metadata
dict
text
stringlengths
60
3.49M
{ "source": "jinhongtan/Calculator", "score": 3 }
#### File: Calculator/src/read_data.py ```python import pandas as pd from Calculator import * #AddictionPath = 'C:\Users\<NAME>\PycharmProjects\Calculator\venv\UnitTestAddition.csv' basePath = "/code/src/" AdditionPath = basePath + "data/UnitTestAddition.csv" SubtractionPath = basePath + "data/UnitTestSubtraction.csv" MultiplicationPath = basePath + "data/UnitTestMultiplication.csv" SquareRootPath = basePath + "data/UnitTestSquareRoot.csv" SquarePath = basePath + "data/UnitTestSquare.csv" DivisionPath = basePath + "data/UnitTestDivision.csv" def read_data(TestDataPath): data= pd.read_csv(TestDataPath) df = pd.DataFrame(data, columns=['Value 1','Value 2','Result']) return df def read_square(TestDataPath): data= pd.read_csv(TestDataPath) df = pd.DataFrame(data, columns=['Value 1','Result']) return df ```
{ "source": "jinhongtan/is601Final", "score": 3 }
#### File: is601Final/app/app.py ```python import simplejson as json from flask import Flask, request, Response, redirect, url_for from flask import render_template from flaskext.mysql import MySQL from pymysql.cursors import DictCursor from forms import SignupForm app = Flask(__name__, template_folder="templates", static_folder="static", static_url_path='') mysql = MySQL(cursorclass=DictCursor) app.config.from_object('config.Config') @app.route('/', methods=['GET']) def index(): user = {'username': 'Michael'} cursor = mysql.get_db().cursor() cursor.execute('SELECT * FROM mlbPlayers') result = cursor.fetchall() return render_template('index.html', title='Home', user=user, players=result) @app.route('/view/<int:player_id>', methods=['GET']) def record_view(player_id): cursor = mysql.get_db().cursor() cursor.execute('SELECT * FROM mlbPlayers WHERE id=%s', player_id) result = cursor.fetchall() return render_template('view.html', title='View Form', player=result[0]) @app.route('/edit/<int:player_id>', methods=['GET']) def form_edit_get(player_id): cursor = mysql.get_db().cursor() cursor.execute('SELECT * FROM mlbPlayers WHERE id=%s', player_id) result = cursor.fetchall() return render_template('edit.html', title='Edit Form', player=result[0]) @app.route('/edit/<int:player_id>', methods=['POST']) def form_update_post(player_id): cursor = mysql.get_db().cursor() inputData = (request.form.get('plName'), request.form.get('plTeam'), request.form.get('plPosition'), request.form.get('plHeight'), request.form.get('plWeight'), request.form.get('plAge'), player_id) sql_update_query = """UPDATE mlbPlayers t SET t.plName = %s, t.plTeam = %s, t.plPosition = %s, t.plHeight = %s, t.plWeight = %s, t.plAge = %s WHERE t.id = %s """ cursor.execute(sql_update_query, inputData) mysql.get_db().commit() return redirect("/", code=302) @app.route('/player/new', methods=['GET']) def form_insert_get(): return render_template('new.html', title='New MLB Player Form') @app.route('/player/new', methods=['POST']) def form_insert_post(): cursor = mysql.get_db().cursor() inputData = (request.form.get('plName'), request.form.get('plTeam'), request.form.get('plPosition'), request.form.get('plHeight'), request.form.get('plWeight'), request.form.get('plAge')) sql_insert_query = """INSERT INTO mlbPlayers (plName,plTeam, plPosition, plHeight, plWeight, plAge) VALUES (%s,%s, %s,%s, %s,%s)""" cursor.execute(sql_insert_query, inputData) mysql.get_db().commit() return redirect("/", code=302) @app.route('/delete/<int:player_id>', methods=['POST']) def form_delete_post(player_id): cursor = mysql.get_db().cursor() sql_delete_query = """DELETE FROM mlbPlayers WHERE id = %s """ cursor.execute(sql_delete_query, player_id) mysql.get_db().commit() return redirect("/", code=302) @app.route('/api/v1/players', methods=['GET']) def api_browse() -> str: cursor = mysql.get_db().cursor() cursor.execute('SELECT * FROM mlbPlayers') result = cursor.fetchall() json_result = json.dumps(result) resp = Response(json_result, status=200, mimetype='application/json') return resp @app.route('/api/v1/players/<int:player_id>', methods=['GET']) def api_retrieve(player_id) -> str: cursor = mysql.get_db().cursor() cursor.execute('SELECT * FROM mlbPlayers WHERE id=%s', player_id) result = cursor.fetchall() json_result = json.dumps(result) resp = Response(json_result, status=200, mimetype='application/json') return resp @app.route('/api/v1/players/<int:player_id>', methods=['PUT']) def api_edit(player_id) -> str: cursor = mysql.get_db().cursor() content = request.json inputData = (content['plName'], content['plTeam'], content['plPosition'], content['plHeight'], content['plWeight'], content['plAge'], player_id) sql_update_query = """UPDATE mlbPlayers t SET t.plName = %s, t.plTeam = %s, t.plPosition = %s, t.plHeight = %s, t.plWeight = %s, t.plAge = %s WHERE t.id = %s """ cursor.execute(sql_update_query, inputData) mysql.get_db().commit() resp = Response(status=200, mimetype='application/json') return resp @app.route('/api/v1/players', methods=['POST']) def api_add() -> str: content = request.json cursor = mysql.get_db().cursor() inputData = (content['plName'], content['plTeam'], content['plPosition'], content['plHeight'], content['plWeight'], content['plAge']) sql_insert_query = """INSERT INTO mlbPlayers (plName,plTeam, plPosition, plHeight, plWeight, plAge) VALUES (%s,%s, %s,%s, %s,%s) """ cursor.execute(sql_insert_query, inputData) mysql.get_db().commit() resp = Response(status=201, mimetype='application/json') return resp @app.route('/api/v1/players/<int:player_id>', methods=['DELETE']) def api_delete(player_id) -> str: cursor = mysql.get_db().cursor() sql_delete_query = """DELETE FROM mlbPlayers WHERE id = %s """ cursor.execute(sql_delete_query, player_id) mysql.get_db().commit() resp = Response(status=200, mimetype='application/json') return resp @app.route('/signup', methods=['GET', 'POST']) def signup_page(): return render_template( '/signup.html', title='Create an Account | Flask-Login Tutorial.', form=SignupForm(), template='signup-page', body="Sign up for a user account." ) @app.route("/signin") def dashboard(): # This had to serve a static page b/c of how tutorial made the route return redirect('/dashboard.html') @app.route("/login") def login(): return redirect(url_for('dashboard')) @app.errorhandler(404) def not_found(arg): """Page not found.""" return render_template('404.html', title='404 error.', message='Page Not Found') @app.errorhandler(400) def bad_request(): """Bad request.""" return render_template('400.html', title='400 error.', message='Bad request. Page Not Found') @app.errorhandler(500) def server_error(arg): """Internal server error.""" return render_template('500.html', message='Server Error') if __name__ == '__main__': app.run(host='0.0.0.0', port=5000, debug=True) ```
{ "source": "jinhongtan/jobtest", "score": 2 }
#### File: jobtest/ResumeSearch/views.py ```python from django.shortcuts import render, redirect from django.db import models from django import forms from . import models from itsdangerous import TimedJSONWebSignatureSerializer as Serializer from django.conf import settings from django.core.mail import send_mail as sm app_name = "ResumeSearch" from django.contrib.auth.decorators import login_required import datetime from . models import user, industry, skill, job from .forms import UserForm, RegisterForm import hashlib from itsdangerous import SignatureExpired from django.http import HttpResponse, JsonResponse from django.views.decorators.csrf import csrf_exempt from urllib.parse import unquote from django.urls import reverse from django.core import serializers def hash_code(s, salt='ResumeSearch'): h = hashlib.sha256() s += salt h.update(s.encode()) return h.hexdigest() def login(request): if request.session.get('is_login', None): return redirect('/index') if request.method == "POST": login_form = UserForm(request.POST) if login_form.is_valid(): username = request.POST.get('username') password = request.POST.get('password') if username and password: # 确保用户名和密码都不为空 username = username.strip() # 用户名字符合法性验证 # 密码长度验证 # 更多的其它验证..... try: user = models.user.objects.get(name=username) if user.password == hash_code(password): request.session['is_login'] = True request.session['user_id'] = user.id request.session['user_name'] = user.name return redirect(reverse('index')) #return render(request, "index.html", {'username':username}) else: message = "Password incorrect !" except: message = 'user not exit' #return render(request, 'index.html') login_form = UserForm return render(request, 'login.html', locals()) def register(request): if request.session.get('is_login', None): # 登录状态不允许注册。你可以修改这条原则! return redirect("/index/") if request.method == "POST": register_form = RegisterForm(request.POST) message = "请检查填写的内容!" if register_form.is_valid(): # 获取数据 username = register_form.cleaned_data['username'] password1 = register_form.cleaned_data['password1'] password2 = register_form.cleaned_data['password2'] email = register_form.cleaned_data['email'] if password1 != password2: # 判断两次密码是否相同 message = "两次输入的密码不同!" return render(request, 'register.html', locals()) else: same_name_user = models.user.objects.filter(name=username) if same_name_user: # 用户名唯一 message = '用户已经存在,请重新选择用户名!' return render(request, 'register.html', locals()) same_email_user = models.User.objects.filter(email=email) if same_email_user: # 邮箱地址唯一 message = '该邮箱地址已被注册,请使用别的邮箱!' return render(request, 'register.html', locals()) # 当一切都OK的情况下,创建新用户 new_user = models.user.objects.create() new_user.name = username new_user.password = <PASSWORD>) new_user.email = email new_user.save() return redirect('/login/') # 自动跳转到登录页面 register_form = RegisterForm() return render(request, 'register.html', locals()) def logout(request): if not request.session.get('is_login', None): # 如果本来就未登录,也就没有登出一说 return redirect("/index/") request.session.flush() # 或者使用下面的方法 # del request.session['is_login'] # del request.session['user_id'] # del request.session['user_name'] return redirect("/index/") def test_ajax(request): # res = {"code": 101, "msg": "请求无效"} # # 判断是否为ajax请求, 不是返回请求无效 # if request.is_ajax(): # try: # res["code"] = 100 # res["msg"] = '请求成功' # except Exception: # res["msg"] = '请求无效' #return HttpResponse("res") if request.method == 'POST': Job = request.POST.get("job") Mainjob = request.POST.get("mainjob") Input = request.POST.get("input") text='this is text' print(Mainjob.split('/')) #link = request.get_full_path() #print(link) #job = request.GET.get('job', '') #mainjob = request.GET.get('mainjob','') #city=request.GET.get('city','') print("This is Job:"+Job) print("This is Mainjob:" +Mainjob) print("This is input:" + Input) message={} jobs = job.objects.filter(title__icontains=Input) data = serializers.serialize("json", jobs) jsonjobs = {'jobs': data} #jobs = job.objects.filter(title__icontains=keyword, location__icontains=city) return JsonResponse(jsonjobs) def index(request): #if request.session.get('is_login', None): jobs = job.objects.all() return render(request, 'index.html', {'jobs': jobs, "register": "注册", "login": "登入"}) #else: #return render(request, 'index.html') def detail(request, slug): jobs = job.objects.get(slug=slug) return render(request, 'details.html', {'jobs': jobs}) def search_job(request): if request.is_ajax(): #link = request.get_full_path() #print(link) job = request.POST.get('job', '') mainjob = request.POST.get('mainjob', '') input = request.POST.get('input', '') #city=request.GET.get('city','') print(job) print(mainjob) print(input) jobs = job.objects.filter(title__icontains=job) #jobs = job.objects.filter(title__icontains=keyword, location__icontains=city) return render(request, 'index.html', {'jobs': jobs}) ```
{ "source": "jinhopark8345/ICC", "score": 3 }
#### File: icc/iccdb/db_manage.py ```python from pymongo import MongoClient from iccjson.jconnect import validate_json, get_schema from iccjson.jconnect import make_temp_ing_info, make_temp_user_ing, make_temp_recipe class IccDB: """ DB class for Icc """ def __init__(self, db_name): self.client = MongoClient() self.db = self.client[db_name] self.user_ing = self.db.user_ing self.recipe = self.db.recipe self.ing_info = self.db.ing_info def add_ing_info(self, ing_info): """add ing to ing_info Args: ing: ingredient to be added to user_ing ing_example = {"onion", "fridge", "1440"} Returns: -1: invalid schema -2: ing_info already exist in the DB """ # check if the format is correct ing_info_schema = get_schema("ing_info") if not validate_json(ing_info, ing_info_schema): # temporary sol, need to change return -1 # check if the ingredient exists on db already if self.ing_info.find_one({"name": ing_info["name"]}) is None: return self.ing_info.insert_one(ing_info) else: # ingredient already exist print("add_ing_info error: {}, already exist".format(ing_info)) return -2 def update_ing_info(self, ing): pass def delete_ing_info(self, ing_name): return self.ing_info.delete_many({"name": ing_name}) def add_user_ing(self, user_ing): # check if the format is correct user_info_schema = get_schema("user_ing") if not validate_json(user_ing, user_info_schema): # temporary sol, need to change return -1 # check if the ingredient exists on db already if self.user_ing.find_one({"name": user_ing["name"]}) is None: return self.user_ing.insert_one(user_ing) else: # ingredient already exist return -2 def add_temp_user_ing(self): # clean db self.db.drop_collection("user_ing") user_ings = make_temp_user_ing() for user_ing in user_ings: # print(recipe) rtv = self.add_user_ing(user_ing) if rtv in (-1, -2): print("add_recipe error code : {}".format(rtv)) def update_user_ing(self, ing): """update user_ing quantity if user has the ing, if not, then add the whole ing to user_ing Args: ing: ingredient to be added to user_ing ing_example = {"onion", 600, "g", "2020-10-07 13:34"} Returns: """ # https://docs.mongodb.com/manual/reference/operator/update/ # $inc is update operators # The *upsert* option can be used to create the document if it # doesn't already exist. when ingredient is updated, _id doesn't # get added to the ingredient if (self.user_ing.find_one_and_update( {"name": ing["name"]}, {"$inc": { "quantity": ing["quantity"] }}, upsert=False, ) is None): # since find_one_and_update doesn't add other properties # than name and quantity, should insert whole new # ingreident to user_ing self.user_ing.insert_one(ing) def print_user_ing(self): for ing in self.user_ing.find({}): print(ing) def delete_user_ing(self, ing_name): self.user_ing.delete_one({"name": ing_name}) def add_recipe(self, recipe): """add recipe to db.recipe Args: recipe: ingredient to be added to user_ing ing_example = {"onion", "fridge", "1440"} Returns: -1 : output is an integer -1, when the format does not match the specific schema. -2 : output is an integer -2, when recipe to add already exist in dbMongo of recpies. "recipe" : output is recipe to add. type is dict """ recipe_schema = get_schema("recipe") if not validate_json(recipe, recipe_schema): # temporary sol, need to change return -1 # check if the recipe exists on db already if self.recipe.find_one({"name": recipe["name"]}) is None: return self.recipe.insert_one(recipe) # recipe already exist else: return -2 def delete_recipe(self, recipe_name): return self.recipe.delete_many({"name": recipe_name}) def replace_recipe_ings(self, recipe): """ replace existing ing in recipe with new ing. Args: recipe: type is dict. It include recpie_name, like, ings_name, ings_quantity_unit, ings_quantity. recipe_example : { "name": "rice cake soup", "like": 7, "ings": [{ "name": "green onion", "quantity": 500, "quantity_unit": "g" }] } Returns: """ return self.recipe.find_one_and_update({"name": recipe["name"]}, {"$set": { "ings": recipe["ings"] }}, upsert=False) def replace_recipe_like(self, recipe): """ replace existing like in recipe with new like. Args: replace existing ing in recipe with new ing. Returns: """ return self.recipe.find_one_and_update({"name": recipe["name"]}, {"$set": { "like": recipe["like"] }}, upsert=False) def update_recipe_like(self, recipe_name, like=1, replace_flag=False): """update value of like in recipe when replace_flag is False. when replace_flag is True, replace value of like in recipe with value of like as args. Args: recipe_name: type is string. like: type is integer. replace_flag: Optional; Returns: """ recipe = self.find_recipe(recipe_name) if not replace_flag: # like recipe["like"] += like # replace the like value else: recipe["like"] = like self.replace_recipe_like(recipe) def add_recipe_ing(self, recipe_name, ing): """add ing in ings of recipe to db.recipe Args: recipe_name: type is string. ing: type is dict. ingredient to be added to ing in recipe. ing_example = {"onion", "fridge", "1440"} Returns: """ recipe = self.find_recipe(recipe_name) ### Next SAIDS: need to add schema test recipe["ings"].append(ing) self.replace_recipe_ings(recipe) def delete_recipe_ing(self, recipe_name, ing_name): """delete ing in ings of recipe to db.recipe Args: recipe_name: type is string. ing_name: type is string. ingredient to be deleted to ing in ings of recipe. Returns: """ recipe = self.find_recipe(recipe_name) recipe["ings"] = [ing for ing in recipe["ings"] if ing["name"] != ing_name] self.replace_recipe_ings(recipe) def update_recipe_ing(self, recipe_name, ing, replace_flag=False): """update value of ing_quantity in ing of recipe when replace_flag is False. when replace_flag is True, replace value of ing_quantity in ing of recipe with value of ing as args. Args: recipe_name: type is string. ing: type is dict. replace_flag: Optional; Return: """ recipe = self.find_recipe(recipe_name) for db_ing in recipe["ings"]: if db_ing["name"] == ing["name"]: if not replace_flag: db_ing["quantity"] += ing["quantity"] else: db_ing["quantity"] = ing["quantity"] self.replace_recipe_ings(recipe) def find_ing_info(self, ing_name): """find ing_info in db.ing_info Args: ing_name: type is string. Returns: ing_info: type is dict. """ ing = self.ing_info.find_one({"name": ing_name}) # return None if ing doesn't exist on DB return ing def find_user_ing(self, ing_name, return_id=True): """find user_ing in db.user_ing. if returnID is True,print ID. else, not print ID. Args: ing_name: type is string. returnID: optional; Returns: ing: type is dict. """ if return_id is False: # find_one will find the object and return the object with id(default) ing = self.user_ing.find_one({"name": ing_name}, {"_id": False}) return ing else: ing = self.user_ing.find_one({"name": ing_name}) return ing def find_recipe(self, recipe_name, return_id=True): """find recipe in db.recipe. if returnID is True, print ID. else, not print ID. Args: recipe_name: type is string. returnID: optional; Returns: recipe: type is dict. """ if return_id is False: # find_one will find the object and return the object with id(default) recipe = self.recipe.find_one({"name": recipe_name}, {"_id": False}) return recipe else: recipe = self.recipe.find_one({"name": recipe_name}) return recipe def find_recipes(self, return_id=True): """find all recipes in db.recipe. if returnID is True, print ID. else, not print ID. Args: returnID: optional; Returns: recipe: type is dict. """ cursor = self.recipe # choosing the collection you need recipes = [] if return_id is False: for recipe in cursor.find({}, {"_id": False}): recipes.append(recipe) else: for recipe in cursor.find({}): recipes.append(recipe) return recipes def find_recipe_ing(self, recipe_name, ing_name, return_id=True): """find ing of recipe in db.recipe. if returnID is True, print ID. else, not print ID. Args: returnID: optional; Returns: ing: type is dict. """ if return_id is False: # find_one will find the object and return the object with id(default) recipe = self.recipe.find_one({"name": recipe_name}, {"_id": False}) for ing in recipe["ings"]: if ing["name"] == ing_name: return ing else: recipe = self.recipe.find_one({"name": recipe_name}) for ing in recipe["ings"]: if ing["name"] == ing_name: return ing def find_user_ings(self, return_id=True): """find all user_ings in db.user_ing. if returnID is True, print ID. else, not print ID. Args: returnID: optional; Returns: ing_info: tpye is dict. """ user_ings = [] if return_id is False: for user_ing in self.user_ing.find({}, {"_id": False}): user_ings.append(user_ing) else: for user_ing in self.user_ing.find({}): user_ings.append(user_ing) return user_ings def find_ing_infos(self, return_id=False): """find all ing_infos in db.ing_info. if returnID is True, print ID. else, not print ID. Args: returnID: optional; Returns: ing_info: tpye is dict. """ ing_infos = [] if return_id is False: for ing_info in self.ing_info.find({}, {"_id": False}): ing_infos.append(ing_info) else: for ing_info in self.ing_info.find({}): ing_infos.append(ing_info) return ing_infos def add_temp_recipe(self): self.db.drop_collection("recipe") recipes = make_temp_recipe() for recipe in recipes: # print(recipe) temp = self.add_recipe(recipe) if temp in (-1, -2): print("add_recipe error code : {}", temp) def add_temp_ing_info(self): # clean db self.db.drop_collection("ing_info") ing_infos = make_temp_ing_info() for ing_info in ing_infos: # print(recipe) rtv = self.add_ing_info(ing_info) if rtv in (-1, -2): print("add_recipe error code : {}".format(rtv)) ``` #### File: ICC/icc/main.py ```python from flask import Flask, render_template app = Flask(__name__) from iccjson.jconnect import * from recommend.compare_recipe import * from recommend.recommend_recipe import * from iccdb.db_manage import * from gui.main_gui import * def main_t(): icc_db = IccDB("icc") icc_db.add_temp_recipe() icc_db.add_temp_user_ing() icc_db.add_temp_ing_info() recommended_recipe = recommed_recipe() print("you should make {}".format(recommended_recipe)) app = ICC_GUI() # print("before user ings {}".format(icc_db.find_user_ings(returnID=False))) # remove_recipe_ing_from_user_ing(recommended_recipe) # print("after user ings {}".format(icc_db.find_user_ings(returnID=False))) # remove_recipe_ing_from_user_ing(recommended_recipe) # print("after user ings {}".format(icc_db.find_user_ings(returnID=False))) pass # main_t() # import tkinter as tk # class IccGUI(tk.Frame): # def __init__(self, master=None): # super().__init__(master) # self.master = master # self.pack() # self.create_widgets() # def create_widgets(self): # self.hi_there = tk.Button(self) # self.hi_there["text"] = "Hello World\n(click me)" # self.hi_there["command"] = self.say_hi # self.hi_there.pack(side="top") # self.quit = tk.Button(self, text="QUIT", fg="red", # command=self.master.destroy) # self.quit.pack(side="bottom") # def say_hi(self): # print("hi there, everyone!") # root = tk.Tk() # app = IccGUI(master=root) # app.mainloop() @app.route('/hello/') @app.route('/hello/<name>') def hello(name=None): icc_db = IccDB("icc") icc_db.add_temp_recipe() icc_db.add_temp_user_ing() icc_db.add_temp_ing_info() recommended_recipe = recommed_recipe() print("you should make {}".format(recommended_recipe)) ing_info = icc_db.find_ing_infos() print(ing_info) # client = MongoClient() # db = client["icc"] # temp = db.user_ing.find({}) # print(temp) return render_template('index.html', data=ing_info) if __name__ == '__main__': app.run(port=5000) # export FLASK_APP=main.py # flask run ``` #### File: jinhopark8345/ICC/setup.py ```python import os import sys import inspect import platform import threading # ROOT_DIR = None # def setup(): # main_id = None # for t in threading.enumerate(): # if t.name == 'MainThread': # main_id = t.ident # break # if not main_id: # raise RuntimeError("Main thread exited before execution") # current_main_frame = sys._current_frames()[main_id] # base_frame = inspect.getouterframes(current_main_frame)[-1] # if platform.system() == 'Windows': # filename = base_frame.filename # else: # filename = base_frame[0].f_code.co_filename # global ROOT_DIR # ROOT_DIR = os.path.dirname(os.path.abspath(filename)) ```
{ "source": "jinhopark8345/pysnooper-study", "score": 3 }
#### File: jinhopark8345/pysnooper-study/pysnooper-binary-search-example.py ```python import pysnooper import random import logging import threading import time from typing import List def thread_function(name): logging.info("Thread %s: starting", name) time.sleep(2) logging.info("Thread %s: finishing", name) class Solution: # @pysnooper.snoop(thread_info=True) @pysnooper.snoop(thread_info=True) def binary_search(self, nums: List[int], target:int) -> int: left, right = 0, len(nums) -1 while left <= right: mid = left + (right - left) midnum = nums[mid] if midnum == target: format = "%(asctime)s: %(message)s" logging.basicConfig(format=format, level=logging.INFO, datefmt="%H:%M:%S") # logging.info("Main : before creating thread") x = threading.Thread(target=thread_function, args=(1,)) # logging.info("Main : before running thread") x.start() # logging.info("Main : wait for the thread to finish") # x.join() # logging.info("Main : all done") x.join() return mid elif midnum < target: left = mid + 1 else: right = mid - 1 return -1 Solution().binary_search([1,2,3,4,5], 2) ```
{ "source": "jinho-park/ECOS", "score": 2 }
#### File: ECOS/ecos/edge.py ```python from ecos.log import Log from ecos.simulator import Simulator from ecos.event import Event class Edge: def __init__(self, id, props, policy, time): self.CPU = props["mips"] self.id = id self.policy = policy self.exec_list = list() self.finish_list = list() self.waiting_list = list() self.previous_time = time def get_policy(self): return self.policy def get_edge_id(self): return self.id def task_processing(self, task): # calculate available resource resourceUsage = 0 for task in self.exec_list: resourceUsage += task.get_allocated_resource() if self.CPU - resourceUsage > 0: requiredResource = task.get_remain_size() / task.get_task_deadline() task.set_allocated_resource(requiredResource) self.exec_list.append(task) msg = { "task": "check", "detail": { "node": "edge", "id": self.id } } event = Event(msg, None, task.get_task_deadline()) Simulator.get_instance().send_event(event) else: self.waiting_list.append(task) def update_task_state(self, simulationTime): timeSpen = simulationTime - self.previous_time for task in self.exec_list: allocatedResource = task.get_allocated_resource() remainSize = task.get_remain_size() - (allocatedResource * timeSpen) task.set_remain_size(remainSize) task.set_finish_node(1) if len(self.exec_list) == 0 and len(self.waiting_list) == 0: self.previous_time = simulationTime for task in self.exec_list: if task.get_remain_size() <= 0: self.exec_list.remove(task) self.finish_list.append(task) self.finish_task(task) if len(self.waiting_list) > 0: resourceUsage = 0 for task in self.exec_list: resourceUsage += task.get_allocated_resource() for task in self.waiting_list: if resourceUsage <= 0: break requiredResource = task.get_remain_size() / task.get_task_deadline() if requiredResource > resourceUsage: break task.set_allocated_resource(requiredResource) task.set_buffering_time(Simulator.get_instance().get_clock(), 1) resourceUsage -= requiredResource self.exec_list.append(task) self.waiting_list.remove(task) # add event nextEvent = 99999999999999 for task in self.exec_list: remainingLength = task.get_remain_size() estimatedFinishTime = (remainingLength / task.get_allocated_resource()) if estimatedFinishTime < 1: estimatedFinishTime = 1 if estimatedFinishTime < nextEvent: nextEvent = estimatedFinishTime msg = { "task": "check", "detail": { "node": "edge", "id": self.id } } event = Event(msg, None, nextEvent) Simulator.get_instance().send_event(event) def finish_task(self, task): # 1 means edge node task.set_finish_node(1) task.set_processing_time(Simulator.get_instance().get_clock(), 1) task.set_end_time(Simulator.get_instance().get_clock()) Log.get_instance().record_log(task) self.finish_list.remove(task) ``` #### File: ECOS/ecos/event.py ```python class Event: def __init__(self, msg, task, time): self.msg = msg self.task = task self.time = time def get_message(self): return self.msg def get_task(self): return self.task def get_time(self): return self.time def update_time(self, _time): self.time = _time ``` #### File: ECOS/ecos/log.py ```python import json import numpy as np from enum import Enum class Log: _instance = None @classmethod def get_instance(cls): if not cls._instance: cls._instance = Log() return cls._instance def __init__(self): # 2: Mobile, 1: Edge, 0: Cloud self.device_type = { "mobile": 2, "edge": 1, "cloud": 0 } # lan: mobile-edge, man: edge-edge, wan: edge-cloud # 0: gsm, 1: wan, 2: man, 3: lan self.network_type = { "lan": 1, "man": 2, "wan": 3 } self.file_enable = True self.file_name = "" self.folder_path = "" self.num_of_task_type = 0 self.completed_task = 0 self.completed_task_cloud = 0 self.completed_task_edge = 0 self.completed_task_mobile = 0 self.success_task = 0 self.network_delay = list() self.network_delay_gsm = list() self.network_delay_wan = list() self.network_delay_man = list() self.network_delay_lan = list() self.service_time = list() self.processing_time = list() self.processing_time_cloud = list() self.processing_time_edge = list() self.processing_time_mobile = list() self.buffering_time = list() self.buffering_time_cloud = list() self.buffering_time_edge = list() self.buffering_time_mobile = list() def get_service_time(self): return self.service_time def get_completed_task(self): return self.completed_task def sim_start(self, name): # self.folder_path = file self.file_name = name def sim_stop(self): if self.file_enable: completed_task_sum = self.completed_task completed_task_cloud_sum = self.completed_task_cloud completed_task_edge_sum = self.completed_task_edge completed_task_mobile_sum = self.completed_task_mobile network_delay_avg = np.divide(sum(self.network_delay), len(self.network_delay), out=np.zeros_like(sum(self.network_delay)), where=len(self.network_delay) != 0, casting="unsafe") network_delay_gsm_avg = np.divide(sum(self.network_delay_gsm), len(self.network_delay_gsm), out=np.zeros_like(sum(self.network_delay_gsm)), where=len(self.network_delay_gsm), casting="unsafe") network_delay_wan_avg = np.divide(sum(self.network_delay_wan), len(self.network_delay_wan), out=np.zeros_like(sum(self.network_delay_wan)), where=len(self.network_delay_wan), casting="unsafe") network_delay_man_avg = np.divide(sum(self.network_delay_man), len(self.network_delay_man), out=np.zeros_like(sum(self.network_delay_man)), where=len(self.network_delay_man), casting="unsafe") network_delay_lan_avg = np.divide(sum(self.network_delay_lan), len(self.network_delay_lan), out=np.zeros_like(sum(self.network_delay_lan)), where=len(self.network_delay_lan), casting="unsafe") service_time_avg = np.divide(sum(self.service_time), len(self.service_time), out=np.zeros_like(sum(self.service_time)), where=len(self.service_time), casting="unsafe") processing_time_avg = np.divide(sum(self.processing_time), len(self.processing_time), out=np.zeros_like(sum(self.processing_time)), where=len(self.processing_time), casting="unsafe") processing_time_cloud_avg = np.divide(sum(self.processing_time_cloud), len(self.processing_time_cloud), out=np.zeros_like(sum(self.processing_time_cloud)), where=len(self.processing_time_cloud), casting="unsafe") processing_time_edge_avg = np.divide(sum(self.processing_time_edge), len(self.processing_time_edge), out=np.zeros_like(sum(self.processing_time_edge)), where=len(self.processing_time_edge), casting="unsafe") processing_time_mobile_avg = np.divide(sum(self.processing_time_mobile), len(self.processing_time_mobile), out=np.zeros_like(sum(self.processing_time_mobile)), where=len(self.processing_time_mobile), casting="unsafe") buffering_time_avg = np.divide(sum(self.buffering_time), len(self.buffering_time), out=np.zeros_like(sum(self.buffering_time)), where=len(self.buffering_time), casting="unsafe") buffering_time_cloud_avg = np.divide(sum(self.buffering_time_cloud), len(self.buffering_time_cloud), out=np.zeros_like(sum(self.buffering_time_cloud)), where=len(self.buffering_time_cloud), casting="unsafe") buffering_time_edge_avg = np.divide(sum(self.buffering_time_edge), len(self.buffering_time_edge), out=np.zeros_like(sum(self.buffering_time_edge)), where=len(self.buffering_time_edge), casting="unsafe") buffering_time_mobile_avg = np.divide(sum(self.buffering_time_mobile), len(self.buffering_time_mobile), out=np.zeros_like(sum(self.buffering_time_mobile)), where=len(self.buffering_time_mobile), casting="unsafe") result = { "completed_task": { "total_completed_task": completed_task_sum, "completed_task_cloud" : completed_task_cloud_sum, "completed_task_edge": completed_task_edge_sum, "completed_task_mobile": completed_task_mobile_sum }, "service_time" : service_time_avg.tolist(), "processing_delay": { "processing_time" : processing_time_avg.tolist(), "processing_time_cloud_avg": processing_time_cloud_avg.tolist(), "processing_time_edge_avg": processing_time_edge_avg.tolist(), "processing_time_mobile_avg": processing_time_mobile_avg.tolist() }, "network_delay": { "network_time": network_delay_avg.tolist(), "network_delay_gsm": network_delay_gsm_avg.tolist(), "network_delay_wan": network_delay_wan_avg.tolist(), "network_delay_man": network_delay_man_avg.tolist(), "network_delay_lan": network_delay_lan_avg.tolist(), }, "buffering_delay": { "buffering_time": buffering_time_avg.tolist(), "buffering_time_cloud": buffering_time_cloud_avg.tolist(), "buffering_time_edge": buffering_time_edge_avg.tolist(), "buffering_time_mobile": buffering_time_mobile_avg.tolist() } } with open(self.file_name, 'w', encoding="utf-8") as make_file: json.dump(result, make_file, ensure_ascii=False, indent="\n") def task_end(self, task): self.record_log(task) def record_log(self, task): # type = task.get_task_type() # processing time self.processing_time_cloud.append(task.get_processing_time(self.device_type["cloud"])) self.processing_time_edge.append(task.get_processing_time(self.device_type["edge"])) self.processing_time_mobile.append(task.get_processing_time(self.device_type["mobile"])) processing_time = task.get_processing_time_sum() self.processing_time.append(processing_time) # buffering time self.buffering_time_cloud.append((task.get_buffering_time(self.device_type["cloud"]))) self.buffering_time_edge.append(task.get_buffering_time(self.device_type["edge"])) self.buffering_time_mobile.append(task.get_buffering_time(self.device_type["mobile"])) buffering_time = task.get_buffering_time_sum() self.buffering_time.append(buffering_time) # network delay self.network_delay_gsm.append(task.get_network_delay(0)) self.network_delay_wan.append(task.get_network_delay(1)) self.network_delay_man.append(task.get_network_delay(2)) self.network_delay_lan.append(task.get_network_delay(3)) network_delay = task.get_network_delay(0) + task.get_network_delay(1) + \ task.get_network_delay(2) + task.get_network_delay(3) self.network_delay.append(network_delay) # service time service_time = processing_time + buffering_time + network_delay self.service_time.append(service_time) if task.get_task_deadline() > service_time: self.completed_task += 1 if task.get_finish_node() == 0: self.completed_task_mobile += 1 elif task.get_finish_node() == 1: self.completed_task_edge += 1 elif task.get_finish_node() == 2: self.completed_task_cloud += 1 ``` #### File: ECOS/ecos/simulator.py ```python import json from enum import Enum from ecos.event import Event from ecos.task_generator import Task_generator from ecos.log import Log from ecos.topology import Topology # 2022.01.07 class Simulator: _instance = None @classmethod def get_instance(cls): if not cls._instance: cls._instance = Simulator() return cls._instance def __init__(self): self.taskQueue = list() self.terminate_time = 0 # type configuration self.eventTag = self.my_enum('send', 'create', 'processing', "transmission", "progress", "stop") self.node_type = self.my_enum("Mobile", "Edge", "Cloud") self.network_type = self.my_enum("WLAN", "MAN", "WAN") self.entity_state = Enum("FINISHED", "RUNNABLE") # simulation set self.running = False self.clock = 0 self.warmUpPeriod = 0 self.intervalToGetLoadLog = 0 self.abruptTerminate = False self.sim_scenario = None self.orchestrator_policy = None self.scenario_factory = None self.entities = None self.file_log_enable = True # network setting self.network_properties = None # number of computing node setting self.minNumOfMobileDevice = 0 self.maxNumOfMobileDevice = 0 self.mobileDeviceCounterSize = 0 self.numOfEdge = 0 self.num_device = 0 #minseon server id setting #self.CloudId = None #self.EdgeId = None # task configuration self.task_look_up_table = list() self.task_generator = None def initialize(self, configure, _network, _app, _num_of_edge, policy): self.terminate_time = int(configure["simulation_time"]) * 60 self.orchestrator_policy = policy self.minNumOfMobileDevice = int(configure["min_num_of_mobile_device"]) self.maxNumOfMobileDevice = int(configure["max_num_of_mobile_device"]) self.mobileDeviceCounterSize = int(configure["mobile_device_counter"]) self.sim_scenario = configure["simul_scenario"] self.numOfEdge = _num_of_edge self.network_properties = _network # self.topology.link_configure(_network) self.task_look_up_table = _app return True def set_simulation_factory(self, _scenario_factory): self.scenario_factory = _scenario_factory self.entities = [_scenario_factory.get_edge_manager(), _scenario_factory.get_cloud_manager(), _scenario_factory.get_device_manager()] def get_scenario_factory(self): return self.scenario_factory def set_mobile_device(self, _num_device): self.num_device = _num_device self.task_generator = Task_generator(_num_device, self.task_look_up_table) def get_warmup_period(self): return self.warmUpPeriod def get_task_look_up_table(self): return self.task_look_up_table def get_load_log_interval(self): return self.intervalToGetLoadLog def get_file_log_enable(self): return self.file_log_enable def get_network_properties(self): return self.network_properties def get_min_num_of_mobile_device(self): return self.minNumOfMobileDevice def get_max_num_of_mobile_device(self): return self.maxNumOfMobileDevice def get_num_of_mobile_device(self): return self.num_device def get_num_of_edge(self): return self.numOfEdge def get_orchestration_policy(self): return self.orchestrator_policy def get_simulation_scenario(self): return self.sim_scenario def get_clock(self): return self.clock def start_simulator(self): # print("start simulation") self.run() def run(self): if self.running is False: self.running = True # check entities for item in self.entities: item.start_entity() self.clock = 0 self.task_generator.create_task(self.terminate_time) print("Task creation is completed: ", len(self.task_generator.get_task())) # schedule the task for task in self.task_generator.get_task(): event = Event({"task": "create"}, task, task.get_birth_time()) self.send_event(event) # schedule main object # progress event = Event({"simulation": "progress"}, None, self.terminate_time/100) self.send_event(event) # stop event = Event({"simulation": "stop"}, None, self.terminate_time) self.send_event(event) while True: if self.run_clock_tick() and self.abruptTerminate: break if self.clock >= self.terminate_time > 0.0: self.run_stop() self.clock = self.terminate_time break clock = self.clock self.finish_simulation() self.run_stop() return clock def run_stop(self): for entity in self.entities: entity.shutdown_entity() self.running = False def finish_simulation(self): # if self.abruptTerminate is True: for ent in self.entities: if ent.get_state() != self.entity_state.FINISHED: ent.run() for ent in self.entities: ent.shutdown_entity() Log.get_instance().sim_stop() def run_clock_tick(self): # queue_empty = False for item in self.entities: if item.get_state() == self.entity_state.RUNNABLE: item.run() if len(self.taskQueue) > 0: event_list = list() event = None # integer max value time = 9223372036854775807 for i in self.taskQueue: i.get_time() if i.get_time() < time: time = i.get_time() event = i event_list.append(event) for i in self.taskQueue: if event == i: continue if time == i.get_time(): event_list.append(i) # remove event in task queue for item in event_list: self.taskQueue.remove(item) for item in self.taskQueue: event_time = item.get_time() update_time = event_time - event.get_time() if update_time < 0: update_time = 0 item.update_time(update_time) # print(event.get_time()) self.clock += event.get_time() self.process_event(event_list) else: queue_empty = True self.running = False print("Simulation: No more events") return queue_empty def process_event(self, event): for evt in event: msg = evt.get_message() # print(msg, ":", evt.get_time()) # event described by json # call the event depend on the function if msg.get("task"): # if msg.get("task") == "create": # task create self.scenario_factory.get_device_manager().get_offload_target(evt.get_task()) elif msg.get("task") == "send": # send the task task = evt.get_task() self.scenario_factory.network_model.enqueue(task) elif msg.get("task") == "processing": # task processing in node # check each node if msg["detail"]["source"] == -1: self.scenario_factory.get_edge_manager().receive_task_from_device(evt) elif msg["detail"]["source"] == 0: self.scenario_factory.get_cloud_manager().receive_task(evt) else: self.scenario_factory.get_edge_manager().receive_task_from_edge(evt) elif msg.get("task") == "check": if msg["detail"]["node"] == "device": device = self.entities[2].get_node_list()[msg["detail"]["id"]] device.update_task_state(self.clock) elif msg["detail"]["node"] == "edge": edge = self.entities[0].get_node_list()[msg["detail"]["id"] - 1] edge.update_task_state(self.clock) elif msg["detail"]["node"] == "cloud": cloud = self.entities[1].get_node_list()[msg["detail"]["id"]] cloud.update_task_state(self.clock) elif msg.get("network"): # if msg.get("network") == "transmission": # send task to cloud (finish) if msg["detail"]["type"] == 0: link = msg["detail"]["link"] link.update_send_task(evt.get_task()) msgg = { "task": "processing", "detail": { "source": 0 } } evt.get_task().set_network_delay(self.get_clock(), 1) evtt = Event(msgg, evt.get_task(), 0) self.send_event(evtt) else: # send task to edge # link link = msg["detail"]["link"] link.update_send_task(evt.get_task()) # update msg route_list = msg["detail"]["route"] route_list.remove(int(msg["detail"]["source"])) delay = 0 if len(route_list) <= 1: typ = msg["detail"]["type"] msgg = { "task": "processing", "detail" : { "source": typ, "route": route_list } } evt.get_task().set_network_delay(self.get_clock(), 2) et = Event(msgg, evt.get_task(), delay) self.send_event(et) else: source_edge = route_list[0] dest = route_list[1] updated_link = link # find link for lnk in self.scenario_factory.get_edge_manager().get_link_list(): lnk_status = lnk.get_link() if source_edge == lnk_status[0] and dest == lnk_status[1]: updated_link = lnk delay = lnk.get_download_delay(evt.get_task()) msg["detail"]["delay"] = delay msg["detail"]["link"] = updated_link et = Event(msg, evt.get_task(), delay) self.send_event(et) elif msg.get("simulation"): if msg.get("simulation") == "progress": # progress = int((self.clock * 100)/self.terminate_time) if progress % 10 == 0: print(progress, end='') else: print(".", end='') if self.clock <= self.terminate_time: evt.update_time(self.terminate_time/100) self.send_event(evt) elif msg.get("simulation") == "stop": # self.finish_simulation() def send_event(self, event): # self.taskQueue.append(event) def my_enum(*sequential, **named): enums = dict(zip(sequential, range(len(sequential))), **named) return type('Enum', (), enums) def parse_json_file(self, file): json_file = json.dumps(file, indent=4) return json_file ```
{ "source": "JinhuaLiang/CS4347_SED_GroupProjec", "score": 2 }
#### File: CS4347_SED_GroupProjec/pytorch/models.py ```python import os import sys import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.parameter import Parameter from torchlibrosa.stft import Spectrogram, LogmelFilterBank from torchlibrosa.augmentation import SpecAugmentation from pytorch_utils import do_mixup def init_layer(layer): """Initialize a Linear or Convolutional layer. """ nn.init.xavier_uniform_(layer.weight) if hasattr(layer, 'bias'): if layer.bias is not None: layer.bias.data.fill_(0.) def init_bn(bn): """Initialize a Batchnorm layer. """ bn.bias.data.fill_(0.) bn.weight.data.fill_(1.) def init_gru(rnn): """Initialize a GRU layer. """ def _concat_init(tensor, init_funcs): (length, fan_out) = tensor.shape fan_in = length // len(init_funcs) for (i, init_func) in enumerate(init_funcs): init_func(tensor[i * fan_in : (i + 1) * fan_in, :]) def _inner_uniform(tensor): fan_in = nn.init._calculate_correct_fan(tensor, 'fan_in') nn.init.uniform_(tensor, -math.sqrt(3 / fan_in), math.sqrt(3 / fan_in)) for i in range(rnn.num_layers): _concat_init( getattr(rnn, 'weight_ih_l{}'.format(i)), [_inner_uniform, _inner_uniform, _inner_uniform] ) torch.nn.init.constant_(getattr(rnn, 'bias_ih_l{}'.format(i)), 0) _concat_init( getattr(rnn, 'weight_hh_l{}'.format(i)), [_inner_uniform, _inner_uniform, nn.init.orthogonal_] ) torch.nn.init.constant_(getattr(rnn, 'bias_hh_l{}'.format(i)), 0) class Block(nn.Module): def __init__(self, in_channels, out_channels): super(Block, self).__init__() self.conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) self.bn = nn.BatchNorm2d(out_channels) self.init_weight() def init_weight(self): init_layer(self.conv) init_bn(self.bn) def forward(self, input): x = input x = self.bn(self.conv(x)) x = F.glu(x, dim=1) # (batch_size, channels, time_steps, mel_bins) return x class AttBlock(nn.Module): def __init__(self, n_in, n_out, activation='linear', temperature=1.): super(AttBlock, self).__init__() self.activation = activation self.temperature = temperature self.att = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True) self.cla = nn.Conv1d(in_channels=n_in, out_channels=n_out, kernel_size=1, stride=1, padding=0, bias=True) self.bn_att = nn.BatchNorm1d(n_out) self.init_weights() def init_weights(self): init_layer(self.att) init_layer(self.cla) init_bn(self.bn_att) def forward(self, x): # x: (n_samples, n_in, n_time) tmp = self.att(x) tmp = torch.clamp(tmp, -10, 10) att = torch.exp(tmp / self.temperature) + 1e-6 norm_att = att / torch.sum(att, dim=2)[:, :, None] cla = self.nonlinear_transform(self.cla(x)) x = torch.sum(norm_att * cla, dim=2) return x, norm_att, cla def nonlinear_transform(self, x): if self.activation == 'linear': return x elif self.activation == 'sigmoid': return torch.sigmoid(x) # The following CRNN architecture are designed following Yong Xu's code: # https://github.com/yongxuUSTC/dcase2017_task4_cvssp class Cnn_Gru(nn.Module): def __init__(self, sample_rate, window_size, hop_size, mel_bins, fmin, fmax, classes_num): super(Cnn_Gru, self).__init__() window = 'hann' center = False pad_mode = 'reflect' ref = 1.0 amin = 1e-10 top_db = None # Spectrogram extractor self.spectrogram_extractor = Spectrogram(n_fft=window_size, hop_length=hop_size, win_length=window_size, window=window, center=center, pad_mode=pad_mode, freeze_parameters=True) # Logmel feature extractor self.logmel_extractor = LogmelFilterBank(sr=sample_rate, n_fft=window_size, n_mels=mel_bins, fmin=fmin, fmax=fmax, ref=ref, amin=amin, top_db=top_db, freeze_parameters=True) # Spec augmenter self.spec_augmenter = SpecAugmentation(time_drop_width=16, time_stripes_num=2, freq_drop_width=8, freq_stripes_num=2) self.bn0 = nn.BatchNorm2d(mel_bins) self.block1 = Block(in_channels=1, out_channels=128) self.block2 = Block(in_channels=64, out_channels=128) self.block3 = Block(in_channels=64, out_channels=128) self.block4 = Block(in_channels=64, out_channels=128) self.block5 = Block(in_channels=64, out_channels=128) self.block6 = Block(in_channels=64, out_channels=128) self.block7 = Block(in_channels=64, out_channels=128) self.block8 = Block(in_channels=64, out_channels=128) self.conv9 = nn.Conv2d(in_channels=64, out_channels=256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=True) self.bigru = nn.GRU(input_size=256, hidden_size=128, num_layers=1, bias=True, batch_first=True, bidirectional=True) self.bigru_g = nn.GRU(input_size=256, hidden_size=128, num_layers=1, bias=True, batch_first=True, bidirectional=True) self.att_block = AttBlock(n_in=256, n_out=classes_num, activation='sigmoid') self.init_weights() def init_weights(self): init_bn(self.bn0) init_layer(self.conv9) init_gru(self.bigru) init_gru(self.bigru_g) def forward(self, input, mixup_lambda=None): x = self.spectrogram_extractor(input) # (batch_size, 1, time_steps, freq_bins) x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins) x = x.transpose(1, 3) x = self.bn0(x) x = x.transpose(1, 3) if self.training: x = self.spec_augmenter(x) # Mixup on spectrogram if self.training and mixup_lambda is not None: x = do_mixup(x, mixup_lambda) x = self.block1(x) x = self.block2(x) x = F.max_pool2d(x, kernel_size=(1, 2)) x = self.block3(x) x = self.block4(x) x = F.max_pool2d(x, kernel_size=(1, 2)) x = self.block5(x) x = self.block6(x) x = F.max_pool2d(x, kernel_size=(1, 2)) x = self.block7(x) x = self.block8(x) x = F.max_pool2d(x, kernel_size=(1, 2)) x = F.relu_(self.conv9(x)) (x, _) = torch.max(x, dim=3) x = x.transpose(1, 2) # (batch_size, time_steps, channels) (rnnout, _) = self.bigru(x) (rnnout_gate, _) = self.bigru_g(x) x = rnnout.transpose(1, 2) * rnnout_gate.transpose(1, 2) """x.shape = (batch_size, channels, time_steps)""" (clipwise_output, norm_att, cla) = self.att_block(x) """cla.shape = (batch_size, classes_num, time_steps)""" output_dict = { 'framewise_output': cla.transpose(1, 2), 'clipwise_output': clipwise_output, 'embedding': cla} return output_dict ``` #### File: CS4347_SED_GroupProjec/utils/vad.py ```python import numpy as np def activity_detection(x, thres, low_thres=None, n_smooth=1, n_salt=0): """Activity detection. Args: x: array thres: float, threshold low_thres:float, second lower threshold n_smooth: integar, number of frames to smooth. n_salt: integar, number of frames equal or shorter this value will be removed. Set this value to 0 means do not use delete_salt_noise. Return: list of [bgn, fin] """ locts = np.where(x > thres)[0] # Find pairs of [bgn, fin] bgn_fin_pairs = find_bgn_fin_pairs(locts) # Second threshold if low_thres is not None: bgn_fin_pairs = activity_detection_with_second_thres( x, bgn_fin_pairs, low_thres) # Smooth bgn_fin_pairs = smooth(bgn_fin_pairs, n_smooth) # Remove salt noise bgn_fin_pairs = remove_salt_noise(bgn_fin_pairs, n_salt) return bgn_fin_pairs def find_bgn_fin_pairs(locts): """Find pairs of [bgn, fin] from loctation array """ if len(locts)==0: return [] else: bgns = [locts[0]] fins = [] for i1 in range(1, len(locts) - 1): # range from locts[1] to locts[-2] if locts[i1] - locts[i1 - 1] > 1: fins.append(locts[i1 - 1] + 1) bgns.append(locts[i1] + 1) fins.append(locts[-1]) assert len(bgns)==len(fins) lists = [] for i1 in range(len(bgns)): lists.append([bgns[i1], fins[i1]]) return lists def activity_detection_with_second_thres(x, bgn_fin_pairs, thres): """Double threshold method. """ new_bgn_fin_pairs = [] for [bgn, fin] in bgn_fin_pairs: while(bgn != -1): if x[bgn] < thres: break bgn -= 1 while(fin != len(x)): if x[fin] < thres: break fin += 1 new_bgn_fin_pairs.append([bgn + 1, fin]) new_bgn_fin_pairs = smooth(new_bgn_fin_pairs, n_smooth=1) return new_bgn_fin_pairs def smooth(bgn_fin_pairs, n_smooth): """Smooth the [bgn, fin] pairs. """ new_bgn_fin_pairs = [] if len(bgn_fin_pairs) == 0: return [] [mem_bgn, fin] = bgn_fin_pairs[0] for n in range(1, len(bgn_fin_pairs)): [pre_bgn, pre_fin] = bgn_fin_pairs[n - 1] [bgn, fin] = bgn_fin_pairs[n] if bgn - pre_fin <= n_smooth: pass else: new_bgn_fin_pairs.append([mem_bgn, pre_fin]) mem_bgn = bgn new_bgn_fin_pairs.append([mem_bgn, fin]) return new_bgn_fin_pairs def remove_salt_noise(bgn_fin_pairs, n_salt): """Remove salt noise """ new_bgn_fin_pairs = [] for [bgn, fin] in bgn_fin_pairs: if fin - bgn <= n_salt: pass else: new_bgn_fin_pairs.append([bgn, fin]) return new_bgn_fin_pairs ```
{ "source": "JinhuaSu/Battleship", "score": 2 }
#### File: Battleship/Battleship/views.py ```python from django.http import HttpResponse from django.shortcuts import render def hello(request): return HttpResponse("Hello world ! ") def Battleship(request): context = {} context['hello'] = 'Hello World!' context['rows'] = [str(i) for i in range(7)] context['columns'] = [str(i) for i in range(7)] return render(request, 'Battleship.html',context) ```
{ "source": "JinhuaSu/RMusicDown", "score": 3 }
#### File: RMusicDown/py/har_test.py ```python from browsermobproxy import Server from selenium.webdriver.firefox.options import Options from selenium import webdriver import time import pprint class ProxyManger: __BMP = "../../browsermob-proxy-2.1.4/bin/browsermob-proxy" def __init__(self): self.__server = Server(ProxyManger.__BMP) self.__client = None def start_server(self): self.__server.start() return self.__server def start_client(self): self.__client = self.__server.create_proxy() # params={"trustAllServers": "true"} return self.__client @property def client(self): return self.__client @property def server(self): return self.__server if __name__ == "__main__": # 开启Proxy proxy = ProxyManger() server = proxy.start_server() time.sleep(1) client = proxy.start_client() # 配置Proxy启动WebDriver options = webdriver.ChromeOptions() # options = Options() options.add_argument("--proxy-server={}".format(client.proxy)) options.add_argument("--ignore-certificate-errors") # options.headless = True # driver = webdriver.Firefox(options=options) chromePath = "/home/su/app/crawler/stock_post_crawler/chromedriver" driver = webdriver.Chrome(executable_path=chromePath, chrome_options=options) # 获取返回的内容 client.new_har("baidu.com") driver.get("https://www.baidu.com/") time.sleep(3) newHar = client.har pprint.pprint(newHar) server.stop() ```
{ "source": "JinhuaSu/sfiiia-a3c", "score": 2 }
#### File: sfiiia-a3c/src/test.py ```python import time from collections import deque import torch import torch.nn.functional as F from env.envs import create_atari_env from models.model import ActorCritic from env.Environment import Environment #I must get totally known about the whole structure of the model. And I should have a taste or VITA tea to control my baozou feelings import scipy.misc def test(rank, args, shared_model,model, counter): torch.manual_seed(args.seed + rank) save_img = True if args.img_path != "" else False device = args.use_gpu[rank%len(args.use_gpu)] if len(args.use_gpu) > 0 else -1 device = 0 if args.play_sf: roms_path = args.roms # Replace this with the path to your ROMs if args.mode == 'PvP': print('PvP throttle:%s'%args.throttle) env = Environment("env"+str(rank), roms_path,difficulty=args.difficulty,frame_ratio =3,frames_per_step = 1,throttle =args.throttle) else: env = Environment("env"+str(rank), roms_path,difficulty=args.difficulty,frame_ratio =3,frames_per_step = 1,throttle =False) env.start() state, reward, round_done, stage_done, done = env.step(8, 9) state = state.T else: env = create_atari_env(args.env_name) env.seed(args.seed + rank) model = ActorCritic(env.observation_space.shape[0], env.action_space.n) state = env.reset() model.eval() state = torch.from_numpy(state) if device >=0: state = state.to(device) reward_sum = 0 done = True start_time = time.time() # a quick hack to prevent the agent from stucking actions = deque(maxlen=100) episode_length = 0 step = 0 while True: # Sync with the shared model if done: num_stage = 0 print('test start!') model.load_state_dict(shared_model.state_dict()) cx = torch.zeros(1, 1024) hx = torch.zeros(1, 1024) if device >=0: cx = cx.to(device) hx = hx.to(device) else: cx = cx.detach() hx = hx.detach() episode_length += 1 with torch.no_grad(): value, logit, (hx, cx) = model((state.float().unsqueeze(0), (hx, cx))) prob = F.softmax(logit, dim=-1) action = prob.multinomial(num_samples=1).detach() #action = prob.max(1, keepdim=True)[1].cpu().numpy() if args.play_sf: action_id = action.cpu().numpy()[0,0] if action_id < 90: move_action, attack_action = action_id//10,action_id%10 else: move_action, attack_action = -1,action_id%90 state, reward, round_done, stage_done, done = env.step(move_action, attack_action) reward = reward[args.reward_mode] if save_img and step == 0: scipy.misc.toimage(state).save(args.img_path+'action(%s)_%s.png'%(action_id,episode_length))#保存图像 state = state.T if done: env.new_game() if stage_done: num_stage += 1 env.next_stage() if round_done: env.next_round() else: state, reward, done, _ = env.step(action[0, 0]) reward_sum += reward # a quick hack to prevent the agent from stucking actions.append(action[0, 0]) #if args.mode == 'train' and actions.count(actions[0]) == actions.maxlen: # done = True if done: print("Time {}, num steps {}, FPS {:.0f}, episode reward {}, episode length {}, win_stage_num {}".format( time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time)), counter.value, counter.value / (time.time() - start_time), reward_sum, episode_length,num_stage)) step += 1 if args.mode == 'train' and step % args.save_per_min == 0: print('saving model params at step %s' % step) torch.save(shared_model.state_dict(),'%s/model_params_step_%s.pkl' %(args.model_path+args.reward_mode,step)) reward_sum = 0 episode_length = 0 actions.clear() if args.play_sf: env.new_game() state, reward, _, _, _ = env.step(8, 9) state = state.T reward = reward[args.reward_mode] else: state = env.reset() if args.mode == 'train': print('test mode sleep for 60 seconds') time.sleep(60) state = torch.from_numpy(state) if device >=0: state = state.to(device) reward = torch.tensor(reward) reward = reward.to(device) ```
{ "source": "JinhuaSu/xview2_1st_place_solution", "score": 2 }
#### File: xview2_1st_place_solution/train_src/train_student_building.py ```python import os os.environ["MKL_NUM_THREADS"] = "1" os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["OMP_NUM_THREADS"] = "1" from os import path, makedirs, listdir import sys import numpy as np np.random.seed(1) import random random.seed(1) import torch from torch import nn from torch.backends import cudnn from torch.utils.data import Dataset from torch.utils.data import DataLoader import torch.optim.lr_scheduler as lr_scheduler import time eps = 1e-6 from apex import amp from util.adamw import AdamW from util.losses import dice_round, ComboLoss import pandas as pd from tqdm import tqdm import timeit import cv2 from zoo.models import ( SeResNext50_Unet_Loc, SeResNext50_Unet_Loc_KD, SeResNext50_Unet_Double, ) from imgaug import augmenters as iaa from util.utils import * from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score import gc from util.emailbox import EmailBot from apex import amp import argparse from util.mongo_logger import Logger DB = "building_damage_kd" COLLECTION = "v3_loc" logger = Logger(DB, COLLECTION) parser = argparse.ArgumentParser() parser.add_argument( "--mode", default="T-S", choices=["onlyT", "onlyS", "T-S", "TwoTeacher"] ) parser.add_argument("--LWF", default=0, choices=[0, 1], type=int) parser.add_argument("--LFL", default=0, choices=[0, 1], type=int) parser.add_argument("--clsLFL", default=0, choices=[0, 1], type=int) parser.add_argument("--KL", default=0, choices=[0, 1], type=int) parser.add_argument("--dataset", default="../data") parser.add_argument("--checkpoint_path", default="../weights") parser.add_argument("--seed", default=1, type=int) parser.add_argument("--vis_dev", default=0, type=int) parser.add_argument("--batch_size", default=8, type=int) parser.add_argument("--val_batch_size", default=4, type=int) parser.add_argument("--lr", default=0.002, type=float) parser.add_argument("--weight_decay", default=1e-6, type=float) parser.add_argument("--theta", default=1.0, type=float) parser.add_argument("--alpha", default=1.0, type=float) parser.add_argument("--alpha_cls", default=1.0, type=float) parser.add_argument("--beta", default=1.0, type=float) parser.add_argument("--m", default=0.2, type=float) args = parser.parse_args() logger.add_attr("LWF", args.LWF, "info") logger.add_attr("LFL", args.LFL, "info") logger.add_attr("clsLFL", args.clsLFL, "info") logger.add_attr("KL", args.KL, "info") logger.add_attr("mode", args.mode, "info") logger.add_attr("lr", args.lr, "info") logger.add_attr("theta", args.theta, "info") logger.add_attr("alpha", args.alpha, "info") logger.add_attr("alpha_cls", args.alpha_cls, "info") logger.add_attr("beta", args.beta, "info") logger.add_attr("m", args.m, "info") logger.add_attr("weight_decay", args.weight_decay, "info") logger.insert_into_db("info") emailbot = EmailBot("../settings.json") emailbot.sendOne( { "title": "显卡%s训练任务开始训练loc" % args.vis_dev, "content": "mode=%s,LWF=%s,KL=%s,LFL=%s,clsLFL=%s" % (args.mode, args.LWF, args.KL, args.LFL, args.clsLFL), } ) cv2.setNumThreads(0) cv2.ocl.setUseOpenCL(False) train_dirs = ["train", "tier3"] models_folder = args.checkpoint_path input_shape = (512, 512) all_files = [] for d in train_dirs: for f in sorted(listdir(path.join(args.dataset + d, "images"))): if "_pre_disaster.png" in f: all_files.append(path.join(args.dataset + d, "images", f)) class TrainData(Dataset): def __init__(self, train_idxs): super().__init__() self.train_idxs = train_idxs self.elastic = iaa.ElasticTransformation(alpha=(0.25, 1.2), sigma=0.2) def __len__(self): return len(self.train_idxs) def __getitem__(self, idx): _idx = self.train_idxs[idx] fn = all_files[_idx] img = cv2.imread(fn, cv2.IMREAD_COLOR) if random.random() > 0.985: img = cv2.imread( fn.replace("_pre_disaster", "_post_disaster"), cv2.IMREAD_COLOR ) msk0 = cv2.imread(fn.replace("/images/", "/masks/"), cv2.IMREAD_UNCHANGED) if random.random() > 0.5: img = img[::-1, ...] msk0 = msk0[::-1, ...] if random.random() > 0.05: rot = random.randrange(4) if rot > 0: img = np.rot90(img, k=rot) msk0 = np.rot90(msk0, k=rot) if random.random() > 0.9: shift_pnt = (random.randint(-320, 320), random.randint(-320, 320)) img = shift_image(img, shift_pnt) msk0 = shift_image(msk0, shift_pnt) if random.random() > 0.9: rot_pnt = ( img.shape[0] // 2 + random.randint(-320, 320), img.shape[1] // 2 + random.randint(-320, 320), ) scale = 0.9 + random.random() * 0.2 angle = random.randint(0, 20) - 10 if (angle != 0) or (scale != 1): img = rotate_image(img, angle, scale, rot_pnt) msk0 = rotate_image(msk0, angle, scale, rot_pnt) crop_size = input_shape[0] if random.random() > 0.3: crop_size = random.randint( int(input_shape[0] / 1.1), int(input_shape[0] / 0.9) ) bst_x0 = random.randint(0, img.shape[1] - crop_size) bst_y0 = random.randint(0, img.shape[0] - crop_size) bst_sc = -1 try_cnt = random.randint(1, 5) for i in range(try_cnt): x0 = random.randint(0, img.shape[1] - crop_size) y0 = random.randint(0, img.shape[0] - crop_size) _sc = msk0[y0 : y0 + crop_size, x0 : x0 + crop_size].sum() if _sc > bst_sc: bst_sc = _sc bst_x0 = x0 bst_y0 = y0 x0 = bst_x0 y0 = bst_y0 img = img[y0 : y0 + crop_size, x0 : x0 + crop_size, :] msk0 = msk0[y0 : y0 + crop_size, x0 : x0 + crop_size] if crop_size != input_shape[0]: img = cv2.resize(img, input_shape, interpolation=cv2.INTER_LINEAR) msk0 = cv2.resize(msk0, input_shape, interpolation=cv2.INTER_LINEAR) if random.random() > 0.99: img = shift_channels( img, random.randint(-5, 5), random.randint(-5, 5), random.randint(-5, 5) ) if random.random() > 0.99: img = change_hsv( img, random.randint(-5, 5), random.randint(-5, 5), random.randint(-5, 5) ) if random.random() > 0.99: if random.random() > 0.99: img = clahe(img) elif random.random() > 0.99: img = gauss_noise(img) elif random.random() > 0.99: img = cv2.blur(img, (3, 3)) elif random.random() > 0.99: if random.random() > 0.99: img = saturation(img, 0.9 + random.random() * 0.2) elif random.random() > 0.99: img = brightness(img, 0.9 + random.random() * 0.2) elif random.random() > 0.99: img = contrast(img, 0.9 + random.random() * 0.2) if random.random() > 0.999: el_det = self.elastic.to_deterministic() img = el_det.augment_image(img) msk = msk0[..., np.newaxis] msk = (msk > 127) * 1 img = preprocess_inputs(img) img = torch.from_numpy(img.transpose((2, 0, 1))).float() msk = torch.from_numpy(msk.transpose((2, 0, 1))).long() sample = {"img": img, "msk": msk, "fn": fn} return sample class ValData(Dataset): def __init__(self, image_idxs): super().__init__() self.image_idxs = image_idxs def __len__(self): return len(self.image_idxs) def __getitem__(self, idx): _idx = self.image_idxs[idx] fn = all_files[_idx] img = cv2.imread(fn, cv2.IMREAD_COLOR) msk0 = cv2.imread(fn.replace("/images/", "/masks/"), cv2.IMREAD_UNCHANGED) msk = msk0[..., np.newaxis] msk = (msk > 127) * 1 img = preprocess_inputs(img) img = torch.from_numpy(img.transpose((2, 0, 1))).float() msk = torch.from_numpy(msk.transpose((2, 0, 1))).long() sample = {"img": img, "msk": msk, "fn": fn} return sample def validate(model, data_loader): global logger dices0 = [] _thr = 0.5 with torch.no_grad(): for i, sample in enumerate(tqdm(data_loader)): msks = sample["msk"].numpy() imgs = sample["img"].cuda(non_blocking=True) t1 = time.time() out = model(imgs) t2 = time.time() logger.add_attr("batch_%s" % i, t2 - t1, "time_difference") msk_pred = torch.sigmoid(out[:, 0, ...]).cpu().numpy() for j in range(msks.shape[0]): dices0.append(dice(msks[j, 0], msk_pred[j] > _thr)) logger.insert_into_db("time_difference") d0 = np.mean(dices0) logger.add_attr("d0", d0) print("Val Dice: {}".format(d0)) return d0 def evaluate_val_kd(args, data_val, best_score, model, snapshot_name, current_epoch): global logger model.eval() d = validate(model, data_loader=data_val) logger.add_attr("epoch", epoch) if d > best_score: torch.save( { "epoch": current_epoch + 1, "state_dict": model.state_dict(), "best_score": d, }, path.join(models_folder, snapshot_name + "_best"), ) best_score = d emailbot = EmailBot("../settings.json") emailbot.sendOne( { "title": "显卡%s训练任务进行epoch=%s的测试" % (args.vis_dev, current_epoch), "content": "测试分数%s" % d, } ) print("score: {}\tscore_best: {}".format(d, best_score)) return best_score def train_epoch_kd( args, current_epoch, seg_loss, models, optimizer, scheduler, train_data_loader, ): model_s, model_t, model_t_cls = models theta = args.theta alpha = args.alpha beta = args.beta global logger losses = AverageMeter() dices = AverageMeter() iterator = tqdm(train_data_loader) if args.mode == "onlyT": model_t.train(mode=True) elif args.mode == "onlyS": model_s.train(mode=True) else: model_s.train(mode=True) model_t.eval() if args.mode == "TwoTeacher": model_t_cls.eval() for i, sample in enumerate(iterator): imgs = sample["img"].cuda(non_blocking=True) msks = sample["msk"].cuda(non_blocking=True) if args.mode != "onlyS": out_t = model_t(imgs)[:, 0, ...] soft_out_t = torch.sigmoid(out_t / 2) feature_t = model_t.conv1(imgs) feature_t = model_t.conv2(feature_t) feature_t = model_t.conv3(feature_t) feature_t = model_t.conv4(feature_t) feature_t = model_t.conv5(feature_t) if args.mode != "onlyT": out_s = model_s(imgs)[:, 0, ...] soft_out_s = torch.sigmoid(out_s / 2) feature_s = model_s.conv1(imgs) feature_s = model_s.conv2(feature_s) feature_s = model_s.conv3(feature_s) feature_s = model_s.conv4(feature_s) feature_s = model_s.conv5(feature_s) if args.mode == "TwoTeacher": # out_t_cls = model_t_cls(imgs) # soft_out_t_cls = channel_five2two(F.softmax(out_t_cls, dim=1))[:, 1, ...] feature_tmp = model_t_cls.conv1(imgs) feature_tmp = model_t_cls.conv2(feature_tmp) feature_tmp = model_t_cls.conv3(feature_tmp) feature_tmp = model_t_cls.conv4(feature_tmp) feature_tmp = model_t_cls.conv5(feature_tmp) feature_t_cls = model_t_cls.conv1(imgs) feature_t_cls = model_t_cls.conv2(feature_t_cls) feature_t_cls = model_t_cls.conv3(feature_t_cls) feature_t_cls = model_t_cls.conv4(feature_t_cls) feature_t_cls = model_t_cls.conv5(feature_t_cls) feature_t_cls = torch.cat([feature_tmp, feature_t_cls], 1) # parser.add_argument('--loss',default='onlyCls',choices = ['onlyCls','Cls+LWF','Cls+LFL','Cls+LWF+LFL','TwoTeacher']) if args.mode in ["T-S", "TwoTeacher"]: loss_seg = seg_loss(soft_out_s, msks) loss_cls = -torch.log( 1e-9 + soft_out_s * msks + (1 - soft_out_s) * (1 - msks) ).mean() loss = theta * loss_cls + loss_seg if args.LWF: loss_ko = -( (soft_out_t * msks + (1 - soft_out_t) * (1 - msks)) * torch.log( 1e-9 + soft_out_s * msks + (1 - soft_out_s) * (1 - msks) ) ).mean() loss += loss_ko * beta if args.LFL: loss_kf = torch.norm(feature_t - feature_s, p=2, dim=0).mean() loss += loss_kf * alpha if args.KL: soft_out_s = torch.sigmoid(out_s) softmax_s = torch.cat( ((1 - soft_out_s).unsqueeze(1), soft_out_s.unsqueeze(1)), dim=1 ) soft_out_t = torch.sigmoid(out_t) softmax_t = torch.cat( ((1 - soft_out_t).unsqueeze(1), soft_out_t.unsqueeze(1)), dim=1 ) loss_kl = ( (torch.log(1e-9 + softmax_s) - torch.log(1e-9 + softmax_t)) * softmax_s ).mean() loss += loss_kl if args.mode == "TwoTeacher": loss_t_cls = theta * loss_cls # if args.LWF: # loss_ko_cls = ( # -( # (soft_out_t * msks + (1 - soft_out_t) * (1 - msks)) # * torch.log( # soft_out_s * msks + (1 - soft_out_s) * (1 - msks) # ) # ).mean() # / 2.0 # ) # loss_t_cls += beta * loss_ko_cls if args.clsLFL: loss_kf_cls = torch.norm( feature_s - feature_t_cls[:, :2048, ...], p=2, dim=0 ).mean() loss_t_cls += args.alpha_cls * loss_kf_cls # if args.KL: # loss_kl_cls = ( # (torch.log(softmax_s) - F.log_softmax(out_t_cls, dim=1)) # * softmax_s # ).mean() # loss_t_cls += loss_kl_cls loss = (1 - args.m) * loss + args.m * loss_t_cls with torch.no_grad(): dice_sc = 1 - dice_round(soft_out_s, msks[:, 0, ...]) elif args.mode == "onlyT": loss_seg = seg_loss(soft_out_t, msks) loss_cls = -torch.log( 1e-9 + soft_out_t * msks + (1 - soft_out_t) * (1 - msks) ).mean() loss = theta * loss_cls + loss_seg with torch.no_grad(): dice_sc = 1 - dice_round(soft_out_t, msks[:, 0, ...]) else: loss_seg = seg_loss(soft_out_s, msks) loss_cls = -torch.log( 1e-9 + soft_out_s * msks + (1 - soft_out_s) * (1 - msks) ).mean() loss = theta * loss_cls + loss_seg with torch.no_grad(): dice_sc = 1 - dice_round(soft_out_s, msks[:, 0, ...]) losses.update(loss.item(), imgs.size(0)) dices.update(dice_sc, imgs.size(0)) if not args.LWF: loss_ko = torch.tensor(0) if not args.LFL: loss_kf = torch.tensor(0) if not args.KL: loss_kl = torch.tensor(0) if args.mode == "T-S": iterator.set_description( "epoch: {}; lr {:.7f}; Loss {loss.val:.4f} ({loss.avg:.4f}),Loss_cls {loss_cls:.4f},Loss_kf {loss_kf:.4f},Loss_ko {loss_ko:.4f},Loss_kl {loss_kl:.4f},Loss_seg {loss_seg:.4f}; Dice {dice.val:.4f} ({dice.avg:.4f})".format( current_epoch, scheduler.get_lr()[-1], loss=losses, loss_cls=theta * loss_cls.item(), loss_kf=alpha * loss_kf.item(), loss_ko=beta * loss_ko.item(), loss_kl=loss_kl.item(), loss_seg=loss_seg.item(), dice=dices, ) ) elif args.mode == "TwoTeacher": loss_ko_cls = torch.tensor(0) if not args.clsLFL: loss_kf_cls = torch.tensor(0) loss_kl_cls = torch.tensor(0) iterator.set_description( "epoch: {}; lr {:.7f}; Loss {loss.val:.4f} ({loss.avg:.4f}),Loss_cls {loss_cls:.4f},Loss_kf {loss_kf:.4f},Loss_ko {loss_ko:.4f},Loss_kl {loss_kl:.4f},Loss_kf_cls {loss_kf_cls:.4f},Loss_ko_cls {loss_ko_cls:.4f},Loss_kl_cls {loss_kl_cls:.4f},Loss_seg {loss_seg:.4f}; Dice {dice.val:.4f} ({dice.avg:.4f})".format( current_epoch, scheduler.get_lr()[-1], loss=losses, loss_cls=theta * loss_cls.item(), loss_kf=alpha * loss_kf.item(), loss_ko=beta * loss_ko.item(), loss_kl=loss_kl.item(), loss_kf_cls=alpha * loss_kf_cls.item(), loss_ko_cls=beta * loss_ko_cls.item(), loss_kl_cls=loss_kl_cls.item(), loss_seg=loss_seg.item(), dice=dices, ) ) else: iterator.set_description( "epoch: {}; lr {:.7f}; Loss {loss.val:.4f}; Dice {dice.val:.4f} ({dice.avg:.4f})".format( current_epoch, scheduler.get_lr()[-1], loss=losses, dice=dices ) ) optimizer.zero_grad() with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() # loss.backward() torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), 1.1) optimizer.step() scheduler.step(current_epoch) print( "epoch: {}; lr {:.7f}; Loss {loss.avg:.4f}".format( current_epoch, scheduler.get_lr()[-1], loss=losses ) ) if __name__ == "__main__": t0 = timeit.default_timer() makedirs(models_folder, exist_ok=True) seed = args.seed vis_dev = args.vis_dev os.environ["CUDA_VISIBLE_DEVICES"] = str(vis_dev) cudnn.benchmark = True batch_size = args.batch_size val_batch_size = args.val_batch_size snapshot_name = "loc_KD_{}_best".format(logger.log_id) train_idxs, val_idxs = train_test_split( np.arange(len(all_files)), test_size=0.1, random_state=seed ) np.random.seed(seed + 123) random.seed(seed + 123) steps_per_epoch = len(train_idxs) // batch_size validation_steps = len(val_idxs) // val_batch_size print("steps_per_epoch", steps_per_epoch, "validation_steps", validation_steps) data_train = TrainData(train_idxs) val_train = ValData(val_idxs) train_data_loader = DataLoader( data_train, batch_size=batch_size, num_workers=5, shuffle=True, pin_memory=False, drop_last=True, ) val_data_loader = DataLoader( val_train, batch_size=val_batch_size, num_workers=5, shuffle=False, pin_memory=False, ) if args.mode == "onlyT": model_t = SeResNext50_Unet_Loc().cuda() elif args.mode == "onlyS": model_s = SeResNext50_Unet_Loc_KD().cuda() else: model_s = SeResNext50_Unet_Loc_KD().cuda() model_t = SeResNext50_Unet_Loc().cuda() if args.mode == "TwoTeacher": model_t_cls = SeResNext50_Unet_Double().cuda() checkpoint = torch.load( "weights/res50_cls_cce_1_tuned_best", map_location="cpu" ) loaded_dict = checkpoint["state_dict"] sd = model_t_cls.state_dict() for k in model_t_cls.state_dict(): if k in loaded_dict and sd[k].size() == loaded_dict[k].size(): sd[k] = loaded_dict[k] loaded_dict = sd model_t_cls.load_state_dict(loaded_dict) for ( key, value, ) in ( model_t_cls.named_parameters() ): # named_parameters()包含网络模块名称 key为模型模块名称 value为模型模块值,可以通过判断模块名称进行对应模块冻结 value.requires_grad = False if args.mode != "onlyT": params = model_s.parameters() optimizer = AdamW(params, lr=args.lr, weight_decay=args.weight_decay) model_s, optimizer = amp.initialize(model_s, optimizer, opt_level="O0") scheduler = lr_scheduler.MultiStepLR( optimizer, milestones=[4, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20], gamma=0.5, ) else: params = model_t.parameters() optimizer = AdamW(params, lr=args.lr, weight_decay=args.weight_decay) model_t, optimizer = amp.initialize(model_t, optimizer, opt_level="O0") scheduler = lr_scheduler.MultiStepLR( optimizer, milestones=[4, 6, 8, 10, 12, 14, 15, 16, 17, 18, 19, 20], gamma=0.5, ) seg_loss = ComboLoss({"dice": 3.0, "focal": 10.0}, per_image=False).cuda() if args.mode in ["T-S", "TwoTeacher"]: snap_to_load = "weights/res50_loc_0_tuned_best" checkpoint = torch.load(snap_to_load, map_location="cpu") loaded_dict = checkpoint["state_dict"] sd = model_t.state_dict() for k in model_t.state_dict(): if k in loaded_dict and sd[k].size() == loaded_dict[k].size(): sd[k] = loaded_dict[k] loaded_dict = sd model_t.load_state_dict(loaded_dict) print( "loaded checkpoint '{}' (epoch {}, best_score {})".format( snap_to_load, checkpoint["epoch"], checkpoint["best_score"] ) ) # named_parameters()包含网络模块名称 key为模型模块名称 value为模型模块值,可以通过判断模块名称进行对应模块冻结 for key, value in model_t.named_parameters(): value.requires_grad = False del loaded_dict del sd del checkpoint best_score = 0 _cnt = -1 torch.cuda.empty_cache() if args.mode == "onlyT": model_train = model_t models = (None, model_t, None) else: model_train = model_s if args.mode == "onlyS": models = (model_s, None, None) elif args.mode == "T-S": models = (model_s, model_t, None) else: models = (model_s, model_t, model_t_cls) for epoch in range(30): train_epoch_kd( args, epoch, seg_loss, models, optimizer, scheduler, train_data_loader, ) if epoch % 2 == 0: _cnt += 1 torch.cuda.empty_cache() best_score = evaluate_val_kd( args, val_data_loader, best_score, model_train, snapshot_name, epoch ) elapsed = timeit.default_timer() - t0 print("Time: {:.3f} min".format(elapsed / 60)) emailbot = EmailBot("../settings.json") emailbot.sendOne( {"title": "显卡%s训练任务完成" % args.vis_dev, "content": "最佳分数%s" % best_score} ) ``` #### File: train_src/zoo/models_vis.py ```python import numpy as np import torch from torch import nn import torch.nn.functional as F import torchvision.models from models import ConvRelu from .senet import se_resnext50_32x4d, senet154 class SeResNext50_Unet_Loc(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Loc, self).__init__() encoder_filters = [64, 256, 512, 1024, 2048] decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 2 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5], 1, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class SeResNext50_Unet_Loc_KD(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Loc_KD, self).__init__() encoder_filters = np.array([64, 256, 512, 1024, 2048]) decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 4 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5], 1, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class SeResNext50_Unet_Loc_KD(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Loc_KD, self).__init__() encoder_filters = [64, 256, 512, 1024, 2048] decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 4 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5], 1, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class SeResNext50_Unet_Double(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Double, self).__init__() encoder_filters = [64, 256, 512, 1024, 2048] decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 2 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5] * 2, 5, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward1(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return dec10 def forward(self, x): dec10_0 = self.forward1(x[:, :3, :, :]) dec10_1 = self.forward1(x[:, 3:, :, :]) dec10 = torch.cat([dec10_0, dec10_1], 1) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class SeResNext50_Unet_Double_KD(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Double_KD, self).__init__() encoder_filters = np.asarray([64, 256, 512, 1024, 2048]) decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 4 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5] * 2, 5, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward1(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return dec10 def forward(self, x): dec10_0 = self.forward1(x[:, :3, :, :]) dec10_1 = self.forward1(x[:, 3:, :, :]) dec10 = torch.cat([dec10_0, dec10_1], 1) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() class SeResNext50_Unet_Double_KD(nn.Module): def __init__(self, pretrained="imagenet", **kwargs): super(SeResNext50_Unet_Double_KD, self).__init__() encoder_filters = [64, 256, 512, 1024, 2048] decoder_filters = np.asarray([64, 96, 128, 256, 512]) // 4 self.conv6 = ConvRelu(encoder_filters[-1], decoder_filters[-1]) self.conv6_2 = ConvRelu( decoder_filters[-1] + encoder_filters[-2], decoder_filters[-1] ) self.conv7 = ConvRelu(decoder_filters[-1], decoder_filters[-2]) self.conv7_2 = ConvRelu( decoder_filters[-2] + encoder_filters[-3], decoder_filters[-2] ) self.conv8 = ConvRelu(decoder_filters[-2], decoder_filters[-3]) self.conv8_2 = ConvRelu( decoder_filters[-3] + encoder_filters[-4], decoder_filters[-3] ) self.conv9 = ConvRelu(decoder_filters[-3], decoder_filters[-4]) self.conv9_2 = ConvRelu( decoder_filters[-4] + encoder_filters[-5], decoder_filters[-4] ) self.conv10 = ConvRelu(decoder_filters[-4], decoder_filters[-5]) self.res = nn.Conv2d(decoder_filters[-5] * 2, 5, 1, stride=1, padding=0) self._initialize_weights() encoder = se_resnext50_32x4d(pretrained=pretrained) # conv1_new = nn.Conv2d(6, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False) # _w = encoder.layer0.conv1.state_dict() # _w['weight'] = torch.cat([0.5 * _w['weight'], 0.5 * _w['weight']], 1) # conv1_new.load_state_dict(_w) self.conv1 = nn.Sequential( encoder.layer0.conv1, encoder.layer0.bn1, encoder.layer0.relu1 ) # encoder.layer0.conv1 self.conv2 = nn.Sequential(encoder.pool, encoder.layer1) self.conv3 = encoder.layer2 self.conv4 = encoder.layer3 self.conv5 = encoder.layer4 def forward1(self, x): batch_size, C, H, W = x.shape enc1 = self.conv1(x) enc2 = self.conv2(enc1) enc3 = self.conv3(enc2) enc4 = self.conv4(enc3) enc5 = self.conv5(enc4) dec6 = self.conv6(F.interpolate(enc5, scale_factor=2)) dec6 = self.conv6_2(torch.cat([dec6, enc4], 1)) dec7 = self.conv7(F.interpolate(dec6, scale_factor=2)) dec7 = self.conv7_2(torch.cat([dec7, enc3], 1)) dec8 = self.conv8(F.interpolate(dec7, scale_factor=2)) dec8 = self.conv8_2(torch.cat([dec8, enc2], 1)) dec9 = self.conv9(F.interpolate(dec8, scale_factor=2)) dec9 = self.conv9_2(torch.cat([dec9, enc1], 1)) dec10 = self.conv10(F.interpolate(dec9, scale_factor=2)) return dec10 def forward(self, x): dec10_0 = self.forward1(x[:, :3, :, :]) dec10_1 = self.forward1(x[:, 3:, :, :]) dec10 = torch.cat([dec10_0, dec10_1], 1) return self.res(dec10) def _initialize_weights(self): for m in self.modules(): if ( isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d) or isinstance(m, nn.Linear) ): m.weight.data = nn.init.kaiming_normal_(m.weight.data) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() ```
{ "source": "Jinhui-abc/Simd", "score": 3 }
#### File: pythonTools/sampleTool/sampleTool.py ```python import json import os from cv2 import cv2 slice_test = True # 是否保存切片,本代码测试用 def saveBinaryImages(full_path, gray_img): ''' : 功能:参照宋的代码,在写二进制文件的前面加上图片的高度和宽度 adaBoostApp 使用 ''' binary_image = open(full_path, "wb") h = gray_img.shape[0] w = gray_img.shape[1] binary_image.write(int(h).to_bytes(4, byteorder="little", signed=True)) binary_image.write(int(w).to_bytes(4, byteorder="little", signed=True)) binary_image.write(gray_img.tobytes()) binary_image.close() def convertImgToGray(src_img, g_width = None, g_height = None): ''' : 功能:将原始图片进行缩放转成灰度图,返回此灰度图 adaBoostApp 使用 ''' if g_width and g_height: r_image = cv2.resize(src_img, (g_width, g_height)) else: r_image = src_img r_gray_image = cv2.cvtColor(r_image, cv2.COLOR_RGB2GRAY) return r_gray_image def os_path_check(dirs): ''' : 功能:检查 dirs 路径是否存在,如果不存在就创建 ''' if not os.path.exists(dirs): os.makedirs(dirs) def slice_image(src_img, x, y, w, h): return src_img[y:y+h, x:x+w] # 裁剪坐标为[y0:y1, x0:x1] def p_adaBoostApp_biz(labelme_dict, positive_folder, train_set): ''' : 功能:从 labelme_dict -> shapes 选出 label 与 train_set -> train_label 相同的 shape , 读取 labelme_dict -> imagePath 标识的图片,切取筛选出来的 shape 集,转灰度图后, 存放二进制文件到 positive_folder -> grayscale 设定的文件夹下,将切取存放到该路径下的 /orig 下, 并将切图文件名写入 train_set -> train_folder 设定的文件夹下的 positive_path.txt; ''' if not train_set['adaBoostApp-use']: return orig_path = positive_folder['original'] gray_path = positive_folder['grayscale'] full_path = os.path.abspath(os.path.join(orig_path, labelme_dict['imagePath'])) orig_img = cv2.imread(full_path) slice_images = [] # 格式:[{'x': int, 'y': int, 'w': int, 'h': int}, ...] for el in labelme_dict['shapes']: # 遍历 labelme 标签 if el['shape_type'] != 'rectangle': continue if el['label'] != train_set['train_label']: continue if len(el['points']) == 2: # 读取标注区域 x1, y1 = el['points'][0] x2, y2 = el['points'][1] x = min(x1, x2) y = min(y1, y2) w = abs(x2 - x1) h = abs(y2 - y1) slice_images.append( {'x':int(x), 'y':int(y), 'w':int(w), 'h':int(h)} ) serial = 0 for el in slice_images: serial += 1 slice_bin_path = os.path.abspath(os.path.join(gray_path, labelme_dict['imagePath'].split('.')[0])) slice_bin_path += '-binary-gray-' + str(serial) slice_img = slice_image(orig_img, el['x'], el['y'], el['w'], el['h']) gray_img = convertImgToGray(slice_img, train_set['app_pic_size']['width'], train_set['app_pic_size']['height']) saveBinaryImages(slice_bin_path, gray_img) txt_full_path = os.path.abspath(os.path.join(train_set['train_folder'], 'positive_path.txt')) f = open(txt_full_path, "a") f.write(slice_bin_path + '\n') f.close() def n_adaBoostApp_biz(dir_file, negative_folder, train_set): ''' : 功能:读取 full_path 文件,转灰度图后, 存放二进制文件到 negative_folder -> grayscale 设定的文件夹下, 并将切图文件名写入 train_set -> train_folder 设定的文件夹下的 negative_path.txt; ''' if not train_set['adaBoostApp-use']: return orig_path = negative_folder['original'] gray_path = negative_folder['grayscale'] full_path = os.path.abspath(os.path.join(orig_path, dir_file)) slice_bin_path = os.path.abspath(os.path.join(gray_path, dir_file.split('.')[0])) + '-binary-gray-n' orig_img = cv2.imread(full_path) gray_img = convertImgToGray(orig_img, train_set['app_pic_size']['width'], train_set['app_pic_size']['height']) saveBinaryImages(slice_bin_path, gray_img) txt_full_path = os.path.abspath(os.path.join(train_set['train_folder'], 'negative_path.txt')) f = open(txt_full_path, "a") f.write(slice_bin_path + '\n') f.close() def p_opencv_biz(labelme_dict, positive_folder, train_set): ''' : 功能:从 labelme_dict -> shapes 选出 label 与 train_set -> train_label 相同的 shape , 读取 labelme_dict -> imagePath 标识的图片,切取筛选出来的 shape集, 将 shape集 写入 train_set -> train_folder 设定的文件夹下的 metre.info; ''' if not train_set['openCV-use']: return orig_path = positive_folder['original'] gray_path = positive_folder['grayscale'] full_path = os.path.abspath(os.path.join(orig_path, labelme_dict['imagePath'])) orig_img = cv2.imread(full_path) slice_images = [] # 格式:[{'x': int, 'y': int, 'w': int, 'h': int}, ...] for el in labelme_dict['shapes']: # 遍历 labelme 标签 if el['shape_type'] != 'rectangle': continue if el['label'] != train_set['train_label']: continue if len(el['points']) == 2: # 读取标注区域 x1, y1 = el['points'][0] x2, y2 = el['points'][1] x = min(x1, x2) y = min(y1, y2) w = abs(x2 - x1) h = abs(y2 - y1) slice_images.append( {'x':int(x), 'y':int(y), 'w':int(w), 'h':int(h)} ) serial = 0 info = full_path + ' ' + str(len(slice_images)) for el in slice_images: serial += 1 info += ' ' + str(el['x']) + ' ' + str(el['y']) + ' ' + str(el['w']) + ' ' + str(el['h']) if slice_test: # 调试用 slice_img = slice_image(orig_img, el['x'], el['y'], el['w'], el['h']) name_spts = labelme_dict['imagePath'].split('.') slice_path = os.path.abspath(os.path.join(gray_path, name_spts[0] + '-' + str(serial) + '.' + name_spts[1])) cv2.imwrite(slice_path, slice_img) metre_full_path = os.path.abspath(os.path.join(train_set['train_folder'], 'metre.info')) f = open(metre_full_path, "a") f.write(info + '\n') f.close() def n_opencv_biz(full_path, negative_folder, train_set): ''' : 功能:将 full_path 文件名写入 train_set -> train_folder 设定的文件夹下的 bg.txt; ''' if not train_set['openCV-use']: return txt_full_path = os.path.abspath(os.path.join(train_set['train_folder'], 'bg.txt')) f = open(txt_full_path, "a") f.write(full_path + '\n') f.close() def p_folder_traverse(positive_folder, train_set): ''' : 功能:遍历 positive_folder -> original 文件夹 labelme 标注的json文件 ''' orig_path = positive_folder['original'] gray_path = positive_folder['grayscale'] if not os.path.exists(orig_path): return if gray_path: os_path_check(gray_path) if not os.path.exists(orig_path): return for dir_file in os.listdir(orig_path): full_path = os.path.abspath(os.path.join(orig_path, dir_file)) if os.path.isdir(full_path): # 非文件 pass elif dir_file.endswith('.json'): # labelme 标注文件 with open(full_path, 'r') as label_file: label_dict = json.load(label_file) p_opencv_biz(label_dict, positive_folder, train_set) # openCV p_adaBoostApp_biz(label_dict, positive_folder, train_set) # adaBoostApp else: pass def n_folder_traverse(negative_folder, train_set): ''' : 功能:遍历 negative_folder -> original 文件夹 图片 ''' orig_path = negative_folder['original'] gray_path = negative_folder['grayscale'] if not os.path.exists(orig_path): return if gray_path: os_path_check(gray_path) for dir_file in os.listdir(orig_path): full_path = os.path.abspath(os.path.join(orig_path, dir_file)) if os.path.isdir(full_path): # 非文件 pass elif (dir_file.endswith('.png') or dir_file.endswith('.jpg') ): # 图片 n_opencv_biz(full_path, negative_folder, train_set) # openCV n_adaBoostApp_biz(dir_file, negative_folder, train_set) # adaBoostApp else: pass if __name__ == "__main__": with open("configure.json",'r') as load_f: cfg_dict = json.load(load_f) p_folder_traverse(cfg_dict['positive_folder'], cfg_dict['train_set']) n_folder_traverse(cfg_dict['negative_folder'], cfg_dict['train_set']) ```
{ "source": "JinhuiLee/miniPyserver", "score": 2 }
#### File: JinhuiLee/miniPyserver/handler.py ```python def hello(verb, path, query): return "Server received your " + verb + " request" + str(query) + "\r\n" def register(urlMapper): urlMapper["/hello"] = hello ```
{ "source": "jinhuli/hikyuu", "score": 2 }
#### File: tools/maintain/MainWindow.py ```python from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(798, 573) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.tabWidget = QtWidgets.QTabWidget(self.centralwidget) self.tabWidget.setGeometry(QtCore.QRect(0, 0, 801, 571)) self.tabWidget.setObjectName("tabWidget") self.tab_2 = QtWidgets.QWidget() self.tab_2.setObjectName("tab_2") self.tabWidget.addTab(self.tab_2, "") self.tabConfig = QtWidgets.QWidget() self.tabConfig.setObjectName("tabConfig") self.label = QtWidgets.QLabel(self.tabConfig) self.label.setGeometry(QtCore.QRect(40, 40, 101, 16)) self.label.setObjectName("label") self.dataDirLineEdit = QtWidgets.QLineEdit(self.tabConfig) self.dataDirLineEdit.setGeometry(QtCore.QRect(170, 40, 301, 20)) self.dataDirLineEdit.setObjectName("dataDirLineEdit") self.pushButton = QtWidgets.QPushButton(self.tabConfig) self.pushButton.setGeometry(QtCore.QRect(490, 40, 75, 23)) self.pushButton.setObjectName("pushButton") self.label_2 = QtWidgets.QLabel(self.tabConfig) self.label_2.setGeometry(QtCore.QRect(40, 90, 121, 16)) self.label_2.setObjectName("label_2") self.lineEdit_2 = QtWidgets.QLineEdit(self.tabConfig) self.lineEdit_2.setGeometry(QtCore.QRect(170, 90, 301, 20)) self.lineEdit_2.setObjectName("lineEdit_2") self.groupBox = QtWidgets.QGroupBox(self.tabConfig) self.groupBox.setGeometry(QtCore.QRect(30, 170, 561, 161)) self.groupBox.setObjectName("groupBox") self.widget = QtWidgets.QWidget(self.groupBox) self.widget.setGeometry(QtCore.QRect(20, 40, 473, 66)) self.widget.setObjectName("widget") self.gridLayout = QtWidgets.QGridLayout(self.widget) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setObjectName("gridLayout") spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem, 0, 3, 1, 1) spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.gridLayout.addItem(spacerItem1, 1, 0, 1, 1) spacerItem2 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem2, 0, 5, 1, 1) spacerItem3 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem3, 0, 1, 1, 1) self.checkBox = QtWidgets.QCheckBox(self.widget) self.checkBox.setObjectName("checkBox") self.gridLayout.addWidget(self.checkBox, 0, 0, 1, 1) self.checkBox_2 = QtWidgets.QCheckBox(self.widget) self.checkBox_2.setObjectName("checkBox_2") self.gridLayout.addWidget(self.checkBox_2, 0, 2, 1, 1) self.checkBox_10 = QtWidgets.QCheckBox(self.widget) self.checkBox_10.setObjectName("checkBox_10") self.gridLayout.addWidget(self.checkBox_10, 0, 8, 1, 1) self.checkBox_4 = QtWidgets.QCheckBox(self.widget) self.checkBox_4.setObjectName("checkBox_4") self.gridLayout.addWidget(self.checkBox_4, 2, 0, 1, 1) self.checkBox_5 = QtWidgets.QCheckBox(self.widget) self.checkBox_5.setObjectName("checkBox_5") self.gridLayout.addWidget(self.checkBox_5, 2, 2, 1, 1) self.checkBox_3 = QtWidgets.QCheckBox(self.widget) self.checkBox_3.setObjectName("checkBox_3") self.gridLayout.addWidget(self.checkBox_3, 0, 4, 1, 1) self.checkBox_6 = QtWidgets.QCheckBox(self.widget) self.checkBox_6.setObjectName("checkBox_6") self.gridLayout.addWidget(self.checkBox_6, 2, 4, 1, 1) self.checkBox_9 = QtWidgets.QCheckBox(self.widget) self.checkBox_9.setObjectName("checkBox_9") self.gridLayout.addWidget(self.checkBox_9, 0, 6, 1, 1) self.checkBox_8 = QtWidgets.QCheckBox(self.widget) self.checkBox_8.setObjectName("checkBox_8") self.gridLayout.addWidget(self.checkBox_8, 2, 8, 1, 1) self.checkBox_7 = QtWidgets.QCheckBox(self.widget) self.checkBox_7.setObjectName("checkBox_7") self.gridLayout.addWidget(self.checkBox_7, 2, 6, 1, 1) spacerItem4 = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.gridLayout.addItem(spacerItem4, 0, 7, 1, 1) self.pushButton_2 = QtWidgets.QPushButton(self.tabConfig) self.pushButton_2.setGeometry(QtCore.QRect(490, 90, 75, 23)) self.pushButton_2.setObjectName("pushButton_2") self.tabWidget.addTab(self.tabConfig, "") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.tabWidget.setCurrentIndex(1) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "数据导入工具")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab_2), _translate("MainWindow", "Tab 2")) self.label.setText(_translate("MainWindow", "目标数据存放目录:")) self.pushButton.setText(_translate("MainWindow", "浏览")) self.label_2.setText(_translate("MainWindow", "通达信盘后数据目录:")) self.groupBox.setTitle(_translate("MainWindow", "数据预加载设置")) self.checkBox.setText(_translate("MainWindow", "日线")) self.checkBox_2.setText(_translate("MainWindow", "周线")) self.checkBox_10.setText(_translate("MainWindow", "年线")) self.checkBox_4.setText(_translate("MainWindow", "1分钟线")) self.checkBox_5.setText(_translate("MainWindow", "5分钟线")) self.checkBox_3.setText(_translate("MainWindow", "月线")) self.checkBox_6.setText(_translate("MainWindow", "15分钟线")) self.checkBox_9.setText(_translate("MainWindow", "半年线")) self.checkBox_8.setText(_translate("MainWindow", "60分钟线")) self.checkBox_7.setText(_translate("MainWindow", "30分钟线")) self.pushButton_2.setText(_translate("MainWindow", "浏览")) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tabConfig), _translate("MainWindow", "配置")) ```
{ "source": "jinhwanlazy/kalman-filter-isnt-hard", "score": 2 }
#### File: jinhwanlazy/kalman-filter-isnt-hard/utils.py ```python import scipy.io from matplotlib import pyplot as plt import numpy as np def load_imu_data(): dt = 0.01 gyro_data = scipy.io.loadmat('./source/11.ARS/ArsGyro.mat') acce_data = scipy.io.loadmat('./source/11.ARS/ArsAccel.mat') ts = np.arange(len(gyro_data['wz'])) * dt gyro = np.concatenate([ gyro_data['wx'], gyro_data['wy'], gyro_data['wz'], ], axis=1) acce = np.concatenate([ acce_data['fx'], acce_data['fy'], acce_data['fz'], ], axis=1) return dt, ts, gyro, acce def load_sonar_data(): sonar_data = scipy.io.loadmat('./source/2.MovAvgFilter/SonarAlt.mat')['sonarAlt'].reshape(-1)[:500] dt = 0.02 ts = np.arange(len(sonar_data)) * dt return dt, ts, sonar_data[:500] def generate_volt_data(): while True: yield np.random.normal(14.4, 4) def generate_pos_vel_data(dt=0.1): pos = 0 vel = 80 while True: w = np.random.normal(0, 10) v = np.random.normal(0, 10) pos += vel * dt yield pos + v, vel vel = 80 + w def generate_radar_measurement_data(dt): pos = 0 while True: vel = np.random.normal(100, 5) alt = np.random.normal(1000, 10) pos = pos + vel*dt v = np.random.normal(0, pos * 0.05) r = (pos**2 + alt**2)**0.5 + v yield r def run_radar_position_estimation(kf, ts, measurements_seq): measurements = [] estimations = [] speeds = [] altitudes = [] positions = [] for t, meas in zip(ts, measurements_seq): kf.update(np.array([[meas]])) state = kf.x.copy() measurements.append(meas) estimations.append(kf.h(state)[0, 0]) pos, spd, alt = state.reshape(3) positions.append(pos) speeds.append(spd) altitudes.append(alt) return measurements, estimations, speeds, altitudes, positions def run_euler_attitude_estimation(kf, ts, gyro, acce): estimations = [] for i, (g, a) in enumerate(zip(gyro, euler_from_acce(acce))): kf.gyro = g.reshape(3, 1) kf.update(a[:2].reshape(2, 1)) estimations.append(kf.get().reshape(1, 2)) return np.concatenate(estimations) * 180 / np.pi def plot_xyz(ts, xyz, title=''): fig = plt.figure(figsize=[16, 12]) fig.suptitle(title) for i, ax, color in zip(range(xyz.shape[1]), 'xyz', 'rgb'): fig.add_subplot(3, 1, i+1) plt.plot(ts, xyz[:, i], color=color) plt.ylabel(ax) plt.xlabel('Time[sec]') plt.show() def plot_radar_result(ts, speeds, altitudes, positions): def plot(ts, values, ylabel): plt.figure(figsize=[12, 6]) plt.plot(ts, values) plt.xlabel('Time[sec]') plt.ylabel(ylabel) plt.show() plot(ts, speeds, 'Speed[m/s]') plot(ts, altitudes, 'Altitude[m]') plot(ts, positions, 'Position[m]') def plot_measurement_vs_estimation(ts, measurements, estimations, ylabel=''): plt.figure(figsize=[12, 9]) plt.plot(ts, measurements, '--', label='measured') plt.plot(ts, estimations, label='estimated') plt.xlabel('Time[sec]') plt.ylabel(ylabel) plt.legend() plt.show() def euler_from_gyro(ts, gyro): attitude = np.array([[0, 0, 0]]).T res = np.zeros((len(ts), 3), dtype=float) for i, (dt, pqr) in enumerate(zip(ts[1:] - ts[:-1], gyro)): phi, theta, _ = attitude.reshape(-1) sin_phi = np.sin(phi) cos_phi = np.cos(phi) cos_theta = np.cos(theta) tan_theta = np.tan(theta) to_euler = np.array([ [1, sin_phi * tan_theta, cos_phi * tan_theta], [0, cos_phi, -sin_phi], [0, sin_phi * cos_theta, cos_phi * cos_theta], ]) attitude = attitude + dt * to_euler @ pqr.reshape(3, 1) res[i+1] = attitude.reshape(-1) return res def euler_from_acce(acce): g = 9.8 theta = np.arcsin(acce[:, 0] / g) phi = np.arcsin(-acce[:, 1] / (g * np.cos(theta))) return np.stack([phi, theta, np.zeros_like(phi)], axis=1) def euler_from_acce2(acce): x, y, z = acce.T phi = np.arctan2(y, z) theta = np.arctan2(x, (y**2 + z**2)**0.5) return np.stack([phi, theta, np.zeros_like(phi)], axis=1) ```
{ "source": "jinhwanlazy/py-boscoin-base", "score": 2 }
#### File: py-boscoin-base/boscoin_base/builder.py ```python from .horizon import HORIZON_LIVE, HORIZON_TEST, HORIZON_STELLAR from .horizon import Horizon from .keypair import Keypair from .memo import * from .network import NETWORKS, Network from .operation import * from .transaction import Transaction from .transaction_envelope import TransactionEnvelope as Te from .utils import SignatureExistError from .federation import * class Builder(object): """ build transaction and submit to horizon. """ def __init__(self, secret=None, address=None, horizon=None, network=None, sequence=None): if secret: self.key_pair = Keypair.from_seed(secret) self.address = self.key_pair.address().decode() else: self.key_pair = None self.address = None if address is None and secret is None: raise Exception('No Stellar address afforded.') if address is not None and secret is None: self.address = address self.key_pair = None if network: network = network.upper() if network not in ['PUBLIC', 'STELLAR']: network = 'TESTNET' self.network = network if horizon: self.horizon = Horizon(horizon) elif network == 'PUBLIC': self.horizon = Horizon(HORIZON_LIVE) elif network == 'STELLAR': self.horizon = Horizon(HORIZON_STELLAR) else: self.horizon = Horizon(HORIZON_TEST) if sequence: self.sequence = sequence elif self.address: self.sequence = self.get_sequence() else: self.sequence = None self.ops = [] self.time_bounds = [] self.memo = NoneMemo() self.fee = None self.tx = None self.te = None def append_op(self, operation): if operation not in self.ops: self.ops.append(operation) return self def append_create_account_op(self, destination, starting_balance, source=None): opts = { 'source': source, 'destination': destination, 'starting_balance': str(starting_balance) } op = CreateAccount(opts) return self.append_op(op) def append_trust_op(self, destination, code, limit=None, source=None): line = Asset(code, destination) if limit is not None: limit = str(limit) opts = { 'source': source, 'asset': line, 'limit': limit } op = ChangeTrust(opts) return self.append_op(op) def append_payment_op(self, destination, amount, asset_type='BOS', asset_issuer=None, source=None): asset = Asset(code=asset_type, issuer=asset_issuer) opts = { 'source': source, 'destination': destination, 'asset': asset, 'amount': str(amount) } op = Payment(opts) return self.append_op(op) def append_path_payment_op(self, destination, send_code, send_issuer, send_max, dest_code, dest_issuer, dest_amount, path, source=None): # path: a list of asset tuple which contains code and issuer, [(code,issuer),(code,issuer)] # for native asset you can delivery ('bos','') send_asset = Asset(send_code, send_issuer) dest_asset = Asset(dest_code, dest_issuer) assets = [] for p in path: assets.append(Asset(p[0], p[1])) opts = { 'source': source, 'destination': destination, 'send_asset': send_asset, 'send_max': str(send_max), 'dest_asset': dest_asset, 'dest_amount': str(dest_amount), 'path': assets } op = PathPayment(opts) return self.append_op(op) def append_allow_trust_op(self, trustor, asset_code, authorize, source=None): opts = { 'source': source, 'trustor': trustor, 'asset_code': asset_code, 'authorize': authorize } op = AllowTrust(opts) return self.append_op(op) def append_set_options_op(self, inflation_dest=None, clear_flags=None, set_flags=None, master_weight=None, low_threshold=None, med_threshold=None, high_threshold=None, home_domain=None, signer_address=None, signer_type=None, signer_weight=None, source=None, ): opts = { 'source': source, 'inflation_dest': inflation_dest, 'clear_flags': clear_flags, 'set_flags': set_flags, 'master_weight': master_weight, 'low_threshold': low_threshold, 'med_threshold': med_threshold, 'high_threshold': high_threshold, 'home_domain': bytearray(home_domain, encoding='utf-8') if home_domain else None, 'signer_address': signer_address, 'signer_type': signer_type, 'signer_weight': signer_weight } op = SetOptions(opts) return self.append_op(op) def append_hashx_signer(self, hashx, signer_weight, source=None): return self.append_set_options_op(signer_address=hashx, signer_type='hashX', signer_weight=signer_weight, source=source) def append_pre_auth_tx_signer(self, pre_auth_tx, signer_weight, source=None): return self.append_set_options_op(signer_address=pre_auth_tx, signer_type='preAuthTx', signer_weight=signer_weight, source=source) def append_manage_offer_op(self, selling_code, selling_issuer, buying_code, buying_issuer, amount, price, offer_id=0, source=None): selling = Asset(selling_code, selling_issuer) buying = Asset(buying_code, buying_issuer) opts = { 'source': source, 'selling': selling, 'buying': buying, 'amount': str(amount), 'price': price, 'offer_id': offer_id, } op = ManageOffer(opts) return self.append_op(op) def append_create_passive_offer_op(self, selling_code, selling_issuer, buying_code, buying_issuer, amount, price, source=None): selling = Asset(selling_code, selling_issuer) buying = Asset(buying_code, buying_issuer) opts = { 'source': source, 'selling': selling, 'buying': buying, 'amount': str(amount), 'price': price, } op = CreatePassiveOffer(opts) return self.append_op(op) def append_account_merge_op(self, destination, source=None): opts = { 'source': source, 'destination': destination } op = AccountMerge(opts) return self.append_op(op) def append_inflation_op(self, source=None): opts = {'source': source} op = Inflation(opts) return self.append_op(op) def append_manage_data_op(self, data_name, data_value, source=None): opts = { 'source': source, 'data_name': data_name, 'data_value': data_value } op = ManageData(opts) return self.append_op(op) def add_memo(self, memo): self.memo = memo return self def add_text_memo(self, memo_text): memo_text = TextMemo(memo_text) return self.add_memo(memo_text) def add_id_memo(self, memo_id): memo_id = IdMemo(memo_id) return self.add_memo(memo_id) def add_hash_memo(self, memo_hash): memo_hash = HashMemo(memo_hash) return self.add_memo(memo_hash) def add_ret_hash_memo(self, memo_return): memo_return = RetHashMemo(memo_return) return self.add_memo(memo_return) def add_time_bounds(self, time_bounds): return self.time_bounds.append(time_bounds) def federation_payment(self, fed_address, amount, asset_type='BOS', asset_issuer=None, source=None): fed_info = federation(fed_address, 'name') if not fed_info: raise FederationError('can not get valid federation response. ') self.append_payment_op(fed_info['account_id'], amount, asset_type, asset_issuer, source) memo_type = fed_info.get('memo_type') if memo_type is not None and memo_type in ('text', 'id', 'hash'): getattr(self, 'add_' + memo_type + '_memo')(fed_info['memo']) def gen_tx(self): if not self.address: raise Exception('Transaction does not have any source address ') if not self.sequence: raise Exception('have no sequence, maybe not funded?') tx = Transaction( self.address, opts={ 'sequence': self.sequence, 'timeBounds': self.time_bounds, 'memo': self.memo, 'fee': self.fee if self.fee else 10000 * len(self.ops), 'operations': self.ops, }, ) self.tx = tx return tx def gen_te(self): if self.tx is None: self.gen_tx() te = Te(self.tx, opts={'network_id': self.network}) if self.te: te.signatures = self.te.signatures self.te = te return te def gen_xdr(self): if self.tx is None: self.gen_te() return self.te.xdr() def gen_compliance_xdr(self): sequence = self.sequence self.sequence = '-1' # sequence number shoule be '0' here. so the pass one is '-1' tx_xdr = self.gen_tx().xdr() self.sequence = sequence return tx_xdr def import_from_xdr(self, xdr): te = Te.from_xdr(xdr) te.network_id = Network(NETWORKS[self.network]).network_id() self.te = te self.tx = te.tx # with a different source or not . self.ops = te.tx.operations self.address = te.tx.source self.sequence = te.tx.sequence - 1 self.time_bounds = te.tx.time_bounds self.memo = te.tx.memo def sign(self, secret=None): key_pair = self.key_pair if not secret else Keypair.from_seed(secret) self.gen_te() try: self.te.sign(key_pair) except SignatureExistError: raise def sign_preimage(self, preimage): ''' preimage must be a unicode string ''' if self.te is None: self.gen_te() try: self.te.sign_hashX(preimage) except SignatureExistError: raise def submit(self): try: return self.horizon.submit(self.gen_xdr()) except Exception as e: raise e # raise Exception('network problem') def next_builder(self): sequence = str(int(self.sequence) + 1) next_builder = Builder(horizon=self.horizon.horizon, network=self.network, sequence=sequence) next_builder.address = self.address next_builder.key_pair = self.key_pair return next_builder def get_sequence(self): if not self.address: raise Exception('no address provided') try: address = self.horizon.account(self.address) except: raise Exception('network problem') return address.get('sequence') ``` #### File: py-boscoin-base/tests/test_horizon.py ```python import requests import json from boscoin_base.keypair import Keypair from boscoin_base.memo import * from boscoin_base.operation import * from boscoin_base.builder import HORIZON_TEST from boscoin_base.horizon import Horizon horizon = Horizon() class TestMethods: def __init__(self): kp = Keypair.random() self.fee = 100 self.address = kp.address().decode('ascii') self.seed = kp.seed().decode('ascii') or None fund(self.address) def make_envelope(self, *args, **kwargs): from boscoin_base.transaction import Transaction from boscoin_base.keypair import Keypair from boscoin_base.transaction_envelope import TransactionEnvelope as Te opts = { 'sequence': horizon.account(self.address)['sequence'], 'fee': self.fee * len(args) } for opt, value in kwargs.items(): opts[opt] = value tx = Transaction(source=self.address, opts=opts) for count, op in enumerate(args): tx.add_operation(operation=op) envelope = Te(tx=tx, opts={"network_id": "TESTNET"}) signer = Keypair.from_seed(seed=self.seed) envelope.sign(keypair=signer) envelope_xdr = envelope.xdr() print(envelope_xdr) return envelope_xdr def test_submit(self): envelope_xdr = self.make_envelope(Payment({ 'destination': self.address, 'asset': Asset.native(), 'amount': "0.0001618" })) response = horizon.submit(envelope_xdr) assert 'hash' in response def fund(address): for attempt in range(3): r = requests.get('https://friendbot.stellar.org/?addr=' + address) # Get 10000 lumens t = r.text try: assert 'hash' in json.loads( t) or 'op_already_exists' in json.loads(t) return True except AssertionError: pass raise Exception("fund failed") ```
{ "source": "Jinhx128/scrapy_demo", "score": 3 }
#### File: scrapy_demo/spiders/aosun_spider.py ```python import scrapy from scrapy_demo.items import AosunItem class AosunSpider(scrapy.Spider): name = 'aosun_spider' # 定义爬虫的名称,用于区别spider,该名称必须是唯一的,不可为不同的spider设置相同的名字 allowed_domains = ['aosun.cloud'] # 定义允许爬取的域,若不是该列表内的域名则放弃抓取 custom_settings = { 'ITEM_PIPELINES': {'scrapy_demo.pipelines.AosunPipeline': 303}, } form_data = { 'page': '1', 'rows': '4', 'isPrivate': 'false' } total = int(form_data['page']) * int(form_data['rows']) base_url = 'http://aosun.cloud/api/article/getArticleList' start_urls = [base_url] # spider在启动时爬取的入口url列表,后续的url从初始的url抓取到的数据中提取 # headers = { # 'Host': 'aosun.cloud', # 'Origin': 'http://aosun.cloud', # 'Referer': 'http://aosun.cloud/', # 'User-Agent:': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/86.0.4240.183 Safari/537.36', # 'Content-Type': 'application/x-www-form-urlencoded', # 'Content-Length': '1149', # 'Connection': 'keep-alive', # 'Accept': 'application/json, text/plain, */*', # 'Accept-Encoding': 'gzip, deflate', # 'Accept-Language': 'zh-CN,zh;q=0.9' # } def start_requests(self): # 发送post请求 for url in self.start_urls: yield scrapy.FormRequest(url=url, method='POST', formdata=self.form_data, callback=self.parse) def parse(self, response): # 定义回调函数,每个初始url完成下载后生成的response对象会作为唯一参数传递给parse()函数。负责解析数据、提取数据(生成Item)、以及生成需要进一步处理的url total = response.json()['total'] articles = response.json()['info'] for article in articles: item = AosunItem() item['id'] = article['id'] item['title'] = article['title'] item['modifyrq'] = article['modifyrq'] item['publish_time'] = article['publishTime'] item['info'] = article['info'] item['views'] = article['views'] item['type_id'] = article['typeId'] item['is_private'] = article['isPrivate'] item['state'] = article['state'] item['info_text'] = article['infoText'] item['menu_info'] = article['menuInfo'] item['type'] = article['type'] yield item if int(self.form_data['page']) * int(self.form_data['rows']) < total: self.form_data['page'] = str(int(self.form_data['page']) + 1) yield scrapy.FormRequest(url=self.start_urls[0], method='POST', formdata=self.form_data, callback=self.parse) ```
{ "source": "jinhyukchang/amundsendatabuilder", "score": 2 }
#### File: databuilder/job/job.py ```python import logging from pyhocon import ConfigTree # noqa: F401 from statsd import StatsClient from databuilder import Scoped from databuilder.job.base_job import Job from databuilder.publisher.base_publisher import NoopPublisher from databuilder.publisher.base_publisher import Publisher # noqa: F401 from databuilder.task.base_task import Task # noqa: F401 LOGGER = logging.getLogger(__name__) class DefaultJob(Job): # Config keys IS_STATSD_ENABLED = 'is_statsd_enabled' JOB_IDENTIFIER = 'identifier' """ Default job that expects a task, and optional publisher If configured job will emit success/fail metric counter through statsd where prefix will be amundsen.databuilder.job.[identifier] . Note that job.identifier is part of metrics prefix and choose unique & readable identifier for the job. To configure statsd itself, use environment variable: https://statsd.readthedocs.io/en/v3.2.1/configure.html """ def __init__(self, conf, task, publisher=NoopPublisher()): # type: (Task, ConfigTree, Publisher) -> None self.task = task self.conf = conf self.publisher = publisher self.scoped_conf = Scoped.get_scoped_conf(self.conf, self.get_scope()) if self.scoped_conf.get_bool(DefaultJob.IS_STATSD_ENABLED, False): prefix = 'amundsen.databuilder.job.{}'.format(self.scoped_conf.get_string(DefaultJob.JOB_IDENTIFIER)) LOGGER.info('Setting statsd for job metrics with prefix: {}'.format(prefix)) self.statsd = StatsClient(prefix=prefix) else: self.statsd = None def init(self, conf): # type: (ConfigTree) -> None pass def _init(self): # type: () -> None task_conf = Scoped.get_scoped_conf(self.conf, self.task.get_scope()) self.task.init(task_conf.with_fallback(self.conf)) def launch(self): # type: () -> None """ Launch a job by initializing job, run task and publish :return: """ logging.info('Launching a job') # Using nested try finally to make sure task get closed as soon as possible as well as to guarantee all the # closeable get closed. try: is_success = True self._init() try: self.task.run() finally: self.task.close() self.publisher.init(Scoped.get_scoped_conf(self.conf, self.publisher.get_scope())) Job.closer.register(self.publisher.close) self.publisher.publish() except Exception as e: is_success = False raise e finally: # TODO: If more metrics are needed on different construct, such as task, consider abstracting this out if self.statsd: if is_success: LOGGER.info('Publishing job metrics for success') self.statsd.incr('success') else: LOGGER.info('Publishing job metrics for failure') self.statsd.incr('fail') Job.closer.close() logging.info('Job completed') ```
{ "source": "jinhyun95/RegRCNN", "score": 2 }
#### File: datasets/lidc/configs.py ```python import sys import os from collections import namedtuple sys.path.append(os.path.dirname(os.path.realpath(__file__))) import numpy as np sys.path.append(os.path.dirname(os.path.realpath(__file__))+"/../..") from default_configs import DefaultConfigs # legends, nested classes are not handled well in multiprocessing! hence, Label class def in outer scope Label = namedtuple("Label", ['id', 'name', 'color', 'm_scores']) # m_scores = malignancy scores binLabel = namedtuple("binLabel", ['id', 'name', 'color', 'm_scores', 'bin_vals']) class Configs(DefaultConfigs): def __init__(self, server_env=None): super(Configs, self).__init__(server_env) ######################### # Preprocessing # ######################### self.root_dir = '/data/public/rw/LIDC_IDRI/' self.raw_data_dir = '{}/new_nrrds'.format(self.root_dir) self.pp_dir = '{}/new_pp_norm'.format(self.root_dir) # 'merged' for one gt per image, 'single_annotator' for four gts per image. self.gts_to_produce = ["merged"] self.target_spacing = (0.7, 0.7, 1.25) ######################### # I/O # ######################### # path to preprocessed data. self.pp_name = 'lidc_reg' self.input_df_name = 'info_df.pickle' self.data_sourcedir = '/data/public/rw/{}/'.format(self.pp_name) # settings for deployment on cluster. if server_env: # path to preprocessed data. self.data_sourcedir = '/data/public/rw/{}/'.format(self.pp_name) # one out of ['mrcnn', 'retina_net', 'retina_unet', 'detection_fpn', 'ours']. self.model = 'ours' self.model_path = 'models/{}.py'.format(self.model if not 'retina' in self.model else 'retina_net') self.model_path = os.path.join(self.source_dir, self.model_path) ######################### # Architecture # ######################### # dimension the model operates in. one out of [2, 3]. self.dim = 2 # 'class': standard object classification per roi, pairwise combinable with each of below tasks. # if 'class' is omitted from tasks, object classes will be fg/bg (1/0) from RPN. # 'regression': regress some vector per each roi # 'regression_ken_gal': use kendall-gal uncertainty sigma # 'regression_bin': classify each roi into a bin related to a regression scale self.prediction_tasks = ['class'] self.start_filts = 48 if self.dim == 2 else 18 self.end_filts = self.start_filts * 4 if self.dim == 2 else self.start_filts * 2 self.res_architecture = 'resnet50' # 'resnet101' , 'resnet50' self.norm = 'batch_norm' # one of None, 'instance_norm', 'batch_norm' # one of 'xavier_uniform', 'xavier_normal', or 'kaiming_normal', None (=default = 'kaiming_uniform') self.weight_init = None self.regression_n_features = 1 ######################### # Data Loader # ######################### # distorted gt experiments: train on single-annotator gts in a random fashion to investigate network's # handling of noisy gts. # choose 'merged' for single, merged gt per image, or 'single_annotator' for four gts per image. # validation is always performed on same gt kind as training, testing always on merged gt. self.training_gts = "merged" # select modalities from preprocessed data self.channels = [0] self.n_channels = len(self.channels) # patch_size to be used for training. pre_crop_size is the patch_size before data augmentation. self.pre_crop_size_2D = [320, 320] self.patch_size_2D = [320, 320] self.pre_crop_size_3D = [160, 160, 96] self.patch_size_3D = [160, 160, 96] self.patch_size = self.patch_size_2D if self.dim == 2 else self.patch_size_3D self.pre_crop_size = self.pre_crop_size_2D if self.dim == 2 else self.pre_crop_size_3D # ratio of free sampled batch elements before class balancing is triggered # (>0 to include "empty"/background patches.) self.batch_random_ratio = 0.3 self.balance_target = "class_targets" if 'class' in self.prediction_tasks else 'rg_bin_targets' # set 2D network to match 3D gt boxes. self.merge_2D_to_3D_preds = self.dim==2 self.observables_rois = [] #self.rg_map = {1:1, 2:2, 3:3, 4:4, 5:5} ######################### # Colors and Legends # ######################### self.plot_frequency = 5 binary_cl_labels = [Label(1, 'benign', (*self.dark_green, 1.), (1, 2)), Label(2, 'malignant', (*self.red, 1.), (3, 4, 5))] quintuple_cl_labels = [Label(1, 'MS1', (*self.dark_green, 1.), (1,)), Label(2, 'MS2', (*self.dark_yellow, 1.), (2,)), Label(3, 'MS3', (*self.orange, 1.), (3,)), Label(4, 'MS4', (*self.bright_red, 1.), (4,)), Label(5, 'MS5', (*self.red, 1.), (5,))] # choose here if to do 2-way or 5-way regression-bin classification task_spec_cl_labels = quintuple_cl_labels self.class_labels = [ # #id #name #color #malignancy score Label( 0, 'bg', (*self.gray, 0.), (0,))] if "class" in self.prediction_tasks: self.class_labels += task_spec_cl_labels else: self.class_labels += [Label(1, 'lesion', (*self.orange, 1.), (1,2,3,4,5))] if any(['regression' in task for task in self.prediction_tasks]): self.bin_labels = [binLabel(0, 'MS0', (*self.gray, 1.), (0,), (0,))] self.bin_labels += [binLabel(cll.id, cll.name, cll.color, cll.m_scores, tuple([ms for ms in cll.m_scores])) for cll in task_spec_cl_labels] self.bin_id2label = {label.id: label for label in self.bin_labels} self.ms2bin_label = {ms: label for label in self.bin_labels for ms in label.m_scores} bins = [(min(label.bin_vals), max(label.bin_vals)) for label in self.bin_labels] self.bin_id2rg_val = {ix: [np.mean(bin)] for ix, bin in enumerate(bins)} self.bin_edges = [(bins[i][1] + bins[i + 1][0]) / 2 for i in range(len(bins) - 1)] if self.class_specific_seg: self.seg_labels = self.class_labels else: self.seg_labels = [ # id #name #color Label(0, 'bg', (*self.gray, 0.)), Label(1, 'fg', (*self.orange, 1.)) ] self.class_id2label = {label.id: label for label in self.class_labels} self.class_dict = {label.id: label.name for label in self.class_labels if label.id != 0} # class_dict is used in evaluator / ap, auc, etc. statistics, and class 0 (bg) only needs to be # evaluated in debugging self.class_cmap = {label.id: label.color for label in self.class_labels} self.seg_id2label = {label.id: label for label in self.seg_labels} self.cmap = {label.id: label.color for label in self.seg_labels} self.plot_prediction_histograms = True self.plot_stat_curves = False self.has_colorchannels = False self.plot_class_ids = True self.num_classes = len(self.class_dict) # for instance classification (excl background) self.num_seg_classes = len(self.seg_labels) # incl background ######################### # Data Augmentation # ######################### self.da_kwargs={ 'mirror': True, 'mirror_axes': tuple(np.arange(0, self.dim, 1)), 'do_elastic_deform': True, 'alpha':(0., 1500.), 'sigma':(30., 50.), 'do_rotation':True, 'angle_x': (0., 2 * np.pi), 'angle_y': (0., 0), 'angle_z': (0., 0), 'do_scale': True, 'scale':(0.8, 1.1), 'random_crop':False, 'rand_crop_dist': (self.patch_size[0] / 2. - 3, self.patch_size[1] / 2. - 3), 'border_mode_data': 'constant', 'border_cval_data': 0, 'order_data': 1} if self.dim == 3: self.da_kwargs['do_elastic_deform'] = False self.da_kwargs['angle_x'] = (0, 0.0) self.da_kwargs['angle_y'] = (0, 0.0) #must be 0!! self.da_kwargs['angle_z'] = (0., 2 * np.pi) ################################# # Schedule / Selection / Optim # ################################# self.num_epochs = 130 if self.dim == 2 else 150 self.num_train_batches = 200 if self.dim == 2 else 200 self.batch_size = 20 if self.dim == 2 else 8 # decide whether to validate on entire patient volumes (like testing) or sampled patches (like training) # the former is morge accurate, while the latter is faster (depending on volume size) self.val_mode = 'val_sampling' # only 'val_sampling', 'val_patient' not implemented if self.val_mode == 'val_patient': raise NotImplementedError if self.val_mode == 'val_sampling': self.num_val_batches = 70 self.save_n_models = 4 # set a minimum epoch number for saving in case of instabilities in the first phase of training. self.min_save_thresh = 0 if self.dim == 2 else 0 # criteria to average over for saving epochs, 'criterion':weight. if "class" in self.prediction_tasks: # 'criterion': weight if len(self.class_labels)==3: self.model_selection_criteria = {"benign_ap": 0.5, "malignant_ap": 0.5} elif len(self.class_labels)==6: self.model_selection_criteria = {str(label.name)+"_ap": 1./5 for label in self.class_labels if label.id!=0} elif any("regression" in task for task in self.prediction_tasks): self.model_selection_criteria = {"lesion_ap": 0.2, "lesion_avp": 0.8} self.weight_decay = 0 self.clip_norm = 200 if 'regression_ken_gal' in self.prediction_tasks else None # number or None # int in [0, dataset_size]. select n patients from dataset for prototyping. If None, all data is used. self.select_prototype_subset = None #self.batch_size ######################### # Testing # ######################### # set the top-n-epochs to be saved for temporal averaging in testing. self.test_n_epochs = self.save_n_models self.test_aug_axes = (0,1,(0,1)) # None or list: choices are 0,1,(0,1) (0==spatial y, 1== spatial x). self.held_out_test_set = False self.max_test_patients = "all" # "all" or number self.report_score_level = ['rois', 'patient'] # choose list from 'patient', 'rois' self.patient_class_of_interest = 2 if 'class' in self.prediction_tasks else 1 self.metrics = ['ap', 'auc'] if any(['regression' in task for task in self.prediction_tasks]): self.metrics += ['avp', 'rg_MAE_weighted', 'rg_MAE_weighted_tp', 'rg_bin_accuracy_weighted', 'rg_bin_accuracy_weighted_tp'] if 'aleatoric' in self.model: self.metrics += ['rg_uncertainty', 'rg_uncertainty_tp', 'rg_uncertainty_tp_weighted'] self.evaluate_fold_means = True self.ap_match_ious = [0.1] # list of ious to be evaluated for ap-scoring. self.min_det_thresh = 0.1 # minimum confidence value to select predictions for evaluation. # aggregation method for test and val_patient predictions. # wbc = weighted box clustering as in https://arxiv.org/pdf/1811.08661.pdf, # nms = standard non-maximum suppression, or None = no clustering self.clustering = 'wbc' # iou thresh (exclusive!) for regarding two preds as concerning the same ROI self.clustering_iou = 0.1 # has to be larger than desired possible overlap iou of model predictions self.plot_prediction_histograms = True self.plot_stat_curves = False self.n_test_plots = 1 ######################### # Assertions # ######################### if not 'class' in self.prediction_tasks: assert self.num_classes == 1 ######################### # Add model specifics # ######################### {'detection_fpn': self.add_det_fpn_configs, 'mrcnn': self.add_mrcnn_configs, 'mrcnn_aleatoric': self.add_mrcnn_configs, 'retina_net': self.add_mrcnn_configs, 'retina_unet': self.add_mrcnn_configs, }[self.model]() def rg_val_to_bin_id(self, rg_val): return float(np.digitize(np.mean(rg_val), self.bin_edges)) def add_det_fpn_configs(self): self.learning_rate = [1e-4] * self.num_epochs self.dynamic_lr_scheduling = False # RoI score assigned to aggregation from pixel prediction (connected component). One of ['max', 'median']. self.score_det = 'max' # max number of roi candidates to identify per batch element and class. self.n_roi_candidates = 10 if self.dim == 2 else 30 # loss mode: either weighted cross entropy ('wce'), batch-wise dice loss ('dice), or the sum of both ('dice_wce') self.seg_loss_mode = 'wce' # if <1, false positive predictions in foreground are penalized less. self.fp_dice_weight = 1 if self.dim == 2 else 1 if len(self.class_labels)==3: self.wce_weights = [1., 1., 1.] if self.seg_loss_mode=="dice_wce" else [0.1, 1., 1.] elif len(self.class_labels)==6: self.wce_weights = [1., 1., 1., 1., 1., 1.] if self.seg_loss_mode == "dice_wce" else [0.1, 1., 1., 1., 1., 1.] else: raise Exception("mismatch loss weights & nr of classes") self.detection_min_confidence = self.min_det_thresh self.head_classes = self.num_seg_classes def add_mrcnn_configs(self): # learning rate is a list with one entry per epoch. self.learning_rate = [1e-4] * self.num_epochs self.dynamic_lr_scheduling = False # disable the re-sampling of mask proposals to original size for speed-up. # since evaluation is detection-driven (box-matching) and not instance segmentation-driven (iou-matching), # mask-outputs are optional. self.return_masks_in_train = False self.return_masks_in_val = True self.return_masks_in_test = False # set number of proposal boxes to plot after each epoch. self.n_plot_rpn_props = 5 if self.dim == 2 else 30 # number of classes for network heads: n_foreground_classes + 1 (background) self.head_classes = self.num_classes + 1 self.frcnn_mode = False # feature map strides per pyramid level are inferred from architecture. self.backbone_strides = {'xy': [4, 8, 16, 32], 'z': [1, 2, 4, 8]} # anchor scales are chosen according to expected object sizes in data set. Default uses only one anchor scale # per pyramid level. (outer list are pyramid levels (corresponding to BACKBONE_STRIDES), inner list are scales per level.) self.rpn_anchor_scales = {'xy': [[8], [16], [32], [64]], 'z': [[2], [4], [8], [16]]} # choose which pyramid levels to extract features from: P2: 0, P3: 1, P4: 2, P5: 3. self.pyramid_levels = [0, 1, 2, 3] # number of feature maps in rpn. typically lowered in 3D to save gpu-memory. self.n_rpn_features = 512 if self.dim == 2 else 128 # anchor ratios and strides per position in feature maps. self.rpn_anchor_ratios = [0.5, 1, 2] self.rpn_anchor_stride = 1 # Threshold for first stage (RPN) non-maximum suppression (NMS): LOWER == HARDER SELECTION self.rpn_nms_threshold = 0.7 if self.dim == 2 else 0.7 # loss sampling settings. self.rpn_train_anchors_per_image = 6 #per batch element self.train_rois_per_image = 6 #per batch element self.roi_positive_ratio = 0.5 self.anchor_matching_iou = 0.7 # factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining). # poolsize to draw top-k candidates from will be shem_poolsize * n_negative_samples. self.shem_poolsize = 10 self.pool_size = (7, 7) if self.dim == 2 else (7, 7, 3) self.mask_pool_size = (14, 14) if self.dim == 2 else (14, 14, 5) self.mask_shape = (28, 28) if self.dim == 2 else (28, 28, 10) self.rpn_bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) self.bbox_std_dev = np.array([0.1, 0.1, 0.1, 0.2, 0.2, 0.2]) self.window = np.array([0, 0, self.patch_size[0], self.patch_size[1], 0, self.patch_size_3D[2]]) self.scale = np.array([self.patch_size[0], self.patch_size[1], self.patch_size[0], self.patch_size[1], self.patch_size_3D[2], self.patch_size_3D[2]]) if self.dim == 2: self.rpn_bbox_std_dev = self.rpn_bbox_std_dev[:4] self.bbox_std_dev = self.bbox_std_dev[:4] self.window = self.window[:4] self.scale = self.scale[:4] # pre-selection in proposal-layer (stage 1) for NMS-speedup. applied per batch element. self.pre_nms_limit = 3000 if self.dim == 2 else 6000 # n_proposals to be selected after NMS per batch element. too high numbers blow up memory if "detect_while_training" is True, # since proposals of the entire batch are forwarded through second stage in as one "batch". self.roi_chunk_size = 2500 if self.dim == 2 else 600 self.post_nms_rois_training = 500 if self.dim == 2 else 75 self.post_nms_rois_inference = 500 # Final selection of detections (refine_detections) self.model_max_instances_per_batch_element = 10 if self.dim == 2 else 30 # per batch element and class. self.detection_nms_threshold = 1e-5 # needs to be > 0, otherwise all predictions are one cluster. self.model_min_confidence = 0.1 if self.dim == 2: self.backbone_shapes = np.array( [[int(np.ceil(self.patch_size[0] / stride)), int(np.ceil(self.patch_size[1] / stride))] for stride in self.backbone_strides['xy']]) else: self.backbone_shapes = np.array( [[int(np.ceil(self.patch_size[0] / stride)), int(np.ceil(self.patch_size[1] / stride)), int(np.ceil(self.patch_size[2] / stride_z))] for stride, stride_z in zip(self.backbone_strides['xy'], self.backbone_strides['z'] )]) if self.model == 'retina_net' or self.model == 'retina_unet': self.focal_loss = True # implement extra anchor-scales according to retina-net publication. self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['xy']] self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['z']] self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3 self.n_rpn_features = 256 if self.dim == 2 else 128 # pre-selection of detections for NMS-speedup. per entire batch. self.pre_nms_limit = (500 if self.dim == 2 else 6250) * self.batch_size # anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002 self.anchor_matching_iou = 0.5 if self.model == 'retina_unet': self.operate_stride1 = True elif self.model == 'ours': # implement extra anchor-scales according to retina-net publication. self.rpn_anchor_scales['xy'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['xy']] self.rpn_anchor_scales['z'] = [[ii[0], ii[0] * (2 ** (1 / 3)), ii[0] * (2 ** (2 / 3))] for ii in self.rpn_anchor_scales['z']] self.n_anchors_per_pos = len(self.rpn_anchor_ratios) * 3 self.n_rpn_features = 256 if self.dim == 2 else 128 # pre-selection of detections for NMS-speedup. per entire batch. self.pre_nms_limit = (500 if self.dim == 2 else 6250) * self.batch_size # anchor matching iou is lower than in Mask R-CNN according to https://arxiv.org/abs/1708.02002 self.anchor_matching_iou = 0.5 ``` #### File: RegRCNN/models/backbone.py ```python import torch.nn as nn import torch.nn.functional as F import torch class ConvGenerator(): """conv-layer generator to avoid 2D vs. 3D distinction in code. """ def __init__(self, dim): self.dim = dim def __call__(self, c_in, c_out, ks, pad=0, stride=1, norm=None, relu='relu'): """provides generic conv-layer modules for set dimension. :param c_in: number of in_channels. :param c_out: number of out_channels. :param ks: kernel size. :param pad: pad size. :param stride: kernel stride. :param norm: string specifying type of feature map normalization. If None, no normalization is applied. :param relu: string specifying type of nonlinearity. If None, no nonlinearity is applied. :return: 2D or 3D conv-layer module. """ if self.dim == 2: module = nn.Conv2d(c_in, c_out, kernel_size=ks, padding=pad, stride=stride) if norm is not None: if norm == 'instance_norm': norm_layer = nn.InstanceNorm2d(c_out) elif norm == 'batch_norm': norm_layer = nn.BatchNorm2d(c_out) else: raise ValueError('norm type as specified in configs is not implemented...') module = nn.Sequential(module, norm_layer) elif self.dim==3: module = nn.Conv3d(c_in, c_out, kernel_size=ks, padding=pad, stride=stride) if norm is not None: if norm == 'instance_norm': norm_layer = nn.InstanceNorm3d(c_out) elif norm == 'batch_norm': norm_layer = nn.BatchNorm3d(c_out) else: raise ValueError('norm type as specified in configs is not implemented... {}'.format(norm)) module = nn.Sequential(module, norm_layer) else: raise Exception("Invalid dimension {} in conv-layer generation.".format(self.dim)) if relu is not None: if relu == 'relu': relu_layer = nn.ReLU(inplace=True) elif relu == 'leaky_relu': relu_layer = nn.LeakyReLU(inplace=True) else: raise ValueError('relu type as specified in configs is not implemented...') module = nn.Sequential(module, relu_layer) return module class Interpolate(nn.Module): def __init__(self, scale_factor, mode): super(Interpolate, self).__init__() self.interp = nn.functional.interpolate self.scale_factor = scale_factor self.mode = mode def forward(self, x): x = self.interp(x, scale_factor=self.scale_factor, mode=self.mode, align_corners=False) return x class ResBlock(nn.Module): def __init__(self, start_filts, planes, end_filts, conv, stride=1, identity_skip=True, norm=None, relu='relu'): """Builds a residual net block. :param start_filts: #input channels to the block. :param planes: #channels in block's hidden layers. set start_filts>planes<end_filts for bottlenecking. :param end_filts: #output channels of the block. :param conv: conv-layer generator. :param stride: :param identity_skip: whether to use weight-less identity on skip-connection if no rescaling necessary. :param norm: :param relu: """ super(ResBlock, self).__init__() self.conv1 = conv(start_filts, planes, ks=1, stride=stride, norm=norm, relu=relu) self.conv2 = conv(planes, planes, ks=3, pad=1, norm=norm, relu=relu) self.conv3 = conv(planes, end_filts, ks=1, norm=norm, relu=None) if relu == 'relu': self.relu = nn.ReLU(inplace=True) elif relu == 'leaky_relu': self.relu = nn.LeakyReLU(inplace=True) else: raise Exception("Chosen activation {} not implemented.".format(self.relu)) if stride!=1 or start_filts!=end_filts or not identity_skip: self.scale_residual = conv(start_filts, end_filts, ks=1, stride=stride, norm=norm, relu=None) else: self.scale_residual = None def forward(self, x): out = self.conv1(x) out = self.conv2(out) out = self.conv3(out) if self.scale_residual: residual = self.scale_residual(x) else: residual = x out += residual out = self.relu(out) return out class FPN(nn.Module): """ Feature Pyramid Network from https://arxiv.org/pdf/1612.03144.pdf with options for modifications. by default is constructed with Pyramid levels P2, P3, P4, P5. """ def __init__(self, cf, conv, relu_enc="relu", relu_dec=None, operate_stride1=False): """ :param conv: instance of custom conv class containing the dimension info. :param relu_enc: string specifying type of nonlinearity in encoder. If None, no nonlinearity is applied. :param relu_dec: same as relu_enc but for decoder. :param operate_stride1: boolean flag. enables adding of Pyramid levels P1 (output stride 2) and P0 (output stride 1). from configs: :param channels: len(channels) is nr of channel dimensions in input data. :param start_filts: number of feature_maps in first layer. rest is scaled accordingly. :param end_filts: number of feature_maps for output_layers of all levels in decoder. :param res_architecture: string deciding whether to use "resnet50" or "resnet101". :param norm: string specifying type of feature map normalization. If None, no normalization is applied. :param sixth_pooling: boolean flag. enables adding of Pyramid level P6. """ super(FPN, self).__init__() self.start_filts, sf = cf.start_filts, cf.start_filts #sf = alias for readability self.out_channels = cf.end_filts self.n_blocks = [3, 4, {"resnet50": 6, "resnet101": 23}[cf.res_architecture], 3] self.block = ResBlock self.block_exp = 4 #factor by which to increase nr of channels in first block layer. self.relu_enc = relu_enc self.relu_dec = relu_dec self.operate_stride1 = operate_stride1 self.sixth_pooling = cf.sixth_pooling if operate_stride1: self.C0 = nn.Sequential(conv(len(cf.channels), sf, ks=3, pad=1, norm=cf.norm, relu=relu_enc), conv(sf, sf, ks=3, pad=1, norm=cf.norm, relu=relu_enc)) self.C1 = conv(sf, sf, ks=7, stride=(2, 2, 1) if conv.dim == 3 else 2, pad=3, norm=cf.norm, relu=relu_enc) else: self.C1 = conv(len(cf.channels), sf, ks=7, stride=(2, 2, 1) if conv.dim == 3 else 2, pad=3, norm=cf.norm, relu=relu_enc) C2_layers = [] C2_layers.append(nn.MaxPool2d(kernel_size=3, stride=2, padding=1) if conv.dim == 2 else nn.MaxPool3d(kernel_size=3, stride=(2, 2, 1), padding=1)) C2_layers.append(self.block(sf, sf, sf*self.block_exp, conv=conv, stride=1, norm=cf.norm, relu=relu_enc)) for i in range(1, self.n_blocks[0]): C2_layers.append(self.block(sf*self.block_exp, sf, sf*self.block_exp, conv=conv, stride=1, norm=cf.norm, relu=relu_enc)) self.C2 = nn.Sequential(*C2_layers) C3_layers = [] C3_layers.append(self.block(sf*self.block_exp, sf*2, sf*self.block_exp*2, conv=conv, stride=2, norm=cf.norm, relu=relu_enc)) for i in range(1, self.n_blocks[1]): C3_layers.append(self.block(sf*self.block_exp*2, sf*2, sf*self.block_exp*2, conv=conv, norm=cf.norm, relu=relu_enc)) self.C3 = nn.Sequential(*C3_layers) C4_layers = [] C4_layers.append(self.block(sf*self.block_exp*2, sf*4, sf*self.block_exp*4, conv=conv, stride=2, norm=cf.norm, relu=relu_enc)) for i in range(1, self.n_blocks[2]): C4_layers.append(self.block(sf*self.block_exp*4, sf*4, sf*self.block_exp*4, conv=conv, norm=cf.norm, relu=relu_enc)) self.C4 = nn.Sequential(*C4_layers) C5_layers = [] C5_layers.append(self.block(sf*self.block_exp*4, sf*8, sf*self.block_exp*8, conv=conv, stride=2, norm=cf.norm, relu=relu_enc)) for i in range(1, self.n_blocks[3]): C5_layers.append(self.block(sf*self.block_exp*8, sf*8, sf*self.block_exp*8, conv=conv, norm=cf.norm, relu=relu_enc)) self.C5 = nn.Sequential(*C5_layers) if self.sixth_pooling: C6_layers = [] C6_layers.append(self.block(sf*self.block_exp*8, sf*16, sf*self.block_exp*16, conv=conv, stride=2, norm=cf.norm, relu=relu_enc)) for i in range(1, self.n_blocks[3]): C6_layers.append(self.block(sf*self.block_exp*16, sf*16, sf*self.block_exp*16, conv=conv, norm=cf.norm, relu=relu_enc)) self.C6 = nn.Sequential(*C6_layers) if conv.dim == 2: self.P1_upsample = Interpolate(scale_factor=2, mode='bilinear') self.P2_upsample = Interpolate(scale_factor=2, mode='bilinear') else: self.P1_upsample = Interpolate(scale_factor=(2, 2, 1), mode='trilinear') self.P2_upsample = Interpolate(scale_factor=(2, 2, 1), mode='trilinear') if self.sixth_pooling: self.P6_conv1 = conv(sf*self.block_exp*16, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P5_conv1 = conv(sf*self.block_exp*8, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P4_conv1 = conv(sf*self.block_exp*4, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P3_conv1 = conv(sf*self.block_exp*2, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P2_conv1 = conv(sf*self.block_exp, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P1_conv1 = conv(sf, self.out_channels, ks=1, stride=1, relu=relu_dec) if operate_stride1: self.P0_conv1 = conv(sf, self.out_channels, ks=1, stride=1, relu=relu_dec) self.P0_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) self.P1_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) self.P2_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) self.P3_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) self.P4_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) self.P5_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) if self.sixth_pooling: self.P6_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=relu_dec) def forward(self, x): """ :param x: input image of shape (b, c, y, x, (z)) :return: list of output feature maps per pyramid level, each with shape (b, c, y, x, (z)). """ if self.operate_stride1: c0_out = self.C0(x) else: c0_out = x c1_out = self.C1(c0_out) c2_out = self.C2(c1_out) c3_out = self.C3(c2_out) c4_out = self.C4(c3_out) c5_out = self.C5(c4_out) if self.sixth_pooling: c6_out = self.C6(c5_out) p6_pre_out = self.P6_conv1(c6_out) p5_pre_out = self.P5_conv1(c5_out) + F.interpolate(p6_pre_out, scale_factor=2) else: p5_pre_out = self.P5_conv1(c5_out) #pre_out means last step before prediction output p4_pre_out = self.P4_conv1(c4_out) + F.interpolate(p5_pre_out, scale_factor=2) p3_pre_out = self.P3_conv1(c3_out) + F.interpolate(p4_pre_out, scale_factor=2) p2_pre_out = self.P2_conv1(c2_out) + F.interpolate(p3_pre_out, scale_factor=2) # plot feature map shapes for debugging. # for ii in [c0_out, c1_out, c2_out, c3_out, c4_out, c5_out, c6_out]: # print ("encoder shapes:", ii.shape) # # for ii in [p6_out, p5_out, p4_out, p3_out, p2_out, p1_out]: # print("decoder shapes:", ii.shape) p2_out = self.P2_conv2(p2_pre_out) p3_out = self.P3_conv2(p3_pre_out) p4_out = self.P4_conv2(p4_pre_out) p5_out = self.P5_conv2(p5_pre_out) out_list = [p2_out, p3_out, p4_out, p5_out] if self.sixth_pooling: p6_out = self.P6_conv2(p6_pre_out) out_list.append(p6_out) if self.operate_stride1: p1_pre_out = self.P1_conv1(c1_out) + self.P2_upsample(p2_pre_out) p0_pre_out = self.P0_conv1(c0_out) + self.P1_upsample(p1_pre_out) # p1_out = self.P1_conv2(p1_pre_out) # usually not needed. p0_out = self.P0_conv2(p0_pre_out) out_list = [p0_out] + out_list return out_list def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation) def conv1x1(in_planes, out_planes, stride=1): """1x1 convolution""" return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(BasicBlock, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d if groups != 1 or base_width != 64: raise ValueError('BasicBlock only supports groups=1 and base_width=64') if dilation > 1: raise NotImplementedError("Dilation > 1 not supported in BasicBlock") # Both self.conv1 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = norm_layer(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = norm_layer(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__() if norm_layer is None: norm_layer = nn.BatchNorm2d width = int(planes * (base_width / 64.)) * groups # Both self.conv2 and self.downsample layers downsample the input when stride != 1 self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class FPN_pytorch_official(nn.Module): def __init__(self, cf, conv, operate_stride1=False): super(FPN, self).__init__() block = Bottleneck self.cf = cf if cf.res_architecture == 'resnet18': layers = [2, 2, 2, 2] block = BasicBlock if cf.res_architecture == 'resnet50': layers = [3, 4, 6, 3] if cf.res_architecture == 'resnet101': layers = [3, 4, 23, 3] num_classes = 1000 zero_init_residual = False groups = 1 width_per_group = 64 replace_stride_with_dilation = None self._norm_layer = nn.BatchNorm2d self.inplanes = 64 self.dilation = 1 replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError("replace_stride_with_dilation should be None " "or a 3-element tuple, got {}".format(replace_stride_with_dilation)) self.groups = groups self.base_width = width_per_group self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = self._norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]) self.out_channels = cf.end_filts self.P5_conv1 = conv(2048, self.out_channels, ks=1, stride=1, relu=None) self.P4_conv1 = conv(1024, self.out_channels, ks=1, stride=1, relu=None) self.P3_conv1 = conv(512, self.out_channels, ks=1, stride=1, relu=None) self.P2_conv1 = conv(256, self.out_channels, ks=1, stride=1, relu=None) self.P2_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=None) self.P3_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=None) self.P4_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=None) self.P5_conv2 = conv(self.out_channels, self.out_channels, ks=3, stride=1, pad=1, relu=None) def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) c2_out = self.layer1(x) c3_out = self.layer2(c2_out) c4_out = self.layer3(c3_out) c5_out = self.layer4(c4_out) p5_pre_out = self.P5_conv1(c5_out) p4_pre_out = self.P4_conv1(c4_out) + F.interpolate(p5_pre_out, scale_factor=2) p3_pre_out = self.P3_conv1(c3_out) + F.interpolate(p4_pre_out, scale_factor=2) p2_pre_out = self.P2_conv1(c2_out) + F.interpolate(p3_pre_out, scale_factor=2) p2_out = self.P2_conv2(p2_pre_out) p3_out = self.P3_conv2(p3_pre_out) p4_out = self.P4_conv2(p4_pre_out) p5_out = self.P5_conv2(p5_pre_out) out_list = [p2_out, p3_out, p4_out, p5_out] return out_list ``` #### File: RegRCNN/models/detection_fpn.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from scipy.ndimage.measurements import label as lb import utils.exp_utils as utils import utils.model_utils as mutils class net(nn.Module): def __init__(self, cf, logger): super(net, self).__init__() self.cf = cf self.logger = logger backbone = utils.import_module('bbone', cf.backbone_path) self.logger.info("loaded backbone from {}".format(self.cf.backbone_path)) conv_gen = backbone.ConvGenerator(cf.dim) # set operate_stride1=True to generate a unet-like FPN.) self.fpn = backbone.FPN(cf, conv=conv_gen, relu_enc=cf.relu, operate_stride1=True) self.conv_final = conv_gen(cf.end_filts, cf.num_seg_classes, ks=1, pad=0, norm=None, relu=None) #initialize parameters if self.cf.weight_init=="custom": logger.info("Tried to use custom weight init which is not defined. Using pytorch default.") elif self.cf.weight_init: mutils.initialize_weights(self) else: logger.info("using default pytorch weight init") def forward(self, x): """ forward pass of network. :param x: input image. shape (b, c, y, x, (z)) :return: seg_logits: shape (b, n_classes, y, x, (z)) :return: out_box_coords: list over n_classes. elements are arrays(b, n_rois, (y1, x1, y2, x2, (z1), (z2))) :return: out_max_scores: list over n_classes. elements are arrays(b, n_rois) """ out_features = self.fpn(x)[0] #take only pyramid output of stride 1 seg_logits = self.conv_final(out_features) out_box_coords, out_max_scores = [], [] smax = F.softmax(seg_logits.detach(), dim=1).cpu().data.numpy() for cl in range(1, len(self.cf.class_dict.keys()) + 1): hard_mask = np.copy(smax).argmax(1) hard_mask[hard_mask != cl] = 0 hard_mask[hard_mask == cl] = 1 # perform connected component analysis on argmaxed predictions, # draw boxes around components and return coordinates. box_coords, rois = mutils.get_coords(hard_mask, self.cf.n_roi_candidates, self.cf.dim) # for each object, choose the highest softmax score (in the respective class) # of all pixels in the component as object score. max_scores = [[] for _ in range(x.shape[0])] for bix, broi in enumerate(rois): for nix, nroi in enumerate(broi): score_det = np.max if self.cf.score_det=="max" else np.median #score determination max_scores[bix].append(score_det(smax[bix, cl][nroi > 0])) out_box_coords.append(box_coords) out_max_scores.append(max_scores) return seg_logits, out_box_coords, out_max_scores def train_forward(self, batch, **kwargs): """ train method (also used for validation monitoring). wrapper around forward pass of network. prepares input data for processing, computes losses, and stores outputs in a dictionary. :param batch: dictionary containing 'data', 'seg', etc. :param kwargs: :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes] 'torch_loss': 1D torch tensor for backprop. 'class_loss': classification loss for monitoring. here: dummy array, since no classification conducted. """ img = torch.from_numpy(batch['data']).cuda().float() seg = torch.from_numpy(batch['seg']).cuda().long() seg_ohe = torch.from_numpy(mutils.get_one_hot_encoding(batch['seg'], self.cf.num_seg_classes)).cuda() results_dict = {} seg_logits, box_coords, max_scores = self.forward(img) # no extra class loss applied in this model. pass dummy tensor for monitoring. results_dict['class_loss'] = np.nan results_dict['boxes'] = [[] for _ in range(img.shape[0])] for cix in range(len(self.cf.class_dict.keys())): for bix in range(img.shape[0]): for rix in range(len(max_scores[cix][bix])): if max_scores[cix][bix][rix] > self.cf.detection_min_confidence: results_dict['boxes'][bix].append({'box_coords': np.copy(box_coords[cix][bix][rix]), 'box_score': max_scores[cix][bix][rix], 'box_pred_class_id': cix + 1, # add 0 for background. 'box_type': 'det'}) for bix in range(img.shape[0]): for tix in range(len(batch['bb_target'][bix])): gt_box = {'box_coords': batch['bb_target'][bix][tix], 'box_type': 'gt'} for name in self.cf.roi_items: gt_box.update({name: batch[name][bix][tix]}) results_dict['boxes'][bix].append(gt_box) # compute segmentation loss as either weighted cross entropy, dice loss, or the sum of both. loss = torch.tensor([0.], dtype=torch.float, requires_grad=False).cuda() seg_pred = F.softmax(seg_logits, dim=1) if self.cf.seg_loss_mode == 'dice' or self.cf.seg_loss_mode == 'dice_wce': loss += 1 - mutils.batch_dice(seg_pred, seg_ohe.float(), false_positive_weight=float(self.cf.fp_dice_weight)) if self.cf.seg_loss_mode == 'wce' or self.cf.seg_loss_mode == 'dice_wce': loss += F.cross_entropy(seg_logits, seg[:, 0], weight=torch.FloatTensor(self.cf.wce_weights).cuda()) results_dict['torch_loss'] = loss seg_pred = seg_pred.argmax(dim=1).unsqueeze(dim=1).cpu().data.numpy() results_dict['seg_preds'] = seg_pred if 'dice' in self.cf.metrics: results_dict['batch_dices'] = mutils.dice_per_batch_and_class(seg_pred, batch["seg"], self.cf.num_seg_classes, convert_to_ohe=True) #self.logger.info("loss: {0:.2f}".format(loss.item())) return results_dict def test_forward(self, batch, **kwargs): """ test method. wrapper around forward pass of network without usage of any ground truth information. prepares input data for processing and stores outputs in a dictionary. :param batch: dictionary containing 'data' :param kwargs: :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes] """ img = torch.FloatTensor(batch['data']).cuda() seg_logits, box_coords, max_scores = self.forward(img) results_dict = {} results_dict['boxes'] = [[] for _ in range(img.shape[0])] for cix in range(len(box_coords)): for bix in range(img.shape[0]): for rix in range(len(max_scores[cix][bix])): if max_scores[cix][bix][rix] > self.cf.detection_min_confidence: results_dict['boxes'][bix].append({'box_coords': np.copy(box_coords[cix][bix][rix]), 'box_score': max_scores[cix][bix][rix], 'box_pred_class_id': cix + 1, 'box_type': 'det'}) results_dict['seg_preds'] = F.softmax(seg_logits, dim=1).cpu().data.numpy() return results_dict ``` #### File: RegRCNN/models/mrcnn.py ```python import os from multiprocessing import Pool import time import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils import utils.model_utils as mutils import utils.exp_utils as utils class RPN(nn.Module): """ Region Proposal Network. """ def __init__(self, cf, conv): super(RPN, self).__init__() self.dim = conv.dim self.conv_shared = conv(cf.end_filts, cf.n_rpn_features, ks=3, stride=cf.rpn_anchor_stride, pad=1, relu=cf.relu) self.conv_class = conv(cf.n_rpn_features, 2 * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None) self.conv_bbox = conv(cf.n_rpn_features, 2 * self.dim * len(cf.rpn_anchor_ratios), ks=1, stride=1, relu=None) def forward(self, x): """ :param x: input feature maps (b, in_channels, y, x, (z)) :return: rpn_class_logits (b, 2, n_anchors) :return: rpn_probs_logits (b, 2, n_anchors) :return: rpn_bbox (b, 2 * dim, n_anchors) """ # Shared convolutional base of the RPN. x = self.conv_shared(x) # Anchor Score. (batch, anchors per location * 2, y, x, (z)). rpn_class_logits = self.conv_class(x) # Reshape to (batch, 2, anchors) axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1) rpn_class_logits = rpn_class_logits.permute(*axes) rpn_class_logits = rpn_class_logits.contiguous() rpn_class_logits = rpn_class_logits.view(x.size()[0], -1, 2) # Softmax on last dimension (fg vs. bg). rpn_probs = F.softmax(rpn_class_logits, dim=2) # Bounding box refinement. (batch, anchors_per_location * (y, x, (z), log(h), log(w), (log(d)), y, x, (z)) rpn_bbox = self.conv_bbox(x) # Reshape to (batch, 2*dim, anchors) rpn_bbox = rpn_bbox.permute(*axes) rpn_bbox = rpn_bbox.contiguous() rpn_bbox = rpn_bbox.view(x.size()[0], -1, self.dim * 2) return [rpn_class_logits, rpn_probs, rpn_bbox] class Classifier(nn.Module): """ Head network for classification and bounding box refinement. Performs RoiAlign, processes resulting features through a shared convolutional base and finally branches off the classifier- and regression head. """ def __init__(self, cf, conv): super(Classifier, self).__init__() self.cf = cf self.dim = conv.dim self.in_channels = cf.end_filts self.pool_size = cf.pool_size self.pyramid_levels = cf.pyramid_levels # instance_norm does not work with spatial dims (1, 1, (1)) norm = cf.norm if cf.norm != 'instance_norm' else None self.conv1 = conv(cf.end_filts, cf.end_filts * 4, ks=self.pool_size, stride=1, norm=norm, relu=cf.relu) self.conv2 = conv(cf.end_filts * 4, cf.end_filts * 4, ks=1, stride=1, norm=norm, relu=cf.relu) self.linear_bbox = nn.Linear(cf.end_filts * 4, cf.head_classes * 2 * self.dim) if 'regression' in self.cf.prediction_tasks: self.linear_regressor = nn.Linear(cf.end_filts * 4, cf.head_classes * cf.regression_n_features) self.rg_n_feats = cf.regression_n_features #classify into bins of regression values elif 'regression_bin' in self.cf.prediction_tasks: self.linear_regressor = nn.Linear(cf.end_filts * 4, cf.head_classes * len(cf.bin_labels)) self.rg_n_feats = len(cf.bin_labels) else: self.linear_regressor = lambda x: torch.zeros((x.shape[0], cf.head_classes * 1), dtype=torch.float32).fill_(float('NaN')).cuda() self.rg_n_feats = 1 #cf.regression_n_features if 'class' in self.cf.prediction_tasks: self.linear_class = nn.Linear(cf.end_filts * 4, cf.head_classes) else: assert cf.head_classes == 2, "#head classes {} needs to be 2 (bg/fg) when not predicting classes".format(cf.head_classes) self.linear_class = lambda x: torch.zeros((x.shape[0], cf.head_classes), dtype=torch.float64).cuda() def forward(self, x, rois): """ :param x: input feature maps (b, in_channels, y, x, (z)) :param rois: normalized box coordinates as proposed by the RPN to be forwarded through the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements have been merged to one vector, while the origin info has been stored for re-allocation. :return: mrcnn_class_logits (n_proposals, n_head_classes) :return: mrcnn_bbox (n_proposals, n_head_classes, 2 * dim) predicted corrections to be applied to proposals for refinement. """ x = mutils.pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim) x = self.conv1(x) x = self.conv2(x) x = x.view(-1, self.in_channels * 4) mrcnn_bbox = self.linear_bbox(x) mrcnn_bbox = mrcnn_bbox.view(mrcnn_bbox.size()[0], -1, self.dim * 2) mrcnn_class_logits = self.linear_class(x) mrcnn_regress = self.linear_regressor(x) mrcnn_regress = mrcnn_regress.view(mrcnn_regress.size()[0], -1, self.rg_n_feats) return [mrcnn_bbox, mrcnn_class_logits, mrcnn_regress] class Mask(nn.Module): """ Head network for proposal-based mask segmentation. Performs RoiAlign, some convolutions and applies sigmoid on the output logits to allow for overlapping classes. """ def __init__(self, cf, conv): super(Mask, self).__init__() self.pool_size = cf.mask_pool_size self.pyramid_levels = cf.pyramid_levels self.dim = conv.dim self.conv1 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv2 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv3 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) self.conv4 = conv(cf.end_filts, cf.end_filts, ks=3, stride=1, pad=1, norm=cf.norm, relu=cf.relu) if conv.dim == 2: self.deconv = nn.ConvTranspose2d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) else: self.deconv = nn.ConvTranspose3d(cf.end_filts, cf.end_filts, kernel_size=2, stride=2) self.relu = nn.ReLU(inplace=True) if cf.relu == 'relu' else nn.LeakyReLU(inplace=True) self.conv5 = conv(cf.end_filts, cf.head_classes, ks=1, stride=1, relu=None) self.sigmoid = nn.Sigmoid() def forward(self, x, rois): """ :param x: input feature maps (b, in_channels, y, x, (z)) :param rois: normalized box coordinates as proposed by the RPN to be forwarded through the second stage (n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix). Proposals of all batch elements have been merged to one vector, while the origin info has been stored for re-allocation. :return: x: masks (n_sampled_proposals (n_detections in inference), n_classes, y, x, (z)) """ x = mutils.pyramid_roi_align(x, rois, self.pool_size, self.pyramid_levels, self.dim) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = self.relu(self.deconv(x)) x = self.conv5(x) x = self.sigmoid(x) return x ############################################################ # Loss Functions ############################################################ def compute_rpn_class_loss(rpn_class_logits, rpn_match, shem_poolsize): """ :param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors. :param rpn_class_logits: (n_anchors, 2). logits from RPN classifier. :param SHEM_poolsize: int. factor of top-k candidates to draw from per negative sample (stochastic-hard-example-mining). :return: loss: torch tensor :return: np_neg_ix: 1D array containing indices of the neg_roi_logits, which have been sampled for training. """ # Filter out netural anchors pos_indices = torch.nonzero(rpn_match == 1) neg_indices = torch.nonzero(rpn_match == -1) # loss for positive samples if not 0 in pos_indices.size(): pos_indices = pos_indices.squeeze(1) roi_logits_pos = rpn_class_logits[pos_indices] pos_loss = F.cross_entropy(roi_logits_pos, torch.LongTensor([1] * pos_indices.shape[0]).cuda()) else: pos_loss = torch.FloatTensor([0]).cuda() # loss for negative samples: draw hard negative examples (SHEM) # that match the number of positive samples, but at least 1. if not 0 in neg_indices.size(): neg_indices = neg_indices.squeeze(1) roi_logits_neg = rpn_class_logits[neg_indices] negative_count = np.max((1, pos_indices.cpu().data.numpy().size)) roi_probs_neg = F.softmax(roi_logits_neg, dim=1) neg_ix = mutils.shem(roi_probs_neg, negative_count, shem_poolsize) neg_loss = F.cross_entropy(roi_logits_neg[neg_ix], torch.LongTensor([0] * neg_ix.shape[0]).cuda()) np_neg_ix = neg_ix.cpu().data.numpy() #print("pos, neg count", pos_indices.cpu().data.numpy().size, negative_count) else: neg_loss = torch.FloatTensor([0]).cuda() np_neg_ix = np.array([]).astype('int32') loss = (pos_loss + neg_loss) / 2 return loss, np_neg_ix def compute_rpn_bbox_loss(rpn_pred_deltas, rpn_target_deltas, rpn_match): """ :param rpn_target_deltas: (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))). Uses 0 padding to fill in unsed bbox deltas. :param rpn_pred_deltas: predicted deltas from RPN. