metadata
dict
text
stringlengths
60
3.49M
{ "source": "jingw/dconf-manager", "score": 3 }
#### File: jingw/dconf-manager/dconf_manager.py ```python from __future__ import annotations import argparse import configparser import posixpath import subprocess from typing import Generic from typing import Sequence from typing import TypeVar from typing import cast IGNORED = "\033[38;5;244m? " REMOVE = "\033[31m< " ADD = "\033[32m> " def format_kv(section: str, option: str, value: str) -> str: return posixpath.join(section, option) + "=" + value T = TypeVar("T") class HierarchicalSet(Generic[T]): """A set of paths [a, b, c, ...] The root is represented by []. Adding a path X causes all paths starting with X to be part of the set. For example, adding "a" causes "a/b" to be a member. However, adding "a/b" does not cause "a" to be a member. """ def __init__(self) -> None: """Create an empty set""" self._children: dict[T, HierarchicalSet[T]] | None = {} # Map from child to HierarchicalSet. # If empty, this set is empty. # If None, this set contains all children. def _add(self, path: Sequence[T], i: int) -> None: if self._children is not None: if i < len(path): if path[i] not in self._children: self._children[path[i]] = HierarchicalSet() self._children[path[i]]._add(path, i + 1) else: # we have everything under here self._children = None def add(self, path: Sequence[T]) -> None: self._add(path, 0) def __contains__(self, path: Sequence[T], i: int = 0) -> bool: """Check if everything in the given path is in this set Empty list means to check if the entirety of this node is in the set """ if self._children is None: return True elif i < len(path): if path[i] in self._children: return self._children[path[i]].__contains__(path, i + 1) else: return False else: return self._children is None def _expand_tree(self) -> Sequence[tuple[int, T | None]]: if self._children is None: return [(0, None)] else: result: list[tuple[int, T | None]] = [] for k, v in sorted(self._children.items()): result.append((0, k)) for level, item in v._expand_tree(): result.append((1 + level, item)) return result def __str__(self) -> str: parts = [] for level, item in self._expand_tree(): if item is None: parts.append(" " * level + "*") else: parts.append(" " * level + str(item)) return "\n".join(parts) def dconf_dump(root: str) -> str: output: bytes = subprocess.check_output(["dconf", "dump", root]) return output.decode() def dconf_write(key: str, value: str) -> None: subprocess.check_call(["dconf", "write", key, value]) def dconf_reset(key: str) -> None: subprocess.check_call(["dconf", "reset", key]) class ConfigParser(configparser.ConfigParser): def __init__(self) -> None: super().__init__(interpolation=None) def optionxform(self, optionstr: str) -> str: return optionstr def main(argv: Sequence[str] | None) -> None: parser = argparse.ArgumentParser( description="Tool for managing dconf settings", ) parser.add_argument( "-a", "--apply", default=False, action="store_true", help="if not passed, only show a diff", ) parser.add_argument("config", type=open, nargs="+", help="INI files to load") parser.add_argument( "--root", default="/", help="all actions will be relative to this root" ) parser.add_argument( "-i", "--show-ignored", default=False, action="store_true", help="if true, print unmanaged options", ) args = parser.parse_args(argv) root = args.root dconf_output = dconf_dump(root) dconf_config = ConfigParser() dconf_config.read_string(dconf_output) def write(section: str, option: str, value: str, apply: bool) -> None: key = posixpath.join(root, section, option) print(ADD + format_kv(section, option, value)) if apply: dconf_write(key, value) def reset(section: str, option: str, value: str, apply: bool) -> None: key = posixpath.join(root, section, option) print(REMOVE + format_kv(section, option, value)) if apply: dconf_reset(key) desired_config = ConfigParser() for f in args.config: desired_config.read_file(f) f.close() # excluded sections override managed sections managed_sections = HierarchicalSet[str]() excluded_sections = HierarchicalSet[str]() for section in desired_config: if section.startswith("-"): excluded_sections.add(section[1:].split("/")) else: managed_sections.add(section.split("/")) sections_union = sorted( set(dconf_config.keys()) | set(k for k in desired_config.keys() if not k.startswith("-")) ) for section in sections_union: section_parts = section.split("/") if section_parts in excluded_sections or section_parts not in managed_sections: # Section is not managed at all. if args.show_ignored: for option, value in dconf_config[section].items(): print(IGNORED + format_kv(section, option, value)) elif section not in dconf_config: # Adding a new section. for option, value in desired_config[section].items(): write(section, option, value, args.apply) else: # Section is present and managed, so diff at option level. dconf_section = dconf_config[section] # But it might be managed at a higher level, so it might not be in desired_config. # In that case we'll end up resetting everything. desired_section = ( desired_config[section] if section in desired_config else cast(dict[str, str], {}) ) for option in sorted( set(dconf_section.keys()) | set(desired_section.keys()) ): if option not in dconf_section: write(section, option, desired_section[option], args.apply) elif option not in desired_section: reset(section, option, dconf_section[option], args.apply) elif dconf_section[option] != desired_section[option]: reset(section, option, dconf_section[option], False) write(section, option, desired_section[option], args.apply) else: # option is equal, do nothing pass if __name__ == "__main__": main(None) ``` #### File: jingw/dconf-manager/test_dconf_manager.py ```python from __future__ import annotations import io import os import subprocess import textwrap import unittest from typing import Sequence from unittest import mock from dconf_manager import HierarchicalSet from dconf_manager import main EXPECTED_OUTPUT = """\ \033[32m> add/AddedKey=1 \033[31m< clear/foo/bar/blah=50 \033[31m< overwrite/a=1 \033[32m> overwrite/a=10 \033[31m< overwrite/b=2 \033[32m> overwrite/new=5 """ EXPECTED_OUTPUT_WITH_IGNORED = """\ \033[32m> add/AddedKey=1 \033[38;5;244m? clear/keep=5 \033[31m< clear/foo/bar/blah=50 \033[38;5;244m? clear/foo/bar/exclude/no=1 \033[38;5;244m? clear/food/hi=1 \033[38;5;244m? ignored/a=1 \033[31m< overwrite/a=1 \033[32m> overwrite/a=10 \033[31m< overwrite/b=2 \033[32m> overwrite/new=5 """ class TestDconfManager(unittest.TestCase): def test_hierarchical_set(self) -> None: s = HierarchicalSet[int]() assert str(s) == "" assert [] not in s assert [0] not in s s.add([1, 2, 3]) assert str(s) == textwrap.dedent( """\ 1 2 3 *""" ) s.add([1, 2, 3, 4]) assert str(s) == textwrap.dedent( """\ 1 2 3 *""" ) assert [] not in s assert [0] not in s assert [1] not in s assert [1, 2] not in s assert [1, 2, 3] in s assert [1, 2, 3, 3] in s assert (1, 2, 3, 4) in s s.add((1, 2)) assert str(s) == textwrap.dedent( """\ 1 2 *""" ) assert [] not in s assert [0] not in s assert [1] not in s assert [1, 2] in s assert [1, 2, 3] in s assert [1, 2, 3, 3] in s assert (1, 2, 3, 4) in s s.add([2]) assert str(s) == textwrap.dedent( """\ 1 2 * 2 *""" ) assert [] not in s assert [0] not in s assert [1] not in s assert [2] in s assert [2, 5] in s s.add([]) assert str(s) == "*" assert [] in s assert [0] in s assert [1] in s assert [5, 6, 7, 8] in s @mock.patch("dconf_manager.dconf_dump") @mock.patch("dconf_manager.dconf_write") @mock.patch("dconf_manager.dconf_reset") def _test_main( self, apply: bool, show_ignored: bool, reset: mock.Mock, write: mock.Mock, dump: mock.Mock, ) -> tuple[Sequence[tuple[object, ...]], Sequence[tuple[object, ...]], str]: config = textwrap.dedent( """\ [ignored] a=1 [overwrite] a=1 b=2 [clear] keep=5 [clear/foo/bar] blah=50 [clear/foo/bar/exclude] no=1 [clear/food] hi=1 """ ) dump.return_value = config input = os.path.join(os.path.dirname(__file__), "test-data", "input.ini") stdout = io.StringIO() args = [input, "--root", "/the/root"] if show_ignored: args.append("--show-ignored") if apply: args.append("--apply") with mock.patch("sys.stdout", stdout): main(args) dump.assert_called_once_with("/the/root") return write.call_args_list, reset.call_args_list, stdout.getvalue() def test_diff(self) -> None: writes, resets, stdout = self._test_main(False, False) assert not writes assert not resets assert stdout == EXPECTED_OUTPUT def test_diff_with_ignored(self) -> None: writes, resets, stdout = self._test_main(False, True) assert not writes assert not resets assert stdout == EXPECTED_OUTPUT_WITH_IGNORED def test_apply(self) -> None: writes, resets, stdout = self._test_main(True, False) assert writes == [ mock.call("/the/root/add/AddedKey", "1"), mock.call("/the/root/overwrite/a", "10"), mock.call("/the/root/overwrite/new", "5"), ] assert resets == [ mock.call("/the/root/clear/foo/bar/blah"), mock.call("/the/root/overwrite/b"), ] assert stdout == EXPECTED_OUTPUT class TestTools(unittest.TestCase): def test_black(self) -> None: subprocess.check_call(["black", "--check", os.path.dirname(__file__)]) def test_flake8(self) -> None: subprocess.check_call(["flake8"], cwd=os.path.dirname(__file__)) def test_isort(self) -> None: subprocess.check_call( ["isort", "--check-only", "--diff", os.path.dirname(__file__)] ) def test_mypy(self) -> None: subprocess.check_call(["mypy", os.path.dirname(__file__)]) ```
{ "source": "JingweiJ/JointActorActionSeg", "score": 3 }
#### File: JointActorActionSeg/models/batchnorm.py ```python import keras.layers as KL class BatchNorm(KL.BatchNormalization): """Batch Normalization class. Subclasses the Keras BN class and hardcodes training=False so the BN layer doesn't update during training. Batch normalization has a negative effect on training if batches are small so we disable it here. """ def call(self, inputs, training=None): return super(self.__class__, self).call(inputs, training=False) ``` #### File: JointActorActionSeg/models/proposal_layer.py ```python import sys sys.path.append('..') import utils.matterport_utils as matterport_utils import numpy as np import tensorflow as tf import keras.layers as KL import keras.engine as KE ''' Basically, the proposal layer does non-max suppression on the bbox according to fg prob output by rpn. ''' def apply_box_deltas_graph(boxes, deltas): """Applies the given deltas to the given boxes. boxes: [N, 4] where each row is y1, x1, y2, x2 deltas: [N, 4] where each row is [dy, dx, log(dh), log(dw)] """ # Convert to y, x, h, w height = boxes[:, 2] - boxes[:, 0] width = boxes[:, 3] - boxes[:, 1] center_y = boxes[:, 0] + 0.5 * height center_x = boxes[:, 1] + 0.5 * width # Apply deltas center_y += deltas[:, 0] * height center_x += deltas[:, 1] * width height *= tf.exp(deltas[:, 2]) width *= tf.exp(deltas[:, 3]) # Convert back to y1, x1, y2, x2 y1 = center_y - 0.5 * height x1 = center_x - 0.5 * width y2 = y1 + height x2 = x1 + width result = tf.stack([y1, x1, y2, x2], axis=1, name="apply_box_deltas_out") return result def clip_boxes_graph(boxes, window): """ boxes: [N, 4] each row is y1, x1, y2, x2 window: [4] in the form y1, x1, y2, x2 """ # Split corners wy1, wx1, wy2, wx2 = tf.split(window, 4) y1, x1, y2, x2 = tf.split(boxes, 4, axis=1) # Clip y1 = tf.maximum(tf.minimum(y1, wy2), wy1) x1 = tf.maximum(tf.minimum(x1, wx2), wx1) y2 = tf.maximum(tf.minimum(y2, wy2), wy1) x2 = tf.maximum(tf.minimum(x2, wx2), wx1) clipped = tf.concat([y1, x1, y2, x2], axis=1, name="clipped_boxes") return clipped class ProposalLayer(KE.Layer): """Receives anchor scores and selects a subset to pass as proposals to the second stage. Filtering is done based on anchor scores and non-max suppression to remove overlaps. It also applies bounding box refinment detals to anchors. Inputs: rpn_probs: [batch, anchors, (bg prob, fg prob)] rpn_bbox: [batch, anchors, (dy, dx, log(dh), log(dw))] Returns: Proposals in normalized coordinates [batch, rois, (y1, x1, y2, x2)] """ def __init__(self, proposal_count, nms_threshold, anchors, config=None, **kwargs): """ anchors: [N, (y1, x1, y2, x2)] anchors defined in image coordinates """ super(ProposalLayer, self).__init__(**kwargs) self.config = config self.proposal_count = proposal_count self.nms_threshold = nms_threshold self.anchors = anchors.astype(np.float32) def call(self, inputs): # Box Scores. Use the foreground class confidence. [Batch, num_rois, 1] scores = inputs[0][:, :, 1] # Box deltas [batch, num_rois, 4] deltas = inputs[1] deltas = deltas * np.reshape(self.config.RPN_BBOX_STD_DEV, [1, 1, 4]) # Base anchors anchors = self.anchors # Improve performance by trimming to top anchors by score # and doing the rest on the smaller subset. pre_nms_limit = min(10000, self.anchors.shape[0]) ix = tf.nn.top_k(scores, pre_nms_limit, sorted=True, name="top_anchors").indices scores = matterport_utils.batch_slice([scores, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) deltas = matterport_utils.batch_slice([deltas, ix], lambda x, y: tf.gather(x, y), self.config.IMAGES_PER_GPU) anchors = matterport_utils.batch_slice(ix, lambda x: tf.gather(anchors, x), self.config.IMAGES_PER_GPU, names=["pre_nms_anchors"]) # Apply deltas to anchors to get refined anchors. # [batch, N, (y1, x1, y2, x2)] boxes = matterport_utils.batch_slice([anchors, deltas], lambda x, y: apply_box_deltas_graph(x, y), self.config.IMAGES_PER_GPU, names=["refined_anchors"]) # Clip to image boundaries. [batch, N, (y1, x1, y2, x2)] height, width = self.config.IMAGE_SHAPE[:2] window = np.array([0, 0, height, width]).astype(np.float32) boxes = matterport_utils.batch_slice(boxes, lambda x: clip_boxes_graph(x, window), self.config.IMAGES_PER_GPU, names=["refined_anchors_clipped"]) # Filter out small boxes # According to <NAME>'s paper, this reduces detection accuracy # for small objects, so we're skipping it. # Normalize dimensions to range of 0 to 1. normalized_boxes = boxes / np.array([[height, width, height, width]]) # Non-max suppression def nms(normalized_boxes, scores): indices = tf.image.non_max_suppression( normalized_boxes, scores, self.proposal_count, self.nms_threshold, name="rpn_non_max_suppression") proposals = tf.gather(normalized_boxes, indices) # Pad if needed padding = self.proposal_count - tf.shape(proposals)[0] proposals = tf.concat([proposals, tf.zeros([padding, 4])], 0) return proposals proposals = matterport_utils.batch_slice([normalized_boxes, scores], nms, self.config.IMAGES_PER_GPU) return proposals def compute_output_shape(self, input_shape): return (None, self.proposal_count, 4) ```
{ "source": "JingweiToo/Deep-Learning-Toolbox-Python", "score": 3 }
#### File: Deep-Learning-Toolbox-Python/DL/alexnet.py ```python import tensorflow as tf from tensorflow.keras import layers, models def jho(train_ds, valid_ds, num_class): # parameters max_epochs = 2 # desired input_shape=(224, 224, 3) input_shape = (224, 224, 3) # AlexNet model model = models.Sequential([ # 1st convolution layers.Conv2D(filters=96, kernel_size=(11,11), strides=(4,4), activation='relu', input_shape=input_shape), layers.BatchNormalization(), layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), # 2nd convolution layers.Conv2D(filters=256, kernel_size=(5,5), strides=(1,1), activation='relu', padding="same"), layers.BatchNormalization(), layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), # 3rd convolution layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), layers.BatchNormalization(), # 4th convolution layers.Conv2D(filters=384, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), layers.BatchNormalization(), # 5th convolution layers.Conv2D(filters=256, kernel_size=(3,3), strides=(1,1), activation='relu', padding="same"), layers.BatchNormalization(), layers.MaxPool2D(pool_size=(3,3), strides=(2,2)), # flatten layers.Flatten(), # 1st fully connected layers.Dense(4096, activation='relu'), layers.Dropout(0.5), # 2nd fully connected layers.Dense(4096, activation='relu'), layers.Dropout(0.5), # 3rd fully connected softmax layers.Dense(num_class, activation='softmax') ]) # build model model.compile(loss='sparse_categorical_crossentropy', optimizer=tf.optimizers.SGD(lr=0.001), metrics=['accuracy']) # train & validate model history = model.fit(train_ds, epochs=max_epochs, validation_data=valid_ds, validation_freq=1) return model, history ```
{ "source": "JingweiToo/Feature-Selection-Toolbox", "score": 3 }
#### File: Feature-Selection-Toolbox/FS/fpa.py ```python import numpy as np from numpy.random import rand from FS.functionHO import Fun import math def init_position(lb, ub, N, dim): X = np.zeros([N, dim], dtype='float') for i in range(N): for d in range(dim): X[i,d] = lb[0,d] + (ub[0,d] - lb[0,d]) * rand() return X def binary_conversion(X, thres, N, dim): Xbin = np.zeros([N, dim], dtype='int') for i in range(N): for d in range(dim): if X[i,d] > thres: Xbin[i,d] = 1 else: Xbin[i,d] = 0 return Xbin def boundary(x, lb, ub): if x < lb: x = lb if x > ub: x = ub return x # Levy Flight def levy_distribution(beta, dim): # Sigma nume = math.gamma(1 + beta) * np.sin(np.pi * beta / 2) deno = math.gamma((1 + beta) / 2) * beta * 2 ** ((beta - 1) / 2) sigma = (nume / deno) ** (1 / beta) # Parameter u & v u = np.random.randn(dim) * sigma v = np.random.randn(dim) # Step step = u / abs(v) ** (1 / beta) LF = 0.01 * step return LF def jfs(xtrain, ytrain, opts): # Parameters ub = 1 lb = 0 thres = 0.5 beta = 1.5 # levy component P = 0.8 # switch probability N = opts['N'] max_iter = opts['T'] if 'P' in opts: P = opts['P'] if 'beta' in opts: beta = opts['beta'] # Dimension dim = np.size(xtrain, 1) if np.size(lb) == 1: ub = ub * np.ones([1, dim], dtype='float') lb = lb * np.ones([1, dim], dtype='float') # Initialize position X = init_position(lb, ub, N, dim) # Binary conversion Xbin = binary_conversion(X, thres, N, dim) # Fitness at first iteration fit = np.zeros([N, 1], dtype='float') Xgb = np.zeros([1, dim], dtype='float') fitG = float('inf') for i in range(N): fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts) if fit[i,0] < fitG: Xgb[0,:] = X[i,:] fitG = fit[i,0] # Pre curve = np.zeros([1, max_iter], dtype='float') t = 0 curve[0,t] = fitG.copy() print("Generation:", t + 1) print("Best (FPA):", curve[0,t]) t += 1 while t < max_iter: Xnew = np.zeros([N, dim], dtype='float') for i in range(N): # Global pollination if rand() < P: # Levy distribution (2) L = levy_distribution(beta, dim) for d in range(dim): # Global pollination (1) Xnew[i,d] = X[i,d] + L[d] * (X[i,d] - Xgb[0,d]) # Boundary Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d]) # Local pollination else: # Different flower j, k in same species R = np.random.permutation(N) J = R[0] K = R[1] # Epsilon [0 to 1] eps = rand() for d in range(dim): # Local pollination (3) Xnew[i,d] = X[i,d] + eps * (X[J,d] - X[K,d]) # Boundary Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d]) # Binary conversion Xbin = binary_conversion(Xnew, thres, N, dim) # Greedy selection for i in range(N): Fnew = Fun(xtrain, ytrain, Xbin[i,:], opts) if Fnew <= fit[i,0]: X[i,:] = Xnew[i,:] fit[i,0] = Fnew if fit[i,0] < fitG: Xgb[0,:] = X[i,:] fitG = fit[i,0] # Store result curve[0,t] = fitG.copy() print("Generation:", t + 1) print("Best (FPA):", curve[0,t]) t += 1 # Best feature subset Gbin = binary_conversion(Xgb, thres, 1, dim) Gbin = Gbin.reshape(dim) pos = np.asarray(range(0, dim)) sel_index = pos[Gbin == 1] num_feat = len(sel_index) # Create dictionary fpa_data = {'sf': sel_index, 'c': curve, 'nf': num_feat} return fpa_data ``` #### File: Feature-Selection-Toolbox/FS/ja.py ```python import numpy as np from numpy.random import rand from FS.functionHO import Fun def init_position(lb, ub, N, dim): X = np.zeros([N, dim], dtype='float') for i in range(N): for d in range(dim): X[i,d] = lb[0,d] + (ub[0,d] - lb[0,d]) * rand() return X def binary_conversion(X, thres, N, dim): Xbin = np.zeros([N, dim], dtype='int') for i in range(N): for d in range(dim): if X[i,d] > thres: Xbin[i,d] = 1 else: Xbin[i,d] = 0 return Xbin def boundary(x, lb, ub): if x < lb: x = lb if x > ub: x = ub return x def jfs(xtrain, ytrain, opts): # Parameters ub = 1 lb = 0 thres = 0.5 N = opts['N'] max_iter = opts['T'] # Dimension dim = np.size(xtrain, 1) if np.size(lb) == 1: ub = ub * np.ones([1, dim], dtype='float') lb = lb * np.ones([1, dim], dtype='float') # Initialize position X = init_position(lb, ub, N, dim) # Binary conversion Xbin = binary_conversion(X, thres, N, dim) # Fitness at first iteration fit = np.zeros([N, 1], dtype='float') Xgb = np.zeros([1, dim], dtype='float') fitG = float('inf') for i in range(N): fit[i,0] = Fun(xtrain, ytrain, Xbin[i,:], opts) if fit[i,0] < fitG: Xgb[0,:] = X[i,:] fitG = fit[i,0] # Pre curve = np.zeros([1, max_iter], dtype='float') t = 0 curve[0,t] = fitG.copy() print("Generation:", t + 1) print("Best (JA):", curve[0,t]) t += 1 while t < max_iter: Xnew = np.zeros([N, dim], dtype='float') # Identify best & worst in population idx_max = np.argmax(fit) Xw = X[idx_max,np.newaxis,:].copy() idx_min = np.argmin(fit) Xb = X[idx_min,np.newaxis,:].copy() for i in range(N): for d in range(dim): # Random numbers r1 = rand(); r2 = rand(); # Position update (1) Xnew[i,d] = X[i,d] + r1 * (Xb[0,d] - abs(X[i,d])) - r2 * (Xw[0,d] - abs(X[i,d])) # Boundary Xnew[i,d] = boundary(Xnew[i,d], lb[0,d], ub[0,d]) # Binary conversion Xbin = binary_conversion(Xnew, thres, N, dim) # Greedy selection for i in range(N): Fnew = Fun(xtrain, ytrain, Xbin[i,:], opts) if Fnew < fit[i,0]: X[i,:] = Xnew[i,:] fit[i,0] = Fnew if fit[i,0] < fitG: Xgb[0,:] = X[i,:] fitG = fit[i,0] # Store result curve[0,t] = fitG.copy() print("Generation:", t + 1) print("Best (JA):", curve[0,t]) t += 1 # Best feature subset Gbin = binary_conversion(Xgb, thres, 1, dim) Gbin = Gbin.reshape(dim) pos = np.asarray(range(0, dim)) sel_index = pos[Gbin == 1] num_feat = len(sel_index) # Create dictionary ja_data = {'sf': sel_index, 'c': curve, 'nf': num_feat} return ja_data ```
{ "source": "JingweiToo/Machine-Learning-Regression-Toolbox", "score": 3 }
#### File: Machine-Learning-Regression-Toolbox/MLR/lr.py ```python import numpy as np from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import KFold from sklearn.model_selection import LeaveOneOut from sklearn.metrics import r2_score def jho(feat, label, opts): ho = 0.3 # ratio of testing set if 'ho' in opts: ho = opts['ho'] # number of instances num_data = np.size(feat, 0) label = label.reshape(num_data) # Solve bug # prepare data xtrain, xtest, ytrain, ytest = train_test_split(feat, label, test_size=ho) # train model mdl = LinearRegression() mdl.fit(xtrain, ytrain) # prediction ypred = mdl.predict(xtest) # mean square error mse = np.mean((ytest - ypred) ** 2) # r2 score r2 = r2_score(ytest, ypred) print("Mean Square Error (LR_HO):", mse) print("R Square Score (LR_HO):", r2) lr = {'mse': mse, 'r2': r2, 'xtest': xtest, 'ytest': ytest, 'ypred': ypred} return lr def jkfold(feat, label, opts): kfold = 10 # number of k in kfold if 'kfold' in opts: kfold = opts['kfold'] # number of instances num_data = np.size(feat, 0) # define selected features x_data = feat y_data = label.reshape(num_data) # Solve bug fold = KFold(n_splits=kfold) fold.get_n_splits(x_data, y_data) ytest2 = [] ypred2 = [] t = 0 for train_idx, test_idx in fold.split(x_data, y_data): xtrain = x_data[train_idx,:] ytrain = y_data[train_idx] xtest = x_data[test_idx,:] ytest = y_data[test_idx] # train model mdl = LinearRegression() mdl.fit(xtrain, ytrain) # prediction ypred = mdl.predict(xtest) ytest2 = np.concatenate((ytest2, ytest), axis=0) ypred2 = np.concatenate((ypred2, ypred), axis=0) if t == 0: xtest2 = xtest else: xtest2 = np.concatenate((xtest2, xtest), axis=0) t += 1 # mean square error mse = np.mean((ytest2 - ypred2) ** 2) # r2 score r2 = r2_score(ytest2, ypred2) print("Mean Square Error (LR_K-fold):", mse) print("R Square Score (LR_K-fold):", r2) lr = {'mse': mse, 'r2': r2, 'xtest': xtest2, 'ytest': ytest2, 'ypred': ypred2} return lr def jloo(feat, label, opts): # number of instances num_data = np.size(feat, 0) # define selected features x_data = feat y_data = label.reshape(num_data) # Solve bug loo = LeaveOneOut() loo.get_n_splits(x_data) ytest2 = [] ypred2 = [] t = 0 for train_idx, test_idx in loo.split(x_data): xtrain = x_data[train_idx,:] ytrain = y_data[train_idx] xtest = x_data[test_idx,:] ytest = y_data[test_idx] # train model mdl = LinearRegression() mdl.fit(xtrain, ytrain) # prediction ypred = mdl.predict(xtest) ytest2 = np.concatenate((ytest2, ytest), axis=0) ypred2 = np.concatenate((ypred2, ypred), axis=0) if t == 0: xtest2 = xtest else: xtest2 = np.concatenate((xtest2, xtest), axis=0) t += 1 # mean square error mse = np.mean((ytest2 - ypred2) ** 2) # r2 score r2 = r2_score(ytest2, ypred2) print("Mean Square Error (LR_LOO):", mse) print("R Square Score (LR_LOO):", r2) lr = {'mse': mse, 'r2': r2, 'xtest': xtest2, 'ytest': ytest2, 'ypred': ypred2} return lr ```
{ "source": "jingweiz/baselines-rudder", "score": 3 }
#### File: baselines/ppo2_rudder/reward_redistribution.py ```python import sys import time from collections import OrderedDict import numpy as np import tensorflow as tf from TeLL.layers import (DenseLayer, LSTMLayer, RNNInputLayer, ConcatLayer, MultiplyFactorLayer, ReshapeLayer, SumLayer, LSTMLayerGetNetInput, LSTMLayerSetNetInput, StopGradientLayer) from TeLL.initializations import constant from TeLL.utility.misc_tensorflow import layers_from_specs, tensor_shape_with_flexible_dim, TriangularValueEncoding from TeLL.regularization import regularize def observation_network(single_frame, delta_frame, additional_inputs, observation_network_config): """Frame processing for LSTM-based network Frame processing for LSTM-based network; single_frame and delta_frame are processed by convolutional layers, flattened, and concatenated with the features in additional_inputs; Parameters ------- single_frame : TeLL layer or tensor Single input frame of shape (batchsize, timesteps or 1, x, y, c) delta_frame : TeLL layer or tensor Pixel-wise delta of input frame of shape (batchsize, timesteps or 1, x, y, c) additional_inputs : list of TeLL layers or tensors List of additional inputs of shape (batchsize, timesteps or 1, f) observation_network_config : dict Dictionary containing config for observation network that processes observations and feeds them to LSTM network: ----- show_states : bool Show frames to network? show_statedeltas : bool Show frame deltas to network? prepoc_states : list of dicts Network config to preprocess frames prepoc_deltas : list of dicts Network config to preprocess frame deltas prepoc_observations : list of dicts Network config to preprocess features from frame and frame-delta preprocessing networks Returns ------- observation_layers : list of TeLL layers Layers in observation network visual_features : TeLL layer Features created from visual input without additional_inputs """ print("Building observation network...") observation_layers = list() # # Preprocessing of single input frames # if observation_network_config['show_states']: print("\tSingle frame preprocessing...") lstm_states_prepoc_layers = [] # Normalize states to [-1, 1] state_scaling_layer = MultiplyFactorLayer(single_frame, factor=tf.constant(2 / 255., dtype=tf.float32)) lstm_states_prepoc_layers.append(SumLayer([state_scaling_layer, tf.constant([-1.], dtype=tf.float32)])) lstm_states_prepoc_layers += layers_from_specs(incoming=lstm_states_prepoc_layers[-1], layerspecs=observation_network_config['prepoc_states']) observation_layers.append(lstm_states_prepoc_layers[-1]) # # Preprocessing of delta input frames # if observation_network_config['show_statedeltas']: print("\tDelta frame preprocessing...") lstm_deltas_prepoc_layers = [] # Normalize state deltas to [-1, 1] lstm_deltas_prepoc_layers.append(MultiplyFactorLayer(delta_frame, factor=tf.constant(1 / 255., dtype=tf.float32))) lstm_deltas_prepoc_layers += layers_from_specs(incoming=lstm_deltas_prepoc_layers[-1], layerspecs=observation_network_config['prepoc_deltas']) observation_layers.append(lstm_deltas_prepoc_layers[-1]) # # Further preprocessing of visual observations (concatenated frame- and delta frame features) # if len(observation_layers) > 1: observation_layers.append(ConcatLayer(observation_layers, name="ObservationsConcatLayer")) if observation_network_config['show_states'] or observation_network_config['show_statedeltas']: print("\tObservations preprocessing...") observation_layers += layers_from_specs(incoming=observation_layers[-1], layerspecs=observation_network_config['prepoc_observations']) print("\t\tbuilding {}...".format('ReshapeLayer'), end='') observation_layers.append(ReshapeLayer(observation_layers[-1], shape=(observation_layers[-1].get_output_shape()[:2] + [np.prod(observation_layers[-1].get_output_shape()[2:])]), name='ObservationsFlattenLayer')) print(" in {} / out {}".format(observation_layers[-2].get_output_shape(), observation_layers[-1].get_output_shape())) visual_features = observation_layers[-1] # # Concatenate observations with additional input features # if len(additional_inputs): print("\tAppending additional inputs...") observation_layers.append(ConcatLayer([observation_layers[-1]] + additional_inputs, name="ConcatObservationsAdditionalFeatures")) print("Observation network output shape: {}".format(observation_layers[-1].get_output_shape())) if len(observation_layers) == 0: raise ValueError("Observation network empty! Please set show_environment or show_sctaions to True or " "specify additional_inputs!") return observation_layers, visual_features class RewardRedistributionModel(object): def __init__(self, reward_redistribution_config, observation_network_config, lstm_network_config, training_config, scopename="RR", loop_parallel_iterations=200, aux_target_horizont=10, write_histograms=False): """LSTM based network for decomposing return and performing reward redistribution via `integrated gradients`_ as described in RUDDER paper batchsize != 1 currently not supported; Variable sizes for n_timesteps may be used; Example configurations can be found in folder ppo2_rudder/configs; Parameters ---------- reward_redistribution_config : dict Dictionary containing config for reward redistribution: ----- lambda_eligibility_trace : float Eligibility trace value for redistributed reward vf_contrib : float Weighting of original value function (vf) vs. redistributed reward (rr), s.t. :math:`reward = vf \cdot vf\_contrib + rr \cdot (1-vf\_contrib)` use_reward_redistribution_quality_threshold : float Quality of reward redistribution has to exceed use_reward_redistribution_quality_threshold to be used; use_reward_redistribution_quality_threshold range is [0,1]; Quality measure is the squared prediction error, as described in RUDDER paper; use_reward_redistribution : bool Use reward redistribution? rr_junksize : int Junksize for reward redistribution; Junks overlap by 1 half each cont_pred_w : float Weighting of continous prediciton loss vs. prediction loss of final return at last timestep intgrd_steps : int Stepsize for integrated gradients intgrd_batchsize : int Integrated gradients is computed batch-wise if intgrd_batchsize > 1 observation_network_config : dict Dictionary containing config for observation network that processes observations and feeds them to LSTM network: ----- show_states : bool Show frames to network? show_statedeltas : bool Show frame deltas to network? prepoc_states : list of dicts Network config to preprocess frames prepoc_deltas : list of dicts Network config to preprocess frame deltas prepoc_observations : list of dicts Network config to preprocess features from frame and frame-delta preprocessing networks lstm_network_config : dict Dictionary containing config for LSTM network: ----- show_actions : bool Show taken actions to LSTM? reversed : bool Process game sequence in reversed order? layers : list of dicts Network config for LSTM network and optional additional dense layers initializations : dict Initialization config for LSTM network timestep_encoding : dict Set "max_value" and "triangle_span" for TeLL.utiltiy.misc_tensorflow.TriangularValueEncoding class training_config : dict Dictionary containing config for training and update procedure: ----- n_no_rr_updates : int Number of updates to perform without training or using reward redistribution network n_pretrain_games : int Number of games to pretrain the reward redistribution network without using it; downscale_lr_policylag : bool Downscale learningrate permanently if policy lag gets too large? optimizer : tf.train optimizer Optimizer in tf.train, e.g. "AdamOptimizer" optimizer_params : dict Kwargs for optimizer l1 : float Weighting for l1 weight regularization l2 : float Weighting for l2 weight regularization clip_gradients : float Threshold for clipping gradients (clipping by norm) scopename : str Name for tensorflow variable scope loop_parallel_iterations : int Number of max. parallel loop computations in tf.while loop aux_target_horizont : int Number of timesteps to predict ahead in one of the auxiliary tasks (task is to predict the accumulated reward in the next aux_target_horizont timesteps). write_histograms : bool Write histograms of weights and activations to tensorboad for debugging? """ self.scopename = scopename self.placeholders = None self.data_tensors = None self.operation_tensors = None self.summaries = None self.loop_parallel_iterations = loop_parallel_iterations self.aux_target_pad = np.zeros((aux_target_horizont - 1,), dtype=np.float32) self.aux_target_filter = np.ones((aux_target_horizont,), dtype=np.float32) / aux_target_horizont self.reward_redistribution_config = reward_redistribution_config self.observation_network_config = observation_network_config self.lstm_network_config = lstm_network_config self.training_config = training_config self.reward_redistribution_config = reward_redistribution_config self.ingametime = TriangularValueEncoding(**self.lstm_network_config['timestep_encoding']) self.write_histograms = write_histograms def get_visual_features(self, single_frame, delta_frame, additional_inputs): """Get output features of observation network only""" print("Building RR visual observation network...") with tf.variable_scope(self.scopename, reuse=tf.AUTO_REUSE): with tf.variable_scope("rr_visionsystem", reuse=tf.AUTO_REUSE): # Create first part of observation network and get visual_features to feed to A2C _, visual_features = observation_network(single_frame=single_frame, delta_frame=delta_frame, additional_inputs=additional_inputs, observation_network_config=self.observation_network_config) return visual_features def build_model(self, state_shape, policy_model, n_actions): """Build reward redistribution network, including observation network and LSTM network""" ingametime = self.ingametime n_batch = 1 # Currently only works for 1 sequence at a time print("Building RR observation network...") # -------------------------------------------------------------------------------------------------------------- # Shapes # -------------------------------------------------------------------------------------------------------------- states_shape = [n_batch, None] + list(state_shape) state_shape_rr = [n_batch, 1] + list(state_shape[:-1]) + [1] actions_shape = [n_batch, None] action_shape = [n_batch, 1, n_actions] intgrd_batchsize = self.reward_redistribution_config['intgrd_batchsize'] # -------------------------------------------------------------------------------------------------------------- # Placeholders # -------------------------------------------------------------------------------------------------------------- game_frames_placeholder = tf.placeholder(shape=states_shape, dtype=tf.uint8) game_actions_placeholder = tf.placeholder(shape=actions_shape, dtype=tf.int32) game_rewards_placeholder = tf.placeholder(shape=(None,), dtype=tf.float32) aux_target_placeholder = tf.placeholder(shape=(None, 2), dtype=tf.float32) game_length_placeholder = tf.placeholder(shape=(), dtype=tf.int32) # -------------------------------------------------------------------------------------------------------------- # Input to LSTM network # -------------------------------------------------------------------------------------------------------------- # Create input layers (these will be set dynamically in LSTM loop) state_input_layer = RNNInputLayer(tf.zeros(state_shape_rr, dtype=tf.float32)) statedelta_input_layer = RNNInputLayer(tf.zeros(state_shape_rr, dtype=tf.float32)) rr_action_input_layer = RNNInputLayer(tf.zeros(action_shape, dtype=tf.float32)) rr_time_input_layer = RNNInputLayer(ingametime.encode_value(tf.constant(0, shape=(n_batch,), dtype=tf.int32))) h_actor_input_layer = RNNInputLayer(tf.zeros(shape=policy_model.observation_features_shape)) with tf.variable_scope(self.scopename, reuse=tf.AUTO_REUSE): with tf.variable_scope("rr_visionsystem", reuse=tf.AUTO_REUSE): # RR observations will be single-/delta frames and features from A2C, actions, and ingame-time additional_inputs = [StopGradientLayer(h_actor_input_layer), rr_action_input_layer, ReshapeLayer(rr_time_input_layer, (n_batch, 1, ingametime.n_nodes_python))] lstm_prepoc_layers, _ = observation_network(single_frame=state_input_layer, delta_frame=statedelta_input_layer, additional_inputs=additional_inputs, observation_network_config=self.observation_network_config) rr_input = lstm_prepoc_layers[-1] rr_input_layer = RNNInputLayer(rr_input) # ---------------------------------------------------------------------------------------------------------- # LSTM network # ---------------------------------------------------------------------------------------------------------- print("Building RR LSTM network...") # 1 node for predicting the return at the last timestep and 3 for auxiliary tasks n_rr_output_units = 1 + 3 # # Initialization/activation functions # layerspecs = self.lstm_network_config['layers'] init_specs = self.lstm_network_config['initializations'] lstm_layer_index = [i for i, l in enumerate(layerspecs) if l['type'] == 'LSTMLayer'][0] lstm_specs = layerspecs[lstm_layer_index] n_lstm = lstm_specs['n_units'] lstm_w_init = lambda scale: lambda *args, **kwargs: tf.truncated_normal(*args, **kwargs) * scale truncated_normal_init = lambda mean, stddev: \ lambda *args, **kwargs: tf.truncated_normal(mean=mean, stddev=stddev, *args, **kwargs) if lstm_specs['a_out'] == 'linear': lstm_a_out = tf.identity elif lstm_specs['a_out'] == 'tanh': lstm_a_out = tf.tanh og_bias = truncated_normal_init(mean=init_specs['og_bias'], stddev=0.1) ig_bias = truncated_normal_init(mean=init_specs['ig_bias'], stddev=0.1) ci_bias = truncated_normal_init(mean=init_specs['ci_bias'], stddev=0.1) fg_bias = truncated_normal_init(mean=init_specs['fg_bias'], stddev=0.1) # # Layers setup # print("\tLSTM network for RR...") with tf.variable_scope('lstmnet', reuse=tf.AUTO_REUSE): # Store all layers in a list rr_layers = [rr_input_layer] # # Create layers before LSTM # rr_layers += layers_from_specs(incoming=rr_input_layer, layerspecs=layerspecs[:lstm_layer_index]) rr_lstm_input_layer = rr_layers[-1] # # Create LSTM layer # w_ig = [lstm_w_init(init_specs['w_ig'][0]), lstm_w_init(init_specs['w_ig'][1])] w_og = [lstm_w_init(init_specs['w_og'][0]), lstm_w_init(init_specs['w_og'][1])] w_ci = [lstm_w_init(init_specs['w_ci'][0]), lstm_w_init(init_specs['w_ci'][1])] w_fg = [lstm_w_init(init_specs['w_fg'][0]), lstm_w_init(init_specs['w_fg'][1])] rr_lstm_layer = LSTMLayerGetNetInput(incoming=rr_lstm_input_layer, n_units=n_lstm, name='LSTMCreditAssignment', W_ci=w_ci, W_ig=w_ig, W_og=w_og, W_fg=w_fg, b_ci=ci_bias([n_lstm]), b_ig=ig_bias([n_lstm]), b_og=og_bias([n_lstm]), b_fg=fg_bias([n_lstm]), a_ci=tf.tanh, a_ig=tf.sigmoid, a_og=tf.sigmoid, a_fg=tf.sigmoid, a_out=lstm_a_out, c_init=tf.zeros, h_init=tf.zeros, forgetgate=True, precomp_fwds=False, store_states=True, return_states=False) rr_layers.append(rr_lstm_layer) # # Create layers after LSTM # if lstm_layer_index + 1 < len(layerspecs): rr_layers += layers_from_specs(incoming=rr_layers[-1], layerspecs=layerspecs[lstm_layer_index + 1:]) # # Create output layer # rr_layers.append(DenseLayer(incoming=rr_layers[-1], n_units=n_rr_output_units, a=tf.identity, W=lstm_w_init(1), b=constant([n_rr_output_units], 0.), name='DenseCAout')) rr_output_layer = rr_layers[-1] # # LSTM for integrated gradients # batched input; reduced LSTM layer for faster integrated gradient computation (we store input-activations # and don't have to recompute convolutions etc.); # with tf.variable_scope('lstmnet', reuse=tf.AUTO_REUSE): intgrd_layers = [] # Placeholder for precomputed inputs to LSTM intgrd_input_shape = ([intgrd_batchsize, None] + rr_lstm_layer.cur_net_fwd.shape.as_list()[1:]) intgrd_input_placeholder = tf.placeholder(dtype=tf.float32, shape=[1] + intgrd_input_shape[1:]) intgrd_input_layer = RNNInputLayer(tf.zeros((intgrd_input_shape[0], 1, intgrd_input_shape[2]))) # # Create part of LSTM layer # # Reuse weights, activations and such from trained LSTM layer w_ig = rr_lstm_layer.W_bwd['ig'] w_og = rr_lstm_layer.W_bwd['og'] w_ci = rr_lstm_layer.W_bwd['ci'] w_fg = rr_lstm_layer.W_bwd['fg'] intgrd_lstm_layer = LSTMLayerSetNetInput(incoming=intgrd_input_layer, n_units=rr_lstm_layer.n_units, name=rr_lstm_layer.name, W_ci=w_ci, W_ig=w_ig, W_og=w_og, W_fg=w_fg, b_ci=rr_lstm_layer.b['ci'], b_ig=rr_lstm_layer.b['ig'], b_og=rr_lstm_layer.b['og'], b_fg=rr_lstm_layer.b['fg'], a_ci=rr_lstm_layer.a['ci'], a_ig=rr_lstm_layer.a['ig'], a_og=rr_lstm_layer.a['og'], a_fg=rr_lstm_layer.a['fg'], a_out=rr_lstm_layer.a['out'], c_init=tf.zeros, h_init=tf.zeros, forgetgate=True, precomp_fwds=False, store_states=True, return_states=False) intgrd_layers.append(intgrd_lstm_layer) # # Create layers after LSTM # if lstm_layer_index + 1 < len(layerspecs): intgrd_layers += layers_from_specs(incoming=intgrd_layers[-1], layerspecs=layerspecs[lstm_layer_index + 1:]) intgrd_layers.append(DenseLayer(incoming=intgrd_layers[-1], n_units=n_rr_output_units, a=tf.identity, W=lstm_w_init(1), b=constant([n_rr_output_units], 0.), name='DenseCAout')) intgrd_output_layer = intgrd_layers[-1] # -------------------------------------------------------------------------------------------------------------- # LSTM network loop # -------------------------------------------------------------------------------------------------------------- # # Layers that require sequential computation (i.e. after LSTM incl. LSTM) will be computed in a tf.while loop # print("\tSetting up LSTM loop...") g = tf.get_default_graph() # # Get layers that require sequential computation (i.e. after LSTM incl. LSTM but excluding output layer) # rr_lstm_layer_position = [i for i, l in enumerate(rr_layers) if isinstance(l, LSTMLayer) or isinstance(l, LSTMLayerGetNetInput)][0] rr_layers_head = rr_layers[rr_lstm_layer_position + 1:-1] n_timesteps = game_length_placeholder - 1 with tf.name_scope("RNNLoopLSTM"): # # Ending condition # def cond(time, *args): """Break if game is over by looking at n_timesteps""" return ~tf.greater(time, n_timesteps) # # Loop body # # Create initial tensors init_tensors = OrderedDict([ ('time', tf.constant(0, dtype=tf.int32)), ('rr_net_fwd', tf.zeros([n_batch, 1] + rr_lstm_layer.cur_net_fwd.shape.as_list()[1:], dtype=tf.float32)), ('rr_lstm_internals', tf.expand_dims(tf.stack([rr_lstm_layer.c[-1], rr_lstm_layer.c[-1], rr_lstm_layer.c[-1], rr_lstm_layer.c[-1], rr_lstm_layer.c[-1]], axis=-1), axis=1)), ('rr_lstm_h', tf.expand_dims(rr_lstm_layer.h[-1], axis=1)), ('rr_pred_reward', tf.zeros([s if s >= 0 else 1 for s in rr_output_layer.get_output_shape()])) ]) if len(rr_layers_head) > 0: init_tensors.update(OrderedDict( [('dense_layer_{}'.format(i), tf.zeros([s for s in l.get_output_shape() if s >= 0], dtype=tf.float32)) for i, l in enumerate(rr_layers_head)])) # Get initial tensor shapes in tf format init_shapes = OrderedDict([ ('time', init_tensors['time'].get_shape()), ('rr_net_fwd', tensor_shape_with_flexible_dim(init_tensors['rr_net_fwd'], dim=1)), ('rr_lstm_internals', tensor_shape_with_flexible_dim(init_tensors['rr_lstm_internals'], dim=1)), ('rr_lstm_h', tensor_shape_with_flexible_dim(init_tensors['rr_lstm_h'], dim=1)), ('rr_pred_reward', tensor_shape_with_flexible_dim(init_tensors['rr_pred_reward'], dim=1)), ]) if len(rr_layers_head) > 0: init_shapes.update(OrderedDict( [('dense_layer_{}'.format(i), init_tensors['dense_layer_{}'.format(i)].get_shape()) for i, l in enumerate(rr_layers_head)])) def body_rr(time, rr_net_fwd, rr_lstm_internals, rr_lstm_h, rr_pred_reward, *args): """Loop over frames and additional inputs, compute network outputs and store hidden states and activations for debugging/plotting and integrated gradients calculation""" if self.lstm_network_config['reversed']: time_index = n_timesteps - time else: time_index = time # # Set state and state-deltas as network input # if self.observation_network_config['show_states']: state_input_layer.update(tf.cast(tf.expand_dims(game_frames_placeholder[:, time_index, ..., -1:], axis=1), dtype=tf.float32)) if self.observation_network_config['show_statedeltas']: # Set the delta at timestep 0 to 0 delta_state = tf.cond(tf.equal(time_index, tf.constant(0, dtype=tf.int32)), lambda: tf.zeros_like(tf.cast(game_frames_placeholder[:, 0, ..., -1:], dtype=tf.float32)), lambda: (tf.cast(game_frames_placeholder[:, time_index, ..., -1:], dtype=tf.float32) - tf.cast(game_frames_placeholder[:, time_index - 1, ..., -1:], dtype=tf.float32))) statedelta_input_layer.update(tf.expand_dims(delta_state, axis=1)) # # Set policy model input # h_actor_input_layer.update(policy_model.get_observation_features( frame=tf.cast(tf.expand_dims(game_frames_placeholder[:, time_index], axis=1), dtype=tf.float32), delta=statedelta_input_layer.out)) # # Set time and actions as network input # rr_time_input_layer.update(self.ingametime.encode_value(time_index)) if self.lstm_network_config['show_actions']: curr_action = tf.expand_dims(game_actions_placeholder[:, time_index], axis=1) curr_action = tf.cast(tf.one_hot(curr_action, depth=n_actions, axis=-1), dtype=tf.float32) rr_action_input_layer.update(curr_action) # # Update and compute LSTM inputs # curr_rr_input = rr_input.get_output() rr_input_layer.update(curr_rr_input) # # Update LSTM cell-state and output with states from last timestep # rr_lstm_layer.c[-1], rr_lstm_layer.h[-1] = rr_lstm_internals[:, -1, :, -1], rr_lstm_h[:, -1, :] # # Calculate reward redistribution network output and append it to last timestep # rr_pred_reward = tf.concat([rr_pred_reward, rr_output_layer.get_output(prev_layers=[rr_input_layer])], axis=1) # # Store LSTM states for all timesteps for visualization # rr_lstm_internals = tf.concat([rr_lstm_internals, tf.expand_dims( tf.stack([rr_lstm_layer.ig[-1], rr_lstm_layer.og[-1], rr_lstm_layer.ci[-1], rr_lstm_layer.fg[-1], rr_lstm_layer.c[-1]], axis=-1), axis=1)], axis=1) # # Store LSTM output and forward-part of input activation for integrated gradients # rr_lstm_h = tf.concat([rr_lstm_h, tf.expand_dims(rr_lstm_layer.h[-1], axis=1)], axis=1) rr_net_fwd = tf.concat([rr_net_fwd, tf.expand_dims(rr_lstm_layer.cur_net_fwd, axis=1)], axis=1) # # Store output of optional layers above LSTM for debugging # rr_layers_head_activations = [l.out for l in rr_layers_head] # # Increment time # time += tf.constant(1, dtype=tf.int32) return [time, rr_net_fwd, rr_lstm_internals, rr_lstm_h, rr_pred_reward, *rr_layers_head_activations] wl_ret = tf.while_loop(cond=cond, body=body_rr, loop_vars=tuple(init_tensors.values()), shape_invariants=tuple(init_shapes.values()), parallel_iterations=self.loop_parallel_iterations, back_prop=True, swap_memory=True) # Re-Associate returned tensors with keys rr_returns = OrderedDict(zip(init_tensors.keys(), wl_ret)) # Remove initialization timestep rr_returns['rr_net_fwd'] = rr_returns['rr_net_fwd'][:, 1:] rr_returns['rr_lstm_internals'] = rr_returns['rr_lstm_internals'][:, 1:] rr_returns['rr_lstm_h'] = rr_returns['rr_lstm_h'][:, 1:] rr_returns['rr_pred_reward'] = rr_returns['rr_pred_reward'][:, 1:] if len(rr_layers_head) > 0: for i, l in enumerate(rr_layers_head): rr_returns['dense_layer_{}'.format(i)] = rr_returns['dense_layer_{}'.format(i)][:, 1:] accumulated_reward = tf.reduce_sum(game_rewards_placeholder) predicted_reward = rr_returns['rr_pred_reward'] # # Track exponential mean of reward # with tf.variable_scope(self.scopename, reuse=tf.AUTO_REUSE): emean_reward = tf.get_variable('emean_reward', initializer=tf.constant(0., dtype=tf.float32), trainable=False) d = 0.99 emean_reward = tf.assign(emean_reward, d * emean_reward + (1. - d) * accumulated_reward) # # Error for reward prediction # with g.control_dependencies([emean_reward]): reward_prediction_error = predicted_reward[0, -1, 0] - accumulated_reward # -------------------------------------------------------------------------------------------------------------- # Loss and Update Steps for reward redistribution network # -------------------------------------------------------------------------------------------------------------- print("\tSetting up RR updates...") layers_to_train = rr_layers + lstm_prepoc_layers rr_trainables = [t for t in tf.trainable_variables() if t.name.find('RR/lstmnet') != -1] rr_trainables_vs = [t for t in tf.trainable_variables() if t.name.find('RR/rr_visionsystem') != -1] rr_trainables = rr_trainables + rr_trainables_vs # # RR Update # # Main loss target rr_loss_last_timestep = tf.square(reward_prediction_error) # Add regularization penalty rr_reg_penalty = regularize(layers=layers_to_train, l1=self.training_config['l1'], l2=self.training_config['l2'], regularize_weights=True, regularize_biases=True) rr_loss = rr_loss_last_timestep + rr_reg_penalty # Auxiliary losses cumsum_rewards = tf.cumsum(game_rewards_placeholder) target_all_ts = tf.constant(0., dtype=tf.float32) # avoid errors if aux. losses aren't used if self.reward_redistribution_config['cont_pred_w']: # Calculate mean over aux. losses and add them to main loss target_all_ts = aux_target_placeholder rr_loss_all_timesteps = (tf.reduce_sum(tf.reduce_mean(tf.square(aux_target_placeholder - predicted_reward[0, :, 1:-1]), axis=0)) + tf.reduce_mean(tf.square(cumsum_rewards - predicted_reward[0, :, -1]))) / 3. rr_loss += rr_loss_all_timesteps * self.reward_redistribution_config['cont_pred_w'] # Get gradients rr_grads = tf.gradients(rr_loss, rr_trainables) if self.training_config['clip_gradients']: rr_grads, _ = tf.clip_by_global_norm(rr_grads, self.training_config['clip_gradients']) # Set up optimizer rr_update = tf.constant(0) if self.training_config['optimizer_params']['learning_rate'] != 0: with tf.variable_scope('rr_update', tf.AUTO_REUSE): optimizer = getattr(tf.train, self.training_config['optimizer'])(**self.training_config['optimizer_params']) rr_update = optimizer.apply_gradients(zip(rr_grads, rr_trainables)) # -------------------------------------------------------------------------------------------------------------- # Integrated Gradients # -------------------------------------------------------------------------------------------------------------- print("\tSetting up Integrated Gradients...") # Create input that interpolates between zeroed- and full input sequence intgrd_w_placeholder = tf.placeholder(dtype=tf.float32, shape=(intgrd_batchsize,)) intgrd_input = tf.concat( [intgrd_input_placeholder * intgrd_w_placeholder[s] for s in range(intgrd_batchsize)], axis=0) # # Ending condition # def cond(time, *args): """Break if game is over""" return ~tf.greater(time, n_timesteps) # # Loop body # # Create initial tensors init_tensors = OrderedDict([ ('time', tf.constant(0, dtype=tf.int32)), ('lstm_c', tf.zeros((intgrd_batchsize, n_lstm), dtype=tf.float32)), ('lstm_h', tf.zeros((intgrd_batchsize, n_lstm), dtype=tf.float32)), ('pred', tf.zeros(intgrd_output_layer.get_output_shape())) ]) # Get initial tensor shapes in tf format init_shapes = OrderedDict([ ('time', init_tensors['time'].get_shape()), ('lstm_c', init_tensors['lstm_c'].get_shape()), ('lstm_h', init_tensors['lstm_h'].get_shape()), ('pred', init_tensors['pred'].get_shape()), ]) def body_intgrd(time, lstm_c, lstm_h, pred): """Loop body for integrated gradients""" if self.lstm_network_config['reversed']: time_index = n_timesteps - time else: time_index = time # # Update layer with precomputed forward input activations for LSTM # intgrd_input_layer.update(intgrd_input[:, time_index:time_index + 1, :]) # # Update LSTM states # intgrd_lstm_layer.c[-1], intgrd_lstm_layer.h[-1] = lstm_c, lstm_h # # Calculate output # pred = intgrd_output_layer.get_output() lstm_c = intgrd_lstm_layer.c[-1] lstm_h = intgrd_lstm_layer.h[-1] # Increment time time += tf.constant(1, dtype=tf.int32) return [time, lstm_c, lstm_h, pred] wl_ret = tf.while_loop(cond=cond, body=body_intgrd, loop_vars=tuple(init_tensors.values()), shape_invariants=tuple(init_shapes.values()), parallel_iterations=self.loop_parallel_iterations, back_prop=True, swap_memory=True) intgrd_pred = wl_ret[-1] # For reward redistribution, use only main task and aux. task for accumulated reward prediction intgrd_pred = intgrd_pred[..., 0] + intgrd_pred[..., -1] # Get gradients, set NaNs to 0 grads = tf.gradients(intgrd_pred, intgrd_input)[0] grads = tf.where(tf.is_nan(grads), tf.zeros_like(grads), grads) # Get prediction at first sample as we need zero-sample prediction for quality check of integrated gradients intgrd_pred_first_sample = intgrd_pred[0] # Calc gradients, sum over batch dimension intgrd_grads = tf.reduce_sum(grads, axis=0) # Scale by original input intgrd_grads *= intgrd_input_placeholder[0] # Sum over features=lstm units intgrd_grads = tf.reduce_sum(intgrd_grads, axis=-1) # -------------------------------------------------------------------------------------------------------------- # TF-summaries # -------------------------------------------------------------------------------------------------------------- tf.summary.scalar("Environment/reward", accumulated_reward) tf.summary.scalar("Environment/emean_reward", emean_reward) tf.summary.scalar("Environment/n_timesteps", n_timesteps) tf.summary.scalar("RR/rr_loss_last_timestep", rr_loss_last_timestep) if self.reward_redistribution_config['cont_pred_w']: tf.summary.scalar("RR/rr_loss_all_timesteps", rr_loss_all_timesteps) tf.summary.scalar("RR/rr_reg_penalty", rr_reg_penalty) tf.summary.scalar("RR/rr_loss", rr_loss) tf.summary.scalar("RR/predicted_reward", predicted_reward[0, -1, 0]) if self.write_histograms: [tf.summary.histogram("activations/RR/{}".format(n), values=rr_returns['rr_lstm_internals'][0, -1, 0, i]) for i, n in enumerate(['rr_lstm_ig', 'rr_lstm_og', 'rr_lstm_ci', 'rr_lstm_fg'])] tf.summary.histogram("activations/RR/lstm_h", rr_returns['rr_lstm_h'][0, -1, :]) [tf.summary.histogram("gradients/RR/{}".format(t.name), values=g) for g, t in zip(rr_grads, rr_trainables)] [tf.summary.histogram("weights/RR/{}".format(t.name), values=t) for t in rr_trainables] # -------------------------------------------------------------------------------------------------------------- # Publish # -------------------------------------------------------------------------------------------------------------- # Placeholders placeholders = OrderedDict( game_frames_placeholder=game_frames_placeholder, game_actions_placeholder=game_actions_placeholder, game_rewards_placeholder=game_rewards_placeholder, game_length_placeholder=game_length_placeholder, aux_target_placeholder=aux_target_placeholder, intgrd_input_placeholder=intgrd_input_placeholder, intgrd_w_placeholder=intgrd_w_placeholder ) # Data data_tensors = OrderedDict( lstm_internals=rr_returns['rr_lstm_internals'][0], lstm_h=rr_returns['rr_lstm_h'], intgrd_gradients=intgrd_grads, intgrd_lstm_net_fwd=rr_returns['rr_net_fwd'], intgrd_pred_last_sample=intgrd_pred[-1], intgrd_pred_first_sample=intgrd_pred_first_sample, rr_loss_last_timestep=rr_loss_last_timestep, rr_loss=rr_loss, predictions=predicted_reward[0, :, :], aux_target_all_ts=target_all_ts, pred_return=predicted_reward[0, -1, 0] ) # Operations operation_tensors = OrderedDict( rr_update=rr_update ) # Summaries summaries = OrderedDict( all_summaries=tf.summary.merge_all() ) self.placeholders = placeholders self.data_tensors = data_tensors self.operation_tensors = operation_tensors self.summaries = summaries def reward_redistribution(self, tf_session, states, actions, rewards, aux_target, avg_reward, redistribute_reward=False, details=False, use_reward_redistribution=True, summaries=False, update=True, verbose=True): """Perform reward redistribution without junking batchsize != 1 currently not supported; see reward_redistribution_junked() for more information; """ if verbose: print(" started loop with {} timesteps...".format(len(rewards)), end="") starttime = time.time() sys.stdout.flush() # # Set placeholder values # placeholder_values = OrderedDict( game_frames_placeholder=states, game_actions_placeholder=actions, game_rewards_placeholder=rewards, game_length_placeholder=len(rewards), aux_target_placeholder=aux_target ) feed_dict = dict(((self.placeholders[k], placeholder_values[k]) for k in placeholder_values.keys())) # # Decide which tensors to compute # data_keys = ['rr_loss', 'rr_loss_last_timestep', 'pred_return'] if redistribute_reward: data_keys += ['intgrd_lstm_net_fwd', 'predictions'] if details: data_keys += ['lstm_internals', 'lstm_h', 'predictions', 'aux_target_all_ts'] data_tensors = [self.data_tensors[k] for k in data_keys] operation_keys = [] if update: operation_keys += ['rr_update'] operation_tensors = [self.operation_tensors[k] for k in operation_keys] summary_keys = [] if summaries: summary_keys += ['all_summaries'] summary_tensors = [self.summaries[k] for k in summary_keys] # # Run graph and re-associate return values with keys in dictionary # ret = tf_session.run(data_tensors + summary_tensors + operation_tensors, feed_dict) ret_dict = OrderedDict(((k, ret[i]) for i, k in enumerate(data_keys))) del ret[:len(data_keys)] ret_dict.update(OrderedDict(((k, ret[i]) for i, k in enumerate(summary_keys)))) # # Check reward redistribution and integrated gradients quality # ret_dict['rel_error'] = 1 ret_dict['rr_quality'] = 0 if redistribute_reward: # # Calculate squared percentage prediction error to scale reward mixing (ignore redistribution if error>20%) # use_reward_redistribution_quality_threshold = \ self.reward_redistribution_config['use_reward_redistribution_quality_threshold'] target = np.sum(rewards) epsilon_sqd = np.sqrt(np.clip(np.abs(avg_reward), a_min=1e-5, a_max=None)) prediction = ret_dict['pred_return'] sqd_perd_pred_err = ((target - prediction) ** 2) / (target**2 + epsilon_sqd) if verbose: print("\tsqd_perd_pred_err: {} (t:{}, p:{}".format(sqd_perd_pred_err, target, prediction)) ret_dict['rel_error'] = sqd_perd_pred_err # Don't compute integrated gradients if error is too high if sqd_perd_pred_err < use_reward_redistribution_quality_threshold: intgrds, intgrdperc, zero_sample_pred = self.integrated_gradients( tf_session=tf_session, lstm_inputs=ret_dict['intgrd_lstm_net_fwd'], game_len=len(rewards), intgrd_steps=self.reward_redistribution_config['intgrd_steps'], intgrd_batchsize=self.reward_redistribution_config['intgrd_batchsize'], verbose=verbose) # Quality of reward redistribution is only > 0 if integrated gradients is good enough ret_dict['rr_quality'] = 1 - sqd_perd_pred_err # Check if integrated gradients signal is within +/- 20% error range if (80. <= intgrdperc <= 120.) and use_reward_redistribution: # Correct for integrated gradients error intgrds += zero_sample_pred / len(rewards) intgrdssum = np.sum(intgrds) error = prediction - intgrdssum intgrds += error / len(rewards) # Correct for return prediction error intgrds[:] *= np.clip(rewards.sum() / (prediction + (np.sign(prediction) * (np.sqrt(epsilon_sqd) / 5))), a_min=1e-5, a_max=1.5) ret_dict['redistributed_reward'] = intgrds ret_dict['intgrd_from_lstm'] = intgrds else: ret_dict['redistributed_reward'] = rewards ret_dict['intgrd_from_lstm'] = intgrds else: ret_dict['redistributed_reward'] = rewards ret_dict['intgrd_from_lstm'] = np.zeros_like(rewards) else: ret_dict['redistributed_reward'] = rewards ret_dict['intgrd_from_lstm'] = np.zeros_like(rewards) if verbose: print("done! ({}sec)".format(time.time() - starttime)) return ret_dict def reward_redistribution_junked(self, tf_session, states, actions, rewards, avg_reward, redistribute_reward=True, use_reward_redistribution=True, update=True, details=False, summaries=False, junksize=500, verbose=True): """Perform reward redistribution on longer sequences junk-wise batchsize != 1 currently not supported; Variable sizes for n_timesteps may be used; Parameters ---------- tf_session : tensorflow session tensorflow session to compute the graph in states : numpy array Game frames of shape (batchsize, n_timesteps, x, y, c) actions : numpy array Taken actions of shape (batchsize, n_timesteps, 1) rewards : numpy array Reward from environment of shape (n_timesteps,) avg_reward : float Average reward used to compute reward redistribution quality measure redistribute_reward : bool Compute reward redistribution? use_reward_redistribution : bool Use reward redistribution? update : bool Update weights of reward redistribution model? details : bool Enable computation and logging of debugging details? summaries : bool Enable computation of tensorboard summaries? junksize : int Number of timesteps per sequence junk verbose : bool Enable printing to console? Returns ---------- dict Dictionary containing evaluated tensors; Non-optional key/values are: ---------- 'redistributed_reward' : numpy array Final redistributed reward in array of shape (n_timesteps,) 'intgrd_from_lstm' : numpy array Integrated gradients signal of shape (n_timesteps,) 'rr_loss' : float Mean loss for all targtes of reward redistribution model over all junks 'rr_loss_last_timestep' : float Mean loss for main target (=return prediction) of reward redistribution model over all junks 'rel_error' : float Mean relative error of reward redistribution model over all junks 'rr_quality' : float Quality measure of reward redistribution model for last junk """ seq_len = len(rewards) n_junks = int(np.ceil(seq_len / junksize)) # Overlap junks n_junks += n_junks - 1 halved_junksize = int(junksize / 2) redistributed_reward = np.copy(rewards) intgrd_from_lstm = np.zeros_like(rewards) rr_quality = np.empty_like(rewards) # Prepare auxiliary tasks aux_target = np.empty((rewards.shape[0], 2)) aux_target_temp = np.concatenate([rewards, self.aux_target_pad], axis=0) aux_target[:, 0] = np.convolve(aux_target_temp, self.aux_target_filter, 'valid') aux_target[:, 1] = np.sum(rewards) - np.cumsum(rewards) if verbose: print(" started loop with {} steps in {} junks...".format(len(rewards), n_junks)) starttime = time.time() # # Loop over junks and redistribute reward; Only store first half of overlapping junks and overwrite rest; # junk_ret_dicts = [] for junk in range(n_junks): junkslice = slice(junk*halved_junksize, junk*halved_junksize+junksize) junk_ret_dict = self.reward_redistribution(tf_session, states[:, junkslice], actions[:, junkslice], rewards[junkslice], aux_target[junkslice], avg_reward=avg_reward, redistribute_reward=redistribute_reward, details=details, use_reward_redistribution=use_reward_redistribution, summaries=summaries, update=update, verbose=False) redistributed_reward[junkslice] = junk_ret_dict['redistributed_reward'] intgrd_from_lstm[junkslice] = junk_ret_dict['intgrd_from_lstm'] rr_quality[junkslice] = junk_ret_dict['rr_quality'] junk_ret_dicts.append(junk_ret_dict) # # If multiple junks were used, concatenate sequences for plotting etc. accordingly # if n_junks > 1: ret_dict = dict(((k, np.concatenate([jrd[k][:halved_junksize] for jrd in junk_ret_dicts], axis=0)) if k == 'lstm_internals' or k == 'predictions' or k == 'aux_target_all_ts' else (k, np.concatenate([jrd[k][:, :halved_junksize] for jrd in junk_ret_dicts], axis=1)) if k == 'lstm_h' else (k, junk_ret_dicts[-1][k]) if k == 'all_summaries' else (k, None) if (k == 'intgrd_lstm_net_fwd' or k == 'redistributed_reward' or k == 'intgrd_from_lstm' or k == 'rr_quality') else (k, [jrd[k] for jrd in junk_ret_dicts]) for k in junk_ret_dicts[0].keys())) else: ret_dict = junk_ret_dicts[0] # # Apply eligibility trace to redistributed reward # et_redistributed_reward = np.zeros_like(redistributed_reward) et_redistributed_reward[-1] = redistributed_reward[-1] for t in reversed(range(0, len(redistributed_reward) - 1)): et_redistributed_reward[t] = self.reward_redistribution_config['lambda_eligibility_trace'] * \ et_redistributed_reward[t + 1] + redistributed_reward[t] # # Add mandatory fields to return dictionary # ret_dict['redistributed_reward'] = et_redistributed_reward ret_dict['intgrd_from_lstm'] = intgrd_from_lstm ret_dict['rr_loss'] = np.mean(ret_dict['rr_loss']) ret_dict['rr_loss_last_timestep'] = np.mean(ret_dict['rr_loss_last_timestep']) ret_dict['rel_error'] = np.mean(ret_dict['rel_error']) # rr_quality taken from the last junk. (final return) ret_dict['rr_quality'] = rr_quality if verbose: print("\t...done! ({}sec)".format(time.time() - starttime)) return ret_dict def integrated_gradients(self, tf_session, lstm_inputs, game_len, intgrd_steps, intgrd_batchsize, verbose=True): """Compute integrated gradients batchsize != 1 currently not supported; Variable sizes for n_timesteps may be used; intgrd_steps must be dividable by intgrd_batchsize; Parameters ---------- tf_session : tensorflow session tensorflow session to compute the graph in lstm_inputs : numpy array Pre-computed input activations for reward redistribution LSTM network of shape (batchsize, n_timesteps, f) game_len : int Number of timesteps in game intgrd_steps : int Number of steps/interpolations to use in integrated gradients intgrd_batchsize : int Batchsize to use when parallelizing integrated gradients computation verbose : bool Enable printing to console? Returns ---------- numpy array Numpy array with integrated grdients signal of shape (n_timesteps,) float Quality measure for integrated gradients in percent (see RUDDER paper) float Reward redistribution model output for zeroed input sequence for rescaling of signal """ if verbose: print(" started integrated gradients with {} intgrd-steps...".format(intgrd_steps), end="") starttime = time.time() sys.stdout.flush() # Create multiplier for interpolating between full and zeroed input sequence intgrd_w = np.linspace(0, 1, num=intgrd_steps, dtype=np.float32) intgrds = None zero_sample_pred = None full_sample_pred = None # Set up minibatches n_mbs = int(intgrd_steps / intgrd_batchsize) if (intgrd_steps % intgrd_batchsize) != 0: raise ValueError("intgrd stepsize not dividable by intgrd batchsize!") # # Loop over minibatches and compute integrated gradients # for mb in range(n_mbs): if verbose: print(".", end="") curr_intgrd_w = intgrd_w[mb * intgrd_batchsize:(mb + 1) * intgrd_batchsize] placeholder_values = OrderedDict( intgrd_input_placeholder=lstm_inputs, intgrd_w_placeholder=curr_intgrd_w, game_length_placeholder=game_len ) feed_dict = dict(((self.placeholders[k], placeholder_values[k]) for k in placeholder_values.keys())) data_keys = ['intgrd_gradients'] if mb == 0: # get prediction for 0-sample data_keys += ['intgrd_pred_first_sample'] if mb == (n_mbs - 1): # get prediction for full sample data_keys += ['intgrd_pred_last_sample'] data_tensors = [self.data_tensors[k] for k in data_keys] ret = tf_session.run(data_tensors, feed_dict) ret_dict = OrderedDict(((k, ret[i]) for i, k in enumerate(data_keys))) if intgrds is None: intgrds = ret_dict['intgrd_gradients'] else: intgrds += ret_dict['intgrd_gradients'] if mb == 0: zero_sample_pred = ret_dict['intgrd_pred_first_sample'] if mb == (n_mbs - 1): full_sample_pred = ret_dict['intgrd_pred_last_sample'] intgrds /= intgrd_steps # # Compute percentage of integrated gradients reconstruction quality # intgrdssum = intgrds.sum() diff = full_sample_pred - zero_sample_pred if diff != 0: intgrdperc = 100. / diff * intgrdssum else: # in case 0-sequence and full-sequence are equal, take a heuristic to decide on intgrdperc intgrdperc = 100. + intgrdssum # Integrated gradients shows instabilities at last timestep, so we set them to 0 intgrds[-10:] = 0 if verbose: print("pred", full_sample_pred, "0pred", zero_sample_pred, "diff", diff, "intgrd", intgrdssum, "perc", intgrdperc) print("done! ({}sec)".format(time.time() - starttime)) return intgrds, intgrdperc, zero_sample_pred ```
{ "source": "jingweiz/pytorch-dnc", "score": 2 }
#### File: core/heads/dynamic_write_head.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable from utils.fake_ops import fake_cumprod from core.heads.dynamic_head import DynamicHead class DynamicWriteHead(DynamicHead): def __init__(self, args): super(DynamicWriteHead, self).__init__(args) # params if self.visualize: self.win_head = "win_write_head" # buid model: add additional outs for write # for location focus: dynamic allocation self.hid_2_alloc_gate = nn.Linear(self.hidden_dim, self.num_heads * 1) self.hid_2_write_gate = nn.Linear(self.hidden_dim, self.num_heads * 1) # for access self.hid_2_erase = nn.Linear(self.hidden_dim, self.num_heads * self.mem_wid) self.hid_2_add = nn.Linear(self.hidden_dim, self.num_heads * self.mem_wid) # the write vector in dnc, called "add" in ntm # logging self.logger.warning("<-----------------------------------> WriteHeads: {" + str(self.num_heads) + " heads}") self.logger.warning(self) # reset self._reset() def visual(self): if self.visualize: # here we visualize the wl_curr of the first batch self.win_head = self.vis.heatmap(self.wl_curr_vb.data[0].clone().cpu().transpose(0, 1).numpy(), env=self.refs, win=self.win_head, opts=dict(title="write_head")) def _update_usage(self, prev_usage_vb): """ calculates the new usage after writing to memory variables needed: prev_usage_vb: [batch_size x mem_hei] wl_prev_vb: [batch_size x num_write_heads x mem_hei] returns: usage_vb: [batch_size x mem_hei] """ # calculate the aggregated effect of all write heads # NOTE: how multiple write heads are delt w/ is not discussed in the paper # NOTE: this part is only shown in the source code write_weights_vb = 1. - torch.prod(1. - self.wl_prev_vb, 1) return prev_usage_vb + (1. - prev_usage_vb) * write_weights_vb def _allocation(self, usage_vb, epsilon=1e-6): """ computes allocation by sorting usage, a = a_t[\phi_t[j]] variables needed: usage_vb: [batch_size x mem_hei] -> indicating current memory usage, this is equal to u_t in the paper when we only have one write head, but for multiple write heads, one should update the usage while iterating through the write heads to take into account the allocation returned by this function returns: alloc_vb: [batch_size x num_write_heads x mem_hei] """ # ensure values are not too small prior to cumprod usage_vb = epsilon + (1 - epsilon) * usage_vb # NOTE: we sort usage in ascending order sorted_usage_vb, indices_vb = torch.topk(usage_vb, k=self.mem_hei, dim=1, largest=False) # to imitate tf.cumrprod(exclusive=True) https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8 cat_sorted_usage_vb = torch.cat((Variable(torch.ones(self.batch_size, 1)).type(self.dtype), sorted_usage_vb), 1)[:, :-1] # TODO: seems we have to wait for this PR: https://github.com/pytorch/pytorch/pull/1439 prod_sorted_usage_vb = fake_cumprod(cat_sorted_usage_vb) # prod_sorted_usage_vb = torch.cumprod(cat_sorted_usage_vb, dim=1) # TODO: use this once the PR is ready # alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb # equ. (1) # 0.1.12 alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb.squeeze() # equ. (1) # 0.2.0 _, indices_vb = torch.topk(indices_vb, k=self.mem_hei, dim=1, largest=False) alloc_weight_vb = alloc_weight_vb.gather(1, indices_vb) return alloc_weight_vb def _location_focus(self, usage_vb): """ Calculates freeness-based locations for writing to. This finds unused memory by ranking the memory locations by usage, for each write head. (For more than one write head, we use a "simulated new usage" which takes into account the fact that the previous write head will increase the usage in that area of the memory.) variables needed: usage_vb: [batch_size x mem_hei] -> representing current memory usage write_gate_vb: [batch_size x num_write_heads x 1] -> /in [0, 1] indicating how much each write head does writing based on the address returned here (and hence how much usage increases) returns: alloc_weights_vb: [batch_size x num_write_heads x mem_hei] -> containing the freeness-based write locations Note that this isn't scaled by `write_gate`; this scaling must be applied externally. """ alloc_weights_vb = [] for i in range(self.num_heads): alloc_weights_vb.append(self._allocation(usage_vb)) # update usage to take into account writing to this new allocation # NOTE: checked: if not operate directly on _vb.data, then the _vb # NOTE: outside of this func will not change usage_vb += (1 - usage_vb) * self.write_gate_vb[:, i, :].expand_as(usage_vb) * alloc_weights_vb[i] # pack the allocation weights for write heads into one tensor alloc_weight_vb = torch.stack(alloc_weights_vb, dim=1) self.wl_curr_vb = self.write_gate_vb.expand_as(alloc_weight_vb) * (self.alloc_gate_vb.expand_as(self.wc_vb) * alloc_weight_vb + \ (1. - self.alloc_gate_vb.expand_as(self.wc_vb)) * self.wc_vb) def _access(self, memory_vb): # write """ variables needed: wl_curr_vb: [batch_size x num_heads x mem_hei] erase_vb: [batch_size x num_heads x mem_wid] -> /in (0, 1) add_vb: [batch_size x num_heads x mem_wid] -> w/ no restrictions in range memory_vb: [batch_size x mem_hei x mem_wid] returns: memory_vb: [batch_size x mem_hei x mem_wid] NOTE: IMPORTANT: https://github.com/deepmind/dnc/issues/10 """ # first let's do erasion weighted_erase_vb = torch.bmm(self.wl_curr_vb.contiguous().view(-1, self.mem_hei, 1), self.erase_vb.contiguous().view(-1, 1, self.mem_wid)).view(-1, self.num_heads, self.mem_hei, self.mem_wid) keep_vb = torch.prod(1. - weighted_erase_vb, dim=1) memory_vb = memory_vb * keep_vb # finally let's write (do addition) return memory_vb + torch.bmm(self.wl_curr_vb.transpose(1, 2), self.add_vb) def forward(self, hidden_vb, memory_vb, usage_vb): # content focus super(DynamicWriteHead, self).forward(hidden_vb, memory_vb) # location focus self.alloc_gate_vb = F.sigmoid(self.hid_2_alloc_gate(hidden_vb)).view(-1, self.num_heads, 1) self.write_gate_vb = F.sigmoid(self.hid_2_write_gate(hidden_vb)).view(-1, self.num_heads, 1) self._location_focus(usage_vb) self.wl_prev_vb = self.wl_curr_vb # access self.erase_vb = F.sigmoid(self.hid_2_erase(hidden_vb)).view(-1, self.num_heads, self.mem_wid) self.add_vb = F.tanh(self.hid_2_add(hidden_vb)).view(-1, self.num_heads, self.mem_wid) return self._access(memory_vb) def _update_link(self, prev_link_vb, prev_preced_vb): """ calculates the new link graphs For each write head, the link is a directed graph (represented by a matrix with entries in range [0, 1]) whose vertices are the memory locations, and an edge indicates temporal ordering of writes. variables needed: prev_link_vb: [batch_size x num_heads x mem_hei x mem_wid] -> {L_t-1}, previous link graphs prev_preced_vb: [batch_size x num_heads x mem_hei] -> {p_t}, the previous aggregated precedence -> weights for each write head wl_curr_vb: [batch_size x num_heads x mem_hei] -> location focus of {t} returns: link_vb: [batch_size x num_heads x mem_hei x mem_hei] -> {L_t}, current link graph """ write_weights_i_vb = self.wl_curr_vb.unsqueeze(3).expand_as(prev_link_vb) write_weights_j_vb = self.wl_curr_vb.unsqueeze(2).expand_as(prev_link_vb) prev_preced_j_vb = prev_preced_vb.unsqueeze(2).expand_as(prev_link_vb) prev_link_scale_vb = 1 - write_weights_i_vb - write_weights_j_vb new_link_vb = write_weights_i_vb * prev_preced_j_vb link_vb = prev_link_scale_vb * prev_link_vb + new_link_vb # Return the link with the diagonal set to zero, to remove self-looping edges. # TODO: set diag as 0 if there's a specific method to do that w/ later releases diag_mask_vb = Variable(1 - torch.eye(self.mem_hei).unsqueeze(0).unsqueeze(0).expand_as(link_vb)).type(self.dtype) link_vb = link_vb * diag_mask_vb return link_vb def _update_precedence_weights(self, prev_preced_vb): """ calculates the new precedence weights given the current write weights the precedence weights are the "aggregated write weights" for each write head, where write weights with sum close to zero will leave the precedence weights unchanged, but with sum close to one will replace the precedence weights. variables needed: prev_preced_vb: [batch_size x num_write_heads x mem_hei] wl_curr_vb: [batch_size x num_write_heads x mem_hei] returns: preced_vb: [batch_size x num_write_heads x mem_hei] """ # write_sum_vb = torch.sum(self.wl_curr_vb, 2) # 0.1.12 write_sum_vb = torch.sum(self.wl_curr_vb, 2, keepdim=True) # 0.2.0 return (1 - write_sum_vb).expand_as(prev_preced_vb) * prev_preced_vb + self.wl_curr_vb def _temporal_link(self, prev_link_vb, prev_preced_vb): link_vb = self._update_link(prev_link_vb, prev_preced_vb) preced_vb = self._update_precedence_weights(prev_preced_vb) return link_vb, preced_vb ```
{ "source": "JingweiZuo/SE2TeC", "score": 3 }
#### File: SE2TeC/Algo_centralized/timeseries.py ```python import numpy as np from collections import defaultdict import sys from typing import Any class TimeSeries(object): def __init__(self): self.class_timeseries = '' self.dimension_name = '' self.timeseries = None self.matched = False self.name = '' def __repr__(self): representation = "Timeseries with dimension: " + self.dimension_name representation += " with class: " + str(self.class_timeseries) representation += " with series: " + str(self.timeseries) return representation def __str__(self): representation = "Timeseries with dimension: " + self.dimension_name representation += " with class: " + str(self.class_timeseries) representation += " with series: " + str(self.timeseries) return representation @staticmethod def groupByClass_timeseries(list_timeseries): #'list_timeseries': {ts_name1:ts1, ts_name2:ts2, ...} dict_ts = {} # type: dict for ts in list_timeseries.values(): ts_class = ts.class_timeseries if ts_class in dict_ts.keys(): dict_ts[ts.class_timeseries].append(ts) else: dict_ts[ts.class_timeseries] = [ts] return dict_ts @staticmethod def generate_timeseries(unid): unid_timeseries = [] for cuts in unid: target_class = cuts[-1] ts_str = cuts[:-1] ts = [float(element) for element in ts_str] timeseries = TimeSeries() timeseries.class_timeseries = target_class timeseries.timeseries = np.array(ts) unid_timeseries.append(timeseries) return unid_timeseries ``` #### File: Algo_centralized/utils/old_Utils.py ```python import os import numpy as np import collections import pickle import sys import psutil as ps import random import csv import json from USE.timeseries import TimeSeries class old_Utils(object): SHAPELET_DIRNAME = "/UniShapelets/" SHAPELET_EXT = ".shapelet" SEQUENCE_DIRNAME = "/Sequences/" SEQUENCE_EXT = ".sequence" CSV_DIRNAME = "/csv_shapelet/" CSV_EXT = ".csv" JSON = SEQUENCE_DIRNAME + "json/" @staticmethod def convert_csv_to_multivariate_timeseries(directory): files_list = [f for f in os.listdir(directory) if f.lower().endswith('.csv')] list_multivariate_timeseries = [] for file in files_list: multivariate_timeseries = TimeSeries.generate_from_file(directory, file) list_multivariate_timeseries.append(multivariate_timeseries) return list_multivariate_timeseries # @staticmethod # def save_shapelets(directory, list_shapelets): # shapelet_dir = directory + old_Utils.DIRNAME # if not os.path.exists(shapelet_dir): # os.makedirs(shapelet_dir) # for aShapelet in list_shapelets: # file_name = aShapelet.name + aShapelet.dimension_name + old_Utils.EXTENSION # path = shapelet_dir + file_name # pickle.dump(aShapelet, open(path, "wb")) @staticmethod def save_json(directory, list_sequences): folder = directory + old_Utils.JSON if not os.path.exists(folder): os.makedirs(folder) else: files_list = [f for f in os.listdir(folder) if f.lower().endswith('.json')] for file in files_list: path = folder + file os.remove(path) for aSequence in list_sequences: file_name = str(aSequence.name) + aSequence.dimension_name + '.json' path = folder + file_name with open(path, 'w') as outfile: outfile.write(aSequence.__repr__()) # j = jsonpickle.encode(aSequence.sequence[0], make_refs=False) # outfile.write(j) # outfile.flush() # outfile.close() @staticmethod def json_list(representation, name, listos): representation += '"' + name + '":[' for s in listos: representation += '' + str(s) + ',' if len(listos): representation = representation[:-1] representation += ']' return representation @staticmethod def json_dict(representation, name, dictos, key='list'): representation += '"' + name + '":{' for k, i in dictos.items(): if key == 'list': representation = old_Utils.json_list(representation, k, i) representation += ',' else: representation += '"' + k + '": ' representation += '' + str(i) + ',' representation = representation[:-1] representation += '}' return representation @staticmethod def save(directory, list_objects, option): if option.lower() == 'shapelet': dirname = old_Utils.SHAPELET_DIRNAME extension = old_Utils.SHAPELET_EXT elif option.lower() == 'sequence': dirname = old_Utils.SEQUENCE_DIRNAME extension = old_Utils.SEQUENCE_EXT elif option.lower() == 'csv': dirname = old_Utils.CSV_DIRNAME extension = old_Utils.CSV_EXT folder = directory + dirname if not os.path.exists(folder): os.makedirs(folder) else: ##clean the historical files files_list = [f for f in os.listdir(directory + dirname) if f.lower().endswith(extension)] for file in files_list: path = directory + dirname + file os.remove(path) if option.lower() != 'csv': for anObject in list_objects: file_name = str(anObject.name) + anObject.dimension_name + extension path = folder + file_name pickle.dump(anObject, open(path, "wb")) else: file_name = "shapelet_test" + extension path = folder + file_name i = 0 with open(path, 'w') as f: writer = csv.writer(f, lineterminator='\n', delimiter=';',) for anObject in list_objects: i+=1 for key in anObject.matching_indices: writer.writerow(["shapelet" + str(i), anObject.name, anObject.dimension_name, anObject.class_shapelet, key, anObject.matching_indices[key], anObject.gain, anObject.subsequence.tolist(), anObject.min_distance] ) @staticmethod def load(directory, option): if option.lower() == 'shapelet': dirname = old_Utils.SHAPELET_DIRNAME extension = old_Utils.SHAPELET_EXT elif option.lower() == 'sequence': dirname = old_Utils.SEQUENCE_DIRNAME extension = old_Utils.SEQUENCE_EXT files_list = [f for f in os.listdir(directory + dirname) if f.lower().endswith(extension)] list_objects = [] for file in files_list: path = directory + dirname + file an_object = pickle.load(open(path, "rb")) list_objects.append(an_object) return list_objects # @staticmethod # def load_shapelets(directory): # files_list = [f for f in os.listdir(directory + old_Utils.DIRNAME) if f.lower().endswith(old_Utils.EXTENSION)] # list_shapelets = [] # for file in files_list: # path = directory + old_Utils.DIRNAME + file # shapelet = pickle.load(open(path, "rb")) # list_shapelets.append(shapelet) # return list_shapelets # A helper generator method to create a sliding window over a list and return all the sub-lists @staticmethod def sliding_window(sequence, win_size, step=1): # Verify the inputs try: it = iter(sequence) except TypeError: raise Exception("**ERROR** sequence must be iterable.") if not ((type(win_size) == type(0)) and (type(step) == type(0))): raise Exception("**ERROR** type(winSize) and type(step) must be int.") if step > win_size: raise Exception("**ERROR** step must not be larger than winSize.") if win_size > len(sequence): raise Exception("**ERROR** winSize must not be larger than sequence length.") # Pre-compute number of chunks to emit num_chunks = ((len(sequence) - win_size) / step) + 1 # Do the work for i in range(0, int(num_chunks * step), step): yield sequence[i:i + win_size] # A helper method that helps to calculate the entropy @staticmethod def entropy_helper(n): return - (n * np.log2(n)) # A helper method to calculate the entropy of the data set @staticmethod def dataset_entropy(unid): classes_dict = collections.defaultdict(list) for timeseries in unid: classes_dict[timeseries.class_timeseries].append(timeseries) entropy = 0.0 for key in classes_dict.keys(): #print("key class is ", str(key)) p = float(len(classes_dict[key])) / len(unid) #print("p is ", str(p)) entropy += old_Utils.entropy_helper(p) #print("entropy is ", entropy) return entropy @staticmethod def entropy_after_split(unid1, unid2): f1 = float(len(unid1)) / (len(unid1) + len(unid2)) f2 = float(len(unid2)) / (len(unid1) + len(unid2)) #print("f1 is ", str(f1), "f2 is", str(f2)) entropy1 = f1 * old_Utils.dataset_entropy(unid1) #e1class = [ts.class_timeseries for ts in unid1] #e2class = [ts.class_timeseries for ts in unid2] #print("unid1.class is: ", e1class) #print("unid2.class is: ", e2class) entropy2 = f2 * old_Utils.dataset_entropy(unid2) #print("entropy1 + entropy2 is ", entropy1 + entropy2) return entropy1 + entropy2 @staticmethod def print_progress(iteration, total, prefix='Progress:', suffix='Complete', decimals=1, barLength=70): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) barLength - Optional : character length of bar (Int) """ format_str = "{0:." + str(decimals) + "f}" percent = format_str.format(100 * (iteration / float(total))) filled_length = int(round(barLength * iteration / float(total))) bar = '█' * filled_length + '-' * (barLength - filled_length) sys.stdout.write('\r%s |%s| %s%s %s' % (prefix, bar, percent, '%', suffix)), if iteration == total: sys.stdout.write('\n') sys.stdout.flush() @staticmethod def min_length_dataset(list_timeseries): min_l = sys.maxsize for mts in list_timeseries: if len(mts.timeseries) < min_l: min_l = len(mts.timeseries) return min_l @staticmethod def max_length_dataset(list_multivariate_timeseries): max_l = 0 for mts in list_multivariate_timeseries: if mts.length() > max_l: max_l = mts.length() return max_l @staticmethod def check_memory(perc=90): mem = ps.virtual_memory() if mem.percent >= perc: return False return True @staticmethod def get_random_color(pastel_factor=0.5): return [(x + pastel_factor) / (1.0 + pastel_factor) for x in [random.uniform(0, 1.0) for i in [1, 2, 3]]] @staticmethod def color_distance(c1, c2): return sum([abs(x[0] - x[1]) for x in zip(c1, c2)]) @staticmethod def generate_new_color(existing_colors, pastel_factor=0.5): max_distance = None best_color = None for i in range(0, 100): color = old_Utils.get_random_color(pastel_factor=pastel_factor) if not existing_colors: return color best_distance = min([old_Utils.color_distance(color, c) for c in existing_colors]) if not max_distance or best_distance > max_distance: max_distance = best_distance best_color = color return best_color @staticmethod def generate_new_colors(k=10): colors = [] for i in range(k): colors.append(old_Utils.generate_new_color(colors, pastel_factor=0.9)) return colors ```
{ "source": "JingweiZuo/SMATE", "score": 2 }
