "source": "jinnig/airbyte", "score": 2 }
#### File: source-intercom/source_intercom/source.py ```python import time from abc import ABC from datetime import datetime from typing import Any, Iterable, List, Mapping, MutableMapping, Optional, Tuple import requests from airbyte_cdk.logger import AirbyteLogger from airbyte_cdk.sources import AbstractSource from airbyte_cdk.sources.streams import Stream from airbyte_cdk.sources.streams.http import HttpStream from airbyte_cdk.sources.streams.http.auth import HttpAuthenticator, TokenAuthenticator class IntercomStream(HttpStream, ABC): url_base = "https://api.intercom.io/" # https://developers.intercom.com/intercom-api-reference/reference#rate-limiting queries_per_minute = 1000 # 1000 queries per minute == 16.67 req per sec primary_key = "id" data_fields = ["data"] def __init__( self, authenticator: HttpAuthenticator, start_date: str = None, **kwargs, ): self.start_date = start_date super().__init__(authenticator=authenticator) def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: """ Abstract method of HttpStream - should be overwritten. Returning None means there are no more pages to read in response. """ next_page = response.json().get("pages", {}).get("next") if next_page: return {"starting_after": next_page["starting_after"]} else: return None def request_params(self, next_page_token: Mapping[str, Any] = None, **kwargs) -> MutableMapping[str, Any]: params = {} if next_page_token: params.update(**next_page_token) return params def request_headers(self, **kwargs) -> Mapping[str, Any]: return {"Accept": "application/json"} def read_records(self, *args, **kwargs) -> Iterable[Mapping[str, Any]]: try: yield from super().read_records(*args, **kwargs) except requests.exceptions.HTTPError as e: error_message = e.response.text if error_message: self.logger.error(f"Stream {self.name}: {e.response.status_code} " f"{e.response.reason} - {error_message}") raise e def get_data(self, response: requests.Response) -> List: data = response.json() for data_field in self.data_fields: if data and isinstance(data, dict): data = data.get(data_field, []) if isinstance(data, list): data = data elif isinstance(data, dict): data = [data] return data def parse_response(self, response: requests.Response, stream_state: Mapping[str, Any], **kwargs) -> Iterable[Mapping]: data = self.get_data(response) for record in data: yield record # This is probably overkill because the request itself likely took more # than the rate limit, but keep it just to be safe. time.sleep(60.0 / self.queries_per_minute) class IncrementalIntercomStream(IntercomStream, ABC): cursor_field = "updated_at" def filter_by_state(self, stream_state: Mapping[str, Any] = None, record: Mapping[str, Any] = None) -> Iterable: """ Endpoint does not provide query filtering params, but they provide us updated_at field in most cases, so we used that as incremental filtering during the slicing. """ if not stream_state or record[self.cursor_field] >= stream_state.get(self.cursor_field): yield record def parse_response(self, response: requests.Response, stream_state: Mapping[str, Any], **kwargs) -> Iterable[Mapping]: record = super().parse_response(response, stream_state, **kwargs) for record in record: updated_at = record.get(self.cursor_field) if updated_at: record[self.cursor_field] = datetime.fromtimestamp( record[self.cursor_field] ).isoformat() # convert timestamp to datetime string yield from self.filter_by_state(stream_state=stream_state, record=record) def get_updated_state(self, current_stream_state: MutableMapping[str, Any], latest_record: Mapping[str, Any]) -> Mapping[str, any]: """ This method is called once for each record returned from the API to compare the cursor field value in that record with the current state we then return an updated state object. If this is the first time we run a sync or no state was passed, current_stream_state will be None. """ current_stream_state = current_stream_state or {} current_stream_state_date = current_stream_state.get(self.cursor_field, self.start_date) latest_record_date = latest_record.get(self.cursor_field, self.start_date) return {self.cursor_field: max(current_stream_state_date, latest_record_date)} class ChildStreamMixin: parent_stream_class: Optional[IntercomStream] = None def stream_slices(self, sync_mode, **kwargs) -> Iterable[Optional[Mapping[str, any]]]: for item in self.parent_stream_class(authenticator=self.authenticator, start_date=self.start_date).read_records( sync_mode=sync_mode ): yield {"id": item["id"]} yield from [] class Admins(IntercomStream): """Return list of all admins. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-admins Endpoint: https://api.intercom.io/admins """ data_fields = ["admins"] def path(self, **kwargs) -> str: return "admins" class Companies(IncrementalIntercomStream): """Return list of all companies. API Docs: https://developers.intercom.com/intercom-api-reference/reference#iterating-over-all-companies Endpoint: https://api.intercom.io/companies/scroll """ def next_page_token(self, response: requests.Response) -> Optional[Mapping[str, Any]]: """For reset scroll needs to iterate pages untill the last. Another way need wait 1 min for the scroll to expire to get a new list for companies segments.""" data = response.json().get("data") if data: return {"scroll_param": response.json()["scroll_param"]} else: return None def path(self, **kwargs) -> str: return "companies/scroll" class CompanySegments(ChildStreamMixin, IncrementalIntercomStream): """Return list of all company segments. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-attached-segments-1 Endpoint: https://api.intercom.io/companies/<id>/segments """ parent_stream_class = Companies def path(self, stream_slice: Mapping[str, Any] = None, **kwargs) -> str: return f"/companies/{stream_slice['id']}/segments" class Conversations(IncrementalIntercomStream): """Return list of all conversations. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-conversations Endpoint: https://api.intercom.io/conversations """ data_fields = ["conversations"] def path(self, **kwargs) -> str: return "conversations" class ConversationParts(ChildStreamMixin, IncrementalIntercomStream): """Return list of all conversation parts. API Docs: https://developers.intercom.com/intercom-api-reference/reference#retrieve-a-conversation Endpoint: https://api.intercom.io/conversations/<id> """ data_fields = ["conversation_parts", "conversation_parts"] parent_stream_class = Conversations def path(self, stream_slice: Mapping[str, Any] = None, **kwargs) -> str: return f"/conversations/{stream_slice['id']}" class Segments(IncrementalIntercomStream): """Return list of all segments. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-segments Endpoint: https://api.intercom.io/segments """ data_fields = ["segments"] def path(self, **kwargs) -> str: return "segments" class Contacts(IncrementalIntercomStream): """Return list of all contacts. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-contacts Endpoint: https://api.intercom.io/contacts """ def path(self, **kwargs) -> str: return "contacts" class DataAttributes(IntercomStream): primary_key = "name" def path(self, **kwargs) -> str: return "data_attributes" class CompanyAttributes(DataAttributes): """Return list of all data attributes belonging to a workspace for companies. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-data-attributes Endpoint: https://api.intercom.io/data_attributes?model=company """ def request_params(self, **kwargs) -> MutableMapping[str, Any]: return {"model": "company"} class ContactAttributes(DataAttributes): """Return list of all data attributes belonging to a workspace for contacts. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-data-attributes Endpoint: https://api.intercom.io/data_attributes?model=contact """ def request_params(self, **kwargs) -> MutableMapping[str, Any]: return {"model": "contact"} class Tags(IntercomStream): """Return list of all tags. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-tags-for-an-app Endpoint: https://api.intercom.io/tags """ primary_key = "name" def path(self, **kwargs) -> str: return "tags" class Teams(IntercomStream): """Return list of all teams. API Docs: https://developers.intercom.com/intercom-api-reference/reference#list-teams Endpoint: https://api.intercom.io/teams """ primary_key = "name" data_fields = ["teams"] def path(self, **kwargs) -> str: return "teams" class SourceIntercom(AbstractSource): """ Source Intercom fetch data from messaging platform. """ def check_connection(self, logger, config) -> Tuple[bool, any]: authenticator = TokenAuthenticator(token=config["access_token"]) try: url = f"{IntercomStream.url_base}/tags" auth_headers = {"Accept": "application/json", **authenticator.get_auth_header()} session = requests.get(url, headers=auth_headers) session.raise_for_status() return True, None except requests.exceptions.RequestException as e: return False, e def streams(self, config: Mapping[str, Any]) -> List[Stream]: AirbyteLogger().log("INFO", f"Using start_date: {config['start_date']}") auth = TokenAuthenticator(token=config["access_token"]) return [ Admins(authenticator=auth, **config), Companies(authenticator=auth, **config), CompanySegments(authenticator=auth, **config), Conversations(authenticator=auth, **config), ConversationParts(authenticator=auth, **config), Contacts(authenticator=auth, **config), CompanyAttributes(authenticator=auth, **config), ContactAttributes(authenticator=auth, **config), Segments(authenticator=auth, **config), Tags(authenticator=auth, **config), Teams(authenticator=auth, **config), ] ``` #### File: source-s3/unit_tests/test_fileformatparser.py ```python import os from abc import ABC, abstractmethod from pathlib import Path from typing import Any, List, Mapping import pyarrow as pa import pytest from airbyte_cdk import AirbyteLogger from smart_open import open as smart_open from source_s3.source_files_abstract.fileformatparser import CsvParser, FileFormatParser LOGGER = AirbyteLogger() SAMPLE_DIRECTORY = Path(__file__).resolve().parent.joinpath("sample_files/") class TestFileFormatParserStatics: @pytest.mark.parametrize( # testing all datatypes as laid out here: https://json-schema.org/understanding-json-schema/reference/type.html "input_json_type, output_pyarrow_type", [ ("string", pa.large_string()), ("number", pa.float64()), ("integer", pa.int64()), ("object", pa.large_string()), ("array", pa.large_string()), ("boolean", pa.bool_()), ("null", pa.large_string()), ], ) def test_json_type_to_pyarrow_type(self, input_json_type, output_pyarrow_type): # Json -> PyArrow direction LOGGER.info(f"asserting that JSON type '{input_json_type}' converts to PyArrow type '{output_pyarrow_type}'...") assert FileFormatParser.json_type_to_pyarrow_type(input_json_type) == output_pyarrow_type @pytest.mark.parametrize( # testing all datatypes as laid out here: https://arrow.apache.org/docs/python/api/datatypes.html "input_pyarrow_types, output_json_type", [ ((pa.null(),), "string"), # null type ((pa.bool_(),), "boolean"), # boolean type ( (pa.int8(), pa.int16(), pa.int32(), pa.int64(), pa.uint8(), pa.uint16(), pa.uint32(), pa.uint64()), "integer", ), # integer types ((pa.float16(), pa.float32(), pa.float64(), pa.decimal128(5, 10), pa.decimal256(3, 8)), "number"), # number types ((pa.time32("s"), pa.time64("ns"), pa.timestamp("ms"), pa.date32(), pa.date64()), "string"), # temporal types ((pa.binary(), pa.large_binary()), "string"), # binary types ((pa.string(), pa.utf8(), pa.large_string(), pa.large_utf8()), "string"), # string types ((pa.list_(pa.string()), pa.large_list(pa.timestamp("us"))), "string"), # array types ((pa.map_(pa.string(), pa.float32()), pa.dictionary(pa.int16(), pa.list_(pa.string()))), "string"), # object types ], ) def test_json_type_to_pyarrow_type_reverse(self, input_pyarrow_types, output_json_type): # PyArrow -> Json direction (reverse=True) for typ in input_pyarrow_types: LOGGER.info(f"asserting that PyArrow type '{typ}' converts to JSON type '{output_json_type}'...") assert FileFormatParser.json_type_to_pyarrow_type(typ, reverse=True) == output_json_type @pytest.mark.parametrize( # if expecting fail, put pyarrow_schema as None "json_schema, pyarrow_schema", [ ( {"a": "string", "b": "number", "c": "integer", "d": "object", "e": "array", "f": "boolean", "g": "null"}, { "a": pa.large_string(), "b": pa.float64(), "c": pa.int64(), "d": pa.large_string(), "e": pa.large_string(), "f": pa.bool_(), "g": pa.large_string(), }, ), ({"single_column": "object"}, {"single_column": pa.large_string()}), ({}, {}), ({"a": "NOT A REAL TYPE", "b": "another fake type"}, {"a": pa.large_string(), "b": pa.large_string()}), (["string", "object"], None), # bad input type ], ) def test_json_schema_to_pyarrow_schema(self, json_schema, pyarrow_schema): # Json -> PyArrow direction if pyarrow_schema is not None: assert FileFormatParser.json_schema_to_pyarrow_schema(json_schema) == pyarrow_schema else: with pytest.raises(Exception) as e_info: FileFormatParser.json_schema_to_pyarrow_schema(json_schema) LOGGER.debug(str(e_info)) @pytest.mark.parametrize( # if expecting fail, put json_schema as None "pyarrow_schema, json_schema", [ ( { "a": pa.utf8(), "b": pa.float16(), "c": pa.uint32(), "d": pa.map_(pa.string(), pa.float32()), "e": pa.bool_(), "f": pa.date64(), }, {"a": "string", "b": "number", "c": "integer", "d": "string", "e": "boolean", "f": "string"}, ), ({"single_column": pa.int32()}, {"single_column": "integer"}), ({}, {}), ({"a": "NOT A REAL TYPE", "b": "another fake type"}, {"a": "string", "b": "string"}), (["string", "object"], None), # bad input type ], ) def test_json_schema_to_pyarrow_schema_reverse(self, pyarrow_schema, json_schema): # PyArrow -> Json direction (reverse=True) if json_schema is not None: assert FileFormatParser.json_schema_to_pyarrow_schema(pyarrow_schema, reverse=True) == json_schema else: with pytest.raises(Exception) as e_info: FileFormatParser.json_schema_to_pyarrow_schema(pyarrow_schema, reverse=True) LOGGER.debug(str(e_info)) class AbstractTestFileFormatParser(ABC): """ Prefix this class with Abstract so the tests don't run here but only in the children """ @property @abstractmethod def test_files(self) -> List[Mapping[str, Any]]: """return a list of test_file dicts in structure: [ {"fileformatparser": CsvParser(format, master_schema), "filepath": "...", "num_records": 5, "inferred_schema": {...}, line_checks:{}, fails: []}, {"fileformatparser": CsvParser(format, master_schema), "filepath": "...", "num_records": 16, "inferred_schema": {...}, line_checks:{}, fails: []} ] note: line_checks index is 1-based to align with row numbers """ def _get_readmode(self, test_name, test_file): LOGGER.info(f"testing {test_name}() with {test_file.get('test_alias', test_file['filepath'].split('/')[-1])} ...") return "rb" if test_file["fileformatparser"].is_binary else "r" def test_get_inferred_schema(self): for test_file in self.test_files: with smart_open(test_file["filepath"], self._get_readmode("get_inferred_schema", test_file)) as f: if "test_get_inferred_schema" in test_file["fails"]: with pytest.raises(Exception) as e_info: test_file["fileformatparser"].get_inferred_schema(f) LOGGER.debug(str(e_info)) else: assert test_file["fileformatparser"].get_inferred_schema(f) == test_file["inferred_schema"] def test_stream_records(self): for test_file in self.test_files: with smart_open(test_file["filepath"], self._get_readmode("stream_records", test_file)) as f: if "test_stream_records" in test_file["fails"]: with pytest.raises(Exception) as e_info: [print(r) for r in test_file["fileformatparser"].stream_records(f)] LOGGER.debug(str(e_info)) else: records = [r for r in test_file["fileformatparser"].stream_records(f)] assert len(records) == test_file["num_records"] for index, expected_record in test_file["line_checks"].items(): assert records[index - 1] == expected_record class TestCsvParser(AbstractTestFileFormatParser): @property def test_files(self) -> List[Mapping[str, Any]]: return [ { # basic 'normal' test "fileformatparser": CsvParser( format={"filetype": "csv"}, master_schema={ "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_1.csv"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": {}, "fails": [], }, { # tests custom CSV parameters (odd delimiter, quote_char, escape_char & newlines in values in the file) "test_alias": "custom csv parameters", "fileformatparser": CsvParser( format={"filetype": "csv", "delimiter": "^", "quote_char": "|", "escape_char": "!", "newlines_in_values": True}, master_schema={ "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_2_params.csv"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": {}, "fails": [], }, { # tests encoding: Big5 "test_alias": "encoding: Big5", "fileformatparser": CsvParser( format={"filetype": "csv", "encoding": "big5"}, master_schema={"id": "integer", "name": "string", "valid": "boolean"} ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_3_enc_Big5.csv"), "num_records": 8, "inferred_schema": {"id": "integer", "name": "string", "valid": "boolean"}, "line_checks": { 3: { "id": 3, "name": "變形金剛,偽裝的機器人", "valid": False, } }, "fails": [], }, { # tests encoding: Arabic (Windows 1256) "test_alias": "encoding: Arabic (Windows 1256)", "fileformatparser": CsvParser( format={"filetype": "csv", "encoding": "windows-1256"}, master_schema={"id": "integer", "notes": "string", "valid": "boolean"}, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_4_enc_Arabic.csv"), "num_records": 2, "inferred_schema": {"id": "integer", "notes": "string", "valid": "boolean"}, "line_checks": { 1: { "id": 1, "notes": "البايت الجوي هو الأفضل", "valid": False, } }, "fails": [], }, { # tests compression: gzip "test_alias": "compression: gzip", "fileformatparser": CsvParser( format={"filetype": "csv"}, master_schema={ "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_5.csv.gz"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": { 7: { "id": 7, "name": "xZhh1Kyl", "valid": False, "code": 10, "degrees": -9.2, "birthday": "2021-07-14", "last_seen": "2021-07-14 15:30:09.225145", } }, "fails": [], }, { # tests compression: bz2 "test_alias": "compression: bz2", "fileformatparser": CsvParser( format={"filetype": "csv"}, master_schema={ "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_7_bz2.csv.bz2"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": { 7: { "id": 7, "name": "xZhh1Kyl", "valid": False, "code": 10, "degrees": -9.2, "birthday": "2021-07-14", "last_seen": "2021-07-14 15:30:09.225145", } }, "fails": [], }, { # tests extra columns in master schema "test_alias": "extra columns in master schema", "fileformatparser": CsvParser( format={"filetype": "csv"}, master_schema={ "EXTRA_COLUMN_1": "boolean", "EXTRA_COLUMN_2": "number", "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, ), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_1.csv"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": {}, "fails": [], }, { # tests missing columns in master schema # TODO: maybe this should fail read_records, but it does pick up all the columns from file despite missing from master schema "test_alias": "missing columns in master schema", "fileformatparser": CsvParser(format={"filetype": "csv"}, master_schema={"id": "integer", "name": "string"}), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_1.csv"), "num_records": 8, "inferred_schema": { "id": "integer", "name": "string", "valid": "boolean", "code": "integer", "degrees": "number", "birthday": "string", "last_seen": "string", }, "line_checks": {}, "fails": [], }, { # tests empty file, SHOULD FAIL INFER & STREAM RECORDS "test_alias": "empty csv file", "fileformatparser": CsvParser(format={"filetype": "csv"}, master_schema={}), "filepath": os.path.join(SAMPLE_DIRECTORY, "csv/test_file_6_empty.csv"), "num_records": 0, "inferred_schema": {}, "line_checks": {}, "fails": ["test_get_inferred_schema", "test_stream_records"], }, ] ```
{ "source": "jinnig/superset", "score": 2 }
#### File: superset/charts/post_processing.py ```python from typing import Any, Callable, Dict, Optional, Union import pandas as pd from superset.utils.core import DTTM_ALIAS, extract_dataframe_dtypes, get_metric_name def sql_like_sum(series: pd.Series) -> pd.Series: """ A SUM aggregation function that mimics the behavior from SQL. """ return series.sum(min_count=1) def pivot_table( result: Dict[Any, Any], form_data: Optional[Dict[str, Any]] = None ) -> Dict[Any, Any]: """ Pivot table. """ for query in result["queries"]: data = query["data"] df = pd.DataFrame(data) form_data = form_data or {} if form_data.get("granularity") == "all" and DTTM_ALIAS in df: del df[DTTM_ALIAS] metrics = [get_metric_name(m) for m in form_data["metrics"]] aggfuncs: Dict[str, Union[str, Callable[[Any], Any]]] = {} for metric in metrics: aggfunc = form_data.get("pandas_aggfunc") or "sum" if pd.api.types.is_numeric_dtype(df[metric]): if aggfunc == "sum": aggfunc = sql_like_sum elif aggfunc not in {"min", "max"}: aggfunc = "max" aggfuncs[metric] = aggfunc groupby = form_data.get("groupby") or [] columns = form_data.get("columns") or [] if form_data.get("transpose_pivot"): groupby, columns = columns, groupby df = df.pivot_table( index=groupby, columns=columns, values=metrics, aggfunc=aggfuncs, margins=form_data.get("pivot_margins"), ) # Re-order the columns adhering to the metric ordering. df = df[metrics] # Display metrics side by side with each column if form_data.get("combine_metric"): df = df.stack(0).unstack().reindex(level=-1, columns=metrics) # flatten column names df.columns = [" ".join(column) for column in df.columns] # re-arrange data into a list of dicts data = [] for i in df.index: row = {col: df[col][i] for col in df.columns} row[df.index.name] = i data.append(row) query["data"] = data query["colnames"] = list(df.columns) query["coltypes"] = extract_dataframe_dtypes(df) query["rowcount"] = len(df.index) return result def list_unique_values(series: pd.Series) -> str: """ List unique values in a series. """ return ", ".join(set(str(v) for v in pd.Series.unique(series))) pivot_v2_aggfunc_map = { "Count": pd.Series.count, "Count Unique Values": pd.Series.nunique, "List Unique Values": list_unique_values, "Sum": pd.Series.sum, "Average": pd.Series.mean, "Median": pd.Series.median, "Sample Variance": lambda series: pd.series.var(series) if len(series) > 1 else 0, "Sample Standard Deviation": ( lambda series: pd.series.std(series) if len(series) > 1 else 0, ), "Minimum": pd.Series.min, "Maximum": pd.Series.max, "First": lambda series: series[:1], "Last": lambda series: series[-1:], "Sum as Fraction of Total": pd.Series.sum, "Sum as Fraction of Rows": pd.Series.sum, "Sum as Fraction of Columns": pd.Series.sum, "Count as Fraction of Total": pd.Series.count, "Count as Fraction of Rows": pd.Series.count, "Count as Fraction of Columns": pd.Series.count, } def pivot_table_v2( # pylint: disable=too-many-branches result: Dict[Any, Any], form_data: Optional[Dict[str, Any]] = None, ) -> Dict[Any, Any]: """ Pivot table v2. """ for query in result["queries"]: data = query["data"] df = pd.DataFrame(data) form_data = form_data or {} if form_data.get("granularity_sqla") == "all" and DTTM_ALIAS in df: del df[DTTM_ALIAS] # TODO (betodealmeida): implement metricsLayout metrics = [get_metric_name(m) for m in form_data["metrics"]] aggregate_function = form_data.get("aggregateFunction", "Sum") groupby = form_data.get("groupbyRows") or [] columns = form_data.get("groupbyColumns") or [] if form_data.get("transposePivot"): groupby, columns = columns, groupby df = df.pivot_table( index=groupby, columns=columns, values=metrics, aggfunc=pivot_v2_aggfunc_map[aggregate_function], margins=True, ) # The pandas `pivot_table` method either brings both row/column # totals, or none at all. We pass `margin=True` to get both, and # remove any dimension that was not requests. if not form_data.get("rowTotals"): df.drop(df.columns[len(df.columns) - 1], axis=1, inplace=True) if not form_data.get("colTotals"): df = df[:-1] # Compute fractions, if needed. If `colTotals` or `rowTotals` are # present we need to adjust for including them in the sum if aggregate_function.endswith(" as Fraction of Total"): total = df.sum().sum() df = df.astype(total.dtypes) / total if form_data.get("colTotals"): df *= 2 if form_data.get("rowTotals"): df *= 2 elif aggregate_function.endswith(" as Fraction of Columns"): total = df.sum(axis=0) df = df.astype(total.dtypes).div(total, axis=1) if form_data.get("colTotals"): df *= 2 elif aggregate_function.endswith(" as Fraction of Rows"): total = df.sum(axis=1) df = df.astype(total.dtypes).div(total, axis=0) if form_data.get("rowTotals"): df *= 2 # Re-order the columns adhering to the metric ordering. df = df[metrics] # Display metrics side by side with each column if form_data.get("combineMetric"): df = df.stack(0).unstack().reindex(level=-1, columns=metrics) # flatten column names df.columns = [" ".join(column) for column in df.columns] # re-arrange data into a list of dicts data = [] for i in df.index: row = {col: df[col][i] for col in df.columns} row[df.index.name] = i data.append(row) query["data"] = data query["colnames"] = list(df.columns) query["coltypes"] = extract_dataframe_dtypes(df) query["rowcount"] = len(df.index) return result post_processors = { "pivot_table": pivot_table, "pivot_table_v2": pivot_table_v2, } ```
{ "source": "jinningz/courseraInteractivePython", "score": 4 }
#### File: jinningz/courseraInteractivePython/Project2_Guess_the_number.py ```python import simplegui import random import math number_range = 100 # helper function to start and restart the game def new_game(): # initialize global variables used in your code here global secret_number, number_range, number_guesses, max_guesses max_guesses = math.ceil(math.log(number_range, 2)) number_guesses = 1 print "" print "New game. Range is from 0 to", number_range print "Number of remaining guesses is ", int(max_guesses) secret_number = random.randrange(0, number_range) # define event handlers for control panel def range100(): # button that changes the range to [0,100) and starts a new game global secret_number, number_range number_range = 100 new_game() def range1000(): # button that changes the range to [0,1000) and starts a new game global secret_number, number_range number_range = 1000 new_game() def input_guess(guess): # main game logic goes here global secret_number, number_guesses, max_guesses guess = int(guess) print "" print "Guess was ", guess print "Number of remaining guesses is ", int(max_guesses - number_guesses) if number_guesses < max_guesses: if guess < secret_number: print "Higher!" elif guess > secret_number: print "Lower!" else: print "Correct!" new_game() number_guesses += 1 else: if guess == secret_number: print "Correct!" else: print "You ran out of guesses. The number was", secret_number new_game() # create frame f = simplegui.create_frame("Guess the number", 200, 200) # register event handlers for control elements and start frame f.add_button("Range is [0, 100)", range100, 200) f.add_button("Range is [0, 1000)", range1000, 200) f.add_button("Restart game", new_game) inp = f.add_input('Enter a guess', input_guess, 50) # call new_game new_game() # always remember to check your completed program against the grading rubric ```
{ "source": "jinniuai/dash-fasta", "score": 3 }
#### File: dash-fasta/components/table.py ```python from dash import html from utils.functions import formatter_2_decimals def make_dash_table(df): body = [] header = [] for column in df.columns: header.append(html.Th(column)) for index, row in df.iterrows(): html_row = [] for i in range(len(row)): html_row.append(html.Td(formatter_2_decimals(row[i]))) body.append(html.Tr(html_row)) tHead = html.Thead(html.Tr(header)) tBody = html.Tbody(body) table = html.Table([tHead, tBody]) return table ``` #### File: jinniuai/dash-fasta/dashApp.py ```python import dash import dash_bootstrap_components as dbc from dash import dcc, html import dash_admin_components as dac import flask from utils.external_assets import ROOT, EXTERNAL_STYLESHEETS, FONT_AWSOME from ui.main_content import layout import datetime import os def create_dash_app(requests_pathname_prefix: str = None) -> dash.Dash: # ============================================================================= # Dash App and Flask Server # ============================================================================= server = flask.Flask(__name__) #server.secret_key = os.environ.get('secret_key', 'secret') app = dash.Dash( name=__name__, server=server, #routes_pathname_prefix=requests_pathname_prefix, requests_pathname_prefix=requests_pathname_prefix, assets_folder=ROOT+"/assets", suppress_callback_exceptions=True, external_stylesheets=[ dbc.themes.CYBORG, FONT_AWSOME, #EXTERNAL_STYLESHEETS ], meta_tags=[ {"name": "viewport", "content": "width=device-width, initial-scale=1"} ] ) #app.scripts.config.serve_locally = False #dcc._js_dist[0]['external_url'] = 'https://cdn.plot.ly/plotly-basic-latest.min.js' app.layout = layout return app apps = create_dash_app(requests_pathname_prefix="/dash/") ``` #### File: dashPages/basic_boxes/callbacks.py ```python from main import apps from dash.dependencies import Input, Output, State from components.example_plots import plot_scatter # Update figure on slider change @apps.callback( Output('box-graph', 'figure'), [Input('controlbar-slider', 'value')] ) def update_box_graph(value): return plot_scatter(value) ```
{ "source": "jinniuai/easytrader", "score": 2 }
#### File: easytrader/config/client.py ```python def create(broker): if broker == "yh": return YH if broker == "ht": return HT if broker == "gj": return GJ if broker == "gf": return GF if broker == "ths": return CommonConfig if broker == "wk": return WK if broker == "htzq": return HTZQ raise NotImplementedError class CommonConfig: DEFAULT_EXE_PATH: str = "" TITLE = "网上股票交易系统5.0" # 交易所类型。 深圳A股、上海A股 TRADE_STOCK_EXCHANGE_CONTROL_ID = 1003 # 撤销界面上, 全部撤销按钮 TRADE_CANCEL_ALL_ENTRUST_CONTROL_ID = 30001 TRADE_SECURITY_CONTROL_ID = 1032 TRADE_PRICE_CONTROL_ID = 1033 TRADE_AMOUNT_CONTROL_ID = 1034 TRADE_SUBMIT_CONTROL_ID = 1006 TRADE_MARKET_TYPE_CONTROL_ID = 1541 COMMON_GRID_CONTROL_ID = 1047 COMMON_GRID_LEFT_MARGIN = 10 COMMON_GRID_FIRST_ROW_HEIGHT = 30 COMMON_GRID_ROW_HEIGHT = 16 BALANCE_MENU_PATH = ["查询[F4]", "资金股票"] POSITION_MENU_PATH = ["查询[F4]", "资金股票"] TODAY_ENTRUSTS_MENU_PATH = ["查询[F4]", "当日委托"] TODAY_TRADES_MENU_PATH = ["查询[F4]", "当日成交"] BALANCE_CONTROL_ID = 1308 POP_DIALOD_TITLE_CONTROL_ID = 1365 GRID_DTYPE = { "操作日期": str, "委托编号": str, "申请编号": str, "合同编号": str, "证券代码": str, "股东代码": str, "资金帐号": str, "资金帐户": str, "发生日期": str, } CANCEL_ENTRUST_ENTRUST_FIELD = "合同编号" CANCEL_ENTRUST_GRID_LEFT_MARGIN = 50 CANCEL_ENTRUST_GRID_FIRST_ROW_HEIGHT = 30 CANCEL_ENTRUST_GRID_ROW_HEIGHT = 16 AUTO_IPO_SELECT_ALL_BUTTON_CONTROL_ID = 1098 AUTO_IPO_BUTTON_CONTROL_ID = 1006 AUTO_IPO_MENU_PATH = ["新股申购", "批量新股申购"] AUTO_IPO_NUMBER = '申购数量' class YH(CommonConfig): DEFAULT_EXE_PATH = r"C:\双子星-中国银河证券\Binarystar.exe" BALANCE_GRID_CONTROL_ID = 1308 GRID_DTYPE = { "操作日期": str, "委托编号": str, "申请编号": str, "合同编号": str, "证券代码": str, "股东代码": str, "资金帐号": str, "资金帐户": str, "发生日期": str, } AUTO_IPO_MENU_PATH = ["新股申购", "一键打新"] class HT(CommonConfig): DEFAULT_EXE_PATH = r"C:\htzqzyb2\xiadan.exe" BALANCE_CONTROL_ID_GROUP = { "资金余额": 1012, "冻结资金": 1013, "可用金额": 1016, "可取金额": 1017, "股票市值": 1014, "总资产": 1015, } GRID_DTYPE = { "操作日期": str, "委托编号": str, "申请编号": str, "合同编号": str, "证券代码": str, "股东代码": str, "资金帐号": str, "资金帐户": str, "发生日期": str, } AUTO_IPO_MENU_PATH = ["新股申购", "批量新股申购"] class GJ(CommonConfig): DEFAULT_EXE_PATH = "C:\\全能行证券交易终端\\xiadan.exe" GRID_DTYPE = { "操作日期": str, "委托编号": str, "申请编号": str, "合同编号": str, "证券代码": str, "股东代码": str, "资金帐号": str, "资金帐户": str, "发生日期": str, } AUTO_IPO_MENU_PATH = ["新股申购", "新股批量申购"] class GF(CommonConfig): DEFAULT_EXE_PATH = "C:\\gfzqrzrq\\xiadan.exe" TITLE = "核新网上交易系统" GRID_DTYPE = { "操作日期": str, "委托编号": str, "申请编号": str, "合同编号": str, "证券代码": str, "股东代码": str, "资金帐号": str, "资金帐户": str, "发生日期": str, } AUTO_IPO_MENU_PATH = ["新股申购", "批量新股申购"] class WK(HT): pass class HTZQ(CommonConfig): DEFAULT_EXE_PATH = r"c:\\海通证券委托\\xiadan.exe" BALANCE_CONTROL_ID_GROUP = { "资金余额": 1012, "可用金额": 1016, "可取金额": 1017, "总资产": 1015, } AUTO_IPO_NUMBER = '可申购数量' ```
{ "source": "jinniuai/qlib", "score": 3 }
#### File: tests/dataset_tests/test_datalayer.py ```python import unittest import numpy as np from qlib.data import D from qlib.tests import TestAutoData class TestDataset(TestAutoData): def testCSI300(self): close_p = D.features(D.instruments("csi300"), ["$close"]) size = close_p.groupby("datetime").size() cnt = close_p.groupby("datetime").count()["$close"] size_desc = size.describe(percentiles=np.arange(0.1, 1.0, 0.1)) cnt_desc = cnt.describe(percentiles=np.arange(0.1, 1.0, 0.1)) print(size_desc) print(cnt_desc) self.assertLessEqual(size_desc.loc["max"], 305, "Excessive number of CSI300 constituent stocks") self.assertGreaterEqual(size_desc.loc["80%"], 290, "Insufficient number of CSI300 constituent stocks") self.assertLessEqual(cnt_desc.loc["max"], 305, "Excessive number of CSI300 constituent stocks") # FIXME: Due to the low quality of data. Hard to make sure there are enough data # self.assertEqual(cnt_desc.loc["80%"], 300, "Insufficient number of CSI300 constituent stocks") def testClose(self): close_p = D.features(D.instruments("csi300"), ["Ref($close, 1)/$close - 1"]) close_desc = close_p.describe(percentiles=np.arange(0.1, 1.0, 0.1)) print(close_desc) self.assertLessEqual(abs(close_desc.loc["90%"][0]), 0.1, "Close value is abnormal") self.assertLessEqual(abs(close_desc.loc["10%"][0]), 0.1, "Close value is abnormal") # FIXME: The yahoo data is not perfect. We have to # self.assertLessEqual(abs(close_desc.loc["max"][0]), 0.2, "Close value is abnormal") # self.assertGreaterEqual(close_desc.loc["min"][0], -0.2, "Close value is abnormal") def testJinniuai(self): close_p = D.features(D.instruments("csi300"), ["$close"]) size = close_p.groupby("datetime").size() cnt = close_p.groupby("datetime").count()["$close"] size_desc = size.describe(percentiles=np.arange(0.1, 1.0, 0.1)) cnt_desc = cnt.describe(percentiles=np.arange(0.1, 1.0, 0.1)) print(size_desc) print(cnt_desc) self.assertLessEqual(size_desc.loc["max"], 305, "Excessive number of CSI300 constituent stocks") self.assertGreaterEqual(size_desc.loc["80%"], 290, "Insufficient number of CSI300 constituent stocks") self.assertLessEqual(cnt_desc.loc["max"], 305, "Excessive number of CSI300 constituent stocks") # FIXME: Due to the low quality of data. Hard to make sure there are enough data # self.assertEqual(cnt_desc.loc["80%"], 300, "Insufficient number of CSI300 constituent stocks") close_p = D.features(D.instruments("csi300"), ["Ref($close, 1)/$close - 1"]) close_desc = close_p.describe(percentiles=np.arange(0.1, 1.0, 0.1)) print(close_desc) self.assertLessEqual(abs(close_desc.loc["90%"][0]), 0.1, "Close value is abnormal") self.assertLessEqual(abs(close_desc.loc["10%"][0]), 0.1, "Close value is abnormal") # FIXME: The yahoo data is not perfect. We have to # self.assertLessEqual(abs(close_desc.loc["max"][0]), 0.2, "Close value is abnormal") # self.assertGreaterEqual(close_desc.loc["min"][0], -0.2, "Close value is abnormal") if __name__ == "__main__": unittest.main() ```
{ "source": "JinnLynn/alfred-workflows", "score": 3 }
#### File: src/chinese-tv-epg/epg.py ```python import sys, os, re import json import warnings import re from datetime import datetime, timedelta import alfred alfred.setDefaultEncodingUTF8() import bs4 from pprint import pprint __version__ = '1.1' _baseurl = 'http://tv.cntv.cn/epg' _default_favs = ['cctv1', 'cctv2', 'cctv3'] def parseWebPage(url, **kwargs): try: res = alfred.request.get(url, **kwargs) content = res.getContent() # HACK: 获取节目列表的网页HTML TAG 错误可能造成beautiful soup解析死循环 # 需手动修改 content = re.sub(r'<a>\n', '</a>\n', content) # 禁止显示BeautifulSoup警告 with warnings.catch_warnings(): warnings.simplefilter("ignore") return bs4.BeautifulSoup(content, fromEncoding='utf-8') except Exception, e: raise e @alfred.cached('channels-list') def fetchChannels(): soup = parseWebPage(_baseurl) channels = {} for item in soup.select('div.md_left_right'): dl_tag = item.find('dl') # 城市 if dl_tag.attrs.get('id', '') == 'cityList': channel_tags = item.select('div.lv3 p a') else: channel_tags = item.select('dd a') for c_tag in channel_tags: chl_title = c_tag.get_text().strip() chl_id = c_tag.attrs['rel'][0] channels.update({chl_id:chl_title}) return channels def fetchChannelEPG(channel, date, cache_name): date_str = date.strftime('%Y-%m-%d') @alfred.cached(cache_name, _get_check=lambda d: d['date']==date_str) def _fetch(): data = { 'action' : 'epg-list', 'date' : date_str, 'channel' : channel } schedules = [] soup = parseWebPage( 'http://tv.cntv.cn/index.php', data=data, referer=_baseurl ) epg_list = soup.select('dl dd') schedules = [] for item in epg_list: # 已播放的 a_tags = item.select('a') sche_info = (a_tags[0] if a_tags else item).get_text().strip() first_space = sche_info.find(' ') if first_space < 0: continue schedules.append({ 'time' : sche_info[0:first_space].strip(), 'show' : sche_info[first_space:].strip() }) if not schedules: return return {'date':date_str, 'epg':schedules} return _fetch() def fetchChannelEPGToday(channel): cache_name = '{}-today'.format(channel) date = datetime.now() return fetchChannelEPG(channel, date, cache_name) def fetchChannelEPGTomorrow(channel): cache_name = '{}-tomorrow'.format(channel) date = datetime.now() + timedelta(days=1) return fetchChannelEPG(channel, date, cache_name) def getChannelList(): return fetchChannels() def getChannelTitle(channel): channels = getChannelList() if channels.has_key(channel): return channels[channel] # 获取正在和下一个将要播放的节目 def getCurrentAndNextProgram(channel): schedules = fetchChannelEPGToday(channel) if not schedules: return {}, {} schedules = schedules['epg'] current = {} next = {} schedules = sorted(schedules, key=lambda s:s['time']) now = datetime.now() for item in schedules: try: time = item['time'].split(':') hour = int(time[0]) minute = int(time[1]) if (hour==now.hour and minute>now.minute) or hour>now.hour: next = item break current = item except Exception, e: raise e return current, next def getFavChannels(): favs = alfred.config.get('fav') channels = getChannelList() if isinstance(favs, list): # 去除不在列表的频道 favs = filter(lambda c: c in channels.keys(), favs) alfred.config.set(fav=favs) return favs # 还没有收藏频道 favs = _default_favs alfred.config.set(fav=favs) return favs def isChannelFaved(channel): return channel in getFavChannels() def showLive(): favs = getFavChannels() if not favs: alfred.exit() feedback = alfred.Feedback() for channel in favs: chl_title = getChannelTitle(channel) if not chl_title: continue cur, next = getCurrentAndNextProgram(channel) title = '{}'.format(chl_title) if cur: title = '{} 正在播放: {}'.format(chl_title, cur['show']) subtitle = '' if next: subtitle = '下一个节目: {time} {show}'.format(**next) feedback.addItem( title = title, subtitle = subtitle, autocomplete = 'epg {}'.format(channel), valid = False ) feedback.addItem( title = '显示所有电视频道', autocomplete = 'all', valid = False ) feedback.addItem( title = '显示收藏的电视频道', autocomplete = 'fav', valid = False ) feedback.output() def showAllChannles(): channels = getChannelList() title_orded = sorted(channels.values(), key=lambda t: t.lower()) def title_id(title): for k,v in channels.iteritems(): if v==title: return k favs = getFavChannels() feedback = alfred.Feedback() for chl_title in title_orded: chl_id = title_id(chl_title) subtitle = '已收藏' if chl_id in favs else '' feedback.addItem( title = chl_title, subtitle = subtitle, autocomplete = 'epg {}'.format(chl_id), valid = False ) feedback.output() # 显示某频道或收藏的频道列表 def showEPG(): channel = alfred.argv(2) if channel: return showChannleEPG(channel) favs = getFavChannels() if not favs: alfred.exitWithFeedback(title='你还没有收藏的频道') feedback = alfred.Feedback() for chl_id in favs: current, next = getCurrentAndNextProgram(chl_id) subtitle = '正在播放: {show}'.format(**current) if current else '' feedback.addItem( title = getChannelTitle(chl_id), subtitle = subtitle, arg = chl_id, autocomplete = 'epg {}'.format(chl_id), valid = False ) feedback.output() # 显示频道节目单 def showChannleEPG(channel): chl_title = getChannelTitle(channel) if not chl_title: alfred.exitWithFeedback(title='未找到频道信息') schedules = fetchChannelEPGToday(channel) if not schedules: alfred.exitWithFeedback(title='未找到频道的节目单') feedback = alfred.Feedback() date_str = datetime.now().strftime('%Y-%m-%d') now_time = datetime.now().strftime('%H:%M') is_faved = isChannelFaved(channel) feedback.addItem( title = '{} {} 节目单 现在时间: {}'.format(chl_title, date_str, now_time), subtitle = '已收藏,选择这项可以取消收藏。' if is_faved else '未收藏,选择这项可以收藏', arg = 'toggle-fav {}'.format(channel) ) for item in schedules['epg']: feedback.addItem( title = '{time} {show}'.format(**item) ) feedback.output() def main(): cmd_map = { 'live' : lambda: showLive(), 'epg' : lambda: showEPG(), 'fav' : lambda: showEPG(), 'all' : lambda: showAllChannles(), } cmd = alfred.argv(1) if not cmd or cmd.lower() not in cmd_map.keys(): cmd = 'live' cmd_map[cmd.lower()]() if __name__ == '__main__': main() ``` #### File: download-station/rdl/__init__.py ```python import sys reload(sys) sys.setdefaultencoding('utf8') import os, base64, urllib from urlparse import urlparse __version__ = '1.1.0' def rdlTypeToDesc(t): type_desc = { 'ed2k' : 'eMule', 'emule' : 'eMule', 'qqdl' : 'QQ旋风', 'thunder' : '迅雷', 'flashget' : '快车', 'magnet' : '磁力链' } for s in ['http', 'https', 'ftp', 'ftps', 'sftp']: type_desc.update({s:s.upper()}) t = t.lower() if t in type_desc.keys(): return type_desc[t] return 'UNKNOWN' class RealDownloadLink(object): def __init__(self): pass def buildResult(self, url, urltype='UNKNOWN', real=None, filename=None, filesize=None): return { 'type' : urltype, 'original' : url, 'real' : real if real else url, 'filename' : urllib.unquote(filename) if filename else '-', 'filesize' : filesize if filesize else '-' } def parse(self, url): parse_map = { 'ed2k' : lambda: self.parseEd2k(url), 'thunder' : lambda: self.parseThunder(url), 'flashget' : lambda: self.parseFlashget(url), 'qqdl' : lambda: self.parseQQdl(url) } scheme = urlparse(url).scheme if scheme in parse_map.keys(): return parse_map[scheme]() elif scheme in ['http', 'https', 'ftp', 'ftps', 'sftp']: return self.parseNormal(url) elif scheme in ['magnet']: return self.buildResult(url, scheme) return self.buildResult(url) def parseNormal(self, url): uri = urlparse(url) filename = os.path.basename(uri.path) return self.buildResult(url, uri.scheme, url, filename) def parseEd2k(self, url): name = '' size = '' try: parts = url.split('|') name = parts[2] size = self.humanReadable(parts[3]) return self.buildResult(url, 'emule', url, name, size) except: return self.buildResult(url, 'emule') def parseThunder(self, url): # 格式: thunder://CODEPART # CODEPART = 'AA真实地址ZZ'的base64编码 uri = urlparse(url) try: real = uri.netloc # base64解码 real = base64.b64decode(real) #去除前后的AA ZZ real = real[2:-2] res = self.parse(real) res['original'] = url res['type'] = 'thunder' return res except: return self.buildResult(url, 'thunder') def parseFlashget(self, url): # 格式: flashget://CODEPART&HASHCODE # CODEPART = '[FLASHGET]真实地址[FLASHGET]'的base64编码 # HASHCODE 无用 可有可无 uri = urlparse(url) try: real = uri.netloc # 去除HASHCODE if real.rfind('&') >= 0: real = real[0:real.rfind('&')] # base64解码 real = base64.b64decode(real) # 去除 [FLASHGET] [FLASHGET] real = real[10:-10] res = self.parse(real) res['original'] = url res['type'] = 'flashget' return res except: return self.buildResult(url, 'flashget') def parseQQdl(self, url): # 格式: qqdl://CODEPART # CODEPART = 真实地址的base64编码 uri = urlparse(url) try: # base64解码 real = base64.b64decode(uri.netloc) res = self.parse(real) res['original'] = url res['type'] = 'qqdl' return res except: return self.buildResult(url, 'qqdl') def humanReadable(self, byte): if isinstance(byte, (str, unicode)): byte = int(byte) if byte.isdigit() else 0 size = byte / 1024.0 unit = 'KB' if size > 1024: size = size / 1024.0 unit = 'MB' if size > 1024: size = size / 1024.0 unit = 'GB' return '{:.2f}{}'.format(size, unit) def main(): import alfred url = sys.argv[1] if not url: alfred.exitWithFeedback(title='UNKNOWN') rdl = RealDownloadLink() res = rdl.parse(url) feedback = alfred.Feedback() res.update({'type_desc' : rdlTypeToDesc(res['type'])}) feedback.addItem( title = res['real'], subtitle = '{type_desc} {filename} {filesize}'.format(**res), arg = res['real'] ) feedback.output() if __name__ == '__main__': main() ``` #### File: src/lyric/lyric.py ```python import sys reload(sys) sys.setdefaultencoding('utf8') import os, urllib, urllib2, subprocess, json, re, codecs from base64 import b64encode, b64decode from xml.dom import minidom import alfred from pprint import pprint __version__ = '1.0.1' class Lyric(object): def __init__(self): pass def run(self): cmd_map = { 'search' : lambda: self.search(), 'output-clean' : lambda: self.outputCleanContent(), 'download' : lambda: self.download(), 'save-to-itunes' : lambda: self.saveLyricToiTunes() } cmd = alfred.argv(1) if not cmd: cmd = 'search' if cmd in cmd_map.keys(): cmd_map[cmd]() def search(self): title = alfred.argv(2) artist = alfred.argv(3) if title is None: self.outputiTunesPlayingSong() res, data = self.fetchLyricList(title, artist) if not res: alfred.exitWithFeedback( title = data, subtitle = "Format: lrc TITLE ARTIST e.g. lrc 'Heal The World' '<NAME>'" ) feedback = alfred.Feedback() for lrc in data: feedback.addItem( title = '{artist} - {title}'.format(**lrc), arg = lrc['id'] ) feedback.output() def outputiTunesPlayingSong(self): res, data = self.fetchiTunesPlaying() if not res or not data['title']: return title = '{title}' if not data['artist'] else '{artist} - {title}' title = title.format(**data) alfred.exitWithFeedback( title = title, subtitle = 'iTunes current playing track', autocomplete = '"{title}" "{artist}"'.format(**data), valid = False ) def fetchiTunesPlaying(self): try: res = subprocess.check_output(['osascript', 'itunes.applescript']) if not res: return False, '' info = map(lambda s: s.strip(), res.split(',')) code = int(info[0]) if code != 0: return False, info[1] return True, {'artist': info[1], 'title' : info[2]} except Exception, e: return False, '{}'.format(e) def fetchLyricList(self, title, artist = ''): if not title: return False, 'Song title missing.' if artist is None: artist = '' # 缓存结构 { 'query' : {'title': '', 'artist': ''}, 'list' : [] } cache = alfred.cache.get('lyric-list') if cache and cache['query']['title'] == title and cache['query']['artist'] == artist: return True, cache['list'] try: paras = { 'Title' : subprocess.check_output(['php', '-f', 'ttplayer.php', 'sh', title]), 'Artist' : subprocess.check_output(['php', '-f', 'ttplayer.php', 'sh', artist]), 'Flags' : 0 } url = 'http://lrccnc.ttplayer.com/dll/lyricsvr.dll?sh?{}'.format(urllib.urlencode(paras)) res = urllib2.urlopen(url) dom = minidom.parse(res) lrcs = dom.documentElement.getElementsByTagName('lrc') if len(lrcs) == 0: return False, 'Lyric is non-existent.' data = [] for lrc in lrcs: data.append({ 'id' : lrc.getAttribute('id'), 'artist' : lrc.getAttribute('artist'), 'title' : lrc.getAttribute('title') }) cache = { 'query' : {'title' : title, 'artist' : artist}, 'list' : data } alfred.cache.set('lyric-list', cache) return True, data except Exception, e: return False, '{}'.format(e) def fetchLyricContent(self, lyric_id): if not lyric_id: return False, 'Lyric is non-existent.' # 缓存结构 { 'id' : '', 'content' : ''} cache = alfred.cache.get('lyric-content') if cache and cache['id'] == lyric_id: return True, cache['content'] info = self.getLyricInfoFromCache(lyric_id) if info is None: return False, 'Lyric is non-existent.' try: paras = { 'id' : info['id'], 'code' : subprocess.check_output(['php', '-f', 'ttplayer.php', 'dl', info['id'], info['artist'], info['title']]) } #! Id必须在Code之前 不能用urllib.urlencode url = 'http://lrccnc.ttplayer.com/dll/lyricsvr.dll?dl?Id={id}&Code={code}'.format(**paras) res = urllib2.urlopen(url) content = res.read() cache = { 'id' : lyric_id, 'content' : content } alfred.cache.set('lyric-content', cache) return True, content except Exception, e: return False, '{}'.format(e) def cleanLyricTimeline(self, lrc): new_lrc = '' last_line_empty = False for line in lrc.splitlines(): while re.search(r'^\[(.+?)\]', line): line = re.sub(r'^\[(.+?)\]', '', line) # 去除QQ line = re.sub(r'(.*)QQ[:: ](.*)', '', line) line = line.strip() if last_line_empty and not line: continue last_line_empty = True if not line else False new_lrc += '{}\n'.format(line.strip()) return new_lrc.strip() def getLyricInfoFromCache(self, lrc_id): cache = alfred.cache.get('lyric-list') if not cache: return for lrc in cache['list']: if lrc['id'] == lrc_id: return lrc def getCleanLyricContent(self): lrc_id = alfred.argv(2) res, data = self.fetchLyricContent(lrc_id) if not res: return return self.cleanLyricTimeline(data) def outputCleanContent(self): alfred.exit(self.getCleanLyricContent()) def download(self): lrc_id = alfred.argv(2) info = self.getLyricInfoFromCache(lrc_id) if info is None: alfred.exit('Lyric is non-existent.') res, data = self.fetchLyricContent(lrc_id) if not res: alfred.exit(data) try: filename = '{title}.lrc' if not info['artist'] else '{artist} - {title}.lrc' dl_path = os.path.expanduser('~/Downloads') dl_path = os.path.join(dl_path, filename.format(**info)) with codecs.open(dl_path, 'w', 'utf-8') as f: f.write(data) if os.path.exists(dl_path): subprocess.check_output(['open', os.path.dirname(dl_path)]) alfred.exit('Lyric downloaded.') except Exception, e: alfred.exit('Download lyric fail. {}'.format(e)) def saveLyricToiTunes(self): lrc = self.getCleanLyricContent() if not lrc: alfred.exit('Fail: lyric is non-existent.') # lrc = 'test' res = subprocess.check_output('osascript itunes.applescript lyric "{}"'.format(lrc), shell=True) info = map(lambda s: s.strip(), res.split(',')) code = int(info[0]) if code != 0: alfred.exit('Fail: {}'.format(info[1])) alfred.exit('Lyric saved to {} - {}.'.format(info[1], info[2])) if __name__ == '__main__': Lyric().run() ``` #### File: src/yyets/yyets.py ```python import os, sys import time, json, warnings from base64 import b64encode, b64decode from pprint import pprint import alfred alfred.setDefaultEncodingUTF8() import bs4 __version__ = '2.1.0' _base_host = 'http://www.yyets.com/' _fb_return = lambda: getReturnLastQueryFeedbackItem() _fb_return_top = lambda: alfred.Item(title='返回', valid=False, autocomplete=' ') _fb_no_found = lambda: getReturnLastQueryFeedbackItem('没有找到想要的内容') _fb_no_logined = lambda: alfred.Item(title='需要登录才能查看', subtitle='选择设置用户名和密码', valid=False, autocomplete='setting ') # 资源模版 _res_tpl = { 'id' : 0, 'title' : '', 'img' : '', 'page' : 0, 'info' : '', 'files' : [] } _res_file_tpl = { 'id' : 0, 'info' : '', 'type' : '', 'format' : '', 'filename' : '', 'filesize' : '', 'emule' : '', 'magnet' : '', 'baidu' : '', 'update_date' : '' } def recordQuery(): current = sys.argv[1:] queries = alfred.cache.get('record-query', {}) last = queries.get('current', '') # 不同时才记录 if current != last: queries.update( current = current, last = last ) alfred.cache.set('record-query', queries, 600) def getReturnLastQueryFeedbackItem(title='返回', subtitle='回到上一个操作'): last_query = alfred.cache.get('record-query', {}).get('last', []) return alfred.Item( title = title, subtitle = subtitle, valid = False, autocomplete = ' '.join(last_query) ) def login(): alfred.cache.delete('cookie') usr = alfred.config.get('usr') pwd = alfred.config.get('pwd') if not usr or not pwd: return False try: res = alfred.request.post( os.path.join(_base_host, 'user/login/ajaxLogin'), data = { 'type' : 'nickname', 'account' : usr, 'password' : <PASSWORD>, 'remember' : 1 } ) ret = json.loads(res.getContent()) if ret.get('status', 0) == 1: cookies = {} for c in res.cookieJar: if c.name in ['GINFO', 'GKEY']: cookies[c.name] = c.value alfred.cache.set('cookie', cookies, 3600) return True except Exception, e: pass def getLoginCookies(): cache = alfred.cache.get('cookie') if cache: return cache login() return alfred.cache.get('cookie') def isLogined(): return bool(getLoginCookies()) def parseWebPage(url, **kwargs): try: if not kwargs.has_key('cookie') and isLogined(): kwargs['cookie'] = getLoginCookies() res = alfred.request.get(url, **kwargs) content = res.getContent() # 禁止显示BeautifulSoup警告 with warnings.catch_warnings(): warnings.simplefilter("ignore") return bs4.BeautifulSoup(content) except Exception, e: raise e # 小海报地址获取 # 文件名的第一位字母标识海报大小 s m b def smallPosterURL(url): if not url: return url dirname = os.path.dirname(url) basename = os.path.basename(url) if basename.startswith('s'): return url s_basename = '{}{}'.format('s', basename[1:]) return os.path.join(dirname, s_basename) # 解析下载地址 # links 为下载链接bs4对象集合 def parseDownloadLink(links): dls = {} for link in links: href = link.get('href', '') if href.startswith('ed2k'): dls['emule'] = href elif href.startswith('magnet'): dls['magnet'] = href elif href.startswith('http://pan.baidu.com/'): dls['baidu'] = href return dls def parseDownloadHas(data): has = {} for i in ['emule', 'magnet', 'baidu']: has['has_' + i] = '有' if data[i] else '无' return has # 过滤 # 以`,`分割 1 文件名 2 格式 def filterItems(filter_str, items): if filter_str: filters= filter_str.split(',') if len(filters) >= 1: file_filter = filters[0].lower() items = filter(lambda f: file_filter in f['filename'].lower(), items) if len(filters) >= 2: format_filter = filters[1].lower().lower() items = filter(lambda f: format_filter in f['format'].lower(), items) return items # 获取最新更新 def fetchRecentItems(channel): # channel: movie tv documentary openclass topic search_channel = '' # 如果查找的类别不为空的话,获取其完整的正确名称 if channel: for valid_chl in ['movie', 'tv', 'documentary', 'openclass', 'topic']: if valid_chl.startswith(channel): search_channel = valid_chl if not search_channel: return [] cache_name = 'recent-{}-items'.format(search_channel) @alfred.cached(cache_name, expire=600) def _fetchRecentItems(): items = [] soup = parseWebPage( os.path.join(_base_host, 'resourcelist'), data = { 'channel' : search_channel, 'sort' : 'update' } ) # pprint(soup.select('ul.boxPadd li')) for single in soup.select('ul.boxPadd li'): try: info = single.select('div.f_r_info dl')[0] item = {} item.update(**_res_tpl) item.update( id = int(os.path.basename(single.select('div.f_l_img')[0].a['href'])), title = info.dt.get_text(' ', strip=True), img = smallPosterURL( single.select('div.f_l_img')[0].img['src'] ) ) map(lambda t: t.font.clear(),info.dd.select('span')) item['info'] = '说明: {} 人气: {}'.format( info.dd.select('span')[0].get_text('', strip=True), info.dd.select('span')[2].get_text('', strip=True) ) items.append(item) except Exception, e: continue if items: return items return _fetchRecentItems() # 获取今日更新 @alfred.cached('today-items', expire=600) def fetchTodayItems(): items = [] soup = parseWebPage(os.path.join(_base_host, 'today')) day = '' for single in soup.select('table tr.list'): # 只显示最近日期的文件 item_day = single.get('day', '') if not day: day = item_day if day != item_day: continue; info = single.select('td') item = {} item.update(**_res_file_tpl) item.update( type = info[0].get_text(), format = info[1].get_text(), filename = info[2].find('a').get_text(), filesize = info[4].get_text(), update_date = '{} {}'.format(single['day'], info[5].get_text()) ) res_id = os.path.basename(info[2].find('a')['href']) # 文件ID 页面没有提供 自定义 资源ID+hash item_id ='{}-{}'.format(res_id, alfred.util.hashDigest(res_id + item['filename'])) item['id'] = item_id item.update(**parseDownloadLink( single.select('td.dr_ico a') )) items.append(item) if items: return items # 获取24小时热门榜 @alfred.cached('top-items', expire=600) def fetchTopItems(): items = [] soup = parseWebPage(os.path.join(_base_host, 'resourcelist')) for single in soup.select('ul.top_list2 li'): try: item = {} item.update(**_res_tpl) img_ele = single.select('div.f_l_img') info = single.select('div.f_r_info div') item.update( id = int(os.path.basename(img_ele[0].a['href'])), title = info[0].get_text().strip('《》'), img = smallPosterURL( img_ele[0].a.img['src'] ), info = '{} {} {}'.format(info[1].get_text(), info[2].get_text(), info[3].get_text()) ) items.append(item) except Exception, e: continue if items: return items # 获取单个资源信息 def fetchSingleResource(res_id): cache_name = 'single-resource-{}'.format(res_id) @alfred.cached(cache_name, expire=3600) def _fetchSingleResource(): page_url = getResourcePageURLByID(res_id) soup = parseWebPage(page_url) res = {} res.update(**_res_tpl) res.update( id = res_id, title = soup.select('h2 strong')[0].get_text('', strip=True), img = smallPosterURL(soup.select('div.res_infobox div.f_l_img img')[0]['src']), page = page_url ) for single in soup.select('ul.resod_list li'): item = {} item.update(**_res_file_tpl) item.update( id = single['itemid'], format = single['format'], filename = single.select('div.lks .lks-1')[0].get_text(), filesize = single.select('div.lks .lks-2')[0].get_text(), ) item.update(**parseDownloadLink( single.select('div.download a') )) res['files'].append(item) # 缓存60分钟 if res['files']: return res return _fetchSingleResource() # 获取搜索结果 def fetchSearchResult(word): if not word: return [] cache_name = 'search-{}'.format(word.lower()) @alfred.cached(cache_name, expire = 600) def _fetchSearchResult(): items = [] soup = parseWebPage( os.path.join(_base_host, 'search/index'), data = { 'keyword' : '{}'.format(word), 'type' : 'resource', 'order' : 'uptime' } ) for single in soup.select('ul.allsearch li'): try: item = {} item.update(**_res_tpl) item.update( title = single.select('div.all_search_li2')[0].get_text(), id = int(os.path.basename(single.select('div.all_search_li2')[0].a['href'])) ) # 信息 pub_time = time.localtime(float(single.select('span.time')[0].get_text().strip())) update_time = time.localtime(float(single.select('span.time')[1].get_text().strip())) item['info'] = '类型:{} 发布时间:{} 更新时间:{} {}'.format( single.select('div.all_search_li1')[0].get_text().strip(), time.strftime('%Y-%m-%d %H:%I', pub_time), time.strftime('%Y-%m-%d %H:%I', update_time), single.select('div.all_search_li3')[0].get_text().strip() ) items.append(item) except Exception, e: continue return items return _fetchSearchResult() def getResourcePageURLByID(res_id): return os.path.join(_base_host, 'resource', unicode(res_id)) # 获取最新更新 def recent(): try: items = fetchRecentItems(alfred.argv(2)) if not items: alfred.exitWithFeedback(item=_fb_no_found()) feedback = alfred.Feedback() for item in items: feedback.addItem( title = item['title'], subtitle = item['info'], icon = alfred.storage.getLocalIfExists(item['img'], True), valid = False, autocomplete = 'resource {} '.format(item['id']) ) feedback.addItem(item=_fb_return_top()) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) # 最近今日更新 def today(): if not isLogined(): alfred.exitWithFeedback(item=_fb_no_logined()) try: items = fetchTodayItems() items = filterItems(alfred.argv(2), items) if not items: alfred.exitWithFeedback(item=_fb_no_found()) feedback = alfred.Feedback() for item in items: item.update(**parseDownloadHas(item)) subtitle = '类别: {type} 格式: {format} 容量: {filesize} 电驴: {has_emule} 磁力链: {has_magnet} 百度盘: {has_baidu} 日期: {update_date}'.format(**item) feedback.addItem( title = item['filename'], subtitle = subtitle, valid = False, autocomplete = 'today-file {}'.format(item['id']) ) feedback.addItem(item=_fb_return_top()) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) # 24小时最热资源 def top(): try: items = fetchTopItems() if not items: alfred.exitWithFeedback(item=_fb_no_found()) feedback = alfred.Feedback() count = 1 for item in items: feedback.addItem( title = '{:02d}. {}'.format(count, item['title']), subtitle = item['info'], icon = alfred.storage.getLocalIfExists(item['img'], True), valid = False, autocomplete = 'resource {id} '.format(**item) ) count = count + 1 feedback.addItem(item=_fb_return_top()) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) def search(): try: word = ' ' .join(sys.argv[2:]) if not word: alfred.exitWithFeedback(title='输入搜索关键词', valid=False) items = fetchSearchResult(word) if not items: alfred.exitWithFeedback(item=_fb_no_found()) feedback = alfred.Feedback() for item in items: feedback.addItem( title = item['title'], subtitle = item['info'], valid = False, autocomplete = 'resource {} '.format(item['id']) ) feedback.addItem(item=_fb_return_top()) feedback.output() except Exception, e: alfred.exitWithFeedback(_fb_no_found()) def resource(): try: res_id = int(alfred.argv(2)) data = fetchSingleResource(res_id) files = data.get('files', []) files = filterItems(alfred.argv(3), files) if not data: alfred.exitWithFeedback(item=_fb_no_found) feedback = alfred.Feedback() feedback.addItem( title = data['title'], subtitle = '{} 个文件,可使用`文件名,格式`过滤,如:`s09` `,mp4` `s01e08,hdtv`,选择此项打开资源页面'.format(len(files)), arg = 'open-url {}'.format( b64encode(getResourcePageURLByID(data['id'])) ), icon = alfred.storage.getLocalIfExists(data['img'], True) ) files_ids = [] for f in files: files_ids.append(f['id']) f.update(**parseDownloadHas(f)) subtitle = '类型: {format} 容量: {filesize} 电驴: {has_emule} 磁力链: {has_magnet} 百度盘: {has_baidu}'.format(**f) feedback.addItem( title = f['filename'], subtitle = subtitle, valid = False, autocomplete = 'file {},{}'.format(data['id'], f['id']), icon = alfred.storage.getLocalIfExists(data['img'], True) ) if len(files_ids) > 1: feedback.addItem( title = '所有文件', subtitle = '对当前的所有文件进行批量处理', valid = False, autocomplete = 'file {},{}'.format(data['id'], ','.join(files_ids)), icon = alfred.storage.getLocalIfExists(data['img'], True) ) feedback.addItem(item=_fb_return()) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) def fileDownloadFeedback(feedback, res_id, emule, magnet, baidu=None): if baidu: feedback.addItem( title = '打开百度盘', subtitle = baidu, arg = 'open-url {}'.format(b64encode(baidu)) ) if emule: feedback.addItem( title = '拷贝eMule地址到剪切板', subtitle = emule, arg = 'copy-to-clipboard {}'.format(b64encode(emule)) ) if magnet: feedback.addItem( title = '拷贝磁力链到剪切板', subtitle = magnet, arg = 'copy-to-clipboard {}'.format(b64encode(magnet)) ) # 使用download station Workflow 下载 eMule优先 #? 如何判断workflow已安装 if alfred.isWorkflowWorking('net.jeeker.awf.DownloadStation'): if emule or magnet: feedback.addItem( title = '使用Download Station Workflow下载', subtitle = '优先使用电驴地址下载', arg = 'download-with-ds {}'.format( b64encode(emule if emule else magnet)) ) if not emule and not magnet: feedback.addItem( title = '没有找到电驴或磁力链地址,打开资源页面', arg = 'open-url {}'.format( b64encode(getResourcePageURLByID(res_id)) ) ) return feedback def file(): try: ids = alfred.argv(2).split(',') res_id = int(ids[0]) file_ids = map(lambda i:int(i), ids[1:]) data = fetchSingleResource(res_id) files = filter(lambda f: int(f['id']) in file_ids, data['files']) feedback = alfred.Feedback() if not files: feedback.addItem( title = '没有找到想要的内容', subtitle = '这里可返回资源列表', valid = False, autocomplete = 'resource {} '.format(res_id), icon = alfred.storage.getLocalIfExists(data['img'], True) ) elif len(files) == 1: subtitle = '类型: {format} 容量: {filesize} 这里可返回资源列表'.format(**files[0]) feedback.addItem( title = files[0]['filename'], subtitle = subtitle, valid = False, autocomplete = 'resource {} '.format(res_id), icon = alfred.storage.getLocalIfExists(data['img'], True) ) feedback = fileDownloadFeedback(feedback, data['page'], files[0]['emule'], files[0]['magnet'], files[0]['baidu']) else: feedback.addItem( title = '批处理多个文件', subtitle = '{} 个文件, 这里可返回资源列表'.format(len(files)), valid = False, autocomplete = 'resource {}'.format(res_id), icon = alfred.storage.getLocalIfExists(data['img'], True) ) emule = '\n'.join( [f['emule'] for f in files] ) magnet = '\n'.join( [f['magnet'] for f in files] ) feedback = fileDownloadFeedback(feedback, data['page'], emule, magnet) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) def todayFile(): if not isLogined(): alfred.exitWithFeedback(item=_fb_no_logined()) try: item_id = alfred.argv(2) res_id = item_id.split('-')[0] item = {} for item in fetchTodayItems(): if item.get('id') == item_id: break if not item: alfred.exitWithFeedback(item=_fb_no_found()) feedback = alfred.Feedback() feedback.addItem( title = item['filename'], subtitle = '类别: {type} 格式: {format} 容量: {filesize} 日期: {update_date} 这里可访问资源文件列表'.format(**item), valid = False, autocomplete = 'resource {}'.format(res_id) ) feedback = fileDownloadFeedback(feedback, res_id, item['emule'], item['magnet'], item['baidu']) feedback.addItem(item=_fb_return()) feedback.output() except Exception, e: alfred.exitWithFeedback(item=_fb_no_found()) def setting(): usr = alfred.argv(2) pwd = alfred.argv(3) info = '' if usr: info = '用户名: {} 密码: {}'.format(usr, pwd) elif alfred.config.get('usr'): info = '现有设置: 用户名: {} 密码: ********'.format(alfred.config.get('usr')) feedback = alfred.Feedback() feedback.addItem( title = '{}用户名和密码'.format('修改' if isLogined() else '设置'), subtitle = '格式:用户名 密码 {}'.format(info), arg = 'account-setting {} {}'.format(usr, pwd) ) feedback.output() def menu(): feedback = alfred.Feedback() feedback.addItem( title = '人人影视 24小时热门资源', subtitle = '最近24小时的热门排行', autocomplete = 'top', valid = False ) if isLogined(): feedback.addItem( title = '人人影视 今日更新的文件', subtitle = '若今天尚无文件,则显示前一天,可使用`文件名,格式`过滤,如:`s09` `,mp4` `s01e08,hdtv`', autocomplete = 'today ', valid = False ) feedback.addItem( title = '人人影视 最近更新的资源', subtitle = '可使用movie, tv, documentary, openclass, topic过滤相应的资源', autocomplete = 'recent ', valid = False ) feedback.addItem( title = '人人影视 资源搜索...', subtitle = '', autocomplete = 'search ', valid = False ) feedback.addItem( title = '{}用户名和密码'.format('修改' if isLogined() else '设置'), subtitle = '{}查看今日更新文件或某些有版权问题需要,仅支持用户名方式登陆'.format('已设置并成功登陆,' if isLogined() else ' '), valid = False, autocomplete = 'setting ' ) feedback.output() def main(): alfred.cache.cleanExpired() cmds = { 'menu' : menu, 'recent' : recent, 'top' : top, 'search' : search, 'resource' : resource, 'file' : file, 'today' : today, 'today-file': todayFile, 'setting' : setting } subcmd = alfred.argv(1) or '' subcmd = subcmd.lower() # 空 或 有意义的命令才记录 if not subcmd or subcmd in cmds: recordQuery() cmds[subcmd]() if subcmd in cmds else cmds['menu']() if __name__ == '__main__': main() ```
{ "source": "JinnLynn/dockerfiles", "score": 2 }
#### File: dockerfiles/flask/app.py ```python import sys import platform from subprocess import check_output import flask from flask import Flask app = Flask(__name__) @app.route("/") def hello(): kwargs = {} if sys.version_info.major == 3: kwargs.update(encoding='utf8') uwsgi_ver = check_output(['uwsgi', '--version'], **kwargs) return "it's work. Python-{} Flask-{} uWSGI-{}".format( platform.python_version(), flask.__version__, uwsgi_ver.strip()) ```
{ "source": "JinnLynn/genpac-server", "score": 2 }
#### File: genpac-server/genpac_server/views.py ```python from __future__ import (unicode_literals, absolute_import, division, print_function) import os import time from functools import wraps from urlparse import urlparse from pprint import pprint from flask import Flask, Response, render_template, request, url_for from flask import current_app, jsonify, redirect import genpac from . import __version__, __project_url__ from . import main from .utils import calc_hash, surmise_domain, replace_all, get_genpac_version from .utils import query2replacements, replacements2query def send_file(filename, replacements={}, mimetype=None, add_etags=True): # 忽略文件名以`_`开始的文件 if filename.startswith('_'): return current_app.make_response(('Not Found.', 404)) replacements.update(query2replacements(request.values)) try: if not os.path.isabs(filename): filename = os.path.abspath( os.path.join(current_app.config.options.target_path, filename)) with open(filename) as fp: content = fp.read() if replacements: content = replace_all(content, replacements) resp = current_app.make_response(content) resp.mimetype = mimetype or 'text/plain' resp.last_modified = os.path.getmtime(filename) if add_etags: etag = '{}-{}-{}-{}'.format(filename, os.path.getmtime(filename), os.path.getsize(filename), replacements2query(replacements)) etag = calc_hash(etag) resp.set_etag(etag) return resp except Exception as e: print('GenPAC Error: {}'.format(e)) return current_app.make_response(('Not Found.', 404)) def is_authorized(): if not current_app.config.options.auth_token: return True auth_token = request.headers.get('Token', None) if auth_token is None: auth_token = request.values.get('token', None) if auth_token == current_app.config.options.auth_token: return True return False def authorized(func): @wraps(func) def wrapper(*args, **kwargs): if is_authorized(): return func(*args, **kwargs) return current_app.make_response(('Unauthorized.', 401)) return wrapper def make_res_data(data={}, code=0, msg='成功'): return jsonify({'data': data, 'code': code, 'msg': msg}) @main.before_request def load_domains(): if not current_app.extensions['genpac'].domains_outdate: return current_app.logger.info('Domains Loaded.') with open(current_app.config.options.domains_file) as fp: domains = {'p': [], 'd': []} for line in fp.readlines(): t, d = line.split(',') domains[t.strip()].append(d.strip()) current_app.extensions['genpac'].domains_proxy = domains['p'] current_app.extensions['genpac'].domains_direct = domains['d'] current_app.extensions['genpac'].domains_outdate = False @main.app_template_global('powered_by') def powered_by(): try: if current_app.extensions['genpac'].last_builded <= 0: statinfo = os.stat(current_app.config.options.domains_file) current_app.extensions['genpac'].last_builded = statinfo.st_mtime except Exception: build_date = '-' else: build_date = time.strftime( '%Y-%m-%d %H:%M:%S', time.localtime(current_app.extensions['genpac'].last_builded)) pb = 'Last Builded: {}&nbsp;&nbsp;&nbsp;' \ 'Powered by <a href="{}">GenPAC v{}</a> ' \ '<a href="{}">GenPAC-Server v{}</a>' return pb.format( build_date, genpac.__project_url__, get_genpac_version(), __project_url__, __version__) @main.route("/", methods=['GET', 'POST']) def index(): return render_template('index.html', ip_srvs=current_app.config.options.ip_srvs) @main.route('/pac/<location>/', methods=['GET', 'POST']) @authorized def get_pac(location): proxy = current_app.config.options.pacs.get(location) or location return send_file('pac.tpl', replacements={'__PROXY__': proxy}, mimetype='application/javascript') @main.route('/file/#', methods=['GET', 'POST']) @authorized def get_file(filename): return send_file(filename) @main.route('/rules/', methods=['GET', 'POST']) def rules(): if not current_app.config.options.server_rule_enabled: return current_app.make_response(('Not Found.', 404)) content = '' try: with open(current_app.config.options.server_rule_file) as fp: content = fp.read() except Exception as e: pass return render_template('rules.html', content=content, action_url=url_for('.rules_update'), token=request.values.get('token', '')) @main.route('/s/<code>', methods=['POST', 'GET']) @authorized def shortener(code): try: code_cfg = current_app.config.options.shortener.get(code) cfgs = code_cfg.split(' ') cfgs.append('') filename, query = cfgs[0:2] except Exception as e: print('shortener ERROR: {}'.format(e)) return current_app.make_response(('Not Found.', 404)) rms = query2replacements(query) return send_file(filename, replacements=rms) @main.route('/test/', methods=['GET', 'POST']) def test(): url = request.values.get('url', None) if not url: return make_res_data(code=1, msg='地址不能为空') data = current_app.extensions['genpac'] domain = surmise_domain(url) return make_res_data(data={ 'd': domain in data.domains_direct, 'p': domain in data.domains_proxy, 'domain': domain, 'url': url}) @main.route('/rules-update/', methods=['POST']) def rules_update(): if not current_app.config.options.server_rule_enabled: return make_res_data(code=404, msg='服务端用户规则未启用') if not is_authorized(): return make_res_data(code=401, msg='未授权, token错误') try: content = request.form.get('rules', '') with open(current_app.config.options.server_rule_file, 'w') as fp: fp.write(content.strip()) return make_res_data() except Exception as e: return make_res_data(code=1, msg='出错了, {}'.format(e)) @main.route('/ip/') def show_ip(): ip = request.remote_addr return Response( '{}\n'.format(ip), mimetype="text/plain", headers={'X-Your-Ip': ip, 'Access-Control-Allow-Origin': '*'}) ```
{ "source": "jinnn-dev/learning-by-annotations", "score": 2 }
#### File: app/persistance/custom_minio_client.py ```python import json import os from typing import Any from minio import Minio from minio.deleteobjects import DeleteObject def policy(bucket_name): return { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"AWS": ["*"]}, "Action": "s3:GetObject", "Resource": "arn:aws:s3:::" + bucket_name + "/*", } ], } class MinioClient: def __init__(self): self.instance = Minio( endpoint=os.environ["MINIO_URL"] if "MINIO_URL" in os.environ else "minio:9000", access_key=os.environ["MINIO_ROOT_USER"], secret_key=os.environ["MINIO_ROOT_PASSWORD"], secure=False, ) def create_bucket(self, bucket_name: str) -> None: bucket = self.instance.bucket_exists(bucket_name) if not bucket: bucket = self.instance.make_bucket(bucket_name, "eu") print("✔️ Bucket created") self.instance.set_bucket_policy( bucket_name, json.dumps(policy(bucket_name)) ) print("✔️ Bucket policy created") else: print("Bucket already exists") def create_object( self, *, bucket_name: str, file_name: str, file_content: Any, content_type: Any ): try: self.instance.fput_object( bucket_name, file_name, file_content, metadata={"Content-type": content_type}, ) print(f"✔️ {file_name} has been created") except Exception as exc: print(f"❌ {file_name} couldn't be created") print(exc) raise Exception(f"{file_name} could not be created") def delete_object(self, *, bucket_name: str, file_name: str): print(f"🚮 {file_name} has been deleted") self.instance.remove_object(bucket_name, file_name) def delete_folder(self, *, bucket_name: str, folder_path: str): delete_object_list = map( lambda x: DeleteObject(x.object_name), self.instance.list_objects(bucket_name, prefix=folder_path, recursive=True), ) errors = self.instance.remove_objects(bucket_name, delete_object_list) for error in errors: print(error) def delete_all_objects(self, *, bucket_name: str): objects = self.instance.list_objects(bucket_name) for item in objects: self.instance.remove_object(bucket_name, item.object_name) print("✔️ All Objects deleted") def get_object(self, *, bucket_name: str, file_name: str): return self.instance.get_object(bucket_name, object_name=file_name) ``` #### File: app/utils/file_utils.py ```python import os import aiofiles from app.config import Config from app.worker import convert_slide from fastapi.datastructures import UploadFile from fastapi.param_functions import File async def write_file( folder_name: str, file_name: str, file: UploadFile = File(...) ) -> None: """ Writes the given file asynchronously in a chunkwise manner to the disk. File must be stored in a separate folder. All data written will be stored in the data folder :param folder_name: The name of the folder to store the file in :param file_name: The name of the file :param file: The file to save on the disk :return: The coroutine which can be awaited """ async with aiofiles.open( f"{Config.TEMP_IMAGES_FOLDER}/{folder_name}/{file_name}", "wb" ) as out_file: while content := await file.read(1024): await out_file.write(content) async def write_slide_to_disk( folder_name: str, file_name: str, file: UploadFile = File(...) ) -> None: """ Creates a image pyramid from the given file. All images are stored in the given folder name :param folder_name: The name of the folder where to store the slide :param file_name: The name of the file :param file: The file to save an create a slide from """ os.mkdir(f"{Config.TEMP_IMAGES_FOLDER}/{folder_name}") await write_file(folder_name, file_name, file) convert_slide.delay(file_name) ```
{ "source": "jinnn-dev/patholearn", "score": 2 }