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))) :param rpn_match: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors. :return: loss: torch 1D tensor. """ if not 0 in torch.nonzero(rpn_match == 1).size(): indices = torch.nonzero(rpn_match == 1).squeeze(1) # Pick bbox deltas that contribute to the loss rpn_pred_deltas = rpn_pred_deltas[indices] # Trim target bounding box deltas to the same length as rpn_bbox. target_deltas = rpn_target_deltas[:rpn_pred_deltas.size()[0], :] # Smooth L1 loss loss = F.smooth_l1_loss(rpn_pred_deltas, target_deltas) else: loss = torch.FloatTensor([0]).cuda() return loss def compute_mrcnn_bbox_loss(mrcnn_pred_deltas, mrcnn_target_deltas, target_class_ids): """ :param mrcnn_target_deltas: (n_sampled_rois, (dy, dx, (dz), log(dh), log(dw), (log(dh))) :param mrcnn_pred_deltas: (n_sampled_rois, n_classes, (dy, dx, (dz), log(dh), log(dw), (log(dh))) :param target_class_ids: (n_sampled_rois) :return: loss: torch 1D tensor. """ if not 0 in torch.nonzero(target_class_ids > 0).size(): positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0] positive_roi_class_ids = target_class_ids[positive_roi_ix].long() target_bbox = mrcnn_target_deltas[positive_roi_ix, :].detach() pred_bbox = mrcnn_pred_deltas[positive_roi_ix, positive_roi_class_ids, :] loss = F.smooth_l1_loss(pred_bbox, target_bbox) else: loss = torch.FloatTensor([0]).cuda() return loss def compute_mrcnn_mask_loss(pred_masks, target_masks, target_class_ids): """ :param target_masks: (n_sampled_rois, y, x, (z)) A float32 tensor of values 0 or 1. Uses zero padding to fill array. :param pred_masks: (n_sampled_rois, n_classes, y, x, (z)) float32 tensor with values between [0, 1]. :param target_class_ids: (n_sampled_rois) :return: loss: torch 1D tensor. """ #print("targ masks", target_masks.unique(return_counts=True)) if not 0 in torch.nonzero(target_class_ids > 0).size(): # Only positive ROIs contribute to the loss. And only # the class-specific mask of each ROI. positive_ix = torch.nonzero(target_class_ids > 0)[:, 0] positive_class_ids = target_class_ids[positive_ix].long() y_true = target_masks[positive_ix, :, :].detach() y_pred = pred_masks[positive_ix, positive_class_ids, :, :] loss = F.binary_cross_entropy(y_pred, y_true) else: loss = torch.FloatTensor([0]).cuda() return loss def compute_mrcnn_class_loss(tasks, pred_class_logits, target_class_ids): """ :param pred_class_logits: (n_sampled_rois, n_classes) :param target_class_ids: (n_sampled_rois) batch dimension was merged into roi dimension. :return: loss: torch 1D tensor. """ if 'class' in tasks and not 0 in target_class_ids.size(): loss = F.cross_entropy(pred_class_logits, target_class_ids.long()) else: loss = torch.FloatTensor([0.]).cuda() return loss def compute_mrcnn_regression_loss(tasks, pred, target, target_class_ids): """regression loss is a distance metric between target vector and predicted regression vector. :param pred: (n_sampled_rois, n_classes, [n_rg_feats if real regression or 1 if rg_bin task) :param target: (n_sampled_rois, [n_rg_feats or n_rg_bins]) :return: differentiable loss, torch 1D tensor on cuda """ if not 0 in target.shape and not 0 in torch.nonzero(target_class_ids > 0).shape: positive_roi_ix = torch.nonzero(target_class_ids > 0)[:, 0] positive_roi_class_ids = target_class_ids[positive_roi_ix].long() target = target[positive_roi_ix].detach() pred = pred[positive_roi_ix, positive_roi_class_ids] if "regression_bin" in tasks: loss = F.cross_entropy(pred, target.long()) else: loss = F.smooth_l1_loss(pred, target) #loss = F.mse_loss(pred, target) else: loss = torch.FloatTensor([0.]).cuda() return loss ############################################################ # Detection Layer ############################################################ def compute_roi_scores(tasks, batch_rpn_proposals, mrcnn_cl_logits): """ Depending on the predicition tasks: if no class prediction beyong fg/bg (--> means no additional class head was applied) use RPN objectness scores as roi scores, otherwise class head scores. :param cf: :param batch_rpn_proposals: :param mrcnn_cl_logits: :return: """ if not 'class' in tasks: scores = batch_rpn_proposals[:, :, -1].view(-1, 1) scores = torch.cat((1 - scores, scores), dim=1) else: scores = F.softmax(mrcnn_cl_logits, dim=1) return scores ############################################################ # MaskRCNN Class ############################################################ class net(nn.Module): def __init__(self, cf, logger): super(net, self).__init__() self.cf = cf self.logger = logger self.build() loss_order = ['rpn_class', 'rpn_bbox', 'mrcnn_bbox', 'mrcnn_mask', 'mrcnn_class', 'mrcnn_rg'] if hasattr(cf, "mrcnn_loss_weights"): # bring into right order self.loss_weights = np.array([cf.mrcnn_loss_weights[k] for k in loss_order]) else: self.loss_weights = np.array([1.]*len(loss_order)) if self.cf.weight_init=="custom": logger.info("Tried to use custom weight init which is not defined. Using pytorch default.") elif self.cf.weight_init: mutils.initialize_weights(self) else: logger.info("using default pytorch weight init") def build(self): """Build Mask R-CNN architecture.""" # Image size must be dividable by 2 multiple times. h, w = self.cf.patch_size[:2] if h / 2**5 != int(h / 2**5) or w / 2**5 != int(w / 2**5): raise Exception("Image size must be divisible by 2 at least 5 times " "to avoid fractions when downscaling and upscaling." "For example, use 256, 288, 320, 384, 448, 512, ... etc.,i.e.," "any number x*32 will do!") # instantiate abstract multi-dimensional conv generator and load backbone module. backbone = utils.import_module('bbone', self.cf.backbone_path) self.logger.info("loaded backbone from {}".format(self.cf.backbone_path)) conv = backbone.ConvGenerator(self.cf.dim) # build Anchors, FPN, RPN, Classifier / Bbox-Regressor -head, Mask-head self.np_anchors = mutils.generate_pyramid_anchors(self.logger, self.cf) self.anchors = torch.from_numpy(self.np_anchors).float().cuda() self.fpn = backbone.FPN(self.cf, conv, relu_enc=self.cf.relu, operate_stride1=False).cuda() self.rpn = RPN(self.cf, conv) self.classifier = Classifier(self.cf, conv) self.mask = Mask(self.cf, conv) def forward(self, img, is_training=True): """ :param img: input images (b, c, y, x, (z)). :return: rpn_pred_logits: (b, n_anchors, 2) :return: rpn_pred_deltas: (b, n_anchors, (y, x, (z), log(h), log(w), (log(d)))) :return: batch_proposal_boxes: (b, n_proposals, (y1, x1, y2, x2, (z1), (z2), batch_ix)) only for monitoring/plotting. :return: detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score) :return: detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head. """ # extract features. fpn_outs = self.fpn(img) rpn_feature_maps = [fpn_outs[i] for i in self.cf.pyramid_levels] self.mrcnn_feature_maps = rpn_feature_maps # loop through pyramid layers and apply RPN. layer_outputs = [ self.rpn(p_feats) for p_feats in rpn_feature_maps ] # concatenate layer outputs. # convert from list of lists of level outputs to list of lists of outputs across levels. # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] outputs = list(zip(*layer_outputs)) outputs = [torch.cat(list(o), dim=1) for o in outputs] rpn_pred_logits, rpn_pred_probs, rpn_pred_deltas = outputs # # # generate proposals: apply predicted deltas to anchors and filter by foreground scores from RPN classifier. proposal_count = self.cf.post_nms_rois_training if is_training else self.cf.post_nms_rois_inference batch_normed_props, batch_unnormed_props = mutils.refine_proposals(rpn_pred_probs, rpn_pred_deltas, proposal_count, self.anchors, self.cf) # merge batch dimension of proposals while storing allocation info in coordinate dimension. batch_ixs = torch.arange( batch_normed_props.shape[0]).cuda().unsqueeze(1).repeat(1,batch_normed_props.shape[1]).view(-1).float() rpn_rois = batch_normed_props[:, :, :-1].view(-1, batch_normed_props[:, :, :-1].shape[2]) self.rpn_rois_batch_info = torch.cat((rpn_rois, batch_ixs.unsqueeze(1)), dim=1) # this is the first of two forward passes in the second stage, where no activations are stored for backprop. # here, all proposals are forwarded (with virtual_batch_size = batch_size * post_nms_rois.) # for inference/monitoring as well as sampling of rois for the loss functions. # processed in chunks of roi_chunk_size to re-adjust to gpu-memory. chunked_rpn_rois = self.rpn_rois_batch_info.split(self.cf.roi_chunk_size) bboxes_list, class_logits_list, regressions_list = [], [], [] with torch.no_grad(): for chunk in chunked_rpn_rois: chunk_bboxes, chunk_class_logits, chunk_regressions = self.classifier(self.mrcnn_feature_maps, chunk) bboxes_list.append(chunk_bboxes) class_logits_list.append(chunk_class_logits) regressions_list.append(chunk_regressions) mrcnn_bbox = torch.cat(bboxes_list, 0) mrcnn_class_logits = torch.cat(class_logits_list, 0) mrcnn_regressions = torch.cat(regressions_list, 0) self.mrcnn_roi_scores = compute_roi_scores(self.cf.prediction_tasks, batch_normed_props, mrcnn_class_logits) # refine classified proposals, filter and return final detections. # returns (cf.max_inst_per_batch_element, n_coords+1+...) detections = mutils.refine_detections(self.cf, batch_ixs, rpn_rois, mrcnn_bbox, self.mrcnn_roi_scores, mrcnn_regressions) # forward remaining detections through mask-head to generate corresponding masks. scale = [img.shape[2]] * 4 + [img.shape[-1]] * 2 scale = torch.from_numpy(np.array(scale[:self.cf.dim * 2] + [1])[None]).float().cuda() # first self.cf.dim * 2 entries on axis 1 are always the box coords, +1 is batch_ix detection_boxes = detections[:, :self.cf.dim * 2 + 1] / scale with torch.no_grad(): detection_masks = self.mask(self.mrcnn_feature_maps, detection_boxes) return [rpn_pred_logits, rpn_pred_deltas, batch_unnormed_props, detections, detection_masks] def loss_samples_forward(self, batch_gt_boxes, batch_gt_masks, batch_gt_class_ids, batch_gt_regressions=None): """ this is the second forward pass through the second stage (features from stage one are re-used). samples few rois in loss_example_mining and forwards only those for loss computation. :param batch_gt_class_ids: list over batch elements. Each element is a list over the corresponding roi target labels. :param batch_gt_boxes: list over batch elements. Each element is a list over the corresponding roi target coordinates. :param batch_gt_masks: (b, n(b), c, y, x (,z)) list over batch elements. Each element holds n_gt_rois(b) (i.e., dependent on the batch element) binary masks of shape (c, y, x, (z)). :return: sample_logits: (n_sampled_rois, n_classes) predicted class scores. :return: sample_deltas: (n_sampled_rois, n_classes, 2 * dim) predicted corrections to be applied to proposals for refinement. :return: sample_mask: (n_sampled_rois, n_classes, y, x, (z)) predicted masks per class and proposal. :return: sample_target_class_ids: (n_sampled_rois) target class labels of sampled proposals. :return: sample_target_deltas: (n_sampled_rois, 2 * dim) target deltas of sampled proposals for box refinement. :return: sample_target_masks: (n_sampled_rois, y, x, (z)) target masks of sampled proposals. :return: sample_proposals: (n_sampled_rois, 2 * dim) RPN output for sampled proposals. only for monitoring/plotting. """ # sample rois for loss and get corresponding targets for all Mask R-CNN head network losses. sample_ics, sample_target_deltas, sample_target_mask, sample_target_class_ids, sample_target_regressions = \ mutils.loss_example_mining(self.cf, self.rpn_rois_batch_info, batch_gt_boxes, batch_gt_masks, self.mrcnn_roi_scores, batch_gt_class_ids, batch_gt_regressions) # re-use feature maps and RPN output from first forward pass. sample_proposals = self.rpn_rois_batch_info[sample_ics] if not 0 in sample_proposals.size(): sample_deltas, sample_logits, sample_regressions = self.classifier(self.mrcnn_feature_maps, sample_proposals) sample_mask = self.mask(self.mrcnn_feature_maps, sample_proposals) else: sample_logits = torch.FloatTensor().cuda() sample_deltas = torch.FloatTensor().cuda() sample_regressions = torch.FloatTensor().cuda() sample_mask = torch.FloatTensor().cuda() return [sample_deltas, sample_mask, sample_logits, sample_regressions, sample_proposals, sample_target_deltas, sample_target_mask, sample_target_class_ids, sample_target_regressions] def get_results(self, img_shape, detections, detection_masks, box_results_list=None, return_masks=True): """ Restores batch dimension of merged detections, unmolds detections, creates and fills results dict. :param img_shape: :param detections: shape (n_final_detections, len(info)), where info=( y1, x1, y2, x2, (z1,z2), batch_ix, pred_class_id, pred_score ) :param detection_masks: (n_final_detections, n_classes, y, x, (z)) raw molded masks as returned by mask-head. :param box_results_list: None or list of output boxes for monitoring/plotting. each element is a list of boxes per batch element. :param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off). :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, 1] only fg. vs. bg for now. class-specific return of masks will come with implementation of instance segmentation evaluation. """ detections = detections.cpu().data.numpy() if self.cf.dim == 2: detection_masks = detection_masks.permute(0, 2, 3, 1).cpu().data.numpy() else: detection_masks = detection_masks.permute(0, 2, 3, 4, 1).cpu().data.numpy() # det masks shape now (n_dets, y,x(,z), n_classes) # restore batch dimension of merged detections using the batch_ix info. batch_ixs = detections[:, self.cf.dim*2] detections = [detections[batch_ixs == ix] for ix in range(img_shape[0])] mrcnn_mask = [detection_masks[batch_ixs == ix] for ix in range(img_shape[0])] # mrcnn_mask: shape (b_size, variable, variable, n_classes), variable bc depends on single instance mask size if box_results_list == None: # for test_forward, where no previous list exists. box_results_list = [[] for _ in range(img_shape[0])] # seg_logits == seg_probs in mrcnn since mask head finishes with sigmoid (--> image space = [0,1]) seg_probs = [] # loop over batch and unmold detections. for ix in range(img_shape[0]): # final masks are one-hot encoded (b, n_classes, y, x, (z)) final_masks = np.zeros((self.cf.num_classes + 1, *img_shape[2:])) #+1 for bg, 0.5 bc mask head classifies only bg/fg with logits between 0,1--> bg is <0.5 if self.cf.num_classes + 1 != self.cf.num_seg_classes: self.logger.warning("n of roi-classifier head classes {} doesnt match cf.num_seg_classes {}".format( self.cf.num_classes + 1, self.cf.num_seg_classes)) if not 0 in detections[ix].shape: boxes = detections[ix][:, :self.cf.dim*2].astype(np.int32) class_ids = detections[ix][:, self.cf.dim*2 + 1].astype(np.int32) scores = detections[ix][:, self.cf.dim*2 + 2] masks = mrcnn_mask[ix][np.arange(boxes.shape[0]), ..., class_ids] regressions = detections[ix][:,self.cf.dim*2+3:] # Filter out detections with zero area. Often only happens in early # stages of training when the network weights are still a bit random. if self.cf.dim == 2: exclude_ix = np.where((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] else: exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) masks = np.delete(masks, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) regressions = np.delete(regressions, exclude_ix, axis=0) # Resize masks to original image size and set boundary threshold. if return_masks: for i in range(masks.shape[0]): #masks per this batch instance/element/image # Convert neural network mask to full size mask if self.cf.dim == 2: full_mask = mutils.unmold_mask_2D(masks[i], boxes[i], img_shape[2:]) else: full_mask = mutils.unmold_mask_3D(masks[i], boxes[i], img_shape[2:]) # take the maximum seg_logits per class of instances in that class, i.e., a pixel in a class # has the max seg_logit value over all instances of that class in one sample final_masks[class_ids[i]] = np.max((final_masks[class_ids[i]], full_mask), axis=0) final_masks[0] = np.full(final_masks[0].shape, 0.49999999) #effectively min_det_thres at 0.5 per pixel # add final predictions to results. if not 0 in boxes.shape: for ix2, coords in enumerate(boxes): box = {'box_coords': coords, 'box_type': 'det', 'box_score': scores[ix2], 'box_pred_class_id': class_ids[ix2]} #if (hasattr(self.cf, "convert_cl_to_rg") and self.cf.convert_cl_to_rg): if "regression_bin" in self.cf.prediction_tasks: # in this case, regression preds are actually the rg_bin_ids --> map to rg value the bin represents box['rg_bin'] = regressions[ix2].argmax() box['regression'] = self.cf.bin_id2rg_val[box['rg_bin']] else: box['regression'] = regressions[ix2] if hasattr(self.cf, "rg_val_to_bin_id") and \ any(['regression' in task for task in self.cf.prediction_tasks]): box.update({'rg_bin': self.cf.rg_val_to_bin_id(regressions[ix2])}) box_results_list[ix].append(box) # if no detections were made--> keep full bg mask (zeros). seg_probs.append(final_masks) # create and fill results dictionary. results_dict = {} results_dict['boxes'] = box_results_list results_dict['seg_preds'] = np.array(seg_probs) return results_dict def train_forward(self, batch, is_validation=False): """ train method (also used for validation monitoring). wrapper around forward pass of network. prepares input data for processing, computes losses, and stores outputs in a dictionary. :param batch: dictionary containing 'data', 'seg', etc. batch['roi_masks']: (b, n(b), c, h(n), w(n) (z(n))) list like roi_labels but with arrays (masks) inplace of integers. c==channels of the raw segmentation. :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes]. 'torch_loss': 1D torch tensor for backprop. 'class_loss': classification loss for monitoring. """ img = batch['data'] gt_boxes = batch['bb_target'] #axes = (0, 2, 3, 1) if self.cf.dim == 2 else (0, 2, 3, 4, 1) #gt_masks = [np.transpose(batch['roi_masks'][ii], axes=axes) for ii in range(len(batch['roi_masks']))] gt_masks = batch['roi_masks'] gt_class_ids = batch['class_targets'] if 'regression' in self.cf.prediction_tasks: gt_regressions = batch["regression_targets"] elif 'regression_bin' in self.cf.prediction_tasks: gt_regressions = batch["rg_bin_targets"] else: gt_regressions = None img = torch.from_numpy(img).cuda().float() batch_rpn_class_loss = torch.FloatTensor([0]).cuda() batch_rpn_bbox_loss = torch.FloatTensor([0]).cuda() # list of output boxes for monitoring/plotting. each element is a list of boxes per batch element. box_results_list = [[] for _ in range(img.shape[0])] #forward passes. 1. general forward pass, where no activations are saved in second stage (for performance # monitoring and loss sampling). 2. second stage forward pass of sampled rois with stored activations for backprop. rpn_class_logits, rpn_pred_deltas, proposal_boxes, detections, detection_masks = self.forward(img) mrcnn_pred_deltas, mrcnn_pred_mask, mrcnn_class_logits, mrcnn_regressions, sample_proposals, \ mrcnn_target_deltas, target_mask, target_class_ids, target_regressions = \ self.loss_samples_forward(gt_boxes, gt_masks, gt_class_ids, gt_regressions) # loop over batch for b in range(img.shape[0]): if len(gt_boxes[b]) > 0: # add gt boxes to output list for tix in range(len(gt_boxes[b])): gt_box = {'box_type': 'gt', 'box_coords': batch['bb_target'][b][tix]} for name in self.cf.roi_items: gt_box.update({name: batch[name][b][tix]}) box_results_list[b].append(gt_box) # match gt boxes with anchors to generate targets for RPN losses. rpn_match, rpn_target_deltas = mutils.gt_anchor_matching(self.cf, self.np_anchors, gt_boxes[b]) # add positive anchors used for loss to output list for monitoring. pos_anchors = mutils.clip_boxes_numpy(self.np_anchors[np.argwhere(rpn_match == 1)][:, 0], img.shape[2:]) for p in pos_anchors: box_results_list[b].append({'box_coords': p, 'box_type': 'pos_anchor'}) else: rpn_match = np.array([-1]*self.np_anchors.shape[0]) rpn_target_deltas = np.array([0]) rpn_match_gpu = torch.from_numpy(rpn_match).cuda() rpn_target_deltas = torch.from_numpy(rpn_target_deltas).float().cuda() # compute RPN losses. rpn_class_loss, neg_anchor_ix = compute_rpn_class_loss(rpn_class_logits[b], rpn_match_gpu, self.cf.shem_poolsize) rpn_bbox_loss = compute_rpn_bbox_loss(rpn_pred_deltas[b], rpn_target_deltas, rpn_match_gpu) batch_rpn_class_loss += rpn_class_loss /img.shape[0] batch_rpn_bbox_loss += rpn_bbox_loss /img.shape[0] # add negative anchors used for loss to output list for monitoring. # neg_anchor_ix = neg_ix come from shem and mark positions in roi_probs_neg = rpn_class_logits[neg_indices] # with neg_indices = rpn_match == -1 neg_anchors = mutils.clip_boxes_numpy(self.np_anchors[rpn_match == -1][neg_anchor_ix], img.shape[2:]) for n in neg_anchors: box_results_list[b].append({'box_coords': n, 'box_type': 'neg_anchor'}) # add highest scoring proposals to output list for monitoring. rpn_proposals = proposal_boxes[b][proposal_boxes[b, :, -1].argsort()][::-1] for r in rpn_proposals[:self.cf.n_plot_rpn_props, :-1]: box_results_list[b].append({'box_coords': r, 'box_type': 'prop'}) # add positive and negative roi samples used for mrcnn losses to output list for monitoring. if not 0 in sample_proposals.shape: rois = mutils.clip_to_window(self.cf.window, sample_proposals).cpu().data.numpy() for ix, r in enumerate(rois): box_results_list[int(r[-1])].append({'box_coords': r[:-1] * self.cf.scale, 'box_type': 'pos_class' if target_class_ids[ix] > 0 else 'neg_class'}) # compute mrcnn losses. mrcnn_class_loss = compute_mrcnn_class_loss(self.cf.prediction_tasks, mrcnn_class_logits, target_class_ids) mrcnn_bbox_loss = compute_mrcnn_bbox_loss(mrcnn_pred_deltas, mrcnn_target_deltas, target_class_ids) mrcnn_regressions_loss = compute_mrcnn_regression_loss(self.cf.prediction_tasks, mrcnn_regressions, target_regressions, target_class_ids) # mrcnn can be run without pixelwise annotations available (Faster R-CNN mode). # In this case, the mask_loss is taken out of training. if self.cf.frcnn_mode: mrcnn_mask_loss = torch.FloatTensor([0]).cuda() else: mrcnn_mask_loss = compute_mrcnn_mask_loss(mrcnn_pred_mask, target_mask, target_class_ids) loss = batch_rpn_class_loss + batch_rpn_bbox_loss +\ mrcnn_bbox_loss + mrcnn_mask_loss + mrcnn_class_loss + mrcnn_regressions_loss # run unmolding of predictions for monitoring and merge all results to one dictionary. return_masks = self.cf.return_masks_in_val if is_validation else self.cf.return_masks_in_train results_dict = self.get_results(img.shape, detections, detection_masks, box_results_list, return_masks=return_masks) #results_dict['seg_preds'] = results_dict['seg_preds'].argmax(axis=1).astype('uint8')[:,np.newaxis] if 'dice' in self.cf.metrics: results_dict['batch_dices'] = mutils.dice_per_batch_and_class( results_dict['seg_preds'], batch["seg"], self.cf.num_seg_classes, convert_to_ohe=True) results_dict['torch_loss'] = loss results_dict['class_loss'] = mrcnn_class_loss.item() results_dict['bbox_loss'] = mrcnn_bbox_loss.item() results_dict['mask_loss'] = mrcnn_mask_loss.item() results_dict['rg_loss'] = mrcnn_regressions_loss.item() results_dict['rpn_class_loss'] = rpn_class_loss.item() results_dict['rpn_bbox_loss'] = rpn_bbox_loss.item() return results_dict def test_forward(self, batch, return_masks=True): """ test method. wrapper around forward pass of network without usage of any ground truth information. prepares input data for processing and stores outputs in a dictionary. :param batch: dictionary containing 'data' :param return_masks: boolean. If True, full resolution masks are returned for all proposals (speed trade-off). :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, n_classes] """ img = batch['data'] img = torch.from_numpy(img).float().cuda() _, _, _, detections, detection_masks = self.forward(img) results_dict = self.get_results(img.shape, detections, detection_masks, return_masks=return_masks) return results_dict ``` #### File: RegRCNN/models/retina_net.py ```python import utils.model_utils as mutils import utils.exp_utils as utils import sys import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.utils sys.path.append('..') from custom_extensions.nms import nms class Classifier(nn.Module): def __init__(self, cf, conv): """ Builds the classifier sub-network. """ super(Classifier, self).__init__() self.dim = conv.dim self.n_classes = cf.head_classes n_input_channels = cf.end_filts n_features = cf.n_rpn_features n_output_channels = cf.n_anchors_per_pos * cf.head_classes anchor_stride = cf.rpn_anchor_stride self.conv_1 = conv(n_input_channels, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_2 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_3 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_4 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_final = conv(n_features, n_output_channels, ks=3, stride=anchor_stride, pad=1, relu=None) def forward(self, x): """ :param x: input feature map (b, in_c, y, x, (z)) :return: class_logits (b, n_anchors, n_classes) """ x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) class_logits = self.conv_final(x) axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1) class_logits = class_logits.permute(*axes) class_logits = class_logits.contiguous() class_logits = class_logits.view(x.shape[0], -1, self.n_classes) return [class_logits] class BBRegressor(nn.Module): def __init__(self, cf, conv): """ Builds the bb-regression sub-network. """ super(BBRegressor, self).__init__() self.dim = conv.dim n_input_channels = cf.end_filts n_features = cf.n_rpn_features n_output_channels = cf.n_anchors_per_pos * self.dim * 2 anchor_stride = cf.rpn_anchor_stride self.conv_1 = conv(n_input_channels, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_2 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_3 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_4 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_final = conv(n_features, n_output_channels, ks=3, stride=anchor_stride, pad=1, relu=None) def forward(self, x): """ :param x: input feature map (b, in_c, y, x, (z)) :return: bb_logits (b, n_anchors, dim * 2) """ x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) bb_logits = self.conv_final(x) axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1) bb_logits = bb_logits.permute(*axes) bb_logits = bb_logits.contiguous() bb_logits = bb_logits.view(x.shape[0], -1, self.dim * 2) return [bb_logits] class RoIRegressor(nn.Module): def __init__(self, cf, conv, rg_feats): """ Builds the RoI-item-regression sub-network. Regression items can be, e.g., malignancy scores of tumors. """ super(RoIRegressor, self).__init__() self.dim = conv.dim n_input_channels = cf.end_filts n_features = cf.n_rpn_features self.rg_feats = rg_feats n_output_channels = cf.n_anchors_per_pos * self.rg_feats anchor_stride = cf.rpn_anchor_stride self.conv_1 = conv(n_input_channels, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_2 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_3 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_4 = conv(n_features, n_features, ks=3, stride=anchor_stride, pad=1, relu=cf.relu, norm=cf.norm) self.conv_final = conv(n_features, n_output_channels, ks=3, stride=anchor_stride, pad=1, relu=None) def forward(self, x): """ :param x: input feature map (b, in_c, y, x, (z)) :return: bb_logits (b, n_anchors, dim * 2) """ x = self.conv_1(x) x = self.conv_2(x) x = self.conv_3(x) x = self.conv_4(x) x = self.conv_final(x) axes = (0, 2, 3, 1) if self.dim == 2 else (0, 2, 3, 4, 1) x = x.permute(*axes) x = x.contiguous() x = x.view(x.shape[0], -1, self.rg_feats) return [x] ############################################################ # Loss Functions ############################################################ # def compute_class_loss(anchor_matches, class_pred_logits, shem_poolsize=20): """ :param anchor_matches: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors. :param class_pred_logits: (n_anchors, n_classes). logits from classifier sub-network. :param shem_poolsize: int. factor of top-k candidates to draw from per negative sample (online-hard-example-mining). :return: loss: torch tensor :return: np_neg_ix: 1D array containing indices of the neg_roi_logits, which have been sampled for training. """ # Positive and Negative anchors contribute to the loss, # but neutral anchors (match value = 0) don't. pos_indices = torch.nonzero(anchor_matches > 0) neg_indices = torch.nonzero(anchor_matches == -1) # get positive samples and calucalte loss. if not 0 in pos_indices.size(): pos_indices = pos_indices.squeeze(1) roi_logits_pos = class_pred_logits[pos_indices] targets_pos = anchor_matches[pos_indices].detach() pos_loss = F.cross_entropy(roi_logits_pos, targets_pos.long()) else: pos_loss = torch.FloatTensor([0]).cuda() # get negative samples, such that the amount matches the number of positive samples, but at least 1. # get high scoring negatives by applying online-hard-example-mining. if not 0 in neg_indices.size(): neg_indices = neg_indices.squeeze(1) roi_logits_neg = class_pred_logits[neg_indices] negative_count = np.max((1, pos_indices.cpu().data.numpy().size)) roi_probs_neg = F.softmax(roi_logits_neg, dim=1) neg_ix = mutils.shem(roi_probs_neg, negative_count, shem_poolsize) neg_loss = F.cross_entropy(roi_logits_neg[neg_ix], torch.LongTensor([0] * neg_ix.shape[0]).cuda()) # return the indices of negative samples, who contributed to the loss for monitoring plots. np_neg_ix = neg_ix.cpu().data.numpy() else: neg_loss = torch.FloatTensor([0]).cuda() np_neg_ix = np.array([]).astype('int32') loss = (pos_loss + neg_loss) / 2 return loss, np_neg_ix def compute_bbox_loss(target_deltas, pred_deltas, anchor_matches): """ :param target_deltas: (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))). Uses 0 padding to fill in unused bbox deltas. :param pred_deltas: predicted deltas from bbox regression head. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))) :param anchor_matches: tensor (n_anchors). value in [-1, 0, class_ids] for negative, neutral, and positive matched anchors. i.e., positively matched anchors are marked by class_id >0 :return: loss: torch 1D tensor. """ if not 0 in torch.nonzero(anchor_matches>0).shape: indices = torch.nonzero(anchor_matches>0).squeeze(1) # Pick bbox deltas that contribute to the loss pred_deltas = pred_deltas[indices] # Trim target bounding box deltas to the same length as pred_deltas. target_deltas = target_deltas[:pred_deltas.shape[0], :].detach() # Smooth L1 loss loss = F.smooth_l1_loss(pred_deltas, target_deltas) else: loss = torch.FloatTensor([0]).cuda() return loss def compute_rg_loss(tasks, target, pred, anchor_matches): """ :param target_deltas: (b, n_positive_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))). Uses 0 padding to fill in unsed bbox deltas. :param pred_deltas: predicted deltas from bbox regression head. (b, n_anchors, (dy, dx, (dz), log(dh), log(dw), (log(dd)))) :param anchor_matches: (n_anchors). [-1, 0, 1] for negative, neutral, and positive matched anchors. :return: loss: torch 1D tensor. """ if not 0 in target.shape and not 0 in torch.nonzero(anchor_matches>0).shape: indices = torch.nonzero(anchor_matches>0).squeeze(1) # Pick rgs that contribute to the loss pred = pred[indices] # Trim target target = target[:pred.shape[0]].detach() if 'regression_bin' in tasks: loss = F.cross_entropy(pred, target.long()) else: loss = F.smooth_l1_loss(pred, target) else: loss = torch.FloatTensor([0]).cuda() return loss def compute_focal_class_loss(anchor_matches, class_pred_logits, gamma=2.): """ Focal Loss FL = -(1-q)^g log(q) with q = pred class probability. :param anchor_matches: (n_anchors). [-1, 0, class] for negative, neutral, and positive matched anchors. :param class_pred_logits: (n_anchors, n_classes). logits from classifier sub-network. :param gamma: g in above formula, good results with g=2 in original paper. :return: loss: torch tensor :return: focal loss """ # Positive and Negative anchors contribute to the loss, # but neutral anchors (match value = 0) don't. pos_indices = torch.nonzero(anchor_matches > 0).squeeze(-1) # dim=-1 instead of 1 or 0 to cover empty matches. neg_indices = torch.nonzero(anchor_matches == -1).squeeze(-1) target_classes = torch.cat( (anchor_matches[pos_indices].long(), torch.LongTensor([0] * neg_indices.shape[0]).cuda()) ) non_neutral_indices = torch.cat( (pos_indices, neg_indices) ) q = F.softmax(class_pred_logits[non_neutral_indices], dim=1) # q shape: (n_non_neutral_anchors, n_classes) # one-hot encoded target classes: keep only the pred probs of the correct class. it will receive incentive to be maximized. # log(q_i) where i = target class --> FL shape (n_anchors,) # need to transform to indices into flattened tensor to use torch.take target_locs_flat = q.shape[1] * torch.arange(q.shape[0]).cuda() + target_classes q = torch.take(q, target_locs_flat) FL = torch.log(q) # element-wise log FL *= -(1-q)**gamma # take mean over all considered anchors FL = FL.sum() / FL.shape[0] return FL def refine_detections(anchors, probs, deltas, regressions, batch_ixs, cf): """Refine classified proposals, filter overlaps and return final detections. n_proposals here is typically a very large number: batch_size * n_anchors. This function is hence optimized on trimming down n_proposals. :param anchors: (n_anchors, 2 * dim) :param probs: (n_proposals, n_classes) softmax probabilities for all rois as predicted by classifier head. :param deltas: (n_proposals, n_classes, 2 * dim) box refinement deltas as predicted by bbox regressor head. :param regressions: (n_proposals, n_classes, n_rg_feats) :param batch_ixs: (n_proposals) batch element assignemnt info for re-allocation. :return: result: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score, pred_regr)) """ anchors = anchors.repeat(batch_ixs.unique().shape[0], 1) #flatten foreground probabilities, sort and trim down to highest confidences by pre_nms limit. fg_probs = probs[:, 1:].contiguous() flat_probs, flat_probs_order = fg_probs.view(-1).sort(descending=True) keep_ix = flat_probs_order[:cf.pre_nms_limit] # reshape indices to 2D index array with shape like fg_probs. keep_arr = torch.cat(((keep_ix / fg_probs.shape[1]).unsqueeze(1), (keep_ix % fg_probs.shape[1]).unsqueeze(1)), 1) pre_nms_scores = flat_probs[:cf.pre_nms_limit] pre_nms_class_ids = keep_arr[:, 1] + 1 # add background again. pre_nms_batch_ixs = batch_ixs[keep_arr[:, 0]] pre_nms_anchors = anchors[keep_arr[:, 0]] pre_nms_deltas = deltas[keep_arr[:, 0]] pre_nms_regressions = regressions[keep_arr[:, 0]] keep = torch.arange(pre_nms_scores.size()[0]).long().cuda() # apply bounding box deltas. re-scale to image coordinates. std_dev = torch.from_numpy(np.reshape(cf.rpn_bbox_std_dev, [1, cf.dim * 2])).float().cuda() scale = torch.from_numpy(cf.scale).float().cuda() refined_rois = mutils.apply_box_deltas_2D(pre_nms_anchors / scale, pre_nms_deltas * std_dev) * scale \ if cf.dim == 2 else mutils.apply_box_deltas_3D(pre_nms_anchors / scale, pre_nms_deltas * std_dev) * scale # round and cast to int since we're deadling with pixels now refined_rois = mutils.clip_to_window(cf.window, refined_rois) pre_nms_rois = torch.round(refined_rois) for j, b in enumerate(mutils.unique1d(pre_nms_batch_ixs)): bixs = torch.nonzero(pre_nms_batch_ixs == b)[:, 0] bix_class_ids = pre_nms_class_ids[bixs] bix_rois = pre_nms_rois[bixs] bix_scores = pre_nms_scores[bixs] for i, class_id in enumerate(mutils.unique1d(bix_class_ids)): ixs = torch.nonzero(bix_class_ids == class_id)[:, 0] # nms expects boxes sorted by score. ix_rois = bix_rois[ixs] ix_scores = bix_scores[ixs] ix_scores, order = ix_scores.sort(descending=True) ix_rois = ix_rois[order, :] ix_scores = ix_scores class_keep = nms.nms(ix_rois, ix_scores, cf.detection_nms_threshold) # map indices back. class_keep = keep[bixs[ixs[order[class_keep]]]] # merge indices over classes for current batch element b_keep = class_keep if i == 0 else mutils.unique1d(torch.cat((b_keep, class_keep))) # only keep top-k boxes of current batch-element. top_ids = pre_nms_scores[b_keep].sort(descending=True)[1][:cf.model_max_instances_per_batch_element] b_keep = b_keep[top_ids] # merge indices over batch elements. batch_keep = b_keep if j == 0 else mutils.unique1d(torch.cat((batch_keep, b_keep))) keep = batch_keep # arrange output. result = torch.cat((pre_nms_rois[keep], pre_nms_batch_ixs[keep].unsqueeze(1).float(), pre_nms_class_ids[keep].unsqueeze(1).float(), pre_nms_scores[keep].unsqueeze(1), pre_nms_regressions[keep]), dim=1) return result def gt_anchor_matching(cf, anchors, gt_boxes, gt_class_ids=None, gt_regressions=None): """Given the anchors and GT boxes, compute overlaps and identify positive anchors and deltas to refine them to match their corresponding GT boxes. anchors: [num_anchors, (y1, x1, y2, x2, (z1), (z2))] gt_boxes: [num_gt_boxes, (y1, x1, y2, x2, (z1), (z2))] gt_class_ids (optional): [num_gt_boxes] Integer class IDs for one stage detectors. in RPN case of Mask R-CNN, set all positive matches to 1 (foreground) gt_regressions: [num_gt_rgs, n_rg_feats], if None empty rg_targets are returned Returns: anchor_class_matches: [N] (int32) matches between anchors and GT boxes. class_id = positive anchor, -1 = negative anchor, 0 = neutral. i.e., positively matched anchors are marked by class_id (which is >0). anchor_delta_targets: [N, (dy, dx, (dz), log(dh), log(dw), (log(dd)))] Anchor bbox deltas. anchor_rg_targets: [n_anchors, n_rg_feats] """ anchor_class_matches = np.zeros([anchors.shape[0]], dtype=np.int32) anchor_delta_targets = np.zeros((cf.rpn_train_anchors_per_image, 2*cf.dim)) if gt_regressions is not None: if 'regression_bin' in cf.prediction_tasks: anchor_rg_targets = np.zeros((cf.rpn_train_anchors_per_image,)) else: anchor_rg_targets = np.zeros((cf.rpn_train_anchors_per_image, cf.regression_n_features)) else: anchor_rg_targets = np.array([]) anchor_matching_iou = cf.anchor_matching_iou if gt_boxes is None: anchor_class_matches = np.full(anchor_class_matches.shape, fill_value=-1) return anchor_class_matches, anchor_delta_targets, anchor_rg_targets # for mrcnn: anchor matching is done for RPN loss, so positive labels are all 1 (foreground) if gt_class_ids is None: gt_class_ids = np.array([1] * len(gt_boxes)) # Compute overlaps [num_anchors, num_gt_boxes] overlaps = mutils.compute_overlaps(anchors, gt_boxes) # Match anchors to GT Boxes # If an anchor overlaps a GT box with IoU >= anchor_matching_iou then it's positive. # If an anchor overlaps a GT box with IoU < 0.1 then it's negative. # Neutral anchors are those that don't match the conditions above, # and they don't influence the loss function. # However, don't keep any GT box unmatched (rare, but happens). Instead, # match it to the closest anchor (even if its max IoU is < 0.1). # 1. Set negative anchors first. They get overwritten below if a GT box is # matched to them. Skip boxes in crowd areas. anchor_iou_argmax = np.argmax(overlaps, axis=1) anchor_iou_max = overlaps[np.arange(overlaps.shape[0]), anchor_iou_argmax] if anchors.shape[1] == 4: anchor_class_matches[(anchor_iou_max < 0.1)] = -1 elif anchors.shape[1] == 6: anchor_class_matches[(anchor_iou_max < 0.01)] = -1 else: raise ValueError('anchor shape wrong {}'.format(anchors.shape)) # 2. Set an anchor for each GT box (regardless of IoU value). gt_iou_argmax = np.argmax(overlaps, axis=0) for ix, ii in enumerate(gt_iou_argmax): anchor_class_matches[ii] = gt_class_ids[ix] # 3. Set anchors with high overlap as positive. above_thresh_ixs = np.argwhere(anchor_iou_max >= anchor_matching_iou) anchor_class_matches[above_thresh_ixs] = gt_class_ids[anchor_iou_argmax[above_thresh_ixs]] # Subsample to balance positive anchors. ids = np.where(anchor_class_matches > 0)[0] extra = len(ids) - (cf.rpn_train_anchors_per_image // 2) if extra > 0: # Reset the extra ones to neutral ids = np.random.choice(ids, extra, replace=False) anchor_class_matches[ids] = 0 # Leave all negative proposals negative for now and sample from them later in online hard example mining. # For positive anchors, compute shift and scale needed to transform them to match the corresponding GT boxes. ids = np.where(anchor_class_matches > 0)[0] ix = 0 # index into anchor_delta_targets for i, a in zip(ids, anchors[ids]): # closest gt box (it might have IoU < anchor_matching_iou) gt = gt_boxes[anchor_iou_argmax[i]] # convert coordinates to center plus width/height. gt_h = gt[2] - gt[0] gt_w = gt[3] - gt[1] gt_center_y = gt[0] + 0.5 * gt_h gt_center_x = gt[1] + 0.5 * gt_w # Anchor a_h = a[2] - a[0] a_w = a[3] - a[1] a_center_y = a[0] + 0.5 * a_h a_center_x = a[1] + 0.5 * a_w if cf.dim == 2: anchor_delta_targets[ix] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, np.log(gt_h / a_h), np.log(gt_w / a_w)] else: gt_d = gt[5] - gt[4] gt_center_z = gt[4] + 0.5 * gt_d a_d = a[5] - a[4] a_center_z = a[4] + 0.5 * a_d anchor_delta_targets[ix] = [ (gt_center_y - a_center_y) / a_h, (gt_center_x - a_center_x) / a_w, (gt_center_z - a_center_z) / a_d, np.log(gt_h / a_h), np.log(gt_w / a_w), np.log(gt_d / a_d)] # normalize. anchor_delta_targets[ix] /= cf.rpn_bbox_std_dev if gt_regressions is not None: anchor_rg_targets[ix] = gt_regressions[anchor_iou_argmax[i]] ix += 1 return anchor_class_matches, anchor_delta_targets, anchor_rg_targets ############################################################ # RetinaNet Class ############################################################ class net(nn.Module): """Encapsulates the RetinaNet model functionality. """ def __init__(self, cf, logger): """ cf: A Sub-class of the cf class model_dir: Directory to save training logs and trained weights """ super(net, self).__init__() self.cf = cf self.logger = logger self.build() if self.cf.weight_init is not None: logger.info("using pytorch weight init of type {}".format(self.cf.weight_init)) mutils.initialize_weights(self) else: logger.info("using default pytorch weight init") self.debug_acm = [] def build(self): """Build Retina Net architecture.""" # Image size must be dividable by 2 multiple times. h, w = self.cf.patch_size[:2] if h / 2 ** 5 != int(h / 2 ** 5) or w / 2 ** 5 != int(w / 2 ** 5): raise Exception("Image size must be divisible by 2 at least 5 times " "to avoid fractions when downscaling and upscaling." "For example, use 256, 320, 384, 448, 512, ... etc. ") backbone = utils.import_module('bbone', self.cf.backbone_path) self.logger.info("loaded backbone from {}".format(self.cf.backbone_path)) conv = backbone.ConvGenerator(self.cf.dim) # build Anchors, FPN, Classifier / Bbox-Regressor -head self.np_anchors = mutils.generate_pyramid_anchors(self.logger, self.cf) self.anchors = torch.from_numpy(self.np_anchors).float().cuda() self.fpn = backbone.FPN(self.cf, conv, operate_stride1=self.cf.operate_stride1).cuda() self.classifier = Classifier(self.cf, conv).cuda() self.bb_regressor = BBRegressor(self.cf, conv).cuda() if 'regression' in self.cf.prediction_tasks: self.roi_regressor = RoIRegressor(self.cf, conv, self.cf.regression_n_features).cuda() elif 'regression_bin' in self.cf.prediction_tasks: # classify into bins of regression values self.roi_regressor = RoIRegressor(self.cf, conv, len(self.cf.bin_labels)).cuda() else: self.roi_regressor = lambda x: [torch.tensor([]).cuda()] if self.cf.model == 'retina_unet': self.final_conv = conv(self.cf.end_filts, self.cf.num_seg_classes, ks=1, pad=0, norm=None, relu=None) def forward(self, img): """ :param img: input img (b, c, y, x, (z)). """ # Feature extraction fpn_outs = self.fpn(img) if self.cf.model == 'retina_unet': seg_logits = self.final_conv(fpn_outs[0]) selected_fmaps = [fpn_outs[i + 1] for i in self.cf.pyramid_levels] else: seg_logits = None selected_fmaps = [fpn_outs[i] for i in self.cf.pyramid_levels] # Loop through pyramid layers class_layer_outputs, bb_reg_layer_outputs, roi_reg_layer_outputs = [], [], [] # list of lists for p in selected_fmaps: class_layer_outputs.append(self.classifier(p)) bb_reg_layer_outputs.append(self.bb_regressor(p)) roi_reg_layer_outputs.append(self.roi_regressor(p)) # Concatenate layer outputs # Convert from list of lists of level outputs to list of lists # of outputs across levels. # e.g. [[a1, b1, c1], [a2, b2, c2]] => [[a1, a2], [b1, b2], [c1, c2]] class_logits = list(zip(*class_layer_outputs)) class_logits = [torch.cat(list(o), dim=1) for o in class_logits][0] bb_outputs = list(zip(*bb_reg_layer_outputs)) bb_outputs = [torch.cat(list(o), dim=1) for o in bb_outputs][0] if not 0 == roi_reg_layer_outputs[0][0].shape[0]: rg_outputs = list(zip(*roi_reg_layer_outputs)) rg_outputs = [torch.cat(list(o), dim=1) for o in rg_outputs][0] else: if self.cf.dim == 2: n_feats = np.array([p.shape[-2] * p.shape[-1] * self.cf.n_anchors_per_pos for p in selected_fmaps]).sum() else: n_feats = np.array([p.shape[-3]*p.shape[-2]*p.shape[-1]*self.cf.n_anchors_per_pos for p in selected_fmaps]).sum() rg_outputs = torch.zeros((selected_fmaps[0].shape[0], n_feats, self.cf.regression_n_features), dtype=torch.float32).fill_(float('NaN')).cuda() # merge batch_dimension and store info in batch_ixs for re-allocation. batch_ixs = torch.arange(class_logits.shape[0]).unsqueeze(1).repeat(1, class_logits.shape[1]).view(-1).cuda() flat_class_softmax = F.softmax(class_logits.view(-1, class_logits.shape[-1]), 1) flat_bb_outputs = bb_outputs.view(-1, bb_outputs.shape[-1]) flat_rg_outputs = rg_outputs.view(-1, rg_outputs.shape[-1]) detections = refine_detections(self.anchors, flat_class_softmax, flat_bb_outputs, flat_rg_outputs, batch_ixs, self.cf) return detections, class_logits, bb_outputs, rg_outputs, seg_logits def get_results(self, img_shape, detections, seg_logits, box_results_list=None): """ Restores batch dimension of merged detections, unmolds detections, creates and fills results dict. :param img_shape: :param detections: (n_final_detections, (y1, x1, y2, x2, (z1), (z2), batch_ix, pred_class_id, pred_score, pred_regression) :param box_results_list: None or list of output boxes for monitoring/plotting. each element is a list of boxes per batch element. :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixel-wise class predictions (b, 1, y, x, (z)) with values [0, 1] only fg. vs. bg for now. class-specific return of masks will come with implementation of instance segmentation evaluation. """ detections = detections.cpu().data.numpy() batch_ixs = detections[:, self.cf.dim*2] detections = [detections[batch_ixs == ix] for ix in range(img_shape[0])] if box_results_list == None: # for test_forward, where no previous list exists. box_results_list = [[] for _ in range(img_shape[0])] for ix in range(img_shape[0]): if not 0 in detections[ix].shape: boxes = detections[ix][:, :2 * self.cf.dim].astype(np.int32) class_ids = detections[ix][:, 2 * self.cf.dim + 1].astype(np.int32) scores = detections[ix][:, 2 * self.cf.dim + 2] regressions = detections[ix][:, 2 * self.cf.dim + 3:] # Filter out detections with zero area. Often only happens in early # stages of training when the network weights are still a bit random. if self.cf.dim == 2: exclude_ix = np.where((boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) <= 0)[0] else: exclude_ix = np.where( (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 5] - boxes[:, 4]) <= 0)[0] if exclude_ix.shape[0] > 0: boxes = np.delete(boxes, exclude_ix, axis=0) class_ids = np.delete(class_ids, exclude_ix, axis=0) scores = np.delete(scores, exclude_ix, axis=0) regressions = np.delete(regressions, exclude_ix, axis=0) if not 0 in boxes.shape: for ix2, score in enumerate(scores): if score >= self.cf.model_min_confidence: box = {'box_type': 'det', 'box_coords': boxes[ix2], 'box_score': score, 'box_pred_class_id': class_ids[ix2]} if "regression_bin" in self.cf.prediction_tasks: # in this case, regression preds are actually the rg_bin_ids --> map to rg value the bin stands for box['rg_bin'] = regressions[ix2].argmax() box['regression'] = self.cf.bin_id2rg_val[box['rg_bin']] else: box['regression'] = regressions[ix2] if hasattr(self.cf, "rg_val_to_bin_id") and \ any(['regression' in task for task in self.cf.prediction_tasks]): box['rg_bin'] = self.cf.rg_val_to_bin_id(regressions[ix2]) box_results_list[ix].append(box) results_dict = {} results_dict['boxes'] = box_results_list if seg_logits is None: # output dummy segmentation for retina_net. out_logits_shape = list(img_shape) out_logits_shape[1] = self.cf.num_seg_classes results_dict['seg_preds'] = np.zeros(out_logits_shape, dtype=np.float16) #todo: try with seg_preds=None? as to not carry heavy dummy preds. else: # output label maps for retina_unet. results_dict['seg_preds'] = F.softmax(seg_logits, 1).cpu().data.numpy() return results_dict def train_forward(self, batch, is_validation=False): """ train method (also used for validation monitoring). wrapper around forward pass of network. prepares input data for processing, computes losses, and stores outputs in a dictionary. :param batch: dictionary containing 'data', 'seg', etc. :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': pixelwise segmentation output (b, c, y, x, (z)) with values [0, .., n_classes]. 'torch_loss': 1D torch tensor for backprop. 'class_loss': classification loss for monitoring. """ img = batch['data'] gt_class_ids = batch['class_targets'] gt_boxes = batch['bb_target'] if 'regression' in self.cf.prediction_tasks: gt_regressions = batch["regression_targets"] elif 'regression_bin' in self.cf.prediction_tasks: gt_regressions = batch["rg_bin_targets"] else: gt_regressions = None if self.cf.model == 'retina_unet': var_seg_ohe = torch.FloatTensor(mutils.get_one_hot_encoding(batch['seg'], self.cf.num_seg_classes)).cuda() var_seg = torch.LongTensor(batch['seg']).cuda() img = torch.from_numpy(img).float().cuda() torch_loss = torch.FloatTensor([0]).cuda() # list of output boxes for monitoring/plotting. each element is a list of boxes per batch element. box_results_list = [[] for _ in range(img.shape[0])] detections, class_logits, pred_deltas, pred_rgs, seg_logits = self.forward(img) # loop over batch for b in range(img.shape[0]): # add gt boxes to results dict for monitoring. if len(gt_boxes[b]) > 0: for tix in range(len(gt_boxes[b])): gt_box = {'box_type': 'gt', 'box_coords': batch['bb_target'][b][tix]} for name in self.cf.roi_items: gt_box.update({name: batch[name][b][tix]}) box_results_list[b].append(gt_box) # match gt boxes with anchors to generate targets. anchor_class_match, anchor_target_deltas, anchor_target_rgs = gt_anchor_matching( self.cf, self.np_anchors, gt_boxes[b], gt_class_ids[b], gt_regressions[b] if gt_regressions is not None else None) # add positive anchors used for loss to results_dict for monitoring. pos_anchors = mutils.clip_boxes_numpy( self.np_anchors[np.argwhere(anchor_class_match > 0)][:, 0], img.shape[2:]) for p in pos_anchors: box_results_list[b].append({'box_coords': p, 'box_type': 'pos_anchor'}) else: anchor_class_match = np.array([-1]*self.np_anchors.shape[0]) anchor_target_deltas = np.array([]) anchor_target_rgs = np.array([]) anchor_class_match = torch.from_numpy(anchor_class_match).cuda() anchor_target_deltas = torch.from_numpy(anchor_target_deltas).float().cuda() anchor_target_rgs = torch.from_numpy(anchor_target_rgs).float().cuda() if self.cf.focal_loss: # compute class loss as focal loss as suggested in original publication, but multi-class. class_loss = compute_focal_class_loss(anchor_class_match, class_logits[b], gamma=self.cf.focal_loss_gamma) # sparing appendix of negative anchors for monitoring as not really relevant else: # compute class loss with SHEM. class_loss, neg_anchor_ix = compute_class_loss(anchor_class_match, class_logits[b]) # add negative anchors used for loss to results_dict for monitoring. neg_anchors = mutils.clip_boxes_numpy( self.np_anchors[np.argwhere(anchor_class_match.cpu().numpy() == -1)][neg_anchor_ix, 0], img.shape[2:]) for n in neg_anchors: box_results_list[b].append({'box_coords': n, 'box_type': 'neg_anchor'}) rg_loss = compute_rg_loss(self.cf.prediction_tasks, anchor_target_rgs, pred_rgs[b], anchor_class_match) bbox_loss = compute_bbox_loss(anchor_target_deltas, pred_deltas[b], anchor_class_match) torch_loss += (class_loss + bbox_loss + rg_loss) / img.shape[0] results_dict = self.get_results(img.shape, detections, seg_logits, box_results_list) results_dict['seg_preds'] = results_dict['seg_preds'].argmax(axis=1).astype('uint8')[:, np.newaxis] if self.cf.model == 'retina_unet': seg_loss_dice = 1 - mutils.batch_dice(F.softmax(seg_logits, dim=1),var_seg_ohe) seg_loss_ce = F.cross_entropy(seg_logits, var_seg[:, 0]) torch_loss += (seg_loss_dice + seg_loss_ce) / 2 #self.logger.info("loss: {0:.2f}, class: {1:.2f}, bbox: {2:.2f}, seg dice: {3:.3f}, seg ce: {4:.3f}, " # "mean pixel preds: {5:.5f}".format(torch_loss.item(), batch_class_loss.item(), batch_bbox_loss.item(), # seg_loss_dice.item(), seg_loss_ce.item(), np.mean(results_dict['seg_preds']))) if 'dice' in self.cf.metrics: results_dict['batch_dices'] = mutils.dice_per_batch_and_class( results_dict['seg_preds'], batch["seg"], self.cf.num_seg_classes, convert_to_ohe=True) #else: #self.logger.info("loss: {0:.2f}, class: {1:.2f}, bbox: {2:.2f}".format( # torch_loss.item(), class_loss.item(), bbox_loss.item())) results_dict['torch_loss'] = torch_loss results_dict['class_loss'] = class_loss.item() return results_dict def test_forward(self, batch, **kwargs): """ test method. wrapper around forward pass of network without usage of any ground truth information. prepares input data for processing and stores outputs in a dictionary. :param batch: dictionary containing 'data' :return: results_dict: dictionary with keys: 'boxes': list over batch elements. each batch element is a list of boxes. each box is a dictionary: [[{box_0}, ... {box_n}], [{box_0}, ... {box_n}], ...] 'seg_preds': actually contain seg probabilities since evaluated to seg_preds (via argmax) in predictor. or dummy seg logits for real retina net (detection only) """ img = torch.from_numpy(batch['data']).float().cuda() detections, _, _, _, seg_logits = self.forward(img) results_dict = self.get_results(img.shape, detections, seg_logits) return results_dict ```
{ "source": "JINI7001/APTP2022", "score": 4 }
#### File: JINI7001/APTP2022/APTP2022_daeun.py ```python ''' bin_list = ["abc", "a'b"] n = 2 def binary_to_num(n, binary): i = 0 askii_num = 97 while (i < n): chr(askii_num) = 2**(n-i-1) askii_num += 1 i+= 1 for alphabet in bin_list: a = num = for binary_alp in bin_list: bin_list = binary_to_num(n, binary_alp) ''' ###################################bool_to_minterm############################################## #######################################다은이############################################# # 최종 목표 : minimum sop 만드는거~ # 계획 : essential찾고 inputlist = [[[1,5],"a'c'd"],[[5,7],"a'cd"],[[6,7],"a'bc"],[[0,1,8,9],"b'c'"],[[0,2,8,10],"b'd'"],[[2,6,10,14],"cd'"]] def findminsop(list): listt = list lista = [] listb = [] cov = [] for i in listt: temp = i[0] lista.append(i[0]) listb.append(i[1]) for k in temp: if k not in cov: cov.append(k) print(lista) #[[1, 5], [5, 7], [6, 7], [0, 1, 8, 9], [0, 2, 8, 10], [2, 6, 10, 14]] print(listb) #["a'c'd", "a'c'd", "a'c'd", "b'c'", "b'd'", "cd'"] print(cov) #[1, 5, 7, 6, 0, 8, 9, 2, 10, 14] nu = 0 fies =[] while nu<len(cov): fies.append(0) nu = nu+1 print(fies) #[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # essential 찾기 for i in lista: for k in i: a = 0 while a<len(cov): if k == cov[a]: fies[a] = fies[a] + 1 a = a+1 print(fies) #[2, 2, 2, 2, 2, 2, 1, 2, 2, 1] a = 0 essu = [] noessu=[] while a< len(fies): if fies[a] == 1: essu.append(cov[a]) else: noessu.append(cov[a]) a = a+1 essentialimplicant = [] b = 0 while b<len(lista): for i in lista[b]: if i in essu: essentialimplicant.append(listb[b]) b = b+1 for i in essentialimplicant: listb.remove(i) # 남은 implicant 항들 in literal c = 0 already = [] for i in lista: for k in i: for j in essu: if k == j: already.append(i) lista.remove(i) print("essential implicant =", essentialimplicant) print("essential implicant num =", already) print(listb) # 남은 implicant in 문자 print(lista) # 남은 implicant in 숫자 print(noessu) # 남은 커버해야 하는 문자 print("==============") al = [] for i in already: for j in i: al.append(j) if j in noessu: noessu.remove(j) #####################essential로 cover되는 애들 제거################## b = 0 while b< len(lista): jud = 0 for m in lista[b]: if m in al: jud = jud+1 if jud == len(lista[b]): lista.remove(lista[b]) listb.remove(listb[b]) b = b+1 print(noessu) # 이제 cover해야하는 숫자 print(listb) # essential로 커버되지 않은 implicant in 문자 print(lista) # essential로 커버되지 않은 implicant in 숫자 print("==============") last = [] b = 0 ### 야매 패트릭### k = 0 while b<len(lista): ovl = 0 for i in lista[b]: if i in noessu: ovl = ovl+1 if k<ovl: k = ovl box = lista[b] boxx = listb[b] lista.remove(box) listb.remove(boxx) lista.insert(0, box) listb.insert(0, boxx) b = b+1 boxx = noessu b = 0 while len(boxx) != 0: for i in lista[b]: if i in boxx: last.append(listb[b]) boxx.remove(i) b = b+1 llast = [] for i in last: if i not in llast: llast.append(i) print( "essential아닌 prime =", llast) print( "mim sop = ", essentialimplicant+llast) findminsop(inputlist) ######################################################################################### ###################################classification_group######################################### ''' # f를 1의 개수에 따라 group 으로 나누기. # f를 리스트의 형태로 제공받아서 각각 1의 개수를 구하고, 그 개수별로 그룹을 묶어서 그룹 안에 저장. def numsort(n): flag = 0 str_binary = bin(int(n)) i=0 for i in range (len(str_binary)): if(str_binary[i] == '1'): flag += 1 return flag def function3 (a, lst) : i=0 k=0 finallist = [ [] for k in range (int(a))] for i in range (len(lst)): finallist[numsort(lst[i])].append(lst[i]) return finallist i=0 a=input("자리수를 입력하세요 : ") n=int(input("자료의 개수를 입력하세요 : ")) list = [0] for i in range (n): list.append(input()) result=function3(a, list) for i in result: for j in i: print(j, end = ' ') print() ''' ###################################classification_group######################################### ```
{ "source": "jiniannet/jnt.py", "score": 2 }
#### File: jnt.py/examples/example.py ```python import os import time import sys sys.path.append('..') from jntemplate import Template,engine,BaseLoader,FileLoader class Article(object): def ___init___(self): self.basis_id = 0 self.category_id = 0 self.content = "" self.create_date = time.localtime(time.time()) self.default_picture = "" self.description = "" self.edit_date = time.localtime(time.time()) self.english_name = "" self.module_id = 0 self.title = "" class Product(object): def ___init___(self): self.basis_id = 0 self.category_id = 0 self.content = "" self.create_date = time.localtime(time.time()) self.date_price = 0 self.default_picture = "" self.description = "" self.download_url = "" self.edit_date = time.localtime(time.time()) self.english_name = "" self.exampleUrl = "" self.file_size = "" self.gateway = "" self.module_id = 0 self.title = "" class Category(object): def ___init___(self): self.category_id = 1 self.category_name = "栏目1" self.create_date = time.localtime(time.time()) self.deph = 1 self.english_name = "001" self.module_id = 1 class ProductModule(object): def ___init___(self): self.basis_id = 0 self.module_name = "" self.product_module_id = 0 class Help(object): def ___init___(self): self.basis_id = 0 self.category_id = 0 self.content = "" self.create_date = time.localtime(time.time()) self.default_picture = "" self.description = "" self.edit_date = time.localtime(time.time()) self.english_name = "" self.module_id = 0 self.title = "" class DbRead(object): def test(self,message, id, result): return "您输入的参数是有:%s %d %s" % message % id % str(result) def get_help_list(self,category, product, module, type_id): arr = [] arr.append(Help()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "下单后可以修改订单吗?" arr.append(Help()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "无货商品几天可以到货?" arr.append(Help()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "合约机资费如何计算?" arr.append(Help()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "可以开发票吗?" return arr def get_article_list(self,id): arr = [] arr.append(Article()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "购物流程" arr.append(Article()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "会员介绍" arr.append(Article()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "生活旅行/团购" arr.append(Article()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "常见问题" arr.append(Article()) arr[-1].basis_id = 301 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].default_picture = "" arr[-1].description = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "art001" arr[-1].module_id = 1 arr[-1].title = "联系客服" return arr def get_product_list(self): arr = [] arr.append(Product()) arr[-1].basis_id = 201 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].date_price = 245 arr[-1].default_picture = "" arr[-1].description = "" arr[-1].download_url = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "pro001" arr[-1].example_url = "" arr[-1].file_size = "564kb" arr[-1].gateway = "" arr[-1].module_id = 2 arr[-1].title = "产品1" arr.append(Product()) arr[-1].basis_id = 202 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].date_price = 245 arr[-1].default_picture = "" arr[-1].description = "" arr[-1].download_url = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "pro001" arr[-1].example_url = "" arr[-1].file_size = "564kb" arr[-1].gateway = "" arr[-1].module_id = 2 arr[-1].title = "产品2" arr.append(Product()) arr[-1].basis_id = 203 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].date_price = 245 arr[-1].default_picture = "" arr[-1].description = "" arr[-1].download_url = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "pro001" arr[-1].example_url = "" arr[-1].file_size = "564kb" arr[-1].gateway = "" arr[-1].module_id = 2 arr[-1].title = "产品3" arr.append(Product()) arr[-1].basis_id = 204 arr[-1].category_id = 1 arr[-1].content = "" arr[-1].create_date = time.localtime(time.time()) arr[-1].date_price = 245 arr[-1].default_picture = "" arr[-1].description = "" arr[-1].download_url = "" arr[-1].edit_date = time.localtime(time.time()) arr[-1].english_name = "pro001" arr[-1].example_url = "" arr[-1].file_size = "564kb" arr[-1].gateway = "" arr[-1].module_id = 2 arr[-1].title = "产品4" return arr def get_category_list(self,mode): arr = [] arr.append(Category()) arr[-1].category_id = 1 arr[-1].category_name = "栏目1" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "001" arr[-1].module_id = 1 arr.append(Category()) arr[-1].category_id = 2 arr[-1].category_name = "栏目2" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "002" arr[-1].module_id = 1 arr.append(Category()) arr[-1].category_id = 3 arr[-1].category_name = "栏目3" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "003" arr[-1].module_id = 1 arr.append(Category()) arr[-1].category_id = 4 arr[-1].category_name = "栏目4" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "004" arr[-1].module_id = 1 arr.append(Category()) arr[-1].category_id = 5 arr[-1].category_name = "栏目5" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "005" arr[-1].module_id = 1 arr.append(Category()) arr[-1].category_id = 6 arr[-1].category_name = "栏目6" arr[-1].create_date = time.localtime(time.time()) arr[-1].deph = 1 arr[-1].english_name = "006" arr[-1].module_id = 1 return arr def get_product_url(self,model): if model.english_name != None and model.english_name != "": return "/Product/%s" % model.english_name else: return "/Product?id=%s" % model.english_name def get_article_url(self,model): if model.english_name != None and model.english_name != "": return "/Article/%s" % model.english_name else: return "/Article?id=%s" % model.english_name def get_help_url(self,model): if model.english_name != None and model.english_name != "": return "/Help/%s" % model.english_name else: return "/Help?id=%s" % model.english_name def get_product_item(self,key): model = Product() model.basis_id = 1 model.category_id = 1 model.content = """<p style="text-align: center text-indent: 0"><img src="http://upload.chinaz.com/2015/0624/1435111490722.jpg" border="0" alt="视频网站 付费会员"></p> <p>6月24日报道&nbsp文/肖芳</p> <p>近日,爱奇艺高调宣布其月度付费VIP会员数已达501.7万,并称视频付费业务台风已经到来。而阿里巴巴宣布进入视频付费市场,将推出付费视频服务TBO(Tmall&nbspBox&nbspOffice),它的模式将更接近美国在线影片租赁提供商Netflix,其中90%的TBO内容都将采用付费观看模式。</p> <p>这不是业界首次探讨视频网站收费的可能性了。早在2008年,激动网就正式推出了付费点播品牌“激动派”,虽然2011年激动网声称80%的收入来自付费用户,如今却已转型淡出视频行业。其他的也基本都是“雷声大,雨点小”,付费没有形成足够的阵势。当时有说法称“谁第一个收费谁就第一个倒下”。</p> <p>时隔5年视频网站再次呼唤用户付费。业内人士透露,目前视频网站或片方都已经在酝酿网络付费看剧,试图在网络付费领域上分一杯羹,最快明年就会试水。这一次的底气在哪?谈论这个问题之前不妨先从5年前的收费为何没有成气候说起。</p> <p><strong>早年内容不成熟&nbsp付费1~2元也无人问津</strong></p> <p>2010年,迅雷看看推出向用户收费的“红宝石影院”业务,一期推广高清下载,二期将推广高清在线观看,一部电影收费大约1元-2元钱,高清在线观看的收费项目将成为现实。</p> <p>由迅雷看看当时的宣传页面可以窥见“红宝石影院”的初衷:“买一张盗版碟至少要花5元钱,而在红宝石上下载一部正版高清电影最低只花2元钱。正版比盗版还便宜。”虽然在业务推出前期,迅雷看看展开声势浩大的宣传,但“红宝石影院”后来也销声匿迹,迅雷看看的营收依然是以传统的广告为主。今年年初,迅雷把一直处于亏损状态下的看看出售,免于拖累上市公司。</p> <p>花2元看正版,比5元买盗版碟还便宜,这个初衷是好的,但也要考虑收费实施的基础。一方面是用户付费意愿,另一方面是视频网站的服务能否达到收费的水平。</p> <p>在用户付费意愿上,2010年某门户网站曾经做过一项调查。结果显示,愿意为视频点播付费的网友只有383名,而不愿意的则达到6095名,后者是前者的15倍。由此可见,只有6%的网友愿意付费,没有用户的支持视频网站畅想的再美好都无济于事。</p> <p>另一方面,2010年前后,在线视频的品质还不够好。由于带宽等因素的限制,视频很难达到高清的效果。同时,视频网站购买版权的意识也不如现在强,很多内容都来自网友上传,体验很差。</p> <p>当时,另一家坚持免费观看的视频网站负责人道出了视频收费不宜大规模推广的原委。她指出,要想让用户掏钱看视频,首先要满足两个条件:一是网站要有独家的、不可替代的内容,否则网友不会“买账”;二是用户的使用习惯。对于前者,可以靠投入重金买版权来实现;但对于后者,她并不乐观地表示,让习惯了免费看视频的用户掏钱买收视权,短期内是不太现实的。</p> <p><strong>服务升级后&nbsp视频网站亟需付费扭转巨亏</strong></p> <p>可以看到,2010年之后视频网站在朝着正版化、高清化发展。视频网站在不断砸钱购买内容,同时也在改善视频播放技术,让网友获得更好的观看体验。</p> <p>对比2010年优酷网和如今优酷土豆的财报便可以发现端倪。2010年第四季度,优酷的内容成本为1250万美元,比2009年增长11%,净亏损为570万美元。2014年第四季度,优酷土豆的内容成本为9,720万美元,是2010年同期的8倍,净亏损为5130万美元,接近2010年同期的10倍。</p> <p>越是投入越是亏得厉害,不只是优酷,这是近5年来视频行业发展的缩影。可以看到多家视频网站因资金问题“卖身”,而现在留下的视频网站背后都背靠大树。没有巨头的支持,视频“烧钱”的游戏很难再持续下去。</p> <p style="text-align: center text-indent: 0"><img src="http://upload.chinaz.com/2015/0624/1435111500344.jpg" border="0" alt="视频网站 付费会员"></p> <p>视频网站付费会员增长超700% 苦熬7年再度掀付费潮</p> <p>归根到底,这是由于广告收入的增速远远不及内容成本的增速(图为2014年优酷土豆内容成本和广告收入成本的同比增长),依靠内容投入拉动营收就如同一个无底洞,只会将自己陷得越来越深。</p> """ model.create_date = time.localtime(time.time()) model.date_price = 940 model.default_picture = "http://upload.chinaz.com/2015/0624/1435111500344.jpg" model.description = "近日,爱奇艺高调宣布其月度付费VIP会员数已达501.7万,并称视频付费业务台风已经到来。而阿里巴巴宣布进入视频付费市场,将推出付费视频服务TBO(Tmall&nbspBox&nbspOffice),它的模式将更接近美国在线影片租赁提供商Netflix,其中90%的TBO内容都将采用付费观看模式。" model.edit_date = time.localtime(time.time()) model.english_name = "001" model.example_url = "http://www.baidu.com" model.file_size = "54KB" model.title = "视频网站付费会员增长超700% 苦熬7年再度掀付费潮" return model def get_default_int(self,key, defaultValue): return defaultValue def get_product_module(self,product): arr = [] arr.append(ProductModule()) arr[-1].basis_id = 101 arr[-1].module_name = "测试模块" arr[-1].product_module_id = product arr.append(ProductModule()) arr[-1].basis_id = 102 arr[-1].module_name = "订单模块" arr[-1].product_module_id = product arr.append(ProductModule()) arr[-1].basis_id = 103 arr[-1].module_name = "产品模块" arr[-1].product_module_id = product arr.append(ProductModule()) arr[-1].basis_id = 104 arr[-1].module_name = "新闻模块" arr[-1].product_module_id = product return arr def get_page_index(self): return 1 def get_pager(self): return '<span>首页</span> <span>上一页</span> <a href=\"?page=1\">1/a> <span>下上一页</span> <span>末页</span>' if __name__ == '__main__': loader = FileLoader() db = DbRead() loader.directories.append(os.getcwd()+'\\templets\\') loader.directories.append(os.getcwd()+'\\templets\\public\\') print(os.getcwd()+'\\templets\\') engine.configure(loader=loader) template = engine.load("questionlist.html") template.set("func", db) html = template.render() print(html) ``` #### File: jnt.py/jntemplate/parsers.py ```python from abc import abstractclassmethod, ABCMeta from jntemplate.core import VariableTag, ValueTag, IfTag, ElseifTag, ElseTag, \ ForeachTag, FunctionTag, ExpressionTag, SetTag, EndTag, TextTag, ReferenceTag,\ IncludeTag, IndexTag, LoadTag import jntemplate.utils from jntemplate.nodes import TokenKind __all__ = ["VariableParser", "StringParser", "SetParser", "NumberParser", "LoadParser", "IncludeParser", "IfParser", "FunctionParser", "ForeachParser", "EndParser", "ElseifParser", "EleseParser", "BooleanParser", "IndexParser", "ComplexParser"] class TagParser(object): @abstractclassmethod def parse(self, template_parser, tc): pass class VariableParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and len(tc) == 1 \ and tc[0].kind == TokenKind.text_data: tag = VariableTag() tag.name = tc[0].string() return tag return None class IndexParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and len(tc) > 3 \ and tc[-1].kind == TokenKind.right_bracket: y = len(tc) - 1 x = -1 pos = 0 i = y while i >= 0: if tc[i].kind == TokenKind.dot and pos == 0: return None if tc[i].kind == TokenKind.right_bracket: pos += 1 i -= 1 continue if tc[i].kind == TokenKind.left_bracket: pos -= 1 if pos == 0 and x == -1: x = i i -= 1 if x == -1: return None tag = IndexTag() tag.container = template_parser.read(tc[0: x]) tag.index = template_parser.read(tc[x + 1: y]) return tag return None class StringParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and len(tc) == 3 \ and tc[0].kind == TokenKind.string_start \ and tc[1].kind == TokenKind.string \ and tc[2].kind == TokenKind.string_end: tag = ValueTag() tag.value = tc[1].text return tag return None class SetParser(TagParser): def parse(self, template_parser, tc): if tc == None or template_parser == None: return None if len(tc) == 5 \ and tc[0].text == "set" \ and tc[1].kind == TokenKind.left_parentheses \ and tc[3].text == "=" \ and tc[-1].kind == TokenKind.right_parentheses: tag = SetTag() tag.name = tc[2].text coll = tc[4: -1] tag.value = template_parser.read(coll) return tag # if len(tc) == 2 \ # and tc[0].kind == TokenKind.text_data \ # and tc[1].kind == TokenKind.operator \ # and (tc[1].text == "++" or tc[1].text == "--"): # tag = SetTag() # tag.name = tc[0].text # child = ExpressionTag() # child.add_child() # tag.value = template_parser.read(coll) # return tag if len(tc) > 2 \ and tc[0].kind == TokenKind.text_data \ and tc[1].text == "=": tag = SetTag() tag.name = tc[0].text coll = tc[2:] tag.value = template_parser.read(coll) return tag return None class NumberParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and len(tc) == 1 \ and tc[0].kind == TokenKind.number: tag = ValueTag() if tc[0].text.find('.') == -1: tag.value = int(tc[0].text) else: tag.value = float(tc[0].text) return tag return None class LoadParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 2 \ and tc[0].text == "load" \ and tc[1].kind == TokenKind.left_parentheses \ and tc[-1].kind == TokenKind.right_parentheses: tag = LoadTag() tag.path = template_parser.read(tc[2:-1]) return tag class IncludeParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 2 \ and tc[0].text == "include" \ and tc[1].kind == TokenKind.left_parentheses \ and tc[-1].kind == TokenKind.right_parentheses: tag = IncludeTag() tag.path = template_parser.read(tc[2:-1]) return tag class IfParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 3 \ and tc[0].text == "if": # n = len(tc) if tc[1].kind != TokenKind.left_parentheses \ or tc[-1].kind != TokenKind.right_parentheses: raise Exception("syntax error near :%s line:%d col:%d" % jntemplate.utils.token_concat( tc) % tc[0].begin_line % tc[0].begin_column) tag = IfTag() child_tag = ElseifTag() coll = tc[2: -1] child_tag.test = template_parser.read(coll) child_tag.first = coll[0] tag.add_child(child_tag) while template_parser.next(): if isinstance(template_parser.tag, EndTag): tag.add_child(template_parser.tag) return tag elif isinstance(template_parser.tag, ElseifTag) or \ isinstance(template_parser.tag, ElseTag): tag.add_child(template_parser.tag) else: tag.children[-1].add_child(template_parser.tag) raise Exception("if is not properly closed by a end tag:%s line:%d col:%d" % jntemplate.utils.token_concat(tc) % tc[0].begin_line % tc[0].begin_column) return None class FunctionParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 2 \ and tc[0].kind == TokenKind.text_data \ and tc[1].kind == TokenKind.left_parentheses \ and tc[-1].kind == TokenKind.right_parentheses: tag = FunctionTag() tag.name = tc[0].text pos = 0 start = 2 end = 0 i = 2 max = len(tc) while i < max: end = i if tc[i].kind == TokenKind.comma: if pos == 0: coll = tc[start: end] if len(coll) > 0: tag.add_child(template_parser.read(coll)) start = i + 1 else: if tc[i].kind == TokenKind.left_parentheses: pos += 1 elif tc[i].kind == TokenKind.right_parentheses: pos == 1 if i == len(tc) - 1: coll = tc[start: end] if len(coll) > 0: tag.add_child(template_parser.read(coll)) i += 1 return tag return None class ForeachParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 4 \ and (tc[0].text == "for" or tc[0].text == "foreach") \ and tc[1].kind == TokenKind.left_parentheses \ and tc[2].kind == TokenKind.text_data \ and tc[3].text == "in" \ and tc[-1].kind == TokenKind.right_parentheses: tag = ForeachTag() tag.name = tc[2].text coll = tc[4:-1] tag.source = template_parser.read(coll) while template_parser.next(): tag.add_child(template_parser.tag) if isinstance(template_parser.tag, EndTag): return tag raise Exception("foreach is not properly closed by a end tag:%s line:%d col:%d" % jntemplate.utils.token_concat(tc) % tc[0].begin_line % tc[0].begin_column) class EndParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) == 1 \ and tc[0].text == "end": return EndTag() return None class ElseifParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 3 \ and (tc[0].text == "elseif" or tc[0].text == "elif") \ and tc[1].kind == TokenKind.left_parentheses \ and tc[-1].kind == TokenKind.right_parentheses: tag = ElseifTag() coll = tc[2:-1] tag.test = template_parser.read(coll) return tag return None class EleseParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) == 1 \ and tc[0].text == "else": return ElseTag() return None class BooleanParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) == 1 \ and (tc[0].text == "true" or tc[0].text == "false"): tag = ValueTag() if tc[0].text == "true": tag.value = True else: tag.value = False return tag return None class ComplexParser(TagParser): def parse(self, template_parser, tc): if tc != None \ and template_parser != None \ and len(tc) > 2: start = 0 end = 0 pos = 0 is_func = False data = [] queue = [] for i in range(len(tc)): end = i if tc[i].kind == TokenKind.left_parentheses: if pos == 0: if i > 0 and tc[i - 1].kind == TokenKind.text_data: is_func = True pos += 1 elif tc[i].kind == TokenKind.right_parentheses: if pos > 0: pos -= 1 else: raise Exception("syntax error near ):%s line:%d col:%d" % jntemplate.utils.token_concat( tc) % tc[0].begin_line % tc[0].begin_column) if pos == 0: if not is_func: queue.append(tc[start + 1: end]) else: queue.append(tc[start: end+1]) data.append(None) start = i + 1 elif pos == 0 and (tc[i].kind == TokenKind.dot or tc[i].kind == TokenKind.operator): if end > start: queue.append(tc[start: end]) data.append(None) start = i + 1 data.append(tc[i]) if i == len(tc) - 1 and end >= start: if start == 0 and end == i: raise Exception("Unexpected tag:%s line:%d col:%d" % jntemplate.utils.token_concat( tc) % tc[0].begin_line % tc[0].begin_column) queue.append(tc[start: end+1]) data.append(None) start = i + 1 if len(queue) == 1 and queue[0] == tc: return None tags = [] i = 0 while i < len(data): if data[i] == None: tags.append(template_parser.read(queue[0])) del queue[0] elif data[i].kind == TokenKind.dot: if len(tags) == 0 or i == len(data) - 1 or data[i + 1] != None: raise Exception("syntax error near :%s line:%d col:%d" % jntemplate.utils.token_concat( tc) % tc[0].begin_line % tc[0].begin_column) if isinstance(tags[-1], ReferenceTag): tags[-1].add_child(template_parser.read(queue[0])) del queue[0] else: t = ReferenceTag() t.add_child(tags[-1]) t.add_child(template_parser.read(queue[0])) del queue[0] tags[-1] = t i += 1 elif data[i].kind == TokenKind.operator: tags.append(TextTag()) tags[-1].first = data[i] i += 1 if len(tags) == 1: return tags[0] if len(tags) > 1: t = ExpressionTag() for i in range(len(tags)): t.add_child(tags[i]) tags.clear() return t i += 1 return None ```
{ "source": "jinie/crypto_tracker", "score": 2 }
#### File: jinie/crypto_tracker/crypto_tracker.py ```python import json import time from io import BytesIO from pprint import pprint import locale import PIL import inkyphat import krakenex import matplotlib matplotlib.use('Agg') import pandas as pd import requests from PIL import Image, ImageDraw, ImageFont from pykrakenapi import KrakenAPI from collections import defaultdict import collections import functools class memoized(object): '''Decorator. Caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned (not reevaluated). ''' def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): if not isinstance(args, collections.Hashable): # uncacheable. a list, for instance. # better to not cache than blow up. return self.func(*args) if args in self.cache: return self.cache[args] else: value = self.func(*args) self.cache[args] = value return value def __repr__(self): '''Return the function's docstring.''' return self.func.__doc__ def __get__(self, obj, objtype): '''Support instance methods.''' return functools.partial(self.__call__, obj) class Config(object): def __init__(self, filename): with open(filename, 'rt') as f: conf = json.loads(f.read()) for k,v in conf.items(): setattr(self, k, v) def get_currencies(self): return { 'XRP': XrpHandler(), 'ETH': EthHandler(), 'XBT': XbtHandler(), 'LTC': LtcHandler(), } class CurrencyHandler(object): '''Handler base class for a crypto currency''' def __init__(self, config): self.config = config self._fiat_currency = config.fiat_currency def update(self, accounts): raise Exception('Not implemented') @memoized def get_logo_image(self,url): try: req = requests.get(url) image = BytesIO(req.content) img = PIL.Image.open(image) img = img.convert('P') img.putpalette((0, 0, 0, 255, 255, 255, 255, 0, 0) + (0, 0, 0)*252) img.thumbnail((70, 104)) return img except: return None def logo(self): return None def fiat_currency(self): return self._fiat_currency class LtcHandler(CurrencyHandler): def update(self, accounts): total = 0 for act in accounts: url = 'https://api.blockcypher.com/v1/ltc/main/addrs/{}'.format( act) req = requests.get(url) balance = json.loads(req.text) if 'final_balance' in balance: total += balance['final_balance'] return total / 100000000 def logo(self): return self.get_logo_image('http://ltc.133.io/images/logosizes/ltc800.png') class XbtHandler(CurrencyHandler): def update(self, accounts): url = 'https://www.blockonomics.co/api/balance' addrs = "" for a in accounts: addrs += a + " " body = json.dumps({'addr': addrs}) req = requests.post(url, data=body) balances = json.loads(req.text) total = 0 if 'response' not in balances: pprint(balances) return 0 for act in balances['response']: total += act['confirmed'] return total/100000000 def logo(self): return self.get_logo_image('https://bitcoin.org/img/icons/opengraph.png') class XrpHandler(CurrencyHandler): def update(self, accounts): total = 0 for account in accounts: url = "https://data.ripple.com/v2/accounts/{}/balances".format( account) req = requests.get(url) balances = json.loads(req.text) for b in balances['balances']: if b['currency'] == 'XRP': total += float(b['value']) return total def logo(self): return self.get_logo_image('https://www.shareicon.net/data/512x512/2016/07/08/117527_ripple_512x512.png') class EthHandler(CurrencyHandler): def update(self, accounts): total = 0 for act in accounts: url = 'https://api.ethplorer.io/getAddressInfo/{}?apiKey=freekey'.format( act) req = requests.get(url) balances = json.loads(req.text) total += balances['ETH']['balance'] return total def logo(self): return self.get_logo_image('https://www.ethereum.org/images/logos/ETHEREUM-ICON_Black_small.png') class CryptoTracker(object): def __init__(self,config): api = krakenex.API() self.k = KrakenAPI(api) self.config = config def get_exchange_rate(self, crypto, fiat): pair = "X{}Z{}".format(crypto, fiat) ticker = self.k.get_ticker_information(pair) return ticker def get_currencies(self): return { 'XRP': XrpHandler(self.config), 'ETH': EthHandler(self.config), 'XBT': XbtHandler(self.config), 'LTC': LtcHandler(self.config), } def get_local_currency(self): return self.config.local_currency def get_fiat_currency(self): return self.config.fiat_currency def get_exchange_rates(self, base=None): url = 'https://api.fixer.io/latest' if base is not None: url += '?base={}'.format(base) req = requests.get(url) rates = json.loads(req.text) return rates['rates'] def update_currencies(self): accounts = self.config.accounts balances = defaultdict(float) rates = defaultdict(float) crypto_currencies = self.get_currencies() for curr in accounts.keys(): ohlc = self.get_exchange_rate(curr, crypto_currencies[curr].fiat_currency()) if ohlc is not None and len(ohlc) > 0: rates[curr] = float(ohlc.iloc[0]['c'][0]) balances[curr] += crypto_currencies[curr].update(accounts[curr]) positions = {curr: balances[curr] * rates[curr] for curr in balances if curr in rates and curr in balances} return balances, positions class DisplayHandler(object): def __init__(self, config, cryptotracker): locale.setlocale(locale.LC_ALL, '') self.cryptotracker = cryptotracker self.config = config def cga_quantize(self, image): pal_image = Image.new("P", (1, 1)) pal_image.putpalette( (0, 0, 0, 255, 0, 0, 255, 255, 255) + (0, 0, 0)*252) return image.convert("RGB").quantize(palette=pal_image) def ax_to_image(self, ax): buf = BytesIO() fig = ax.get_figure() fig.savefig(buf, format='png', dpi=fig.dpi, bbox_inches='tight') im = Image.new('RGB', (inkyphat.WIDTH, inkyphat.HEIGHT), (255, 255, 255)) pi = Image.open(buf) pi.thumbnail((inkyphat.WIDTH, inkyphat.HEIGHT)) w, h = pi.size xo = (inkyphat.WIDTH - w)//2 yo = (inkyphat.HEIGHT - h)//2 im.paste(pi, (xo, yo), pi) return self.cga_quantize(im) def get_position_image(self, positions): v = pd.Series(positions) plot = v.plot(kind='bar', figsize=(2.3, 1), fontsize=13, color=['r', ]) plot.set_facecolor('w') x_axis = plot.axes.get_yaxis() x_axis.set_visible(False) return self.ax_to_image(plot) def create_image(self, logo, lines): im = Image.new("P", (inkyphat.WIDTH, inkyphat.HEIGHT), 255) im.putpalette(((0, 0, 0, 255, 0, 0, 255, 255, 255) + (0, 0, 0)*252)) draw = ImageDraw.Draw(im) draw.rectangle((0, 0, inkyphat.WIDTH, inkyphat.HEIGHT), fill='white', outline='white') x_offset = 0 if logo is not None: logo = self.cga_quantize(logo) w, h = logo.size ypos = (inkyphat.HEIGHT - h)//2 im.paste(logo, (0, ypos)) x_offset = 71 max_fontsize = (inkyphat.HEIGHT-len(lines)) // len(lines) y_offset = (inkyphat.HEIGHT - (max_fontsize * len(lines))) // 2 for text in lines: fontsize = max_fontsize fits = False while not fits and fontsize > 5: font = ImageFont.truetype(inkyphat.fonts.FredokaOne, fontsize) w, h = font.getsize(text) if w < inkyphat.WIDTH - x_offset: fits = True else: fontsize -= 1 draw.text((x_offset, y_offset), text, (255, 0, 0), font=font) y_offset += fontsize + 1 return im def get_24hour_value(self, current_value, balances): since = time.time() - 60*60*24 old_value = 0 crypto_currencies = self.cryptotracker.get_currencies() for curr in balances.keys(): ch = crypto_currencies[curr] if balances[curr] <= 0: continue oh = self.cryptotracker.k.get_ohlc_data('X{}Z{}'.format(curr, ch.fiat_currency()), interval=5, since=since, ascending=True) old_value += balances[curr] * oh[0]['close'][-1] change = current_value - old_value return (100/old_value)*change def standing_images(self): balances, values = self.cryptotracker.update_currencies() rates = self.cryptotracker.get_exchange_rates() crypto_currencies = self.cryptotracker.get_currencies() local_currency = self.cryptotracker.get_local_currency() local_total = round(sum(values.values()), 2) * \ rates[self.cryptotracker.get_local_currency()] yield self.get_position_image(values) yield self.create_image(None, lines=['Total Holdings', locale.currency(local_total, grouping=True, symbol=True, international=True),'24 Hour change', '{} %'.format(round(self.get_24hour_value(sum(values.values()), balances)), 2)]) for curr in balances.keys(): total = round(values[curr]*rates[local_currency], 2) yield self.create_image(crypto_currencies[curr].logo(), (curr, str(balances[curr]), locale.currency(total, symbol=True, grouping=True, international=True))) def show_slideshow(self, delay=30): for image in self.standing_images(): inkyphat.set_image(image) inkyphat.show() time.sleep(delay) def main(): config = Config('config.json') tracker = CryptoTracker(config) display = DisplayHandler(config, tracker) while True: display.show_slideshow() if __name__ == '__main__': main() ```
{ "source": "jinified/kronos", "score": 3 }
#### File: kronos/kronos/kronos.py ```python from operator import itemgetter from datetime import datetime, timedelta def getRotationCapacity(rotationId, startDate, endDate, assignments): """ Calculate number of users assigned to a particular rotation during the specified duration """ start = datetime.strptime(startDate, "%d%m%Y") end = datetime.strptime(endDate, "%d%m%Y") duration = int((end - start).days / 7.0) # Weeks involved during the rotation weeks = [(start + timedelta(weeks=x)).strftime("%W%Y") for x in range(0, duration)] capacity = sum(itemgetter(*weeks)(assignments[rotationId][0][0])) return capacity def score_assignment( assignments, solution, earliestAvailableDate, core_rotations=["PMO", "PE", "SE", "PM"], rotation_duration={ "PMO": 12, "PE": 12, "SE": 12, "PM": 12, "SYS": 12, "ARC": 12, "ANA": 12, }, ): """ Calculate loss function for suggested solution (negative = better) Parameters: assignments (dict): global assignment object by rotation solution (dict): rotation assignment for a user earliestAvailableDate (date): earliest date where a user can be assigned a rotation core_rotations (list): rotation that should be completed first rotation_duration (dict): duration of each rotation """ print(solution) # SOFT CONSTRAINT 1 - Core rotations should be completed in the first 4 rotations if possible core_first_loss = sum( [ -3 if x[0] in core_rotations else 0 for x in solution if int(x[1]) <= len(core_rotations) ] ) # SOFT CONSTRAINT 2 - External Assignment must be assigned last external_assignment_loss = ( 99 if "EXT" in [x[0] for x in solution] and solution[-1][0] != "EXT" else 0 ) # Calculate timing of each rotation from solution solution = [ ( x[0], rotation_duration[x[0]] + (sum([rotation_duration[x[0]] for x in solution[:i]]) if i != 0 else 0), ) for i, x in enumerate(solution) ] startDate = earliestAvailableDate schedule = [] for x in solution: endDate = startDate + timedelta(weeks=x[1]) - timedelta(days=1) # Make sure the date falls on weekday if endDate.weekday() >= 5: endDate -= timedelta(endDate.weekday() - 4) schedule.append( (x[0], startDate.strftime("%d%m%Y"), endDate.strftime("%d%m%Y")) ) startDate += timedelta(weeks=x[1]) spread_first_loss = sum( [getRotationCapacity(x[0], x[1], x[2], assignments) for x in schedule] ) loss = core_first_loss + external_assignment_loss + spread_first_loss return loss def schedule2assignments(schedule): """ Convert schedule object to assignment object """ rotations = {} for userId, userSchedule in schedule.items(): for rotation in userSchedule: id = rotation["rotationId"] if id not in rotations: rotations[id] = [[{}], []] print(rotations[id][0][0]) startDate, endDate = itemgetter("startDate", "endDate")(rotation) start = datetime.strptime(startDate, "%d%m%Y") end = datetime.strptime(endDate, "%d%m%Y") duration = int((end - start).days / 7.0) for i in range(duration): date = (start + timedelta(weeks=i)).strftime("%W%Y") if date not in rotations[id][0][0]: rotations[id][0][0][date] = 0 rotations[id][0][0][date] += 1 rotations[id][1].append((userId, startDate, endDate)) sortedDate = sorted(list(rotations[id][0][0].keys())) if len(rotations[id][0]) < 2: rotations[id][0].append(sortedDate[0]) rotations[id][0].append(sortedDate[-1]) elif sortedDate[0] < rotations[id][0][1]: rotations[id][0][1] = sortedDate[0] elif len(rotations[id][0]) > 2 and sortedDate[-1] > rotations[id][0][2]: rotations[id][0][2] = sortedDate[-1] print(rotations) return rotations def assignments2schedule(assignments): """ Convert assignment object to overall schedule """ users = {} for rotationId, rotationInfo in assignments.items(): for userId, userAssignment in rotationInfo[1].items(): if userId not in users: users[userId] = [] users[userId].append( { "rotationId": rotationId, "startDate": userAssignment[0], "endDate": userAssignment[1], } ) print(users) return users def generateUserSchedule(user, assignments, scoring_function): """ Generate most optimal user schedule Parameters: user (object): User assignments (dict): Time-bounded assignments scoring_function (function): scoring function to rank possible assignments Returns: schedule (list): list of rotations """ return [{"rotationId": "PMO", "startDate": "012018"}] def getOverallSchedule(users): """ Generate overall schedule from individual user's schedule Parameters: users (list): list of Users Returns: schedule (dict): overall assignments """ return {} def getConflictingAssignments(schedule): """ Get list of assignments which exceeded rotation capacity Parameters: schedule (dict): overall assignments Returns: confictingAssignmentsByRotation (dict): overall schedule with conflicting assignments """ return {} if __name__ == "__main__": pass ``` #### File: kronos/tests/test_User.py ```python import pytest from kronos.User import User from kronos.kronos import score_assignment from datetime import datetime, timedelta @pytest.fixture(scope='function') def assignments(request): """ Generate global assignment object Parameters: duration (tuple): pair of date string that denote duration that will be covered by the assignments Returns: assignment (obj): assignment object """ start, end, rotations = request.param start = datetime.strptime('1' + start, "%w%W%Y") end = datetime.strptime('1' + end, "%w%W%Y") duration = int((end - start).days / 7.0) # Number of assignments per unit time occupancy = ({(start + timedelta(weeks=x)).strftime('%W%Y'): 0 for x in range(0, duration + 1)}, start.strftime('%W%Y'), end.strftime('%W%Y')) return {rotationId: (occupancy, assignments) for rotationId, assignments in rotations.items()} def test_strRepShouldMatchUserObject(): userSchedule = [] possibleRotations = ['PE', 'SE', 'PM', 'ARC', 'ANA', 'SYS'], joinDate = "01012018" displayJoinDate = "01 January 2018" assert str(User("Jason", userSchedule, possibleRotations, joinDate)) == f"Name: Jason Join: {displayJoinDate}\nSchedule: {userSchedule}\nPossible Rotations: {possibleRotations}" @pytest.mark.parametrize('assignments', [ ('012018', '522023', { 'PMO': { 'sjtsoonj': ('01012018', '01042018'), 'thava': ('01032018', '01062018') }, 'PE': { 'soomay': ('01012018', '01042018'), 'brina': ('01032018', '01062018') }, 'PM': { 'chris': ('01012018', '01042018'), 'akmal': ('05072018', '05092018') }, 'SYS': { 'chris': ('01012019', '01042019'), 'akmal': ('05092018', '05112018') }, 'ARC': { 'jiawei': ('01012019', '01042019'), 'tauteng': ('05092018', '05112018') }, 'ANA': { 'jin': ('01012019', '01042019'), 'thava': ('05092018', '05112018') }, 'SE': { }}) ], indirect=['assignments']) def test_generateSchedule(assignments): userSchedule = [] possibleRotations = ['PE', 'SE', 'PM', 'ARC', 'ANA', 'SYS'] joinDate = "01012018" user = User("Jason", userSchedule, possibleRotations, joinDate) assert len(user.generateSchedule(assignments, score_assignment)) == len(possibleRotations) ```
{ "source": "JinIgarashi/postgis2epanet", "score": 3 }
#### File: postgis2epanet/epanet/coordinates.py ```python import shapefile from epanet.layer_base import LayerBase class Coordinates(LayerBase): class Coordinate(object): def __init__(self, id, lon, lat, altitude, lon_utm, lat_utm): self.id = id self.lon = round(lon, 6) self.lat = round(lat, 6) self.altitude = altitude or 0 self.lon_utm = round(lon_utm, 3) self.lat_utm = round(lat_utm, 3) self.demand = 0.0 self.pattern = "" @staticmethod def create_header_junction(f): f.writelines("[JUNCTIONS]\n") f.writelines(";{0}\t{1}\t{2}\t{3}\n" .format("ID\t".expandtabs(20), "Elev\t".expandtabs(12), "Demand\t".expandtabs(12), "Pattern\t".expandtabs(16))) def add_junction(self, f): f.writelines(" {0}\t{1}\t{2}\t{3}\t;\n" .format("{0}\t".format(self.id).expandtabs(20), "{0}\t".format(self.altitude).expandtabs(12), "{0}\t".format(self.demand).expandtabs(12), "{0}\t".format(self.pattern).expandtabs(16))) @staticmethod def create_header_coordinates(f): f.writelines("[COORDINATES]\n") f.writelines(";{0}\t{1}\t{2}\n" .format("Node\t".expandtabs(20), "X-Coord\t".expandtabs(16), "Y-Coord\t".expandtabs(16))) def add_coordinate(self, f): f.writelines(" {0}\t{1}\t{2}\n" .format("{0}\t".format(self.id).expandtabs(20), "{0}\t".format(self.lon_utm).expandtabs(16), "{0}\t".format(self.lat_utm).expandtabs(16))) def __init__(self, wss_id): super().__init__("junctions", wss_id) self.coordMap = {} def get_coord_by_id(self, id): for key in self.coordMap: coord = self.coordMap[key] if id == coord.id: return coord def get_data(self, db): query = " WITH points2d AS " query += " (SELECT (ST_DumpPoints(geom)).geom AS geom FROM pipeline where wss_id={0}), ".format(self.wss_id) query += " cells AS " query += " (SELECT p.geom AS geom, ST_Value(a.rast, 1, p.geom) AS alt, " query += " ST_X(geom) as lon, ST_Y(geom) as lat " query += " FROM rwanda_dem_10m a RIGHT JOIN points2d p " query += " ON ST_Intersects(a.rast, p.geom)), " query += " points3d AS " query += " (SELECT " query += " ST_SetSRID(COALESCE(" \ "ST_MakePoint(lon, lat, alt), " \ "ST_MakePoint(lon, lat)), {0}) AS geom ".format(str(self.epsg)) query += " , lon, lat, alt " query += " FROM cells) " query += " SELECT row_number() over() as id,st_x(geom) as lon, st_y(geom) as lat, st_z(geom)as alt, " query += " st_x(st_transform(geom,{0})) as lon_utm, st_y(st_transform(geom,{0})) as lat_utm ".format(str(self.epsg_utm)) query += " FROM points3d WHERE geom is not NULL" result = db.execute(query) for data in result: coord = Coordinates.Coordinate("Node-" + str(data[0]), data[1], data[2], data[3], data[4], data[5]) key = ",".join([str(coord.lon), str(coord.lat)]) self.coordMap[key] = coord def add_coordinate(self, coord): target_key = ",".join([str(coord.lon), str(coord.lat)]) del_key = [] for key in self.coordMap: if key == target_key: del_key.append(target_key) for key in del_key: self.coordMap.pop(key) self.coordMap[target_key] = coord def export_junctions(self, f): Coordinates.Coordinate.create_header_junction(f) for key in self.coordMap: coord = self.coordMap[key] if "Node" in coord.id: coord.add_junction(f) f.writelines("\n") def export_coordinates(self, f): Coordinates.Coordinate.create_header_coordinates(f) for key in self.coordMap: coord = self.coordMap[key] coord.add_coordinate(f) f.writelines("\n") def export_shapefile(self, f, del_coords_id): filename = self.get_file_path(f) with shapefile.Writer(filename) as _shp: _shp.autoBalance = 1 _shp.field('dc_id', 'C', 254) _shp.field('elevation', 'N', 20) _shp.field('pattern', 'C', 254) _shp.field('demand', 'N', 20, 9) _shp.field('demand_pto', 'N', 20, 9) for key in self.coordMap: coord = self.coordMap[key] if "Node" in coord.id: if coord.id in del_coords_id: continue _shp.point(float(coord.lon), float(coord.lat)) _shp.record(coord.id, coord.altitude, coord.pattern, coord.demand, '') _shp.close() self.createProjection(filename) def add_demands(self, connections): for conn in connections: target_key = ",".join([str(conn.lon), str(conn.lat)]) for key in self.coordMap: if key == target_key: self.coordMap[key].demand = conn.demands ```
{ "source": "JinIgarashi/postgis2inventoryreport", "score": 3 }
#### File: lib/layer/pipeline.py ```python from lib.layer.layerbase import LayerBase class Pipeline(LayerBase): def __init__(self, conn): super().__init__(conn, 'pipeline') def plot(self, ax): if self.df.empty: return self.df.plot(ax=ax, figsize=(20, 10), color='blue', linewidth=1, label="Pipeline") ``` #### File: lib/layer/waterconnection.py ```python from lib.layer.layerbase import LayerBase class WaterConnection(LayerBase): def __init__(self, conn): super().__init__(conn, 'water_connection') def plot(self, ax): cmap = self.generate_cmap(['green', 'yellow', 'red']) typelist = [{'name' : 'Household', 'marker': 'p', 'column': 'status', 'markersize': 45}, {'name' : 'Public Tap', 'marker': '$\\bigoplus$', 'column': 'status', 'markersize': 30}, {'name' : 'Water Kiosk', 'marker': '$\\bigodot$', 'column': 'status', 'markersize': 30}, {'name': 'Industrial', 'marker': '$\\bigotimes$', 'column': 'status', 'markersize': 30}] self.plot_by_filter(ax, 'connection_type', typelist, cmap) ``` #### File: postgis2inventoryreport/lib/mapcreator.py ```python import os from lib.map.districtmap import DistrictMap from lib.map.wssmap import WssMap class MapCreator(object): def __init__(self, db, district, main_directory): self.db = db self.district = district self.main_directory = main_directory def create(self): if not os.path.exists(self.main_directory): os.makedirs(self.main_directory, exist_ok=True) dist_dir = "/".join([self.main_directory, "images", str(self.district.dist_id)]) dist_map = DistrictMap(self.db, dist_dir, self.district.dist_id, self.district.wss_id_list) dist_map.create() for wss_id in self.district.wss_id_list.split(','): wss = WssMap(self.db, dist_dir, wss_id) wss.create() ```
{ "source": "JinIgarashi/postgis2qfield", "score": 2 }
#### File: postgis2qfield/layers/junction.py ```python from layers.layer_base import LayerBase class Junction(LayerBase): def __init__(self): super().__init__("junction") self.parse_dates = ['input_date'] ```
{ "source": "jinimong/serverless-study", "score": 2 }
#### File: serverless/make/lambda_function.py ```python import os import json import boto3 import qrcode from PIL import Image, ImageDraw, ImageFont def lambda_handler(event, context): # S3에서 필요한 파일 불러오기 s3 = boto3.resource("s3") s3.Object(os.environ["BUCKET_NAME"], "imgs/cat.jpg").download_file( "/tmp/logo.jpg" ) s3.Object( os.environ["BUCKET_NAME"], "fonts/summer-calling.ttf" ).download_file("/tmp/font.ttf") records = event["Records"] if records: user_id = records[0]["Sns"]["Message"] conf_type = records[0]["Sns"]["Subject"] # dynamodb 에서 데이터 불러오기 dynamodb = boto3.resource("dynamodb") table = dynamodb.Table(os.environ["TABLE_NAME"]) row = table.get_item(Key={"user_id": user_id, "type": conf_type}) item = row["Item"] save_path = "/tmp/image.jpg" key = f"qrcodes/{user_id}/{conf_type}/qrcode.jpg" # 이미지 생성 후 S3 업로드 make_image(data=item, save_path=save_path) s3.meta.client.upload_file( save_path, os.environ["BUCKET_NAME"], key, ExtraArgs={"ContentType": "image/jpeg"}, ) return {"statusCode": 200, "event": event} def make_image(data, save_path): W, H = (400, 400) # logo img logo = Image.open("/tmp/logo.jpg").convert("RGBA") ttf = "/tmp/font.ttf" # qrcode img qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_L, box_size=4, border=4, ) qr.add_data(data.get("phone_number", "")) qr.make(fit=True) qr_img = qr.make_image(fill_color="black", back_color="white") # merge img = Image.new("RGB", (W, H), color="#fff") img.paste(logo, (0, 0), logo) img.paste(qr_img, (270, 50)) # draw font_m = ImageFont.truetype(ttf, 15) font_b = ImageFont.truetype(ttf, 18) font_B = ImageFont.truetype(ttf, 19) draw = ImageDraw.Draw(img) draw.text((50, 240), data.get("user_name", ""), fill="#000", font=font_b) company_name = data.get("company_name", "") draw.text((50, 280), f"From {company_name}", fill="#000", font=font_m) draw.text((20, 200), "FULL CONFERENCE PASS", fill="#ed244b", font=font_B) img.save(save_path, quality=100) ```
{ "source": "jinimp/QAS", "score": 2 }
#### File: QAS/Image/models.py ```python from django.db import models class Image(models.Model): """大图信息""" id = models.AutoField(primary_key=True, verbose_name=u'唯一主键') file_name = models.CharField(max_length=128, verbose_name=u'文件名', null=True, blank=True) suffix = models.CharField(max_length=16, verbose_name=u'文件后缀名', null=True, blank=True) storage_path = models.CharField(max_length=256, verbose_name=u'存储路径', null=True, blank=True) last_open_time = models.DateTimeField(verbose_name=u'上次打开时间', null=True, blank=True) file_size = models.CharField(max_length=16, verbose_name=u'文件大小', null=True, blank=True) is_delete = models.BooleanField(verbose_name=u'是否逻辑删除', default=False) create_time = models.DateTimeField(verbose_name=u'创建时间', auto_now_add=True) update_time = models.DateTimeField(verbose_name=u'更新时间', auto_now=True) class Meta: db_table = 'tb_image' # 自定义数据库表的名称 verbose_name = '大图信息' # 在后台admin中显示表的中文名 verbose_name_plural = verbose_name def __str__(self): return '当前文件名为:%s' % self.file_name ``` #### File: QAS/Patient/models.py ```python from django.db import models class Patient(models.Model): """ 患者信息 """ GENDER_CHOICES = ( (1, "男"), (0, "女"), ) id = models.AutoField(primary_key=True, verbose_name=u'唯一主键') # 个人信息 name = models.CharField(max_length=32, verbose_name=u"姓名", null=True, blank=True) age = models.IntegerField(verbose_name=u"年龄", null=True, blank=True) gender = models.CharField(max_length=8, default=0, choices=GENDER_CHOICES, verbose_name=u"性别") num_no = models.CharField(max_length=32, verbose_name=u"编号", null=True, blank=True) # 病理信息 specimen_source = models.CharField(max_length=32, verbose_name=u'标本来源', blank=True, null=True) report_time = models.DateTimeField(verbose_name=u'报告时间', blank=True, null=True) send_time = models.DateTimeField(verbose_name=u"送检时间", blank=True, null=True) is_delete = models.BooleanField(verbose_name=u'是否逻辑删除', default=False) create_time = models.DateTimeField(verbose_name=u"创建时间", auto_now_add=True) update_time = models.DateTimeField(verbose_name=u"更新时间", auto_now=True) def __str__(self): return '用户名为:%s' % self.name class Meta: db_table = 'tb_patient' # 自定义数据库表的名称 verbose_name = u'患者信息' verbose_name_plural = verbose_name ``` #### File: QAS/Patient/serializers.py ```python from rest_framework import serializers from .models import Patient class SCPatientSerializer(serializers.ModelSerializer): """查增""" report_time = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S') send_time = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S') class Meta: model = Patient fields = ('id', 'name', 'age', 'gender', 'specimen_source', 'num_no', 'report_time', 'send_time') def validate_age(self, value): """验证年龄""" if value: if int(value) > 100 or int(value) < 10: raise serializers.ValidationError('参数错误') return value class UPatientSerializer(serializers.ModelSerializer): """修改""" report_time = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S', read_only=True) send_time = serializers.DateTimeField(format='%Y-%m-%d %H:%M:%S', read_only=True) class Meta: model = Patient fields = ('id', 'name', 'age', 'gender', 'specimen_source', 'num_no', 'report_time', 'send_time') def validate_age(self, value): """验证年龄""" if value: if int(value) > 100 or int(value) < 10: raise serializers.ValidationError('参数错误') return value ``` #### File: Services/Aslide/deepzoom.py ```python from openslide.deepzoom import DeepZoomGenerator as OpenSlideDZG from Services.Aslide.kfb.kfb_deepzoom import DeepZoomGenerator as KfbDZG from Services.Aslide.tmap.tmap_deepzoom import DeepZoomGenerator as TmapDZG class ADeepZoomGenerator(object): def __init__(self, osr, tile_size=254, overlap=1, limit_bounds=False): if osr.format in ['.kfb', '.KFB']: self._dzg = KfbDZG(osr, tile_size, overlap, limit_bounds) elif osr.format in ['.tmap', '.TMAP']: self._dzg = TmapDZG(osr, 256, overlap, limit_bounds) else: self._dzg = OpenSlideDZG(osr, tile_size, overlap, limit_bounds) @property def level_count(self): """The number of Deep Zoom levels in the image.""" return self._dzg.level_count @property def level_tiles(self): """A list of (tiles_x, tiles_y) tuples for each Deep Zoom level.""" return self._dzg.level_tiles @property def level_dimensions(self): """A list of (pixels_x, pixels_y) tuples for each Deep Zoom level.""" return self._dzg.level_dimensions @property def tile_count(self): """The total number of Deep Zoom tiles in the image.""" return self._dzg.tile_count def get_dzi(self, format): """ :param format: the format of the individual tiles ('png' or 'jpeg') :return: a string containing the XML metadata for the .dzi file. """ return self._dzg.get_dzi(format) def get_tile(self, level, address): """ :param level: the Deep Zoom level :param address: the address of the tile within the level as a (col, row) tuple. :return: Return an RGB PIL.Image for a tile """ return self._dzg.get_tile(level, address) if __name__ == '__main__': filepath = "/home/stimage/Development/DATA/TEST_DATA/test001.kfb" from aslide import Aslide slide = Aslide(filepath) dzg = ADeepZoomGenerator(slide) print("level_count : ", dzg.level_count) print("level_tiles : ", dzg.level_tiles) print("level_dimensions : ", dzg.level_dimensions) print("tile count : ", dzg.tile_count) print("dzi : \n") print(dzg.get_dzi('jpeg')) tile = dzg.get_tile(13, (0, 0)) import matplotlib.pyplot as plt plt.imshow(tile) plt.show() ``` #### File: Aslide/tmap/tmap_deepzoom.py ```python from io import BytesIO from Services.Aslide.tmap import tmap_lowlevel, tmap_slide from xml.etree.ElementTree import ElementTree, Element, SubElement class DeepZoomGenerator(object): def __init__(self, slide, tile_size=254, overlap=1, limit_bounds=False): self.slide = slide self._osr = slide._osr self._z_t_downsample = tile_size self._z_overlap = overlap self._limit_bounds = limit_bounds def get_tile(self, level, address): """Return an RGB PIL.Image for a tile. level: the Deep Zoom level. address: the address of the tile within the level as a (col, row) tuple.""" level = self.slide.level_downsamples[level] return tmap_lowlevel.get_tile_data(self._osr._osr, level, address[1], address[0]) def get_dzi(self, format): """Return a string containing the XML metadata for the .dzi file. format: the format of the individual tiles ('png' or 'jpeg')""" image = Element('Image', TileSize=str(self._z_t_downsample), Overlap=str(self._z_overlap), Format=format, xmlns='http://schemas.microsoft.com/deepzoom/2008') w, h = self.slide.dimensions SubElement(image, 'Size', Width=str(w), Height=str(h)) tree = ElementTree(element=image) buf = BytesIO() tree.write(buf, encoding='UTF-8') return buf.getvalue().decode('UTF-8') def main(): slide = tmap_slide.TmapSlide( '/media/wqf/4adb4c9e-80d5-43fd-8bf8-c4d8f353091f/tsimage/tiffs_un/SZH1513139_N_4_20181220132441.TMAP') dzg = DeepZoomGenerator(slide) img = dzg.get_tile_data((110, 100)) img.show() slide.close() if __name__ == '__main__': main() ``` #### File: Services/Unet/find_test_data.py ```python import os class FindNeed(object): def __init__(self): self.path = '/media/kyfq/f2b5b050-085b-4a49-b06d-f9e7e99e0abd/kyfq/cells_three/FUNGI' # self.path = '/media/kyfq/f2b5b050-085b-4a49-b06d-f9e7e99e0abd/kyfq/cells_three/ACTINO' self.res_list = {} def run(self): for pathology in os.listdir(self.path): self.res_list.setdefault(pathology, {}) for cls in os.listdir(os.path.join(self.path, pathology)): img_list = os.listdir(os.path.join(self.path, pathology, cls)) self.res_list[pathology].setdefault(cls, len(img_list)) def statistic(self): for k, v in self.res_list.items(): if 'HSIL_S' in v and 'LSIL_E' in v and 'ASCUS' in v and 'SC' in v: print('pathology: %s' % k, 'ASCUS: %s' % v.get('ASCUS'), 'LSIL_E: %s' % v.get('LSIL_E'), 'HSIL_S: %s' % v.get('HSIL_S'), 'SC: %s' % v.get('SC') ) if __name__ == '__main__': find_need = FindNeed() find_need.run() find_need.statistic() ``` #### File: Services/Unet/unetImp.py ```python import os import cv2 import numpy as np import mxnet as mx from collections import namedtuple ''' prefix : prefix of model name epoch : number of iterations of the model. model name = prefix + '-' + epoch + '.params' seg_data_shape : initialize the network with input shape batch_size : batch size ctx : select gpu (mx.gpu(0)) return : the Unet model ''' def get_segmentation_mod(prefix = './segnet_bb5_final', epoch = 0, seg_data_shape = 128, batch_size = 1, ctx = mx.gpu(0)): sym, arg_params, aux_params = mx.model.load_checkpoint(prefix, epoch) mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['data'], label_names=None) mod.bind(for_training=False, data_shapes=[('data', (batch_size, 3, seg_data_shape, seg_data_shape))], label_shapes=None) mod.set_params(arg_params=arg_params, aux_params=aux_params) return mod ''' img : input original image mod : Unet model return : predicted results ''' def seg_img(img, mod): Batch = namedtuple('Batch', ['data']) cls_mean_val = np.array([[[107]], [[107]], [[107]]]) cls_std_scale = 1.0 img = np.transpose(img, (2, 0, 1)) img = img[np.newaxis, :] img = cls_std_scale * (img.astype(np.float32) - cls_mean_val) mod.forward(Batch([mx.nd.array(img)])) pred = mod.get_outputs()[0].asnumpy() pred = np.argmax(pred, axis=1)[0] return pred ''' pred : predicted results from seg_img() ''' def find_max_contour(pred): img3, contours, hierarchy = cv2.findContours(pred, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) contours = sorted(contours, key=cv2.contourArea, reverse=True) mask_contour = np.zeros_like(pred) try: cv2.drawContours(mask_contour, contours, 0, color=255, thickness=-1) return mask_contour, contours except: return pred, contours ''' img : original image a : coefficient a, img * a + b b : coefficient b, img * a + b return : contrast enhanced image ''' def contrast_brightness_image(img, a = 1.8, b = -90): h, w, ch = img.shape src2 = np.zeros([h, w, ch], img.dtype) dst = cv2.addWeighted(img, a, src2, 1-a, b) return dst if __name__ == "__main__": testdir = r'./data/test' savedir = r'./test/' imgfiles = [i for i in os.listdir(testdir) if i.endswith('.jpg')] seg_mod = get_segmentation_mod() print("done") for i, fn in enumerate(imgfiles): fn_path = testdir+'/'+fn raw_img = cv2.imread(fn_path) raw_img2 = contrast_brightness_image(raw_img) # cv2.imwrite('./' + fn, raw_img) pred = seg_img(raw_img2, seg_mod).astype(np.uint8) pred, contours = find_max_contour(pred) cv2.imwrite(savedir + fn.split('.')[0] + '.png', pred) print('save image') cv2.drawContours(raw_img, contours, 0, color=(0,255,0), thickness=1) cv2.imwrite('/home/kyfq/Desktop/raw_img.png', raw_img) cv2.imshow('origin', raw_img) cv2.waitKey(0) # waitkey代表读取键盘的输入,括号里的数字代表等待多长时间,单位ms。 0代表一直等待 # ASCUS LSIL_E HSIL_S与SC的比值 ```
{ "source": "JiniousChoi/encyclopedia-in-code", "score": 4 }
#### File: jpylib/jgraphs/_dfs.py ```python def make_graph(edges, is_undirected=True): ''' @param edges: type of [(u::int, v::int)] @param is_undirected @return adjacent list ''' G = {} for u,v in edges: G.setdefault(u, []) if is_undirected: G.setdefault(v, []) G[u].append(v) if is_undirected: G[v].append(u) return G def dfs_iterative(n, G, start): ''' @param n: total number of nodes @param G: edges of adjacent list @param start: where to start searching @return None ''' stack = [[start, -1]] # [(node_no, edge_pointer)] visited = [False for _ in range(n)] while stack: here, i = stack[-1] if i==-1: yield here visited[here] = True i += 1 for j in range(i, len(G[here])): there = G[here][j] if visited[there]: continue #assert not visited[there] stack[-1][-1] = j+1 stack.append([there,-1]) break else: stack.pop(-1) def count_components(n, G): return len(sorted_topologies(n, G)) def topological_sort(n, G, start): ''' @return [node_no::int] ''' visited, topology_stack = [False for _ in range(n)], [] _dfs(n, G, start, visited, topology_stack) return topology_stack[::-1] def topological_sort_all(n, G): ''' @return [[node_no::int]] ''' visited = [False for _ in range(n)] def dfs_all(): topology_stacks = [] for u in range(n): if not visited[u]: topology_stack = [] _dfs(n, G, u, visited, topology_stack) topology_stacks.append(topology_stack[::-1]) return topology_stacks return dfs_all() def _dfs(n, G, here, visited, topology_stack): visited[here] = True for there in G.get(here, []): if visited[there]: continue _dfs(n, G, there, visited, topology_stack) topology_stack.append(here) #post-order import unittest import random class DFSTest(unittest.TestCase): def setUp(self): self.n1, self.edges1 = 5, [(0, 1), (1, 3), (3, 2), (3, 4), (4, 2)] random.shuffle(self.edges1) self.n2, self.edges2 = 6, [(1, 2), (2, 4), (4, 3), (4, 5), (5, 3)] random.shuffle(self.edges2) def test_dfs_iterative_basics(self): G = make_graph([(0,1),(0,2),(0,3),(2,3)]) self.assertEqual(list(dfs_iterative(4, G, 0)), [0,1,2,3]) self.assertEqual(list(dfs_iterative(4, G, 1)), [1,0,2,3]) self.assertEqual(list(dfs_iterative(4, G, 2)), [2,0,1,3]) self.assertEqual(list(dfs_iterative(4, G, 3)), [3,0,1,2]) def test_topological_sort_basics(self): n, G = self.n1, make_graph(self.edges1, is_undirected=False) self.assertEqual(topological_sort(n,G,0), [0,1,3,4,2]) self.assertEqual(topological_sort(n,G,1), [1,3,4,2]) self.assertEqual(topological_sort(n,G,3), [3,4,2]) self.assertEqual(topological_sort(n,G,4), [4,2]) self.assertEqual(topological_sort(n,G,2), [2]) def test_topological_sort_undirected(self): n, G = self.n1, make_graph(self.edges1, is_undirected=True) self.assertTrue((topological_sort(n,G,0)==[0,1,3,2,4]) or (topological_sort(n,G,0)==[0,1,3,4,2])) def test_topological_sort_all_basics(self): n, G = self.n1, make_graph(self.edges1, is_undirected=False) self.assertEqual(topological_sort_all(n, G), [[0,1,3,4,2]]) n, G = self.n2, make_graph(self.edges2, is_undirected=False) self.assertEqual(topological_sort_all(n, G), [[0],[1,2,4,5,3]]) if __name__=="__main__": unittest.main() ``` #### File: jpylib/jgraphs/_disjointsets.py ```python class NaiveDisjointSets(object): def __init__(self, n): self.parents = [i for i in range(n)] def union(self, u, v): u,v = map(self.find, [u,v]) if u==v: # This is not essential return self.parents[v] = u def find(self, u): while u != self.parents[u]: u = self.parents[u] return u def components_count(self): return len([i for i,p in enumerate(self.parents) if i==p]) class OptimizedDisjointSets(object): def __init__(self, n): self.parents = [i for i in range(n)] self.ranks = [1 for i in range(n)] def union(self, u, v): # optimization by rank comparison u,v = map(self.find, [u,v]) if u==v: # this is essential for rank-adjusting optimization return u_rank, v_rank = self.ranks[u], self.ranks[v] if self.ranks[u] < self.ranks[v]: u, v = v, u self.parents[v] = u self.ranks[u] += self.ranks[v] def find(self, u): # optimization by path compression lineage = [] while self.parents[u] != u: lineage.append(u) u = self.parents[u] root = u assert not lineage or lineage[-1] != u for v in lineage: self.parents[v] = root return root def components_count(self): return len([i for i,p in enumerate(self.parents) if i==p]) StaticDisjointSets = OptimizedDisjointSets class DynamicDisjointSets(OptimizedDisjointSets): ''' add-union-find data structure If the whole number of nodes count cannot be estimated beforehand, DynamicDisjointSets is preferable to the kind of StaticDIsjointSets above ''' def __init__(self): self.parents = {} self.ranks = {} def add(self, u): assert u not in self.parents self.parents[u] = u self.ranks[u] = 1 def has(self, u): return u in self.parents def components_count(self): return len([k for k,p in self.parents.items() if k==p]) import unittest class DisjointSetsTest(unittest.TestCase): def setUp(self): n1, edges1, components1 = 4, [], 4 n2, edges2, components2= 4, [(0,1),(2,1)], 2 n3, edges3, components3 = 4, [(0,1),(3,1),(2,3)], 1 self.test_set = [(n1, edges1, components1), (n2, edges2, components2), (n3, edges3, components3)] def test_basics(self): DSs = [NaiveDisjointSets, OptimizedDisjointSets] for DS in DSs: for n, edges, expected_components in self.test_set: dsets = self.make_disjoint_sets(DS, n, edges) self.assertEqual(dsets.components_count(), expected_components) def make_disjoint_sets(self, clazz, n, edges): dsets = clazz(n) for u,v in edges: dsets.union(u,v) return dsets class DynamicDisjointSetsTest(unittest.TestCase): def test_find_largest_consecutive_sequence(self): numbers = [100, 4, 200, 1, 3, 2, 100] ddsets = DynamicDisjointSets() ddsets.add(100) for n in numbers: if ddsets.has(n): continue ddsets.add(n) if ddsets.has(n-1): ddsets.union(n-1, n) if ddsets.has(n+1): ddsets.union(n, n+1) max_seq = 0 for i,p in ddsets.parents.items(): if i==p: max_seq = max(max_seq, ddsets.ranks[i]) self.assertEqual(max_seq, 4) if __name__ == '__main__': unittest.main() ``` #### File: jpylib/jmath/_bits.py ```python from math import inf def single_bit_ceil(n): ''' @return largest `1<<m` satisfying `2**m >= n` Note: 1<<m == 2**m ''' if n==0: return 0 p = 1 while p < n: p <<= 1 assert p >= n return p def single_bit_floor(n): ''' @return largest `1<<m` satisfying `2**m <= n` Note: 1<<m == 2**m ''' if n==0: return 0 assert n > 0 nxt, cur = n, inf while 0 < nxt: cur = nxt nxt &= nxt-1 assert 0 == nxt < cur <= n return cur import unittest class BitsTest(unittest.TestCase): def test_single_bit_ceil(self): self.assertEqual(single_bit_floor(0), 0) self.assertEqual(single_bit_ceil(1), 1) self.assertEqual(single_bit_ceil(2), 2) self.assertEqual(single_bit_ceil(3), 4) self.assertEqual(single_bit_ceil(4), 4) self.assertEqual(single_bit_ceil(5), 8) self.assertEqual(single_bit_ceil(6), 8) self.assertEqual(single_bit_ceil(7), 8) self.assertEqual(single_bit_ceil(8), 8) def test_single_bit_floor(self): self.assertEqual(single_bit_floor(0), 0) self.assertEqual(single_bit_floor(1), 1) self.assertEqual(single_bit_floor(2), 2) self.assertEqual(single_bit_floor(3), 2) self.assertEqual(single_bit_floor(4), 4) self.assertEqual(single_bit_floor(5), 4) self.assertEqual(single_bit_floor(6), 4) self.assertEqual(single_bit_floor(7), 4) self.assertEqual(single_bit_floor(8), 8) if __name__ == "__main__": unittest.main() ``` #### File: jpylib/jmath/_factors.py ```python def divisor_factors(n): ''' return [divisor] i.e. 1 -> [1] 2 -> [1,2] 4 -> [1,2,4] 10 -> [1,2,5,10] ''' left, right = [], [] for f in range(1, int(n**.5)+1): if n%f == 0: l, r = f, n//f left.append(l) if l != r: right.append(r) while right: left.append(right.pop(-1)) #assert right == [] return left def prime_factors(n): ''' return [prime_factor] i.e. 4 -> [2,2] 6 -> [2,3] 7 -> [7] 9 -> [3,3] 12 -> [2,2,3] ''' assert n >= 1 factors = [] while n%2==0: factors.append(2) n //= 2 p = 3 while n > 1: while n % p == 0: factors.append(p) n //= p p += 2 assert n == 1 return factors def gcd(a, b): if b==0: return a return gcd(b, a%b) def lcm(a,b): return a * b // gcd(a,b) import unittest class FactorsTest(unittest.TestCase): def test_divisor_factors(self): self.assertEqual(divisor_factors(1), [1]) self.assertEqual(divisor_factors(2), [1,2]) self.assertEqual(divisor_factors(4), [1,2,4]) self.assertEqual(divisor_factors(10), [1,2,5,10]) def test_prime_factors(self): self.assertEqual(prime_factors(1), []) self.assertEqual(prime_factors(2), [2]) self.assertEqual(prime_factors(4), [2,2]) self.assertEqual(prime_factors(6), [2,3]) self.assertEqual(prime_factors(7), [7]) self.assertEqual(prime_factors(9), [3,3]) self.assertEqual(prime_factors(12), [2,2,3]) class GCDTest(unittest.TestCase): def test_basics(self): self.assertEqual(gcd(1,1), 1) self.assertEqual(gcd(1,3), 1) self.assertEqual(gcd(3,1), 1) self.assertEqual(gcd(3,7), 1) self.assertEqual(gcd(2,2), 2) self.assertEqual(gcd(2,4), 2) self.assertEqual(gcd(55,11), 11) class LCMTest(unittest.TestCase): def test_basics(self): self.assertEqual(lcm(1,1), 1) self.assertEqual(lcm(1,3), 3) self.assertEqual(lcm(3,1), 3) self.assertEqual(lcm(3,7), 21) self.assertEqual(lcm(2,2), 2) self.assertEqual(lcm(2,4), 4) self.assertEqual(lcm(55,11), 55) if __name__ == "__main__": unittest.main() ``` #### File: jpylib/jmath/_int.py ```python def len_int(n): ''' @param n: number::int @return number of digit count ''' assert n >= 0 digits = 0 while n > 0: digits += 1 n //= 10 return digits import unittest class LenTest(unittest.TestCase): def test_len_int(self): with self.assertRaises(AssertionError): len_int(-1) self.assertEqual(len_int(0), 0) self.assertEqual(len_int(1), 1) self.assertEqual(len_int(10), 2) self.assertEqual(len_int(99), 2) self.assertEqual(len_int(555), 3) if __name__ == "__main__": unittest.main() ``` #### File: jpylib/jtests/_tests.py ```python def parse_io(inp, out): ''' io means input/output for testcases; It splitlines them and strip the elements @param inp: multi-lined str @param out: multi-lined str @return (inp::[str], out::[str]) ''' inp = [i.strip() for i in inp.splitlines() if i.strip()] out = [o.strip() for o in out.splitlines() if o.strip()] return inp, out def joiner(iterable, sep=' '): ''' @return e.g. [1, 2] -> "1 2" ''' return sep.join(map(str, iterable)) def strips(doc): ''' @return strip each line of doc ''' return '\n'.join(line.strip() for line in doc.splitlines()) def lstrips(doc): ''' @return lstrip each line of doc ''' return '\n'.join(line.lstrip() for line in doc.splitlines()) def rstrips(doc): ''' @return rstrip each line of doc ''' return '\n'.join(line.rstrip() for line in doc.splitlines()) ``` #### File: jpylib/jtrees/_fenwicktree.py ```python class FenwickTree(object): ''' a.k.a. Binary Indexed Tree ''' def __init__(self, sz): self.sz = sz + 1 # add dummy head self.tree = [0] * self.sz def add_all(self, vals): for pos, val in enumerate(vals): self.add(pos, val) def add(self, pos, val): ''' @param pos: 0-based @param val ''' pos += 1 # 1-based while pos < self.sz: self.tree[pos] += val pos += (pos & -pos) def partial_sum(self, pos): ''' @param pos: 0-based @return sum of A[0...pos] ''' if pos < 0: return 0 assert 0 <= pos < self.sz-1 pos += 1 # 1-based psum = 0 while pos > 0: psum += self.tree[pos] pos &= pos-1 return psum def range_sum(self, from0, to0): ''' both inclusive, both 0-based ''' assert 0 <= from0 <= to0 < self.sz # 0-based return self.partial_sum(to0) - self.partial_sum(from0 - 1) import unittest def naive_sum(arr, l, r): return sum(arr[l:r+1]) class FenwickTreeTest(unittest.TestCase): def test_range_sum(self): arr = [5,2,1,4,3] sz = len(arr) fenwick = FenwickTree(sz) fenwick.add_all(arr) # explicit cases self.assertEqual(fenwick.range_sum(0,0), 5) self.assertEqual(fenwick.range_sum(0,1), 7) self.assertEqual(fenwick.range_sum(0,4), 15) def test_range_sum_all(self): arr = [5,2,1,4,3] sz = len(arr) fenwick = FenwickTree(sz) fenwick.add_all(arr) # all cases for l in range(sz): for r in range(l, sz): self.assertEqual(fenwick.range_sum(l,r), naive_sum(arr,l,r)) if __name__ == "__main__": unittest.main() ``` #### File: jpylib/jtrees/_tests.py ```python from ._tree_traversers import traverse_pre_order, traverse_in_order from queue import Queue from math import inf def assertEqualTreeTopologies(tree, nodes_in_preorder, nodes_in_inorder): ''' this tree topology comparison works only with tree with unique values ''' actual_nodes_in_preorder = list(n.val for n in traverse_pre_order(tree)) assert len(actual_nodes_in_preorder) == len(set(actual_nodes_in_preorder)), 'all values on the tree should be unique' assert actual_nodes_in_preorder == nodes_in_preorder, 'pre-order should be the same {} == {}'.format(actual_nodes_in_preorder, nodes_in_preorder) actual_nodes_in_inorder = list(n.val for n in traverse_in_order(tree)) assert actual_nodes_in_inorder == nodes_in_inorder, 'in-order should be the same {} == {}'.format(actual_nodes_in_inorder, nodes_in_inorder) def is_full_tree_bfs(tree): def all_has_both_children(nodes): assert nodes for node in nodes: if not node.left: return False if not node.right: return False return True def none_has_any_children(nodes): for node in nodes: if node.left: return False if node.right: return False return True def get_children(nodes): ''' returns a list of children nodes ex) [n1, n2, ...] ''' res = [] for node in nodes: res.append(node.left) res.append(node.right) return res assert tree q = Queue() #level = 0 root_level = [tree] q.put(root_level) while not q.empty(): nodes = q.get() if all_has_both_children(nodes): all_children = get_children(nodes) q.put(all_children) continue elif none_has_any_children(nodes): return True else: return False assert False def is_full_tree(node): ''' @param node @return True if all nil nodes are the same level ''' def _is_full_tree(node, lv, nil_lv): if not node: if not nil_lv: nil_lv.append(lv) return True else: return nil_lv[0] == lv assert node if not _is_full_tree(node.left, lv+1, nil_lv): return False if not _is_full_tree(node.right, lv+1, nil_lv): return False return True return _is_full_tree(node, 0, []) def is_complete_tree(node): def _is_complete_tree(node, lv, nil_lv): if not node: if not nil_lv: nil_lv.append(lv) return True else: #assert 1 <= len(nil_lv) <= 2 if len(nil_lv) == 1: lv0 = nil_lv[0] if lv0 == lv: return True if lv0 == lv+1: nil_lv.append(lv) return True else: return False else: _, lv1 = nil_lv return lv1 == lv if not _is_complete_tree(node.left, lv+1, nil_lv): return False if not _is_complete_tree(node.right, lv+1, nil_lv): return False return True return _is_complete_tree(node, 0, []) def is_bst1(node, left_boundary=-inf, right_boundary=inf): if not node: return True if not left_boundary < node.val <= right_boundary: return False return is_bst1(node.left, left_boundary, node.val) \ and is_bst1(node.right, node.val, right_boundary) def is_bst2(node): ''' Space Complexity (except stackframe): O(n) ''' vals = list(n.val for n in traverse_in_order(node)) for a,b in zip(vals, vals[1:]): if not a<=b: return False return True def is_bst3(node): ''' Space Complexity (except stackframe): O(1) ''' from collections import deque if not node: return True q = deque() it = traverse_in_order(node) for _ in range(2): try: q.append(next(it)) except: return True while len(q) == 2: if not q[0].val <= q[1].val: return False q.popleft() try: next_val = next(it) q.append(next_val) except StopIteration: pass return True is_bst = is_bst1 import unittest from ._nodes import tree_builder from .tree_samples import tree_full_1to3, tree_full_1to7, tree_full_1to15, \ tree_compelete_1to6, tree_no_complete2, tree_no_complete4, \ bst_true1, bst_true2, bst_true3, bst_true4, bst_true5, bst_true6, \ bst_false1, bst_false2 class IsFullTreeTest(unittest.TestCase): def test_is_full_tree_bfs1(self): self.assertTrue(is_full_tree_bfs(tree_full_1to3)) self.assertTrue(is_full_tree_bfs(tree_full_1to7)) self.assertTrue(is_full_tree_bfs(tree_full_1to15)) self.assertFalse(is_full_tree_bfs(tree_no_complete2)) self.assertFalse(is_full_tree_bfs(tree_no_complete4)) def test_is_full_tree(self): self.assertTrue(is_full_tree(tree_full_1to3)) self.assertTrue(is_full_tree(tree_full_1to7)) self.assertTrue(is_full_tree(tree_full_1to15)) self.assertFalse(is_full_tree(tree_builder([1,2]))) self.assertFalse(is_full_tree(tree_compelete_1to6)) class IsCompleteTree(unittest.TestCase): def test_is_complete_tree(self): self.assertTrue(is_complete_tree(tree_builder([]))) self.assertTrue(is_complete_tree(tree_builder([1]))) self.assertTrue(is_complete_tree(tree_builder([1,2]))) self.assertTrue(is_complete_tree(tree_builder([1,2,3,4]))) self.assertTrue(is_complete_tree(tree_builder([1,2,3,4,5]))) self.assertTrue(is_complete_tree(tree_compelete_1to6)) self.assertTrue(is_complete_tree(tree_full_1to7)) self.assertFalse(is_complete_tree(tree_builder([1,None,3]))) self.assertFalse(is_complete_tree(tree_builder([1,2,3,4,None,6,7]))) self.assertFalse(is_complete_tree(tree_no_complete2)) self.assertFalse(is_complete_tree(tree_no_complete4)) class IsBinarySearchTreeTest(unittest.TestCase): def test_basics(self): methods_on_test = [is_bst1, is_bst2, is_bst3] for method in methods_on_test: self.assertTrue(method(bst_true1)) self.assertTrue(method(bst_true2)) self.assertTrue(method(bst_true3)) self.assertTrue(method(bst_true4)) self.assertTrue(method(bst_true5)) self.assertTrue(method(bst_true6)) self.assertTrue(method(tree_builder([4,2,6,2,4]))) self.assertFalse(method(bst_false1)) self.assertFalse(method(bst_false2)) self.assertFalse(method(tree_builder([4,2,6,1,5]))) if __name__=='__main__': unittest.main() ``` #### File: jpylib/jtrees/_treap.py ```python from ._nodes import TreeNode from random import random, randint, shuffle import sys sys.setrecursionlimit(10000) class TreapNode(TreeNode): def __init__(self, val, priority): super().__init__(val) self.priority = priority self.size = 1 def set_left(self, left): self.left = left self.resize() return self def set_right(self, right): self.right = right self.resize() return self def resize(self): self.size = 1 if self.left: self.size += self.left.size if self.right: self.size += self.right.size def insert(root, node, key=lambda n: n): ''' @return current node ''' if not root: return node if root.priority < node.priority: lhs, rhs = split(root, node, key) node.set_left(lhs) node.set_right(rhs) return node elif key(root.val) < key(node.val): return root.set_right(insert(root.right, node, key)) else: return root.set_left(insert(root.left, node, key)) def split(node, pivot_node, key=lambda n: n): ''' @return (left, right) ''' if not node: return (None, None) if key(node.val) <= key(pivot_node.val): #todo: rather <= than < lhs, rhs = split(node.right, pivot_node, key) node.set_right(lhs) return (node, rhs) else: lhs, rhs = split(node.left, pivot_node, key) node.set_left(rhs) return (lhs, node) def delete(node, val): ''' Note: User should not call this method unless self is root of the treap @return current node ''' if not node: return None if node.val == val: return merge(node.left, node.right) elif node.val < val: return node.set_right(delete(node.right, val)) elif node.val > val: return node.set_left(delete(node.left, val)) return node def merge(left, right): if not left: return right if not right: return left if left.priority >= right.priority: #todo: rather > than >=. test this with duplicate values return left.set_right(merge(left.right, right)) else: return right.set_left(merge(left, right.left)) def find(node, val, key=lambda n: n): if not node: return None if key(node.val) == val: return node elif key(node.val) < val: return find(node.right, val, key) else: return find(node.left, val, key) def get_size(root): return root.size if root else 0 def get_priority(root): return root.priority if root else 0 def kth(root, k): if k < 0 or not root: return None if root.size <= k: return None left_sz = get_size(root.left) if left_sz > k: return kth(root.left, k) elif left_sz == k: return root else: return kth(root.right, k-1-left_sz) def split_first_k(root, k): if not root: return (None, None) #if k <= 0: return (None, root) #auxiliary for efficiency #if root.size <= k: return (root, None) #auxiliary efficiency left_size = get_size(root.left) if left_size >= k: ll, lr = split_first_k(root.left, k) root.set_left(lr) return (ll, root) else: rl,rr = split_first_k(root.right, k-1-left_size) root.set_right(rl) return (root, rr) def insert_at(root, k, node): ''' this operation could cause skewed treap when called in particular orders because it incapacitates `priority` Use this with caution, or better yet, consider AVL, RBT, etc @return return new root ''' if not root: return node assert root if k < 0: k = 0 if k > root.size: k = root.size left_size = get_size(root.left) if left_size > k: return root.set_left(insert_at(root.left, k, node)) elif left_size == k: l = root.left root.set_left(None) node.set_left(l) node.set_right(root) node.priority = max(map(get_priority, [node.left, node.right])) return node else: return root.set_right(insert_at(root.right, k-1-left_size, node)) def delete_at(root, k): ''' return new root after deleting kth node @param k: 0-based ''' if not root: return None if k < 0: k = 0 if k >= root.size: k = root.size-1 assert k in range(root.size) left_size = get_size(root.left) if left_size > k: return root.set_left(delete_at(root.left, k)) elif left_size == k: return merge(root.left, root.right) else: return root.set_right(delete_at(root.right, k-1-left_size)) class Treap(object): ''' wrapper class for easier usage for treapnode ''' def __init__(self): self.root = None def size(self): return 0 if not self.root else self.root.size def insert_val(self, val, priority=None, key=lambda n: n): node = TreapNode(val, random()) if priority == None else TreapNode(val, priority) if not self.root: self.root = node else: self.root = insert(self.root, node, key) return self def delete_val(self, val): self.root = delete(self.root, val) return self def find(self, val, key=lambda n: n): return find(self.root, val, key) def kth(self, k): ''' @param k: 0-based @return TreapNode if exists, None otherwise ''' if not self.root: return None return kth(self.root, k) def rotate_left(self, k): ''' @param k: negative k means rotate_right ''' if not self.root: return None k %= self.root.size l,r = split_first_k(self.root, k) self.root = merge(r, l) return self def rotate_right(self, k): return self.rotate_left(-k) def insert_at(self, k, val, priority=None): self.root = insert_at(self.root, k, TreapNode(val, random() if priority==None else priority)) return self def delete_at(self, k): self.root = delete_at(self.root, k) return self import unittest from math import inf, log from ._tests import assertEqualTreeTopologies, is_bst from ._tree_traversers import traverse_in_order class TreapTestCase(unittest.TestCase): def assertSizeValid(self, root): self.assertTrue(self.is_size_valid(root)) def is_size_valid(self, root): if not root: return True if not self.is_size_valid(root.left) or \ not self.is_size_valid(root.right): return False if not root.size == 1 + get_size(root.left) + get_size(root.right): return False return True def assertBSTValid(self, root): self.assertTrue(self.is_bst_valid(root)) def is_bst_valid(self, root): return is_bst(root) def assertPriorityValid(self, root): self.assertTrue(self.is_priority_valid(root)) def is_priority_valid(self, root): if not root: return True if not self.is_priority_valid(root.left): return False if not self.is_priority_valid(root.right): return False if not get_priority(root.left) <= root.priority or \ not get_priority(root.right) <= root.priority: return False return True def assertBSTreap(self, root): ''' Binary Search Treap ''' self.assertSizeValid(root) self.assertBSTValid(root) self.assertPriorityValid(root) def assertHeightAlmostLog(self, root): expected_height = log(root.size, 1.5) #expected_height = log(root.size, 1.33) # by experiments actual_height = self.tree_height(root) self.assertAlmostEqual(expected_height, actual_height, delta=expected_height*0.8) #self.assertAlmostEqual(expected_height, actual_height, delta=expected_height*0.2) # by experiments #todo: extract this method into a module def tree_height(self, root): if not root: return -1 return 1 + max(map(self.tree_height, [root.left, root.right])) def make_shuffled_treap(self, values): shuffle(values) treap = Treap() for v in values: treap.insert_val(v) return treap class TreapBasicTest(TreapTestCase): def setUp(self): self.treap0 = Treap() self.treap1 = Treap().insert_val(1, 1) self.treap2 = Treap().insert_val(1, 1).insert_val(0,0) self.treap3 = Treap().insert_val(1, 1).insert_val(0,0).insert_val(2,0) self.treap4 = Treap().insert_val(1, 1).insert_val(0,0).insert_val(2,0).insert_val(3, 0.5) def test_add_and_size(self): self.assertEqual(self.treap0.root, None) self.assertEqual(self.treap0.size(), 0) assertEqualTreeTopologies(self.treap1.root, [1], [1]) self.assertEqual(self.treap1.size(), 1) assertEqualTreeTopologies(self.treap2.root, [1,0], [0,1]) self.assertEqual(self.treap2.size(), 2) assertEqualTreeTopologies(self.treap3.root, [1,0,2], [0,1,2]) self.assertEqual(self.treap3.size(), 3) assertEqualTreeTopologies(self.treap4.root, [1,0,3,2], [0,1,2,3]) self.assertEqual(self.treap4.size(), 4) def test_delete(self): self.treap0.delete_val(1) self.assertEqual(self.treap1.delete_val(1).delete_val(1).size(), 0) self.assertEqual(self.treap4.delete_val(1).delete_val(3).size(), 2) def test_find(self): self.assertTrue(self.treap4.find(2)) self.assertFalse(self.treap4.find(99)) class TreapInsertUserDefinedType(unittest.TestCase): def test_basics(self): class Employee(object): def __init__(self, name, age): self.name = name self.age = age @classmethod def key(cls, emp): return (emp.age, emp.name) treap = Treap() treap.insert_val(Employee('jin', 33), 1, Employee.key) treap.insert_val(Employee('min', 30), 2, Employee.key) ages_in_order = list(n.val.age for n in traverse_in_order(treap.root)) self.assertEqual(ages_in_order, [30,33]) self.assertEqual(treap.root.val.name, 'min') self.assertEqual(treap.root.right.val.name, 'jin') self.assertTrue(treap.find((33, 'jin'), Employee.key)) self.assertFalse(treap.find((-1, 'no_exist'), Employee.key)) class TreapDuplicateTest(TreapTestCase): def test_basics(self): treap = Treap() treap.insert_val(1, 1).insert_val(2, 0.5) treap.insert_val(2, 0.75) self.assertBSTreap(treap.root) self.assertEqual(treap.root.size, 3) class TreapComplexTest(TreapTestCase): def test_fuzz1(self): mini, maxi, tree_size = 0, 1<<30, 10000 treap = Treap() for _ in range(tree_size): treap.insert_val(randint(mini, maxi)) self.assertEqual(treap.size(), tree_size) self.assertBSTreap(treap.root) self.assertHeightAlmostLog(treap.root) #print('fuzz1: ', treap.root.left.size, treap.root.right.size) def test_fuzz2(self): tree_size = 10000 treap = Treap() for i in range(tree_size): treap.insert_val(i) self.assertEqual(treap.size(), tree_size) self.assertBSTreap(treap.root) self.assertHeightAlmostLog(treap.root) #print('fuzz2: ', treap.root.left.size, treap.root.right.size) def test_fuzz3(self): values = list(range(10000)) treap = self.make_shuffled_treap(values) shuffle(values) treap = Treap() for v in values: treap.insert_val(v) shuffle(values) for v in values[:5000]: treap.delete_val(v) self.assertEqual(treap.size(), 5000) self.assertBSTreap(treap.root) self.assertHeightAlmostLog(treap.root) class KTest(TreapTestCase): def test_kth_basics(self): treap = self.make_shuffled_treap(list(range(10000))) for k in [0,1,77,777,7777,9999]: self.assertEqual(treap.kth(k).val, k) for k in [10000, 10001, 987654321]: self.assertFalse(treap.kth(k)) treap.delete_val(0) self.assertEqual(treap.kth(0).val, 1) self.assertEqual(treap.kth(99).val, 100) treap.delete_val(50) self.assertEqual(treap.kth(99).val, 101) def test_split_first_k(self): #within boundary for k in range(0, 11): treap = self.make_shuffled_treap(list(range(10))) l,r = split_first_k(treap.root, k) self.assertEqual(get_size(l), k) self.assertEqual(get_size(r), 10-k) self.assertBSTreap(l) self.assertBSTreap(r) #out of boundary treap = self.make_shuffled_treap(list(range(10))) l,r = split_first_k(treap.root, -99) self.assertEqual(get_size(l), 0) self.assertEqual(get_size(r), 10) self.assertBSTreap(l) self.assertBSTreap(r) treap = self.make_shuffled_treap(list(range(10))) l,r = split_first_k(treap.root, 99) self.assertEqual(get_size(l), 10) self.assertEqual(get_size(r), 0) self.assertBSTreap(l) self.assertBSTreap(r) class RotateTest(TreapTestCase): def test_basics(self): treap = self.make_shuffled_treap(list(range(10))) treap.rotate_left(0) self.assertEqual(treap.root.size, 10) self.assertBSTreap(treap.root) treap.rotate_left(1) self.assertEqual(treap.root.size, 10) self.assertEqual(treap.kth(0).val, 1) self.assertEqual(treap.kth(8).val, 9) self.assertEqual(treap.kth(9).val, 0) self.assertSizeValid(treap.root) self.assertPriorityValid(treap.root) with self.assertRaises(AssertionError): self.assertBSTValid(treap.root) treap.rotate_left(3).rotate_left(3).rotate_left(3).rotate_right(3).rotate_left(3) self.assertBSTreap(treap.root) class InsertAtAndDeleteAtTest(TreapTestCase): def test_insert_at(self): from itertools import chain for k in range(5): treap = self.make_shuffled_treap(list(range(5))) treap.insert_at(k, 9999) self.assertEqual(treap.kth(k).val, 9999) self.assertEqual(treap.root.size, 6) self.assertSizeValid(treap.root) self.assertPriorityValid(treap.root) with self.assertRaises(AssertionError): self.assertBSTValid(treap.root) for v,k in enumerate(chain(range(k), range(k+1, 6))): self.assertEqual(treap.kth(k).val, v) def test_delete_at(self): treap = self.make_shuffled_treap(list(range(5))) treap.delete_at(0) self.assertEqual(treap.kth(0).val, 1) treap.delete_at(3) self.assertEqual(treap.kth(2).val, 3) self.assertFalse(treap.kth(2).right) treap.delete_at(0).delete_at(0) self.assertFalse(treap.kth(0).left) self.assertFalse(treap.kth(0).right) self.assertEqual(treap.kth(0).val, 3) treap.delete_at(0) self.assertFalse(treap.root) if __name__ == "__main__": unittest.main() ``` #### File: languages/figuredrawer/mandelbrot.py ```python from PIL import Image, ImageDraw SIZE = 256 image = Image.new("L", (SIZE, SIZE)) d = ImageDraw.Draw(image) def mandel(c): z = 0 for h in range(20): z = z ** 2 + c if abs(z) > 2: break return abs(z) < 2 for x in range(SIZE): r = x / 110.0 - 1.6 for y in range(SIZE): i = y / 110.0 - 1.2 d.point((x,y), mandel(complex(r, i)) * 255) image.save('./mandelbrot.jpg') ``` #### File: python/coroutine/coroutine.py ```python def test(i): print("coroutine starts") while True: value = yield i i += value b = test(5) # just created; main fn in control; next(b) # now corutine in control # execute print statement and then # yield val `i` to main fn # yield control back to caller # waiting to be fed again in pending mode b.send(3) # main fn feeds this coroutin with val `3`, # brought back to life, again in control, # execute i+= value, and then yield to main fn with val updated `i` b.send(5) # main fn feeds this coroutin with val `5`, # brought back to life, again in control, # execute i+= value, and then yield to main fn with val updated `i` ``` #### File: python/networking/echo_client.py ```python import socket import threading as t from time import sleep server, port = 'localhost', 50000 def sender_bot(_id): msgs = ['hello, I am bot_{x}'.format(x=_id), 'nice to meet you_{x}'.format(x=_id)] def __sender_bot(): s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.connect((server, port)) for msg in msgs: sz = s.send(msg.encode()) print('<- {} : {}'.format(id(s), msg)) print('-> {} : {}'.format(id(s), s.recv(sz).decode())) sleep(1) s.close() bot_thread = t.Thread(target=__sender_bot) bot_thread.start() bots = 10 for i in range(1, bots+1): sender_bot(i) ``` #### File: udacity/st101/my_avg.py ```python import unittest def mean(A): return sum(A)/len(A) def median(A): lenA = len(A) half = int(lenA/2) if lenA%2==0: return sum(A[half-1:half+1])/2 else: return A[half] def mode(A): from statistics import collections c = collections.Counter(A) return c.most_common()[0][0] def mmm(A): A.sort() return mean(A), median(A), mode(A) class MyAvgTest(unittest.TestCase): def test_method1(self): A = [5, 9, 100, 9, 97, 6, 9, 98, 9] self.assertEqual(mmm(A), (38.0, 9, 9)) if __name__=="__main__": unittest.main() ``` #### File: notes/my_own_encryption_experiment/divider.py ```python from random import randint def randhex(): i = randint(0,255) return bytes([i]) def divider1(fname): divisor = 2 fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') fp3 = open(fname+'.out2', 'wb') i = 0 c = fp1.read(1) while c: if(i%divisor==0): fp2.write(c) else: fp2.write(randhex()) c = fp1.read(1) i+=1 fp2.close() i = 0 fp1.seek(0) c = fp1.read(1) while c: if(i%divisor==1): fp3.write(c) else: fp3.write(randhex()) c = fp1.read(1) i+=1 fp3.close() fp1.close() def swapper1(fname): pivot = 0b10101010 fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') fp3 = open(fname+'.out2', 'wb') c = fp1.read(1) while c: ec = encrypt(c, pivot) fp2.write(ec) dec = encrypt(ec, pivot) fp3.write(dec) c = fp1.read(1) fp3.close() fp2.close() fp1.close() def encrypt(_bytes, pivot): '''''' assert len(_bytes)==1 return bytes([_bytes[0] ^ pivot]) def encrypt_file(fname, passphrase): UNIT=8 # 8bits per byte bitkey = ''.join([bin(ord(c)).lstrip('0b').zfill(UNIT) for c in passphrase]) keysize, remainder = divmod(len(bitkey),UNIT) #import pdb; pdb.set_trace() assert remainder == 0 #assert is_multiple_of_two(keysize) pivot = int(bitkey, 2) key_in_bytes = convert_to_bytes(pivot, UNIT) fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') bits = fp1.read(keysize) while bits: ec = encrypt_mbitwise(bits, key_in_bytes) fp2.write(ec) bits = fp1.read(UNIT) fp2.close() fp1.close() def convert_to_bytes(integer, bytes_size): '''returns bytes that is converted from given integer''' result = bytearray() src = bin(integer).lstrip('0b').zfill(bytes_size*8) for i in range(0, len(src), 8): _int = int(src[i:i+8],2) result.append(_int) return bytes(result) def encrypt_mbitwise(bytes, key_in_bytes): '''returns encrypted bytes in type of bytearray''' return bytearray([a^b for a,b in zip(bytes, key_in_bytes)]) def is_multiple_of_two(n): '''returns true if n is multiple of two, else false''' return 0 <= bin(n).count('1') <= 1 if __name__=="__main__": import sys fname = sys.argv[1] encrypt_file(fname, '루이보스보리차!@#') #encrypt_file(fname, 'password') #encrypt_file(fname, '<PASSWORD>') ``` #### File: notes/my_own_encryption_experiment/test_divider.py ```python import unittest from divider import encrypt_file, encrypt_mbitwise, is_multiple_of_two, convert_to_bytes class EncrypterTest(unittest.TestCase): def test_encrypt_mbitwise1(self): bytes = b'hello world' key_in_bytes = b'password' encrypted_bytes = encrypt_mbitwise(bytes, key_in_bytes) print(encrypted_bytes) #self.assertEqual(encrypted_bytes, b'') def test_is_multiple_of_two1(self): self.assertTrue(is_multiple_of_two(0b1)) def test_is_multiple_of_two2(self): self.assertTrue(is_multiple_of_two(0b1000)) def test_is_multiple_of_two3(self): self.assertTrue(is_multiple_of_two(0b00010000)) def test_is_multiple_of_two4(self): self.assertTrue(is_multiple_of_two(0b0)) def test_is_multiple_of_two5(self): self.assertFalse(is_multiple_of_two(0b00010001)) def test_convert_to_bytes1(self): integer = 3 bytes_size = 1 self.assertEqual(convert_to_bytes(integer, bytes_size), b'\x03') def test_convert_to_bytes2(self): integer = 256 bytes_size = 2 self.assertEqual(convert_to_bytes(integer, bytes_size), b'\x01\x00') def test_convert_to_bytes3(self): integer = 511 bytes_size = 2 self.assertEqual(convert_to_bytes(integer, bytes_size), b'\x01\xff') ''' 일단 무조건 바이트단위로 쪼개다보니 hexdump의 결과 패턴이 노출될 수 있음. 또한, 키보드상 입력 가능한 단어의 조합들이, binary의 0 무더기에 걸릴경우 암호문 자체가 노출됨. 