#### File: mtsc_ca_sfcn/src/fcn_ca_main.py ```python import sys import numpy as np from sklearn.metrics import accuracy_score from fileio.data_io import train_test_file_reading, data_group_processing, list_files, init_folder from fileio.log_io import init_logging from fileio.parameter_proc import read_all_feature_classification from tensor_model.model_cnn import run_cnn from tensor_model.model_setting import return_cnn_setting_from_file from utils.classification_results import averaged_class_based_accuracy import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" #os.environ["CUDA_VISIBLE_DEVICES"]="-1" os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' # from classification_results import predict_matrix_with_prob_to_predict_accuracy # from classification_results import f1_value_precision_recall_accuracy # This is a multi-class classification using CNN model. Using Accuracy instead of F1 as measurement # Just classification, no need to store the output objects def cnn_classification_main(parameter_file, file_keyword, attention_type, function_keyword="fcn_classification"): data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file, learning_rate = read_all_feature_classification(parameter_file, function_keyword) print(data_keyword, data_folder, attr_num, attr_len, num_classes, start_class, class_column, class_id, obj_folder, method, log_folder, out_obj_folder, out_model_folder, cnn_setting_file) log_folder = init_folder(log_folder) out_obj_folder = init_folder(out_obj_folder) out_model_folder = init_folder(out_model_folder) file_list = list_files(data_folder) file_count = 0 class_column = 0 header = True cnn_setting = return_cnn_setting_from_file(cnn_setting_file) conv_num = len(cnn_setting.conv_kernel_list) cnn_setting.out_obj_folder = out_obj_folder cnn_setting.out_model_folder = out_model_folder cnn_setting.learning_rate = learning_rate #cnn_setting.attention_type = 0 # 0: apply ra then sa attentions # -1: No attentions #cnn_setting.attention_type = -1 #cnn_setting.attention_type = 1 # Using the global attention mechnizm #cnn_setting.attention_type = 2 # Using the input attention from https://arxiv.org/pdf/1704.02971.pdf cnn_setting.attention_type = attention_type cnn_setting.cross_entropy_type = -1 # 0: apply the class-based cross-entropy # -1: apply the normal cross-entropy #cnn_setting.cross_entropy_type = 0 init_folder(out_obj_folder) init_folder(out_model_folder) result_obj_folder = obj_folder + method +"_result_folder" result_obj_folder = init_folder(result_obj_folder) delimiter = ' ' loop_count = -1 saver_file_profix = "" trans_bool = False # True: means ins * attr_len * 1 * attr_num # False: means ins * attr_len * attr_num * 1 for train_file in file_list: if file_keyword not in train_file: continue loop_count = loop_count + 1 file_key = train_file.replace('.txt', '') saver_file_profix = file_key + "_atten" + str(cnn_setting.attention_type) valid_file = data_folder + train_file.replace('train', 'valid') if os.path.isfile(valid_file) is False: valid_file = '' test_file = data_folder + train_file.replace('train', 'test') if os.path.isfile(test_file) is False: test_file = '' data_group, attr_num = train_test_file_reading(data_folder + train_file, test_file, valid_file, class_column, delimiter, header) data_group_processing(data_group, attr_num, trans_bool) data_stru = data_group.gene_data_stru() data_group.data_check(data_stru.num_classes, data_stru.min_class) cnn_eval_key = cnn_setting.eval_method if cnn_eval_key == "f1": if num_classes > 2: cnn_eval_key = "acc" log_file = log_folder + data_keyword + '_' + file_key + '_' + function_keyword + "_act" + str(cnn_setting.activation_fun) + "_" + cnn_eval_key + "_attention" + str(cnn_setting.attention_type) + "_conv" + str(conv_num) + '.log' print("log file: " + log_file) logger = init_logging(log_file) logger.info('\nlog file: ' + log_file) logger.info(train_file) logger.info('cnn setting:\n ' + cnn_setting.to_string()) logger.info('method: ' + method) logger.info('============') if file_count == 0: logger.info('train matrix shape: ' + str(data_group.train_x_matrix.shape)) logger.info('train label shape: ' + str(data_group.train_y_vector.shape)) logger.info(data_group.train_x_matrix[0, 0:3, 0:2, 0]) eval_value, train_run_time, test_run_time, cnn_model = run_cnn(cnn_setting, data_group, saver_file_profix, logger) #pred_y_vector = np.argmax(pred_y_prob, axis=1) #avg_acc, ret_str = averaged_class_based_accuracy(pred_y_vector, data_group.test_y_vector) #acc_value = accuracy_score(data_group.test_y_vector, pred_y_vector, True) #logger.info("Averaged acc: " + str(acc_value)) #logger.info(ret_str) logger.info("Fold accuracy: " + str(eval_value)) logger.info(method + ' fold training time (sec):' + str(train_run_time)) logger.info(method + ' fold testing time (sec):' + str(test_run_time)) #logger.info("save obj to " + cnn_model.saver_file) if __name__ == '__main__': argv_array = sys.argv run_stdout = sys.stdout file_keyword = 'train' projected = True len_argv_array = len(argv_array) if len_argv_array == 3: try: data_key = argv_array[1] attention_type = int(argv_array[2]) except ValueError: print("That's not an int!") else: raise Exception("Unkonwn parameter detected! Please follow the format #python fcn_ca_main.py <DATA_NAME> <ATTENTION_TYPE>") print("dataset: " + data_key) print("attention type: " + str(attention_type)) parameter_file = '../parameters/all_feature_classification_' + data_key.lower() + ".txt" print(parameter_file) cnn_classification_main(parameter_file, file_keyword, attention_type) ``` #### File: src/fileio/data_checking.py ```python import logging import os from os.path import isfile, join import numpy as np from data_io import file_reading from data_io import x_y_spliting #import matplotlib.pyplot as plt def data_plot(data_file, class_column=0, delimiter=' '): x_matrix, attr_num = file_reading(data_file, delimiter, True) x_matrix, y_vector = x_y_spliting(x_matrix, class_column) y_min = min(y_vector) y_max = max(y_vector) x_row, x_col = x_matrix.shape attr_len = x_col/attr_num x_matrix = x_matrix.reshape(x_row, attr_num, attr_len) for label in range(y_min, y_max): out_pdf = "asl_class_" + str(label) + ".pdf" fig = plt.figure() label_index = np.where(y_vector==label)[0] label_row = x_matrix[label_index[0], :, :] for attr in range(0, attr_num): plot_series = label_row[attr, :] plot_len = len(plot_series) stop_i = plot_len for i in range(0, plot_len): re_i = plot_len - i - 1 if plot_series[re_i] == 0: stop_i = stop_i - 1 else: break plt.plot(plot_series[0:stop_i]) fig.savefig(out_pdf, dpi=fig.dpi) def data_checking(data_file, class_column=0, delimiter=' '): ret_str = "" x_matrix, attr_num = file_reading(data_file, delimiter, True) x_matrix, y_vector = x_y_spliting(x_matrix, class_column) ret_str = 'x_matrix shape: ' + str(x_matrix.shape) y_min = min(y_vector) y_max = max(y_vector) ret_str = ret_str + "\nclass labels from " + str(y_min) + " to " + str(y_max) #for i in range(y_min, y_max+1): # ret_str = ret_str + '\nclass '+ str(i) + ': '+str(y_vector.count(i)) unique, counts = np.unique(y_vector, return_counts=True) ret_str = ret_str +'\n'+ str(dict(zip(unique, counts))) return ret_str def arc_reduce_null(fname, null_class=1, null_max=1000, class_column=0, delimiter=' ', header = True): num = 0 data_matrix = [] null_count = 0 with open(fname) as f: data_row = [] for line in f: if header == True: attr_num = int(line.strip()) header = False continue data_row = line.split(delimiter) if int(data_row[class_column]) == null_class: null_count = null_count + 1 if null_count < null_max: data_matrix.append(data_row) else: data_matrix.append(data_row) row_num = len(data_matrix) col_num = len(data_matrix[0]) data_matrix = np.array(data_matrix, dtype=float).reshape(row_num, col_num) data_matrix.astype(float) y_vector = data_matrix[:, class_column].astype(int) return np.delete(data_matrix, class_column, 1), y_vector if __name__ == '__main__': #data_file = '../../data/gesture_data/processed_data/data.txt_trainTest10/train_0.txt' #data_file = '../../data/arc_activity_recognition/s1_ijcal/train.txt' #class_column = 0 #delimiter = ' ' #ret_str = data_checking(data_file, class_column, delimiter) #print ret_str #data_file = '../../data/arc_activity_recognition/s1_ijcal/test.txt' #class_column = 0 #delimiter = ' ' #ret_str = data_checking(data_file, class_column, delimiter) #print ret_str data_file = '../../data/evn/ds/DS_all_ready_to_model.csv_trainTest2_weekly_3attr/test_0.txt' #data_file = '../../data/human/subject10_ideal.log' #class_column = 119 #delimiter = '\t' ##null_class=1 ##null_max=1000 ##x_matrix, y_vector = readFile(data_file, null_class, null_max, class_column); ##print x_matrix.shape ##print y_vector.shape # #data_file = '../../data/human/processed/ready/data.txt'#_trainTest10/train_0.txt' #class_column = 0 #delimiter = ' ' #ret_str = data_checking(data_file, class_column, delimiter) #print ret_str data_file = '../../data/dsa/train_test_10_fold/test_0.txt' #data_file = '../../data/dsa/output.txt' #data_file = '../../data/rar/train_test_10_fold_class_based/train_0.txt_class_0.txt' #data_file = "../../data/arabic/train_test_1_fold/train_0.txt" #data_file = "../../data/arabic/train_test_1_fold/test_0.txt" #data_file = "../../data/asl/train_test_3_fold/train_0.txt" #data_file = '../../data/rar/train_test_10_fold/test_0.txt' #data_file = '../../data/arc/train_test_10_fold/test_0.txt' #data_file = '../../data/fixed_arc/train_test_1_fold/test_0.txt' data_key = "phs" data_key = "eeg" #data_key = "fad" data_file = "../../data/" + data_key +"/train.txt" class_column = 0 delimiter = ' ' #data_plot(data_file, class_column, delimiter) ret_str = data_checking(data_file, class_column, delimiter) print(ret_str) ``` #### File: src/fileio/data_processing.py ```python import numpy as np import sys import time import os #from generation_model import Generation_model class data_collection: train_x_matrix = None train_y_vector = None valid_x_matrix = None valid_y_vector = None test_x_matrix = None test_y_vector = None train_y_matrix = None valid_y_matrix = None test_y_matrix = None num_classes = 0 min_class = 0 class_column = 0 def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def __init__(self, train_x_matrix, train_y_vector, class_column=0): self.train_x_matrix = train_x_matrix self.train_y_vector = train_y_vector self.class_column = class_column def gene_data_stru(self): train_x_matrix = self.train_x_matrix if train_x_matrix is None: raise Exception("Missing training data") train_y_vector = self.train_y_vector train_shape_len = len(train_x_matrix.shape) if train_shape_len == 3: train_ins, attr_len, attr_num = train_x_matrix.shape input_map = 1 train_x_matrix = train_x_matrix.reshape(train_ins, attr_len, attr_num, input_map) elif train_shape_len == 4: train_ins, attr_len, attr_num, input_map = train_x_matrix.shape else: raise Exception("Input x matrix invalid shape!!!") min_class = min(train_y_vector) max_class = max(train_y_vector) num_classes = max_class - min_class + 1 return return_data_stru(num_classes, min_class, attr_num, attr_len, self.class_column, train_ins) def data_check(self, num_classes, min_class): if self.train_y_vector is not None: self.train_y_matrix = y_vector_to_matrix(self.train_y_vector, num_classes, min_class) if self.test_y_vector is not None: self.test_y_matrix = y_vector_to_matrix(self.test_y_vector, num_classes, min_class) if self.valid_y_vector is not None: self.valid_y_matrix = y_vector_to_matrix(self.valid_y_vector, num_classes, min_class) elif self.test_y_vector is not None: self.valid_x_matrix = self.test_x_matrix self.valid_y_vector = self.test_y_vector self.valid_y_matrix = self.test_y_matrix ######################################################################################## ## data structure part # starting from min_class, max_class = min_class + num_classes - 1 # It means that all numbers between min_class to max_class should be used as a label class data_structure: def __init__(self, num_classes, min_class, attr_num, attr_len, class_c=0, train_ins=-1): self.num_classes = num_classes self.attr_num = attr_num self.attr_len = attr_len self.class_column = class_c self.train_ins = train_ins self.min_class = min_class def print_to_string(self): ret_str = 'num of classes: ' + str(self.num_classes) +'\nattribute number: ' + str(self.attr_num) +'\nattribute length: ' + str(self.attr_len) +'\nclass column: ' + str(self.class_column) +'\ntrain_ins: ' + str(self.train_ins) return ret_str def return_data_stru(num_classes, min_class, attr_num, attr_len, class_column, train_ins=-1): return data_structure(num_classes, min_class, attr_num, attr_len, class_column, train_ins) def data_stru_gene(train_y_vector, class_colum=0): min_class = min(train_y_vector) max_class = max(train_y_vector) num_clasess = max_class - min_class + 1 def copy_data_stru(in_data_stru): return data_structure(in_data_stru.num_classes, in_data_stru.start_class, in_data_stru.attr_num, in_data_stru.attr_len) ## end of data structure part ######################################################################################## def train_test_transpose(data_matrix, attr_num, attr_len, trans=True): data_row, data_col = data_matrix.shape data_matrix = data_matrix.reshape(data_row, attr_num, attr_len, 1) if trans == True: data_matrix = np.transpose(data_matrix, (0, 2, 3, 1)) else: data_matrix = np.transpose(data_matrix, (0, 2, 1, 3)) #data_matrix = data_matrix.reshape(data_row, data_col) return data_matrix def y_vector_to_matrix(y_vector, num_classes, start_class=0): vector_len = len(y_vector) # print y_vector # print vector_len # print num_classes # print "========" y_matrix = np.zeros((vector_len, num_classes)) count = 0 for item in y_vector: y_matrix[count, int(item)-start_class] = int(1) count = count + 1 return y_matrix def class_label_vector_checking(y_vector): min_class = min(y_vector) max_class = max(y_vector) class_index_dict = {} min_length = -1 max_length = -1 for c in range(min_class, max_class+1): c_index = np.where(y_vector==c)[0] class_index_dict[c] = c_index if min_length == -1: min_length = len(c_index) elif len(c_index) < min_length: min_length = len(c_index) if max_length == -1: max_length = len(c_index) elif len(c_index) > max_length: max_length = len(c_index) return class_index_dict, min_length, max_length def feature_data_generation_4d(data_matrix, feature_index_list): row_n, attr_len, num_map, attr_num = data_matrix.shape ret_matrix = [] new_row_col = 0 new_attr = len(feature_index_list) new_row_col = new_attr * attr_len for i in range(0, row_n): ori_matrix = data_matrix[i].reshape(attr_len, attr_num) matrix = ori_matrix[:, feature_index_list] ret_matrix.append(matrix.reshape(new_row_col)) data_matrix = np.array(ret_matrix).reshape(row_n, new_row_col) return np.array(ret_matrix).reshape(row_n, new_row_col), new_attr def feature_data_generation(data_matrix, attr_len, attr_num, feature_index_list): row_n, col_n = data_matrix.shape ret_matrix = [] new_row_col = 0 new_attr = len(feature_index_list) new_row_col = new_attr * attr_len for i in range(0, row_n): ori_matrix = data_matrix[i].reshape(attr_len, attr_num) matrix = ori_matrix[:, feature_index_list] ret_matrix.append(matrix.reshape(new_row_col)) data_matrix = np.array(ret_matrix).reshape(row_n, new_row_col) return np.array(ret_matrix).reshape(row_n, new_row_col), new_attr def feature_data_generation_v1(data_matrix, attr_num, feature_index_list, group_list=[]): row_n, col_n = data_matrix.shape attr_len = col_n/attr_num ret_matrix = [] new_row_col = 0 new_attr = len(feature_index_list) if len(group_list) > 0: for group in group_list: new_attr = new_attr + len(group) new_row_col = new_attr * attr_len for i in range(0, row_n): ori_matrix = data_matrix[i].reshape(attr_num, attr_len) if len(group_list) > 0: group_count = 0 for group in group_list: if group_count == 0: matrix = ori_matrix[group, :] else: matrix = np.append(matrix, ori_matrix[group, :]) group_count = group_count + 1 matrix = np.append(matrix, ori_matrix[feature_index_list, :]) else: matrix = ori_matrix[feature_index_list, :] ret_matrix.append(matrix.reshape(new_row_col)) data_matrix = np.array(ret_matrix).reshape(row_n, new_row_col) return np.array(ret_matrix).reshape(row_n, new_row_col), new_attr, attr_len def z_normlization(time_series): mean = np.mean(time_series) dev = np.std(time_series) return (time_series - mean)/dev if __name__ == '__main__': series1 = [2.02, 2.33, 2.99, 6.85, 9.20, 8.80, 7.50, 6.00, 5.85, 3.85, 4.85, 3.85, 2.22, 1.45, 1.34] series2 = [-0.12, -0.16, -0.13, 0.28, 0.37, 0.39, 0.18, 0.09, 0.15, -0.06, 0.06, -0.07, -0.13, -0.18, -0.26] norm_1 = z_normlization(series1) norm_2 = z_normlization(series2) x = range(0, len(series1)) #data_str = 'uci' #uci_data_stru = return_data_stru(data_str) ##uci_data_stru.num_classes = 3 ##uci_data_stru.start_class = 11 #uci_data_stru.print_to_string() # row_num = 1 data_matrix = np.random.rand(row_num, 24) max_gap = 0 attr_num=6 feature_index_list = np.array([row_num, 3]) print (data_matrix.reshape(row_num, attr_num, 4)) model = Generation_model(attr_num, 3, [], 2) matrix, attr_num, attr_len = feature_data_generation(data_matrix, attr_num, model.selected_list, model.groups) print ("===") print (model.selected_list) print (model.groups) print (matrix.reshape(row_num, attr_num, attr_len)) ########################################################################### ## Duplication part, used for multiple time series data. Do duplication on attributes dimension in order to run CNN ## duplicate rows #def row_duplication(data_matrix, max_gap): # ret_matrix = data_matrix.copy() # row_n, col_n = ret_matrix.shape # for i in range(2, max_gap+1): # ret_matrix = np.append(ret_matrix, data_matrix[::i], axis=0) # ret_matrix = np.append(ret_matrix, data_matrix[1::i], axis=0) # return ret_matrix # # ## duplicate cols #def col_duplication(data_matrix, max_gap): # ret_matrix = data_matrix.copy() # row_n, col_n = ret_matrix.shape # for i in range(2, max_gap+1): # ret_matrix = np.append(ret_matrix, data_matrix[:, ::i], axis=1) # ret_matrix = np.append(ret_matrix, data_matrix[:, 1::i], axis=1) # return ret_matrix # # ## Use to update data matrix in order to generate features based on time dimension ## data_matrix: A * T: A is number of attributes, T is the length of time dimension ## max_gap: In order to run cnn feature detection, we would like to do duplication on attribute dimension. No duplication if map_gap ==0 ## data_stru: information for data_matrix ## Logic: 1, do matrix transpose to get data_matrix T * A ## 2, in order to get rid of the effect from attribute order, we do duplication on attribute dimension ## result from step 2 is T * (A + A/2 + A/3 + ... until max_gap) ## return updated data_matrix and updated data_stru #def time_as_feature_transpose(data_matrix, max_gap): # data_matrix = np.transpose(data_matrix) # T * A # if max_gap == 0: # return data_matrix # # data_matrix = col_duplication(data_matrix, max_gap) # data_matrix with duplication on attribute dimension (column dimension) # return data_matrix # # ## We need d3_time_as_feature_transpose because the original data matrix is N * (A * T), N is number of instances, and column lenght is (A * T) which is the number of attributes times attribute length #def d3_time_as_feature_transpose(d3_data_matrix, max_gap, data_stru): # attr_num = data_stru.attr_num # attr_len = data_stru.attr_len # which is the length of time dimension now # # row_n, col_n = d3_data_matrix.shape # ret_data_matrix = list() # data_row_matrix = d3_data_matrix[0].reshape(attr_num, attr_len) # data_row_matrix = time_as_feature_transpose(data_row_matrix, max_gap) # new_row, new_col = data_row_matrix.shape # new_row_col_all = new_row * new_col # ret_data_matrix.append(data_row_matrix.reshape(new_row_col_all)) # for i in range(1, row_n): # data_row_matrix = d3_data_matrix[i].reshape(attr_num, attr_len) # data_row_matrix = time_as_feature_transpose(data_row_matrix, max_gap) # ret_data_matrix.append(data_row_matrix.reshape(new_row_col_all)) # # ret_data_matrix = np.array(ret_data_matrix).reshape(row_n, new_row_col_all) # ret_data_stru = data_structure(data_stru.num_classes, data_stru.start_class, new_row, new_col, data_stru.class_column) # # return ret_data_matrix, ret_data_stru # ##End of Duplication part ########################################################################### # # ########################################################################### ##cross validataion part # ##Given data matrix (x_matrix) and correspsonding class label vector (y_vector), do cross validation ##Need num_classes to make sure the validataion is balanced for all classes ##ratio: the ratio of testing data #def cross_validation(x_matrix, y_vector, num_classes, ratio=0.1): # instance_count = len(y_vector) # one_class_count = instance_count/num_classes # start = 0; # end = start + one_class_count # train_x_matrix, test_x_matrix, train_y_vector, test_y_vector = train_test_split(x_matrix[start:end, :], y_vector[start:end], test_size=ratio, random_state=0) # start = end # end = end + one_class_count # while(end<=instance_count): # sub_train_x, sub_test_x, sub_train_y, sub_test_y = train_test_split(x_matrix[start:end, :], y_vector[start:end], test_size=ratio, random_state=0) # train_x_matrix = np.concatenate((train_x_matrix, sub_train_x), axis = 0) # test_x_matrix = np.concatenate((test_x_matrix, sub_test_x), axis=0) # train_y_vector.extend(sub_train_y) # test_y_vector.extend(sub_test_y) # start = end # end = end + one_class_count # return train_x_matrix, train_y_vector, test_x_matrix, test_y_vector # ##End of cross validation part ########################################################################### # # ########################################################################### ##Using feature to generate partial data # ##For multiple time series data matrix ##data_matrix: N * M: N is the number of instances, M is a vector to represnet the attr * time matrix ##Need attr_num to reshape the 1*M vector to attr * time matrix ##attr_index_list: numpy array for the key attribute indexes ##time_index_list: numpy array for the key time indexes #def old_feature_data_generation(data_matrix, attr_num, attr_index_list = None, method='attribute', time_index_list = None): # row_n, col_n = data_matrix.shape # time_len = col_n/attr_num # ret_matrix = [] # new_row_col = 0 # if method == 'attribute': # new_row = len(attr_index_list) # new_row_col = new_row * time_len # for i in range(0, row_n): # matrix = data_matrix[i].reshape(attr_num, time_len) # matrix = matrix[attr_index_list, :] # ret_matrix.append(matrix.reshape(new_row_col)) # attr_num = new_row # elif method == 'time': # new_col = len(time_index_list) # new_row_col = attr_num * new_col # for i in range(0, row_n): # matrix = data_matrix[i].reshape(attr_num, time_len) # matrix = matrix[:, time_index_list] # ret_matrix.append(matrix.reshape(new_row_col)) # time_len = new_col # return np.array(ret_matrix).reshape(row_n, new_row_col), attr_num, time_len # ## input data_matrix: 2d matrix with r * (a * l). ## r number of instances and each instance has a attributes and each attribute has length l ## atr_num: attribute number ## fature_index_list: a list contains the index of picked attributes ## Rturn: return a data matrix only contains the attributes from feature_index_list #def feature_data_generation(data_matrix, attr_num, feature_index_list, feature_col_update=True): # row_n, col_n = data_matrix.shape # attr_len = col_n/attr_num # ret_matrix = [] # new_row_col = 0 # # if feature_col_update == True: # new_row = len(feature_index_list) # new_row_col = new_row * attr_len # else: # new_row = attr_num # new_row_col = col_n # # for i in range(0, row_n): # matrix = data_matrix[i].reshape(attr_num, attr_len) # if feature_col_update == True: # matrix = matrix[feature_index_list, :] # ret_matrix.append(matrix.reshape(new_row_col)) # else: # a = range(0, attr_num) # remove_index = [x for x in a if x not in feature_index_list] # matrix[remove_index, :] = 0 # ret_matrix.append(matrix.reshape(new_row_col)) # # attr_num = new_row # return np.array(ret_matrix).reshape(row_n, new_row_col), attr_num, attr_len # # # # # # # #def class_label_vector_checking(y_vector): # min_class = min(y_vector) # max_class = max(y_vector) # class_index_dict = {} # min_length = -1 # max_length = -1 # for c in range(min_class, max_class+1): # c_index = np.where(y_vector==c)[0] # class_index_dict[c] = c_index # if min_length == -1: # min_length = len(c_index) # elif len(c_index) < min_length: # min_length = len(c_index) # if max_length == -1: # max_length = len(c_index) # elif len(c_index) > max_length: # max_length = len(c_index) # # return class_index_dict, min_length, max_length ``` #### File: src/fileio/log_io.py ```python import logging import sys from datetime import datetime import os #import tensorflow as tf #os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' #logging.getLogger("tensorflow").setLevel(logging.INFO) ## # Try not to initialize many loggers at the same run # def init_logging(log_file=''): # if log_file != '': # log_file = datetime.now().strftime(log_file + '_%Y_%m_%d_%H_%M.log') # log_format = "%(levelname)s %(asctime)-15s [%(lineno)d] %(funcName)s: %(message)s" # if log_file == '': # logging.basicConfig(format=log_format, level=logging.INFO, stream=sys.stdout) # else: # logging.basicConfig(filename=log_file, filemode='w', format=log_format, level=logging.INFO) # logger = logging.getLogger() # #logger = tf.get_logger() # return logger def init_logging(log_file='', name='log_name', level=logging.DEBUG): if len(log_file) == 0: return init_logging(log_file) """Function setup as many loggers as you want""" if log_file != '': log_file = datetime.now().strftime(log_file + '_%Y_%m_%d_%H_%M.log') formatter = logging.Formatter('%(levelname)s %(asctime)-15s [%(lineno)d] %(funcName)s: %(message)s') handler = logging.FileHandler(log_file, 'w') handler.setFormatter(formatter) logger = logging.getLogger(name) #logger = tf.get_logger(name) logger.setLevel(level) logger.addHandler(handler) return logger if __name__ == '__main__': #log_file = "/home/ivan/Research/projects/yhao_cnn_varying/src/python/test" #init_logging(log_file) #setup_logger(log_file) #logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.INFO) logger = setup_logger('') #logging.debug('This message should appear on the console') logger.info('So should this') #logging.warning('And this, too') ``` #### File: src/fileio/object_io.py ```python import pickle from collections import Counter import numpy as np from data_io import list_files #python 2 version def save_obj_2(obj_list, out_file): with open(out_file, 'w') as f: pickle.dump(obj_list, f) def load_obj_2(load_file): with open(load_file) as f: obj_list = pickle.load(f) return obj_list #python 3 version def save_obj(obj_list, out_file): s = open(out_file, 'wb') pickle.dump(obj_list, s) def load_obj(load_file): s = open(load_file, 'rb') return pickle.load(s) if __name__ == '__main__': obj_file = "../../object/dsa/incre_genetic_projected_cnn_out_pckl/train_0_incre_genetic_projected_fit0_class0_result.pckl" obj_file = "../../object/dsa/incre_genetic_projected_cnn_out_pckl/train_5_incre_genetic_projected_fit0_class1_result.pckl" obj_file = "../../object/dsa/train_test_3_fold/incre_genetic_projected_cnn_out_pckl/train_2_incre_genetic_projected_fit0_class0_result.pckl" obj_file = "../../object/dsa/train_test_3_fold/projected_generation/genetic_cnn_projected_class_based_class6.pckl" obj_file = "../../object/dsa/incre_genetic_projected_cnn_temp_saver/train_5.txt_class8_fit_type_0_gene_3__c5_1_p2_1_c-1_1_p-1_-1.ckpt_last_conv_layer_output.pckl" obj_file = "../../object/dsa/train_test_3_fold/projected_load_generation/genetic_cnn_projected_class_based_class6.pckl" obj_file = "../../object/dsa/train_test_3_fold/incre_genetic_projected_9_cnn_out_pckl/train_0_incre_genetic_projected_9_fit9_class6_result.pckl" obj_file = "../../object/dsa/train_test_3_fold/incre_genetic_projected_9_cnn_out_pckl_all_fold_knn/incre_genetic_projected_9_fit9_class1_result.pckl" obj_file = "../../object/dsa/train_test_3_fold/incre_genetic_projected_9_cnn_out_pckl/train_1_incre_genetic_projected_9_fit9_class6_result.pckl" obj_file = "../../object/dsa/train_test_3_fold/incre_genetic_covered_fit9_fold_feature/train_2_incre_genetic_covered_fit9_fit9_class9_result.pckl" obj_file = '../../object/dsa/tkde_2005_dcpc_score/train_0_dcpc.obj' obj_file = "../../object/rar/all_feature_classification/fcn_obj_folder_rf_lda/train_6_rf_lda_min0_max33.obj" obj_file = "../../object/arabic/arxiv_2017_mask/train_0_mask_gene_shapNum8_shapMin10_shapMax20_class0.obj" obj_file = "../../object/dsa/all_feature_classification/cnn_result_folder/train_0_all_feature_cnn_result.ckpt" obj_file = "../../object/dsa/all_feature_classification/cnn_obj_folder/train_9_count0_cnn_class0_c5_1_p2_1_c5_1_p2_1_c115_1_p-1_-1.ckpt" obj_file = "../../object/dsa/all_feature_classification/fcn_obj_folder/train_9_count0_fcn_class0_c8_1_c5_1_c3_1global_p112_1.ckpt" obj_file = "../../object/ara/arxiv_2017_mask/train_0_mask_gene_shapNum8_shapMin10_shapMax20_class1.obj" obj_file = "../../object/ara/arxiv_2017_mask/train_0_mask_gene_shapNum10_shapMin3_shapMax5_class0.obj" obj_file = "../../object/ara/pure_feature_generation/train_0_rf_lda_min0_max10pure_projected.obj" obj_file = "../../object/dsa/cnn_classification/cnn_obj_folder/train_0_act3_c5_1_p2_1_c5_1_p2_1_c115_1_p-1_-1.ckpt" #obj_folder = '../../object/dsa/tkde_2005_dcpc_score_libsvm_out/' #obj_folder = '../../object/dsa/all_feature_classification/fcn_obj_folder/' #obj_file = 'train_0_count0_fcn_class0_c8_1_c5_1_c3_1global_p112_1.ckpt' #obj_vector = load_obj(obj_folder + obj_file) obj_vector = load_obj(obj_file)[1] print (obj_vector.shape) #print (obj_vector) ``` #### File: src/tensor_model/example_cnn.py ```python from __future__ import print_function import numpy as np import tensorflow as tf from six.moves import cPickle as pickle from six.moves import range pickle_file = '../../data/notMNIST/notMNIST.pickle' with open(pickle_file, 'rb') as f: save = pickle.load(f) train_dataset = save['train_dataset'] train_labels = save['train_labels'] valid_dataset = save['valid_dataset'] valid_labels = save['valid_labels'] test_dataset = save['test_dataset'] test_labels = save['test_labels'] del save # hint to help gc free up memory print('Training set', train_dataset.shape, train_labels.shape) print('Validation set', valid_dataset.shape, valid_labels.shape) print('Test set', test_dataset.shape, test_labels.shape) image_size = 28 # Create image size function based on input, filter size, padding and stride # 2 convolutions only with 2 pooling def output_size_pool(input_size, conv_filter_size, pool_filter_size, padding, conv_stride, pool_stride): if padding == 'same': padding = -1.00 elif padding == 'valid': padding = 0.00 else: return None # After convolution 1 output_1 = (((input_size - conv_filter_size - 2*padding) / conv_stride) + 1.00) # After pool 1 output_2 = (((output_1 - pool_filter_size - 2*padding) / pool_stride) + 1.00) # After convolution 2 output_3 = (((output_2 - conv_filter_size - 2*padding) / conv_stride) + 1.00) # After pool 2 output_4 = (((output_3 - pool_filter_size - 2*padding) / pool_stride) + 1.00) return int(output_4) final_image_size = output_size_pool(input_size=image_size, conv_filter_size=5, pool_filter_size=2, padding='valid', conv_stride=1, pool_stride=2) print(final_image_size) batch_size = 16 # Depth is the number of output channels # On the other hand, num_channels is the number of input channels set at 1 previously depth = 32 num_hidden = 64 beta = 0.001 graph = tf.Graph() with graph.as_default(): '''Input data''' tf_train_dataset = tf.placeholder(tf.float32, shape=(batch_size, image_size, image_size, num_channels)) tf_train_labels = tf.placeholder(tf.float32, shape=(batch_size, num_labels)) tf_valid_dataset = tf.constant(valid_dataset) tf_test_dataset = tf.constant(test_dataset) '''Variables''' # Convolution 1 Layer # Input channels: num_channels = 1 # Output channels: depth = 16 layer1_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, num_channels, depth], stddev=0.1)) layer1_biases = tf.Variable(tf.zeros([depth])) # Convolution 2 Layer # Input channels: depth = 16 # Output channels: depth = 16 layer2_weights = tf.Variable(tf.truncated_normal([patch_size, patch_size, depth, depth], stddev=0.1)) layer2_biases = tf.Variable(tf.constant(1.0, shape=[depth])) # First Fully Connected Layer (Densely Connected Layer) # Use neurons to allow processing of entire image final_image_size = output_size_pool(input_size=image_size, conv_filter_size=5, pool_filter_size=2, padding='valid', conv_stride=1, pool_stride=2) layer3_weights = tf.Variable(tf.truncated_normal([final_image_size * final_image_size * depth, num_hidden], stddev=0.1)) layer3_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) # Second Fully Connected Layer layer4_weights = tf.Variable(tf.truncated_normal([num_hidden, num_hidden], stddev=0.1)) layer4_biases = tf.Variable(tf.constant(1.0, shape=[num_hidden])) # Readout layer: Softmax Layer layer5_weights = tf.Variable(tf.truncated_normal([num_hidden, num_labels], stddev=0.1)) layer5_biases = tf.Variable(tf.constant(1.0, shape=[num_labels])) '''Model''' def model(data): # First Convolutional Layer with Pooling conv_1 = tf.nn.conv2d(data, layer1_weights, strides=[1, 1, 1, 1], padding='VALID') hidden_1 = tf.nn.relu(conv_1 + layer1_biases) pool_1 = tf.nn.avg_pool(hidden_1, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # Second Convolutional Layer with Pooling conv_2 = tf.nn.conv2d(pool_1, layer2_weights, strides=[1, 1, 1, 1], padding='VALID') hidden_2 = tf.nn.relu(conv_2 + layer2_biases) pool_2 = tf.nn.avg_pool(hidden_2, [1, 2, 2, 1], [1, 2, 2, 1], padding='VALID') # First Fully Connected Layer shape = pool_2.get_shape().as_list() reshape = tf.reshape(pool_2, [shape[0], shape[1] * shape[2] * shape[3]]) hidden = tf.nn.relu(tf.matmul(reshape, layer3_weights) + layer3_biases) keep_prob = 0.5 hidden_drop = tf.nn.dropout(hidden, keep_prob) # Second Fully Connected Layer hidden_2 = tf.nn.relu(tf.matmul(hidden_drop, layer4_weights) + layer4_biases) hidden_2_drop = tf.nn.dropout(hidden_2, keep_prob) # Readout Layer: Softmax Layer return tf.matmul(hidden_2_drop, layer5_weights) + layer5_biases '''Training computation''' logits = model(tf_train_dataset) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits, tf_train_labels)) # Loss function with L2 Regularization # regularizers = tf.nn.l2_loss(layer4_weights) + \ # tf.nn.l2_loss(layer5_weights) # loss = tf.reduce_mean(loss + beta * regularizers) '''Optimizer''' # Decaying learning rate global_step = tf.Variable(0) # count the number of steps taken. start_learning_rate = 0.05 learning_rate = tf.train.exponential_decay(start_learning_rate, global_step, 100000, 0.96, staircase=True) optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss) '''Predictions for the training, validation, and test data''' train_prediction = tf.nn.softmax(logits) valid_prediction = tf.nn.softmax(model(tf_valid_dataset)) test_prediction = tf.nn.softmax(model(tf_test_dataset)) num_steps = 30000 with tf.Session(graph=graph) as session: tf.initialize_all_variables().run() print('Initialized') for step in range(num_steps): offset = (step * batch_size) % (train_labels.shape[0] - batch_size) batch_data = train_dataset[offset:(offset + batch_size), :, :, :] batch_labels = train_labels[offset:(offset + batch_size), :] feed_dict = {tf_train_dataset : batch_data, tf_train_labels : batch_labels} _, l, predictions = session.run([optimizer, loss, train_prediction], feed_dict=feed_dict) if (step % 5000 == 0): print('Minibatch loss at step %d: %f' % (step, l)) print('Minibatch accuracy: %.1f%%' % accuracy(predictions, batch_labels)) print('Validation accuracy: %.1f%%' % accuracy(valid_prediction.eval(), valid_labels)) print('Test accuracy: %.1f%%' % accuracy(test_prediction.eval(), test_labels)) ``` #### File: src/tensor_model/model_nn.py ```python import tensorflow as tf import numpy as np import time import sys import os from model_setting import nn_parameters from model_cnn import cross_entropy_setup from model_cnn import batch_control sys.path.insert(1, os.path.join(os.path.dirname(sys.path[0]), 'data_processing/')) from data_processing import class_label_vector_checking sys.path.insert(1, os.path.join(os.path.dirname(sys.path[0]), 'fileio/')) from log_io import setup_logger # Import MNIST data #from tensorflow.examples.tutorials.mnist import input_data #mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) def run_nn(train_x_matrix, train_y_matrix, test_x_matrix, test_y_matrix, nn_setting, logger=None): if logger is None: logger = setup_logger('') x_row, x_col = train_x_matrix.shape y_row, y_col = train_y_matrix.shape num_classes = y_col train_x_placeholder, train_y_placeholder, logits_out, keep_prob_placeholder = configure_nn(x_col, num_classes, nn_setting) best_eval_value, train_run_time, test_run_time, nn_predict_proba = nn_train(train_x_matrix, train_y_matrix, test_x_matrix, test_y_matrix, train_x_placeholder, train_y_placeholder, logits_out, keep_prob_placeholder, nn_setting, logger) return best_eval_value, train_run_time, test_run_time, nn_predict_proba ## def conf_nn_layers(train_x_col, input_placeholder, nn_setting, logger=None): if logger is None: logger = setup_logger('') layer_list = nn_setting.layer_list std_value = nn_setting.std_value layer_out = input_placeholder layer_iter = 0 layer_input = train_x_col keep_prob_placeholder = tf.placeholder(tf.float32) for neurons in layer_list: weight_name = "weight_" + str(layer_iter) bias_name = "bias_" + str(layer_iter) weight = tf.Variable(tf.random_normal([layer_input, neurons], stddev=std_value, seed=layer_iter), name=weight_name) bias = tf.Variable(tf.zeros([neurons]), name=bias_name) layer_input = neurons hidden_out = tf.add(tf.matmul(layer_out, weight), bias) layer_out = tf.nn.relu(hidden_out) layer_out = tf.nn.dropout(layer_out, keep_prob_placeholder) layer_iter = layer_iter + 1 return layer_out, layer_iter, keep_prob_placeholder def conf_nn_out(input_matrix, num_classes, std_value, layer): layer_input = int(input_matrix.get_shape()[1]) weight = tf.Variable(tf.random_normal([layer_input, num_classes], stddev=std_value, seed=layer), name="out_weight") bias = tf.Variable(tf.random_normal([num_classes], stddev=std_value, seed=layer), name="out_bias") return tf.add(tf.matmul(input_matrix, weight), bias) # Both train_x and train_y are 2-d matrixes def configure_nn(train_x_col, num_classes, nn_setting, logger=None): if logger is None: logger = setup_logger('') std_value = nn_setting.std_value tf.reset_default_graph() tf.random.set_random_seed(0) train_x_placeholder = tf.placeholder(tf.float32, [None, train_x_col]) train_y_placeholder = tf.placeholder(tf.float32, [None, num_classes]) layer_out_matrix, layer_iter, keep_prob_placeholder = conf_nn_layers(train_x_col, train_x_placeholder, nn_setting, logger) logits_out = conf_nn_out(layer_out_matrix, num_classes, std_value, layer_iter) return train_x_placeholder, train_y_placeholder, logits_out, keep_prob_placeholder def nn_train(train_x_matrix, train_y_matrix, test_x_matrix, test_y_matrix, train_x_placeholder, train_y_placeholder, logits_out, keep_prob_placeholder, nn_setting, logger): if logger is None: logger = setup_logger('') (overall_len, x_col) = train_x_matrix.shape (y_row, num_classes) = train_y_matrix.shape predict_y_proba = tf.nn.softmax(logits_out) train_y_vector = np.argmax(train_y_matrix, axis=1) max_class = max(train_y_vector) min_class = min(train_y_vector) eval_method = nn_setting.eval_method batch_size = nn_setting.batch_size stop_threshold = nn_setting.stop_threshold max_iter = nn_setting.max_epoch saver_file = nn_setting.save_file cross_entropy, eval_method_value, eval_method_keyword, coefficient_placeholder = cross_entropy_setup(eval_method, num_classes, logits_out, train_y_placeholder) beta = 0.001 full_weight = tf.get_default_graph().get_tensor_by_name("weight_0:0") regularizers = tf.nn.l2_loss(full_weight) cross_entropy = tf.reduce_mean(cross_entropy + regularizers * beta) train_class_index_dict, train_min_length, train_max_length = class_label_vector_checking(train_y_vector) train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) nn_session = tf.InteractiveSession() nn_session.run(tf.global_variables_initializer()) test_eval_value = 0 best_eval_value = 0 i = 0 start = 0 epoch = 0 end = batch_size batch_each_class = int(batch_size/num_classes) saver = tf.train.Saver() train_run_time = 0 np.random.seed(epoch) batch_index = np.random.permutation(overall_len) logger.info("Random Epoch: " + str(epoch) + str(batch_index[0:5])) keep_prob_val = 0.5 while(test_eval_value < stop_threshold): if start >= overall_len: start = 0 end = start + batch_size epoch = epoch + 1 np.random.seed(epoch) logger.info("Random Epoch: " + str(epoch) + str(batch_index[0:5])) print("Random Epoch: " + str(epoch) + str(batch_index[0:5])) batch_index = np.random.permutation(overall_len) elif end > overall_len: end = overall_len batch_x_matrix = train_x_matrix[batch_index[start:end], :] batch_y_matrix = train_y_matrix[batch_index[start:end], :] if eval_method == 'f1' or eval_method == "acc": if i == 0: logger.info("Batch controlled") print("Batch controled") batch_x_matrix, batch_y_matrix, coefficients_vector = batch_control(batch_x_matrix, batch_y_matrix, train_x_matrix, train_y_matrix, i, batch_each_class, min_class, max_class, train_class_index_dict, logger) batch_max_len = float(max(coefficients_vector)) coefficients_vector = batch_max_len/coefficients_vector start_time = time.time() train_step.run(feed_dict={train_x_placeholder: batch_x_matrix, train_y_placeholder: batch_y_matrix, coefficient_placeholder: coefficients_vector, keep_prob_placeholder: keep_prob_val}) train_run_time = train_run_time + time.time() - start_time else: start_time = time.time() train_step.run(feed_dict={train_x_placeholder: batch_x_matrix, train_y_placeholder: batch_y_matrix, keep_prob_placeholder: keep_prob_val}) train_run_time = train_run_time + time.time() - start_time if i % 100 == 0: test_eval_value = eval_method_value.eval(feed_dict={ train_x_placeholder: test_x_matrix, train_y_placeholder: test_y_matrix, keep_prob_placeholder: 1.0}) if str(test_eval_value) == 'nan': test_eval_value = 0 #print_str = "step " + str(i) + ", training " + eval_method_keyword + ": " + str(train_eval_value) #logger.info(print_str) print_str = "step " + str(i) + ", testing " + eval_method_keyword + ": " + str(test_eval_value) logger.info(print_str) print(print_str) if best_eval_value < test_eval_value: # Save the variables to disk. best_eval_value = test_eval_value save_path = saver.save(nn_session, saver_file) print_str = "Model saved in file: " + save_path + ' at iteration: ' + str(i) logger.info(print_str) i = i + 1 start = end end = end + batch_size if epoch > max_iter: logger.info("best eval value at epoch: " + str(epoch)) logger.info("best eval value to break") logger.info(best_eval_value) break start_time = time.time() test_eval_value = eval_method_value.eval(feed_dict={train_x_placeholder: test_x_matrix, train_y_placeholder: test_y_matrix, keep_prob_placeholder: 1.0}) test_run_time = time.time() - start_time if test_eval_value < best_eval_value: nn_session.close() nn_session = tf.InteractiveSession() saver.restore(nn_session, saver_file) else: best_eval_value = test_eval_value logger.info("Running iteration: %d" % (i)) logger.info("final best " + eval_method_keyword + ": " + str(best_eval_value)) logger.info("final test " + eval_method_keyword + ": " + str(test_eval_value)) print("final best " + eval_method_keyword + ": " + str(best_eval_value)) print("final test " + eval_method_keyword + ": " + str(test_eval_value)) nn_predict_proba = nn_session.run(predict_y_proba, feed_dict={train_x_placeholder: test_x_matrix, keep_prob_placeholder: 1.0}) logger.info("NN model saved: " + str(saver_file)) nn_session.close() return best_eval_value, train_run_time, test_run_time, nn_predict_proba def main(): train_y_vector = np.array([1,1,2,2,2,2,2,2,2,2, 3, 3, 3]) train_y_predict_vector = np.array([2,2,2,2,2,2,2,2,2,2, 2, 2,2]) min_class = min(train_y_vector) max_class = max(train_y_vector) num_classes = max_class - min_class + 1 train_class_index_dict, train_min_length, train_max_length = class_label_vector_checking(train_y_vector) correct_prediction = tf.equal(train_y_vector, train_y_predict_vector) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) avg_accuracy = tf.Variable(0.0, tf.float32) for c_label in range(min_class, max_class+1): c_label_index = train_class_index_dict[c_label] class_y_vector = train_y_vector[c_label_index] class_y_predict = train_y_predict_vector[tf.constant(c_label_index)] class_accuracy = tf.reduce_mean(tf.cast(tf.equal(class_y_vector, class_y_predict), tf.float32)) avg_accuracy = avg_accuracy + class_accuracy avg_accuracy = (avg_accuracy)/num_classes with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print (sess.run(accuracy)) print (sess.run(avg_accuracy)) def main_test(): train_x_matrix = np.array([[1,1,1], [1,2,2], [1,2,3], [2,2,2], [3,3,3], [3,2,1], [1,1,1], [1,2,2], [1,2,3], [2,2,2], [3,3,3], [3,2,1], [1,1,1], [1,2,2], [1,2,3], [2,2,2], [3,3,3], [3,2,1], [1,1,1], [1,2,2], [1,2,3], [2,2,2], [3,3,3], [3,2,1]]) train_y_matrix = np.array([[0,1],[1,0], [1,0], [0,1], [0, 1], [1, 0], [0,1],[1,0], [1,0], [0,1], [0, 1], [1, 0], [0,1],[1,0], [1,0], [0,1], [0, 1], [1, 0], [0,1],[1,0], [1,0], [0,1], [0, 1], [1, 0]]) test_x_matrix = np.array([[1,1,1], [1,2,2], [1,2,3], [2,2,2], [3,3,3], [3,2,1]]) test_y_matrix = np.array([[0,1],[1,0], [1,0], [0,1], [0, 1], [1, 0]]) #train_x_matrix = mnist.train.images #train_y_matrix = mnist.train.labels #test_x_matrix = mnist.test.images #test_y_matrix = mnist.test.labels print (train_x_matrix.shape) print (train_y_matrix.shape) print (test_y_matrix.shape) #train_x_matrix = test_x_matrix #train_y_matrix = test_y_matrix print(train_x_matrix.shape) print(train_y_matrix.shape) layer_list = np.array([300]) num_classes = 2 x_col = 3 batch_size = 100 learning_rate = 0.001 logger = None saver_file = './test.save' nn_setting = nn_parameters(layer_list, batch_size, 5, 0.9, 3, 0.02, 'f1', saver_file) best_eval_value, train_run_time, test_run_time, nn_predict_proba = run_nn(train_x_matrix, train_y_matrix, test_x_matrix, test_y_matrix, nn_setting, logger) print(best_eval_value) print(train_run_time) print(test_run_time) print(nn_predict_proba) if __name__ == '__main__': # run_simple_graph() # run_simple_graph_multiple() # simple_with_tensor_board() #nn_example() main_test() ``` #### File: src/tensor_model/model_setting.py ```python import numpy as np class nn_parameters: def __init__(self, layer_list, batch_size=100, max_epoch=5, stop_threshold=0.9, activation_fun=0, std_value=0, eval_method='accuracy', save_file='./default_nn.ckpt'): self.layer_list = layer_list self.batch_size = batch_size self.max_epoch = max_epoch self.stop_threshold = stop_threshold self.activation_fun = activation_fun self.std_value = std_value self.eval_method = eval_method self.save_file = save_file def to_string(self): ret_str = 'layer list: \n' + np.array_str(self.layer_list) +'\nbatch size: ' + str(self.batch_size) +'\nmax epoch: ' + str(self.max_epoch) +'\nstop threshold: ' + str(self.stop_threshold) if self.activation_fun == 0: ret_str = ret_str + '\nactivation function: RELU' elif self.activation_fun == 1: ret_str = ret_str + '\nactivation function: Sigmod' else: ret_str = ret_str + '\nactivation function: Tanh' ret_str = ret_str +'\ninitial std value: ' + str(self.std_value) ret_str = ret_str + '\neval method: ' + self.eval_method ret_str = ret_str + '\nsave obj file: ' + self.save_file return ret_str class cnn_parameters: # If feature_method == 'none' means do not need to do feature detection # conv_kernel_list: [[r1, c1], [r2, c2], [r3, c3]]: means first convolutional kernel is c1 = r1 * c1 # pool_rate_list: [[r1, c1], [r2, c2], [r3, c3]]: means first pooling kernel is r1 * c1 # feature_num_list: [a, b], means after c1, there are a numbers of feature maps. b feature maps after c2 def __init__(self, conv_kernel_list, pool_rate_list, feature_num_list, batch_size=100, max_iter=900, stop_threshold=0.9, activation_fun=0, std_value=0, same_size=False, feature_method='vote', eval_method='accuracy', out_obj_folder='./', out_model_folder='./', group_list = [], input_map=1, full_feature_num=-1, l2_bool=False, keep_prob=0.5): self.conv_kernel_list = conv_kernel_list self.pool_rate_list = pool_rate_list self.feature_num_list = feature_num_list self.batch_size = batch_size self.max_iter = max_iter self.stop_threshold = stop_threshold self.activation_fun = activation_fun self.std_value = std_value self.same_size = same_size self.feature_method = feature_method self.out_obj_folder = out_obj_folder self.out_model_folder = out_model_folder self.eval_method = eval_method self.input_map = input_map self.full_feature_num = full_feature_num self.l2_bool = l2_bool self.keep_prob_val = keep_prob def to_string(self): ret_str = 'conv kernel list: \n' + np.array_str(self.conv_kernel_list) +'\npool rate list: \n' + np.array_str(self.pool_rate_list) +'\nfeature map num list: \n' + np.array_str(self.feature_num_list) +'\nbatch size: ' + str(self.batch_size) +'\nmax iteration: ' + str(self.max_iter) +'\nstop threshold: ' + str(self.stop_threshold) if self.activation_fun == 0: ret_str = ret_str + '\nactivation function: RELU with count' elif self.activation_fun == 1: ret_str = ret_str + '\nactivation function: Sigmod' elif self.activation_fun == 2: ret_str = ret_str + '\nactivation function: Tanh' else: ret_str = ret_str + '\nactivation function: RELU' ret_str = ret_str +'\ninitial std value: ' + str(self.std_value) +'\ncnn same size or not: ' + str(self.same_size) +'\nfeature method: ' + str(self.feature_method) ret_str = ret_str + '\neval method: ' + self.eval_method ret_str = ret_str + '\nsave obj folder: ' + self.out_obj_folder + '\ntemp obj folder: ' + self.out_model_folder #ret_str = ret_str + "\ngroup list: " + str(self.group_list) ret_str = ret_str + "\nkeep prob: " + str(self.keep_prob_val) return ret_str def cnn_setting_clone(cnn_setting): return cnn_parameters(cnn_setting.conv_kernel_list, cnn_setting.pool_rate_list, cnn_setting.feature_num_list, cnn_setting.batch_size, cnn_setting.max_iter, cnn_setting.stop_threshold, cnn_setting.activation_fun, cnn_setting.std_value, cnn_setting.same_size, cnn_setting.feature_method, cnn_setting.eval_method, cnn_setting.out_obj_folder, cnn_setting.out_model_folder) #This function is used to conver input string to numpy array, used for conv layers and pooling layers #The output array column number need to be given, col_num=2 for conv_layers and pooling_layers, col_num=1 for feature_num_list def string_array_to_numpy_array(input_str_array, delimiter=' ', col_num=2): array_len = len(input_str_array) return_array = [] for i in range(0, array_len): return_element = [] element = input_str_array[i].strip() element = element.split(delimiter) if len(element) != col_num: raise Exception("The column number should be " + str(col_num) + " , please check your cnn setting parameter file") for item in element: element_str = str(item) if element_str.startswith('['): element_str = element_str.replace('[', '').replace(']','') return_element.append(element_str.split(',')) else: return_element.append(int(element_str)) return_array.append(return_element) return_array = np.array(return_array) if col_num == 1: return_array = return_array.reshape(array_len) return return_array ############################################################### # CNN function def return_cnn_setting_from_file(cnn_setting_file): keyword_list = ['#kernel_list', '#pooling_list', '#feature_num_list', '#batch', '#max_iter', '#stop_threshold', '#activation_func', '#std_value', '#same_size', '#feature_method', '#eval_method'] first_delimiter = ', ' second_delimiter = ' ' keyword = '' conv_kernel_list = '' pool_rate_list = '' feature_num_list = '' batch_size = -1 max_iter = -1 stop_threshold = -1 activation_func = -1 std_value = -1 same_size = '' feature_method = '' eval_method = '' full_feature_num = 400 lines = open(cnn_setting_file).readlines() for line in lines: if line.startswith('#'): temp = line.strip() if temp in keyword_list: keyword = line.strip() continue if keyword == '#kernel_list': conv_kernel_list = line.strip() elif keyword == '#pooling_list': pool_rate_list = line.strip() elif keyword == '#feature_num_list': feature_num_list = line.strip() elif keyword == '#batch': batch_size = int(line.strip()) elif keyword == '#max_iter': max_iter = int(line.strip()) elif keyword == '#stop_threshold': stop_threshold = float(line.strip()) elif keyword == '#activation_func': activation_func = int(line.strip()) elif keyword == '#std_value': std_value = float(line.strip()) elif keyword == '#same_size': same_size = line.strip() elif keyword == '#feature_method': feature_method = line.strip() elif keyword == '#eval_method': eval_method = line.strip() if batch_size<0 or max_iter<0 or stop_threshold<0 or activation_func<0 or std_value<0: raise Exception("Wrong data paramters, please check the parameter file " + parameter_file) conv_kernel_list = conv_kernel_list.split(first_delimiter) pool_rate_list = pool_rate_list.split(first_delimiter) feature_num_list = feature_num_list.split(first_delimiter) if len(conv_kernel_list) != len(pool_rate_list) or len(pool_rate_list) != len(feature_num_list): raise Exception("Conv layers and pooling layers need to have the same number") conv_kernel_array = string_array_to_numpy_array(conv_kernel_list, second_delimiter, 2) pool_rate_array = string_array_to_numpy_array(pool_rate_list, second_delimiter, 2) feature_num_array = string_array_to_numpy_array(feature_num_list, second_delimiter, 1) return cnn_parameters(conv_kernel_array, pool_rate_array, feature_num_array, batch_size, max_iter, stop_threshold, activation_func, std_value, same_size, feature_method, eval_method) def return_cnn_keyword(cnn_setting): conv_kernel_list = cnn_setting.conv_kernel_list pool_rate_list = cnn_setting.pool_rate_list feature_num_list = cnn_setting.feature_num_list cnn_keyword = "" feature_count = 0 for item in conv_kernel_list: cnn_keyword = cnn_keyword + '_c' + str(item[0]) + '-' + str(item[1]) + '_' + str(feature_num_list[feature_count]) feature_count = feature_count + 1 for item in pool_rate_list: cnn_keyword = cnn_keyword + '_p' + str(item[0]) + '-' + str(item[1]) cnn_keyword = cnn_keyword + "_a" + str(cnn_setting.activation_fun) return cnn_keyword def return_cnn_default_setting(conv_kernel_array=np.array([[1, 2], [1, 2]]), pool_rate_array=np.array([[1, 2], [1, 2]]), feature_num_array=np.array([2, 2]), batch_size=100, max_iter=200, stop_threshold=0.9, activation_func=0, std_value=0.02, same_size=False, feature_method='none', eval_method='acc'): cnn_setting = cnn_parameters(conv_kernel_array, pool_rate_array, feature_num_array, batch_size, max_iter, stop_threshold, activation_func, std_value, same_size, feature_method, eval_method) cnn_keyword = return_cnn_keyword(cnn_setting) return cnn_setting, cnn_keyword # End of CNN function ############################################################### ############################################################### # NN function def return_nn_keyword(nn_setting): layer_list = nn_setting.layer_list nn_keyword = "" feature_count = 0 for item in layer_list: nn_keyword = nn_keyword + '_l' + str(item) feature_count = feature_count + 1 return nn_keyword def return_nn_setting_from_file(nn_setting_file): keyword_list = ['#layer_list', '#batch_size', '#max_epoch', '#stop_threshold', '#activation_fun', '#std_value', '#eval_method', '#obj_folder'] first_delimiter = ',' second_delimiter = ' ' keyword = '' layer_list = '' batch_size = -1 max_epoch = -1 stop_threshold = -1 activation_fun = -1 std_value = -1 eval_method = '' lines = open(nn_setting_file).readlines() for line in lines: if line.startswith('#'): temp = line.strip() if temp in keyword_list: keyword = line.strip() continue if keyword == '#layer_list': layer_list = line.strip() elif keyword == '#batch_size': batch_size = int(line.strip()) elif keyword == '#max_epoch': max_epoch = int(line.strip()) elif keyword == '#stop_threshold': stop_threshold = float(line.strip()) elif keyword == '#activation_fun': activation_fun = int(line.strip()) elif keyword == '#std_value': std_value = float(line.strip()) elif keyword == '#eval_method': eval_method = line.strip() if batch_size<0 or max_epoch<0 or stop_threshold<0 or activation_fun<0 or std_value<0: raise Exception("Wrong data paramters, please check the parameter file " + parameter_file) layer_list = layer_list.split(first_delimiter) layer_list = string_array_to_numpy_array(layer_list, second_delimiter, 1) nn_setting = nn_parameters(layer_list, batch_size, max_epoch, stop_threshold, activation_fun, std_value, eval_method) nn_keyword = return_nn_keyword(nn_setting) nn_setting.save_file = nn_keyword+'.ckpt' return nn_setting, nn_keyword # End of NN function ############################################################### if __name__ == '__main__': #parameter_file = '../../parameters/global_feature_generation.txt' #read_global_feature_generation_parameter(parameter_file) #parameter_file = '../../parameters/cnn_model_parameter.txt' #cnn_p = return_cnn_setting_from_file(parameter_file) #print cnn_p.print_to_string() #print return_cnn_keyword(cnn_p) parameter_file = '../../parameters/cnn_model_parameter_varying.txt' cnn_p = return_cnn_setting_from_file(parameter_file) ``` #### File: src/utils/sklearn_classification.py ```python import numpy as np import sys import time import gc from sklearn import neighbors from sklearn import svm from sklearn.ensemble import BaggingClassifier, RandomForestClassifier from sklearn.multiclass import OneVsRestClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.discriminant_analysis import LinearDiscriminantAnalysis #from svmutil import * from collections import Counter from log_io import init_logging ### def gene_projected_lda_feature(train_x_matrix, train_y_vector): norm_time = 0 start_time = time.time() train_norm_vector = np.linalg.norm(train_x_matrix, axis=0, ord=np.inf)[None, :] train_x_matrix = np.true_divide(train_x_matrix, train_norm_vector, where=(train_norm_vector!=0)) norm_time = time.time() - start_time train_x_matrix[np.isnan(train_x_matrix)] = 0 train_x_matrix[np.isinf(train_x_matrix)] = 1 min_class = min(train_y_vector) max_class = max(train_y_vector) ret_feature_matrix = [] lda_time = 0 start_time = time.time() clf = LinearDiscriminantAnalysis() lda_time = lda_time + time.time() - start_time for i in range(min_class, max_class+1): temp_y_vector = np.where(train_y_vector==i, 0, 1) #print "FIT" #print len(train_x_matrix) #print len(temp_y_vector) start_time = time.time() clf.fit(train_x_matrix, temp_y_vector) lda_time = lda_time + time.time() - start_time ret_feature_matrix.append(clf.coef_) ret_feature_matrix = np.squeeze(np.array(ret_feature_matrix)) ret_feature_matrix = np.absolute(ret_feature_matrix) #print ret_feature_matrix #print "Function end: gen_projected_lda_feature" return ret_feature_matrix, norm_time, lda_time def bi_gene_lda_model(train_x_matrix, train_y_vector): clf = LinearDiscriminantAnalysis(priors=[0.5, 0.5]) #print train_x_matrix.shape #print train_y_vector.shape start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time return clf, train_time def gene_lda_model(train_x_matrix, train_y_vector): clf = LinearDiscriminantAnalysis() #print train_x_matrix.shape #print train_y_vector.shape start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time return clf, train_time def run_lda(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, proba=False): clf, train_time = gene_lda_model(train_x_matrix, train_y_vector) if proba == True: predict_y = clf.predict(test_x_matrix) start_time = time.time() predict_y_proba = clf.predict_proba(test_x_matrix) test_time = time.time() - start_time else: start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time predict_y_proba = None return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time def run_rf(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, samples_leaf=20, proba=False): np.random.seed(0) #positive_index = np.where(train_y_vector==1) #negative_index = np.where(train_y_vector==0) #len_positive = len(np.where(train_y_vector == 1)[0]) #len_negative = len(train_y_vector) - len_positive #logger.info("positive: " + str(len_positive)) #logger.info("negative: " + str(len_negative)) #if len_positive > len_negative: # add_pare = '-w0 ' + str(len_positive/len_negative) + ' -w1 1' #else: # add_pare = '-w1 ' + str(len_negative/len_positive) + ' -w0 1' clf = RandomForestClassifier(min_samples_leaf=samples_leaf, class_weight='balanced') start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time if proba is False: predict_y_proba = None else: predict_y_proba = clf.predict_proba(test_x_matrix) return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time # train_x_matrix: row_num * col_num, train_y_vector: vector def run_dt(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, n_neighbors, proba=False): clf = DecisionTreeClassifier(random_state=0, class_weight='balanced') #n_estimators = 10 #clf = OneVsRestClassifier(BaggingClassifier(neighbors.KNeighborsClassifier(n_neighbors, weights="distance"), max_samples=1.0 / n_estimators, n_estimators=n_estimators)) start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time if proba == False: predict_y_proba = None else: predict_y_proba = clf.predict_proba(test_x_matrix) return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time # train_x_matrix: row_num * col_num, train_y_vector: vector def run_knn(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, n_neighbors, proba=False): clf = neighbors.KNeighborsClassifier(n_neighbors, weights="distance") #n_estimators = 10 #clf = OneVsRestClassifier(BaggingClassifier(neighbors.KNeighborsClassifier(n_neighbors, weights="distance"), max_samples=1.0 / n_estimators, n_estimators=n_estimators)) start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time if proba == False: predict_y_proba = None else: predict_y_proba = clf.predict_proba(test_x_matrix) return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time # run knn method with returning distance values # train_x_matrix: numpy matrix with N * A: N: is number of training instances, A is number of attributes # train_y_vector: numpy vector N * 1 # test_x_matrix: numpy matrix with N1 * A: N1 is the number of testing instances # test_y_vector: numpy vector N1 * 1 # n_neighbors: top K value # it returns three values # distances: a numpy matrix D with N1 * n_neighbors, D_ij means the distance from test instance i to the jth nearest training instance # indexes: a numpy matrix I with N1 * n_neighbors, it records the corresponding index for the jth nearest training instance # the distance calculation: from [A11, A12, A13] to [A21, A22, A23] is dist = sqrt((A11-A21)^2 + (A12-A22)^2 + (A13-A23)^2) def run_knn_with_dist(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, n_neighbors=1): clf = neighbors.KNeighborsClassifier(n_neighbors, weights="distance") min_class = min(train_y_vector) max_class = max(train_y_vector) distance_matrix = [] for i in range(min_class, max_class+1): train_index = np.where(train_y_vector==i)[0] knn_model = clf.fit(train_x_matrix[train_index, :], train_y_vector[train_index]) distances, indexes = knn_model.kneighbors(test_x_matrix, n_neighbors, True) distance_matrix.append(distances) distance_matrix = np.array(distance_matrix).reshape(max_class-min_class+1, len(test_y_vector)) distance_matrix = distance_matrix.T start_time = time.time() knn_model = clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y_vector = knn_model.predict(test_x_matrix) test_time = time.time() - start_time return distance_matrix, predict_y_vector, train_time, test_time def get_pred_matrix(train_y_vector, index_matrix): x_row, x_col = index_matrix.shape pred_matrix = np.zeros([x_row, x_col]).astype(int) for i in range(0, x_row): pred_matrix[i] = train_y_vector[index_matrix[i]] return pred_matrix # find the first instance belongs to current_class d1 and the first instance does not belong to the current_class d2 # then the probability belongs to current_class is 1- (d1/(d1 + d2)) and the probability it does not belong to current_class is 1 - (d2/(d1 + d2)) # This function will transfer all class labels to be one continues vector wihch starts from 0 # return test_x_matrix_row * num_classes matrix, it contains the probability dist for each class # the small return value means the higher probability def run_knn_with_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector): train_row, train_col = train_x_matrix.shape test_row, test_col = test_x_matrix.shape min_class = min(train_y_vector) if min_class != 0: train_y_vector = train_y_vector - min_class min_class = 0 max_class = max(train_y_vector) num_classes = max_class + 1 dist_matrix, index_matrix, knn_model, train_time, test_time = run_knn_with_dist(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, n_neighbors) start_time = time.time() pred_matrix = get_pred_matrix(train_y_vector, index_matrix) max_dist = dist_matrix.max() + 1.0 predict_proba_matrix = np.full([test_row, num_classes], max_dist) predict_proba_matrix = knn_model.predict_proba(test_x_matrix) #for i in range(0, test_row): # instance_pred_vector = pred_matrix[i] # pred_len = len(instance_pred_vector) # for j in range(0, pred_len): # c = instance_pred_vector[j] # if predict_proba_matrix[i][c] != max_dist: # continue # predict_proba_matrix[i][c] = dist_matrix[i][j] #predict_proba_matrix = predict_proba_matrix #test_time = test_time + time.time() - start_time #for i in range(0, test_row): # proba_vector = predict_proba_matrix[i] # vector_min = proba_vector.min() # predict_proba_matrix[i] = 1- (predict_proba_matrix[i] - vector_min)/(max_dist - vector_min) #predict_proba_matrix = (predict_proba_matrix - predict_proba_matrix.min(axis=0))/ (predict_proba_matrix.max(axis=0) - predict_proba_matrix.min(axis=0)) #print predict_proba_matrix #for i in range(0, test_row): # proba_vector = predict_proba_matrix[i] # null_index = np.where(proba_vector==-1) # not_null_index = np.where(proba_vector!=-1)[0] # if len(not_null_index) == 1: # predict_proba_matrix[i][not_null_index] = 1 # else: # proba_vector = np.delete(proba_vector, null_index) # sum_proba = sum(proba_vector) # for j in not_null_index: # predict_proba_matrix[i][j] = predict_proba_matrix[i][j]/sum_proba # predict_proba_matrix[i][null_index] = 0 return predict_proba_matrix, train_time, test_time # Libsvm def run_sklearn_libsvm(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, proba=False): train_y_vector = train_y_vector- min(train_y_vector) test_y_vector = test_y_vector - min(test_y_vector) train_x_matrix = train_x_matrix.astype(np.float64) train_y_vector = train_y_vector.astype(np.float64) test_x_matrix = test_x_matrix.astype(np.float64) test_y_vector = test_y_vector.astype(np.float64) weight_array = [] unique, counts = np.unique(train_y_vector, return_counts=True) count_all = len(train_y_vector) for i in counts: weight_array.append(float(1)/i) weight_array = np.array(weight_array) start_time = time.time() model = svm.libsvm.fit(train_x_matrix, train_y_vector, class_weight=weight_array) train_time = time.time() - start_time start_time = time.time() predict_y = svm.libsvm.predict(test_x_matrix, *model) test_time = time.time() - start_time if proba is False: predict_y_proba = None else: predict_y_proba = svm.libsvm.predict_proba(test_x_matrix, *model) #predict_y_proba = None return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time #return accuracy_score(test_y_vector, predict_y), predict_y, train_time, test_time def banlanced_binary_processing(train_x_matrix, train_y_vector, banlanced_ratio=3): positive_index = np.where(train_y_vector==0.0)[0] negative_index = np.where(train_y_vector==1.0)[0] positive_len = len(positive_index) negative_len = len(negative_index) if positive_len > negative_len: select_len = banlanced_ratio * negative_len if positive_len > select_len: select_index = np.random.choice(positive_len, select_len, replace=False) positive_index = positive_index[select_index] all_index = np.append(positive_index, negative_index) train_x_matrix = train_x_matrix[all_index, :] train_y_vector = train_y_vector[all_index] else: select_len = banlanced_ratio * positive_len if negative_len > select_len: select_index = np.random.choice(negative_len, select_len, replace=False) negative_index = negative_index[select_index] all_index = np.append(negative_index, positive_index) train_x_matrix = train_x_matrix[all_index, :] train_y_vector = train_y_vector[all_index] return train_x_matrix, train_y_vector def libsvm_load_predict(test_x_matrix, test_y_vector, save_file): model = svm_load_model(save_file) predict_y, predict_acc, predict_y_proba = svm_predict(test_y_vector, test_x_matrix, model, '-b 1') print(predict_acc, predict_y, predict_y_proba) #libsvm from the author's website def run_libsvm(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, logger, proba=False, save_file='', weight=True): train_y_vector = train_y_vector- min(train_y_vector) test_y_vector = test_y_vector - min(test_y_vector) #train_x_matrix = train_x_matrix.astype(np.float64) #train_y_vector = train_y_vector.astype(np.float64) #test_x_matrix = test_x_matrix.astype(np.float64) #test_y_vector = test_y_vector.astype(np.float64) if weight == True: positive_index = np.where(train_y_vector==1) negative_index = np.where(train_y_vector==0) len_positive = len(np.where(train_y_vector == 1)[0]) len_negative = len(train_y_vector) - len_positive logger.info("positive: " + str(len_positive)) logger.info("negative: " + str(len_negative)) if len_positive > len_negative: add_pare = '-w0 ' + str(len_positive/len_negative) + ' -w1 1' else: add_pare = '-w1 ' + str(len_negative/len_positive) + ' -w0 1' else: add_pare = '' train_x_matrix = train_x_matrix.tolist() train_y_vector = train_y_vector.astype(np.integer).tolist() test_x_matrix = test_x_matrix.tolist() test_y_vector = test_y_vector.astype(np.integer).tolist() #svm_model.predict = lambda self, x: svm_predict([0], [x], self)[0][0] #prob = svm_problem([1,-1], [[1,0,1], [-1,0,-1]]) prob = svm_problem(train_y_vector, train_x_matrix) #logger.info("libsvm parameter: " + '-h 0 -s 0 -t 2 -c 0.03125 -g 0.0078125 -b 1 '+add_pare) #param = svm_parameter('-h 0 -s 0 -t 2 -c 0.03125 -g 0.0078125 -b 1 '+add_pare) logger.info("libsvm parameter: " + '-h 0 -s 0 -t 2 -b 1 -e 0.1 '+add_pare) param = svm_parameter('-h 0 -s 0 -t 2 -b 1 -e 0.1 '+add_pare) start_time = time.time() model = svm_train(prob, param) train_time = time.time() - start_time if save_file != '': logger.info("svm model saved to " + save_file) svm_save_model(save_file, model) start_time = time.time() #predict_y, predict_acc, predict_val = svm_predict(test_y_vector, test_x_matrix, model, '-b 1') predict_y, predict_acc, predict_val = svm_predict(test_y_vector, test_x_matrix, model) test_time = time.time() - start_time #predict_val = np.array(predict_val) #predict_y = np.array(predict_y) #print predict_val.shape #print predict_y.shape predict_y = np.array(predict_y) predict_val = np.zeros([len(predict_y), 2]) predict_val[:, 0] = 1 - predict_y predict_val[:, 1] = predict_y return predict_acc[0], predict_y, predict_val, train_time, test_time def run_svm_svc(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, proba=False): clf = svm.SVC() print("kernel function:") print(clf.kernel) print(clf.decision_function_shape) print(clf.degree) print(clf.C) clf.probability = proba start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time if proba == False: predict_y_proba = None else: predict_y_proba = clf.predict_proba(test_x_matrix) return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time def run_nn(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, proba=False): clf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(5, 2), random_state=1) start_time = time.time() clf.fit(train_x_matrix, train_y_vector) train_time = time.time() - start_time start_time = time.time() predict_y = clf.predict(test_x_matrix) test_time = time.time() - start_time if proba == False: predict_y_proba = None else: predict_y_proba = clf.predict_proba(test_x_matrix) return accuracy_score(test_y_vector, predict_y), predict_y, predict_y_proba, train_time, test_time ############################## # we only consider KNN with K=1 def run_feature_knn_use_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, n_neighbors, class_id=-1, logger=None): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape knn_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) knn_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) knn_train_time = 0 knn_test_time = 0 knn_accuracy = 0 proba = True if class_id == -1: min_class = min(train_y_vector) max_class = max(train_y_vector) + 1 else: min_class = class_id max_class = class_id + 1 #result_matrix = np.zeros((10, num_classes)) for i in range(min_class, max_class): logger.info('class: ' +str(i)) logger.info(str(feature_array[i])) #print 'class: ' + str(i) #print feature_array[i] temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) #print 'class: ' + str(i) temp_train_y_vector = np.where(train_y_vector==i, 1, 0) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_train_x_matrix.shape)) logger.info(str(temp_test_x_matrix.shape)) #print 'sub feature data shape:' #print temp_train_x_matrix.shape #print temp_test_x_matrix.shape temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_knn(temp_train_x_matrix, temp_train_y_vector, temp_test_x_matrix, temp_test_y_vector, n_neighbors, proba) #temp_predict_y_proba, temp_predict_y, temp_train_time, temp_test_time = run_knn_with_dist(temp_train_x_matrix, temp_train_y_vector, temp_test_x_matrix, temp_test_y_vector) #temp_accuracy_1, temp_precision, temp_recall, temp_f1_value = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) #if temp_accuracy != temp_accuracy_1: # logger.info(str(temp_accuracy)) # logger.info(str(temp_accuracy_1)) # #print temp_accuracy # #print temp_accuracy_1 # raise Exception("Two accuracy results are not the same") #result_matrix[0, i] = temp_accuracy #result_matrix[1, i] = temp_precision #result_matrix[2, i] = temp_recall #result_matrix[3, i] = temp_f1_value #result_matrix[4, i] = temp_tp #result_matrix[5, i] = temp_fp #result_matrix[6, i] = temp_tn #result_matrix[7, i] = temp_fn #result_matrix[8, i] = temp_train_time #result_matrix[9, i] = temp_test_time logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) knn_train_time = knn_train_time + temp_train_time knn_test_time = knn_test_time + temp_test_time proba_row, proba_col = temp_predict_y_proba.shape knn_predict_matrix[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break knn_accuracy, knn_predict_y = predict_matrix_with_proba_to_predict_accuracy(knn_predict_matrix, knn_predict_matrix, test_y_vector) return knn_accuracy, knn_train_time, knn_test_time, knn_predict_y def load_predict_svm_proba(test_x_matrix, test_y_vector, feature_array, attr_num, save_pre, logger=None): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape svm_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_train_time = 0 svm_test_time = 0 svm_accuracy = 0 proba = True banlanced_ratio = 5 for i in range(0, num_classes): #print 'class: ' + str(i) #print feature_array[i] logger.info("class: " + str(i)) logger.info(str(feature_array[i])) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) #print 'class: ' + str(i) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_train_x_matrix.shape)) logger.info(str(temp_test_x_matrix.shape)) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) save_file = save_pre + "_class" + str(i) + ".model" temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) temp_predict_y = np.array(temp_predict_y) temp_predict_y_proba = np.array(temp_predict_y_proba) logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) svm_train_time = svm_train_time + temp_train_time svm_test_time = svm_test_time + temp_test_time proba_row, proba_col = temp_predict_y_proba.shape svm_predict_matrix[:, i] = temp_predict_y #svm_predict_proba[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break svm_accuracy, svm_predict_y = predict_matrix_with_proba_to_predict_accuracy(svm_predict_matrix, svm_predict_proba, test_y_vector) return svm_accuracy, svm_train_time, svm_test_time, svm_predict_y def run_feature_svm_use_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, logger=None, save_pre=''): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape svm_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_train_time = 0 svm_test_time = 0 svm_accuracy = 0 proba = True banlanced_ratio = 5 for i in range(0, num_classes): #print 'class: ' + str(i) #print feature_array[i] logger.info("class: " + str(i)) logger.info(str(feature_array[i])) temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) #print 'class: ' + str(i) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_train_x_matrix.shape)) logger.info(str(temp_test_x_matrix.shape)) temp_train_y_vector = np.where(train_y_vector==i, 1, 0) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) temp_train_x_matrix, temp_train_y_vector = banlanced_binary_processing(temp_train_x_matrix, temp_train_y_vector, banlanced_ratio) save_file = save_pre + "_class" + str(i) + "_top" + str(temp_attr_num) + ".model" logger.info('svm saved to ' + save_file) temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_libsvm(temp_train_x_matrix, temp_train_y_vector, temp_test_x_matrix, temp_test_y_vector, logger, proba, save_file) temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) temp_predict_y = np.array(temp_predict_y) temp_predict_y_proba = np.array(temp_predict_y_proba) logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) svm_train_time = svm_train_time + temp_train_time svm_test_time = svm_test_time + temp_test_time proba_row, proba_col = temp_predict_y_proba.shape svm_predict_matrix[:, i] = temp_predict_y svm_predict_proba[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break svm_accuracy, svm_predict_y = predict_matrix_with_proba_to_predict_accuracy(svm_predict_matrix, svm_predict_proba, test_y_vector) return svm_accuracy, svm_train_time, svm_test_time, svm_predict_y def run_feature_svm_load_proba(model_pre, test_x_matrix, test_y_vector, feature_array, attr_num, logger=None): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape svm_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) svm_train_time = 0 svm_test_time = 0 svm_accuracy = 0 proba = True for i in range(0, num_classes): #print 'class: ' + str(i) #print feature_array[i] logger.info("class: " + str(i)) logger.info(str(feature_array[i])) #temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) model_file = model_pre + '_class' + str(i) + "_top" + str(temp_attr_len) + ".model" print(model_file) logger.info('model file: ' + model_file) start_time = time.time() svm_model = svm_load_model(model_file) temp_train_time = time.time() - start_time svm_train_time = svm_train_time + temp_train_time #print 'class: ' + str(i) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_test_x_matrix.shape)) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) temp_test_x_matrix = temp_test_x_matrix.tolist() temp_test_y_vector = temp_test_y_vector.astype(np.integer).tolist() ###START FROM HERE start_time = time.time() temp_predict_y, temp_accuracy, temp_predict_y_proba = svm_predict(temp_test_y_vector, temp_test_x_matrix, svm_model, '-b 1') temp_test_time = time.time() - start_time svm_train_time = svm_train_time + temp_test_time temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) temp_predict_y = np.array(temp_predict_y) temp_predict_y_proba = np.array(temp_predict_y_proba) logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) proba_row, proba_col = temp_predict_y_proba.shape svm_predict_matrix[:, i] = temp_predict_y svm_predict_proba[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break svm_accuracy, svm_predict_y = predict_matrix_with_proba_to_predict_accuracy(svm_predict_matrix, svm_predict_proba, test_y_vector) return svm_accuracy, svm_train_time, svm_test_time, svm_predict_y def run_feature_nn_use_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, start_class=0): num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape nn_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) nn_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) nn_train_time = 0 nn_test_time = 0 nn_accuracy = 0 proba = True for i in range(0, num_classes): print('class: ' + str(i)) print(feature_array[i]) temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) #print 'class: ' + str(i) if i==0: print('sub feature data shape:') print(temp_train_x_matrix.shape) print(temp_test_x_matrix.shape) temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_nn(temp_train_x_matrix, train_y_vector, temp_test_x_matrix, test_y_vector, proba) nn_train_time = nn_train_time + temp_train_time nn_test_time = nn_test_time + temp_test_time #nn_predict_proba = np.add(nn_predict_proba, temp_predict_y_proba) #print nn_predict_proba.shape #print temp_predict_y_proba.shape nn_predict_matrix[:, i] = temp_predict_y nn_predict_proba[:, i] = temp_predict_y_proba[:, i] #break nn_accuracy, nn_predict_y = predict_matrix_with_proba_to_predict_accuracy(nn_predict_matrix, nn_predict_proba, test_y_vector) return nn_accuracy, nn_train_time, nn_test_time, nn_predict_y def run_feature_lda_use_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, logger=None): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape lda_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) lda_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) lda_train_time = 0 lda_test_time = 0 lda_accuracy = 0 proba = True for i in range(0, num_classes): logger.info("class: " + str(i)) logger.info(str(feature_array[i])) temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_train_x_matrix.shape)) logger.info(str(temp_test_x_matrix.shape)) temp_train_y_vector = np.where(train_y_vector==i, 1, 0) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_lda(temp_train_x_matrix, temp_train_y_vector, temp_test_x_matrix, temp_test_y_vector, proba) temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) lda_train_time = lda_train_time + temp_train_time lda_test_time = lda_test_time + temp_test_time proba_row, proba_col = temp_predict_y_proba.shape lda_predict_matrix[:, i] = temp_predict_y lda_predict_proba[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break lda_accuracy, lda_predict_y = predict_matrix_with_proba_to_predict_accuracy(lda_predict_matrix, lda_predict_proba, test_y_vector) return lda_accuracy, lda_train_time, lda_test_time, lda_predict_y def run_feature_rf_use_proba(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, logger=None): if logger==None: logger = init_logging("") logger.info('no log file: ') num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape rf_predict_matrix = np.zeros(test_row * num_classes).reshape(test_row, num_classes) rf_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) rf_train_time = 0 rf_test_time = 0 rf_accuracy = 0 proba = True for i in range(0, num_classes): logger.info("class: " + str(i)) logger.info(str(feature_array[i])) temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) if i==0: logger.info('sub feature data shape: ') logger.info(str(temp_train_x_matrix.shape)) logger.info(str(temp_test_x_matrix.shape)) temp_train_y_vector = np.where(train_y_vector==i, 1, 0) temp_test_y_vector = np.where(test_y_vector==i, 1, 0) temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_rf(temp_train_x_matrix, temp_train_y_vector, temp_test_x_matrix, temp_test_y_vector, 20, True) temp_accuracy, temp_precision, temp_recall, temp_f1_value, temp_tp, temp_fp, temp_tn, temp_fn = f1_value_precision_recall_accuracy(temp_predict_y, temp_test_y_vector) logger.info("Accuracy for class " + str(i) + ": " + str(temp_accuracy)) logger.info("Recall for class " + str(i) + ": " + str(temp_recall)) logger.info("Precision for class " + str(i) + ": " + str(temp_precision)) logger.info("F1 Score for class " + str(i) + ": " + str(temp_f1_value)) logger.info("Prediction matrix:") logger.info("TP=" + str(temp_tp) + " FP=" + str(temp_fp)) logger.info("TN=" + str(temp_tn) + " FN=" + str(temp_fn)) rf_train_time = rf_train_time + temp_train_time rf_test_time = rf_test_time + temp_test_time proba_row, proba_col = temp_predict_y_proba.shape rf_predict_matrix[:, i] = temp_predict_y rf_predict_proba[:, i] = temp_predict_y_proba[:, 1] logger.info('=============') #break rf_accuracy, rf_predict_y = predict_matrix_with_proba_to_predict_accuracy(rf_predict_matrix, rf_predict_proba, test_y_vector) return rf_accuracy, rf_train_time, rf_test_time, rf_predict_y def run_feature_rf_use_proba_old(train_x_matrix, train_y_vector, test_x_matrix, test_y_vector, feature_array, attr_num, logger=None): num_classes, num_features = feature_array.shape test_row, test_col = test_x_matrix.shape rf_predict_proba = np.zeros(test_row * num_classes).reshape(test_row, num_classes) rf_train_time = 0 rf_test_time = 0 rf_accuracy = 0 for i in range(0, num_classes): print('class: ' + str(i)) temp_train_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(train_x_matrix, attr_num, feature_array[i]) temp_test_x_matrix, temp_attr_num, temp_attr_len = feature_data_generation(test_x_matrix, attr_num, feature_array[i]) #print 'class: ' + str(i) if i==0: print('sub feature data shape:') print(temp_train_x_matrix.shape) print(temp_test_x_matrix.shape) temp_accuracy, temp_predict_y, temp_predict_y_proba, temp_train_time, temp_test_time = run_rf(temp_train_x_matrix, train_y_vector, temp_test_x_matrix, test_y_vector) rf_train_time = rf_train_time + temp_train_time rf_test_time = rf_test_time + temp_test_time if temp_predict_y_proba != None: temp_predict_y_proba[:, i] = temp_predict_y_proba[:, i] print(temp_predict_y_proba) rf_predict_proba = np.add(rf_predict_proba, temp_predict_y_proba) #rf_predict_proba[:, i] = temp_predict_y_proba[:, i] #break rf_accuracy, rf_predict_y = predict_proba_to_predict_accuracy(rf_predict_proba, test_y_vector, start_class) return rf_accuracy, rf_train_time, rf_test_time, rf_predict_y if __name__ == '__main__': train_x_matrix = np.array([[-1, -4, -7], [2, -1, 7], [-3, 2, 7], [1, 1, 7], [2, 1, 7], [3, 2, 7]]).astype(np.float64) test_x_matrix = np.array([[12, 5, 7], [2, 1, -7], [-3, -2, -7], [-1, 1, -7]]).astype(np.float64) train_y_vector = np.array([0, 1, 1, 1, 1, 1]).astype(np.float64) test_y_vector = np.array([1, 0, 0, 0]).astype(np.float64) ``` #### File: Baselines/tsc_mtl/mtl_classifier.py ```python import torch import numpy as np import torch.nn.functional as F import torch.nn as nn import pandas as pd from sklearn.metrics import accuracy_score from sklearn.model_selection import train_test_split from collections import OrderedDict from sklearn.metrics import mean_squared_error import copy import sys from torchviz import make_dot #The UEA MTS processing from utils.UEA_utils import get_UEA_dataset import argparse parser = argparse.ArgumentParser() parser.add_argument("--filename", type=str, default="WordsSynonyms") parser.add_argument("--horizon", type=float, default=0.2) parser.add_argument("--stride", type=float, default=0.2) parser.add_argument("--seed1", type=int, default=17) parser.add_argument("--seed2", type=int, default=10) parser.add_argument("--alpha", type=float, default=0.1) parser.add_argument("--sup_ratio", type=float, default=0.9) args = parser.parse_args() filename=args.filename horizon=args.horizon stride=args.stride seed1=args.seed1 seed2=args.seed2 alpha=args.alpha sup_ratio = args.sup_ratio #sys.stdout=open("clf_mtl_"+str(seed1)+"_"+str(seed2)+"_"+filename+"_"+str(horizon)+"_"+str(stride)+"_"+str(alpha)+".log","w") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class MTNet(torch.nn.Module): def __init__(self, horizon): super(MTNet, self).__init__() self.conv1 = nn.Conv1d(x_train.shape[1], 128, 9, padding=(9 // 2)) self.bnorm1 = nn.BatchNorm1d(128) self.conv2 = nn.Conv1d(128, 256, 5, padding=(5 // 2)) self.bnorm2 = nn.BatchNorm1d(256) self.conv3 = nn.Conv1d(256, 128, 3, padding=(3 // 2)) self.bnorm3 = nn.BatchNorm1d(128) self.classification_head = nn.Linear(128, nb_classes) '''****** START: UTS data forecasting ******''' #self.forecasting_head = nn.Linear(128, horizon) '''****** END: UTS data forecasting ******''' '''****** START: MTS data forecasting ******''' self.forecasting_head = nn.Linear(128, x_train.shape[1]) '''****** END: MTS data forecasting ******''' def forward(self, x_class, x_forecast): b1_c = F.relu(self.bnorm1(self.conv1(x_class))) b1_f = F.relu(self.bnorm1(self.conv1(x_forecast))) b2_c = F.relu(self.bnorm2(self.conv2(b1_c))) b2_f = F.relu(self.bnorm2(self.conv2(b1_f))) b3_c = F.relu(self.bnorm3(self.conv3(b2_c))) b3_f = F.relu(self.bnorm3(self.conv3(b2_f))) classification_features = torch.mean(b3_c, 2)#(64,128)#that is now we have global avg pooling, 1 feature from each conv channel classification_out = self.classification_head(classification_features) '''****** START: UTS data forecasting ******''' '''forecasting_features = torch.mean(b3_f, 2) forecasting_features = F.relu(self.bnorm4(self.conv4(b3_f))) forecasting_out = self.forecasting_head(forecasting_features)''' '''****** END: UTS data forecasting ******''' '''****** START: MTS data forecasting ******''' forecasting_mid = self.forecasting_head(b3_f.permute(0, 2, 1)) forecasting_out = forecasting_mid.permute(0, 2, 1) '''****** END: MTS data forecasting ******''' return classification_out, forecasting_out def forward_test(self, x_class): b1_c = F.relu(self.bnorm1(self.conv1(x_class))) b2_c = F.relu(self.bnorm2(self.conv2(b1_c))) b3_c = F.relu(self.bnorm3(self.conv3(b2_c))) classification_features = torch.mean(b3_c, 2)#(64,128)#that is now we have global avg pooling, 1 feature from each conv channel classification_out=self.classification_head(classification_features) return classification_out def optimize_network(x_batch_class, y_batch_class, x_forecast, y_forecast): y_hat_classification, y_hat_forecasting = mtnet(x_batch_class.float(), x_forecast.float()) loss_classification = criterion_classification(y_hat_classification, y_batch_class.long()) loss_forecasting = criterion_forecasting(y_hat_forecasting, y_forecast.float()) loss_mtl = loss_classification+alpha*loss_forecasting optimizer.zero_grad() loss_mtl.backward() optimizer.step() return loss_classification.item(), loss_forecasting.item() ''' train =pd.read_csv("/Users/Jingwei/Downloads/"+filename+"/"+filename+"_TRAIN",sep=",",header=None) test=pd.read_csv("/Users/Jingwei/Downloads/"+filename+"/"+filename+"_TEST",sep=",",header=None) df = pd.concat((train,test)) y_s = df.values[:,0] nb_classes = len(np.unique(y_s)) y_s = (y_s - y_s.min())/(y_s.max()-y_s.min())*(nb_classes-1) df[df.columns[0]] = y_s train, test = train_test_split(df, test_size=0.2, random_state=seed1) train_labeled, train_unlabeled = train_test_split(train, test_size=1-0.1, random_state=seed2) train_unlabeled[train_unlabeled.columns[0]]=-1#Explicitly set all the instance's labels to -1 train_1=pd.concat((train_labeled,train_unlabeled)) x_train=train_1.values[:,1:] y_train=train_1.values[:,0] x_test=test.values[:,1:] y_test=test.values[:,0] x_train_mean = x_train.mean() x_train_std = x_train.std() x_train = (x_train - x_train_mean)/(x_train_std) x_test = (x_test - x_train_mean)/(x_train_std) x_train=x_train[:,np.newaxis,:] x_test=x_test[:,np.newaxis,:] #x_train=x_train[:,:,np.newaxis] #x_test=x_test[:,:,np.newaxis] max_acc_possible = 1-(sum([list(y_test).count(x) for x in list(set(np.unique(y_test))-set(np.unique(y_train)))])/len(y_test)) ''' '''*************** Start of UEA MTS data preparation ***************''' rep_main = "/Users/Jingwei/Downloads/" rep_ds_train = rep_main + filename + "/output_train/" rep_ds_test = rep_main + filename + "/output_test/" meta_csv = "meta_data.csv" # the meta data of training dataset = get_UEA_dataset(rep_ds_train, rep_ds_test, meta_csv, sup_ratio, mode='load') #extract the labeled and unlabeled MTS samples x_sup = dataset['X_sup'] # 3-D Array: N * L * D x_unsup = dataset['X_unsup'] y_sup = dataset['Y_sup'] # 1-D Array y_unsup = [-1] * len(dataset['Y_unsup']) x_train = np.concatenate((x_sup, x_unsup), axis=0) y_train = np.concatenate((y_sup, y_unsup), axis=0) x_test = dataset['X_test'] y_test = dataset['Y_test'] nb_classes = dataset['n_classes'] max_acc_possible = 1-(sum([list(y_test).count(x) for x in list(set(np.unique(y_test))-set(np.unique(y_train)))])/len(y_test)) x_train = np.transpose(x_train, (0,2,1)) x_test = np.transpose(x_test, (0,2,1)) '''*************** End of UEA MTS data preparation ***************''' x_train = torch.from_numpy(x_train).to(device) y_train = torch.from_numpy(y_train).to(device) x_test = torch.from_numpy(x_test).to(device) y_test = torch.from_numpy(y_test).to(device) mtnet = MTNet(int(x_train.shape[2]*horizon)).to(device) print(mtnet) criterion_classification = nn.CrossEntropyLoss() criterion_forecasting = nn.MSELoss() optimizer = torch.optim.Adam(mtnet.parameters(), lr=1e-4) batch_size = 32 accuracies=[] def return_sliding_windows(X): xf=[] yf=[] for i in range(0,X.shape[2],int(stride*X.shape[2])): horizon1=int(horizon*X.shape[2]) if(i+horizon1+horizon1<=X.shape[2]): # print("X===>",i,i+horizon) # print("Y===>",i+horizon,i+horizon+horizon) xf.append(X[:,:,i:i+horizon1]) yf.append(X[:,:,i+horizon1:i+horizon1+horizon1]) xf=torch.cat(xf) yf=torch.cat(yf) return xf,yf x_sliding_window, y_sliding_window = return_sliding_windows(x_train) def shuffler(x_train, y_train): indexes=np.array(list(range(x_train.shape[0]))) np.random.shuffle(indexes) x_train=x_train[indexes] y_train=y_train[indexes] return x_train, y_train for t in range(5000): losses=[] x_train, y_train = shuffler(x_train, y_train) x_train_batch=x_train[y_train!=-1] y_train_batch=y_train[y_train!=-1] x_sliding_window, y_sliding_window = shuffler(x_sliding_window, y_sliding_window) for i in range(0,x_sliding_window.shape[0],batch_size): if i+batch_size<=x_sliding_window.shape[0]: closs,floss = optimize_network(x_train_batch, y_train_batch, x_sliding_window[i:i+batch_size], y_sliding_window[i:i+batch_size]) losses.append([closs,floss]) else: closs,floss = optimize_network(x_train_batch, y_train_batch, x_sliding_window[i:], y_sliding_window[i:]) losses.append([closs,floss]) val_acc = accuracy_score(np.argmax(mtnet.forward_test(x_test.float()).cpu().detach().numpy(),1),y_test.long().cpu().numpy()) accuracies.append(val_acc) print("Epoch: ",t,"| Accuracy: ",val_acc, "/",max(accuracies),"/",max_acc_possible, "| Avg. losses: ", np.mean([loss[0] for loss in losses]),np.mean([loss[1] for loss in losses]), flush=True) if val_acc==1.0: break; ```
{ "source": "JingwenCao/CEBD1160-Final_Project", "score": 3 }
#### File: JingwenCao/CEBD1160-Final_Project/breastcancer_analysis.py ```python import numpy as np import matplotlib import matplotlib.pyplot as ppt from matplotlib.colors import ListedColormap from sklearn.datasets import load_breast_cancer from sklearn import metrics from sklearn import model_selection from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.neighbors import KNeighborsClassifier from sklearn.linear_model import SGDClassifier from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import BaggingClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import PCA from matplotlib.colors import ListedColormap # 2. Load data breastcancer = load_breast_cancer() X, headers, y = breastcancer.data, breastcancer.feature_names, breastcancer.target # 3. Standardize data scaler = StandardScaler() X = scaler.fit_transform(X) # 3. Split data into training data and test data X_train, X_test, Y_train, Y_test = \ train_test_split(X, y, test_size=.4, random_state=42) # 3a. Make data two dimensional pca_model = PCA(n_components=2) pca_model.fit(X_train) X_train = pca_model.transform(X_train) X_test = pca_model.transform(X_test) X_train[:5] # 5. Perform all classifications using various models # 5a. Define all models cla_names = ["Logistic Regression", "SVM", "Stochastic Gradient Descent", "Nearest Neighbors", "Naive Bayes", "Decision Trees", "Bagging Meta-Estimator", "Random Forest"] classifiers = [ LogisticRegression(random_state=0), SVC(kernel='rbf', random_state=0), SGDClassifier(loss="hinge", penalty='l2', max_iter=5), KNeighborsClassifier(n_neighbors=7), GaussianNB(), DecisionTreeClassifier(random_state=0), BaggingClassifier(random_state=0), RandomForestClassifier(random_state=0)] # 5b. Apply all models in for loop name_list = [] score = [] for name, clf in zip(cla_names, classifiers): clf.fit(X_train, Y_train) name_list.append(name) score.append(clf.score(X_test, Y_test)) # 5c Plot performance fig, ax = ppt.subplots(figsize=(20, 10)) ind = np.arange(8) width = 0.9 ppt.bar(ind, score, width, 0) ppt.xticks(ind, name_list) ppt.title("Classifier Performance") i=0 for i in range(len(score)): ppt.annotate(score[i], xy=(i-0.4,0.99)) i = i+1 ppt.savefig ("Classifiers_Performance.png", format="PNG") # 6. Plot all classification plots fig = ppt.figure(figsize=(27,27)) # 6a. Plot three attributes that were my GOAT matplotlib.style.use('ggplot') h = 0.02 for i in [1,2,3,4,5,6,7,8,9]: x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) cm = ppt.cm.RdBu cm_bright = ListedColormap(['#FF0000', '#0000FF']) ax = ppt.subplot(3,3,i) ax.set_title("Input Data") plot1=ax.scatter(X_train[:,0], X_train[:,1], c=Y_train, cmap=cm_bright, edgecolors='k') plot2=ax.scatter(X_test[:,0], X_test[:,1], c=Y_test, cmap=cm_bright, alpha=0.6, edgecolors='k') ax.legend((plot1, plot2), ('Training Data', 'Test Data')) ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) # 6b. Plot decision boundary function def plot_decision_boundary(model,data,position): ax = ppt.subplot(3,3,position) model.fit(X_train, Y_train) score = model.score(X_test, Y_test) if hasattr(model, "decision_function"): Z = model.decision_function(np.c_[xx.ravel(), yy.ravel()]) else: Z = model.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:,1] Z = Z.reshape(xx.shape) ax.contourf(xx, yy, Z, cmap=cm, alpha=.8, norm=None) ax.scatter(X_train[:,0], X_train[:,1], c=Y_train, cmap=cm_bright, edgecolors='k') ax.scatter(X_test[:,0], X_test[:,1], c=Y_test, cmap=cm_bright, alpha=0.3, edgecolors='k') ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'), size=15, horizontalalignment='right') ax.set_xlim(xx.min(), xx.max()) ax.set_ylim(yy.min(), yy.max()) ax.set_xticks(()) ax.set_yticks(()) ax.set_title(cla_names[i]) for i in (range(len(classifiers))): plot_decision_boundary(classifiers[i], X, i+2) ppt.tight_layout() ppt.savefig ("Classifiers_Plots.png", format="PNG") ```
{ "source": "jingwenlow-davis/helpr", "score": 2 }