#### File: api/endpoints/task_groups.py ```python from typing import Any, List from app.crud.crud_task_statistic import crud_task_statistic from app.schemas.task_group import TaskGroupUpdate from starlette.responses import StreamingResponse from app.api.deps import ( check_if_user_can_access_course, get_current_active_superuser, get_current_active_user, get_db, ) from app.core.export.task_exporter import TaskExporter from app.crud.crud_course import crud_course from app.crud.crud_task import crud_task from app.crud.crud_task_group import crud_task_group from app.crud.crud_user_solution import crud_user_solution from app.models.user import User from app.schemas.task_group import TaskGroup, TaskGroupCreate, TaskGroupDetail from fastapi import APIRouter, Depends, HTTPException from sqlalchemy.orm import Session router = APIRouter() @router.get("", response_model=List[TaskGroup]) def get_task_groups_by_course( *, db: Session = Depends(get_db), course_id: int, current_user: User = Depends(get_current_active_user) ): task_groups = crud_task_group.get_multi_by_course_id(db, course_id=course_id) percentage_solved = 0.0 for task_group in task_groups: percentage = crud_user_solution.get_solved_percentage_to_task_group( db, user_id=current_user.id, task_group_id=task_group.id )[0] task_group_length = len(task_group.tasks) if percentage and task_group_length: percentage_solved += float(percentage) task_group.percentage_solved = percentage / task_group_length else: task_group.percentage_solved = 0 return task_groups @router.post("", response_model=TaskGroup) def create_task_group( *, db: Session = Depends(get_db), task_group_in: TaskGroupCreate, current_user: User = Depends(get_current_active_superuser) ): check_if_user_can_access_course( db, user_id=current_user.id, course_id=task_group_in.course_id ) task_group_duplicate = crud_task_group.get_by_name( db, name=task_group_in.name, course_id=task_group_in.course_id ) if task_group_duplicate: raise HTTPException(status_code=400, detail="TaskGroup name already exists") task_group = crud_task_group.create(db, obj_in=task_group_in) return task_group @router.get("/{short_name}", response_model=TaskGroupDetail) def get_task_group( *, db: Session = Depends(get_db), short_name: str, current_user: User = Depends(get_current_active_user) ) -> Any: task_group = crud_task_group.get_by_short_name(db, short_name=short_name) if crud_course.is_not_member_and_owner( db, course_id=task_group.course_id, user_id=current_user.id ): course = crud_course.get(db, id=task_group.course_id) raise HTTPException( status_code=403, detail={ "course": { "name": course.name, "short_name": course.short_name, "owner": { "firstname": course.owner.firstname, "lastname": course.owner.lastname, }, } }, ) task_group_percentage = 0.0 task_count = 0 new_tasks = [] for task in task_group.tasks: new_task_count = 0 if not task.enabled and not current_user.is_superuser: continue base_task_percentage = float( crud_user_solution.get_solved_percentage_to_base_task( db, user_id=current_user.id, base_task_id=task.id )[0] or 0.0 ) if crud_task.has_new_task(db, user_id=current_user.id, base_task_id=task.id): new_task_count += 1 task_group_percentage += base_task_percentage task_len = len(task.tasks) task_count += task_len task.task_count = task_len task.new_tasks = new_task_count if task.tasks: task.percentage_solved = base_task_percentage / len(task.tasks) else: task.percentage_solved = 0 task.correct_tasks = ( crud_user_solution.get_amount_of_correct_solutions_to_base_task( db, user_id=current_user.id, base_task_id=task.id ) ) task.wrong_tasks = ( crud_user_solution.get_amount_of_wrong_solutions_to_base_task( db, user_id=current_user.id, base_task_id=task.id ) ) del task.tasks new_tasks.append(task) if task_count != 0: task_group.percentage_solved = task_group_percentage / task_count else: task_group.percentage_solved = 0.0 task_group.task_count = task_count task_group.tasks = new_tasks course = crud_course.get(db=db, id=task_group.course_id) task_group.course_short_name = course.short_name return task_group @router.delete("/{short_name}", response_model=TaskGroup) def remove_task_group( *, db: Session = Depends(get_db), short_name: str, current_user: User = Depends(get_current_active_user) ): task_group = crud_task_group.get_by_short_name(db, short_name=short_name) check_if_user_can_access_course( db, user_id=current_user.id, course_id=task_group.course_id ) for task in task_group.tasks: crud_task_statistic.remove_all_by_base_task_id(db, base_task_id=task.id) crud_user_solution.remove_all_to_task_group(db, task_group_id=task_group.id) deleted_task_group = crud_task_group.remove(db, model_id=task_group.id) return deleted_task_group @router.get( "/{short_name}/userSolution/download", response_model=Any, response_description="xlsx", ) def download_usersolutions( *, db: Session = Depends(get_db), short_name: str, current_user: User = Depends(get_current_active_superuser) ) -> Any: task_group = crud_task_group.get_by_short_name(db, short_name=short_name) check_if_user_can_access_course( db, user_id=current_user.id, course_id=task_group.course_id ) output = TaskExporter.export_point_task_group_as_xlsx(db, task_group) headers = { "Content-Disposition": 'attachment; filename="' + task_group.short_name + '"' } return StreamingResponse(output, headers=headers) @router.put("", response_model=TaskGroup) def update_task_group( *, db: Session = Depends(get_db), current_user: User = Depends(get_current_active_superuser), obj_in: TaskGroupUpdate ) -> TaskGroup: task_group = crud_task_group.get(db, id=obj_in.task_group_id) check_if_user_can_access_course( db, user_id=current_user.id, course_id=task_group.course_id ) task_group_duplicate = crud_task_group.get_by_name( db, name=obj_in.name, course_id=task_group.course_id ) if task_group_duplicate: raise HTTPException(status_code=400, detail="TaskGroup name already exists") task_group = crud_task_group.update(db, db_obj=task_group, obj_in=obj_in) return task_group ``` #### File: core/solver/task_result_factory.py ```python from app.schemas.task import TaskFeedback, TaskStatus, AnnotationFeedback class TaskResultFactory: @staticmethod def correct_status(task_result: TaskFeedback) -> TaskFeedback: """ Returns TaskResult with correct status :param task_result: TaskResult object :return: The TaskResult with correct status """ task_result.task_status = TaskStatus.CORRECT task_result.response_text = "Richtig gelöst!" return task_result @staticmethod def partial_status(task_result: TaskFeedback) -> TaskFeedback: """ Returns TaskResult with partial status :param task_result: TaskResult object :return: The TaskResult with partial status """ task_result.task_status = TaskStatus.PARTIAL task_result.response_text = "Einige Annotationen sind noch nicht richtig!" return task_result @staticmethod def wrong_status(task_result: TaskFeedback) -> TaskFeedback: """ Return TaskResult with wrong status :param task_result: TaskResult object :return: The TaskResult with wrong status """ task_result.task_status = TaskStatus.WRONG task_result.response_text = ( "Deine Annotationen sind nicht an der richtigen Stelle." ) return task_result @staticmethod def wrong_name_status(task_result: TaskFeedback) -> TaskFeedback: """ Return TaskResult with wrong_name status :param task_result: TaskResult object :return: The TaskResult with wrong_name status """ task_result.task_status = TaskStatus.WRONG_NAME task_result.response_text = "Deine Annotationen sind an der richtigen Stelle, aber bei den Klassennanmen musst du nochmal schauen" return task_result @staticmethod def append_result_detail( *, annotation_id: str, status: TaskStatus, percentage: float, task_result: TaskFeedback ) -> TaskFeedback: """ Appends a new TaskResultDetail to the given TaskResult :param annotation_id: Id of the annotation :param status: Status of the annotation :param percentage: Percentage of the annotation :param task_result: TaskResult where the TaskResultDetail should be added to :return: The TaskResult with the added TaskResultDetail """ task_result.result_detail.append( AnnotationFeedback(id=annotation_id, status=status, percentage=percentage) ) return task_result ``` #### File: app/crud/crud_task_group.py ```python from typing import List, Optional from sqlalchemy.orm import Session from app.crud.base import CRUDBase from app.models.task_group import TaskGroup from app.schemas.task_group import TaskGroupCreate, TaskGroupUpdate class CRUDTaskGroup(CRUDBase[TaskGroup, TaskGroupCreate, TaskGroupUpdate]): def get_multi_by_course_id(self, db: Session, *, course_id: int) -> List[TaskGroup]: """ Returns all TaskGroups to the given course. :param db: DB-Session :param course_id: id of the course :return: All found TaskGroups """ return db.query(self.model).filter(TaskGroup.course_id == course_id).all() def get_by_short_name(self, db: Session, *, short_name: str) -> TaskGroup: """ Returns the TaskGroup matching to the shortname. :param db: DB-Session :param short_name: short name of the TaskGroup :return: The found TaskGroup """ return db.query(self.model).filter(TaskGroup.short_name == short_name).first() def get_by_name(self, db: Session, *, name: str, course_id: int) -> Optional[str]: """ Returns the TaskGroup to the name in the given course. :param db: DB-Session :param name: Name of the TaskGroup :param course_id: Id of the Course :return: The found TaskGroup """ return ( db.query(self.model) .filter(TaskGroup.name == name) .filter(TaskGroup.course_id == course_id) .first() ) crud_task_group = CRUDTaskGroup(TaskGroup) ``` #### File: app/crud/crud_task_statistic.py ```python import json from typing import List from sqlalchemy import text from sqlalchemy.orm import Session from app.crud.base import CRUDBase from app.models.task_statistic import TaskStatistic from app.schemas.task_statistic import ( TaskStatisticCreate, TaskStatisticUpdate, TaskStatistic as TaskStatisticSchema, ) class CRUDTaskStatistic( CRUDBase[TaskStatistic, TaskStatisticCreate, TaskStatisticUpdate] ): def get_oldest_task_statistics_to_base_task_id( self, db: Session, *, base_task_id: int ) -> [List[TaskStatisticSchema], List[int]]: """ Returns all statistics to the given base task :param db: DB-Session :param base_task_id: Id of the base task :return: All found task statistics and task ids """ sql = text( """SELECT ts.* FROM taskstatistic as ts join (SELECT user_id, task_id, min(solved_date) as smallest_date FROM taskstatistic where base_task_id = :base_task_id GROUP BY task_id, user_id) as smallest on ts.user_id = smallest.user_id and ts.task_id = smallest.task_id and ts.solved_date = smallest.smallest_date;""" ) result = db.execute(sql, {"base_task_id": base_task_id}).fetchall() task_statistics = [] task_ids = set() for row in result: task_statistics.append( TaskStatisticSchema( id=row[0], user_id=row[1], task_id=row[2], base_task_id=row[3], solved_date=row[4], percentage_solved=float(row[5]), solution_data=json.loads(row[6]), task_result=json.loads(row[7]), ) ) task_ids.add(row[2]) return task_statistics, task_ids def remove_all_by_task_id( self, db: Session, *, task_id: int ) -> List[TaskStatistic]: """ Removes all task statistic to the given task :param db: DB-Session :param task_id: Id of the task :return: The deleted task statistics """ db_objs = db.query(self.model).filter(self.model.task_id == task_id).all() for obj in db_objs: db.delete(obj) db.commit() return db_objs def remove_all_by_base_task_id( self, db: Session, *, base_task_id: int ) -> List[TaskStatistic]: """ Removes all task statistics to the given base task :param db: DB-Session :param base_task_id: Id of the base task :return: The deleted task statistics """ db_objs = ( db.query(self.model).filter(self.model.base_task_id == base_task_id).all() ) for obj in db_objs: db.delete(obj) db.commit() return db_objs crud_task_statistic = CRUDTaskStatistic(TaskStatistic) ``` #### File: app/crud/crud_user_solution.py ```python from typing import List, Tuple from sqlalchemy import and_, func from sqlalchemy.orm import Session from app.crud.base import CRUDBase from app.models.user_solution import UserSolution from app.schemas.user_solution import UserSolution as SchemaSolution from app.schemas.user_solution import UserSolutionCreate, UserSolutionUpdate class CRUDUserSolution(CRUDBase[UserSolution, UserSolutionCreate, UserSolutionUpdate]): def get_solution_to_task_and_user( self, db: Session, *, user_id: int, task_id: int ) -> SchemaSolution: """ Returns the UserSolution to the given user and task. :param db: DB-Session :param user_id: if of the user :param task_id: id of the task :return: The found UserSolution """ return ( db.query(self.model) .filter(UserSolution.user_id == user_id) .filter(UserSolution.task_id == task_id) .first() ) def get_solution_to_task( self, db: Session, *, task_id: int ) -> List[SchemaSolution]: """ Returns all user solutions to the given task :param db: DB-Session :param task_id: Id of the task :return: All found user solutions """ return db.query(self.model).filter(UserSolution.task_id == task_id).all() def remove_by_user_id_and_task_id( self, db: Session, *, user_id: int, task_id: int ) -> SchemaSolution: """ Removes Solution of the given user to the given task. :param db: DB-Session :param user_id: id of the user :param task_id: id of the task :return: """ db_obj = ( db.query(self.model) .filter(UserSolution.user_id == user_id) .filter(UserSolution.task_id == task_id) .first() ) db.delete(db_obj) db.commit() return db_obj def remove_all_by_task_id( self, db: Session, *, task_id: int ) -> List[SchemaSolution]: """ Removes all UserSolutions to the task. :param db: DB-Session :param task_id: id of the Task :return: The deleted UserSolutions """ db_objs = db.query(self.model).filter(UserSolution.task_id == task_id).all() for obj in db_objs: db.delete(obj) db.commit() return db_objs def remove_all_by_user_to_course( self, db: Session, user_id: int, course_id: int ) -> List[SchemaSolution]: """ Removes all UserSolution of the User to a Course. :param db: DB-Session :param user_id: Id of the User :param course_id: Id of the Course :return: The deleted UserSolution """ db_objs = ( db.query(self.model) .filter(UserSolution.course_id == course_id) .filter(UserSolution.user_id == user_id) .all() ) for obj in db_objs: db.delete(obj) db.commit() return db_objs def remove_all_to_course(self, db: Session, course_id: int) -> List[SchemaSolution]: """ Removes all UserSolutions to a Course :param db: DB-Session :param course_id: Id of the Course :return: The deleted UserSolutions """ db_objs = db.query(self.model).filter(UserSolution.course_id == course_id).all() for obj in db_objs: db.delete(obj) db.commit() return db_objs def remove_all_to_task_group( self, db: Session, task_group_id: int ) -> List[SchemaSolution]: """ Removes all UserSolutions to the TaskGroup :param db: DB-Session :param task_group_id: Id of the TaskGroup :return: The deleted UserSolutions """ db_objs = ( db.query(self.model) .filter(UserSolution.task_group_id == task_group_id) .all() ) for obj in db_objs: db.delete(obj) db.commit() return db_objs def remove_all_to_base_task( self, db: Session, base_task_id: int ) -> List[SchemaSolution]: """ Removes all UserSolutions to the BaseTask :param db: DB-Session :param base_task_id: Id of the BaseTask :return: The deleted UserSolutions """ db_objs = ( db.query(self.model).filter(UserSolution.base_task_id == base_task_id).all() ) for obj in db_objs: db.delete(obj) db.commit() return db_objs def get_solved_percentage_to_task_group( self, db: Session, *, user_id: int, task_group_id: int ) -> Tuple: """ Returns the percentage of the user solved tasks to the given TaskGroup. :param db: DB-Session :param user_id: id of the user :param task_group_id: id of the TaskGroup :return: Tuple with percentage as Decimal """ query = ( db.query(func.sum(self.model.percentage_solved).label("percentage_solved")) .filter(self.model.user_id == user_id) .filter(self.model.task_group_id == task_group_id) ) return query.first() def get_solved_percentage_to_base_task( self, db: Session, *, user_id: int, base_task_id: int ) -> Tuple: """ Returns the percentage of the user solved tasks to the given BaseTask. :param db: DB-Session :param user_id: id of the user :param base_task_id: id of the BaseTask :return: Tuple with the percentage as Decimal """ return ( db.query(func.sum(self.model.percentage_solved).label("percentage_solved")) .filter(self.model.user_id == user_id) .filter(self.model.base_task_id == base_task_id) .first() ) def get_solved_percentage_to_course( self, db: Session, *, user_id: int, course_id: int ) -> int: """ Returns the percentage of the user solved tasks to the given Course :param db: DB-Session :param user_id: id of the user :param course_id: id of the course :return: The solved percentage """ return ( db.query(func.sum(self.model.percentage_solved).label("percentage_solved")) .filter(self.model.user_id == user_id) .filter(self.model.course_id == course_id) .first()[0] or 0.0 ) def get_amount_of_correct_solutions_to_course( self, db: Session, *, user_id: int, course_id: int ) -> int: """ Returns the amount correct solved tasks to the course :param db: DB-Session :param user_id: id of the user :param course_id: id of the course :return: The amount of correct solutions """ return self.__get_amount_of_correct_solution( db, user_id=user_id, id_name="course_id", id_value=course_id ) def get_amount_of_wrong_solutions_to_course( self, db: Session, *, user_id: int, course_id: int ) -> int: """ Returns the amount wrong solved tasks to the course :param db: DB-Session :param user_id: id of the user :param course_id: id of the course :return: The amount auf wrong solutions """ return self.__get_amount_of_wrong_solutions( db, user_id=user_id, id_name="course_id", id_value=course_id ) def get_amount_of_correct_solutions_to_task_group( self, db: Session, *, user_id: int, task_group_id: int ) -> int: """ Returns the amount correct solved tasks to the task group :param db: DB-Session :param user_id: id of the user :param task_group_id: id of the course :return: The amount of correct solutions """ return self.__get_amount_of_correct_solution( db, user_id=user_id, id_name="task_group_id", id_value=task_group_id ) def get_amount_of_wrong_solutions_to_task_group( self, db: Session, *, user_id: int, task_group_id: int ) -> int: """ Returns the amount wrong solved tasks to the task group :param db: DB-Session :param user_id: id of the user :param task_group_id: id of the task group :return: The amount of wrong solutions """ return self.__get_amount_of_wrong_solutions( db, user_id=user_id, id_name="task_group_id", id_value=task_group_id ) def get_amount_of_correct_solutions_to_base_task( self, db: Session, *, user_id: int, base_task_id: int ) -> int: """ Returns the amount correct solved tasks to the base task :param db: DB-Session :param user_id: id of the user :param base_task_id: id of the course :return: The amount of correct solutions """ return self.__get_amount_of_correct_solution( db, user_id=user_id, id_name="base_task_id", id_value=base_task_id ) def get_amount_of_wrong_solutions_to_base_task( self, db: Session, *, user_id: int, base_task_id: int ) -> int: """ Returns the amount wrong solved tasks to the base task :param db: DB-Session :param user_id: id of the user :param base_task_id: id of the base task :return: The amount of wrong solutions """ return self.__get_amount_of_wrong_solutions( db, user_id=user_id, id_name="base_task_id", id_value=base_task_id ) def increment_failed_attempts(self, db: Session, user_id: int, task_id: int) -> int: model = self.get_solution_to_task_and_user(db, user_id=user_id, task_id=task_id) new_attempts = model.failed_attempts + 1 model.failed_attempts = new_attempts db.add(model) db.commit() db.refresh(model) return new_attempts def __get_amount_of_wrong_solutions( self, db: Session, *, user_id: int, id_name: str, id_value: int ) -> int: return ( db.query(func.count()) .filter(self.model.user_id == user_id) .filter(getattr(self.model, id_name) == id_value) .filter( and_( func.JSON_LENGTH(self.model.task_result) != 1, self.model.percentage_solved != 1.00, ) ) .first()[0] or 0.0 ) def __get_amount_of_correct_solution( self, db: Session, user_id: int, id_name: str, id_value: int ) -> int: return ( db.query(func.count()) .filter(self.model.user_id == user_id) .filter(getattr(self.model, id_name) == id_value) .filter(self.model.percentage_solved == 1.00) .first()[0] or 0.0 ) crud_user_solution = CRUDUserSolution(UserSolution) ``` #### File: app/utils/minio_client.py ```python import json import os from typing import Any from app.core.config import settings from minio import Minio from minio.deleteobjects import DeleteObject def policy(bucket_name): return { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Principal": {"AWS": ["*"]}, "Action": "s3:GetObject", "Resource": "arn:aws:s3:::" + bucket_name + "/*", } ], } class MinioClient: hint_bucket = "hint-images" task_bucket = "task-images" def __init__(self): self.instance = Minio( endpoint=settings.MINIO_URL, access_key=settings.MINIO_ROOT_USER, secret_key=settings.MINIO_ROOT_PASSWORD, secure=False, ) self.bucket = None self.bucket_name = None def create_bucket(self, bucket_name: str) -> None: self.bucket = self.instance.bucket_exists(bucket_name) self.bucket_name = bucket_name if not self.bucket: self.bucket = self.instance.make_bucket(bucket_name, "eu") print("✔️ Bucket created") self.instance.set_bucket_policy( self.bucket_name, json.dumps(policy(self.bucket_name)) ) print("✔️ Bucket policy created") else: print("Bucket already exists") def create_object(self, file_name: str, file_content: Any, content_type: Any): try: print(file_name, self.bucket_name) self.instance.fput_object( self.bucket_name, file_name, file_content, metadata={"Content-type": content_type}, ) print(f"✔️ {file_name} has been created") except Exception as exc: print(f"❌ {file_name} couldn't be created") print(exc) raise Exception() def delete_object(self, file_name: str): self.instance.remove_object(self.bucket_name, file_name) print(f"❌ {file_name} has ben deleted") def delete_slide(self, slide_id: str): # self.instance.remove_object(self.bucket_name, slide_id + '/') self.delete_folder(slide_id) def delete_folder(self, folder_path: str): # objects_to_delete = self.instance.list_objects(self.bucket_name, prefix=folder_path, recursive=True) delete_object_list = map( lambda x: DeleteObject(x.object_name), self.instance.list_objects( self.bucket_name, prefix=folder_path, recursive=True ), ) errors = self.instance.remove_objects(self.bucket_name, delete_object_list) for error in errors: print(error) # for obj in objects_to_delete: # self.instance.remove_object(self.bucket_name, obj.object_name) def delete_all_objects(self): objects = self.instance.list_objects(self.bucket_name) for item in objects: self.instance.remove_object(self.bucket_name, item.object_name) print("✔️ All Objects deleted") def get_object(self, file_name: str): return self.instance.get_object(self.bucket_name, object_name=file_name) minio_client = MinioClient() ``` #### File: app/crud/crud_slide.py ```python from typing import List from app.crud.base import CRUDBase from app.schemas.slide import CreateSlide, Slide, SlideStatus, UpdateSlide from pymongo.collection import Collection class CRUDSlide(CRUDBase[Slide, CreateSlide, UpdateSlide]): def slide_with_name_exists(self, *, collection: Collection, name: str) -> bool: return collection.count_documents({"name": name}, limit=1) != 0 def get_all_slides( self, *, collection: Collection, status: SlideStatus = None, with_metadata: bool = True ) -> List[Slide]: filter_query = {"_id": False, "metadata": with_metadata} where_query = {} if status != None: where_query["status"] = status return self.get_multi( collection, where_query=where_query, filter_query=filter_query ) def get_all_slides_by_ids( self, *, collection: Collection, slide_ids: List[str], status: SlideStatus = None, with_metadata: bool = True ) -> List[Slide]: filter_query = {"_id": False, "metadata": with_metadata} where_query = {} if status != None: where_query["status"] = status return self.get_multi_by_ids( collection, slide_ids, where_query=where_query, filter_query=filter_query ) def get_slide( self, *, collection: Collection, slide_id: str, with_metadata: bool = True ) -> Slide: return self.get( collection=collection, entity_id_value=slide_id, filter_qurey={"_id": False, "metadata": with_metadata}, ) crud_slide = CRUDSlide(Slide, "slide_id") ``` #### File: app/utils/slide_utils.py ```python import base64 import os from typing import Any, Dict, List, Tuple from app.schemas.slide import Slide def convert_binary_to_base64(binary_data: bytes): """ Converts bytes to base64 :param binary_data: Data to convert :return: The data in base64 """ return base64.b64encode(binary_data) def is_byte_data(data: Any): """ Checks if the given data is of type byte :param data: The data to check :return: Whether the data is of type bytes or not """ return type(data) is bytes def convert_slide_binary_metadata_to_base64(slide: Slide) -> List[Slide]: """ Converts all binary data contained in the slide metadata to base64 """ if slide.metadata is not None: for metadata_key, metadata_value in slide.metadata.items(): if is_byte_data(metadata_value): slide.metadata[metadata_key] = convert_binary_to_base64(metadata_value) return slide def convert_binary_metadata_to_base64(slides: List[Slide]) -> List[Slide]: """ Converts all binary data contained in the slide metadata to base64 :param slides: The slides to convert the metadata from :return: The slides without binary metadata """ for slide in slides: if slide.metadata is not None: for metadata_key, metadata_value in slide.metadata.items(): if is_byte_data(metadata_value): slide.metadata[metadata_key] = convert_binary_to_base64( metadata_value ) return slides def openslide_can_load(file_extension: str) -> bool: """ Checks if the given file extension can be loaded by openslide. :param file_extension: The file extension should be checked :return: If the file extension can be loaded by openslide or not """ OPENSLIDE_FORMATS = [ "svs", "tif", "vms", "vmu", "ndpi", "scn", "mrxs", "tiff", "svslide", "bif", ] return file_extension.lower() in OPENSLIDE_FORMATS def get_file_name_and_file_extension(file_name_with_extension: str) -> Tuple[str, str]: """ Splits the extension of the file name :param: file name with extension :return: file name and file extension """ return os.path.splitext(file_name_with_extension) def remove_truth_values_from_dict( dict_to_be_filtered: Dict[Any, Any] ) -> Dict[Any, Any]: """ Removes all entries in the given dict which have 'True' as value :param: Dict to filter :return: Filtered dict """ query = {} if dict_to_be_filtered: for key in dict_to_be_filtered: if not dict_to_be_filtered[key]: query[key] = dict_to_be_filtered[key] return query def delete_keys_from_dict(dict_del: Dict, keys_to_delete: List[str]) -> Dict: """ Delets the given keys from the given dict :param dict_del: dict to delete keys from :param keys_to_delete: All Keys that should be deleted :return: The dict without the deleted keys """ for k in keys_to_delete: try: del dict_del[k] except KeyError: pass for v in dict_del.values(): if isinstance(v, dict): delete_keys_from_dict(v, keys_to_delete) return dict_del ```
{ "source": "Jinnrry/reversi-alpha-zero", "score": 2 }
#### File: reversi_zero/agent/player.py ```python from _asyncio import Future from asyncio.queues import Queue from collections import defaultdict, namedtuple from logging import getLogger import asyncio import numpy as np from numpy.random import random from reversi_zero.agent.api import ReversiModelAPI from reversi_zero.config import Config from reversi_zero.env.reversi_env import ReversiEnv, Player, Winner, another_player from reversi_zero.lib.bitboard import find_correct_moves, bit_to_array, flip_vertical, rotate90, dirichlet_noise_of_mask # from reversi_zero.lib.reversi_solver import ReversiSolver from reversi_zero.lib.alt.reversi_solver import ReversiSolver CounterKey = namedtuple("CounterKey", "black white next_player") QueueItem = namedtuple("QueueItem", "state future") HistoryItem = namedtuple("HistoryItem", "action policy values visit enemy_values enemy_visit") CallbackInMCTS = namedtuple("CallbackInMCTS", "per_sim callback") MCTSInfo = namedtuple("MCTSInfo", "var_n var_w var_p") ActionWithEvaluation = namedtuple("ActionWithEvaluation", "action n q") logger = getLogger(__name__) class ReversiPlayer: def __init__(self, config: Config, model, play_config=None, enable_resign=True, mtcs_info=None, api=None): """ :param config: :param reversi_zero.agent.model.ReversiModel|None model: :param MCTSInfo mtcs_info: :parameter ReversiModelAPI api: """ self.config = config self.model = model self.play_config = play_config or self.config.play self.enable_resign = enable_resign self.api = api or ReversiModelAPI(self.config, self.model) # key=(own, enemy, action) mtcs_info = mtcs_info or self.create_mtcs_info() self.var_n, self.var_w, self.var_p = mtcs_info self.expanded = set(self.var_p.keys()) self.now_expanding = set() self.prediction_queue = Queue(self.play_config.prediction_queue_size) self.sem = asyncio.Semaphore(self.play_config.parallel_search_num) self.moves = [] self.loop = asyncio.get_event_loop() self.running_simulation_num = 0 self.callback_in_mtcs = None self.thinking_history = {} # for fun self.resigned = False self.requested_stop_thinking = False self.solver = self.create_solver() @staticmethod def create_mtcs_info(): return MCTSInfo(defaultdict(lambda: np.zeros((64,))), defaultdict(lambda: np.zeros((64,))), defaultdict(lambda: np.zeros((64,)))) def var_q(self, key): return self.var_w[key] / (self.var_n[key] + 1e-5) def action(self, own, enemy, callback_in_mtcs=None): """ :param own: BitBoard :param enemy: BitBoard :param CallbackInMCTS callback_in_mtcs: :return action=move pos=0 ~ 63 (0=top left, 7 top right, 63 bottom right) """ action_with_eval = self.action_with_evaluation(own, enemy, callback_in_mtcs=callback_in_mtcs) return action_with_eval.action def action_with_evaluation(self, own, enemy, callback_in_mtcs=None): """ :param own: BitBoard :param enemy: BitBoard :param CallbackInMCTS callback_in_mtcs: :rtype: ActionWithEvaluation :return ActionWithEvaluation( action=move pos=0 ~ 63 (0=top left, 7 top right, 63 bottom right), n=N of the action, q=W/N of the action, ) """ env = ReversiEnv().update(own, enemy, Player.black) key = self.counter_key(env) self.callback_in_mtcs = callback_in_mtcs pc = self.play_config if pc.use_solver_turn and env.turn >= pc.use_solver_turn: ret = self.action_by_searching(key) if ret: # not save move as play data return ret for tl in range(self.play_config.thinking_loop): if env.turn > 0: self.search_moves(own, enemy) else: self.bypass_first_move(key) policy = self.calc_policy(own, enemy) action = int(np.random.choice(range(64), p=policy)) action_by_value = int(np.argmax(self.var_q(key) + (self.var_n[key] > 0)*100)) value_diff = self.var_q(key)[action] - self.var_q(key)[action_by_value] if env.turn <= pc.start_rethinking_turn or self.requested_stop_thinking or \ (value_diff > -0.01 and self.var_n[key][action] >= pc.required_visit_to_decide_action): break # this is for play_gui, not necessary when training. self.update_thinking_history(own, enemy, action, policy) if self.play_config.resign_threshold is not None and\ np.max(self.var_q(key) - (self.var_n[key] == 0)*10) <= self.play_config.resign_threshold: self.resigned = True if self.enable_resign: if env.turn >= self.config.play.allowed_resign_turn: return ActionWithEvaluation(None, 0, 0) # means resign else: logger.debug(f"Want to resign but disallowed turn {env.turn} < {self.config.play.allowed_resign_turn}") saved_policy = self.calc_policy_by_tau_1(key) if self.config.play_data.save_policy_of_tau_1 else policy self.add_data_to_move_buffer_with_8_symmetries(own, enemy, saved_policy) return ActionWithEvaluation(action=action, n=self.var_n[key][action], q=self.var_q(key)[action]) def update_thinking_history(self, black, white, action, policy): key = CounterKey(black, white, Player.black.value) next_key = self.get_next_key(black, white, action) self.thinking_history[(black, white)] = \ HistoryItem(action, policy, list(self.var_q(key)), list(self.var_n[key]), list(self.var_q(next_key)), list(self.var_n[next_key])) def bypass_first_move(self, key): legal_array = bit_to_array(find_correct_moves(key.black, key.white), 64) action = np.argmax(legal_array) self.var_n[key][action] = 1 self.var_w[key][action] = 0 self.var_p[key] = legal_array / np.sum(legal_array) def action_by_searching(self, key): action, score = self.solver.solve(key.black, key.white, Player(key.next_player), exactly=True) if action is None: return None # logger.debug(f"action_by_searching: score={score}") policy = np.zeros(64) policy[action] = 1 self.var_n[key][action] = 999 self.var_w[key][action] = np.sign(score) * 999 self.var_p[key] = policy self.update_thinking_history(key.black, key.white, action, policy) return ActionWithEvaluation(action=action, n=999, q=np.sign(score)) def stop_thinking(self): self.requested_stop_thinking = True def add_data_to_move_buffer_with_8_symmetries(self, own, enemy, policy): for flip in [False, True]: for rot_right in range(4): own_saved, enemy_saved, policy_saved = own, enemy, policy.reshape((8, 8)) if flip: own_saved = flip_vertical(own_saved) enemy_saved = flip_vertical(enemy_saved) policy_saved = np.flipud(policy_saved) if rot_right: for _ in range(rot_right): own_saved = rotate90(own_saved) enemy_saved = rotate90(enemy_saved) policy_saved = np.rot90(policy_saved, k=-rot_right) self.moves.append([(own_saved, enemy_saved), list(policy_saved.reshape((64, )))]) def get_next_key(self, own, enemy, action): env = ReversiEnv().update(own, enemy, Player.black) env.step(action) return self.counter_key(env) def ask_thought_about(self, own, enemy) -> HistoryItem: return self.thinking_history.get((own, enemy)) def search_moves(self, own, enemy): loop = self.loop self.running_simulation_num = 0 self.requested_stop_thinking = False coroutine_list = [] for it in range(self.play_config.simulation_num_per_move): cor = self.start_search_my_move(own, enemy) coroutine_list.append(cor) coroutine_list.append(self.prediction_worker()) loop.run_until_complete(asyncio.gather(*coroutine_list)) async def start_search_my_move(self, own, enemy): self.running_simulation_num += 1 root_key = self.counter_key(ReversiEnv().update(own, enemy, Player.black)) with await self.sem: # reduce parallel search number if self.requested_stop_thinking: self.running_simulation_num -= 1 return None env = ReversiEnv().update(own, enemy, Player.black) leaf_v = await self.search_my_move(env, is_root_node=True) self.running_simulation_num -= 1 if self.callback_in_mtcs and self.callback_in_mtcs.per_sim > 0 and \ self.running_simulation_num % self.callback_in_mtcs.per_sim == 0: self.callback_in_mtcs.callback(list(self.var_q(root_key)), list(self.var_n[root_key])) return leaf_v async def search_my_move(self, env: ReversiEnv, is_root_node=False): """ Q, V is value for this Player(always black). P is value for the player of next_player (black or white) :param env: :param is_root_node: :return: """ if env.done: if env.winner == Winner.black: return 1 elif env.winner == Winner.white: return -1 else: return 0 key = self.counter_key(env) another_side_key = self.another_side_counter_key(env) if self.config.play.use_solver_turn_in_simulation and \ env.turn >= self.config.play.use_solver_turn_in_simulation: action, score = self.solver.solve(key.black, key.white, Player(key.next_player), exactly=False) if action: score = score if env.next_player == Player.black else -score leaf_v = np.sign(score) leaf_p = np.zeros(64) leaf_p[action] = 1 self.var_n[key][action] += 1 self.var_w[key][action] += leaf_v self.var_p[key] = leaf_p self.var_n[another_side_key][action] += 1 self.var_w[another_side_key][action] -= leaf_v self.var_p[another_side_key] = leaf_p return np.sign(score) while key in self.now_expanding: await asyncio.sleep(self.config.play.wait_for_expanding_sleep_sec) # is leaf? if key not in self.expanded: # reach leaf node leaf_v = await self.expand_and_evaluate(env) if env.next_player == Player.black: return leaf_v # Value for black else: return -leaf_v # Value for white == -Value for black virtual_loss = self.config.play.virtual_loss virtual_loss_for_w = virtual_loss if env.next_player == Player.black else -virtual_loss action_t = self.select_action_q_and_u(env, is_root_node) _, _ = env.step(action_t) self.var_n[key][action_t] += virtual_loss self.var_w[key][action_t] -= virtual_loss_for_w leaf_v = await self.search_my_move(env) # next move # on returning search path # update: N, W self.var_n[key][action_t] += - virtual_loss + 1 self.var_w[key][action_t] += virtual_loss_for_w + leaf_v # update another side info(flip color and player) self.var_n[another_side_key][action_t] += 1 self.var_w[another_side_key][action_t] -= leaf_v # must flip the sign. return leaf_v async def expand_and_evaluate(self, env): """expand new leaf update var_p, return leaf_v :param ReversiEnv env: :return: leaf_v """ key = self.counter_key(env) another_side_key = self.another_side_counter_key(env) self.now_expanding.add(key) black, white = env.board.black, env.board.white # (di(p), v) = fθ(di(sL)) # rotation and flip. flip -> rot. is_flip_vertical = random() < 0.5 rotate_right_num = int(random() * 4) if is_flip_vertical: black, white = flip_vertical(black), flip_vertical(white) for i in range(rotate_right_num): black, white = rotate90(black), rotate90(white) # rotate90: rotate bitboard RIGHT 1 time black_ary = bit_to_array(black, 64).reshape((8, 8)) white_ary = bit_to_array(white, 64).reshape((8, 8)) state = [black_ary, white_ary] if env.next_player == Player.black else [white_ary, black_ary] future = await self.predict(np.array(state)) # type: Future await future leaf_p, leaf_v = future.result() # reverse rotate and flip about leaf_p if rotate_right_num > 0 or is_flip_vertical: # reverse rotation and flip. rot -> flip. leaf_p = leaf_p.reshape((8, 8)) if rotate_right_num > 0: leaf_p = np.rot90(leaf_p, k=rotate_right_num) # rot90: rotate matrix LEFT k times if is_flip_vertical: leaf_p = np.flipud(leaf_p) leaf_p = leaf_p.reshape((64, )) self.var_p[key] = leaf_p # P is value for next_player (black or white) self.var_p[another_side_key] = leaf_p self.expanded.add(key) self.now_expanding.remove(key) return float(leaf_v) async def prediction_worker(self): """For better performance, queueing prediction requests and predict together in this worker. speed up about 45sec -> 15sec for example. :return: """ q = self.prediction_queue margin = 10 # avoid finishing before other searches starting. while self.running_simulation_num > 0 or margin > 0: if q.empty(): if margin > 0: margin -= 1 await asyncio.sleep(self.config.play.prediction_worker_sleep_sec) continue item_list = [q.get_nowait() for _ in range(q.qsize())] # type: list[QueueItem] #logger.debug(f"predicting {len(item_list)} items") data = np.array([x.state for x in item_list]) policy_ary, value_ary = self.api.predict(data) # shape=(N, 2, 8, 8) #logger.debug(f"predicted {len(item_list)} items") for p, v, item in zip(policy_ary, value_ary, item_list): item.future.set_result((p, v)) async def predict(self, x): future = self.loop.create_future() item = QueueItem(x, future) await self.prediction_queue.put(item) return future def finish_game(self, z): """ :param z: win=1, lose=-1, draw=0 :return: """ for move in self.moves: # add this game winner result to all past moves. move += [z] def calc_policy(self, own, enemy): """calc π(a|s0) :param own: :param enemy: :return: """ pc = self.play_config env = ReversiEnv().update(own, enemy, Player.black) key = self.counter_key(env) if env.turn < pc.change_tau_turn: return self.calc_policy_by_tau_1(key) else: action = np.argmax(self.var_n[key]) # tau = 0 ret = np.zeros(64) ret[action] = 1 return ret def calc_policy_by_tau_1(self, key): return self.var_n[key] / np.sum(self.var_n[key]) # tau = 1 @staticmethod def counter_key(env: ReversiEnv): return CounterKey(env.board.black, env.board.white, env.next_player.value) @staticmethod def another_side_counter_key(env: ReversiEnv): return CounterKey(env.board.white, env.board.black, another_player(env.next_player).value) def select_action_q_and_u(self, env, is_root_node): key = self.counter_key(env) if env.next_player == Player.black: legal_moves = find_correct_moves(key.black, key.white) else: legal_moves = find_correct_moves(key.white, key.black) # noinspection PyUnresolvedReferences xx_ = np.sqrt(np.sum(self.var_n[key])) # SQRT of sum(N(s, b); for all b) xx_ = max(xx_, 1) # avoid u_=0 if N is all 0 p_ = self.var_p[key] # re-normalize in legal moves p_ = p_ * bit_to_array(legal_moves, 64) if np.sum(p_) > 0: # decay policy gradually in the end phase _pc = self.config.play temperature = min(np.exp(1-np.power(env.turn/_pc.policy_decay_turn, _pc.policy_decay_power)), 1) # normalize and decay policy p_ = self.normalize(p_, temperature) if is_root_node and self.play_config.noise_eps > 0: # Is it correct?? -> (1-e)p + e*Dir(alpha) noise = dirichlet_noise_of_mask(legal_moves, self.play_config.dirichlet_alpha) p_ = (1 - self.play_config.noise_eps) * p_ + self.play_config.noise_eps * noise u_ = self.play_config.c_puct * p_ * xx_ / (1 + self.var_n[key]) if env.next_player == Player.black: v_ = (self.var_q(key) + u_ + 1000) * bit_to_array(legal_moves, 64) else: # When enemy's selecting action, flip Q-Value. v_ = (-self.var_q(key) + u_ + 1000) * bit_to_array(legal_moves, 64) # noinspection PyTypeChecker action_t = int(np.argmax(v_)) return action_t @staticmethod def normalize(p, t=1): pp = np.power(p, t) return pp / np.sum(pp) def create_solver(self): return ReversiSolver() ``` #### File: src/reversi_zero/manager.py ```python import argparse from logging import getLogger import yaml from moke_config import create_config from .lib.logger import setup_logger from .config import Config logger = getLogger(__name__) CMD_LIST = ['self', 'opt', 'eval', 'play_gui', 'nboard'] def create_parser(): parser = argparse.ArgumentParser() parser.add_argument("cmd", help="what to do", choices=CMD_LIST) parser.add_argument("-c", help="specify config yaml", dest="config_file") parser.add_argument("--new", help="run from new best model", action="store_true") parser.add_argument("--type", help="deprecated. Please use -c instead") parser.add_argument("--total-step", help="set TrainerConfig.start_total_steps", type=int) return parser def setup(config: Config, args): config.opts.new = args.new if args.total_step is not None: config.trainer.start_total_steps = args.total_step config.resource.create_directories() setup_logger(config.resource.main_log_path) def start(): parser = create_parser() args = parser.parse_args() if args.type: print("I'm very sorry. --type option was deprecated. Please use -c option instead!") return 1 if args.config_file: with open(args.config_file, "rt") as f: config = create_config(Config, yaml.load(f)) else: config = create_config(Config) setup(config, args) if args.cmd != "nboard": logger.info(f"config type: {config.type}") if args.cmd == "self": from .worker import self_play return self_play.start(config) elif args.cmd == 'opt': from .worker import optimize return optimize.start(config) elif args.cmd == 'eval': from .worker import evaluate return evaluate.start(config) elif args.cmd == 'play_gui': from .play_game import gui return gui.start(config) elif args.cmd == 'nboard': from .play_game import nboard return nboard.start(config) ``` #### File: reversi_zero/play_game/common.py ```python from reversi_zero.config import Config from reversi_zero.lib.model_helpler import reload_newest_next_generation_model_if_changed, load_best_model_weight def load_model(config: Config): from reversi_zero.agent.model import ReversiModel model = ReversiModel(config) if config.play.use_newest_next_generation_model: loaded = reload_newest_next_generation_model_if_changed(model) or load_best_model_weight(model) else: loaded = load_best_model_weight(model) or reload_newest_next_generation_model_if_changed(model) if not loaded: raise RuntimeError("No models found!") return model ``` #### File: test/agent/test_player.py ```python from nose.tools.trivial import eq_, ok_ import numpy as np from reversi_zero.config import Config from reversi_zero.agent.player import ReversiPlayer from reversi_zero.lib.bitboard import bit_count def test_add_data_to_move_buffer_with_8_symmetries(): config = Config() player = ReversiPlayer(config, None) """ board: p=0.2, q=0.8, O=own, X=enemy 01234567 - x 0O q 1 O 2 3 4 5 6 X 7p X | y """ own = stone_bit(0, 0) | stone_bit(1, 1) enemy = stone_bit(7, 6) | stone_bit(7, 7) policy = np.zeros((64, )) policy[idx(7, 0)] = 0.8 policy[idx(0, 7)] = 0.2 player.add_data_to_move_buffer_with_8_symmetries(own, enemy, policy) # no transform (o, e), p = player.moves[0] # own, enemy, policy eq_((bit_count(o), bit_count(e)), (2, 2)) ok_(check_bit(o, 0, 0)) ok_(check_bit(o, 1, 1)) ok_(check_bit(e, 7, 6)) ok_(check_bit(e, 7, 7)) eq_(p[idx(7, 0)], 0.8) eq_(p[idx(0, 7)], 0.2) # rotate right (o, e), p = player.moves[1] # own, enemy, policy eq_((bit_count(o), bit_count(e)), (2, 2)) ok_(check_bit(o, 7, 0)) ok_(check_bit(o, 6, 1)) ok_(check_bit(e, 0, 7)) ok_(check_bit(e, 1, 7)) eq_(p[idx(7, 7)], 0.8) eq_(p[idx(0, 0)], 0.2) # rotate right twice (o, e), p = player.moves[2] # own, enemy, policy eq_((bit_count(o), bit_count(e)), (2, 2)) ok_(check_bit(o, 7, 7)) ok_(check_bit(o, 6, 6)) ok_(check_bit(e, 0, 0)) ok_(check_bit(e, 0, 1)) eq_(p[idx(0, 7)], 0.8) eq_(p[idx(7, 0)], 0.2) # flip vertical -> rotate right (o, e), p = player.moves[5] # own, enemy, policy eq_((bit_count(o), bit_count(e)), (2, 2)) ok_(check_bit(o, 0, 0)) ok_(check_bit(o, 1, 1)) ok_(check_bit(e, 6, 7)) ok_(check_bit(e, 7, 7)) eq_(p[idx(0, 7)], 0.8) eq_(p[idx(7, 0)], 0.2) def idx(x, y): return y*8 + x def stone_bit(x, y): return 1 << idx(x, y) def check_bit(bb, x, y): return bb & stone_bit(x, y) != 0 ``` #### File: test/lib/test_bitboard.py ```python import numpy as np from nose.tools import assert_almost_equal from nose.tools.trivial import ok_, eq_ from reversi_zero.lib.bitboard import find_correct_moves, board_to_string, bit_count, dirichlet_noise_of_mask, \ bit_to_array from reversi_zero.lib.util import parse_to_bitboards def test_find_correct_moves_1(): ex = ''' ########## #OO # #XOO # #OXOOO # # XOX # # XXX # # X # # X # # # ##########''' expect = ''' ########## #OO # #XOO # #OXOOO # #**XOX* # # **XXX # # X**** # # X # # # ########## ''' _flip_test(ex, expect) def _flip_test(ex, expect, player_black=True): b, w = parse_to_bitboards(ex) moves = find_correct_moves(b, w) if player_black else find_correct_moves(w, b) res = board_to_string(b, w, extra=moves) eq_(res.strip(), expect.strip(), f"\n{res}----{expect}") def test_find_correct_moves_2(): ex = ''' ########## #OOOOOXO # #OOOOOXOO# #OOOOOXOO# #OXOXOXOO# #OOXOXOXO# #OOOOOOOO# #XXXO O# # # ##########''' expect = ''' ########## #OOOOOXO*# #OOOOOXOO# #OOOOOXOO# #OXOXOXOO# #OOXOXOXO# #OOOOOOOO# #XXXO***O# # * # ##########''' _flip_test(ex, expect, player_black=False) def test_find_correct_moves_3(): ex = ''' ########## #OOXXXXX # #XOXXXXXX# #XXXXXXXX# #XOOXXXXX# #OXXXOOOX# #OXXOOOOX# #OXXXOOOX# # OOOOOOO# ##########''' expect1 = ''' ########## #OOXXXXX # #XOXXXXXX# #XXXXXXXX# #XOOXXXXX# #OXXXOOOX# #OXXOOOOX# #OXXXOOOX# #*OOOOOOO# ##########''' expect2 = ''' ########## #OOXXXXX*# #XOXXXXXX# #XXXXXXXX# #XOOXXXXX# #OXXXOOOX# #OXXOOOOX# #OXXXOOOX# # OOOOOOO# ##########''' _flip_test(ex, expect1, player_black=False) _flip_test(ex, expect2, player_black=True) def test_dirichlet_noise_of_mask(): legal_moves = 47289423 bc = bit_count(legal_moves) noise = dirichlet_noise_of_mask(legal_moves, 0.5) assert_almost_equal(1, np.sum(noise)) eq_(bc, np.sum(noise > 0)) ary = bit_to_array(legal_moves, 64) eq_(list(noise), list(noise * ary)) ```
{ "source": "jinntechio/conan-sol2", "score": 2 }
#### File: jinntechio/conan-sol2/conanfile.py ```python from conans import ConanFile, tools from conans.tools import os_info, SystemPackageTool import os class Sol2Conan(ConanFile): name = "sol2" version = "2.20.6" description = "sol is a C++ library binding to Lua. It currently supports all Lua versions 5.1+ (LuaJIT 2.x "\ "included). sol aims to be easy to use and easy to add to a project. The library is header-only for "\ "easy integration with projects." topics = ("conan", "lua") url = "https://github.com/jinncrafters/conan-sol2" homepage = "https://github.com/ThePhD/sol2" license = "MIT" no_copy_source = True _source_subfolder = "source_subfolder" def source(self): tools.get(**self.conan_data["sources"][self.version]) extracted_dir = self.name + "-" + self.version os.rename(extracted_dir, self._source_subfolder) def package(self): include_folder = os.path.join(self._source_subfolder, "single/sol") self.copy(pattern="LICENSE", dst="licenses", src=self._source_subfolder) self.copy(pattern="*", dst="include", src=include_folder) def package_id(self): self.info.header_only() def system_requirements(self): pack_name = None if os_info.linux_distro == "ubuntu": if os_info.os_version > "12": pack_name = "lua5.3 liblua5.3-dev" else: pack_name = "lua5.3 liblua5.3-dev" # elif os_info.linux_distro == "fedora" or os_info.linux_distro == "centos": # pack_name = "package_name_in_fedora_and_centos" elif os_info.is_macos: pack_name = ["lua"] # elif os_info.is_freebsd: # pack_name = "package_name_in_freebsd" # elif os_info.is_solaris: # pack_name = "package_name_in_solaris" if pack_name: installer = SystemPackageTool() installer.install(pack_name) ```
{ "source": "jinntechio/RocketJoe", "score": 3 }
#### File: apps/medusa_cascade/demo.py ```python import asyncio import websockets import msgpack import uuid async def hello(): uri = "ws://localhost:9999" async with websockets.connect(uri) as websocket: data = msgpack.packb([str(uuid.uuid4()),3,["1qaz",["key"],["key"]]], use_bin_type=True) await websocket.send(data) print(f"> {data}") greeting = await websocket.recv() print(f"< {greeting}") asyncio.get_event_loop().run_until_complete(hello()) ``` #### File: rocketjoe_kernel/test/test_jupyter_kernel_benchmark.py ```python import jupyter_kernel_test import jupyter_kernel_mgmt from jupyter_kernel_mgmt.discovery import KernelFinder from jupyter_kernel_mgmt.client import BlockingKernelClient # import jupyter_kernel_mgmt # from jupyter_kernel_mgmt.discovery import KernelFinder # from jupyter_kernel_mgmt.client import BlockingKernelClient def kernel_info_request(kc) -> None: kc.kernel_info() def execute_request_1(kc) -> None: kc.execute_interactive("i = 0\ni + 1") def execute_request_2(kc) -> None: kc.execute_interactive("print(6 * 7)") def complete_request_1(kc) -> None: kc.complete("prin") def complete_request_2(kc) -> None: kc.complete("print") def is_complete_request_1(kc) -> None: kc.is_complete("prin") def is_complete_request_2(kc) -> None: kc.is_complete("print") def test_rocketjoe_kernel_info_request(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(kernel_info_request, kc) def test_rocketjoe_kernel_info_request(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(kernel_info_request, kc) def test_rocketjoe_execute_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(execute_request_1, kc) def test_rocketjoe_execute_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(execute_request_1, kc) def test_rocketjoe_execute_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(execute_request_2, kc) def test_rocketjoe_execute_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(execute_request_2, kc) def test_rocketjoe_complete_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(complete_request_1, kc) def test_rocketjoe_complete_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(complete_request_1, kc) def test_rocketjoe_complete_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(complete_request_2, kc) def test_rocketjoe_complete_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(complete_request_2, kc) def test_rocketjoe_is_complete_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(is_complete_request_1, kc) def test_rocketjoe_is_complete_request_1(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(is_complete_request_1, kc) def test_rocketjoe_is_complete_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(is_complete_request_2, kc) def test_rocketjoe_is_complete_request_2(benchmark) -> None: with jupyter_kernel_mgmt.run_kernel_blocking('spec/rocketjoe') as kc: benchmark(is_complete_request_2, kc) ``` #### File: network_service/demo/app.py ```python import random import string from flask import Flask, make_response, jsonify app = Flask(__name__) @app.route('/v1/detection/jsonrpc', methods=['GET', 'POST']) def hello_world(): response = make_response( jsonify( {"message": ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(10))} ), 200, ) response.headers["Content-Type"] = "application/json" return response if __name__ == "__main__": app.run(debug=True) ``` #### File: jinntechio/RocketJoe/setup.py ```python import os import pathlib from setuptools import setup from setuptools.dist import Distribution from setuptools.command.install import install def readme(): with open('README.md') as f: return f.read() class InstallPlatlib(install): def finalize_options(self): install.finalize_options(self) if self.distribution.has_ext_modules(): self.install_lib = self.install_platlib class BinaryDistribution(Distribution): def has_ext_modules(foo): return True from setuptools import setup setup( name="duck_charmer", version="1.0.0", description='A wheel for duck_charmer', long_description=readme(), license='', python_requires=">=3.9", packages=["duck_charmer"], include_package_data=True, package_data={ 'duck_charmer': ['duck_charmer*'], }, cmdclass={'install': InstallPlatlib}, distclass=BinaryDistribution ) ```
{ "source": "JinnTech/Jinn_Functions", "score": 3 }
#### File: Jinn_Functions/py27/jinn_helper.py ```python def progress(count, total, suffix=''): """ Description: Outputs a progress bar at bottom of terminal. Slightly Usage: progress(iteration, total) Credits: http://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console Example: import time total = 1000 i = 0 while i < total: progress(i, total) time.sleep(0.5) # emulating long-playing job i += 1 """ import sys bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write('[%s] %s%s ...%s\r' % (bar, percents, '%', suffix)) sys.stdout.flush() ```
{ "source": "jinnykoo/christmas", "score": 2 }
#### File: apps/designer/views.py ```python from django.shortcuts import render from django.conf import settings from django.core.files import File from oscar.core.loading import get_class, get_classes, get_model ProductClass, Product, Category, ProductCategory = get_classes( 'catalogue.models', ('ProductClass', 'Product', 'Category', 'ProductCategory')) ProductImage = get_model('catalogue', 'productimage') def create(request): context_dict = {} if request.method == 'POST': img_data = request.POST.get('imagesrc').decode("base64") img_file = open("./public/photo.jpg", "wb") img_file.write(img_data) img_file.close() #create a new product product_class = ProductClass.objects.get(pk=2) product = Product() product.product_class = product_class product.structure = Product.STANDALONE product.title = 'the first product' product.description = 'this is the first product' product.save() new_file = File(open('./public/photo.jpg', 'rb')) im = ProductImage(product=product, display_order=0) im.original.save('newtee.jpg', new_file, save=False) im.save() #save the image return render(request, 'designer/success.html') else: print 'else' return render(request, 'designer/create.html', context_dict) ```
{ "source": "jinny-sun/CookieCutter", "score": 4 }
#### File: CookieCutter/scripts/web_app.py ```python import streamlit as st import numpy as np import pandas as pd import re # Functions def string_replace(x): new_string = re.sub(' {2,}', ' ', x).replace(" ", ';').replace("\n", ";").replace("; ;", ";") # new_string = new_string.split(';') return(new_string) def get_ingredients (x): ing_regex = ('(\d+/*\d*\s*\d*/*\d*)\s(\w+\s*.*?);') all_ing = re.findall(ing_regex, x) return(all_ing) def get_quantity(x): quantity = [y[0] for y in x] # use for df units_with_ingredient = [y[1] for y in x] df_of_units = pd.DataFrame({'quantity':quantity, 'ingredient':units_with_ingredient}) return (df_of_units) def text_process(mess): """ Takes in a string of text, then performs the following: 1. Remove all punctuation 2. Remove all stopwords 3. Returns a list of the cleaned text """ import string from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer wnl = WordNetLemmatizer() def lemmatize(string): for word in re.findall(r"[a-z]+", string): string = string.replace(word, wnl.lemmatize(word, 'n') if 's' in word[-3:] else word) return string unit_stopwords = ['dash','pinch','teaspoon','tablespoon','fluid','cup','pint','quart','ounce','oz','pound','rack', 'small','medium','large','crushed','grated','skinless','boneless','melted','fresh', 'diced','minced','thinly','dry','dried','halved','taste','frying','lean','drained','jars','grated' 'clove','slice','eaches','whole','cube','thick','unit','freshly','finely','splash', 'semisweet','chip','extract','spread','powder','room','temperature','brown','cooking','yolk','ground', 'package','mix','cake','plain','goody','light','wheat','piece','substitute','mini','kosher','crispy', 'minature','chunk','dark','bit','square','boiling','bag','crumb','popsicle','stick','zest','cereal', 'bar','tart','nib','tennessee','turbinado','baking','pack','spice','moist','miniarature','crunchy', 'morsel','nugget','candy','crisp','super','fine','decoration','sucralose','puree','pureed','rainbow', 'cut','frozen','broken','round','concentrate','miniature','cooky','virgin','dusting','half','baby', 'food','jar','seedless','container','box','granule','filling','cold','super','ripe','moisture', 'packet','instant','mint','ripe','sea','coarse','fun','size','funsize','bulk','chopped','torn'] # Remove anything in parenthesis mess = re.sub(r"\([^\)]+\)", '', mess) # Make everything lowercase mess = mess.lower() # Remove non-word punctuation mess =' '.join(re.findall(r"[-,''\w]+", mess)) # This leaves some commas as a character # mess = re.sub(r"\,", ' ', mess) # Remove hypenated words mess = re.sub(r"(?=\S*['-])([a-zA-Z'-]+)",'',mess) # remove hypenated words # Remove punctuation and numbers mess = ''.join([i for i in mess if not i.isdigit()]) # Remove plurals mess = lemmatize(mess) #clean excess whitespace mess = re.sub(r"\s+", ' ', mess).strip() # Remove stopwords mess = [word for word in mess.split() if word.lower() not in stopwords.words('english')] mess = [word for word in mess if word.lower() not in unit_stopwords] mess = ' '.join(mess) return(mess.split()) def test_noun(tokens): import nltk tagged = nltk.pos_tag(tokens) return([token[0] for token in tagged if token[1] in ['NN',]]) def convert_fractions (quantity): from fractions import Fraction return float(sum(Fraction(s) for s in quantity.split())) # Banner st.image('banner.png', use_column_width=True) st.title("Cut the calories from your cookie recipe!") st.subheader('What would you like to make?') # Load training data X_train = pd.read_csv('X_train.csv') y_train = pd.read_csv('y_train.csv') ingredient_string = st.text_input('Input the ingredient list here:', '1 cup packed brown sugar; 1 cup white sugar; 1 cup butter; 2 eggs; 1 teaspoon baking soda; 1 teaspoon salt; 1 teaspoon vanilla extract; 2 1/2 cups sifted all-purpose flour; 1/2 cup chopped walnuts; 2 cups semisweet chocolate chips') if ingredient_string: st.write('Ingredients',ingredient_string) serving_size = st.number_input('How many cookies will be made using this recipe?', 24) if ingredient_string: st.write('This recipe will make',serving_size,'cookies') desiredcal = st.number_input('What is the maximum number of calories per cookie you desire?', 200) if ingredient_string: st.write('Each cookie should have less than',desiredcal,'calories.') button = st.button('Get this recipe!') if button: # Process ingredient_string serving_size = serving_size ingredient_string = ingredient_string + ';' # add semicolon to end of ingredient list for regex ingredient_string = string_replace(ingredient_string) # remove white space ingredient_string_tuple = get_ingredients(ingredient_string) # separate ingredients into list of tuples testdf = get_quantity(ingredient_string_tuple) # separate quantity from words testdf['quantity'] = [convert_fractions(x) for x in testdf['quantity']] testdf['unit'] = np.where(testdf.ingredient.str.contains("dash"), .3, np.where(testdf.ingredient.str.contains("pinch"), .6, np.where(testdf.ingredient.str.contains("teaspoon"), 5, np.where(testdf.ingredient.str.contains("tablespoon"), 3, np.where(testdf.ingredient.str.contains("fluid"), 30, np.where(testdf.ingredient.str.contains("cup"), 240, np.where(testdf.ingredient.str.contains("pint"), 473, np.where(testdf.ingredient.str.contains("quart"), 980, np.where(testdf.ingredient.str.contains("ounce"), 28, np.where(testdf.ingredient.str.contains("oz"), 28, np.where(testdf.ingredient.str.contains("pound"), 454, np.where(testdf.ingredient.str.contains("rack"), 908, np.where(testdf.ingredient.str.contains("small"), 50, np.where(testdf.ingredient.str.contains("medium"), 60, np.where(testdf.ingredient.str.contains("large"), 70, 1))))))))))))))) # Total quantity of each ingredient needed for recipe (grams* quantity) and condense into a list. testdf['norm_quant'] = round(testdf['unit']*testdf['quantity']) testdf['norm_quant'] = testdf['norm_quant'].astype(int) st.subheader('Ingredients') testdf[['quantity','ingredient']] # Tokenization = convert text string into list of tokens, or words, we want (i.e., cleaned version of words). import string from nltk.corpus import stopwords testdf['ingredient']=[text_process(x) for x in testdf['ingredient']] # One word per ingredient - keep only nouns, join multiple words as one string testdf['ingredient'] = [test_noun(tokens) for tokens in testdf['ingredient']] testdf['ingredient'] = [''.join(tokens) for tokens in testdf['ingredient']] # Repeat word by normalized quantity testdf['ingredient'] = testdf['ingredient'].astype(str) + ' ' zipped = list(zip(testdf['ingredient'], testdf['norm_quant'])) inglist = [t[0]*t[1] for t in zipped] inglist = ''.join(inglist) inglist = [inglist] # Calorie Prediction import pickle bow_transformer = pickle.load(open('bow_transformer.sav','rb')) ingredient_bow_train = pickle.load(open('ingredient_bow_train.sav','rb')) inglist_bow_test = bow_transformer.transform(inglist) # Gradient Boosting Regressor from sklearn.ensemble import GradientBoostingRegressor gboost = GradientBoostingRegressor(loss="ls", learning_rate=0.03, n_estimators=1500, max_depth=7, min_samples_split=950, min_samples_leaf=6, subsample=0.8, max_features=21, random_state=10) gboost.fit(ingredient_bow_train, y_train['totalCal']) predictions = gboost.predict(inglist_bow_test) # Output st.subheader('Calorie Predictor') calPerServing = round(predictions[0]/serving_size,1) st.write() if calPerServing < desiredcal: 'If you make ', serving_size, 'cookies with this recipe, each cookie is', calPerServing, "calories. That's less than", desiredcal,'calories per cookie! :grin:' else: 'If you make ', serving_size, 'cookies with this recipe, each cookie is', calPerServing, "calories. That's more than", desiredcal,'calories per cookie. :cry:' import math new_servings = math.ceil(predictions[0]/desiredcal) new_calories = round(predictions[0]/new_servings,1) 'If you make', new_servings, "cookies instead using the same recipe, each cookie is only", new_calories, "calories. That's less than", desiredcal,'calories per cookie! :grin:' ```
{ "source": "jinoan/augwrap", "score": 2 }
#### File: src/augwrap/data.py ```python from .utils.chart import stacked_bar from copy import copy import numpy as np import cv2 from sklearn.model_selection import KFold as KF, StratifiedKFold as SKF from torch.utils.data import Dataset from tensorflow.keras.utils import Sequence import xml.etree.ElementTree as ET class BaseDataset: def __init__(self, images, labels, classes, **kwargs): self.__dict__ = kwargs self.images = images self.labels = labels self.classes = classes def __len__(self): return len(self.images) def __getitem__(self, index): return {'image': self.images[index], 'label': self.labels[index]} class TorchBaseDataset(Dataset): def __init__( self, images=None, labels=None, classes=None, **kwargs ): super(TorchBaseDataset, self).__init__() self.__dict__ = kwargs self.images = images self.labels = labels self.classes = classes def __len__(self): return len(self.images) def __getitem__(self, index): return {"image": self.images[index], "label": self.labels[index]} class TFBaseDataset(Sequence): def __init__( self, images=None, labels=None, classes=None, **kwargs ): super(TFBaseDataset, self).__init__() self.__dict__ = kwargs self.images = images self.labels = labels self.classes = classes def __len__(self): return len(self.images) def __getitem__(self, index): return {"image": self.images[index], "label": self.labels[index]} def base_inheritance(cls): def inherit_base(dataset, *args, **kwargs): return type(cls.__name__, (cls, dataset.__class__.mro()[-2],), {})(dataset, *args, **kwargs) return inherit_base @base_inheritance class LoadImages: def __init__(self, dataset, color_mode=1): # color_mode 1: "color", 0: "grey", -1: "unchanged" self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.color_mode = {1: "color", 0: "grey", -1: "unchanged"}.get(color_mode, color_mode) def __getitem__(self, index): sample = self.dataset[index] sample["image"] = cv2.imread( sample["image"], flags={ "color": cv2.IMREAD_COLOR, "grey": cv2.IMREAD_GRAYSCALE, "unchanged": cv2.IMREAD_UNCHANGED }[self.color_mode] ) if sample["image"].ndim == 2: sample["image"] = sample["image"][..., np.newaxis] return sample @base_inheritance class ResizeImages: def __init__(self, dataset, image_size=(200, 200), interpolation=cv2.INTER_LINEAR): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.image_size = image_size self.interpolation = interpolation def __getitem__(self, index): sample = self.dataset[index] sample["image"] = cv2.resize(sample["image"], dsize=self.image_size, interpolation=self.interpolation) return sample @base_inheritance class OneHotLabels: def __init__(self, dataset): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset def __getitem__(self, index): sample = self.dataset[index] sample["label"] = np.array(list(map(lambda x: int(x==sample["label"]), self.classes))) return sample @base_inheritance class SparseLabels: def __init__(self, dataset): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset def __getitem__(self, index): sample = self.dataset[index] sample["label"] = self.classes.index(sample["label"]) return sample @base_inheritance class Augmentations: def __init__(self, dataset, augmentations): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.augmentations = augmentations def __getitem__(self, index): sample = self.dataset[index] sample = self.augmentations(**sample) return sample @base_inheritance class Transforms: def __init__(self, dataset, transforms): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.transforms = transforms def __getitem__(self, index): sample = self.dataset[index] sample = self.transforms(sample) return sample @base_inheritance class TFDataGenerator: def __init__(self, dataset, batch_size=16, shuffle=False): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.image_shape = dataset[0]["image"].shape self.label_size = dataset[0]["label"].size self.on_epoch_end() def on_epoch_end(self): self.indexes = np.arange(len(self.images)) if self.shuffle == True: np.random.shuffle(self.indexes) def __len__(self): return -(-len(self.images) // self.batch_size) def __getitem__(self, batch_index): indexes = self.indexes[batch_index*self.batch_size:(batch_index+1)*self.batch_size] images, labels = self.__data_generation(indexes) # return batch size items return images, labels def __data_generation(self, indexes): images = np.empty((indexes.size, *self.image_shape)) labels = np.empty((indexes.size, self.label_size)) for i, index in enumerate(indexes): sample = self.dataset[index] images[i,] = sample["image"] labels[i,] = sample["label"] return images, labels class KFold: def __init__(self, dataset): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset def split(self, n_splits=5, info=False): kf = KF(n_splits=n_splits, shuffle=True).split(self.images, self.labels) folds = [] for train_idx, test_idx in kf: train_dataset = copy(self.dataset) train_dataset.__dict__["images"] = list(map(lambda idx: self.images[idx], train_idx)) train_dataset.__dict__["labels"] = list(map(lambda idx: self.labels[idx], train_idx)) test_dataset = copy(self.dataset) test_dataset.__dict__["images"] = list(map(lambda idx: self.images[idx], test_idx)) test_dataset.__dict__["labels"] = list(map(lambda idx: self.labels[idx], test_idx)) folds.append((train_dataset, test_dataset)) if info: folds_info(folds) return folds class StratifiedKFold: def __init__(self, dataset): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset def split(self, n_splits=5, info=False): skf = SKF(n_splits=n_splits, shuffle=True).split(self.images, self.labels) folds = [] for train_idx, test_idx in skf: train_dataset = copy(self.dataset) train_dataset.__dict__["images"] = list(map(lambda idx: self.images[idx], train_idx)) train_dataset.__dict__["labels"] = list(map(lambda idx: self.labels[idx], train_idx)) test_dataset = copy(self.dataset) test_dataset.__dict__["images"] = list(map(lambda idx: self.images[idx], test_idx)) test_dataset.__dict__["labels"] = list(map(lambda idx: self.labels[idx], test_idx)) folds.append((train_dataset, test_dataset)) if info: folds_info(folds) return folds def folds_info(folds, **kwargs): if folds: kwargs = {"x": [], "y": [[], []]} for i, (train_dataset, test_dataset) in enumerate(folds): kwargs["x"].append(i+1) train_data_size = 0 test_data_size = 0 for _ in train_dataset.images: train_data_size += 1 for _ in test_dataset.images: test_data_size += 1 kwargs["y"][0].append(train_data_size) kwargs["y"][1].append(test_data_size) for fold, train_data_size, test_data_size in zip(kwargs["x"], *kwargs["y"]): print(f"[fold {fold}] train_data_size: {train_data_size}, test_data_size: {test_data_size}") stacked_bar(**kwargs) @base_inheritance class LoadPascalVOCLabels: def __init__(self, dataset): self.__dict__ = dataset.__dict__.copy() self.dataset = dataset self.bbox_format = "albumentations" def __getitem__(self, index): sample = self.dataset[index] sample['labels'], sample['bboxes'] = self.__decode_xml(sample.pop('label')) return sample def __decode_xml(self, label): tree = ET.parse(label) root = tree.getroot() width = int(root.find('size').find('width').text) height = int(root.find('size').find('height').text) objects = root.findall('object') labels, bboxes = [], [] for obj in objects: labels.append(obj.find('name').text) box = obj.find('bndbox') xmin = int(box.find('xmin').text) / width ymin = int(box.find('ymin').text) / height xmax = int(box.find('xmax').text) / width ymax = int(box.find('ymax').text) / height bboxes.append([xmin, ymin, xmax, ymax]) return labels, bboxes ```
{ "source": "jino-cod/rest_meets_djongo", "score": 2 }
#### File: tests/fields/test_embedded.py ```python from rest_meets_djongo.fields import EmbeddedModelField from rest_meets_djongo.meta_manager import get_model_meta from tests.models import ContainerModel, EmbedModel from pytest import fixture, mark @mark.embed @mark.field class TestDataParsing(object): obj_data = { 'int_field': 123, 'char_field': "Hello" } instance = EmbedModel(**obj_data) djm_embed = get_model_meta(ContainerModel).get_field('embed_field') rmd_embed = EmbeddedModelField(model_field=djm_embed) @fixture def errors(self, build_tuple): from rest_framework.exceptions import ValidationError err_dict = { 'ValidationError': ValidationError, 'TypeError': TypeError } return build_tuple('Errors', err_dict) def test_to_internal_val(self): new_instance = self.rmd_embed.to_internal_value(self.obj_data) assert str(self.instance) == str(new_instance) def test_to_representation(self): new_data = self.rmd_embed.to_representation(self.instance) assert self.obj_data == new_data def test_conversion_equivalence(self): data = self.rmd_embed.to_representation(self.instance) new_instance = self.rmd_embed.to_internal_value(data) assert str(self.instance) == str(new_instance) @mark.error def test_invalid_rejection(self, error_raised): # Non-dictionary values are rejected not_a_dict = 1234 with error_raised: self.rmd_embed.run_validation(not_a_dict) # Dictionaries denoting fields which do not exist are rejected wrong_dict = { 'bool_field': True, 'char_field': 'error' } with error_raised: self.rmd_embed.run_validation(wrong_dict) ``` #### File: rest_meets_djongo/tests/models.py ```python from djongo import models # --- Basic Models --- # # Generic, DRF compliant model, with all DRF fields class GenericModel(models.Model): big_int = models.BigIntegerField() bool = models.BooleanField() char = models.CharField(max_length=20) comma_int = models.CommaSeparatedIntegerField() date = models.DateField() date_time = models.DateTimeField() decimal = models.DecimalField(max_digits=10, decimal_places=5) email = models.EmailField() float = models.FloatField() integer = models.IntegerField() null_bool = models.NullBooleanField() pos_int = models.PositiveIntegerField() pos_small_int = models.PositiveSmallIntegerField() slug = models.SlugField() small_int = models.SmallIntegerField() text = models.TextField() time = models.TimeField() url = models.URLField() ip = models.GenericIPAddressField() uuid = models.UUIDField() # TODO: add these # basic_file = models.FileField() # image = models.ImageField() objects = models.DjongoManager() # Model with its primary key set as its ObjectID class ObjIDModel(models.Model): _id = models.ObjectIdField() int_field = models.IntegerField() char_field = models.CharField(max_length=5) objects = models.DjongoManager() # Model a variant for DRF standard arguments class OptionsModel(models.Model): db_column_id = models.ObjectIdField(db_column='_id') null_char = models.CharField(null=True) blank_char = models.TextField(blank=True) choice_char = models.CharField(choices=['Foo', 'Bar', 'Baz']) default_email = models.EmailField(default='<EMAIL>') read_only_int = models.IntegerField(editable=False) # NOTE: By default, custom error messages are not conserved. This is # just here to make sure it does not crash the serializer custom_error = models.IntegerField(error_messages={ 'blank': 'You tried to submit a blank integer, you dingus' }) help_char = models.CharField(help_text='Super helpful text') unique_int = models.IntegerField(unique=True) objects = models.DjongoManager() # --- Embedded Model Containing Models --- # # Model for use w/ testing embedded models class EmbedModel(models.Model): int_field = models.IntegerField() char_field = models.CharField(max_length=5) objects = models.DjongoManager() def __eq__(self, other): return (isinstance(other, EmbedModel) and self.char_field == other.char_field and self.int_field == other.int_field) def __str__(self): return str(self.int_field) + "-" + str(self.char_field) class Meta: abstract = True # Model for use w/ testing nested embedded models, class ContainerModel(models.Model): _id = models.ObjectIdField() control_val = models.CharField(default='CONTROL', max_length=7) embed_field = models.EmbeddedField(model_container=EmbedModel, blank=True) objects = models.DjongoManager() def __eq__(self, other): # Only compare _id if both have one (neither are embedded) _id_match = True if self._id and other._id: _id_match = (str(self._id) == str(other._id)) # Compare the other values to confirm they are identical return( _id_match and self.control_val == other.control_val and self.embed_field.__eq__(other.embed_field) ) def __str__(self): vals = [self.control_val, str(self.embed_field)] return f"{str(self._id)}: {'|'.join(vals)}" # Model for testing w/ embedded models which contain embedded models class DeepContainerModel(models.Model): str_id = models.CharField(primary_key=True, max_length=10) control_val = models.CharField(default='CONTROL', max_length=7) deep_embed = models.EmbeddedField(model_container=ContainerModel) objects = models.DjongoManager() # Model for use w/ testing nested arrays of embedded models, class ArrayContainerModel(models.Model): _id = models.ObjectIdField() embed_list = models.ArrayField(model_container=EmbedModel) objects = models.DjongoManager() class NullArrayContainerModel(models.Model): _id = models.ObjectIdField() nullable_list = models.ArrayField(model_container=EmbedModel, blank=True, null=True) objects = models.DjongoManager() # --- Relation Containing Models --- # # Model related to by RelationContainerModel class ManyToManyRelatedModel(models.Model): _id = models.ObjectIdField() boolean = models.BooleanField(default=True) smol_int = models.SmallIntegerField() objects = models.DjongoManager() class ForeignKeyRelatedModel(models.Model): _id = models.ObjectIdField() null_bool = models.NullBooleanField() description = models.TextField() objects = models.DjongoManager() # Model with representative types of relations class RelationContainerModel(models.Model): _id = models.ObjectIdField() control_val = models.CharField(default='CONTROL', max_length=10) fk_field = models.ForeignKey(to=ForeignKeyRelatedModel, on_delete=models.CASCADE) mtm_field = models.ManyToManyField(to=ManyToManyRelatedModel, blank=True, related_name='container_field') objects = models.DjongoManager() # Model related to by ArrayRelationModel class ArrayRelatedModel(models.Model): _id = models.ObjectIdField() email = models.EmailField() objects = models.DjongoManager() class ArrayRelationModel(models.Model): _id = models.ObjectIdField() int_val = models.IntegerField(default=-1234) arr_relation = models.ArrayReferenceField( to=ArrayRelatedModel, blank=True, on_delete=models.CASCADE ) objects = models.DjongoManager() ```
{ "source": "jinoh808/blender", "score": 2 }
#### File: scripts/templates_py/operator_modal_draw.py ```python import bpy import bgl import blf import gpu from gpu_extras.batch import batch_for_shader def draw_callback_px(self, context): print("mouse points", len(self.mouse_path)) font_id = 0 # XXX, need to find out how best to get this. # draw some text blf.position(font_id, 15, 30, 0) blf.size(font_id, 20, 72) blf.draw(font_id, "Hello Word " + str(len(self.mouse_path))) # 50% alpha, 2 pixel width line shader = gpu.shader.from_builtin('2D_UNIFORM_COLOR') bgl.glEnable(bgl.GL_BLEND) bgl.glLineWidth(2) batch = batch_for_shader(shader, 'LINE_STRIP', {"pos": self.mouse_path}) shader.bind() shader.uniform_float("color", (1.0, 1.0, 1.0, 0.5)) batch.draw(shader) # restore opengl defaults bgl.glLineWidth(1) bgl.glDisable(bgl.GL_BLEND) class ModalDrawOperator(bpy.types.Operator): """Draw a line with the mouse""" bl_idname = "template.modal_operator" bl_label = "Simple Modal Draw Operator" def modal(self, context, event): context.area.tag_redraw() if event.type == 'MOUSEMOVE': self.mouse_path.append((event.mouse_region_x, event.mouse_region_y)) elif event.type == 'LEFTMOUSE': bpy.types.SpaceTextEditor.draw_handler_remove(self._handle, 'WINDOW') return {'FINISHED'} elif event.type in {'RIGHTMOUSE', 'ESC'}: bpy.types.SpaceTextEditor.draw_handler_remove(self._handle, 'WINDOW') return {'CANCELLED'} return {'RUNNING_MODAL'} def invoke(self, context, event): if context.area.type == 'TEXT_EDITOR': # the arguments we pass the the callback args = (self, context) # Add the region OpenGL drawing callback # draw in TEXT_EIDTOR space with 'POST_VIEW' and 'PRE_VIEW' self._handle = bpy.types.SpaceTextEditor.draw_handler_add(draw_callback_px, args, 'WINDOW', 'POST_PIXEL') self.mouse_path = [] context.window_manager.modal_handler_add(self) return {'RUNNING_MODAL'} else: self.report({'WARNING'}, "Area found, cannot run operator") return {'CANCELLED'} def register(): bpy.utils.register_class(ModalDrawOperator) def unregister(): bpy.utils.unregister_class(ModalDrawOperator) def menu_func(self, context): self.layout.operator(ModalDrawOperator.bl_idname) if __name__ == "__main__": register() bpy.types.TOPBAR_MT_app_system.append(menu_func) ```
{ "source": "Jinoh-Cho/Visual-Genome-Image-Inpainting", "score": 2 }
#### File: src/metrics/ins.py ```python import math from torch.nn import DataParallel from torch.nn.parallel import DistributedDataParallel from sklearn.metrics import top_k_accuracy_score from tqdm import tqdm import torch import utils.sample as sample import utils.misc as misc def inception_softmax(eval_model, images): with torch.no_grad(): embeddings, logits = eval_model.get_outputs(images) ps = torch.nn.functional.softmax(logits, dim=1) return ps def calculate_kl_div(ps, splits): scores = [] num_samples = ps.shape[0] with torch.no_grad(): for j in range(splits): part = ps[(j * num_samples // splits):((j + 1) * num_samples // splits), :] kl = part * (torch.log(part) - torch.log(torch.unsqueeze(torch.mean(part, 0), 0))) kl = torch.mean(torch.sum(kl, 1)) kl = torch.exp(kl) scores.append(kl.unsqueeze(0)) scores = torch.cat(scores, 0) m_scores = torch.mean(scores).detach().cpu().numpy() m_std = torch.std(scores).detach().cpu().numpy() return m_scores, m_std def eval_generator(data_loader, generator, discriminator, eval_model, num_generate, y_sampler, split, batch_size, z_prior, truncation_factor, z_dim, num_classes, LOSS, RUN, is_stylegan, generator_mapping, generator_synthesis, is_acc, device, logger, disable_tqdm): eval_model.eval() ps_holder = [] if is_acc: ImageNet_folder_label_dict = misc.load_ImageNet_label_dict() loader_label_folder_dict = {v: k for k, v, in data_loader.dataset.data.class_to_idx.items()} loader_label_holder = [] else: top1, top5 = "N/A", "N/A" if device == 0 and not disable_tqdm: logger.info("Calculate Inception score of generated images ({} images).".format(num_generate)) num_batches = int(math.ceil(float(num_generate) / float(batch_size))) for i in tqdm(range(num_batches), disable=disable_tqdm): fake_images, fake_labels, _, _, _ = sample.generate_images(z_prior=z_prior, truncation_factor=truncation_factor, batch_size=batch_size, z_dim=z_dim, num_classes=num_classes, y_sampler=y_sampler, radius="N/A", generator=generator, discriminator=discriminator, is_train=False, LOSS=LOSS, RUN=RUN, is_stylegan=is_stylegan, generator_mapping=generator_mapping, generator_synthesis=generator_synthesis, style_mixing_p=0.0, device=device, cal_trsp_cost=False) ps = inception_softmax(eval_model, fake_images) ps_holder.append(ps) if is_acc: loader_label_holder += list(fake_labels.detach().cpu().numpy()) with torch.no_grad(): ps_holder = torch.cat(ps_holder, 0) m_scores, m_std = calculate_kl_div(ps_holder[:num_generate], splits=split) if is_acc: converted_labels = [] for loader_label in loader_label_holder: converted_labels.append(ImageNet_folder_label_dict[loader_label_folder_dict[loader_label]]) pred = torch.argmax(ps_holder, 1).detach().cpu().numpy() - 1 top1 = top_k_accuracy_score([i + 1 for i in converted_labels], ps_holder[:, 1:1001].detach().cpu().numpy(), k=1) top5 = top_k_accuracy_score([i + 1 for i in converted_labels], ps_holder[:, 1:1001].detach().cpu().numpy(), k=5) return m_scores, m_std, top1, top5 def eval_dataset(data_loader, eval_model, splits, batch_size, device, disable_tqdm=False): eval_model.eval() num_samples = len(data_loader.dataset) num_batches = int(math.ceil(float(num_samples) / float(batch_size))) dataset_iter = iter(data_loader) ps_holder = [] for i in tqdm(range(num_batches), disable=disable_tqdm): real_images, real_labels = next(dataset_iter) real_images = real_images.to(device) ps = inception_softmax(eval_model, real_images) ps_holder.append(ps) with torch.no_grad(): ps_holder = torch.cat(ps_holder, 0) m_scores, m_std = calculate_kl_div(ps_holder, splits=splits) return m_scores, m_std ``` #### File: src/utils/ema.py ```python import random import torch class Ema(object): def __init__(self, source, target, decay=0.9999, start_iter=0): self.source = source self.target = target self.decay = decay self.start_iter = start_iter self.source_dict = self.source.state_dict() self.target_dict = self.target.state_dict() print("Initialize the copied generator's parameters to be source parameters.") with torch.no_grad(): for p_ema, p in zip(self.target.parameters(), self.source.parameters()): p_ema.copy_(p) for b_ema, b in zip(self.target.buffers(), self.source.buffers()): b_ema.copy_(b) def update(self, iter=None): if iter >= 0 and iter < self.start_iter: decay = 0.0 else: decay = self.decay with torch.no_grad(): for p_ema, p in zip(self.target.parameters(), self.source.parameters()): p_ema.copy_(p.lerp(p_ema, decay)) for (b_ema_name, b_ema), (b_name, b) in zip(self.target.named_buffers(), self.source.named_buffers()): if "num_batches_tracked" in b_ema_name: b_ema.copy_(b) else: b_ema.copy_(b.lerp(b_ema, decay)) class EmaStylegan2(object): def __init__(self, source, target, ema_kimg, ema_rampup, effective_batch_size): self.source = source self.target = target self.ema_nimg = ema_kimg * 1000 self.ema_rampup = ema_rampup self.batch_size = effective_batch_size self.source_dict = self.source.state_dict() self.target_dict = self.target.state_dict() print("Initialize the copied generator's parameters to be source parameters.") with torch.no_grad(): for p_ema, p in zip(self.target.parameters(), self.source.parameters()): p_ema.copy_(p) for b_ema, b in zip(self.target.buffers(), self.source.buffers()): b_ema.copy_(b) def update(self, iter=None): ema_nimg = self.ema_nimg if self.ema_rampup != "N/A": cur_nimg = self.batch_size * iter ema_nimg = min(self.ema_nimg, cur_nimg * self.ema_rampup) ema_beta = 0.5 ** (self.batch_size / max(ema_nimg, 1e-8)) with torch.no_grad(): for p_ema, p in zip(self.target.parameters(), self.source.parameters()): p_ema.copy_(p.lerp(p_ema, ema_beta)) for b_ema, b in zip(self.target.buffers(), self.source.buffers()): b_ema.copy_(b) ```
{ "source": "jinok2im/ColossalAI", "score": 2 }