따라서 salt를 뿌린 hash화가 필요하며, 바이트단위로 쪼개지 않고 비트단위로 접근할 필요가 있음. ''' # def test_encrypt_file(self): # filename = './hello.txt' # encrypt_file(fname, 'password') if __name__=='__main__': unittest.main() ``` #### File: notes/ranking_interns/intern.py ```python cands = { '파이리': {'code-grade':950, 'code-style':5, 'system-design':3,'potential':5, 'attitude':5, 'portfolio':1}, '청아': {'code-grade':800, 'code-style':4.5, 'system-design':3,'potential':4, 'attitude':5, 'portfolio':3}, '혹찬기': {'code-grade':650, 'code-style':3, 'system-design':4,'potential':5, 'attitude':5, 'portfolio':1}, '킴숙주': {'code-grade':650, 'code-style':2, 'system-design':4,'potential':3, 'attitude':5, 'portfolio':1}, '이산': {'code-grade':650, 'code-style':2.5, 'system-design':2,'potential':5, 'attitude':5, 'portfolio':1}, '강산애': {'code-grade':600, 'code-style':2, 'system-design':1,'potential':2, 'attitude':5, 'portfolio':3}, '준마에': {'code-grade':550, 'code-style':2, 'system-design':3,'potential':5, 'attitude':5, 'portfolio':3}, '이상준': {'code-grade':450, 'code-style':2, 'system-design':2,'potential':5, 'attitude':5, 'portfolio':4}, '김국주': {'code-grade':450, 'code-style':3, 'system-design':3.5,'potential':5, 'attitude':5, 'portfolio':5}, '황산벌': {'code-grade':450, 'code-style':3, 'system-design':3,'potential':5, 'attitude':5, 'portfolio':3.5} } weights = { 'code-grade': 0.25, 'code-style': 0.10, 'potential': 0.30, 'attitude': 0.20, 'portfolio': 0.15 } def main(): top4 = sort_candidates(cands, weights)[:4] residue = sort_candidates(cands, weights)[4:] print(top4) print() print(residue) def sort_candidates(cands, weights): ''' @return [(name, score)] ''' name_score_lst = [(name, round(calc_score(grades, weights), 2)) for (name, grades) in cands.items()] name_score_lst.sort(key=lambda p:p[1], reverse=True) return name_score_lst def calc_score(grades, weights): ''' @return (name, score) ''' score = 0 for attr, w in weights.items(): if attr == 'code-grade': score += grades[attr] * 5 * w / 950 else: score += grades[attr] * w return score main() ``` #### File: 00.organize.me/algorithm_competition_by_goojongman/ites.py ```python import unittest def seed(i): assert i>=0 if i==0: return 1983 return (seed(i-1)*214013 + 2531011) % (1<<32) def A(i): return seed(i) % 10000 + 1 def AA(): seed = 1983 while True: ret = seed % (1<<32) seed = (seed * 214013 + 2531011) % (1<<32) yield ret % 10000 + 1 def ites(start, stop, K): assert K > 0 assert start <= stop a = A(start) #basis if start == stop: return 1 if a==K else 0 #recursive res = ites(start+1, stop, K) if a < K: res += ites(start+1, stop, K-a) elif a == K: res += 1 return res class ITESTest(unittest.TestCase): def ITESResult(self, K, N, count): self.assertEqual(ites(0, N-1, K), count) def test_A(self): al = [A(i) for i in range(5)] self.assertEqual(al, [1984, 8791, 4770, 7665, 3188]) def test_AA(self): iter_aa = AA() aal = [next(iter_aa) for i in range(5)] self.assertEqual(aal, [1984, 8791, 4770, 7665, 3188]) def test_samples(self): self.ITESResult(K=8791, N=20, count=1) self.ITESResult(K=5265, N=5000, count=4) #self.ITESResult(K=3578452, N=5000000, count=1049) if __name__ == "__main__": unittest.main() ``` #### File: 00.organize.me/algorithm_competition_by_goojongman/quadtree.py ```python import unittest class QuadTree: def __init__(self, bwx, one=None, two=None, three=None, four=None): self.bwx = bwx self.one = one self.two = two self.three = three self.four = four @classmethod def make_tree(cls, msg): qtree, _ = cls._make_tree(msg) return qtree @classmethod def _make_tree(cls, msg): assert len(msg) > 0 head, tail0 = msg[0], msg[1:] #basis if head != 'x': return (QuadTree(head), tail0) else: one, tail1 = cls._make_tree(tail0) two, tail2 = cls._make_tree(tail1) three, tail3 = cls._make_tree(tail2) four, tail4 = cls._make_tree(tail3) return (QuadTree('x', one, two, three, four), tail4) def __str__(self): return self.bwx + (str(self.one) if self.one else '') \ + (str(self.two) if self.two else '') \ + (str(self.three) if self.three else '') \ + (str(self.four) if self.four else '') def flip(qtree): ''' change in-place ''' if qtree and qtree.bwx == 'x': flip(qtree.one) flip(qtree.two) flip(qtree.three) flip(qtree.four) qtree.three, qtree.four, qtree.one, qtree.two = qtree.one, qtree.two ,qtree.three, qtree.four class QuadTreeStrTest(unittest.TestCase): def test_quadtree1(self): qtree = QuadTree.make_tree("w") self.assertEqual(str(qtree), 'w') def test_quadtree2(self): qtree = QuadTree.make_tree("xwwbb") self.assertEqual(str(qtree), 'xwwbb') class QuadtreeFlipTest(unittest.TestCase): def assertFlipped(self, inp, out, msg=None): qtree = QuadTree.make_tree(inp) flip(qtree) self.assertEqual(str(qtree), out, msg) def test_flip1(self): self.assertFlipped("w", "w", "mono color should be identical") def test_flip2(self): self.assertFlipped("xbwwb", "xwbbw") def test_flip3(self): self.assertFlipped("xbwxwbbwb", "xxbwwbbbw") def test_flip4(self): self.assertFlipped("xxwwwbxwxwbbbwwxxxwwbbbwwwwbb", "xxwbxwwxbbwwbwbxwbwwxwwwxbbwb") if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/algorithm_competition_by_goojongman/sortgame.py ```python import unittest from math import inf from itertools import combinations as comb def get_next(seq, discovered): seq_len = len(seq) for c in comb(range(seq_len), 2): a,b = c next_node = seq[0:a] + list(reversed(seq[a:b+1])) + seq[b+1:seq_len] if next_node not in discovered: yield next_node def sortgame(not_sorted): ''' return minimum cnt to sort `not_sorted` ''' cnt = 0 discovered = [not_sorted] q = [(0, not_sorted)] sorted_seq = sorted(not_sorted) while q: cnt, seq = q.pop(0) if sorted_seq == seq: return cnt for next_node in get_next(seq, discovered): discovered.append(next_node) q.append((cnt+1, next_node)) assert False, "cannot reach here" class ModuleTest(unittest.TestCase): def test_get_next(self): it = get_next([2,1,3,4], []) next_node = next(it) self.assertEqual(next_node, [1,2,3,4]) class SortGameTest(unittest.TestCase): def test_samples(self): self.assertSorted([1,2,3,4,8,7,6,5], 1) self.assertSorted([3,999,1,2], 2) self.assertSorted([1000, 2000, 3000], 0) def assertSorted(self, not_sorted, cnt): self.assertEqual(sortgame(not_sorted), cnt) if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/17-14.py ```python WORD_LIST = [] with open('english_dictionary.txt', 'r', encoding="ISO-8859-1") as fp: WORD_LIST = fp.read().splitlines() WORD_LIST = [word.lower() for word in WORD_LIST] WORD_LIST = list(set(WORD_LIST)) _WORD_LIST = [] for word in WORD_LIST: for ch in word: if not ch in 'abcdefghijklmnopqrstuvwxyz': continue _WORD_LIST.append(word) WORD_LIST = _WORD_LIST WORD_LIST.sort(key = lambda x: (len(x), x)) print('done sorting word_list') print('words length ranges from {} to {}'.format(len(WORD_LIST[0]), len(WORD_LIST[-1]))) print('Creating rainbow_table') rainbow_table = {} for word in WORD_LIST: for i in range(len(word)): key = word[:i+1] if key not in rainbow_table: rainbow_table[key] = True print('Done!') def restore_naive(sentence): words = [] i,j = 0,1 while i<len(sentence): i,j = find_word_in_sentence(sentence,i,j,words) words = concat_capitals_together(words) new_sentence = ' '.join(words) return new_sentence def find_word_in_sentence(sentence, i, j, words): assert i < len(sentence) while j<=len(sentence) and sentence[i:j] in rainbow_table: j+=1 word = sentence[i:j-1] if word in WORD_LIST: words.append(word) else: words.append(word.upper()) i = j - 1 #j = j return i, j def concat_capitals_together(words): on_capital = False range_list = [] for i, word in enumerate(words): if word.isupper() and not on_capital: on_capital = True start_idx = i elif word.isupper() and on_capital: if i==(len(words)-1): range_list.append(start_idx, len(words)) elif not word.isupper() and on_capital: on_capital=False end_idx = i range_list.append((start_idx, end_idx)) elif not word.isupper() and not on_capital: pass else: assert False #range_list is prepared for i,j in range_list[::-1]: words[i:j] = [''.join(words[i:j])] return words #broken_sentence = 'ilovejinsungheleftthismorning' broken_sentence = 'jesslookedjustliketimherbrother' print(restore_naive(broken_sentence)) ``` #### File: 00.organize.me/Cracking the Coding Interview/18-10.py ```python import unittest WORDS = ['FISH', 'HACK', 'DAMP', 'LAMP', 'LIMP', 'LIME', 'LIKE', 'HELL', 'DICK', 'DICT', 'KNOW', 'BOWL', 'ROSE', 'ROLL', 'KILL', 'LOVE'] DIC = {word:True for word in WORDS} def wordjump(dic, start, stop): def get_neighbors(v): for i in range(len(v)): for alpha in 'ABCDEFGHIJKLMNOPQRSTUVWXYZ': new_word = v[:i] + alpha + v[i+1:] if new_word in dic: yield new_word if start not in dic: return None parent = {start : None} to_visit = [start] # to visit discovered = {start} # discovered == to_visit + visited found = False while to_visit: v = to_visit.pop(0) #now, v is visited if v == stop: found = True break for neigh_v in get_neighbors(v): if neigh_v not in discovered: parent[neigh_v] = v to_visit.append(neigh_v) discovered.add(neigh_v) if not found: return None path = [] while v: path.append(v) v = parent[v] return list(reversed(path)) class WordjumpTest(unittest.TestCase): def test_samples(self): i = ['DAMP', 'LIKE'] o = ['DAMP', 'LAMP', 'LIMP', 'LIME', 'LIKE'] self.assertWordjump(i, o) def test_sample2s(self): self.assertWordjump(['LIME', 'XXXX'], None) self.assertWordjump(['XXXX', 'YYYY'], None) def assertWordjump(self, i, o): self.assertEqual(wordjump(DIC, *i), o) if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/18-3.py ```python import unittest from random import randint def shuffled_index(cnt): ''' iterator ''' res = list(range(cnt)) for i in range(cnt): #invariant #res[0:i] is selected nextint = randint(i, cnt-1) res[nextint], res[i] = res[i], res[nextint] yield res[i] #invariant #res[0:i+1] is selected def select_random(m, n): assert 0<=n<=m it = shuffled_index(m) return [next(it) for _ in range(n)] class SelectRandomTest(unittest.TestCase): def test_assertionError(self): with self.assertRaises(AssertionError): self.assertRandomlySelected(10, -1) with self.assertRaises(AssertionError): self.assertRandomlySelected(10, 111) def test_samples(self): self.assertRandomlySelected(10, 0) self.assertRandomlySelected(10, 5) self.assertRandomlySelected(10, 8) self.assertRandomlySelected(10, 10) def assertRandomlySelected(self, m, n): res = select_random(m, n) self.assertEqual(len(res), n) for i in res: self.assertTrue( 0<= i < m) if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/18-5.py ```python import unittest from math import inf def shortest_distance(A, B): ''' my way - efficient ''' assert A assert B mini = inf len_a, len_b = len(A), len(B) idx_a, idx_b = 0, 0 while idx_a < len_a and idx_b < len_b: val_a, val_b = A[idx_a], B[idx_b] mini = min(abs(val_a - val_b), mini) if val_a < val_b: idx_a += 1 else: idx_b += 1 return mini def shortest_distance_merged(A, B): ''' as 게일 맥도만suggested ''' def merge(it_X, it_Y): ''' assume it_X and it_Y are in ascending order''' #it_x, it_y = it_X, it_Y #C = [] #x = next(it_x, None) #y = next(it_y, None) #while x and y: # if x < y: # C.append(x) # x = next(it_x, None) # else: # C.append(y) # y = next(it_y, None) #if x: # C.append(x) # C.extend(it_x) #if y: # C.append(y) # C.extend(it_y) #return C C = list(it_X) + list(it_Y) C.sort() return C #code starts here assert A assert B mini = inf C = merge( ((a, 'a') for a in A), ((b, 'b') for b in B) ) for i,j in zip(C, C[1:]): i_val, i_label = i j_val, j_label = j if i_label==j_label: continue mini = min(abs(i_val-j_val), mini) return mini class WordsDistanceTest(unittest.TestCase): def test_samples(self): self.assertShortestDistance([0], [10], 10) self.assertShortestDistance([0], [8, 14], 8) self.assertShortestDistance([0,5], [3, 6], 1) self.assertShortestDistance([0, 10, 11, 15], [8, 14], 1) def assertShortestDistance(self, A, B, expected): self.assertEqual(shortest_distance(A, B), expected) self.assertEqual(shortest_distance_merged(A, B), expected) if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/2-2.py ```python class Node(object): def __init__(self, val): self.val = val self.next = None # def __iter__(self): # while self: # yield self # self = self.next def iterating_nodes(node): while node: yield node node = node.next class Tracker(object): def __init__(self, k): self.k = k self.li = [] def push(self, node): self.li.append(node) if len(self.li)>self.k: del(self.li[0]) def track(node, k): assert k>=0 tracker = Tracker(k) #for nd in node: while node: tracker.push(node) node = node.next return tracker.li[0] def main(): one = Node(1) two = Node(2) three = Node(3) four = Node(4) five = Node(5) one.next = two two.next = three three.next = four four.next = five n_th_node_from_the_end = track(one, 3) print(n_th_node_from_the_end.val) if __name__=="__main__": main() ``` #### File: 00.organize.me/Cracking the Coding Interview/9-5.py ```python def permutation(li): assert isinstance(li, list) if len(li)==1: return li elif len(li)==2: return [[li[0],li[1]], [li[1],li[0]]] for i in range(len(li)): new_li = circular(i, li) f, r = new_li[0], new_li[1:] for each in permutation(r): each.insert(0,f) print(each) def circular(i, li): assert i<=len(li)-1 result = [] for j in range(len(li)): result.append( li[(i+j)%len(li)] ) return result li = ['a','b','c'] permutation(li) ``` #### File: 00.organize.me/Cracking the Coding Interview/9-8.py ```python def coin_procedural(n): result=[] for q in range(n//25+1): left1=n-q*25 for d in range(left1//10+1): left2=left1-d*10 for ni in range(left2//5+1): pe=left2-ni*5 result.append([q,d,ni,pe]) return result #print(coin_procedural(100)) def coin_recursive(n, coin_types, coin_index): assert n>=0 assert 0<=coin_index<len(coin_types) cur_coin = coin_types[coin_index] if coin_index==len(coin_types)-1: return [[n//cur_coin]] tmp = [] for cnt in range(n//cur_coin+1): for each in coin_recursive(n-cur_coin*cnt, coin_types, coin_index+1): each.insert(0, cnt) tmp.append(each) return tmp def coin_recursive_wrapper(n): return coin_recursive(n, [25,10,5,1], 0) print(coin_recursive_wrapper(100)) ``` #### File: 00.organize.me/Cracking the Coding Interview/A_counter_8s.py ```python def counter(n): cnt = 0 for i in range(n): cnt += howMany8s(i) return cnt def howMany8s(num): if num < 0: assert(False) cnt = 0 while(0 < num): if (num%10) == 8: cnt+=1 num/=10 return cnt if __name__=="__main__": print counter(10000) ``` #### File: 00.organize.me/Cracking the Coding Interview/A_heap.py ```python import pdb class MinHeap: def __init__( self, size ): self.size = size+1 self.cnt = 0 self.heap = [] for i in range(self.size): self.heap.append([]) def getParentIdx ( self, idx ): return idx/2 def getLeftChildIdx( self, idx ): return 2*idx def getRightChildIdx( self, idx ): return 2*idx+1 def addInt( self, num ): if self.cnt > self.size-2: return False self.cnt += 1 self.heap[self.cnt] = [num] #process to keep in order my_idx = self.cnt while(my_idx > 1): par_idx = self.getParentIdx(my_idx) if self.heap[ par_idx ] > self.heap[ my_idx ]: self.heap[ par_idx ], self.heap[ my_idx ] = self.heap[ my_idx ], self.heap[ par_idx ] my_idx = par_idx return True def popHeap( self ): if self.cnt<1: return None #save return value in the end min_val = self.heap[1][:] rpl_val = self.heap[self.cnt][:] self.cnt -= 1 emt_idx = 1 while(True): #if right child exists, both children exist: if self.getRightChildIdx(emt_idx) <= self.cnt: l_idx, r_idx = self.getLeftChildIdx(emt_idx), self.getRightChildIdx(emt_idx) #get the least value and its index if self.heap[l_idx] < self.heap[r_idx] : the_idx = l_idx the_val = self.heap[l_idx] else: the_idx = r_idx the_val = self.heap[r_idx] #check if heap is out of order: if the_val < rpl_val: self.heap[emt_idx] = the_val emt_idx = the_idx #if heap is in order: else: self.heap[emt_idx] = rpl_val break #if right child doesn't exist and left child exists: elif self.getLeftChildIdx(emt_idx) <= self.cnt: l_idx = self.getLeftChildIdx(emt_idx) l_val = self.heap[l_idx] if l_val < rpl_val: self.heap[emt_idx] = l_val emt_idx = l_idx else: self.heap[emt_idx] = rpl_val break #if no child: else: self.heap[emt_idx] = rpl_val break #return the temporarily saved least value in the heap return min_val def PrintHeap( self ): print self.heap[1:self.cnt+1] ### ###End of Class ### def unitTest1(): minHeap = MinHeap(10) for i in [3,4,2,5,6,7,1,8]: minHeap.addInt(i) minHeap.PrintHeap() for i in range(5): minHeap.popHeap() minHeap.PrintHeap() for i in [1,22,3,4,55,-5]: minHeap.addInt(i) minHeap.PrintHeap() for i in range(7): print minHeap.popHeap() minHeap.PrintHeap() def heapSort(arr): minHeap = MinHeap(len(arr)) for i in arr: minHeap.addInt(i) result = [] while(True): p = minHeap.popHeap() if p == None: break result.append(p[0]) return result if __name__=="__main__": arr = [3,4,2,5,6,7,1,8] print 'arr ->', print arr arr_sorted = heapSort(arr) print 'arr_sorted ->', print arr_sorted ``` #### File: 00.organize.me/Cracking the Coding Interview/maze.py ```python import unittest def parse(s): return [list(l.strip()) for l in s.strip().splitlines()] def find_exit_narrow(m, i, j): ''' return True if exit is found, False, otherwise m will be modified during search i,j = current poinrt ! : exit point X : wall - : aisle @ : visited ''' def next_point(m, i, j): #북동남서 순 for ni, nj in [(i-1,j), (i,j+1), (i+1,j), (i,j-1)]: if 0 <= ni < len(m) and 0 <= nj < len(m[0]) \ and m[ni][nj] not in "@X": yield ni, nj if m[i][j]=='!': return True m[i][j] = '@' for n in next_point(m, i, j): if find_exit_narrow(m, *n): return True m[i][j] = '-' return False def find_exit_narrow_by_stack(m, i, j): def get_neighbors(m, i, j): for ni, nj in [(i-1,j), (i,j+1), (i+1,j), (i,j-1)]: if 0 <= ni < len(m) and 0 <= nj < len(m[0]) \ and m[ni][nj] in "-!": yield ni, nj assert m[i][j] in '-!' visited = set() stack = [(i,j)] found = False while stack: i,j = stack[-1] if (i,j) not in visited: visited.add((i,j)) if m[i][j] == '!': found = True break neighbor_found = False for neighbor_pos in get_neighbors(m, i, j): if neighbor_pos not in visited: stack.append(neighbor_pos) neighbor_found = True break if neighbor_found: continue stack.pop(-1) #maybe modify m along stack for road map for i,j in stack: if m[i][j] == '-': m[i][j] = '@' return found def find_exit_wide(m, i, j): ''' return True if exit is found, False, otherwise m will be modified during search i,j = current poinrt ! : exit point X : wall - : aisle @ : visited ''' def next_point(m, i, j): #북동남서 순 for ni, nj in [(i-1,j), (i,j+1), (i+1,j), (i,j-1)]: if 0 <= ni < len(m) and 0 <= nj < len(m[0]) \ and m[ni][nj] not in "@X": yield ni, nj if m[i][j]=='!': return True m[i][j] = '@' for n in next_point(m, i, j): if find_exit_wide(m, *n): return True #m[i][j] = '-' return False def pretty_print_maze(m): for line in m: print(''.join(line)) class MazeTest(unittest.TestCase): def setUp(self): self.solutions = [find_exit_narrow, find_exit_wide, find_exit_narrow_by_stack] self.sample = ''' -XXXXXX-XXXXXXXXXXXXX --------XXX---------X XX-XX-XXXXX-XXXXXXX-X X--XX-X-XX-------XX-X X-XXX-X-XX-XX-XXXXX-X X--XX-X----XX-XX-XX-X XX-XX-XXXX-XX-XX-XX-X XX-XX-XXXX-XX-XX-XX-X XX-XXXXXXX-XX-XX-XX-X XX---------XX-XX-XX-X XXXX-XX-XXXXX-XX-XX-X X-XX-XX-X-----XX-XX-X X-XX----X-XXX-XX----X X-XXXXXXXXXXX-XXXXXXX X-------------------! XXXXXXXXXXXXXXXXXXXXX''' self.sample2 = ''' -XXXXXX-XXXXXXXXXXXXX --------XXX---------X --------------------X --------------------X --------------------X --------------------X --------------------X -------------------XX XX-XXXXXXX-XXX-X-XX-X XX---------XXX-X-XX-X XXXX-XX-XXXXXX-X-XX-X X-XX-XX-X----X-X-XX-X X-XX----X-XXXX-X----X X-XXXXXXXXXXXX-XXXXXX X-------------------! XXXXXXXXXXXXXXXXXXXXX''' self.sample3 = ''' ----- ----- ----- ----!''' self.sample4 = ''' -XXX -XXX -XXX --X!''' def test_parse(self): m = parse(self.sample) assert len(m) > 1 first_len = len(m[0]) self.assertTrue(all(first_len==len(l) for l in m[1:])) def test_narrow_maze(self): for solution in self.solutions: m = parse(self.sample) self.assertTrue(solution(m, 0, 0)) #pretty_print_maze(m) def test_wide_maze(self): for solution in [find_exit_wide, find_exit_narrow_by_stack]: m = parse(self.sample2) self.assertTrue(solution(m, 0, 0)) #pretty_print_maze(m) def test_fail_cases(self): m = parse(self.sample4) self.assertFalse(find_exit_narrow(m, 0, 0)) self.assertFalse(find_exit_wide(m, 0, 0)) if __name__=="__main__": unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/p00_combination_iter.py ```python def combination_iter(arr, many): if type(arr)!=list or many<0 or many>len(arr): assert(False) result = [] queue = [] for ele in arr: queue.append([ele]) while(0<len(queue)): cur_list = queue.pop(0) if len(cur_list) < many: for ele in arr: if cur_list[-1] < ele: tmp_list = cur_list[:] tmp_list.append(ele) queue.append(tmp_list) elif len(cur_list) == many: result.append( cur_list ) else: assert(False) return result def combination_wrapper( arr, many ): #if not monotonically increasing: #exit for i in range(len(arr))[:-1]: if arr[i]>arr[i+1]: assert(False) #if monotonically increasing: return combination_iter(arr,many) if __name__=="__main__": arr = [1,2,3,4,5,6] print combination_wrapper( arr, 1 ) print combination_wrapper( arr, 2 ) print combination_wrapper( arr, 3 ) print combination_wrapper( arr, 4 ) print combination_wrapper( arr, 5 ) print combination_wrapper( arr, 6 ) ``` #### File: 00.organize.me/Cracking the Coding Interview/p00_getCombiForCents_queue.py ```python def getCombiForCents_wrapper(possible_list, mini, maxi=None): if not maxi: maxi = (mini-1)+max(possible_list) return getCombiForCents(possible_list, mini, maxi) def getCombiForCents(possible_list, mini, maxi): if not possible_list: assert(False) result = [] queue = [] init_list = [] for i in range(len(possible_list)): init_list.append(0) #init_list = [0,0,0,0] for i, price in enumerate(possible_list): if price <=maxi: tmp_init_list = init_list[:] tmp_init_list[i] +=1 queue.append(tmp_init_list) #queue INVARIANT: #In queue are EVERY POSSIBLE combinations less than maxi while( 0<len(queue) ): #dup_test(queue) #print len(queue) #print queue cur_price_list = queue.pop(0) cur_price_tot = list_product(possible_list, cur_price_list) # if mini <= cur_price_tot <= maxi: if mini <= cur_price_tot: result.append(cur_price_list) #pdb.set_trace() #DO NOT CORRUPT cur_price_list for sibling operations for i, add_price in enumerate(possible_list): if (cur_price_tot+add_price) <= maxi: new_price_list = cur_price_list[:] new_price_list[i] += 1 #CHECK IF new_price_list is already in queue: #WITHOUT MEMBERSHIP TEST, INFINITE LOOPING MIGHT HAPPEN. #queue.append(new_price_list) if new_price_list not in queue: queue.append(new_price_list) #end of while: #queue is empty #result is full of adequate list of combinations return result def list_product(list1, list2): if len(list1) != len(list2): assert(False) sum = 0 for i in range(len(list1)): sum += list1[i]*list2[i] return sum def dup_test(queue): queue_len = len(queue) for i in range(queue_len)[:-1:]: for j in range(queue_len)[i+1::]: if queue[i] == queue[j]: print 'oh no:',(i, j), len(queue), queue[i] #assert(False) def test1(): mini = 1000 maxi = 1000 possible_list = [ 25, 10, 5, 1 ] #change = 99 #possible_list = [ 19, 6 ,7, 17 ] result = getCombiForCents_wrapper(possible_list, mini, maxi) print result print len(result) if __name__=="__main__": #print list_product([3,4,5],[1,2,1]) import pdb test1() #dup_test([1,2,3,9,5,6,7,8,9]) ``` #### File: 00.organize.me/Cracking the Coding Interview/p064_00_getLeastIntFromRotatedSequence.py ```python def getLeastIntFromRotatedSequence(ls): left=0 right=len(ls)-1 if ( ls[left] < ls[right] ): return ls[0] while(right-left != 1): mid = (left+right) / 2 if( ls[left] <= ls[mid] ): left = mid else: right = mid #out of loop, right must be the index of the least int return ls[right] test_ls= [ [3,4,5,6,7,-11,2], [5,6,7,3,4,5,5,5], [1,2], [2,1], [-100,0,100], [3,100,1], [10,1,2,3,4,5,6,7,8,9], [2,3,4,5,6,7,8,9,10,1] ] #test part for each_list in test_ls: print getLeastIntFromRotatedSequence( each_list ) ``` #### File: 00.organize.me/Cracking the Coding Interview/p140_01_stairways_recur.py ```python def stairways_recur(n_step): if n_step < 1: return [] elif n_step == 1: return [[1]] result = [] result1 = joiner( 1, stairways_recur(n_step-1) ) result2 = joiner( 2, stairways_recur(n_step-2) ) result3 = joiner( 3, stairways_recur(n_step-3) ) result = result1 + result2 + result3 return result def joiner(ele, double_list): result = [] for single_list in double_list: result.append( [ele] + single_list[:] ) return result if __name__ == "__main__": result = stairways_recur(10) print result print len(result) ``` #### File: 00.organize.me/Cracking the Coding Interview/prison_break.py ```python import unittest from math import factorial from functools import reduce from operator import mul from itertools import combinations_with_replacement as comb_r def prisoners(days): '''아... comb_r이 경우의 수가 지수적으로 증가하는 관꼐로 현실적 계산이 불가하다.''' if days < 100: return 0 up1 = factorial(100) down1 = 100**100 up2 = sum(reduce(mul, each) for each in comb_r(range(1, 101), days-100)) if days>100 else 1 down2 = 100 ** (days-100) return up1 / down1 * up2 / down2 def stats(): days = 1 while True: person = 1 - (0.99)**days yield days, person**100 days += 1 def prisoners_simple(): it_stats = stats() thresholds = [0.5, 0.6, 0.70, 0.80, 0.90, 0.95,\ 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999999, 1] for threshold in thresholds: while True: days, thres = next(it_stats) if threshold <= thres: print("threshold(%s): %s days" %(thres, days)) break class XTest(unittest.TestCase): def test_method1(self): s = stats() while True: days, p1 = next(s) if days==101: break p2 = prisoners(101) self.assertEqual(p1, p2) if __name__=="__main__": prisoners_simple() unittest.main() ``` #### File: 00.organize.me/Cracking the Coding Interview/product.py ```python def product(*lists): for ls in lists: assert len(ls)>0 idx_list = [0]*len(lists) len_list = [len(ls) for ls in lists] while True: val_list = [] # ex) idx_list = [0,1,0] for i,idx in enumerate(idx_list): val_list.append(lists[i][idx]) yield val_list try: idx_list = add_one(len_list, idx_list) except ValueError: break def add_one(radix_list, idx_list): #pre-assertion assert len(radix_list) == len(idx_list) if radix_list==[idx+1 for idx in idx_list]: raise ValueError for i, val in enumerate(idx_list): assert radix_list[i] > val #logic idx_list[-1]+=1 for digit in range(len(idx_list))[::-1]: if idx_list[digit] == radix_list[digit]: #transactional idx_list[digit-1] += 1 idx_list[digit] = 0 else: break #post-assertion for i, val in enumerate(idx_list): assert radix_list[i] > val return idx_list if __name__=="__main__": print('implemented_product') #for each in product('ㄱㄴㄷ','abc','123'): # print(each) result = product('ㄱㄴㄷ','abc','123') while True: print(next(result)) ``` #### File: 00.organize.me/Cracking the Coding Interview/sudoku.py ```python import unittest def parse(s): lines = [line.strip() for line in s.strip().splitlines()] res = [] for line in lines: li = [] for e in line: if e == '*': li.append(None) else: li.append(int(e)) res.append(li) return res def sudoku(s): ''' returns True if s is fully filled successfully. False, otherwise ''' def pick_one(s): for i in range(9): for j in range(9): if s[i][j] == None: return i,j def is_sudoku_complete(s): for line in s: if None in line: return False return True def is_possible(s, i, j, v): if v in s[i]: return False for r in range(9): if s[r][j] == v: return False r_start = (i//3)*3 c_start = (j//3)*3 for r in range(r_start, r_start+3): for c in range(c_start, c_start+3): if s[r][c]==v: return False return True i,j = pick_one(s) for v in range(1,10): if not is_possible(s,i,j,v): continue s[i][j] = v if is_sudoku_complete(s): return True if sudoku(s): return True s[i][j] = None return False class SudokuTest(unittest.TestCase): def setUp(self): self.sample = ''' 128**547* **5*8*39* 9*36428** 4**51*68* 78*4*3*59 *36*98**1 **43791*8 *69*2*5** *178**924''' self.sample2 = ''' *2*63**** 6**4***1* ****5**7* **39****4 **8***6** 7****35** *4**2**** *5***8**9 ****91*3* ''' self.sample3 = ''' ********* ********* ********* ********* ********* ********* ********* ********* ********* ''' def test_parse(self): s = parse(self.sample) self.assertEqual(len(s), 9) for i in range(9): self.assertEqual(len(s[i]), 9) def test_sudoku(self): s = parse(self.sample3) succeed = sudoku(s) self.assertTrue(succeed) import pprint pprint.pprint(s) for line in s: self.assertEqual(sum(line), 45) for col in range(9): col_sum = 0 for row in range(9): col_sum += s[row][col] self.assertEqual(col_sum, 45) for r in [0,3,6]: for c in [0,3,6]: self.assertEqual(sum(s[x][y] for x in [r,r+1,r+2] for y in [c,c+1,c+2]), 45) if __name__=="__main__": unittest.main() ``` #### File: hackerrank/sorted_set/client.py ```python import socket import struct import threading SERVER_SOCKET_PATH = "./socket" FMT = "!L" def read_number_from_socket(connection): return struct.unpack(FMT, connection.recv(4))[0] def write_number_to_socket(connection, number): connection.send(struct.pack(FMT, number)) def client(t_id): sock = socket.socket(socket.AF_UNIX) sock.connect(SERVER_SOCKET_PATH) with open('./input.txt', 'r') as fp: commands = fp.read() for command in commands.splitlines(): for opt in command.split(): sock.send(struct.pack(FMT, int(opt))) value_cnt = read_number_from_socket(sock) print(value_cnt) for _ in range(value_cnt): value = read_number_from_socket(sock) #print('tid', t_id, value) print(value) sock.close() print('termnated', t_id) def main(): for t_id in range(1): t = threading.Thread(target=client, args=(t_id,)) t.start() if __name__ == "__main__": main() ``` #### File: hackerrank/sorted_set/server2.py ```python import socket, threading from queue import Queue import sys, struct # NOTE: Use this path to create the UDS Server socket SERVER_SOCKET_PATH = "./socket"; class Result: def __init__(self): self._evt = threading.Event() self._result = None def set_result(self, value): self._result = value self._evt.set() def result(self): self._evt.wait() return self._result class ActorExit(Exception): pass class Actor(object): def __init__(self): self._mailbox = Queue() def send(self, msg): self._mailbox.put(msg) def recv(self): msg = self._mailbox.get() if msg is ActorExit: raise ActorExit() return msg def close(self): self.send(ActorExit) def start(self): self._terminated = threading.Event() t = threading.Thread(target=self._bootstrap) t.daemon = True t.start() def _bootstrap(self): try: self.run() except ActorExit: pass finally: self._terminated.set() def join(self): self._terminated.wait() def run(self): while True: msg = self.recv() class Worker(Actor): def __init__(self): super().__init__() self.db = {} def submit(self, values): r = Result() self.send((values, r)) return r def run(self): while True: values, r = self.recv() r.set_result(self.execute(values)) def execute(self, values): cmd, *opts = values print('[*]', cmd, opts) if cmd == 1: #add s, k, v = opts self.db.setdefault(s, {}) self.db[s][k] = v return [0] elif cmd == 2: #remove s, k = opts if s in self.db and k in self.db[s]: self.db[s].pop(k) return [0] elif cmd == 3: #get size s = opts[0] size = len(self.db[s]) if s in self.db else 0 return [1, size] elif cmd == 4: #get value s, k = opts if s in self.db and k in self.db[s]: score = self.db[s][k] else: score = 0 return [1, score] elif cmd == 5: #range *sets, _, lower, upper = opts res = [] for s in sets: if s not in self.db: continue for k,v in self.db[s].items(): if lower <= v <= upper: res.append((k,v)) res.sort() return [len(res)*2] + [e for kv in res for e in kv] elif cmd == 6: #disconnect return None else: raise Exception("Not supported CMD(%s)" % (cmd)) FMT = "!L" def read_number_from_socket(connection): return struct.unpack(FMT, connection.recv(4))[0] def write_number_to_socket(connection, number): connection.send(struct.pack(FMT, number)) def process_client_connection(connection, worker): while True: value_num = read_number_from_socket(connection) values = [] for _ in range(value_num): values.append(read_number_from_socket(connection)) res = worker.submit(values) if res.result() == None: break for num in res.result(): write_number_to_socket(connection, num) connection.close() def main(): worker = Worker() worker.start() s = socket.socket(socket.AF_UNIX) s.bind(SERVER_SOCKET_PATH) s.listen(1) while True: cl, addr = s.accept() t = threading.Thread(target = process_client_connection, args=(cl, worker)) t.start() #worker.close() s.close() if __name__ == '__main__': main() ``` #### File: quizzes/00.organize.me/tree_with_insert_at.py ```python class Solution: # @param A : list of integers # @param B : list of integers # @return a list of integers def order(self, A, B): root = None for _id, k in zip(A,B): root = insert_at(root, k, Node(_id)) return list(n._id for n in traverse_in_order(root)) class Node(object): def __init__(self, _id): self._id = _id self.left = self.right = None self.size = 1 def set_left(self, left): self.left = left self.resize() return self def set_right(self, right): self.right = right self.resize() return self def resize(self): self.size = 1 + get_size(self.left) + get_size(self.right) def get_size(node): if not node: return 0 return node.size def insert_at(root, k, node): assert node if not root: return node if k < 0: k = 0 if k > root.size: k = root.size left_size = get_size(root.left) if left_size > k: return root.set_left(insert_at(root.left, k, node)) elif left_size == k: l = root.left root.set_left(None) node.set_left(l) node.set_right(root) return node else: new_right = insert_at(root.right, k-1-left_size, node) root.set_right(new_right) return root def traverse_in_order(node): if not node: return if node.left: yield from traverse_in_order(node.left) yield node if node.right: yield from traverse_in_order(node.right) ``` #### File: 2019/02.you_can_go_your_own_way/solution.py ```python def solve(n, her_path): return ''.join(['E' if c=='S' else 'S' for c in her_path]) def main(): t = int(input()) for i in range(1, t+1): n = int(input()) her_path = input().strip() my_path = solve(n, her_path) print("Case #{}: {}".format(i, my_path)) if __name__ == "__main__": main() ``` #### File: 2019/03.cryptopangrams/test.py ```python import unittest from solution import solve from string import ascii_uppercase C2P = {'A': 2, 'B': 3, 'C': 5, 'D': 7, 'E': 11, 'F': 13, 'G': 17, 'H': 19, 'I': 23, 'J': 29, 'K': 31, 'L': 37, 'M': 41, 'N': 43, 'O': 47, 'P': 53, 'Q': 59, 'R': 61, 'S': 67, 'T': 71, 'U': 73, 'V': 79, 'W': 83, 'X': 89, 'Y': 97, 'Z': 101} P2C = {2: 'A', 3: 'B', 5: 'C', 7: 'D', 11: 'E', 13: 'F', 17: 'G', 19: 'H', 23: 'I', 29: 'J', 31: 'K', 37: 'L', 41: 'M', 43: 'N', 47: 'O', 53: 'P', 59: 'Q', 61: 'R', 67: 'S', 71: 'T', 73: 'U', 79: 'V', 83: 'W', 89: 'X', 97: 'Y', 101: 'Z'} def assert_pangram(text): assert len(set(text)) == 26 def make_ciphertext(plain_text): text = plain_text.replace(' ', '').upper() assert_pangram(text) cipher = [] for c1, c2 in zip(text, text[1:]): cipher.append(C2P[c1] * C2P[c2]) return ' '.join(map(str, cipher)) class SolutionTest(unittest.TestCase): def test_make_ciphertext(self): cipher = make_ciphertext('jin choi' + ascii_uppercase) print(cipher) def test_basic1(self): cipher = make_ciphertext('jin choi' + ascii_uppercase) plain = solve(cipher) print(plain) def test_min_at_first(self): ''' enforce min_i is the first''' cipher = make_ciphertext('aa' + ascii_uppercase + 'zz') plain = solve(cipher) print(plain) def test_min_at_last(self): ''' enforce min_i is the last''' cipher = make_ciphertext('zz' + ascii_uppercase + 'aa') plain = solve(cipher) print(plain) unittest.main() ``` #### File: quizzes/cracking_coding_interview/0202.minus_kth_in_linked_list.py ```python def inversely_kth(ll, k): pass import unittest class SolutionTest(unittest.TestCase): def test_basics(self): self.assertInverselyKth([], 0, None) self.assertInverselyKth([], 3, None) self.assertInverselyKth([1], 0, 1) self.assertInverselyKth([1], 1, None) self.assertInverselyKth([1,2], 0, 2) self.assertInverselyKth([1,2], 1, 1) self.assertInverselyKth([1,2], 2, None) self.assertInverselyKth([1,2,3,4,5], 0, 5) self.assertInverselyKth([1,2,3,4,5], 1, 4) self.assertInverselyKth([1,2,3,4,5], 2, 3) self.assertInverselyKth([1,2,3,4,5], 3, 2) self.assertInverselyKth([1,2,3,4,5], 4, 1) self.assertInverselyKth([1,2,3,4,5], 5, None) def assertInverselyKth(self, ll, k, expected_val): pass if __name__ == "__main__": unittest.main() ``` #### File: etc/arrays/rotate_matrix.py ```python from jpylib.jitertools import ring_iter from collections import deque def rotate_matrix(matrix): ''' shift elements to clockwise direction by 1 ''' i, j = 0, 0 n = len(matrix) h = n >> 1 while i < h: #subtask rotate_ring(matrix, i, n-1-i, i, n-1-i) i += 1 j += 1 return matrix def rotate_ring(matrix, T, B, L, R): i0 = T dq = deque([matrix[i0+1][i0]]) for i,j in ring_iter(T, B, L, R): dq.append(matrix[i][j]) val = dq.popleft() matrix[i][j] = val if __name__ == "__main__": import unittest class SolutionTest(unittest.TestCase): def test_basics(self): self.assertEqual(rotate_matrix([]), []) self.assertEqual(rotate_matrix([[1]]), [[1]]) self.assertEqual(rotate_matrix([[1,2],[3,4]]), [[3,1],[4,2]]) self.assertEqual(rotate_matrix([[1,2,3],[4,5,6],[7,8,9]]), [[4,1,2],[7,5,3],[8,9,6]]) self.assertEqual(rotate_matrix([[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]), [[5,1,2,3],[9,10,6,4],[13,11,7,8],[14,15,16,12]]) unittest.main() ``` #### File: quizzes/euler_prime_quiz/prime.py ```python from math import sqrt fp = open('./euler.txt', 'r') euler = fp.readline().strip()[2:] #remove 2.7 def get_euler(fr, to): global euler if fr <= to <= len(euler): return euler[fr:to] #append if possible line = fp.readline() if(line): euler = euler + line.strip() return get_euler(fr, to) #doom! return None def test_get_euler(): for i in range(100): ee = get_euler(i, i+10) print(ee) def is_prime(n): for i in range(2, int(sqrt(n))+1): if(n%i==0): return False else: return True def main(): for i in range(0,500): x = get_euler(i, i+10) x = int(x) if(len(str(x))!=10): continue if( is_prime(x) ): print("") print("prime: ", x) else: print('.', sep="", end="") if __name__ == '__main__': main() #test_get_euler() #close always fp.close() ``` #### File: algorithms/dp/lego_blocks.py ```python import sys sys.setrecursionlimit(100000) MOD = 1000000007 ROW_COMBIS = [1, 1, 2, 4, 8] TOT_COMBIS = [1, 1] SOL_COMBIS = [] NOTSOL_COMBIS = [] def lego(n, m): assert 1<=n<=1000 and 1<=m<=1000 global TOT_COMBIS, SOL_COMBIS, NOTSOL_COMBIS TOT_COMBIS = [1, 1] SOL_COMBIS = [1, 1] + [None] * (m-1) NOTSOL_COMBIS = [0, 0] + [None] * (m-1) for x in range(m+1): solid(n, x) return solid(n, m) def solid(n, m): if SOL_COMBIS[m] == None: ans = total(n, m) - not_solid(n, m) ans %= MOD # in case it becomes negative SOL_COMBIS[m] = ans return SOL_COMBIS[m] def total(n, m): while m >= len(ROW_COMBIS): val = sum(ROW_COMBIS[-4:]) % MOD ROW_COMBIS.append(val) while m >= len(TOT_COMBIS): l = len(TOT_COMBIS) val = pow(ROW_COMBIS[l], n, MOD) TOT_COMBIS.append(val) return TOT_COMBIS[m] def not_solid(n, m): if NOTSOL_COMBIS[m] == None: parts = 0 for i in range(1, m): parts += solid(n, i) * total(n, m-i) parts %= MOD NOTSOL_COMBIS[m] = parts return NOTSOL_COMBIS[m] def main(): t = int(input()) for _ in range(t): n, m = map(int, input().split()) print(lego(n, m)) #main() import unittest class SolutionTest(unittest.TestCase): def test_basics(self): self.assertEqual(lego(2,2), 3) self.assertEqual(lego(3,2), 7) self.assertEqual(lego(2,3), 9) self.assertEqual(lego(4,4), 3375) if __name__ == "__main__": unittest.main() ``` #### File: algorithms/dp/substring_diff.py ```python from collections import deque def substring_diff(S, P, Q): p_len = len(P) assert 0 <= S <= p_len p_len = len(P) ans = 0 for j in range(p_len): ans = max(ans, diagonal_max_length(S, P, Q, 0, j)) for i in range(1, p_len): ans = max(ans, diagonal_max_length(S, P, Q, i, 0)) return ans def diagonal_max_length(S, P, Q, i, j): p_len = len(P) ans = 0 left = -1 mismatches = deque() #offset for mismatches for right in range(p_len - max(i, j)): ni, nj = i+right, j+right if P[ni]==Q[nj]: pass elif S > 0: S -= 1 mismatches.append(right) else: left = mismatches.popleft() if mismatches else right mismatches.append(right) length = right - left ans = max(ans, length) return ans def main(): t = int(input()) for _ in range(t): _S, P, Q = input().split() S = int(_S) L = substring_diff(S, P, Q) print(L) #main() import unittest class SolutionTest(unittest.TestCase): def test_basics(self): for S,P,Q,ANS in [(2,'tabriz','torino',4), \ (0,'abacba','abcaba',3), \ (3,'helloworld','yellowmarin',8)]: self.assertEqual(substring_diff(S, P, Q), ANS) if __name__ == "__main__": unittest.main() ``` #### File: algorithms/dp/xor_and_sum.py ```python MOD = 1000000007 def solution(a, b): a = int(a, base=2) b = int(b, base=2) return xor_and_sum(a, b) def xor_and_sum(a, b): s = 0 for i in range(314159+1): s += a ^ (b<<i) return s % MOD def main(): a, b = input(), input() print(solution(a, b)) #main() import unittest class SolutionTest(unittest.TestCase): def test_basics(self): a, b = '10', '1010' self.assertEqual(solution(a, b), 489429555) if __name__ == "__main__": unittest.main() ``` #### File: algorithms/graph/dijkstra_shortest_path.py ```python from collections import defaultdict from math import inf from jpylib.jqueues import PriorityQueue def solution(n, g, s): ''' return shortest distance from `s` to other edges in ascending order of node id return [ distance :: int ] ''' dists = [inf] * (n+1) # dist[0] is dummy dists[s] = 0 pq = PriorityQueue([(0,s)]) while pq.not_empty(): dist, here = pq.pop() if dists[here] < dist: # pq에 들어온 후, here에 닿는 # 더 짧은 루트 방법이 생긴 셈. # 따라서 here는 진행하지 않음. continue for there, cost in g[here].items(): next_dist = dists[here]+cost if dists[there] > next_dist: # bfs의 discovered 역할 # 즉, there에 도착할 더 짧은 # 방법이 발견 됐을 때만 실행됨 dists[there] = next_dist pq.push((next_dist, there)) return dist_in_order(n, s, dists) def dist_in_order(n, s, dists): res = [] for u in range(1, n+1): if u==s: continue d = -1 if dists[u] == inf else dists[u] res.append(d) return res def g_add(g, x, y, r): g[x][y] = min(r, g[x].get(y, inf)) g[y][x] = min(r, g[y].get(x, inf)) def main(): t = int(input().strip()) for a0 in range(t): g = defaultdict(dict) # {u: {v:r} } n,m = input().strip().split(' ') n,m = [int(n),int(m)] for a1 in range(m): x,y,r = input().strip().split(' ') x,y,r = [int(x),int(y),int(r)] g_add(g, x, y, r) s = int(input().strip()) print(*solution(n, g, s)) #main() import unittest class SolutionTest(unittest.TestCase): def test_basics(self): n, m = 4, 4 g = defaultdict(dict) g_add(g, 1, 2, 24) g_add(g, 1, 4, 20) g_add(g, 3, 1, 3) g_add(g, 4, 3, 12) s = 1 self.assertEqual(solution(n, g, s), [24,3,15]) if __name__ == "__main__": unittest.main() ``` #### File: programming/arrays/n_over_3_repeat_number.py ```python from collections import Counter class Solution: # @param A : tuple of integers # @return an integer def repeatedNumber(self, A): c = Counter(A) most_freq = c.most_common(1) if not most_freq: return -1 i, cnt = most_freq[0] return i if len(A)/3 < cnt else -1 import unittest class SolutionTest(unittest.TestCase): def test_basics(self): sol = Solution() self.assertEqual(sol.repeatedNumber([]), -1) self.assertEqual(sol.repeatedNumber([1,2,3,1,1]), 1) self.assertEqual(sol.repeatedNumber([3,3,3]), 3) self.assertEqual(sol.repeatedNumber([1,2,3]), -1) self.assertEqual(sol.repeatedNumber([1,2,3,4,5]), -1) if __name__ == "__main__": unittest.main() ``` #### File: programming/binary_search/rotated_sorted_array_search.py ```python class Solution: # @param A : tuple of integers # @param B : integer # @return an integer def __init__(self, min_index): self.min_index = min_index def search(self, arr, target): n = len(arr) r = self.min_index(arr) i, j = r, r+n-1 while i<=j: k = i+j>>1 if arr[k%n] == target: return k%n elif arr[k%n] > target: j = k-1 else: i = k+1 return -1 def min_index_nodup_1(arr): ''' @param arr: unique elements @return min index of the smallest value in arr Time Complexity O(lgn) ''' n = len(arr) i, j = 0, n-1 if arr[i] < arr[j]: return 0 assert arr[i] > arr[j] while j-i > 1: k = i+j>>1 if arr[i] < arr[k]: i = k elif arr[k] < arr[j]: j = k #assert j-i <= 1 return j def min_index_nodup_2(arr): ''' @param arr: unique elements @return min index of the smallest value in arr Time Complexity O(lgn) ''' n = len(arr) i, j = 0, n-1 if arr[i] < arr[j]: return 0 assert arr[i] > arr[j] while i < j: k = i+j>>1 if arr[i] < arr[k]: i = k+1 else: j = k return i # NOTE : Think about the case when there are duplicates. # Q: Does your current solution work? A: No # Q: How does the time complexity change? A: Yes def min_index_dup_1(arr, i, j): ''' @param arr: duplicate elements @return min index of the smallest value in arr Time Complexity Omega(lgn) ~ O(n) ''' n = j-i+1 assert n > 0 if n==1: return 0 if n==2: return 0 if arr[i] <= arr[j] else j if arr[i] < arr[j]: return 0 elif arr[i] > arr[j]: while i+1 < j: k = i+j>>1 if arr[i] <= arr[k]: i = k else: j = k return j else: k = i+j>>1 res1 = min_index_dup_1(arr, i, k) if res1 > 0: return res1 return min_index_dup_1(arr, k, j) import unittest class SolutionTest(unittest.TestCase): def setUp(self): self.sols = [Solution(min_index_nodup_1), Solution(min_index_nodup_2)] def test_basics(self): for sol in self.sols: arr = [194,195,196,197,198,199,201,203,204,1, 2,3,4,5,6,7,8,9,11,12, 13,14,15,16,17,18,20,21,22,23, 24,25,26,27,29,30,31,32,33,34, 35,36,37,39,40,42,43,44,45,47, 48,49,50,51,52,53,54,55,57,58, 59,60,61,63,65,66,68,69,70,71, 73,74,76,77,79,80,81,82,83,84, 86,87,88,89,91,92,93,94,95,97, 98,99,101,103,104,105,106,107,108,109, 110,113,114,115,117,118,120,121,122,123, 124,127,128,130,131,133,134,135,136,137, 139,140,141,142,143,144,146,147,148,149, 150,151,152,153,154,155,158,159,160,161, 162,163,164,166,167,169,170,171,172,174, 175,177,178,179,181,182,184,185,187,189, 190,192,193] self.assertEqual(sol.search(arr, 1), 9) class DuplicateArrayTest(unittest.TestCase): def test_basics(self): arrays = [[1], [1,1], [1,2,3,4,5,6], [2,3,1,1], [3,3,3,3,3,3], [3,3,3,3,3,3,2,3]] indexes = [0, 0, 0, 2, 0, 6] for arr, idx in zip(arrays, indexes): i, j = 0, len(arr)-1 self.assertEqual(min_index_dup_1(arr, i, j), idx) if __name__ == "__main__": unittest.main() ``` #### File: programming/dp/min_jumps_array.py ```python from collections import deque from itertools import chain class GreedySolution: # Time Complexity: O(len(A) + sum(A)) # @param A : list of integers # @return an integer def jump(self, A): n = len(A) here, target = 0, n-1 jumps = 0 while here < target: here_jump = A[here] theres = [here+dx for dx in range(1, here_jump+1) if here+dx < n] if theres == []: return -1 if here+here_jump >= target: here = target jumps += 1 else: new_here = max([(there+A[there], there) for there in theres])[1] here = new_here jumps += 1 #assert here == target return jumps class DPSolution: # Time Complexity: O(len(A) * max(A)) # @param A : list of integers # @return an integer def jump(self, A): n = len(A) start, stop = 0, n-1 #minjumps[i] := minimum jumps to reach ith position from starting point #minjumps[k] == -1 means it's not reachable from the starting point minjumps = [-1 for _ in range(n)] minjumps[start] = 0 to_visit = deque([start]) while to_visit: here = to_visit.popleft() if here == stop: return minjumps[here] for there in self.possible_theres(here, A[here], minjumps): if minjumps[there] >= 0: continue assert minjumps[there] == -1 minjumps[there] = 1 + minjumps[here] to_visit.append(there) return -1 def possible_theres(self, here, maxjump, minjumps): n = len(minjumps) for dx in chain(range(-maxjump,0), range(1,maxjump+1)): there = here + dx if 0 <= there < n: yield there import unittest class SolutionTest(unittest.TestCase): def setUp(self): self.solutions = [GreedySolution(), DPSolution()] def test_basics(self): for sol in self.solutions: self.assertEqual(sol.jump([2,2,1,0,4]), -1) self.assertEqual(sol.jump([2,3,1,1,4]), 2) if __name__ == "__main__": unittest.main() ``` #### File: programming/greedy/gas_station.py ```python class Solution: # @param A : tuple of integers # @param B : tuple of integers # @return an integer def canCompleteCircuit(self, A, B): n = len(A) start = 0 while start < n: success, new_start = self.reachable_from(A, B, start) if success: return start start = new_start return -1 def reachable_from(self, A, B, start): ''' @return (success::bool, new_start::int) ''' i,t = start, 0 n = len(A) tank = 0 while t < n: gas, cost = A[i%n], B[i%n] tank += gas - cost if tank < 0: break i, t = i+1, t+1 if t >= n: return (True, n) else: return (False, i+1) import unittest class SolutionTest(unittest.TestCase): def test_basics(self): sol = Solution() self.assertEqual(sol.canCompleteCircuit([1,2], [2,1]), 1) self.assertEqual(sol.canCompleteCircuit([1,2], [99,99]), -1) if __name__ == "__main__": unittest.main() ``` #### File: programming/hashing/two_sum.py ```python class Solution: # @param A : tuple of integers # @param B : integer # @return a list of integers def twoSum(self, A, B): failmap = {} for ai, av in enumerate(A, 1): if B-av in failmap: return [failmap[B-av], ai] failmap[av] = ai return [] import unittest from math import nan class SolutionTest(unittest.TestCase): def test_basics(self): sol = Solution() self.assertEqual(sol.twoSum([], nan), []) self.assertEqual(sol.twoSum([2, 7, 11, 15], 9), [1,2]) if __name__ == "__main__": unittest.main() ``` #### File: quizzes/leetcode/0146_lrucache.py ```python class LRUCache: def __init__(self, capacity: int): self.cap = capacity self.d = {} self.ll = LinkedList() def get(self, key: int) -> int: if key not in self.d: return -1 n = self.d[key] self.ll.movetoend(n) return n.data[1] def put(self, key: int, value: int) -> None: if key in self.d: n = self.d[key] self.ll.movetoend(n) n.data = (key, value) return if self.cap <= self.ll.sz: old = self.ll.popleft() self.d.pop(old.data[0]) node = Node((key, value)) self.ll.append(node) self.d[key] = node class Node: __slots__ = ['data', 'prev', 'next'] def __init__(self, data): self.data = data self.prev, self.next = None, None class LinkedList: def __init__(self): self.head, self.tail= None, None self.sz = 0 def popleft(self): if self.sz == 0: return None elif self.sz == 1: n1 = self.head self.head = self.tail = None self.sz = 0 n1.next = None return n1 else: n1 = self.head n2 = n1.next n1.next = None n2.prev = None self.head = n2 self.sz -= 1 return n1 def append(self, node): if self.sz == 0: self.head = self.tail = node self.sz = 1 else: t1 = self.tail t1.next = node node.prev = t1 self.tail = node self.sz += 1 def movetoend(self, node): if node == self.tail: return #assert node != self.tail if node == self.head: n1 = self.head n2 = n1.next n1.next = None n2.prev = None self.head = n2 self.sz -= 1 self.append(n1) else: #assert node.prev #assert node.next pr, nx = node.prev, node.next pr.next = nx nx.prev = pr node.next, node.prev = None, None self.sz -= 1 self.append(node) # Your LRUCache object will be instantiated and called as such: # obj = LRUCache(capacity) # param_1 = obj.get(key) # obj.put(key,value) ''' Runtime: 140 ms, faster than 51.55% of Python3 online submissions for LRU Cache. Memory Usage: 21.7 MB, less than 6.96% of Python3 online submissions for LRU Cache. ''' ``` #### File: quizzes/leetcode/0287_find_dup.py ```python def find_dup(ns): if len(ns) <= 1: return -1 slow, fast = ns[0], ns[ns[0]] while slow != fast: slow = ns[slow] fast = ns[ns[fast]] fast = 0 while fast != slow: fast = ns[fast] slow = ns[slow] return slow ``` #### File: tools/dahyeprinter/test_printer.py ```python import unittest from printer import pages_in_order, _pairing, _taking_odd, _taking_even, _flattening class PrinterTest(unittest.TestCase): def test_even_pages(self): tot_pages, per_each_page = 4, 1 fp, sp = pages_in_order(tot_pages, per_each_page) self.assertEqual(fp, [1,3]) self.assertEqual(sp, [4,2]) def test_odd_pages(self): tot_pages, per_each_page = 5, 1 fp, sp = pages_in_order(tot_pages, per_each_page) self.assertEqual(fp, [1,3,5]) self.assertEqual(sp, [4,2]) def test_pairing_1(self): tot_pages, per_each_page = 5, 1 paired = _pairing(tot_pages, per_each_page) self.assertEqual(paired, [[1], [2], [3], [4], [5]]) def test_pairing_2(self): tot_pages, per_each_page = 5, 2 paired = _pairing(tot_pages, per_each_page) self.assertEqual(paired, [[1,2], [3,4], [5]]) tot_pages, per_each_page = 6, 2 paired = _pairing(tot_pages, per_each_page) self.assertEqual(paired, [[1,2], [3,4], [5,6]]) def test_pairing_3(self): tot_pages, per_each_page = 5, 4 paired = _pairing(tot_pages, per_each_page) self.assertEqual(paired, [[1,2,3,4], [5]]) tot_pages, per_each_page = 8, 4 paired = _pairing(tot_pages, per_each_page) self.assertEqual(paired, [[1,2,3,4], [5,6,7,8]]) def test_taking_odd(self): l = [[1],[2],[3],[4],[5]] o = _taking_odd(l) self.assertEqual(o, [[1],[3],[5]]) def test_taking_even(self): l = [[1],[2],[3],[4],[5]] o = _taking_even(l) self.assertEqual(o, [[2],[4]]) def test_flattening(self): l = [[1],[2],[3],[4],[5]] o = _flattening(l) self.assertEqual(o, [1,2,3,4,5]) if __name__=="__main__": unittest.main() ``` #### File: toyPoC/monad/monad.py ```python def step1(x): return "Hello " + x def step2(x): return x + ", monads aren't that complicated." def step3(x): return "***" + x + "***" def prep01(): def run(): x = "friend" x = step1(x) x = step2(x) x = step3(x) return x print(run()) # ***Hello friend, monads aren't that complicated.*** def prep02(): def wrap(x): return x def wrap_call(x, func): return func(x) def run(): x = "friend" x = wrap(x) x = wrap_call(x, step1) x = wrap_call(x, step2) x = wrap_call(x, step3) return x print(run()) # ***Hello friend, monads aren't that complicated.*** def prep03(): def wrap(x): return "[" + x + "]" def wrap_call(x, func): return "[" + func(x[1:-1]) + "]" def run(): x = "friend" x = wrap(x) x = wrap_call(x, step1) x = wrap_call(x, step2) x = wrap_call(x, step3) return x print(run()) #[***Hello friend, monads aren't that complicated.***] ## wrap = ret ## wrap_call = bind ## ret(a : A) :: A -> B ## bind(b : B, f : A->A) :: B -> B def monad01(): def ret(x): return "[" + x + "]" def bind(x, func): return "[" +func(x[1:-1]) + "]" def run(ret, bind): x = "friend" x = ret(x) x = bind(x, step1) x = bind(x, step2) x = bind(x, step3) return x print(run(ret, bind)) #[***Hello friend, monads aren't that complicated.***] def monad02_practical(): def run(ret, bind): x = "friend" x = ret(x) x = bind(x, step1) x = bind(x, step2) x = bind(x, step3) return x def ret(x): print("Initial value:", x) return "[" + x + "]" def bind(x, func): print("Input to next step is:", x) result = func(x[1:-1]) print("Result is:", result) return "[" + result + "]" print(run(ret, bind)) # why practical # 1. By adding a few simple lines to ret and bind, we can print out the value of x before and after each step. # 2. Notice that without using a monad, we would have to write code for each step. # 3. Since normally we only want to add print statements like this to our code temporarily, monads let us just swap the ret and bind functions around to change between production and debugging. def monad03_withrealtype(): def ret(x): return {"value": x, "count": 0} def bind(x, func): return {"value": func(x["value"]), "count": x["count"] + 1} def run(ret, bind): x = "friend" x = ret(x) x = bind(x, step1) x = bind(x, step2) x = bind(x, step3) return x print(run(ret, bind)) if __name__=='__main__': prep01() prep02() prep03() monad01() monad02_practical() monad03_withrealtype() ```
{ "source": "JiniousChoi/git-enc", "score": 3 }
#### File: JiniousChoi/git-enc/git_enc.py ```python import yaml import os, sys, argparse from getpass import getpass from subprocess import run GITENCRYPT = ".gitencrypt" GITENCPASSWORD = "<PASSWORD>" def main(): args = parse_args() if not args.cmd: print("usage: {} -h".format(sys.args[0])) return 1 ydict = yaml.load(open(GITENCRYPT)) if args.cmd == 'encrypt': cmd_encrypt(ydict, args.password, args.paths) elif args.cmd == 'decrypt': cmd_decrypt(ydict, args.password, args.paths) else: assert("cannot reach here") def parse_args(): usage = "usage: %prog [options] arg1 arg2" parser = argparse.ArgumentParser(\ description='a utility tool for encrypting/decrypting confidential files.') subparsers = parser.add_subparsers(title='available commands', dest='cmd') add_encrypt_parser(subparsers) add_decrypt_parser(subparsers) # TODO # addListParser(subparsers) # addVerifyParser(subparsers) return parser.parse_args() def cmd_encrypt(ydict, password, paths): password = get_password(password) for path in paths: for s,d in find_kvs_at(ydict, path): run(['openssl', 'aes-256-cbc', '-k', password, '-in', s, '-out', d]) def cmd_decrypt(ydict, password, paths): password = get_password(password) for path in paths: for s,d in find_kvs_at(ydict, path): run(['openssl', 'aes-256-cbc', '-d', '-k', password, '-in', d, '-out', s]) def add_encrypt_parser(subparsers): cmd = subparsers.add_parser('encrypt', help='encrypt files') cmd.add_argument('-k', '--password', help='password for encrypt files') cmd.add_argument('paths', nargs='*', help='a list of targeting groups to encrypt.') def add_decrypt_parser(subparsers): cmd = subparsers.add_parser('decrypt', help='decrypt files') cmd.add_argument('-k', '--password', help='password for decrypt files') cmd.add_argument('paths', nargs='*', help='a list of targeting groups to decrypt.') def get_password(password): if password: return password if GITENCPASSWORD in os.environ: return os.environ[GITENCPASSWORD] return getpass("type password: ") def find_kvs_at(ydict, path): def find_kvs(k, v): if type(v) is str: yield (k, v) return for k2, v2 in v.items(): yield from find_kvs(k2, v2) sep = '.' ks = path.split(sep) it = ydict for k in ks: it = it[k] return find_kvs(k, it) if __name__ == "__main__": main() ``` #### File: JiniousChoi/git-enc/test_git_enc.py ```python import unittest from git_enc import find_kvs_at class GitencTest(unittest.TestCase): def setUp(self): self.d = { 'lv1-1': { 'lv2-1': { 'k1': 'v1', 'k2': 'v2' }, 'lv2-2': { 'k3': 'v3' } }, 'lv1-2': { 'jin': 'choi' } } def test_find_path_at(self): actual = list(find_kvs_at(self.d, 'lv1-1')) expected = [('k1','v1'), ('k2','v2'), ('k3','v3')] self.assertEqual(actual, expected) unittest.main() ```
{ "source": "JinJackson/Simcse-unsup", "score": 2 }
#### File: JinJackson/Simcse-unsup/train_unsup.py ```python import argparse import logging import os from pathlib import Path from datasets import load_dataset import torch import torch.nn.functional as F from torch.utils.data import DataLoader from tqdm import tqdm from transformers import BertTokenizer from SimCSE import SimCSE from CSECollator import CSECollator #python train_unsup.py --train_file ./data/news_title.txt --pretrained./model/bert-wwm/ def parse_args(): parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("--train_file", type=str, help="train text file") parser.add_argument("--pretrained", type=str, default="hfl/chinese-bert-wwm-ext", help="huggingface pretrained model") parser.add_argument("--model_out", type=str, default="./model", help="model output path") parser.add_argument("--num_proc", type=int, default=5, help="dataset process thread num") parser.add_argument("--max_length", type=int, default=100, help="sentence max length") parser.add_argument("--batch_size", type=int, default=64, help="batch size") parser.add_argument("--epochs", type=int, default=2, help="epochs") parser.add_argument("--lr", type=float, default=1e-5, help="learning rate") parser.add_argument("--tao", type=float, default=0.05, help="temperature") parser.add_argument("--device", type=str, default="cuda", help="device") parser.add_argument("--display_interval", type=int, default=50, help="display interval") parser.add_argument("--save_interval", type=int, default=100, help="save interval") parser.add_argument("--pool_type", type=str, default="cls", help="pool_type") parser.add_argument("--dropout_rate", type=float, default=0.3, help="dropout_rate") args = parser.parse_args() return args def load_data(args, tokenizer): data_files = {"train": args.train_file} ds = load_dataset("text", data_files=data_files) ds_tokenized = ds.map(lambda example: tokenizer(example["text"]), num_proc=args.num_proc) collator = CSECollator(tokenizer, max_len=args.max_length) dl = DataLoader(ds_tokenized["train"], batch_size=args.batch_size, collate_fn=collator.collate) return dl def compute_loss(y_pred, tao=0.05, device="cuda"): idxs = torch.arange(0, y_pred.shape[0], device=device) y_true = idxs + 1 - idxs % 2 * 2 similarities = F.cosine_similarity(y_pred.unsqueeze(1), y_pred.unsqueeze(0), dim=2) similarities = similarities - torch.eye(y_pred.shape[0], device=device) * 1e12 similarities = similarities / tao loss = F.cross_entropy(similarities, y_true) return torch.mean(loss) def train(args): tokenizer = BertTokenizer.from_pretrained(args.pretrained, mirror="tuna") dl = load_data(args, tokenizer) model = SimCSE(args.pretrained, args.pool_type, args.dropout_rate).to(args.device) optimizer = torch.optim.AdamW(model.parameters(), lr=args.lr) model_out = Path(args.model_out) if not model_out.exists(): os.mkdir(model_out) model.train() batch_idx = 0 for epoch_idx in range(args.epochs): for data in tqdm(dl): batch_idx += 1 pred = model(input_ids=data["input_ids"].to(args.device), attention_mask=data["attention_mask"].to(args.device), token_type_ids=data["token_type_ids"].to(args.device)) loss = compute_loss(pred, args.tao, args.device) optimizer.zero_grad() loss.backward() optimizer.step() loss = loss.item() if batch_idx % args.display_interval == 0: logging.info(f"batch_idx: {batch_idx}, loss: {loss:>10f}") if batch_idx % args.save_interval == 0: torch.save(model.state_dict(), model_out / "epoch_{0}-batch_{1}-loss_{2:.6f}".format(epoch_idx, batch_idx, loss)) def main(): args = parse_args() train(args) if __name__ == "__main__": log_fmt = "%(asctime)s|%(name)s|%(levelname)s|%(message)s" logging.basicConfig(level=logging.INFO, format=log_fmt) main() ```
{ "source": "jinjamator/ddom", "score": 2 }
#### File: ddom/tests/test_dom.py ```python from ddom import * import unittest import logging # logging.basicConfig(level=logging.DEBUG) class TestObjectModel(unittest.TestCase): def test_n5k_c5672up_chassis(self): chassis = Chassis("n5k-c5672up", "cisco") self.assertIsInstance(chassis, Chassis) self.assertEqual(chassis.type, "chassis") slot1_ports = chassis.find_children("port", {"parent.number": "1"}) self.assertEqual(len(slot1_ports), 49) for idx, port in enumerate(slot1_ports): if port.name.startswith("eth"): self.assertEqual(port.name, f"eth1/{idx+1}") self.assertEqual(port.pid, f"unified_sfp_plus") if port.name.startswith("mgmt"): self.assertEqual(port.name, f"mgmt0") self.assertEqual(port.pid, f"1000-base-t") slot2_ports = chassis.find_children("port", {"parent.number": "2"}) self.assertEqual(len(slot2_ports), 6) for idx, port in enumerate(slot2_ports): self.assertEqual(port.name, f"eth2/{idx+1}") self.assertEqual(port.pid, f"qsfp") def test_airflow(self): chassis = Chassis("n5k-c5672up", "cisco") psu_1 = PowerSupply("nxa-pac-1100w", "cisco") psu_2 = PowerSupply("nxa-pac-1100w-b", "cisco") fan_1 = Fan("n6k-c6001-fan-b", "cisco") fan_2 = Fan("n6k-c6001-fan-f", "cisco") fan_3 = Fan("n6k-c6001-fan-f", "cisco") chassis.slot("PSU-1").connect(psu_1) with self.assertRaises(InvalidAirFlowError): chassis.slot("FAN-1").connect(fan_1) chassis.slot("PSU-2").connect(psu_2) chassis.slot("FAN-2").connect(fan_2) chassis.slot("FAN-3").connect(fan_3) def test_dom_access_by_name(self): chassis = Chassis("n5k-c5672up", "cisco") self.assertEqual(chassis.slot("SLOT-1").supervisor().port(1).name, "eth1/1") self.assertEqual( chassis.slot("SLOT-1").supervisor().port("eth1/48").name, "eth1/48" ) with self.assertRaises(ChildNotFoundError): chassis.slot("SLOT-2").linecard().port("eth1/10").name def test_dom_access_by_index(self): chassis = Chassis("n5k-c5672up", "cisco") self.assertEqual( chassis.slot_index(0).supervisor().port_index(0).name, "eth1/1" ) self.assertEqual( chassis.slot_index(0).supervisor().port_index(47).name, "eth1/48" ) def test_dom_access_by_number(self): chassis = Chassis("n5k-c5672up", "cisco") self.assertEqual(chassis.slot(1).supervisor().port(1).name, "eth1/1") self.assertEqual(chassis.slot(1).supervisor().port(48).name, "eth1/48") def test_rj45_cable(self): chassis = Chassis("n5k-c5672up", "cisco") chassis2 = Chassis("n5k-c5672up", "cisco") mgmt0 = chassis.find_children("port", {"name": "mgmt0"})[0].transceiver() mgmt1 = chassis2.find_children("port", {"name": "mgmt0"})[0].transceiver() cable = Cable("rj45-cat5e-rj45") mgmt0.connect(cable) mgmt1.connect(cable) # print(chassis) def test_to_yaml(self): chassis = Chassis("n5k-c5672up", "cisco") psu_1 = PowerSupply("nxa-pac-1100w", "cisco") psu_2 = PowerSupply("nxa-pac-1100w", "cisco") fan_1 = Fan("n6k-c6001-fan-f", "cisco") fan_2 = Fan("n6k-c6001-fan-f", "cisco") fan_3 = Fan("n6k-c6001-fan-f", "cisco") chassis.slot("PSU-1").connect(psu_1) chassis.slot("PSU-2").connect(psu_2) chassis.slot("FAN-1").connect(fan_1) chassis.slot("FAN-2").connect(fan_2) chassis.slot("FAN-3").connect(fan_3) yaml_string = chassis.to_yaml() with open("create.yaml", "w") as fh: fh.write(yaml_string) chassis_restore = Chassis("n5k-c5672up", "cisco", yaml.safe_load(yaml_string)) yaml_restore_string = chassis_restore.to_yaml() with open("restore.yaml", "w") as fh: fh.write(yaml_restore_string) self.assertEqual( len(chassis_restore.find_children("slot", {"name": "FAN-1"})), 1 ) self.assertEqual(yaml_string, yaml_restore_string) if __name__ == "__main__": unittest.main() ```
{ "source": "jinjamator/jinjamator-core", "score": 2 }
#### File: daemon/api/restx.py ```python import logging import traceback from flask_restx import Api from flask import url_for # from rest_api_demo import settings from sqlalchemy.orm.exc import NoResultFound log = logging.getLogger(__name__) class Custom_API(Api): @property def specs_url(self): """ The Swagger specifications absolute url (ie. `swagger.json`) :rtype: str """ return url_for(self.endpoint("specs"), _external=False) api = Custom_API( version="1.0", title="Jinjamator API", description="The REST API of Jinjamator" ) @api.errorhandler def default_error_handler(e): message = "An unhandled exception occurred." log.exception(message) # if not settings.FLASK_DEBUG: return {"message": message}, 500 @api.errorhandler(NoResultFound) def database_not_found_error_handler(e): log.warning(traceback.format_exc()) return {"message": "A database result was required but none was found."}, 404 ``` #### File: backends/database/models.py ```python from __future__ import absolute_import, unicode_literals from datetime import datetime import sqlalchemy as sa from sqlalchemy.types import PickleType from celery import states from celery.five import python_2_unicode_compatible from .session import ResultModelBase __all__ = ("Task", "TaskSet", "JobLog") @python_2_unicode_compatible class Task(ResultModelBase): """Task result/status.""" __tablename__ = "celery_taskmeta" __table_args__ = {"sqlite_autoincrement": True} id = sa.Column( sa.Integer, sa.Sequence("task_id_sequence"), primary_key=True, autoincrement=True, ) task_id = sa.Column(sa.String(155), unique=True, index=True) status = sa.Column(sa.String(50), default=states.PENDING) result = sa.Column(PickleType, nullable=True) date_done = sa.Column( sa.DateTime, default=datetime.utcnow, onupdate=datetime.utcnow, nullable=True ) date_scheduled = sa.Column(sa.DateTime, default=datetime.utcnow, nullable=True) date_start = sa.Column(sa.DateTime, default=datetime.utcnow, nullable=True) traceback = sa.Column(sa.Text, nullable=True) jinjamator_task = sa.Column(sa.String(1024), nullable=False, default="") created_by_user_id = sa.Column(sa.Integer, nullable=False) def __init__(self, task_id): self.task_id = task_id def to_dict(self): return { "task_id": self.task_id, "status": self.status, "result": self.result, "traceback": self.traceback, "date_done": self.date_done, "date_start": self.date_start, "date_scheduled": self.date_scheduled, "jinjamator_task": self.jinjamator_task, "created_by_user_id": self.created_by_user_id, } def __repr__(self): return "<Task {0.task_id} for {0.jinjamator_task} state: {0.status}>".format( self ) @python_2_unicode_compatible class TaskSet(ResultModelBase): """TaskSet result.""" __tablename__ = "celery_tasksetmeta" __table_args__ = {"sqlite_autoincrement": True} id = sa.Column( sa.Integer, sa.Sequence("taskset_id_sequence"), autoincrement=True, primary_key=True, ) taskset_id = sa.Column(sa.String(155), unique=True) task_id = sa.Column(sa.String(155)) result = sa.Column(PickleType, nullable=True) date_done = sa.Column(sa.DateTime, default=datetime.utcnow, nullable=True) def __init__(self, taskset_id, result): self.taskset_id = taskset_id self.result = result def to_dict(self): return { "taskset_id": self.taskset_id, "result": self.result, "date_done": self.date_done, } def __repr__(self): return "<TaskSet: {0.taskset_id}>".format(self) @python_2_unicode_compatible class JobLog(ResultModelBase): """JobLog result.""" __tablename__ = "logs" __table_args__ = {"sqlite_autoincrement": True} id = sa.Column( sa.Integer, sa.Sequence("logs_id_sequence"), autoincrement=True, primary_key=True, ) task_id = sa.Column(sa.String(155), nullable=False, index=True) timestamp = sa.Column(sa.DateTime, nullable=False) message = sa.Column(sa.UnicodeText(), nullable=False, default="") configuration = sa.Column(sa.UnicodeText(), nullable=False, default="") parent_tasklet = sa.Column(sa.UnicodeText(), nullable=False, default="") parent_task_id = sa.Column(sa.UnicodeText(), nullable=False, default="") current_task = sa.Column(sa.UnicodeText(), nullable=False, default="") current_tasklet = sa.Column(sa.UnicodeText(), nullable=False, default="") current_task_id = sa.Column(sa.String(255), nullable=False, default="") level = sa.Column(sa.String(64), nullable=False, default="") stdout = sa.Column(sa.UnicodeText(), nullable=False, default="") exc_info = sa.Column(sa.UnicodeText(), nullable=False, default="") created_by_user_id = sa.Column(sa.Integer, nullable=False) def __repr__(self): return "<job {0}>".format(self.id) ``` #### File: genson/schema/node.py ```python from .generators import GENERATORS, Typeless class SchemaGenerationError(RuntimeError): pass class SchemaNode(object): """ Basic schema generator class. SchemaNode objects can be loaded up with existing schemas and objects before being serialized. """ generator_classes = GENERATORS def __init__(self): self._schema_generators = [] def add_schema(self, schema): """ Merges in an existing schema. arguments: * `schema` (required - `dict` or `SchemaNode`): an existing JSON Schema to merge. """ # serialize instances of SchemaNode before parsing if isinstance(schema, SchemaNode): schema = schema.to_schema() for subschema in self._get_subschemas(schema): # delegate to SchemaType object schema_generator = self._get_generator_for_schema(subschema) schema_generator.add_schema(subschema) # return self for easy method chaining return self def add_object(self, obj): """ Modify the schema to accommodate an object. arguments: * `obj` (required - `dict`): a JSON object to use in generating the schema. """ # delegate to SchemaType object schema_generator = self._get_generator_for_object(obj) schema_generator.add_object(obj) # return self for easy method chaining return self def to_schema(self): """ Convert the current schema to a `dict`. """ types = set() generated_schemas = [] for schema_generator in self._schema_generators: generated_schema = schema_generator.to_schema() if len(generated_schema) == 1 and "type" in generated_schema: types.add(generated_schema["type"]) else: generated_schemas.append(generated_schema) if types: if len(types) == 1: (types,) = types else: types = sorted(types) generated_schemas = [{"type": types}] + generated_schemas if len(generated_schemas) == 1: (result_schema,) = generated_schemas elif generated_schemas: result_schema = {"anyOf": generated_schemas} else: result_schema = {} return result_schema def __len__(self): return len(self._schema_generators) def __eq__(self, other): # TODO: find a more optimal way to do this if self is other: return True if not isinstance(other, type(self)): return False return self.to_schema() == other.to_schema() def __ne__(self, other): return not self.__eq__(other) # private methods def _get_subschemas(self, schema): if "anyOf" in schema: return [ subschema for anyof in schema["anyOf"] for subschema in self._get_subschemas(anyof) ] elif isinstance(schema.get("type"), list): other_keys = dict(schema) del other_keys["type"] return [dict(type=tipe, **other_keys) for tipe in schema["type"]] else: return [schema] def _get_generator_for_schema(self, schema): return self._get_generator_for_("schema", schema) def _get_generator_for_object(self, obj): return self._get_generator_for_("object", obj) def _get_generator_for_(self, kind, schema_or_obj): # check existing types for schema_generator in self._schema_generators: if getattr(schema_generator, "match_" + kind)(schema_or_obj): return schema_generator # check all potential types for schema_generator_class in self.generator_classes: if getattr(schema_generator_class, "match_" + kind)(schema_or_obj): schema_generator = schema_generator_class(type(self)) # incorporate typeless generator if it exists if self._schema_generators and isinstance( self._schema_generators[-1], Typeless ): typeless = self._schema_generators.pop() schema_generator.add_schema(typeless.to_schema()) self._schema_generators.append(schema_generator) return schema_generator # no match found, if typeless add to first generator if kind == "schema" and Typeless.match_schema(schema_or_obj): if not self._schema_generators: self._schema_generators.append(Typeless(type(self))) schema_generator = self._schema_generators[0] return schema_generator # no match found, raise an error raise SchemaGenerationError( "Could not find matching type for {0}: {1!r}".format(kind, schema_or_obj) ) ``` #### File: task/celery/__init__.py ```python from celery import Celery from jinjamator.task import JinjamatorTask import importlib import sys import os from time import sleep import collections import logging import json from celery.exceptions import Ignore from jinjamator.daemon import celery from jinjamator.task.celery.loghandler import CeleryLogHandler, CeleryLogFormatter from jinjamator.task import TaskletFailed from copy import deepcopy @celery.task(bind=True) def run_jinjamator_task(self, path, data, output_plugin, user_id): """ Jinjamator Celery Task runner. """ self.update_state( state="PROGRESS", meta={ "status": "setting up jinjamator task run", "configuration": {"root_task_path": path, "created_by_user_id": user_id}, }, ) formatter = CeleryLogFormatter() log_handler = CeleryLogHandler() formatter.created_by_user_id = user_id log_handler.created_by_user_id = user_id log_handler.setLevel(logging.DEBUG) log_handler.setFormatter(formatter) log_handler.set_celery_task(self) log_handler.formatter.set_root_task_path(path) # if "jinjamator_pre_run_tasks" in data: # for pre_run_task in data["jinjamator_pre_run_tasks"]: # task = JinjamatorTask() # task._configuration._data["jinjamator_job_id"] = self.request.id # log_handler.formatter.set_jinjamator_task(task) # task._scheduler = self # task._log.addHandler(log_handler) # task._log.setLevel(logging.DEBUG) # if "output_plugin" in pre_run_task["task"]: # task.load_output_plugin(pre_run_task["task"]["output_plugin"]) # else: # task.load_output_plugin("console") # task.configuration.merge_dict(pre_run_task["task"]["data"]) # task._configuration.merge_dict( # celery.conf["jinjamator_private_configuration"] # ) # task.configuration.merge_dict(deepcopy(data)) # task.load(pre_run_task["task"]["path"]) # task._log.info( # "running pre run task {}".format(pre_run_task["task"]["path"]) # ) # if not task.run(): # raise Exception("task failed") # task._log.handlers.remove(log_handler) # log_handler._task = None # del task self.update_state( state="PROGRESS", meta={ "status": "running main task", "configuration": {"root_task_path": path, "created_by_user_id": user_id}, }, ) task = JinjamatorTask() task._configuration._data["jinjamator_job_id"] = self.request.id task._scheduler = self log_handler.formatter.set_jinjamator_task(task) task._log.setLevel(logging.DEBUG) task._log.addHandler(log_handler) task.load_output_plugin( output_plugin, celery.conf["jinjamator_private_configuration"][ "global_output_plugins_base_dirs" ], ) task._configuration.merge_dict(celery.conf["jinjamator_private_configuration"]) task.configuration.merge_dict(data) task.load(path) try: task.run() except TaskletFailed: raise Exception("task failed") return { "status": "finished task", "stdout": task._stdout.getvalue(), "log": log_handler.contents, } ``` #### File: jinjamator/tools/password.py ```python redacted_passwords = [] def redact(obj, is_password=False): if isinstance(obj, str): if is_password: if obj not in redacted_passwords: redacted_passwords.append(obj) obj = "__redacted__" return redacted_passwords, obj elif isinstance(obj, list): for index, item in enumerate(obj): obj[index] = redact(item)[1] return redacted_passwords, obj elif isinstance(obj, dict): for k, v in obj.items(): if ( ("pass" in k and isinstance(v, str)) or (k.endswith("_key") and isinstance(v, str)) or ("secret" in k and isinstance(v, str)) ): obj[k] = redact(v, True)[1] else: obj[k] = redact(v)[1] return redacted_passwords, obj return redacted_passwords, obj ``` #### File: tools/rest_clients/jinjamator.py ```python from jinjamator.external.rest_client.api import API import logging from pprint import pformat from jinjamator.external.rest_client.resource import Resource from jinjamator.external.rest_client.request import make_request from jinjamator.external.rest_client.models import Request from types import MethodType class JinjamatorResource(Resource): def add_action(self, action_name): def action_method( self, *args, body=None, params=None, headers=None, action_name=action_name, **kwargs, ): url = self.get_action_full_url(action_name, *args) method = self.get_action_method(action_name) request = Request( url=url, method=method, params=params or {}, body=body, headers=headers or {}, timeout=self.timeout, ssl_verify=self.ssl_verify, kwargs=kwargs, ) request.params.update(self.params) request.headers.update(self.headers) response = make_request(self.client, request) if response.headers.get("Authorization"): self.headers["Authorization"] = response.headers["Authorization"] return response setattr(self, action_name, MethodType(action_method, self)) class JinjamatorClient(object): def __init__(self, url, **kwargs): self._log = logging.getLogger() self._base_url = url self._username = kwargs.get("username", None) self._password = kwargs.get("password", None) self.api = API( api_root_url=url, # base api url params={}, # default params headers={}, # default headers timeout=10, # default timeout in seconds append_slash=False, # append slash to final url json_encode_body=True, # encode body as json ssl_verify=kwargs.get("ssl_verify", None), resource_class=JinjamatorResource, ) def __str__(self): return pformat(self.api.get_resource_list()) def login(self, username=None, password=<PASSWORD>): if username: self._username = username if password: self._password = password auth_data = self.api.aaa.login.local.list( params={"username": self._username, "password": self._password} ).body token = auth_data.get("access_token") self.api.headers["Authorization"] = token return True ```
{ "source": "jinjamator/jinjamator-daemon-webui", "score": 2 }
#### File: jinjamator/jinjamator-daemon-webui/setup.py ```python import setuptools import os from subprocess import check_output command = "git describe --tags --dirty" version_format = ("{tag}.dev{commitcount}+{gitsha}",) def format_version(version, fmt): parts = version.split("-") assert len(parts) in (3, 4) dirty = len(parts) == 4 tag, count, sha = parts[:3] if count == "0" and not dirty: return tag return fmt.format(tag=tag, commitcount=count, gitsha=sha.lstrip("g")) version = check_output(command.split()).decode("utf-8").strip() with open("README.rst", "r") as fh: long_description = fh.read() with open("requirements.txt", "r") as fh: install_requires = fh.read().split("\n") setuptools.setup( name="jinjamator-daemon-webui", version=version, author="<NAME>", author_email="<EMAIL>", description="WebUI for jinjamator in daemon mode", long_description=long_description, long_description_content_type="text/x-rst", url="https://github.com/jinjamator/jinjamator-daemon-webui", include_package_data=True, packages=["jinjamator.daemon.webui"], install_requires=install_requires, license="ASL V2", classifiers=[ "License :: OSI Approved :: Apache Software License", "Programming Language :: Python :: 3.8", "Topic :: System :: Installation/Setup", "Topic :: System :: Systems Administration", "Topic :: Utilities", ], python_requires=">=3.8", zip_safe=False, ) ```
{ "source": "jinjamator/jinjamator", "score": 2 }
#### File: wsa/logs/aclog.py ```python from textfsm import TextFSM import os from jinjamator.plugins.content import file from jinjamator import plugin_loader from io import StringIO def parse(path): plugin_loader.content.py_load_plugins(globals()) from os.path import dirname raw_data = file.load(path) base_path = dirname(__file__) fields = None for line in raw_data.split("\n"): if line.startswith("#Fields"): fields = line.replace("#Fields: ", "") break if not fields: raise ValueError(f"Cannot find field description in file {path}") fsm_mappings = [] for field, mapping in yaml.loads(file.load(f"{base_path}/fsm/aclog.mapping.yaml"))[ "fields" ].items(): if isinstance(mapping["name"], str): name = str(mapping["name"]) fields = fields.replace("%" + field, "${" + name + "}") if (f"Value Required {name} {mapping['regex']}") not in fsm_mappings: fsm_mappings.append(f"Value Required {name} {mapping['regex']}") elif isinstance(mapping["name"], list): replacement = "" for index, name in enumerate(mapping["name"]): if name: replacement += "${" + str(name) + "}" if ( f"Value Required {name} {mapping['regex'][index]}" ) not in fsm_mappings: fsm_mappings.append( f"Value Required {name} {mapping['regex'][index]}" ) else: replacement += str(mapping["regex"][index]) fields = fields.replace("%" + field, replacement) if "%" in fields: raise NotImplementedError(f"Missing mapping for field. {fields}") dynamic_fsm_template = task.run( dirname(__file__) + "/fsm/aclog.textfsm.j2", {"MAPPINGS": "\n".join(fsm_mappings), "LINE_SPEC": fields}, output_plugin="null", )[0]["result"] log.debug(dynamic_fsm_template) re_table = TextFSM(StringIO(dynamic_fsm_template)) retval = [] for row in re_table.ParseText(raw_data): tmp = {} for i, v in enumerate(re_table.header): tmp[v] = row[i] retval.append(tmp) return retval ``` #### File: vsphere/hosts/portgroups.py ```python import re def list(hosts=None): if hosts == None: hosts = vmware.vsphere.hosts.list() retval = {} for host in hosts: pg = host.config.network.portgroup retval[host] = pg return retval def find(search, return_type="obj", hosts=None): rgx = re.compile(search) retval = {} for host, obj in list(hosts).items(): retval[host] = [] for pg in obj: if rgx.search(str(pg.key)): log.debug(f"found portgroup key: {pg.key}") if return_type == "name": retval[host].append(pg.key.replace("key-vim.host.PortGroup-", "")) elif return_type == "obj": retval[host].append(pg) else: retval[host].append(pg) return retval ``` #### File: vmware/vsphere/__init__.py ```python from pyVim.connect import SmartConnect, SmartConnectNoSSL, Disconnect from pyVmomi import vim vsphere_connection_pool = {} def get_content(service_instance=None, cache=True): if cache: _cfg = _jinjamator.configuration if vsphere_connection_pool.get(_cfg["vsphere_host"]): if ( vsphere_connection_pool[_cfg["vsphere_host"]] .get(_cfg["vsphere_username"], {}) .get("content") ): log.debug("Using cached content") return ( vsphere_connection_pool[_cfg["vsphere_host"]] .get(_cfg["vsphere_username"], {}) .get("content") ) if not service_instance: service_instance = connect() content = service_instance.RetrieveContent() if cache: vsphere_connection_pool[_cfg["vsphere_host"]][_cfg["vsphere_username"]][ "content" ] = content return content def get_obj(vimtype, name, content=None): if not content: content = get_content() obj = None container = content.viewManager.CreateContainerView( content.rootFolder, vimtype, True ) for c in container.view: if c.name == name: obj = c break return obj def connect(host=None, username=None, password=<PASSWORD>, cache=True): _cfg = _jinjamator.configuration for param in ["vsphere_host", "vsphere_username", "vsphere_password"]: if locals().get(param): _cfg[param] = locals()[param] if not _cfg[param]: _jinjamator.handle_undefined_var(param) if cache: if vsphere_connection_pool.get(_cfg["vsphere_host"]): if vsphere_connection_pool[_cfg["vsphere_host"]].get( _cfg["vsphere_username"] ): log.debug( f'Using cached connection to VSphere host {_cfg["vsphere_host"]}' ) return vsphere_connection_pool[_cfg["vsphere_host"]][ _cfg["vsphere_username"] ]["service_instance"] service_instance = SmartConnectNoSSL( host=_cfg["vsphere_host"], user=_cfg["vsphere_username"], pwd=_cfg["<PASSWORD>"], port=443, ) if service_instance: log.debug(f"Connected VSphere host {_cfg['vsphere_host']}") else: raise Exception(f"Cannot connect VSphere host {_cfg['vsphere_host']}") if cache: vsphere_connection_pool[_cfg["vsphere_host"]] = { _cfg["vsphere_username"]: {"service_instance": service_instance} } return service_instance ``` #### File: vsphere/vms/__init__.py ```python from pyVmomi import vim import re def list(content=None): if not content: content = vmware.vsphere.get_content() vm_view = content.viewManager.CreateContainerView( content.rootFolder, [vim.VirtualMachine], True ) obj = [vm for vm in vm_view.view] vm_view.Destroy() return obj def list_names(content=None): return [vm.name for vm in list(content)] def find(search, return_type="obj", service_instance_content=None): if not search: return list() rgx = re.compile(search) retval = [] for obj in list(): if rgx.search(str(obj.name)): if return_type == "name": retval.append(obj.name) elif return_type == "obj": retval.append(obj) else: retval.append(obj) return retval ``` #### File: output/apic/__init__.py ```python import sys import os from jinjamator.tools.output_plugin_base import outputPluginBase, processError from jinjamator.external.acitoolkit.acisession import Session import getpass from pprint import pformat import json from collections import defaultdict import re from pprint import pprint, pformat import logging def tree(): return defaultdict(tree) class apic(outputPluginBase): def __init__(self, parent): self._log = logging.getLogger() self._parent = parent self.apic_dn_acl_rules = [ "uni/tn-\S+/ctx-.*,c,protect VRFs from deletion and configuration updates", "uni/tn-[a-zA-Z0-9]+$,c,protect Tenant objects from deletion", ] self._dn_acls = {} self.apic_password = "" self.apic_username = "" self.apic_key = "" self.apic_cert_name = "" self.apic_url = "" self.apic_session = None def addArguments(self): self._parent._parser.add_argument( "-l", "--apic-username", dest="apic_username", help="apic username [default: %(default)s]", default="admin", ) self._parent._parser.add_argument( "-p", "--apic-password", dest="apic_password", help="apic password", default="", ) self._parent._parser.add_argument( "-u", "--apic-url", dest="apic_url", help="apic URL", default="" ) self._parent._parser.add_argument( "-k", "--apic-key", dest="apic_key", help="path to apic user private key", default="", ) self._parent._parser.add_argument( "--apic-certname", dest="apic_cert_name", help="path to apic user certificate", default="", ) self._parent._parser.add_argument( "--apic-set-dn-acl-rule", action="append", dest="apic_dn_acl_rules", help="format: <dn path regex>,<c(eate)|u(pdate)|d(delete)>,<remark> default: %(default)s", default=self.apic_dn_acl_rules, ) def init_plugin_params(self, **kwargs): self._dn_acls = {} for var in [ "apic_username", "apic_url", "apic_password", "apic_key", "apic_cert_name", "apic_dn_acl_rules", ]: if self._parent.configuration._data.get(var): setattr(self, var, self._parent.configuration._data.get(var, "")) @staticmethod def get_json_schema(configuration={}): # form = { # "data": { # "apic_cert_name": configuration.get("apic_cert_name", "") # }, # "schema": { # "type": "object", # "title": "APIC Output Plugin Parameters", # "properties": { # "apic_cert_name": { # "title": "Cert Name", # "type": "string", # "description": "Name of the APIC user certificate", # } # }, # }, # "options": { # "fields": { # "apic_cert_name": { # "helper": [ # "Name of the APIC user certificate" # ] # } # } # }, # } # return dict(form) form = tree() form["schema"]["type"] = "object" form["schema"]["properties"]["apic_cert_name"]["title"] = "Cert Name" form["schema"]["properties"]["apic_cert_name"]["type"] = "string" form["schema"]["properties"]["apic_cert_name"][ "description" ] = "Name of the APIC user certificate" form["schema"]["properties"]["apic_cert_name"]["default"] = configuration.get( "apic_cert_name", "" ) form["schema"]["properties"]["apic_key"]["title"] = "Key Path" form["schema"]["properties"]["apic_key"]["type"] = "string" form["schema"]["properties"]["apic_key"][ "description" ] = "Server side path to encryption key for cert authentication (overrides password)" form["schema"]["properties"]["apic_key"]["default"] = configuration.get( "apic_key", "" ) form["schema"]["properties"]["apic_password"]["title"] = "Password" form["schema"]["properties"]["apic_password"]["type"] = "string" form["schema"]["properties"]["apic_password"][ "description" ] = "Cisco ACI password" form["schema"]["properties"]["apic_password"]["format"] = "password" form["schema"]["properties"]["apic_password"]["default"] = configuration.get( "apic_password", "" ) form["schema"]["properties"]["apic_username"]["title"] = "Username" form["schema"]["properties"]["apic_username"]["type"] = "string" form["schema"]["properties"]["apic_username"][ "description" ] = "Cisco ACI username" # form['schema']['properties']['apic_username']['required']=True form["schema"]["properties"]["apic_username"]["default"] = configuration.get( "apic_username", "admin" ) form["schema"]["properties"]["apic_url"]["title"] = "APIC URL" form["schema"]["properties"]["apic_url"]["type"] = "string" form["schema"]["properties"]["apic_url"][ "description" ] = "URL of Cisco ACI Controller" # form['schema']['properties']['apic_url']['required']=True # form["schema"]["properties"]["apic_url"]["default"] = configuration.get( # "apic_url", "https://" # ) form["schema"]["properties"]["apic_url"][ "pattern" ] = "^(https?:\\/\\/)\ ((([a-z\\d]([a-z\\d-]*[a-z\\d])*)\\.?)+[a-z]*|\ ((\\d{1,3}\\.){3}\\d{1,3}))\ (\\:\\d+)?(\\/[-a-z\\d%_.~+]*)*\ (\\?[;&a-z\\d%_.~+=-]*)?\ (\\#[-a-z\\d_]*)?$" form["schema"]["properties"]["apic_url"]["default"] = configuration.get( "apic_url", "" ) form["options"]["fields"]["apic_url"]["order"] = 1 # form["options"]['fields']['apic_url']['hideInitValidationError']= True form["options"]["fields"]["apic_username"]["order"] = 2 form["options"]["fields"]["apic_password"]["order"] = 3 form["options"]["fields"]["apic_key"]["order"] = 4 form["options"]["fields"]["apic_cert_name"]["order"] = 5 return dict(form) def connect(self, **kwargs): self.init_plugin_params() self.init_acls() if self.apic_key and self.apic_cert_name: self.apic_session = Session( self.apic_url, self.apic_username, cert_name=self.apic_cert_name, key=self.apic_key, subscription_enabled=False, ) else: if not self.apic_password: self.apic_password = self._parent.handle_undefined_var("apic_password") self.apic_session = Session( self.apic_url, self.apic_username, self.apic_password, subscription_enabled=False, ) self.apic_session.login() def init_acls(self): for apic_dn_acl_rule in self.apic_dn_acl_rules: if isinstance(apic_dn_acl_rule, str): dn_regex, flags, remark = apic_dn_acl_rule.split(",") self._dn_acls[dn_regex] = { "rgx": re.compile(dn_regex), "acls": { "create": True if "c" in flags else False, "read": True, "update": True if "u" in flags else False, "delete": True if "d" in flags else False, }, "remark": remark, } elif isinstance(apic_dn_acl_rule, dict): self._dn_acls[apic_dn_acl_rule["regex"]] = { "rgx": re.compile(apic_dn_acl_rule["regex"]), "acls": { "create": True if "create" in apic_dn_acl_rule["acls"] else False, "read": True, "update": True if "update" in apic_dn_acl_rule["acls"] else False, "delete": True if "delete" in apic_dn_acl_rule["acls"] else False, }, "remark": apic_dn_acl_rule.get("remark", ""), } def check_acl(self, item): obj_type = list(item.keys())[0] attributes = item[obj_type]["attributes"] for acl_string, acl in self._dn_acls.items(): if acl["rgx"].match(attributes["dn"]): if ( attributes.get("status", "create") == "deleted" and not acl["acls"]["delete"] ): raise Exception( "cannot delete dn {}, as it is forbidden by acl {}".format( attributes["dn"], acl_string ) ) elif acl["acls"]["create"] and acl["acls"]["update"]: return True existing_data = json.loads( self.apic_session.get( "/api/node/mo/{0}.json".format(attributes["dn"]) ).text ) if len(existing_data["imdata"]) > 0 and acl["acls"]["update"]: return True elif len(existing_data["imdata"]) == 0 and acl["acls"]["create"]: return True else: raise Exception( "cannot create or update dn {}, as it is forbidden by acl {} {}".format( attributes["dn"], acl_string, pformat(acl["acls"]) ) ) else: self._log.debug( "no acl match acl {} dn {}".format(acl_string, attributes["dn"]) ) def process(self, data, **kwargs): try: if data in [None, "None", ""]: self._log.debug("empty document -> nothing to do -> skipping") return True data = json.loads(data) self._log.debug(json.dumps(data, indent=2)) except ValueError as e: self._log.error( "{0}\nis not a valid json document {1} -> invalid configuration -> skipping".format( data, e ) ) return False except TypeError: pass for item in data["imdata"]: try: dn = item[list(item.keys())[0]]["attributes"]["dn"] self.check_acl(item) except IndexError: continue resp = self.apic_session.push_to_apic( "/api/node/mo/{0}.json".format(dn), item, timeout=None ) if not resp.ok: self._log.error("POST request failed: {0}".format(pformat(resp.text))) self._log.debug(pformat(item)) if "best_effort" in self._parent.configuration._data.keys(): return True raise processError else: self._log.info("successfully sent config for dn {0}".format(dn)) self._log.debug(json.dumps(item, indent=2)) return True ```
{ "source": "jinjamator/jinjamator-plugin-output-zabbix", "score": 2 }
#### File: output/zabbix/__init__.py ```python import sys import os from jinjamator.tools.output_plugin_base import outputPluginBase, processError from pprint import pformat import json from collections import defaultdict import re from pprint import pprint, pformat import logging from pyzabbix import ZabbixMetric, ZabbixSender def tree(): return defaultdict(tree) class zabbix(outputPluginBase): def __init__(self, parent): self._log = logging.getLogger() self._parent = parent def addArguments(self): self._parent._parser.add_argument( "--zabbix-server", dest="zabbix_server", help="Zabbix server hostname or IP [default: %(default)s]", default="127.0.0.1", ) self._parent._parser.add_argument( "--zabbix-server-port", dest="zabbix_port", help="Zabbix server port [default: %(default)s]", default=10051, ) self._parent._parser.add_argument( "--zabbix-host", dest="zabbix_host", help="Hostname as it displayed in Zabbix [default: %(default)s]", default="", ) def init_plugin_params(self, **kwargs): for var in ["zabbix_server", "zabbix_port", "zabbix_host"]: if self._parent.configuration._data.get(var): setattr(self, var, self._parent.configuration._data.get(var, "")) @staticmethod def get_json_schema(configuration={}): form = tree() form["schema"]["type"] = "object" form["schema"]["properties"]["zabbix_server"]["title"] = "Zabbix Server" form["schema"]["properties"]["zabbix_server"]["type"] = "string" form["schema"]["properties"]["zabbix_server"][ "description" ] = "Zabbix server hostname or IP" form["schema"]["properties"]["zabbix_port"]["title"] = "Port" form["schema"]["properties"]["zabbix_port"]["type"] = "integer" form["schema"]["properties"]["zabbix_port"][ "description" ] = "Zabbix server port" form["schema"]["properties"]["zabbix_port"]["default"] = configuration.get( "zabbix_port", 10051 ) form["schema"]["properties"]["zabbix_host"]["title"] = "Zabbix Hostname" form["schema"]["properties"]["zabbix_host"]["type"] = "string" form["schema"]["properties"]["zabbix_host"][ "description" ] = "Hostname as it displayed in Zabbix" form["schema"]["properties"]["zabbix_host"]["default"] = configuration.get( "zabbix_host", "" ) form["options"]["fields"]["zabbix_server"]["order"] = 1 form["options"]["fields"]["zabbix_port"]["order"] = 2 form["options"]["fields"]["zabbix_host"]["order"] = 3 return dict(form) def connect(self, **kwargs): self.init_plugin_params() self.zbx = ZabbixSender( self._parent.configuration._data.get("zabbix_server"), self._parent.configuration._data.get("zabbix_port"), ) def process(self, data, **kwargs): try: if data in [None, "None", ""]: self._log.debug("empty document -> nothing to do -> skipping") return True data = json.loads(data) self._log.debug(json.dumps(data, indent=2)) except ValueError as e: self._log.error( "{0}\nis not a valid json document {1} -> invalid configuration -> skipping".format( data, e ) ) return False except TypeError: pass metrics = [] for row in data: target_hostname = row.get( "hostname", self._parent.configuration._data.get("zabbix_host", None) ) if target_hostname: for k, v in row.items(): if k not in ["hostname"]: m = ZabbixMetric(target_hostname, k, v) metrics.append(m) else: log.error("Target Hostname not defined -> skipping") log.debug(row) self.zbx.send(metrics) return True ```
{ "source": "jinjamator/N2G", "score": 3 }
#### File: N2G/N2G/N2G_yEd.py ```python import xml.etree.ElementTree as ET import hashlib import os from json import dumps as json_dumps # need it to dump metadata for edges/nodes from json import loads as json_loads # need it to load metadata for edges/nodes import logging # initiate logging log = logging.getLogger(__name__) LOG_LEVEL = "ERROR" LOG_FILE = None def logging_config(LOG_LEVEL, LOG_FILE): valid_log_levels = ["DEBUG", "INFO", "WARNING", "ERROR", "CRITICAL"] if LOG_LEVEL.upper() in valid_log_levels: logging.basicConfig( format="%(asctime)s.%(msecs)d [N2G_YED %(levelname)s] %(lineno)d; %(message)s", datefmt="%m/%d/%Y %I:%M:%S", level=LOG_LEVEL.upper(), filename=LOG_FILE, filemode="w", ) logging_config(LOG_LEVEL, LOG_FILE) class yed_diagram: """ N2G yEd module allows to produce diagrams in yEd .graphml format. **Parameters** * ``node_duplicates`` (str) can be of value skip, log, update * ``link_duplicates`` (str) can be of value skip, log, update """ # XML string templates to create lxml etree elements from: graph_xml = """<?xml version="1.0" encoding="UTF-8" standalone="no"?> <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:java="http://www.yworks.com/xml/yfiles-common/1.0/java" xmlns:sys="http://www.yworks.com/xml/yfiles-common/markup/primitives/2.0" xmlns:x="http://www.yworks.com/xml/yfiles-common/markup/2.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:y="http://www.yworks.com/xml/graphml" xmlns:yed="http://www.yworks.com/xml/yed/3" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://www.yworks.com/xml/schema/graphml/1.1/ygraphml.xsd"> <!--Created by yEd 3.17.2--> <key attr.name="Description" attr.type="string" for="graph" id="d0"/> <key for="port" id="d1" yfiles.type="portgraphics"/> <key for="port" id="d2" yfiles.type="portgeometry"/> <key for="port" id="d3" yfiles.type="portuserdata"/> <key attr.name="url" attr.type="string" for="node" id="d4"/> <key attr.name="description" attr.type="string" for="node" id="d5"/> <key for="node" id="d6" yfiles.type="nodegraphics"/> <key for="graphml" id="d7" yfiles.type="resources"/> <key attr.name="url" attr.type="string" for="edge" id="d8"/> <key attr.name="description" attr.type="string" for="edge" id="d9"/> <key for="edge" id="d10" yfiles.type="edgegraphics"/> <key attr.name="nmetadata" attr.type="string" for="node" id="d11"> <default/> </key> <key attr.name="emetadata" attr.type="string" for="edge" id="d12"> <default/> </key> <key attr.name="gmetadata" attr.type="string" for="graph" id="d13"> <default/> </key> <graph edgedefault="directed" id="G"> </graph> <data key="d7"> <y:Resources> </y:Resources> </data> </graphml> """ shape_node_xml = """ <node id="{id}" xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns"> <data key="{attrib_id}"> <y:ShapeNode> <y:Geometry height="{height}" width="{width}" x="{x}" y="{y}"/> <y:Fill color="#FFFFFF" transparent="false"/> <y:BorderStyle color="#000000" raised="false" type="line" width="3.0"/> <y:Shape type="{shape_type}"/> </y:ShapeNode> </data> </node> """ svg_node_xml = """ <node id="{id}" xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns"> <data key="{attrib_id}"> <y:SVGNode> <y:Geometry width="{width}" height="{height}" x="{x}" y="{y}"/> <y:Fill color="#CCCCFF" transparent="false"/> <y:BorderStyle color="#000000" type="line" width="1.0"/> <y:SVGNodeProperties usingVisualBounds="true"/> <y:SVGModel svgBoundsPolicy="0"> <y:SVGContent refid="{refid}"/> </y:SVGModel> </y:SVGNode> </data> </node> """ group_node_xml = """ <node xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns" id="nNodeID" yfiles.foldertype="group"> <data key="{attrib_id}"> <y:ProxyAutoBoundsNode> <y:Realizers active="0"> <y:GroupNode> <y:Geometry height="50.0" width="50.0" x="0.0" y="0.0"/> <y:Fill color="#FFFFFF" color2="#FFFFFF" transparent="false"/> <y:BorderStyle color="#000000" type="line" width="1.0"/> <y:Shape type="rectangle"/> <y:State closed="false" closedHeight="50.0" closedWidth="157.0" innerGraphDisplayEnabled="true"/> <y:Insets bottom="5" bottomF="5.0" left="5" leftF="5.0" right="5" rightF="5.0" top="5" topF="5.0"/> <y:BorderInsets bottom="0" bottomF="0.0" left="31" leftF="31.0" right="0" rightF="0.0" top="0" topF="0.0"/> </y:GroupNode> </y:Realizers> </y:ProxyAutoBoundsNode> </data> <graph edgedefault="directed" id="nNodeID:"> </graph> </node> """ edge_xml = """ <edge xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns" id="{id}" source="{source}" target="{target}"> <data key="{attrib_id}"> <y:PolyLineEdge> <y:LineStyle color="#000000" type="line" width="1.0"/> <y:Arrows source="none" target="none"/> <y:BendStyle smoothed="false"/> </y:PolyLineEdge> </data> </edge> """ node_label_xml = """ <y:NodeLabel xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns" alignment="center" autoSizePolicy="content" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasBackgroundColor="false" hasLineColor="false" height="18" horizontalTextPosition="center" iconTextGap="4" modelName="internal" modelPosition="c" textColor="#000000" verticalTextPosition="bottom" visible="true" width="70"></y:NodeLabel> """ edge_label_xml = """ <y:EdgeLabel xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns" alignment="center" backgroundColor="#FFFFFF" configuration="AutoFlippingLabel" distance="2.0" fontFamily="Dialog" fontSize="12" fontStyle="plain" hasLineColor="false" height="18" horizontalTextPosition="center" iconTextGap="4" modelName="free" modelPosition="anywhere" preferredPlacement="target_on_edge" ratio="0.5" textColor="#000000" upX="-1.0" upY="-6E-17" verticalTextPosition="bottom" visible="true" width="32"> EdgeLabel <y:PreferredPlacementDescriptor angle="0.0" angleOffsetOnRightSide="0" angleReference="relative_to_edge_flow" angleRotationOnRightSide="co" distance="-1.0" placement="center" side="on_edge" sideReference="relative_to_edge_flow"/> </y:EdgeLabel> """ resource_xml = """ <y:Resource id="{id}" xmlns:y="http://www.yworks.com/xml/graphml" xmlns="http://graphml.graphdrawing.org/xmlns">{text_data} </y:Resource> """ namespaces = { "_default_ns_": "http://graphml.graphdrawing.org/xmlns", "java": "http://www.yworks.com/xml/yfiles-common/1.0/java", "sys": "http://www.yworks.com/xml/yfiles-common/markup/primitives/2.0", "x": "http://www.yworks.com/xml/yfiles-common/markup/2.0", "xsi": "http://www.w3.org/2001/XMLSchema-instance", "y": "http://www.yworks.com/xml/graphml", "yed": "http://www.yworks.com/xml/yed/3", } def __init__(self, node_duplicates="skip", link_duplicates="skip"): self.drawing = ET.fromstring(self.graph_xml) self.graph_root = self.drawing.find("./_default_ns_:graph", self.namespaces) self.y_attr = {} self.node_duplicates = node_duplicates self.link_duplicates = link_duplicates self.edges_ids = {} # dictionary of "edge id hash": "yed generated edge id" self.nodes_ids = {} # dictionary of "node id": "yed generated node id" self.svg_pics_dict = {} self._load_yattrs() # register name spaces names to dump them properly in XML output [ET.register_namespace(k, v) for k, v in self.namespaces.items()] def _load_yattrs(self): """ function to load yed tags attributes adn form self.y_attr dict similar to this: self.y_attr = {'edge': {'description': 'd9', 'edgegraphics': 'd10', 'emetadata': 'd12', 'url': 'd8'}, 'graph': {'Description': 'd0', 'gmetadata': 'd13'}, 'graphml': {'resources': 'd7'}, 'node': {'description': 'd5', 'nmetadata': 'd11', 'nodegraphics': 'd6', 'url': 'd4'}, 'port': {'portgeometry': 'd2', 'portgraphics': 'd1', 'portuserdata': 'd3'}} """ keys = self.drawing.findall("./_default_ns_:key", self.namespaces) for key in keys: if "attr.name" in key.attrib: attrname = key.attrib["attr.name"] elif "yfiles.type" in key.attrib: attrname = key.attrib["yfiles.type"] self.y_attr.setdefault(key.attrib["for"], {}) self.y_attr[key.attrib["for"]][attrname] = key.attrib["id"] def _create_label_element( self, xml_template, # string, name of XML label template label="", # string, center label of edge/nodes path="", # string, xml tree path, if empty, work with element tag **kwargs # attributes for edge/node label lement at "path" tag ): """ function to create label elemnts for appending to edge/nodes' elements """ element = ET.fromstring(xml_template) if label != None: element.text = label if path == "": element.attrib.update(kwargs) else: element.find(path, self.namespaces).attrib.update(kwargs) return element def _create_data_element( self, id, # string, id of data element, e,g, d11, d4, d1 etc. text, # string, text to add to data element ): elem = ET.fromstring('<data key="{}"/>'.format(id)) elem.text = text.strip() return elem def _node_exists(self, id, **kwargs): # check if node with given name already exists if id in self.nodes_ids: if self.node_duplicates == "log": log.error("add_shape_node: node '{}' already added to graph".format(id)) elif self.node_duplicates == "skip": pass elif self.node_duplicates == "update": self.update_node(id, **kwargs) return True else: return False def add_shape_node( self, id, label="", top_label="", bottom_label="", attributes={}, description="", shape_type="roundrectangle", url="", width=120, height=60, x_pos=200, y_pos=150, **kwargs ): """ Method to add node of type "shape". **Parameters** * ``id`` (str) mandatory, unique node identifier, usually equal to node name * ``label`` (str) label at the center of the node, by default equal to id attribute * ``top_label`` (str) label displayed at the top of the node * ``bottom_label`` (str) label displayed at the bottom of the node * ``description`` (str) string to save as node ``description`` attribute * ``shape_type`` (str) shape type, default - "roundrectangle" * ``url`` (str) url string to save a node ``url`` attribute * ``width`` (int) node width in pixels * ``height`` (int) node height in pixels * ``x_pos`` (int) node position on x axis * ``y_pos`` (int) node position on y axis * ``attributes`` (dict) dictionary of yEd graphml tag names and attributes Attributes dictionary keys will be used as xml tag names and values dictionary will be used as xml tag attributes, example:: { 'Shape' : {'type': 'roundrectangle'}, 'DropShadow': { 'color': '#B3A691', 'offsetX': '5', 'offsetY': '5'} } """ # check duplicates if self._node_exists( id, label=label, top_label=top_label, bottom_label=bottom_label, attributes=attributes, description=description, ): return self.nodes_ids[id] = id # create node element: node = ET.fromstring( self.shape_node_xml.format( attrib_id=self.y_attr["node"]["nodegraphics"], id=id, shape_type=shape_type, width=width, height=height, x=x_pos, y=y_pos, ) ) # add labels if label == "": label = id labels = {"c": label, "t": top_label, "b": bottom_label} ShapeNode = node.find("./_default_ns_:data/y:ShapeNode", self.namespaces) for position, label_text in labels.items(): if label_text.strip(): ShapeNode.append( self._create_label_element( self.node_label_xml, label_text, modelPosition=position ) ) # add description data and url if description != "": node.append( self._create_data_element( id=self.y_attr["node"]["description"], text=description ) ) if url != "": node.append( self._create_data_element(id=self.y_attr["node"]["url"], text=url) ) # save original node ID in nmetadata attribute - used to load graph from file: node.append( self._create_data_element( id=self.y_attr["node"]["nmetadata"], text=json_dumps({"id": id}), ) ) # set attributes for the node children: self.set_attributes(ShapeNode, attributes) # addnode to graph self.graph_root.append(node) def add_svg_node( self, pic, id, pic_path="./Pics/", label="", attributes={}, description="", url="", # string, data to add tonode URL width=50, height=50, x_pos=200, y_pos=150, **kwargs ): """ Method to add SVG picture as node by loading SVG file content into graphml **Parameters** * ``id`` (str) mandatory, unique node identifier, usually equal to node name * ``pic`` (str) mandatory, name of svg file * ``pic_path`` (str) OS path to SVG file folder, default is ``./Pics/`` * ``label`` (str) label displayed above SVG node, if not provided, label set equal to id * ``description`` (str) string to save as node ``description`` attribute * ``url`` (str) url string to save as node ``url`` attribute * ``width`` (int) node width in pixels * ``height`` (int) node height in pixels * ``x_pos`` (int) node position on x axis * ``y_pos`` (int) node position on y axis * ``attributes`` (dict) dictionary of yEd graphml tag names and attributes Attributes dictionary keys will be used as xml tag names and values dictionary will be used as xml tag attributes, example:: { 'DropShadow': { 'color': '#B3A691', 'offsetX': '5', 'offsetY': '5'} } """ # check duplicates if self._node_exists( id, label=label, attributes=attributes, description=description ): return # sanitize pic: if not pic.endswith(".svg"): pic += ".svg" pic_file_path = pic_path + pic # check if file exists if not os.path.exists(pic_file_path): log.error( "add_svg_node: failed to load svg, '{}' - file not found".format( pic_file_path ) ) return self.nodes_ids[id] = id # load svg pic resource into graph resources section if not yet loaded: if not pic_file_path in self.svg_pics_dict: resource_id = hashlib.md5(pic_file_path.encode()).hexdigest() with open(pic_file_path, "r") as pic_file: pic_xml = pic_file.read() # extract pic width and height that can be containedin viewBox attribute as well: pic_element = ET.fromstring(pic_xml.encode("utf8")) if pic_element.attrib.get("viewBox"): _, _, pic_width, pic_height = pic_element.attrib.get( "viewBox" ).split(" ") elif pic_element.find(".//*/{http://www.w3.org/2000/svg}svg"): _, _, pic_width, pic_height = ( pic_element.find(".//*/{http://www.w3.org/2000/svg}svg") .attrib.get("viewBox") .split(" ") ) else: pic_width = pic_element.get("width", width) pic_height = pic_element.get("height", height) del pic_element pic_width = float(pic_width) pic_height = float(pic_height) # scale width and height down to 100px if size more than 100px if max(pic_width, pic_height) > 100: factor = max(pic_width, pic_height) / 100 pic_width = pic_width / factor pic_height = pic_height / factor # modify pic_xml for inclusion into resource element pic_xml = ( pic_xml.replace("&", "&amp;") .replace("<", "&lt;") .replace(">", "&gt;") .replace("'", "&apos;") ) # save pic id and it's params into sgv_pics_dict dictionary: self.svg_pics_dict[pic_file_path] = { "refid": resource_id, "height": pic_height, "width": pic_width, } # create resource element: svg_resource_element = ET.fromstring( self.resource_xml.format(id=resource_id, text_data=pic_xml) ) self.drawing.find( "./_default_ns_:data/y:Resources", self.namespaces ).append(svg_resource_element) del svg_resource_element params = self.svg_pics_dict[pic_file_path] # create svg_node element: svg_node = ET.fromstring( self.svg_node_xml.format( attrib_id=self.y_attr["node"]["nodegraphics"], id=id, refid=params["refid"], height=params["height"], width=params["width"], x=x_pos, y=y_pos, ) ) # add label and description data to the node: if label == "": label = id svg_node.find("./_default_ns_:data/y:SVGNode", self.namespaces).append( self._create_label_element( self.node_label_xml, label, modelName="sandwich", modelPosition="n" ) ) if description != "": svg_node.append( self._create_data_element( id=self.y_attr["node"]["description"], text=description ) ) if url != "": svg_node.append( self._create_data_element(id=self.y_attr["node"]["url"], text=url) ) # save original id in node custom attribute: svg_node.append( self._create_data_element( id=self.y_attr["node"]["nmetadata"], text=json_dumps({"id": id}) ) ) # add node to the graph and delete node_element: self.graph_root.append(svg_node) def _add_group_node( self, id, # string, name of the node label="", # string, label at the center of the node top_label="", # string, label at the top of the node bottom_label="", # string, label at the bottom of the node attributes={}, # dictionary, contains node attributes description="", # string, data to add in node description url="", # string, data to add tonode URL ): """ NOT IMPLEMENTED. Method to add group node to join nodes in cluster. """ # check for node duplicates: if self._node_exists( id, label=label, top_label=top_label, bottom_label=bottom_label, attributes=attributes, description=description, ): return self.nodes_ids[id] = id # create node element: node = ET.fromstring( group_node_xml.format(attrib_id=self.y_attr["node"]["nodegraphics"]) ) self.nodes_ids[id] = id node.set("id", id) # set id for groupnode graph: node.find("./_default_ns_:graph", self.namespaces).attrib["id"] = "{}:".format( id ) # add labels GroupNode = node.find( "./_default_ns_:data/y:ProxyAutoBoundsNode/y:Realizers/y:GroupNode", self.namespaces, ) if label == "": label = id labels = {"c": label, "t": top_label, "b": bottom_label} for position, label_text in labels.items(): if label_text.strip(): GroupNode.append( self._create_label_element( self.node_label_xml, label_text, modelPosition=position ) ) # add description data if description != "": node.append( self._create_data_element( id=self.y_attr["node"]["description"], text=description ) ) if url != "": node.append( self._create_data_element(id=self.y_attr["node"]["url"], text=url) ) # save original id in node custom attribute: node.append( self._create_data_element( id=self.y_attr["node"]["nmetadata"], text=json_dumps({"id": id}), ) ) # set attributes for the node: self.set_attributes(GroupNode, attributes) self.graph_root.append(node) def add_node(self, id, **kwargs): """ Convenience method to add node, by calling one of node add methods following these rules: * If ``pic`` attribute in kwargs, ``add_svg_node`` is called * If ``group`` kwargs attribute equal to `True`, ``_add_group_node`` called * ``add_shape_node`` called otherwise **Parameters** * ``id`` (str) mandatory, unique node identifier, usually equal to node name """ kwargs["id"] = id if kwargs.get("group", "").strip() == True: self._add_group_node(**kwargs) elif kwargs.get("pic", "").strip(): self.add_svg_node(**kwargs) else: self.add_shape_node(**kwargs) def _link_exists(self, id, edge_tup): """method, used to check dublicate edges """ if id in self.edges_ids: if self.link_duplicates == "log": log.error( "_link_exists: edge '{}' already added to graph".format( ",".join(edge_tup) ) ) elif self.link_duplicates == "skip": pass return True self.edges_ids.update({id: id}) def add_link( self, source, target, label="", src_label="", trgt_label="", description="", attributes={}, url="", ): """ Method to add link between nodes. **Parameters** * ``source`` (str) mandatory, id of source node * ``target`` (str) mandatory, id of target node * ``label`` (str) label at the center of the edge, by default equal to id attribute * ``src_label`` (str) label to display at the source end of the edge * ``trgt_label`` (str) label to display at target end of the edge * ``description`` (str) string to save as link ``description`` attribute * ``url`` (str) string to save as link ``url`` attribute * ``attributes`` (dict) dictionary of yEd graphml tag names and attributes Attributes dictionary keys will be used as xml tag names and values dictionary will be used as xml tag attributes, example:: { "LineStyle": {"color": "#00FF00", "width": "1.0"}, "EdgeLabel": {"textColor": "#00FF00"}, } .. note:: If source or target nodes does not exists, they will be automatically created """ # check type of source and target attribute source_node_dict = source.copy() if isinstance(source, dict) else {"id": source} source = source_node_dict.pop("id") target_node_dict = target.copy() if isinstance(target, dict) else {"id": target} target = target_node_dict.pop("id") # check if target and source nodes exist, add it if not, # self._node_exists method will update node # if self.node_duplicates set to update, by default its set to skip if not self._node_exists(source, **source_node_dict): self.add_node(id=source, **source_node_dict) source_id = self.nodes_ids[source] if not self._node_exists(target, **target_node_dict): self.add_node(id=target, **target_node_dict) target_id = self.nodes_ids[target] # create edge id edge_tup = tuple(sorted([label, src_label, trgt_label, source, target])) edge_id = hashlib.md5(",".join(edge_tup).encode()).hexdigest() # check if edge already exists if self._link_exists(edge_id, edge_tup): return # create edge element edge = ET.fromstring( self.edge_xml.format( attrib_id=self.y_attr["edge"]["edgegraphics"], id=edge_id, source=source_id, target=target_id, ) ) # fill labels and description: PolyLineEdge = edge.find("./_default_ns_:data/y:PolyLineEdge", self.namespaces) labels = {"center": label, "source": src_label, "target": trgt_label} for position, label_text in labels.items(): if label_text.strip(): PolyLineEdge.append( self._create_label_element( self.edge_label_xml, label_text, path="y:PreferredPlacementDescriptor", placement=position, ) ) if description != "": edge.append( self._create_data_element( id=self.y_attr["edge"]["description"], text=description ) ) if url != "": edge.append( self._create_data_element(id=self.y_attr["edge"]["url"], text=url) ) # save source and target original nodes' id in edge emetadata attribute: edge.append( self._create_data_element( id=self.y_attr["edge"]["emetadata"], text=json_dumps({"sid": source, "tid": target, "id": edge_id}), ) ) # fill in edge attributes: self.set_attributes(PolyLineEdge, attributes) # append edge element to graph: self.graph_root.append(edge) def from_dict(self, data): """ Method to build graph from dictionary. **Parameters** * ``data`` (dict) dictionary with nodes and link/edges details. Example ``data`` dictionary:: sample_graph = { 'nodes': [ { 'id': 'a', 'pic': 'router', 'label': 'R1' }, { 'id': 'b', 'label': 'somelabel', 'bottom_label':'botlabel', 'top_label':'toplabel', 'description': 'some node description' }, { 'id': 'e', 'label': 'E' } ], 'edges': [ { 'source': 'a', 'src_label': 'Gig0/0', 'label': 'DF', 'target': 'b', 'trgt_label': 'Gig0/1', 'description': 'vlans_trunked: 1,2,3' } ], 'links': [ { 'source': 'a', 'target': 'e' } ] } **Dictionary Content Rules** * dictionary may contain ``nodes`` key with a list of nodes dictionaries * each node dictionary must contain unique ``id`` attribute, other attributes are optional * dictionary may contain ``edges`` or ``links`` key with a list of edges dictionaries * each link dictionary must contain ``source`` and ``target`` attributes, other attributes are optional """ [self.add_node(**node) for node in data.get("nodes", [])] [self.add_link(**link) for link in data.get("links", [])] [self.add_link(**edge) for edge in data.get("edges", [])] def from_list(self, data): """ Method to build graph from list. **Parameters** * ``data`` (list) list of link dictionaries, Example ``data`` list:: sample_graph = [ { 'source': 'a', 'src_label': 'Gig0/0\\nUP', 'label': 'DF', 'target': 'b', 'trgt_label': 'Gig0/1', 'description': 'vlans_trunked: 1,2,3\\nstate: up' }, { 'source': 'a', 'target': { 'id': 'e', 'label': 'somelabel', 'bottom_label':'botlabel', 'top_label':'toplabel', 'description': 'some node description' } } } ] **List Content Rules** * each list item must have ``target`` and ``source`` attributes defined * ``target``/``source`` attributes can be either a string or a dictionary * dictionary ``target``/``source`` node must contain ``id`` attribute and other supported node attributes .. note:: By default yed_diagram object ``node_duplicates`` action set to 'skip' meaning that node will be added on first occurrence and ignored after that. Set ``node_duplicates`` to 'update' if node with given id need to be updated by later occurrences in the list. """ [self.add_link(**edge) for edge in data if edge] def from_file(self, filename, file_load="xml"): """ Method to load data from file for processing. File format can be yEd graphml (XML) or CSV **Parameters** * ``filename`` (str) OS path to file to load * ``file_load`` (str) indicated the load of the file, supports ``xml``, ``csv`` """ with open(filename, "r") as f: if file_load.lower() == "xml": self.from_xml(f.read()) elif file_load.lower() == "csv": self.from_csv(data=csv_load) def from_xml(self, text_data): """ Method to load yEd graphml XML formatted text for processing **Parameters** * ``text_data`` (str) text data to load """ self.drawing = ET.fromstring(text_data) # load graph details self.graph_root = self.drawing.find("./_default_ns_:graph", self.namespaces) self._load_yattrs() # load all nodes IDs and build mapping between nmetadata ID and ID generated by yED nmetadata_id = self.y_attr["node"].get("nmetadata") for node in self.graph_root.iterfind("./_default_ns_:node", self.namespaces): node_data = node.find( "./_default_ns_:data[@key='{}']".format(nmetadata_id), self.namespaces ) node_data = json_loads(node_data.text) self.nodes_ids[node_data["id"]] = node.attrib["id"] # add all edges IDs to self.edges_ids list emetadata_id = self.y_attr["edge"].get("emetadata") for edge in self.graph_root.iterfind("./_default_ns_:edge", self.namespaces): edge_data = edge.find( "./_default_ns_:data[@key='{}']".format(emetadata_id), self.namespaces ) edge_data = json_loads(edge_data.text) source = edge_data.get("sid") target = edge_data.get("tid") edge_id = edge_data.get("id") if not edge_id: # get labels from edge and for. edge hash id label, src_label, trgt_label = "", "", "" for label_item in edge.iterfind(".//*/y:EdgeLabel", self.namespaces): placement = label_item.attrib.get("preferredPlacement", "") if "center" in placement: label = label_item.text elif "source" in placement: src_label = label_item.text elif "target" in placement: trgt_label = label_item.text # form edge hash edge_tup = tuple( sorted([source, target, label, src_label, trgt_label,]) ) edge_id = hashlib.md5(",".join(edge_tup).encode()).hexdigest() self.edges_ids.update({edge_id: edge.attrib["id"]}) def from_csv(self, text_data): """ Method to build graph from CSV tables **Parameters** * ``text_data`` (str) CSV text with links or nodes details This method supports loading CSV text data that contains nodes or links information. If ``id`` in headers, ``from_dict`` method will be called for CSV processing, ``from_list`` method will be used otherwise. CSV data with nodes details should have headers matching add node methods arguments and rules. CSV data with links details should have headers matching ``add_link`` method arguments and rules. Sample CSV table with link details:: "source","src_label","label","target","trgt_label","description" "a","Gig0/0","DF","b","Gig0/1","vlans_trunked: 1,2,3" "b","Gig0/0","Copper","c","Gig0/2", "b","Gig0/0","Copper","e","Gig0/2", d,Gig0/21,FW,e,Gig0/23, Sample CSV table with node details:: "id","pic","label","bottom_label","top_label","description" a,router_1,"R1,2",,, "b",,,"some","top_some", "c",,"somelabel","botlabel","toplabel","some node description" "d","firewall.svg","somelabel1",,,"some node description" "e","router_2","R1",,, """ # import libs from io import StringIO import csv # need to handle text data as file like object for csv reader to work iostring = StringIO(newline="") iostring.write(text_data) iostring.seek(0) # load csv data dict_reader = csv.DictReader(iostring) data_list = list(dict_reader) # if id given - meaning it is nodes data if data_list[0].get("id"): self.from_dict({"nodes": data_list}) else: self.from_list(data_list) def dump_xml(self): """ Method to return current diagram XML text """ ret = ET.tostring(self.drawing, encoding="unicode") ret = ret.replace("_default_ns_:", "").replace(":_default_ns_", "") return ret def dump_file(self, filename=None, folder="./Output/"): """ Method to save current diagram in .graphml file. **Parameters** * ``filename`` (str) name of the file to save diagram into * ``folder`` (str) OS path to folder where to save diagram file If no ``filename`` provided, timestamped format will be used to produce filename, e.g.: ``Sun Jun 28 20-30-57 2020_output.graphml`` """ import os import time # check output folder, if not exists, create it if not os.path.exists(folder): os.makedirs(folder) # create file name if not filename: ctime = time.ctime().replace(":", "-") filename = "{}_output.graphml".format(ctime) # save file to disk with open(folder + filename, "w") as outfile: outfile.write(self.dump_xml()) def set_attributes( self, element, # lxml object to update attributes for attributes={}, # dictionary of attributes to update ): """ Method to set attributes for XML element **Parameters** * ``element`` (object) xml etree element object to set attributes for * ``attributes`` (dict) dictionary of yEd graphml tag names and attributes Attributes dictionary keys will be used as xml tag names and values dictionary will be used as xml tag attributes, example:: { "LineStyle": {"color": "#00FF00", "width": "1.0"}, "EdgeLabel": {"textColor": "#00FF00"}, } """ children = list(element) for tag, attribs in attributes.items(): tag_exists = False for child in children: if tag in child.tag: child.attrib.update(attribs) tag_exists = True if tag_exists == False: # create tag element: tag_elem = ET.fromstring( '<y:{} xmlns:y="http://www.yworks.com/xml/graphml"/>'.format(tag) ) tag_elem.attrib.update(attribs) element.append(tag_elem) def update_node( self, id, label=None, top_label=None, bottom_label=None, attributes={}, description=None, width="", height="", ): """ Method to update node details **Parameters** * ``id`` (str) mandatory, unique node identifier, usually equal to node name * ``label`` (str) label at the center of the shape node or above SVG node * ``top_label`` (str) label displayed at the top of the node * ``bottom_label`` (str) label displayed at the bottom of the node * ``description`` (str) string to save as node ``description`` attribute * ``width`` (int) node width in pixels * ``height`` (int) node height in pixels * ``attributes`` (dict) dictionary of yEd graphml tag names and attributes Attributes dictionary keys will be used as xml tag names and values dictionary will be used as xml tag attributes, example:: { 'Shape' : {'type': 'roundrectangle'}, 'DropShadow': { 'color': '#B3A691', 'offsetX': '5', 'offsetY': '5'} } This method will replace existing and add new labels to the node. Existing description attribute will be replaced with new value. Height and width will override existing values. Attributes will replace existing values. """ # get node element: node = self.graph_root.find( "./_default_ns_:node[@id='{}']".format(self.nodes_ids.get(id, id)), self.namespaces, ) if node is None: log.error( "update_node, cannot find node with id - {}".format( self.nodes_ids.get(id, id) ) ) return labels = {"c": label, "n": label, "t": top_label, "b": bottom_label} # try to find shapenode element node_elem = node.find("./_default_ns_:data/y:ShapeNode", self.namespaces) # try to find svgnode element if node_elem is None: node_elem = node.find("./_default_ns_:data/y:SVGNode", self.namespaces) labels = {"n": label} if node_elem is None: log.error( "Failed to find ShapeNode or SVGNode for node with id: '{}'".format( self.nodes_ids.get(id, id) ) ) return # update attributes, update description if it does not exists self.set_attributes(node_elem, attributes) if description: description_elem = node_elem.find( ".//y:data[@key='{}']".format(self.y_attr["node"]["description"]), self.namespaces, ) if not description_elem: node_elem.append( self._create_data_element( id=self.y_attr["node"]["description"], text=description ) ) else: description_elem.text = description # iterate over existing labels for label_elem in node_elem.iterfind(".//y:NodeLabel", self.namespaces): position = label_elem.attrib.get("modelPosition") if not labels.get(position) is None: label_elem.text = labels.pop(position) # add new labels for label_position, label in labels.items(): if label is None: continue node_elem.append( self._create_label_element( self.node_label_xml, label, modelPosition=label_position ) ) # set width and height node_geometry_element = node.find(".//*/y:Geometry", self.namespaces) if width: node_geometry_element.set("width", str(width)) if height: node_geometry_element.set("height", str(height)) def update_link( self, edge_id="", label="", src_label="", trgt_label="", source="", target="", new_label=None, new_src_label=None, new_trgt_label=None, description="", attributes={}, ): """ Method to update edge/link details. **Parameters** * ``edge_id`` (str) md5 hash edge id, if not provided, will be generated based on edge attributes * ``label`` (str) existing edge label * ``src_label`` (str) existing edge src_label * ``trgt_label`` (str) existing edge tgt_label * ``source`` (str) existing edge source node ID * ``target`` (str) existing edge target node id * ``new_label`` (str) new edge label * ``new_src_label`` (str) new edge src_label * ``new_trgt_label`` (str) new edge tgt_label * ``description`` (str) new edge description * ``attributes`` (str) dictionary of attributes to apply to edge element Either of these must be provided to find edge element to update: * ``edge_id`` MD5 hash or * ``label, src_label, trgt_label, source, target`` attributes to calculate ``edge_id`` ``edge_id`` calculated based on - ``label, src_label, trgt_label, source, target`` - attributes following this algorithm: 1. Edge tuple produced: ``tuple(sorted([label, src_label, trgt_label, source, target]))`` 2. MD5 hash derived from tuple: ``hashlib.md5(",".join(edge_tup).encode()).hexdigest()`` This method will replace existing and add new labels to the link. Existing description attribute will be replaced with new value. Attributes will replace existing values. """ # make new labels equal to existing labels if new label not provided new_label = new_label if new_label != None else label new_src_label = new_src_label if new_src_label != None else src_label new_trgt_label = new_trgt_label if new_trgt_label != None else trgt_label # generate existing and new edge ID edge_tup = tuple(sorted([label, src_label, trgt_label, source, target])) new_edge_tup = tuple( sorted([new_label, new_src_label, new_trgt_label, source, target]) ) edge_id = ( hashlib.md5(",".join(edge_tup).encode()).hexdigest() if not edge_id else edge_id ) new_edge_id = ( hashlib.md5(",".join(new_edge_tup).encode()).hexdigest() if not edge_id else edge_id ) if edge_id in self.edges_ids: self.edges_ids.update({new_edge_id: self.edges_ids.pop(edge_id)}) elif edge_id: self.edges_ids[edge_id] = edge_id # find edge element edge = self.graph_root.find( './_default_ns_:edge[@id="{}"]'.format( self.edges_ids.get(edge_id, edge_id) ), namespaces=self.namespaces, ) PolyLineEdge = edge.find("./_default_ns_:data/y:PolyLineEdge", self.namespaces) # update edge id edge.attrib["id"] = self.edges_ids[new_edge_id] # update description if description: description_elem = edge.find( ".//y:data[@key='{}']".format(self.y_attr["edge"]["description"]), self.namespaces, ) if description_elem is None: edge.append( self._create_data_element( id=self.y_attr["edge"]["description"], text=description ) ) else: description_elem.text = description # update labels labels = { "center": new_label, "source": new_src_label, "target": new_trgt_label, } # iterate over existing labels for label_elem in PolyLineEdge.iterfind(".//y:EdgeLabel", self.namespaces): label_placement_elem = label_elem.find( ".//y:PreferredPlacementDescriptor", self.namespaces ) if not label_placement_elem is None: position = label_placement_elem.get("placement") if labels.get(position, "").strip(): label_elem.text = labels.pop(position) # add new labels for position, label_text in labels.items(): if not label_text.strip(): continue PolyLineEdge.append( self._create_label_element( self.edge_label_xml, label_text, path="y:PreferredPlacementDescriptor", placement=position, ) ) # update attributes self.set_attributes(PolyLineEdge, attributes) def compare( self, data, # N2G dictionary data to compare against missing_nodes={ # dict, attributes to apply to missing nodes "BorderStyle": {"color": "#C0C0C0", "width": "2.0"}, "NodeLabel": {"textColor": "#C0C0C0"}, }, new_nodes={ # dict, attributes to apply to new nodes "BorderStyle": {"color": "#00FF00", "width": "5.0"}, "NodeLabel": {"textColor": "#00FF00"}, }, missing_links={ # dict, attributes to apply to missing edges "LineStyle": {"color": "#C0C0C0", "width": "1.0"}, "EdgeLabel": {"textColor": "#C0C0C0"}, }, new_links={ # dict, attributes to apply to new edges "LineStyle": {"color": "#00FF00", "width": "1.0"}, "EdgeLabel": {"textColor": "#00FF00"}, }, ): """ Method to combine two graphs - existing and new - and produce resulting graph following these rules: * nodes and links present in new graph but not in existing graph considered as new and will be updated with ``new_nodes`` and ``new_links`` attributes by default highlighting them in green * nodes and links missing from new graph but present in existing graph considered as missing and will be updated with ``missing_nodes`` and ``missing_links`` attributes by default highlighting them in gray * nodes and links present in both graphs will remain unchanged **Parameters** * ``data`` (dict) dictionary containing new graph data, dictionary format should be the same as for ``from_dict`` method. * ``missing_nodes`` (dict) dictionary with attributes to apply to missing nodes * ``new_nodes`` (dict) dictionary with attributes to apply to new nodes * ``missing_links`` (dict) dictionary with attributes to apply to missing links * ``new_links`` (dict) dictionary with attributes to apply to new links **Sample usage**:: from N2G import yed_diagram diagram = yed_diagram() new_graph = { 'nodes': [ {'id': 'a', 'pic': 'router_round', 'label': 'R1' } ], 'edges': [ {'source': 'f', 'src_label': 'Gig0/21', 'label': 'DF', 'target': 'b'} ] } diagram.from_file("./old_graph.graphml") diagram.compare(new_graph) diagram.dump_file(filename="compared_graph.graphml") """ if isinstance(data, dict): # find new nodes existing_nodes = [] new_nodes_list = [] for node in data["nodes"]: node.setdefault("attributes", {}) if not node["id"] in self.nodes_ids: node["attributes"].update(new_nodes) self.add_node(**node) new_nodes_list.append(node["id"]) else: existing_nodes.append(node["id"]) # find missing nodes for id in self.nodes_ids.keys(): if not id in existing_nodes and not id in new_nodes_list: self.update_node(id=id, attributes=missing_nodes) # find edges connected to missing nodes for edge in self.graph_root.iterfind( "./_default_ns_:edge[@source='{}']".format(id), self.namespaces ): self.update_link( edge_id=edge.get("id"), attributes=missing_links ) for edge in self.graph_root.iterfind( "./_default_ns_:edge[@source='{}']".format( self.nodes_ids.get(id, "") ), self.namespaces, ): self.update_link( edge_id=edge.get("id"), attributes=missing_links ) for edge in self.graph_root.iterfind( "./_default_ns_:edge[@target='{}']".format(id), self.namespaces ): self.update_link( edge_id=edge.get("id"), attributes=missing_links ) for edge in self.graph_root.iterfind( "./_default_ns_:edge[@target='{}']".format( self.nodes_ids.get(id, "") ), self.namespaces, ): self.update_link( edge_id=edge.get("id"), attributes=missing_links ) # find new edges: existing_edges = [] new_links_list = [] # combine all edges under "links" key data.setdefault("links", []) data["links"] += data.pop("edges") if data.get("edges") else [] for edge in data["links"]: edge.setdefault("attributes", {}) # create edge id edge_tup = tuple( sorted( [ edge["source"], edge["target"], edge.get("label", ""), edge.get("src_label", ""), edge.get("trgt_label", ""), ] ) ) edge_id = hashlib.md5(",".join(edge_tup).encode()).hexdigest() # add new edge if not edge_id in self.edges_ids: edge["attributes"].update(new_links) self.add_link(**edge) new_links_list.append(edge_id) else: existing_edges.append(edge_id) # find missing edges: for id in self.edges_ids.keys(): if not id in existing_edges and not id in new_links_list: self.update_link(edge_id=id, attributes=missing_links) def layout(self, algo="kk", width=1360, height=864, **kwargs): """ Method to calculate graph layout using Python `igraph <https://igraph.org/python/doc/tutorial/tutorial.html#layout-algorithms>`_ library **Parameters** * ``algo`` (str) name of layout algorithm to use, default is 'kk'. Reference `Layout algorithms` table below for valid algo names * ``width`` (int) width in pixels to fit layout in * ``height`` (int) height in pixels to fit layout in * ``kwargs`` any additional kwargs to pass to igraph ``Graph.layout`` method **Layout algorithms** +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | algo name | description | +=================================+================================================================================================================+ | circle, circular | Deterministic layout that places the vertices on a circle | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | drl | The Distributed Recursive Layout algorithm for large graphs | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | fr | Fruchterman-Reingold force-directed algorithm | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | fr3d, fr_3d | Fruchterman-Reingold force-directed algorithm in three dimensions | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | grid_fr | Fruchterman-Reingold force-directed algorithm with grid heuristics for large graphs | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | kk | Kamada-Kawai force-directed algorithm | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | kk3d, kk_3d | Kamada-Kawai force-directed algorithm in three dimensions | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | large, lgl, large_graph | The Large Graph Layout algorithm for large graphs | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | random | Places the vertices completely randomly | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | random_3d | Places the vertices completely randomly in 3D | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | rt, tree | Reingold-Tilford tree layout, useful for (almost) tree-like graphs | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | rt_circular, tree | Reingold-Tilford tree layout with a polar coordinate post-transformation, useful for (almost) tree-like graphs | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ | sphere, spherical, circular_3d | Deterministic layout that places the vertices evenly on the surface of a sphere | +---------------------------------+----------------------------------------------------------------------------------------------------------------+ """ try: from igraph import Graph as ig except ImportError: raise SystemExit( "Failed to import igraph, install - pip install python-igraph" ) igraph_graph = ig() # iterate over diagrams and layout elements nodes_iterator = self.graph_root.iterfind( "./_default_ns_:node", self.namespaces ) links_iterator = self.graph_root.iterfind( "./_default_ns_:edge", self.namespaces ) # populate igraph with nodes for item in nodes_iterator: igraph_graph.add_vertex(name=item.attrib["id"]) # populate igraph with edges for item in links_iterator: igraph_graph.add_edge( source=item.attrib["source"], target=item.attrib["target"] ) # calculate layout layout = igraph_graph.layout(layout=algo, **kwargs) # scale layout to diagram size layout.fit_into(bbox=(width, height)) # add coordinates from layout to diagram nodes for index, coord_item in enumerate(layout.coords): x_coord, y_coord = coord_item node_id = igraph_graph.vs[index].attributes()["name"] node = self.graph_root.find( "./_default_ns_:node[@id='{}']".format(node_id), self.namespaces ) node_geometry_element = node.find(".//*/y:Geometry", self.namespaces) node_geometry_element.set("x", str(round(x_coord))) node_geometry_element.set("y", str(round(y_coord))) def delete_node(self, id=None, ids=[]): """ Method to delete node by its id. Bulk delete operation supported by providing list of node ids to delete. **Parameters** * ``id`` (str) id of single node to delete * ``ids`` (list) list of node ids to delete """ ids = ids + [id] if id else ids for node_id in ids: node_id_to_pop = str(node_id) # try to find using provided id node = self.graph_root.find( "./_default_ns_:node[@id='{}']".format(node_id), self.namespaces ) if node is None: # try to find using yed generated id node_id = self.nodes_ids.get(node_id, "") node = self.graph_root.find( "./_default_ns_:node[@id='{}']".format(node_id), self.namespaces ) if not node is None: self.graph_root.remove(node) self.nodes_ids.pop(node_id_to_pop) # delete edges for edge in self.graph_root.iterfind( "./_default_ns_:edge[@source='{}']".format(node_id), self.namespaces ): edge_id_to_pop = edge.get("id", "") if not edge_id_to_pop in self.edges_ids: edge_id_to_pop = None # need to iterate over edges_ids values to find respective key to pop for k, v in self.edges_ids.items(): if v == edge.get("id"): edge_id_to_pop = k break if edge_id_to_pop: self.edges_ids.pop(edge_id_to_pop) self.graph_root.remove(edge) for edge in self.graph_root.iterfind( "./_default_ns_:edge[@target='{}']".format(node_id), self.namespaces ): edge_id_to_pop = edge.get("id", "") if not edge_id_to_pop in self.edges_ids: edge_id_to_pop = None # need to iterate over edges_ids values to find respective key to pop for k, v in self.edges_ids.items(): if v == edge.get("id"): edge_id_to_pop = k break if edge_id_to_pop: self.edges_ids.pop(edge_id_to_pop) self.graph_root.remove(edge) def delete_link( self, id=None, ids=[], label="", src_label="", trgt_label="", source="", target="", ): """ Method to delete link by its id. Bulk delete operation supported by providing list of link ids to delete. If link ``id`` or ``ids`` not provided, id calculated based on - ``label, src_label, trgt_label, source, target`` - attributes using this algorithm: 1. Edge tuple produced: ``tuple(sorted([label, src_label, trgt_label, source, target]))`` 2. MD5 hash derived from tuple: ``hashlib.md5(",".join(edge_tup).encode()).hexdigest()`` **Parameters** * ``id`` (str) id of single link to delete * ``ids`` (list) list of link ids to delete * ``label`` (str) link label to calculate id of single link to delete * ``src_label`` (str) link source label to calculate id of single link to delete * ``trgt_label`` (str) link target label to calculate id of single link to delete * ``source`` (str) link source to calculate id of single link to delete * ``target`` (str) link target to calculate id of single link to delete """ if not id and not ids: # create edge id edge_tup = tuple(sorted([source, target, label, src_label, trgt_label,])) ids.append(hashlib.md5(",".join(edge_tup).encode()).hexdigest()) else: ids = ids + [id] if id else ids for edge_id in ids: edge_id_to_pop = str(edge_id) edge = self.graph_root.find( "./_default_ns_:edge[@id='{}']".format(edge_id), self.namespaces ) if edge is None: # try to find using yed generated id edge_id = self.edges_ids.get(edge_id, "") edge = self.graph_root.find( "./_default_ns_:edge[@id='{}']".format(edge_id), self.namespaces ) if not edge is None: self.graph_root.remove(edge) # pop edge id from edges_ids dict if not edge_id_to_pop in self.edges_ids: edge_id_to_pop = None # need to iterate over edges_ids values to find respective key to pop for k, v in self.edges_ids.items(): if v == edge_id: edge_id_to_pop = k break if edge_id_to_pop: self.edges_ids.pop(edge_id_to_pop) def _find_node( self, id=None, label=None, top_label=None, bottom_label=None, description=None, url=None, match_method="exact", ): """ NOT IMPLEMENTED Method to take node attributes and return list of matched node IDs """ pass def _find_link( self, edge_id=None, label=None, src_label=None, trgt_label=None, source=None, target=None, description=None, match_method="exact", ): """ NOT IMPLEMENTED Method to take node attributes and return list of matched node IDs """ pass ```
{ "source": "jinjamator/pyperf2", "score": 2 }
#### File: pyperf2/pyperf2/__init__.py ```python import queue import subprocess import threading import signal import time import json import re import os import pyjq import copy from decimal import Decimal from pprint import pprint, pformat import logging import datetime def output_reader(proc, outq, parent): for line in iter(proc.stdout.readline, b""): outq.put(line.decode("utf-8")) # print("{0} {1}".format(parent.name,line.decode('utf-8'))) parent.line_ready_callback() class IPerfInstance(object): def __init__(self): self.type = None self.report_interval = "1" self.protocol = "tcp" self.iperf_binary_path = "/usr/bin/iperf" self._outq = queue.Queue() self._proc = None self.server_ip = None self.bind_ip = None self.name = None self._running = False self.realtime = True self.bandwidth = "1000pps" self.port = "5001" self.status = "configured" self._result_regex = None self._info_regex = None self._results = {} self.test_duration = "86400" self.client_source_port = None self.use_linux_namespace = None self._on_data_callbacks = [] self._on_packetloss_callbacks = [] self.currently_has_loss = {} self._output_reader_thread = None self._cleanup_timer_thread = None self._raw_log_filepath = None self._raw_log_filehandler = None self._creation_time = datetime.datetime.now().replace(microsecond=0).isoformat() if "pps" in self.bandwidth: self.expected_interval_packets = int( Decimal(self.report_interval) * Decimal(self.bandwidth[:-3]) ) else: self.expected_interval_packets = None self._log = logging.getLogger("") self._current_event_number = 0 def __del__(self): try: self._raw_log_filehandler.close() except: pass def set_raw_log_path(self, path): self._raw_log_filepath = "{0}{1}{3}_{2}_instance_raw.log".format( path, os.path.sep, self.name, self._creation_time ) self._raw_log_filehandler = open(self._raw_log_filepath, "w") def line_ready_callback(self): info_data = None report_data = None line = self._outq.get(block=True) stream_id = None interval_begin = None interval_end = None last_interval_begin = None is_receiver = False is_sender = False packets_lost = None packets_received = None packet_loss_event_message = False report_message = False timestamp = datetime.datetime.now().isoformat() if self._raw_log_filehandler: self._raw_log_filehandler.write(line) self._raw_log_filehandler.flush() result = self._info_regex.match(line) # check if it's an info header if result: info_data = result.groupdict() stream_id = info_data["stream_id"] if ( stream_id not in self._results ): # new stream id detected -> create new result structure self._results[stream_id] = { "summary": {}, "detail": [], "info": result.groupdict(), "events": [], "timestamp": timestamp, } self.currently_has_loss[stream_id] = False result = self._result_regex.match(line) # check if it's a report line if result: report_data = result.groupdict() stream_id = report_data["stream_id"] interval_begin = Decimal(report_data["interval_begin"]) interval_end = Decimal(report_data["interval_end"]) if "packets_lost" in report_data: is_receiver = True packets_lost = int(report_data["packets_lost"]) packets_received = int(report_data["packets_received"]) else: is_sender = True try: # check if we have a predecessor result last_interval_begin = Decimal( self._results[stream_id]["detail"][-1]["interval_begin"] ) except IndexError: last_interval_begin = -1 if ( last_interval_begin > interval_begin ): # if it's a summary store it and return self._results[stream_id]["summary"] = result.groupdict() self._log.debug("got summary result") return True # suppress any message for summary if is_receiver: report_message = copy.copy(report_data) report_message["stream_name"] = self.name if packets_received < self.expected_interval_packets: probably_packets_lost = ( self.expected_interval_packets - packets_received ) # print('probably lost {0}'.format(probably_packets_lost)) if ( probably_packets_lost > 4 ): # ignore minimal loss because it could also be a timing issue report_message["packets_lost"] = probably_packets_lost report_message[ "packets_received" ] = self.expected_interval_packets packets_lost = probably_packets_lost packets_received = self.expected_interval_packets # print('{0} {1}'.format(packets_lost, packets_received)) if ( packets_lost > self.expected_interval_packets + 4 ): # handle summary packet loss message # pprint( self._results[stream_id]['events']) try: packets_lost = ( packets_lost - self._results[stream_id]["events"][-1][ "total_packets_lost_since_event_start" ] ) packets_received = self.expected_interval_packets - packets_lost report_message["packets_lost"] = packets_lost report_message["packets_received"] = packets_received # print('{0} {1}'.format(packets_lost,packets_received)) except IndexError: # loss without event registred, can only be at interval_begin 0.0 -> ignore # print('----------------------index error------------------------') if interval_begin == 0: report_message["packets_lost"] = 0 report_message[ "packets_received" ] = self.expected_interval_packets else: self._log.debug(pformat(self._results)) self._log.debug(pformat(report_message)) self._log.debug(line) raise Exception("Something went wrong") packet_loss_event_message = { "event_number": self._current_event_number, "stream_id": str(stream_id), "stream_name": self.name, "status": "", "total_packets_lost_since_event_start": 0, "packets_lost": packets_lost, "packets_received": packets_received, "event_begin": interval_begin, "event_end": None, "timestamp_start": timestamp, "timestamp_current": timestamp, "timestamp_end": None, } if packets_received == 0: # handle 100% packet loss situation report_message["packets_lost"] = self.expected_interval_packets packets_lost = self.expected_interval_packets if self.currently_has_loss[stream_id]: self._log.debug( "losing all packets, receiving nothing, should receive {} (cont.)".format( self.bandwidth ) ) self._results[stream_id]["events"][-1][ "total_packets_lost_since_event_start" ] += packets_lost self._results[stream_id]["events"][-1][ "timestamp_current" ] = timestamp self._results[stream_id]["events"][-1][ "packets_lost" ] = packets_lost self._results[stream_id]["events"][-1][ "status" ] = "losing all packets (cont.)" self._results[stream_id]["events"][-1][ "packets_received" ] = packets_received packet_loss_event_message = copy.copy( self._results[stream_id]["events"][-1] ) else: self._log.debug( "losing all packets, receiving nothing, should receive {}".format( self.bandwidth ) ) self._current_event_number += 1 packet_loss_event_message[ "event_number" ] = self._current_event_number packet_loss_event_message[ "packets_lost" ] = ( self.expected_interval_packets ) # set lost packets to pps because iperf reports 0 lost which breaks graph packet_loss_event_message[ "total_packets_lost_since_event_start" ] = packets_lost packet_loss_event_message["status"] = "losing all packets" packet_loss_event_message["packets_received"] = packets_received self._results[stream_id]["events"].append( packet_loss_event_message ) self.currently_has_loss[stream_id] = True elif packets_lost > 0: # handle packet loss situation if self.currently_has_loss[ stream_id ]: # handle ongoing packet loss situation self._log.debug("ongoing packet loss detected") self._results[stream_id]["events"][-1][ "total_packets_lost_since_event_start" ] += packets_lost self._results[stream_id]["events"][-1][ "timestamp_current" ] = timestamp self._results[stream_id]["events"][-1][ "status" ] = "losing packets (cont.)" self._results[stream_id]["events"][-1][ "packets_lost" ] = packets_lost self._results[stream_id]["events"][-1][ "packets_received" ] = packets_received packet_loss_event_message = copy.copy( self._results[stream_id]["events"][-1] ) else: # handle new packet loss situation self._log.debug("begin of packet loss detected") self.currently_has_loss[stream_id] = True self._current_event_number += 1 packet_loss_event_message[ "event_number" ] = self._current_event_number packet_loss_event_message["status"] = "losing packets" packet_loss_event_message[ "total_packets_lost_since_event_start" ] = packets_lost self._results[stream_id]["events"].append( packet_loss_event_message ) elif self.currently_has_loss[stream_id]: # handle end of loss situation self._log.debug("end of packet loss detected") self.currently_has_loss[stream_id] = False self._results[stream_id]["events"][-1][ "timestamp_current" ] = timestamp self._results[stream_id]["events"][-1]["timestamp_end"] = timestamp self._results[stream_id]["events"][-1][ "interval_end" ] = interval_end self._results[stream_id]["events"][-1]["status"] = "stable" self._results[stream_id]["events"][-1][ "packets_lost" ] = packets_lost self._results[stream_id]["events"][-1][ "packets_received" ] = packets_received packet_loss_event_message = copy.copy( self._results[stream_id]["events"][-1] ) else: # do not send loss event in case of no loss packet_loss_event_message = False else: self._log.debug("cannot parse report line: {0}".format(line)) if packet_loss_event_message: # print(packet_loss_event_message) # self._results[stream_id]['events'].append(packet_loss_event_message) for callback, args in self._on_packetloss_callbacks: callback(packet_loss_event_message, **args) if report_message: self._results[stream_id]["detail"].append(report_message) for callback, args in self._on_data_callbacks: callback(report_message, **args) def get_result_events(self): results_with_packet_loss = pyjq.all('.[] | select(.packets_lost!="0")', data) events = [] event_data = [] event_begin = None event_loss = 0 for idx, result in enumerate(results_with_packet_loss): event_data.append(result) event_loss += int(result["packets_lost"]) if not event_begin: event_begin = Decimal(result["interval_begin"]) try: if ( result["interval_end"] != results_with_packet_loss[idx + 1]["interval_begin"] ): events.append( { "detail": event_data, "summary": { "total_loss": event_loss, "begin": str(event_begin), "end": str(Decimal(result["interval_end"])), "duration": str( Decimal(result["interval_end"]) - event_begin ), "packet_rate": "{0[packet_rate]} {0[packet_rate_unit]}".format( result ), }, } ) event_data = [] event_loss = 0 event_begin = None except IndexError: events.append( { "detail": event_data, "summary": { "total_loss": event_loss, "begin": str(event_begin), "end": str(Decimal(result["interval_end"])), "duration": str( Decimal(result["interval_end"]) - event_begin ), "packet_rate": "{0[packet_rate]} {0[packet_rate_unit]}".format( result ), }, } ) return events def register_on_data_callback(self, cb, **kwargs): self._on_data_callbacks.append((cb, kwargs)) def register_on_packtetloss_callback(self, cb, **kwargs): self._on_packetloss_callbacks.append((cb, kwargs)) @property def get_name(self): if not self.name: raise ValueError("iperf instance needs a name") return self.name def output_reader(self): for line in iter(self._proc.stdout.readline, b""): self._outq.put(line.decode("utf-8")) def set_options(self, **kwargs): for option_name, option_value in kwargs.items(): self.__setattr__(option_name, str(option_value)) if "pps" in self.bandwidth: self.expected_interval_packets = int( Decimal(self.report_interval) * Decimal(self.bandwidth[:-3]) ) else: self.expected_interval_packets = None def get_options(self): retval = {} for k, v in self.__dict__.items(): if not k.startswith("_"): retval[k] = v return retval def generate_cli_from_options(self): _cli = [] if self.use_linux_namespace: _cli.extend("ip netns exec {0}".format(self.use_linux_namespace).split(" ")) _cli.append(self.iperf_binary_path) _cli.append("-e") _cli.append("-t") _cli.append(self.test_duration) if self.type == "server": _cli.append("-s") if self.bind_ip: _cli.append("-B") _cli.append(self.bind_ip) if self.protocol == "udp": # multicast server result # [ 4] 2.6000-2.7000 sec 0.00 Bytes 0.00 bits/sec 0.000 ms 0/ 0 (0%) -/-/-/- ms 0 pps # [ 3] 8.7000-8.8000 sec 144 KBytes 11.8 Mbits/sec 0.002 ms 0/ 100 (0%) 0.015/ 0.008/ 0.037/ 0.006 ms 1000 pps 100753.94 self._result_regex = re.compile( r"^\[\s*(?P<stream_id>\d+)\]\s+(?P<interval_begin>\d+\.\d+)-(?P<interval_end>\d+\.\d+)\s+(?P<interval_unit>\S+)\s+(?P<received>\S+)\s+(?P<received_unit>\S+)\s+(?P<bandwidth>\S+)\s+(?P<bandwidth_unit>\S+)\s+(?P<jitter>\S+)\s+(?P<jitter_unit>\S+)\s+(?P<packets_lost>\S+)/\s*(?P<packets_received>\S+)\s+\(.*\)\s+(?P<latency_avg>\S+)\s*/\s*(?P<latency_min>\S+)\s*/\s*(?P<latency_max>\S+)\s*/\s*(?P<latency_stdev>\S+)\s+(?P<latency_unit>\S+)\s+(?P<packet_rate>\d+)\s+(?P<packet_rate_unit>\S+)\s*(?P<net_pwr>\S+)?" ) elif self.type == "client": _cli.append("-c") if not self.server_ip: raise ValueError("Client needs server_ip to be set") _cli.append(self.server_ip) if self.bind_ip and self.client_source_port: _cli.append("-B") _cli.append("{0}:{1}".format(self.bind_ip, self.client_source_port)) if self.protocol == "udp": # [ 3] local 192.168.51.154 port 54877 connected with 172.16.58.3 port 5001 self._result_regex = re.compile( r"^\[\s*(?P<stream_id>\d+)\]\s+(?P<interval_begin>\d+\.\d+)-(?P<interval_end>\d+\.\d+)\s+(?P<interval_unit>\S+)\s+(?P<transferred>\S+)\s+(?P<transferred_unit>\S+)\s+(?P<bandwidth>\S+)\s+(?P<bandwidth_unit>\S+)\s+(?P<packets_written>\S+)/(?P<packets_error>\S+)\s+(?P<packet_rate>\d+)\s+(?P<packet_rate_unit>\S+)" ) else: raise ValueError("type must be set to either server or client") if self.protocol == "udp": _cli.append("-u") self._info_regex = re.compile( r"^\[\s*(?P<stream_id>\d+)\]\s+local\s+(?P<local_ip>\S+)\s+port\s+(?P<local_port>\S+)\s+connected\s+with\s+(?P<remote_ip>\S+)\s+port\s+(?P<remote_port>\S+)" ) # if self.realtime: _cli.append("-z") _cli.append("-i") _cli.append(self.report_interval) _cli.append("-b") _cli.append(self.bandwidth) _cli.append("-p") _cli.append(self.port) return _cli def start(self, create_thread_function=threading.Thread): self._results = {} if self._cleanup_timer_thread: self._cleanup_timer_thread.join() del self._cleanup_timer_thread self._cleanup_timer_thread = None # print(' '.join(self.generate_cli_from_options())) self._proc = subprocess.Popen( self.generate_cli_from_options(), stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) if not self._output_reader_thread: self._output_reader_thread = create_thread_function( target=output_reader, args=(self._proc, self._outq, self) ) self._output_reader_thread.start() self._running = True self.status = "running" time.sleep(0.2) self._cleanup_timer_thread = threading.Timer( int(self.test_duration) + 10, self.stop ) self._cleanup_timer_thread.start() if self._proc.poll() is not None: self.stop() return False return True def stop(self): if self._running: self._proc.terminate() self._proc.wait() del self._proc self._proc = None self._output_reader_thread.join() del self._output_reader_thread self._output_reader_thread = None self._running = False self.status = "stopped" if self._raw_log_filehandler: self._raw_log_filehandler.close() return True def get_results(self): return self._results class Server(IPerfInstance): def __init__(self): super(Server, self).__init__() self.type = "server" class Client(IPerfInstance): def __init__(self, server_ip=None): super(Client, self).__init__() self.type = "client" ```
{ "source": "jinjamator/simplenetlink", "score": 3 }