#### File: helpr/api/models.py ```python from django.db import models # from django.dispatch import receiver from django.contrib.auth.models import AbstractUser # from django.conf import settings # from django.contrib.contenttypes.fields import GenericForeignKey # from django.contrib.contenttypes.models import ContentType # from rest_framework.authtoken.models import Token # This code is triggered whenever a new user has been created and saved to the database # @receiver(post_save, sender=settings.AUTH_USER_MODEL) # def create_auth_token(sender, instance=None, created=False, **kwargs): # if created: # Token.objects.create(user=instance) class User(AbstractUser): ''' User info and profile ''' # profile_picture = models.ImageField(upload_to='profile') # location = models.idk(null=True, blank=True) GENDER_CHOICES = ( ('M', 'Male'), ('F', 'Female'), ('O', 'Other'), ) gender = models.CharField(max_length=10, choices=GENDER_CHOICES, null=True, blank=True) # lister fields helpr = models.BooleanField(default=False) # if this use is listing anything or just a user birthday = models.DateField(null=True, blank=True) def __str__(self): return self.username class Category(models.Model): ''' All possible categories ''' CATEGORY_CHOICES = ( ('photographer', 'photographer'), ('plumber', 'plumber'), ('landscaper', 'landscaper'), ('personal_trainer', 'personal trainer'), ('tutor', 'tutor'), ('carpenter', 'carpenter'), ('electrician', 'electrician'), ('pool_service', 'pool service'), ('gardener', 'gardnerer'), ('babysitting', 'babysitting'), ) category = models.CharField(max_length=50, choices=CATEGORY_CHOICES, null=True, blank=True) def __str__(self): return self.category class Listing(models.Model): ''' Listing a user posts ''' title = models.CharField(max_length=250) user = models.ManyToManyField(User) # profile_picture = models.ImageField(upload_to='profile') # location = models.idk() # images blurb = models.TextField(max_length=500, null=True, blank=True) # phone_number = models.PositiveIntegerField(null=True, blank=True) # email = models.CharField(max_length=150) website = models.CharField(max_length=150, null=True, blank=True) category = models.ManyToManyField(Category) # ratings = models. def __str__(self): return self.title ```
{ "source": "JingwenWang95/KinectFusion", "score": 2 }
#### File: JingwenWang95/KinectFusion/utils.py ```python import time import torch import numpy as np import yaml from addict import Dict import argparse class ForceKeyErrorDict(Dict): def __missing__(self, key): raise KeyError(key) def load_yaml(path): with open(path, encoding='utf8') as yaml_file: config_dict = yaml.load(yaml_file, Loader=yaml.FullLoader) config = ForceKeyErrorDict(**config_dict) return config def load_config(args): config_dict = load_yaml(args.config) # merge args and config other_dict = vars(args) config_dict.update(other_dict) return config_dict def get_volume_setting(args): voxel_size = args.voxel_size vol_bnds = np.array(args.vol_bounds).reshape(3, 2) vol_dims = (vol_bnds[:, 1] - vol_bnds[:, 0]) // voxel_size + 1 vol_origin = vol_bnds[:, 0] return vol_dims, vol_origin, voxel_size def get_time(): """ :return: get timing statistics """ torch.cuda.synchronize() return time.time() ```
{ "source": "JingwenWang95/neurecon", "score": 2 }
#### File: neurecon/models/ray_casting.py ```python from models.base import ImplicitSurface import numpy as np from tqdm import tqdm from typing import Union from collections import OrderedDict import torch import torch.nn.functional as F def run_secant_method(f_low, f_high, d_low, d_high, rays_o_masked, rays_d_masked, implicit_surface_query_fn, n_secant_steps, logit_tau): d_pred = - f_low * (d_high - d_low) / (f_high - f_low) + d_low for i in range(n_secant_steps): p_mid = rays_o_masked + d_pred.unsqueeze(-1) * rays_d_masked with torch.no_grad(): # TODO: needs special design in here when the number of rays in each batch is different. f_mid = implicit_surface_query_fn(p_mid).squeeze(-1) - logit_tau ind_low = f_mid < 0 if ind_low.sum() > 0: d_low[ind_low] = d_pred[ind_low] f_low[ind_low] = f_mid[ind_low] if (ind_low == 0).sum() > 0: d_high[ind_low == 0] = d_pred[ind_low == 0] f_high[ind_low == 0] = f_mid[ind_low == 0] d_pred = - f_low * (d_high - d_low) / (f_high - f_low) + d_low return d_pred def run_bisection_method(): pass def root_finding_surface_points( surface_query_fn, rays_o: torch.Tensor, rays_d: torch.Tensor, near: Union[float, torch.Tensor]=0.0, far: Union[float, torch.Tensor]=6.0, # function config batched = True, batched_info = {}, # algorithm config N_steps = 256, logit_tau=0.0, method='secant', N_secant_steps = 8, fill_inf=True, normalize_factor=1.0 ): """ rays_o: [(B), N_rays, 3] rays_d: [(B), N_rays, 3] near: float or [(B), N_rays] far: float or [(B), N_rays] """ # NOTE: jianfei: modified from DVR. https://github.com/autonomousvision/differentiable_volumetric_rendering # NOTE: DVR'logits (+)inside (-)outside; logits here, (+)outside (-)inside. # NOTE: rays_d needs to be already normalized with torch.no_grad(): device = rays_o.device if not batched: rays_o.unsqueeze_(0) rays_d.unsqueeze_(0) B = rays_o.shape[0] N_rays = rays_o.shape[-2] # [B, N_rays, N_steps, 1] t = torch.linspace(0., 1., N_steps, device=device)[None, None, :] if not isinstance(near, torch.Tensor): near = near * torch.ones(rays_o.shape[:-1], device=device) if not isinstance(far, torch.Tensor): far = far * torch.ones(rays_o.shape[:-1], device=device) d_proposal = near[..., None] * (1-t) + far[..., None] * t # [B, N_rays, N_steps, 3] p_proposal = rays_o.unsqueeze(-2) + d_proposal.unsqueeze(-1) * rays_d.unsqueeze(-2) # only query sigma pts = p_proposal / normalize_factor # query network # [B, N_rays, N_steps] val = surface_query_fn(pts) # [B, N_rays, N_steps] val = val - logit_tau # centered at zero # mask: the first point is not occupied # [B, N_rays] mask_0_not_occupied = val[..., 0] > 0 # [B, N_rays, N_steps-1] sign_matrix = torch.cat( [ torch.sign(val[..., :-1] * val[..., 1:]), # [B, N, N_steps-1] torch.ones([B, N_rays, 1], device=device) # [B, N, 1] ], dim=-1) # [B, N_rays, N_steps-1] cost_matrix = sign_matrix * torch.arange(N_steps, 0, -1).float().to(device) values, indices = torch.min(cost_matrix, -1) # mask: at least one sign change occured mask_sign_change = values < 0 # mask: whether the first sign change is from pos to neg (outside surface into the surface) mask_pos_to_neg = val[torch.arange(B).unsqueeze(-1), torch.arange(N_rays).unsqueeze(0), indices] > 0 mask = mask_sign_change & mask_pos_to_neg & mask_0_not_occupied #--------- secant method # [B*N_rays, N_steps, 1] d_proposal_flat = d_proposal.view([B*N_rays, N_steps, 1]) val_flat = val.view([B*N_rays, N_steps, 1]) N_secant = d_proposal_flat.shape[0] # [N_masked] d_high = d_proposal_flat[torch.arange(N_secant), indices.view(N_secant)].view([B, N_rays])[mask] f_high = val_flat[torch.arange(N_secant), indices.view(N_secant)].view([B, N_rays])[mask] indices = torch.clamp(indices + 1, max=N_steps - 1) d_low = d_proposal_flat[torch.arange(N_secant), indices.view(N_secant)].view([B, N_rays])[mask] f_low = val_flat[torch.arange(N_secant), indices.view(N_secant)].view([B, N_rays])[mask] # [N_masked, 3] rays_o_masked = rays_o[mask] rays_d_masked = rays_d[mask] # TODO: for categorical representation, mask latents here if method == 'secant' and mask.sum() > 0: d_pred = run_secant_method( f_low, f_high, d_low, d_high, rays_o_masked, rays_d_masked, surface_query_fn, N_secant_steps, logit_tau) else: d_pred = torch.ones(rays_o_masked.shape[0]).to(device) # for sanity pt_pred = torch.ones([B, N_rays, 3]).to(device) pt_pred[mask] = rays_o_masked + d_pred.unsqueeze(-1) * rays_d_masked d_pred_out = torch.ones([B, N_rays]).to(device) d_pred_out[mask] = d_pred # Insert appropriate values for points where no depth is predicted if isinstance(far, torch.Tensor): far = far[mask == 0] d_pred_out[mask == 0] = np.inf if fill_inf else far # no intersections; or the first intersection is from outside to inside; or the 0-th point is occupied. d_pred_out[mask_0_not_occupied == 0] = 0 # if the 0-th point is occupied, the depth should be 0. if not batched: d_pred_out.squeeze_(0) pt_pred.squeeze_(0) mask.squeeze_(0) mask_sign_change.squeeze_(0) return d_pred_out, pt_pred, mask, mask_sign_change def sphere_tracing_surface_points( implicit_surface: ImplicitSurface, rays_o, rays_d, # function config near=0.0, far=6.0, batched = True, batched_info = {}, # algorithm config N_iters = 20, ): device = rays_o.device d_preds = torch.ones([*rays_o.shape[:-1]], device=device) * near mask = torch.ones_like(d_preds, dtype=torch.bool, device=device) for _ in range(N_iters): pts = rays_o + rays_d * d_preds[..., :, None] surface_val = implicit_surface.forward(pts) d_preds[mask] += surface_val[mask] mask[d_preds > far] = False mask[d_preds < 0] = False pts = rays_o + rays_d * d_preds[..., :, None] return d_preds, pts, mask def surface_render(rays_o: torch.Tensor, rays_d: torch.Tensor, model, calc_normal=True, rayschunk=8192, netchunk=1048576, batched=True, use_view_dirs=True, show_progress=False, ray_casting_algo='', ray_casting_cfgs={}, **not_used_kwargs): """ input: rays_o: [(B,) N_rays, 3] rays_d: [(B,) N_rays, 3] NOTE: not normalized. contains info about ratio of len(this ray)/len(principle ray) """ with torch.no_grad(): device = rays_o.device if batched: DIM_BATCHIFY = 1 B = rays_d.shape[0] # batch_size flat_vec_shape = [B, -1, 3] else: DIM_BATCHIFY = 0 flat_vec_shape = [-1, 3] rays_o = torch.reshape(rays_o, flat_vec_shape).float() rays_d = torch.reshape(rays_d, flat_vec_shape).float() # NOTE: already normalized rays_d = F.normalize(rays_d, dim=-1) # --------------- # Render a ray chunk # --------------- def render_rayschunk(rays_o: torch.Tensor, rays_d: torch.Tensor): if use_view_dirs: view_dirs = rays_d else: view_dirs = None if ray_casting_algo == 'root_finding': d_pred_out, pt_pred, mask, *_ = root_finding_surface_points( model.implicit_surface, rays_o, rays_d, batched=batched, **ray_casting_cfgs) elif ray_casting_algo == 'sphere_tracing': d_pred_out, pt_pred, mask = sphere_tracing_surface_points( model.implicit_surface, rays_o, rays_d, batched=batched, **ray_casting_cfgs) else: raise NotImplementedError color, _, nablas = model.forward(pt_pred, view_dirs) color[~mask] = 0 # black # NOTE: all without grad. especially for nablas. return color.data, d_pred_out.data, nablas.data, mask.data colors = [] depths = [] nablas = [] masks = [] for i in tqdm(range(0, rays_o.shape[DIM_BATCHIFY], rayschunk), disable=not show_progress): color_i, d_i, nablas_i, mask_i = render_rayschunk( rays_o[:, i:i+rayschunk] if batched else rays_o[i:i+rayschunk], rays_d[:, i:i+rayschunk] if batched else rays_d[i:i+rayschunk] ) colors.append(color_i) depths.append(d_i) nablas.append(nablas_i) masks.append(mask_i) colors = torch.cat(colors, DIM_BATCHIFY) depths = torch.cat(depths, DIM_BATCHIFY) nablas = torch.cat(nablas, DIM_BATCHIFY) masks = torch.cat(masks, DIM_BATCHIFY) extras = OrderedDict([ ('implicit_nablas', nablas), ('mask_surface', masks) ]) if calc_normal: normals = F.normalize(nablas, dim=-1) normals[~masks] = 0 # grey (/2.+0.5) extras['normals_surface'] = normals return colors, depths, extras ```
{ "source": "JingwenWang95/svox2", "score": 2 }
#### File: svox2/opt/extract_mesh.py ```python import os import numpy as np from skimage import measure import trimesh data_dir = "../logs/lego/1" data = np.load(os.path.join(data_dir, 'ckpt.npz')) def get_scene_mesh(data, threshold=150.): indices_flat = data['links'].reshape(-1) density = data['density_data'][data['links'].reshape(-1)] density[indices_flat < 0] = 0. density = density.reshape(data['links'].shape) vertices, faces, normals, _ = measure.marching_cubes(density, threshold, spacing=(2. / data['links'].shape[0], 2. / data['links'].shape[1], 2. / data['links'].shape[2]), allow_degenerate=False) vertices = np.array(vertices) + np.array([-1, -1, -1]) normals = np.array(normals) return trimesh.Trimesh(vertices, faces, vertex_normals=normals) mesh = get_scene_mesh(data) mesh.export(os.path.join(data_dir, 'mesh.ply')) mesh.show() ```
{ "source": "jingwenyvonne/IDS560", "score": 3 }
#### File: jingwenyvonne/IDS560/main.py ```python from selenium import webdriver from selenium.webdriver.common.keys import Keys from time import sleep, strftime from random import randint import pandas as pd from selenium.webdriver.common.by import By import time from config import * import logging logging.basicConfig(filename='test.log', level=logging.DEBUG, format='%(asctime)s:%(levelname)s:%(message)s') limits = {} limits['follow_limit_per_hour'] = randint(5,10) limits['unfollow_limit_per_hour'] = randint(3,10) limits['like_limit_per_hour'] = randint(50,80) limits['comment_limit_per_hour'] = randint(10,19) # follow_limit_per_hour = randint(5,10) # unfollow_limit_per_hour= randint(3,10) # like_limit_per_hour = randint(80,120) # comment_limit_per_hour = randint(30,50) posts_to_reach_per_hashtag = 50 # Iterate through the hashtags stored in "hashtag_list" new_followed = [] new_unfollowed=[] my_dict = {} my_dict_cum = {} my_dict['followed'] = 0 my_dict['unfollowed']=0 my_dict['likes'] = 0 my_dict['comments'] = 0 my_dict['total_actions'] = 0 my_dict_time = {} my_dict_time ['like_timer'] =time.time() my_dict_time ['follow_timer'] =time.time() my_dict_time ['unfollow_timer']=time.time() my_dict_time ['comment_timer'] =time.time() my_dict_cum['followed'] = 0 my_dict_cum['unfollowed']=0 my_dict_cum['likes'] = 0 my_dict_cum['comments'] = 0 my_dict_cum['total_actions'] = 0 # Use WebDriver to open a Chrome tab and navigate to Instagram login page webdriver = webdriver.Chrome(executable_path = chromedriver_path) webdriver.get("https://www.instagram.com/accounts/login") sleep(1) # In[36]: username = webdriver.find_element_by_name("username") username.send_keys(un) password = webdriver.find_element_by_name("password") password.send_keys(pw) sleep(1) # Click login button login_Xpath = '//*[@id="loginForm"]/div/div[3]/button/div' webdriver.find_element_by_xpath(login_Xpath).click() sleep(5) # In[37]: # Click "Not Now" on "Save Your Login Info?" popup not_now = webdriver.find_element_by_css_selector("#react-root > section > main > div > div > div > div > button") not_now.click() sleep(randint(2,5)) # Click "Not Now" on popup "Turn on Notifications" not_now = webdriver.find_element_by_css_selector("body > div.RnEpo.Yx5HN > div > div > div > div.mt3GC > button.aOOlW.HoLwm") not_now.click() sleep(randint(2,5)) # In[38]: # a ='45412' # float(a.replace(',','')) # In[39]: #refresh def refresh(un): webdriver.get("https://www.instagram.com/"+un+'/') sleep(randint(2,5)) picture=webdriver.find_element_by_css_selector("#react-root > section > main > div > div._2z6nI > article > div > div > div > div.v1Nh3.kIKUG._bz0w > a > div > div._9AhH0") picture.click() sleep(randint(2,5)) comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.click() sleep(randint(2,5)) comment_hashtags= '#gold,#accessories,#earrings,#necklace' comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.send_keys(comment_hashtags) sleep(randint(2,5)) comment_click = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > button > div") comment_click.click() #Number of followers function def num_followers(username): url = "https://www.instagram.com/"+username+'/' sleep(2) webdriver.execute_script("window.open('');") webdriver.switch_to.window(webdriver.window_handles[1]) webdriver.get(url) sleep(3) num_of_followers = webdriver.find_element_by_css_selector('#react-root > section > main > div > header > section > ul > li:nth-child(2) > a > div > span').text if num_of_followers[-1] == 'k': num = float(num_of_followers[:-1].replace(',',''))*1000 elif num_of_followers[-1] == 'm': num = float(num_of_followers[:-1].replace(',',''))*1000000 else: num = float(num_of_followers.replace(',','')) sleep(2) webdriver.close() webdriver.switch_to.window(webdriver.window_handles[0]) return num #Follow method and moving to next image def unfollow(): if (time.time()-my_dict_time ['unfollow_timer']) < 3600 and my_dict['unfollowed']<limits['unfollow_limit_per_hour']: for i in range(2): webdriver.get("https://www.instagram.com/"+un+'/') following_=webdriver.find_element_by_partial_link_text("following") following_.click() sleep(randint(1,3)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[3]/ul/div/li[1]/div/div[3]/button").click() sleep(randint(1,3)) webdriver.find_element_by_xpath("/html/body/div[7]/div/div/div/div[3]/button[1]").click() sleep(randint(1,3)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[1]/div/div[3]/div/button").click() sleep(randint(1,2)) i+=1 my_dict['unfollowed']+=1 my_dict['total_actions']+=1 my_dict_cum['unfollowed']+=1 my_dict_cum['total_actions']+=1 logging.debug('unfollow : {}:total_unfollowed {}: total_actions {}'.format(username, my_dict_cum['unfollowed'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['unfollow_timer']) > 2*3600: for i in range(5): my_dict_time ['unfollow_timer'] =time.time() my_dict['unfollowed'] = 0 limits['unfollow_limit_per_hour']= randint(3,10) webdriver.get("https://www.instagram.com/"+un+'/') following_=webdriver.find_element_by_partial_link_text("following") following_.click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[3]/ul/div/li[1]/div/div[3]/button").click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[7]/div/div/div/div[3]/button[1]").click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[1]/div/div[3]/div/button").click() sleep(randint(1,5)) # Increment "unfollowed" counter, add username to new_unfollowed list new_unfollowed.append(username) i+=1 my_dict['unfollowed'] += 1 my_dict['total_actions'] +=1 my_dict_cum['unfollowed']+=1 my_dict_cum['total_actions']+=1 logging.debug('unfollow : {}:total_unfollowed {}: total_actions {}'.format(username, my_dict_cum['unfollowed'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['unfollow_timer']) > 3600 and my_dict['unfollowed']<limits['unfollow_limit_per_hour']: for i in range(5): my_dict_time ['unfollow_timer'] =time.time() my_dict['unfollowed'] = 0 limits['unfollow_limit_per_hour']= randint(3,10) webdriver.get("https://www.instagram.com/"+un+'/') following_=webdriver.find_element_by_partial_link_text("following") following_.click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[3]/ul/div/li[1]/div/div[3]/button").click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[7]/div/div/div/div[3]/button[1]").click() sleep(randint(1,5)) webdriver.find_element_by_xpath("/html/body/div[6]/div/div/div/div[1]/div/div[3]/div/button").click() sleep(randint(1,5)) # Increment "unfollowed" counter, add username to new_unfollowed list new_unfollowed.append(username) i+=1 my_dict['unfollowed'] += 1 my_dict['total_actions'] +=1 my_dict_cum['unfollowed']+=1 my_dict_cum['total_actions']+=1 logging.debug('unfollow : {}:total_unfollowed {}: total_actions {}'.format(username, my_dict_cum['unfollowed'],my_dict_cum['total_actions'])) def follow(): follow_ = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.UE9AK > div > header > div.o-MQd.z8cbW > div.PQo_0.RqtMr > div.bY2yH > button > div") username = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.UE9AK > div > header > div.o-MQd.z8cbW > div.PQo_0.RqtMr > div.e1e1d > div > span > a").text if (time.time()-my_dict_time ['follow_timer']) < 3600 and my_dict['followed']<limits['follow_limit_per_hour']: # Click follow follow_.click() sleep(randint(30,60)) # Increment "followed" counter, add username to new_followed list new_followed.append(username) my_dict['followed'] += 1 my_dict['total_actions'] +=1 my_dict_cum['followed'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('follow : {}:total_followed {}: total_actions {}'.format(username, my_dict_cum['followed'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['follow_timer']) > 2*3600: my_dict_time ['follow_timer'] =time.time() my_dict['followed'] = 0 limits['follow_limit_per_hour'] = randint(5,10) # Click follow follow_.click() sleep(randint(30,60)) # Increment "followed" counter, add username to new_followed list new_followed.append(username) my_dict['followed'] += 1 my_dict['total_actions'] +=1 my_dict_cum['followed'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('follow : {}:total_followed {}: total_actions {}'.format(username, my_dict_cum['followed'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['follow_timer']) > 3600 and my_dict['followed']<limits['follow_limit_per_hour']: my_dict_time ['follow_timer'] =time.time() my_dict['followed'] = 0 limits['follow_limit_per_hour'] = randint(5,10) # Click follow follow_.click() sleep(randint(30,60)) # Increment "followed" counter, add username to new_followed list new_followed.append(username) my_dict['followed'] += 1 my_dict['total_actions'] +=1 my_dict_cum['followed'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('follow : {}:total_followed {}: total_actions {}'.format(username, my_dict_cum['followed'],my_dict_cum['total_actions'])) #like function def like (): if (time.time()-my_dict_time ['like_timer']) < 3600 and my_dict['likes'] <limits['like_limit_per_hour']: like = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.ltpMr.Slqrh > span.fr66n > button") like.click() sleep(randint(30,60)) # Increment "likes" counter my_dict['likes'] += 1 my_dict['total_actions'] +=1 my_dict_cum['likes'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('like: total_likes {}: total_actions {}'.format( my_dict_cum['likes'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['like_timer']) > 2*3600: my_dict_time ['like_timer'] = time.time() my_dict['likes'] = 0 limits['like_limit_per_hour'] = randint(80,120) like = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.ltpMr.Slqrh > span.fr66n > button") like.click() sleep(randint(30,60)) # Increment "likes" counter my_dict['likes'] += 1 my_dict['total_actions'] +=1 my_dict_cum['likes'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('like: total_likes {}: total_actions {}'.format( my_dict_cum['likes'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['like_timer']) > 3600 and my_dict['likes'] <limits['like_limit_per_hour']: my_dict_time ['like_timer'] = time.time() my_dict['likes'] = 0 limits['like_limit_per_hour'] = randint(80,120) like = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.ltpMr.Slqrh > span.fr66n > button") like.click() sleep(randint(30,60)) # Increment "likes" counter my_dict['likes'] += 1 my_dict['total_actions'] +=1 my_dict_cum['likes'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('like: total_likes {}: total_actions {}'.format( my_dict_cum['likes'],my_dict_cum['total_actions'])) #Comment function def comment(num_of_followers): if (time.time()-my_dict_time ['comment_timer']) < 3600 and my_dict['comments'] <limits ['comment_limit_per_hour']: comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.click() sleep(randint(1,5)) # Use "randint" to post different comments rand_comment = randint(1,len(comments_list)) if num_of_followers>20000: pick_comment = 'If you are interested being a brand ambassador please leave us a message on our page' else: pick_comment=comments_list[rand_comment] comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.send_keys(pick_comment) sleep(randint(1,5)) comment_click = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > button > div") comment_click.click() sleep(randint(30,60)) # Increment "comments" counter my_dict['comments'] += 1 my_dict['total_actions'] +=1 my_dict_cum['comments'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('comment:total_comments {}: total_actions {}'.format( my_dict_cum['comments'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['comment_timer']) > 2*3600: my_dict['comments'] = 0 my_dict_time ['comment_timer'] =time.time() limits ['comment_limit_per_hour'] = randint(30,50) comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.click() sleep(randint(1,5)) # Use "randint" to post different comments rand_comment = randint(1,len(comments_list)) #rand_comment=random.randrange(0,5) if num_of_followers>20000: pick_comment = 'If you are interested being a brand ambassador please leave us a message on our page' else: pick_comment=comments_list[rand_comment] comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.send_keys(pick_comment) sleep(randint(2,4)) comment_click = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > button > div") comment_click.click() sleep(randint(30,60)) # Increment "comments" counter my_dict['comments'] += 1 my_dict['total_actions'] +=1 my_dict_cum['comments'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('comment:total_comments {}: total_actions {}'.format( my_dict_cum['comments'],my_dict_cum['total_actions'])) elif (time.time()-my_dict_time ['comment_timer']) > 3600 and my_dict['comments'] < limits ['comment_limit_per_hour']: my_dict['comments'] = 0 my_dict_time ['comment_timer'] =time.time() limits ['comment_limit_per_hour'] = randint(30,50) comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.click() sleep(randint(1,5)) # Use "randint" to post different comments rand_comment = randint(1,len(comments_list)) #rand_comment=random.randrange(0,5) if num_of_followers>20000: pick_comment = 'If you are interested being a brand ambassador please leave us a message on our page' else: pick_comment=comments_list[rand_comment] comment = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > textarea") comment.send_keys(pick_comment) sleep(randint(1,5)) comment_click = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.eo2As > section.sH9wk._JgwE > div > form > button > div") comment_click.click() sleep(randint(30,60)) # Increment "comments" counter my_dict['comments'] += 1 my_dict['total_actions'] +=1 my_dict_cum['comments'] += 1 my_dict_cum['total_actions'] +=1 logging.debug('comment:total_comments {}: total_actions {}'.format( my_dict_cum['comments'],my_dict_cum['total_actions'])) # In[40]: for hashtag in hashtag_list: # Navigate to Instagram "explore/tags" page for current hashtag webdriver.get("https://www.instagram.com/explore/tags/"+hashtag+"/") sleep(randint(1,2)) # Click on the second thumbnail in the current hashtag's explore page first_thumbnail = webdriver.find_element_by_css_selector("#react-root > section > main > article > div.EZdmt > div > div > div:nth-child(1) > div:nth-child(2) > a > div > div._9AhH0") first_thumbnail.click() sleep(randint(1,2)) try: # Iterate through the current hashtag for _ in range(posts_to_reach_per_hashtag): try: follow_ = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.UE9AK > div > header > div.o-MQd.z8cbW > div.PQo_0.RqtMr > div.bY2yH > button > div") username = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.pbNvD.QZZGH.bW6vo > div > article > div > div.HP0qD > div > div > div.UE9AK > div > header > div.o-MQd.z8cbW > div.PQo_0.RqtMr > div.e1e1d > div > span > a").text number_of_followers = num_followers(username) sleep(randint(1,3)) if my_dict['total_actions']>=340 and my_dict['total_actions']<350: unfollow() elif my_dict['total_actions']>=350: print('Actions during this session') my_dict.items() print('Total actions') my_dict_cum.items() refresh() sleep(86400) my_dict['followed'] = 0 my_dict['unfollowed']=0 my_dict['likes'] = 0 my_dict['comments'] = 0 my_dict['total_actions'] = 0 my_dict_time ['like_timer'] =time.time() my_dict_time ['follow_timer'] =time.time() my_dict_time ['unfollow_timer']=time.time() my_dict_time ['comment_timer'] =time.time() elif follow_.text == "Follow" and username != "jewelrymdjewelry" and number_of_followers >= 100: follow() sleep(randint(1,3)) like() sleep(randint(1,3)) comment(number_of_followers) sleep(randint(1,3)) # Click "next" to go to next picture within the same hashtag next = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.Z2Inc._7c9RR > div > div.l8mY4.feth3 > button") next.click() sleep(randint(2,5)) except Exception as ex: # Write out what type of Exception template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) print(message) driver_len = len(webdriver.window_handles) #fetching the Number of Opened tabs if driver_len > 1: # Will execute if more than 1 tabs found. for i in range(driver_len - 1, 0, -1): webdriver.switch_to.window(webdriver.window_handles[i]) #will close the last tab first. webdriver.close() webdriver.switch_to.window(webdriver.window_handles[0]) # Switching the driver focus to First tab. # Click "next" to go to next picture within the same hashtag next = webdriver.find_element_by_css_selector("body > div.RnEpo._Yhr4 > div.Z2Inc._7c9RR > div > div.l8mY4.feth3 > button") next.click() sleep(randint(2,5)) except Exception as ex: # Write out what type of Exception template = "An exception of type {0} occurred. Arguments:\n{1!r}" message = template.format(type(ex).__name__, ex.args) driver_len = len(webdriver.window_handles) #fetching the Number of Opened tabs if driver_len > 1: # Will execute if more than 1 tabs found. for i in range(driver_len - 1, 0, -1): webdriver.switch_to.window(webdriver.window_handles[i]) #will close the last tab first. webdriver.close() webdriver.switch_to.window(webdriver.window_handles[0]) # Switching the driver focus to First tab. print(message) # In[ ]: my_dict_cum.items() # In[ ]: ```
{ "source": "jingwoo4710/mmdetection-icevision", "score": 2 }
#### File: mmdetection-icevision/data-preprocess/ice-vision-data-merger-pipeline.py ```python import os from shutil import copyfile import json print("cwd = ", os.getcwd()) current_folder = os.getcwd() #extracted_train_data = os.path.join(current_folder, "extracted_train_data") extracted_train_data = "/dataset/training/" #annotations_dir = '/data/annotations' copied_train_data = "/data/dataset/training/" # In[100]: data_location = "/dataset/training/" files_list = [] neural_net_list = [] linear_mappings = [] for subdir, dirs, files in os.walk(data_location): for file in set(files): if file.endswith('.pnm'): current_file = os.path.join(subdir, file) files_list.append(current_file) print(len(files_list)) prev_file_number = 0 prev_file_dir_name = "" prev_neural_net = "" counter = 0 linear_list = [] ########################################## EDIT ##################################################################### for file in sorted(files_list): file_name_split = file.split('/') file_number = int(file_name_split[-1].split(".pnm")[0]) dir_name = file_name_split[-3] + file_name_split[-2] counter += file_number - prev_file_number if(prev_file_dir_name != dir_name): counter = 0 neural_net_list.append(file) prev_neural_net = file linear_list = [] else: if(counter >= 5): neural_net_list.append(file) linear_mappings.append({ "linear_list": linear_list, "predecessor": prev_neural_net, "successor": file }) counter = 0 prev_neural_net = file linear_list = [] else: #linear_mappings[file] = "linear" linear_list.append(file) # print("making linear", file) prev_file_number = file_number prev_file_dir_name = dir_name with open('linear_mappings.json', 'w') as outfile: json.dump(linear_mappings, outfile) # for file in file_body: # if (file_body[file] == "neuralnet"): # print(file) # for file in file_body: # if (file_body[file] == "linear"): # print(file) # In[97]: #neural_net_list[] - list of images to be sent to neural network import os import glob from mmdet.apis import init_detector, inference_detector, show_result, write_result import time import datetime config_file = '/root/ws/mmdetection-icevision/configs/dcn/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_all_classes.py' #model = init_detector(config_file, checkpoint_file, device='cuda:0') #epch_count = 1 #for epochs in glob.glob(os.path.join('/data_tmp/icevisionmodels/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_all_classes/', '*.pth')): checkpoint_file = '/data/trained_models/cascade_rcnn_dconv_c3-c5_r50_fpn_1x_135_classes/epoch_15.pth' #checkpoint_file = epochs # build the model from a config file and a checkpoint file model = init_detector(config_file, checkpoint_file, device='cuda:0') TEST_RESULT_PATH = "/data/test_results/" img_count = 0 #print(img_count) FINAL_ONLINE_TEST_PATH = "/data/train_subset/" #FINAL_ONLINE_TEST_PATH = '/data/test_results/2018-02-13_1418/left/' #for TEST_SET_PATH in (FINAL_ONLINE_TEST_PATH + "2018-02-16_1515_left/", FINAL_ONLINE_TEST_PATH + "2018-03-16_1424_left/", FINAL_ONLINE_TEST_PATH + "2018-03-23_1352_right/"): #print(TEST_SET_PATH) #imgs = glob.glob('/dataset/training/**/*.pnm', recursive=True) for img in neural_net_list: ts = time.time() st = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S') print ("time =", st) #imgs = ['test.jpg', '000000.jpg'] #print(img) # /dataset/training/2018-02-13_1418/left/020963.pnm --> required format 2018-02-13_1418_left/000033 name = img.split("/") # ['', 'home', 'luminosity', 'ws', 'icevision', 'data', 'final', '2018-02-16_1515_left', '001887.jpg'] #print(name) base = name[-1].split(".")[0] # ['001887', 'jpg'] #print(base) name = name[-3] + "_" + name[-2] tmp = name name = name + "/" + base #print(name) ######## Remove #name_tmp = base.split("_") #name = name_tmp[0] + "_" + name_tmp[1] + "_" + name_tmp[2] + "/" + name_tmp[-1] #name = "annotation_train_subset/" + base #base_list = base.split("_") #name = base_list[0] + "_" + base_list[1] + "_" + base_list[2] + "/" + base_list[3] ##########Remove result = inference_detector(model, img) #write_result(name, result, model.CLASSES, out_file=os.path.join(TEST_RESULT_PATH, 'my_test_multi_scale_epch_{}.tsv'.format(epch_count))) # use name instead name1 for hackthon submission #show_result(img, result, model.CLASSES, out_file= TEST_RESULT_PATH + 'bboxs/' + tmp + ".pnm") write_result(name, result, model.CLASSES, out_file=os.path.join(TEST_RESULT_PATH, 'my_test_epch_15_interpolation.tsv')) # use name instead name1 for hackthon submission img_count+=1 #print(img_count) print("num = %d name = %s" %(img_count,name)) # In[103]: import os import glob import csv from shutil import copyfile def linear_interpolation(pred, succ, lin_images, input_tsv, step, out_tsv): lin_images.sort() succ_base_name = os.path.basename(succ).split(".")[0] pred_base_name = os.path.basename(pred).split(".")[0] #copyfile(input_tsv, out_tsv) tsv_file = csv.reader(open(input_tsv, "r"), delimiter="\t") prd_classes = [] suc_classes = [] prd_keys = set() suc_keys = set() for row in tsv_file: # print("row = ", row) # print('ped_keys = ', prd_keys) # print('suc_keys = ', suc_keys) # frame xtl ytl xbr ybr class temporary data # 2018-02-13_1418_left/020963 679 866 754 941 3.27 prd_record = {} #defaultdict(list) suc_record = {} #defaultdict(list) #print("row[0] = ", row[0]) x = os.path.join(os.path.basename(os.path.dirname(pred)),os.path.basename(pred)) y = os.path.basename(os.path.dirname(os.path.dirname(pred))) dict_key = y + "_" + x x2 = os.path.join(os.path.basename(os.path.dirname(succ)),os.path.basename(succ)) y2 = os.path.basename(os.path.dirname(os.path.dirname(succ))) dict_key2 = <KEY> # print('y = ', y) # print("x = ", x) # print("dict_key = ", dict_key.split('.')[0]) if row[0] == dict_key.split('.')[0]: if row[5] not in prd_keys: print("pred check cleared") prd_record["class"] = row[5] prd_record["xtl"] = row[1] prd_record["ytl"] = row[2] prd_record["xbr"] = row[3] prd_record["ybr"] = row[4] print("prd_record['ybr'] = ", prd_record["ybr"]) prd_keys.add(row[5]) # #prd_record[row[5]].append(row[1]) #xtl # prd_record[row[5]].append(row[2]) #ytl # prd_record[row[5]].append(row[3]) #xbr # prd_record[row[5]].append(row[4]) #ybr prd_classes.append(prd_record) else: for prd_class in prd_classes: if prd_class["class"] == row[5]: del prd_class print("del prd_class") elif row[0] == dict_key2.split('.')[0]: print("Succ check cleared") if row[5] not in suc_keys: suc_record["class"] = row[5] suc_record["xtl"] = row[1] suc_record["ytl"] = row[2] suc_record["xbr"] = row[3] suc_record["ybr"] = row[4] suc_keys.add(row[5]) # suc_record[row[5]].append(row[1]) # suc_record[row[5]].append(row[2]) # suc_record[row[5]].append(row[3]) # suc_record[row[5]].append(row[4]) suc_classes.append(suc_record) else: for suc_class in suc_classes: if suc_class["class"] == row[5]: del suc_class print("del prd_class") #print("prd_keys = ", prd_keys) common_classes = prd_keys.intersection(suc_keys) print(common_classes) for common_class in common_classes: for prd_class in prd_classes: if prd_class["class"] == common_class: for suc_class in suc_classes: if suc_class["class"] == common_class: xtl_gr = (int(prd_class["xtl"]) - int(suc_class["xtl"])) / step ytl_gr = (int(prd_class["ytl"]) - int(suc_class["ytl"])) / step xbr_gr = (int(prd_class["xbr"]) - int(suc_class["xbr"])) / step ybr_gr = (int(prd_class["ybr"]) - int(suc_class["ybr"])) / step print(xtl_gr, ytl_gr, xbr_gr, ybr_gr) for f in lin_images: curr_base = os.path.basename(f).split(".")[0] # print("curr_base = ", curr_base) # print("pred_base_name = ", pred_base_name) # print("f = ", f) factor = int(curr_base) - int(pred_base_name) curr_xtl = int(prd_class["xtl"]) + (factor * xtl_gr) curr_ytl = int(prd_class["ytl"]) + (factor * ytl_gr) curr_xbr = int(prd_class["xbr"]) + (factor * xbr_gr) curr_ybr = int(prd_class["ybr"]) + (factor * ybr_gr) temp = '' with open(out_tsv, mode = 'a') as result_file: result_file_writer = csv.writer(result_file, delimiter = '\t') result_file_writer.writerow([f, str(curr_xtl), str(curr_ytl), str(curr_xbr), str(curr_ybr), prd_class["class"], temp, temp]) # In[105]: #load the linear mappings.json import csv linear_mappings = "/root/ws/mmdetection-icevision/data-preprocess/linear_mappings.json" input_tsv = os.path.join(TEST_RESULT_PATH, 'my_test_epch_15_interpolation_copy.tsv') out_tsv = os.path.join(TEST_RESULT_PATH, 'my_test_epch_15_interpolation_copy.tsv') interpolation_mappings = [] with open(linear_mappings, 'r') as f: interpolation_mappings = json.load(f) for i in interpolation_mappings: pred = i["predecessor"] succ = i['successor'] interpol_list = i['linear_list'] step = 5 linear_interpolation(pred, succ, interpol_list, input_tsv, step, out_tsv) # if i["predecessor"] == neural_net_list[100]: # break # In[70]: # trial code # extracted_train_data = "/home/sgj/temp/test_data/2018-03-16_1324" # for subdir, dirs, files in os.walk(extracted_train_data): # print("subdir = ", subdir) # for file in files: # if file.endswith('.jpg'): # current_file = os.path.join(subdir, file) # #folder_name = os.path.basename(os.path.dirname(current_file)) # #expected_name = folder_name + '_' + os.path.basename(current_file) # y = file.split("_") # expected_name = y[0] + "_" + y[1] + "_left_jpgs_" + y[2] # absolute_expected_name = os.path.join(os.path.dirname(current_file),expected_name) # os.rename(current_file, absolute_expected_name) # In[37]: extracted_train_data = "/home/sgj/temp/train_data/2018-02-13_1418_left_jpgs" for subdir, dirs, files in os.walk(extracted_train_data): print("subdir = ", subdir) for file in files: if file.endswith('.jpg'): current_file = os.path.join(subdir, file) folder_name = os.path.basename(os.path.dirname(current_file)) expected_name = folder_name + '_' + os.path.basename(current_file) absolute_expected_name = os.path.join(os.path.dirname(current_file),expected_name) os.rename(current_file, absolute_expected_name) # In[25]: # move out un-annotated images - # ARGS - # Annotations data tsv # Extracted images folder # Destination folder for annotated_data import os annotation_data_tsv_folder = "/home/sgj/nvme/ice-vision/annotations/test/all_validation_annotations" extracted_images_folder = "/home/sgj/temp/test_data/all_validation_images" #dest_annotated_imgs = "/home/sgj/nvme/ice-vision/annotated_data/val" dest_annotated_imgs = "/home/sgj/temp/ice-vision/annotated_data/val" os.makedirs(dest_annotated_imgs) img_count = 0 for root, dirs, files in os.walk(annotation_data_tsv_folder): for name in files: if name.endswith('.tsv'): prefix = name.split(".")[0] image_name = prefix + ".jpg" expected_img_path = os.path.join(extracted_images_folder, image_name) new_image_path = os.path.join(dest_annotated_imgs, image_name) if os.path.exists(expected_img_path): img_count = img_count + 1 os.rename(expected_img_path, new_image_path) else: print("image missing-----------------------") print("total images = ", img_count) # In[18]: temp = "2018-02-13_1418_left_jpgs_014810.tsv" temp.split(".")[0] # In[3]: for subdir, dirs, files in os.walk(copied_train_data): print("subdir = ", subdir) for file in files: if file.endswith('.pnm'): current_file = os.path.join(subdir, file) print('current file = ', current_file) cam_dir = current_file.split('/')[-2] #print("cam dir = ", cam_dir) date_dir = current_file.split('/')[-3] #print("date_dir = ", date_dir) expected_folder = '/data/train_subset/' expected_file_name = date_dir + "_" + cam_dir + "_" + os.path.basename(current_file) expected_file_path = os.path.join(expected_folder, expected_file_name) #copyfile(current_file, dst_file_path) os.rename(current_file, expected_file_path) print("expected_file_path = ", expected_file_path) # In[4]: # In[ ]: ```
{ "source": "jingwoo4710/Proj2_visualDet3D", "score": 2 }
#### File: networks/detectors/KM3D.py ```python import numpy as np import torch.nn as nn import torch.nn.functional as F import torch import math import time from torchvision.ops import nms from visualDet3D.networks.utils import DETECTOR_DICT from visualDet3D.networks.detectors.KM3D_core import KM3DCore from visualDet3D.networks.heads.km3d_head import KM3DHead from visualDet3D.networks.lib.blocks import AnchorFlatten from visualDet3D.networks.lib.look_ground import LookGround from visualDet3D.networks.lib.ops.dcn.deform_conv import DeformConv @DETECTOR_DICT.register_module class KM3D(nn.Module): """ KM3D """ def __init__(self, network_cfg): super(KM3D, self).__init__() self.obj_types = network_cfg.obj_types self.build_head(network_cfg) self.build_core(network_cfg) self.network_cfg = network_cfg def build_core(self, network_cfg): self.core = KM3DCore(network_cfg.backbone) def build_head(self, network_cfg): self.bbox_head = KM3DHead( **(network_cfg.head) ) def training_forward(self, img_batch, annotations, meta): """ Args: img_batch: [B, C, H, W] tensor annotations: check visualDet3D.utils.utils compound_annotation meta: calib: visualDet3D.kitti.data.kitti.KittiCalib or anything with obj.P2 epoch: current_epoch Returns: cls_loss, reg_loss: tensor of losses loss_dict: [key, value] pair for logging """ features = self.core(dict(image=img_batch, P2=meta['P2'])) output_dict = self.bbox_head(features) loss, loss_dict = self.bbox_head.loss(output_dict, annotations, meta) return loss, loss_dict def test_forward(self, img_batch, P2): """ Args: img_batch: [B, C, H, W] tensor calib: visualDet3D.kitti.data.kitti.KittiCalib or anything with obj.P2 Returns: results: a nested list: result[i] = detection_results for obj_types[i] each detection result is a list [scores, bbox, obj_type]: bbox = [bbox2d(length=4) , cx, cy, z, w, h, l, alpha] """ assert img_batch.shape[0] == 1 # we recommmend image batch size = 1 for testing features = self.core(dict(image=img_batch, P2=P2)) output_dict = self.bbox_head(features) scores, bboxes, cls_indexes = self.bbox_head.get_bboxes(output_dict, P2, img_batch) return scores, bboxes, cls_indexes def forward(self, inputs): if isinstance(inputs, list) and len(inputs) == 3: img_batch, annotations, meta = inputs return self.training_forward(img_batch, annotations, meta) else: img_batch, calib = inputs return self.test_forward(img_batch, calib) ```
{ "source": "JingWui/SynBioPython", "score": 3 }
#### File: synbiopython/genbabel/utilities.py ```python import datetime def getfilename(): """Return the filename based on the datetime. :return: the filename in year-month-day_hour-minute :rtype: str """ timenow = datetime.datetime.now() year = str(timenow.year % 100) month = str(timenow.month).zfill(2) day = str(timenow.day).zfill(2) hour = str(timenow.hour).zfill(2) minute = str(timenow.minute).zfill(2) filename = year + month + day + "_" + hour + minute return filename ```
{ "source": "JingWui/Test_mybinder", "score": 2 }
#### File: synbiopython/codon/table.py ```python from collections import defaultdict import os.path import re from urllib.request import urlretrieve from synbiopython.codon import get_tax_id, DATA_DIR _CODON_REGEX = r"([ATGCU]{3}) ([A-Z]|\*) (\d.\d+)" def get_table(table_id, dna=True): """Get table.""" tax_id = get_tax_id(table_id) if tax_id: results = defaultdict(dict) content = _get_content(tax_id) for vals in sorted( re.findall(_CODON_REGEX, content), key=lambda x: (x[1], x[2]) ): results[vals[1]][_get_codon(vals[0], dna)] = float(vals[2]) return dict(results) return None def _get_content(tax_id): """Get Kazusa content, either from cached file or remotely.""" target_file = os.path.join(DATA_DIR, "%s.txt" % tax_id) if not os.path.exists(target_file): url = ( "http://www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?" + "aa=1&style=N&species=%s" % tax_id ) urlretrieve(url, target_file) with open(target_file) as fle: return fle.read() def _get_codon(codon, dna): """Get codon.""" return codon.replace("U", "T") if dna else codon ``` #### File: genbabel/gensbolconv/GenSBOLconv.py ```python import os import requests from Bio import SeqIO from Bio.Graphics import GenomeDiagram from reportlab.lib import colors from reportlab.lib.units import cm class GenSBOLconv: """Class to convert standard files (SBOL1, SBOL2, GenBank, Fasta, GFF3).""" @staticmethod def export_PlasmidMap(gbfile, filename=None): """ Export Linear and Circular Plasmid Map for the imported GenBank file. """ record = SeqIO.read(gbfile, "genbank") gd_diagram = GenomeDiagram.Diagram(record.id) gd_track_for_features = gd_diagram.new_track(1, name="Annotated Features") gd_feature_set = gd_track_for_features.new_set() for feature in record.features: if feature.type == "primer" or (feature.type == "misc_feature"): continue # if (feature.type != "CDS"): # # Exclude this feature # continue if len(gd_feature_set) % 2 == 0: color = colors.lightblue else: color = colors.blue gd_feature_set.add_feature( feature, sigil="ARROW", color=color, label_size=12, label_angle=0, label=True, ) # Draw Linear map from genbank gd_diagram.draw( format="linear", orientation="landscape", pagesize="A4", fragments=4, start=0, end=len(record), ) if filename is None: linfile = "plasmid_linear.png" circfile = "plasmid_circular.png" else: linfile = filename[0] circfile = filename[1] gd_diagram.write(linfile, "PNG") # Draw circular map from genbank gd_diagram.draw( format="circular", circular=True, pagesize=(25 * cm, 20 * cm), # pagesize=(35 * cm, 30 * cm), start=0, end=len(record), circle_core=0.5, ) # gd_diagram.write("plasmid_circular.pdf", "PDF") gd_diagram.write(circfile, "PNG") return record.id @staticmethod def SBOLValidator(input_file, Output, uri_Prefix=""): """Code to invoke the SBOL Validator server over the internet.""" file = open(input_file).read() request = { "options": { "language": Output, "test_equality": False, "check_uri_compliance": False, "check_completeness": False, "check_best_practices": False, "fail_on_first_error": False, "provide_detailed_stack_trace": False, "subset_uri": "", "uri_prefix": uri_Prefix, "version": "", "insert_type": False, "main_file_name": "main file", "diff_file_name": "comparison file", }, "return_file": True, "main_file": file, } # send POST request to the specified url (Response [200] means ok) response = requests.post( "https://validator.sbolstandard.org/validate/", json=request ) return response @staticmethod def get_outputfile_extension(Filetype): """ Get the output file extension based on the requested output language. """ switcher = { "GenBank": ".gb", "FASTA": ".fasta", "GFF3": ".gff", "SBOL1": ".sbol", "SBOL2": ".sbol", } return switcher.get(Filetype, "unknown filetype") def export_OutputFile(self, input_filename, Response, Output, outputfile=None): """Export the converted output file.""" filename_w_ext = os.path.basename(input_filename) filename, _ = os.path.splitext(filename_w_ext) if Response.json()["valid"]: # export the result from json into the specific output file format if outputfile is None: output_filename = filename + self.get_outputfile_extension(Output) else: output_filename = outputfile print("Output file: ", output_filename) with open(output_filename, "w", newline="\n") as f: f.write(Response.json()["result"]) else: print("Error message: ", Response.json()["errors"]) def AutoRunSBOLValidator(self, Input_file, Output, uri_Prefix="", **kwargs): """Wrapper function for the SBOL Validator. Parameters: Input_file: input file or path to input file Output: the Output file type (GenBank, FASTA, GFF3, SBOL1, SBOL2) uri_Prefix: '' as default, URI Prefix is required for FASTA and GenBank input conversion Returns: the validity of the Response, and export output file.""" Response = self.SBOLValidator(Input_file, Output, uri_Prefix) output_filename = None for key, value in kwargs.items(): if "outputfile" in key: output_filename = value self.export_OutputFile(Input_file, Response, Output, outputfile=output_filename) return "valid: " + str(Response.json()["valid"]) ``` #### File: genbabel/tests/test_gensbolconv.py ```python import os import pytest import synbiopython.genbabel as stdgen path0 = os.path.abspath(os.path.dirname(__file__)) sbolfile = "sequence1.xml" sbolpath = os.path.join(path0, "data", sbolfile) gbfile = "Testsequence1.gb" gbpath = os.path.join(path0, "data", gbfile) uri_Prefix_isbol = "" uri_Prefix_igb = "http://synbiohub.org/public/igem" stdconv = stdgen.GenSBOLconv() @pytest.mark.stdconv def test_sboltogb(tmpdir): """Test SBOL file conversion to Genbank file.""" path = os.path.join(str(tmpdir), sbolfile.split(".")[0] + ".gb") Output = "GenBank" uri_Prefix = uri_Prefix_isbol Response = stdconv.AutoRunSBOLValidator( sbolpath, Output, uri_Prefix, outputfile=path ) print("tmppath: ", path) assert Response == "valid: True" assert os.path.exists(path) @pytest.mark.stdconv def test_sboltofasta(tmpdir): """Test SBOL file conversion to FASTA file.""" path = os.path.join(str(tmpdir), sbolfile.split(".")[0] + ".fasta") Output = "FASTA" uri_Prefix = uri_Prefix_isbol Response = stdconv.AutoRunSBOLValidator( sbolpath, Output, uri_Prefix, outputfile=path ) assert Response == "valid: True" assert os.path.exists(path) @pytest.mark.stdconv def test_sboltogff3(tmpdir): """Test SBOL file conversion to GFF3 file.""" path = os.path.join(str(tmpdir), sbolfile.split(".")[0] + ".gff") Output = "GFF3" uri_Prefix = uri_Prefix_isbol Response = stdconv.AutoRunSBOLValidator( sbolpath, Output, uri_Prefix, outputfile=path ) assert Response == "valid: True" assert os.path.exists(path) @pytest.mark.stdconv def test_gbtosbol(tmpdir): """Test Genbank file conversion to SBOL file.""" path = os.path.join(str(tmpdir), gbfile.split(".")[0] + ".sbol") Output = "SBOL2" uri_Prefix = uri_Prefix_igb Response = stdconv.AutoRunSBOLValidator(gbpath, Output, uri_Prefix, outputfile=path) assert Response == "valid: True" assert os.path.exists(path) @pytest.mark.stdconv def test_gbtofasta(tmpdir): """Test Genbank file conversion to FASTA.""" path = os.path.join(str(tmpdir), gbfile.split(".")[0] + ".fasta") Output = "FASTA" uri_Prefix = uri_Prefix_igb Response = stdconv.AutoRunSBOLValidator(gbpath, Output, uri_Prefix, outputfile=path) assert Response == "valid: True" assert os.path.exists(path) @pytest.mark.stdconv def test_gbtogff3(tmpdir): """Test Genbank file conversion to GFF3.""" path = os.path.join(str(tmpdir), gbfile.split(".")[0] + ".gff") Output = "GFF3" uri_Prefix = uri_Prefix_igb # path = None Response = stdconv.AutoRunSBOLValidator(gbpath, Output, uri_Prefix, outputfile=path) assert Response == "valid: True" assert os.path.exists(path) # assert (Response == "valid: True") @pytest.mark.stdconv def test_export_PlasmidMap(tmpdir): """Test Plasmid Map Export function""" path1 = os.path.join(str(tmpdir), "plasmid_linear.png") path2 = os.path.join(str(tmpdir), "plasmid_circular.png") recordid = stdconv.export_PlasmidMap(gbpath, (path1, path2)) assert recordid == "BBa_K874103.1" assert os.path.exists(path1) assert os.path.exists(path2) ``` #### File: genbabel/tests/test_sbmlgen.py ```python import os import re import pytest import synbiopython.genbabel as stdgen import synbiopython.genbabel.sbmlgen.simplesbml as simplesbml sbmlgen = stdgen.SBMLgen() """ Testing SBMLgen module """ dx = "sigma *(y - x)" dy = "rho*(z - y)" dz = "beta*(y - z)" ODE = [dx, dy, dz] variable = ["x", "y", "z"] Init = [0.8, 1.8, 19] paramName = ["sigma", "rho", "beta"] param = [20.0, 28, 3] paramUnit = ["s-1", "s-1", "s-1"] """ Testing simplesbml module, adopted from simplesbml original module """ model = simplesbml.sbmlModel() # Create new model model.addSpecies("Glucose", 3.4) # Add 3.4 moles of species 'Glucose' model.addSpecies("[ATP]", 1.0) # Add 1.0 M of species 'ATP' (in concentration instead of amount) model.addSpecies("[G6P]", 0.0) model.addSpecies("[ADP]", 0.0) model.addParameter("k1", 0.1) # Default units are 1/s model.addParameter("fracATP", 1.0, units="dimensionless") # For assignment rule later model.addReaction( ["Glucose", "ATP"], ["2 G6P", "ADP"], "kp*Glucose*ATP", local_params={"kp": 0.1} ) # Glucose+ATP -> 2G6P+ADP model.addEvent("G6P == 1", {"k1": "0.3"}) # When [G6P] = 1 mol/L, k1 is reassigned as 0.3 model.addAssignmentRule("fracATP", "ATP/(ATP+ADP)") # Parameter fracATP is equal to ATP/(ATP+ADP) @pytest.mark.sbmlgen def test_exportsbml(tmpdir): """Test the SBML file generation and exportation.""" path = os.path.join(str(tmpdir), "Testsbml.xml") sbml = sbmlgen.exportsbml( ODE, variable, Init, paramName, param, paramUnit, outputfile=path ) specieslist = re.findall(r'species id="(.*?)"', sbml, re.MULTILINE) print(specieslist) assert specieslist == ["x", "y", "z"] assert os.path.exists(path) @pytest.mark.sbmlgen def test_simplesbml(tmpdir): """Test the additional functions available inside the simplesbml.""" code = simplesbml.writeCode(model.document) specieslist = re.findall(r"species_id='(.*?)'", code, re.MULTILINE) paramlist = re.findall(r"param_id='(.*?)'", code, re.MULTILINE) rxnlist = re.findall(r"expression='(.*?)'", code, re.MULTILINE) eventlist = re.findall(r"trigger='(.*?)'", code, re.MULTILINE) asglist = re.findall("var='(.*?)', math='(.*?)'", code, re.MULTILINE) path = os.path.join(str(tmpdir), "Testsimplesbml.xml") f1 = open(path, "w+") f1.write(model.toSBML()) f1.close() assert specieslist == ["Glucose", "[ATP]", "[G6P]", "[ADP]"] assert paramlist == ["k1", "fracATP"] assert rxnlist == ["kp * Glucose * ATP"] assert eventlist == ["G6P == 1"] assert asglist == [("fracATP", "ATP / (ATP + ADP)")] assert os.path.exists(path) ``` #### File: genbabel/tests/test_sedmlomexgen.py ```python import os import re import pytest import synbiopython.genbabel as stdgen path0 = os.path.abspath(os.path.dirname(__file__)) sbmlfile = "gateNOT_d30_LB_state1_.xml" sbmlpath = os.path.join(path0, "data", sbmlfile) phrasedml_str = """ model1 = model "{}" sim1 = simulate uniform(0, 720, 1000) sim1.algorithm = rk4 task1 = run sim1 on model1 model2 = model model1 with state = 0 task2 = run sim1 on model2 plot "Fig 1: Pep (NOT gate 30C LB)" task1.time vs task1.Pep2, task2.Pep2 """ omexgen = stdgen.SEDMLOMEXgen() @pytest.mark.omexgen def test_find_between(): """Test the substring finding.""" s = "SEDMLOMEXgen" first = "SEDML" last = "gen" substr = omexgen.find_between(s, first, last) assert substr == "OMEX" @pytest.mark.omexgen def test_sbmltoantimony(): """Test the SBML conversion to antimony string.""" antimony_str = omexgen.sbmltoantimony(sbmlpath) model = re.search("model (.*)\n", antimony_str).group(1) assert model == "*gateNOT_d30_LB_state1_()" @pytest.mark.omexgen def test_phrasedmltosedml(tmpdir): """Test the phrasedml string conversion SEDML.""" path = os.path.join(str(tmpdir), "Testsedml.xml") sedml_str = omexgen.phrasedmltosedml(phrasedml_str, sbmlpath, outputfile=path) model = re.search('source="(.*)"', sedml_str).group(1) assert model == sbmlpath assert os.path.exists(path) @pytest.mark.omexgen def test_exportomex(tmpdir): """Test the COMBINE OMEX file generation and exportation.""" antimony_str = omexgen.sbmltoantimony(sbmlpath) path = os.path.join(str(tmpdir), "archive.omex") omex_str, _ = omexgen.export_omex(antimony_str, phrasedml_str, outputfile=path) antimonymodel = re.search("model (.*)\n", omex_str).group(1) phrasedmlmodel = re.search('model1 = model "(.*)"', omex_str).group(1) phrasedmlmodel = "*" + phrasedmlmodel + "()" assert antimonymodel == phrasedmlmodel assert os.path.exists(path) @pytest.mark.omexgen def test_getsbmlbiomodel(tmpdir): """Test getting SBML model from biomodel.""" path = os.path.join(str(tmpdir), "Testbiomodel.xml") biomodelsbml_str = omexgen.get_sbml_biomodel("BIOMD0000000012", outputfile=path) model = re.search('<model id="(.*?)(")', biomodelsbml_str).group(1) assert model == "BIOMD0000000012" assert os.path.exists(path) ``` #### File: synbiopython/genbabel/utilities.py ```python import datetime def getfilename(): """Generate the filename based on the datetime.""" timenow = datetime.datetime.now() year = str(timenow.year % 100) month = str(timenow.month).zfill(2) day = str(timenow.day).zfill(2) hour = str(timenow.hour).zfill(2) minute = str(timenow.minute).zfill(2) filename = year + month + day + "_" + hour + minute return filename ``` #### File: lab_automation/containers/helper_functions.py ```python import math import re def compute_rows_columns(num_wells): """Convert 96->(8,12), 384->(16,24), etc.""" a = math.sqrt(num_wells / 6) n_rows = int(round(2 * a)) n_columns = int(round(3 * a)) return n_rows, n_columns def rowname_to_number(name): "Convert A->1 Z->26 AA->27 etc." if len(name) == 2: return 26 * rowname_to_number(name[0]) + rowname_to_number(name[1]) try: return "ABCDEFGHIJKLMNOPQRSTUVWXYZ".index(name) + 1 except IndexError: raise ValueError(name + " is not a valid row name.") def number_to_rowname(number): "Convert 1->A 26->Z 27->AA etc." if number > 26: return number_to_rowname(int(number / 26)) + number_to_rowname(number % 26) return "ABCDEFGHIJKLMNOPQRSTUVWXYZ"[number - 1] def wellname_to_coordinates(wellname): """Convert A1->(1,1), H11->(8, 11), etc.""" rowname, colname = re.match("([a-zA-Z]+)([0-9]+)", wellname).groups() return rowname_to_number(rowname), int(colname) def coordinates_to_wellname(coords): """Convert (1,1)->A1, (4,3)->D3, (12, 12)->H12, etc.""" row, column = coords return number_to_rowname(row) + str(column) def wellname_to_index(wellname, num_wells, direction="row"): """ Convert e.g. A1..H12 into 1..96 direction is either row for A1 A2 A3... or column for A1 B1 C1 D1 etc. """ n_rows, n_columns = compute_rows_columns(num_wells) row, column = wellname_to_coordinates(wellname) if direction == "row": return column + n_columns * (row - 1) elif direction == "column": return row + n_rows * (column - 1) else: raise ValueError("`direction` must be in (row, column)") def index_to_row_column(index, num_wells, direction="row"): n_rows, n_columns = compute_rows_columns(num_wells) if direction == "row": row = 1 + int((index - 1) / n_columns) column = 1 + ((index - 1) % n_columns) elif direction == "column": row, column = 1 + ((index - 1) % n_rows), 1 + int((index - 1) / n_rows) else: raise ValueError("`direction` must be in (row, column)") return row, column def index_to_wellname(index, num_wells, direction="row"): """ Convert e.g. 1..96 into A1..H12""" row, column = index_to_row_column(index, num_wells, direction) return coordinates_to_wellname((row, column)) ``` #### File: lab_automation/tests/test_Picklist.py ```python import os import pytest import synbiopython.lab_automation as lab source = lab.Plate96(name="Source") destination = lab.Plate96(name="Destination") source_well = source.wells["A1"] destination_well = destination.wells["B2"] volume = 25 * 10 ** (-6) transfer_1 = lab.Transfer(source_well, destination_well, volume) picklist = lab.PickList() def test_add_transfer(): picklist.add_transfer(transfer=transfer_1) assert isinstance(picklist.transfers_list[0], lab.Transfer) def test_to_plain_string(): assert ( picklist.to_plain_string() == "Transfer 2.50E-05L from Source A1 into Destination B2" ) def test_to_plain_textfile(tmpdir): path = os.path.join(str(tmpdir), "test.txt") picklist.to_plain_textfile(filename=path) assert os.path.exists(path) def test_simulate(): with pytest.raises(ValueError): picklist.simulate(inplace=False) def test_restricted_to(): new_picklist = picklist.restricted_to( source_well=destination_well, destination_well=destination_well ) assert len(new_picklist.transfers_list) == 0 new_picklist_2 = picklist.restricted_to( source_well=source_well, destination_well=destination_well ) assert len(new_picklist_2.transfers_list) == 1 def test_sorted_by(): assert isinstance(lab.PickList().sorted_by(), lab.PickList) def test_total_transferred_volume(): assert picklist.total_transferred_volume() == 25 * 10 ** (-6) def test_enforce_maximum_dispense_volume(): new_picklist = picklist.enforce_maximum_dispense_volume(5 * 10 ** (-6)) assert len(new_picklist.transfers_list) == 5 def test_merge_picklists(): new_picklist = picklist.merge_picklists([picklist, picklist]) assert len(new_picklist.transfers_list) == 2 ``` #### File: lab_automation/tests/test_tools.py ```python import pytest import numpy as np from synbiopython.lab_automation import tools def test_round_at(): assert tools.round_at(42.0) == 42.0 assert tools.round_at(6.28318, 10 ** (-2)) == 6.28 def test_dicts_to_columns(): test_dict = {1: np.nan, 2: {"a": np.nan}} tools.replace_nans_in_dict(test_dict) expected = {1: "null", 2: {"a": "null"}} assert test_dict == expected def test_human_seq_size(): assert tools.human_seq_size(42) == "42b" tools.human_seq_size(1042) == "1.0k" tools.human_seq_size(42000) == "42k" def test_human_volume(): assert tools.human_volume(500) == "500 L" ``` #### File: lab_automation/tests/test_Transfer.py ```python import pytest import synbiopython.lab_automation as lab def test_TransferError(): with pytest.raises(ValueError): raise lab.TransferError() source = lab.Plate96(name="Source") destination = lab.Plate96(name="Destination") source_well = source.wells["A1"] destination_well = destination.wells["B2"] volume = 25 * 10 ** (-6) transfer = lab.Transfer(source_well, destination_well, volume) def test_to_plain_string(): assert ( transfer.to_plain_string() == "Transfer 2.50E-05L from Source A1 into Destination B2" ) def test_to_short_string(): assert ( transfer.to_short_string() == "Transfer 2.50E-05L (Source-A1) -> (Destination-B2)" ) def test_with_new_volume(): new_volume = 50 * 10 ** (-7) new_transfer = transfer.with_new_volume(new_volume) assert new_transfer.volume == new_volume def test_apply(): with pytest.raises(ValueError): transfer.apply() source_2 = lab.Plate96(name="Source_2") source_2.wells["A1"].add_content({"Compound_1": 1}, volume=5 * 10 ** (-6)) destination_2 = lab.Plate96(name="Destination_2") transfer_2 = lab.Transfer(source_2.wells["A1"], destination_2.wells["B2"], volume) with pytest.raises(ValueError): transfer_2.apply() source_2.wells["A1"].add_content({"Compound_1": 1}, volume=25 * 10 ** (-6)) destination_2.wells["B2"].capacity = 3 * 10 ** (-6) with pytest.raises(ValueError): transfer_2.apply() destination_2.wells["B2"].capacity = 50 * 10 ** (-6) transfer_2.apply() assert destination_2.wells["B2"].volume == volume def test___repr__(): assert ( transfer.__repr__() == "Transfer 2.50E-05L from Source A1 into Destination B2" ) ```
{ "source": "jingxiangguo/Python-force-field-parameterizatoin-workflow", "score": 2 }
#### File: fortranAPI/test/test_import_fortranAPI.py ```python import numpy as np import os from ctypes import CDLL # Local library: # fortran API: import fortranAPI.IO import fortranAPI.pair_correlation # Third-party libraries: import pytest def test_import_IO_reader(): # get the dynamic library path from the fortranAPI IO module: fortranlib_address = os.path.join(os.path.dirname(fortranAPI.IO.__file__), "lib") # Load the dynamic library of dcd trajectory reader: dcd_lib = CDLL(os.path.join(fortranlib_address, "libdcd_reader.so")) # Load the dynamic library of txt file reader: txt_lib = CDLL(os.path.join(fortranlib_address, "libtxt_reader.so")) # Load the dynamic library of txt file reader: txt_lib = CDLL(os.path.join(fortranlib_address, "libxyz_reader.so")) return None def test_import_pair_correlation(): # get the dynamic library path from the fortranAPI IO module: fortranlib_address = os.path.join(os.path.dirname(fortranAPI.pair_correlation.__file__), "lib") pcf_lib = CDLL(os.path.join(fortranlib_address, "libpair_correlation.so")) return None def test_import_general(): return None ``` #### File: Python-force-field-parameterizatoin-workflow/IO/writer.py ```python import numpy as np import multiprocessing as mp import os import sys # Local library: # Third-party library: # ------------------------------------------------------------------------- # xyz writer # ------------------------------------------------------------------------- def xyz_writer(filename, mode, label, total_atoms, xyz, box): with open(filename, mode) as output: output.write("%d\n" % total_atoms) np.savetxt(output, np.c_[[box]]) for i in range(total_atoms): output.write("%d %.15f %.15f %.15f\n" % (label[i], xyz[i, 0], xyz[i, 1], xyz[i, 2])) return None # ------------------------------------------------------------------------- # Fortran xyz writer # ------------------------------------------------------------------------- ``` #### File: Python-force-field-parameterizatoin-workflow/sampling/potential_LAMMPS.py ```python import logging import os import itertools import sys # Local library: # Third-parties library: # GMSO import mbuild as mb import gmso from gmso.external.convert_mbuild import from_mbuild from gmso.formats.top import write_top from gmso.formats import write_lammpsdata from unyt import unyt_quantity # This module defines the force field output format for LAMMPS # Customized pair_style function returns: # A dictionary with the filename as "key", and its content as "values" def choose_lammps_potential(ptype, force_field_parameters): potential_logger = logging.getLogger(__name__) potential_logger.debug("function:choose_lammps_potential " "entered successfully") # a list of available LAMMPS potential functional: potential_type = { "tersoff": __pair_style_tersoff, "tersoff/table": __pair_style_tersoff, "stillinger_weber": __pair_style_sw, "lj/cut": __pair_style_lj_cut, "buck/coul/long": __pair_style_buck_coul_long, "lj/smooth/linear": __pair_style_lj_smooth_linear_GMSO } # raise the errors and exit the program if # requested potential is not defined if (ptype not in potential_type.keys()): potential_logger.error( "ERROR: LAMMPS potential type: " " %s is invalid: \n" % ptype + "Solutions: \n" + "1. Check the spelling\n" + "2. Define a customized force field " "named %s in potential.py\n" % ptype + "Currently available potential types are: " + " , ".join(pt for pt in potential_type.keys()) + "\n") sys.exit("Error messages found in the log file") # choose the chosen output force field chosen_potential = potential_type[ptype] output_force_field_dict = chosen_potential(ptype, force_field_parameters) potential_logger.debug("function:choose_lammps_potential " "returned successfully; Potential type: " "%s is used ..." % ptype) return output_force_field_dict def propagate_force_field(wk_folder_tple, output_force_field_dict): potential_logger = logging.getLogger(__name__) potential_logger.debug("function: propagate_force_field " "entered successfully !") for every_type in wk_folder_tple: for each_folder in every_type: for output_file in output_force_field_dict: output_content = output_force_field_dict[output_file] if (len(output_content) > 1 and output_content[0] == "TurnOnGMSO"): pass #write_lammpsdata = output_content[1] #filename = os.path.join(each_folder, output_file) #write_lammpsdata(output_content[2], filename, output_content[-1]) else: filename = os.path.join(each_folder, output_file) with open(filename, "w") as output: for line in output_content: output.write(line) potential_logger.debug("function:propagate_force_field " " returned successfully; force-field parameters ") return None def set_lj_smooth_linear_GMSO(top, force_field_parameters): ff = gmso.ForceField('ar.xml') ar_type = ff.atom_types['Ar'] ar_type.parameters["sigma"] = unyt_quantity(force_field_parameters[1], 'angstrom') ar_type.parameters["epsilon"] = unyt_quantity(force_field_parameters[0], "6.947694845464e-21*J") for site in top.sites: site.atom_type = ar_type top.update_topology() return top def __pair_style_lj_smooth_linear_GMSO(ptype, force_field_parameters): # output dictionary: # Generate a small box of Argon atoms using mBuild # output dictionary : force_field_dict = {} ar = mb.Compound(name='Ar') # (1.3954 g/cm^3 / 39.948 amu) * (3 nm) ^3 packed_system = mb.fill_box( compound=ar, n_compounds=512, box=mb.Box([4.22187, 4.22187, 4.22187]), ) # Convert system to a backend object top = from_mbuild(packed_system) lamp_data_name = "ar.lmp" force_field_dict[lamp_data_name] = ("TurnOnGMSO", write_lammpsdata, top, "atomic", set_lj_smooth_linear_GMSO) return force_field_dict def __pair_style_lj_cut(ptype, force_field_parameters): # output dictionary : force_field_dict = {} # define the filename include_file = "force_field_parameters" # define the command for each filename lammps_cmd_comment = "#pair style: %s is used \n" % ptype lammps_cmd_1 = "pair_style lj/cut %.3f" % force_field_parameters[0] lammps_cmd_2 = "pair_coeff * * %.9f %.9f" % (force_field_parameters[1], force_field_parameters[2]) lammps_cmd_3 = "pair_modify tail yes" force_field_dict[include_file] = (lammps_cmd_comment, lammps_cmd_1, lammps_cmd_2, lammps_cmd_3) return force_field_dict def __pair_style_sw(ptype, force_field_parameters): # output dictionary : force_field_dict = {} # define the filename potential_file = "mW.sw" # define the filename include_file = "force_field_parameters" lammps_cmd_comment = "#pair style: %s is used \n" % ptype element = "WT" command1 = "pair_style sw\n" command2 = ("pair_coeff" + " " + "* *" + " " + potential_file + " " + element + "\n") pair_command = ((element+" ")*3 + " ".join(str(para) for para in force_field_parameters)) force_field_dict[include_file] = (lammps_cmd_comment, command1, command2) force_field_dict[potential_file] = (pair_command) return force_field_dict def __pair_style_tersoff(ptype, force_field_parameters): # output dictionary: force_field_dict = {} # define the filename potential_file = "WT_ML-BOP.tersoff" # define the filename include_file = "force_field_parameters" lammps_cmd_comment = "# pair style: %s is used \n" % ptype element = "WT" if ("table" in ptype): command1 = "pair_style tersoff/table\n" else: command1 = "pair_style tersoff\n" command2 = "pair_coeff" + " * * " + potential_file + " " + element pair_command = ((element + " ")*3 + " ".join(str(para) for para in force_field_parameters)) force_field_dict[include_file] = (lammps_cmd_comment, command1, command2) force_field_dict[potential_file] = (pair_command) return force_field_dict def __pair_style_buck_coul_long(ptype, force_field_parameters): # output dictionary: force_field_dict = {} # define the filename include_file = "force_field_parameters" # comment of included potential file lammps_cmd_comment = "#pair style: %s is used \n" % ptype # lammps command: lammps_command_1 = ("pair_style buck/coul/long %.3f" % force_field_parameters[0]) lammps_command_2 = ("pair_coeff 1 1 %.5f %.5f %.5f" % (force_field_parameters[1], force_field_parameters[2], force_field_parameters[3])) lammps_command_3 = ("pair_coeff 2 2 %.5f %.5f %.5f" % (force_field_parameters[4], force_field_parameters[5], force_field_parameters[6])) lammps_command_4 = ("pair_coeff 1 2 %.5f %.5f %.5f" % (force_field_parameters[7], force_field_parameters[8], force_field_parameters[9])) lammps_command_5 = "kspace_style pppm 1.0e-4" force_field_dict[include_file] = (lammps_cmd_comment, lammps_command_1, lammps_command_2, lammps_command_3, lammps_command_4, lammps_command_5) return force_field_dict ``` #### File: Tutorial_03_Optimizer_module/Himmelblau/Tutorial_03_Optimization_himmelblau.py ```python from optimizer.gradient_free import NelderMeadSimplex import numpy as np import matplotlib.pyplot as plt class Himmelblau(): def __init__(self, x_ranges, y_ranges): self.x_limit = np.arange(x_ranges[0],x_ranges[1], x_ranges[-1]) self.y_limit = np.arange(y_ranges[0],y_ranges[1], y_ranges[-1]) self.z_mat = np.zeros((self.x_limit.size, self.y_limit.size)) counter_x = 0 for x in self.x_limit: counter_y = 0 for y in self.y_limit: self.z_mat[counter_x, counter_y] = np.log10(self.compute_z(np.array([x, y]))) counter_y += 1 counter_x += 1 return None def visualize(self): plt.xlabel("x") plt.ylabel("y") plt.contour(self.x_limit, self.y_limit, np.transpose(self.z_mat), 20) plt.show() return None def compute_z(self, parameters): predict_val = ((parameters[0]**2 + parameters[1] - 11 )**2 + (parameters[0] + parameters[1]**2 -7)**2) return predict_val # "update" must be here. For force-matching, rdf-matching ..., this function # will be used to update the best predicted properties. def update(self, func_expand, best_func, status=None): pass return None # method "optimize" must be here. the optimizer will assume every # passed objective function will have a attribute of "optimize" # "para_type_lst", and "status" also must be here, though they are not used def optimize(self, para_type_lst, parameters, status=None): return self.compute_z(parameters) # input file name input_file = "in_himmelblau" # No lines skipped: skipped_lines = 0 # The solution space of Himmelblau function x = [-8, 8, 0.15] y = [-8, 8, 0.15] # initialize test objective functions himmeblau_obj = Himmelblau(x, y) # Visualize the solution space of Himmelblau # local minmums: # Solution 1: x = 3.0, y = 2.0 # Solution 2: x = -2.8051, y = 3.1313 # Solution 3: x = -3.7793, y = -3.2832 # Solution 4: x = 3.5844, y = -1.8481 # local maximum: # Solution 1: x = -0.270845, y = -0.923039 himmeblau_obj.visualize() # initialize optimizer ... optimize_himme = NelderMeadSimplex(input_file, himmeblau_obj, skipped=skipped_lines) # Optimization starts ... optimize_himme.run_optimization() # Load the solutions: with open("best_parameters.txt") as content: for line in content: solution = np.array(line.split()).astype(np.float64) x, y = solution print("The Minimum found is x = %.4f, y = %.4f" % (x, y)) # initialize optimizer ... optimize_himme = NelderMeadSimplex(input_file, himmeblau_obj, skipped=skipped_lines, optimize_mode="max") # Optimization starts ... optimize_himme.run_optimization() # Load the solutions: with open("best_parameters.txt") as content: for line in content: solution = np.array(line.split()).astype(np.float64) x, y = solution print("The Maximum found is x = %.4f, y = %.4f" % (x, y)) ```
{ "source": "jingxiang-li/kaggle-yelp", "score": 2 }
#### File: kaggle-yelp/archive/train_models.py ```python from __future__ import division, absolute_import from __future__ import print_function, unicode_literals import xgboost as xgb import numpy as np import pandas as pd from os import listdir from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.metrics import f1_score def aggregate_features(X): return np.mean(X, axis=0) def get_features(): biz_id_list = [] result_array = np.zeros((2000, 1024)) path = 'features/inception-21k-global/' feature_files = listdir(path) for i, f in enumerate(feature_files): biz_id = int(f[:-4]) feature_bag = np.load('features/inception-21k-global/' + f) out_feature = aggregate_features(feature_bag) biz_id_list.append(biz_id) result_array[i, :] = out_feature col_names = [ 'incpt21k-glp-avg-' + str(i) for i in range( result_array.shape[1])] feature_frame = pd.DataFrame( data=result_array, index=biz_id_list, columns=col_names) return feature_frame def get_response(): biz2label = pd.read_csv("rawdata/train.csv") result_array = np.zeros((2000, 9)) for class_no in range(9): response = [ 1 if str(class_no) in str(l).split(" ") else 0 for l in biz2label["labels"]] result_array[:, class_no] = response response_frame = pd.DataFrame( data=result_array, index=biz2label["business_id"], columns=['class' + str(i) for i in range(9)], dtype=int) return response_frame def get_data(): X = get_features() Y = get_response() dataframe = pd.merge(X, Y, left_index=True, right_index=True) return dataframe # def get_testdata(): # photo2ftr = pd.read_csv("features/inception-21k-global-test.csv", # index_col=0, header=None) # photo2biz = pd.read_csv("rawdata/test_photo_to_biz.csv") # biz_ids = np.unique(photo2biz["business_id"]) # test_data = np.zeros((len(biz_ids), 1024)) # for i, biz_id in enumerate(biz_ids): # dd = photo2biz[photo2biz["business_id"] == biz_id] # photo_ids = np.unique(dd["photo_id"]) # feature = np.mean(photo2ftr.loc[photo_ids].as_matrix(), axis=0) # test_data[i, :] = feature # np.save('features/inception-21k-global-test.npy', test_data) # dataframe = get_data().as_matrix() # np.save('features/train_data.npy', dataframe) def evalerror(preds, dtrain): pred_labels = [1 if p > 0 else 0 for p in preds] labels = dtrain.get_label() return 'f1-score', f1_score(labels, pred_labels) def fpreproc(dtrain, dtest, param): label = dtrain.get_label() ratio = float(np.sum(label == 0)) / np.sum(label == 1) param['scale_pos_weight'] = ratio return (dtrain, dtest, param) dataframe = np.load('features/train_data.npy') X = dataframe[:, 0:1024] y_array = dataframe[:, -9:].astype(int) X_test = np.load("features/inception-21k-global-test.npy") print(X_test.shape) dtest = xgb.DMatrix(X_test) preds_array = np.zeros((X_test.shape[0], y_array.shape[1])) for y_index in range(9): y = y_array[:, y_index] dtrain = xgb.DMatrix(X, label=y) param = { 'max_depth': 3, 'eta': 0.5, 'silent': 1, 'objective': 'binary:logitraw', 'nthread': 4} cv_result = xgb.cv( params=param, dtrain=dtrain, num_boost_round=2000, nfold=5, feval=evalerror, early_stopping_rounds=30, maximize=True, verbose_eval=True, fpreproc=fpreproc, show_stdv=False) # train model and predict on test set opt_round_num = cv_result.shape[0] - 1 label = dtrain.get_label() ratio = float(np.sum(label == 0)) / np.sum(label == 1) param['scale_pos_weight'] = ratio # add dtest here clf = xgb.train( params=param, dtrain=dtrain, num_boost_round=opt_round_num, evals=[(dtrain, 'train')], feval=evalerror, maximize=True) preds = (clf.predict(dtest) > 0).astype(int) print(preds.shape) print(preds_array.shape) preds_array[:, y_index] = preds np.savetxt("output/first_try.csv", preds_array, delimiter=",") # sss = StratifiedShuffleSplit(dataframe[:, -3], 1, test_size=0.2) # for train_index, test_index in sss: # X_train, X_test = X[train_index], X[test_index] # y_train, y_test = y[train_index], y[test_index] # dtrain = xgb.DMatrix(X_train, label=y_train) # dtest = xgb.DMatrix(X_test, label=y_test) # param = {'max_depth':3, 'eta':0.1, 'silent':1, 'objective':'binary:logitraw', 'lambda':1} # param['nthread'] = 4 # watchlist = [(dtrain,'train'), (dtest,'eval')] # num_round = 2000 # def evalerror(preds, dtrain): # pred_labels = [1 if p > 0 else 0 for p in preds] # labels = dtrain.get_label() # return 'f1-score', f1_score(labels, pred_labels) # bst = xgb.train(param, dtrain, num_round, watchlist, feval=evalerror, early_stopping_rounds=30, maximize=True) ``` #### File: kaggle-yelp/model/level2_models.py ```python from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import numpy as np import xgboost as xgb import argparse from os import path import os from hyperopt import fmin, tpe, hp, STATUS_OK, Trials import pickle from utils import * def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data', choices=['21k', 'v3', 'colHist'], default="21k") parser.add_argument('--prob', choices=['75', '50'], default='75') parser.add_argument('--reps', choices=['5', '9'], default='5') parser.add_argument('--yix', type=int, default=0) return parser.parse_args() def get_params(args): data_dir_path = "../level2-feature/" + \ str(args.yix) + "/" + "_".join((args.reps, args.prob, args.data)) assert path.exists(data_dir_path) reps = int(args.reps) prob = int(args.prob) / 100 return data_dir_path, reps, prob def get_data_train(data_dir, args): X_path = path.join(data_dir, "X_train.npy") y_path = path.join(data_dir, "y_train.npy") X = np.load(X_path) y = np.load(y_path) return (X, y) ######################################################################## # functions for xgboost training def evalF1(preds, dtrain): from sklearn.metrics import f1_score labels = dtrain.get_label() y_agg = labels[range(0, labels.shape[0], reps)] pred_agg = agg_preds(preds, reps, vote_by_majority) return 'f1-score', f1_score(y_agg, pred_agg) def fpreproc(dtrain, dtest, param): label = dtrain.get_label() ratio = float(np.sum(label == 0)) / np.sum(label == 1) param['scale_pos_weight'] = ratio return (dtrain, dtest, param) # functions for hyperparameters optimization class Score: def __init__(self, X, y, y_ix, reps): self.y = y self.dtrain = xgb.DMatrix(X, label=self.y) self.reps = reps def get_score(self, params): params["max_depth"] = int(params["max_depth"]) params["min_child_weight"] = int(params["min_child_weight"]) params["num_boost_round"] = int(params["num_boost_round"]) print("Training with params:") print(params) cv_result = xgb.cv(params=params, dtrain=self.dtrain, num_boost_round=params['num_boost_round'], nfold=5, folds=makeKFold(5, self.y, self.reps), feval=evalF1, maximize=True, fpreproc=fpreproc, verbose_eval=True) score = cv_result.ix[params['num_boost_round'] - 1, 0] print(score) return {'loss': -score, 'status': STATUS_OK} def optimize(trials, X, y, y_ix, reps, max_evals): space = { 'num_boost_round': hp.quniform('num_boost_round', 5, 50, 5), 'eta': hp.quniform('eta', 0.1, 0.5, 0.1), 'gamma': hp.quniform('gamma', 0, 1, 0.2), 'max_depth': hp.quniform('max_depth', 1, 6, 1), 'min_child_weight': hp.quniform('min_child_weight', 1, 7, 2), 'subsample': hp.quniform('subsample', 0.5, 1, 0.1), 'colsample_bytree': hp.quniform('colsample_bytree', 0.5, 1, 0.1), 'colsample_bylevel': hp.quniform('colsample_bylevel', 0.5, 1, 0.1), 'silent': 1, 'objective': 'binary:logistic' } s = Score(X, y, y_ix, reps) best = fmin(s.get_score, space, algo=tpe.suggest, trials=trials, max_evals=max_evals ) best["max_depth"] = int(best["max_depth"]) best["min_child_weight"] = int(best["min_child_weight"]) best["num_boost_round"] = int(best["num_boost_round"]) del s return best def out_fold_pred(params, X, y_array, y_ix, reps): preds = np.zeros((y_array.shape[0])) y = y_array params['silent'] = 1 params['objective'] = 'binary:logistic' params['scale_pos_weight'] = float(np.sum(y == 0)) / np.sum(y == 1) for train_ix, test_ix in makeKFold(5, y, reps): X_train, X_test = X[train_ix, :], X[test_ix, :] y_train = y[train_ix] dtrain = xgb.DMatrix(X_train, label=y_train) dtest = xgb.DMatrix(X_test) bst = xgb.train(params=params, dtrain=dtrain, num_boost_round=params['num_boost_round'], evals=[(dtrain, 'train')], feval=evalF1, maximize=True, verbose_eval=None) preds[test_ix] = bst.predict(dtest, output_margin=True) return preds def get_model(params, X, y_array, y_ix, reps): y = y_array dtrain = xgb.DMatrix(X, label=y) params['silent'] = 1 params['objective'] = 'binary:logistic' params['scale_pos_weight'] = float(np.sum(y == 0)) / np.sum(y == 1) bst = xgb.train(params=params, dtrain=dtrain, num_boost_round=params['num_boost_round'], evals=[(dtrain, 'train')], feval=evalF1, maximize=True, verbose_eval=None) return bst if __name__ == "__main__": args = parse_args() print("Y_index:", args.yix) print("Data set:", args.data, args.reps, args.prob) data_dir, reps, prob = get_params(args) X, y = get_data_train(data_dir, args) # save place save_dir = "_".join(("../level2-models/" + str(args.yix) + "/" + args.reps, args.prob, args.data)) print(save_dir) if not path.exists(save_dir): os.makedirs(save_dir) # begin trainnig y_ix = 0 print("training for class " + str(args.yix)) trials = Trials() params = optimize(trials, X, y, y_ix, reps, 25) preds = out_fold_pred(params, X, y, y_ix, reps) model = get_model(params, X, y, y_ix, reps) np.save(path.join(save_dir, "outFold.npy"), preds) pickle.dump(model, open(path.join(save_dir, "model.pkl"), mode='wb')) print(str(args) + " completes!") ``` #### File: kaggle-yelp/model/level3_model_rf.py ```python from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import f1_score import argparse from os import path import os from hyperopt import fmin, tpe, hp, STATUS_OK, Trials from utils import * import pickle np.random.seed(54568464) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--yix', type=int, default=0) return parser.parse_args() # functions for hyperparameters optimization class Score: def __init__(self, X, y): self.y = y self.X = X def get_score(self, params): params['n_estimators'] = int(params['n_estimators']) params['max_depth'] = int(params['max_depth']) params['min_samples_split'] = int(params['min_samples_split']) params['min_samples_leaf'] = int(params['min_samples_leaf']) params['n_estimators'] = int(params['n_estimators']) print('Training with params:') print(params) # cross validation here scores = [] for train_ix, test_ix in makeKFold(5, self.y, 1): X_train, y_train = self.X[train_ix, :], self.y[train_ix] X_test, y_test = self.X[test_ix, :], self.y[test_ix] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, 1)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict(X_test) scores.append(f1_score(y_true=y_test, y_pred=pred)) print(scores) score = np.mean(scores) print(score) return {'loss': -score, 'status': STATUS_OK} def optimize(trials, X, y, max_evals): space = { 'n_estimators': hp.quniform('n_estimators', 100, 500, 50), 'criterion': hp.choice('criterion', ['gini', 'entropy']), 'max_depth': hp.quniform('max_depth', 1, 7, 1), 'min_samples_split': hp.quniform('min_samples_split', 1, 9, 2), 'min_samples_leaf': hp.quniform('min_samples_leaf', 1, 5, 1), 'bootstrap': True, 'oob_score': True, 'n_jobs': -1 } s = Score(X, y) best = fmin(s.get_score, space, algo=tpe.suggest, trials=trials, max_evals=max_evals ) best['n_estimators'] = int(best['n_estimators']) best['max_depth'] = int(best['max_depth']) best['min_samples_split'] = int(best['min_samples_split']) best['min_samples_leaf'] = int(best['min_samples_leaf']) best['n_estimators'] = int(best['n_estimators']) best['criterion'] = ['gini', 'entropy'][best['criterion']] best['bootstrap'] = True best['oob_score'] = True best['n_jobs'] = -1 del s return best def out_fold_pred(params, X, y): # cross validation here preds = np.zeros((y.shape[0])) for train_ix, test_ix in makeKFold(5, y, 1): X_train, y_train = X[train_ix, :], y[train_ix] X_test = X[test_ix, :] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, 1)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict_proba(X_test)[:, 1] preds[test_ix] = pred return preds def get_model(params, X, y): clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y, 1)) weight = y.shape[0] / (2 * np.bincount(y)) sample_weight = np.array([weight[i] for i in y]) cclf.fit(X, y, sample_weight) return cclf args = parse_args() data_dir = '../level3-feature/' + str(args.yix) X_train = np.load(path.join(data_dir, 'X_train.npy')) X_test = np.load(path.join(data_dir, 'X_test.npy')) y_train = np.load(path.join(data_dir, 'y_train.npy')) print(X_train.shape, X_test.shape, y_train.shape) X_train_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_train_ext.npy') X_test_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_test_ext.npy') print(X_train_ext.shape, X_test_ext.shape) X_train = np.hstack((X_train, X_train_ext)) X_test = np.hstack((X_test, X_test_ext)) print('Add Extra') print(X_train.shape, X_test.shape, y_train.shape) # Now we have X_train, X_test, y_train trials = Trials() params = optimize(trials, X_train, y_train, 50) out_fold = out_fold_pred(params, X_train, y_train) clf = get_model(params, X_train, y_train) preds = clf.predict_proba(X_test)[:, 1] save_dir = '../level3-model-final/' + str(args.yix) print(save_dir) if not path.exists(save_dir): os.makedirs(save_dir) # save model, parameter, outFold_pred, pred with open(path.join(save_dir, 'model_rf.pkl'), 'wb') as f_model: pickle.dump(clf.calibrated_classifiers_, f_model) with open(path.join(save_dir, 'param_rf.pkl'), 'wb') as f_param: pickle.dump(params, f_param) np.save(path.join(save_dir, 'pred_rf.npy'), preds) np.save(path.join(save_dir, 'outFold_rf.npy'), out_fold) ``` #### File: kaggle-yelp/model/level4_data.py ```python from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals from os import path, listdir import os import pickle as pkl import argparse import re import numpy as np import xgboost as xgb from scipy.special import expit from utils import * np.random.seed(998) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--yix', type=int, default=0) return parser.parse_args() args = parse_args() data_dir = '../level3-feature/' + str(args.yix) X_train = np.load(path.join(data_dir, 'X_train.npy')) X_test = np.load(path.join(data_dir, 'X_test.npy')) y_train = np.load(path.join(data_dir, 'y_train.npy')) print(X_train.shape, X_test.shape, y_train.shape) X_train_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_train_ext.npy') X_test_ext = np.load('../extra_ftrs/' + str(args.yix) + '/X_test_ext.npy') print(X_train_ext.shape, X_test_ext.shape) X_train = np.hstack((X_train, X_train_ext)) X_test = np.hstack((X_test, X_test_ext)) print('Add Extra') print(X_train.shape, X_test.shape, y_train.shape) model_dir = '../level3-model-final/' + str(args.yix) X_train_pred = np.vstack(( np.load(path.join(model_dir, 'outFold.npy')), np.load(path.join(model_dir, 'outFold_rf.npy')), np.load(path.join(model_dir, 'outFold_ext.npy')) )).T X_test_pred = np.vstack(( np.load(path.join(model_dir, 'pred.npy')), np.load(path.join(model_dir, 'pred_rf.npy')), np.load(path.join(model_dir, 'pred_ext.npy')) )).T X_train_all = np.hstack((X_train, X_train_pred)) X_test_all = np.hstack((X_test, X_test_pred)) print(X_train_all.shape) print(X_train_all.shape) save_dir = path.join("../level4-feature/" + str(args.yix)) if not path.exists(save_dir): os.makedirs(save_dir) np.save(path.join(save_dir, "X_train.npy"), X_train_all) np.save(path.join(save_dir, "X_test.npy"), X_test_all) ``` #### File: kaggle-yelp/model/pic_level_ftr1.py ```python from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import numpy as np import argparse import os from os import path import pandas as pd def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--yix', type=int, default=0) return parser.parse_args() def agg_function(x): return np.concatenate(([np.mean(x), np.std(x)], np.percentile(x, range(0, 101, 10)), [np.sum(x > 0.5) / x.size, np.sum(x > 0.55) / x.size, np.sum(x > 0.6) / x.size, np.sum(x > 0.65) / x.size, np.sum(x > 0.7) / x.size, np.sum(x > 0.45) / x.size, np.sum(x > 0.4) / x.size, np.sum(x > 0.35) / x.size, np.sum(x > 0.3) / x.size, np.sum(x > 0.25) / x.size, np.sum(x > 0.2) / x.size, np.sum(x > 0.15) / x.size, np.sum(x > 0.1) / x.size, np.sum(x > 0.5), np.sum(x > 0.55), np.sum(x > 0.6), np.sum(x > 0.65), np.sum(x > 0.7), np.sum(x > 0.45), np.sum(x > 0.4), np.sum(x > 0.35), np.sum(x > 0.3), np.sum(x > 0.25), np.sum(x > 0.2), np.sum(x > 0.15), np.sum(x > 0.1), x.size])) args = parse_args() save_dir = path.join('../pic-feature-final/', str(args.yix)) if not path.exists(save_dir): os.makedirs(save_dir) data_dir = path.join('../pic-feature/', str(args.yix)) # for training data X_train = np.load(path.join(data_dir, 'pic_train.npy'))[:, -3:] img_df = pd.read_csv('../data/imglist_train.txt', sep='\t', header=None) img_index = img_df.ix[:, 0].as_matrix() img_feature_df = pd.DataFrame(data=X_train, index=img_index) photo2biz = pd.read_csv('../data/train_photo_to_biz_ids.csv', index_col='photo_id') biz_list = photo2biz['business_id'].unique() result_list = [] for biz_id in biz_list: photo_ids = photo2biz[photo2biz['business_id'] == biz_id].index.values print(biz_id, len(photo_ids)) preds = img_feature_df.loc[photo_ids, :].as_matrix() ft = np.apply_along_axis(agg_function, 0, preds).flatten(order='F') print(ft.shape) result_list.append(ft) result_array = np.asarray(result_list) np.save(path.join(save_dir, 'train.npy'), result_array) # for test data X_test = np.load(path.join(data_dir, 'pic_test.npy'))[:, -3:] img_df = pd.read_csv('../data/imglist_test.txt', sep='\t', header=None) img_index = img_df.ix[:, 0].as_matrix() img_feature_df = pd.DataFrame(data=X_test, index=img_index) photo2biz = pd.read_csv('../data/test_photo_to_biz.csv', index_col='photo_id') biz_list = photo2biz['business_id'].unique() result_list = [] for biz_id in biz_list: photo_ids = photo2biz[photo2biz['business_id'] == biz_id].index.values print(biz_id, len(photo_ids)) preds = img_feature_df.loc[photo_ids, :].as_matrix() ft = np.apply_along_axis(agg_function, 0, preds).flatten(order='F') print(ft.shape) result_list.append(ft) result_array = np.asarray(result_list) np.save(path.join(save_dir, 'test.npy'), result_array) ``` #### File: kaggle-yelp/model/randomForest.py ```python from __future__ import division from __future__ import absolute_import from __future__ import print_function from __future__ import unicode_literals import numpy as np import argparse from os import path, getcwd import os import re from hyperopt import fmin, tpe, hp, STATUS_OK, Trials import pickle from sklearn.ensemble import RandomForestClassifier from sklearn.calibration import CalibratedClassifierCV from sklearn.metrics import f1_score from utils import * import logging import logging.handlers fmt = ("%(asctime)s - %(filename)s:%(lineno)s - " "%(name)s - %(levelname)s - %(message)s") formatter = logging.Formatter(fmt) handler = logging.FileHandler("randomForest.log") handler.setFormatter(formatter) handler.setLevel(logging.DEBUG) console = logging.StreamHandler() console.setFormatter(formatter) console.setLevel(logging.WARNING) logger = logging.getLogger('randomForest') logger.addHandler(handler) logger.addHandler(console) logger.setLevel(logging.DEBUG) # logger.debug('This is debug message') # logger.info('This is info message') # logger.warning('This is warning message') def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data_folder', type=str, default="../feature/5_75") parser.add_argument('--data_set', choices=['21k', 'v3', 'colHist'], default="21k") return parser.parse_args() def get_params(args): data_dir_path = path.abspath(path.join(getcwd(), args.data_folder)) assert path.exists(data_dir_path) dir_name = path.basename(data_dir_path) m = re.match(r"(\d+)_(\d+)", dir_name) reps, prob = int(m.group(1)), int(m.group(2)) / 100 return data_dir_path, reps, prob def get_data_train(data_dir, args): X_path = path.join(data_dir, "X_train.npy") y_path = path.join(data_dir, "y_train.npy") X = np.load(X_path) y = np.load(y_path) if args.data_set == '21k': sel_range = range(0, 2048) elif args.data_set == 'colHist': sel_range = range(2048, 2048 + 772) else: sel_range = range(2048 + 772, 6916) return (X[:, sel_range], y) ######################################################################## # functions for hyperparameters optimization class Score: def __init__(self, X, y, y_ix, reps): self.y = y[:, y_ix] self.X = X self.reps = reps def get_score(self, params): params["n_estimators"] = int(params["n_estimators"]) params["max_depth"] = int(params["max_depth"]) params["min_samples_split"] = int(params["min_samples_split"]) params["min_samples_leaf"] = int(params["min_samples_leaf"]) params["n_estimators"] = int(params["n_estimators"]) logger.info("Training with params:") logger.info(params) # cross validation here scores = [] for train_ix, test_ix in makeKFold(5, self.y, self.reps): X_train, y_train = self.X[train_ix, :], self.y[train_ix] X_test, y_test = self.X[test_ix, :], self.y[test_ix] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, self.reps)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict(X_test) scores.append(f1_score(y_true=y_test, y_pred=pred)) print(scores) score = np.mean(scores) logger.info(score) return {'loss': -score, 'status': STATUS_OK} def optimize(trials, X, y, y_ix, reps, max_evals): space = { 'n_estimators': hp.quniform('n_estimators', 30, 150, 30), 'criterion': hp.choice('criterion', ['gini', 'entropy']), 'max_depth': hp.quniform('max_depth', 1, 5, 1), 'min_samples_split': hp.quniform('min_samples_split', 1, 9, 2), 'min_samples_leaf': hp.quniform('min_samples_leaf', 1, 5, 1), 'bootstrap': False, 'oob_score': False, 'n_jobs': -1 } s = Score(X, y, y_ix, reps) best = fmin(s.get_score, space, algo=tpe.suggest, trials=trials, max_evals=max_evals ) best["n_estimators"] = int(best["n_estimators"]) best["max_depth"] = int(best["max_depth"]) best["min_samples_split"] = int(best["min_samples_split"]) best["min_samples_leaf"] = int(best["min_samples_leaf"]) best["n_estimators"] = int(best["n_estimators"]) best["criterion"] = ['gini', 'entropy'][best["criterion"]] del s return best def out_fold_pred(params, X, y_array, y_ix, reps): y = y_array[:, y_ix] params['bootstrap'] = False params['oob_score'] = False params['n_jobs'] = -1 # cross validation here preds = np.zeros((y_array.shape[0])) for train_ix, test_ix in makeKFold(5, y, reps): X_train, y_train = X[train_ix, :], y[train_ix] X_test = X[test_ix, :] weight = y_train.shape[0] / (2 * np.bincount(y_train)) sample_weight = np.array([weight[i] for i in y_train]) clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y_train, reps)) cclf.fit(X_train, y_train, sample_weight) pred = cclf.predict_proba(X_test)[:, 1] preds[test_ix] = pred return preds def get_model(params, X, y_array, y_ix, reps): y = y_array[:, y_ix] params['bootstrap'] = False params['oob_score'] = False params['n_jobs'] = -1 clf = RandomForestClassifier(**params) cclf = CalibratedClassifierCV(base_estimator=clf, method='isotonic', cv=makeKFold(3, y, reps)) weight = y.shape[0] / (2 * np.bincount(y)) sample_weight = np.array([weight[i] for i in y]) cclf.fit(X, y, sample_weight) return cclf if __name__ == "__main__": args = parse_args() logger.info("Data Directory: " + args.data_folder) logger.info("Data set: " + args.data_set) data_dir, reps, prob = get_params(args) X, y = get_data_train(data_dir, args) # save place save_dir_name = path.basename(__file__)[:-3] + "_" + \ str(reps) + "_" + str(int(100 * prob)) + "_" + args.data_set save_dir = path.join(path.dirname(path.abspath(__file__)), save_dir_name) if not path.isdir(save_dir): os.mkdir(save_dir) # begin trainnig for y_ix in range(9): logger.info("training for class " + str(y_ix)) trials = Trials() params = optimize(trials, X, y, y_ix, reps, 30) preds = out_fold_pred(params, X, y, y_ix, reps) model = get_model(params, X, y, y_ix, reps) pickle.dump(params, open(path.join(save_dir, "param_" + str(y_ix) + ".pkl"), 'wb')) np.save(path.join(save_dir, "outFold_" + str(y_ix) + ".npy"), preds) pickle.dump(model.calibrated_classifiers_, open(path.join(save_dir, "model_" + str(y_ix) + ".pkl"), 'wb')) logger.info(str(y_ix) + " completes!") ```
{ "source": "jingxianwen/E3SM", "score": 3 }