#### File: ColossalAI/colossalai/initialize.py ```python import argparse import os import pprint from pathlib import Path from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union import torch import torch.nn as nn from torch.nn.modules.loss import _Loss from torch.nn.parallel import DistributedDataParallel as DDP from torch.optim.lr_scheduler import _LRScheduler from torch.optim.optimizer import Optimizer from torch.utils.data import DataLoader from colossalai.amp import AMP_TYPE, convert_to_amp from colossalai.amp.naive_amp import NaiveAMPModel from colossalai.builder.builder import build_gradient_handler from colossalai.context import Config, ConfigException, ParallelMode from colossalai.core import global_context as gpc from colossalai.context.moe_context import MOE_CONTEXT from colossalai.engine import Engine from colossalai.engine.ophooks import BaseOpHook from colossalai.logging import get_dist_logger from colossalai.nn.optimizer.colossalai_optimizer import ColossalaiOptimizer from colossalai.utils import (accumulate_gradient, get_current_device, is_using_ddp, is_using_pp, is_using_sequence, sync_model_param) from colossalai.utils.moe import sync_moe_model_param from colossalai.zero import convert_to_zero_v2 from colossalai.zero.sharded_optim.sharded_optim_v2 import ShardedOptimizerV2 def get_default_parser(): """Reads user command line and uses an argument parser to parse the input arguments. Input arguments include configuration, host, port, world size, local rank, backend for torch.distributed. :return: Returns the parser with the default arguments, the user may add customized arguments into this parser :rtype: Namespace """ parser = argparse.ArgumentParser() parser.add_argument('--config', type=str, help='path to the config file') parser.add_argument('--host', type=str, help='the master address for distributed training') parser.add_argument('--port', type=int, help='the master port for distributed training') parser.add_argument('--world_size', type=int, help='world size for distributed training') parser.add_argument('--rank', type=int, help='rank for the default process group') parser.add_argument('--local_rank', type=int, help='local rank on the node') parser.add_argument('--backend', type=str, default='nccl', help='backend for distributed communication') return parser def launch(config: Union[str, Path, Config, Dict], rank: int, world_size: int, host: str, port: int, backend: str = 'nccl', local_rank: int = None, seed: int = 1024, verbose: bool = True): """This function first parses the configuration arguments, using :func:`parse_args()` in case one of the input arguments are not given. Then initialize and set distributed environment by calling global_context's functions. :param config: Config file or config file path are both acceptable :type config: Union[str, dict, Config] :param rank: Rank for the default process group :type rank: int :param world_size: World size of the default process group :type world_size: int :param host: The master address for distributed training :type host: str :param port: The master port for distributed training :type port: str :param backend: Backend for torch.distributed :type backend: str, optional :param local_rank: Rank for the process on the node and is used to set the default CUDA device, defaults to None. If local_rank = None, the default device ordinal will be calculated automatically :type local_rank: int, optional :param seed: Specified random seed for every processes :type seed: int, optional :param verbose: Whether to print logs :type verbose: bool, optional :raises Exception: Raise exception when config type is wrong """ gpc.verbose = verbose # set config assert isinstance(config, (Config, str, Path, dict)), \ f'expected argument config to be Config, str or Path, but got {type(config)}' if not isinstance(config, Config) and isinstance(config, dict): config = Config(config) if isinstance(config, (str, Path)): config = Config.from_file(config) gpc.load_config(config) # init default process group gpc.init_global_dist(rank, world_size, backend, host, port) # init process groups for different parallel modes from config gpc.init_parallel_groups() # set cuda device if torch.cuda.is_available(): # if local rank is not given, calculate automatically gpc.set_device(local_rank) gpc.set_seed(seed) if verbose: logger = get_dist_logger() logger.info( f'Distributed environment is initialized, ' f'data parallel size: {gpc.data_parallel_size}, pipeline parallel size: {gpc.pipeline_parallel_size}, ' f'tensor parallel size: {gpc.tensor_parallel_size}', ranks=[0]) def launch_from_slurm(config: Union[str, Path, Config, Dict], host: str, port: int, backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for SLURM launcher by reading rank and world size from the environment variables set by SLURM :param config: Config file or config file path are both acceptable :type config: Union[str, dict, Config] :param host: The master address for distributed training :type host: str :param port: The master port for distributed training :type port: str :param backend: Backend for torch.distributed :type backend: str, optional :param seed: Specified random seed for every processes :type seed: int, optional :param verbose: Whether to print logs :type verbose: bool, optional """ rank = int(os.environ['SLURM_PROCID']) world_size = int(os.environ['SLURM_NPROCS']) launch(config=config, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def launch_from_openmpi(config: Union[str, Path, Config, Dict], host: str, port: int, backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for OpenMPI launcher by reading rank and world size from the environment variables set by OpenMPI :param config: Config file or config file path are both acceptable :type config: Union[str, dict, Config] :param host: The master address for distributed training :type host: str :param port: The master port for distributed training :type port: str :param backend: Backend for torch.distributed :type backend: str, optional :param seed: Specified random seed for every processes :type seed: int, optional :param verbose: Whether to print logs :type verbose: bool, optional """ rank = int(os.environ['OMPI_COMM_WORLD_RANK']) local_rank = int(os.environ['OMPI_COMM_WORLD_LOCAL_RANK']) world_size = int(os.environ['OMPI_COMM_WORLD_SIZE']) launch(config=config, local_rank=local_rank, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def launch_from_torch(config: Union[str, Path, Config, Dict], backend: str = 'nccl', seed: int = 1024, verbose: bool = True): """A wrapper for colossalai.launch for torchrun or torch.distributed.launch by reading rank and world size from the environment variables set by PyTorch :param config: Config file or config file path are both acceptable :type config: Union[str, dict, Config] :param backend: Backend for torch.distributed :type backend: str, optional :param seed: Specified random seed for every processes :type seed: int, optional :param verbose: Whether to print logs :type verbose: bool, optional """ rank = int(os.environ['RANK']) local_rank = int(os.environ['LOCAL_RANK']) world_size = int(os.environ['WORLD_SIZE']) host = os.environ['MASTER_ADDR'] port = int(os.environ['MASTER_PORT']) launch(config=config, local_rank=local_rank, rank=rank, world_size=world_size, host=host, port=port, backend=backend, seed=seed, verbose=verbose) def initialize(model: nn.Module, optimizer: Optimizer, criterion: Optional[_Loss] = None, train_dataloader: Optional[Iterable] = None, test_dataloader: Optional[Iterable] = None, lr_scheduler: Optional[_LRScheduler] = None, ophooks: Optional[List[BaseOpHook]] = None, verbose: bool = True) -> Tuple[Engine, DataLoader, DataLoader, _LRScheduler]: """Core function to wrap the essential training components with our functionality based on the config which is loaded into gpc.config. :param model: Your model instance or a function to build the model :type model: :class:`torch.nn.Module` or Callbale :param optimizer: Your optimizer instance :type optimizer: :class:`torch.optim.optimizer.Optimizer` or :class:`Type[torch.optim.optimizer]` :param criterion: Your criterion instance :type criterion: :class:`torch.nn.modules.loss._Loss`, optional :param train_dataloader: Dataloader for training :type train_dataloader: :class:`torch.utils.data.DataLoader`, optional :param test_dataloader: Dataloader for testing :type test_dataloader: :class:`torch.utils.data.DataLoader`, optional :param lr_scheduler: Your lr scheduler instance, optional :type lr_scheduler: :class:`torch.nn.lr_scheduler._LRScheduler`, optional :param verbose: Whether to print logs :type verbose: bool, optional :return: (engine, train_dataloader, test_dataloader, lr_scheduler) :rtype: Tuple """ # get logger logger = get_dist_logger() gpc.verbose = verbose # get config from gpc config = gpc.config # print config if verbose: logger.info( f"\n========== Your Config ========\n" f"{pprint.pformat(gpc.config)}\n" f"================================\n", ranks=[0]) # cudnn cudnn_benchmark = config.get('cudnn_benchmark', True) cudnn_deterministic = config.get('cudnn_deterministic', False) torch.backends.cudnn.benchmark = cudnn_benchmark torch.backends.cudnn.deterministic = cudnn_deterministic if verbose: logger.info(f"cuDNN benchmark = {cudnn_benchmark}, deterministic = {cudnn_deterministic}", ranks=[0]) # zero use_zero = hasattr(gpc.config, 'zero') if use_zero: zero_cfg = gpc.config.get('zero', None) if zero_cfg is not None: cfg_ = zero_cfg.copy() else: cfg_ = {} optimizer_config = zero_cfg.get('optimizer_config', None) model_config = zero_cfg.get('model_config', None) model, optimizer = convert_to_zero_v2(model, optimizer, model_config=model_config, optimizer_config=optimizer_config) logger.info("Initializing ZeRO model and optimizer finished!", ranks=[0]) # FIXME() throw a warning if using zero with MP if gpc.get_world_size(ParallelMode.MODEL) > 1: logger.warning("ZeRO currently has not been tested with model parallelism.", ranks=[0]) else: if isinstance(model, nn.Module): # first sync model across dp ranks model.to(get_current_device()) elif isinstance(model, Callable): model = model().to(get_current_device()) # optimizer maybe a optimizer_cls logger.warning("Initializing an non ZeRO model with optimizer class") if isinstance(optimizer, Callable): optimizer = optimizer(model.parameters()) if not use_zero: if is_using_sequence(): sync_model_param(model, ParallelMode.SEQUENCE_DP) elif MOE_CONTEXT.is_initialized: sync_moe_model_param(model) elif is_using_ddp(): sync_model_param(model, ParallelMode.DATA) else: logger.warning( "The parameters of models is not automatically synchronized.\n" "Please make sure that all parameters are the same in data parallel group.", ranks=[0]) # check amp and zero fp16_cfg = gpc.config.get('fp16', None) if fp16_cfg is not None and fp16_cfg.mode is not None and use_zero: raise ConfigException( "It is not allowed to set fp16 and zero configuration in your config file at the same time") # clip grad norm clip_grad_norm = gpc.config.get('clip_grad_norm', 0.0) if clip_grad_norm > 0: if use_zero and zero_cfg is not None: raise ConfigException( "clip_grad_norm should be specified with zero, you should specify clip_grad in zero configuration") # initialize amp amp_mode = None if fp16_cfg is not None and fp16_cfg.mode is not None: cfg_ = fp16_cfg.copy() amp_mode = cfg_.pop('mode') if is_using_pp(): assert amp_mode == AMP_TYPE.NAIVE, 'Pipeline only support NaiveAMP currently' if amp_mode == AMP_TYPE.NAIVE: cfg_['clip_grad_norm'] = clip_grad_norm model, optimizer, criterion = convert_to_amp(model=model, optimizer=optimizer, criterion=criterion, mode=amp_mode, amp_config=cfg_) # gradient handler gradient_handler_cfg = gpc.config.get('gradient_handler', None) if gradient_handler_cfg is None: # if gradient handler is not specified in the configuration file, # check in the following order # 1. if optimizer is ZERO, then use zero grad handler # 2. if dp size is larger than 1 and pipeline is not used, use pytorch ddp # 3. if using pipeline and dp size larger than 1, use data parallel grad handler if isinstance(optimizer, ShardedOptimizerV2): gradient_handler_cfg = [dict(type='ZeROGradientHandler')] if verbose: logger.info( "Training with zero is detected, ZeROGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) elif is_using_ddp() and MOE_CONTEXT.is_initialized: gradient_handler_cfg = [dict(type='MoeGradientHandler')] if verbose: logger.info( "Data parallel training is detected with moe parallel, MoeGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) elif is_using_sequence(): model = DDP(model, process_group=gpc.get_group(ParallelMode.SEQUENCE_DP), device_ids=[torch.cuda.current_device()]) if verbose: logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Sequence Parallelism', ranks=[0]) elif is_using_ddp() and not is_using_pp() and amp_mode != AMP_TYPE.NAIVE: model = DDP(model, process_group=gpc.get_group(ParallelMode.DATA), device_ids=[torch.cuda.current_device()]) if verbose: logger.info('Model is using torch.nn.parallel.DistributedDataParallel for Data Parallelism', ranks=[0]) elif is_using_ddp(): gradient_handler_cfg = [dict(type='DataParallelGradientHandler')] if verbose: logger.info( "Data parallel training is detected when using pipeline parallel, " "DataParallelGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) # add pipeline parallel gradient handler, if pipeline shared module is detected for param in model.parameters(): if getattr(param, 'pipeline_shared_module_pg', None) is not None: if gradient_handler_cfg is None: gradient_handler_cfg = [dict(type='PipelineSharedModuleGradientHandler')] else: gradient_handler_cfg.append(dict(type='PipelineSharedModuleGradientHandler')) if verbose: logger.info( "pipeline_shared_module is detected, PipelineSharedModuleGradientHandler is automatically " "added even though not specified in the configuration", ranks=[0]) break else: if not isinstance(gradient_handler_cfg, list): raise ConfigException( f"expected gradient_handler in the configuration file to be a list but got {type(gradient_handler_cfg)}" ) # turn off sync buffer for NaiveAMPModel if using torch DDP and NaiveAMPModel at the same time # to avoid duplicated buffer synchronization if isinstance(model, DDP) and isinstance(model.module, NaiveAMPModel): model.module.sync_buffer = False if gradient_handler_cfg is None: gradient_handlers = None if verbose and not isinstance(model, DDP): logger.warning( "No PyTorch DDP or gradient handler is set up, please make sure you do not need " "to all-reduce the gradients after a training step.", ranks=[0]) else: gradient_handlers = [build_gradient_handler(cfg, model, optimizer) for cfg in gradient_handler_cfg] # check if optimizer is ColossalaiOptimizer if not isinstance(optimizer, (ColossalaiOptimizer, ShardedOptimizerV2)): optimizer = ColossalaiOptimizer(optim=optimizer) # gradient accumulation grad_accum_size = gpc.config.get('gradient_accumulation', None) if grad_accum_size is not None: optimizer, train_dataloader, gradient_handlers, lr_scheduler = accumulate_gradient( model=model, optimizer=optimizer, dataloader=train_dataloader, accumulate_size=grad_accum_size, gradient_handlers=gradient_handlers, lr_scheduler=lr_scheduler) engine = Engine(model=model, optimizer=optimizer, criterion=criterion, gradient_handlers=gradient_handlers, clip_grad_norm=clip_grad_norm, ophook_list=ophooks) return engine, train_dataloader, test_dataloader, lr_scheduler ``` #### File: colossalai/logging/__init__.py ```python import logging from typing import List, Optional from .logger import DistributedLogger __all__ = ['get_dist_logger', 'DistributedLogger', 'disable_existing_loggers'] def get_dist_logger(name='colossalai'): """Get logger instance based on name. The DistributedLogger will create singleton instances, which means that only one logger instance is created per name. :param name: name of the logger, name must be unique :type name: str :return: a distributed logger instance :rtype: :class:`colossalai.logging.DistributedLogger` """ return DistributedLogger.get_instance(name=name) def disable_existing_loggers(include: Optional[List[str]] = None, exclude: List[str] = ['colossalai']): """Set the level of existing loggers to `WARNING`. By default, it will "disable" all existing loggers except the logger named "colossalai". Args: include (Optional[List[str]], optional): Loggers whose name in this list will be disabled. If set to `None`, `exclude` argument will be used. Defaults to None. exclude (List[str], optional): Loggers whose name not in this list will be disabled. This argument will be used only when `include` is None. Defaults to ['colossalai']. """ if include is None: filter_func = lambda name: name not in exclude else: filter_func = lambda name: name in include for log_name in logging.Logger.manager.loggerDict.keys(): if filter_func(log_name): logging.getLogger(log_name).setLevel(logging.WARNING) ``` #### File: zero/shard_utils/tensor_shard_strategy.py ```python from typing import List, Optional import torch import torch.distributed as dist from colossalai.utils import get_current_device from colossalai.utils.memory_utils.utils import colo_model_data_tensor_move, colo_model_data_tensor_move_inline from colossalai.zero.shard_utils import BaseShardStrategy from colossalai.zero.shard_utils.commons import get_shard from colossalai.zero.sharded_param.sharded_tensor import ShardedTensor class TensorShardStrategy(BaseShardStrategy): """ A naive implementation which shard each tensor evenly over all ranks """ def shard(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None): for t in tensor_list: self._shard_tensor(t, process_group) def gather(self, tensor_list: List[ShardedTensor], process_group: Optional[dist.ProcessGroup] = None): for t in tensor_list: self._gather_tensor(t, process_group) def _shard_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None): """ Shard tensor among processes. Args: t (ShardedTensor): a tensor to be sharded. process_group (Optional[dist.ProcessGroup], optional): the process group among which tensor shards. Defaults to None. """ if t.is_sharded: return if t.payload.device.type == 'cuda': assert t.payload.device.index == get_current_device(), f"shard tensor on cuda device index {t.payload.device.index},"\ f" but current cuda device is {get_current_device()}" sharded_payload, _ = get_shard(t.payload, dist.get_rank(process_group), dist.get_world_size(process_group)) t.reset_payload(sharded_payload) t.is_sharded = True def _gather_tensor(self, t: ShardedTensor, process_group: Optional[dist.ProcessGroup] = None): if not t.is_sharded: return target_device = t.device buffer_list = [] payload_numel = t.payload.numel() world_size = dist.get_world_size(process_group) rank = dist.get_rank(process_group) for i in range(world_size): if i == rank: buffer_list.append(t.payload.cuda(get_current_device())) else: buffer_list.append(torch.zeros(payload_numel, dtype=t.dtype, device=get_current_device())) dist.all_gather(buffer_list, buffer_list[rank], group=process_group, async_op=False) gathered_payload = torch.narrow(torch.cat(buffer_list), 0, 0, t.origin_numel).reshape(t.origin_shape) t.reset_payload(gathered_payload) colo_model_data_tensor_move_inline(t, target_device, use_tracer=False) t.is_sharded = False ```
{ "source": "jinong-devteam/pyjns", "score": 4 }
#### File: pyjns/pyjns/enum.py ```python def enum(*sequential, **named): """ a function to generate enum type """ enums = dict(zip(sequential, range(len(sequential))), **named) reverse = dict((value, key) for key, value in enums.iteritems()) enums['reverse_mapping'] = reverse return type('Enum', (), enums) ```
{ "source": "jinoobaek-qz/mesh", "score": 2 }
#### File: mesh_tensorflow/auto_mtf/memory_estimator.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from mesh_tensorflow.auto_mtf import graph_interface from mesh_tensorflow.auto_mtf import valid_layouts class MemoryEstimator(object): """Estimates memory cost of a MTF graph based on the size of MTF tensors. Usage Example: estimator = memory_estimator.MemoryEstimator(mtf_graph, mesh_shape) layout_validator = estimator.get_layout_validator() graph = estimator.get_graph_interface() Attributes: mtf_graph: an mtf.Graph, see argument in __init__. mesh_shape: an mtf.Shape, see argument in __init__. mtf_outputs: an iterable of mtf.Tensor, see argument in __init__. """ def __init__(self, mtf_graph, mesh_shape, mtf_outputs=()): """Initializer. Args: mtf_graph: a mtf.Graph. mesh_shape: an mtf.Shape. mtf_outputs: an optional iterable of mtf.Tensor, representing the outputs of the computation. """ self.mtf_graph = mtf_graph self.mesh_shape = mesh_shape self.mtf_outputs = mtf_outputs self._layout_validator = None # valid_layouts.LayoutValidator self._graph_interface = None # graph_interface.GraphInterface def get_layout_validator(self): """LayoutValidator for the model and mesh_shape. Returns: a valid_layouts.LayoutValidator """ if self._layout_validator is None: self._compute_layout_validator() return self._layout_validator def get_graph_interface(self): """GraphInterface representation of the model's computation graph. Returns: a graph_interface.GraphInterface """ if self._graph_interface is None: self._compute_graph_interface() return self._graph_interface def _compute_layout_validator(self): """Computes self._layout_validator.""" self._layout_validator = valid_layouts.LayoutValidator(self.mtf_graph, self.mesh_shape) def _compute_graph_interface(self): """Computes self._graph_interface.""" self._graph_interface = graph_interface.GraphInterface(self.mtf_graph) for mtf_output in self.mtf_outputs: self._graph_interface.set_tensor_final(mtf_output.name) ``` #### File: mesh_tensorflow/auto_mtf/valid_layouts_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import mesh_tensorflow as mtf from mesh_tensorflow.auto_mtf import valid_layouts import tensorflow.compat.v1 as tf class LayoutValidatorTest(tf.test.TestCase): def setUp(self): super(LayoutValidatorTest, self).setUp() graph = mtf.Graph() mesh = mtf.Mesh(graph, "my_mesh") a_dim = mtf.Dimension("a", 5) b_dim = mtf.Dimension("b", 10) concat_dim1 = mtf.Dimension("concat", 15) concat_dim2 = mtf.Dimension("concat", 20) x1 = mtf.zeros(mesh, mtf.Shape([a_dim, b_dim, concat_dim1])) x2 = mtf.zeros(mesh, mtf.Shape([a_dim, b_dim, concat_dim2])) mtf.ConcatOperation([x1, x2], "concat") # We add a tensor with anonymous shape, which is supposed to be # unsplittable (i.e. none of its dimensions show up during # test_SplittableMtfDimensionNames). _ = mtf.zeros(mesh, mtf.anonymous_shape(mtf.Shape([a_dim, b_dim]))) mesh_shape = mtf.Shape([("m1", 4), ("m2", 2)]) self.valid_layouts = valid_layouts.LayoutValidator(graph, mesh_shape) def test_SplittableMtfDimensionNames(self): self.assertEqual(self.valid_layouts.splittable_mtf_dimension_names, set(["a", "b"])) def test_MeshDimensionNameToSize(self): self.assertEqual(self.valid_layouts.mesh_dimension_name_to_size, {"m1": 4, "m2": 2}) def test_is_valid_assignment(self): # Due to divisibility, the a dimension cannot be assigned to m1 or m2. self.assertFalse(self.valid_layouts.is_valid_assignment("a", "m1")) self.assertFalse(self.valid_layouts.is_valid_assignment("a", "m2")) # The b dimension can only be assigned to m2. self.assertFalse(self.valid_layouts.is_valid_assignment("b", "m1")) self.assertTrue(self.valid_layouts.is_valid_assignment("b", "m2")) # Due to ConcatOperation, the concat dimension may not be assigned. self.assertFalse(self.valid_layouts.is_valid_assignment("concat", "m1")) self.assertFalse(self.valid_layouts.is_valid_assignment("concat", "m2")) if __name__ == "__main__": tf.disable_v2_behavior() tf.test.main() ``` #### File: mesh_tensorflow/transformer/transformer_layers.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import math import gin import mesh_tensorflow as mtf from mesh_tensorflow import layers from mesh_tensorflow.transformer import attention from mesh_tensorflow.transformer import transformer import tensorflow.compat.v1 as tf @gin.configurable class DenseReluDense(transformer.TransformerLayer): """Two fully-connected layers with feed-forward activation.""" def __init__(self, hidden_size=4096, dropout_rate=0.0): """Create a DenseReluDense. Args: hidden_size: an integer - size of the hidden layer dropout_rate: a floating-point number """ self.hidden_size = hidden_size self.dropout_rate = dropout_rate def call(self, context, x, losses=None): """Call the layer.""" io_channels = x.shape.dims[-1] hidden_channels = mtf.Dimension("d_ff", self.hidden_size) if context.model.ensemble_dim: expert_dims = [context.model.ensemble_dim] else: expert_dims = None h = mtf.layers.dense(x, hidden_channels, use_bias=False, activation=mtf.relu, variable_dtype=context.variable_dtype, reduced_dims=x.shape.dims[-1:], name="wi", expert_dims=expert_dims) if context.train and self.dropout_rate != 0.0: h = mtf.dropout(h, 1.0 - self.dropout_rate, noise_shape=h.shape - context.length_dim) return mtf.layers.dense(h, io_channels, use_bias=False, activation=None, variable_dtype=context.variable_dtype, reduced_dims=h.shape.dims[-1:], name="wo", expert_dims=expert_dims) def attention_params(context, kv_dim, num_heads, num_memory_heads=0, shared_kv=False): """Attention Parameters for Transformer Layers. The num_heads argument indicates the number of read-heads. For the familiar behavior described in "Attention Is All You Need", set num_memory_heads=0. If num_memory_heads==1, then there is only a single write-head, and multiple read-heads. This leads to faster incremental decoding, since the recurrent state is smaller If num_memory_heads > 1, then num_memory_heads indicates the number of write-heads. A fraction of the read-heads read each write-head. num_memory_heads must divide num_heads. This behavior has not yet been tested. Args: context: a transformer.Context kv_dim: a dimension (for key and value channels) num_heads: an integer num_memory_heads: an optional integer shared_kv: a boolean Returns: an attention.AttentionParams object """ if num_heads == 1: query_heads_dims = None memory_heads_dims = None elif num_memory_heads == 0: query_heads_dims = [mtf.Dimension("heads", num_heads)] memory_heads_dims = query_heads_dims elif num_memory_heads == 1: query_heads_dims = [mtf.Dimension("heads", num_heads)] memory_heads_dims = None else: if num_heads % num_memory_heads != 0: raise ValueError("num_memory_heads must divide num_heads") memory_heads_dims = [mtf.Dimension("heads", num_memory_heads)] query_heads_dims = memory_heads_dims + [ mtf.Dimension("query_heads", num_heads // num_memory_heads)] return attention.AttentionParams( context.mesh, query_input_dim=context.model.model_dim, memory_input_dim=context.model.model_dim, output_dim=context.model.model_dim, key_dim=kv_dim, value_dim=kv_dim, query_heads_dims=query_heads_dims, memory_heads_dims=memory_heads_dims, variable_dtype=context.variable_dtype, shared_kv=shared_kv, ensemble_dim=context.model.ensemble_dim) @gin.configurable class SelfAttention(transformer.TransformerLayer): """Multi-head self-attention layer.""" def __init__(self, num_heads=8, num_memory_heads=0, key_value_size=128, shared_kv=False, dropout_rate=0.0, attention_kwargs=None, relative_attention_type=None, relative_attention_num_buckets=32): """Create a SelfAttention Layer. Args: num_heads: an integer num_memory_heads: an optional integer key_value_size: an integer shared_kv: a boolean dropout_rate: a float attention_kwargs: a dictionary of kwargs for attention.attention relative_attention_type: an optional string - one of (None, "bias", "bias_shared", "contextual") relative_attention_num_buckets: an integer """ self.num_heads = num_heads self.num_memory_heads = num_memory_heads self.key_value_size = key_value_size self.shared_kv = shared_kv self.dropout_rate = dropout_rate self.attention_kwargs = attention_kwargs or {} self.relative_attention_type = relative_attention_type self.relative_attention_num_buckets = relative_attention_num_buckets def attention_kwargs_from_context(self, context): kwargs = copy.copy(self.attention_kwargs) kwargs["dropout_rate"] = self.dropout_rate if context.train else 0.0 if "dropout_broadcast_dims" not in kwargs: kwargs["dropout_broadcast_dims"] = [context.length_dim] return kwargs def make_params(self, context): return attention_params(context=context, kv_dim=self.kv_dim, num_heads=self.num_heads, num_memory_heads=self.num_memory_heads, shared_kv=self.shared_kv) def call(self, context, x, losses=None): """Call the layer.""" params = self.make_params(context) q = params.compute_q(x) memory_length = self.memory_length(context) if context.mode == "incremental": m = x else: m = mtf.replace_dimensions(x, context.length_dim, memory_length) if self.shared_kv: kv = params.compute_kv(m) else: k = params.compute_k(m) v = params.compute_v(m) if context.mode == "incremental": one_hot = mtf.one_hot( context.position, memory_length, dtype=context.activation_dtype) inv_one_hot = 1.0 - one_hot if self.shared_kv: old_kv = context.get_states(1) kv = old_kv * inv_one_hot + kv * one_hot else: old_k, old_v = context.get_states(2) k = old_k * inv_one_hot + k * one_hot v = old_v * inv_one_hot + v * one_hot memory_position = mtf.range(context.mesh, memory_length, tf.int32) else: memory_position = self.rename_length_to_memory_length( context.position, context) if context.mode == "incremental" or context.mode == "first_part": context.record_new_states([kv] if self.shared_kv else [k, v]) if self.shared_kv: k = kv v = kv o = attention.attention( q, k, v, memory_length, self.kv_dim, self.kv_dim, self.compute_bias(context, memory_position, x), **self.attention_kwargs_from_context(context)) return params.compute_output(o, output_shape=x.shape) def compute_bias(self, context, memory_position, x): """Compute attention bias. Args: context: a transformer.Context memory_position: an int32 tensor containing memory_length dimension. x: a Tensor - the query antecedent - required for relative attention Returns: a Tensor or None """ min_relative_position = self.min_relative_position(context) max_relative_position = self.max_relative_position(context) # we can often cache the result of this function between similar layers can_cache = ( self.relative_attention_type is None or self.relative_attention_type == "bias_shared") if can_cache: cache_key = ("self_attention_mask", min_relative_position, max_relative_position, self.relative_attention_type, self.num_heads) if cache_key in context.cache: return context.cache[cache_key] biases = [] relative_position = memory_position - context.position if min_relative_position is not None: visible = mtf.greater_equal(relative_position, min_relative_position) biases.append(attention.visibility_mask_to_attention_bias( visible, context.activation_dtype)) if max_relative_position is not None: visible = mtf.less_equal(relative_position, max_relative_position) biases.append(attention.visibility_mask_to_attention_bias( visible, context.activation_dtype)) if context.read_priority is not None: visible = mtf.greater_equal( context.read_priority, mtf.layers.rename_length_to_memory_length(context.write_priority)) biases.append(attention.visibility_mask_to_attention_bias( visible, context.activation_dtype)) sequence_id = None # Subsequence id should only be set if we are in the decoder and have # multiple targets per input. This will allow each sub-target to only attend # to itself. if isinstance(context.subsequence_id, mtf.Tensor): sequence_id = context.subsequence_id elif isinstance(context.sequence_id, mtf.Tensor): sequence_id = context.sequence_id if (sequence_id is not None and context.length_dim in sequence_id.shape): visible = mtf.equal( sequence_id, self.rename_length_to_memory_length(sequence_id, context)) biases.append(attention.visibility_mask_to_attention_bias( visible, context.activation_dtype)) if self.relative_attention_type is not None: buckets_dim = mtf.Dimension( "buckets", self.relative_attention_num_buckets) heads_dim = mtf.Dimension("heads", self.num_heads) bidirectional = not context.model.fully_autoregressive rp_bucket = _relative_position_bucket( relative_position, bidirectional=bidirectional, num_buckets=buckets_dim.size) if (self.relative_attention_type == "bias" or self.relative_attention_type == "bias_shared"): bias_shape = [heads_dim, buckets_dim] if context.model.ensemble_dim: bias_shape = [context.model.ensemble_dim] + bias_shape values = mtf.get_variable( context.mesh, "relative_attention_bias", bias_shape, dtype=context.variable_dtype) elif self.relative_attention_type == "contextual": if context.model.ensemble_dim: expert_dims = [context.model.ensemble_dim] else: expert_dims = None values = layers.dense( x, [buckets_dim, heads_dim], variable_dtype=context.variable_dtype, name="relative_attention_contextual", expert_dims=expert_dims) else: raise ValueError("unrecognized relative_attention_type \"%s\"" % self.relative_attention_type) biases.append(mtf.gather(values, rp_bucket, buckets_dim)) ret = mtf.add_n(biases) if biases else None if can_cache: context.cache[cache_key] = ret return ret @property def kv_dim(self): return mtf.Dimension("d_kv", self.key_value_size) def memory_length(self, context): return mtf.Dimension("memory_length", context.length_dim.size) def rename_length_to_memory_length(self, x, context): return mtf.replace_dimensions( x, context.length_dim, self.memory_length(context)) def min_relative_position(self, context): return None def max_relative_position(self, context): return None @gin.configurable class EncDecAttention(SelfAttention): """Multi-head attention over encoder output.""" def _get_memory_antecedent(self, context): return context.encoder_output def call(self, context, x, losses=None): """Call the layer.""" memory_antecedent = self._get_memory_antecedent(context) memory_input_dim = memory_antecedent.shape[-1] if memory_input_dim != context.model.model_dim: raise NotImplementedError( "TODO(noam): support different model_dim in encoder and decoder.") params = self.make_params(context) q = params.compute_q(x) if context.mode == "incremental": k, v, memory_length = context.get_constant_state() else: m = memory_antecedent if self.shared_kv: kv = params.compute_kv(m) k = kv v = kv else: k = params.compute_k(m) v = params.compute_v(m) memory_length, = [d for d in m.shape.dims if d.name == "memory_length"] if context.mode == "first_part": context.record_constant_state((k, v, memory_length)) if context.encoder_sequence_id and context.sequence_id: visible = mtf.equal(context.sequence_id, context.encoder_sequence_id) bias = attention.visibility_mask_to_attention_bias( visible, context.activation_dtype) else: bias = None o = attention.attention( q, k, v, memory_length, self.kv_dim, self.kv_dim, bias, **self.attention_kwargs_from_context(context)) return params.compute_output(o, output_shape=x.shape) @gin.configurable class TransparentEncDecAttention(EncDecAttention): """Transparent multi-head attention over encoder output.""" def __init__(self, layers_per_encoder_module=gin.REQUIRED, layers_per_decoder_module=gin.REQUIRED, encoder_num_modules=gin.REQUIRED, decoder_num_modules=gin.REQUIRED, dropout_rate=0.0, **kwargs): """Create a transparent attention EncDec Layer. Args: layers_per_encoder_module: positive integer telling how many layer are in each repeated module in the encoder layers_per_decoder_module: positive integer telling how many layer are in each repeated module in the decoder encoder_num_modules: positive integer of how many repeated modules there are in the encoder decoder_num_modules: positive integer of how many repeated modules there are in the decoder dropout_rate: positive float, the dropout rate for the matrix relating encoder outputs to decoder inputs **kwargs: additional constructor params """ super(TransparentEncDecAttention, self).__init__(**kwargs) self.layers_per_encoder_module = layers_per_encoder_module self.layers_per_decoder_module = layers_per_decoder_module self.encoder_num_modules = encoder_num_modules self.decoder_num_modules = decoder_num_modules self.dropout_rate = dropout_rate def _get_memory_antecedent(self, context): decoder_module_index = context.layer_index // self.layers_per_decoder_module decoder_inputs = self._get_decoder_inputs(context) return decoder_inputs[decoder_module_index] def _get_decoder_inputs(self, context): """Computes the inputs to the decoder when using transparent attention. We must cache on the context in order to ensure that we are not replicating variables when the layer's call function is called in different tf variable scopes. Args: context: a Context Returns: a list containing `self.num_decoder_modules` of tensors with shape [<batch_dims>, length_dim, output_vocab_dim] """ if hasattr(context, "decoder_layers_per_module"): return context.decoder_layers_per_module encoder_layer_outputs = [ mtf.layers.rename_length_to_memory_length(output) for output in context.encoder_layer_outputs ] layers_per_module = self.layers_per_encoder_module encoder_module_outputs_dim = mtf.Dimension( "encoder_module_outputs", size=self.encoder_num_modules + 1) decoder_module_inputs_dim = mtf.Dimension( "decoder_module_inputs", size=self.decoder_num_modules) encoder_module_outputs = mtf.stack( [encoder_layer_outputs[0]] + encoder_layer_outputs[layers_per_module::layers_per_module], dim_name="encoder_module_outputs") w = mtf.get_variable( context.mesh, "w", mtf.Shape([encoder_module_outputs_dim, decoder_module_inputs_dim]), initializer=tf.random_normal_initializer( stddev=(encoder_module_outputs_dim.size * decoder_module_inputs_dim.size)**-0.5), dtype=context.variable_dtype) if context.train and self.dropout_rate != 0.0: w = mtf.dropout(w, 1.0 - self.dropout_rate) s = mtf.softmax(w, reduced_dim=encoder_module_outputs_dim) z = mtf.einsum([s, encoder_module_outputs], reduced_dims=[encoder_module_outputs_dim]) input_per_decoder = mtf.split( z, split_dim=decoder_module_inputs_dim, num_or_size_splits=decoder_module_inputs_dim.size) context.decoder_layers_per_module = [ mtf.reshape(inpt, z.shape.dims[1:]) for inpt in input_per_decoder ] return context.decoder_layers_per_module @gin.configurable class LocalSelfAttention(SelfAttention): """Multi-head local self-attention layer.""" def __init__(self, radius=128, num_heads=8, num_memory_heads=0, key_value_size=128, shared_kv=False, dropout_rate=0.0, attention_kwargs=None,): super(LocalSelfAttention, self).__init__( num_heads, num_memory_heads, key_value_size, shared_kv, dropout_rate, attention_kwargs) self.radius = radius def call(self, context, x, losses=None): """Call the layer.""" params = self.make_params(context) q = params.compute_q(x) if self.shared_kv: kv = params.compute_kv(x) k = kv v = kv else: k = params.compute_k(x) v = params.compute_v(x) if context.mode == "incremental": if self.shared_kv: prev_kv, = context.get_states(1) else: prev_k, prev_v = context.get_states(2) current_position = mtf.equal( mtf.range(context.mesh, self.window_dim, dtype=tf.int32), mtf.mod(context.position, self.radius)) if self.shared_kv: kv = mtf.where(current_position, kv, prev_kv, output_shape=prev_kv.shape) k = kv v = kv context.record_new_states([kv]) else: k = mtf.where(current_position, params.compute_k(x), prev_k, output_shape=prev_k.shape) v = mtf.where(current_position, params.compute_v(x), prev_v, output_shape=prev_v.shape) context.record_new_states([k, v]) window_pos = mtf.range(context.mesh, self.window_dim, tf.int32) visible = mtf.greater_equal(context.position, window_pos) bias = attention.visibility_mask_to_attention_bias( visible, context.activation_dtype) o = attention.attention( q, k, v, self.window_dim, self.kv_dim, self.kv_dim, bias, **self.attention_kwargs_from_context(context)) elif context.length_dim.size <= max(256, self.radius * 4): # nothing fancy - just do full attention and mask memory_length = self.rename_length_to_memory_length( context.position, context) o = attention.attention( q, self.rename_length_to_memory_length(k, context), self.rename_length_to_memory_length(v, context), self.memory_length(context), self.kv_dim, self.kv_dim, self.compute_bias(context, memory_length, x), **self.attention_kwargs_from_context(context)) else: # fancy local attention algorithm o = attention.local_attention_1d( q=q, k=k, v=None if self.shared_kv else v, length_dim=context.length_dim, key_dim=self.kv_dim, value_dim=self.kv_dim, length_dim_num_splits=1, # TODO(noam): look at the layout autoregressive=context.model.fully_autoregressive, radius=self.radius, sequence_id=context.sequence_id, write_priority=context.write_priority, read_priority=context.read_priority, attention_kwargs=self.attention_kwargs_from_context(context)) if context.mode == "first_part": window_pos = mtf.range(context.mesh, self.window_dim, tf.int32) pos = mtf.range(context.mesh, context.length_dim, tf.int32) select_recent = mtf.cast( mtf.equal(mtf.mod(pos, self.radius), window_pos), x.dtype) select_recent *= mtf.cast( mtf.less(pos, context.initial_position), x.dtype) select_recent *= mtf.cast( mtf.greater_equal( pos, context.initial_position - self.radius), x.dtype) state_shape = (k.shape - [context.length_dim, self.kv_dim] + [self.window_dim, self.kv_dim]) k_state = mtf.einsum( [k, select_recent], output_shape=state_shape, reduced_dims=[context.length_dim]) context.new_states.append(k_state) if not self.shared_kv: v_state = mtf.einsum( [v, select_recent], output_shape=state_shape, reduced_dims=[context.length_dim]) context.new_states.append(v_state) return params.compute_output(o, output_shape=x.shape) def min_relative_position(self, context): return 1 - self.radius def max_relative_position(self, context): return None if context.model.fully_autoregressive else self.radius @property def window_dim(self): return mtf.Dimension("window", self.radius) def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on. Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ ret = 0 n = -relative_position if bidirectional: num_buckets //= 2 ret += mtf.to_int32(mtf.less(n, 0)) * num_buckets n = mtf.abs(n) else: n = mtf.maximum(n, 0) # now n is in the range [0, inf) max_exact = num_buckets // 2 is_small = mtf.less(n, max_exact) val_if_large = max_exact + mtf.to_int32( mtf.log(mtf.to_float(n) / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)) val_if_large = mtf.minimum(val_if_large, num_buckets - 1) ret += mtf.where(is_small, n, val_if_large) return ret ```
{ "source": "jinouwuque/movieDesignationManager", "score": 3 }
#### File: movieDesignationManager/jobs/do_csv.py ```python from src.FileWalker import FileWalker from src.CsvWriter import CsvWriter from local.constant_var import paths def do_csv(): walker = FileWalker(paths) list = walker.getList() map = { 'company': 'c', 'id': 'i', 'movie': 'm', 'image': 'im', 'url': 'r' } print("generating the CSV file ... ") wr = CsvWriter() wr.start(map, list) print('================') print('Finished!') print('================') ```
{ "source": "Jinpachi5/GroovyToo", "score": 3 }
#### File: GroovyToo/cogs/clear.py ```python import discord from discord.ext import commands import asyncio class Clear(commands.Cog): def __init__(self, client): self.client = client @commands.command() async def clear(self, ctx, amount = 1): if amount <= 100: await ctx.channel.purge(limit = amount + 1) @commands.command() async def clearAll(self, ctx): messages = await ctx.channel.history(limit = 100).flatten() while len(messages) >= 1: await ctx.channel.purge(limit = 100) await asyncio.sleep(1) messages = await ctx.channel.history(limit = 100).flatten() await asyncio.sleep(1) def setup(client): client.add_cog(Clear(client)) ```
{ "source": "jinpark/something-sunshine-django", "score": 2 }
#### File: something-sunshine-django/episodes/models.py ```python from django.db import models from django.utils import timezone from s3direct.fields import S3DirectField import requests import datetime class Episode(models.Model): created = models.DateTimeField(auto_now_add=True) title = models.CharField(max_length=100, blank=True, default='') audio_file_path = S3DirectField(dest='episode_audio') thumbnail = S3DirectField(dest='episode_thumbnail') description = models.TextField() tags = models.ManyToManyField('Tag', blank=True) number = models.PositiveIntegerField(default=1, help_text="The episode number") created = models.DateTimeField(default=timezone.now) modified = models.DateTimeField(default=timezone.now) duration = models.CharField(blank=False, max_length=8, default='00:00', help_text='Duration of the audio file, in MM:SS or HH:MM:SS format') file_size = models.PositiveIntegerField() show_notes = models.TextField(help_text="Show notes here!") def __unicode__(self): return u'{}'.format(self.title) def save(self, *args, **kwargs): ''' On save, update timestamps and file size''' if not self.id: self.created = datetime.datetime.today() self.modified = datetime.datetime.today() if self.audio_file_path: # bleh, this is a bad way to do this r = requests.head(self.audio_file_path) self.file_size = float(r.headers['content-length']) return super(Episode, self).save(*args, **kwargs) class Meta: ordering = ('created',) class Tag(models.Model): created = models.DateTimeField(auto_now_add=True) name = models.CharField(max_length=50, blank=False) image_file = S3DirectField(dest='tag_image') created = models.DateTimeField(editable=False, default=timezone.now) modified = models.DateTimeField(default=timezone.now) def __unicode__(self): return u'{}'.format(self.name) def save(self, *args, **kwargs): ''' On save, update timestamps ''' if not self.id: self.created = datetime.datetime.today() self.modified = datetime.datetime.today() return super(Tag, self).save(*args, **kwargs) class Meta: ordering = ('created',) ``` #### File: episodes/templatetags/episode_extras.py ```python from django import template from django.template.defaultfilters import stringfilter from django.conf import settings from urlparse import urlparse register = template.Library() @register.filter(is_safe=True) @stringfilter def xml_escape(string): """Replaces all unescaped xml characters""" return string.replace('&', '&amp;').replace('<', '&lt;').replace('>', '&gt;').replace('"', '&quot;').replace("'", '&apos;') @register.simple_tag def static_url(url): """ returns the static url-ed version of the path, and not the s3 version """ full_s3_path = urlparse(url).path relative_path = "/".join(full_s3_path.split('/')[2:]) return u"{}{}".format(settings.STATIC_BUCKET_URL, relative_path) ```
{ "source": "jinpeng01/WGSum", "score": 2 }
#### File: WGSum/graph_construction/graph_construction.py ```python import stanza import os import json from tqdm import tqdm import sys,os import pickle import numpy as np import sys,os sys.path.append('/data/data/hujingpeng/sumwithGraph') nlp = stanza.Pipeline('en', package='mimic', processors={'ner': 'radiology'}) nlp2 = stanza.Pipeline('en', package='mimic', processors='tokenize') EMB_INIT_RANGE = 1.0 def get_single_entity_graph(document,impression,entity_modified=True,entity_interval=True,entity_deparser=True): doc = nlp(document) imp = nlp2(impression) fingings_list = [] impression_list = [] current_senquence_num = 0 edges = [] edge_words = [] edges_type = dict() edges_type['deparser'] = [] edges_type['modified'] = [] edges_type['interval'] = [] for sentence in imp.sentences: for i in range(len(sentence.words)): impression_list.append(sentence.words[i].text) for sentence in doc.sentences: for i in range(len(sentence.words)): fingings_list.append(sentence.words[i].text) entities_sentence = [] entities_id_sentence = [] words_entities_sentence = [] words_id_entities_sentence = [] entities_type = [] edges_sentence = [] edges_word_sentence = [] entities_type_dict = dict() edges_type_sentence = dict() edges_type_sentence['deparser'] = [] edges_type_sentence['modified'] = [] edges_type_sentence['interval'] = [] for i in range(len(sentence.tokens)): token = sentence.tokens[i] ent_token = token.ner text_token = token.text id_token = token.id[0] if ent_token!='O': ent_index = ent_token.split('-')[0] words_entities_sentence.append(text_token) words_id_entities_sentence.append(id_token) current_ent_type = ent_token.split('-')[-1] if ent_index == 'S': entities_sentence.append([text_token]) entities_id_sentence.append([id_token]) entities_type.append(current_ent_type) if current_ent_type not in entities_type_dict: entities_type_dict[current_ent_type] = [id_token] else: entities_type_dict[current_ent_type].append(id_token) elif ent_index == 'B': entities_sentence.append([text_token]) entities_id_sentence.append([id_token]) elif ent_index == 'I': try: entities_sentence[-1].append(text_token) entities_id_sentence[-1].append(id_token) except: entities_sentence.append([text_token]) entities_id_sentence.append([id_token]) elif ent_index == 'E': entities_sentence[-1].append(text_token) entities_id_sentence[-1].append(id_token) entities_type.append(ent_token.split('-')[-1]) if current_ent_type not in entities_type_dict: entities_type_dict[current_ent_type] = entities_id_sentence[-1] else: entities_type_dict[current_ent_type] = entities_type_dict[current_ent_type]+entities_id_sentence[-1] if entity_deparser: if 'deparser' not in edges_type_sentence.keys(): edges_type_sentence['deparser'] = [] for word in sentence.words: word_id = word.id word_head = word.head if word_id in words_id_entities_sentence and word_head in words_id_entities_sentence: word_doc_id = word_id+current_senquence_num-1 word_doc_head = word_head+current_senquence_num-1 if word_doc_id>=0 and word_doc_head>=0 and [word_doc_id,word_doc_head] not in edges_sentence\ and [word_doc_head,word_doc_id] not in edges_sentence: edges_sentence.append([word_doc_id,word_doc_head]) edges_word_sentence.append([sentence.words[word_id-1].text,sentence.words[word_head-1].text]) if word_doc_id>=0 and word_doc_head>=0: edges_type_sentence['deparser'].append([word_doc_id,word_doc_head]) # print('parser', sentence.words[word_id-1].text,sentence.words[word_head-1].text) if entity_modified: if 'modified' not in edges_type_sentence.keys(): edges_type_sentence['modified'] = [] if 'ANATOMY' in entities_type_dict and 'ANATOMY_MODIFIER' in entities_type_dict: anatomy_ids = entities_type_dict['ANATOMY'] anatomy_modifier_ids = entities_type_dict['ANATOMY_MODIFIER'] for anatomy_id in anatomy_ids: for anatomy_modifier_id in anatomy_modifier_ids: anatomy_doc_id = anatomy_id + current_senquence_num - 1 anatomy_modifier_doc_id = anatomy_modifier_id + current_senquence_num - 1 if anatomy_doc_id >= 0 and anatomy_modifier_doc_id >= 0 and [anatomy_doc_id,anatomy_modifier_doc_id] not in edges_sentence\ and [anatomy_modifier_doc_id,anatomy_doc_id] not in edges_sentence: edges_sentence.append([anatomy_doc_id, anatomy_modifier_doc_id]) edges_word_sentence.append( [sentence.words[anatomy_id - 1].text, sentence.words[anatomy_modifier_id - 1].text]) if anatomy_doc_id >= 0 and anatomy_modifier_doc_id >= 0: edges_type_sentence['modified'].append([anatomy_doc_id, anatomy_modifier_doc_id]) # print('anatomy', sentence.words[anatomy_id - 1].text, # sentence.words[anatomy_modifier_id - 1].text) if 'OBSERVATION' in entities_type_dict and 'OBSERVATION_MODIFIER' in entities_type_dict: observation_ids = entities_type_dict['OBSERVATION'] observation_modifier_ids = entities_type_dict['OBSERVATION_MODIFIER'] for observation_id in observation_ids: for observation_modifier_id in observation_modifier_ids: observation_doc_id = observation_id + current_senquence_num - 1 observation_modifier_doc_id = observation_modifier_id + current_senquence_num - 1 if observation_doc_id >= 0 and observation_modifier_doc_id >= 0 and \ [observation_doc_id, observation_modifier_doc_id] not in edges_sentence\ and [observation_modifier_doc_id, observation_doc_id] not in edges_sentence: edges_sentence.append([observation_doc_id, observation_modifier_doc_id]) edges_word_sentence.append( [sentence.words[observation_id - 1].text, sentence.words[observation_modifier_id - 1].text]) if observation_doc_id >= 0 and observation_modifier_doc_id >= 0: edges_type_sentence['modified'].append([observation_doc_id, observation_modifier_doc_id]) # print('observation_id', sentence.words[observation_id - 1].text, # sentence.words[observation_modifier_id - 1].text) if entity_interval: if 'interval' not in edges_type_sentence.keys(): edges_type_sentence['interval'] = [] for m in range(len(entities_id_sentence)): entity_length = len(entities_id_sentence[m]) if entity_length>1: for n in range(entity_length-1): current_id = entities_id_sentence[m][n] current_tag_id = entities_id_sentence[m][n+1] current_doc_id = current_id+current_senquence_num-1 current_doc_tag_id = current_tag_id +current_senquence_num-1 if current_doc_id>=0 and current_doc_tag_id>=0 and [current_doc_id,current_doc_tag_id] not in edges_sentence \ and [current_doc_tag_id, current_doc_id] not in edges_sentence : edges_sentence.append([current_doc_id, current_doc_tag_id]) edges_word_sentence.append([sentence.words[current_id-1].text,sentence.words[current_tag_id-1].text]) if current_doc_id>=0 and current_doc_tag_id>=0: edges_type_sentence['interval'].append([current_doc_id, current_doc_tag_id]) # print('interval entity', sentence.words[current_doc_id - 1].text, # sentence.words[current_tag_id - 1].text) current_senquence_num = current_senquence_num + len(sentence.words) edges_type['deparser'] = edges_type['deparser'] + edges_type_sentence['deparser'] edges_type['modified'] = edges_type['modified'] + edges_type_sentence['modified'] edges_type['interval'] = edges_type['interval'] + edges_type_sentence['interval'] edges = edges + edges_sentence edge_words = edge_words+edges_word_sentence pyg_edges_document = [] src_index = [] tag_index = [] for edge_item in edges: src_index.append(edge_item[0]) tag_index.append(edge_item[1]) pyg_edges_document.append(src_index) pyg_edges_document.append(tag_index) return pyg_edges_document,edge_words,fingings_list,impression_list,edges_type def build_entity_graph(data_path,entity_modified=True,entity_interval=True,entity_deparser=True): file = open(data_path, 'r', encoding='utf-8') lines = file.readlines() num_line = len(lines) new_json_path = data_path.replace('.jsonl', '') name_type = '_with_entity' if entity_modified: name_type = name_type + '_modified' if entity_interval: name_type = name_type + '_interval' if entity_deparser: name_type = name_type + '_deparser' new_json_path = new_json_path + name_type + '.jsonl' if (os.path.exists(new_json_path)): print('there are already exist ' + new_json_path) return new_json_path else: new_json_file = open(new_json_path, 'w', encoding='utf-8') for i in tqdm(range(num_line)): dic_items = json.loads(lines[i]) findings_list = dic_items['findings'] findings = ' '.join(findings_list) impression_list = dic_items['impression'] impression = ' '.join(impression_list) edges_with_nodeid = [] edges,edge_words,fingings_list,impression_list,edges_type_sentence = get_single_entity_graph(findings,impression,entity_modified=entity_modified, entity_interval=entity_interval, entity_deparser=entity_deparser) dic_items['pyg_edges_document'] = edges dic_items['findings'] = fingings_list dic_items['impression'] = impression_list dic_items['edge_words'] = edge_words nodes = [] finding_list = dic_items['findings'] edges = dic_items['pyg_edges_document'] src_index = edges[0] tag_index = edges[1] src_node_index = [] tag_node_index = [] word_dict = dict() for k in range(len(tag_index)): src_word = finding_list[src_index[k]] tag_word = finding_list[tag_index[k]] if src_word not in word_dict: word_dict[src_word] = len(word_dict) nodes.append(src_word) if tag_word not in word_dict: word_dict[tag_word] = len(word_dict) nodes.append(tag_word) src_node_index.append(word_dict[src_word]) tag_node_index.append(word_dict[tag_word]) edges_with_nodeid.append(src_node_index) edges_with_nodeid.append(tag_node_index) edges_modified = edges_type_sentence['modified'] edges_deparser = edges_type_sentence['deparser'] edges_interval = edges_type_sentence['interval'] edges_modified_with_nodeid = [] edges_deparser_with_nodeid = [] edges_interval_with_nodeid = [] if len(edges_modified)>0: modified_src_node_index = [] modified_tag_node_index = [] for k in range(len(edges_modified)): src_word = finding_list[edges_modified[k][0]] tag_word = finding_list[edges_modified[k][1]] modified_src_node_index.append(word_dict[src_word]) modified_tag_node_index.append(word_dict[tag_word]) edges_modified_with_nodeid.append(modified_src_node_index) edges_modified_with_nodeid.append(modified_tag_node_index) if len(edges_deparser)>0: deparser_src_node_index = [] deparser_tag_node_index = [] for k in range(len(edges_deparser)): src_word = finding_list[edges_deparser[k][0]] tag_word = finding_list[edges_deparser[k][1]] deparser_src_node_index.append(word_dict[src_word]) deparser_tag_node_index.append(word_dict[tag_word]) edges_deparser_with_nodeid.append(deparser_src_node_index) edges_deparser_with_nodeid.append(deparser_tag_node_index) if len(edges_interval)>0: interval_src_node_index = [] interval_tag_node_index = [] for k in range(len(edges_interval)): src_word = finding_list[edges_interval[k][0]] tag_word = finding_list[edges_interval[k][1]] interval_src_node_index.append(word_dict[src_word]) interval_tag_node_index.append(word_dict[tag_word]) edges_interval_with_nodeid.append(interval_src_node_index) edges_interval_with_nodeid.append(interval_tag_node_index) dic_items['nodes'] = nodes dic_items['edges_with_nodeid'] = edges_with_nodeid dic_items['edges_interval_with_nodeid'] = edges_interval_with_nodeid dic_items['edges_modified_with_nodeid'] = edges_modified_with_nodeid dic_items['edges_deparser_with_nodeid'] = edges_deparser_with_nodeid if len(fingings_list)>10 and len(impression_list)>3: print(json.dumps(dic_items), file=new_json_file) # radiology def add_edge_words(data_path): file = open(data_path, 'r', encoding='utf-8') lines = file.readlines() num_line = len(lines) new_json_path = data_path.replace('.jsonl', '') new_json_path = new_json_path + '_with_entity_graph_node' + '.jsonl' if (os.path.exists(new_json_path)): print('there are already exist ' + new_json_path) return new_json_path else: new_json_file = open(new_json_path, 'w', encoding='utf-8') for i in tqdm(range(num_line)): dic_items = json.loads(lines[i]) edge_words = [] edges_with_nodeid = [] nodes = [] finding_list = dic_items['findings'] edges = dic_items['pyg_edges_document'] src_index = edges[0] tag_index = edges[1] src_node_index = [] tag_node_index = [] word_dict = dict() for k in range(len(tag_index)): src_word = finding_list[src_index[k]] tag_word = finding_list[tag_index[k]] if src_word not in word_dict: word_dict[src_word] = len(word_dict) nodes.append(src_word) if tag_word not in word_dict: word_dict[tag_word] = len(word_dict) nodes.append(tag_word) edge_words.append([src_word,tag_word]) src_node_index.append(word_dict[src_word]) tag_node_index.append(word_dict[tag_word]) edges_with_nodeid.append(src_node_index) edges_with_nodeid.append(tag_node_index) dic_items['edge_words'] = edge_words dic_items['nodes'] = nodes dic_items['edges_with_nodeid'] = edges_with_nodeid print(json.dumps(dic_items), file=new_json_file) def obtain_word_pair_for(data_path): file = open(data_path, 'r', encoding='utf-8') lines = file.readlines() num_line = len(lines) new_json_path = data_path.replace('.jsonl', '') new_json_path = new_json_path + '_words_pair' + '.jsonl' if (os.path.exists(new_json_path)): print('there are already exist ' + new_json_path) return new_json_path else: new_json_file = open(new_json_path, 'w', encoding='utf-8') for i in tqdm(range(num_line)): dic_items = json.loads(lines[i]) edge_words = [] edges_with_nodeid = [] nodes = [] finding_list = dic_items['findings'] edges = dic_items['pyg_edges_document'] edges_interval_with_nodeid = dic_items['edges_interval_with_nodeid'] edges_modified_with_nodeid = dic_items['edges_modified_with_nodeid'] edges_deparser_with_nodeid = dic_items['edges_deparser_with_nodeid'] edges_word = dic_items['edge_words'] # if len(edges_interval_with_nodeid) == 0: # edges_interval_with_nodeid = [[0],[0]] # if len(edges_modified_with_nodeid) == 0: # edges_modified_with_nodeid = [[0], [0]] # if len(edges_deparser_with_nodeid) == 0: # edges_deparser_with_nodeid = [[0], [0]] src_index = edges[0] tag_index = edges[1] node_word = dic_items['nodes'] w2i = dict() i2w = dict() for i in range(len(node_word)): w2i[node_word[i]] = len(w2i) i2w[len(i2w)] = node_word[i] if len(edges_interval_with_nodeid) != 0 : edges_word_interval = [] src_index_edges_interval = edges_interval_with_nodeid[0] tag_index_edges_interval = edges_interval_with_nodeid[1] for i in range(len(src_index_edges_interval)): try: pair = [i2w[src_index_edges_interval[i]],i2w[tag_index_edges_interval[i]]] pair_ = [pair[1],pair[0]] except: import pdb pdb.set_trace() if pair not in edges_word and pair_ not in edges_word: print('error') edges_word_interval.append(pair) else: edges_word_interval = [] if len(edges_modified_with_nodeid) != 0: edges_word_modified = [] src_index_edges_modified = edges_modified_with_nodeid[0] tag_index_edges_modified = edges_modified_with_nodeid[1] for i in range(len(src_index_edges_modified)): pair = [i2w[src_index_edges_modified[i]], i2w[tag_index_edges_modified[i]]] pair_ = [pair[1], pair[0]] if pair not in edges_word and pair_ not in edges_word: print('error') edges_word_modified.append(pair) else: edges_word_modified = [] if len(edges_deparser_with_nodeid) != 0: edges_word_deparser = [] src_index_edges_deparser = edges_deparser_with_nodeid[0] tag_index_edges_deparser = edges_deparser_with_nodeid[1] for i in range(len(src_index_edges_deparser)): pair = [i2w[src_index_edges_deparser[i]], i2w[tag_index_edges_deparser[i]]] pair_ = [pair[1], pair[0]] if pair not in edges_word and pair_ not in edges_word: print('error') edges_word_deparser.append(pair) else: edges_word_deparser = [] dic_items['edges_word_deparser'] = edges_word_deparser dic_items['edges_word_modified'] = edges_word_modified dic_items['edges_word_interval'] = edges_word_interval print(json.dumps(dic_items), file=new_json_file) if __name__ == '__main__': build_entity_graph('example.jsonl') ``` #### File: src/others/utils.py ```python import os import re import shutil import time from others import pyrouge from pythonrouge.pythonrouge import Pythonrouge REMAP = {"-lrb-": "(", "-rrb-": ")", "-lcb-": "{", "-rcb-": "}", "-lsb-": "[", "-rsb-": "]", "``": '"', "''": '"'} def clean(x): return re.sub( r"-lrb-|-rrb-|-lcb-|-rcb-|-lsb-|-rsb-|``|''", lambda m: REMAP.get(m.group()), x) def process(params): temp_dir, data = params candidates, references, pool_id = data cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}-{}".format(current_time, pool_id)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = pyrouge.Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: pass if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict def test_rouge(temp_dir, cand, ref): candidates = [line.strip() for line in open(cand, encoding='utf-8')] references = [line.strip() for line in open(ref, encoding='utf-8')] print(len(candidates)) print(len(references)) assert len(candidates) == len(references) cnt = len(candidates) current_time = time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime()) tmp_dir = os.path.join(temp_dir, "rouge-tmp-{}".format(current_time)) if not os.path.isdir(tmp_dir): os.mkdir(tmp_dir) os.mkdir(tmp_dir + "/candidate") os.mkdir(tmp_dir + "/reference") try: for i in range(cnt): if len(references[i]) < 1: continue with open(tmp_dir + "/candidate/cand.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(candidates[i]) with open(tmp_dir + "/reference/ref.{}.txt".format(i), "w", encoding="utf-8") as f: f.write(references[i]) r = pyrouge.Rouge155(temp_dir=temp_dir) r.model_dir = tmp_dir + "/reference/" r.system_dir = tmp_dir + "/candidate/" r.model_filename_pattern = 'ref.#ID#.txt' r.system_filename_pattern = r'cand.(\d+).txt' rouge_results = r.convert_and_evaluate() print(rouge_results) results_dict = r.output_to_dict(rouge_results) finally: pass if os.path.isdir(tmp_dir): shutil.rmtree(tmp_dir) return results_dict def tile(x, count, dim=0): """ Tiles x on dimension dim count times. """ perm = list(range(len(x.size()))) if dim != 0: perm[0], perm[dim] = perm[dim], perm[0] x = x.permute(perm).contiguous() out_size = list(x.size()) out_size[0] *= count batch = x.size(0) x = x.view(batch, -1) \ .transpose(0, 1) \ .repeat(count, 1) \ .transpose(0, 1) \ .contiguous() \ .view(*out_size) if dim != 0: x = x.permute(perm).contiguous() return x def rouge_results_to_str(results_dict): return ">> ROUGE-F(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\nROUGE-R(1/2/3/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict["rouge_1_f_score"] * 100, results_dict["rouge_2_f_score"] * 100, # results_dict["rouge_3_f_score"] * 100, results_dict["rouge_l_f_score"] * 100, results_dict["rouge_1_recall"] * 100, results_dict["rouge_2_recall"] * 100, # results_dict["rouge_3_f_score"] * 100, results_dict["rouge_l_recall"] * 100 # ,results_dict["rouge_su*_f_score"] * 100 ) def get_rouge(hypotheses, reference, sent_split=True, use_cf=False): assert len(hypotheses) == len(reference) assert len(hypotheses) > 0 hyps = [] refs = [] # prepare for hyp, ref in zip(hypotheses, reference): hyp = " ".join(hyp) ref = " ".join(ref) if sent_split: hs = [x.strip() for x in hyp.split('.') if len(x.strip()) > 0] rs = [x.strip() for x in ref.split('.') if len(x.strip()) > 0] hyps += [hs] refs += [[rs]] else: hyps += [[hyp]] refs += [[[ref]]] print("Calculating ROUGE...") rouge = Pythonrouge(summary_file_exist=False, summary=hyps, reference=refs, \ n_gram=2, ROUGE_SU4=False, ROUGE_L=True, recall_only=False, stemming=False, stopwords=False, \ word_level=True, length_limit=False, use_cf=use_cf, cf=95, scoring_formula='average', \ resampling=True, samples=1000, favor=True, p=0.5) score = rouge.calc_score() print("ROUGE done.") r1 = score['ROUGE-1-F'] * 100 r2 = score['ROUGE-2-F'] * 100 rl = score['ROUGE-L-F'] * 100 if not use_cf: return r1, r2, rl # return results_dict2 else: r1_cf = [x * 100 for x in score['ROUGE-1-F-cf95']] r2_cf = [x * 100 for x in score['ROUGE-2-F-cf95']] rl_cf = [x * 100 for x in score['ROUGE-L-F-cf95']] return r1, r2, rl, r1_cf, r2_cf, rl_cf def rouge_results_to_str2(results_dict2): return ">> ROUGE-F(1/2/l): {:.2f}/{:.2f}/{:.2f}\n".format( results_dict2["rouge_1_f_score"], results_dict2["rouge_2_f_score"], results_dict2["rouge_l_f_score"], ) def calculate_rouge(predict_path,real_path): predictions = open(predict_path,'r').readlines() # import pdb # pdb.set_trace() predictions = [item.replace('<q>','') for item in predictions] predictions = [item.strip().split() for item in predictions] # len(predictions[201]) # type(predictions[200]) # import pdb # pdb.set_trace() truths = open(real_path, 'r').readlines() truths = [item.strip().split() for item in truths] r1, r2, rl, r1_cf, r2_cf, rl_cf = get_rouge(predictions, truths, use_cf=True) print("{} set results:\n".format('test')) print("Metric\tScore\t95% CI") print("ROUGE-1\t{:.2f}\t({:.2f},{:.2f})".format(r1, r1_cf[0]-r1, r1_cf[1]-r1)) print("ROUGE-2\t{:.2f}\t({:.2f},{:.2f})".format(r2, r2_cf[0]-r2, r2_cf[1]-r2)) print("ROUGE-L\t{:.2f}\t({:.2f},{:.2f})".format(rl, rl_cf[0]-rl, rl_cf[1]-rl)) results_dict2 = dict() results_dict2["rouge_1_f_score"] = r1 results_dict2["rouge_2_f_score"] = r2 results_dict2["rouge_l_f_score"] = rl return results_dict2 ```
{ "source": "jinpeng/kgsanguo", "score": 3 }
#### File: kgsanguo/prepare/extract_fulltext_from_epub.py ```python import os import ebooklib from ebooklib import epub from bs4 import BeautifulSoup def epub2thtml(epub_path): book = epub.read_epub(epub_path) chapters = [] for item in book.get_items(): if item.get_type() == ebooklib.ITEM_DOCUMENT: chapters.append(item.get_content()) return chapters # <h1 class="chapterCaption"><a id="CHP14"></a>第十三回<br/>李傕郭汜大交兵<br/>杨奉董承双救驾</h1> # <h1 class="chapterCaption1"><a id="CHP19"></a>第十八回<br/>贾文和料敌决胜<br/>夏侯惇拔矢啖睛<sup><a class="duokan-footnote" href="#jz_1_172" id="jzyy_1_172"><img alt="" src="../Images/note.png"/></a></sup></h1> def split_chapter_caption(h1_element): output = [] for child in h1_element.children: if child.string != None: # print(child.string) output.append(child.string) return ','.join(output) + "。" def load_rare_chars(filepath): d = {} with open(filepath, 'r') as f: for line in f: (key, value) = line.split() d[key] = value return d # <span class="rareFont"><img src="../Images/image01005.gif" alt=""/></span> def convert_rare_characters(chapter, rare_chars_dict): rare_chars = chapter.find_all('span', class_='rareFont') for rare_char in rare_chars: for child in rare_char.children: image_path = child['src'] image_name = os.path.basename(image_path) rare_char.replace_with(rare_chars_dict[image_name]) def thtml2text(thtml, rare_chars_dict): # print(thtml.decode('utf-8')) output = [] soup = BeautifulSoup(thtml.decode('utf-8'), 'html.parser') convert_rare_characters(soup, rare_chars_dict) captions = soup.find_all('h1') for caption in captions: splitted_caption = split_chapter_caption(caption) # print(splitted_caption) output.append(splitted_caption) paragraphs = soup.find_all('p', class_='bodyContent') for paragraph in paragraphs: # print(paragraph.text) output.append(paragraph.text) return '\n'.join(output) if __name__ == '__main__': # load rare characters dictionary rare_chars_dict = load_rare_chars("../data/raw/rare_characters.txt") chapters = epub2thtml("../data/raw/sgyy.epub") # print(len(chapters)) count = 0 for chapter in chapters: # skip first 3 chapters if count >= 3: text = thtml2text(chapter, rare_chars_dict) with open("../data/text/ch{:03d}.txt".format(count-2), 'w') as f: f.write(text) count += 1 ```
{ "source": "JinpengLI/gpu_share_platform", "score": 2 }
#### File: cmachines_slave/cmachines_slave/bridge_manager.py ```python from cmachines_slave.utils import exe_cmd_on_local from cmachines_slave.utils import exe_cmd_on_remote from cmachines_slave.utils import get_default_settings from cmachines_slave.persistent_object import PersistentObject from datetime import datetime import uuid import os import json class BridgeManager(PersistentObject): def __init__(self, mem_file, remote_port_manager, local_port_manager, machine_manager, client, remote_login, remote_host, bridge_password, ): super(BridgeManager, self).__init__(mem_file) self.remote_port_manager = remote_port_manager self.local_port_manager = local_port_manager self.machine_manager = machine_manager self.client = client self.remote_login = remote_login self.remote_host = remote_host self.bridge_password = <PASSWORD> def list_bridge_local_containers(self,): self.load() local_container_ids = [] bridges = self.data.get("bridges", {}) for key in bridges: bridge = bridges[key] local_container_id = bridge["local_container_id"] local_container_ids.append(local_container_id) return local_container_ids def list_bridge_remote_containers(self,): self.load() remote_container_ids = [] bridges = self.data.get("bridges", {}) for key in bridges: bridge = bridges[key] remote_container_id = bridge["remote_container_id"] remote_container_ids.append(remote_container_id) return remote_container_ids def add_machine(self, machine_id_on_site, local_ssh_port): self.load() if "machines" not in self.data: self.data["machines"] = {} self.data["machines"][machine_id_on_site] = {} self.data["machines"][machine_id_on_site]["local_ssh_port"] = local_ssh_port self.save() self.build_bridge(local_ssh_port) new_bridge = self.search_bridge(local_ssh_port) if new_bridge is not None: self.client.set_virtual_machine( vm_name=machine_id_on_site, host=self.remote_host, port=new_bridge["forwarding_port"], connection_info="Ready", ) else: raise ValueError("cannot build bridge for " + str(local_ssh_port)) def remove_machine(self, machine_id_on_site,): self.load() if "machines" not in self.data: return if machine_id_on_site not in self.data["machines"]: raise ValueError("cannod find the machine") local_service_port = self.data["machines"][machine_id_on_site]["local_ssh_port"] if machine_id_on_site in self.data["machines"]: self.data["machines"].pop(machine_id_on_site) self.save() self.remove_bridge(local_service_port) self.save() def clean_bridge(self, ): self.load() all_machine_ids_on_site = {} local_machines = self.machine_manager.get_all_meta_machines() for container_id in local_machines: machine_id_on_site = local_machines[container_id]["machine_id_on_site"] ssh_port = local_machines[container_id]["ssh_port"] all_machine_ids_on_site[machine_id_on_site] = ssh_port ports_to_rm = [] bridge_machines = [] machines_data = self.data.get("machines", {}) for machine_id_on_site in machines_data: if machine_id_on_site in all_machine_ids_on_site: if all_machine_ids_on_site[machine_id_on_site] != machines_data[machine_id_on_site]["local_ssh_port"]: ports_to_rm.append(machines_data[machine_id_on_site]["local_ssh_port"]) if len(ports_to_rm) > 0: for service_port in ports_to_rm: print("remove bridge with service port ", service_port) self.remove_bridge(service_port) def update(self, ): self.clean_bridge() self.load() ## scan all the local machines all_machine_ids_on_site = {} local_machines = self.machine_manager.get_all_meta_machines() for container_id in local_machines: machine_id_on_site = local_machines[container_id]["machine_id_on_site"] ssh_port = local_machines[container_id]["ssh_port"] all_machine_ids_on_site[machine_id_on_site] = ssh_port bridge_machines = [] machines_data = self.data.get("machines", {}) for machine_id_on_site in machines_data: local_ssh_port = machines_data[machine_id_on_site]["local_ssh_port"] #print("machine_id_on_site=", machine_id_on_site) #print("local_ssh_port=", local_ssh_port) if self.check_bridge_if_exist(local_ssh_port): bridge_machines.append(machine_id_on_site) ## remove bridges machines_to_rm = list(set(bridge_machines) - set(all_machine_ids_on_site.keys())) if len(machines_to_rm) > 0: print("BridgeManager machines_to_rm:", machines_to_rm) ## add bridge machine machines_to_add = list(set(all_machine_ids_on_site.keys()) - set(bridge_machines)) if len(machines_to_add) > 0: print("BridgeManager machines_to_add:", machines_to_add) for machine_to_rm in machines_to_rm: self.remove_machine(machine_to_rm) for machine_to_add in machines_to_add: self.add_machine(machine_to_add, all_machine_ids_on_site[machine_to_add]) def search_bridge(self, local_service_port): self.load() #cmd_fmt_stop = "docker stop %(container_id)s" #cmd_fmt_rm = "docker rm %(container_id)s" bridges = self.data.get("bridges", {}) keys_to_remove = [] for bridge_key in bridges: if bridges[bridge_key]["local_service_port"] == local_service_port: return bridges[bridge_key] return None def remove_bridge(self, local_service_port): self.load() cmd_fmt_stop = "docker stop %(container_id)s" cmd_fmt_rm = "docker rm %(container_id)s" bridges = self.data.get("bridges", {}) keys_to_remove = [] for bridge_key in bridges: if bridges[bridge_key]["local_service_port"] == local_service_port: local_containder_id = bridges[bridge_key]["local_container_id"] remote_container_id = bridges[bridge_key]["remote_container_id"] forwarding_port = bridges[bridge_key]["forwarding_port"] your_sshd_port = bridges[bridge_key]["your_sshd_port"] cmd = cmd_fmt_stop % {"container_id": local_containder_id} ret, msg = exe_cmd_on_local(cmd, ret_msg=True) cmd = cmd_fmt_rm % {"container_id": local_containder_id} ret, msg = exe_cmd_on_local(cmd, ret_msg=True) cmd = cmd_fmt_stop % {"container_id": remote_container_id} ret, msg = exe_cmd_on_remote(self.remote_login, self.remote_host, cmd, ret_msg=True) cmd = cmd_fmt_rm % {"container_id": remote_container_id} ret, msg = exe_cmd_on_remote(self.remote_login, self.remote_host, cmd, ret_msg=True) self.remote_port_manager.release_port(forwarding_port) self.remote_port_manager.release_port(your_sshd_port) keys_to_remove.append(bridge_key) for key_to_remove in keys_to_remove: bridges.pop(key_to_remove) self.data["bridges"] = bridges self.save() def check_bridge_if_exist(self, local_service_port): bridges = self.data.get("bridges", {}) #print("bridges=", bridges) #print("local_service_port=", local_service_port) for key in bridges: bridge = bridges[key] if bridge["local_service_port"] == local_service_port: return True return False def start_bridge_if_exist(self, local_service_port): self.load() bridges = self.data.get("bridges", {}) for key in bridges: bridge = bridges[key] if bridge["local_service_port"] == local_service_port: local_container_id = bridge["local_container_id"] remote_container_id = bridge["remote_container_id"] cmd_remote = "docker start %s" % remote_container_id ret, msg = exe_cmd_on_remote(self.remote_login, self.remote_host, cmd_remote, ret_msg=True) if ret != 0: print("fail to execute ", cmd_remote) cmd_local = "docker start %s" % local_container_id ret, msg = exe_cmd_on_local(cmd_local, ret_msg=True) if ret != 0: print("fail to execute ", cmd_local) return True return False def build_bridge(self, local_service_port): ''' see https://github.com/JinpengLI/docker-image-reverse-ssh-tunnel return remote port ''' if self.start_bridge_if_exist(local_service_port): #print("debug build_bridge already exist") return self.load() forwarding_port = self.remote_port_manager.allocate_port() ## open service so it is called forwarding port your_sshd_port = self.remote_port_manager.allocate_port() ## ssh server listening data = {} data["remote_login"] = self.remote_login data["remote_host"] = self.remote_host data["your_sshd_port"] = your_sshd_port data["forwarding_port"] = forwarding_port data["bridge_password"] = self.bridge_password data["local_service_port"] = local_service_port cmd = "docker run -d -e ROOT_PASS=%(bridge_password)s -p %(your_sshd_port)d:22 -p %(forwarding_port)d:1080 jinpengli/docker-image-reverse-ssh-tunnel" cmd = cmd % data ret, msg = exe_cmd_on_remote(self.remote_login, self.remote_host, cmd, ret_msg=True) if ret != 0: print("fail cmd:", cmd) return None remote_container_id = msg.strip() cmd = "docker run -d -e PUBLIC_HOST_ADDR=%(remote_host)s -e PUBLIC_HOST_PORT=%(your_sshd_port)d -e ROOT_PASS=%(bridge_password)s -e PROXY_PORT=%(local_service_port)d --net=host jinpengli/docker-image-reverse-ssh-tunnel" cmd = cmd % data ret, msg = exe_cmd_on_local(cmd, ret_msg=True) if ret != 0: print("fail cmd:", cmd) return None local_container_id = msg.strip() bridges = self.data.get("bridges", {}) bridge_key = (str(local_container_id) + '_' + str(remote_container_id)) bridges[bridge_key] = {} bridges[bridge_key]["created_time"] = datetime.now().isoformat() bridges[bridge_key]["your_sshd_port"] = your_sshd_port bridges[bridge_key]["forwarding_port"] = forwarding_port bridges[bridge_key]["local_service_port"] = local_service_port bridges[bridge_key]["local_container_id"] = local_container_id bridges[bridge_key]["remote_container_id"] = remote_container_id self.data["bridges"] = bridges self.save() if __name__ == "__main__": from cmachines_slave.port_manager import PortManager settings = get_default_settings() working_dir = settings["local_data_dir"] local_available_ports = settings["local_available_ports"] local_available_ports = range(local_available_ports[0], local_available_ports[1], 1) machine_manager_mem_file = os.path.join(working_dir, "machine_manager.json") local_machine_port_mem_file = os.path.join(working_dir, "local_machine_ports.json") port_manager = PortManager( local_available_ports, local_machine_port_mem_file) bridge_manager = BridgeManager() ``` #### File: cmachines_slave/cmachines_slave/utils.py ```python import subprocess import sys, traceback import json import os from subprocess import CalledProcessError def get_default_settings(): dir_path = os.path.dirname(os.path.realpath(__file__)) default_settings_path = os.path.join(dir_path, "../config/crontab_update_machines.json") default_settings = json.load(open(default_settings_path, "r")) return default_settings def exe_cmd_on_local(cmd, ret_msg=False): if isinstance(cmd, basestring): cmd = cmd.split(" ") if ret_msg: try: out = subprocess.check_output( cmd, stderr=subprocess.STDOUT, ) return 0, out except CalledProcessError as exc: #print "Exception in user code:" #print '-'*60 #var = traceback.format_exc() #traceback.print_exc(file=sys.stdout) #print '-'*60 #print exc.output return exc.returncode, exc.output else: ret = subprocess.call(cmd) return ret def exe_cmd_on_remote(remote_login, remote_host, cmd, ret_msg=False): new_cmd = ["ssh", "%s@%s" % (remote_login, remote_host), cmd] ret = exe_cmd_on_local(new_cmd, ret_msg) return ret def make_port_mapping_from_remote_to_local_port(remote_login, remote_host, your_sshd_port, forwarding_port, bridge_password, local_server_port, ): ''' see https://github.com/JinpengLI/docker-image-reverse-ssh-tunnel ''' data = {} data["remote_login"] = remote_login data["remote_host"] = remote_host data["your_sshd_port"] = your_sshd_port data["forwarding_port"] = forwarding_port data["bridge_password"] = bridge_password data["local_server_port"] = local_server_port ## public server configuration cmd = "docker run -d -e ROOT_PASS=%(<PASSWORD> -p %(your_sshd_port)d:22 -p %(forwarding_port)d:1080 jinpengli/docker-image-reverse-ssh-tunnel" cmd = cmd % data print("cmd ", cmd) ret = exe_cmd_on_remote(remote_login, remote_host, cmd) if ret != 0: print("fail to start docker on remote machine %s" % remote_host) return ret cmd = "docker run -d -e PUBLIC_HOST_ADDR=%(remote_host)s -e PUBLIC_HOST_PORT=%(your_sshd_port)d -e ROOT_PASS=%(bridge_<PASSWORD> -e PROXY_PORT=%(local_server_port)d --net=host jinpengli/docker-image-reverse-ssh-tunnel" cmd = cmd % data print("cmd ", cmd) ret = exe_cmd_on_local(cmd) if ret != 0: print("fail to start docker on local machine " ) return ret return 0 ```
{ "source": "jinPrelude/Americano_lab", "score": 2 }
#### File: Americano_lab/DDPG_Pendulum/main.py ```python import tensorflow as tf import numpy as np import gym from collections import deque import argparse import pprint as pp from gym import wrappers from agent import ActorNetwork, CriticNetwork from replay_buffer import ReplayBuffer from OU_Noise import OrnsteinUhlenbeckActionNoise # =========================== # Tensorflow Summary Ops # =========================== def build_summaries(): episode_reward = tf.Variable(0.) tf.summary.scalar("Reward", episode_reward) episode_ave_max_q = tf.Variable(0.) tf.summary.scalar("Qmax Value", episode_ave_max_q) summary_vars = [episode_reward, episode_ave_max_q] summary_ops = tf.summary.merge_all() return summary_ops, summary_vars # =========================== # Agent Training # =========================== def train(sess, env, args, actor, critic, actor_noise): # Set up summary Ops summary_ops, summary_vars = build_summaries() sess.run(tf.global_variables_initializer()) #generate tensorboard writer = tf.summary.FileWriter(args['summary_dir'], sess.graph) # Initialize target network weights actor.update_target_network() critic.update_target_network() saver = tf.train.Saver() # Initialize replay memory replay_buffer = ReplayBuffer(int(args['buffer_size']), int(args['random_seed'])) reward_mean = deque(maxlen=10) for i in range(int(args['max_episodes'])): s = env.reset() ep_reward = 0 ep_ave_max_q = 0 for j in range(int(args['max_episode_len'])): if args['render_env']: env.render() if args['record_video'] : wrappers.Monitor(env, './results/video/', force=True) # uo-process 노이즈 추가 # add uo-process noise a = actor.predict(np.reshape(s, (1, actor.s_dim))) + actor_noise() s2, r, terminal, info = env.step(a[0]) # replay buffer에 추가 # Add to replay buffer replay_buffer.add(np.reshape(s, (actor.s_dim,)), np.reshape(a, (actor.a_dim,)), r, terminal, np.reshape(s2, (actor.s_dim,))) # Keep adding experience to the memory until # there are at least minibatch size samples if replay_buffer.size() > int(args['minibatch_size']): s_batch, a_batch, r_batch, t_batch, s2_batch = \ replay_buffer.sample_batch(int(args['minibatch_size'])) # Calculate targets target_q = critic.predict_target( s2_batch, actor.predict_target(s2_batch)) y_i = [] for k in range(int(args['minibatch_size'])): if t_batch[k]: y_i.append(r_batch[k]) else: y_i.append(r_batch[k] + critic.gamma * target_q[k]) # Update the critic given the targets predicted_q_value, _ = critic.train( s_batch, a_batch, np.reshape(y_i, (int(args['minibatch_size']), 1))) ep_ave_max_q += np.amax(predicted_q_value) # Update the actor policy using the sampled gradient a_outs = actor.predict(s_batch) grads = critic.action_gradients(s_batch, a_outs) actor.train(s_batch, grads[0]) # Update target networks actor.update_target_network() critic.update_target_network() s = s2 ep_reward += r if terminal: summary_str = sess.run(summary_ops, feed_dict={ summary_vars[0]: ep_reward, summary_vars[1]: ep_ave_max_q / float(j) }) writer.add_summary(summary_str, i) writer.flush() print('| Reward: {:d} | Episode: {:d} | Qmax: {:.4f}'.format(int(ep_reward), \ i, (ep_ave_max_q / float(j)))) reward_mean.append(ep_reward) break if i > 10 : reward_reduce_mean = int(sum(reward_mean)/len(reward_mean)) if args['record_mean'] : print('Terminate') break if reward_reduce_mean > -300 : if args['record_video'] == False : print('record_video is false') #parser.set_defaults(render_env = True) #parser.set_defaults(record_video=True) args['record_video'] = True args['render_env'] = True saver.save(sess, './results/model_save/model.ckpt') def main(args): with tf.Session() as sess: env = gym.make(args['env']) np.random.seed(int(args['random_seed'])) tf.set_random_seed(int(args['random_seed'])) env.seed(int(args['random_seed'])) state_dim = env.observation_space.shape[0] action_dim = env.action_space.shape[0] action_bound = env.action_space.high # Ensure action bound is symmetric assert (env.action_space.high == -env.action_space.low) actor = ActorNetwork(sess, state_dim, action_dim, action_bound, float(args['actor_lr']), float(args['tau']), int(args['minibatch_size'])) critic = CriticNetwork(sess, state_dim, action_dim, float(args['critic_lr']), float(args['tau']), float(args['gamma']), actor.get_num_trainable_vars()) actor_noise = OrnsteinUhlenbeckActionNoise(mu=np.zeros(action_dim)) train(sess, env, args, actor, critic, actor_noise) if __name__ == '__main__': # print the parameters on the console # and also offer the parametes to the main function parser = argparse.ArgumentParser(description='provide arguments for DDPG agent') parser.add_argument('--actor-lr', help='actor network learning rate', default=0.0001) parser.add_argument('--critic-lr', help='critic network learning rate', default=0.001) parser.add_argument('--gamma', help='discount factor for critic updates', default=0.99) parser.add_argument('--tau', help='soft target update parameter', default=0.001) parser.add_argument('--buffer-size', help='max size of the replay buffer', default=1000000) parser.add_argument('--minibatch-size', help='size of minibatch for minibatch-SGD', default=64) # run parameters parser.add_argument('--env', help='choose the gym env- tested on {Pendulum-v0}', default='Pendulum-v0') parser.add_argument('--random-seed', help='random seed for repeatability', default=1234) parser.add_argument('--max-episodes', help='max num of episodes to do while training', default=50000) parser.add_argument('--max-episode-len', help='max length of 1 episode', default=1000) parser.add_argument('--render-env', help='render the gym env', action='store_true') parser.add_argument('--summary-dir', help='directory for storing tensorboard info', default='./results/tf_ddpg') parser.add_argument('--record-video', default=False) parser.set_defaults(render_env=False) args = vars(parser.parse_args()) pp.pprint(args) main(args) ```
{ "source": "jinPrelude/eye_tracking", "score": 3 }
#### File: eye_tracking/eye_tracking/only_drawing.py ```python import cv2 import numpy as np import os, sys drawing = False drawn = False img = None img2 = None def draw_rect(event, x, y, flags, param) : global drawing, ix, iy, center_x, center_y, width, height, drawn, img, img2 if event == cv2.EVENT_LBUTTONDOWN : drawing = True ix, iy = x, y elif event == cv2.EVENT_MOUSEMOVE : if drawing : cv2.rectangle(img, (ix, iy), (x, y), (0,255,0), 1) cv2.imshow('test', img) img = img2.copy() elif event == cv2.EVENT_LBUTTONUP : drawing = False drawn = True cv2.rectangle(param, (ix, iy), (x, y), (0, 255, 0), 1) center_x, center_y = int((x + ix)/2), int((y + iy)/2) width, height = int((x - ix)), int((y - iy)) def draw_rectangle(last_num) : global center_x, center_y, width, height, drawn, list, list2, img, img2 if last_num : j = last_num print("j : %d"%j) else : j = 0 list = [] list2 = [] while True : name = 'dataset/%d.jpg'%j img = cv2.imread(name) print('name : ', name) cv2.namedWindow('test') cv2.moveWindow('test', 800, 0) cv2.setMouseCallback('test', draw_rect, param=img) while True : try: cv2.imshow('test', img) except : print('no image') final_num = str(j) fo.write(final_num) # np.savetxt(fo, final_num, fmt="%d") sys.exit() print('no image') final_num = str(j) fo.write(final_num) # np.savetxt(fo, final_num, fmt="%d") sys.exit() img2 = img.copy() k = cv2.waitKey(0) if k: if k & 0xFF == ord('q'): print('brak') final_num = str(j) fo.write(final_num) #np.savetxt(fo, final_num, fmt="%d") break else : break if drawn: """ pt1 = (int(center_x - (width / 2)), int(center_y + (height / 2))) pt2 = (int(center_x + (width / 2)), int(center_y - (height / 2))) list = np.array([[j, pt1[0], pt1[1], pt2[0], pt2[1]]]) """ list = ([center_x, center_y, width, height]) print('list : ', list) np.savetxt(f, list, fmt='%d', delimiter=',') j += 1 cv2.destroyAllWindows() if __name__ == "__main__" : last_num = None try: fo = open('dataset/last_num.txt', 'r') print('mode r') except: fo = open('dataset/last_num.txt', 'w') print('mode w') if fo.mode == 'r': num = fo.readline() fo = open('dataset/last_num.txt', 'w') if num=='': last_num = 0 print("last_num : %d" % last_num) else: last_num = int(num) print("last_num : %d" % last_num) else: last_num = 0 f = open('dataset/eyesPos.csv', 'a+') draw_rectangle(last_num) ``` #### File: eye_tracking/eye_tracking/record_makeDataset.py ```python import numpy as np import cv2 import sys import os recordStart = False recordEnd = False drawing = False drawn = False img = None img2 = None center_x, center_y, width, height = None, None, None, None def onMouse(event, x, y, flags, param) : global recordStart, recordEnd if event == cv2.EVENT_LBUTTONDOWN : print('record start') recordStart = True elif event == cv2.EVENT_LBUTTONUP : recordStart = False recordEnd = True def draw_rect(event, x, y, flags, param) : global drawing, ix, iy, center_x, center_y, width, height, drawn, img, img2 if event == cv2.EVENT_LBUTTONDOWN : drawing = True ix, iy = x, y elif event == cv2.EVENT_MOUSEMOVE : if drawing : cv2.rectangle(img, (ix, iy), (x, y), (0,255,0), 1) cv2.imshow('test', img) img = img2.copy() elif event == cv2.EVENT_LBUTTONUP : drawing = False drawn = True cv2.rectangle(param, (ix, iy), (x, y), (0, 255, 0), 1) center_x, center_y = int((x + ix)/2), int((y + iy)/2) width, height = int((x - ix)), int((y - iy)) def writeVideo(last_num) : global recordStart, recordEnd try : print('camera start') cap = cv2.VideoCapture(0) except : print('camera setting failed') if last_num : j = last_num print("j : %d"%j) else : j = 0 while True : ret, frame = cap.read() if not ret : print('video reading error') break cv2.imshow('video', frame) cv2.setMouseCallback('video', onMouse) if recordStart: cv2.imwrite('dataset/' +'%d.jpg'%j, frame) j += 1 if cv2.waitKey(1) & 0xFF == ord('q') : pass elif recordEnd == True : print('finish record') recordEnd = False break cap.release() cv2.destroyAllWindows() def draw_rectangle(last_num) : global center_x, center_y, width, height, drawn, list, list2, img, img2 if last_num : j = last_num print("j : %d"%j) else : j = 0 list = np.array([0,0,0,0,0]) list2 = np.array([0,0,0,0,0]) while True : name = 'dataset/%d.jpg'%j img = cv2.imread(name) print('name : ', name) cv2.namedWindow('test') #cv2.moveWindow('test', -10, -10) cv2.setMouseCallback('test', draw_rect, param=img) while True : try: cv2.imshow('test', img) except : print('no image') final_num = str(j) fo.write(final_num) #np.savetxt(fo, final_num, fmt="%d") sys.exit() img2 = img.copy() k = cv2.waitKey(0) if k: if k & 0xFF == ord('q'): print('brak') final_num = str(j) fo.write(final_num) #np.savetxt(fo, final_num, fmt="%d") break else : break if drawn: """ pt1 = (int(center_x - (width / 2)), int(center_y + (height / 2))) pt2 = (int(center_x + (width / 2)), int(center_y - (height / 2))) list = np.array([[j, pt1[0], pt1[1], pt2[0], pt2[1]]]) """ list = np.array([[center_x, center_y, width, height]]) print('list : ', list) np.savetxt(f, list, fmt='%d', newline='\n') #f.write("%d,%d,%d,%d,%d\n"%(j, pt1[0], pt1[1], pt2[0], pt2[1])) j += 1 cv2.destroyAllWindows() if __name__ == "__main__" : last_num = None try: fo = open('dataset/last_num.txt', 'r') print('mode r') except: fo = open('dataset/last_num.txt', 'w') print('mode w') if fo.mode == 'r' : num = fo.readline() fo = open('dataset/last_num.txt', 'w') if num == 0 : last_num = 0 print("last_num : %d"%last_num) else : last_num = int(num) print("last_num : %d"%last_num) else : last_num = 0 f = open('dataset/eyesPos.csv', 'a+') #os.chdir('/home/leejin/git/eye_tracking/eye-tracking') writeVideo(last_num) will = input('do you want to draw rectangles right now? yes : y, no : n') if (will == 'y') : draw_rectangle(last_num) elif(will == 'n') : print("last_num : ", last_num) last_num = str(last_num) fo.write(last_num) fo.close() ```
{ "source": "jinPrelude/kerbal-rl", "score": 3 }