#### File: simplenetlink/simplenetlink/__init__.py ```python from pyroute2 import IPRoute, netns, NetNS, netlink import socket import logging import time class SimpleNetlink(object): def __init__(self, namespace=None): self.ipr = IPRoute() self._log = logging.getLogger("SimpleNetlink") self._current_namespace = namespace self._previous_namespace_instance = None self._previous_namespace = None # self._log.level = logging.DEBUG self._supported_virtual_interface_types = ["ipvlan", "tagged"] def get_interface_index(self, ifname): res = self.ipr.link_lookup(ifname=ifname) if len(res) == 1: return res[0] else: if len(res) == 0: raise ValueError( f"no result found for {ifname} in namespace {self.get_current_namespace_name()}" ) else: self._log.error( f"multiple results found for {ifname}: {res} -> returning first" ) return res[0] def create_namespace(self, namespace): ns = netns.create(namespace) self.set_current_namespace(namespace) idx = self.get_interface_index("lo") self.ipr.link("set", index=idx, state="up") self.restore_previous_namespace() def set_current_namespace(self, namespace): if not namespace: if self._current_namespace: self._log.info(f"close {self._current_namespace}") self.ipr.close() self._previous_namespace = self._current_namespace self.ipr = IPRoute() self._current_namespace = namespace elif namespace not in self.get_namespaces(): self._log.debug( f"{namespace} does not exist, implicitly creating namespace {namespace}" ) self.create_namespace(namespace) if namespace: self._previous_namespace = self._current_namespace if self.ipr: self.ipr.close() self.ipr = NetNS(namespace) self._current_namespace = namespace self._log.debug( f"switched namespace from {self._previous_namespace} to {self._current_namespace}" ) return True def restore_previous_namespace(self): tmp_i = self.ipr tmp = self._current_namespace self.ipr = self._previous_namespace_instance self._current_namespace = self._previous_namespace self._previous_namespace_instance = tmp_i self._previous_namespace = tmp self._log.debug(f"restored previous namespace {self._current_namespace}") return True def delete_namespace(self, namespace): if namespace in self.get_namespaces(): ns = NetNS(namespace) ns.close() ns.remove() self._log.debug(f"removed namespace {namespace}") if namespace == self._current_namespace: self.set_current_namespace(None) time.sleep( 0.1 ) # give kernel some time, this workarounds various 'already existing' problams else: self._log.debug( f"cannot remove non existing namespace {namespace} -> ignoring request" ) def get_current_namespace_name(self): return self._current_namespace def get_namespaces(self): return list(netns.listnetns()) def find_interface_in_all_namespaces(self, interface_name): idx = None namespace = self.get_current_namespace_name() try: self.set_current_namespace(None) idx = self.get_interface_index(interface_name) namespace = self.get_current_namespace_name() self.restore_previous_namespace() except ValueError: for namespace in self.get_namespaces(): self._log.debug(f"switching namespace to {namespace}") self.set_current_namespace(namespace) try: idx = self.get_interface_index(interface_name) break except: pass self.restore_previous_namespace() if idx: self._log.debug( f"found interface {interface_name} in namespace {namespace} with index {idx}" ) else: self._log.debug(f"cannot find interface {interface_name} in any namespace") return (namespace, idx) def __create_tagged(self, interface_name, **kwargs): if kwargs.get("parent_interface"): (base_namespace, base_idx) = self.find_interface_in_all_namespaces( kwargs.get("parent_interface") ) self._log.debug( f"found parent_interface {kwargs.get('parent_interface')} in namespace {base_namespace}" ) if not kwargs.get("vlan_id"): raise ValueError( "vlan_id not specified -> cannot create tagged vlan interface without" ) else: self._log.debug( f"creating tagged interface {interface_name} with tag on base_interface" ) self.set_current_namespace(base_namespace) self.ipr.link( "add", ifname=interface_name, kind="vlan", link=base_idx, vlan_id=int(kwargs.get("vlan_id")), ) idx = self.get_interface_index(interface_name) namespace = kwargs.get("namespace") if namespace: if kwargs.get("namespace") not in self.get_namespaces(): self.create_namespace(namespace) self.ipr.link("set", index=idx, net_ns_fd=namespace) self.set_current_namespace(namespace) idx = self.get_interface_index(interface_name) else: self.ipr.link("set", index=idx, net_ns_pid=1) return (namespace, idx) else: raise ValueError( f"parent_interface not specified for vlan interface {interface_name}" ) def __create_ipvlan(self, interface_name, **kwargs): ipvlan_modes = { "l2": 0, "l3": 1, "l3s": 2, } if kwargs.get("parent_interface"): (base_namespace, base_idx) = self.find_interface_in_all_namespaces( kwargs.get("parent_interface") ) self._log.debug(f"found parent_interface in namespace {base_namespace}") self.set_current_namespace(base_namespace) self.ipr.link( "add", ifname=interface_name, kind="ipvlan", link=base_idx, ipvlan_mode=ipvlan_modes[ "l2" ], # l2 mode so arp can be handled from namespace ) idx = self.get_interface_index(interface_name) namespace = kwargs.get("namespace") if namespace: self.set_current_namespace(namespace) self.set_current_namespace(base_namespace) self.ipr.link("set", index=idx, net_ns_fd=kwargs.get("namespace")) self.set_current_namespace(namespace) else: self.ipr.link("set", index=idx, net_ns_pid=1) self.set_current_namespace(None) idx = self.get_interface_index(interface_name) return (namespace, idx) else: raise ValueError( f"parent_interface not specified for ipvlan interface {interface_name}" ) def create_interface(self, interface_name, **kwargs): f = getattr(self, f"_SimpleNetlink__create_{kwargs.get('type')}") if f: (namespace, idx) = f(interface_name, **kwargs) if kwargs.get("link_state", "").lower() == "down": self.ipr.link("set", index=idx, state="down") else: self._log.debug( f"enabling interface {interface_name} in namespace {namespace}" ) self.ipr.link("set", index=idx, state="up") return (namespace, idx) else: raise ValueError(f"type {kwargs.get('type')} not implemented") def ensure_interface_exists(self, interface, **kwargs): namespace, idx = self.find_interface_in_all_namespaces(interface) if idx: if kwargs.get("namespace") != namespace: self._log.debug( f'interface is in namespace {namespace} -> moving to {kwargs.get("namespace")}' ) if kwargs.get("namespace"): self.set_current_namespace(kwargs.get("namespace")) self.set_current_namespace(namespace) self.ipr.link("set", index=idx, net_ns_fd=kwargs.get("namespace")) self.set_current_namespace(kwargs.get("namespace")) self.interface_up(interface) else: self.set_current_namespace(namespace) self.ipr.link("set", index=idx, net_ns_pid=1) self.set_current_namespace(None) self.interface_up(interface) else: if kwargs.get("type") in self._supported_virtual_interface_types: self._log.debug( f'interface type of {interface} is virtual interface of type {kwargs.get("type")} which does not exist -> creating' ) namespace, idx = self.create_interface(interface, **kwargs) else: raise ValueError( f"either physical interface just doesn't exist (typo?) or virtual type {kwargs.get('type')} is not supported" ) for ipv4_config_item in kwargs.get("ipv4", []): self.interface_add_ipv4(interface, ipv4_config_item) return (namespace, idx) def interface_add_ipv4(self, interface_name, prefix): idx = self.get_interface_index(interface_name) if not idx: raise ValueError( f"interface {interface_name} not found in namespace {self._current_namespace}" ) address, prefix_len = prefix.strip().split("/") prefix_len = int(prefix_len) try: self.ipr.addr("add", index=idx, address=address, prefixlen=prefix_len) except netlink.exceptions.NetlinkError as e: if e.code == 98 or e.code == 17: self._log.debug( f"prefix {prefix} already in use in namespace {self._current_namespace} -> ignoring request" ) self._log.debug(e) return True else: raise (e) self._log.debug( f"setting ipv4_address {prefix} on {interface_name} in namespace {self._current_namespace}" ) return True def interface_delete_ipv4(self, interface_name, prefix): idx = self.get_interface_index(interface_name) if not idx: raise ValueError( f"interface {interface_name} not found in namespace {self._current_namespace}" ) address, prefix_len = prefix.strip().split("/") prefix_len = int(prefix_len) try: self.ipr.addr("del", index=idx, address=address, prefixlen=prefix_len) except netlink.exceptions.NetlinkError as e: if e.code == 98 or e.code == 17: self._log.debug( f"prefix {prefix} already in use in namespace {self._current_namespace} -> ignoring request" ) self._log.debug(e) return True else: raise (e) self._log.debug( f"setting ipv4_address {prefix} on {interface_name} in namespace {self._current_namespace}" ) return True def interface_up(interface_name): idx = self.get_interface_index(interface_name) if not idx: raise ValueError( f"interface {interface_name} not found in namespace {self._current_namespace}" ) self.ipr.link("set", index=idx, state="up") def interface_down(interface_name): idx = self.get_interface_index(interface_name) if not idx: raise ValueError( f"interface {interface_name} not found in namespace {self._current_namespace}" ) self.ipr.link("set", index=idx, state="down") def get_routes(self): retval = { 'static':{}, 'dynamic':{}, 'local':{} } for route in self.ipr.route("show", type=1): if route.get_attr('RTA_GATEWAY'): dest = route.get_attr('RTA_DST') if dest: dest=f"{dest}/{route.get('dst_len')}" else: dest='default' if dest not in retval['static']: retval['static'][dest]=[] retval['static'][dest].append(route.get_attr('RTA_GATEWAY')) elif route.get_attr('RTA_PREFSRC'): dest = f"{route.get_attr('RTA_DST')}/{route.get('dst_len')}" if dest not in retval['local']: retval['local'][dest]=[] retval['local'][dest].append(f"{route.get_attr('RTA_PREFSRC')}") else: raise ValueError(f'Never come here, if so something is really wrong. {route}') return retval def add_route(self, prefix, nexthop): try: self.ipr.route("add", gateway=nexthop, dst=prefix) self._log.debug( f"added route {prefix} via {nexthop} in namespace {self._current_namespace}" ) except netlink.exceptions.NetlinkError as e: if e.code == 17: self._log.debug( f"route {prefix} via {nexthop} in namespace {self._current_namespace} exists -> ignoring" ) pass else: raise (e) def delete_route(self, prefix, nexthop): try: self.ipr.route("del", gateway=nexthop, dst=prefix) except netlink.exceptions.NetlinkError as e: if e.code == 3: self._log.debug( f"route {prefix} via {nexthop} in namespace {self._current_namespace} does not exist -> ignoring request to delete" ) else: raise (e) def get_network_interfaces_info(self): results = {} for link in self.ipr.get_links(): ipv4 = [] ipv6 = [] for addr in self.ipr.get_addr( family=socket.AF_INET, label=link.get_attr("IFLA_IFNAME") ): ipv4.append( { "prefix_length": addr["prefixlen"], "address": addr.get_attr("IFA_ADDRESS"), } ) for addr in self.ipr.get_addr( family=socket.AF_INET6, label=link.get_attr("IFLA_IFNAME") ): ipv6.append( { "prefix_length": addr["prefixlen"], "address": addr.get_attr("IFA_ADDRESS"), } ) results[link.get_attr("IFLA_IFNAME")] = { "link_state": link["state"].lower(), "oper_state": link.get_attr("IFLA_OPERSTATE").lower(), "mac_address": link.get_attr("IFLA_ADDRESS", "None").lower(), "mtu": link.get_attr("IFLA_MTU"), "ipv4": ipv4, "ipv6": ipv6, } return results ```
{ "source": "jinjd/k8sdemo-master", "score": 3 }
#### File: single-mid/influxdb/influxdb_test.py ```python from influxdb import InfluxDBClient from datetime import datetime import time client = InfluxDBClient(host='influxdb.default', port=8086, database='pods') def write_to_influx(data): now = datetime.utcnow().isoformat() + 'Z' json_body = [ { "measurement": "pod_shutdown_data", "tags": { }, "time": str(now), "fields": data } ] try: client.create_database('pods') client.write_points(json_body) #sanitycheck result = client.query('select * from pod_shutdown_data;') print('result',str(result)) except Exception as e: print('error',str(e)) i = 1 while True: i += 1 data = { 'somekey':i } write_to_influx(data) time.sleep(5) ```
{ "source": "jinjf553/hook_up_rent", "score": 2 }
#### File: hook_up_rent/backend/main.py ```python import time from datetime import timedelta from random import choice from typing import List, Optional from fastapi import Depends, FastAPI, File, UploadFile from fastapi.staticfiles import StaticFiles from passlib.context import CryptContext from pydantic import BaseModel from sqlalchemy.orm import Session from config import ACCESS_TOKEN_EXPIRE_MINUTES, HEADERS, STATIC_DIR from orm import DBSession, DBUser from utils import create_access_token, get_current_user app = FastAPI() ''' 运行命令: uvicorn main:app --reload --host 0.0.0.0 --port 8000''' app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static") class User(BaseModel): # id: int username: str password: <PASSWORD> status: Optional[int] = 0 description: Optional[str] = '' body: Optional[dict] = {'token': ''} class Config: orm_mode = True class Houses(BaseModel): title: str description: str price: str size: str oriented: str roomType: str floor: str community: str houseImg: str supporting: str class Config: orm_mode = True @app.get("/") def read_root(): return {"Hello": "World"} @app.post("/user/registered", response_model=User) async def user_register(user: User, db: Session = Depends(DBSession)): # 密码加密 password = CryptContext(schemes=["bcrypt"], deprecated="auto").hash(user.password) db_user = DBUser(username=user.username, password=password) DBUser.add(db, db_user) db_user.status, db_user.description = 200, '注册陈功!' return db_user @app.post("/user/login", response_model=User) async def register(user: User, db: Session = Depends(DBSession)): db_user = DBUser.get_by_username(db, user.username) # 密码加密 verify = CryptContext(schemes=["bcrypt"], deprecated="auto") access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) access_token = create_access_token( data={"sub": user.username}, expires_delta=access_token_expires ) if not db_user: db_user = User(username='', password='') db_user.status = 300 db_user.description = '用户不存在!' return db_user elif not verify.verify(user.password, db_user.password): db_user.status = 300 db_user.description = '你的账号或密码错误!' return db_user else: db_user.status, db_user.description = 200, '账号登录成功!' db_user.body['token'] = access_token print(db_user.status) return db_user @app.get("/user", response_model=User) async def read_users_me(username: User = Depends(get_current_user), db: Session = Depends(DBSession)): print('login_username: ', username, time.strftime('%M%S')) db_user: User = DBUser.get_by_username(db, username) if not db_user or not username: db_user = User(username='', password='', status=400, description='登录信息失效,请重新登录!') return db_user db_user.description, db_user.status = '成功', 200 if 'token' in db_user.body: db_user.body.pop('token') db_user.body.update({'avatar': choice(HEADERS), 'nickname': f'好客_{str(db_user.id).rjust(6, "0")}', 'gender': choice(['男', '女']), 'phone': '小米', 'id': db_user.id}) return db_user @app.get("/houses/condition") async def get_houses_condition(id: str, db: Session = Depends(DBSession)): response_json = {'status': 200, 'description': '请求成功', 'body': { 'area': {'label': '区域', 'value': 'area', 'children': [{'label': '不限', 'value': 'null'}, {'label': '朝阳', 'value': 'AREA|zhaoyang'}]}, 'characteristic': [{'label': '集中供暖', 'value': 'CHAR|jizhonggongnuan'}], 'floor': [{'label': '高楼层', 'value': 'FLOOR|1'}], 'rentType': [{'label': '不限', 'value': 'null'}], 'oriented': [{'label': '东', 'value': 'ORIEN|1'}], 'price': [{'label': '不限', 'value': 'null'}], 'roomType': [{'label': '一室', 'value': 'ROOM|1'}], 'subway': {'label': '地铁', 'value': 'subway', 'children': [{'label': '不限', 'value': 'null'}]} }} if id == 'AREA|1111': return response_json else: response_json['body']['area']['children'] = [{'label': '不限', 'value': 'null'}, {'label': '宝山', 'value': 'AREA|baoshan'}] return response_json @app.get("/houses") async def get_houses(cityId, area, mode, price, more, start, end, db: Session = Depends(DBSession)): response_json = {'status': 200, 'description': '请求成功', 'body': { 'list': [{'houseCode': '11', 'title': '线上', 'desc': 'subtitle', 'houseImg': 'static/images/轮播1.jpg', 'tags': ['近地铁'], 'price': 2000}] }} if area == 'AREA|zhaoyang': return response_json else: response_json['body']['list'][0]['title'] = '线下' return response_json @app.get("/houses/params") async def get_houses_params(): response_json = {'status': 200, 'description': '请求成功', 'body': { 'floor': [{'value': '1', 'label': '高楼层'}, {'value': '2', 'label': '中楼层'}, {'value': '3', 'label': '低楼层'}], 'roomType': [{'value': '1', 'label': '一室'}, {'value': '2', 'label': '二室'}, {'value': '3', 'label': '三室'}, {'value': '4', 'label': '四室'}], 'oriented': [{'value': '1', 'label': '东'}, {'value': '2', 'label': '南'}, {'value': '3', 'label': '西'}, {'value': '4', 'label': '北'}]}} return response_json @app.post("/house/image") async def post_houses_image(file: List[UploadFile] = File(...), username: User = Depends(get_current_user)): response_json = {'status': 200, 'description': '请求成功', 'body': []} for x in file: with open(f'{STATIC_DIR}/{x.filename}', 'wb') as f: f.write(await x.read()) response_json['body'].append(x.filename) return response_json @app.get("/houses/{roomId}") async def get_houses_room(roomId: int, db: Session = Depends(DBSession)): response_json = {'status': 200, 'description': '请求成功', 'body': {'houseCode': '1111', 'title': '整租 中山路 历史最低点', 'community': '中山花园', 'description': '近地铁,附近有商场!254对数据集跑一下第二版仿真工程。 -- 3月7号demo版本2. 五个城市五个机型对应的TOP5数据标注2.0 (北京只有一条) deviceId的数量大于203. 不care城市五个机型对应的TOP数据标注2.0( 2和3的deviceId不能重复 ) # 先不做254对数据集跑一下第二版仿真工程。 -- 3月7号demo版本2. 五个城市五个机型对应的TOP5数据标注2.0 (北京只有一条) deviceId的数量大于203. 不care城市五个机型对应的TOP数据标注2.0( 2和3的deviceId不能重复 ) # 先不做254对数据集跑一下第二版仿真工程。 -- 3月7号demo版本2. 五个城市五个机型对应的TOP5数据标注2.0 (北京只有一条) deviceId的数量大于203. 不care城市五个机型对应的TOP数据标注2.0( 2和3的deviceId不能重复 ) # 先不做', 'size': 100, 'floor': '高楼层', 'price': 3000, 'oriented': ['南'], 'roomType': '三室', 'supporting': ['衣柜', '洗衣机'], 'tags': ['近地铁', '集中供暖', '新上', '随时看房'], 'houseImg': [ 'static/images/轮播1.jpg', 'static/images/轮播2.jpg', 'static/images/轮播3.jpg' ]}} return response_json @app.get("/user/houses") async def get_user_houses(username: User = Depends(get_current_user), db: Session = Depends(DBSession)): print('username: ', username, time.strftime('%M%S'), type(username)) response_json = {'status': 200, 'description': '请求成功', 'body': [ {'houseCode': '1111', 'title': '整租 中山路 历史最低点', 'desc': '近地铁,附近有商场!254对数据集跑一下第二版仿真工程。', 'price': 3000, 'tags': ['近地铁', '集中供暖', '新上', '随时看房'], 'houseImg': 'static/images/轮播1.jpg'} ]} if not username: response_json = {'status': 400, 'description': 'token已过期', 'body': []} print(username) return response_json @app.post("/user/houses") async def post_user_houses(house: Houses, username: User = Depends(get_current_user), db: Session = Depends(DBSession)): response_json = {'status': 200, 'description': '请求成功'} if not username: response_json = {'status': 400, 'description': 'token已过期'} # print(house) return response_json @app.get("/area/community") async def get_area_community(name: str, id: str): response_json = {'status': 200, 'description': '请求成功', 'body': [ {'community': '123', 'communityName': name} ]} return response_json @app.get("/items/{item_id}") def read_item(item_id: int, q: str = None): return {"item_id": item_id, "q": q} ``` #### File: hook_up_rent/backend/utils.py ```python from datetime import datetime, timedelta from typing import Optional import jwt from fastapi import Depends from fastapi.security import OAuth2PasswordBearer from jwt.exceptions import PyJWTError # from mysqlx import Session from config import ALGORITHM, SECRET_KEY # from orm import DBSession, DBUser, WithSession, get_db oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/token") # 生成token,带有过期时间 def create_access_token(data: dict, expires_delta: Optional[timedelta] = None): to_encode = data.copy() if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=15) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt async def get_current_user(token: str = Depends(oauth2_scheme)): try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM]) username: str = payload.get("sub") except PyJWTError: username = None return username if __name__ == "__main__": user = get_current_user('<KEY>') print(user) ```
{ "source": "jinjf553/mysite", "score": 2 }
#### File: mysite/blog/views.py ```python from django.shortcuts import render, get_object_or_404 # Create your views here. from blog.models import BlogArticles def blog_title(request): blogs = BlogArticles.objects.all() return render(request, "blog/title.html", {"blogs": blogs}) def blog_article(request, article_id): # article = BlogArticles.objects.get(id=article_id) article = get_object_or_404(BlogArticles, id=article_id) return render(request, "blog/content.html", {"article": article}) ```
{ "source": "jinjh0123/pytorch_geometric", "score": 2 }
#### File: test/datasets/test_snap_dataset.py ```python import os.path as osp import random import shutil import sys import pytest from torch_geometric.datasets import SNAPDataset @pytest.mark.skipif(True, reason="'https://snap.stanford.edu' not available") def test_snap_dataset(): root = osp.join('/', 'tmp', str(random.randrange(sys.maxsize))) for name in ['ego-facebook', 'soc-Slashdot0811', 'wiki-vote']: SNAPDataset(root, name) shutil.rmtree(root) ``` #### File: nn/conv/test_rgat_conv.py ```python import pytest import torch from torch_sparse import SparseTensor from torch_geometric.nn import RGATConv @pytest.mark.parametrize('mod', [ 'additive', 'scaled', 'f-additive', 'f-scaled', ]) @pytest.mark.parametrize('attention_mechanism', [ 'within-relation', 'across-relation', ]) @pytest.mark.parametrize('attention_mode', [ 'additive-self-attention', 'multiplicative-self-attention', ]) def test_rgat_conv(mod, attention_mechanism, attention_mode): x = torch.randn(4, 8) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) edge_type = torch.tensor([0, 2, 1, 2]) edge_attr = torch.randn((4, 8)) conv = RGATConv(8, 20, num_relations=4, num_bases=4, mod=mod, attention_mechanism=attention_mechanism, attention_mode=attention_mode, heads=2, dim=1, edge_dim=8) assert str(conv) == 'RGATConv(8, 20, heads=2)' out = conv(x, edge_index, edge_type, edge_attr) assert out.size() == (4, 40) def test_rgat_conv_jittable(): x = torch.randn(4, 8) edge_index = torch.tensor([[0, 1, 2, 3], [0, 0, 1, 1]]) row, col = edge_index edge_attr = torch.randn((4, 8)) adj = SparseTensor(row=row, col=col, value=edge_attr, sparse_sizes=(4, 4)) edge_type = torch.tensor([0, 2, 1, 2]) conv = RGATConv(8, 20, num_relations=4, num_bases=4, mod='additive', attention_mechanism='across-relation', attention_mode='additive-self-attention', heads=2, dim=1, edge_dim=8, bias=False) out = conv(x, edge_index, edge_type, edge_attr) assert out.size() == (4, 40) assert torch.allclose(conv(x, adj.t(), edge_type), out) t = '(Tensor, Tensor, OptTensor, OptTensor, Size, NoneType) -> Tensor' jit = torch.jit.script(conv.jittable(t)) assert torch.allclose(jit(x, edge_index, edge_type), conv(x, edge_index, edge_type)) ```
{ "source": "jinjiaho/project57", "score": 2 }
#### File: jinjiaho/project57/application.py ```python from flask import Flask, render_template, request, session, redirect, url_for, flash, jsonify, g, json from flask_babel import Babel from flask_uploads import UploadSet, IMAGES, configure_uploads from flaskext.mysql import MySQL from werkzeug import generate_password_hash, check_password_hash from datetime import datetime from forms import LoginForm, RetrievalForm, AddUserForm, CreateNewItem,AddNewLocation,ExistingItemsLocation, RemoveItem, TransferItem from apscheduler.schedulers.background import BackgroundScheduler # from exceptions import InsufficientQtyError, ContainsItemsError # from apscheduler.jobstores.mongodb import MongoDBJobStore # from apscheduler.jobstores.sqlalchemy import SQLAlchemyJobStore import os, copy, re, csv, json_decode, imaging, pytz # from flask.ext.cache import Cache # pip2 install flask # pip2 install mysql-python # pip2 install mysqlclient # pip2 install flask-SQLAlchemy # pip2 install flask-babel # pip2 install flask-wtf # pip2 install flask-mysql # pip2 install flask-uploads # pip2 install pytz # pip2 install numpy # pip2 install scipy # pip2 install statsmodels # pip2 install pandas # pip2 install Pillow # eb init -p python2.7 aim # eb init # eb create flask-env # eb open # eb terminate flask-env ########################## ## CONFIG ## ########################## # Note: We don't need to call run() since our application is embedded within # the App Engine WSGI application server. application = Flask(__name__, instance_relative_config=True) application.config.from_object('config.DevConfig') # default configurations application.config.from_pyfile('config.py') # override with instanced configuration (in "/instance"), if any #application.config.from_pyfile('myConfig1.py') #application.config.from_pyfile('myConfig2.py') # Babel init babel = Babel(application) # mysql init mysql = MySQL() mysql.init_app(application) # global vars adminmode = False role = "" # Configure the image uploading via Flask-Uploads photos = UploadSet('images', IMAGES) configure_uploads(application, photos) sched = BackgroundScheduler() # jobstores = { # 'mongo': MongoDBJobStore(), # 'default': SQLAlchemyJobStore(url='sqlite:///jobs.sqlite') # } # Exception classes, feel free to use. # Called in admin() class InsufficientQtyError(Exception): pass class ContainsItemsError(Exception): pass class InvalidPasswordError(Exception): pass ########################### ## METHODS ## ########################### # TODO: encapsulate all methods in separate classes and .py files # Query for form select fields. # Currently called by admin() def choices(table, column, *args): choices = [] conn = mysql.connect() cursor = conn.cursor() query = "SELECT {} FROM {}".format(column, table) cursor.execute(query) data1 = cursor.fetchall() data2 = sorted(set(list(data1))) for i in data2: y=str(i[0]) x=(y,y) choices.append(x) return choices # For populating select fields in admin forms with tags. # Called by admin() def storeTags(): choices = [] cursor = mysql.connect().cursor() cursor.execute("SELECT tid, tname, storeroom FROM TagInfo;") data = sorted(set(list(cursor.fetchall()))) for d in data: value = d[0] text = str(d[2]) + " - " + str(d[1]) pair = (value, text) choices.append(pair) return choices def getAllTags(): cursor = mysql.connect().cursor() cursor.execute("SELECT tid, tname, storeroom, remarks FROM TagInfo;") data = sorted(set(list(cursor.fetchall()))) allTags = [] for i in data: allTags.append({ 'tid': i[0], 'tname': i[1].encode('ascii'), 'storeroom': i[2].encode('ascii'), 'remarks': i[3].encode('ascii') }) return allTags # Returns all the items based on category and amount in or out within the last month for each item # Called by category() def getAllInventory(category): conn = mysql.connect() cursor = conn.cursor() cursor.execute( "SELECT iid, name, qty_left, reorder_pt, out_by, picture, category, ROUND(price,2) FROM Ascott_InvMgmt.view_item_locations WHERE category = '{}';".format(category)) data = cursor.fetchall() print(data) # cursor.execute( # "SELECT DISTINCT iid FROM Ascott_InvMgmt.Items WHERE category = '{}';".format(category)) # unique_iid = cursor.fetchall() # print(unique_iid) items = [] counter = 0 for item in data: if item[0] == counter: pass else: cursor.execute( "SELECT action, qty_moved FROM Ascott_InvMgmt.Logs WHERE month(date_time) = month(now()) AND year(date_time) = year(now()) AND item={};".format(item[0])) in_out_data = cursor.fetchall() delivered_out = 0 received = 0 for i in in_out_data: if i[0].encode('ascii') == 'out': delivered_out = delivered_out + (-1*int(i[1])) elif i[0].encode('ascii') == "in": received = received + int(i[1]) value_in = received*item[7] value_out = delivered_out*item[7] cursor.execute( "SELECT qty_left FROM Ascott_InvMgmt.view_item_locations WHERE iid={};".format(item[0])) location_qty = cursor.fetchall() remaining_quantity = 0 for i in location_qty: remaining_quantity += i[0] initial_quantity = remaining_quantity + delivered_out - received items.append( {"iid":item[0], "name": item[1], "remaining": remaining_quantity, "reorder": item[3], "unit": item[4], "starting": initial_quantity, "received": received, "demand": delivered_out, "picture": item[5].encode('ascii'), "category": item[6].encode('ascii'), "value_in": value_in, "value_out": value_out, "price": item[7] }) counter = item[0] return items # Quick query for inventory for mobile and web Inventory views. # Called by inventory() and shelf() # If location is None, we can infer that user has admin rights, and can therefore see the qty left. def inventoryQuick(location): items = [] conn = mysql.connect() cursor = conn.cursor() if location == None: cursor.execute("""SELECT iid, name, category, picture, SUM(qty_left), reorder_pt, out_by FROM view_item_locations GROUP BY iid;""") data = cursor.fetchall() for d in data: items.append( {"iid":d[0], "name": d[1].encode('ascii'), "category": d[2].encode('ascii'), "picture": d[3].encode('ascii'), "remaining": d[4], "reorder": d[5], "unit": d[6].encode('ascii') }) else: cursor.execute("""SELECT iid, name, category, picture, out_by FROM view_item_locations WHERE tag='{}' AND reorder_pt >= 0;""".format(location)) data = cursor.fetchall() conn.commit() for d in data: items.append( {"iid":d[0], "name": d[1].encode('ascii'), "category": d[2].encode('ascii'), "picture":d[3].encode('ascii'), "unit":d[4].encode('ascii') }) return items # Stock Update Function for RA, Runner and Supervisors. # Called by item() and shelf(). # Returns True if the stock was updated successfully, False otherwise. def stockUpdate(iid, tagId, inputQty, user, action, time): try: conn = mysql.connect() cursor = conn.cursor() print(iid, tagId) cursor.execute("SELECT qty_left, in_out_ratio FROM view_item_locations WHERE iid='{}' AND tag='{}';".format(iid, tagId)) data = cursor.fetchall() print("data" ,data) old_qty = data[0][0] if action == 'out': qty_left = old_qty - inputQty qty_diff = inputQty * (-1) # make qty_input negative to reflect taking qty OUT of store. if qty_left < 0: raise InsufficientQtyError("Not enough in store!") elif action == 'in': print inputQty print(inputQty*data[0][1]) qty_left = old_qty + inputQty*data[0][1] qty_diff = qty_left - old_qty else: qty_left = inputQty qty_diff = qty_left - old_qty # change the value of qty to the difference conn = mysql.connect() cursor = conn.cursor() update_items_query = "UPDATE TagItems SET qty_left={} WHERE iid={} AND tag={};".format(qty_left, iid, tagId) # general query for all actions # print(update_items_query) cursor.execute(update_items_query) conn.commit() conn = mysql.connect() cursor = conn.cursor() cursor.execute("SELECT storeroom FROM TagInfo WHERE tid={};".format(tagId)) location = cursor.fetchall()[0][0] # Log action # conn = mysql.connect() # cursor = conn.cursor() update_logs_query = """INSERT INTO Logs (user, date_time, action, qty_moved, qty_left, item, location) VALUES ('{}', '{}', '{}', {}, {}, {}, '{}');""".format(user, time, action, qty_diff, qty_left, iid, location) # print(update_logs_query) cursor.execute(update_logs_query) conn.commit() return ['Success!', "success"] except InsufficientQtyError as e: return [e.args[0], "danger"] except Exception as e: return ["STOCK UPDATE ERROR: %s" % e, "danger"] # Returns all the items based on location. KIV for possible supervisor view filtering. def getFromLevels(location): conn = mysql.connect() cursor = conn.cursor() cursor.execute("SELECT name, category, tag FROM Ascott_InvMgmt.view_item_locations WHERE tag={};".format(location)) data=cursor.fetchall() things = [] for item in data: things.append( {"name": item[0], "category": item[1], "location":item[2]}) return things # Returns the logs that occurred within the current month. # Called by logs() def getAllLogs(): conn = mysql.connect() cursor = conn.cursor() cursor.execute( "SELECT user, date_time, action, qty_moved, qty_left, item, location FROM Ascott_InvMgmt.Logs WHERE month(date_time) = month(now()) AND year(date_time) = year(now());") data=cursor.fetchall() print(data) things = [] if data != None: for row in data: print(row[5]) cursor.execute("SELECT name, category FROM Items WHERE iid={};".format(row[5])) info = cursor.fetchall()[0] item_name = info[0].encode('ascii') category = info[1].encode('ascii') things.append({"name": row[0].encode('ascii'), "dateTime": row[1], "action":row[2], "move":row[3], "remaining":row[4], "category":category, "item":item_name, "location":row[6]}) # print(things) return things # Returns inventory items that are below threshold levels # Called by dashboard() def getInventoryLow(): THRESHOLD = 1.2 cursor = mysql.connect().cursor() cursor.execute("""SELECT iid, name, qty_left, reorder_pt, picture, category, out_by FROM Ascott_InvMgmt.view_item_locations WHERE qty_left <= '"""+str(THRESHOLD)+"""'*reorder_pt AND qty_left > 0 ORDER BY name ASC;""") data = cursor.fetchall() r = [] for i in data: r.append({"iid": i[0], "name": i[1].encode('ascii'), "qty_left": i[2], "reorder_pt": i[3], "picture": i[4].encode('ascii'), "category": i[5].encode('ascii'), "unit":i[6].encode('ascii')}) return r # Called by dashboard() def getDailyLogs(): conn = mysql.connect() cursor = conn.cursor() cursor.execute( "SELECT user, date_time, action, qty_moved, qty_left, item, location FROM Ascott_InvMgmt.Logs WHERE day(date_time) = day(now());") conn.commit() data=cursor.fetchall() things = [] for row in data: cursor = mysql.connect().cursor() cursor.execute("SELECT name FROM Items WHERE iid={};".format(row[5])) item_name = cursor.fetchall()[0][0] things.append({"name": row[0].encode('ascii'), "dateTime": row[1], "action":row[2].encode('ascii'), "move":row[3], "remaining":row[4], "item":item_name.encode('ascii'), "location":row[6].encode('ascii')}) return things # POST for getting chart data @application.route('/api/getChartData', methods=["POST"]) def getChartData(): print "CHART: content_type - ", request.content_type print "CHART: request.json - ", request.json if not request.json: print "CHART: Bad JSON format, aborting chart creation..." page_not_found(400) else: items = request.get_json() iid = items[0]["iid"] r = [] conn = mysql.connect() cursor = conn.cursor() for i in items: # get transaction logs per tag tag = i["tag"] query = "SELECT date_time, qty_left FROM Ascott_InvMgmt.Logs WHERE item = {} AND location = '{}'".format(iid, tag) cursor.execute(query) data = cursor.fetchall() r.append({ "loc": i["location"], "val": data}) return jsonify(r) # POST for getting chart data @application.route('/api/editReorder', methods=["POST"]) def editReorder(): print "REORDER: content_type - ", request.content_type print "REORDER: request.json - ", request.json if not request.json: print "REORDER: Bad JSON format, aborting reorder modification..." page_not_found(400) else: data = request.get_json() name = data["name"].encode('ascii') reorder = data["reorder"] conn = mysql.connect() cursor = conn.cursor() cursor.execute( "UPDATE Ascott_InvMgmt.Items SET reorder_pt={} WHERE (name='{}' AND iid > 0);".format(reorder, name)) conn.commit() return jsonify("") @application.route('/api/editPrice', methods=["POST"]) def editPrice(): print "PRICECHANGE: content_type - ", request.content_type print "PRICECHANGE: request.json - ", request.json if not request.json: print "PRICECHANGE: Bad json format, aborting reorder modification..." page_not_found(400) else: data = request.get_json() iid = data["iid"].encode('ascii') newprice = data["newprice"].encode('ascii') effectdate = data["effectdate"].encode('ascii') effectdate1 = datetime.strptime(effectdate , '%Y-%m-%d') # print(type(effectdate1)) # conn = mysql.connect() # cursor = conn.cursor() # cursor.execute( # "SELECT COUNT(*) FROM Ascott_InvMgmt.PriceChange WHERE item = '{}'".format(iid)) # price_changed=cursor.fetchall() # conn = mysql.connect() # cursor = conn.cursor() # if price_changed[0][0] == 1: # cursor.execute( # "UPDATE Ascott_InvMgmt.PriceChange SET new_price= '{}' , date_effective= STR_TO_DATE( '{} 00:00:00', '%Y-%m-%d %H:%i:%s') WHERE (item = '{}');".format(newprice, effectdate, iid)) # conn.commit() # elif price_changed[0][0] == 0: # cursor.execute( # "INSERT INTO Ascott_InvMgmt.PriceChange (item, new_price, date_effective) VALUES ('{}' ,'{}' ,'{}');".format(iid, newprice, effectdate)) # conn.commit() try: sched.remove_job(iid, jobstore=None) except: pass # The job will be executed on effectdate sched.add_job(priceChangenow, 'date', run_date=effectdate1, args=[iid,newprice], id=iid) sched.print_jobs(jobstore=None) # sched.start() # print(sched.jobstores) # idItem = cursor.fetchone() # # query = "SELECT date_time, qty_left FROM Ascott_InvMgmt.Logs WHERE item = {0}".format(idItem) # query = "SELECT date_time, qty_left FROM Ascott_InvMgmt.Logs WHERE item = 1" # # TODO: string parameterisation # # query = "SELECT datetime, qtyAfter FROM Ascott_InvMgmt.Logs WHERE idItem = {}".format(idItem) # cursor.execute(query) # responseData = cursor.fetchall() return jsonify("") def priceChangenow(iid,price): conn = mysql.connect() cursor = conn.cursor() cursor.execute("UPDATE Ascott_InvMgmt.Items SET price='{}' WHERE (iid = '{}');".format(iid,price)) conn.commit() # conn = mysql.connect() # cursor=conn.cursor() # cursor.execute("DELETE FROM Ascott_InvMgmt.PriceChange WHERE (item = '{}');".format(iid)) # conn.commit() return # true if user is authenticated, else false # used in ALL ROUTES def auth(): if u'logged_in' in session: return session['logged_in'] return False # wrapper function for route redirection def filter_role(roles_routes): for k,v in roles.items(): if session['role'] == k: return redirect(v) # used as a Jinja template in HTML files @application.template_filter('lang_strip') def lang_strip(s): l = re.search(r"(?m)(?<=(en\/)|(zh\/)|(ms\/)|(ta\/)).*$", str(s.encode('ascii'))) if l: return l.group() return None # used as a Jinja template in HTML files @application.template_filter('curr_time') def curr_time(s): tz = pytz.timezone(application.config["TIMEZONE"]) return s+datetime.now(tz).strftime('%I:%M %p') # used as a Jinja template in HTML files @application.template_filter('prop_name') def prop_name(s): return s+application.config["PROP_NAME"] # case query for mobile input def input_handler(qty, user): query = 'UPDATE TagItems SET qty_left = CASE WHERE iid={} WHEN action' # Issue: Need iid argument. # fires right before each request is delivered to the relevant route @application.before_request def before(): # localization setting if request.view_args and 'lang_code' in request.view_args: if request.view_args['lang_code'] not in application.config["BABEL_LOCALES"]: g.current_lang = application.config["BABEL_DEFAULT_LOCALE"] else: g.current_lang = request.view_args['lang_code'] session["lang_code"] = g.current_lang request.view_args.pop('lang_code') else: session["lang_code"] = application.config["BABEL_DEFAULT_LOCALE"] g.current_lang = session["lang_code"] # user authentication if u'logged_in' not in session: session["logged_in"] = False @application.after_request def add_header(r): r.headers['Cache-Control'] = 'public, max-age=0' r.headers['Pragma'] = 'no-cache' r.headers['Expires'] = '0' return r # used in setting locale for each route # used in ALL ROUTES @babel.localeselector def get_locale(): return g.get('current_lang', 'en') @application.after_request def add_header(response): response.cache_control.max_age=0 return response ########################## ## ROUTES ## ########################## @application.route('/') def hello(): # user authentication if not session["logged_in"]: return redirect(url_for("login", lang_code=session["lang_code"])) else: # user already logged_in previously if session['role'] == "supervisor": return redirect(url_for("dashboard", lang_code=session["lang_code"])) elif session['role'] == "attendant": return redirect(url_for("scanner", lang_code=session["lang_code"])) elif session['role'] == "runner": return redirect(url_for("scanner", lang_code=session["lang_code"])) @application.route('/<lang_code>/login', methods=["GET", "POST"]) def login(): # create a login form to collect username & password form = LoginForm() if request.method == "POST": if form.validate() == False: return render_template("login.html", form=form) else: username = form.username.data password = form.password.data remember = form.remember.data cursor = mysql.connect().cursor() cursor.execute("SELECT username, password, role, name FROM User WHERE username= '{}';".format(username)) # check if user and pass data is correct by executing the db # data is stored as a tuple data = cursor.fetchone() if data is None: # username does not match records flash('User does not exist') return redirect(url_for("login", lang_code=get_locale())) # elif password != <PASSWORD>: elif check_password_hash(data[1], password) == False: # password does not match records flash('Incorrect password') return redirect(url_for("login", lang_code=get_locale())) else: # username & password match session['username'] = data[0] session['role'] = data[2] session['name'] = data[3] session['logged_in'] = True if remember: session.permanent = True # check role if session['role'] == "supervisor": if "next" in session: return redirect(session.pop('next')) else: return redirect(url_for("dashboard", lang_code=get_locale())) elif session['role'] == "attendant" or session['role'] == "runner": if "next" in session: return redirect(session.pop('next')) else: return redirect(url_for("scanner", lang_code=get_locale())) elif request.method == "GET": # user authentication if not auth(): return render_template("login.html", form=form) else: # user already logged_in previously if session['role'] == "supervisor": return redirect(url_for("dashboard", lang_code=get_locale())) elif session['role'] == "attendant": return redirect(url_for("scanner", lang_code=get_locale())) elif session['role'] == "runner": return redirect(url_for("scanner", lang_code=get_locale())) @application.route('/<lang_code>/admin', methods=["GET","POST"]) def admin(): form = AddUserForm() form2 = CreateNewItem() form3 = AddNewLocation() form4 = ExistingItemsLocation() removeItemForm = RemoveItem() transferItemForm = TransferItem() storeTagChoices = storeTags() allTags = getAllTags() print allTags roles = choices('Permissions', 'role') categories = ['Guest Hamper', 'Guest Supplies', 'Kitchenware'] cursor = mysql.connect().cursor() cursor.execute("SELECT name, tag FROM view_item_locations;") itemTags = cursor.fetchall() # Initialize options for all select fields form.role.choices = roles form2.category.choices = choices('Items', 'category') form3.location.choices = choices('TagInfo', 'storeroom') form4.tid.choices = storeTagChoices removeItemForm.iname.choices = choices('Items', 'name') transferItemForm.tagOld.choices = storeTagChoices transferItemForm.tagNew.choices = storeTagChoices #--------------users table------------------------- conn = mysql.connect() cursor = conn.cursor() cursor.execute("SELECT role, name, username FROM Ascott_InvMgmt.User;") data = cursor.fetchall() # print(data) things = [] for item in data: things.append( {"role": item[0], "name": item[1], "username": item[2]}) #-------------NFCID---------------------------------- cursor.execute("SELECT DISTINCT tag FROM Ascott_InvMgmt.TagItems;") data1 = cursor.fetchall() #displays all unique NFC id tags. NFCs=[] group={} items=[] for idNFC in data1: NFCs.append(idNFC[0]) for i in NFCs: try: #fetch all item names pertaining to the tag. cursor.execute("SELECT name, iid, qty_left FROM Ascott_InvMgmt.view_item_locations WHERE tag = {};".format(i)) data3=cursor.fetchall() cursor.execute("SELECT tname FROM TagInfo WHERE tid={};".format(i)) l_name = cursor.fetchall()[0][0] group[(i, l_name)] = data3 except: pass server = "http://ec2-52-77-253-63.ap-southeast-1.compute.amazonaws.com" # For exhibition # server = "172.16.31.10/" # For Ascott use if request.method =="GET": # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) cursor.execute("SELECT DISTINCT name FROM Ascott_InvMgmt.Items;") items = cursor.fetchall() # print (items) flat_items = [item.encode('ascii') for sublist in items for item in sublist] return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, group=group, server=server, item_list=flat_items) # ------------------All the various form tabs---------------------- # ------------------Add User Form ---------------------- elif request.method == "POST": if request.form['name-form'] =='form': if form.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: username = form.username.data password = generate_password_hash(form.password.data) role = form.role.data name = form.name.data newuser=[username,password,role,name] conn = mysql.connect() cursor = conn.cursor() # TODO: string parameterisation query = "INSERT INTO User VALUES ('{}','{}','{}','{}');".format(newuser[0],newuser[1],newuser[2],newuser[3]) # query = "INSERT INTO User (username,password,role,name) VALUES ();" # print(query) cursor.execute(query) conn.commit() # cursor.execute("COMMIT") flash("User has been added!", "success") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Edit User Form ---------------------- elif request.form['name-form'] =='editUserForm': try: username = request.form["username"] role = request.form["role"] name = request.form["name"] password = request.form["password"] query = "" messages = [] if role: query += "UPDATE User SET role='{}' WHERE username='{}';".format(role, username) messages.append(["User role updated to "+role, "success"]) if name: query += "UPDATE User SET name='{}' WHERE username='{}';".format(name, username) messages.append(["Name updated to "+name, "success"]) if password: if auth(): query += "UPDATE User SET password='{}' WHERE username='{}';".format(generate_password_hash(password), username) messages.append(["Password updated!", "success"]) else: raise Exception("User authentication failed, please login again.") conn = mysql.connect() cursor = conn.cursor() print query cursor.execute(query) conn.commit() for i in messages: flash(i[0], i[1]) except: flash(e.args[0], "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Delete User Form ---------------------- elif request.form['name-form'] =='deleteUser': print('form received') username = request.form["username"] try: conn = mysql.connect() cursor = conn.cursor() query = "DELETE FROM User WHERE username='{}';".format(username) print(query) cursor.execute(query) conn.commit() flash("User deleted!", "success") except: flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Add Item Form ---------------------- elif request.form['name-form'] =='form2': if form2.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: itemname = form2.itemname.data reorderpt = form2.reorderpt.data category = form2.category.data price = form2.price.data out_by = form2.count_unit.data in_by = form2.order_unit.data in_out_ratio = form2.order_multiplier.data if 'photo' in request.files: try: filename = photos.save(request.files['photo']) except: filename = "default.thumb" flash('Photo selected is not a valid file', "danger") thumbnail = imaging.Imaging().thumb(filename) item = [itemname, category, thumbnail, price, reorderpt, out_by, in_by, in_out_ratio] print(item) try: # TODO: string parameterisation conn = mysql.connect() cursor = conn.cursor() # TODO: Change form to input appropriate information query = "INSERT INTO Items (name, category, picture, price, reorder_pt, out_by, in_by, in_out_ratio) VALUES ('{}','{}','{}','{}','{}','{}','{}','{}');".format(item[0],item[1],item[2],item[3],item[4],item[5],item[6],item[7]) cursor.execute(query) conn.commit() flash("Item has been added! Next, please assign a tag.", "success") except Exception as e: print(e) flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Remove Item Form ---------------------- elif request.form['name-form'] == 'removeItemForm': if removeItemForm.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: iname = removeItemForm.iname.data conn = mysql.connect() cursor = conn.cursor() cursor.execute("SELECT iid, picture FROM Items WHERE name='{}';".format(iname)) response = cursor.fetchall()[0] try: iid, picture = response[0], response[1].encode("ascii") print "ADMIN: Deleting item #%s with thumbnail '%s' ..." % (iid, picture) removeFromItems = "DELETE FROM Items WHERE name='{}';".format(iname) print "SQL: %s" % removeFromItems cursor.execute(removeFromItems) conn.commit() removeFromLogs = "DELETE FROM Logs WHERE item='{}';".format(iid) print "SQL: %s" % removeFromLogs cursor.execute(removeFromLogs) conn.commit() removeFromPriceChange = "DELETE FROM PriceChange WHERE item='{}';".format(iid) print "SQL: %s" % removeFromPriceChange cursor.execute(removeFromPriceChange) conn.commit() removeFromTagItems = "DELETE FROM TagItems WHERE iid='{}';".format(iid) print "SQL: %s" % removeFromTagItems cursor.execute(removeFromTagItems) conn.commit() try: os.remove("static/img/items/"+picture) print("ADMIN: Item successfuly deleted!") except Exception as e: print("DELETE THUMBNAIL: %s" % e) flash('Item deleted!', 'success') except IndexError: flash("Item not found!", "warning") except Exception as e: print("DELETE ITEM: %s" % e) flash('Couldn\'t delete item', 'danger') return redirect(url_for('admin', lang_code=get_locale())) # ------------------Add Existing Items to New Locations form ---------------------- elif request.form['name-form'] =='form4': if form4.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: itemname = form4.itemname.data tid = form4.tid.data amt = form4.qty.data try: conn = mysql.connect() cursor = conn.cursor() cursor.execute("SELECT iid FROM Ascott_InvMgmt.Items WHERE name = '{}';".format(itemname)) iid = cursor.fetchall()[0][0] # TODO: string parameterisation # cursor = mysql.connect().commit(); # Check if item is already assigned to tag cursor.execute("SELECT * FROM Ascott_InvMgmt.TagItems WHERE iid={} AND tag={};".format(iid, tid)) rowExists = cursor.fetchall() if rowExists: cursor.execute("UPDATE TagItems SET qty_left={} WHERE iid={} AND tag={};".format(amt, iid, tid)) conn.commit() flash("Item already in location. Qty updated.", "success") else: query = "INSERT INTO Ascott_InvMgmt.TagItems VALUES ({},{},{}); COMMIT;".format(iid,tid,amt) print(query) cursor.execute(query) flash("Added Item to Location!", "success") except: flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------ Transfer Items Form ---------------------- elif request.form['name-form'] =='transferItemForm': if transferItemForm.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: print("form validated") item = transferItemForm.iname.data tagOld = transferItemForm.tagOld.data tagNew = transferItemForm.tagNew.data qty = transferItemForm.qty.data print(item) print(tagOld) print(tagNew) print(qty) try: conn = mysql.connect() cursor = conn.cursor() query = "SELECT iid FROM Ascott_InvMgmt.Items WHERE name = '{}';".format(item) print(query) cursor.execute(query) iid = cursor.fetchall()[0][0] query = "SELECT * FROM TagItems WHERE iid={} AND tag={};".format(iid, tagOld) print(query) cursor.execute(query) row = cursor.fetchall()[0] # TODO: string parameterisation queryOut = "" queryIn = "" message = "" # if user only wants to transfer some of the items over if qty: if qty == 0: flash("Qty input was 0, none transferred.", "warning") return redirect(url_for('admin', lang_code=get_locale())) print(row) # check if there are enough items at the old location to transfer the stated qty. if qty > row[2]: raise InsufficientQtyError("Not enough in store to transfer!") # if sufficient items, deduct items from old location. qty_left = row[2] - qty if qty_left == 0: queryOut = "DELETE FROM TagItems WHERE iid={} AND tag={};".format(iid, tagOld) else: queryOut = "UPDATE TagItems SET qty_left={} WHERE iid={} AND tag={};".format(qty_left, iid, tagOld) # if user wants to transfer all else: qty = row[2] queryOut = "DELETE FROM TagItems WHERE iid={} AND tag={};".format(iid, tagOld) print(queryOut) # Add the items to the new location. # Check if there are already instances of the item at the new location. query = "SELECT * FROM Ascott_InvMgmt.TagItems WHERE iid={} AND tag={};".format(iid, tagNew) print(query) cursor = mysql.connect().cursor() cursor.execute(query) rowExists = cursor.fetchall() if rowExists: print('row exists!') # Update the qty instead of creating a new row. newQty = rowExists[0][2] + qty queryIn = "UPDATE TagItems SET qty_left={} WHERE iid={} AND tag={};".format(newQty, iid, tagNew) message = "Item already in location, updated qty." else: print('row does not exist') # Create a new row. queryIn = "INSERT INTO Ascott_InvMgmt.TagItems VALUES ({},{},{});".format(iid, tagNew, qty) message = "Transferred item to location!" print(queryIn) flash(message, "success") conn = mysql.connect() cursor = conn.cursor() cursor.execute(queryIn + queryOut + "COMMIT;") except InsufficientQtyError as e: flash(e.args[0], "danger") except: flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Remove Item From Tag Form ---------------------- elif request.form['name-form'] =='removeFromTag': print('form received') item = request.form["iid"] tag = request.form["tid"] try: conn = mysql.connect() cursor = conn.cursor() query = "DELETE FROM TagItems WHERE iid={} AND tag={};".format(item, tag) print(query) cursor.execute(query) conn.commit() flash("Item removed from tag!", "success") except: flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Add Tag form ---------------------- # TODO: Change form to get appropriate values elif request.form['name-form'] =='form3': if form3.validate() == False: flash("Failed to validate form", "danger") return render_template('admin.html', form=form, form2=form2, form3=form3, form4=form4, removeItemForm=removeItemForm, transferItemForm = transferItemForm, tagsByStore = json.dumps(storeTagChoices), itemTags = json.dumps(itemTags), cat_list = categories, users=things, tags = allTags, server=server, group=group) else: tname = form3.tname.data oldLocation = form3.location.data newLocation = form3.newLocation.data remarks = form3.remarks.data if newLocation: location = newLocation else: location = oldLocation conn = mysql.connect() cursor = conn.cursor() try: # TODO: string parameterisation query = "INSERT INTO TagInfo (`tname`, `storeroom`, `remarks`) VALUES ('{}','{}','{}');".format(tname, location, remarks) print(query) cursor.execute(query) conn.commit() flash("New Tag Added!", "success") except: flash("Couldn't add tag.", "danger") return redirect(url_for('admin', lang_code=get_locale())) # ------------------Delete Tag form ---------------------- elif request.form['name-form'] =='deleteTag': print('form received') tid = request.form["tid"] try: conn = mysql.connect().cursor() cursor.execute("SELECT * FROM TagItems WHERE tag={};".format(tid)) tagRows = cursor.fetchone() if tagRows: raise ContainsItemsError("Can't delete tag because it has items assigned to it. Please remove the items from the tag before deleting the tag.") else: conn = mysql.connect() cursor = conn.cursor() query = "DELETE FROM TagInfo WHERE tid={};".format(tid) print(query) cursor.execute(query) conn.commit() flash("Tag deleted!", "success") except ContainsItemsError as e: flash(e.args[0], "danger") except: flash("Oops! Something went wrong :(", "danger") return redirect(url_for('admin', lang_code=get_locale())) @application.route('/<lang_code>/dashboard') def dashboard(): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) i = getInventoryLow() l = getDailyLogs() print(l) # l = getLogs() return render_template('dashboard.html', role=session['role'], user=session['username'], items = i, logs = l) @application.route('/<lang_code>/inventory') def inventory(): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) cursor = mysql.connect().cursor() cursor.execute("SELECT DISTINCT category FROM Items;") cats = cursor.fetchall() itemsByCat = [] for cat in cats: itemsByCat.append({cat[0].encode('ascii'):[]}) data = inventoryQuick(None) for i in data: for cat in itemsByCat: if cat.keys()[0] == i['category']: cat[i['category']].append(i) print(i['category']) # get list of all locations to display location_query = "SELECT DISTINCT TagInfo.storeroom FROM TagItems INNER JOIN TagInfo ON TagItems.tag = TagInfo.tid;" cursor = mysql.connect().cursor() cursor.execute(location_query) data = cursor.fetchall() locations = [] for i in data: locations.append(i[0].encode('ascii')) return render_template('inventory.html', user = session['username'], role = session['role'], categories = itemsByCat, num_cat = len(itemsByCat), locations = locations) @application.route('/<lang_code>/inventory/<int:iid>', methods=['GET', 'POST']) def item(iid): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) if request.method == 'POST': print "STOCK UPDATE: content_type - ", request.content_type now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") user = session['username'] # form data tid = int(request.form.get('location')) qty = int(request.form.get('qty')) action = request.form.get('action') print("STOCK UPDATE: Form received - (iid: %s ,tid: %s, qty: %s , action: %s, user: %s)" % (iid, tid, qty, action, user)) try: # process changes updateSuccess = stockUpdate(iid, tid, qty, user, action, now) flash(updateSuccess[0], updateSuccess[1]) return redirect(url_for("item", lang_code=get_locale(), iid=iid)) except: flash('Oops! Something went wrong :(', 'danger') return redirect(url_for("item", lang_code=get_locale(), iid=iid)) cursor = mysql.connect().cursor() query = "SELECT name, category, picture, tag, qty_left, reorder_pt, in_out_ratio, out_by, price FROM Ascott_InvMgmt.view_item_locations WHERE iid = {};".format(iid) cursor.execute(query) data = cursor.fetchall() # d = [[s.encode('ascii') for s in list] for list in data] r = [] for i in data: cursor.execute("SELECT tname, storeroom FROM TagInfo WHERE tid={};".format(i[3])) taginfo = cursor.fetchall()[0] tname = taginfo[0].encode('ascii') storeroom = taginfo[1].encode('ascii') r.append({"name": i[0].encode('ascii'), "category": i[1].encode('ascii'), "picture": i[2].encode('ascii'), "tag": tname, "location": storeroom, "qty_left": i[4], "reorder": i[5], "batch_size": i[6], "unit": i[7].encode('ascii'), "price": round(i[8],2), "tid": i[3], "iid": iid}) cursor.execute("SELECT new_price, date_effective FROM Ascott_InvMgmt.PriceChange WHERE item = '{}';".format(iid)) price = cursor.fetchall() pricechanges = [] if price == (): pricechanges.append({ "iid":iid, "new_price": 0, "date_effective": 0}) else: for item in price: pricechanges.append({ "iid":iid, "new_price": item[0], "date_effective": item[1]}) try: if r != []: return render_template('item.html', item = r, pricechanges = pricechanges) else: return render_template('item.html', item = r, pricechanges = pricechanges) except: return render_template('item.html', item = r, pricechanges = None) @application.route('/<lang_code>/review/<category>') def category(category): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) category = category itemtype = getAllInventory(category) return render_template('category.html', category=category, itemtype=itemtype, role = session['role'], user = session['username']) @application.route('/<lang_code>/storeroom/<storeroom>') def storeroom(storeroom): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) cursor = mysql.connect().cursor() query1="SELECT tid FROM TagInfo WHERE storeroom='{}';".format(storeroom) cursor.execute(query1) tags = cursor.fetchall() items = {} for t in tags: tagid=t[0] cursor.execute("SELECT iid, name, picture, reorder_pt, qty_left, out_by FROM view_item_locations WHERE tag='{}';".format(tagid)) data = cursor.fetchall() for d in data: if d[0] in items.keys(): items[d[0]]['qty_left'] += d[4] else: items[d[0]] = { 'name':d[1].encode('ascii'), 'picture':d[2].encode('ascii'), 'reorder_pt':d[3], 'qty_left':d[4], 'unit':d[5].encode('ascii') } print(t) print(tags) return render_template('storeroom.html', storename = storeroom, items = items, user = session['username'], role = session['role']) @application.route('/<lang_code>/logs') def logs(): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) if session['role'] != "supervisor": return redirect(url_for("scanner", lang_code=get_locale())) logs=getAllLogs() # names=getUniqueNames() # items=getUniqueItems() return render_template('logs.html', logs=logs, role = session['role'], user = session['username']) # names=names, items=items) @application.route('/<lang_code>/scan') def scanner(): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) return render_template('scanner.html') # RA shelf view @application.route('/<lang_code>/shelves/<tag_id>', methods=['GET', 'POST']) def shelf(tag_id): # user authentication if not auth(): session['next'] = request.url return redirect(url_for("login", lang_code=get_locale())) cursor = mysql.connect().cursor() items = inventoryQuick(tag_id) cursor.execute("""SELECT tname FROM TagInfo WHERE tid={};""".format(tag_id)) tagName = cursor.fetchone()[0].encode('ascii') if request.method == 'POST': now = datetime.now().strftime("%Y-%m-%d %H:%M:%S") form_data = request.form print(form_data) user = session['username'] try: conn = mysql.connect() cursor = conn.cursor() for item, [inputQty, action, tag] in form_data.iterlists(): updateSuccess = stockUpdate(item, tag, int(inputQty), user, action, now) flash(updateSuccess[0], updateSuccess[1]) return redirect(url_for("scanner", lang_code=get_locale())) except Exception as e: print("CART ERROR: %s" % e) flash('Oops! Something went wrong :(', 'danger') return render_template('shelf.html', things=items, role = session['role'], user = session['username'], location = tag_id, tagName = tagName) @application.route('/logout') def logout(): session.clear() return redirect(url_for("login", lang_code=get_locale())) @application.errorhandler(404) def page_not_found(e): return render_template('error/404.html', error=e), 404 @application.errorhandler(500) def page_not_found(e): return render_template('error/500.html', error=e), 500 ## testing if __name__ == '__main__': application.run() ```
{ "source": "jinjiaodawang/bayesmark", "score": 2 }
#### File: models/gp/gpy_mlp.py ```python # This program is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A # PARTICULAR PURPOSE. See the MIT License for more details. from ..base_model import BaseModel from ..layers import EmbTransform, OneHotTransform from ..scalers import TorchMinMaxScaler, TorchStandardScaler import GPy import torch import torch.nn as nn import numpy as np from torch import Tensor, FloatTensor, LongTensor class GPyMLPGP(BaseModel): """ Input warped GP model implemented using GPy instead of GPyTorch Why doing so: - Input warped GP """ def __init__(self, num_cont, num_enum, num_out, **conf): super().__init__(num_cont, num_enum, num_out, **conf) if num_enum > 0: self.one_hot = OneHotTransform(self.conf['num_uniqs']) self.xscaler = TorchMinMaxScaler((-1, 1)) self.yscaler = TorchStandardScaler() self.verbose = self.conf.get('verbose', False) self.num_epochs = self.conf.get('num_epochs', 200) def fit_scaler(self, Xc : FloatTensor, y : FloatTensor): if Xc is not None and Xc.shape[1] > 0: self.xscaler.fit(Xc) self.yscaler.fit(y) def trans(self, Xc : Tensor, Xe : Tensor, y : Tensor = None): if Xc is not None and Xc.shape[1] > 0: Xc_t = self.xscaler.transform(Xc) else: Xc_t = torch.zeros(Xe.shape[0], 0) if Xe is None or Xe.shape[1] == 0: Xe_t = torch.zeros(Xc.shape[0], 0) else: Xe_t = self.one_hot(Xe.long()) Xall = torch.cat([Xc_t, Xe_t], dim = 1) if y is not None: y_t = self.yscaler.transform(y) return Xall.numpy(), y_t.numpy() return Xall.numpy() def fit(self, Xc : FloatTensor, Xe : LongTensor, y : LongTensor): self.fit_scaler(Xc, y) X, y = self.trans(Xc, Xe, y) kern = GPy.kern.src.mlp.MLP(input_dim = X.shape[1], ARD = True) self.gp = GPy.models.GPRegression(X, y, kern) self.gp.kern.variance = np.var(y) self.gp.kern.lengthscale = np.std(X, axis = 0) self.gp.likelihood.variance = 1e-2 * np.var(y) self.gp.kern.variance.set_prior(GPy.priors.Gamma(0.5, 0.5)) self.gp.likelihood.variance.set_prior(GPy.priors.LogGaussian(-4.63, 0.5)) self.gp.optimize_restarts(max_iters = self.num_epochs, messages = self.verbose, num_restarts = 10) print(self.gp.likelihood.variance, flush = True) print(self.gp.likelihood.variance[0], flush = True) return self def predict(self, Xc : FloatTensor, Xe : LongTensor) -> (FloatTensor, FloatTensor): Xall = self.trans(Xc, Xe) py, ps2 = self.gp.predict(Xall) mu = self.yscaler.inverse_transform(FloatTensor(py).view(-1, 1)) var = (self.yscaler.std**2 * FloatTensor(ps2).view(-1, 1)).clamp(min = 1e-6) return mu, var def sample_f(self): raise RuntimeError('Thompson sampling is not supported for GP, use `sample_y` instead') @property def noise(self): var_normalized = self.gp.likelihood.variance[0] return (var_normalized * self.yscaler.std**2).view(self.num_out) @property def support_ts(self): return False @property def support_grad(self): return False @property def support_multi_output(self): return False @property def support_warm_start(self) ->bool: return False ```
{ "source": "jinjie412/ArticleSpider", "score": 3 }
#### File: ArticleSpider/ArticleSpider/items.py ```python import datetime import re from ArticleSpider.settings import SQL_DATETIME_FORMAT from ArticleSpider.utils.common import extract_num, extract_num_include_dot import scrapy from scrapy.loader import ItemLoader from scrapy.loader.processors import TakeFirst, MapCompose, Join from w3lib.html import remove_tags class ArticlespiderItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass # 字符串转换时间方法 def date_convert(value): try: create_date = datetime.datetime.strptime(value, "%Y/%m/%d").date() except Exception as e: create_date = datetime.datetime.now().date() return create_date # 获取字符串内数字方法 def get_nums(value): match_re = re.match(".*?(\d+).*", value) if match_re: nums = int(match_re.group(1)) else: nums = 0 return nums # 去除标签中提取的评论方法 def remove_comment_tags(value): if "评论" in value: return "" else: return value # 直接获取值方法 def return_value(value): return value # 排除none值 def exclude_none(value): if value: return value else: value = "无" return value # 自定义itemloader实现默认取第一个值 class ArticleItemLoader(ItemLoader): default_output_processor = TakeFirst() class FangItem(scrapy.Item): id = scrapy.Field() name = scrapy.Field( ) price = scrapy.Field() address = scrapy.Field() tags = scrapy.Field( ) crawl_time = scrapy.Field() def get_insert_sql(self): insert_sql = """ insert into fang(id, name, price,address, tags, crawl_time ) VALUES (%s, %s, %s,%s, %s, %s) ON DUPLICATE KEY UPDATE price=VALUES(price) """ crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT) self["crawl_time"] = crawl_time self["name"] = self["name"].strip() match_hans5 = re.match( ".*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*", self["tags"], re.DOTALL) match_hans4 = re.match( ".*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*", self["tags"], re.DOTALL) match_hans3 = re.match( ".*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*", self["tags"], re.DOTALL) match_hans2 = re.match( ".*>([\u4e00-\u9fa5]+)<.*>([\u4e00-\u9fa5]+)<.*", self["tags"], re.DOTALL) match_hans1 = re.match( ".*>([\u4e00-\u9fa5]+)<.*", self["tags"], re.DOTALL) if match_hans5: self["tags"] = match_hans5.group(1) + "," + match_hans5.group(2) + match_hans5.group( 3) + "," + match_hans5.group(4) + "," + match_hans5.group(5) elif match_hans4: self["tags"] = match_hans4.group(1) + "," + match_hans4.group( 2) + match_hans4.group(3) + "," + match_hans4.group(4) elif match_hans3: self["tags"] = match_hans3.group( 1) + "," + match_hans3.group(2) + "," + match_hans3.group(3) elif match_hans2: self["tags"] = match_hans2.group( 1) + "," + match_hans2.group(2) elif match_hans1: self["tags"] = match_hans1.group(1) else: self["tags"] = "" params = ( self["id"], self["name"], self["price"], self["address"], self["tags"], self["crawl_time"]) return insert_sql, params class JobBoleArticleItem(scrapy.Item): title = scrapy.Field() create_date = scrapy.Field( # input_processor=MapCompose(date_convert), ) url = scrapy.Field() url_object_id = scrapy.Field() front_image_url = scrapy.Field( # 使用自定义的outprocessor覆盖原始的take first 使得image_url是一个列表。 output_processor=MapCompose(return_value) ) front_image_path = scrapy.Field() praise_nums = scrapy.Field( # input_processor=MapCompose(get_nums) ) comment_nums = scrapy.Field( input_processor=MapCompose(get_nums) ) fav_nums = scrapy.Field( input_processor=MapCompose(get_nums) ) tags = scrapy.Field( input_processor=MapCompose(remove_comment_tags), # list使用逗号连接 output_processor=Join(",") ) content = scrapy.Field() crawl_time = scrapy.Field() def make_data_clean(self): front_image_url = "" # content = remove_tags(self["content"]) self["crawl_time"] = datetime.datetime.now( ).strftime(SQL_DATETIME_FORMAT) if self["front_image_url"]: self["front_image_url"] = self["front_image_url"][0] str = self["create_date"].strip().replace("·", "").strip() self["create_date"] = datetime.datetime.strptime( str, "%Y/%m/%d").date() nums = 0 value = self["praise_nums"] match_re = re.match(".*?(\d+).*", value) if match_re: nums = int(match_re.group(1)) else: nums = 0 self["praise_nums"] = nums def get_insert_sql(self): insert_sql = """ insert into jobbole_article(title, url, url_object_id,create_date, fav_nums, front_image_url, front_image_path, praise_nums, comment_nums, tags, content,crawl_time) VALUES (%s, %s, %s,%s, %s, %s, %s, %s, %s, %s, %s,%s) ON DUPLICATE KEY UPDATE fav_nums=VALUES(fav_nums),praise_nums=VALUES(praise_nums),comment_nums=VALUES(comment_nums),crawl_time=VALUES(crawl_time) """ self.make_data_clean() params = ( self["title"], self["url"], self["url_object_id"], self["create_date"], self["fav_nums"], self["front_image_url"], self["front_image_path"], self["praise_nums"], self["comment_nums"], self["tags"], self["content"], self["crawl_time"] ) return insert_sql, params class ZhihuQuestionItem(scrapy.Item): # 知乎的问题 item zhihu_id = scrapy.Field() topics = scrapy.Field() url = scrapy.Field() title = scrapy.Field() content = scrapy.Field( input_processor=MapCompose(exclude_none), ) answer_num = scrapy.Field() comments_num = scrapy.Field() watch_user_num = scrapy.Field() click_num = scrapy.Field() crawl_time = scrapy.Field() def get_insert_sql(self): # 插入知乎question表的sql语句 insert_sql = """ insert into zhihu_question(zhihu_id, topics, url, title, content, answer_num, comments_num, watch_user_num, click_num, crawl_time ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE content=VALUES(content), answer_num=VALUES(answer_num), comments_num=VALUES(comments_num), watch_user_num=VALUES(watch_user_num), click_num=VALUES(click_num) """ zhihu_id = self["zhihu_id"][0] topics = ",".join(self["topics"]) url = self["url"][0] title = "".join(self["title"]) try: content = "".join(self["content"]) except BaseException: content = "无" try: answer_num = extract_num("".join(self["answer_num"])) except BaseException: answer_num = 0 comments_num = extract_num("".join(self["comments_num"])) if len(self["watch_user_num"]) == 2: watch_user_num = extract_num_include_dot(self["watch_user_num"][0]) click_num = extract_num_include_dot(self["watch_user_num"][1]) else: watch_user_num = extract_num_include_dot(self["watch_user_num"][0]) click_num = 0 crawl_time = datetime.datetime.now().strftime(SQL_DATETIME_FORMAT) params = ( zhihu_id, topics, url, title, content, answer_num, comments_num, watch_user_num, click_num, crawl_time) return insert_sql, params class ZhihuAnswerItem(scrapy.Item): # 知乎的问题回答item zhihu_id = scrapy.Field() url = scrapy.Field() question_id = scrapy.Field() author_id = scrapy.Field() content = scrapy.Field() praise_num = scrapy.Field() comments_num = scrapy.Field() create_time = scrapy.Field() update_time = scrapy.Field() crawl_time = scrapy.Field() author_name = scrapy.Field() def get_insert_sql(self): # 插入知乎answer表的sql语句 insert_sql = """ insert into zhihu_answer(zhihu_id, url, question_id, author_id, content, praise_num, comments_num, create_time, update_time, crawl_time,author_name ) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s,%s) ON DUPLICATE KEY UPDATE content=VALUES(content), comments_num=VALUES(comments_num), praise_num=VALUES(praise_num), update_time=VALUES(update_time), author_name=VALUES(author_name) """ create_time = datetime.datetime.fromtimestamp( self["create_time"]).strftime(SQL_DATETIME_FORMAT) update_time = datetime.datetime.fromtimestamp( self["update_time"]).strftime(SQL_DATETIME_FORMAT) params = ( self["zhihu_id"], self["url"], self["question_id"], self["author_id"], self["content"], self["praise_num"], self["comments_num"], create_time, update_time, self["crawl_time"].strftime(SQL_DATETIME_FORMAT), self["author_name"], ) return insert_sql, params def remove_splash(value): # 去掉工作城市的斜线 return value.replace("/", "") def handle_jobaddr(value): addr_list = value.split("\n") addr_list = [item.strip() for item in addr_list if item.strip() != "查看地图"] return "".join(addr_list) class LagouJobItemLoader(ItemLoader): # 自定义itemloader default_output_processor = TakeFirst() class LagouJobItem(scrapy.Item): # 拉勾网职位信息 title = scrapy.Field() url = scrapy.Field() url_object_id = scrapy.Field() salary_min = scrapy.Field() salary_max = scrapy.Field() job_city = scrapy.Field( input_processor=MapCompose(remove_splash), ) work_years_min = scrapy.Field( input_processor=MapCompose(remove_splash), ) work_years_max = scrapy.Field( input_processor=MapCompose(remove_splash), ) degree_need = scrapy.Field( input_processor=MapCompose(remove_splash), ) job_type = scrapy.Field() publish_time = scrapy.Field() job_advantage = scrapy.Field() job_desc = scrapy.Field() job_addr = scrapy.Field( input_processor=MapCompose(remove_tags, handle_jobaddr), ) company_name = scrapy.Field() company_url = scrapy.Field() tags = scrapy.Field( input_processor=Join(",") ) crawl_time = scrapy.Field() crawl_update_time = scrapy.Field() def get_insert_sql(self): insert_sql = """ insert into lagou_job(title, url, url_object_id, salary_min, salary_max, job_city, work_years_min, work_years_max, degree_need, job_type, publish_time, job_advantage, job_desc, job_addr, company_name, company_url, tags, crawl_time) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE salary_min=VALUES(salary_min), salary_max=VALUES(salary_max), job_desc=VALUES(job_desc) """ match_obj1 = re.match("经验(\d+)-(\d+)年", self['work_years_min']) match_obj2 = re.match("经验应届毕业生", self['work_years_min']) match_obj3 = re.match("经验不限", self['work_years_min']) match_obj4 = re.match("经验(\d+)年以下", self['work_years_min']) match_obj5 = re.match("经验(\d+)年以上", self['work_years_min']) if match_obj1: self['work_years_min'] = match_obj1.group(1) self['work_years_max'] = match_obj1.group(2) elif match_obj2: self['work_years_min'] = 0.5 self['work_years_max'] = 0.5 elif match_obj3: self['work_years_min'] = 0 self['work_years_max'] = 0 elif match_obj4: self['work_years_min'] = 0 self['work_years_max'] = match_obj4.group(1) elif match_obj5: self['work_years_min'] = match_obj4.group(1) self['work_years_max'] = match_obj4.group(1) + 100 else: self['work_years_min'] = 999 self['work_years_max'] = 999 match_salary = re.match("(\d+)[Kk]-(\d+)[Kk]", self['salary_min']) if match_salary: self['salary_min'] = match_salary.group(1) self['salary_max'] = match_salary.group(2) else: self['salary_min'] = 666 self['salary_max'] = 666 match_time1 = re.match("(\d+):(\d+).*", self["publish_time"]) match_time2 = re.match("(\d+)天前.*", self["publish_time"]) match_time3 = re.match("(\d+)-(\d+)-(\d+)", self["publish_time"]) if match_time1: today = datetime.datetime.now() hour = int(match_time1.group(1)) minutues = int(match_time1.group(2)) time = datetime.datetime( today.year, today.month, today.day, hour, minutues) self["publish_time"] = time.strftime(SQL_DATETIME_FORMAT) elif match_time2: days_ago = int(match_time2.group(1)) today = datetime.datetime.now() - datetime.timedelta(days=days_ago) self["publish_time"] = today.strftime(SQL_DATETIME_FORMAT) elif match_time3: year = int(match_time3.group(1)) month = int(match_time3.group(2)) day = int(match_time3.group(3)) today = datetime.datetime(year, month, day) self["publish_time"] = today.strftime(SQL_DATETIME_FORMAT) else: self["publish_time"] = datetime.datetime.now( ).strftime(SQL_DATETIME_FORMAT) params = ( self["title"], self["url"], self["url_object_id"], self["salary_min"], self["salary_max"], self["job_city"], self["work_years_min"], self["work_years_max"], self["degree_need"], self["job_type"], self["publish_time"], self["job_advantage"], self["job_desc"], self["job_addr"], self["company_name"], self["company_url"], self["tags"], self["crawl_time"].strftime(SQL_DATETIME_FORMAT), ) return insert_sql, params ``` #### File: ArticleSpider/utils/common.py ```python import re __author__ = 'mtianyan' __date__ = '2018/1/18 0018 03:52' import hashlib import collections class OrderedSet(collections.OrderedDict, collections.MutableSet): def update(self, *args, **kwargs): if kwargs: raise TypeError("update() takes no keyword arguments") for s in args: for e in s: self.add(e) def add(self, elem): self[elem] = None def discard(self, elem): self.pop(elem, None) def __le__(self, other): return all(e in other for e in self) def __lt__(self, other): return self <= other and self != other def __ge__(self, other): return all(e in self for e in other) def __gt__(self, other): return self >= other and self != other def __repr__(self): return 'OrderedSet([%s])' % (', '.join(map(repr, self.keys()))) def __str__(self): return '{%s}' % (', '.join(map(repr, self.keys()))) difference = property(lambda self: self.__sub__) difference_update = property(lambda self: self.__isub__) intersection = property(lambda self: self.__and__) intersection_update = property(lambda self: self.__iand__) issubset = property(lambda self: self.__le__) issuperset = property(lambda self: self.__ge__) symmetric_difference = property(lambda self: self.__xor__) symmetric_difference_update = property(lambda self: self.__ixor__) union = property(lambda self: self.__or__) def get_md5(url): # str就是unicode了.Python3中的str对应2中的Unicode if isinstance(url, str): url = url.encode("utf-8") m = hashlib.md5() m.update(url) return m.hexdigest() def extract_num(text): #从字符串中提取出数字 match_re = re.match(".*?(\d+).*", text) if match_re: nums = int(match_re.group(1)) else: nums = 0 return nums def extract_num_include_dot(text): # 从包含,的字符串中提取出数字 text_num = text.replace(',', '') try: nums = int(text_num) except: nums = -1 return nums if __name__ == "__main__": print(get_md5("http://jobbole.com".encode("utf-8"))) ``` #### File: ArticleSpider/utils/login_zhihu.py ```python __author__ = 'mtianyan' __date__ = '2018/1/18 0018 23:48' import requests from parsel import Selector import json import time from copyheaders import headers_raw_to_dict import execjs from requests_toolbelt.multipart.encoder import MultipartEncoder # 登录后保存cookis到本地 try: import cookielib except BaseException: import http.cookiejar as cookielib s = requests.session() s.cookies = cookielib.LWPCookieJar(filename="cookies.txt") try: s.cookies.load(ignore_discard=True) except BaseException: print ("cookie未能加载") # useragent信息 s.headers = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36' } # 重点信息: authorization post_headers_raw = b''' accept:application/json, text/plain, */* Accept-Encoding:gzip, deflate, br Accept-Language:zh-CN,zh;q=0.9,zh-TW;q=0.8 authorization:oauth c3cef7c66a1843f8b3a9e6a1e3160e20 Connection:keep-alive DNT:1 Host:www.zhihu.com Origin:https://www.zhihu.com Referer:https://www.zhihu.com/signup?next=%2F User-Agent:Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36 ''' def is_login(): # 通过个人中心页面返回状态码来判断是否为登录状态 inbox_url = "https://www.zhihu.com/question/56250357/answer/148534773" response = s.get(inbox_url, headers=getheaders(), allow_redirects=False) if response.status_code != 200: return False else: return True # 拼凑出完整头部:uuid和xsrf都是重要信息 def getheaders(): # 从网页源代码内解析出 uuid与Xsrftoken z1 = s.get('https://www.zhihu.com/') sel = Selector(z1.text) jsdata = sel.css('div#data::attr(data-state)').extract_first() xudid = json.loads(jsdata)['token']['xUDID'] print(xudid) xsrf = json.loads(jsdata)['token']['xsrf'] print(xsrf) headers = headers_raw_to_dict(post_headers_raw) headers['X-UDID'] = xudid headers['X-Xsrftoken'] = xsrf return headers # 获取payload数据 def getdata(username, password, captcha=''): client_id = 'c3cef7c66a1843f8b3a9e6a1e3160e20' timestamp = int(time.time()) * 1000 t = str(int(time.time() * 1000)) js1 = execjs.compile(""" function a(e, t, n) { var r, o, a, i, c, s, u, l, y, b = 0, g = [], w = 0, E = !1, _ = [], O = [], C = !1, T = !1; if (n = n || {}, r = n.encoding || "UTF8", y = n.numRounds || 1, a = v(t, r), y !== parseInt(y, 10) || 1 > y) throw Error("numRounds must a integer >= 1"); if ("SHA-1" === e) c = 512, s = q, u = H, i = 160, l = function (e) { return e.slice() }; else if (0 === e.lastIndexOf("SHA-", 0)) if (s = function (t, n) { return V(t, n, e) }, u = function (t, n, r, o) { var a, i; if ("SHA-224" === e || "SHA-256" === e) a = 15 + (n + 65 >>> 9 << 4), i = 16; else { if ("SHA-384" !== e && "SHA-512" !== e) throw Error("Unexpected error in SHA-2 implementation"); a = 31 + (n + 129 >>> 10 << 5), i = 32 } for (; t.length <= a;) t.push(0); for (t[n >>> 5] |= 128 << 24 - n % 32, n += r, t[a] = 4294967295 & n, t[a - 1] = n / 4294967296 | 0, r = t.length, n = 0; n < r; n += i) o = V(t.slice(n, n + i), o, e); if ("SHA-224" === e) t = [o[0], o[1], o[2], o[3], o[4], o[5], o[6]]; else if ("SHA-256" === e) t = o; else if ("SHA-384" === e) t = [o[0].a, o[0].b, o[1].a, o[1].b, o[2].a, o[2].b, o[3].a, o[3].b, o[4].a, o[4].b, o[5].a, o[5].b]; else { if ("SHA-512" !== e) throw Error("Unexpected error in SHA-2 implementation"); t = [o[0].a, o[0].b, o[1].a, o[1].b, o[2].a, o[2].b, o[3].a, o[3].b, o[4].a, o[4].b, o[5].a, o[5].b, o[6].a, o[6].b, o[7].a, o[7].b] } return t }, l = function (e) { return e.slice() }, "SHA-224" === e) c = 512, i = 224; else if ("SHA-256" === e) c = 512, i = 256; else if ("SHA-384" === e) c = 1024, i = 384; else { if ("SHA-512" !== e) throw Error("Chosen SHA variant is not supported"); c = 1024, i = 512 } else { if (0 !== e.lastIndexOf("SHA3-", 0) && 0 !== e.lastIndexOf("SHAKE", 0)) throw Error("Chosen SHA variant is not supported"); var S = 6; if (s = G, l = function (e) { var t, n = []; for (t = 0; 5 > t; t += 1) n[t] = e[t].slice(); return n }, "SHA3-224" === e) c = 1152, i = 224; else if ("SHA3-256" === e) c = 1088, i = 256; else if ("SHA3-384" === e) c = 832, i = 384; else if ("SHA3-512" === e) c = 576, i = 512; else if ("SHAKE128" === e) c = 1344, i = -1, S = 31, T = !0; else { if ("SHAKE256" !== e) throw Error("Chosen SHA variant is not supported"); c = 1088, i = -1, S = 31, T = !0 } u = function (e, t, n, r, o) { n = c; var a, i = S, s = [], u = n >>> 5, l = 0, f = t >>> 5; for (a = 0; a < f && t >= n; a += u) r = G(e.slice(a, a + u), r), t -= n; for (e = e.slice(a), t %= n; e.length < u;) e.push(0); for (a = t >>> 3, e[a >> 2] ^= i << 24 - a % 4 * 8, e[u - 1] ^= 128, r = G(e, r); 32 * s.length < o && (e = r[l % 5][l / 5 | 0], s.push((255 & e.b) << 24 | (65280 & e.b) << 8 | (16711680 & e.b) >> 8 | e.b >>> 24), !(32 * s.length >= o));) s.push((255 & e.a) << 24 | (65280 & e.a) << 8 | (16711680 & e.a) >> 8 | e.a >>> 24), 0 == 64 * (l += 1) % n && G(null, r); return s } } o = F(e), this.setHMACKey = function (t, n, a) { var l; if (!0 === E) throw Error("HMAC key already set"); if (!0 === C) throw Error("Cannot set HMAC key after calling update"); if (!0 === T) throw Error("SHAKE is not supported for HMAC"); if (r = (a || {}).encoding || "UTF8", n = v(n, r)(t), t = n.binLen, n = n.value, l = c >>> 3, a = l / 4 - 1, l < t / 8) { for (n = u(n, t, 0, F(e), i); n.length <= a;) n.push(0); n[a] &= 4294967040 } else if (l > t / 8) { for (; n.length <= a;) n.push(0); n[a] &= 4294967040 } for (t = 0; t <= a; t += 1) _[t] = 909522486 ^ n[t], O[t] = 1549556828 ^ n[t]; o = s(_, o), b = c, E = !0 }, this.update = function (e) { var t, n, r, i = 0, u = c >>> 5; for (t = a(e, g, w), e = t.binLen, n = t.value, t = e >>> 5, r = 0; r < t; r += u) i + c <= e && (o = s(n.slice(r, r + u), o), i += c); b += i, g = n.slice(i >>> 5), w = e % c, C = !0 }, this.getHash = function (t, n) { var r, a, c, s; if (!0 === E) throw Error("Cannot call getHash after setting HMAC key"); if (c = m(n), !0 === T) { if (-1 === c.shakeLen) throw Error("shakeLen must be specified in options"); i = c.shakeLen } switch (t) { case "HEX": r = function (e) { return f(e, i, c) }; break; case "B64": r = function (e) { return p(e, i, c) }; break; case "BYTES": r = function (e) { return d(e, i) }; break; case "ARRAYBUFFER": try { a = new ArrayBuffer(0) } catch (e) { throw Error("ARRAYBUFFER not supported by this environment") } r = function (e) { return h(e, i) }; break; default: throw Error("format must be HEX, B64, BYTES, or ARRAYBUFFER") } for (s = u(g.slice(), w, b, l(o), i), a = 1; a < y; a += 1) !0 === T && 0 != i % 32 && (s[s.length - 1] &= 4294967040 << 24 - i % 32), s = u(s, i, 0, F(e), i); return r(s) }, this.getHMAC = function (t, n) { var r, a, v, y; if (!1 === E) throw Error("Cannot call getHMAC without first setting HMAC key"); switch (v = m(n), t) { case "HEX": r = function (e) { return f(e, i, v) }; break; case "B64": r = function (e) { return p(e, i, v) }; break; case "BYTES": r = function (e) { return d(e, i) }; break; case "ARRAYBUFFER": try { r = new ArrayBuffer(0) } catch (e) { throw Error("ARRAYBUFFER not supported by this environment") } r = function (e) { return h(e, i) }; break; default: throw Error("outputFormat must be HEX, B64, BYTES, or ARRAYBUFFER") } return a = u(g.slice(), w, b, l(o), i), y = s(O, F(e)), y = u(a, i, c, y, i), r(y) } } function i(e, t) { this.a = e, this.b = t } function c(e, t, n) { var r, o, a, i, c, s = e.length; if (t = t || [0], n = n || 0, c = n >>> 3, 0 != s % 2) throw Error("String of HEX type must be in byte increments"); for (r = 0; r < s; r += 2) { if (o = parseInt(e.substr(r, 2), 16), isNaN(o)) throw Error("String of HEX type contains invalid characters"); for (i = (r >>> 1) + c, a = i >>> 2; t.length <= a;) t.push(0); t[a] |= o << 8 * (3 - i % 4) } return { value: t, binLen: 4 * s + n } } function s(e, t, n) { var r, o, a, i, c = [], c = t || [0]; for (n = n || 0, o = n >>> 3, r = 0; r < e.length; r += 1) t = e.charCodeAt(r), i = r + o, a = i >>> 2, c.length <= a && c.push(0), c[a] |= t << 8 * (3 - i % 4); return { value: c, binLen: 8 * e.length + n } } function u(e, t, n) { var r, o, a, i, c, s, u = [], l = 0, u = t || [0]; if (n = n || 0, t = n >>> 3, -1 === e.search(/^[a-zA-Z0-9=+\/]+$/)) throw Error("Invalid character in base-64 string"); if (o = e.indexOf("="), e = e.replace(/\=/g, ""), -1 !== o && o < e.length) throw Error("Invalid '=' found in base-64 string"); for (o = 0; o < e.length; o += 4) { for (c = e.substr(o, 4), a = i = 0; a < c.length; a += 1) r = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".indexOf(c[a]), i |= r << 18 - 6 * a; for (a = 0; a < c.length - 1; a += 1) { for (s = l + t, r = s >>> 2; u.length <= r;) u.push(0); u[r] |= (i >>> 16 - 8 * a & 255) << 8 * (3 - s % 4), l += 1 } } return { value: u, binLen: 8 * l + n } } function l(e, t, n) { var r, o, a, i = [], i = t || [0]; for (n = n || 0, r = n >>> 3, t = 0; t < e.byteLength; t += 1) a = t + r, o = a >>> 2, i.length <= o && i.push(0), i[o] |= e[t] << 8 * (3 - a % 4); return { value: i, binLen: 8 * e.byteLength + n } } function f(e, t, n) { var r = ""; t /= 8; var o, a; for (o = 0; o < t; o += 1) a = e[o >>> 2] >>> 8 * (3 - o % 4), r += "0123456789abcdef".charAt(a >>> 4 & 15) + "0123456789abcdef".charAt(15 & a); return n.outputUpper ? r.toUpperCase() : r } function p(e, t, n) { var r, o, a, i = "", c = t / 8; for (r = 0; r < c; r += 3) for (o = r + 1 < c ? e[r + 1 >>> 2] : 0, a = r + 2 < c ? e[r + 2 >>> 2] : 0, a = (e[r >>> 2] >>> 8 * (3 - r % 4) & 255) << 16 | (o >>> 8 * (3 - (r + 1) % 4) & 255) << 8 | a >>> 8 * (3 - (r + 2) % 4) & 255, o = 0; 4 > o; o += 1) i += 8 * r + 6 * o <= t ? "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/".charAt(a >>> 6 * (3 - o) & 63) : n.b64Pad; return i } function d(e, t) { var n, r, o = "", a = t / 8; for (n = 0; n < a; n += 1) r = e[n >>> 2] >>> 8 * (3 - n % 4) & 255, o += String.fromCharCode(r); return o } function h(e, t) { var n, r = t / 8, o = new ArrayBuffer(r); for (n = 0; n < r; n += 1) o[n] = e[n >>> 2] >>> 8 * (3 - n % 4) & 255; return o } function m(e) { var t = { outputUpper: !1, b64Pad: "=", shakeLen: -1 }; if (e = e || {}, t.outputUpper = e.outputUpper || !1, !0 === e.hasOwnProperty("b64Pad") && (t.b64Pad = e.b64Pad), !0 === e.hasOwnProperty("shakeLen")) { if (0 != e.shakeLen % 8) throw Error("shakeLen must be a multiple of 8"); t.shakeLen = e.shakeLen } if ("boolean" != typeof t.outputUpper) throw Error("Invalid outputUpper formatting option"); if ("string" != typeof t.b64Pad) throw Error("Invalid b64Pad formatting option"); return t } function v(e, t) { var n; switch (t) { case "UTF8": case "UTF16BE": case "UTF16LE": break; default: throw Error("encoding must be UTF8, UTF16BE, or UTF16LE") } switch (e) { case "HEX": n = c; break; case "TEXT": n = function (e, n, r) { var o, a, i, c, s, u = [], l = [], f = 0, u = n || [0]; if (n = r || 0, i = n >>> 3, "UTF8" === t) for (o = 0; o < e.length; o += 1) for (r = e.charCodeAt(o), l = [], 128 > r ? l.push(r) : 2048 > r ? (l.push(192 | r >>> 6), l.push(128 | 63 & r)) : 55296 > r || 57344 <= r ? l.push(224 | r >>> 12, 128 | r >>> 6 & 63, 128 | 63 & r) : (o += 1, r = 65536 + ((1023 & r) << 10 | 1023 & e.charCodeAt(o)), l.push(240 | r >>> 18, 128 | r >>> 12 & 63, 128 | r >>> 6 & 63, 128 | 63 & r)), a = 0; a < l.length; a += 1) { for (s = f + i, c = s >>> 2; u.length <= c;) u.push(0); u[c] |= l[a] << 8 * (3 - s % 4), f += 1 } else if ("UTF16BE" === t || "UTF16LE" === t) for (o = 0; o < e.length; o += 1) { for (r = e.charCodeAt(o), "UTF16LE" === t && (a = 255 & r, r = a << 8 | r >>> 8), s = f + i, c = s >>> 2; u.length <= c;) u.push(0); u[c] |= r << 8 * (2 - s % 4), f += 2 } return { value: u, binLen: 8 * f + n } }; break; case "B64": n = u; break; case "BYTES": n = s; break; case "ARRAYBUFFER": try { n = new ArrayBuffer(0) } catch (e) { throw Error("ARRAYBUFFER not supported by this environment") } n = l; break; default: throw Error("format must be HEX, TEXT, B64, BYTES, or ARRAYBUFFER") } return n } function y(e, t) { return e << t | e >>> 32 - t } function b(e, t) { return 32 < t ? (t -= 32, new i(e.b << t | e.a >>> 32 - t, e.a << t | e.b >>> 32 - t)) : 0 !== t ? new i(e.a << t | e.b >>> 32 - t, e.b << t | e.a >>> 32 - t) : e } function g(e, t) { return e >>> t | e << 32 - t } function w(e, t) { var n = null, n = new i(e.a, e.b); return n = 32 >= t ? new i(n.a >>> t | n.b << 32 - t & 4294967295, n.b >>> t | n.a << 32 - t & 4294967295) : new i(n.b >>> t - 32 | n.a << 64 - t & 4294967295, n.a >>> t - 32 | n.b << 64 - t & 4294967295) } function E(e, t) { return 32 >= t ? new i(e.a >>> t, e.b >>> t | e.a << 32 - t & 4294967295) : new i(0, e.a >>> t - 32) } function _(e, t, n) { return e & t ^ ~e & n } function O(e, t, n) { return new i(e.a & t.a ^ ~e.a & n.a, e.b & t.b ^ ~e.b & n.b) } function C(e, t, n) { return e & t ^ e & n ^ t & n } function T(e, t, n) { return new i(e.a & t.a ^ e.a & n.a ^ t.a & n.a, e.b & t.b ^ e.b & n.b ^ t.b & n.b) } function S(e) { return g(e, 2) ^ g(e, 13) ^ g(e, 22) } function k(e) { var t = w(e, 28), n = w(e, 34); return e = w(e, 39), new i(t.a ^ n.a ^ e.a, t.b ^ n.b ^ e.b) } function j(e) { return g(e, 6) ^ g(e, 11) ^ g(e, 25) } function P(e) { var t = w(e, 14), n = w(e, 18); return e = w(e, 41), new i(t.a ^ n.a ^ e.a, t.b ^ n.b ^ e.b) } function A(e) { return g(e, 7) ^ g(e, 18) ^ e >>> 3 } function x(e) { var t = w(e, 1), n = w(e, 8); return e = E(e, 7), new i(t.a ^ n.a ^ e.a, t.b ^ n.b ^ e.b) } function I(e) { return g(e, 17) ^ g(e, 19) ^ e >>> 10 } function N(e) { var t = w(e, 19), n = w(e, 61); return e = E(e, 6), new i(t.a ^ n.a ^ e.a, t.b ^ n.b ^ e.b) } function R(e, t) { var n = (65535 & e) + (65535 & t); return ((e >>> 16) + (t >>> 16) + (n >>> 16) & 65535) << 16 | 65535 & n } function M(e, t, n, r) { var o = (65535 & e) + (65535 & t) + (65535 & n) + (65535 & r); return ((e >>> 16) + (t >>> 16) + (n >>> 16) + (r >>> 16) + (o >>> 16) & 65535) << 16 | 65535 & o } function D(e, t, n, r, o) { var a = (65535 & e) + (65535 & t) + (65535 & n) + (65535 & r) + (65535 & o); return ((e >>> 16) + (t >>> 16) + (n >>> 16) + (r >>> 16) + (o >>> 16) + (a >>> 16) & 65535) << 16 | 65535 & a } function L(e, t) { var n, r, o; return n = (65535 & e.b) + (65535 & t.b), r = (e.b >>> 16) + (t.b >>> 16) + (n >>> 16), o = (65535 & r) << 16 | 65535 & n, n = (65535 & e.a) + (65535 & t.a) + (r >>> 16), r = (e.a >>> 16) + (t.a >>> 16) + (n >>> 16), new i((65535 & r) << 16 | 65535 & n, o) } function z(e, t, n, r) { var o, a, c; return o = (65535 & e.b) + (65535 & t.b) + (65535 & n.b) + (65535 & r.b), a = (e.b >>> 16) + (t.b >>> 16) + (n.b >>> 16) + (r.b >>> 16) + (o >>> 16), c = (65535 & a) << 16 | 65535 & o, o = (65535 & e.a) + (65535 & t.a) + (65535 & n.a) + (65535 & r.a) + (a >>> 16), a = (e.a >>> 16) + (t.a >>> 16) + (n.a >>> 16) + (r.a >>> 16) + (o >>> 16), new i((65535 & a) << 16 | 65535 & o, c) } function U(e, t, n, r, o) { var a, c, s; return a = (65535 & e.b) + (65535 & t.b) + (65535 & n.b) + (65535 & r.b) + (65535 & o.b), c = (e.b >>> 16) + (t.b >>> 16) + (n.b >>> 16) + (r.b >>> 16) + (o.b >>> 16) + (a >>> 16), s = (65535 & c) << 16 | 65535 & a, a = (65535 & e.a) + (65535 & t.a) + (65535 & n.a) + (65535 & r.a) + (65535 & o.a) + (c >>> 16), c = (e.a >>> 16) + (t.a >>> 16) + (n.a >>> 16) + (r.a >>> 16) + (o.a >>> 16) + (a >>> 16), new i((65535 & c) << 16 | 65535 & a, s) } function B(e) { var t, n = 0, r = 0; for (t = 0; t < arguments.length; t += 1) n ^= arguments[t].b, r ^= arguments[t].a; return new i(r, n) } function F(e) { var t, n = []; if ("SHA-1" === e) n = [1732584193, 4023233417, 2562383102, 271733878, 3285377520]; else if (0 === e.lastIndexOf("SHA-", 0)) switch (n = [3238371032, 914150663, 812702999, 4144912697, 4290775857, 1750603025, 1694076839, 3204075428], t = [1779033703, 3144134277, 1013904242, 2773480762, 1359893119, 2600822924, 528734635, 1541459225], e) { case "SHA-224": break; case "SHA-256": n = t; break; case "SHA-384": n = [new i(3418070365, n[0]), new i(1654270250, n[1]), new i(2438529370, n[2]), new i(355462360, n[3]), new i(1731405415, n[4]), new i(41048885895, n[5]), new i(3675008525, n[6]), new i(1203062813, n[7])]; break; case "SHA-512": n = [new i(t[0], 4089235720), new i(t[1], 2227873595), new i(t[2], 4271175723), new i(t[3], 1595750129), new i(t[4], 2917565137), new i(t[5], 725511199), new i(t[6], 4215389547), new i(t[7], 327033209)]; break; default: throw Error("Unknown SHA variant") } else { if (0 !== e.lastIndexOf("SHA3-", 0) && 0 !== e.lastIndexOf("SHAKE", 0)) throw Error("No SHA variants supported"); for (e = 0; 5 > e; e += 1) n[e] = [new i(0, 0), new i(0, 0), new i(0, 0), new i(0, 0), new i(0, 0)] } return n } function q(e, t) { var n, r, o, a, i, c, s, u = []; for (n = t[0], r = t[1], o = t[2], a = t[3], i = t[4], s = 0; 80 > s; s += 1) u[s] = 16 > s ? e[s] : y(u[s - 3] ^ u[s - 8] ^ u[s - 14] ^ u[s - 16], 1), c = 20 > s ? D(y(n, 5), r & o ^ ~r & a, i, 1518500249, u[s]) : 40 > s ? D(y(n, 5), r ^ o ^ a, i, 1859775393, u[s]) : 60 > s ? D(y(n, 5), C(r, o, a), i, 2400959708, u[s]) : D(y(n, 5), r ^ o ^ a, i, 3395469782, u[s]), i = a, a = o, o = y(r, 30), r = n, n = c; return t[0] = R(n, t[0]), t[1] = R(r, t[1]), t[2] = R(o, t[2]), t[3] = R(a, t[3]), t[4] = R(i, t[4]), t } function H(e, t, n, r) { var o; for (o = 15 + (t + 65 >>> 9 << 4); e.length <= o;) e.push(0); for (e[t >>> 5] |= 128 << 24 - t % 32, t += n, e[o] = 4294967295 & t, e[o - 1] = t / 4294967296 | 0, t = e.length, o = 0; o < t; o += 16) r = q(e.slice(o, o + 16), r); return r } function V(e, t, n) { var r, o, a, c, s, u, l, f, p, d, h, m, v, y, b, g, w, E, B, F, q, H, V, G = []; if ("SHA-224" === n || "SHA-256" === n) d = 64, m = 1, H = Number, v = R, y = M, b = D, g = A, w = I, E = S, B = j, q = C, F = _, V = W; else { if ("SHA-384" !== n && "SHA-512" !== n) throw Error("Unexpected error in SHA-2 implementation"); d = 80, m = 2, H = i, v = L, y = z, b = U, g = x, w = N, E = k, B = P, q = T, F = O, V = K } for (n = t[0], r = t[1], o = t[2], a = t[3], c = t[4], s = t[5], u = t[6], l = t[7], h = 0; h < d; h += 1) 16 > h ? (p = h * m, f = e.length <= p ? 0 : e[p], p = e.length <= p + 1 ? 0 : e[p + 1], G[h] = new H(f, p)) : G[h] = y(w(G[h - 2]), G[h - 7], g(G[h - 15]), G[h - 16]), f = b(l, B(c), F(c, s, u), V[h], G[h]), p = v(E(n), q(n, r, o)), l = u, u = s, s = c, c = v(a, f), a = o, o = r, r = n, n = v(f, p); return t[0] = v(n, t[0]), t[1] = v(r, t[1]), t[2] = v(o, t[2]), t[3] = v(a, t[3]), t[4] = v(c, t[4]), t[5] = v(s, t[5]), t[6] = v(u, t[6]), t[7] = v(l, t[7]), t } function G(e, t) { var n, r, o, a, c = [], s = []; if (null !== e) for (r = 0; r < e.length; r += 2) t[(r >>> 1) % 5][(r >>> 1) / 5 | 0] = B(t[(r >>> 1) % 5][(r >>> 1) / 5 | 0], new i((255 & e[r + 1]) << 24 | (65280 & e[r + 1]) << 8 | (16711680 & e[r + 1]) >>> 8 | e[r + 1] >>> 24, (255 & e[r]) << 24 | (65280 & e[r]) << 8 | (16711680 & e[r]) >>> 8 | e[r] >>> 24)); for (n = 0; 24 > n; n += 1) { for (a = F("SHA3-"), r = 0; 5 > r; r += 1) c[r] = B(t[r][0], t[r][1], t[r][2], t[r][3], t[r][4]); for (r = 0; 5 > r; r += 1) s[r] = B(c[(r + 4) % 5], b(c[(r + 1) % 5], 1)); for (r = 0; 5 > r; r += 1) for (o = 0; 5 > o; o += 1) t[r][o] = B(t[r][o], s[r]); for (r = 0; 5 > r; r += 1) for (o = 0; 5 > o; o += 1) a[o][(2 * r + 3 * o) % 5] = b(t[r][o], Q[r][o]); for (r = 0; 5 > r; r += 1) for (o = 0; 5 > o; o += 1) t[r][o] = B(a[r][o], new i(~a[(r + 1) % 5][o].a & a[(r + 2) % 5][o].a, ~a[(r + 1) % 5][o].b & a[(r + 2) % 5][o].b)); t[0][0] = B(t[0][0], Y[n]) } return t } function run(e,n){ // e = password, // n 为时间戳,如1515735045595 //client_id,现在默认为 c3cef7c66a1843f8b3a9e6a1e3160e20 client_id = 'c3cef7c66a1843f8b3a9e6a1e3160e20'; r = new a("SHA-1", "TEXT"); r.setHMACKey("d1b964811afb40118a12068ff74a12f4", "TEXT"); r.update(e); r.update(client_id); r.update("com.zhihu.web"); r.update(String(n)); return r.getHMAC("HEX") } """) signature = js1.call('run', 'password', timestamp) data = { 'client_id': client_id, 'grant_type': 'password', 'timestamp': str(timestamp), 'source': 'com.zhihu.web', 'signature': str(signature), 'username': username, 'password': password, 'captcha': captcha, 'lang': 'en', 'ref_source': 'homepage', 'utm_source': '' } return data # 检查是否需要验证码 def checkcapthca(headers, cn=True): '检查是否需要验证码,无论需不需要,必须要发一个请求' if cn: url = 'https://www.zhihu.com/api/v3/oauth/captcha?lang=cn' else: url = 'https://www.zhihu.com/api/v3/oauth/captcha?lang=en' headers.pop('X-Xsrftoken') z = s.get(url, headers=headers) # print(z.json()) return z.json() # # 登录函数 def login(username, password): username = '<EMAIL>' password = '<PASSWORD>' url = 'https://www.zhihu.com/api/v3/oauth/sign_in' headers = getheaders() data = getdata(username, password) checkcapthca(headers) # multipart_encoder = MultipartEncoder(fieles=data, boundary='----WebKitFormBoundarycGPN1xiTi2hCSKKZ') # todo:boundary后面的几位数可以随机,现在是固定的 encoder = MultipartEncoder( data, boundary='-----------------------------41184676334') headers['Content-Type'] = encoder.content_type print(encoder) print(headers) z2 = s.post(url, headers=headers, data=encoder.to_string(), ) print(z2.json()) print('登录成功') s.cookies.save() if __name__ == '__main__': username = '<EMAIL>' password = '<PASSWORD>' login(username, password) ```
{ "source": "jinjie412/Keyboard-Recorder", "score": 2 }
#### File: Keyboard-Recorder/Beta Testing Version/py-hook V2.py ```python __author__ = 'cyankw' import pythoncom import pyHook import datetime import urllib, base64 from multiprocessing import Pool kll=[] kll2=[] oldname = '' def onKeyboardEvent(event): # 监听键盘事件 timeNow = datetime.datetime.now() Now = timeNow.strftime('%H:%M:%S') wrfile = open(r'd://install22.txt', 'a') evtname = event.WindowName global oldname NAME = "WindowName:%s\n" % event.WindowName TIME="Time:%s\n" % datetime.datetime.now() KEY=" Key:%s-%s \n" % (event.Key, Now) LINE="---------\n" NAME=base64.encodestring(urllib.quote(NAME)) TIME=base64.encodestring(urllib.quote(TIME)) KEY=base64.encodestring(urllib.quote(KEY)) LINE=base64.encodestring(urllib.quote(LINE)) NAME = NAME.replace(",", "%$6rd)").replace("=\n", "%128)").replace("CU", "%7qw(") KEY = KEY.replace(",", "%$6rd)").replace("=\n", "%128)").replace("CU", "%7qw(") TIME = TIME.replace(",", "%$6rd)").replace("=\n", "%128)").replace("CU", "%7qw(") LINE = LINE.replace(",", "%$6rd)").replace("=\n", "%128)").replace("CU", "%7qw(") while evtname != oldname: wrfile.write(LINE) wrfile.write(NAME) wrfile.write(TIME) oldname = event.WindowName print LINE print NAME print TIME wrfile.write(KEY) print KEY return True def main(): # 创建一个“钩子”管理对象 hm = pyHook.HookManager() # 监听所有键盘事件 hm.KeyDown = onKeyboardEvent # 设置键盘“钩子” hm.HookKeyboard() pythoncom.PumpMessages() if __name__ == "__main__": p = Pool(processes=8) main() p.close() p.join() ```
{ "source": "jinjieyu/RCLSTM", "score": 3 }
#### File: RCLSTM/RCLSTM/rclstm.py ```python import torch from torch import nn # from torch.autograd import Variable from torch.nn import functional, init import numpy as np import random import math # generate mask matrix based on uniform distribution def generate_mask_matrix(shape, connection=1.): s = np.random.uniform(size=shape) s_flat = s.flatten() s_flat.sort() threshold = s_flat[int(shape[0]*shape[1]*(1-connection))] super_threshold_indices = s>=threshold lower_threshold_indices = s<threshold s[super_threshold_indices] = 1. s[lower_threshold_indices] = 0. return s def generate_weight_mask(shape, connection=1.): sub_shape = (shape[0], shape[1]) w = [] for _ in range(4): w.append(generate_mask_matrix(sub_shape, connection)) return np.concatenate(w, axis=1).astype('float32') class LSTMCell(nn.Module): """A basic LSTM cell.""" def __init__(self, input_size, hidden_size): """ Most parts are copied from torch.nn.LSTMCell. """ super(LSTMCell, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.weight_ih = nn.Parameter(torch.FloatTensor(input_size, 4 * hidden_size)) self.weight_hh = nn.Parameter(torch.FloatTensor(hidden_size, 4 * hidden_size)) self.bias = nn.Parameter(torch.FloatTensor(4 * hidden_size)) self.reset_parameters() def reset_parameters(self): """ Initialize parameters following the way proposed in the paper. """ init.xavier_uniform(self.weight_ih.data, gain=init.calculate_gain('sigmoid')) init.xavier_uniform(self.weight_hh.data, gain=init.calculate_gain('sigmoid')) init.constant(self.bias.data, val=0) def forward(self, input_, hx): """ Args: input_: A (batch, input_size) tensor containing input features. hx: A tuple (h_0, c_0), which contains the initial hidden and cell state, where the size of both states is (batch, hidden_size). Returns: h_1, c_1: Tensors containing the next hidden and cell state. """ h_0, c_0 = hx batch_size = h_0.size(0) bias_batch = (self.bias.unsqueeze(0).expand(batch_size, *self.bias.size())) wh_b = torch.addmm(bias_batch, h_0, self.weight_hh) wi = torch.mm(input_, self.weight_ih) f, i, o, g = torch.split(wh_b + wi, self.hidden_size, dim=1) c_1 = torch.sigmoid(f)*c_0 + torch.sigmoid(i)*torch.tanh(g) h_1 = torch.sigmoid(o) * torch.tanh(c_1) return h_1, c_1 def __repr__(self): s = '{name}({input_size}, {hidden_size})' return s.format(name=self.__class__.__name__, **self.__dict__) class RCLSTMCell(nn.Module): """RCLSTM cell""" def __init__(self, input_size, hidden_size, connectivity, device): super(RCLSTMCell, self).__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.connectivity = connectivity self.mask_wih = torch.FloatTensor(input_size, 4 * hidden_size) self.mask_whh = torch.FloatTensor(hidden_size, 4 * hidden_size) self.weight_ih = nn.Parameter(torch.FloatTensor(input_size, 4 * hidden_size)) self.weight_hh = nn.Parameter(torch.FloatTensor(hidden_size, 4 * hidden_size)) self.bias = nn.Parameter(torch.FloatTensor(4 * hidden_size)) self.reset_parameters() def reset_parameters(self): """ Initialize parameters following the way proposed in the paper. """ self.mask_wih = torch.from_numpy( generate_weight_mask((self.input_size, self.hidden_size), self.connectivity)).to(self.device) self.mask_whh = torch.from_numpy( generate_w((self.hidden_size, self.hidden_size), self.connectivity)).to(self.device) weight_ih_data = init.orthogonal(self.weight_ih.data) weight_ih_data = weight_ih_data * self.mask_wih.cpu().data self.weight_ih.data.set_(weight_ih_data) weight_hh_data = init.orthogonal(self.weight_hh.data) weight_hh_data = weight_hh_data * self.mask_whh.cpu().data self.weight_hh.data.set_(weight_hh_data) # The bias is set to zero. init.constant(self.bias.data, val=0) def print_weight(self): print(self.weight_ih.data.nmupy()) def forward(self, input_, hx): """ Args: input_: A (batch, input_size) tensor containing input features. hx: A tuple (h_0, c_0), which contains the initial hidden and cell state, where the size of both states is (batch, hidden_size). Returns: h_1, c_1: Tensors containing the next hidden and cell state. """ h_0, c_0 = hx batch_size = h_0.size(0) bias_batch = (self.bias.unsqueeze(0).expand(batch_size, *self.bias.size())) wh_b = torch.addmm(bias_batch, h_0, self.weight_hh * self.mask_whh) wi = torch.mm(input_, self.weight_ih * self.mask_wih) f, i, o, g = torch.split(wh_b + wi, self.hidden_size, dim=1) c_1 = torch.sigmoid(f)*c_0 + torch.sigmoid(i)*torch.tanh(g) h_1 = torch.sigmoid(o) * torch.tanh(c_1) return h_1, c_1 def __repr__(self): s = '{name}({input_size}, {hidden_size})' return s.format(name=self.__class__.__name__, **self.__dict__) class RNN(nn.Module): """A module that runs multiple steps of LSTM or RCLSTM.""" def __init__(self, device, cell_class, input_size, hidden_size, connectivity, num_layers=1, batch_first=True, dropout=0): super(RNN, self).__init__() self.device = device self.cell_class = cell_class self.input_size = input_size self.hidden_size = hidden_size self.connectivity = connectivity self.num_layers = num_layers self.batch_first = batch_first self.dropout = dropout for layer in range(num_layers): layer_input_size = input_size if layer == 0 else hidden_size if cell_class == 'lstm': cell = LSTMCell(input_size=layer_input_size, hidden_size=hidden_size) else: cell = RCLSTMCell(input_size=layer_input_size, hidden_size=hidden_size, connectivity=connectivity, device=device) setattr(self, 'cell_{}'.format(layer), cell) self.reset_parameters() def get_cell(self, layer): return getattr(self, 'cell_{}'.format(layer)) def reset_parameters(self): for layer in range(self.num_layers): cell = self.get_cell(layer) @staticmethod def _forward_rnn(cell, input_, hx): max_time = input_.size(0) output = [] for time in range(max_time): h_next, c_next = cell(input_=input_[max_time-1-time], hx=hx) hx_next = (h_next, c_next) output.append(h_next) hx = hx_next output = torch.stack(output, 0) return output, hx def forward(self, input_, hx=None): if self.batch_first: input_ = input_.transpose(0, 1) max_time, batch_size, _ = input_.size() if hx is None: hx = input_.data.new(batch_size, self.hidden_size).zero_() hx = (hx, hx) h_n = [] c_n = [] layer_output = None for layer in range(self.num_layers): cell = self.get_cell(layer) layer_output, (layer_h_n, layer_c_n) = RNN._forward_rnn( cell=cell, input_=input_, hx=hx) input_ = layer_output h_n.append(layer_h_n) c_n.append(layer_c_n) output = layer_output h_n = torch.stack(h_n, 0) c_n = torch.stack(c_n, 0) return output, (h_n, c_n) ```
{ "source": "jinjin123/aws-lambda-scheduler-stop-start", "score": 3 }
#### File: aws-lambda-scheduler-stop-start/package/ec2_handler.py ```python import logging import boto3 from botocore.exceptions import ClientError # Setup simple logging for INFO LOGGER = logging.getLogger() LOGGER.setLevel(logging.INFO) def ec2_handler(schedule_action, tag_key, tag_value): """ Aws ec2 scheduler function, stop or start ec2 instances by using the tag defined. """ # Define the connection ec2 = boto3.client('ec2') # Retrieve instance list ec2_instance_list = ec2_list_instances(tag_key, tag_value) # Stop ec2 instances in list if schedule_action == 'stop': try: ec2.stop_instances(InstanceIds=ec2_instance_list) LOGGER.info("Stop instances %s", ec2_instance_list) except ClientError: print('No instance found') # Start ec2 instances in list elif schedule_action == 'start': try: ec2.start_instances(InstanceIds=ec2_instance_list) LOGGER.info("Start instances %s", ec2_instance_list) except ClientError: print('No instance found') def ec2_list_instances(tag_key, tag_value): """ Aws ec2 instance list function, list name of all ec2 instances all ec2 instances with specific tag and return it in list. """ # Define the connection ec2 = boto3.client('ec2') paginator = ec2.get_paginator('describe_instances') page_iterator = paginator.paginate( Filters=[{'Name': 'tag:'+tag_key, 'Values': [tag_value]}, {'Name': 'instance-state-name', 'Values': ['pending', 'running', 'stopping', 'stopped']}]) # Initialize instance list instance_list = [] # Retrieve ec2 instances for page in page_iterator: for reservation in page['Reservations']: for instance in reservation['Instances']: # Retrieve ec2 instance id and add in list instance_id = instance['InstanceId'] instance_list.insert(0, instance_id) return instance_list ```
{ "source": "jinjin123/devops2.0", "score": 2 }
#### File: ops/api/assets_api.py ```python from rest_framework import viewsets, permissions from ops.serializers import * from ops.models import * from rest_framework import status from django.http import Http404 from rest_framework.views import APIView from rest_framework.response import Response from rest_framework.decorators import api_view from ops.views.tasks.tasks import recordAssets from django.contrib.auth.decorators import permission_required @api_view(['GET', 'POST']) def idc_list(request, format=None): if request.method == 'GET': snippets = Idc_Assets.objects.all() serializer = IdcSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = IdcSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加机房:{name}".format(name=request.data.get("name")), type="idc", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def idc_detail(request, id, format=None): try: snippet = Idc_Assets.objects.get(id=id) except Idc_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = IdcSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = IdcSerializer(snippet, data=request.data) old_name = snippet.name print old_name,snippet,serializer if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="更新资产:{name}".format(name=snippet.name), type="idc",id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE' and request.user.has_perm('ops.can_delete_assets'): if not request.user.has_perm('ops.can_delete_service_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除idc:{name}".format(name=snippet.name), type="idc",id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def business_list(request, format=None): if request.method == 'GET': snippets = Business_Assets.objects.all() serializer = BusinessSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = BusinessSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加业务分组名称:{business_name}".format(business_name=request.data.get("business_name")), type="business", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def business_detail(request, id, format=None): try: snippet = Business_Assets.objects.get(id=id) except Business_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = BusinessSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = BusinessSerializer(snippet, data=request.data) old_name = snippet.business_name if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改业务分组为:{old_name} -> {business_name}".format(old_name=old_name, business_name=request.data.get( "business_name")), type="business", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE' and request.user.has_perm('ops.can_delete_assets'): if not request.user.has_perm('ops.can_delete_service_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除业务类型:{business_name}".format(business_name=snippet.business_name), type="business", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def service_list(request, format=None): """ List all order, or create a server assets order. """ if request.method == 'GET': snippets = Service_Assets.objects.all() serializer = ServiceSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = ServiceSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加业务类型名称:{service_name}".format(service_name=request.data.get("service_name")), type="service", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def service_detail(request, id, format=None): """ Retrieve, update or delete a server assets instance. """ try: snippet = Service_Assets.objects.get(id=id) except Service_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = ServiceSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = ServiceSerializer(snippet, data=request.data) old_name = snippet.service_name if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改业务类型为:{old_name} -> {service_name}".format(old_name=old_name, service_name=request.data.get( "service_name")), type="service", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE' and request.user.has_perm('ops.can_delete_assets'): if not request.user.has_perm('ops.can_delete_service_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除业务类型:{service_name}".format(service_name=snippet.service_name), type="service", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def group_list(request, format=None): """ List all order, or create a server assets order. """ if request.method == 'GET': snippets = RoleList.objects.all() serializer = GroupSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': if not request.user.has_perm('ops.change_group'): return Response(status=status.HTTP_403_FORBIDDEN) serializer = GroupSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加用户组:{group_name}".format(group_name=request.data.get("name")), type="group", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) @permission_required('ops.change_group', raise_exception=True) def group_detail(request, id, format=None): """ Retrieve, update or delete a server assets instance. """ try: snippet = RoleList.objects.get(id=id) except RoleList.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = GroupSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = GroupSerializer(snippet, data=request.data) old_name = snippet.name if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改用户组名称:{old_name} -> {group_name}".format(old_name=old_name, group_name=request.data.get("name")), type="group", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.delete_group'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除用户组:{group_name}".format(group_name=snippet.group_name), type="group", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) @permission_required('ops.can_add_zone_assets', raise_exception=True) def zone_list(request, format=None): """ List all order, or create a server assets order. """ if request.method == 'GET': snippets = Zone_Assets.objects.all() serializer = ZoneSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = ZoneSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加出口线路:{zone_name}".format(zone_name=request.data.get("zone_name")), type="zone", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) @permission_required('ops.can_change_zone_assets', raise_exception=True) def zone_detail(request, id, format=None): """ Retrieve, update or delete a server assets instance. """ try: snippet = Zone_Assets.objects.get(id=id) except Zone_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = ZoneSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': old_name = snippet.zone_name serializer = ZoneSerializer(snippet, data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改出口线路类型:{old_name} -> {zone_name}".format(old_name=old_name, zone_name=request.data.get( "zone_name")), type="zone", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.can_delete_zone_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除出口线路:{zone_name}".format(zone_name=snippet.zone_name), type="zone", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) @permission_required('ops.can_add_line_assets', raise_exception=True) def line_list(request, format=None): """ List all order, or create a server assets order. """ if request.method == 'GET': snippets = Line_Assets.objects.all() serializer = LineSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = LineSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加出口线路:{line_name}".format(line_name=request.data.get("line_name")), type="line", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) @permission_required('OpsManage.can_change_line_assets', raise_exception=True) def line_detail(request, id, format=None): """ Retrieve, update or delete a server assets instance. """ try: snippet = Line_Assets.objects.get(id=id) except Line_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = LineSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = LineSerializer(snippet, data=request.data) old_name = snippet.line_name if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改出口线路类型:{old_name} -> {line_name}".format(old_name=old_name, line_name=request.data.get( "line_name")), type="line", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.can_delete_line_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除出口线路:{line_name}".format(line_name=snippet.line_name), type="line", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def raid_list(request, format=None): """ List all order, or create a server assets order. """ if request.method == 'GET': snippets = Raid_Assets.objects.all() serializer = RaidSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = RaidSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加Raid类型:{raid_name}".format(raid_name=request.data.get("raid_name")), type="raid", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def raid_detail(request, id, format=None): """ Retrieve, update or delete a server assets instance. """ try: snippet = Raid_Assets.objects.get(id=id) except Raid_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = RaidSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': old_name = snippet.raid_name serializer = RaidSerializer(snippet, data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="修改Raid类型:{old_name} -> {raid_name}".format(old_name=old_name, raid_name=request.data.get( "raid_name")), type="raid", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.can_delete_raid_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除Raid类型:{raid_name}".format(raid_name=snippet.raid_name), type="raid", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def asset_list(request, format=None): if request.method == 'GET': snippets = Assets.objects.all() serializer = AssetsSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': serializer = AssetsSerializer(data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加资产:{name}".format(name=request.data.get("name")), type="assets", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def asset_detail(request, id, format=None): try: snippet = Assets.objects.get(id=id) except Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = AssetsSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': serializer = AssetsSerializer(snippet, data=request.data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="更新资产:{name}".format(name=snippet.name), type="assets",id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.delete_asset_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() recordAssets.delay(user=str(request.user), content="删除资产:{name}".format(name=snippet.name), type="assets", id=id) return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def asset_server_list(request, format=None): if request.method == 'GET': snippets = HostInfo.objects.all() serializer = ServerSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': if (request.data.get('data')): data = request.data.get('data') else: data = request.data # keyword = ['ip','user','login_type','pwd','key'] """ 添加资产不检查server login , 使用crontab定时抽取 user不为空的资产信息 sshCheck 在更新状态 到数据库里 """ print(data) serializer = ServerSerializer(data=data) # print serializer if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加服务器资产:{ip}".format(ip=data.get("ip")), type="server", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def asset_server_detail(request, id, format=None): try: snippet = HostInfo.objects.get(id=id) except HostInfo.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = ServerSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': '''如果更新字段包含assets则先更新总资产表''' print(request.data.get('data')) if (request.data.get('data')): data = request.data.get('data') else: data = request.data if (data.get('assets')): assets_data = data.pop('assets') try: assets_snippet = Assets.objects.get(id=snippet.assets.id) assets = AssetsSerializer(assets_snippet, data=assets_data) except Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if assets.is_valid(): assets.save() recordAssets.delay(user=str(request.user), content="修改服务器资产:{ip}".format(ip=snippet.ip), type="server", id=id) print(data) serializer = ServerSerializer(snippet,data=data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.can_delete_server_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() try: assets_snippet = Assets.objects.get(id=snippet.assets.id) assets_snippet.delete() recordAssets.delay(user=str(request.user), content="删除服务器资产:{ip}".format(ip=snippet.ip), type="server", id=id) except Assets.DoesNotExist: pass return Response(status=status.HTTP_204_NO_CONTENT) @api_view(['GET', 'POST']) def asset_net_list(request, format=None): """ List all order, or create a new net assets. """ if request.method == 'GET': snippets = Network_Assets.objects.all() serializer = NetworkSerializer(snippets, many=True) return Response(serializer.data) elif request.method == 'POST': if (request.data.get('data')): data = request.data.get('data') else: data = request.data serializer = NetworkSerializer(data=data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="添加网络设备资产:{ip}".format(ip=data.get("ip")), type="net", id=serializer.data.get('id')) return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def asset_net_detail(request, id, format=None): """ Retrieve, update or delete a net assets instance. """ try: snippet = Network_Assets.objects.get(id=id) except Network_Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = NetworkSerializer(snippet) return Response(serializer.data) elif request.method == 'PUT': '''如果更新字段包含assets则先更新总资产表''' if (request.data.get('data')): data = request.data.get('data') else: data = request.data if (data.get('assets')): assets_data = data.pop('assets') try: assets_snippet = Assets.objects.get(id=snippet.assets.id) assets = AssetsSerializer(assets_snippet, data=assets_data) except Assets.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if assets.is_valid(): assets.save() serializer = NetworkSerializer(snippet, data=data) if serializer.is_valid(): serializer.save() recordAssets.delay(user=str(request.user), content="更新网络设备资产:{ip}".format(ip=snippet.ip), type="net", id=id) return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': if not request.user.has_perm('ops.delete_net_assets'): return Response(status=status.HTTP_403_FORBIDDEN) snippet.delete() try: assets_snippet = Assets.objects.get(id=snippet.assets.id) assets_snippet.delete() recordAssets.delay(user=str(request.user), content="删除网络设备资产:{ip}".format(ip=snippet.ip), type="net", id=id) except Assets.DoesNotExist: pass return Response(status=status.HTTP_204_NO_CONTENT) ``` #### File: ops/api/zabbix_api.py ```python from __future__ import division from rest_framework import viewsets, mixins from rest_framework.viewsets import ViewSet from rest_framework import status from rest_framework.response import Response from rest_framework.decorators import api_view from ops.views.zabbix import zabbix import time from datetime import datetime """ 主机列表,根据组来查询 """ @api_view(['GET']) def HostView(request): group = request.GET.get('group', None) if group: return Response(zabbix.host_list(group)) else: return Response(zabbix.host_list()) """ 主机组列表 """ @api_view(['GET']) def GroupView(request): return Response(zabbix.group_list()) """ 获取主机cpu监控数据 """ @api_view(['GET']) def CpuView(request,hostid): List = zabbix.cpu_list(hostid) arr1 = [] arr2 = [] for i in List: # print i arr1.append(int(i[u'clock']) * 1000) # 需要考虑整数 浮点数 arr1.append(float(i[u'value'])) arr2.append(arr1) arr1=[] return Response(arr2) # return Response(zabbix.cpu_list(hostid)) """ 获取主机memory监控数据 """ @api_view(['GET']) def MemoryView(request,hostid): List = zabbix.memory_list(hostid) arr1 = [] arr2 = [] for i in List: # print i arr1.append(int(i[u'clock']) * 1000) # 毫秒时间戳 一天需要 24 * 3600 * 1000 arr1.append(float(round(int(i[u'value']) / 1024 / 1024 /1024,2))) arr2.append(arr1) arr1=[] return Response(arr2) # return Response(zabbix.memory_list(hostid)) """ 获取主机disk监控数据 """ @api_view(['GET']) def DiskView(request,hostid): List = zabbix.disk_list(hostid) arr1 = [] arr2 = [] for i in List: # print i arr1.append(int(i[u'clock']) * 1000) # 毫秒时间戳 一天需要 24 * 3600 * 1000 arr1.append(float(round(int(i[u'value']) / 1024 / 1024 /1024,2))) arr2.append(arr1) arr1=[] return Response(arr2) # return Response(zabbix.disk_list(hostid)) """ 获取CPU,内存,磁盘使用占比 """ @api_view(['GET']) def UsageView(request, hostid): if hostid: return Response(zabbix.usage(hostid)) else: return Response() """ 获取事件列表 """ @api_view(['GET']) def EventView(request): return Response(zabbix.event_list()) """ 获取服务类型(如 Httpd/FTP)获取监控历史数据 """ @api_view(['GET']) def ServiceItemsView(request, *args, **kwargs): service = request.query_params.get('service', None) history_list = zabbix.service_item_list(service) return Response(history_list) """ 根据 itemid 获取历史数据 """ @api_view(['GET']) def HistoryView(request,itemid): history_list = zabbix.history_list(itemid) return Response(history_list) ``` #### File: views/asb_model/ansibleApi.py ```python import json, sys, os,redis from collections import namedtuple from ansible.parsing.dataloader import DataLoader from ansible.vars import VariableManager from ansible.inventory import Inventory, Host, Group from ansible.playbook.play import Play from ansible.executor.task_queue_manager import TaskQueueManager from ansible.plugins.callback import CallbackBase from ansible.executor.playbook_executor import PlaybookExecutor from ops.views.ssh_settings import redisip,redisport r = redis.StrictRedis(host=redisip, port=redisport, db=0) # r = redis.StrictRedis(host='172.16.17.32', port='23456', db=0) class MyInventory(Inventory): """ this is my ansible inventory object. """ def __init__(self, resource, loader, variable_manager): """ resource的数据格式是一个列表字典,比如 { "group1": { "hosts": [{"hostname": "10.0.0.0", "port": "22", "username": "test", "password": "<PASSWORD>"}, ...], "vars": {"var1": value1, "var2": value2, ...} } } 如果你只传入1个列表,这默认该列表内的所有主机属于my_group组,比如 [{"hostname": "10.0.0.0", "port": "22", "username": "test", "password": "<PASSWORD>"}, ...] """ self.resource = resource self.inventory = Inventory(loader=loader, variable_manager=variable_manager, host_list=[]) self.dynamic_inventory() def add_dynamic_group(self, hosts, groupname, groupvars=None): """ add hosts to a group """ my_group = Group(name=groupname) # if group variables exists, add them to group if groupvars: for key, value in groupvars.iteritems(): my_group.set_variable(key, value) # add hosts to group for host in hosts: # set connection variables hostname = host.get("hostname") hostip = host.get('ip', hostname) hostport = host.get("port") username = host.get("username") password = host.get("password") ssh_key = host.get("ssh_key") my_host = Host(name=hostname, port=hostport) my_host.set_variable('ansible_ssh_host', hostip) my_host.set_variable('ansible_ssh_port', hostport) my_host.set_variable('ansible_ssh_user', username) my_host.set_variable('ansible_ssh_pass', password) my_host.set_variable('ansible_ssh_private_key_file', ssh_key) # set other variables for key, value in host.items(): if key not in ["hostname", "port", "username", "password"]: my_host.set_variable(key, value) # add to group my_group.add_host(my_host) self.inventory.add_group(my_group) def dynamic_inventory(self): """ add hosts to inventory. """ if isinstance(self.resource, list): self.add_dynamic_group(self.resource, 'default_group') elif isinstance(self.resource, dict): for groupname, hosts_and_vars in self.resource.iteritems(): self.add_dynamic_group(hosts_and_vars.get("hosts"), groupname, hosts_and_vars.get("vars")) class ModelResultsCollector(CallbackBase): def __init__(self, *args, **kwargs): super(ModelResultsCollector, self).__init__(*args, **kwargs) self.host_ok = {} self.host_unreachable = {} self.host_failed = {} def v2_runner_on_unreachable(self, result): self.host_unreachable[result._host.get_name()] = result def v2_runner_on_ok(self, result, *args, **kwargs): self.host_ok[result._host.get_name()] = result def v2_runner_on_failed(self, result, *args, **kwargs): self.host_failed[result._host.get_name()] = result class ModelResultsCollectorToRedis(CallbackBase): def __init__(self, redisKey, *args, **kwargs): super(ModelResultsCollectorToRedis, self).__init__(*args, **kwargs) self.host_ok = {} self.host_unreachable = {} self.host_failed = {} self.redisKey = redisKey def v2_runner_on_unreachable(self, result): for remove_key in ('changed', 'invocation'): if remove_key in result._result: del result._result[remove_key] data = "{host} | UNREACHABLE! => {stdout}".format(host=result._host.get_name(), stdout=json.dumps(result._result, indent=4)) r.lpush(self.redisKey, data) def v2_runner_on_ok(self, result, *args, **kwargs): self.host_ok[result._host.get_name()] = result for remove_key in ('changed', 'invocation'): if remove_key in result._result: del result._result[remove_key] if 'rc' in result._result and 'stdout' in result._result: data = "{host} | SUCCESS | rc={rc} >> \n{stdout}".format(host=result._host.get_name(), rc=result._result.get('rc'), stdout=result._result.get('stdout')) else: data = "{host} | SUCCESS >> {stdout}".format(host=result._host.get_name(), stdout=json.dumps(result._result, indent=4)) # print data r.lpush(self.redisKey, data) def v2_runner_on_failed(self, result, *args, **kwargs): for remove_key in ('changed', 'invocation'): if remove_key in result._result: del result._result[remove_key] if 'rc' in result._result and 'stdout' in result._result: data = "{host} | FAILED | rc={rc} >> \n{stdout}".format(host=result._host.get_name(), rc=result._result.get('rc'), stdout=result._result.get('stdout')) else: data = "{host} | FAILED! => {stdout}".format(host=result._host.get_name(), stdout=json.dumps(result._result, indent=4)) r.lpush(self.redisKey, data) class PlayBookResultsCollectorToRedis(CallbackBase): CALLBACK_VERSION = 2.0 def __init__(self, redisKey, *args, **kwargs): super(PlayBookResultsCollectorToRedis, self).__init__(*args, **kwargs) self.task_ok = {} self.task_skipped = {} self.task_failed = {} self.task_status = {} self.task_unreachable = {} self.task_changed = {} self.redisKey = redisKey def v2_runner_on_ok(self, result, *args, **kwargs): self.task_ok[result._host.get_name()] = result._result delegated_vars = result._result.get('_ansible_delegated_vars', None) if result._task.action in ('include', 'include_role'): return elif result._result.get('changed', False): if delegated_vars: msg = "changed: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg = "changed: [%s]" % result._host.get_name() else: if delegated_vars: msg = "ok: [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg = "ok: [%s]" % result._host.get_name() r.lpush(self.redisKey, msg) def v2_runner_on_failed(self, result, *args, **kwargs): delegated_vars = result._result.get('_ansible_delegated_vars', None) self.task_failed[result._host.get_name()] = result._result if delegated_vars: msg = "fatal: [{host} -> {delegated_vars}]: FAILED! => {msg}".format(host=result._host.get_name(), delegated_vars=delegated_vars[ 'ansible_host'], msg=json.dumps(result._result)) else: msg = "fatal: [{host}]: FAILED! => {msg}".format(host=result._host.get_name(), msg=json.dumps(result._result)) r.lpush(self.redisKey, msg) def v2_runner_on_unreachable(self, result): self.task_unreachable[result._host.get_name()] = result._result msg = "fatal: [{host}]: UNREACHABLE! => {msg}\n".format(host=result._host.get_name(), msg=json.dumps(result._result)) r.lpush(self.redisKey, msg) def v2_runner_on_changed(self, result): self.task_changed[result._host.get_name()] = result._result msg = "changed: [{host}]\n".format(host=result._host.get_name()) r.lpush(self.redisKey, msg) def v2_runner_on_skipped(self, result): self.task_ok[result._host.get_name()] = result._result msg = "skipped: [{host}]\n".format(host=result._host.get_name()) r.lpush(self.redisKey, msg) def v2_playbook_on_play_start(self, play): name = play.get_name().strip() if not name: msg = u"PLAY" else: msg = u"PLAY [%s] " % name if len(msg) < 80: msg = msg + '*' * (79 - len(msg)) r.lpush(self.redisKey, msg) def _print_task_banner(self, task): msg = "\nTASK [%s] " % (task.get_name().strip()) if len(msg) < 80: msg = msg + '*' * (80 - len(msg)) r.lpush(self.redisKey, msg) # args = '' # if not task.no_log and C.DISPLAY_ARGS_TO_STDOUT: # args = u', '.join(u'%s=%s' % a for a in task.args.items()) # args = u' %s' % args # print u"\nTASK [%s%s]" % (task.get_name().strip(), args) def v2_playbook_on_task_start(self, task, is_conditional): self._print_task_banner(task) def v2_playbook_on_cleanup_task_start(self, task): msg = "CLEANUP TASK [%s]" % task.get_name().strip() r.lpush(self.redisKey, msg) def v2_playbook_on_handler_task_start(self, task): msg = "RUNNING HANDLER [%s]" % task.get_name().strip() r.lpush(self.redisKey, msg) def v2_playbook_on_stats(self, stats): msg = "\nPLAY RECAP *********************************************************************" r.lpush(self.redisKey, msg) hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self.task_status[h] = { "ok": t['ok'], "changed": t['changed'], "unreachable": t['unreachable'], "skipped": t['skipped'], "failed": t['failures'] } msg = "{host}\t\t: ok={ok}\tchanged={changed}\tunreachable={unreachable}\tskipped={skipped}\tfailed={failed}".format( host=h, ok=t['ok'], changed=t['changed'], unreachable=t['unreachable'], skipped=t["skipped"], failed=t['failures'] ) r.lpush(self.redisKey, msg) def v2_runner_item_on_ok(self, result): delegated_vars = result._result.get('_ansible_delegated_vars', None) if result._task.action in ('include', 'include_role'): return elif result._result.get('changed', False): msg = 'changed' else: msg = 'ok' if delegated_vars: msg += ": [%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg += ": [%s]" % result._host.get_name() msg += " => (item=%s)" % (json.dumps(self._get_item(result._result))) if ( self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and not '_ansible_verbose_override' in result._result: msg += " => %s" % json.dumps(result._result) r.lpush(self.redisKey, msg) def v2_runner_item_on_failed(self, result): delegated_vars = result._result.get('_ansible_delegated_vars', None) msg = "failed: " if delegated_vars: msg += "[%s -> %s]" % (result._host.get_name(), delegated_vars['ansible_host']) else: msg += "[%s]" % (result._host.get_name()) msg = msg + " (item=%s) => %s\n" % (self._get_item(json.dumps(result._result)), json.dumps(result._result)), r.lpush(self.redisKey, msg) def v2_runner_item_on_skipped(self, result): msg = "skipping: [%s] => (item=%s) " % (result._host.get_name(), self._get_item(result._result)) if ( self._display.verbosity > 0 or '_ansible_verbose_always' in result._result) and not '_ansible_verbose_override' in result._result: msg += " => %s" % json.dumps(result._result) r.lpush(self.redisKey, msg) def v2_runner_retry(self, result): task_name = result.task_name or result._task msg = "FAILED - RETRYING: %s (%d retries left)." % ( task_name, result._result['retries'] - result._result['attempts']) if ( self._display.verbosity > 2 or '_ansible_verbose_always' in result._result) and not '_ansible_verbose_override' in result._result: msg += "Result was: %s" % json.dumps(result._result, indent=4) r.lpush(self.redisKey, msg) class PlayBookResultsCollector(CallbackBase): CALLBACK_VERSION = 2.0 def __init__(self, *args, **kwargs): super(PlayBookResultsCollector, self).__init__(*args, **kwargs) self.task_ok = {} self.task_changed = {} self.task_skipped = {} self.task_failed = {} self.task_status = {} self.task_unreachable = {} def v2_runner_on_ok(self, result, *args, **kwargs): self.task_ok[result._host.get_name()] = result._result def v2_runner_on_changed(self, result): self.task_changed[result._host.get_name()] = result._result def v2_runner_on_failed(self, result, *args, **kwargs): self.task_failed[result._host.get_name()] = result._result def v2_runner_on_unreachable(self, result): self.task_unreachable[result._host.get_name()] = result._result def v2_runner_on_skipped(self, result): self.task_ok[result._host.get_name()] = result._result def v2_playbook_on_stats(self, stats): hosts = sorted(stats.processed.keys()) for h in hosts: t = stats.summarize(h) self.task_status[h] = { "ok": t['ok'], "changed": t['changed'], "unreachable": t['unreachable'], "skipped": t['skipped'], "failed": t['failures'] } class ANSRunner(object): """ This is a General object for parallel execute modules. """ def __init__(self, resource, redisKey=None, *args, **kwargs): self.resource = resource # self.host_list = '/etc/ansible/ansible_hosts' self.inventory = None self.variable_manager = None self.loader = None self.options = None self.passwords = None self.callback = None self.__initializeData() self.results_raw = {} self.redisKey = redisKey def __initializeData(self): """ 初始化ansible """ Options = namedtuple('Options', ['connection', 'module_path', 'forks', 'timeout', 'remote_user', 'ask_pass', 'private_key_file', 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args', 'scp_extra_args', 'become', 'become_method', 'become_user', 'ask_value_pass', 'verbosity', 'check', 'listhosts', 'listtasks', 'listtags', 'syntax']) self.variable_manager = VariableManager() self.loader = DataLoader() self.options = Options(connection='smart', module_path=None, forks=100, timeout=10, remote_user='root', ask_pass=False, private_key_file=None, ssh_common_args=None, ssh_extra_args=None, sftp_extra_args=None, scp_extra_args=None, become=None, become_method=None, become_user='root', ask_value_pass=False, verbosity=None, check=False, listhosts=False, listtasks=False, listtags=False, syntax=False) self.passwords = dict(ssh<PASSWORD>=None, becomepass=None) self.inventory = MyInventory(self.resource, self.loader, self.variable_manager).inventory # self.inventory = Inventory(loader=self.loader,variable_manager=self.variable_manager,host_list=self.host_list) self.variable_manager.set_inventory(self.inventory) def run_model(self, host_list, module_name, module_args): """ run module from andible ad-hoc. module_name: ansible module_name module_args: ansible module args """ play_source = dict( name="Ansible Play", hosts=host_list, gather_facts='no', tasks=[dict(action=dict(module=module_name, args=module_args))] ) play = Play().load(play_source, variable_manager=self.variable_manager, loader=self.loader) tqm = None if self.redisKey: self.callback = ModelResultsCollectorToRedis(self.redisKey) else: self.callback = ModelResultsCollector() try: tqm = TaskQueueManager( inventory=self.inventory, variable_manager=self.variable_manager, loader=self.loader, options=self.options, passwords=self.passwords, ) tqm._stdout_callback = self.callback tqm.run(play) # print self.callback.host_ok.items() # for host, result in self.callback.host_ok.items(): # print host,result._result finally: if tqm is not None: tqm.cleanup() def run_playbook(self, host_list,playbook_path, extra_vars=None): """ run ansible palybook """ try: if self.redisKey: self.callback = PlayBookResultsCollectorToRedis(self.redisKey) # self.callback = mycallback() else: # self.callback = mycallback() self.callback = PlayBookResultsCollector() if extra_vars: self.variable_manager.extra_vars = extra_vars executor = PlaybookExecutor( playbooks=[playbook_path], inventory=self.inventory, variable_manager=self.variable_manager, loader=self.loader, options=self.options, passwords=self.passwords, ) # self.results_callback=mycallback() executor._tqm._stdout_callback = self.callback try: result = executor.run() # for host, a in self.callback.task_ok.items(): # print host,a,'447' except Exception as e: print e # return result,self.callback # results = self.callback.results except Exception as e: # return False print e def get_model_result(self): self.results_raw = {'success': {}, 'failed': {}, 'unreachable': {}} for host, result in self.callback.host_ok.items(): self.results_raw['success'][host] = result._result for host, result in self.callback.host_failed.items(): self.results_raw['failed'][host] = result._result for host, result in self.callback.host_unreachable.items(): self.results_raw['unreachable'][host] = result._result return json.dumps(self.results_raw) def get_playbook_result(self): self.results_raw = {'skipped': {}, 'failed': {}, 'ok': {}, "status": {}, 'unreachable': {}, "changed": {}} for host, result in self.callback.task_ok.items(): self.results_raw['ok'][host] = result for host, result in self.callback.task_failed.items(): self.results_raw['failed'][host] = result for host, result in self.callback.task_status.items(): self.results_raw['status'][host] = result for host, result in self.callback.task_changed.items(): self.results_raw['changed'][host] = result for host, result in self.callback.task_skipped.items(): self.results_raw['skipped'][host] = result for host, result in self.callback.task_unreachable.items(): self.results_raw['unreachable'][host] = result return self.results_raw def handle_cmdb_data(self, data): '''处理setup返回结果方法''' data_list = [] for k, v in json.loads(data).items(): if k == "success": for x, y in v.items(): cmdb_data = {} data = y.get('ansible_facts') disk_size = 0 cpu = data['ansible_processor'][-1] for k, v in data['ansible_devices'].items(): if k[0:2] in ['sd', 'hd', 'ss', 'vd']: disk = int((int(v.get('sectors')) * int(v.get('sectorsize'))) / 1024 / 1024 / 1024) disk_size = disk_size + disk cmdb_data['serial'] = data['ansible_product_serial'].split()[0] cmdb_data['ip'] = x cmdb_data['cpu'] = cpu.replace('@', '') ram_total = str(data['ansible_memtotal_mb']) if len(ram_total) == 4: ram_total = ram_total[0] + 'GB' elif len(ram_total) == 5: ram_total = ram_total[0:2] + 'GB' elif len(ram_total) > 5: ram_total = ram_total[0:3] + 'GB' else: ram_total = ram_total + 'MB' cmdb_data['ram_total'] = ram_total cmdb_data['disk_total'] = str(disk_size) + 'GB' cmdb_data['system'] = data['ansible_distribution'] + ' ' + data[ 'ansible_distribution_version'] + ' ' + data['ansible_userspace_bits'] cmdb_data['model'] = data['ansible_product_name'].split(':')[0] cmdb_data['cpu_number'] = data['ansible_processor_count'] cmdb_data['vcpu_number'] = data['ansible_processor_vcpus'] cmdb_data['cpu_core'] = data['ansible_processor_cores'] cmdb_data['hostname'] = data['ansible_hostname'] cmdb_data['kernel'] = str(data['ansible_kernel']) cmdb_data['manufacturer'] = data['ansible_system_vendor'] if data['ansible_selinux']: cmdb_data['selinux'] = data['ansible_selinux'].get('status') else: cmdb_data['selinux'] = 'disabled' cmdb_data['swap'] = str(data['ansible_swaptotal_mb']) + 'MB' cmdb_data['status'] = 0 data_list.append(cmdb_data) elif k == "unreachable": for x, y in v.items(): cmdb_data = {} cmdb_data['status'] = 1 cmdb_data['ip'] = x data_list.append(cmdb_data) if data_list: return data_list else: return False def handle_cmdb_crawHw_data(self, data): data_list = [] for k, v in json.loads(data).items(): if k == "success": for x, y in v.items(): cmdb_data = {} cmdb_data['ip'] = x data = y.get('ansible_facts') cmdb_data['mem_info'] = data.get('ansible_mem_detailed_info') cmdb_data['disk_info'] = data.get('ansible_disk_detailed_info') data_list.append(cmdb_data) if data_list: return data_list else: return False def handle_model_data(self, data, module_name, module_args=None): '''处理ANSIBLE 模块输出内容''' module_data = json.loads(data) failed = module_data.get('failed') success = module_data.get('success') unreachable = module_data.get('unreachable') data_list = [] if module_name == "raw": if failed: for x, y in failed.items(): data = {} data['ip'] = x try: data['msg'] = y.get('stdout').replace('\t\t', '<br>').replace('\r\n', '<br>').replace('\t', '<br>') except: data['msg'] = None if y.get('rc') == 0: data['status'] = 'succeed' else: data['status'] = 'failed' data_list.append(data) elif success: for x, y in success.items(): data = {} data['ip'] = x try: data['msg'] = y.get('stdout').replace('\t\t', '<br>').replace('\r\n', '<br>').replace('\t', '<br>') except: data['msg'] = None if y.get('rc') == 0: data['status'] = 'succeed' else: data['status'] = 'failed' data_list.append(data) elif module_name == "ping": if success: for x, y in success.items(): data = {} data['ip'] = x if y.get('ping'): data['msg'] = y.get('ping') data['status'] = 'succeed' data_list.append(data) else: if success: for x, y in success.items(): data = {} data['ip'] = x if y.get('invocation'): data['msg'] = "Ansible %s with %s execute success." % (module_name, module_args) data['status'] = 'succeed' data_list.append(data) elif failed: for x, y in failed.items(): data = {} data['ip'] = x data['msg'] = y.get('msg') data['status'] = 'failed' data_list.append(data) if unreachable: for x, y in unreachable.items(): data = {} data['ip'] = x data['msg'] = y.get('msg') data['status'] = 'failed' data_list.append(data) if data_list: return data_list else: return False if __name__ == '__main__': """ when u use the dymanic inventory, this format can custom group , and u yml file need to define group in hosts with the variable of the py file """ # --- # - name: create user # hosts: heihei # user: root # gather_facts: false # vars: # - user: "test" # tasks: # - name: create user # user: name="{{ user }}" # resource = { # "heihei":{ # "hosts":[{"hostname": "172.16.17.32","port": 22,"username": 'root',"password": '<PASSWORD>'},{"hostname": "172.16.17.32","port": 22,"username": 'root',"password": '<PASSWORD>'}], # "vars": { # "var1": "heihei", # } # } # } """ or u can transfer a list inlcude the host info ,but the yml hosts: name is "default_group",other the same """ resource = [ {"hostname": "172.16.17.32","port": 22,"username": 'root',"password": '<PASSWORD>'}, # {"hostname": "172.16.17.32","port": 22,"username": 'root',"password": '<PASSWORD>'} ] # resource = ["172.16.17.32"] rbt = ANSRunner(resource, redisKey='<KEY>') rbt.run_model(host_list=["172.16.17.32"], module_name='setup',module_args="") # rbt.run_playbook(['172.16.17.32','172.16.17.32'],playbook_path='/Users/wupeijin/code3/django-tornado/upload/playbook/1.yml',extra_vars='') # result = rbt.get_playbook_result() a = rbt.get_model_result() print rbt.handle_cmdb_data(a) # print a # print result ``` #### File: ops/views/remote_file.py ```python import sys, json, os, re,redis from .. import ssh_settings from ssh_error import SSHError from ssh_file_transfer import SSHFileTransfer from ssh_module_controller import SSHControler r = redis.StrictRedis(host=ssh_settings.redisip, port=ssh_settings.redisport, db=0) class RemoteFile(object): def __init__(self): pass def add_remote_file(self,path='', description='', server='', id='', ip=''): ssh_info = {"status": False, "content": ""} try: data = {"path": path, "description": description, "server": server, "id": id, "ip": ip} data = json.dumps(data, encoding="utf8", ensure_ascii=False) r.hset("remotefilelist", id, data) ssh_info["tid"] = id ssh_info["status"] = True except Exception, e: ssh_info["status"] = False ssh_info["content"] = str(e) return ssh_info def get_remote_file_list(self): ssh_info = {"status": False, "content": ""} try: data = r.hgetall("remotefilelist") print data info = {} for id in data.keys(): tmp = json.loads(data[id]) info[id] = tmp ssh_info["content"] = info ssh_info["status"] = True except Exception, e: ssh_info["status"] = False ssh_info["content"] = str(e) return ssh_info def delete_remote_file_list(self, id): ssh_info = {"status": False, "content": ""} try: data = r.hdel("remotefilelist", id) ssh_info["status"] = True except Exception, e: ssh_info["status"] = False ssh_info["content"] = str(e) return ssh_info def remote_file_content(self, id, action, file_content=""): ssh_info = {"status": False, "content": ""} try: data = RemoteFile().get_remote_file_list() if not data["status"]: raise SSHError(data["content"]) content = data["content"] path = content[id]["path"] path = re.sub(" ", "", path) ip = content[id]["ip"] host_info = SSHControler().convert_id_to_ip(ip) if not host_info["status"]: raise SSHError(host_info["content"]) host = host_info["content"] sftp = SSHFileTransfer() login = sftp.login(**host) if not login["status"]: raise SSHError(login["content"]) if action == "GET": ssh_info = sftp.get_filecontent(path) elif action == "WRITE": ssh_info = sftp.write_filecontent(path, file_content) else: raise SSHError("remotefilelist") except Exception, e: ssh_info["status"] = False ssh_info["content"] = str(e) return ssh_info ``` #### File: ops/views/ssh_module_controller.py ```python import os,sys,json,redis from ssh import SSH_SSH from ssh_error import SSHError import threading import ssh_settings r = redis.StrictRedis(host=ssh_settings.redisip, port=ssh_settings.redisport, db=0) class SSHControler(object): def __init__(self): self.SSH = SSH_SSH() def controler_center(self, parameter={}): cmd = parameter.get("cmd", False) tid = parameter["tid"] pass def connect(self, ip=""): ssh_info = {"content": "", "status": False} try: server_config = self.convert_id_to_ip(ip) # print server_config if not server_config["status"]: raise SSHError(server_config["content"]) if server_config["status"]: ssh_info = self.SSH.login(**server_config["content"]) else: ssh_info["content"] = server_config["content"] except Exception, e: print "ssh错误", str(e) ssh_info["content"] = str(e) ssh_info["status"] = False return ssh_info def command_controler(self, tid='', cmd='', ip=""): log_name = "log.%s.%s" % (tid, ip) log_content = { "content": "", "stage": "done", "status": False, } ssh_info = {"content": "", "status": False} try: current = "current.%s" % tid data = self.connect(ip=ip) if data["status"]: ssh = data["content"] ###登录界面 self.SSH.execute(cmd=cmd, ip=ip, tid=tid) ssh_info["status"] = True else: raise SSHError(data["content"]) except Exception, e: print "程序错误", e,'controller' log_content["content"] = str(e) log_content = json.dumps(log_content, encoding="utf8", ensure_ascii=False) r.rpush(log_name, log_content) ssh_info["content"] = str(e) ssh_info["status"] = False print ssh_info,'60' r.incr(current) return ssh_info # @staticmethod def convert_id_to_ip(self,ip=""): ssh_info = {"status": False, "content": "指定的ID不存在"} try: servers_list = r.lrange("server", 0, -1) if servers_list is None: pass else: for _line in servers_list: line = json.loads(_line) if str(ip) == line["ip"]: ssh_info["content"] = line ssh_info["status"] = True break except Exception, e: ssh_info["status"] = False ssh_info["content"] = str(e) return ssh_info ``` #### File: devops/webssh/main.py ```python import os.path import tornado.ioloop import tornado.web import tornado.httpserver import tornado.options from tornado.options import options from config import init_config from ioloop import IOLoop import tornado.wsgi,logging import django.core.handlers.wsgi from daemon import Bridge from data import ClientData from utils import check_ip, check_port settings = dict( template_path=os.path.join(os.path.dirname(__file__), "../templates"), static_path=os.path.join(os.path.dirname(__file__), "../static"), debug=True, ) class Application(tornado.web.Application): def __init__(self): tornado.web.Application.__init__(self, handlers, **settings) class IndexHandler(tornado.web.RequestHandler): def get(self): self.render("test1.html") class WSHandler(tornado.websocket.WebSocketHandler): clients = dict() def check_origin(self, origin): return True def get_client(self): return self.clients.get(self._id(), None) def put_client(self): bridge = Bridge(self) self.clients[self._id()] = bridge def remove_client(self): bridge = self.get_client() if bridge: bridge.destroy() del self.clients[self._id()] @staticmethod def _check_init_param(data): return check_ip(data["hostname"]) and check_port(data["port"]) @staticmethod def _is_init_data(data): return data.get_type() == 'init' def _id(self): return id(self) def open(self): self.put_client() def on_message(self, message): # print message bridge = self.get_client() # logging.info(' bridge client :%s' % bridge) client_data = ClientData(message) if self._is_init_data(client_data): if self._check_init_param(client_data.data): bridge.open(client_data.data) logging.info('connection established from: %s' % self._id()) else: self.remove_client() logging.warning('init param invalid: %s' % client_data.data) else: if bridge: bridge.trans_forward(client_data.data) def on_close(self): self.remove_client() logging.info('client close the connection: %s' % self._id()) def main(): init_config() options.parse_config_file("webssh.conf") wsgi_app = tornado.wsgi.WSGIContainer( django.core.handlers.wsgi.WSGIHandler()) tornado_app = tornado.web.Application( [ (r"/", IndexHandler), (r"/ws", WSHandler), ('.*', tornado.web.FallbackHandler, dict(fallback=wsgi_app)), ],**settings) http_server = tornado.httpserver.HTTPServer(tornado_app) http_server.listen(options.port) IOLoop.instance().start() tornado.ioloop.IOLoop.instance().start() if __name__ == "__main__": main() ``` #### File: jinjin123/devops2.0/run_tornado.py ```python from tornado.options import options, define, parse_command_line import sys,os,json,subprocess import base64,logging import tornado.httpserver import tornado.ioloop import tornado.wsgi import tornado.web import tornado.websocket from daemon import Bridge from data import ClientData from utils import check_ip, check_port import django.core.handlers.wsgi define('port', type=int, default=8002) class IndexHandler(tornado.web.RequestHandler): def get(self): self.render("test1.html") class WSHandler(tornado.websocket.WebSocketHandler): clients = dict() def get_client(self): return self.clients.get(self._id(), None) def put_client(self): bridge = Bridge(self) self.clients[self._id()] = bridge def remove_client(self): bridge = self.get_client() if bridge: bridge.destroy() del self.clients[self._id()] @staticmethod def _check_init_param(data): return check_ip(data["hostname"]) and check_port(data["port"]) @staticmethod def _is_init_data(data): return data.get_type() == 'init' def _id(self): return id(self) def open(self): self.put_client() def on_message(self, message): bridge = self.get_client() # logging.info(' bridge client :%s' % bridge) client_data = ClientData(message) if self._is_init_data(client_data): if self._check_init_param(client_data.data): bridge.open(client_data.data) logging.info('connection established from: %s' % self._id()) else: self.remove_client() logging.warning('init param invalid: %s' % client_data.data) else: if bridge: bridge.trans_forward(client_data.data) def on_close(self): self.remove_client() logging.info('client close the connection: %s' % self._id()) settings = { "template_path":os.path.join(os.path.dirname(__file__),"../devops/templates"), "static_path":os.path.join(os.path.dirname(__file__),"../devops/static"), } def main(): # os.environ['DJANGO_SETTINGS_MODULE'] = 'devops.settings' # TODO: edit this # sys.path.append('./devops') # path to your project if needed parse_command_line() options.parse_config_file("webssh.conf") #wsgi_app = get_wsgi_application() #container = tornado.wsgi.WSGIContainer(wsgi_app) wsgi_app = tornado.wsgi.WSGIContainer( django.core.handlers.wsgi.WSGIHandler()) tornado_app = tornado.web.Application( [ (r"/", IndexHandler), (r"/ws", WSHandler), ('.*', tornado.web.FallbackHandler, dict(fallback=wsgi_app)), ],**settings) server = tornado.httpserver.HTTPServer(tornado_app) server.listen(options.port) tornado.ioloop.IOLoop.instance().start() if __name__ == '__main__': main() ```
{ "source": "jinjin123/switch-mysql-postgresql", "score": 3 }