#### File: lib/CIME/cs_status.py ```python from __future__ import print_function from CIME.XML.standard_module_setup import * from CIME.XML.expected_fails_file import ExpectedFailsFile from CIME.test_status import TestStatus import os import sys from collections import defaultdict def cs_status(test_paths, summary=False, fails_only=False, count_fails_phase_list=None, expected_fails_filepath=None, out=sys.stdout): """Print the test statuses of all tests in test_paths. The default is to print to stdout, but this can be overridden with the 'out' argument. If summary is True, then only the overall status of each test is printed If fails_only is True, then only test failures are printed (this includes PENDs as well as FAILs). If count_fails_phase_list is provided, it should be a list of phases (from the phases given by test_status.ALL_PHASES). For each phase in this list: do not give line-by-line output; instead, just report the total number of tests that have not PASSed this phase (this includes PENDs and FAILs). (This is typically used with the fails_only option, but it can also be used without that option.) If expected_fails_filepath is provided, it should be a string giving the full path to a file listing expected failures for this test suite. Expected failures are then labeled as such in the output. """ expect(not (summary and fails_only), "Cannot have both summary and fails_only") expect(not (summary and count_fails_phase_list), "Cannot have both summary and count_fails_phase_list") if count_fails_phase_list is None: count_fails_phase_list = [] non_pass_counts = dict.fromkeys(count_fails_phase_list, 0) xfails = _get_xfails(expected_fails_filepath) test_id_output = defaultdict(str) test_id_counts = defaultdict(int) for test_path in test_paths: test_dir=os.path.dirname(test_path) ts = TestStatus(test_dir=test_dir) test_id = os.path.basename(test_dir).split(".")[-1] if summary: output = _overall_output(ts, " {status} {test_name}\n") else: if fails_only: output = '' else: output = _overall_output(ts, " {test_name} (Overall: {status}) details:\n") output += ts.phase_statuses_dump(prefix=" ", skip_passes=fails_only, skip_phase_list=count_fails_phase_list, xfails=xfails.get(ts.get_name())) if count_fails_phase_list: ts.increment_non_pass_counts(non_pass_counts) test_id_output[test_id] += output test_id_counts[test_id] += 1 for test_id in sorted(test_id_output): count = test_id_counts[test_id] print("{}: {} test{}".format(test_id, count, 's' if count > 1 else ''), file=out) print(test_id_output[test_id], file=out) print(' ', file=out) if count_fails_phase_list: print(72*'=', file=out) print('Non-PASS results for select phases:', file=out) for phase in count_fails_phase_list: print('{} non-passes: {}'.format(phase, non_pass_counts[phase]), file=out) def _get_xfails(expected_fails_filepath): """Returns a dictionary of ExpectedFails objects, where the keys are test names expected_fails_filepath should be either a string giving the path to the file containing expected failures, or None. If None, then this returns an empty dictionary (as if expected_fails_filepath were pointing to a file with no expected failures listed). """ if expected_fails_filepath is not None: expected_fails_file = ExpectedFailsFile(expected_fails_filepath) xfails = expected_fails_file.get_expected_fails() else: xfails = {} return xfails def _overall_output(ts, format_str): """Returns a string giving the overall test status Args: ts: TestStatus object format_str (string): string giving the format of the output; must contain place-holders for status and test_name """ test_name = ts.get_name() status = ts.get_overall_test_status() return format_str.format(status=status, test_name=test_name) ``` #### File: CIME/Servers/wget.py ```python from CIME.XML.standard_module_setup import * from CIME.Servers.generic_server import GenericServer logger = logging.getLogger(__name__) class WGET(GenericServer): def __init__(self, address, user='', passwd=''): self._args = '' if user: self._args += "--user {} ".format(user) if passwd: self._args += "--password {} ".format(passwd) self._server_loc = address cmd = "wget {} --no-check-certificate --spider {}".format(self._args, address) err, output, _ = run_cmd(cmd, combine_output=True) expect(err == 0,"Could not connect to repo via '{}'\nThis is most likely either a proxy, or network issue.\nOutput:\n{}".format(cmd, output)) def fileexists(self, rel_path): full_url = os.path.join(self._server_loc, rel_path) stat, out, err = run_cmd("wget {} --no-check-certificate --spider {}".format(self._args, full_url)) if (stat != 0): logging.warning("FAIL: Repo '{}' does not have file '{}'\nReason:{}\n{}\n".format(self._server_loc, full_url, out, err)) return False return True def getfile(self, rel_path, full_path): full_url = os.path.join(self._server_loc, rel_path) stat, output, errput = \ run_cmd("wget {} {} -nc --no-check-certificate --output-document {}".format(self._args, full_url, full_path)) if (stat != 0): logging.warning("wget failed with output: {} and errput {}\n".format(output, errput)) # wget puts an empty file if it fails. try: os.remove(full_path) except OSError: pass return False else: logging.info("SUCCESS\n") return True def getdirectory(self, rel_path, full_path): full_url = os.path.join(self._server_loc, rel_path) stat, output, errput = \ run_cmd("wget {} {} -r -N --no-check-certificate --no-directories ".format(self._args, full_url+os.sep), from_dir=full_path) logger.debug(output) logger.debug(errput) if (stat != 0): logging.warning("wget failed with output: {} and errput {}\n".format(output, errput)) # wget puts an empty file if it fails. try: os.remove(full_path) except OSError: pass return False else: logging.info("SUCCESS\n") return True ``` #### File: lib/CIME/simple_compare.py ```python import os, re from CIME.utils import expect ############################################################################### def _normalize_string_value(value, case): ############################################################################### """ Some of the strings are inherently prone to diffs, like file paths, etc. This function attempts to normalize that data so that it will not cause diffs. """ # Any occurance of case must be normalized because test-ids might not match if (case is not None): case_re = re.compile(r'{}[.]([GC])[.]([^./\s]+)'.format(case)) value = case_re.sub("{}.ACTION.TESTID".format(case), value) if ("/" in value): # File path, just return the basename return os.path.basename(value) elif ("username" in value): return '' elif (".log." in value): # Remove the part that's prone to diff components = value.split(".") return os.path.basename(".".join(components[0:-1])) else: return value ############################################################################### def _skip_comments_and_whitespace(lines, idx): ############################################################################### """ Starting at idx, return next valid idx of lines that contains real data """ if (idx == len(lines)): return idx comment_re = re.compile(r'^[#!]') lines_slice = lines[idx:] for line in lines_slice: line = line.strip() if (comment_re.match(line) is not None or line == ""): idx += 1 else: return idx return idx ############################################################################### def _compare_data(gold_lines, comp_lines, case, offset_method=False): ############################################################################### """ >>> teststr = ''' ... data1 ... data2 data3 ... data4 data5 data6 ... ... # Comment ... data7 data8 data9 data10 ... ''' >>> _compare_data(teststr.splitlines(), teststr.splitlines(), None) ('', 0) >>> teststr2 = ''' ... data1 ... data2 data30 ... data4 data5 data6 ... data7 data8 data9 data10 ... data00 ... ''' >>> results,_ = _compare_data(teststr.splitlines(), teststr2.splitlines(), None) >>> print(results) Inequivalent lines data2 data3 != data2 data30 NORMALIZED: data2 data3 != data2 data30 Found extra lines data00 <BLANKLINE> >>> teststr3 = ''' ... data1 ... data4 data5 data6 ... data7 data8 data9 data10 ... data00 ... ''' >>> results,_ = _compare_data(teststr3.splitlines(), teststr2.splitlines(), None, offset_method=True) >>> print(results) Inequivalent lines data4 data5 data6 != data2 data30 NORMALIZED: data4 data5 data6 != data2 data30 <BLANKLINE> """ comments = "" cnt = 0 gidx, cidx = 0, 0 gnum, cnum = len(gold_lines), len(comp_lines) while (gidx < gnum or cidx < cnum): gidx = _skip_comments_and_whitespace(gold_lines, gidx) cidx = _skip_comments_and_whitespace(comp_lines, cidx) if (gidx == gnum): if (cidx == cnum): return comments, cnt else: comments += "Found extra lines\n" comments += "\n".join(comp_lines[cidx:]) + "\n" return comments, cnt elif (cidx == cnum): comments += "Missing lines\n" comments += "\n".join(gold_lines[gidx:1]) + "\n" return comments, cnt gold_value = gold_lines[gidx].strip() gold_value = gold_value.replace('"',"'") comp_value = comp_lines[cidx].strip() comp_value = comp_value.replace('"',"'") norm_gold_value = _normalize_string_value(gold_value, case) norm_comp_value = _normalize_string_value(comp_value, case) if (norm_gold_value != norm_comp_value): comments += "Inequivalent lines {} != {}\n".format(gold_value, comp_value) comments += " NORMALIZED: {} != {}\n".format(norm_gold_value, norm_comp_value) cnt += 1 if offset_method and (norm_gold_value != norm_comp_value): if gnum > cnum: gidx += 1 else: cidx += 1 else: gidx += 1 cidx += 1 return comments, cnt ############################################################################### def compare_files(gold_file, compare_file, case=None): ############################################################################### """ Returns true if files are the same, comments are returned too: (success, comments) """ expect(os.path.exists(gold_file), "File not found: {}".format(gold_file)) expect(os.path.exists(compare_file), "File not found: {}".format(compare_file)) comments, cnt = _compare_data(open(gold_file, "r").readlines(), open(compare_file, "r").readlines(), case) if cnt > 0: comments2, cnt2 = _compare_data(open(gold_file, "r").readlines(), open(compare_file, "r").readlines(), case, offset_method=True) if cnt2 < cnt: comments = comments2 return comments == "", comments ############################################################################### def compare_runconfigfiles(gold_file, compare_file, case=None): ############################################################################### """ Returns true if files are the same, comments are returned too: (success, comments) """ expect(os.path.exists(gold_file), "File not found: {}".format(gold_file)) expect(os.path.exists(compare_file), "File not found: {}".format(compare_file)) #create dictionary's of the runconfig files and compare them gold_dict = _parse_runconfig(gold_file) compare_dict = _parse_runconfig(compare_file) comments = findDiff(gold_dict, compare_dict, case=case) comments = comments.replace(" d1", " " + gold_file) comments = comments.replace(" d2", " " + compare_file) # this picks up the case that an entry in compare is not in gold if comments == "": comments = findDiff(compare_dict, gold_dict, case=case) comments = comments.replace(" d2", " " + gold_file) comments = comments.replace(" d1", " " + compare_file) return comments == "", comments def _parse_runconfig(filename): runconfig = {} inrunseq = False insubsection = None subsection_re = re.compile(r'\s*(\S+)::') group_re = re.compile(r'\s*(\S+)\s*:\s*(\S+)') var_re = re.compile(r'\s*(\S+)\s*=\s*(\S+)') with open(filename, "r") as fd: for line in fd: # remove comments line = line.split('#')[0] subsection_match = subsection_re.match(line) group_match = group_re.match(line) var_match = var_re.match(line) if re.match(r'\s*runSeq\s*::', line): runconfig['runSeq'] = [] inrunseq = True elif re.match(r'\s*::\s*', line): inrunseq = False elif inrunseq: runconfig['runSeq'].append(line) elif subsection_match: insubsection = subsection_match.group(1) runconfig[insubsection] = {} elif group_match: runconfig[group_match.group(1)] = group_match.group(2) elif insubsection and var_match: runconfig[insubsection][var_match.group(1)] = var_match.group(2) return runconfig def findDiff(d1, d2, path="", case=None): comment = "" for k in d1.keys(): if not d2.has_key(k): comment += path + ":\n" comment += k + " as key not in d2\n" else: if type(d1[k]) is dict: if path == "": path = k else: path = path + "->" + k comment += findDiff(d1[k],d2[k], path=path, case=case) else: if case in d1[k]: pass elif "username" in k: pass elif "logfile" in k: pass elif d1[k] != d2[k]: comment += path+":\n" comment += " - {} : {}\n".format(k,d1[k]) comment += " + {} : {}\n".format(k,d2[k]) return comment ``` #### File: CIME/SystemTests/icp.py ```python from CIME.XML.standard_module_setup import * from CIME.SystemTests.system_tests_common import SystemTestsCommon class ICP(SystemTestsCommon): def __init__(self, case): """ initialize an object interface to file env_test.xml in the case directory """ SystemTestsCommon.__init__(self, case) def build_phase(self, sharedlib_only=False, model_only=False): self._case.set_value("CICE_AUTO_DECOMP", "false") def run_phase(self): self._case.set_value("CONTINUE_RUN",False) self._case.set_value("REST_OPTION","none") self._case.set_value("HIST_OPTION","$STOP_OPTION") self._case.set_value("HIST_N","$STOP_N") self._case.flush() self.run_indv(self) ``` #### File: CIME/SystemTests/nck.py ```python from CIME.XML.standard_module_setup import * from CIME.SystemTests.system_tests_compare_two import SystemTestsCompareTwo logger = logging.getLogger(__name__) class NCK(SystemTestsCompareTwo): def __init__(self, case): self._comp_classes = [] SystemTestsCompareTwo.__init__(self, case, separate_builds = True, run_two_suffix = 'multiinst', run_one_description = 'one instance', run_two_description = 'two instances') def _common_setup(self): # We start by halving the number of tasks for both cases. This ensures # that we use the same number of tasks per instance in both cases: For # the two-instance case, we'll double this halved number, so you may # think that the halving was unnecessary; but it's needed in case the # original NTASKS was odd. (e.g., for NTASKS originally 15, we want to # use NTASKS = int(15/2) * 2 = 14 tasks for case two.) self._comp_classes = self._case.get_values("COMP_CLASSES") self._comp_classes.remove("CPL") for comp in self._comp_classes: ntasks = self._case.get_value("NTASKS_{}".format(comp)) if ( ntasks > 1 ): self._case.set_value("NTASKS_{}".format(comp), int(ntasks/2)) # the following assures that both cases use the same number of total tasks rootpe = self._case.get_value("ROOTPE_{}".format(comp)) if ( rootpe > 1 ): self._case.set_value("ROOTPE_{}".format(comp), int(rootpe+ntasks/2)) def _case_one_setup(self): for comp in self._comp_classes: self._case.set_value("NINST_{}".format(comp), 1) def _case_two_setup(self): for comp in self._comp_classes: if (comp == "ESP"): self._case.set_value("NINST_{}".format(comp), 1) else: self._case.set_value("NINST_{}".format(comp), 2) ntasks = self._case.get_value("NTASKS_{}".format(comp)) rootpe = self._case.get_value("ROOTPE_{}".format(comp)) if ( rootpe > 1 ): self._case.set_value("ROOTPE_{}".format(comp), int(rootpe-ntasks)) self._case.set_value("NTASKS_{}".format(comp), ntasks*2) self._case.case_setup(test_mode=True, reset=True) ``` #### File: CIME/SystemTests/ncr.py ```python from CIME.XML.standard_module_setup import * from CIME.SystemTests.system_tests_compare_two import SystemTestsCompareTwo logger = logging.getLogger(__name__) class NCR(SystemTestsCompareTwo): def __init__(self, case): """ initialize an NCR test """ SystemTestsCompareTwo.__init__(self, case, separate_builds = True, run_two_suffix = "singleinst", run_one_description = "two instances, each with the same number of tasks", run_two_description = "default build") def _comp_classes(self): # Return the components which we need to set things for # ESP cannot have more than one instance, so don't set anything for it comp_classes = self._case.get_values("COMP_CLASSES") if "CPL" in comp_classes: comp_classes.remove("CPL") if "ESP" in comp_classes: comp_classes.remove("ESP") return comp_classes def _common_setup(self): # Set the default number of tasks for comp in self._comp_classes(): ntasks = self._case.get_value("NTASKS_{}".format(comp)) if ntasks > 1: self._case.set_value("NTASKS_{}".format(comp), ntasks // 2) def _case_one_setup(self): # Set the number of instances, the ROOTPEs, and the number of tasks # This case should have twice the number of instances and half the number of tasks # All tasks should be running concurrently # Note that this case must be the multiinstance one # to correctly set the required number of nodes and avoid crashing ntasks_sum = 0 for comp in self._comp_classes(): self._case.set_value("NINST_{}".format(comp), str(2)) self._case.set_value("ROOTPE_{}".format(comp), ntasks_sum) ntasks = self._case.get_value("NTASKS_{}".format(comp)) * 2 ntasks_sum += ntasks self._case.set_value("NTASKS_{}".format(comp), ntasks) # test_mode must be False here so the case.test file is updated # This ensures that the correct number of nodes are used in case it's larger than in case 2 def _case_two_setup(self): for comp in self._comp_classes(): self._case.set_value("NINST_{}".format(comp), str(1)) self._case.set_value("ROOTPE_{}".format(comp), 0) ``` #### File: CIME/SystemTests/pgn.py ```python from __future__ import division import os import re import json import shutil import logging from collections import OrderedDict from distutils import dir_util import pandas as pd import numpy as np import CIME.test_status import CIME.utils from CIME.SystemTests.system_tests_common import SystemTestsCommon from CIME.case.case_setup import case_setup from CIME.XML.machines import Machines import evv4esm # pylint: disable=import-error from evv4esm.extensions import pg # pylint: disable=import-error from evv4esm.__main__ import main as evv # pylint: disable=import-error evv_lib_dir = os.path.abspath(os.path.dirname(evv4esm.__file__)) logger = logging.getLogger(__name__) NUMBER_INITIAL_CONDITIONS = 6 PERTURBATIONS = OrderedDict([('woprt', 0.0), ('posprt', 1.0e-14), ('negprt', -1.0e-14), ]) FCLD_NC = 'cam.h0.cloud.nc' INIT_COND_FILE_TEMPLATE = \ "SMS_Ly5.ne4_ne4.FC5AV1C-04P2.eos_intel.ne45y.{}.{}.0002-{:02d}-01-00000.nc" # FIXME: should 'cam' be 'atm' now? INSTANCE_FILE_TEMPLATE = '{}cam_{:04d}.h0.0001-01-01-00000{}.nc' class PGN(SystemTestsCommon): def __init__(self, case): """ initialize an object interface to the PGN test """ super(PGN, self).__init__(case) def build_phase(self, sharedlib_only=False, model_only=False): ninst = NUMBER_INITIAL_CONDITIONS * len(PERTURBATIONS) logger.debug('PGN_INFO: number of instance: '+str(ninst)) default_ninst = self._case.get_value("NINST_ATM") if default_ninst == 1: # if multi-instance is not already set # Only want this to happen once. It will impact the sharedlib build # so it has to happen here. if not model_only: # Lay all of the components out concurrently logger.debug("PGN_INFO: Updating NINST for multi-instance in " "env_mach_pes.xml") for comp in ['ATM', 'OCN', 'WAV', 'GLC', 'ICE', 'ROF', 'LND']: ntasks = self._case.get_value("NTASKS_{}".format(comp)) self._case.set_value("ROOTPE_{}".format(comp), 0) self._case.set_value("NINST_{}".format(comp), ninst) self._case.set_value("NTASKS_{}".format(comp), ntasks*ninst) self._case.set_value("ROOTPE_CPL", 0) self._case.set_value("NTASKS_CPL", ntasks*ninst) self._case.flush() case_setup(self._case, test_mode=False, reset=True) self.build_indv(sharedlib_only=sharedlib_only, model_only=model_only) logger.debug("PGN_INFO: Updating user_nl_* files") csmdata_root = self._case.get_value("DIN_LOC_ROOT") csmdata_atm = os.path.join(csmdata_root, "atm/cam/inic/homme/ne4_v1_init") csmdata_lnd = os.path.join(csmdata_root, "lnd/clm2/initdata/ne4_v1_init/b58d55680") iinst = 1 for icond in range(1, NUMBER_INITIAL_CONDITIONS + 1): fatm_in = os.path.join(csmdata_atm, INIT_COND_FILE_TEMPLATE.format('cam', 'i', icond)) flnd_in = os.path.join(csmdata_lnd, INIT_COND_FILE_TEMPLATE.format('clm2', 'r', icond)) for iprt in PERTURBATIONS.values(): with open('user_nl_cam_{:04d}'.format(iinst), 'w') as atmnlfile, \ open('user_nl_clm_{:04d}'.format(iinst), 'w') as lndnlfile: atmnlfile.write("ncdata = '{}' \n".format(fatm_in)) lndnlfile.write("finidat = '{}' \n".format(flnd_in)) atmnlfile.write("avgflag_pertape = 'I' \n") atmnlfile.write("nhtfrq = 1 \n") atmnlfile.write("mfilt = 2 \n") atmnlfile.write("ndens = 1 \n") atmnlfile.write("pergro_mods = .true. \n") atmnlfile.write("pergro_test_active = .true. \n") if iprt != 0.0: atmnlfile.write("pertlim = {} \n".format(iprt)) iinst += 1 self._case.set_value("STOP_N", "1") self._case.set_value("STOP_OPTION", "nsteps") def get_var_list(self): """ Get variable list for pergro specific output vars """ rundir = self._case.get_value("RUNDIR") prg_fname = 'pergro_ptend_names.txt' var_file = os.path.join(rundir, prg_fname) CIME.utils.expect(os.path.isfile(var_file), "File {} does not exist in: {}".format(prg_fname, rundir)) with open(var_file, 'r') as fvar: var_list = fvar.readlines() return list(map(str.strip, var_list)) def _compare_baseline(self): """ Compare baselines in the pergro test sense. That is, compare PGE from the test simulation with the baseline cloud """ with self._test_status: self._test_status.set_status(CIME.test_status.BASELINE_PHASE, CIME.test_status.TEST_FAIL_STATUS) logger.debug("PGN_INFO:BASELINE COMPARISON STARTS") run_dir = self._case.get_value("RUNDIR") case_name = self._case.get_value("CASE") base_dir = os.path.join(self._case.get_value("BASELINE_ROOT"), self._case.get_value("BASECMP_CASE")) var_list = self.get_var_list() test_name = "{}".format(case_name.split('.')[-1]) evv_config = { test_name: { "module": os.path.join(evv_lib_dir, "extensions", "pg.py"), "test-case": case_name, "test-name": "Test", "test-dir": run_dir, "ref-name": "Baseline", "ref-dir": base_dir, "variables": var_list, "perturbations": PERTURBATIONS, "pge-cld": FCLD_NC, "ninit": NUMBER_INITIAL_CONDITIONS, "init-file-template": INIT_COND_FILE_TEMPLATE, "instance-file-template": INSTANCE_FILE_TEMPLATE, } } json_file = os.path.join(run_dir, '.'.join([case_name, 'json'])) with open(json_file, 'w') as config_file: json.dump(evv_config, config_file, indent=4) evv_out_dir = os.path.join(run_dir, '.'.join([case_name, 'evv'])) evv(['-e', json_file, '-o', evv_out_dir]) with open(os.path.join(evv_out_dir, 'index.json'), 'r') as evv_f: evv_status = json.load(evv_f) comments = "" for evv_elem in evv_status['Data']['Elements']: if evv_elem['Type'] == 'ValSummary' \ and evv_elem['TableTitle'] == 'Perturbation growth test': comments = "; ".join("{}: {}".format(key, val) for key, val in evv_elem['Data'][test_name][''].items()) if evv_elem['Data'][test_name]['']['Test status'].lower() == 'pass': self._test_status.set_status(CIME.test_status.BASELINE_PHASE, CIME.test_status.TEST_PASS_STATUS) break status = self._test_status.get_status(CIME.test_status.BASELINE_PHASE) mach_name = self._case.get_value("MACH") mach_obj = Machines(machine=mach_name) htmlroot = CIME.utils.get_htmlroot(mach_obj) urlroot = CIME.utils.get_urlroot(mach_obj) if htmlroot is not None: with CIME.utils.SharedArea(): dir_util.copy_tree(evv_out_dir, os.path.join(htmlroot, 'evv', case_name), preserve_mode=False) if urlroot is None: urlroot = "[{}_URL]".format(mach_name.capitalize()) viewing = "{}/evv/{}/index.html".format(urlroot, case_name) else: viewing = "{}\n" \ " EVV viewing instructions can be found at: " \ " https://github.com/E3SM-Project/E3SM/blob/master/cime/scripts/" \ "climate_reproducibility/README.md#test-passfail-and-extended-output" \ "".format(evv_out_dir) comments = "{} {} for test '{}'.\n" \ " {}\n" \ " EVV results can be viewed at:\n" \ " {}".format(CIME.test_status.BASELINE_PHASE, status, test_name, comments, viewing) CIME.utils.append_testlog(comments, self._orig_caseroot) def run_phase(self): logger.debug("PGN_INFO: RUN PHASE") self.run_indv() # Here were are in case directory, we need to go to the run directory # and rename files rundir = self._case.get_value("RUNDIR") casename = self._case.get_value("CASE") logger.debug("PGN_INFO: Case name is:{}".format(casename)) for icond in range(NUMBER_INITIAL_CONDITIONS): for iprt, (prt_name, prt_value) in enumerate(PERTURBATIONS.items()): iinst = pg._sub2instance(icond, iprt, len(PERTURBATIONS)) fname = os.path.join(rundir, INSTANCE_FILE_TEMPLATE.format(casename + '.', iinst, '')) renamed_fname = re.sub(r'\.nc$', '_{}.nc'.format(prt_name), fname) logger.debug("PGN_INFO: fname to rename:{}".format(fname)) logger.debug("PGN_INFO: Renamed file:{}".format(renamed_fname)) try: shutil.move(fname, renamed_fname) except IOError: CIME.utils.expect(os.path.isfile(renamed_fname), "ERROR: File {} does not exist".format(renamed_fname)) logger.debug("PGN_INFO: Renamed file already exists:" "{}".format(renamed_fname)) logger.debug("PGN_INFO: RUN PHASE ENDS") def _generate_baseline(self): super(PGN, self)._generate_baseline() basegen_dir = os.path.join(self._case.get_value("BASELINE_ROOT"), self._case.get_value("BASEGEN_CASE")) rundir = self._case.get_value("RUNDIR") casename = self._case.get_value("CASE") var_list = self.get_var_list() nvar = len(var_list) nprt = len(PERTURBATIONS) rmse_prototype = {} for icond in range(NUMBER_INITIAL_CONDITIONS): prt_rmse = {} for iprt, prt_name in enumerate(PERTURBATIONS): if prt_name == 'woprt': continue iinst_ctrl = pg._sub2instance(icond, 0, nprt) ifile_ctrl = os.path.join(rundir, INSTANCE_FILE_TEMPLATE.format(casename + '.', iinst_ctrl, '_woprt')) iinst_test = pg._sub2instance(icond, iprt, nprt) ifile_test = os.path.join(rundir, INSTANCE_FILE_TEMPLATE.format(casename + '.', iinst_test, '_' + prt_name)) prt_rmse[prt_name] = pg.variables_rmse(ifile_test, ifile_ctrl, var_list, 't_') rmse_prototype[icond] = pd.concat(prt_rmse) rmse = pd.concat(rmse_prototype) cld_rmse = np.reshape(rmse.RMSE.values, (NUMBER_INITIAL_CONDITIONS, nprt - 1, nvar)) pg.rmse_writer(os.path.join(rundir, FCLD_NC), cld_rmse, list(PERTURBATIONS.keys()), var_list, INIT_COND_FILE_TEMPLATE) logger.debug("PGN_INFO:copy:{} to {}".format(FCLD_NC, basegen_dir)) shutil.copy(os.path.join(rundir, FCLD_NC), basegen_dir) ``` #### File: CIME/XML/env_run.py ```python from CIME.XML.standard_module_setup import * from CIME.XML.env_base import EnvBase logger = logging.getLogger(__name__) class EnvRun(EnvBase): def __init__(self, case_root=None, infile="env_run.xml", components=None, read_only=False): """ initialize an object interface to file env_run.xml in the case directory """ self._components = components schema = os.path.join(get_cime_root(), "config", "xml_schemas", "env_entry_id.xsd") EnvBase.__init__(self, case_root, infile, schema=schema, read_only=read_only) ``` #### File: CIME/XML/namelist_definition.py ```python import re import collections from CIME.namelist import fortran_namelist_base_value, \ is_valid_fortran_namelist_literal, character_literal_to_string, \ expand_literal_list, Namelist, get_fortran_name_only from CIME.XML.standard_module_setup import * from CIME.XML.entry_id import EntryID from CIME.XML.files import Files logger = logging.getLogger(__name__) _array_size_re = re.compile(r'^(?P<type>[^(]+)\((?P<size>[^)]+)\)$') class CaseInsensitiveDict(dict): """Basic case insensitive dict with strings only keys. From https://stackoverflow.com/a/27890005 """ proxy = {} def __init__(self, data): dict.__init__(self) self.proxy = dict((k.lower(), k) for k in data) for k in data: self[k] = data[k] def __contains__(self, k): return k.lower() in self.proxy def __delitem__(self, k): key = self.proxy[k.lower()] super(CaseInsensitiveDict, self).__delitem__(key) del self.proxy[k.lower()] def __getitem__(self, k): key = self.proxy[k.lower()] return super(CaseInsensitiveDict, self).__getitem__(key) def get(self, k, default=None): return self[k] if k in self else default def __setitem__(self, k, v): super(CaseInsensitiveDict, self).__setitem__(k, v) self.proxy[k.lower()] = k class NamelistDefinition(EntryID): """Class representing variable definitions for a namelist. This class inherits from `EntryID`, and supports most inherited methods; however, `set_value` is unsupported. Additional public methods: - dict_to_namelist. - is_valid_value - validate """ def __init__(self, infile, files=None): """Construct a `NamelistDefinition` from an XML file.""" # if the file is invalid we may not be able to check the version # but we need to do it this way until we remove the version 1 files schema = None if files is None: files = Files() schema = files.get_schema("NAMELIST_DEFINITION_FILE") expect(os.path.isfile(infile), "File {} does not exist".format(infile)) super(NamelistDefinition, self).__init__(infile, schema=schema) self._attributes = {} self._entry_nodes = [] self._entry_ids = [] self._valid_values = {} self._entry_types = {} self._group_names = CaseInsensitiveDict({}) self._nodes = {} def set_nodes(self, skip_groups=None): """ populates the object data types for all nodes that are not part of the skip_groups array returns nodes that do not have attributes of `skip_default_entry` or `per_stream_entry` """ default_nodes = [] for node in self.get_children("entry"): name = self.get(node, "id") expect(name == name.lower(),"ERROR id field in this file must be lowercase, id={}".format(name)) skip_default_entry = self.get(node, "skip_default_entry") == "true" per_stream_entry = self.get(node, "per_stream_entry") == "true" set_node_values = False if skip_groups: group_name = self._get_group_name(node) if not group_name in skip_groups: self._entry_nodes.append(node) set_node_values = True if not skip_default_entry and not per_stream_entry: default_nodes.append(node) else: self._entry_nodes.append(node) set_node_values = True if not skip_default_entry and not per_stream_entry: default_nodes.append(node) if set_node_values: self._entry_nodes.append(node) self._entry_ids.append(name) self._nodes[name] = node self._entry_types[name] = self._get_type(node) self._valid_values[name] = self._get_valid_values(node) self._group_names[name] = self._get_group_name(node) return default_nodes def _get_group_name(self, node=None): if self.get_version() == 1.0: group = self.get(node, 'group') elif self.get_version() >= 2.0: group = self.get_element_text("group", root=node) return(group) def _get_type(self, node): if self.get_version() == 1.0: type_info = self.get(node, 'type') elif self.get_version() >= 2.0: type_info = self._get_type_info(node) return(type_info) def _get_valid_values(self, node): # The "valid_values" attribute is not required, and an empty string has # the same effect as not specifying it. # Returns a list from a comma seperated string in xml valid_values = '' if self.get_version() == 1.0: valid_values = self.get(node, 'valid_values') elif self.get_version() >= 2.0: valid_values = self._get_node_element_info(node, "valid_values") if valid_values == '': valid_values = None if valid_values is not None: valid_values = valid_values.split(',') return valid_values def get_group(self, name): return self._group_names[name] def add_attributes(self, attributes): self._attributes = attributes def get_entry_nodes(self): return self._entry_nodes def get_per_stream_entries(self): entries = [] nodes = self.get_children("entry") for node in nodes: per_stream_entry = self.get(node, "per_stream_entry") == "true" if per_stream_entry: entries.append(self.get(node, "id")) return entries # Currently we don't use this object to construct new files, and it's no # good for that purpose anyway, so stop this function from being called. def set_value(self, vid, value, subgroup=None, ignore_type=True): """This function is not implemented.""" raise TypeError("NamelistDefinition does not support `set_value`.") def get_value_match(self, vid, attributes=None, exact_match=True, entry_node=None): """Return the default value for the variable named `vid`. The return value is a list of strings corresponding to the comma-separated list of entries for the value (length 1 for scalars). If there is no default value in the file, this returns `None`. """ # Merge internal attributes with those passed in. all_attributes = {} if self._attributes is not None: all_attributes.update(self._attributes) if attributes is not None: all_attributes.update(attributes) if entry_node is None: entry_node = self._nodes[vid] value = super(NamelistDefinition, self).get_value_match(vid.lower(),attributes=all_attributes, exact_match=exact_match, entry_node=entry_node) if value is None: value = '' else: value = self._split_defaults_text(value) return value @staticmethod def _split_defaults_text(string): """Take a comma-separated list in a string, and split it into a list.""" # Some trickiness here; we want to split items on commas, but not inside # quote-delimited strings. Stripping whitespace is also useful. value = [] if len(string): pos = 0 delim = None for i, char in enumerate(string): if delim is None: # If not inside a string... if char in ('"', "'"): # if we have a quote character, start a string. delim = char elif char == ',': # if we have a comma, this is a new value. value.append(string[pos:i].strip()) pos = i+1 else: # If inside a string, the only thing that can happen is the end # of the string. if char == delim: delim = None value.append(string[pos:].strip()) return value def split_type_string(self, name): """Split a 'type' attribute string into its component parts. The `name` argument is the variable name. This is used for error reporting purposes. The return value is a tuple consisting of the type itself, a length (which is an integer for character variables, otherwise `None`), and the size of the array (which is 1 for scalar variables). """ type_string = self._entry_types[name] # 'char' is frequently used as an abbreviation of 'character'. type_string = type_string.replace('char', 'character') # Separate into a size and the rest of the type. size_match = _array_size_re.search(type_string) if size_match: type_string = size_match.group('type') size_string = size_match.group('size') try: size = int(size_string) except ValueError: expect(False, "In namelist definition, variable {} had the non-integer string {!r} specified as an array size.".format(name, size_string)) else: size = 1 # Separate into a type and an optional length. type_, star, length = type_string.partition('*') if star == '*': # Length allowed only for character variables. expect(type_ == 'character', "In namelist definition, length specified for non-character " "variable {}.".format(name)) # Check that the length is actually an integer, to make the error # message a bit cleaner if the xml input is bad. try: max_len = int(length) except ValueError: expect(False, "In namelist definition, character variable {} had the non-integer string {!r} specified as a length.".format(name, length)) else: max_len = None return type_, max_len, size @staticmethod def _canonicalize_value(type_, value): """Create 'canonical' version of a value for comparison purposes.""" canonical_value = [fortran_namelist_base_value(scalar) for scalar in value] canonical_value = [scalar for scalar in canonical_value if scalar != ''] if type_ == 'character': canonical_value = [character_literal_to_string(scalar) for scalar in canonical_value] elif type_ == 'integer': canonical_value = [int(scalar) for scalar in canonical_value] return canonical_value def is_valid_value(self, name, value): """Determine whether a value is valid for the named variable. The `value` argument must be a list of strings formatted as they would appear in the namelist (even for scalar variables, in which case the length of the list is always 1). """ # Separate into a type, optional length, and optional size. type_, max_len, size = self.split_type_string(name) invalid = [] # Check value against type. for scalar in value: if not is_valid_fortran_namelist_literal(type_, scalar): invalid.append(scalar) if len(invalid) > 0: logger.warning("Invalid values {}".format(invalid)) return False # Now that we know that the strings as input are valid Fortran, do some # canonicalization for further checks. canonical_value = self._canonicalize_value(type_, value) # Check maximum length (if applicable). if max_len is not None: for scalar in canonical_value: if len(scalar) > max_len: return False # Check valid value constraints (if applicable). valid_values = self._valid_values[name] if valid_values is not None: expect(type_ in ('integer', 'character'), "Found valid_values attribute for variable {} with type {}, but valid_values only allowed for character and integer variables.".format(name, type_)) if type_ == 'integer': compare_list = [int(vv) for vv in valid_values] else: compare_list = valid_values for scalar in canonical_value: if scalar not in compare_list: invalid.append(scalar) if len(invalid) > 0: logger.warning("Invalid values {}".format(invalid)) return False # Check size of input array. if len(expand_literal_list(value)) > size: expect(False, "Value index exceeds variable size for variable {}, allowed array length is {} value array size is {}".format(name, size, len(expand_literal_list(value)))) return True def _expect_variable_in_definition(self, name, variable_template): """Used to get a better error message for an unexpected variable. case insensitve match""" expect(name in self._entry_ids, (variable_template + " is not in the namelist definition.").format(str(name))) def _user_modifiable_in_variable_definition(self, name): # Is name user modifiable? node = self.get_optional_child("entry", attributes={'id': name}) user_modifiable_only_by_xml = self.get(node, 'modify_via_xml') if user_modifiable_only_by_xml is not None: expect(False, "Cannot change {} in user_nl file: set via xml variable {}".format(name, user_modifiable_only_by_xml)) user_cannot_modify = self.get(node, 'cannot_modify_by_user_nl') if user_cannot_modify is not None: expect(False, "Cannot change {} in user_nl file: {}".format(name, user_cannot_modify)) def _generate_variable_template(self, filename): # Improve error reporting when a file name is provided. if filename is None: variable_template = "Variable {!r}" else: # for the next step we want the name of the original user_nl file not the internal one # We do this by extracting the component name from the filepath string if "Buildconf" in filename and "namelist_infile" in filename: msgfn = "user_nl_" + (filename.split(os.sep)[-2])[:-4] else: msgfn = filename variable_template = "Variable {!r} from file " + repr(str(msgfn)) return variable_template def validate(self, namelist,filename=None): """Validate a namelist object against this definition. The optional `filename` argument can be used to assist in error reporting when the namelist comes from a specific, known file. """ variable_template = self._generate_variable_template(filename) # Iterate through variables. for group_name in namelist.get_group_names(): for variable_name in namelist.get_variable_names(group_name): # Check that the variable is defined... qualified_variable_name = get_fortran_name_only(variable_name) self._expect_variable_in_definition(qualified_variable_name, variable_template) # Check if can actually change this variable via filename change if filename is not None: self._user_modifiable_in_variable_definition(qualified_variable_name) # and has the right group name... var_group = self.get_group(qualified_variable_name) expect(var_group == group_name, (variable_template + " is in a group named {!r}, but should be in {!r}.").format(str(variable_name), str(group_name), str(var_group))) # and has a valid value. value = namelist.get_variable_value(group_name, variable_name) expect(self.is_valid_value(qualified_variable_name, value), (variable_template + " has invalid value {!r}.").format(str(variable_name), [str(scalar) for scalar in value])) def dict_to_namelist(self, dict_, filename=None): """Converts a dictionary of name-value pairs to a `Namelist`. The input is assumed to be similar to the output of `parse` when `groupless=True` is set. This function uses the namelist definition file to look up the namelist group associated with each variable, and uses this information to create a true `Namelist` object. The optional `filename` argument can be used to assist in error reporting when the namelist comes from a specific, known file. """ # Improve error reporting when a file name is provided. variable_template = self._generate_variable_template(filename) groups = {} for variable_name in dict_: variable_lc = variable_name.lower() qualified_varname = get_fortran_name_only(variable_lc) self._expect_variable_in_definition(qualified_varname, variable_template) group_name = self.get_group(qualified_varname) expect (group_name is not None, "No group found for var {}".format(variable_lc)) if group_name not in groups: groups[group_name] = collections.OrderedDict() groups[group_name][variable_lc] = dict_[variable_name] return Namelist(groups) def get_input_pathname(self, name): node = self._nodes[name] if self.get_version() == 1.0: input_pathname = self.get(node, 'input_pathname') elif self.get_version() >= 2.0: input_pathname = self._get_node_element_info(node, "input_pathname") return(input_pathname) # pylint: disable=arguments-differ def get_default_value(self, item, attribute=None): """Return the default value for the variable named `item`. The return value is a list of strings corresponding to the comma-separated list of entries for the value (length 1 for scalars). If there is no default value in the file, this returns `None`. """ # Merge internal attributes with those passed in. all_attributes = {} if self._attributes is not None: all_attributes.update(self._attributes) if attribute is not None: all_attributes.update(attribute) value = self.get_value_match(item.lower(), all_attributes, True) return self._split_defaults_text(value) ``` #### File: CIME/XML/stream.py ```python from CIME.XML.standard_module_setup import * from CIME.XML.generic_xml import GenericXML from CIME.XML.files import Files from CIME.utils import expect logger = logging.getLogger(__name__) class Stream(GenericXML): def __init__(self, infile=None, files=None): """ initialize an object """ if files is None: files = Files() schema = None GenericXML.__init__(self, infile, schema=schema) def get_value(self, item, attribute=None, resolved=True, subgroup=None): """ Get Value of fields in a stream.xml file """ expect(subgroup is None, "This class does not support subgroups") value = None node = None names = item.split('/') node = None for name in names: node = self.scan_child(name, root=node) if node is not None: value = self.text(node).strip() if value is None: # if all else fails #pylint: disable=assignment-from-none value = GenericXML.get_value(self, item, attribute, resolved, subgroup) if resolved: if value is not None: value = self.get_resolved_value(value) elif item in os.environ: value = os.environ[item] return value ``` #### File: scripts/Tools/testreporter.py ```python from standard_script_setup import * from CIME.XML.env_build import EnvBuild from CIME.XML.env_case import EnvCase from CIME.XML.env_test import EnvTest from CIME.XML.test_reporter import TestReporter from CIME.utils import expect from CIME.XML.generic_xml import GenericXML import glob ############################################################################### def parse_command_line(args): ############################################################################### parser = argparse.ArgumentParser() CIME.utils.setup_standard_logging_options(parser) # Parse command line options #parser = argparse.ArgumentParser(description='Arguements for testreporter') parser.add_argument("--tagname", help="Name of the tag being tested.") parser.add_argument("--testid", help="Test id, ie c2_0_a6g_ing,c2_0_b6g_gnu.") parser.add_argument("--testroot", help="Root directory for tests to populate the database.") parser.add_argument("--testtype", help="Type of test, prealpha or prebeta.") parser.add_argument("--dryrun",action="store_true", help="Do a dry run, database will not be populated.") parser.add_argument("--dumpxml",action="store_true", help="Dump XML test results to sceen.") args = parser.parse_args() CIME.utils.parse_args_and_handle_standard_logging_options(args) return args.testroot, args.testid, args.tagname, args.testtype, args.dryrun, args.dumpxml ############################################################################### def get_testreporter_xml(testroot, testid, tagname, testtype): ############################################################################### os.chdir(testroot) # # Retrieve compiler name and mpi library # xml_file=glob.glob("*"+testid+"/env_build.xml") expect(len(xml_file) > 0, "Tests not found. It's possible your testid, {} is wrong.".format(testid)) envxml=(EnvBuild(".",infile=xml_file[0])) compiler=envxml.get_value("COMPILER") mpilib=envxml.get_value("MPILIB") # # Retrieve machine name # xml_file=glob.glob("*"+testid+"/env_case.xml") envxml=(EnvCase(".",infile=xml_file[0])) machine=envxml.get_value("MACH") # # Retrieve baseline tag to compare to # xml_file=glob.glob("*"+testid+"/env_test.xml") envxml=(EnvTest(".",infile=xml_file[0])) baseline = envxml.get_value("BASELINE_NAME_CMP") # # Create XML header # testxml=TestReporter() testxml.setup_header(tagname,machine,compiler,mpilib,testroot,testtype,baseline) # # Create lists on tests based on the testid in the testroot directory. # test_names=glob.glob("*"+testid) # # Loop over all tests and parse the test results # test_status={} for test_name in test_names: if not os.path.isfile(test_name+"/TestStatus"): continue test_status['COMMENT']="" test_status['BASELINE']='----' test_status['MEMCOMP']='----' test_status['MEMLEAK']='----' test_status['NLCOMP']='----' test_status['STATUS']='----' test_status['TPUTCOMP']='----' # # Check to see if TestStatus is present, if not then continue # I might want to set the status to fail # try: lines = [line.rstrip('\n') for line in open(test_name+"/TestStatus")] except (IOError, OSError): test_status['STATUS']="FAIL" test_status['COMMENT']="TestStatus missing. " continue # # Loop over each line of TestStatus, and check for different types of failures. # for line in lines: if "NLCOMP" in line: test_status['NLCOMP']=line[0:4] if "MEMLEAK" in line: test_status['MEMLEAK']=line[0:4] if "MEMCOMP" in line: test_status['MEMCOMP']=line[0:4] if "BASELINE" in line: test_status['BASELINE']=line[0:4] if "TPUTCOMP" in line: test_status['TPUTCOMP']=line[0:4] if "FAIL PFS" in line: test_status['STATUS']="FAIL" if "INIT" in line: test_status['INIT']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="SFAIL" test_status['COMMENT']+="INIT fail! " break if "CREATE_NEWCASE" in line: test_status['CREATE_NEWCASE']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="SFAIL" test_status['COMMENT']+="CREATE_NEWCASE fail! " break if "XML" in line: test_status['XML']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="SFAIL" test_status['COMMENT']+="XML fail! " break if "SETUP" in line: test_status['SETUP']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="SFAIL" test_status['COMMENT']+="SETUP fail! " break if "SHAREDLIB_BUILD" in line: test_status['SHAREDLIB_BUILD']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="CFAIL" test_status['COMMENT']+="SHAREDLIB_BUILD fail! " break if "MODEL_BUILD" in line: test_status['MODEL_BUILD']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['STATUS']="CFAIL" test_status['COMMENT']+="MODEL_BUILD fail! " break if "SUBMIT" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="SUBMIT fail! " break if "RUN" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="RUN fail! " break if "COMPARE_base_rest" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="Restart fail! " break if "COMPARE_base_hybrid" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="Hybrid fail! " break if "COMPARE_base_multiinst" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="Multi instance fail! " break if "COMPARE_base_test" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="Base test fail! " break if "COMPARE_base_single_thread" in line: test_status['STATUS']=line[0:4] if line[0:4] in ("FAIL","PEND"): test_status['COMMENT']+="Thread test fail! " break # # Do not include time comments. Just a preference to have cleaner comments in the test database # try: if 'time=' not in line and 'GENERATE' not in line: if 'BASELINE' not in line: test_status['COMMENT']+=line.split(' ',3)[3]+' ' else: test_status['COMMENT']+=line.split(' ',4)[4]+' ' except Exception: # Probably want to be more specific here pass # # Fill in the xml with the test results # testxml.add_result(test_name,test_status) return testxml ############################################################################## def _main_func(): ############################################################################### testroot, testid, tagname, testtype, dryrun, dumpxml = parse_command_line(sys.argv) testxml = get_testreporter_xml(testroot, testid, tagname, testtype) # # Dump xml to a file. # if dumpxml: GenericXML.write(testxml,outfile="TestRecord.xml") # # Prompt for username and password, then post the XML string to the test database website # if not dryrun: testxml.push2testdb() ############################################################################### if __name__ == "__main__": _main_func() ``` #### File: tools/load_balancing_tool/optimize_model.py ```python import sys import copy import logging import operator import importlib from CIME.utils import expect try: import pulp except ImportError, e: sys.stderr.write("pulp library not installed or located. " "Try pip install [--user] pulp\n") raise e logger = logging.getLogger(__name__) def solver_factory(data): """ load data either from a json file or dictionary """ expect(data.has_key('totaltasks'),"totaltasks not found in data") layout = data['layout'] sp = layout.rsplit('.', 1) try: if len(sp) > 1: layout_module = importlib.import_module(sp[0]) layout = sp[1] else: import layouts layout_module = layouts except ImportError: expect(False,"cannot import %s\n") try: solverclass = getattr(layout_module, layout) except KeyError: expect(False, "layout class %s not found in %s\n", layout, layout_module) solver = solverclass() for c in solver.get_required_components(): assert data.has_key(c), "ERROR: component %s not found in data" % c solver.set_data(data) return solver class ModelData: """ Convert dictionary data entry into usable object """ def __init__(self, name, model_dict): self.name = name self.blocksize = model_dict['blocksize'] self.nthrds = model_dict['nthrds'][0] ntasks = copy.deepcopy(model_dict['ntasks']) cost = copy.deepcopy(model_dict['cost']) assert len(ntasks) == len(cost), "ntasks data not same length as cost for %s" % name # sort smallest ntasks to largest tup = zip(*sorted(zip(cost, ntasks), key=operator.itemgetter(1))) self.cost = list(tup[0]) self.ntasks = list(tup[1]) for j in self.ntasks: if j > 1 and j % self.blocksize: logger.warning("WARNING: %s pe %d not divisible by " "blocksize %d. Results may be invalid\n", name, j, self.blocksize) class OptimizeModel(object): STATE_UNDEFINED = 0 STATE_UNSOLVED = 1 STATE_SOLVED_OK = 2 STATE_SOLVED_BAD = 3 states = ['Undefined', 'Unsolved', 'Solved', 'No Solution'] def __init__(self): self.models = {} self.state = self.STATE_UNDEFINED self.X = {} self.constraints = [] self.maxtasks = 0 def set_data(self, data_dict): """ Add data to the model. data_dict is dictionary of components with their data example: {'totaltasks':64 'ICE': {'ntasks': [2,4,8], 'costs': [10.0,6.0,4.0], 'nthrds': [1,1,1], 'blocksize': 8} 'LND': {...} } data is extrapolated as needed for n=1 and n=totaltasks sets state to STATE_UNSOLVED """ # get deep copy, because we need to divide ntasks by blocksize self.maxtasks = data_dict['totaltasks'] for key in data_dict: if isinstance(data_dict[key], dict) and 'ntasks' in data_dict[key]: self.models[key] = ModelData(key, data_dict[key]) # extrapolate for n=1 and n=maxtasks for m in self.models.values(): m.extrapolated = [False] * len(m.cost) # add in data for ntasks=1 if not provided if m.ntasks[0] > 1: m.cost.insert(0, m.ntasks[0] * m.cost[0]) m.ntasks.insert(0, 1) m.extrapolated.insert(0, True) # add in data for maxtasks if not available # assume same scaling factor as previous interval if len(m.ntasks) > 1 and m.ntasks[-1] < self.maxtasks: if m.cost[-2] <= 0.0: factor = 1.0 elif len(m.ntasks) > 1: factor = (1.0 - m.cost[-1]/m.cost[-2]) / \ (1.0 - 1. * m.ntasks[-2] / m.ntasks[-1]) else: # not much information to go on ... factor = 1.0 m.cost.append(m.cost[-1] * (1.0 - factor + factor * m.ntasks[-1] / self.maxtasks)) m.ntasks.append(self.maxtasks) m.extrapolated.append(True) self.check_requirements() self.state = self.STATE_UNSOLVED def add_model_constraints(self): """ Build constraints based on the cost vs ntask models This should be the same for any layout so is provided in base class Assumes cost variables are 'Txxx' and ntask variables are 'Nxxx' """ assert self.state != self.STATE_UNDEFINED,\ "set_data() must be called before add_model_constraints()" for k in self.get_required_components(): m = self.models[k] tk = 'T' + k.lower() # cost(time) key nk = 'N' + k.lower() # nprocs key for i in range(0, len(m.cost) - 1): slope = (m.cost[i+1] - m.cost[i]) / (1. * m.ntasks[i+1] - m.ntasks[i]) self.constraints.append([self.X[tk] - slope * self.X[nk] >= \ m.cost[i] - slope * m.ntasks[i], "T%s - %f*N%s >= %f" % \ (k.lower(), slope, k.lower(), m.cost[i] - slope * m.ntasks[i])]) if slope > 0: logger.warning("WARNING: Nonconvex cost function for model " "%s. Review costs to ensure data is correct " "(--graph_models or --print_models)", k) break if slope == 0: break def get_required_components(self): """ Should be overridden by derived class. Return a list of required components (capitalized) used in the layout. Example: return ['ATM', 'LND', 'ICE'] """ return [] def check_requirements(self): """ Check to make sure that each element of the subclass's list of required components has some data provided. """ for r in self.get_required_components(): if r not in self.models: logger.critical("Data for component %s not available", r) def write_timings(self, fd=sys.stdout, level=logging.DEBUG): """ Print out the data used for the ntasks/cost models. Can be used to check that the data provided to the model is reasonable. Also see graph_costs() """ assert self.state != self.STATE_UNDEFINED,\ "set_data() must be called before write_timings()" for k in self.models: m = self.models[k] message = "***%s***" % k if fd is not None: fd.write("\n" + message + "\n") logger.log(level, message) for i in range(len(m.cost)): extra = "" if m.extrapolated[i]: extra = " (extrapolated)" message = "%4d: %f%s" % \ (m.ntasks[i], m.cost[i], extra) if fd is not None: fd.write(message + "\n") logger.log(level, message) def graph_costs(self): """ Use matplotlib to graph the ntasks/cost data. This provides a quick visual to check that the data used for the optimization is reasonable. If matplotlib is not available, nothing will happen """ assert self.state != self.STATE_UNDEFINED,\ "set_data() must be called before graph_costs()" try: import matplotlib.pyplot as pyplot except ImportError: logger.info("matplotlib not found, skipping graphs") return nplots = len(self.models) nrows = (nplots + 1) / 2 ncols = 2 fig, ax = pyplot.subplots(nrows, ncols) row = 0; col = 0 for k in self.models: m = self.models[k] p = ax[row, col] p.loglog(m.ntasks, m.cost, 'k-') for i in range(len(m.ntasks)): if not m.extrapolated[i]: p.plot(m.ntasks[i], m.cost[i], 'bx') else: p.plot(m.ntasks[i], m.cost[i], 'rx') p.set_title(m.name) p.set_xlabel('ntasks') p.set_ylabel('cost (s/mday)') p.set_xlim([1, self.maxtasks]) row += 1 if row == nrows: row = 0 col += 1 fig.suptitle("log-log plot of Cost/mday vs ntasks for designated " "components.\nPerfectly scalable components would have a " "straight line. Blue 'X's designate points\nfrom data, " "red 'X's designate extrapolated data. Areas above the " "line plots represent\nthe feasible region. Global " "optimality of solution depends on the convexity of " "these line plots.\nClose graph to continue on to solve.") fig.tight_layout() fig.subplots_adjust(top=0.75) logger.info("close graph window to continue") pyplot.show() def optimize(self): """ Run the optimization. Must set self.state using LpStatus object: LpStatusOptimal -> STATE_SOLVED_OK LpStatusNotSolved -> STATE_UNSOLVED LpStatusInfeasible -> STATE_SOLVED_BAD LpStatusUnbounded -> STATE_SOLVED_BAD LpStatusUndefined -> STATE_UNDEFINED -- use self.set_state(lpstatus) -- Returns state If solved, then solution will be stored in self.X dictionary, indexed by variable name. Suggested convention: 'Tice', 'Tlnd', ... for cost per component 'Nice', 'Nlnd', ... for ntasks per component 'NBice', 'NBlnd', ... for number of blocks per component The default implementation of get_solution() returns a dictionary of these variable keys and their values. """ raise NotImplementedError def get_solution(self): """ Return a dictionary of the solution variables, can be overridden. Default implementation returns values in self.X """ assert self.state == self.STATE_SOLVED_OK,\ "solver failed, no solution available" retval = {} if hasattr(self,'X') and isinstance(self.X, dict): for k in self.X: retval[k] = self.X[k].varValue return retval def set_state(self, lpstatus): if lpstatus == pulp.constants.LpStatusOptimal: self.state = self.STATE_SOLVED_OK elif lpstatus == pulp.constants.LpStatusNotSolved: self.state = self.STATE_UNSOLVED elif lpstatus == pulp.constants.LpStatusUndefined: self.state = self.STATE_UNDEFINED else: self.state = self.STATE_SOLVED_BAD def get_state(self): return self.state def get_state_string(self, state): return self.states[state] def write_pe_file(self, pefilename): raise NotImplementedError def write_xml_changes(self, outfile): """ Write out a list of xmlchange commands to implement the optimal layout """ raise NotImplementedError def write_pe_template(self, pefilename, ntasks, nthrds, roots): from distutils.spawn import find_executable from xml.etree import ElementTree as ET from CIME.utils import run_cmd logger.info("Writing pe node info to %s", pefilename) root = ET.Element('config_pes') grid = ET.SubElement(root, 'grid') grid.set('name', 'any') mach = ET.SubElement(grid, 'mach') mach.set('name', 'any') pes = ET.SubElement(mach, 'pes') pes.set('compset', 'any') pes.set('pesize', '') ntasks_node = ET.SubElement(pes, 'ntasks') for k in ntasks: node = ET.SubElement(ntasks_node, 'ntasks_' + k) node.text = str(ntasks[k]) nthrds_node = ET.SubElement(pes, 'nthrds') for k in nthrds: node = ET.SubElement(nthrds_node, 'nthrds_' + k) node.text = str(nthrds[k]) rootpe_node = ET.SubElement(pes, 'rootpe') for k in roots: node = ET.SubElement(rootpe_node, 'rootpe_' + k) node.text = str(roots[k]) xmllint = find_executable("xmllint") if xmllint is not None: run_cmd("%s --format --output %s -" % (xmllint, pefilename), input_str=ET.tostring(root)) ```
{ "source": "jingxianwen/e3sm_diags", "score": 2 }
#### File: plot/vcs/zonal_mean_xy_plot.py ```python from __future__ import print_function import os import sys import vcs import acme_diags import acme_diags.plot.vcs as utils from acme_diags.driver.utils.general import get_output_dir textcombined_objs = {} def managetextcombined(tt_name, to_name, vcs_canvas): """Caches textcombined objects""" new_name = "%s:::%s" % (tt_name, to_name) mytc = textcombined_objs.get(new_name, None) if mytc is None: mytc = vcs_canvas.createtextcombined( Tt_source=tt_name, To_source=to_name) textcombined_objs[new_name] = mytc return mytc def plot(ref, test, diff, metrics_dict, parameters): vcs_canvas = vcs.init(bg=True, geometry=( parameters.canvas_size_w, parameters.canvas_size_h)) # Line options, see here: https://uvcdat.llnl.gov/documentation/vcs/vcs-10.html # Other options not in the above link: # https://uvcdat.llnl.gov/docs/vcs/graphics/unified1D.html ref_plot_linetype = 0 ref_plot_color = 215 # 6 to 239 ref_plot_width = 3 # 1 to 100 ref_plot_marker = 1 ref_plot_markersize = 1 ref_plot_markercolor = 215 test_plot_linetype = 0 test_plot_color = 1 test_plot_width = 3 test_plot_marker = 1 test_plot_markersize = 1 test_plot_markercolor = 1 diff_plot_linetype = 0 diff_plot_color = 1 diff_plot_width = 3 diff_plot_marker = 1 diff_plot_markersize = 1 diff_plot_markercolor = 1 file_path = os.path.join(acme_diags.INSTALL_PATH, 'zonal_mean_xy') vcs_canvas.scriptrun(os.path.join(file_path, 'plot_set_3.json')) utils.set_units(test, parameters.test_units) utils.set_units(ref, parameters.reference_units) utils.set_units(diff, parameters.diff_units) if hasattr(test, 'long_name'): test.long_name = parameters.test_title if parameters.test_title is not '' else test.long_name if hasattr(ref, 'long_name'): ref.long_name = parameters.reference_title if parameters.reference_title is not '' else ref.long_name if hasattr(diff, 'long_name'): diff.long_name = parameters.diff_title if parameters.diff_title is not '' else diff.long_name test.id = str( parameters.test_name_yrs) if parameters.test_name_yrs is not '' else test.id ref.id = str( parameters.ref_name_yrs) if parameters.ref_name_yrs is not '' else ref.id diff.id = str( parameters.diff_name) if parameters.diff_name is not '' else diff.id # use vcs_canvas.show('colormap') to view all colormaps # 6 to 239 are purple to red in rainbow order vcs_canvas.setcolormap('rainbow') ref_test_template = vcs.gettemplate('ref_test_template') # Turn off the units of the axes in the plots. ref_test_template.xunits.priority = 0 ref_test_template.yunits.priority = 0 ref_test_yaxis_title = managetextcombined( 'ref_test_yaxis_title', 'ref_test_yaxis_title', vcs_canvas) ref_test_yaxis_title.angle = 270 ref_test_yaxis_title.halign = 'center' ref_test_yaxis_title.y = ( ref_test_template.data.y1 + ref_test_template.data.y2) / 2 ref_test_yaxis_title.x = ref_test_template.data.x1 - 0.08 ref_test_yaxis_title.string = test.long_name + ' (' + test.units + ')' vcs_canvas.plot(ref_test_yaxis_title) ref_test_template.legend.priority = 0 ref_test_template.title.priority = 0 # the actual box around the plot ref_test_template.box1.x1 = 0.1223 ref_test_template.box1.x2 = 0.96 ref_test_template.box1.y1 = 0.55 ref_test_template.box1.y2 = 0.90 # data (the lines) need to be offset accordingly ref_test_template.data.x1 = 0.1223 ref_test_template.data.x2 = 0.96 ref_test_template.data.y1 = 0.55 ref_test_template.data.y2 = 0.90 ref_test_template.units.textorientation = 'defright' ref_test_template.units.x = 0.96 ref_test_template.units.y = 0.91 # labels on xaxis ref_test_template.xlabel1.y = (0.55) - 0.02 # no xlabel1.x attribute # actual ticks on xaxis ref_test_template.xtic1.y1 = (0.55 - 0.005) + 0.01 ref_test_template.xtic1.y2 = (0.55 - 0.005) # name of xaxis # ref_test_template.xname.y += 0.29 # labels on yaxis ref_test_template.ylabel1.x = 0.11 # no ylabel1.y attribute # actual ticks on yaxis ref_test_template.ytic1.x1 = (0.1223 - 0.006) + 0.01 ref_test_template.ytic1.x2 = (0.1223 - 0.006) diff_template = vcs.gettemplate('diff_template') # Turn off the units of the axes in the plots. diff_template.xunits.priority = 0 diff_template.yunits.priority = 0 diff_yaxis_title = managetextcombined( 'diff_yaxis_title', 'diff_yaxis_title', vcs_canvas) diff_yaxis_title.angle = 270 diff_yaxis_title.halign = 'center' diff_yaxis_title.y = (diff_template.data.y1 + diff_template.data.y2) / 2 diff_yaxis_title.x = diff_template.data.x1 - 0.08 diff_yaxis_title.string = test.long_name + ' (' + test.units + ')' vcs_canvas.plot(diff_yaxis_title) diff_template.units.textorientation = 'defright' diff_template.units.x += 0.01 diff_template.legend.priority = 0 diff_template.ytic1.x1 = (0.1223 - 0.006) + 0.01 diff_template.ytic1.x2 = (0.1223 - 0.006) diff_template.ylabel1.x = 0.11 # no ylabel1.y attribute diff_template.units.textorientation = 'defright' diff_template.units.x = 0.96 ref_line = vcs_canvas.getxvsy('ref_plot') ref_line.datawc_y1 = min(ref.min(), test.min()) ref_line.datawc_y2 = max(ref.max(), test.max()) ref_line.datawc_x1 = -90 ref_line.datawc_x2 = 90 ref_line.xticlabels1 = {-90: "90S", -60: "60S", -30: "30S", 0: "Eq", 30: "30N", 60: "60N", 90: "90N"} test_line = vcs_canvas.getxvsy('test_plot') test_line.datawc_y1 = min(ref.min(), test.min()) test_line.datawc_y2 = max(ref.max(), test.max()) test_line.datawc_x1 = -90 test_line.datawc_x2 = 90 diff_line = vcs_canvas.getxvsy('diff_plot') diff_line.datawc_y1 = diff.min() diff_line.datawc_y2 = diff.max() diff_line.datawc_x1 = -90 diff_line.datawc_x2 = 90 diff_line.xticlabels1 = {-90: "90S", -60: "60S", -30: "30S", 0: "Eq", 30: "30N", 60: "60N", 90: "90N"} ref_line.linetype = ref_plot_linetype ref_line.linecolor = ref_plot_color ref_line.linewidth = ref_plot_width ref_line.marker = ref_plot_marker ref_line.markersize = ref_plot_markersize ref_line.markercolor = ref_plot_markercolor test_line.linetype = test_plot_linetype test_line.linecolor = test_plot_color test_line.linewidth = test_plot_width test_line.marker = test_plot_marker test_line.markersize = test_plot_markersize test_line.markercolor = test_plot_markercolor diff_line.linetype = diff_plot_linetype diff_line.linecolor = diff_plot_color diff_line.linewidth = diff_plot_width diff_line.marker = diff_plot_marker diff_line.markersize = diff_plot_markersize diff_line.markercolor = diff_plot_markercolor blank_template = vcs_canvas.gettemplate('blank_template') blank_template.legend.priority = 0 blank_template.data.priority = 1 vcs_canvas.plot(ref, ref_line, ref_test_template) vcs_canvas.plot(test, test_line, blank_template) vcs_canvas.plot(diff, diff_line, diff_template) # Plot the main title main_title = managetextcombined('main_title', 'main_title', vcs_canvas) main_title.string = parameters.main_title # for some reason, this needs to be before a call to vcs_canvas.plot() vcs_canvas.portrait() vcs_canvas.plot(main_title) test_title = managetextcombined('test_title', 'test_title', vcs_canvas) test_title.string = "Test: " + str(parameters.test_name) test_title.color = 1 test_title.x = ref_test_template.data.x1 - 0.05 test_title.y = ref_test_template.data.y2 + 0.045 test_title.height = 12 vcs_canvas.plot(test_title) ref_title = managetextcombined('ref_title', 'ref_title', vcs_canvas) ref_title.string = "Reference: " + str(parameters.reference_name) ref_title.color = 215 ref_title.x = ref_test_template.data.x1 - 0.05 ref_title.y = ref_test_template.data.y2 + 0.025 ref_title.height = 12 vcs_canvas.plot(ref_title) if not parameters.logo: vcs_canvas.drawlogooff() fnm = os.path.join(get_output_dir(parameters.current_set, parameters), parameters.output_file) for f in parameters.output_format: f = f.lower().split('.')[-1] if f == 'png': vcs_canvas.png(fnm) elif f == 'pdf': vcs_canvas.pdf(fnm) elif f == 'svg': vcs_canvas.svg(fnm) # Get the filename that the user has passed in and display that. # When running in a container, the paths are modified. fnm = os.path.join(get_output_dir(parameters.current_set, parameters, ignore_container=True), parameters.output_file) print('Plot saved in: ' + fnm + '.' + f) vcs_canvas.clear() ```
{ "source": "jingxianwen/rte_rrtmgp_lw_scat", "score": 3 }
#### File: examples/rfmip-clear-sky/generate-output-file-templates.py ```python from netCDF4 import Dataset import numpy as np import time, uuid, argparse import urllib.request, json # --------------------------------------------------------------------------------- # Copy a variable and all its attributes from one netCDF file to another # def copyVar(nc_in, nc_out, name, newname=None) : if newname is None : newname = name nc_out.createVariable(newname, nc_in.variables[name].dtype, nc_in.variables[name].dimensions) nc_out.variables[newname].setncatts(nc_in.variables[name].__dict__) nc_out.variables[newname][:] = nc_in.variables[name][:] # --------------------------------------------------------------------------------- atmos_file = Dataset('multiple_input4MIPs_radiation_RFMIP_UColorado-RFMIP-1-2_none.nc', mode='r') # Available from https://www.earthsystemcog.org/projects/rfmip/resources/ # or from https://esgf-node.llnl.gov/search/input4mips/ ; search for "RFMIP" parser = argparse.ArgumentParser(description='Create CMIP6/ESGF-compliant output files for RFMIP-IRF.') parser.add_argument('--source_id', type=str, \ default = "LBLRTM-12-8", help='Source ID, must match CMIP Controlled Vocabulary at https://github.com/WCRP-CMIP/CMIP6_CVs/blob/master/CMIP6_source_id.json') parser.add_argument('--forcing_index', type=int, \ default = 1, \ help='Forcing index (1 = all available greenhouse gases; 2 = CO2, CH4, N2O, CFC12, CFC11eq; 3 = CO2, CH4, N2O, CFC12eq, HFC-134eq)') parser.add_argument('--physics_index', type=int, \ default = 1, \ help='Physics index, e.g. for different approximations') args = parser.parse_args() # # Check that source_id is valid # Use source_id to obtain other text # with urllib.request.urlopen("https://raw.githubusercontent.com/PCMDI/cmip6-cmor-tables/master/Tables/CMIP6_CV.json") as url: cmip6 = json.loads(url.read().decode()) if(args.source_id in cmip6['CV']['source_id'].keys()): source_id = args.source_id source = cmip6['CV']['source_id'][source_id]['source'] institution_id = cmip6['CV']['source_id'][source_id]['institution_id'][0] institution = cmip6['CV']['institution_id'][institution_id] physics_index = np.int32(args.physics_index) forcing_index = np.int32(args.forcing_index) else: print("source_id {} is not in CMIP6 Controlled Vocabulary".format(args.source_id)) sys.exit(1) if (forcing_index < 1 ) or (forcing_index > 3): print('forcing_index must be 1, 2, or 3 (1 = all available greenhouse gases; 2 = CO2, CH4, N2O, CFC12, CFC11eq; 3 = CO2, CH4, N2O, CFC12eq, HFC-134eq)') sys.exit(1) if (physics_index < 1 ): print('physics_index must be positive') sys.exit(1) # # Model/institution specific attributes # variant_label = "r1i1p{0}f{1}".format(physics_index,forcing_index) model_attrs = { "institution_id" :institution_id, "institution" :institution, "source_id" :source_id, "source" :source_id, "further_info_url":"https://furtherinfo.es-doc.org/CMIP6." + institution_id + "." + source_id + ".rad-irf.none." + variant_label, "forcing_index" :np.int32(forcing_index), "license" :"CMIP6 model data produced by " + institution_id + " is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (https://creativecommons.org/licenses). " + "Consult https://pcmdi.llnl.gov/CMIP6/TermsOfUse for terms of use governing CMIP6 output, including citation requirements and proper acknowledgment. " + "Further information about this data, including some limitations, can be found via the further_info_url (recorded as a global attribute in this file) and at https://pcmdi.llnl.gov/." + "The data producers and data providers make no warranty, either express or implied, including, but not limited to, warranties of merchantability and fitness for a particular purpose." + "All liabilities arising from the supply of the information (including any liability arising in negligence) are excluded to the fullest extent permitted by law." } # # Required attributes, uniform across submissions # std_attrs = { "data_specs_version":"01.00.29", "physics_index":np.int32(physics_index)} # Submission attrs sub_attrs = { 'creation_date':time.strftime("%Y-%m-%dT%H:%M:%SZ",time.gmtime()), 'tracking_id' : '/'.join(['hdl:21.14100',str(uuid.uuid4())]), "variant_label":variant_label} # Attributes are taken from https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk/edit # Data reference syntax attributes drs_attrs = { "activity_id" :"RFMIP", # (from CMIP6_activity_id.json) "product" :"model-output", "experiment_id":"rad-irf", # (from CMIP6_experiment_id.json) "table_id" :"Efx", # (per http://clipc-services.ceda.ac.uk/dreq/u/efc0de22-5629-11e6-9079-ac72891c3257.html) "frequency" :"fx", "sub_experiment_id":"none"} expt_attrs = { "Conventions" :"CF-1.7 CMIP-6.2", "mip_era" :"CMIP6", "experiment" :"offline assessment of radiative transfer parmeterizations in clear skies", "sub_experiment" :"none", "product" :"model-output", "realization_index" :np.int32(1), "initialization_index":np.int32(1), "source_type" :"RAD", "nominal_resolution" :"10 km", "realm" :"atmos", "grid_label" :"gn", "grid" :"columns sampled from ERA-Interim, radiative fluxes computed independently"} short_names = ['rlu','rsu', 'rld', 'rsd'] stand_names = ['upwelling_longwave_flux_in_air','upwelling_shortwave_flux_in_air', 'downwelling_longwave_flux_in_air','downwelling_shortwave_flux_in_air'] for short, std in zip(short_names, stand_names) : # File name is constructed per https://docs.google.com/document/d/1h0r8RZr_f3-8egBMMh7aqLwy3snpD6_MrDz1q8n5XUk/edit# # fixed strings are table_id, experiment_id, grid_label out_file_name = short + "_Efx_" + source_id + "_rad-irf_" + variant_label + "_gn" + ".nc" print('Creating ' + out_file_name) out_file = Dataset(out_file_name, mode='w', FORMAT='NETCDF4_CLASSIC') out_file.setncatts(drs_attrs) out_file.setncatts(std_attrs) out_file.setncatts(expt_attrs) out_file.setncatts(model_attrs) out_file.setncatts(sub_attrs) out_file.setncatts({'variable_id' :short}) d = out_file.createDimension('expt', atmos_file.dimensions['expt'].size) d = out_file.createDimension('site', atmos_file.dimensions['site'].size) d = out_file.createDimension('level', atmos_file.dimensions['level'].size) copyVar(atmos_file, out_file, 'lat') copyVar(atmos_file, out_file, 'lon') copyVar(atmos_file, out_file, 'time') copyVar(atmos_file, out_file, 'pres_level', 'plev') v = out_file.createVariable(short, 'f4', ('expt', 'site', 'level')) v.setncatts({'variable_id' :short, 'standard_name':std, 'units' :'W m-2', '_FillValue' :np.float32(-1.e+03), 'missing_value':np.float32(-1.e+03), "cell_methods" :"area: point", 'coordinates' :'lon lat time'}) copyVar(atmos_file, out_file, 'profile_weight') out_file.close() ```
{ "source": "jingxiaoliu/Bridge-damage-segmentation", "score": 2 }
#### File: Bridge-damage-segmentation/apis/train_damage_pure.py ```python import torch, torchvision import os import numpy as np from PIL import Image import mmcv from mmcv import Config from mmseg.datasets.builder import DATASETS from mmseg.datasets.custom import CustomDataset from mmseg.apis import set_random_seed from mmseg.datasets import build_dataset from mmseg.models import build_segmentor from mmseg.apis import train_segmentor from mmcv.runner import get_dist_info, init_dist from datetime import datetime import argparse from random import randint # Training arguments, check the help message for details. parser = argparse.ArgumentParser() parser.add_argument("--nw", type=str, required=True,help="Network name.") parser.add_argument("--conf", type=str, required=True,help="Config path.") parser.add_argument("--cp", type=str, required=True,help="checkpoint path.") parser.add_argument("--dr", type=str, required=True,help="Data root.") parser.add_argument("--local_rank", type=int, help="") parser.add_argument("--train_split", type=str, required=True, help="Split file for training") parser.add_argument("--val_split", type=str, required=True, help="Split file for testing") parser.add_argument("--bs", type=int, required=True,help="Batch size.") parser.add_argument("--width", type=int, default=640, help='Image width. ') parser.add_argument("--height", type=int, default=360, help='Image height. ') parser.add_argument("--distributed", action='store_true') parser.add_argument("--resume_from", type=str, help="Resume from a previous checkpoint. Pass the checkpoint path as an argument.") parser.add_argument("--iter", type=int, default=40000, help='Max number of iterations.') parser.add_argument("--log_iter", type=int, default=10, help="The interval for logging.") parser.add_argument("--eval_iter", type=int, default=200, help="Validation interval.") parser.add_argument("--checkpoint_iter", type=int, default=2000, help="Checkpoint interval.") parser.add_argument("--learning_rate", type=float, help="Learning rate of the optimizer.") parser.add_argument("--ohem", action='store_true') parser.add_argument("--multi_loss", action='store_true') parser.add_argument("--job_name", type=str, default='', help="job name used in sbatch to create folders.") args = parser.parse_args() # Concrete segmentation dataset: Two classes only. classes = ('Undefined','Undamaged', 'ConcreteDamage', 'ExposedRebar') palette = [[0,0,0], [128, 128, 128], [129, 127, 38], [120, 69, 125]] @DATASETS.register_module() class TokaidoDataset(CustomDataset): CLASSES = classes PALETTE = palette def __init__(self, split, **kwargs): super().__init__(img_suffix='.png', seg_map_suffix='.bmp', split=split, **kwargs) assert os.path.exists(self.img_dir) and self.split is not None # Setup config data_root = args.dr num_classes = len(classes) batch_size = args.bs image_size = (args.width,args.height) img_dir = 'images_puretex' ann_dir = os.path.join('synthetic_puretex', 'labdmg_resize') train_split = args.train_split val_split = args.val_split checkpoint_dir = args.cp dt_string = datetime.now().strftime("%Y%m%d-%H%M%S") job_name = args.job_name + "_" + args.nw + "_" + dt_string network = args.nw def generate_config(config_path): cfg = Config.fromfile(config_path) # class_weight = [0.9939,0.0257,0.9822,0.9981] # Since we use ony one GPU, BN is used instead of SyncBN if(args.distributed): cfg.norm_cfg = dict(type='SyncBN', requires_grad=True) else: cfg.norm_cfg = dict(type='BN', requires_grad=True) # cfg.model.backbone.norm_cfg = cfg.norm_cfg cfg.model.backbone.pretrained = None if network == 'resnest' or network == 'pspnet' or network == 'swin' or network == 'vit': if args.ohem: cfg.model.decode_head.sampler = dict(type='OHEMPixelSampler') cfg.model.decode_head.norm_cfg = cfg.norm_cfg cfg.model.auxiliary_head.norm_cfg = cfg.norm_cfg cfg.model.decode_head.num_classes = num_classes # cfg.model.decode_head.loss_decode.class_weight = class_weight cfg.model.auxiliary_head.num_classes = num_classes # cfg.model.auxiliary_head.loss_decode.class_weight = class_weight if network == 'swin': del cfg.model.backbone.pretrain_style elif network == 'ocrnet': if args.ohem: cfg.model.decode_head[0].sampler = dict(type='OHEMPixelSampler') cfg.model.decode_head[1].sampler = dict(type='OHEMPixelSampler') if args.multi_loss: cfg.model.decode_head[0].loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)] cfg.model.decode_head[1].loss_decode = [dict(type='CrossEntropyLoss', loss_name='loss_ce', loss_weight=1.0), dict(type='DiceLoss', loss_name='loss_dice', loss_weight=3.0)] cfg.model.decode_head[0].norm_cfg = cfg.norm_cfg cfg.model.decode_head[1].norm_cfg = cfg.norm_cfg cfg.model.decode_head[0].num_classes = num_classes # cfg.model.decode_head[0].loss_decode.class_weight = class_weight cfg.model.decode_head[1].num_classes = num_classes # cfg.model.decode_head[1].loss_decode.class_weight = class_weight elif network == 'hrnet': if args.ohem: cfg.model.decode_head.sampler = dict(type='OHEMPixelSampler') cfg.model.decode_head.norm_cfg = cfg.norm_cfg cfg.model.decode_head.num_classes = num_classes # cfg.model.decode_head.loss_decode.class_weight = class_weight # Modify dataset type and path cfg.dataset_type = 'TokaidoDataset' cfg.data_root = data_root cfg.resume_from = args.resume_from cfg.data.samples_per_gpu = batch_size cfg.data.workers_per_gpu = 4 cfg.img_norm_cfg = dict( mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True) cfg.crop_size = (256, 256) cfg.train_pipeline = [ dict(type='LoadImageFromFile'), dict(type='LoadAnnotations'), dict(type='Resize', img_scale=image_size, ratio_range=(0.5, 2.0)), dict(type='RandomCrop', crop_size=cfg.crop_size), dict(type='RandomFlip', flip_ratio=0.5), dict(type='RandomRotate',prob=0.5,degree=90,pad_val=0,seg_pad_val=0), dict(type='PhotoMetricDistortion'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='Pad', size=cfg.crop_size, pad_val=0, seg_pad_val=255), dict(type='DefaultFormatBundle'), dict(type='Collect', keys=['img', 'gt_semantic_seg']), ] cfg.test_pipeline = [ dict(type='LoadImageFromFile'), dict( type='MultiScaleFlipAug', img_scale=image_size, # img_ratios=[0.5, 0.75, 1.0, 1.25, 1.5, 1.75], flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), dict(type='Normalize', **cfg.img_norm_cfg), dict(type='ImageToTensor', keys=['img']), dict(type='Collect', keys=['img']), ]) ] cfg.data.train.type = cfg.dataset_type cfg.data.train.data_root = cfg.data_root cfg.data.train.img_dir = img_dir cfg.data.train.ann_dir = ann_dir cfg.data.train.pipeline = cfg.train_pipeline cfg.data.train.split = train_split cfg.data.val.type = cfg.dataset_type cfg.data.val.data_root = cfg.data_root cfg.data.val.img_dir = img_dir cfg.data.val.ann_dir = ann_dir cfg.data.val.pipeline = cfg.test_pipeline cfg.data.val.split = val_split cfg.data.test.type = cfg.dataset_type cfg.data.test.data_root = cfg.data_root cfg.data.test.img_dir = img_dir cfg.data.test.ann_dir = ann_dir cfg.data.test.pipeline = cfg.test_pipeline cfg.data.test.split = val_split # Set up working dir to save files and logs. cfg.work_dir = os.path.join(checkpoint_dir, job_name + "_" + network) if not os.path.exists(cfg.work_dir): os.makedirs(cfg.work_dir, exist_ok=True) cfg.runner.max_iters = args.iter cfg.log_config.interval = args.log_iter cfg.evaluation.interval = args.eval_iter cfg.checkpoint_config.interval = args.checkpoint_iter # Set seed cfg.seed = randint(0,10000) set_random_seed(randint(0,10000), deterministic=False) if(args.distributed): init_dist('pytorch', **cfg.dist_params) # gpu_ids is used to calculate iter when resuming checkpoint _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) else: cfg.gpu_ids = [0] if args.learning_rate is not None: cfg.optimizer = dict(type='SGD', lr=args.learning_rate, momentum=0.9, weight_decay=0.0005) # dump config cfg.dump(os.path.join(cfg.work_dir,job_name+'.py')) # Have a look at the final config used for training print(f'Config:\n{cfg.pretty_text}') return cfg def main(): # Build the dataset base_config = args.conf cfg = generate_config(base_config) datasets = [build_dataset(cfg.data.train)] # Build the detector model = build_segmentor( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) # Add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES # Create work_dir mmcv.mkdir_or_exist(os.path.abspath(cfg.work_dir)) train_segmentor(model, datasets, cfg, distributed=args.distributed, validate=True, meta=dict()) if __name__ == "__main__": main() ``` #### File: Bridge-damage-segmentation/modules/data_prep.py ```python import os import argparse from tqdm import tqdm import cv2 import numpy as np import random from PIL import Image import glob parser = argparse.ArgumentParser() parser.add_argument("--option", type=str, required=True, help="Use resize|count|group|verify|split|resample to preprocess datasets.") parser.add_argument("--input", type=str, required=True, help="Input directory, usually the directory of images.") parser.add_argument("--output", type=str, required=True, help="Output directory if there is any output") parser.add_argument("--data_root", type=str, required=False, help="Taikoda data root") parser.add_argument("--split_csv", type=str, required=False, help="Split file") parser.add_argument("--lbl_dir", type=str, required=False, help="Label directory") parser.add_argument("--width", type=int, default=1920) parser.add_argument("--height", type=int, default=1080) parser.add_argument("--nearest", type=bool, default=True) parser.add_argument("--resampling", type=bool, default=False) parser.add_argument("--test", action='store_true') args = parser.parse_args() def mask_imgs(in_dir, out_dir, split_csv, lbl_dir): if not os.path.exists(in_dir): print("Input directory {0} not exists".format(in_dir)) return if not os.path.exists(out_dir): os.makedirs(out_dir) split_csv = args.split_csv images = [] with open(split_csv, 'r') as f: lines = f.readlines() for line in lines: images.append(line.strip('\n')) images = list(images) print(images[0]) print("Testing images for damage detection: ", len(images)) for i in tqdm(range(len(images)), desc="Masking validation images..."): img = np.array(cv2.imread(os.path.join(in_dir, images[i]+'_Scene.png'), cv2.IMREAD_UNCHANGED)) lbl = np.tile(np.expand_dims(np.array(Image.open(os.path.join(lbl_dir, images[i]+'.bmp')).resize((1920,1080))),2),(1,1,3)).astype(np.uint8) if img is None: print('Wrong path:', os.path.join(in_dir, images[i])) else: img[lbl != 4] = 0 cv2.imwrite(os.path.join(out_dir, images[i]+'_Scene.png'), img) def resize_imgs(in_dir, out_dir, width, height, nearest=True): if not os.path.exists(in_dir): print("Input directory {0} not exists".format(in_dir)) return if not os.path.exists(out_dir): os.makedirs(out_dir) img_list = os.listdir(in_dir) img_list.sort() for img_name in tqdm(img_list, desc="Processing ..."): img = cv2.imread(os.path.join(in_dir, img_name), cv2.IMREAD_UNCHANGED) if img is None: print('Wrong path:', os.path.join(in_dir, img_name)) else: out_img = cv2.resize(img, (width , height), cv2.INTER_NEAREST) cv2.imwrite(os.path.join(out_dir, img_name), out_img) def splitbycase(in_dir, out_dir, data_root, seed=13, resampling=False): if not os.path.exists(in_dir): print("Input directory {0} not exists".format(in_dir)) return if not os.path.exists(out_dir): os.makedirs(out_dir) train_images_cmp = [] train_images_dmg = [] with open(in_dir, 'r') as f: lines = f.readlines() for line in lines: words = line.replace("\\", "/").strip("\n").split(",") # valid image for cmp training if (words[5] == 'True'): train_images_cmp.append(os.path.basename(words[0].strip("_Scene.png"))) if (words[6] == 'True'): train_images_dmg.append(os.path.basename(words[0].strip("_Scene.png"))) train_images_cmp = list(train_images_cmp) train_images_dmg = list(train_images_dmg) random.seed(seed) cases = list(np.arange(0,175,1)) random.shuffle(cases) linspace = list(np.arange(0,175,10)) # 10-fold for i in range(10): train_images_cmp_train = [] train_images_cmp_val = [] train_images_dmg_train = [] train_images_dmg_val = [] case_id = cases[linspace[i]:linspace[i+1]] for name in train_images_cmp: if name.split('_')[1][4:] in str(case_id): train_images_cmp_val.append(name) else: train_images_cmp_train.append(name) for name in train_images_dmg: if name.split('_')[1][4:] in str(case_id): train_images_dmg_val.append(name) else: train_images_dmg_train.append(name) with open(os.path.join(out_dir, 'train_cmp'+str(i)+'.txt'), 'w') as f: # select the ratio portion as training set n=1 for line in train_images_cmp_train: repeat = 1 if resampling: file_name = data_root+'/synthetic/train/labcmp/'+line+'.bmp' img = np.array(Image.open(file_name)) # if sleeper er_labels = np.where(img==7)[0] if len(er_labels) >= 10: n+=1 repeat = 10 # if non-structural er_labels1 = np.where(img==5)[0] if len(er_labels1) >= 10: n+=1 repeat = 10 for r in range(repeat): f.writelines(line + '\n') with open(os.path.join(out_dir, 'val_cmp'+str(i)+'.txt'), 'w') as f: # select the rest as validation set f.writelines(line + '\n' for line in train_images_cmp_val) with open(os.path.join(out_dir, 'train_dmg'+str(i)+'.txt'), 'w') as f: # select the ratio portion as training set for line in train_images_dmg_train: repeat = 1 if resampling: file_name = data_root+'/synthetic/train/labdmg/'+line+'.bmp' img = np.array(Image.open(file_name)) # if exposed rebar er_labels = np.where(img==3)[0] if len(er_labels) >= 10: n+=1 repeat = 3 for r in range(repeat): f.writelines(line + '\n') with open(os.path.join(out_dir, 'val_dmg'+str(i)+'.txt'), 'w') as f: # select the rest as validation set f.writelines(line + '\n' for line in train_images_dmg_val) def split_puretex(in_dir, out_dir, data_root, test=False, train_ratio=0.9, seed=13, resampling=False): if not os.path.exists(in_dir): print("Input directory {0} not exists".format(in_dir)) return if not os.path.exists(out_dir): os.makedirs(out_dir) train_images = [] with open(in_dir, 'r') as f: lines = f.readlines() for line in lines: words = line.replace("\\", "/").strip("\n").split(",") # valid image train_images.append(os.path.basename(words[0].strip(".png"))) train_images = list(train_images) if not test: random.seed(seed) random.shuffle(train_images) with open(os.path.join(out_dir, 'train_puretex.txt'), 'w') as f: # select the ratio portion as training set train_length = int(len(train_images) * train_ratio) for line in train_images[:train_length]: repeat = 1 if resampling: file_name = data_root+'/synthetic_puretex/labdmg/'+line+'.bmp' img = np.array(Image.open(file_name)) er_labels = np.where(img==3)[0] # print(er_labels) if len(er_labels) >= 10: repeat = 5 for r in range(repeat): f.writelines(line + '\n') with open(os.path.join(out_dir, 'val_puretex.txt'), 'w') as f: # select the rest as validation set f.writelines(line + '\n' for line in train_images[train_length:]) else: with open(os.path.join(out_dir, 'test_puretex.txt'), 'w') as f: f.writelines(line+'\n' for line in train_images) def main(): print(args.option) if(args.option == "resize"): resize_imgs(args.input, args.output, args.width, args.height) if(args.option == "split_puretex"): split_puretex(args.input, args.output, args.data_root, args.test, resampling=args.resampling) if(args.option == "splitbycase"): splitbycase(args.input, args.output, args.data_root, resampling=args.resampling) if(args.option == "mask_imgs"): mask_imgs(args.input, args.output, args.split_csv, args.lbl_dir) if __name__ == "__main__": main() ``` #### File: Bridge-damage-segmentation/modules/viz_label.py ```python import cv2 import numpy as np import os from PIL import Image import argparse # dmg coding Concrete_dmg = [128, 0, 0] Rebar_dmg = [0, 128, 0] Not_dmg = [0, 0, 128] Undefined = [0, 0, 0] # cmp coding Nonbridge = [0,128,192] Slab = [128,0,0] Beam = [192,192,128] Column = [128,64,128] Nonstructure = [60,40,222] Rail = [128,128,0] Sleeper = [192,128,128] Other = [64,64,128] CMP_CMAP = np.array([Undefined, Nonbridge, Slab, Beam, Column, Nonstructure, Rail, Sleeper, Other], dtype=np.uint8) DMG_CMAP = np.array([Undefined, Not_dmg, Concrete_dmg, Rebar_dmg], dtype=np.uint8) parser = argparse.ArgumentParser() parser.add_argument("--input", type=str, required=True, help="Input directory, usually the directory of predictions.") parser.add_argument("--output", type=str, required=True, help="Output directory if there is any output") parser.add_argument("--raw_input", type=str, help="The directory of original images.") parser.add_argument("--cmp", action='store_true') args = parser.parse_args() def labelViz(img, num_class, cmap): img = img[:,:,0] if len(img.shape) == 3 else img img_out = np.zeros(img.shape + (3,), dtype=np.uint8) for i in range(num_class): img_out[img == i, :] = cmap[i] return img_out def main(): in_dir = args.input out_dir = args.output ori_dir = args.raw_input is_cmp = args.cmp img_list = os.listdir(in_dir) for img_name in img_list: img = cv2.imread(os.path.join(in_dir, img_name)) if is_cmp: viz = labelViz(img, 9, CMP_CMAP) else: viz = labelViz(img, 4, DMG_CMAP) if not os.path.exists(os.path.join(out_dir, 'png')): os.makedirs(os.path.join(out_dir, 'png')) cv2.imwrite(os.path.join(out_dir, 'png' ,img_name.replace(".bmp", ".png")), viz) if not os.path.exists(os.path.join(out_dir, 'ori')): os.makedirs(os.path.join(out_dir, 'ori')) img = cv2.imread(os.path.join(ori_dir, img_name.replace(".bmp", "_Scene.png"))) cv2.imwrite(os.path.join(out_dir, 'ori' ,img_name.replace(".bmp", "_Scene.png")), img) if __name__ == "__main__": main() ```
{ "source": "jingxiaorobin/DeepLearning2019", "score": 3 }