#### File: kerbal-rl/kerbal_rl/env.py ```python import krpc import time import numpy as np """ Kerbal Space Program reinforcement learning environment Author : <NAME> github : https://github.com/jinPrelude/kerbal-rl """ # hover_v0 returns continuous reward class hover_v0: def __init__(self, sas=True, max_altitude = 500, max_step=100, interval = 0.085): self.conn = krpc.connect(name='hover') self.vessel = self.conn.space_center.active_vessel self.step_count = 0 self.done = False self.reward = 0 self.interval = interval self.max_altitude = max_altitude self.observation_space = 1 # Action space : 0.0 ~ 1.0 (Thrust ratio) self.action_space = 1 self.action_max = 1. self.action_min = -1. self.initial_throttle = self.action_min # Initializing self.sas = sas self.target_altitude = 100 self.relative_goal = self.target_altitude self.max_step = max_step # reset() returns target_altitude, while step() don't. def reset(self): # Quicksave initial state self.conn.space_center.quicksave() # Initialize sas self.vessel.control.sas = self.sas # Initialize throttle self.vessel.control.throttle = self.initial_throttle # Set target altitude self.target_altitude = np.random.randint(100, self.max_altitude) print('Target altitude : ', self.target_altitude) self.relative_goal -= self.vessel.flight().mean_altitude self.step_count = 0 self.done = False self.reward = 0 # Launch self.vessel.control.activate_next_stage() return [self.vessel, self.vessel.flight(), self.relative_goal] def step(self, action): self.decision(action) if self.step_count >= self.max_step : # Revert to launch pad when the step is reached to the max_step. self.done = True self.conn.space_center.quickload() else : self.step_count += 1 # Return the reward is given proportion to the distance between the target altitude & current altitude # and inverse proportion to the speed of the vehicle. self.reward = -0.6 * abs(self.vessel.flight().mean_altitude - self.target_altitude) + \ -0.4 * abs(self.vessel.flight().speed) self.relative_goal = self.target_altitude - self.vessel.flight().mean_altitude time.sleep(self.interval) # obs, reward, done return [self.vessel, self.vessel.flight(), self.relative_goal], self.reward, self.done, [] # Return action def decision(self, action): action = action[0] * 0.5 + 0.5 self.vessel.control.throttle = float(action) def sample_action_space(self): return np.random.uniform(-1, 1, 1) # hover_v1 returns sparse reward class hover_v1: def __init__(self, sas=True, max_altitude = 1000, max_step=100, epsilon=1, interval = 0.085): self.conn = krpc.connect(name='hover') self.vessel = self.conn.space_center.active_vessel self.step_count = 0 self.done = False self.reward = 0 self.interval = interval self.max_altitude = max_altitude self.observation_space = 1 # error tolerance(meter). # If epsilon is 1 and target_altitude is 100m, the error tolerance is between 99m and 101m self.epsilon = epsilon # Action space : 0.0 ~ 1.0 (Thrust ratio) self.action_space = 1 self.action_max = 1. self.action_min = 0.0 self.initial_throttle = self.action_min # Initializing self.sas = sas self.target_altitude = 100 self.max_step = max_step def reset(self): # Quicksave initial state self.conn.space_center.quicksave() # Initialize sas self.vessel.control.sas = self.sas # Initialize throttle self.vessel.control.throttle = self.initial_throttle # Set target altitude self.target_altitude = np.random.randint(100, self.max_altitude) print('Target altitude : ', self.target_altitude) self.step_count = 0 self.done = False self.reward = 0 # Launch self.vessel.control.activate_next_stage() return self.vessel.thrust, self.vessel.mass, self.target_altitude def step(self, action): self.decision(action) if self.step_count >= self.max_step : # Revert to launch pad self.done = True self.conn.space_center.quickload() else : self.step_count += 1 # Return the reward if the current altitude is between the error tolerance and the speed is 0. if (self.vessel.flight().mean_altitude <= self.target_altitude + self.epsilon) and \ (self.vessel.flight().mean_altitude >= self.target_altitude - self.epsilon) and \ abs(self.vessel.flight().speed) < 0.01 : self.reward = 1 else : self.reward = 0 time.sleep(self.interval) # obs, reward, done return (self.vessel.thrust, self.vessel.mass, self.target_altitude), self.reward, self.done # Return action def decision(self, action): self.vessel.control.throttle = float(action[0]) envs = { 'hover_v0' : hover_v0, 'hover_v1' : hover_v1 } def make(id) : return envs[id] ```
{ "source": "jinPrelude/MiniCNNEnv", "score": 3 }
#### File: MiniCNNEnv/minicnnenv/eatapple.py ```python import gym from gym import spaces import numpy as np import random class EatApple(gym.Env): def __init__(self, grid_size = [10, 10]): self.rgb_dict = {'agent': [0, 0, 128], 'none': [0, 0, 0], 'apple': [255, 255, 255]} self.agent_pos = None self.apple_num = 3 self.apple_pos_list = None self.max_step = 300 self.current_step = 0 assert isinstance(grid_size, list) and len(grid_size) == 2 self.grid_size = grid_size self.grid = np.zeros((self.grid_size[0], self.grid_size[1], 3)) # rgb self.action_space = spaces.Discrete(5) self.observation_space = spaces.Box( low=0, high=255, shape=(self.grid_size[0], self.grid_size[1], 3), dtype='uint8' ) def _move_agent(self, action): self.grid = self._draw(self.grid, self.rgb_dict['none'], self.agent_pos) if action == 0: pass elif action == 1: # left self.agent_pos[1] = self.agent_pos[1] - 1 if self.agent_pos[1] - 1 > 0 else 0 elif action == 2: # right self.agent_pos[1] = self.agent_pos[1] + 1 if self.agent_pos[1] + 1 < self.grid_size[1]-1 else self.grid_size[1]-1 elif action == 3: # up self.agent_pos[0] = self.agent_pos[0] - 1 if self.agent_pos[0] - 1 > 0 else 0 elif action == 4: # down self.agent_pos[0] = self.agent_pos[0] + 1 if self.agent_pos[0] + 1 < self.grid_size[0]-1 else self.grid_size[0]-1 else: print("wrong action") self.grid = self._draw(self.grid, self.rgb_dict['agent'], self.agent_pos) @staticmethod def _draw(grid, rgb_code, pos): grid[pos[0], pos[1], 0] = rgb_code[0] grid[pos[0], pos[1], 1] = rgb_code[1] grid[pos[0], pos[1], 2] = rgb_code[2] return grid @staticmethod def _sample_apple_pos(grid_size, apple_num, agent_pos): pos_range = list(range(0, grid_size[0] * grid_size[1])) del pos_range[agent_pos[1]*grid_size[1] + agent_pos[0]] # grid_size[1]*9 + grid_size[0] : agent reset pos agent_pos_list = random.sample(pos_range, apple_num) apple_xy_pos = [] for pos in agent_pos_list: apple_xy_pos.append([pos//grid_size[1], pos % grid_size[0]]) return apple_xy_pos def _judge_eat_apple(self): if self.agent_pos in self.apple_pos_list: idx = self.apple_pos_list.index(self.agent_pos) del self.apple_pos_list[idx] return (1, True) if len(self.apple_pos_list) == 0 else (1, False) else: return (0, False) def step(self, action): self.current_step += 1 self._move_agent(action) reward, done = self._judge_eat_apple() done = True if self.current_step >= self.max_step else done return self.grid, reward, done, {} def reset(self): self.current_step = 0 # initialize agent position. self.agent_pos = [self.grid_size[1]-1, self.grid_size[0]//2] self._move_agent(0) # to draw agent self.apple_pos_list = self._sample_apple_pos(self.grid_size, self.apple_num, self.agent_pos) for apple_pos in self.apple_pos_list: self.grid = self._draw(self.grid, self.rgb_dict['apple'], apple_pos) return self.grid def _render(self, mode='human', close=False): pass def _take_action(self, action): pass def _get_reward(self): pass if __name__=="__main__": env = EatApple() s = env.reset() print(s.transpose(2, 0, 1)[-1]) d = False while not d: a = int(input()) s, r, d, _ = env.step(a) print(s.transpose(2, 0, 1)[-1]) print(f"reward: {r}\tdone: {d}") print() print("done!") ```
{ "source": "jinPrelude/pyNeat", "score": 2 }
#### File: jinPrelude/pyNeat/builder.py ```python from envs import * from networks.neat.network import NeatNetwork from learning_strategies import * from loops.loops import ESLoop def build_env(config, unity_worker_id): if config["name"] in ["simple_spread", "waterworld", "multiwalker"]: return PettingzooWrapper(config["name"], config["max_step"]) elif "Unity" in config["name"]: if "CollectApple" in config["name"]: return UnityCollectAppleWrapper(config["name"], unity_worker_id, config["max_step"]) elif config["name"] in ["AndOps"]: return AndOps() else: return GymWrapper(config["name"], config["max_step"], config["pomdp"]) def build_network(config): if config["name"] == "NeatNetwork": return NeatNetwork( config["num_state"], config["num_action"], config["discrete_action"], config["init_mu"], config["init_std"], config["mutate_std"], config["max_weight"], config["min_weight"], config["probs"], ) def build_loop( config, network, agent_ids, env_name, gen_num, n_workers, eval_ep_num, log, save_model_period, ): strategy_cfg = config["strategy"] if strategy_cfg["name"] == "neat": strategy = Neat( strategy_cfg["offspring_num"], strategy_cfg["crossover_ratio"], strategy_cfg["champions_num"], strategy_cfg["survival_ratio"], strategy_cfg["c1"], strategy_cfg["c3"], strategy_cfg["delta_threshold"], ) return ESLoop( config, strategy, agent_ids, env_name, network, gen_num, n_workers, eval_ep_num, log, save_model_period, ) ``` #### File: pyNeat/envs/gym_wrapper.py ```python import gym import pybullet_envs gym.logger.set_level(40) class GymWrapper: def __init__(self, name, max_step=None, pomdp=False): self.env = gym.make(name) if pomdp: if "LunarLander" in name: print("POMDP LunarLander") self.env = LunarLanderPOMDP(self.env) elif "CartPole" in name: print("POMDP CartPole") self.env = CartPolePOMDP(self.env) else: raise AssertionError(f"{name} doesn't support POMDP.") self.max_step = max_step self.curr_step = 0 self.name = name def reset(self): self.curr_step = 0 return_list = {} transition = {} s = self.env.reset() transition["state"] = s return_list["0"] = transition return return_list def seed(self, seed): self.env.seed(seed) def step(self, action): self.curr_step += 1 return_list = {} transition = {} s, r, d, info = self.env.step(action["0"]) if self.max_step != "None": if self.curr_step >= self.max_step or d: d = True transition["state"] = s transition["reward"] = r transition["done"] = d transition["info"] = info return_list["0"] = transition return return_list, r, d, info def get_agent_ids(self): return ["0"] def render(self, mode): return self.env.render(mode=mode) def close(self): self.env.close() class LunarLanderPOMDP(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) def observation(self, obs): # modify obs obs[2] = 0 obs[3] = 0 obs[5] = 0 return obs class CartPolePOMDP(gym.ObservationWrapper): def __init__(self, env): super().__init__(env) def observation(self, obs): # modify obs obs[1] = 0 obs[3] = 0 return obs ``` #### File: learning_strategies/neat/neat_utils.py ```python from itertools import combinations import numpy as np def mutate_offsprings(offsprings): for off in offsprings: off.mutate() return offsprings def crossover_offsprings(parents, rewards, offspring_num, delta_dict, delta_threshold): offsprings = [] parents, rewards = sort_offsprings_rewards(parents, rewards) p = np.arange(1, len(parents) + 1)[::-1] / sum(range(len(parents) + 1)) while len(offsprings) < offspring_num: p1_idx, p2_idx = np.random.choice(range(len(parents)), 2, p=p, replace=False) if delta_dict[(p1_idx, p2_idx)] > delta_threshold: continue p1, p2 = parents[p1_idx], parents[p2_idx] if rewards[p1_idx] < rewards[p2_idx]: child = p1.crossover(p2) elif rewards[p1_idx] > rewards[p2_idx]: child = p2.crossover(p1) else: child = p1.crossover(p2, draw=True) offsprings.append(child) return offsprings def calculate_adjusted_fitness(offsprings, rewards, delta_threshold, delta_dict): # regularize rewards max_r = max(rewards) min_r = min(rewards) new_rewards = [] for i in range(len(rewards)): new_rewards.append((rewards[i] - min_r) / (max_r - min_r)) rewards = new_rewards # calculate adjusted fitness adjusted_fitness = [] pass_score = [] for i in range(len(offsprings)): same_speices_fitnesses = [] fitness = rewards[i] same_speices_num = 0 for j in range(len(offsprings)): if i == j: continue elif delta_dict[(i, j)] < delta_threshold: same_speices_fitnesses.append(rewards[j]) same_speices_num += 1 new_fitness = fitness / same_speices_num adjusted_fitness.append(new_fitness) pass_score.append(fitness - mean(same_speices_fitnesses)) return adjusted_fitness, pass_score def get_delta_dict(offsprings, c1, c3): delta_list = {} diversity_score = 0 parent_indices = [i for i in range(len(offsprings))] parent_combs = list(combinations(parent_indices, 2)) for (i, j) in parent_combs: delta_list[(i, j)] = calculate_delta(offsprings[i], offsprings[j], c1, c3) diversity_score += delta_list[(i, j)] / 1e6 delta_list[(j, i)] = delta_list[(i, j)] return delta_list, diversity_score def calculate_delta(p1, p2, c1, c3): p1_genes = p1.genome.get_connect_genes() p2_genes = p2.genome.get_connect_genes() p1_connect_keys = set(p1_genes.keys()) p2_connect_keys = set(p2_genes.keys()) all_genes_num = len(p1_connect_keys & p2_connect_keys) diff_genes_num = len(set.symmetric_difference(p1_connect_keys, p2_connect_keys)) weight_diff = 1 if (len(p1_genes) + len(p2_genes)) / 2 > 20: p1_weight_avg = get_weights_average(p1) p2_weight_avg = get_weights_average(p2) weight_diff = abs(p1_weight_avg - p2_weight_avg) delta = (c1 * diff_genes_num) / all_genes_num delta += c3 * weight_diff return delta def get_weights_average(neat_network): # for delta calculation connect_genes = neat_network.genome.get_connect_genes() weights = [] for gene in connect_genes.values(): weights.append(gene.weight) return mean(weights) def pick_by_pass_score(offsprings, adjusted_fitness, pass_scores, survival_num): # pick offsprings which fitness score is higher than speices' average. pass_num = len([i for i in pass_scores if i > 0]) if pass_num < survival_num: # sort the offsprings by pass_scores if pass_num is insufficient rank_id = np.flip(np.argsort(pass_scores)) survivals = [offsprings[i] for i in rank_id] survivals_rewards = [adjusted_fitness[i] for i in rank_id] else: survivals = [] survivals_rewards = [] for i, pass_score in enumerate(pass_scores): if pass_score > 0: survivals.append(offsprings[i]) survivals_rewards.append(adjusted_fitness[i]) return survivals, survivals_rewards def sort_offsprings_rewards(offsprings, rewards): rank_id = np.flip(np.argsort(rewards)) sorted_offsprings = [offsprings[i] for i in rank_id] sorted_rewards = [rewards[i] for i in rank_id] return sorted_offsprings, sorted_rewards def mean(x_list): if len(x_list) == 0: return 0 else: return sum(x_list) / len(x_list) ```
{ "source": "jinPrelude/reinforcement_learning", "score": 3 }
#### File: pytorch_rl/ksp_her/ksp.py ```python from pytorch_rl.ksp_her.hover import hover_v1 import argparse from pytorch_rl.ksp_her.algorithm import DDPG_HER def main(args) : env = hover_v1(max_altitude=300, max_step=100, epsilon=1) action_dim = env.action_space state_dim = env.observation_space goal_dim = env.goal_space max_step = 100 # max episode len print('action_dim : ', action_dim) print('state_dim : ', state_dim) ddpg = DDPG_HER(args, state_dim, action_dim, goal_dim, max_step) ddpg.ksp_train_loop(env) if __name__ == '__main__' : parse = argparse.ArgumentParser() parse.add_argument('--batch_size', default=200) parse.add_argument('--lr', default=0.003) parse.add_argument('--epsilon_decay', default=0.9) parse.add_argument('--gamma', default=0.99) parse.add_argument('--target_replace_iter', default=100) parse.add_argument('--tau', default=0.001) parse.add_argument('--memory_capacity', default=10000) parse.add_argument('--env_epsilon', default=1.) parse.add_argument('--num_episode', default=10000) parse.add_argument('--episode_len', default=100) parse.add_argument('--ep_print_iter', default=1, help='print episode_reward at every %d step') parse.add_argument('--model_save_iter', default=100, help='save model at every %d step') parse.add_argument('--continue_training', default=False, help='Will you continue training using your saved model & memory') parse.add_argument('--saved_iter', default=220, help='last saved model iteration number. ') parse.add_argument('--save_directory', default='./save/') args = parse.parse_args() main(args) ``` #### File: pytorch_rl/kuka/kuka_ddpg.py ```python import pybullet as p from pybullet_envs.bullet import kukaGymEnv import argparse from pytorch_rl.kuka.algorithm import DDPG def main(args) : p.connect(p.SHARED_MEMORY) env = kukaGymEnv.KukaGymEnv(renders=True, isEnableSelfCollision=True) action_dim = env.action_space.shape[0] state_dim = env.observation_space.shape[0] print('action_dim : ', action_dim) print('state_dim : ', state_dim) ddpg = DDPG(args, state_dim, action_dim) ddpg.kuka_train_loop(env) if __name__ == '__main__' : parse = argparse.ArgumentParser() parse.add_argument('--batch_size', default=200) parse.add_argument('--lr', default=0.003) parse.add_argument('--epsilon_decay', default=0.99) parse.add_argument('--gamma', default=0.99) parse.add_argument('--target_replace_iter', default=100) parse.add_argument('--tau', default=0.001) parse.add_argument('--memory_capacity', default=10000) parse.add_argument('--num_episode', default=10000) parse.add_argument('--episode_len', default=600) parse.add_argument('--ep_print_iter', default=1, help='print episode_reward at every %d step') parse.add_argument('--model_save_iter', default=100, help='save model at every %d step') parse.add_argument('--continue_training', default=False, help='Will you continue training using your saved model & memory') parse.add_argument('--saved_iter', default=220, help='last saved model iteration number. ') parse.add_argument('--save_directory', default='./kuka/save_ddpg/') args = parse.parse_args() main(args) ```
{ "source": "jinPrelude/rl_algorithms", "score": 2 }
#### File: rl_algorithms/Cnn_TD3_PyTorch /td3_main.py ```python import gym import torch import tensorboardX from agents import TD3 import argparse import os import utils import numpy as np def main(args): env = gym.make(args['env_name']) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') action_dim = env.action_space.shape[0] max_action = env.action_space.high[0] state_dim = env.observation_space.shape[0] td3 = TD3(args, action_dim, max_action, state_dim, device) summary = tensorboardX.SummaryWriter('./log/{}_td3_{}'.format(args['env_name'], args['noise_type'])) timestep = 0 for episode in range(args['max_episode']): episode_reward = 0 state = env.reset() state = utils.init_state(state) while True: if timestep < args['random_action_timestep'] : select = env.action_space.sample() action = utils.carRace_action_to_output(select) else : action = td3.get_action(state) select = utils.carRace_output_to_action(action) tmp_reward = 0 for i in range(4): tmp_next_state, reward, done, info = env.step(select) tmp_reward += reward tmp_next_state = utils.preprocess(tmp_next_state) tmp_next_state = tmp_next_state[np.newaxis, np.newaxis, :, :] next_state = np.append(tmp_next_state, state[:, :3, :, :], axis=1) # show_state(next_state) td3.save(state, action[0], tmp_reward, next_state, int(done)) episode_reward += tmp_reward state = next_state.copy() timestep += 1 if timestep > args['train_start_timestep']: if timestep % 2 == 0 : td3.train(summary, timestep) if done: print('episode: ', episode, ' reward : %.3f'%(episode_reward), ' timestep :', timestep) summary.add_scalar('reward/timestep', episode_reward, timestep) break if episode % args['save_freq'] == 0: if not os.path.exists('./SaveModel') : os.mkdir('./SaveModel') torch.save(td3.actor.state_dict(), './SaveModel/{}_td3_{}_{}'.format(args['env_name'], args['noise_type'], episode)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--seed', default=0) parser.add_argument('--env-name', default='CarRacing-v0') parser.add_argument('--env-seed', default=0) parser.add_argument('--render', default=False, type=bool) parser.add_argument('--evaluate', default=False, type=bool) parser.add_argument('--model-directory', default='./SaveModel/Pendulum-v0_210', type=str) parser.add_argument('--max-episode', default=1000000) parser.add_argument('--save-freq', default=50) parser.add_argument('--actor-lr', default=3e-4) parser.add_argument('--critic-lr', default=1e-3) parser.add_argument('--gamma', default=0.99) parser.add_argument('--memory-size', default=350000) parser.add_argument('--noise_type', default='gaussian') parser.add_argument('--noise-delta', default=0.1) parser.add_argument('--batch-size', default=32) parser.add_argument('--train-start-timestep', default=2000) parser.add_argument('--random-action-timestep', default=100) parser.add_argument('--tau', default=5e-3) args = vars(parser.parse_args()) main(args) ``` #### File: rl_algorithms/DQN_PyTorch/main.py ```python import gym import torch import tensorboardX import random import numpy as np from agents import Double_DQN_Cnn import argparse import os from utils import preprocess, init_state def main(args): env = gym.make(args['env_name']) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') action_dim = env.action_space.n state_dim = env.observation_space.shape[0] dqn = Double_DQN_Cnn(args, state_dim, action_dim, device) summary = tensorboardX.SummaryWriter('./log/{}_{}'.format(args['env_name'], 'double_dqn')) timestep = 0 for episode in range(args['max_episode']): episode_reward = 0 state = env.reset() state = init_state(state) while True: if args['random_action_timestep'] > timestep : select = env.action_space.sample() else : select = dqn.get_action(state) tmp_state = state.copy() for i in range(4) : next_state, reward, done, info = env.step(select) if i == 3 : break next_state = preprocess(tmp_state, next_state) tmp_state = next_state # env.render() next_state = preprocess(tmp_state, next_state) dqn.save(state, select, reward, next_state, int(done)) episode_reward += reward state = next_state timestep += 1 if timestep % 10 == 0 : dqn.update_target() if timestep > args['replay_start_size']: # BATCH_SIZE(64) 이상일 때 부터 train 시작 if timestep % args['skip'] == 0 : dqn.train() if done: if episode % 1 == 0 : print('episode: ', episode, ' reward : %.3f'%(episode_reward), ' timestep :', timestep, ' epsilon :', dqn.epsilon) summary.add_scalar('reward/timestep', episode_reward, timestep) break if episode % args['save_freq'] == 0: if not os.path.exists('./SaveModel') : os.mkdir('./SaveModel') torch.save(dqn.model.state_dict(), './SaveModel/{}_{}_{}'.format(args['env_name'], 'dqn', episode)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--env-name', default='BreakoutDeterministic-v4') parser.add_argument('--env-seed', default=0) parser.add_argument('--render', default=False, type=bool) parser.add_argument('--evaluate', default=False, type=bool) parser.add_argument('--model-directory', default='./SaveModel/Pendulum-v0_210', type=str) parser.add_argument('--max-episode', default=10000000) parser.add_argument('--save-freq', default=1000) parser.add_argument('--lr', default=0.001) parser.add_argument('--gamma', default=0.99) parser.add_argument('--memory-size', default=800000) parser.add_argument('--batch-size', default=16) parser.add_argument('--random-action-timestep', default=30000) parser.add_argument('--skip', default=4) parser.add_argument('--replay-start-size', default=50000) args = vars(parser.parse_args()) main(args) ``` #### File: rl_algorithms/QRDQN_PyTorch/agents.py ```python import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import torch.optim as optim from memory import Memory from torch.autograd import Variable import random from utils import preprocess class QRDQN_Model(nn.Module) : def __init__(self, state_dim, action_dim, num_quant): nn.Module.__init__(self) self.num_quant = num_quant self.action_dim = action_dim self.layer1 = nn.Linear(state_dim, 256) self.layer2 = nn.Linear(256, action_dim * num_quant) def forward(self, x): x = self.layer1(x) x = torch.tanh(x) x = self.layer2(x) return x.view(-1, self.action_dim, self.num_quant) class QRDQN() : def __init__(self, args, state_dim, action_dim, device): self.state_dim = state_dim self.action_dim = action_dim self.device = device self.memory = Memory(args['memory_size']) self.model = QRDQN_Model(state_dim, action_dim, args['num_quant']).to(self.device) self.target_model = QRDQN_Model(state_dim, action_dim, args['num_quant']).to(self.device) self.model_optimizer = optim.Adam(self.model.parameters(), lr=args['lr']) self.tau = torch.Tensor((2 * np.arange(args['num_quant']) + 1) / (2.0 * args['num_quant'])).view(1, -1).to(self.device) self.target_model.load_state_dict(self.model.state_dict()) self.epsilon = 1.0 self.args = args def update_target(self): self.target_model.load_state_dict(self.model.state_dict()) def get_action(self, state): if np.random.rand() <= self.epsilon : self.epsilon *= 0.999 return random.randrange(self.action_dim) else : state = torch.Tensor(state).to(self.device) action = self.model(state).mean(2).max(1)[1] return int(action) def get_real_action(self, state): state = torch.Tensor(state).to(self.device) action = self.model(state).mean(2).max(1)[1] return int(action) def save(self, state, action, reward, next_state ,done): self.memory.add((state, action, reward, next_state, done)) def huber(self, x, k=1.0): return torch.where(x.abs() < k, 0.5 * x.pow(2), k * (x.abs() - 0.5 * k)) def train(self): batch_size = self.args['batch_size'] mini_batch = self.memory.sample(batch_size) mini_batch = np.array(mini_batch).transpose() states = np.vstack(mini_batch[0]) actions = list(mini_batch[1]) rewards = list(mini_batch[2]) next_states = np.vstack(mini_batch[3]) dones = mini_batch[4].astype(int) states = torch.Tensor(states).to(self.device) next_states = torch.Tensor(next_states).to(self.device) rewards = torch.Tensor(rewards).to(self.device) rewards = torch.unsqueeze(rewards, 1) dones = torch.Tensor(dones).to(self.device) dones = torch.unsqueeze(dones, 1) states = Variable(states).float() # one-hot encoding a = torch.LongTensor(actions) net_action = self.model(states) net_action = net_action[np.arange(batch_size), actions] target_action = self.target_model(next_states).detach() target_select = target_action.mean(2).max(1) target_action = target_action[np.arange(batch_size), target_select[1]] target = rewards + (1 - dones) * self.args['gamma'] * target_action target = target.t().unsqueeze(-1) diff = target - net_action loss = self.huber(diff) * (self.tau - (diff.detach() < 0).float()).abs() loss = loss.mean() self.model_optimizer.zero_grad() loss.backward() self.model_optimizer.step() ``` #### File: rl_algorithms/QRDQN_PyTorch/memory.py ```python import random import numpy as np from collections import deque # random class Memory : def __init__(self, memory_size): self.memory = deque(maxlen=memory_size) self.memory_counter = 0 def add(self, sample) : self.memory.append(sample) self.memory_counter += 1 def sample(self, batch_size): return random.sample(self.memory, batch_size) ``` #### File: rl_algorithms/TD3_PyTorch/evaluate.py ```python import gym import torch import tensorboardX from agents import TD3 import argparse import os def main(args): env = gym.make(args['env_name']) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') action_dim = env.action_space.shape[0] max_action = env.action_space.high[0] state_dim = env.observation_space.shape[0] td3 = TD3(args, action_dim, max_action, state_dim, device) trained_actor = torch.load(args['model_directory']) td3.actor.load_state_dict(trained_actor) timestep = 0 for episode in range(args['max_episode']): episode_reward = 0 state = env.reset() while True: action = td3.get_action(state) next_state, reward, done, info = env.step(action) env.render() episode_reward += reward state = next_state timestep += 1 if done: print('episode: ', episode, ' reward : %.3f'%(episode_reward), ' timestep :', timestep) break if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--seed', default=0) parser.add_argument('--env-name', default='LunarLanderContinuous-v2') parser.add_argument('--env-seed', default=0) parser.add_argument('--render', default=True, type=bool) parser.add_argument('--evaluate', default=False, type=bool) parser.add_argument('--model-directory', default='./SaveModel/LunarLanderContinuous-v2_td3_gaussian_900', type=str) parser.add_argument('--max-episode', default=5000) parser.add_argument('--save-freq', default=100) parser.add_argument('--actor-lr', default=0.001) parser.add_argument('--critic-lr', default=0.001) parser.add_argument('--gamma', default=0.99) parser.add_argument('--noise-timestep', default=10000) parser.add_argument('--memory-size', default=200000) parser.add_argument('--noise_type', default='none') parser.add_argument('--noise-delta', default=1.0) parser.add_argument('--batch-size', default=32) parser.add_argument('--random-action-timestep', default=3000) parser.add_argument('--tau', default=1e-3) args = vars(parser.parse_args()) main(args) ```
{ "source": "jinPrelude/simple-es", "score": 3 }
#### File: learning_strategies/evolution/utils.py ```python from copy import deepcopy def wrap_agentid(agent_ids, network): group = {} for agent_id in agent_ids: group[agent_id] = deepcopy(network) return group ``` #### File: simple-es/networks/abstracts.py ```python from abc import * from torch import nn class BaseNetwork(nn.Module): def __init__(self): super(BaseNetwork, self).__init__() @abstractmethod def zero_init(self): pass @abstractmethod def reset(self): pass @abstractmethod def get_param_list(self): pass @abstractmethod def apply_param(self, param_lst: list): pass ``` #### File: simple-es/networks/neural_network.py ```python import torch import torch.nn as nn import torch.nn.functional as F from .abstracts import BaseNetwork class GymEnvModel(BaseNetwork): def __init__(self, num_state=8, num_action=4, discrete_action=True, gru=True): super(GymEnvModel, self).__init__() self.num_action = num_action self.fc1 = nn.Linear(num_state, 32) self.use_gru = gru if self.use_gru: self.gru = nn.GRU(32, 32) self.h = torch.zeros([1, 1, 32], dtype=torch.float) self.fc2 = nn.Linear(32, num_action) self.discrete_action = discrete_action def forward(self, x): with torch.no_grad(): x = torch.from_numpy(x).float() x = x.unsqueeze(0) x = torch.tanh(self.fc1(x)) if self.use_gru: x, self.h = self.gru(x, self.h) x = torch.tanh(x) x = self.fc2(x) if self.discrete_action: x = F.softmax(x.squeeze(), dim=0) x = torch.argmax(x) else: x = torch.tanh(x.squeeze()) x = x.detach().cpu().numpy() return x def reset(self): if self.use_gru: self.h = torch.zeros([1, 1, 32], dtype=torch.float) def zero_init(self): for param in self.parameters(): param.data = torch.zeros(param.shape) def get_param_list(self): param_list = [] for param in self.parameters(): param_list.append(param.data.numpy()) return param_list def apply_param(self, param_lst: list): count = 0 for p in self.parameters(): p.data = torch.tensor(param_lst[count]).float() count += 1 ```
{ "source": "jinpyojoo/school-py", "score": 3 }
#### File: school-py/school/parser.py ```python import requests, re from bs4 import BeautifulSoup import datetime class School: def __init__(self, region, code): if region is None or code is None: raise Exception("지역 또는 학교코드가 비어있습니다.") self.region = region self.code = code today = datetime.datetime.today() def getMeal(self, year=today.year, month=today.month, day=today.day, code=2): weekday = datetime.date(year=year, month=month, day=day).weekday() schMmealScCode = code month = str(month).zfill(2) year = str(year).zfill(2) day = str(day).zfill(2) if self.region in ["sen", "pen", "dge", "ice", "gen", "dje", "use", "sje", "goe", "kwe", "cbe", "cne", "jbe", "jne", "gbe", "gne", "jje"]: num = weekday + 1 if not self.region == 'gbe': URL = ( "http://stu."+self.region+".go.kr/sts_sci_md01_001.do?" f"schulCode={self.code}" "&schulCrseScCode=4" "&schulKndScCode=04" "&schMmealScCode=%d&schYmd=%s" % (schMmealScCode, str(year)+str(month)+str(day)) ) else: URL = ( "http://stu.gbe.kr/sts_sci_md01_001.do?" f"schulCode={self.code}" "&schulCrseScCode=4" "&schulKndScCode=04" "&schMmealScCode=%d&schYmd=%s" % (schMmealScCode, str(year)+str(month)+str(day)) ) html = "" resp = requests.get(URL) if resp.status_code == 200 : html = resp.text soup = BeautifulSoup(html, 'html.parser') element_data = soup.find_all("tr") element_data = element_data[2].find_all('td') try: element = str(element_data[num]) element_filter = ['[', ']', '<td class="textC last">', '<td class="textC">', '</td>', '&amp;', '(h)', '.'] for element_string in element_filter : element = element.replace(element_string, '') element = re.sub(r"\d", "", element) element = element.split('<br/>') element = list(filter(None, element)) except Exception as ex: element = [] else: raise Exception("지역 코드가 맞지 않습니다.") return element ```
{ "source": "jinq0123/conan-lua-intf", "score": 2 }
#### File: jinq0123/conan-lua-intf/conanfile.py ```python from conans import ConanFile class LuaintfConan(ConanFile): name = "lua-intf" version = "0.1" license = "MIT" url = "https://github.com/jinq0123/conan-lua-intf" description = "A binding between C++11 and Lua language" # No settings/options are necessary, this is header only def source(self): self.run("git clone --depth=1 https://github.com/SteveKChiu/lua-intf.git") def package(self): self.copy("*", dst="include", src="lua-intf") def package_id(self): self.info.header_only() ```
{ "source": "JinqiaoGit/DeBERTa-NER", "score": 3 }
#### File: experiments/citi_ner/dataset.py ```python from typing import List, Dict import torch from torch.utils.data import Dataset import numpy as np from constant import PADDING_LABEL, LABEL2IX from data_utils import get_word2ix class DocDataset(Dataset): def __init__( self, sentences: List[List[str]], labels: List[List[str]], word2ix: Dict[str, int] = None, padding_size: int = None, label2ix: Dict[str, int] = LABEL2IX): # set word to idx dictionary if not word2ix and isinstance(sentences, list) and isinstance(labels, list): self.word2ix = get_word2ix([(sent, label) for sent, label in zip(sentences, labels)]) else: self.word2ix = word2ix if not sentences or not labels: raise ValueError("Empty input and output of dataset, please check your data") self.sentences = sentences self.labels = labels self.padding_size = padding_size self.label2ix = label2ix self.train_data, self.train_label = None, None # padding dataset self._dataset_padding() # convert array to torch Tensor self.train_data, self.train_label = torch.LongTensor(self.train_data), torch.LongTensor(self.train_label) def __len__(self): """ return the number of sentence """ return len(self.sentences) def __getitem__(self, idx): """ return the batch item based on the idx """ return self.train_data[idx], self.train_label[idx] def _dataset_padding(self): """ padding all sentences and labels based on the max length of sentence. notice that each sentence and label has the same length, the padding size is human defined, which should be in the list [64, 128, 256, 512, ...] """ if not isinstance(self.padding_size, int): max_sentence_len = max(len(sent) for sent in self.sentences) # find the minimum padding size for interval in [64, 128, 256, 512]: if max(interval, max_sentence_len) == interval: self.padding_size = interval break if interval == 512: self.padding_size = interval break # padding train data with padding label, which is index 0 in my settings self.train_data = self.word2ix[PADDING_LABEL] * np.ones((len(self.sentences), self.padding_size)) # padding label data with -1 self.train_label = -1 * np.ones((len(self.sentences), self.padding_size)) # copy the data to numpy array for sent_idx, sent in enumerate(self.sentences): sent_length = len(sent) self.train_data[sent_idx][:sent_length] = [self.word2ix[token] for token in sent] self.train_label[sent_idx][:sent_length] = [self.label2ix[label] for label in self.labels[sent_idx]] ``` #### File: experiments/citi_ner/data_utils.py ```python from typing import Dict, List, Tuple import torch def get_word2ix(trainset: List[Tuple[List[str], List[str]]]) -> Dict[str, int]: """ generate one-hot code of tokens :param trainset: a list of tuple contains tokens and labels :return: a dict contains the map between token and index """ # set <PAD> label as idx 0 word_to_ix: Dict[str, int] = {"<PAD>": 0} for sentence, _ in trainset: for word in sentence: if word not in word_to_ix: word_to_ix[word] = len(word_to_ix) return word_to_ix def prepare_sequence(seq: List[str], to_ix: Dict[str, int], device='cpu') -> torch.Tensor: """ convert sequential word to the index in one-hot dictionary. """ idxs = [[to_ix[w] for w in seq]] return torch.tensor(idxs, dtype=torch.long, device=device) def data_refactor(): pass ``` #### File: experiments/citi_ner/loss_function.py ```python import torch def cross_entropy_loss(outputs: torch.LongTensor, labels: torch.LongTensor): """ This is the cross entropy loss function :param outputs: this is the output of model :param labels: this is the ground truth of the token's label :return: the loss array based on cross-entropy """ # reshape labels to give a flat vector with length batch_size*seq_len labels = labels.reshape(-1) # mask out '<PAD>' tokens mask = (labels >= 0).float() # the number of tokens is the sum of elements in mask num_tokens = int(torch.sum(mask).data) # pick the values corresponding to labels and multiply by mask outputs = outputs[range(outputs.shape[0]), labels] * mask # cross entropy loss for all non <PAD> tokens return -torch.sum(outputs) / num_tokens ```
{ "source": "Jinqi-Cheng/delivery_pal_server", "score": 2 }
#### File: delivery_pal_server/accounts/views.py ```python from django.shortcuts import render from django.contrib.auth.decorators import login_required from django.shortcuts import redirect # Create your views here. from .models import Restaurant def index(request): return render(request, 'index.html') @login_required def dashboard(request): return redirect('restautant/dashboard.html') @login_required def profile(request): user = request.user if user.is_authenticated: if user.is_superuser: return redirect('/admin/') else: restaurant = Restaurant.objects.get(user_id = user.id) return render(request, 'profile.html', {'restaurant': restaurant}) else: return redirect('/accounts/login/',{'message':'Wrong password Please Try agagin'}) ```
{ "source": "jin-qin/cs655-image-recognition", "score": 2 }
#### File: cs655-image-recognition/tests/start_test.py ```python import os import requests import json import dateutil.parser import time import matplotlib import matplotlib.pyplot as plt import numpy as np from util import load_ground_truth, get_sysnset_map, is_predict_correct IMG_DIR = '/opt/client/data/val_img' GROUND_TRUTH_FILE = './data/ILSVRC2012_validation_ground_truth.txt' IMGNET_META_FILE = './data/meta.mat' SYNSET_WORDS_MAP_FILE = './data/synset_words.txt' HOST = 'pcvm3-23.instageni.cenic.net' PORT = 5000 def date2ts(iso_date): ''' parse date format like '2020-12-08T11:39:47.110Z' to a timestamp ''' dt = dateutil.parser.isoparse(iso_date) return int(time.mktime(dt.timetuple())) def test_code(imgs_paths, gt, synste_map): ''' run testing logics try uploading all images inside imgs_paths ''' imgs_idx_map = {} valid_http_req = 0 total_req = len(imgs_paths) # set maxmimum http pool size sess = requests.Session() adapter = requests.adapters.HTTPAdapter(pool_maxsize=100) sess.mount('http://', adapter) url_submit = 'http://{}:{}/jobs/submit'.format(HOST, PORT) print('start uploading {} images ...'.format(len(imgs_paths))) ts_req_st = time.time() for idx, img_path in enumerate(imgs_paths): print('uploading {}'.format(img_path), end='\r') data = {'image':open(img_path,'rb')} # if failed (timeout, status code not 201 etc.), skip # only count valid http requets here, used to compute goodput try: res = sess.post(url=url_submit, files=data, timeout=3) if res.status_code == 201: job_id = res.json()['id'] imgs_idx_map[job_id] = idx valid_http_req = valid_http_req + 1 except: time.sleep(5) req_duration = time.time() - ts_req_st print('') # new line print('upload finished') # checking if all jobs finished every 5 seconds url_check_all_finished = 'http://{}:{}/jobs/all_finished'.format(HOST, PORT) check_count = 0 while True: try: res = sess.get(url_check_all_finished, timeout=3) if res.status_code != 200: continue all_finished = res.json() print('checking if all jobs finished: {}, count: {}'.format(all_finished, check_count), end='\r') check_count = check_count + 1 if all_finished['finished'] == True: print('') # new line print('all jobs finished!') break except: pass time.sleep(5) # all job finished, get all jobs results url_get_all_jobs =' http://{}:{}/jobs/all'.format(HOST, PORT) while True: try: res = sess.get(url_get_all_jobs, timeout=3) if res.status_code != 200: continue break except: time.sleep(5) print('got all the jobs\'results') # compute statisticss all_data = res.json() avg_times = [] preds = [] for row in all_data['data']: if row['finish_time'] is None: continue if row['schedule_time'] is None: continue try: img_idx = imgs_idx_map[row['job_id']] finish_time = date2ts(row['finish_time']) schedule_time = date2ts(row['schedule_time']) submit_time = date2ts(row['submit_time']) pred_label = synset_map[int(row['result'])] preds.append(is_predict_correct(gt, img_idx, pred_label)) duration = finish_time - schedule_time # second avg_times.append(duration) except: pass avg_time = np.mean(avg_times) accuracy = np.mean(preds) return avg_time, accuracy, valid_http_req, total_req, req_duration if __name__ == '__main__': # get all images in the image directory imgs_paths = os.listdir(IMG_DIR) imgs_paths = sorted(imgs_paths, key = lambda path: int(os.path.splitext(path)[0][-8:])) imgs_paths = [IMG_DIR + '/{}'.format(path) for path in imgs_paths] gt = load_ground_truth(GROUND_TRUTH_FILE) synset_map = get_sysnset_map(IMGNET_META_FILE, SYNSET_WORDS_MAP_FILE) loss_rates = np.linspace(0, 0.6, num=10) # X-axis ts_st = time.time() goodputs = [] # Y-axis throughputs = [] # Y-axis avg_times = [] # Y-axis accuracies = [] # Y-axis for loss in loss_rates: print('----------------------------------------------------------') print("start a new turn on loss rate: {:.2f}".format(loss * 100)) url = 'http://{}:{}/jobs/clear'.format(HOST, PORT) res = requests.delete(url) avg_time, accuracy, valid_http_req, total_http_req, req_duration = test_code(imgs_paths[:100], gt, synset_map) goodput = valid_http_req / req_duration throughput = total_http_req / req_duration avg_times.append(avg_time) accuracies.append(accuracy) goodputs.append(goodput) throughputs.append(throughput) print('average job execution time: {} sec'.format(avg_time)) print('accuracy: {:.2f} %'.format(accuracy * 100)) print('valid requests: {}'.format(valid_http_req)) print('total requests: {}'.format(total_http_req)) print('goodput: {} / sec'.format(goodput)) print('throughput: {} / sec'.format(throughput)) print("finish this turn") print('----------------------------------------------------------') input('Enter any key to start next turn...') total_runtime = time.time() - ts_st # save all data into csv files. import csv with open('results.csv', 'w') as csvfile: csvwriter = csv.writer(csvfile, delimiter=' ', quotechar='|') for i in range(len(loss_rates)): csvwriter.writerow([loss_rates[i], goodputs[i], throughputs[i], accuracies[i], avg_times[i], total_runtime]) ``` #### File: cs655-image-recognition/tests/util.py ```python def load_ground_truth(gt_file: str): ground_truth = [] with open(gt_file, 'r') as f: for idx, line in enumerate(f): ground_truth.append(int(line)) return ground_truth def load_imagenet_meta(meta_file: str): import scipy.io mat = scipy.io.loadmat(meta_file) return mat['synsets'] def get_sysnset_map(meta_file: str, synset_words_mapping_file: str): ''' since the predicted label from model is not the same as the synsets id in imagenet we have to map the label to the synsets id this function will return the map of <model label, imagenet id> ''' metadata = load_imagenet_meta(meta_file) d = metadata[:, 0] wnid_map = {} for r in d: if r[0][0][0] > 1000: continue wnid_map[r[1][0]] = r[0][0][0] synset_map = {-1: -1} import csv with open(synset_words_mapping_file, newline='') as csvfile: csvreader = csv.reader(csvfile, delimiter=' ', quotechar='|') for id, line in enumerate(csvreader): id_imgnet = wnid_map[line[0]] synset_map[id] = id_imgnet return synset_map def get_synset_details_map(meta_file: str, synset_words_mapping_file: str): metadata = load_imagenet_meta(meta_file) d = metadata[:, 0] wnid_map = {} category = {} desc = {} for r in d: if r[0][0][0] > 1000: continue wnid_map[r[1][0]] = r[0][0][0] category[r[1][0]] = r[2][0] desc[r[1][0]] = r[3][0] synset_map = {-1: {'code': -1, 'desc': ''}} import csv with open(synset_words_mapping_file, newline='') as csvfile: csvreader = csv.reader(csvfile, delimiter=' ', quotechar='|') for id, line in enumerate(csvreader): id_imgnet = wnid_map[line[0]] synset_map[id] = { 'code': int(id_imgnet), 'cat':category[line[0]], 'desc': desc[line[0]]} return synset_map def is_predict_correct(ground_truth: list, img_idx: int, imgnet_label: int): return ground_truth[img_idx] == imgnet_label ```
{ "source": "JinquanPeng/CS323-Compilers", "score": 3 }
#### File: project1/src/run_test.py ```python import os import hashlib def getHash(f): line=f.readline() hash=hashlib.md5() while(line): hash.update(line) line=f.readline() return hash.hexdigest() def IsHashEqual(f1,f2): str1=getHash(f1) str2=getHash(f2) return str1==str2 if __name__ == '__main__': cmds = [] ans = [] cmd = "./bin/splc" for i in range(1,10): file_name = cmd+ " ../test/test_1_r0"+str(i)+".spl > rst" a = "../test/test_1_r0" + str(i) +".out" cmds.append(file_name) ans.append(a) for i in range(10,13): file_name =cmd+ " ../test/test_1_r"+str(i)+".spl > rst" cmds.append(file_name) a = "../test/test_1_r" + str(i) +".out" ans.append(a) for i in range(len(cmds)): print("========"+ str(i+1) +"=======") os.system(cmds[i]) f1=open("./rst","rb") f2=open(ans[i],"rb") print(IsHashEqual(f1,f2)) ```
{ "source": "Jinr0h404/projet10", "score": 3 }
#### File: projet10/Favorite/models.py ```python from django.db import models from Product.models import Product from User.models import CustomUser # Create your models here. class Favorites(models.Model): """this class is for the django orm, it gives the parameters for the creation of the table of the same name in the psql database.""" substitute_id = models.ForeignKey( Product, on_delete=models.RESTRICT, verbose_name="Substitut" ) product_id = models.ForeignKey( Product, on_delete=models.RESTRICT, related_name="bad_product", verbose_name="Produit", ) user_id = models.ForeignKey( CustomUser, on_delete=models.CASCADE, verbose_name="Utilisateur" ) def __str__(self): return f"{self.substitute_id} | {self.product_id} | {self.user_id}" ``` #### File: management/commands/create_db.py ```python from django.core.management.base import BaseCommand from Product.models import Product, Category, Store from .api_get import Api_get class Command(BaseCommand): help = "initialize database" def handle(self, *args, **kwargs): """retrieve a list of products in JSON format through Open Food Fact API. The loop goes through each element of the number of pages given, checks if the main categories are correctly entered for the product and creates a dictionary list.""" product = Api_get() product_list = product.food() for i in product_list: new_product = Product.objects.create( product_name=i["name"], brand=i["brand"], description=i["description"], nutriscore=i["nutriscore"], url=i["url"], product_image=i["product_image"], product_image_little=i["product_image_little"], fat=str(i["fat"]), saturated_fat=str(i["saturated_fat"]), salt=str(i["salt"]), sugar=str(i["sugar"]), ) last_product = Product.objects.last() prod_id = last_product.pk for category in i["category"]: """the value of the category key in the dictionary can contain several elements. I therefore loop on the category to fill my table with get_or_create function of peewee to haven't a duplicate""" category = category.strip() """ strip() remove spaces before and after item""" new_category, created = Category.objects.get_or_create( category_name=category ) cat_id = new_category.pk last_product.category.add(cat_id) """ make a loop for each store""" for store in i["store"]: """like category, the value of the store key in the dictionary can contain several elements. loop to fill my table with the get_or_create function""" store = store.strip() new_store, created = Store.objects.get_or_create(store_name=store) store_id = new_store.pk last_product.store.add(store_id) ``` #### File: management/commands/update_db.py ```python from django.core.management.base import BaseCommand from Product.models import Product, Category, Store from .api_get import Api_get class Command(BaseCommand): help = "update database" def handle(self, *args, **kwargs): """retrieve a list of products in JSON format through Open Food Fact API. The loop goes through each element of the number of pages given, checks if the main categories are correctly entered for the product and creates a dictionary list.""" product = Api_get() product_list = product.food() for i in product_list: if Product.objects.filter(product_name=i["name"], url=i["url"]): old_product = Product.objects.get(product_name=i["name"], url=i["url"]) old_product.brand=i["brand"] old_product.description=i["description"] old_product.nutriscore=i["nutriscore"] old_product.fat=str(i["fat"]) old_product.saturated_fat=str(i["saturated_fat"]) old_product.salt=str(i["salt"]) old_product.sugar=str(i["sugar"]) old_product.save() ``` #### File: projet10/Product/models.py ```python from django.db import models # Create your models here. class Category(models.Model): """this class is for the django orm, it gives the parameters for the creation of the table of the same name in the psql database.""" category_name = models.CharField( max_length=200, unique=True, verbose_name="Catégorie" ) def __str__(self): return f"{self.category_name}" class Store(models.Model): """this class is for the django orm, it gives the parameters for the creation of the table of the same name in the psql database.""" store_name = models.CharField(max_length=100, unique=True, verbose_name="Magasin") def __str__(self): return f"{self.store_name}" class Product(models.Model): """this class is for the django orm, it gives the parameters for the creation of the table of the same name in the psql database.""" product_name = models.CharField(max_length=200, verbose_name="Produit") product_image = models.URLField(null=True) product_image_little = models.URLField(null=True) brand = models.TextField(null=True, verbose_name="Marque") description = models.TextField(null=True) nutriscore = models.CharField(max_length=1) fat = models.CharField(max_length=30, default="NC") saturated_fat = models.CharField(max_length=30, default="NC") salt = models.CharField(max_length=30, default="NC") sugar = models.CharField(max_length=30, default="NC") url = models.URLField(null=True) category = models.ManyToManyField(Category) store = models.ManyToManyField(Store) def __str__(self): return f"{self.product_name}" ``` #### File: projet10/Product/views.py ```python from django.shortcuts import render, redirect, get_object_or_404 from Product.models import Product from User.models import CustomUser from Favorite.models import Favorites from django.core.paginator import Paginator import logging # Get an instance of a logger logger = logging.getLogger(__name__) # Create your views here. def search(request): """get the keyword in query and do a search in the product name column for all products that contain this word. uses paginator to create a presentation of 6 products per page""" query = request.GET.get("query") products_list = Product.objects.filter(product_name__icontains=query).order_by("id") paginator = Paginator(products_list, 6) page_number = request.GET.get("page") page_obj = paginator.get_page(page_number) logger.info('New search', exc_info=True, extra={ # Optionally pass a request and we'll grab any information we can 'request': request, }) context = { "page_obj": page_obj, "nom_produit": page_obj, "paginate": True, "query": query, } return render(request, "Product/search.html", context) def count_to_dict(lst): """loop on the list of id's to create a dictionary of key = product id / value = count how many common categories""" return {k: lst.count(k) for k in lst} def substitute_getter(id_product): """We create a list of all the product objects having a common category with the requested product. For each product of the object list a new list is filled with the corresponding id. Returns a list of tuple (productID, nbrCategory in common) sorted in descending order of values nbr Common Category""" product = get_object_or_404(Product, pk=id_product) list_brut = Product.objects.filter(category__in=product.category.all()).exclude( pk=id_product ) list_order_value = [] for prod in list_brut: list_order_value.append(prod.pk) list_count_common = count_to_dict(list_order_value) valeur_sub = sorted(list_count_common.items(), key=lambda x: x[1], reverse=True) return valeur_sub def search_substitute(request): """get the id in query and use substitute_getter function for returns a list of tuple (productID, nbrCategory in common) and uses paginator to create a presentation of 6 products per page""" query = request.GET.get("query") query_id = Product.objects.filter(pk=query) products_tuple = substitute_getter(query) products_list = [] for i in products_tuple: products_list.append(Product.objects.get(pk=i[0])) paginator = Paginator(products_list, 6) page_number = request.GET.get("page") page_obj = paginator.get_page(page_number) context = { "page_obj": page_obj, "nom_produit": page_obj, "paginate": True, "query": query, "query_id": query_id, } return render(request, "Product/search_substitute.html", context) def save_substitute(request): """get the id of product and id of his substitute in query with post method and save it with the id of connected user. Redirect the user on the favorite page""" query_substitute = request.POST["save"] query_list = query_substitute.split(",") if request.method == "POST": query = Product.objects.get(pk=query_list[1]) user_connected = CustomUser.objects.get(pk=request.user.id) substitute_id = Product.objects.get(pk=query_list[0]) favorite_substitute = Favorites.objects.create( substitute_id=substitute_id, product_id=query, user_id=user_connected, ) return redirect("/favoris") def product_info(request, product_id): """get the id of product in the url. Display product info page with nutriscore""" query = product_id query_id = Product.objects.filter(pk=query) context = { "nom_produit": query_id, "query": query, "query_id": query_id, } return render(request, "Product/product_info.html", context) ``` #### File: projet10/User/models.py ```python from django.db import models from django.contrib.auth.base_user import AbstractBaseUser, BaseUserManager # Create your models here. class MyUserManager(BaseUserManager): def create_user(self, email, username, password=None): if not email: raise ValueError("veuillez entrer un email") user = self.model( email=self.normalize_email(email), username=username ) user.set_password(password) user.save() return user def create_superuser(self, email, username, password=None): user = self.create_user(email=email, username=username, password=password) user.is_admin = True user.is_staff = True user.save() return user class CustomUser(AbstractBaseUser): """this class is for the django orm, it gives the parameters for the creation of the table of the same name in the psql database.""" username = models.CharField(max_length=200, null=False, blank=False, verbose_name="Nom") email = models.EmailField(max_length=45, unique=True, null=False, blank=False) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) is_admin = models.BooleanField(default=False) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['username'] objects = MyUserManager() def has_perm(self, perm, obj=None): return True def has_module_perms(selfself, app_label): return True def __str__(self): return f'{self.username} | {self.email}' ```
{ "source": "Jinr0h404/projet11", "score": 3 }
#### File: Product/tests/test_models.py ```python import pytest from Product.models import Product, Store, Category @pytest.fixture def product_fixture(db) -> Product: """creates the fixture for the test database with 3 products""" product_list = [ { "name": "nutella", "store": "leclerc", "category": ["pate", "pate à tartiner", "petit déjeuner", "chocolat"], "nutriscore": "D", "description": "petit déjeuner", "fat": "0,145", "saturated_fat": "0,145", "salt": "0,145", "sugar": "0,145", }, { "name": "lightella", "store": "leclerc", "category": ["pate"], "nutriscore": "B", "description": "petit déjeuner", "fat": "0,14", "saturated_fat": "0,04", "salt": "0,02", "sugar": "0,14", }, { "name": "nutalla", "store": "leclerc", "category": ["pate à tartiner", "petit déjeuner", "chocolat"], "nutriscore": "B", "description": "petit déjeuner", "fat": "0,14", "saturated_fat": "0,04", "salt": "0,02", "sugar": "0,14", }, ] for i in product_list: new_product = Product.objects.create( product_name=i["name"], nutriscore=i["nutriscore"], fat=str(i["fat"]), saturated_fat=str(i["saturated_fat"]), salt=str(i["salt"]), sugar=str(i["sugar"]), ) last_product = Product.objects.last() prod_id = last_product.pk for category in i["category"]: """the value of the category key in the dictionary can contain several elements. I therefore loop on the category to fill my table with get_or_create function of peewee to haven't a duplicate""" category = category.strip() """ strip() remove spaces before and after item""" new_category, created = Category.objects.get_or_create( category_name=category ) cat_id = new_category.pk last_product.category.add(cat_id) """ make a loop for each store""" for store in i["store"]: """like category, the value of the store key in the dictionary can contain several elements. loop to fill my table with the get_or_create function""" store = store.strip() new_store, created = Store.objects.get_or_create(store_name=store) store_id = new_store.pk last_product.store.add(store_id) def test_product_model(product_fixture): """test that the product model records the product information in the database""" product = Product.objects.get(product_name="nutella") expected_value = "nutella" assert str(product) == expected_value @pytest.mark.django_db def test_category_model(): """test that the category model records the category information in the database""" category = Category.objects.create(category_name="pate à tartiner") expected_value = "pate à tartiner" assert str(category) == expected_value @pytest.mark.django_db def test_store_model(): """test that the store model records the store information in the database""" store = Store.objects.create(store_name="auchan") expected_value = "auchan" assert str(store) == expected_value ```
{ "source": "jin/ray", "score": 2 }
#### File: serve/tests/test_task_runner.py ```python import pytest import ray from ray.experimental.serve.queues import CentralizedQueuesActor from ray.experimental.serve.task_runner import ( RayServeMixin, TaskRunner, TaskRunnerActor, wrap_to_ray_error, ) import ray.experimental.serve.context as context def test_runner_basic(): def echo(i): return i r = TaskRunner(echo) assert r(1) == 1 def test_runner_wraps_error(): wrapped = wrap_to_ray_error(Exception()) assert isinstance(wrapped, ray.exceptions.RayTaskError) def test_runner_actor(serve_instance): q = CentralizedQueuesActor.remote() def echo(flask_request, i=None): return i CONSUMER_NAME = "runner" PRODUCER_NAME = "prod" runner = TaskRunnerActor.remote(echo) runner._ray_serve_setup.remote(CONSUMER_NAME, q, runner) runner._ray_serve_main_loop.remote() q.link.remote(PRODUCER_NAME, CONSUMER_NAME) for query in [333, 444, 555]: result_token = ray.ObjectID( ray.get( q.enqueue_request.remote( PRODUCER_NAME, request_args=None, request_kwargs={"i": query}, request_context=context.TaskContext.Python))) assert ray.get(result_token) == query def test_ray_serve_mixin(serve_instance): q = CentralizedQueuesActor.remote() CONSUMER_NAME = "runner-cls" PRODUCER_NAME = "prod-cls" class MyAdder: def __init__(self, inc): self.increment = inc def __call__(self, flask_request, i=None): return i + self.increment @ray.remote class CustomActor(MyAdder, RayServeMixin): pass runner = CustomActor.remote(3) runner._ray_serve_setup.remote(CONSUMER_NAME, q, runner) runner._ray_serve_main_loop.remote() q.link.remote(PRODUCER_NAME, CONSUMER_NAME) for query in [333, 444, 555]: result_token = ray.ObjectID( ray.get( q.enqueue_request.remote( PRODUCER_NAME, request_args=None, request_kwargs={"i": query}, request_context=context.TaskContext.Python))) assert ray.get(result_token) == query + 3 def test_task_runner_check_context(serve_instance): q = CentralizedQueuesActor.remote() def echo(flask_request, i=None): # Accessing the flask_request without web context should throw. return flask_request.args["i"] CONSUMER_NAME = "runner" PRODUCER_NAME = "producer" runner = TaskRunnerActor.remote(echo) runner._ray_serve_setup.remote(CONSUMER_NAME, q, runner) runner._ray_serve_main_loop.remote() q.link.remote(PRODUCER_NAME, CONSUMER_NAME) result_token = ray.ObjectID( ray.get( q.enqueue_request.remote( PRODUCER_NAME, request_args=None, request_kwargs={"i": 42}, request_context=context.TaskContext.Python))) with pytest.raises(ray.exceptions.RayTaskError): ray.get(result_token) ```
{ "source": "jinrenfit/torndsession", "score": 3 }
#### File: torndsession/demos/redis_session.py ```python import tornado.web import tornado.httpserver import tornado.ioloop from torndsession.sessionhandler import SessionBaseHandler class Application(tornado.web.Application): def __init__(self): handlers = [ (r'/', MainHandler), ] settings = dict( debug=True, ) session_settings = dict( driver="redis", driver_settings=dict( host='localhost', port=6379, db=0, max_connections=1024, ) ) settings.update(session=session_settings) tornado.web.Application.__init__(self, handlers, **settings) class MainHandler(SessionBaseHandler): def get(self): self.write("Redis Session Example:<br/>") if 'sv' in self.session: sv = self.session["sv"] else: sv = 0 self.write('Current Session Value:%s' % sv) self.session['sv'] = sv + 1 def main(): http_server = tornado.httpserver.HTTPServer(Application()) http_server.listen(8888) tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": main() ```
{ "source": "JinRIIS/Custom-PX4", "score": 3 }
#### File: libevents/scripts/validate.py ```python import argparse import json import os import sys import re import common try: from jsonschema import validate except ImportError as e: print("Failed to import jsonschema: " + str(e)) print("") print("You may need to install it using:") print(" pip3 install --user jsonschema") print("") sys.exit(1) def dict_raise_on_duplicates(ordered_pairs): """Reject duplicate keys""" return_dict = {} for key, value in ordered_pairs: if key in return_dict: raise ValueError("duplicate key: {:}".format(key)) return_dict[key] = value return return_dict def main(): """ main method """ # Parse command line arguments parser = argparse.ArgumentParser(description="Validate event definition files.") parser.add_argument("files", default=[], metavar="EVENT.JSON", nargs='+', help="one or more event definition files") parser.add_argument('-v', '--verbose', action='store_true', help='Verbose Output') args = parser.parse_args() input_files = args.files verbose = args.verbose cur_dir = os.path.dirname(os.path.realpath(__file__)) schema_file = os.path.join(cur_dir, '../validation/schema.json') with open(schema_file, 'r', encoding='utf-8') as stream: schema = json.load(stream) # read configuration config = common.read_config() events = {} for input_file in input_files: if verbose: print("Validating {:}".format(input_file)) with open(input_file, 'r', encoding='utf-8') as json_file: events = json.load(json_file, object_pairs_hook=dict_raise_on_duplicates) try: validate(instance=events, schema=schema) extra_validation(events, config) except: print("Error: validation for {:} failed.\nschema: {:}".format(input_file, schema_file)) raise def validate_event_description(description: str, num_args: int): """ validate event description or message * Supported parsing: * - characters can be escaped with \\, e.g. '\\<', '\\{' * - tags: * - <profile name="[!]NAME">CONTENT</profile> * - <a [href="URL"]>CONTENT</a> * if href is not found, use CONTENT as url * - <param>PARAM_NAME</param> * - unknown tags are ignored (including content) * - no nested tags of the same type * - arguments: following python syntax, with 1-based indexing (instead of 0) * and custom types (units) * - general form: {ARG_IDX[:.NUM_DECIMAL_DIGITS][UNIT]} * UNIT: * - m: horizontal distance in meters * - m_v: vertical distance in meters * - m^2: area in m^2 * - m/s: speed in m/s * - C: temperature in degrees celcius """ # remove escaped characters to simplify parsing check_str = description backslash_idx = check_str.find('\\') while backslash_idx != -1: check_str = check_str[0:backslash_idx]+check_str[backslash_idx+2:] backslash_idx = check_str.find('\\') i = 0 while i < len(check_str): # enforce using tags for url's if check_str[i:i+7] == 'http://' or check_str[i:i+8] == 'https://': raise Exception("freestanding url found in:\n\n{:}\n\n" \ "Use a tag in one of these formats:\n" \ "- <a>LINK</a>\n" \ "- <a href=\"LINK\">DESCRIPTION</a>".format(description)) if check_str[i] == '<': # extract tag with 1 optional argument. Be strict with spacing to # simplify library implementations m = re.match(r"^<([a-z]+)(?: ([a-z]+)=\"([^\"]*)\")?>(.)", check_str[i:], re.DOTALL) if not m: raise Exception("Invalid tag format in:\n\n{:}\n\n" \ "General form: <TAG[ ARG=\"VAL\"]>CONTENT</TAG>\n" "Use \\< to escape a single '<'".format(description)) #print(m.groups()) tag_name = m.group(1) # "unknown" is for the tests known_tags = ["a", "param", "profile", "unknown"] if not tag_name in known_tags: raise Exception("Unknown tag '<{:}>' in:\n\n{:}\n\n" \ "Known tags: {:}".format(tag_name, description, known_tags)) if tag_name == "profile": known_profiles = ["dev", "normal"] if m.group(3) is None: raise Exception("Missing profile name in:\n\n{:}\n\n" \ "".format(description)) profile = m.group(3) if profile.startswith('!'): profile = profile[1:] if m.group(2) != "name" or not profile in known_profiles: raise Exception("Unknown profile '{:}={:}' in:\n\n{:}\n\n" \ "Known profiles: {:}".format( m.group(2), profile, description, known_profiles)) content_start_idx = m.start(4) end_tag_idx = check_str.find('</'+tag_name+'>', i+content_start_idx) if end_tag_idx == -1: raise Exception("Ending tag for '<{:}>' not found in:\n\n{:}\n\n" \ "".format(tag_name, description)) tag_content = check_str[i+content_start_idx:end_tag_idx] # check for nested tags if '<'+tag_name in tag_content: raise Exception("Unsupported nested tag found for '<{:}>' in:\n\n{:}\n\n" \ "".format(tag_name, description)) # continue with checking the tag content check_str = check_str[:i] + tag_content + check_str[end_tag_idx+len(tag_name)+3:] elif check_str[i] == '{': arg_end_idx = check_str.find('}', i) if arg_end_idx == -1: raise Exception("Invalid argument, no '}}' found in:\n\n{:}\n\n" \ "Use escaping for a literal output: '\\{{'".format(description)) arg = check_str[i+1:arg_end_idx] m = re.match(r"^(\d+)(?::(?:\.(\d+))?)?(m|m_v|m/s|m\^2|C)?$", arg) if not m: raise Exception("Invalid argument ('{{{:}}}') in:\n\n{:}\n\n" \ "General form: {{ARG_IDX[:.NUM_DECIMAL_DIGITS][UNIT]}}" \ .format(arg, description)) #print(m.groups()) arg_idx = int(m.group(1)) - 1 if arg_idx < 0 or arg_idx >= num_args: raise Exception("Invalid argument index ({:}) in:\n\n{:}\n\n" \ "Valid range: [1..{:}]".format(arg_idx+1, description, num_args)) i += len(arg) + 2 elif check_str[i] in ('}', '>'): raise Exception("Found stray '{:}' in:\n\n{:}\n\n" \ "You might want to escape it with '\\'".format(check_str[i], description)) else: i += 1 def validate_group(event, group_name, event_name, arguments): """ rules for certain groups """ if group_name in ('arming_check', 'health') \ and (not event_name in ('arming_check_summary', 'health_summary')): assert len(arguments) >= 2, \ "missing arguments for health/arming_check event {:}".format(event_name) assert arguments[0] == 'common::navigation_mode_category_t', \ "first health/arming_check event {:} argument must " \ "be {:}, but is {:}".format( event_name, 'common::navigation_mode_category_t', arguments[0]) assert arguments[1] == 'uint8_t', \ "second health/arming_check event {:} argument must " \ "be {:}, but is {:}".format( event_name, 'uint8_t', arguments[1]) assert event['arguments'][1]['name'] == 'health_component_index', \ "second health/arming_check event {:} argument name must " \ "be {:}, but is {:}".format( event_name, 'health_component_index', event['arguments'][1]['name']) def validate_event_arguments(config, event, events, namespace): """ ensure all enums exist :return: list of argument types (normalized) """ if not "arguments" in event: return [] arguments = [] arguments_size = 0 for arg in event["arguments"]: if arg["type"] in common.base_types: base_type = arg["type"] arguments.append(base_type) else: try: (base_type, normalized_type) = \ common.base_type_from_enum(events, namespace, arg["type"]) except: print("Exception trying to get enum type " \ "for event: {:}".format(event["name"])) raise arguments.append(normalized_type) arguments_size += common.base_types[base_type]['size'] if arguments_size > int(config['max_arguments_size']): raise Exception("Argument size exceeded for event {:} ({:} > {:})" \ .format(namespace+'::'+event["name"], arguments_size, config['max_arguments_size'])) return arguments def extra_validation(events, config): """ Additional validation not possible with the schema. Includes: - unique names (enum, events, namespaces) & ID's (components & events) - special rules for certain event groups - event description & message - event argument types (base type or enum) """ if not "components" in events: return all_namespaces = set() for comp_id in events["components"]: icomp_id = int(comp_id) assert 0 <= icomp_id <= 255, "component id out of range: {}".format(icomp_id) comp = events["components"][comp_id] namespace = comp["namespace"] if namespace in all_namespaces: raise Exception("Duplicate namespace: {:}".format(namespace)) all_namespaces.add(namespace) if "event_groups" in comp: all_event_id = set() all_event_names = set() for group_name in comp["event_groups"]: group = comp["event_groups"][group_name] if not "events" in group: continue for event_sub_id in group["events"]: sub_id = int(event_sub_id) assert 0 <= sub_id <= 16777215, "event id out of range: {}".format(sub_id) event = group["events"][event_sub_id] event_name = event["name"] if event_sub_id in all_event_id: raise Exception("Duplicate event id: {:} ({:})".format( event_sub_id, event['name'])) all_event_id.add(event_sub_id) if event_name in all_event_names: raise Exception("Duplicate event name: {:}".format(event_name)) all_event_names.add(event_name) arguments = validate_event_arguments(config, event, events, namespace) # rules for certain groups validate_group(event, group_name, event_name, arguments) validate_event_description(event["message"], len(arguments)) if "description" in event: validate_event_description(event["description"], len(arguments)) if __name__ == "__main__": main() ``` #### File: mavlink/doc/mavlink_gitbook.py ```python import lxml.etree as ET import requests from bs4 import BeautifulSoup as bs import re import os # for walk xsl_file_name = "mavlink_to_html_table_gitbook.xsl" xml_message_definitions_dir_name = "../message_definitions/v1.0/" output_dir = "./messages/" output_dir_html=output_dir+"_html/" if not os.path.exists(output_dir_html): os.makedirs(output_dir_html) # File for index index_file_name = "README.md" index_file_name = output_dir + index_file_name # Get XSLT with open(xsl_file_name, 'r') as content_file: xsl_file = content_file.read() xslt = ET.fromstring(xsl_file) #initialise text for index file. index_text="""<!-- THIS FILE IS AUTO-GENERATED (DO NOT UPDATE GITBOOK): https://github.com/mavlink/mavlink/blob/master/doc/mavlink_gitbook.py --> # Dialects {#dialects} MAVLink *dialects* are XML definition files that define *protocol-* and *vendor-specific* messages, enums and commands. Dialects may *include* other MAVLink XML files, which may in turn contain other XML files (up to 5 levels of XML file nesting are allowed - see `MAXIMUM_INCLUDE_FILE_NESTING` in [mavgen.py](https://github.com/ArduPilot/pymavlink/blob/master/generator/mavgen.py#L44)). A typical pattern is for a dialect to include [common.xml](../messages/common.md) (containing the *MAVLink standard definitions*), extending it with vendor or protocol specific messages. ## Standard Definitions The following XML definition files are considered standard/core (i.e. not dialects): * [minimal.xml](minimal.md) - the minimum set of entities (messages, enums, MAV_CMD) required to set up a MAVLink network. * [standard.xml](standard.md) - the standard set of entities that are implemented by almost all flight stacks (at least 2, in a compatible way). This `includes` [minimal.xml](minimal.md). * [common.xml](../messages/common.md) - the set of entitites that have been implemented in at least one core flight stack. This `includes` [standard.xml](minimal.md) Further, [all.xml](all.md) is a _special case_. It includes almost all other XML definition files, and can be used to verify that there are no ID clashes (and can potentially be used by GCS to communicate with any core dialect). > **Note** We are still working towards moving the truly standard entities from **common.xml** to **standard.xml** Currently you should include [common.xml](../messages/common.md) ## Core Dialects Core dialects are stored in [mavlink/message definitions](https://github.com/mavlink/mavlink/blob/master/message_definitions/). These are the dialects for the major MAVLink stakeholder flight stacks. > **Note** Vendor forks of MAVLink may contain dialect messages that are not yet merged, and hence will not appear in this documentation. Human-readable forms of all the the core dialects are linked below: """ index_text_trailer="""## External Dialects MAVLink provides the [/external/dialects](https://github.com/mavlink/mavlink/tree/master/external/dialects) folder for dialects from projects that are not maintained by core MAVLink stakeholders or part of the MAVLink standard. This mechanism is provided to help non-stakeholder dialect owners avoid clashes with other dialects (and the standard), and to ease integration of generic behaviours into the standard in future. These are not managed by the core team and do not appear in this documentation. Information about using the folder can be found in github: [/external/dialects](https://github.com/mavlink/mavlink/tree/master/external/dialects) > **Note** We *highly* recommend that you work with the standard and core stakeholder dialects rather than using this approach (there are significant benefits in terms of compatibility and adoptability when using the standard definitions). """ #Fix up the BeautifulSoup output so to fix build-link errors in the generated gitbook. ## BS puts each tag/content in its own line. Gitbook generates anchors using the spaces/newlines. ## This puts displayed text content immediately within tags so that anchors/links generate properly def fix_content_in_tags(input_html): #print("fix_content_in_tags was called") def remove_space_between_content_tags(matchobj): stripped_string=matchobj.group(1).strip() return '>%s<' % stripped_string input_html=re.sub(r'\>(\s+?\w+?.*?)\<', remove_space_between_content_tags, input_html,flags=re.DOTALL) return input_html def fix_external_dialect_link(input_html): #print("fix_external_dialect_link was called") def fixupexternaldialecturls(matchobj): return matchobj.group(1).strip() input_html=re.sub(r'<a href="../../external/.*?>(.*?)</a>', fixupexternaldialecturls, input_html,flags=re.DOTALL) return input_html def fix_include_file_extension(input_html): ## Fixes up file extension .xml.md.unlikely (easier than fixing up the XSLT to strip file extensions!) input_html=input_html.replace('.xml.md.unlikely','.md') return input_html def fix_replace_space_marker(input_html): ## Above we remove hidden space. I can't seem to regexp just that type of space, so use space markers in text input_html=input_html.replace('xxx_space_xxx',' ') return input_html def strip_text_before_string(original_text,strip_text): # Strip out all text before some string index=original_text.find(strip_text) stripped_string=original_text if index !=-1 : stripped_string = stripped_string[index:] return stripped_string def fix_add_implicit_links_items(input_html): # Makes screaming snake case into anchors. Special fix for MAV_CMD. #print("fix_add_implicit_link was called") def make_text_to_link(matchobj): #print("make_entry_to_link was called: %s" % matchobj.group(0)) item_string = matchobj.group(2) item_url=item_string if item_string == 'MAV_CMD': item_url='mav_commands' returnString = '%s<a href="#%s">%s</a>%s' % (matchobj.group(1),item_url,item_string,matchobj.group(3)) #print("returnstring: %s" % returnString) return returnString input_html=re.sub(r'([\`\(\s,]|^)([A-Z]{2,}(?:_[A-Z0-9]+)+)([\`\)\s\.,:]|$)', make_text_to_link, input_html,flags=re.DOTALL) return input_html def inject_top_level_docs(input_html,filename): #Inject top level heading and other details. print('FILENAME (prefix): %s' % filename) insert_text='<!-- THIS FILE IS AUTO-GENERATED: https://github.com/mavlink/mavlink/blob/master/doc/mavlink_gitbook.py -->' if filename == 'common': insert_text+=""" # MAVLINK Common Message Set The MAVLink *common* message set contains *standard* definitions that are managed by the MAVLink project. The definitions cover functionality that is considered useful to most ground control stations and autopilots. MAVLink-compatible systems are expected to use these definitions where possible (if an appropriate message exists) rather than rolling out variants in their own [dialects](../messages/README.md). The original definitions are defined in [common.xml](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/common.xml). > **Tip** The common set `includes` [minimal.xml](minimal.md), which contains the *minimal set* of definitions for any MAVLink system. These definitions are [reproduced at the end of this topic](#minimal). """ elif filename == 'minimal': insert_text+=""" # MAVLink Minimal Set The MAVLink *minimal* set contains the minimal set of definitions for a viable MAVLink system. The message set is defined in [minimal.xml](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/minimal.xml) and is managed by the MAVLink project. > **Tip** The minimal set is included (imported into) other xml definition files, including the [MAVLink Common Message Set (common.xml)](minimal.md). """ elif filename == 'ardupilotmega': insert_text+=""" # Dialect: ArduPilotMega These messages define the ArduPilot specific message set, which is custom to [http://ardupilot.org](http://ardupilot.org). This topic is a human-readable form of the XML definition file: [ardupilotmega.xml](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/ardupilotmega.xml). > **Warning** The ArduPilot MAVLink fork of [ardupilotmega.xml](https://github.com/ArduPilot/mavlink/blob/master/message_definitions/v1.0/ardupilotmega.xml) may contain messages that have not yet been merged into this documentation. """ elif filename == 'development': insert_text+=""" # Dialect: development This dialect contains messages that are proposed for inclusion in the [standard set](standard.md), in order to ease development of prototype implementations. They should be considered a 'work in progress' and not included in production builds. This topic is a human-readable form of the XML definition file: [development.xml](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/development.xml). """ elif filename == 'all': insert_text+=""" # Dialect: all This dialect is intended to `include` all other [dialects](../messages/README.md) in the mavlink/mavlink repository (including [external dialects](https://github.com/mavlink/mavlink/tree/master/external/dialects#mavlink-external-dialects)). Dialects that are in **all.xml** are guaranteed to not have clashes in messages, enums, enum ids, and MAV_CMDs. This ensure that: - Systems based on these dialects can co-exist on the same MAVLink network. - A Ground Station might (optionally) use libraries generated from **all.xml** to communicate using any of the dialects. > **Warning** New dialect files in the official repository must be added to **all.xml** and restrict themselves to using ids in their own allocated range. A few older dialects are not included because these operate in completely closed networks or because they are only used for tests. This topic is a human-readable form of the XML definition file: [all.xml](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/all.xml). """ else: insert_text+='\n# Dialect: %s' % filename.rsplit('.',1)[0] insert_text+='\n\n*This is a human-readable form of the XML definition file: [%s](https://github.com/mavlink/mavlink/blob/master/message_definitions/v1.0/%s).*' % (filename, filename) insert_text+=""" <span></span> > **Note** MAVLink 2 messages have an ID > 255 and are marked up using **(MAVLink 2)** in their description. <span id="mav2_extension_field"></span> > **Note** MAVLink 2 extension fields that have been added to MAVLink 1 messages are displayed in blue. <style> td { vertical-align:top; } </style> """ # Include HTML in generated content insert_text+='\n\n{%% include "_html/%s.html" %%}' % filename input_html=insert_text+'\n\n'+input_html if filename == 'common': input_html+=""" # Minimal.xml {#minimal} The minimal set of definitions required for any MAVLink system are included from [minimal.xml](minimal.md). These are listed below. {% include "_html/minimal.html" %}""" #print(input_html) return input_html dialect_files = set() all_files = set() for subdir, dirs, files in os.walk(xml_message_definitions_dir_name): #Generate html for all the XML files for file in files: print(file) if not file.endswith('.xml'): #only process xml files. continue xml_file_name = xml_message_definitions_dir_name+file with open(xml_file_name, 'r') as content_file: xml_file = content_file.read() dom = ET.fromstring(xml_file) transform = ET.XSLT(xslt) newdom = transform(dom) #Prettify the HTML using BeautifulSoup soup=bs(str(newdom), "lxml") prettyHTML=soup.prettify() #Strip out text before <html> tag in XSLT output prettyHTML=strip_text_before_string(prettyHTML,'<html>') prettyHTML = fix_content_in_tags(prettyHTML) #Replace invalid file extensions (workaround for xslt) prettyHTML = fix_include_file_extension(prettyHTML) #Replace space markers with intentional space prettyHTML = fix_replace_space_marker(prettyHTML) #Fix up links to external dialects to not be links prettyHTML = fix_external_dialect_link(prettyHTML) #Fix up plain text mav symbols to be internal links prettyHTML = fix_add_implicit_links_items(prettyHTML) #Write output html file output_file_name_html = file.rsplit('.',1)[0]+".html" output_file_name_html_withdir = output_dir_html+output_file_name_html print("Output filename (html): %s" % output_file_name_html) with open(output_file_name_html_withdir, 'w') as out: out.write(prettyHTML) # Create sortable list of output file names #Write output markdown file output_file_name_prefix = file.rsplit('.',1)[0] all_files.add(output_file_name_prefix) if not file=='common.xml' and not file=='standard.xml' and not file=='minimal.xml': dialect_files.add(output_file_name_prefix) # Generate the markdown files for file_prefix in all_files: print(file_prefix) markdown_text='' #Inject a heading and doc-type intro (markdown format) markdown_text = inject_top_level_docs(markdown_text,file_prefix) output_file_name_md_withdir = output_dir+file_prefix+'.md' print("Output filename (md): %s" % output_file_name_md_withdir) with open(output_file_name_md_withdir, 'w') as out: out.write(markdown_text) for the_file in sorted(dialect_files): index_text+='\n* [%s.xml](%s.md)' % (the_file,the_file) index_text+='\n\n' index_text+=index_text_trailer #Write the index with open(index_file_name, 'w') as content_file: content_file.write(index_text) print("COMPLETED") ``` #### File: pymavlink/examples/wptogpx.py ```python from __future__ import print_function from builtins import range import time from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("wpfiles", metavar="WP_FILE", nargs="+") args = parser.parse_args() from pymavlink import mavwp def wp_to_gpx(infilename, outfilename): '''convert a wp file to a GPX file''' wp = mavwp.MAVWPLoader() wp.load(infilename) outf = open(outfilename, mode='w') def process_wp(w, i): t = time.localtime(i) outf.write('''<wpt lat="%s" lon="%s"> <ele>%s</ele> <cmt>WP %u</cmt> </wpt> ''' % (w.x, w.y, w.z, i)) def add_header(): outf.write('''<?xml version="1.0" encoding="UTF-8"?