#### File: pg_chameleon/lib/pg_lib.py ```python import psycopg2 import os import io import sys import json import datetime import decimal import time import base64 class pg_encoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, datetime.time) or isinstance(obj, datetime.datetime) or isinstance(obj, datetime.date) or isinstance(obj, decimal.Decimal) or isinstance(obj, datetime.timedelta): return str(obj) return json.JSONEncoder.default(self, obj) class pg_connection(object): def __init__(self, global_config): self.global_conf=global_config self.pg_conn=self.global_conf.pg_conn self.pg_database=self.global_conf.pg_database self.dest_schema=self.global_conf.my_database self.pg_connection=None self.pg_cursor=None self.pg_charset=self.global_conf.pg_charset def connect_db(self): """ Connects to PostgreSQL using the parameters stored in pg_pars built adding the key dbname to the self.pg_conn dictionary. The method after the connection creates a database cursor and set the session to autocommit. """ pg_pars=dict(list(self.pg_conn.items())+ list({'dbname':self.pg_database}.items())) strconn="dbname=%(dbname)s user=%(user)s host=%(host)s password=%(<PASSWORD> port=%(port)s" % pg_pars self.pgsql_conn = psycopg2.connect(strconn) self.pgsql_conn .set_isolation_level(psycopg2.extensions.ISOLATION_LEVEL_AUTOCOMMIT) self.pgsql_conn .set_client_encoding(self.pg_charset) self.pgsql_cur=self.pgsql_conn .cursor() def disconnect_db(self): """ The method disconnects from the database closing the connection. """ self.pgsql_conn.close() class pg_engine(object): """ The class pg_engine manages the replica initialisation and execution on the PostgreSQL side. The class connects to the database when instantiated and setup several class attributes used by the replica. In particular the class dictionary type_dictionary is used to map the MySQL types to the equivalent PostgreSQL types. Unlike pgloader, which allows the type mapping configuration, the dictionary is hardcoded as the mapping is an effort to keep the replica running as smooth as possible. The class manages the replica catalogue upgrade using the current catalogue version self.cat_version and the list of migrations self.cat_sql. If the catalogue version, stored in sch_chameleon.v_version is different from the value stored in self.cat_version then the method upgrade_service_schema() is executed. """ def __init__(self, global_config, table_metadata, table_file, logger, sql_dir='sql/'): self.sleep_on_reindex = global_config.sleep_on_reindex self.reindex_app_names = global_config.reindex_app_names self.batch_retention = global_config.batch_retention self.logger = logger self.sql_dir = sql_dir self.idx_sequence = 0 self.pg_conn = pg_connection(global_config) self.pg_conn.connect_db() self.table_metadata = table_metadata self.table_file = table_file self.type_dictionary = { 'integer':'integer', 'mediumint':'bigint', 'tinyint':'integer', 'smallint':'integer', 'int':'integer', 'bigint':'bigint', 'varchar':'character varying', 'text':'text', 'char':'character', 'datetime':'timestamp without time zone', 'date':'date', 'time':'time without time zone', 'timestamp':'timestamp without time zone', 'tinytext':'text', 'mediumtext':'text', 'longtext':'text', 'tinyblob':'bytea', 'mediumblob':'bytea', 'longblob':'bytea', 'blob':'bytea', 'binary':'bytea', 'varbinary':'bytea', 'decimal':'numeric', 'double':'double precision', 'double precision':'double precision', 'float':'double precision', 'bit':'integer', 'year':'integer', 'enum':'enum', 'set':'text', 'json':'text', 'bool':'boolean', 'boolean':'boolean', 'geometry':'bytea', } self.table_ddl = {} self.idx_ddl = {} self.type_ddl = {} self.pg_charset = self.pg_conn.pg_charset self.cat_version = '1.6' self.cat_sql = [ {'version':'base','script': 'create_schema.sql'}, {'version':'0.1','script': 'upgrade/cat_0.1.sql'}, {'version':'0.2','script': 'upgrade/cat_0.2.sql'}, {'version':'0.3','script': 'upgrade/cat_0.3.sql'}, {'version':'0.4','script': 'upgrade/cat_0.4.sql'}, {'version':'0.5','script': 'upgrade/cat_0.5.sql'}, {'version':'0.6','script': 'upgrade/cat_0.6.sql'}, {'version':'0.7','script': 'upgrade/cat_0.7.sql'}, {'version':'0.8','script': 'upgrade/cat_0.8.sql'}, {'version':'0.9','script': 'upgrade/cat_0.9.sql'}, {'version':'1.0','script': 'upgrade/cat_1.0.sql'}, {'version':'1.1','script': 'upgrade/cat_1.1.sql'}, {'version':'1.2','script': 'upgrade/cat_1.2.sql'}, {'version':'1.3','script': 'upgrade/cat_1.3.sql'}, {'version':'1.4','script': 'upgrade/cat_1.4.sql'}, {'version':'1.5','script': 'upgrade/cat_1.5.sql'}, {'version':'1.6','script': 'upgrade/cat_1.6.sql'}, ] cat_version=self.get_schema_version() num_schema=(self.check_service_schema())[0] if cat_version!=self.cat_version and int(num_schema)>0: self.upgrade_service_schema() self.table_limit = ['*'] self.master_status = None def set_application_name(self, action=""): """ The method sets the application name in the replica using the variable self.pg_conn.global_conf.source_name, Making simpler to find the replication processes. If the source name is not set then a generic PGCHAMELEON name is used. """ if self.pg_conn.global_conf.source_name: app_name = "[PGCH] - source: %s, action: %s" % (self.pg_conn.global_conf.source_name, action) else: app_name = "[PGCH]" sql_app_name="""SET application_name=%s; """ self.pg_conn.pgsql_cur.execute(sql_app_name, (app_name , )) def add_source(self, source_name, dest_schema): """ The method add a new source in the replica catalogue. If the source name is already present an error message is emitted without further actions. :param source_name: The source name stored in the configuration parameter source_name. :param dest_schema: The destination schema stored in the configuration parameter dest_schema. """ sql_source = """ SELECT count(i_id_source) FROM sch_chameleon.t_sources WHERE t_source=%s ; """ self.pg_conn.pgsql_cur.execute(sql_source, (source_name, )) source_data = self.pg_conn.pgsql_cur.fetchone() cnt_source = source_data[0] if cnt_source == 0: sql_add = """ INSERT INTO sch_chameleon.t_sources ( t_source, t_dest_schema ) VALUES ( %s, %s ) RETURNING i_id_source ; """ self.pg_conn.pgsql_cur.execute(sql_add, (source_name, dest_schema )) source_add = self.pg_conn.pgsql_cur.fetchone() sql_update = """ UPDATE sch_chameleon.t_sources SET v_log_table=ARRAY[ 't_log_replica_1_src_%s', 't_log_replica_2_src_%s' ] WHERE i_id_source=%s ; """ self.pg_conn.pgsql_cur.execute(sql_update, (source_add[0],source_add[0], source_add[0] )) sql_parts = """SELECT sch_chameleon.fn_refresh_parts() ;""" self.pg_conn.pgsql_cur.execute(sql_parts) else: print("Source %s already registered." % source_name) sys.exit() def get_source_status(self, source_name): """ Gets the source status usin the source name. Possible values are: ready : the source is registered but the init_replica is not yet done. initialising: init_replica is initialising initialised: init_replica finished and the replica process is ready to start stopped: the replica process is stopped running: the replica process is running :param source_name: The source name stored in the configuration parameter source_name. :type source_name: string :return: source_status extracted from PostgreSQL :rtype: string """ sql_source = """ SELECT enm_status FROM sch_chameleon.t_sources WHERE t_source=%s ; """ self.pg_conn.pgsql_cur.execute(sql_source, (source_name, )) source_data = self.pg_conn.pgsql_cur.fetchone() if source_data: source_status = source_data[0] else: source_status = 'Not registered' return source_status def drop_source(self, source_name): """ Drops the source from the replication catalogue discarding any replica reference. :param source_name: The source name stored in the configuration parameter source_name. """ sql_delete = """ DELETE FROM sch_chameleon.t_sources WHERE t_source=%s RETURNING v_log_table ; """ self.pg_conn.pgsql_cur.execute(sql_delete, (source_name, )) source_drop = self.pg_conn.pgsql_cur.fetchone() for log_table in source_drop[0]: sql_drop = """DROP TABLE sch_chameleon."%s"; """ % (log_table) self.pg_conn.pgsql_cur.execute(sql_drop) def set_source_id(self, source_status): """ Sets the source status for the source_name and sets the two class attributes i_id_source and dest_schema. :param source_status: The source status to be set. """ sql_source = """ UPDATE sch_chameleon.t_sources SET enm_status=%s WHERE t_source=%s RETURNING i_id_source,t_dest_schema ; """ source_name = self.pg_conn.global_conf.source_name self.pg_conn.pgsql_cur.execute(sql_source, (source_status, source_name)) source_data = self.pg_conn.pgsql_cur.fetchone() try: self.i_id_source = source_data[0] self.dest_schema = source_data[1] self.source_name = source_name except: print("Source %s is not registered." % source_name) sys.exit() def clean_batch_data(self): """ Removes the replica batch data for the given source id. The method is used to cleanup incomplete batch data in case of crash or replica's unclean restart """ sql_delete = """ DELETE FROM sch_chameleon.t_replica_batch WHERE i_id_source=%s; """ self.pg_conn.pgsql_cur.execute(sql_delete, (self.i_id_source, )) def create_schema(self): """ The method drops and creates the destination schema. It also set the search_path for the cursor to the destination schema. """ sql_drop="DROP SCHEMA IF EXISTS "+self.dest_schema+" CASCADE;" sql_create=" CREATE SCHEMA IF NOT EXISTS "+self.dest_schema+";" self.pg_conn.pgsql_cur.execute(sql_drop) self.pg_conn.pgsql_cur.execute(sql_create) self.set_search_path() def store_table(self, table_name): """ The method saves the table name along with the primary key definition in the table t_replica_tables. This is required in order to let the replay procedure which primary key to use replaying the update and delete. If the table is without primary key is not stored. A table without primary key is copied and the indices are create like any other table. However the replica doesn't work for the tables without primary key. If the class variable master status is set then the master's coordinates are saved along with the table. This happens in general when a table is added to the replica or the data is refreshed with sync_tables. :param table_name: the table name to store in the table t_replica_tables """ if self.master_status: master_data = self.master_status[0] binlog_file = master_data["File"] binlog_pos = master_data["Position"] else: binlog_file = None binlog_pos = None table_data=self.table_metadata[table_name] table_no_pk = True for index in table_data["indices"]: if index["index_name"]=="PRIMARY": table_no_pk = False sql_insert=""" INSERT INTO sch_chameleon.t_replica_tables ( i_id_source, v_table_name, v_schema_name, v_table_pkey, t_binlog_name, i_binlog_position ) VALUES ( %s, %s, %s, ARRAY[%s], %s, %s ) ON CONFLICT (i_id_source,v_table_name,v_schema_name) DO UPDATE SET v_table_pkey=EXCLUDED.v_table_pkey, t_binlog_name = EXCLUDED.t_binlog_name, i_binlog_position = EXCLUDED.i_binlog_position ; """ self.pg_conn.pgsql_cur.execute(sql_insert, ( self.i_id_source, table_name, self.dest_schema, index["index_columns"].strip(), binlog_file, binlog_pos ) ) if table_no_pk: self.logger.warning("Missing primary key. The table %s will not be replicated." % (table_name,)) sql_delete = """ DELETE FROM sch_chameleon.t_replica_tables WHERE i_id_source=%s AND v_table_name=%s AND v_schema_name=%s ; """ self.pg_conn.pgsql_cur.execute(sql_delete, ( self.i_id_source, table_name, self.dest_schema) ) def unregister_table(self, table_name): """ This method is used when a table have the primary key dropped on MySQL. The table name is removed from the replicatoin catalogue and the table is renamed. This way any dependency (e.g. views, functions) to the table is preserved but the replica is stopped. :param table_name: the table name to remove from t_replica_tables """ self.logger.info("unregistering table %s from the replica catalog" % (table_name,)) sql_delete=""" DELETE FROM sch_chameleon.t_replica_tables WHERE v_table_name=%s AND v_schema_name=%s RETURNING i_id_table ; """ self.pg_conn.pgsql_cur.execute(sql_delete, (table_name, self.dest_schema)) removed_id=self.pg_conn.pgsql_cur.fetchone() table_id=removed_id[0] self.logger.info("renaming table %s to %s_%s" % (table_name, table_name, table_id)) sql_rename="""ALTER TABLE IF EXISTS "%s"."%s" rename to "%s_%s"; """ % (self.dest_schema, table_name, table_name, table_id) self.logger.debug(sql_rename) self.pg_conn.pgsql_cur.execute(sql_rename) def set_search_path(self): """ The method sets the search path for the connection. """ sql_path=" SET search_path=%s;" % (self.dest_schema, ) self.pg_conn.pgsql_cur.execute(sql_path) def drop_tables(self): """ The method drops the tables present in the table_ddl """ self.set_search_path() for table in self.table_ddl: self.logger.debug("dropping table %s " % (table, )) sql_drop = """DROP TABLE IF EXISTS "%s" CASCADE;""" % (table, ) self.pg_conn.pgsql_cur.execute(sql_drop) def create_tables(self): """ The method loops trough the list table_ddl and executes the creation scripts. No index is created in this method """ self.set_search_path() for table in self.table_ddl: self.logger.debug("creating table %s " % (table, )) try: ddl_enum=self.type_ddl[table] for sql_type in ddl_enum: self.pg_conn.pgsql_cur.execute(sql_type) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(sql_type) sql_create=self.table_ddl[table] try: self.pg_conn.pgsql_cur.execute(sql_create) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(sql_create) self.store_table(table) def create_indices(self): """ The method creates the indices using the DDL stored in the class list self.idx_ddl. """ self.logger.info("creating the indices") for table in self.idx_ddl: idx_ddl= self.idx_ddl[table] self.logger.debug("processing table %s" % (table, )) for sql_idx in idx_ddl: self.pg_conn.pgsql_cur.execute(sql_idx) def copy_data(self, table, csv_file, my_tables={}): """ The method copy the data into postgresql using psycopg2's copy_expert. The csv_file is a file like object which can be either a csv file or a string io object, accordingly with the configuration parameter copy_mode. :param table: the table name, used to get the table's metadata out of my_tables :param csv_file: file like object with the table's data stored in CSV format :param my_tables: table's metadata dictionary """ column_copy=[] for column in my_tables[table]["columns"]: column_copy.append('"'+column["column_name"]+'"') sql_copy="COPY "+'"'+self.dest_schema+'"'+"."+'"'+table+'"'+" ("+','.join(column_copy)+") FROM STDIN WITH NULL 'NULL' CSV QUOTE '\"' DELIMITER',' ESCAPE '\"' ; " self.pg_conn.pgsql_cur.copy_expert(sql_copy,csv_file) def insert_data(self, table, insert_data, my_tables={}): """ The method is a fallback procedure for when the copy method fails. The procedure performs a row by row insert, very slow but capable to skip the rows with problematic data (e.g. enchoding issues). :param table: the table name, used to get the table's metadata out of my_tables :param csv_file: file like object with the table's data stored in CSV format :param my_tables: table's metadata dictionary """ column_copy=[] column_marker=[] for column in my_tables[table]["columns"]: column_copy.append('"'+column["column_name"]+'"') column_marker.append('%s') sql_head="INSERT INTO "+'"'+self.dest_schema+'"'+"."+'"'+table+'"'+" ("+','.join(column_copy)+") VALUES ("+','.join(column_marker)+");" for data_row in insert_data: column_values=[] for column in my_tables[table]["columns"]: column_values.append(data_row[column["column_name"]]) try: self.pg_conn.pgsql_cur.execute(sql_head,column_values) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(self.pg_conn.pgsql_cur.mogrify(sql_head,column_values)) except: self.logger.error("unexpected error when processing the row") self.logger.error(" - > Table: %s" % table) self.logger.error(" - > Insert list: %s" % (','.join(column_copy)) ) self.logger.error(" - > Insert values: %s" % (column_values) ) def build_idx_ddl(self): """ The method loops over the list l_pkeys and builds a new list with the statements for pkeys """ for table_name in self.table_metadata: table=self.table_metadata[table_name] table_name=table["name"] indices=table["indices"] table_idx=[] for index in indices: indx=index["index_name"] index_columns=index["index_columns"] non_unique=index["non_unique"] if indx=='PRIMARY': pkey_name="pk_"+table_name[0:20]+"_"+str(self.idx_sequence) pkey_def='ALTER TABLE "'+table_name+'" ADD CONSTRAINT "'+pkey_name+'" PRIMARY KEY ('+index_columns+') ;' table_idx.append(pkey_def) else: if non_unique==0: unique_key='UNIQUE' else: unique_key='' index_name='"idx_'+indx[0:20]+table_name[0:20]+"_"+str(self.idx_sequence)+'"' idx_def='CREATE '+unique_key+' INDEX '+ index_name+' ON "'+table_name+'" ('+index_columns+');' table_idx.append(idx_def) self.idx_sequence+=1 self.idx_ddl[table_name]=table_idx def build_tab_ddl(self): """ The method iterates over the list l_tables and builds a new list with the statements for tables """ if self.table_limit[0] != '*' : table_metadata = {} for tab in self.table_limit: try: table_metadata[tab] = self.table_metadata[tab] except: pass else: table_metadata = self.table_metadata for table_name in table_metadata: table=self.table_metadata[table_name] columns=table["columns"] ddl_head="CREATE TABLE "+'"'+table["name"]+'" (' ddl_tail=");" ddl_columns=[] ddl_enum=[] for column in columns: if column["is_nullable"]=="NO": col_is_null="NOT NULL" else: col_is_null="NULL" column_type=self.type_dictionary[column["data_type"]] if column_type=="enum": enum_type="enum_"+table["name"]+"_"+column["column_name"] sql_drop_enum='DROP TYPE IF EXISTS '+enum_type+' CASCADE;' sql_create_enum="CREATE TYPE "+enum_type+" AS ENUM "+column["enum_list"]+";" ddl_enum.append(sql_drop_enum) ddl_enum.append(sql_create_enum) column_type=enum_type if column_type=="character varying" or column_type=="character": column_type=column_type+"("+str(column["character_maximum_length"])+")" if column_type=='numeric': column_type=column_type+"("+str(column["numeric_precision"])+","+str(column["numeric_scale"])+")" if column["extra"]=="auto_increment": column_type="bigserial" ddl_columns.append('"'+column["column_name"]+'" '+column_type+" "+col_is_null ) def_columns=str(',').join(ddl_columns) self.type_ddl[table["name"]]=ddl_enum self.table_ddl[table["name"]]=ddl_head+def_columns+ddl_tail def get_schema_version(self): """ The method gets the service schema version querying the view sch_chameleon.v_version. The try-except is used in order to get a valid value "base" if the view is missing. This happens only if the schema upgrade is performed from very early pg_chamelon's versions. """ sql_check=""" SELECT t_version FROM sch_chameleon.v_version ; """ try: self.pg_conn.pgsql_cur.execute(sql_check) value_check=self.pg_conn.pgsql_cur.fetchone() cat_version=value_check[0] except: cat_version='base' return cat_version def upgrade_service_schema(self): """ The method upgrades the service schema to the latest version using the upgrade files if required. The method uses the install_script flag to determine whether an upgrade file should be applied. The variable cat_version stores the schema version. Each element in the class list cat_sql stores the scripts in the upgrade directory along with the catalogue version associated with the install script. If the current catalogue version stored in cat_version is equal to the script version the install is skipped but the variable install_script is set to true. This way any following install script is executed to upgrade the catalogue to the higher version. The hardcoded 0.7 version is required because that version introduced the multi source feature. As initially the destination schema were not stored in the migration catalogue, the post migration update is required to save this information in the replica catalogue. """ self.logger.info("Upgrading the service schema") install_script=False cat_version=self.get_schema_version() for install in self.cat_sql: script_ver=install["version"] script_schema=install["script"] self.logger.info("script schema %s, detected schema version %s - install_script:%s " % (script_ver, cat_version, install_script)) if install_script==True: sql_view=""" CREATE OR REPLACE VIEW sch_chameleon.v_version AS SELECT %s::TEXT t_version ;""" self.logger.info("Installing file version %s" % (script_ver, )) file_schema=open(self.sql_dir+script_schema, 'rb') sql_schema=file_schema.read() file_schema.close() self.pg_conn.pgsql_cur.execute(sql_schema) self.pg_conn.pgsql_cur.execute(sql_view, (script_ver, )) if script_ver=='0.7': sql_update=""" UPDATE sch_chameleon.t_sources SET t_dest_schema=%s WHERE i_id_source=( SELECT i_id_source FROM sch_chameleon.t_sources WHERE t_source='default' AND t_dest_schema='default' ) ; """ self.pg_conn.pgsql_cur.execute(sql_update, (self.dest_schema, )) if script_ver==cat_version and not install_script: self.logger.info("enabling install script") install_script=True def check_service_schema(self): """ The method checks if the sch_chameleon exists :return: count from information_schema.schemata :rtype: integer """ sql_check=""" SELECT count(*) FROM information_schema.schemata WHERE schema_name='sch_chameleon' """ self.pg_conn.pgsql_cur.execute(sql_check) num_schema=self.pg_conn.pgsql_cur.fetchone() return num_schema def create_service_schema(self): """ The method installs the service replica service schema sch_chameleon. """ num_schema=self.check_service_schema() if num_schema[0]==0: for install in self.cat_sql: script_ver=install["version"] script_schema=install["script"] if script_ver=='base': self.logger.info("Installing service schema %s" % (script_ver, )) file_schema=open(self.sql_dir+script_schema, 'rb') sql_schema=file_schema.read() file_schema.close() self.pg_conn.pgsql_cur.execute(sql_schema) else: self.logger.error("The service schema is already created") def get_status(self): """ The metod lists the sources with the running status and the eventual lag :return: psycopg2 fetchall results :rtype: psycopg2 tuple """ sql_status=""" SELECT t_source, t_dest_schema, enm_status, date_trunc('seconds',now())-ts_last_received lag, ts_last_received, ts_last_received-ts_last_replay, ts_last_replay FROM sch_chameleon.t_sources ORDER BY t_source ; """ self.pg_conn.pgsql_cur.execute(sql_status) results = self.pg_conn.pgsql_cur.fetchall() return results def drop_service_schema(self): """ The method removes the service schema discarding all the replica references. The replicated tables are kept in place though. """ file_schema=open(self.sql_dir+"drop_schema.sql", 'rb') sql_schema=file_schema.read() file_schema.close() self.pg_conn.pgsql_cur.execute(sql_schema) def save_master_status(self, master_status, cleanup=False): """ This method saves the master data determining which log table should be used in the next batch. The method performs also a cleanup for the logged events the cleanup parameter is true. :param master_status: the master data with the binlogfile and the log position :param cleanup: if true cleans the not replayed batches. This is useful when resyncing a replica. """ next_batch_id=None master_data = master_status[0] binlog_name = master_data["File"] binlog_position = master_data["Position"] try: event_time = master_data["Time"] except: event_time = None sql_master=""" INSERT INTO sch_chameleon.t_replica_batch ( i_id_source, t_binlog_name, i_binlog_position ) VALUES ( %s, %s, %s ) RETURNING i_id_batch ; """ sql_event=""" UPDATE sch_chameleon.t_sources SET ts_last_received=to_timestamp(%s), v_log_table=ARRAY[v_log_table[2],v_log_table[1]] WHERE i_id_source=%s RETURNING v_log_table[1], ts_last_received ; """ try: if cleanup: self.logger.info("cleaning not replayed batches for source %s", self.i_id_source) sql_cleanup=""" DELETE FROM sch_chameleon.t_replica_batch WHERE i_id_source=%s AND NOT b_replayed; """ self.pg_conn.pgsql_cur.execute(sql_cleanup, (self.i_id_source, )) self.pg_conn.pgsql_cur.execute(sql_master, (self.i_id_source, binlog_name, binlog_position)) results=self.pg_conn.pgsql_cur.fetchone() next_batch_id=results[0] except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(self.pg_conn.pgsql_cur.mogrify(sql_master, (self.i_id_source, binlog_name, binlog_position))) try: self.pg_conn.pgsql_cur.execute(sql_event, (event_time, self.i_id_source, )) results = self.pg_conn.pgsql_cur.fetchone() log_table_name = results[0] db_event_time = results[1] self.logger.info("Saved master data for source: %s" %(self.source_name, ) ) self.logger.debug("Binlog file: %s" % (binlog_name, )) self.logger.debug("Binlog position:%s" % (binlog_position, )) self.logger.debug("Last event: %s" % (db_event_time, )) self.logger.debug("Next log table name: %s" % ( log_table_name, )) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.pg_conn.pgsql_cur.mogrify(sql_event, (event_time, self.i_id_source, )) return next_batch_id def get_batch_data(self): """ The method updates the batch status to started for the given source_id and returns the batch informations. :return: psycopg2 fetchall results without any manipulation :rtype: psycopg2 tuple """ sql_batch=""" WITH t_created AS ( SELECT max(ts_created) AS ts_created FROM sch_chameleon.t_replica_batch WHERE NOT b_processed AND NOT b_replayed AND i_id_source=%s ) UPDATE sch_chameleon.t_replica_batch SET b_started=True FROM t_created WHERE t_replica_batch.ts_created=t_created.ts_created AND i_id_source=%s RETURNING i_id_batch, t_binlog_name, i_binlog_position, (SELECT v_log_table[1] from sch_chameleon.t_sources WHERE i_id_source=%s) as v_log_table ; """ self.pg_conn.pgsql_cur.execute(sql_batch, (self.i_id_source, self.i_id_source, self.i_id_source, )) return self.pg_conn.pgsql_cur.fetchall() def insert_batch(self,group_insert): """ Fallback method for the batch insert. Each row event is processed individually and any problematic row is discarded into the table t_discarded_rows. The row is encoded in base64 in order to prevent any encoding or type issue. :param group_insert: the event data built in mysql_engine """ self.logger.debug("starting insert loop") for row_data in group_insert: global_data = row_data["global_data"] event_data = row_data["event_data"] event_update = row_data["event_update"] log_table = global_data["log_table"] event_time = global_data["event_time"] sql_insert=""" INSERT INTO sch_chameleon."""+log_table+""" ( i_id_batch, v_table_name, v_schema_name, enm_binlog_event, t_binlog_name, i_binlog_position, jsb_event_data, jsb_event_update, i_my_event_time ) VALUES ( %s, %s, %s, %s, %s, %s, %s, %s, %s ) ; """ try: self.pg_conn.pgsql_cur.execute(sql_insert,( global_data["batch_id"], global_data["table"], global_data["schema"], global_data["action"], global_data["binlog"], global_data["logpos"], json.dumps(event_data, cls=pg_encoder), json.dumps(event_update, cls=pg_encoder), event_time ) ) except: self.logger.error("error when storing event data. saving the discarded row") self.save_discarded_row(row_data,global_data["batch_id"]) def save_discarded_row(self,row_data,batch_id): """ The method saves the discarded row in the table t_discarded_row along with the id_batch. The row is encoded in base64 as the t_row_data is a text field. :param row_data: the row data dictionary :param batch_id: the id batch where the row belongs """ b64_row=base64.b64encode(str(row_data)) sql_save=""" INSERT INTO sch_chameleon.t_discarded_rows ( i_id_batch, t_row_data ) VALUES ( %s, %s ); """ self.pg_conn.pgsql_cur.execute(sql_save,(batch_id,b64_row)) def write_batch(self, group_insert): """ Main method for adding the batch data in the log tables. The row data from group_insert are mogrified in CSV format and stored in the string like object csv_file. psycopg2's copy expert is used to store the event data in PostgreSQL. Should any error occur the procedure fallsback to insert_batch. :param group_insert: the event data built in mysql_engine """ csv_file=io.StringIO() self.set_application_name("writing batch") insert_list=[] for row_data in group_insert: global_data=row_data["global_data"] event_data=row_data["event_data"] event_update=row_data["event_update"] log_table=global_data["log_table"] insert_list.append(self.pg_conn.pgsql_cur.mogrify("%s,%s,%s,%s,%s,%s,%s,%s,%s" , ( global_data["batch_id"], global_data["table"], self.dest_schema, global_data["action"], global_data["binlog"], global_data["logpos"], json.dumps(event_data, cls=pg_encoder), json.dumps(event_update, cls=pg_encoder), global_data["event_time"], ) ) ) csv_data=b"\n".join(insert_list ).decode() csv_file.write(csv_data) csv_file.seek(0) try: sql_copy=""" COPY "sch_chameleon"."""+log_table+""" ( i_id_batch, v_table_name, v_schema_name, enm_binlog_event, t_binlog_name, i_binlog_position, jsb_event_data, jsb_event_update, i_my_event_time ) FROM STDIN WITH NULL 'NULL' CSV QUOTE '''' DELIMITER ',' ESCAPE '''' ; """ self.pg_conn.pgsql_cur.copy_expert(sql_copy,csv_file) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(csv_data) self.logger.error("fallback to inserts") self.insert_batch(group_insert) def set_batch_processed(self, id_batch): """ The method updates the flag b_processed and sets the processed timestamp for the given batch id. The event ids are aggregated into the table t_batch_events used by the replay function. :param id_batch: the id batch to set as processed """ self.logger.debug("updating batch %s to processed" % (id_batch, )) sql_update=""" UPDATE sch_chameleon.t_replica_batch SET b_processed=True, ts_processed=now() WHERE i_id_batch=%s ; """ self.pg_conn.pgsql_cur.execute(sql_update, (id_batch, )) self.logger.debug("collecting events id for batch %s " % (id_batch, )) sql_collect_events = """ INSERT INTO sch_chameleon.t_batch_events ( i_id_batch, i_id_event ) SELECT i_id_batch, array_agg(i_id_event) FROM ( SELECT i_id_batch, i_id_event, ts_event_datetime FROM sch_chameleon.t_log_replica WHERE i_id_batch=%s ORDER BY ts_event_datetime ) t_event GROUP BY i_id_batch ; """ self.pg_conn.pgsql_cur.execute(sql_collect_events, (id_batch, )) def process_batch(self, replica_batch_size): """ The method calls the function fn_process_batch with the parameters batch size and the id_source. The plpgsql function returns true if there are still rows to process. When all rows are replayed the method exits. :param replica_batch_size: the max rows to process in a single function call. """ self.set_application_name("replay batch") batch_loop=True sql_process="""SELECT sch_chameleon.fn_process_batch(%s,%s);""" self.logger.info("Replaying batch for source %s replay size %s rows" % ( self.source_name, replica_batch_size)) while batch_loop: self.pg_conn.pgsql_cur.execute(sql_process, (replica_batch_size, self.i_id_source)) batch_result=self.pg_conn.pgsql_cur.fetchone() batch_loop=batch_result[0] if batch_loop: self.logger.info("Still working on batch for source %s replay size %s rows" % (self.source_name, replica_batch_size )) else: self.logger.info("Batch replay for source %s is complete" % (self.source_name)) self.logger.debug("Cleanup for replayed batches older than %s for source %s" % (self.batch_retention, self.source_name)) sql_cleanup=""" DELETE FROM sch_chameleon.t_replica_batch WHERE b_started AND b_processed AND b_replayed AND now()-ts_replayed>%s::interval AND i_id_source=%s ; """ self.set_application_name("cleanup old batches") self.pg_conn.pgsql_cur.execute(sql_cleanup, (self.batch_retention, self.i_id_source )) self.set_application_name("idle") def add_foreign_keys(self, source_name, fk_metadata): """ the method creates the foreign keys extracted from the mysql catalog the keys are created initially as invalid then validated. If an error happens is displayed on the log destination :param source_name: the source name, required to determine the destination schema :param fk_metadata: the foreign keys metadata extracted from mysql's information schema """ fk_list = [] sql_schema=""" SELECT t_dest_schema FROM sch_chameleon.t_sources WHERE t_source=%s ; """ self.pg_conn.pgsql_cur.execute(sql_schema, (source_name, )) dschema=self.pg_conn.pgsql_cur.fetchone() destination_schema = dschema[0] self.logger.info("creating the not validated foreign keys in schema %s" % destination_schema) fk_counter = 0 for foreign_key in fk_metadata: table_name = foreign_key["table_name"] fk_name = foreign_key["constraint_name"][0:20] + "_" + str(fk_counter) fk_cols = foreign_key["fk_cols"] referenced_table_name = foreign_key["referenced_table_name"] ref_columns = foreign_key["ref_columns"] fk_list.append({'fkey_name':fk_name, 'table_name':table_name}) sql_fkey = ("""ALTER TABLE "%s"."%s" ADD CONSTRAINT "%s" FOREIGN KEY (%s) REFERENCES "%s"."%s" (%s) NOT VALID;""" % ( destination_schema, table_name, fk_name, fk_cols, destination_schema, referenced_table_name, ref_columns ) ) fk_counter+=1 self.logger.debug("creating %s on %s" % (fk_name, table_name)) try: self.pg_conn.pgsql_cur.execute(sql_fkey) except psycopg2.Error as e: self.logger.error("could not create the foreign key %s on table %s" % (fk_name, table_name)) self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error("STATEMENT: %s " % (self.pg_conn.pgsql_cur.mogrify(sql_fkey))) self.logger.info("validating the foreign keys in schema %s" % destination_schema) for fkey in fk_list: sql_validate = 'ALTER TABLE "%s"."%s" VALIDATE CONSTRAINT "%s";' % (destination_schema, fkey["table_name"], fkey["fkey_name"]) try: self.pg_conn.pgsql_cur.execute(sql_validate) except psycopg2.Error as e: self.logger.error("could not validate the foreign key %s on table %s" % (fkey["table_name"], fkey["fkey_name"])) self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error("STATEMENT: %s " % (self.pg_conn.pgsql_cur.mogrify(sql_validate))) def reset_sequences(self, source_name): """ the method resets the sequences to the max value available the associated table :param source_name: the source name, required to determine the destination schema """ sql_schema=""" SELECT t_dest_schema FROM sch_chameleon.t_sources WHERE t_source=%s ; """ self.pg_conn.pgsql_cur.execute(sql_schema, (source_name, )) dschema=self.pg_conn.pgsql_cur.fetchone() destination_schema = dschema[0] self.logger.info("resetting the sequences in schema %s" % destination_schema) sql_gen_reset=""" SELECT format('SELECT setval(%%L::regclass,(select max(%%I) FROM %%I.%%I));', replace(replace(column_default,'nextval(''',''),'''::regclass)',''), column_name, table_schema, table_name ), replace(replace(column_default,'nextval(''',''),'''::regclass)','') as seq_name FROM information_schema.columns WHERE table_schema=%s AND column_default like 'nextval%%' ;""" self.pg_conn.pgsql_cur.execute(sql_gen_reset, (destination_schema, )) results=self.pg_conn.pgsql_cur.fetchall() try: for statement in results: self.logger.info("resetting the sequence %s" % statement[1]) self.pg_conn.pgsql_cur.execute(statement[0]) except psycopg2.Error as e: self.logger.error("SQLCODE: %s SQLERROR: %s" % (e.pgcode, e.pgerror)) self.logger.error(statement) except: pass def generate_default_statements(self, table, column, create_column=None): """ The method gets the default value associated with the table and column removing the cast. :param table: The table name :param table: The column name :return: the statements for dropping and creating default value on the affected table :rtype: dictionary """ if not create_column: create_column = column regclass = """ "%s"."%s" """ %(self.dest_schema, table) sql_def_val = """ SELECT ( SELECT split_part(substring(pg_catalog.pg_get_expr(d.adbin, d.adrelid) for 128),'::',1) FROM pg_catalog.pg_attrdef d WHERE d.adrelid = a.attrelid AND d.adnum = a.attnum AND a.atthasdef ) as default_value FROM pg_catalog.pg_attribute a WHERE a.attrelid = %s::regclass AND a.attname=%s AND NOT a.attisdropped ; """ self.pg_conn.pgsql_cur.execute(sql_def_val, (regclass, column )) default_value = self.pg_conn.pgsql_cur.fetchone() if default_value[0]: query_drop_default = """ ALTER TABLE "%s" ALTER COLUMN "%s" DROP DEFAULT;""" % (table, column) query_add_default = """ ALTER TABLE "%s" ALTER COLUMN "%s" SET DEFAULT %s ; """ % (table, create_column, default_value[0]) else: query_drop_default = "" query_add_default = "" return {'drop':query_drop_default, 'create':query_add_default} def build_enum_ddl(self, enm_dic): """ The method builds the enum DDL using the token data. The postgresql system catalog is queried to determine whether the enum exists and needs to be altered. The alter is not written in the replica log table but executed as single statement as PostgreSQL do not allow the alter being part of a multi command SQL. :param enm_dic: a dictionary with the enumeration details :return: a dictionary with the pre_alter and post_alter statements (e.g. pre alter create type , post alter drop type) :rtype: dictionary """ #enm_dic = {'table':table_name, 'column':column_name, 'type':column_type, 'enum_list': enum_list} enum_name="enum_%s_%s" % (enm_dic['table'], enm_dic['column']) sql_check_enum = """ SELECT typ.typcategory, typ.typname, sch_typ.nspname as typschema, CASE WHEN typ.typcategory='E' THEN ( SELECT array_agg(enumlabel) FROM pg_enum WHERE enumtypid=typ.oid ) END enum_list FROM pg_type typ INNER JOIN pg_namespace sch_typ ON sch_typ.oid = typ.typnamespace WHERE sch_typ.nspname=%s AND typ.typname=%s ; """ self.pg_conn.pgsql_cur.execute(sql_check_enum, (self.dest_schema, enum_name)) type_data=self.pg_conn.pgsql_cur.fetchone() return_dic = {} pre_alter = "" post_alter = "" column_type = enm_dic["type"] self.logger.debug(enm_dic) if type_data: if type_data[0] == 'E' and enm_dic["type"] == 'enum': self.logger.debug('There is already the enum %s, altering the type') new_enums = [val.strip() for val in enm_dic["enum_list"] if val.strip() not in type_data[3]] sql_add = [] for enumeration in new_enums: sql_add = """ALTER TYPE "%s"."%s" ADD VALUE '%s';""" % (type_data[2], enum_name, enumeration) self.pg_conn.pgsql_cur.execute(sql_add) column_type = enum_name elif type_data[0] != 'E' and enm_dic["type"] == 'enum': self.logger.debug('The column will be altered in enum, creating the type') pre_alter = "CREATE TYPE \"%s\" AS ENUM (%s);" % (enum_name, enm_dic["enum_elements"]) column_type = enum_name elif type_data[0] == 'E' and enm_dic["type"] != 'enum': self.logger.debug('The column is no longer an enum, dropping the type') post_alter = "DROP TYPE \"%s\" " % (enum_name) elif not type_data and enm_dic["type"] == 'enum': self.logger.debug('Creating a new enumeration type %s' % (enum_name)) pre_alter = "CREATE TYPE \"%s\" AS ENUM (%s);" % (enum_name, enm_dic["enum_elements"]) column_type = enum_name return_dic["column_type"] = column_type return_dic["pre_alter"] = pre_alter return_dic["post_alter"] = post_alter return return_dic def build_alter_table(self, token): """ The method builds the alter table statement from the token data. The function currently supports the following statements. DROP TABLE ADD COLUMN CHANGE MODIFY The change and modify are potential source of breakage for the replica because of the mysql implicit fallback data types. For better understanding please have a look to http://www.cybertec.at/why-favor-postgresql-over-mariadb-mysql/ :param token: A dictionary with the tokenised sql statement :return: query the DDL query in the PostgreSQL dialect :rtype: string """ alter_cmd = [] ddl_enum = [] ddl_pre_alter = [] ddl_post_alter = [] query_cmd=token["command"] table_name=token["name"] for alter_dic in token["alter_cmd"]: if alter_dic["command"] == 'DROP': alter_cmd.append("%(command)s %(name)s CASCADE" % alter_dic) elif alter_dic["command"] == 'ADD': column_type = self.type_dictionary[alter_dic["type"]] column_name = alter_dic["name"] enum_list = str(alter_dic["dimension"]).replace("'", "").split(",") enm_dic = {'table':table_name, 'column':column_name, 'type':column_type, 'enum_list': enum_list, 'enum_elements':alter_dic["dimension"]} enm_alter = self.build_enum_ddl(enm_dic) ddl_pre_alter.append(enm_alter["pre_alter"]) ddl_post_alter.append(enm_alter["post_alter"]) column_type= enm_alter["column_type"] if column_type in ["character varying", "character", 'numeric', 'bit', 'float']: column_type=column_type+"("+str(alter_dic["dimension"])+")" if alter_dic["default"]: default_value = "DEFAULT %s" % alter_dic["default"] else: default_value="" alter_cmd.append("%s \"%s\" %s NULL %s" % (alter_dic["command"], column_name, column_type, default_value)) elif alter_dic["command"] == 'CHANGE': sql_rename = "" sql_type = "" old_column=alter_dic["old"] new_column=alter_dic["new"] column_name = old_column enum_list = str(alter_dic["dimension"]).replace("'", "").split(",") column_type=self.type_dictionary[alter_dic["type"]] default_sql = self.generate_default_statements(table_name, old_column, new_column) enm_dic = {'table':table_name, 'column':column_name, 'type':column_type, 'enum_list': enum_list, 'enum_elements':alter_dic["dimension"]} enm_alter = self.build_enum_ddl(enm_dic) ddl_pre_alter.append(enm_alter["pre_alter"]) ddl_pre_alter.append(default_sql["drop"]) ddl_post_alter.append(enm_alter["post_alter"]) ddl_post_alter.append(default_sql["create"]) column_type= enm_alter["column_type"] if column_type=="character varying" or column_type=="character" or column_type=='numeric' or column_type=='bit' or column_type=='float': column_type=column_type+"("+str(alter_dic["dimension"])+")" sql_type = """ALTER TABLE "%s" ALTER COLUMN "%s" SET DATA TYPE %s USING "%s"::%s ;;""" % (table_name, old_column, column_type, old_column, column_type) if old_column != new_column: sql_rename="""ALTER TABLE "%s" RENAME COLUMN "%s" TO "%s" ;""" % (table_name, old_column, new_column) query = ' '.join(ddl_pre_alter) query += sql_type+sql_rename query += ' '.join(ddl_post_alter) return query elif alter_dic["command"] == 'MODIFY': column_type = self.type_dictionary[alter_dic["type"]] column_name = alter_dic["name"] enum_list = str(alter_dic["dimension"]).replace("'", "").split(",") default_sql = self.generate_default_statements(table_name, column_name) enm_dic = {'table':table_name, 'column':column_name, 'type':column_type, 'enum_list': enum_list, 'enum_elements':alter_dic["dimension"]} enm_alter = self.build_enum_ddl(enm_dic) ddl_pre_alter.append(enm_alter["pre_alter"]) ddl_pre_alter.append(default_sql["drop"]) ddl_post_alter.append(enm_alter["post_alter"]) ddl_post_alter.append(default_sql["create"]) column_type= enm_alter["column_type"] if column_type=="character varying" or column_type=="character" or column_type=='numeric' or column_type=='bit' or column_type=='float': column_type=column_type+"("+str(alter_dic["dimension"])+")" query = ' '.join(ddl_pre_alter) query += """ALTER TABLE "%s" ALTER COLUMN "%s" SET DATA TYPE %s USING "%s"::%s ;""" % (table_name, column_name, column_type, column_name, column_type) query += ' '.join(ddl_post_alter) return query query = ' '.join(ddl_pre_alter) query += query_cmd + ' '+ table_name+ ' ' +', '.join(alter_cmd)+" ;" query += ' '.join(ddl_post_alter) return query def truncate_tables(self): """ The method truncate the tables listed in t_index_def. In order to minimise the risk of lock chain the truncate is prepended by a set lock_timeout = 10 seconds. If the lock is not acquired in that time the procedure fallsback to a delete and vacuum. """ sql_clean=""" SELECT DISTINCT format('SET lock_timeout=''10s'';TRUNCATE TABLE %%I.%%I CASCADE;',v_schema,v_table) v_truncate, format('DELETE FROM %%I.%%I;',v_schema,v_table) v_delete, format('VACUUM %%I.%%I;',v_schema,v_table) v_vacuum, format('%%I.%%I',v_schema,v_table) as v_tab, v_table FROM sch_chameleon.t_index_def WHERE i_id_source=%s ORDER BY v_table ; """ self.pg_conn.pgsql_cur.execute(sql_clean, (self.i_id_source, )) tab_clean=self.pg_conn.pgsql_cur.fetchall() for stat_clean in tab_clean: st_truncate=stat_clean[0] st_delete=stat_clean[1] st_vacuum=stat_clean[2] tab_name=stat_clean[3] try: self.logger.info("truncating table %s" % (tab_name,)) self.pg_conn.pgsql_cur.execute(st_truncate) except: self.logger.info("truncate failed, fallback to delete on table %s" % (tab_name,)) self.pg_conn.pgsql_cur.execute(st_delete) self.logger.info("running vacuum on table %s" % (tab_name,)) self.pg_conn.pgsql_cur.execute(st_vacuum) def drop_src_indices(self): """ The method executes the index drop statements read from the table t_index_def. The method is used when resyncing the replica for removing the indices before the bulk load. """ sql_idx=""" SELECT t_drop FROM sch_chameleon.t_index_def WHERE i_id_source=%s; """ self.pg_conn.pgsql_cur.execute(sql_idx, (self.i_id_source, )) idx_drop=self.pg_conn.pgsql_cur.fetchall() for drop_stat in idx_drop: self.pg_conn.pgsql_cur.execute(drop_stat[0]) def create_src_indices(self): """ The method executes the index DDL read from the table t_index_def. The method is used when resyncing the replica for recreating the indices after the bulk load. """ sql_idx=""" SELECT t_create FROM sch_chameleon.t_index_def WHERE i_id_source=%s; """ self.pg_conn.pgsql_cur.execute(sql_idx, (self.i_id_source, )) idx_create=self.pg_conn.pgsql_cur.fetchall() for create_stat in idx_create: self.pg_conn.pgsql_cur.execute(create_stat[0]) def get_index_def(self): """ The method inserts in the table t_index_def the create and drop statements for the tables affected by the resync replica. """ table_limit = '' if self.table_limit[0] != '*': table_limit = self.pg_conn.pgsql_cur.mogrify("""WHERE table_name IN (SELECT unnest(%s))""",(self.table_limit, )).decode() sql_get_idx=""" DELETE FROM sch_chameleon.t_index_def WHERE i_id_source=%s; INSERT INTO sch_chameleon.t_index_def ( i_id_source, v_schema, v_table, v_index, t_create, t_drop ) SELECT i_id_source, schema_name, table_name, index_name, CASE WHEN indisprimary THEN format('ALTER TABLE %%I.%%I ADD CONSTRAINT %%I %%s', schema_name, table_name, index_name, pg_get_constraintdef(const_id) ) ELSE pg_get_indexdef(index_id) END AS t_create, CASE WHEN indisprimary THEN format('ALTER TABLE %%I.%%I DROP CONSTRAINT %%I', schema_name, table_name, index_name ) ELSE format('DROP INDEX %%I.%%I', schema_name, index_name ) END AS t_drop FROM ( SELECT tab.relname AS table_name, indx.relname AS index_name, idx.indexrelid index_id, indisprimary, sch.nspname schema_name, src.i_id_source, cns.oid as const_id FROM pg_index idx INNER JOIN pg_class indx ON idx.indexrelid=indx.oid INNER JOIN pg_class tab INNER JOIN pg_namespace sch ON tab.relnamespace=sch.oid ON idx.indrelid=tab.oid INNER JOIN sch_chameleon.t_sources src ON sch.nspname=src.t_dest_schema LEFT OUTER JOIN pg_constraint cns ON indx.relname=cns.conname AND cns.connamespace=sch.oid WHERE sch.nspname=%s ) idx """ + table_limit self.pg_conn.pgsql_cur.execute(sql_get_idx, (self.i_id_source, self.dest_schema, )) def drop_primary_key(self, token): """ The method drops the primary key for the table. As tables without primary key cannot be replicated the method calls unregister_table to remove the table from the replica set. The drop constraint statement is not built from the token but generated from the information_schema. :param token: the tokenised query for drop primary key """ self.logger.info("dropping primary key for table %s" % (token["name"],)) sql_gen=""" SELECT DISTINCT format('ALTER TABLE %%I.%%I DROP CONSTRAINT %%I;', table_schema, table_name, constraint_name ) FROM information_schema.key_column_usage WHERE table_schema=%s AND table_name=%s ; """ self.pg_conn.pgsql_cur.execute(sql_gen, (self.dest_schema, token["name"])) value_check=self.pg_conn.pgsql_cur.fetchone() if value_check: sql_drop=value_check[0] self.pg_conn.pgsql_cur.execute(sql_drop) self.unregister_table(token["name"]) def gen_query(self, token): """ The method builds the DDL using the tokenised SQL stored in token. The supported commands are DROP TABLE TRUNCATE CREATE TABLE ALTER TABLE DROP PRIMARY KEY :param token: A dictionary with the tokenised sql statement :return: query the DDL query in the PostgreSQL dialect :rtype: string """ query="" if token["command"] =="DROP TABLE": query=" %(command)s IF EXISTS \"%(name)s\";" % token elif token["command"] =="TRUNCATE": query=" %(command)s TABLE \"%(name)s\" CASCADE;" % token elif token["command"] =="CREATE TABLE": table_metadata={} table_metadata["columns"]=token["columns"] table_metadata["name"]=token["name"] table_metadata["indices"]=token["indices"] self.table_metadata={} self.table_metadata[token["name"]]=table_metadata self.build_tab_ddl() self.build_idx_ddl() query_type=' '.join(self.type_ddl[token["name"]]) query_table=self.table_ddl[token["name"]] query_idx=' '.join(self.idx_ddl[token["name"]]) query=query_type+query_table+query_idx self.store_table(token["name"]) elif token["command"] == "ALTER TABLE": query=self.build_alter_table(token) elif token["command"] == "DROP PRIMARY KEY": self.drop_primary_key(token) return query def write_ddl(self, token, query_data): """ The method writes the DDL built from the tokenised sql into PostgreSQL. :param token: the tokenised query :param query_data: query's metadata (schema,binlog, etc.) """ sql_path=" SET search_path="+self.dest_schema+";" pg_ddl=sql_path+self.gen_query(token) log_table=query_data["log_table"] insert_vals=( query_data["batch_id"], token["name"], query_data["schema"], query_data["binlog"], query_data["logpos"], pg_ddl ) sql_insert=""" INSERT INTO sch_chameleon."""+log_table+""" ( i_id_batch, v_table_name, v_schema_name, enm_binlog_event, t_binlog_name, i_binlog_position, t_query ) VALUES ( %s, %s, %s, 'ddl', %s, %s, %s ) ; """ self.pg_conn.pgsql_cur.execute(sql_insert, insert_vals) def check_reindex(self): """ the function checks if there is any reindex running and holds for the given number of seconds """ sql_check=""" SELECT count(*) FROM pg_stat_activity WHERE datname=current_database() AND application_name = ANY(%s) ; """ while True: self.pg_conn.pgsql_cur.execute(sql_check, (self.reindex_app_names, )) reindex_tup = self.pg_conn.pgsql_cur.fetchone() reindex_cnt = reindex_tup[0] if reindex_cnt == 0: break; self.logger.info("reindex detected, sleeping %s second(s)" % (self.sleep_on_reindex,)) time.sleep(self.sleep_on_reindex) def set_consistent_table(self, table): """ The method set to NULL the binlog name and position for the given table. When the table is marked consistent the read replica loop reads and saves the table's row images. :param table: the table name """ sql_set = """ UPDATE sch_chameleon.t_replica_tables SET t_binlog_name = NULL, i_binlog_position = NULL WHERE i_id_source = %s AND v_table_name = %s AND v_schema_name = %s ; """ self.pg_conn.pgsql_cur.execute(sql_set, (self.i_id_source, table, self.dest_schema)) def get_inconsistent_tables(self): """ The method collects the tables in not consistent state. The informations are stored in a dictionary which key is the table's name. The dictionary is used in the read replica loop to determine wheter the table's modifications should be ignored because in not consistent state. :return: a dictionary with the tables in inconsistent state and their snapshot coordinates. :rtype: dictionary """ sql_get = """ SELECT v_schema_name, v_table_name, t_binlog_name, i_binlog_position FROM sch_chameleon.t_replica_tables WHERE t_binlog_name IS NOT NULL AND i_binlog_position IS NOT NULL AND i_id_source = %s ; """ inc_dic = {} self.pg_conn.pgsql_cur.execute(sql_get, (self.i_id_source, )) inc_results = self.pg_conn.pgsql_cur.fetchall() for table in inc_results: tab_dic = {} tab_dic["schema"] = table[0] tab_dic["table"] = table[1] tab_dic["log_seq"] = int(table[2].split('.')[1]) tab_dic["log_pos"] = int(table[3]) inc_dic[table[1]] = tab_dic return inc_dic def delete_table_events(self): """ The method removes the events from the log table for specific table and source. Is used to cleanup any residual event for a a synced table in the replica_engine's sync_table method. """ sql_clean = """ DELETE FROM sch_chameleon.t_log_replica WHERE i_id_event IN ( SELECT log.i_id_event FROM sch_chameleon.t_replica_batch bat INNER JOIN sch_chameleon.t_log_replica log ON log.i_id_batch=bat.i_id_batch WHERE log.v_table_name=ANY(%s) AND bat.i_id_source=%s ) ; """ self.pg_conn.pgsql_cur.execute(sql_clean, (self.table_limit, self.i_id_source, )) ```
{ "source": "jinjinanan/HelloDjango1", "score": 2 }
#### File: HelloDjango1/app1/views.py ```python from django.shortcuts import render from app1 import models # Create your views here. from django.shortcuts import HttpResponse user_list = [ {'user':'jack','pwd':'<PASSWORD>'}, {'user':'tom','pwd':'<PASSWORD>'}, ] def index(request): # return HttpResponse('Hello world!') if request.method == 'POST': username = request.POST.get('username',None) password = request.POST.get('password',None) # temp = {'user':username,'pwd':password} # user_list.append(temp) models.UserInfo.objects.create(user=username,pwd=password) user_list = models.UserInfo.objects.all() return render(request,'index.html',{'data':user_list}) ```
{ "source": "JinJinGuang/ns.py", "score": 3 }
#### File: ns.py/examples/two_level_sp.py ```python import simpy from ns.packet.dist_generator import DistPacketGenerator from ns.packet.sink import PacketSink from ns.port.port import Port from ns.scheduler.sp import SPServer def packet_arrival(): return 1 def const_size(): return 1000.0 env = simpy.Environment() total_groups = 2 total_flows_per_group = 3 source_rate = 8.0 * const_size() / packet_arrival() service_rate_L1 = 2 * total_groups * total_flows_per_group * source_rate service_rate_L2 = 2 * total_flows_per_group * source_rate group_weights = {} drr_server_per_group = {} for grp_id in range(total_groups): for flow_id in range(total_flows_per_group): group_weights[f'grp_{grp_id}_flow_{flow_id}'] = (grp_id + 1) * 3 + flow_id * 2 ps = PacketSink(env) drr_server = SPServer(env, service_rate_L1, group_weights, zero_buffer=True, debug=False) drr_server.out = ps # Setting up the DRR server for each group for grp_id in range(total_groups): flow_weights = {} for flow_id in range(total_flows_per_group): flow_weights[f'grp_{grp_id}_flow_{flow_id}'] = (grp_id + 1) * 3 + flow_id * 2 drr_server_per_group[f'grp_{grp_id}'] = SPServer( env, service_rate_L2, flow_weights, zero_buffer=True, zero_downstream_buffer=True, debug=True) for flow_id in range(total_flows_per_group): pg = DistPacketGenerator(env, f"grp_{grp_id}_flow_{flow_id}", packet_arrival, const_size, initial_delay=0.0, finish=3, flow_id=f"grp_{grp_id}_flow_{flow_id}", debug=True) tail_drop_buffer = Port(env, source_rate, qlimit=None, zero_downstream_buffer=True, debug=True) pg.out = tail_drop_buffer tail_drop_buffer.out = drr_server_per_group[f'grp_{grp_id}'] drr_server_per_group[f'grp_{grp_id}'].out = drr_server env.run(until=100) for grp_id in range(total_groups): for flow_id in range(total_flows_per_group): print( f"At the packet sink, packet arrival times for group {grp_id} and flow {flow_id} are:" ) print(ps.arrivals[f'grp_{grp_id}_flow_{flow_id}']) ``` #### File: ns/scheduler/virtual_clock.py ```python from collections import defaultdict as dd from ns.packet.packet import Packet from ns.utils import taggedstore class VirtualClockServer: """ Implements a virtual clock server. Parameters ---------- env: simpy.Environment The simulation environment. rate: float The bit rate of the port. vticks: dict This can be either a list or a dictionary. If it is a list, it uses the flow_id as its index to look for the flow's corresponding 'vtick'. If it is a dictionary, it contains (flow_id -> vtick) pairs for each possible flow_id. We assume that the vticks are the inverse of the desired rates for the corresponding flows, in bits per second. zero_buffer: bool Does this server have a zero-length buffer? This is useful when multiple basic elements need to be put together to construct a more complex element with a unified buffer. zero_downstream_buffer: bool Does this server's downstream element has a zero-length buffer? If so, packets may queue up in this element's own buffer rather than be forwarded to the next-hop element. debug: bool If True, prints more verbose debug information. """ def __init__(self, env, rate, vticks, zero_buffer=False, zero_downstream_buffer=False, debug=False): self.env = env self.rate = rate self.vticks = vticks if isinstance(self.vticks, list): self.aux_vc = [0.0 for __ in range(len(vticks))] self.v_clocks = [0.0 for __ in range(len(vticks))] # Keep track of the number of packets from each flow in the queue self.flow_queue_count = [0 for __ in range(len(vticks))] elif isinstance(self.vticks, dict): self.aux_vc = {key: 0.0 for (key, __) in vticks.items()} self.v_clocks = {key: 0.0 for (key, __) in vticks.items()} self.flow_queue_count = {key: 0 for (key, __) in vticks.items()} else: raise ValueError('vticks must be either a list or a dictionary.') self.out = None self.packets_received = 0 self.packets_dropped = 0 self.debug = debug self.current_packet = None self.byte_sizes = dd(lambda: 0) self.upstream_updates = {} self.upstream_stores = {} self.zero_buffer = zero_buffer self.zero_downstream_buffer = zero_downstream_buffer if self.zero_downstream_buffer: self.downstream_store = taggedstore.TaggedStore(env) self.store = taggedstore.TaggedStore(env) self.action = env.process(self.run()) def packet_in_service(self) -> Packet: """ Returns the packet that is currently being sent to the downstream element. Used by a ServerMonitor. """ return self.current_packet def byte_size(self, flow_id) -> int: """ Returns the size of the queue for a particular flow_id, in bytes. Used by a ServerMonitor. """ if flow_id in self.byte_sizes: return self.byte_sizes[flow_id] return 0 def size(self, flow_id) -> int: """ Returns the size of the queue for a particular flow_id, in the number of packets. Used by a ServerMonitor. """ return self.flow_queue_count[flow_id] def all_flows(self) -> list: """ Returns a list containing all the flow IDs. """ return self.byte_sizes.keys() def update(self, packet): """The packet has just been retrieved from this element's own buffer, so update internal housekeeping states accordingly. """ if self.zero_buffer: self.upstream_stores[packet].get() del self.upstream_stores[packet] self.upstream_updates[packet](packet) del self.upstream_updates[packet] flow_id = packet.flow_id self.flow_queue_count[flow_id] -= 1 if self.debug: print(f"Sent Packet {packet.packet_id} from flow {flow_id}") if flow_id in self.byte_sizes: self.byte_sizes[flow_id] -= packet.size else: raise ValueError("Error: the packet is from an unrecorded flow.") def run(self): """The generator function used in simulations.""" while True: if self.zero_downstream_buffer: packet = yield self.downstream_store.get() self.current_packet = packet yield self.env.timeout(packet.size * 8.0 / self.rate) self.out.put(packet, upstream_update=self.update, upstream_store=self.store) self.current_packet = None else: packet = yield self.store.get() self.update(packet) self.current_packet = packet yield self.env.timeout(packet.size * 8.0 / self.rate) self.out.put(packet) self.current_packet = None def put(self, packet, upstream_update=None, upstream_store=None): """ Sends a packet to this element. """ self.packets_received += 1 self.byte_sizes[packet.flow_id] += packet.size now = self.env.now flow_id = packet.flow_id self.flow_queue_count[flow_id] += 1 if self.v_clocks[flow_id] == 0: # Upon receiving the first packet from this flow_id, set its # virtual clock to the current real time self.v_clocks[flow_id] = now # Update virtual clocks (vc) for the corresponding flow. We assume # that vticks is the desired bit time, i.e., the inverse of the # desired bits per second data rate. Hence, we multiply this # value by the size of the packet in bits. self.aux_vc[flow_id] = max(now, self.aux_vc[flow_id]) self.v_clocks[flow_id] = self.v_clocks[ flow_id] + self.vticks[flow_id] * packet.size * 8.0 self.aux_vc[flow_id] += self.vticks[flow_id] # Lots of work to do here to implement the queueing discipline if self.debug: print( f"Packet arrived at {self.env.now}, with flow_id {flow_id}, " f"packet_id {packet.packet_id}, virtual clocks {self.v_clocks[flow_id]}, " f"aux_vc {self.aux_vc[flow_id]}") if self.zero_buffer and upstream_update is not None and upstream_store is not None: self.upstream_stores[packet] = upstream_store self.upstream_updates[packet] = upstream_update if self.zero_downstream_buffer: self.downstream_store.put((self.aux_vc[flow_id], packet)) return self.store.put((self.aux_vc[flow_id], packet)) ``` #### File: ns/shaper/token_bucket.py ```python import simpy class TokenBucketShaper: """ The token bucket size should be greater than the size of the largest packet that can occur on input. If this is not the case we always accumulate enough tokens to let the current packet pass based on the average rate. This may not be the behavior you desire. Parameters ---------- env: simpy.Environment The simulation environment. rate: int The token arrival rate in bits. bucket_size: int The token bucket size in bytes. peak: int (or None for an infinite peak sending rate) The peak sending rate in bits of the buffer (quickest time two packets could be sent). zero_buffer: bool Does this server have a zero-length buffer? This is useful when multiple basic elements need to be put together to construct a more complex element with a unified buffer. zero_downstream_buffer: bool Does this server's downstream element has a zero-length buffer? If so, packets may queue up in this element's own buffer rather than be forwarded to the next-hop element. debug: bool If True, prints more verbose debug information. """ def __init__(self, env, rate, bucket_size, peak=None, zero_buffer=False, zero_downstream_buffer=False, debug=False): self.store = simpy.Store(env) self.env = env self.rate = rate self.out = None self.packets_received = 0 self.packets_sent = 0 self.bucket_size = bucket_size self.peak = peak self.upstream_updates = {} self.upstream_stores = {} self.zero_buffer = zero_buffer self.zero_downstream_buffer = zero_downstream_buffer if self.zero_downstream_buffer: self.downstream_stores = simpy.Store(env) self.current_bucket = bucket_size # Current size of the bucket in bytes self.update_time = 0.0 # Last time the bucket was updated self.debug = debug self.busy = 0 # Used to track if a packet is currently being sent self.action = env.process(self.run()) def update(self, packet): """The packet has just been retrieved from this element's own buffer, so update internal housekeeping states accordingly.""" if self.zero_buffer: self.upstream_stores[packet].get() del self.upstream_stores[packet] self.upstream_updates[packet](packet) del self.upstream_updates[packet] if self.debug: print( f"Sent packet {packet.packet_id} from flow {packet.flow_id}.") def run(self): """The generator function used in simulations.""" while True: if self.zero_downstream_buffer: packet = yield self.downstream_stores.get() else: packet = yield self.store.get() self.update(packet) now = self.env.now # Add tokens to the bucket based on the current time self.current_bucket = min( self.bucket_size, self.current_bucket + self.rate * (now - self.update_time) / 8.0) self.update_time = now # Check if there are a sufficient number of tokens to allow the packet # to be sent; if not, we will then wait to accumulate enough tokens to # allow this packet to be sent regardless of the bucket size. if packet.size > self.current_bucket: # needs to wait for the bucket to fill yield self.env.timeout( (packet.size - self.current_bucket) * 8.0 / self.rate) self.current_bucket = 0.0 self.update_time = self.env.now else: self.current_bucket -= packet.size self.update_time = self.env.now # Sending the packet now if self.peak is None: # infinite peak rate if self.zero_downstream_buffer: self.out.put(packet, upstream_update=self.update, upstream_store=self.store) else: self.out.put(packet) else: yield self.env.timeout(packet.size * 8.0 / self.peak) if self.zero_downstream_buffer: self.out.put(packet, upstream_update=self.update, upstream_store=self.store) else: self.out.put(packet) self.packets_sent += 1 if self.debug: print( f"Sent packet {packet.packet_id} from flow {packet.flow_id}." ) def put(self, packet, upstream_update=None, upstream_store=None): """ Sends a packet to this element. """ self.packets_received += 1 if self.zero_buffer and upstream_update is not None and upstream_store is not None: self.upstream_stores[packet] = upstream_store self.upstream_updates[packet] = upstream_update if self.zero_downstream_buffer: self.downstream_stores.put(packet) return self.store.put(packet) ``` #### File: ns/switch/switch.py ```python from ns.port.port import Port from ns.demux.fib_demux import FIBDemux from ns.scheduler.wfq import WFQServer class SimplePacketSwitch: """ Implements a simple packet switch with FIFO bounded buffers for outgoing ports. Parameters ---------- env: simpy.Environment the simulation environment nports: int the total number of ports on this switch. port_rate: float the bit rate of the port buffer_size: int the size of an outgoing port' buffer debug: bool If True, prints more verbose debug information. """ def __init__(self, env, nports: int, port_rate: float, buffer_size: int, debug: bool = False) -> None: self.env = env self.ports = [] for __ in range(nports): self.ports.append( Port(env, rate=port_rate, qlimit=buffer_size, limit_bytes=False, debug=debug)) self.demux = FIBDemux(fib=None, outs=self.ports, default=None) def put(self, packet): """ Sends a packet to this element. """ self.demux.put(packet) class WFQPacketSwitch: """ Implements a simple packet switch with WFQ bounded buffers for outgoing ports. Parameters ---------- env: simpy.Environment the simulation environment nports: int the total number of ports on this switch. port_rate: float the bit rate of the port buffer_size: int the size of an outgoing port' buffer debug: bool If True, prints more verbose debug information. """ def __init__(self, env, nports: int, port_rate: float, buffer: int, weights: list) -> None: self.env = env self.ports = [] self.egress_ports = [] self.schedulers = [] for __ in range(nports): swp = Port(env, rate=port_rate, qlimit=buffer, limit_bytes=False, zero_downstream_buffer=True) wfqs = WFQServer(env, rate=port_rate, weights=weights, zero_buffer=True) swp.out = wfqs self.egress_ports.append(swp) self.schedulers.append(wfqs) self.ports.append(wfqs.out) self.demux = FIBDemux(fib=None, outs=self.egress_ports, default=None) def put(self, packet): """ Sends a packet to this element. """ self.demux.put(packet) ```
{ "source": "JINJINT/MABtest", "score": 3 }
#### File: MABtest/MABtest/estimation.py ```python import math from numpy import sqrt, log, exp, mean, cumsum, zeros, argsort, argmin, argmax, array, power import numpy from numpy.random import beta, normal, gamma def update_posterior(prior_para_1, prior_para_2, reward, reward_type, time_decay = 0.): if time_decay == 0.: # compute the posterior based on known prior format if reward_type =='Bernoulli': # Bernoulli # using Beta Proir Beta(a,b) prior_para_1 += reward prior_para_2 += (1-reward) if reward_type == 'Gaussian': # Gaussian with known variance 1 and unknown mean # using Gauss prior N(a,b) prior_para_1 = (1/(1+prior_para_2))*prior_para_1 + (prior_para_2/(1+prior_para_2))*reward prior_para_2 = 1/(1/prior_para_2 + 1) if reward_type == 'Poisson': # Poisson with unkonwn mean # using gamma prior Gamma(a,b) prior_para_1 += reward prior_para_2 += 1 else: # compute the posterior based on known prior format if reward_type =='Bernoulli': # using Beta Proir Beta(a,b) prior_para_1 = (1-time_decay) * prior_para_1 + reward prior_para_2 = (1-time_decay) * prior_para_2 + (1-reward) if reward_type == 'Gaussian': # Gaussian with known precision 1 [precision = (1/sigma^2)] and unknown mean # using Gauss prior N(a,1/b) prior_para_1 = (time_decay/(time_decay+(1-time_decay)*prior_para_2))*prior_para_1 + (((1-time_decay)*prior_para_2)/(time_decay+(1-time_decay)*prior_para_2))*reward prior_para_2 = 1/((1-time_decay)/prior_para_2 + time_decay) if reward_type == 'Poisson': # using gamma prior Gamma(a,b) prior_para_1 += reward prior_para_2 += 1 return prior_para_1, prior_para_2 def sample_posterior(prior_para_1, prior_para_2, reward_type, var_trade_off = 1): # compute the posterior based on known prior format # var_trade_off are used to inflate the variance no_arms = len(prior_para_1) if reward_type =='Bernoulli': # using Beta Proir Beta(a,b) return [beta(prior_para_1[i]/power(var_trade_off,2), prior_para_2[i]/power(var_trade_off,2)) for i in range(no_arms)] if reward_type == 'Gaussian': # Gaussian with known precision 1 [precision = (1/sigma^2)] and unknown mean # using Gauss prior N(a,1/b) return [normal(loc = prior_para_1[i], scale = sqrt(prior_para_2[i])*var_trade_off) for i in range(no_arms)] if reward_type == 'Poisson': # using gamma prior Gamma(a,b) return [gamma(prior_para_1[i]/power(var_trade_off,2), prior_para_2[i]/power(var_trade_off,2)) for i in range(no_arms)] ``` #### File: MABtest/MABtest/TS_CD.py ```python from .uniform_CD import * class TS_CD(uniform_CD): def __init__(self, no_arms: int, no_output: int = 1, conf_level : float =0.05, precision_level: float =0.0, stop_type: str = 'Best', baseline: Callable[[int],float] = None, reward_type: str = 'Bernoulli', trade_off: float = 1, prior_para_1: List[float] =None, prior_para_2: List[float] =None, time_window: int = 1000, verbose = False) -> None: # inherent from the uniform class super(TS_CD, self).__init__(no_arms, no_output, conf_level, precision_level, stop_type, baseline, reward_type, time_window, verbose) # using the uncertainty inflation for trading off optimizaiton and inference # the value ranging from 1 to infty, the higher, the bandit algo favors inference more, and incur more regret self.trade_off = trade_off # the parameter of the hypothetic distribution of the mean of arms, now we consider the distribution with two parameters, and different arms are independent self.prior_para_1: List[float] = prior_para_1 # list of the first parameter of each arm self.prior_para_2: List[float] = prior_para_2 # list of the second parameter of each arm def __str__(self): """ -> str""" return self.__class__.__name__ def start(self, restart = False): # initiation process that is the same with the uniform bandits super(TS_CD, self).start(restart) # initiation process that are perticular to the TS bandits if not restart: if self.prior_para_1 is None: if self.reward_type == 'Bernoulli': self.prior_para_1 = np.repeat(1., self.no_arms) if self.reward_type == 'Gaussian': self.prior_para_1 = np.repeat(0., self.no_arms) if self.prior_para_2 is None: self.prior_para_2 = np.repeat(1., self.no_arms) else: if self.reward_type == 'Bernoulli': self.prior_para_1 = np.repeat(1., self.no_arms) if self.reward_type == 'Gaussian': self.prior_para_1 = np.repeat(0., self.no_arms) self.prior_para_2 = np.repeat(1., self.no_arms) def nextpull(self)-> List[int]: ''' decide which arm(s) to pull next, return a list contains the index of arms ''' # Thompson Sampling with the uncertainty inflation (when trade-off ==1, it recovers TS) theta = sample_posterior(self.prior_para_1, self.prior_para_2, self.reward_type, self.trade_off) argsorted_theta = argsort(theta)[::-1] arm_idx = argsorted_theta[:self.no_output] self.next_index = arm_idx return list(self.next_index) def update(self, arms: list, rewards: list)-> None: ''' Update the bandit given the observed rewards for arms that are just pulled Arguments: arms : contains the index of pulled arms rewards : the observed reward for each arm in arms ''' if type(arms) is not list: arms = [arms] if type(rewards) is not list: rewards = [rewards] if len(arms)!=len(rewards): raise ValueError("The length of pulled arms and rewards should be equal!") for i, idx in enumerate(arms): # get the reward for correspodning arm reward = rewards[i] # update the accumulated reward in total for the bandit self.accreward += reward # initiate the object for caculating confidence bounds cb = ConfidenceBound(name = self.bound_type) # get the info dictionary for correspodning arm arm = self.arms[idx] # delete the correspodning arm with old info in the sorted dictionary list self.mu_hat_decreasing.remove(arm) self.ucb_decreasing.remove(arm) self.lcb_decreasing.remove(arm) # calculate the updated info for the corresponding arm arm['Sum'] += reward arm['SumSquare'] += reward**2 arm['t'] += 1 arm['mu_hat'] = arm['Sum']/arm['t'] arm['mu_std'] = sqrt(abs(arm['SumSquare']/arm['t'] - arm['mu_hat']**2)) arm['lcb'] = cb.lower(arm['mu_hat'], self.conf_level/float(2.*(self.no_arms-self.no_output)), arm['t'], sigma =arm['mu_std']) arm['ucb'] = cb.upper(arm['mu_hat'], self.conf_level/float(2.*(self.no_output)), arm['t'], sigma =arm['mu_std']) self.prior_para_1[idx], self.prior_para_2[idx] = update_posterior(self.prior_para_1[idx], self.prior_para_2[idx], rewards[i], self.reward_type) arm = self.detect_change(arm, reward) if arm is None: # if there is a change point up to now, restart the whole bandit return # if there is no chnage point up to now, continue updating by adding back the corresponding arm with updated info to the sorted dicitonary list self.mu_hat_decreasing.add(arm) self.ucb_decreasing.add(arm) self.lcb_decreasing.add(arm) # update the totoal number of pulls for the bandit self.t += 1 ``` #### File: MABtest/MABtest/TS.py ```python from .uniform import * class TS(uniform): def __init__(self, no_arms: int, no_output: int = 1, conf_level : float =0.05, precision_level: float =0.0, stop_type: str = 'Best', baseline: Callable[[int],float] = None, reward_type: str = 'Bernoulli', trade_off: float = 1, prior_para_1: List[float] =None, prior_para_2: List[float] =None) -> None: # inherent from the uniform class super(TS, self).__init__(no_arms, no_output, conf_level, precision_level, stop_type, baseline, reward_type) # using the uncertainty inflation for trading off optimizaiton and inference # the value ranging from 1 to infty, the higher, the bandit algo favors inference more, and incur more regret self.trade_off = trade_off # the parameter of the hypothetic distribution of the mean of arms, now we consider the distribution with two parameters, and different arms are independent self.prior_para_1: List[float] = prior_para_1 # list of the first parameter of each arm self.prior_para_2: List[float] = prior_para_2 # list of the second parameter of each arm def __str__(self): """ -> str""" return self.__class__.__name__ def start(self): # initiation process that is the same with the uniform bandits super(TS, self).start() # initiation process that are perticular to the TS bandits if self.reward_type == 'Bernoulli': self.prior_para_1 = np.repeat(1., self.no_arms) if self.reward_type == 'Gaussian': self.prior_para_1 = np.repeat(0., self.no_arms) self.prior_para_2 = np.repeat(1., self.no_arms) def nextpull(self)-> List[int]: ''' decide which arm(s) to pull next, return a list contains the index of arms ''' # Thompson Sampling with the uncertainty inflation (when trade-off ==1, it recovers TS) theta = sample_posterior(self.prior_para_1, self.prior_para_2, self.reward_type, self.trade_off) argsorted_theta = argsort(theta)[::-1] arm_idx = argsorted_theta[:self.no_output] self.next_index = arm_idx return list(self.next_index) def update(self, arms: list, rewards: list)-> None: ''' Update the bandit given the observed rewards for arms that are just pulled Arguments: arms : contains the index of pulled arms rewards : the observed reward for each arm in arms ''' # update process that is the same with the uniform bandits super(TS, self).update(arms,rewards) # update process that is particular to Thompson Sampling for i, idx in enumerate(arms): self.prior_para_1[idx], self.prior_para_2[idx] = update_posterior(self.prior_para_1[idx], self.prior_para_2[idx], rewards[i], self.reward_type) ``` #### File: MABtest/MABtest/UCB_decay.py ```python from .uniform_decay import * class UCB_decay(uniform_decay): def __init__(self, no_arms: int, no_output: int = 1, conf_level : float =0.05, precision_level: float =0.0, stop_type: str = 'Best', baseline: Callable[[int],float] = None, reward_type: str = 'Bernoulli', trade_off: float = 1, time_decay = 0.001) -> None: # inherent from the uniform class super(UCB_decay, self).__init__(no_arms, no_output, conf_level, precision_level, stop_type, baseline, reward_type, time_decay) # using the uncertainty inflation for trading off optimizaiton and inference # ranging from 1 to infty, the higher, the bandit algo favors inference more, and incur more regret self.trade_off = trade_off def __str__(self): """ -> str""" return self.__class__.__name__ def nextpull(self)-> List[int]: ''' decide which arm(s) to pull next, return a list contains the index of arms ''' # UCB sampling with the uncertainty inflation (when trade-off ==1, it recovers UCB) newarm_idx = [self.arms[i]['mu_hat'] + self.trade_off*(self.arms[i]['ucb']-self.arms[i]['mu_hat']) for i in range(self.no_arms)] self.next_index = argsort(newarm_idx)[::-1][:self.no_output] return list(self.next_index) ``` #### File: MABtest/MABtest/uniform_decay.py ```python from .uniform import * class uniform_decay(uniform): def __init__(self, no_arms: int, no_output: int = 1, conf_level : float =0.05, precision_level: float =0.0, stop_type: str = 'Best', baseline: Callable[[int],float] = None, reward_type: str = 'Bernoulli', time_decay = 0.001) -> None: # inherent from the uniform class super(uniform_decay, self).__init__(no_arms, no_output, conf_level, precision_level, stop_type, baseline, reward_type) # the decay rate self.time_decay = time_decay def __str__(self): """ -> str""" return self.__class__.__name__ def update(self, arms: list, rewards: list)-> None: ''' Update the bandit given the observed rewards for arms that are just pulled Arguments: arms : contains the index of pulled arms rewards : the observed reward for each arm in arms ''' if type(arms) is not list: arms = [arms] if type(rewards) is not list: rewards = [rewards] if len(arms)!=len(rewards): raise ValueError("The length of pulled arms and rewards should be equal!") for i, idx in enumerate(arms): # get the reward for correspodning arm reward = rewards[i] # update the accumulated reward in total for the bandit self.accreward += reward # initiate the object for caculating confidence bounds cb = ConfidenceBound(name = self.bound_type) # decay the memory for existed samples for all the arms, since in this memory decay senario, our memory decays with 'total time' (i.e. the total number of pulls) for j in range(self.no_arms): eacharm = self.arms[j] self.mu_hat_decreasing.remove(eacharm) self.ucb_decreasing.remove(eacharm) self.lcb_decreasing.remove(eacharm) eacharm['Sum'] *= (1-self.time_decay) eacharm['t'] *= (1-self.time_decay) if eacharm['t']>0: eacharm['mu_hat'] = eacharm['Sum']/eacharm['t'] eacharm['lcb'] = cb.lower_timevar(eacharm['mu_hat'], self.conf_level/float(2.*(self.no_arms-self.no_output)), eacharm['t'], self.time_decay, self.t) eacharm['ucb'] = cb.upper_timevar(eacharm['mu_hat'], self.conf_level/float(2.*(self.no_output)), eacharm['t'], self.time_decay, self.t) self.mu_hat_decreasing.add(eacharm) self.ucb_decreasing.add(eacharm) self.lcb_decreasing.add(eacharm) # get the info for correspodning arm arm = self.arms[idx] # delete the correspodning arm with old info in the sorted dictionary list self.mu_hat_decreasing.remove(arm) self.ucb_decreasing.remove(arm) self.lcb_decreasing.remove(arm) # update the corresponding arm with the newly arrived sample arm['Sum'] += reward arm['SumSquare'] += reward**2 arm['t'] += 1 arm['mu_hat'] = arm['Sum']/arm['t'] arm['mu_std'] = sqrt(abs(arm['SumSquare']/arm['t'] - arm['mu_hat']**2)) arm['lcb'] = cb.lower_timevar(arm['mu_hat'], self.conf_level/float(2.*(self.no_arms-self.no_output)), arm['t'], self.time_decay, self.t) arm['ucb'] = cb.upper_timevar(arm['mu_hat'], self.conf_level/float(2.*(self.no_output)), arm['t'], self.time_decay, self.t) # add back the corresponding arm with updated info to the sorted dicitonary list self.mu_hat_decreasing.add(arm) self.ucb_decreasing.add(arm) self.lcb_decreasing.add(arm) # update the totoal number of pulls for the bandit self.t += 1 ```
{ "source": "jinjin-tonic/COVID-vaccine-sentiment-analysis", "score": 2 }
#### File: jinjin-tonic/COVID-vaccine-sentiment-analysis/app.py ```python from flask import Flask, render_template, url_for, request, redirect from deployment_model.seq_model import SeqModel from utils.preprocessing_helper import * from torchtext.data import Field, Pipeline from nltk.tokenize import word_tokenize from wordcloud import STOPWORDS import torch import pickle import os import nltk # from flask_bootstrap import Bootstrap nltk.download("stopwords") nltk.download("punkt") # sys.path.append(os.path.join(os.path.dirname(__file__), '..')) TEMPLATE_DIR = os.path.abspath("./templates") STATIC_DIR = os.path.abspath("./static") app = Flask(__name__, template_folder=TEMPLATE_DIR, static_folder=STATIC_DIR) # original stuff: # app = Flask(__name__) # , static_url_path= '', static_folder= './static/vendor' # app._static_folder = './static/vendor' # bootstrap = Bootstrap(app) RESULT = None pre_pipeline = Pipeline(lemmatize) pre_pipeline.add_before(preprocessing) TEXT = Field( sequential=True, tokenize=word_tokenize, lower=True, stop_words=STOPWORDS, preprocessing=pre_pipeline, ) LABELS = ["Neutral", "Negative", "Positive"] VOCAB = {} with open("./models/vocab.pkl", "rb") as f: VOCAB = pickle.load(f) best_config = { "hidden_size": 302, "lr": 0.00010769630091763721, "l2": 2.5888680371842294e-05, "nonlin": "tanh", "dropout": 0.1, "num_layers": 2, "mode": 0, "optimizer": "Adam", "momentum": 0.1, } best_model = SeqModel( embedding_size=100, vocab_size=len(VOCAB), output_size=3, hidden_size=best_config["hidden_size"], num_layers=best_config["num_layers"], nonlin=best_config["nonlin"], dropout_rate=best_config["dropout"], mode=best_config["mode"], unit="gru", more_features=False, ) best_model.load_state_dict(torch.load("./models/model_deploy.pt")) @app.route("/", methods=["POST", "GET"]) def index(): return render_template("index.html") @app.route("/resultspage", methods=["POST", "GET"]) def resultspage(): tweet = request.form["search"] RESULT = predict_sentiment(best_model, {"tweet": tweet})[0] return render_template("resultspage.html", value=RESULT) def preprocess(tweet): return [VOCAB.get(token, 0) for token in TEXT.preprocess(tweet)] def predict_sentiment(model, input_json): tweet = input_json["tweet"] num_input = preprocess(tweet) model_outputs = best_model(torch.LongTensor(num_input).reshape((-1, 1))) probabilities, predicted = torch.max(model_outputs.cpu().data, 1) pred_labels = LABELS[predicted] return pred_labels, probabilities if __name__ == "__main__": # Bind to PORT if defined, otherwise default to 5000. port = int(os.environ.get("PORT", 5000)) app.run(host="0.0.0.0", port=port, debug=True) ``` #### File: COVID-vaccine-sentiment-analysis/scripts/tweet_scraper.py ```python import tweepy import webbrowser import time import csv import argparse import os def compose_dict_obj(raw_data, keys, search_words): """ Return a dictionary of selected keys from raw_data """ d = {} for key in keys: if key == "keyword": d[key] = search_words else: d[key] = raw_data.get(key) return d # the handler is time.sleep(15 * 60) if we reach the rate limit. def limit_handled(cursor): while True: try: yield cursor.next() except tweepy.TweepError: time.sleep(15 * 60) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process each .") parser.add_argument("-k", "--keyword", help="The keyword to search", required=True) parser.add_argument("--num", help="Max number of data to scrape", default=10000) parser.add_argument( "-o", "--output", help="The filepath of the output file", default="./raw.csv" ) args = parser.parse_args() consumer_key = os.environ["CONSUMER_KEY"] consumer_secret = os.environ["CONSUMER_SECRET"] # search_words = "Covid19 vaccine -filter:retweets" search_words = args.keyword max_num = int(args.num) csv_file = args.output keys = [ "created_at", "id", "full_text", "entities", "source", "user", "coordinates", "place", "is_quote_status", "retweet_count", "favorite_count", "possibly_sensitive", "keyword", ] callback_uri = "oob" # https://cfe.sh/twitter/callback auth = tweepy.OAuthHandler(consumer_key, consumer_secret, callback_uri) redirect_url = auth.get_authorization_url() print(redirect_url) webbrowser.open(redirect_url) user_pint_input = input("What's the pin?") auth.get_access_token(user_pint_input) print(auth.access_token, auth.access_token_secret) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) tweetCursor = tweepy.Cursor( api.search, q=search_words, lang="en", tweet_mode="extended" ).items(max_num) try: with open(csv_file, "w") as csvfile: writer = csv.DictWriter(csvfile, fieldnames=keys) writer.writeheader() for i, tweet in enumerate(tweetCursor): if i % 1000 == 0: if i == max_num: break print(i) big_json = tweet._json if "retweeted_status" in big_json: data = big_json["retweeted_status"] else: data = big_json struct_data = compose_dict_obj(data, keys, search_words) writer.writerow(struct_data) except IOError: print("I/O error") ``` #### File: COVID-vaccine-sentiment-analysis/utils/feature_extractions_helper.py ```python import nltk import re import pandas as pd from nltk import sent_tokenize, word_tokenize, pos_tag from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from nltk import sent_tokenize, word_tokenize, pos_tag from emoji.unicode_codes import UNICODE_EMOJI from nltk.tokenize import RegexpTokenizer import string FIRST_PERSON_PRONOUNS = {"i", "me", "my", "mine", "we", "us", "our", "ours"} SECOND_PERSON_PRONOUNS = {"you", "your", "yours", "u", "ur", "urs"} THIRD_PERSON_PRONOUNS = { "he", "him", "his", "she", "her", "hers", "it", "its", "they", "them", "their", "theirs", } PUNCTUATION_LIST = list(string.punctuation) ###### Attribution for positive words dictionary: https://gist.github.com/mkulakowski2/4289437 positive_words = [] with open("data/helper_dicts/positive-words.txt") as f: for i in range(35): f.readline() for i in range(35, 2042): positive_words.append(f.readline().strip("\n")) ###### Attribution for negative words dictionary: https://gist.github.com/mkulakowski2/4289441 negative_words = [] with open("data/helper_dicts/negative-words.txt") as f: for i in range(35): f.readline() for i in range(35, 2042): negative_words.append(f.readline().strip("\n")) ###### This sentiment dictionary for slang words are from SlangSD, made by <NAME> (Student, ASU), <NAME> (Student, ASU), <NAME> (Professor, ASU). ###### Link for SlangSD: http://liangwu.me/slangsd/ slang_df = pd.read_csv( "data/helper_dicts/SlangSD.txt", delimiter="\t", names=["sentiment"] ) ######################################################## # The verb dictionary used in this code is adapted from https://github.com/monolithpl/verb.forms.dictionary ######################################################## verb_dict = pd.read_csv( "data/helper_dicts/verbs-dictionaries.csv", delimiter="\t", header=None, names=["present_simple", "past_simple", "past_participle", "present_participle"], ) past_simples = verb_dict["past_simple"].to_dict().values() tokenizer = RegexpTokenizer(r"\w+") def get_avg_pos_words(text): """Calculate the positive words ratio per text.""" tokens = word_tokenize(text) pos_count = 0 for word in tokens: if word in positive_words: pos_count += 1 return pos_count / len(tokens) def get_avg_neg_words(text): """Calculate the negative words ratio per text.""" tokens = word_tokenize(text) neg_count = 0 for word in tokens: if word in negative_words: neg_count += 1 return neg_count / len(tokens) def count_past_tense(text): """Count the number of past tense in the text.""" counter = 0 tokens = word_tokenize(text.lower()) tagged_words = pos_tag(tokens) for word, pos in tagged_words: if pos[0] == "V": if word in past_simples: counter += 1 return counter def count_future_tense(text): """Count the number of future tense in the text.""" future_form = {"'ll", "will", "wo"} counter = 0 tokens = word_tokenize(text.lower()) tagged_words = pos_tag(tokens) for word, pos in tagged_words: if pos == "MD": if word in future_form: counter += 1 return counter def count_first_person_pro(text): """Count the number of first-person pronouns in the text.""" return len( re.findall(r"\b({})\b".format("|".join(FIRST_PERSON_PRONOUNS)), text.lower()) ) def count_second_person_pro(text): """Count the number of second-person pronouns in the text.""" return len( re.findall(r"\b({})\b".format("|".join(SECOND_PERSON_PRONOUNS)), text.lower()) ) def count_third_person_pro(text): """Count the number of third-person pronouns in the text.""" return len( re.findall(r"\b({})\b".format("|".join(THIRD_PERSON_PRONOUNS)), text.lower()) ) def count_coord_conj(text): """Count the number of coordinating conjunctions in the text.""" token_tag_pairs = pos_tag(word_tokenize(text.lower())) return len([p[1] for p in token_tag_pairs if p[1] == "CC"]) def count_commas(text): """Count the number of commas in the text.""" counter = 0 tokens = word_tokenize(text.lower()) for word in tokens: if word == ",": counter += 1 return counter def count_multi_punc(text, include_dots=True): """Count the number of multi punctuation characters in the text.""" counter = 0 if include_dots: pattern = r"(\!{2,}|\?{2,}|\.{3,})" else: pattern = r"(\!{2,}|\?{2,})" compiled = re.compile(pattern) for match in compiled.finditer(text.lower()): if match: counter += 1 return counter def get_avg_slang_sent(text): """Calculate the slang ratio per text.""" slang_sent = 0 split = text.split(" ") tokens = [token.strip("".join(PUNCTUATION_LIST)) for token in split] for word in tokens: if word in slang_df.index and word not in stopwords.words("english"): slang_sent += slang_df.loc[word]["sentiment"] return slang_sent / len(tokens) ## avg vs just raw sum def count_tags(text): """Count the number of common nouns, proper nouns, adverb, and wh- words""" words = word_tokenize(text) tagged_words = nltk.pos_tag(words) common_noun_count = 0 proper_noun_count = 0 adv_count = 0 wh_count = 0 for word, pos in tagged_words: if pos == "NN" or pos == "NNS": common_noun_count += 1 elif pos == "NNPS" or pos == "NNP": proper_noun_count += 1 elif pos == "RB" or pos == "RBR" or pos == "RBS": adv_count += 1 elif pos == "WP" or pos == "WDT" or pos == "WRB": wh_count += 1 return common_noun_count, proper_noun_count, adv_count, wh_count def count_cap_words(text): """Count the amount of capitalized words in a text""" cap_words = 0 words = word_tokenize(text) for word in words: if word.isupper(): cap_words = cap_words + 1 else: cap_words = cap_words return cap_words def avg_len_sent(text): """Calculates the average length of sentences, in tokens""" token_count = len(text.split()) sent_count = text.count(". ") + 1 if sent_count != 0: return token_count / sent_count else: return 0 def avg_len_tokens(text): """Calculates the average length of tokens, excluding punctuation, in characters""" token_with_no_punc = tokenizer.tokenize(text.lower()) if len(token_with_no_punc) != 0: return len("".join(token_with_no_punc)) / len(token_with_no_punc) else: return 0 def num_of_sent(text): """Counts the number of sentences""" return text.count(". ") + 1 def num_slang_acronym(text): '''Count the amount of slang acronyms in a text''' return len(re.findall(r"\b({})\b".format("|".join(SLANG)), text.lower())) ``` #### File: COVID-vaccine-sentiment-analysis/utils/preprocessing_helper.py ```python import string # import demoji import nltk import re from nltk import sent_tokenize, word_tokenize, pos_tag from nltk.stem import WordNetLemmatizer # from emoji.unicode_codes import UNICODE_EMOJI nltk.download("wordnet") def preprocessing(text): """Exclude punctuations and digits from text.""" text = process_tweets(text) text = text.lower() exclude = string.punctuation + string.digits for i in exclude: text = text.replace(i, "") return text def process_tweets(text): """Exclude mentions, urls, and html reference characters in a string using regular expression""" text = re.sub("(\@|https:\/\/)\S+", "", text) # remove mentions and urls text = re.sub(r"&[a-z]+;", "", text) # exclude html reference characters return text def lemmatize(text): """Lemmatize tweets by WordNetLemmatizer""" lemma_list = [] lemmatizer = WordNetLemmatizer() text = text.lower() words = word_tokenize(text) for word in words: lemma = lemmatizer.lemmatize(word, "n") if lemma == word: lemma = lemmatizer.lemmatize(word, "v") lemma_list.append(lemma) return " ".join(lemma_list) # def convert_emoji_to_text(tweet): # """Convert emoji into text description in the tweet.""" # tokens = tweet.split() # for i, token in enumerate(tokens): # if token in UNICODE_EMOJI: # emo_desc = demoji.findall(token)[token] # new_rep = "_".join(emo_desc.split(":")[0].split()) # tokens[i] = new_rep # return " ".join(tokens) ```
{ "source": "jinjun1994/spider", "score": 2 }
#### File: weiboSpider/EDA/eda_api.py ```python import re import sys import os import os.path as osp import json import jieba import jieba.analyse # from scipy.misc import imread import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from wordcloud import WordCloud,ImageColorGenerator from PIL import Image pd.options.mode.chained_assignment = None abspath = osp.abspath('') plt.rcParams['font.sans-serif'] = ['Arial Unicode MS'] sns.set(font='Arial Unicode MS') # 解决Seaborn中文显示问题 jieba.analyse.set_stop_words(f'{abspath}/weiboSpider/EDA/stopwords.txt') # %% # config配置读取 fp = sys.argv[1] print(f"{fp}") bozhu = fp.split('/')[-2] id = fp.split('/')[-1] # 存储文件夹 # %% # 加载数据 weibo = pd.read_csv(fp,error_bad_lines=False) # https://github.com/pandas-dev/pandas/issues/11493 print("Weibo shape : ", weibo.shape) weibo.head(1) # %% #1-0 画词云 content=' '.join(weibo['微博正文'].tolist()) key_words = jieba.analyse.extract_tags(content, topK=2000, withWeight=True, allowPOS=('v','vd','n','nr','ns','nt','nz')) key_words = {p[0]:p[1] for p in key_words} # %% # 1-1 画词云 # 画云图 def plot_pic(save_path, key_words): wc.generate_from_frequencies(key_words) wc.to_file(save_path) # plt.figure() plt.imshow(wc, interpolation='bilinear') plt.axis("off") # 关掉图像的坐标 # plt.show() wc = WordCloud(font_path='weiboSpider/EDA/KaiTi.ttf', max_words=2000, width=3840, height=2106, background_color="white", margin=5) plot_pic(f'weiboSpider/weibo/{bozhu}/{id}.png', key_words) # 1、传入[(key,weighft{bozhu}/),...]列表生成词云 # # %% # # 2-转评赞曲线图 # publish_data = pd.read_csv(fp, index_col="发布时间", parse_dates=True,error_bad_lines=False)[['点赞数','转发数','评论数']] # # publish_data = pd.concat([pd.read_csv(fp1, index_col="发布时间", parse_dates=True), pd.read_csv(fp2, index_col="发布时间", parse_dates=True)])[['点赞数','转发数','评论数']] # print(publish_data) # avg_M_df = publish_data.resample('M').sum() # avg_M_df.rename(columns={'点赞数': '月总点赞数', '转发数': '月总转发数', '评论数': '月总评论数'}, inplace=True) # avg_M_df.index.name = f'{bozhu}老师发博时间' # plt.figure(figsize=(15, 10)) # plt.title(f"{bozhu}老师 单月转评赞总数") # sns_plot = sns.lineplot(data=avg_M_df) # plt.savefig(f"weibo/{bozhu}/pic2.png", bbox_inches='tight', dpi=300) # plt.show() # # %% # # 3-原创转发数 # publish_data = pd.read_csv(fp, index_col="发布时间", parse_dates=True,error_bad_lines=False)[['是否为原创微博']].astype('int') # yuanchuang = publish_data[publish_data['是否为原创微博'] == 1] # zhuanfa = publish_data[publish_data['是否为原创微博'] == 0] # yuanchuang.columns = ['原创'] # zhuanfa.columns = ['转发'] # zhuanfa['转发'] = zhuanfa['转发'].apply(lambda x: 1) # yuanchuang = yuanchuang.resample('M').sum() # zhuanfa = zhuanfa.resample('M').sum() # df = pd.merge(yuanchuang['原创'], zhuanfa['转发'], how='left', on='发布时间').fillna(0).astype('int') # df.rename(columns={'原创': '当月原创微博数', '转发': '当月转发微博数'}, inplace=True) # plt.figure(figsize=(15,10)) # plt.title(f"{bozhu} 微博原创与转发量 => 干货满满") # sns.lineplot(data=df) # # plt.axhline(y=30, xmin=0.0, xmax=0.99, color='r', linestyle = "--", linewidth=3) # plt.savefig(f"weibo/{bozhu}/pic3.png", bbox_inches='tight',dpi=300) # plt.show() # # %% # # 4 饼图-发布工具,原创转发比 # publish_tool = pd.read_csv(fp,error_bad_lines=False)[['发布工具']] # t = sum(publish_tool['发布工具'].value_counts()) * 0.008 # new_dict = {k:v for k,v in dict(publish_tool['发布工具'].value_counts()).items() if k.strip() != '无' and v > t} # new_dict = {k:v/sum(new_dict.values()) for k,v in new_dict.items()} # data = pd.Series(new_dict) # plt.rcParams['figure.figsize'] = (8.0, 6.0) #调整图片大小 # lbs = data.index # # explodes=[0.1 if i=='iPhone 8' else 0 for i in lbs] # explodes=[0 for i in lbs] # plt.pie(data, explode=explodes,labels=lbs, autopct="%1.1f%%", # colors=sns.color_palette("muted"),startangle = 20,pctdistance = 0.6, # textprops={'fontsize':10,'color':'black'}) # plt.title(f"{bozhu}老师最喜爱的微博交流工具") # plt.axis('equal') # 设置x,y轴刻度一致,以使饼图成为圆形。 # plt.savefig(f"weibo/{bozhu}/pic4.png", dpi=300, bbox_inches='tight') # plt.show() ``` #### File: node-weiboSpider/weiboSpider/html_parser.py ```python import re import sys import traceback from collections import OrderedDict from datetime import datetime, timedelta import requests from lxml import etree class Parser: def __init__(self, config): self.config = config def deal_html(self, url, cookie): """处理html""" print("url:", url) html = requests.get(url, cookies=cookie).content selector = etree.HTML(html) return selector def deal_garbled(self, info): """处理乱码""" info = (info.xpath('string(.)').replace(u'\u200b', '').encode( sys.stdout.encoding, 'ignore').decode(sys.stdout.encoding)) return info def extract_picture_urls(self, info, weibo_id): """提取微博原始图片url""" try: a_list = info.xpath('div/a/@href') first_pic = 'https://weibo.cn/mblog/pic/' + weibo_id + '?rl=0' all_pic = 'https://weibo.cn/mblog/picAll/' + weibo_id + '?rl=1' if first_pic in a_list: if all_pic in a_list: selector = self.deal_html(all_pic, self.config['cookie']) preview_picture_list = selector.xpath('//img/@src') picture_list = [ p.replace('/thumb180/', '/large/') for p in preview_picture_list ] picture_urls = ','.join(picture_list) else: if info.xpath('.//img/@src'): preview_picture = info.xpath('.//img/@src')[-1] picture_urls = preview_picture.replace( '/wap180/', '/large/') else: sys.exit( u"爬虫微博可能被设置成了'不显示图片',请前往" u"'https://weibo.cn/account/customize/pic',修改为'显示'" ) else: picture_urls = u'无' return picture_urls except Exception: return u'无' def get_picture_urls(self, info, is_original): """获取微博原始图片url""" try: weibo_id = info.xpath('@id')[0][2:] picture_urls = {} if is_original: original_pictures = self.extract_picture_urls(info, weibo_id) picture_urls['original_pictures'] = original_pictures if not self.config['filter']: picture_urls['retweet_pictures'] = u'无' else: retweet_url = info.xpath("div/a[@class='cc']/@href")[0] retweet_id = retweet_url.split('/')[-1].split('?')[0] retweet_pictures = self.extract_picture_urls(info, retweet_id) picture_urls['retweet_pictures'] = retweet_pictures a_list = info.xpath('div[last()]/a/@href') original_picture = u'无' for a in a_list: if a.endswith(('.gif', '.jpeg', '.jpg', '.png')): original_picture = a break picture_urls['original_pictures'] = original_picture return picture_urls except Exception as e: print('Error: ', e) traceback.print_exc() def get_video_url(self, info, is_original): """获取微博视频url""" try: if is_original: div_first = info.xpath('div')[0] a_list = div_first.xpath('.//a') video_link = u'无' for a in a_list: if 'm.weibo.cn/s/video/show?object_id=' in a.xpath( '@href')[0]: video_link = a.xpath('@href')[0] break if video_link != u'无': video_link = video_link.replace( 'm.weibo.cn/s/video/show', 'm.weibo.cn/s/video/object') wb_info = requests.get( video_link, cookies=self.config['cookie']).json() video_url = wb_info['data']['object']['stream'].get( 'hd_url') if not video_url: video_url = wb_info['data']['object']['stream']['url'] if not video_url: # 说明该视频为直播 video_url = u'无' else: video_url = u'无' return video_url except Exception: return u'无' def get_page_num(self, selector): """获取微博总页数""" if selector.xpath("//input[@name='mp']") == []: page_num = 1 else: page_num = (int)( selector.xpath("//input[@name='mp']")[0].attrib['value']) return page_num def get_long_weibo(self, weibo_link): """获取长原创微博""" selector = self.deal_html(weibo_link, self.config['cookie']) info = selector.xpath("//div[@class='c']")[1] wb_content = self.deal_garbled(info) wb_time = info.xpath("//span[@class='ct']/text()")[0] weibo_content = wb_content[wb_content.find(':') + 1:wb_content.rfind(wb_time)] return weibo_content def get_original_weibo(self, info, weibo_id): """获取原创微博""" weibo_content = self.deal_garbled(info) weibo_content = weibo_content[:weibo_content.rfind(u'赞')] a_text = info.xpath('div//a/text()') if u'全文' in a_text: weibo_link = 'https://weibo.cn/comment/' + weibo_id wb_content = self.get_long_weibo(weibo_link) if wb_content: weibo_content = wb_content return weibo_content def get_long_retweet(self, weibo_link): """获取长转发微博""" wb_content = self.get_long_weibo(weibo_link) weibo_content = wb_content[:wb_content.rfind(u'原文转发')] return weibo_content def get_retweet(self, info, weibo_id): """获取转发微博""" wb_content = self.deal_garbled(info) wb_content = wb_content[wb_content.find(':') + 1:wb_content.rfind(u'赞')] wb_content = wb_content[:wb_content.rfind(u'赞')] a_text = info.xpath('div//a/text()') if u'全文' in a_text: weibo_link = 'https://weibo.cn/comment/' + weibo_id weibo_content = self.get_long_retweet(weibo_link) if weibo_content: wb_content = weibo_content retweet_reason = self.deal_garbled(info.xpath('div')[-1]) retweet_reason = retweet_reason[:retweet_reason.rindex(u'赞')] original_user = info.xpath("div/span[@class='cmt']/a/text()") if original_user: original_user = original_user[0] wb_content = (retweet_reason + '\n' + u'原始用户: ' + original_user + '\n' + u'转发内容: ' + wb_content) else: wb_content = retweet_reason + '\n' + u'转发内容: ' + wb_content return wb_content def is_original(self, info): """判断微博是否为原创微博""" is_original = info.xpath("div/span[@class='cmt']") if len(is_original) > 3: return False else: return True def get_weibo_content(self, info, is_original): """获取微博内容""" weibo_id = info.xpath('@id')[0][2:] if is_original: weibo_content = self.get_original_weibo(info, weibo_id) else: weibo_content = self.get_retweet(info, weibo_id) return weibo_content def get_publish_place(self, info): """获取微博发布位置""" div_first = info.xpath('div')[0] a_list = div_first.xpath('a') publish_place = u'无' for a in a_list: if ('place.weibo.com' in a.xpath('@href')[0] and a.xpath('text()')[0] == u'显示地图'): weibo_a = div_first.xpath("span[@class='ctt']/a") if len(weibo_a) >= 1: publish_place = weibo_a[-1] if (u'视频' == div_first.xpath("span[@class='ctt']/a/text()") [-1][-2:]): if len(weibo_a) >= 2: publish_place = weibo_a[-2] else: publish_place = u'无' publish_place = self.deal_garbled(publish_place) break return publish_place def get_publish_time(self, info): """获取微博发布时间""" try: str_time = info.xpath("div/span[@class='ct']") str_time = self.deal_garbled(str_time[0]) publish_time = str_time.split(u'来自')[0] if u'刚刚' in publish_time: publish_time = datetime.now().strftime('%Y-%m-%d %H:%M') elif u'分钟' in publish_time: minute = publish_time[:publish_time.find(u'分钟')] minute = timedelta(minutes=int(minute)) publish_time = (datetime.now() - minute).strftime('%Y-%m-%d %H:%M') elif u'今天' in publish_time: today = datetime.now().strftime('%Y-%m-%d') time = publish_time[3:] publish_time = today + ' ' + time if len(publish_time) > 16: publish_time = publish_time[:16] elif u'月' in publish_time: year = datetime.now().strftime('%Y') month = publish_time[0:2] day = publish_time[3:5] time = publish_time[7:12] publish_time = year + '-' + month + '-' + day + ' ' + time else: publish_time = publish_time[:16] return publish_time except Exception as e: print('Error: ', e) traceback.print_exc() def get_publish_tool(self, info): """获取微博发布工具""" try: str_time = info.xpath("div/span[@class='ct']") str_time = self.deal_garbled(str_time[0]) if len(str_time.split(u'来自')) > 1: publish_tool = str_time.split(u'来自')[1] else: publish_tool = u'无' return publish_tool except Exception as e: print('Error: ', e) traceback.print_exc() def get_weibo_footer(self, info): """获取微博点赞数、转发数、评论数""" try: footer = {} pattern = r'\d+' str_footer = info.xpath('div')[-1] str_footer = self.deal_garbled(str_footer) str_footer = str_footer[str_footer.rfind(u'赞'):] weibo_footer = re.findall(pattern, str_footer, re.M) up_num = int(weibo_footer[0]) footer['up_num'] = up_num retweet_num = int(weibo_footer[1]) footer['retweet_num'] = retweet_num comment_num = int(weibo_footer[2]) footer['comment_num'] = comment_num return footer except Exception as e: print('Error: ', e) traceback.print_exc() def get_one_weibo(self, info): """获取一条微博的全部信息""" try: weibo = OrderedDict() is_original = self.is_original(info) if (not self.config['filter']) or is_original: weibo['id'] = info.xpath('@id')[0][2:] weibo['content'] = self.get_weibo_content(info, is_original) # 微博内容 weibo['publish_place'] = self.get_publish_place(info) # 微博发布位置 weibo['publish_time'] = self.get_publish_time(info) # 微博发布时间 weibo['publish_tool'] = self.get_publish_tool(info) # 微博发布工具 footer = self.get_weibo_footer(info) weibo['up_num'] = footer['up_num'] # 微博点赞数 weibo['retweet_num'] = footer['retweet_num'] # 转发数 weibo['comment_num'] = footer['comment_num'] # 评论数 picture_urls = self.get_picture_urls(info, is_original) weibo['original_pictures'] = picture_urls[ 'original_pictures'] # 原创图片url if not self.config['filter']: weibo['retweet_pictures'] = picture_urls[ 'retweet_pictures'] # 转发图片url weibo['original'] = is_original # 是否原创微博 weibo['video_url'] = self.get_video_url(info, is_original) # 微博视频url else: weibo = None return weibo except Exception as e: print('Error: ', e) traceback.print_exc() def is_pinned_weibo(self, info): """判断微博是否为置顶微博""" kt = info.xpath(".//span[@class='kt']/text()") if kt and kt[0] == u'置顶': return True else: return False ``` #### File: node-weiboSpider/weiboSpider/validator.py ```python from datetime import datetime import sys def is_date(since_date): """判断日期格式是否正确""" try: datetime.strptime(since_date, "%Y-%m-%d") return True except: return False class Validator: def __init__(self, config): """ self.user_id_list = '' # 1. 用户id list,如昵称为"Dear-迪丽热巴"的id为'1669879400';2. 存储用户id list 的文件名 self.since_date = since_date # 1. 起始时间,即爬取发布日期从该值到现在的微博,形式为yyyy-mm-dd 2. 起始时间距离今天的天数,形式为一个整数 self.filter = filter # 取值范围为0、1,程序默认值为0,代表要爬取用户的全部微博,1代表只爬取用户的原创微博 self.mongodb_write = mongodb_write # 值为0代表不将结果写入MongoDB数据库,1代表写入 self.mysql_write = mysql_write # 值为0代表不将结果写入MySQL数据库,1代表写入 self.pic_download = pic_download # 取值范围为0、1,程序默认值为0,代表不下载微博原始图片,1代表下载 self.video_download = video_download # 取值范围为0、1,程序默认为0,代表不下载微博视频,1代表下载 self.mysql_config = { } # MySQL数据库连接配置,可以不填,当使用者的mysql用户名、密码等与本程序默认值不同时,需要通过mysql_config来自定义 """ self.config = config def validate(self): bool_config = ["filter", "pic_download", "video_download"] date_config = ["since_date"] for key in bool_config: if self.config[key] not in [0, 1]: sys.exit("%s值应为0或1,请重新输入" % key) for key in date_config: if not (type(self.config[key]) == type(0) or is_date(self.config[key])): sys.exit("%s值应为yyyy-mm-dd形式或整数,请重新输入" % key) for mode in self.config['write_mode']: if mode not in ['txt', 'csv', 'mysql', 'mongo']: sys.exit("write_mode值应为txt,csv,mysql,mongo,请重新输入") ``` #### File: node-weiboSpider/weiboSpider/writer.py ```python import copy import csv import os import sys import traceback def get_filepath(type, nickname): """获取结果文件路径""" file_dir = os.path.split( os.path.realpath(__file__))[0] + os.sep + 'weibo' + os.sep + nickname if type == 'img' or type == 'video': file_dir = file_dir + os.sep + type if not os.path.isdir(file_dir): os.makedirs(file_dir) if type == 'img' or type == 'video': return file_dir file_path = file_dir + os.sep + nickname + '.' + type return file_path def write_log(since_date): """当程序因cookie过期停止运行时,将相关信息写入log.txt""" file_dir = os.path.split( os.path.realpath(__file__))[0] + os.sep + 'weibo' + os.sep if not os.path.isdir(file_dir): os.makedirs(file_dir) file_path = file_dir + 'log.txt' content = u'cookie已过期,从%s到今天的微博获取失败,请重新设置cookie\n' % since_date with open(file_path, 'ab') as f: f.write(content.encode(sys.stdout.encoding)) class Writer: def __init__(self, config): write_mode = config['write_mode'] self.writers = [] if 'txt' in write_mode: self.writers.append(TxtWriter(config)) if 'csv' in write_mode: self.writers.append(CsvWriter(config)) if 'mysql' in write_mode: self.writers.append(MysqlWriter(config)) if 'mongo' in write_mode: self.writers.append(MongoWriter(config)) def write_user(self, user): for writer in self.writers: if isinstance(writer, MongoWriter): writer.write_user(copy.deepcopy(user)) else: writer.write_user(user) def write_weibo(self, weibo): for writer in self.writers: if isinstance(writer, MongoWriter) or isinstance( writer, MysqlWriter): writer.write_weibo(copy.deepcopy(weibo)) else: writer.write_weibo(weibo) class TxtWriter: def __init__(self, config): self.config = config def write_user(self, user): self.user = user if self.config['filter']: result_header = u'\n\n原创微博内容: \n' else: result_header = u'\n\n微博内容: \n' result_header = (u'用户信息\n用户昵称:' + user['nickname'] + u'\n用户id: ' + str(user['id']) + u'\n微博数: ' + str(user['weibo_num']) + u'\n关注数: ' + str(user['following']) + u'\n粉丝数: ' + str(user['followers']) + result_header) with open(get_filepath('txt', user['nickname']), 'ab') as f: f.write(result_header.encode(sys.stdout.encoding)) def write_weibo(self, weibo): """将爬取的信息写入txt文件""" temp_result = [] for w in weibo: temp_result.append(w['content'] + '\n' + u'微博位置: ' + w['publish_place'] + '\n' + u'发布时间: ' + w['publish_time'] + '\n' + u'点赞数: ' + str(w['up_num']) + u' 转发数: ' + str(w['retweet_num']) + u' 评论数: ' + str(w['comment_num']) + '\n' + u'发布工具: ' + w['publish_tool'] + '\n\n') result = ''.join(temp_result) with open(get_filepath('txt', self.user['nickname']), 'ab') as f: f.write(result.encode(sys.stdout.encoding)) print(u'%d条微博写入txt文件完毕,保存路径:' % len(weibo)) print(get_filepath('txt', self.user['nickname'])) class CsvWriter: def __init__(self, config): self.config = config def write_user(self, user): self.user = user result_headers = [ '微博id', '微博正文', '发布位置', '发布时间', '发布工具', '点赞数', '转发数', '评论数', '原始图片url', '微博视频url', ] if not self.config['filter']: result_headers.insert(-1, '被转发微博原始图片url') result_headers.insert(-1, '是否为原创微博') if sys.version < '3': # python2.x reload(sys) sys.setdefaultencoding('utf-8') with open(get_filepath('csv', self.user['nickname']), 'ab') as f: csv_writer = csv.writer(f) csv_writer.writerows([result_headers]) else: # python3.x with open(get_filepath('csv', self.user['nickname']), 'a', encoding='utf-8-sig', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerows([result_headers]) def write_weibo(self, weibo): """将爬取的信息写入csv文件""" result_data = [w.values() for w in weibo] if sys.version < '3': # python2.x reload(sys) sys.setdefaultencoding('utf-8') with open(get_filepath('csv', self.user['nickname']), 'ab') as f: csv_writer = csv.writer(f) csv_writer.writerows(result_data) else: # python3.x with open(get_filepath('csv', self.user['nickname']), 'a', encoding='utf-8-sig', newline='') as f: csv_writer = csv.writer(f) csv_writer.writerows(result_data) print(u'%d条微博写入csv文件完毕,保存路径:' % len(weibo)) print(get_filepath('csv', self.user['nickname'])) class MongoWriter: def __init__(self, config): self.config = config def info_to_mongodb(self, collection, info_list): """将爬取的信息写入MongoDB数据库""" try: import pymongo from pymongo import MongoClient except ImportError: sys.exit(u'系统中可能没有安装pymongo库,请先运行 pip install pymongo ,再运行程序') try: client = MongoClient() except pymongo.errors.ServerSelectionTimeoutError: sys.exit(u'系统中可能没有安装或启动MongoDB数据库,请先根据系统环境安装或启动MongoDB,再运行程序') db = client['weibo'] collection = db[collection] for info in info_list: if not collection.find_one({'id': info['id']}): collection.insert_one(info) else: collection.update_one({'id': info['id']}, {'$set': info}) def write_user(self, user): """将爬取的用户信息写入MongoDB数据库""" self.user = user user_list = [user] self.info_to_mongodb('user', user_list) print(u'%s信息写入MongoDB数据库完毕' % user['nickname']) def write_weibo(self, weibo): """将爬取的微博信息写入MongoDB数据库""" weibo_list = [] for w in weibo: w['user_id'] = self.user['id'] weibo_list.append(w) self.info_to_mongodb('weibo', weibo_list) print(u'%d条微博写入MongoDB数据库完毕' % len(weibo)) class MysqlWriter: def __init__(self, config): self.config = config def write_user(self, user): """将爬取的用户信息写入MySQL数据库""" self.user = user # 创建'weibo'数据库 create_database = """CREATE DATABASE IF NOT EXISTS weibo DEFAULT CHARACTER SET utf8mb4 COLLATE utf8mb4_unicode_ci""" self.mysql_create_database(create_database) # 创建'user'表 create_table = """ CREATE TABLE IF NOT EXISTS user ( id varchar(12) NOT NULL, nickname varchar(30), weibo_num INT, following INT, followers INT, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4""" self.mysql_create_table(create_table) self.mysql_insert('user', [user]) print(u'%s信息写入MySQL数据库完毕' % user['nickname']) def write_weibo(self, weibo): """将爬取的微博信息写入MySQL数据库""" # 创建'weibo'表 create_table = """ CREATE TABLE IF NOT EXISTS weibo ( id varchar(10) NOT NULL, user_id varchar(12), content varchar(2000), original_pictures varchar(1000), retweet_pictures varchar(1000), original BOOLEAN NOT NULL DEFAULT 1, video_url varchar(300), publish_place varchar(100), publish_time DATETIME NOT NULL, publish_tool varchar(30), up_num INT NOT NULL, retweet_num INT NOT NULL, comment_num INT NOT NULL, PRIMARY KEY (id) ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4""" self.mysql_create_table(create_table) # 在'weibo'表中插入或更新微博数据 weibo_list = [] for w in weibo: w['user_id'] = self.user['id'] weibo_list.append(w) self.mysql_insert('weibo', weibo_list) print(u'%d条微博写入MySQL数据库完毕' % len(weibo)) def mysql_create(self, connection, sql): """创建MySQL数据库或表""" try: with connection.cursor() as cursor: cursor.execute(sql) finally: connection.close() def mysql_create_database(self, sql): """创建MySQL数据库""" try: import pymysql except ImportError: sys.exit(u'系统中可能没有安装pymysql库,请先运行 pip install pymysql ,再运行程序') mysql_config = self.config['mysql_config'] try: connection = pymysql.connect(**mysql_config) except pymysql.err.OperationalError: sys.exit(u'系统中可能没有安装或启动MySQL数据库或配置错误,请先根据系统环境安装或启动MySQL,再运行程序') self.mysql_create(connection, sql) def mysql_create_table(self, sql): """创建MySQL表""" import pymysql mysql_config = self.config['mysql_config'] mysql_config['db'] = 'weibo' connection = pymysql.connect(**mysql_config) self.mysql_create(connection, sql) def mysql_insert(self, table, data_list): """向MySQL表插入或更新数据""" import pymysql mysql_config = self.config['mysql_config'] if len(data_list) > 0: keys = ', '.join(data_list[0].keys()) values = ', '.join(['%s'] * len(data_list[0])) mysql_config['db'] = 'weibo' connection = pymysql.connect(**mysql_config) cursor = connection.cursor() sql = """INSERT INTO {table}({keys}) VALUES ({values}) ON DUPLICATE KEY UPDATE""".format(table=table, keys=keys, values=values) update = ','.join([ " {key} = values({key})".format(key=key) for key in data_list[0] ]) sql += update try: cursor.executemany( sql, [tuple(data.values()) for data in data_list]) connection.commit() except Exception as e: connection.rollback() print('Error: ', e) traceback.print_exc() finally: connection.close() ```
{ "source": "jinjunnn/cloud1", "score": 3 }
#### File: jinjunnn/cloud1/cloud.py ```python from leancloud import Engine from leancloud import LeanEngineError engine = Engine() import os import redis r = redis.from_url(os.environ.get("REDIS_URL_impharaon")) @engine.define def write_users(**params): #这段代码是将空值数据过滤 data_info = params for key in list(data_info.keys()): if not data_info.get(key): data_info.pop(key) result = r.hmset(params['id'],data_info) #12345 print(result) @engine.define def write_users_sent_message_times(**params): r.hmset('test','key','value') #这个是删除所有的redis的key @engine.define def del_all_redis_key(): keys = r.keys('*') for item in keys: r.delete(item) @engine.before_save('Todo') def before_todo_save(todo): content = todo.get('content') if not content: raise LeanEngineError('Content cannot be empty!') if len(content) >= 240: todo.set('content', content[:240] + ' ...') ```
{ "source": "jinju-rhee/microeconometrics_replication", "score": 2 }
#### File: microeconometrics_replication/auxiliary/auxiliary_tables.py ```python from localreg import * import pandas as pd import numpy as np import econtools import econtools.metrics as mt from auxiliary.auxiliary_subset import * from auxiliary.auxiliary_tables import * ##=============================== ## For descriptive statistics table def descriptive_main(data): variables = data[["tk","ab","dist1","ecs1"]] table = pd.DataFrame() mean = variables.mean() table['Mean'] = mean.round(2) table['Standard Deviation'] = variables.std() table = table.astype(float).round(2) table['Variable'] = ["Capital transfers","Alignment","Regional incumbent’s bloc vote margin (v)", "Regional seat margin"] table = table.set_index('Variable') table['RDD frame'] = ["outcome variable","treatment","forcing variable","heterogeneity effects"] table['Definition'] = ["Capital transfers from the Regional government per capita", "Dummy equal to one if the party of the mayor is the same as that of the president of the AC", "% of votes cast at the local elections that have to be added (subtracted from) to the ideological bloc of the Regional incumbent to win (lose) a majority of seats in the local council", "Difference between the seat share of the parties in the regional government and the seat share of the main opposition parties in the previous regional election. This variable is demeaned. "] table.style.set_properties(subset= ['Definition'], **{'width-min': '300px'}) return(table) def descriptive_controls(data): variables = data[["debt","tipo","vcp","pob","density","pob_mes6591","pob_5_1491", "extr_noeu91","unempl","income","educ2","presscirc","regre", "regde","meanden","regterm"]] table = pd.DataFrame() mean = variables.mean() table['Mean'] = mean.round(2) table['Standard Deviation'] = variables.std() table = table.astype(float).round(2) table['Variable'] = ["Debt burden","Property tax rate","Property value", "Population","Population density","% Old", "% Young","% Immigrant","% Unemployed","Income indicator","% Educated","Press circulation", "Regional revenues pc","Regional debt","Municipal density","Tenure in office"] table = table.set_index('Variable') table['Definition'] = ["Debt burden (capital, item 9 of the spending budget, + interest, item 3), as a share of current revenues", "Nominal property tax rate (IBI), % on assessed property value", "Assessed property value (thousands of EUR) per capita", "Resident population", "Population per square kilometer", "% resident population older than 65 years", "% resident population younger than 14 years", "% resident population non-EU immigrant", "% resident population unemployed", "Residents’ income level, as estimated from objective indicators (e.g., cars, bank deposits, etc.)", "Percentage of people with primary and secondary education. This variable is demeaned", "Newspaper copies (at the province level) per 1000 inhabitants. This variable is demeaned", "Current revenues per capita in each region. This variable is demeaned", "Debt burden (capital, item 9 of the spending budget, + interest, item 3) as a share of current revenues. This variable is demeaned", "Average population density (population per square kilometer) of the municipalities in each region. This variable is demeaned", "Dummy equal to one if it is the regional incumbent was not in office the previous term"] table.style.set_properties(subset= ['Definition'], **{'width-min': '300px'}) return(table) def descriptive_confounders(data): variables = data[["ecs1","regre","regde","meanden","regterm","presscirc","educ2"]] table1 = pd.DataFrame() table1['Mean'] = variables.mean() table1['Standard Deviation'] = variables.std() table1 = table1.astype(float).round(2) table1['Confounders'] = ["Regional seat margin","Regional revenues pc","Regional debt", "Municipal density", "Tenure in office","Press circulation","% Educated"] table1 = table1.set_index('Confounders') table1['Definition'] = ["Gap btw the seat share of the parties in the regional government and the opposition parties", "Current revenues per capita in each region", "Debt burden as a share of current revenues", "Average population density (population per km^2) of the municipalities in each region", "Dummy equal to one if it is the regional incumbent was not in office the previous term", "Newspaper copies (at the province level) per 1000 inhabitants", "Percentage of people with primary and secondary education"] table1 = table1.round(2).style.set_properties(subset= ['Definition'], **{'width-min': '300px'}) table1 ##=============================== ## For table 1 def first_stage_2SLS_global(data,cluster_var,covariates): # cluster_var = codiine -> for the coefficient # cluster_var = codccaa -> for the p_value df = data[["ab","dab","dist1","dist2","vda","vda2","codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] y = 'ab' X = ['dab', 'dist1', 'dist2', 'vda','vda2', "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.reg( df, # DataFrame y, # Dependent var (string) X, # Independent var(s) (string or list of strings) cluster=cluster_var, # Cluster var (string) addcons=True ) return(results) def first_stage_2SLS_local(data,bandwidth,cluster_var,covariates): # calculated optimal bandwidth: # 2h* = 0.386 # h* = 0.193 # h*/2 = 0.0965 # h*/4 = 0.048 df = data[["ab","dab","dist1","dist2","vda","vda2","codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] df_h = df[abs(df.dist1)<bandwidth] y = 'ab' X = ['dab', 'dist1', 'vda', "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.reg( df_h, # DataFrame y, # Dependent var (string) X, # Independent var(s) (string or list of strings) cluster=cluster_var, # Cluster var (string) addcons=True ) return(results) def second_stage_2SLS_global(data,cluster_var,covariates): df = data[["ab","dab","dist1","dist2","vsa","vsa2","vda","vda2","tk", "codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] y = "tk" # dependent var E = ["ab","vsa","vsa2"] # endo reg Z = ["dab","vda","vda2"] # instrumental X = ["dist1","dist2", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] # exo reg if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.ivreg(df, y, E, Z, X, cluster=cluster_var, addcons=True) return(results) def second_stage_2SLS_global_codiine(data,covariates): df = data[["ab","dab","dist1","dist2","vsa","vsa2","vda","vda2","tk", "codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] y = "tk" # dependent var E = ["ab","vsa","vsa2"] # endo reg Z = ["dab","vda","vda2"] # instrumental X = ["dist1","dist2", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] # exo reg if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.ivreg(df, y, E, Z, X, cluster='codiine', addcons=True) return(results) def second_stage_2SLS_global_codccaa(data,covariates): df = data[["ab","dab","dist1","dist2","vsa","vsa2","vda","vda2","tk", "codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] y = "tk" # dependent var E = ["ab","vsa","vsa2"] # endo reg Z = ["dab","vda","vda2"] # instrumental X = ["dist1","dist2", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] # exo reg if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.ivreg(df, y, E, Z, X, cluster='codccaa', addcons=True) return(results) def second_stage_2SLS_local(data,bandwidth,cluster_var,covariates): # calculated optimal bandwidth: # 2h* = 0.386 # h* = 0.193 # h*/2 = 0.0965 # h*/4 = 0.048 df = data[["ab","dab","dist1","dist2","vsa","vsa2","vda","vda2","tk", "codiine","codccaa", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15","lpob", "density", "debt", "vcp", "tipo"]] df_h = df[abs(df.dist1)<bandwidth] y = "tk" # dependent var E = ["ab","vsa"] # endo reg Z = ["dab","vda"] # instrumental X = ["dist1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] # exo reg if covariates == 1: X = X + ["lpob", "density", "debt", "vcp", "tipo"] elif covariates == 0: X = X results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def table1(data,covariates): table = pd.DataFrame({'2nd_stage': [], 'Std.err(2)': [], 'P-Value(2)': [], '1st_stage': [], 'Std.err(1)': [], 'P-Value(1)': [], 'Observations': []}) case = ('Global','Local(bd=2h*)','Local(bd=h*)','Local(bd=h*/2)','Local(bd=h*/4)') table['RD'] = case table = table.set_index('RD') #Global estimate r1 = first_stage_2SLS_global(data,cluster_var = "codiine", covariates = covariates) p1 = first_stage_2SLS_global(data,cluster_var = "codccaa", covariates = covariates) #r2 = second_stage_2SLS_global(data,cluster_var = "codiine", covariates = covariates) r2 = second_stage_2SLS_global_codiine(data,covariates= covariates) #p2 = second_stage_2SLS_global(data,cluster_var = "codccaa", covariates = covariates) p2 = second_stage_2SLS_global_codccaa(data,covariates= covariates) rg = [r2.beta['ab'] ,r2.se['ab'], p2.pt['ab'], r1.beta['dab'], r1.se['dab'], p1.pt['dab'], r2.N] table.loc["Global"] = rg #Local estimates local = ('Local(bd=2h*)','Local(bd=h*)','Local(bd=h*/2)','Local(bd=h*/4)') for a in local: if a == 'Local(bd=2h*)': bandwidth = 0.386 elif a == 'Local(bd=h*)': bandwidth = 0.193 elif a == 'Local(bd=h*/2)': bandwidth = 0.0965 elif a == 'Local(bd=h*/4)': bandwidth = .048 rslt1 = first_stage_2SLS_local(data,bandwidth = bandwidth,cluster_var = "codiine", covariates = covariates) pval1 = first_stage_2SLS_local(data,bandwidth = bandwidth,cluster_var = "codccaa", covariates = covariates) rslt2 = second_stage_2SLS_local(data, bandwidth = bandwidth,cluster_var = "codiine", covariates = covariates) pval2 = second_stage_2SLS_local(data, bandwidth = bandwidth,cluster_var = "codiine", covariates = covariates) result = [rslt2.beta['ab'] , rslt2.se['ab'], pval2.pt['ab'], rslt1.beta['dab'], rslt1.se['dab'], pval1.pt['dab'], rslt2.N] table.loc[a] = result return table ##=============================== ## For table 2 def effect_of_competition_global(data): dca_abi = [] dca_vsai = [] dca_2vsai = [] dca_dabi = [] dca_vdai = [] dca_2vdai = [] for i in range(1,16): dca_abi.append("dca_ab"+str(i)) dca_vsai.append("dca_vsa"+str(i)) dca_2vsai.append("dca_2vsa"+str(i)) dca_dabi.append("dca_dab"+str(i)) dca_vdai.append("dca_vda"+str(i)) dca_2vdai.append("dca_2vda"+str(i)) regional_columns = dca_abi + dca_vsai + dca_2vsai + dca_dabi + dca_vdai + dca_2vdai other_columns = ["ab","dab","dist1","dist2","ecs1","vsa","vsa2","vda","vda2","tk","codiine", "codccaa","esas1","vsa_ecs1", "vsa2_ecs1","edas1","vda_ecs1", "vda2_ecs1", "dist1_ecs1", "dist2_ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] rc = data[regional_columns] oc = data[other_columns] df = pd.concat([rc,oc], axis=1).reindex(rc.index) y = "tk" # dependent var e = dca_abi + dca_vsai + dca_2vsai e_ = ["esas1", "vsa_ecs1", "vsa2_ecs1"] E = e + e_ # endo reg z = dca_dabi + dca_vdai + dca_2vdai z_ = ["edas1", "vda_ecs1", "vda2_ecs1"] Z = z + z_ # instrumental X = ["dist1_ecs1", "dist2_ecs1", "dist1", "dist2", "ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] cluster_var = 'codccaa' results = mt.ivreg(df, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def effect_of_competition_local(data, bandwidth): dca_abi = [] dca_vsai = [] dca_dabi = [] dca_vdai = [] for i in range(1,16): dca_abi.append("dca_ab"+str(i)) dca_vsai.append("dca_vsa"+str(i)) dca_dabi.append("dca_dab"+str(i)) dca_vdai.append("dca_vda"+str(i)) regional_columns = dca_abi + dca_vsai + dca_dabi + dca_vdai other_columns = ["ab","dab","dist1","dist2","ecs1","vsa","vsa2","vda","vda2","tk","codiine", "codccaa","esas1","vsa_ecs1", "vsa2_ecs1","edas1","vda_ecs1", "vda2_ecs1", "dist1_ecs1", "dist2_ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] rc = data[regional_columns] oc = data[other_columns] df = pd.concat([rc,oc], axis=1).reindex(rc.index) df_h = df[abs(df.dist1)<bandwidth] y = "tk" # dependent var e = dca_abi + dca_vsai e_ = ["esas1", "vsa_ecs1"] E = e + e_ # endo reg z = dca_dabi + dca_vdai z_ = ["edas1", "vda_ecs1"] Z = z + z_ # instrumental X = ["dist1_ecs1","dist1","ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] cluster_var = 'codccaa' results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def table2(data): table = pd.DataFrame({'Alignment * RSM': [], 'Std.err(2)': [], 'P-Value(2)': [], 'RSM': [], 'Std.err(1)': [], 'P-Value(1)': [], 'Observations': []}) case = ('Global','Local(bd=2h*)','Local(bd=h*)','Local(bd=h*/2)','Local(bd=h*/4)') table['RD'] = case table = table.set_index('RD') #Global r1 = effect_of_competition_global(data) rg = [r1.beta['esas1'] , r1.se['esas1'], r1.pt['esas1'], r1.beta['ecs1'], r1.se['ecs1'], r1.pt['ecs1'], r1.N] table.loc["Global"] = rg #Local local = ('Local(bd=2h*)','Local(bd=h*)','Local(bd=h*/2)','Local(bd=h*/4)') for a in local: if a == 'Local(bd=2h*)': bandwidth = 0.386 elif a == 'Local(bd=h*)': bandwidth = 0.193 elif a == 'Local(bd=h*/2)': bandwidth = 0.0965 elif a == 'Local(bd=h*/4)': bandwidth = .048 rslt1 = effect_of_competition_local(data,bandwidth = bandwidth) result = [rslt1.beta['esas1'] , rslt1.se['esas1'], rslt1.pt['esas1'], rslt1.beta['ecs1'], rslt1.se['ecs1'], rslt1.pt['ecs1'],rslt1.N] table.loc[a] = result return table ##=============================== ## For table 4 def time_varying_covariates(data, add_columns, add_endo, add_inst ): dca_abi = [] dca_vsai = [] dca_dabi = [] dca_vdai = [] for i in range(1,16): dca_abi.append("dca_ab"+str(i)) dca_vsai.append("dca_vsa"+str(i)) dca_dabi.append("dca_dab"+str(i)) dca_vdai.append("dca_vda"+str(i)) regional_columns = dca_abi + dca_vsai + dca_dabi + dca_vdai other_columns = ["ab","dab","dist1","ecs1","vsa","vda","tk","codiine", "codccaa","esas1","vsa_ecs1", "edas1","vda_ecs1", "dist1_ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] all_other_columns = other_columns + add_columns rc = data[regional_columns] oc = data[all_other_columns] df = pd.concat([rc,oc], axis=1).reindex(rc.index) df_h = df[abs(df.dist1)<0.193] y = "tk" # dependent var e = dca_abi + dca_vsai e_ = ["esas1", "vsa_ecs1"] E = e + e_ + add_endo # endogenous regressor z = dca_dabi + dca_vdai z_ = ["edas1", "vda_ecs1"] Z = z + z_ + add_inst # instrumental variables X = ["dist1_ecs1","dist1","ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"]#exogeneous regressor cluster_var = 'codccaa' results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def time_varying_covariates_all(data, bandwidth): dca_abi = [] dca_vsai = [] dca_dabi = [] dca_vdai = [] for i in range(1,16): dca_abi.append("dca_ab"+str(i)) dca_vsai.append("dca_vsa"+str(i)) dca_dabi.append("dca_dab"+str(i)) dca_vdai.append("dca_vda"+str(i)) regional_columns = dca_abi + dca_vsai + dca_dabi + dca_vdai other_columns = ["ab","dab","dist1","ecs1","vsa","vda","tk","codiine", "codccaa","esas1","vsa_ecs1", "edas1","vda_ecs1", "dist1_ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] add_endo = ["resa","desa","denssa","termssa","presssa","educ2sa", "vsa_re","vsa_de","vsa_dens","vsa_te","vsa_pr","vsa_edu"] add_inst = ["reda","deda","densda","termsda","pressda","educ2da", "vda_re","vda_de","vda_dens","vda_te","vda_pr","vda_edu"] all_other_columns = other_columns + add_endo + add_inst rc = data[regional_columns] oc = data[all_other_columns] df = pd.concat([rc,oc], axis=1).reindex(rc.index) df_h = df[abs(df.dist1)<bandwidth] y = "tk" # dependent var e = dca_abi + dca_vsai e_ = ["esas1", "vsa_ecs1"] E = e + e_ + add_endo# endo reg z = dca_dabi + dca_vdai z_ = ["edas1", "vda_ecs1"] Z = z + z_ + add_inst # instrumental X = ["dist1_ecs1","dist1","ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"]#exo var cluster_var = 'codccaa' results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def table4(data): table = pd.DataFrame({'(1)': [], '(2)': [], '(3)': [], '(4)': [], '(5)': [], '(6)': [], '(7)': []}) case = ('Alig * Reg. seat margin','standard error(0)','p-value(0)', 'Alig * Revenue','standard error(1)','p-value(1)', 'Alig * Debt','standard error(2)','p-value(2)', 'Alig * Population density','standard error(3)','p-value(3)', 'Alig * Tenure in Office','standard error(4)','p-value(4)', 'Alig * Press', 'standard error(5)','p-value(5)', 'Alig * Educated(%)', 'standard error(6)','p-value(6)', 'Reg. seat margin', 'standard error(7)','p-value(7)', 'Observations') table['Covariates'] = case table = table.set_index('Covariates') # build the contents of table endo_1 = ["resa","vsa_re"] inst_1 = ["reda","vda_re"] colu_1 = endo_1 + inst_1 rslt1 = time_varying_covariates(data, colu_1, endo_1 , inst_1) endo_2 = ["desa","vsa_de"] inst_2 = ["deda","vda_de"] colu_2 = endo_2 + inst_2 rslt2 = time_varying_covariates(data, colu_2, endo_2 , inst_2) endo_3 = ["denssa","vsa_dens"] inst_3 = ["densda","vda_dens"] colu_3 = endo_3 + inst_3 rslt3 = time_varying_covariates(data, colu_3, endo_3 , inst_3) endo_4 = ["termssa","vsa_te"] inst_4 = ["termsda","vda_te"] colu_4 = endo_4 + inst_4 rslt4 = time_varying_covariates(data, colu_4, endo_4 , inst_4) endo_5 = ["presssa","vsa_pr"] inst_5 = ["reda","vda_pr"] colu_5 = endo_5 + inst_5 rslt5 = time_varying_covariates(data, colu_5, endo_5 , inst_5) endo_6 = ["educ2sa","vsa_edu"] inst_6 = ["educ2da","vda_edu"] colu_6 = endo_6 + inst_6 rslt6 = time_varying_covariates(data, colu_6, endo_6 , inst_6) rslt7 = time_varying_covariates_all(data,bandwidth = 0.193) # fill the table with the contents table['(1)'] = [rslt1.beta['esas1'], rslt1.se['esas1'], rslt1.pt['esas1'], rslt1.beta['resa'], rslt1.se['resa'], rslt1.pt['resa'], ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt1.beta['ecs1'], rslt1.se['ecs1'], rslt1.pt['ecs1'],rslt1.N] table['(2)'] = [rslt2.beta['esas1'], rslt2.se['esas1'], rslt2.pt['esas1'], ' ',' ',' ',rslt2.beta['desa'], rslt2.se['desa'], rslt2.pt['desa'], ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt2.beta['ecs1'], rslt2.se['ecs1'], rslt2.pt['ecs1'],rslt2.N] table['(3)'] = [rslt3.beta['esas1'], rslt3.se['esas1'], rslt3.pt['esas1'], ' ',' ',' ',' ',' ',' ',rslt3.beta['denssa'], rslt3.se['denssa'], rslt3.pt['denssa'], ' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt3.beta['ecs1'], rslt3.se['ecs1'], rslt3.pt['ecs1'],rslt3.N] table['(4)'] = [rslt4.beta['esas1'], rslt4.se['esas1'], rslt4.pt['esas1'], ' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt4.beta['termssa'], rslt4.se['termssa'], rslt4.pt['termssa'], ' ',' ',' ',' ',' ',' ', rslt4.beta['ecs1'], rslt4.se['ecs1'], rslt4.pt['ecs1'],rslt4.N] table['(5)'] = [rslt5.beta['esas1'], rslt5.se['esas1'], rslt5.pt['esas1'], ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt5.beta['presssa'], rslt5.se['presssa'], rslt5.pt['presssa'],' ',' ',' ', rslt5.beta['ecs1'], rslt5.se['ecs1'], rslt5.pt['ecs1'],rslt5.N] table['(6)'] = [rslt6.beta['esas1'], rslt6.se['esas1'], rslt6.pt['esas1'], ' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ',' ', rslt6.beta['educ2sa'], rslt6.se['educ2sa'], rslt6.pt['educ2sa'], rslt6.beta['ecs1'], rslt6.se['ecs1'], rslt6.pt['ecs1'],rslt6.N] table['(7)'] = [rslt7.beta['esas1'], rslt7.se['esas1'], rslt7.pt['esas1'], rslt7.beta['resa'], rslt7.se['resa'], rslt7.pt['resa'], rslt7.beta['desa'], rslt7.se['desa'], rslt7.pt['desa'], rslt7.beta['denssa'], rslt7.se['denssa'], rslt7.pt['denssa'], rslt7.beta['termssa'], rslt7.se['termssa'], rslt7.pt['termssa'], rslt7.beta['presssa'], rslt7.se['presssa'], rslt7.pt['presssa'], rslt7.beta['educ2sa'], rslt7.se['educ2sa'], rslt7.pt['educ2sa'], rslt7.beta['ecs1'], rslt7.se['ecs1'], rslt7.pt['ecs1'],rslt7.N] return(table) ##=========================================== ## For balance test(discontinuity test) table ##=========================================== def Balance_test(data,bandwidth,confounder,cluster_var): # calculated optimal bandwidth: # 2h* = 0.386 # h* = 0.193 # h*/2 = 0.0965 # h*/4 = 0.048 df = data[["debt", "tipo", "vcp", "pob", "density", "pob_mes6591", "pob_5_1491", "extr_noeu91", "unempl", "income", "presscirc", "regre", "regde", "meanden", "educ2", "regterm", "ecs1", "dab", "dist1", "vda", "codiine", "codccaa","cprov", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"]] df_h = df[abs(df.dist1)<bandwidth] y = confounder X = ['dab', 'dist1', 'vda', "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] results = mt.reg( df_h, # DataFrame y, # Dependent var (string) X, # Independent var(s) (string or list of strings) cluster=cluster_var, # Cluster var (string) addcons=True ) return(results) def Balance_test_table(data): # set the confounders and corresponding optimal bandwidth combine = {"debt": 0.219, "tipo":0.171, "vcp":0.216, "pob":0.197, "density":0.171, "pob_mes6591":0.185, "presscirc":0.253, "regre":0.247, "regde":0.245, "meanden":0.275, "educ2":0.347, "regterm":0.287, "ecs1":0.247, "pob_5_1491":0.183, "extr_noeu91":0.223, "unempl":0.237, "income":0.229} temp_i = ["debt", "tipo", "vcp", "pob", "density", "pob_mes6591", "pob_5_1491", "extr_noeu91", "unempl", "income","presscirc", "regre", "regde", "meanden", "educ2", "regterm", "ecs1"] # create a table and temporarily set bandwidth value as index table = pd.DataFrame({'Variable': [], 'Coef.': [], 'SE': [], 'P-value': [], 'Bandwidth': [], 'Observations': []}) table['Variable'] = temp_i table = table.set_index('Variable') # regression and result for i,j in combine.items(): data = data confounder = i bandwidth = j if j < 0.24: cluster_var = 'codiine' elif j == 0.253: cluster_var = 'cprov' else: cluster_var = 'codccaa' rl = Balance_test(data,bandwidth,confounder,cluster_var) rg = [rl.beta['dist1'] , rl.se['dist1'], rl.pt['dist1'], j, rl.N] table.loc[i] = rg table['Variable'] = ["Debt burden","Property tax rate","Property value","Population", "Population density","% Old","% Young","% Immigrant","% Unemployed", "Income indicator","Press circulation p.c.","Regional revenues p.c", "Regional debt","Municipal density","Education","Tenure in office", "Regional seat margin"] return(table) ##=========================================== ## Robustness Check ##=========================================== def first_stage_2SLS_order(data,order,bandwidth): df = data if bandwidth < 1: df_h = df[abs(df.dist1)<bandwidth] elif bandwidth == 1: df_h = df y = 'ab' X = ['dab',"dca2","dca3","dca4","dca5","dca6","dca7","dca8", "dca9","dca10","dca11","dca12","dca13","dca14","dca15"] if order == 1: add = ['dist1','vda'] elif order == 2: add = ['dist1','dist2','vda','vda2'] elif order == 3: add = ['dist1','dist2','dist3','vda','vda2','vda3'] X = X + add results = mt.reg( df_h, # DataFrame y, # Dependent var (string) X, # Independent var(s) (string or list of strings) cluster='codiine', # Cluster var (string) addcons=True ) return(results) def second_stage_2SLS_global(data,order,bandwidth): df = data if bandwidth < 1: df_h = df[abs(df.dist1)<bandwidth] elif bandwidth == 1: df_h = df y = "tk" # dependent var E = ["ab"] # endo reg Z = ["dab"] # instrumental X = ["dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9", "dca10","dca11","dca12","dca13","dca14","dca15"] # exo reg if order == 1: add_endo = ['vsa'] add_inst = ['vda'] add_exo = ['dist1'] elif order == 2: add_endo = ['vsa','vsa2'] add_inst = ['vda','vda2'] add_exo = ['dist1','dist2'] elif order == 3: add_endo = ['vsa','vsa2','vsa3'] add_inst = ['vda','vda2','vda3'] add_exo = ['dist1','dist2','dist3'] E = E + add_endo Z = Z + add_inst X = X + add_exo results = mt.ivreg(df_h, y, E, Z, X, cluster='codiine',addcons=True) return(results) def table_Poly_Robust(data,bandwidth): # construct the table table = pd.DataFrame({'(1)': [], '(2)': [], '(3)': []}) case = ('Second Stage','Alignment','se(2)', 'p-value(2)','First Stage','Reg vote margin','se(1)', 'p-value(1)','Polynomial Order','Observations') table[' '] = case table = table.set_index(' ') # regression results subset = subset_for_Poly_Robust(data) rslt_11 = first_stage_2SLS_order(data=subset,order=1,bandwidth = bandwidth) rslt_12 = first_stage_2SLS_order(data=subset,order=2,bandwidth= bandwidth) rslt_13 = first_stage_2SLS_order(data=subset,order=3,bandwidth= bandwidth) rslt_21 = second_stage_2SLS_global(data=subset,order=1,bandwidth= bandwidth) rslt_22 = second_stage_2SLS_global(data=subset,order=2,bandwidth= bandwidth) rslt_23 = second_stage_2SLS_global(data=subset,order=3,bandwidth= bandwidth) #fill the table with the contents table['(1)'] = [' ', rslt_21.beta['ab'],rslt_21.se['ab'],rslt_21.pt['ab'], ' ',rslt_11.beta['dab'],rslt_11.se['dab'],rslt_11.pt['dab'],'1',rslt_11.N] table['(2)'] = [' ', rslt_22.beta['ab'],rslt_22.se['ab'],rslt_22.pt['ab'], ' ',rslt_12.beta['dab'],rslt_12.se['dab'],rslt_12.pt['dab'],'2',rslt_12.N] table['(3)'] = [' ', rslt_23.beta['ab'],rslt_23.se['ab'],rslt_23.pt['ab'], ' ',rslt_13.beta['dab'],rslt_13.se['dab'],rslt_13.pt['dab'],'3',rslt_13.N] return(table) def robust_bandwidth_LATE(data): table = pd.DataFrame({'2nd_stage': [], 'Std.err(2)': [], 'P-Value(2)': [], '1st_stage': [], 'Std.err(1)': [], 'P-Value(1)': [], 'Observations': []}) case = (0.11,0.13,0.15,0.17,0.193,0.21,0.23,0.25,0.27,0.29) table['Bandwidth'] = case table = table.set_index('Bandwidth') #Local for i in case: bandwidth = i rslt1 = first_stage_2SLS_local(data,bandwidth = bandwidth,cluster_var = "codiine",covariates = 0) rslt2 = second_stage_2SLS_local(data, bandwidth = bandwidth,cluster_var = "codiine",covariates = 0) result = [rslt2.beta['ab'] , rslt2.se['ab'], rslt2.pt['ab'], rslt1.beta['dab'], rslt1.se['dab'], rslt1.pt['dab'], rslt2.N] table.loc[i] = result return (table) def robust_bandwidth_HLATE(data): table = pd.DataFrame({'Alignment * RSM': [], 'Std.err(2)': [], 'P-Value(2)': [], 'RSM': [], 'Std.err(1)': [], 'P-Value(1)': [], 'Observations': []}) case = (0.11,0.13,0.15,0.17,0.193,0.21,0.23,0.25,0.27,0.29,0.31,0.33,0.35,0.386,0.4) table['Bandwidth'] = case table = table.set_index('Bandwidth') #Local for i in case: bandwidth = i rslt1 = effect_of_competition_local(data,bandwidth = bandwidth) result = [rslt1.beta['esas1'] , rslt1.se['esas1'], rslt1.pt['esas1'], rslt1.beta['ecs1'], rslt1.se['ecs1'], rslt1.pt['ecs1'],rslt1.N] table.loc[i] = result return (table) def LATE_for_alternative_align(data,bandwidth,endo,cluster_var): """ Compare LATE obtained by different alternative dummy variables which represent more comprehensible alignement status """ df = subset_for_alternative_align(data) # Generate subset df = df.dropna() df_h = df[abs(df.dist1)<bandwidth] # Set optimal bandwidth """ Take the result of the second stage of Instrument Regression """ y = "tk" # dependent var E = endo # endo reg Z = ["dab","vda"] # instrumental X = ["dist1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] # exo reg results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def HLATE_for_alternative_align(data, bandwidth, alter): """ Compare HLATE obtained by different alternative dummy variables which represent more comprehensible alignement status """ # add regional fixed effects as controls dca_bcdi = [] dca_vsbcdi = [] dca_bloci = [] dca_vsbloci = [] dca_dabi = [] dca_vdai = [] for i in range(1,16): dca_bcdi.append("dca_bcd"+str(i)) dca_vsbcdi.append("dca_vsbcd"+str(i)) dca_bloci.append("dca_bloc"+str(i)) dca_vsbloci.append("dca_vsbloc"+str(i)) dca_dabi.append("dca_dab"+str(i)) dca_vdai.append("dca_vda"+str(i)) regional_columns = dca_bcdi + dca_vsbcdi + dca_bloci + dca_vsbloci + dca_dabi + dca_vdai rc = data[regional_columns] oc = subset_for_alternative_align(data) df = pd.concat([rc,oc], axis=1).reindex(rc.index) df = df.dropna() df_h = df[abs(df.dist1)<bandwidth] # put different endogenous variables to different alternative regression model if alter == 'part': E = dca_bcdi + dca_vsbcdi + ["esas1_bis","vsbcd_ecs1"] elif alter == 'bloc': E = dca_bloci + dca_vsbloci + ["esas1_bisbis", "vsbloc_ecs1" ] y = 'tk' Z = dca_dabi + dca_vdai + ["edas1", "vda_ecs1"] X = ["dist1_ecs1","dist1","ecs1", "dca2","dca3","dca4","dca5","dca6","dca7","dca8","dca9","dca10", "dca11","dca12","dca13","dca14","dca15"] cluster_var = 'codccaa' results = mt.ivreg(df_h, y, E, Z, X, cluster=cluster_var,addcons=True) return(results) def table_alternative_alignment(data, data2): table = pd.DataFrame({'LATE': [], 'SE(1)': [], 'P-val(1)': [], 'HLATE(Align*RSM)': [], 'SE(2)': [], 'P-val(2)': [], 'RSM': [], 'SE(3)': [], 'P-val(3)': [], 'Bandwidth':[], 'Obs' : []}) case = ('Alignment','Partner-Align','Bloc-Align') table['RD'] = case table = table.set_index('RD') # The First row shows the estimates of original alignment dummy align1 = second_stage_2SLS_local(data, bandwidth = 0.193, cluster_var = "codiine", covariates = 0) align2 = effect_of_competition_local(data2, bandwidth = 0.193) result_align = [align1.beta['ab'] , align1.se['ab'], align1.pt['ab'], align2.beta['esas1'], align2.se['esas1'], align2.pt['esas1'], align2.beta['ecs1'], align2.se['ecs1'], align2.pt['ecs1'], 0.193, align2.N] table.loc['Alignment'] = result_align # The second row shows the estimates of partner-alignment dummy part1 = LATE_for_alternative_align(data,bandwidth = 0.225 ,endo = ['abcd', 'vsbcd'],cluster_var = 'codiine') part2 = HLATE_for_alternative_align(data,bandwidth = 0.225, alter = 'part') result_part = [part1.beta['abcd'] , part1.se['abcd'], part1.pt['abcd'], part2.beta['esas1_bis'], part2.se['esas1_bis'], part2.pt['esas1_bis'], part2.beta['ecs1'], part2.se['ecs1'], part2.pt['ecs1'], 0.225, part2.N] table.loc['Partner-Align'] = result_part # The third row shows the estimates of bloc-alignment dummy bloc1 = LATE_for_alternative_align(data,bandwidth = 0.219 ,endo = ['bloc', 'vsbloc'],cluster_var = 'codiine') bloc2 = HLATE_for_alternative_align(data,bandwidth = 0.219, alter = 'bloc') result_bloc = [bloc1.beta['bloc'] , bloc1.se['bloc'], bloc1.pt['bloc'], bloc2.beta['esas1_bisbis'], bloc2.se['esas1_bisbis'], bloc2.pt['esas1_bisbis'], bloc2.beta['ecs1'], bloc2.se['ecs1'], bloc2.pt['ecs1'], 0.219, bloc2.N] table.loc['Bloc-Align'] = result_bloc return table ```
{ "source": "jinka/Inst-Photo-App", "score": 2 }
#### File: Inst-Photo-App/insta/models.py ```python from django.db import models from django.utils import timezone from django.contrib.auth.models import User from django.urls import reverse class Image(models.Model): image=models.ImageField(upload_to = '') name=models.CharField(max_length=100) caption=models.CharField(max_length=100) date_created=models.DateTimeField(default=timezone.now) likes=models.IntegerField(default=0) user = models.ForeignKey(User, on_delete=models.CASCADE) class Meta: ordering = ['name'] def __str__(self): return self.name def get_absolute_url(self): return reverse('insta-detail',kwargs={'pk': self.pk}) def save_image(self): self.save() def delete_image(self): self.delete() @classmethod def update_caption(cls, id, description): cls.objects.filter(id=id).update(caption = caption) ``` #### File: Inst-Photo-App/users/views.py ```python from django.shortcuts import render, redirect, get_object_or_404 from django.contrib import messages from django.contrib.auth.decorators import login_required from .forms import UserRegisterForm, UserUpdateForm, ProfileUpdateForm from insta.models import Image from decouple import config from django.core.mail import send_mail from django.conf import settings def email(request): pass return redirect('redirect to a new page') def register(request): if request.method == 'POST': form = UserRegisterForm(request.POST) if form.is_valid(): form.save() username = form.cleaned_data.get('username') subject = 'Thank you for registering to our site' message = ' it means a world to us ' email_from = settings.EMAIL_HOST_USER recipient_list = ['<EMAIL>',settings.EMAIL_HOST_USER] send_mail( subject, message, email_from, recipient_list ) messages.success(request, f'Your account has been created! You are now able to log in') return redirect('login') else: form = UserRegisterForm() return render(request, 'users/register.html', {'form': form}) @login_required def profile(request): current_user = request.user images = Image.objects.filter(user = current_user) if request.method == 'POST': u_form = UserUpdateForm(request.POST, instance=request.user) p_form = ProfileUpdateForm(request.POST, request.FILES, instance=request.user.profile) if u_form.is_valid() and p_form.is_valid(): u_form.save() p_form.save() messages.success(request, f'Your account has been updated!') return redirect('profile') else: u_form = UserUpdateForm(instance=request.user) p_form = ProfileUpdateForm(instance=request.user.profile) context = { 'u_form': u_form, 'p_form': p_form, 'images': images } return render(request, 'users/profile.html', context) ```
{ "source": "JinkaiZheng/TraND", "score": 3 }
#### File: model/network/basic_blocks.py ```python import torch import torch.nn as nn import torch.nn.functional as F class BasicConv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, **kwargs): super(BasicConv2d, self).__init__() self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs) def forward(self, x): x = self.conv(x) return F.leaky_relu(x, inplace=True) class SetBlock(nn.Module): def __init__(self, forward_block, pooling=False): super(SetBlock, self).__init__() self.forward_block = forward_block self.pooling = pooling if pooling: self.pool2d = nn.MaxPool2d(2) def forward(self, x): n, s, c, h, w = x.size() x = self.forward_block(x.view(-1,c,h,w)) if self.pooling: x = self.pool2d(x) _, c, h, w = x.size() return x.view(n, s, c, h ,w) class HPM(nn.Module): def __init__(self, in_dim, out_dim, bin_level_num=5): super(HPM, self).__init__() self.bin_num = [2**i for i in range(bin_level_num)] self.fc_bin = nn.ParameterList([ nn.Parameter( nn.init.xavier_uniform( torch.zeros(sum(self.bin_num), in_dim, out_dim)))]) def forward(self, x): feature = list() n, c, h, w = x.size() for num_bin in self.bin_num: z = x.view(n, c, num_bin, -1) z = z.mean(3)+z.max(3)[0] feature.append(z) feature = torch.cat(feature, 2).permute(2, 0, 1).contiguous() feature = feature.matmul(self.fc_bin[0]) return feature.permute(1, 0, 2).contiguous() ``` #### File: model/utils/data_set.py ```python import torch.utils.data as tordata import numpy as np import os.path as osp import os import cv2 import xarray as xr class DataSet(tordata.Dataset): def __init__(self, seq_dir, label, seq_type, view, cache, resolution): self.seq_dir = seq_dir self.view = view self.seq_type = seq_type self.label = label self.cache = cache self.resolution = int(resolution) self.cut_padding = int(float(resolution)/64*10) self.data_size = len(self.label) self.data = [None] * self.data_size self.frame_set = [None] * self.data_size self.label_set = set(self.label) self.seq_type_set = set(self.seq_type) self.view_set = set(self.view) _ = np.zeros((len(self.label_set), len(self.seq_type_set), len(self.view_set))).astype('int') _ -= 1 self.index_dict = xr.DataArray( _, coords={'label': sorted(list(self.label_set)), 'seq_type': sorted(list(self.seq_type_set)), 'view': sorted(list(self.view_set))}, dims=['label', 'seq_type', 'view']) for i in range(self.data_size): _label = self.label[i] _seq_type = self.seq_type[i] _view = self.view[i] self.index_dict.loc[_label, _seq_type, _view] = i def load_all_data(self): for i in range(self.data_size): self.load_data(i) def load_data(self, index): return self.__getitem__(index) def __loader__(self, path): return self.img2xarray( path)[:, :, self.cut_padding:-self.cut_padding].astype( 'float32') / 255.0 def __getitem__(self, index): # pose sequence sampling if not self.cache: data = [self.__loader__(_path) for _path in self.seq_dir[index]] frame_set = [set(feature.coords['frame'].values.tolist()) for feature in data] frame_set = list(set.intersection(*frame_set)) elif self.data[index] is None: data = [self.__loader__(_path) for _path in self.seq_dir[index]] frame_set = [set(feature.coords['frame'].values.tolist()) for feature in data] frame_set = list(set.intersection(*frame_set)) self.data[index] = data self.frame_set[index] = frame_set else: data = self.data[index] frame_set = self.frame_set[index] return data, frame_set, self.view[index], self.seq_type[index], self.label[index], index def img2xarray(self, flie_path): imgs = sorted(list(os.listdir(flie_path))) frame_list = [np.reshape( cv2.imread(osp.join(flie_path, _img_path)), [self.resolution, self.resolution, -1])[:, :, 0] for _img_path in imgs if osp.isfile(osp.join(flie_path, _img_path))] num_list = list(range(len(frame_list))) data_dict = xr.DataArray( frame_list, coords={'frame': num_list}, dims=['frame', 'img_y', 'img_x'], ) return data_dict def __len__(self): return len(self.label) ``` #### File: TraND/GaitSet/test.py ```python from datetime import datetime import numpy as np import argparse from model.initialization import initialization from model.utils import evaluation from config import conf_CASIA, conf_OULP def boolean_string(s): if s.upper() not in {'FALSE', 'TRUE'}: raise ValueError('Not a valid boolean string') return s.upper() == 'TRUE' parser = argparse.ArgumentParser(description='Test') parser.add_argument('--data', default='casia-b', type=str, help='dataset to be used. (default: casia-b)') parser.add_argument('--iter', default='100000', type=int, help='iter: iteration of the checkpoint to load. Default: 80000') parser.add_argument('--batch_size', default='64', type=int, help='batch_size: batch size for parallel test. Default: 64') parser.add_argument('--cache', default=False, type=boolean_string, help='cache: if set as TRUE all the test data will be loaded at once' ' before the transforming start. Default: FALSE') opt = parser.parse_args() # Exclude identical-view cases def de_diag(acc, each_angle=False): result = np.sum(acc - np.diag(np.diag(acc)), 1) result = result / (result.shape[0]-1.0) if not each_angle: result = np.mean(result) return result if opt.data == "casia-b": conf = conf_CASIA elif opt.data == "oulp": conf = conf_OULP else: raise Warning("Please check your dataset_name, current dataset is not casia-b or oulp.") m = initialization(conf, test=opt.cache)[0] # load model checkpoint of iteration opt.iter print('Loading the model of iteration %d...' % opt.iter) m.load(opt.iter) print('Transforming...') time = datetime.now() test = m.transform('test', opt.batch_size) print('Evaluating...') acc = evaluation(test, conf['data']) print('Evaluation complete. Cost:', datetime.now() - time) if acc.shape[0] == 3: for i in range(1): print('===Rank-%d (Include identical-view cases) on the CASIA-B dataset===' % (i + 1)) print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % ( np.mean(acc[0, :, :, i]), np.mean(acc[1, :, :, i]), np.mean(acc[2, :, :, i]))) for i in range(1): print('===Rank-%d (Exclude identical-view cases) on the CASIA-B dataset===' % (i + 1)) print('NM: %.3f,\tBG: %.3f,\tCL: %.3f' % ( de_diag(acc[0, :, :, i]), de_diag(acc[1, :, :, i]), de_diag(acc[2, :, :, i]))) np.set_printoptions(precision=2, floatmode='fixed') for i in range(1): print('===Rank-%d of each angle (Exclude identical-view cases) on the CASIA-B dataset===' % (i + 1)) print('NM:', de_diag(acc[0, :, :, i], True)) print('BG:', de_diag(acc[1, :, :, i], True)) print('CL:', de_diag(acc[2, :, :, i], True)) elif acc.shape[0] == 1: for i in range(1): print('===Rank-%d (Include identical-view cases) on the OULP dataset===' % (i + 1)) print('NM: %.3f' % ( np.mean(acc[0, :, :, i]))) for i in range(1): print('===Rank-%d (Exclude identical-view cases) on the OULP dataset===' % (i + 1)) print('NM: %.3f' % ( de_diag(acc[0, :, :, i]))) np.set_printoptions(precision=2, floatmode='fixed') for i in range(1): print('===Rank-%d of each angle (Exclude identical-view cases) on the OULP dataset===' % (i + 1)) print('NM:', de_diag(acc[0, :, :, i], True)) ``` #### File: JinkaiZheng/TraND/logger.py ```python import logging import os from configs import parser_argument cfg = parser_argument() class Logger: def __init__(self, name=__name__): self.__name = name self.logger = logging.getLogger(self.__name) self.logger.setLevel(logging.DEBUG) log_path = os.path.join('outputs/TraND', cfg.log_name) if not os.path.exists(log_path): os.makedirs(log_path) logname = log_path + '/' + cfg.log_name + '.log' fh = logging.FileHandler(logname, mode='w', encoding='utf-8') fh.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(levelname)s] %(message)s') fh.setFormatter(formatter) ch.setFormatter(formatter) self.logger.addHandler(fh) self.logger.addHandler(ch) @property def get_log(self): return self.logger log = Logger(__name__).get_log ```
{ "source": "jinka/like_awwards", "score": 2 }
#### File: like_awwards/awwardsapp/models.py ```python from django.db import models from django.contrib.auth.models import User from django.db.models.signals import post_save from django.dispatch import receiver import datetime as dt from django.utils import timezone from django.urls import reverse from PIL import Image class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) image = models.ImageField(default='default.jpg',upload_to='profile_pics') bio = models.TextField(max_length=100, blank=True) contact = models.TextField(max_length=100, blank=True) # votes = models.IntegerField(default = 0) def __str__(self): return f'{self.user.username} Profile' def save(self, **kwargs): super().save() @classmethod def filter_by_id(cls, id): details = Profile.objects.filter(user = id).first() return details class Project(models.Model): image = models.ImageField(upload_to = 'images/') title = models.CharField(max_length =100) url = models.CharField(max_length =80) detail_desciption=models.TextField(max_length=100) created_date = models.DateTimeField(default=timezone.now) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self): return self.title def get_absolute_url(self): return reverse('project-detail', kwargs={'pk': self.pk}) class Meta: ordering = ['-pk'] def save_project(self): self.save() @classmethod def search_by_projectname(cls,idea): projects = cls.objects.filter(title__icontains=idea) return projects class Rate(models.Model): pass # design = models.IntegerField() # usability = models.IntegerField() # creativity = models.IntegerField() # def __str__(self): # return self.design # class Meta: # ordering = ['-id'] # def save_rate(self): # self.save() # @classmethod # def get_rate(cls, profile): # rate = Rate.objects.filter(Profile__pk = profile) # return rate # @classmethod # def get_all_rating(cls): # rating = Rate.objects.all() # return rating ```
{ "source": "jinka/News-Highligh", "score": 3 }
#### File: app/main/views.py ```python from flask import render_template,request,redirect,url_for from . import main # from app import app from ..request import get_sources,get_articles,search_article from ..models import Sources # Views @main.route('/') def index(): ''' view root page function that returns the index the page and its data ''' sources = get_sources('business') sports_sources = get_sources('sports') technology_sources = get_sources('technology') entertainment_sources = get_sources('entertainment') title = "News Highlighter" search_movie = request.args.get('movie_query') if search_movie: return redirect(url_for('.search',movie_name=search_movie)) else: return render_template('index.html',title = title, sources = sources,sports_sources = sports_sources,technology_sources = technology_sources,entertainment_sources = entertainment_sources) @main.route('/sources/<id>') def articles(id): ''' view articles page ''' articles = get_articles(id) title = f'NH | {id}' return render_template('articles.html',title= title,articles = articles) @main.route('/search/<movie_name>') def search(movie_name): ''' View function to display the search results ''' article_name_list = movie_name.split(" ") article_name_format = "+".join(article_name_list) searched_articles = search_article(article_name_format) title = f'search results for {movie_name}' return render_template('search.html',articles = searched_articles) ```
{ "source": "jinkanhq/ningen", "score": 2 }
#### File: interview/templatetags/markdown.py ```python from django import template from django.utils.safestring import mark_safe from ningen.interview.utils import ningen_markdown as md register = template.Library() @register.filter def markdown(value): return mark_safe(md.convert(value)) ``` #### File: ningen/interview/utils.py ```python import markdown as md from markdown.extensions import Extension from markdown.inlinepatterns import Pattern from markdown.util import etree from ningen.interview.models import Item # 老式链接 [Item Name][item-slug] OLD_ITEM_LINK_RE = r'\[([^\[\]\(\)]+)\]\[([^\[\]\(\)]+)\]' # 新式链接 [[item-slug]] ITEM_LINK_RE = r'\[\[([a-z0-9\-^\[\]\(\)]+)\]\]' class OldItemLinkPattern(Pattern): def handleMatch(self, m): el = etree.Element("a") item_slug = m.group(3) item_name = m.group(2) el.set('target', '_blank') el.set('class', 'item') el.text = item_name try: item = Item.objects.get(slug=item_slug) el.set("href", item.link) el.set("title", item.get_full_name()) except Item.DoesNotExist: Item.objects.create( slug=item_slug, name=item_name, vendor='Unknown', description='(Markdown generated)', link='javascript:;') el.set("href", "#") return el class ItemLinkPattern(Pattern): def handleMatch(self, m): el = etree.Element("a") el.set('target', '_blank') el.set('class', 'item') item_slug = m.group(2) try: item = Item.objects.get(slug=item_slug) el.text = item.get_full_name() el.set("href", item.link) el.set("title", item.get_full_name()) except Item.DoesNotExist: Item.objects.create( slug=item_slug, name=item_slug, vendor='Unknown', description='(Markdown generated)', link='javascript:;') el.set("href", "#") return el class NingenExtension(Extension): def extendMarkdown(self, md, md_globals): md.inlinePatterns.add( 'itemlink_old', OldItemLinkPattern(OLD_ITEM_LINK_RE, md), '<reference') md.inlinePatterns.add( 'itemlink', ItemLinkPattern(ITEM_LINK_RE, md), '<reference' ) ningen_markdown = md.Markdown(extensions=[NingenExtension()]) ```
{ "source": "jinka/One-Minute_Pitch", "score": 2 }