#### File: jingxiaorobin/DeepLearning2019/model.py ```python import torch import torch.nn as nn class Model(nn.Module): def __init__(self): super(Model, self).__init__() # Architecture # TODO # Load pre-trained model self.load_weights('weights.pth') def load_weights(self, pretrained_model_path, cuda=True): # Load pretrained model pretrained_model = torch.load(f=pretrained_model_path, map_location="cuda" if cuda else "cpu") # Load pre-trained weights in current model with torch.no_grad(): self.load_state_dict(pretrained_model, strict=True) # Debug loading print('Parameters found in pretrained model:') pretrained_layers = pretrained_model.keys() for l in pretrained_layers: print('\t' + l) print('') for name, module in self.state_dict().items(): if name in pretrained_layers: assert torch.equal(pretrained_model[name].cpu(), module.cpu()) print('{} have been loaded correctly in current model.'.format(name)) else: raise ValueError("state_dict() keys do not match") def forward(self, x): # TODO raise NotImplementedError ```
{ "source": "jingxinfu/infercnvpy", "score": 3 }
#### File: infercnvpy/datasets/__init__.py ```python import importlib.resources as pkg_resources from . import data import scanpy as sc from anndata import AnnData from scanpy import settings from scanpy.readwrite import read def oligodendroglioma() -> AnnData: """The original inferCNV example dataset. Derived from :cite:`Tirosh2016`. """ with pkg_resources.path(data, "oligodendroglioma.h5ad") as p: return sc.read_h5ad(p) def maynard2020_3k() -> AnnData: """\ Return the dataset from :cite:`Maynard2020` as AnnData object, downsampled to 3000 cells. In brief, this data set was processed as follows: * raw data downloaded from ENA * gene expression quantified using Salmon and the nf-core/rnaseq pipeline. * basic quality control (min_counts=20k, max_counts=5M, min_genes=1k, max_mitochondrial_fraction=0.2) * filtered to 6000 HVG using `sc.pp.highly_variable_genes(..., flavor="seurat_v3")` * raw counts processed using scVI, providing sample information as batch key. * cell types manually annotated based on marker genes and leiden clustering and subclustering. * downsampled to 3000 cells. `adata.X` contains the `log1p` transformed, cpm-normalized raw counts. The `scVI` latent representation is stored in `adata.obsm["X_scVI"]`. A UMAP for the 3000 cells is precomputed. """ url = "https://github.com/icbi-lab/infercnvpy/releases/download/d0.1.0/maynard2020_3k.h5ad" filename = settings.datasetdir / "maynard2020_3k.h5ad" adata = read(filename, backup_url=url) return adata ```
{ "source": "jingxinfu/TCGAdnloader", "score": 2 }
#### File: TCGAdnloader/TCGAdnloader/downloader.py ```python import subprocess, os,time,gzip import pandas as pd import numpy as np from functools import reduce from .convertor import mergeToSample, calTNzcore, rmEntrez, tpmToFpkm, mapEm2Gene, formatClin, pick,formatDrug from .outformat import storeData import requests,json,re,io from .setting import CLIN_INFO, Biospecimen_INFO, Biospecimen_MAP, CLIN_MAP, PAM50_PATH, DRUG_MAP class GdcApi(object): ''' API for download files from GDC ''' __slot__ = ["files_endpt", "data_endpt", "cancer", "parental_dir",'cases_endpt'] def __init__(self, cancer, parental_dir, cases_endpt='https://api.gdc.cancer.gov/cases', data_endpt="https://api.gdc.cancer.gov/data", files_endpt="https://api.gdc.cancer.gov/files", **kwargs): ''' Intialize instance parameters Parameters ---------- cancer : str Cancer type parental_dir : str Path to store datas data_endpt : str, optional [Endpoint for files id searching] (the default is "https://api.gdc.cancer.gov/data") files_endpt : str, optional [Endpoint for files downloading] (the default is "https://api.gdc.cancer.gov/files") ''' self.files_endpt = files_endpt self.data_endpt = data_endpt self.cancer = cancer self.parental_dir = parental_dir self.cases_endpt = cases_endpt def _projFilter(self, data_type,method=None): dtype_dict = { "cnv_segment_somatic": "Masked Copy Number Segment", "cnv_segment_all": "Copy Number Segment", "masked_somatic_mutation":"Masked Somatic Mutation", } filters = { "op": "and", "content":[ { "op": "in", "content": { "field": "files.data_type", "value": [ dtype_dict[data_type] ] } }, { "op": "in", "content": { "field": "cases.project.project_id", "value": [ "TCGA-"+self.cancer.upper() ] } }, ] } # specific for SNV on TCGA (Calling by four different tools) if method != None: filters['content'].append({ "op":"in", "content":{ "field": "files.analysis.workflow_type", "value":[ "{} Variant Aggregation and Masking".format(method) ] } }) params = { "filters": json.dumps(filters), "format": "JSON", "size": "3000" } return params def _nameFilter(self, data_type): dtype_dict = { 'drug': "nationwidechildrens.org_clinical_drug_{}.txt".format(self.cancer.lower()), 'gistic': '{}.focal_score_by_genes.txt'.format(self.cancer.upper()), # 'survival': "nationwidechildrens.org_clinical_follow_up_v{0}_{1}.txt".format(CLIN_VERSION[self.cancer], self.cancer.lower()), 'patient': "nationwidechildrens.org_clinical_patient_{}.txt".format(self.cancer.lower()), 'aliquot': "nationwidechildrens.org_biospecimen_aliquot_{}.txt".format(self.cancer.lower()), 'slide': "nationwidechildrens.org_biospecimen_slide_{}.txt".format(self.cancer.lower()), 'sample': "nationwidechildrens.org_biospecimen_sample_{}.txt".format(self.cancer.lower()), 'auxilary': "nationwidechildrens.org_auxiliary_{}.txt".format(self.cancer.lower()), } filters = { "op": "in", "content": { "field": "files.file_name", "value": [ dtype_dict[data_type] ] } } params = { "filters": json.dumps(filters), "format": "JSON", "size": "1" } return params def _fetchFileID(self, data_type, by_name=True,method=None): ''' Get files id by upstream filter parameters Parameters ---------- data_type : str Data type to be download. eg. gistic by_name : bool, optional Whether getting files id by matching file names (the default is True). If not, we will use project filtering options to get file id list. Returns ------- list A list contains file ids. ''' if by_name is True: file_uuid_list = [] params = self._nameFilter(data_type) response = requests.get(self.files_endpt, params=params) for file_entry in json.loads(response.content.decode("utf-8"))["data"]["hits"]: file_uuid_list.append(file_entry["file_id"]) else: file_uuid_list = [] params = self._projFilter(data_type,method=method) response = requests.get(self.files_endpt, params=params) if "message" in json.loads(response.content.decode("utf-8")).keys(): return None, 'Not found' for file_entry in json.loads(response.content.decode("utf-8"))["data"]["hits"]: file_uuid_list.append(file_entry["file_id"]) if len(file_uuid_list) == 0: return None,'Not found' else: return file_uuid_list,None def getTableFromFiles(self, data_type, by_name=True,method=None,**kwargs): ''' Merging tables downloaded by a list of file ids ''' try: file_uuid_list, error = self._fetchFileID( data_type=data_type, by_name=by_name,method=method) except requests.exceptions.SSLError: time.sleep(10) file_uuid_list, error = self._fetchFileID( data_type=data_type, by_name=by_name,method=method) if error != None: return None, error ready_to_merge = [] if len(file_uuid_list) == 0 : return None, 'Cannot find any file.' for ids in file_uuid_list: params = {"ids": [ids]} try: response = requests.post(self.data_endpt, data=json.dumps( params), headers={"Content-Type": "application/json"}) except requests.exceptions.SSLError: time.sleep(10) response = requests.post(self.data_endpt, data=json.dumps( params), headers={"Content-Type": "application/json"}) if method != None: temp_file = self.cancer+'_'+method+"_snv_tmp.gz" file = open(temp_file, "wb") file.write(response.content) file.close() df = pd.read_table(temp_file, **kwargs) subprocess.call('rm %s' % temp_file ,shell=True) else: df = pd.read_table(io.StringIO( response.content.decode("utf-8")), **kwargs) ready_to_merge.append(df) return pd.concat(ready_to_merge,axis=0),None def getClinInfo(self, fields): filters = { "op": "in", "content": { "field": "cases.project.project_id", "value": [ "TCGA-"+self.cancer.upper() ] } } fields = ','.join(fields) params = { "filters": json.dumps(filters), "fields": fields, "format": "TSV", "size": "3000" } response = requests.get(self.cases_endpt, params=params) if response.status_code != 200: time.sleep(10) response = requests.get(self.cases_endpt, params=params) try: result = pd.read_table(io.StringIO(response.content.decode("utf-8"))) error = None except: result=None error='Not Found!' return result,error def clin(self): ''' Downloading clinical information ''' surs,stderr = self.getClinInfo(fields=CLIN_INFO) if stderr == None: surs.rename(columns=CLIN_MAP,inplace=True) surs = surs[list(CLIN_MAP.values())] format_surs = formatClin(surs) storeData(df=format_surs,parental_dir=self.parental_dir, sub_folder='Surv',cancer=self.cancer) stderr = '' else: stderr = 'Cannot Found\tsurvival_info\t'+self.cancer+'\n' return stderr def biospecimen(self): ''' Downloading biopecimen information ''' stderr = '' for sub_folder,files in Biospecimen_INFO.items(): read_to_merge = [] for k, v in files.items(): meta, errors = self.getTableFromFiles(data_type=k) if errors == None: meta = meta[meta.columns.intersection(v)] non_info = pd.Index(v).difference(meta.columns) for c in non_info: meta[c] = np.nan meta.replace('[Not Available]', np.nan, inplace=True) meta.replace('[Not Applicable]', np.nan, inplace=True) meta.rename(columns=Biospecimen_MAP,inplace=True) ## header process if 'bcr_sample_barcode' in v: meta = meta.drop(0, axis=0) if k == 'sample': meta['sample'] = meta['sample'].map(lambda x: x[:-1]) meta = meta.drop_duplicates() meta['patient'] = meta['sample'].map(lambda x: '-'.join(x.split('-')[:3])) # elif 'hpv_status' in v: # meta = meta.drop(0,axis=0) # else: # meta = meta.drop([0,1],axis=0) ## additional info if k == 'slide': meta = meta.set_index('sample') meta = meta.apply(pd.to_numeric) meta = mergeToSample(meta,transpose=True) # if k == "patient" and self.cancer == 'BRCA': # pam50 = pd.read_table(PAM50_PATH, index_col=0).rename(columns={ # "PAM50 mRNA":'PAM50'})['PAM50'].to_frame() # meta = meta.merge(pam50, left_on='patient',right_index=True,how='left') read_to_merge.append(meta) else: stderr += 'Cannot Found\t'+sub_folder+'_'+k+'\t'+self.cancer+'\n' if len(read_to_merge) > 1: result = reduce(lambda x,y:pd.merge(x,y, how='outer',on='patient'),read_to_merge).drop_duplicates().dropna(axis=1,how='all') result = result.set_index('patient') elif len(read_to_merge) == 1: result = read_to_merge[0] else: continue ## Store tumor and normal info separatelly # if sub_folder == "histology": # for s in ['tumor','normal']: # sub_result = pick(result, source=s, transpose=True) # storeData(sub_result, # parental_dir=self.parental_dir, # sub_folder='/'.join([sub_folder,s]), cancer=self.cancer) # sub_folder += '/origin' storeData(result, parental_dir=self.parental_dir, sub_folder=sub_folder,cancer=self.cancer) return stderr def drug(self): ''' Downloading Drug information ''' stderr = '' df, errors = self.getTableFromFiles(data_type='drug') if errors == None: df = df.drop([0,1],axis=0) df = df.loc[:,df.columns.isin(list(DRUG_MAP.keys()))] df.rename(columns=DRUG_MAP,inplace=True) df = formatDrug(df) df.set_index('patient',inplace=True) storeData(df=df, parental_dir=self.parental_dir, sub_folder='Drug', cancer=self.cancer) else: stderr += 'Cannot Found\tDrug information for \t'+self.cancer+'\n' return stderr def drugDownload(self): if not os.path.isdir(self.parental_dir): os.makedirs(self.parental_dir) # asyn download download_log_file = '/'.join([self.parental_dir, 'drug_finish.log']) if os.path.isfile(download_log_file): with open(download_log_file, 'r') as f: content = f.readlines() content = [x.strip() for x in content] else: content = [] # begain download if not having been downloaded before if not self.cancer in content: with open('/'.join([self.parental_dir, 'drug_stderr.log']), 'a+') as stderrs: logs = self.drug() stderrs.write(logs) with open(download_log_file, 'a+') as f: f.write(self.cancer+'\n') def metaDownload(self): if not os.path.isdir(self.parental_dir): os.makedirs(self.parental_dir) # asyn download download_log_file = '/'.join([self.parental_dir, 'meta_finish.log']) if os.path.isfile(download_log_file): with open(download_log_file, 'r') as f: content = f.readlines() content = [x.strip() for x in content] else: content = [] # begain download if not having been downloaded before if not self.cancer in content: with open('/'.join([self.parental_dir, 'meta_stderr.log']), 'a+') as stderrs: for n in ['biospecimen']:#, 'clin']: logs = self.__getattribute__(n)() stderrs.write(logs) with open(download_log_file, 'a+') as f: f.write(self.cancer+'\n') class Workflow(object): __slot__ = ['cancer', 'parental_dir', 'workflow'] def __init__(self,cancer,parental_dir,workflow): self.cancer = cancer self.parental_dir = parental_dir self.workflow = workflow def run(self): if not os.path.isdir(self.parental_dir): os.makedirs(self.parental_dir) # asyn download download_log_file = '/'.join([self.parental_dir, 'finish.log']) if os.path.isfile(download_log_file): with open(download_log_file, 'r') as f: content = f.readlines() content = [x.strip() for x in content] else: content = [] # begain download if not having been downloaded before if not self.cancer in content: with open('/'.join([self.parental_dir, 'stderr.log']), 'a+') as stderrs: for n in self.workflow: logs = self.__getattribute__(n)() stderrs.write(logs) with open(download_log_file, 'a+') as f: f.write(self.cancer+'\n') class FireBrowseDnloader(Workflow): __slot__ = ['release_time'] def __init__(self, release_time="2016_01_28", base_url="http://gdac.broadinstitute.org/runs",**kwargs): super(FireBrowseDnloader, self).__init__(**kwargs) self.release_time = release_time self.base_url = base_url def _fget(self,data_type, store_dir): ''' Download level 3 data from FireBrowse Parameters ---------- cancer : str Cancer type included in TCGA project data_type : str Level 3 data type provided by FireBrowse store_dir : str Output directory base_url : str, optional URL prefix (the default is "http://gdac.broadinstitute.org/runs", which is the prefix provided by FireBrowse) release_time : str, optional Release version and this release recored by date. (the default is "2016_01_28", which is the latest available release for now.) Raises ------ KeyError if the input parameter is out of provided list. Returns ------- str Run messages. Return 'Success' if no error occurs. ''' # modifition to adapt CNV data on the function if data_type == 'cnv_gene_somatic': release_prefix = 'analyses' cancer_suffix = '-TP' if self.cancer == 'SKCM': cancer_suffix = '-TM' else: cancer_suffix = '' release_prefix = 'stddata' data_type_dict = { "rna_raw" : "Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data.Level_3", "rna_norm": "Merge_rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.Level_3", "rppa": "RPPA_AnnotateWithGene.Level_3", "cnv_gene_somatic": "CopyNumber_Gistic2.Level_4", "cnv_segment_somatic": "Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.Level_3", "cnv_segment_all": "Merge_snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.Level_3", } keep_suffix_dict = { "rna_raw": "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes__data.data.txt", "rppa" : "rppa.txt", "rna_norm": "rnaseqv2__illuminahiseq_rnaseqv2__unc_edu__Level_3__RSEM_genes_normalized__data.data.txt", "cnv_gene_somatic": "by_genes.txt", "cnv_segment_somatic": "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_minus_germline_cnv_hg19__seg.seg.txt", "cnv_segment_all": "snp__genome_wide_snp_6__broad_mit_edu__Level_3__segmented_scna_hg19__seg.seg.txt", } if not data_type in data_type_dict.keys(): raise KeyError(""" {0} is not a valid data type, only accept following input: {1} """.format(data_type,','.join(data_type_dict.keys()))) short_release_time = "".join(self.release_time.split('_')) release = release_prefix+"__{release_time}" sub_folder = "data/{cancer}/{short_release_time}" file_name = "gdac.broadinstitute.org_{cancer}.{data_type}.{short_release_time}00.0.0.tar.gz" url = "/".join([self.base_url, release, sub_folder, file_name]) url = url.format(**dict( cancer=self.cancer+cancer_suffix, data_type=data_type_dict[data_type], release_time=self.release_time, short_release_time=short_release_time, ) ) cmd =""" set -x [[ -d {store_dir}_{cancer}_{data_type}_tmp ]] || mkdir -p {store_dir}_{cancer}_{data_type}_tmp wget -q -O {store_dir}_{cancer}_{data_type}.gz {url} tar -xvvf {store_dir}_{cancer}_{data_type}.gz -C {store_dir}_{cancer}_{data_type}_tmp --strip-components=1 rm {store_dir}_{cancer}_{data_type}.gz if [ $(ls {store_dir}_{cancer}_{data_type}_tmp/*{keep_suffix}| wc -l) -gt 1 ];then [[ -d {store_dir}_{cancer} ]] || mkdir {store_dir}_{cancer} fi mv {store_dir}_{cancer}_{data_type}_tmp/*{keep_suffix} {store_dir}_{cancer} """.format(**dict( store_dir=store_dir, cancer=self.cancer, keep_suffix=keep_suffix_dict[data_type], url=url, data_type=data_type ) ) try: subprocess.run(cmd, shell=True,check=True) log = 'Success' except subprocess.CalledProcessError as e: cmd = """ set -x rm {store_dir}_{cancer}_{data_type}.gz rm -rf {store_dir}_{cancer}_{data_type}_tmp """.format(**dict( store_dir=store_dir, cancer=self.cancer, data_type=data_type ) ) subprocess.run(cmd, shell=True, check=True) return str(e.returncode) ## process data cmd = """ rm -rf {store_dir}_{cancer}_{data_type}_tmp """.format(**dict( store_dir=store_dir, cancer=self.cancer, data_type=data_type ) ) subprocess.run(cmd,shell=True,check=True) return log def _splitCountTPM(self, raw_rnaseq_path): ''' Split one data frame with both count and scaled_estiamte into two data frames and merge the sample level data frame into pateint level data frame, but keep separating tumor and normal samples. Then, based on the scaled_estimate column, calculate TPM and RPKM information. Parameters ---------- raw_rnaseq_path : str Path to raw rnaseq data download from FireBrowse Returns ------- Dict A dict that contains three pandas.DataFrame, which are raw count, TPM and RPKM. All of those data frame are index by both Entrez ID and gene symbol and colum named by four digits TCGA barcode. ''' df = pd.read_table(raw_rnaseq_path, index_col=0,skiprows=[1]) col_selector = pd.read_table(raw_rnaseq_path, index_col=0, nrows=2) raw_count = df.loc[:, col_selector.iloc[0, :] =='raw_count'] raw_count = mergeToSample(raw_count) raw_count = round(raw_count) ## Get fpkm and tpm information from transcript fractions transcipt_fraction = df.loc[:,col_selector.iloc[0, :] == 'scaled_estimate'] tpm = transcipt_fraction * 10e6 normalize_factor = transcipt_fraction.sum(axis=0) fpkm = transcipt_fraction * normalize_factor * 10e9 tpm = mergeToSample(tpm) fpkm = mergeToSample(fpkm) return dict(count=raw_count,tpm=tpm,fpkm=fpkm) def _formatGistic(self, gistic_path): ''' Formating GISTIC results and sepratate files into segment and gene level Parameters ---------- gistic_path : str Path to the folder of gistic output Returns ------- dict Dictionary with files output name as key and pandas.DataFrame as value ''' f_dict = { "broad_focal": '{}/all_data_by_genes.txt', "focal": '{}/focal_data_by_genes.txt', "threds": '{}/all_thresholded.by_genes.txt' } result = {} for k, v in f_dict.items(): if os.path.isfile(v.format(gistic_path)): result[k] = pd.read_table(v.format(gistic_path),index_col=0).drop(['Locus ID', 'Cytoband'],axis=1) return result def rnaseq(self): ''' Workflow for downloading RNAseq data from FireBrowse and preprocessing data format. Parameters ---------- parental_dir : str Path to parental folder that you want to store the whole RNAseq data cancer : str Cancer name you want to download from FireBrowse, it must be a cancer type included in TCGA project. ''' ########################## Raw count and Scale Estimate ########################## # 1. Fetch raw count and RSEM information from FireBrowse # 2. Split fetched data frame into raw count and RSEM separatly. # 3. Merge sample level data into pateint level data, but still separate tumor and normal sample. # 4. Calculate TPM and RPKM based on RSEM results. ################################################################################## store_dir = '/'.join([self.parental_dir, 'RNASeq']) store_dir_raw = '_'.join([store_dir, 'raw']) store_dir_norm = '_'.join([store_dir, 'norm']) log = self._fget(data_type='rna_raw',store_dir=store_dir_raw) if log != 'Success': return 'Cannot Found\trna_raw\t'+self.cancer+'\n' raw_rnaseq = self._splitCountTPM( raw_rnaseq_path='_'.join([store_dir_raw, self.cancer]) ) for name, df in raw_rnaseq.items(): df = rmEntrez(df) if name in ['fpkm','tpm']: log_df = np.log2( 1+ df ) tumor_zscore = calTNzcore(log_df, pair_TN=False) storeData(df=tumor_zscore, parental_dir=store_dir, sub_folder=name+'/zscore_tumor/', cancer=self.cancer) try: paired_zscore = calTNzcore(log_df, pair_TN=True) storeData(df=paired_zscore, parental_dir=store_dir, sub_folder=name+'/zscore_paired/', cancer=self.cancer) except ValueError: pass name += '/origin' storeData(df = df, parental_dir = store_dir, sub_folder=name, cancer=self.cancer) subprocess.call( 'rm -rf {}'.format('_'.join([store_dir_raw, self.cancer])), shell=True) ########################## Raw count and Scale Estimate ########################## # 1. Fetch normalized count from FireBrowse # 2. remove the second row, which only indicate the normalized count # 3. Merge sample level data into pateint level data, but still separate tumor and normal sample. ################################################################################## log = self._fget(data_type='rna_norm',store_dir=store_dir_norm) if log != 'Success': return 'Cannot Found\trna_norm\t'+self.cancer+'\n' rnaseq_norm = pd.read_table( '_'.join([store_dir_norm, self.cancer]), index_col=0, skiprows=[1]) rnaseq_norm = mergeToSample(rnaseq_norm) rnaseq_norm = rmEntrez(rnaseq_norm) storeData(df=rnaseq_norm, parental_dir=store_dir, sub_folder='norm_count/origin', cancer=self.cancer) subprocess.call( 'rm -rf {}'.format('_'.join([store_dir_norm, self.cancer])), shell=True) return '' def cnv(self): ''' Workflow for downloading copy number variation data from FireBrowse and preprocessing data format. Parameters ---------- parental_dir : str Path to parental folder that you want to store the whole copy number variation data cancer : str Cancer name you want to download from FireBrowse, it must be a cancer type included in TCGA project. ''' ## Gene store_dir = '/'.join([self.parental_dir, 'CNV/somatic', 'gene']) log = self._fget( data_type='cnv_gene_somatic',store_dir=store_dir) if log != 'Success': return 'Cannot Found\tcnv_gene_somatic\t'+self.cancer+'\n' cnv_gene = self._formatGistic( gistic_path='_'.join([store_dir, self.cancer])) for name, df in cnv_gene.items(): df = mergeToSample(df) storeData(df=df, parental_dir=store_dir, sub_folder=name, cancer=self.cancer) subprocess.call( 'rm -rf {}'.format('_'.join([store_dir, self.cancer])), shell=True) ## Segment for lv in ['somatic','all']: store_dir = '/'.join([self.parental_dir, 'CNV/'+lv, 'segment']) log = self._fget(data_type='cnv_segment_'+lv, store_dir=store_dir) if log != 'Success': return 'Cannot Found\t' + 'cnv_segment_'+lv+'\t'+self.cancer+'\n' if not os.path.exists(store_dir): os.makedirs(store_dir) subprocess.call( 'mv {0} {1}'.format('_'.join([store_dir, self.cancer]), '/'.join([store_dir, self.cancer]) ), shell=True) return '' def rppa(self): ''' Workflow for downloading RPPA data from FireBrowse and preprocessing data format. Parameters ---------- parental_dir : str Path to parental folder that you want to store the whole RPPA data cancer : str Cancer name you want to download from FireBrowse, it must be a cancer type included in TCGA project. ''' store_dir = '/'.join([self.parental_dir, 'RPPA']) log=self._fget(data_type='rppa',store_dir=store_dir) if log != 'Success': return 'Cannot Found\trppa\t'+self.cancer+'\n' rppa = pd.read_table( '_'.join([store_dir,self.cancer]), index_col=0) rppa = rmEntrez(rppa) rppa = mergeToSample(rppa) storeData(df=rppa, parental_dir=store_dir, sub_folder='', cancer=self.cancer) subprocess.call( 'rm -rf {}'.format('_'.join([store_dir, self.cancer])), shell=True) return '' def snv(self): ''' Please use MC3 downloader to fetch the SNV result for all cancer in TCGA, which is more robust. ''' return 'GO TO MC3\tsnv\t'+self.cancer+'\n' class GdcDnloader(GdcApi, Workflow): __slot__ = ['type_available', 'base_url'] def __init__(self, base_url="https://gdc.xenahubs.net/download/",**kwargs): Workflow.__init__(self,**kwargs) GdcApi.__init__(self, cancer=self.cancer,parental_dir=self.parental_dir) # super(GdcDnloader, self).__init__(data_endpt="https://api.gdc.cancer.gov/data",files_endpt="https://api.gdc.cancer.gov/files",**kwargs) # data-release-80 self.base_url = base_url self.type_available = { 'RNASeq': ['fpkm','count','fpkm_uq'], 'SNV': ['MuSE', "MuTect2", "VarScan2", "SomaticSniper"], 'cnv': ['somatic','all'] } def _fget(self, data_type, store_dir): '''Download level 3 data from Xenas Parameters ---------- data_type : str Data type to be downloaded store_dir : str Path to store the data Raises ------ KeyError If cannot fetching the files Returns ------- str Tell if the downloading is successful or not ''' data_type_dict = { 'fpkm': "htseq_fpkm", 'count':"htseq_counts", 'fpkm_uq': "htseq_fpkm-uq", 'muse': "muse_snv", "mutect2": "mutect2_snv", "VarScan2": "varscan2_snv", "SomaticSnipe":"somaticsniper_snv", } if not data_type in data_type_dict.keys(): raise KeyError(""" {0} is not a valid data type, only accept following input: {1} """.format(data_type, ','.join(data_type_dict.keys()))) # https: // gdc.xenahubs.net/download/TCGA-CHOL/Xena_Matrices/TCGA-CHOL.htseq_fpkm.tsv.gz subpath = 'TCGA-{cancer}/Xena_Matrices/TCGA-{cancer}.{data_type}.tsv.gz' url = "/".join([self.base_url, subpath]) url = url.format(**dict( cancer=self.cancer, data_type=data_type_dict[data_type] ) ) cmd = """ set -x [[ -d {store_dir} ]] || mkdir -p {store_dir} wget -q -O {store_dir}/{cancer}.gz {url} """.format(**dict( store_dir=store_dir, cancer=self.cancer, url=url, ) ) try: subprocess.run(cmd, shell=True, check=True) log = 'Success' cmd = "set -x; gunzip {store_dir}/{cancer}.gz".format(**dict(store_dir=store_dir, cancer=self.cancer)) except subprocess.CalledProcessError as e: log = str(e.returncode) cmd = "set -x; rm {store_dir}/{cancer}.gz".format(**dict(store_dir=store_dir, cancer=self.cancer)) subprocess.run(cmd, shell=True, check=True) return log def rnaseq(self): store_parental = '/'.join([self.parental_dir, 'RNASeq']) for name in self.type_available['RNASeq']: store_dir = '/'.join([store_parental, name]) log = self._fget(data_type=name, store_dir=store_dir) if log != 'Success': return 'Cannot Found\t' + name+'\t'+self.cancer+'\n' df = pd.read_table('/'.join([store_dir,self.cancer]),index_col=0) df = np.exp2(df) - 1 # since all matrix download from xenas have been log transformed df = mergeToSample(df) df = mapEm2Gene(df) if name == 'fpkm': tpm = tpmToFpkm(df, reverse=True) for raw_name,raw_df in {'tpm':tpm,'fpkm':df}.items(): log_df = np.log2(1 + raw_df) tumor_zscore = calTNzcore(log_df, pair_TN=False) storeData(df=tumor_zscore, parental_dir=store_parental, sub_folder=raw_name+'/zscore_tumor/', cancer=self.cancer) try: paired_zscore = calTNzcore(log_df, pair_TN=True) storeData(df=paired_zscore, parental_dir=store_parental, sub_folder=raw_name+'/zscore_paired/', cancer=self.cancer) except ValueError: pass storeData(df=raw_df, parental_dir=store_parental, sub_folder=raw_name+'/origin', cancer=self.cancer) else: if name == 'count': df = df.round(0) storeData(df=df, parental_dir=store_parental, sub_folder=name+'/origin', cancer=self.cancer) subprocess.call( 'rm -rf {}'.format('/'.join([store_dir, self.cancer])), shell=True) return '' def snv(self): for m in self.type_available['SNV']: df, errors = self.getTableFromFiles( data_type='masked_somatic_mutation', by_name=False,method=m,comment='#') if errors != None: return 'Cannot Found\t'+m+'\t'+self.cancer+'\n' else: # df.rename(columns={"Hugo_Symbol":"gene"},inplace=True) # df.insert(0, 'sample', df["Tumor_Sample_Barcode"].map( # lambda x: '-'.join(x.split('-')[:4])[:-1])) store_parental = '/'.join([self.parental_dir, 'SNV']) storeData(df=df, parental_dir=store_parental, sub_folder=m, cancer=self.cancer) return '' def cnv(self): store_parental = '/'.join([self.parental_dir, 'CNV']) # meta data ## map uuid to barcode meta, errors = self.getTableFromFiles(data_type='aliquot') if errors != None: return 'Cannot Found\tuuid map barcode\t'+self.cancer+'\n' meta = meta.dropna( axis=0).set_index('bcr_aliquot_uuid') meta.index = meta.index.map(lambda x: x.lower()) meta = meta['bcr_sample_barcode'].to_dict() stderr = '' # focal data df,errors = self.getTableFromFiles(data_type='gistic') if errors == None: df = df.set_index('Gene Symbol').drop(['Gene ID', 'Cytoband'],axis=1) df.columns = df.columns.map(meta) df = mergeToSample(df) df = mapEm2Gene(df) storeData(df=df, parental_dir=store_parental, sub_folder='somatic/gene/focal', cancer=self.cancer) else: stderr += 'Cannot Found\tgistic\t'+self.cancer+'\n' # Segment data ## somatic df, errors = self.getTableFromFiles(data_type='cnv_segment_somatic', by_name=False) if errors == None: df['GDC_Aliquot'] = df['GDC_Aliquot'].map(meta) storeData(df=df, parental_dir=store_parental, sub_folder='somatic/segment', cancer=self.cancer,index=False) else: stderr += 'Cannot Found\tcnv_segment_somatic\t'+self.cancer+'\n' # all df, errors = self.getTableFromFiles(data_type='cnv_segment_all', by_name=False) if errors == None: df['GDC_Aliquot'] = df['GDC_Aliquot'].map(meta) storeData(df=df, parental_dir=store_parental, sub_folder='all/segment', cancer=self.cancer, index=False) else: stderr += 'Cannot Found\tcnv_segment_all\t'+self.cancer +'\n' return stderr def rppa(self): # RPPA data for hg38 is not available. return 'Not Available\trppa\t'+self.cancer + '\n' ```
{ "source": "jingxiufenghua/rec-model", "score": 3 }
#### File: rec-model/AFM/model.py ```python import itertools import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Embedding, Dropout, Dense, Dropout, Input class AFM(Model): def __init__(self, feature_columns, mode, att_vector=8, activation='relu', dropout=0.5, embed_reg=1e-6): """ AFM :param feature_columns: A list. sparse column feature information. :param mode: A string. 'max'(MAX Pooling) or 'avg'(Average Pooling) or 'att'(Attention) :param att_vector: A scalar. attention vector. :param activation: A string. Activation function of attention. :param dropout: A scalar. Dropout. :param embed_reg: A scalar. the regularizer of embedding """ super(AFM, self).__init__() self.sparse_feature_columns = feature_columns self.mode = mode self.embed_layers = { 'embed_' + str(i): Embedding(input_dim=feat['feat_num'], input_length=1, output_dim=feat['embed_dim'], embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) for i, feat in enumerate(self.sparse_feature_columns) } if self.mode == 'att': self.attention_W = Dense(units=att_vector, activation=activation, use_bias=True) self.attention_dense = Dense(units=1, activation=None) self.dropout = Dropout(dropout) self.dense = Dense(units=1, activation=None) def call(self, inputs): # Input Layer sparse_inputs = inputs # Embedding Layer embed = [self.embed_layers['embed_{}'.format(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])] embed = tf.transpose(tf.convert_to_tensor(embed), perm=[1, 0, 2]) # (None, len(sparse_inputs), embed_dim) # Pair-wise Interaction Layer row = [] col = [] for r, c in itertools.combinations(range(len(self.sparse_feature_columns)), 2): row.append(r) col.append(c) p = tf.gather(embed, row, axis=1) # (None, (len(sparse) * len(sparse) - 1) / 2, k) q = tf.gather(embed, col, axis=1) # (None, (len(sparse) * len(sparse) - 1) / 2, k) bi_interaction = p * q # (None, (len(sparse) * len(sparse) - 1) / 2, k) # mode if self.mode == 'max': # MaxPooling Layer x = tf.reduce_sum(bi_interaction, axis=1) # (None, k) elif self.mode == 'avg': # AvgPooling Layer x = tf.reduce_mean(bi_interaction, axis=1) # (None, k) else: # Attention Layer x = self.attention(bi_interaction) # (None, k) # Output Layer outputs = tf.nn.sigmoid(self.dense(x)) return outputs def summary(self): sparse_inputs = Input(shape=(len(self.sparse_feature_columns),), dtype=tf.int32) Model(inputs=sparse_inputs, outputs=self.call(sparse_inputs)).summary() def attention(self, bi_interaction): a = self.attention_W(bi_interaction) # (None, (len(sparse) * len(sparse) - 1) / 2, t) a = self.attention_dense(a) # (None, (len(sparse) * len(sparse) - 1) / 2, 1) a_score = tf.nn.softmax(a, axis=1) # (None, (len(sparse) * len(sparse) - 1) / 2, 1) outputs = tf.reduce_sum(bi_interaction * a_score, axis=1) # (None, embed_dim) return outputs ``` #### File: rec-model/AttRec/model.py ```python import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Embedding, Input from tensorflow.keras.regularizers import l2 from modules import * class AttRec(Model): def __init__(self, feature_columns, maxlen=40, mode='inner', gamma=0.5, w=0.5, embed_reg=1e-6, **kwargs): """ AttRec :param feature_columns: A feature columns list. user + seq :param maxlen: A scalar. In the paper, maxlen is L, the number of latest items. :param gamma: A scalar. if mode == 'dist', gamma is the margin. :param mode: A string. inner or dist. :param w: A scalar. The weight of short interest. :param embed_reg: A scalar. The regularizer of embedding. """ super(AttRec, self).__init__(**kwargs) # maxlen self.maxlen = maxlen # w self.w = w self.gamma = gamma self.mode = mode # feature columns self.user_fea_col, self.item_fea_col = feature_columns # embed_dim self.embed_dim = self.item_fea_col['embed_dim'] # user embedding self.user_embedding = Embedding(input_dim=self.user_fea_col['feat_num'], input_length=1, output_dim=self.user_fea_col['embed_dim'], mask_zero=False, embeddings_initializer='random_normal', embeddings_regularizer=l2(embed_reg)) # item embedding self.item_embedding = Embedding(input_dim=self.item_fea_col['feat_num'], input_length=1, output_dim=self.item_fea_col['embed_dim'], mask_zero=True, embeddings_initializer='random_normal', embeddings_regularizer=l2(embed_reg)) # item2 embedding, not share embedding self.item2_embedding = Embedding(input_dim=self.item_fea_col['feat_num'], input_length=1, output_dim=self.item_fea_col['embed_dim'], mask_zero=True, embeddings_initializer='random_normal', embeddings_regularizer=l2(embed_reg)) # self-attention self.self_attention = SelfAttention_Layer() def call(self, inputs, **kwargs): # input user_inputs, seq_inputs, pos_inputs, neg_inputs = inputs # mask # mask = self.item_embedding.compute_mask(seq_inputs) mask = tf.cast(tf.not_equal(seq_inputs, 0), dtype=tf.float32) # (None, maxlen) # user info user_embed = self.user_embedding(tf.squeeze(user_inputs, axis=-1)) # (None, dim) # seq info seq_embed = self.item_embedding(seq_inputs) # (None, maxlen, dim) # item pos_embed = self.item_embedding(tf.squeeze(pos_inputs, axis=-1)) # (None, dim) neg_embed = self.item_embedding(tf.squeeze(neg_inputs, axis=-1)) # (None, dim) # item2 embed pos_embed2 = self.item2_embedding(tf.squeeze(pos_inputs, axis=-1)) # (None, dim) neg_embed2 = self.item2_embedding(tf.squeeze(neg_inputs, axis=-1)) # (None, dim) # short-term interest short_interest = self.self_attention([seq_embed, seq_embed, seq_embed, mask]) # (None, dim) # mode if self.mode == 'inner': # long-term interest, pos and neg pos_long_interest = tf.multiply(user_embed, pos_embed2) neg_long_interest = tf.multiply(user_embed, neg_embed2) # combine pos_scores = self.w * tf.reduce_sum(pos_long_interest, axis=-1, keepdims=True) \ + (1 - self.w) * tf.reduce_sum(tf.multiply(short_interest, pos_embed), axis=-1, keepdims=True) neg_scores = self.w * tf.reduce_sum(neg_long_interest, axis=-1, keepdims=True) \ + (1 - self.w) * tf.reduce_sum(tf.multiply(short_interest, neg_embed), axis=-1, keepdims=True) self.add_loss(tf.reduce_mean(-tf.math.log(tf.nn.sigmoid(pos_scores - neg_scores)))) else: # clip by norm user_embed = tf.clip_by_norm(user_embed, 1, -1) pos_embed = tf.clip_by_norm(pos_embed, 1, -1) neg_embed = tf.clip_by_norm(neg_embed, 1, -1) pos_embed2 = tf.clip_by_norm(pos_embed2, 1, -1) neg_embed2 = tf.clip_by_norm(neg_embed2, 1, -1) # distance # long-term interest, pos and neg pos_long_interest = tf.square(user_embed - pos_embed2) # (None, dim) neg_long_interest = tf.square(user_embed - neg_embed2) # (None, dim) # combine. Here is a difference from the original paper. pos_scores = self.w * tf.reduce_sum(pos_long_interest, axis=-1, keepdims=True) + \ (1 - self.w) * tf.reduce_sum(tf.square(short_interest - pos_embed), axis=-1, keepdims=True) neg_scores = self.w * tf.reduce_sum(neg_long_interest, axis=-1, keepdims=True) + \ (1 - self.w) * tf.reduce_sum(tf.square(short_interest - neg_embed), axis=-1, keepdims=True) # minimize loss # self.add_loss(tf.reduce_sum(tf.maximum(pos_scores - neg_scores + self.gamma, 0))) self.add_loss(tf.reduce_sum(tf.nn.relu(pos_scores - neg_scores + self.gamma))) return pos_scores, neg_scores def summary(self): seq_inputs = Input(shape=(self.maxlen,), dtype=tf.int32) user_inputs = Input(shape=(1, ), dtype=tf.int32) pos_inputs = Input(shape=(1, ), dtype=tf.int32) neg_inputs = Input(shape=(1, ), dtype=tf.int32) Model(inputs=[user_inputs, seq_inputs, pos_inputs, neg_inputs], outputs=self.call([user_inputs, seq_inputs, pos_inputs, neg_inputs])).summary() def test_model(): user_features = {'feat': 'user_id', 'feat_num': 100, 'embed_dim': 8} seq_features = {'feat': 'item_id', 'feat_num': 100, 'embed_dim': 8} features = [user_features, seq_features] model = AttRec(features, mode='dist') model.summary() # test_model() ``` #### File: rec-model/BPR/model.py ```python import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.layers import Embedding, Input from tensorflow.keras.regularizers import l2 class BPR(Model): def __init__(self, feature_columns, mode='inner', embed_reg=1e-6): """ BPR :param feature_columns: A list. user feature columns + item feature columns :mode: A string. 'inner' or 'dist'. :param embed_reg: A scalar. The regularizer of embedding. """ super(BPR, self).__init__() # feature columns self.user_fea_col, self.item_fea_col = feature_columns # mode self.mode = mode # user embedding self.user_embedding = Embedding(input_dim=self.user_fea_col['feat_num'], input_length=1, output_dim=self.user_fea_col['embed_dim'], mask_zero=False, embeddings_initializer='random_normal', embeddings_regularizer=l2(embed_reg)) # item embedding self.item_embedding = Embedding(input_dim=self.item_fea_col['feat_num'], input_length=1, output_dim=self.item_fea_col['embed_dim'], mask_zero=True, embeddings_initializer='random_normal', embeddings_regularizer=l2(embed_reg)) def call(self, inputs): user_inputs, pos_inputs, neg_inputs = inputs # (None, 1), (None, 1) # user info user_embed = self.user_embedding(user_inputs) # (None, 1, dim) # item pos_embed = self.item_embedding(pos_inputs) # (None, 1, dim) neg_embed = self.item_embedding(neg_inputs) # (None, 1, dim) if self.mode == 'inner': # calculate positive item scores and negative item scores pos_scores = tf.reduce_sum(tf.multiply(user_embed, pos_embed), axis=-1) # (None, 1) neg_scores = tf.reduce_sum(tf.multiply(user_embed, neg_embed), axis=-1) # (None, 1) # add loss. Computes softplus: log(exp(features) + 1) # self.add_loss(tf.reduce_mean(tf.math.softplus(neg_scores - pos_scores))) self.add_loss(tf.reduce_mean(-tf.math.log(tf.nn.sigmoid(pos_scores - neg_scores)))) else: # clip by norm # user_embed = tf.clip_by_norm(user_embed, 1, -1) # pos_embed = tf.clip_by_norm(pos_embed, 1, -1) # neg_embed = tf.clip_by_norm(neg_embed, 1, -1) pos_scores = tf.reduce_sum(tf.square(user_embed - pos_embed), axis=-1) neg_scores = tf.reduce_sum(tf.square(user_embed - neg_embed), axis=-1) self.add_loss(tf.reduce_sum(tf.nn.relu(pos_scores - neg_scores + 0.5))) logits = tf.concat([pos_scores, neg_scores], axis=-1) return logits def summary(self): user_inputs = Input(shape=(1, ), dtype=tf.int32) pos_inputs = Input(shape=(1, ), dtype=tf.int32) neg_inputs = Input(shape=(1, ), dtype=tf.int32) Model(inputs=[user_inputs, pos_inputs, neg_inputs], outputs=self.call([user_inputs, pos_inputs, neg_inputs])).summary() def test_model(): user_features = {'feat': 'user_id', 'feat_num': 100, 'embed_dim': 8} item_features = {'feat': 'item_id', 'feat_num': 100, 'embed_dim': 8} features = [user_features, item_features] model = BPR(features) model.summary() # test_model() ``` #### File: rec-model/Caser/utils.py ```python import pandas as pd import numpy as np import random from tqdm import tqdm from tensorflow.keras.preprocessing.sequence import pad_sequences def sparseFeature(feat, feat_num, embed_dim=4): """ create dictionary for sparse feature :param feat: feature name :param feat_num: the total number of sparse features that do not repeat :param embed_dim: embedding dimension :return: """ return {'feat': feat, 'feat_num': feat_num, 'embed_dim': embed_dim} def create_implicit_ml_1m_dataset(file, trans_score=2, embed_dim=8, maxlen=40): """ :param file: A string. dataset path. :param trans_score: A scalar. Greater than it is 1, and less than it is 0. :param embed_dim: A scalar. latent factor. :param maxlen: A scalar. maxlen. :return: user_num, item_num, train_df, test_df """ print('==========Data Preprocess Start=============') data_df = pd.read_csv(file, sep="::", engine='python', names=['user_id', 'item_id', 'label', 'Timestamp']) # implicit dataset data_df = data_df[data_df.label >= trans_score] # sort data_df = data_df.sort_values(by=['user_id', 'Timestamp']) train_data, val_data, test_data = [], [], [] item_id_max = data_df['item_id'].max() for user_id, df in tqdm(data_df[['user_id', 'item_id']].groupby('user_id')): pos_list = df['item_id'].tolist() def gen_neg(): neg = pos_list[0] while neg in pos_list: neg = random.randint(1, item_id_max) return neg neg_list = [gen_neg() for i in range(len(pos_list) + 100)] for i in range(1, len(pos_list)): hist_i = pos_list[:i] if i == len(pos_list) - 1: test_data.append([user_id, hist_i, pos_list[i], 1]) for neg in neg_list[i:]: test_data.append([user_id, hist_i, neg, 0]) elif i == len(pos_list) - 2: val_data.append([user_id, hist_i, pos_list[i], 1]) val_data.append([user_id, hist_i, neg_list[i], 0]) else: train_data.append([user_id, hist_i, pos_list[i], 1]) train_data.append([user_id, hist_i, neg_list[i], 0]) # item feature columns user_num, item_num = data_df['user_id'].max() + 1, data_df['item_id'].max() + 1 feature_columns = [sparseFeature('user_id', user_num, embed_dim), sparseFeature('item_id', item_num, embed_dim)] # shuffle random.shuffle(train_data) random.shuffle(val_data) # random.shuffle(test_data) # create dataframe train = pd.DataFrame(train_data, columns=['user_id', 'hist', 'target_item', 'label']) val = pd.DataFrame(val_data, columns=['user_id', 'hist', 'target_item', 'label']) test = pd.DataFrame(test_data, columns=['user_id', 'hist', 'target_item', 'label']) print('==================Padding===================') train_X = [train['user_id'].values, pad_sequences(train['hist'], maxlen=maxlen), train['target_item'].values] train_y = train['label'].values val_X = [val['user_id'].values, pad_sequences(val['hist'], maxlen=maxlen), val['target_item'].values] val_y = val['label'].values test_X = [test['user_id'].values, pad_sequences(test['hist'], maxlen=maxlen), test['target_item'].values] test_y = test['label'].values.tolist() print('============Data Preprocess End=============') return feature_columns, (train_X, train_y), (val_X, val_y), (test_X, test_y) # create_implicit_ml_1m_dataset('../dataset/ml-1m/ratings.dat') ``` #### File: rec-model/data_process/utils.py ```python def sparseFeature(feat, feat_num, embed_dim=4): """ create dictionary for sparse feature :param feat: feature name :param feat_num: the total number of sparse features that do not repeat :param embed_dim: embedding dimension :return: """ return {'feat_name': feat, 'feat_num': feat_num, 'embed_dim': embed_dim} def denseFeature(feat): """ create dictionary for dense feature :param feat: dense feature name :return: """ return {'feat_name': feat} ``` #### File: rec-model/Deep_Crossing/model.py ```python import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Embedding, Dense, Dropout, Input from modules import Residual_Units class Deep_Crossing(Model): def __init__(self, feature_columns, hidden_units, res_dropout=0., embed_reg=1e-6): """ Deep&Crossing :param feature_columns: A list. sparse column feature information. :param hidden_units: A list. Neural network hidden units. :param res_dropout: A scalar. Dropout of resnet. :param embed_reg: A scalar. The regularizer of embedding. """ super(Deep_Crossing, self).__init__() self.sparse_feature_columns = feature_columns self.embed_layers = { 'embed_' + str(i): Embedding(input_dim=feat['feat_num'], input_length=1, output_dim=feat['embed_dim'], embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) for i, feat in enumerate(self.sparse_feature_columns) } # the total length of embedding layers embed_layers_len = sum([feat['embed_dim'] for feat in self.sparse_feature_columns]) self.res_network = [Residual_Units(unit, embed_layers_len) for unit in hidden_units] self.res_dropout = Dropout(res_dropout) self.dense = Dense(1, activation=None) def call(self, inputs): sparse_inputs = inputs sparse_embed = tf.concat([self.embed_layers['embed_{}'.format(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])], axis=-1) r = sparse_embed for res in self.res_network: r = res(r) r = self.res_dropout(r) outputs = tf.nn.sigmoid(self.dense(r)) return outputs def summary(self): sparse_inputs = Input(shape=(len(self.sparse_feature_columns),), dtype=tf.int32) Model(inputs=sparse_inputs, outputs=self.call(sparse_inputs)).summary() ``` #### File: rec-model/DeepFM/modules.py ```python import tensorflow as tf from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Dropout, Dense, Layer class FM(Layer): """ Wide part """ def __init__(self, feature_length, w_reg=1e-6): """ Factorization Machine In DeepFM, only the first order feature and second order feature intersect are included. :param feature_length: A scalar. The length of features. :param w_reg: A scalar. The regularization coefficient of parameter w. """ super(FM, self).__init__() self.feature_length = feature_length self.w_reg = w_reg def build(self, input_shape): self.w = self.add_weight(name='w', shape=(self.feature_length, 1), initializer='random_normal', regularizer=l2(self.w_reg), trainable=True) def call(self, inputs, **kwargs): """ :param inputs: A dict with shape `(batch_size, {'sparse_inputs', 'embed_inputs'})`: sparse_inputs is 2D tensor with shape `(batch_size, sum(field_num))` embed_inputs is 3D tensor with shape `(batch_size, fields, embed_dim)` """ sparse_inputs, embed_inputs = inputs['sparse_inputs'], inputs['embed_inputs'] # first order first_order = tf.reduce_sum(tf.nn.embedding_lookup(self.w, sparse_inputs), axis=1) # (batch_size, 1) # second order square_sum = tf.square(tf.reduce_sum(embed_inputs, axis=1, keepdims=True)) # (batch_size, 1, embed_dim) sum_square = tf.reduce_sum(tf.square(embed_inputs), axis=1, keepdims=True) # (batch_size, 1, embed_dim) second_order = 0.5 * tf.reduce_sum(square_sum - sum_square, axis=2) # (batch_size, 1) return first_order + second_order class DNN(Layer): """ Deep part """ def __init__(self, hidden_units, activation='relu', dnn_dropout=0.): """ DNN part :param hidden_units: A list like `[unit1, unit2,...,]`. List of hidden layer units's numbers :param activation: A string. Activation function. :param dnn_dropout: A scalar. dropout number. """ super(DNN, self).__init__() self.dnn_network = [Dense(units=unit, activation=activation) for unit in hidden_units] self.dropout = Dropout(dnn_dropout) def call(self, inputs, **kwargs): x = inputs for dnn in self.dnn_network: x = dnn(x) x = self.dropout(x) return x ``` #### File: DIN/preprocess/1_convert_pd.py ```python import pickle import pandas as pd def to_df(file_path): """ 转化为DataFrame结构 :param file_path: 文件路径 :return: """ with open(file_path, 'r') as fin: df = {} i = 0 for line in fin: df[i] = eval(line) i += 1 df = pd.DataFrame.from_dict(df, orient='index') return df reviews_df = to_df('../raw_data/reviews_Electronics_5.json') # 改变列的顺序 # reviews2_df = pd.read_json('../raw_data/reviews_Electronics_5.json', lines=True) with open('../raw_data/reviews.pkl', 'wb') as f: pickle.dump(reviews_df, f, pickle.HIGHEST_PROTOCOL) meta_df = to_df('../raw_data/meta_Electronics.json') meta_df = meta_df[meta_df['asin'].isin(reviews_df['asin'].unique())] meta_df = meta_df.reset_index(drop=True) with open('../raw_data/meta.pkl', 'wb') as f: pickle.dump(meta_df, f, pickle.HIGHEST_PROTOCOL) ``` #### File: rec-model/PNN/model.py ```python import tensorflow as tf from tensorflow.keras import Model from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Embedding, Dense, Layer, Dropout, Input from modules import DNN class PNN(Model): def __init__(self, feature_columns, hidden_units, mode='in', dnn_dropout=0., activation='relu', embed_reg=1e-6, w_z_reg=1e-6, w_p_reg=1e-6, l_b_reg=1e-6): """ Product-based Neural Networks :param feature_columns: A list. sparse column feature information. :param hidden_units: A list. Neural network hidden units. :param mode: A string. 'in' IPNN or 'out'OPNN. :param activation: A string. Activation function of dnn. :param dnn_dropout: A scalar. Dropout of dnn. :param embed_reg: A scalar. The regularizer of embedding. :param w_z_reg: A scalar. The regularizer of w_z_ in product layer :param w_p_reg: A scalar. The regularizer of w_p in product layer :param l_b_reg: A scalar. The regularizer of l_b in product layer """ super(PNN, self).__init__() # inner product or outer product self.mode = mode self.sparse_feature_columns = feature_columns # the number of feature fields self.field_num = len(self.sparse_feature_columns) self.embed_dim = self.sparse_feature_columns[0]['embed_dim'] # The embedding dimension of each feature field must be the same self.embed_layers = { 'embed_' + str(i): Embedding(input_dim=feat['feat_num'], input_length=1, output_dim=feat['embed_dim'], embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) for i, feat in enumerate(self.sparse_feature_columns) } # parameters self.w_z = self.add_weight(name='w_z', shape=(self.field_num, self.embed_dim, hidden_units[0]), initializer='random_uniform', regularizer=l2(w_z_reg), trainable=True ) if mode == 'in': self.w_p = self.add_weight(name='w_p', shape=(self.field_num * (self.field_num - 1) // 2, self.embed_dim, hidden_units[0]), initializer='random_uniform', reguarizer=l2(w_p_reg), trainable=True) # out else: self.w_p = self.add_weight(name='w_p', shape=(self.field_num * (self.field_num - 1) // 2, self.embed_dim, self.embed_dim, hidden_units[0]), initializer='random_uniform', regularizer=l2(w_p_reg), trainable=True) self.l_b = self.add_weight(name='l_b', shape=(hidden_units[0], ), initializer='random_uniform', regularizer=l2(l_b_reg), trainable=True) # dnn self.dnn_network = DNN(hidden_units[1:], activation, dnn_dropout) self.dense_final = Dense(1) def call(self, inputs): sparse_inputs = inputs sparse_embed = [self.embed_layers['embed_{}'.format(i)](sparse_inputs[:, i]) for i in range(sparse_inputs.shape[1])] sparse_embed = tf.transpose(tf.convert_to_tensor(sparse_embed), [1, 0, 2]) # (None, field_num, embed_dim) # product layer row = [] col = [] for i in range(len(self.sparse_feature_columns) - 1): for j in range(i + 1, len(self.sparse_feature_columns)): row.append(i) col.append(j) p = tf.gather(sparse_embed, row, axis=1) q = tf.gather(sparse_embed, col, axis=1) if self.mode == 'in': l_p = tf.tensordot(p*q, self.w_p, axes=2) # (None, hidden[0]) else: # out u = tf.expand_dims(q, 2) # (None, field_num(field_num-1)/2, 1, emb_dim) v = tf.expand_dims(p, 2) # (None, field_num(field_num-1)/2, 1, emb_dim) l_p = tf.tensordot(tf.matmul(tf.transpose(u, [0, 1, 3, 2]), v), self.w_p, axes=3) # (None, hidden[0]) l_z = tf.tensordot(sparse_embed, self.w_z, axes=2) # (None, hidden[0]) l_1 = tf.nn.relu(tf.concat([l_z + l_p + self.l_b], axis=-1)) # dnn layer dnn_x = self.dnn_network(l_1) outputs = tf.nn.sigmoid(self.dense_final(dnn_x)) return outputs def summary(self): sparse_inputs = Input(shape=(len(self.sparse_feature_columns),), dtype=tf.int32) Model(inputs=sparse_inputs, outputs=self.call(sparse_inputs)).summary() ``` #### File: rec-model/SASRec/model.py ```python import tensorflow as tf from tensorflow.keras.regularizers import l2 from tensorflow.keras.layers import Layer, Dense, LayerNormalization, Dropout, Embedding, Input from modules import * class SASRec(tf.keras.Model): def __init__(self, item_fea_col, blocks=1, num_heads=1, ffn_hidden_unit=128, dropout=0., maxlen=40, norm_training=True, causality=False, embed_reg=1e-6): """ SASRec model :param item_fea_col: A dict contains 'feat_name', 'feat_num' and 'embed_dim'. :param blocks: A scalar. The Number of blocks. :param num_heads: A scalar. Number of heads. :param ffn_hidden_unit: A scalar. Number of hidden unit in FFN :param dropout: A scalar. Number of dropout. :param maxlen: A scalar. Number of length of sequence :param norm_training: Boolean. If True, using layer normalization, default True :param causality: Boolean. If True, using causality, default True :param embed_reg: A scalar. The regularizer of embedding """ super(SASRec, self).__init__() # sequence length self.maxlen = maxlen # item feature columns self.item_fea_col = item_fea_col # embed_dim self.embed_dim = self.item_fea_col['embed_dim'] # d_model must be the same as embedding_dim, because of residual connection self.d_model = self.embed_dim # item embedding self.item_embedding = Embedding(input_dim=self.item_fea_col['feat_num'], input_length=1, output_dim=self.item_fea_col['embed_dim'], mask_zero=True, embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) self.pos_embedding = Embedding(input_dim=self.maxlen, input_length=1, output_dim=self.embed_dim, mask_zero=False, embeddings_initializer='random_uniform', embeddings_regularizer=l2(embed_reg)) self.dropout = Dropout(dropout) # attention block self.encoder_layer = [EncoderLayer(self.d_model, num_heads, ffn_hidden_unit, dropout, norm_training, causality) for b in range(blocks)] def call(self, inputs, training=None): # inputs seq_inputs, pos_inputs, neg_inputs = inputs # (None, maxlen), (None, 1), (None, 1) # mask mask = tf.expand_dims(tf.cast(tf.not_equal(seq_inputs, 0), dtype=tf.float32), axis=-1) # (None, maxlen, 1) # seq info seq_embed = self.item_embedding(seq_inputs) # (None, maxlen, dim) # pos encoding # pos_encoding = positional_encoding(seq_inputs, self.embed_dim) pos_encoding = tf.expand_dims(self.pos_embedding(tf.range(self.maxlen)), axis=0) seq_embed += pos_encoding seq_embed = self.dropout(seq_embed) att_outputs = seq_embed # (None, maxlen, dim) att_outputs *= mask # self-attention for block in self.encoder_layer: att_outputs = block([att_outputs, mask]) # (None, seq_len, dim) att_outputs *= mask # user_info = tf.reduce_mean(att_outputs, axis=1) # (None, dim) user_info = tf.expand_dims(att_outputs[:, -1], axis=1) # (None, 1, dim) # item info pos_info = self.item_embedding(pos_inputs) # (None, 1, dim) neg_info = self.item_embedding(neg_inputs) # (None, 1/100, dim) pos_logits = tf.reduce_sum(user_info * pos_info, axis=-1) # (None, 1) neg_logits = tf.reduce_sum(user_info * neg_info, axis=-1) # (None, 1) # loss losses = tf.reduce_mean(- tf.math.log(tf.nn.sigmoid(pos_logits)) - tf.math.log(1 - tf.nn.sigmoid(neg_logits))) / 2 self.add_loss(losses) logits = tf.concat([pos_logits, neg_logits], axis=-1) return logits def summary(self): seq_inputs = Input(shape=(self.maxlen,), dtype=tf.int32) pos_inputs = Input(shape=(1,), dtype=tf.int32) neg_inputs = Input(shape=(1,), dtype=tf.int32) tf.keras.Model(inputs=[seq_inputs, pos_inputs, neg_inputs], outputs=self.call([seq_inputs, pos_inputs, neg_inputs])).summary() def test_model(): item_fea_col = {'feat': 'item_id', 'feat_num': 100, 'embed_dim': 8} model = SASRec(item_fea_col, num_heads=8) model.summary() # test_model() ```
{ "source": "jingxlim/CircuitSeeker", "score": 2 }
#### File: CircuitSeeker/CircuitSeeker/mocorr.py ```python from glob import glob import numpy as np import os import CircuitSeeker.fileio as csio import CircuitSeeker.distributed as csd import dask.array as da import dask.bag as db import dask.delayed as delayed import SimpleITK as sitk from scipy.ndimage import percentile_filter, gaussian_filter1d import zarr from numcodecs import Blosc def ensureArray(reference, dataset_path): """ """ if not isinstance(reference, np.ndarray): if not isinstance(reference, str): raise ValueError("image references must be ndarrays or filepaths") reference = csio.readImage(reference, dataset_path)[...] # hdf5 arrays are lazy return reference def rigidAlign( fixed, moving, fixed_vox, moving_vox, dataset_path=None, metric_sample_percentage=0.1, shrink_factors=[2,1], smooth_sigmas=[1,0], minStep=0.1, learningRate=1.0, numberOfIterations=50, target_spacing=2.0, ): """ Returns rigid transform parameters aligning `fixed` coords to `moving` coords `fixed` and `moving` must be numpy arrays or file paths `fixed_vox` and `moving_vox` must be fixed and moving image voxel spacings as numpy arrays if `fixed` and/or `moving` are hdf5 filepaths, you must specify `dataset_path` remaining arguments adjust the rigid registration algorithm Images are skip sub-sampled before registration. The skip stride is determined by `target_spacing` which is the target voxel spacing after skip sub-sampling. Images are never up-sampled so axes with spacing greater than `target_spacing` are not skip sub-sampled. """ # get moving/fixed images as ndarrays fixed = ensureArray(fixed, dataset_path) moving = ensureArray(moving, dataset_path) # determine skip sample factors fss = np.maximum(np.round(target_spacing / fixed_vox), 1).astype(np.int) mss = np.maximum(np.round(target_spacing / moving_vox), 1).astype(np.int) # skip sample the images fixed = fixed[::fss[0], ::fss[1], ::fss[2]] moving = moving[::mss[0], ::mss[1], ::mss[2]] fixed_vox = fixed_vox * fss moving_vox = moving_vox * mss # convert to sitk images, set spacing fixed = sitk.GetImageFromArray(fixed) moving = sitk.GetImageFromArray(moving) fixed.SetSpacing(fixed_vox[::-1]) # numpy z,y,x --> itk x,y,z moving.SetSpacing(moving_vox[::-1]) # set up registration object irm = sitk.ImageRegistrationMethod() ncores = int(os.environ["LSB_DJOB_NUMPROC"]) # LSF specific! irm.SetNumberOfThreads(2*ncores) irm.SetInterpolator(sitk.sitkLinear) # metric, built for speed irm.SetMetricAsMeanSquares() irm.SetMetricSamplingStrategy(irm.RANDOM) irm.SetMetricSamplingPercentage(metric_sample_percentage) # optimizer, built for simplicity max_step = np.min(fixed_vox) irm.SetOptimizerAsRegularStepGradientDescent( minStep=minStep, learningRate=learningRate, numberOfIterations=numberOfIterations, maximumStepSizeInPhysicalUnits=max_step ) irm.SetOptimizerScalesFromPhysicalShift() # pyramid irm.SetShrinkFactorsPerLevel(shrinkFactors=shrink_factors) irm.SetSmoothingSigmasPerLevel(smoothingSigmas=smooth_sigmas) irm.SmoothingSigmasAreSpecifiedInPhysicalUnitsOn() # initialize irm.SetInitialTransform(sitk.Euler3DTransform()) # execute, convert to numpy and return transform = irm.Execute(sitk.Cast(fixed, sitk.sitkFloat32), sitk.Cast(moving, sitk.sitkFloat32), ) return transform.GetParameters() def applyTransform( moving, moving_vox, params, dataset_path=None): """ """ # get the moving image as a numpy array moving = ensureArray(moving, dataset_path) # use sitk transform and interpolation to apply transform moving = sitk.GetImageFromArray(moving) moving.SetSpacing(moving_vox[::-1]) # numpy z,y,x --> itk x,y,z transform = _parametersToEuler3DTransform(params) transformed = sitk.Resample(moving, moving, transform, sitk.sitkLinear, 0.0, moving.GetPixelID() ) # return as numpy array return sitk.GetArrayFromImage(transformed) # useful format conversions for rigid transforms def _euler3DTransformToParameters(euler): """ """ return np.array(( euler.GetAngleX(), euler.GetAngleY(), euler.GetAngleZ() ) + euler.GetTranslation() ) def _parametersToEuler3DTransform(params): """ """ transform = sitk.Euler3DTransform() transform.SetRotation(*params[:3]) transform.SetTranslation(params[3:]) return transform def _parametersToRigidMatrix(params): """ """ transform = _parametersToEuler3DTransform(params) matrix = np.eye(4) matrix[:3, :3] = np.array(transform.GetMatrix()).reshape((3,3)) matrix[:3, -1] = np.array(transform.GetTranslation()) return matrix # TODO: refactor motionCorrect def motionCorrect( folder, prefix, suffix, fixed, fixed_vox, moving_vox, write_path, dataset_path=None, distributed_state=None, sigma=7, transforms_dir=None, **kwargs, ): """ """ # set up the distributed environment ds = distributed_state if distributed_state is None: ds = csd.distributedState() # writing large compressed chunks locks GIL for a long time ds.modifyConfig({'distributed.comm.timeouts.connect':'60s', 'distributed.comm.timeouts.tcp':'180s',} ) ds.initializeLSFCluster(job_extra=["-P scicompsoft"]) ds.initializeClient() # create (lazy) dask bag from all frames frames = csio.daskBagOfFilePaths(folder, prefix, suffix) nframes = frames.npartitions # scale cluster carefully if 'max_workers' in kwargs.keys(): max_workers = kwargs['max_workers'] else: max_workers = 1250 ds.scaleCluster(njobs=min(nframes, max_workers)) # align all dfixed = delayed(fixed) dfixed_vox = delayed(fixed_vox) dmoving_vox = delayed(moving_vox) ddataset_path = delayed(dataset_path) params = frames.map(lambda b,w,x,y,z: rigidAlign(w,b,x,y, dataset_path=z), w=dfixed, x=dfixed_vox, y=dmoving_vox, z=ddataset_path, ).compute() params = np.array(list(params)) # (weak) outlier removal and smoothing params = percentile_filter(params, 50, footprint=np.ones((3,1))) params = gaussian_filter1d(params, sigma, axis=0) # write transforms as matrices if transforms_dir is not None: paths = list(frames) for ind, p in enumerate(params): transform = _parametersToRigidMatrix(p) basename = os.path.splitext(os.path.basename(paths[ind]))[0] path = os.path.join(transforms_dir, basename) + '_rigid.mat' np.savetxt(path, transform) # apply transforms to all images params = db.from_sequence(params, npartitions=nframes) transformed = frames.map(lambda b,x,y,z: applyTransform(b,x,y, dataset_path=z), x=dmoving_vox, y=params, z=ddataset_path, ).to_delayed() # convert to a (lazy) 4D dask array sh = transformed[0][0].shape.compute() dd = transformed[0][0].dtype.compute() arrays = [da.from_delayed(t[0], sh, dtype=dd) for t in transformed] transformed = da.stack(arrays, axis=0) # write in parallel as 4D array to zarr file compressor = Blosc(cname='zstd', clevel=9, shuffle=Blosc.BITSHUFFLE) transformed_disk = zarr.open(write_path, 'w', shape=transformed.shape, chunks=(256, 10, 256, 256), dtype=transformed.dtype, compressor=compressor ) da.to_zarr(transformed, transformed_disk) # release resources if distributed_state is None: ds.closeClient() # return reference to data on disk return transformed_disk def distributedImageMean( folder, prefix, suffix, dataset_path=None, distributed_state=None, write_path=None, ): """ Returns mean over images matching `folder/prefix*suffix` If images are hdf5 you must specify `dataset_path` To additionally write the mean image to disk, specify `write_path` Computations are distributed, to supply your own dask scheduler and cluster set `distributed_state` to an existing `CircuitSeeker.distribued.distributedState` object otherwise a new cluster will be created """ # set up the distributed environment ds = distributed_state if distributed_state is None: ds = csd.distributedState() ds.initializeLSFCluster(job_extra=["-P scicompsoft"]) ds.initializeClient() # hdf5 files use dask.array if csio.testPathExtensionForHDF5(suffix): frames = csio.daskArrayBackedByHDF5(folder, prefix, suffix, dataset_path) nframes = frames.shape[0] ds.scaleCluster(njobs=nframes) frames_mean = frames.mean(axis=0).compute() frames_mean = np.round(frames_mean).astype(frames[0].dtype) # other types use dask.bag else: frames = csio.daskBagOfFilePaths(folder, prefix, suffix) nframes = frames.npartitions ds.scaleCluster(njobs=nframes) frames_mean = frames.map(csio.readImage).reduction(sum, sum).compute() dtype = frames_mean.dtype frames_mean = np.round(frames_mean/np.float(nframes)).astype(dtype) # release resources if distributed_state is None: ds.closeClient() # write result if write_path is not None: if csio.testPathExtensionForHDF5(write_path): csio.writeHDF5(write_path, dataset_path, frames_mean) else: csio.writeImage(write_path, frames_mean) # return reference to mean image return frames_mean ```
{ "source": "jingxlim/fish", "score": 2 }
#### File: fish/scripts/save_dff.py ```python def get_sc(app_name): from pyspark import SparkConf, SparkContext conf = SparkConf().setAppName(app_name) sc = SparkContext(conf=conf) return sc def get_background_offset(raw_path): from numpy import median from glymur import jp2k background_im_fname = raw_path + "Background_0.tif" background_im = jp2k.Jp2k(background_im_fname)[:] return median(background_im) def prepare_images(files, context, median_filter_size, background_offset): from thunder import images as tdims from fish.util.fileio import read_image images = tdims.fromlist(files, accessor=read_image, engine=context) images = images.map(lambda v: (v - background_offset).clip(1, None)) images = images.median_filter(size=median_filter_size) return images def get_params(path): import json with open(path, "r") as f: params = json.load(f) return params def motion_correction(images, reg_path, overwrite=False): from scipy.ndimage.interpolation import shift from os.path import exists from os import makedirs from skimage.io import imsave from fish.image.alignment import estimate_translation from numpy import save, array, zeros, vstack, load, arange from scipy.ndimage.filters import median_filter ref_range = arange(-5, 5) + images.shape[0] // 2 medfilt_window = 200 if not exists(reg_path): makedirs(reg_path) overwrite = True try: affs = load(reg_path + "regparams_affine.npy") print("Registration params found") except FileNotFoundError: print("Registration params not found, performing registration") overwrite = True if overwrite: ref = images[ref_range].mean().toarray().astype("float32") imsave(reg_path + "anat_reference.tif", ref) reg = images.map(lambda v: estimate_translation(ref.max(0), v.max(0))).toarray() affs = array([r.affine for r in reg]) save(reg_path + "regparams_affine.npy", affs) x_trans = median_filter(affs[:, -2, -1], size=medfilt_window) y_trans = median_filter(affs[:, 0, -1], size=medfilt_window) z_trans = zeros(x_trans.shape) trans = vstack([z_trans, y_trans, x_trans]) shifter = lambda v: shift(v[1], -trans[:, v[0][0]], cval=0).astype("float32") images_transformed = images.map(shifter, with_keys=True) return images_transformed def apply_dff(images, dff_fun, out_dtype): from numpy import array from skimage.exposure import rescale_intensity as rescale images_dff = images.map_as_series( dff_fun, value_size=images.shape[0], dtype=images.dtype ) bounds = images_dff.map(lambda v: array([v.min(), v.max()])).toarray() mn, mx = bounds.min(), bounds.max() images_rescaled = images_dff.map( lambda v: rescale(v, in_range=(mn, mx), out_range=out_dtype).astype(out_dtype) ) dff_lim = (mn, mx) return images_rescaled, dff_lim def rdd_to_tif(kv, path): from skimage.io import imsave key = kv[0][0] val = kv[1] fname = "t_{:06d}.tif".format(key) imsave(path + fname, val, imagej=True) def save_images(images, out_path, multifile, exp_name): # save the images if multifile: from os import makedirs from os.path import exists # make a folder for all these images subdir = out_path + "dff/" if not exists(subdir): makedirs(subdir) images.tordd().foreach(lambda v: rdd_to_tif(v, subdir)) else: from skimage.io import imsave imsave(out_path + exp_name + ".tif", images.toarray(), imagej=True) def parse_args(): from argparse import ArgumentParser parser = ArgumentParser( description="Generate a df/f volume from raw light sheet data, and save as .tif files." ) parser.add_argument("raw_path", help="A path to a directory of raw files.") parser.add_argument( "param_path", help="A path to a json file containing dff params." ) parser.add_argument("output_path", help="A path to a directory to contain output.") args = parser.parse_args() return args def generate_dff_images(raw_path, param_path, output_path, sc): from fish.image.zds import ZDS from fish.image.vol import dff from skimage.transform import downscale_local_mean from functools import partial import json from os.path import exists from os import makedirs dset = ZDS(raw_path) # deal with YuMu's convention of renaming the raw data folder if dset.exp_name == "raw": dset.exp_name = dset.metadata["data_header"] params = get_params(param_path) if not exists(output_path): makedirs(output_path) reg_path = output_path + "reg/" dff_fun = partial( dff, window=params["baseline_window"] * dset.metadata["volume_rate"], percentile=params["baseline_percentile"], baseline_offset=params["baseline_offset"], downsample=params["baseline_downsampling"], ) downsample_fun = partial( downscale_local_mean, factors=tuple(params["spatial_downsampling"]) ) background_offset = get_background_offset(raw_path) median_filter_size = (1, 3, 3) print("Preparing images...") ims = prepare_images(dset.files, sc, median_filter_size, background_offset) print("Registering images...") ims_registered = motion_correction( ims, reg_path, overwrite=params["overwrite_registration"] ) ims_ds = ims_registered.map(downsample_fun) print("Estimating dff...") ims_dff, dff_lim = apply_dff(ims_ds, dff_fun, params["out_dtype"]) print("Saving images...") save_images( ims_dff, output_path, multifile=params["save_multifile"], exp_name=dset.exp_name ) metadata = params.copy() metadata["dff_lims"] = [float(dff_lim[0]), float(dff_lim[1])] metadata_fname = output_path + "dff_metadata.json" with open(metadata_fname, "w") as fp: json.dump(metadata, fp) return 1 if __name__ == "__main__": args = parse_args() sc = get_sc("dff_movie") generate_dff_images(args.raw_path, args.param_path, args.output_path, sc) ``` #### File: fish/scripts/stack_conversion.py ```python from glob import glob import os import volTools as volt import fileTools as ftools from pyspark import SparkConf, SparkContext conf = SparkConf().setAppName("image_conversion") sc = SparkContext(conf=conf) to_convert = [ "/nobackup/ahrens/davis/data/raw/20160608/6dpf_cy171xcy221_f1_omr_1_20160608_170933/", "/nobackup/ahrens/davis/data/raw/20160608/6dpf_cy171xcy221_f2_omr_1_20160608_190404/", "/nobackup/ahrens/davis/data/raw/20160608/6dpf_cy171xcy221_f2_omr_1_20160608_190404/", "/nobackup/ahrens/davis/data/raw/20160614/5dpf_cy171xcy221_f1_caudal_omr_1_20160614_183344/", "/nobackup/ahrens/davis/data/raw/20160614/5dpf_cy171xcy221_f1_caudal_omr_2_20160614_185018/", ] def image_conversion(raw_dir, source_format="stack", dest_format="klb"): """ Find all files in a directory with a specified format, parallelize this list over a cluster using spark, and convert each file to a new format. raw_dir : string Directory containing files to be converted source_format : string, default is 'stack' The input format of the files to be converted. Supported formats are 'stack' and 'tif'. dest_format : string, default is 'klb' The output format of the converted files. Supported formats are 'klb' and 'hdf5' """ from glob import glob # Data files start with `TM` source_glob = "{0}TM*.{1}".format(raw_dir, source_format) dest_glob = "{0}TM*.{1}".format(raw_dir, dest_format) print("Source directory: {0}".format(raw_dir)) fnames = glob(source_glob) fname_rdd = sc.parallelize(fnames, numSlices=256) old_source = fnames old_dest = glob(dest_glob) print("pre-conversion: number of {0} files: {1}".format(dest_format, len(old_dest))) print( "pre-conversion: number of {0} files: {1}".format( source_format, len(old_source) ) ) convert_fun = lambda f: ftools.image_conversion(f, dest_format, wipe=True) if len(old_source) == 0: print("No {0} files found!".format(source_format)) else: fname_rdd.foreach(convert_fun) new_dest = glob(dest_glob) new_source = glob(source_glob) print( "post-conversion: number of {0} files: {1}".format(dest_format, len(new_dest)) ) print( "post-conversion: number of {0} files: {1}".format( source_format, len(new_source) ) ) for r in to_convert: try: image_conversion(r) except: print("Something went wrong processing {0}".format(r)) ``` #### File: fish/util/fileio.py ```python def _tif_reader(tif_path, roi=None): from skimage.io import imread if roi is not None: raise NotImplementedError return imread(tif_path) def _tif_writer(tif_path, image): from skimage.io import imsave imsave(tif_path, image) def _stack_reader(stack_path, roi=None, hi_res_zstep=1.0): from numpy import fromfile, memmap from os.path import sep, split, isfile from fish.image.zds import get_metadata # for filename in ["ch0.xml", "ch0_cam0.xml", "ch0_cam1.xml"]: param_file = split(stack_path)[0] + sep + filename if isfile(param_file): break dims = get_metadata(param_file)["dimensions"][::-1] if 'Hi_Res.stack' in stack_path: z_step = get_metadata(param_file)["z_step"] dims[0] = ((dims[0]-1) * (z_step / hi_res_zstep)) + 1 ## find thickness, divide by hi res z_step and add 1 if roi is not None: im = memmap(stack_path, dtype="uint16", shape=dims, mode="r")[roi] else: try: im = fromfile(stack_path, dtype="uint16").reshape(dims) return im except: print(stack_path) raise def _stack_writer(stack_path, image): raise NotImplementedError def _klb_reader(klb_path, roi=None): from pyklb import readfull if roi is not None: raise NotImplementedError # pyklb whines if it doesn't get a python string return readfull(str(klb_path)) def _klb_writer(klb_path, image): from pyklb import writefull writefull(image, str(klb_path)) def _h5_reader(h5_path, dset_name='default', roi=None): from h5py import File if roi is None: roi = slice(None) with File(h5_path, 'r', libver='latest') as f: return f[dset_name][roi] def _h5_writer(h5_path, data): from h5py import File from os import remove from os.path import exists if exists(h5_path): remove(h5_path) with File(h5_path, "w") as f: f.create_dataset( "default", data=data, compression="gzip", chunks=True, shuffle=True ) f.close() def _jp2_reader(jp2_path, roi=None): from glymur import Jp2k return Jp2k(jp2_path).read()[roi] def _jp2_writer(jp2_path, image): raise NotImplementedError readers = dict() readers['stack'] = _stack_reader readers['tif'] = _tif_reader readers['klb'] = _klb_reader readers['h5'] = _h5_reader readers['hdf5'] = _h5_reader readers['jp2'] = _jp2_reader writers = dict() writers["stack"] = _stack_writer writers["tif"] = _tif_writer writers["klb"] = _klb_writer writers["h5"] = _h5_writer writers["jp2"] = _jp2_writer def read_image(fname, roi=None, dset_name='default', parallelism=1): """ Load .stack, .tif, .klb, .h5, or jp2 data and return as a numpy array fname : string, path to image file roi : tuple of slice objects. For data in hdf5 format, passing an roi allows the rapid loading of a chunk of data. parallelism : int, defines the number of cores to use for loading multiple images. Set to -1 to use all cores. """ from functools import partial from numpy import array, ndarray from multiprocessing import Pool, cpu_count if isinstance(fname, str): fmt = fname.split('.')[-1] if fmt == '.h5' or fmt == '.hdf5': reader = partial(readers[fmt], roi=roi, dset_name=dset_name) else: reader = partial(readers[fmt], roi=roi) result = reader(fname) elif isinstance(fname, (tuple, list, ndarray)): fmt = fname[0].split('.')[-1] if fmt == '.h5' or fmt == '.hdf5': reader = partial(readers[fmt], roi=roi, dset_name=dset_name) else: reader = partial(readers[fmt], roi=roi) if parallelism == 1: result = array([reader(f) for f in fname]) else: if parallelism == -1: num_cores = cpu_count() else: num_cores = min(parallelism, cpu_count()) with Pool(num_cores) as pool: result = array(pool.map(reader, fname)) else: raise TypeError( "First argument must be string for a one file or (tuple, list, ndarray) for many files" ) return result def write_image(fname, data): """ Write a numpy array as .stack, .tif, .klb, or .h5 file fname : string, path to image file data : numpy array to be saved to disk """ # Get the file extension for this file, assuming it is the last continuous string after the last period fmt = fname.split(".")[-1] return writers[fmt](fname, data) def write_txy_image2tiff(arr, savename): import imageio imageio.mimwrite(savename,arr) def to_dask(fnames,dset_name='default'): """ Return a dask array constructued from an collection of ndarrays distributed across multiple files. fnames : iterable of sorted filenames """ from dask.array import from_delayed, from_array, stack from h5py import File from dask.delayed import delayed from numpy import memmap fmt = fnames[0].split('.')[-1] s = read_image(fnames[0],dset_name=dset_name) def delf(fn): return File(fn, mode='r', libver='latest')[dset_name][:] if fmt == 'h5' or fmt == 'hdf5': result = stack([from_delayed(delayed(delf)(fn), s.shape, s.dtype) for fn in fnames]) return result elif fmt == "stack": from os.path import split, sep mems = [memmap(fn, dtype=s.dtype, shape=s.shape, mode="r") for fn in fnames] result = stack([from_array(mem, chunks=s.shape) for mem in mems]) return result elif fmt in ("tif", "jp2"): rdr = delayed(read_image) result = stack( [from_delayed(rdr(fn), shape=s.shape, dtype=s.dtype) for fn in fnames] ) return result else: raise NotImplementedError("{0} files not supported at this time".format(fmt)) def image_conversion(source_path, dest_fmt, wipe=False): """ Convert image from one format to another, optionally erasing the source image image_path : string Path to image to be converted. wipe : bool If True, delete the source image after successful conversion """ from numpy import array_equal from os import remove # the name of the file before format extension source_name = source_path.split(".")[0] dest_path = source_name + "." + dest_fmt source_image = read_image(source_path) write_image(dest_path, source_image) if wipe: check_image = read_image(dest_path) if array_equal(check_image, source_image): remove(source_path) else: print('{0} and {1} differ... something went wrong!'.format(source_path, dest_path)) def resample_image(source_path, dest_fmt, indices=[], wipe=False): """ Resample the image to desired dimensions, optionally erasing the source image image_path : string Path to image to be converted. indices : list List of lists specifying the start and stop in each dimension. The dimensions of list have to correspond to the the dimension of the image. For example, for a tzyx image of size (18000, 26, 1024, 2048), you could try something like this: z_start = 0 z_stop = 13 y_start = 300 y_stop = 900 x_start = 0 x_stop = 600 indices = [[z_start,z_stop], [y_start,y_stop], [x_start,x_stop]] This should give you an image of size (18000, 13, 600, 600). wipe : bool If True, delete the source image after successful conversion """ from numpy import array_equal from os import remove # unpack indices z_start = indices[0][0] z_stop = indices[0][1] y_start = indices[1][0] y_stop = indices[1][1] x_start = indices[2][0] x_stop = indices[2][1] # the name of the file before format extension source_name = source_path.split('.')[0] dest_name = source_name.replace('/im/','/forebrain/') dest_path = dest_name + '.' + dest_fmt source_image = read_image(source_path) resampled_image = source_image[z_start:z_stop, \ y_start:y_stop, \ x_start:x_stop] write_image(dest_path, resampled_image) print(dest_path + ' written') if wipe: check_image = read_image(dest_path) if array_equal(check_image, source_image): remove(source_path) else: print('{0} and {1} differ... something went wrong!'.format(source_path, dest_path)) ```
{ "source": "jingxlim/segmentation", "score": 2 }