> <gpx version="1.0" creator="pymavlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.topografix.com/GPX/1/0" xsi:schemaLocation="http://www.topografix.com/GPX/1/0 http://www.topografix.com/GPX/1/0/gpx.xsd"> ''') def add_footer(): outf.write(''' </gpx> ''') add_header() count = 0 for i in range(wp.count()): w = wp.wp(i) if w.frame == 3: w.z += wp.wp(0).z if w.command == 16: process_wp(w, i) count += 1 add_footer() print("Created %s with %u points" % (outfilename, count)) for infilename in args.wpfiles: outfilename = infilename + '.gpx' wp_to_gpx(infilename, outfilename) ``` #### File: javascript/test/make_tests.py ```python import subprocess import sys # now tested and executes with this simple matrix of two mavtypes and two mav versions cmddir = '../../../generator/C/test/posix/' mavtypes = ['ardupilotmega','common'] versions = ['1.0','2.0'] cmds = [] #..so the C binding cmds executed/wrapped are: 'testmav1.0_ardupilotmega', 'testmav2.0_ardupilotmega', 'testmav1.0_common', 'testmav2.0_common' #--------------------------------------------------------------------------------------- template1 = ''' it('id${ID} encode and decode ${NAME} from C using ${MAVTYPE}/${VERSION} ${SIGNED}', function() { this.mav.seq = ${SEQ}; this.mav.srcSystem=${SRCSYS}; this.mav.srcComponent=${SRCCOMP}; ''' signing_extra_template = ''' //-------- START codeblock only for signed packets---------------- this.mav.seq = ${SEQ}-1; // relevant to how we pass-in the Long object/s to jspack, we'll assume the calling user is smart enough to know that. var wrap_long = function (someLong) { return [someLong.getLowBitsUnsigned(), someLong.getHighBitsUnsigned()]; } this.mav.signing.secret_key = new Buffer.from([ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 ]) ; // matches secret key in testmav.c this.mav.signing.link_id = 0 ; // 1 byte // matches link_id in testmav.c //this.mav.signing.timestamp = new Buffer.from([ 0,0,0,0,0,${TS}]); // 6 bytes // matches timestamp in testmav.c this.mav.signing.timestamp = ${TS}; // at most 48 bits , fits in a native js number - matches timestamp in testmav.c this.mav.signing.sign_outgoing = true; // todo false this var epoch_offset = 1420070400; var x= Long.fromString("${TS}", true); var long_timestamp = wrap_long(x); var target_system = 255; // the python impl in mavproxy uses 255 here , so we do, it could be this.sysid var target_component = 0; var secret_key = this.mav.signing.secret_key ; MAVLink20Processor.prototype.send = function(mavmsg) { buf = mavmsg.pack(this); // no actual send here this.seq = (this.seq + 1) % 256; this.total_packets_sent +=1; this.total_bytes_sent += buf.length; } var link_id =0; var srcSystem=this.mav.srcSystem; var srcComponent=this.mav.srcComponent; stream_key = new Array(link_id,srcSystem,srcComponent).toString(); this.mav.signing.stream_timestamps[stream_key] = ${TS}; this.mav.signing.timestamp.should.eql(${TS}); //ts before setup var setup_signing = new mavlink20.messages.setup_signing(target_system, target_component, secret_key, long_timestamp); this.mav.send(setup_signing,this.sysid); setup_signing.secret_key.should.eql(new Buffer.from([ 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42 ]) ); setup_signing.initial_timestamp.should.eql([${TS},0]); //this.mav.signing.timestamp.should.eql(new Buffer.from([0,0,0,0,0,${TS}])); this.mav.signing.timestamp.should.eql(${TS}+1); // ts after setup this.mav.signing.link_id.should.eql(0); this.mav.signing.sign_outgoing.should.eql(true); //-------- END codeblock only for signed packets---------------- ''' template2 = ''' var test_${NAME} = this.tests.test_${NAME}()[0]; // get the assembled test object with test data already set, override just the min we need to do this test //--- you can uncomment any of these to change the test, but you'll need to change the reference buffer to the right result too //${FIELDS} //--- // Create a buffer that matches what the Python version of MAVLink creates var reference = new Buffer.from([${BUFFER}]); this.mav.signing.timestamp = ${TS};// force ts to be correct, right before the pack() that matters var p = test_${NAME}.pack(this.mav); // console.log(p); // p.forEach( x => { process.stdout.write( x.toString() ); process.stdout.write(" ") } ); process.stdout.write("\\n"); // p.forEach( x => { process.stdout.write( x.toString(16) ); process.stdout.write(" ") } ); process.stdout.write("\\n"); test_${NAME}._header.seq.should.eql(${SEQ}); test_${NAME}._header.srcSystem.should.eql(${SRCSYS}); test_${NAME}._header.srcComponent.should.eql(${SRCCOMP}); test_${NAME}._header.msgId.should.eql(test_${NAME}._id); ${SIGNED}test_${NAME}._header.incompat_flags.should.eql(1); ${UNSIGNED}test_${NAME}._header.incompat_flags.should.eql(0); test_${NAME}._header.compat_flags.should.eql(0); new Buffer.from(p).should.eql(reference); }); ''' templatestart = ''' // // (auto-generated by make_tests.py ), do not edit. // generator by <EMAIL> // // Copyright David 'Buzz' Bussenschutt July 2020 // Released under GNU GPL version 3 or later // // you can regenerate this file and its dependencies and run its tests, by executing the following: "cd pymavlink/generator/javascript ; npm test" // or see make_tests.py which created this. // should = require('should'); var Long = require('long'); ''' templateheader = ''' //-------------------------------------------------------------------------------------------------------------------------------------------------------- describe('end-to-end node byte-level tests of ${MAVTYPE}/${VERSION} against C impl', function() { beforeEach(function() { var {mavlink${VERS}, MAVLink${VERS}Processor} = require('../implementations/mavlink_${MAVTYPE}_v${VERSION}/mavlink.js');// hardcoded here by make_tests.py generator this.mav = new MAVLink${VERS}Processor(null, 42, 150); // hardcoded here by make_tests.py generator this.tests = require('../implementations/mavlink_${MAVTYPE}_v${VERSION}/mavlink.tests.js');//// hardcoded here by make_tests.py generator // be sure the test library is using the right version before we call into it this.tests.set_mav(this.mav); });''' templatefooter = ''' });''' #------------------------------------------------ def is_packet_and_field_in_long_list(pname,fname): global llines for l in llines: if ( pname+'.'+fname in l ) : return (True, l) return (False, '') testid = 1; # for each of the 1.0,2.0 and common,ardupilotmega combos write tests def do_make_output(mt,v,lines): global testid t = templateheader.replace('${MAVTYPE}',mt) t = t.replace('${VERSION}',v) t = t.replace('${VERS}',v.replace('.','')) print(t) last_line = '' for line in lines: if line.startswith('fd '): # mavlink2 start byte as human-readable hex, eg 'fd 08 7e 2a 0b e2 00 00 88 41 00 00 34 42 30 93 ' last_line = '2.0' if v == 1: # if param 'v' requested mav1 data and we see mav2 data, ignore it continue hexdata = line.strip().replace(' ',', 0x') hexdata = '0x'+hexdata # ckeck if signing bit is set on this packet: 0xfd, 0x09, 0x01 <-- that 1 signchar = hexdata[15] signint = int(signchar,16) signbit = signint % 2; # lowest bit to true/false if line.startswith('fe '): # mavlink1 start byte as human-readable hex, eg 'fe 08 7e 2a 0b e2 00 00 88 41 00 00 34 42 30 93 ' last_line = '1.0' if v == 2: # if param 'v' requested mav2 data and we see mav1 data, ignore it continue hexdata = line.strip().replace(' ',', 0x') hexdata = '0x'+hexdata signbit = False if line.startswith('sysid:'): # packet details human-readable eg 'sysid:42 compid:11 seq:126 RPM { rpm1: 17.000000 rpm2: 45.000000 }' # skip parsing data if it's not this parser if last_line != v: continue fields = line.split(' ') sysid = fields[0].split(':')[1] compid = fields[1].split(':')[1] seq = fields[2].split(':')[1] # lines without sign_ts, the { is earlier if fields[4] == '{': sign_ts = '0' packetname = fields[3] more = fields[4:] else: sign_ts = fields[3].split(':')[1] packetname = fields[4] more = fields[5:] packetname = packetname.lower() arraystarted = False for i,x in enumerate(more): if x == '[': arraystarted = True if x == ']': arraystarted = False more[i] = '], \n ' if not arraystarted and x == '': more[i] = ',\n ' fixed = ''.join(more) fixed = fixed.replace(',]',']') # drop unneeded comma from end of arrays fixed = fixed.replace('{',''); fixed = fixed.replace('}',''); fixed = fixed.replace(':','=') # move : to = import re fixed = re.sub(r'(\'.*?\')', '\\1,\n ', fixed) # now iterate over them as parsed lines safely newlines = [] for fieldline in fixed.split('\n'): if fieldline.strip() == '': continue # a little miniparser here to modify things after the = sign to insert our own test values, not the included ones, but leave # value wrapping and other surrounding casting functions as-is. ( field, value) = fieldline.split('='); if not value.startswith('['): value = value.replace(',','') field = field.replace(' ','') else: # array value = value.split('[')[1].split(']')[0]; # stuff inside the brackets, but not the brackets (retval,match) = is_packet_and_field_in_long_list(packetname,field); if retval == True: parts = match.split('='); after_equals = parts[1]; before_semicolon = after_equals.split(';')[0] # determine old test value in the 'before_semicolon' line segment: # a little miniparser here to modify things after the = sign to insert our own test values, not the included ones, but leave # value wrapping and other surrounding casting functions as-is. if not before_semicolon.replace(' ','').startswith('['): if '"' in before_semicolon: oldvalue = before_semicolon.split('"')[1]; # stuff inside the ", but not the " elif 'Array' in before_semicolon: oldvalue = before_semicolon.split('[')[1].split(']')[0]; # [1234] else: oldvalue = before_semicolon; # unwrapped numbers etc else: # array oldvalue = before_semicolon.split('[')[1].split(']')[0]; # stuff inside the brackets, but not the brackets line_minus_data = before_semicolon.replace(oldvalue,value); newlines.append(" test_"+packetname+"."+field+'='+line_minus_data+';') else: newlines.append(" test_"+packetname+"."+field+'='+value+';') fixed = '\n//'.join(newlines) t = template1 t = t.replace('${MAVTYPE}',mt) t = t.replace('${VERSION}',v) t = t.replace('${NAME}',packetname) t = t.replace('${ID}',str(testid)) testid = testid+1 t = t.replace('${SEQ}',seq) t = t.replace('${SRCSYS}',sysid) t = t.replace('${SRCCOMP}',compid) t = t.replace('${BUFFER}',hexdata) if signbit: t = t.replace('${SIGNED}','signed') else : t = t.replace('${SIGNED}','') print(t) if signbit: t = signing_extra_template t = t.replace('${SEQ}',seq) t = t.replace('${TS}',sign_ts) print(t) t = template2 t = t.replace('${NAME}',packetname) t = t.replace('${SEQ}',seq) t = t.replace('${SRCSYS}',sysid) t = t.replace('${SRCCOMP}',compid) t = t.replace('${BUFFER}',hexdata) t = t.replace('${FIELDS}',fixed) t = t.replace('${TS}',sign_ts) if signbit: t = t.replace('${SIGNED}','/*signed*/ ') t = t.replace('${UNSIGNED}','//unsigned ') else : t = t.replace('${SIGNED}','//signed ') t = t.replace('${UNSIGNED}','/*unsigned*/ ') print(t) print('//------------------------------------------------------') # append footer t = templatefooter.replace('${MAVTYPE}',mt) t = t.replace('${VERSION}',v) t = t.replace('${VERS}',v.replace('.','')) print(t) #--------------------------------------------------------------------------------------- # example line from file: # test_actuator_output_status.time_usec = Long.fromNumber(93372036854775807, true); // fieldtype: uint64_t isarray: False llines = [] def make_long_lookup_table(mt,v): global llines _cmd = 'egrep "(wrap_long|new.*Array)" ../implementations/mavlink_'+mt+'_v'+v+'/mavlink.tests.js'; # relevant lines only _result = subprocess.run(_cmd, stdout=subprocess.PIPE, shell=True) _data = _result.stdout.decode('utf-8') llines = _data.split("\n") #return lines #--------------------------------------------------------------------------------------- print(templatestart) for mt in mavtypes: for v in versions: cmd = cmddir+'testmav'+v+'_'+mt result = subprocess.run(cmd, stdout=subprocess.PIPE) data = result.stdout.decode('utf-8') lines = data.split("\n") llines = [] make_long_lookup_table(mt, v); do_make_output(mt,v,lines) print("//output done") sys.exit() ``` #### File: pymavlink/tests/test_mavlogdump.py ```python from __future__ import absolute_import, print_function import unittest import os import pkg_resources import sys class MAVLogDumpTest(unittest.TestCase): """ Class to test mavlogdump """ def __init__(self, *args, **kwargs): """Constructor, set up some data that is reused in many tests""" super(MAVLogDumpTest, self).__init__(*args, **kwargs) def test_dump_same(self): """Test dump of file is what we expect""" test_filename = "test.BIN" test_filepath = pkg_resources.resource_filename(__name__, test_filename) dump_filename = "tmp.dump" os.system("mavlogdump.py %s >%s" % (test_filepath, dump_filename)) with open(dump_filename) as f: got = f.read() possibles = ["test.BIN.py3.dumped", "test.BIN.dumped"] success = False for expected in possibles: expected_filepath = pkg_resources.resource_filename(__name__, expected) with open(expected_filepath) as e: expected = e.read() if expected == got: success = True assert True if __name__ == '__main__': unittest.main() ``` #### File: pymavlink/tools/magfit_rotation_gps.py ```python from __future__ import print_function from builtins import range from builtins import object from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--no-timestamps",dest="notimestamps", action='store_true', help="Log doesn't have timestamps") parser.add_argument("--declination", default=0.0, type=float, help="magnetic declination") parser.add_argument("--min-speed", default=4.0, type=float, help="minimum GPS speed") parser.add_argument("logs", metavar="LOG", nargs="+") args = parser.parse_args() from pymavlink import mavutil from pymavlink.rotmat import Vector3, Matrix3 from math import radians, degrees, sin, cos, atan2 class Rotation(object): def __init__(self, roll, pitch, yaw, r): self.roll = roll self.pitch = pitch self.yaw = yaw self.r = r def in_rotations_list(rotations, m): for r in rotations: m2 = m.transposed() * r.r (r, p, y) = m2.to_euler() if (abs(r) < radians(1) and abs(p) < radians(1) and abs(y) < radians(1)): return True return False def generate_rotations(): '''generate all 90 degree rotations''' rotations = [] for yaw in [0, 90, 180, 270]: for pitch in [0, 90, 180, 270]: for roll in [0, 90, 180, 270]: m = Matrix3() m.from_euler(radians(roll), radians(pitch), radians(yaw)) if not in_rotations_list(rotations, m): rotations.append(Rotation(roll, pitch, yaw, m)) return rotations def angle_diff(angle1, angle2): '''give the difference between two angles in degrees''' ret = angle1 - angle2 if ret > 180: ret -= 360; if ret < -180: ret += 360 return ret def heading_difference(mag, attitude, declination): r = attitude.roll p = attitude.pitch headX = mag.x*cos(p) + mag.y*sin(r)*sin(p) + mag.z*cos(r)*sin(p) headY = mag.y*cos(r) - mag.z*sin(r) heading = degrees(atan2(-headY,headX)) + declination heading2 = degrees(attitude.yaw) return abs(angle_diff(heading, heading2)) def add_errors(mag, attitude, total_error, rotations): for i in range(len(rotations)): r = rotations[i].r rmag = r * mag total_error[i] += heading_difference(rmag, attitude, args.declination) def magfit(logfile): '''find best magnetometer rotation fit to a log file''' print("Processing log %s" % filename) mlog = mavutil.mavlink_connection(filename, notimestamps=args.notimestamps) # generate 90 degree rotations rotations = generate_rotations() print("Generated %u rotations" % len(rotations)) count = 0 total_error = [0]*len(rotations) attitude = None gps = None # now gather all the data while True: m = mlog.recv_match() if m is None: break if m.get_type() == "ATTITUDE": attitude = m if m.get_type() == "GPS_RAW_INT": gps = m if m.get_type() == "RAW_IMU": mag = Vector3(m.xmag, m.ymag, m.zmag) if attitude is not None and gps is not None and gps.vel > args.min_speed*100 and gps.fix_type>=3: add_errors(mag, attitude, total_error, rotations) count += 1 best_i = 0 best_err = total_error[0] for i in range(len(rotations)): r = rotations[i] print("(%u,%u,%u) err=%.2f" % ( r.roll, r.pitch, r.yaw, total_error[i]/count)) if total_error[i] < best_err: best_i = i best_err = total_error[i] r = rotations[best_i] print("Best rotation (%u,%u,%u) err=%.2f" % ( r.roll, r.pitch, r.yaw, best_err/count)) for filename in args.logs: magfit(filename) ``` #### File: pymavlink/tools/mavgraph.py ```python from __future__ import print_function from builtins import input from builtins import range import datetime import matplotlib import os import re import sys import time from math import * try: from pymavlink.mavextra import * except: print("WARNING: Numpy missing, mathematical notation will not be supported.") if sys.version_info[0] >= 3: text_types = frozenset([str,]) else: text_types = frozenset([unicode, str]) # cope with rename of raw_input in python3 try: input = raw_input except NameError: pass colourmap = { 'ardupilot' : { 'MANUAL' : (1.0, 0, 0), 'AUTO' : ( 0, 1.0, 0), 'LOITER' : ( 0, 0, 1.0), 'FBWA' : (1.0, 0.5, 0), 'RTL' : ( 1, 0, 0.5), 'STABILIZE' : (0.5, 1.0, 0), 'LAND' : ( 0, 1.0, 0.5), 'STEERING' : (0.5, 0, 1.0), 'HOLD' : ( 0, 0.5, 1.0), 'ALT_HOLD' : (1.0, 0.5, 0.5), 'CIRCLE' : (0.5, 1.0, 0.5), 'POSITION' : (1.0, 0.0, 1.0), 'GUIDED' : (0.5, 0.5, 1.0), 'ACRO' : (1.0, 1.0, 0), 'CRUISE' : ( 0, 1.0, 1.0) }, 'px4' : { 'MANUAL' : (1.0, 0, 0), 'SEATBELT' : ( 0.5, 0.5, 0), 'EASY' : ( 0, 1.0, 0), 'AUTO' : ( 0, 0, 1.0), 'UNKNOWN' : ( 1.0, 1.0, 1.0) } } colourmap["apm"] = colourmap["ardupilot"] edge_colour = (0.1, 0.1, 0.1) lowest_x = None highest_x = None def plotit(x, y, fields, colors=[]): '''plot a set of graphs using date for x axis''' global lowest_x, highest_x pylab.ion() fig = pylab.figure(num=1, figsize=(12,6)) ax1 = fig.gca() ax2 = None xrange = 0.0 for i in range(0, len(fields)): if len(x[i]) == 0: continue if lowest_x is None or x[i][0] < lowest_x: lowest_x = x[i][0] if highest_x is None or x[i][-1] > highest_x: highest_x = x[i][-1] if highest_x is None or lowest_x is None: return xrange = highest_x - lowest_x xrange *= 24 * 60 * 60 formatter = matplotlib.dates.DateFormatter('%H:%M:%S') interval = 1 intervals = [ 1, 2, 5, 10, 15, 30, 60, 120, 240, 300, 600, 900, 1800, 3600, 7200, 5*3600, 10*3600, 24*3600 ] for interval in intervals: if xrange / interval < 15: break locator = matplotlib.dates.SecondLocator(interval=interval) if not args.xaxis: ax1.xaxis.set_major_locator(locator) ax1.xaxis.set_major_formatter(formatter) empty = True ax1_labels = [] ax2_labels = [] for i in range(0, len(fields)): if len(x[i]) == 0: print("Failed to find any values for field %s" % fields[i]) continue if i < len(colors): color = colors[i] else: color = 'red' (tz, tzdst) = time.tzname if axes[i] == 2: if ax2 is None: ax2 = ax1.twinx() ax = ax2 if not args.xaxis: ax2.xaxis.set_major_locator(locator) ax2.xaxis.set_major_formatter(formatter) label = fields[i] if label.endswith(":2"): label = label[:-2] ax2_labels.append(label) else: ax1_labels.append(fields[i]) ax = ax1 if args.xaxis: if args.marker is not None: marker = args.marker else: marker = '+' if args.linestyle is not None: linestyle = args.linestyle else: linestyle = 'None' ax.plot(x[i], y[i], color=color, label=fields[i], linestyle=linestyle, marker=marker) else: if args.marker is not None: marker = args.marker else: marker = 'None' if args.linestyle is not None: linestyle = args.linestyle else: linestyle = '-' if len(y[i]) > 0 and type(y[i][0]) in text_types: # assume this is a piece of text to be rendered at a point in time last_text_time = -1 last_text = None for n in range(0, len(x[i])): if last_text is None: last_text = "[" + y[i][n] + "]" last_text_time = x[i][n] elif x[i][n] == last_text_time: last_text += "[" + y[i][n] + "]" else: ax.text(x[i][n], 10, last_text, rotation=90, alpha=0.3, verticalalignment='baseline') last_text = None last_label_time = x[i][n] if last_text is not None: ax.text(x[i][n], 10, last_text, rotation=90, alpha=0.3, verticalalignment='baseline') else: ax.plot_date(x[i], y[i], color=color, label=fields[i], linestyle=linestyle, marker=marker, tz=None) empty = False if args.flightmode is not None: for i in range(len(modes)-1): c = colourmap[args.flightmode].get(modes[i][1], edge_colour) ax1.axvspan(modes[i][0], modes[i+1][0], fc=c, ec=edge_colour, alpha=0.1) c = colourmap[args.flightmode].get(modes[-1][1], edge_colour) ax1.axvspan(modes[-1][0], ax1.get_xlim()[1], fc=c, ec=edge_colour, alpha=0.1) if ax1_labels != []: ax1.legend(ax1_labels,loc=args.legend) if ax2_labels != []: ax2.legend(ax2_labels,loc=args.legend2) if empty: print("No data to graph") return return fig from argparse import ArgumentParser parser = ArgumentParser(description=__doc__) parser.add_argument("--no-timestamps", dest="notimestamps", action='store_true', help="Log doesn't have timestamps") parser.add_argument("--planner", action='store_true', help="use planner file format") parser.add_argument("--condition", default=None, help="select packets by a condition") parser.add_argument("--labels", default=None, help="comma separated field labels") parser.add_argument("--legend", default='upper left', help="default legend position") parser.add_argument("--legend2", default='upper right', help="default legend2 position") parser.add_argument("--marker", default=None, help="point marker") parser.add_argument("--linestyle", default=None, help="line style") parser.add_argument("--xaxis", default=None, help="X axis expression") parser.add_argument("--multi", action='store_true', help="multiple files with same colours") parser.add_argument("--zero-time-base", action='store_true', help="use Z time base for DF logs") parser.add_argument("--flightmode", default=None, help="Choose the plot background according to the active flight mode of the specified type, e.g. --flightmode=apm for ArduPilot or --flightmode=px4 for PX4 stack logs. Cannot be specified with --xaxis.") parser.add_argument("--dialect", default="ardupilotmega", help="MAVLink dialect") parser.add_argument("--output", default=None, help="provide an output format") parser.add_argument("--timeshift", type=float, default=0, help="shift time on first graph in seconds") parser.add_argument("logs_fields", metavar="<LOG or FIELD>", nargs="+") args = parser.parse_args() from pymavlink import mavutil if args.flightmode is not None and args.xaxis: print("Cannot request flightmode backgrounds with an x-axis expression") sys.exit(1) if args.flightmode is not None and args.flightmode not in colourmap: print("Unknown flight controller '%s' in specification of --flightmode (choose from %s)" % (args.flightmode, ",".join(colourmap.keys()))) sys.exit(1) if args.output is not None: matplotlib.use('Agg') import pylab filenames = [] fields = [] for f in args.logs_fields: if os.path.exists(f): filenames.append(f) else: fields.append(f) msg_types = set() multiplier = [] field_types = [] colors = [ 'red', 'green', 'blue', 'orange', 'olive', 'black', 'grey', 'yellow', 'brown', 'darkcyan', 'cornflowerblue', 'darkmagenta', 'deeppink', 'darkred'] # work out msg types we are interested in x = [] y = [] modes = [] axes = [] first_only = [] re_caps = re.compile('[A-Z_][A-Z0-9_]+') for f in fields: caps = set(re.findall(re_caps, f)) msg_types = msg_types.union(caps) field_types.append(caps) y.append([]) x.append([]) axes.append(1) first_only.append(False) def add_data(t, msg, vars, flightmode): '''add some data''' mtype = msg.get_type() if args.flightmode is not None and (len(modes) == 0 or modes[-1][1] != flightmode): modes.append((t, flightmode)) if mtype not in msg_types: return for i in range(0, len(fields)): if mtype not in field_types[i]: continue f = fields[i] if f.endswith(":2"): axes[i] = 2 f = f[:-2] if f.endswith(":1"): first_only[i] = True f = f[:-2] v = mavutil.evaluate_expression(f, vars) if v is None: continue if args.xaxis is None: xv = t else: xv = mavutil.evaluate_expression(args.xaxis, vars) if xv is None: continue y[i].append(v) x[i].append(xv) def process_file(filename, timeshift): '''process one file''' print("Processing %s" % filename) mlog = mavutil.mavlink_connection(filename, notimestamps=args.notimestamps, zero_time_base=args.zero_time_base, dialect=args.dialect) vars = {} all_messages = {} while True: msg = mlog.recv_match(args.condition) if msg is None: break try: tdays = matplotlib.dates.date2num(datetime.datetime.fromtimestamp(msg._timestamp+timeshift)) except ValueError: # this can happen if the log is corrupt # ValueError: year is out of range break all_messages[msg.get_type()] = msg add_data(tdays, msg, all_messages, mlog.flightmode) if len(filenames) == 0: print("No files to process") sys.exit(1) if args.labels is not None: labels = args.labels.split(',') if len(labels) != len(fields)*len(filenames): print("Number of labels (%u) must match number of fields (%u)" % ( len(labels), len(fields)*len(filenames))) sys.exit(1) else: labels = None timeshift = args.timeshift for fi in range(0, len(filenames)): f = filenames[fi] process_file(f, timeshift) timeshift = 0 for i in range(0, len(x)): if first_only[i] and fi != 0: x[i] = [] y[i] = [] if labels: lab = labels[fi*len(fields):(fi+1)*len(fields)] else: lab = fields[:] if args.multi: col = colors[:] else: col = colors[fi*len(fields):] fig = plotit(x, y, lab, colors=col) for i in range(0, len(x)): x[i] = [] y[i] = [] if args.output is None: pylab.show() pylab.draw() input('press enter to exit....') else: fname, fext = os.path.splitext(args.output) if fext == '.html': import mpld3 html = mpld3.fig_to_html(fig) f_out = open(args.output, 'w') f_out.write(html) f_out.close() else: pylab.legend(loc=2,prop={'size':8}) pylab.savefig(args.output, bbox_inches='tight', dpi=200) ``` #### File: pymavlink/tools/serial_control_to_shell.py ```python import optparse import os import pymavlink import re import select import subprocess import time import fcntl from pymavlink import mavutil class SerialControlToShell(object): '''reads SERIAL_CONTROL packets and passes them to a shell, returning textual results''' def __init__(self, connection_string, system_id=1, component_id=10): self.connection_string = connection_string self.serial_control_dev = mavutil.mavlink.SERIAL_CONTROL_DEV_SHELL self.mav = mavutil.mavlink_connection( self.connection_string, source_system=system_id, source_component=component_id, ) self.mixed_output_from_shell = "" self.last_heartbeat_sent = 0 def send_heartbeats(self): now = time.time() if now - self.last_heartbeat_sent > 0.5: self.last_heartbeat_sent = now self.mav.mav.heartbeat_send(mavutil.mavlink.MAV_TYPE_GCS, mavutil.mavlink.MAV_AUTOPILOT_INVALID, 0, 0, 0) def debug(self, msg): print("DEBUG: %s" % msg) def open_shell(self): self.shell = subprocess.Popen(["/bin/bash"], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE, cwd="/tmp") fcntl.fcntl(self.shell.stdout.fileno(), fcntl.F_SETFL, os.O_NONBLOCK) fcntl.fcntl(self.shell.stderr.fileno(), fcntl.F_SETFL, os.O_NONBLOCK) def run(self): self.open_shell() os.environ["PYTHONUNBUFFERED"]="1" while True: m = self.mav.recv_match(type="SERIAL_CONTROL", timeout=1000) self.send_heartbeats() shell_failure = self.shell.poll() if shell_failure is not None: self.debug("Shell is dead, restarting (%s)" % shell_failure) self.open_shell() if select.select([self.shell.stderr, self.shell.stdout],[],[],0)[0] != []: try: self.mixed_output_from_shell += self.shell.stderr.read() except IOError as e: if e.errno != 11: raise try: self.mixed_output_from_shell += self.shell.stdout.read() except IOError as e: if e.errno != 11: raise while len(self.mixed_output_from_shell): data = self.mixed_output_from_shell[:70] self.mixed_output_from_shell = self.mixed_output_from_shell[70:] data_len = len(data) data = [ord(x) for x in list(data)] data = data + ([0] * (70-len(data))) self.mav.mav.serial_control_send( self.serial_control_dev, mavutil.mavlink.SERIAL_CONTROL_FLAG_REPLY, 0, # timeout 0, # baud data_len, data ) if m is None: time.sleep(0.1) continue if m.device != self.serial_control_dev: continue if m.count == 0: continue b = m.data[:m.count] text = "".join([chr(a) for a in b]) text = re.sub("\r\n", "\n", text) # not quite right, doesn't take into account \r at end of data self.shell.stdin.write(text) if __name__ == '__main__': parser = optparse.OptionParser("bisect.py ") parser.add_option("", "--system-id", type=int, help="This script's system ID", default=1, ) parser.add_option("", "--component-id", type=int, help="This script's component ID", default=10, ) (opts, args) = parser.parse_args() s = SerialControlToShell( args[0], system_id=opts.system_id, component_id=opts.component_id, ) s.run() ```
{ "source": "jinrith27/Realestate", "score": 2 }
#### File: realestate/api/models.py ```python import binascii from django.contrib.auth.models import User import os from django.db import models from django.utils.translation import ugettext_lazy as _ from django.db.models.signals import post_save from django.dispatch import receiver from rest_framework.authtoken.models import Token @receiver(post_save, sender=User) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) class ApiKeys(models.Model): description = models.CharField(max_length=100, blank=True, default='', verbose_name=_('Description')) key = models.CharField(max_length=40, primary_key=True) created = models.DateTimeField(auto_now_add=True) class Meta: verbose_name = _('API Key') verbose_name_plural = _('API Keys') def save(self, *args, **kwargs): if not self.key: self.key = self.generate_key() return super(ApiKeys, self).save(*args, **kwargs) def generate_key(self): return binascii.hexlify(os.urandom(20)) def __unicode__(self): return self.key ``` #### File: Realestate/realestate/context_processors.py ```python from django.contrib.sites.models import Site from django.conf import settings def get_site_url(request, slash=False): domain = Site.objects.get_current().domain protocol = 'https' if request.is_secure() else 'http' root = "%s://%s" % (protocol, domain) if slash: root += '/' return root def absolute(request): urls = { 'ABSOLUTE_ROOT': request.build_absolute_uri('/')[:-1].strip("/"), 'ABSOLUTE_ROOT_URL': request.build_absolute_uri('/').strip("/"), } if 'django.contrib.sites' in settings.INSTALLED_APPS: urls['SITE_ROOT'] = get_site_url(request) urls['SITE_ROOT_URL'] = get_site_url(request, True) return urls def site_name(request): return {'site_name': Site.objects.get_current().name} ``` #### File: realestate/listing/models.py ```python from decimal import Decimal import os import re from django.contrib.auth.models import User from django.core.urlresolvers import reverse from django.db import models from django.template.defaultfilters import slugify from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from djmoney.models.fields import MoneyField from moneyed import USD, Money from realestate.home.models import Contact from sorl.thumbnail import ImageField TYPES = ( ('house', _('Houses')), ('villa', _('Villas')), ('penthouse', _('Penthouses')), ('apartment', _('Apartments')), ('residencial-land', _('Residential Land')), ('corporate-office', _('Corporate Offices')), ('commercial-office', _('Commercial Offices')), ('commercial-space', _('Commercial Space')), ('industrial-building', _('Industrial Buildings')), ('commercial-warehouses', _('Commercial Warehouses')), ('commercial-land', _('Commercial Land')), ) LOCATION_STREET = 'street' LOCATION_SECTOR = 'sector' LOCATION_CITY = 'city' LOCATION_STATE = 'state' LOCATION_TYPES = ( (LOCATION_STREET, _('Street')), (LOCATION_SECTOR, _('Sector')), (LOCATION_CITY, _('City')), (LOCATION_STATE, _('State/Province')), ) OFFERS = ( ('buy', _('For Sale')), ('rent', _('For Rent')), ('buy-rent', _('For Sale/For Rent')) ) VALIDATIONS = [ ('realestate.listing.utils.validation_simple', _('One or more characters')), ('realestate.listing.utils.validation_integer', _('Integer')), ('realestate.listing.utils.validation_yesno', _('Yes/No')), ('realestate.listing.utils.validation_decimal', _('Decimal')), ] class LocationManager(models.Manager): def states(self, **kwargs): return self.filter(location_type=LOCATION_STATE, **kwargs) def cities(self, **kwargs): return self.filter(location_type=LOCATION_CITY, **kwargs) def sectors(self, **kwargs): return self.filter(location_type=LOCATION_SECTOR, **kwargs) def streets(self, **kwargs): return self.filter(location_type=LOCATION_STREET, **kwargs) class Location(models.Model): parent = models.ForeignKey('self', verbose_name=_('Location'), null=True, blank=True) name = models.CharField(_('Name'), max_length=60) location_type = models.CharField(_('Location Type'), choices=LOCATION_TYPES, default=LOCATION_SECTOR, max_length=20) objects = LocationManager() def __unicode__(self): location_tree = self.get_parent_name(self, []) return ', '.join(location_tree) def __str__(self): return self.__unicode__() def get_parent_name(self, location, names): names.append(location.name) if location.parent is None: return names return self.get_parent_name(location.parent, names) class AgentManager(models.Manager): def active(self, **kwargs): return self.filter(active=True, **kwargs) def with_listings(self, **kwargs): return self.active(listing__isnull=False, **kwargs) class Agent(models.Model): first_name = models.CharField(max_length=30, verbose_name=_('First name')) last_name = models.CharField(max_length=30, verbose_name=_('Last name')) phone = models.CharField(max_length=15, verbose_name=_('Phone'), null=True, blank=True) mobile = models.CharField(max_length=15, verbose_name=_('Cellphone'), null=True, blank=True) location = models.ForeignKey(Location, verbose_name=_('Location'), null=True, blank=True) address = models.CharField(max_length=200, verbose_name=_('Address'), null=True, blank=True) image = ImageField(upload_to='agents/', default='', verbose_name=_('Picture'), null=True, blank=True) user = models.OneToOneField(User, verbose_name=_('User'), null=True, blank=True) active = models.BooleanField(default=False, verbose_name=_('Active')) objects = AgentManager() @property def name(self): return '%s %s' % (self.first_name, self.last_name) @property def email(self): return self.user.email if self.user is not None else None def __unicode__(self): return self.name class Meta: verbose_name = _('Agent') verbose_name_plural = _('Agents') class ListingManager(models.Manager): def active(self, **kwargs): return self.filter(active=True, **kwargs) def featured(self, **kwargs): return self.active().filter(featured=True) def rent(self, **kwargs): return self.active().filter(offer__in=('buy-rent', 'rent')) def sale(self, **kwargs): return self.active().filter(offer__in=('buy-rent', 'buy')) class Listing(models.Model): title = models.CharField(max_length=100, verbose_name=_('Title')) slug = models.SlugField(max_length=100, unique=True, blank=False, verbose_name=_('Slug')) description = models.TextField(verbose_name=_('Description'), null=True, blank=True) price = MoneyField(default=Money(0, USD), max_digits=12, decimal_places=2, verbose_name=_('Price')) location = models.ForeignKey(Location, null=True, blank=True) type = models.CharField(_('Listing Type'), max_length=30, choices=TYPES) offer = models.CharField(max_length=10, choices=OFFERS, verbose_name=_('Offer')) active = models.BooleanField(_('Active'), default=False) featured = models.BooleanField(default=False, verbose_name=_('Featured')) baths = models.PositiveIntegerField(_('Bathrooms'), default=0, null=True, blank=True) beds = models.PositiveIntegerField(_('Bedrooms'), default=0, null=True, blank=True) size = models.PositiveIntegerField(_('Size(m2)'), default=0, null=True, blank=True) coords = models.CharField(max_length=255, default='19.000000,-70.400000', verbose_name=_('Coords'), null=True, blank=True) agent = models.ForeignKey(Agent, null=True, blank=True, verbose_name=_('Agent')) contact = models.ForeignKey(Contact, null=True, blank=True) notes = models.TextField(max_length=500, verbose_name=_('Private Notes'), null=True, blank=True) created_at = models.DateTimeField(auto_now_add=True, verbose_name=_('Created')) last_modified = models.DateTimeField(auto_now=True, verbose_name=_('Last Modified')) objects = ListingManager() @property def main_image(self): im = self.images.all() if im.count(): return im[0] return None @property def image_list(self): return [{'title': image.name, 'url': image.absolute_url, 'order': image.order} for image in self.images.all()] @property def address(self): return self.get_address() def get_address(self): if self.location is None: return _('No location provided') return self.location def __unicode__(self): return self.title class Meta: verbose_name = _('Listing') verbose_name_plural = _('Listings') ordering = ['-pk', ] def save(self, **kwargs): self._generate_valid_slug() super(Listing, self).save(**kwargs) def _generate_valid_slug(self): if not self.is_valid_slug(): slug = slugify(self.title) while Listing.objects.filter(slug=slug).exclude(id=self.id).exists(): slug_parts = slug.split('-') if slug_parts[-1].isdigit(): slug_parts[-1] = '%s' % (int(slug_parts[-1]) + 1) else: slug_parts.append('2') slug = '-'.join(slug_parts) self.slug = slug def is_valid_slug(self): if self.slug is None or len(self.slug) < 10: return False match = re.match('[^\w\s-]', self.slug) if not match: return False return self.slug == slugify(self.slug) @property def absolute_url(self): return self.get_absolute_url() def get_absolute_url(self): return reverse('property_details', args=[self.slug]) def get_features(self): attributes = [] for attribute in self.attributelisting_set.all(): attribute_name = _(attribute.attribute.name) if attribute.attribute.validation == 'realestate.listing.utils.validation_simple': attributes.append('{0}: {1}'.format(attribute_name, attribute.value)) elif attribute.attribute.validation == 'realestate.listing.utils.validation_yesno': attributes.append(attribute_name) else: if attribute.attribute.validation == 'realestate.listing.utils.validation_integer': attributes.append('{0} {1}'.format(attribute.value, attribute_name)) else: attributes.append('{0:.2f} {1}'.format(Decimal(attribute.value), attribute_name)) return attributes @property def nearby(self): return Listing.objects.active(location=self.location).exclude(id=self.id).order_by('?') @property def has_baths_or_beds(self): return self.should_have_beds or self.should_have_baths @property def suggested(self): qs = Listing.objects.active(type=self.type) price = self.price lh = price * .90 rh = price * 1.10 if self.has_baths_or_beds: if self.should_have_baths: qs = qs.filter(baths=self.baths) if self.should_have_beds: qs = qs.filter(beds=self.beds) if qs.count() == 0: qs = Listing.objects.active(type=self.type, price__range=(lh, rh)) else: qs = qs.filter(price__range=(lh, rh)) return qs.exclude(id=self.id).order_by('?') @property def should_have_beds(self): return self.type in ('house', 'penthouse', 'apartment', 'villa',) @property def should_have_baths(self): return 'land' not in self.type @property def on_sale(self): return Deal.objects.on_sale(listing__in=(self,)).exists() @property def code(self): if self.agent is not None: agent = self.agent prefix = '{0}{1}'.format(agent.first_name[0], agent.last_name[0]) return '{0}{1:04}'.format(prefix, self.id).upper() rent_or_sale = 'v' if self.offer in ('buy-rent', 'buy') else 'r' return '{0}{1:04x}'.format(rent_or_sale, self.id).upper() class Attribute(models.Model): name = models.CharField(_('Attribute'), max_length=100) validation = models.CharField(_('Value type'), choices=VALIDATIONS, max_length=100) class Meta: ordering = ('name',) verbose_name = _('Attribute') verbose_name_plural = _('Attributes') def __unicode__(self): return self.__str__() def __str__(self): return self.name class AttributeListing(models.Model): listing = models.ForeignKey(Listing) attribute = models.ForeignKey(Attribute) value = models.CharField(_('Value'), max_length=255) order = models.SmallIntegerField(_('Order'), default=99) class Meta: verbose_name = _('Listing attribute') verbose_name_plural = _('Listing attributes') ordering = ['order', ] def __unicode__(self): return '%s: %s' % (self.attribute.name, self.value) class ListingImage(models.Model): listing = models.ForeignKey(Listing, related_name='images', verbose_name=_('Listing')) name = models.CharField(_('Name'), max_length=60) image = ImageField(_('Image'), upload_to='listing/') added = models.DateTimeField(_('Added'), auto_now_add=True) order = models.PositiveSmallIntegerField(_('Order'), default=99, null=True) ordering = ['order'] @property def absolute_url(self): try: return self.image.url except ValueError: return '' def get_filename(self): return os.path.basename(self.image.path) def __unicode__(self): return self.name class Meta: verbose_name = _('Picture') verbose_name_plural = _('Pictures') class DealManager(models.Manager): def active(self, **kwargs): return self.filter(active=True, **kwargs) def on_sale(self, **kwargs): now = timezone.now() return self.active(start_date__lte=now, end_date__gte=now, **kwargs) class Deal(models.Model): listing = models.ForeignKey(Listing, verbose_name=_('Listing')) price = MoneyField(_('Sale Price'), default=Money(0, USD), max_digits=12, decimal_places=2) active = models.BooleanField(_('Active'), default=False) start_date = models.DateTimeField(verbose_name=_('Activation date')) end_date = models.DateTimeField(verbose_name=_('Deactivation date')) objects = DealManager() def __unicode__(self): if self.listing.location is not None: return '%s - %s' % (self.listing.title, self.listing.location.name) return self.listing.title class Meta: verbose_name = _('Deal') verbose_name_plural = _('Deals') ``` #### File: realestate/listing/sitemap.py ```python from django.contrib.sitemaps import Sitemap from realestate.listing.models import Listing class ListingSitemap(Sitemap): changefreq = 'monthly' priority = 0.5 def items(self): return Listing.objects.active() def lastmod(self, obj): return obj.last_modified ``` #### File: realestate/listing/utils.py ```python import string from decimal import Decimal from django.utils import six from django.db.models import AutoField def validation_simple(value, obj=None): """ Validates that at least one character has been entered. Not change is made to the value. """ # TODO: Translate if value is None or len(value) == 0: return False, value, u'El valor digitado debe tener uno o más caracteres' return True, value, '' def validation_integer(value, obj=None): """ Validates that value is an integer number. No change is made to the value """ try: int(value) return True, value, '' except: # TODO: Translate return False, value, u'El valor digitado no es un número entero' def validation_yesno(value, obj=None): """ Validates that yes or no is entered. Converts the yes or no to capitalized version """ if value is not None: if six.PY3: if str.upper(value) in ["YES", "NO"]: return True, str.capitalize(value), '' else: if string.upper(value) in ["YES", "NO"]: return True, string.capitalize(value), '' # TODO: Translate return False, value, u'El valor digitado debe ser YES o NO' def validation_decimal(value, obj=None): """ Validates that the number can be converted to a decimal """ try: Decimal(value) return True, value, '' except: # TODO: Translate return False, value, u'El valor digitado debe ser un número decimal' def import_validator(validator): if validator is None: raise ImportError try: import_name, function_name = validator.rsplit('.', 1) except ValueError: # no dot; treat it as a global func = globals().get(validator, None) if not func: # we use ImportError to keep error handling for callers simple raise ImportError return validator else: # The below __import__() call is from python docs, and is equivalent to: # # from import_name import function_name # import_module = __import__(import_name, globals(), locals(), [function_name]) return getattr(import_module, function_name) def validate_attribute_value(attribute, value, obj): """ Helper function for forms that wish to validation a value for an AttributeOption. """ return import_validator(attribute.validation)(value, obj) def copy_model_instance(obj): """ Taken from https://djangosnippets.org/snippets/1040/ """ initial = dict([ (f.name, getattr(obj, f.name)) for f in obj._meta.fields if not isinstance(f, AutoField) and not f in obj._meta.parents.values() ]) return obj.__class__(**initial) ``` #### File: management/commands/import_data.py ```python from django.core.management.base import BaseCommand, CommandError import os, json, requests, glob class Command(BaseCommand): help = 'imports external json data and images' # def add_arguments(self, parser): # parser.add_argument('import_dir', nargs='+', type=str) def handle(self, *args, **options): print 'importing images' # get auth token first r = requests.post("http://localhost:8000/api-token-auth/", data={'username': 'admin', 'password': '<PASSWORD>'}) assert r.status_code == 200 print 'got security token', r.json() token = r.json().get('token') print token # use auth token to post data via api for root, dirs, files in os.walk("./import_data"): path = root.split('/') if "data.json" in files: with open(os.path.join(root, 'data.json')) as data_file: data = json.load(data_file) else: continue print file headers = {'Authorization': 'Token %s' % token} values = { 'title': data['property']['summary'], 'description': data['property']['fullDescription'], 'coords': "{}, {}".format(data['property']['latitude'], data['property']['longitude']), 'features': json.dumps(data['property']['features']) } files = [] # append here all jpg in "root" variable for image in glob.glob(os.path.join(root, '*.jpg')): files.append((os.path.basename(image), open(image, 'rb'))) r = requests.post("http://localhost:8000/api/listings/", headers=headers, files=files, data=values) ``` #### File: Realestate/tests/runtests.py ```python import os import sys import django from django.conf import settings DEFAULT_SETTINGS = dict( INSTALLED_APPS=[ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'realestate', 'realestate.home', 'realestate.listing', # Deps 'constance', 'sorl.thumbnail', 'widget_tweaks', 'rest_framework', 'rest_framework.authtoken', 'haystack', ], DATABASES={ "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": "test.db" } }, MEDIA_ROOT=os.path.join(os.path.dirname(__file__), 'media'), MEDIA_URL='/media/', STATIC_URL='/static/', CONSTANCE_CONFIG={ 'PROPERTIES_PER_PAGE': (16, 'Properties per page'), 'RECENTLY_ADDED': (6, 'Recently Added'), 'CONTACT_DEFAULT_EMAIL': ('<EMAIL>', 'Contact form email') }, CONSTANCE_REDIS_CONNECTION_CLASS='tests.redis_mockup.Connection', EMAIL_BACKEND='django.core.mail.backends.console.EmailBackend', ROOT_URLCONF='realestate.urls', TEMPLATE_DIRS=(os.path.abspath(os.path.join(os.path.dirname(__file__), '../realestate/templates')), ), TEMPLATE_CONTEXT_PROCESSORS=("django.core.context_processors.request",), HAYSTACK_CONNECTIONS={ 'default': { 'ENGINE': 'haystack.backends.elasticsearch_backend.ElasticsearchSearchEngine', 'URL': 'http://127.0.0.1:9200/', 'INDEX_NAME': 'realestate', }, }, MIDDLEWARE_CLASSES=[ 'django.contrib.sessions.middleware.SessionMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware' ] ) def runtests(*test_args): if not settings.configured: settings.configure(**DEFAULT_SETTINGS) parent = os.path.dirname(os.path.abspath(__file__)) parent = os.path.join(parent, '../') sys.path.insert(0, parent) django.setup() print(parent) from django.test.runner import DiscoverRunner runner_class = DiscoverRunner test_args = ['realestate'] failures = runner_class(verbosity=1, interactive=True, failfast=False).run_tests(test_args) sys.exit(failures) if __name__ == '__main__': runtests() ```
{ "source": "jinrongc1986/events-log", "score": 2 }
#### File: jinrongc1986/events-log/external_plugin_deps.bzl ```python load("//tools/bzl:maven_jar.bzl", "maven_jar") def external_plugin_deps(): maven_jar( name = "mockito", artifact = "org.mockito:mockito-core:2.21.0", sha1 = "cdd1d0d5b2edbd2a7040735ccf88318c031f458b", deps = [ "@byte_buddy//jar", "@byte_buddy_agent//jar", "@objenesis//jar", ], ) BYTE_BUDDY_VER = "1.8.15" maven_jar( name = "byte_buddy", artifact = "net.bytebuddy:byte-buddy:" + BYTE_BUDDY_VER, sha1 = "cb36fe3c70ead5fcd016856a7efff908402d86b8", ) maven_jar( name = "byte_buddy_agent", artifact = "net.bytebuddy:byte-buddy-agent:" + BYTE_BUDDY_VER, sha1 = "a2dbe3457401f65ad4022617fbb3fc0e5f427c7d", ) maven_jar( name = "objenesis", artifact = "org.objenesis:objenesis:2.6", sha1 = "639033469776fd37c08358c6b92a4761feb2af4b", ) maven_jar( name = "hikaricp", artifact = "com.zaxxer:HikariCP:3.2.0", sha1 = "6c66db1c636ee90beb4c65fe34abd8ba9396bca6", ) ```
{ "source": "jinrong-lu/dat129_ccac", "score": 4 }
#### File: dat129_ccac/week4/PittsCityProject.py ```python import csv def area_budgeted_amount(): file=open('PittsCityCapitalProject.csv', newline='') reader = csv.DictReader(file) area_total={'Administration/Sub-Award':0, 'Engineering and Construction':0, 'Facility Improvement':0, 'Neighborhood and Community Development':0, 'Public_Safety':0, 'Vehicles and Equipment':0} for row in reader: if row['area']=='Administration/Sub-Award': area_total['Administration/Sub-Award']+=float(row['budgeted_amount']) elif row['area'] == 'Engineering and Construction': area_total['Engineering and Construction']+=float(row['budgeted_amount']) elif row['area'] == 'Facility Improvement': area_total['Facility Improvement']+=float(row['budgeted_amount']) elif row['area'] == 'Neighborhood and Community Development': area_total['Neighborhood and Community Development']+=float(row['budgeted_amount']) elif row['area'] == 'Vehicles and Equipment': area_total['Vehicles and Equipment'] += float(row['budgeted_amount']) elif row['area'] == 'Public_Safety': area_total['Public_Safety'] += float(row['budgeted_amount']) for k in area_total: print('The budgeted_amount of' +k+ 'is:'+str(area_total[k])) return area_total def computerpercent(budgeted_amountDict): total=0 for k in budgeted_amountDict: total+=budgeted_amountDict[k] for k in budgeted_amountDict: perc=budgeted_amountDict[k]/total print("Percent of "+k+": "+"{0:.2%}".format(perc)) def main(): a=area_budgeted_amount() computerpercent(a) main() ``` #### File: dat129_ccac/week 5/apipractice_week5.py ```python def readFile(): apiURL='https://api.donorschoose.org/common/json_feed.html?snacks-for-better-testing/4653507/&APIKey=DONORSCHOOSE&showSynopsis=true&max=50' #result = getAverage(apiURL) #print(result) trans(apiURL) import requests, json def getAverage(url): rep=requests.get(url) runningTotal = 0 avg = 0 if(int(rep.status_code)==200): apiDict = json.loads(rep.text) proposalList = apiDict['proposals'] for p in proposalList: runningTotal +=float(p['totalPrice']) avg=runningTotal/ len(proposalList) return avg import csv def trans(url): rep=requests.get(url) apiDict=json.loads(rep.text) csv_proposals=apiDict['proposals'] with open ('keywords.txt', 'r') as keywords: with open('list.csv', 'w', newline='') as csvfile: csv_writer=csv.writer(csvfile) csv_writer.writerow(keywords) for p in csv_proposals: csv_values=[] for keywords in open('keywords.txt', newline='\n'): for key in keywords: csv_values+=p[key] with open ('list.csv', 'a+', newline='') as csvfile: csv_writer=csv.writer(csvfile) csv_writer.writerow(csv_values) readFile() ```
{ "source": "jinrudals/wit", "score": 3 }
#### File: lib/wit/common.py ```python import sys from .witlogger import getLogger log = getLogger() def error(*args, **kwargs): log.error(*args, **kwargs) sys.exit(1) def print_errors(errors): if len(errors) > 0: log.info("") # print newline for err in errors: log.info("--- ERROR ---") log.info(err) class WitUserError(Exception): """ Supertype of user-input errors that should be reported without stack traces """ pass ``` #### File: lib/wit/inspect.py ```python import sys from .common import print_errors from .witlogger import getLogger log = getLogger() def inspect_tree(ws, args): packages, errors = ws.resolve() if args.tree: tree = {} for dep in ws.manifest.dependencies: tree[dep.get_id()] = dep.crawl_dep_tree(ws.root, ws.repo_paths, packages) for key in tree: top_dep = tree[key] x, _ = _deduplicate_tree(top_dep) _print_generic_tree(x) if args.dot: _print_dot_tree(ws, packages) print_errors(errors) BOXED_DEPS = False VERBOSE_GRAPH = False def _deduplicate_tree(tree, seen=None): tree = tree.copy() seen = seen or [] tag = tree.pop('') ident = tag[-8:] out = {'': tag} if ident in seen: return out, seen else: seen.append(ident) for key in tree: out[key], seen = _deduplicate_tree(tree[key], seen) return out, seen def _print_dot_tree(ws, packages_dict): packages = list(packages_dict.values()) log.output('digraph dependencies {') log.output('root [label="[root]"]') pkg_ids = [] for pkg in packages: pkg_id = pkg.get_id() pkg_ids.append(pkg_id) log.output('{} [label="{}"]'.format(pkg_id, pkg.id())) drawn_connections = [] def draw_connection(from_id, to_id, dotted=False): if from_id == to_id: return pair = (from_id, to_id) if pair not in drawn_connections: log.output("{} -> {}{}".format(from_id, to_id, " [style=dotted]" if dotted else "")) drawn_connections.append(pair) def print_dep(pkg, dep): pkg_id = pkg.get_id() dep_id = dep.get_id() dep.load(packages_dict, ws.repo_paths, ws.root, False) if dep.package.repo is None: log.error("Cannot generate graph with missing repo '{}'".format(dep.name)) sys.exit(1) dep_pkg_id = dep.package.get_id() if dep.id() != dep.package.id() or VERBOSE_GRAPH: draw_connection(dep_id, dep_pkg_id, dotted=True) log.output('{} [label="{}"]{}'.format(dep_id, dep.id(), " [shape=box]" if BOXED_DEPS else "")) draw_connection(pkg_id, dep_id) else: draw_connection(pkg_id, dep_pkg_id) for dep in ws.manifest.dependencies: print_dep(ws, dep) for pkg in packages: for dep in pkg.get_dependencies(): print_dep(pkg, dep) log.output('}') def _print_generic_tree(data): tag = data.pop('') print(tag) return _recur_print_generic_tree(0, data, []) def _recur_print_generic_tree(depth, data, done_cols): def print_indent(depth): for i in range(0, depth): if i in done_cols: print(" ", end="") else: print("│ ", end="") done_cols_copy = done_cols[:] keys = list(data.keys()) for i, key in enumerate(keys): subdata = data[key] subtag = subdata.pop('') print_indent(depth) if i == len(keys)-1: print("└─", end="") done_cols_copy.append(depth) else: print("├─", end="") print(subtag) _recur_print_generic_tree(depth+1, subdata, done_cols_copy) ``` #### File: lib/wit/manifest.py ```python from pathlib import Path from .witlogger import getLogger from .repo_entries import RepoEntries log = getLogger() # TODO # Should this actually be shared between package manifests and workspace descriptions? # Should we use different datastructures? class Manifest: """ Common class for the description of package dependencies and a workspace """ def __init__(self, dependencies): self.dependencies = dependencies def get_dependency(self, name: str): for d in self.dependencies: if d.name == name: return d return None def contains_dependency(self, name: str) -> bool: return self.get_dependency(name) is not None def add_dependency(self, dep): resolved = dep.resolved() log.debug("Adding to manifest: {}".format(resolved)) self.dependencies.append(resolved) def replace_dependency(self, dep) -> None: newdeps = [] found = False for d in self.dependencies: if d.name == dep.name: resolved = dep.resolved() log.debug("New replace dep: {}".format(resolved)) newdeps.append(resolved) found = True else: newdeps.append(d) assert found, \ "Trying to update '{}' but it doesn't exist in manifest!".format(dep.name) self.dependencies = newdeps def write(self, path): contents = [d.to_repo_entry() for d in self.dependencies] RepoEntries.write(path, contents) @staticmethod def read_manifest(path, safe=False): if safe and not Path(path).exists(): return Manifest([]) entries = RepoEntries.read(path) from .dependency import Dependency deps = [Dependency.from_repo_entry(e) for e in entries] return Manifest(deps) if __name__ == '__main__': import doctest doctest.testmod() ``` #### File: lib/wit/repo_entries.py ```python import json import sys from enum import Enum from pathlib import Path from typing import List # The intent of Format, RepoEntry and List[RepoEntry] is that no other # parts of the codebase knows that json is used as the on-disk format, or know # any of the field names. # Version numbers will be encoded in the format from '3' onwards. class Format(Enum): Lock = 1 Manifest = 2 @staticmethod def from_path(path: Path): if path.name == "wit-lock.json": return Format.Lock if path.name == "wit-workspace.json" or path.name == "wit-manifest.json": return Format.Manifest raise Exception("Unknown format for {}".format(str(path))) class RepoEntry: def __init__(self, checkout_path, revision, remote_url, message=None): # The path to checkout at within the workspace. # JSON field name is 'name'. self.checkout_path = checkout_path # Desired revision that exists in the history of the below remote. # JSON field name is 'commit' self.revision = revision # Url (or local fs path) for git to clone/fetch/push. # JSON field name is 'source' self.remote_url = remote_url # A comment to leave in any serialized artifacts. # Optional. JSON field name is '//' self.message = message def __repr__(self): return str(self.__dict__) # OriginalEntry encodes the RepoEntry for both Lock and Manifest formats. class OriginalEntry(): @staticmethod def to_dict(entry: RepoEntry) -> dict: d = { "name": entry.checkout_path, "commit": entry.revision, "source": entry.remote_url, } if entry.message: d["//"] = entry.message return d @staticmethod def from_dict(data: dict) -> RepoEntry: return RepoEntry(data["name"], data["commit"], data.get("source"), # 'repo path' cli option needs this optional data.get("//")) # optional # Utilities for List[RepoEntry] class RepoEntries: @staticmethod def write(path: Path, entries: List[RepoEntry]): fmt = Format.from_path(path) if fmt is Format.Manifest: manifest_data = [OriginalEntry.to_dict(e) for e in entries] json_data = json.dumps(manifest_data, sort_keys=True, indent=4) + "\n" if fmt is Format.Lock: lock_data = dict((e.checkout_path, OriginalEntry.to_dict(e)) for e in entries) json_data = json.dumps(lock_data, sort_keys=True, indent=4) + "\n" path.write_text(json_data) @staticmethod def read(path: Path) -> List[RepoEntry]: text = path.read_text() # 'parse' has to be decoupled from 'read' as sometimes # we read files directly from the git object store rather # than the filesystem return RepoEntries.parse(text, path, "") @staticmethod def parse(text: str, path: Path, rev: str) -> List[RepoEntry]: try: fromtext = json.loads(text) except json.JSONDecodeError as e: print("Failed to parse json in {}:{}: {}".format(path, rev, e.msg)) sys.exit(1) entries = [] fmt = Format.from_path(path) if fmt is Format.Manifest: for entry in fromtext: entries.append(OriginalEntry.from_dict(entry)) if fmt is Format.Lock: for _, entry in fromtext.items(): entries.append(OriginalEntry.from_dict(entry)) # Check for duplicates names = [entry.checkout_path for entry in entries] if len(names) != len(set(names)): dup = set([x for x in names if names.count(x) > 1]) print("Two repositories have same checkout path in {}:{}: {}".format(path, rev, dup)) sys.exit(1) return entries ```
{ "source": "jin/rules_eta", "score": 2 }
#### File: rules_eta/eta/defs.bzl ```python def _eta_library_impl(ctx): eta_inputs = [ctx.file._eta] metrics_dir = ctx.actions.declare_directory("metrics") headers_dir = ctx.actions.declare_directory("headers") args = ctx.actions.args() args.add_all(["-metricsdir", "metrics"]) args.add_all(["-o", ctx.outputs._jar.path]) args.add_all(["-hidir", headers_dir.path]) args.add_all(ctx.files.srcs) # Regular compile action ctx.actions.run( arguments = [args], executable = ctx.executable._eta, inputs = ctx.files.srcs + eta_inputs, mnemonic = "EtaCompile", outputs = [ ctx.outputs._jar, metrics_dir, headers_dir, ], progress_message = "Compiling %s using Eta" % ctx.attr.name, use_default_shell_env = True, # TODO: Needed to pass `--action_env=HOME`. Try not to use default shell env for hermeticity ) return [ DefaultInfo( files = depset([ ctx.outputs._jar, headers_dir, ]), ), JavaInfo( output_jar = ctx.outputs._jar, compile_jar = ctx.outputs._jar, # TODO: ijar? ) ] # Unused until the https://github.com/typelead/eta/commit/f37e972b6a6d2ad6140718afbf0a4eb2612f51d0 # is in a release. # ETA_BINARY_PACKAGE_PREFIX = "binaries/cdnverify.eta-lang.org/eta-0.8.6.1/binaries/x86_64-osx" eta_library = rule( implementation = _eta_library_impl, outputs = { "_jar": "%{name}.jar", }, attrs = { "srcs": attr.label_list(allow_files = [".hs"]), # TODO: Figure out provider situation # "deps": attr.label_list(), # TODO: Download eta compiler directly "_eta": attr.label( default = "@eta//:eta", allow_single_file = True, executable = True, cfg = "host", ), }, ) def eta_repositories(bin_path): native.new_local_repository( name = "eta", path = bin_path, build_file_content = """ package(default_visibility = ["//visibility:public"]) filegroup( name = "bin", srcs = glob(["*"]), ) """ ) ```
{ "source": "jin/rules_scala-1", "score": 2 }
#### File: private/rules/scala_binary.bzl ```python load( "@io_bazel_rules_scala//scala/private:common_attributes.bzl", "common_attrs", "implicit_deps", "launcher_template", "resolve_deps", ) load("@io_bazel_rules_scala//scala/private:common_outputs.bzl", "common_outputs") load( "@io_bazel_rules_scala//scala/private:rule_impls.bzl", "collect_jars_from_common_ctx", "declare_executable", "get_scalac_provider", "get_unused_dependency_checker_mode", "scala_binary_common", "write_executable", "write_java_wrapper", ) def _scala_binary_impl(ctx): scalac_provider = get_scalac_provider(ctx) unused_dependency_checker_mode = get_unused_dependency_checker_mode(ctx) unused_dependency_checker_is_off = unused_dependency_checker_mode == "off" jars = collect_jars_from_common_ctx( ctx, scalac_provider.default_classpath, unused_dependency_checker_is_off = unused_dependency_checker_is_off, ) (cjars, transitive_rjars) = (jars.compile_jars, jars.transitive_runtime_jars) wrapper = write_java_wrapper(ctx, "", "") executable = declare_executable(ctx) out = scala_binary_common( ctx, executable, cjars, transitive_rjars, jars.transitive_compile_jars, jars.jars2labels, wrapper, unused_dependency_checker_ignored_targets = [ target.label for target in scalac_provider.default_classpath + ctx.attr.unused_dependency_checker_ignored_targets ], unused_dependency_checker_mode = unused_dependency_checker_mode, deps_providers = jars.deps_providers, ) write_executable( ctx = ctx, executable = executable, jvm_flags = ctx.attr.jvm_flags, main_class = ctx.attr.main_class, rjars = out.transitive_rjars, use_jacoco = False, wrapper = wrapper, ) return out _scala_binary_attrs = { "main_class": attr.string(mandatory = True), "classpath_resources": attr.label_list(allow_files = True), "jvm_flags": attr.string_list(), } _scala_binary_attrs.update(launcher_template) _scala_binary_attrs.update(implicit_deps) _scala_binary_attrs.update(common_attrs) _scala_binary_attrs.update(resolve_deps) scala_binary = rule( attrs = _scala_binary_attrs, executable = True, fragments = ["java"], outputs = common_outputs, toolchains = ["@io_bazel_rules_scala//scala:toolchain_type"], implementation = _scala_binary_impl, ) ```
{ "source": "jin-s13/mmaction2", "score": 3 }
#### File: datasets/pipelines/formating.py ```python from collections.abc import Sequence import mmcv import numpy as np import torch from mmcv.parallel import DataContainer as DC from ..registry import PIPELINES def to_tensor(data): """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. """ if isinstance(data, torch.Tensor): return data elif isinstance(data, np.ndarray): return torch.from_numpy(data) elif isinstance(data, Sequence) and not mmcv.is_str(data): return torch.tensor(data) elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) else: raise TypeError(f'type {type(data)} cannot be converted to tensor.') @PIPELINES.register_module() class ToTensor: """Convert some values in results dict to `torch.Tensor` type in data loader pipeline. Args: keys (Sequence[str]): Required keys to be converted. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Performs the ToTensor formating. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): return f'{self.__class__.__name__}(keys={self.keys})' @PIPELINES.register_module() class ToDataContainer: """Convert the data to DataContainer. Args: fields (Sequence[dict]): Required fields to be converted with keys and attributes. E.g. fields=(dict(key='gt_bbox', stack=False),). """ def __init__(self, fields): self.fields = fields def __call__(self, results): """Performs the ToDataContainer formating. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ for field in self.fields: _field = field.copy() key = _field.pop('key') results[key] = DC(results[key], **_field) return results def __repr__(self): return self.__class__.__name__ + f'(fields={self.fields})' @PIPELINES.register_module() class ImageToTensor: """Convert image type to `torch.Tensor` type. Args: keys (Sequence[str]): Required keys to be converted. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Performs the ImageToTensor formating. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ for key in self.keys: results[key] = to_tensor(results[key].transpose(2, 0, 1)) return results def __repr__(self): return f'{self.__class__.__name__}(keys={self.keys})' @PIPELINES.register_module() class Transpose: """Transpose image channels to a given order. Args: keys (Sequence[str]): Required keys to be converted. order (Sequence[int]): Image channel order. """ def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): """Performs the Transpose formatting. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return (f'{self.__class__.__name__}(' f'keys={self.keys}, order={self.order})') @PIPELINES.register_module() class Collect: """Collect data from the loader relevant to the specific task. This keeps the items in ``keys`` as it is, and collect items in ``meta_keys`` into a meta item called ``meta_name``.This is usually the last stage of the data loader pipeline. For example, when keys='imgs', meta_keys=('filename', 'label', 'original_shape'), meta_name='img_meta', the results will be a dict with keys 'imgs' and 'img_meta', where 'img_meta' is a DataContainer of another dict with keys 'filename', 'label', 'original_shape'. Args: keys (Sequence[str]): Required keys to be collected. meta_name (str): The name of the key that contains meta infomation. This key is always populated. Default: "img_meta". meta_keys (Sequence[str]): Keys that are collected under meta_name. The contents of the ``meta_name`` dictionary depends on ``meta_keys``. By default this includes: - "filename": path to the image file - "label": label of the image file - "original_shape": original shape of the image as a tuple (h, w, c) - "img_shape": shape of the image input to the network as a tuple (h, w, c). Note that images may be zero padded on the bottom/right, if the batch tensor is larger than this shape. - "pad_shape": image shape after padding - "flip_direction": a str in ("horiziontal", "vertival") to indicate if the image is fliped horizontally or vertically. - "img_norm_cfg": a dict of normalization information: - mean - per channel mean subtraction - std - per channel std divisor - to_rgb - bool indicating if bgr was converted to rgb """ def __init__(self, keys, meta_keys=('filename', 'label', 'original_shape', 'img_shape', 'pad_shape', 'flip_direction', 'img_norm_cfg'), meta_name='img_meta'): self.keys = keys self.meta_keys = meta_keys self.meta_name = meta_name def __call__(self, results): """Performs the Collect formating. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ data = {} for key in self.keys: data[key] = results[key] if len(self.meta_keys) != 0: meta = {} for key in self.meta_keys: meta[key] = results[key] data[self.meta_name] = DC(meta, cpu_only=True) return data def __repr__(self): return (f'{self.__class__.__name__}(' f'keys={self.keys}, meta_keys={self.meta_keys})') @PIPELINES.register_module() class FormatShape: """Format final imgs shape to the given input_format. Required keys are "imgs", "num_clips" and "clip_len", added or modified keys are "imgs" and "input_shape". Args: input_format (str): Define the final imgs format. """ def __init__(self, input_format): self.input_format = input_format if self.input_format not in ['NCTHW', 'NCHW', 'NCHW_Flow', 'NPTCHW']: raise ValueError( f'The input format {self.input_format} is invalid.') def __call__(self, results): """Performs the FormatShape formating. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ imgs = results['imgs'] # [M x H x W x C] # M = 1 * N_crops * N_clips * L if self.input_format == 'NCTHW': num_clips = results['num_clips'] clip_len = results['clip_len'] imgs = imgs.reshape((-1, num_clips, clip_len) + imgs.shape[1:]) # N_crops x N_clips x L x H x W x C imgs = np.transpose(imgs, (0, 1, 5, 2, 3, 4)) # N_crops x N_clips x C x L x H x W imgs = imgs.reshape((-1, ) + imgs.shape[2:]) # M' x C x L x H x W # M' = N_crops x N_clips elif self.input_format == 'NCHW': imgs = np.transpose(imgs, (0, 3, 1, 2)) # M x C x H x W elif self.input_format == 'NCHW_Flow': num_clips = results['num_clips'] clip_len = results['clip_len'] imgs = imgs.reshape((-1, num_clips, clip_len) + imgs.shape[1:]) # N_crops x N_clips x L x H x W x C imgs = np.transpose(imgs, (0, 1, 2, 5, 3, 4)) # N_crops x N_clips x L x C x H x W imgs = imgs.reshape((-1, imgs.shape[2] * imgs.shape[3]) + imgs.shape[4:]) # M' x C' x H x W # M' = N_crops x N_clips # C' = L x C elif self.input_format == 'NPTCHW': num_proposals = results['num_proposals'] num_clips = results['num_clips'] clip_len = results['clip_len'] imgs = imgs.reshape((num_proposals, num_clips * clip_len) + imgs.shape[1:]) # P x M x H x W x C # M = N_clips x L imgs = np.transpose(imgs, (0, 1, 4, 2, 3)) # P x M x C x H x W results['imgs'] = imgs results['input_shape'] = imgs.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f"(input_format='{self.input_format}')" return repr_str @PIPELINES.register_module() class FormatAudioShape: """Format final audio shape to the given input_format. Required keys are "imgs", "num_clips" and "clip_len", added or modified keys are "imgs" and "input_shape". Args: input_format (str): Define the final imgs format. """ def __init__(self, input_format): self.input_format = input_format if self.input_format not in ['NCTF']: raise ValueError( f'The input format {self.input_format} is invalid.') def __call__(self, results): """Performs the FormatShape formatting. Args: results (dict): The resulting dict to be modified and passed to the next transform in pipeline. """ audios = results['audios'] # clip x sample x freq -> clip x channel x sample x freq clip, sample, freq = audios.shape audios = audios.reshape(clip, 1, sample, freq) results['audios'] = audios results['input_shape'] = audios.shape return results def __repr__(self): repr_str = self.__class__.__name__ repr_str += f"(input_format='{self.input_format}')" return repr_str ``` #### File: models/heads/ssn_head.py ```python import torch import torch.nn as nn from mmcv.cnn import normal_init from ..registry import HEADS def parse_stage_config(stage_cfg): """Parse config of STPP for three stages. Args: stage_cfg (int | tuple[int]): Config of structured temporal pyramid pooling. Returns: tuple[tuple[int], int]: Config of structured temporal pyramid pooling and total number of parts(number of multipliers). """ if isinstance(stage_cfg, int): return (stage_cfg, ), stage_cfg elif isinstance(stage_cfg, tuple): return stage_cfg, sum(stage_cfg) else: raise ValueError(f'Incorrect STPP config {stage_cfg}') class STPPTrain(nn.Module): """Structured temporal pyramid pooling for SSN at training. Args: stpp_stage (tuple): Config of structured temporal pyramid pooling. Default: (1, (1, 2), 1). num_segments_list (tuple): Number of segments to be sampled in three stages. Default: (2, 5, 2). """ def __init__(self, stpp_stage=(1, (1, 2), 1), num_segments_list=(2, 5, 2)): super().__init__() starting_part, starting_multiplier = parse_stage_config(stpp_stage[0]) course_part, course_multiplier = parse_stage_config(stpp_stage[1]) ending_part, ending_multiplier = parse_stage_config(stpp_stage[2]) self.num_multipliers = ( starting_multiplier + course_multiplier + ending_multiplier) self.stpp_stages = (starting_part, course_part, ending_part) self.multiplier_list = (starting_multiplier, course_multiplier, ending_multiplier) self.num_segments_list = num_segments_list def _extract_stage_feature(self, stage_feat, stage_parts, num_multipliers, scale_factors, num_samples): """Extract stage feature based on structured temporal pyramid pooling. Args: stage_feat (torch.Tensor): Stage features to be STPP. stage_parts (tuple): Config of STPP. num_multipliers (int): Total number of parts in the stage. scale_factors (list): Ratios of the effective sampling lengths to augmented lengths. num_samples (int): Number of samples. Returns: torch.Tensor: Features of the stage. """ stage_stpp_feat = [] stage_len = stage_feat.size(1) for stage_part in stage_parts: ticks = torch.arange(0, stage_len + 1e-5, stage_len / stage_part).int() for i in range(stage_part): part_feat = stage_feat[:, ticks[i]:ticks[i + 1], :].mean( dim=1) / num_multipliers if scale_factors is not None: part_feat = ( part_feat * scale_factors.view(num_samples, 1)) stage_stpp_feat.append(part_feat) return stage_stpp_feat def forward(self, x, scale_factors): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. scale_factors (list): Ratios of the effective sampling lengths to augmented lengths. Returns: tuple[torch.Tensor, torch.Tensor]: Features for predicting activity scores and completeness scores. """ x0 = self.num_segments_list[0] x1 = x0 + self.num_segments_list[1] num_segments = x1 + self.num_segments_list[2] feat_dim = x.size(1) x = x.view(-1, num_segments, feat_dim) num_samples = x.size(0) scale_factors = scale_factors.view(-1, 2) stage_stpp_feats = [] stage_stpp_feats.extend( self._extract_stage_feature(x[:, :x0, :], self.stpp_stages[0], self.multiplier_list[0], scale_factors[:, 0], num_samples)) stage_stpp_feats.extend( self._extract_stage_feature(x[:, x0:x1, :], self.stpp_stages[1], self.multiplier_list[1], None, num_samples)) stage_stpp_feats.extend( self._extract_stage_feature(x[:, x1:, :], self.stpp_stages[2], self.multiplier_list[2], scale_factors[:, 1], num_samples)) stpp_feat = torch.cat(stage_stpp_feats, dim=1) course_feat = x[:, x0:x1, :].mean(dim=1) return course_feat, stpp_feat class STPPTest(nn.Module): """Structured temporal pyramid pooling for SSN at testing. Args: num_classes (int): Number of classes to be classified. use_regression (bool): Whether to perform regression or not. Default: True. stpp_stage (tuple): Config of structured temporal pyramid pooling. Default: (1, (1, 2), 1). """ def __init__(self, num_classes, use_regression=True, stpp_stage=(1, (1, 2), 1)): super().__init__() self.activity_score_len = num_classes + 1 self.complete_score_len = num_classes self.reg_score_len = num_classes * 2 self.use_regression = use_regression starting_parts, starting_multiplier = parse_stage_config(stpp_stage[0]) course_parts, course_multiplier = parse_stage_config(stpp_stage[1]) ending_parts, ending_multiplier = parse_stage_config(stpp_stage[2]) self.num_multipliers = ( starting_multiplier + course_multiplier + ending_multiplier) if self.use_regression: self.feat_dim = ( self.activity_score_len + self.num_multipliers * (self.complete_score_len + self.reg_score_len)) else: self.feat_dim = ( self.activity_score_len + self.num_multipliers * self.complete_score_len) self.stpp_stage = (starting_parts, course_parts, ending_parts) self.activity_slice = slice(0, self.activity_score_len) self.complete_slice = slice( self.activity_slice.stop, self.activity_slice.stop + self.complete_score_len * self.num_multipliers) self.reg_slice = slice( self.complete_slice.stop, self.complete_slice.stop + self.reg_score_len * self.num_multipliers) def _pyramids_pooling(self, out_scores, index, raw_scores, ticks, scale_factors, score_len, stpp_stage): """Perform pyramids pooling. Args: out_scores (torch.Tensor): Scores to be returned. index (int): Index of output scores. raw_scores (torch.Tensor): Raw scores before STPP. ticks (list): Ticks of raw scores. scale_factors (list): Ratios of the effective sampling lengths to augmented lengths. score_len (int): Length of the score. stpp_stage (tuple): Config of STPP. """ offset = 0 for stage_idx, stage_cfg in enumerate(stpp_stage): if stage_idx == 0: scale_factor = scale_factors[0] elif stage_idx == len(stpp_stage) - 1: scale_factor = scale_factors[1] else: scale_factor = 1.0 sum_parts = sum(stage_cfg) tick_left = ticks[stage_idx] tick_right = float(max(ticks[stage_idx] + 1, ticks[stage_idx + 1])) if tick_right <= 0 or tick_left >= raw_scores.size(0): offset += sum_parts continue for num_parts in stage_cfg: part_ticks = torch.arange(tick_left, tick_right + 1e-5, (tick_right - tick_left) / num_parts).int() for i in range(num_parts): part_tick_left = part_ticks[i] part_tick_right = part_ticks[i + 1] if part_tick_right - part_tick_left >= 1: raw_score = raw_scores[part_tick_left:part_tick_right, offset * score_len:(offset + 1) * score_len] raw_scale_score = raw_score.mean(dim=0) * scale_factor out_scores[index, :] += raw_scale_score.detach().cpu() offset += 1 return out_scores def forward(self, x, proposal_ticks, scale_factors): """Defines the computation performed at every call. Args: x (torch.Tensor): The input data. proposal_ticks (list): Ticks of proposals to be STPP. scale_factors (list): Ratios of the effective sampling lengths to augmented lengths. Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor]: out_activity_scores (torch.Tensor): Activity scores out_complete_scores (torch.Tensor): Completeness scores. out_reg_scores (torch.Tensor): Regression scores. """ assert x.size(1) == self.feat_dim num_ticks = proposal_ticks.size(0) out_activity_scores = torch.zeros((num_ticks, self.activity_score_len), dtype=x.dtype) raw_activity_scores = x[:, self.activity_slice] out_complete_scores = torch.zeros((num_ticks, self.complete_score_len), dtype=x.dtype) raw_complete_scores = x[:, self.complete_slice] if self.use_regression: out_reg_scores = torch.zeros((num_ticks, self.reg_score_len), dtype=x.dtype) raw_reg_scores = x[:, self.reg_slice] else: out_reg_scores = None raw_reg_scores = None for i in range(num_ticks): ticks = proposal_ticks[i] out_activity_scores[i, :] = raw_activity_scores[ ticks[1]:max(ticks[1] + 1, ticks[2]), :].mean(dim=0) out_complete_scores = self._pyramids_pooling( out_complete_scores, i, raw_complete_scores, ticks, scale_factors[i], self.complete_score_len, self.stpp_stage) if self.use_regression: out_reg_scores = self._pyramids_pooling( out_reg_scores, i, raw_reg_scores, ticks, scale_factors[i], self.reg_score_len, self.stpp_stage) return out_activity_scores, out_complete_scores, out_reg_scores @HEADS.register_module() class SSNHead(nn.Module): """The classification head for SSN. Args: dropout_ratio (float): Probability of dropout layer. Default: 0.8. in_channels (int): Number of channels for input data. Default: 1024. num_classes (int): Number of classes to be classified. Default: 20. consensus (dict): Config of segmental consensus. use_regression (bool): Whether to perform regression or not. Default: True. init_std (float): Std value for Initiation. Default: 0.001. """ def __init__(self, dropout_ratio=0.8, in_channels=1024, num_classes=20, consensus=dict( type='STPPTrain', standalong_classifier=True, stpp_cfg=(1, 1, 1), num_seg=(2, 5, 2)), use_regression=True, init_std=0.001): super().__init__() self.dropout_ratio = dropout_ratio self.num_classes = num_classes self.use_regression = use_regression self.init_std = init_std if self.dropout_ratio != 0: self.dropout = nn.Dropout(p=self.dropout_ratio) else: self.dropout = None # Based on this copy, the model will utilize different # structured temporal pyramid pooling at training and testing. # Warning: this copy cannot be removed. consensus_ = consensus.copy() consensus_type = consensus_.pop('type') if consensus_type == 'STPPTrain': self.consensus = STPPTrain(**consensus_) elif consensus_type == 'STPPTest': consensus_['num_classes'] = self.num_classes self.consensus = STPPTest(**consensus_) self.in_channels_activity = in_channels self.in_channels_complete = ( self.consensus.num_multipliers * in_channels) self.activity_fc = nn.Linear(in_channels, num_classes + 1) self.completeness_fc = nn.Linear(self.in_channels_complete, num_classes) if self.use_regression: self.regressor_fc = nn.Linear(self.in_channels_complete, num_classes * 2) def init_weights(self): """Initiate the parameters from scratch.""" normal_init(self.activity_fc, std=self.init_std) normal_init(self.completeness_fc, std=self.init_std) if self.use_regression: normal_init(self.regressor_fc, std=self.init_std) def prepare_test_fc(self, stpp_feat_multiplier): """Reorganize the shape of fully connected layer at testing, in order to improve testing efficiency. Args: stpp_feat_multiplier (int): Total number of parts. Returns: bool: Whether the shape transformation is ready for testing. """ in_features = self.activity_fc.in_features out_features = ( self.activity_fc.out_features + self.completeness_fc.out_features * stpp_feat_multiplier) if self.use_regression: out_features += ( self.regressor_fc.out_features * stpp_feat_multiplier) self.test_fc = nn.Linear(in_features, out_features) # Fetch weight and bias of the reorganized fc. complete_weight = self.completeness_fc.weight.data.view( self.completeness_fc.out_features, stpp_feat_multiplier, in_features).transpose(0, 1).contiguous().view(-1, in_features) complete_bias = self.completeness_fc.bias.data.view(1, -1).expand( stpp_feat_multiplier, self.completeness_fc.out_features ).contiguous().view(-1) / stpp_feat_multiplier weight = torch.cat((self.activity_fc.weight.data, complete_weight)) bias = torch.cat((self.activity_fc.bias.data, complete_bias)) if self.use_regression: reg_weight = self.regressor_fc.weight.data.view( self.regressor_fc.out_features, stpp_feat_multiplier, in_features).transpose(0, 1).contiguous().view(-1, in_features) reg_bias = self.regressor_fc.bias.data.view(1, -1).expand( stpp_feat_multiplier, self.regressor_fc.out_features ).contiguous().view(-1) / stpp_feat_multiplier weight = torch.cat((weight, reg_weight)) bias = torch.cat((bias, reg_bias)) self.test_fc.weight.data = weight self.test_fc.bias.data = bias return True def forward(self, x, test_mode=False): """Defines the computation performed at every call.""" if not test_mode: x, proposal_scale_factor = x activity_feat, completeness_feat = self.consensus( x, proposal_scale_factor) if self.dropout is not None: activity_feat = self.dropout(activity_feat) completeness_feat = self.dropout(completeness_feat) activity_scores = self.activity_fc(activity_feat) complete_scores = self.completeness_fc(completeness_feat) if self.use_regression: bbox_preds = self.regressor_fc(completeness_feat) bbox_preds = bbox_preds.view(-1, self.completeness_fc.out_features, 2) else: bbox_preds = None return activity_scores, complete_scores, bbox_preds else: x, proposal_tick_list, scale_factor_list = x test_scores = self.test_fc(x) (activity_scores, completeness_scores, bbox_preds) = self.consensus(test_scores, proposal_tick_list, scale_factor_list) return (test_scores, activity_scores, completeness_scores, bbox_preds) ``` #### File: tests/test_data/test_ava_dataset.py ```python import os.path as osp import mmcv import numpy as np from numpy.testing import assert_array_equal from mmaction.datasets import AVADataset def check_keys_contain(result_keys, target_keys): """Check if all elements in target_keys is in result_keys.""" return set(target_keys).issubset(set(result_keys)) class TestAVADataset(object): @classmethod def setup_class(cls): cls.data_prefix = osp.join( osp.dirname(osp.dirname(__file__)), 'data', 'test_ava_dataset') cls.ann_file = osp.join(cls.data_prefix, 'ava_sample.csv') cls.exclude_file = osp.join(cls.data_prefix, 'ava_excluded_timestamps_sample.csv') cls.proposal_file = osp.join(cls.data_prefix, 'ava_proposals_sample.pkl') cls.pipeline = [ dict(dict(type='SampleAVAFrames', clip_len=32, frame_interval=2)) ] cls.proposal = mmcv.load(cls.proposal_file) def test_ava_dataset(self): target_keys = [ 'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info', 'fps', 'ann' ] ann_keys = ['labels', 'entity_boxes', 'entity_ids'] pkl_keys = ['0f39OWEqJ24,0902', '0f39OWEqJ24,0903', <KEY>'] ava_dataset = AVADataset( self.ann_file, self.exclude_file, self.pipeline, data_prefix=self.data_prefix, proposal_file=self.proposal_file) ava_infos = ava_dataset.video_infos assert check_keys_contain(ava_dataset.proposals.keys(), pkl_keys) assert check_keys_contain(ava_infos[0].keys(), target_keys) assert check_keys_contain(ava_infos[0]['ann'].keys(), ann_keys) assert len(ava_infos) == 1 assert ava_infos[0]['frame_dir'] == osp.join(self.data_prefix, '0f39OWEqJ24') assert ava_infos[0]['video_id'] == '0f39OWEqJ24' assert ava_infos[0]['timestamp'] == 902 assert ava_infos[0]['img_key'] == '0f39OWEqJ24,0902' assert ava_infos[0]['shot_info'] == (0, 26880) assert ava_infos[0]['fps'] == 30 assert len(ava_infos[0]['ann']) == 3 target_labels = np.array([12, 17, 79] + [ -1, ] * 78) target_labels = target_labels[None, ...] assert_array_equal(ava_infos[0]['ann']['labels'], target_labels) assert_array_equal(ava_infos[0]['ann']['entity_boxes'], np.array([[0.031, 0.162, 0.67, 0.995]])) assert_array_equal(ava_infos[0]['ann']['entity_ids'], np.array([0])) ava_dataset = AVADataset( self.ann_file, None, self.pipeline, data_prefix=self.data_prefix, proposal_file=self.proposal_file) ava_infos = ava_dataset.video_infos assert len(ava_infos) == 3 ava_dataset = AVADataset( self.ann_file, None, self.pipeline, test_mode=True, data_prefix=self.data_prefix, proposal_file=self.proposal_file) ava_infos = ava_dataset.video_infos assert len(ava_infos) == 3 ava_dataset = AVADataset( self.ann_file, None, self.pipeline, test_mode=True, data_prefix=self.data_prefix, proposal_file=None) assert ava_dataset.proposals is None def test_ava_pipeline(self): target_keys = [ 'frame_dir', 'video_id', 'timestamp', 'img_key', 'shot_info', 'fps', 'ann', 'filename_tmpl', 'modality', 'start_index', 'timestamp_start', 'timestamp_end', 'proposals', 'frame_inds', 'clip_len', 'frame_interval' ] ann_keys = ['labels', 'entity_boxes', 'entity_ids'] ava_dataset = AVADataset( self.ann_file, self.exclude_file, self.pipeline, data_prefix=self.data_prefix, proposal_file=self.proposal_file) result = ava_dataset[0] assert check_keys_contain(result.keys(), target_keys) assert check_keys_contain(result['ann'].keys(), ann_keys) assert result['filename_tmpl'] == 'img_{:05}.jpg' assert result['modality'] == 'RGB' assert result['start_index'] == 1 assert result['timestamp_start'] == 902 assert result['timestamp_end'] == 1798 assert_array_equal(result['proposals'], np.array([[0.011, 0.157, 0.655, 0.983, 0.998163]])) assert result['clip_len'] == 32 assert result['frame_interval'] == 2 assert len(result['frame_inds']) == 32 ``` #### File: tests/test_data/test_compose.py ```python import numpy as np import pytest from mmaction.datasets.pipelines import Compose, ImageToTensor def check_keys_equal(result_keys, target_keys): """Check if all elements in target_keys is in result_keys.""" return set(target_keys) == set(result_keys) def test_compose(): with pytest.raises(TypeError): # transform must be callable or a dict Compose('LoadImage') target_keys = ['img', 'img_meta'] # test Compose given a data pipeline img = np.random.randn(256, 256, 3) results = dict(img=img, abandoned_key=None, img_name='test_image.png') test_pipeline = [ dict(type='Collect', keys=['img'], meta_keys=['img_name']), dict(type='ImageToTensor', keys=['img']) ] compose = Compose(test_pipeline) compose_results = compose(results) assert check_keys_equal(compose_results.keys(), target_keys) assert check_keys_equal(compose_results['img_meta'].data.keys(), ['img_name']) # test Compose when forward data is None results = None image_to_tensor = ImageToTensor(keys=[]) test_pipeline = [image_to_tensor] compose = Compose(test_pipeline) compose_results = compose(results) assert compose_results is None assert repr(compose) == compose.__class__.__name__ + \ f'(\n {image_to_tensor}\n)' ``` #### File: mmaction2/tests/test_gradcam.py ```python import os.path as osp import mmcv import numpy as np import pytest import torch from mmaction.models import build_recognizer from mmaction.utils.gradcam_utils import GradCAM def _get_cfg(fname): """Grab configs necessary to create a recognizer. These are deep copied to allow for safe modification of parameters without influencing other tests. """ repo_dpath = osp.dirname(osp.dirname(__file__)) config_dpath = osp.join(repo_dpath, 'configs/recognition') config_fpath = osp.join(config_dpath, fname) if not osp.exists(config_dpath): raise Exception('Cannot find config path') config = mmcv.Config.fromfile(config_fpath) return config def _get_target_shapes(input_shape, num_classes=400, model_type='2D'): if model_type not in ['2D', '3D']: raise ValueError(f'Data type {model_type} is not available') preds_target_shape = (input_shape[0], num_classes) if model_type == '3D': # input shape (batch_size, num_crops*num_clips, C, clip_len, H, W) # target shape (batch_size*num_crops*num_clips, clip_len, H, W, C) blended_imgs_target_shape = (input_shape[0] * input_shape[1], input_shape[3], input_shape[4], input_shape[5], input_shape[2]) else: # input shape (batch_size, num_segments, C, H, W) # target shape (batch_size, num_segments, H, W, C) blended_imgs_target_shape = (input_shape[0], input_shape[1], input_shape[3], input_shape[4], input_shape[2]) return blended_imgs_target_shape, preds_target_shape def _generate_gradcam_inputs(input_shape=(1, 3, 3, 224, 224), model_type='2D'): """Create a superset of inputs needed to run gradcam. Args: input_shape (tuple[int]): input batch dimensions. Default: (1, 3, 3, 224, 224). model_type (str): Model type for data generation, from {'2D', '3D'}. Default:'2D' return: dict: model inputs, including two keys, ``imgs`` and ``label``. """ imgs = np.random.random(input_shape) if model_type in ['2D', '3D']: gt_labels = torch.LongTensor([2] * input_shape[0]) else: raise ValueError(f'Data type {model_type} is not available') inputs = { 'imgs': torch.FloatTensor(imgs), 'label': gt_labels, } return inputs def _do_test_2D_models(recognizer, target_layer_name, input_shape, num_classes=400, device='cpu'): demo_inputs = _generate_gradcam_inputs(input_shape) demo_inputs['imgs'] = demo_inputs['imgs'].to(device) demo_inputs['label'] = demo_inputs['label'].to(device) recognizer = recognizer.to(device) gradcam = GradCAM(recognizer, target_layer_name) blended_imgs_target_shape, preds_target_shape = _get_target_shapes( input_shape, num_classes=num_classes, model_type='2D') blended_imgs, preds = gradcam(demo_inputs) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape blended_imgs, preds = gradcam(demo_inputs, True) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape def _do_test_3D_models(recognizer, target_layer_name, input_shape, num_classes=400): blended_imgs_target_shape, preds_target_shape = _get_target_shapes( input_shape, num_classes=num_classes, model_type='3D') demo_inputs = _generate_gradcam_inputs(input_shape, '3D') # parrots 3dconv is only implemented on gpu if torch.__version__ == 'parrots': if torch.cuda.is_available(): recognizer = recognizer.cuda() demo_inputs['imgs'] = demo_inputs['imgs'].cuda() demo_inputs['label'] = demo_inputs['label'].cuda() gradcam = GradCAM(recognizer, target_layer_name) blended_imgs, preds = gradcam(demo_inputs) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape blended_imgs, preds = gradcam(demo_inputs, True) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape else: gradcam = GradCAM(recognizer, target_layer_name) blended_imgs, preds = gradcam(demo_inputs) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape blended_imgs, preds = gradcam(demo_inputs, True) assert blended_imgs.size() == blended_imgs_target_shape assert preds.size() == preds_target_shape def test_tsn(): config = _get_cfg('tsn/tsn_r50_1x1x3_100e_kinetics400_rgb.py') config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 25, 3, 32, 32) target_layer_name = 'backbone/layer4/1/relu' _do_test_2D_models(recognizer, target_layer_name, input_shape) def test_i3d(): config = _get_cfg('i3d/i3d_r50_32x2x1_100e_kinetics400_rgb.py') config.model['backbone']['pretrained2d'] = False config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = [1, 1, 3, 32, 32, 32] target_layer_name = 'backbone/layer4/1/relu' _do_test_3D_models(recognizer, target_layer_name, input_shape) def test_r2plus1d(): config = _get_cfg('r2plus1d/r2plus1d_r34_8x8x1_180e_kinetics400_rgb.py') config.model['backbone']['pretrained2d'] = False config.model['backbone']['pretrained'] = None config.model['backbone']['norm_cfg'] = dict(type='BN3d') recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 3, 3, 8, 32, 32) target_layer_name = 'backbone/layer4/1/relu' _do_test_3D_models(recognizer, target_layer_name, input_shape) def test_slowfast(): config = _get_cfg('slowfast/slowfast_r50_4x16x1_256e_kinetics400_rgb.py') recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 1, 3, 32, 32, 32) target_layer_name = 'backbone/slow_path/layer4/1/relu' _do_test_3D_models(recognizer, target_layer_name, input_shape) def test_tsm(): config = _get_cfg('tsm/tsm_r50_1x1x8_50e_kinetics400_rgb.py') config.model['backbone']['pretrained'] = None target_layer_name = 'backbone/layer4/1/relu' # base config recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 8, 3, 32, 32) _do_test_2D_models(recognizer, target_layer_name, input_shape) # test twice sample + 3 crops, 2*3*8=48 test_cfg = dict(average_clips='prob') recognizer = build_recognizer(config.model, test_cfg=test_cfg) recognizer.cfg = config input_shape = (1, 48, 3, 32, 32) _do_test_2D_models(recognizer, target_layer_name, input_shape) def test_csn(): config = _get_cfg( 'csn/ircsn_ig65m_pretrained_r152_32x2x1_58e_kinetics400_rgb.py') config.model['backbone']['pretrained2d'] = False config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 1, 3, 32, 32, 32) target_layer_name = 'backbone/layer4/1/relu' _do_test_3D_models(recognizer, target_layer_name, input_shape) def test_tpn(): target_layer_name = 'backbone/layer4/1/relu' config = _get_cfg('tpn/tpn_tsm_r50_1x1x8_150e_sthv1_rgb.py') config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 8, 3, 32, 32) _do_test_2D_models(recognizer, target_layer_name, input_shape, 174) config = _get_cfg('tpn/tpn_slowonly_r50_8x8x1_150e_kinetics_rgb.py') config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 3, 3, 8, 32, 32) _do_test_3D_models(recognizer, target_layer_name, input_shape) def test_c3d(): config = _get_cfg('c3d/c3d_sports1m_16x1x1_45e_ucf101_rgb.py') config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 1, 3, 16, 112, 112) target_layer_name = 'backbone/conv5a/activate' _do_test_3D_models(recognizer, target_layer_name, input_shape, 101) @pytest.mark.skipif( not torch.cuda.is_available(), reason='requires CUDA support') def test_tin(): config = _get_cfg('tin/tin_tsm_finetune_r50_1x1x8_50e_kinetics400_rgb.py') config.model['backbone']['pretrained'] = None target_layer_name = 'backbone/layer4/1/relu' recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 8, 3, 64, 64) _do_test_2D_models( recognizer, target_layer_name, input_shape, device='cuda:0') def test_x3d(): config = _get_cfg('x3d/x3d_s_13x6x1_facebook_kinetics400_rgb.py') config.model['backbone']['pretrained'] = None recognizer = build_recognizer(config.model, test_cfg=config.test_cfg) recognizer.cfg = config input_shape = (1, 1, 3, 13, 32, 32) target_layer_name = 'backbone/layer4/1/relu' _do_test_3D_models(recognizer, target_layer_name, input_shape) ```
{ "source": "Jinsan-Dev/BaroDetector", "score": 3 }