#### File: migrations/versions/ba2c8c2959e3_initial_migration.py ```python from alembic import op import sqlalchemy as sa from sqlalchemy.dialects import postgresql # revision identifiers, used by Alembic. revision = 'ba2c8c2959e3' down_revision = '<PASSWORD>' branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('comments') op.drop_table('pitches') # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('pitches', sa.Column('id', sa.INTEGER(), server_default=sa.text("nextval('pitches_id_seq'::regclass)"), autoincrement=True, nullable=False), sa.Column('pitch_title', sa.VARCHAR(), autoincrement=False, nullable=True), sa.Column('posted', postgresql.TIMESTAMP(), autoincrement=False, nullable=True), sa.Column('author', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('category', sa.VARCHAR(), autoincrement=False, nullable=True), sa.Column('content', sa.VARCHAR(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['author'], ['users.id'], name='pitches_author_fkey'), sa.PrimaryKeyConstraint('id', name='pitches_pkey'), postgresql_ignore_search_path=False ) op.create_table('comments', sa.Column('id', sa.INTEGER(), autoincrement=True, nullable=False), sa.Column('comment_content', sa.VARCHAR(), autoincrement=False, nullable=True), sa.Column('user_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.Column('pitch_id', sa.INTEGER(), autoincrement=False, nullable=True), sa.ForeignKeyConstraint(['pitch_id'], ['pitches.id'], name='comments_pitch_id_fkey'), sa.ForeignKeyConstraint(['user_id'], ['users.id'], name='comments_user_id_fkey'), sa.PrimaryKeyConstraint('id', name='comments_pkey') ) # ### end Alembic commands ### ```
{ "source": "JINKEHE/VitalSpider", "score": 3 }
#### File: VitalSpider/tutorial/mydownloader.py ```python import subprocess import scrapy class MyDownloader(object): def process_request(self, request, spider): if request.url.endswith(".zip"): subprocess.Popen(["wget", request.url, "-P", "~/temp"]) return scrapy.http.HtmlResponse(url="", body="", encoding='utf8') ```
{ "source": "JinkelaCrops/t2t-learning", "score": 3 }
#### File: t2t-learning/mytrain/my_unpack.py ```python from processutils.textfilter import Unpack from utils.simplelog import Logger import argparse parser = argparse.ArgumentParser(description="my_unpack") parser.add_argument('-f', "--file_prefix", required=True) parser.add_argument('-sep', "--separator", required=True) # args = parser.parse_args([ # "-f", "../test/medicine.sample.data/data.test", # "-sep", ' ||| ' # ]) args = parser.parse_args() args.output_src = args.file_prefix + ".src" args.output_tgt = args.file_prefix + ".tgt" log = Logger("my_filter", "my_filter.log").log() def main(data): unpack = Unpack(args.separator) src_lines = [] tgt_lines = [] for k, line in enumerate(data): try: src, tgt, change_order = unpack.unpack(line) except Exception as e: log.error(f"unpack error: {e.__class__}, {e.__context__}, ### {line.strip()}") continue src_lines.append(src + "\n") tgt_lines.append(tgt + "\n") return src_lines, tgt_lines if __name__ == '__main__': with open(args.file_prefix, "r", encoding="utf8") as f: data = f.readlines() src_lines, tgt_lines = main(data) with open(args.output_src, "w", encoding="utf8") as f: f.writelines(src_lines) with open(args.output_tgt, "w", encoding="utf8") as f: f.writelines(tgt_lines) ``` #### File: t2t-learning/processutils/analyze_dev.py ```python import re from processutils.regexutils import pattern_find_pts from processutils.regexutils import mask_update class Field(object): def __init__(self, line): self.line = line self.mask = [0] * len(self.line) class Rule(object): def __init__(self): self.id = 0 self.desc = "This is a rule" self.level = 0 self.regex = "" def process(self, field: Field): output = None if self.regex: output = pattern_find_pts(self.regex, field.line, mask=field.mask) mask_update(field.mask, output) return output class Check(object): pass class Modify(object): def __init__(self): pass class Link(Rule): def __init__(self): super().__init__() self.desc = "TTTLink" self.regex = "(?:(?:ht|f)tps?://[\\w+\\-]+|www\\.)[\\w\\-\\.,@\\?=%&:;/~\\+#]+/?" assert re.fullmatch(self.regex, "http://dswd.com") class Email(Rule): def __init__(self): super().__init__() self.desc = "TTTEmail" self.regex = "[\\w\\-]+@[\\w\\-]+(?:\\.[\\w\\-]+)+" assert re.fullmatch(self.regex, "<EMAIL>") class Numeric(Rule): def __init__(self): super().__init__() self.desc = "TTTNumeric" self.regex = "\\b[0-9][0-9 ]*(\\.[0-9 ]*[0-9]+)?\\b" assert re.search(self.regex, "ewe 6 0. 9 0%单位") def process(self, field: Field): output = pattern_find_pts(self.regex, field.line, flags=re.A.value, mask=field.mask) mask_update(field.mask, output) # sub with self.desc region_tmp = [k for j in sorted([j for i, pti in output.items() for j in pti]) for k in j] region_tmp = [0] + region_tmp + [len(field.line)] region = _flatten_region_to_region(region_tmp, strip=False) output_list = [] for k, region_k in enumerate(region): if k < len(region) - 1: output_list.append(field.line[region_k[0]:region_k[1]]) output_list.append(self.desc) output_list.append(field.line[region[-1][0]:region[-1][1]]) field.line = " ".join(output_list) return output class UpperChemical(Numeric): def __init__(self): super().__init__() self.desc = "TTTUpperChemical" self.regex = "\\b[0-9]*(?:[a-z]*(?:[A-Z]+[a-z]*)+[0-9]+)+[A-Za-z]*\\b|" \ "\\b[A-Za-z]*(?:[0-9]+[a-z]*(?:[A-Z]+[a-z]*)+)+[0-9]*\\b" assert re.search(self.regex, "ewe DIsH77st单位", re.A) # TODO: "2-[(4-methyl-2-nitrophenyl)diazenyl]-3-oxo-N-phenyl-butanamide(MNPDOPBA)" field = Field("http://www.baidu.666.com H1E2 6 0. 9 0%单位988") Modify.Link().process(field) Modify.Email().process(field) Modify.Numeric().process(field) Modify.UpperChemical().process(field) class Filter: pass class RePattern(object): @staticmethod def regex_between_enzh(regex): return f"\\b{regex}(?=[\\u4e00-\\u9fff]|\\b)|(?<=[\\u4e00-\\u9fff]){regex}(?=[\\u4e00-\\u9fff]|\\b)" class TokenRegexProcess(object): regex = " " @classmethod def process(cls, sent): # TODO: SubwordTextEncoder, and the paper with group sub matcher = re.finditer(cls.regex, sent) pattern = [0] for k, m in enumerate(matcher): pattern.append(m.span()) pattern.append(len(sent)) if len(pattern) >= 2 and pattern[0] == pattern[1]: pattern.pop(0) pattern.pop(0) if len(pattern) >= 2 and pattern[-1] == pattern[-2]: pattern.pop(-1) pattern.pop(-1) return pattern class TokenSubProcess(object): level = 1 sub_dict = {" ": " "} rep = "\\u0000" @classmethod def process(cls, sent): pattern = [] for src_wd, tgt_wd in cls.sub_dict.items(): matcher = re.finditer(re.escape(src_wd), sent) pattern = [] for k, m in enumerate(matcher): pattern.append(m.span()) return pattern class Token(object): def __init__(self): self.level_map = {} self.level_map = self.get_token_level @property def get_token_name(self): # bad return ["PercentDecimal", "PercentInteger", "NumericDecimal", "NumericInteger", "NumericYear", "TermUpperCase", "TermCamelCase", "TermEnCharWithNum", "TermChemicalPrefix"] @property def get_token_level(self): if len(self.level_map) == 0: for token_name in self.get_token_name: token = getattr(self, token_name) token_level = token.level self.level_map[token_name] = token_level return self.level_map def set_token_level(self, level_map_part): for token_name, token_level in level_map_part.items(): self.level_map[token_name] = token_level class Link(TokenRegexProcess): regex = "(?:(?:ht|f)tps?://[\w+\-]+|www\.)[\w\-\.,@\?=%&:;/~\+#]+/?" assert re.search("^" + regex + "$", "http://dswd.com") is not None class Email(TokenRegexProcess): regex = "[\w\-]+@[\w\-]+(?:\.[\w\-]+)+" assert re.search("^" + regex + "$", "<EMAIL>") is not None class PercentNumeric(TokenRegexProcess): regex = "(?<=[\\u4000-\\u9fff ])[0-9][0-9 ]*(\.[0-9 ]*[0-9]+)? *[%‰‱]?(?=[\\u4000-\\u9fff ])" assert re.search(regex, "ewe 6 0. 9 0%单位") class Numeric(TokenRegexProcess): regex = "(?<=[\\u4000-\\u9fff ])[0-9][0-9 ]*(\.[0-9 ]*[0-9]+)?(?=[\\u4000-\\u9fff ])" assert re.search(regex, "ewe 6 0. 9 0单位") class PercentInteger(TokenRegexProcess): level = 0.9 """100%,必须是整数,允许空格""" regex = "[0-9][0-9 ]* *%" rep = "PercentInteger" class NumericDecimal(TokenRegexProcess): level = 1 """55.55""" regex = "[0-9][0-9 ]*\.[0-9 ]*[0-9]" rep = "NumericDecimal" class NumericInteger(TokenRegexProcess): level = 0 """5""" regex = "[0-9][0-9 ]*[0-9]|[0-9]" rep = "NumericInteger" class NumericYear(TokenRegexProcess): level = 0.9 """2009""" regex = RePattern.regex_between_enzh("1[5-9][0-9]{2}") + '|' + RePattern.regex_between_enzh("20[0-9]{2}") rep = "NumericYear" class TermUpperCase(TokenRegexProcess): level = 0.2 """DNA""" regex = RePattern.regex_between_enzh("[A-Z]+") rep = "TermUpperCase" class TermCamelCase(TokenRegexProcess): level = 0.1 """pH,PubMed, LoL, but not DNA, ID""" regex = RePattern.regex_between_enzh("[A-Za-z]+[A-Z]+[A-Za-z]*") rep = "TermCamelCase" class TermEnCharWithNum(TokenRegexProcess): level = 0.3 """EP2""" regex = RePattern.regex_between_enzh("[0-9]+[A-Za-z]+[0-9A-Za-z]*") + "|" + RePattern.regex_between_enzh( "[0-9A-Za-z]*[A-Za-z]+[0-9]+") rep = "TermEnCharWithNum" class TermChemicalPrefix(TokenRegexProcess): level = 0.3 """1,3,7-""" regex = "(?<![\w\-])([0-9]+ *[,,] *)*[0-9]+\-(?=[A-Za-z\\u4e00-\\u9fff])" rep = "TermChemicalPrefix" class RomanNum(TokenSubProcess): level = 1 """Ⅱ""" sub_dict = {" ": " "} rep = "RomanNum" class SentTokenInfo(object): def __init__(self, sent): self.sent = sent # self.token_dict = {} self.level_dict = {} self.pos_dict = {} self.filter_piece = [] self.filter_pos_dict = {} self.result = "" self.sub_order_dict = [] @staticmethod def sub_space(targets): return [re.sub(" ", "", target) for target in targets] @staticmethod def max_length_subpiece(piece_level_dict): """ pos:[(1,2), (3,4), (1,4)] and level:[2, 2, 1] -> [(1,4)] pos:[(2,4), (3,5), (5,8)] and level:[1, 2, 1] -> [(3,5), (5,8)] """ piece_keys = sorted(piece_level_dict.keys()) if len(piece_keys) == 0: return [] filter_piece_tmp = [] __ = 0 his_ = 0 for _, i in enumerate(piece_keys): if (_ <= his_ + __) and (_ > 0): continue __ = 0 li = piece_level_dict[i] tmp = (i, li) for j in piece_keys: lj = piece_level_dict[j] if tmp[0] == j: pass elif ((tmp[0][0] < j[0]) and (tmp[0][1] >= j[1])) or ((tmp[0][0] <= j[0]) and (tmp[0][1] > j[1])): tmp = tmp __ += 1 elif ((tmp[0][0] >= j[0]) and (tmp[0][1] < j[1])) or ((tmp[0][0] > j[0]) and (tmp[0][1] <= j[1])): tmp = (j, lj) __ += 1 elif ((tmp[0][0] > j[0]) and (tmp[0][1] > j[1]) and (tmp[0][0] < j[1])) or ( (tmp[0][0] < j[0]) and (tmp[0][1] < j[1]) and (tmp[0][1] > j[0])): tmp = tmp if tmp[1] >= lj else (j, lj) __ += 1 else: pass filter_piece_tmp.append(tmp) his_ = _ filter_piece_tmp = sorted(list(set(filter_piece_tmp))) filter_piece_tmp = list(zip(*filter_piece_tmp)) return filter_piece_tmp[0] def execute_token(self, tokens, filter=True): for token_name in tokens.get_token_name: tk = getattr(tokens, token_name) pattern = tk.process(self.sent) for pos in pattern: if pos not in self.level_dict or self.level_dict[pos] < tk.level: self.level_dict[pos] = tk.level self.pos_dict[pos] = tk.rep # self.token_dict[tk.rep] = [] if filter: self.filter_piece = self.max_length_subpiece(self.level_dict) else: self.filter_piece = self.level_dict.keys() for pos in self.filter_piece: self.filter_pos_dict[pos] = self.pos_dict[pos] # self.token_dict[self.pos_dict[pos]].append(re.sub(" ", "", self.sent[pos[0]:pos[1]])) return self.filter_pos_dict # self.token_dict @property def sub_token(self): if self.result: return self.result else: piece_keys = sorted(self.filter_pos_dict.keys()) ppp = [0] + [i for p in piece_keys for i in p] + [len(self.sent)] ppp = [(ppp[2 * i], ppp[2 * i + 1]) for i in range(len(ppp) // 2)] result_ = [self.sent[ppp[0][0]:ppp[0][1]]] for k, p in enumerate(piece_keys): result_.append(self.filter_pos_dict[piece_keys[k]]) result_.append(self.sent[ppp[k + 1][0]:ppp[k + 1][1]]) # TODO: how to get the border of words? here we can use " ".join(result_) # any better idea? self.result = " ".join(result_) self.sub_order_dict = [(self.filter_pos_dict[pos], self.sent[pos[0]:pos[1]]) for pos in piece_keys] return self.result def sub_sent(sent, sub_order_dict): for rep, target in sub_order_dict: m = re.search(rep, sent) sent = sent[:m.start()] + target + sent[m.end():] if m is not None else sent return sent def decode_sent(sents, sents_dict): bad_sents = [] decode = [] for k, (sent, sub_dict) in enumerate(zip(sents, sents_dict)): try: if len(sub_dict) > 0: decode.append(sub_sent(sent, sub_dict)) else: decode.append(sent) except Exception as e: bad_sents.append([sent, sub_dict]) decode.append(sent) return decode, bad_sents ``` #### File: t2t-learning/processutils/analyze.py ```python import re from processutils.regexutils import pattern_sub_pts from processutils.regexutils import pattern_find_pts from processutils.regexutils import mask_update class RePattern(object): @staticmethod def regex_between_enzh(regex): return f"\\b{regex}(?=[\\u4e00-\\u9fff]|\\b)|(?<=[\\u4e00-\\u9fff]){regex}(?=[\\u4e00-\\u9fff]|\\b)" class TokenRegexProcess(object): level = 1 regex = " " rep = "\\uf000" @classmethod def process(cls, sent): # TODO: SubwordTextEncoder, and the paper with group sub matcher = re.finditer(cls.regex, sent) pattern = [] for k, m in enumerate(matcher): pattern.append(m.span()) return pattern class TokenSubProcess(object): level = 1 sub_dict = {" ": " "} rep = "\\uf000" @classmethod def process(cls, sent): pattern = [] for src_wd, tgt_wd in cls.sub_dict.items(): matcher = re.finditer(re.escape(src_wd), sent) pattern = [] for k, m in enumerate(matcher): pattern.append(m.span()) return pattern class Token(object): def __init__(self): self.level_map = {} self.level_map = self.get_token_level @property def get_token_name(self): # bad return ["PercentDecimal", "PercentInteger", "NumericDecimal", "NumericInteger", "NumericYear", "TermUpperCase", "TermCamelCase", "TermEnCharWithNum", "TermChemicalPrefix"] @property def get_token_level(self): if len(self.level_map) == 0: for token_name in self.get_token_name: token = getattr(self, token_name) token_level = token.level self.level_map[token_name] = token_level return self.level_map def set_token_level(self, level_map_part): for token_name, token_level in level_map_part.items(): self.level_map[token_name] = token_level class PercentDecimal(TokenRegexProcess): level = 1 """55.55%,必须是小数,允许空格""" regex = "[0-9][0-9 ]*\.[0-9 ]*[0-9] *%" rep = "PercentDecimal" class PercentInteger(TokenRegexProcess): level = 0.9 """100%,必须是整数,允许空格""" regex = "[0-9][0-9 ]* *%" rep = "PercentInteger" class NumericDecimal(TokenRegexProcess): level = 1 """55.55""" regex = "[0-9][0-9 ]*\.[0-9 ]*[0-9]" rep = "NumericDecimal" class NumericInteger(TokenRegexProcess): level = 0 """5""" regex = "[0-9][0-9 ]*[0-9]|[0-9]" rep = "NumericInteger" class NumericYear(TokenRegexProcess): level = 0.9 """2009""" regex = RePattern.regex_between_enzh("1[5-9][0-9]{2}") + '|' + RePattern.regex_between_enzh("20[0-9]{2}") rep = "NumericYear" class TermUpperCase(TokenRegexProcess): level = 0.2 """DNA""" regex = RePattern.regex_between_enzh("[A-Z]+") rep = "TermUpperCase" class TermCamelCase(TokenRegexProcess): level = 0.1 """pH,PubMed, LoL, but not DNA, ID""" regex = RePattern.regex_between_enzh("[A-Za-z]+[A-Z]+[A-Za-z]*") rep = "TermCamelCase" class TermEnCharWithNum(TokenRegexProcess): level = 0.3 """EP2""" regex = RePattern.regex_between_enzh("[0-9]*(?:[a-z]*[A-Z]+[a-z]*[0-9]+)+[A-Za-z]*") + "|" + \ RePattern.regex_between_enzh("[A-Za-z]*(?:[0-9]+[a-z]*[A-Z]+[a-z]*)+[0-9]*") rep = "TermEnCharWithNum" class TermChemicalPrefix(TokenRegexProcess): level = 0.3 """1,3,7-""" regex = "(?<![\w\-])([0-9]+ *[,,] *)*[0-9]+\-(?=[A-Za-z\\u4e00-\\u9fff])" rep = "TermChemicalPrefix" class RomanNum(TokenSubProcess): level = 1 """Ⅱ""" sub_dict = {" ": " "} rep = "RomanNum" class SentTokenInfo(object): def __init__(self, sent): self.sent = sent # self.token_dict = {} self.level_dict = {} self.pos_dict = {} self.filter_piece = [] self.filter_pos_dict = {} self.result = "" self.sub_order_dict = [] @staticmethod def sub_space(targets): return [re.sub(" ", "", target) for target in targets] @staticmethod def max_length_subpiece(piece_level_dict): """ pos:[(1,2), (3,4), (1,4)] and level:[2, 2, 1] -> [(1,4)] pos:[(2,4), (3,5), (5,8)] and level:[1, 2, 1] -> [(3,5), (5,8)] """ piece_keys = sorted(piece_level_dict.keys()) if len(piece_keys) == 0: return [] filter_piece_tmp = [] __ = 0 his_ = 0 for _, i in enumerate(piece_keys): if (_ <= his_ + __) and (_ > 0): continue __ = 0 li = piece_level_dict[i] tmp = (i, li) for j in piece_keys: lj = piece_level_dict[j] if tmp[0] == j: pass elif ((tmp[0][0] < j[0]) and (tmp[0][1] >= j[1])) or ((tmp[0][0] <= j[0]) and (tmp[0][1] > j[1])): tmp = tmp __ += 1 elif ((tmp[0][0] >= j[0]) and (tmp[0][1] < j[1])) or ((tmp[0][0] > j[0]) and (tmp[0][1] <= j[1])): tmp = (j, lj) __ += 1 elif ((tmp[0][0] > j[0]) and (tmp[0][1] > j[1]) and (tmp[0][0] < j[1])) or ( (tmp[0][0] < j[0]) and (tmp[0][1] < j[1]) and (tmp[0][1] > j[0])): tmp = tmp if tmp[1] >= lj else (j, lj) __ += 1 else: pass filter_piece_tmp.append(tmp) his_ = _ filter_piece_tmp = sorted(list(set(filter_piece_tmp))) filter_piece_tmp = list(zip(*filter_piece_tmp)) return filter_piece_tmp[0] def execute_token(self, tokens, filter=True): for token_name in tokens.get_token_name: tk = getattr(tokens, token_name) pattern = tk.process(self.sent) for pos in pattern: if pos not in self.level_dict or self.level_dict[pos] < tk.level: self.level_dict[pos] = tk.level self.pos_dict[pos] = tk.rep # self.token_dict[tk.rep] = [] if filter: self.filter_piece = self.max_length_subpiece(self.level_dict) else: self.filter_piece = self.level_dict.keys() for pos in self.filter_piece: self.filter_pos_dict[pos] = self.pos_dict[pos] # self.token_dict[self.pos_dict[pos]].append(re.sub(" ", "", self.sent[pos[0]:pos[1]])) return self.filter_pos_dict # self.token_dict @property def sub_token(self): if self.result: return self.result else: piece_keys = sorted(self.filter_pos_dict.keys()) ppp = [0] + [i for p in piece_keys for i in p] + [len(self.sent)] ppp = [(ppp[2 * i], ppp[2 * i + 1]) for i in range(len(ppp) // 2)] result_ = [self.sent[ppp[0][0]:ppp[0][1]]] for k, p in enumerate(piece_keys): result_.append(self.filter_pos_dict[piece_keys[k]]) result_.append(self.sent[ppp[k + 1][0]:ppp[k + 1][1]]) # TODO: how to get the border of words? here we can use " ".join(result_) # any better idea? self.result = " ".join(result_) self.sub_order_dict = [(self.filter_pos_dict[pos], self.sent[pos[0]:pos[1]].replace(" ", "")) for pos in piece_keys] return self.result def sub_sent(sent, sub_order_dict): for rep, target in sub_order_dict: m = re.search(rep, sent) sent = sent[:m.start()] + target + sent[m.end():] if m is not None else sent return sent def decode_sent(sents, sents_dict): bad_sents = [] decode = [] for k, (sent, sub_dict) in enumerate(zip(sents, sents_dict)): try: if len(sub_dict) > 0: decode.append(sub_sent(sent, sub_dict)) else: decode.append(sent) except Exception as e: bad_sents.append([sent, sub_dict]) decode.append(sent) return decode, bad_sents def translate_afterprocess(line): line = re.sub(" +([,.?!:;'’”})\\]、,。?!:;)】》])", "\\1", line) line = re.sub("([,.?!:;'’”})\\]] |[、,。?!:;)】》]) +", "\\1", line) line = re.sub("([‘“{(\\[(【《]) +", "\\1", line) line = re.sub(" +( [‘“{(\\[]|[(【《])", "\\1", line) mask = [0] * len(line) # \\b[A-Z]\\. [a-z]+\\b froom corpus case_store = ["e. g.", "i. e.", "E. coli", "S. aureus", "O. aureus", "C. indicum", "C. funicola", "M. pusillum"] case_regex = "|".join([re.escape(c) for c in case_store]) case_mask = pattern_find_pts(case_regex, line, mask=mask) mask_update(mask, case_mask) def upper_after_endmark(m): pattern = m.group(0) if len(pattern) == 1 and pattern.islower(): return pattern.upper() else: return pattern line = pattern_sub_pts("(?<=[.?!;] )[a-z]|(?<=[。?!;])[a-z]|(?<=^)[a-z]", upper_after_endmark, line, mask=mask) line = re.sub("(?<=[\\u4e00-\\u9fff]) +(?=[\\u4e00-\\u9fff])|" "(?<=[\\u4e00-\\u9fff]) +(?=\\w)|" "(?<=[\\w]) +(?=[\\u4e00-\\u9fff])", "", line) line = re.sub(" *([+±=*/<>≤≥_~′″]) *", "\\1", line) line = re.sub("(?<!,) *\\- *", "-", line) return line def decode_afterprocess(sents): return [translate_afterprocess(sent) for sent in sents] ``` #### File: t2t-learning/qa/char_analyze.py ```python from collections import Counter import qa.regex_utils as regutil import re resource_path = "/media/tmxmall/a36811aa-0e87-4ba1-b14f-370134452449/data/medicine.txt" with open(resource_path, "r", encoding="utf8") as f: char_stream = f.read() char_dictionary = Counter(list(char_stream)) med_unicodes = regutil.expr_converter("[[%s]]" % "".join(char_dictionary.keys()).replace("\n", "") + "#[[\\u4e00-\\u9fff]]") format_med_unicodes = re.sub("(?<!-)(?=\\\\u)", "\n", med_unicodes) print(format_med_unicodes) lines = char_stream.split("\n") unknown_char = "[^\\u0020-\\u007e\\u4e00-\\u9fff]" def regex_filter_line(regex, lines): filter_sentence = list(filter(lambda x: re.search(regex, x) is not None, lines)) print("%20s" % regex, len(filter_sentence)) return len(filter_sentence) regutil.uu_enum("\\u0020-\\u007e") regex_filter_line("[\\u0020-\\u007e]", lines) regex_filter_line("[\\u00a0-\\u00ff]", lines) regex_filter_line("[\\u0100-\\u01ff]", lines) regex_filter_line("[\\u0251]", lines) regex_filter_line("[\\u025b]", lines) regex_filter_line("[\\u0261]", lines) regex_filter_line("[\\u028a]", lines) regex_filter_line("[\\u02c6-\\u02cb]", lines) regex_filter_line("[\\u02d0]", lines) regex_filter_line("[\\u02d8-\\u02da]", lines) regex_filter_line("[\\u02dc]", lines) regex_filter_line("[\\u037a]", lines) regex_filter_line("[\\u037e]", lines) regex_filter_line("[\\u038a]", lines) regex_filter_line("[\\u038c]", lines) regex_filter_line("[\\u03cb]", lines) regex_filter_line("[\\u03d6]", lines) regex_filter_line("[\\u0384-\\u0385]", lines) regex_filter_line("[\\u0387-\\u0388]", lines) regex_filter_line("[\\u038e-\\u038f]", lines) regex_filter_line("[\\u0391-\\u03c9]", lines) regex_filter_line("[\\u0400-\\u04ff]", lines) regex_filter_line("[\\u0590-\\u05ff]", lines) regex_filter_line("[\\u0652]", lines) regex_filter_line("[\\u11bc]", lines) regex_filter_line("[\\u1868]", lines) regex_filter_line("[\\u1d31]", lines) regex_filter_line("[\\u1d52]", lines) regex_filter_line("[\\u1d5b]", lines) regex_filter_line("[\\u1ef7]", lines) regex_filter_line("[\\u2016-\\u206a]", lines) regex_filter_line("[\\u2070]", lines) regex_filter_line("[\\u2074-\\u2075]", lines) regex_filter_line("[\\u2077-\\u2078]", lines) regex_filter_line("[\\u2082-\\u2084]", lines) regex_filter_line("[\\u20ac]", lines) regex_filter_line("[\\u2103]", lines) regex_filter_line("[\\u2105]", lines) regex_filter_line("[\\u2109]", lines) regex_filter_line("[\\u2116]", lines) regex_filter_line("[\\u2122]", lines) regex_filter_line("[\\u212b]", lines) regex_filter_line("[\\u2160-\\u216b]", lines) regex_filter_line("[\\u2170-\\u2179]", lines) regex_filter_line("[\\u21d2]", lines) regex_filter_line("[\\u2190-\\u2193]", lines) regex_filter_line("[\\u2206]", lines) regex_filter_line("[\\u2208]", lines) regex_filter_line("[\\u2211-\\u2212]", lines) regex_filter_line("[\\u2217-\\u221a]", lines) regex_filter_line("[\\u221d-\\u2220]", lines) regex_filter_line("[\\u2223]", lines) regex_filter_line("[\\u2225]", lines) regex_filter_line("[\\u2227-\\u222b]", lines) regex_filter_line("[\\u222e]", lines) regex_filter_line("[\\u2234]", lines) regex_filter_line("[\\u2237]", lines) regex_filter_line("[\\u223c-\\u223d]", lines) regex_filter_line("[\\u2245]", lines) regex_filter_line("[\\u224c]", lines) regex_filter_line("[\\u2252]", lines) regex_filter_line("[\\u2260-\\u2261]", lines) regex_filter_line("[\\u2264-\\u2267]", lines) regex_filter_line("[\\u226f]", lines) regex_filter_line("[\\u2295]", lines) regex_filter_line("[\\u2299]", lines) regex_filter_line("[\\u22a5]", lines) regex_filter_line("[\\u22bf]", lines) regex_filter_line("[\\u2312]", lines) regex_filter_line("[\\u2395]", lines) regex_filter_line("[\\u2460-\\u2473]", lines) regex_filter_line("[\\u2474-\\u2487]", lines) regex_filter_line("[\\u2488-\\u249b]", lines) regex_filter_line("[\\u2500-\\u257f]", lines) regex_filter_line("[\\u25a0-\\u25a1]", lines) regex_filter_line("[\\u25b2-\\u25b4]", lines) regex_filter_line("[\\u25c6-\\u25c7]", lines) regex_filter_line("[\\u25ca-\\u25cb]", lines) regex_filter_line("[\\u25ce-\\u25cf]", lines) regex_filter_line("[\\u2605-\\u2606]", lines) regex_filter_line("[\\u2609]", lines) regex_filter_line("[\\u2610]", lines) regex_filter_line("[\\u2640]", lines) regex_filter_line("[\\u2642]", lines) regex_filter_line("[\\u2666]", lines) regex_filter_line("[\\u266a-\\u266b]", lines) regex_filter_line("[\\u2714]", lines) regex_filter_line("[\\u2717]", lines) regex_filter_line("[\\u274f]", lines) regex_filter_line("[\\u2751]", lines) regex_filter_line("[\\u279f]", lines) regex_filter_line("[\\u27a2]", lines) regex_filter_line("[\\u27a5]", lines) regex_filter_line("[\\u2a7d]", lines) regex_filter_line("[\\u2fd4]", lines) regex_filter_line("[\\u3001-\\u301e]", lines) regex_filter_line("[\\u3022-\\u3025]", lines) regex_filter_line("[\\u3105-\\u3107]", lines) regex_filter_line("[\\u310a]", lines) regex_filter_line("[\\u3111]", lines) regex_filter_line("[\\u3113]", lines) regex_filter_line("[\\u3116-\\u3117]", lines) regex_filter_line("[\\u311a-\\u311b]", lines) regex_filter_line("[\\u3122]", lines) regex_filter_line("[\\u3125]", lines) regex_filter_line("[\\u3127-\\u3128]", lines) regex_filter_line("[\\u3220-\\u3229]", lines) regex_filter_line("[\\u32a3]", lines) regex_filter_line("[\\u338e-\\u338f]", lines) regex_filter_line("[\\u339c-\\u339d]", lines) regex_filter_line("[\\u33a1]", lines) regex_filter_line("[\\u33a5]", lines) regex_filter_line("[\\u33d5]", lines) regex_filter_line("[\\u33d1-\\u33d2]", lines) regex_filter_line("[\\u359e]", lines) regex_filter_line("[\\u39d1]", lines) regex_filter_line("[\\u41f2]", lines) regex_filter_line("[\\u4341]", lines) regex_filter_line("[\\u4d13]", lines) regex_filter_line("[\\u4d15]", lines) regex_filter_line("[\\u4e00-\\u9fff]", lines) regex_filter_line("[\\uacf3]", lines) regex_filter_line("[\\ucd38]", lines) regex_filter_line("[\\ue20c-\\ue2ff]", lines) regex_filter_line("[\\uf900-\\ufaff]", lines) regex_filter_line("[\\ufb03]", lines) regex_filter_line("[\\ufe30-\\ufe31]", lines) regex_filter_line("[\\ufe33]", lines) regex_filter_line("[\\ufe38]", lines) regex_filter_line("[\\ufe3c-\\ufe3d]", lines) regex_filter_line("[\\ufe3f-\\ufe41]", lines) regex_filter_line("[\\ufe4d-\\ufe4e]", lines) regex_filter_line("[\\ufe55-\\ufe57]", lines) regex_filter_line("[\\ufe59-\\ufe5c]", lines) regex_filter_line("[\\ufe5f]", lines) regex_filter_line("[\\ufe63]", lines) regex_filter_line("[\\ufe65-\\ufe66]", lines) regex_filter_line("[\\ufe6a-\\ufe6b]", lines) regex_filter_line("[\\ufeff]", lines) regex_filter_line("[\\uff01]", lines) regex_filter_line("[\\uff08-\\uff09]", lines) regex_filter_line("[\\uff0c]", lines) regex_filter_line("[\\uff1a]", lines) regex_filter_line("[\\uff1f]", lines) regex_filter_line("[\\uff61]", lines) regex_filter_line("[\\uff63]", lines) regex_filter_line("[\\uff65]", lines) regex_filter_line("[\\uff6c]", lines) regex_filter_line("[\\uff72]", lines) regex_filter_line("[\\uff86]", lines) regex_filter_line("[\\uff89]", lines) regex_filter_line("[\\uffe0-\\uffe1]", lines) regex_filter_line("[\\uffe3]", lines) regex_filter_line("[\\uffe5]", lines) regex_filter_line("[\\uffed]", lines) regex_filter_line("[\\ufffc]", lines) """ [\u0020-\u007e] 13056272 \\u0020-\\u007e Latin [\u00a0-\u00ff] 258619 \\u00a0-\\u00ff Latin ++ [\u0100-\u01ff] 353 \\u0100-\\u01ff Latin ++ [\u0251] 302 \\u0251 ɑ [\u025b] 2 \\u025b ɛ [\u0261] 25 \\u0261 ɡ [\u028a] 1 \\u028a ʊ [\u02c6-\u02cb] 870 \\u02c6-\\u02cb ˆˇˈˉˊˋ [\u02d0] 1 \\u02d0 ː [\u02d8-\u02da] 25 \\u02d8-\\u02da ˘˙˚ [\u02dc] 10 \\u02dc ˜ [\u037a] 1 \\u037a ͺ [\u037e] 4 \\u037e ; [\u038a] 3 \\u038a Ί [\u038c] 1 \\u038c Ό [\u03cb] 3 \\u03cb ϋ [\u03d6] 2 \\u03d6 ϖ [\u0384-\u0385] 8 \\u0384-\\u0385 ΄΅ [\u0387-\u0388] 2 \\u0387-\\u0388 ·Έ [\u038e-\u038f] 2 \\u038e-\\u038f ΎΏ [\u0391-\u03c9] 567276 \\u0391-\\u03c9 希腊 [\u0400-\u04ff] 2058 \\u0400-\\u04ff 西里尔 [\u0590-\u05ff] 34 \\u0590-\\u05ff 希伯来 [\u0652] 1 \\u0652 阿拉伯 [\u11bc] 3 \\u11bc 朝鲜 [\u1868] 1 \\u1868 ᡨ 蒙古 [\u1d31] 1 \\u1d31 ᴱ [\u1d52] 1 \\u1d52 ᵒ [\u1d5b] 1 \\u1d5b ᵛ [\u1ef7] 1 \\u1ef7 ỷ Latin ++ [\u2016-\u206a] 323353 \\u2016-\\u206a punc++ [\u2070] 4 \\u2070 ⁰ [\u2074-\u2075] 9 \\u2074-\\u2075 ⁴⁵ [\u2077-\u2078] 11 \\u2077-\\u2078 ⁷⁸ [\u2082-\u2084] 13 \\u2082-\\u2084 ₂₃₄ [\u20ac] 58 \\u20ac € [\u2103] 132218 \\u2103 ℃ [\u2105] 64 \\u2105 ℅ [\u2109] 45 \\u2109 ℉ [\u2116] 559 \\u2116 № [\u2122] 348 \\u2122 ™ [\u212b] 5 \\u212b Å [\u2160-\u216b] 235239 \\u2160-\\u216b ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ [\u2170-\u2179] 1557 \\u2170-\\u2179 ⅰⅱⅲⅳⅴⅵⅶⅷⅸ [\u21d2] 3 \\u21d2 ⇒ [\u2190-\u2193] 15107 \\u2190-\\u2193 ←↑→↓ [\u2206] 5 \\u2206 ∆ [\u2208] 281 \\u2208 ∈ [\u2211-\u2212] 839 \\u2211-\\u2212 ∑− [\u2217-\u221a] 75 \\u2217-\\u221a ∗∘∙√ [\u221d-\u2220] 861 \\u221d-\\u2220 ∝∞∟∠ [\u2223] 1 \\u2223 ∣ [\u2225] 80 \\u2225 ∥ [\u2227-\u222b] 226 \\u2227-\\u222b ∧∨∩∪∫ [\u222e] 8 \\u222e ∮ [\u2234] 46 \\u2234 ∴ [\u2237] 333 \\u2237 ∷ [\u223c-\u223d] 29 \\u223c-\\u223d ∼∽ [\u2245] 1 \\u2245 ≅ [\u224c] 33 \\u224c ≌ [\u2252] 4 \\u2252 ≒ [\u2260-\u2261] 555 \\u2260-\\u2261 ≠≡ [\u2264-\u2267] 31397 \\u2264-\\u2267 ≤≥≦≧ [\u226f] 3 \\u226f ≯ [\u2295] 4 \\u2295 ⊕ [\u2299] 17 \\u2299 ⊙ [\u22a5] 41 \\u22a5 ⊥ [\u22bf] 116 \\u22bf ⊿ [\u2312] 5 \\u2312 ⌒ [\u2395] 4 \\u2395 ⎕ [\u2460-\u2473] 48470 \\u2460-\\u2473 ①②③④⑤⑥⑦⑧⑨⑩ ⑳ [\u2474-\u2487] 1267 \\u2474-\\u2487 ⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽ ⒇ [\u2488-\u249b] 107 \\u2488-\\u249b ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑ ⒛ [\u2500-\u257f] 566 \\u2500-\\u257f ─━│┃┄┅┆┇┈┉┊ [\u25a0-\u25a1] 1052 \\u25a0-\\u25a1 ■□ [\u25b2-\u25b4] 3695 \\u25b2-\\u25b4 ▲△▴ [\u25c6-\u25c7] 205 \\u25c6-\\u25c7 ◆◇ [\u25ca-\u25cb] 339 \\u25ca-\\u25cb ◊○ [\u25ce-\u25cf] 767 \\u25ce-\\u25cf ◎● [\u2605-\u2606] 196 \\u2605-\\u2606 ★☆ [\u2609] 3 \\u2609 ☉ [\u2610] 35 \\u2610 ☐ [\u2640] 1017 \\u2640 ♀ [\u2642] 1108 \\u2642 ♂ [\u2666] 2 \\u2666 ♦ [\u266a-\u266b] 9 \\u266a-\\u266b ♪♫ [\u2714] 4 \\u2714 ✔ [\u2717] 1 \\u2717 ✗ [\u274f] 1 \\u274f ❏ [\u2751] 2 \\u2751 ❑ [\u279f] 1 \\u279f ➟ [\u27a2] 6 \\u27a2 ➢ [\u27a5] 1 \\u27a5 ➥ [\u2a7d] 3 \\u2a7d ⩽ [\u2fd4] 2 \\u2fd4 ⿔ CJK++ [\u3001-\u301e] 7028921 \\u3001-\\u301e CJK punc [\u3022-\u3025] 8 \\u3022-\\u3025 〢〣〤〥 [\u3105-\u3107] 8 \\u3105-\\u3107 ㄅㄆ [\u310a] 1 \\u310a ㄊ [\u3111] 1 \\u3111 ㄑ [\u3113] 2 \\u3113 ㄓ [\u3116-\u3117] 6 \\u3116-\\u3117 ㄖㄗ [\u311a-\u311b] 2 \\u311a-\\u311b ㄚㄛ [\u3122] 1 \\u3122 ㄢ [\u3125] 1 \\u3125 ㄥ [\u3127-\u3128] 11 \\u3127-\\u3128 ㄧㄨ [\u3220-\u3229] 312 \\u3220-\\u3229 ㈠㈡㈢㈣㈤㈥㈦㈧㈨ [\u32a3] 6 \\u32a3 ㊣ [\u338e-\u338f] 125 \\u338e-\\u338f ㎎㎏ [\u339c-\u339d] 75 \\u339c-\\u339d ㎜㎝ [\u33a1] 59 \\u33a1 ㎡ [\u33a5] 1 \\u33a5 ㎥ [\u33d5] 24 \\u33d5 ㏕ [\u33d1-\u33d2] 9 \\u33d1-\\u33d2 ㏑㏒ [\u359e] 6 \\u359e 㖞 [\u39d1] 3 \\u39d1 㧑 [\u41f2] 13 \\u41f2 䇲 [\u4341] 2 \\u4341 䍁 [\u4d13] 2 \\u4d13 䴓 [\u4d15] 1 \\u4d15 䴕 [\u4e00-\u9fff] 13056199 \\u4e00-\\u9fff CJK [\uacf3] 2 \\uacf3 곳 朝鲜++ [\ucd38] 1 \\ucd38 촸 朝鲜++ [\ue20c-\ue2ff] 1305 \\ue20c-\\ue2ff ??? [\uf900-\ufaff] 136 \\uf900-\\ufaff CJK ++ [\ufb03] 1 \\ufb03 ffi [\ufe30-\ufe31] 941 \\ufe30-\\ufe31 ︰︱ [\ufe33] 2 \\ufe33 ︳ [\ufe38] 4 \\ufe38 ︸ [\ufe3c-\ufe3d] 33 \\ufe3c-\\ufe3d ︼︽ [\ufe3f-\ufe41] 19 \\ufe3f-\\ufe41 ︿﹀﹁ [\ufe4d-\ufe4e] 7 \\ufe4d-\\ufe4e ﹍﹎ [\ufe55-\ufe57] 102 \\ufe55-\\ufe57 ﹕﹖﹗ [\ufe59-\ufe5c] 185 \\ufe59-\\ufe5c ﹙﹚﹛ [\ufe5f] 10 \\ufe5f ﹟ [\ufe63] 70 \\ufe63 ﹣ [\ufe65-\ufe66] 551 \\ufe65-\\ufe66 ﹥﹦ [\ufe6a-\ufe6b] 233 \\ufe6a-\\ufe6b ﹪﹫ [\ufeff] 4 \\ufeff arabic ++ # FE70-FEFF [\uff01] 886 \\uff01 ! [\uff08-\uff09] 622070 \\uff08-\\uff09 () [\uff0c] 3445520 \\uff0c , [\uff1a] 471609 \\uff1a : [\uff1f] 9822 \\uff1f ? [\uff61] 2 \\uff61 。 [\uff63] 1 \\uff63 」 [\uff65] 8 \\uff65 ・ [\uff6c] 2 \\uff6c ャ [\uff72] 1 \\uff72 イ [\uff86] 1 \\uff86 ニ [\uff89] 1 \\uff89 ノ [\uffe0-\uffe1] 160 \\uffe0-\\uffe1 ¢£ [\uffe3] 7143 \\uffe3  ̄ [\uffe5] 57 \\uffe5 ¥ [\uffed] 9 \\uffed ■ [\ufffc] 1 \\ufffc  """ """ \\u0020-\\u007e Latin \\u00a0-\\u00ff Latin ++ \\u0100-\\u01ff Latin ++ \\u0251 ɑ \\u025b ɛ \\u0261 ɡ \\u028a ʊ \\u02c6-\\u02cb ˆˇˈˉˊˋ \\u02d0 ː \\u02d8-\\u02da ˘˙˚ \\u02dc ˜ \\u037a ͺ \\u037e ; \\u038a Ί \\u038c Ό \\u03cb ϋ \\u03d6 ϖ \\u0384-\\u0385 ΄΅ \\u0387-\\u0388 ·Έ \\u038e-\\u038f ΎΏ \\u0391-\\u03c9 希腊 \\u0400-\\u04ff 西里尔 \\u0590-\\u05ff 希伯来 \\u0652 阿拉伯 \\u11bc 朝鲜 \\u1868 ᡨ 蒙古 \\u1d31 ᴱ \\u1d52 ᵒ \\u1d5b ᵛ \\u1ef7 ỷ Latin ++ \\u2016-\\u206a punc++ \\u2070 ⁰ \\u2074-\\u2075 ⁴⁵ \\u2077-\\u2078 ⁷⁸ \\u2082-\\u2084 ₂₃₄ \\u20ac € \\u2103 ℃ \\u2105 ℅ \\u2109 ℉ \\u2116 № \\u2122 ™ \\u212b Å \\u2160-\\u216b ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ \\u2170-\\u2179 ⅰⅱⅲⅳⅴⅵⅶⅷⅸ \\u21d2 ⇒ \\u2190-\\u2193 ←↑→↓ \\u2206 ∆ \\u2208 ∈ \\u2211-\\u2212 ∑− \\u2217-\\u221a ∗∘∙√ \\u221d-\\u2220 ∝∞∟∠ \\u2223 ∣ \\u2225 ∥ \\u2227-\\u222b ∧∨∩∪∫ \\u222e ∮ \\u2234 ∴ \\u2237 ∷ \\u223c-\\u223d ∼∽ \\u2245 ≅ \\u224c ≌ \\u2252 ≒ \\u2260-\\u2261 ≠≡ \\u2264-\\u2267 ≤≥≦≧ \\u226f ≯ \\u2295 ⊕ \\u2299 ⊙ \\u22a5 ⊥ \\u22bf ⊿ \\u2312 ⌒ \\u2395 ⎕ \\u2460-\\u2473 ①②③④⑤⑥⑦⑧⑨⑩ ⑳ \\u2474-\\u2487 ⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽ ⒇ \\u2488-\\u249b ⒈⒉⒊⒋⒌⒍⒎⒏⒐⒑ ⒛ \\u2500-\\u257f ─━│┃┄┅┆┇┈┉┊ \\u25a0-\\u25a1 ■□ \\u25b2-\\u25b4 ▲△▴ \\u25c6-\\u25c7 ◆◇ \\u25ca-\\u25cb ◊○ \\u25ce-\\u25cf ◎● \\u2605-\\u2606 ★☆ \\u2609 ☉ \\u2610 ☐ \\u2640 ♀ \\u2642 ♂ \\u2666 ♦ \\u266a-\\u266b ♪♫ \\u2714 ✔ \\u2717 ✗ \\u274f ❏ \\u2751 ❑ \\u279f ➟ \\u27a2 ➢ \\u27a5 ➥ \\u2a7d ⩽ \\u2fd4 ⿔ CJK++ \\u3001-\\u301e CJK punc \\u3022-\\u3025 〢〣〤〥 \\u3105-\\u3107 ㄅㄆ \\u310a ㄊ \\u3111 ㄑ \\u3113 ㄓ \\u3116-\\u3117 ㄖㄗ \\u311a-\\u311b ㄚㄛ \\u3122 ㄢ \\u3125 ㄥ \\u3127-\\u3128 ㄧㄨ \\u3220-\\u3229 ㈠㈡㈢㈣㈤㈥㈦㈧㈨ \\u32a3 ㊣ \\u338e-\\u338f ㎎㎏ \\u339c-\\u339d ㎜㎝ \\u33a1 ㎡ \\u33a5 ㎥ \\u33d5 ㏕ \\u33d1-\\u33d2 ㏑㏒ \\u359e 㖞 \\u39d1 㧑 \\u41f2 䇲 \\u4341 䍁 \\u4d13 䴓 \\u4d15 䴕 \\u4e00-\\u9fff CJK \\uacf3 곳 朝鲜++ \\ucd38 촸 朝鲜++ \\ue20c-\\ue2ff ??? \\uf900-\\ufaff CJK ++ \\ufb03 ffi \\ufe30-\\ufe31 ︰︱ \\ufe33 ︳ \\ufe38 ︸ \\ufe3c-\\ufe3d ︼︽ \\ufe3f-\\ufe41 ︿﹀﹁ \\ufe4d-\\ufe4e ﹍﹎ \\ufe55-\\ufe57 ﹕﹖﹗ \\ufe59-\\ufe5c ﹙﹚﹛ \\ufe5f ﹟ \\ufe63 ﹣ \\ufe65-\\ufe66 ﹥﹦ \\ufe6a-\\ufe6b ﹪﹫ \\ufeff arabic ++ # FE70-FEFF \\uff01 ! \\uff08-\\uff09 () \\uff0c , \\uff1a : \\uff1f ? \\uff61 。 \\uff63 」 \\uff65 ・ \\uff6c ャ \\uff72 イ \\uff86 ニ \\uff89 ノ \\uffe0-\\uffe1 ¢£ \\uffe3  ̄ \\uffe5 ¥ \\uffed ■ \\ufffc  """ ```
{ "source": "jinkhya/Charfred_Bot", "score": 2 }
#### File: Charfred_Bot/admincogs/admin.py ```python import logging import datetime from discord.ext import commands from utils import Flipbook log = logging.getLogger(f'charfred.{__name__}') class Admin(commands.Cog): def __init__(self, bot): self.bot = bot self.cfg = bot.cfg @commands.command(hidden=True) @commands.is_owner() async def cfgreload(self, ctx): """Reload cfg. Useful when you edited botcfg.json manually. Will discard all unsaved changes! """ log.info('Reloading botcfg.json...') await self.cfg.load() log.info('Reloaded!') await ctx.sendmarkdown('# Locked and reloaded!') @commands.command(hidden=True) async def uptime(self, ctx): """Returns the current uptime.""" currenttime = datetime.datetime.now() uptimedelta = currenttime - self.bot.uptime s = abs(int(uptimedelta.total_seconds())) d, s = divmod(s, 86400) h, s = divmod(s, 3600) m, s = divmod(s, 60) upstr = f'{d} day(s), {h} hour(s), {m} minute(s) and {s} second(s)' log.info(f'Up for {upstr}.') await ctx.sendmarkdown(f'# I have been up for {upstr}!') @commands.group(invoke_without_command=True) async def prefix(self, ctx): """Bot Prefix commands. This returns the list of all current prefixes, if no subcommand was given. """ is_owner = self.bot.is_owner(ctx.author) if is_owner: out = [] for guild_id, prefixes in self.cfg['prefix'].items(): guild = self.bot.get_guild(int(guild_id)) out.append(f'# {guild.name}:' if guild else f'# {guild_id}:') out.extend([f'\t {prefix}' for prefix in prefixes]) elif ctx.guild: out = self.cfg['prefix'][str(ctx.guild.id)] else: out = [] out.extend(['# Bot mentions (always work):', f'<@{self.bot.user.id}> ', f'<@!{self.bot.user.id}> ', '> There\'s a space after the mentions which is part of the prefix!']) out = '\n'.join(out) await ctx.sendmarkdown(f'# Current prefixes:\n{out}') @prefix.command(hidden=True) @commands.is_owner() async def add(self, ctx, *, prefix: str): """Add a new prefix.""" if ctx.guild: log.info(f'Adding a new prefix: {prefix}') try: self.cfg['prefix'][str(ctx.guild.id)].append(prefix) except KeyError: self.cfg['prefix'][str(ctx.guild.id)] = [prefix] await self.cfg.save() await ctx.sendmarkdown(f'# \'{prefix}\' has been registered!') else: await ctx.sendmarkdown('< Cannot save prefixes outside of a guild! >') @prefix.command(hidden=True) @commands.is_owner() async def remove(self, ctx, *, prefix: str): """Remove a prefix.""" if ctx.guild: log.info(f'Removing prefix: {prefix}') try: self.cfg['prefix'][str(ctx.guild.id)].remove(prefix) except KeyError: await ctx.sendmarkdown('< This guild has no saved prefixes. >') except ValueError: await ctx.sendmarkdown('> Prefix unknown.') else: await self.cfg.save() await ctx.sendmarkdown(f'# \'{prefix}\' has been unregistered!') def _parserole(self, role): if not role: return 'Owner only' else: return role @commands.group(invoke_without_command=True, hidden=True, aliases=['perms']) async def permissions(self, ctx): """Permission commands. This returns a list of all current permission nodes and their minimum required role, if no subcommand was given. """ log.info('Listing permission nodes.') nodelist = list(self.cfg['nodes'].items()) nodelist.sort() nodeentries = [f'{k}:\n\t{self._parserole(v)}' for k, v in nodelist] nodeflip = Flipbook(ctx, nodeentries, entries_per_page=12, title='Permission Nodes', close_on_exit=True) await nodeflip.flip() @permissions.command(hidden=True) @commands.is_owner() async def edit(self, ctx, node: str): """Edit a permission node.""" if node not in self.cfg['nodes']: await ctx.sendmarkdown(f'> {node} is not registered!') return role, _, timedout = await ctx.promptinput('# Please enter the minimum role required' f' to use {node} commands.\nEnter "everyone"' ' to have no role restriction.\n' 'Enter "owner_only" to restrict to bot owner.') if timedout: return if role == 'owner_only': self.cfg['nodes'][node] = None else: if role == 'everyone' or role == 'Everyone': role = '@everyone' self.cfg['nodes'][node] = role await self.cfg.save() log.info(f'{node} was edited.') await ctx.sendmarkdown(f'# Edits to {node} saved successfully!') @permissions.group(invoke_without_command=True, hidden=True) async def hierarchy(self, ctx): """Role hierarchy commands. This returns a list of all roles currently in the hierarchy, if no subcommand was given. Please note that the order within the hierarchy as listed here does not matter, in essence this hierarchy only sets which roles to take into consideration when checking for command permissions. That way you can have lower ranking members with special roles, that put them above higher ranking members in the guilds role hierarchy, but not have them inherit said higher ranking members command permissions, by just not adding that special role to this hierarchy. """ log.info('Listing role hierarchy.') if not self.cfg['hierarchy']: await ctx.sendmarkdown('< No hierarchy set up! >') else: hierarchy = '\n'.join(self.cfg['hierarchy']) await ctx.sendmarkdown(f'# Role hierarchy:\n{hierarchy}') @hierarchy.command(hidden=True, name='add') @commands.is_owner() async def addtohierarchy(self, ctx, role): """Adds a role to the hierarchy.""" if role in self.cfg['hierarchy']: await ctx.sendmarkdown(f'> {role} is already in the hierarchy.') else: log.info(f'Adding {role} to hierarchy.') self.cfg['hierarchy'].append(role) await self.cfg.save() await ctx.sendmarkdown(f'# {role} added to hierarchy.') @hierarchy.command(hidden=True, name='remove') @commands.is_owner() async def removefromhierarchy(self, ctx, role): """Removes a role from the hierarchy.""" if role not in self.cfg['hierarchy']: await ctx.sendmarkdown(f'> {role} was not in hierarchy.') else: log.info(f'Removing {role} from hierarchy.') self.cfg['hierarchy'].remove(role) await self.cfg.save() await ctx.sendmarkdown(f'# {role} removed from hierarchy.') @commands.group(invoke_without_command=True, hidden=True, aliases=['cogcfgs']) @commands.is_owner() async def cogcfg(self, ctx): """Cog-specific configuration commands. This returns a list of all currently known cog-specific configurations and their current values, if no subcommand was given. """ log.info('Listing cog specific configurations.') cogcfgs = list(self.cfg['cogcfgs'].items()) cogcfgs.sort() cogcfgentries = [f'{k}:\n\t{v[0]}' for k, v in cogcfgs] cogcfgflip = Flipbook(ctx, cogcfgentries, entries_per_page=12, title='Cog-specific Configurations') await cogcfgflip.flip() @cogcfg.command(hidden=True, name='edit') @commands.is_owner() async def cogcfgedit(self, ctx, cfg: str): """Edit cog-specific configuration.""" if cfg not in self.cfg['cogcfgs']: await ctx.sendmarkdown(f'> {cfg} is not registered!') return prompt = self.cfg['cogcfgs'][cfg][1] value, _, timedout = await ctx.promptinput(prompt) if timedout: return self.cfg['cogcfgs'][cfg] = (value, prompt) await self.cfg.save() log.info(f'{cfg} was edited.') await ctx.sendmarkdown(f'# Edits to {cfg} saved successfully!') @commands.command(hidden=True) @commands.is_owner() async def debughook(self, ctx, hookurl: str=None): """Returns and/or changes webhook url used for debugging purposes.""" if 'hook' in self.cfg and self.cfg['hook'] is not None: await ctx.sendmarkdown(f'> Current debug webhook:\n> {self.cfg["hook"]}') if hookurl: self.cfg['hook'] = hookurl await self.cfg.save() log.info('Changed debug webhook url.') await ctx.sendmarkdown(f'> Set debug webhook to:\n> {hookurl}') def setup(bot): bot.add_cog(Admin(bot)) ``` #### File: Charfred_Bot/admincogs/commandhistorian.py ```python import logging import pprint import asyncio import discord from copy import copy from collections import namedtuple from discord.errors import Forbidden, NotFound from discord.ext import commands from utils import SizedDict log = logging.getLogger(f'charfred.{__name__}') Command = namedtuple('Command', 'msg output') class CommandHistorian(commands.Cog): def __init__(self, bot): self.bot = bot self.botCfg = bot.cfg self.loop = bot.loop self.lock = asyncio.Lock() self.pprinter = pprint.PrettyPrinter() if not hasattr(bot, 'cmd_map'): self.cmd_map = SizedDict() bot.cmd_map = self.cmd_map else: self.cmd_map = bot.cmd_map @commands.Cog.listener() async def on_command(self, ctx): """Saves message attached to command context to the command map, and optionally logs command to users command history file. """ self.cmd_map[ctx.message.id] = Command( msg=ctx.message, output=[] ) @commands.Cog.listener() async def on_message_delete(self, message): """Deletes command output if original invokation message is deleted. Will only work if the command is still in the cmd_map and hasn\'t expired yet! """ if message.id in self.cmd_map: log.info('Deleting previous command output!') try: await message.channel.delete_messages(self.cmd_map[message.id].output) except KeyError: log.error('Deletion of previous command output failed!') except Forbidden: log.error('No Permission!') except NotFound: log.warning('Some messages not found for deletion!') else: del self.cmd_map[message.id] @commands.Cog.listener() async def on_message_edit(self, before, after): """Reinvokes a command if it has been edited, and deletes previous command output. Will only work if the command is still in the cmd_map and hasn\'t expired yet! """ if before.content == after.content: return if before.id in self.cmd_map: log.info('Deleting previous command output!') try: await before.channel.delete_messages(self.cmd_map[before.id].output) except KeyError: log.error('Deletion of previous command output failed!') except Forbidden: log.error('No Permission!') except NotFound: log.warning('Some messages not found for deletion!') else: log.info(f'Reinvoking: {before.content} -> {after.content}') del self.cmd_map[before.id] await self.bot.on_message(after) def _removefrommap(self, ctx): log.info('Command removed from command map!') try: del self.cmd_map[ctx.message.id] except KeyError: pass @commands.Cog.listener() async def on_command_error(self, ctx, error): if isinstance(error, commands.NotOwner): self._removefrommap(ctx) elif isinstance(error, commands.CheckFailure): self._removefrommap(ctx) elif isinstance(error, commands.MissingPermissions): self._removefrommap(ctx) elif isinstance(error, commands.CommandNotFound): if ctx.message.id not in self.cmd_map: self.cmd_map[ctx.message.id] = Command( msg=ctx.message, output=[] ) @commands.command(aliases=['!!']) async def last(self, ctx): """Reinvokes the last command executed by the user. Specifically the last command invoked in the channel that 'last' was invoked in. """ lastcmd = self.cmd_map.find(lambda cmd: (cmd.msg.channel.id == ctx.channel.id) and (cmd.msg.author.id == ctx.author.id)) if lastcmd: log.info('Last command found, reinvoking...') await self.bot.on_message(lastcmd.msg) else: log.info('No last command found!') await ctx.sendmarkdown('> No recent command found in current channel!') async def rejig_ctx(self, ctx, content=None, author=None, channel=None): """Create a copy of a Context with some variables changed.""" copiedmsg = copy(ctx.message) if content: copiedmsg.content = content if author: copiedmsg.author = author if channel: copiedmsg.channel = channel return await ctx.bot.get_context(copiedmsg) @commands.command(hidden=True) @commands.is_owner() async def su(self, ctx, user: discord.User, *, cmd: str): """Substitute user, like the unix command!""" try: user = ctx.guild.get_member(user.id) or user except AttributeError: pass rectx = await self.rejig_ctx(ctx, content=f'{ctx.prefix}{cmd}', author=user) if rectx.command: await rectx.command.invoke(rectx) else: await ctx.sendmarkdown(f'No valid command for "{rectx.invoked_with}" found!') @commands.command(hidden=True) @commands.is_owner() async def cast(self, ctx, channel: discord.TextChannel, *, cmd: str): """Cast a command to another channel.""" rectx = await self.rejig_ctx(ctx, content=f'{ctx.prefix}{cmd}', channel=channel) if rectx.command: await rectx.command.invoke(rectx) else: await ctx.sendmarkdown(f'No valid command for "{rectx.invoked_with}" found!') @commands.group(hidden=True, invoke_without_command=True) @commands.is_owner() async def cmdlogging(self, ctx): """Command logging commands. Returns whether logging is currently enabled or not, if no subcommand is given. """ log.info('Logging is currently ' + ('active!' if self.logcmds else 'inactive!')) await ctx.sendmarkdown('# Logging is currently ' + ('active!' if self.logcmds else 'inactive!')) @cmdlogging.command(hidden=True) @commands.is_owner() async def toggle(self, ctx): """Toggles command logging on and off.""" if self.logcmds: self.logcmds = False else: self.logcmds = True log.info('Toggled command logging ' + ('off!' if self.logcmds else 'on!')) await ctx.sendmarkdown('# Toggled command logging ' + ('off!' if self.logcmds else 'on!')) @commands.group(invoke_without_command=True, hidden=True) @commands.is_owner() async def cmdmap(self, ctx): """Command Map commands. This returns a crude list of the current command map state, if no subcommand was given. """ log.info('Showing cmd_map.') rep = self.pprinter.pformat(self.cmd_map) await ctx.sendmarkdown(rep) @cmdmap.command(hidden=True) @commands.is_owner() async def clear(self, ctx, max_size: int=100): """Clears the current command map. Optionally takes a number for the maximum size of the command map. """ if max_size > 1: log.info(f'Clearing cmd_map, setting maximum size to: {max_size}.') self.cmd_map.clear() self.cmd_map.max_size = max_size await ctx.sendmarkdown('Command map cleared, new maximum size set ' f'to {max_size}!') else: log.warning('cmd_map clear with insufficient max_size!') await ctx.sendmarkdown('< Insufficient maximum size, you can\'t ' 'even store a single command in there! >') def setup(bot): bot.add_cog(CommandHistorian(bot)) ``` #### File: Charfred_Bot/utilitycogs/dboperator.py ```python import logging from asyncio import wait_for, TimeoutError from discord.ext import commands log = logging.getLogger(f'charfred.{__name__}') class DBOperator(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.cfg = bot.cfg self.db = None self.queryresult = None if self.cfg['dbcredentials']: self.loop.create_task(self._connect()) async def _connect(self): log.info('Creating database connection pool.') self.bot.db = self.db = await asyncpg.create_pool(**self.cfg['dbcredentials']) await self._createtables() async def _disconnect(self): log.info('Closing database connection pool...') try: await wait_for(self.db.close(), 60, loop=self.loop) except TimeoutError: log.critical('Database connection pool closing timed out!') else: log.info('Database connection pool closed.') async def _createtables(self): async with self.db.acquire() as con: for (cog, tablecmd) in self.cfg['dbtables']: await con.execute(tablecmd) log.info(f'Created table for {cog} using: {tablecmd}') def cog_unload(self): if self.db: self.loop.create_task(self._disconnect()) @commands.group(invoke_without_command=True, hidden=True, aliases=['db', 'datbase']) @commands.is_owner() async def database(self, ctx): """Database admin commands. This returns whether or not a database connection pool exists, if no subcommand was given. It is not a guarantee for the pool being usable. """ if self.db: await ctx.sendmarkdown('> Connection pool available.') else: await ctx.sendmarkdown('> No connection pool available.') @database.command(hidden=True) @commands.is_owner() async def connect(self, ctx): """Creates a connection pool and creates tables. Make sure database credentials are saved in the bot configs first. You can use the 'database credentials' group of commands for this. """ if self.db: await ctx.sendmarkdown('> Connection pool already established!') else: await self._connect() await ctx.sendmarkdown('# Connection pool established, ' 'pre-configured tables created.') @database.command(hidden=True) @commands.is_owner() async def execute(self, ctx, command, *args): """Runs a given sql command, use query instead if you want to fetch data. A variable number of arguments can be given via $n notation. """ async with self.db.acquire() as con: if args: stat = await con.execute(command, *args) else: stat = await con.execute(command) log.info(stat) await ctx.sendmarkdown(stat) @database.command(hidden=True) @commands.is_owner() async def query(self, ctx, query, *args): """Runs a given sql query and caches returned Record list, use execute instead if you do not want to fetch any data. Cached Record list can be accessed with the `record read` subcommand. """ async with self.db.acquire() as con: if args: rec = await con.fetch(query, args) else: rec = await con.fetch(query) self.queryresult = rec log.info(f'# Query cached with {len(rec)} rows!') await ctx.sendmarkdown(f'# Query cached with {len(rec)} rows!') @database.group(invoke_without_command=False, hidden=True) @commands.is_owner() async def record(self, ctx): pass @record.command(hidden=True) @commands.is_owner() async def read(self, ctx): """TODO """ pass @database.group(invoke_without_command=True, hidden=True) @commands.is_owner() async def credentials(self, ctx): """Database credentials commands. Returns the currently saved credentials, if no subcommand is given. """ out = [] for k, v in self.cfg['dbcredentials']: out.append(f'{k}: {v}') if out: out.insert(0, '# Saved credentials:\n\n') log.info('\n'.join(out)) await ctx.sendmarkdown('\n'.join(out)) else: log.info('< No credentials saved! >') await ctx.sendmarkdown('< No credentials saved! >') @credentials.command(hidden=True) @commands.is_owner() async def set(self, ctx, *args): """Save given credentials to bot config. """ creds = ['database', 'host', 'port', 'user', 'password'] self.cfg['dbcredentials'] = {} for (k, v) in zip(creds, args): self.cfg['dbcredentials'][k] = v await self.cfg.save() log.info('Credentials saved!') await ctx.sendmarkdown('> Credentials saved, ' 'hope you entered them correctly!') try: import asyncpg except ImportError: log.error('Could not import asyncpg, dboperator not loaded!') def setup(bot): pass else: def setup(bot): if 'dbcredentials' not in bot.cfg: bot.cfg['dbcredentials'] = {} bot.cfg._save() if 'dbtables' not in bot.cfg: bot.cfg['dbtables'] = {} bot.cfg._save() bot.add_cog(DBOperator(bot)) ``` #### File: Charfred_Bot/utilitycogs/streamserver.py ```python import logging import asyncio from json import loads, JSONDecodeError from discord.ext import commands from utils import permission_node log = logging.getLogger(f'charfred.{__name__}') class StreamServer(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.server = None self.cfg = bot.cfg self.handlers = {} self.loop.create_task(self._start_server()) @property def running(self) -> bool: """Status property, indicating whether the stream server is running or not. Returns ------- bool True when server is available and serving. """ if self.server and self.server.is_serving(): return True else: return False def cog_unload(self): if self.server: log.info('Closing server.') self.server.close() self.loop.create_task(self.server.wait_closed()) async def _start_server(self): if self.running: log.info('Server already running!') else: try: port = self.cfg['streamserverport'] except KeyError: log.warning('No port configured!') return self.server = await asyncio.start_server( self._connection_handler, '127.0.0.1', port, loop=self.loop ) log.info('Server started.') def _close_server(self, wait=True): if self.server: log.info('Closing server.') self.server.close() if wait: self.loop.create_task(self.server.wait_closed()) async def _connection_handler(self, reader, writer): """Handles the initial handshake upon recieving a new connection, and checks if a handler is registered for recieving said handshake. If a handler is found, reader and writer are handed off to it, if not the connection is dropped. The handler recieving reader and writer is responsible for when the connection is closed, outside of the server itself closing. """ peer = str(writer.get_extra_info('peername')) log.info(f'New connection established with {peer}.') handshake = await reader.readline() if not handshake: log.warning(f'No handshake recieved from {peer},' ' dropping connection.') writer.close() return try: handshake = loads(handshake) is_handshake = handshake['type'] == 'handshake' except JSONDecodeError: log.warning(f'Recieved non-json data from {peer},' ' dropping connection.') writer.close() return except KeyError: log.warning(f'Malformed handshake recieved from {peer},' ' dropping connection.') writer.close() return if is_handshake: try: handler = handshake['handler'] except KeyError: log.warning(f'{peer} did not specify a handler,' ' dropping connection.') writer.close() return if handler in self.handlers: self.loop.create_task(self.handlers[handler](reader, writer, handshake)) else: log.warning(f'Handler "{handler}" specified by {peer} is unknown,' ' dropping connection.') writer.close() return else: log.warning(f'Initial data from {peer} was not a handshake,' ' dropping connection.') writer.close() return def register_handler(self, handler: str, func) -> None: """Registers a new connection handler. Parameters ---------- handler : str name of the handler func : Callable[[asyncio.StreamReader, asyncio.StreamWriter, str], None] handler callable """ log.info(f'Registering {handler}.') self.handlers[handler] = func def unregister_handler(self, handler: str) -> None: """Unregister a known connection handler. Parameters ---------- handler : str name of the handler """ if handler in self.handlers: log.info(f'Unregistering {handler}.') del self.handlers[handler] else: log.info(f'{handler} is not registered.') async def _serverstatus(self): if self.running: return '# Stream Server is up.' else: return '< Stream server is down! >' @commands.group(invoke_without_command=True) @permission_node(f'{__name__}') async def streamserver(self, ctx): """Stream server commands. Returns whether or not the server is up. """ msg = await self._serverstatus() await ctx.sendmarkdown(msg) @streamserver.command() @permission_node(f'{__name__}') async def start(self, ctx): """Start the stream server.""" await self._start_server() msg = await self._serverstatus() await ctx.sendmarkdown(msg) @streamserver.command() @permission_node(f'{__name__}') async def stop(self, ctx): """Stop the stream server.""" self._close_server(wait=False) await self.server.wait_closed() msg = await self._serverstatus() await ctx.sendmarkdown(msg) @streamserver.command() @permission_node(f'{__name__}.setport') async def setport(self, ctx, port: int): """Set the port the stream server should listen on.""" self.cfg['streamserverport'] = port await self.cfg.save() await ctx.sendmarkdown('# Port saved!') @streamserver.command() @permission_node(f'{__name__}.disable') async def disable(self, ctx): """Disable the stream server by stopping it and removing the configured port, preventing the server from launching again. Useful in case you want to unload the cog and not have the server start up when you load it up again. """ self._close_server(wait=False) del self.cfg['streamserverport'] await self.cfg.save() await self.server.wait_closed() await ctx.sendmarkdown('# Stream server disabled, port removed ' 'from config!') def setup(bot): permission_nodes = ['', 'setport', 'disable'] bot.register_nodes([f'{__name__}.{node}' if node else f'{__name__}' for node in permission_nodes]) bot.add_cog(StreamServer(bot)) ``` #### File: Charfred_Bot/utils/context.py ```python import re from asyncio import TimeoutError from discord.ext import commands from utils import splitup class CharfredContext(commands.Context): def prompt_check(self, msg): return msg.author.id == self.author.id and msg.channel.id == self.channel.id async def send(self, msg=None, deletable=True, embed=None, codeblocked=False, **kwargs): """Helper function to send all sorts of things! Messages are automatically split into multiple messages if they're too long, and if the codeblocked parameter is True codeblock formatting is preserved when such a split occurs. Returns the message object for the sent message, if a split was performed only the last sent message is returned. """ if (msg is None) or (len(msg) <= 2000): outmsg = await super().send(content=msg, embed=embed, **kwargs) if deletable: try: self.bot.cmd_map[self.message.id].output.append(outmsg) except KeyError: pass except AttributeError: pass return outmsg else: msgs = splitup(msg, codeblocked) for msg in msgs: outmsg = await self.send(msg, deletable, codeblocked=codeblocked) return outmsg async def sendmarkdown(self, msg, deletable=True): """Helper function that wraps a given message in markdown codeblocks and sends if off. Because laziness is the key to great success! """ return await self.send(f'```markdown\n{msg}\n```', deletable=deletable, codeblocked=True) async def promptinput(self, prompt: str, timeout: int=120, deletable=True): """Prompt for text input. Returns a tuple of acquired input, reply message, and boolean indicating prompt timeout. """ await self.sendmarkdown(prompt, deletable) try: r = await self.bot.wait_for('message', check=self.prompt_check, timeout=timeout) except TimeoutError: await self.sendmarkdown('> Prompt timed out!', deletable) return (None, None, True) else: return (r.content, r, False) async def promptconfirm(self, prompt: str, timeout: int=120, deletable=True): """Prompt for confirmation. Returns a triple of acquired confirmation, reply message, and boolean indicating prompt timeout. """ await self.sendmarkdown(prompt, deletable) try: r = await self.bot.wait_for('message', check=self.prompt_check, timeout=timeout) except TimeoutError: await self.sendmarkdown('> Prompt timed out!', deletable) return (None, None, True) else: if re.match('^(y|yes)', r.content, flags=re.I): return (True, r, False) else: return (False, r, False) async def promptconfirm_or_input(self, prompt: str, timeout: int=120, deletable=True, confirm=True): """Prompt for confirmation or input at the same time. Instead of 'yes/no' this lets your prompt for 'yes/input' or 'no/input', depending on the 'confirm' kwarg. Returns a 3 tuple of input, reply message object and boolean indicating prompt timeout. 'input' will be None, if 'yes' for confirm=True (the default), or 'no' for confirm=False. """ await self.sendmarkdown(prompt, deletable) try: r = await self.bot.wait_for('message', check=self.prompt_check, timeout=timeout) except TimeoutError: await self.sendmarkdown('> Prompt timed out!', deletable) return (None, None, True) else: if confirm: pat = '^(y|yes)' else: pat = '^(n|no)' if re.match(pat, r.content, flags=re.I): return (None, r, False) else: return (r.content, r, False) ```
{ "source": "jinkhya/Charfred_Cogs", "score": 3 }
#### File: Charfred_Cogs/datacogs/quote.py ```python import logging import discord from random import randrange from discord.ext import commands from utils import Config, Flipbook, permission_node log = logging.getLogger('charfred') class Quotator(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.quotes = Config(f'{bot.dir}/data/quotes.json', load=True, loop=self.loop) @commands.Cog.listener() async def on_reaction_add(self, reaction, user): if str(reaction.emoji) == '💾' and reaction.count == 1: if user.bot or reaction.message.author.bot: return log.info('Saving a quote!') quotee = reaction.message.author if reaction.message.attachments: urls = [] for a in reaction.message.attachments: urls.append(a.url) urls = '\n'.join(urls) quote = f'{reaction.message.content}\n{urls}' else: quote = reaction.message.content if not quote: await reaction.message.add_reaction('🖕') return id = str(quotee.id) if id not in self.quotes: self.quotes[id] = [] self.quotes[id].append({'quote': quote, 'savedBy': user.id}) await self.quotes.save() await reaction.message.add_reaction('👌') @commands.group(invoke_without_command=True) @permission_node(f'{__name__}.quote') async def quote(self, ctx, member: discord.Member=None, _index: int=None): """User Quote commands. This returns a list of all users that are registered in the quote repository, if no subcommand was given. """ if member and str(member.id) in self.quotes: id = str(member.id) if _index is None: log.info('Random quote!') _index = randrange(len(self.quotes[id])) q = self.quotes[id][_index]['quote'] else: try: log.info('Specific quote!') q = self.quotes[id][_index]['quote'] except (KeyError, IndexError): log.info('No quote with that index!') await ctx.send('Sorry sir, there is no quote under that number!') return if member.nick: name = member.nick else: name = member.name await ctx.send(f'{q}\n\n_{name}; Quote #{_index}_') else: converter = commands.MemberConverter() async def getName(id): try: member = await converter.convert(ctx, id) except commands.errors.BadArgument: log.warning(f'{id} could not be resolved; removed from quotes!') del self.quotes[id] await self.quotes.save() return None if member.nick: return member.nick else: return member.name members = '\n'.join(filter(None, [await getName(id) for id in list(self.quotes.keys())])) await ctx.send(f'I have quotes from these members:\n ```\n{members}\n```') @quote.command(aliases=['delete', 'unquote']) async def remove(self, ctx, member: discord.Member, *, _index: int): """Remove a specific quote. Takes the user who was quoted, and the ID of the quote to be removed, which is shown at the bottom of each quote. Only the user who saved the quote, and the quoted user can do this. """ if str(member.id) in self.quotes: id = str(member.id) log.info('Removing a quote!') try: if ctx.author.id == member.id or \ ctx.author.id == self.quotes[id][_index]['savedBy']: del self.quotes[id][_index] await ctx.send('We shall never speak of it again, sir!') await self.quotes.save() else: await ctx.send('I am sorry, sir, but you are neither the quotee, ' 'nor the person who requested this quote to be saved.') except KeyError: log.info('Unknown quote, cannot remove!') await ctx.send('Sorry sir, I don\'t seem to have a record of this quote.') else: log.info('Unknown member!') await ctx.send('Sorry lass, I don\'t seem to have heard of this person before.') @quote.command(name='list') async def _list(self, ctx, member: discord.Member): """List all quotes from a specific user. Quotes are presented as a nice flipbook, for easy and non-spammy perusal! """ if str(member.id) in self.quotes: id = str(member.id) log.info('Showing quotes!') quotelist = [] for index, quotemeta in enumerate(self.quotes[id]): quote = quotemeta['quote'] quotelist.append(f'#{index}: {quote:.50}') if member.nick: name = member.nick else: name = member.name quoteFlip = Flipbook(ctx, quotelist, entries_per_page=12, title=f'Shit {name} says!', color=discord.Color.blurple(), close_on_exit=True) await quoteFlip.flip() else: log.info('Unknown member!') await ctx.send('Sorry lass, I don\'t seem to have heard of this person before.') def setup(bot): bot.register_nodes([f'{__name__}.quote']) bot.add_cog(Quotator(bot)) ``` #### File: Charfred_Cogs/funcogs/chuck.py ```python import logging from discord.ext import commands log = logging.getLogger('charfred') class Chuck(commands.Cog): def __init__(self, bot): self.bot = bot self.session = bot.session @commands.group(invoke_without_command=True, aliases=['chuck', 'roundhouse']) @commands.cooldown(60, 60) async def norris(self, ctx): """Interactions with ChuckNorrisJokes API. This gets a random joke, if no subcommand was given. """ log.info('Getting random chuck joke.') async with self.session.get('https://api.chucknorris.io/jokes/random') as r: joke = await r.json() await ctx.send(f"`{joke['value']}`") @norris.command() async def category(self, ctx, category: str=None): """Get a random joke from a category! If no category is given, this will return the list of all categories. """ if category is None: log.info('Retrieving categories.') async with self.session.get('https://api.chucknorris.io/jokes/categories') as r: cats = await r.json() cats = ', '.join(cats) await ctx.send(f'Available categories: `{cats}`') else: log.info(f'Trying for a random joke from {category}.') async with self.session.get(f'https://api.chucknorris.io/jokes/random?category={category}') as r: joke = await r.json() await ctx.send(f"`{joke['value']}`") def setup(bot): bot.add_cog(Chuck(bot)) ``` #### File: Charfred_Cogs/funcogs/entertain.py ```python import logging import random import asyncio from discord.ext import commands log = logging.getLogger('charfred') dances = [ [u"└|゚ε゚|┐", u"┌|゚з゚|┘", u"└|゚ε゚|┐", u"┌|゚з゚|┘", u"└|゚ε゚|┐", u"┌|゚з゚|┘"], [u"└|∵┌|", u"|┐∵|┘", u"└|∵┌|", u"|┐∵|┘", u"└|∵┌|", u"|┐∵|┘"], [u"(o^^)o", u"o(^^o)", u"(o^^)o", u"o(^^o)", u"(o^^)o", u"o(^^o)"], [u"|o∵|o", u"o|∵o|", u"|o∵|o", u"o|∵o|", u"|o∵|o", u"o|∵o|"], [u"(ノ ̄ー ̄)ノ", u"(〜 ̄△ ̄)〜", u"(ノ ̄ω ̄)ノ", u"(ノ ̄ー ̄)ノ", u"(〜 ̄△ ̄)〜", u"(ノ ̄ω ̄)ノ"] ] faces = [ u"(´﹃`)", u"(・ε・`)", u"(ง •̀ω•́)ง✧", u"╭( ・ㅂ・)و", u"ಠ‿↼", u"d(-_^)", u"d(´・ω・`)", u"٩(^ᴗ^)۶", u"ಥ◡ಥ", u"⚈ ̫ ⚈", u"∠(^ー^)", u"(^-^)ゝ", u"(∩^o^)⊃━☆゚.*・。゚", u"ლ(・ヮ・ლ)" ] pleasures = [ 'My pleasure, sir!', 'My pleasure, ma\'am', 'You are very welcome, sir!', 'You are very welcome, madam!', 'Of course, your highness!', 'Of course, your ladyship!', 'M\'lord *tips tophat*', 'Indubitably!', 'Fuck you!', '...', ' ' ] loves = [ u"•́ε•̀٥", u"˶⚈Ɛ⚈˵", u"(・ε・`)", u"(~ ̄³ ̄)~", u".+(´^ω^`)+.", u"゚*。(・∀・)゚*。", u"", u"(∩^o^)⊃━☆゜.*", u"ಠ◡ಠ", u"ʢᵕᴗᵕʡ", u"(^¬^)", u"(º﹃º)", u"ಠ_ರೃ", u"d(´・ω・`)" ] gn9s = [ 'Good night, sir!', 'Good night!', 'Nighty night!', 'Sweet dreams!', 'Sleep well!', 'Don\'t let the bedbugs bite!', 'Pleasant dreams!', 'Glorious dreams to you, too!' ] shrugs = [ u"┐( ̄ヘ ̄)┌", u"ლ(╹ε╹ლ)", u"ლ(ಠ益ಠ)ლ", u"¯\_(⊙_ʖ⊙)_/¯", u"¯\_(ツ)_/¯", u"┐(´ー`)┌", u"乁༼☯‿☯✿༽ㄏ", u"╮(╯_╰)╭" ] shocks = [ u"(ʘᗩʘ’)", u"(ʘ言ʘ╬)", u"(◯Δ◯∥)", u"(●Ω●;)" ] spins = [ [u"(・ω・)", u"( ・ω)", u"( ・)", u"( )", u"(・ )", u"(ω・ )", u"(・ω・)"], [u"(´・ω・`)", u"( ´・ω・)", u"(  ´・ω)", u"(   )", u"(   )", u"(ω・´ )", u"(・ω・´)", u"(`・ω・´)"], [u"(・▽・)", u"( ・▽)", u"( ・)", u"(  )", u"(・ )", u"(▽・ )", u"(・▽・)"], [u"(・_・)", u"( ・_)", u"( ・)", u"(  )", u"(・ )", u"(_・ )", u"(・_・)"], [u"(°o°)", u"(°o。)", u"(。o。)", u"(。o°)", u"(°o°)", u"(°o。)", u"(。o。)", u"(。o°)"] ] class Entertain(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop @commands.command(aliases=['partytime']) async def dance(self, ctx): dance = random.choice(dances) step = await ctx.send(dance[0], deletable=False) await asyncio.sleep(2, loop=self.loop) for move in dance[1:]: await step.edit(content=move) await asyncio.sleep(2, loop=self.loop) else: await step.add_reaction('👍') @commands.command(aliases=['youspinmerightroundbabyrightround']) async def spin(self, ctx): spin = random.choice(spins) step = await ctx.send(spin[0], deletable=False) await asyncio.sleep(2, loop=self.loop) for turn in spin[1:]: await step.edit(content=turn) await asyncio.sleep(2, loop=self.loop) else: await step.add_reaction('👍') @commands.command(aliases=['*shrug*']) async def shrug(self, ctx): await ctx.send(random.choice(shrugs)) @commands.command(aliases=['jikes']) async def shock(self, ctx): await ctx.send(random.choice(shocks)) @commands.command(aliases=['flip', 'table']) async def tableflip(self, ctx): unflipped = await ctx.send(u"(ಠ_ಠ) ┳━┳", deletable=False) await asyncio.sleep(2, loop=self.loop) await unflipped.edit(content=u"(╯ಠ_ಠ)╯︵┻━┻") @commands.command(aliases=['thank']) async def thanks(self, ctx): await ctx.send(random.choice(pleasures) + ' ' + random.choice(faces)) @commands.command(aliases=['gn9', 'gn8', 'goodnight', 'nn']) async def gn(self, ctx): await ctx.send(random.choice(gn9s) + ' ' + random.choice(loves)) def setup(bot): bot.add_cog(Entertain(bot)) ``` #### File: Charfred_Cogs/minecraftcogs/chatrelay.py ```python import logging import asyncio from concurrent.futures import CancelledError from discord.ext import commands from utils import Config, permission_node log = logging.getLogger('charfred') formats = { 'MSG': '[**{}**] {}: {}', 'STF': '**{}**: {}', 'DTH': '[**{}**] {} {}', 'ME': '[**{}**] {}: {}', 'SAY': '[**{}**] {}: {}', 'SYS': '{}' } def escape(string): return string.strip().replace('\n', '\\n').replace('::', ':\:').replace('::', ':\:') class ChatRelay(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.server = None self.inqueue = asyncio.Queue(maxsize=64, loop=self.loop) self.clients = {} self.inqueue_worker_task = None self.relaycfg = Config(f'{bot.dir}/configs/chatrelaycfg.toml', load=True, loop=self.loop) if 'ch_to_clients' not in self.relaycfg: self.relaycfg['ch_to_clients'] = {} self.relaycfg._save() if 'client_to_ch' not in self.relaycfg: self.relaycfg['client_to_ch'] = {} self.relaycfg._save() def cog_unload(self): if self.server: log.info('CR: Closing relay server.') self.server.close() if self.inqueue_worker_task: self.inqueue_worker_task.cancel() if self.clients: for client in self.clients.values(): try: client['workers'][0].cancel() client['workers'][1].cancel() except KeyError: pass self.loop.create_task(self.server.wait_closed()) @commands.Cog.listener() async def on_message(self, message): if self.server is None: # Don't even do anything if the server isn't running. return if message.author.bot or (message.guild is None): return ch_id = str(message.channel.id) if message.content and (ch_id in self.relaycfg['ch_to_clients']): # Check whether the message is a command, as determined # by having a valid prefix, and don't proceed if it is. prefix = await self.bot.get_prefix(message) if isinstance(prefix, str): if message.content.startswith(prefix): return else: try: if message.content.startswith(tuple(prefix)): return except TypeError: # If we get here, then the prefixes are borked. raise content = f'MSG::Discord::{escape(message.author.display_name)}:' \ f':{escape(message.clean_content)}::\n' for client in self.relaycfg['ch_to_clients'][ch_id]: try: self.clients[client]['queue'].put_nowait((5, content)) except KeyError: pass except asyncio.QueueFull: pass @commands.group(invoke_without_command=True) async def chatrelay(self, ctx): """Minecraft chat relay commands. This returns a list of all Minecraft servers currently connected and what channel they're linked to. """ info = ['# Chat Relay Status:'] if self.server and self.server.sockets: info.append('\n# Relay server is online.\n') else: info.append('\n< Relay server is offline! >\n') if self.clients: info.append('\n# Currently connected clients:') for client in self.clients: info.append(f'- {client}') if self.relaycfg['ch_to_clients']: info.append('\n# Relay configuration:') for channel_id, clients in self.relaycfg['ch_to_clients'].items(): channel = self.bot.get_channel(int(channel_id)) info.append(f'{channel.name if channel else channel_id}:') if clients: for client in clients: info.append(f'- {client}') else: info.append('\n') else: info.append('> No clients configured.\n') if len(info) == 2: info.append('> No clients connected, nothing configured.') await ctx.sendmarkdown('\n'.join(info)) async def incoming_worker(self, reader, client): log.info(f'CR-Incoming: Worker for {client} started.') try: while True: data = await reader.readline() if not data: log.info(f'CR-Incoming: {client} appears to have disconnected!') break try: data = data.decode() except UnicodeDecodeError as e: log.info(f'CR-Incoming: {e}') continue try: self.inqueue.put_nowait((client, data)) except asyncio.QueueFull: log.warning(f'CR-Incoming: Incoming queue full, message dropped!') except CancelledError: raise finally: log.info(f'CR-Incoming: Worker for {client} exited.') async def outgoing_worker(self, writer, client): log.info(f'CR-Outgoing: Worker for {client} started.') try: while True: try: _, data = await self.clients[client]['queue'].get() except (KeyError, AttributeError): log.error(f'CR-Outgoing: Outqueue for {client} is gone!' ' Connection shutting down!') break else: data = data.encode() writer.write(data) await writer.drain() except CancelledError: raise finally: log.info(f'CR-Outgoing: Worker for {client} exited.') async def connection_handler(self, reader, writer): peer = str(writer.get_extra_info("peername")) log.info(f'CR-Connection: New connection established with {peer}!') handshake = await reader.readline() if not handshake: log.warning(f'CR-Connection: No handshake from {peer} recieved!' ' Connection shutting down!') writer.close() return handshake = handshake.decode() hshk = handshake.split('::') if hshk[0] == 'HSHK': try: client = hshk[1] except IndexError: log.warning(f'CR-Connection: Invalid handshake: {handshake}') client = None else: log.warning(f'CR-Connection: Invalid handshake: {handshake}') client = None if client is None: log.warning(f'CR-Connection: Using client address as name.') client = peer await self.inqueue.put((client, f'SYS::```markdown\n# {client} connected!\n```')) if client in self.clients and self.clients[client]: if 'worker' in self.clients[client]: log.warning(f'CR-Connection: {client} reconnecting after messy exit, cleaning up!') for worker in self.clients[client]['workers']: worker.cancel() self.clients[client] = {} self.clients[client]['queue'] = asyncio.PriorityQueue(maxsize=24, loop=self.loop) in_task = self.loop.create_task(self.incoming_worker(reader, client)) out_task = self.loop.create_task(self.outgoing_worker(writer, client)) self.clients[client]['workers'] = (in_task, out_task) _, waiting = await asyncio.wait([in_task, out_task], return_when=asyncio.FIRST_COMPLETED) for task in waiting: task.cancel() try: baggage = self.clients.pop(client) except KeyError: pass else: log.info(f'CR-Connection: Outqueue for {client} removed with' f' {baggage["queue"].qsize()} items.') writer.close() log.info(f'CR-Connection: Connection with {client} closed!') await self.inqueue.put((client, f'SYS::```markdown\n< {client} disconnected! >\n```')) async def inqueue_worker(self): log.info('CR-Inqueue: Worker started!') try: while True: client, data = await self.inqueue.get() # Check if the data has a valid format. _data = data.split('::') if _data[0] not in formats: log.debug(f'CR-Inqueue: Data from {client} with invalid format: {data}') continue # If we get here, then the format is valid and we can relay to other clients. if _data[0] != 'SYS': for other in self.clients: if other == client: continue try: self.clients[other]['queue'].put_nowait((5, data)) except KeyError: pass except asyncio.QueueFull: pass # Check if we have a channel to send this message to. if client not in self.relaycfg['client_to_ch']: log.debug(f'CR-Inqueue: No channel for: "{client} : {data}", dropping!') continue # If we get here, we have a channel and can process according to format map. channel = self.bot.get_channel(int(self.relaycfg['client_to_ch'][client])) if not channel: log.warning(f'CR-Inqueue: {_data[0]} message from {client} could not be sent.' ' Registered channel does not exist!') continue try: await channel.send(formats[_data[0]].format(*_data[1:])) except IndexError as e: log.debug(f'{e}: {data}') pass except CancelledError: raise finally: log.info('CR-Inqueue: Worker exited.') @chatrelay.command(aliases=['start', 'init']) @permission_node(f'{__name__}.init') async def initialize(self, ctx, port): """This initializes the relay server on the given port, allowing connections from Minecraft servers to be established. Be sure to also set up at least one channel to relay chat to and from, using the 'register' subcommand, otherwise chat recieved from clients will just be dropped! """ if self.server: log.warning('CR: Server already established!') await ctx.sendmarkdown('> Relay server already running!') return self.inqueue_worker_task = self.loop.create_task(self.inqueue_worker()) self.server = await asyncio.start_server(self.connection_handler, '127.0.0.1', port, loop=self.loop) log.info('CR: Server started!') await ctx.sendmarkdown('# Relay server started.') @chatrelay.command(aliases=['stop']) @permission_node(f'{__name__}.init') async def close(self, ctx): """This closes the relay server, disconnecting all clients. """ if not self.server: log.info('CR: No server to be closed.') await ctx.sendmarkdown('> No relay server to be closed.') return self.server.close() if self.inqueue_worker_task: self.inqueue_worker_task.cancel() if self.clients: for client in self.clients.values(): try: client['workers'][0].cancel() client['workers'][1].cancel() except KeyError: pass await self.server.wait_closed() log.info('CR: Server closed!') self.server = None await ctx.sendmarkdown('# Relay server closed, all clients disconnected!') @chatrelay.command(aliases=['listen']) @permission_node(f'{__name__}.register') async def register(self, ctx, client: str): """Registers a channel to recieve chat from a given client, and send chat from the channel to the client. The channel you run this in will be the registered channel. You can get a list of clients by just running 'chatrelay' without a subcommand. """ channel_id = str(ctx.channel.id) if client not in self.clients: await ctx.sendmarkdown('< Client unknown, registering anyway. >\n' '< Please check if you got the name right,' ' when the client eventually connects. >') log.info(f'CR: Trying to register {ctx.channel.name} for {client}.') if client in self.relaycfg['client_to_ch'] and self.relaycfg['client_to_ch'][client]: channel = self.bot.get_channel(int(self.relaycfg['client_to_ch'][client])) if channel == ctx.channel: await ctx.sendmarkdown(f'> {client} is already registered with this channel!') else: await ctx.sendmarkdown(f'< {client} is already registered with {channel.name}! >\n' '> A client can only be registered to one channel.\n' '> Please unregister the other channel first!') return else: self.relaycfg['client_to_ch'][client] = channel_id if channel_id in self.relaycfg['ch_to_clients']: self.relaycfg['ch_to_clients'][channel_id].append(client) else: self.relaycfg['ch_to_clients'][channel_id] = [client] await self.relaycfg.save() await ctx.sendmarkdown(f'# {ctx.channel.name} is now registered for' f' recieving chat from, and sending chat to {client}.') @chatrelay.command(aliases=['unlisten']) @permission_node(f'{__name__}.register') async def unregister(self, ctx, client: str): """Unregisters a channel from recieving chat from a given client or sending chat to that client. The channel you run this in will be the unregistered channel. You can get a list of clients by just running 'chatrelay' without a subcommand. """ channel_id = str(ctx.channel.id) log.info(f'CR: Trying to unregister {ctx.channel.name} for {client}.') if client in self.relaycfg['client_to_ch']: if self.relaycfg['client_to_ch'][client] == channel_id: del self.relaycfg['client_to_ch'][client] else: await ctx.sendmarkdown(f'< {client} is not registered for this channel! >') return try: self.relaycfg['ch_to_clients'][channel_id].remove(client) except ValueError: log.critical(f'CR: Relay mapping inconsistency detected!') raise else: await ctx.sendmarkdown('# This channel will no longer send chat to' f' or recieve chat from {client}!') finally: await self.relaycfg.save() else: await ctx.sendmarkdown(f'> {client} is not registered with any channel.') def setup(bot): permission_nodes = ['init', 'register'] bot.register_nodes([f'{__name__}.{node}' for node in permission_nodes]) bot.add_cog(ChatRelay(bot)) ``` #### File: Charfred_Cogs/minecraftcogs/cronreader.py ```python from discord.ext import commands import re import asyncio import logging from utils import permission_node, Flipbook log = logging.getLogger('charfred') cronpat = re.compile('^(?P<disabled>#)*((?P<reboot>@reboot)|(?P<min>(\*/\d+|\*|(\d+,?)+))\s(?P<hour>(\*/\d+|\*|(\d+,?)+))\s(?P<day>(\*/\d+|\*|(\d+,?)+)))\s.*spiffy\s(?P<cmd>\w+)\s(?P<server>\w+)\s(?P<args>.*)>>') every = '*/' always = '*' class CronReader(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.servercfg = bot.servercfg def _parseCron(self, crontab): parsedlines = [] for l in crontab: if 'spiffy' not in l: continue match = cronpat.match(l) if not match: continue disabled, reboot, min, hour, day, cmd, server, args = match.group('disabled', 'reboot', 'min', 'hour', 'day', 'cmd', 'server', 'args') state = '# ' if disabled else '' if reboot: condition = 'Runs at reboot:' output = f'{state}{condition} {cmd} {server}' if args: output += f' {args}' parsedlines.append(output) else: condition = 'Runs' if every in min: m = f'every {min[2:]} minutes' elif always in min: m = 'every minute' else: m = f'at {min} minutes' if every in hour: h = f'every {hour[2:]} hours' elif always in hour: h = 'every hour' else: h = f'at {hour} hours' if every in day: d = f'every {day[2:]} days' elif always in day: d = 'every day' else: d = f'on these days: {day}' output = f'{state}{condition} {m}, {h}, {d}: {cmd} {server}' if args: output += f' {args}' parsedlines.append(output) return parsedlines @commands.group(invoke_without_command=True) @permission_node(f'{__name__}.read') async def cron(self, ctx): """Crontab commands. This returns an overview of cronjobs that apply to any known minecraft servers managed by Charfreds \'spiffy\' script, if no subcommand was given. """ log.info('Fetching current crontab...') proc = await asyncio.create_subprocess_exec( 'crontab', '-l', stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE ) stdout, stderr = await proc.communicate() if proc.returncode == 0: log.info('Crontab retrieved successfully.') else: log.warning('Failed to retrieve crontab!') return crontab = stdout.decode().strip().split('\n') log.info('Parsing crontab...') spiffycron = await self.loop.run_in_executor(None, self._parseCron, crontab) cronFlip = Flipbook(ctx, spiffycron, entries_per_page=8, title='Spiffy Cronjobs', close_on_exit=True) await cronFlip.flip() def setup(bot): bot.register_nodes([f'{__name__}.read']) bot.add_cog(CronReader(bot)) ``` #### File: Charfred_Cogs/minecraftcogs/serverwatchdog.py ```python from discord.ext import commands from discord.utils import find import asyncio import logging import re from time import strftime, localtime, time from threading import Event from utils import Config, permission_node from .utils import isUp, getProc, serverStart, getcrashreport, parsereport, formatreport log = logging.getLogger('charfred') cronpat = re.compile(r'^(?P<disabled>#)*((?P<reboot>@reboot)|(?P<min>(\*/\d+|\*|(\d+,?)+))\s(?P<hour>(\*/\d+|\*|(\d+,?)+))\s(?P<day>(\*/\d+|\*|(\d+,?)+)))\s.*spiffy\s(?P<cmd>\w+)\s(?P<server>\w+)\s(?P<args>.*)>>') every = '*/' always = '*' class Watchdog(commands.Cog): def __init__(self, bot): self.bot = bot self.loop = bot.loop self.servercfg = bot.servercfg self.watchdogs = {} self.watchcfg = Config(f'{bot.dir}/configs/watchcfg.json', load=True, loop=self.loop) if 'notify' not in self.watchcfg: self.watchcfg['notify'] = '@here' def cog_unload(self): if self.watchdogs: for fut, event in self.watchdogs.values(): event.set() @commands.group(invoke_without_command=True) @permission_node(f'{__name__}.watchdog') async def watchdog(self, ctx): """Server process watchdog commands. This returns a list of all active watchdogs, if no subcommand was given. """ for server, wd in self.watchdogs.items(): if wd[0].done(): await ctx.sendmarkdown(f'< {server} watchdog inactive! >') else: await ctx.sendmarkdown(f'# {server} watchdog active!') @watchdog.command(aliases=['blame']) async def setmention(self, ctx, mentionee: str): """Set who to mention for crash notification.""" log.info(f'Setting role to mention to: {mentionee}.') role = find(lambda r: r.name == mentionee, ctx.guild.roles) if role: self.watchcfg['notify'] = role.mention await ctx.sendmarkdown(f'# Set role to mention to: {mentionee}!\n' '> They will be notified if a crash is suspected,\n' '> given that mentioning is enabled.') await self.watchcfg.save() log.info('Watchdog cfg saved!') else: await ctx.sendmarkdown(f'< {mentionee} is not a valid role! >') log.warning('Role could not be found, role to mention unchanged.') async def _wdstart(self, ctx, server): if server in self.watchdogs and not self.watchdogs[server][0].done(): log.info(f'{server} watchdog active.') await ctx.sendmarkdown('# Watchdog already active!') else: if server not in self.servercfg['servers']: log.warning(f'{server} has been misspelled or not configured!') await ctx.sendmarkdown(f'< {server} has been misspelled or not configured! >') return if isUp(server): log.info('Starting watchdog on online server.') await ctx.sendmarkdown(f'# {server} is up and running.', deletable=False) else: log.info('Starting watchdog on offline server.') await ctx.sendmarkdown(f'< {server} is not running. >', deletable=False) async def serverGone(crashed, report=None): if crashed: await ctx.send( f'{self.watchcfg["notify"]}\n' '```markdown\n' f'< {strftime("%H:%M", localtime())} : {server} crashed! >\n' '```', deletable=False ) for c in report: await asyncio.sleep(1, loop=self.loop) await ctx.sendmarkdown(c) else: await ctx.sendmarkdown(f'> {strftime("%H:%M", localtime())} : {server} is gone!\n' '> Watching for it to return...', deletable=False) async def serverBack(): await ctx.sendmarkdown('# ' + strftime("%H:%M") + f' {server} is back online!\n' '> Continuing watch!', deletable=False) async def watchGone(): await ctx.sendmarkdown(f'> Ended watch on {server}!', deletable=False) async def startServer(): # TODO: Remove message informing about the change from 'react to restart' to 'react to abort' abortPrompt = await ctx.sendmarkdown( '< IMPORTANT NOTE: The purpose of this prompt has changed, please read it carefully! >\n\n' f'# Attempting to start {server} back up again in 90 seconds!\n' '< Please react to this message with ✋ to abort! >', deletable=False ) await abortPrompt.add_reaction('✋') def abortcheck(reaction, user): if reaction.message.id != abortPrompt.id: return False return str(reaction.emoji) == '✋' and not user.bot log.info(f'Prompting {server} start abort... 90 seconds.') try: await self.bot.wait_for('reaction_add', timeout=90, check=abortcheck) except asyncio.TimeoutError: log.info('Prompt timed out.') await abortPrompt.clear_reactions() await abortPrompt.edit(content='```markdown\n> Prompt to abort' ' timed out!\n```') await asyncio.sleep(5, loop=self.loop) if isUp(server): log.info(f'{server} is already back!') await abortPrompt.edit(content=f'```markdown\n> {server} is already back!\n```') else: log.info(f'Starting {server}') await abortPrompt.edit(content=f'```markdown\n> Starting {server}...\n```') await serverStart(server, self.servercfg, self.loop) else: await abortPrompt.clear_reactions() await abortPrompt.edit(content=f'```markdown\n> Startup of {server} aborted!\n```') def watchDone(future): log.info(f'WD: Ending watch on {server}.') if future.exception(): log.warning(f'WD: Exception in watchdog for {server}!') raise future.exception() asyncio.run_coroutine_threadsafe(watchGone(), self.loop) def watch(event): log.info(f'WD: Starting watch on {server}.') serverProc = getProc(server) if serverProc and serverProc.is_running(): lastState = True else: lastState = False while not event.is_set(): if lastState: if not serverProc.is_running(): log.info(f'WD: {server} is gone!') lastState = False now = time() rpath, mtime = getcrashreport(server, self.servercfg['serverspath']) if mtime > (now - 60): crashed = True ctime, desc, strace, flav, lev, bl, ph = parsereport(rpath) report = formatreport( rpath, ctime, desc, flav, strace, lev, bl, ph ) coro = serverGone(crashed, report) else: crashed = False coro = serverGone(crashed) asyncio.run_coroutine_threadsafe(coro, self.loop) if crashed: asyncio.run_coroutine_threadsafe(startServer(), self.loop) event.wait(timeout=30) event.wait(timeout=20) else: serverProc = getProc(server) if serverProc and serverProc.is_running(): log.info(f'WD: {server} is back online!') lastState = True asyncio.run_coroutine_threadsafe(serverBack(), self.loop) event.wait(timeout=20) else: event.wait(timeout=30) else: return event = Event() watchFuture = self.loop.run_in_executor(None, watch, event) watchFuture.add_done_callback(watchDone) self.watchdogs[server] = (watchFuture, event) await ctx.sendmarkdown('# Watchdog activated!', deletable=False) @watchdog.command(name='activate', aliases=['start', 'watch']) async def wdstart(self, ctx, *servers: str): """Start the process watchdog for a server.""" for server in servers: await self._wdstart(ctx, server) @watchdog.command(name='deactivate', aliases=['stop', 'unwatch']) async def wdstop(self, ctx, server: str): """Stop the process watchdog for a server.""" if server in self.watchdogs and not self.watchdogs[server][0].done(): watcher = self.watchdogs[server] watcher[1].set() await ctx.sendmarkdown(f'> Terminating {server} watchdog...', deletable=False) else: if server not in self.servercfg['servers']: log.warning(f'{server} has been misspelled or not configured!') await ctx.sendmarkdown(f'< {server} has been misspelled or not configured! >') else: await ctx.sendmarkdown('# Watchdog already inactive!', deletable=False) def setup(bot): if not hasattr(bot, 'servercfg'): default = { "servers": {}, "serverspath": "NONE", "backupspath": "NONE", "oldTimer": 1440 } bot.servercfg = Config(f'{bot.dir}/configs/serverCfgs.toml', default=default, load=True, loop=bot.loop) bot.register_nodes([f'{__name__}.watchdog']) bot.add_cog(Watchdog(bot)) ```
{ "source": "JinKin/pyethereum", "score": 2 }
#### File: ethereum/pow/chain.py ```python from __future__ import print_function from builtins import range import json import random import time import itertools from ethereum import utils from ethereum.utils import parse_as_bin, big_endian_to_int, is_string from ethereum.meta import apply_block from ethereum.common import update_block_env_variables from ethereum.messages import apply_transaction import rlp from rlp.utils import encode_hex from ethereum.exceptions import InvalidNonce, InsufficientStartGas, UnsignedTransaction, \ BlockGasLimitReached, InsufficientBalance, InvalidTransaction, VerificationFailed from ethereum.slogging import get_logger, configure_logging from ethereum.config import Env from ethereum.state import State, dict_to_prev_header from ethereum.block import Block, BlockHeader, BLANK_UNCLES_HASH, FakeHeader from ethereum.pow.consensus import initialize from ethereum.genesis_helpers import mk_basic_state, state_from_genesis_declaration, \ initialize_genesis_keys from ethereum.db import RefcountDB log = get_logger('eth.chain') config_string = ':info' #,eth.chain:debug' #config_string = ':info,eth.vm.log:trace,eth.vm.op:trace,eth.vm.stack:trace,eth.vm.exit:trace,eth.pb.msg:trace,eth.pb.tx:debug' configure_logging(config_string=config_string) class Chain(object): def __init__(self, genesis=None, env=None, new_head_cb=None, reset_genesis=False, localtime=None, max_history=1000, **kwargs): self.env = env or Env() # Initialize the state if b'head_hash' in self.db: # new head tag self.state = self.mk_poststate_of_blockhash( self.db.get('head_hash')) self.state.executing_on_head = True print('Initializing chain from saved head, #%d (%s)' % (self.state.prev_headers[0].number, encode_hex(self.state.prev_headers[0].hash))) elif genesis is None: raise Exception("Need genesis decl!") elif isinstance(genesis, State): assert env is None self.state = genesis self.env = self.state.env print('Initializing chain from provided state') reset_genesis = True elif "extraData" in genesis: self.state = state_from_genesis_declaration( genesis, self.env, executing_on_head=True) reset_genesis = True print('Initializing chain from provided genesis declaration') elif "prev_headers" in genesis: self.state = State.from_snapshot( genesis, self.env, executing_on_head=True) reset_genesis = True print('Initializing chain from provided state snapshot, %d (%s)' % (self.state.block_number, encode_hex(self.state.prev_headers[0].hash[:8]))) elif isinstance(genesis, dict): print('Initializing chain from new state based on alloc') self.state = mk_basic_state(genesis, { "number": kwargs.get('number', 0), "gas_limit": kwargs.get('gas_limit', self.env.config['BLOCK_GAS_LIMIT']), "gas_used": kwargs.get('gas_used', 0), "timestamp": kwargs.get('timestamp', 1467446877), "difficulty": kwargs.get('difficulty', 2**25), "hash": kwargs.get('prevhash', '00' * 32), "uncles_hash": kwargs.get('uncles_hash', '0x' + encode_hex(BLANK_UNCLES_HASH)) }, self.env) reset_genesis = True assert self.env.db == self.state.db initialize(self.state) self.new_head_cb = new_head_cb if self.state.block_number == 0: assert self.state.block_number == self.state.prev_headers[0].number else: assert self.state.block_number - 1 == self.state.prev_headers[0].number if reset_genesis: if isinstance(self.state.prev_headers[0], FakeHeader): header = self.state.prev_headers[0].to_block_header() else: header = self.state.prev_headers[0] self.genesis = Block(header) self.state.prev_headers[0] = header initialize_genesis_keys(self.state, self.genesis) else: self.genesis = self.get_block_by_number(0) self.head_hash = self.state.prev_headers[0].hash self.time_queue = [] self.parent_queue = {} self.localtime = time.time() if localtime is None else localtime self.max_history = max_history # Head (tip) of the chain @property def head(self): try: block_rlp = self.db.get(self.head_hash) if block_rlp == b'GENESIS': return self.genesis else: return rlp.decode(block_rlp, Block) except Exception as e: log.error(e) return None # Returns the post-state of the block def mk_poststate_of_blockhash(self, blockhash): if blockhash not in self.db: raise Exception("Block hash %s not found" % encode_hex(blockhash)) block_rlp = self.db.get(blockhash) if block_rlp == b'GENESIS': return State.from_snapshot(json.loads( self.db.get(b'GENESIS_STATE')), self.env) block = rlp.decode(block_rlp, Block) state = State(env=self.env) state.trie.root_hash = block.header.state_root update_block_env_variables(state, block) state.gas_used = block.header.gas_used state.txindex = len(block.transactions) state.recent_uncles = {} state.prev_headers = [] b = block header_depth = state.config['PREV_HEADER_DEPTH'] for i in range(header_depth + 1): state.prev_headers.append(b.header) if i < 6: state.recent_uncles[state.block_number - i] = [] for u in b.uncles: state.recent_uncles[state.block_number - i].append(u.hash) try: b = rlp.decode(state.db.get(b.header.prevhash), Block) except BaseException: break if i < header_depth: if state.db.get(b.header.prevhash) == b'GENESIS': jsondata = json.loads(state.db.get(b'GENESIS_STATE')) for h in jsondata["prev_headers"][:header_depth - i]: state.prev_headers.append(dict_to_prev_header(h)) for blknum, uncles in jsondata["recent_uncles"].items(): if int(blknum) >= state.block_number - \ int(state.config['MAX_UNCLE_DEPTH']): state.recent_uncles[blknum] = [ parse_as_bin(u) for u in uncles] else: raise Exception("Dangling prevhash") assert len(state.journal) == 0, state.journal return state # Gets the parent block of a given block def get_parent(self, block): if block.header.number == int(self.db.get(b'GENESIS_NUMBER')): return None return self.get_block(block.header.prevhash) # Gets the block with a given blockhash def get_block(self, blockhash): try: block_rlp = self.db.get(blockhash) if block_rlp == b'GENESIS': if not hasattr(self, 'genesis'): self.genesis = rlp.decode( self.db.get(b'GENESIS_RLP'), sedes=Block) return self.genesis else: return rlp.decode(block_rlp, Block) except Exception as e: log.debug("Failed to get block", hash=blockhash, error=e) return None # Add a record allowing you to later look up the provided block's # parent hash and see that it is one of its children def add_child(self, child): try: existing = self.db.get(b'child:' + child.header.prevhash) except BaseException: existing = b'' existing_hashes = [] for i in range(0, len(existing), 32): existing_hashes.append(existing[i: i + 32]) if child.header.hash not in existing_hashes: self.db.put( b'child:' + child.header.prevhash, existing + child.header.hash) # Gets the hash of the block with the given block number def get_blockhash_by_number(self, number): try: return self.db.get(b'block:%d' % number) except BaseException: return None # Gets the block with the given block number def get_block_by_number(self, number): return self.get_block(self.get_blockhash_by_number(number)) # Get the hashes of all known children of a given block def get_child_hashes(self, blockhash): o = [] try: data = self.db.get(b'child:' + blockhash) for i in range(0, len(data), 32): o.append(data[i:i + 32]) return o except BaseException: return [] # Get the children of a block def get_children(self, block): if isinstance(block, Block): block = block.header.hash if isinstance(block, BlockHeader): block = block.hash return [self.get_block(h) for h in self.get_child_hashes(block)] # Get the score (AKA total difficulty in PoW) of a given block def get_score(self, block): if not block: return 0 key = b'score:' + block.header.hash fills = [] while key not in self.db: fills.insert(0, (block.header.hash, block.difficulty)) key = b'score:' + block.header.prevhash block = self.get_parent(block) score = int(self.db.get(key)) for h, d in fills: key = b'score:' + h score = score + d + random.randrange(d // 10**6 + 1) self.db.put(key, str(score)) return score # This function should be called periodically so as to # process blocks that were received but laid aside because # they were received too early def process_time_queue(self, new_time=None): self.localtime = time.time() if new_time is None else new_time i = 0 while i < len( self.time_queue) and self.time_queue[i].timestamp <= self.localtime: log.info('Adding scheduled block') pre_len = len(self.time_queue) self.add_block(self.time_queue.pop(i)) if len(self.time_queue) == pre_len: i += 1 # Call upon receiving a block def add_block(self, block): now = self.localtime # Are we receiving the block too early? if block.header.timestamp > now: i = 0 while i < len( self.time_queue) and block.timestamp > self.time_queue[i].timestamp: i += 1 self.time_queue.insert(i, block) log.info('Block received too early (%d vs %d). Delaying for %d seconds' % (now, block.header.timestamp, block.header.timestamp - now)) return False # Is the block being added to the head? if block.header.prevhash == self.head_hash: log.info('Adding to head', head=encode_hex(block.header.prevhash[:4])) self.state.deletes = [] self.state.changed = {} try: apply_block(self.state, block) except (AssertionError, KeyError, ValueError, InvalidTransaction, VerificationFailed) as e: log.info('Block %d (%s) with parent %s invalid, reason: %s' % (block.number, encode_hex(block.header.hash[:4]), encode_hex(block.header.prevhash[:4]), str(e))) return False self.db.put(b'block:%d' % block.header.number, block.header.hash) # side effect: put 'score:' cache in db block_score = self.get_score(block) self.head_hash = block.header.hash for i, tx in enumerate(block.transactions): self.db.put(b'txindex:' + tx.hash, rlp.encode([block.number, i])) assert self.get_blockhash_by_number( block.header.number) == block.header.hash deletes = self.state.deletes changed = self.state.changed # Or is the block being added to a chain that is not currently the # head? elif block.header.prevhash in self.env.db: log.info('Receiving block %d (%s) not on head (%s), adding to secondary post state %s' % (block.number, encode_hex(block.header.hash[:4]), encode_hex(self.head_hash[:4]), encode_hex(block.header.prevhash[:4]))) temp_state = self.mk_poststate_of_blockhash(block.header.prevhash) try: apply_block(temp_state, block) except (AssertionError, KeyError, ValueError, InvalidTransaction, VerificationFailed) as e: log.info('Block %s with parent %s invalid, reason: %s' % (encode_hex(block.header.hash[:4]), encode_hex(block.header.prevhash[:4]), str(e))) return False deletes = temp_state.deletes block_score = self.get_score(block) changed = temp_state.changed # If the block should be the new head, replace the head if block_score > self.get_score(self.head): b = block new_chain = {} # Find common ancestor while b.header.number >= int(self.db.get(b'GENESIS_NUMBER')): new_chain[b.header.number] = b key = b'block:%d' % b.header.number orig_at_height = self.db.get( key) if key in self.db else None if orig_at_height == b.header.hash: break if b.prevhash not in self.db or self.db.get( b.prevhash) == b'GENESIS': break b = self.get_parent(b) replace_from = b.header.number # Replace block index and tx indices, and edit the state cache # Get a list of all accounts that have been edited along the old and # new chains changed_accts = {} # Read: for i in range(common ancestor block number...new block # number) for i in itertools.count(replace_from): log.info('Rewriting height %d' % i) key = b'block:%d' % i # Delete data for old blocks orig_at_height = self.db.get( key) if key in self.db else None if orig_at_height: orig_block_at_height = self.get_block(orig_at_height) log.info( '%s no longer in main chain' % encode_hex( orig_block_at_height.header.hash)) # Delete from block index self.db.delete(key) # Delete from txindex for tx in orig_block_at_height.transactions: if b'txindex:' + tx.hash in self.db: self.db.delete(b'txindex:' + tx.hash) # Add to changed list acct_list = self.db.get( b'changed:' + orig_block_at_height.hash) for j in range(0, len(acct_list), 20): changed_accts[acct_list[j: j + 20]] = True # Add data for new blocks if i in new_chain: new_block_at_height = new_chain[i] log.info( '%s now in main chain' % encode_hex( new_block_at_height.header.hash)) # Add to block index self.db.put(key, new_block_at_height.header.hash) # Add to txindex for j, tx in enumerate( new_block_at_height.transactions): self.db.put(b'txindex:' + tx.hash, rlp.encode([new_block_at_height.number, j])) # Add to changed list if i < b.number: acct_list = self.db.get( b'changed:' + new_block_at_height.hash) for j in range(0, len(acct_list), 20): changed_accts[acct_list[j: j + 20]] = True if i not in new_chain and not orig_at_height: break # Add changed list from new head to changed list for c in changed.keys(): changed_accts[c] = True # Update the on-disk state cache for addr in changed_accts.keys(): data = temp_state.trie.get(addr) if data: self.state.db.put(b'address:' + addr, data) else: try: self.state.db.delete(b'address:' + addr) except KeyError: pass self.head_hash = block.header.hash self.state = temp_state self.state.executing_on_head = True # Block has no parent yet else: if block.header.prevhash not in self.parent_queue: self.parent_queue[block.header.prevhash] = [] self.parent_queue[block.header.prevhash].append(block) log.info('Got block %d (%s) with prevhash %s, parent not found. Delaying for now' % (block.number, encode_hex(block.hash[:4]), encode_hex(block.prevhash[:4]))) return False self.add_child(block) self.db.put(b'head_hash', self.head_hash) self.db.put(block.hash, rlp.encode(block)) self.db.put(b'changed:' + block.hash, b''.join([k.encode() if not is_string(k) else k for k in list(changed.keys())])) print('Saved %d address change logs' % len(changed.keys())) self.db.put(b'deletes:' + block.hash, b''.join(deletes)) log.debug('Saved %d trie node deletes for block %d (%s)' % (len(deletes), block.number, utils.encode_hex(block.hash))) # Delete old junk data old_block_hash = self.get_blockhash_by_number( block.number - self.max_history) if old_block_hash: try: deletes = self.db.get(b'deletes:' + old_block_hash) log.debug( 'Deleting up to %d trie nodes' % (len(deletes) // 32)) rdb = RefcountDB(self.db) for i in range(0, len(deletes), 32): rdb.delete(deletes[i: i + 32]) self.db.delete(b'deletes:' + old_block_hash) self.db.delete(b'changed:' + old_block_hash) except KeyError as e: print(e) pass self.db.commit() assert (b'deletes:' + block.hash) in self.db log.info('Added block %d (%s) with %d txs and %d gas' % (block.header.number, encode_hex(block.header.hash)[:8], len(block.transactions), block.header.gas_used)) # Call optional callback if self.new_head_cb and block.header.number != 0: self.new_head_cb(block) # Are there blocks that we received that were waiting for this block? # If so, process them. if block.header.hash in self.parent_queue: for _blk in self.parent_queue[block.header.hash]: self.add_block(_blk) del self.parent_queue[block.header.hash] return True def __contains__(self, blk): if isinstance(blk, (str, bytes)): try: blk = rlp.decode(self.db.get(blk), Block) except BaseException: return False try: o = self.get_block(self.get_blockhash_by_number(blk.number)).hash assert o == blk.hash return True except Exception as e: return False def has_block(self, block): return block in self def has_blockhash(self, blockhash): return blockhash in self.db def get_chain(self, frm=None, to=2**63 - 1): if frm is None: frm = int(self.db.get(b'GENESIS_NUMBER')) + 1 chain = [] for i in itertools.islice(itertools.count(), frm, to): h = self.get_blockhash_by_number(i) if not h: return chain chain.append(self.get_block(h)) # Get block number and transaction index def get_tx_position(self, tx): if not isinstance(tx, (str, bytes)): tx = tx.hash if b'txindex:' + tx in self.db: data = rlp.decode(self.db.get(b'txindex:' + tx)) return big_endian_to_int(data[0]), big_endian_to_int(data[1]) else: return None def get_transaction(self, tx): print('Deprecated. Use get_tx_position') blknum, index = self.get_tx_position(tx) blk = self.get_block_by_number(blknum) return blk.transactions[index], blk, index # Get descendants of a block def get_descendants(self, block): output = [] blocks = [block] while len(blocks): b = blocks.pop() blocks.extend(self.get_children(b)) output.append(b) return output @property def db(self): return self.env.db # Get blockhashes starting from a hash and going backwards def get_blockhashes_from_hash(self, blockhash, max_num): block = self.get_block(blockhash) if block is None: return [] header = block.header hashes = [] for i in range(max_num): block = self.get_block(header.prevhash) if block is None: break header = block.header hashes.append(header.hash) if header.number == 0: break return hashes @property def config(self): return self.env.config ```
{ "source": "jink-lang/jink", "score": 3 }
#### File: jink-lang/jink/jink.py ```python import sys, argparse from jink import optimizer from jink.lexer import Lexer from jink.parser import Parser from jink.optimizer import optimize from jink.interpreter import Interpreter, Environment from jink.repl import REPL # from jink.compiler import Compiler def get_code_from_path(path): if not path.endswith('.jk'): path += '.jk' code = open(path).read() if not code: raise Exception(f"Error reading file {sys.argv[0]}") return code if len(sys.argv) >= 1 and sys.argv[0] == 'jink.py': sys.argv.pop(0) verbose = False to_compile = False if '-v' in sys.argv: sys.argv.remove('-v') verbose = True if '-c' in sys.argv: sys.argv.remove('-c') # Launch REPL if len(sys.argv) == 0 or (len(sys.argv) == 1 and sys.argv[0] == '-v'): print("jink REPL - use '[jink] help' for help - type 'exit' to exit.") repl = REPL(sys.stdin, sys.stdout, verbose=verbose) repl.main_loop() elif len(sys.argv) >= 1: if sys.argv[0] == 'help': print('\n'.join([ "jink - strongly typed, JavaScript-like programming language.", "https://www.github.com/jink-lang/jink", "", "args:", " > -v -- verbose; will output AST." # and if compiling, both optimized and unoptimized LLVM IR.", # " > -c -- compile; will use compiler instead of interpreter." "", "usage:", " > [jink] help -- shows this prompt.", " > [jink] path/to/file[.jk] -- executes interpreter on file.", " > [jink] -v path/to/file[.jk] -- executes interpreter on file verbose mode.", # " > [jink] -c path/to/file[.jk] -- executes compiler on file.", # " > [jink] -c -v path/to/file[.jk] -- executes compiler on file in verbose mode.", " > [jink] -- launches interpreted interactive REPL.", " > [jink] -v -- launches interpreted interactive REPL in verbose mode." ])) else: path = ' '.join(sys.argv) code = get_code_from_path(path) if to_compile: raise NotImplementedError("Compiler not yet implemented.") # Compiler()._eval(code, optimize=True, verbose=verbose) else: AST = optimize(Parser().parse(Lexer().parse(code), verbose=verbose)) env = Environment() env.add_builtins() Interpreter().evaluate(AST, env) if __name__ == "__main__": pass ``` #### File: jink/utils/classes.py ```python from jink.utils.evals import * from enum import Enum class TokenType(Enum): EOF = 0 NEWLINE = 1 KEYWORD = 2 IDENTIFIER = 3 NUMBER = 4 STRING = 5 OPERATOR = 6 LPAREN = 7 RPAREN = 8 LBRACKET = 9 RBRACKET = 10 LBRACE = 11 RBRACE = 12 SEMICOLON = 13 COLON = 14 COMMA = 15 class Token: def __init__(self, _type, value, line, pos): self.type, self.value, self.line, self.pos = _type, value, line, pos def __str__(self): return f"{{ 'type': 'Token<{self.type}>', 'contents': {{ 'value': '{self.value}', 'line': {self.line}, 'pos': {self.pos} }} }}" def smallStr(self): return f"{{{self.type} {self.value}}}" __repr__ = __str__ class BinaryOperator: __slots__ = ('operator', 'left', 'right') def __init__(self, operator, left, right): self.operator, self.left, self.right = operator, left, right class UnaryOperator: __slots__ = ('operator', 'value') def __init__(self, operator, value): self.operator, self.value = operator, value class IntegerLiteral: __slots__ = ('value') def __init__(self, value): self.value = value class FloatingPointLiteral: __slots__ = ('value') def __init__(self, value): self.value = value class StringLiteral: __slots__ = ('value') def __init__(self, value): self.value = value class BooleanLiteral: __slots__ = ('value') def __init__(self, value): self.value = value class IdentLiteral: def __init__(self, name, index={ 'type': None, 'index': None }): self.name, self.index = name, index class Null: def __init__(self, value): self.value = "null" class Assignment: __slots__ = ('type', 'ident', 'value') def __init__(self, _type, ident, value): self.type, self.ident, self.value = _type, ident, value class CallExpression: __slots__ = ('name', 'args') def __init__(self, name, args): self.name, self.args = name, args class Function: __slots__ = ('name', 'params', 'body') def __init__(self, name, params, body): self.name, self.params, self.body = name, params, body class FunctionParameter: __slots__ = ('name', 'type', 'default') def __init__(self, name, _type, default=None): self.name, self.type, self.default = name, _type, default class Return: __slots__ = ('value') def __init__(self, value): self.value = value class Conditional: __slots__ = ('type', 'expression', 'body', 'else_body') def __init__(self, _type, expression, body, else_body): self.type, self.expression, self.body, self.else_body = _type, expression, body, else_body class Module: __slots__ = ('name', 'index') def __init__(self, name, index): self.name, self.index = name, index ```
{ "source": "jinkookchoi/bert-classifier", "score": 3 }
#### File: bert-classifier/single_label/data_loader.py ```python import torch from torch.utils.data import Dataset from torchtext import data # DataLoader class # TokenizerWrapper class class TokenizerWrapper(): def __init__(self, tokenizer, max_length): self.tokenizer = tokenizer self.max_length = max_length def collate(self, samples): texts = [s['text'] for s in samples] labels = [s['label'] for s in samples] encoding = self.tokenizer( texts, padding=True, truncation=True, return_tensors='pt', max_length=self.max_length ) return { 'text': texts, 'input_ids': encoding['input_ids'], 'attention_mask': encoding['attention_mask'], 'labels': torch.tensor(labels, dtype=torch.long) } class BertDataset(Dataset): def __init__(self, texts, labels): self.texts = texts self.labels = labels def __len__(self): return len(self.texts) def __getitem__(self, item): text = str(self.texts[item]) label = self.labels[item] return { 'text': text, 'label': label, } ```
{ "source": "Jinksi/SelFlow", "score": 3 }
#### File: Jinksi/SelFlow/extract_video_frames.py ```python import os import argparse import math import json import time import sys import subprocess def printJson(data): print(json.dumps(data)) sys.stdout.flush() time.sleep(0.1) def extract_video_frames(input, output_dir, fps): input_filename = os.path.splitext(os.path.basename(input))[0] if output_dir: os.makedirs(output_dir, exist_ok=True) subprocess.run( [ "ffmpeg", "-hide_banner", "-i", input, "-vf", f"fps={fps}", "-qscale:v", "2", os.path.join(output_dir, f"{input_filename}_{fps}fps_%06d.jpg"), ] ) print("==================") print( "Video frames extracted to", os.path.join(output_dir, f"{input_filename}_{fps}fps_%06d.jpg"), ) print("==================") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Extract video frames from a video") parser.add_argument("--input", default="./videos/video_test.mov/", required=True) parser.add_argument("--output_dir", default="./output/video_frames/", required=True) parser.add_argument("--fps", default=25, type=int) args = parser.parse_args() extract_video_frames(args.input, args.output_dir, args.fps) # python extract_video_frames.py --input=videos/video_test.mov --output_dir=output/video_frames --fps=25 ```
{ "source": "jinksunk/InfosecDatasetCreationTools", "score": 3 }
#### File: evtgen/datasources/datasourceinterface.py ```python import uuid import logging import sys class DataGenerator(object): ''' Represents a general generator of data instances. It is intended that the __init__ constructors will take in the required parameter information ''' mylog = logging.getLogger(__name__) class DataStore(object): ''' Represents a general generator of data instances. It is intended that the __init__ constructors will take in the required parameter information ''' mylog = logging.getLogger(__name__) def __init__(self): ''' Interface Constructor ''' self.event_list = list() self.data_list = list() def add_event(self, event): ''' Interface Definition - will add the event to the set of events from which data will be stored. ''' self.mylog.debug("Adding event {} to event_list".format( event.get_id())) self.event_list.append(event) self.mylog.debug("Now contains {} data elements (timestamps: {} )".format( len(self.get_datalist()), ",".join(x.get_time() for x in self.get_datalist()))) def get_events(self): ''' Return a list of events stored in this data store: ''' return self.event_list def length(self): ''' Return the number of events that will be written with this data generator ''' return len(self.event_list) def write(self, target): ''' Interface Definition - will store the generated data instances appropriately to the datasource type; e.g. pcaps generated will be written to files. The 'target' argument is the specifier for where the data should be written to. ''' self.mylog.error("Interface unimplemented. Use a subclass instead.") sys.exit(1) def get_datalist(self): ''' Return the list of data instances added to the store. Data instances are subclassed from DataElement. ''' dilist = list() self.mylog.debug("Datasource {} contains {} events".format(self.supported_source, len(self.event_list))) for ev in self.event_list: dtmp = ev.get_datainstances(self.supported_source) self.mylog.debug("Adding {} data instances for event {}".format( len(dtmp), ev.get_id())) if len(dtmp) > 0: dilist.extend(dtmp) return dilist class DataElement(object): ''' An abstracted data element which can be used with DataGenerators in a generic way ''' mylog = logging.getLogger(__name__) def __init__(self, timestamp, eventid, rawdataelement): ''' Initialize the data element with a timestamp, associated event identifier, and unique ID ''' self.elementid = self._generate_id() self.timestamp = timestamp self.eventid = eventid self.rawelement = rawdataelement def get_timestamp(self): ''' Return the timestamp for this data element ''' return self.timestamp def get_uniqid(self): ''' Return the unique GUID for this data element ''' return self.uniqid def get_raw_element(self): ''' Get the encapsulated data element. ''' return self.rawelement def _generate_id(self): ''' This base method simply generates a type-4 UUID. If a different type of ID is desired, this can be overridden ''' self.uniqid = uuid.uuid4() class LabelFile(object): ''' An abstract class representing a label file in KIDS - each data source should have a corresponding LabelFile implementation that records the unique IDs of each event and the data instances in the data source that correspond to that event. ''' mylog = logging.getLogger(__name__) def __init__(self, datasource): ''' Initialize with a reference to the data source we are a label for. ''' self.datasource = datasource ```
{ "source": "jinktv/django-cms", "score": 2 }
#### File: cms/admin/placeholderadmin.py ```python from cms.forms.fields import PlaceholderFormField from cms.models.fields import PlaceholderField from cms.models.placeholdermodel import Placeholder from cms.models.pluginmodel import CMSPlugin from cms.plugin_pool import plugin_pool from cms.utils import get_language_from_request, cms_static_url, get_cms_setting from cms.utils.permissions import has_plugin_permission from copy import deepcopy from django.conf import settings from django.contrib.admin import ModelAdmin from django.http import (HttpResponse, Http404, HttpResponseBadRequest, HttpResponseForbidden) from django.shortcuts import render_to_response, get_object_or_404 from django.template import RequestContext from django.template.defaultfilters import force_escape, escapejs from django.utils.translation import ugettext as _ from cms.templatetags.cms_admin import admin_static_url class PlaceholderAdmin(ModelAdmin): class Media: css = { 'all': [cms_static_url(path) for path in ( 'css/rte.css', 'css/pages.css', 'css/change_form.css', 'css/jquery.dialog.css', 'css/plugin_editor.css', )] } js = [cms_static_url(path) for path in [ 'js/plugins/admincompat.js', 'js/csrf.js', 'js/libs/jquery.query.js', 'js/libs/jquery.ui.core.js', 'js/libs/jquery.ui.dialog.js', ] ] def get_fieldsets(self, request, obj=None): """ Get fieldsets to enforce correct fieldsetting of placeholder fields """ form = self.get_form(request, obj) placeholder_fields = self._get_placeholder_fields(form) if self.declared_fieldsets: # check those declared fieldsets fieldsets = list(deepcopy(self.declared_fieldsets)) for label, fieldset in fieldsets: fields = list(fieldset['fields']) for field in fieldset['fields']: if field in placeholder_fields: if (len(fieldset['fields']) == 1 and 'classes' in fieldset and 'plugin-holder' in fieldset['classes'] and 'plugin-holder-nopage' in fieldset['classes']): placeholder_fields.remove(field) else: fields.remove(field) if fields: fieldset['fields'] = fields else: # no fields in the fieldset anymore, delete the fieldset fieldsets.remove((label, fieldset)) for placeholder in placeholder_fields: fieldsets.append((self.get_label_for_placeholder(placeholder), { 'fields': (placeholder,), 'classes': ('plugin-holder', 'plugin-holder-nopage',), },)) return fieldsets fieldsets = [] fieldsets.append((None, {'fields': [f for f in form.base_fields.keys() if not f in placeholder_fields]})) for placeholder in placeholder_fields: fieldsets.append((self.get_label_for_placeholder(placeholder), { 'fields': (placeholder,), 'classes': ('plugin-holder', 'plugin-holder-nopage',), })) readonly_fields = self.get_readonly_fields(request, obj) if readonly_fields: fieldsets.append((None, {'fields': list(readonly_fields)})) return fieldsets def get_label_for_placeholder(self, placeholder): return ' '.join([x.capitalize() for x in self.model._meta.get_field_by_name(placeholder)[0].verbose_name.split(' ')]) def formfield_for_dbfield(self, db_field, **kwargs): """ Hook for specifying the form Field instance for a given database Field instance. If kwargs are given, they're passed to the form Field's constructor. """ if isinstance(db_field, PlaceholderField): request = kwargs.pop("request", None) return db_field.formfield_for_admin(request, self.placeholder_plugin_filter, **kwargs) return super(PlaceholderAdmin, self).formfield_for_dbfield(db_field, **kwargs) def placeholder_plugin_filter(self, request, queryset): return queryset def _get_placeholder_fields(self, form): placeholder_fields = [] for key, value in form.base_fields.items(): if isinstance(value, PlaceholderFormField): placeholder_fields.append(key) return placeholder_fields def get_urls(self): """ Register the plugin specific urls (add/edit/copy/remove/move) """ from django.conf.urls.defaults import patterns, url info = "%s_%s" % (self.model._meta.app_label, self.model._meta.module_name) pat = lambda regex, fn: url(regex, self.admin_site.admin_view(fn), name='%s_%s' % (info, fn.__name__)) url_patterns = patterns('', pat(r'add-plugin/$', self.add_plugin), pat(r'edit-plugin/([0-9]+)/$', self.edit_plugin), pat(r'remove-plugin/$', self.remove_plugin), pat(r'move-plugin/$', self.move_plugin), pat(r'copy-plugins/$', self.copy_plugins), ) return url_patterns + super(PlaceholderAdmin, self).get_urls() def add_plugin(self, request): # only allow POST if request.method != "POST": raise Http404 plugin_type = request.POST['plugin_type'] if not has_plugin_permission(request.user, plugin_type, "add"): return HttpResponseForbidden("You don't have permission to add plugins") placeholder_id = request.POST.get('placeholder', None) position = None language = get_language_from_request(request) parent = None # check if we got a placeholder (id) if placeholder_id: placeholder = get_object_or_404(Placeholder, pk=placeholder_id) else: # else get the parent_id parent_id = request.POST.get('parent_id', None) if not parent_id: # if we get neither a placeholder nor a parent, bail out raise Http404 parent = get_object_or_404(CMSPlugin, pk=parent_id) placeholder = parent.placeholder # check add permissions on placeholder if not placeholder.has_add_permission(request): return HttpResponseForbidden(_("You don't have permission to add content here.")) # check the limits defined in CMS_PLACEHOLDER_CONF for this placeholder limits = get_cms_setting('PLACEHOLDER_CONF').get(placeholder.slot, {}).get('limits', None) if limits: count = placeholder.cmsplugin_set.count() global_limit = limits.get("global", None) type_limit = limits.get(plugin_type, None) # check the global limit first if global_limit and count >= global_limit: return HttpResponseBadRequest( "This placeholder already has the maximum number of plugins." ) elif type_limit: # then check the type specific limit type_count = CMSPlugin.objects.filter( language=language, placeholder=placeholder, plugin_type=plugin_type ).count() if type_count >= type_limit: return HttpResponseBadRequest( "This placeholder already has the maximum number (%s) " "of %s plugins." % (type_limit, plugin_type) ) # actually add the plugin plugin = CMSPlugin(language=language, plugin_type=plugin_type, position=position, placeholder=placeholder, parent=parent) plugin.save() # returns it's ID as response return HttpResponse(str(plugin.pk)) def edit_plugin(self, request, plugin_id): plugin_id = int(plugin_id) # get the plugin to edit of bail out cms_plugin = get_object_or_404(CMSPlugin, pk=plugin_id) if not has_plugin_permission(request.user, cms_plugin.plugin_type, "change"): return HttpResponseForbidden(_("You don't have permission to add plugins")) # check that the user has permission to change this plugin if not cms_plugin.placeholder.has_change_permission(request): return HttpResponseForbidden(_("You don't have permission to add content here.")) instance, plugin_admin = cms_plugin.get_plugin_instance(self.admin_site) plugin_admin.cms_plugin_instance = cms_plugin plugin_admin.placeholder = cms_plugin.placeholder if request.method == "POST": # set the continue flag, otherwise will plugin_admin make redirect to list # view, which actually does'nt exists post_request = request.POST.copy() post_request['_continue'] = True request.POST = post_request if request.POST.get("_cancel", False): # cancel button was clicked context = { 'CMS_MEDIA_URL': get_cms_setting('MEDIA_URL'), 'plugin': cms_plugin, 'is_popup': True, 'name': unicode(cms_plugin), "type": cms_plugin.get_plugin_name(), 'plugin_id': plugin_id, 'icon': force_escape(escapejs(cms_plugin.get_instance_icon_src())), 'alt': force_escape(escapejs(cms_plugin.get_instance_icon_alt())), 'cancel': True, } instance = cms_plugin.get_plugin_instance()[0] if not instance: # cancelled before any content was added to plugin cms_plugin.delete() context.update({ "deleted":True, }) return render_to_response('admin/cms/page/plugin_forms_ok.html', context, RequestContext(request)) if not instance: # instance doesn't exist, call add view response = plugin_admin.add_view(request) else: # already saved before, call change view # we actually have the instance here, but since i won't override # change_view method, is better if it will be loaded again, so # just pass id to plugin_admin response = plugin_admin.change_view(request, str(plugin_id)) if request.method == "POST" and plugin_admin.object_successfully_changed: # read the saved object from plugin_admin - ugly but works saved_object = plugin_admin.saved_object context = { 'CMS_MEDIA_URL': get_cms_setting('MEDIA_URL'), 'plugin': saved_object, 'is_popup': True, 'name': unicode(saved_object), "type": saved_object.get_plugin_name(), 'plugin_id': plugin_id, 'icon': force_escape(saved_object.get_instance_icon_src()), 'alt': force_escape(escapejs(saved_object.get_instance_icon_alt())), } return render_to_response('admin/cms/page/plugin_forms_ok.html', context, RequestContext(request)) return response def move_plugin(self, request): # only allow POST if request.method != "POST": return HttpResponse(str("error")) if 'plugin_id' in request.POST: # single plugin moving plugin = CMSPlugin.objects.get(pk=int(request.POST['plugin_id'])) if 'placeholder_id' in request.POST: placeholder = Placeholder.objects.get(pk=int(request.POST['placeholder_id'])) else: placeholder = plugin.placeholder # check permissions if not placeholder.has_change_permission(request): raise Http404 # plugin positions are 0 based, so just using count here should give us 'last_position + 1' position = CMSPlugin.objects.filter(placeholder=placeholder).count() plugin.placeholder = placeholder plugin.position = position plugin.save() pos = 0 if 'ids' in request.POST: # multiple plugins/ reordering whitelisted_placeholders = [] for id in request.POST['ids'].split("_"): plugin = CMSPlugin.objects.get(pk=id) # check the permissions for *each* plugin, but cache them locally # per placeholder if plugin.placeholder.pk not in whitelisted_placeholders: if plugin.placeholder.has_change_permission(request): whitelisted_placeholders.append(plugin.placeholder.pk) else: raise Http404 # actually do the moving if plugin.position != pos: plugin.position = pos plugin.save() pos += 1 else: HttpResponse(str("error")) return HttpResponse(str("ok")) def remove_plugin(self, request): if request.method != "POST": # only allow POST raise Http404 plugin_id = request.POST['plugin_id'] plugin = get_object_or_404(CMSPlugin, pk=plugin_id) # check the permissions! if not plugin.placeholder.has_delete_permission(request): return HttpResponseForbidden(_("You don't have permission to delete a plugin")) plugin.delete_with_public() plugin_name = unicode(plugin_pool.get_plugin(plugin.plugin_type).name) comment = _(u"%(plugin_name)s plugin at position %(position)s in %(placeholder)s was deleted.") % {'plugin_name':plugin_name, 'position':plugin.position, 'placeholder':plugin.placeholder} return HttpResponse("%s,%s" % (plugin_id, comment)) def copy_plugins(self, request): # only allow POST if request.method != "POST": raise Http404 placeholder_id = request.POST['placeholder'] placeholder = get_object_or_404(Placeholder, pk=placeholder_id) # check permissions if not placeholder.has_add_permission(request): raise Http404 # the placeholder actions are responsible for copying, they should return # a list of plugins if successful. plugins = placeholder.actions.copy( target_placeholder=placeholder, source_language=request.POST['copy_from'], target_language=get_language_from_request(request), fieldname=placeholder._get_attached_field_name(), model=placeholder._get_attached_model(), ) if plugins: return render_to_response('admin/cms/page/widgets/plugin_item.html', {'plugin_list': list(plugins)}, RequestContext(request)) else: return HttpResponseBadRequest("Error during copy") ``` #### File: cms/utils/__init__.py ```python from cms import constants from cms.utils.conf import get_cms_setting from cms.utils.i18n import get_default_language, get_language_list from distutils.version import LooseVersion from django.conf import settings from django.core.files.storage import get_storage_class from django.core.urlresolvers import reverse from django.http import HttpResponse, HttpResponseRedirect from django.shortcuts import render_to_response from django.template import RequestContext from django.utils.functional import LazyObject import django import os import urllib def get_template_from_request(request, obj=None, no_current_page=False): """ Gets a valid template from different sources or falls back to the default template. """ template = None if len(get_cms_setting('TEMPLATES')) == 1: return get_cms_setting('TEMPLATES')[0][0] if "template" in request.REQUEST: template = request.REQUEST['template'] if not template and obj is not None: template = obj.get_template() if not template and not no_current_page and hasattr(request, "current_page"): current_page = request.current_page if hasattr(current_page, "get_template"): template = current_page.get_template() if template is not None and template in dict(get_cms_setting('TEMPLATES')).keys(): if template == constants.TEMPLATE_INHERITANCE_MAGIC and obj: # Happens on admin's request when changing the template for a page # to "inherit". return obj.get_template() return template return get_cms_setting('TEMPLATES')[0][0] def get_language_from_request(request, current_page=None): """ Return the most obvious language according the request """ language = request.REQUEST.get('language', None) site_id = current_page.site_id if current_page else None if language: if not language in get_language_list(site_id): language = None if language is None: language = getattr(request, 'LANGUAGE_CODE', None) if language: if not language in get_language_list(site_id): language = None if language is None and current_page: # in last resort, get the first language available in the page languages = current_page.get_languages() if len(languages) > 0: language = languages[0] if language is None: # language must be defined in CMS_LANGUAGES, so check first if there # is any language with LANGUAGE_CODE, otherwise try to split it and find # best match language = get_default_language(site_id=site_id) return language def get_page_from_request(request): from warnings import warn from cms.utils.page_resolver import get_page_from_request as new warn("'cms.utils.get_page_from_request' is deprecated in favor of " "'cms.utils.page_resolver.get_page_from_request' and will be removed " "in Django-CMS 2.2.", DeprecationWarning) return new(request) """ The following class is taken from https://github.com/jezdez/django/compare/feature/staticfiles-templatetag and should be removed and replaced by the django-core version in 1.4 """ default_storage = 'django.contrib.staticfiles.storage.StaticFilesStorage' if LooseVersion(django.get_version()) < LooseVersion('1.3'): default_storage = 'staticfiles.storage.StaticFilesStorage' class ConfiguredStorage(LazyObject): def _setup(self): self._wrapped = get_storage_class(getattr(settings, 'STATICFILES_STORAGE', default_storage))() configured_storage = ConfiguredStorage() def cms_static_url(path): ''' Helper that prefixes a URL with STATIC_URL and cms ''' if not path: return '' return configured_storage.url(os.path.join('cms', path)) ```
{ "source": "jinkunw/bruce", "score": 2 }
#### File: src/bruce_slam/slam.py ```python import matplotlib matplotlib.use("Agg") from itertools import combinations from collections import defaultdict from enum import Enum import numpy as np import matplotlib.pyplot as plt from scipy.spatial.ckdtree import cKDTree as KDTree from scipy.optimize import shgo from sklearn.covariance import MinCovDet import gtsam from .sonar import OculusProperty from .utils.conversions import * from .utils.visualization import * from .utils.io import * from . import pcl class STATUS(Enum): NOT_ENOUGH_POINTS = "Not enough points" LARGE_TRANSFORMATION = "Large transformation" NOT_ENOUGH_OVERLAP = "Not enough overlap" NOT_CONVERGED = "Not converged" INITIALIZATION_FAILURE = "Initialization failure" SUCCESS = "Success" def __init__(self, *args, **kwargs): Enum.__init__(*args, **kwargs) self.description = None def __bool__(self): return self == STATUS.SUCCESS def __nonzero__(self): return self == STATUS.SUCCESS def __str__(self): if self.description: return self.value + ": " + self.description else: return self.value class Keyframe(object): def __init__( self, status, time, dr_pose3, points=np.zeros((0, 2), np.float32), cov=None ): self.status = status # used to mark keyframe self.time = time # time self.dr_pose3 = dr_pose3 # dead reckoning 3d pose self.dr_pose = pose322(dr_pose3) # dead reckoning 2d pose self.pose3 = dr_pose3 # estimated 3d pose (will be updated later) self.pose = pose322(dr_pose3) # estimated 2d pose self.cov = cov # cov in local frame (always 2d) self.transf_cov = None # cov in global frame self.points = points.astype(np.float32) # points in local frame (always 2d) self.transf_points = None # transformed points in global frame based on pose self.constraints = [] # Non-sequential constraints (key, odom) self.twist = None # twist message for publishing odom def update(self, new_pose, new_cov=None): self.pose = new_pose self.pose3 = n2g( ( new_pose.x(), new_pose.y(), self.dr_pose3.translation().z(), self.dr_pose3.rotation().roll(), self.dr_pose3.rotation().pitch(), new_pose.theta(), ), "Pose3", ) self.transf_points = Keyframe.transform_points(self.points, self.pose) if new_cov is not None: self.cov = new_cov if self.cov is not None: c, s = np.cos(self.pose.theta()), np.sin(self.pose.theta()) R = np.array([[c, -s], [s, c]]) self.transf_cov = np.array(self.cov) self.transf_cov[:2, :2] = R.dot(self.transf_cov[:2, :2]).dot(R.T) self.transf_cov[:2, 2] = R.dot(self.transf_cov[:2, 2]) self.transf_cov[2, :2] = self.transf_cov[2, :2].dot(R.T) @staticmethod def transform_points(points, pose): if len(points) == 0: return np.empty_like(points, np.float32) T = pose.matrix().astype(np.float32) return points.dot(T[:2, :2].T) + T[:2, 2] class InitializationResult(object): def __init__(self): # all points are in local frame self.source_points = np.zeros((0, 2)) self.target_points = np.zeros((0, 2)) self.source_key = None self.target_key = None self.source_pose = None self.target_pose = None # Cov for sampling self.cov = None self.occ = None self.status = None self.estimated_source_pose = None self.source_pose_samples = None def plot(self, title): # fmt: off plt.figure() # Plot in global frame points = Keyframe.transform_points(self.target_points, self.target_pose) plt.plot(points[:, 0], points[:, 1], "k.", ms=1, label="target points") plt.plot(self.source_pose.x(), self.source_pose.y(), "r+", ms=10) points = Keyframe.transform_points(self.source_points, self.source_pose) plt.plot(points[:, 0], points[:, 1], "r.", ms=1, label="source points (guess)") if self.cov is not None: c, s = np.cos(self.source_pose.theta()), np.sin(self.source_pose.theta()) R = np.array([[c, -s], [s, c]]) cov = R.dot(self.cov[:2, :2]).dot(R.T) plot_cov_ellipse((self.source_pose.x(), self.source_pose.y()), cov, nstd=3, fill=False, color="r") if self.estimated_source_pose is not None: plt.plot(self.estimated_source_pose.x(), self.estimated_source_pose.y(), "g+", ms=10) points = Keyframe.transform_points(self.source_points, self.estimated_source_pose) plt.plot(points[:, 0], points[:, 1], "g.", ms=1, label="source points (initialized)") if self.source_pose_samples is not None: poses = np.array(self.source_pose_samples) plt.scatter(poses[:, 0], poses[:, 1], c=poses[:, 3], s=1, label="pose samples") plt.colorbar() if self.occ: x0, y0, resolution, occ_arr = self.occ x1 = x0 + (occ_arr.shape[1] - 0.5) * resolution y1 = y0 + (occ_arr.shape[0] - 0.5) * resolution plt.imshow(occ_arr, origin='upper', extent=(x0, x1, y1, y0), cmap='Greys', vmin=0, vmax=1, alpha=0.5) plt.colorbar() plt.legend() plt.gca().invert_yaxis() plt.axis("equal") plt.title(str(self.status)) plt.savefig(title, dpi=100) plt.close("all") # fmt: on def save(self, filename): np.savez( filename, source_points=self.source_points, target_points=self.target_points, source_pose=g2n(self.source_pose), target_pose=g2n(self.target_pose), estimated_source_pose=g2n(self.estimated_source_pose), ) class ICPResult(object): def __init__(self, init_ret, use_samples=False, sample_eps=0.01): # all points are in local frame self.source_points = init_ret.source_points self.target_points = init_ret.target_points self.source_key = init_ret.source_key self.target_key = init_ret.target_key self.source_pose = init_ret.source_pose self.target_pose = init_ret.target_pose self.status = init_ret.status if init_ret.estimated_source_pose is not None: self.initial_transform = self.target_pose.between( init_ret.estimated_source_pose ) else: self.initial_transform = self.target_pose.between(self.source_pose) self.estimated_transform = None # Cov derived from ICP self.cov = None self.initial_transforms = None if use_samples and init_ret.source_pose_samples is not None: idx = np.argsort(init_ret.source_pose_samples[:, -1]) transforms = [ self.target_pose.between(n2g(g, "Pose2")) for g in init_ret.source_pose_samples[idx, :3] ] filtered = [transforms[0]] for b in transforms[1:]: d = np.linalg.norm(g2n(filtered[-1].between(b))) if d < sample_eps: continue else: filtered.append(b) self.initial_transforms = filtered self.sample_transforms = None # Whether the result is inserted to factor graph self.inserted = False def plot(self, title): # fmt: off plt.figure() # Plot in target frame plt.plot(self.target_points[:, 0], self.target_points[:, 1], "k.", ms=1, label="target points") plt.plot(self.initial_transform.x(), self.initial_transform.y(), "r+", ms=10) points = Keyframe.transform_points(self.source_points, self.initial_transform) plt.plot(points[:, 0], points[:, 1], "r.", ms=1, label="source points (guess)") if self.estimated_transform is not None: plt.plot(self.estimated_transform.x(), self.estimated_transform.y(), "g+", ms=10) points = Keyframe.transform_points(self.source_points, self.estimated_transform) plt.plot(points[:, 0], points[:, 1], "g.", ms=1, label="source points (estimated)") if self.cov is not None: cov = self.cov[:2, :2] c, s = np.cos(self.estimated_transform.theta()), np.sin(self.estimated_transform.theta()) R = np.array([[c, -s], [s, c]]) cov = R.dot(cov).dot(R.T) plot_cov_ellipse((self.estimated_transform.x(), self.estimated_transform.y()), cov, nstd=3, color="g", fill=False) if self.sample_transforms is not None: plt.scatter(self.sample_transforms[:, 0], self.sample_transforms[:, 1], color='c', s=1, label="sample estimate") plt.legend() plt.axis("equal") plt.gca().invert_yaxis() plt.title(str(self.status)) plt.savefig(title, dpi=100) plt.close("all") # fmt: on def save(self, filename): np.savez( filename, source_points=self.source_points, target_points=self.target_points, source_pose=g2n(self.source_pose), target_pose=g2n(self.target_pose), initial_transform=g2n(self.initial_transform), estimated_transform=g2n(self.estimated_transform), cov=self.cov, ) class SMParams(object): def __init__(self): # Use occupancy probability map matching to initialize ICP self.initialization = None # Global search params self.initialization_params = None # Minimum number of points self.min_points = None # Max deviation from initial guess self.max_translation = None self.max_rotation = None # Min separation between source key and the last target frame self.min_st_sep = None # Number of source frames to build source points # Not used in SSM self.source_frames = None # Number of target frames to build target points # Not used in NSSM self.target_frames = None # Number of ICP instances to run to calculate cov self.cov_samples = None class SLAM(object): def __init__(self): self.oculus = OculusProperty() # Create a new factor when # - |ti - tj| > min_duration and # - |xi - xj| > max_translation or # - |ri - rj| > max_rotation self.keyframe_duration = None self.keyframe_translation = None self.keyframe_rotation = None # List of keyframes self.keyframes = [] # Current (non-key)frame with real-time pose update # FIXME propagate cov from previous keyframe self.current_frame = None self.isam_params = gtsam.ISAM2Params() self.graph = gtsam.NonlinearFactorGraph() self.values = gtsam.Values() # [x, y, theta] self.prior_sigmas = None # Noise model without ICP # [x, y, theta] self.odom_sigmas = None # Downsample point cloud for ICP and publishing self.point_resolution = 0.5 # Noise radius in overlap self.point_noise = 0.5 self.ssm_params = SMParams() self.ssm_params.initialization = True self.ssm_params.initialization_params = 50, 1, 0.01 self.ssm_params.min_st_sep = 1 self.ssm_params.min_points = 50 self.ssm_params.max_translation = 2.0 self.ssm_params.max_rotation = np.pi / 6 self.ssm_params.target_frames = 3 # Don't use ICP covariance self.ssm_params.cov_samples = 0 self.nssm_params = SMParams() self.nssm_params.initialization = True self.nssm_params.initialization_params = 100, 5, 0.01 self.nssm_params.min_st_sep = 10 self.nssm_params.min_points = 100 self.nssm_params.max_translation = 6.0 self.nssm_params.max_rotation = np.pi / 2 self.nssm_params.source_frames = 5 self.nssm_params.cov_samples = 30 self.icp = pcl.ICP() # Pairwise consistent measurement self.nssm_queue = [] self.pcm_queue_size = 5 self.min_pcm = 3 # Use fixed noise model in two cases # - Sequential scan matching # - ICP cov is too small in non-sequential scan matching # [x, y, theta] self.icp_odom_sigmas = None # FIXME Can't save fig in online mode self.save_fig = False self.save_data = False @property def current_keyframe(self): return self.keyframes[-1] @property def current_key(self): return len(self.keyframes) def configure(self): assert ( self.nssm_params.cov_samples == 0 or self.nssm_params.cov_samples < self.nssm_params.initialization_params[0] * self.nssm_params.initialization_params[1] ) assert ( self.ssm_params.cov_samples == 0 or self.ssm_params.cov_samples < self.ssm_params.initialization_params[0] * self.ssm_params.initialization_params[1] ) assert self.nssm_params.source_frames < self.nssm_params.min_st_sep self.prior_model = self.create_noise_model(self.prior_sigmas) self.odom_model = self.create_noise_model(self.odom_sigmas) self.icp_odom_model = self.create_noise_model(self.icp_odom_sigmas) self.isam = gtsam.ISAM2(self.isam_params) def get_states(self): """ Retrieve all states as array which are represented as [time, pose2, dr_pose3, cov] - pose2: [x, y, yaw] - dr_pose3: [x, y, z, roll, pitch, yaw] - cov: 3 x 3 """ states = np.zeros( self.current_key, dtype=[ ("time", np.float64), ("pose", np.float32, 3), ("dr_pose3", np.float32, 6), ("cov", np.float32, 9), ], ) # Update all values = self.isam.calculateEstimate() for key in range(self.current_key): pose = values.atPose2(X(key)) cov = self.isam.marginalCovariance(X(key)) self.keyframes[key].update(pose, cov) t0 = self.keyframes[0].time for key in range(self.current_key): keyframe = self.keyframes[key] states[key]["time"] = (keyframe.time - t0).to_sec() states[key]["pose"] = g2n(keyframe.pose) states[key]["dr_pose3"] = g2n(keyframe.dr_pose3) states[key]["cov"] = keyframe.transf_cov.ravel() return states @staticmethod def sample_pose(pose, covariance): delta = np.random.multivariate_normal(np.zeros(3), covariance) return pose.compose(n2g(delta, "Pose2")) def sample_current_pose(self): return self.sample_pose(self.current_keyframe.pose, self.current_keyframe.cov) def get_points(self, frames=None, ref_frame=None, return_keys=False): """ - Accumulate points in frames - Transform them to reference frame - Downsample points - Return the corresponding keys for every point """ if frames is None: frames = range(self.current_key) if ref_frame is not None: if isinstance(ref_frame, gtsam.Pose2): ref_pose = ref_frame else: ref_pose = self.keyframes[ref_frame].pose # Add empty point in case all points are empty if return_keys: all_points = [np.zeros((0, 3), np.float32)] else: all_points = [np.zeros((0, 2), np.float32)] for key in frames: if ref_frame is not None: points = self.keyframes[key].points pose = self.keyframes[key].pose transf = ref_pose.between(pose) transf_points = Keyframe.transform_points(points, transf) else: transf_points = self.keyframes[key].transf_points if return_keys: transf_points = np.c_[ transf_points, key * np.ones((len(transf_points), 1)) ] all_points.append(transf_points) all_points = np.concatenate(all_points) if return_keys: return pcl.downsample( all_points[:, :2], all_points[:, (2,)], self.point_resolution ) else: return pcl.downsample(all_points, self.point_resolution) def compute_icp(self, source_points, target_points, guess=gtsam.Pose2()): source_points = np.array(source_points, np.float32) target_points = np.array(target_points, np.float32) guess = guess.matrix() message, T = self.icp.compute(source_points, target_points, guess) # ICP covariance is too small # cov = self.icp.getCovariance() x, y = T[:2, 2] theta = np.arctan2(T[1, 0], T[0, 0]) return message, gtsam.Pose2(x, y, theta) def compute_icp_with_cov(self, source_points, target_points, guesses): """ guesses: list of initial samples """ source_points = np.array(source_points, np.float32) target_points = np.array(target_points, np.float32) sample_transforms = [] for g in guesses: g = g.matrix() message, T = self.icp.compute(source_points, target_points, g) if message == "success": x, y = T[:2, 2] theta = np.arctan2(T[1, 0], T[0, 0]) sample_transforms.append((x, y, theta)) sample_transforms = np.array(sample_transforms) if len(sample_transforms) < 5: return "Too few samples for covariance computation", None, None, None # Can't use np.cov(). Too many outliers try: fcov = MinCovDet(False, support_fraction=0.8).fit(sample_transforms) except ValueError as e: return "Failed to calculate covariance", None, None, None m = n2g(fcov.location_, "Pose2") cov = fcov.covariance_ # unrotate to local frame R = m.rotation().matrix() cov[:2, :] = R.T.dot(cov[:2, :]) cov[:, :2] = cov[:, :2].dot(R) default_cov = np.diag(self.icp_odom_sigmas) ** 2 if np.linalg.det(cov) < np.linalg.det(default_cov): cov = default_cov return "success", m, cov, sample_transforms def get_overlap( self, source_points, target_points, source_pose=None, target_pose=None, return_indices=False, ): if source_pose: source_points = Keyframe.transform_points(source_points, source_pose) if target_pose: target_points = Keyframe.transform_points(target_points, target_pose) indices, dists = pcl.match(target_points, source_points, 1, self.point_noise) if return_indices: return np.sum(indices != -1), indices else: return np.sum(indices != -1) def add_prior(self, keyframe): # pose = gtsam.Pose2() pose = keyframe.pose factor = gtsam.PriorFactorPose2(X(0), pose, self.prior_model) self.graph.add(factor) self.values.insert(X(0), pose) def add_odometry(self, keyframe): dt = (keyframe.time - self.keyframes[-1].time).to_sec() dr_odom = self.keyframes[-1].pose.between(keyframe.pose) factor = gtsam.BetweenFactorPose2( X(self.current_key - 1), X(self.current_key), dr_odom, self.odom_model ) self.graph.add(factor) self.values.insert(X(self.current_key), keyframe.pose) def get_map(self, frames, resolution=None): # Implemented in slam_node raise NotImplementedError def get_matching_cost_subroutine1( self, source_points, source_pose, target_points, target_pose, source_pose_cov=None, ): """ Cost = - sum_i log p_i(Tx s_i \in S | t_i \in T), given transform Tx, source points S, target points T / - prob_tp if there exists ||Tx s_i - t_i|| < sigma, p_i(z_i | T) = | \ - prob_fp otherwise """ # pose_samples = [] # target_tree = KDTree(target_points) # def subroutine(x): # # x = [x, y, theta] # delta = n2g(x, "Pose2") # sample_source_pose = source_pose.compose(delta) # sample_transform = target_pose.between(sample_source_pose) # points = Keyframe.transform_points(source_points, sample_transform) # dists, indices = target_tree.query( # points, distance_upper_bound=self.point_noise # ) # cost = -np.sum(indices != len(target_tree.data)) # pose_samples.append(np.r_[g2n(sample_source_pose), cost]) # return cost # return subroutine, pose_samples pose_samples = [] xmin, ymin = np.min(target_points, axis=0) - 2 * self.point_noise xmax, ymax = np.max(target_points, axis=0) + 2 * self.point_noise resolution = self.point_noise / 10.0 xs = np.arange(xmin, xmax, resolution) ys = np.arange(ymin, ymax, resolution) target_grids = np.zeros((len(ys), len(xs)), np.uint8) r = np.int32(np.round((target_points[:, 1] - ymin) / resolution)) c = np.int32(np.round((target_points[:, 0] - xmin) / resolution)) r = np.clip(r, 0, target_grids.shape[0] - 1) c = np.clip(c, 0, target_grids.shape[1] - 1) target_grids[r, c] = 255 dilate_hs = int(np.ceil(self.point_noise / resolution)) dilate_size = 2 * dilate_hs + 1 kernel = cv2.getStructuringElement( cv2.MORPH_ELLIPSE, (dilate_size, dilate_size), (dilate_hs, dilate_hs) ) target_grids = cv2.dilate(target_grids, kernel) # # Calculate distance to the nearest points # target_grids = cv2.bitwise_not(target_grids) # target_grids = cv2.distanceTransform(target_grids, cv2.DIST_L2, 3) # target_grids = 1.0 - 0.2 * target_grids / self.point_noise # target_grids = np.clip(target_grids, 0.2, 1.0) source_pose_info = np.linalg.inv(source_pose_cov) def subroutine(x): # x = [x, y, theta] delta = n2g(x, "Pose2") sample_source_pose = source_pose.compose(delta) sample_transform = target_pose.between(sample_source_pose) points = Keyframe.transform_points(source_points, sample_transform) r = np.int32(np.round((points[:, 1] - ymin) / resolution)) c = np.int32(np.round((points[:, 0] - xmin) / resolution)) inside = ( (0 <= r) & (r < target_grids.shape[0]) & (0 <= c) & (c < target_grids.shape[1]) ) cost = -np.sum(target_grids[r[inside], c[inside]] > 0) pose_samples.append(np.r_[g2n(sample_source_pose), cost]) return cost return subroutine, pose_samples def get_matching_cost_subroutine2(self, source_points, source_pose, occ): """ Ceres scan matching Cost = - sum_i ||1 - M_nearest(Tx s_i)||^2, given transform Tx, source points S, occupancy map M """ pose_samples = [] x0, y0, resolution, occ_arr = occ def subroutine(x): # x = [x, y, theta] delta = n2g(x, "Pose2") sample_pose = source_pose.compose(delta) xy = Keyframe.transform_points(source_points, sample_pose) r = np.int32(np.round((xy[:, 1] - y0) / resolution)) c = np.int32(np.round((xy[:, 0] - x0) / resolution)) sel = (r >= 0) & (c >= 0) & (r < occ_arr.shape[0]) & (c < occ_arr.shape[1]) hit_probs_inside_map = occ_arr[r[sel], c[sel]] num_hits_outside_map = len(xy) - np.sum(sel) cost = ( np.sum((1.0 - hit_probs_inside_map) ** 2) + num_hits_outside_map * (1.0 - 0.5) ** 2 ) cost = np.sqrt(cost / len(source_points)) pose_samples.append(np.r_[g2n(sample_pose), cost]) return cost return subroutine, pose_samples ####################################################### # TODO Merge SSM and NSSM together ####################################################### def initialize_sequential_scan_matching(self, keyframe): ret = InitializationResult() ret.status = STATUS.SUCCESS ret.status.description = None # Match current keyframe to previous k frames ret.source_key = self.current_key ret.target_key = self.current_key - 1 ret.source_pose = keyframe.pose ret.target_pose = self.current_keyframe.pose # Accumulate reference points from previous k frames ret.source_points = keyframe.points target_frames = range(self.current_key)[-self.ssm_params.target_frames :] ret.target_points = self.get_points(target_frames, ret.target_key) ret.cov = np.diag(self.odom_sigmas) if len(ret.source_points) < self.ssm_params.min_points: ret.status = STATUS.NOT_ENOUGH_POINTS ret.status.description = "source points {}".format(len(ret.source_points)) return ret if len(ret.target_points) < self.ssm_params.min_points: ret.status = STATUS.NOT_ENOUGH_POINTS ret.status.description = "target points {}".format(len(ret.target_points)) return ret if not self.ssm_params.initialization: return ret with CodeTimer("SLAM - sequential scan matching - sampling"): pose_stds = np.array([self.odom_sigmas]).T pose_bounds = 5.0 * np.c_[-pose_stds, pose_stds] # ret.occ = self.get_map(target_frames) # subroutine, pose_samples = self.get_matching_cost_subroutine2( # ret.source_points, # ret.source_pose, # ret.occ, # ) subroutine, pose_samples = self.get_matching_cost_subroutine1( ret.source_points, ret.source_pose, ret.target_points, ret.target_pose, ret.cov, ) result = shgo( func=subroutine, bounds=pose_bounds, n=self.ssm_params.initialization_params[0], iters=self.ssm_params.initialization_params[1], sampling_method="sobol", minimizer_kwargs={ "options": {"ftol": self.ssm_params.initialization_params[2]} }, ) if result.success: ret.source_pose_samples = np.array(pose_samples) ret.estimated_source_pose = ret.source_pose.compose(n2g(result.x, "Pose2")) ret.status.description = "matching cost {:.2f}".format(result.fun) if self.save_data: ret.save("step-{}-ssm-sampling.npz".format(self.current_key)) else: ret.status = STATUS.INITIALIZATION_FAILURE ret.status.description = result.message return ret def add_sequential_scan_matching(self, keyframe): """ Add sequential scan matching factor. kf[t - k] -- ... -- kf[t - 2] -- kf[t - 1] -- kf[t] |_________|________|_____________| | target points in kf[t - 1] source points """ ret = self.initialize_sequential_scan_matching(keyframe) if self.save_fig: ret.plot("step-{}-ssm-sampling.png".format(self.current_key)) if not ret.status: self.add_odometry(keyframe) return ret2 = ICPResult(ret, self.ssm_params.cov_samples > 0) # Compute ICP here with a timer with CodeTimer("SLAM - sequential scan matching - ICP"): if self.ssm_params.initialization and self.ssm_params.cov_samples > 0: message, odom, cov, sample_transforms = self.compute_icp_with_cov( ret2.source_points, ret2.target_points, ret2.initial_transforms[: self.ssm_params.cov_samples], ) if message != "success": ret2.status = STATUS.NOT_CONVERGED ret2.status.description = message else: ret2.estimated_transform = odom ret2.cov = cov ret2.sample_transforms = sample_transforms ret2.status.description = "{} samples".format( len(ret2.sample_transforms) ) else: message, odom = self.compute_icp( ret2.source_points, ret2.target_points, ret2.initial_transform ) if message != "success": ret2.status = STATUS.NOT_CONVERGED ret2.status.description = message else: ret2.estimated_transform = odom ret2.status.description = "" # Add some failure detections # The transformation compared to dead reckoning can't be too large if ret2.status: delta = ret2.initial_transform.between(ret2.estimated_transform) delta_translation = delta.translation().norm() delta_rotation = abs(delta.theta()) if ( delta_translation > self.ssm_params.max_translation or delta_rotation > self.ssm_params.max_rotation ): ret2.status = STATUS.LARGE_TRANSFORMATION ret2.status.description = "trans {:.2f} rot {:.2f}".format( delta_translation, delta_rotation ) # There must be enough overlap between two point clouds. if ret2.status: overlap = self.get_overlap( ret2.source_points, ret2.target_points, ret2.estimated_transform ) if overlap < self.ssm_params.min_points: ret2.status = STATUS.NOT_ENOUGH_OVERLAP ret2.status.description = "overlap {}".format(overlap) if ret2.status: if ret2.cov is not None: icp_odom_model = self.create_full_noise_model(ret2.cov) else: icp_odom_model = self.icp_odom_model factor = gtsam.BetweenFactorPose2( X(ret2.target_key), X(ret2.source_key), ret2.estimated_transform, icp_odom_model, ) self.graph.add(factor) self.values.insert( X(ret2.source_key), ret2.target_pose.compose(ret2.estimated_transform) ) ret2.inserted = True if self.save_data: ret2.save("step-{}-ssm-icp.npz".format(self.current_key)) else: self.add_odometry(keyframe) if self.save_fig: ret2.plot("step-{}-ssm-icp.png".format(self.current_key)) def initialize_nonsequential_scan_matching(self): ret = InitializationResult() ret.status = STATUS.SUCCESS ret.status.description = None ret.source_key = self.current_key - 1 ret.source_pose = self.current_frame.pose ret.estimated_source_pose = ret.source_pose source_frames = range( ret.source_key, ret.source_key - self.nssm_params.source_frames, -1 ) ret.source_points = self.get_points(source_frames, ret.source_key) if len(ret.source_points) < self.nssm_params.min_points: ret.status = STATUS.NOT_ENOUGH_POINTS ret.status.description = "source points {}".format(len(ret.source_points)) return ret # Find target points for matching # Limit searching keyframes target_frames = range(self.current_key - self.nssm_params.min_st_sep) # Target points in global frame target_points, target_keys = self.get_points(target_frames, None, True) # Further limit points based on source pose uncertainty sel = np.zeros(len(target_points), np.bool) for source_frame in source_frames: pose = self.keyframes[source_frame].pose cov = self.keyframes[source_frame].cov translation_std = np.sqrt(np.max(np.linalg.eigvals(cov[:2, :2]))) rotation_std = np.sqrt(cov[2, 2]) range_bound = translation_std * 5.0 + self.oculus.max_range bearing_bound = rotation_std * 5.0 + self.oculus.horizontal_aperture * 0.5 local_points = Keyframe.transform_points(target_points, pose.inverse()) ranges = np.linalg.norm(local_points, axis=1) bearings = np.arctan2(local_points[:, 1], local_points[:, 0]) sel_i = (ranges < range_bound) & (abs(bearings) < bearing_bound) sel |= sel_i target_points = target_points[sel] target_keys = target_keys[sel] target_frames, counts = np.unique(np.int32(target_keys), return_counts=True) target_frames = target_frames[counts > 10] counts = counts[counts > 10] if len(target_frames) == 0 or len(target_points) < self.nssm_params.min_points: ret.status = STATUS.NOT_ENOUGH_POINTS ret.status.description = "target points {}".format(len(target_points)) return ret ret.target_key = target_frames[np.argmax(counts)] ret.target_pose = self.keyframes[ret.target_key].pose ret.target_points = Keyframe.transform_points( target_points, ret.target_pose.inverse() ) ret.cov = self.keyframes[ret.source_key].cov if not self.nssm_params.initialization: return ret with CodeTimer("SLAM - nonsequential scan matching - sampling"): translation_std = np.sqrt(np.max(np.linalg.eigvals(cov[:2, :2]))) rotation_std = np.sqrt(cov[2, 2]) pose_stds = np.array([[translation_std, translation_std, rotation_std]]).T pose_bounds = 5.0 * np.c_[-pose_stds, pose_stds] # ret.occ = self.get_map(target_frames) # subroutine, pose_samples = self.get_matching_cost_subroutine2( # ret.source_points, # ret.source_pose, # ret.occ, # ) subroutine, pose_samples = self.get_matching_cost_subroutine1( ret.source_points, ret.source_pose, ret.target_points, ret.target_pose, ret.cov, ) result = shgo( func=subroutine, bounds=pose_bounds, n=self.nssm_params.initialization_params[0], iters=self.nssm_params.initialization_params[1], sampling_method="sobol", minimizer_kwargs={ "options": {"ftol": self.nssm_params.initialization_params[2]} }, ) if not result.success: ret.status = STATUS.INITIALIZATION_FAILURE ret.status.description = result.message return ret delta = n2g(result.x, "Pose2") ret.estimated_source_pose = ret.source_pose.compose(delta) ret.source_pose_samples = np.array(pose_samples) ret.status.description = "matching cost {:.2f}".format(result.fun) # Refine target key by searching for the pose with maximum overlap # with current source points estimated_source_points = Keyframe.transform_points( ret.source_points, ret.estimated_source_pose ) overlap, indices = self.get_overlap( estimated_source_points, target_points, return_indices=True ) target_frames1, counts1 = np.unique( np.int32(target_keys[indices[indices != -1]]), return_counts=True ) if len(counts1) == 0: ret.status = STATUS.NOT_ENOUGH_OVERLAP ret.status.description = "0" return ret if self.save_data: ret.save("step-{}-nssm-sampling.npz".format(self.current_key - 1)) ret.target_key = target_frames1[np.argmax(counts1)] ret.target_pose = self.keyframes[ret.target_key].pose # Recalculate target points with new target key in target frame ret.target_points = self.get_points(target_frames, ret.target_key) return ret def add_nonsequential_scan_matching(self): """ Add non-sequential scan matching factor. kf[m - k1] -- ... -- kf[m] -- ... -- kf[m + k2] -- ... -- kf[t - p] -- ... -- kf[t] |____ _____|________|________________| |_______________| target points around kf[m] source points """ if self.current_key < self.nssm_params.min_st_sep: return ret = self.initialize_nonsequential_scan_matching() if self.save_fig: ret.plot("step-{}-nssm-sampling.png".format(self.current_key - 1)) if not ret.status: return ret2 = ICPResult(ret, self.nssm_params.cov_samples > 0) # sample_deltas = np.random.uniform(-1, 1, (self.nssm_params.cov_samples, 3)) # sample_deltas[:, 0] *= self.icp_odom_sigmas[0] * 10 # sample_deltas[:, 1] *= self.icp_odom_sigmas[1] * 10 # sample_deltas[:, 2] *= self.icp_odom_sigmas[2] * 10 # ret2.initial_transforms = [ # ret2.initial_transform.compose(n2g(sample_delta, "Pose2")) # for sample_delta in sample_deltas # ] # Compute ICP here with a timer with CodeTimer("SLAM - nonsequential scan matching - ICP"): if self.nssm_params.initialization and self.nssm_params.cov_samples > 0: message, odom, cov, sample_transforms = self.compute_icp_with_cov( ret2.source_points, ret2.target_points, ret2.initial_transforms[: self.nssm_params.cov_samples], ) if message != "success": ret2.status = STATUS.NOT_CONVERGED ret2.status.description = message else: ret2.estimated_transform = odom ret2.cov = cov ret2.sample_transforms = sample_transforms ret2.status.description = "{} samples".format( len(ret2.sample_transforms) ) else: message, odom = self.compute_icp( ret2.source_points, ret2.target_points, ret2.initial_transform ) if message != "success": ret2.status = STATUS.NOT_CONVERGED ret2.status.description = message else: ret2.estimated_transform = odom ret.status.description = "" # Add some failure detections # The transformation compared to initial guess can't be too large if ret2.status: delta = ret2.initial_transform.between(ret2.estimated_transform) delta_translation = delta.translation().norm() delta_rotation = abs(delta.theta()) if ( delta_translation > self.nssm_params.max_translation or delta_rotation > self.nssm_params.max_rotation ): ret2.status = STATUS.LARGE_TRANSFORMATION ret2.status.description = "trans {:.2f} rot {:.2f}".format( delta_translation, delta_rotation ) # There must be enough overlap between two point clouds. if ret2.status: overlap = self.get_overlap( ret2.source_points, ret2.target_points[:, :2], ret2.estimated_transform ) if overlap < self.nssm_params.min_points: ret2.status = STATUS.NOT_ENOUGH_OVERLAP ret2.status.description = str(overlap) if ret2.status: if self.save_data: ret2.save("step-{}-nssm-icp.npz".format(self.current_key - 1)) # # DCS # if ret2.cov is not None: # icp_odom_model = self.create_robust_full_noise_model(ret2.cov) # else: # icp_odom_model = self.create_robust_noise_model(self.icp_odom_sigmas) # factor = gtsam.BetweenFactorPose2( # X(ret2.target_key), # X(ret2.source_key), # ret2.estimated_transform, # icp_odom_model, # ) # self.graph.add(factor) # self.keyframes[ret2.source_key].constraints.append( # (ret2.target_key, ret2.estimated_transform) # ) # ret2.inserted = True while ( self.nssm_queue and ret2.source_key - self.nssm_queue[0].source_key > self.pcm_queue_size ): self.nssm_queue.pop(0) self.nssm_queue.append(ret2) pcm = self.verify_pcm(self.nssm_queue) for m in pcm: ret2 = self.nssm_queue[m] if not ret2.inserted: if ret2.cov is not None: icp_odom_model = self.create_full_noise_model(ret2.cov) else: icp_odom_model = self.icp_odom_model factor = gtsam.BetweenFactorPose2( X(ret2.target_key), X(ret2.source_key), ret2.estimated_transform, icp_odom_model, ) self.graph.add(factor) self.keyframes[ret2.source_key].constraints.append( (ret2.target_key, ret2.estimated_transform) ) ret2.inserted = True if self.save_fig: ret2.plot("step-{}-nssm-icp.png".format(self.current_key - 1)) return ret2 def is_keyframe(self, frame): if not self.keyframes: return True duration = frame.time - self.current_keyframe.time if duration < self.keyframe_duration: return False dr_odom = self.keyframes[-1].dr_pose.between(frame.dr_pose) translation = dr_odom.translation().norm() rotation = abs(dr_odom.theta()) return ( translation > self.keyframe_translation or rotation > self.keyframe_rotation ) def create_full_noise_model(self, cov): return gtsam.noiseModel_Gaussian.Covariance(cov) def create_robust_full_noise_model(self, cov): model = gtsam.noiseModel_Gaussian.Covariance(cov) robust = gtsam.noiseModel_mEstimator_DCS.Create(1.0) return gtsam.noiseModel_Robust.Create(robust, model) def create_noise_model(self, *sigmas): return gtsam.noiseModel_Diagonal.Sigmas(np.r_[sigmas]) def create_robust_noise_model(self, *sigmas): model = gtsam.noiseModel_Diagonal.Sigmas(np.r_[sigmas]) robust = gtsam.noiseModel_mEstimator_DCS.Create(1.0) return gtsam.noiseModel_Robust.Create(robust, model) def update_factor_graph(self, keyframe=None): if keyframe: self.keyframes.append(keyframe) self.isam.update(self.graph, self.values) self.graph.resize(0) self.values.clear() # Update all trajectory values = self.isam.calculateEstimate() for x in range(values.size()): pose = values.atPose2(X(x)) self.keyframes[x].update(pose) # Only update latest cov cov = self.isam.marginalCovariance(X(values.size() - 1)) self.keyframes[-1].update(pose, cov) for ret in self.nssm_queue: ret.source_pose = self.keyframes[ret.source_key].pose ret.target_pose = self.keyframes[ret.target_key].pose if ret.inserted: ret.estimated_transform = ret.target_pose.between(ret.source_pose) def verify_pcm(self, queue): """ Get the pairwise consistent measurements. Consistency of two measurements Tz_{il}, Tz_{jk} is defined as Tz_{jk}^{-1} x (T_{j} x T_{ij}^{-1} x Tz_{il} T_{lk}), l < k nssm_{il} nssm_{jk} ------- ------- | | | | | i <-|-------------|-- j | | | | | | | | v | | v | | l --|-------------|-> k | ------- ------- """ if len(queue) < self.min_pcm: return [] G = defaultdict(list) for (a, ret_il), (b, ret_jk) in combinations(zip(range(len(queue)), queue), 2): pi = ret_il.target_pose pj = ret_jk.target_pose pil = ret_il.estimated_transform plk = ret_il.source_pose.between(ret_jk.source_pose) pjk1 = ret_jk.estimated_transform pjk2 = pj.between(pi.compose(pil).compose(plk)) error = gtsam.Pose2.Logmap(pjk1.between(pjk2)) md = error.dot(np.linalg.inv(ret_jk.cov)).dot(error) # chi2.ppf(0.99, 3) = 11.34 if md < 11.34: G[a].append(b) G[b].append(a) maximal_cliques = list(self.find_cliques(G)) if not maximal_cliques: return [] maximum_clique = sorted(maximal_cliques, key=len, reverse=True)[0] if len(maximum_clique) < self.min_pcm: return [] return maximum_clique def find_cliques(self, G): """Returns all maximal cliques in an undirected graph. """ if len(G) == 0: return adj = {u: {v for v in G[u] if v != u} for u in G} Q = [None] subg = set(G) cand = set(G) u = max(subg, key=lambda u: len(cand & adj[u])) ext_u = cand - adj[u] stack = [] try: while True: if ext_u: q = ext_u.pop() cand.remove(q) Q[-1] = q adj_q = adj[q] subg_q = subg & adj_q if not subg_q: yield Q[:] else: cand_q = cand & adj_q if cand_q: stack.append((subg, cand, ext_u)) Q.append(None) subg = subg_q cand = cand_q u = max(subg, key=lambda u: len(cand & adj[u])) ext_u = cand - adj[u] else: Q.pop() subg, cand, ext_u = stack.pop() except IndexError: pass ```
{ "source": "jinkunw/em_exploration", "score": 3 }