#### File: segmentation/python/z2_brain_mask.py ```python def z2(): global thr_prob thr_prob0 = np.copy(thr_prob) for frame_i in range(imageframe_nmbr): if os.path.isfile(output_dir + 'brain_mask' + str(frame_i) + '.hdf5'): try: mask_reset = eval(input('Reset brain_mask? [0, no]; 1, yes. ')) except SyntaxError: mask_reset = 0 if not mask_reset: continue # get image mean def get_img_hdf(name_i): image_filename = image_dir(name_i, frame_i) + 'image_aligned.hdf5' with h5py.File(image_filename, 'r') as file_handle: return file_handle['V3D'][()].T image_dims = get_img_hdf(image_names[0]).shape assert(np.allclose(image_dims, (lx//ds, ly//ds, lz))) class accum_param(pyspark.accumulators.AccumulatorParam): '''define accumulator class''' def zero(self, val0): return np.zeros(val0.shape, dtype='float32') def addInPlace(self, val1, val2): return val1 + val2 image_accumulator = \ sc.accumulator(np.zeros(image_dims, dtype='float32'), accum_param()) sc.parallelize(image_names).foreach( lambda name_i: image_accumulator.add(get_img_hdf(name_i))) image_mean = 1.0 * image_accumulator.value / lt # get medium and fine resolution peaks def medin_filt(img, ftp): return ndimage.filters.median_filter(img, footprint=ftp) image_peak = image_mean > medin_filt(image_mean, cell_ball) image_peak_fine = image_mean > medin_filt(image_mean, cell_ball_fine) # compute power and probability Powr = np.log10(image_mean.ravel())[:, None] Powr = np.log10(np.random.permutation(image_mean.ravel())[:100000, None]) gmm = mixture.GaussianMixture(n_components=2, max_iter=100, n_init=100).fit(Powr) Prob = gmm.predict_proba(Powr) Prob = Prob[:, np.argmax(Powr[np.argmax(Prob, 0)])] # get and save brain mask thr_prob = np.copy(thr_prob0) mask_flag = (thr_prob != 0) while 1: plt.figure(1, (12, 4)) plt.subplot(121); _ = plt.hist(Powr, 100); plt.title('10^(Pixel power histogram)') plt.subplot(122); _ = plt.hist(Prob, 100); plt.title('Probability threshold') plt.show() if not thr_prob: try: thr_prob = eval(input('Enter probability threshold [default 0.5]: ')) except SyntaxError: thr_prob = 0.5 thr_prob = np.ravel(thr_prob) if len(thr_prob) == 1: ix = np.argmin(np.abs(Prob - thr_prob)) thr_mask = 10 ** Powr[ix][0] if np.isinf(thr_prob): thr_mask = thr_prob elif len(thr_prob) == 2: thr_mask = thr_prob[1] thr_prob = thr_prob[0] print('Proceeding with fluorescence threshold of %f.' %thr_mask) else: continue # remove all disconnected components less than 5000 cubic microliters in size small_obj = np.round(5000 * (resn_x * ds * resn_y * ds * resn_z)).astype(int) brain_mask = (image_mean > thr_mask) brain_mask = morphology.remove_small_objects(brain_mask, small_obj) for i in range(lz): plt.figure(1, (12, 6)) plt.subplot(121); plt.imshow((image_mean * ( brain_mask))[:, :, i].T, cmap='hot') plt.subplot(122); plt.imshow((image_peak * (1 + brain_mask))[:, :, i].T, cmap='hot') plt.show() if not mask_flag: try: mask_flag = eval(input('Is thr_prob = %.4f (thr_mask = %.1f) accurate? [1, yes]; 0, no. ' %(thr_prob, thr_mask))) except SyntaxError: mask_flag = 1 if not mask_flag: thr_prob = 0 else: break plt.close('all') with h5py.File(output_dir + 'brain_mask' + str(frame_i) + '.hdf5', 'w') as file_handle: file_handle['brain_mask'] = brain_mask.T file_handle['image_mean'] = image_mean.T file_handle['image_peak'] = image_peak.T file_handle['image_peak_fine'] = image_peak_fine.T file_handle['thr_prob'] = thr_prob file_handle['thr_mask'] = thr_mask file_handle['background'] = np.median(image_mean[brain_mask==0]) z2() ``` #### File: src/segmentation/mika_helper.py ```python import numpy as np import matplotlib.pyplot as plt import h5py from analysis_toolbox.spim_helper import spim def load_segmented_data( # spim attributes im_dir, impro_dir=[], ephys_file='', channel_labels=[], debug=False, # segmented attributes cell_file='', cleaned_file='', component_file='', parameters_file='', mask_file=''): """ Keyword Arguments: im_dir -- impro_dir -- (default []) ephys_file -- (default None) channel_labels -- (default []) debug -- """ spim_dset = segmented( # spim attributes im_dir, impro_dir=impro_dir, ephys_file=ephys_file, channel_labels=channel_labels, debug=debug, # segmented attributes cell_file=cell_file, cleaned_file=cleaned_file, component_file=component_file, parameters_file=parameters_file, mask_file=mask_file) spim_dset.setup() ## already done from the imaging class try: spim_dset.open_raw_images() ## from the spim subclass except: pass spim_dset.load_segmented_files() ## from the segmented subclass ## if processed image file path is provided, load processed images if len(impro_dir) != 0: spim_dset.open_processed_images() ## from the spim subclass ## if ephys file is provided, load ephys file if len(ephys_file) != 0: spim_dset.load_and_match_ephys_data() ## function of the same name as the spim subclass, but redefined here return spim_dset class segmented(spim): def __init__(self, # spim attributes im_dir, impro_dir=[], ephys_file='', channel_labels=[], debug=False, # segmented attributes cell_file='', cleaned_file='', component_file='', parameters_file='', mask_file=''): ###################### # imaging attributes # ###################### super().__init__(self) ## set path, ephys_file and debug ## Initialize imaging class self.path = im_dir self.ephys_file = ephys_file self.debug = debug self.setup() ## set savepath, expt_id, expt_date, expt_name ################### # spim attributes # ################### self.ppaths = impro_dir self.channel_labels = channel_labels ######################## # segmented attributes # ######################## self.cell_file = cell_file self.cleaned_file = cleaned_file self.component_file = component_file self.parameters_file = parameters_file self.mask_file = mask_file ################################################################### # Data I/O # ################################################################### def load_segmented_files(self, debug=False): self.load_mask_file() self.load_cell_file() self.load_cleaned_file() self.load_component_file() print('Segmented imaging data loaded!') def load_mask_file(self, debug=False): try: f = h5py.File(self.mask_file,'r') self.background = f['background'][()] self.blok_lidx = f['blok_lidx'][()] self.blok_nmbr = f['blok_nmbr'][()] self.brain_mask = f['brain_mask'][()] self.image_mean = f['image_mean'][()] self.image_peak = f['image_peak'][()] self.image_peak_fine = f['image_peak_fine'][()] self.thr_mask = f['thr_mask'][()] self.thr_prob = f['thr_prob'][()] f.close() except: print("Problems loading %s" % self.mask_file) def load_cell_file(self, debug=False): try: f = h5py.File(self.cell_file,'r') self.Cmpn_position = f['Cmpn_position'][()] self.Cmpn_spcesers = f['Cmpn_spcesers'][()] self.Cmpn_timesers = f['Cmpn_timesers'][()] self.dims = f['dims'][()] self.freq = int(f['freq'][()]) self.resn = f['resn'][()] f.close() except: print("Problems loading %s" % self.cell_file) def load_cleaned_file(self, debug=False): try: f = h5py.File(self.cleaned_file,'r') self.Cell_X = f['Cell_X'][()] self.Cell_Y = f['Cell_Y'][()] self.Cell_Z = f['Cell_Z'][()] self.Cell_baseline1 = f['Cell_baseline1'][()] self.Cell_spcesers = f['Cell_spcesers'][()] self.Cell_timesers0 = f['Cell_timesers0'][()] self.Cell_timesers1 = f['Cell_timesers1'][()] self.Labels = f['Labels'][()] self.Volume = f['Volume'][()] self.background = f['background'][()] self.freq = int(f['freq'][()]) self.n = int(f['n'][()]) self.x = int(f['x'][()]) self.y = int(f['y'][()]) self.z = int(f['z'][()]) f.close() except: print("Problems loading %s" % self.cleaned_file) def load_component_file(self, debug=False): try: f = h5py.File(self.component_file,'r') self.H0 = f['H0'][()] self.W0 = f['W0'][()].transpose() try: self.H1 = f['H1'][()] self.W1 = f['W1'][()].transpose() except: pass f.close() except: print("Problems loading %s" % self.component_file) ################################################################### # Preprocessing # ################################################################### def check_congruence(self, debug=False): """ Determine if the segmented data is accurately derived from the raw data. Since we commonly downsample in x and y, check for coherence in the number of planes (i.e. z) and the number of stacks (i.e. t). If segmented data is congruent, rely on that data to make calculations for imaging times and for aligning images to ephys data, applying the same treatment to the raw images and processed images. """ nstacks = self.Cell_timesers1.shape[1] == self.im.shape[0] z = self.z == self.im.shape[1] if np.logical_and(nstacks,z): return True else: return False def load_and_match_ephys_data(self, debug=False): """ _WARNING: Head_ Redefined method. Many parts copied from segmented.load_and_match_ephys_data(). Remember to update that method whenever you update this one. (Not the best way; think of a better way eventually.) """ print("Aligning ephys and im data") print("==========================") self.open_ephys_data() ## from spim class self.apply_main_image() ## from spim class if self.check_congruence: self.match_ephys_im_data() ## WARNING 1 self.calculate_DFF() def match_ephys_im_data(self, debug=False): """ _WARNING: 1_ Redefined method. Many parts copied from segmented.match_ephys_im_data(). Remember to update that method whenever you update this one. (Not the best way; think of a better way eventually.) """ print("Aligning ephys and im data") print("==========================") self.compute_imagingtimes_segments(debug=self.debug) ## remove first segment of experiment (that mika clipped because ## it helps with segmentation) ## Remove values from the START ## if len(self.cell_file) != 0: self.remove_clipped_values() self.aligned = self.check_align_segments() ## Remove values from the END ## while np.logical_not(self.aligned): self.cleanup_artefacts_segments(debug=self.debug) ## Remove values from the END ## if self.aligned: self.remove_lastframe(debug=self.debug) ## print out final shapes for sainty check print('Main image: %s' % (self.im.shape,)) print('Raw image: %s' % (self.im_raw.shape,)) if len(self.im_pro) != 0: for i,im_pro in enumerate(self.im_pro): print('Processed image %i: %s' % (i,im_pro.shape,)) print("Computed imaging rate: %f" % self.im_rate) def compute_imagingtimes_segments(self, debug=False): t = self.Cell_timesers1.shape[1] z = self.z self.compute_imagingtimes(t,z,debug=debug) def check_align_segments(self, debug=False): t = self.Cell_timesers1.shape[1] return self.check_align(t) @classmethod def dataset_keys(cls, out_file): import h5py h5py_file = h5py.File(out_file,'r') print(list(h5py_file.keys())) h5py_file.close() def remove_clipped_values(self, debug=False): """ [Mika segmentation specific] Mika: Many recordings have big events at the beginning. These events are hard to correct and can also cause problems with downstream component detection. To overcome this problem, I have now set the signal at the onset of each recording (equal in length to baseline_tau) to a constant value. """ # find where the signal stops to be different artificialstop_imidx = np.where(np.around(self.H0[0,:],decimals=3) \ != np.around(self.H0[0,0],decimals=3))[0][0] if artificialstop_imidx != 1: print("Artificial initial constant value detected. " "Truncating first %i data points" % artificialstop_imidx) else: artificialstop_imidx = 0 if debug: self.ep.plot_stackstarts(xlim_pos='end') overlay_fig, overlay_ax = self.overlay_im_ephys() ## zoom into end of artefact overlay_ax.axvline(x=artificialstop_imidx/self.im_rate,color='k',ls='--') overlay_ax.set_xlim([artificialstop_imidx/self.im_rate-5,artificialstop_imidx/self.im_rate+5]) overlay_ax.set_xlabel('Time [s]') # truncate imaging data ## !! is this correct? I'm removing stuff from the start !! self.im = self.im[:artificialstop_imidx,:,:,:] self.im_raw = self.im_raw[:artificialstop_imidx,:,:,:] if self.im_eq: # processed images can be treated the same way for i,im_pro in enumerate(self.im_pro): self.im_pro[i] = self.im_pro[i][:artificialstop_imidx,:,:,:] # truncate cell data self.Cell_timesers0 = self.Cell_timesers0[:,artificialstop_imidx:] self.Cell_baseline1 = self.Cell_baseline1[:,artificialstop_imidx:] self.Cell_timesers1 = self.Cell_timesers1[:,artificialstop_imidx:] # truncate component data (not necessarily included in all analysis) try: self.H0 = self.H0[:,artificialstop_imidx:] except: pass try: self.H1 = self.H1[:,artificialstop_imidx:] except: pass # truncate ephys data artificialstop_ephysidx = self.image_starttimes[artificialstop_imidx] self.ep.replace_ephys(self.ep.ep[:,artificialstop_ephysidx:]) # recalculate imaging times and check for alignment self.compute_imagingtimes(debug=self.debug) self.aligned = self.check_align() def cleanup_artefacts_segments(self, debug=False): t = self.Cell_timesers1.shape[1] self.cleanup_artefacts(t) def cleanup_artefacts(self, t, debug=False): """ _WARNING: 1A_ Redefined method. Many parts copied from spim.cleanup_artefacts(). Remember to update that method whenever you update this one. (Not the best way; think of a better way eventually.) """ num_lsim = t num_epim = self.image_starts.sum() n_imdiff = num_epim - num_lsim print(f'Number of light sheet images: {num_lsim}') print(f'Number of ephys images: {num_epim}') if n_imdiff > 0: print('More images in ephys. Truncating ephys...') diff_idx = self.image_starttimes[-n_imdiff] self.ep.replace_ephys(self.ep.ep[:,:diff_idx]) self.compute_imagingtimes_segments(debug=self.debug) elif n_imdiff < 0: print('More images in imaging. Truncating imaging...') # truncate imaging data self.im = self.im[:n_imdiff,:,:,:] if self.im_raw is not None: self.im_raw = self.im_raw[:n_imdiff,:,:,:] if self.im_eq: for i,im_pro in enumerate(self.im_pro): self.im_pro[i] = self.im_pro[i][:n_imdiff,:,:,:] # truncate cell data self.Cell_timesers0 = self.Cell_timesers0[:,:n_imdiff] self.Cell_baseline1 = self.Cell_baseline1[:,:n_imdiff] self.Cell_timesers1 = self.Cell_timesers1[:,:n_imdiff] # truncate component data (not necessarily included in all analysis) try: self.H0 = self.H0[:,:n_imdiff] except: pass try: self.H1 = self.H1[:,:n_imdiff] except: pass self.aligned = self.check_align() def remove_lastframe(self, debug=False): """ There could be the same number of images in both ephys and imaging but the ends are not aligned. _WARNING: 1B_ This method is not inherited but redefined in segmented.remove_lastframe(). Remember to update that method whenever you update this one. (Not the best way; think of a better way eventually.) """ print('Ephys and imaging aligned; remove last frame from both...') # truncate images self.im = self.im[:-1,:,:,:] if self.im_raw is not None: self.im_raw = self.im_raw[:-1,:,:,:] if self.im_eq: for i,im_pro in enumerate(self.im_pro): self.im_pro[i] = self.im_pro[i][:-1,:,:,:] # truncate components try: self.H0 = self.H0[:,:-1] except: pass try: self.H1 = self.H1[:,:-1] except: pass # truncate cells self.Cell_timesers0 = self.Cell_timesers0[:,:-1] self.Cell_baseline1 = self.Cell_baseline1[:,:-1] self.Cell_timesers1 = self.Cell_timesers1[:,:-1] # truncate ephys diff_idx = self.image_starttimes[-1] self.ep.replace_ephys(self.ep.ep[:,:diff_idx]) self.compute_imagingtimes_segments(debug=self.debug) self.aligned = self.check_align_segments() ################################################################### # Analysis # ################################################################### def overlay_im_ephys(self): overlay_fig, overlay_ax = plt.subplots(figsize=(9,3)) overlay_ax.plot(np.linspace(0, self.H0[0].shape[0]/self.im_rate, num=self.H0[0].shape[0]), self.H0[0]) overlay_ax.plot(np.linspace(0, self.H0[0].shape[0]/self.im_rate, num=self.H0[0].shape[0]), self.H0[0],'.') overlay_ax.plot(np.linspace(0, self.image_starts.shape[0]/self.ephys_rate, num=self.image_starts.shape[0]), self.image_starts) return overlay_fig, overlay_ax def find_cell(self, cell_num, mask=1): cell_volume = np.zeros((self.z, self.y, self.x)) for j in range(np.count_nonzero(self.Cell_X[cell_num, :] > 0)): if mask: cell_volume[int(self.Cell_Z[cell_num, j]), int(self.Cell_Y[cell_num, j]), int(self.Cell_X[cell_num, j])] = mask else: cell_volume[int(self.Cell_Z[cell_num, j]), int(self.Cell_Y[cell_num, j]), int(self.Cell_X[cell_num, j])] = \ self.Cell_spcesers[cell_num, j] return cell_volume def plot_volume(self, nrows, ncols, save_name=None): """ Plot all cells segmented using self.Volume. """ from analysis_toolbox.utils import get_transparent_cm trans_inferno = get_transparent_cm('hot',tvmax=1,gradient=False) nplanes = self.Volume.shape[2] assert nrows*ncols >= nplanes vol_fig, vol_ax = plt.subplots(nrows,ncols,figsize=(ncols*4,nrows*3), squeeze=False) vol_ax = vol_ax.flatten() for nplane in range(nplanes): vol_ax[nplane].imshow(self.image_mean[nplane,:,:], cmap='gray', vmin=np.percentile(np.ravel(self.image_mean[nplane,:,:]),1), vmax=np.percentile(np.ravel(self.image_mean[nplane,:,:]),99.9)) vax = vol_ax[nplane].imshow(self.Volume[:,:,nplane].transpose(), vmax=np.percentile(np.ravel(self.Volume[:,:,:]),99.9), cmap=trans_inferno) vol_fig.colorbar(vax,ax=vol_ax[nplane]) vol_ax[nplane].set_title('Plane %i' % nplane) vol_fig.tight_layout() if save_name: vol_fig.savefig(save_name) return vol_fig, vol_ax def plot_allcells_map(self, label=None, cmap=None, save_name=None, parallelize=False, show_plot=False, alpha=1): cells = np.arange(self.n) cell_volume, vol_fig, vol_ax = self.plot_cell_map(cells,label=label, cmap=cmap, save_name=save_name, parallelize=parallelize, show_plot=show_plot, alpha=alpha) return cell_volume, vol_fig, vol_ax def plot_cell_map(self, cells, nrows, ncols, label=None, cmap=None, save_name=None, parallelize=False, show_plot=False, alpha=1): """ """ from tqdm import tqdm if parallelize: import multiprocessing as mp num_processes = min(mp.cpu_count(), self.n) # divide clusters into all processes cells_list = np.array_split(cells,num_processes) label_list = np.array_split(label,num_processes) output=mp.Queue() processes = [mp.Process(target=self.collapse_multiple_cells, args=(cells_list[proc],label_list[proc]), kwargs={"save_name": save_name, "output": output}) \ for proc in range(num_processes)] print("Starting %i processes..." % num_processes) for p in processes: p.start() for p in processes: p.join() result = [output.get() for p in processes] cell_volume = result ## TODO: has to be some combination of result else: cell_volume = self.collapse_multiple_cells(cells,label,save_name=save_name) if show_plot: vol_fig, vol_ax = self.overlay_volume(cell_volume, nrows, ncols, cmap=cmap, alpha=alpha, save_name=save_name) return cell_volume, vol_fig, vol_ax else: return cell_volume def overlay_volume(self, volume, nrows, ncols, cmap=None, alpha=1, save_name=None): nplanes = self.z assert nrows*ncols >= nplanes vol_fig, vol_ax = plt.subplots(nrows, ncols, figsize=(ncols*4,nrows*3), squeeze=False) vol_ax = vol_ax.flatten() for nplane in range(nplanes): vol_ax[nplane].imshow(self.image_mean[nplane,:,:], cmap='gray', vmin=np.percentile(np.ravel(self.image_mean[nplane,:,:]),1), vmax=np.percentile(np.ravel(self.image_mean[nplane,:,:]),99.9)) vax = vol_ax[nplane].imshow(volume[nplane,:,:], cmap=cmap, alpha=alpha) vol_fig.colorbar(vax,ax=vol_ax[nplane]) vol_ax[nplane].set_title('Plane %i' % nplane) vol_fig.tight_layout() if save_name: vol_fig.savefig(save_name) return vol_fig, vol_ax def collapse_multiple_cells(self, cell_list, label_list, save_name=None, output=None): from tqdm import tqdm from analysis_toolbox.utils import now_str # create empty volume to fill cell_volume = np.zeros(self.Volume.shape).T for cell, label in tqdm(zip(cell_list, label_list),total=len(cell_list)): volume = self.find_cell(cell, mask=label) zloc, yloc, xloc = np.where(volume != 0) cell_volume[zloc,yloc,xloc] = volume[zloc,yloc,xloc] if save_name: np.save(save_name+now_str(), cell_volume) if output: output.put(cell_volume) else: return cell_volume def plot_cells(self, num_cells=10, mask=0, zoom_pad=25, save_name=None): from analysis_toolbox.utils import get_transparent_cm import random trans_inferno = get_transparent_cm('hot',tvmax=1,gradient=False) ts_fig, ts_ax = plt.subplots(num_cells,2,figsize=(8.5,num_cells*3), gridspec_kw = {'width_ratios':[1,3]}) for neuron in range(num_cells): randcell = random.randint(0,self.n-1) cell_volume = self.find_cell(randcell, mask=mask) cell_z = np.where(np.any(cell_volume,axis=(1,2)))[0][0] try: ts_ax[neuron,0].imshow(self.image_mean[cell_z], cmap='gray', vmax=np.percentile(np.ravel(self.image_mean),99.0)) except: pass cell_im = ts_ax[neuron,0].imshow(cell_volume[cell_z],cmap=trans_inferno) ts_ax[neuron,0].set_title(f'Plane {cell_z}') if zoom_pad: max_X = (self.Cell_X[randcell][self.Cell_X[randcell] > 0]).max() min_X = (self.Cell_X[randcell][self.Cell_X[randcell] > 0]).min() max_Y = (self.Cell_Y[randcell][self.Cell_Y[randcell] > 0]).max() min_Y = (self.Cell_Y[randcell][self.Cell_Y[randcell] > 0]).min() ts_ax[neuron,0].set_xlim([min_X-zoom_pad,max_X+zoom_pad]) ts_ax[neuron,0].set_ylim([min_Y-zoom_pad,max_Y+zoom_pad]) ts_fig.colorbar(cell_im,ax=ts_ax[neuron,0]) dff = (self.Cell_timesers1[randcell,:] - self.Cell_baseline1[randcell,:])/ \ (self.Cell_baseline1[randcell,:] - self.background) t = len(dff) ts_ax[neuron,1].plot(np.linspace(0,t/self.im_rate,num=t), self.Cell_timesers0[randcell,:], alpha=0.5,label='F') ts_ax[neuron,1].plot(np.linspace(0,t/self.im_rate,num=t), self.Cell_timesers1[randcell,:], alpha=0.5,label='detrended F') ts_ax[neuron,1].plot(np.linspace(0,t/self.im_rate,num=t), self.Cell_baseline1[randcell,:], alpha=0.5,label='baseline') ts_ax[neuron,1].set_ylim([np.percentile(self.Cell_timesers0[randcell,:],0.1), np.percentile(self.Cell_timesers0[randcell,:],99.9)]) ts_dff_ax = ts_ax[neuron,1].twinx() ts_dff_ax.plot(np.linspace(0,t/self.im_rate,num=t),dff, alpha=0.5,label='$\Delta F / F$', color='#17becf') ts_dff_ax.set_ylim([np.percentile(dff,0.1), np.percentile(dff,99.9)]) ts_ax[neuron,1].legend(loc='lower left',mode='expand', bbox_to_anchor=(0,1.02,1,0.2), ncol=3) xlim_win = 500 # seconds randslice = random.randint(0,int(t-xlim_win*self.im_rate)) ts_ax[neuron,1].set_xlim(randslice/self.im_rate, (randslice+xlim_win*self.im_rate)/ \ self.im_rate) ts_ax[neuron,1].set_ylabel('$F$') ts_ax[neuron,1].set_xlabel('t [s]') ts_dff_ax.set_ylabel('$\Delta F / F$') ts_dff_ax.legend(loc='lower right') ts_fig.tight_layout() if save_name: ts_fig.savefig(save_name) return ts_fig, ts_ax def find_component(self, comp_spcesers, comp_num, mask=False): cell_volume = np.zeros((self.z, self.y, self.x)) for cell in range(np.count_nonzero(np.nonzero(comp_spcesers[comp_num, :]))): for j in range(np.count_nonzero(self.Cell_X[cell, :] > 0)): if mask: cell_volume[int(self.Cell_Z[cell, j]), int(self.Cell_Y[cell, j]), int(self.Cell_X[cell, j])] = 1 else: cell_volume[int(self.Cell_Z[cell, j]), int(self.Cell_Y[cell, j]), int(self.Cell_X[cell, j])] = comp_spcesers[comp_num,cell] return cell_volume def mika_visualize_components(self,comp_spcesers, comp_timesers, \ save_name=None): import datetime # loop over components for h in range(comp_spcesers.shape[0]): # construct component volumes S = np.zeros((self.x, self.y, self.z)) for i in range(self.n): for j in range(np.count_nonzero(np.isfinite(self.Cell_X[i]))): xij, yij, zij = int(self.Cell_X[i, j]), \ int(self.Cell_Y[i, j]), \ int(self.Cell_Z[i, j]) S[xij, yij, zij] = np.maximum(S[xij, yij, zij], comp_spcesers[h,i]) # visualize component maximal projections clust_fig, clust_ax = plt.subplots(2,1) clust_ax[0].imshow(S.max(2).T) # visualize component timeseries clust_ax[1].plot(comp_timesers[h]) if save_name: from datetime import datetime save_names = save_name.split('.') clust_fig.savefig(save_names[0] + '.'+ str(h) + '.'+ \ datetime.now().strftime("%Y-%m-%d_%H-%M") + \ '.' + save_names[-1]) def visualize_component(self, comp_num, comp_timesers, comp_spcesers, \ save_name=None, close_fig=False): from analysis_toolbox.utils import get_transparent_cm trans_inferno = get_transparent_cm('hot',tvmax=1,gradient=False) clust_volume = self.find_component(comp_spcesers, comp_num) nplanes = clust_volume.shape[0] clust_fig, clust_ax = plt.subplots(nplanes+2,1, figsize=(8,2*2 + nplanes*3)) clust_ax[0].plot(np.linspace(0,len(comp_timesers[comp_num])/self.im_rate, num=len(comp_timesers[comp_num])), comp_timesers[comp_num]) clust_ax[0].set_ylabel('$\Delta F / F$') clust_ax[0].set_xlabel('Time (s)') clust_ax[0].set_title('Calcium dynamics') clust_ax[1].plot(np.linspace(0,len(comp_timesers[comp_num])/self.im_rate, num=len(comp_timesers[comp_num])), comp_timesers[comp_num]) clust_ax[1].set_ylabel('$\Delta F / F$') clust_ax[1].set_xlabel('Time (s)') clust_ax[1].set_title('Calcium dynamics') clust_ax[1].set_ylim(top=np.percentile(comp_timesers[comp_num],99.9)) slice_win = 10 # in seconds rand_slice = np.random.randint(len(comp_timesers[comp_num])/self.im_rate - slice_win) clust_ax[1].set_xlim([rand_slice, rand_slice+slice_win]) for nplane in range(nplanes): clust_ax[nplane+2].imshow(self.image_mean[nplane,:,:],cmap='gray') cax = clust_ax[nplane+2].imshow(clust_volume[nplane,:,:], vmax=np.percentile(np.ravel(clust_volume),99.9), cmap=trans_inferno) clust_fig.colorbar(cax,ax=clust_ax[nplane+2]) clust_fig.suptitle(self.expt_name) clust_fig.tight_layout() clust_fig.subplots_adjust(top = 0.9) if save_name: from datetime import datetime save_names = save_name.split('.') clust_fig.savefig(save_names[0]+'-'+ \ datetime.now().strftime("%Y-%m-%d_%H-%M")+ \ '.'+save_names[1]) if close_fig: plt.close(clust_fig) return clust_fig, clust_ax def visualize_multiple_components(self, component_list, comp_spcesers, comp_timesers, save_name=False, close_fig=False): for i in component_list: self.visualize_component(i, comp_timesers, comp_spcesers, save_name=save_name, close_fig=close_fig) def visualize_components(self, component_list, comp_spcesers, comp_timesers, save_name='visualize_cluster', close_fig=False, parallelize=False): if parallelize: import multiprocessing as mp num_processes = min(mp.cpu_count(),len(component_list)) # divide clusters into all processes components_list = np.array_split(component_list,num_processes) processes = [mp.Process(target=self.visualize_multiple_components, args=(components_list[proc],comp_spcesers, comp_timesers), kwargs={"save_name": self.savepath+'visualize_cluster-'+str(components_list[proc])+'.png', "close_fig": True}) \ for proc in range(num_processes)] print("Starting %i processes..." % num_processes) for p in processes: p.start() for p in processes: p.join() print("Done!") else: self.visualize_multiple_components(component_list, comp_spcesers, comp_timesers, save_name=save_name, close_fig=close_fig) def compute_triggers(self, triggers, time_window, trigger_savename=False): # how many stacks before and after the trigger are you interested to see? window = np.arange(round(-time_window*self.im_rate),round(time_window*self.im_rate)) triggers_arr = triggers.reshape(-1,1) + window triggers_around = triggers_arr[(triggers_arr < self.nstacks).all(axis=1),:] if trigger_savename: np.save(self.savepath + trigger_savename + '.npy', triggers_around) return window, triggers_around def compute_triggered(self, triggers_around, comp_timesers, statistic='mean'): triggered = comp_timesers[:,triggers_around] if statistic == 'mean': triggered_center = triggered.mean(axis=1) elif statistic == 'median': triggered_center = np.median(triggered, axis=1) elif statistic == 'both': triggered_center = (triggered.mean(axis=1), np.median(triggered, axis=1)) return triggered, triggered_center def visualize_triggered(self, comp_num, window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers, plot_trials=False): from scipy.stats import sem from math_helper import compute_fft roi_fig, roi_ax = plt.subplots(1, 6, figsize=(16, 3)) clust_volume = self.find_component(comp_spcesers, comp_num) vmax = np.max(np.array([np.max(clust_volume.max(0)),np.max(clust_volume.max(1))])) vmin = np.min(np.array([np.min(clust_volume.max(0)),np.min(clust_volume.max(1))])) # Plot brain and ROI (xy projection) roi_ax[0].imshow(self.image_mean.max(0).T,cmap='gray') roi_ax[0].imshow(clust_volume.max(0).T,alpha=0.5,vmin=vmin,vmax=vmax) roi_ax[0].axis('off') # Plot brain and ROI (yz projection) roi_ax[1].imshow(self.image_mean.max(1).T,cmap='gray',aspect='auto') clust_imshow = roi_ax[1].imshow(clust_volume.max(1).T,alpha=0.5,aspect='auto',vmin=vmin,vmax=vmax) roi_ax[1].axis('off') roi_fig.colorbar(clust_imshow, ax=roi_ax[1]) if plot_trials: ntriggers = triggered[comp_num].shape[0] t_axis = np.tile(window/self.im_rate,(ntriggers,1)).transpose() roi_ax[2].plot(t_axis,triggered[comp_num].transpose(), color='#1f77b4', alpha=0.05) roi_ax[3].plot(t_axis,triggered[comp_num].transpose(), color='#1f77b4', alpha=0.05) roi_ax[2].plot(window/self.im_rate, triggered_mean[comp_num], color='#d62728', zorder=1e6) roi_ax[3].plot(window/self.im_rate, triggered_mean[comp_num], color='#d62728', zorder=1e6) roi_ax[2].plot(window/self.im_rate, triggered_median[comp_num], color='#E377C2', zorder=1e6) roi_ax[3].plot(window/self.im_rate, triggered_median[comp_num], color='#E377C2', zorder=1e6) # Plot error bars if plot_trials: error = sem(triggered[comp_num].transpose(),axis=1) roi_ax[2].fill_between(window/self.im_rate, triggered_mean[comp_num]+error, triggered_mean[comp_num]-error, color='#d62728',alpha=0.5,zorder=1e6-1) roi_ax[3].fill_between(window/self.im_rate, triggered_mean[comp_num]+error, triggered_mean[comp_num]-error, color='#d62728',alpha=0.5,zorder=1e6-1) roi_ax[2].axvline(x=0,color='k',ls='--') roi_ax[2].set_ylabel(r'$\Delta F/ F$') roi_ax[2].set_xlabel('Time (s)') roi_ax[2].set_xlim([window.min()/self.im_rate,window.max()/self.im_rate]) roi_ax[3].axvline(x=0,color='k',ls='--') roi_ax[3].set_ylabel(r'$\Delta F/ F$') roi_ax[3].set_xlabel('Time (s)') roi_ax[3].set_xlim([window.min()/self.im_rate,window.max()/self.im_rate]) if plot_trials: roi_ax[3].set_ylim([np.min(np.array([(triggered_mean[comp_num]-error).min(),triggered_median[comp_num].min()])), np.max(np.array([(triggered_mean[comp_num]+error).max(),triggered_median[comp_num].max()]))]) # Plot raw calcium trace roi_ax[4].plot(np.linspace(0,self.nstacks/self.im_rate,self.nstacks), comp_timesers[comp_num]) roi_ax[4].set_ylabel(r'$\Delta F/ F$') roi_ax[4].set_xlabel('Time (s)') slice_win = 10 # in seconds rand_slice = np.random.randint(self.nstacks/self.im_rate - 10) roi_ax[4].set_xlim([rand_slice, rand_slice+10]) # roi_ax[3].set_ylim([np.percentile(timeseries[clust],0.1), np.percentile(timeseries[clust],99.8)]) # Overlay swim power roi_ax2 = roi_ax[4].twinx() roi_ax2.plot(np.linspace(0,self.swim_power.shape[0]/self.ephys_rate,num=self.swim_power.shape[0]), self.swim_power,color='#ff7f0e') # roi_ax2.set_xlim([swim_power[0]*rand_slice/ephys_rate, swim_power[0]*rand_slice/ephys_rate]) roi_ax2.axis('off') # Overlay flashes roi_ax3 = roi_ax[4].twinx() roi_ax3.plot(np.linspace(0, self.ep.channel4.shape[0]/self.ephys_rate,num= self.ep.channel4.shape[0]), self.ep.channel4,color='#17becf') roi_ax3.axis('off') Y, angle, frq = compute_fft(comp_timesers[comp_num], self.im_rate) roi_ax[5].plot(frq[1:],abs(Y)[1:]) roi_ax[5].set_xlabel('Freq (Hz)') roi_ax[5].set_ylabel(r'|$\gamma$(freq)|') # roi_ax[5].set_xlim([-0.001,0.5]) roi_fig.suptitle(str(self.expt_date.date())+'_'+self.expt_name) roi_fig.tight_layout() roi_fig.subplots_adjust(top = 0.8) return roi_fig def visualize_multiple_triggered(self, component_list, window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers, plot_trials=False, save_name=False, close_fig=True, output=None): import datetime num_comp = len(component_list) delta = [] for comp_num in component_list: print('Plotting ROI %i of %i ...' % (comp_num,num_comp)) roi_fig = self.visualize_triggered(comp_num, window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers, plot_trials=plot_trials) from scipy.stats import wilcoxon t_stat,t_prob = wilcoxon(triggered[comp_num][:,np.logical_and(window/self.im_rate <= 0, window/self.im_rate >= -1.)].mean(1), triggered[comp_num][:,np.logical_and(window/self.im_rate > 0, window/self.im_rate <= 1.)].mean(1)) print(t_stat,t_prob) # save components with large change if t_prob < 1e-10: mark = 'o' delta.append(comp_num) else: mark = 'x' if save_name: roi_fig.savefig(self.savepath+save_name+'-'+str(plot_trials)+'-'+str(comp_num)+ '-'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")+'-'+mark+'.png') if close_fig: plt.close(roi_fig) if output: output.put(delta) else: return delta def visualize_triggereds(self, component_list, window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers, plot_trials=False, save_name='visualize_triggered_comp', close_fig=True, parallelize=False): if parallelize: import multiprocessing as mp num_processes = min(mp.cpu_count(),len(component_list)) # divide clusters into all processes components_list = np.array_split(component_list,num_processes) output=mp.Queue() processes = [mp.Process(target=self.visualize_multiple_triggered, args=(components_list[proc], window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers), kwargs={"plot_trials": plot_trials, "save_name": save_name, "close_fig": True, "output": output}) \ for proc in range(num_processes)] print("Starting %i processes..." % num_processes) for p in processes: p.start() for p in processes: p.join() result = [output.get() for p in processes] print("Done!") return result else: result = self.visualize_multiple_triggered(component_list, window, triggered, triggered_mean, triggered_median, comp_spcesers, comp_timesers, plot_trials=plot_trials, save_name=save_name, close_fig=close_fig, output=None) return result def calculate_DFF(self, bg_multiplier=0.8, debug=False): self.dff = (self.Cell_timesers1 - self.Cell_baseline1) / \ (self.Cell_baseline1 - self.background * bg_multiplier) def check_NMF(self, comp_spcsers, comp_timesers, weight_percentile=99.5, save_name='component_ts'): from colors import tableau20 import datetime import random dff = (self.Cell_timesers1 - self.Cell_baseline1) / (self.Cell_baseline1 - self.background * 0.8) nclust = comp_spcsers.shape[0] from analysis_toolbox.utils import get_transparent_cm trans_inferno = get_transparent_cm('hot',tvmax=1,gradient=False) clust_fig, clust_ax = plt.subplots(nclust, 6, figsize=(20,nclust*2), gridspec_kw = {'width_ratios':[1,1,3,3,3,3]}) for clust in range(nclust): clust_volume = self.find_component(comp_spcsers, clust) vmax = np.max(np.array([np.max(clust_volume.max(0)),np.max(clust_volume.max(1))])) vmin = np.min(np.array([np.min(clust_volume.max(0)),np.min(clust_volume.max(1))])) # Plot brain and ROI (xy projection) clust_ax[clust,0].imshow(self.image_mean.max(0).T,cmap='gray') clust_ax[clust,0].imshow(clust_volume.max(0).T,cmap=trans_inferno,vmin=vmin,vmax=vmax) clust_ax[clust,0].axis('off') # Plot brain and ROI (zy projection) clust_ax[clust,1].imshow(self.image_mean.max(1).T,cmap='gray',aspect='auto') clust_imshow = clust_ax[clust,1].imshow(clust_volume.max(1).T,cmap=trans_inferno,vmin=vmin,vmax=vmax,aspect='auto') clust_ax[clust,1].axis('off') clust_fig.colorbar(clust_imshow, ax=clust_ax[clust,1]) # plot all weights clust_ax[clust,2].plot(comp_spcsers[clust]) perc = weight_percentile perct = np.percentile(comp_spcsers[clust],perc) clust_ax[clust,2].axhline(y=perct, color='r', label=str(perct)) clust_ax[clust,2].text(25000,perct+0.1,"%.1f percentile: %.1f" % (perc, perct)) clust_ax[clust,2].set_ylabel('Weight') clust_ax[clust,2].set_xlabel('Cell # (unsorted)') # plot distribution of weights clust_ax[clust,3].hist(np.ravel(comp_spcsers[clust]),bins=200) clust_ax[clust,3].axvline(x=perct, color='r', label=str(perct)) clust_ax[clust,3].text(perct-0.6,10**3, "%.1f percentile: %.1f" % (perc, perct)) clust_ax[clust,3].set_yscale('log') clust_ax[clust,3].set_xlabel('Weight') clust_ax[clust,3].set_ylabel(r'$\log(Counts)$') # plot comparison of time series clust_ax[clust,4].plot(np.linspace(0,len(comp_timesers[clust])/self.im_rate,num=len(comp_timesers[clust])), comp_timesers[clust]) # find highly weighted cells clust_cells = np.where(comp_spcsers[clust] > perct)[0] for cell in clust_cells: clust_ax[clust,4].plot(np.linspace(0,len(dff[cell])/self.im_rate,num=len(dff[cell])), dff[cell], alpha=0.4) win_size = 10 # in seconds randslice = random.randint(0, int(len(comp_timesers[clust])/self.im_rate - win_size)) clust_ax[clust,4].set_xlim([randslice, randslice+win_size]) clust_ax[clust,4].set_ylim([np.min([-0.1,np.percentile(comp_timesers[clust],0.1)]),np.percentile(comp_timesers[clust],99.5)]) clust_ax[clust,4].set_ylabel('$\Delta F / F$') clust_ax[clust,4].set_xlabel('Time [s]') # find the standard deviation dff_std = np.std(dff[clust_cells],0) clust_ax[clust,5].plot(np.linspace(0,len(comp_timesers[clust])/self.im_rate,num=len(comp_timesers[clust])), comp_timesers[clust],color=tableau20[0]) clust_ax[clust,5].fill_between(np.linspace(0,len(comp_timesers[clust])/self.im_rate,num=len(comp_timesers[clust])), comp_timesers[clust]-dff_std, comp_timesers[clust]+dff_std, alpha=0.8, color=tableau20[1]) clust_ax[clust,5].set_xlim([randslice, randslice+win_size]) clust_ax[clust,5].set_ylim([np.min([-0.1,np.percentile(comp_timesers[clust],0.1)]),np.percentile(comp_timesers[clust],99.5)]) clust_ax[clust,5].set_ylabel('$\Delta F / F$') clust_ax[clust,5].set_xlabel('Time [s]') clust_fig.tight_layout() clust_fig.savefig(self.savepath+save_name+'-'+datetime.datetime.now().strftime("%Y-%m-%d_%H-%M")+'.png') ###################################################################### ### mika_helper.py ends here ```
{ "source": "jingxlim/voluseg", "score": 2 }
#### File: voluseg/_steps/step4d.py ```python def nnmf_sparse(V0, XYZ0, W0, B0, S0, tolfun=1e-4, miniter=10, maxiter=100, timeseries_mean=1.0, timepoints=None, verbosity=1): ''' cell detection via nonnegative matrix factorization with sparseness projection V0 = voxel_timeseries_valid XYZ0 = voxel_xyz_valid W0 = cell_weight_init_valid B0 = cell_neighborhood_valid S0 = cell_sparseness ''' import os import numpy as np from scipy import stats from scipy import linalg from skimage import measure from voluseg._tools.sparseness_projection import sparseness_projection os.environ['MKL_NUM_THREADS'] = '1' # CAUTION: variable is modified in-place to save memory V0 *= (timeseries_mean / V0.mean(1)[:, None]) # normalize voxel timeseries if timepoints is not None: V = V0[:, timepoints].astype(float) # copy input signal else: V = V0.astype(float) # copy input signal XYZ = XYZ0.astype(int) W = W0.astype(float) B = B0.astype(bool) S = S0.copy() # get dimensions n, t = V.shape n_, c = W.shape assert(n_ == n) H = np.zeros((c, t)) # zero timeseries array dnorm_prev = np.full(2, np.inf) # last two d-norms for ii in range(maxiter): # save current states H_ = H.copy() # Alternate least squares with regularization H = np.maximum(linalg.lstsq(W, V)[0], 0) H *= (timeseries_mean / H.mean(1)[:, None]) # normalize component timeseries W = np.maximum(linalg.lstsq(V.T, H.T)[0], 0) W[np.logical_not(B)] = 0 # restrict component boundaries for ci in range(c): W_ci = W[B[:, ci], ci] if np.any(W_ci) and (S[ci] > 0): # get relative dimensions of component XYZ_ci = XYZ[B[:, ci]] - XYZ[B[:, ci]].min(0) # enforce component sparseness and percentile threshold W_ci = sparseness_projection(W_ci, S[ci], at_least_as_sparse=True) # retain largest connected component (mode) L_ci = np.zeros(np.ptp(XYZ_ci, 0) + 1, dtype=bool) L_ci[tuple(zip(*XYZ_ci))] = W_ci > 0 L_ci = measure.label(L_ci, connectivity=3) lci_mode = stats.mode(L_ci[L_ci>0]).mode[0] W_ci[L_ci[tuple(zip(*XYZ_ci))] != lci_mode] = 0 W[B[:, ci], ci] = W_ci # Get norm of difference and check for convergence dnorm = np.sqrt(np.mean(np.square(V - W.dot(H)))) / timeseries_mean diffh = np.sqrt(np.mean(np.square(H - H_ ))) / timeseries_mean if ((dnorm_prev.max(0) - dnorm) < tolfun) & (diffh < tolfun): if (ii >= miniter): break dnorm_prev[1] = dnorm_prev[0] dnorm_prev[0] = dnorm if verbosity: print((ii, dnorm, diffh)) # Perform final regression on full input timeseries H = np.maximum(linalg.lstsq(W, V0)[0], 0) H *= (timeseries_mean / H.mean(1)[:, None]) # normalize component timeseries return (W, H, dnorm) ``` #### File: voluseg/_tools/evenly_parallelize.py ```python def evenly_parallelize(input_list): '''return evenly partitioned spark resilient distributed dataset (RDD)''' import numpy as np from pyspark.sql.session import SparkSession spark = SparkSession.builder.getOrCreate() sc = spark.sparkContext n_input = len(input_list) n_parts = sc.parallelize(input_list).getNumPartitions() partitions = np.floor(np.linspace(0, n_parts, n_input, endpoint=False)).astype(int) return sc.parallelize(zip(partitions, input_list)).partitionBy(n_parts) ``` #### File: voluseg/_tools/sparseness_projection.py ```python def sparseness_projection(Si, s, at_least_as_sparse=False): '''Hoyer sparseness projection''' import numpy as np assert(Si.ndim == 1) S = np.copy(Si) # copy input signal if s <= 0: return np.maximum(S, 0) # enforce nonnegativity d = S.size L2 = np.sqrt(np.sum(np.square(S))) # fixed l2-norm L1 = L2 * (np.sqrt(d) * (1 - s) + s) # desired l1-norm # quit if at_least_sparse=True and original exceeds target sparseness if at_least_as_sparse: if L1 >= np.sum(np.abs(S)): return S # initialize components with negative values Z = np.zeros(S.shape, dtype=bool) negatives = True while negatives: # Fix components with negative values at 0 Z = Z | (S < 0) S[Z] = 0 # Project to the sum-constraint hyperplane S += (L1 - np.sum(S)) / (d - np.sum(Z)) S[Z] = 0 # Get midpoints of hyperplane, M M = np.tile(L1 / (d - np.sum(Z)), d) M[Z] = 0 P = S - M # Solve for Alph, L2 = l2[M + Alph*(S-M)] = l2[P*Alph + M], # where L2 is defined above, and l2 is the l2-norm operator. # For convenience, we square both sides and find the roots, # 0 = (l2[P*Alph + M])^2 - (L2)^2 # 0 = sum((P*Alph)^2) + sum(2*P*M*Alph) + sum(M^2) - L2^2 A = np.sum(P * P) B = 2 * np.sum(P * M) C = np.sum(M * M) - L2**2 Alph = (-B + np.real(np.sqrt(B**2 - 4 * A * C))) / (2 * A) # Project within the sum-constraint hyperplane to match L2 S = M + Alph * P # Check for negative values in solution negatives = np.any(S < 0) return S ```
{ "source": "jingxu10/medical-decathlon", "score": 2 }
#### File: 2D/openvino/inference_openvino.py ```python from openvino.inference_engine import IENetwork, IECore from time import time import logging as log import numpy as np from argparse import ArgumentParser import os import sys """ OpenVINO Python Inference Script This will load the OpenVINO version of the model (IR) and perform inference on a few validation samples from the Decathlon dataset. You'll need the extension library to handle the Resize_Bilinear operations. python inference_openvino.py -l ${INTEL_OPENVINO_DIR}/inference_engine/lib/intel64/libcpu_extension_avx2.so """ def dice_score(y_true, y_pred, smooth=1.): """ Sorensen Dice coefficient """ y_true = np.round(y_true) y_pred = np.round(y_pred) numerator = 2.0 * np.sum(y_true * y_pred) + smooth denominator = np.sum(y_true) + np.sum(y_pred) + smooth coef = numerator / denominator return coef def plot_predictions(predictions, input_data, label_data, img_indicies, args): """ Plot the predictions with matplotlib and save to png files """ png_directory = "inference_examples_openvino" if not os.path.exists(png_directory): os.makedirs(png_directory) import matplotlib.pyplot as plt # Processing output blob log.info("Plotting the predictions and saving to png files. Please wait...") number_imgs = predictions.shape[0] num_rows_per_image = args.rows_per_image row = 0 for idx in range(number_imgs): if row == 0: plt.figure(figsize=(15, 15)) plt.subplot(num_rows_per_image, 3, 1+row*3) plt.imshow(input_data[idx, 0, :, :], cmap="bone", origin="lower") plt.axis("off") if row == 0: plt.title("MRI") plt.subplot(num_rows_per_image, 3, 2+row*3) plt.imshow(label_data[idx, 0, :, :], origin="lower") plt.axis("off") if row == 0: plt.title("Ground truth") plt.subplot(num_rows_per_image, 3, 3+row*3) plt.imshow(predictions[idx, 0, :, :], origin="lower") plt.axis("off") if row == 0: plt.title("Prediction") plt.tight_layout() if (row == (num_rows_per_image-1)) or (idx == (number_imgs-1)): if num_rows_per_image == 1: fileidx = "pred{}.png".format(img_indicies[idx]) else: fileidx = "pred_group{}".format(idx // num_rows_per_image) filename = os.path.join(png_directory, fileidx) plt.savefig(filename, bbox_inches="tight", pad_inches=0) print("Saved file: {}".format(filename)) row = 0 else: row += 1 def load_data(): """ Modify this to load your data and labels """ # Load data # You can create this Numpy datafile by running the create_validation_sample.py script data_file = np.load("data/validation_data.npz") imgs_validation = data_file["imgs_validation"] msks_validation = data_file["msks_validation"] img_indicies = data_file["indicies_validation"] """ OpenVINO uses channels first tensors (NCHW). TensorFlow usually does channels last (NHWC). So we need to transpose the axes. """ input_data = imgs_validation.transpose((0, 3, 1, 2)) msks_data = msks_validation.transpose((0, 3, 1, 2)) return input_data, msks_data, img_indicies def load_model(model, fp16=False): """ Load the OpenVINO model. """ log.info("Loading U-Net model to the plugin") model_xml = model model_bin = os.path.splitext(model_xml)[0] + ".bin" return model_xml, model_bin def print_stats(exec_net, input_data, n_channels, batch_size, input_blob, out_blob, args): """ Prints layer by layer inference times. Good for profiling which ops are most costly in your model. """ # Start sync inference log.info("Starting inference ({} iterations)".format(args.number_iter)) infer_time = [] for i in range(args.number_iter): t0 = time() res = exec_net.infer( inputs={input_blob: input_data[0:batch_size, :n_channels]}) infer_time.append((time() - t0) * 1000) average_inference = np.average(np.asarray(infer_time)) log.info("Average running time of one batch: {:.5f} ms".format( average_inference)) log.info("Images per second = {:.3f}".format( batch_size * 1000.0 / average_inference)) perf_counts = exec_net.requests[0].get_perf_counts() log.info("Performance counters:") log.info("{:<70} {:<15} {:<15} {:<15} {:<10}".format("name", "layer_type", "exec_type", "status", "real_time, us")) for layer, stats in perf_counts.items(): log.info("{:<70} {:<15} {:<15} {:<15} {:<10}".format(layer, stats["layer_type"], stats["exec_type"], stats["status"], stats["real_time"])) def build_argparser(): parser = ArgumentParser() parser.add_argument("-number_iter", "--number_iter", help="Number of iterations", default=5, type=int) parser.add_argument("-l", "--cpu_extension", help="MKLDNN (CPU)-targeted custom layers. " "Absolute path to a shared library with " "the kernels impl.", type=str) parser.add_argument("-pp", "--plugin_dir", help="Path to a plugin folder", type=str, default=None) parser.add_argument("-d", "--device", help="Specify the target device to infer on; " "CPU, GPU, FPGA or MYRIAD is acceptable. Sample " "will look for a suitable plugin for device " "specified (CPU by default)", default="CPU", type=str) parser.add_argument("-plot", "--plot", help="Plot results", default=False, action="store_true") parser.add_argument("-rows_per_image", "--rows_per_image", help="Number of rows per plot (when -plot = True)", default=4, type=int) parser.add_argument("-stats", "--stats", help="Plot the runtime statistics", default=False, action="store_true") parser.add_argument("-m", "--model", help="OpenVINO model filename", default="../openvino_models/FP32/saved_model.xml") return parser def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() ie = IECore() if args.cpu_extension and "CPU" in args.device: ie.add_extension(args.cpu_extension, "CPU") # Read IR model_xml, model_bin = load_model(args.model, args.device=="MYRIAD") log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin)) net = IENetwork(model=model_xml, weights=model_bin) if "CPU" in args.device: supported_layers = ie.query_network(net, "CPU") not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error("Following layers are not supported by the plugin for specified device {}:\n {}". format(args.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) """ Ask OpenVINO for input and output tensor names and sizes """ input_blob = next(iter(net.inputs)) # Name of the input layer out_blob = next(iter(net.outputs)) # Name of the output layer # Load data input_data, label_data, img_indicies = load_data() batch_size = 1 n_channels = input_data.shape[1] height = input_data.shape[2] width = input_data.shape[3] # Reshape the OpenVINO network to accept the different image input shape # NOTE: This only works for some models (e.g. fully convolutional) net.reshape({input_blob:(batch_size,n_channels,height,width)}) batch_size, n_channels, height, width = net.inputs[input_blob].shape batch_size, n_out_channels, height_out, width_out = net.outputs[out_blob].shape # Loading model to the plugin log.info("Loading model to the plugin") exec_net = ie.load_network(network=net, device_name=args.device) del net if args.stats: # Print the latency and throughput for inference print_stats(exec_net, input_data, n_channels, batch_size, input_blob, out_blob, args) """ OpenVINO inference code input_blob is the name (string) of the input tensor in the graph out_blob is the name (string) of the output tensor in the graph Essentially, this looks exactly like a feed_dict for TensorFlow inference """ # Go through the sample validation dataset to plot predictions predictions = np.zeros((img_indicies.shape[0], n_out_channels, height_out, width_out)) for idx in range(0, img_indicies.shape[0], batch_size): res = exec_net.infer(inputs={input_blob: input_data[idx:(idx+batch_size), :n_channels]}) # Save the predictions to array predictions[idx:(idx+batch_size), ] = res[out_blob] if idx != (len(img_indicies)-1): # Partial batch left in data log.info("Partial batch left over in dataset.") """ Evaluate model with Dice metric """ for idx in range(img_indicies.shape[0]): dice = dice_score(predictions[idx, 0, :, :], label_data[idx, 0, :, :]) log.info("Image #{}: Dice score = {:.4f}".format( img_indicies[idx], dice)) if args.plot: plot_predictions(predictions, input_data, label_data, img_indicies, args) del exec_net if __name__ == '__main__': sys.exit(main() or 0) ``` #### File: medical-decathlon/3D/inference_openvino.py ```python import sys import os import csv import numpy as np import logging as log from time import time from openvino.inference_engine import IENetwork, IECore import tensorflow as tf import keras as K from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter import nibabel as nib from tqdm import tqdm os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # Get rid of the AVX, SSE warnings """ OpenVINO Python Inference Script This will load the OpenVINO version of the model (IR) and perform inference on a few validation samples from the Decathlon dataset. """ def dice_score(pred, truth): """ Sorensen Dice score Measure of the overlap between the prediction and ground truth masks """ numerator = np.sum(np.round(pred) * truth) * 2.0 denominator = np.sum(np.round(pred)) + np.sum(truth) return numerator / denominator def crop_img(img, msk, crop_dim, n_channels, n_out_channels): """ Crop the image and mask """ number_of_dimensions = len(crop_dim) slices = [] for idx in range(number_of_dimensions): # Go through each dimension cropLen = crop_dim[idx] imgLen = img.shape[idx] start = (imgLen-cropLen)//2 slices.append(slice(start, start+cropLen)) # No slicing along channels slices_img = slices.copy() slices_msk = slices.copy() slices_img.append(slice(0, n_channels)) slices_msk.append(slice(0, n_out_channels)) return img[tuple(slices_img)], msk[tuple(slices_msk)] def z_normalize_img(img): """ Normalize the image so that the mean value for each image is 0 and the standard deviation is 1. """ for channel in range(img.shape[-1]): img_temp = img[..., channel] img_temp = (img_temp - np.mean(img_temp)) / np.std(img_temp) img[..., channel] = img_temp return img def load_data(imgFile, mskFile, crop_dim, n_channels, n_out_channels, openVINO_order=True): """ Modify this to load your data and labels """ imgs = np.empty((len(imgFile),*crop_dim,n_channels)) msks = np.empty((len(mskFile),*crop_dim,n_out_channels)) fileIDs = [] for idx in range(len(imgFile)): img_temp = np.array(nib.load(imgFile[idx]).dataobj) msk = np.array(nib.load(mskFile[idx]).dataobj) if n_channels == 1: img = img_temp[:, :, :, [0]] # FLAIR channel else: img = img_temp # Add channels to mask msk[msk > 0] = 1.0 msk = np.expand_dims(msk, -1) # Crop the image to the input size img, msk = crop_img(img, msk, crop_dim, n_channels, n_out_channels) # z-normalize the pixel values img = z_normalize_img(img) fileIDs.append(os.path.basename(imgFile[idx])) imgs[idx] = img msks[idx] = msk if openVINO_order: imgs = imgs.transpose((0, 4, 1, 2, 3)) msks = msks.transpose((0, 4, 1, 2, 3)) return imgs, msks, fileIDs def load_model(model_xml, fp16=False): """ Load the OpenVINO model. """ log.info("Loading U-Net model to the plugin") model_bin = os.path.splitext(model_xml)[0] + ".bin" return model_xml, model_bin def print_stats(exec_net, input_data, n_channels, batch_size, input_blob, out_blob, args): """ Prints layer by layer inference times. Good for profiling which ops are most costly in your model. """ # Start sync inference log.info("Starting inference ({} iterations)".format(args.number_iter)) log.info("Number of input channels = {}".format(n_channels)) log.info("Input data shape = {}".format(input_data.shape)) infer_time = [] for i in range(args.number_iter): t0 = time() res = exec_net.infer( inputs={input_blob: input_data[0:batch_size, :n_channels]}) infer_time.append((time() - t0) * 1000) average_inference = np.average(np.asarray(infer_time)) log.info("Average running time of one batch: {:.5f} ms".format( average_inference)) log.info("Images per second = {:.3f}".format( batch_size * 1000.0 / average_inference)) perf_counts = exec_net.requests[0].get_perf_counts() log.info("Performance counters:") log.info("{:<70} {:<15} {:<15} {:<15} {:<10}".format("name", "layer_type", "exec_type", "status", "real_time, us")) for layer, stats in perf_counts.items(): log.info("{:<70} {:<15} {:<15} {:<15} {:<10}".format(layer, stats["layer_type"], stats["exec_type"], stats["status"], stats["real_time"])) def build_argparser(): parser = ArgumentParser(description="Performs inference using OpenVINO. Compares to Keras model.", formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("-number_iter", "--number_iter", help="Number of iterations", default=5, type=int) parser.add_argument("-l", "--cpu_extension", help="MKLDNN (CPU)-targeted custom layers. " "Absolute path to a shared library with " "the kernels impl.", type=str) parser.add_argument("-pp", "--plugin_dir", help="Path to a plugin folder", type=str, default=None) parser.add_argument("-d", "--device", help="Specify the target device to infer on; " "CPU, GPU, FPGA or MYRIAD is acceptable. Sample " "will look for a suitable plugin for device " "specified (CPU by default)", default="CPU", type=str) parser.add_argument("-stats", "--stats", help="Plot the runtime statistics", default=False, action="store_true") parser.add_argument("-plot", "--plot", help="Plot the predictions", default=False, action="store_true") parser.add_argument("--csv_file", default="test.csv", help="CSV list of files to test") parser.add_argument("--openvino_model", type=str, help="The saved OpenVINO XML file", default="./openvino_models/FP32/3d_unet_decathlon.xml") parser.add_argument("--keras_model", type=str, help="Keras model filename", default="./saved_model/3d_unet_decathlon.hdf5") return parser def read_csv_file(filename): """ Read the CSV file with the image and mask filenames """ imgFiles = [] mskFiles = [] with open(filename, "rt") as f: data = csv.reader(f) for row in data: if len(row) > 0: imgFiles.append(row[0]) mskFiles.append(row[1]) return imgFiles, mskFiles, len(imgFiles) def main(): log.basicConfig(format="[ %(levelname)s ] %(message)s", level=log.INFO, stream=sys.stdout) args = build_argparser().parse_args() log.info(args) log.info("Loading test data from file: {}".format(args.csv_file)) ie = IECore() if args.cpu_extension and "CPU" in args.device: ie.add_extension(args.cpu_extension, "CPU") # Read IR model_xml, model_bin = load_model(args.openvino_model, args.device=="MYRIAD") log.info("Loading network files:\n\t{}\n\t{}".format(model_xml, model_bin)) net = IENetwork(model=model_xml, weights=model_bin) if "CPU" in args.device: supported_layers = ie.query_network(net, "CPU") not_supported_layers = [l for l in net.layers.keys() if l not in supported_layers] if len(not_supported_layers) != 0: log.error("Following layers are not supported by the plugin for specified device {}:\n {}". format(args.device, ', '.join(not_supported_layers))) log.error("Please try to specify cpu extensions library path in sample's command line parameters using -l " "or --cpu_extension command line argument") sys.exit(1) """ Ask OpenVINO for input and output tensor names and sizes """ input_blob = next(iter(net.inputs)) # Name of the input layer out_blob = next(iter(net.outputs)) # Name of the output layer # Load data batch_size, n_channels, height, width, depth = net.inputs[input_blob].shape batch_size, n_out_channels, height_out, width_out, depth_out = net.outputs[out_blob].shape crop_dim = [height, width, depth] """ Read the CSV file with the filenames of the images and masks """ imgFiles, mskFiles, num_imgs = read_csv_file(args.csv_file) """ Load the data for OpenVINO """ input_data, label_data_ov, img_indicies = load_data(imgFiles, mskFiles, crop_dim, n_channels, n_out_channels, openVINO_order=True) # Reshape the OpenVINO network to accept the different image input shape # NOTE: This only works for some models (e.g. fully convolutional) batch_size = 1 n_channels = input_data.shape[1] height = input_data.shape[2] width = input_data.shape[3] depth = input_data.shape[4] net.reshape({input_blob:(batch_size,n_channels,height,width,depth)}) batch_size, n_channels, height, width, depth = net.inputs[input_blob].shape batch_size, n_out_channels, height_out, width_out, depth_out = net.outputs[out_blob].shape log.info("The network inputs are:") for idx, input_layer in enumerate(net.inputs.keys()): log.info("{}: {}, shape = {} [N,C,H,W,D]".format(idx,input_layer,net.inputs[input_layer].shape)) log.info("The network outputs are:") for idx, output_layer in enumerate(net.outputs.keys()): log.info("{}: {}, shape = {} [N,C,H,W,D]".format(idx,output_layer,net.outputs[output_layer].shape)) # Loading model to the plugin log.info("Loading model to the plugin") exec_net = ie.load_network(network=net, device_name=args.device) del net if args.stats: # Print the latency and throughput for inference print_stats(exec_net, input_data, n_channels, batch_size, input_blob, out_blob, args) """ OpenVINO inference code input_blob is the name (string) of the input tensor in the graph out_blob is the name (string) of the output tensor in the graph Essentially, this looks exactly like a feed_dict for TensorFlow inference """ # Go through the sample validation dataset to plot predictions predictions_ov = np.zeros((num_imgs, n_out_channels, depth_out, height_out, width_out)) log.info("Starting OpenVINO inference") ov_times = [] for idx in tqdm(range(0, num_imgs)): start_time = time() res = exec_net.infer(inputs={input_blob: input_data[[idx],:n_channels]}) ov_times.append(time() - start_time) predictions_ov[idx, ] = res[out_blob] #print("{}, {}".format(imgFiles[idx], dice_score(res[out_blob],label_data_ov[idx]))) log.info("Finished OpenVINO inference") del exec_net """ Load the data for Keras """ input_data, label_data_keras, img_indicies = load_data(imgFiles, mskFiles, crop_dim, n_channels, n_out_channels, openVINO_order=False) # Load OpenVINO model for inference model = K.models.load_model(args.keras_model, compile=False) # Inference only Keras K.backend._LEARNING_PHASE = tf.constant(0) K.backend.set_learning_phase(False) K.backend.set_learning_phase(0) K.backend.set_image_data_format("channels_last") predictions_keras = np.zeros((num_imgs, height_out, width_out, depth_out, n_out_channels)) log.info("Starting Keras inference") keras_times = [] for idx in tqdm(range(num_imgs)): start_time = time() res = model.predict(input_data[[idx],...,:n_channels]) keras_times.append(time() - start_time) #print("{}, {}".format(imgFiles[idx], dice_score(res,label_data_keras[idx]))) predictions_keras[idx] = res log.info("Finished Keras inference") save_directory = "predictions_openvino" try: os.stat(save_directory) except: os.mkdir(save_directory) """ Evaluate model with Dice metric """ out_channel = 0 for idx in tqdm(range(num_imgs)): filename = os.path.splitext(os.path.splitext(img_indicies[idx])[0])[0] img = input_data[idx,...,:n_channels] ground_truth = label_data_keras[idx, :, :, :, out_channel] # Transpose the OpenVINO prediction back to NCHWD (to be consistent with Keras) pred_ov = np.transpose(predictions_ov, [0,2,3,4,1])[idx, :, :, :, out_channel] pred_keras = predictions_keras[idx, :, :, :, out_channel] dice_ov = dice_score(pred_ov, ground_truth) dice_keras = dice_score(pred_keras, ground_truth) img_nib = nib.Nifti1Image(img, np.eye(4)) img_nib.to_filename(os.path.join(save_directory, "{}_img.nii.gz".format(filename))) msk_nib = nib.Nifti1Image(ground_truth, np.eye(4)) msk_nib.to_filename(os.path.join(save_directory, "{}_msk.nii.gz".format(filename))) pred_ov_nib = nib.Nifti1Image(pred_ov, np.eye(4)) pred_ov_nib.to_filename(os.path.join(save_directory, "{}_pred_ov.nii.gz".format(filename))) log.info("Image file {}: OpenVINO Dice score = {:f}, " "Keras/TF Dice score = {:f}, Maximum absolute pixel difference OV versus Keras/TF = {:.2e}".format( img_indicies[idx], dice_ov, dice_keras, np.mean(np.abs(pred_ov - pred_keras)))) log.info("Average inference time: \n" "OpenVINO = {} seconds (s.d. {})\n " "Keras/TF = {} seconds (s.d. {})\n".format(np.mean(ov_times), np.std(ov_times), np.mean(keras_times), np.std(keras_times))) log.info("Raw OpenVINO inference times = {} seconds".format(ov_times)) log.info("Raw Keras inference times = {} seconds".format(keras_times)) if __name__ == '__main__': sys.exit(main() or 0) ``` #### File: medical-decathlon/testing/testing.py ```python import numpy as np import os import argparse import psutil import time import datetime import tensorflow as tf from tensorflow.python.saved_model import builder as saved_model_builder from tensorflow.python.saved_model.signature_def_utils import predict_signature_def from tensorflow.python.saved_model import tag_constants parser = argparse.ArgumentParser( description="Sanity testing for 3D and 2D Convolution Models",add_help=True) parser.add_argument("--dim_length", type = int, default=16, help="Tensor cube length of side") parser.add_argument("--num_channels", type = int, default=1, help="Number of channels") parser.add_argument("--num_outputs", type = int, default=1, help="Number of outputs") parser.add_argument("--bz", type = int, default=1, help="Batch size") parser.add_argument("--lr", type = float, default=0.001, help="Learning rate") parser.add_argument("--num_datapoints", type = int, default=1024, help="Number of datapoints") parser.add_argument("--epochs", type = int, default=3, help="Number of epochs") parser.add_argument("--intraop_threads", type = int, default=psutil.cpu_count(logical=False), help="Number of intraop threads") parser.add_argument("--interop_threads", type = int, default=2, help="Number of interop threads") parser.add_argument("--blocktime", type = int, default=0, help="Block time for CPU threads") parser.add_argument("--print_model", action="store_true", default=False, help="Print the summary of the model layers") parser.add_argument("--use_upsampling", action="store_true", default=False, help="Use upsampling instead of transposed convolution") parser.add_argument("--D2", action="store_true", default=False, help="Use 2D model and images instead of 3D.") parser.add_argument("--single_class_output", action="store_true", default=False, help="Use binary classifier instead of U-Net") parser.add_argument("--mkl_verbose", action="store_true", default=False, help="Print MKL debug statements.") parser.add_argument("--inference", action="store_true", default=False, help="Test inference speed. Default=Test training speed") parser.add_argument("--ngraph", action="store_true", default=False, help="Use ngraph") parser.add_argument("--keras_api", action="store_true", default=False, help="Use Keras API. False=Use tf.keras") parser.add_argument("--channels_first", action="store_true", default=False, help="Channels first. NCHW") args = parser.parse_args() os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" # Get rid of the AVX, SSE warnings if args.mkl_verbose: os.environ["MKL_VERBOSE"] = "1" # Print out messages from MKL operations os.environ["MKLDNN_VERBOSE"] = "1" # Print out messages from MKL-DNN operations os.environ["OMP_NUM_THREADS"] = str(args.intraop_threads) os.environ["KMP_BLOCKTIME"] = str(args.blocktime) os.environ["KMP_AFFINITY"] = "granularity=thread,compact,1,0" print("Started script on {}".format(datetime.datetime.now())) print("args = {}".format(args)) os.system("uname -a") print("TensorFlow version: {}".format(tf.__version__)) if args.keras_api: import keras as K print("Using Keras API") else: from tensorflow import keras as K print("Using tf.keras") if args.ngraph: print("Using nGraph") import ngraph_bridge if args.channels_first: os.environ["NGRAPH_PASS_ENABLES"]="CPUReshapeSinking:1;ReshapeElimination:1" print("Keras API version: {}".format(K.__version__)) if args.D2: # Define shape of the tensors (2D) dims = (1,2) if args.channels_first: tensor_shape = (args.num_channels, args.dim_length, args.dim_length) out_shape = (args.num_outputs, args.dim_length, args.dim_length) else: tensor_shape = (args.dim_length, args.dim_length, args.num_channels) out_shape = (args.dim_length, args.dim_length, args.num_outputs) else: # Define shape of the tensors (3D) dims=(1,2,3) if args.channels_first: tensor_shape = (args.num_channels, args.dim_length, args.dim_length, args.dim_length) tensor_shape = (args.num_outputs, args.dim_length, args.dim_length, args.dim_length) else: tensor_shape = (args.dim_length, args.dim_length, args.dim_length, args.num_channels) tensor_shape = (args.dim_length, args.dim_length, args.dim_length, args.num_outputs) # Optimize CPU threads for TensorFlow config = tf.ConfigProto( inter_op_parallelism_threads=args.interop_threads, intra_op_parallelism_threads=args.intraop_threads) # Configure only as much GPU memory as needed during runtime # Default is to use the entire GPU memory config.gpu_options.allow_growth = True sess = tf.Session(config=config) K.backend.set_session(sess) def dice_coef(y_true, y_pred, axis=(1,2,3), smooth=1.0): intersection = tf.reduce_sum(y_true * K.backend.round(y_pred), axis=axis) union = tf.reduce_sum(y_true + K.backend.round(y_pred), axis=axis) numerator = tf.constant(2.) * intersection + smooth denominator = union + smooth coef = numerator / denominator return tf.reduce_mean(coef) def dice_coef_loss(target, prediction, axis=(1,2,3), smooth=1.0): """ Sorenson Dice loss Using -log(Dice) as the loss since it is better behaved. Also, the log allows avoidance of the division which can help prevent underflow when the numbers are very small. """ intersection = tf.reduce_sum(prediction * target, axis=axis) p = tf.reduce_sum(prediction, axis=axis) t = tf.reduce_sum(target, axis=axis) numerator = tf.reduce_mean(2. * intersection + smooth) denominator = tf.reduce_mean(t + p + smooth) dice_loss = -tf.log(numerator) + tf.log(denominator) return dice_loss if args.channels_first: concat_axis = -1 data_format = "channels_first" else: concat_axis = -1 data_format = "channels_last" def unet3D(input_img, use_upsampling=False, n_out=1, dropout=0.2, print_summary = False, return_model=False): """ 3D U-Net model """ print("3D U-Net Segmentation") inputs = K.layers.Input(shape=input_img, name="Input_Image") params = dict(kernel_size=(3, 3, 3), activation=None, padding="same", data_format=data_format, kernel_initializer="he_uniform") conv1 = K.layers.Conv3D(name="conv1a", filters=32, **params)(inputs) conv1 = K.layers.BatchNormalization()(conv1) conv1 = K.layers.Activation("relu")(conv1) conv1 = K.layers.Conv3D(name="conv1b", filters=64, **params)(conv1) conv1 = K.layers.BatchNormalization()(conv1) conv1 = K.layers.Activation("relu")(conv1) pool1 = K.layers.MaxPooling3D(name="pool1", pool_size=(2, 2, 2))(conv1) conv2 = K.layers.Conv3D(name="conv2a", filters=64, **params)(pool1) conv2 = K.layers.BatchNormalization()(conv2) conv2 = K.layers.Activation("relu")(conv2) conv2 = K.layers.Conv3D(name="conv2b", filters=128, **params)(conv2) conv2 = K.layers.BatchNormalization()(conv2) conv2 = K.layers.Activation("relu")(conv2) pool2 = K.layers.MaxPooling3D(name="pool2", pool_size=(2, 2, 2))(conv2) conv3 = K.layers.Conv3D(name="conv3a", filters=128, **params)(pool2) conv3 = K.layers.BatchNormalization()(conv3) conv3 = K.layers.Activation("relu")(conv3) conv3 = K.layers.Dropout(dropout)(conv3) ### Trying dropout layers earlier on, as indicated in the paper conv3 = K.layers.Conv3D(name="conv3b", filters=256, **params)(conv3) conv3 = K.layers.BatchNormalization()(conv3) conv3 = K.layers.Activation("relu")(conv3) pool3 = K.layers.MaxPooling3D(name="pool3", pool_size=(2, 2, 2))(conv3) conv4 = K.layers.Conv3D(name="conv4a", filters=256, **params)(pool3) conv4 = K.layers.BatchNormalization()(conv4) conv4 = K.layers.Activation("relu")(conv4) conv4 = K.layers.Dropout(dropout)(conv4) ### Trying dropout layers earlier on, as indicated in the paper conv4 = K.layers.Conv3D(name="conv4b", filters=512, **params)(conv4) conv4 = K.layers.BatchNormalization()(conv4) conv4 = K.layers.Activation("relu")(conv4) if use_upsampling: up = K.layers.UpSampling3D(name="up4", size=(2, 2, 2))(conv4) else: up = K.layers.Conv3DTranspose(name="transConv4", filters=512, data_format=data_format, kernel_size=(2, 2, 2), strides=(2, 2, 2), padding="same")(conv4) up4 = K.layers.concatenate([up, conv3], axis=concat_axis) conv5 = K.layers.Conv3D(name="conv5a", filters=256, **params)(up4) conv5 = K.layers.BatchNormalization()(conv5) conv5 = K.layers.Activation("relu")(conv5) conv5 = K.layers.Conv3D(name="conv5b", filters=256, **params)(conv5) conv5 = K.layers.BatchNormalization()(conv5) conv5 = K.layers.Activation("relu")(conv5) if use_upsampling: up = K.layers.UpSampling3D(name="up5", size=(2, 2, 2))(conv5) else: up = K.layers.Conv3DTranspose(name="transConv5", filters=256, data_format=data_format, kernel_size=(2, 2, 2), strides=(2, 2, 2), padding="same")(conv5) up5 = K.layers.concatenate([up, conv2], axis=concat_axis) conv6 = K.layers.Conv3D(name="conv6a", filters=128, **params)(up5) conv6 = K.layers.BatchNormalization()(conv6) conv6 = K.layers.Activation("relu")(conv6) conv6 = K.layers.Conv3D(name="conv6b", filters=128, **params)(conv6) conv6 = K.layers.BatchNormalization()(conv6) conv6 = K.layers.Activation("relu")(conv6) if use_upsampling: up = K.layers.UpSampling3D(name="up6", size=(2, 2, 2))(conv6) else: up = K.layers.Conv3DTranspose(name="transConv6", filters=128, data_format=data_format, kernel_size=(2, 2, 2), strides=(2, 2, 2), padding="same")(conv6) up6 = K.layers.concatenate([up, conv1], axis=concat_axis) conv7 = K.layers.Conv3D(name="conv7a", filters=64, **params)(up6) conv7 = K.layers.BatchNormalization()(conv7) conv7 = K.layers.Activation("relu")(conv7) conv7 = K.layers.Conv3D(name="conv7b", filters=64, **params)(conv7) conv7 = K.layers.BatchNormalization()(conv7) conv7 = K.layers.Activation("relu")(conv7) pred = K.layers.Conv3D(name="Prediction", filters=n_out, kernel_size=(1, 1, 1), data_format=data_format, activation="sigmoid")(conv7) if return_model: model = K.models.Model(inputs=[inputs], outputs=[pred]) if print_summary: print(model.summary()) return pred, model else: return pred def unet2D(input_tensor, use_upsampling=False, n_out=1, dropout=0.2, print_summary = False, return_model=False): """ 2D U-Net """ print("2D U-Net Segmentation") inputs = K.layers.Input(shape=input_tensor, name="Images") # Convolution parameters params = dict(kernel_size=(3, 3), activation="relu", padding="same", data_format=data_format, kernel_initializer="he_uniform") # Transposed convolution parameters params_trans = dict(data_format=data_format, kernel_size=(2, 2), strides=(2, 2), padding="same") fms = 64 conv1 = K.layers.Conv2D(name="conv1a", filters=fms, **params)(inputs) conv1 = K.layers.Conv2D(name="conv1b", filters=fms, **params)(conv1) pool1 = K.layers.MaxPooling2D(name="pool1", pool_size=(2, 2))(conv1) conv2 = K.layers.Conv2D(name="conv2a", filters=fms*2, **params)(pool1) conv2 = K.layers.Conv2D(name="conv2b", filters=fms*2, **params)(conv2) pool2 = K.layers.MaxPooling2D(name="pool2", pool_size=(2, 2))(conv2) conv3 = K.layers.Conv2D(name="conv3a", filters=fms*4, **params)(pool2) #conv3 = K.layers.Dropout(dropout)(conv3) conv3 = K.layers.Conv2D(name="conv3b", filters=fms*4, **params)(conv3) pool3 = K.layers.MaxPooling2D(name="pool3", pool_size=(2, 2))(conv3) conv4 = K.layers.Conv2D(name="conv4a", filters=fms*8, **params)(pool3) #conv4 = K.layers.Dropout(dropout)(conv4) conv4 = K.layers.Conv2D(name="conv4b", filters=fms*8, **params)(conv4) pool4 = K.layers.MaxPooling2D(name="pool4", pool_size=(2, 2))(conv4) conv5 = K.layers.Conv2D(name="conv5a", filters=fms*16, **params)(pool4) conv5 = K.layers.Conv2D(name="conv5b", filters=fms*16, **params)(conv5) if args.use_upsampling: up = K.layers.UpSampling2D(name="up6", size=(2, 2))(conv5) else: up = K.layers.Conv2DTranspose(name="transConv6", filters=fms*8, **params_trans)(conv5) up6 = K.layers.concatenate([up, conv4], axis=concat_axis) conv6 = K.layers.Conv2D(name="conv6a", filters=fms*8, **params)(up6) conv6 = K.layers.Conv2D(name="conv6b", filters=fms*8, **params)(conv6) if args.use_upsampling: up = K.layers.UpSampling2D(name="up7", size=(2, 2))(conv6) else: up = K.layers.Conv2DTranspose(name="transConv7", filters=fms*4, **params_trans)(conv6) up7 = K.layers.concatenate([up, conv3], axis=concat_axis) conv7 = K.layers.Conv2D(name="conv7a", filters=fms*4, **params)(up7) conv7 = K.layers.Conv2D(name="conv7b", filters=fms*4, **params)(conv7) if args.use_upsampling: up = K.layers.UpSampling2D(name="up8", size=(2, 2))(conv7) else: up = K.layers.Conv2DTranspose(name="transConv8", filters=fms*2, **params_trans)(conv7) up8 = K.layers.concatenate([up, conv2], axis=concat_axis) conv8 = K.layers.Conv2D(name="conv8a", filters=fms*2, **params)(up8) conv8 = K.layers.Conv2D(name="conv8b", filters=fms*2, **params)(conv8) if args.use_upsampling: up = K.layers.UpSampling2D(name="up9", size=(2, 2))(conv8) else: up = K.layers.Conv2DTranspose(name="transConv9", filters=fms, **params_trans)(conv8) up9 = K.layers.concatenate([up, conv1], axis=concat_axis) conv9 = K.layers.Conv2D(name="conv9a", filters=fms, **params)(up9) conv9 = K.layers.Conv2D(name="conv9b", filters=fms, **params)(conv9) pred = K.layers.Conv2D(name="PredictionMask", filters=n_out, kernel_size=(1, 1), data_format=data_format, activation="sigmoid")(conv9) if return_model: model = K.models.Model(inputs=[inputs], outputs=[pred]) if print_summary: print(model.summary()) return pred, model else: return pred def conv3D(input_img, print_summary = False, dropout=0.2, n_out=1, return_model=False): """ Simple 3D convolution model based on VGG-16 """ print("3D Convolutional Binary Classifier based on VGG-16") inputs = K.layers.Input(shape=input_img, name="Images") params = dict(kernel_size=(3, 3, 3), activation="relu", padding="same", data_format=data_format, kernel_initializer="he_uniform") #RandomUniform(minval=-0.01, maxval=0.01, seed=816)) conv1 = K.layers.Conv3D(name="conv1", filters=64, **params)(inputs) conv2 = K.layers.Conv3D(name="conv2", filters=64, **params)(conv1) pool1 = K.layers.MaxPooling3D(name="pool1", pool_size=(2, 2, 2))(conv2) conv3 = K.layers.Conv3D(name="conv3", filters=128, **params)(pool1) conv4 = K.layers.Conv3D(name="conv4", filters=128, **params)(conv3) pool2 = K.layers.MaxPooling3D(name="pool2", pool_size=(2, 2, 2))(conv4) conv5 = K.layers.Conv3D(name="conv5", filters=256, **params)(pool2) conv6 = K.layers.Conv3D(name="conv6", filters=256, **params)(conv5) conv7 = K.layers.Conv3D(name="conv7", filters=256, **params)(conv6) pool3 = K.layers.MaxPooling3D(name="pool3", pool_size=(2, 2, 2))(conv7) conv8 = K.layers.Conv3D(name="conv8", filters=512, **params)(pool3) conv9 = K.layers.Conv3D(name="conv9", filters=512, **params)(conv8) conv10 = K.layers.Conv3D(name="conv10", filters=512, **params)(conv9) pool4 = K.layers.MaxPooling3D(name="pool4", pool_size=(2, 2, 2))(conv10) conv11 = K.layers.Conv3D(name="conv11", filters=512, **params)(pool4) conv12 = K.layers.Conv3D(name="conv12", filters=512, **params)(conv11) conv13 = K.layers.Conv3D(name="conv13", filters=512, **params)(conv12) pool5 = K.layers.MaxPooling3D(name="pool5", pool_size=(2, 2, 2))(conv13) flat = K.layers.Flatten()(pool5) dense1 = K.layers.Dense(4096, activation="relu")(flat) drop1 = K.layers.Dropout(dropout)(dense1) dense2 = K.layers.Dense(4096, activation="relu")(drop1) pred = K.layers.Dense(n_out, name="Prediction", activation="sigmoid")(dense2) if return_model: model = K.models.Model(inputs=[inputs], outputs=[pred]) if print_summary: print(model.summary()) return pred, model else: return pred def conv2D(input_tensor, print_summary = False, dropout=0.2, n_out=1, return_model=False): """ Simple 2D convolution model based on VGG-16 """ print("2D Convolutional Binary Classifier based on VGG-16") inputs = K.layers.Input(shape=input_tensor, name="Images") params = dict(kernel_size=(3, 3), activation="relu", padding="same", data_format=data_format, kernel_initializer="he_uniform") #RandomUniform(minval=-0.01, maxval=0.01, seed=816)) conv1 = K.layers.Conv2D(name="conv1", filters=64, **params)(inputs) conv2 = K.layers.Conv2D(name="conv2", filters=64, **params)(conv1) pool1 = K.layers.MaxPooling2D(name="pool1", pool_size=(2, 2))(conv2) conv3 = K.layers.Conv2D(name="conv3", filters=128, **params)(pool1) conv4 = K.layers.Conv2D(name="conv4", filters=128, **params)(conv3) pool2 = K.layers.MaxPooling2D(name="pool2", pool_size=(2, 2))(conv4) conv5 = K.layers.Conv2D(name="conv5", filters=256, **params)(pool2) conv6 = K.layers.Conv2D(name="conv6", filters=256, **params)(conv5) conv7 = K.layers.Conv2D(name="conv7", filters=256, **params)(conv6) pool3 = K.layers.MaxPooling2D(name="pool3", pool_size=(2, 2))(conv7) conv8 = K.layers.Conv2D(name="conv8", filters=512, **params)(pool3) conv9 = K.layers.Conv2D(name="conv9", filters=512, **params)(conv8) conv10 = K.layers.Conv2D(name="conv10", filters=512, **params)(conv9) pool4 = K.layers.MaxPooling2D(name="pool4", pool_size=(2, 2))(conv10) conv11 = K.layers.Conv2D(name="conv11", filters=512, **params)(pool4) conv12 = K.layers.Conv2D(name="conv12", filters=512, **params)(conv11) conv13 = K.layers.Conv2D(name="conv13", filters=512, **params)(conv12) pool5 = K.layers.MaxPooling2D(name="pool5", pool_size=(2, 2))(conv13) flat = K.layers.Flatten()(pool5) dense1 = K.layers.Dense(4096, activation="relu")(flat) drop1 = K.layers.Dropout(dropout)(dense1) dense2 = K.layers.Dense(4096, activation="relu")(drop1) pred = K.layers.Dense(n_out, name="Prediction", activation="sigmoid")(dense2) if return_model: model = K.models.Model(inputs=[inputs], outputs=[pred]) if print_summary: print(model.summary()) return pred, model else: return pred if args.single_class_output: if args.D2: # 2D convnet model pred, model = conv2D(tensor_shape, print_summary=args.print_model, n_out=args.num_outputs, return_model=True) else: # 3D convet model pred, model = conv3D(tensor_shape, print_summary=args.print_model, n_out=args.num_outputs, return_model=True) else: if args.D2: # 2D U-Net model pred, model = unet2D(tensor_shape, use_upsampling=args.use_upsampling, print_summary=args.print_model, n_out=args.num_outputs, return_model=True) else: # 3D U-Net model pred, model = unet3D(tensor_shape, use_upsampling=args.use_upsampling, print_summary=args.print_model, n_out=args.num_outputs, return_model=True) # Freeze layers if args.inference: for layer in model.layers: layer.trainable = False # Performance metrics for model if args.single_class_output: model.compile(loss="binary_crossentropy", optimizer="adam", metrics=["accuracy"]) else: model.compile(loss=dice_coef_loss, optimizer="adam", metrics=[dice_coef, "accuracy"]) def get_imgs(): # Just feed completely random data in for the benchmark testing sh = [args.bz] + list(tensor_shape) imgs = np.random.rand(*sh) while True: yield imgs def get_batch(): # Just feed completely random data in for the benchmark testing sh = [args.bz] + list(tensor_shape) imgs = np.random.rand(*sh) if args.single_class_output: truths = np.random.rand(args.bz, args.num_outputs) else: truths = np.random.rand(*sh) while True: yield imgs, truths # Same number of sample to process regardless of batch size # So if we have a larger batch size we can take fewer steps. total_steps = args.num_datapoints//args.bz print("Using random data.") if args.inference: print("Testing inference speed.") else: print("Testing training speed.") start_time = time.time() if args.inference: for _ in range(args.epochs): model.predict_generator(get_imgs(), steps=total_steps, verbose=1) else: model.fit_generator(get_batch(), steps_per_epoch=total_steps, epochs=args.epochs, verbose=1) if args.inference: import shutil dirName = "./tensorflow_serving_model" if args.single_class_output: dirName += "_VGG16" else: dirName += "_UNET" if args.D2: dirName += "_2D" else: dirName += "_3D" shutil.rmtree(dirName, ignore_errors=True) # Save TensorFlow serving model builder = saved_model_builder.SavedModelBuilder(dirName) # Create prediction signature to be used by TensorFlow Serving Predict API signature = predict_signature_def(inputs={"images": model.input}, outputs={"scores": model.output}) # Save the meta graph and the variables builder.add_meta_graph_and_variables(sess=K.backend.get_session(), tags=[tag_constants.SERVING], signature_def_map={"predict": signature}) builder.save() print("Saved TensorFlow Serving model to: {}".format(dirName)) stop_time = time.time() print("\n\nTotal time = {:,.3f} seconds".format(stop_time - start_time)) print("Total images = {:,}".format(args.epochs*args.num_datapoints)) print("Speed = {:,.3f} images per second".format( \ (args.epochs*args.num_datapoints)/(stop_time - start_time))) ```
{ "source": "jingxu85/theta-etl", "score": 2 }
#### File: blockchainetl/streaming/streamer_adapter_stub.py ```python class StreamerAdapterStub: def open(self): pass def get_current_block_height(self): return 0 def export_all(self, start_block, end_block): pass def close(self): pass ``` #### File: thetaetl/mappers/transaction_mapper.py ```python from thetaetl.domain.transaction import ThetaTransaction from thetaetl.mappers.raw_transaction_mapper import ThetaRawTransactionMapper from thetaetl.utils import hex_to_dec, to_normalized_address class ThetaTransactionMapper(object): def __init__(self, raw_transaction_mapper=None): if raw_transaction_mapper is None: self.raw_transaction_mapper = ThetaRawTransactionMapper() else: self.raw_transaction_mapper = raw_transaction_mapper def json_dict_to_transaction(self, json_dict): transaction = ThetaTransaction() transaction.hash = json_dict.get('hash') transaction.type = json_dict.get('tx_type') transaction.raw = self.raw_transaction_mapper.json_dict_to_raw_transaction(json_dict.get('raw'), transaction.type) return transaction def transaction_to_dict(self, transaction): raw_transactions = self.raw_transaction_mapper.raw_transaction_to_dict(transaction.raw, transaction.type) return { 'type': 'transaction', 'raw': raw_transactions, 'tx_type': transaction.type, 'hash': transaction.hash, } ``` #### File: thetaetl/mappers/vote_mapper.py ```python from thetaetl.domain.vote import ThetaVote class ThetaVoteMapper(object): def json_dict_to_vote(self, json_dict): vote = ThetaVote() vote.Block = json_dict.get('Block') vote.Epoch = json_dict.get('Epoch') vote.Height = json_dict.get('Height') vote.ID = json_dict.get('ID') vote.Signature = json_dict.get('Signature') return vote def vote_to_dict(self, vote): return { 'type': 'vote', 'Block': vote.Block, 'Epoch': vote.Epoch, 'Height': vote.Height, 'ID': vote.ID, 'Signature': vote.Signature } ```
{ "source": "jing-xu/analytics-zoo", "score": 2 }
#### File: learn/tf/estimator.py ```python from pyspark.sql import DataFrame from bigdl.optim.optimizer import MaxEpoch from zoo.tfpark.tf_dataset import TFNdarrayDataset from zoo.tfpark.model import _standarize_feature_label_dataset from zoo.common.utils import load_from_file from zoo.orca.data.tf.data import Dataset, TFDataDataset2 from zoo.orca.data import SparkXShards from zoo.orca.learn.tf.utils import * from zoo.orca.learn.trigger import Trigger from zoo.orca.learn.utils import find_latest_checkpoint, convert_predict_to_xshard from zoo.tfpark import KerasModel from zoo.tfpark import TFOptimizer, TFNet, ZooOptimizer from zoo.tfpark.tf_optimizer import StatelessMetric from zoo.tfpark.utils import evaluate_metrics from zoo.util import nest from zoo.util.tf import save_tf_checkpoint class Estimator(object): def fit(self, data, epochs, **kwargs): pass def predict(self, data, **kwargs): pass def evaluate(self, data, **kwargs): pass def load_orca_checkpoint(self, path, version): """ Load specified Orca checkpoint. :param path: checkpoint directory which contains model.* and optimMethod-TFParkTraining.* files. :param version: checkpoint version, which is the suffix of model.* file, i.e., for modle.4 file, the version is 4. """ self.load_checkpoint = True self.checkpoint_path = path self.checkpoint_version = version def load_latest_orca_checkpoint(self, path): """ Load latest Orca checkpoint under specified directory. :param path: directory containing Orca checkpoint files. """ ckpt_path, _, version = find_latest_checkpoint(path, model_type="tf") if ckpt_path is None: raise Exception("Cannot find checkpoint") self.load_orca_checkpoint(ckpt_path, version) def set_tensorboard(self, log_dir, app_name): """ Set summary information during the training process for visualization purposes. Saved summary can be viewed via TensorBoard. In order to take effect, it needs to be called before fit. Training summary will be saved to 'log_dir/app_name/train' and validation summary (if any) will be saved to 'log_dir/app_name/validation'. # Arguments :param log_dir: The base directory path to store training and validation logs. :param app_name: The name of the application. """ self.log_dir = log_dir self.app_name = app_name def get_train_summary(self, tag=None): """ Get the scalar from model train summary Return list of summary data of [iteration_number, scalar_value, timestamp] # Arguments tag: The string variable represents the scalar wanted """ if self.tf_optimizer: return self.tf_optimizer.estimator.get_train_summary(tag) return None def get_validation_summary(self, tag=None): """ Get the scalar from model validation summary Return list of summary data of [iteration_number, scalar_value, timestamp] Note: The metric and tag may not be consistent Please look up following form to pass tag parameter Left side is your metric during compile Right side is the tag you should pass 'Accuracy' | 'Top1Accuracy' 'BinaryAccuracy' | 'Top1Accuracy' 'CategoricalAccuracy' | 'Top1Accuracy' 'SparseCategoricalAccuracy' | 'Top1Accuracy' 'AUC' | 'AucScore' 'HitRatio' | 'HitRate@k' (k is Top-k) 'Loss' | 'Loss' 'MAE' | 'MAE' 'NDCG' | 'NDCG' 'TFValidationMethod' | '${name + " " + valMethod.toString()}' 'Top5Accuracy' | 'Top5Accuracy' 'TreeNNAccuracy' | 'TreeNNAccuracy()' 'MeanAveragePrecision' | 'MAP@k' (k is Top-k) (BigDL) 'MeanAveragePrecision' | 'PascalMeanAveragePrecision' (Zoo) 'StatelessMetric' | '${name}' # Arguments tag: The string variable represents the scalar wanted """ if self.tf_optimizer: for val_method in self.tf_optimizer.tf_model.val_methods: if isinstance(val_method, StatelessMetric): if tag == val_method.name: return self.tf_optimizer.estimator.get_validation_summary(tag) else: if tag == str(val_method.val_method): return self.tf_optimizer.estimator.\ get_validation_summary("{} {}".format(val_method.name, tag)) continue return None @staticmethod def from_graph(*, inputs, outputs=None, labels=None, loss=None, optimizer=None, clip_norm=None, clip_value=None, metrics=None, updates=None, sess=None, model_dir=None, backend="bigdl"): """ Create an Estimator for tesorflow graph. :param inputs: input tensorflow tensors. :param outputs: output tensorflow tensors. :param labels: label tensorflow tensors. :param loss: The loss tensor of the TensorFlow model, should be a scalar :param optimizer: tensorflow optimization method. :param clip_norm: float >= 0. Gradients will be clipped when their L2 norm exceeds this value. :param clip_value: a float >= 0 or a tuple of two floats. If clip_value is a float, gradients will be clipped when their absolute value exceeds this value. If clip_value is a tuple of two floats, gradients will be clipped when their value less than clip_value[0] or larger than clip_value[1]. :param metrics: metric tensor. :param sess: the current TensorFlow Session, if you want to used a pre-trained model, you should use the Session to load the pre-trained variables and pass it to estimator :param model_dir: location to save model checkpoint and summaries. :param backend: backend for estimator. Now it only can be "bigdl". :return: an Estimator object. """ assert backend == "bigdl", "only bigdl backend is supported for now" return TFOptimizerWrapper(inputs=inputs, outputs=outputs, labels=labels, loss=loss, optimizer=optimizer, clip_norm=clip_norm, clip_value=clip_value, metrics=metrics, updates=updates, sess=sess, model_dir=model_dir ) @staticmethod def from_keras(keras_model, metrics=None, model_dir=None, optimizer=None, backend="bigdl"): """ Create an Estimator from a tensorflow.keras model. The model must be compiled. :param keras_model: the tensorflow.keras model, which must be compiled. :param metrics: user specified metric. :param model_dir: location to save model checkpoint and summaries. :param optimizer: an optional bigdl optimMethod that will override the optimizer in keras_model.compile :param backend: backend for estimator. Now it only can be "bigdl". :return: an Estimator object. """ assert backend == "bigdl", "only bigdl backend is supported for now" return TFKerasWrapper(keras_model, metrics, model_dir, optimizer) def save_tf_checkpoint(self, path): """ Save tensorflow checkpoint in this estimator. :param path: tensorflow checkpoint path. """ raise NotImplementedError() def save_keras_model(self, path, overwrite=True): """ Save tensorflow keras model in this estimator. :param path: keras model save path. :param overwrite: Whether to silently overwrite any existing file at the target location. """ raise NotImplementedError() @staticmethod def load_keras_model(path): """ Create Estimator by loading an existing keras model (with weights) from HDF5 file. :param path: String. The path to the pre-defined model. :return: Orca TF Estimator. """ from tensorflow.python.keras import models def load_func(file_path): return models.load_model(file_path) model = load_from_file(load_func, path) return Estimator.from_keras(keras_model=model) def save_keras_weights(self, filepath, overwrite=True, save_format=None): """ Save tensorflow keras model weights in this estimator. :param path: keras model weights save path. :param overwrite: Whether to silently overwrite any existing file at the target location. :param save_format: Either 'tf' or 'h5'. A `filepath` ending in '.h5' or '.keras' will default to HDF5 if `save_format` is `None`. Otherwise `None` defaults to 'tf'. """ raise NotImplementedError() def load_keras_weights(self, filepath, by_name=False): """ Save tensorflow keras model in this estimator. :param filepath: keras model weights save path. :param by_name: Boolean, whether to load weights by name or by topological order. Only topological loading is supported for weight files in TensorFlow format. """ raise NotImplementedError() def is_tf_data_dataset(data): is_dataset = isinstance(data, tf.data.Dataset) is_dataset_v2 = isinstance(data, tf.python.data.ops.dataset_ops.DatasetV2) return is_dataset or is_dataset_v2 def to_dataset(data, batch_size, batch_per_thread, validation_data, feature_cols, labels_cols, hard_code_batch_size, sequential_order, shuffle, auto_shard_files): # todo wrap argument into kwargs if validation_data: if isinstance(data, SparkXShards): assert isinstance(validation_data, SparkXShards), \ "train data and validation data should be both SparkXShards" if isinstance(data, Dataset): assert isinstance(validation_data, Dataset), \ "train data and validation data should be both orca.data.tf.Dataset" if isinstance(data, DataFrame): assert isinstance(validation_data, DataFrame), \ "train data and validation data should be both Spark DataFrame" if isinstance(data, tf.data.Dataset): assert isinstance(validation_data, tf.data.Dataset), \ "train data and validation data should be both tf.data.Dataset" if isinstance(data, SparkXShards): dataset = xshards_to_tf_dataset(data, batch_size, batch_per_thread, validation_data, hard_code_batch_size=hard_code_batch_size, sequential_order=sequential_order, shuffle=shuffle) elif isinstance(data, Dataset): dataset = TFDataDataset2(data, batch_size=batch_size, batch_per_thread=batch_per_thread, validation_dataset=validation_data) elif isinstance(data, DataFrame): dataset = TFDataset.from_dataframe(data, feature_cols, labels_cols, batch_size, batch_per_thread, hard_code_batch_size, validation_data, sequential_order, shuffle ) elif is_tf_data_dataset(data): dataset = TFDataset.from_tf_data_dataset(data, batch_size, batch_per_thread, hard_code_batch_size, validation_data, sequential_order, shuffle, auto_shard_files=auto_shard_files) else: raise ValueError("data must be SparkXShards or orca.data.tf.Dataset or " "Spark DataFrame or tf.data.Dataset") return dataset class TFOptimizerWrapper(Estimator): def __init__(self, *, inputs, outputs, labels, loss, optimizer, clip_norm, clip_value, metrics, updates, sess, model_dir ): self.inputs = inputs self.outputs = outputs self.labels = labels self.loss = loss self.use_bigdl_optim = False self.clip_norm = clip_norm self.clip_value = clip_value if optimizer is not None: from zoo.orca.learn.optimizers import Optimizer if isinstance(optimizer, Optimizer): self.train_op = None self.optimizer = optimizer.get_optimizer() self.use_bigdl_optim = True else: assert isinstance(optimizer, tf.train.Optimizer), \ "optimizer is of type {}, ".format(type(optimizer)) + \ "it should be an instance of tf.train.Optimizer" self.optimizer = ZooOptimizer(optimizer) if clip_norm or clip_value: gvs = self.optimizer.compute_gradients(self.loss) if clip_norm: gvs = [(tf.clip_by_norm(g_v[0], clip_norm), g_v[1]) for g_v in gvs] if clip_value: if isinstance(clip_value, tuple): assert len(clip_value) == 2 and clip_value[0] < clip_value[1], \ "clip value should be (clip_min, clip_max)" gvs = [(tf.clip_by_value(g_v[0], clip_value[0], clip_value[1]), g_v[1]) for g_v in gvs] if isinstance(clip_value, (int, float)): assert clip_value > 0, "clip value should be larger than 0" gvs = [(tf.clip_by_value(g_v[0], -clip_value, clip_value), g_v[1]) for g_v in gvs] else: raise Exception("clip_value should be a tuple or one number") self.train_op = self.optimizer.apply_gradients(gvs) else: self.train_op = self.optimizer.minimize(self.loss) else: self.optimizer = None self.train_op = None self.metrics = metrics self.updates = updates if sess is None: self.sess = tf.Session() self.sess.run(tf.global_variables_initializer()) else: self.sess = sess self.model_dir = model_dir self.load_checkpoint = False self.tf_optimizer = None self.log_dir = None self.app_name = None def fit(self, data, epochs=1, batch_size=32, feature_cols=None, labels_cols=None, validation_data=None, hard_code_batch_size=False, auto_shard_files=True, session_config=None, feed_dict=None, checkpoint_trigger=None ): """ Train this graph model with train data. :param data: train data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays, 'y': a label numpy array or a tuple of label numpy arrays} If data is tf.data.Dataset, each element is a tuple of input tensors. :param epochs: number of epochs to train. :param batch_size: total batch size for each iteration. :param feature_cols: feature column names if train data is Spark DataFrame. :param labels_cols: label column names if train data is Spark DataFrame. :param validation_data: validation data. Validation data type should be the same as train data. :param hard_code_batch_size: whether hard code batch size for training. Default is False. :param auto_shard_files: whether to automatically detect if the dataset is file-based and and apply sharding on files, otherwise sharding on records. Default is True. :param session_config: tensorflow session configuration for training. Should be object of tf.ConfigProto :param feed_dict: a dictionary. The key is TensorFlow tensor, usually a placeholder, the value of the dictionary is a tuple of two elements. The first one of the tuple is the value to feed to the tensor in training phase and the second one is the value to feed to the tensor in validation phase. :param checkpoint_trigger: when to trigger checkpoint during training. Should be a zoo.orca.learn.trigger, like EveryEpoch(), SeveralIteration(num_iterations),etc. """ assert self.labels is not None, \ "labels is None; it should not be None in training" assert self.loss is not None, \ "loss is None; it should not be None in training" assert self.optimizer is not None, \ "optimizer is None; it should not be None in training" if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in training" assert labels_cols is not None, \ "label columns is None; it should not be None in training" if checkpoint_trigger is not None: checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) dataset = to_dataset(data, batch_size=batch_size, batch_per_thread=-1, validation_data=validation_data, feature_cols=feature_cols, labels_cols=labels_cols, hard_code_batch_size=hard_code_batch_size, sequential_order=False, shuffle=True, auto_shard_files=auto_shard_files ) if feed_dict is not None: tensor_with_value = {key: (value[0], value[1]) for key, value in feed_dict.items()} else: tensor_with_value = None if self.use_bigdl_optim: self.tf_optimizer = TFOptimizer.from_loss( self.loss, self.optimizer, session=self.sess, inputs=(self.inputs, self.labels), dataset=dataset, clip_norm=self.clip_norm, clip_value=self.clip_value, metrics=self.metrics, tensor_with_value=tensor_with_value, session_config=session_config, model_dir=self.model_dir, updates=self.updates) else: self.tf_optimizer = TFOptimizer.from_train_op( train_op=self.train_op, loss=self.loss, inputs=self.inputs, labels=self.labels, dataset=dataset, metrics=self.metrics, updates=self.updates, sess=self.sess, tensor_with_value=tensor_with_value, session_config=session_config, model_dir=self.model_dir) if self.load_checkpoint: self.tf_optimizer.load_checkpoint(self.checkpoint_path, self.checkpoint_version) if self.log_dir and self.app_name: self.tf_optimizer.estimator.set_tensorboad(self.log_dir, self.app_name) self.tf_optimizer.optimize(end_trigger=MaxEpoch(epochs), checkpoint_trigger=checkpoint_trigger) return self def predict(self, data, batch_size=4, feature_cols=None, hard_code_batch_size=False, auto_shard_files=True, ): """ Predict input data :param data: data to be predicted. It can be XShards, Spark DataFrame. If data is XShards, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays}. :param batch_size: batch size per thread :param feature_cols: list of feature column names if input data is Spark DataFrame. :param hard_code_batch_size: whether to hard code batch size for prediction. The default value is False. :return: predicted result. If input data is XShards or tf.data.Dataset, the predict result is a XShards, and the schema for each result is: {'prediction': predicted numpy array or list of predicted numpy arrays}. If input data is Spark DataFrame, the predict result is a DataFrame which includes original columns plus 'prediction' column. The 'prediction' column can be FloatType, VectorUDT or Array of VectorUDT depending on model outputs shape. """ assert self.outputs is not None, \ "output is None, it should not be None in prediction" if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in prediction" assert not is_tf_data_dataset(data), "tf.data.Dataset currently cannot be used for" \ "estimator prediction" dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, labels_cols=None, hard_code_batch_size=hard_code_batch_size, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) flat_inputs = nest.flatten(self.inputs) flat_outputs = nest.flatten(self.outputs) tfnet = TFNet.from_session(sess=self.sess, inputs=flat_inputs, outputs=flat_outputs) predicted_rdd = tfnet.predict(dataset) if isinstance(data, DataFrame): return convert_predict_to_dataframe(data, predicted_rdd) elif isinstance(data, SparkXShards) or isinstance(data, tf.data.Dataset): return convert_predict_to_xshard(predicted_rdd) else: return predicted_rdd def evaluate(self, data, batch_size=32, feature_cols=None, labels_cols=None, hard_code_batch_size=False, auto_shard_files=True, ): """ Evaluate model. :param data: evaluation data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays, 'y': a label numpy array or a tuple of label numpy arrays} If data is tf.data.Dataset, each element is a tuple of input tensors. :param batch_size: batch size per thread. :param feature_cols: feature_cols: feature column names if train data is Spark DataFrame. :param labels_cols: label column names if train data is Spark DataFrame. :param hard_code_batch_size: whether to hard code batch size for evaluation. :return: evaluation result as a dictionary of {'metric name': metric value} """ assert self.metrics is not None, \ "metrics is None, it should not be None in evaluate" if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in evaluation" assert labels_cols is not None, \ "label columns is None; it should not be None in evaluation" dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, labels_cols=labels_cols, hard_code_batch_size=hard_code_batch_size, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) flat_inputs = nest.flatten(self.inputs) flat_labels = nest.flatten(self.labels) return evaluate_metrics(flat_inputs + flat_labels, sess=self.sess, dataset=dataset, metrics=self.metrics) def save_tf_checkpoint(self, path): save_tf_checkpoint(self.sess, path) class TFKerasWrapper(Estimator): def __init__(self, keras_model, metrics, model_dir, optimizer): self.model = KerasModel(keras_model, model_dir) self.load_checkpoint = False self.metrics = metrics self.tf_optimizer = None self.optimizer = optimizer from zoo.orca.learn.optimizers import Optimizer if self.optimizer is not None and isinstance(self.optimizer, Optimizer): self.optimizer = self.optimizer.get_optimizer() self.log_dir = None self.app_name = None def fit(self, data, epochs=1, batch_size=32, feature_cols=None, labels_cols=None, validation_data=None, hard_code_batch_size=False, session_config=None, checkpoint_trigger=None, auto_shard_files=True, ): """ Train this keras model with train data. :param data: train data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays, 'y': a label numpy array or a tuple of label numpy arrays} If data is tf.data.Dataset, each element is [feature tensor tuple, label tensor tuple] :param epochs: number of epochs to train. :param batch_size: total batch size for each iteration. :param feature_cols: feature column names if train data is Spark DataFrame. :param labels_cols: label column names if train data is Spark DataFrame. :param validation_data: validation data. Validation data type should be the same as train data. :param hard_code_batch_size: whether hard code batch size for training. Default is False. :param session_config: tensorflow session configuration for training. Should be object of tf.ConfigProto :param checkpoint_trigger: when to trigger checkpoint during training. Should be a zoo.orca.learn.trigger, like EveryEpoch(), SeveralIteration(num_iterations),etc. """ if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in training" assert labels_cols is not None, \ "label columns is None; it should not be None in training" if isinstance(data, tf.data.Dataset): assert isinstance(data.element_spec, tuple), \ "If data is tf.data.Dataset, each element should be " \ "(feature tensors, label tensor), where each feature/label tensor can be " \ "either a single tensor or a tuple of tensors" if validation_data is not None: assert isinstance(validation_data, tf.data.Dataset), \ "train data and validation data should be both tf.data.Dataset" assert isinstance(validation_data.element_spec, tuple), \ "If validation_data is tf.data.Dataset, each element should be " \ "(feature tensors, label tensor), where each feature/label tensor can be " \ "either a single tensor or a tuple of tensors" if checkpoint_trigger is not None: checkpoint_trigger = Trigger.convert_trigger(checkpoint_trigger) dataset = to_dataset(data, batch_size=batch_size, batch_per_thread=-1, validation_data=validation_data, feature_cols=feature_cols, labels_cols=labels_cols, hard_code_batch_size=hard_code_batch_size, sequential_order=False, shuffle=True, auto_shard_files=auto_shard_files) if isinstance(dataset, TFNdarrayDataset): dataset = _standarize_feature_label_dataset(dataset, self.model.model) self.tf_optimizer = TFOptimizer.from_keras(self.model.model, dataset, model_dir=self.model.model_dir, session_config=session_config, metrics=self.metrics, optimizer=self.optimizer) if self.load_checkpoint: self.tf_optimizer.load_checkpoint(self.checkpoint_path, self.checkpoint_version) if self.log_dir and self.app_name: self.tf_optimizer.estimator.set_tensorboad(self.log_dir, self.app_name) self.tf_optimizer.optimize(MaxEpoch(epochs), checkpoint_trigger=checkpoint_trigger) return self def predict(self, data, batch_size=4, feature_cols=None, hard_code_batch_size=False, auto_shard_files=True, ): """ Predict input data :param data: data to be predicted. It can be XShards, Spark DataFrame, or tf.data.Dataset. If data is XShard, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays}. If data is tf.data.Dataset, each element is feature tensor tuple :param batch_size: batch size per thread :param feature_cols: list of feature column names if input data is Spark DataFrame. :param hard_code_batch_size: if require hard code batch size for prediction. The default value is False. :return: predicted result. If input data is XShards or tf.data.Dataset, the predict result is also a XShards, and the schema for each result is: {'prediction': predicted numpy array or list of predicted numpy arrays}. If input data is Spark DataFrame, the predict result is a DataFrame which includes original columns plus 'prediction' column. The 'prediction' column can be FloatType, VectorUDT or Array of VectorUDT depending on model outputs shape. """ if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in prediction" dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, labels_cols=None, hard_code_batch_size=hard_code_batch_size, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files, ) predicted_rdd = self.model.predict(dataset, batch_size) if isinstance(data, DataFrame): return convert_predict_to_dataframe(data, predicted_rdd) elif isinstance(data, SparkXShards) or isinstance(data, tf.data.Dataset): return convert_predict_to_xshard(predicted_rdd) else: return predicted_rdd def evaluate(self, data, batch_size=4, feature_cols=None, labels_cols=None, hard_code_batch_size=False, auto_shard_files=True ): """ Evaluate model. :param data: evaluation data. It can be XShards, Spark DataFrame, tf.data.Dataset. If data is XShards, each element needs to be {'x': a feature numpy array or a tuple of feature numpy arrays, 'y': a label numpy array or a tuple of label numpy arrays} If data is tf.data.Dataset, each element is [feature tensor tuple, label tensor tuple] :param batch_size: batch size per thread. :param feature_cols: feature_cols: feature column names if train data is Spark DataFrame. :param labels_cols: label column names if train data is Spark DataFrame. :param hard_code_batch_size: whether to hard code batch size for evaluation. :return: evaluation result as a dictionary of {'metric name': metric value} """ if isinstance(data, DataFrame): assert feature_cols is not None, \ "feature columns is None; it should not be None in evaluation" assert labels_cols is not None, \ "label columns is None; it should not be None in evaluation" dataset = to_dataset(data, batch_size=-1, batch_per_thread=batch_size, validation_data=None, feature_cols=feature_cols, labels_cols=labels_cols, hard_code_batch_size=hard_code_batch_size, sequential_order=True, shuffle=False, auto_shard_files=auto_shard_files ) return self.model.evaluate(dataset, batch_per_thread=batch_size) def save_keras_model(self, path, overwrite=True): self.model.save_model(path, overwrite=overwrite) def save_keras_weights(self, filepath, overwrite=True, save_format=None): self.model.save_weights(filepath, overwrite, save_format) def load_keras_weights(self, filepath, by_name=False): self.model.load_weights(filepath, by_name) ```
{ "source": "jingxuanyang/Shopee-Product-Matching", "score": 2 }