#### File: Data/Preprocessed-data/feature_extraction.py ```python import os import numpy as np import statistics as stat import csv import sys from scipy.stats import kurtosis def getZeroCrossingRate(arr): np_array = np.array(arr) return float("{0:.4f}".format((((np_array[:-1] * np_array[1:]) < 0).sum()) / len(arr))) def getMeanCrossingRate(arr): return getZeroCrossingRate(np.array(arr) - np.mean(arr)) def getRateOfChange(arr,first,last): np_array = np.array(arr) return abs(np_array[last]-np_array[first])/window_size # passing 이라는 이벤트라는게 발생했다를 캐치하기 위해서 #return (np_array[1:] / np_array[:-1] - 1).sum() def getKurtosis(arr): np_array = np.array(arr) kur = kurtosis(np_array,fisher=True) return kur def getIrange(arr): np_array = np.array(arr) return abs(np.percentile(np_array,75) - np.percentile(np_array,25)) def power(list): return [x**2 for x in list] def getRootMeanSquare(arr): np_array = np.array(arr) np_array = power(np_array) return np.sqrt(np.sum(np_array)/float(len(np_array))) def getRootSumSquare(arr): np_array = np.array(arr) np_array = power(np_array) return np.sqrt(np.sum(np_array)) def getLabel(arr): np_array = np.array(arr) if "Non" not in np_array: return LABEL_PASSING else: return "Non" window_size = 40 overlap = 5 LABEL_PASSING = "passing" roc = [] mcr = [] std = [] iran = [] kur = [] rms = [] rss = [] absDiff = [] label = [] if __name__=="__main__": for root, dirs, files in os.walk("./"): for file_name in files: if os.path.splitext(file_name)[-1] == '.csv': # Depends on file type with open(file_name, 'r',encoding = 'ISO-8859-1') as f: reader = csv.reader(f) diff = [] window_arr_pressure = [] window_arr_label = [] for txt in reader: #vals = line[:-1].split(",") # 맨 끝의 \n 제외한 것들을 , 기준으로 나눔 window_arr_pressure.append(float(txt[0])) diff.append(txt[2]) if str(txt[1]) == LABEL_PASSING: window_arr_label.append(LABEL_PASSING) else: window_arr_label.append("Non") for index, line in enumerate(window_arr_pressure): if index+window_size < len(window_arr_pressure): roc.append(float(getRateOfChange(window_arr_pressure,index,index+window_size))) # Rate of change mcr.append(float(getMeanCrossingRate(window_arr_pressure[index:index+window_size]))) # MCR from previous 30 num of data std.append(float(stat.stdev(window_arr_pressure[index:index+window_size]))) # STD from previous 30 num of data iran.append(float(getIrange(window_arr_pressure[index:index+window_size]))) # interquartile range kur.append(float(getKurtosis(window_arr_pressure[index:index+window_size]))) rms.append(float(getRootMeanSquare(window_arr_pressure[index:index+window_size]))) rss.append(float(getRootSumSquare(window_arr_pressure[index:index+window_size]))) absDiff.append(diff[index]) label.append(getLabel(window_arr_label[index:index+window_size])) # each label #arff file write with open('./arff_files/'+'result.arff','w',newline='') as f: # make arff file format f.write('''@RELATION pressure @attribute roc numeric @attribute mcr numeric @attribute std numeric @attribute iran numeric @attribute kurtosis numeric @attribute rss numeric @attribute rms numeric @attribute absDiff numeric @attribute label {passing, Non} @data ''') for index, line in enumerate(roc): #f.write(str(iran[index])+ "," +label[index]+"\n") f.write(str(roc[index])+","+str(mcr[index])+","+str(std[index]) + "," + str(iran[index]) + "," + str(kur[index]) + "," + str(rss[index]) + "," +str(rms[index]) + "," +str(absDiff[index]) + "," +label[index]+"\n") ```
{ "source": "jinsanity07git/tmip-emat", "score": 3 }
#### File: tmip-emat/docs/sphinx-jupyter-widgets-cleanup.py ```python import argparse, os parser = argparse.ArgumentParser() parser.add_argument('outdir', type=str, help='sphinx output directory') args = parser.parse_args() import re duplicate_tag = '''(<script src="https://unpkg.com/@jupyter-widgets/html-manager@\^[0-9]*\.[0-9]*\.[0-9]*/dist/embed-amd.js"></script>)''' bad1 = re.compile(duplicate_tag) bad2 = re.compile(duplicate_tag+"(.*)"+duplicate_tag) def dedupe_jupyter_widgets_manager(filename): with open(filename, 'rt') as html_in: content = html_in.read() n = len(bad1.findall(content)) if n>1: content_1 = bad1.sub("", content, count=n-1) print(f"FIXING [{n}]:",filename) with open(filename, 'wt') as html_out: html_out.write(content_1) else: print(f"PASSED [{n}]:",filename) def fixing_walker(filename): directory = os.path.dirname(os.path.abspath(filename)) for dirpath, dirnames, filenames in os.walk(directory): for f in filenames: if f[-5:]==".html": this_file = os.path.join(dirpath, f) dedupe_jupyter_widgets_manager(this_file) fixing_walker(args.outdir) ``` #### File: explore_2/components/two_dim_figure.py ```python import numpy as np import pandas as pd import plotly.graph_objects as go from ....viz import colors def empty_two_dim_figure( use_gl=True, marker_opacity=(1.0,1.0), ): """ Args: use_gl (bool, default True): Use the WebGL versions of plots. marker_opacity (tuple, default (1.0,1.0)): The opacity of (unselected, selected) markers in the scatter plot. Returns: figure """ Scatter = go.Scattergl if use_gl else go.Scatter scattergraph = Scatter( x=None, y=None, mode='markers', marker=dict( opacity=marker_opacity[0], color=None, colorscale=[[0, colors.DEFAULT_BASE_COLOR], [1, colors.DEFAULT_HIGHLIGHT_COLOR]], cmin=0, cmax=1, ), name='Cases', ) x_hist = go.Histogram( x=None, # name='x density', marker=dict( color=colors.DEFAULT_BASE_COLOR, # opacity=0.7, ), yaxis='y2', bingroup='xxx', ) y_hist = go.Histogram( y=None, # name='y density', marker=dict( color=colors.DEFAULT_BASE_COLOR, # opacity=0.7, ), xaxis='x2', bingroup='yyy', ) x_hist_s = go.Histogram( x=None, marker=dict( color=colors.DEFAULT_HIGHLIGHT_COLOR, # opacity=0.7, ), yaxis='y2', bingroup='xxx', ) y_hist_s = go.Histogram( y=None, marker=dict( color=colors.DEFAULT_HIGHLIGHT_COLOR, # opacity=0.7, ), xaxis='x2', bingroup='yyy', ) fig = go.Figure() scattergraph = fig.add_trace(scattergraph).data[-1] x_hist = fig.add_trace(x_hist).data[-1] y_hist = fig.add_trace(y_hist).data[-1] x_hist_s = fig.add_trace(x_hist_s).data[-1] y_hist_s = fig.add_trace(y_hist_s).data[-1] fig.layout = dict( xaxis=dict( domain=[0, 0.85], showgrid=True, # title=self._df.data.columns[0], ), yaxis=dict( domain=[0, 0.85], showgrid=True, # title=self._df.data.columns[-1], ), xaxis2=dict( domain=[0.85, 1], showgrid=True, zeroline=True, zerolinecolor='#FFF', zerolinewidth=4, ), yaxis2=dict( domain=[0.85, 1], showgrid=True, zeroline=True, zerolinecolor='#FFF', zerolinewidth=4, ), barmode="overlay", showlegend=False, margin=dict(l=10, r=10, t=10, b=10), dragmode="lasso", ) return fig ``` #### File: emat/interactive/multitoggle.py ```python from ipywidgets import Box, widget_selection, ToggleButton, Layout, Label, Widget import traitlets class MultiToggleButtons(Box): description = traitlets.Unicode() value = traitlets.Tuple() options = traitlets.Union([traitlets.List(), traitlets.Dict()]) style = traitlets.Dict() def __init__(self, **kwargs): super().__init__(**kwargs) self._selection_obj = widget_selection._MultipleSelection() traitlets.link((self, 'options'), (self._selection_obj, 'options')) traitlets.link((self, 'value'), (self._selection_obj, 'value')) @observer(self, 'options') def _(*_): self.buttons = [ToggleButton(description=label, layout=Layout( margin='1', width='auto' )) for label in self._selection_obj._options_labels] if self.description: self.label = Label(self.description, layout=Layout(width=self.style.get('description_width', '100px'))) else: self.label = Label(self.description, layout=Layout(width=self.style.get('description_width', '0px'))) self.children = [self.label]+self.buttons @observer(self.buttons, 'value') def _(*_): self.value = tuple(value for btn, value in zip(self.buttons, self._selection_obj._options_values) if btn.value) self.add_class('btn-group') def reset(self): opts = self.options self.options = [] self.options = opts def set_value(self, x): for b, opt in zip(self.buttons, self.options): b.value = (opt in x) def set_all_on(self): for b, opt in zip(self.buttons, self.options): b.value = True def set_all_off(self): for b, opt in zip(self.buttons, self.options): b.value = False def observer(widgets, trait_name): def wrapper(func): if isinstance(widgets, Widget): widgets.observe(func, trait_name) else: for w in widgets: w.observe(func, trait_name) func() return wrapper ``` #### File: emat/interactive/prototype_data.py ```python import numpy, pandas import ipywidgets from ipywidgets import interactive import matplotlib.pyplot as plt from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker from .lazy import lazy from .prototype_logging import logger from ..database import SQLiteDB, Database from .prototype_pane import ExplorerComponent class ExplorerData(ExplorerComponent): def __init__( self, parent, ): super().__init__(parent_widget=parent) self._all_performance_measures = None self._all_strategy_names = None self._all_risk_factor_names = None def load_from_database( self, performance_measures=None, risk_factor_names=None, strategy_names=None, feature_names=None, design_name = None, ): if not isinstance(self.db, Database): raise ValueError('db not ready') if design_name is None: design_name = self.design_name self.X = self.db.read_experiment_parameters(self.scope.name, design_name) self.Y = self.db.read_experiment_measures(self.scope.name, design_name) if feature_names is not None: performance_measures = [i for i in feature_names if i in self.all_performance_measures_] risk_factor_names = [i for i in feature_names if i in self.all_risk_factors_] strategy_names = [i for i in feature_names if i in self.all_strategy_names_] if performance_measures is None: self.performance_measures = self.all_performance_measures else: self.performance_measures = list(performance_measures) if strategy_names is None: self.strategy_names = self.all_strategy_names else: self.strategy_names = list(strategy_names) if risk_factor_names is None: self.risk_factor_names = self.all_risk_factors else: self.risk_factor_names = list(risk_factor_names) self.X = self.X.loc[:, self.risk_factor_names+self.strategy_names] try: self.Y = self.Y.loc[:, performance_measures] except KeyError: logger.debug(":: The columns of Y include:") for col in self.Y.columns: logger.debug(f":: * {col}") raise Y_millions = self.Y.min(axis=0) > 1e6 Y_thousands = (self.Y.min(axis=0) > 1e3) & (~Y_millions) self.Y.loc[:, Y_millions] /= 1e6 self.Y.loc[:, Y_thousands] /= 1e3 Y_millions.loc[:] = False Y_thousands.loc[:] = False self.joint_data = pandas.concat([self.X, self.Y], axis=1) # self.risk_factor_names = [i for i in self.X.columns if i not in self.strategy_names] # self.performance_measure_names = self.Y.columns # def workbench_format(self): # try: # self.X # self.Y # except AttributeError: # # must load from the database if not already in memory # self.load_from_database() # # experiments = self.X.copy() # for strategy in self.strategy_names: # # We presently assume all strategies are categorical (namely, binary) # # this could be relaxed in the future # # but it will always be important to explicitly transform datatypes here # # for categorical inputs (strategies OR risks) # experiments[strategy] = (experiments[strategy]>0).astype(str) # y = { # k:self.Y[k].values # for k in self.Y.columns # } # return experiments.to_records(), y # def singleton(self, qry): # try: # return self.engine.execute(qry).fetchone()[0] # except TypeError: # return # # # def data_X(self): # X = pandas.read_sql_query(f""" # SELECT # sampleID, varID, value # FROM # perfMeasInput # ORDER BY # sampleID, varID # """, self.engine).pivot(index='sampleID', columns='varID', values='value') # X.columns = [ # (self.singleton(f"SELECT riskVarDesc FROM riskVar WHERE riskVarID={j}") # or self.singleton(f"SELECT strategyDesc FROM strategy WHERE strategyID={j}") # or j) # for j in X.columns # ] # return X # # # def data_Y(self): # Y = pandas.read_sql_query(f""" # SELECT # sampleID, perfMeasID, estimate # FROM # perfMeasRes # ORDER BY # sampleID, perfMeasID # """, self.engine).pivot(index='sampleID', columns='perfMeasID', values='estimate') # Y.columns = [ # (self.singleton(f"SELECT perfMeasDesc FROM perfMeas WHERE perfMeasID={j}") # or j) # for j in Y.columns # ] # Y = numpy.exp(Y) # return Y # @lazy def all_risk_factors(self): assert isinstance(self.db, Database) return self.db.read_uncertainties(self.scope.name) @lazy def all_strategy_names(self): assert isinstance(self.db, Database) return self.db.read_levers(self.scope.name) @lazy def all_performance_measures(self): assert isinstance(self.db, Database) return self.db.read_measures(self.scope.name) @lazy def all_risk_factors_(self): return set(self.all_risk_factors) @lazy def all_strategy_names_(self): return set(self.all_strategy_names) @lazy def all_performance_measures_(self): return set(self.all_performance_measures) # def query(self, query): # "An arbitrary database query. Be careful!" # return pandas.read_sql_query(query, self.engine) # # def table_schema(self, tablename): # return self.singleton(f"SELECT sql FROM sqlite_master WHERE type='table' AND name='{tablename}'") ``` #### File: emat/interactive/prototype_scope.py ```python import os import sqlite3 from ipywidgets import ( VBox, HBox, Label, Layout, interactive_output, Dropdown, Output, Button, ToggleButtons, FloatRangeSlider, Accordion, Text ) from .prototype_pane import ExplorerPane from IPython.display import display, HTML from ..database import Database import __main__ class ExplorerScopeManager(ExplorerPane): def __init__(self, parent_widget=None, proposed_db_name='db'): super().__init__(parent_widget=parent_widget) if isinstance(proposed_db_name, Database): self.filenamer = Text( value=proposed_db_name.get_db_info(), placeholder='db info', description='DB:', disabled=True ) self.db = proposed_db_name else: self.filenamer = Text( value=proposed_db_name, placeholder='enter object name', description='DB:', disabled=False ) self.scope_picker = Dropdown( options=[ ' ', ], value=' ', description='Scope:', disabled=False, ) self.design_picker = Dropdown( options=[ ' ', ], value=' ', description='Design:', disabled=False, ) self.filenamer.observe(self.check_db_status) self.scope_picker.observe(self.update_current_scope_from_db) self.design_picker.observe(self.update_current_design_from_db) self.make_stack( self.filenamer, self.scope_picker, self.design_picker, ) self.next_button.on_click(lambda x: self._parent_widget.load_selection_library()) with self.header: display(HTML("<h1>Scope Manager</h1>")) self.check_db_status(None) def check_db_status(self, action_content): main_object_name = self.filenamer.value self.footer.clear_output() with self.footer: if main_object_name in __main__.__dict__: db = getattr(__main__, main_object_name) if isinstance(db, Database): print(f"√ '{main_object_name}' is Database") self.db = db else: print(f"X '{main_object_name}' not Database") self.db = None elif self.db: print(f"√ {self.db.get_db_info()}") else: print(f"X '{main_object_name}' not a known object") self.db = None self._update_scope_name_choices() self._update_design_name_choices() self.update_current_scope_from_db(action_content) if self.scope is not None: print(f"√ Loaded Scope: {self.scope.name}") else: print(f"X No Scope") def _update_scope_name_choices(self): if self.db is None: self.scope_picker.options = [' '] else: scope_names = self.db.read_scope_names() if self.scope_picker.options != scope_names: self.scope_picker.options = scope_names if len(scope_names) == 1: self.update_current_scope_from_db(None) def _update_design_name_choices(self): if self.scope is None: self.design_picker.options = [' '] else: design_names = self.db.read_design_names(self.scope.name) if self.design_picker.options != design_names: self.design_picker.options = design_names if len(design_names)==1: self.update_current_design_from_db(None) def update_current_scope_from_db(self, action_content): scope_name = self.scope_picker.value if self.db is not None: if self.scope is not None: if self.scope.name == scope_name: return self.scope = self.db.read_scope(scope_name) else: self.scope = None def update_current_design_from_db(self, action_content): self.design_name = self.design_picker.value def check_file_status(self, action_content): f = self.filenamer.value self.footer.clear_output() with self.footer: if os.path.exists(f): print("√ File Exists") fa = os.path.abspath(f) checker = None try: checker = sqlite3.connect( f'file:{f}?mode=ro', uri=True ) except Exception as err: print("X ERROR") print(str(err)) else: try: checker.cursor().execute("SELECT strategyDesc FROM strategy LIMIT 1") except Exception as err: print("X ERROR") print(str(err)) else: print("√ File has 'strategy' table") try: checker.cursor().execute("SELECT riskVarDesc FROM riskVar LIMIT 1") except Exception as err: print("X ERROR") print(str(err)) else: print("√ File has 'riskVar' table") try: checker.cursor().execute("SELECT perfMeasDesc FROM perfMeas LIMIT 1") except Exception as err: print("X ERROR") print(str(err)) else: print("√ File has 'perfMeas' table") try: checker.cursor().execute("SELECT perfMeasID FROM perfMeasRes LIMIT 1") except Exception as err: print("X ERROR") print(str(err)) else: print("√ File has 'perfMeasRes' table") try: checker.cursor().execute("SELECT sampleID, varID, value FROM perfMeasInput LIMIT 1") except Exception as err: print("X ERROR") print(str(err)) else: print("√ File has 'perfMeasInput' table") finally: if checker is not None: checker.close() else: print("X File Does Not Exist") ``` #### File: emat/learn/chaining.py ```python from sklearn.multioutput import RegressorChain as _RegressorChain from .ensemble import VotingRegressor from .frameable import FrameableMixin class RegressorChain( _RegressorChain, FrameableMixin, ): def fit(self, X, Y): self._pre_fit(X, Y) return super().fit(X,Y) def predict(self, X): Y = super().predict(X) Y = self._post_predict(X, Y) return Y def EnsembleRegressorChain( base_estimator, n_chains, ): ensemble = [] for n in range(n_chains): e = RegressorChain( base_estimator=base_estimator, order='random', random_state=n, ) ensemble.append((f'chain_{n}',e)) return VotingRegressor( ensemble ) ``` #### File: emat/learn/preprocessing.py ```python import pandas from sklearn.preprocessing import PolynomialFeatures as _PolynomialFeatures class PolynomialFeatures(_PolynomialFeatures): """ Generate polynomial and interaction features, preserving DataFrame labels. Generate a new feature matrix consisting of all polynomial combinations of the features with degree less than or equal to the specified degree. For example, if an input sample is two dimensional and of the form [a, b], the degree-2 polynomial features are [1, a, b, a^2, ab, b^2]. Parameters ---------- degree : integer The degree of the polynomial features. Default = 2. interaction_only : boolean, default = False If true, only interaction features are produced: features that are products of at most ``degree`` *distinct* input features (so not ``x[1] ** 2``, ``x[0] * x[2] ** 3``, etc.). include_bias : boolean If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column of ones - acts as an intercept term in a linear model). order : str in {'C', 'F'}, default 'C' Order of output array in the dense case. 'F' order is faster to compute, but may slow down subsequent estimators. Attributes ---------- powers_ : array, shape (n_output_features, n_input_features) powers_[i, j] is the exponent of the jth input in the ith output. n_input_features_ : int The total number of input features. n_output_features_ : int The total number of polynomial output features. The number of output features is computed by iterating over all suitably sized combinations of input features. Notes ----- Be aware that the number of features in the output array scales polynomially in the number of features of the input array, and exponentially in the degree. High degrees can cause overfitting. """ def transform(self, X): try: y = super().transform(X) except: print(X.shape) print(self.n_input_features_) raise if isinstance(X, pandas.DataFrame): return pandas.DataFrame( data=y, index=X.index, columns=self.get_feature_names(X.columns), ) return y ``` #### File: emat/learn/splits.py ```python import numpy as np import warnings from sklearn.model_selection import StratifiedKFold, KFold from sklearn.model_selection._split import _RepeatedSplits from sklearn.utils.validation import column_or_1d from sklearn.utils.validation import check_array from sklearn.utils.multiclass import type_of_target class ExogenouslyStratifiedKFold(StratifiedKFold): """Exogenously Stratified K-Folds cross-validator Provides train/test indices to split data in train/test sets. This cross-validation object is a variation of KFold that returns stratified folds. The folds are made by preserving the percentage of an exogenously defined factor for each class. Parameters ---------- n_splits : int, default=3 Number of folds. Must be at least 2. shuffle : boolean, optional Whether to shuffle each stratification of the data before splitting into batches. random_state : int, RandomState instance or None, optional, default=None If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. Used when ``shuffle`` == True. Examples -------- >>> from sklearn.model_selection import ExogenouslyStratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> skf = StratifiedKFold(n_splits=2) >>> skf.get_n_splits(X, y) 2 >>> print(skf) # doctest: +NORMALIZE_WHITESPACE StratifiedKFold(n_splits=2, random_state=None, shuffle=False) >>> for train_index, test_index in skf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] Notes ----- All the folds have size ``trunc(n_samples / n_splits)``, the last one has the complementary. See also -------- RepeatedExogenouslyStratifiedKFold: Repeats Exogenously Stratified K-Fold n times. """ def __init__(self, exo_data=None, n_splits=3, shuffle=False, random_state=None): super().__init__(n_splits, shuffle, random_state) self.exo_data = exo_data def _make_test_folds(self, X, y=None): rng = self.random_state if self.exo_data is not None: if y.shape[0] != self.exo_data.shape[0]: raise ValueError(f"bad shape of exo_data, y.shape={y.shape}, self.exo_data.shape={self.exo_data.shape}") y = self.exo_data y = np.asarray(y) type_of_target_y = type_of_target(y) allowed_target_types = ('binary', 'multiclass') if type_of_target_y not in allowed_target_types: raise ValueError( 'Supported target types are: {}. Got {!r} instead.'.format( allowed_target_types, type_of_target_y)) y = column_or_1d(y) n_samples = y.shape[0] unique_y, y_inversed = np.unique(y, return_inverse=True) y_counts = np.bincount(y_inversed) min_groups = np.min(y_counts) if np.all(self.n_splits > y_counts): raise ValueError("n_splits=%d cannot be greater than the" " number of members in each class." % (self.n_splits)) if self.n_splits > min_groups: warnings.warn(("The least populated class in y has only %d" " members, which is too few. The minimum" " number of members in any class cannot" " be less than n_splits=%d." % (min_groups, self.n_splits)), Warning) # pre-assign each sample to a test fold index using individual KFold # splitting strategies for each class so as to respect the balance of # classes # NOTE: Passing the data corresponding to ith class say X[y==class_i] # will break when the data is not 100% stratifiable for all classes. # So we pass np.zeroes(max(c, n_splits)) as data to the KFold per_cls_cvs = [ KFold(self.n_splits, shuffle=self.shuffle, random_state=rng).split(np.zeros(max(count, self.n_splits))) for count in y_counts] test_folds = np.zeros(n_samples, dtype=np.int) for test_fold_indices, per_cls_splits in enumerate(zip(*per_cls_cvs)): for cls, (_, test_split) in zip(unique_y, per_cls_splits): cls_test_folds = test_folds[y == cls] # the test split can be too big because we used # KFold(...).split(X[:max(c, n_splits)]) when data is not 100% # stratifiable for all the classes # (we use a warning instead of raising an exception) # If this is the case, let's trim it: test_split = test_split[test_split < len(cls_test_folds)] cls_test_folds[test_split] = test_fold_indices test_folds[y == cls] = cls_test_folds return test_folds def _iter_test_masks(self, X, y=None, groups=None): test_folds = self._make_test_folds(X, y) for i in range(self.n_splits): yield test_folds == i def split(self, X, y, groups=None): """Generate indices to split data into training and test set. Parameters ---------- X : array-like, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. Note that providing ``y`` is sufficient to generate the splits and hence ``np.zeros(n_samples)`` may be used as a placeholder for ``X`` instead of actual training data. y : array-like, shape (n_samples,) The target variable for supervised learning problems. Stratification is done based on the y labels. groups : object Always ignored, exists for compatibility. Returns ------- train : ndarray The training set indices for that split. test : ndarray The testing set indices for that split. Notes ----- Randomized CV splitters may return different results for each call of split. You can make the results identical by setting ``random_state`` to an integer. """ y = check_array(y, ensure_2d=False, dtype=None) return super().split(X, y, groups) class RepeatedExogenouslyStratifiedKFold(_RepeatedSplits): """Repeated Stratified K-Fold cross validator. Repeats Stratified K-Fold n times with different randomization in each repetition. Read more in the :ref:`User Guide <cross_validation>`. Parameters ---------- n_splits : int, default=5 Number of folds. Must be at least 2. n_repeats : int, default=10 Number of times cross-validator needs to be repeated. random_state : None, int or RandomState, default=None Random state to be used to generate random state for each repetition. Examples -------- >>> from sklearn.model_selection import RepeatedStratifiedKFold >>> X = np.array([[1, 2], [3, 4], [1, 2], [3, 4]]) >>> y = np.array([0, 0, 1, 1]) >>> rskf = RepeatedStratifiedKFold(n_splits=2, n_repeats=2, ... random_state=36851234) >>> for train_index, test_index in rskf.split(X, y): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... TRAIN: [1 2] TEST: [0 3] TRAIN: [0 3] TEST: [1 2] TRAIN: [1 3] TEST: [0 2] TRAIN: [0 2] TEST: [1 3] See also -------- RepeatedKFold: Repeats K-Fold n times. """ def __init__(self, exo_data=None, n_splits=5, n_repeats=10, random_state=None): super().__init__( ExogenouslyStratifiedKFold, n_repeats, random_state, n_splits=n_splits, exo_data=exo_data, ) ``` #### File: model/core_python/core_python_examples.py ```python import numpy as np class Dummy(): def __init__(self): '''nothing to do here''' def calc_pm1(self, exp_vars): return self.__sum_exp_vars(exp_vars) def calc_pm2(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 2 def calc_pm10(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 10 def calc_pm100(self, exp_vars): return self.__sum_exp_vars(exp_vars) * 100 def __sum_exp_vars(self,ev): return ev['exp_var 1'] + ev['exp_var 2'] def __call__(self, **kwargs): return dict( pm_1=self.calc_pm1(kwargs), pm_2=self.calc_pm2(kwargs), pm_10=self.calc_pm10(kwargs), pm_100=self.calc_pm100(kwargs), ) def NoisyDummy(**kwargs): lever1 = kwargs.get('lever1', 0) lever2 = kwargs.get('lever2', 0) uncertain1 = kwargs.get('uncertain1', 3) uncertain2 = np.exp(kwargs.get('uncertain2', -0.7)) uncertain3 = np.exp(kwargs.get('uncertain3', 0.7)) certain4 = kwargs.get('certain4', 3) noise_amplitude = kwargs.get('noise_amplitude', 2.0) noise_frequency = kwargs.get('noise_frequency', 5.0) pm_1 = ( - uncertain2 * lever1 * lever1 + (uncertain1 + certain4) * (lever1 + lever2) + noise_amplitude * np.sin(noise_frequency * lever1) ) pm_2 = np.minimum( 1.11e+111 * uncertain1, np.exp( uncertain3 * lever1 * (lever1 + lever2) + uncertain1 * lever1 + noise_amplitude * np.cos(noise_frequency * lever2) ) ) pm_3 = ( noise_amplitude * np.cos(noise_frequency * lever1) + noise_amplitude * np.sin(noise_frequency * lever2) + certain4 ) pm_4 = np.exp( uncertain1 + certain4 ) return {'pm_1':pm_1, 'pm_2': pm_2, 'pm_3': pm_3, 'pm_4':pm_4} def pmt(rate, nper, pv, fv=0, when='end'): """ Compute the payment against loan principal plus interest. Given: * a present value, `pv` (e.g., an amount borrowed) * a future value, `fv` (e.g., 0) * an interest `rate` compounded once per period, of which there are * `nper` total * and (optional) specification of whether payment is made at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the (fixed) periodic payment. Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value (default = 0) when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray Payment against loan plus interest. If all input is scalar, returns a scalar float. If any input is array_like, returns payment for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- This function is replicated from the numpy_financial package, under the same LICENSE as the TMIP-EMAT repository. Copyright (c) 2005-2019, NumPy Developers. All rights reserved. """ _when_to_num = {'end': 0, 'begin': 1, 'e': 0, 'b': 1, 0: 0, 1: 1, 'beginning': 1, 'start': 1, 'finish': 0} def _convert_when(when): # Test to see if when has already been converted to ndarray # This will happen if one function calls another, for example ppmt if isinstance(when, np.ndarray): return when try: return _when_to_num[when] except (KeyError, TypeError): return [_when_to_num[x] for x in when] when = _convert_when(when) (rate, nper, pv, fv, when) = map(np.array, [rate, nper, pv, fv, when]) temp = (1 + rate)**nper mask = (rate == 0) masked_rate = np.where(mask, 1, rate) fact = np.where(mask != 0, nper, (1 + masked_rate*when)*(temp - 1)/masked_rate) return -(fv + pv*temp) / fact def Road_Capacity_Investment( # constant free_flow_time=60, initial_capacity=100, # uncertainty alpha=0.15, beta=4.0, input_flow=100, value_of_time=0.01, unit_cost_expansion=1, interest_rate=0.03, yield_curve=0.01, # policy expand_capacity=10, amortization_period=30, interest_rate_lock=False, debt_type='GO Bond', lane_width=10, **kwargs, ): """ A fictitious example model for road capacity investment. This model simulates a capacity expansion investment on a single network link. The link volume-delay function is governed by the `BPR function <https://en.wikipedia.org/wiki/Route_assignment#Frank-Wolfe_algorithm>`_. This model is a bit contrived, because it is designed to explicitly demonstrate a wide variety of EMAT features in a transportation planning model that is as simple as possible. For example, the policy levers are structured so that there is one of each dtype (float, int, bool, and categorical). Args: free_flow_time (float, default 60): The free flow travel time on the link. initial_capacity (float, default 100): The pre-expansion capacity on the link. alpha (float, default 0.15): Alpha parameter to the BPR volume-delay function. beta (float, default 4.0): Beta parameter to the BPR volume-delay function. input_flow (float, default 100): The future input flow on the link. value_of_time (float, default 0.01): The value of a unit of travel time savings per unit of flow on the link. unit_cost_expansion (float, default 1): The present marginal cost of adding one unit of capacity to the link (assumes no economies of scale on expansion cost) interest_rate (float, default 0.03): The interest rate actually incurred for revenue bonds amortized over 15 years. The interest rate for general obligation bonds is assumed to be 0.0025 less than this value. yield_curve (float, default 0.01): The marginal increase in the interest_rate if the amortization period is 50 years instead of 15. The yield curve is assumed to be linearly projected to all other possible amortization periods expand_capacity (float, default 10): The amount of capacity expansion actually constructed. amortization_period (int, default 30): The time period over which the construction costs are amortized. interest_rate_lock (bool, default False): Whether interest rates are locked at the assumed current rate of 0.03 / 0.01 or allowed to float. debt_type ('GO Bond', 'Rev Bond', 'Paygo'): Type of financing. General obligation bonds are assumed to have a lower interest rate than revenue bonds, but may be politically less desirable. Pay-as-you-go financing incurs no actual interest costs, but requires actually having the funds available. lane_width (float, default 10): The width of lanes on the roadway. This parameter is intentionally wacky, causing massive congestion for any value other than 10, to demonstrate what might happen with broken model inputs. Returns: dict: no_build_travel_time The average travel time on the link if no capacity expansion was constructed. build_travel_time The average travel time on the link after expansion. time_savings The average travel time savings as a result of the expansion. value_of_time_savings The total value of the travel time savings, accounting for the time savings per traveler, the total flow, and the value of time. present_cost_expansion The present cost of building the expansion cost_of_capacity_expansion The annual payment to finance the expansion, when amortized. net_benefits The value of the time savings minus the annual payment. """ debt_type = debt_type.lower() assert debt_type in ('go bond', 'paygo', 'rev bond') average_travel_time0 = free_flow_time * (1 + alpha*(input_flow/initial_capacity)**beta) capacity = initial_capacity + expand_capacity average_travel_time1 = free_flow_time * (1 + alpha*(input_flow/capacity)**beta) oops = np.absolute(lane_width-10) average_travel_time1 += (oops*1000)**0.5 + np.sin(input_flow)*oops*2 travel_time_savings = average_travel_time0 - average_travel_time1 value_of_time_savings = value_of_time * travel_time_savings * input_flow present_cost_of_capacity_expansion = float(unit_cost_expansion * expand_capacity) if interest_rate_lock: interest_rate = 0.03 yield_curve = 0.01 if (debt_type == 'go bond'): interest_rate -= 0.0025 elif (debt_type == 'paygo'): interest_rate = 0 effective_interest_rate = interest_rate + yield_curve * (amortization_period-15) / 35 cost_of_capacity_expansion = pmt( effective_interest_rate, amortization_period, present_cost_of_capacity_expansion, ) return dict( no_build_travel_time=average_travel_time0, build_travel_time=average_travel_time1, time_savings=travel_time_savings, value_of_time_savings=value_of_time_savings, present_cost_expansion=present_cost_of_capacity_expansion, cost_of_capacity_expansion=-cost_of_capacity_expansion, net_benefits = value_of_time_savings + cost_of_capacity_expansion, ) def _Road_Capacity_Investment_CmdLine(): """ This is a demo for calling a core model function on the command line. """ import argparse, pandas, os, sys, warnings parser = argparse.ArgumentParser() parser.add_argument('--levers', type=str, default='levers.yml', help='Levers Yaml File') parser.add_argument('--uncs', type=str, default="uncs.yml", help='Uncertainties Yaml File') parser.add_argument('--no-random-crashes', action='store_true', help='disable random crashes') args = parser.parse_args() import logging logger = logging.getLogger('emat.RoadTest') file_handler = logging.FileHandler("emat-road-test.log") file_handler.setLevel(10) LOG_FORMAT = '[%(asctime)s] %(name)s.%(levelname)s: %(message)s' file_handler.setFormatter(logging.Formatter(LOG_FORMAT)) console_handler = logging.StreamHandler(stream=sys.stdout) console_handler.setLevel(20) console_handler.setFormatter(logging.Formatter(LOG_FORMAT)) logger.addHandler(console_handler) logger.addHandler(file_handler) logger.setLevel(10) logger.info("running emat-road-test-demo") logger.debug(str(args)) logger.debug(str(os.getcwd())) import yaml if os.path.exists(args.levers): with open(args.levers, 'rt') as f: levers = yaml.safe_load(f) else: levers = {'mandatory_unused_lever':42} if os.path.exists(args.uncs): with open(args.uncs, 'rt') as f: uncs = yaml.safe_load(f) else: uncs = {} if 'mandatory_unused_lever' not in levers: raise ValueError("missing 'mandatory_unused_lever'") if levers['mandatory_unused_lever'] != 42: raise ValueError("incorrect value for 'mandatory_unused_lever', must be 42") if 'unit_cost_expansion' in uncs: raise ValueError("cannot give 'unit_cost_expansion', use 'labor_unit_cost_expansion' and 'materials_unit_cost_expansion'") if uncs.get('labor_unit_cost_expansion', 0) <= uncs.get('materials_unit_cost_expansion', 0): raise ValueError("'labor_unit_cost_expansion' cannot be less than or equal 'materials_unit_cost_expansion'") if uncs.get('labor_unit_cost_expansion', 0) > uncs.get('materials_unit_cost_expansion', 0)*2: raise ValueError("'labor_unit_cost_expansion' cannot be more than double 'materials_unit_cost_expansion'") unit_cost_expansion = uncs.pop('labor_unit_cost_expansion', 0) + uncs.pop('materials_unit_cost_expansion', 0) uncs['unit_cost_expansion'] = unit_cost_expansion # (pseudo)random crash if not args.no_random_crashes: if 'expand_capacity' in levers and levers['expand_capacity'] > 90 and not os.path.exists('prevent_random_crash.txt'): with open('prevent_random_crash.txt', 'wt') as f: f.write("this file will prevent random crashes in `emat-road-test-demo`") logger.error("Random crash, ha ha!") sys.exit(-9) try: for k,v in levers.items(): logger.debug(f"lever: {k} = {v}") for k,v in uncs.items(): logger.debug(f"uncertainty: {k} = {v}") result = Road_Capacity_Investment(**levers, **uncs) for k,v in result.items(): logger.debug(f"result: {k} = {v}") result1 = {str(k):float(result[k]) for k in ['no_build_travel_time','build_travel_time','time_savings']} result2 = pandas.DataFrame({ 'value_of_time_savings': [np.exp(result['value_of_time_savings']/1000), np.nan], 'present_cost_expansion': [np.nan, result['present_cost_expansion']], 'cost_of_capacity_expansion': [np.exp(result['cost_of_capacity_expansion']/1000), np.nan], 'net_benefits': [np.nan,result['net_benefits']], }, index=['exp','plain']) with open('output.yaml', 'wt') as f: yaml.safe_dump(result1, f) result2.to_csv('output.csv.gz') logger.info("emat-road-test-demo completed without errors") except: logger.exception("unintentional crash") sys.exit(-8) ``` #### File: emat/multitarget/anisotropic.py ```python import pandas, numpy from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.base import BaseEstimator, RegressorMixin, clone from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C from .frameable import FrameableMixin class AnisotropicGaussianProcessRegressor( GaussianProcessRegressor, FrameableMixin, ): def __init__( self, kernel_generator=None, alpha=1e-10, optimizer="fmin_l_bfgs_b", n_restarts_optimizer=0, normalize_y=False, standardize_before_fit=True, copy_X_train=True, random_state=None, ): self.kernel_generator = kernel_generator self.standardize_before_fit = standardize_before_fit super().__init__( kernel=None, alpha=alpha, optimizer=optimizer, n_restarts_optimizer=n_restarts_optimizer, normalize_y=normalize_y, copy_X_train=copy_X_train, random_state=random_state, ) def fit(self, X, y): """Fit Gaussian process regression model. Parameters ---------- X : array-like, shape = (n_samples, n_features) Training data y : array-like, shape = (n_samples, [n_output_dims]) Target values Returns ------- self : returns an instance of self. """ if self.kernel_generator is None: if self.standardize_before_fit: kernel_generator = lambda dims: RBF([1.0] * dims) else: kernel_generator = lambda dims: C() * RBF([1.0] * dims) else: kernel_generator = self.kernel_generator self.kernel = kernel_generator(X.shape[1]) self._pre_fit(X, y) if self.standardize_before_fit: y = numpy.copy(y) self.standardize_Y = y.std(axis=0, ddof=0) y /= self.standardize_Y else: self.standardize_Y = None return super().fit(X, y) def predict(self, X, return_std=False, return_cov=False): """ Predict using the Gaussian process regression model We can also predict based on an unfitted model by using the GP prior. In addition to the mean of the predictive distribution, also its standard deviation (return_std=True) or covariance (return_cov=True). Note that at most one of the two can be requested. Parameters ---------- X : array-like, shape = (n_samples, n_features) Query points where the GP is evaluated return_std : bool, default: False If True, the standard-deviation of the predictive distribution at the query points is returned along with the mean. return_cov : bool, default: False If True, the covariance of the joint predictive distribution at the query points is returned along with the mean Returns ------- y_mean : array, shape = (n_samples, [n_output_dims]) Mean of predictive distribution a query points y_std : array, shape = (n_samples,), optional Standard deviation of predictive distribution at query points. Only returned when return_std is True. y_cov : array, shape = (n_samples, n_samples), optional Covariance of joint predictive distribution a query points. Only returned when return_cov is True. """ if return_cov: y_hat, y_cov = super().predict(X, return_std=return_std, return_cov=return_cov) y_std = None elif return_std: y_hat, y_std = super().predict(X, return_std=return_std, return_cov=return_cov) y_cov = None else: y_hat = super().predict(X, return_std=return_std, return_cov=return_cov) y_std = None y_cov = None if self.standardize_Y is not None: try: y_hat *= self.standardize_Y[None, :] except IndexError: y_hat *= self.standardize_Y if y_std is not None: try: y_std *= self.standardize_Y[None, :] except IndexError: y_std *= self.standardize_Y if y_cov is not None: raise NotImplementedError() y_hat = self._post_predict(X, y_hat) if y_std is not None: y_std = self._post_predict(X, y_hat) if y_std is not None: return y_hat, y_std if y_cov is not None: return y_hat, y_cov return y_hat ``` #### File: emat/multitarget/boosting.py ```python from sklearn.base import RegressorMixin, BaseEstimator, clone from .frameable import FrameableMixin class BoostedRegressor(BaseEstimator, RegressorMixin, FrameableMixin): def __init__( self, estimators, ): self.estimators = estimators def fit(self, X, Y, sample_weight=None): if sample_weight is not None: raise NotImplementedError self._pre_fit(X, Y) self.estimators_ = [] Y_ = Y for n,e in enumerate(self.estimators): e_ = clone(e) e_.fit(X, Y_) self.estimators_.append(e_) if n+1 < len(self.estimators): Y_ = Y_ - e_.predict(X) def predict(self, X): Yhat = self.estimators_[0].predict(X) for e_ in self.estimators_[1:]: Yhat += e_.predict(X) Yhat = self._post_predict(X, Yhat) return Yhat ``` #### File: emat/scope/names.py ```python class ShortnameMixin: """ Adds a shortname attribute, which falls back to name if not set. """ @property def shortname(self): """Str: An abbreviated name, or the full name if not otherwise defined.""" if not hasattr(self, '_shortname') or self._shortname is None: return self.name return self._shortname @shortname.setter def shortname(self, value): if value is None: self._shortname = None else: self._shortname = str(value) if self._shortname == self.name: self._shortname = None @shortname.deleter def shortname(self): self._shortname = None @property def shortname_if_any(self): """Str: The abbreviated name, or None.""" if not hasattr(self, '_shortname') or self._shortname is None: return None return self._shortname class TaggableMixin: """ Adds a `tags` attribute. """ @property def tags(self): """Set: A set of tags attached to this object.""" tags = getattr(self, '_tags', None) if not tags: tags = set() return tags def add_tag(self, tag): if not hasattr(self, '_tags'): self._tags = {tag} else: self._tags.add(tag) def remove_tag(self, tag): if hasattr(self, '_tags'): self._tags.remove(tag) ``` #### File: emat/scope/parameter.py ```python import numbers from typing import Collection, Any, Mapping import numpy from ..workbench.em_framework import parameters as workbench_param from scipy import stats from scipy.stats._distn_infrastructure import rv_frozen from ..util import distributions, DistributionTypeError, DistributionFreezeError from ..util import make_rv_frozen, rv_frozen_as_dict from .names import ShortnameMixin, TaggableMixin def standardize_parameter_type(original_type): """Standardize parameter type descriptions Args: original_type (str): The original type Returns: str: The standarized type name """ original_type = original_type.lower() if 'unc' in original_type: return 'uncertainty' if 'lev' in original_type: return 'lever' elif 'con' in original_type or 'fix' in original_type: return 'constant' raise ValueError('cannot decipher parameter ptype') def standardize_data_type(original_type): dtype = str(original_type).lower() dtype = { 'float': 'real', 'float32': 'real', 'float64': 'real', 'floating': 'real', 'double': 'real', 'integer': 'int', 'int32': 'int', 'int64': 'int', 'long': 'int', 'boolean': 'bool', 'category': 'cat', 'categorical': 'cat', }.get(dtype, dtype) return dtype def _get_bounds_from_dist(dist): ppf_zero = 0 try: if isinstance(dist.dist, stats.rv_discrete): # ppf at actual zero for rv_discrete gives lower bound - 1 # due to a quirk in the scipy.stats implementation # so we use the smallest positive float instead ppf_zero = 5e-324 except AttributeError: pass lower_bound = dist.ppf(ppf_zero) upper_bound = dist.ppf(1.0) return lower_bound, upper_bound def _get_lower_bound_from_dist(dist): ppf_zero = 0 try: if isinstance(dist.dist, stats.rv_discrete): # ppf at actual zero for rv_discrete gives lower bound - 1 # due to a quirk in the scipy.stats implementation # so we use the smallest positive float instead ppf_zero = 5e-324 except AttributeError: pass lower_bound = dist.ppf(ppf_zero) return lower_bound def _get_upper_bound_from_dist(dist): upper_bound = dist.ppf(1.0) return upper_bound def make_parameter( name, ptype='constant', desc='missing description', min=None, max=None, dist=None, default=None, corr=None, address=None, dtype='infer', values=None, resolution=None, shortname=None, abbrev=None, ): """ Factory method to build a Parameter or Constant for a model. This function will create an object of the appropriate (sub)class for the parameter or constant. Args: name (str): A name for this parameter. The name must be a `str` and ideally a valid Python identifier (i.e., begins with a letter or underscore, contains only letters, numerals, and underscores). ptype (str, default 'constant'): The type for this parameter, one of {'constant', 'uncertainty', 'lever'}. min (numeric, optional): The minimum value for this parameter. max (numeric, optional): The maximum value for this parameter. dist (str or Mapping or rv_frozen, optional): A definition of a distribution to use for this parameter. Can be specified just as the name of the distribution when that distribution is parameterized only by the min and max (e.g., 'uniform'). If the distribution requires other parameters, this argument should be a Mapping, with keys including 'name' for the name of the distribution, as well as giving one or more named distributional parameters as appropriate. Or, just pass a rv_frozen object directly (see scipy.stats). The distribution defined here is of primary use for uncertainty parameters, as the features of defined uncertainty distributions can be used to derive probability distributions on outputs. However, distributions can also be used for policy lever parameters to guide the development of appropriate experimental designs. default (Any, optional): A default value for this parameter. The default value is used as the actual value for constant parameters. It is also used during univariate sensitivity testing as the value for this parameter when other parameters are being evaluated at non-default values. corr (dict, optional): A correlation definition that relates this parameter to others. Only applicable for uncertainty parameters. address (Any, optional): The address to use to access this parameter in the model. This is an implementation-specific detail. For example, in an Excel-based model, the address could be a sheet and cell reference given as a string. dtype (str, default 'infer'): A dtype for this parameter, one of {'cat', 'int', 'real', 'bool'} or some sub-class variant or specialization thereof (e.g., int64). values (Collection, optional): A collection of possible values, relevant only for categorical parameters. resolution (Collection, optional): A collection of possible particular values, used to set the possible values considered when sampling with factorial-based designs. shortname (str, optional): A shorter name, especially useful when the name of this parameter is a long strings that may not display neatly in figures. abbrev (Mapping, optional): A set of abbreviations used for values, especially useful when the names of values are long strings that may not display neatly in figures. Returns: Parameter or Constant """ # Convert dist to a Mapping if it is just a string if isinstance(dist, str): dist = {'name': dist} # Default correlation is an empty list. corr = corr if corr is not None else [] # Standardize the dtype to a lowercase string of # correct type dtype = standardize_data_type(dtype) if dtype == 'infer': if values is not None: if set(values) == {True, False}: dtype = 'bool' else: dtype = 'cat' elif max is True and min is False: dtype = 'bool' elif isinstance(min, numbers.Integral) and isinstance(max, numbers.Integral): dtype = 'int' elif isinstance(min, numbers.Real) and isinstance(max, numbers.Real): dtype = 'real' elif dist is not None and isinstance(dist, Mapping): try: make_rv_frozen(**dist, discrete=True) except DistributionTypeError: dtype = 'real' else: dtype = 'int' else: raise ValueError(f'cannot infer dtype for {name}, give it explicitly') if dtype not in ('cat', 'int', 'real', 'bool'): message = f"invalid dtype {dtype} for parameter {name}, must be 'cat', 'int', 'real', or 'bool'" if 'unc' in dtype: message += "\n(to set this parameter as an uncertainty, set `ptype` to 'uncertainty', not `dtype`)" elif 'lev' in dtype: message += "\n(to set this parameter as a lever, set `ptype` to 'lever', not `dtype`)" elif 'con' in dtype: message += "\n(to set this parameter as a constant, set `ptype` to 'constant', not `dtype`)" raise ValueError(message) # Data checks if dist is not None and not isinstance(dist, Mapping) and not isinstance(dist, rv_frozen): raise TypeError(f'dist must be a dict or rv_frozen for {name}, not {type(dist)}') if dist is None: dist_ = {} rv_gen = None elif isinstance(dist, rv_frozen): dist_ = {'name': dist.dist.name} dist_.update(dist.kwds) rv_gen = dist else: dist_ = dist rv_gen = None dist_for_maker = dist_.copy() if min is not None: dist_for_maker['min'] = min if max is not None: dist_for_maker['max'] = max if dtype=='bool': dist_for_maker['min'] = 0 dist_for_maker['max'] = 1 elif dtype=='cat': dist_for_maker['min'] = 0 dist_for_maker['max'] = (len(values)-1) if values is not None else 0 ptype = standardize_parameter_type(ptype) if ptype is 'constant': if dist_.get('name') is None: dist_['name'] = 'constant' if dist_.get('name') != 'constant': raise ValueError(f'constant cannot have non-constant distribution for {name}') rv_gen_tentative = None else: # If inferred dtype is int but distribution is discrete, promote to real try: rv_gen_tentative = rv_gen or make_rv_frozen(**dist_for_maker, discrete=True) except DistributionTypeError: if dtype == 'int': dtype = 'real' rv_gen_tentative = rv_gen or make_rv_frozen(**dist_for_maker, discrete=False) except DistributionFreezeError as err: raise DistributionFreezeError(f'on freeze for {name}') from err if dtype == 'bool': if min is None: min = False if min != False: raise ValueError(f'min of bool must be False for {name}') if max is None: max = True if max != True: raise ValueError(f'max of bool must be True for {name}') values = [False, True] if dtype in {'int', 'real'}: if dist_.get('name') == 'constant': if min is None and default is not None: min = default if max is None and default is not None: max = default if rv_gen_tentative is not None: min, max = _get_bounds_from_dist(rv_gen_tentative) if min is None: raise ValueError(f'min of {dtype} is required for {name}') if max is None: raise ValueError(f'max of {dtype} is required for {name}') # Create the Parameter if ptype == 'constant': if dtype == 'cat': p = Constant(name, default, desc=desc, address=address, dtype='cat') else: p = Constant(name, default, desc=desc, address=address) elif dtype == 'cat': p = CategoricalParameter( name, values, default=default, desc=desc, address=address, ptype=ptype, corr=corr, abbrev=abbrev, shortname=shortname, ) elif dtype == 'int': rv_gen = rv_gen or make_rv_frozen(**dist_for_maker, discrete=True) if rv_gen is None: raise ValueError(f'failed to make {name} ({ptype}) from {dist_}') # p = Constant(name, default, desc=desc, address=address) else: p = IntegerParameter( name, lower_bound=min, upper_bound=max, resolution=resolution, default=default, dist=rv_gen, dist_def=dist_, desc=desc, address=address, ptype=ptype, corr=corr, abbrev=abbrev, shortname=shortname, ) elif dtype == 'real': rv_gen = rv_gen or make_rv_frozen(**dist_for_maker) if rv_gen is None: raise ValueError(f'failed to make {name} ({ptype}) from {dist_}') # p = Constant(name, default, desc=desc, address=address) else: p = RealParameter( name, lower_bound=min, upper_bound=max, resolution=resolution, default=default, dist=rv_gen, dist_def=dist_, desc=desc, address=address, ptype=ptype, corr=corr, abbrev=abbrev, shortname=shortname, ) elif dtype == 'bool': rv_gen = rv_gen or make_rv_frozen(**dist_for_maker, discrete=True) if rv_gen is None: raise ValueError(f'failed to make {name} ({ptype}) from {dist_}') # p = Constant(name, default, desc=desc, address=address) else: p = BooleanParameter( name, default=default, dist=rv_gen, dist_def=dist_, desc=desc, address=address, ptype=ptype, corr=corr, abbrev=abbrev, shortname=shortname, ) else: raise ValueError(f"invalid dtype {dtype}") return p class Constant(workbench_param.Constant): ptype = 'constant' """str: Parameter type, for compatibility with Parameter.""" def __init__(self, name, value, desc="", address=None, dtype=None): if value is None: raise ValueError("Constant.value cannot be None") workbench_param.Constant.__init__( self, name, value, ) self.desc = desc """str: Human readable description of this constant, for reference only""" self.address = address """ Any: The address to use to access this parameter in the model. This is an implementation-specific detail. For example, in an Excel-based model, the address could be a sheet and cell reference given as a string. """ if dtype is None: dtype = numpy.asarray(value).dtype dtype = standardize_data_type(dtype) self.dtype = dtype """str: The dtype for the value, as a string.""" @property def default(self): """Read-only alias for value""" return self.value @property def values(self): """list: The value as a one-item list""" return [self.value,] def __eq__(self, other): try: if self.address != other.address: return False if self.dtype != other.dtype: return False except AttributeError: return False return super().__eq__(other) def __ne__(self, other): return not self.__eq__(other) class Parameter(workbench_param.Parameter, ShortnameMixin, TaggableMixin): dtype = None def __init__( self, name, dist, *, lower_bound=None, upper_bound=None, resolution=None, default=None, variable_name=None, pff=False, desc="", address=None, ptype=None, corr=None, dist_def=None, shortname=None, abbrev=None, tags=None, ): # The default constructor for ema_workbench parameters uses no distribution # But for EMAT, we want to always define a distribution explicitly # for clarity. if dist is None and (lower_bound is None or upper_bound is None): raise ValueError("must give lower_bound and upper_bound, or dist") if dist is None: from scipy.stats import uniform dist = uniform(lower_bound, upper_bound-lower_bound) if isinstance(dist, str): dist = {'name':dist} if isinstance(dist, Mapping): dist = dict(**dist) if lower_bound is not None: dist['min'] = lower_bound if upper_bound is not None: dist['max'] = upper_bound dist = make_rv_frozen(**dist) # We extract and set the lower and upper bounds here, # in order to use the default constructor from the workbench. ppf_zero = 0 if isinstance(dist.dist, stats.rv_discrete): # @UndefinedVariable # ppf at actual zero for rv_discrete gives lower bound - 1 # due to a quirk in the scipy.stats implementation # so we use the smallest positive float instead ppf_zero = 5e-324 lower_bound = dist.ppf(ppf_zero) upper_bound = dist.ppf(1.0) if self.dtype == 'int': lower_bound = int(lower_bound) upper_bound = int(upper_bound) workbench_param.Parameter.__init__( self, name=name, lower_bound=lower_bound, upper_bound=upper_bound, resolution=resolution, default=default, variable_name=variable_name, pff=pff, ) self.dist = dist self.desc = desc """str: Human readable description of this parameter, for reference only""" self.address = address """ Any: The address to use to access this parameter in the model. This is an implementation-specific detail. For example, in an Excel-based model, the address could be a sheet and cell reference given as a string. """ self.ptype = standardize_parameter_type(ptype) if ptype is not None else None """str: Parameter type, one of {'constant', 'uncertainty', 'lever'}""" self.corr = corr if corr is not None else [] """Dict: A correlation definition. Key give names of other parameters, values give correlation.""" self.dist_def = dict(dist_def) if dist_def is not None else {} """Dict: The arguments that define the underlying distribution.""" self._shortname = shortname self.abbrev = abbrev or {} """Dict: Abbreviations used for long attribute names in figures.""" if tags: if isinstance(tags, str): tags = [tags] for tag in tags: self.add_tag(tag) @property def min(self): return self.lower_bound @property def max(self): return self.upper_bound def __eq__(self, other): try: if type(self) != type(other): return False if self.address != other.address: return False if self.dtype != other.dtype: return False if self.ptype != other.ptype: return False if self.corr != other.corr: return False if self.distdef != other.distdef: print(f"distdef not equal: {self.distdef} != {other.distdef}") return False except AttributeError: return False if not isinstance(self, other.__class__): return False self_keys = set(self.__dict__.keys()) other_keys = set(other.__dict__.keys()) if self_keys - other_keys: return False else: for key in self_keys: if key == 'dist_def': continue if key != 'dist': if getattr(self, key) != getattr(other, key): return False else: # name, parameters self_dist = getattr(self, key) other_dist = getattr(other, key) if self_dist.dist.name != other_dist.dist.name: return False if self_dist.args != other_dist.args: return False else: return True @property def distdef(self): result = rv_frozen_as_dict(self.dist, self.min, self.max) return result @property def dist_description(self): result = self.dist_def if isinstance(result, str): result = {'name':result} if result.get('name') == 'pert': if 'gamma' in result: return f"Pert Distribution (min={self.min}, peak={result.get('peak')}, max={self.max}, gamma={result.get('gamma')})" return f"Pert Distribution (min={self.min}, peak={result.get('peak')}, max={self.max})" if result.get('name') == 'uniform' or len(result)==0: return f"Uniform Distribution (min={self.min}, max={self.max})" if result.get('name') == 'triangle': return f"Trianglar Distribution (min={self.min}, peak={result.get('peak')}, max={self.max})" return str(result) def __repr__(self): return f"<emat.{self.__class__.__name__} '{self.name}'>" def _hash_it(self, ha=None): from ..util.hasher import hash_it return hash_it( self.name, self.dist_def, self.resolution, self.address, self.dtype, self.pff, tuple(self.variable_name), self.shortname, self.ptype, self.corr, ha=ha, ) def get_abbrev(self, name): """Get an abbreviated name if available.""" try: return self.abbrev.get(name, name) except AttributeError: return name def set_abbrev(self, values=None, **kwargs): if values is None: values = {} try: self.abbrev.update(values, **kwargs) except AttributeError: self.abbrev = {} self.abbrev.update(values, **kwargs) class RealParameter(Parameter, workbench_param.RealParameter): dtype = 'real' def __init__(self, name, *, lower_bound=None, upper_bound=None, resolution=None, default=None, variable_name=None, pff=False, dist=None, dist_def=None, desc="", address=None, ptype=None, corr=None, shortname=None, abbrev=None): if dist is None and (lower_bound is None or upper_bound is None): raise ValueError("must give lower_bound and upper_bound, or dist") if dist is None: from scipy.stats import uniform dist = uniform(lower_bound, upper_bound-lower_bound) Parameter.__init__( self, name, dist=dist, resolution=resolution, default=default, variable_name=variable_name, pff=pff, desc=desc, address=address, ptype=ptype, corr=corr, dist_def=dist_def, shortname=shortname, abbrev=abbrev, ) @property def min(self): return float(super().lower_bound) @property def max(self): return float(super().upper_bound) class IntegerParameter(Parameter, workbench_param.IntegerParameter): dtype = 'int' def __init__(self, name, *, lower_bound=None, upper_bound=None, resolution=None, default=None, variable_name=None, pff=False, dist=None, dist_def=None, desc="", address=None, ptype=None, corr=None, shortname=None, abbrev=None): if dist is None and (lower_bound is None or upper_bound is None): raise ValueError("must give lower_bound and upper_bound, or dist") if dist is None: from scipy.stats import randint dist = randint(lower_bound, upper_bound+1) Parameter.__init__( self, name, dist=dist, resolution=resolution, default=default, variable_name=variable_name, pff=pff, desc=desc, address=address, ptype=ptype, corr=corr, dist_def=dist_def, shortname=shortname, abbrev=abbrev, ) if self.resolution is not None: for entry in self.resolution: if not isinstance(entry, numbers.Integral): raise ValueError(('all entries in resolution should be ' 'integers')) @property def min(self): return int(super().lower_bound) @property def max(self): return int(super().upper_bound) class BooleanParameter(Parameter, workbench_param.BooleanParameter): dtype = 'bool' def __init__(self, name, *, lower_bound=None, upper_bound=None, resolution=None, default=None, variable_name=None, pff=False, dist=None, dist_def=None, desc="", address=None, ptype=None, corr=None, shortname=None, abbrev=None): Parameter.__init__( self, name, dist=dist, resolution=resolution, default=default, variable_name=variable_name, pff=pff, desc=desc, address=address, ptype=ptype, corr=corr, dist_def=dist_def, shortname=shortname, abbrev=abbrev, ) cats = [workbench_param.create_category(cat) for cat in [False, True]] self._categories = workbench_param.NamedObjectMap(workbench_param.Category) self.categories = cats self.resolution = [i for i in range(len(self.categories))] self.multivalue = False @property def values(self): """List: The possible discrete values.""" return [False, True] @property def min(self): return False @property def max(self): return True class CategoricalParameter(Parameter, workbench_param.CategoricalParameter): dtype = 'cat' def __init__(self, name, categories, *, default=None, variable_name=None, pff=False, multivalue=False, desc="", address=None, ptype=None, corr=None, dist=None, singleton_ok=False, shortname=None, abbrev=None): lower_bound = 0 upper_bound = len(categories) - 1 from scipy.stats import randint dist = randint(lower_bound, upper_bound+1) if upper_bound == 0 and not singleton_ok: raise ValueError('there should be more than 1 category') Parameter.__init__( self, name, dist=dist, resolution=None, default=default, variable_name=variable_name, pff=pff, desc=desc, address=address, ptype=ptype, corr=corr, shortname=shortname, abbrev=abbrev, ) cats = [workbench_param.create_category(cat) for cat in categories] self._categories = workbench_param.NamedObjectMap(workbench_param.Category) self.categories = cats self.resolution = [i for i in range(len(self.categories))] self.multivalue = multivalue @property def values(self): """List: The possible discrete values.""" return list(i.value for i in self.categories) @property def min(self): """None: Categorical parameters are not characterized by a lower bound.""" return None @property def max(self): """None: Categorical parameters are not characterized by an upper bound.""" return None @property def distdef(self): """None: Categorical parameters distribution is not implemented.""" return None @property def dist_description(self): return "Uniform Distribution" ############# class OLD_Parameter: """ Definitions for a particular input for a model. Args: name (str): A name for this parameter. The name must be a `str` and ideally a valid Python identifier (i.e., begins with a letter or underscore, contains only letters, numerals, and underscores). ptype (str, default 'constant'): The type for this parameter, one of {'constant', 'uncertainty', 'lever'}. min (numeric, optional): The minimum value for this parameter. max (numeric, optional): The maximum value for this parameter. dist (str or Mapping, optional): A definition of a distribution to use for this parameter, which is only relevant for uncertainty parameters. Can be specified just as the name of the distribution when that distribution is parameterized only by the min and max (e.g., 'uniform'). If the distribution requires other parameters, this argument should be a Mapping, with keys including 'name' for the name of the distribution, as well as giving one or more named distributional parameters as appropriate. default (Any, optional): A default value for this parameter. The default value is used as the actual value for constant parameters. It is also used during univariate sensitivity testing as the value for this parameter when other parameters are being evaluated at non-default values. corr (dict, optional): A correlation definition that relates this parameter to others. Only applicable for uncertainty parameters. address (Any, optional): The address to use to access this parameter in the model. This is an implementation-specific detail. For example, in an Excel-based model, the address could be a sheet and cell reference given as a string. dtype (str, default 'infer'): A dtype for this parameter, one of {'cat', 'int', 'real', 'bool'} or some sub-class variant or specialization thereof (e.g., int64). values (Collection, optional): A collection of possible values, relevant only for categorical parameters. resolution (Collection, optional): A collection of possible particular values, used to set the possible values considered when sampling with factorial-based designs. """ def __init__( self, name, ptype='constant', desc='missing description', min=None, max=None, dist=None, default=None, corr=None, address=None, dtype='infer', values=None, resolution=None, ): self.name = name """str: Parameter name, used to identify parameter.""" self.ptype = standardize_parameter_type(ptype) """str: Parameter type, one of {'constant', 'uncertainty', 'lever'}""" self.desc = desc """str: Human readable description of this parameter, for reference only""" self.min = min """numeric: Lower bound for this parameter, or None""" self.max = max """numeric: Upper bound for this parameter, or None""" if isinstance(dist, str): dist = {'name': dist} self.dist = dist """Dict: definition of a distribution to use for this parameter""" self.default = default """A default value for this parameter, used for constants or in univariate sensitivity testing""" self.corr = corr if corr is not None else [] self.address = address self.dtype = standardize_data_type(dtype) self.values = values self.resolution = resolution if self.dtype == 'infer': if self.values is not None: if set(self.values) == {True, False}: self.dtype = 'bool' else: self.dtype = 'cat' elif self.max is True: self.dtype = 'bool' elif isinstance(self.max, numbers.Integral): self.dtype = 'int' elif isinstance(self.max, numbers.Real): self.dtype = 'real' else: self.dtype = 'bool' if self.dtype not in ('cat','int','real','bool'): raise ValueError(f"invalid dtype {self.dtype}") # Data checks if self.dist is not None and not isinstance(self.dist, Mapping): raise TypeError(f'dist must be a dict for {self.name}, not {type(self.dist)}') if self.ptype is 'constant': if self.dist is None: self.dist = {'name': 'constant'} if self.dist.get('name') != 'constant': raise ValueError(f'constant cannot have non-constant distribution for {self.name}') if self.dtype == 'bool': if self.min is None: self.min = False if self.min != False: raise ValueError(f'min of bool must be False for {self.name}') if self.max is None: self.max = True if self.max != True: raise ValueError(f'max of bool must be True for {self.name}') self.values = [False, True] if self.dtype in {'int','real'}: if self.dist is not None and self.dist.get('name') == 'constant': if self.min is None and self.default is not None: self.min = self.default if self.max is None and self.default is not None: self.max = self.default if self.min is None: raise ValueError(f'min of {self.dtype} is required for {self.name}') if self.max is None: raise ValueError(f'max of {self.dtype} is required for {self.name}') def get_parameter(self): """Get an ema_workbench.Parameter from this emat.Parameter. This method returns an :class:`ema_workbench.Parameter <ema_workbench.em_framework.parameters.Parameter>` of the correct type for this :class:`emat.Parameter`. This will be one of: * :class:`Constant <ema_workbench.em_framework.parameters.Constant>` * :class:`CategoricalParameter <ema_workbench.em_framework.parameters.CategoricalParameter>` * :class:`IntegerParameter <ema_workbench.em_framework.parameters.IntegerParameter>` * :class:`RealParameter <ema_workbench.em_framework.parameters.RealParameter>` * :class:`BooleanParameter <ema_workbench.em_framework.parameters.BooleanParameter>` """ if self.ptype == 'constant': return Constant(self.name, self.default) elif self.dtype == 'cat': return CategoricalParameter(self.name, self.values, default=self.default,) elif self.dtype == 'int': return IntegerParameter( self.name, self.min, self.max, resolution=self.resolution, default=self.default, ) elif self.dtype == 'real': if self.dist is not None and len(self.dist) > 0: _d = self.dist.copy() distname = _d.pop('name', 'uniform') if distname == 'uniform': _d['loc'] = self.min _d['scale'] = self.max - self.min elif distname == 'triangle': _d['lower_bound'] = self.min _d['upper_bound'] = self.max elif distname == 'pert': _d['lower_bound'] = self.min _d['upper_bound'] = self.max dist_gen = getattr(distributions, distname) dist = dist_gen(**_d) else: dist = None return RealParameter( self.name, self.min, self.max, resolution=self.resolution, default=self.default, dist=dist, ) elif self.dtype == 'bool': return BooleanParameter(self.name, default=self.default) else: raise ValueError(f"invalid dtype {self.dtype}") def __repr__(self): classname = self.__class__.__name__ name = self.name rep = f"{classname}('{name}', dtype={self.dtype}, ptype='{self.ptype}'" rep += ')' return rep def __eq__(self, other): keys = {'name', 'ptype', 'desc', 'dtype', 'default', 'min', 'max', 'dist', 'corr', 'values', 'address', 'resolution'} for k in keys: if getattr(self, k) != getattr(other, k): return False return True ``` #### File: emat/util/constraints.py ```python import pandas from ..workbench import Constraint def batch_contraint_check( constraints, parameter_frame, outcome_frame=None, aggregate=True, scope=None, only_parameters=False, ): """ Batch check of constraints Args: constraints (Collection[Constraint]): A collection of Constraints to evaluate. parameter_frame (pandas.DataFrame, optional): The parameters (uncertainties and levers) for a batch of experiments. If scope is given, this can be split automatically into parameter_frame and outcome_frame. outcome_frame (pandas.DataFrame, optional): The outcomes (performance measures) for a batch of experiments. If both this and `parameter_frame` are given, they must have the same indexes. If not given but the scope is given, the outcome_frame is created from `parameter_frame`. aggregate (bool, default True): Return a single boolean series that indicates whether all of the constraints are satisfied. Otherwise, a pandas.DataFrame is returned with a column for every constraint. scope (Scope, optional): A Scope used to identify parameters and outcomes. only_parameters (bool, default False): Only check constraints based exclusively on parameters. Returns: pandas.Series: If return_agg is True pandas.DataFrame: If return_agg is False Raises: KeyError: If a constraint in constraints calls for a parameter or outcome name that is not present in parameter_frame or outcome_frame, respectively. """ if scope is not None and outcome_frame is None: _p, _o = [], [] for col in parameter_frame.columns: if col in scope.get_parameter_names(): _p.append(col) else: _o.append(col) parameter_frame, outcome_frame = parameter_frame[_p], parameter_frame[_o] if parameter_frame is None and outcome_frame is not None: parameter_frame = pandas.DataFrame(index=outcome_frame.index, columns=[]) if parameter_frame is not None and outcome_frame is None: outcome_frame = pandas.DataFrame(index=parameter_frame.index, columns=[]) assert len(parameter_frame) == len(outcome_frame) results = pandas.DataFrame( data=True, index=parameter_frame.index, columns=[c.name for c in constraints], dtype=bool, ) if len(parameter_frame): for c in constraints: assert isinstance(c, Constraint) if only_parameters and c.outcome_names: continue constraint_data = pandas.concat([ parameter_frame[c.parameter_names], outcome_frame[c.outcome_names], ], axis=1) results[c.name] = (constraint_data.apply(c.process, axis=1) == 0) if aggregate: return results.all(axis=1) else: return results ``` #### File: util/filez/spooling.py ```python import os import time import shutil from .timing import creation_date, append_date_to_filename def filename_split(filename): pathlocation, basefile = os.path.split(filename) basefile_list = basefile.split(".") if len(basefile_list) > 1: basename = ".".join(basefile_list[:-1]) extension = "." + basefile_list[-1] else: basename = basefile_list[0] extension = "" return (pathlocation, basename, extension) def filename_fuse(pathlocation, basename, extension): x = os.path.join(pathlocation, basename) if extension != "": x += "." + extension return x def next_filename( filename, format="{basename:s}.