#### File: em_exploration/scripts/pyss2d.py ```python import math from ConfigParser import SafeConfigParser import numpy as np from scipy.stats.distributions import chi2 import ss2d from utils import * def read_sensor_params(config): sensor_params = ss2d.BearingRangeSensorModelParameter() sensor_params.bearing_noise = math.radians(config.getfloat('Sensor Model', 'bearing_noise')) # sensor_params.range_noise = math.radians(config.getfloat('Sensor Model', 'range_noise')) sensor_params.range_noise = config.getfloat('Sensor Model', 'range_noise') sensor_params.min_bearing = math.radians(config.getfloat('Sensor Model', 'min_bearing')) sensor_params.max_bearing = math.radians(config.getfloat('Sensor Model', 'max_bearing')) sensor_params.min_range = config.getfloat('Sensor Model', 'min_range') sensor_params.max_range = config.getfloat('Sensor Model', 'max_range') return sensor_params def read_control_params(config): control_params = ss2d.SimpleControlModelParameter() control_params.rotation_noise = math.radians(config.getfloat('Control Model', 'rotation_noise')) control_params.translation_noise = config.getfloat('Control Model', 'translation_noise') return control_params def read_environment_params(config): environment_params = ss2d.EnvironmentParameter() environment_params.min_x = config.getfloat('Environment', 'min_x') environment_params.max_x = config.getfloat('Environment', 'max_x') environment_params.min_y = config.getfloat('Environment', 'min_y') environment_params.max_y = config.getfloat('Environment', 'max_y') environment_params.safe_distance = config.getfloat('Environment', 'safe_distance') return environment_params def read_virtual_map_params(config, map_params): virtual_map_params = ss2d.VirtualMapParameter(map_params) virtual_map_params.resolution = config.getfloat('Virtual Map', 'resolution') virtual_map_params.sigma0 = config.getfloat('Virtual Map', 'sigma0') virtual_map_params.num_samples = config.getint('Virtual Map', 'num_samples') return virtual_map_params def read_map_params(config, ext=5.0): map_params = ss2d.EnvironmentParameter() map_params.min_x = config.getfloat('Environment', 'min_x') - ext map_params.max_x = config.getfloat('Environment', 'max_x') + ext map_params.min_y = config.getfloat('Environment', 'min_y') - ext map_params.max_y = config.getfloat('Environment', 'max_y') + ext map_params.safe_distance = config.getfloat('Environment', 'safe_distance') return map_params class SS2D(object): def __init__(self, config, verbose=False): if isinstance(config, str): self._config = load_config(config) elif isinstance(config, SafeConfigParser): self._config = config else: print('Config type not supported!') self._sensor_params = read_sensor_params(self._config) self._control_params = read_control_params(self._config) self._environment_params = read_environment_params(self._config) self._map_params = read_map_params(self._config) self._virtual_map_params = read_virtual_map_params(self._config, self._map_params) x0 = self._config.getfloat('Simulator', 'x0') y0 = self._config.getfloat('Simulator', 'y0') theta0 = math.radians(self._config.getfloat('Simulator', 'theta0')) sigma_x0 = self._config.getfloat('Simulator', 'sigma_x0') sigma_y0 = self._config.getfloat('Simulator', 'sigma_y0') sigma_theta0 = math.radians(self._config.getfloat('Simulator', 'sigma_theta0')) num_random_landmarks = self._config.getint('Simulator', 'num') seed = self._config.getint('Simulator', 'seed') if seed < 0: seed = int(time() * 1e6) self._sim = ss2d.Simulator2D(self._sensor_params, self._control_params, seed) self._sim.initialize_vehicle(ss2d.Pose2(x0, y0, theta0)) self._slam = ss2d.SLAM2D(self._map_params) self._virtual_map = ss2d.VirtualMap(self._virtual_map_params, seed) if self._config.has_section('Landmarks') and self._config.has_option('Landmarks', 'x') and \ self._config.has_option('Landmarks', 'y'): x = eval(self._config.get('Landmarks', 'x')) y = eval(self._config.get('Landmarks', 'y')) landmarks = [] for xi, yi in zip(x, y): landmarks.append(ss2d.Point2(xi, yi)) self._sim.random_landmarks(landmarks, num_random_landmarks, self._environment_params) else: self._sim.random_landmarks([], num_random_landmarks, self._environment_params) self.verbose = verbose if self.verbose: self._sim.pprint() self._virtual_map_params.pprint() self._slam.pprint() initial_state = ss2d.VehicleBeliefState(self._sim.vehicle, np.diag([1.0 / sigma_x0 ** 2, 1.0 / sigma_y0 ** 2, 1.0 / sigma_theta0 ** 2])) self.step = 0 self._cleared = True self._da_ground_truth = {} self._slam.add_prior(initial_state) self.measure() self.optimize() self.step += 1 def move(self, odom): odom = ss2d.Pose2(odom[0], odom[1], odom[2]) _, self._control_state = self._sim.move(odom, True) self._slam.add_odometry(self._control_state) def measure(self): self._measurements = self._sim.measure() for key, m in self._measurements: self._slam.add_measurement(key, m) return def optimize(self): self._slam.optimize(update_covariance=True) def update_virtual_map(self, update_probability=False, update_information=True): if update_probability: self._virtual_map.update_probability(self._slam, self._sim.sensor_model) if update_information: self._virtual_map.update_information(self._slam.map, self._sim.sensor_model) def simulate(self, odom, core=True): self.move(odom) obstacle = False ############################### measurements = self._sim.measure() landmarks = [key for key, landmark in self._slam.map.iter_landmarks()] for key, m in measurements: if self._cleared: if m.range < self._environment_params.safe_distance: obstacle = True self._cleared = False break else: if key not in landmarks and m.range < self._environment_params.safe_distance: obstacle = True self._cleared = False break if not obstacle and core: self._cleared = True ############################### if not core and not obstacle: return obstacle self.step += 1 self.measure() self.optimize() self.update_virtual_map(True, True) return obstacle def simulate_simple(self, odom): self.move(odom) self.measure() self.optimize() self.update_virtual_map(True, True) self.step += 1 @property def distance(self): return self._slam.map.distance @property def vehicle_position(self): return self._slam.map.get_current_vehicle().pose @property def map(self): return self._slam.map @property def environment(self): return self._sim.environment def plot(self, autoscale=False): plot_environment(self._sim.environment, label=False) plot_pose(self._sim.vehicle, self._sensor_params) plot_measurements(self._sim.vehicle, self._measurements, label=False) plot_map(self._slam.map, label=True) if autoscale: plt.gca().autoscale() xlim = plt.gca().get_xlim() ylim = plt.gca().get_ylim() plot_virtual_map(self._virtual_map, self._map_params) if autoscale: plt.gca().set_xlim(xlim) plt.gca().set_ylim(ylim) # plot_samples(self._virtual_map) def savefig(self, figname=None): plot_environment(self._sim.environment, label=False) plot_pose(self._sim.vehicle, self._sensor_params) plot_measurements(self._sim.vehicle, self._measurements, label=False) plot_map(self._slam.map, label=True) plot_virtual_map(self._virtual_map, self._map_params) # plot_samples(self._virtual_map) if figname is None: figname = 'step{}.png'.format(self.step) plt.savefig(figname, dpi=200, bbox='tight') plt.close() if __name__ == '__main__': import sys ss = SS2D(sys.path[0] + '/pyss2d.ini') ss.savefig() for step in range(120): if step == 10 or step == 20 or step == 40 or step == 60 or step == 80 or step == 100: odom = 0, 0, math.pi / 2.0 else: odom = 1, 0, 0 ss.simulate_simple(odom) ss.savefig() ```
{ "source": "jinkyukim-me/StudyPython", "score": 3 }
#### File: StudyPython/exercises/ex43_classes.py ```python print(""" * Map - next_scene - opening_scene * Engine - play * Scene - enter * Death * Central Corridor * Laser Weapon Armory * The Bridge * Escape Pod """) class Scene(object): def enter(self): pass class Engine(object): def __init__(self, scene_map): pass def play(self): pass class Death(Scene): def enter(self): pass class CentralCorridor(Scene): def enter(self): pass class LaserWeaponArmory(Scene): def enter(self): pass class TheBridge(Scene): def enter(self): pass class EscapePod(Scene): def enter(self): pass class Map(object): def __init__(self, start_scene): pass def next_scene(self, scene_name): pass def opening_scene(self): pass a_map = Map('central_corridor') a_game = Engine(a_map) a_game.play() ``` #### File: StudyPython/exercises/ex44d.py ```python class Parent(object): """A simple example class""" # 클래스 정의 시작부분에 """...""" 도큐먼트 스트링 def __init__(self): # 컨스트럭터 (생성자) self.name = "Kim" def override(self): # override() 메소드 print("PARENT override()") def implicit(self): # implicit() 메소드 print("PARENT implicit()") def altered(self): # altered() 메소드 print("PARENT altered()") class Child(Parent): def __init__(self): # 자식클래스 생성자 super().__init__() # 부모클래스 생성자 self.blood = "O" # blood 추가 def override(self): print("CHILD override()") # override() 메소드 def altered(self): # altered() 메소드 print("CHILD, BEFORE PARENT altered()") super(Child, self).altered() # super(자식클래스, self)로 부모클래스의 메서드 호출 print("CHILD, AFTER PARENT altered()") dad = Parent() # 클래스의 인스턴스 생성 son = Child() # 클래스의 인스턴스 생성 dad.implicit() son.implicit() dad.override() son.override() dad.altered() son.altered() ``` #### File: jinkyukim-me/StudyPython/type_3_arg.py ```python class Tea(Base1, Base2): party = 'Elice' def Coding(self): return 'Build Projects' # Python essentially does this def Coding(self): return 'Build Projects' body = {'party':'Elice', 'Coding': Coding} Tea = type('Tea', (Base1, Base2), body) ```
{ "source": "JinLabIIT/DSSnet", "score": 3 }
#### File: benchmarks/old/iperftest.py ```python import subprocess PIDQ = "sudo pgrep -f mininet: > pidlist" p='' def pidList(): global p list = subprocess.call(PIDQ,shell=True) with open('pidlist', 'r') as ins: for line in ins: p+= ('%s%s' %(' -',line.rstrip('\n'))) print (p) pidList() PAUSE = 'sudo kill --signal SIGSTOP%s'%p RESUME ='sudo kill --signal SIGCONT%s'%p def Ptest(): process = subprocess.call(PAUSE, shell=True) def Rtest(): process = subprocess.call(RESUME, shell=True) ``` #### File: scale/orig/avgPlotAll.py ```python import sys import matplotlib.pyplot as plt import numpy as np import six import matplotlib.colors as colors import matplotlib import math def plot_all(output_file): plt.figure() avg = [] std = [] conf_int = [] scales = [10, 50, 100, 250, 500] for scale in scales: freezeData = np.loadtxt("freeze_%s.txt" % scale) unfreezeData = np.loadtxt("unfreeze_%s.txt" % scale) size = len(freezeData) freezeData *= 1000 # to milliseconds unfreezeData *= 1000 sync = np.add(freezeData, unfreezeData) avg.append(np.average(sync)) std.append(np.std(sync)) conf_int.append(np.std(sync) * 1.96 / math.sqrt(size)) matplotlib.rc('font', size=15) plt.plot(scales, avg, color='blue', linewidth=2.0, label='Emulation Overhead') plt.bar(scales, avg, width=35, color='white', yerr=std, ecolor='red', hatch='/') plt.grid(True) plt.xticks([10,50,100,150,200,250,300,350,400,450,500,550], horizontalalignment='left') plt.xlabel('Number of Hosts', fontsize=20) plt.ylabel('Average Overhead (Milliseconds)', fontsize=20) plt.legend(loc='upper left') plt.savefig(output_file, format='eps') plt.show() if __name__ == '__main__': ls_name = ['solid', 'dashed', 'dashdot', 'dotted', '-', '--', '-.', ':'] colors_name = ['red', 'blue', 'cyan', 'peru', 'green', 'salmon', 'pink', 'lime', 'tan', 'seagreen', 'purple', 'wheat'] print colors_name output = 'ScaleFrzAvg.eps' plot_all(output) ``` #### File: scale/orig/benchmark_pause.py ```python from mininet.topo import Topo from mininet.net import Mininet from mininet.node import CPULimitedHost, Controller, OVSKernelSwitch, RemoteController, Host from mininet.cli import CLI from mininet.link import TCLink from mininet.util import irange, dumpNodeConnections from mininet.log import setLogLevel, info import sys import time import os import subprocess import logging log = str(sys.argv[2]) logging.basicConfig(filename=log,level=logging.DEBUG) num_hosts = int(sys.argv[1]) pIDS = '' def pidList(net): global pIDS for host in net.hosts : pIDS += ' %s' % host.pid for s in net.switches : pIDS+= ' %s' % s.pid for c in net.controllers: pIDS += ' %s' %c.pid #print ('pids subject to pause: %s'%pIDS) NPAUSE = '' NRESUME = '' def setupPause(): global pIDS, NPAUSE, NRESUME NPAUSE = 'sudo /home/kd/VirtualTimeKernel/test_virtual_time/freeze_all_procs -f -p %s'%pIDS NRESUME = 'sudo /home/kd/VirtualTimeKernel/test_virtual_time/freeze_all_procs -u -p %s'%pIDS def pause (): before_time = time.time() process = subprocess.call(NPAUSE,shell=True) after_time = time.time() logging.info('pause,%s'% (after_time-before_time)) def resume (): before_time = time.time() process = subprocess.call(NRESUME,shell=True) after_time = time.time() logging.info('resume,%s'% (after_time-before_time)) NPAUSE = '' NRESUME = '' class DssTopo(Topo): "DSS custom topo" def build(self, topoConfig='default.config'): global num_hosts for i in range(num_hosts): host=self.addHost('H%s'%i) def test(num): for i in range(0, num): time.sleep(0.1) pause() time.sleep(0.1) resume() def start(): topo = DssTopo() net = Mininet(topo, link = TCLink) net.start() pidList(net) setupPause() #call loop test(1000) start() ``` #### File: tests/vtime/A.py ```python import signal,os import sys import time import gtod def setup_pipe(): pipe_name = '/tmp/vtime_test.pipe' if not os.path.exists(pipe_name): os.mkfifo(pipe_name) pipeout = os.open(pipe_name, os.O_WRONLY) return pipeout def send(msg,pipe): msg_n = '%s\n'%msg try: os.write(pipe, msg_n.encode('utf-8')) except BrokenPipeError: # exit quietly.. exit() if __name__ == '__main__': my_pipe = setup_pipe() while 1: send(str(gtod.time()),my_pipe) time.sleep(2) ``` #### File: net/DSSnet/DSSnet_events.py ```python class Events: 'class for storing events in heap' e_id = 0 def __init__(self, msg, time): self.msg = msg self.time = time Events.e_id +=1 def __lt__(self,other): val = self.time otherval = other.time return val < otherval def get_event(self): return self.msg ``` #### File: net/DSSnet/DSSnet_hosts.py ```python class DSSnet_hosts: 'class for meta process/IED info' p_id = 0 def __init__(self, msg, IED_id, command, ip, pipe = True): self.properties= msg self.IED_id = IED_id self.process_id= DSSnet_hosts.p_id self.command = command self.ip = ip self.pipe = pipe DSSnet_hosts.p_id +=1 def number_processes(self): return DSSnet_hosts.p_id def get_host_name(self): return self.IED_id def get_ip(self): return self.ip def get_process_command(self): return self.command def display_process(self): return('%s : %s : %s \n' % (self.process_id , self.IED_id, self.properties)) ``` #### File: DSSnet/models/gen_normal.py ```python # get value from opendss # send value of load to control center import pipe import sys import time import threading import zmq import os import logging import gtod TIME_INT = 0.1 Gen_ID = sys.argv[1] server_IP = sys.argv[2] server_Port = sys.argv[3] #initialize values gen_val1 = 250.0 gen_val2 = 250.0 gen_val3 = 250.0 load_1_val = 250.0 load_2_val = 250.0 load_3_val = 250.0 load_4_val = 250.0 ''' # listen for messages from the generator # if new generator message # update gen_val to new value # listen for messages from loads, 1 - 4 # if new load message x # update load_x_val to new value # every 100 ms # run function # difference = gen - total load # if difference is positive # send message to energy storage to charge the difference # else difference is negitive # send message to energy storage to discharge battery ''' logging.basicConfig(filename='%s.log'%Gen_ID,level=logging.DEBUG) contextOut = zmq.Context() clientOut = contextOut.socket(zmq.REQ) clientOut.connect("tcp://%s:%s" % (server_IP,server_Port)) print('talking on %s:%s'%(server_IP,server_Port)) # open pipe to communicate to opendss pipeout=pipe.setup_pipe_l(Gen_ID) pipin = pipe.setup_pipe_w() # send to control center def send_cc(val): global gen_val1 global gen_val2 global gen_val3 gens = val.split() gen_val1 = float(gens[0]) gen_val2 = float(gens[1]) gen_val3 = float(gens[2]) dif1 = gen_val1 + 1292.0 dif2 = gen_val2 + 1039.0#(573 + load_1_val + load_2_val/2) dif3 = gen_val3 + 1252.0#(880 + load_3_val + load_2_val/2) print('difs') print(dif1) print(dif2) print(dif3) send_es('%s %s %s %s '% (dif1, dif2, dif3, time.time())) def send_es(vall): val = vall.encode('utf-8') clientOut.send(val) print 'sent but waiting for response' status=clientOut.recv() logging.debug('sent message to cc: %s '%val) print 'sent' def get_val(): update = 'update b p pre_gen_report post_gen_report %s %s 1 mon_wind_gen\n' %(time.time(),Gen_ID) pipe.send_sync_event(update.encode('UTF-8'), pipin) def t(): print(time.time()) time.sleep(2)# for sync to start properly if os.fork(): while 1: #listen to response and send to cc x = pipe.listen(pipeout) if x: print x send_cc(x) time.sleep(0.001) while 1: time.sleep(TIME_INT) get_val() ``` #### File: DSSnet/models/gtod.py ```python import sys from ctypes import * libgtod = cdll.LoadLibrary('./models/libgtod.so') def time(): #c_longdouble gt = libgtod.gt gt.restype = c_longdouble t=gt() #print ('%0.6f'%t) #print str('%0.6f'%t) #print ('%0.6f' %float(str('%0.6f'%t))) return float(str('%0.6f'%t)) ``` #### File: DSSnet/models/h2.py ```python # get value from opendss # send value of load to control center import pipe import sys import time import threading import zmq import os import logging TIME_INT = 0.1 Gen_ID = sys.argv[1] server_IP = sys.argv[2] server_Port = sys.argv[3] contextOut = zmq.Context() clientOut = contextOut.socket(zmq.REQ) clientOut.connect("tcp://%s:%s" % (server_IP,server_Port)) # open pipe to communicate to opendss pipeout=pipe.setup_pipe_l(Gen_ID) #pipin = pipe.setup_pipe_w() logging.basicConfig(filename='%s.log'%Gen_ID) #print 'starting\n' # send to control center def send_es(): val = 'ok'.encode('utf-8') start_time = time.time() clientOut.send(val) status=clientOut.recv() logging.debug('%s' % str(time.time() - start_time)) print '%s' %(str(time.time() - start_time)) while 1: time.sleep(TIME_INT) send_es() ``` #### File: DSSnet/models/pmu.py ```python import pipe import time import sys import threading pipout = pipe.setup_pipe_l(sys.argv[1]) pipin = pipe.setup_pipe_w() from ctypes import * #from numpy import array libpmu=cdll.LoadLibrary('./models/libpmu.so') class PMU: def __init__(self, idcode, message_time_quality, stn, data_format, phnmr, annmr, dgnmr, chnam, phunit, anunit, digunit, fnom, cfgcnt, data_rate, time_base, pdc_IP, pdc_port): self.idcode = idcode self.message_time_quality = message_time_quality self.time_base = time_base self.stn = stn self.data_format = data_format self.phnmr = phnmr self.annmr = annmr self.dgnmr = dgnmr self.chnam = chnam self.phunit = phunit self.anunit = anunit self.digunit = digunit self.fnom = fnom self.cfgcnt = cfgcnt self.data_rate = data_rate self.pdc_IP = pdc_IP self.pdc_port = pdc_port def prnt(p): print (p.idcode) print (p.message_time_quality) print (p.time_base) print (p.stn) print (p.data_format) print (p.phnmr) print (p.annmr) print (p.dgnmr) print (p.chnam) print (p.phunit) print (p.anunit) print (p.digunit) print (p.fnom) print (p.cfgcnt) print (p.data_rate) print (p.pdc_IP) print (p.pdc_port) def _cfg2(pmu): #//print('hi0\n\n') libpmu.cfg2_python(c_int(pmu.pdc_port), c_int(pmu.idcode), c_int(pmu.message_time_quality), c_int(pmu.data_format), c_char_p(pmu.stn), c_int(pmu.phnmr), c_int(pmu.annmr), c_int(pmu.dgnmr), (c_char_p(pmu.chnam)), (pmu.phunit), (pmu.anunit), (pmu.digunit), c_int(pmu.fnom), c_int(pmu.cfgcnt), c_int(pmu.data_rate), c_int(pmu.time_base), c_char_p(pmu.pdc_IP) ) def _data(pmu, phasor_data, analog_data, digital_data, freq_data, dfreq_data): libpmu.data_python(c_int(pmu.pdc_port), c_int(pmu.idcode), c_int(pmu.message_time_quality), c_int(pmu.data_format), c_char_p(pmu.stn), c_int(pmu.phnmr), c_int(pmu.annmr), c_int(pmu.dgnmr), (c_char_p(pmu.chnam)), (pmu.phunit), (pmu.anunit), (pmu.digunit), c_int(pmu.fnom), c_int(pmu.cfgcnt), c_int(pmu.data_rate), c_int(pmu.time_base), c_char_p(pmu.pdc_IP), phasor_data, analog_data, digital_data, freq_data, dfreq_data ) def read_pmu(filename): with open(filename, 'r') as config: phnmr = 0 annmr = 0 dgnmr = 0 data_format = 0 chna = '' fnom = 0 message_time_quality = 0 phuni = [] anuni = [] diguni = [] for line in config: line_split = line.split(',') if line_split[0] == 'idcode': idcode=int(line_split[1]) elif line_split[0] == 'stn': stn = line_split[1].encode('utf-8') elif line_split[0] == 'phnmr': phnmr = int(line_split[1]) elif line_split[0] == 'annmr': annmr = int(line_split[1]) elif line_split[0] == 'dgnmr': dgnmr = int(line_split[1]) elif line_split[0] == 'chnam': for x in range(1,1+dgnmr*16+annmr+phnmr): new_d = pad(line_split[x],16) chna += new_d chnam = chna.encode('utf-8') elif line_split[0] == 'fnom': if line_split[1] == '50': fnom = 1 elif line_split[0] == 'ip': IP = line_split[1].encode('utf-8') elif line_split[0] == 'data_format': if line_split[1] == 'float': data_format += 8 if line_split[2] == 'float': data_format += 4 if line_split[3] == 'float': data_format += 2 if line_split[4] == 'polar': data_format += 1 elif line_split[0] == 'port': port = ((line_split[1])) elif line_split[0] == 'phunit': for x in range(1,phnmr+1): phuni.append(c_int(int(line_split[x]))) elif line_split[0] == 'anunit': for x in range(1,annmr+1): anuni.append(c_int(int(line_split[x]))) elif line_split[0] == 'digunit': for x in range(1,dgnmr+1): diguni.append(c_int(int(line_split[x]))) elif line_split[0] == 'cfgcnt': cfgcnt = int(line_split[1]) elif line_split[0] == 'data_rate': data_rate = int(line_split[1]) elif line_split[0] == 'time_base': time_base = int(line_split[1]) phunit = (c_int*len(phuni))(*phuni) anunit = (c_int*len(anuni))(*anuni) digunit = (c_int*len(diguni))(*diguni) pmu = PMU(idcode, message_time_quality, stn, data_format, phnmr, annmr, dgnmr, chnam, phunit, None, None, fnom, cfgcnt, data_rate, time_base, IP, 4712) return pmu def data_process(raw_data, pmu):#phnmr, annmr, dgnmr, freq, dfreq): data = raw_data.split() phasor_data = [] analog_data = [] digital_data = [] for x in range(0, pmu.phnmr*2): phasor_data.append(float(data[x])) for x in range(pmu.phnmr*2, pmu.phnmr *2 + pmu.annmr): analog_data.append(float(data[x])) for x in range(pmu.phnmr *2 + pmu.annmr, pmu.phnmr*2 + pmu.annmr + pmu.dgnmr): digital_data.appendfloat((data[x])) freq = float(data[pmu.phnmr*2+pmu.annmr+pmu.dgnmr]) dfreq = float(data[pmu.phnmr*2+pmu.annmr+pmu.dgnmr+1]) ph_data = (c_float*len(phasor_data))(*phasor_data) an_data = (c_float*len(analog_data))(*analog_data) dg_data = (c_float*len(digital_data))(*digital_data) freq_data = (c_float)(freq) dfreq_data = (c_float)(dfreq) return ph_data, an_data, dg_data, freq_data, dfreq_data def pad(d,size): data=d room = size-len(data) if room > 0: for x in range(room): data+=' ' elif room < 0: data=data[:(abs(room))] return data #scheduler function def do_every(interval, worker_func, iterations = 0): if iterations !=1: threading.Timer (interval,do_every, [interval, worker_func, 0 if iterations == 0 else iterations-1] ).start() worker_func() def request_data(): update = ('update b p pre_pmu post_pmu %s a1 0\n'% time.time()) pipe.send_sync_event(update.encode('UTF-8'), pipin) pmu = read_pmu('./models/pmu.config') _cfg2(pmu) do_every(0.3,request_data) while 1: raw_message=pipe.listen(pipout) if raw_message: message=raw_message[0] if message[0] == 'cfg2': _cfg2(pmu) else: raw_data = raw_message #raw_data = '7199.36 0.1 7199.37 -2.27 7199.36 2.27 334.51 -0.6225 59.9 0.01' phasor_data, analog_data, digital_data, freq_data, dfreq_data = data_process(raw_data,pmu) _data(pmu, phasor_data, analog_data, digital_data, freq_data, dfreq_data) print('Sent') ``` #### File: models/tomacs_use/load.py ```python # get value from opendss # send value of load to control center import pipe import sys import time import threading import zmq import os import logging TIME_INT = 0.15 Load_ID = sys.argv[1] server_IP = sys.argv[2] server_Port = sys.argv[3] contextOut = zmq.Context() clientOut = contextOut.socket(zmq.REQ) clientOut.connect("tcp://%s:%s" % (server_IP,server_Port)) # open pipe to communicate to opendss logging.basicConfig(filename='%s.log'%Load_ID,level=logging.DEBUG) pipeout = pipe.setup_pipe_l(Load_ID) pipin = pipe.setup_pipe_w() # send to control center def send_cc(val): logging.debug('sending %s to cc at time %s'%(val,time.time())) val = '%s %s'%(Load_ID,val) req_bytes = val.encode('utf-8') clientOut.send(req_bytes) status=clientOut.recv() logging.debug('reply at %s' %time.time()) def get_val(): update = 'update b p get_load_value post_get_load_value %s %s 0\n' %(time.time(),Load_ID) pipe.send_sync_event(update.encode('UTF-8'), pipin) while 1: time.sleep(TIME_INT) get_val() x = pipe.listen(pipeout) if x: logging.debug(x) send_cc(x) ```
{ "source": "JinLabIIT/VirtualTimeKernel", "score": 3 }
#### File: mininet/mininet/topolib.py ```python "Library of potentially useful topologies for Mininet" from mininet.topo import Topo from mininet.net import Mininet # The build() method is expected to do this: # pylint: disable=arguments-differ class TreeTopo( Topo ): "Topology for a tree network with a given depth and fanout." def build( self, depth=1, fanout=2 ): # Numbering: h1..N, s1..M self.hostNum = 1 self.switchNum = 1 # Build topology self.addTree( depth, fanout ) def addTree( self, depth, fanout ): """Add a subtree starting with node n. returns: last node added""" isSwitch = depth > 0 if isSwitch: node = self.addSwitch( 's%s' % self.switchNum ) self.switchNum += 1 for _ in range( fanout ): child = self.addTree( depth - 1, fanout ) self.addLink( node, child ) else: node = self.addHost( 'h%s' % self.hostNum ) self.hostNum += 1 return node def TreeNet( depth=1, fanout=2, **kwargs ): "Convenience function for creating tree networks." topo = TreeTopo( depth, fanout ) return Mininet( topo, **kwargs ) class TorusTopo( Topo ): """2-D Torus topology WARNING: this topology has LOOPS and WILL NOT WORK with the default controller or any Ethernet bridge without STP turned on! It can be used with STP, e.g.: # mn --topo torus,3,3 --switch lxbr,stp=1 --test pingall""" def build( self, x, y, n=1 ): """x: dimension of torus in x-direction y: dimension of torus in y-direction n: number of hosts per switch""" if x < 3 or y < 3: raise Exception( 'Please use 3x3 or greater for compatibility ' 'with 2.1' ) if n == 1: genHostName = lambda loc, k: 'h%s' % ( loc ) else: genHostName = lambda loc, k: 'h%sx%d' % ( loc, k ) hosts, switches, dpid = {}, {}, 0 # Create and wire interior for i in range( 0, x ): for j in range( 0, y ): loc = '%dx%d' % ( i + 1, j + 1 ) # dpid cannot be zero for OVS dpid = ( i + 1 ) * 256 + ( j + 1 ) switch = switches[ i, j ] = self.addSwitch( 's' + loc, dpid='%x' % dpid ) for k in range( 0, n ): host = hosts[ i, j, k ] = self.addHost( genHostName( loc, k + 1 ) ) self.addLink( host, switch ) # Connect switches for i in range( 0, x ): for j in range( 0, y ): sw1 = switches[ i, j ] sw2 = switches[ i, ( j + 1 ) % y ] sw3 = switches[ ( i + 1 ) % x, j ] self.addLink( sw1, sw2 ) self.addLink( sw1, sw3 ) # pylint: enable=arguments-differ ``` #### File: VirtualTimeKernel/vt_userspace/plot_avg.py ```python import numpy as np import matplotlib.pyplot as plt import argparse def plot_err(data1, data2): err_data = [] for x, y in zip(data1, data2): e = abs(x - y * dilation) if e < 1: e = 1 err_data.append(e) print err_data fig = plt.figure() plt.plot(data1, err_data, '--b^') plt.xlabel('Duration / Microseconds') plt.ylabel('Error / Microseconds') plt.grid(True) ax = fig.add_subplot(1, 1, 1) ax.set_xscale('log') ax.set_yscale('log') # major_ticks = np.arange(0, 1.1 * max(err_data), max(err_data) / 10) # ax.set_yticks(major_ticks) # plt.ylim(0, 1.1 * max(err_data)) plt.savefig(output_filename, format='eps') def import_data(data1, data2): data = np.loadtxt(input_filename) for x in data: data1.append(float(x[0])) data2.append(float(x[1])) def main(): data1 = [] data2 = [] import_data(data1, data2) plot_err(data1, data2) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--input', action='store', dest='input_filename') parser.add_argument('--output', action='store', dest='output_filename') parser.add_argument('--dilation', action='store', dest='dilation') results = parser.parse_args() input_filename = results.input_filename output_filename = results.output_filename dilation = int(results.dilation) main() ```
{ "source": "jinlafan/mmt-dropnet", "score": 2 }
#### File: layers/attention/hierarchical.py ```python import random import torch from torch import nn from ...utils.nn import get_activation_fn # <NAME>., & <NAME>. (2017). Attention Strategies for Multi-Source # Sequence-to-Sequence Learning. In Proceedings of the 55th Annual Meeting of # the Association for Computational Linguistics (Volume 2: Short Papers) # (Vol. 2, pp. 196-202). [Code contributed by @jlibovicky] class HierarchicalAttention(nn.Module): """Hierarchical attention over multiple modalities.""" def __init__(self, ctx_dims, hid_dim, mid_dim, att_activ='tanh', dropnet=False, \ dropnet_image_rate=0.15, dropnet_text_rate=0.15): super().__init__() self.activ = get_activation_fn(att_activ) self.ctx_dims = ctx_dims self.hid_dim = hid_dim self.mid_dim = mid_dim self.dropnet = dropnet self.dropnet_image_rate = dropnet_image_rate self.dropnet_text_rate = dropnet_text_rate self.ctx_projs = nn.ModuleList([ nn.Linear(dim, mid_dim, bias=False) for dim in self.ctx_dims]) self.dec_proj = nn.Linear(hid_dim, mid_dim, bias=True) self.mlp = nn.Linear(self.mid_dim, 1, bias=False) def forward(self, contexts, hid): # contexts[0] --> textual context # contexts[1] --> visual context dec_state_proj = self.dec_proj(hid) ctx_projected = torch.cat([ p(ctx).unsqueeze(0) for p, ctx in zip(self.ctx_projs, contexts)], dim=0) energies = self.mlp(self.activ(dec_state_proj + ctx_projected)) att_dist = nn.functional.softmax(energies, dim=0) ctxs_cat = torch.cat([c.unsqueeze(0) for c in contexts]) # dropnet mechanism if self.training == True: if self.dropnet == True: x = random.choices([0, 1, 2], k=1, weights=[self.dropnet_image_rate, \ self.dropnet_text_rate, 1-self.dropnet_image_rate-self.dropnet_text_rate])[0] # use only textual context if x == 0: joint_context = (att_dist * ctxs_cat)[0] # use only image context elif x == 1: joint_context = (att_dist * ctxs_cat)[1] # use both visual and textual contexts (i.e. multimodal context) else: joint_context = (att_dist * ctxs_cat).sum(0) else: joint_context = (att_dist * ctxs_cat).sum(0) else: joint_context = (att_dist * ctxs_cat).sum(0) return att_dist, joint_context ```
{ "source": "Jinli213/csye6225-fall2017", "score": 2 }
#### File: infrastructure/gcp/sql-template.py ```python def GenerateConfig(context): """Creates the SQL instance.""" resources = [{ 'name': 'csye6225-cloud-sql', 'type': 'sqladmin.v1beta4.instance', 'properties': { "state":"RUNNABLE", "backendType": "SECOND_GEN", "databaseVersion": "MYSQL_5_6", "region": "us-east1", "settings": { "tier": "db-n1-standard-1", "dataDiskSizeGb": 10, "dataDiskType": "PD_SSD", }, "instanceType": "CLOUD_SQL_INSTANCE", } }] return {'resources': resources} ```
{ "source": "JinLi711/quantum_circuits", "score": 3 }
#### File: quantum_circuits/quantum_circuits/gates.py ```python from sympy import * import utils class Gate(object): """Gate class for quantum operations. Attributes: name (str): name of the gate indexes (int or list of ints): indexes to perform the quantum gate on gate (sympy Matrix): gate operation template (str): template for OpenQASM conversion code """ def __init__(self, name, indexes, gate, template): self.name = name self.indexes = indexes self.gate = gate self.template = template def __call__(self): return self.gate def __repr__(self): return 'Gate.' + self.name + '_gate' class U3_gate(Gate): def __init__(self, phi, theta, lambda_, indexes=None): self.phi = phi self.theta = theta self.lambda_ = lambda_ gate = Matrix([ [E ** (-I * (phi + lambda_) / 2.0) * cos(theta / 2.0), -E ** (-I * (phi - lambda_) / 2.0) * sin(theta / 2.0)], [E ** (I * (phi - lambda_) / 2.0) * sin(theta / 2.0), E** (I * (phi + lambda_) / 2.0) * cos(theta / 2.0)] ]) template = 'u3({},{},{}) q[{}]'.format(theta, phi, lambda_, indexes) Gate.__init__(self, 'U3', indexes, gate, template) class U2_gate(Gate): def __init__(self, phi, lambda_, indexes=None): self.phi = phi self.lambda_ = lambda_ gate = U3_gate(phi, pi / 2.0, lambda_)() template = 'u2({},{}) q[{}]'.format(phi, lambda_, indexes) Gate.__init__(self, 'U2', indexes, gate, template) class U1_gate(Gate): def __init__(self, lambda_, indexes=None): self.lambda_ = lambda_ gate = exp(0.5*I*lambda_) * U3_gate(0.0, 0.0, lambda_)() template = 'u1({}) q[{}]'.format(lambda_, indexes) Gate.__init__(self, 'U1', indexes, gate, template) class RX_gate(Gate): def __init__(self, theta, indexes=None): self.theta = theta gate = Matrix(simplify(U3_gate(-pi / 2.0, theta, pi / 2.0)())) template = 'rx({}) q[{}]'.format(theta, indexes) Gate.__init__(self, 'RX', indexes, gate, template) class RY_gate(Gate): def __init__(self, theta, indexes=None): self.theta = theta gate = Matrix(simplify(U3_gate(0.0, theta, 0.0)())) template = 'ry({}) q[{}]'.format(theta, indexes) Gate.__init__(self, 'RY', indexes, gate, template) class RZ_gate(Gate): def __init__(self, theta, indexes=None): self.theta = theta gate = Matrix(simplify(U1_gate(theta)())) template = 'rz({}) q[{}]'.format(theta, indexes) Gate.__init__(self, 'RZ', indexes, gate, template) class ID_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(U3_gate(0, 0, 0)() )) template = 'id q[{}]'.format(indexes) Gate.__init__(self, 'ID', indexes, gate, template) class X_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(I * U3_gate(0, pi, pi)() )) template = 'x q[{}]'.format(indexes) Gate.__init__(self, 'X', indexes, gate, template) class Y_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(-I * U3_gate(pi / 2, pi, pi/ 2)() )) template = 'y q[{}]'.format(indexes) Gate.__init__(self, 'Y', indexes, gate, template) class Z_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify( U1_gate(pi)() )) template = 'z q[{}]'.format(indexes) Gate.__init__(self, 'Z', indexes, gate, template) class H_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(I * U2_gate(0, pi)() )) template = 'h q[{}]'.format(indexes) Gate.__init__(self, 'H', indexes, gate, template) class S_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(U1_gate(pi / 2)() )) template = 's q[{}]'.format(indexes) Gate.__init__(self, 'S', indexes, gate, template) class SDG_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(U1_gate(-pi / 2)() )) template = 'sdg q[{}]'.format(indexes) Gate.__init__(self, 'SDG', indexes, gate, template) class T_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(U1_gate(pi / 4)() )) template = 't q[{}]'.format(indexes) Gate.__init__(self, 'T', indexes, gate, template) class TDG_gate(Gate): def __init__(self, indexes=None): gate = Matrix(simplify(U1_gate(-pi / 4)() )) template = 'tdg q[{}]'.format(indexes) Gate.__init__(self, 'TDG', indexes, gate, template) class CX_gate(Gate): def __init__(self, indexes=[None, None]): gate = gate = Matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0] ]) template = 'cx q[{}], q[{}]'.format(indexes[0], indexes[1]) Gate.__init__(self, 'CX', indexes, gate, template) class CCX_gate(Gate): def __init__(self, indexes=[None, None, None]): # if cx gate restriction is lifted, we can implement # the gate in terms of built in gates gate = Matrix([ [1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0], ]) # I = I_gate().gate # H = H_gate().gate # CX = CX_gate().gate # T = T_gate().gate # TDG = TDG_gate().gate template = 'ccx q[{}], q[{}], q[{}]'.format( indexes[0], indexes[1], indexes[2]) Gate.__init__(self, 'CCX', indexes, gate, template) ``` #### File: quantum_circuits/quantum_circuits/measurements.py ```python from sympy import * import numpy as np import utils class Measure(object): def __init__(self, qubit_index, bit_index): self.template = 'measure q[{}] -> c[{}]'.format(qubit_index, bit_index) def measure(qubits, basis='z'): """Perform a measurement on the qubits. Args: qubits (list): list of qubit.Qubit basis (str): basis used to measure the qubits Returns: (str) binary representation of the resulting measurement """ if basis == 'z': qubits = utils.sp_to_np(qubits) size = qubits.shape[0] # randomly select the measured bits based on the amplitudes probabilities = np.absolute(qubits).flatten() ** 2 random_choice = np.random.choice(size, p=probabilities) binary_choice = utils.int_to_binary(random_choice, int(np.log2(size))) return binary_choice else: raise ValueError('This is not a correct basis measurement.') ```
{ "source": "JinLi711/UTGN", "score": 3 }
#### File: UTGN/model/model.py ```python import os from glob import glob from copy import deepcopy from itertools import zip_longest import numpy as np import tensorflow as tf import tensorflow.contrib.layers as layers from tensorflow.python.ops import control_flow_ops from geom_ops import * from net_ops import * from utils import * import rnn import transformer # Public interface SCOPE = 'RGN' DUMMY_LOSS = -1. LOSS_SCALING_FACTOR = 0.01 # this is to convert recorded losses to angstroms class RGNModel(object): """Recurrent geometric network model Attributes: mode: train or predict config: parameter dictionary """ # static variable to control creation of new objects and starting the model _is_started = False # ??? Should this be called model number not number of models? _num_models = 0 def __init__(self, mode, config): """Sets up configurations and invokes the TF graph. """ # Make sure model hasn't been started. if not RGNModel._is_started: self.mode = mode self.config = deepcopy(config) # Set up public methods based on mode (for initial state). if mode == 'training': self.start = self._start else: self.evaluate = self._evaluate self.predict = self._predict # Process config for derived properties io = self.config.io arch = self.config.architecture reg = self.config.regularization curr = self.config.curriculum opt = self.config.optimization init = self.config.initialization # Test for correct curriculum configuration if curr['mode'] is None and curr['behavior'] is not None: raise RuntimeError( 'Must set curriculum mode if curriculum behavior is set.') elif curr['mode'] is not None and curr['behavior'] is None: raise RuntimeError( 'Must set curriculum behavior if curriculum mode is set.') # model name if io['name'] is None: io['name'] = 'model_' + str(RGNModel._num_models) RGNModel._num_models = RGNModel._num_models + 1 # ??? what does this file contain? # alphabet-related arch['alphabet'] = np.loadtxt(io['alphabet_file'], delimiter = ',')[:, 6:] \ if io['alphabet_file'] is not None else None # set alphabet size if implicit if arch['alphabet'] is not None: arch['alphabet_size'] = len(arch['alphabet']) # having multiple alphabets is isomorphic to not reusing alphabet arch['single_or_no_alphabet'] = type(arch['alphabet_size']) is not list arch['is_alphabetized'] = 'alphabet' in arch['tertiary_output'] # angularization arch['is_angularized'] = 'angular' in arch['tertiary_output'] # optimization if opt['optimizer'] == 'adadelta': opt.update({'rho': opt['decay']}) # initialization if arch['higher_order_layers']: for key in ['recurrent_init']: if type(init[key]) is not list: init[key] = [init[key]] * len(arch['recurrent_layer_size']) if arch['recurrent_nonlinear_out_proj_size'] is not None: for key in ['recurrent_nonlinear_out_proj_init']: if type(init[key]) is not list: init[key] = [init[key]] * len(arch['recurrent_nonlinear_out_proj_size']) # regularization for key in ['recurrent_input_keep_probability', 'recurrent_output_keep_probability', 'recurrent_keep_probability', 'recurrent_state_zonein_probability', 'recurrent_memory_zonein_probability', 'alphabet_keep_probability', 'alphabet_normalization']: if type(reg[key]) is not list: reg[key] = [reg[key]] * len(arch['recurrent_layer_size']) # create graph self._create_graph(mode, self.config) else: raise RuntimeError('Model already started; cannot create new objects.') def _create_graph(self, mode, config): """Creates TensorFlow computation graph depending on the mode. Builds the head (training) graph to start, train, and checkpoint a model. Or create any number of 'evaluation' models that depend on the head model, but with additional data sets, different model semantics (e.g. no dropout) for the evaluation, and logging of their performance. Two types of internal variables stored in each object: ops collections, like training_ops, evaluation_ops, etc. As the graph is built up, ops are added to these lists. various nodes that are like TF methods, like the initializer, saver, etc, which are stored in the object and are accessed by various methods when necessary. Args: mode: training or predicting config: dictionary of configuration parameters """ # set up appropriate op collections based on mode (for initial state) if mode == 'training': # collection of ops to be run at each step of training self._training_ops = training_ops = {} # collection of ops for diagnostics like weight norms and curriculum quantiles self._diagnostic_ops = diagnostic_ops = {} else: # collection of ops for evaluation of losses self._evaluation_ops = evaluation_ops = {} # collection of ops for the last evaluation in a multi-invocation evaluation self._last_evaluation_ops = last_evaluation_ops = {} # collection of ops for prediction of structures self._prediction_ops = prediction_ops = {} # set variable scoping, op scoping, and place on appropriate device with tf.variable_scope(SCOPE, reuse=(mode == 'evaluation')) as scope, \ tf.name_scope(SCOPE + '/' + config.io['name'] + '/'), \ tf.device(_device_function_constructor( **{k: config.computing[k] for k in ('functions_on_devices', 'default_device')})): # set graph seed if mode == 'training': tf.set_random_seed(config.initialization['graph_seed']) # Create curriculum state and tracking variables if needed. if config.curriculum['mode'] is not None: # Variable to hold current curriculum iteration curriculum_step = tf.get_variable( name='curriculum_step', shape=[], trainable=False, initializer=tf.constant_initializer(config.curriculum['base'])) if mode == 'training': diagnostic_ops.update({'curriculum_step': curriculum_step}) # Set up data ports if mode == 'training': self._coordinator = tf.train.Coordinator() if config.curriculum['mode'] == 'length': max_length = tf.reduce_min( [curriculum_step, config.optimization['num_steps']]) max_length = tf.cast(max_length, tf.int32) else: max_length = config.optimization['num_steps'] dataflow_config = merge_dicts( config.io, config.initialization, config.optimization, config.queueing) ids, primaries, evolutionaries, secondaries, tertiaries, \ masks, num_stepss = _dataflow(dataflow_config, max_length) # Set up inputs inputs = _inputs( merge_dicts(config.architecture, config.initialization), primaries, evolutionaries) # Compute dRMSD weights # Masks out meaningless (longer than sequence) pairwise distances # Incorporates curriculum weights weights_config = merge_dicts( config.optimization, config.curriculum, config.loss, config.io) weights, flat_curriculum_weights = _weights( weights_config, masks, curriculum_step if config.curriculum['mode'] == 'loss' else None) if mode == 'training' and config.curriculum['mode'] == 'loss': diagnostic_ops.update({'flat_curriculum_weights': flat_curriculum_weights}) # create alphabet if needed and if it will be shared between layers, # otherwise set to None so that _dihedrals takes care of it alphabet_config = merge_dicts( config.architecture, config.initialization) if alphabet_config['is_alphabetized'] \ and alphabet_config['single_or_no_alphabet']: alphabet = _alphabet(mode, alphabet_config) if mode == 'training' and config.io['log_alphabet']: diagnostic_ops.update({'alphabet': alphabet}) else: alphabet = None for case in switch(config.architecture['internal_representation']): if case('transformer'): transformer_config = merge_dicts( config.initialization, config.architecture, config.regularization, config.optimization) inputs2 = tf.transpose(inputs, perm=[1,0,2]) recurrent_outputs = transformer._encoder_model( inputs2, transformer_config, mode ) recurrent_outputs = tf.transpose( recurrent_outputs, perm=[1,0,2]) elif case('recurrent'): # Create recurrent layer(s) that translate # primary sequences into internal representation recurrence_config = merge_dicts( config.initialization, config.architecture, config.regularization, config.optimization, config.computing, config.io) # inputs: [NUM_STEPS, BATCH_SIZE, RECURRENT_LAYER_SIZE] # recurrent_outputs: [NUM_STEPS, BATCH_SIZE, RECURRENT_LAYER_SIZE] recurrent_outputs, recurrent_states = rnn._higher_recurrence( mode, recurrence_config, inputs, num_stepss, alphabet=alphabet) elif case('none'): recurrent_outputs = inputs else: raise ValueError('Not an available internal representation.') # Tertiary structure generation if config.loss['tertiary_weight'] > 0: # Convert internal representation to # (thru some number of possible ways) dihedral angles dihedrals_config = merge_dicts( config.initialization, config.optimization, config.architecture, config.regularization, config.io) dihedrals_config.update({ k: dihedrals_config[k][-1] for k in [ 'alphabet_keep_probability', 'alphabet_normalization']}) if not dihedrals_config['single_or_no_alphabet']: dihedrals_config.update({ 'alphabet_size': dihedrals_config['alphabet_size'][-1]}) dihedrals = _dihedrals( mode, dihedrals_config, recurrent_outputs, alphabet=alphabet) # Convert dihedrals into full 3D structures and compute dRMSDs coordinates = _coordinates( merge_dicts( config.computing, config.optimization, config.queueing), dihedrals) drmsds = _drmsds( merge_dicts( config.optimization, config.loss, config.io), coordinates, tertiaries, weights) if mode == 'evaluation': prediction_ops.update({ 'ids': ids, 'coordinates': coordinates, 'num_stepss': num_stepss,}) # 'recurrent_states': recurrent_states}) # Losses if config.loss['include']: filters = {grp: id_filter(ids, grp) \ for grp in config.io['evaluation_sub_groups']} \ if mode == 'evaluation' else {} filters.update({'all': tf.tile([True], tf.shape(ids))}) for group_id, group_filter in filters.items(): with tf.variable_scope(group_id): # Tertiary loss effective_tertiary_loss = 0. if config.loss['tertiary_weight'] > 0: if config.queueing['num_evaluation_invocations'] > 1 \ and mode == 'training': raise RuntimeError('Cannot use multiple invocations with training mode.') else: # Compute tertiary loss quotient parts by reducing dRMSDs # based on normalization behavior tertiary_loss_numerator, tertiary_loss_denominator = _reduce_loss_quotient( merge_dicts(config.loss, config.io, config.optimization), drmsds, masks, group_filter, name_prefix='tertiary_loss') # Handles multiple invocations and gracefully degrades for single invocations. # Variables are created below _per_ evaluation model, which is a deviation from my general design # the scope of those variables is the evaluation model's, _not_ the training model's as usual tertiary_loss, min_loss_achieved, min_loss_op, \ update_accu_op, reduce_accu_op = _accumulate_loss( merge_dicts(config.io, config.queueing), tertiary_loss_numerator, tertiary_loss_denominator, name_prefix='tertiary_loss') if mode == 'evaluation': evaluation_ops.update({ 'update_accumulator_' + group_id + '_op': update_accu_op}) last_evaluation_ops.update({ 'tertiary_loss_' + group_id: tertiary_loss * LOSS_SCALING_FACTOR, 'reduce_accumulator_' + group_id + '_op': reduce_accu_op, 'min_tertiary_loss_achieved_' + group_id: min_loss_achieved * LOSS_SCALING_FACTOR, 'min_tertiary_loss_' + group_id + '_op': min_loss_op}) if config.io['log_model_summaries']: tf.add_to_collection( config.io['name'] + '_tertiary_losses', tertiary_loss) effective_tertiary_loss = config.loss['tertiary_weight'] * tertiary_loss # Final loss and related housekeeping loss = tf.identity(effective_tertiary_loss, name='loss') update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # batch_norm related if update_ops: loss = control_flow_ops.with_dependencies( tf.tuple(update_ops), loss) if config.io['log_model_summaries']: tf.add_to_collection( config.io['name'] + '_losses', loss) if group_id == config.curriculum['loss_history_subgroup']: curriculum_loss = loss # Curriculum loss history; not always used but design # is much cleaner if always created. curriculum_loss_history = tf.get_variable( initializer=tf.constant_initializer([DUMMY_LOSS] \ * config.curriculum['change_num_iterations']), shape=[config.curriculum['change_num_iterations']], trainable=False, name='curriculum_loss_history') if mode == 'evaluation' and config.curriculum['update_loss_history']: update_curriculum_history_op = _history( config.io, curriculum_loss, curriculum_loss_history) last_evaluation_ops.update({ 'update_curriculum_history_op': update_curriculum_history_op}) # Training if mode == 'training': # get grads, training ops self._global_step, minimize_op, grads_and_vars_dict = _training( config.optimization, loss) self._grads_and_vars_length = len(grads_and_vars_dict) // 2 # update relevant op dicts # update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) # if update_ops: # training_ops.update({'update_ops': tf.tuple(update_ops)}) training_ops.update({ 'minimize_op': minimize_op, 'global_step': self._global_step, 'ids': ids}) diagnostic_ops.update(grads_and_vars_dict) # Curriculum if mode == 'training' \ and config.curriculum['behavior'] in [ 'fixed_rate', 'loss_threshold', 'loss_change']: curriculum_update_op = _curriculum( config.curriculum, curriculum_step, curriculum_loss_history, [minimize_op]) training_ops.update({ 'curriculum_update_op': curriculum_update_op}) def _train(self, session): """Performs one iteration of training. If applicable, advances the curriculum. Args: session: tf session Returns: global step ids """ training_dict = ops_to_dict(session, self._training_ops) return training_dict['global_step'], training_dict['ids'] def _evaluate(self, session, pretty=True): """Evaluates loss(es) and returns dicts with the relevant loss(es). Args: session: tf session pretty: pretty print Returns: evaluation dict """ if RGNModel._is_started: # evaluate num_invocations = self.config.queueing['num_evaluation_invocations'] for invocation in range(num_invocations): if invocation < num_invocations - 1: evaluation_dict = ops_to_dict( session, self._evaluation_ops) else: evaluation_dict = ops_to_dict( session, merge_dicts( self._evaluation_ops, self._last_evaluation_ops)) # write event summaries to disk if self.config.io['log_model_summaries']: self._summary_writer.add_summary( evaluation_dict['merged_summaries_op'], global_step=evaluation_dict['global_step']) # remove non-user facing ops if pretty: [evaluation_dict.pop(k) for k in list(evaluation_dict.keys()) if 'op' in k] return evaluation_dict else: raise RuntimeError('Model has not been started or has already finished.') def _predict(self, session): """Predict 3D structures. Args: session: tf session Returns: dict of prediction """ if RGNModel._is_started: # evaluate prediction dict prediction_dict = ops_to_dict(session, self._prediction_ops) # process tertiary sequences if 'coordinates' in prediction_dict: prediction_dict['coordinates'] = np.transpose( prediction_dict['coordinates'], (1, 2, 0)) # generate return dict predictions = {} for id_, num_steps, tertiary, recurrent_states \ in zip_longest(*[prediction_dict.get(key, []) \ for key in ['ids', 'num_stepss', 'coordinates', 'recurrent_states']]): prediction = {} if tertiary is not None: last_atom = (num_steps - self.config.io['num_edge_residues']) * NUM_DIHEDRALS prediction.update({'tertiary': tertiary[:, :last_atom]}) prediction.update({'recurrent_states': recurrent_states}) predictions.update({id_: prediction}) return predictions else: raise RuntimeError('Model has not been started or has already finished.') def _diagnose(self, session, pretty=True): """ Compute diagnostic measurements Ex. weight norms and curriculum quantiles. Args: session: tf session pretty: pretty print Returns: diagnostic dict """ # for k, v in self._diagnostic_ops.items(): # print("KEY: ", k, " VALUE: ", v) diagnostic_dict = ops_to_dict(session, self._diagnostic_ops) # write event summaries to disk if self.config.io['log_model_summaries']: for op in ['merged_summaries_op', 'base_merged_summaries_op']: self._summary_writer.add_summary( diagnostic_dict[op], global_step=diagnostic_dict['global_step']) # compute max/min of vars and grads vars_ = [diagnostic_dict['v' + str(i)] \ for i in range(self._grads_and_vars_length)] grads = [diagnostic_dict['g' + str(i)] \ for i in range(self._grads_and_vars_length)] diagnostic_dict.update({ 'min_weight': np.min([np.min(var) for var in vars_]), 'max_weight': np.max([np.max(var) for var in vars_]), 'min_grad': np.min([np.min(grad) for grad in grads]), 'max_grad': np.max([np.max(grad) for grad in grads])}) # compute curriculum quantiles if applicable. if self.config.curriculum['mode'] == 'loss': quantiles = cum_quantile_positions( diagnostic_dict['flat_curriculum_weights']) diagnostic_dict.update({'curriculum_quantiles': quantiles}) elif self.config.curriculum['mode'] == 'length': diagnostic_dict.update({'curriculum_quantiles': float('nan')}) # remove non-user facing ops and tensors if pretty: diagnostic_dict.pop('flat_curriculum_weights', None) for i in range(self._grads_and_vars_length): diagnostic_dict.pop('v' + str(i)) diagnostic_dict.pop('g' + str(i)) return diagnostic_dict def _start(self, evaluation_models, session=None, restore_if_checkpointed=True): """Initializes model from scratch or loads state from disk. Must be run once (and only once) before model is used. Args: evaluation_models: multiple models for eval session: tf session restore_if_checkpointed: Returns: session """ if not RGNModel._is_started: # Checkpointing. Must be done here after all models have been instantiated, # because evaluation models may introduce additional variables self._saver = tf.train.Saver( max_to_keep=self.config.io['max_checkpoints'], keep_checkpoint_every_n_hours=self.config.io['checkpoint_every_n_hours']) # variable tracking and summarization. it has to be done here # after all models have been instantiated model_names = set( [model.config.io['name'] for model in evaluation_models] \ + [self.config.io['name']]) if self.config.io['log_model_summaries']: # add histogram and scalar summaries losses for model_name in model_names: for coll in ['tertiary_losses', 'losses']: for node in tf.get_collection(model_name + '_' + coll): tf.summary.scalar( node.name, node, collections=[model_name + '_' + tf.GraphKeys.SUMMARIES]) if self.config.io['detailed_logs']: # additional detailed summaries for losses for model_name in model_names: for coll in ['scess', 'matches', 'drmsdss', tf.GraphKeys.ACTIVATIONS]: for node_or_named_output in tf.get_collection(model_name + '_' + coll): if type(node_or_named_output) is tf.Tensor: tf.summary.histogram( node_or_named_output.name, node_or_named_output, collections=[model_name + '_' + tf.GraphKeys.SUMMARIES]) elif type(node_or_named_output) is layers.utils.NamedOutputs: tf.summary.histogram( node_or_named_output[1].name, node_or_named_output[1], collections=[model_name + '_' + tf.GraphKeys.SUMMARIES]) # summaries for trainable variables and their activations for var in tf.trainable_variables(): tf.summary.histogram(var.name, var) layers.summarize_activations() # add housekeeping training ops that merge and write summaries self._summary_writer = tf.summary.FileWriter( self.config.io['logs_directory']) self._diagnostic_ops.update({ 'global_step': self._global_step, # leftovers not covered by model-specific 'summaries' 'base_merged_summaries_op': tf.summary.merge_all(), 'merged_summaries_op': tf.summary.merge_all( self.config.io['name'] + '_' + tf.GraphKeys.SUMMARIES)}) # ditto for evaluation models for model in evaluation_models: if model.mode == 'evaluation': model._summary_writer = self._summary_writer model._last_evaluation_ops.update({ 'global_step': self._global_step, 'merged_summaries_op': tf.summary.merge_all( model.config.io['name'] + '_' + tf.GraphKeys.SUMMARIES)}) # start session with appropriate device settings if no Session is passed if self.config.computing['fill_gpu']: gpu_fraction = None else: gpu_fraction = self.config.computing['gpu_fraction'] if session is None: session = tf.Session( config=tf.ConfigProto( allow_soft_placement=False, inter_op_parallelism_threads=self.config.computing['num_cpus'], intra_op_parallelism_threads=self.config.computing['num_cpus'], gpu_options=tf.GPUOptions( per_process_gpu_memory_fraction=gpu_fraction, allow_growth=self.config.computing['allow_gpu_growth']))) # retrieve latest checkpoint, if any latest_checkpoint = tf.train.latest_checkpoint( self.config.io['checkpoints_directory']) # restore latest checkpoint if found, initialize from scratch otherwise. if not restore_if_checkpointed or latest_checkpoint is None: tf.global_variables_initializer().run(session=session) tf.local_variables_initializer().run(session=session) else: self._saver.restore(session, latest_checkpoint) tf.local_variables_initializer().run(session=session) # start coordinator and queueing threads self._threads = tf.train.start_queue_runners( sess=session, coord=self._coordinator) RGNModel._is_started = True # expose new methods and hide old ones self.train = self._train self.diagnose = self._diagnose self.save = self._save self.is_done = self._is_done self.current_step = self._current_step self.finish = self._finish del self.start return session else: raise RuntimeError('Model already started.') def _save(self, session): """Checkpoints current model. Args: session: tf session Returns: tf saver """ checkpoints_dir = self.config.io['checkpoints_directory'] if not os.path.exists(checkpoints_dir): os.makedirs(checkpoints_dir) saver = self._saver.save( session, checkpoints_dir, global_step=self._global_step) return saver def _is_done(self): """Returns True if training is finished, False otherwise. """ return self._coordinator.should_stop() def _current_step(self, session): """Returns the current global step. """ return session.run(self._global_step) def _finish(self, session, save=True, close_session=True, reset_graph=True): """ Instructs the model to shutdown. Returns: None """ self._coordinator.request_stop() self._coordinator.join(self._threads) if save: self.save(session) if self.config.io['log_model_summaries']: self._summary_writer.close() if close_session: session.close() if reset_graph: tf.reset_default_graph() RGNModel._num_models = 0 RGNModel._is_started = False del self.train, self.diagnose, self.save, \ self.is_done, self.current_step, self.finish ### Private functions # Strictly used internally for RGNModel # For TF-based ones, they do not carry out proper scoping # of their internals, as what they produce is meant to be dropped in the main TF # graph. They are often stateful, producing TF variables that are used by other # parts of RGNModel. However their behavior is still transparent in the sense # that they're only passed parameters, not actual TF nodes or ops, and return # everything that needs to be acted upon by RGNModel. So they don't modify # the state of anything that's passed to them. def _device_function_constructor(functions_on_devices={}, default_device=''): """Place each operation on the most optimal device. Args: functions_on_devices: dictionary mapping device to operation Returns: device placement function """ def device_function(op): # can't depend on ordering of items in dicts for device, funcs in functions_on_devices.items(): if any(((func in op.name) \ or any(func in node.name for node in op.inputs)) for func in funcs): return device else: return default_device return device_function def _dataflow(config, max_length): """Creates TF queues and nodes for inputting and batching data. Returns only tensors. Args: config: config dict containing io, initialization, optimization, queuing max_length: maximum seqence length Returns: ids: string identifier of records primaries: [NUM_STEPS, BATCH_SIZE, NUM_AAS] evolutionaries: [NUM_STEPS, BATCH_SIZE, NUM_EVO_ENTRIES] secondaries: [NUM_STEPS, BATCH_SIZE] tertiaries: [(NUM_STEPS - NUM_EDGE_RESIDUES) x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS] masks: [NUM_STEPS - NUM_EDGE_RESIDUES, NUM_STEPS - NUM_EDGE_RESIDUES, BATCH_SIZE] num_stepss: max length in the batch """ # files if config['data_files'] is not None: files = config['data_files'] else: files = glob(config['data_files_glob']) # files queue file_queue = tf.train.string_input_producer( files, num_epochs=config['num_epochs'], shuffle=config['shuffle'], seed=config['queue_seed'], capacity=config['file_queue_capacity'], name='file_queue') # read instance inputs = read_protein( file_queue, max_length, config['num_edge_residues'], config['num_evo_entries']) # randomization # https://github.com/tensorflow/tensorflow/issues/5147#issuecomment-271086206 if config['shuffle']: dtypes = list([x.dtype for x in inputs]) shapes = list([x.get_shape() for x in inputs]) randomizer_queue = tf.RandomShuffleQueue( capacity=config['batch_queue_capacity'], min_after_dequeue=config['min_after_dequeue'], dtypes=dtypes, seed=config['queue_seed'], name='randomization_queue') randomizer_enqueue_op = randomizer_queue.enqueue(inputs) randomizer_qr = tf.train.QueueRunner( randomizer_queue, [randomizer_enqueue_op]) tf.add_to_collection(tf.GraphKeys.QUEUE_RUNNERS, randomizer_qr) inputs = randomizer_queue.dequeue() for tensor, shape in zip(inputs, shapes): tensor.set_shape(shape) num_steps, keep = inputs[-2:] # bucketing if config['bucket_boundaries'] is not None: batch_fun = tf.contrib.training.bucket_by_sequence_length batch_kwargs = {'input_length': num_steps, 'bucket_boundaries': config['bucket_boundaries'], 'capacity': config['batch_queue_capacity'] / config['batch_size']} sel_slice = 1 else: batch_fun = tf.train.maybe_batch batch_kwargs = {'capacity': config['batch_queue_capacity']} sel_slice = slice(len(inputs) - 1) # batching inputs = batch_fun( tensors=list(inputs)[:-1], keep_input=keep, dynamic_pad=True, batch_size=config['batch_size'], name='batching_queue', **batch_kwargs) ids, primaries_batch_major, evolutionaries_batch_major, \ secondaries_batch_major, tertiaries_batch_major, \ masks_batch_major, num_stepss = inputs[sel_slice] # transpose to time_step major # primary sequences (one-hot sequences of amino acids) # [NUM_STEPS, BATCH_SIZE, NUM_AAS] primaries = tf.transpose( primaries_batch_major, perm=(1, 0, 2), name='primaries') # evolutionary sequences # (multi-dim evolutionary profiles of amino acid propensities) # [NUM_STEPS, BATCH_SIZE, NUM_EVO_ENTRIES] evolutionaries = tf.transpose( evolutionaries_batch_major, perm=(1, 0, 2), name='evolutionaries') # secondary sequences (sequences of DSSP classes) # [NUM_STEPS, BATCH_SIZE] secondaries = tf.transpose( secondaries_batch_major, perm=(1, 0), name='secondaries') # tertiary sequences (sequences of 3D coordinates) # [(NUM_STEPS - NUM_EDGE_RESIDUES) x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS] tertiaries = tf.transpose( tertiaries_batch_major, perm=(1, 0, 2), name='tertiaries') # mask matrix for each datum that masks meaningless distances. # [NUM_STEPS - NUM_EDGE_RESIDUES, NUM_STEPS - NUM_EDGE_RESIDUES, BATCH_SIZE] masks = tf.transpose( masks_batch_major, perm=(1, 2, 0), name='masks') # assign names to the nameless ids = tf.identity(ids, name='ids') num_stepss = tf.identity(num_stepss, name='num_stepss') return ids, primaries, evolutionaries, secondaries, tertiaries, masks, num_stepss def _inputs(config, primaries, evolutionaries): """Returns final concatenated input for use in recurrent layer. Args: config: dictionary of parameters primaries: [NUM_STEPS, BATCH_SIZE, NUM_AAS] evolutionaries: [NUM_STEPS, BATCH_SIZE, NUM_EVO_ENTRIES] Returns: concated inputs of shape [NUM_STEPS, BATCH_SIZE, XXXX] where XXXX is one of: NUM_AAS NUM_EVO_ENTRIES NUM_AAS + NUM_EVO_ENTRIES """ inputs_list = ([primaries] if config['include_primary'] else []) \ + ([evolutionaries * config['evolutionary_multiplier']] \ if config['include_evolutionary'] else []) if inputs_list is not []: inputs = tf.concat(inputs_list, 2, name='inputs') else: raise RuntimeError('Must include either primaries or evolutionaries inputs.') return inputs def _weights(config, masks, curriculum_step=None): """Creates dRMSD weights. Mask meaningless (missing or longer than sequence residues) pairwise distances and incorporate the state of the curriculum to differentially weigh pairwise distances based on their proximity. Args: config: dict of configurations masks: [LEN, LEN, BATCH_SIZE] curriculum_step: tf scalar Returns: masked_weights: [MAX_SEQ_LENGTH, MAX_SEQ_LENGTH] flat_curriculum_weights: [MAX_SEQ_LENGTH - 1] """ if config['atoms'] == 'c_alpha': # no loss-based curriculum if config['mode'] != 'loss': # create fixed weighting matrix that weighs all distances equally. # minus one factor is there because we ignore self-distances. flat_curriculum_weights = np.ones( config['num_steps'] - config['num_edge_residues'] - 1, dtype='float32') elif config['mode'] == 'loss' and curriculum_step is not None: # create appropriate weights based on curriculum parameters and current step. flat_curriculum_weights = curriculum_weights( base=curriculum_step, slope=config['slope'], max_seq_length=config['num_steps'] - config['num_edge_residues']) else: raise RuntimeError('Curriculum step tensor not supplied.') # weighting matrix for entire batch that accounts for curriculum weighting. # [NUM_STEPS - NUM_EDGE_RESIDUES, NUM_STEPS - NUM_EDGE_RESIDUES] unnormalized_weights = weighting_matrix( flat_curriculum_weights, name='unnormalized_weights') # create final weights by multiplying with masks and normalizing. mask_length = tf.shape(masks)[0] unnormalized_masked_weights = masks * unnormalized_weights[:mask_length, :mask_length, tf.newaxis] masked_weights = tf.div( unnormalized_masked_weights, tf.reduce_sum(unnormalized_masked_weights, axis=[0, 1]), name='weights') return masked_weights, flat_curriculum_weights else: raise NotImplementedError('Model only supports C alpha atoms for the loss function.') def _alphabet(mode, config): """Creates alphabet for alphabetized dihedral prediction. Args: mode: train or predict config: dict of configs Returns: tf alphabet variable (can be trainable) [ALPHABET_SIZE, NUM_DIHEDRALS] """ # prepare initializer if config['alphabet'] is not None: # user-defined alphabet alphabet_initializer = tf.constant_initializer(config['alphabet']) else: # random initialization alphabet_initializer = dict_to_init( config['alphabet_init'], config['alphabet_seed']) # alphabet variable, possibly trainable alphabet = tf.get_variable( name='alphabet', shape=[config['alphabet_size'], NUM_DIHEDRALS], initializer=alphabet_initializer, trainable=config['alphabet_trainable']) # [OUTPUT_SIZE, NUM_DIHEDRALS] # add to WEIGHTS collection if trainable if mode == 'training' and config['alphabet_trainable']: tf.add_to_collection(tf.GraphKeys.WEIGHTS, alphabet) return alphabet def _dihedrals(mode, config, inputs, alphabet=None): """ Converts internal representation into dihedral angles. The optional argument alphabet does not determine whether an alphabet should be created or not--that's controlled by config. Instead the option allows the reuse of an existing alphabet. Args: mode: train or predict config: dict of parameters inputs: inputs to feed alphabet: s Returns: [NUM_STEPS, BATCH_SIZE, NUM_DIHEDRALS] """ is_training = (mode == 'training') # output size for linear transform layer (OUTPUT_SIZE) output_size = config['alphabet_size'] \ if config['is_alphabetized'] \ else NUM_DIHEDRALS # set up non-linear dihedrals layer(s) if requested nonlinear_out_proj_size = config['recurrent_nonlinear_out_proj_size'] if nonlinear_out_proj_size is not None: if config['recurrent_nonlinear_out_proj_normalization'] \ == 'batch_normalization': nonlinear_out_proj_normalization_fn = layers.batch_norm nonlinear_out_proj_normalization_fn_opts = { 'center': True, 'scale': True, 'decay': 0.9, 'epsilon': 0.001, 'is_training': tf.constant(is_training), 'scope': 'nonlinear_out_proj_batch_norm', 'outputs_collections': config['name'] + '_' + tf.GraphKeys.ACTIVATIONS} elif config['recurrent_nonlinear_out_proj_normalization'] \ == 'layer_normalization': nonlinear_out_proj_normalization_fn = layers.layer_norm nonlinear_out_proj_normalization_fn_opts = { 'center': True, 'scale': True, 'scope': 'nonlinear_out_proj_layer_norm', 'outputs_collections': config['name'] + '_' + tf.GraphKeys.ACTIVATIONS} else: nonlinear_out_proj_normalization_fn = None nonlinear_out_proj_normalization_fn_opts = None nonlinear_out_proj_fn = { 'tanh': tf.tanh, 'relu': tf.nn.relu}[config['recurrent_nonlinear_out_proj_function']] outputs = inputs for idx, (layer_size, init) in enumerate(zip( nonlinear_out_proj_size, config['recurrent_nonlinear_out_proj_init'])): recurrent_nonlinear_out_proj_init = dict_to_inits( init, config['recurrent_nonlinear_out_proj_seed']) outputs = layers.fully_connected( outputs, layer_size, scope='nonlinear_dihedrals_' + str(idx), activation_fn=nonlinear_out_proj_fn, normalizer_fn=nonlinear_out_proj_normalization_fn, normalizer_params=nonlinear_out_proj_normalization_fn_opts, weights_initializer=recurrent_nonlinear_out_proj_init['base'], biases_initializer=recurrent_nonlinear_out_proj_init['bias'], outputs_collections=config['name'] + '_' + tf.GraphKeys.ACTIVATIONS, variables_collections={ 'weights': [tf.GraphKeys.WEIGHTS], 'biases': [tf.GraphKeys.BIASES]}) dihedrals_inputs = outputs # [NUM_STEPS, BATCH_SIZE, NONLINEAR_DIHEDRALS_LAYER_SIZE] else: dihedrals_inputs = inputs # [NUM_STEPS, BATCH_SIZE, N x RECURRENT_LAYER_SIZE] # N is 1 or 2 depending on bidirectionality # set up linear transform variables recurrent_out_proj_init = dict_to_inits( config['recurrent_out_proj_init'], config['recurrent_out_proj_seed']) linear = layers.fully_connected( dihedrals_inputs, output_size, activation_fn=None, scope='linear_dihedrals', weights_initializer=recurrent_out_proj_init['base'], biases_initializer=recurrent_out_proj_init['bias'], variables_collections={ 'weights': [tf.GraphKeys.WEIGHTS], 'biases': [tf.GraphKeys.BIASES]}, outputs_collections=config['name'] + '_' + tf.GraphKeys.ACTIVATIONS) # [NUM_STEPS, BATCH_SIZE, OUTPUT_SIZE] # reduce to dihedrals, through an alphabet if specified if config['is_alphabetized']: # create alphabet if one is not already there if alphabet is None: alphabet = _alphabet(mode, config) # angularize alphabet if specified if config['is_angularized']: alphabet = angularize(alphabet) # batch or layer normalize linear inputs to softmax # (stats are computed over all batches and timesteps, effectively flattened) if config['alphabet_normalization'] == 'batch_normalization': linear = layers.batch_norm( linear, center=True, scale=True, decay=0.999, epsilon=0.001, is_training=tf.constant(is_training), scope='alphabet_batch_norm', outputs_collections=config['name'] + '_' + tf.GraphKeys.ACTIVATIONS) elif config['alphabet_normalization'] == 'layer_normalization': linear = layers.layer_norm( linear, center=True, scale=True, scope='alphabet_layer_norm', outputs_collections=config['name'] + '_' + tf.GraphKeys.ACTIVATIONS) # softmax for linear to create angle mixtures # [NUM_STEPS x BATCH_SIZE, OUTPUT_SIZE] flattened_linear = tf.reshape(linear, [-1, output_size]) probs = tf.nn.softmax( flattened_linear / config['alphabet_temperature'], name='probs') # [NUM_STEPS x BATCH_SIZE, OUTPUT_SIZE] tf.add_to_collection( config['name'] + '_' + tf.GraphKeys.ACTIVATIONS, probs) # dropout alphabet if specified. # I don't renormalize since final angle is invariant wrt overall scale. if mode == 'training' and config['alphabet_keep_probability'] < 1: probs = tf.nn.dropout( probs, config['alphabet_keep_probability'], seed=config['dropout_seed'], name='dropped_probs') # form final dihedrals based on mixture of alphabetized angles num_steps = tf.shape(linear)[0] batch_size = linear.get_shape().as_list()[1] # [NUM_STEPS x BATCH_SIZE, NUM_DIHEDRALS] flattened_dihedrals = reduce_mean_angle(probs, alphabet) # [NUM_STEPS, BATCH_SIZE, NUM_DIHEDRALS] dihedrals = tf.reshape( flattened_dihedrals, [num_steps, batch_size, NUM_DIHEDRALS]) else: # just linear dihedrals = linear # angularize if specified if config['is_angularized']: dihedrals = angularize(dihedrals) # [NUM_STEPS, BATCH_SIZE, NUM_DIHEDRALS] (for both cases) # add angle shift dihedrals = tf.add( dihedrals, tf.constant( config['angle_shift'], dtype=tf.float32, name='angle_shift'), name='dihedrals') return dihedrals def _coordinates(config, dihedrals): """Converts dihedrals into full 3D structures. Args: config: config dict dihedrals: [NUM_STEPS, BATCH_SIZE, NUM_DIHEDRALS] Returns: [NUM_STEPS x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS] """ # converts dihedrals to points ready for reconstruction. # [NUM_STEPS x NUM_DIHEDRALS, BATCH_SIZE, NUM_DIMENSIONS] points = dihedral_to_point(dihedrals) # converts points to final 3D coordinates. coordinates = point_to_coordinate( points, num_fragments=config['num_reconstruction_fragments'], parallel_iterations=config['num_reconstruction_parallel_iters']) return coordinates def _drmsds(config, coordinates, targets, weights): """Computes reduced weighted dRMSD loss (as specified by weights). Computed between predicted tertiary structures and targets. Args: config: dict of config coordinates: coordinates of predicted targets: target coordinates weights: weights of each point Returns: dRMSD for each instance """ # lose end residues if desired if config['num_edge_residues'] > 0: coordinates = coordinates[:-(config['num_edge_residues'] * NUM_DIHEDRALS)] # if only c_alpha atoms are requested then subsample # starts at 1 because c_alpha atoms are the second atoms if config['atoms'] == 'c_alpha': # [NUM_STEPS - NUM_EDGE_RESIDUES, BATCH_SIZE, NUM_DIMENSIONS] coordinates = coordinates[1::NUM_DIHEDRALS] # [NUM_STEPS - NUM_EDGE_RESIDUES, BATCH_SIZE, NUM_DIMENSIONS] targets = targets[1::NUM_DIHEDRALS] # compute per structure dRMSDs drmsds = drmsd( coordinates, targets, weights, name='drmsds') # [BATCH_SIZE] # add to relevant collections for summaries, etc. if config['log_model_summaries']: tf.add_to_collection(config['name'] + '_drmsdss', drmsds) return drmsds def _reduce_loss_quotient(config, losses, masks, group_filter, name_prefix=''): """Reduces loss according to normalization order. Args: config: config dict losses: batch of losses masks: batch of masks group_filter: mask that filters out some losses name_prefix: name Returns: numerator: TF scalar denominator: TF scalar """ normalization = config['tertiary_normalization'] num_edge_residues = config['num_edge_residues'] max_seq_length = config['num_steps'] # will give problematic results if all entries are removed losses_filtered = tf.boolean_mask(losses, group_filter) for case in switch(normalization): if case('zeroth'): loss_factors = tf.ones_like(losses_filtered) elif case ('first'): loss_factors = tf.boolean_mask( effective_steps(masks, num_edge_residues), group_filter) fixed_denominator_factor = float( max_seq_length - num_edge_residues) elif case ('second'): eff_num_stepss = tf.boolean_mask( effective_steps(masks, num_edge_residues), group_filter) loss_factors = (tf.square(eff_num_stepss) - eff_num_stepss) / 2.0 fixed_denominator_factor = float(max_seq_length - num_edge_residues) fixed_denominator_factor = ((fixed_denominator_factor ** 2) \ - fixed_denominator_factor) / 2.0 numerator = tf.reduce_sum( loss_factors * losses_filtered, name=name_prefix + '_numerator') if config['batch_dependent_normalization'] \ or normalization == 'zeroth': denominator = tf.reduce_sum( loss_factors, name=name_prefix + '_denominator') else: denominator = tf.multiply( tf.cast(tf.size(loss_factors), tf.float32), fixed_denominator_factor, name=name_prefix + '_denominator') return numerator, denominator def _accumulate_loss(config, numerator, denominator, name_prefix=''): """Constructs ops to accumulate and reduce loss. It maintain a memory of lowest loss achieved. Args: config: dict of config numerator: tf scalar denominator: tf scalar name_prefix: name Returns: accumulated_loss: min_loss_achieved: min_loss_op: operation to find min update_op: reduce_op: """ if config['num_evaluation_invocations'] == 1: # return simple loss accumulated_loss = tf.divide( numerator, denominator, name=name_prefix) update_op = reduce_op = tf.no_op() else: # create accumulator variables. # note that tf.Variable uses name_scope (not variable_scope) for naming, # which is what's desired in this instance numerator_accumulator = tf.Variable( initial_value=0., trainable=False, name=name_prefix + '_numerator_accumulator') denominator_accumulator = tf.Variable( initial_value=0., trainable=False, name=name_prefix + '_denominator_accumulator') # accumulate with tf.control_dependencies([ numerator, denominator, numerator_accumulator, denominator_accumulator]): accumulate_numerator = tf.assign_add( numerator_accumulator, numerator) accumulate_denominator = tf.assign_add( denominator_accumulator, denominator) update_op = tf.group( accumulate_numerator, accumulate_denominator, name=name_prefix + '_accumulate_op') # divide to get final quotient with tf.control_dependencies([update_op]): accumulated_loss = tf.divide( numerator_accumulator, denominator_accumulator, name=name_prefix + '_accumulated') # zero accumulators with tf.control_dependencies([accumulated_loss]): zero_numerator = tf.assign(numerator_accumulator, 0.) zero_denominator = tf.assign(denominator_accumulator, 0.) reduce_op = tf.group( zero_numerator, zero_denominator, name=name_prefix + '_reduce_op') min_loss_achieved = tf.Variable( initial_value=float('inf'), trainable=False, name='min_' + name_prefix + '_achieved') min_loss_op = tf.assign( min_loss_achieved, tf.reduce_min([min_loss_achieved, accumulated_loss]), name='min_' + name_prefix + '_achieved_op') with tf.control_dependencies([min_loss_op]): min_loss_achieved = tf.identity(min_loss_achieved) return accumulated_loss, min_loss_achieved, min_loss_op, update_op, reduce_op def _training(config, loss): """Creates loss optimizer and returns minimization op. Args: config: configuration dict loss: TF scalar Returns: global_step: applying the gradients minimize_op: TF op grads_and_vars_dict: dict """ optimizer_args = lambda o: \ o.__init__.__code__.co_varnames[:o.__init__.__code__.co_argcount] # select appropriate optimization function and construct arg list based on config optimizer_func = { 'steepest': tf.train.GradientDescentOptimizer, # doesn't support momentum, unlike autograd 'rmsprop': tf.train.RMSPropOptimizer, 'adam': tf.train.AdamOptimizer, 'momentum': tf.train.MomentumOptimizer, 'adagrad': tf.train.AdagradOptimizer, 'adadelta': tf.train.AdadeltaOptimizer}[config['optimizer']] optimizer_params = config.keys() & set(optimizer_args(optimizer_func)) optimizer_params_and_values = {param: config[param] for param in optimizer_params} optimizer = optimizer_func(**optimizer_params_and_values) # obtain and process gradients grads_and_vars = optimizer.compute_gradients(loss) threshold = config['gradient_threshold'] # print(grads_and_vars[0]) # from sys import exit # exit() # grads_and_vars = tf.Print(grads_and_vars, [grads_and_vars]) if threshold != float('inf'): for case in switch(config['rescale_behavior']): if case('norm_rescaling'): grads, _ = tf.clip_by_global_norm( [g for g, _ in grads_and_vars], threshold) vars_ = [v for _, v in grads_and_vars] grads_and_vars = list(zip(grads, vars_)) elif case('hard_clipping'): grads_and_vars = [ (tf.clip_by_value(g, -threshold, threshold), v)\ for g, v in grads_and_vars] # apply gradients and return stepping op global_step = tf.get_variable( initializer=tf.constant_initializer(0), shape=[], trainable=False, dtype=tf.int32, name='global_step') minimize_op = optimizer.apply_gradients( grads_and_vars, global_step=global_step) # dict useful for diagnostics grads_and_vars_dict = {} grads_and_vars_dict.update({ ('g' + str(i)): g for i, (g, _) in enumerate(grads_and_vars)}) grads_and_vars_dict.update({ ('v' + str(i)): v for i, (_, v) in enumerate(grads_and_vars)}) # print(grads_and_vars_dict) return global_step, minimize_op, grads_and_vars_dict def _history(config, loss, loss_history=None, scaling_factor=LOSS_SCALING_FACTOR): """Creates op for loss history updating. Args: config: dict loss: TF scalar loss_history: Tensor of history scaling_factor: Returns: Operation """ # op for shifting history, i.e. adding new loss, dropping oldest one # new_history = tf.concat( # [loss_history[1:], # tf.expand_dims(loss * scaling_factor, 0)], # 0) new_history = tf.concat( [loss_history[1:], [loss * scaling_factor]], 0) with tf.control_dependencies([new_history]): update_op = tf.assign( loss_history, new_history, name='update_curriculum_history_op') return update_op def _curriculum(config, step, loss_history, dependency_ops): """Creates TF ops for maintaining and advancing the curriculum. Args: config: config dict step: tf scalar loss_history: 1D tensor dependency_ops: operations to perform beforehand Returns: curriculum update """ # assign appropriate curriculum increment value for case in switch(config['behavior']): if case('fixed_rate'): # fixed rate, always return same number increment = tf.constant( config['rate'], name='curriculum_increment') elif case('loss_threshold'): # return fixed increment if last loss is below threshold, zero otherwise increment_pred = tf.less( loss_history[-1], config['threshold'], name='curriculum_predicate') full_increment_func = lambda: tf.constant( config['rate'], name='full_curriculum_increment') zero_increment_func = lambda: tf.constant( 0.0, name='zero_curriculum_increment') increment = tf.cond( increment_pred, full_increment_func, zero_increment_func) elif case('loss_change'): # predicate for increment type increment_pred = tf.not_equal( loss_history[0], DUMMY_LOSS, name='curriculum_predicate') # increment function for when loss history is still def full_increment_func(): lin_seq = tf.expand_dims( tf.linspace(0., 1., config['change_num_iterations']), 1) ls_matrix = tf.concat([tf.ones_like(lin_seq), lin_seq], 1) ls_rhs = tf.expand_dims(loss_history, 1) ls_slope = tf.matrix_solve_ls(ls_matrix, ls_rhs)[1, 0] full_increment = tf.div( config['rate'], tf.pow(tf.abs(ls_slope) + 1, config['sharpness']), name='full_curriculum_increment') return full_increment # dummy increment function for when loss history is changing rapidly zero_increment_func = lambda: tf.constant( 0.0, name='zero_curriculum_increment') # final conditional increment increment = tf.cond( increment_pred, full_increment_func, zero_increment_func) # create updating op. the semantics are such that # training / gradient update is first performed # before the curriculum is incremented. with tf.control_dependencies(dependency_ops): update_op = tf.assign_add( step, increment, name='update_curriculum_op') return update_op ``` #### File: UTGN/model/utils.py ```python import numpy as np import tensorflow as tf from ast import literal_eval class switch(object): """Switch iterator. Attributes: value: input value to test. fall: whether to stop """ def __init__(self, value): self.value = value self.fall = False def __iter__(self): """Return the match method once, then stop""" yield self.match raise StopIteration def match(self, *args): """Indicate whether or not to enter a case suite""" if self.fall or not args: return True elif self.value in args: self.fall = True return True else: return False def merge_dicts(*dict_args): """Merges arbitrary number of dicts. Gives precedence to latter dicts. Args: *dict_arg: arbitrary number of dicts Returns: a single merged dict """ result = {} for dictionary in dict_args: result.update(dictionary) return result def ops_to_dict(session, ops): """Converts canonical dict of TF ops to an actual dict. Runs ops first. Args: session: tf session ops: dict mapping name to tf operation Returns: dict """ dict_ = dict(list(zip(list(ops.keys()), session.run(list(ops.values()))))) return dict_ def cum_quantile_positions(weights, quantiles=np.linspace(0.25, 0.99, 4)): """ Computes cumulative quantiles from curriculum weights. """ if len(weights) != 0: return [next(x[0] + 1 for x in enumerate(np.cumsum(weights / sum(weights))) if x[1] > p) for p in quantiles] else: return [] def dict_to_init(dict_, seed=None, dtype=tf.float32): """Decide the appropriate initializer. Args: dict_: config dict seed: random seed dtype: datatype Returns: TF initialization """ init_center = dict_.get('center', 0.0) init_range = dict_.get('range', 0.01) init_dist = dict_.get('dist', 'gaussian') init_scale = dict_.get('scale', 1.0) init_mode = dict_.get('mode', 'fan_in') # also accepts fan_out, fan_avg for case in switch(init_dist): if case('gaussian'): init = tf.initializers.random_normal(init_center, init_range, seed=seed, dtype=dtype) elif case('uniform'): init = tf.initializers.random_uniform(init_center - init_range, init_center + init_range, seed=seed, dtype=dtype) elif case('orthogonal'): init = tf.initializers.orthogonal(init_scale, seed=seed, dtype=dtype) elif case('gaussian_variance_scaling'): init = tf.initializers.variance_scaling(init_scale, init_mode, 'normal', seed=seed, dtype=dtype) elif case('uniform_variance_scaling'): init = tf.initializers.variance_scaling(init_scale, init_mode, 'uniform', seed=seed, dtype=dtype) return init def dict_to_inits(dict_, seed=None, dtype=tf.float32): """Decide appropriate initializer. Args: dict_: dict of config dicts seed: random seed dtype: datatype Returns: dict of TF initialization """ inits = {k: dict_to_init(v, seed, dtype) for k, v in dict_.items()} return inits def count_trainable_params(): """Count the total trainable parameters. """ total_params = [np.prod(v.get_shape().as_list()) for v in tf.trainable_variables()] return np.sum(total_params) ```
{ "source": "JinLi711/Web-Scraping-Yelp", "score": 2 }
#### File: Art_Recognition/trial_run/setup.py ```python import os import matplotlib.pyplot as plt import numpy as np # image processing from PIL import Image import skimage.io import skimage.transform #====================================================================== # Default Variable Assignments #====================================================================== train_path = "art_images/dataset_updated/training_set" test_path = "art_images/dataset_updated/validation_set" corrupt_path = "art_images/dataset_updated/training_set_corrupted" categories = ['drawings', 'engraving', 'iconography', 'painting', 'sculpture'] category_embeddings = { 'drawings': 0, 'engraving': 1, 'iconography': 2, 'painting': 3, 'sculpture': 4 } width = 96 # 368 height = 96 # 352 n_channels = 3 #====================================================================== # Brief Visualizations #====================================================================== def view_freq(categories, training_dataset_path): """ Create a bar graph for visualizing categorical frequencies :param categories: list of categories :type categories: list :param training_dataset_path: relative path of the training dataset :type training_dataset_path: str """ n_imgs = [] for cat in categories: files = os.listdir(os.path.join(training_dataset_path, cat)) n_imgs += [len(files)] plt.bar([_ for _ in range(len(categories))], n_imgs, tick_label=categories) plt.title("Category Frequencies") plt.show() def view_images(categories, training_dataset_path): """ View one image from each category :param categories: list of categories :type categories: list :param training_dataset_path: relative path of the training dataset :type training_dataset_path: str """ n_categories = len (categories) fig, axes = plt.subplots(nrows=1, ncols=n_categories, figsize=(15, 3)) cat_cpt=0 for cat in categories: category_path = os.path.join(training_dataset_path, cat) img_name = os.listdir(category_path)[1] img = skimage.io.imread(os.path.join(category_path, img_name)) img = skimage.transform.resize(img, (width, height, n_channels), mode='reflect') axes[cat_cpt].imshow(img, resample=True) axes[cat_cpt].set_title(cat, fontsize=8) cat_cpt += 1 plt.show() #====================================================================== # File Preprocessing #====================================================================== def get_file_names(categories, training_dataset_path, test_dataset_path): """ Get all the file names and its category :param categories: list of categories :type categories: list :param training_dataset_path: relative path of the training dataset :type training_dataset_path: str :param test_dataset_path: relative path of the test dataset :type test_dataset_path: str :returns: (list of tuples of train, where first element of tuple is file name, and second element is the category, list of tuples of test) :rtype: (list, list) """ training_data = [] for cat in categories: files = os.listdir(os.path.join(training_dataset_path, cat)) for file in files: training_data.append((os.path.join(cat, file), cat)) test_data = [] for cat in categories: files = os.listdir(os.path.join(test_dataset_path, cat)) for file in files: test_data.append((os.path.join(cat, file), cat)) return training_data, test_data def move_bad_file(tuples_list, dataset_path, corrupt_path): """ Move corrupted images to new folder. :param tuples_list: list of tuples, where first element of tuple is file name, and second element is the category, :type tuples_list: list :param dataset_path: relative path of the dataset :type dataset_path: str :param corrupt_path: relative path where corrupted files are moved :type corrupt_path: str """ indexes = np.arange(len(tuples_list)) n_samples = len(indexes) for i in range(n_samples): t = tuples_list[indexes[i]] path_name = os.path.join(dataset_path, t[0]) try: img = Image.open(path_name) except FileNotFoundError: # corrupt file has already been moved pass except (IOError, SyntaxError) as e: print("Bad file:", t[0]) # move file os.rename(path_name, os.path.join(corrupt_path, t[0])) ``` #### File: Scraping/API/restaurant_scrape.py ```python from __future__ import print_function import json import re import requests import sys import urllib3 import signal import MySQLdb import logging import pprint #from urllib3 import HTTPError from urllib.parse import quote #from urllib import urlencode API_KEY = 'FILL' # API constants, you shouldn't have to change these. API_HOST = 'https://api.yelp.com' SEARCH_PATH = '/v3/businesses/search' SEARCH_PATH_BEST = '/v3/business/matches/best' BUSINESS_PATH = '/v3/businesses/' # Business ID will come after slash. DEFAULT_TERM = 'dinner' DEFAULT_LOCATION = 'San Francisco, CA' SEARCH_LIMIT = 1 DBHOST = 'localhost' DBUSER = 'restaurants' DBPASS = '' DB = 'restaurants' LOGFILE = 'restaurants_chi.log' rcount = 0 list_left = 0 logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p', filename=LOGFILE, level=logging.INFO) def signal_handler(signal, frame): print('Ouch!') logging.info('*** killed process. completed %s entries.', rcount) sys.exit(0) signal.signal(signal.SIGINT, signal_handler) ''' def get_list(): global DBHOST, DBUSER, DBPASS, DB print("Getting list from database") data = [] Error = "" try: db = MySQLdb.connect(host=DBHOST, user=DBUSER, passwd=DBPASS, db=DB, use_unicode=True, charset="utf8") cursor = db.cursor() cursor.execute('SELECT DISTINCT DBA_Name, AKA_Name, Address AS Latest_Insp FROM food_inspection_chi WHERE Results != 'Out of Business' AND Facility_Type = "Restaurant" AND Inspection_Date >= '2016-01-01' GROUP BY Address;') row = cursor.fetchone() while row is not None: data.append(row) row = cursor.fetchone() except Error as e: print(e) finally: cursor.close() db.close() return data ''' def request(host, path, api_key, url_params=None): """Given your API_KEY, send a GET request to the API. Args: host (str): The domain host of the API. path (str): The path of the API after the domain. API_KEY (str): Your API Key. url_params (dict): An optional set of query parameters in the request. Returns: dict: The JSON response from the request. Raises: HTTPError: An error occurs from the HTTP request. """ url_params = url_params or {} url = '{0}{1}'.format(host, quote(path.encode('utf8'))) headers = { 'Authorization': 'Bearer %s' % api_key, } # print(u'Querying {0} ...'.format(url)) response = requests.request('GET', url, headers=headers, params=url_params) return response.json() def business_lookup(api_key, term, address): global rcount url_params = { 'name': name.replace(' ', '+'), 'location': address, 'city': "Chicago", 'state': "IL", 'country': "US", } return request(API_HOST, SEARCH_PATH_BEST, api_key, url_params=url_params) def search(api_key, term, address): global rcount # term = re.sub('(?:\s\W | LLC| INC|, LLC)', ' ', term.rstrip()) term = re.sub('(?:\s\W |#|\.|,|\d| RESTAURANT|CAFE|TAQUERIA| LLC| INC|, LLC|\([^)]*\))', ' ', term.rstrip()) url_params = { 'term': term.replace(' ', '+'), 'location': address, 'radius': "50", 'limit': SEARCH_LIMIT } results = request(API_HOST, SEARCH_PATH, api_key, url_params=url_params) # print(results) # print(url_params) try: if results['total'] is 0: print('\033[91m not found\n\033[0m') logging.info('not found %s %s', term, address) except: print('whatevs') try: for value in results['businesses']: try: business_id = results['businesses'][0]['id'] except: continue business_name = results['businesses'][0]['name'] is_closed = results['businesses'][0]['is_closed'] if is_closed: is_closed = "true" else: is_closed = "false" review_count = results['businesses'][0]['review_count'] business_address1 = results['businesses'][0]['location']['address1'] business_city = results['businesses'][0]['location']['city'] business_state = results['businesses'][0]['location']['state'] business_country = results['businesses'][0]['location']['country'] business_zip = results['businesses'][0]['location']['zip_code'] try: business_price = str(len(results['businesses'][0]['price'])) except KeyError: business_price = "NA" business_rating = str(results['businesses'][0]['rating']) business_categories = [] business_category0 = "NA" business_category1 = "NA" business_category2 = "NA" for category in results['businesses'][0]['categories']: business_categories.append(category['alias']) if len(business_categories) == 3: business_category0, business_category1, business_category2 = business_categories elif len(business_categories) == 2: business_category0, business_category1 = business_categories business_category2 = "NA" elif len(business_categories) == 1: business_category0 = business_categories[0] business_category1 = "NA" business_category2 = "NA" elif len(business_categories) == 0: business_category0 = "NA" business_category1 = "NA" business_category2 = "NA" business_lat = results['businesses'][0]['coordinates']['latitude'] business_lon = results['businesses'][0]['coordinates']['longitude'] rcount = rcount + 1 print('\033[0m', " adding:", '\033[92m', business_name, b'\033[93m', business_address1, '\033[0m', "\n") logging.info('added %s %s', business_name, business_address1) update_db(business_id, business_name, review_count, business_address1, business_city, business_state, business_country, business_zip, business_price, business_rating, business_category0, business_category1, business_category2, business_lat, business_lon, is_closed) except: print('business error') def get_business(api_key, business_id): """Query the Business API by a business ID. Args: business_id (str): The ID of the business to query. Returns: dict: The JSON response from the request. """ business_path = BUSINESS_PATH + business_id return request(API_HOST, business_path, api_key) ''' def update_db(business_id, business_name, review_count, business_address1, business_city, business_state, business_country, business_zip, business_price, business_rating, business_category0, business_category1, business_category2, business_lat, business_lon, is_closed): global DBHOST, DBUSER, DBPASS, DB db = MySQLdb.connect(host=DBHOST, user=DBUSER, passwd=DBPASS, db=DB, use_unicode=True, charset="utf8") cursor = db.cursor() cursor.execute('INSERT into restaurants_chi (id, name, review_count, address, city, state, country, zip, price, rating, category0, category1, category2, latitude, longitude, is_closed) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE id = VALUES(id), rating = VALUES(rating), latitude = VALUES(latitude), longitude = VALUES(longitude) ', (business_id, business_name, review_count, business_address1, business_city, business_state, business_country, business_zip, business_price, business_rating, business_category0, business_category1, business_category2, business_lat, business_lon, is_closed)) db.commit() db.close() ''' def main(): global list_left logging.info('*** starting new run.') #inspection_list = get_list() #list_left = len(inspection_list) logging.info('loaded %s entries from food_inspection_chi db', list_left) inspection_list = [["MCDONALD'S", "41.720224099058896", "-87.6433279836791"]] list_left = len(inspection_list) for dbname, akaname, address, in inspection_list: if akaname: if len(address) >= 3: print('\033[0m', 'searching AKA_name:', '\033[92m', akaname, '\033[93m', address, '\033[0m', list_left, 'remaining') logging.info('searching AKA_Name: %s %s', dbname, address) search(API_KEY, akaname, address) list_left = list_left - 1 else: if len(address) >= 3: print('\033[0m', 'searching DBA_Name:', '\033[92m', dbname, '\033[93m', address, '\033[0m', list_left, 'remaining') logging.info('searching DBA_Name: %s %s', dbname, address) search(API_KEY, dbname, address) list_left = list_left - 1 # print(dbname, latitude, longitude) logging.info('*** finished. completed %s entries', rcount) if __name__ == '__main__': main() ```
{ "source": "JinLi97/recommender-system-dev-workshop-code", "score": 3 }
#### File: movie/dashboard/process.py ```python import argparse import json import time import boto3 from pyspark.sql import SparkSession from pyspark.sql.functions import col, size, window, instr, lower def list_s3_by_prefix(bucket, prefix, filter_func=None): print(f"list_s3_by_prefix bucket: {bucket}, prefix: {prefix}") s3_bucket = boto3.resource('s3').Bucket(bucket) if filter_func is None: key_list = [s.key for s in s3_bucket.objects.filter(Prefix=prefix)] else: key_list = [s.key for s in s3_bucket.objects.filter( Prefix=prefix) if filter_func(s.key)] print("list_s3_by_prefix return:", key_list) return key_list def s3_copy(bucket, from_key, to_key): s3_bucket = boto3.resource('s3').Bucket(bucket) copy_source = { 'Bucket': bucket, 'Key': from_key } s3_bucket.copy(copy_source, to_key) print("copied s3://{}/{} to s3://{}/{}".format(bucket, from_key, bucket, to_key)) def s3_upload(file, bucket, s3_key): s3_bucket = boto3.resource('s3').Bucket(bucket) s3_bucket.Object(s3_key).upload_file(file) print("uploaded file {} to s3://{}/{}".format(file, bucket, s3_key)) parser = argparse.ArgumentParser(description="app inputs and outputs") parser.add_argument("--bucket", type=str, help="s3 bucket") parser.add_argument("--prefix", type=str, help="s3 input key prefix") parser.add_argument("--region", type=str, help="aws region") args, _ = parser.parse_known_args() print("args:", args) if args.region: print("region:", args.region) boto3.setup_default_session(region_name=args.region) bucket = args.bucket prefix = args.prefix if prefix.endswith("/"): prefix = prefix[:-1] print(f"bucket:{bucket}, prefix:{prefix}") # input_prefix=recommender-system-news-open-toutiao/system/item-data/raw-input/ # output_prefix=recommender-system-news-open-toutiao/system/item-data/emr-out/ item_input_file = "s3://{}/{}/system/ingest-data/item/".format(bucket, prefix) action_input_file = "s3://{}/{}/system/ingest-data/action/".format(bucket, prefix) user_input_file = "s3://{}/{}/system/ingest-data/user/".format(bucket, prefix) output_file_key = "{}/system/dashboard/dashboard.json".format(prefix) print("item_input_file:", item_input_file) print("action_input_file:", action_input_file) print("user_input_file:", user_input_file) # item_input_file = '/Users/yonmzn/tmp/item/' # action_input_file = '/Users/yonmzn/tmp/action/' # user_input_file = '/Users/yonmzn/tmp/user/' statistics_dict = {} WIN_SIZE = "60 minutes" def item_statistics(df_item_input): print("item_statistics enter") global statistics_dict total_item_count = df_item_input.select("item_id").dropDuplicates(["item_id"]).count() statistics_dict["total_item_count"] = total_item_count # is_new_count = df_item_input.selectExpr("id", "cast(is_new as int)").groupby("id").min("is_new").groupby( # "min(is_new)").count().collect() # for row in is_new_count: # is_new, count = row['min(is_new)'], row['count'] # if is_new == 1: # statistics_dict["new_item_count"] = count # break print("item_statistics done") def user_statistics(df_user_input): print("user_statistics enter") global statistics_dict total_user_count = df_user_input.count() anonymous_user_count = df_user_input.where( (col('user_name') == '') | (instr(lower(col('user_name')), "anonymous") >= 1)).count() register_user_count = total_user_count - anonymous_user_count statistics_dict['total_user_count'] = total_user_count statistics_dict['register_user_count'] = register_user_count statistics_dict['anonymous_user_count'] = anonymous_user_count print("user_statistics done") def action_statistics(df_action_input, df_item_input, df_user_input): print("action_statistics enter") global statistics_dict df_item = df_item_input.select(col("item_id"), col("category_property"), col("title")).dropDuplicates(["item_id"]) df_item.cache() if statistics_dict.get("total_item_count"): total_item_count = df_item.count() else: total_item_count = statistics_dict["total_item_count"] df_user = df_user_input.select("user_id", "user_name") df_user.cache() #recommender_count = df_action_input.where(col('click_source') == '1').count() #recommender_click_count = df_action_input.where((col('click_source') == '1') & (col("action_value") == '1')).count() #statistics_dict['recommender_click_cover_ratio'] = int((recommender_click_count / recommender_count) * 100) / 100 df_clicked_action_event = df_action_input.where(col("action_value") == '1') # total_click_item_count = df_clicked_action_event.select('item_id').dropDuplicates(['item_id']).count() item_in_action_count = df_action_input.select(col('item_id')).distinct().count() statistics_dict['recommender_click_cover_ratio'] = int((item_in_action_count / total_item_count) * 100) / 100 click_item_in_action_count = df_action_input.where(col("action_value") == '1').select(col('item_id')).distinct().count() statistics_dict['item_click_ratio'] = int((click_item_in_action_count / item_in_action_count) * 100) / 100 total_click_count = df_clicked_action_event.count() statistics_dict['total_click_count'] = total_click_count print("total_click_count: ", total_click_count) print("begin finding top_users ...") df_action_event = df_clicked_action_event. \ withColumn("timestamp_bigint", col('timestamp').cast('bigint')). \ withColumn("event_time", col('timestamp_bigint').cast('timestamp')). \ drop(col('timestamp_bigint')). \ drop(col('action_type')). \ drop(col('action_value')). \ drop(col('timestamp')) join_type = "inner" df_action_event_full = df_action_event.join(df_item, ['item_id'], join_type) \ .join(df_user, ['user_id'], join_type) # df_action_hour = df_action_event_full.withColumn('date', col('event_time').cast("date")).withColumn('hour', hour(col('event_time'))) df_action_user_window = df_action_event_full.groupBy(window(col('event_time'), WIN_SIZE), col('user_id'), col('user_name')).count() df_action_user_window_sort = df_action_user_window.orderBy([col('window').desc(), col('count').desc()]) user_rows = df_action_user_window_sort.select(col("user_id"), col("user_name"), col('count')).take(100) top_10_user_ids = [] top_10_user = [] for user in user_rows: user_id = user['user_id'] user_name = user['user_name'] count = user['count'] if user_id not in top_10_user_ids: top_10_user_ids.append(user_id) top_10_user.append({ 'user_id': user_id, "name": user_name, "count": int(count) }) if len(top_10_user_ids) >= 10: break statistics_dict['top_users'] = top_10_user print("begin finding top_items ...") df_action_item_window = df_action_event_full.groupBy(window(col('event_time'), WIN_SIZE), col('item_id'), col('title')).count() df_action_item_window_sort = df_action_item_window.orderBy([col('window').desc(), col('count').desc()]) item_rows = df_action_item_window_sort.select(col("item_id"), col("title"), col('count')).take(100) top_10_item_ids = [] top_10_item = [] for item_row in item_rows: item_id = item_row['item_id'] title = item_row['title'] count = item_row['count'] if item_id not in top_10_item_ids: top_10_item_ids.append(item_id) top_10_item.append({ "id": item_id, "title": title, "count": int(count) }) if len(top_10_item_ids) >= 10: break statistics_dict['top_items'] = top_10_item print("begin finding click_count_by_source ...") click_count_by_source = [] action_source_total_rows = df_action_event_full.groupBy(col('click_source')).count().collect() for row in action_source_total_rows: click_count_by_source.append( { "source": 'recommend' if str(row['click_source']) == '1' else row['click_source'], "count": row['count'] } ) statistics_dict['click_count_by_source'] = click_count_by_source print("begin finding click_count_by_source_time_window ...") df_action_event_recommender = df_action_event_full.withColumn("is_recommender", col('click_source') == '1') df_action_event_recommender_window = df_action_event_recommender \ .groupBy(window(col('event_time'), WIN_SIZE), col('is_recommender')).count() n_hours = 8 start_time = \ df_action_event_recommender_window.select(col("window")['start']).orderBy([col('window.start').desc()]).take( n_hours)[-1][ 'window.start'] df_action_recommender_n_hours = df_action_event_recommender_window.where( col("window")['start'] >= start_time).orderBy( [col('window')]) recommender_n_hours = df_action_recommender_n_hours.collect() clicked_by_recommender = [] for row in recommender_n_hours: start_time = int(row['window']['start'].timestamp()) end_time = int(row['window']['end'].timestamp()) is_recommender = row['is_recommender'] count = row['count'] clicked_by_recommender.append({ "start_time": start_time, "end_time": end_time, "is_recommender": is_recommender, "count": count }) statistics_dict['click_count_recommender_time_window'] = clicked_by_recommender with SparkSession.builder.appName("Spark App - item preprocessing").getOrCreate() as spark: # # item data # df_item_input = spark.read.text(item_input_file) df_item_input = df_item_input.selectExpr("split(value, '_!_') as row").where( size(col("row")) > 12).selectExpr("row[0] as item_id", "row[1] as program_type", "row[2] as title", "row[3] as release_year", "row[4] as director", "row[5] as actor", "row[6] as category_property", "row[7] as language", "row[8] as ticket_num", "row[9] as popularity", "row[10] as score", "row[11] as level", "row[12] as is_new" ) df_item_input.cache() print("df_item_input OK") # # action data # df_action_input = spark.read.text(action_input_file) df_action_input = df_action_input.selectExpr("split(value, '_!_') as row").where( size(col("row")) > 5).selectExpr("row[0] as user_id", "row[1] as item_id", "row[2] as timestamp", "cast(row[3] as string) as action_type", "row[4] as action_value", "row[5] as click_source", ) # df_action_input = df_action_input.withColumn("click_source", lit("1")) df_action_input.cache() print("df_action_input OK") # # user data # df_user_input = spark.read.text(user_input_file) df_user_input = df_user_input.selectExpr("split(value, '_!_') as row").where( size(col("row")) > 4).selectExpr("row[0] as user_id", "row[4] as user_name", ).dropDuplicates(["user_id"]) print("df_user_input OK") df_user_input.cache() item_statistics(df_item_input) action_statistics(df_action_input, df_item_input, df_user_input) user_statistics(df_user_input) statistics_dict["report_time"] = int(time.time()) print("statistics_dict:", statistics_dict) file_name = "dashboard.json" with open(file_name, 'w', encoding='utf8') as out: json.dump(statistics_dict, out, indent=1, ensure_ascii=False) s3_upload(file_name, bucket, output_file_key) print("Done!") ```
{ "source": "jinliangwei/tensor2tensor", "score": 2 }
#### File: tensor2tensor/data_generators/common_voice.py ```python import csv import os import tarfile import tqdm # pylint: disable=g-bad-import-order from tensor2tensor.data_generators import generator_utils from tensor2tensor.data_generators import problem from tensor2tensor.data_generators import speech_recognition from tensor2tensor.utils import registry import tensorflow as tf _COMMONVOICE_URL = "https://common-voice-data-download.s3.amazonaws.com/cv_corpus_v1.tar.gz" # pylint: disable=line-too-long _COMMONVOICE_TRAIN_DATASETS = ["cv-valid-train", "cv-other-train"] _COMMONVOICE_DEV_DATASETS = ["cv-valid-dev", "cv-other-dev"] _COMMONVOICE_TEST_DATASETS = ["cv-valid-test", "cv-other-test"] def _collect_data(directory): """Traverses directory collecting input and target files. Args: directory: base path to extracted audio and transcripts. Returns: list of (media_base, media_filepath, label) tuples """ # Returns: data_files = [] transcripts = [ filename for filename in os.listdir(directory) if filename.endswith(".csv") ] for transcript in transcripts: transcript_path = os.path.join(directory, transcript) with open(transcript_path, "r") as transcript_file: transcript_reader = csv.reader(transcript_file) # skip header _ = next(transcript_reader) for transcript_line in transcript_reader: media_name, label = transcript_line[0:2] filename = os.path.join(directory, media_name) data_files.append((media_name, filename, label)) return data_files def _file_exists(path, filename): """Checks if the filename exists under the path.""" return os.path.isfile(os.path.join(path, filename)) def _is_relative(path, filename): """Checks if the filename is relative, not absolute.""" return os.path.abspath(os.path.join(path, filename)).startswith(path) @registry.register_problem() class CommonVoice(speech_recognition.SpeechRecognitionProblem): """Problem spec for Commonvoice using clean and noisy data.""" # Select only the clean data TRAIN_DATASETS = _COMMONVOICE_TRAIN_DATASETS[:1] DEV_DATASETS = _COMMONVOICE_DEV_DATASETS[:1] TEST_DATASETS = _COMMONVOICE_TEST_DATASETS[:1] @property def num_shards(self): return 100 @property def use_subword_tokenizer(self): return False @property def num_dev_shards(self): return 1 @property def num_test_shards(self): return 1 @property def use_train_shards_for_dev(self): """If true, we only generate training data and hold out shards for dev.""" return False def generator(self, data_dir, tmp_dir, datasets, eos_list=None, start_from=0, how_many=0): del eos_list i = 0 filename = os.path.basename(_COMMONVOICE_URL) compressed_file = generator_utils.maybe_download(tmp_dir, filename, _COMMONVOICE_URL) read_type = "r:gz" if filename.endswith(".tgz") else "r" with tarfile.open(compressed_file, read_type) as corpus_tar: # Create a subset of files that don't already exist. # tarfile.extractall errors when encountering an existing file # and tarfile.extract is extremely slow. For security, check that all # paths are relative. members = [ f for f in corpus_tar if _is_relative(tmp_dir, f.name) and not _file_exists(tmp_dir, f.name) ] corpus_tar.extractall(tmp_dir, members=members) data_dir = os.path.join(tmp_dir, "cv_corpus_v1") data_tuples = _collect_data(data_dir) encoders = self.feature_encoders(None) audio_encoder = encoders["waveforms"] text_encoder = encoders["targets"] for dataset in datasets: data_tuples = (tup for tup in data_tuples if tup[0].startswith(dataset)) for utt_id, media_file, text_data in tqdm.tqdm( sorted(data_tuples)[start_from:]): if how_many > 0 and i == how_many: return i += 1 wav_data = audio_encoder.encode(media_file) yield { "waveforms": wav_data, "waveform_lens": [len(wav_data)], "targets": text_encoder.encode(text_data), "raw_transcript": [text_data], "utt_id": [utt_id], "spk_id": ["unknown"], } def generate_data(self, data_dir, tmp_dir, task_id=-1): train_paths = self.training_filepaths( data_dir, self.num_shards, shuffled=False) dev_paths = self.dev_filepaths( data_dir, self.num_dev_shards, shuffled=False) test_paths = self.test_filepaths( data_dir, self.num_test_shards, shuffled=True) generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TEST_DATASETS), test_paths) if self.use_train_shards_for_dev: all_paths = train_paths + dev_paths generator_utils.generate_files( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), all_paths) generator_utils.shuffle_dataset(all_paths) else: generator_utils.generate_dataset_and_shuffle( self.generator(data_dir, tmp_dir, self.TRAIN_DATASETS), train_paths, self.generator(data_dir, tmp_dir, self.DEV_DATASETS), dev_paths) @registry.register_problem() class CommonVoiceTrainFullTestClean(CommonVoice): """Problem to train on full set, but evaluate on clean data only.""" def training_filepaths(self, data_dir, num_shards, shuffled): return CommonVoice.training_filepaths(self, data_dir, num_shards, shuffled) def dev_filepaths(self, data_dir, num_shards, shuffled): return CommonVoiceClean.dev_filepaths(self, data_dir, num_shards, shuffled) def test_filepaths(self, data_dir, num_shards, shuffled): return CommonVoiceClean.test_filepaths(self, data_dir, num_shards, shuffled) def generate_data(self, data_dir, tmp_dir, task_id=-1): raise Exception("Generate Commonvoice and Commonvoice_clean data.") def filepattern(self, data_dir, mode, shard=None): """Get filepattern for data files for mode. Matches mode to a suffix. * DatasetSplit.TRAIN: train * DatasetSplit.EVAL: dev * DatasetSplit.TEST: test * tf.estimator.ModeKeys.PREDICT: dev Args: data_dir: str, data directory. mode: DatasetSplit shard: int, if provided, will only read data from the specified shard. Returns: filepattern str """ shard_str = "-%05d" % shard if shard is not None else "" if mode == problem.DatasetSplit.TRAIN: path = os.path.join(data_dir, "common_voice") suffix = "train" elif mode in [problem.DatasetSplit.EVAL, tf.estimator.ModeKeys.PREDICT]: path = os.path.join(data_dir, "common_voice_clean") suffix = "dev" else: assert mode == problem.DatasetSplit.TEST path = os.path.join(data_dir, "common_voice_clean") suffix = "test" return "%s-%s%s*" % (path, suffix, shard_str) @registry.register_problem() class CommonVoiceClean(CommonVoice): """Problem spec for Common Voice using clean train and clean eval data.""" # Select only the "clean" data (crowdsourced quality control). TRAIN_DATASETS = _COMMONVOICE_TRAIN_DATASETS[:1] DEV_DATASETS = _COMMONVOICE_DEV_DATASETS[:1] TEST_DATASETS = _COMMONVOICE_TEST_DATASETS[:1] @registry.register_problem() class CommonVoiceNoisy(CommonVoice): """Problem spec for Common Voice using noisy train and noisy eval data.""" # Select only the "other" data. TRAIN_DATASETS = _COMMONVOICE_TRAIN_DATASETS[1:] DEV_DATASETS = _COMMONVOICE_DEV_DATASETS[1:] TEST_DATASETS = _COMMONVOICE_TEST_DATASETS[1:] def set_common_voice_length_hparams(hparams): hparams.max_length = 1650 * 80 hparams.max_input_seq_length = 1650 hparams.max_target_seq_length = 350 return hparams ``` #### File: tensor2tensor/layers/latent_layers.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from six.moves import range # pylint: disable=redefined-builtin from tensor2tensor.layers import common_attention from tensor2tensor.layers import common_image_attention as cia from tensor2tensor.layers import common_layers from tensor2tensor.models import transformer from tensor2tensor.utils import beam_search import tensorflow as tf DO_SUMMARIES = True def compress_self_attention_layer(x, hparams, name=None): """Attend function.""" with tf.variable_scope(name, default_name="compress_self_attention"): x, xshape, _ = cia.maybe_reshape_4d_to_3d(x) y = common_attention.multihead_attention( common_layers.layer_preprocess(x, hparams), None, None, hparams.attention_key_channels or hparams.hidden_size, hparams.attention_value_channels or hparams.hidden_size, hparams.hidden_size, hparams.num_heads, hparams.attention_dropout) res = common_layers.layer_postprocess(x, y, hparams) return tf.reshape(res, xshape) def compute_nats_and_bits_per_dim(data_dim, latent_dim, average_reconstruction, average_prior): """Computes negative ELBO, which is an upper bound on the negative likelihood. Args: data_dim: int-like indicating data dimensionality. latent_dim: int-like indicating latent dimensionality. average_reconstruction: Scalar Tensor indicating the reconstruction cost averaged over all data dimensions and any data batches. average_prior: Scalar Tensor indicating the negative log-prior probability averaged over all latent dimensions and any data batches. Returns: Tuple of scalar Tensors, representing the nats and bits per data dimension (e.g., subpixels) respectively. """ with tf.name_scope(None, default_name="compute_nats_per_dim"): data_dim = tf.cast(data_dim, average_reconstruction.dtype) latent_dim = tf.cast(latent_dim, average_prior.dtype) negative_log_likelihood = data_dim * average_reconstruction negative_log_prior = latent_dim * average_prior negative_elbo = negative_log_likelihood + negative_log_prior nats_per_dim = tf.divide(negative_elbo, data_dim, name="nats_per_dim") bits_per_dim = tf.divide(nats_per_dim, tf.log(2.), name="bits_per_dim") return nats_per_dim, bits_per_dim def multinomial_sample(x, vocab_size=None, sampling_method="random", temperature=1.0): """Multinomial sampling from a n-dimensional tensor. Args: x: Tensor of shape [..., vocab_size]. Parameterizes logits of multinomial. vocab_size: Number of classes in multinomial distribution. sampling_method: String, "random" or otherwise deterministic. temperature: Positive float. Returns: Tensor of shape [...]. """ vocab_size = vocab_size or common_layers.shape_list(x)[-1] if sampling_method == "random" and temperature > 0.0: samples = tf.multinomial(tf.reshape(x, [-1, vocab_size]) / temperature, 1) else: samples = tf.argmax(x, axis=-1) reshaped_samples = tf.reshape(samples, common_layers.shape_list(x)[:-1]) return reshaped_samples def ae_latent_softmax(latents_pred, latents_discrete_hot, vocab_size, hparams): """Latent prediction and loss. Args: latents_pred: Tensor of shape [..., depth]. latents_discrete_hot: Tensor of shape [..., vocab_size]. vocab_size: an int representing the vocab size. hparams: tf.contrib.training.HParams. Returns: sample: Tensor of shape [...], a sample from a multinomial distribution. loss: Tensor of shape [...], the softmax cross-entropy. """ with tf.variable_scope("latent_logits"): latents_logits = tf.layers.dense(latents_pred, vocab_size, name="logits_dense") if hparams.logit_normalization: latents_logits *= tf.rsqrt(1e-8 + tf.reduce_mean(tf.square(latents_logits))) loss = tf.nn.softmax_cross_entropy_with_logits_v2( labels=latents_discrete_hot, logits=latents_logits) # TODO(trandustin): tease this out from ae_latent_softmax. # we use just the loss portion to anchor prior / encoder on text. sample = multinomial_sample(latents_logits, vocab_size, hparams.sampling_method, hparams.sampling_temp) return sample, loss def ae_latent_sample_beam(latents_dense_in, inputs, ed, embed, hparams): """Samples from the latent space in the autoencoder. Args: latents_dense_in: Tensor of shape [batch, length_q, ...]. Only the shape of its first two dimensions are used. length_q is the latent length, which is height * width * hparams.num_latents / (2**hparams.num_compress_steps). inputs: Tensor of shape [batch, length_kv, hparams.hidden_size]. Encodings to attend to in decoder. ed: Tensor which broadcasts with shape [batch, hparams.num_heads, length_q, length_kv]. Encoder-decoder attention bias. embed: Callable which embeds discrete latent hot-vectors and a hidden size and returns dense vectors. hparams: tf.contrib.training.HParams. Returns: Tensor of shape [batch, length]. """ def symbols_to_logits_fn(ids): """Go from ids to logits.""" ids = tf.expand_dims(ids, axis=2) # Ids start with added all-zeros. latents_discrete = tf.pad(ids[:, 1:], [[0, 0], [0, 1], [0, 0]]) with tf.variable_scope(tf.get_variable_scope(), reuse=False): latents_dense = embed( tf.one_hot(latents_discrete, depth=2**hparams.bottleneck_bits), hparams.hidden_size) latents_pred = transformer_latent_decoder( latents_dense, inputs, ed, hparams, name="latent_prediction") logits = tf.layers.dense( latents_pred, 2**hparams.bottleneck_bits, name="logits_dense") current_output_position = common_layers.shape_list(ids)[1] - 1 logits = logits[:, current_output_position, :] return logits initial_ids = tf.zeros([tf.shape(latents_dense_in)[0]], dtype=tf.int32) length = tf.shape(latents_dense_in)[1] ids, _ = beam_search.beam_search( symbols_to_logits_fn, initial_ids, 1, length, 2**hparams.bottleneck_bits, alpha=0.0, eos_id=-1, stop_early=False) res = tf.expand_dims(ids[:, 0, :], axis=2) # Pick first beam. return res[:, 1:] # Remove the added all-zeros from ids. def residual_block_layer(inputs, hparams): """Residual block over inputs. Runs a residual block consisting of conv: kernel_size x kernel_size conv: 1x1 dropout, add and normalize according to hparams.layer_postprocess_sequence. Args: inputs: Tensor of shape [batch, height, width, hparams.hidden_size]. hparams: tf.contrib.training.HParams. Returns: Tensor of shape [batch, height, width, hparams.hidden_size]. """ kernel = (hparams.res_kernel_size, hparams.res_kernel_size) x = inputs for i in range(hparams.num_res_layers): with tf.variable_scope("res_conv_%d" % i): # kernel_size x kernel_size conv block y = common_layers.conv_block( common_layers.layer_norm(x, hparams.hidden_size, name="lnorm"), hparams.hidden_size, [((1, 1), kernel)], strides=(1, 1), padding="SAME", name="residual_conv") # 1x1 conv block y = common_layers.conv_block( y, hparams.hidden_size, [((1, 1), (1, 1))], strides=(1, 1), padding="SAME", name="residual_dense") x = common_layers.layer_postprocess(x, y, hparams) return x def compress_encoder(inputs, hparams, strides=(2, 2), kernel_size=(3, 3), name=None): """Encoder that compresses 2-D inputs by 2**num_compress_steps. Args: inputs: Tensor of shape [batch, height, width, channels]. hparams: tf.contrib.training.HParams. strides: Tuple, strides for conv block. kernel_size: Tuple, kernel window size for conv block. name: string, variable scope. Returns: Tensor of shape [batch, latent_length, hparams.hidden_size], where latent_length is hparams.num_latents * (height*width) / 2**(hparams.num_compress_steps). """ with tf.variable_scope(name, default_name="compress"): x = inputs for i in range(hparams.num_compress_steps // 2): with tf.variable_scope("compress_conv_%d" % i): y = common_layers.conv_block( common_layers.layer_norm( x, hparams.hidden_size, name="lnorm"), hparams.hidden_size, dilation_rates_and_kernel_sizes=[((1, 1), kernel_size)], strides=strides, padding="SAME", name="compress_conv_%d" % i) y = tf.nn.dropout(y, 1.0 - hparams.dropout) if hparams.do_compress_attend: y = compress_self_attention_layer( x, hparams, name="compress_selfatt_%d" % i) y += x x = y x = residual_block_layer(x, hparams) # If using multiple copies of latents, blow up the hidden size and then # reshape to increase by num_latents. shape_x = common_layers.shape_list(x) x = tf.layers.dense(x, hparams.num_latents * hparams.hidden_size, name=name + "_dense") return tf.reshape(x, [shape_x[0], shape_x[1] * shape_x[2] * hparams.num_latents, hparams.hidden_size]) def compress_encoder_2d(x, hparams, name=None): """Encoder that compresses 2-D inputs by 2**num_compress_steps. Args: x: Tensor of shape [batch, height, width, channels]. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, latent_length, hparams.hidden_size], where latent_length is hparams.num_latents * (height*width) / 2**(hparams.num_compress_steps). """ return compress_encoder( x, hparams, strides=(2, 2), kernel_size=(hparams.kernel_size, hparams.kernel_size), name=name) def compress_encoder_1d(x, hparams, name=None): """Encoder that compresses 1-D inputs by 2**num_compress_steps. Args: x: Tensor of shape [batch, length, channels]. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, latent_length, hparams.hidden_size], where latent_length is hparams.num_latents * length / 2**hparams.num_compress_steps. """ x = tf.expand_dims(x, axis=2) return compress_encoder(x, hparams, strides=(2, 1), kernel_size=(hparams.kernel_size, 1), name=name) def decompress_decoder(inputs, hparams, strides=(2, 2), kernel=(3, 3), name=None): """Decoder that decompresses 2-D inputs by 2**num_compress_steps. Args: inputs: Tensor of shape [batch, compress_height, compress_width, channels]. hparams: tf.contrib.training.HParams. strides: Tuple, strides for conv block. kernel: Tuple, kernel window size for conv block. name: string, variable scope. Returns: Tensor of shape [batch, height, width, hparams.hidden_size]. """ with tf.variable_scope(name, default_name="decompress"): x = inputs x = tf.layers.dense(x, hparams.hidden_size, name=name + "_dense") x = residual_block_layer(x, hparams) for i in range(hparams.num_compress_steps // 2): j = hparams.num_compress_steps // 2 - i - 1 with tf.variable_scope(name + "_%d" % j): if hparams.do_decompress_attend: y = compress_self_attention_layer( x, hparams, name="decompress_selfatt") x += y y = tf.layers.conv2d_transpose( x, hparams.hidden_size, kernel, strides=strides, padding="SAME", activation=tf.nn.relu if i > 0 else None, name="decompress_conv") x = y return x def decompress_decoder_2d(x, hparams, name=None): """Decoder that decompresses 2-D inputs by 2**num_compress_steps. Args: x: Tensor of shape [batch, compress_height, compress_width, channels]. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, height, width, hparams.hidden_size]. """ return decompress_decoder(x, hparams, strides=(2, 2), kernel=(hparams.kernel_size, hparams.kernel_size), name=name) def decompress_decoder_1d(x, hparams, name=None): """Decoder that decompresses 1-D inputs by 2**num_compress_steps. Args: x: Tensor of shape [batch, compress_length, channels]. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, length, hparams.hidden_size]. """ x = tf.expand_dims(x, axis=2) output = decompress_decoder(x, hparams, strides=(2, 1), kernel=(hparams.kernel_size, 1), name=name) return tf.squeeze(output, axis=2) def transformer_text_encoder(inputs, target_space, hparams, name=None): """Transformer text encoder over inputs with unmasked full attention. Args: inputs: Tensor of shape [batch, length, 1, hparams.hidden_size]. target_space: int. Used for encoding inputs under a target space id. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: encoder_output: Tensor of shape [batch, length, hparams.hidden_size]. ed: Tensor of shape [batch, 1, 1, length]. Encoder-decoder attention bias for any padded tokens. """ with tf.variable_scope(name, default_name="transformer_text_encoder"): inputs = common_layers.flatten4d3d(inputs) [ encoder_input, encoder_self_attention_bias, ed, ] = transformer.transformer_prepare_encoder(inputs, target_space=target_space, hparams=hparams) encoder_input = tf.nn.dropout(encoder_input, 1.0 - hparams.dropout) encoder_output = transformer.transformer_encoder( encoder_input, encoder_self_attention_bias, hparams) return encoder_output, ed def transformer_image_decoder(targets, encoder_output, ed_attention_bias, hparams, name=None): """Transformer image decoder over targets with local attention. Args: targets: Tensor of shape [batch, ...], and whose size is batch * height * width * hparams.num_channels * hparams.hidden_size. encoder_output: Tensor of shape [batch, length_kv, hparams.hidden_size]. ed_attention_bias: Tensor which broadcasts with shape [batch, hparams.num_heads, length_q, length_kv]. Encoder-decoder attention bias. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, height, width * hparams.num_channels, hparams.hidden_size]. """ with tf.variable_scope(name, default_name="transformer_dec"): batch_size = common_layers.shape_list(targets)[0] targets = tf.reshape(targets, [batch_size, hparams.img_len, hparams.img_len, hparams.num_channels * hparams.hidden_size]) decoder_input, _, _ = cia.prepare_decoder(targets, hparams) decoder_output = cia.transformer_decoder_layers( decoder_input, encoder_output, hparams.num_decoder_layers or hparams.num_hidden_layers, hparams, attention_type=hparams.dec_attention_type, encoder_decoder_attention_bias=ed_attention_bias, name="decoder") decoder_output = tf.reshape(decoder_output, [batch_size, hparams.img_len, hparams.img_len * hparams.num_channels, hparams.hidden_size]) return decoder_output def transformer_latent_decoder(x, encoder_output, ed_attention_bias, hparams, name=None): """Transformer decoder over latents using latent_attention_type. Args: x: Tensor of shape [batch, length_q, hparams.hidden_size]. length_q is the latent length, which is height * width * hparams.num_latents / (2**hparams.num_compress_steps). encoder_output: Tensor of shape [batch, length_kv, hparams.hidden_size]. ed_attention_bias: Tensor which broadcasts with shape [batch, hparams.num_heads, length_q, length_kv]. Encoder-decoder attention bias. hparams: tf.contrib.training.HParams. name: string, variable scope. Returns: Tensor of shape [batch, length_q, hparams.hidden_size]. """ with tf.variable_scope(name, default_name="transformer_latent_dec"): batch_size = common_layers.shape_list(x)[0] compressed_img_len = (hparams.img_len // 2**(hparams.num_compress_steps // 2)) x = tf.reshape(x, [batch_size, compressed_img_len, compressed_img_len * hparams.num_latents, hparams.hidden_size]) decoder_input, _, _ = cia.prepare_decoder(x, hparams) decoder_output = cia.transformer_decoder_layers( decoder_input, encoder_output, hparams.num_latent_layers or hparams.num_hidden_layers, hparams, attention_type=hparams.latent_attention_type, encoder_decoder_attention_bias=ed_attention_bias, name="decoder") decoder_output = tf.reshape(decoder_output, [batch_size, compressed_img_len**2 * hparams.num_latents, hparams.hidden_size]) return decoder_output def bottleneck_layer(inputs, hparams, name="discrete_bottleneck"): """Computes latents given inputs (typically, compressed targets).""" [ latents_dense, latents_discrete, extra_loss, embed_fn, _, ] = hparams.bottleneck(inputs=inputs, filter_size=hparams.compress_filter_size, name=name, mode=hparams.mode) if DO_SUMMARIES: tf.summary.histogram("discrete_latents", tf.reshape(latents_discrete, [-1])) return latents_dense, latents_discrete, extra_loss, embed_fn def latent_prediction_model(inputs, ed_attention_bias, latents_discrete, latents_dense, hparams, vocab_size=None, name=None): """Transformer-based latent prediction model. It is an autoregressive decoder over latents_discrete given inputs. Args: inputs: Tensor of shape [batch, length_kv, hparams.hidden_size]. Inputs to attend to for the decoder on latents. ed_attention_bias: Tensor which broadcasts with shape [batch, hparams.num_heads, length_q, length_kv]. Encoder-decoder attention bias. latents_discrete: Tensor of shape [batch, length_q, vocab_size]. One-hot latents to compute log-probability of given inputs. latents_dense: Tensor of shape [batch, length_q, hparams.hidden_size]. length_q is the latent length, which is height * width * hparams.num_latents / (2**hparams.num_compress_steps). hparams: tf.contrib.training.HParams. vocab_size: int or None. If None, it is 2**hparams.bottleneck_bits. name: string, variable scope. Returns: latents_pred: Tensor of shape [batch, length_q, hparams.hidden_size]. latents_pred_loss: Tensor of shape [batch, length_q]. """ with tf.variable_scope(name, default_name="latent_prediction"): if hparams.mode != tf.estimator.ModeKeys.PREDICT: latents_pred = transformer_latent_decoder(tf.stop_gradient(latents_dense), inputs, ed_attention_bias, hparams, name) if vocab_size is None: vocab_size = 2**hparams.bottleneck_bits if not hparams.soft_em: # TODO(trandustin): latents_discrete is not one-hot from # discrete_bottleneck unless hparams.soft_em is True. Refactor. latents_discrete = tf.one_hot(latents_discrete, depth=vocab_size) _, latent_pred_loss = ae_latent_softmax( latents_pred, tf.stop_gradient(latents_discrete), vocab_size, hparams) return latents_pred, latent_pred_loss def transformer_autoencoder(inputs, targets, target_space, hparams, cache=None, predict_mask=1.0): """Auto-encoder using a Transformer decoder and a prior over latent sequences. Args: inputs: Tensor of shape [batch, length, 1, hparams.hidden_size] or None. targets: Tensor of shape [batch, ..., channels]. Ellipses may be 1 or 2 dimensions denoting sequence length. target_space: int. Used for encoding inputs under a target space id. hparams: tf.contrib.training.HParams. cache: Tensor of shape [batch, length] or None. predict_mask: Tensor masking whether to use gold targets or predictions. Returns: decoder_output: Tensor of shape [batch, ..., hparams.hidden_size] presenting pre-logit activations. After a transformation (`top` in `T2TModel`), it is used with targets to compute the "training" (reconstruction) loss. losses: dict of str to Tensors. There are three loss terms: "extra", "extra_loss", and "latent_pred". The first is hard-coded to 0. The latter two are Tensors of shape [batch]. cache: Tensor of shape [batch, length], either the same as cache, or newly computed if the cache input is None. """ original_targets_shape = common_layers.shape_list(targets) batch_size = original_targets_shape[0] if len(original_targets_shape) == 4: compress_fn = compress_encoder_2d decompress_fn = decompress_decoder_2d else: compress_fn = compress_encoder_1d decompress_fn = decompress_decoder_1d ed_attention_bias = None if inputs is not None: inputs, ed_attention_bias = transformer_text_encoder( inputs, target_space, hparams, name="input_encoder") losses = {"extra": 0., "extra_loss": 0., "latent_pred": 0.} if hparams.mode != tf.estimator.ModeKeys.PREDICT: targets_compressed = compress_fn(targets, hparams, name="compress") if hparams.mode == tf.estimator.ModeKeys.TRAIN: scale = common_layers.inverse_exp_decay(hparams.startup_steps) else: scale = 1.0 scale = tf.to_float(tf.less(tf.random_uniform([batch_size]), scale)) latents_dense, latents_discrete, extra_loss, _ = bottleneck_layer( targets_compressed, hparams) extra_loss = scale * tf.reduce_mean(extra_loss) _, latents_pred_loss = latent_prediction_model( inputs, ed_attention_bias, latents_discrete, latents_dense, hparams, name="latent_pred") latent_time = tf.less(hparams.mask_startup_steps, tf.to_int32(tf.train.get_global_step())) latents_pred_loss = scale * tf.reduce_mean(latents_pred_loss) latents_pred_loss *= tf.to_float(latent_time) # Apply dropout noise for each data point and time step. latents_dense_shape = common_layers.shape_list(latents_dense) latents_dense = tf.nn.dropout( latents_dense, keep_prob=1 - hparams.latent_dropout, noise_shape=[latents_dense_shape[0], latents_dense_shape[1], 1]) # TODO(trandustin): Can we combine extra and extra_loss? losses = {"extra": 0., "extra_loss": extra_loss, "latent_pred": latents_pred_loss} else: # Set the latent length, which is num_latents times the number of latent # pixels. The number of latent pixels is determined by a compression factor # on the number of image pixels. latent_len = ((hparams.img_len * hparams.img_len * hparams.num_latents) / (2**hparams.num_compress_steps)) _, _, _, embed_fn = bottleneck_layer(targets_compressed, hparams) latents_dense = tf.zeros([batch_size, latent_len, 1, hparams.hidden_size]) if cache is None: cache = ae_latent_sample_beam(latents_dense, inputs, ed_attention_bias, embed_fn, hparams) cache_one_hot = tf.one_hot(cache, depth=2**hparams.bottleneck_bits) latents_dense = embed_fn(cache_one_hot, hparams.hidden_size) if len(original_targets_shape) == 4: compressed_img_len = (hparams.img_len // 2**(hparams.num_compress_steps // 2)) latents_dense = tf.reshape(latents_dense, [batch_size, compressed_img_len, compressed_img_len, hparams.num_latents * hparams.hidden_size]) latents_dense = decompress_fn(latents_dense, hparams, name="decompress") latents_dense = tf.reshape( latents_dense, [-1, hparams.img_len, hparams.img_len, hparams.hidden_size]) if hparams.use_gold_targets: if hparams.mode == tf.estimator.ModeKeys.PREDICT: masking = predict_mask else: masking = common_layers.inverse_exp_decay(hparams.mask_startup_steps) targets, _, _ = cia.maybe_reshape_4d_to_3d(targets) mask = tf.less(masking, tf.random_uniform(common_layers.shape_list(targets)[:-1])) mask = tf.expand_dims(tf.to_float(mask), 2) latents_dense = mask * targets + (1.0 - mask) * latents_dense latents_dense = tf.reshape(latents_dense, original_targets_shape) if hparams.decode_autoregressive: decoder_output = transformer_image_decoder( latents_dense, inputs, ed_attention_bias, hparams, name="decoder") else: decoder_output = latents_dense return decoder_output, losses, cache def iaf_flow(one_hot_assignments, scale_weights, scale_bias, num_codes, summary=True, name=None): """Performs a single IAF flow using scale and normalization transformations. Args: one_hot_assignments: Assignments Tensor with shape [num_samples, batch_size, latent_size, num_codes]. scale_weights: Tensor corresponding to lower triangular matrix used to autoregressively generate scale matrix from assignments. To ensure the lower-triangular matrix has length of latent_size, scale_weights should be a rank-one tensor with size latent_size * (latent_size + 1) / 2. scale_bias: Bias tensor to be added to scale tensor, with shape [latent_size, num_codes]. If scale weights are zero, initialize scale_bias to be log(exp(1.) / 2. - 1) so initial transformation is identity. num_codes: Number of codes in codebook. summary: Whether to save summaries. name: String used for name scope. Returns: flow_output: Transformed one-hot assignments. inverse_log_det_jacobian: Inverse log deteriminant of Jacobian corresponding to transformation. """ with tf.name_scope(name, default_name="iaf"): # Pad the one_hot_assignments by zeroing out the first latent dimension and # shifting the rest down by one (and removing the last dimension). padded_assignments = tf.pad( one_hot_assignments, [[0, 0], [0, 0], [1, 0], [0, 0]])[:, :, :-1, :] scale_bijector = tf.contrib.distributions.bijectors.Affine( scale_tril=tf.contrib.distributions.fill_triangular(scale_weights)) scale = scale_bijector.forward( tf.transpose(padded_assignments, [0, 1, 3, 2])) # Transpose the bijector output since it performs a batch matmul. scale = tf.transpose(scale, [0, 1, 3, 2]) scale = tf.nn.softplus(scale) scale = scale + tf.nn.softplus(scale_bias[tf.newaxis, tf.newaxis, ...]) # Don't need last dimension since the transformation keeps it constant. scale = scale[..., :-1] z = one_hot_assignments[..., :-1] unnormalized_probs = tf.concat([z * scale, one_hot_assignments[..., -1, tf.newaxis]], axis=-1) normalizer = tf.reduce_sum(unnormalized_probs, axis=-1) flow_output = unnormalized_probs / (normalizer[..., tf.newaxis]) inverse_log_det_jacobian = (-tf.reduce_sum(tf.log(scale), axis=-1) + num_codes * tf.log(normalizer)) if summary: tf.summary.histogram("iaf/scale", tf.reshape(scale, [-1])) tf.summary.histogram("iaf/inverse_log_det_jacobian", tf.reshape(inverse_log_det_jacobian, [-1])) return flow_output, inverse_log_det_jacobian ``` #### File: models/research/glow_ops_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import tempfile import numpy as np from tensor2tensor.models.research import glow from tensor2tensor.models.research import glow_ops import tensorflow as tf arg_scope = tf.contrib.framework.arg_scope add_arg_scope = tf.contrib.framework.add_arg_scope arg_scope = tf.contrib.framework.arg_scope add_arg_scope = tf.contrib.framework.add_arg_scope class GlowOpsTest(tf.test.TestCase): def test_get_variable_ddi(self): with tf.Graph().as_default(): x_t = tf.random_normal((5, 5)) ddi = glow_ops.get_variable_ddi( "x", (5, 5), initial_value=x_t, init=True) with tf.Session() as session: diff = ddi - x_t self.assertTrue(np.allclose(session.run(diff), 0.0)) def test_actnorm(self): """Test that actnorm provides activations with zero channel-mean.""" with tf.Graph().as_default(): x_t = tf.random_normal((16, 32, 32, 3), mean=50.0, stddev=2.0) x_act = glow_ops.actnorm("actnorm", x_t, init=True) with tf.Session() as session: x_act_np, _ = session.run(x_act) channel_mean = np.mean(x_act_np, axis=(0, 1, 2)) channel_var = np.var(x_act_np, axis=(0, 1, 2)) self.assertTrue(np.allclose(channel_mean, 0.0, atol=1e-3)) self.assertTrue(np.allclose(channel_var, 1.0, atol=1e-3)) def check_invertibility(self, op, name): with tf.Graph().as_default(): x = tf.random_uniform(shape=(16, 32, 32, 4)) x_inv, _ = op(name, x, reverse=False) x_inv_inv, _ = op(name, x_inv, reverse=True) with tf.Session() as session: session.run(tf.global_variables_initializer()) diff = session.run(x - x_inv_inv) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) def test_invertibility(self): rev_ops = [glow_ops.invertible_1x1_conv, glow_ops.affine_coupling, glow_ops.actnorm] names = ["inv_1X1_conv", "affine_coupling", "actnorm"] for rev_op, name in zip(rev_ops, names): self.check_invertibility(rev_op, name) def test_add_edge_bias(self): with tf.Graph().as_default(): x = tf.random_uniform(shape=(16, 32, 32, 3)) x_pad = glow_ops.add_edge_bias(x, [3, 3]) with tf.Session() as session: x_pad_np = session.run(x_pad) # Test expected output shape. self.assertEqual(x_pad_np.shape, (16, 34, 34, 4)) def test_conv2d(self): with tf.Graph().as_default(): x = 10.0 * tf.random_uniform(shape=(16, 5, 5, 32)) with arg_scope([glow_ops.actnorm], init=True): actnorm_conv2d = glow_ops.conv2d( "actnorm_conv2d", x, output_channels=64, apply_actnorm=True) actnorm_zeros2d = glow_ops.conv2d( "actnorm_zeros2d", x, output_channels=64, apply_actnorm=False) with tf.Session() as session: session.run(tf.global_variables_initializer()) # test if apply_actnorm is set to True, the first minibatch has # zero mean and unit variance. actnorm_np, zeros_np = session.run([actnorm_conv2d, actnorm_zeros2d]) self.assertEqual(actnorm_np.shape, (16, 5, 5, 64)) mean = np.mean(actnorm_np, axis=(0, 1, 2)) var = np.var(actnorm_np, axis=(0, 1, 2)) self.assertTrue(np.allclose(mean, 0.0, atol=1e-5)) self.assertTrue(np.allclose(var, 1.0, atol=1e-5)) # test shape in case apply_actnorm is set to False, self.assertEqual(zeros_np.shape, (16, 5, 5, 64)) def test_affine_coupling_network(self): """Test output shape.""" with tf.Graph().as_default(): x = 10.0 * tf.random_uniform(shape=(16, 5, 5, 32)) nn = glow_ops.affine_coupling_network("nn", x, 512, 64) with tf.Session() as session: session.run(tf.global_variables_initializer()) nn_np = session.run(nn) self.assertEqual(nn_np.shape, (16, 5, 5, 64)) # Initialized with zeros. self.assertTrue(np.allclose(nn_np, 0.0)) def check_tensor_to_dist(self, architecture): with tf.Graph().as_default(): x = tf.random_uniform(shape=(16, 5, 5, 32)) x_prior = glow_ops.tensor_to_dist("split_prior", x, architecture=architecture, output_channels=64) mean_t, scale_t = x_prior.loc, x_prior.scale with tf.Session() as session: session.run(tf.global_variables_initializer()) mean, scale = session.run([mean_t, scale_t]) self.assertEqual(mean.shape, (16, 5, 5, 64)) self.assertEqual(scale.shape, (16, 5, 5, 64)) self.assertTrue(np.allclose(mean, 0.0)) self.assertTrue(np.allclose(scale, 1.0)) def test_tensor_to_dist(self): for architecture in ["single_conv", "glow_nn"]: self.check_tensor_to_dist(architecture) def test_split(self): with tf.Graph().as_default(): x = tf.random_uniform(shape=(16, 5, 5, 32)) x_inv, _, eps, z, _ = glow_ops.split("split", x) x_inv_inv, _, _ = glow_ops.split("split", x_inv, reverse=True, eps=eps) with tf.Session() as session: session.run(tf.global_variables_initializer()) x_inv_np, diff, z_np = session.run([x_inv, x - x_inv_inv, z]) self.assertEqual(z_np.shape, (16, 5, 5, 16)) self.assertEqual(x_inv_np.shape, (16, 5, 5, 16)) self.assertTrue(np.allclose(diff, 0.0, atol=1e-5)) def check_revnet_reversibility(self, op, name): with tf.Graph().as_default(): hparams = glow.glow_hparams() hparams.depth = 2 x = tf.random_uniform(shape=(16, 32, 32, 4), seed=0) x_inv, _ = op(name, x, hparams, reverse=False) x_inv_inv, _ = op(name, x_inv, hparams, reverse=True) with tf.Session() as session: session.run(tf.global_variables_initializer()) diff = session.run(x - x_inv_inv) self.assertTrue(np.allclose(diff, 0.0, atol=1e-2)) def test_revnet_reversibility(self): ops = [glow_ops.revnet_step, glow_ops.revnet] names = ["revnet_step", "revnet"] for op, name in zip(ops, names): self.check_revnet_reversibility(op, name) def test_encoder_decoder(self): with tf.Graph().as_default(): hparams = glow.glow_hparams() hparams.n_levels = 3 hparams.depth = 2 x = tf.random_uniform(shape=(16, 64, 64, 4), seed=0) x_inv, _, eps, z_levels, _ = glow_ops.encoder_decoder( "encoder_decoder", x, hparams, reverse=False) x_inv_inv, _, z_inv_levels, _ = glow_ops.encoder_decoder( "encoder_decoder", x_inv, hparams, eps=eps, reverse=True) with tf.Session() as session: session.run(tf.global_variables_initializer()) diff, x_inv_np, z_levels_np, z_inv_levels_np = session.run( [x - x_inv_inv, x_inv, z_levels, z_inv_levels]) self.assertEqual(len(z_levels_np), 2) self.assertEqual(len(z_inv_levels_np), 2) # (h_i, w_i, c_i) = (h_{i-1}/f, w_{i-1}/f, c_{i-1}*(2f)/2) where (f=2) self.assertEqual(z_levels_np[0].shape, (16, 32, 32, 8)) self.assertEqual(z_levels_np[1].shape, (16, 16, 16, 16)) self.assertEqual(z_inv_levels_np[0].shape, (16, 32, 32, 8)) self.assertEqual(z_inv_levels_np[1].shape, (16, 16, 16, 16)) self.assertTrue(x_inv_np.shape, (16, 8, 8, 64)) self.assertTrue(np.allclose(diff, 0.0, atol=1e-2)) def test_encoder_decoder_practical_usage(self): """Tests the following sequence of operations. 1. Define forward network with arg_scope(init=True). 2. Run one-forward pass to do data-dependent initialization and save. 3. Define forward and reverse network with arg_scope(init=False) 4. Check that reverse(forward(x)) == x """ hparams = glow.glow_hparams() hparams.n_levels = 2 hparams.depth = 12 with tf.Graph().as_default(): rng = np.random.RandomState(0) x_rand = np.asarray(rng.rand(1, 4, 4, 4), dtype=np.float32) x_t = tf.convert_to_tensor(x_rand) ops = [glow_ops.get_variable_ddi, glow_ops.actnorm] with arg_scope(ops, init=True): x_inv, _, _, _, _ = glow_ops.encoder_decoder( "revnet", x_t, hparams, reverse=False) curr_dir = tempfile.mkdtemp() model_path = os.path.join(curr_dir, "model") with tf.Session() as session: saver = tf.train.Saver() session.run(tf.global_variables_initializer()) session.run(x_inv) saver.save(session, model_path) with tf.Graph().as_default(): rng = np.random.RandomState(0) x_rand = np.asarray(rng.rand(1, 4, 4, 4), dtype=np.float32) x_t = tf.convert_to_tensor(x_rand) ops = [glow_ops.get_variable_ddi, glow_ops.actnorm] with arg_scope(ops, init=False): x_inv2, _, all_eps, _, _ = glow_ops.encoder_decoder( "revnet", x_t, hparams, reverse=False) x_inv_inv_, _, _, _ = glow_ops.encoder_decoder( "revnet", x_inv2, hparams, eps=all_eps, reverse=True) with tf.Session() as session: saver = tf.train.Saver() saver.restore(session, model_path) x_inv_inv_np = session.run(x_inv_inv_) diff = np.abs(x_inv_inv_np - x_rand) self.assertTrue(np.allclose(diff, 0.0, atol=1e-3)) def test_scale_gaussian_prior(self): with tf.Graph().as_default(): rng = np.random.RandomState(0) img_shape = (16, 2, 2, 2) x_rand = np.asarray(rng.randint(0, 10, img_shape), dtype=np.float32) z_rand = np.asarray(rng.randint(0, 10, img_shape), dtype=np.float32) x_t = tf.convert_to_tensor(x_rand) z_t = tf.convert_to_tensor(z_rand) dist = glow_ops.scale_gaussian_prior( "scale_gaussian_prior", z_t, x_t, trainable=True) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) mean, scale = sess.run([dist.loc, dist.scale]) self.assertTrue(np.allclose(mean, z_rand)) self.assertTrue(np.allclose(scale, 1.0)) def check_split_latent_conditioning(self, merge_std): with tf.Graph().as_default(): rng = np.random.RandomState(0) x_rand = rng.randn(12, 32, 32, 32).astype(np.float32) latent_rand = rng.randn(12, 32, 32, 16).astype(np.float32) x_t = tf.convert_to_tensor(x_rand) latent_t = tf.convert_to_tensor(latent_rand) hparams = glow.glow_hparams() hparams.level_scale = merge_std hparams.add_hparam("latent_dist_encoder", "pointwise") # Test initalization. # x2 ~ N(scale * latent, 1.0) where initial scale is 1.0 exp_x2 = x_rand[:, :, :, 16:] exp_eps = x_rand[:, :, :, 16:] - latent_rand x_inv, _, eps, x2_t, _ = glow_ops.split( merge_std, x_t, cond_latents=latent_t, hparams=hparams) # Test reversibility. x_inv_inv, _, _ = glow_ops.split( merge_std, x_inv, cond_latents=latent_t, eps=eps, reverse=True, hparams=hparams) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) actual_eps, actual_x2, diff_np = sess.run([eps, x2_t, x_inv_inv - x_t]) self.assertTrue(np.allclose(diff_np, 0.0, atol=1e-5)) self.assertTrue(np.allclose(actual_eps, exp_eps)) self.assertTrue(np.allclose(exp_x2, actual_x2)) def test_split_latent_conditioning(self): for merge_std in ["normal", "prev_level", "prev_step"]: self.check_split_latent_conditioning(merge_std) def test_latent_dist_encoder_lstm(self): with tf.Graph().as_default(): rng = np.random.RandomState(0) # Initialize x, latent, state. x_rand = rng.randn(12, 32, 32, 16).astype(np.float32) latent_rand = rng.randn(12, 32, 32, 16).astype(np.float32) state_rand = rng.randn(12, 32, 32, 16).astype(np.float32) x_t = tf.convert_to_tensor(x_rand) latent_t = tf.convert_to_tensor(latent_rand) state_t = tf.convert_to_tensor(state_rand) init_state = tf.contrib.rnn.LSTMStateTuple(state_t, state_t) hparams = glow.glow_hparams() hparams.add_hparam("latent_dist_encoder", "conv_lstm") hparams.add_hparam("latent_skip", True) prior_dist, new_state = glow_ops.compute_prior( "lstm_prior", x_t, latent=latent_t, hparams=hparams, state=init_state) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # Test initialization (mu, sigma) = (z, 1.0) ops = [prior_dist.loc, prior_dist.scale, new_state.h - init_state.h] mean, scale, diff_np = sess.run(ops) self.assertTrue(np.allclose(latent_rand - mean, 0.0)) self.assertTrue(np.allclose(scale, 1.0)) # State update. self.assertFalse(np.allclose(diff_np, 0.0)) if __name__ == "__main__": tf.test.main() ``` #### File: tensor2tensor/utils/video_metrics.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np import six import tensorflow as tf def load_image_map_function(filename, frame_shape): image = tf.read_file(filename) image = tf.image.decode_png(image) image = tf.image.resize_images(image, frame_shape[0:2]) image.set_shape(frame_shape) return image def load_videos(template, video_length, frame_shape): """Loads videos from files. Args: template: template string for listing the image files. video_length: length of the video. frame_shape: shape of each frame. Returns: dataset: the tf dataset frame by frame. dataset_len: number of the items which is the number of image files. Raises: ValueError: if no files found. """ filenames = tf.gfile.Glob(template) if not filenames: raise ValueError("no files found.") filenames = sorted(filenames) dataset_len = len(filenames) filenames = tf.constant(filenames) dataset = tf.data.Dataset.from_tensor_slices(filenames) dataset = dataset.apply(tf.contrib.data.map_and_batch( lambda filename: load_image_map_function(filename, frame_shape), video_length, drop_remainder=True)) return dataset, dataset_len def file_pattern(output_dir, problem_name, prefix): return os.path.join(output_dir, "{}_{}*.png".format(problem_name, prefix)) def get_target_and_output_filepatterns(output_dir, problem_name): return (file_pattern(output_dir, problem_name, "outputs"), file_pattern(output_dir, problem_name, "targets")) def get_zipped_dataset_from_png_files( output_files, target_files, video_length, frame_shape): outputs, len_ = load_videos(output_files, video_length, frame_shape) targets, len_ = load_videos(target_files, video_length, frame_shape) zipped_dataset = tf.data.Dataset.zip((outputs, targets)) num_videos = len_ // video_length iterator = zipped_dataset.make_one_shot_iterator() return iterator, None, num_videos def save_results(results, output_dir, problem_name): for name, array in six.iteritems(results): output_filename = "{}_{}.npy".format(problem_name, name) output_filename = os.path.join(output_dir, output_filename) with tf.gfile.Open(output_filename, "wb") as fname: np.save(fname, array) def psnr_and_ssim(output, target): """Compute the PSNR and SSIM. Args: output: 4-D Tensor, shape=(num_frames, height, width, num_channels) target: 4-D Tensor, shape=(num_frames, height, width, num_channels) Returns: psnr: 1-D Tensor, shape=(num_frames,) ssim: 1-D Tensor, shape=(num_frames,) """ output = tf.cast(output, dtype=tf.int32) target = tf.cast(target, dtype=tf.int32) psnr = tf.image.psnr(output, target, max_val=255) ssim = tf.image.ssim(output, target, max_val=255) return psnr, ssim def stack_data_given_key(predictions, key): x = [p[key] for p in predictions] x = np.stack(x, axis=0) return x def get_zipped_dataset_from_predictions(predictions): """Creates dataset from in-memory predictions.""" targets = stack_data_given_key(predictions, "targets") outputs = stack_data_given_key(predictions, "outputs") num_videos = len(targets) targets_placeholder = tf.placeholder(targets.dtype, targets.shape) outputs_placeholder = tf.placeholder(outputs.dtype, outputs.shape) dataset = tf.data.Dataset.from_tensor_slices( (targets_placeholder, outputs_placeholder)) iterator = dataset.make_initializable_iterator() feed_dict = {targets_placeholder: targets, outputs_placeholder: outputs} return iterator, feed_dict, num_videos def compute_one_decoding_video_metrics(iterator, feed_dict, num_videos): """Computes the average of all the metric for one decoding. Args: iterator: dataset iterator. feed_dict: feed dict to initialize iterator. num_videos: number of videos. Returns: all_psnr: 2-D Numpy array, shape=(num_samples, num_frames) all_ssim: 2-D Numpy array, shape=(num_samples, num_frames) """ output, target = iterator.get_next() metrics = psnr_and_ssim(output, target) with tf.Session() as sess: sess.run(tf.local_variables_initializer()) initalizer = iterator._initializer # pylint: disable=protected-access if initalizer is not None: sess.run(initalizer, feed_dict=feed_dict) all_psnr, all_ssim = [], [] for i in range(num_videos): print("Computing video: %d" % i) psnr_np, ssim_np = sess.run(metrics) all_psnr.append(psnr_np) all_ssim.append(ssim_np) all_psnr = np.array(all_psnr) all_ssim = np.array(all_ssim) return all_psnr, all_ssim def reduce_to_best_decode(metrics, reduce_func): """Extracts the best-decode from the metrics according to reduce_func. Args: metrics: 3-D numpy array, shape=(num_decodes, num_samples, num_frames) reduce_func: callable, np.argmax or np.argmin. Returns: best_metrics: 2-D numpy array, shape=(num_samples, num_frames). """ num_videos = metrics.shape[1] # Take mean of the metric across the frames to approximate the video # closest to the ground truth. mean_across_frames = np.mean(metrics, axis=-1) # For every sample, use the decode that has a maximum mean-metric. best_decode_ind = reduce_func(mean_across_frames, axis=0) return metrics[best_decode_ind, np.arange(num_videos), :] def compute_all_metrics_statistics(all_results): """Computes statistics of metrics across multiple decodings. Args: all_results: dicf of 3-D numpy arrays. Each array has shape=(num_decodes, num_samples, num_frames). Returns: statistics: dict of 1-D numpy arrays shape=(num_frames). First the statistic (max/mean/std) is computed across the decodes, then the mean is taken across num_samples. """ statistics = {} all_metrics = all_results.keys() for key in all_metrics: values = all_results[key] statistics[key + "_MEAN"] = np.mean(values, axis=0) statistics[key + "_STD"] = np.std(values, axis=0) statistics[key + "_MIN"] = reduce_to_best_decode(values, np.argmin) statistics[key + "_MAX"] = reduce_to_best_decode(values, np.argmax) # Computes mean of each statistic across the dataset. for key in statistics: statistics[key] = np.mean(statistics[key], axis=0) return statistics def compute_video_metrics_from_predictions(predictions): """Computes metrics from predictions. Args: predictions: list of list of dicts. outer length: num_decodes, inner_length: num_samples Returns: statistics: dict of Tensors, key being the metric with each Tensor having the shape (num_samples, num_frames). """ ssim_all_decodes, psnr_all_decodes = [], [] for single_decode in predictions: args = get_zipped_dataset_from_predictions(single_decode) psnr_single, ssim_single = compute_one_decoding_video_metrics(*args) psnr_all_decodes.append(psnr_single) ssim_all_decodes.append(ssim_single) psnr_all_decodes = np.array(psnr_all_decodes) ssim_all_decodes = np.array(ssim_all_decodes) all_results = {"PSNR": psnr_all_decodes, "SSIM": ssim_all_decodes} statistics = compute_all_metrics_statistics(all_results) return statistics def compute_video_metrics_from_png_files( output_dirs, problem_name, video_length, frame_shape): """Computes the average of all the metric for one decoding. This function assumes that all the predicted and target frames have been saved on the disk and sorting them by name will result to consecutive frames saved in order. Args: output_dirs: directory with all the saved frames. problem_name: prefix of the saved frames usually name of the problem. video_length: length of the videos. frame_shape: shape of each frame in HxWxC format. Returns: Dictionary which contains the average of each metric per frame. """ ssim_all_decodes, psnr_all_decodes = [], [] for output_dir in output_dirs: output_files, target_files = get_target_and_output_filepatterns( output_dir, problem_name) args = get_zipped_dataset_from_png_files( output_files, target_files, video_length, frame_shape) psnr_single, ssim_single = compute_one_decoding_video_metrics(*args) psnr_all_decodes.append(psnr_single) ssim_all_decodes.append(ssim_single) psnr_all_decodes = np.array(psnr_all_decodes) ssim_all_decodes = np.array(ssim_all_decodes) all_results = {"PSNR": psnr_all_decodes, "SSIM": ssim_all_decodes} statistics = compute_all_metrics_statistics(all_results) return statistics, all_results def compute_and_save_video_metrics( output_dirs, problem_name, video_length, frame_shape): """Compute and saves the video metrics.""" statistics, all_results = compute_video_metrics_from_png_files( output_dirs, problem_name, video_length, frame_shape) for results, output_dir in zip(all_results, output_dirs): save_results(results, output_dir, problem_name) parent_dir = os.path.join(output_dirs[0], os.pardir) final_dir = os.path.join(parent_dir, "decode") tf.gfile.MakeDirs(parent_dir) save_results(statistics, final_dir, problem_name) ```
{ "source": "jinlibao/MATLAB-files", "score": 4 }