#### File: input/shopee-competition-utils/get_embeddings.py ```python import gc import torch import numpy as np from tqdm import tqdm from sklearn.feature_extraction.text import TfidfVectorizer from augmentations import get_test_transforms, get_valid_transforms from dataset import ShopeeImageDataset from config import CFG def get_image_embeddings(df, model): image_dataset = ShopeeImageDataset(df,transform=get_test_transforms()) image_loader = torch.utils.data.DataLoader( image_dataset, batch_size=CFG.BATCH_SIZE, pin_memory=True, num_workers = CFG.NUM_WORKERS, drop_last=False ) embeds = [] with torch.no_grad(): for img,label in tqdm(image_loader): img = img.to(CFG.DEVICE) label = label.to(CFG.DEVICE) feat,_ = model(img,label) image_embeddings = feat.detach().cpu().numpy() embeds.append(image_embeddings) del model image_embeddings = np.concatenate(embeds) print(f'Our image embeddings shape is {image_embeddings.shape}') del embeds gc.collect() return image_embeddings def get_valid_embeddings(df, model): model.eval() image_dataset = ShopeeImageDataset(df,transform=get_valid_transforms()) image_loader = torch.utils.data.DataLoader( image_dataset, batch_size=CFG.BATCH_SIZE, pin_memory=True, num_workers = CFG.NUM_WORKERS, drop_last=False ) embeds = [] with torch.no_grad(): for img,label in tqdm(image_loader): img = img.to(CFG.DEVICE) label = label.to(CFG.DEVICE) feat,_ = model(img,label) image_embeddings = feat.detach().cpu().numpy() embeds.append(image_embeddings) del model image_embeddings = np.concatenate(embeds) print(f'Our image embeddings shape is {image_embeddings.shape}') del embeds gc.collect() return image_embeddings def get_bert_embeddings(df, column, model, chunk=32): model.eval() bert_embeddings = torch.zeros((df.shape[0], 768)).to(CFG.DEVICE) for i in tqdm(list(range(0, df.shape[0], chunk)) + [df.shape[0]-chunk], desc="get_bert_embeddings", ncols=80): titles = [] for title in df[column][i : i + chunk].values: try: title = title.encode('utf-8').decode("unicode_escape") title = title.encode('ascii', 'ignore').decode("unicode_escape") except: pass #title = text_punctuation(title) title = title.lower() titles.append(title) with torch.no_grad(): if CFG.USE_AMP: with torch.cuda.amp.autocast(): model_output = model(titles) else: model_output = model(titles) bert_embeddings[i : i + chunk] = model_output bert_embeddings = bert_embeddings.detach().cpu().numpy() del model, titles, model_output gc.collect() torch.cuda.empty_cache() return bert_embeddings def get_tfidf_embeddings(df, max_features = 15000): model = TfidfVectorizer(stop_words = 'english', binary = True, max_features = max_features) text_embeddings = model.fit_transform(df['title']).toarray() print(f'Our title text embedding shape is {text_embeddings.shape}') del model gc.collect() return text_embeddings ``` #### File: input/shopee-competition-utils/get_neighbors.py ```python import gc import numpy as np from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import normalize from config import CFG from criterion import precision_score, recall_score, f1_score def get_image_neighbors(df, embeddings, threshold = 0.2, min2 = False): nbrs = NearestNeighbors(n_neighbors = 50, metric = 'cosine') nbrs.fit(embeddings) distances, indices = nbrs.kneighbors(embeddings) predictions = [] for k in range(embeddings.shape[0]): if min2: idx = np.where(distances[k,] < CFG.BEST_THRESHOLD)[0] ids = indices[k,idx] if len(ids) <= 1 and distances[k,1] < threshold: ids = np.append(ids,indices[k,1]) else: idx = np.where(distances[k,] < threshold)[0] ids = indices[k,idx] posting_ids = ' '.join(df['posting_id'].iloc[ids].values) predictions.append(posting_ids) df['pred_matches'] = predictions df['f1'] = f1_score(df['matches'], df['pred_matches']) df['recall'] = recall_score(df['matches'], df['pred_matches']) df['precision'] = precision_score(df['matches'], df['pred_matches']) del nbrs, distances, indices gc.collect() return df def get_valid_neighbors(df, embeddings, KNN = 50, threshold = 0.36): nbrs = NearestNeighbors(n_neighbors = KNN, metric = 'cosine') nbrs.fit(embeddings) distances, indices = nbrs.kneighbors(embeddings) predictions = [] for k in range(embeddings.shape[0]): idx = np.where(distances[k,] < threshold)[0] ids = indices[k,idx] posting_ids = ' '.join(df['posting_id'].iloc[ids].values) predictions.append(posting_ids) df['pred_matches'] = predictions df['f1'] = f1_score(df['matches'], df['pred_matches']) df['recall'] = recall_score(df['matches'], df['pred_matches']) df['precision'] = precision_score(df['matches'], df['pred_matches']) del nbrs, distances, indices gc.collect() return df, predictions def get_voting_neighbors(df, distances, indices, threshold = 0.2, min2 = False): predictions = [] for k in range(distances.shape[0]): if min2: idx = np.where(distances[k,] < CFG.BEST_THRESHOLD)[0] ids = indices[k,idx] if len(ids) <= 1 and distances[k,1] < threshold: ids = np.append(ids,indices[k,1]) else: idx = np.where(distances[k,] < threshold)[0] ids = indices[k,idx] posting_ids = ' '.join(df['posting_id'].iloc[ids].values) predictions.append(posting_ids) df['pred_matches'] = predictions df['f1'] = f1_score(df['matches'], df['pred_matches']) df['recall'] = recall_score(df['matches'], df['pred_matches']) df['precision'] = precision_score(df['matches'], df['pred_matches']) return df def get_voting_nns(embeddings_dict): embs_num = len(embeddings_dict) similarities_sum = 0. for i in range(embs_num): try: emb = normalize(embeddings_dict[f'emb_{i}']) except KeyError: raise KeyError('Please use keys emb_0, emb_1, etc in embeddings dict.') similarities = emb.dot(emb.T) similarities_sum += similarities similarities_sum = similarities_sum / embs_num similarities = np.sort(similarities_sum)[:,:-51:-1] distances = 1 - similarities indices = np.argsort(similarities_sum)[:,:-51:-1] return distances, indices def get_voting_result(df, distances, indices): predictions = [] for k in range(distances.shape[0]): idx = np.where(distances[k,] < CFG.BEST_THRESHOLD)[0] ids = indices[k,idx] if len(ids) <= 1 and distances[k,1] < CFG.BEST_THRESHOLD_MIN2: ids = np.append(ids,indices[k,1]) posting_ids = ' '.join(df['posting_id'].iloc[ids].values) predictions.append(posting_ids) df['pred_matches'] = predictions df['f1'] = f1_score(df['matches'], df['pred_matches']) df['recall'] = recall_score(df['matches'], df['pred_matches']) df['precision'] = precision_score(df['matches'], df['pred_matches']) f1 = df.f1.mean() recall = df.recall.mean() precision = df.precision.mean() print(f'f1 score after voting = {f1}, recall = {recall}, precision = {precision}') return df def get_union_neighbors(df, embeddings, threshold = 0.2, min2 = False): nbrs = NearestNeighbors(n_neighbors = 50, metric = 'cosine') nbrs.fit(embeddings) distances, indices = nbrs.kneighbors(embeddings) predictions = [] for k in range(embeddings.shape[0]): if min2: idx = np.where(distances[k,] < CFG.BEST_THRESHOLD)[0] ids = indices[k,idx] if len(ids) <= 1 and distances[k,1] < threshold: ids = np.append(ids,indices[k,1]) else: idx = np.where(distances[k,] < threshold)[0] ids = indices[k,idx] predictions.append(df['posting_id'].iloc[ids].values) del nbrs, distances, indices gc.collect() return predictions def get_voting_predictions(df, distances, indices, threshold = 0.2, min2 = False): predictions = [] for k in range(distances.shape[0]): if min2: idx = np.where(distances[k,] < CFG.BEST_THRESHOLD)[0] ids = indices[k,idx] if len(ids) <= 1 and distances[k,1] < threshold: ids = np.append(ids,indices[k,1]) else: idx = np.where(distances[k,] < threshold)[0] ids = indices[k,idx] predictions.append(df['posting_id'].iloc[ids].values) return predictions ``` #### File: input/shopee-competition-utils/loss_module.py ```python import torch from torch import nn from torch.nn import Parameter import torch.nn.functional as F import math from config import CFG class ArcMarginProduct(nn.Module): r"""Implement of large margin arc distance: : Args: in_features: size of each input sample out_features: size of each output sample s: norm of input feature m: margin cos(theta + m) """ def __init__(self, in_features, out_features, s=30.0, m=0.50, easy_margin=False, ls_eps=0.0): # print('Using ArcFace') super(ArcMarginProduct, self).__init__() self.in_features = in_features self.out_features = out_features self.s = s self.m = m self.ls_eps = ls_eps # label smoothing self.weight = Parameter(torch.FloatTensor(out_features, in_features)) nn.init.xavier_uniform_(self.weight) self.easy_margin = easy_margin self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m def forward(self, input, label): # --------------------------- cos(theta) & phi(theta) --------------------------- if CFG.USE_AMP: cosine = F.linear(F.normalize(input), F.normalize(self.weight)).float() # if CFG.USE_AMP else: cosine = F.linear(F.normalize(input), F.normalize(self.weight)) sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) phi = cosine * self.cos_m - sine * self.sin_m if self.easy_margin: phi = torch.where(cosine > 0, phi, cosine) else: phi = torch.where(cosine > self.th, phi, cosine - self.mm) # --------------------------- convert label to one-hot --------------------------- # one_hot = torch.zeros(cosine.size(), requires_grad=True, device='cuda') one_hot = torch.zeros(cosine.size(), device=CFG.DEVICE) one_hot.scatter_(1, label.view(-1, 1).long(), 1) if self.ls_eps > 0: one_hot = (1 - self.ls_eps) * one_hot + self.ls_eps / self.out_features # -------------torch.where(out_i = {x_i if condition_i else y_i) ------------- output = (one_hot * phi) + ((1.0 - one_hot) * cosine) output *= self.s return output, nn.CrossEntropyLoss()(output,label) ''' credit : https://github.com/HuangYG123/CurricularFace/blob/8b2f47318117995aa05490c05b455b113489917e/head/metrics.py#L70 ''' def l2_norm(input, axis = 1): norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output class CurricularFace(nn.Module): def __init__(self, in_features, out_features, s = 30, m = 0.50): super(CurricularFace, self).__init__() print('Using Curricular Face') self.in_features = in_features self.out_features = out_features self.m = m self.s = s self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.threshold = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m self.kernel = nn.Parameter(torch.Tensor(in_features, out_features)) self.register_buffer('t', torch.zeros(1)) nn.init.normal_(self.kernel, std=0.01) def forward(self, embbedings, label): embbedings = l2_norm(embbedings, axis = 1) kernel_norm = l2_norm(self.kernel, axis = 0) cos_theta = torch.mm(embbedings, kernel_norm) cos_theta = cos_theta.clamp(-1, 1) # for numerical stability with torch.no_grad(): origin_cos = cos_theta.clone() target_logit = cos_theta[torch.arange(0, embbedings.size(0)), label].view(-1, 1) sin_theta = torch.sqrt(1.0 - torch.pow(target_logit, 2)) cos_theta_m = target_logit * self.cos_m - sin_theta * self.sin_m #cos(target+margin) mask = cos_theta > cos_theta_m final_target_logit = torch.where(target_logit > self.threshold, cos_theta_m, target_logit - self.mm) hard_example = cos_theta[mask] with torch.no_grad(): self.t = target_logit.mean() * 0.01 + (1 - 0.01) * self.t cos_theta[mask] = hard_example * (self.t + hard_example) cos_theta.scatter_(1, label.view(-1, 1).long(), final_target_logit) output = cos_theta * self.s return output, nn.CrossEntropyLoss()(output,label) ``` #### File: input/shopee-competition-utils/read_dataset.py ```python import pandas as pd from config import CFG from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import GroupKFold def read_dataset(): df = pd.read_csv(CFG.TRAIN_CSV) df['matches'] = df.label_group.map(df.groupby('label_group').posting_id.agg('unique').to_dict()) df['matches'] = df['matches'].apply(lambda x: ' '.join(x)) gkf = GroupKFold(n_splits=CFG.N_SPLITS) df['fold'] = -1 for i, (train_idx, valid_idx) in enumerate(gkf.split(X=df, groups=df['label_group'])): df.loc[valid_idx, 'fold'] = i labelencoder= LabelEncoder() df['label_group'] = labelencoder.fit_transform(df['label_group']) train_df = df[df['fold']!=CFG.TEST_FOLD].reset_index(drop=True) train_df = train_df[train_df['fold']!=CFG.VALID_FOLD].reset_index(drop=True) valid_df = df[df['fold']==CFG.VALID_FOLD].reset_index(drop=True) if CFG.USE_TEST_CSV: test_df = pd.read_csv(CFG.TEST_CSV) test_df['matches'] = test_df.label_group.map(test_df.groupby('label_group').posting_id.agg('unique').to_dict()) test_df['matches'] = test_df['matches'].apply(lambda x: ' '.join(x)) test_df['label_group'] = labelencoder.fit_transform(test_df['label_group']) else: test_df = df[df['fold']==CFG.TEST_FOLD].reset_index(drop=True) train_df['label_group'] = labelencoder.fit_transform(train_df['label_group']) return train_df, valid_df, test_df ``` #### File: input/shopee-competition-utils/run_ensemble.py ```python import torch import numpy as np import pandas as pd from config import CFG from read_dataset import read_dataset from get_neighbors import get_voting_nns, get_voting_neighbors, get_union_neighbors, get_voting_predictions from search_threshold import search_voting_threshold, search_inb_threshold from seed_everything import seed_everything from shopee_text_model import ShopeeBertModel from get_embeddings import get_bert_embeddings, get_tfidf_embeddings from blend_neighborhood import blend_neighborhood from criterion import precision_score, recall_score, f1_score def run_image_ensemble(): """ Note that model parameters for neil, min2 and inb are the same. """ # resnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[0] CFG.MARGIN = CFG.MARGINS[1] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_1 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_1 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # resnext CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[1] CFG.MARGIN = CFG.MARGINS[3] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_2 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_2 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # densenet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[2] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_3 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_3 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # efficientnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[1] CFG.MODEL_NAME = CFG.MODEL_NAMES[3] CFG.MARGIN = CFG.MARGINS[0] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_4 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_4 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # nfnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[4] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_5 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_5 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # read dataset _, valid_df, test_df = read_dataset() # get voting of valid embeddings valid_embeddings_dict = {'emb_0':valid_embeddings_1, 'emb_1':valid_embeddings_2, 'emb_2':valid_embeddings_3, 'emb_3':valid_embeddings_4, 'emb_4':valid_embeddings_5} distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices) # get voting of test embeddings test_embeddings_dict = {'emb_0':test_embeddings_1, 'emb_1':test_embeddings_2, 'emb_2':test_embeddings_3, 'emb_3':test_embeddings_4, 'emb_4':test_embeddings_5} distances, indices = get_voting_nns(test_embeddings_dict) result_list = [[0 for i in range(3)] for j in range(2)] # use obtained thresholds to get test results test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'f1 score after voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') # use obtained thresholds to get test results after min2 test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'f1 score after min2 and voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list, columns=['f1','recall','precision']) return result_df def run_text_ensemble(): """ """ seed_everything(CFG.SEED_BERT) _, valid_df, test_df = read_dataset() valid_embeddings_dict = {} test_embeddings_dict = {} for i in range(len(CFG.BERT_MODEL_NAMES)): CFG.BERT_MODEL_NAME = CFG.BERT_MODEL_NAMES[i] CFG.MARGIN = CFG.BEST_BERT_MARGINS[0][i] model = ShopeeBertModel( model_name = CFG.BERT_MODEL_NAME, margin = CFG.MARGIN ) CFG.MODEL_PATH_BERT = f"{CFG.BERT_MODEL_NAME.rsplit('/', 1)[-1]}_epoch8-bs16x1_margin_{CFG.MARGIN}.pt" SAVE_MODEL_PATH = CFG.TEXT_MODEL_PATH_PREFIX + CFG.MODEL_PATH_BERT print(CFG.MODEL_PATH_BERT) model.load_state_dict(torch.load(SAVE_MODEL_PATH, map_location=CFG.DEVICE)) valid_embeddings_dict[f'emb_{i}'] = get_bert_embeddings(valid_df, 'title', model) test_embeddings_dict[f'emb_{i}'] = get_bert_embeddings(test_df, 'title', model) distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices) distances, indices = get_voting_nns(test_embeddings_dict) result_list = [[0 for i in range(3)] for j in range(2)] # use obtained thresholds to get test results test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'f1 score after voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') # use obtained thresholds to get test results after min2 test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'f1 score after min2 and voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list, columns=['f1','recall','precision']) return result_df def run_nfnet_sbert_ensemble(): seed_everything(CFG.SEED_BERT) _, valid_df, test_df = read_dataset() # nfnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[4] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') image_test_embeddings = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') image_valid_embeddings = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # paraphrase-xlm-r-multilingual-v1 CFG.BERT_MODEL_NAME = CFG.BERT_MODEL_NAMES[3] CFG.MARGIN = CFG.BERT_MARGINS[3] model = ShopeeBertModel( model_name = CFG.BERT_MODEL_NAME, margin = CFG.MARGIN ) CFG.MODEL_PATH_BERT = f"{CFG.BERT_MODEL_NAME.rsplit('/', 1)[-1]}_epoch8-bs16x1_margin_{CFG.MARGIN}.pt" SAVE_MODEL_PATH = CFG.TEXT_MODEL_PATH_PREFIX + CFG.MODEL_PATH_BERT print(CFG.MODEL_PATH_BERT) model.load_state_dict(torch.load(SAVE_MODEL_PATH, map_location=CFG.DEVICE)) text_valid_embeddings = get_bert_embeddings(valid_df, 'title', model) text_test_embeddings = get_bert_embeddings(test_df, 'title', model) # get voting of valid embeddings valid_embeddings_dict = {'emb_0':image_valid_embeddings, 'emb_1':text_valid_embeddings} distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices, upper=60) # get voting of test embeddings test_embeddings_dict = {'emb_0':image_test_embeddings, 'emb_1':text_test_embeddings} distances, indices = get_voting_nns(test_embeddings_dict) result_list = [[0 for i in range(3)] for j in range(2)] # use obtained thresholds to get test results test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'f1 score after voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') # use obtained thresholds to get test results after min2 test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'f1 score after min2 and voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list, columns=['f1','recall','precision']) return result_df def run_tfidf_resnet_ensemble(): seed_everything(CFG.SEED) _, valid_df, test_df = read_dataset() # tf-idf text_valid_embeddings = get_tfidf_embeddings(valid_df) text_test_embeddings = get_tfidf_embeddings(test_df) # resnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[0] CFG.MARGIN = CFG.MARGINS[1] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') image_test_embeddings = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') image_valid_embeddings = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # get voting of valid embeddings valid_embeddings_dict = {'emb_0':image_valid_embeddings, 'emb_1':text_valid_embeddings} distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices, upper=60) # get voting of test embeddings test_embeddings_dict = {'emb_0':image_test_embeddings, 'emb_1':text_test_embeddings} distances, indices = get_voting_nns(test_embeddings_dict) result_list = [[0 for i in range(3)] for j in range(2)] # use obtained thresholds to get test results test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'f1 score after voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') # use obtained thresholds to get test results after min2 test_df = get_voting_neighbors(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'f1 score after min2 and voting = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list, columns=['f1','recall','precision']) return result_df def combine_predictions(row): x = np.concatenate([row['image_predictions'], row['text_predictions']]) return ' '.join(np.unique(x)) def run_tfidf_resnet_union(): seed_everything(CFG.SEED) _, valid_df, test_df = read_dataset() result_list = [[0 for i in range(3)] for j in range(3)] # tf-idf text_valid_embeddings = get_tfidf_embeddings(valid_df) text_test_embeddings = get_tfidf_embeddings(test_df) # resnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[0] CFG.MARGIN = CFG.MARGINS[1] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') image_test_embeddings = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') image_valid_embeddings = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # text predictions search_inb_threshold(valid_df,text_valid_embeddings,lower=40,upper=70) text_predictions = get_union_neighbors(test_df, text_test_embeddings, threshold=CFG.BEST_THRESHOLD) # text predictions, min2 text_predictions_min2 = get_union_neighbors(test_df, text_test_embeddings, threshold=CFG.BEST_THRESHOLD_MIN2, min2=True) # text predictions, inb new_valid_emb = blend_neighborhood(valid_df,text_valid_embeddings) search_inb_threshold(valid_df,new_valid_emb) new_test_emb = blend_neighborhood(test_df,text_test_embeddings) text_predictions_inb = get_union_neighbors(test_df, new_test_emb, threshold=CFG.BEST_THRESHOLD_MIN2, min2 = True) # image predictions search_inb_threshold(valid_df,image_valid_embeddings) image_predictions = get_union_neighbors(test_df, image_test_embeddings, threshold=CFG.BEST_THRESHOLD) # image predictions, min2 image_predictions_min2 = get_union_neighbors(test_df, image_test_embeddings, threshold=CFG.BEST_THRESHOLD_MIN2, min2=True) # image predictions, inb new_valid_emb = blend_neighborhood(valid_df,image_valid_embeddings) search_inb_threshold(valid_df,new_valid_emb) new_test_emb = blend_neighborhood(test_df,image_test_embeddings) image_predictions_inb = get_union_neighbors(test_df, new_test_emb, threshold=CFG.BEST_THRESHOLD_MIN2, min2 = True) test_df['image_predictions'] = image_predictions test_df['text_predictions'] = text_predictions test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'Test f1 score = {test_f1}, recall = {test_recall}, precision = {test_precision}') # Min2 test_df['image_predictions'] = image_predictions_min2 test_df['text_predictions'] = text_predictions_min2 test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'Test f1 score after min2 = {test_f1}, recall = {test_recall}, precision = {test_precision}') # INB test_df['image_predictions'] = image_predictions_inb test_df['text_predictions'] = text_predictions_inb test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[2][0] = test_f1 result_list[2][1] = test_recall result_list[2][2] = test_precision print(f'Test f1 score after INB = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list,columns=['f1','recall','precision']) return result_df def run_nfnet_sbert_union(): seed_everything(CFG.SEED_BERT) _, valid_df, test_df = read_dataset() result_list = [[0 for i in range(3)] for j in range(3)] # nfnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[4] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') image_test_embeddings = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') image_valid_embeddings = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # paraphrase-xlm-r-multilingual-v1 CFG.BERT_MODEL_NAME = CFG.BERT_MODEL_NAMES[3] CFG.MARGIN = CFG.BERT_MARGINS[3] model = ShopeeBertModel( model_name = CFG.BERT_MODEL_NAME, margin = CFG.MARGIN ) CFG.MODEL_PATH_BERT = f"{CFG.BERT_MODEL_NAME.rsplit('/', 1)[-1]}_epoch8-bs16x1_margin_{CFG.MARGIN}.pt" SAVE_MODEL_PATH = CFG.TEXT_MODEL_PATH_PREFIX + CFG.MODEL_PATH_BERT print(CFG.MODEL_PATH_BERT) model.load_state_dict(torch.load(SAVE_MODEL_PATH, map_location=CFG.DEVICE)) text_valid_embeddings = get_bert_embeddings(valid_df, 'title', model) text_test_embeddings = get_bert_embeddings(test_df, 'title', model) # text predictions search_inb_threshold(valid_df,text_valid_embeddings) text_predictions = get_union_neighbors(test_df, text_test_embeddings, threshold=CFG.BEST_THRESHOLD) # text predictions, min2 text_predictions_min2 = get_union_neighbors(test_df, text_test_embeddings, threshold=CFG.BEST_THRESHOLD_MIN2, min2=True) # text predictions, inb new_valid_emb = blend_neighborhood(valid_df,text_valid_embeddings) search_inb_threshold(valid_df,new_valid_emb) new_test_emb = blend_neighborhood(test_df,text_test_embeddings) text_predictions_inb = get_union_neighbors(test_df, new_test_emb, threshold=CFG.BEST_THRESHOLD_MIN2, min2 = True) # image predictions search_inb_threshold(valid_df,image_valid_embeddings) image_predictions = get_union_neighbors(test_df, image_test_embeddings, threshold=CFG.BEST_THRESHOLD) # image predictions, min2 image_predictions_min2 = get_union_neighbors(test_df, image_test_embeddings, threshold=CFG.BEST_THRESHOLD_MIN2, min2=True) # image predictions, inb new_valid_emb = blend_neighborhood(valid_df,image_valid_embeddings) search_inb_threshold(valid_df,new_valid_emb) new_test_emb = blend_neighborhood(test_df,image_test_embeddings) image_predictions_inb = get_union_neighbors(test_df, new_test_emb, threshold=CFG.BEST_THRESHOLD_MIN2, min2 = True) test_df['image_predictions'] = image_predictions test_df['text_predictions'] = text_predictions test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'Test f1 score = {test_f1}, recall = {test_recall}, precision = {test_precision}') # Min2 test_df['image_predictions'] = image_predictions_min2 test_df['text_predictions'] = text_predictions_min2 test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'Test f1 score after min2 = {test_f1}, recall = {test_recall}, precision = {test_precision}') # INB test_df['image_predictions'] = image_predictions_inb test_df['text_predictions'] = text_predictions_inb test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[2][0] = test_f1 result_list[2][1] = test_recall result_list[2][2] = test_precision print(f'Test f1 score after INB = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list,columns=['f1','recall','precision']) return result_df def run_text_image_union(): # read dataset seed_everything(CFG.SEED_BERT) _, valid_df, test_df = read_dataset() ##################################### image #################################### # resnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[0] CFG.MARGIN = CFG.MARGINS[1] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_1 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_1 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # resnext CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[1] CFG.MARGIN = CFG.MARGINS[3] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_2 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_2 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # densenet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[2] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_3 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_3 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # efficientnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[1] CFG.MODEL_NAME = CFG.MODEL_NAMES[3] CFG.MARGIN = CFG.MARGINS[0] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_4 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_4 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # nfnet CFG.LOSS_MODULE = CFG.LOSS_MODULES[0] CFG.MODEL_NAME = CFG.MODEL_NAMES[4] CFG.MARGIN = CFG.MARGINS[4] CFG.MODEL_PATH = f'{CFG.MODEL_NAME}_{CFG.LOSS_MODULE}_face_epoch_8_bs_8_margin_{CFG.MARGIN}.pt' TEST_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_test_embed.csv' print(f'Loading {TEST_EMBEDDING_PATH} ...') test_embeddings_5 = np.loadtxt(TEST_EMBEDDING_PATH, delimiter=',') VALID_EMBEDDING_PATH = CFG.EMB_PATH_PREFIX + CFG.MODEL_PATH[:-3] + '_valid_embed.csv' print(f'Loading {VALID_EMBEDDING_PATH} ...') valid_embeddings_5 = np.loadtxt(VALID_EMBEDDING_PATH, delimiter=',') # get voting of valid embeddings valid_embeddings_dict = {'emb_0':valid_embeddings_1, 'emb_1':valid_embeddings_2, 'emb_2':valid_embeddings_3, 'emb_3':valid_embeddings_4, 'emb_4':valid_embeddings_5} distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices) # get voting of test embeddings test_embeddings_dict = {'emb_0':test_embeddings_1, 'emb_1':test_embeddings_2, 'emb_2':test_embeddings_3, 'emb_3':test_embeddings_4, 'emb_4':test_embeddings_5} distances, indices = get_voting_nns(test_embeddings_dict) # use obtained thresholds to get test results image_predictions = get_voting_predictions(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) # use obtained thresholds to get test results after min2 image_predictions_min2 = get_voting_predictions(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) ##################################### text #################################### valid_embeddings_dict = {} test_embeddings_dict = {} for i in range(len(CFG.BERT_MODEL_NAMES)): CFG.BERT_MODEL_NAME = CFG.BERT_MODEL_NAMES[i] CFG.MARGIN = CFG.BEST_BERT_MARGINS[0][i] model = ShopeeBertModel( model_name = CFG.BERT_MODEL_NAME, margin = CFG.MARGIN ) CFG.MODEL_PATH_BERT = f"{CFG.BERT_MODEL_NAME.rsplit('/', 1)[-1]}_epoch8-bs16x1_margin_{CFG.MARGIN}.pt" SAVE_MODEL_PATH = CFG.TEXT_MODEL_PATH_PREFIX + CFG.MODEL_PATH_BERT print(CFG.MODEL_PATH_BERT) model.load_state_dict(torch.load(SAVE_MODEL_PATH, map_location=CFG.DEVICE)) valid_embeddings_dict[f'emb_{i}'] = get_bert_embeddings(valid_df, 'title', model) test_embeddings_dict[f'emb_{i}'] = get_bert_embeddings(test_df, 'title', model) distances, indices = get_voting_nns(valid_embeddings_dict) # search best thresholds search_voting_threshold(valid_df, distances, indices) distances, indices = get_voting_nns(test_embeddings_dict) # use obtained thresholds to get test results text_predictions = get_voting_predictions(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD, min2 = False) # use obtained thresholds to get test results after min2 text_predictions_min2 = get_voting_predictions(test_df, distances, indices, threshold = CFG.BEST_THRESHOLD_MIN2, min2 = True) #################################### union predictions ################################### result_list = [[0 for i in range(3)] for j in range(2)] test_df['image_predictions'] = image_predictions test_df['text_predictions'] = text_predictions test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[0][0] = test_f1 result_list[0][1] = test_recall result_list[0][2] = test_precision print(f'Test f1 score = {test_f1}, recall = {test_recall}, precision = {test_precision}') # Min2 test_df['image_predictions'] = image_predictions_min2 test_df['text_predictions'] = text_predictions_min2 test_df['pred_matches'] = test_df.apply(combine_predictions, axis = 1) test_df['f1'] = f1_score(test_df['matches'], test_df['pred_matches']) test_df['recall'] = recall_score(test_df['matches'], test_df['pred_matches']) test_df['precision'] = precision_score(test_df['matches'], test_df['pred_matches']) test_f1 = test_df.f1.mean() test_recall = test_df.recall.mean() test_precision = test_df.precision.mean() result_list[1][0] = test_f1 result_list[1][1] = test_recall result_list[1][2] = test_precision print(f'Test f1 score after min2 = {test_f1}, recall = {test_recall}, precision = {test_precision}') result_df = pd.DataFrame(result_list,columns=['f1','recall','precision']) return result_df ``` #### File: input/shopee-competition-utils/shopee_image_model.py ```python import timm from torch import nn from config import CFG from loss_module import ArcMarginProduct, CurricularFace class ShopeeModel(nn.Module): def __init__( self, n_classes = CFG.CLASSES, model_name = CFG.MODEL_NAME, fc_dim = CFG.FC_DIM, margin = CFG.MARGIN, scale = CFG.SCALE, use_fc = True, pretrained = True, use_arcface = CFG.USE_ARCFACE): super(ShopeeModel,self).__init__() print(f'Building Model Backbone for {model_name} model, margin = {margin}') self.backbone = timm.create_model(model_name, pretrained=pretrained) if 'efficientnet' in model_name: final_in_features = self.backbone.classifier.in_features self.backbone.classifier = nn.Identity() self.backbone.global_pool = nn.Identity() elif 'resnet' in model_name: final_in_features = self.backbone.fc.in_features self.backbone.fc = nn.Identity() self.backbone.global_pool = nn.Identity() elif 'resnext' in model_name: final_in_features = self.backbone.fc.in_features self.backbone.fc = nn.Identity() self.backbone.global_pool = nn.Identity() elif 'densenet' in model_name: final_in_features = self.backbone.classifier.in_features self.backbone.classifier = nn.Identity() self.backbone.global_pool = nn.Identity() elif 'nfnet' in model_name: final_in_features = self.backbone.head.fc.in_features self.backbone.head.fc = nn.Identity() self.backbone.head.global_pool = nn.Identity() self.pooling = nn.AdaptiveAvgPool2d(1) self.use_fc = use_fc if use_fc: self.dropout = nn.Dropout(p=0.0) self.fc = nn.Linear(final_in_features, fc_dim) self.bn = nn.BatchNorm1d(fc_dim) self._init_params() final_in_features = fc_dim if use_arcface: self.final = ArcMarginProduct(final_in_features, n_classes, s=scale, m=margin) else: self.final = CurricularFace(final_in_features, n_classes, s=scale, m=margin) def _init_params(self): nn.init.xavier_normal_(self.fc.weight) nn.init.constant_(self.fc.bias, 0) nn.init.constant_(self.bn.weight, 1) nn.init.constant_(self.bn.bias, 0) def forward(self, image, label): feature = self.extract_feat(image) logits = self.final(feature,label) return logits def extract_feat(self, x): batch_size = x.shape[0] x = self.backbone(x) x = self.pooling(x).view(batch_size, -1) if self.use_fc: x = self.dropout(x) x = self.fc(x) x = self.bn(x) return x ```
{ "source": "Jingxue-24/QM2-team9", "score": 4 }
#### File: QM2-team9/LinearRegression/linear_regression.py ```python def LinearRegression(): import pandas as pd import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression name_of_csv="cluster_all.csv" df = pd.read_csv(name_of_csv) df.to_numpy() X = df['Popular_date'] y = df['Loudness'] X_np=X.to_numpy() y_np=y.to_numpy() X_np=X_np.reshape(-1, 1) y_np=y_np.reshape(-1, 1) LinearRegression().fit(X_np, y_np).coef_ LinearRegression().fit(X_np, y_np).intercept_ plt.plot(X_np, y_np) plt.scatter(X_np, y_np) R_squared= LinearRegression().fit(X_np, y_np).score(X_np, y_np) print(R_squared) return plt.plot(X_np, LinearRegression().fit(X_np, y_np).coef_*X_np + LinearRegression().fit(X_np, y_np).intercept_) ```
{ "source": "JingYang1124/Wand-Based-on-ESP32", "score": 3 }
#### File: 1D_CNN_Trainning/Model_Compile/1D_CNN.py ```python import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import StratifiedShuffleSplit from keras.models import Sequential from keras.layers import Dense from keras.utils import np_utils train = pd.read_csv('E:/Pro/python_proj/python_proj/WAND_Release/1D_CNN/dataset/100train.csv')#导入训练集 test = pd.read_csv('E:/Pro/python_proj/python_proj/WAND_Release/1D_CNN/dataset/100test.csv')#导入测试集 #这里是代码的精髓之处,编辑数据集中的标签,直接使用即可 def encode(train, test): label_encoder = LabelEncoder().fit(train.species) labels = label_encoder.transform(train.species)# From the species to natural number: 0, 1, 2 ... #print(labels): [0 0 1 0 1 0 0 1 1 0 0 ...... classes = list(label_encoder.classes_)# Original classes that corresponds to the labels(numbers) : ['bad','good'] train = train.drop(['species', 'id'], axis=1) #.drop() delete the columns test = test.drop('id', axis=1) return train, labels, test, classes train, labels, test, classes = encode(train, test) scaled_train=train.values #Only obtain the pure values in "train" # print(scaled_train) :[[0.36971345 0.20764128 1.01101039 ... 0.86127609 0.66460005 0.56369004] # [0.89455038 0.60264666 0.58669376 ... 0.61239623 0.85502414 0.70027092] .... # SSS将每个数据集中的30%用作测试 sss = StratifiedShuffleSplit(test_size=0.2, random_state=23) #分层抽样功能,确保每个标签对应的样本的比例 for train_index, valid_index in sss.split(scaled_train, labels): X_train, X_valid = scaled_train[train_index], scaled_train[valid_index] y_train, y_valid = labels[train_index], labels[valid_index] nb_features = 70 nb_class = len(classes) num_pixels = nb_features*3 num_classes = nb_class y_train = np_utils.to_categorical(y_train, nb_class) y_valid = np_utils.to_categorical(y_valid, nb_class) model = Sequential() model.add(Dense(num_pixels, input_dim=num_pixels, kernel_initializer='normal', activation='relu')) # model.add(Dense(100, activation='tanh')) model.add(Dense(num_classes, kernel_initializer='normal', activation='softmax')) # Compile model model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.fit(X_train, y_train, validation_data=(X_valid, y_valid), epochs=20, batch_size=50, verbose=2) model.save('Spell_model.h5') model.summary() ``` #### File: Python_Scripts/Spell_Recognition/Predict.py ```python import time import pandas as pd import numpy as np from sklearn.preprocessing import LabelEncoder from keras.models import load_model nb_features = 70 c = pd.read_csv('E:/Pro/PythonPro/1D_CNN/dataset/10000.csv')#导入测试集 train = pd.read_csv('E:/Pro/PythonPro/1D_CNN/dataset/100train.csv')#导入训练集 def encode(train): label_encoder = LabelEncoder().fit(train.species) classes = list(label_encoder.classes_)# Original classes that corresponds to the labels(numbers) : ['bad','good'] return classes classes = encode(train) a=np.array(c) print(a.shape) model = load_model("Spell_model.h5") # layerNumber = 0 # for layer in model.layers: # weights = layer.get_weights() # print(layerNumber) # layerNumber += 1 # print(weights[0]) oldtime=time.process_time() predict=model.predict_classes(a) newtime=time.process_time() print("Predict result is:") for i in range(0,a.shape[0]): print(classes[predict[i]]) print (u'相差:%s s'%(newtime-oldtime)) ```
{ "source": "jingyanw/outcome-induced-debiasing", "score": 3 }
#### File: jingyanw/outcome-induced-debiasing/estimator.py ```python import numpy as np import cvxpy as cp # Split data into training-validation sets def split_trainval_random_pair(d, n, ordering=None): idxs = sample_total_from_partial(d, n, ordering=ordering) train = np.full((d, n), False) val = np.full((d, n), False) for i in range(d): # for each row idx_first = n * i idx_last = n * (i+1) - 1 idxs_row = list(filter(lambda i: i >= idx_first and i <= idx_last, idxs)) # preserve ordering L = int(len(idxs_row) / 2) for t in range(L): if np.random.uniform() < 0.5: (idx_train, idx_val) = idxs_row[2*t : 2 * (t+1)] else: (idx_val, idx_train) = idxs_row[2*t : 2 * (t+1)] train[i, idx_train % n] = True val[i, idx_val % n] = True if L * 2 < len(idxs_row): # odd assert(len(idxs_row) - L*2 == 1) # assign last element to val val[i, idxs_row[-1] % n] = True assert(not np.any(np.logical_and(train, val)) ) assert(np.array_equal(np.logical_or(train, val), np.full((d, n), True))) return train, val # Perform CV # Returns: # IL_CV: scalar index # XS_CV: d-array def perform_cv(y, lambdas, ordering=None, num_samples=100): (d, n) = np.shape(y) (set_train, set_val) = split_trainval_random_pair(d, n, ordering) # train # XS_TRAIN: (d, L) # BS_TRAIN: (d, n, L) (only the train entries have non-zero values) (xs_train, bs_train) = solve_opt(y, lambdas, mask=set_train, ordering=ordering) L = len(lambdas) # compute val error errs_val = np.zeros(L) for il in range(L): xs = xs_train[:, il] bs_val = interpolate_values(bs_train[:, :, il], set_train, set_val, \ ordering=ordering, num_samples=num_samples) y_interpolate = bs_val + xs_train[:, il][:, np.newaxis] y_interpolate[np.logical_not(set_val)] = 0 # just to be safe errs_val[il] = np.mean(np.square( (y_interpolate - y) * set_val )) # choose \lambda (CV) xs_cv = np.zeros(d) err_min = np.min(errs_val) il_cv = np.where(errs_val == err_min)[0] if len(il_cv) > 1: print('Multiple choices of optimal lambda in CV!') il_cv = np.random.choice(il_cv) # breaking ties xs_cv = xs_train[:, il_cv] return il_cv, xs_cv # Interpolate values in SET_VAL -- take neighbor wrt ORDERING # SET_TRAIN/VAL: dxn mask {True, False} # NUM_SAMPLE: number of sampled total orderings # ORDERING: take the nearest neighbor according to TOTAL_ORDER # Return: # BS: filled in SET_VAL def interpolate_values(bs, set_train, set_val, ordering=None, num_samples=100): (d, n) = bs.shape bs[set_val] = 0 # just to be safe idxs_train = np.where(set_train.flatten())[0] for r in range(num_samples): total_order = sample_total_from_partial(d, n, ordering=ordering) positions_train = np.isin(total_order, idxs_train) positions_train = np.where(positions_train)[0] # positions of train samples in TOTAL_ORDER for i in range(d): for j in range(n): if not set_val[i, j]: continue idx_val = np.ravel_multi_index((i, j), (d, n)) position_val = np.where(total_order == idx_val)[0][0] diff = np.abs(positions_train - position_val) diff_min = np.min(diff) positions_neighbor = positions_train[diff == diff_min] assert(len(positions_neighbor) <= 2) idxs_neighbor = total_order[positions_neighbor] # positions_neighbor is a set of size 1 or 2, not a single element for idx_neighbor in idxs_neighbor: assert(idx_neighbor in idxs_train) (i_neighbor, j_neighbor) = np.unravel_index(idx_neighbor, (d, n)) bs[i, j] += bs[i_neighbor, j_neighbor] / len(idxs_neighbor) / num_samples return bs # Inputs: # Y: d-by-n matrix -- rating data # D: number of courses # N: number of ratings # LAMBDAS: an L-array of candidate lambda values # Can handle inf (naive sample mean) # MASK: d x n matrix # True: use this score for estimation (train) | False: don't use this score for estimation (save for val) # ORDERINGS (of grades): d-by-n # e.g. [1, 0, 2] means b1 < b0 < b2 # MODE_FAST: use properties of the optimization to derive constraints # Does not change the results # Returns: # XS: d x L # BS: d x n x L def solve_opt(Y, lambdas, mask=None, ordering=None, mode_fast=True): if Y.ndim == 1: Y = Y[np.newaxis, :] # 1 x n (d, n) = Y.shape L = len(lambdas) if mask is None: mask = np.full((d, n), True) x = cp.Variable((d, 1)) b = cp.Variable((d, n)) lda = cp.Parameter(nonneg=True) x_broadcast = cp.kron(np.ones((1,n)), x) # for the second (L2) term, the mask shouldn't matter, since b_val is set to 0 in optimization obj = cp.sum_squares( cp.multiply(Y - x_broadcast - b, mask) ) + lda * cp.sum_squares(cp.multiply(b, mask)) # construct constraints inequalities = [] if ordering is not None: if ordering.ndim == 1: ordering = ordering[np.newaxis, :] # 1 x n assert(is_valid_ordering(ordering)) vmax = int(np.max(ordering)) for v in range(vmax+1): # find the closest smaller in train (xs_high, ys_high) = np.where( np.logical_and(ordering == v, mask) ) size_high = len(xs_high) if size_high == 0: continue if mode_fast: # b ordering same as y ordering within a single course, single group for i in range(d): ys_high_block = ys_high[xs_high==i] y_block = Y[i, ys_high_block] if len(y_block) >= 2: idxs_order = np.argsort(y_block) for k in range(len(y_block)-1): inequalities.append(b[i, ys_high_block[idxs_order[k]]] <= b[i, ys_high_block[idxs_order[k+1]]]) mask_low = np.logical_and(ordering < v, mask) if not np.any(mask_low): continue v_low = np.max(ordering[mask_low]) (xs_low, ys_low) = np.where( np.logical_and(ordering == v_low, mask) ) size_low = len(xs_low) if not mode_fast: for ih in range(size_high): for i in range(size_low): xh = xs_high[ih] yh = ys_high[ih] xl = xs_low[i] yl = ys_low[i] inequalities.append(b[xh, yh] >= b[xl, yl]) else: # mode_fast for ih in range(d): for i in range(d): ys_high_block = ys_high[xs_high == ih] ys_low_block = ys_low[xs_low == i] if len(ys_high_block) > 0 and len(ys_low_block) > 0: y_high_block = Y[ih, ys_high_block] idx_high = np.argsort(y_high_block)[0] # min y_low_block = Y[i, ys_low_block] idx_low = np.argsort(y_low_block)[-1] # max inequalities.append(b[ih, ys_high_block[idx_high]] >= b[i, ys_low_block[idx_low]]) # dummy constraints for the validation data to be 0 (xs, ys) = np.where(np.logical_not(mask)) for i in range(len(xs)): inequalities.append(b[xs[i], ys[i]] == 0) xs_sol = np.zeros((d, L)) bs_sol = np.zeros((d, n, L)) for il in range(L): l = lambdas[il] if l == np.inf: xs_sol[:, il] = np.sum(Y * mask, axis=1) / np.sum(mask, axis=1) # sample mean bs_sol[:, :, il] = np.zeros((d, n)) else: lda.value = l if len(inequalities) == 0: prob = cp.Problem( cp.Minimize(obj)) else: prob = cp.Problem( cp.Minimize(obj), inequalities) try: prob.solve(solver=cp.ECOS) except: print('Solving error (lambda=%.3f): %s' % (lambdas[il], sys.exc_info()[0]) ) prob.solve(solver=cp.SCS) if l == 0: # break ties -- find the correct shift among all solutions b0 = b.value + x.value # broadcast operation x0 = cp.Variable((d, 1)) x0_broadcast = cp.kron(np.ones((1,n)), x0) obj0 = cp.sum_squares( cp.multiply(b0 - x0_broadcast, mask) ) inequalities0 = [] # re-construct the inequalities again if ordering is not None: for v in range(vmax+1): (xs_high, ys_high) = np.where( np.logical_and(ordering == v, mask) ) size_high = len(xs_high) # no need for constraints for a single course, single group, because it's already enforced in the first optimization mask_low = np.logical_and(ordering < v, mask) if size_high == 0 or not np.any(mask_low): continue v_low = np.max(ordering[mask_low]) (xs_low, ys_low) = np.where( np.logical_and(ordering == v_low, mask) ) size_low = len(xs_low) if not mode_fast: for ih in range(size_high): for i in range(size_low): xh = xs_high[ih] yh = ys_high[ih] xl = xs_low[i] yl = ys_low[i] if xh != xl: # address numerical infeasibility issue -- within course ordering constraints have already been resolved inequalities0.append(b0[xh, yh] - x0[xh] >= b0[xl, yl] - x0[xl]) else: # mode_fast for ih in range(d): for i in range(d): if ih == i: continue # handled by previous optimization ys_high_block = ys_high[xs_high == ih] ys_low_block = ys_low[xs_low == i] if len(ys_high_block) > 0 and len(ys_low_block) > 0: y_high_block = b0[ih, ys_high_block] idx_high = np.argsort(y_high_block)[0] # min y_low_block = b0[i, ys_low_block] idx_low = np.argsort(y_low_block)[-1] # max inequalities0.append(b0[ih, ys_high_block[idx_high]] - x0[ih] >= b0[i, ys_low_block[idx_low]] - x0[i]) prob0 = cp.Problem( cp.Minimize(obj0), inequalities0) try: prob0.solve(solver=cp.ECOS) except: print('Solving error (lambda=0).') prob0.solve(solver=cp.SCS) xs_sol[:, il] = x0.value.flatten() bs_sol[:, :, il] = b0 - x0.value else: # l > 0 xs_sol[:, il] = x.value.flatten() bs_sol[:, :, il] = b.value return (xs_sol, bs_sol) # Sample total ordering from partial ordering # Returns: # 1x(nd) order (from small to large entries) def sample_total_from_partial(d, n, ordering=None): if ordering is None: return np.random.permutation(d*n) else: # ordering not None assert(is_valid_ordering(ordering)) order = ordering.flatten() order = order + 0.1 * np.random.uniform(size=d*n) idxs = np.argsort(order) return idxs # From any values to adjacent-valued integers preserving the same rank, starting from 0: def is_valid_ordering(ordering): vals = np.unique(ordering) if np.min(ordering) == 0: if np.all(np.diff(vals) == 1): return True return False ```
{ "source": "jingyanxu/Patient-specific_hyperparameter_learning_CT", "score": 2 }
#### File: jingyanxu/Patient-specific_hyperparameter_learning_CT/run_test.py ```python from sys import argv, exit import random import matplotlib.pyplot as plt import numpy as np import os import tensorflow as tf import time from optparse import OptionParser from utils_smth_layer_fast import * from utils_cnn_model import * from utils_tfds import load_data_fbp from utils_ramp_filter_tf import * os.environ['PYTHONINSPECT'] = '1' os.environ['CUDA_VISIBLE_DEVICES'] = '1' #plt.rcParams['figure.figsize'] = (8.0, 6.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' if (len (argv) < 2) : print ("usage: {} epoch #".format (os.path.basename (argv[0]))) print (''' -f [ # of filters, default 128 ] -b [ # of blocks, default 2 ] ''') exit (1) parser = OptionParser() parser.add_option("-c", "--chans", type = "int", dest="nchans", \ help="num of chans", default=672) parser.add_option("-v", "--views", type = "int", dest="nviews", \ help="num of views", default=1160) parser.add_option("-t", "--stepsize", type = "float", dest="lr", \ help="learning rate", default=1.0e-4) parser.add_option("-f", "--nfilters", type = "int", dest="nfilters", \ help="num of filters", default=128) parser.add_option("-b", "--nblocks", type = "int", dest="nblocks", \ help="num of blocks", default=2) (options, args) = parser.parse_args() if tf.test.gpu_device_name(): print('GPU found') else: print("No GPU found") header = 8369 nchans = 672 nviews = 1160 # max train is around 15,000 num_train = 1 num_val = 1 num_test = 1 nfilters = options.nfilters nblocks = options.nblocks train_fname = "./test_names.txt" # a place holder for running test test_fname = "./test_names.txt" input_len = nchans initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=0.1) inputs = tf.keras.layers.Input (shape = (input_len, 1 )) is_training = False beta_o = Conv1Dthin_d (inputs, nfilters, nblocks, initializer, trainable=is_training ) beta_cnn = tf.keras.Model (inputs = inputs, outputs=beta_o ) sinosmth_layer = Sinosmth_grad_k ( input_len) print (beta_cnn.summary()) num_epochs = 1 batch_size = 1 steps_per_epoch = num_train// batch_size train_steps = num_epochs*steps_per_epoch init_learning_rate = options.lr print_every = 15 save_every = 1 learning_rate_fn = tf.optimizers.schedules.PolynomialDecay(init_learning_rate, train_steps, 0.5*init_learning_rate, 2) def optimizer_init_fn(): # return tf.keras.optimizers.SGD(learning_rate=learning_rate) return tf.keras.optimizers.Adam(learning_rate=learning_rate_fn, epsilon=1e-8) optimizer = optimizer_init_fn() train_ds, val_ds, test_ds = load_data_fbp (train_fname, test_fname, num_train, num_val, num_test, batch_size = batch_size) is_reload = True alpha = 0 apod = 2 # smooth 0, 1, 2 xdim = 512 fov_xdim = 200 fov_ydim = 200 lower = 0 upper = xdim - fov_xdim xoff = 255.5 yoff = 255.5 fov = 2*245 x_size = 0.975 xvec = (np.arange(xdim) - xoff ) * x_size yvec = (np.arange(xdim) - yoff ) * x_size xmat, ymat = np.meshgrid (xvec, yvec) # here we have a recon mask mask = np.where (xmat * xmat + ymat*ymat <= (fov/2)*(fov/2) , 1, 0 ) mask = tf.convert_to_tensor (mask, dtype = tf.float32) checkpoint_directory = './checkpoint_dir/' ckpt = tf.train.Checkpoint(step=tf.Variable(1), optimizer=optimizer, model=beta_cnn) manager = tf.train.CheckpointManager(ckpt, directory=checkpoint_directory, max_to_keep=50) e0 = int(args[0] ) test_loss = tf.keras.metrics.Mean(name='test_loss') tt_loss = () et_loss = () start_time = time.time () checkpoints_list = manager.checkpoints t = 0 t_ = 0 for epoch in range (e0, 1) : status = ckpt.restore(checkpoints_list [epoch] ) print("Restored from epoch {} {}".format(epoch, checkpoints_list [epoch] ) ) test_loss.reset_states() for x_scale, y_np, x_np, label_fname in test_ds : loss = 0 i = 0 x0 = random.randint (lower, upper) y0 = random.randint (lower, upper) # for debugging maybe good to fix the roi location x0 = 255 - 100 y0 = 255 - 100 beta_o = beta_cnn (x_scale[i]) logits = sinosmth_layer ([x_np[i], beta_o]) recon0_n = rcn_fbp (logits, x0, y0, apod ) # fixed fov dim inside # conversion to attenuation cm-1 label = y_np[i, y0:y0+fov_ydim, x0:x0+fov_xdim]/ 1000.0 * 0.0183 mask_roi = mask [y0:y0+fov_ydim, x0:x0+fov_xdim] loss1 = tf.reduce_sum (((label - recon0_n)*mask_roi)**2) loss2 = alpha* tf.reduce_sum(beta_o*beta_o) loss += (loss1 + loss2 ) loss /= batch_size test_loss.update_state (loss) end_time = time.time () t += 1 et_loss += (loss.numpy() , ) if (t % print_every ==0 ) : template = 'Iter {:6d}, Epoch {:4d}, Loss: {}, running avg_loss: {}, time {:6f}' print (template.format(t, epoch+1, loss.numpy(), test_loss.result().numpy(), end_time -start_time )) start_time = end_time tt_loss += (test_loss.result().numpy(), ) print (tt_loss[-1] ) h2o = 0.0183 fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(14,6)) hdl1 = ax[0].imshow (recon0_n.numpy() ) hdl2 = ax[1].imshow (label.numpy() ) hdl3 = ax[2].imshow (mask_roi.numpy() ) ax[0].set_title ('recon') ax[1].set_title ('label') ax[2].set_title ('mask [0/1]') cw = 1024/1000*h2o ww = 400/1000*h2o hdl1.set_clim ( [cw - ww/2, cw+ww/2]) hdl2.set_clim ( [cw - ww/2, cw+ww/2]) plt.show(block = False) ``` #### File: jingyanxu/Patient-specific_hyperparameter_learning_CT/utils_ramp_filter_tf.py ```python import tensorflow as tf import numpy as np eps = 1e-4 roi_xdim = 200 roi_ydim = 200 #x0 = 152 #y0 = 109 nviews = 1160 nchans = 672 fov = 2*245 u_size = 1.4083 D = 1040.0 duD = u_size/D params = {} params["start_angle"] = 0 params["nreadings"] = nviews params ["xdim"] = roi_xdim params ["ydim"] = roi_ydim params ["fov"] = fov params ["x_size"] = 0.975 params ["y_size"] = 0.975 params ["s2d"] = D params ["s2o"] = 570.0 params ["u_off"] = 336.625 params ["u_size"] = u_size params ["num_u"] = nchans params ["print_every"] = 4 params ["angles_per_set"] = nviews params ["duD"] = duD params ["xoff"] = 255.5 params ["yoff"] = 255.5 params ['apod'] = 0 def vfunc (x ) : y2 = tf.ones_like (x) * 0.5 mask = tf.cast (tf.where(tf.abs(x) > eps, 1, 0), x.dtype) y1 = tf.math.divide_no_nan (tf.sin (x) , x) + tf.math.divide_no_nan( (tf.cos (x) - 1), (x*x) ) y = y1 * mask + (1 - mask) * y2 return y def wfunc (x ) : y2 = tf.zeros_like (x) mask = tf.cast (tf.where ( tf.abs (x) > eps, 1, 0), x.dtype ) y1 = tf.math.divide_no_nan(tf.cos (x) -1 , x ) y = mask * y1 + (1 - mask) * y2 return y def apply_ramp_filter (proj, apod ) : du = params['duD'] nviews = params['nreadings'] nchans = params['num_u'] uoff = params['u_off'] # apod = params['apod'] # apod = 0 nchans_pad = int(np.exp2 (np.ceil(np.log2 (nchans) ) ) ) print (nchans, nchans_pad) # ramp_filter = tf.zeros ((2*nchans_pad,)) ramp_imag = tf.zeros ((2*nchans_pad,), dtype = tf.float64) rf_p2 = tf.zeros ( 2*nchans_pad -nchans+1-nchans, dtype = tf.float64) du = tf.cast (du, tf.float64) uoff = tf.constant( uoff, dtype=tf.float64) # gamma=(-uoff + tf.cast (range(nchans), tf.float64))*du gamma=(-uoff + tf.range(nchans, dtype=tf.float64))*du cosweight= tf.cos(gamma) proj = tf.cast (proj, dtype = tf.float64) * cosweight # proj = proj if (apod == 0) : hamming = tf.constant ( 0.5, dtype = tf.float64) else : hamming = tf.constant (1.0, dtype=tf.float64) if (apod == 1) : hamming = tf.constant (1.0, dtype=tf.float64) else : hamming = tf.constant( 0.5, dtype=tf.float64) pi = tf.constant (np.pi, dtype = tf.float64) arg1 = pi*tf.range(nchans, dtype=tf.float64) arg2 = pi*tf.range (-nchans+1, 0, dtype=tf.float64) a1 = arg1 * du/pi a2 = arg2 * du/pi w12 = tf.ones_like (a1[nchans :]) w11 = (a1[1:nchans] / tf.sin ( a1[1:nchans]) )**2 w1 = tf.concat ( [tf.constant ([1.], dtype=tf.float64), w11, w12], axis = -1) w2 = (a2/tf.sin(a2))**2 if (apod == 0 ) or (apod == 1) : h1 = hamming * vfunc (arg1) + 0.5 * (1 - hamming)* (vfunc (pi + arg1) + vfunc (pi- arg1)) h2 = hamming * vfunc (arg2) + 0.5 * (1 - hamming)* (vfunc (pi + arg2) + vfunc (pi- arg2)) rf_p1 = h1 * w1 rf_p3 = h2 * w2 ramp_filter = tf.concat ( [rf_p1, rf_p2, rf_p3], axis=-1) / (2 * du) else : h1 = wfunc (arg1 + pi/2) - wfunc (arg1 - pi/2) h2 = wfunc (arg2 + pi/2) - wfunc (arg2 - pi/2) rf_p1 = h1*w1 rf_p3 = h2 * w2 ramp_filter = tf.concat ( [rf_p1, rf_p2, rf_p3], axis=-1) / ( - 2 * du* pi) ramp_filter_fft = tf.signal.fft (tf.complex (ramp_filter, ramp_imag)) proj_pad = tf.pad (proj , [[0, 0], [0, 2*nchans_pad -nchans] ], constant_values =0 ) proj_pad_fft = tf.signal.fft( tf.complex (proj_pad, tf.zeros_like (proj_pad)) ) proj_filter = tf.math.real (tf.signal.ifft(ramp_filter_fft * proj_pad_fft ) ) [:, 0:nchans] proj_filter *= cosweight*cosweight #proj_filter = tf.cast (proj_filter, dtype = tf.float32) return proj_filter , cosweight # this is float32 version def backprojection_nv (proj, x0, y0, xdim=64, ydim=64 ) : start_angle = params['start_angle'] nreadings = params ['nreadings'] # xdim = params['xdim'] # ydim = params['ydim'] fov = params ['fov'] x_size = params['x_size'] y_size = params['y_size'] s2d = params['s2d'] s2o = params['s2o'] u_off = params['u_off'] u_size = params['u_size'] nchans = params['num_u'] print_every = params['print_every'] angles_per_set = params ["angles_per_set"] du = params ["duD"] #xoff = params ["xoff"] #yoff = params ["yoff"] xoff = params ["xoff"] - x0 yoff = params ["yoff"] - y0 dtype = tf.float32 proj = tf.cast (proj, dtype) xvec = (tf.range (xdim, dtype=dtype) - xoff )*tf.constant (x_size, dtype=dtype ) yvec = (tf.range (ydim, dtype=dtype) - yoff )*tf.constant (y_size, dtype=dtype) (xmat, ymat) = tf.meshgrid (xvec, yvec) #ymat = ymat[::-1, :] # angles_per_set = 32 nsubsets = nreadings//angles_per_set xmat1 = tf.expand_dims (xmat, axis=-1) ymat1 = tf.expand_dims (ymat, axis=-1) #idx = tf.reshape (tf.tile (tf.reshape(tf.range (angles_per_set), [-1,1]), [1, xdim*ydim] ), [-1] ) idx = tf.reshape (tf.tile (tf.range (angles_per_set), [xdim*ydim]), [-1] ) pi = tf.constant (np.pi, dtype = dtype) viewangles = tf.range(nreadings, dtype = dtype)*2.0*pi/nreadings - start_angle/180*pi dangle = tf.abs (viewangles[1] - viewangles[0]) bim = tf.zeros ( [ydim, xdim], dtype=dtype) for isubset in range(nsubsets ) : if (isubset % print_every == 0) : print (isubset, end = " " ) iv0 = isubset * angles_per_set iv1 = (isubset + 1) * angles_per_set angles = viewangles [iv0:iv1] e11, e12 = -tf.cos(angles) , -tf.sin(angles) e21, e22 = e12, -e11 num = xmat1 *e21 + ymat1*e22 den = s2o + xmat1*e11 + ymat1*e12 coord = tf.reshape (tf.math.atan2 (num, den)*s2d/u_size + u_off, [ -1 ] ) lower = tf.cast (tf.floor (coord), tf.int32) upper = lower + 1 lower = tf.clip_by_value (lower, 0, nchans-1) weights = coord - tf.cast (lower, dtype) lower = tf.stack ([idx, tf.clip_by_value (lower, 0, nchans-1)], axis =1) upper = tf.stack([idx, tf.clip_by_value (upper, 0, nchans-1) ], axis =1) lim = tf.gather_nd (proj [iv0:iv1, :], lower ) uim = tf.gather_nd (proj [iv0:iv1, :], upper ) im1 = tf.reshape (lim * (1 - weights) + uim * weights , [ydim, xdim, angles_per_set] ) bim += tf.reduce_sum (im1/den/den , axis = -1) bim *= s2o*pi/nreadings bim = tf.cast (bim, dtype = tf.float32) return bim def backprojection_nv_d (proj, x0, y0, xdim=64, ydim=64) : start_angle = params['start_angle'] nreadings = params ['nreadings'] # xdim = params['xdim'] # ydim = params['ydim'] fov = params ['fov'] x_size = params['x_size'] y_size = params['y_size'] s2d = params['s2d'] s2o = params['s2o'] u_off = params['u_off'] u_size = params['u_size'] nchans = params['num_u'] print_every = params['print_every'] angles_per_set = params ["angles_per_set"] du = params ["duD"] #xoff = params ["xoff"] #yoff = params ["yoff"] dtype = tf.float64 xoff = params ["xoff"] - tf.cast( x0, dtype = dtype) yoff = params ["yoff"] - tf.cast( y0, dtype = dtype) xvec = (tf.range (xdim, dtype=dtype) - xoff )*tf.constant (x_size, dtype=dtype ) yvec = (tf.range (ydim, dtype=dtype) - yoff )*tf.constant (y_size, dtype=dtype) (xmat, ymat) = tf.meshgrid (xvec, yvec) #ymat = ymat[::-1, :] # angles_per_set = 32 nsubsets = nreadings//angles_per_set xmat1 = tf.expand_dims (xmat, axis=-1) ymat1 = tf.expand_dims (ymat, axis=-1) #idx = tf.reshape (tf.tile (tf.reshape(tf.range (angles_per_set), [-1,1]), [1, xdim*ydim] ), [-1] ) idx = tf.reshape (tf.tile (tf.range (angles_per_set), [xdim*ydim]), [-1] ) pi = tf.constant (np.pi, dtype = dtype) viewangles = tf.range(nreadings, dtype = dtype)*2.0*pi/nreadings - start_angle/180*pi dangle = tf.abs (viewangles[1] - viewangles[0]) bim = tf.zeros ( [ydim, xdim], dtype=dtype) for isubset in range(nsubsets ) : if (isubset % print_every == 0) : print (isubset, end = " " ) iv0 = isubset * angles_per_set iv1 = (isubset + 1) * angles_per_set angles = viewangles [iv0:iv1] e11, e12 = -tf.cos(angles) , -tf.sin(angles) e21, e22 = e12, -e11 num = xmat1 *e21 + ymat1*e22 den = s2o + xmat1*e11 + ymat1*e12 coord = tf.reshape (tf.math.atan2 (num, den)*s2d/u_size + u_off, [ -1 ] ) lower = tf.cast (tf.floor (coord), tf.int32) upper = lower + 1 lower = tf.clip_by_value (lower, 0, nchans-1) weights = coord - tf.cast (lower, dtype) lower = tf.stack ([idx, tf.clip_by_value (lower, 0, nchans-1)], axis =1) upper = tf.stack([idx, tf.clip_by_value (upper, 0, nchans-1) ], axis =1) lim = tf.gather_nd (proj [iv0:iv1, :], lower ) uim = tf.gather_nd (proj [iv0:iv1, :], upper ) im1 = tf.reshape (lim * (1 - weights) + uim * weights , [ydim, xdim, angles_per_set] ) bim += tf.reduce_sum (im1/den/den , axis = -1) bim *= s2o*pi/nreadings bim = tf.cast (bim, dtype = tf.float32) return bim #tf.TensorSpec(shape=None, dtype=tf.int32) #@<EMAIL> @tf.function( input_signature=[ tf.TensorSpec(shape=None, dtype=tf.float32), \ tf.TensorSpec(shape=None, dtype=tf.float32), \ tf.TensorSpec(shape=None, dtype=tf.float32) , \ tf.TensorSpec(shape=None, dtype=tf.int32) ]) def rcn_fbp (proj, x0, y0, apod ) : proj_f, cosweight = apply_ramp_filter (proj, apod ) rcn = backprojection_nv (proj_f, x0, y0, 200, 200 ) return rcn @tf.function( input_signature=[ tf.TensorSpec(shape=None, dtype=tf.float32), \ tf.TensorSpec(shape=None, dtype=tf.float32), \ tf.TensorSpec(shape=None, dtype=tf.float32) , \ tf.TensorSpec(shape=None, dtype=tf.int32), \ tf.TensorSpec(shape=None, dtype=tf.int32), \ tf.TensorSpec(shape=None, dtype=tf.int32) ]) def rcn_fbp_d (proj, x0, y0, apod, xdim, ydim ) : proj_f, cosweight = apply_ramp_filter (proj, apod ) rcn = backprojection_nv_d (proj_f, x0, y0, xdim, ydim) return rcn ``` #### File: jingyanxu/Patient-specific_hyperparameter_learning_CT/utils_tfds.py ```python import tensorflow as tf import random def parse_function (fname_in, fname_label, nchans = 672, nviews = 1160, header = 8369) : imagestring = tf.strings.substr(tf.io.read_file (fname_in), pos=header, len=nchans*nviews*4) image = tf.reshape(tf.io.decode_raw (imagestring, tf.float32 ), [nviews, nchans, 1]) labelstring = tf.strings.substr (tf.io.read_file (fname_label), pos = header, len=nchans*nviews*4) label = tf.reshape(tf.io.decode_raw (labelstring, tf.float32 ), [nviews, nchans ]) return image, label, fname_label def parse_function_fbp (fname_in, fname_label, nchans = 672, nviews = 1160, xdim = 512, header = 8369) : imagestring = tf.strings.substr(tf.io.read_file (fname_in), pos=header, len=nchans*nviews*4) image = tf.reshape(tf.io.decode_raw (imagestring, tf.float32 ), [nviews, nchans, 1]) labelstring = tf.strings.substr (tf.io.read_file (fname_label), pos = header, len=xdim*xdim*4) label = tf.reshape(tf.io.decode_raw (labelstring, tf.float32 ), [xdim, xdim ]) return image, label, fname_label def train_preprocess2 (image, label, label_fname) : maxval = tf.math.reduce_max (image) minval = tf.math.reduce_min (image) image_s = (image - minval)/ (maxval - minval) label = label return image_s, label, tf.squeeze (image ) , label_fname def parse_fnames (fnames_train, fnames_test, num_train, num_val, num_test) : f = open (fnames_train, 'r') lines = f.read().splitlines() f.close () sublines = random.sample (lines, num_train+num_val) fnames_ny = [x.split ()[1] for x in sublines] fnames_label = [x.split ()[0] for x in sublines] total = len (lines) print ("total_train: %g, num_train: %g, num_val: %g" % (total, num_train, num_val )) train_fnames_ny, train_fnames_label = fnames_ny[0:num_train] , fnames_label[0:num_train] val_fnames_ny, val_fnames_label = fnames_ny[num_train:num_train+num_val] , \ fnames_label[num_train:num_train+num_val] del lines, sublines, fnames_ny, fnames_label f = open (fnames_test, 'r') lines = f.read().splitlines() f.close () # sublines = random.sample (lines, num_test) sublines = lines [0: num_test] fnames_ny = [x.split ()[1] for x in sublines] fnames_label = [x.split ()[0] for x in sublines] total = len (lines) print ("total_test: %g, num_test: %g" % (total, num_test )) test_fnames_ny, test_fnames_label = fnames_ny , fnames_label return train_fnames_ny, train_fnames_label, val_fnames_ny, val_fnames_label, test_fnames_ny, test_fnames_label # do not change batch_size for now , def load_data_fbp (train_name, test_name, num_train, num_val, num_test, batch_size = 1) : train_fnames_ny, train_fnames_label, val_fnames_ny, val_fnames_label, test_fnames_ny, test_fnames_label = \ parse_fnames (train_name, test_name, num_train, num_val, num_test) with tf.device ('/cpu:0') : train_dataset = tf.data.Dataset.from_tensor_slices((train_fnames_ny, train_fnames_label)) train_dataset = train_dataset.shuffle(num_train).repeat(1) train_dataset = train_dataset.map(parse_function_fbp, num_parallel_calls=4) train_dataset = train_dataset.map(train_preprocess2, num_parallel_calls=4) train_dataset = train_dataset.batch(batch_size, drop_remainder=True ) # train_dataset = train_dataset.unbatch () train_dataset = train_dataset.prefetch(batch_size) val_dataset = tf.data.Dataset.from_tensor_slices((val_fnames_ny, val_fnames_label)) val_dataset = val_dataset.map(parse_function_fbp, num_parallel_calls=4) val_dataset = val_dataset.map(train_preprocess2, num_parallel_calls=4) val_dataset = val_dataset.batch(batch_size, drop_remainder=True) # val_dataset = val_dataset.unbatch () val_dataset = val_dataset.prefetch(1 ) test_dataset = tf.data.Dataset.from_tensor_slices((test_fnames_ny, test_fnames_label)) test_dataset = test_dataset.map(parse_function_fbp, num_parallel_calls=4) test_dataset = test_dataset.map(train_preprocess2, num_parallel_calls=4) test_dataset = test_dataset.batch(batch_size, drop_remainder=True) # test_dataset = test_dataset.unbatch () test_dataset = test_dataset.prefetch(1 ) return train_dataset, val_dataset, test_dataset ```
{ "source": "JingYeoh/bazel-common", "score": 2 }
#### File: tools/jarjar/jarjar.bzl ```python def _jarjar_library(ctx): ctx.actions.write( output = ctx.outputs._rules_file, content = "\n".join(ctx.attr.rules), ) jar_files = depset(transitive = [jar.files for jar in ctx.attr.jars]).to_list() # TODO(dpb): Extract this command to a separate shell script file command = """ JAVA_HOME="$(cd "{java_home}" && pwd)" # this is used outside of the root TMPDIR=$(mktemp -d) for jar in {jars}; do unzip -qq -B $jar -d $TMPDIR done pushd $TMPDIR &>/dev/null # Concatenate similar files in META-INF that allow it. mergeMetaInfFiles=(services/.* {merge_meta_inf_files}) findCmd=(find) if [[ "$(uname -s)" == "Darwin" ]]; then # Mac uses BSD find, which requires extra args for regex matching. findCmd+=(-E) findGroup='(~[0-9]*)?' else # Default to GNU find, which must escape parentheses. findGroup='\\(~[0-9]*\\)?' fi for metaInfPattern in ${{mergeMetaInfFiles[@]}}; do regexPattern="META-INF/${{metaInfPattern}}${{findGroup}}" for file in $("${{findCmd[@]}}" META-INF -regex "$regexPattern"); do original=$(echo $file | sed s/"~[0-9]*$"//) if [[ "$file" != "$original" ]]; then cat $file >> $original rm $file fi done done rm META-INF/MANIFEST.MF* rm -rf META-INF/maven/ duplicate_files=$(find * -type f -regex ".*~[0-9]*$") if [[ -n "$duplicate_files" ]]; then echo "Error: duplicate files in merged jar: $duplicate_files" exit 1 fi $JAVA_HOME/bin/jar cf combined.jar * popd &>/dev/null {jarjar} process {rules_file} $TMPDIR/combined.jar {outfile} rm -rf $TMPDIR """.format( jars = " ".join([jar.path for jar in jar_files]), java_home = str(ctx.attr._jdk[java_common.JavaRuntimeInfo].java_home), jarjar = ctx.executable._jarjar.path, rules_file = ctx.outputs._rules_file.path, outfile = ctx.outputs.jar.path, merge_meta_inf_files = " ".join(ctx.attr.merge_meta_inf_files), ) ctx.actions.run_shell( command = command, inputs = [ctx.outputs._rules_file] + jar_files + ctx.files._jdk, outputs = [ctx.outputs.jar], tools = [ctx.executable._jarjar], ) _jarjar_library_attrs = { "rules": attr.string_list(), "jars": attr.label_list( allow_files = [".jar"], ), "merge_meta_inf_files": attr.string_list( allow_empty = True, default = [], mandatory = False, doc = """A list of regular expressions that match files relative to the META-INF directory that will be merged into the output jar, in addition to files in META-INF/services. To add all files in META-INF/foo, for example, use "foo/.*".""", ), } # Additional attributes only used in opensource builds _jarjar_library_attrs.update({ "_jarjar": attr.label( default = Label("//tools/jarjar"), executable = True, cfg = "host", ), "_jdk": attr.label( default = Label("@bazel_tools//tools/jdk:current_java_runtime"), providers = [java_common.JavaRuntimeInfo], ), }) jarjar_library = rule( attrs = _jarjar_library_attrs, outputs = { "jar": "%{name}.jar", "_rules_file": "%{name}.jarjar_rules", }, implementation = _jarjar_library, ) ```
{ "source": "JinGyeSetBirdsFree/FudanOCR", "score": 3 }
#### File: component/convnet/resnet.py ```python import torch import torch.nn as nn import numpy as np import torch.nn.init as init import torch.nn.functional as F class BasicBlock(nn.Module): ''' 构成ResNet的残差快 ''' def __init__(self, inplanes, planes,downsample): super(BasicBlock, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample != None: residual = self.downsample(residual) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, num_in, block, layers): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(num_in, 32, kernel_size=3, stride=1, padding=1) self.bn1 = nn.BatchNorm2d(32) self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) self.layer1_pool = nn.MaxPool2d((2, 2), (2, 2)) self.layer1 = self._make_layer(block, 64,128, layers[0]) self.layer1_conv = nn.Conv2d(128, 128, 3, 1, 1) self.layer1_bn = nn.BatchNorm2d(128) self.layer1_relu = nn.ReLU(inplace=True) self.layer2_pool = nn.MaxPool2d((2, 2), (2, 2)) self.layer2 = self._make_layer(block, 128,256, layers[1]) self.layer2_conv = nn.Conv2d(256, 256, 3, 1, 1) self.layer2_bn = nn.BatchNorm2d(256) self.layer2_relu = nn.ReLU(inplace=True) self.layer3_pool = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) self.layer3 = self._make_layer(block, 256,512, layers[2]) self.layer3_conv = nn.Conv2d(512, 512, 3, 1, 1) self.layer3_bn = nn.BatchNorm2d(512) self.layer3_relu = nn.ReLU(inplace=True) self.layer4 = self._make_layer(block, 512,512, layers[3]) self.layer4_conv1 = nn.Conv2d(512, 512, (2,2),(2,1),(0,1)) self.layer4_conv1_bn = nn.BatchNorm2d(512) self.layer4_conv1_relu = nn.ReLU(inplace=True) self.layer4_conv2 = nn.Conv2d(512, 512, 2,1,0) self.layer4_conv2_bn = nn.BatchNorm2d(512) self.layer4_conv2_relu = nn.ReLU(inplace=True) # Official init from torch repo print("Initializing ResNet18 weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, inplanes ,planes, blocks): if inplanes != planes: downsample = nn.Sequential( nn.Conv2d(inplanes, planes , 3,1,1), nn.BatchNorm2d(planes), ) else: downsample = None layers = [] layers.append(block(inplanes, planes,downsample)) # self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(planes, planes,downsample=None)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) x = self.layer1_pool(x) x = self.layer1(x) x = self.layer1_conv(x) x = self.layer1_bn(x) x = self.layer1_relu(x) x = self.layer2_pool(x) x = self.layer2(x) x = self.layer2_conv(x) x = self.layer2_bn(x) x = self.layer2_relu(x) x = self.layer3_pool(x) x = self.layer3(x) x = self.layer3_conv(x) x = self.layer3_bn(x) x = self.layer3_relu(x) x = self.layer4(x) x = self.layer4_conv1(x) x = self.layer4_conv1_bn(x) x = self.layer4_conv1_relu(x) x = self.layer4_conv2(x) x = self.layer4_conv2_bn(x) x = self.layer4_conv2_relu(x) return x def getResNet18(): model = ResNet(num_in=1, block=BasicBlock, layers=[1, 2, 5, 3]) return model ``` #### File: component/convnet/vgg16.py ```python import torch import torch.nn as nn def getVGG16(opt): '''cnn''' nc = opt.IMAGE.IMG_CHANNEL ''' nm: chanel number ks: kernel size ps: padding size ss: stride size ''' nm = [64, 128, 256, 256, 512, 512, 512] ks = [3, 3, 3, 3, 3, 3, 2] ps = [1, 1, 1, 1, 1, 1, 0] ss = [1, 1, 1, 1, 1, 1, 1] cnn = nn.Sequential() def convRelu(i, batchNormalization=False, leakyRelu=False): nIn = nc if i == 0 else nm[i - 1] nOut = nm[i] cnn.add_module('conv{0}'.format(i), nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i])) if batchNormalization: cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut)) if leakyRelu: cnn.add_module('relu{0}'.format(i), nn.LeakyReLU(0.2, inplace=True)) else: cnn.add_module('relu{0}'.format(i), nn.ReLU(True)) # 32 * 100 convRelu(0, False) # 32 * 100 cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) # 16 * 50 convRelu(1, False) # 16 * 50 cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) # 8 * 25 convRelu(2, True) convRelu(3, False) # 8 * 25 cnn.add_module('pooling{0}'.format(2), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # # 4 * 27 convRelu(4, True) convRelu(5, False) # 4 * 27 cnn.add_module('pooling{0}'.format(3), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) # 2 * 29 convRelu(6, True) # 1 * ? # 也就是说,当图片的高为32时,经过卷积层之后,输出的特征图维度的高将变为1 return cnn ``` #### File: FudanOCR/data/generator.py ```python class Generator(object): """An abstract class for text generator. 一个抽象类,用于数据集的生成,等待被实现 """ def __getitem__(self): raise NotImplementedError def __len__(self): raise NotImplementedError class CnumberGenerator(Generator): def __init__(self): self.cnum = cnumber() def __len__(self): return 128000 def __getitem__(self, index): num = random.randint(100, 9999999) if random.randint(0, 1): num = num / 100.0 return self.cnum.cwchange(num) class TextGenerator(Generator): """Invoice message txt generator args: texts: File path which contains """ def __init__(self, texts, len_thr): super(TextGenerator, self).__init__() self.len_thr = len_thr with open(texts) as f: self.texts = f.readlines() def __getitem__(self, index): text_len = len(self.texts[index]) if text_len > self.len_thr: text_len = self.len_thr return self.texts[index].strip()[0:text_len] def __len__(self): return len(self.texts) def __len_thr__(self): return self.len_thr class PasswordGenerator(Generator): def __init__(self): self.fake = Faker() self.fake.random.seed(4323) def __getitem__(self, index): return self.fake.password(length=10, special_chars=True, digits=True, upper_case=True, lower_case=True) def __len__(self): return 320000 class HyperTextGenerator(Generator): def __init__(self, texts): self.invoice_gen = TextGenerator(texts) # self.passwd_gen = PasswordGenerator() self.cnum_gen = CnumberGenerator() def __getitem__(self, index): rnd = random.randint(0, 1) if rnd: cur = index % self.invoice_gen.__len__() return self.invoice_gen.__getitem__(cur) else: return self.cnum_gen.__getitem__(index) def __len__(self): return self.invoice_gen.__len__() + self.cnum_gen.__len__() ``` #### File: demo/client_server/e2e_demo.py ```python import sys sys.path.append('/home/cjy/FudanOCR/recognition_model') sys.path.append('/home/cjy/FudanOCR/maskrcnn_benmark_architecture') import matplotlib.pyplot as plt import matplotlib.pylab as pylab import os import requests from io import BytesIO from PIL import Image import numpy as np import cv2 # 调用GRCNN的部分,用于生成一个模型 from GRCNN.models import crann from GRCNN.utils import util from GRCNN.utils import keys import yaml import torch from torch.autograd import Variable import torch.nn.functional as F import torchvision.transforms as transforms # ? # this makes our figures bigger pylab.rcParams['figure.figsize'] = 20, 12 from maskrcnn_benchmark.config import cfg from predictor import COCODemo from PIL import Image _DEBUG = True # 这里两个部分处理的是模型的初始化 ############## det model init ############## # 检测部分的生成调用高封装接口,较为简单 # 可以通过传入一个yaml文件的形式 print('Initializing detection model...') config_file = "/home/cjy/FudanOCR/maskrcnn_benmark_architecture/configs/text_maskrcnn_res50_fpn_lsvt.yaml" # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cpu"]) coco_demo = COCODemo( cfg, min_image_size=800, confidence_threshold=0.8, ) print('done') ############################################ ############## rec model init ############## # 初始化识别模型 # 加载参数,用yaml.load的形式就变成字典了 print('Initializing recognition model...') config_yaml = '/home/cjy/FudanOCR/config/GRCNN_test.yaml' f = open(config_yaml) opt = yaml.load(f) # 超参数 fixed_height = 32 if opt['N_GPU'] > 1: opt['RNN']['multi_gpu'] = True else: opt['RNN']['multi_gpu'] = False alphabet = keys.alphabet nClass = len(alphabet) + 1 converter = util.strLabelConverter(alphabet) # 用这个方式去定义一个模型 rec_model = crann.CRANN(opt, nClass).cuda() # 这个已经准备好了 model_path = opt['CRANN'] # 加载已有的参数 if os.path.isfile(opt['CRANN']): print("=> loading checkpoint '{}'".format(model_path)) checkpoint = torch.load(model_path) start_epoch = checkpoint['epoch'] # best_pred = checkpoint['best_pred'] rec_model.load_state_dict(checkpoint['state_dict']) # print("=> loaded checkpoint '{}' (epoch {} accuracy {})" # .format(model_path, checkpoint['epoch'], best_pred)) # if _DEBUG: # print('rec_model:', rec_model) # 设置为 eval模式进行测试 rec_model.eval() print('done') ############################################ def normalize(img): img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # img = Image.fromarray(img) img = torch.from_numpy(img).float().div(255) img.sub_(0.5).div_(0.5) return img def load(url): """ Given an url of an image, downloads the image and returns a PIL image """ response = requests.get(url) pil_image = Image.open(BytesIO(response.content)).convert("RGB") # convert to BGR format image = np.array(pil_image)[:, :, [2, 1, 0]] return image def load_img(impath): """ Given an url of an image, downloads the image and returns a PIL image """ # response = requests.get(url) pil_image = Image.open(impath).convert("RGB") # convert to BGR format image = np.array(pil_image)[:, :, [2, 1, 0]] return image def imshow(img): plt.imshow(img[:, :, [2, 1, 0]]) plt.axis("off") def rotate(image, angle, ctr): # convert to cv2 image image = np.array(image) (h, w) = image.shape[:2] scale = 1.0 # set the rotation center center = (int(ctr[0]), int(ctr[1])) # anti-clockwise angle in the function M = cv2.getRotationMatrix2D(center, angle, scale) image = cv2.warpAffine(image, M, (w, h)) return image # image process # 核心函数 def improc(impath): # image_dir = '' # imlist = os.listdir(image_dir) # for imname in imlist: # impath = os.path.join(image_dir, imname) # from http://cocodataset.org/#explore?id=345434 image = load_img(impath) # imshow(image) # 返回结果的字典 result_dict = {} # compute predictions # 得到一个检测结果 res_im, predictions = coco_demo.run_on_opencv_image(image) # print('predictions:', predictions.shape) # 从predictions抽取mask域 masks = predictions.get_field('mask') masks_np = masks.data.cpu().numpy() print('masks_np:', masks_np.shape) # 返回得到三个数组 rboxes = [] rcrops = [] rpolys = [] recs = [] for i in range(masks_np.shape[0]): mask_np = masks_np[i][0] contours = cv2.findContours((mask_np * 1).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for pts in contours[1]: poly = pts.reshape(-1, 2) if poly.shape[0] >= 4: # print('polygon:', poly.shape[0]) rect = cv2.minAreaRect(poly) poly_q = np.array(cv2.boxPoints(rect), np.int) # print('rect:', rect) poly_q = poly_q.reshape(-1) pt1 = (int(poly_q[0]), int(poly_q[1])) pt2 = (int(poly_q[2]), int(poly_q[3])) pt3 = (int(poly_q[4]), int(poly_q[5])) pt4 = (int(poly_q[6]), int(poly_q[7])) edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[1]) * (pt1[1] - pt2[1])) edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[1]) * (pt2[1] - pt3[1])) angle = 0 if edge1 > edge2: width = edge1 height = edge2 if pt1[0] - pt2[0] != 0: angle = -np.arctan(float(pt1[1] - pt2[1]) / float(pt1[0] - pt2[0])) / 3.1415926 * 180 else: angle = 90.0 elif edge2 >= edge1: width = edge2 height = edge1 # print pt2[0], pt3[0] if pt2[0] - pt3[0] != 0: angle = -np.arctan(float(pt2[1] - pt3[1]) / float(pt2[0] - pt3[0])) / 3.1415926 * 180 else: angle = 90.0 if angle < -45.0: angle = angle + 180 x_ctr = float(pt1[0] + pt3[0]) / 2 # pt1[0] + np.abs(float(pt1[0] - pt3[0])) / 2 y_ctr = float(pt1[1] + pt3[1]) / 2 # pt1[1] + np.abs(float(pt1[1] - pt3[1])) / 2 # if height * width * (800 / float(img.shape[0])) < 16 * 16 and mode == "train": # continue rboxes.append([x_ctr, y_ctr, width, height, angle]) rcrops.append( rotate(image, -angle, (x_ctr, y_ctr)) [int(y_ctr-height/2):int(y_ctr+height/2), int(x_ctr-width/2):int(x_ctr+width/2)] ) rpolys.append(poly.tolist()) result_dict['polys'] = rpolys cnt = 0 # crop 应该是裁剪好的图片 # 对每张crop进行识别 # 限制图片的高度为32,然后按比例放缩 for crop in rcrops: # rec model infer try: re_img = cv2.resize(crop, (int(fixed_height / crop.shape[0] * crop.shape[1]), fixed_height)) except Exception as e: # 发生异常 print('From rec:', e) recs.append('') continue # 在_DEBUG模式下保存图片 if _DEBUG: # cv2.imwrite('demo_img/crops' + str(cnt) + '.img', re_img) re_img_pil = Image.fromarray(cv2.cvtColor(re_img, cv2.COLOR_RGB2BGR)) re_img_pil.save('demo_img/crops' + str(cnt) + '.jpg') # cv2.waitKey(0) cnt += 1 # re_img_th = torch.from_numpy(np.transpose(np.expand_dims(re_img, 0), (0, 3, 1, 2))).float().cuda() re_img_th = normalize(re_img).unsqueeze(0).permute(0, 3, 1, 2).cuda() bsz = re_img_th.size(0) # 调用识别模型 predict = rec_model(re_img_th) predict_len = torch.IntTensor([predict.size(0)] * bsz) # if _DEBUG: # print('predict:', predict.size()) # Compute accuracy _, acc = predict.max(2) # if int(torch.__version__.split('.')[1]) < 2: # acc = acc.squeeze(2) acc = acc.transpose(1, 0).contiguous().view(-1) prob, _ = F.softmax(predict, dim=2).max(2) probilities = torch.mean(prob, dim=1) sim_preds = converter.decode(acc.data, predict_len.data, raw=False) # if _DEBUG: # print('sim_preds:', sim_preds) recs.append(sim_preds) # organize results in a dict result_dict['recs'] = recs return result_dict ``` #### File: model/demo/IC13_predict.py ```python import os #os.environ['CUDA_VISIBLE_DEVICES'] = '6' import sys sys.path.append('./maskrcnn_benchmark_architecture') print(sys.path) import cv2 import numpy as np from maskrcnn_benchmark.config import cfg from demo.predictor import ICDARDemo def write_result_ICDAR(im_file, dets, result_dir): file_spl = im_file.split('/') file_name = file_spl[len(file_spl) - 1] file_name_arr = file_name.split(".") file_name_str = file_name_arr[0] if not os.path.isdir(result_dir): os.makedirs(result_dir) result = os.path.join(result_dir, "res_" + file_name_str + ".txt") return_bboxes = [] if not os.path.isfile(result): os.mknod(result) result_file = open(result, "w") result_str = "" for idx in range(len(dets)): l, t, r, b = dets[idx].astype(np.int32)[0:4] rotated_pts = [ [l, t], [r, t], [r, b], [l, b] ] #det_str = str(int(rotated_pts[0][0])) + "," + str(int(rotated_pts[0][1])) + "," + \ # str(int(rotated_pts[1][0])) + "," + str(int(rotated_pts[1][1])) + "," + \ # str(int(rotated_pts[2][0])) + "," + str(int(rotated_pts[2][1])) + "," + \ # str(int(rotated_pts[3][0])) + "," + str(int(rotated_pts[3][1])) + "\r\n" # rotated_pts = rotated_pts[:,0:2] # if (dets[idx][5] > threshold): # rotated_pts = over_bound_handle(rotated_pts, height, width) det_str = str(int(l)) + "," + str(int(t)) + "," + \ str(int(r)) + "," + str(int(b)) + "\r\n" result_str = result_str + det_str return_bboxes.append(dets[idx]) # print rotated_pts.shape result_file.write(result_str) result_file.close() return return_bboxes model_file = 'text_IC13' result_dir = os.path.join('./demo/results', model_file) if not os.path.isdir(result_dir): os.makedirs(result_dir) config_file = "./maskrcnn_benchmark_architecture/configs/e2e_faster_rcnn_R_50_C4_1x_ICDAR13_test.yaml" print('config_file:', config_file) # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) coco_demo = ICDARDemo( cfg, min_image_size=800, confidence_threshold=0.7, ) # load image and then run prediction image_dir = './maskrcnn_benchmark_architecture/datasets/ICDAR13/e2e/Challenge2_Test_Task12_Images/' imlist = os.listdir(image_dir) for image in imlist: impath = os.path.join(image_dir, image) print('image:', impath) img = cv2.imread(impath) predictions, bounding_boxes = coco_demo.run_on_opencv_image(img) # print('predictions:', predictions.shape) bboxes_np = bounding_boxes.bbox.data.cpu().numpy() write_result_ICDAR(image[:-4], bboxes_np, result_dir) #cv2.imshow('win', predictions) #cv2.waitKey(0) ``` #### File: AdvancedEAST/network/AEast.py ```python import torch import torch.nn as nn from model.detection_model.AdvancedEAST.network.resnet import resnet50 class East(nn.Module): def __init__(self, cfg): super(East, self).__init__() self.resnet = resnet50(pretrained=True) self.conv1 = nn.Conv2d(3072, 128, 1) self.bn1 = nn.BatchNorm2d(128) self.relu1 = nn.ReLU() self.conv2 = nn.Conv2d(128, 128, 3, padding=1) self.bn2 = nn.BatchNorm2d(128) self.relu2 = nn.ReLU() self.conv3 = nn.Conv2d(640, 64, 1) self.bn3 = nn.BatchNorm2d(64) self.relu3 = nn.ReLU() self.conv4 = nn.Conv2d(64, 64, 3, padding=1) self.bn4 = nn.BatchNorm2d(64) self.relu4 = nn.ReLU() self.conv5 = nn.Conv2d(320, 64, 1) self.bn5 = nn.BatchNorm2d(64) self.relu5 = nn.ReLU() self.conv6 = nn.Conv2d(64, 32, 3, padding=1) self.bn6 = nn.BatchNorm2d(32) self.relu6 = nn.ReLU() self.conv7 = nn.Conv2d(32, 32, 3, padding=1) self.bn7 = nn.BatchNorm2d(32) self.relu7 = nn.ReLU() self.conv8 = nn.Conv2d(32, 1, 1) self.conv9 = nn.Conv2d(32, 2, 1) self.conv10 = nn.Conv2d(32, 4, 1) self.unpool1 = nn.Upsample(scale_factor=2, mode='bilinear') self.unpool2 = nn.Upsample(scale_factor=2, mode='bilinear') self.unpool3 = nn.Upsample(scale_factor=2, mode='bilinear') def forward(self, images): f = self.resnet(images) h = f[3] # bs 2048 w/32 h/32 g = self.unpool1(h) # bs 2048 w/16 h/16 c = self.conv1(torch.cat((g, f[2]), 1)) c = self.bn1(c) c = self.relu1(c) h = self.conv2(c) # bs 128 w/16 h/16 h = self.bn2(h) h = self.relu2(h) g = self.unpool2(h) # bs 128 w/8 h/8 c = self.conv3(torch.cat((g, f[1]), 1)) c = self.bn3(c) c = self.relu3(c) h = self.conv4(c) # bs 64 w/8 h/8 h = self.bn4(h) h = self.relu4(h) g = self.unpool3(h) # bs 64 w/4 h/4 c = self.conv5(torch.cat((g, f[0]), 1)) c = self.bn5(c) c = self.relu5(c) h = self.conv6(c) # bs 32 w/4 h/4 h = self.bn6(h) h = self.relu6(h) g = self.conv7(h) # bs 32 w/4 h/4 g = self.bn7(g) g = self.relu7(g) inside_score = self.conv8(g) # bs 1 w/4 h/4 side_v_code = self.conv9(g) side_v_coord = self.conv10(g) east_detect = torch.cat((inside_score, side_v_code, side_v_coord), 1) # transpose for loss calculation return east_detect.transpose(1, 2).transpose(2, 3) ``` #### File: AdvancedEAST/tools/polygon_wrapper.py ```python import numpy as np from skimage.draw import polygon """ :param det_x: [1, N] Xs of detection's vertices :param det_y: [1, N] Ys of detection's vertices :param gt_x: [1, N] Xs of groundtruth's vertices :param gt_y: [1, N] Ys of groundtruth's vertices ############## All the calculation of 'AREA' in this script is handled by: 1) First generating a binary mask with the polygon area filled up with 1's 2) Summing up all the 1's """ def area(x, y): """ This helper calculates the area given x and y vertices. """ ymax = np.max(y) xmax = np.max(x) bin_mask = np.zeros((ymax, xmax)) rr, cc = polygon(y, x) bin_mask[rr, cc] = 1 area = np.sum(bin_mask) return area # return np.round(area, 2) def approx_area_of_intersection(det_x, det_y, gt_x, gt_y): """ This helper determine if both polygons are intersecting with each others with an approximation method. Area of intersection represented by the minimum bounding rectangular [xmin, ymin, xmax, ymax] """ det_ymax = np.max(det_y) det_xmax = np.max(det_x) det_ymin = np.min(det_y) det_xmin = np.min(det_x) gt_ymax = np.max(gt_y) gt_xmax = np.max(gt_x) gt_ymin = np.min(gt_y) gt_xmin = np.min(gt_x) all_min_ymax = np.minimum(det_ymax, gt_ymax) all_max_ymin = np.maximum(det_ymin, gt_ymin) intersect_heights = np.maximum(0.0, (all_min_ymax - all_max_ymin)) all_min_xmax = np.minimum(det_xmax, gt_xmax) all_max_xmin = np.maximum(det_xmin, gt_xmin) intersect_widths = np.maximum(0.0, (all_min_xmax - all_max_xmin)) return intersect_heights * intersect_widths def area_of_intersection(det_x, det_y, gt_x, gt_y): """ This helper calculates the area of intersection. """ if approx_area_of_intersection(det_x, det_y, gt_x, gt_y) > 1: # only proceed if it passes the approximation test ymax = np.maximum(np.max(det_y), np.max(gt_y)) + 1 xmax = np.maximum(np.max(det_x), np.max(gt_x)) + 1 bin_mask = np.zeros((ymax, xmax)) det_bin_mask = np.zeros_like(bin_mask) gt_bin_mask = np.zeros_like(bin_mask) rr, cc = polygon(det_y, det_x) det_bin_mask[rr, cc] = 1 rr, cc = polygon(gt_y, gt_x) gt_bin_mask[rr, cc] = 1 final_bin_mask = det_bin_mask + gt_bin_mask inter_map = np.where(final_bin_mask == 2, 1, 0) inter = np.sum(inter_map) return inter # return np.round(inter, 2) else: return 0 def iou(det_x, det_y, gt_x, gt_y): """ This helper determine the intersection over union of two polygons. """ # only proceed if it passes the approximation test if approx_area_of_intersection(det_x, det_y, gt_x, gt_y) > 1: ymax = np.maximum(np.max(det_y), np.max(gt_y)) + 1 xmax = np.maximum(np.max(det_x), np.max(gt_x)) + 1 bin_mask = np.zeros((ymax, xmax)) det_bin_mask = np.zeros_like(bin_mask) gt_bin_mask = np.zeros_like(bin_mask) rr, cc = polygon(det_y, det_x) det_bin_mask[rr, cc] = 1 rr, cc = polygon(gt_y, gt_x) gt_bin_mask[rr, cc] = 1 final_bin_mask = det_bin_mask + gt_bin_mask # inter_map = np.zeros_like(final_bin_mask) inter_map = np.where(final_bin_mask == 2, 1, 0) inter = np.sum(inter_map) # union_map = np.zeros_like(final_bin_mask) union_map = np.where(final_bin_mask > 0, 1, 0) union = np.sum(union_map) return inter / float(union + 1.0) else: return 0 def iod(det_x, det_y, gt_x, gt_y): """ This helper determine the fraction of intersection area over detection area """ if approx_area_of_intersection(det_x, det_y, gt_x, gt_y) > 1: # only proceed if it passes the approximation test ymax = np.maximum(np.max(det_y), np.max(gt_y)) + 1 xmax = np.maximum(np.max(det_x), np.max(gt_x)) + 1 bin_mask = np.zeros((ymax, xmax)) det_bin_mask = np.zeros_like(bin_mask) gt_bin_mask = np.zeros_like(bin_mask) rr, cc = polygon(det_y, det_x) det_bin_mask[rr, cc] = 1 rr, cc = polygon(gt_y, gt_x) gt_bin_mask[rr, cc] = 1 final_bin_mask = det_bin_mask + gt_bin_mask inter_map = np.where(final_bin_mask == 2, 1, 0) inter = np.round(np.sum(inter_map), 2) det = np.round(np.sum(det_bin_mask), 2) return inter / float(det + 1.0) else: return 0 ``` #### File: AdvancedEAST/utils/utils.py ```python import os import torch import datetime import numpy as np from tqdm import tqdm import model.detection_model.AdvancedEAST.config as cfg class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def save_log(losses, epoch, current_batch, loader_len, tock, split='Training'): '''Save log of losses.''' if not os.path.exists(cfg.result_dir): os.mkdir(cfg.result_dir) log_path = os.path.join(cfg.result_dir, tock + '-log.txt') with open(log_path, 'a') as f: line = 'Epoch: [{0}][{1}/{2}] {3} Loss {loss.val:.4f} ({loss.avg:.4f})\n'.format( epoch + 1, current_batch, loader_len, split, loss=losses) f.write(line) def init_weights(net, init_type='normal', gain=0.02): def init_func(m): classname = m.