{number:03d}{extension:s}", suffix=None, plus=0, allow_natural=False, demand_natural=False, ): """Finds the next file name in this stack that does not yet exist. Parameters ---------- filename : str or None The base file name to use for this stack. New files would have a number appended after the basename but before the dot extension. For example, if the filename is "/tmp/boo.txt", the first file created will be named "/tmp/boo.001.txt". If None, then a temporary file is created instead. Other Parameters ---------------- suffix : str, optional If given, use this file extension instead of any extension given in the filename argument. The usual use case for this parameter is when filename is None, and a temporary file of a particular kind is desired. format : str, optional If given, use this format string to generate new stack file names in a different format. plus : int, optional If given, increase the returned filenumber by this amount more than what is needed to generate a new file. This can be useful with pytables, which can create pseudo-files that don't appear on disk but should all have unique names. allow_natural : bool If true, this function will return the unedited `filename` parameter if that file does not already exist. Otherwise will always have a number appended to the name. demand_natural : bool If true, this function will just throw a FileExistsError instead of spooling if the file already exists. """ if filename is not None: filename = os.path.expanduser(filename) if demand_natural and os.path.exists(filename): raise FileExistsError(filename) if allow_natural and not os.path.exists(filename): return filename pathlocation, basename, extension = filename_split(filename) if suffix is not None: extension = "." + suffix fn = lambda n: os.path.join(pathlocation, format.format(basename=basename, extension=extension, number=n)) n = 1 while os.path.exists(fn(n)): n += 1 return fn(n + plus) def archive_existing_file( filename, archive_path=None, tag='now', ): """ Archive a file. Parameters ---------- filename : Path-like Source file. archive_path : Path-like, optional Destination for the archival copy. If not given, the file name is modified in-place and the file is not moved. tag : {'now', 'creation'}, default 'now' Appends a tag to the existing file based on the current time, or the time that the file being archived was created. """ if tag=='now': epoch = time.time() elif tag=='creation': epoch = creation_date(filename) else: raise ValueError('supported tags are [now, creation]') if archive_path is None: archive_path = os.path.dirname(filename) filebasename = os.path.basename(filename) if not os.path.exists(filename): raise FileNotFoundError(filename) if not os.path.exists(archive_path): os.makedirs(archive_path) # send existing file to archive new_name = next_filename( append_date_to_filename(os.path.join(archive_path, filebasename), epoch), allow_natural=True ) shutil.move(filename, new_name) ``` #### File: emat/util/json_encoder.py ```python import json import numpy as np class NumpyEncoder(json.JSONEncoder): """ Custom encoder for numpy data types """ def default(self, obj): if isinstance(obj, (np.int_, np.intc, np.intp, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64)): return int(obj) elif isinstance(obj, (np.float_, np.float16, np.float32, np.float64)): return float(obj) elif isinstance(obj, (np.complex_, np.complex64, np.complex128)): return {'real': obj.real, 'imag': obj.imag} elif isinstance(obj, (np.ndarray,)): return obj.tolist() elif isinstance(obj, (np.bool_)): return bool(obj) elif isinstance(obj, (np.void)): return None return json.JSONEncoder.default(self, obj) def dumps(*args, **kwargs): return json.dumps(*args, **kwargs, cls=NumpyEncoder) ``` #### File: emat/util/rendering.py ```python import re import ast from ..util.loggers import get_module_logger _logger = get_module_logger(__name__) from .xmle import Show, Elem _png = re.compile(r"png(\(([^\)]*)\))?") _svg = re.compile(r"svg(\(([^\)]*)\))?") def _parse_paren(s, format): for part in s.split(","): k, v = part.split("=", 1) k = k.strip() v = v.strip() try: k = ast.literal_eval(k) except ValueError: pass try: v = ast.literal_eval(v) except ValueError: pass format[k] = v def render_plotly(figure, format): """ Convert a plotly figure to a static image. Args: figure (plotly.graph_objs.Figure): The source figure to convert format (str or dict): A string or dictionary that contains the output formatting instructions. Any format accepted by the plotly `to_image` method can be given as a dictionary, which is passed as keyword arguments to that function. Alternatively, give a string that contains a format type, optionally called with other keyword arguments. Currently only *svg* and *png* are implemented using the string approach. If no implemented format is available, the original plotly Figure is returned. Returns: xmle.Elem or plotly.graph_objs.Figure Examples: >>> from plotly.graph_objects import Figure >>> render_plotly(Figure(), {'format':'png','width':300,'height':500}) ... >>> render_plotly(Figure(), "svg") ... >>> render_plotly(Figure(), "png(width=500,height=500)") ... """ if isinstance(format, str): is_png = _png.search(format) if is_png: format = dict(format="png") if is_png.group(2): _parse_paren(is_png.group(2), format) if isinstance(format, str): is_svg = _svg.search(format) if is_svg: format = dict(format="svg") if is_svg.group(2): _parse_paren(is_svg.group(2), format) _logger.debug(f"render format is {format}") fallback = format.pop('fallback', False) if isinstance(format, dict): try: return Show(figure.to_image(**format)) except: if fallback: return figure else: import traceback err_txt = traceback.format_exc() return Elem('pre', text=str(err_txt)) else: return figure ``` #### File: emat/util/seq_grouping.py ```python from itertools import groupby from operator import itemgetter def seq_int_grouper(data): groupings = [] for k, g in groupby(enumerate(data), (lambda ix : ix[0] - ix[1])): agg = list(map(itemgetter(1), g)) if len(agg)==1: groupings.append(str(agg[0])) else: groupings.append(f"{agg[0]}-{agg[-1]}") return ",".join(groupings) def seq_int_group_expander(seq): seq = seq.split(",") data = [] for agg in seq: if "-" in agg: first, last = agg.split("-") data.extend(range(int(first), int(last)+1)) else: data.append(int(agg)) return data ``` #### File: util/xmle/styles.py ```python body_font = 'font-family: "Book-Antiqua", "Palatino", serif;' signature_font = 'font-size:70%; font-weight:100; font-style:italic; font-family: Roboto, Helvetica, sans-serif;' signature_name_font = 'font-weight:400; font-style:normal; font-family: "Roboto Slab", Roboto, Helvetica, sans-serif;' def load_css(filename): import os css = None if filename is None or not isinstance(filename, str): return None if os.path.exists(filename): with open(filename, 'r') as f: css = f.read() return css f0 = "{}.css".format(filename) if os.path.exists(f0): with open(f0, 'r') as f: css = f.read() return css try: import appdirs except ImportError: pass else: f1 = os.path.join(appdirs.user_config_dir('Larch'), filename) if os.path.exists(f1): with open(f1, 'r') as f: css = f.read() return css f2 = "{}.css".format(f1) if os.path.exists(f2): with open(f2, 'r') as f: css = f.read() return css if '{' in filename and '}' in filename: return filename return css _default_css_jupyter = """ @import url('https://fonts.googleapis.com/css?family=Roboto:400,700,500italic,100italic|Roboto+Mono:300,400,700|Roboto+Slab:200,900|EB+Garamond:400,400i'); .error_report { color:red; font-family:monospace; } div.output_wrapper {""" + body_font + """} div.output_wrapper table, div.jp-OutputArea-output table { border-collapse:collapse; } div.output_wrapper table, div.output_wrapper th, div.output_wrapper td, div.jp-OutputArea-output table, div.jp-OutputArea-output th, div.jp-OutputArea-output td { border: 1px solid #999999; font-family:"Roboto Mono", monospace; font-size:9pt; font-weight:400; } div.output_wrapper th, div.output_wrapper td, div.jp-OutputArea-output th, div.jp-OutputArea-output td { padding:2px; text-align:left; } div.output_wrapper td.parameter_category, div.jp-OutputArea-output td.parameter_category { font-family:"Roboto", monospace; font-weight:500; background-color: #f4f4f4; font-style: italic; } div.output_wrapper th, div.jp-OutputArea-output th { font-family:"Roboto", monospace; font-weight:700; } div.output_wrapper table.dicta, div.jp-OutputArea-output table.dicta { border-left: 2px solid black; margin-bottom:2px; border-top:0; border-right:0 } div.output_wrapper th.dicta, div.output_wrapper td.dicta, div.jp-OutputArea-output th.dicta, div.jp-OutputArea-output td.dicta { padding-top:0px; text-align:left; border:0; } div.output_wrapper div.LinearFunc, div.jp-OutputArea-output div.LinearFunc { font-family:"Roboto Mono", monospace; font-size:100%; font-weight:400; } .larch_signature {""" + signature_font + """ } .larch_name_signature {""" + signature_name_font + """} .larch_head_tag {font-size:150%; font-weight:900; font-family:"Roboto Slab", Verdana;} .larch_head_tag_ver {font-size:80%; font-weight:200; font-family:"Roboto Slab", Verdana;} .larch_head_tag_pth {font-size:40%; font-weight:200; font-family:"Roboto Slab", Verdana; padding-left:5px;} .larch_head_tag_more {font-size:50%; font-weight:300; font-family:"Roboto Mono", monospace; line-height:130%;} div.output_wrapper a.parameter_reference, div.jp-OutputArea-output a.parameter_reference { font-style: italic; text-decoration: none } div.output_wrapper .strut2, div.jp-OutputArea-output .strut2 { min-width:1in } div.output_wrapper .histogram_cell, div.jp-OutputArea-output .histogram_cell { padding-top:1; padding-bottom:1; vertical-align:center; } div.output_wrapper .raw_log pre, div.jp-OutputArea-output .raw_log pre { font-family:"Roboto Mono", monospace; font-weight:300; font-size:70%; } .dicta pre { margin:0; } div.output_wrapper caption, div.jp-OutputArea-output caption, { caption-side: bottom; text-align: left; font-family: Roboto; font-style: italic; font-weight: 100; font-size: 80%; } table.running_parameter_update caption { caption-side: top; text-align: left; font-family: Roboto; font-style: italic; font-weight: 500; font-size: 100%; } table.dictionary { border:0px hidden !important; border-collapse: collapse !important; } div.blurb { margin-top: 15px; max-width: 6.5in; } h2.figure_head { padding-left: .25in; } h3.figure_head { padding-left: .5in; } div.jp-RenderedMarkdown h1 {font-weight: 900; border-bottom:2px black solid; padding-bottom:4px} div.jp-RenderedMarkdown h2 {font-weight: 850; border-bottom:0.5px black solid; padding-bottom:4px} div.jp-RenderedMarkdown h3 {font-weight: 800; font-style:italic} div.jp-RenderedMarkdown p { max-width:600px; font-size:150%; font-family: EB Garamond; } div.jp-RenderedMarkdown p code { font-size: 75%; } """ # from ..display import display_html, HTML # from .xhtml import tooltipped_style, floating_table_head, _tooltipped_style_css # # css = HTML("<style>{}\n\n{}</style>".format(_default_css_jupyter,tooltipped_style().tostring())) # # def stylesheet(): # display_html(css) def default_css(): return """ @import url(https://fonts.googleapis.com/css?family=Roboto:400,700,500italic,100italic|Roboto+Mono:300,400,700); .error_report {color:red; font-family:monospace;} body {""" + body_font + """} div.larch_title { font-family: "Book-Antiqua", "Palatino", serif; font-size:200%; font-weight:900; font-style:normal; color: #444444; } table {border-collapse:collapse;} table, th, td { border: 1px solid #999999; font-family:"Roboto Mono", monospace; font-size:90%; font-weight:400; } th, td { padding:2px; } td.parameter_category { font-family:"Roboto", monospace; font-weight:500; background-color: #f4f4f4; font-style: italic; } th { font-family:"Roboto", monospace; font-weight:700; } .larch_signature {""" + signature_font + """} .larch_name_signature {""" + signature_name_font + """} a.parameter_reference {font-style: italic; text-decoration: none} .strut2 {min-width:1in} .histogram_cell { padding-top:1; padding-bottom:1; vertical-align:center; } .dicta pre { margin:0; font-family:"Roboto Mono", monospace; font-weight:300; font-size:70%; } .raw_log pre { font-family:"Roboto Mono", monospace; font-weight:300; font-size:70%; } caption { caption-side: bottom; text-align: left; font-family: Roboto; font-style: italic; font-weight: 100; font-size: 80%; } table.dictionary { border:0px hidden !important; border-collapse: collapse !important; } div.blurb { margin-top: 15px; max-width: 6.5in; } div.note { font-size:90%; padding-left:1em; padding-right:1em; border: 1px solid #999999; border-radius: 4px; } p.admonition-title { font-weight: 700; } .tooltipped { position: relative; display: inline-block; } .tooltipped .tooltiptext { visibility: hidden; width: 180px; background-color: black; color: #fff; text-align: center; border-radius: 6px; padding: 5px 0; position: absolute; z-index: 1; top: -5px; left: 110%; } .tooltipped .tooltiptext::after { content: ""; position: absolute; top: 50%; right: 100%; margin-top: -5px; border-width: 5px; border-style: solid; border-color: transparent black transparent transparent; } .tooltipped:hover .tooltiptext { visibility: visible; } """ ``` #### File: emat/viz/table.py ```python import plotly.graph_objs as go from .widget import FigureWidget def table_figure( df, title=None, header_color='#C2D4FF', cell_color='#F5F8FF', ): trace = go.Table( header=dict(values=list(df.columns), fill = dict(color=header_color), align = ['left'] * len(df.columns)), cells=dict(values=[df[c] for c in df.columns], fill = dict(color=cell_color), align = ['left'] * len(df.columns)), ) data = [trace] return FigureWidget( data=data, layout=dict( title=title, ), metadata=df, ) ``` #### File: emat/viz/widget.py ```python from plotly.graph_objs import FigureWidget as _FigureWidget class FigureWidget(_FigureWidget): """FigureWidget with metadata.""" def __init__(self, *args, metadata=None, **kwargs): super().__init__(*args, **kwargs) self._metadata = metadata if metadata is not None else {} @property def metadata(self): return self._metadata @metadata.setter def metadata(self, x): self._metadata = x ``` #### File: workbench/analysis/feature_scoring.py ```python from operator import itemgetter import math import numpy as np import pandas as pd from sklearn.ensemble import (ExtraTreesClassifier, ExtraTreesRegressor, RandomForestClassifier, RandomForestRegressor) from sklearn.feature_selection import (f_regression, f_classif, chi2) from .scenario_discovery_util import RuleInductionType from ..util import get_module_logger # Created on Jul 9, 2014 # # .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> # # TODO:: look at # http://scikit-learn.org/stable/auto_examples/linear_model/plot_sparse_recovery.html#example-linear-model-plot-sparse-recovery-py __all__ = ['F_REGRESSION', 'F_CLASSIFICATION', 'CHI2', 'get_univariate_feature_scores', 'get_rf_feature_scores', 'get_ex_feature_scores', 'get_feature_scores_all'] _logger = get_module_logger(__name__) F_REGRESSION = f_regression F_CLASSIFICATION = f_classif CHI2 = chi2 def _prepare_experiments(experiments): ''' transform the experiments structured array into a numpy array. Parameters ---------- experiments :DataFrame Returns ------- ndarray, list ''' try: experiments = experiments.drop('scenario', axis=1) except KeyError: pass x = experiments.copy() x_nominal = x.select_dtypes(exclude=np.number) x_nominal_columns = x_nominal.columns.values for column in x_nominal_columns: if np.unique(x[column]).shape == (1,): x = x.drop(column, axis=1) _logger.info(("{} dropped from analysis " "because only a single category").format(column)) else: x[column] = x[column].astype('category').cat.codes return x.values, x.columns.tolist() def _prepare_outcomes(outcomes, classify): ''' transform the outcomes dict into a vector with either the class allocation or the value. Parameters ---------- outcomes : dict the outcomes dict classify : callable or str a classify function or variable analogous to PRIM Returns ------- 1d ndarray the return from classify bool data is categorical (True) or continuous (False) Raises -------- TypeError if classify is neither a StringType nor a callable KeyError if classify is a string which is not a key in the outcomes dict. ''' if isinstance(classify, str): try: y = outcomes[classify] except KeyError as e: raise e categorical = False elif callable(classify): y = classify(outcomes) categorical = True else: raise TypeError("unknown type for classify") return y, categorical def get_univariate_feature_scores(x, y, score_func=F_CLASSIFICATION): ''' calculate feature scores using univariate statistical tests. In case of categorical data, chi square or the Anova F value is used. In case of continuous data the Anova F value is used. Parameters ---------- x : structured array y : 1D nd.array score_func : {F_CLASSIFICATION, F_REGRESSION, CHI2} the score function to use, one of f_regression (regression), or f_classification or chi2 (classification). Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores (i.e. p values in this case). ''' x, uncs = _prepare_experiments(x) pvalues = score_func(x, y)[1] pvalues = np.asarray(pvalues) pvalues = zip(uncs, pvalues) pvalues = list(pvalues) pvalues.sort(key=itemgetter(1)) pvalues = pd.DataFrame(pvalues) pvalues = pvalues.set_index(0) return pvalues def get_rf_feature_scores(x, y, mode=RuleInductionType.CLASSIFICATION, nr_trees=250, max_features='auto', max_depth=None, min_samples_split=2, min_samples_leaf=1, bootstrap=True, oob_score=True, random_state=None): ''' Get feature scores using a random forest Parameters ---------- x : structured array y : 1D nd.array mode : {RuleInductionType.CLASSIFICATION, RuleInductionType.REGRESSION} nr_trees : int, optional nr. of trees in forest (default=250) max_features : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html max_depth : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html min_samples : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html min_samples_leaf : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html bootstrap : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html oob_score : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html random_state : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores object either RandomForestClassifier or RandomForestRegressor ''' x, uncs = _prepare_experiments(x) if mode == RuleInductionType.CLASSIFICATION: rfc = RandomForestClassifier criterion = 'gini' elif mode == RuleInductionType.REGRESSION: rfc = RandomForestRegressor criterion = 'mse' else: raise ValueError('{} not valid for mode'.format(mode)) forest = rfc(n_estimators=nr_trees, criterion=criterion, max_features=max_features, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, bootstrap=bootstrap, oob_score=oob_score, random_state=random_state) forest.fit(x, y) importances = forest.feature_importances_ importances = zip(uncs, importances) importances = list(importances) importances.sort(key=itemgetter(1), reverse=True) importances = pd.DataFrame(importances) importances = importances.set_index(0) return importances, forest def get_ex_feature_scores(x, y, mode=RuleInductionType.CLASSIFICATION, nr_trees=100, max_features=None, max_depth=None, min_samples_split=2, min_samples_leaf=None, min_weight_fraction_leaf=0, max_leaf_nodes=None, bootstrap=True, oob_score=True, random_state=None): ''' Get feature scores using extra trees Parameters ---------- x : structured array y : 1D nd.array mode : {RuleInductionType.CLASSIFICATION, RuleInductionType.REGRESSION} nr_trees : int, optional nr. of trees in forest (default=250) max_features : int, float, string or None, optional by default, it will use number of featers/3, following Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011 see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html max_depth : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_samples_split : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_samples_leaf : int, optional defaults to 1 for N=1000 or lower, from there on proportional to sqrt of N (see discussion in Jaxa-Rozen & Kwakkel (2018) doi: 10.1016/j.envsoft.2018.06.011) see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html min_weight_fraction_leaf : float, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html max_leaf_nodes: int or None, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html bootstrap : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html oob_score : bool, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html random_state : int, optional see http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html Returns ------- pandas DataFrame sorted in descending order of tuples with uncertainty and feature scores object either ExtraTreesClassifier or ExtraTreesRegressor ''' x, uncs = _prepare_experiments(x) # TODO # max_features = number of variables/3 # # min_samples_leaf # 1000 - > # then proportional based on sqrt of N # dus sqrt(N) / Sqrt(1000) met 1 als minimumd if max_features is None: max_features = int(round(x.shape[1] / 3)) if min_samples_leaf is None: min_samples_leaf = max(1, int(round(math.sqrt(x.shape[0]) / math.sqrt(1000)))) if mode == RuleInductionType.CLASSIFICATION: etc = ExtraTreesClassifier criterion = 'gini' elif mode == RuleInductionType.REGRESSION: etc = ExtraTreesRegressor criterion = 'mse' else: raise ValueError('{} not valid for mode'.format(mode)) extra_trees = etc(n_estimators=nr_trees, criterion=criterion, max_features=max_features, max_depth=max_depth, min_samples_split=min_samples_split, min_samples_leaf=min_samples_leaf, min_weight_fraction_leaf=min_weight_fraction_leaf, max_leaf_nodes=max_leaf_nodes, bootstrap=bootstrap, oob_score=oob_score, random_state=random_state) extra_trees.fit(x, y) importances = extra_trees.feature_importances_ importances = zip(uncs, importances) importances = list(importances) importances.sort(key=itemgetter(1), reverse=True) importances = pd.DataFrame(importances) importances = importances.set_index(0) return importances, extra_trees algorithms = {'extra trees': get_ex_feature_scores, 'random forest': get_rf_feature_scores, 'univariate': get_univariate_feature_scores} def get_feature_scores_all(x, y, alg='extra trees', mode=RuleInductionType.REGRESSION, **kwargs): '''perform feature scoring for all outcomes using the specified feature scoring algorithm Parameters ---------- x : numpy structured array y : dict of 1d numpy arrays the outcomes, with a string as key, and a 1D array for each outcome alg : {'extra trees', 'random forest', 'univariate'}, optional mode : {RuleInductionType.REGRESSION, RuleInductionType.CLASSIFICATION}, optional kwargs : dict, optional any remaining keyword arguments will be passed to the specific feature scoring algorithm Returns ------- DataFrame instance ''' complete = None for key, value in y.items(): fs, _ = algorithms[alg](x, value, mode=mode, **kwargs) fs = fs.rename(columns={1: key}) if complete is None: complete = fs.T else: complete = complete.append(fs.T, sort=True) return complete.T ``` #### File: workbench/connectors/simio_connector.py ```python import os import sys import clr # @UnresolvedImport # TODO:: do some auto discovery here analogue to netlogo? sys.path.append('C:/Program Files (x86)/Simio') clr.AddReference('SimioDLL') clr.AddReference('SimioAPI') import SimioAPI # @UnresolvedImport from ..em_framework import FileModel, SingleReplication from ..util import CaseError, EMAError from ..util.ema_logging import get_module_logger, method_logger # Created on 27 June 2019 # # .. codeauthor:: jhkwakkel <j.h.kwakkel (at) tudelft (dot) nl> _logger = get_module_logger(__name__) class SimioModel(FileModel, SingleReplication): @method_logger(__name__) def __init__(self, name, wd=None, model_file=None, main_model=None): """interface to the model Parameters ---------- name : str name of the modelInterface. The name should contain only alpha-numerical characters. working_directory : str working_directory for the model. model_file : str the name of the model file main_model : str Raises ------ EMAError if name contains non alpha-numerical characters ValueError if model_file cannot be found """ super(SimioModel, self).__init__(name, wd=wd, model_file=model_file) assert main_model != None self.main_model_name = main_model self.output = {} @method_logger(__name__) def model_init(self, policy): super(SimioModel, self).model_init(policy) _logger.debug('initializing model') # get project path_to_file = os.path.join(self.working_directory, self.model_file) self.project = SimioAPI.ISimioProject(SimioAPI.SimioProjectFactory.LoadProject(path_to_file)) self.policy = policy # get model models = SimioAPI.IModels(self.project.get_Models()) model = models.get_Item(self.main_model_name) if not model: raise EMAError((f'''main model with name {self.main_model_name} ' 'not found''')) self.model = SimioAPI.IModel(model) # set up new EMA specific experiment on model _logger.debug('setting up EMA experiment') self.experiment = SimioAPI.IExperiment(model.Experiments.Create('ema experiment')) SimioAPI.IExperimentResponses(self.experiment.Responses).Clear() # use all available responses as template for experiment responses responses = get_responses(model) for outcome in self.outcomes: for name in outcome.variable_name: name = outcome.name try: value = responses[name] except KeyError: raise EMAError(f'response with name \'{name}\' not found') response = SimioAPI.IExperimentResponse(self.experiment.Responses.Create(name)) response.set_Expression(value.Expression) response.set_Objective(value.Objective) # remove any scenarios on experiment self.scenarios = SimioAPI.IScenarios(self.experiment.Scenarios) self.scenarios.Clear() # make control map controls = SimioAPI.IExperimentControls(self.experiment.get_Controls()) self.control_map = {} for i in range(controls.Count): control = controls.get_Item(i) self.control_map[control.Name] = control _logger.debug('model initialized successfully') @method_logger(__name__) def run_experiment(self, experiment): self.case = experiment _logger.debug('Setup SIMIO scenario') scenario = self.scenarios.Create() _logger.debug(f'nr. of scenarios is {self.scenarios.Count}') for key, value in experiment.items(): try: control = self.control_map[key] except KeyError: raise EMAError(('''uncertainty not specified as ' 'control in simio model''')) else: ret = scenario.SetControlValue(control, str(value)) if ret: _logger.debug(f'{key} set successfully') else: raise CaseError(f'failed to set {key}') _logger.debug('SIMIO scenario setup completed') self.experiment.ScenarioEnded += self.scenario_ended self.experiment.RunCompleted += self.run_completed _logger.debug('preparing to run model') self.experiment.Run() _logger.debug('run completed') return self.output @method_logger(__name__) def reset_model(self): """ Method for reseting the model to its initial state. The default implementation only sets the outputs to an empty dict. """ super(SimioModel, self).reset_model() self.scenarios.Clear() self.output = {} @method_logger(__name__) def scenario_ended(self, sender, scenario_ended_event): '''scenario ended event handler''' # ema_logging.debug('scenario ended called!') # This event handler will be called when all replications for a # given scenario have completed. At this point the statistics # produced by this scenario should be available. experiment = SimioAPI.IExperiment(sender) scenario = SimioAPI.IScenario(scenario_ended_event.Scenario) _logger.debug((f'''scenario {scenario.Name} for experiment ' '{experiment.Name} completed''')) responses = experiment.Scenarios.get_Responses() # http://stackoverflow.com/questions/16484167/python-net-framework-reference-argument-double for response in responses: _logger.debug(f'{response}') response_value = 0.0 try: success, response_value = scenario.GetResponseValue(response, response_value) except TypeError: _logger.warning((f'''type error when trying to get a ' 'response for {response.Name}''')) raise if success: self.output[response.Name] = response_value else: # no valid response value error = CaseError(f'no valid response for {response.Name}', self.case) _logger.exception(str(error)) raise @method_logger(__name__) def run_completed(self, sender, run_completed_event): '''run completed event handler''' _logger.debug('run completed') # This event handler is the last one to be called during the run. # When running async, this is the correct place to shut things down. experiment = SimioAPI.IExperiment(sender) # Un-wire from the run events when we're done. experiment.ScenarioEnded -= self.scenario_ended experiment.RunCompleted -= self.run_completed def get_responses(model): '''Helper function for getting responses this function gathers all responses defined on all experiments available on the model. Parameters ---------- model : SimioAPI.IModel instance ''' response_map = {} experiments = SimioAPI.IExperiments(model.Experiments) for i in range(experiments.Count): experiment = SimioAPI.IExperiment(experiments.get_Item(i)) responses = SimioAPI.IExperimentResponses(experiment.Responses) for j in range(responses.Count): response = SimioAPI.IExperimentResponse(responses.get_Item(j)) response_map[response.Name] = response return response_map ``` #### File: tmip-emat/tests/test_learn.py ```python import pandas from emat.learn.feature_selection import SelectUniqueColumns def test_select_unique_columns(): df = pandas.DataFrame({ 'Aa': [1,2,3,4,5,6,7], 'Bb': [4,6,5,4,6,2,2], 'Cc': [1,2,3,4,5,6,7], 'Dd': [4,5,6,7,8,8,2], 'Ee': [10,20,30,40,50,60,70], 'Ff': [44,55,66,77,88,88,22], }) s = SelectUniqueColumns().fit(df) pandas.testing.assert_frame_equal(s.transform(df), df[['Aa','Bb','Dd']]) ``` #### File: tmip-emat/tests/test_scope.py ```python import unittest import pytest import os import emat from emat.scope.scope import Scope, ScopeError from emat.scope.box import Box, ChainedBox, Boxes from emat import package_file from emat.database.sqlite.sqlite_db import SQLiteDB from emat import config class TestScopeMethods(unittest.TestCase): ''' tests parsing scope file ''' # # one time test setup # scope_file = emat.package_file("model", "tests", "model_test.yaml") db_test = SQLiteDB( config.get("test_db_filename", ":memory:"), initialize=True, ) # # Tests # def test_dump_scope(self): scp = Scope(self.scope_file) dumped = scp.dump() # print("="*40) # print(dumped) # print("="*40) loaded = Scope(scope_def=dumped, scope_file="fake/filename.yaml") assert loaded == scp # filename is intentionally different but let it go # but everything else is the same assert loaded.name == scp.name assert loaded.get_measures() == scp.get_measures() assert loaded.get_parameters() == scp.get_parameters() assert loaded.scope_file != scp.scope_file assert loaded.scope_file == "fake/filename.yaml" # fix name, still get equality loaded.scope_file = scp.scope_file assert loaded == scp def test_save_scope(self): scp = Scope(self.scope_file) scp.store_scope(self.db_test) def test_null_scope(self): scp = Scope(None) assert repr(scp) == "<emat.Scope with no content>" assert len(scp.get_measures()) == 0 assert len(scp.get_parameters()) == 0 def test_box(self): scope = Scope(package_file('model','tests','road_test.yaml')) with pytest.raises(TypeError): s = Box(scope=scope) s = Box(name="Speedy", scope=scope) s.set_upper_bound('build_travel_time', 70) with pytest.raises(ScopeError): s.set_upper_bound('not_a_thing', 70) assert len(s) == 1 assert 'build_travel_time' in s assert s.parent_box_name is None s2 = Box(name="Notable", scope=scope, parent="Speedy") s2.set_lower_bound('expand_capacity', 20) assert len(s2) == 1 assert 'build_travel_time' not in s2 assert s2.parent_box_name == 'Speedy' def test_box_universe(self): scope = Scope(package_file('model','tests','road_test.yaml')) s = Box(name="Speedy", scope=scope) s.set_upper_bound('build_travel_time', 70) s2 = Box(name="Notable", scope=scope, parent="Speedy") s2.set_lower_bound('expand_capacity', 20) u = Boxes(s, s2, scope=scope) assert u.fancy_names() == ['Scope: EMAT Road Test', '▶ Speedy', '▷ ▶ Notable'] assert u.plain_names() == [None, 'Speedy', 'Notable'] def test_read_write_box(self): scope = Scope(package_file('model','tests','road_test.yaml')) db = SQLiteDB() scope.store_scope(db) s1 = Box(name="Speedy", scope=scope) s1.set_upper_bound('build_travel_time', 70) s1.relevant_features.add('debt_type') s2 = Box(name="Notable", scope=scope, parent="Speedy") s2.set_lower_bound('expand_capacity', 20) db.write_box(s1) db.write_box(s2) s1_ = db.read_box(scope.name, "Speedy") s2_ = db.read_box(scope.name, "Notable") assert s1 == s1_ assert s2 == s2_ assert s1.thresholds == s1_.thresholds assert s2.thresholds == s2_.thresholds assert s1.relevant_features == s1_.relevant_features assert s2.relevant_features == s2_.relevant_features def test_read_write_boxes(self): scope = Scope(package_file('model','tests','road_test.yaml')) db = SQLiteDB() scope.store_scope(db) s1 = Box(name="Speedy", scope=scope) s1.set_upper_bound('build_travel_time', 70) s2 = Box(name="Notable", scope=scope, parent="Speedy") s2.set_lower_bound('expand_capacity', 20) u = Boxes(s1, s2, scope=scope) db.write_boxes(u) scope2 = Scope(package_file('model','tests','road_test.yaml')) u2 = db.read_boxes(scope=scope2) assert u == u2 assert u["Notable"].parent_box_name == u2["Notable"].parent_box_name s1_ = db.read_box(scope.name, "Speedy") s2_ = db.read_box(scope.name, "Notable") assert s1 == s1_ assert s2 == s2_ assert s1.relevant_features == s1_.relevant_features assert s2.relevant_features == s2_.relevant_features if __name__ == '__main__': unittest.main() ```
{ "source": "jinscoe123/dph", "score": 3 }
#### File: dph/dph/pollard.py ```python from .config import * MAX_RETRIES = 3 __all__ = [ 'MAX_RETRIES', 'pollard' ] def pollard(G, H, P, a=1, b=1): Q = (P - 1) // 2 def xab(x, a, b): xsub = x % 3 if xsub == 0: x = (x * G) % P a = (a + 1) % Q if xsub == 1: x = (x * H) % P b = (b + 1) % Q if xsub == 2: x = (x * x) % P a = (a * 2) % Q b = (b * 2) % Q return (x, a, b) x = G * H X = x A = a B = b if Config.debug: w1 = len(str(P)) w2 = len(str(Q)) fmts = f''.join([ 'i'.rjust(w1), ' ', ' ', 'x'.rjust(w1), ' ', 'a'.rjust(w2), ' ', 'b'.rjust(w2), ' ', ' ', 'X'.rjust(w1), ' ', 'A'.rjust(w2), ' ', 'B'.rjust(w2), ]) print('-' * len(fmts)) print(fmts) print('-' * len(fmts)) fmts = f''.join([ f'{{:{w1}d}}', f' ', f' ', f'{{:{w1}d}}', f' ', f'{{:{w2}d}}', f' ', f'{{:{w2}d}}', f' ', f' ', f'{{:{w1}d}}', f' ', f'{{:{w2}d}}', f' ', f'{{:{w2}d}}', ]) for _ in range(1, P): x, a, b = xab(x, a, b) X, A, B = xab(X, A, B) X, A, B = xab(X, A, B) if Config.debug: print(fmts.format(_, x, a, b, X, A, B)) if x == X: break result = ((a - A) * pow(B - b, -1, Q)) % Q if pow(G, result, P) == H: return result result += Q if pow(G, result, P) == H: return result raise ValueError def _main(): from gmpy2 import mpz import math import random import sys if len(sys.argv) != 4: print('Usage: pollard g h p') print() print(' Solve the discrete logarithm using Pollard Rho\'s algorithm for discrete logarithms.') print() print(' i.e. Find an integer x s.t. g^x = h (mod p).') sys.exit(0) g = mpz(sys.argv[1]) h = mpz(sys.argv[2]) p = mpz(sys.argv[3]) a = mpz(1) b = mpz(1) w1 = 1 + int(math.log10(MAX_RETRIES)) w2 = 1 + int(math.log10(p)) err_fmts = f'Attempt #{{:{w1}}} failed -- retrying with a = {{:{w2}}}, b = {{:{w2}}}...' for i in range(MAX_RETRIES): try: x = pollard(g, h, p, a, b) if Config.debug: print() print(f'x = {x}') break except ValueError: a = mpz(random.randint(1, p)) b = mpz(random.randint(1, p)) if Config.debug: print() print(err_fmts.format(i, a, b)) else: print() print(f'Maximum number of attempts reached. Failed to solve {g}^x = {h} (mod {p}).') sys.exit(1) if __name__ == '__main__': _main() ``` #### File: dph/dph/util.py ```python from functools import reduce import operator __all__ = [ 'product' ] def product(*args): return reduce(operator.mul, args) ```
{ "source": "jinsen47/LeanTest", "score": 2 }
#### File: jinsen47/LeanTest/app.py ```python import json from datetime import datetime import leancloud import requests from flask import Flask, request, Response from flask import render_template from flask_sockets import Sockets from views.todos import todos_view app = Flask(__name__) sockets = Sockets(app) # 动态路由 app.register_blueprint(todos_view, url_prefix='/todos') @app.route('/') def index(): return render_template('index.html') @app.route('/time') def time(): return str(datetime.now()) @app.route('/gank/<category>/<page>') def gank(category, page): url = 'http://gank.io/api/search/query/listview/category/%s/count/5/page/%s' % (category, page) requestAPI = requests.get(url) return Response(json.dumps(requestAPI.json()), mimetype='application/json') @sockets.route('/echo') def echo_socket(ws): while True: message = ws.receive() ws.send(message) ```
{ "source": "jinseong0525/tools", "score": 3 }
#### File: tools/labelme/json2dataset.py ```python import json import os import os.path as osp import imgviz import PIL.Image import numpy as np from labelme import utils JSON_DIR = './labelme/data/labeled/' SAVE_DIR = './labelme/data/dataset/' def main(JSON_DIR, SAVE_DIR): # read .json file list _, _, jsons = next(os.walk(JSON_DIR)) jsons = [s for s in jsons if ".json" in s] # take the label_names.txt with open(osp.join(JSON_DIR, "label_names.txt"), "r") as f: cnt = 0 label_name_to_value = {} for line in f: label_name_to_value[line.rstrip('\n')] = cnt cnt += 1 for json_file in jsons: # read json data = json.load(open(JSON_DIR + json_file)) # read image imageData = data.get("imageData") if not imageData: imagePath = os.path.join(JSON_DIR, data["imagePath"]) img = np.asarray(PIL.Image.open(imagePath)) else: img = utils.img_b64_to_arr(imageData) with open(osp.join(JSON_DIR, "label_names.txt"), "r") as f: cnt = 0 label_name_to_value = {} for line in f: label_name_to_value[line.rstrip('\n')] = cnt cnt += 1 # make a label data lbl, _ = utils.shapes_to_label( img.shape, data["shapes"], label_name_to_value ) # make a viz data label_names = [None] * (max(label_name_to_value.values()) + 1) for name, value in label_name_to_value.items(): label_names[value] = name lbl_viz = imgviz.label2rgb( label=lbl, img=imgviz.asgray(img), label_names=label_names, loc="rb" ) # save dataset _, name, _ = json_file.replace('.', '_').split('_') PIL.Image.fromarray(img).save(osp.join(SAVE_DIR, "img_" + name + ".png")) utils.lblsave(osp.join(SAVE_DIR, "label_" + name + ".png"), lbl) PIL.Image.fromarray(lbl_viz).save(osp.join(SAVE_DIR, "viz_" + name + ".png")) with open(osp.join(SAVE_DIR, "label_names.txt"), "w") as f: for lbl_name in label_names: f.write(lbl_name + "\n") if __name__ == "__main__": main(JSON_DIR, SAVE_DIR) ```
{ "source": "JinseongHwang/pyqt5-lecture", "score": 3 }
#### File: pyqt5-lecture/basics/06-MenuBar.py ```python import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QAction from PyQt5.QtGui import QIcon class MyApp(QMainWindow): def __init__(self): super().__init__() self.initUI() def initUI(self): self.statusBar() # 빈 statusBar 생성 # Icon, Text, 위치하는 부모 객체 exitAction = QAction(QIcon( 'C:\\Users\\User\\Desktop\\my-lecture-material\\pyqt5-lecture\\resources\\exit.png'), 'Exit', self) exitAction.setShortcut('Ctrl+Q') # 단축키 Ctrl + Q 사용 가능 exitAction.setStatusTip('Exit application') # statusBar 에 나타날 텍스트 지정 # 이 동작을 선택했을 때 생성된 시그널이 quit 함수에 연결되어 Application 이 종료됨 exitAction.triggered.connect(QApplication.quit) menuBar = self.menuBar() # 메뉴바 생성 menuBar.setNativeMenuBar(False) # MacOS 에서도 동작하도록 하는 설정 # File 이라는 메뉴를 추가 (Alt + F 로 선택 가능) fileMenu = menuBar.addMenu('&File') # & 위치로 단축키 설정 fileMenu.addAction(exitAction) # File 메뉴에 exitAction 을 추가 self.setWindowTitle('Menubar') self.setGeometry(300, 300, 300, 200) self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = MyApp() sys.exit(app.exec_()) ``` #### File: pyqt5-lecture/calculator/main.py ```python import sys import traceback import logging from PyQt5.QtWidgets import (QApplication, QWidget, QPushButton, QLineEdit, QGridLayout, QLayout) from PyQt5.QtCore import Qt class MyApp(QWidget): def __init__(self): super().__init__() self.initUI() def getResult(self): formula = self.display.text() try: result = eval(formula) except SyntaxError: result = '잘못된 식입니다.' except Exception: result = '다시 입력해주세요.' logging.error(traceback.format_exc()) self.display.setText(str(result)) def getBtn(self, number): numberBtn = QPushButton(str(number)) numberBtn.clicked.connect(lambda: self.display.setText(self.display.text() + str(number))) return numberBtn def setButtons(self): clearBtn = QPushButton('Clear') clearBtn.clicked.connect(lambda: self.display.setText('')) delBtn = QPushButton('Del') delBtn.clicked.connect(lambda: self.display.setText(self.display.text()[:-1])) resultBtn = QPushButton('=') resultBtn.clicked.connect(self.getResult) self.gridLayout.addWidget(self.display, 0, 0, 1, 4) self.gridLayout.addWidget(clearBtn, 1, 0, 1, 2) self.gridLayout.addWidget(delBtn, 1, 2, 1, 2) self.gridLayout.addWidget(self.getBtn('1'), 2, 0) self.gridLayout.addWidget(self.getBtn('2'), 2, 1) self.gridLayout.addWidget(self.getBtn('3'), 2, 2) self.gridLayout.addWidget(self.getBtn('+'), 2, 3) self.gridLayout.addWidget(self.getBtn('4'), 3, 0) self.gridLayout.addWidget(self.getBtn('5'), 3, 1) self.gridLayout.addWidget(self.getBtn('6'), 3, 2) self.gridLayout.addWidget(self.getBtn('-'), 3, 3) self.gridLayout.addWidget(self.getBtn('7'), 4, 0) self.gridLayout.addWidget(self.getBtn('8'), 4, 1) self.gridLayout.addWidget(self.getBtn('9'), 4, 2) self.gridLayout.addWidget(self.getBtn('*'), 4, 3) self.gridLayout.addWidget(self.getBtn('0'), 5, 0) self.gridLayout.addWidget(self.getBtn('.'), 5, 1) self.gridLayout.addWidget(resultBtn, 5, 2) self.gridLayout.addWidget(self.getBtn('/'), 5, 3) def initUI(self): self.display = QLineEdit() # Line editor 생성 self.display.setReadOnly(True) # 입력이 되지 않도록 self.display.setAlignment(Qt.AlignRight) # 우측으로 정렬 self.display.setStyleSheet( "border:0px; font-size:20pt; font-family:Nanum Gothic; font-weight:bold; padding:10px" ) self.gridLayout = QGridLayout() self.setLayout(self.gridLayout) self.gridLayout.setSizeConstraint(QLayout.SetFixedSize) self.setButtons() self.setWindowTitle('My Calculator') self.setFixedSize(300, 400) # 고정된 크기 설정 self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = MyApp() sys.exit(app.exec_()) ``` #### File: pyqt5-lecture/layout/02-BoxLayout.py ```python import sys from PyQt5.QtWidgets import QApplication, QWidget, QPushButton, QHBoxLayout, QVBoxLayout from PyQt5.QtCore import QCoreApplication class MyApp(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): # 버튼 3개 생성 okButton = QPushButton('OK') cancelButton = QPushButton('Cancel') exitButton = QPushButton('Exit') exitButton.clicked.connect(QCoreApplication.instance().quit) # 종료 기능 # 수평 박스, [좌:우 = 1:1] hbox = QHBoxLayout() hbox.addStretch(1) hbox.addWidget(okButton) hbox.addWidget(cancelButton) hbox.addWidget(exitButton) hbox.addStretch(1) # 수직 박스, [상:하 = 3:1] vbox = QVBoxLayout() vbox.addStretch(3) vbox.addLayout(hbox) vbox.addStretch(1) # 수직 박스를 창의 메인 레이아웃으로 설정 self.setLayout(vbox) self.setWindowTitle('Box Layout') self.setGeometry(300, 300, 300, 200) self.show() if __name__ == '__main__': app = QApplication(sys.argv) ex = MyApp() sys.exit(app.exec_()) ```
{ "source": "jinserk/matk", "score": 2 }
#### File: matk/examples/test.py ```python from pathlib import Path from ase import Atoms from ase.calculators.emt import EMT from ase.calculators.qchem import QChem from ase.optimize import LBFGS, QuasiNewton from ase.vibrations import Vibrations from gpaw import PW, FermiDirac from c2tk.conformer import get_atoms, pre_optimize from c2tk.calculators.nwchem import NWChem from c2tk.calculators.orca import ORCA from c2tk.calculators.gpaw import GPAW def test_qchem(atoms: Atoms) -> None: calc = QChem( label='qchem', method='B3LYP', basis='6-31+G*', np=1, nt=4, ) atoms.calc = calc #opt = LBFGS(atoms) #opt.run(fmax=0.05) e1 = atoms.get_potential_energy() print(f'test molecule energy: {e1:5.2f} eV') def test_nwchem(atoms:Atoms) -> None: calc = NWChem(label='nwchem', dft=dict( maxiter=2000, xc='B3LYP', ), basis='6-31+G*', ) atoms.calc = calc e1 = atoms.get_potential_energy() print(f'test molecule energy: {e1:5.2f} eV') """ opt = LBFGS(atoms) opt.run(fmax=0.05) e2 = atoms.get_potential_energy() print(f'test molecule energy: {e2:5.2f} eV') obj = NWChemWrapper(nproc=1, mem=8000) calc_params = { 'basis': '6-31+G*', 'func': 'B3LYP', 'target': 1, } e, f, p = obj.geom_opt(atoms, label="test", calc_params=calc_params) print(atoms.positions) """ def test_gpaw(atoms: Atoms) -> None: calc = GPAW( mode=PW(), xc='PBE', occupations=FermiDirac(0.0, fixmagmom=True), txt='temp.gpo', ) atoms.calc = calc e1 = atoms.get_potential_energy() print(f'test molecule energy: {e1:5.2f} eV') """ relax = QuasiNewton(atoms, logfile='qn.log') relax.run(fmax=0.05) e2 = atoms.get_potential_energy() print(f'test molecule energy: {e2:5.2f} eV') """ calc.write('temp.gpw') def test_orca(atoms: Atoms) -> None: calc = ORCA( label='temp', orcasimpleinput='tightscf B3LYP/G def2-SVP kdiis opt freq', orcablocks='%scf maxiter 200 end\n%pal nprocs 8 end', ) atoms.calc = calc e1 = atoms.get_potential_energy() print(f'test molecule energy: {e1:5.2f} eV') """ relax = QuasiNewton(atoms, logfile='qn.log') relax.run(fmax=0.05) e2 = atoms.get_potential_energy() print(f'test molecule energy: {e2:5.2f} eV') """ vib = Vibrations(atoms) vib.run() vib.summary() def main(smiles: str) -> None: atoms = get_atoms(smiles) a1 = atoms.copy() a1.center(vacuum=50.0) a1.calc = EMT() e1 = a1.get_potential_energy() print(f'test molecule energy: {e1:5.2f} eV') """ a2 = atoms.copy() a2.center(vacuum=50.0) a2 = pre_optimize(a2) a2.calc = EMT() e2 = a2.get_potential_energy() print(f'test molecule energy: {e2:5.2f} eV') """ test_orca(atoms) #test_gpaw(atoms) #test_nwchem(atoms) if __name__ == "__main__": smiles = "c1ccc2c(c1)[nH]c1ccc(-n3c4ccccc4c4ccccc43)cc12" main(smiles) ``` #### File: c2tk/calculators/calculator.py ```python import os import subprocess as sp import shlex from collections.abc import Iterable from ase.calculators.calculator import ( Calculator, FileIOCalculator, all_changes, CalculationFailed ) from .. import settings, is_mpi_enabled class C2TKFileIOCalculator(FileIOCalculator): def __init__(self, mpi_embed_cmd=False, *args, **kwargs): if 'directory' not in kwargs: kwargs['directory'] = settings.SCRATCH_PATH super().__init__(*args, **kwargs) self.mpi_embed_cmd = mpi_embed_cmd def calculate(self, atoms=None, properties=['energy'], system_changes=all_changes): Calculator.calculate(self, atoms, properties, system_changes) self.write_input(self.atoms, properties, system_changes) self.execute() self.read_results() def execute(self): if self.command is None or not isinstance(self.command, str): raise CalculatorSetupError( 'Please set ${} environment variable ' .format('ASE_' + self.name.upper() + '_COMMAND') + 'or supply the command keyword') command = self.command command = command.replace('PREFIX', self.prefix) if is_mpi_enabled() and not self.mpi_embed_cmd: command = f'mpiexec -np {settings.NPROC} {command}' #real_command = shlex.split(command) #print(real_command) try: proc = sp.Popen(command, cwd=self.directory, shell=True, env=settings.env) except OSError as err: # Actually this may never happen with shell=True, since # probably the shell launches successfully. But we soon want # to allow calling the subprocess directly, and then this # distinction (failed to launch vs failed to run) is useful. msg = 'Failed to execute "{}"'.format(command) raise EnvironmentError(msg) from err errorcode = proc.wait() if errorcode: path = os.path.abspath(self.directory) msg = ('Calculator "{}" failed with command "{}" failed in ' '{} with error code {}'.format(self.name, command, path, errorcode)) raise CalculationFailed(msg) ```
{ "source": "jinserk/matorage", "score": 3 }
#### File: matorage/data/saver.py ```python import os import sys import uuid import atexit import tempfile import tables as tb import numpy as np from functools import reduce from minio import Minio from matorage.nas import NAS from matorage.utils import is_tf_available, is_torch_available, check_nas from matorage.uploader import Uploader _KB = 1024 """The size of a Kilobyte in bytes""" _MB = 1024 * _KB """The size of a Megabyte in bytes""" class DataSaver(object): """ This class must be created independently for the process. The independent process uses multiple threads to upload to storage and generates unique metadata information when upload is complete. Update the file, push the upload queue if it exceeds a certain size, close the file, and create a new file. After saving, you should disconnect the data saver. To make This procedure easier to understand, the following is written in the pseudo-code. .. code-block:: per_one_batch_data_size = array_size // num_batch per_one_file_batch_size = max_object_size // per_one_batch_data_size for batch_idx in range(num_batch): if get_current_stored_batch_size() < per_one_file_batch_size: file.append(data[batch_idx]) else: file_closing() new_file is opened new_file.append(data[batch_idx]) All files are closed. Note: - Deep Learning Framework Type : All(pure python is also possible) - **All processes should call the constructors of this class independently.** - After data save is over, you must disconnect through the disconnect function. Args: config (:obj:`matorage.DataConfig`, **require**): A DataConfig instance object multipart_upload_size (:obj:`integer`, optional, defaults to `5 * 1024 * 1024`): size of the incompletely uploaded object. You can sync files faster with `multipart upload in MinIO. <https://github.com/minio/minio-py/blob/master/minio/api.py#L1795>`_ This is because MinIO clients use multi-threading, which improves IO speed more efficiently regardless of Python's Global Interpreter Lock(GIL). num_worker_threads (:obj:`integer`, optional, defaults to 4): number of backend storage worker to upload or download. inmemory (:obj:`boolean`, optional, defaults to `False`): If you use this value as `True`, then you can use `HDF5_CORE driver <https://support.hdfgroup.org/HDF5/doc/TechNotes/VFL.html#TOC1>`_ so the temporary file for uploading or downloading to backend storage, such as MinIO, is not stored on disk but is in the memory. Keep in mind that using memory is fast because it doesn't use disk IO, but it's not always good. If default option(False), then `HDF5_SEC2` driver will be used on posix OS(or `HDF5_WINDOWS` in Windows). refresh (:obj:`boolean`, optional, defaults to `False`): All existing data is erased and overwritten. Single Process example Examples:: import numpy as np from tqdm import tqdm from matorage import DataConfig, DataSaver data_config = DataConfig( endpoint='127.0.0.1:9000', access_key='minio', secret_key='miniosecretkey', dataset_name='array_test', attributes=[ ('array', 'uint8', (3, 224, 224)), ] ) data_saver = DataSaver(config=data_config) row = 100 data = np.random.rand(64, 3, 224, 224) for _ in tqdm(range(row)): data_saver({ 'array' : data }) data_saver.disconnect() """ def __init__( self, config, multipart_upload_size=5 * _MB, num_worker_threads=4, inmemory=False, refresh=False, ): self.config = config # Storage configuration self.multipart_upload_size = multipart_upload_size self.num_worker_threads = num_worker_threads # HDF5 configuration self.inmemory = inmemory self.filter = tb.Filters(**config.compressor) self._filelist = [] self._file, self._earray = self._get_newfile() self._disconnected = False self._client = ( Minio( endpoint=self.config.endpoint, access_key=self.config.access_key, secret_key=self.config.secret_key, secure=self.config.secure, region=self.config.region, ) if not check_nas(self.config.endpoint) else NAS(self.config.endpoint) ) self._check_and_create_bucket(refresh=refresh) self._uploader = Uploader( client=self._client, bucket=self.config.bucket_name, num_worker_threads=self.num_worker_threads, multipart_upload_size=self.multipart_upload_size, inmemory=self.inmemory, ) atexit.register(self._exit) def _append_file(self): """ upload file to key called `<bucket_name>/key`. appended data is `Dict[str, str]` **`value` is file path of `str` type** example: { 'key' : 'value.txt', } """ for key, filepath in self._datas.items(): self._uploader.set_queue( local_file=filepath, remote_file=key, ) self.config.set_files(key) def _append_numpy(self): """ append numpy array in `name` node. appended data is `Dict[str, numpy.ndarray]` type. **`value` is `numpy.ndarray` type with (B, *) shape, B means batch size** example: { 'image' : np.random.rand(16, 28, 28), 'target' : np.random.rand(16) } """ array_size = self._get_array_size() bzs = list(self._datas.values())[0].shape[0] per_one_batch_data_size = array_size // bzs per_one_file_batch_size = max( 1, self.config.max_object_size // per_one_batch_data_size ) for batch_idx in range(bzs): if self._get_current_stored_batch_size() < per_one_file_batch_size: for name, array in self._datas.items(): self._earray[name].append(array[batch_idx, None]) else: self._file_closing() self._file, self._earray = self._get_newfile() for name, array in self._datas.items(): self._earray[name].append(array[batch_idx, None]) def _check_and_create_bucket(self, refresh): if not self._client.bucket_exists(self.config.bucket_name): self._client.make_bucket( self.config.bucket_name, location=self.config.region ) elif refresh: objects = self._client.list_objects(self.config.bucket_name, recursive=True) for obj in objects: self._client.remove_object(self.config.bucket_name, obj.object_name) def _check_attr_name(self, name): """ check attribute names is exist """ if name not in self._earray.keys(): raise KeyError("attribute name {} is not exist!".format(name)) def _check_data_filetype(self): """ Check data which is file type """ if not isinstance(self._datas, dict): raise TypeError("datas shoud be dict type.", self.__call__.__doc__) for key, filepath in self._datas.items(): if not os.path.exists(filepath): raise FileNotFoundError("{} is not found".format(filepath)) def _check_data_numpytype(self): """ Check data which is numpy array type """ if not isinstance(self._datas, dict): raise TypeError("datas shoud be dict type.", self.__call__.__doc__) bzs = 0 for name, array in self._datas.items(): self._check_attr_name(name=name) if is_tf_available() and not isinstance(array, np.ndarray): array = array.numpy() if is_torch_available() and not isinstance(array, np.ndarray): array = array.numpy() assert isinstance(array, np.ndarray), "array type is not `numpy.ndarray`" if bzs: if bzs != array.shape[0]: raise ValueError("each datas array batch sizes are not same.") else: bzs = array.shape[0] # This resape is made into a (B, *) shape. # Shape is lowered to two contiguous dimensions, enabling IO operations to operate very quickly. # https://www.slideshare.net/HDFEOS/caching-and-buffering-in-hdf5#25 if len(array.shape) == 1: # this array is ground truth array = array.reshape(-1, 1) self._datas[name] = array.reshape( -1, reduce(lambda x, y: x * y, array.shape[1:]) ) def __call__(self, datas, filetype=False): """ Args: datas (:obj:`Dict[str, numpy.ndarray] or Dict[str, str]`, **require**): if filetype is false, `datas` is `Dict[str, numpy.ndarray]` type, **`value` is `numpy.ndarray` type with (B, *) shape, B means batch size**. else true, `datas` is `Dict[str, str]` type, **`value` is file path of `str` type**. filetype (:obj:`boolean`, optional): Indicates whether the type of data to be added to this bucket is a simple file type. Examples:: data_saver = DataSaver(config=data_config) data_saver({ 'image' : np.random.rand(16, 28, 28), 'target' : np.random.rand(16) }) When used as shown below, filetype data is saved with a key called `<bucket_name>/raw_image`. Examples:: data_saver = DataSaver(config=data_config) data_saver({ 'raw_image' : 'test.jpg' }) print(data_config.get_filetype_list) """ self._disconnected = False self._datas = datas if not filetype: self._check_data_numpytype() self._append_numpy() else: self._check_data_filetype() self._append_file() def _file_closing(self): _length = len(list(self._earray.values())[0]) _last_index = self.config.get_length if not self.inmemory: self._file.close() self._uploader.set_queue( local_file=self._file.filename, remote_file=os.path.basename(self._filename), ) else: self._uploader.set_queue( local_file=self._file.get_file_image(), remote_file=os.path.basename(self._filename), ) self._file.close() # Set filename indexer _current_index = _last_index + _length self.config.set_indexer( { _current_index: { "name": os.path.basename(self._filename), "length": _length, } } ) def _create_name(self, length=16): return tempfile.mktemp("{}.h5".format(uuid.uuid4().hex[:length])) def _exit(self): self._file.close() self._disconnected = True def _get_array_size(self): """ Get size of all array . Returns: :obj:`datas size(bytes)` """ size = 0 for name, array in self._datas.items(): size += array.nbytes return size def _get_current_stored_batch_size(self): """ Get current file stored batch size Returns: :obj:`integer`: current stored batch size in a opened file. """ return len(list(self._earray.values())[0]) def _get_newfile(self): """ Get new file inode and it's attribute Returns: :obj:`tuple(tables.File, dict)` second item is pytable's attribute { 'name1' : tables.EArray, 'name2' : tables.EArray } """ _driver, _driver_core_backing_store = self._set_driver() self._filename = self._create_name() self._filelist.append(self._filename) file = tb.open_file( self._filename, "a", driver=_driver, driver_core_backing_store=_driver_core_backing_store, ) # create expandable array earray = {} for _earray in self.config.flatten_attributes: earray[_earray.name] = file.create_earray( file.root, _earray.name, _earray.type, shape=tuple([0]) + _earray.shape, filters=self.filter, ) return (file, earray) def _get_size(self): if self.inmemory: return sys.getsizeof(self._file.get_file_image()) else: return self._file.get_filesize() def _set_driver(self): """ Setting HDF5 driver type Returns: :obj:`str` : HDF5 driver type string """ if self.inmemory: return "H5FD_CORE", False else: if os.name == "posix": return "H5FD_SEC2", True elif os.name == "nt": return "H5FD_WINDOWS", True else: raise ValueError("{} OS not supported!".format(os.name)) @property def get_downloaded_dataset(self): """ get local paths of downloaded dataset in local storage Returns: :obj:`list`: local path of downloaded datasets """ return self._filelist def disconnect(self): """ disconnecting datasaver. close all opened files and upload to backend storage. Must be called after ``datasaver`` function to store data safely. Examples:: data_saver = DataSaver(config=data_config) data_saver({ 'image' : np.random.rand(16, 28, 28), 'target' : np.random.rand(16) }) data_saver.disconnect() """ self._file_closing() self._uploader.join_queue() # metadata set key = <KEY>] _metadata_file = tempfile.mktemp(f"{key}.json") self.config.metadata.to_json_file(_metadata_file) self._client.fput_object( self.config.bucket_name, f"metadata/{key}.json", _metadata_file ) os.remove(_metadata_file) @property def get_disconnected(self): return self._disconnected ``` #### File: matorage/matorage/nas.py ```python import os import shutil class Obj(object): def __init__(self, object_name): self.object_name = object_name class NAS(object): def __init__(self, path): self.path = path def bucket_exists(self, bucket_name): return os.path.exists(os.path.join(self.path, bucket_name)) def fget_object(self, bucket_name, object_name, file_path): pass def fput_object(self, bucket_name, object_name, file_path, part_size=None): _filename = os.path.join(self.path, bucket_name, object_name) if not os.path.exists(os.path.dirname(_filename)): os.makedirs(os.path.dirname(_filename)) shutil.copyfile(src=file_path, dst=_filename) def get_object(self, bucket_name, object_name): _filename = os.path.join(self.path, bucket_name, object_name) return open(_filename, "rb") def put_object(self, bucket_name, object_name, data, length, part_size=None): _filename = os.path.join(self.path, bucket_name, object_name) if not os.path.exists(os.path.dirname(_filename)): os.makedirs(os.path.dirname(_filename)) data.seek(0) with open(_filename, "wb") as f: shutil.copyfileobj(data, f, length=length) def list_objects(self, bucket_name, prefix="", recursive=False): _foldername = os.path.join(self.path, bucket_name) if not recursive: objects = os.listdir(_foldername) else: objects = [ os.path.join(dp, f) for dp, dn, fn in os.walk(_foldername) for f in fn ] return [Obj(o) for o in objects if o.startswith(prefix)] def make_bucket(self, bucket_name, location): os.makedirs(os.path.join(self.path, bucket_name)) def remove_bucket(self, bucket_name): shutil.rmtree(os.path.join(self.path, bucket_name)) def remove_object(self, bucket_name, object_name): os.remove(os.path.join(self.path, bucket_name, object_name)) ``` #### File: matorage/tests/test_suite.py ```python import sys import unittest from matorage.utils import is_torch_available, is_tf_available def suite(): test_modules = [ "tests.test_datasaver", ] if is_torch_available(): test_modules.extend([ "tests.test_torch_data", "tests.test_torch_model", "tests.test_torch_optimizer", ]) if is_tf_available(): test_modules.extend([ "tests.test_tf_data", "tests.test_tf_model", "tests.test_tf_optimizer", ]) alltests = unittest.TestSuite() for name in test_modules: # Unexpectedly, the following code doesn't seem to work anymore # in python 3 # exec('from %s import suite as test_suite' % name) __import__(name) test_suite = sys.modules[name].suite alltests.addTest(test_suite()) return alltests def test(verbose=False): result = unittest.TextTestRunner(verbosity=1 + int(verbose)).run(suite()) if result.wasSuccessful(): return 0 else: return 1 if __name__ == '__main__': test() ``` #### File: matorage/tests/test_torch_model.py ```python import torch import unittest import numpy as np from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import datasets, transforms from tests.test_model import ModelTest from matorage.model.config import ModelConfig from matorage.model.torch.manager import ModelManager from matorage.testing_utils import require_torch @require_torch class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.fc1 = nn.Linear(28 * 28, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, 10) def forward(self, x): x = x.view(-1, 28 * 28) x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = self.fc3(x) return x @require_torch class TorchModelTest(ModelTest, unittest.TestCase): transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))] ) def test_torchmodel_saver(self, model_config=None, save_to_json_file=False): if model_config is None: self.model_config = ModelConfig( **self.storage_config, model_name="test_torchmodel_saver", additional={"framework": "pytorch"} ) else: self.model_config = model_config if save_to_json_file: self.model_config_file = "model_config_file.json" self.model_config.to_json_file(self.model_config_file) self.model_manager = ModelManager(config=self.model_config) model = Model() self.model_manager.save(model, step=0) def test_torchmodel_saver_from_json_file(self): self.test_torchmodel_saver(save_to_json_file=True) self.model_config = None self.model_manager = None self.model_config = ModelConfig.from_json_file(self.model_config_file) self.model_manager = ModelManager(config=self.model_config) model = Model() self.model_manager.save(model, step=0) def test_torchmodel_loader(self): self.test_torchmodel_saver() model = Model() self.model_manager.load(model, step=0) def test_torchmodel_loader_with_compressor(self): model_config = ModelConfig( **self.storage_config, model_name="test_torchmodel_loader_with_compressor", additional={"framework": "pytorch"}, compressor={"complevel": 4, "complib": "zlib"} ) self.test_torchmodel_saver(model_config=model_config) self.model_manager = ModelManager(config=self.model_config) model = Model() self.model_manager.load(model, step=0) def test_torchmodel_layer_loader(self): self.test_torchmodel_saver() self.model_manager = ModelManager(config=self.model_config) self.model_manager.load("f.weight", step=0) @unittest.skip("skip") def test_mnist_eval(self, model, device): test_dataset = datasets.MNIST( "/tmp/data", train=False, transform=self.transform ) test_loader = DataLoader(test_dataset, batch_size=64, num_workers=4) model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for image, target in test_loader: image, target = image.to(device), target.to(device) output = model(image) test_loss += F.nll_loss(output, target, reduction="sum").item() pred = output.argmax(dim=1, keepdim=True) correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= len(test_loader.dataset) return correct def test_mnist_reloaded(self): import torch.optim as optim device = torch.device("cuda" if torch.cuda.is_available() else "cpu") train_dataset = datasets.MNIST( "/tmp/data", train=True, download=True, transform=self.transform ) model = Model().to(device) optimizer = optim.Adam(model.parameters(), lr=0.01) criterion = torch.nn.CrossEntropyLoss() train_loader = DataLoader(train_dataset, batch_size=64, num_workers=4) for batch_idx, (image, target) in enumerate(tqdm(train_loader)): image, target = image.to(device), target.to(device) optimizer.zero_grad() output = model(image) loss = criterion(output, target) loss.backward() optimizer.step() self.model_config = ModelConfig( **self.storage_config, model_name="testmodel", additional={"version": "1.0.1"} ) self.model_manager = ModelManager(config=self.model_config) self.model_manager.save(model, epoch=1) pretrained_model = Model().to(device) correct = self.test_mnist_eval(model=pretrained_model, device=device) self.model_manager.load(pretrained_model, epoch=1) pretrained_correct = self.test_mnist_eval(model=pretrained_model, device=device) assert correct < pretrained_correct def suite(): return unittest.TestSuite(unittest.makeSuite(TorchModelTest)) if __name__ == "__main__": unittest.main(defaultTest="suite") ```
{ "source": "jinseuk56/gms_dm_python", "score": 3 }
#### File: gms_dm_python/codes/PCA_NMF_hyperspectral_decomposition.py ```python print("Execute Python script in GMS 3") import numpy as np import DigitalMicrograph as DM from sklearn.decomposition import NMF, PCA #import sys #sys.argv.extend(['-a', ' ']) #import matplotlib.pyplot as plt print("Libraries have been imported completely") # ******************************************************************************** if ( False == DM.IsScriptOnMainThread() ): print('MatplotLib scripts require to be run on the main thread.') exit() # ******************************************************************************** def zero_one_rescale(spectrum): """ get rid of negative values rescale a spectrum [0, 1] """ spectrum = spectrum.clip(min=0.0) min_val = np.min(spectrum) rescaled = spectrum - min_val if np.max(rescaled) != 0: rescaled = rescaled / np.max(rescaled) return rescaled # ******************************************************************************** # ******************************************************************************** SI = DM.GetFrontImage() print(SI) origin0, scale0, unit0 = SI.GetDimensionCalibration(0, 0) print(origin0, scale0, unit0) origin1, scale1, unit1 = SI.GetDimensionCalibration(1, 0) print(origin1, scale1, unit1) origin2, scale2, unit2 = SI.GetDimensionCalibration(2, 0) print(origin2, scale2, unit2) SI_data = np.rollaxis(SI.GetNumArray(), 0, 3) print(SI_data.shape) # ******************************************************************************** # ******************************************************************************** crop_check = input("Do you want to crop spectra ? (Y or N)") if crop_check == "Y": start_ind = int(input("initial index of the crop range: ")) end_ind = int(input("final index of the crop range: ")) cr_range = [start_ind, end_ind] SI_data_cropped = SI_data[:, :, cr_range[0]:cr_range[1]].copy() elif crop_check == "N": SI_data_cropped = SI_data.copy() else: print("Wrong input ! (only Y or N possible)") exit() data_shape = SI_data_cropped.shape[:2] depth = SI_data_cropped.shape[2] dataset_input = SI_data_cropped.reshape(-1, depth) for i in range(len(dataset_input)): dataset_input[i] = zero_one_rescale(dataset_input[i]) print(dataset_input.shape) # ******************************************************************************** q_text = """Select one option. 1: PCA (principal component analysis) 2: NMF (non-negative factorization method)""" decomp_check = int(input(q_text)) num_comp = int(input("How many loading vectors do you want to extract ?")) if decomp_check == 1: # ******************************************************************************** pca_num_comp = num_comp skl_pca = PCA(n_components=pca_num_comp, whiten=False, svd_solver="auto") pca_coeffs = skl_pca.fit_transform(dataset_input) pca_comps = skl_pca.components_ num_rec = int(input("How many loading vectors do you want to use when reconstructing the data ?")) pca_reconstructed = np.dot(pca_coeffs[:, :num_rec], pca_comps[:num_rec]) + skl_pca.mean_ print(pca_coeffs.shape) print(pca_comps.shape) print(pca_reconstructed.shape) # ******************************************************************************** # ******************************************************************************** pca_explained = DM.CreateImage(skl_pca.explained_variance_ratio_.copy()) pca_explained.SetName("Explained variance ratio") pca_comps_tmp = np.rollaxis(pca_comps.reshape(-1, 1, depth), 2, 0) pca_comps_dm = DM.CreateImage(pca_comps_tmp.copy()) pca_comps_dm.SetName("PCA loading vectors") pca_comps_dm.SetDimensionCalibration(1, 1, 1, "loading vector", 0) if crop_check == "Y": pca_comps_dm.SetDimensionCalibration(2, origin2+start_ind*scale2, scale2, unit2, 0) else: pca_comps_dm.SetDimensionCalibration(2, origin2, scale2, unit2, 0) pca_coeffs_tmp = np.reshape(pca_coeffs, (data_shape[0], data_shape[1], pca_num_comp, 1)) pca_coeffs_dm = DM.CreateImage(pca_coeffs_tmp.copy()) pca_coeffs_dm.SetName("PCA coefficient maps") pca_coeffs_dm.SetDimensionCalibration(1, 1, 1, "loading vector", 0) pca_coeffs_dm.SetDimensionCalibration(2, origin0, scale0, unit0, 0) pca_coeffs_dm.SetDimensionCalibration(3, origin1, scale1, unit1, 0) pca_rec_tmp = np.rollaxis(np.reshape(pca_reconstructed, (data_shape[0], data_shape[1], -1)), 2, 0) pca_rec_dm = DM.CreateImage(pca_rec_tmp.copy()) pca_rec_dm.SetName("PCA reconstructed SI") pca_rec_dm.SetDimensionCalibration(0, origin0, scale0, unit0, 0) pca_rec_dm.SetDimensionCalibration(1, origin1, scale1, unit1, 0) if crop_check == "Y": pca_rec_dm.SetDimensionCalibration(2, origin2+start_ind*scale2, scale2, unit2, 0) else: pca_rec_dm.SetDimensionCalibration(2, origin2, scale2, unit2, 0) # ******************************************************************************** # ******************************************************************************** pca_explained.ShowImage() pca_comps_dm.ShowImage() pca_coeffs_dm.ShowImage() pca_rec_dm.ShowImage() # ******************************************************************************** elif decomp_check == 2: # ******************************************************************************** nmf_num_comp = num_comp skl_nmf = NMF(n_components=nmf_num_comp, init="nndsvda", solver="mu", max_iter=1000, verbose=True, beta_loss="frobenius", l1_ratio=0.0, alpha=0.0) nmf_coeffs = skl_nmf.fit_transform(dataset_input) print(nmf_coeffs[:, [1,2]].shape) nmf_comps = skl_nmf.components_ # ******************************************************************************** nmf_comps_tmp = np.rollaxis(nmf_comps.reshape(-1, 1, depth), 2, 0) nmf_comps_dm = DM.CreateImage(nmf_comps_tmp.copy()) nmf_comps_dm.SetName("NMF loading vectors") nmf_comps_dm.SetDimensionCalibration(1, 1, 1, "loading vector", 0) if crop_check == "Y": nmf_comps_dm.SetDimensionCalibration(2, origin2+start_ind*scale2, scale2, unit2, 0) else: nmf_comps_dm.SetDimensionCalibration(2, origin2, scale2, unit2, 0) nmf_coeffs_tmp = np.reshape(nmf_coeffs, (data_shape[0], data_shape[1], nmf_num_comp, 1)) nmf_coeffs_dm = DM.CreateImage(nmf_coeffs_tmp.copy()) nmf_coeffs_dm.SetName("NMF coefficient maps") nmf_coeffs_dm.SetDimensionCalibration(1, 1, 1, "loading vector", 0) nmf_coeffs_dm.SetDimensionCalibration(2, origin0, scale0, unit0, 0) nmf_coeffs_dm.SetDimensionCalibration(3, origin1, scale1, unit1, 0) nmf_comps_dm.ShowImage() nmf_coeffs_dm.ShowImage() # ******************************************************************************** nmf_reconstructed = np.dot(nmf_coeffs, nmf_comps) print(nmf_coeffs.shape) print(nmf_comps.shape) print(nmf_reconstructed.shape) nmf_rec_tmp = np.rollaxis(np.reshape(nmf_reconstructed, (data_shape[0], data_shape[1], -1)), 2, 0) nmf_rec_dm = DM.CreateImage(nmf_rec_tmp.copy()) nmf_rec_dm.SetName("NMF reconstructed SI") nmf_rec_dm.SetDimensionCalibration(0, origin0, scale0, unit0, 0) nmf_rec_dm.SetDimensionCalibration(1, origin1, scale1, unit1, 0) if crop_check == "Y": nmf_rec_dm.SetDimensionCalibration(2, origin2+start_ind*scale2, scale2, unit2, 0) else: nmf_rec_dm.SetDimensionCalibration(2, origin2, scale2, unit2, 0) nmf_rec_dm.ShowImage() # ******************************************************************************** else: print("Wrong input ! (only 1 or 2 possible)") exit() ```
{ "source": "jinshengye-git/aipnd-project", "score": 2 }
#### File: jinshengye-git/aipnd-project/train.py ```python import os import argparse import torch import toolkit def get_input_args(): parser = argparse.ArgumentParser() valid_archs = {'densenet121', 'vgg16'} parser.add_argument('--architectures', dest='architectures', default='vgg16', action='store', choices=valid_archs,help='model architectures') parser.add_argument('--data_dir', type=str, help='dir to load images', default='./flower_data') parser.add_argument('--save_dir', type=str, default='checkpoints', help='dir to save checkpoints, default checkpoints') parser.add_argument('--hidden_units', type=int, default=500, help='hidden units, default 500') parser.add_argument('--learning_rate', type=float, default=0.005, help='learning rate, default 0.005') parser.add_argument('--gpu', dest='gpu', action='store_true', help='training device, default gpu') parser.add_argument('--epochs', type=int, default=3, help='training epochs, default 3') parser.add_argument('--num_threads', type=int, default=8,help='thread to training with cpu') parser.set_defaults(gpu=True) return parser.parse_args() def main(): input_args = get_input_args() gpu = torch.cuda.is_available() and input_args.gpu dataloaders, class_to_idx = toolkit.get_dataloders(input_args.data_dir) model, optimizer, criterion = toolkit.model_create( input_args.architectures, input_args.learning_rate, input_args.hidden_units, class_to_idx ) if gpu: model.cuda() criterion.cuda() else: torch.set_num_threads(input_args.num_threads) epochs = 5 print_every = 50 toolkit.train(model, dataloaders['training'], epochs, print_every, criterion, optimizer, device='gpu') if input_args.save_dir: if not os.path.exists(input_args.save_dir): os.makedirs(input_args.save_dir) file_path = input_args.save_dir + '/' + input_args.architectures + '_checkpoint.pth' else: file_path = input_args.architectures + '_checkpoint.pth' toolkit.save_checkpoint(file_path, model, optimizer, input_args.architectures, input_args.learning_rate, input_args.epochs ) toolkit.validation(model, dataloaders['testing'], criterion) if __name__ == "__main__": main() ```
{ "source": "jinshengye-git/jetbot", "score": 3 }
#### File: waveshare_motor_drive/python3/main.py ```python from PCA9685 import PCA9685 import time Dir = [ 'forward', 'backward', 'spinleft', 'spinright', 'slowleft', 'slowright' ] pwm = PCA9685(0x40, debug=True) pwm.setPWMFreq(50) class MotorDriver(): def __init__(self): self.PWMA = 0 self.AIN1 = 1 self.AIN2 = 2 self.PWMB = 5 self.BIN1 = 3 self.BIN2 = 4 def MotorRun(self, motor, index, speed): # DC Motor : # if speed > 100: return if(motor == 0): #Left Motor pwm.setDutycycle(self.PWMA, speed) if(index == Dir[0]): pwm.setLevel(self.AIN1, 0) pwm.setLevel(self.AIN2, 1) elif (index == Dir[1]): pwm.setLevel(self.AIN1, 1) pwm.setLevel(self.AIN2, 0) elif (index == Dir[2]): pwm.setLevel(self.AIN1, 0) pwm.setLevel(self.AIN2, 1) elif (index == Dir[3]): pwm.setLevel(self.AIN1, 1) pwm.setLevel(self.AIN2, 0) elif (index == Dir[4]): speed = speed * 0.8 pwm.setDutycycle(self.PWMA, speed) pwm.setLevel(self.AIN1, 0) pwm.setLevel(self.AIN2, 1) else: speed = speed * 0.8 pwm.setDutycycle(self.PWMA, speed) pwm.setLevel(self.AIN1, 1) pwm.setLevel(self.AIN2, 0) else: #Right Motor pwm.setDutycycle(self.PWMB, speed) if(index == Dir[0]): pwm.setLevel(self.BIN1, 0) pwm.setLevel(self.BIN2, 1) elif (index == Dir[1]): pwm.setLevel(self.BIN1, 1) pwm.setLevel(self.BIN2, 0) elif (index == Dir[2]): pwm.setLevel(self.BIN1, 0) pwm.setLevel(self.BIN2, 1) elif (index == Dir[3]): pwm.setLevel(self.BIN1, 1) pwm.setLevel(self.BIN2, 0) elif (index == Dir[4]): speed = speed * 0.8 pwm.setDutycycle(self.PWMB, speed) pwm.setLevel(self.BIN1, 0) pwm.setLevel(self.BIN2, 1) else: speed = speed * 0.8 pwm.setDutycycle(self.PWMB, speed) pwm.setLevel(self.BIN1, 1) pwm.setLevel(self.BIN2, 0) def MotorStop(self, motor): if (motor == 0): pwm.setDutycycle(self.PWMA, 0) else: pwm.setDutycycle(self.PWMB, 0) try: Motor = MotorDriver() # control 2 motor Motor.MotorRun(0, 'slowright', 100) Motor.MotorRun(1, 'slowright', 50) #print("sssssssss1") while(1): time.sleep(1); except IOError as e: print(e) except KeyboardInterrupt: print("\r\nctrl + c:") Motor.MotorRun(0, 'forward', 0) Motor.MotorRun(1, 'backward', 0) exit() ```
{ "source": "jinshengye-git/turtlesim_dash_tutorial", "score": 3 }
#### File: src/turtlesim_dash_tutorial/dashboard.py ```python from __future__ import print_function, division import os import sys import time import json import signal import traceback import numpy as np from threading import Lock import rospy import rospkg import actionlib from actionlib_msgs.msg import GoalStatus from turtlesim.msg import Pose from turtle_actionlib.msg import ShapeAction, ShapeGoal # Plotly, Dash, and Flask import plotly.graph_objs as go import dash import dash_core_components as dcc import dash_html_components as html from flask import jsonify # Helper functions and constants (should ideally be in a utils module) GOAL_STATUS_TO_TXT = { getattr(GoalStatus, x): x for x in dir(GoalStatus) if x.isupper() } # The app definition APP = dash.Dash( __name__, assets_folder=os.path.join(rospkg.RosPack().get_path('turtlesim_dash_tutorial'), 'dash_assets'), external_stylesheets=[ { 'href': 'https://stackpath.bootstrapcdn.com/bootstrap/4.3.1/css/bootstrap.min.css', 'rel': 'stylesheet', 'integrity': 'sha384-ggOyR0iXCbMQv3Xipma34MD+dH/1fQ784/j6cY/iJTQUOhcWr7x9JvoRxT2MZw1T', 'crossorigin': 'anonymous', }, ] ) class Dashboard(object): """ Create a Flask server to display the UI and a ROS node to send commands to the turtlesim """ # Flask APP_HOST = '0.0.0.0' APP_PORT = 8080 APP_STATUS_URL = '/ros_api/status' APP_STATUS_ENDPOINT = 'ros_status' # Actions, Topics, and Services # Note that although the values are hard-coded for now, these can be set via # service or ROS params if need be (a trivial update) TURTLE_SHAPE_ACTION_NAME = 'turtle_shape' TURTLE_POSE_TOPIC = '/turtle1/pose' # Constants that determine the behaviour of the dashboard # Pose is published at ~62 Hz; so we'll see ~30 sec of history. Note that # these parameters could be set through ROS parameters or services too! POSE_UPDATE_INTERVAL = 5 POSE_MAX_TIMESTEPS = 2000 POSE_ATTRIBUTES = ['x', 'y', 'theta', 'linear_velocity', 'angular_velocity'] # Constants for pertinent output fields SERVER_STATUS_OUTPUT_FORMAT = "Shape Server Status: {status}" def __init__(self): global APP # The Flask application self._app = APP self._flask_server = self._app.server # Create the stop signal handler signal.signal(signal.SIGINT, self.stop) # Initialize the variables that we'll be using to save information self._server_status = GoalStatus.LOST self._pose_history = np.ones( (1+len(Dashboard.POSE_ATTRIBUTES), Dashboard.POSE_MAX_TIMESTEPS)) * np.nan self._history_length = 0 self._pose_history_lock = Lock() # Setup the subscribers, action clients, etc. self._shape_client = actionlib.SimpleActionClient(Dashboard.TURTLE_SHAPE_ACTION_NAME, ShapeAction) self._pose_sub = rospy.Subscriber(Dashboard.TURTLE_POSE_TOPIC, Pose, self._on_pose) # Initialize the application self._define_app() @property def pose_history(self): return self._pose_history[:, :self._history_length] def start(self): rospy.loginfo("Connecting to turtle_shape...") self._shape_client.wait_for_server() rospy.loginfo("...turtle_shape connected.") self._app.run_server(host=Dashboard.APP_HOST, port=Dashboard.APP_PORT, debug=False) def stop(self, *args, **kwargs): # Give some time for rospy to shutdown (cannot use rospy now!) print("Shutting down Dash server") time.sleep(2) sys.exit(0) def _define_app(self): """ Define the app layout and callbacks here """ # Define each component of the page # First the graph element that will plot the pose and velocity of the # robot pose_graph_layout = html.Div(dcc.Graph(id='pose', style={ 'width': '100%' }), className='row') # Then the section that will update the parameters for the shape that # the turtle will trace in the turtle sim shape_params_layout = html.Div( [ dcc.Input(id="shape-edges", type='number', placeholder='Num Edges', className='col mx-2'), dcc.Input(id="shape-radius", type='number', placeholder='Radius', className='col mx-2'), html.Button("Trace Shape", id='trace-button', n_clicks=0, className='btn btn-large btn-primary col-3'), ], className='row' ) # Then the section that will display the status of the shape server server_status_layout = html.Div( dcc.Markdown(id='server-status', className='col'), className='row my-2' ) # String them all together in a single page self._app.layout = html.Div( [ # Hidden button for JS polling html.Button(id='refresh-status', n_clicks=0, style={ 'display': 'none' }), # The params for tracing the shape html.Div(html.H3('Shape Tracing:', className='col'), className='row mt-4'), shape_params_layout, server_status_layout, # The section showing the action status html.Div(html.H3('Pose History:', className='col'), className='row my-2'), pose_graph_layout, # The interval component to update the plots dcc.Interval(id='interval-component', n_intervals=0, interval=(Dashboard.POSE_UPDATE_INTERVAL * 1000)), ], className="container" ) # Define callbacks to update the elements on the page self._app.callback( dash.dependencies.Output('pose', 'figure'), [dash.dependencies.Input('interval-component', 'n_intervals')] )(self._define_pose_history_callback()) # Define a callback to send the goal to the server when the 'Trace' # button is clicked. Wait until the client is done executing self._app.callback( dash.dependencies.Output('trace-button', 'autoFocus'), [dash.dependencies.Input('trace-button', 'n_clicks')], [dash.dependencies.State('shape-edges', 'value'), dash.dependencies.State('shape-radius', 'value')] )(self._define_trace_shape_callback()) # Define a callback to show the status of the server self._app.callback( dash.dependencies.Output('server-status', 'children'), [dash.dependencies.Input('refresh-status', 'n_clicks')] )(self._define_server_status_callback()) # Add the flask API endpoints self._flask_server.add_url_rule( Dashboard.APP_STATUS_URL, Dashboard.APP_STATUS_ENDPOINT, self._flask_status_endpoint ) def _define_server_status_callback(self): """ Define a callback to populate the server status display when the status refresh button (hidden) is pressed """ def server_status_callback(n_clicks): status = GOAL_STATUS_TO_TXT.get(self._server_status) return Dashboard.SERVER_STATUS_OUTPUT_FORMAT.format(**locals()) return server_status_callback def _define_trace_shape_callback(self): """ Define a callback that will be invoked every time the 'Trace' button is clicked. """ def trace_shape_callback(n_clicks, num_edges, radius): # Ignore the 'click' event when the component is created if n_clicks is None or n_clicks == 0: return False # Coerce the input data into formats that we can use try: num_edges = int(num_edges) radius = float(radius) except Exception as e: rospy.logerr("Error parsing params - {}\n{}".format(e, traceback.format_exc())) return False # Create the goal and send it to the action server goal = ShapeGoal(edges=num_edges, radius=radius) self._shape_client.send_goal(goal) self._server_status = GoalStatus.ACTIVE # Wait for a result self._shape_client.wait_for_result() # Finally, update the status, log the result, and return true self._server_status = self._shape_client.get_state() result = self._shape_client.get_result() rospy.loginfo("ShapeServer: Interior Angle - {result.interior_angle}, Apothem - {result.apothem}".format(**locals())) return True return trace_shape_callback def _define_pose_history_callback(self): """ Define a callback that will be invoked on every update of the interval component. Keep in mind that we return a callback here; not a result """ def pose_history_callback(n_intervals): # Get a view into the latest pose history pose_history = self.pose_history # Create the output graph data = [ go.Scatter( name=attr, x=pose_history[0, :], y=pose_history[idx+1, :], mode='lines+markers' ) for idx, attr in enumerate(Dashboard.POSE_ATTRIBUTES) ] layout = go.Layout( showlegend=True, height=500, yaxis=dict( fixedrange=True ), margin=dict( autoexpand=True ) ) return { 'data': data, 'layout': layout } return pose_history_callback def _on_pose(self, msg): """ The callback for the position of the turtle on :const:`TURTLE_POSE_TOPIC` """ if self._history_length == Dashboard.POSE_MAX_TIMESTEPS: self._pose_history[:, :-1] = self._pose_history[:, 1:] else: self._history_length += 1 self._pose_history[:, self._history_length-1] = [ rospy.Time.now().to_time() % 1000, msg.x, msg.y, msg.theta, msg.linear_velocity, msg.angular_velocity, ] def _flask_status_endpoint(self): return jsonify({ 'server_status': self._server_status, }) ```
{ "source": "jinshisai/StatsVfield", "score": 3 }