#### File: Project.Euler/Answers.Python/4.py ```python import math def isPalindromic(number): numberLength = int(math.ceil(math.log10(number))) digits = [] while number > 0: digits.append(number % 10) number /= 10 i = 0 while i <= numberLength / 2: if digits[i] != digits[numberLength-i-1]: break else: i += 1 if i > numberLength / 2: return True else: return False def Palindromic(n): f = [10 ** (n)-1, 10 ** (n)-1] p = [] while f[0] >= 10 ** (n-1): while f[1] >= 10 ** (n-1): d = f[0] * f[1] type = isPalindromic(d) if type == True: p.append(d) # print f[0], f[1] f[1] -= 1 else: f[1] -= 1 f[0] -= 1 f[1] = f[0] # print p return max(p) t = Palindromic(3) print t ```
{ "source": "jinlibao/Pandoc-LaTeX-Templates", "score": 3 }
#### File: Notes/LaTeX/compile.py ```python import os import sys import re import time import platform __author__ = '<NAME>' __create_date__ = '01/13/2017' __last_update_date__ = '02/07/2018' __copyright__ = "Copyright (c) 2018 Libao Jin" __license__ = "MIT" __version__ = "1.5.1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Complete" class Compiler(): '''Compile pandoc file to PDF, M$ Word documents etc.''' folder = '.' metadata = '' filename = '' source_file_body = 'body.tex' source_file_main = 'main.tex' output_file_main = 'main.pdf' title = '' last_name = 'Libao' first_name = 'Jin' email = '<EMAIL>' author = r'{0} {1} (\\url{{{2}}})'.format(last_name, first_name, email) date = '01/01/2017' platform = '' def __init__(self): '''Initialization of class compile''' self.folder = '.' self.metadata = [('', '', '', '')] self.platform = platform.system() def get_metadata(self): '''Get information from the folder structure and extract course information, and etc.''' folder = self.folder pathname = os.path.realpath(folder) print(pathname) print() if self.platform == 'Windows': string = r'([\w.-]+)\\([\w\d\s.-]+)\\LaTeX' else: string = '([\w.-]+)/([\w\d\s.-]+)/LaTeX' pattern = re.compile(string) self.metadata = re.findall(pattern, pathname) print(self.metadata) def generate_filename(self): '''Generate filename for output file.''' metadata = self.metadata[0] print(metadata) book = metadata[0] doc_type = metadata[1].replace(' ', '.') self.filename = '{0}.{1}_{2}.{3}.pdf'.format(book, doc_type, self.last_name, self.first_name) def generate_title(self): '''Generate title for the article/document.''' metadata = self.metadata[0] book = metadata[0].replace('.', ' ') doc_type = metadata[1].replace('.', ' ') self.title = '{0} {1}'.format(book, doc_type) print(self.title) def update_date(self): t = time.localtime() day = str(t.tm_mday).zfill(2) month = str(t.tm_mon).zfill(2) year = str(t.tm_year).zfill(4) self.date = '{0}/{1}/{2}'.format(month, day, year) def update_author_1(self): '''Update author information in the source file to be compiled.''' source_file = self.source_file_main author = self.author f = open(source_file, 'r') content = f.read() string = r'\\author{[\w\d\s]*}' p = re.compile(string) content = p.sub(r'\\author{{{0}}}'.format(author), content) f.close() f = open(source_file, 'w') f.write(content) f.close() def update_title(self): '''Update title in the source file to be compiled.''' source_file = self.source_file_main title = self.title f = open(source_file, 'r') content = f.read() string = r'\\title{[\w\d\s.-]*}' p = re.compile(string) content = p.sub(r'\\title{{{0}}}'.format(title), content) f.close() f = open(source_file, 'w') f.write(content) f.close() def heading_style_0(self): '''Change heading style to not numberred heading.''' source_file = self.source_file_body f = open(source_file, 'r') content = f.read() string = r'\\section' p = re.compile(string) content = p.sub(r'\\textbf', content, count=1) content = p.sub(r'\n\\textbf', content) string = r'}\\label{[\w\d-]+}\n' p = re.compile(string) content = p.sub('.}', content) f.close() f = open(source_file, 'w') f.write(content) f.close() def heading_style_1(self): '''Change heading style to not numberred heading.''' source_file = self.source_file_body f = open(source_file, 'r') content = f.read() string = r'\\section' p = re.compile(string) content = p.sub(r'\\textbf', content, count=1) content = p.sub(r'\\newpage\n\\textbf', content) string = r'}\\label{[\w\d-]+}\n' p = re.compile(string) content = p.sub('.}', content) f.close() f = open(source_file, 'w') f.write(content) f.close() def update_package(self, option): '''Update title in the source file to be compiled.''' source_file = self.source_file_main f = open(source_file, 'r') content = f.read() if option == 'p': string = r'^\\usepackage{fontspec}' p = re.compile(string, re.MULTILINE) content = p.sub(r'% \\usepackage{fontspec}', content) string = r'^\\setmonofont\[Scale=0.8\]{Monaco}' p = re.compile(string, re.MULTILINE) content = p.sub(r'% \\setmonofont[Scale=0.8]{Monaco}', content) elif option == 'x': string = r'[% ]*\\usepackage{fontspec}' p = re.compile(string) content = p.sub(r'\\usepackage{fontspec}', content) string = r'[% ]*\\setmonofont\[Scale=0.8\]{Monaco}' p = re.compile(string) content = p.sub(r'\\setmonofont[Scale=0.8]{Monaco}', content) f.close() f = open(source_file, 'w') f.write(content) f.close() def compile_pdflatex(self): '''Compile files by calling pandoc, pdflatex and rm commands to keep the file structure organized.''' if self.platform == 'Windows': path = '..\\' + self.filename else: path = '../' + self.filename if os.path.exists(path): os.remove(path) if self.platform == 'Windows': os.system('pdflatex -quiet {0}'.format(self.source_file_main)) os.system('pdflatex -quiet {0}'.format(self.source_file_main)) os.system('del *.log *.aux *.idx *.out *.toc *~') os.rename('{0}'.format(self.output_file_main), path) else: os.system('pdflatex -interaction=batchmode {0}'.format(self.source_file_main)) os.system('pdflatex -interaction=batchmode {0}'.format(self.source_file_main)) os.system('rm *.log *.aux *.idx *.out *.toc *~') os.rename('{0}'.format(self.output_file_main), path) def compile_xelatex(self): '''Compile files by calling pandoc, pdflatex and rm commands to keep the file structure organized.''' if self.platform == 'Windows': path = '..\\' + self.filename else: path = '../' + self.filename if os.path.exists(path): os.remove(path) if self.platform == 'Windows': os.system('xelatex -quiet {0}'.format(self.source_file_main)) os.system('xelatex -quiet {0}'.format(self.source_file_main)) os.system('del *.log *.aux *.idx *.out *.toc *~') os.rename('{0}'.format(self.output_file_main), path) else: os.system('xelatex -interaction=batchmode {0}'.format(self.source_file_main)) os.system('xelatex -interaction=batchmode {0}'.format(self.source_file_main)) os.system('rm *.log *.aux *.idx *.out *.toc *~') os.rename('{0}'.format(self.output_file_main), path) def generate_source_file_body(self): '''Generate source file body.tex from body.pdc by using pandoc''' os.system('pandoc -f markdown -o body.tex body.pdc') def run(self): '''By a series commands to compile the tex file and clean up the unnecessary files.''' self.get_metadata() self.generate_filename() self.generate_title() self.generate_source_file_body() if len(sys.argv) == 1: print('Heading Style: Normal.') self.update_author_1() elif sys.argv[1] == '0': print('Heading Style: Boldface.') self.heading_style_0() self.update_author_1() elif sys.argv[1] == '1': print('Heading Style: Boldface.') self.heading_style_1() self.update_author_1() else: print('Error.') self.update_title() if len(sys.argv) <= 2: self.update_package('x') self.compile_xelatex() self.update_package('p') elif sys.argv[2] == 'p': self.compile_pdflatex() self.update_package('p') elif sys.argv[2] == 'x': self.update_package('x') self.compile_xelatex() self.update_package('p') if __name__ == '__main__': compiler = Compiler() compiler.run() ```
{ "source": "jinlibao/toolkits", "score": 4 }
#### File: Python/Computer.Performance/ppi.py ```python import math __author__ = '<NAME>' __date__ = 'July 21, 2015' class Screen(): ''' Class: A Digital Screen ''' def __init__(self): 'Constructor' self.ppi = None def __init__(self, **screen_info): 'Constructor' self.width = screen_info['width'] self.height = screen_info['height'] self.size = screen_info['size'] def compute_ppi(self, width, height, size): ppi = math.sqrt(width ** 2 + height ** 2) / size print('-' * 40) print('Screen size: {0:.1f} inches'.format(size)) print('Resolution') print('width: {0:d}'.format(width)) print('height: {0:d}'.format(height)) print('ppi: {0:.1f}'.format(ppi)) def set_ppi(self): self.ppi = math.sqrt(self.width ** 2 + self.height ** 2) / self.size def get_width(self): 'Get width.' return self.width def get_height(self): 'Get height.' return self.height def get_size(self): 'Get size.' return self.size def get_ppi(self): 'Get ppi.' return self.ppi def get_screen_info(self): 'Get screen detailed info.' print('-' * 40) print('Screen size: {0:.1f} inches'.format(self.size)) print('Resolution') print('width: {0:d}'.format(self.width)) print('height: {0:d}'.format(self.height)) print('ppi: {0:.1f}'.format(self.ppi)) if __name__ == '__main__': width = 1280 height = 720 size = 5.5 screen_info = {'width': width, 'height': height, 'size': size} s = Screen(**screen_info) s.set_ppi() s.get_screen_info() s.compute_ppi(1920, 1080, 5.7) s.compute_ppi(2560, 1440, 5.7) s.compute_ppi(1366, 768, 13.6) s.compute_ppi(1920, 1080, 5.5) s.compute_ppi(1280, 768, 5) s.compute_ppi(1920, 1080, 4.95) s.compute_ppi(1136, 640, 4) s.compute_ppi(2560, 1600, 13.3) s.compute_ppi(2880, 1800, 15.4) ``` #### File: Project.Euler/Answers.Python/12_old.py ```python import math __author__ = '<NAME>' __date__ = 'July 13, 2015' def AccumulateSumSequence(n): seq = [] i = 1 currentValue = 0 while i <= n: currentValue += i seq.append(currentValue) i += 1 return seq def AccumulateSumGenerator(n): number = 0 i = 1 while i <= n: number += i i += 1 return number def Factorization(n): currentFactor = 1 factors = [] while currentFactor <= n // 2: if n % currentFactor == 0: factors.append(currentFactor) currentFactor += 1 factors.append(n) return factors def SeqFactors(n): seq = AccumulateSumSequence(n) numfactors = [] for i in seq: factors = Factorization(i) numfactors.append([i,len(factors),factors]) return numfactors def NumberFactors(LengthBound): length = 0 n = 1 while length <= LengthBound: number = AccumulateSumGenerator(n) factors = Factorization(number) length = len(factors) n += 1 numberInfo = [number, len(factors), factors] return numberInfo def test1(): s = SeqFactors(10) for i in s: print(i) def solution(): result = NumberFactors(500) print(result) #test1() solution() ``` #### File: Project.Euler/Answers.Python/14.py ```python __author__ = '<NAME>' __date__ = 'July 13, 2015' def isEven(n): if n % 2 == 0: return True else: return False def collatzTransform(n): if isEven(n): n = n // 2 else: n = 3 * n + 1 return n def CollatzSequence(startNumber): collatzSeq = [startNumber] transformedNumber = collatzTransform(startNumber) collatzSeq.append(transformedNumber) while transformedNumber != 1: transformedNumber = collatzTransform(transformedNumber) collatzSeq.append(transformedNumber) return [startNumber, len(collatzSeq), collatzSeq] def longestCollatzStartNumber(UpperBound): currentStartNumber = 3 currentMaxStartNumber = currentStartNumber currentMaxLength = 0 longestCollatzSeq = 0 while currentStartNumber < UpperBound: ccs = CollatzSequence(currentStartNumber) if currentMaxLength < ccs[1]: currentMaxLength = ccs[1] currentMaxStartNumber = ccs[0] currentStartNumber += 1 lcs = CollatzSequence(currentMaxStartNumber) return lcs def test1(): cs = CollatzSequence(13) print(cs) def test2(): lcs = longestCollatzStartNumber(1000000) print(lcs) test2() ``` #### File: Project.Euler/Answers.Python/19.py ```python __author__ = '<NAME>' __date__ = 'July 17, 2015' def isLeapYear(year): if year % 400 == 0: return True elif year % 100 != 0 and year % 4 == 0: return True else: return False def daysInYear(date): year, month, day = date months = range(1, month) days = 0 for m in months: days += daysOfMonth(year, m) days += day return days def daysInYearReversed(date): days = daysOfYear(date[0]) - daysInYear(date) return days def daysOfYear(year): if isLeapYear(year): days = 366 else: days = 365 return days def daysOfMonth(year, month): if month == 1\ or month == 3\ or month == 5\ or month == 7\ or month == 8\ or month == 10\ or month == 12: days = 31 elif month == 2: if isLeapYear(year): days = 29 else: days = 28 else: days = 30 return days def countDays(dateStart, dateEnd): yearStart, monthStart, dayStart = dateStart yearEnd, monthEnd, dayEnd = dateEnd years = range(yearStart+1, yearEnd) days = daysInYearReversed(dateStart) days += daysInYear(dateEnd) for y in years: days += daysOfYear(y) return days def whichDay(date): dateFrom = (1900, 1, 1) days = countDays(dateFrom, date) remainder = days % 7 if remainder == 0: day = 'Monday' elif remainder == 1: day = 'Tuesday' elif remainder == 2: day = 'Wednesday' elif remainder == 3: day = 'Thursday' elif remainder == 4: day = 'Friday' elif remainder == 5: day = 'Saturday' elif remainder == 6: day = 'Sunday' return day def directMethod(): dateStart = (1901, 1, 1) dateEnd = (2000, 12, 31) years = range(dateStart[0], dateEnd[0]+1) months = range(1, 13) Sundays = [] for y in years: for m in months: firstOfMonth = (y, m, 1) if whichDay(firstOfMonth) == 'Sunday': Sundays.append(firstOfMonth) return (len(Sundays), Sundays) def test(): #dateStart = (1993, 7, 17) #dateEnd = (2015, 7, 17) #days = countDays(dateStart, dateEnd) #print(days) #day = whichDay(dateEnd) #print(day) result = directMethod() print(result) test() ``` #### File: Project.Euler/Answers.Python/28.py ```python __author__ = '<NAME>' __date__ = 'July 18, 2015' def list2stringList(list): stringList = [] for l in list: for s in l: stringList.append(s) return stringList def direction(UPPER_BOUND): orientation = ['R', 'D', 'L', 'U'] rSeq = list(range(1, UPPER_BOUND+2, 2)) dSeq = list(range(1, UPPER_BOUND+2, 2)) lSeq = list(range(2, UPPER_BOUND+2, 2)) uSeq = list(range(2, UPPER_BOUND+2, 2)) #print(rSeq, dSeq, lSeq, uSeq) i = 0 directions = [rSeq[i]*orientation[0]] index = rSeq[i] while index < UPPER_BOUND ** 2: directions.append(dSeq[i] * orientation[1]) directions.append(lSeq[i] * orientation[2]) directions.append(uSeq[i] * orientation[3]) directions.append(rSeq[i+1] * orientation[0]) index += dSeq[i] + lSeq[i] + uSeq[i] + rSeq[i+1] i += 1 directions = list2stringList(directions) #print(directions) return directions def route(UPPER_BOUND): directions = direction(UPPER_BOUND) point = (UPPER_BOUND+1) // 2 currentPoint = (point-1, point-1) pointInfo = [] pointInfo.append((1, currentPoint)) for i,e in enumerate(directions[0:-1]): if e == 'R': currentPoint = (currentPoint[0], currentPoint[1] + 1) pointInfo.append((i+2, currentPoint)) elif e == 'D': currentPoint = (currentPoint[0] + 1, currentPoint[1]) pointInfo.append((i+2, currentPoint)) elif e == 'L': currentPoint = (currentPoint[0], currentPoint[1] - 1) pointInfo.append((i+2, currentPoint)) elif e == 'U': currentPoint = (currentPoint[0] - 1, currentPoint[1]) pointInfo.append((i+2, currentPoint)) return pointInfo def matrix(UPPER_BOUND): matrix = [[None for i in range(UPPER_BOUND)] for i in range(UPPER_BOUND)] pointInfo = route(UPPER_BOUND) for p in pointInfo: matrix[p[1][0]][p[1][1]] = p[0] for i in matrix: print(i) return matrix def size(matrix): rowLength = len(matrix) colLength = len(matrix[0]) sizeOfMatrix = (rowLength, colLength) return sizeOfMatrix def diagonalSum(matrix): sizeOfMatrix = size(matrix) index = range(sizeOfMatrix[0]) dSum = 0 for i in index: dSum += matrix[i][i] for i in index: dSum += matrix[i][-(i+1)] dSum -= 1 return dSum def solution(): m = matrix(1001) ds = diagonalSum(m) print(ds) solution() ``` #### File: Project.Euler/Answers.Python/52.py ```python __author__ = '<NAME>' __date__ = 'July 18, 2015' def number2digits(number): string = str(number) digits = [] for s in string: digits.append(int(s)) return sorted(digits) def hasSameDigits(number1, number2): digits1 = number2digits(number1) digits2 = number2digits(number2) if digits1 == digits2: return True else: return False def multiplesOfNumber(number, n): times = range(1, n+1) multiples = [] for i in times: multiple = number * i multiples.append(multiple) return multiples def isQualified(number, n): multiples = multiplesOfNumber(number, n) sameDigits = [] for m in multiples: sameDigits.append(hasSameDigits(number, m)) if all(sameDigits): return True else: return False def permutedMultiples(n): number = 1 while not isQualified(number, n): number += 1 pMultiple = multiplesOfNumber(number, n) return (number, pMultiple) def solution(): number = permutedMultiples(2) print(number) solution() ``` #### File: Project.Euler/Answers.Python/55.py ```python __author__ = '<NAME>' __date__ = 'July 17, 2015' def rotateDigits(number): string = str(number) rotatedString = string[::-1] rotatedNumber = int(rotatedString) return rotatedNumber def isSymmetrical(number): rotatedNumber = rotateDigits(number) if rotatedNumber == number: return True else: return False def isLychrelNumber(number): iterTimes = 0 rotatedNumber = rotateDigits(number) number = number + rotatedNumber while iterTimes < 50: if isSymmetrical(number): return False else: rotatedNumber = rotateDigits(number) number = number + rotatedNumber iterTimes += 1 if iterTimes >= 50: return True def LychrelNumbers(UPPER_BOUND): number = 1 lNumbers = [] while number < UPPER_BOUND: if isLychrelNumber(number): lNumbers.append(number) number += 1 else: number += 1 numberOfLychrelNumbers = len(lNumbers) return (numberOfLychrelNumbers, lNumbers) def solution(): UPPER_BOUND = 10000 LN_Info = LychrelNumbers(UPPER_BOUND) print(LN_Info) solution() ``` #### File: Crawler.Python/old/PEC2.py ```python import urllib import urllib2 def PEC(number): url = "https://projecteuler.net/" data = {'problem': number} request = urllib2.request(url, data) response = urllib2.urlopen(request) result = response.read() ext = '.html' filename = str(number) + ext f = open(filename, 'w') f.write(result) print(filename + " downloaded") f.close() numbers = range(1, 505) for i in numbers: PEC(i) ``` #### File: Crawler.Python/old/PEC.py ```python import urllib.parse import urllib.request def PEC(number): basic_url = "https://projecteuler.net/problem=" url = basic_url + str(number) request = urllib.request.Request(url) response = urllib.request.urlopen(request) result = response.readall().decode('utf-8') loc = '../Problems/pages/' ext = '.html' filename = loc + str(number) + ext f = open(filename, 'w') f.write(result) print(filename + " downloaded") f.close() numbers = range(465, 505) for i in numbers: PEC(i) ```
{ "source": "JinliEmma/HandPointNet", "score": 2 }
#### File: HandPointNet/train_eval/utils.py ```python import torch import torch.nn as nn from torch.autograd import Variable # import pdb def group_points(points, opt): # group points using knn and ball query # points: B * 1024 * 6 cur_train_size = len(points) inputs1_diff = points[:, :, 0:3].transpose(1, 2).unsqueeze(1).expand(cur_train_size, opt.sample_num_level1, 3, opt.SAMPLE_NUM) \ - points[:, 0:opt.sample_num_level1, 0:3].unsqueeze(-1).expand( cur_train_size, opt.sample_num_level1, 3, opt.SAMPLE_NUM) # B * 512 * 3 * 1024 inputs1_diff = torch.mul( inputs1_diff, inputs1_diff) # B * 512 * 3 * 1024 inputs1_diff = inputs1_diff.sum(2) # B * 512 * 1024 # dists: B * 512 * 64; inputs1_idx: B * 512 * 64 dists, inputs1_idx = torch.topk( inputs1_diff, opt.knn_K, 2, largest=False, sorted=False) # ball query invalid_map = dists.gt(opt.ball_radius) # B * 512 * 64 for jj in range(opt.sample_num_level1): inputs1_idx[:, jj, :][invalid_map[:, jj, :]] = jj idx_group_l1_long = inputs1_idx.view(cur_train_size, opt.sample_num_level1*opt.knn_K, 1).expand( cur_train_size, opt.sample_num_level1*opt.knn_K, opt.INPUT_FEATURE_NUM) inputs_level1 = points.gather(1, idx_group_l1_long).view( cur_train_size, opt.sample_num_level1, opt.knn_K, opt.INPUT_FEATURE_NUM) # B*512*64*6 inputs_level1_center = points[:, 0:opt.sample_num_level1, 0:3].unsqueeze( 2) # B*512*1*3 inputs_level1[:, :, :, 0:3] = inputs_level1[:, :, :, 0:3] - \ inputs_level1_center.expand( cur_train_size, opt.sample_num_level1, opt.knn_K, 3) inputs_level1 = inputs_level1.unsqueeze( 1).transpose(1, 4).squeeze(4) # B*6*512*64 inputs_level1_center = inputs_level1_center.contiguous( ).view(-1, 1, opt.sample_num_level1, 3).transpose(1, 3) # B*3*512*1 return inputs_level1, inputs_level1_center # inputs_level1: B*INPUT_FEATURE_NUM*sample_num_level1*knn_K, inputs_level1_center: B*3*sample_num_level1*1 def group_points_2(points, sample_num_level1, sample_num_level2, knn_K, ball_radius): # group points using knn and ball query # points: B*(3+128)*512 cur_train_size = points.size(0) inputs1_diff = points[:, 0:3, :].unsqueeze(1).expand(cur_train_size, sample_num_level2, 3, sample_num_level1) \ - points[:, 0:3, 0:sample_num_level2].transpose(1, 2).unsqueeze(-1).expand( cur_train_size, sample_num_level2, 3, sample_num_level1) # B * 128 * 3 * 512 inputs1_diff = torch.mul(inputs1_diff, inputs1_diff) # B * 128 * 3 * 512 inputs1_diff = inputs1_diff.sum(2) # B * 128 * 512 # dists: B * 128 * 64; inputs1_idx: B * 128 * 64 dists, inputs1_idx = torch.topk( inputs1_diff, knn_K, 2, largest=False, sorted=False) # ball query # B * 128 * 64, invalid_map.float().sum() invalid_map = dists.gt(ball_radius) # pdb.set_trace() for jj in range(sample_num_level2): inputs1_idx.data[:, jj, :][invalid_map.data[:, jj, :]] = jj idx_group_l1_long = inputs1_idx.view(cur_train_size, 1, sample_num_level2*knn_K).expand( cur_train_size, points.size(1), sample_num_level2*knn_K) inputs_level2 = points.gather(2, idx_group_l1_long).view( cur_train_size, points.size(1), sample_num_level2, knn_K) # B*131*128*64 inputs_level2_center = points[:, 0:3, 0:sample_num_level2].unsqueeze( 3) # B*3*128*1 inputs_level2[:, 0:3, :, :] = inputs_level2[:, 0:3, :, :] - \ inputs_level2_center.expand( cur_train_size, 3, sample_num_level2, knn_K) # B*3*128*64 return inputs_level2, inputs_level2_center # inputs_level2: B*131*sample_num_level2*knn_K, inputs_level2_center: B*3*sample_num_level2*1 ```
{ "source": "JINLINBI/skynet", "score": 3 }
#### File: excel/json/check.py ```python import json import os import re data = {} COLOR_RED = "\033[31m" COLOR_GREEN = "\033[32m" COLOR_YELLOW = "\033[33m" COLOR_BRIGHT_MAGENTA = "\033[95m" COLOR_BRIGHT_YELLOW = "\033[93m" COLOR_CLEAR = "\033[0m" EXCEL_FILES_ROOT = "../" # add support type field here support_type = { "number", "integer", "string", "int[]", } # add support name field here support_col = { "name", "type", "index", } def check_support_type(type): return type in support_type def check_support_col(name): return name in support_col col_name_set = set() def check_col_repeated(data, reset = False): global col_name_set if reset: col_name_set = set() if data in col_name_set: return True col_name_set.add(data) return False def check_col_require(data): if "name" not in data: print(COLOR_RED + "missing index \"name\"!" + COLOR_CLEAR) return False if "type" not in data: print(COLOR_RED + "missing index \"type\"!" + COLOR_CLEAR) return False return True def check_fields_field(data): if data == None: return False check_col_repeated("", True) for col in data: check_col_require(col) for k, item in col.items(): if not check_support_col(k): print(COLOR_YELLOW + "name field: \"" + k + "\" is" + " not suppported" + COLOR_CLEAR) continue elif k == "name" and check_col_repeated(item): print(COLOR_RED + "name field: \"" + item + "\" repeated!" + COLOR_CLEAR) elif k == "type" and not check_support_type(item): print(COLOR_YELLOW + "type field: \"" + item + "\" is " + "not suppported." + COLOR_CLEAR) continue def check_txt_files(filename): m = re.search('\.txt$', filename) if m is None: return print(COLOR_BRIGHT_YELLOW + "checking txt file: " + filename + COLOR_CLEAR) check_col_repeated("", True) with open(filename, 'r') as f: for line in f.readlines(): words = line.split('\t') for word in words: print("word: " + word) # check repeat id if check_col_repeated(words[0]): print(COLOR_RED + "id " + COLOR_BRIGHT_YELLOW + word[0] + COLOR_RED + " repeated!" + COLOR_CLEAR) def check_files_field(data): if data == None: return for filename in data: check_txt_files(EXCEL_FILES_ROOT + filename + ".txt") def check_json_file(filename): m = re.search('\.json$', filename) if m is None: return print(COLOR_GREEN + "checking json file: " + filename + COLOR_CLEAR) data = {} with open(filename, 'r') as f: data = json.load(f) check_fields_field(data["fields"]) check_files_field(data["files"]) def walk_dir_func(func, dirt, exclude = False): for root, dirs, files in os.walk(EXCEL_FILES_ROOT): # get files root dirs print("dir: " + root) hit = False if exclude and root != EXCEL_FILES_ROOT + dirt: hit = True elif not exclude and root == EXCEL_FILES_ROOT + dirt: hit = True if hit: for file in files: print("file: " + os.path.join(root, file)) func(os.path.join(root, file)) if __name__ == "__main__": # check_json_file("item_list.json") walk_dir_func(check_json_file, "json") ```
{ "source": "jinlinyi/SparsePlanes", "score": 2 }
#### File: modeling/camera_net/camera_head.py ```python import torch import fvcore.nn.weight_init as weight_init from torch import nn from torch.nn import functional as F from detectron2.utils.registry import Registry __all__ = ["build_camera_head", "PlaneRCNNCameraHead", "CAMERA_HEAD_REGISTRY"] CAMERA_HEAD_REGISTRY = Registry("CAMERA_HEAD") CAMERA_HEAD_REGISTRY.__doc__ = """ Registry for camera head in a generalized R-CNN model. It takes feature maps from two images and predict relative camera transformation. The registered object will be called with `obj(cfg, input_shape)`. The call is expected to return an :class:`nn.module`. """ def build_camera_head(cfg): """ Build ROIHeads defined by `cfg.MODEL.ROI_HEADS.NAME`. """ name = cfg.MODEL.CAMERA_HEAD.NAME return CAMERA_HEAD_REGISTRY.get(name)(cfg) def conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=None): return nn.Sequential( nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ), nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.01), nn.LeakyReLU(inplace=True), ) def deconv2d( scale_factor=2, mode="nearest", in_channels=256, out_channels=128, kernel_size=3, stride=1, padding=1, ): return nn.Sequential( torch.nn.Upsample(scale_factor=scale_factor, mode=mode), nn.Conv2d( in_channels, out_channels, kernel_size=kernel_size, stride=stride, padding=padding, ), nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.01), nn.ReLU(inplace=True), ) @CAMERA_HEAD_REGISTRY.register() class PlaneRCNNCameraHead(nn.Module): """ The camera head for Plane RCNN """ def __init__(self, cfg): super(PlaneRCNNCameraHead, self).__init__() self.backbone_feature = cfg.MODEL.CAMERA_HEAD.BACKBONE_FEATURE if self.backbone_feature == "p5": self.convs_backbone = nn.Sequential( conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), ) elif self.backbone_feature == "p4": self.convs_backbone = nn.Sequential( conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.MaxPool2d( kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False ), conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1), conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), ) elif self.backbone_feature == "p3": self.convs_backbone = nn.Sequential( conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.MaxPool2d( kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False ), conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), conv2d(in_channels=256, out_channels=256, kernel_size=3, padding=1), nn.MaxPool2d( kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False ), conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1), conv2d(in_channels=512, out_channels=512, kernel_size=3, padding=1), ) for block in self.convs_backbone: if isinstance(block, nn.modules.container.Sequential): for layer in block: if isinstance(layer, nn.Conv2d): weight_init.c2_msra_fill(layer) else: raise NotImplementedError self.convs = nn.Sequential( conv2d(in_channels=300, out_channels=128, kernel_size=3, padding=1), conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1), conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1), conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1), conv2d(in_channels=128, out_channels=128, kernel_size=3, padding=1), conv2d(in_channels=128, out_channels=128, kernel_size=3, stride=2, padding=1), ) self.fc = nn.Linear(768, cfg.MODEL.CAMERA_HEAD.FEATURE_SIZE) self.trans_branch = nn.Linear( cfg.MODEL.CAMERA_HEAD.FEATURE_SIZE, cfg.MODEL.CAMERA_HEAD.TRANS_CLASS_NUM ) self.rot_branch = nn.Linear( cfg.MODEL.CAMERA_HEAD.FEATURE_SIZE, cfg.MODEL.CAMERA_HEAD.ROTS_CLASS_NUM ) self._loss_weight = cfg.MODEL.CAMERA_HEAD.LOSS_WEIGHT self.celoss = nn.CrossEntropyLoss() def forward(self, features1, features2, gt_cls=None): """ p2 256*120*160 p3 256*60*80 p4 256*30*40 p5 256*15*20 p6 256*8*10 """ x1 = self.backbone(features1) x2 = self.backbone(features2) aff = self.compute_corr_softmax(x1, x2) x = self.convs(aff) x = torch.flatten(x, 1) x = F.relu(self.fc(x)) trans = self.trans_branch(x) rot = self.rot_branch(x) if self.training: tran_loss = self.celoss(trans, gt_cls["tran_cls"].squeeze(1)) rot_loss = self.celoss(rot, gt_cls["rot_cls"].squeeze(1)) losses = {"camera_loss": tran_loss + rot_loss} if torch.isnan(tran_loss) or torch.isnan(rot_loss): import pdb; pdb.set_trace() return losses else: return {"tran": trans, "rot": rot} def backbone(self, features): x = self.convs_backbone(features[self.backbone_feature]) return x def compute_corr_softmax(self, im_feature1, im_feature2): _, _, h1, w1 = im_feature1.size() _, _, h2, w2 = im_feature2.size() im_feature2 = im_feature2.transpose(2, 3) im_feature2_vec = im_feature2.contiguous().view( im_feature2.size(0), im_feature2.size(1), -1 ) im_feature2_vec = im_feature2_vec.transpose(1, 2) im_feature1_vec = im_feature1.contiguous().view( im_feature1.size(0), im_feature1.size(1), -1 ) corrfeat = torch.matmul(im_feature2_vec, im_feature1_vec) corrfeat = corrfeat.view(corrfeat.size(0), h2 * w2, h1, w1) corrfeat = F.softmax(corrfeat, dim=1) return corrfeat ``` #### File: sparseplane/utils/mesh_utils.py ```python import cv2 import os import shutil import quaternion import torch import numpy as np from typing import Optional import imageio from tqdm import tqdm from pytorch3d.structures import Meshes from pytorch3d.renderer import TexturesVertex from pytorch3d.structures import utils as struct_utils from sparseplane.utils.camera import ( create_cylinder_mesh, create_color_palette, get_cone_edges, ) def transform_meshes(meshes, camera_info): """ input: @meshes: mesh in local frame @camera_info: plane params from camera info, type = dict, must contain 'position' and 'rotation' as keys output: mesh in global frame. """ tran = camera_info["position"] rot = camera_info["rotation"] verts_packed = meshes.verts_packed() verts_packed = verts_packed * torch.tensor( [1.0, -1.0, -1.0], dtype=torch.float32 ) # suncg2habitat faces_list = meshes.faces_list() tex = meshes.textures rot_matrix = torch.tensor(quaternion.as_rotation_matrix(rot), dtype=torch.float32) verts_packed = torch.mm(rot_matrix, verts_packed.T).T + torch.tensor( tran, dtype=torch.float32 ) verts_list = list(verts_packed.split(meshes.num_verts_per_mesh().tolist(), dim=0)) return Meshes(verts=verts_list, faces=faces_list, textures=tex) def rotate_mesh_for_webview(meshes): """ input: @meshes: mesh in global (habitat) frame output: mesh is rotated around x axis by -11 degrees such that floor is horizontal """ verts_packed = meshes.verts_packed() faces_list = meshes.faces_list() tex = meshes.textures rot_matrix = torch.FloatTensor( np.linalg.inv( np.array([[1, 0, 0], [0, 0.9816272, -0.1908090], [0, 0.1908090, 0.9816272]]) ) ) verts_packed = torch.mm(rot_matrix, verts_packed.T).T verts_list = list(verts_packed.split(meshes.num_verts_per_mesh().tolist(), dim=0)) return Meshes(verts=verts_list, faces=faces_list, textures=tex) def transform_verts_list(verts_list, camera_info): """ input: @meshes: verts_list in local frame @camera_info: plane params from camera info, type = dict, must contain 'position' and 'rotation' as keys output: verts_list in global frame. """ tran = camera_info["position"] rot = camera_info["rotation"] verts_list_to_packed = struct_utils.list_to_packed(verts_list) verts_packed = verts_list_to_packed[0] num_verts_per_mesh = verts_list_to_packed[1] verts_packed = verts_packed * torch.tensor( [1.0, -1.0, -1.0], dtype=torch.float32 ) # suncg2habitat rot_matrix = torch.tensor(quaternion.as_rotation_matrix(rot), dtype=torch.float32) verts_packed = torch.mm(rot_matrix, verts_packed.T).T + torch.tensor( tran, dtype=torch.float32 ) verts_list = list(verts_packed.split(num_verts_per_mesh.tolist(), dim=0)) return verts_list def get_plane_params_in_global(planes, camera_info): """ input: @planes: plane params @camera_info: plane params from camera info, type = dict, must contain 'position' and 'rotation' as keys output: plane parameters in global frame. """ tran = camera_info["position"] rot = camera_info["rotation"] start = np.ones((len(planes), 3)) * tran end = planes * np.array([1, -1, -1]) # suncg2habitat end = (quaternion.as_rotation_matrix(rot) @ (end).T).T + tran # cam2world a = end b = end - start planes_world = ((a * b).sum(axis=1) / np.linalg.norm(b, axis=1) ** 2).reshape(-1, 1) * b return planes_world def get_plane_params_in_local(planes, camera_info): """ input: @planes: plane params @camera_info: plane params from camera info, type = dict, must contain 'position' and 'rotation' as keys output: plane parameters in global frame. """ tran = camera_info["position"] rot = camera_info["rotation"] b = planes a = np.ones((len(planes), 3)) * tran planes_world = ( a + b - ((a * b).sum(axis=1) / np.linalg.norm(b, axis=1) ** 2).reshape(-1, 1) * b ) end = ( quaternion.as_rotation_matrix(rot.inverse()) @ (planes_world - tran).T ).T # world2cam planes_local = end * np.array([1, -1, -1]) # habitat2suncg return planes_local def save_obj( folder, prefix, meshes, cam_meshes=None, decimal_places=None, blend_flag=False, map_files=None, uv_maps=None, ): os.makedirs(folder, exist_ok=True) # pytorch3d does not support map_files # map_files = meshes.textures.map_files() # assert map_files is not None if map_files is None and uv_maps is None: raise RuntimeError("either map_files or uv_maps should be set!") # generate map_files from uv_map if uv_maps is not None and map_files is None: map_files = [] uv_dir = os.path.join(folder, "uv_maps") if not os.path.exists(uv_dir): os.mkdir(uv_dir) for map_id, uv_map in enumerate(uv_maps): uv_path = os.path.join(uv_dir, "{}_uv_plane_{}.png".format(prefix, map_id)) imageio.imwrite(uv_path, uv_map) map_files.append(uv_path) f_mtl = open(os.path.join(folder, prefix + ".mtl"), "w") f = open(os.path.join(folder, prefix + ".obj"), "w") try: seen = set() uniq_map_files = [ m for m in list(map_files) if m not in seen and not seen.add(m) ] for map_id, map_file in enumerate(uniq_map_files): if uv_maps is not None: # we do not need to copy map_files, # they are already in uv_maps/... f_mtl.write( _get_mtl_map( os.path.basename(map_file).split(".")[0], os.path.join("uv_maps", os.path.basename(map_file)), ) ) continue if not blend_flag: shutil.copy(map_file, folder) os.chmod(os.path.join(folder, os.path.basename(map_file)), 0o755) f_mtl.write( _get_mtl_map( os.path.basename(map_file).split(".")[0], os.path.basename(map_file), ) ) else: rgb = cv2.imread(map_file, cv2.IMREAD_COLOR) if cam_meshes is not None: blend_color = ( np.array( cam_meshes.textures.verts_features_packed() .numpy() .tolist()[map_id] ) * 255 ) else: blend_color = np.array(create_color_palette()[map_id + 10]) alpha = 0.7 blend = (rgb * alpha + blend_color[::-1] * (1 - alpha)).astype(np.uint8) cv2.imwrite( os.path.join( folder, os.path.basename(map_file).split(".")[0] + "_debug.png" ), blend, ) f_mtl.write( _get_mtl_map( os.path.basename(map_file).split(".")[0], os.path.basename(map_file).split(".")[0] + "_debug.png", ) ) f.write(f"mtllib {prefix}.mtl\n\n") # we want [list] verts, vert_uvs, map_files; # [packed] faces; # face per mesh verts_list = meshes.verts_list() verts_uvs_list = meshes.textures.verts_uvs_list() faces_list = meshes.faces_packed().split( meshes.num_faces_per_mesh().tolist(), dim=0 ) for idx, (verts, verts_uvs, faces, map_file) in enumerate( zip(verts_list, verts_uvs_list, faces_list, map_files) ): f.write(f"# mesh {idx}\n") trunc_verts_uvs = verts_uvs[: verts.shape[0]] _save( f, verts, faces, verts_uv=trunc_verts_uvs, map_file=map_file, idx=idx, decimal_places=decimal_places, ) if cam_meshes: face_offset = np.sum([len(v) for v in verts_list]) cam_verts_list = cam_meshes.verts_list() cam_verts_rgbs_list = ( cam_meshes.textures.verts_features_packed().numpy().tolist() ) cam_faces_list = (cam_meshes.faces_packed() + face_offset).split( cam_meshes.num_faces_per_mesh().tolist(), dim=0 ) assert len(cam_verts_rgbs_list) == len(cam_verts_list) for idx, (verts, faces, rgb) in enumerate( zip(cam_verts_list, cam_faces_list, cam_verts_rgbs_list) ): f.write(f"# camera {idx}\n") f_mtl.write(_get_mtl_rgb(idx, rgb)) _save(f, verts, faces, rgb=rgb, idx=idx, decimal_places=decimal_places) finally: f.close() f_mtl.close() def _get_mtl_map(material_name, map_Kd): return f"""newmtl {material_name} map_Kd {map_Kd} # Test colors Ka 1.000 1.000 1.000 # white Kd 1.000 1.000 1.000 # white Ks 0.000 0.000 0.000 # black Ns 10.0\n""" def _get_mtl_rgb(material_idx, rgb): return f"""newmtl color_{material_idx} Kd {rgb[0]} {rgb[1]} {rgb[2]} Ka 0.000 0.000 0.000\n""" def _save( f, verts, faces, verts_uv=None, map_file=None, rgb=None, idx=None, double_sided=True, decimal_places: Optional[int] = None, ): if decimal_places is None: float_str = "%f" else: float_str = "%" + ".%df" % decimal_places lines = "" V, D = verts.shape for i in range(V): vert = [float_str % verts[i, j] for j in range(D)] lines += "v %s\n" % " ".join(vert) if verts_uv is not None: V, D = verts_uv.shape for i in range(V): vert_uv = [float_str % verts_uv[i, j] for j in range(D)] lines += "vt %s\n" % " ".join(vert_uv) if map_file is not None: lines += f"usemtl {os.path.basename(map_file).split('.')[0]}\n" elif rgb is not None: lines += f"usemtl color_{idx}\n" if faces != []: F, P = faces.shape for i in range(F): if verts_uv is not None: face = ["%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in range(P)] else: face = ["%d" % (faces[i, j] + 1) for j in range(P)] lines += "f %s\n" % " ".join(face) if double_sided: if verts_uv is not None: face = [ "%d/%d" % (faces[i, j] + 1, faces[i, j] + 1) for j in reversed(range(P)) ] else: face = ["%d" % (faces[i, j] + 1) for j in reversed(range(P))] lines += "f %s\n" % " ".join(face) else: tqdm.write(f"face = []") f.write(lines) def get_camera_meshes(camera_list, radius=0.02): verts_list = [] faces_list = [] color_list = [] rots = np.array( [ quaternion.as_rotation_matrix(camera_info["rotation"]) for camera_info in camera_list ] ) # ai habitat frame lookat = np.array([0, 0, -1]) vertical = np.array([0, 1, 0]) positions = np.array([camera_info["position"] for camera_info in camera_list]) lookats = rots @ lookat.T verticals = rots @ vertical.T predetermined_color = [ [0.10196, 0.32157, 1.0], [1.0, 0.0667, 0.1490], ] for idx, (position, lookat, vertical, color) in enumerate( zip(positions, lookats, verticals, predetermined_color) ): cur_num_verts = 0 edges = get_cone_edges(position, lookat, vertical) cam_verts = [] cam_inds = [] for k in range(len(edges)): cyl_verts, cyl_ind = create_cylinder_mesh(radius, edges[k][0], edges[k][1]) cyl_verts = [x for x in cyl_verts] cyl_ind = [x + cur_num_verts for x in cyl_ind] cur_num_verts += len(cyl_verts) cam_verts.extend(cyl_verts) cam_inds.extend(cyl_ind) # Create a textures object verts_list.append(torch.tensor(cam_verts, dtype=torch.float32)) faces_list.append(torch.tensor(cam_inds, dtype=torch.float32)) color_list.append(color) color_tensor = torch.tensor(color_list, dtype=torch.float32).unsqueeze_(1) tex = TexturesVertex(verts_features=color_tensor) # Initialise the mesh with textures meshes = Meshes(verts=verts_list, faces=faces_list, textures=tex) return meshes ``` #### File: sparseplane/utils/metrics.py ```python import torch import numpy as np @torch.no_grad() def compare_planes( pred_planes, gt_planes, ): """ naively calculate 3d vector l2 distance """ pred_planes = torch.tensor(np.array(pred_planes), dtype=torch.float32) pred_offsets = torch.norm(pred_planes, p=2, dim=1) + 1e-5 pred_norms = pred_planes.div(pred_offsets.view(-1, 1).expand_as(pred_planes)) gt_planes = torch.tensor(np.array(gt_planes), dtype=torch.float32) gt_offsets = torch.norm(gt_planes, p=2, dim=1) + 1e-5 gt_norms = gt_planes.div(gt_offsets.view(-1, 1).expand_as(gt_planes)) norm_distance_matrix = torch.clamp(torch.cdist(pred_norms, gt_norms, p=2), 0, 2) norm_angle_matrix = 2 * torch.asin(norm_distance_matrix / 2) / np.pi * 180 offset_distance_matrix = torch.cdist( pred_offsets.view(-1, 1), gt_offsets.view(-1, 1), p=1 ) return {"norm": norm_angle_matrix, "offset": offset_distance_matrix} def compare_planes_one_to_one( pred_planes, gt_planes, ): pred_planes = torch.tensor(np.array(pred_planes), dtype=torch.float32) pred_offsets = torch.clamp(torch.norm(pred_planes, p=2, dim=1), min=1e-5) pred_norms = pred_planes.div(pred_offsets.view(-1, 1).expand_as(pred_planes)) gt_planes = torch.tensor(np.array(gt_planes), dtype=torch.float32) gt_offsets = torch.clamp(torch.norm(gt_planes, p=2, dim=1), min=1e-5) gt_norms = gt_planes.div(gt_offsets.view(-1, 1).expand_as(gt_planes)) l2 = torch.norm(pred_planes - gt_planes, dim=1).numpy().mean() norm = ( torch.acos(torch.clamp(torch.sum(pred_norms * gt_norms, dim=1), max=1, min=-1)) .numpy() .mean() ) offset = torch.abs(pred_offsets - gt_offsets).numpy().mean() return {"l2": l2, "norm": norm, "offset": offset} ``` #### File: sparsePlane/tools/inference_sparse_plane.py ```python import numpy as np import argparse, os, cv2, torch, pickle, quaternion import pycocotools.mask as mask_util from collections import defaultdict from tqdm import tqdm from scipy.linalg import eigh from scipy.ndimage.measurements import center_of_mass from scipy.special import softmax from scipy.optimize import least_squares from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor from detectron2.evaluation.coco_evaluation import instances_to_coco_json from detectron2.data import detection_utils as utils from detectron2.utils.visualizer import Visualizer from pytorch3d.structures import join_meshes_as_batch from sparseplane.config import get_sparseplane_cfg_defaults from sparseplane.modeling.roi_heads.plane_loss import GeoConsistencyLoss from sparseplane.utils.mesh_utils import ( save_obj, get_camera_meshes, transform_meshes, rotate_mesh_for_webview, get_plane_params_in_global, get_plane_params_in_local, ) from sparseplane.utils.vis import get_single_image_mesh_plane from sparseplane.visualization import create_instances, get_labeled_seg, draw_match import KMSolver from local_refinement_sift import ( get_pixel_matching, vec6dToSo3, rotation_matrix_from_array, so3ToVec6d, fun_with_precalculated_sift_reduce_rot, ) def km_solver(distance_matrix, weight): """ km: Hungarian Algo if the distance > threshold, even it is smallest, it is also false. """ cost_matrix = (distance_matrix.numpy() * 1000).astype(np.int) prediction_matrix_km = KMSolver.solve( cost_matrix, threshold=int((1 - weight["threshold"]) * 1000) ) return prediction_matrix_km class PlaneRCNN_Branch: def __init__(self, cfg, cpu_device="cpu"): self.predictor = DefaultPredictor(cfg) self._cpu_device = cpu_device self._K_inv_dot_xy_1 = torch.FloatTensor(self.get_K_inv_dot_xy_1()).to("cuda") self._camera_on = cfg.MODEL.CAMERA_ON self._embedding_on = cfg.MODEL.EMBEDDING_ON self.img_format = cfg.INPUT.FORMAT def inference( self, img_file1, img_file2, ): """ input: im0, im1 path. """ im0 = utils.read_image(img_file1, format=self.img_format) im1 = utils.read_image(img_file2, format=self.img_format) # Equivalent # im0 = cv2.imread(img_file1) # im1 = cv2.imread(img_file2) im0 = cv2.resize(im0, (640, 480)) im1 = cv2.resize(im1, (640, 480)) im0 = torch.as_tensor(im0.transpose(2, 0, 1).astype("float32")) im1 = torch.as_tensor(im1.transpose(2, 0, 1).astype("float32")) with torch.no_grad(): pred = self.predictor.model([{"0": {"image": im0}, "1": {"image": im1}}])[0] return pred def process(self, output): prediction = {"0": {}, "1": {}} tmp_instances = {"0": {}, "1": {}} for i in range(2): if "instances" in output[str(i)]: instances = output[str(i)]["instances"].to(self._cpu_device) prediction[str(i)]["instances"] = instances_to_coco_json( instances, "demo" ) prediction[str(i)]["pred_plane"] = output[str(i)][ "instances" ].pred_plane.to(self._cpu_device) tmp_instances[str(i)]["embeddingbox"] = { "pred_boxes": instances.pred_boxes, "scores": instances.scores, } if "proposals" in output[str(i)]: prediction[str(i)]["proposals"] = output[str(i)]["proposals"].to( self._cpu_device ) if output["depth"][str(i)] is not None: prediction[str(i)]["pred_depth"] = output["depth"][str(i)].to( self._cpu_device ) xyz = self.depth2XYZ(output["depth"][str(i)]) prediction[str(i)] = self.override_depth(xyz, prediction[str(i)]) if self._embedding_on: if "pred_aff" in output: tmp_instances["pred_aff"] = output["pred_aff"].to(self._cpu_device) if "geo_aff" in output: tmp_instances["geo_aff"] = output["geo_aff"].to(self._cpu_device) if "emb_aff" in output: tmp_instances["emb_aff"] = output["emb_aff"].to(self._cpu_device) prediction["corrs"] = tmp_instances if self._camera_on: camera_dict = { "logits": { "tran": output["camera"]["tran"].to(self._cpu_device), "rot": output["camera"]["rot"].to(self._cpu_device), }, "logits_sms": { "tran": softmax(output["camera"]["tran"].to(self._cpu_device)), "rot": softmax(output["camera"]["rot"].to(self._cpu_device)), }, } prediction["camera"] = camera_dict return prediction def depth2XYZ(self, depth): """ Convert depth to point clouds X - width Y - depth Z - height """ XYZ = self._K_inv_dot_xy_1 * depth return XYZ @staticmethod def get_K_inv_dot_xy_1(h=480, w=640): focal_length = 517.97 offset_x = 320 offset_y = 240 K = [[focal_length, 0, offset_x], [0, focal_length, offset_y], [0, 0, 1]] K_inv = np.linalg.inv(np.array(K)) K_inv_dot_xy_1 = np.zeros((3, h, w)) for y in range(h): for x in range(w): yy = float(y) / h * 480 xx = float(x) / w * 640 ray = np.dot(K_inv, np.array([xx, yy, 1]).reshape(3, 1)) K_inv_dot_xy_1[:, y, x] = ray[:, 0] return K_inv_dot_xy_1.reshape(3, h, w) @staticmethod def override_depth(xyz, instance): pred_masks = [p["segmentation"] for p in instance["instances"]] override_list = [] for mask, plane in zip(pred_masks, instance["pred_plane"]): bimask = mask_util.decode(mask) if bimask.sum() == 0: override_list.append(plane) continue xyz_tmp = xyz[:, torch.BoolTensor(bimask)] offset = np.linalg.norm(plane) normal = plane / max(offset, 1e-8) offset_new = (normal @ xyz_tmp.cpu().numpy()).mean() override_list.append(normal * offset_new) if len(override_list) > 0: instance["pred_plane"] = torch.stack(override_list) return instance class Camera_Branch: def __init__(self, d2_cfg): self.cfg = d2_cfg if self.cfg.MODEL.CAMERA_ON: with open(self.cfg.MODEL.CAMERA_HEAD.KMEANS_TRANS_PATH, "rb") as f: self.kmeans_trans = pickle.load(f) with open(self.cfg.MODEL.CAMERA_HEAD.KMEANS_ROTS_PATH, "rb") as f: self.kmeans_rots = pickle.load(f) def xyz2class(self, x, y, z): return self.kmeans_trans.predict([[x, y, z]]) def quat2class(self, w, xi, yi, zi): return self.kmeans_rots.predict([[w, xi, yi, zi]]) def class2xyz(self, cls): assert (cls >= 0).all() and (cls < self.kmeans_trans.n_clusters).all() return self.kmeans_trans.cluster_centers_[cls] def class2quat(self, cls): assert (cls >= 0).all() and (cls < self.kmeans_rots.n_clusters).all() return self.kmeans_rots.cluster_centers_[cls] def get_rel_camera(self, pred_dict, tran_topk=0, rot_topk=0): sorted_idx_tran = np.argsort(pred_dict["camera"]["logits"]["tran"].numpy())[ ::-1 ] sorted_idx_rot = np.argsort(pred_dict["camera"]["logits"]["rot"].numpy())[::-1] tran = self.class2xyz(sorted_idx_tran[tran_topk]) rot = self.class2quat(sorted_idx_rot[rot_topk]) if "logits_sms" in pred_dict["camera"].keys(): tran_p = pred_dict["camera"]["logits_sms"]["tran"][sorted_idx_tran[tran_topk]] rot_p = pred_dict["camera"]["logits_sms"]["rot"][sorted_idx_rot[rot_topk]] else: tran_p = softmax(pred_dict["camera"]['logits']["tran"])[sorted_idx_tran[tran_topk]] rot_p = softmax(pred_dict["camera"]['logits']["rot"])[sorted_idx_rot[rot_topk]] camera_info = { "position": tran, "position_prob": tran_p, "rotation": rot, "rotation_prob": rot_p, } return camera_info class Discrete_Optimizer: def __init__(self, cfg): self.weight = { "threshold": 0.7, "lambda_emb": 0.47, "lambda_geo_l2": 0.00, "l2_clamp": 5, "lambda_geo_normal": 0.25, "lambda_geo_offset": 0.28, "offset_clamp": 4, "topk_tran": 32, "topk_rot": 32, # [assignment.sum(), pred_cam['position_prob'], pred_cam['rotation_prob'], (embedding_matrix*assignment).numpy().mean(), # (l2_matrix*assignment).numpy().mean(), (normal_matrix*assignment).numpy().mean(), (offset_matrix*assignment).numpy().mean(), # [assignment.sum(), log(pcam_tran), log(pcam_rot), distance*assignment] "score_weight": [0.311, 0.166, 0.092, -0.432], "assignment": "km_search_cam", } # Initialize camera self.camera_branch = Camera_Branch(d2_cfg=cfg) # class for geometric distance self.geo_consistency_loss = GeoConsistencyLoss("cpu") def optimize(self, pred_dict): embedding_matrix = 1 - pred_dict["corrs"]["pred_aff"] weight = self.weight # discrete optimization best_score = np.NINF best_assignment = None best_camera = None best_tran_topk = None best_rot_topk = None best_distance_m = None score_weight = np.array(weight["score_weight"]).reshape(-1, 1) for k_tran in range(weight["topk_tran"]): for k_rot in range(weight["topk_rot"]): pred_cam = self.camera_branch.get_rel_camera(pred_dict, k_tran, k_rot) geo_matrix = defaultdict(dict) # l2 ( geo_distance_matrix, numPlanes1, numPlanes2, ) = self.geo_consistency_loss.inference( [pred_dict["0"]], [pred_dict["1"]], [pred_cam], distance="l2" ) geo_matrix.update(geo_distance_matrix) # normal angle ( normal_angle_matrix, numPlanes1, numPlanes2, ) = self.geo_consistency_loss.inference( [pred_dict["0"]], [pred_dict["1"]], [pred_cam], distance="normal" ) geo_matrix.update(normal_angle_matrix) l2_matrix = ( np.clip(geo_matrix["l2"], 0, weight["l2_clamp"]) / weight["l2_clamp"] ) normal_matrix = geo_matrix["normal"] / np.pi offset_matrix = ( np.clip(geo_matrix["offset"], 0, weight["offset_clamp"]) / weight["offset_clamp"] ) distance_matrix = ( weight["lambda_emb"] * embedding_matrix + weight["lambda_geo_l2"] * l2_matrix + weight["lambda_geo_normal"] * normal_matrix + weight["lambda_geo_offset"] * offset_matrix ) assignment = km_solver(distance_matrix[0], weight=weight) x = np.array( [ assignment.sum(), np.log(pred_cam["position_prob"]), np.log(pred_cam["rotation_prob"]), (distance_matrix * assignment).numpy().mean(), ] ) score = x @ score_weight if score > best_score: best_score = score best_assignment = assignment best_distance_m = distance_matrix best_camera = pred_cam best_tran_topk = k_tran best_rot_topk = k_rot return { "best_camera": best_camera, "best_assignment": best_assignment, "distance_m": best_distance_m, "best_tran_topk": best_tran_topk, "best_rot_topk": best_rot_topk, } class Continuous_Optimizer: def __init__(self): self.weight = { "huber_delta": 0.01, "lambda_R": 1.0, } def optimize(self, img_file1, img_file2, pred_dict, optimized_dict): """ Initialize camera pose """ init_R = optimized_dict["best_camera"]["rotation"] init_T = optimized_dict["best_camera"]["position"] x0 = np.concatenate((so3ToVec6d(rotation_matrix_from_array(init_R)), init_T)) """ Select correspondence assignment """ assignment_m = optimized_dict["best_assignment"] assignment = np.argwhere(assignment_m) """ Select plane params """ x1_full = np.array(pred_dict["0"]["pred_plane"]) x2_full = np.array(pred_dict["1"]["pred_plane"]) if len(assignment) == 0: rtn = { "n_corr": len(assignment), "cost": 0, "best_camera": {"position": init_T, "rotation": init_R}, "best_assignment": assignment_m, "plane_param_override": {"0": x1_full, "1": x2_full}, } return rtn x1 = x1_full[assignment[:, 0]] x2 = x2_full[assignment[:, 1]] """ Select optimized function """ boxes1 = np.array([inst["bbox"] for inst in pred_dict["0"]["instances"]])[ assignment[:, 0] ] boxes2 = np.array([inst["bbox"] for inst in pred_dict["1"]["instances"]])[ assignment[:, 1] ] segms1 = np.array( [inst["segmentation"] for inst in pred_dict["0"]["instances"]] )[assignment[:, 0]] segms2 = np.array( [inst["segmentation"] for inst in pred_dict["1"]["instances"]] )[assignment[:, 1]] offsets1 = np.linalg.norm(x1, axis=1) normals1 = x1 / (offsets1.reshape(-1, 1) + 1e-5) offsets2 = np.linalg.norm(x2, axis=1) normals2 = x2 / (offsets2.reshape(-1, 1) + 1e-5) x0 = np.concatenate((x0, offsets1, offsets2)) img1 = cv2.imread(img_file1, cv2.IMREAD_COLOR)[:, :, ::-1] img2 = cv2.imread(img_file2, cv2.IMREAD_COLOR)[:, :, ::-1] img1 = cv2.resize(img1, (640, 480)) img2 = cv2.resize(img2, (640, 480)) xys1, xys2 = [], [] for i in range(len(boxes1)): try: xy1, xy2 = get_pixel_matching( img1, boxes1[i], segms1[i], x1[i], img2, boxes2[i], segms2[i], x2[i] ) except: xy1 = [] xy2 = [] xys1.append(np.array(xy1)) xys2.append(np.array(xy2)) rst = least_squares( fun_with_precalculated_sift_reduce_rot, x0, args=( len(boxes1), img1, xys1, normals1, img2, xys2, normals2, rotation_matrix_from_array(init_R), self.weight, ), ) offsets1 = rst.x[9 : 9 + len(boxes1)] offsets2 = rst.x[9 + len(boxes1) : 9 + len(boxes1) * 2] x1_full[assignment[:, 0]] = offsets1.reshape(-1, 1) * normals1 x2_full[assignment[:, 1]] = offsets2.reshape(-1, 1) * normals2 pred_R = quaternion.as_float_array( quaternion.from_rotation_matrix(vec6dToSo3(rst.x[:6])) ) pred_T = rst.x[6:9] rtn = { "n_corr": len(assignment), "cost": rst.cost, "best_camera": {"position": pred_T, "rotation": pred_R}, "best_assignment": assignment_m, "plane_param_override": {"0": x1_full, "1": x2_full}, } return rtn def save_matching( img_file1, img_file2, pred_dict, assignment, output_dir, prefix="", paper_img=False, score_threshold=0.7, ): """ fp: whether show fp or fn gt_box: whether use gtbox """ image_paths = {"0": img_file1, "1": img_file2} blended = {} # centroids for matching centroids = {"0": [], "1": []} for i in range(2): img = cv2.imread(image_paths[str(i)], cv2.IMREAD_COLOR)[:, :, ::-1] img = cv2.resize(img, (640, 480)) height, width, _ = img.shape vis = Visualizer(img) p_instance = create_instances( pred_dict[str(i)]["instances"], img.shape[:2], pred_planes=pred_dict[str(i)]["pred_plane"].numpy(), conf_threshold=score_threshold, ) seg_blended = get_labeled_seg( p_instance, score_threshold, vis, paper_img=paper_img ) blended[str(i)] = seg_blended # centroid of mask for ann in pred_dict[str(i)]["instances"]: M = center_of_mass(mask_util.decode(ann["segmentation"])) centroids[str(i)].append(M[::-1]) # reverse for opencv centroids[str(i)] = np.array(centroids[str(i)]) pred_corr_list = np.array(torch.FloatTensor(assignment).nonzero().tolist()) correct_list_pred = [True for pair in pred_corr_list] pred_matching_fig = draw_match( blended["0"], blended["1"], centroids["0"], centroids["1"], np.array(pred_corr_list), correct_list_pred, vertical=False, ) os.makedirs(output_dir, exist_ok=True) pred_matching_fig.save(os.path.join(output_dir, prefix + ".png")) def merge_plane_params_from_local_params(plane_locals, corr_list, camera_pose): """ input: plane parameters in camera frame output: merged plane parameters using corr_list """ param1, param2 = plane_locals["0"], plane_locals["1"] param1_global = get_plane_params_in_global(param1, camera_pose) param2_global = get_plane_params_in_global( param2, {"position": np.array([0, 0, 0]), "rotation": np.quaternion(1, 0, 0, 0)} ) param1_global, param2_global = merge_plane_params_from_global_params( param1_global, param2_global, corr_list ) param1 = get_plane_params_in_local(param1_global, camera_pose) param2 = get_plane_params_in_local( param2_global, {"position": np.array([0, 0, 0]), "rotation": np.quaternion(1, 0, 0, 0)}, ) return {"0": param1, "1": param2} def merge_plane_params_from_global_params(param1, param2, corr_list): """ input: plane parameters in global frame output: merged plane parameters using corr_list """ pred = {"0": {}, "1": {}} pred["0"]["offset"] = np.maximum( np.linalg.norm(param1, ord=2, axis=1), 1e-5 ).reshape(-1, 1) pred["0"]["normal"] = param1 / pred["0"]["offset"] pred["1"]["offset"] = np.maximum( np.linalg.norm(param2, ord=2, axis=1), 1e-5 ).reshape(-1, 1) pred["1"]["normal"] = param2 / pred["1"]["offset"] for ann_id in corr_list: # average normal normal_pair = np.vstack( (pred["0"]["normal"][ann_id[0]], pred["1"]["normal"][ann_id[1]]) ) w, v = eigh(normal_pair.T @ normal_pair) avg_normals = v[:, np.argmax(w)] if (avg_normals @ normal_pair.T).sum() < 0: avg_normals = -avg_normals # average offset avg_offset = ( pred["0"]["offset"][ann_id[0]] + pred["1"]["offset"][ann_id[1]] ) / 2 avg_plane = avg_normals * avg_offset param1[ann_id[0]] = avg_plane param2[ann_id[1]] = avg_plane return param1, param2 def save_pair_objects( img_file1, img_file2, p_instances, output_dir, prefix="", pred_camera=None, plane_param_override=None, show_camera=True, corr_list=[], webvis=False, ): """ if tran_topk == -2 and rot_topk == -2, then pred_camera should not be None, this is used for non-binned camera. if exclude is not None, exclude some instances to make fig 2. idx=7867 exclude = { '0': [2,3,4,5,6,7], '1': [0,1,2,4,5,6,7], } """ image_paths = {"0": img_file1, "1": img_file2} meshes_list = [] # map_files = [] uv_maps = [] cam_list = [] # get plane parameters plane_locals = {} for i in range(2): if plane_param_override is None: plane_locals[str(i)] = p_instances[str(i)].pred_planes else: plane_locals[str(i)] = plane_param_override[str(i)] # get camera 1 to 2 camera1to2 = { "position": np.array(pred_camera["position"]), "rotation": quaternion.from_float_array(pred_camera["rotation"]), } # Merge planes if they are in correspondence if len(corr_list) != 0: plane_locals = merge_plane_params_from_local_params( plane_locals, corr_list, camera1to2 ) os.makedirs(output_dir, exist_ok=True) for i in range(2): if i == 0: camera_info = camera1to2 else: camera_info = { "position": np.array([0, 0, 0]), "rotation": np.quaternion(1, 0, 0, 0), } p_instance = p_instances[str(i)] plane_params = plane_locals[str(i)] segmentations = p_instance.pred_masks meshes, uv_map = get_single_image_mesh_plane( plane_params, segmentations, img_file=image_paths[str(i)], height=480, width=640, webvis=False, ) uv_maps.extend(uv_map) meshes = transform_meshes(meshes, camera_info) meshes_list.append(meshes) cam_list.append(camera_info) joint_mesh = join_meshes_as_batch(meshes_list) if webvis: joint_mesh = rotate_mesh_for_webview(joint_mesh) # add camera into the mesh if show_camera: cam_meshes = get_camera_meshes(cam_list) if webvis: cam_meshes = rotate_mesh_for_webview(cam_meshes) else: cam_meshes = None # save obj if len(prefix) == 0: prefix = "pred" save_obj( folder=output_dir, prefix=prefix, meshes=joint_mesh, cam_meshes=cam_meshes, decimal_places=10, blend_flag=True, map_files=None, uv_maps=uv_maps, ) def get_parser(): parser = argparse.ArgumentParser(description="SparsePlane Demo") parser.add_argument( "--config-file", default="./tools/demo/config.yaml", metavar="FILE", help="path to config file", ) parser.add_argument( "--input", default="./tools/demo/teaser", help="A path to a folder of input images", ) parser.add_argument( "--img-list", default=None, help="A path to a text file for inference" ) parser.add_argument( "--output", default="./debug", help="A directory to save output visualizations" ) return parser def inference_pair(output_dir, model, dis_opt, con_opt, im0, im1): """ Network inference on a single pair of images. """ pred = model.inference(im0, im1) pred_dict = model.process(pred) # save segmentation only image_paths = {"0": im0, "1": im1} p_instances = {} for i in range(2): img = cv2.imread(image_paths[str(i)], cv2.IMREAD_COLOR) img = cv2.resize(img, (640, 480)) vis = Visualizer(img) p_instance = create_instances( pred_dict[str(i)]["instances"], img.shape[:2], pred_planes=pred_dict[str(i)]["pred_plane"].numpy(), conf_threshold=0.7, ) p_instances[str(i)] = p_instance seg_blended = get_labeled_seg(p_instance, 0.7, vis, paper_img=True) os.makedirs(os.path.join(output_dir), exist_ok=True) cv2.imwrite(os.path.join(output_dir, f"view{i}_pred.jpg"), seg_blended) cv2.imwrite(os.path.join(output_dir, f"view{i}.jpg"), img) # Optimize optimized_dict = dis_opt.optimize(pred_dict) optimized_dict = con_opt.optimize(im0, im1, pred_dict, optimized_dict) # visualize save_matching( im0, im1, pred_dict, optimized_dict["best_assignment"], output_dir, prefix="corr", paper_img=True, ) # save original image (resized) cv2.imwrite( os.path.join(output_dir, "view0.jpg"), cv2.resize(cv2.imread(im0), (640, 480)) ) cv2.imwrite( os.path.join(output_dir, "view1.jpg"), cv2.resize(cv2.imread(im1), (640, 480)) ) # save obj save_pair_objects( os.path.join(output_dir, "view0.jpg"), os.path.join(output_dir, "view1.jpg"), p_instances, os.path.join(output_dir), prefix="refined", pred_camera=optimized_dict["best_camera"], plane_param_override=optimized_dict["plane_param_override"], show_camera=True, corr_list=np.argwhere(optimized_dict["best_assignment"]), webvis=True, ) def main(): args = get_parser().parse_args() # Load cfg cfg = get_cfg() get_sparseplane_cfg_defaults(cfg) cfg.merge_from_file(args.config_file) # Initialize network model = PlaneRCNN_Branch(cfg) # Initialize optimizer dis_opt = Discrete_Optimizer(cfg) con_opt = Continuous_Optimizer() if args.img_list: # a text file f = open(args.img_list) lines = f.readlines() f.close() for line_idx, line in enumerate(tqdm(lines)): output_dir = os.path.join(args.output, "{:0>4}".format(line_idx)) os.makedirs(output_dir, exist_ok=True) line = line.strip() splits = line.split(" ") im0 = os.path.join(args.input, splits[0]) im1 = os.path.join(args.input, splits[1]) inference_pair(output_dir, model, dis_opt, con_opt, im0, im1) else: # a directory input_dir = args.input output_dir = args.output im0 = os.path.join(input_dir, "view_0.png") im1 = os.path.join(input_dir, "view_1.png") inference_pair(output_dir, model, dis_opt, con_opt, im0, im1) if __name__ == "__main__": main() ```
{ "source": "Jin-LiuGit/Python_ECommerece", "score": 2 }
#### File: management/commands/cleardata.py ```python from django.core.management.base import BaseCommand from saleor.order.models import Order, Fulfillment from saleor.payment.models import Payment, Transaction from saleor.checkout.models import Checkout class Command(BaseCommand): help = "Populate database with test objects" def add_arguments(self, parser): parser.add_argument( "--orders", action="store_true", dest="orders", default=False, help="Delete orders", ) def handle(self, *args, **options): self.stdout.write("Delete objects") if options["orders"]: Transaction.objects.all().delete() Payment.objects.all().delete() Fulfillment.objects.all().delete() Checkout.objects.all().delete() Order.objects.all().delete() ```
{ "source": "jinliwei1997/mmcv", "score": 2 }
#### File: cnn/bricks/padding.py ```python import torch.nn as nn from .registry import PADDING_LAYERS PADDING_LAYERS.register_module('zero', module=nn.ZeroPad2d) PADDING_LAYERS.register_module('reflect', module=nn.ReflectionPad2d) PADDING_LAYERS.register_module('replicate', module=nn.ReplicationPad2d) def build_padding_layer(cfg, *args, **kwargs): """Build padding layer. Args: cfg (None or dict): The padding layer config, which should contain: - type (str): Layer type. - layer args: Args needed to instantiate a padding layer. Returns: nn.Module: Created padding layer. """ if not isinstance(cfg, dict): raise TypeError('cfg must be a dict') if 'type' not in cfg: raise KeyError('the cfg dict must contain the key "type"') cfg_ = cfg.copy() padding_type = cfg_.pop('type') if padding_type not in PADDING_LAYERS: raise KeyError(f'Unrecognized padding type {padding_type}.') else: padding_layer = PADDING_LAYERS.get(padding_type) layer = padding_layer(*args, **kwargs, **cfg_) return layer ``` #### File: mmcv/ops/corner_pool.py ```python import torch from torch import nn from torch.autograd import Function from ..utils import ext_loader ext_module = ext_loader.load_ext('_ext', [ 'top_pool_forward', 'top_pool_backward', 'bottom_pool_forward', 'bottom_pool_backward', 'left_pool_forward', 'left_pool_backward', 'right_pool_forward', 'right_pool_backward' ]) class TopPoolFunction(Function): @staticmethod def forward(ctx, input): output = ext_module.top_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.top_pool_backward(input, grad_output) return output class BottomPoolFunction(Function): @staticmethod def forward(ctx, input): output = ext_module.bottom_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.bottom_pool_backward(input, grad_output) return output class LeftPoolFunction(Function): @staticmethod def forward(ctx, input): output = ext_module.left_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.left_pool_backward(input, grad_output) return output class RightPoolFunction(Function): @staticmethod def forward(ctx, input): output = ext_module.right_pool_forward(input) ctx.save_for_backward(input) return output @staticmethod def backward(ctx, grad_output): input, = ctx.saved_tensors output = ext_module.right_pool_backward(input, grad_output) return output class CornerPool(nn.Module): """Corner Pooling. Corner Pooling is a new type of pooling layer that helps a convolutional network better localize corners of bounding boxes. Please refer to https://arxiv.org/abs/1808.01244 for more details. Code is modified from https://github.com/princeton-vl/CornerNet-Lite. Args: mode(str): Pooling orientation for the pooling layer - 'bottom': Bottom Pooling - 'left': Left Pooling - 'right': Right Pooling - 'top': Top Pooling Returns: Feature map after pooling. """ pool_functions = { 'bottom': BottomPoolFunction, 'left': LeftPoolFunction, 'right': RightPoolFunction, 'top': TopPoolFunction, } cummax_dim_flip = { 'bottom': (2, False), 'left': (3, True), 'right': (3, False), 'top': (2, True), } def __init__(self, mode): super(CornerPool, self).__init__() assert mode in self.pool_functions self.mode = mode self.corner_pool = self.pool_functions[mode] def forward(self, x): if torch.__version__ != 'parrots' and torch.__version__ >= '1.5.0': dim, flip = self.cummax_dim_flip[self.mode] if flip: x = x.flip(dim) pool_tensor, _ = torch.cummax(x, dim=dim) if flip: pool_tensor = pool_tensor.flip(dim) return pool_tensor else: return self.corner_pool.apply(x) ``` #### File: runner/hooks/sampler_seed.py ```python from .hook import HOOKS, Hook @HOOKS.register_module() class DistSamplerSeedHook(Hook): def before_epoch(self, runner): if hasattr(runner.data_loader.sampler, 'set_epoch'): # in case the data loader uses `SequentialSampler` in Pytorch runner.data_loader.sampler.set_epoch(runner.epoch) elif hasattr(runner.data_loader.batch_sampler.sampler, 'set_epoch'): # batch sampler in pytorch warps the sampler as its attributes. runner.data_loader.batch_sampler.sampler.set_epoch(runner.epoch) ``` #### File: mmcv/runner/utils.py ```python import os import random import sys import time from getpass import getuser from socket import gethostname import numpy as np import torch import mmcv def get_host_info(): return f'{getuser()}@{gethostname()}' def get_time_str(): return time.strftime('%Y%m%d_%H%M%S', time.localtime()) def obj_from_dict(info, parent=None, default_args=None): """Initialize an object from dict. The dict must contain the key "type", which indicates the object type, it can be either a string or type, such as "list" or ``list``. Remaining fields are treated as the arguments for constructing the object. Args: info (dict): Object types and arguments. parent (:class:`module`): Module which may containing expected object classes. default_args (dict, optional): Default arguments for initializing the object. Returns: any type: Object built from the dict. """ assert isinstance(info, dict) and 'type' in info assert isinstance(default_args, dict) or default_args is None args = info.copy() obj_type = args.pop('type') if mmcv.is_str(obj_type): if parent is not None: obj_type = getattr(parent, obj_type) else: obj_type = sys.modules[obj_type] elif not isinstance(obj_type, type): raise TypeError('type must be a str or valid type, but ' f'got {type(obj_type)}') if default_args is not None: for name, value in default_args.items(): args.setdefault(name, value) return obj_type(**args) def set_random_seed(seed, deterministic=False, use_rank_shift=False): """Set random seed. Args: seed (int): Seed to be used. deterministic (bool): Whether to set the deterministic option for CUDNN backend, i.e., set `torch.backends.cudnn.deterministic` to True and `torch.backends.cudnn.benchmark` to False. Default: False. rank_shift (bool): Whether to add rank number to the random seed to have different random seed in different threads. Default: False. """ if use_rank_shift: rank, _ = mmcv.runner.get_dist_info() seed += rank random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) os.environ['PYTHONHASHSEED'] = str(seed) if deterministic: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False ``` #### File: mmcv/utils/version_utils.py ```python import os import subprocess def digit_version(version_str): """Convert a version string into a tuple of integers. This method is usually used for comparing two versions. Args: version_str (str): The version string. Returns: tuple[int]: The version info in digits (integers). """ digit_version = [] for x in version_str.split('.'): if x.isdigit(): digit_version.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') digit_version.append(int(patch_version[0]) - 1) digit_version.append(int(patch_version[1])) return tuple(digit_version) def _minimal_ext_cmd(cmd): # construct minimal environment env = {} for k in ['SYSTEMROOT', 'PATH', 'HOME']: v = os.environ.get(k) if v is not None: env[k] = v # LANGUAGE is used on win32 env['LANGUAGE'] = 'C' env['LANG'] = 'C' env['LC_ALL'] = 'C' out = subprocess.Popen( cmd, stdout=subprocess.PIPE, env=env).communicate()[0] return out def get_git_hash(fallback='unknown', digits=None): """Get the git hash of the current repo. Args: fallback (str, optional): The fallback string when git hash is unavailable. Defaults to 'unknown'. digits (int, optional): kept digits of the hash. Defaults to None, meaning all digits are kept. Returns: str: Git commit hash. """ if digits is not None and not isinstance(digits, int): raise TypeError('digits must be None or an integer') try: out = _minimal_ext_cmd(['git', 'rev-parse', 'HEAD']) sha = out.strip().decode('ascii') if digits is not None: sha = sha[:digits] except OSError: sha = fallback return sha ``` #### File: tests/test_cnn/test_weight_init.py ```python import numpy as np import pytest import torch from torch import nn from mmcv.cnn import (bias_init_with_prob, caffe2_xavier_init, constant_init, kaiming_init, normal_init, uniform_init, xavier_init) def test_constant_init(): conv_module = nn.Conv2d(3, 16, 3) constant_init(conv_module, 0.1) assert conv_module.weight.allclose( torch.full_like(conv_module.weight, 0.1)) assert conv_module.bias.allclose(torch.zeros_like(conv_module.bias)) conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False) constant_init(conv_module_no_bias, 0.1) assert conv_module.weight.allclose( torch.full_like(conv_module.weight, 0.1)) def test_xavier_init(): conv_module = nn.Conv2d(3, 16, 3) xavier_init(conv_module, bias=0.1) assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1)) xavier_init(conv_module, distribution='uniform') # TODO: sanity check of weight distribution, e.g. mean, std with pytest.raises(AssertionError): xavier_init(conv_module, distribution='student-t') conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False) xavier_init(conv_module_no_bias) def test_normal_init(): conv_module = nn.Conv2d(3, 16, 3) normal_init(conv_module, bias=0.1) # TODO: sanity check of weight distribution, e.g. mean, std assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1)) conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False) normal_init(conv_module_no_bias) # TODO: sanity check distribution, e.g. mean, std def test_uniform_init(): conv_module = nn.Conv2d(3, 16, 3) uniform_init(conv_module, bias=0.1) # TODO: sanity check of weight distribution, e.g. mean, std assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1)) conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False) uniform_init(conv_module_no_bias) def test_kaiming_init(): conv_module = nn.Conv2d(3, 16, 3) kaiming_init(conv_module, bias=0.1) # TODO: sanity check of weight distribution, e.g. mean, std assert conv_module.bias.allclose(torch.full_like(conv_module.bias, 0.1)) kaiming_init(conv_module, distribution='uniform') with pytest.raises(AssertionError): kaiming_init(conv_module, distribution='student-t') conv_module_no_bias = nn.Conv2d(3, 16, 3, bias=False) kaiming_init(conv_module_no_bias) def test_caffe_xavier_init(): conv_module = nn.Conv2d(3, 16, 3) caffe2_xavier_init(conv_module) def test_bias_init_with_prob(): conv_module = nn.Conv2d(3, 16, 3) prior_prob = 0.1 normal_init(conv_module, bias=bias_init_with_prob(0.1)) # TODO: sanity check of weight distribution, e.g. mean, std bias = float(-np.log((1 - prior_prob) / prior_prob)) assert conv_module.bias.allclose(torch.full_like(conv_module.bias, bias)) ``` #### File: tests/test_ops/test_tensorrt.py ```python import os import numpy as np import onnx import pytest import torch try: from mmcv.tensorrt import (TRTWraper, is_tensorrt_plugin_loaded, onnx2trt, save_trt_engine) except ImportError: pytest.skip( 'TensorRT should be installed from source.', allow_module_level=True) if not torch.cuda.is_available(): pytest.skip( 'CUDA is required for this test module', allow_module_level=True) if not is_tensorrt_plugin_loaded(): pytest.skip( 'Test requires to complie TensorRT plugins in mmcv', allow_module_level=True) class WrapFunction(torch.nn.Module): def __init__(self, wrapped_function): super(WrapFunction, self).__init__() self.wrapped_function = wrapped_function def forward(self, *args, **kwargs): return self.wrapped_function(*args, **kwargs) onnx_file = 'tmp.onnx' trt_file = 'tmp.engine' def test_roialign(): try: from mmcv.ops import RoIAlign except (ImportError, ModuleNotFoundError): pytest.skip('test requires compilation') # trt config fp16_mode = False max_workspace_size = 1 << 30 # roi align config pool_h = 2 pool_w = 2 spatial_scale = 1.0 sampling_ratio = 2 inputs = [([[[[1., 2.], [3., 4.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2.], [3., 4.]], [[4., 3.], [2., 1.]]]], [[0., 0., 0., 1., 1.]]), ([[[[1., 2., 5., 6.], [3., 4., 7., 8.], [9., 10., 13., 14.], [11., 12., 15., 16.]]]], [[0., 0., 0., 3., 3.]])] wrapped_model = RoIAlign((pool_w, pool_h), spatial_scale, sampling_ratio, 'avg', True).cuda() for case in inputs: np_input = np.array(case[0], dtype=np.float32) np_rois = np.array(case[1], dtype=np.float32) input = torch.from_numpy(np_input).cuda() rois = torch.from_numpy(np_rois).cuda() with torch.no_grad(): torch.onnx.export( wrapped_model, (input, rois), onnx_file, export_params=True, keep_initializers_as_inputs=True, input_names=['input', 'rois'], output_names=['roi_feat'], opset_version=11) onnx_model = onnx.load(onnx_file) # create trt engine and wraper opt_shape_dict = { 'input': [list(input.shape), list(input.shape), list(input.shape)], 'rois': [list(rois.shape), list(rois.shape), list(rois.shape)] } trt_engine = onnx2trt( onnx_model, opt_shape_dict, fp16_mode=fp16_mode, max_workspace_size=max_workspace_size) save_trt_engine(trt_engine, trt_file) trt_model = TRTWraper(trt_file, ['input', 'rois'], ['roi_feat']) with torch.no_grad(): trt_outputs = trt_model({'input': input, 'rois': rois}) trt_roi_feat = trt_outputs['roi_feat'] # compute pytorch_output with torch.no_grad(): pytorch_roi_feat = wrapped_model(input, rois) # allclose if os.path.exists(onnx_file): os.remove(onnx_file) if os.path.exists(trt_file): os.remove(trt_file) assert torch.allclose(pytorch_roi_feat, trt_roi_feat) def test_scatternd(): def func(data): data[:, :-2] += 1 data[:2, :] -= 1 return data data = torch.zeros(4, 4).cuda() wrapped_model = WrapFunction(func).eval().cuda() input_names = ['input'] output_names = ['output'] with torch.no_grad(): torch.onnx.export( wrapped_model, (data.clone(), ), onnx_file, export_params=True, keep_initializers_as_inputs=True, input_names=input_names, output_names=output_names, opset_version=11) onnx_model = onnx.load(onnx_file) # create trt engine and wraper opt_shape_dict = { 'input': [list(data.shape), list(data.shape), list(data.shape)], } # trt config fp16_mode = False max_workspace_size = 1 << 30 trt_engine = onnx2trt( onnx_model, opt_shape_dict, fp16_mode=fp16_mode, max_workspace_size=max_workspace_size) save_trt_engine(trt_engine, trt_file) trt_model = TRTWraper(trt_file, input_names, output_names) with torch.no_grad(): trt_outputs = trt_model({'input': data.clone()}) trt_results = trt_outputs['output'] # compute pytorch_output with torch.no_grad(): pytorch_results = wrapped_model(data.clone()) # allclose if os.path.exists(onnx_file): os.remove(onnx_file) if os.path.exists(trt_file): os.remove(trt_file) assert torch.allclose(pytorch_results, trt_results) ``` #### File: tests/test_utils/test_logging.py ```python import logging import platform import tempfile from unittest.mock import patch import pytest from mmcv import get_logger, print_log if platform.system() == 'Windows': import regex as re else: import re @patch('torch.distributed.get_rank', lambda: 0) @patch('torch.distributed.is_initialized', lambda: True) @patch('torch.distributed.is_available', lambda: True) def test_get_logger_rank0(): logger = get_logger('rank0.pkg1') assert isinstance(logger, logging.Logger) assert len(logger.handlers) == 1 assert isinstance(logger.handlers[0], logging.StreamHandler) assert logger.handlers[0].level == logging.INFO logger = get_logger('rank0.pkg2', log_level=logging.DEBUG) assert isinstance(logger, logging.Logger) assert len(logger.handlers) == 1 assert logger.handlers[0].level == logging.DEBUG with tempfile.NamedTemporaryFile() as f: logger = get_logger('rank0.pkg3', log_file=f.name) assert isinstance(logger, logging.Logger) assert len(logger.handlers) == 2 assert isinstance(logger.handlers[0], logging.StreamHandler) assert isinstance(logger.handlers[1], logging.FileHandler) logger_pkg3 = get_logger('rank0.pkg3') assert id(logger_pkg3) == id(logger) logger_pkg3 = get_logger('rank0.pkg3.subpkg') assert logger_pkg3.handlers == logger_pkg3.handlers @patch('torch.distributed.get_rank', lambda: 1) @patch('torch.distributed.is_initialized', lambda: True) @patch('torch.distributed.is_available', lambda: True) def test_get_logger_rank1(): logger = get_logger('rank1.pkg1') assert isinstance(logger, logging.Logger) assert len(logger.handlers) == 1 assert isinstance(logger.handlers[0], logging.StreamHandler) assert logger.handlers[0].level == logging.INFO with tempfile.NamedTemporaryFile() as f: logger = get_logger('rank1.pkg2', log_file=f.name) assert isinstance(logger, logging.Logger) assert len(logger.handlers) == 1 assert logger.handlers[0].level == logging.INFO def test_print_log_print(capsys): print_log('welcome', logger=None) out, _ = capsys.readouterr() assert out == 'welcome\n' def test_print_log_silent(capsys, caplog): print_log('welcome', logger='silent') out, _ = capsys.readouterr() assert out == '' assert len(caplog.records) == 0 def test_print_log_logger(caplog): print_log('welcome', logger='mmcv') assert caplog.record_tuples[-1] == ('mmcv', logging.INFO, 'welcome') print_log('welcome', logger='mmcv', level=logging.ERROR) assert caplog.record_tuples[-1] == ('mmcv', logging.ERROR, 'welcome') with tempfile.NamedTemporaryFile() as f: logger = get_logger('abc', log_file=f.name) print_log('welcome', logger=logger) assert caplog.record_tuples[-1] == ('abc', logging.INFO, 'welcome') with open(f.name, 'r') as fin: log_text = fin.read() regex_time = r'\d{4}-\d{2}-\d{2} \d{2}:\d{2}:\d{2},\d{3}' match = re.fullmatch(regex_time + r' - abc - INFO - welcome\n', log_text) assert match is not None def test_print_log_exception(): with pytest.raises(TypeError): print_log('welcome', logger=0) ``` #### File: tests/test_video/test_reader.py ```python import os import os.path as osp import shutil import tempfile from collections import OrderedDict import pytest import mmcv class TestCache: def test_init(self): with pytest.raises(ValueError): mmcv.Cache(0) cache = mmcv.Cache(100) assert cache.capacity == 100 assert cache.size == 0 def test_put(self): cache = mmcv.Cache(3) for i in range(1, 4): cache.put(f'k{i}', i) assert cache.size == i assert cache._cache == OrderedDict([('k1', 1), ('k2', 2), ('k3', 3)]) cache.put('k4', 4) assert cache.size == 3 assert cache._cache == OrderedDict([('k2', 2), ('k3', 3), ('k4', 4)]) cache.put('k2', 2) assert cache._cache == OrderedDict([('k2', 2), ('k3', 3), ('k4', 4)]) def test_get(self): cache = mmcv.Cache(3) assert cache.get('key_none') is None assert cache.get('key_none', 0) == 0 cache.put('k1', 1) assert cache.get('k1') == 1 class TestVideoReader: @classmethod def setup_class(cls): cls.video_path = osp.join(osp.dirname(__file__), '../data/test.mp4') cls.num_frames = 168 cls.video_url = 'https://www.learningcontainer.com/wp-content/uploads/2020/05/sample-mp4-file.mp4' # noqa: E501 def test_load(self): # read from video file v = mmcv.VideoReader(self.video_path) assert v.width == 294 assert v.height == 240 assert v.fps == 25 assert v.frame_cnt == self.num_frames assert len(v) == self.num_frames assert v.opened import cv2 assert isinstance(v.vcap, type(cv2.VideoCapture())) # read from video url v = mmcv.VideoReader(self.video_url) assert v.width == 320 assert v.height == 240 assert v.fps == 15 assert v.frame_cnt == 1889 assert len(v) == 1889 assert v.opened assert isinstance(v.vcap, type(cv2.VideoCapture())) def test_read(self): v = mmcv.VideoReader(self.video_path) img = v.read() assert int(round(img.mean())) == 94 img = v.get_frame(63) assert int(round(img.mean())) == 94 img = v[64] assert int(round(img.mean())) == 205 img = v[-104] assert int(round(img.mean())) == 205 img = v[63] assert int(round(img.mean())) == 94 img = v[-105] assert int(round(img.mean())) == 94 img = v.read() assert int(round(img.mean())) == 205 with pytest.raises(IndexError): v.get_frame(self.num_frames + 1) with pytest.raises(IndexError): v[-self.num_frames - 1] def test_slice(self): v = mmcv.VideoReader(self.video_path) imgs = v[-105:-103] assert int(round(imgs[0].mean())) == 94 assert int(round(imgs[1].mean())) == 205 assert len(imgs) == 2 imgs = v[63:65] assert int(round(imgs[0].mean())) == 94 assert int(round(imgs[1].mean())) == 205 assert len(imgs) == 2 imgs = v[64:62:-1] assert int(round(imgs[0].mean())) == 205 assert int(round(imgs[1].mean())) == 94 assert len(imgs) == 2 imgs = v[:5] assert len(imgs) == 5 for img in imgs: assert int(round(img.mean())) == 94 imgs = v[165:] assert len(imgs) == 3 for img in imgs: assert int(round(img.mean())) == 0 imgs = v[-3:] assert len(imgs) == 3 for img in imgs: assert int(round(img.mean())) == 0 def test_current_frame(self): v = mmcv.VideoReader(self.video_path) assert v.current_frame() is None v.read() img = v.current_frame() assert int(round(img.mean())) == 94 def test_position(self): v = mmcv.VideoReader(self.video_path) assert v.position == 0 for _ in range(10): v.read() assert v.position == 10 v.get_frame(99) assert v.position == 100 def test_iterator(self): cnt = 0 for img in mmcv.VideoReader(self.video_path): cnt += 1 assert img.shape == (240, 294, 3) assert cnt == self.num_frames def test_with(self): with mmcv.VideoReader(self.video_path) as v: assert v.opened assert not v.opened def test_cvt2frames(self): v = mmcv.VideoReader(self.video_path) frame_dir = tempfile.mkdtemp() v.cvt2frames(frame_dir) assert osp.isdir(frame_dir) for i in range(self.num_frames): filename = f'{frame_dir}/{i:06d}.jpg' assert osp.isfile(filename) os.remove(filename) v = mmcv.VideoReader(self.video_path) v.cvt2frames(frame_dir, show_progress=False) assert osp.isdir(frame_dir) for i in range(self.num_frames): filename = f'{frame_dir}/{i:06d}.jpg' assert osp.isfile(filename) os.remove(filename) v = mmcv.VideoReader(self.video_path) v.cvt2frames( frame_dir, file_start=100, filename_tmpl='{:03d}.JPEG', start=100, max_num=20) assert osp.isdir(frame_dir) for i in range(100, 120): filename = f'{frame_dir}/{i:03d}.JPEG' assert osp.isfile(filename) os.remove(filename) shutil.rmtree(frame_dir) def test_frames2video(self): v = mmcv.VideoReader(self.video_path) frame_dir = tempfile.mkdtemp() v.cvt2frames(frame_dir) assert osp.isdir(frame_dir) for i in range(self.num_frames): filename = f'{frame_dir}/{i:06d}.jpg' assert osp.isfile(filename) out_filename = osp.join(tempfile.gettempdir(), 'mmcv_test.avi') mmcv.frames2video(frame_dir, out_filename) v = mmcv.VideoReader(out_filename) assert v.fps == 30 assert len(v) == self.num_frames mmcv.frames2video( frame_dir, out_filename, fps=25, start=10, end=50, show_progress=False) v = mmcv.VideoReader(out_filename) assert v.fps == 25 assert len(v) == 40 for i in range(self.num_frames): filename = f'{frame_dir}/{i:06d}.jpg' os.remove(filename) shutil.rmtree(frame_dir) os.remove(out_filename) ```
{ "source": "jinlmsft/Apulis-AI-Platform", "score": 3 }
#### File: storage/auto_share/auto_share.py ```python import time import os from datetime import datetime import yaml import logging import logging.config import argparse import textwrap import socket import subprocess import re import sys import getpass import copy def istrue( config, arg, default=False): if arg in config: val = config[arg] if isinstance( val, bool): return val elif isinstance( val, basestring): return val.lower()[0] == 'y' else: return val else: return default def tolist( server ): if isinstance( server, basestring): return [server] else: return server def pipe_with_output( cmd1, cmd2, verbose=False ): try: # https://stackoverflow.com/questions/4814970/subprocess-check-output-doesnt-seem-to-exist-python-2-6-5 if verbose: logging.debug ( "Pipe: %s | %s " % (cmd1, cmd2 ) ) p1 = subprocess.Popen( cmd1.split(), stdout=subprocess.PIPE, stderr=subprocess.PIPE ) p2 = subprocess.Popen( cmd2.split(), stdin=p1.stdout, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) output = p2.communicate()[0] if verbose: logging.debug ( output ) except subprocess.CalledProcessError as e: print "Exception " + str(e.returncode) + ", output: " + e.output.strip() if verbose: logging.debug ( "Exception: %s, output: %s" % (str(e.returncode), e.output.strip()) ) return "" return output def exec_with_output( cmd, verbose=False, max_run=30 ): try: # https://stackoverflow.com/questions/4814970/subprocess-check-output-doesnt-seem-to-exist-python-2-6-5 cmds = cmd.split() if verbose: logging.debug ( "Execute: %s" % cmd ) sp = subprocess.Popen( cmds, stdout=subprocess.PIPE, stderr=subprocess.PIPE, universal_newlines=True ) output, err = sp.communicate() count = 0 while sp.poll() == None and count < max_run: time.sleep(1) count += 1 if verbose: logging.debug ( "Return: %d, Output: %s, Error: %s" % (sp.returncode, output, err) ) return (sp.returncode, output, err) except subprocess.CalledProcessError as e: print "Exception " + str(e.returncode) + ", output: " + e.output.strip() if verbose: logging.debug ( "Exception: %s, output: %s" % (str(e.returncode), e.output.strip()) ) return (e.returncode, e.output, "Error") def exec_wo_output( cmd, verbose=False ): try: # https://stackoverflow.com/questions/4814970/subprocess-check-output-doesnt-seem-to-exist-python-2-6-5 if verbose: logging.debug ( "Execute: %s" % cmd ) os.system( cmd ) except subprocess.CalledProcessError as e: print "Exception " + str(e.returncode) + ", output: " + e.output.strip() def mount_one_hdfs( v, physicalmountpoint, server, verbose=True): exec_with_output( "hadoop-fuse-dfs hdfs://%s %s %s " % (server, physicalmountpoint, v["options"]), verbose=verbose ) def test_one_hdfs( server, verbose=True): (retcode, output, err) = exec_with_output("hdfs dfs -test -e hdfs://%s" % server, verbose=verbose) if err.find("not supported in state standby")>=0: # standby namenode logging.debug ( "HDFS namenode %s is standby namenode" % server ) return False elif err.find("Connection refused")>=0: logging.debug ( "HDFS namenode %s fails" % server ) return False elif err.find("Incomplete HDFS URI")>=0: logging.debug ( "Wrongly formatted namenode %s: fails" % server ) return False else: logging.debug ( "HDFS namenode %s is active" % server ) return True # Mount HDFS, with support of high availablability def mount_hdfs( v, physicalmountpoint, verbose=True ): servers = tolist(v["server"]) if len(servers)==0: # No HDFS server specified, unable to mount return False elif len(servers)==1: mount_one_hdfs( v, physicalmountpoint, servers[0], verbose=verbose) return True else: for server in servers: if test_one_hdfs(server, verbose): mount_one_hdfs( v, physicalmountpoint, server, verbose=verbose) return True from shutil import copyfile, copytree from jinja2 import Environment, FileSystemLoader, Template def render_template(template_file, target_file, config, verbose=False): filename, file_extension = os.path.splitext(template_file) basename = os.path.basename(template_file) if ("render-exclude" in config and basename in config["render-exclude"] ): # Don't render/copy the file. return if ("render-by-copy-ext" in config and file_extension in config["render-by-copy-ext"]) or ("render-by-copy" in config and basename in config["render-by-copy"]): copyfile(template_file, target_file) if verbose: logging.debug ( "Copy tempalte " + template_file + " --> " + target_file ) elif ("render-by-line-ext" in config and file_extension in config["render-by-line-ext"]) or ("render-by-line" in config and basename in config["render-by-line"]): if verbose: logging.debug ( "Render tempalte " + template_file + " --> " + target_file + " Line by Line .... " ) ENV_local = Environment(loader=FileSystemLoader("/")) with open(target_file, 'w') as f: with open(template_file, 'r') as fr: for line in fr: logging.debug( "Read: " + line ) try: template = ENV_local.Template(line) content = template.render(cnf=config) logging.debug( content ) f.write(content+"\n") except: pass fr.close() f.close() else: if verbose: logging.debug( "Render tempalte " + template_file + " --> " + target_file ) try: ENV_local = Environment(loader=FileSystemLoader("/")) template = ENV_local.get_template(os.path.abspath(template_file)) content = template.render(cnf=config) with open(target_file, 'w') as f: f.write(content) f.close() except Exception as e: logging.debug ( "!!! Failure !!! in render template " + template_file ) logging.debug( e ) pass def mount_glusterfs( v, physicalmountpoint, verbose=True): mount_file_basename = physicalmountpoint[1:].replace("/","-") mount_file = os.path.join( "/etc/systemd/system", mount_file_basename + ".mount") glusterfsconfig = copy.deepcopy(v) glusterfsconfig["physicalmountpoint"] = physicalmountpoint logging.debug( "Rendering ./glusterfs.mount --> %s" % mount_file ) render_template( "./glusterfs.mount", mount_file, glusterfsconfig, verbose=verbose ) def mount_fileshare(verbose=True): with open("mounting.yaml", 'r') as datafile: config = yaml.load(datafile) datafile.close() # print config allmountpoints = config["mountpoints"] nMounts = 0 for k,v in allmountpoints.iteritems(): if "curphysicalmountpoint" in v and istrue(v, "autoshare", True): physicalmountpoint = v["curphysicalmountpoint"] # gives mounted information only, would not write anything or carry out mount action output = pipe_with_output("mount", "grep %s" % v["curphysicalmountpoint"], verbose=False) umounts = [] existmounts = [] for line in output.splitlines(): words = line.split() # pitfall: words[2] might be prefix of v["curphysicalmountpoint"], then a mount point would be missed # so we should check whether they are equal, if so, we know the specified path on NFS node was previously mounted to infra/worker. if len(words)>3 and words[1]=="on" and words[2] == v["curphysicalmountpoint"]: if verbose: logging.debug( "%s on %s" % (words[0], words[2]) ) # check if mount point exists, automatic create directory if non exist bMount = False for mountpoint in v["mountpoints"]: try: targetdir = os.path.join(physicalmountpoint, mountpoint) if os.path.exists( targetdir ): bMount = True else: try: os.system("mkdir -m 0777 "+targetdir) except: logging.debug( "Failed to create directory " + targetdir ) if os.path.exists( targetdir ): bMount = True except: logging.debug( "Failed to check for existence of directory " + targetdir ) if not bMount: # Failing umounts.append( words[2] ) else: existmounts.append( words[2]) umounts.sort() # Examine mount point, unmount those file shares that fails. for um in umounts: cmd = "umount -v %s" % um logging.debug( "Mount fails, to examine mount %s " % um ) exec_with_output( cmd, verbose=verbose ) time.sleep(3) if len(existmounts) <= 0: nMounts += 1 if v["type"] == "azurefileshare": exec_with_output( "mount -t cifs %s %s -o %s " % (v["url"], physicalmountpoint, v["options"] ), verbose=verbose ) elif v["type"] == "glusterfs": mount_glusterfs( v, physicalmountpoint, verbose=verbose) exec_with_output( "mount -t glusterfs -o %s %s:%s %s " % (v["options"], v["node"], v["filesharename"], physicalmountpoint ), verbose=verbose ) elif v["type"] == "nfs": exec_with_output( "mount %s:%s %s -o %s " % (v["server"], v["filesharename"], physicalmountpoint, v["options"]), verbose=verbose ) elif v["type"] == "ceph": exec_with_output( "%s" % (v["mountcmd"]), verbose=verbose) elif v["type"] == "hdfs": mount_hdfs( v, physicalmountpoint, verbose=verbose ) elif v["type"] == "local" or v["type"] == "localHDD": exec_with_output( "mount %s %s " % ( v["device"], physicalmountpoint ), verbose=verbose ) elif v["type"] == "ceph": exec_with_output( "%s" % (v["mountcmd"]), verbose=verbose) else: nMounts -= 1 if nMounts > 0: time.sleep(1) def link_fileshare(): with open("mounting.yaml", 'r') as datafile: config = yaml.load(datafile) datafile.close() # print config allmountpoints = config["mountpoints"] (retcode, output, err) = exec_with_output("sudo mount") for k,v in allmountpoints.iteritems(): if "mountpoints" in v and v["type"]!="emptyDir": if output.find(v["curphysicalmountpoint"]) < 0: logging.debug("!!!Warning!!! %s has not been mounted at %s " % (k, v["curphysicalmountpoint"])) logging.debug(output) else: for basename in v["mountpoints"]: dirname = os.path.join(v["curphysicalmountpoint"], basename ) exec_wo_output("sudo mkdir -p %s; " % dirname) exec_wo_output("sudo chmod ugo+rwx %s; " % dirname) for basename in v["mountpoints"]: dirname = os.path.join(v["curphysicalmountpoint"], basename ) storage_mount_path = config["storage-mount-path"] if ("vc" in v) and (v["vc"] != ""): storage_mount_path = os.path.join(config["dltsdata-storage-mount-path"], v["vc"]) exec_wo_output("sudo mkdir -p %s; " % storage_mount_path) linkdir = os.path.join(storage_mount_path, basename) exec_wo_output("if [ ! -e %s ]; then sudo ln -s %s %s; fi; " % (linkdir, dirname, linkdir)) def start_logging( logdir = '/var/log/auto_share' ): if not os.path.exists( logdir ): os.system("mkdir -p " + logdir ) with open('logging.yaml') as f: logging_config = yaml.load(f) f.close() # print logging_config logging.config.dictConfig(logging_config) logging.debug (".................... Start auto_share at %s .......................... " % datetime.now() ) logging.debug ( "Argument : %s" % sys.argv ) if __name__ == '__main__': parser = argparse.ArgumentParser( prog='auto_share.py', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ Automatically monitor and mount file share. ''') ) parser.add_argument('nargs', nargs=argparse.REMAINDER, help="Additional command argument", ) dir_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(dir_path) args = parser.parse_args() start_logging() logging.debug( "Run as user %s" % getpass.getuser() ) try: mount_fileshare() link_fileshare() except: logging.debug( "Exception when mounting files... " ) else: logging.debug( "Examined all mounting points... " ) logging.debug( "End auto_share ... " ) ``` #### File: src/ClusterManager/dataset_convert.py ```python import json import os import time import argparse import uuid import subprocess import sys import datetime reload(sys) sys.setdefaultencoding('utf8') import yaml from jinja2 import Environment, FileSystemLoader, Template import base64 import re import thread import threading import random import shutil import textwrap import logging import logging.config from pycocotools import mask from multiprocessing import Process, Manager sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../storage")) sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)),"../utils")) from jobs_tensorboard import GenTensorboardMeta import k8sUtils from config import config from DataHandler import DataHandler from cluster_manager import setup_exporter_thread, manager_iteration_histogram, register_stack_trace_dump, update_file_modification_time logger = logging.getLogger(__name__) def PolygonArea(corners): n = len(corners) # of corners area = 0.0 for i in range(n): j = (i + 1) % n area += corners[i][0] * corners[j][1] area -= corners[j][0] * corners[i][1] area = abs(area) / 2.0 return area def segmentationToCorner(segmentation): tmp = [] for i in range(0,len(segmentation),2): tmp.append([segmentation[i],segmentation[i+1]]) return tmp def create_log(logdir = '/var/log/dlworkspace'): if not os.path.exists(logdir): os.system("mkdir -p " + logdir) with open('logging.yaml') as f: logging_config = yaml.load(f) f.close() logging_config["handlers"]["file"]["filename"] = logdir+"/dataconvert.log" logging.config.dictConfig(logging_config) def insert_status_to_dataset(datasetId,projectId,status,out_path=None): dataset_info_path = os.path.join(config["data_platform_path"],"private/account/%s/membership.json" % (projectId)) with open(dataset_info_path,"r") as f: infos = json.loads(f.read()) if "dataSets" in infos: if datasetId in infos["dataSets"]: one_info = infos["dataSets"][datasetId] if "convertStatus" in one_info: logging.info("dataset: %s %s update status again!" % (projectId,datasetId)) one_info["convertStatus"] = status one_info["convertOutPath"] = out_path with open(dataset_info_path,"w") as f: f.write(json.dumps(infos,indent=4, separators=(',', ':'))) def mkdirs(path): if not os.path.exists(path): os.makedirs(path) index = 0 def merge_json_to_coco_dataset(list_ppath,json_path,coco_file_path,prefix="",args=None,category_path=None): coco = {} coco["images"] = [] coco["categories"] = [] coco["annotations"] = [] with open(os.path.join(list_ppath, "list.json"), "r") as f: data = json.load(f) ImgIDs = data.get("ImgIDs",[]) suffixs = data.get("suffixs",[]) categories = {} categories_total = None if os.path.exists(category_path): with open(category_path, "r") as f2: categories_total = json.load(f2)["categories"] for index,ImgID in enumerate(ImgIDs): new_image_id = ImgID anno_path = os.path.join(json_path, 'images', "{}.json".format(ImgID)) if not os.path.exists(anno_path): # compatible with image.suffix.json new_anno_path = os.path.join(json_path, 'images', "{}{}.json".format(ImgID,suffixs[index])) if os.path.exists(new_anno_path): anno_path = new_anno_path else: continue with open(anno_path, "r") as f: json_dict = json.load(f) json_dict["images"][0]["file_name"] = "{}.jpg".format(new_image_id) json_dict["images"][0]["id"] = new_image_id if json_dict.get("categories"): categories_total = json_dict.get("categories") for i in json_dict["annotations"]: i["image_id"] = new_image_id global index i["id"] = index index += 1 if i["category_id"] not in categories: categories[i["category_id"]] = {"id":i["category_id"],"name":i["category_id"],"supercategory":i["category_id"]} if "category_name" in i: categories[i["category_id"]]["name"] = i["category_name"] if "supercategory" in i: categories[i["category_id"]]["supercategory"] = i["supercategory"] if categories_total: categories[i["category_id"]]["name"] = categories_total[i["category_id"]-1]["name"] categories[i["category_id"]]["supercategory"] = categories_total[i["category_id"]-1]["supercategory"] if "area" not in i: if i["segmentation"]: i["area"] = int(PolygonArea(segmentationToCorner((i["segmentation"][0])))) if i["bbox"]: i["area"] = i["bbox"][2] * i["bbox"][3] if "iscrowd" not in i: i["iscrowd"] = 0 coco["images"].extend(json_dict["images"]) coco["annotations"].extend(json_dict["annotations"]) # source_path = os.path.join(json_path, 'images', "{}.jpg".format(ImgID)) # if args and not args.ignore_image: # shutil.copyfile(source_path, os.path.join(coco_image_path, "{}.jpg".format(new_image_id))) coco["categories"] = list(map(lambda x:x[1],sorted([[k,v] for k,v in categories.items()],key=lambda x:x[0]))) with open(coco_file_path, "w") as f: f.write(json.dumps(coco, indent=4, separators=(',', ':'))) with open(os.path.join(os.path.dirname(coco_file_path),"class_names.json"), "w") as f: f.write(json.dumps(coco["categories"], indent=4, separators=(',', ':'))) def judge_datasets_is_private(projectId,datasetId): ret = False path = os.path.join(config["data_platform_path"], "private/account/%s/membership.json" % (projectId)) if os.path.exists(path): with open(path, "r") as f: infos = json.loads(f.read()) ret = infos["dataSets"][datasetId]["isPrivate"] return ret def find_dataset_creator(projectId): path = os.path.join(config["data_platform_path"], "private/account/index.json") with open(path, "r") as f: infos = json.loads(f.read()) creator = infos[projectId]["creator"] return creator def find_dataset_bind_path(projectId,datasetId,isPrivate=False): path = os.path.join(config["data_platform_path"], "private/account/%s/membership.json" % (projectId)) with open(path, "r") as f: infos = json.loads(f.read()) ret = infos["dataSets"][datasetId]["dataSetPath"] # return re.sub("^/data", "/dlwsdata/storage",ret) if not isPrivate else re.sub("^/home", "/dlwsdata/work",ret) return ret def DoDataConvert(): dataHandler = DataHandler() jobs = dataHandler.getConvertList(targetStatus="queued") for oneJob in jobs: if oneJob["type"] == "image" and oneJob["targetFormat"]=="coco": try: list_path = os.path.join(config["data_platform_path"], "public/tasks/%s" % (oneJob["datasetId"])) json_path = os.path.join(config["data_platform_path"], "private/tasks/%s/%s" % (oneJob["datasetId"], oneJob["projectId"])) category_path = os.path.join(config["data_platform_path"], "private/tasks/%s/%s/category.json" % (oneJob["datasetId"],oneJob["projectId"])) if judge_datasets_is_private(oneJob["projectId"],oneJob["datasetId"]): username =find_dataset_creator(oneJob["projectId"]) coco_base_path = os.path.join(config["storage-mount-path"], "work/%s/data_platform/%s/%s/format_coco" % (username,oneJob["projectId"],oneJob["datasetId"])) coco_file_path = os.path.join(coco_base_path, "annotations/instance.json") show_coco_file_path = "/home/%s/data_platform/%s/%s" % (username,oneJob["projectId"],oneJob["datasetId"]) mkdirs(os.path.dirname(coco_file_path)) os.system("ln -s %s %s" %(find_dataset_bind_path(oneJob["projectId"],oneJob["datasetId"],isPrivate=True),os.path.join(coco_base_path,"images"))) else: coco_base_path = os.path.join(config["storage-mount-path"],"storage/data_platform/%s/%s/format_coco" % (oneJob["projectId"],oneJob["datasetId"])) coco_file_path = os.path.join(coco_base_path,"annotations/instance.json") show_coco_file_path = "/data/data_platform/%s/%s" % (oneJob["projectId"],oneJob["datasetId"]) mkdirs(os.path.dirname(coco_file_path)) os.system("ln -s %s %s" % (find_dataset_bind_path(oneJob["projectId"],oneJob["datasetId"]), os.path.join(coco_base_path,"images"))) logging.info("=============start convert to format %s" % (oneJob["targetFormat"])) merge_json_to_coco_dataset(list_path,json_path,coco_file_path,category_path=category_path) dataHandler.updateConvertStatus("finished",oneJob["id"],coco_file_path) insert_status_to_dataset(oneJob["datasetId"], oneJob["projectId"],"finished",show_coco_file_path) logging.info("=============convert to format %s done" % (oneJob["targetFormat"])) except Exception as e: logging.exception(e) dataHandler.updateConvertStatus("error", oneJob["id"],e) insert_status_to_dataset(oneJob["datasetId"], oneJob["projectId"],"error") def Run(): register_stack_trace_dump() create_log() logger.info("start to DoDataConvert...") while True: update_file_modification_time("DataConvert") with manager_iteration_histogram.labels("data_convert").time(): try: DoDataConvert() except Exception as e: logger.exception("do dataConvert failed") time.sleep(1) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--port", "-p", help="port of exporter", type=int, default=9209) args = parser.parse_args() setup_exporter_thread(args.port) Run() ``` #### File: RepairManager/utils/k8s_util.py ```python import subprocess import logging from kubernetes import client, config kubernetes_config_file = '/etc/kubernetes/restapi-kubeconfig.yaml' def cordon_node(node_name, dry_run=True): args = ['kubectl', 'cordon', node_name] if dry_run: args.append('--dry-run') try: output = subprocess.check_output(args, stderr=subprocess.STDOUT) logging.info(output.decode()) return output.decode() except subprocess.CalledProcessError as e: logging.exception(f'Exception attempting to cordon node {node_name}') return e.output.decode() def is_node_cordoned(node_info, node_name): for node in node_info.items: for address in node.status.addresses: if address.type == 'Hostname' and address.address == node_name: return node.spec.unschedulable logging.warning(f"Could not find node with hostname {node_name}") def list_node(): config.load_kube_config() api_instance = client.CoreV1Api() return api_instance.list_node() def list_pod_for_all_namespaces(): config.load_kube_config() api_instance = client.CoreV1Api() return api_instance.list_pod_for_all_namespaces() def list_namespaced_pod(namespace): config.load_kube_config(config_file=kubernetes_config_file) api_instance = client.CoreV1Api() return api_instance.list_namespaced_pod(namespace) def get_job_info_from_nodes(nodes, portal_url, cluster_name): pods = list_namespaced_pod("default") jobs = {} for pod in pods.items: if pod.metadata and pod.metadata.labels: if 'jobId' in pod.metadata.labels and 'userName' in pod.metadata.labels: if pod.spec.node_name in nodes: job_id = pod.metadata.labels['jobId'] user_name = pod.metadata.labels['userName'] node_name = pod.spec.node_name vc_name = pod.metadata.labels['vcName'] if job_id not in jobs: jobs[job_id] = { 'user_name': user_name, 'node_names': {node_name}, 'vc_name': vc_name, 'job_link': f'https://{portal_url}/job/{vc_name}/{cluster_name}/{job_id}'} else: jobs[job_id]['node_names'].add(node_name) return jobs def get_node_address_info(): # map InternalIP to Hostname node_info = list_node() address_map = {} if node_info: for node in node_info.items: internal_ip = None hostname = None for address in node.status.addresses: if address.type == 'InternalIP': internal_ip = address.address if address.type == 'Hostname': hostname = address.address address_map[internal_ip] = hostname logging.debug(f'node address map: {address_map}') return address_map ```
{ "source": "jinlmsft/Detectron.pytorch", "score": 2 }
#### File: Detectron.pytorch/tools/download_imagenet_weights.py ```python import argparse import os import requests #from argparse_color_formatter import ColorHelpFormatter #from colorama import init, Fore import _init_paths # pylint: disable=unused-import from core.config import cfg def parse_args(): """Parser command line argumnets""" parser = argparse.ArgumentParser() #(formatter_class=ColorHelpFormatter) parser.add_argument('--output_dir', help='Directory to save downloaded weight files', default=os.path.join(cfg.DATA_DIR, 'pretrained_model')) parser.add_argument('-t', '--targets', nargs='+', metavar='file_name', help='Files to download. Allowed values are: ', choices=list(PRETRAINED_WEIGHTS.keys()), default=list(PRETRAINED_WEIGHTS.keys())) return parser.parse_args() # ---------------------------------------------------------------------------- # # Mapping from filename to google drive file_id # ---------------------------------------------------------------------------- # PRETRAINED_WEIGHTS = { 'resnet50_caffe.pth': '1wHSvusQ1CiEMc5Nx5R8adqoHQjIDWXl1', 'resnet101_caffe.pth': '1x2fTMqLrn63EMW0VuK4GEa2eQKzvJ_7l', 'resnet152_caffe.pth': '1NSCycOb7pU0KzluH326zmyMFUU55JslF', 'vgg16_caffe.pth': '19UphT53C0Ua9JAtICnw84PPTa3sZZ_9k', } # ---------------------------------------------------------------------------- # # Helper fucntions for download file from google drive # ---------------------------------------------------------------------------- # def download_file_from_google_drive(id, destination): URL = "https://docs.google.com/uc?export=download" session = requests.Session() response = session.get(URL, params={'id': id}, stream=True) token = get_confirm_token(response) if token: params = {'id': id, 'confirm': token} response = session.get(URL, params=params, stream=True) save_response_content(response, destination) def get_confirm_token(response): for key, value in response.cookies.items(): if key.startswith('download_warning'): return value return None def save_response_content(response, destination): CHUNK_SIZE = 32768 with open(destination, "wb") as f: for chunk in response.iter_content(CHUNK_SIZE): if chunk: # filter out keep-alive new chunks f.write(chunk) def main(): args = parse_args() for filename in args.targets: file_id = PRETRAINED_WEIGHTS[filename] if not os.path.exists(args.output_dir): os.makedirs(args.output_dir) destination = os.path.join(args.output_dir, filename) download_file_from_google_drive(file_id, destination) print('Download {} to {}'.format(filename, destination)) if __name__ == "__main__": main() ```
{ "source": "jinlongliu/AliOS-Things", "score": 3 }
#### File: AliOS-Things/build/fileformat.py ```python import os, sys, re, platform def list_files(dir_path): file_list = []; for root, dirs, files in os.walk(dir_path): for f in files: if (os.path.splitext(f)[1] == ".h" or os.path.splitext(f)[1] == ".c" or os.path.splitext(f)[1] == ".mk"): file_list.append(os.path.join(root, f)) return file_list def main(): if len(sys.argv) != 2: print "Dir args is empty, Enter the path to be processed!" os._exit(0) filedir = sys.argv[1] print filedir.strip() sys_version = platform.version() if "Ubuntu" in sys_version: os.environ['syscmd'] = str("fromdos") elif "CentOS" in sys_version: os.environ['syscmd'] = str("dos2unix") else: print "Not find the system version!" os._exit(0) file_list = list_files(filedir) for f in file_list: os.environ['file'] = str(f) os.system('$syscmd $file') if __name__ == '__main__': main() ``` #### File: build/scripts/keil.py ```python import os import sys import string import xml.etree.ElementTree as etree import config_mk from xml.etree.ElementTree import SubElement from xml_format import gen_indent from config_mk import Projects def file_type_value(fn): if fn.endswith('.h'): return 5 if fn.endswith('.s') or fn.endswith('.S'): return 2 if fn.endswith('.lib') or fn.endswith('.a'): return 4 if fn.endswith('.cpp') or fn.endswith('.cxx'): return 8 if fn.endswith('.c') or fn.endswith('.C'): return 1 return 5 #ProjectFiles use for remove same name files #add files def add_group(parent, name, files, project_path): cur_encoding = sys.getfilesystemencoding() group = SubElement(parent, 'Group') group_name = SubElement(group, 'GroupName') group_name.text = name for f in files: files = SubElement(group, 'Files') file = SubElement(files, 'File') file_name = SubElement(file, 'FileName') name = os.path.basename(f) file_name.text = name.decode(cur_encoding) file_type = SubElement(file, 'FileType') file_type.text = '%d' % file_type_value(name) file_path = SubElement(file, 'FilePath') file_path.text = (aos_relative_path + f).decode(cur_encoding) return group # automation to do def changeItemForMcu( tree ): Path_TargetArmAds = 'Targets/Target/TargetOption/TargetArmAds/' ScatterFile = tree.find(Path_TargetArmAds + 'LDads/ScatterFile') IRAM1Size = tree.find(Path_TargetArmAds + 'ArmAdsMisc/OnChipMemories/OCR_RVCT9/Size') IRAM2Size = tree.find(Path_TargetArmAds + 'ArmAdsMisc/OnChipMemories/OCR_RVCT10/Size') FlashSize = tree.find(Path_TargetArmAds + 'ArmAdsMisc/OnChipMemories/OCR_RVCT4/Size') if 'starterkit' in buildstring: ScatterFile.text = '..\..\..\..\platform\mcu\stm32l4xx\src\STM32L433RC-Nucleo\STM32L433.sct' if 'stm32l432' in buildstring: ScatterFile.text = '..\..\..\..\platform\mcu\stm32l4xx\src\STM32L432KC-Nucleo\STM32L432.sct' if 'stm32l053' in buildstring: ScatterFile.text = '..\..\..\..\\board\stm32l053r8-nucleo\STM32L053.sct' IRAM1Size.text='0x2000' IRAM2Size.text='' FlashSize.text='0x10000' if 'stm32l031' in buildstring: ScatterFile.text = '..\..\..\..\\board\stm32l031k6-nucleo\STM32L031.sct' IRAM1Size.text='0x2000' IRAM2Size.text='' FlashSize.text='0x8000' # change key word in project file. automation to do def ModifyProjString( projString ): if 'starterkit' in buildstring: projString = projString.replace('STM32L475VGTx','STM32L433RCTx') if 'stm32l432' in buildstring: projString = projString.replace('STM32L475VGTx','STM32L432KCTx') if 'stm32l053' in buildstring: projString = projString.replace('STM32L475VGTx','STM32L053R8Tx') projString = projString.replace('STM32L4xx_1024','STM32L0xx_64') projString = projString.replace('STM32L4xx','STM32L0xx') projString = projString.replace('stm32l4xx','stm32l0xx') projString = projString.replace('STM32L4x5', 'STM32L053x') projString = projString.replace('IRAM(0x20000000,0x00018000) IRAM2(0x10000000,0x00008000) IROM(0x08000000,0x00100000) \ CPUTYPE("Cortex-M4") FPU2 CLOCK(12000000) ELITTLE', 'IRAM(0x20000000-0x20001FFF) IROM(0x8000000-0x800FFFF) CLOCK(8000000) \ CPUTYPE("Cortex-M0+")') projString = projString.replace('DCM.DLL','DARMCM1.DLL') projString = projString.replace('-MPU','') projString = projString.replace('-pCM4','-pCM0+') projString = projString.replace('TCM.DLL','TARMCM1.DLL') if 'stm32l031' in buildstring: projString = projString.replace('STM32L475VGTx','STM32L031K6Tx') projString = projString.replace('STM32L4xx_1024','STM32L0xx_32') projString = projString.replace('STM32L4xx','STM32L0xx') projString = projString.replace('stm32l4xx','stm32l0xx') projString = projString.replace('STM32L4x5', 'STM32L031x') projString = projString.replace('IRAM(0x20000000,0x00018000) IRAM2(0x10000000,0x00008000) IROM(0x08000000,0x00100000) \ CPUTYPE("Cortex-M4") FPU2 CLOCK(12000000) ELITTLE', 'IRAM(0x20000000-0x20001FFF) IROM(0x8000000-0x8007FFF) CLOCK(8000000) \ CPUTYPE("Cortex-M0+")') projString = projString.replace('DCM.DLL','DARMCM1.DLL') projString = projString.replace('-MPU','') projString = projString.replace('-pCM4','-pCM0+') projString = projString.replace('TCM.DLL','TARMCM1.DLL') return projString def gen_project(tree, target, script): project_path = os.path.dirname(os.path.abspath(target)) root = tree.getroot() out = file(target, 'wb') out.write('<?xml version="1.0" encoding="UTF-8" standalone="no" ?>\n') #change target name TargetName = tree.find('Targets/Target/TargetName') TargetName.text = buildstring OutputName = tree.find('Targets/Target/TargetOption/TargetCommonOption/OutputName') OutputName.text = buildstring # add group groups = tree.find('Targets/Target/Groups') if groups is None: groups = SubElement(tree.find('Targets/Target'), 'Groups') groups.clear() # clean old groups for group in script: # don't add an empty group if len(group['src']) != 0: group_tree = add_group(groups, group['name'], group['src'], project_path) # add GroupOption GroupOption = SubElement(group_tree, 'GroupOption') GroupArmAds = SubElement(GroupOption, 'GroupArmAds') Cads = SubElement(GroupArmAds, 'Cads') VariousControls = SubElement(Cads, 'VariousControls') MiscControls = SubElement(VariousControls, 'MiscControls') MiscControls.text = '--via '+opt_dir+group['name']+'.c_opts' Aads = SubElement(GroupArmAds, 'Aads') VariousControls = SubElement(Aads, 'VariousControls') MiscControls = SubElement(VariousControls, 'MiscControls') MiscControls.text = '--via '+opt_dir+group['name']+'.as_opts' # set <OutputName>B-L475E-IOT01</OutputName> gen_indent(root) changeItemForMcu(tree) projString = ModifyProjString( etree.tostring(root, encoding='utf-8') ) out.write(projString) out.close() def gen_main(target, script): template_tree = etree.parse('build/scripts/template.uvprojx') # create uvprojx file gen_project(template_tree, target, script) # create uvoptx file opt_file = target.replace('.uvprojx', '.uvoptx') opt_tree = etree.parse('build/scripts/template.uvoptx') TargetName = opt_tree.find('Target/TargetName') TargetName.text = buildstring out = file(opt_file, 'wb') projString = ModifyProjString( etree.tostring(opt_tree.getroot(), encoding='utf-8') ) out.write(projString) out.close() ''' Projects = [ {'name':'alicrypto', 'src':[ 'a.c', 'a_1.s', ] }, {'name':'alinkapp', 'src':[ './app/example/alinkapp/alink_sample.c', ] } ] ''' #argv[1]: buildstring, eg: nano@b_l475e buildstring = sys.argv[1] proj_output_dir = 'projects/autogen/'+buildstring+'/keil_project' #use in xml text aos_relative_path = '../../../../' projectPath = proj_output_dir+'/'+buildstring+'.uvprojx' opt_dir = 'opts/' print 'Making keil project '+buildstring gen_main(projectPath, Projects) print 'keil project: '+ projectPath + ' has generated over' ``` #### File: build/site_scons/scons_util.py ```python import os, sys, json import platform import re def log(msg): sys.stdout.write(msg) sys.stdout.flush() def info(msg): log("[INFO]: %s\n" % msg) def error(msg, code=-1): sys.stderr.write("[ERROR]: %s\n" % msg) sys.exit(code) def get_host_os(): host_os = platform.system() if host_os == 'Windows': host_os = 'Win32' elif host_os == 'Linux': if platform.machine().endswith('64'): bit = '64' else: bit = '32' host_os += bit elif host_os == 'Darwin': host_os = 'OSX' else: host_os = None return host_os def read_json(json_file): """ Read data from json file """ data = None if os.path.isfile(json_file): with open(json_file, 'r') as f: data = json.load(f) else: error("Can not find file: %s" % json_file) return data def get_config_value(keyword): """ Get predefined value for keyword from .aos """ value = None config_file = '.aos' if not os.path.isfile(config_file): return value with open(config_file) as f: for line in f.readlines(): m = re.match(r'^([\w+-]+)\=(.*)$', line) if m and m.group(1) == keyword: value = m.group(2) return value ``` #### File: linkkit/hal/ucube.py ```python src =Split(''' HAL_OS_rhino.c HAL_TCP_rhino.c HAL_PRODUCT_rhino.c HAL_UDP_rhino.c HAL_Crypt_rhino.c HAL_TLS_mbedtls.c HAL_DTLS_mbedtls.c HAL_AWSS_rhino.c ''') # HAL_TLS_mbedtls.c # HAL_DTLS_mbedtls.c component =aos_component('iotx-hal', src) dependencis =Split(''' security/mbedtls utility/digest_algorithm ''') for i in dependencis: component.add_comp_deps(i) global_includes =Split(''' ''') for i in global_includes: component.add_global_includes(i) global_macros =Split(''' COAP_DTLS_SUPPORT ''') for i in global_macros: component.add_global_macros(i) includes =Split(''' ''') for i in includes: component.add_includes(i) cflags =Split(''' ''') for i in cflags: component.add_cflags(i) component.add_global_macros('') @post_config def alink_ilop_post_config(component): comp_names = [comp.name for comp in aos_global_config.components] if 'ywss4linkkit' in comp_names: component.add_sources('HAL_AWSS_rhino.c') alink_ilop_post_config(component) ``` #### File: esp8266/tools/gen_appbin.py ```python import string import sys import os import re import binascii import struct import zlib TEXT_ADDRESS = 0x40100000 # app_entry = 0 # data_address = 0x3ffb0000 # data_end = 0x40000000 # text_end = 0x40120000 CHECKSUM_INIT = 0xEF chk_sum = CHECKSUM_INIT blocks = 0 def write_file(file_name,data): if file_name is None: print 'file_name cannot be none\n' sys.exit(0) fp = open(file_name,'ab') if fp: fp.seek(0,os.SEEK_END) fp.write(data) fp.close() else: print '%s write fail\n'%(file_name) def combine_bin(file_name,dest_file_name,start_offset_addr,need_chk): global chk_sum global blocks if dest_file_name is None: print 'dest_file_name cannot be none\n' sys.exit(0) if file_name: fp = open(file_name,'rb') if fp: ########## write text ########## fp.seek(0,os.SEEK_END) data_len = fp.tell() if data_len: if need_chk: tmp_len = (data_len + 3) & (~3) else: tmp_len = (data_len + 15) & (~15) data_bin = struct.pack('<II',start_offset_addr,tmp_len) write_file(dest_file_name,data_bin) fp.seek(0,os.SEEK_SET) data_bin = fp.read(data_len) write_file(dest_file_name,data_bin) if need_chk: for loop in range(len(data_bin)): chk_sum ^= ord(data_bin[loop]) # print '%s size is %d(0x%x),align 4 bytes,\nultimate size is %d(0x%x)'%(file_name,data_len,data_len,tmp_len,tmp_len) tmp_len = tmp_len - data_len if tmp_len: data_str = ['00']*(tmp_len) data_bin = binascii.a2b_hex(''.join(data_str)) write_file(dest_file_name,data_bin) if need_chk: for loop in range(len(data_bin)): chk_sum ^= ord(data_bin[loop]) blocks = blocks + 1 fp.close() else: print '!!!Open %s fail!!!'%(file_name) def getFileCRC(_path): try: blocksize = 1024 * 64 f = open(_path,"rb") str = f.read(blocksize) crc = 0 while(len(str) != 0): crc = binascii.crc32(str, crc) str = f.read(blocksize) f.close() except: print 'get file crc error!' return 0 return crc def gen_appbin(): global chk_sum global crc_sum global blocks if len(sys.argv) != 6: print 'Usage: gen_appbin.py eagle.app.out boot_mode flash_mode flash_clk_div flash_size_map' sys.exit(0) elf_file = sys.argv[1] boot_mode = sys.argv[2] flash_mode = sys.argv[3] flash_clk_div = sys.argv[4] flash_size_map = sys.argv[5] flash_data_line = 16 data_line_bits = 0xf irom0text_bin_name = 'eagle.app.v6.irom0text.bin' text_bin_name = 'eagle.app.v6.text.bin' data_bin_name = 'eagle.app.v6.data.bin' rodata_bin_name = 'eagle.app.v6.rodata.bin' flash_bin_name ='eagle.app.flash.bin' BIN_MAGIC_FLASH = 0xE9 BIN_MAGIC_IROM = 0xEA data_str = '' sum_size = 0 if os.getenv('ESP8266_NM') != None: nm_cmd = os.getenv('ESP8266_NM') elif os.getenv('COMPILE')=='xcc' : nm_cmd = 'xt-nm' else : nm_cmd = 'xtensa-lx106-elf-nm' cmd = '{} -g {} > eagle.app.sym'.format(nm_cmd, elf_file) os.system(cmd) fp = file('./eagle.app.sym') if fp is None: print "open sym file error\n" sys.exit(0) lines = fp.readlines() fp.close() entry_addr = None p = re.compile('(\w*)(\sT\s)(call_user_start)$') for line in lines: m = p.search(line) if m != None: entry_addr = m.group(1) # print entry_addr if entry_addr is None: print 'no entry point!!' sys.exit(0) data_start_addr = '0' p = re.compile('(\w*)(\sA\s)(_data_start)$') for line in lines: m = p.search(line) if m != None: data_start_addr = m.group(1) # print data_start_addr rodata_start_addr = '0' p = re.compile('(\w*)(\sA\s)(_rodata_start)$') for line in lines: m = p.search(line) if m != None: rodata_start_addr = m.group(1) # print rodata_start_addr # write flash bin header #============================ # SPI FLASH PARAMS #------------------- #flash_mode= # 0: QIO # 1: QOUT # 2: DIO # 3: DOUT #------------------- #flash_clk_div= # 0 : 80m / 2 # 1 : 80m / 3 # 2 : 80m / 4 # 0xf: 80m / 1 #------------------- #flash_size_map= # 0 : 512 KB (256 KB + 256 KB) # 1 : 256 KB # 2 : 1024 KB (512 KB + 512 KB) # 3 : 2048 KB (512 KB + 512 KB) # 4 : 4096 KB (512 KB + 512 KB) # 5 : 2048 KB (1024 KB + 1024 KB) # 6 : 4096 KB (1024 KB + 1024 KB) #------------------- # END OF SPI FLASH PARAMS #============================ byte2=int(flash_mode)&0xff byte3=(((int(flash_size_map)<<4)| int(flash_clk_div))&0xff) if boot_mode == '2': # write irom bin head data_bin = struct.pack('<BBBBI',BIN_MAGIC_IROM,4,byte2,byte3,long(entry_addr,16)) sum_size = len(data_bin) write_file(flash_bin_name,data_bin) # irom0.text.bin combine_bin(irom0text_bin_name,flash_bin_name,0x0,0) data_bin = struct.pack('<BBBBI',BIN_MAGIC_FLASH,3,byte2,byte3,long(entry_addr,16)) sum_size = len(data_bin) write_file(flash_bin_name,data_bin) # text.bin combine_bin(text_bin_name,flash_bin_name,TEXT_ADDRESS,1) # data.bin if data_start_addr: combine_bin(data_bin_name,flash_bin_name,long(data_start_addr,16),1) # rodata.bin combine_bin(rodata_bin_name,flash_bin_name,long(rodata_start_addr,16),1) # write checksum header sum_size = os.path.getsize(flash_bin_name) + 1 sum_size = flash_data_line - (data_line_bits&sum_size) if sum_size: data_str = ['00']*(sum_size) data_bin = binascii.a2b_hex(''.join(data_str)) write_file(flash_bin_name,data_bin) write_file(flash_bin_name,chr(chk_sum & 0xFF)) if boot_mode == '1': sum_size = os.path.getsize(flash_bin_name) data_str = ['FF']*(0x10000-sum_size) data_bin = binascii.a2b_hex(''.join(data_str)) write_file(flash_bin_name,data_bin) fp = open(irom0text_bin_name,'rb') if fp: data_bin = fp.read() write_file(flash_bin_name,data_bin) fp.close() else : print '!!!Open %s fail!!!'%(flash_bin_name) sys.exit(0) if boot_mode == '1' or boot_mode == '2': all_bin_crc = getFileCRC(flash_bin_name) if all_bin_crc < 0: all_bin_crc = abs(all_bin_crc) - 1 else : all_bin_crc = abs(all_bin_crc) + 1 print "bin crc: %x"%all_bin_crc write_file(flash_bin_name,chr((all_bin_crc & 0x000000FF))+chr((all_bin_crc & 0x0000FF00) >> 8)+chr((all_bin_crc & 0x00FF0000) >> 16)+chr((all_bin_crc & 0xFF000000) >> 24)) cmd = 'rm eagle.app.sym' os.system(cmd) if __name__=='__main__': gen_appbin() ``` #### File: mcu/linux/ucube.py ```python aos_global_config.set('no_with_lwip', 1) src = Split(''' soc/uart.c main/arg_options.c main/main.c main/hw.c main/wifi_port.c main/ota_port.c main/nand.c main/vfs_trap.c ''') global_cflags = Split(''' -m32 -std=gnu99 -Wall -Wno-missing-field-initializers -Wno-strict-aliasing -Wno-address -Wno-unused-result -lpthread -lm -lrt -DDEBUG -ggdb ''') global_macros = Split(''' SYSINFO_PRODUCT_MODEL=\\"ALI_AOS_LINUXHOST\\" SYSINFO_DEVICE_NAME=\\"LINUXHOST\\" CONFIG_AOS_RHINO_MMREGION CONFIG_YSH_CMD_DUMPSYS CSP_LINUXHOST CONFIG_LOGMACRO_DETAILS CONFIG_AOS_FATFS_SUPPORT CONFIG_AOS_FATFS_SUPPORT_MMC CONFIG_AOS_UOTA_BREAKPOINT ''') component = aos_mcu_component('linuximpl', '', src) component.set_global_arch('linux') component.add_global_cflags(*global_cflags) component.add_global_asflags('-m32') component.add_global_ldflags('-m32', '-lpthread', '-lm', '-lrt', '-lreadline', '-lncurses') component.add_global_macros(*global_macros) @post_config def linuximpl_post_config(component): comp_names = [comp.name for comp in aos_global_config.components] if 'fatfs' in comp_names: component.add_sources('main/sdmmc.c') if 'net' in comp_names: aos_global_config.set('LWIP', 1) linuximpl_post_config(component) LWIP = aos_global_config.get('LWIP') if LWIP == 1: lwip_src = Split(''' csp/lwip/netif/delif.c csp/lwip/netif/fifo.c csp/lwip/netif/list.c csp/lwip/netif/tapif.c csp/lwip/netif/tcpdump.c csp/lwip/netif/tunif.c csp/lwip/lwip_linuxhost.c ''') for s in lwip_src: component.add_sources(s) ### can't work end ### if aos_global_config.app == 'yts': src_tmp = Split(''' main/sdmmc.c csp/lwip/netif/delif.c csp/lwip/netif/fifo.c csp/lwip/netif/list.c csp/lwip/netif/tapif.c csp/lwip/netif/tcpdump.c csp/lwip/netif/tunif.c csp/lwip/lwip_linuxhost.c ''') for s in src_tmp: component.add_sources(s) if aos_global_config.get('osal') == 'posix': component.add_macros("CONFIG_OSAL_POSIX") else: src_tmp = Split(''' soc/soc_impl.c soc/hook_impl.c soc/trace_impl.c ''') for s in src_tmp: component.add_sources(s) component.add_comp_deps('utility/log', 'platform/arch/linux', 'osal', 'kernel/init') component.add_global_includes('include', 'csp/lwip/include') ```
{ "source": "jinlongliu/fabric-alpha2", "score": 2 }
#### File: bddtests/steps/compose.py ```python import os import uuid import bdd_test_util from contexthelper import ContextHelper import json from abc import ABCMeta, abstractmethod class ContainerData: def __init__(self, containerName, ipAddress, envFromInspect, composeService, ports): self.containerName = containerName self.ipAddress = ipAddress self.envFromInspect = envFromInspect self.composeService = composeService self.ports = ports def getEnv(self, key): envValue = None for val in self.envFromInspect: if val.startswith(key): envValue = val[len(key):] break if envValue == None: raise Exception("ENV key not found ({0}) for container ({1})".format(key, self.containerName)) return envValue class CompositionCallback: __metaclass__ = ABCMeta @abstractmethod def composing(self, composition, context): pass @abstractmethod def decomposing(self, composition, context): pass @abstractmethod def getEnv(self, composition, context, env): pass class Test(CompositionCallback): def composing(self, composition, context): pass def decomposing(self, composition, context): pass def getEnv(self, composition, context, env): pass def GetDockerSafeUUID(): return str(uuid.uuid1()).replace('-','') class Composition: @classmethod def RegisterCallbackInContext(cls, context, callback): if not isinstance(callback, CompositionCallback): raise TypeError("Expected type to be {0}, instead received {1}".format(CompositionCallback, type(callback))) Composition.GetCompositionCallbacksFromContext(context).append(callback) @classmethod def GetCompositionCallbacksFromContext(cls, context): if not "compositionCallbacks" in context: context.compositionCallbacks = [] return context.compositionCallbacks @classmethod def GetUUID(cls): return GetDockerSafeUUID() def __init__(self, context, composeFilesYaml, projectName=None, force_recreate=True, components=[], register_and_up=True): self.contextHelper = ContextHelper.GetHelper(context=context) if not projectName: projectName = self.contextHelper.getGuuid() self.projectName = projectName self.context = context self.containerDataList = [] self.composeFilesYaml = composeFilesYaml self.serviceNames = [] self.serviceNames = self._collectServiceNames() if register_and_up: # Register with contextHelper (Supports docgen) self.contextHelper.registerComposition(self) [callback.composing(self, context) for callback in Composition.GetCompositionCallbacksFromContext(context)] self.up(context, force_recreate, components) def _collectServiceNames(self): 'First collect the services names.' servicesList = [service for service in self.issueCommand(["config", "--services"]).splitlines() if "WARNING" not in service] return servicesList def up(self, context, force_recreate=True, components=[]): self.serviceNames = self._collectServiceNames() command = ["up", "-d"] if force_recreate: command += ["--force-recreate"] self.issueCommand(command + components) def scale(self, context, serviceName, count=1): self.serviceNames = self._collectServiceNames() command = ["scale", "%s=%d" %(serviceName, count)] self.issueCommand(command) def stop(self, context, components=[]): self.serviceNames = self._collectServiceNames() command = ["stop"] self.issueCommand(command, components) def start(self, context, components=[]): self.serviceNames = self._collectServiceNames() command = ["start"] self.issueCommand(command, components) def getServiceNames(self): return list(self.serviceNames) def parseComposeFilesArg(self, composeFileArgs): args = [arg for sublist in [["-f", file] for file in [file if not os.path.isdir(file) else os.path.join(file, 'docker-compose.yml') for file in composeFileArgs.split()]] for arg in sublist] return args def getFileArgs(self): return self.parseComposeFilesArg(self.composeFilesYaml) def getEnvAdditions(self): myEnv = {} myEnv["COMPOSE_PROJECT_NAME"] = self.projectName myEnv["CORE_PEER_NETWORKID"] = self.projectName # Invoke callbacks [callback.getEnv(self, self.context, myEnv) for callback in Composition.GetCompositionCallbacksFromContext(self.context)] return myEnv def getEnv(self): myEnv = os.environ.copy() for key,value in self.getEnvAdditions().iteritems(): myEnv[key] = value # myEnv["COMPOSE_PROJECT_NAME"] = self.projectName # myEnv["CORE_PEER_NETWORKID"] = self.projectName # # Invoke callbacks # [callback.getEnv(self, self.context, myEnv) for callback in Composition.GetCompositionCallbacksFromContext(self.context)] return myEnv def getConfig(self): return self.issueCommand(["config"]) def refreshContainerIDs(self): containers = self.issueCommand(["ps", "-q"]).split() return containers def _callCLI(self, argList, expect_success, env): return bdd_test_util.cli_call(argList, expect_success=expect_success, env=env) def issueCommand(self, command, components=[]): componentList = [] useCompose = True for component in components: if '_' in component: useCompose = False componentList.append("%s_%s" % (self.projectName, component)) else: break # If we need to perform an operation on a specific container, use # docker not docker-compose if useCompose: cmdArgs = self.getFileArgs()+ command + components cmd = ["docker-compose"] + cmdArgs else: cmdArgs = command + componentList cmd = ["docker"] + cmdArgs #print("cmd:", cmd) output, error, returncode = \ self._callCLI(cmd, expect_success=True, env=self.getEnv()) # Don't rebuild if ps command if command[0] !="ps" and command[0] !="config": self.rebuildContainerData() return output def rebuildContainerData(self): self.containerDataList = [] for containerID in self.refreshContainerIDs(): # get container metadata container = json.loads(bdd_test_util.cli_call(["docker", "inspect", containerID], expect_success=True)[0])[0] # container name container_name = container['Name'][1:] # container ip address (only if container is running) container_ipaddress = None if container['State']['Running']: container_ipaddress = container['NetworkSettings']['IPAddress'] if not container_ipaddress: # ipaddress not found at the old location, try the new location container_ipaddress = container['NetworkSettings']['Networks'].values()[0]['IPAddress'] # container environment container_env = container['Config']['Env'] # container exposed ports container_ports = container['NetworkSettings']['Ports'] # container docker-compose service container_compose_service = container['Config']['Labels']['com.docker.compose.service'] self.containerDataList.append(ContainerData(container_name, container_ipaddress, container_env, container_compose_service, container_ports)) def decompose(self): self.issueCommand(["unpause"]) self.issueCommand(["down"]) self.issueCommand(["kill"]) self.issueCommand(["rm", "-f"]) # Now remove associated chaincode containers if any output, error, returncode = \ bdd_test_util.cli_call(["docker"] + ["ps", "-qa", "--filter", "name={0}".format(self.projectName)], expect_success=True, env=self.getEnv()) for containerId in output.splitlines(): output, error, returncode = \ bdd_test_util.cli_call(["docker"] + ["rm", "-f", containerId], expect_success=True, env=self.getEnv()) # Remove the associated network output, error, returncode = \ bdd_test_util.cli_call(["docker"] + ["network", "ls", "-q", "--filter", "name={0}".format(self.projectName)], expect_success=True, env=self.getEnv()) for networkId in output.splitlines(): output, error, returncode = \ bdd_test_util.cli_call(["docker"] + ["network", "rm", networkId], expect_success=True, env=self.getEnv()) # Invoke callbacks [callback.decomposing(self, self.context) for callback in Composition.GetCompositionCallbacksFromContext(self.context)] ``` #### File: regression/daily/test_pte.py ```python import unittest import subprocess TEST_PASS_STRING="RESULT=PASS" ###################################################################### ### LEVELDB ###################################################################### class LevelDB_Perf_Stress(unittest.TestCase): @unittest.skip("skipping") def test_FAB3584_SkeletonQueries(self): ''' FAB-2032,FAB-3584 Network: 1 Ord, 1 KB, 1 ZK, 2 Org, 2 Peers, 1 Chan, 1 CC Launch skeleton network, use PTE in STRESS mode to continuously send 10000 query transactions concurrently to 1 peer in both orgs, calculate tps, and remove network and cleanup ''' # Replace TestPlaceholder.sh with actual test name, something like: # ../../tools/PTE/tests/runSkeletonQueriesLevel.sh result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3586_SkeletonInvokes(self): ''' FAB-2032,FAB-3586 Network: 1 Ord, 1 KB, 1 ZK, 2 Org, 2 Peers, 1 Chan, 1 CC Launch skeleton network, use PTE in STRESS mode to continuously send 10000 query transactions concurrently to 1 peer in both orgs, query the ledger to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3593_Standard_basic_TLS(self): ''' FAB-2032,FAB-3593 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3595_Standard_basic_1M(self): ''' FAB-2032,FAB-3595 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3597_Standard_basic_Gossip(self): ''' FAB-2032,FAB-3597 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3599_Standard_12Hr(self): ''' FAB-2032,FAB-3599 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) ###################################################################### ### COUCHDB ###################################################################### class CouchDB_Perf_Stress(unittest.TestCase): @unittest.skip("skipping") def test_FAB3585_SkeletonQueries(self): ''' FAB-2032,FAB-3585 Network: 1 Ord, 1 KB, 1 ZK, 2 Org, 2 Peers, 1 Chan, 1 CC Launch skeleton network, use PTE in STRESS mode to continuously send 10000 query transactions concurrently to 1 peer in both orgs, calculate tps, and remove network and cleanup ''' # Replace TestPlaceholder.sh with actual test name, something like: # ../../tools/PTE/tests/runSkeletonQueriesCouch.sh result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3587_SkeletonInvokes(self): ''' FAB-2032,FAB-3587 Network: 1 Ord, 1 KB, 1 ZK, 2 Org, 2 Peers, 1 Chan, 1 CC Launch skeleton network, use PTE in STRESS mode to continuously send 10000 query transactions concurrently to 1 peer in both orgs, query the ledger to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3588_Scaleup1(self): ''' FAB-2032,FAB-3588 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 20 Chan, 2 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3589_Scaleup2(self): ''' FAB-2032,FAB-3589 Network: 2 Ord, 5 KB, 3 ZK, 4 Org, 8 Peers, 40 Chan, 4 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3590_Scaleup3(self): ''' FAB-2032,FAB-3590 Network: 2 Ord, 5 KB, 3 ZK, 8 Org, 16 Peers, 80 Chan, 8 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3591_Scaleup4(self): ''' FAB-2032,FAB-3591 Network: 4 Ord, 5 KB, 3 ZK, 16 Org, 32 Peers, 160 Chan, 16 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3592_Scaleup5(self): ''' FAB-2032,FAB-3592 Network: 4 Ord, 5 KB, 3 ZK, 32 Org, 64 Peers, 320 Chan, 32 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3594_Standard_basic_TLS(self): ''' FAB-2032,FAB-3594 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3596_Standard_basic_1M(self): ''' FAB-2032,FAB-3596 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3598_Standard_basic_Gossip(self): ''' FAB-2032,FAB-3598 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send 100 invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) @unittest.skip("skipping") def test_FAB3600_Standard_12Hr(self): ''' FAB-2032,FAB-3600 Network: 2 Ord, 5 KB, 3 ZK, 2 Org, 4 Peers, 10 Chan, 10 CC Launch network, use PTE stress mode to send invoke transactions concurrently to all peers on all channels on all chaincodes, query the ledger for each to ensure the last transaction was written, calculate tps, remove network and cleanup ''' result = subprocess.check_output("./TestPlaceholder.sh", shell=True) self.assertIn(TEST_PASS_STRING, result) ```
{ "source": "jinlongwang/interpolation", "score": 3 }
#### File: jinlongwang/interpolation/myExcept.py ```python class MyError(Exception): pass class ArgumentsException(MyError): def __init__(self, msg): self.msg = msg def __str__(self): return "argument error %s" % self.msg ```
{ "source": "JinlongWukong/DevLab-ansible", "score": 2 }
#### File: DevLab-ansible/container/__init__.py ```python from .jenkins import Jenkins from .mysql import Mysql from .postgres import Postgres from .container import Container class ContainerFactory(object): @staticmethod def new_container(host_ip, host_user, host_pass, name, cpus, memory, container_type, version): if container_type == 'jenkins': return Jenkins(host_ip, host_user, host_pass, name, cpus, memory, container_type, version) elif container_type == 'mysql': return Mysql(host_ip, host_user, host_pass, name, cpus, memory, container_type, version) elif container_type == 'postgres': return Postgres(host_ip, host_user, host_pass, name, cpus, memory, container_type, version) elif container_type in ['redis', 'mongodb', 'influxdb', 'prometheus', 'grafana']: return Container(host_ip, host_user, host_pass, name, cpus, memory, container_type, version) else: raise TypeError("Unknown container type") ``` #### File: DevLab-ansible/container/jenkins.py ```python from .container import Container class Jenkins(Container): def create(self): """ Jenkins specified create method, will parse initialAdminPassword :return: container status(address, port_mapping, initial admin password), data format -> dict """ self.callback = self._create() self.read_admin_password() return { "status": self.status, "address": self.address, "port_mapping": self.port_mapping, "additional_infor": {"admin_password": <PASSWORD>} if self.initialAdminPassword else {} } def get(self): """Get jenkins status information return: container status, address, port_mapping, format dict """ self.callback = self._get() self.read_admin_password() return { "status": self.status, "address": self.address, "port_mapping": self.port_mapping, "additional_infor": {"admin_password": <PASSWORD>} if self.initialAdminPassword else {} } def read_admin_password(self): """ Read jenkins initial admin password """ self.initialAdminPassword = "" for event in self.callback.host_ok: if event['task'] == "Get jenkins initialAdminPassword" and event['host'] == self.host_ip: self.initialAdminPassword = event['result']['stdout'] else: pass ```