#### File: StatsVfield/statsvfield/analysis_tools.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.optimize import leastsq def binning(bin_e, coordinates, data): ''' Binning data according to given bins and a set of coordinates and data. ''' #bin_c = 0.5 .*(bin_e[2:length(bin_e)] .+ bin_e[1:length(bin_e)-1]) d_bin = np.zeros(len(bin_e)-1) for i in range(len(bin_e)-1): indx = np.where( (coordinates >= bin_e[i]) & (coordinates < bin_e[i+1])) if len(indx[0]) == 0: d_bin[i] = np.nan else: d_bin[i] = np.nanmean(data[indx]) return d_bin def plawfit(x, y, pini, sig=None, xlim=[], cutzero=True, x0=None, mode='lin', printres=True): ''' ''' from scipy.optimize import leastsq # fit function # power law plaw = lambda x, x0, param: param[0]*((x/x0)**(param[1])) errfunc = lambda param, x, y, sig, x0: (plaw(x, x0, param) - y)/sig #res = leastsq(errfunc, [1e-3, -3], args=(freq_fft[1:], np.abs(res_spec[1:])**2.)) # linear fln = lambda x, x0, param: param[0] + param[1]*(x - x0) errfunc2 = lambda param, x, y, sig, x0: (fln(x, x0, param) - y)/sig # fitting range if len(xlim) == 2: where_fit = (x > xlim[0]) & (x <= xlim[-1]) y_fit = y[where_fit] x_fit = x[where_fit] if type(sig).__name__ == 'ndarray': sig_fit = sig[where_fit] else: sig_fit = sig else: y_fit = y x_fit = x sig_fit = sig if mode == 'lin': if type(sig).__name__ == 'NoneType': sig_fit = 1 if type(x0).__name__ == 'NoneType': x0_fit = 1 res = leastsq(errfunc, pini, args=(x_fit, y_fit, sig_fit, x0_fit), full_output=True) pout = res[0] pcov = res[1] chi2 = np.sum(errfunc(pout, x_fit, y_fit, sig_fit, x0_fit)**2.) elif mode == 'log': if type(x0).__name__ == 'NoneType': x0_fit = 0. else: x0_fit = np.log10(x0) if type(sig).__name__ == 'NoneType': sig_fit = 1 res = leastsq(errfunc2, pini, args=(np.log10(x_fit), np.log10(y_fit), sig_fit, x0_fit), full_output=True) else: res = leastsq(errfunc2, pini, args=(np.log10(x_fit), np.log10(y_fit), sig_fit/(y_fit*np.log(10)), x0_fit), full_output=True) pout = res[0] pcov = res[1] chi2 = np.sum(errfunc2(pout, np.log10(x_fit), np.log10(y_fit), sig_fit/(y_fit*np.log(10)), x0_fit)**2.) else: print('ERROR\tplawfit: mode must be lin or log.') return ndata = len(x_fit) nparam = len(pout) dof = ndata - nparam - 1 reduced_chi2 = chi2/dof # parameter errors if (dof >= 0) and (pcov is not None): pcov = pcov*reduced_chi2 else: pcov = np.full((nparam, nparam),np.inf) perr = np.array([ np.abs(pcov[j][j])**0.5 for j in range(nparam) ]) if printres: print('Power-law fit') print('pini: (c, p) = (%.4e, %.4e)'%(pini[0], pini[1])) print('pout: (c, p) = (%.4e, %.4e)'%(pout[0], pout[1])) print('perr: (sig_c, sig_p) = (%.4e, %.4e)'%(perr[0], perr[1])) print('reduced chi^2: %.4f'%reduced_chi2) return pout, perr ``` #### File: StatsVfield/statsvfield/_statsvfield.py ```python import numpy as np from scipy.fft import fft, ifft, fftn, ifftn, fftfreq, fftshift, ifftshift from scipy.fft import rfftfreq import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable #import seaborn as sns #sns.set_palette('gist_earth') # Class StatsVF class StatsVfield(): def __init__(self, data, axes, derr=[]) -> None: self.data = data self.datashape = data.shape self.ndim = len(data.shape) self.derr = derr if type(axes) == list: if len(axes) != self.ndim: print ('ERROR: Dimension of given data and axes do not match.') return elif type(axes).__name__ == 'ndarray': if len(axes.shape) != self.ndim: print ('ERROR: Dimension of given data and axes do not match.') return else: print ('ERROR: axes must be list or ndarray containing xi, or ndarray of x.') return if self.ndim == 1: self.nx = self.datashape[0] if type(axes) == list: self.x = axes[0] elif type(axes).__name__ == 'ndarray': self.x = axes self.dx = self.x[1] - self.x[0] elif self.ndim == 2: self.nx, self.ny = self.datashape self.x, self.y = axes self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] elif self.ndim == 3: self.nx, self.ny, self.nz = self.datashape self.x, self.y, self.z = axes self.dx = self.x[1] - self.x[0] self.dy = self.y[1] - self.y[0] self.dz = self.z[1] - self.z[0] elif self.ndim > 3: print ('ERROR: Dimension must be <= 3.') return self.acf = [] self.sf = [] self.tau_x = [] def calc_sf(self, p_order=2): ''' Calculate the second-order structure function (SF). Other orders will be supported in future. Usage ----- vf = StatsVfield(data, axes) vf.calc_sf() vf.sf # call the calculated SF Parameters ---------- - p_order: Order of the structuer function. Currently not used. ''' if self.ndim == 1: if len(self.derr) == 0: self.sf = sf_1d(self.data) else: self.sf, self.sf_err = sf_1d(self.data, derr=self.derr) elif self.ndim == 2: if len(self.derr) == 0: self.sf = sf_2d(self.data) else: self.sf, self.sf_err = sf_2d(self.data, derr=self.derr) elif self.ndim == 3: print ('3D is being developed.') return self.get_tau(realfreq=True) def calc_ac(self, method='FFT', realfreq=False): ''' Calculate autocorrelation (AC). Usage ----- vf = StatsVfield(data, axes) vf.calc_ac() vf.acf # call the calculated ACF Parameters ---------- - method: Calculation ways; FFT or iterative. FFT mode uses Fast Fourier Transform, while iterative mode calculates ACF iteratively sliding an input data set. - realfreq: If True, only ACF within positive tau will be return. Option only for in one-dimensional data set. ''' if self.ndim == 1: if method == 'FFT': self.acf = ac_fft1(self.data, realfreq=realfreq) elif method == 'iterative': if len(self.derr) == 0: self.acf = ac_1d(self.data, realfreq=realfreq) else: self.acf, self.acf_err = ac_1d(self.data, derr=self.derr, realfreq=realfreq) elif self.ndim == 2: if method == 'FFT': self.acf = ac_fft2(self.data) elif method == 'iterative': if len(self.derr) == 0: self.acf = ac_2d(self.data) else: self.acf, self.acf_err = ac_2d(self.data, derr=self.derr) #if len(self.tau_x) == 0: self.get_tau(realfreq=realfreq) def calc_ps(self, method='FFT', realfreq=False): ''' Calculate power-spectrum (PS). Still under development. Usage ----- Coming soon.. ''' if self.ndim == 1: self.ps = pspec_1d(self.data, realfreq=realfreq) elif self.ndim == 2: print ('Still being developed, sorry.') #self.ps = pspec_2d(self.data, realfreq=realfreq) if realfreq: self.freq_x = rfftfreq(self.nx + self.nx - 1, self.dx) # nx -1 is for zero-padding else: self.freq_x = fftshift(fftfreq(self.nx + self.nx - 1, self.dx)) #print(len(self.ps), len(self.freq_x)) def get_tau(self, realfreq=False): ''' Get tau for ACF and SF. Parameters ---------- - realfreq: For one-dimensional data set, if True, only positive tau will be returned. ''' if self.ndim == 1: if realfreq: self.tau_x = np.arange(0, self.nx, 1)*self.dx else: self.tau_x = np.concatenate([np.arange(-(self.nx - 1), 0, 1)*self.dx, np.arange(0, self.nx, 1)*self.dx]) elif self.ndim == 2: self.tau_x = np.concatenate([np.arange(-(self.nx - 1), 0, 1)*self.dx, np.arange(0, self.nx, 1)*self.dx]) self.tau_y = np.concatenate([np.arange(-(self.ny - 1), 0, 1)*self.dy, np.arange(0, self.ny, 1)*self.dy]) elif self.ndim == 3: print ('3D is being developed.') return def collapse(self): if self.ndim == 1: print ('Data is one dimensional. No more collapse.') return elif self.ndim == 2: tau_xx, tau_yy = np.meshgrid(self.tau_x, self.tau_y) tau_rr = np.sqrt(tau_xx*tau_xx + tau_yy*tau_yy) tau_sort = np.unique(tau_rr) self.tau_col = tau_sort if len(self.acf) != 0: self.acf_col = np.array([ np.nanmean(self.acf[tau_rr == tau_i]) for tau_i in tau_sort]) self.acf_err_col = np.array([ np.sqrt(np.nansum(self.acf_err[tau_rr == tau_i]**2))/np.count_nonzero(~np.isnan(self.acf_err[tau_rr == tau_i])) for tau_i in tau_sort]) if len(self.sf) !=0: self.sf_col = np.array([ np.nanmean(self.sf[tau_rr == tau_i]) for tau_i in tau_sort]) self.sf_err_col = np.array([ np.sqrt(np.nansum(self.sf_err[tau_rr == tau_i]**2))/np.count_nonzero(~np.isnan(self.sf_err[tau_rr == tau_i])) for tau_i in tau_sort]) def get_tauzero(self): if self.ndim == 2: print ('Currently get_tauzero only supports one-dimensional data.') return if 'acf' in self.__dict__.keys(): indx = [i for i in range(len(self.acf)-1) if self.acf[i]*self.acf[i+1] <=0] if len(indx) > 0: indx_tau0 = indx[0] self.tau0 = self.tau_x[indx_tau0] else: self.tau0 = np.nan else: print ('ACF is not found. Calculate ACF first by vf.calc_ac().') return def sf_plawfit(self, pini, taurange=[], cutzero=True): ''' ''' from scipy.optimize import leastsq # fit function # power law plaw = lambda x, param: param[0]*(x**(param[1])) errfunc = lambda param, x, y: plaw(x, param) - y #res = leastsq(errfunc, [1e-3, -3], args=(freq_fft[1:], np.abs(res_spec[1:])**2.)) # linear fln = lambda x, param: param[0] + param[1]*x errfunc2 = lambda param, x, y: fln(x, param) - y # fit param if cutzero: tau_fit = self.tau_x[1:] sf_fit = self.sf[1:] else: tau_fit = self.tau_x sf_fit = self.sf # fitting range if len(taurange) == 2: where_fit = (tau_fit > taurange[0]) & (tau_fit <= taurange[-1]) sf_fit = sf_fit[where_fit] tau_fit = tau_fit[where_fit] #res = leastsq(errfunc2, [-3, -3], args=(np.log10(tau_sf[where_fit]), np.log10(sf_slice[where_fit]))) #p_out = res[0] res = leastsq(errfunc2, pini, args=(np.log10(tau_fit), np.log10(sf_fit))) pout = res[0] self.fit_results = dict({'pini': pini, 'pout': pout}) # functions for debug def gaussian2D(x, y, A, mx, my, sigx, sigy, pa=0, peak=True): ''' Generate normalized 2D Gaussian Parameters ---------- x: x value (coordinate) y: y value A: Amplitude. Not a peak value, but the integrated value. mx, my: mean values sigx, sigy: standard deviations pa: position angle [deg]. Counterclockwise is positive. ''' x, y = rotate2d(x,y,pa) mx, my = rotate2d(mx, my, pa) if peak: coeff = A else: coeff = A/(2.0*np.pi*sigx*sigy) expx = np.exp(-(x-mx)*(x-mx)/(2.0*sigx*sigx)) expy = np.exp(-(y-my)*(y-my)/(2.0*sigy*sigy)) gauss=coeff*expx*expy return gauss # main functions # autocorrelation function def ac_1d(data, derr=[], realfreq=True): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' #from itertools import product nx = len(data) d_in = data.copy() - np.nanmean(data) if realfreq: # auto-correlation d_ac = np.array([ np.nanmean(d_in[0:nx-j]*d_in[j:nx]) for j in range(nx)])/np.nanvar(data) else: # zero-padding d_in = np.concatenate([d_in, np.zeros(nx-1)]) d_shift = data.copy() - np.nanmean(data) d_shift = np.concatenate([np.zeros(nx-1), d_shift]) # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan nx_out = 2*nx - 1 d_ac = np.array([ np.nanmean(d_in[0:nx_out-i]*d_shift[i:nx_out]) for i in range(nx_out) ])/np.nanvar(data) if len(derr) == 0: return d_ac else: # error propagation if realfreq: d_in_err = derr.copy() # assuming error of mean can be ignored d_ac_err = np.array([ np.sqrt(np.nansum((d_in[0:nx-j]*d_in_err[j:nx])**2\ + (d_in[j:nx]*d_in_err[0:nx-j])**2 ))\ /np.count_nonzero(~np.isnan(d_in[0:nx-j]*d_in[j:nx])) for j in range(nx)])/np.nanvar(data) else: # zero-padding d_in_err = np.concatenate([derr, np.zeros(nx-1)]) d_shift_err = np.concatenate([np.zeros(nx-1), derr]) d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan # error of each element: # (m1 +/- sig1)*(m2 +/- sig2) = m1*m2 +/- sqrt((m1*sig2)^2 + (m2*sig1)^2) # error of mean # sqrt(Sum(sig_i^2))/N d_ac_err = np.array([ np.sqrt(np.nansum((d_in[0:nx_out-i]*d_shift_err[i:nx_out])**2 \ + (d_in_err[0:nx_out-i]*d_shift[i:nx_out])**2))\ /np.count_nonzero(~np.isnan(d_in[0:nx_out-i]*d_shift[i:nx_out])) for i in range(nx_out) ])/np.nanvar(data) return d_ac, d_ac_err def ac_fft1(data, realfreq=False): ''' Calculate auto-correlation using FFT. ''' nx = len(data) d_in = np.r_[data - np.nanmean(data), np.zeros(nx-1)] # zero-padding d_ft = fft(d_in) # Fourier transform d_ft_cnj = np.conjugate(fft(d_in)) # complex conjugate d_ac = ifft(d_ft*d_ft_cnj).real d_ac /= np.r_[np.arange(1,nx+1,1)[::-1], np.arange(1,nx,1)] # weighting d_ac /= np.nanvar(data) if realfreq: d_ac = d_ac[:len(d_ac)//2+1] else: d_ac = fftshift(d_ac) return d_ac def ac_2d(data, derr=[]): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' nx, ny = data.shape # zero-padding for convolution d_in = data.copy() - np.nanmean(data) d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] d_shift = data.copy() - np.nanmean(data) d_shift = np.r_[np.zeros((d_shift.shape[0]-1,d_shift.shape[1])), d_shift] d_shift = np.c_[np.zeros((d_shift.shape[0],d_shift.shape[1]-1)), d_shift] # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan # autocorrelation nx_out = 2*nx - 1 ny_out = 2*ny - 1 d_ac = np.array([ [np.nanmean( d_in[:nx_out - k, :ny_out - l] * d_shift[k:nx_out, l:ny_out]) for l in range(ny_out)] for k in range(nx_out)]) d_ac /= np.nanvar(data) if len(derr) == 0: return d_ac else: # error propagation # zero-padding d_in_err = derr.copy() d_in_err = np.r_[d_in_err, np.zeros((d_in_err.shape[0]-1, d_in_err.shape[1]))] d_in_err = np.c_[d_in_err, np.zeros((d_in_err.shape[0], d_in_err.shape[1]-1))] d_shift_err = derr.copy() d_shift_err = np.r_[np.zeros((d_shift_err.shape[0]-1, d_shift_err.shape[1])), d_shift_err] d_shift_err = np.c_[np.zeros((d_shift_err.shape[0], d_shift_err.shape[1]-1)), d_shift_err] d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan # error of each element: # (m1 +/- sig1)*(m2 +/- sig2) = m1*m2 +/- sqrt((m1*sig2)^2 + (m2*sig1)^2) # error of mean # sqrt(Sum(sig_i^2))/N d_ac_err = np.array([[ np.sqrt(np.nansum((d_in[:nx_out - k, :ny_out - l]*d_shift_err[k:nx_out, l:ny_out])**2 \ + (d_in_err[:nx_out - k, :ny_out - l]*d_shift[k:nx_out, l:ny_out])**2))\ /np.count_nonzero(~np.isnan(d_in[:nx_out - k, :ny_out - l]*d_shift[k:nx_out, l:ny_out])) for l in range(ny_out)] for k in range(nx_out)] )/np.nanvar(data) return d_ac, d_ac_err def ac_fft2(data): nx, ny = data.shape d_in = data.copy() d_in[np.isnan(d_in)] = 0. # fill nan with zero d_in -= np.nanmean(data) # zero-padding d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] # zero-padding for convolution d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] # zero-padding for convolution d_ft = fftn(d_in) # Fourier transform d_ft_cnj = np.conjugate(d_ft) # complex conjugate d_ac = ifftn(d_ft*d_ft_cnj).real # weighting with sample number #print(d_ac.shape[0], nx) wx = np.concatenate([np.arange(1, nx+1, 1), np.arange(nx-1, 0, -1)]) wx = ifftshift(wx) wy = np.concatenate([np.arange(1, ny+1, 1), np.arange(ny-1, 0, -1)]) wy = ifftshift(wy) #wx = np.r_[np.arange(1, d_ac.shape[0]//2+2, 1)[::-1], np.arange(1,d_ac.shape[0]//2+1,1)] #wy = np.r_[np.arange(1, d_ac.shape[1]//2+2, 1)[::-1], np.arange(1,d_ac.shape[1]//2+1,1)] wxx, wyy = np.meshgrid(wx, wy) d_ac /= (wxx*wyy)*np.nanvar(data) #if realfreq: # print("Resultant ACF has only the positive axis.") # print("The output axis length is nx/2.") # d_ac = d_ac[0:d_ac.shape[1]//2+1,0:d_ac.shape[0]//2+1] #else: d_ac = ifftshift(d_ac) return d_ac # structure function def sf_1d(data, derr=[]): ''' Calculate the structure function. Parameters ---------- Return ------ ''' nx = len(data) d_sf = np.array([ np.nanmean((data[:nx-i] - data[i:nx])**2.) for i in range(nx) ]) if len(derr) == 0: return d_sf else: # error propagation d_sf_err = np.array([ np.sqrt(np.nansum((4.* (data[:nx-i] - data[i:nx])**2. * (derr[:nx-i]**2 + derr[i:nx]**2.))))\ /np.count_nonzero(~np.isnan((data[:nx-i] - data[i:nx]))) for i in range(nx) ]) return d_sf, d_sf_err def sf_2d(data, derr=[], normalize=False): ''' Calculate auto-correlation. Parameters ---------- Return ------ ''' nx, ny = data.shape # zero-padding for convolution d_in = data.copy() - np.nanmean(data) d_in = np.r_[d_in, np.zeros((d_in.shape[0]-1,d_in.shape[1]))] d_in = np.c_[d_in, np.zeros((d_in.shape[0],d_in.shape[1]-1))] d_shift = data.copy() - np.nanmean(data) d_shift = np.r_[np.zeros((d_shift.shape[0]-1,d_shift.shape[1])), d_shift] d_shift = np.c_[np.zeros((d_shift.shape[0],d_shift.shape[1]-1)), d_shift] # replace zero with nan to skip d_in[d_in == 0.] = np.nan d_shift[d_shift == 0.] = np.nan # structure function nx_out = 2*nx - 1 ny_out = 2*ny - 1 d_sf = np.array([[ np.nanmean( (d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])**2. ) for l in range(ny_out)] for k in range(nx_out)]) if normalize: d_sf /= d_sf[0,0] if len(derr) == 0: return d_sf else: # error propagation # zero-padding d_in_err = derr.copy() d_in_err = np.r_[d_in_err, np.zeros((d_in_err.shape[0]-1, d_in_err.shape[1]))] d_in_err = np.c_[d_in_err, np.zeros((d_in_err.shape[0], d_in_err.shape[1]-1))] d_shift_err = derr.copy() d_shift_err = np.r_[np.zeros((d_shift_err.shape[0]-1, d_shift_err.shape[1])), d_shift_err] d_shift_err = np.c_[np.zeros((d_shift_err.shape[0], d_shift_err.shape[1]-1)), d_shift_err] d_in_err[d_in_err == 0.] = np.nan d_shift_err[d_shift_err == 0.] = np.nan d_sf_err = np.array([[ np.sqrt(np.nansum((4.* (d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])**2.\ * (d_in_err[:nx_out - k, :ny_out - l]**2. + d_shift_err[k:nx_out, l:ny_out]**2.))))\ /np.count_nonzero(~np.isnan(d_in[:nx_out - k, :ny_out - l] - d_shift[k:nx_out, l:ny_out])) for l in range(ny_out)] for k in range(nx_out)]) return d_sf, d_sf_err def pspec_1d(data, realfreq=False): ''' Calculate Power-spectrum using FFT. ''' nx = len(data) d_in = np.r_[data - np.nanmean(data), np.zeros(nx-1)] # zero-padding d_ft = fft(d_in) # Fourier transform d_ft_cnj = np.conjugate(fft(d_in)) # complex conjugate d_ps = (d_ft*d_ft_cnj).real # Power spectrum if realfreq: d_ps = d_ps[:len(d_ps)//2+1] else: d_ps = fftshift(d_ps) return d_ps def binning(bin_e, coordinates, data): ''' Binning data according to given bins and a set of coordinates and data. ''' #bin_c = 0.5 .*(bin_e[2:length(bin_e)] .+ bin_e[1:length(bin_e)-1]) d_bin = np.zeros(len(bin_e)-1) for i in range(len(bin_e)-1): indx = np.where( (coordinates >= bin_e[i]) & (coordinates < bin_e[i+1])) if len(indx[0]) == 0: d_bin[i] = np.nan else: d_bin[i] = np.nanmean(data[indx]) return d_bin # for debug def main(): # --------- input -------- # test with sin curve nx, ny = [32, 32] x = np.linspace(-np.pi,np.pi,nx) y = np.linspace(-np.pi,np.pi,nx) dx = x[1] - x[0] dy = y[1] - y[0] phi = 0.*np.pi # phase shift # ------------------------ # ---------- start --------- # grid xx, yy = np.meshgrid(x, y, indexing='ij') z = np.sin(xx+phi) + np.sin(yy+phi) # -------------------------- if __name__ == '__main__': main() ```
{ "source": "jinshiyi11/AppBuilder", "score": 2 }
#### File: jinshiyi11/AppBuilder/AppBuilder.py ```python #coding=UTF-8 ''' Created on 2013-4-24 ''' import argparse import os import sys import shutil import xml.etree.ElementTree from xml.etree.ElementTree import ElementTree import Util KEY_DIR="../MyAppKey/" class BuildInfo(object): ''' productName 产品名根据该字段生成备份路径 manualVersion AndroidManifest.xml中versionName的前3位版本号(第四位由打包脚本自动生成,表示打包次数) buildCount 对应versionCount(表示打包次数) autoPartVersion versionName的第四位版本号(第四位由打包脚本自动生成) updateVersion 本次编译是否更新版本号,默认为True channel 渠道号,对应AndroidManifest.xml文件中的UMENG_CHANNEL,用于通过友盟统计安装渠道 ''' def __init__(self): self.backupRootDir="E:/backup/" self.appRootDir="" self.productName="" self.manualVersion="" self.buildCount=1 self.updateVersion=True self.channel="" self.isYoumengChannel=False self.autoPartVersion=1 def getProductVersion(self): "返回产品的4位版本号,如1.1.1.1" #return self.manualVersion+"."+str(self.autoPartVersion) return "%s.%04d" % (self.manualVersion,self.autoPartVersion) def getProductBackupDir(self): "z:/backup-xxx/" return self.backupRootDir+"backup-"+self.productName+"/" def getBaseBackupDir(self): "z:/backup-xxx/1.1.1/" return self.backupRootDir+"backup-"+self.productName+"/"+self.manualVersion+"/" def getBackupDir(self): "z:/backup-xxx/1.1.1/1.1.1.1/" return self.getBaseBackupDir()+"/"+self.getProductVersion()+"/" info=BuildInfo() def initVersion(): "初始化版本号" mainfestPath=info.appRootDir+"/AndroidManifest.xml" if not os.path.exists(mainfestPath): sys.exit("AndroidManifest.xml文件不存在:"+mainfestPath) xml.etree.ElementTree.register_namespace("android","http://schemas.android.com/apk/res/android") tree = ElementTree() xmlRoot=tree.parse(mainfestPath) versionName=xmlRoot.get("{http://schemas.android.com/apk/res/android}versionName") versionCode=xmlRoot.get("{http://schemas.android.com/apk/res/android}versionCode") print "versionName:"+versionName vers=versionName.split(".") if len(vers)<3: sys.exit("AndroidManifest.xml文件:"+mainfestPath+"中的versionName格式不正确:"+versionName) info.manualVersion=vers[0]+"."+vers[1]+"."+vers[2] baseBackupDir=info.getBaseBackupDir() if not os.path.exists(baseBackupDir): os.makedirs(baseBackupDir) #获取buildCount buildCountFilePath=info.getProductBackupDir()+info.productName+".count" if not os.path.exists(buildCountFilePath): #创建buildCount文件 f=open(buildCountFilePath,'a+') f.write("buildCount="+str(info.buildCount)) f.write("autoPartVersion="+str(info.autoPartVersion)) f.close() else: #读取buildCount文件并更新buildCount globalData={} execfile(buildCountFilePath,globalData) info.buildCount=globalData['buildCount'] if info.updateVersion: info.buildCount=info.buildCount+1 info.autoPartVersion=info.autoPartVersion+1 f=open(buildCountFilePath,'w+') f.write("buildCount="+str(info.buildCount)) f.write("autoPartVersion="+str(info.autoPartVersion)) f.close() #创建当前版本的备份目录 if not os.path.exists(info.getBackupDir()): os.makedirs(info.getBackupDir()) #使用buildCount作为versionCode versionCode=info.buildCount #输出log,通知邮件会从中提取信息 print "file version:%s"%info.getProductVersion() print "product version:%s"%info.getProductVersion() print "version code:%s"%versionCode #TODO:save xml #更新AndroidManifest.xml文件的versionName字段 xmlRoot.set("{http://schemas.android.com/apk/res/android}versionName",info.getProductVersion()) xmlRoot.set("{http://schemas.android.com/apk/res/android}versionCode",str(versionCode)) #更新AndroidManifest.xml文件的UMENG_CHANNEL字段,用于统计安装渠道 # if info.isYoumengChannel: # print "using Youmeng channel" # channelNode=tree.find("./application/meta-data[@{http://schemas.android.com/apk/res/android}name='UMENG_CHANNEL']") # channelNode.set("{http://schemas.android.com/apk/res/android}value",info.channel) # else: # channelFilePath=info.appRootDir+"/assets/channel_id.txt" ##先把老文件删除 # if os.path.exists(channelFilePath): # os.remove(channelFilePath) # f=open(channelFilePath,'w+') # f.write(info.channel) # f.close() #tree.write(mainfestPath, "UTF-8", True, "http://schemas.android.com/apk/res/android") tree.write(mainfestPath, "UTF-8", True) #因为修改过AndroidManifest.xml文件,所以备份一下该文件看看修改有没有问题 shutil.copy(mainfestPath,info.getBackupDir()) def generateAntProperties(productName): ''' 因为安全原因,签名文件只在本地保存,不在svn上保存,这个函数用来从本地文件生成ant.properties,该文件指定签名信息 ''' keypath=KEY_DIR+productName+".py" keyInfo=Util.load_module(keypath) filePath=info.appRootDir+"/ant.properties" print "开始删除ant.properties:"+filePath if os.path.exists(filePath): os.remove(filePath) print "正在生成ant.properties" f=open(filePath,'w+') f.write("key.store=%s\r\n" % keyInfo.KEY_STORE_FILE_PATH) f.write("key.alias=%s\r\n" % keyInfo.ALIAS_NAME) f.write("key.store.password=%<PASSWORD>" % keyInfo.STORE_PASS) f.write("key.alias.password=%<PASSWORD>" % keyInfo.KEY_PASS) f.close() import subprocess def startBuild(): '执行编译操作' #subprocess.check_call(["dir","/A"],shell=True) subprocess.check_call(["ant","clean" ,"release"],shell=True,cwd=info.appRootDir) #subprocess.check_call(["ant","release"]) def backupFiles(): '备份生成的apk和proguard相关文件' if info.channel: print "channel:"+info.channel shutil.copy(info.appRootDir+"/bin/"+info.productName+"-release.apk",info.getBackupDir()+info.productName+"_"+info.channel+".apk") else: shutil.copy(info.appRootDir+"/bin/"+info.productName+"-release.apk",info.getBackupDir()+info.productName+".apk") if os.path.exists(info.appRootDir+"/bin/proguard"): shutil.copytree(info.appRootDir+"/bin/proguard",info.getBackupDir()+"proguard") else: print "Warning:no progurad info!!!!!" if __name__ == '__main__': parser = argparse.ArgumentParser(description='apk打包脚本') parser.add_argument('-p', dest='productName', required=True , help='项目名称,如:browser') parser.add_argument('-d', dest='appRootDir' , help='app根目录,该目录即AndroidManifest.xml文件所在目录,没指定就使用当前目录') parser.add_argument('-u', dest='updateVersion',action='store_true',default=True , help='是否更新版本号,即更新AndroidManifest.xml文件中的android:versionName字段') parser.add_argument('-c', dest='channel', required=False , help='渠道号') args = parser.parse_args() print sys.argv print args info.productName=args.productName # 没指定appRootDir就使用当前目录 if args.appRootDir: #是否是相对路径 if args.appRootDir[0]=='.': info.appRootDir=os.getcwd()+'/'+args.appRootDir else: info.appRootDir=args.appRootDir os.chdir(info.appRootDir) else: info.appRootDir=os.getcwd() print "当前目录:"+info.appRootDir #updateVersion info.updateVersion=args.updateVersion #channel if args.channel: info.channel=args.channel initVersion() generateAntProperties(info.productName) startBuild() backupFiles() ```
{ "source": "JinShiyin/sast_backend", "score": 2 }
#### File: sast_backend/api/categories.py ```python import json import os from flask_restplus import Namespace, Resource, reqparse from flask_login import login_required, current_user from mongoengine.errors import NotUniqueError import datetime from config import Config api = Namespace('category', description='Category related operations') os.makedirs(Config.CATEGORIES_DIRECTORY, exist_ok=True) create_category = reqparse.RequestParser() create_category.add_argument('name', required=True, location='json') create_category.add_argument('supercategory', location='json') create_category.add_argument('color', location='json') create_category.add_argument('metadata', type=dict, location='json') create_category.add_argument( 'keypoint_edges', type=list, default=[], location='json') create_category.add_argument( 'keypoint_labels', type=list, default=[], location='json') create_category.add_argument( 'keypoint_colors', type=list, default=[], location='json') update_category = reqparse.RequestParser() update_category.add_argument('name', required=True, location='json') update_category.add_argument('supercategory', location='json') update_category.add_argument('color', location='json') update_category.add_argument('metadata', type=dict, location='json') update_category.add_argument('keypoint_edges', type=list, location='json') update_category.add_argument('keypoint_labels', type=list, location='json') update_category.add_argument('keypoint_colors', type=list, location='json') page_data = reqparse.RequestParser() page_data.add_argument('page', default=1, type=int) page_data.add_argument('limit', default=20, type=int) @api.route('/') class Category(Resource): def get(self): """ Returns all categories """ # return query_util.fix_ids(current_user.categories.all()) category_ids = os.listdir(Config.CATEGORIES_DIRECTORY) categories = [] for c in category_ids: categories.append(json.load(open(os.path.join(Config.CATEGORIES_DIRECTORY, c)))) return categories @api.expect(create_category) def post(self): """ Creates a category """ args = create_category.parse_args() name = args.get('name') supercategory = args.get('supercategory') metadata = args.get('metadata', {}) color = args.get('color') keypoint_edges = args.get('keypoint_edges') keypoint_labels = args.get('keypoint_labels') keypoint_colors = args.get('keypoint_colors') category_id = len(os.listdir(Config.CATEGORIES_DIRECTORY)) try: category = { 'name': name, 'supercategory': supercategory, 'color': color, 'metadata': metadata, 'keypoint_edges': keypoint_edges, 'keypoint_labels': keypoint_labels, 'keypoint_colors': keypoint_colors, } with open(os.path.join(Config.CATEGORIES_DIRECTORY, f'{category_id}.json'), 'w') as f: json.dump(category, f) except NotUniqueError as e: return {'message': 'Category already exists. Check the undo tab to fully delete the category.'}, 400 return category @api.route('/<int:category_id>') class Category(Resource): def get(self, category_id): """ Returns a category by ID """ # category = current_user.categories.filter(id=category_id).first() category = json.load(open(os.path.join(Config.CATEGORIES_DIRECTORY, category_id))) if category is None: return {'success': False}, 400 # return query_util.fix_ids(category) return category def delete(self, category_id): """ Deletes a category by ID """ category = current_user.categories.filter(id=category_id).first() if category is None: return {"message": "Invalid image id"}, 400 if not current_user.can_delete(category): return {"message": "You do not have permission to delete this category"}, 403 category.update(set__deleted=True, set__deleted_date=datetime.datetime.now()) return {'success': True} @api.expect(update_category) def put(self, category_id): """ Updates a category name by ID """ category = current_user.categories.filter(id=category_id).first() # check if the id exits if category is None: return {"message": "Invalid category id"}, 400 args = update_category.parse_args() name = args.get('name') supercategory = args.get('supercategory', category.supercategory) color = args.get('color', category.color) metadata = args.get('metadata', category.metadata) keypoint_edges = args.get('keypoint_edges', category.keypoint_edges) keypoint_labels = args.get('keypoint_labels', category.keypoint_labels) keypoint_colors = args.get('keypoint_colors', category.keypoint_colors) # check if there is anything to update if category.name == name \ and category.supercategory == supercategory \ and category.color == color \ and category.keypoint_edges == keypoint_edges \ and category.keypoint_labels == keypoint_labels \ and category.keypoint_colors == keypoint_colors: return {"message": "Nothing to update"}, 200 # check if the name is empty if not name: return {"message": "Invalid category name to update"}, 400 # update name of the category # check if the name to update exits already in db # @ToDo: Is it necessary to allow equal category names among different creators? category.name = name category.supercategory = supercategory category.color = color category.keypoint_edges = keypoint_edges category.keypoint_labels = keypoint_labels category.keypoint_colors = keypoint_colors try: category.update( name=category.name, supercategory=category.supercategory, color=category.color, metadata=category.metadata, keypoint_edges=category.keypoint_edges, keypoint_labels=category.keypoint_labels, keypoint_colors=category.keypoint_colors, ) except NotUniqueError: # it is only triggered when the name already exists and the creator is the same return {"message": "Category '" + name_to_update + "' already exits"}, 400 return {"success": True} @api.route('/data') class CategoriesData(Resource): @api.expect(page_data) def get(self): """ Endpoint called by category viewer client """ pass # args = page_data.parse_args() # limit = args['limit'] # page = args['page'] # # categories = current_user.categories.filter(deleted=False) # # pagination = Pagination(categories.count(), limit, page) # categories = query_util.fix_ids( # categories[pagination.start:pagination.end]) # # for category in categories: # category['numberAnnotations'] = AnnotationModel.objects( # deleted=False, category_id=category.get('id')).count() # # return { # "pagination": pagination.export(), # "page": page, # "categories": categories # } ``` #### File: sast_backend/cast/sort.py ```python import os import json import cv2 from pathlib import Path import numpy as np def sort_landmarks_sparse_1(output_dir: Path): for d in output_dir.iterdir(): landmarks_dir = d / 'landmarks' json_dir = d / 'results' results = list(json_dir.glob('*.json')) for r in results: print(r) res = json.load(open(r)) if 'faces' not in res: return None if 'landmark' not in res['faces'][0]: return None landmarks = res['faces'][0]['landmark'] landmarks_list = [] landmarks = sort_dict(landmarks) # print_result(printFuctionTitle("人脸关键点检测"), landmarks) for k, landmark in landmarks.items(): landmarks_list.append([landmark['x'], landmark['y']]) landmarks_list = np.array(landmarks_list) img_name = os.path.splitext(os.path.basename(r))[0] txt_name = img_name + '.txt' np.savetxt(str(landmarks_dir / txt_name), landmarks_list, fmt="%d") def sort_landmarks_sparse_2(output_dir: Path): landmarks_dir = output_dir / 'landmarks' json_dir = output_dir / 'results' results = list(json_dir.glob('*.json')) for r in results: print(r) res = json.load(open(r)) if 'faces' not in res: return None if 'landmark' not in res['faces'][0]: return None landmarks = res['faces'][0]['landmark'] landmarks_list = [] landmarks = sort_dict(landmarks) # print_result(printFuctionTitle("人脸关键点检测"), landmarks) for k, landmark in landmarks.items(): landmarks_list.append([landmark['x'], landmark['y']]) landmarks_list = np.array(landmarks_list) img_name = os.path.splitext(os.path.basename(r))[0] txt_name = img_name + '.txt' np.savetxt(str(landmarks_dir / txt_name), landmarks_list, fmt="%d") def sort_landmarks_dense_1(output_dir: Path): for d in output_dir.iterdir(): landmarks_dir = d / 'landmarks' json_dir = d / 'results' results = list(json_dir.glob('*.json')) for r in results: print(r) res = json.load(open(r)) if 'face' not in res: return None if 'landmark' not in res['face']: return None landmarks = res['face']['landmark'] landmarks_list = [] # print_result(printFuctionTitle("人脸关键点检测"), landmarks) for region, landmarks_dict in landmarks.items(): landmarks_dict = sort_dict(landmarks_dict) for k, landmark in landmarks_dict.items(): landmarks_list.append([landmark['x'], landmark['y']]) landmarks_list = np.array(landmarks_list) img_name = os.path.splitext(os.path.basename(r))[0] txt_name = img_name + '.txt' np.savetxt(str(landmarks_dir / txt_name), landmarks_list, fmt="%d") def sort_landmarks_dense_2(output_dir: Path): landmarks_dir = output_dir / 'landmarks' json_dir = output_dir / 'results' results = list(json_dir.glob('*.json')) for r in results: print(r) res = json.load(open(r)) if 'face' not in res: return None if 'landmark' not in res['face']: return None landmarks = res['face']['landmark'] # print_result(printFuctionTitle("人脸关键点检测"), landmarks) landmarks_list = [] for region, landmarks_dict in landmarks.items(): landmarks_dict = sort_dict(landmarks_dict) for k, landmark in landmarks_dict.items(): landmarks_list.append([landmark['x'], landmark['y']]) landmarks_list = np.array(landmarks_list) img_name = os.path.splitext(os.path.basename(r))[0] txt_name = img_name + '.txt' np.savetxt(str(landmarks_dir / txt_name), landmarks_list, fmt="%d") def sort_dict(landmarks_dict): landmarks_list = sorted(landmarks_dict.items(), key=lambda d: d[0]) new_dict = {} for entry in landmarks_list: new_dict[entry[0]] = entry[1] return new_dict def sortedDictValues(adict): keys = adict.keys() keys.sort() return map(adict.get, keys) # landmarks_path = 'datasets/Articst-faces/landmarks' # landmarks_path = 'datasets/WebCariTrain/landmarks/845' landmarks_path = 'datasets/Articst-faces/landmarks' # dataset_name = 'AF_dataset' # output_name = 'AF-landmarks-83' landmarks_path = Path(landmarks_path) # sort_landmarks_dense_2(landmarks_path) sort_landmarks_dense_1(landmarks_path) # sort_landmarks_sparse_1(landmarks_path) ``` #### File: cast/utils/warp.py ```python import logging import os import random import cv2 import numpy as np import torch import torchvision from PIL import Image from skimage.transform import PiecewiseAffineTransform, warp from config.config import setup_logging, DEBUG from constant import * from utils.misc import label_list, AngleFactory, image2label from utils.transforms import ToUnNormalizedTensor logger_name = 'warp_logger' level = logging.INFO logger = setup_logging('.', logger_name, level) # CARI_IMG_PATH = '../datasets/Caricature-img' # FACE_IMG_PATH = '../datasets/CelebA-HQ-img' # CARI_DATASET_PATH = '../datasets/Caricature-mask' # FACE_DATASET_PATH = '../datasets/CelebAMaskHQ-mask' # CARI_DATASET_COLOR_PATH = '../datasets/Caricature-mask-color' # FACE_DATASET_COLOR_PATH = '../datasets/CelebAMaskHQ-mask-color' # FACE_WARPED = '../datasets/CelebA-HQ-img-Warped' face_img_name = '1.png' cari_img_name = '1' face_mask_path = os.path.join(FACE_MASK_PATH, face_img_name) face_path = os.path.join(FACE_IMG_PATH, '1.jpg') cari_mask_path = os.path.join(CARI_MASK_PATH, cari_img_name + '.png') cari_path = os.path.join(CARI_IMG_PATH, cari_img_name + '.jpg') face_mask = cv2.imread(face_mask_path, cv2.IMREAD_GRAYSCALE) cari_mask = cv2.imread(cari_mask_path, cv2.IMREAD_GRAYSCALE) # 'skin', 'nose', 'l_eye', 'r_eye', 'l_brow', 'r_brow', 'mouth', 'u_lip','l_lip' # sample_num_list = [50, 50, 50, 50, 50, 50, 50, 50, 50, 50] sample_num_list = [80, 50, 50, 25, 25, 25, 25, 30, 20, 20] # sample_num_list = [50, 50, 50, 25, 25, 25, 25, 30, 20, 20] # sample_num_list = [50, 50, 20, 20, 20, 20, 20, 20, 20, 20] face = cv2.imread(face_path) cari = cv2.imread(cari_path) transforms = [torchvision.transforms.Resize(512), ToUnNormalizedTensor()] transforms = torchvision.transforms.Compose(transforms) # face_torch = transforms(Image.open(face_path)) def warp_image(image, src_points=None, dst_points=None, transform=None): if transform is None: if src_points is not None and dst_points is not None: transform = get_transform(image, src_points, dst_points) else: raise Exception('Src points and dst points must not be None.') warped = warp(image, transform, output_shape=image.shape) return warped, transform def warp_nearest(image, src_points=None, dst_points=None, transform=None): if transform is None: if src_points is not None and dst_points is not None: transform = get_transform(image, src_points, dst_points) else: raise Exception('Src points and dst points must not be None.') warped = warp(image, transform, output_shape=image.shape, order=0) return warped, transform def get_transform(image, src_points, dst_points): src_points = np.array( [ [0, 0], [0, image.shape[0]], [image.shape[0], 0], list(image.shape[:2]) ] + src_points.tolist() ) dst_points = np.array( [ [0, 0], [0, image.shape[0]], [image.shape[0], 0], list(image.shape[:2]) ] + dst_points.tolist() ) tform3 = PiecewiseAffineTransform() tform3.estimate(dst_points, src_points) return tform3 def sample_arrange(src, num, label): """ Sample key points by equal spaing :param src: :param num: :return: """ arrange = len(src) # if num > len(src): # logger.info("Num out of length, return arrange: [{}]".format(src)) # return src # else: # output = np.array((1, 2), dtype=arrange.dtype) output = [] seg = arrange // num if seg == 0: msg = '[{}]: The number of sampling points exceeds the number of source points, and the original array is ' \ 'equidistantly filled.'.format(label) logger.info(msg) return insert_equal_space(src, arrange, num) seg = arrange / num for n in range(num): if int(seg * n) >= len(src): output.append((src[-1] + src[-2]) // 2) else: output.append(src[int(seg * n)]) return output def insert_equal_space(src, arrange, num): output = src.copy() need = num - arrange sample_space = need // arrange mod = need % arrange position = 1 for idx in range(arrange): # is_enough = False pre_el = src[idx] next_el = src[(idx + 1) % arrange] output = fill(pre_el, next_el, position, sample_space, output) position += (sample_space + 1) if len(output) == num: return output.reshape(-1, 2) else: for idx in range(mod): output = np.append(output, src[-1]) return output.reshape(-1, 2) def fill(pre_el, next_el, position, sample_space, output): for j in range(sample_space): sample = (pre_el + next_el) // (sample_space + 1) * (j + 1) output = np.insert(output, position + j, sample.reshape(2), axis=0) return output def is_filtered(points): return len(points) == 1 and (points == np.array([[-1, -1]])).all() def find_key_points(img, sample_num_list): import cv2 excluded_index = [1, 7] labels_tensor = np.arange(0, len(label_list)).reshape(len(label_list), 1, 1) # labels_tensor = torch.arange(0, len(label_list)).view(len(label_list), 1, 1) split_tensors = (img == labels_tensor).astype(np.uint8) point_list_sorted_by_polar = [] # np.arang kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5)) for index, tensor in enumerate(split_tensors): if index in excluded_index: # key_points[index] = np.array([[-1, -1]]) point_list_sorted_by_polar.append(np.array([[-1, -1]])) logger.info('Semantic label: [{}] is excluded.'.format(index)) continue color = colormap[tensor].astype(np.uint8) label = label_list[index] # gray = cv2.cvtColor(color, cv2.COLOR_BGR2GRAY) # cv2.imshow('gray', gray) # ret, binary = cv2.threshold(gray, 10, 255, cv2.THRESH_BINARY) tensor = tensor * 255 # connects some semantic attribute for generating only one contours tensor = cv2.morphologyEx(tensor, cv2.MORPH_CLOSE, kernel) ret, binary = cv2.threshold(tensor, 10, 255, cv2.THRESH_BINARY) # Skin reverser color ensure finding only on contour if index == 0: binary = cv2.bitwise_not(binary) # if DEBUG: # cv2.imshow('binary', binary) # cv2.waitKey(0) tensor, contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) logger.info("Semantic label [{}] find contours: [{}]".format(label, len(contours))) if not len(contours): logger.error('Cannot find contours for semantic label [{}], return None for filtering this img.'.format( label)) return None # point_list_sorted_by_polar.append(np.array([[-1, -1]])) if len(contours) > 1: contours = [max(contours, key=cv2.contourArea)] unit_anchor = np.array([0, 1]) for points in contours: mom = cv2.moments(points) # print(points.shape) centroid = np.array([int(mom['m10'] / mom['m00']), int(mom['m01'] / mom['m00'])]) cv2.circle(color, (centroid[0], centroid[1]), 5, (0, 0, 255), -1) points = points.reshape(-1, 2) points = [[p, AngleFactory.calAngleClockwise(unit_anchor + centroid, p, centroid)] for p in points] points_sorted_by_polar = [el[0] for el in sorted(points, key=lambda el: el[1])] logger.info( "Semantic label [{}] gains [{}] contour points.".format(label, len(points_sorted_by_polar))) point_list_sorted_by_polar.append(points_sorted_by_polar) if DEBUG: dynamic_display_ordered_contour_points(index, color, points_sorted_by_polar) key_point_list = [] for index, key_points in enumerate(point_list_sorted_by_polar): label = label_list[index] if is_filtered(key_points): logger.info('Semantic tensor [{}] do not contain any contour points or filtered by configuration'.format( label)) key_point_list.append(np.array([[-1, -1]])) continue sampled_key_point = sample_arrange(key_points, sample_num_list[index], label) if len(sampled_key_point) != sample_num_list[index]: msg = 'The number of sampling points [{}] must be the same as the number [{}] specified by the configuration in [{}].'.format( len(key_points), sample_num_list[index]) logger.error(msg) return None logger.debug('Semantic label [{}] sampled: [{}].'.format(label, sampled_key_point)) key_point_list.append(sampled_key_point) return key_point_list # centriods.append((center_x, center_y)) # cv2.circle(color, (center_x, center_y), 4, (152, 255, 255), -1) # cv2.imshow('moment', color) # cv2.waitKey(0) # print(img.shape) # print(split_tensors.shape) def dynamic_display_ordered_contour_points(label_index, color, points_sorted_by_polar): tmp_path = 'polar' if not os.path.exists(tmp_path): os.mkdir(tmp_path) path = os.path.join(tmp_path, str(label_index)) if not os.path.exists(path): os.mkdir(path) # hstack = [] for index, p in enumerate(points_sorted_by_polar): if index % 20 == 0: cv2.circle(color, (p[0], p[1]), 4, (152, 255, 255), -1) cv2.imwrite(os.path.join(path, str(index)) + '.png', color) # hstack.append(color.copy()) # vstack = [] # j = 0 # for index in len(hstack): # if (index + 1) % 4: # vstack.append(np.vstack(hstack[j * 4:index])) # cv2.imwrite(os.path.join(path, str(index)) + '.png', color) # cv2.waitKey(0) def display_pair_key_points(face_src, cari_src, f_kl, c_kl): face_img = face_src.copy() cari_img = cari_src.copy() for index in range(len(f_kl)): fpts = f_kl[index] cpts = c_kl[index] r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) if is_filtered(fpts) or is_filtered(cpts): continue for idx in range(len(fpts)): cv2.circle(face_img, center=(fpts[idx][0], fpts[idx][1]), radius=2, color=(b, g, r), thickness=-1) cv2.circle(cari_img, center=(cpts[idx][0], cpts[idx][1]), radius=2, color=(b, g, r), thickness=-1) # cv2.imshow('Key points', img) # cv2.waitKey(0) return face_img, cari_img def draw_kpts(src, kpts): face_img = src.copy() for p in kpts: r = random.randint(0, 255) g = random.randint(0, 255) b = random.randint(0, 255) if is_filtered(p): continue for idx in range(len(p)): cv2.circle(face_img, center=(p[0], p[1]), radius=2, color=(b, g, r), thickness=-1) # cv2.imshow('Key points', img) # cv2.waitKey(0) return face_img def draw_kpts_pil(src, kpts): img = cv2.cvtColor(np.array(src), cv2.COLOR_RGB2BGR) kpts = kpts.int().numpy().reshape(-1, 2) # img = cv2.resize(img, (0, 0), fx=scale, fy=scale) return Image.fromarray(cv2.cvtColor(draw_kpts(img, kpts), cv2.COLOR_BGR2RGB)) def warp_paired(face_img_name, cari_img_name, face_mask_path, cari_mask_path, face_path, cari_path, sample_num_list): # test_loader() # test_celeb_mask_loading() # face_mask = cv2.imread(face_mask_path, cv2.IMREAD_GRAYSCALE) # cari_mask = cv2.imread(cari_mask_path, cv2.IMREAD_GRAYSCALE) face_color = colormap[face_mask].astype(np.uint8) cari_color = colormap[cari_mask].astype(np.uint8) face = cv2.imread(face_path) cari = cv2.imread(cari_path) face = cv2.resize(face, (0, 0), fx=0.5, fy=0.5) if face_mask is None: logger.info('Loading Img Error, [{}] not found.'.format(face_mask_path)) # sample_num_list = [30, 30, 30, 30, 30, 30, 30, 30, 30, 30] # sample_num_list = [100, 100, 100, 100, 100, 100, 100, 100, 100, 100] ckpts, fkpts, k_cari, k_face = get_paired_key_points(face_img_name, cari_img_name, face_mask, cari_mask, sample_num_list, face, cari) warped, warped_mask, warped_mask_color, transform = warped_face_mask(ckpts, face, face_color, fkpts) # x_position_map, y_position_map = build_position_map(face.shape[1], face.shape[0]) # x_position_map = make_x_position_map(1,face_mask.shape[1]).reshape() # warped_xpm, _ = warp_image(x_position_map, transform=transform) # warped_ypm, _ = warp_image(y_position_map, transform=transform) # print(x_position_map) # delta_x = (warped_xpm * 255).astype(np.uint8) - x_position_map # delta_y = (warped_ypm * 255).astype(np.uint8) - y_position_map if DEBUG: stack = np.hstack((k_face, k_cari, warped)) stack_mask = np.hstack((face_color, cari_color, warped_mask_color)) stack_mask = cv2.cvtColor(stack_mask, cv2.COLOR_RGB2BGR) stack_all = np.vstack((stack, stack_mask)) if not os.path.exists(FACE_WARPED): os.mkdir(FACE_WARPED) cv2.imwrite(os.path.join(FACE_WARPED, str(len(FACE_WARPED) + 1) + '.png'), stack_all) return warped_mask def estimate_offset_field(face_mask, cari_mask, face_img_name, cari_img_name, sample_num_list): width, height = face_mask.shape[1], face_mask.shape[0] if face_mask is None: logger.info('Loading Img Error, [{}] not found.'.format(face_mask_path)) ckpts, fkpts = get_paired_key_points(face_img_name, cari_img_name, face_mask, cari_mask, sample_num_list) return estimate_offset_field_by_kpts(fkpts, ckpts, height, width) # warped_position_map = torch.cat( # [torch.from_numpy(warped_xpm).view(width, width, 1), torch.from_numpy(warped_ypm).view(height, height, 1)], # dim=2).unsqueeze(0) # tmp = F.grid_sample(face_torch.unsqueeze(0).double(), warped_position_map) # save_image(tmp.long(), 'test.png') # print(offset_filed.size()) # print(delta_x[256:300, 256:300, 0]) def load_warp_from_npy(path): if not os.path.exists(path): logger.info('Empty path: [{}]'.format(path)) return None else: return torch.from_numpy(np.load(path).reshape(1, IMG_SIZE, IMG_SIZE, 2)).float() def estimate_offset_field_by_kpts(fkpts, ckpts, height, width, x_position_map=None, y_position_map=None): delta_x, delta_y = get_split_delta(ckpts, fkpts, height, width, x_position_map, y_position_map) offset_filed = torch.cat([delta_x, delta_y], dim=2) return offset_filed.unsqueeze(0).float() def get_split_delta(ckpts, fkpts, height, width, x_position_map=None, y_position_map=None): warped_xpm, warped_ypm, x_position_map, y_position_map = get_warped_split_position_map(ckpts, fkpts, height, width, x_position_map, y_position_map) delta_x = (warped_xpm - x_position_map).view(width, width, 1) delta_y = (warped_ypm - y_position_map).view(height, height, 1) return delta_x, delta_y def get_warped_split_position_map(ckpts, fkpts, height, width, x_position_map=None, y_position_map=None): if x_position_map is None or y_position_map is None: x_position_map, y_position_map = get_split_position_map(height, width) warped_xpm, warped_ypm = warp_position_map(ckpts, fkpts, x_position_map, y_position_map) x_position_map = torch.from_numpy(x_position_map).float() y_position_map = torch.from_numpy(y_position_map).float() warped_xpm = torch.from_numpy(warped_xpm).float() warped_ypm = torch.from_numpy(warped_ypm).float() return warped_xpm, warped_ypm, x_position_map, y_position_map def get_warped_position_map(ckpts, fkpts, height, width): x_position_map, y_position_map = get_split_position_map(height, width) warped_xpm, warped_ypm = warp_position_map(ckpts, fkpts, x_position_map, y_position_map) # x_position_map = torch.from_numpy(x_position_map) # y_position_map = torch.from_numpy(y_position_map) warped_xpm = torch.from_numpy(warped_xpm).view(width, width, 1) warped_ypm = torch.from_numpy(warped_ypm).view(height, height, 1) warped_pm = torch.cat([warped_xpm, warped_ypm], dim=2).unsqueeze(0) return warped_pm.float() def get_split_position_map(height, width): x_position_map = make_x_position_map(1, -1, 1, width, height).view(width, width).numpy() y_position_map = make_y_position_map(1, -1, 1, width, height).view(height, height).numpy() return x_position_map, y_position_map def warp_position_map(ckpts, fkpts, x_position_map, y_position_map): warped_xpm, transform = warp_image(x_position_map, fkpts, ckpts) warped_ypm, transform = warp_image(y_position_map, transform=transform) return warped_xpm, warped_ypm def diff_on_same_scale(x, y, start, end): return normalize(start, end, x) - (start, end, y) def normalize(start, end, tensor): tensor = tensor.astype(np.float) max = np.max(tensor) min = np.min(tensor) k = (start - end) / (max - min) return start + k * (tensor - min) def warped_face_mask(ckpts, face, face_color, fkpts): warped, transform = warp_image(face, fkpts, ckpts) # warped, transform = warp_nearest(face, fkpts, ckpts) warped = (warped * 255).astype(np.uint8) warped_mask, warped_mask_color = warped_color(fkpts, ckpts, face_color, transform) return warped, warped_mask, warped_mask_color, transform def warped_color(fkpts, ckpts, face_color, transform=None): warped_mask_color, _ = warp_image(face_color, fkpts, ckpts, transform) warped_mask_color = (warped_mask_color * 255).astype(np.uint8) warped_mask = image2label(warped_mask_color) return warped_mask, warped_mask_color def warped_color_nearest(fkpts, ckpts, face_color, transform=None): warped_mask_color, _ = warp_nearest(face_color, fkpts, ckpts, transform) warped_mask_color = (warped_mask_color * 255).astype(np.uint8) warped_mask = image2label(warped_mask_color) return warped_mask, warped_mask_color def get_paired_key_points(face_img_name, cari_img_name, face_mask, cari_mask, sample_num_list, face=None, cari=None): face_key_point_list = find_key_points(face_mask, sample_num_list) cari_key_point_list = find_key_points(cari_mask, sample_num_list) # Validate consistency of key points fkpts_len = len(face_key_point_list) ckpts_len = len(cari_key_point_list) if fkpts_len != ckpts_len: raise Exception('Face and caricature semantic labels must be consistency.') for idx in range(len(face_key_point_list)): if len(face_key_point_list[idx]) != len(cari_key_point_list[idx]): msg = 'Face [{}] and caricature [{}] key points must be consistency.'.format(face_img_name, cari_img_name) raise Exception(msg) # merge all attribute key points into one list on warping stage fkpts = merge_key_points(face_key_point_list) ckpts = merge_key_points(cari_key_point_list) merge_key_points(cari_key_point_list, ckpts) fkpts = np.array(fkpts) ckpts = np.array(ckpts) if face is not None and cari is not None: k_face, k_cari = display_pair_key_points(face, cari, face_key_point_list, cari_key_point_list) return ckpts, fkpts, k_cari, k_face return ckpts, fkpts def merge_key_points(kpts, merged=None): merged = [] for p in kpts: merged.extend(p) return merged def make_position_map(batch, start, end, width, height): x_position_map = make_x_position_map(batch, start, end, width, height) y_position_map = make_y_position_map(batch, start, end, height, height) position_map = torch.cat([x_position_map, y_position_map], dim=3) return position_map def make_y_position_map(batch, start, end, width, height): height_linspace = torch.linspace(start=start, end=end, steps=height, requires_grad=False, dtype=torch.float).view( height, 1) y_position_map = height_linspace.expand(width, height).view(1, width, height, 1).expand(batch, width, height, 1) return y_position_map def make_x_position_map(batch, start, end, width, height): width_linspace = torch.linspace(start=start, end=end, steps=width, requires_grad=False, dtype=torch.float).view(1, width) x_position_map = width_linspace.expand(width, height).view(1, width, height, 1).expand(batch, width, height, 1) return x_position_map def build_position_map(height, width): # face = cv2.imread(face_path) # height = face.shape[0] # width = face.shape[1] x_position_map = np.linspace(start=0, stop=width - 1, num=width, dtype=np.uint8).reshape(1, width) x_position_map = np.tile(x_position_map, width - 1, axis=0) y_position_map = np.linspace(start=0, stop=height - 1, num=height, dtype=np.uint8).reshape(height, 1) y_position_map = np.repeat(y_position_map, height - 1, axis=1) print(x_position_map[0, -10:]) print(y_position_map[0:10, 0]) return x_position_map, y_position_map def test_sample_arrange(): test_pts = np.array([[10, 20], [30, 40], [50, 60], [70, 80]]) pts = sample_arrange(test_pts, 13) print(len(pts)) pts = sample_arrange(test_pts, 14) print(len(pts)) pts = sample_arrange(test_pts, 15) print(len(pts)) pts = sample_arrange(test_pts, 200) print(len(pts)) def test_warp_paired(): msg = 'Expected Key Points sample number for each semantic channel:' for index, num in enumerate(sample_num_list): msg += ' ,[{}]: [{}]'.format(label_list[index], num) logger.info(msg) warp_paired(face_img_name, cari_img_name, face_mask_path, cari_mask_path, face_path, cari_path, sample_num_list) def test_estimate_offset_field(): offset_field = estimate_offset_field(face_mask, cari_mask, face_img_name, cari_mask_path, sample_num_list) print(offset_field.size()) if __name__ == '__main__': test_warp_paired() # face_color = colormap[face_mask].astype(np.uint8) # for i in range(4): # mask = cv2.imread(str(i + 1) + '.png', cv2.IMREAD_GRAYSCALE) # print(np.max(mask)) # print(np.min(mask)) # face_color = colormap[mask].astype(np.uint8) # cv2.imshow('mask', cv2.cvtColor(face_color, cv2.COLOR_BGR2RGB)) # cv2.waitKey(0) # # colorize() # test_estimate_offset_field() # test_sample_arrange() ``` #### File: sast_backend/config/config.py ```python import os import subprocess # def get_tag(): # result = subprocess.run(["git", "describe", "--abbrev=0", "--tags"], stdout=subprocess.PIPE) # return str(result.stdout.decode("utf-8")).strip() def _get_bool(key, default_value): if key in os.environ: value = os.environ[key] if value == 'True' or value == 'true' or value == '1': return True return False return default_value class Config: NAME = os.getenv("NAME", "SAST System") # VERSION = get_tag() VERSION = 'v1.0' ### Dataset Options CONTENT_DIRECTORY = os.getenv("CONTENT_DIRECTORY", "data/contents") STYLE_DIRECTORY = os.getenv("STYLE_DIRECTORY", "data/styles") STYLIZATION_DIRECTORY = os.getenv("STYLIZATION_DIRECTORY", "data/stylizations") MAST_TOTAL_TIME = 1.5 ANNOTATION_DIRECTORY = os.getenv("ANNOTATION_DIRECTORY", "data/annotations") CATEGORIES_DIRECTORY = os.getenv("CATEGORIES_DIRECTORY", "data/categories") __all__ = ["Config"] ``` #### File: mast/libs/photo_smooth.py ```python from __future__ import division import torch import torch.nn as nn import scipy.misc import numpy as np import scipy.sparse import scipy.sparse.linalg from numpy.lib.stride_tricks import as_strided from PIL import Image from torchvision import transforms import sys sys.path.append(os.path.abspath(os.path.dirname(__file__))) from smooth_filter import smooth_filter class Propagator(nn.Module): def __init__(self, beta=0.9999): super(Propagator, self).__init__() self.beta = beta def process_(self, initImg, contentImg): if type(contentImg) == str: content = scipy.misc.imread(contentImg, mode='RGB') else: content = contentImg.copy() # content = scipy.misc.imread(contentImg, mode='RGB') if type(initImg) == str: B = scipy.misc.imread(initImg, mode='RGB').astype(np.float64) / 255 else: B = scipy.asarray(initImg).astype(np.float64) / 255 # B = self. # B = scipy.misc.imread(initImg, mode='RGB').astype(np.float64)/255 h1, w1, k = B.shape h = h1 - 4 w = w1 - 4 B = B[int((h1 - h) / 2):int((h1 - h) / 2 + h), int((w1 - w) / 2):int((w1 - w) / 2 + w), :] content = scipy.misc.imresize(content, (h, w)) B = self.__replication_padding(B, 2) content = self.__replication_padding(content, 2) content = content.astype(np.float64) / 255 B = np.reshape(B, (h1 * w1, k)) W = self.__compute_laplacian(content) W = W.tocsc() dd = W.sum(0) dd = np.sqrt(np.power(dd, -1)) dd = dd.A.squeeze() D = scipy.sparse.csc_matrix((dd, (np.arange(0, w1 * h1), np.arange(0, w1 * h1)))) # 0.026 S = D.dot(W).dot(D) A = scipy.sparse.identity(w1 * h1) - self.beta * S A = A.tocsc() solver = scipy.sparse.linalg.factorized(A) V = np.zeros((h1 * w1, k)) V[:, 0] = solver(B[:, 0]) V[:, 1] = solver(B[:, 1]) V[:, 2] = solver(B[:, 2]) V = V * (1 - self.beta) V = V.reshape(h1, w1, k) V = V[2:2 + h, 2:2 + w, :] img = Image.fromarray(np.uint8(np.clip(V * 255., 0, 255.))) return img def process(self, stylized_tensor, content_tensor): """ :param stylized_tensor: (b,c,h,w) :param content_tensor: (b,c,h,w) :return: """ # print(f'stylized.size-{stylized_tensor.size()}, content.size={content_tensor.size()}') stylized_img = stylized_tensor.clone() content_img = content_tensor.clone() b, c, h, w = content_img.size() device = stylized_img.device ori_type = stylized_img.type res = [] for i in range(b): s_img = stylized_img[i].float() s_img = transforms.ToPILImage()(s_img.cpu()).convert('RGB') c_img = content_img[i].float() c_img = transforms.ToPILImage()(c_img.cpu()).convert('RGB') s_img = s_img.resize((w, h), Image.ANTIALIAS) temp = self.process_(s_img, c_img) temp = smooth_filter(temp, c_img, f_radius=15, f_edge=1e-1) temp = transforms.ToTensor()(temp).to(device).unsqueeze(0).type_as(stylized_tensor) res.append(temp.clone()) res = torch.cat(res, dim=0) return res # Returns sparse matting laplacian # The implementation of the function is heavily borrowed from # https://github.com/MarcoForte/closed-form-matting/blob/master/closed_form_matting.py # We thank <NAME> for sharing his code. def __compute_laplacian(self, img, eps=10 ** (-7), win_rad=1): win_size = (win_rad * 2 + 1) ** 2 h, w, d = img.shape c_h, c_w = h - 2 * win_rad, w - 2 * win_rad win_diam = win_rad * 2 + 1 indsM = np.arange(h * w).reshape((h, w)) ravelImg = img.reshape(h * w, d) win_inds = self.__rolling_block(indsM, block=(win_diam, win_diam)) win_inds = win_inds.reshape(c_h, c_w, win_size) winI = ravelImg[win_inds] win_mu = np.mean(winI, axis=2, keepdims=True) win_var = np.einsum('...ji,...jk ->...ik', winI, winI) / win_size - np.einsum('...ji,...jk ->...ik', win_mu, win_mu) inv = np.linalg.inv(win_var + (eps / win_size) * np.eye(3)) X = np.einsum('...ij,...jk->...ik', winI - win_mu, inv) vals = (1 / win_size) * (1 + np.einsum('...ij,...kj->...ik', X, winI - win_mu)) nz_indsCol = np.tile(win_inds, win_size).ravel() nz_indsRow = np.repeat(win_inds, win_size).ravel() nz_indsVal = vals.ravel() L = scipy.sparse.coo_matrix((nz_indsVal, (nz_indsRow, nz_indsCol)), shape=(h * w, h * w)) return L def __replication_padding(self, arr, pad): h, w, c = arr.shape ans = np.zeros((h + pad * 2, w + pad * 2, c)) for i in range(c): ans[:, :, i] = np.pad(arr[:, :, i], pad_width=(pad, pad), mode='edge') return ans def __rolling_block(self, A, block=(3, 3)): shape = (A.shape[0] - block[0] + 1, A.shape[1] - block[1] + 1) + block strides = (A.strides[0], A.strides[1]) + A.strides return as_strided(A, shape=shape, strides=strides) ``` #### File: mast/libs/utils.py ```python import torch import os import yaml from PIL import Image import numpy as np import matplotlib import matplotlib.pyplot as plt import torch.nn.functional as F matplotlib.use('Agg') def image_map(img): """ :param img: the image with only one channel opened by PIL.Image :return: an image with the format of PTL.Image """ colormap_dict = {0: (0, 0, 0), 1: (128, 0, 0), 2: (0, 128, 0), 3: (128, 128, 0), 4: (0, 0, 128), 5: (128, 0, 128), 6: (0, 128, 128), 7: (128, 128, 128), 8: (64, 0, 0), 9: (192, 0, 0)} img_cat = np.vectorize(colormap_dict.get)(img) img_cat1 = np.expand_dims(img_cat[0], axis=2) img_cat2 = np.expand_dims(img_cat[1], axis=2) img_cat3 = np.expand_dims(img_cat[2], axis=2) img = np.concatenate([img_cat1, img_cat2, img_cat3], axis=2) img = img.astype(np.uint8) img = Image.fromarray(img) return img def image_map1(mask): colormap = np.array([[0, 0, 0], [128, 0, 0], [0, 128, 0], [128, 128, 0], [0, 0, 128], [128, 0, 128], [0, 128, 128], [128, 128, 128], [64, 0, 0], [192, 0, 0], [64, 128, 0], [192, 128, 0], [64, 0, 128], [192, 0, 128], [64, 128, 128], [192, 128, 128], [0, 64, 0], [128, 64, 0], [0, 192, 0], [128, 192, 0], [0, 64, 128]]) mask = np.array(mask) mask_color = colormap[mask].astype(np.uint8) mask_color = Image.fromarray(mask_color) return mask_color def euclidean_dist(x, y): """ Args: x: pytorch Variable, with shape [d, m] y: pytorch Variable, with shape [d, n] Returns: dist: pytorch Variable, with shape [m, n] """ x = x.t() y = y.t() m, n = x.size(0), y.size(0) # xx经过pow()方法对每单个数据进行二次方操作后,在axis=1 方向(横向,就是第一列向最后一列的方向)加和,此时xx的shape为(m, 1),经过expand()方法,扩展n-1次,此时xx的shape为(m, n) xx = torch.pow(x, 2).sum(1, keepdim=True).expand(m, n) # yy会在最后进行转置的操作 yy = torch.pow(y, 2).sum(1, keepdim=True).expand(n, m).t() dist = xx + yy # torch.addmm(beta=1, input, alpha=1, mat1, mat2, out=None),这行表示的意思是dist - 2 * x * yT dist.addmm_(1, -2, x, y.t()) # clamp()函数可以限定dist内元素的最大最小范围,dist最后开方,得到样本之间的距离矩阵 dist = dist.clamp(min=1e-12).sqrt() # for numerical stability return dist def whiten_and_color(cF, sF): # cF_size=[c, h, w], sF_size=[c, h, w] device = cF.device cFSize = cF.size() cF = cF.view(cFSize[0], -1) c_mean = torch.mean(cF, 1) # c x (h x w) c_mean = c_mean.unsqueeze(1).expand_as(cF) cF = cF - c_mean contentConv = torch.mm(cF, cF.t()).div(cFSize[1] * cFSize[2] - 1) _, c_e, c_v = torch.svd(contentConv, some=False) k_c = cFSize[0] for i in range(cFSize[0]): if c_e[i] < 0.00001: k_c = i break sFSize = sF.size() sF = sF.view(sFSize[0], -1) s_mean = torch.mean(sF, 1) sF = sF - s_mean.unsqueeze(1).expand_as(sF) styleConv = torch.mm(sF, sF.t()).div(sFSize[1] * sFSize[2] - 1) _, s_e, s_v = torch.svd(styleConv, some=False) k_s = sFSize[0] for i in range(sFSize[0]): if s_e[i] < 0.00001: k_s = i break c_d = (c_e[0:k_c]).pow(-0.5) step1 = torch.mm(c_v[:, 0:k_c], torch.diag(c_d)) step2 = torch.mm(step1, (c_v[:, 0:k_c].t())) whiten_cF = torch.mm(step2, cF) s_d = (s_e[0:k_s]).pow(0.5) targetFeature = torch.mm(torch.mm(torch.mm(s_v[:, 0:k_s], torch.diag(s_d)), (s_v[:, 0:k_s].t())), whiten_cF) print( f'trace={torch.mm((torch.mm(targetFeature, targetFeature.t()) - torch.mm(sF, sF.t())).t(), (torch.mm(targetFeature, targetFeature.t()) - torch.mm(sF, sF.t()))).trace()}') print(f'norm={torch.norm((torch.mm(targetFeature, targetFeature.t()) - torch.mm(sF, sF.t()))) ** 2}') targetFeature = targetFeature + s_mean.unsqueeze(1).expand_as(targetFeature) targetFeature = targetFeature.view(cFSize[0], cFSize[1], cFSize[2]) return targetFeature def draw_loss(loss, img_saved_path): fig = plt.figure() plt.plot(range(len(loss)), loss) plt.xlabel('itr') plt.ylabel('F') plt.title(os.path.splitext(os.path.basename(img_saved_path))[0]) plt.savefig(img_saved_path) plt.close(fig) def batch_split(feature, patch_size, padding=0, stride=1): """ :param feature: size = [n,c,h,w] :param patch_size: (3, 3) :param padding: 0 :param stride: 1 :return: size = [n, c*kernel_size, L] """ if patch_size == (1, 1): n, c, h, w = feature.size() feature_unfold = feature.view(n, c, -1) else: feature_unfold = F.unfold(feature, kernel_size=patch_size, padding=padding, stride=stride) # print(f'feature_unfold.size = {feature_unfold.size()}') return feature_unfold def batch_concatenate(feature_unfold, origin_size, patch_size, padding=0, stride=1): """ :param feature_unfold: size = [n, c*kernel_size, L] :param origin_size: (h, w) :param patch_size: (3, 3) :param padding: 0 :param stride: 1 :return: size = [n, c, h, w] """ if patch_size == (1, 1): n, c, h, w = feature_unfold.size()[0], feature_unfold.size()[1], origin_size[0], origin_size[1] feature_fold = feature_unfold.view(n, c, h, w) else: feature_fold = F.fold(feature_unfold, output_size=origin_size, kernel_size=patch_size, padding=padding, stride=stride) ones = torch.ones_like(feature_fold) ones_unfold = batch_split(ones, patch_size=patch_size) ones_fold = F.fold(ones_unfold, output_size=origin_size, kernel_size=patch_size, padding=padding, stride=stride) feature_fold = feature_fold / ones_fold return feature_fold def load_seg(content_seg_path, style_seg_path, content_shape, style_shape): color_codes = ['BLUE', 'GREEN', 'BLACK', 'WHITE', 'RED', 'YELLOW', 'GREY', 'LIGHT_BLUE', 'PURPLE'] def _extract_mask(seg, color_str): h, w, c = np.shape(seg) if color_str == "BLUE": mask_r = (seg[:, :, 0] < 0.1).astype(np.uint8) mask_g = (seg[:, :, 1] < 0.1).astype(np.uint8) mask_b = (seg[:, :, 2] > 0.9).astype(np.uint8) elif color_str == "GREEN": mask_r = (seg[:, :, 0] < 0.1).astype(np.uint8) mask_g = (seg[:, :, 1] > 0.9).astype(np.uint8) mask_b = (seg[:, :, 2] < 0.1).astype(np.uint8) elif color_str == "BLACK": mask_r = (seg[:, :, 0] < 0.1).astype(np.uint8) mask_g = (seg[:, :, 1] < 0.1).astype(np.uint8) mask_b = (seg[:, :, 2] < 0.1).astype(np.uint8) elif color_str == "WHITE": mask_r = (seg[:, :, 0] > 0.9).astype(np.uint8) mask_g = (seg[:, :, 1] > 0.9).astype(np.uint8) mask_b = (seg[:, :, 2] > 0.9).astype(np.uint8) elif color_str == "RED": mask_r = (seg[:, :, 0] > 0.9).astype(np.uint8) mask_g = (seg[:, :, 1] < 0.1).astype(np.uint8) mask_b = (seg[:, :, 2] < 0.1).astype(np.uint8) elif color_str == "YELLOW": mask_r = (seg[:, :, 0] > 0.9).astype(np.uint8) mask_g = (seg[:, :, 1] > 0.9).astype(np.uint8) mask_b = (seg[:, :, 2] < 0.1).astype(np.uint8) elif color_str == "GREY": mask_r = np.multiply((seg[:, :, 0] > 0.4).astype(np.uint8), (seg[:, :, 0] < 0.6).astype(np.uint8)) mask_g = np.multiply((seg[:, :, 1] > 0.4).astype(np.uint8), (seg[:, :, 1] < 0.6).astype(np.uint8)) mask_b = np.multiply((seg[:, :, 2] > 0.4).astype(np.uint8), (seg[:, :, 2] < 0.6).astype(np.uint8)) elif color_str == "LIGHT_BLUE": mask_r = (seg[:, :, 0] < 0.1).astype(np.uint8) mask_g = (seg[:, :, 1] > 0.9).astype(np.uint8) mask_b = (seg[:, :, 2] > 0.9).astype(np.uint8) elif color_str == "PURPLE": mask_r = (seg[:, :, 0] > 0.9).astype(np.uint8) mask_g = (seg[:, :, 1] < 0.1).astype(np.uint8) mask_b = (seg[:, :, 2] > 0.9).astype(np.uint8) return np.multiply(np.multiply(mask_r, mask_g), mask_b).astype(np.float32) # PIL resize has different order of np.shape content_seg = np.array(Image.open(content_seg_path).convert("RGB").resize(content_shape, resample=Image.BILINEAR), dtype=np.float32) / 255.0 style_seg = np.array(Image.open(style_seg_path).convert("RGB").resize(style_shape, resample=Image.BILINEAR), dtype=np.float32) / 255.0 color_content_masks = [] color_style_masks = [] for i in range(len(color_codes)): color_content_masks.append(torch.from_numpy(_extract_mask(content_seg, color_codes[i])).unsqueeze(0)) color_style_masks.append(torch.from_numpy(_extract_mask(style_seg, color_codes[i])).unsqueeze(0)) color_content_masks = torch.cat(color_content_masks, dim=0) color_style_masks = torch.cat(color_style_masks, dim=0) return color_content_masks, color_style_masks def print_options(args): args_dict = vars(args) option_path = os.path.join(args.output_path, 'options.txt') with open(option_path, 'w+') as f: print('------------------args---------------------', file=f) print('------------------args---------------------') for arg_key in args_dict: print(f'{arg_key}: {args_dict[arg_key]}', file=f) print(f'{arg_key}: {args_dict[arg_key]}') print('-------------------end----------------------', file=f) print('-------------------end----------------------') def adjust_learning_rate(optimizer, iteration, args): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" for param_group in optimizer.param_groups: param_group['lr'] = args.lr / (1 + iteration * args.lr_decay_rate) def adjust_tv_loss_weight(args, iteration, ori_tv_loss_weight): args.tv_loss_weight = ori_tv_loss_weight / (1 + iteration * args.tv_loss_weight_decay_rate) def draw_loss(loss_list, content_loss_list, perceptual_loss_list, tv_loss_list, save_path): fig = plt.figure() plt.subplot(221) plt.plot(range(len(loss_list)), loss_list) plt.xlabel('iteration') plt.ylabel('loss') plt.title('loss') plt.subplot(222) plt.plot(range(len(content_loss_list)), content_loss_list) plt.xlabel('iteration') plt.ylabel('content loss') plt.title('content loss') plt.subplot(223) plt.plot(range(len(perceptual_loss_list)), perceptual_loss_list) plt.xlabel('iteration') plt.ylabel('perceptual_loss') plt.title('perceptual_loss') plt.subplot(224) plt.plot(range(len(tv_loss_list)), tv_loss_list) plt.xlabel('iteration') plt.ylabel('tv_loss') plt.title('tv_loss') # save loss image plt.tight_layout() plt.savefig(save_path) plt.close(fig) def draw_loss_without_style(loss_list, content_loss_list, tv_loss_list, save_path): fig = plt.figure() plt.subplot(131) plt.plot(range(len(loss_list)), loss_list) plt.xlabel('iteration') plt.ylabel('loss') plt.title('loss') plt.subplot(132) plt.plot(range(len(content_loss_list)), content_loss_list) plt.xlabel('iteration') plt.ylabel('content loss') plt.title('content loss') plt.subplot(133) plt.plot(range(len(tv_loss_list)), tv_loss_list) plt.xlabel('iteration') plt.ylabel('tv_loss') plt.title('tv_loss') # save loss image plt.tight_layout() plt.savefig(save_path) plt.close(fig) def draw_loss_(loss_list, content_loss_list, style_loss_list, tv_loss_list, save_path): fig = plt.figure() plt.subplot(221) plt.plot(range(len(loss_list)), loss_list) plt.xlabel('iteration') plt.ylabel('loss') plt.title('loss') plt.subplot(222) plt.plot(range(len(content_loss_list)), content_loss_list) plt.xlabel('iteration') plt.ylabel('content loss') plt.title('content loss') plt.subplot(223) plt.plot(range(len(style_loss_list)), style_loss_list) plt.xlabel('iteration') plt.ylabel('style_loss') plt.title('style_loss') plt.subplot(224) plt.plot(range(len(tv_loss_list)), tv_loss_list) plt.xlabel('iteration') plt.ylabel('tv_loss') plt.title('tv_loss') # save loss image plt.tight_layout() plt.savefig(save_path) plt.close(fig) def draw_loss_1(loss_list, content_loss_list, edge_loss_list, style_loss_list, tv_loss_list, save_path): fig = plt.figure() plt.subplot(231) plt.plot(range(len(loss_list)), loss_list) plt.xlabel('iteration') plt.ylabel('loss') plt.title('loss') plt.subplot(232) plt.plot(range(len(content_loss_list)), content_loss_list) plt.xlabel('iteration') plt.ylabel('content loss') plt.title('content loss') plt.subplot(233) plt.plot(range(len(edge_loss_list)), edge_loss_list) plt.xlabel('iteration') plt.ylabel('edge_loss') plt.title('edge_loss') plt.subplot(234) plt.plot(range(len(style_loss_list)), style_loss_list) plt.xlabel('iteration') plt.ylabel('style_loss') plt.title('style_loss') plt.subplot(235) plt.plot(range(len(tv_loss_list)), tv_loss_list) plt.xlabel('iteration') plt.ylabel('tv_loss') plt.title('tv_loss') # save loss image plt.tight_layout() plt.savefig(save_path) plt.close(fig) def load_from_yml(args): if args.config_path == '': print(f'config path is null!') return args file = open(args.config_path) config = yaml.safe_load(file) args.description = config['description'] args.config_path = config['config_path'] args.content_img = config['content_img'] args.style_img = config['style_img'] args.content_dir = config['content_dir'] args.style_dir = config['style_dir'] args.segmentation_dir = config['segmentation_dir'] args.use_seg = config['use_seg'] args.resize = config['resize'] args.type = config['type'] args.encoder_path = config['encoder_path'] args.decoder_r11_path = config['decoder_r11_path'] args.decoder_r21_path = config['decoder_r21_path'] args.decoder_r31_path = config['decoder_r31_path'] args.decoder_r41_path = config['decoder_r41_path'] args.decoder_r51_path = config['decoder_r51_path'] args.layers = config['layers'] args.is_batch = config['is_batch'] args.is_combine = config['is_combine'] args.is_select = config['is_select'] args.select_content_list = config['select_content_list'] args.select_style_list = config['select_style_list'] args.orth_constraint = config['orth_constraint'] args.post_smoothing = config['post_smoothing'] args.fast = config['fast'] args.output_path = config['output_path'] args.gpu = config['gpu'] args.device = config['device'] args.max_use_num = config['max_use_num'] args.soft_lambda = config['soft_lambda'] args.k_cross = config['k_cross'] args.patch_size = config['patch_size'] args.style_weight = config['style_weight'] args.reduce_dim_type = config['reduce_dim_type'] args.dist_type = config['dist_type'] args.dim_thresh = config['dim_thresh'] args.skip_connection = config['skip_connection'] args.connect_weight = config['connect_weight'] args.skip_connection_type = config['skip_connection_type'] args.skip_connection_decoder_path = config['skip_connection_decoder_path'] def main(): # size = [1, 512, 64, 64] # patch_size = (1, 1) # cf = torch.rand(size=size) # a = batch_split(cf, patch_size=patch_size) # res = batch_concatenate(a, origin_size=(64, 64), patch_size=patch_size) # print(torch.sum(cf - res)) # a = torch.tensor([[[1, 2], [3, 4]], # [[5, 6], [7, 8]]]) # b = a.reshape(8, 1) # test adjust_tv_loss_weight() ori_tv_weight = 1e-6 for iteration in range(1, 19572 * 4 + 1): print(f'iteration={iteration}, weight={ori_tv_weight / (1 + iteration * 1e-3)}') if __name__ == '__main__': main() # plt.figure(1) # plt.subplot(221) # plt.scatter([1, 3, 5], [2, 4, 6]) # plt.title('221') # plt.xlabel('x1') # plt.ylabel('y1') # # plt.subplot(222) # plt.plot([1, 3, 5], [2, 4, 6]) # plt.title('222') # plt.xlabel('x2') # plt.ylabel('y2') # # plt.subplot(223) # plt.plot([1, 3, 5], [2, 4, 6]) # plt.title('223') # plt.xlabel('x3') # plt.ylabel('y3') # # plt.subplot(224) # plt.scatter([1, 3, 5], [2, 4, 6]) # plt.title('224') # plt.xlabel('x4') # plt.ylabel('y4') # # plt.tight_layout() # plt.savefig('res.png') ``` #### File: JinShiyin/sast_backend/sockets.py ```python import time import os from flask import session from flask_socketio import ( SocketIO, disconnect, join_room, leave_room, emit, Namespace ) from flask import Flask, render_template, request from config.config import Config from config import Config import eventlet eventlet.monkey_patch(thread=False) import logging logger = logging.getLogger('gunicorn.error') socketio = SocketIO(async_mode='eventlet', cors_allowed_origins="*") @socketio.on('connect') def connect(): sid = request.sid print(f'Socket connection created with {sid}') @socketio.on('disconnect') def disconnect(): sid = request.sid print(f'Socket disconnected from {sid}') def synthesis_complete(body): """ notify frontend that a stylization image is obtainable. :param body: { 'content_id': content_id, 'style_id': style_id, 'stylization_id': stylization_id, } :return: """ print(f'notify fronted synthesis completely with body: {body}') socketio.emit('onSynthesisCompleted', body, broadcast=True) def synthesis_failed(body): """ notify frontend that a stylization image is obtainable. :param body: { 'content_id': content_id, 'style_id': style_id, 'stylization_id': stylization_id, } :return: """ print(f'notify fronted synthesis failed with body: {body}') socketio.emit('onSynthesisFailed', body, broadcast=True) def synthesising(body): """ notify frontend with current synthesis progress. The frontend mustn't fetching stylization image from backend if the image's status is 'SYNTHESISING' :param body: { 'content_id': content_id, 'style_id': style_id, 'stylization_id': stylization_id, 'current_update_steps': 100, 'current_cost_time': 200, 'percent': 0.35, # 1 represent 'COMPLETE',otherwise it is 'SYNTHESISING', 'total_time': 10, 'total_update_steps': 10, } :return: """ print(f'notify fronted synthesis with body: {body}') socketio.emit('onSynthesising', body, broadcast=True) def mast_report(msg, res_queue): start_time = time.time() c_basename = os.path.splitext(msg['content_img_id'])[0] s_basename = os.path.splitext(msg['style_img_id'])[0] stylization_id = f'{c_basename}_{s_basename}.png' while True: if not res_queue.empty(): res_msg = res_queue.get() body = { 'content_id': res_msg['content_img_id'], 'style_id': res_msg['style_img_id'], 'stylization_id': res_msg['stylized_img_id'], } synthesis_complete(body) break else: time.sleep(0.5) cost_time = time.time() - start_time body = { 'content_id': msg['content_img_id'], 'style_id': msg['style_img_id'], 'stylization_id': stylization_id, 'current_update_steps': -1, 'current_cost_time': cost_time, 'percent': round(cost_time / Config.MAST_TOTAL_TIME * 100, 1), # 1 represent 'COMPLETE',otherwise it is 'SYNTHESISING', 'total_time': Config.MAST_TOTAL_TIME, 'total_update_steps': -1, } synthesising(body) ```
{ "source": "JinshuChen/SteelDetection", "score": 3 }
#### File: SteelDetection/scripts/data_argumentation.py ```python import os from impy.ObjectDetectionDataset import * # def main(): # # Define the path to images and annotations # images_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/circle_steel/img" # annotations_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/circle_steel/annotations" # # Define the name of the dataset # dbName = "circle_steel" # # Create an object of ImageLocalizationDataset # imda = ObjectDetectionDataset(imagesDirectory = images_path, annotationsDirectory = annotations_path, databaseName = dbName) # # Reduce the dataset to smaller Rois of smaller ROIs of shape 1032x1032. # images_output_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/circle_steel/img_adapted" # annotations_output_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/circle_steel/annotations_adapted" # imda.reduceDatasetByRois(offset = [640, 640], outputImageDirectory = images_output_path, outputAnnotationDirectory = annotations_output_path) # if __name__ == "__main__": # main() def main(): # Define the path to images and annotations images_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/NHsquare_steel/img_adapted" annotations_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/NHsquare_steel/annotations_adapted" # Define the name of the dataset dbName = "NHsquare_steel" # Create an object of ImageLocalizationDataset imda = ObjectDetectionDataset(imagesDirectory = images_path, annotationsDirectory = annotations_path, databaseName = dbName) # Apply data augmentation by using the following method of the ImageLocalizationDataset class. configuration_file = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/config2.json" images_output_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/NHsquare_steel/img_adapted" annotations_output_path = "/home/c/workspace/tf_models/research/SteelDetection/impy_train_data/NHsquare_steel/annotations_adapted" imda.applyDataAugmentation(configurationFile = configuration_file, outputImageDirectory = images_output_path, outputAnnotationDirectory = annotations_output_path) if __name__ == "__main__": main() ```
{ "source": "jinsian/VizAly-Foresight", "score": 3 }
#### File: pat/hacc/hacc_query.py ```python import sys import argparse import numpy from pat.utils import gioSqlite as gio_sqlite def load_sqlite_data(path, query, sqlite_file): """ Loads data using SQLite query. """ # load file print("Reading {}...".format(path)) query_mgr = gio_sqlite.GioSqlite3() query_mgr.loadGIOSqlite(sqlite_file) # load data i = 0 table_name = "foo_{}".format(i) query_mgr.createTable(table_name, (path)) # execute query query = query.replace("__TABLE__", table_name) result = query_mgr.runQueryOutputList(query) # typecast result = numpy.array(result).flatten() assert(len(result.shape) == 1) return result # parse command line parser = argparse.ArgumentParser(description=__doc__) parser.add_argument("--input-file", required=True) parser.add_argument("--output-file", required=True) parser.add_argument("--sqlite-file", default="/projects/exasky/visio/genericio/frontend/GenericIOSQLite.so") parser.add_argument("--query", default="select fof_halo_mass from __TABLE__ ORDER BY fof_halo_mass") parser.add_argument("--xlabel", default="Halo Mass") parser.add_argument("--ylabel", default="Counts") parser.add_argument("--xlim", nargs="+", type=float, default=[]) parser.add_argument("--bins", type=float, default=20) parser.add_argument("--log-bins", action="store_true") opts = parser.parse_args() # read data data = numpy.array(load_sqlite_data(opts.input_file, opts.query, opts.sqlite_file)) # update ranges x_min = min(x_min, data.min()) if not len(opts.xlim) > 0 else opts.xlim[0] x_max = max(x_max, data.max()) if not len(opts.xlim) > 1 else opts.xlim[1] # set binning and range of histograms # can do uniform in linear space or logarithmic space if opts.log_bins: bins = numpy.logspace(numpy.log10(x_min), numpy.log10(x_max), num=opts.bins) bins_range = None else: bins = opts.bins bins_range = (x_min, x_max) # create histogram hist, bin_edges = numpy.histogram(data, bins=bins, range=bins_range) hist = numpy.hstack([(0), numpy.repeat(hist, 2), (0)]) bin_edges = numpy.hstack([(bin_edges[0], bin_edges[0]), numpy.repeat(bin_edges[1:-1], 2), (bin_edges[-1], bin_edges[-1])]) # save results delimiter = "," results = numpy.column_stack([bin_edges, hist]) header = delimiter.join(map(str, [opts.xlabel, opts.ylabel])) numpy.savetxt(opts.output_file, results, header=header, delimiter=delimiter) print("Done!") ``` #### File: pat/nyx/cinema.py ```python import sys import argparse import os import csv import operator from pat.utils import file_utilities as futils from pat.utils import plot_utilities as putils from pat.utils import cinema from pat.utils import job as j class nyx_cinema(cinema.CinemaWorkflow): def prepare_cinema(self): # Open CSV file if "metrics-csv" in self.json_data["input"]: metrics_csv = self.json_data["input"]["metrics-csv"] else: metrics_csv = self.json_data["project-home"] + self.json_data['wflow-path'] + "/cbench/" + self.json_data['cbench']['output']['metrics-file'] + ".csv" output_file_name = self.json_data["project-home"] + self.json_data['wflow-path'] + "/cinema/" + "data.csv" all = [] #reader = futils.open_csv_file(metrics_csv) with open(metrics_csv,'r') as csvinput: reader = csv.reader(csvinput) # Modify Cinema files row = next(reader) row.append('FILE_SimStats_Pk') row.append('FILE_lya_all_axes_x_Pk') row.append('FILE_lya_all_axes_y_Pk') row.append('FILE_lya_all_axes_z_Pk') all.append(row) values = ["sim_stats_rhob.png", "sim_stats_rhodm.png", "sim_stats_temp.png", "sim_stats_velmag.png", "sim_stats_velmag.png", "sim_stats_vz.png"] count = 0 for row in reader: row.append(values[count]) row.append("lya_all_axes_x.png") row.append("lya_all_axes_y.png") row.append("lya_all_axes_z.png") all.append(row) count = count + 1 if (count == 6): count = 0 futils.write_csv(output_file_name, all) # Converts a string to an operator def validate(self, operand, relate, result): ops = { "<": operator.lt } return ops[relate]( abs(operand-1.0), result) # Process checks found in "cinema-plots" "plotting" "checks" def is_valid(self, pk_ratio, range_count): valid = True for check in self.json_data['cinema-plots']['plotting']['checks']: count = 0 for item in pk_ratio: if count > range_count: # we only care about the set range break; if not self.validate(item, check['operator'], check['result']): valid = False break count = count + 1 return valid def create_plots(self): output_path = self.json_data['project-home'] + self.json_data['wflow-path'] output_plot_path = output_path + "/plots" has_range = False; if "x-range" in self.json_data['cinema-plots']['plotting']: x_range = self.json_data['cinema-plots']['plotting']['x-range'] has_range = True for ana in self.json_data['pat']['analysis']: plot_title = ana['title'] to_plot = [] # all the items to plot k_list = [] orig_pk = [] # Find the original file for file in ana['files']: if (file['name']=="orig"): k_list = futils.extract_csv_col(file['path'], ' ', 2) orig_pk = futils.extract_csv_col(file['path'], ' ', 3) # Check range limit range_count = 0 for x in k_list: if has_range == True: if (x > x_range[1]): break else: has_range = 1000000 range_count = range_count + 1 # Process the other files for file in ana['files']: if (file['name']!="orig"): temp_pk = futils.extract_csv_col(file['path'], ' ', 3) if (temp_pk is not None): pk_ratio = [i / j for i, j in zip(temp_pk, orig_pk)] this_tuple = (pk_ratio, file['name']) #array, name # Check if passes test if "checks" in self.json_data["cinema-plots"]["plotting"]: if self.is_valid(pk_ratio, range_count): to_plot.append(this_tuple) else: to_plot.append(this_tuple) putils.plotScatterGraph(k_list, 'k', 'pk-ratio', plot_title, output_plot_path, x_range, to_plot) # Parse Input parser = argparse.ArgumentParser() parser.add_argument("--input-file") opts = parser.parse_args() # Create Cinema DB cinema = nyx_cinema( opts.input_file ) cinema.create_plots() cinema.create_cinema() ``` #### File: pat/utils/gioSqlite.py ```python import sys import io dbConnLoaded = "" try: import apsw dbConnLoaded = "apsw" print("using aspw module for sqlite") except ImportError: try: import sqlite3 dbConnLoaded = "sqlite3" print("using sqlite3 module for sqlite") except ImportError: print ("You need either apsw or sqlite3") sys.exit(0) class GioSqlite3: def __init__(self): if dbConnLoaded == "sqlite3": self.conn = sqlite3.connect(":memory:") else: self.conn = apsw.Connection(":memory:") def __del__(self): self.closeConn() def loadGIOSqlite(self, sharedObjectPath): try: if dbConnLoaded == "sqlite3": self.conn.enable_load_extension(True) self.conn.load_extension(sharedObjectPath) else: self.conn.enableloadextension(True) self.conn.loadextension(sharedObjectPath) except Exception: print ("Could not load shared object", sharedObjectPath, "!") return -1 def createTable(self, tableName, inputfile): query = "CREATE VIRTUAL TABLE " + tableName + " USING GenericIO('"+ inputfile +"')" try: self.conn.cursor().execute(query) except Exception: print ("Could not create table", tableName, "!") return -1 def runQueryInteractive(self, queryString): for row in self.conn.cursor().execute(queryString): print (row) def runQueryOutputFile(self, queryString, outputFilename): target = open(outputFilename, 'w') for row in self.conn.cursor().execute(queryString): target.write( str(row) + '\n') def runQueryOutputString(self, queryString): outputString = "" cursor = self.conn.cursor().execute(queryString) results = cursor.fetchall() for row in results: outputString = outputString + str( row ) + " "'\n' return outputString def runQueryOutputCSV(self, queryString): if dbConnLoaded != "apsw": print ("csv currenly only works with apsw! Running non csv version") return self.runQueryOutputString(queryString) else: output=io.StringIO() self.shell = apsw.Shell(stdout=output, db=self.conn) self.shell.process_command(".mode csv") self.shell.process_command(".headers on") self.shell.process_sql(queryString) return output.getvalue() def runQueryOutputList(self, queryString): outputString = "" cursor = self.conn.cursor().execute(queryString) row = cursor.fetchone() resultsList = [] while row is not None: resultsList.append(row) row = cursor.fetchone() return resultsList def getNumRanks(self, tableName): query = "SELECT MAX(_rank) FROM " + tableName cursor = self.conn.cursor().execute(query) return cursor.fetchone()[0] def closeConn(self): self.conn.close() ```
{ "source": "jinsihou19/E-Paper-UI-Kit", "score": 3 }
#### File: jinsihou19/E-Paper-UI-Kit/demo.py ```python from PIL import ImageFont from EPUIKit import QuadrantsLayout, VirtualPaper from EPUIKit.widget import Label def font(): return ImageFont.load_default() layout = QuadrantsLayout(border=1) layout.add(Label('LEFT_BOTTOM', font=font()), QuadrantsLayout.LEFT_TOP) layout.add(Label('LEFT_BOTTOM', font=font()), QuadrantsLayout.LEFT_BOTTOM) layout.add(Label('RIGHT_TOP', font=font()), QuadrantsLayout.RIGHT_TOP) layout.add(Label('RIGHT_BOTTOM', font=font()), QuadrantsLayout.RIGHT_BOTTOM) paper = VirtualPaper(layout, 144, 500) paper.show() ``` #### File: E-Paper-UI-Kit/EPUIKit/date.py ```python import time from interval import Interval def get_week_day(day): week_day_dict = { 1: '一', 2: '二', 3: '三', 4: '四', 5: '五', 6: '六', 0: '日', } return week_day_dict[day] def date_str(): return "{} {}".format(time.strftime("%Y/%m/%d"), get_week_day(int(time.strftime("%w")))) def is_stock_time(): return time.strftime("%H:%M") in Interval("09:30", "15:00") def is_screen_work_time(): return time.strftime("%H:%M") in Interval("06:00", "24:00") ```