__class__.__name__ if hasattr(m, 'weight') and (classname.find('conv') != -1 or classname.find('Linear') != -1): if init_type == 'normal': init.normal_(m.weight.data, 0.0, gain) elif init_type == 'xavier': init.xavier_normal_(m.weight.data, gain=gain) elif init_type == 'kaiming': init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') elif init_type == 'orthogonal': init.orthogonal_(m.weight.data, gain=gain) else: raise NotImplementedError( 'init_type [%s] not implemented.' % init_type) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif classname.find('BatchNorm2d') != -1: init.normal_(m.weight.data, 1.0, gain) init.constant_(m.bias.data, 0.0) net.apply(init_func) ``` #### File: EAST/calculate/Pascal_VOC.py ```python from os import listdir from scipy import io import json import numpy as np from polygon_wrapper import iou from polygon_wrapper import iod input_json_path = '/workspace/mnt/group/general-reg/denglei/code/EAST/calculate/LSVT_result_gtgen.json' gt_json_path = '/workspace/mnt/group/general-reg/denglei/code/EAST/calculate/train_full_labels.json' iou_threshold = 0.5 def input_reading(polygons): det = [] for polygon in polygons: polygon['points'] = np.array(polygon['points']) det.append(polygon) return det def gt_reading(gt_dict, img_key): polygons = gt_dict[img_key] gt = [] for polygon in polygons: polygon['points'] = np.array(polygon['points']) gt.append(polygon) return gt def detection_filtering(detections, groundtruths, threshold=0.5): """ignore detected illegal text region""" before_filter_num = len(detections) for gt_id, gt in enumerate(groundtruths): if (gt['transcription'] == '###') and (gt['points'].shape[1] > 1): gt_x = list(map(int, np.squeeze(gt['points'][:, 0]))) gt_y = list(map(int, np.squeeze(gt['points'][:, 1]))) for det_id, detection in enumerate(detections): det_x = list(map(int, np.squeeze(detection['points'][:, 0]))) det_y = list(map(int, np.squeeze(detection['points'][:, 1]))) det_gt_iou = iod(det_x, det_y, gt_x, gt_y) if det_gt_iou > threshold: detections[det_id] = [] detections[:] = [item for item in detections if item != []] # if before_filter_num - len(detections) > 0: # print("Ignore {} illegal detections".format(before_filter_num - len(detections))) return detections def gt_filtering(groundtruths): before_filter_num = len(groundtruths) for gt_id, gt in enumerate(groundtruths): if gt['transcription'] == '###' or gt['points'].shape[0] < 3: groundtruths[gt_id] = [] groundtruths[:] = [item for item in groundtruths if item != []] # if before_filter_num - len(groundtruths) > 0: # print("Ignore {} illegal groundtruths".format(before_filter_num - len(groundtruths))) return groundtruths def output(json_target,json_gt): # Initial config global_tp = 0 global_fp = 0 global_fn = 0 # load json file as dict with open(json_target, 'r') as f: input_dict = json.load(f) with open(json_gt, 'r') as f: gt_dict = json.load(f) false = open('./false.txt', 'w') for input_img_key, input_cnts in input_dict.items(): detections = input_reading(input_cnts) groundtruths = gt_reading(gt_dict, input_img_key.replace('res', 'gt')) detections = detection_filtering(detections, groundtruths) # filters detections overlapping with DC area groundtruths = gt_filtering(groundtruths) iou_table = np.zeros((len(groundtruths), len(detections))) det_flag = np.zeros((len(detections), 1)) gt_flag = np.zeros((len(groundtruths), 1)) tp = 0 fp = 0 fn = 0 for gt_id, gt in enumerate(groundtruths): gt_x = list(map(int, np.squeeze(gt['points'][:, 0]))) gt_y = list(map(int, np.squeeze(gt['points'][:, 1]))) if len(detections) > 0: for det_id, detection in enumerate(detections): det_x = list(map(int, np.squeeze(detection['points'][:, 0]))) det_y = list(map(int, np.squeeze(detection['points'][:, 1]))) iou_table[gt_id, det_id] = iou(det_x, det_y, gt_x, gt_y) best_matched_det_id = np.argmax( iou_table[gt_id, :]) # identified the best matched detection candidates with current groundtruth matched_id = np.where(iou_table[gt_id, :] >= iou_threshold) if iou_table[gt_id, best_matched_det_id] >= iou_threshold: if matched_id[0].shape[0] < 2: tp = tp + 1.0 global_tp = global_tp + 1.0 det_flag[best_matched_det_id] = 1 gt_flag[gt_id] = 1 else: tp = tp + 1.0 global_tp = global_tp + 1.0 det_flag[best_matched_det_id] = 1 gt_flag[gt_id] = 1 # if there are more than 1 matched detection, only 1 is contributed to tp, the rest are fp fp = fp + (matched_id[0].shape[0] - 1.0) # Update local and global tp, fp, and fn inv_gt_flag = 1 - gt_flag fn = np.sum(inv_gt_flag) inv_det_flag = 1 - det_flag fp = fp + np.sum(inv_det_flag) global_fp = global_fp + fp global_fn = global_fn + fn if tp + fp == 0: local_precision = 0 else: local_precision = tp / (tp + fp) if tp + fn == 0: local_recall = 0 else: local_recall = tp / (tp + fn) if local_precision == 0 and local_recall == 0: false.write('hello') false.write(input_img_key.replace('res', 'gt') + '.jpg') false.write('\n') else: local_fscore = 2 * local_precision * local_recall / (local_precision + local_recall) if local_fscore < 0.3: false.write(input_img_key.replace('res', 'gt') + '.jpg') false.write('\n') print('{0:12} Precision: {1:.4f}, Recall: {2:.4f}'.format(input_img_key.replace('res', 'gt') + '.jpg', local_precision, local_recall)) global_precision = global_tp / (global_tp + global_fp) global_recall = global_tp / (global_tp + global_fn) f_score = 2 * global_precision * global_recall / (global_precision + global_recall) print('Global Precision: {:.4f}, Recall: {:.4f}, F_score: {:.4f}'.format(global_precision, global_recall, f_score)) print('over') if __name__ == '__main__': # Initial config global_tp = 0 global_fp = 0 global_fn = 0 # load json file as dict with open(input_json_path, 'r') as f: input_dict = json.load(f) with open(gt_json_path, 'r') as f: gt_dict = json.load(f) false = open('./false.txt','w') for input_img_key, input_cnts in input_dict.items(): detections = input_reading(input_cnts) groundtruths = gt_reading(gt_dict, input_img_key.replace('res', 'gt')) detections = detection_filtering(detections, groundtruths) # filters detections overlapping with DC area groundtruths = gt_filtering(groundtruths) iou_table = np.zeros((len(groundtruths), len(detections))) det_flag = np.zeros((len(detections), 1)) gt_flag = np.zeros((len(groundtruths), 1)) tp = 0 fp = 0 fn = 0 for gt_id, gt in enumerate(groundtruths): gt_x = list(map(int, np.squeeze(gt['points'][:, 0]))) gt_y = list(map(int, np.squeeze(gt['points'][:, 1]))) if len(detections) > 0: for det_id, detection in enumerate(detections): det_x = list(map(int, np.squeeze(detection['points'][:, 0]))) det_y = list(map(int, np.squeeze(detection['points'][:, 1]))) iou_table[gt_id, det_id] = iou(det_x, det_y, gt_x, gt_y) best_matched_det_id = np.argmax( iou_table[gt_id, :]) # identified the best matched detection candidates with current groundtruth matched_id = np.where(iou_table[gt_id, :] >= iou_threshold) if iou_table[gt_id, best_matched_det_id] >= iou_threshold: if matched_id[0].shape[0] < 2: tp = tp + 1.0 global_tp = global_tp + 1.0 det_flag[best_matched_det_id] = 1 gt_flag[gt_id] = 1 else: tp = tp + 1.0 global_tp = global_tp + 1.0 det_flag[best_matched_det_id] = 1 gt_flag[gt_id] = 1 # if there are more than 1 matched detection, only 1 is contributed to tp, the rest are fp fp = fp + (matched_id[0].shape[0] - 1.0) # Update local and global tp, fp, and fn inv_gt_flag = 1 - gt_flag fn = np.sum(inv_gt_flag) inv_det_flag = 1 - det_flag fp = fp + np.sum(inv_det_flag) global_fp = global_fp + fp global_fn = global_fn + fn if tp + fp == 0: local_precision = 0 else: local_precision = tp / (tp + fp) if tp + fn == 0: local_recall = 0 else: local_recall = tp / (tp + fn) if local_precision == 0 and local_recall == 0: false.write('hello') false.write(input_img_key.replace('res', 'gt') + '.jpg') false.write('\n') else: local_fscore = 2*local_precision*local_recall/(local_precision+local_recall) if local_fscore < 0.3: false.write(input_img_key.replace('res', 'gt') + '.jpg') false.write('\n') print('{0:12} Precision: {1:.4f}, Recall: {2:.4f}'.format(input_img_key.replace('res', 'gt') + '.jpg', local_precision, local_recall)) global_precision = global_tp / (global_tp + global_fp) global_recall = global_tp / (global_tp + global_fn) f_score = 2 * global_precision * global_recall / (global_precision + global_recall) print('Global Precision: {:.4f}, Recall: {:.4f}, F_score: {:.4f}'.format(global_precision, global_recall, f_score)) print('over') ``` #### File: detection_model/EAST/multigpu_train.py ```python import time import numpy as np import tensorflow as tf from tensorflow.contrib import slim import cv2 tf.app.flags.DEFINE_integer('input_size', 512, '') tf.app.flags.DEFINE_integer('batch_size_per_gpu', 14, '') tf.app.flags.DEFINE_integer('num_readers', 16, '') tf.app.flags.DEFINE_float('learning_rate', 0.0001, '') tf.app.flags.DEFINE_integer('max_steps', 20000, '') tf.app.flags.DEFINE_float('moving_average_decay', 0.997, '') tf.app.flags.DEFINE_string('gpu_list', '3', '') tf.app.flags.DEFINE_string('checkpoint_path', '/home/cjy/east_icdar2015_resnet_v1_50_rbox/', '') tf.app.flags.DEFINE_boolean('restore', False, 'whether to restore from checkpoint') tf.app.flags.DEFINE_integer('save_checkpoint_steps', 2000, '') tf.app.flags.DEFINE_integer('save_summary_steps', 100, '') tf.app.flags.DEFINE_string('pretrained_model_path','/home/cjy/resnet_v1_50_2016_08_28/resnet_v1_50.ckpt', '') import model import icdar FLAGS = tf.app.flags.FLAGS gpus = list(range(len(FLAGS.gpu_list.split(',')))) def tower_loss(images, score_maps1, geo_maps1, training_masks1, score_maps2, geo_maps2, training_masks2, reuse_variables=None): # Build inference graph with tf.variable_scope(tf.get_variable_scope(), reuse=reuse_variables): f_score, f_geometry = model.model(images, is_training=True) model_loss1 = model.loss(score_maps1, f_score['F_score1'], geo_maps1, f_geometry['F_geometry1'], training_masks1) model_loss2 = model.loss(score_maps2, f_score['F_score2'], geo_maps2, f_geometry['F_geometry2'], training_masks2) model_loss = model_loss1 + model_loss2 total_loss = tf.add_n([model_loss] + tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)) # add summary if reuse_variables is None: # tf.summary.image('input', images) # tf.summary.image('score_map', score_maps) # tf.summary.image('score_map_pred', f_score * 255) # tf.summary.image('geo_map_0', geo_maps[:, :, :, 0:1]) # tf.summary.image('geo_map_0_pred', f_geometry[:, :, :, 0:1]) # tf.summary.image('training_masks', training_masks) tf.summary.scalar('model_loss1', model_loss1) tf.summary.scalar('model_loss2', model_loss2) tf.summary.scalar('model_loss', model_loss) tf.summary.scalar('total_loss', total_loss) return total_loss, model_loss def average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): grads = [] for g, _ in grad_and_vars: expanded_g = tf.expand_dims(g, 0) grads.append(expanded_g) grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads def main(argv=None): import os os.environ['CUDA_VISIBLE_DEVICES'] = FLAGS.gpu_list if not tf.gfile.Exists(FLAGS.checkpoint_path): tf.gfile.MkDir(FLAGS.checkpoint_path) else: if not FLAGS.restore: tf.gfile.DeleteRecursively(FLAGS.checkpoint_path) tf.gfile.MkDir(FLAGS.checkpoint_path) input_images = tf.placeholder(tf.float32, shape=[None, 512, 512, 3], name='input_images') input_score_maps1 = tf.placeholder(tf.float32, shape=[None, 128, 128, 1], name='input_score_maps1') input_score_maps2 = tf.placeholder(tf.float32, shape=[None, 64, 64, 1], name='input_score_maps2') if FLAGS.geometry == 'RBOX': input_geo_maps1 = tf.placeholder(tf.float32, shape=[None, 128, 128, 5], name='input_geo_maps1') input_geo_maps2 = tf.placeholder(tf.float32, shape=[None, 64, 64, 5], name='input_geo_maps2') else: input_geo_maps1 = tf.placeholder(tf.float32, shape=[None, 128, 128, 8], name='input_geo_maps1') input_geo_maps2 = tf.placeholder(tf.float32, shape=[None, 64, 64, 8], name='input_geo_maps2') input_training_masks1 = tf.placeholder(tf.float32, shape=[None, 128, 128, 1], name='input_training_masks1') input_training_masks2 = tf.placeholder(tf.float32, shape=[None, 64, 64, 1], name='input_training_masks2') global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False) learning_rate = tf.train.exponential_decay(FLAGS.learning_rate, global_step, decay_steps=2000, decay_rate=0.94, staircase=True) # add summary tf.summary.scalar('learning_rate', learning_rate) opt = tf.train.AdamOptimizer(learning_rate) # opt = tf.train.MomentumOptimizer(learning_rate, 0.9) # split print('gpu',len(gpus)) input_images_split = tf.split(input_images, len(gpus)) input_score_maps_split1 = tf.split(input_score_maps1, len(gpus)) input_geo_maps_split1 = tf.split(input_geo_maps1, len(gpus)) input_training_masks_split1 = tf.split(input_training_masks1, len(gpus)) input_score_maps_split2 = tf.split(input_score_maps2, len(gpus)) input_geo_maps_split2 = tf.split(input_geo_maps2, len(gpus)) input_training_masks_split2 = tf.split(input_training_masks2, len(gpus)) tower_grads = [] reuse_variables = None for i, gpu_id in enumerate(gpus): with tf.device('/gpu:%d' % gpu_id): with tf.name_scope('model_%d' % gpu_id) as scope: iis = input_images_split[i] isms1 = input_score_maps_split1[i] igms1 = input_geo_maps_split1[i] itms1 = input_training_masks_split1[i] isms2 = input_score_maps_split2[i] igms2 = input_geo_maps_split2[i] itms2 = input_training_masks_split2[i] total_loss, model_loss = tower_loss(iis, isms1, igms1, itms1, isms2, igms2, itms2, reuse_variables) batch_norm_updates_op = tf.group(*tf.get_collection(tf.GraphKeys.UPDATE_OPS, scope)) reuse_variables = True grads = opt.compute_gradients(total_loss) tower_grads.append(grads) grads = average_gradients(tower_grads) apply_gradient_op = opt.apply_gradients(grads, global_step=global_step) summary_op = tf.summary.merge_all() # save moving average variable_averages = tf.train.ExponentialMovingAverage( FLAGS.moving_average_decay, global_step) variables_averages_op = variable_averages.apply(tf.trainable_variables()) # batch norm updates with tf.control_dependencies([variables_averages_op, apply_gradient_op, batch_norm_updates_op]): train_op = tf.no_op(name='train_op') saver = tf.train.Saver(tf.global_variables()) summary_writer = tf.summary.FileWriter(FLAGS.checkpoint_path, tf.get_default_graph()) init = tf.global_variables_initializer() if FLAGS.pretrained_model_path is not None: variable_restore_op = slim.assign_from_checkpoint_fn(FLAGS.pretrained_model_path, slim.get_trainable_variables(), ignore_missing_vars=True) with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess: if FLAGS.restore: print('continue training from previous checkpoint') ckpt = tf.train.latest_checkpoint(FLAGS.checkpoint_path) saver.restore(sess, ckpt) else: sess.run(init) if FLAGS.pretrained_model_path is not None: variable_restore_op(sess) data_generator = icdar.get_batch(num_workers=FLAGS.num_readers, input_size=FLAGS.input_size, batch_size=FLAGS.batch_size_per_gpu * len(gpus)) start = time.time() for step in range(FLAGS.max_steps): data = next(data_generator) # print('hello:',data[2]['score_map1'][0].shape) # print('hello:',data[2]['score_map2'][0].shape) # print('hello:',data[3]['geo_map1'][0].shape) # print('hello:',data[3]['geo_map2'][0].shape) # debug #import cv2 # print(type(data[0])) #cv2.imwrite('input.jpg', data[0][0]) ml, tl, _ = sess.run([model_loss, total_loss, train_op], feed_dict={input_images: data[0], input_score_maps1: data[2]['score_map1'], input_geo_maps1: data[3]['geo_map1'], input_training_masks1: data[4]['training_mask1'], input_score_maps2: data[2]['score_map2'], input_geo_maps2: data[3]['geo_map2'], input_training_masks2: data[4]['training_mask2']}) if np.isnan(tl): print('Loss diverged, stop training') break if step % 10 == 0: avg_time_per_step = (time.time() - start)/10 avg_examples_per_second = (10 * FLAGS.batch_size_per_gpu * len(gpus))/(time.time() - start) start = time.time() print('Step {:06d}, model loss {:.4f}, total loss {:.4f}, {:.2f} seconds/step, {:.2f} examples/second'.format( step, ml, tl, avg_time_per_step, avg_examples_per_second)) if step % FLAGS.save_checkpoint_steps == 0: saver.save(sess, FLAGS.checkpoint_path + 'model.ckpt', global_step=global_step) if step % FLAGS.save_summary_steps == 0: _, tl, summary_str = sess.run([train_op, total_loss, summary_op], feed_dict={input_images: data[0], input_score_maps1: data[2]['score_map1'], input_geo_maps1: data[3]['geo_map1'], input_training_masks1: data[4]['training_mask1'], input_score_maps2: data[2]['score_map2'], input_geo_maps2: data[3]['geo_map2'], input_training_masks2: data[4]['training_mask2']}) summary_writer.add_summary(summary_str, global_step=step) if __name__ == '__main__': tf.app.run() ``` #### File: lib/model/focal_loss.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable class FocalLoss(nn.Module): def __init__(self, gamma=2, alpha=0.25, size_average=True): super(FocalLoss, self).__init__() self.gamma = gamma self.alpha = alpha if isinstance(alpha,(float,int)): self.alpha = torch.Tensor([alpha,1-alpha]) if isinstance(alpha,list): self.alpha = torch.Tensor(alpha) self.size_average = size_average def forward(self, input, target): if input.dim()>2: input = input.view(input.size(0),input.size(1),-1) # N,C,H,W => N,C,H*W input = input.transpose(1,2) # N,C,H*W => N,H*W,C input = input.contiguous().view(-1,input.size(2)) # N,H*W,C => N*H*W,C target = target.view(-1,1) logpt = None loss = None logpt = F.log_softmax(input) logpt = logpt.gather(1,target) logpt = logpt.view(-1) pt = Variable(logpt.data.exp()) if self.alpha is not None: if self.alpha.type()!=input.data.type(): self.alpha = self.alpha.type_as(input.data) at = self.alpha.gather(0,target.data.view(-1)) logpt = logpt * Variable(at) loss = -1 * (1-pt)**self.gamma * logpt if self.size_average: return loss.mean() else: return loss.sum() ``` #### File: lib/model/networkOptimier.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function from .roi_align.modules.roi_align import RoIAlign from torch.utils.data import Dataset, DataLoader from lib.model.logger import Logger from torchvision import transforms import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import numpy as np import os from lib.model.networkFactory import networkFactory import torch.nn.functional as F import logging import time import random import pickle from lib.datasets.ctw import CTWDataset from lib.datasets.syntext import SynthtextDataset from lib.datasets.totaltext import TotalTextDataset, ToTensor # from lib.datasets.syntext import SynthtextDataset, ToTensor from lib.model.focal_loss import FocalLoss from lib.model.unet.unet_model import UNet from config.config import config import cv2 def toNp(x): return x.data.cpu().numpy() def toVar(x): if torch.cuda.is_available(): x = x.cuda() return Variable(x) class networkOptimier(object): """docstring for TrainModel""" def __init__(self, trainDatasetroot, testDatasetroot, modelHome, outputModelHome, outputLogHome,net='vgg16',data='ctw',GPUID = 0,resize_type = 'normal'): super(networkOptimier, self).__init__() torch.cuda.set_device(GPUID) self.strides = [8,16,32,64] self.data = data self.net = net traindataTransform = transforms.Compose([ToTensor(self.strides)]) if data == 'ctw': trainDataset = CTWDataset(trainDatasetroot, traindataTransform,self.strides,istraining=True,resize_type=resize_type) elif data == 'synthtext': trainDataset = SynthtextDataset(trainDatasetroot, traindataTransform,self.strides,istraining=False,data='synthtext') elif data == 'icdar': trainDataset = SynthtextDataset(trainDatasetroot, traindataTransform,self.strides,istraining=True,data='icdar') elif data == 'totaltext': trainDataset = TotalTextDataset(trainDatasetroot, traindataTransform,self.strides,istraining=True,data='totaltext') traindataloader = DataLoader(trainDataset, batch_size=1,shuffle=True, num_workers=5) # self.dataloader = {'train':traindataloader} testdataTransform = transforms.Compose([ToTensor(self.strides)]) if data == 'ctw': testDataset = CTWDataset(testDatasetroot, testdataTransform,self.strides,istraining=False,resize_type=resize_type) elif data == 'synthtext': testDataset = CTWDataset(testDatasetroot, testdataTransform,self.strides,istraining=False,data='synthtext') elif data == 'icdar': testDataset = SynthtextDataset(testDatasetroot, testdataTransform,self.strides,istraining=False,data='icdar') elif data == 'totaltext': testDataset = TotalTextDataset(testDatasetroot, testdataTransform,self.strides,istraining=False,data='totaltext') testdataloader = DataLoader(testDataset, batch_size=1,shuffle=False, num_workers=5) # self.dataloader = {'test':traindataloader} self.dataloader = {'train': traindataloader, 'val': testdataloader} # tensorboard log and step lo if not os.path.exists(outputLogHome): os.makedirs(outputLogHome) self.logger = Logger(outputLogHome) nf = networkFactory(modelHome) if net == 'vgg16': self.model = nf.vgg16() elif net == 'resnet34': self.model = nf.resnet34() elif net == 'resnet50': self.model = nf.resnet50() elif net == 'unet': self.model = UNet(3,1) elif net == 'resnet50_mask': self.model = nf.resnet50_mask() print(self.model) if not os.path.exists(outputModelHome): os.makedirs(outputModelHome) if not os.path.exists(outputLogHome): os.makedirs(outputLogHome) self.outputModelHome = outputModelHome self.outputLogHome = outputLogHome self.curEpoch = 0 self.optimizer = None # self.focal_loss = FocalLoss() self.circle_cls_loss_function = nn.CrossEntropyLoss(ignore_index=-1) self.anchor_cls_loss_function = FocalLoss() self.mask_loss = FocalLoss() self.roi_align = RoIAlign(28, 28, 0) self.image_mask_loss = nn.SmoothL1Loss() def load(self, modelPath=None): if modelPath is not None: pretrainedDict = torch.load(modelPath) modelDict = self.model.state_dict() pretrainedDict = {k: v for k, v in pretrainedDict.items() if k in modelDict} modelDict.update(pretrainedDict) self.model.load_state_dict(modelDict) print('Load model:{}'.format(modelPath)) def save(self, modelPath, epoch): modelPath = modelPath + '/{}.model'.format(str(epoch)) print('\nsave model {} in {}'.format(str(epoch), modelPath)) torch.save(self.model.state_dict(), modelPath) def updateLR(self, baselr, epoch, steps, decayRate): param = 1 for step in steps: if epoch >= step: param += 1 else: break for paramGroup in self.optimizer.param_groups: paramGroup['lr'] = baselr * decayRate**param def trainval(self, modelPath=None, epoch=0, maxEpoch=1000, baselr=0.001, steps=[1000], decayRate=0.1, valDuration=1000, snapshot=5): if modelPath is not None: self.load(modelPath) self.curEpoch = epoch if self.optimizer is None: # params = [] # for param in self.model.parameters(): # if param.requires_grad: # params.append(param) # else: # print('No') print(self.model.named_parameters()) self.optimizer = optim.Adam(self.model.parameters(), lr=baselr) self.model = self.model.cuda() while self.curEpoch < maxEpoch: self.curEpoch += 1 for phase in ['train','val']: startEpochTime = time.time() Epoch_circle_cls_Loss = {} # Epoch_circle_reg_Loss = {} # Epoch_anchor_cls_Loss = {} # Epoch_anchor_reg_Loss = {} Epoch_mask_loss = 0 Epoch_image_mask_loss = {} for stride in self.strides: Epoch_circle_cls_Loss[stride] = 0 Epoch_image_mask_loss[stride] = 0 numOfImage = 0 startImgTime = time.time() datasample = self.dataloader[phase] imagenum = datasample.__len__() if phase == 'val' and self.curEpoch % valDuration != 0: continue for sample in datasample: try: if sample == "FAIL": continue if len(sample) == 0: continue if phase == 'train': isTraining = True self.updateLR(baselr, self.curEpoch, steps, decayRate) self.model.train(True) else: isTraining = False self.model.eval() numOfImage += 1 image = sample['image'] mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) showimage = image.squeeze().numpy().transpose((1, 2, 0)) # pixel_means = np.array([[[102.9801, 115.9465, 122.7717]]]) showimage = showimage*std+mean showimage = showimage.astype(np.uint8,copy=True) circle_labels = {} # circle_regres = {} # anchor_labels = {} # anchor_regres = {} # anchor_positive_weights = {} # anchor_negative_weights = {} image = Variable(image.cuda(),requires_grad=False) # mask = sample['mask'] # mask = Variable(mask.cuda(),requires_grad=False) # resize_mask = sample['resize_mask'] # resize_mask = Variable(resize_mask.cuda(),requires_grad=False) all_circle = {} all_mask = {} mask_gt = {} for stride in self.strides: circle_labels[str(stride)] = Variable(sample['labels_stride_'+str(stride)].squeeze().cuda(),requires_grad=False) all_circle[str(stride)] = Variable(sample['anchors_stride_'+str(stride)].squeeze().cuda(),requires_grad=False) all_mask[str(stride)] = Variable(sample['mask_stride_'+str(stride)].squeeze().cuda(),requires_grad=False) if self.net == 'resnet50_mask': mask_gt[str(stride)] = Variable(sample['mask'+str(stride)].squeeze().cuda(),requires_grad=False) self.optimizer.zero_grad() if self.net == 'resnet50_mask': circle_labels_pred,pred_mask,bbox,bbox_idx,pos_idx_stride,bbox_score,mask_labels= self.model.forward(image,all_circle,circle_labels,threshold=0.4,istraining=isTraining) else: circle_labels_pred,pred_mask,bbox,bbox_idx,pos_idx_stride,bbox_score= self.model.forward(image,all_circle,circle_labels,threshold=0.4,istraining=isTraining) # # backward loss = None losses = {} mask_label = None # losses['image_mask'] = self.image_mask_loss(image_mask,resize_mask) # Epoch_image_mask_loss = Epoch_image_mask_loss+toNp(losses['image_mask']) for stride in self.strides: # circle cls # print(circle_labels_pred[stride],circle_labels[stride]) pred_labels = circle_labels_pred[str(stride)] target_labels = circle_labels[str(stride)] label_temploss = None # print(pred_labels,target_labels) if str(stride) in pos_idx_stride: stride_mask = all_mask[str(stride)][pos_idx_stride[str(stride)]] if type(mask_label) == type(None): mask_label = stride_mask else: mask_label = torch.cat((mask_label,stride_mask),0) label_temploss = self.anchor_cls_loss_function(pred_labels,target_labels)#self.circle_cls_loss_function(pred_labels,target_labels) # print(label_temploss) if self.net == 'resnet50_mask': losses['seg_'+str(stride)] = F.smooth_l1_loss(mask_labels[str(stride)],mask_gt[str(stride)]) Epoch_image_mask_loss[stride] = Epoch_circle_cls_Loss[stride]+toNp(losses['seg_'+str(stride)]) losses['cls_'+str(stride)]=label_temploss Epoch_circle_cls_Loss[stride] = Epoch_circle_cls_Loss[stride]+toNp(losses['cls_'+str(stride)]) if not type(mask_label) == type(None): mask_label = mask_label.squeeze() ## show mask ## ============ pred_mask = pred_mask # print(mask_label.size(),pred_mask.size()) losses['mask'] = F.smooth_l1_loss(pred_mask,mask_label) # losses['mask'] = F.cross_entropy(pred_mask,mask_label) Epoch_mask_loss = Epoch_mask_loss+toNp(losses['mask']) for key in losses: if type(loss) == type(None): loss = losses[key] else: loss+=losses[key] # loss = losses['mask'] # print(loss) # print(Epoch_circle_cls_Loss,Epoch_circle_reg_Loss) if phase == 'train': loss.backward() self.optimizer.step() # torch.cuda.empty_cache() else: self.optimizer.zero_grad() # del loss,mask_label,circle_labels_pred,pred_mask,bbox,bbox_idx,pos_idx_stride,bbox_score # print(self.curEpoch,losses) print('\rnum:{}/{}'.format(str(numOfImage).zfill(3),imagenum)+" time:"+str(round(time.time()-startImgTime, 2))+" "+str(image.size(2))+"*"+str(image.size(3))+" ",end='') if self.data == 'synthtext': if numOfImage%10000 == 0: self.save(self.outputModelHome, (numOfImage*self.curEpoch)//10000) endEpochTime = time.time() if phase == 'train': print("\n=================Epoch {} time:{:.2f}===============\n".format( self.curEpoch, endEpochTime-startEpochTime)) else: print("\n==================Test {:.2f}==================\n".format( endEpochTime-startEpochTime)) startEpochTime = endEpochTime print("time:"+str(round(time.time()-startImgTime, 2))+ \ "\ncircle_cls_loss:{} {} {} {}".format(str(Epoch_circle_cls_Loss[8]).zfill(3),str(Epoch_circle_cls_Loss[16]).zfill(3),str(Epoch_circle_cls_Loss[32]).zfill(3),str(Epoch_circle_cls_Loss[64]).zfill(3))+\ "\nmask_loss:{}".format(str(Epoch_mask_loss).zfill(3))) self.logger.scalar_summary(phase+'_mask_'+str(stride), Epoch_mask_loss,(numOfImage*self.curEpoch)//10000) for stride in self.strides: self.logger.scalar_summary(phase+'_circle_cls_'+str(stride), Epoch_circle_cls_Loss[stride], (numOfImage*self.curEpoch)//10000) Epoch_circle_cls_Loss = {} for stride in self.strides: Epoch_circle_cls_Loss[stride] = 0 Epoch_mask_loss=0 except: continue if self.curEpoch % snapshot == 0 and phase == 'train': self.save(self.outputModelHome, self.curEpoch) endEpochTime = time.time() if phase == 'train': print("\n=================Epoch {} time:{:.2f}===============\n".format( self.curEpoch, endEpochTime-startEpochTime)) else: print("\n==================Test {:.2f}==================\n".format( endEpochTime-startEpochTime)) startEpochTime = endEpochTime if self.net == 'resnet50_mask': print("time:"+str(round(time.time()-startImgTime, 2))+ \ "\ncircle_cls_loss:{} {} {} {}".format(str(Epoch_circle_cls_Loss[8]).zfill(3),str(Epoch_circle_cls_Loss[16]).zfill(3),str(Epoch_circle_cls_Loss[32]).zfill(3),str(Epoch_circle_cls_Loss[64]).zfill(3))+\ "\nmask_strid_loss:{} {} {} {}".format(str(Epoch_image_mask_loss[8]).zfill(3),str(Epoch_image_mask_loss[16]).zfill(3),str(Epoch_image_mask_loss[32]).zfill(3),str(Epoch_image_mask_loss[64]).zfill(3))+\ "\nmask_loss:{}".format(str(Epoch_mask_loss).zfill(3))) else: print("time:"+str(round(time.time()-startImgTime, 2))+ \ "\ncircle_cls_loss:{} {} {} {}".format(str(Epoch_circle_cls_Loss[8]).zfill(3),str(Epoch_circle_cls_Loss[16]).zfill(3),str(Epoch_circle_cls_Loss[32]).zfill(3),str(Epoch_circle_cls_Loss[64]).zfill(3))+\ "\nmask_loss:{}".format(str(Epoch_mask_loss).zfill(3))) # "\nimage_mask:{}".format(str(Epoch_image_mask_loss).zfill(3))) # "\nanchor_cls_loss:{} {} {} {} {}".format(str(Epoch_anchor_cls_Loss[8]).zfill(3),str(Epoch_anchor_cls_Loss[16]).zfill(3),str(Epoch_anchor_cls_Loss[32]).zfill(3),str(Epoch_anchor_cls_Loss[64]).zfill(3),str(Epoch_anchor_cls_Loss[128]).zfill(3))+ \ # "\nanchor_reg_loss:{} {} {} {} {}".format(str(Epoch_anchor_reg_Loss[8]).zfill(3),str(Epoch_anchor_reg_Loss[16]).zfill(3),str(Epoch_anchor_reg_Loss[32]).zfill(3),str(Epoch_anchor_reg_Loss[64]).zfill(3),str(Epoch_anchor_reg_Loss[128]).zfill(3))) # print("\npositive Loss:{}".format(posEpochLoss)) #============ TensorBoard logging ============# # (1) Log the scalar values print('save Loss!') self.logger.scalar_summary(phase+'_mask_'+str(stride), Epoch_mask_loss, self.curEpoch) for stride in self.strides: self.logger.scalar_summary(phase+'_circle_cls_'+str(stride), Epoch_circle_cls_Loss[stride], self.curEpoch) torch.cuda.empty_cache() # self.logger.scalar_summary(phase+'_circle_reg_'+str(stride), Epoch_circle_reg_Loss[stride], self.curEpoch) # self.logger.scalar_summary(phase+'_anchor_cls_'+str(stride), Epoch_anchor_cls_Loss[stride], self.curEpoch) # self.logger.scalar_summary(phase+'_anchor_reg_'+str(stride), Epoch_anchor_reg_Loss[stride], self.curEpoch) # (2) Log values and gradients of the parameters (histogram) if __name__ == '__main__': trainDatasetroot = config.trainDatasetroot#'/home/shf/fudan_ocr_system/datasets/ICDAR15/Text_Localization/test' testDatasetroot = config.testDatasetroot#'/home/shf/fudan_ocr_system/datasets/ICDAR15/Text_Localization/train' modelHome = config.modelHome#'/home/shf/fudan_ocr_system/LSN/pretrainmodel' outputModelHome = config.outputModelHome#'/home/shf/fudan_ocr_system/LSN/lib/model/data/2019AAAI/output/resnet50/outputmodel' outputLogHome = config.outputLogHome#'/home/shf/fudan_ocr_system/LSN/lib/model/data/2019AAAI/output/resnet50/outputlog' no = networkOptimier(trainDatasetroot, testDatasetroot, modelHome, outputModelHome, outputLogHome) no.trainval() ``` #### File: model/unet/unet_model.py ```python import torch import torch.nn.functional as F import numpy as np import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F import logging # python 3 confusing imports :( from model.detection_model.LSN.lib.model.unet.unet_parts import * from model.detection_model.LSN.lib.model.roi_align.modules.roi_align import RoIAlign class UNet(nn.Module): def __init__(self, n_channels, n_classes=1): super(UNet, self).__init__() self.inc = inconv(n_channels, 64) self.down1 = down(64, 128) self.down2 = down(128, 256) self.down3 = down(256, 512) self.down4 = down(512, 512) self.down5 = down(512, 512) self.down6 = down(512, 512) self.up1 = up(1024, 512) self.up2 = up(1024, 512) self.up3 = up(1024, 256) self.up4 = up(512, 256) self.up5 = up(512, 256) self.up6 = up(512, 256) # self.outc = outconv(64, n_classes) self.outc = outconv(64, n_classes) # self.outc = outconv(64, n_classes) self.stride8_circle_cls = nn.Sequential(nn.Conv2d(256,128,kernel_size=3,padding=1),nn.Conv2d(128,8,kernel_size=1,padding=0)) self.stride16_circle_cls = nn.Sequential(nn.Conv2d(512,256,kernel_size=3,padding=1),nn.Conv2d(256,8,kernel_size=1,padding=0)) self.stride32_circle_cls = nn.Sequential(nn.Conv2d(512,256,kernel_size=3,padding=1),nn.Conv2d(256,8,kernel_size=1,padding=0)) self.stride64_circle_cls = nn.Sequential(nn.Conv2d(512,256,kernel_size=3,padding=1),nn.Conv2d(256,8,kernel_size=1,padding=0)) self.mask_generate = nn.Sequential( nn.Conv2d(256,256,kernel_size=3,padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256,256,kernel_size=1,padding=0), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256,256,kernel_size=3,padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256,256,kernel_size=3,padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.ConvTranspose2d(256,256,kernel_size=3,stride=2,padding=1,output_padding=1), nn.BatchNorm2d(256), nn.ReLU(inplace=True), nn.Conv2d(256,1,kernel_size=1,padding=0), nn.Sigmoid() ) self.roi_align = RoIAlign(14, 14,extrapolation_value=0) self._init_weights() def forward(self, x,all_circle,gt_labels,istraining = True,threshold=0.5): conv = {} x = self.inc(x) x = self.down1(x) x = self.down2(x) x4 = self.down3(x) x5 = self.down4(x4) x6 = self.down5(x5) conv[64] = self.down6(x6) conv[32] = self.up1(conv[64],x6) conv[16] = self.up2(conv[32], x5) conv[8] = self.up3(conv[16], x4) circle_labels = {} # del concate_conv strides = [8,16,32,64] mask_conv = None # image_mask = self.image_mask_generate(mask_conv) # print(mask_conv.size()) # circle_regres = {} # anchor_labels = {} # anchor_regres = {} circle_cls = {8:self.stride8_circle_cls,16:self.stride16_circle_cls,32:self.stride32_circle_cls,64:self.stride64_circle_cls} mask_feature = None mask_conv_feature = None roi = None bbox_idx = None pos_idx_stride = {} bbox_score = None # _,_,H,W = conv[8].size() #roi_feature = F.upsample(conv[64],size=(H,W),mode='bilinear')+F.upsample(conv[32],size=(H,W),mode='bilinear')+F.upsample(conv[16],size=(H,W),mode='bilinear')+conv[8] for stride in strides: # circle classify stride_circle_cls = None # print(stride,conv[stride].size()) stride_circle_cls = circle_cls[stride](conv[stride]) n,c,h,w = stride_circle_cls.size() stride_circle_cls = stride_circle_cls.view(n,2,int(c/2),h,w) circle_labels[str(stride)] = stride_circle_cls.permute(0,3,4,2,1).contiguous().view(n*int(c/2)*h*w,2) ## roi if istraining: sort_score,sort_idx = torch.sort(gt_labels[str(stride)],descending=True) postive_num = int(torch.sum(gt_labels[str(stride)])+1) # print(postive_num) select_postive_num = max(1,min(100,postive_num)) # select_negtive_num = max(1,int(select_postive_num/4)) postive_idx = np.random.randint(0,postive_num,size=select_postive_num) # negtive_idx = np.random.randint(postive_num,gt_labels[str(stride)].size(0),size=select_negtive_num) select_idx = torch.from_numpy(postive_idx).cuda() pos_idx = sort_idx[select_idx] bbox = all_circle[str(stride)][pos_idx,:] pos_idx_stride[str(stride)] = pos_idx if type(bbox_score) == type(None): bbox_score = sort_score[select_idx] else: bbox_score = torch.cat((bbox_score,sort_score[select_idx]),0) else: pred_labels = circle_labels[str(stride)] prod = nn.functional.softmax(pred_labels) numpy_prod = prod.data.cpu().numpy() length = min(len(np.where(numpy_prod[:,1]>=threshold)[0]),1000) print(length) score = prod[:,1] sort_score,sort_idx = torch.sort(score,descending=True) # num = int(torch.sum(sort_score>=threshold).data.cpu())+1 num = length+1 # print(stride,num,length,sort_score[length-1].data.cpu()) pos_idx = sort_idx[:num] bbox = all_circle[str(stride)][pos_idx,:] pos_idx_stride[str(stride)] = pos_idx if type(bbox_score) == type(None): bbox_score = sort_score[:num] else: bbox_score = torch.cat((bbox_score,sort_score[:num]),0) # image = np.zeros((1024,1024,3),dtype=np.uint8) # # print(image) # image[:,:,:] = 255 # for box in bbox: # cv2.rectangle(image,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(0,0,255),3) # cv2.imshow('image',image) # cv2.waitKey(0) # print(roi_bbox) if type(roi) == type(None): roi = bbox else: roi = torch.cat((roi,bbox),0) bbox_idx = torch.IntTensor(len(roi)) bbox_idx = Variable(bbox_idx.fill_(0).cuda(),requires_grad=False) roi_bbox = roi*1.0/8 mask_feature = self.roi_align(conv[8],roi_bbox,bbox_idx) if type(mask_feature) == type(None): pred_mask = None else: # print(mask_feature) pred_mask = self.mask_generate(mask_feature).squeeze()#.permute(0,2,3,1).contiguous() # print(pred_mask) # del conv return circle_labels,pred_mask,roi,bbox_idx,pos_idx_stride,bbox_score#,circle_regres#,anchor_labels,anchor_regres def _init_weights(self): def normal_init(m, mean, stddev, truncated=False): """ weight initalizer: truncated normal and random normal. """ # x is a parameter for name,param in m.named_parameters(): param.requires_grad = True if name.split('.')[-1] == "weight": nn.init.normal(m.state_dict()[name], mean, stddev) elif name.split('.')[-1] == "bias": nn.init.constant(m.state_dict()[name], mean) normal_init(self.stride8_circle_cls, 0, 0.01) normal_init(self.stride16_circle_cls, 0, 0.01) normal_init(self.stride32_circle_cls, 0, 0.01) normal_init(self.stride64_circle_cls, 0, 0.01) # normal_init(self.stride8_concate, 0, 0.01) # normal_init(self.stride16_concate, 0, 0.01) # normal_init(self.stride32_concate, 0, 0.01) normal_init(self.mask_generate, 0, 0.01) # normal_init(self.RCNN_deconv, 0, 0.01) print('init success!') if __name__ == '__main__': from torch.autograd import Variable unet = UNet(3, 2).cuda() x = Variable(torch.FloatTensor(1, 3, 1024, 1024)).cuda() print(x.size()) y = unet(x) # print(y.size()) ``` #### File: model/utils/log.py ```python import os import logging def printlog(self,data): for dat in data: logging.critical(dat) ``` #### File: maskrcnn_benchmark/engine/extra_utils.py ```python import numpy as np import cv2 from skimage.measure import find_contours import pycocotools.mask as maskUtils def to_poly(rle): mask = maskUtils.decode(rle) padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, 0.5) area = float(maskUtils.area(rle)) if len(contours) == 0: return [[]], area poly = np.fliplr(contours[0]).astype(np.int32).tolist() return poly, area def coco_results_to_contest(coco_result): output_result = {} bbox_result = {} for idx, result in enumerate(coco_result['segm']): # segm res_name = result['image_id'].replace('gt_', 'res_').replace('.jpg', '') mask_conf = result['score'] res_points, res_area = to_poly(result['segmentation']) res_size = result['segmentation']['size'] if not (len(res_points) > 0 and len(res_points[0]) > 0): continue # bbox bbox = coco_result['bbox'][idx]['bbox'] bbox_conf = coco_result['bbox'][idx]['score'] res_bbox = xywha_to_xyxy(bbox).astype(np.int32).tolist() # init if res_name not in output_result: output_result[res_name] = [] bbox_result[res_name] = [] output_result[res_name].append({ "points": res_points, "confidence": mask_conf, 'area': res_area, 'size': res_size }) bbox_result[res_name].append({ "points": res_bbox, "confidence": bbox_conf }) return output_result, bbox_result def get_mask(box, shape): """根据box获取对应的掩膜""" tmp_mask = np.zeros(shape, dtype="uint8") tmp = np.array(box, dtype=np.int32).reshape(-1, 2) cv2.fillPoly(tmp_mask, [tmp], 255) # tmp_mask=cv2.bitwise_and(tmp_mask,mask) return tmp_mask, cv2.countNonZero(tmp_mask) def comput_mmi(area_a, area_b, intersect): """ 计算MMI,2018.11.23 add :param area_a: 实例文本a的mask的面积 :param area_b: 实例文本b的mask的面积 :param intersect: 实例文本a和实例文本b的相交面积 :return: """ eps = 1e-5 if area_a == 0 or area_b == 0: area_a += eps area_b += eps print("the area of text is 0") return max(float(intersect)/area_a, float(intersect)/area_b) def mask_nms(polygons, shape, mmi_thres=0.5, conf_thres=0.4): """ mask nms 实现函数 :param polygons: 检测结果,[{'points':[[],[],[]],'confidence':int},{},{}] :param shape: 当前检测的图片原大小 :param mmi_thres: 检测的阈值 :param conf_thres: 检测的阈值 """ # 获取bbox及对应的score bbox_infos = [] areas = [] scores = [] for poly in polygons: if poly['confidence'] > conf_thres: bbox_infos.append(poly['points']) areas.append(poly['area']) scores.append(poly['confidence']) # print('before ',len(bbox_infos)) keep = [] # order = np.array(scores).argsort()[::-1] order = np.array(areas).argsort()[::-1] # print("order:{}".format(order)) nums = len(bbox_infos) suppressed = np.zeros(nums, dtype=np.int) # print("lens:{}".format(nums)) # 循环遍历 for i in range(nums): idx = order[i] if suppressed[idx] == 1: continue keep.append(idx) mask_a, area_a = get_mask(bbox_infos[idx], shape) for j in range(i, nums): idx_j = order[j] if suppressed[idx_j] == 1: continue mask_b, area_b = get_mask(bbox_infos[idx_j], shape) # 获取两个文本的相交面积 merge_mask = cv2.bitwise_and(mask_a, mask_b) area_intersect = cv2.countNonZero(merge_mask) # 计算MMI mmi = comput_mmi(area_a, area_b, area_intersect) # print("area_a:{},area_b:{},inte:{},mmi:{}".format(area_a,area_b,area_intersect,mmi)) if mmi >= mmi_thres: suppressed[idx_j] = 1 or_mask = cv2.bitwise_or(mask_a, mask_b) sum_area = cv2.countNonZero(or_mask) padded_mask = np.zeros((or_mask.shape[0] + 2, or_mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = or_mask contours = find_contours(padded_mask, 0.5) poly = np.fliplr(contours[0]).astype(np.int32).tolist() bbox_infos[idx] = poly areas[idx] = sum_area dets = [] for kk in keep: dets.append({ 'points': bbox_infos[kk], 'confidence': scores[kk] }) return dets def xywha_to_xyxy(rect): cx, cy, w, h, angle = rect lt = [cx - w / 2, cy - h / 2, 1] rt = [cx + w / 2, cy - h / 2, 1] lb = [cx - w / 2, cy + h / 2, 1] rb = [cx + w / 2, cy + h / 2, 1] pts = [lt, rt, rb, lb] angle = -angle cos_cita = np.cos(np.pi / 180 * angle) sin_cita = np.sin(np.pi / 180 * angle) M0 = np.array([[1, 0, 0], [0, 1, 0], [-cx, -cy, 1]]) M1 = np.array([[cos_cita, sin_cita, 0], [-sin_cita, cos_cita, 0], [0, 0, 1]]) M2 = np.array([[1, 0, 0], [0, 1, 0], [cx, cy, 1]]) rotation_matrix = M0.dot(M1).dot(M2) rotated_pts = np.dot(np.array(pts), rotation_matrix)[:, :2] return rotated_pts.astype(np.int32) def rotate_pts(pts, rotate_ct, angle): pts = [pt+[1] for pt in pts] cx, cy = rotate_ct angle = -angle cos_cita = np.cos(np.pi / 180 * angle) sin_cita = np.sin(np.pi / 180 * angle) M0 = np.array([[1, 0, 0], [0, 1, 0], [-cx, -cy, 1]]) M1 = np.array([[cos_cita, sin_cita, 0], [-sin_cita, cos_cita, 0], [0, 0, 1]]) M2 = np.array([[1, 0, 0], [0, 1, 0], [cx, cy, 1]]) rotation_matrix = M0.dot(M1).dot(M2) rotated_pts = np.dot(np.array(pts), rotation_matrix)[:, :2] return rotated_pts.astype(np.int32) ``` #### File: modeling/backbone/TCM.py ```python import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class tcm(nn.Module): """docstring for TCM""" def __init__(self,out_channels): super(tcm, self).__init__() self.conv0=nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.convvvv1= nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.bnnnn1 = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0.01) self.convvvv2 = nn.Conv2d(out_channels, 2, kernel_size=1) # self.bnnnn2 = nn.BatchNorm2d(2, eps=0.001, momentum=0.01) self.relu = nn.ReLU(inplace=True) self.softmax = nn.Softmax(dim=2) # for l in [self.convvvv1, self.convvvv2]: # torch.nn.init.normal_(l.weight, std=0.01) # torch.nn.init.constant_(l.bias, 0) for module in [self.conv0,self.convvvv1, self.convvvv2]: # Caffe2 implementation uses XavierFill, which in fact # corresponds to kaiming_uniform_ in PyTorch nn.init.kaiming_uniform_(module.weight, a=1) nn.init.constant_(module.bias, 0) def forward(self,x): att=self.conv0(x) mid=self.relu(self.bnnnn1(self.convvvv1(att))) map=self.relu(self.convvvv2(mid)) saliency_map=torch.exp(self.softmax(map))[:,:1,:,:] saliency_map = saliency_map.expand_as(x) return saliency_map ``` #### File: maskrcnn_benchmark/modeling/level_mapper.py ```python import torch import torch.nn.functional as F from torch import nn from .utils import cat class LevelMapper(nn.Module): """Determine which FPN level each RoI in a set of RoIs should map to based on the heuristic in the FPN paper. """ def __init__(self, scales, canonical_scale=224, canonical_level=4, eps=1e-6): """ Arguments: scales (list) canonical_scale (int) canonical_level (int) eps (float) """ super(LevelMapper, self).__init__() self.scales = scales self.k_min = -torch.log2(torch.tensor(scales[0], dtype=torch.float32)).item() self.k_max = -torch.log2(torch.tensor(scales[-1], dtype=torch.float32)).item() self.s0 = canonical_scale self.lvl0 = canonical_level self.eps = eps def convert_to_roi_format(self, boxes): """ :param boxes: :return: rois list(batch_idx, x, y, w, h) """ concat_boxes = cat([b.bbox for b in boxes], dim=0) device, dtype = concat_boxes.device, concat_boxes.dtype ids = cat( [ torch.full((len(b), 1), i, dtype=dtype, device=device) for i, b in enumerate(boxes) ], dim=0, ) rois = torch.cat([ids, concat_boxes], dim=1) return rois def forward(self, x, boxes): """ Arguments: x (list[Tensor]): feature maps for each level boxes (list[BoxList]): boxes to be used to perform the pooling operation. Returns: results (list[dict]) """ rois = self.convert_to_roi_format(boxes) # Compute level ids s = torch.sqrt(cat([boxlist.area() for boxlist in boxes])) # Eqn.(1) in FPN paper target_lvls = torch.floor(self.lvl0 + torch.log2(s / self.s0 + self.eps)) target_lvls = torch.clamp(target_lvls, min=self.k_min, max=self.k_max) levels = target_lvls.to(torch.int64) - self.k_min # for each level, crop feature maps in the rois of this level results = [] for level, per_level_feature in enumerate(x): idx_in_level = torch.nonzero(levels == level).squeeze(1) rois_per_level = rois[idx_in_level] for batch_idx, ori_x, ori_y, ori_w, ori_h in rois_per_level: batch_idx = int(batch_idx) x = (int(ori_x * self.scales[level]) // 2) * 2 y = (int(ori_y * self.scales[level]) // 2) * 2 w = (int(ori_w * self.scales[level]) // 2) * 2 h = (int(ori_h * self.scales[level]) // 2) * 2 crop = per_level_feature[batch_idx:batch_idx+1, :, y:y+h, x:x+w] # rescale to the same level 0 for i in range(level): crop = nn.functional.interpolate(crop, scale_factor=2, mode='bilinear', align_corners=True) x *= 2 y *= 2 # save to results results.append({ 'batch_idx': batch_idx, 'feature_map': crop, 'roi': [x, y, crop.shape[3], crop.shape[2]] }) return results ``` #### File: roi_heads/mask_head/inference.py ```python import numpy as np import torch from torch import nn import torch.nn.functional as F from skimage.measure import find_contours import cv2 from maskrcnn_benchmark.structures.bounding_box import RBoxList from maskrcnn_benchmark.engine.extra_utils import rotate_pts # TODO check if want to return a single BoxList or a composite # object class MaskPostProcessor(nn.Module): """ From the results of the CNN, post process the masks by taking the mask corresponding to the class with max probability (which are of fixed size and directly output by the CNN) and return the masks in the mask field of the BoxList. If a masker object is passed, it will additionally project the masks in the image according to the locations in boxes, """ def __init__(self, masker=None): super(MaskPostProcessor, self).__init__() self.masker = masker def forward(self, x, boxes): """ Arguments: x (Tensor): the mask logits boxes (list[BoxList]): bounding boxes that are used as reference, one for ech image Returns: results (list[BoxList]): one BoxList for each image, containing the extra field mask """ mask_prob = x.sigmoid() # select masks coresponding to the predicted classes num_masks = x.shape[0] labels = [bbox.get_field("labels") for bbox in boxes] labels = torch.cat(labels) index = torch.arange(num_masks, device=labels.device) mask_prob = mask_prob[index, labels][:, None] boxes_per_image = [len(box) for box in boxes] mask_prob = mask_prob.split(boxes_per_image, dim=0) if self.masker: mask_prob = self.masker(mask_prob, boxes) results = [] for prob, box in zip(mask_prob, boxes): bbox = RBoxList(box.bbox, box.size, mode="xywha") for field in box.fields(): bbox.add_field(field, box.get_field(field)) bbox.add_field("mask", prob) results.append(bbox) return results class MaskPostProcessorCOCOFormat(MaskPostProcessor): """ From the results of the CNN, post process the results so that the masks are pasted in the image, and additionally convert the results to COCO format. """ def forward(self, x, boxes): import pycocotools.mask as mask_util import numpy as np results = super(MaskPostProcessorCOCOFormat, self).forward(x, boxes) for result in results: masks = result.get_field("mask").cpu() rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") result.add_field("mask", rles) return results # the next two functions should be merged inside Masker # but are kept here for the moment while we need them # temporarily gor paste_mask_in_image def expand_boxes(boxes, scale): # boxes: tensor[[x, y, w, h, a]] boxes[:, 2] *= scale boxes[:, 3] *= scale return boxes def expand_masks(mask, padding): N = mask.shape[0] M = mask.shape[-1] pad2 = 2 * padding scale = float(M + pad2) / M padded_mask = mask.new_zeros((N, 1, M + pad2, M + pad2)) padded_mask[:, :, padding:-padding, padding:-padding] = mask return padded_mask, scale def paste_mask_in_image(mask, box, im_h, im_w, thresh=0.5, padding=1): padded_mask, scale = expand_masks(mask[None], padding=padding) mask = padded_mask[0, 0] box = expand_boxes(box[None], scale)[0] box = box.to(dtype=torch.int32) cx = box[0].numpy() cy = box[1].numpy() w = max(box[2].numpy(), 1) h = max(box[3].numpy(), 1) angle = box[4].numpy() # Set shape to [batchxCxHxW] mask = mask.expand((1, 1, -1, -1)) # Resize mask mask = mask.to(torch.float32) mask = F.interpolate(mask, size=(h, w), mode='bilinear', align_corners=False) mask = mask[0][0] if thresh >= 0: mask = mask > thresh else: # for visualization and debugging, we also # allow it to return an unmodified mask mask = (mask * 255).to(torch.uint8) # # get mask pts # pts = np.transpose(np.nonzero(mask.numpy())) # if len(pts) == 0: # pass # pts = np.fliplr(pts).astype(np.int32) # # # rotate pts # rotated_pts = pts.copy() # rotated_pts[:, 0] += cx - int(w/2) # rotated_pts[:, 1] += cy - int(h/2) # rotated_pts = rotate_pts(rotated_pts.tolist(), (cx, cy), angle) # # im_mask = torch.zeros((im_h, im_w), dtype=torch.uint8) # # for (pt_x, pt_y), (rpt_x, rpt_y) in zip(pts, rotated_pts): # if 0 <= rpt_x < im_w and 0 <= rpt_y < im_h: # im_mask[rpt_y, rpt_x] = mask[pt_y, pt_x] # # return im_mask # get mask contour padded_mask = np.zeros((mask.shape[0] + 2, mask.shape[1] + 2), dtype=np.uint8) padded_mask[1:-1, 1:-1] = mask contours = find_contours(padded_mask, thresh) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) if len(contours) > 0: poly = np.fliplr(contours[0]).astype(np.int32) # rotate poly rotated_poly = poly.copy() rotated_poly[:, 0] += int(cx - w/2) rotated_poly[:, 1] += int(cy - h/2) rotated_poly = rotate_pts(rotated_poly.tolist(), (cx, cy), angle) # get rotated mask cv2.fillPoly(im_mask, [rotated_poly], 1) return torch.from_numpy(im_mask) class Masker(object): """ Projects a set of masks in an image on the locations specified by the bounding boxes """ def __init__(self, threshold=0.5, padding=1): self.threshold = threshold self.padding = padding def forward_single_image(self, masks, boxes): im_w, im_h = boxes.size res = [ paste_mask_in_image(mask[0], box, im_h, im_w, self.threshold, self.padding) for mask, box in zip(masks, boxes.bbox) ] if len(res) > 0: res = torch.stack(res, dim=0)[:, None] else: res = masks.new_empty((0, 1, masks.shape[-2], masks.shape[-1])) return res def __call__(self, masks, boxes): if isinstance(boxes, RBoxList): boxes = [boxes] # Make some sanity check assert len(boxes) == len(masks), "Masks and boxes should have the same length." # TODO: Is this JIT compatible? # If not we should make it compatible. results = [] for mask, box in zip(masks, boxes): assert mask.shape[0] == len(box), "Number of objects should be the same." result = self.forward_single_image(mask, box) results.append(result) return results def make_roi_mask_post_processor(cfg): if cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS: mask_threshold = cfg.MODEL.ROI_MASK_HEAD.POSTPROCESS_MASKS_THRESHOLD masker = Masker(threshold=mask_threshold, padding=1) else: masker = None mask_post_processor = MaskPostProcessor(masker) return mask_post_processor ``` #### File: roi_heads/textsnake_heads/roi_textsnake_predictors.py ```python import torch from torch import nn from torch.nn import functional as F from maskrcnn_benchmark.layers import Conv2d from maskrcnn_benchmark.layers import ConvTranspose2d class MaskRCNNC4Predictor(nn.Module): def __init__(self, cfg): super(MaskRCNNC4Predictor, self).__init__() num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES dim_reduced = cfg.MODEL.ROI_TEXTSNAKE_HEAD.CONV_LAYERS[-1] if cfg.MODEL.ROI_HEADS.USE_FPN: num_inputs = dim_reduced else: stage_index = 4 stage2_relative_factor = 2 ** (stage_index - 1) res2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS num_inputs = res2_out_channels * stage2_relative_factor self.conv5_mask = ConvTranspose2d(num_inputs, dim_reduced, 2, 2, 0) self.mask_fcn_logits = Conv2d(dim_reduced, num_classes, 1, 1, 0) for name, param in self.named_parameters(): if "bias" in name: nn.init.constant_(param, 0) elif "weight" in name: # Caffe2 implementation uses MSRAFill, which in fact # corresponds to kaiming_normal_ in PyTorch nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") def forward(self, x): x = F.relu(self.conv5_mask(x)) return self.mask_fcn_logits(x) class TextsnakeC4Predictor(nn.Module): def __init__(self, cfg): super(TextsnakeC4Predictor, self).__init__() self.num_classes = cfg.MODEL.ROI_BOX_HEAD.NUM_CLASSES dim_reduced = cfg.MODEL.ROI_TEXTSNAKE_HEAD.CONV_LAYERS[-1] if cfg.MODEL.ROI_HEADS.USE_FPN: num_inputs = dim_reduced else: stage_index = 4 stage2_relative_factor = 2 ** (stage_index - 1) res2_out_channels = cfg.MODEL.RESNETS.RES2_OUT_CHANNELS num_inputs = res2_out_channels * stage2_relative_factor self.conv5_mask_tr = Conv2d(num_inputs, dim_reduced, 3, stride=1, padding=1) self.mask_fcn_logits_tr = Conv2d(dim_reduced, self.num_classes, 1, 1, 0) self.conv5_mask_tcl = Conv2d(num_inputs, dim_reduced, 3, stride=1, padding=1) self.mask_fcn_logits_tcl = Conv2d(dim_reduced, self.num_classes, 1, 1, 0) self.conv5_mask_geo = Conv2d(num_inputs, dim_reduced, 3, stride=1, padding=1) self.mask_fcn_logits_geo = Conv2d(dim_reduced, 1, 1, 1, 0) for name, param in self.named_parameters(): if "bias" in name: nn.init.constant_(param, 0) elif "weight" in name: # Caffe2 implementation uses MSRAFill, which in fact # corresponds to kaiming_normal_ in PyTorch nn.init.kaiming_normal_(param, mode="fan_out", nonlinearity="relu") def forward(self, crop_feature_list, features): batch_size = features[0].shape[0] output_channels = self.num_classes * 2 + 1 H = features[0].shape[2] # 1/4 of the input height W = features[0].shape[3] # 1/4 of the input width device, dtype = crop_feature_list[0]['feature_map'].device, crop_feature_list[0]['feature_map'].dtype mask_logits = torch.zeros((batch_size, output_channels, H, W), dtype=dtype, device=device) for crop_feature in crop_feature_list: x = crop_feature['feature_map'] # (1, C, H ,W) batch_idx = crop_feature['batch_idx'] roi_x, roi_y, roi_w, roi_h = crop_feature['roi'] # conv tr = self.mask_fcn_logits_tr(F.relu(self.conv5_mask_tr(x))) tcl = self.mask_fcn_logits_tcl(F.relu(self.conv5_mask_tcl(x))) geo = self.mask_fcn_logits_geo(F.relu(self.conv5_mask_geo(x))) # accumulate mask_logits[batch_idx:batch_idx+1, 0:2, roi_y:roi_y+roi_h, roi_x:roi_x+roi_w] += tr mask_logits[batch_idx:batch_idx+1, 2:4, roi_y:roi_y+roi_h, roi_x:roi_x+roi_w] += tcl mask_logits[batch_idx:batch_idx+1, 4:, roi_y:roi_y+roi_h, roi_x:roi_x+roi_w] += geo return mask_logits _ROI_TEXTSNAKE_PREDICTOR = { "MaskRCNNC4Predictor": MaskRCNNC4Predictor, "TextsnakeC4Predictor": TextsnakeC4Predictor } def make_roi_textsnake_predictor(cfg): func = _ROI_TEXTSNAKE_PREDICTOR[cfg.MODEL.ROI_TEXTSNAKE_HEAD.PREDICTOR] return func(cfg) ``` #### File: PixelLink/ImgLib/util.py ```python import cv2 import numpy as np def find_contours(mask, method = None): if method is None: method = cv2.CHAIN_APPROX_SIMPLE mask = np.asarray(mask, dtype = np.uint8) mask = mask.copy() try: contours, _ = cv2.findContours(mask, mode = cv2.RETR_CCOMP, method = method) except: _, contours, _ = cv2.findContours(mask, mode = cv2.RETR_CCOMP, method = method) return contours ``` #### File: TextSnake_pytorch/dataset/area_analysis.py ```python import cv2 import os import numpy as np from model.detection_model.TextSnake_pytorch.dataset.read_json import read_json, read_dict def recorder(record, area): ranges = [key.split('~') for key in record.keys()] for range in ranges: if int(range[0]) <= area <= int(range[1]): record['{}~{}'.format(range[0], range[1])] += 1 break return record if __name__ == '__main__': path = '/home/shf/fudan_ocr_system/datasets/ICDAR19' json_name = 'train_labels.json' maxlen = 1280 train_files = os.listdir(os.path.join(path, 'train_images')) test_files = os.listdir(os.path.join(path, 'test_images')) data_dict = read_json(os.path.join(path, json_name)) legal_record = { '0~99': 0, '100~499': 0, '500~999': 0, '1000~1999': 0, '2000~2999': 0, '3000~3999': 0, '4000~4999': 0, '5000~5999': 0, '6000~6999': 0, '7000~7999': 0, '8000~8999': 0, '9000~9999': 0, '10000~19999': 0, '20000~29999': 0, '30000~39999': 0, '40000~49999': 0, '50000~59999': 0, '60000~69999': 0, '70000~79999': 0, '80000~89999': 0, '90000~99999': 0, '100000~99999999': 0 } illegal_record = { '0000~0099': 0, '0100~0499': 0, '0500~0999': 0, '1000~1999': 0, '2000~99999999': 0 } max_area = -1 min_area = 999999999 with open('record.txt', 'w') as f: for idx, file in enumerate(train_files): polygons = read_dict(data_dict, file) im = cv2.imread(os.path.join(path, 'train_images', file)) h, w = im.shape[:2] scale = 1.0 if max(h, w) > maxlen: scale = float(maxlen) / h if h > w else float(maxlen) / w im = cv2.resize(im, (int(w*scale), int(h*scale))) print(idx, file, len(polygons)) for polygon in polygons: polygon.points[:, 0] = (polygon.points[:, 0] * scale).astype(np.int32) polygon.points[:, 1] = (polygon.points[:, 1] * scale).astype(np.int32) if not polygon.illegibility: drawing = np.zeros(im.shape[:2], np.uint8) poly_mask = cv2.fillPoly(drawing, np.array([polygon.points], dtype=np.int32), 255) area = np.sum(np.greater(poly_mask, 0)) f.write(str(area) + '\n') if area >= max_area: max_area = area if area <= min_area: min_area = area recorder(legal_record, area) else: drawing = np.zeros(im.shape[:2], np.uint8) poly_mask = cv2.fillPoly(drawing, np.array([polygon.points], dtype=np.int32), 255) area = np.sum(np.greater(poly_mask, 0)) recorder(illegal_record, area) if idx % 10 == 0: print('record: ', legal_record) print('illegal: ', illegal_record) print('max_area: {}, min_area: {}'.format(max_area, min_area)) print('record: ', legal_record) print('illegal: ', illegal_record) print('max_area: {}, min_area: {}'.format(max_area, min_area)) print("Test Images") with open('record2.txt', 'w') as f: for idx, file in enumerate(test_files): polygons = read_dict(data_dict, file) im = cv2.imread(os.path.join(path, 'test_images', file)) h, w = im.shape[:2] scale = 1.0 if max(h, w) > maxlen: scale = float(maxlen) / h if h > w else float(maxlen) / w im = cv2.resize(im, (int(w * scale), int(h * scale))) print(idx, file, len(polygons)) for polygon in polygons: polygon.points[:, 0] = (polygon.points[:, 0] * scale).astype(np.int32) polygon.points[:, 1] = (polygon.points[:, 1] * scale).astype(np.int32) if not polygon.illegibility: drawing = np.zeros(im.shape[:2], np.uint8) poly_mask = cv2.fillPoly(drawing, np.array([polygon.points], dtype=np.int32), 255) area = np.sum(np.greater(poly_mask, 0)) f.write(str(area) + '\n') if area >= max_area: max_area = area if area <= min_area: min_area = area recorder(legal_record, area) else: drawing = np.zeros(im.shape[:2], np.uint8) poly_mask = cv2.fillPoly(drawing, np.array([polygon.points], dtype=np.int32), 255) area = np.sum(np.greater(poly_mask, 0)) recorder(illegal_record, area) if idx % 10 == 0: print('record: ', legal_record) print('illegal: ', illegal_record) print('max_area: {}, min_area: {}'.format(max_area, min_area)) print('record: ', legal_record) print('illegal: ', illegal_record) print('max_area: {}, min_area: {}'.format(max_area, min_area)) ``` #### File: TextSnake_pytorch/dataset/ratio_analysis.py ```python import cv2 import os import numpy as np from model.detection_model.TextSnake_pytorch.dataset.read_json import read_json, read_dict def recorder(record, ratio): ranges = [key.split('~') for key in record.keys()] for range in ranges: if int(range[0]) <= ratio < int(range[1]): record['{}~{}'.format(range[0], range[1])] += 1 break return record if __name__ == '__main__': path = '/home/shf/fudan_ocr_system/datasets/ICDAR19/' json_name = 'train_labels.json' maxlen = 1280 train_files = os.listdir(os.path.join(path, 'train_images')) test_files = os.listdir(os.path.join(path, 'test_images')) data_dict = read_json(os.path.join(path, json_name)) legal_record = { '1~2': 0, '2~3': 0, '3~4': 0, '4~5': 0, '5~6': 0, '6~7': 0, '7~99999999': 0, } illegal_record = { '1~2': 0, '2~3': 0, '3~4': 0, '4~5': 0, '5~6': 0, '6~7': 0, '7~99999999': 0, } # max_area = -1 # min_area = 999999999 with open('record.txt', 'w') as f: for idx, file in enumerate(train_files): polygons = read_dict(data_dict, file) im = cv2.imread(os.path.join(path, 'train_images', file)) h, w = im.shape[:2] scale = 1.0 if max(h, w) > maxlen: scale = float(maxlen) / h if h > w else float(maxlen) / w im = cv2.resize(im, (int(w*scale), int(h*scale))) print(idx, file, len(polygons)) for polygon in polygons: polygon.points[:, 0] = (polygon.points[:, 0] * scale).astype(np.int32) polygon.points[:, 1] = (polygon.points[:, 1] * scale).astype(np.int32) if not polygon.illegibility: drawing = np.zeros(im.shape[:2], np.uint8) _, (w, h), _ = cv2.minAreaRect(polygon.points.astype(np.int32)) ratio = float(max(w, h)) / min(w, h) f.write(str(ratio) + '\n') recorder(legal_record, ratio) else: drawing = np.zeros(im.shape[:2], np.uint8) _, (w, h), _ = cv2.minAreaRect(polygon.points.astype(np.int32)) ratio = float(max(w, h)) / min(w, h) f.write(str(ratio) + '\n') recorder(illegal_record, ratio) if idx % 10 == 0: print('record: ', legal_record) print('illegal: ', illegal_record) print('record: ', legal_record) print('illegal: ', illegal_record) print("Test Images") with open('record2.txt', 'w') as f: for idx, file in enumerate(test_files): polygons = read_dict(data_dict, file) im = cv2.imread(os.path.join(path, 'test_images', file)) h, w = im.shape[:2] scale = 1.0 if max(h, w) > maxlen: scale = float(maxlen) / h if h > w else float(maxlen) / w im = cv2.resize(im, (int(w * scale), int(h * scale))) print(idx, file, len(polygons)) for polygon in polygons: polygon.points[:, 0] = (polygon.points[:, 0] * scale).astype(np.int32) polygon.points[:, 1] = (polygon.points[:, 1] * scale).astype(np.int32) if not polygon.illegibility: drawing = np.zeros(im.shape[:2], np.uint8) _, (w, h), _ = cv2.minAreaRect(polygon.points.astype(np.int32)) ratio = float(max(w, h)) / min(w, h) f.write(str(ratio) + '\n') recorder(legal_record, ratio) else: drawing = np.zeros(im.shape[:2], np.uint8) _, (w, h), _ = cv2.minAreaRect(polygon.points.astype(np.int32)) ratio = float(max(w, h)) / min(w, h) f.write(str(ratio) + '\n') recorder(illegal_record, ratio) if idx % 10 == 0: print('record: ', legal_record) print('illegal: ', illegal_record) print('record: ', legal_record) print('illegal: ', illegal_record) ``` #### File: TextSnake_pytorch/network/textnet.py ```python import torch.nn as nn import torch import torch.nn.functional as F from model.detection_model.TextSnake_pytorch.network.vgg import VGG16 from model.detection_model.TextSnake_pytorch.network.resnet import ResNet50 import json class GCN(nn.Module): def __init__(self, c, out_c, k=(7, 7)): # out_Channel=21 in paper super(GCN, self).__init__() self.conv_l1 = nn.Conv2d(c, out_c, kernel_size=(k[0], 1), padding=(int((k[0] - 1) / 2), 0)) self.conv_l2 = nn.Conv2d(out_c, out_c, kernel_size=(1, k[0]), padding=(0, int((k[0] - 1) / 2))) self.conv_r1 = nn.Conv2d(c, out_c, kernel_size=(1, k[1]), padding=(0, int((k[1] - 1) / 2))) self.conv_r2 = nn.Conv2d(out_c, out_c, kernel_size=(k[1], 1), padding=(int((k[1] - 1) / 2), 0)) def forward(self, x): x_l = self.conv_l1(x) x_l = self.conv_l2(x_l) x_r = self.conv_r1(x) x_r = self.conv_r2(x_r) x = x_l + x_r return x class BR(nn.Module): def __init__(self, out_c): super(BR, self).__init__() # self.bn = nn.BatchNorm2d(out_c) self.relu = nn.ReLU(inplace=True) self.conv1 = nn.Conv2d(out_c, out_c, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(out_c, out_c, kernel_size=3, padding=1) def forward(self, x): x_res = self.conv1(x) x_res = self.relu(x_res) x_res = self.conv2(x_res) x = x + x_res return x class Upsample(nn.Module): def __init__(self, in_channels, out_channels, backbone='vgg'): super().__init__() self.backbone = backbone if backbone == 'vgg': self.conv1x1 = nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.conv3x3 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) elif backbone == 'resnet': self.conv1x1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) self.conv3x3 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) self.deconv = nn.ConvTranspose2d(out_channels, out_channels, kernel_size=4, stride=2, padding=1) def forward(self, upsampled, shortcut, is_deconv=True): x = torch.cat([upsampled, shortcut], dim=1) x = self.conv1x1(x) x = self.conv3x3(x) if is_deconv: x = self.deconv(x) else: x = nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=True) return x class TextNet(nn.Module): def __init__(self, cfg): super().__init__() self.backbone_name = cfg.TEXTSNAKE.backbone self.output_channel = cfg.TEXTSNAKE.output_channel self.bottleneck = 32 if self.backbone_name == 'vgg': self.backbone = VGG16() self.deconv5 = nn.ConvTranspose2d(512, 512, kernel_size=4, stride=2, padding=1) self.merge4 = Upsample(512 + 512, 256) self.merge3 = Upsample(256 + 256, 128) self.merge2 = Upsample(128 + 128, 64) self.merge1 = Upsample(64 + 64, self.output_channel) elif self.backbone_name == 'resnet': self.backbone = ResNet50() self.deconv5 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=4, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=4, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=4, stride=2, padding=1) self.deconv2 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=4, stride=2, padding=1) self.deconv1 = nn.ConvTranspose2d(self.output_channel, self.output_channel, kernel_size=4, stride=2, padding=1) self.gcn5 = GCN(2048, self.output_channel) self.gcn4 = GCN(1024, self.output_channel) self.gcn3 = GCN(512, self.output_channel) self.gcn2 = GCN(256, self.output_channel) self.br5 = BR(self.output_channel) self.br4_1 = BR(self.output_channel) self.br4_2 = BR(self.output_channel) self.br3_1 = BR(self.output_channel) self.br3_2 = BR(self.output_channel) self.br2_1 = BR(self.output_channel) self.br2_2 = BR(self.output_channel) self.br1 = BR(self.output_channel) self.br0 = BR(self.output_channel) elif self.backbone_name == 'resnet_gcn': self.backbone = ResNet50() self.deconv5 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv1_1 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) # tr self.deconv1_2 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) # tcl self.gcn5 = GCN(2048, self.bottleneck) self.gcn4 = GCN(1024, self.bottleneck) self.gcn3 = GCN(512, self.bottleneck) self.gcn2 = GCN(256, self.bottleneck) self.gcn1_1 = GCN(self.bottleneck, 2) # tr self.gcn1_2 = GCN(self.bottleneck, 2) # tcl self.br5 = BR(self.bottleneck) self.br4_1 = BR(self.bottleneck) self.br4_2 = BR(self.bottleneck) self.br3_1 = BR(self.bottleneck) self.br3_2 = BR(self.bottleneck) self.br2_1 = BR(self.bottleneck) self.br2_2 = BR(self.bottleneck) self.br1_1 = BR(2) # tr self.br1_2 = BR(2) # tcl self.br0_1 = BR(2) # tr self.br0_2 = BR(2) # tcl self.conv1 = nn.Sequential( nn.Conv2d(self.bottleneck, self.bottleneck, kernel_size=3, stride=1, padding=1), nn.Conv2d(self.bottleneck, 3, kernel_size=1, stride=1, padding=0) # geo(sin, cos, radii) ) elif self.backbone_name == 'resnet_gcn_new': self.backbone = ResNet50() self.deconv5 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv1_1 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) # tr self.deconv1_2 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) # tcl self.gcn5 = GCN(2048, self.bottleneck) self.gcn4 = GCN(1024, self.bottleneck) self.gcn3 = GCN(512, self.bottleneck) self.gcn2 = GCN(256, self.bottleneck) self.br5 = BR(self.bottleneck) self.br4_1 = BR(self.bottleneck) self.br4_2 = BR(self.bottleneck) self.br3_1 = BR(self.bottleneck) self.br3_2 = BR(self.bottleneck) self.br2_1 = BR(self.bottleneck) self.br2_2 = BR(self.bottleneck) self.br1_1 = BR(2) # tr self.br1_2 = BR(2) # tcl self.br0_1 = BR(2) # tr self.br0_2 = BR(2) # tcl self.conv_tr = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_geo = nn.Sequential( nn.Conv2d(self.bottleneck, self.bottleneck, kernel_size=3, stride=1, padding=1), nn.Conv2d(self.bottleneck, 3, kernel_size=1, stride=1, padding=0) # geo(sin, cos, radii) ) elif self.backbone_name == 'resnet_gcn_ms': self.backbone = ResNet50() self.deconv5 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2_1 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2_2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2_3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv1_1 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv1_2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.gcn5 = GCN(2048, self.bottleneck) self.gcn4 = GCN(1024, self.bottleneck) self.gcn3 = GCN(512, self.bottleneck) self.gcn2 = GCN(256, self.bottleneck) self.br5 = BR(self.bottleneck) self.br4_1 = BR(self.bottleneck) self.br4_2 = BR(self.bottleneck) self.br3_1 = BR(self.bottleneck) self.br3_2 = BR(self.bottleneck) self.br2_1 = BR(self.bottleneck) self.br2_2 = BR(self.bottleneck) self.br1_1 = BR(self.bottleneck) self.br1_2 = BR(self.bottleneck) self.br0_1 = BR(self.bottleneck) self.br0_2 = BR(self.bottleneck) self.conv_tr_128 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl_128 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tr_256 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl_256 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tr_512 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl_512 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_geo = nn.Sequential( nn.Conv2d(self.bottleneck, self.bottleneck, kernel_size=3, stride=1, padding=1), nn.Conv2d(self.bottleneck, 3, kernel_size=1, stride=1, padding=0) # geo(sin, cos, radii) ) elif self.backbone_name == 'resnet_gcn_ms2': self.backbone = ResNet50() self.deconv5 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv4 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2_1 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) self.deconv2_2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv2_3 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.deconv1_1 = nn.ConvTranspose2d(2, 2, kernel_size=4, stride=2, padding=1) self.deconv1_2 = nn.ConvTranspose2d(self.bottleneck, self.bottleneck, kernel_size=4, stride=2, padding=1) self.gcn5 = GCN(2048, self.bottleneck) self.gcn4 = GCN(1024, self.bottleneck) self.gcn3 = GCN(512, self.bottleneck) self.gcn2 = GCN(256, self.bottleneck) self.br5 = BR(self.bottleneck) self.br4_1 = BR(self.bottleneck) self.br4_2 = BR(self.bottleneck) self.br3_1 = BR(self.bottleneck) self.br3_2 = BR(self.bottleneck) self.br2_1 = BR(self.bottleneck) self.br2_2 = BR(self.bottleneck) self.br1_1 = BR(2) self.br1_2 = BR(self.bottleneck) self.br0_1 = BR(2) self.br0_2 = BR(self.bottleneck) self.conv_tcl_128 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl_256 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tcl_512 = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_tr = nn.Conv2d(self.bottleneck, 2, kernel_size=1, stride=1, padding=0) self.conv_geo = nn.Sequential( nn.Conv2d(self.bottleneck, self.bottleneck, kernel_size=3, stride=1, padding=1), nn.Conv2d(self.bottleneck, 3, kernel_size=1, stride=1, padding=0) # geo(sin, cos, radii) ) def forward(self, x): C1, C2, C3, C4, C5 = self.backbone(x) if self.backbone_name == 'vgg': up5 = self.deconv5(C5) up5 = F.relu(up5) up4 = self.merge4(C4, up5) up4 = F.relu(up4) up3 = self.merge3(C3, up4) up3 = F.relu(up3) up2 = self.merge2(C2, up3) up2 = F.relu(up2) up1 = self.merge1(C1, up2) elif self.backbone_name == 'resnet': up5 = self.deconv5(self.br5(self.gcn5(C5))) up4 = self.deconv4(self.br4_2(up5 + self.br4_1(self.gcn4(C4)))) up3 = self.deconv3(self.br3_2(up4 + self.br3_1(self.gcn3(C3)))) up2 = self.deconv2(self.br2_2(up3 + self.br2_1(self.gcn2(C2)))) up1 = self.br0(self.deconv1(self.br1(up2))) elif self.backbone_name == 'resnet_gcn': up5 = self.deconv5(self.br5(self.gcn5(C5))) up4 = self.deconv4(self.br4_2(up5 + self.br4_1(self.gcn4(C4)))) up3 = self.deconv3(self.br3_2(up4 + self.br3_1(self.gcn3(C3)))) up2 = self.deconv2(self.br2_2(up3 + self.br2_1(self.gcn2(C2)))) tr_pred_map = self.br0_1(self.deconv1_1(self.br1_1(self.gcn1_1(up2)))) tcl_pred_map = self.br0_2(self.deconv1_2(self.br1_2(self.gcn1_2(up2)))) geo_pred_map = F.interpolate(self.conv1(up2), scale_factor=2, mode='nearest') up1 = torch.cat((tr_pred_map, tcl_pred_map, geo_pred_map), dim=1) elif self.backbone_name == 'resnet_gcn_new': up5 = self.deconv5(self.br5(self.gcn5(C5))) up4 = self.deconv4(self.br4_2(up5 + self.br4_1(self.gcn4(C4)))) up3 = self.deconv3(self.br3_2(up4 + self.br3_1(self.gcn3(C3)))) up2 = self.deconv2(self.br2_2(up3 + self.br2_1(self.gcn2(C2)))) tr_pred_map = self.br0_1(self.deconv1_1(self.br1_1(self.conv_tr(up2)))) tcl_pred_map = self.br0_2(self.deconv1_2(self.br1_2(self.conv_tcl(up2)))) geo_pred_map = F.interpolate(self.conv_geo(up2), scale_factor=2, mode='nearest') up1 = torch.cat((tr_pred_map, tcl_pred_map, geo_pred_map), dim=1) elif self.backbone_name == 'resnet_gcn_ms': up5 = self.deconv5(self.br5(self.gcn5(C5))) up4 = self.deconv4(self.br4_2(up5 + self.br4_1(self.gcn4(C4)))) up3 = self.deconv3(self.br3_2(up4 + self.br3_1(self.gcn3(C3)))) # 128*128 feature_map_128 = self.br2_2(up3 + self.br2_1(self.gcn2(C2))) tr_pred_128 = self.conv_tr_128(feature_map_128) # N * 2 * 128 * 128 tcl_pred_128 = self.conv_tcl_128(feature_map_128) # N * 2 * 128 * 128 # 256*256 tr_feature_map_256 = self.br1_1(self.deconv2_1(feature_map_128 * torch.exp(tr_pred_128[:, 1:2].sigmoid()))) tr_pred_256 = self.conv_tr_256(tr_feature_map_256) tcl_feature_map_256 = self.br1_2(self.deconv2_2(feature_map_128 * torch.exp(tcl_pred_128[:, 1:2].sigmoid()))) tcl_pred_256 = self.conv_tcl_256(tcl_feature_map_256) # 512*512 tr_feature_map_512 = self.br0_1(self.deconv1_1(tr_feature_map_256 * torch.exp(tr_pred_256[:, 1:2].sigmoid()))) tr_pred_map = self.conv_tr_512(tr_feature_map_512) tcl_feature_map_512 = self.br0_2(self.deconv1_2(tcl_feature_map_256 * torch.exp(tcl_pred_256[:, 1:2].sigmoid()))) tcl_pred_map = self.conv_tcl_512(tcl_feature_map_512) geo_pred_map = F.interpolate(self.conv_geo(self.deconv2_3(feature_map_128)), scale_factor=2, mode='nearest') up1 = torch.cat((tr_pred_map, tcl_pred_map, geo_pred_map), dim=1) elif self.backbone_name == 'resnet_gcn_ms2': up5 = self.deconv5(self.br5(self.gcn5(C5))) up4 = self.deconv4(self.br4_2(up5 + self.br4_1(self.gcn4(C4)))) up3 = self.deconv3(self.br3_2(up4 + self.br3_1(self.gcn3(C3)))) # 128*128 feature_map_128 = self.br2_2(up3 + self.br2_1(self.gcn2(C2))) tcl_pred_128 = self.conv_tcl_128(feature_map_128) # N * 2 * 128 * 128 # 256*256 tcl_feature_map_256 = self.br1_2(self.deconv2_2(feature_map_128 * torch.exp(tcl_pred_128.softmax(dim=1)[:, 1:2]))) tcl_pred_256 = self.conv_tcl_256(tcl_feature_map_256) # 512*512 tcl_feature_map_512 = self.br0_2(self.deconv1_2(tcl_feature_map_256 * torch.exp(tcl_pred_256.softmax(dim=1)[:, 1:2]))) tcl_pred_map = self.conv_tcl_512(tcl_feature_map_512) tr_pred_map = self.br0_1(self.deconv1_1(self.br1_1(self.deconv2_1(self.conv_tr(feature_map_128))))) geo_pred_map = F.interpolate(self.conv_geo(self.deconv2_3(feature_map_128)), scale_factor=2, mode='nearest') up1 = torch.cat((tr_pred_map, tcl_pred_map, geo_pred_map), dim=1) return up1 ``` #### File: TextSnake_pytorch/util/visualize.py ```python import torch import numpy as np import cv2 import os from skimage import measure, color from model.detection_model.TextSnake_pytorch.util.config import config as cfg from model.detection_model.TextSnake_pytorch.util.misc import fill_hole def visualize_network_output(output, tr_mask, tcl_mask, prefix): tr_pred = output[:, :2] tr_score, tr_predict = tr_pred.max(dim=1) tcl_pred = output[:, 2:4] tcl_score, tcl_predict = tcl_pred.max(dim=1) tr_predict = tr_predict.cpu().numpy() tcl_predict = tcl_predict.cpu().numpy() tr_target = tr_mask.cpu().numpy() tcl_target = tcl_mask.cpu().numpy() for i in range(len(tr_pred)): tr_pred = (tr_predict[i] * 255).astype(np.uint8) tr_targ = (tr_target[i] * 255).astype(np.uint8) tcl_pred = (tcl_predict[i] * 255).astype(np.uint8) tcl_targ = (tcl_target[i] * 255).astype(np.uint8) tr_show = np.concatenate([tr_pred, tr_targ], axis=1) tcl_show = np.concatenate([tcl_pred, tcl_targ], axis=1) show = np.concatenate([tr_show, tcl_show], axis=0) show = cv2.resize(show, (512, 512)) path = os.path.join(cfg.vis_dir, '{}_{}.png'.format(prefix, i)) cv2.imwrite(path, show) def visualize_detection(image, tr, tcl, contours, illegal_contours=None): image_show = image.copy() image_show = np.ascontiguousarray(image_show[:, :, ::-1]) image_show = cv2.polylines(image_show, contours, True, (0, 0, 255), 3) if illegal_contours is not None: image_show = cv2.polylines(image_show, illegal_contours, True, (0, 255, 0), 3) conts, _ = cv2.findContours(tcl.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) for cont in conts: # remove small regions if cv2.contourArea(cont) < 50: tcl = cv2.fillPoly(tcl, [cont], 0) tr = cv2.cvtColor((tr * 255).astype(np.uint8), cv2.COLOR_GRAY2BGR) tcl = cv2.cvtColor((tcl * 255).astype(np.uint8), cv2.COLOR_GRAY2BGR) # labels = measure.label(tcl, connectivity=2) # tcl_color = color.label2rgb(labels) * 255 # # slightly enlarge for easier to get tcl # kernel = np.ones((5, 5), np.uint8) # tcl_color = cv2.dilate(tcl_color, kernel, iterations=2) image_show = np.concatenate([image_show, tr, tcl], axis=1) return image_show # path = os.path.join(cfg.vis_dir, image_id) # cv2.imwrite(path, image_show) if __name__ == '__main__': import json import os json_path = '.../result.json' img_path = '.../test_images' files = os.listdir(img_path) with open(json_path, 'r') as f: data = json.load(f) for img_name in files: image = cv2.imread(os.path.join(img_path, img_name)) poly = data[img_name.replace('.jpg', '').replace('gt', 'res')] pts = np.array(poly['points']).astype(np.int32) image_show = cv2.polylines(image, [pts], True, (0, 0, 255), 3) cv2.imwrite(img_name, image_show) ``` #### File: maskrcnn_benchmark_architecture/demo/irra_infer.py ```python import os os.environ['CUDA_VISIBLE_DEVICES'] = '5' import cv2 import numpy as np from maskrcnn_benchmark.config import cfg from demo.predictor import ICDARDemo, RRPNDemo from maskrcnn_benchmark.utils.visualize import vis_image, write_result_ICDAR_RRPN2polys, zip_dir from maskrcnn_benchmark.data.datasets.irra_interface import get_irra_XXX from PIL import Image import time import json from tqdm import tqdm from Pascal_VOC import eval_func from link_boxes import merge def res2json(result_dir): res_list = os.listdir(result_dir) res_dict = {} for rf in tqdm(res_list): if rf[-4:] == '.txt': respath = os.path.join(result_dir, rf) reslines = open(respath, 'r').readlines() reskey = 'EEE/' + rf[13:-4] res_dict[reskey] = [{'points':np.array(l.replace('\n', '').split(','), np.int).reshape(-1, 2).tolist()} for l in reslines] json_tarf = os.path.join(result_dir, 'res.json') if os.path.isfile(json_tarf): print('Json file found, removing it...') os.remove(json_tarf) j_f = open(json_tarf, 'w') json.dump(res_dict, j_f) print('json dump done', json_tarf) return json_tarf def database_to_json(dataset_dir): database = get_irra_XXX('val', dataset_dir, 'EEE') json_name = 'data_cache/gt_val_irra.json' if os.path.isfile(json_name): print('json_name found, loading it...') return json_name data_dict = {} for data_item in database: data_code = 'EEE/' + data_item['image'].split('/')[-1].split('.')[0][10:] print('data_code:', data_code) data_dict[data_code] = [{'points':pts.reshape(-1, 2).tolist(), 'transcription':'111'} for pts in data_item['polys']] j_f = open(json_name, 'w') json.dump(data_dict, j_f) print('json dump done', json_name) return json_name config_file = 'configs/irragular_det/e2e_faster_rcnn_R_50_C4_1x.yaml' #'#"configs/ICDAR2019_det_RRPN/e2e_rrpn_R_50_C4_1x_LSVT_val_4scales_angle_norm.yaml" #e2e_rrpn_R_50_C4_1x_ICDAR13_15_trial_test.yaml # update the config options with the config file cfg.merge_from_file(config_file) # manual override some options cfg.merge_from_list(["MODEL.DEVICE", "cuda"]) # cfg.freeze() # cfg.MODEL.WEIGHT = 'models/IC-13-15-17-Trial/model_0155000.pth' vis = False merge_box = cfg.TEST.MERGE_BOX result_dir = os.path.join('results', config_file.split('/')[-1].split('.')[0], cfg.MODEL.WEIGHT.split('/')[-1].split('.')[0]) if merge_box: result_dir += '_merge_box' if not os.path.isdir(result_dir): os.makedirs(result_dir) coco_demo = RRPNDemo( cfg, min_image_size=800, confidence_threshold=0.6, ) dataset_name = 'IRRA_another_nofilter' #'#cfg.TEST.DATASET_NAME testing_dataset = { 'IRRA_another1': { 'testing_image_dir': '../datasets/picture/', 'gt_dir':'../datasets/TASK0407/coordinates/EEE/', 'off': [0, 162] }, 'IRRA_another1_denoise': { 'testing_image_dir': '../datasets/denoise_pic/', 'gt_dir':'../datasets/TASK0407/coordinates/EEE/', 'off': [0, 150] }, 'IRRA': { 'testing_image_dir': '../datasets/TASK0407/imshow_picture/EEE', 'gt_dir':'../datasets/TASK0407/coordinates/EEE/', 'off': [0, 162] }, 'IRRA_another_nofilter': { 'testing_image_dir': '../datasets/0514_nofilter/', 'gt_dir':'../datasets/TASK0407/coordinates/EEE/', 'off': [0, 162] }, 'ArT': { 'testing_image_dir': '../datasets/ArT/ArT_detect_train/train_images', 'off': [4000, 5603] }, } image_dir = testing_dataset[dataset_name]['testing_image_dir'] gt_dir = testing_dataset[dataset_name]['gt_dir'] # vocab_dir = testing_dataset[dataset_name]['test_vocal_dir'] off_group = testing_dataset[dataset_name]['off'] # load image and then run prediction # image_dir = '../datasets/ICDAR13/Challenge2_Test_Task12_Images/' # imlist = os.listdir(image_dir)[off_group[0]:off_group[1]] gtlist = os.listdir(gt_dir) gtlist.sort() print('************* META INFO ***************') print('config_file:', config_file) print('result_dir:', result_dir) print('image_dir:', image_dir) print('weights:', cfg.MODEL.WEIGHT) print('merge_box:', merge_box) print('***************************************') # print('gtlist:', gtlist) #num_images = len(imlist) cnt = 0 num_images = off_group[1] - off_group[0] if dataset_name == 'IRRA': for idx in range(off_group[0], off_group[1]): gt_filename = gtlist[idx] gt_code = gt_filename.split('.')[0] image = 'nofilter_' + gt_code + '.jpg' impath = os.path.join(image_dir, image) # print('image:', impath) img = cv2.imread(impath) cnt += 1 tic = time.time() predictions, bounding_boxes = coco_demo.run_on_opencv_image(img) toc = time.time() print('time cost:', str(toc - tic)[:6], '|', str(cnt) + '/' + str(num_images)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) bboxes_np = bounding_boxes.bbox.data.cpu().numpy() bboxes_np[:, 2:4] /= cfg.MODEL.RRPN.GT_BOX_MARGIN if merge_box: bboxes_np_reverse = bboxes_np.copy() bboxes_np_reverse[:, 2:4] = bboxes_np_reverse[:, 3:1:-1] bboxes_np_reverse = merge(bboxes_np_reverse) bboxes_np_reverse[:, 2:4] = bboxes_np_reverse[:, 3:1:-1] bboxes_np = bboxes_np_reverse width, height = bounding_boxes.size if vis: pil_image = vis_image(Image.fromarray(img), bboxes_np) pil_image.show() time.sleep(20) else: write_result_ICDAR_RRPN2polys(image[:-4], bboxes_np, threshold=0.7, result_dir=result_dir, height=height, width=width) #im_file, dets, threshold, result_dir, height, width #cv2.imshow('win', predictions) #cv2.waitKey(0) else: testing_img = os.listdir(image_dir) for imname in testing_img: # gt_filename = gtlist[idx] # gt_code = gt_filename.split('.')[0] # image = 'nofilter_' + gt_code + '.jpg' # impath = os.path.join(image_dir, image) # print('image:', impath) impath = os.path.join(image_dir, imname) img = cv2.imread(impath) cnt += 1 tic = time.time() predictions, bounding_boxes = coco_demo.run_on_opencv_image(img) toc = time.time() print('time cost:', str(toc - tic)[:6], '|', str(cnt) + '/' + str(num_images)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) bboxes_np = bounding_boxes.bbox.data.cpu().numpy() bboxes_np[:, 2:4] /= cfg.MODEL.RRPN.GT_BOX_MARGIN if merge_box: bboxes_np_reverse = bboxes_np.copy() bboxes_np_reverse[:, 2:4] = bboxes_np_reverse[:, 3:1:-1] bboxes_np_reverse = merge(bboxes_np_reverse) bboxes_np_reverse[:, 2:4] = bboxes_np_reverse[:, 3:1:-1] bboxes_np = bboxes_np_reverse width, height = bounding_boxes.size if vis: pil_image = vis_image(Image.fromarray(img), bboxes_np) pil_image.show() time.sleep(20) else: write_result_ICDAR_RRPN2polys(imname[:-4], bboxes_np, threshold=0.7, result_dir=result_dir, height=height, width=width) #im_file, dets, threshold, result_dir, height, width #cv2.imshow('win', predictions) #cv2.waitKey(0) if dataset_name == 'IC15': zipfilename = os.path.join(result_dir, 'submit_' + config_file.split('/')[-1].split('.')[0] + '_' + cfg.MODEL.WEIGHT.split('/')[-1].split('.')[0] + '.zip') if os.path.isfile(zipfilename): print('Zip file exists, removing it...') os.remove(zipfilename) zip_dir(result_dir, zipfilename) comm = 'curl -i -F "submissionFile=@' + zipfilename + '" http://127.0.0.1:8080/evaluate' # print(comm) print(os.popen(comm, 'r')) elif dataset_name == 'LSVT': # input_json_path = 'results/e2e_rrpn_R_50_C4_1x_LSVT_val/model_0190000/res.json' gt_json_path = '../datasets/LSVT/train_full_labels.json' # to json input_json_path = res2json(result_dir) eval_func(input_json_path, gt_json_path) elif dataset_name == 'ArT': # input_json_path = 'results/e2e_rrpn_R_50_C4_1x_LSVT_val/model_0190000/res.json' gt_json_path = '../datasets/ArT/ArT_detect_train/train_labels.json' # to json input_json_path = res2json(result_dir) eval_func(input_json_path, gt_json_path) elif dataset_name == 'IRRA': gt_json_path = database_to_json('../datasets/TASK0407/') # to json input_json_path = res2json(result_dir) eval_func(input_json_path, gt_json_path) ``` #### File: recognition_model/HARN/main.py ```python import argparse import os import random import io import sys import time from models.moran import MORAN import tools.utils as utils import torch.optim as optim import numpy as np import torch.backends.cudnn as cudnn import torch.utils.data import tools.dataset as dataset from torch.autograd import Variable from collections import OrderedDict from tools.logger import logger # 是否导入数据集 # from wordlist import result # from wordlistlsvt import result import warnings warnings.filterwarnings('ignore') os.environ['CUDA_VISIBLE_DEVICES'] = '1' # 指定GPU # os.environ['CUDA_VISIBLE_DEVICES'] = '5' # 指定GPU sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8') parser = argparse.ArgumentParser() # parser.add_argument('--train_nips', default='/home/chenjingye/moran/dataset/art_train', help='path to dataset') parser.add_argument('--train_nips', default='/home/msy/datasets/OCR_dataset/train', help='path to dataset') # parser.add_argument('--train_nips', default='dataset/lsvt_train', help='path to dataset') # # 数据集地址 / 要修改 # parser.add_argument('--train_cvpr', default='dataset/art_train', help='path to dataset') # parser.add_argument('--valroot', default='/home/chenjingye/moran/dataset/art_test', help='path to dataset') parser.add_argument('--valroot', default='/home/msy/datasets/OCR_dataset/test', help='path to dataset') # parser.add_argument('--valroot', default='dataset/lsvt_test', help='path to dataset') # # 测试数据集地址 / 要修改 parser.add_argument('--workers', default=4, type=int, help='number of data loading workers') parser.add_argument('--batchSize', type=int, default=128, help='input batch size') # # 根据需要修改 parser.add_argument('--imgH', type=int, default=32, help='the height of the input image to network') parser.add_argument('--imgW', type=int, default=100, help='the width of the input image to network') # 输入到网络的原图大小,常用32*280,之前高度为64的时候报错 parser.add_argument('--targetH', type=int, default=32, help='the width of the input image to network') parser.add_argument('--targetW', type=int, default=100, help='the width of the input image to network') # 英文字符32*100即可,中文字符可用32*280 parser.add_argument('--nh', type=int, default=256, help='size of the lstm hidden state') # 隐藏层单元数,无需修改 parser.add_argument('--niter', type=int, default=300, help='number of epochs to train for') # # 迭代次数,一轮要跑多少个epoch,CRNN一般跑50/60个epoch就收敛了,可以设很大的数值,然后收敛后停掉 parser.add_argument('--lr', type=float, default=1, help='learning rate for Critic, default=0.00005') # 学习率,此代码中最好是1(最优效果),此处无需修改 parser.add_argument('--cuda', action='store_false', help='enables cuda') parser.add_argument('--ngpu', type=int, default=1, help='number of GPUs to use') # 只能跑单卡 parser.add_argument('--MORAN', default='', help="path to model (to continue training)") parser.add_argument('--alphabet', type=str, default='0:1:2:3:4:5:6:7:8:9:a:b:c:d:e:f:g:h:i:j:k:l:m:n:o:p:q:r:s:t:u:v:w:x:y:z:$') parser.add_argument('--sep', type=str, default=':') parser.add_argument('--experiment', default='/home/msy/HARN_Moran/checkpoints/asrn_se50_OCRdata_50', help='Where to store samples and models') # parser.add_argument('--experiment', default='checkpoint/asrn_se50_lsvt_50', help='Where to store samples and models') # # 保存模型的路径 / 要修改 parser.add_argument('--displayInterval', type=int, default=100, help='Interval to be displayed') # 100轮显示一次,跑了多少epoch了 parser.add_argument('--n_test_disp', type=int, default=10, help='Number of samples to display when test') # 测试时的展示 parser.add_argument('--valInterval', type=int, default=1000, help='Interval to be displayed') # 隔多少轮验证一次 parser.add_argument('--saveInterval', type=int, default=4000, help='Interval to be displayed') # 隔多久保存一次,隔太久保存不到精度最高的模型,隔太少空间储存量会爆炸 parser.add_argument('--IndividualStep', default=50, help="epoch for training one model") parser.add_argument('--adam', action='store_true', help='Whether to use adam (default is rmsprop)') parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5') # 偏置,Adam的一阶矩估计 parser.add_argument('--adadelta', action='store_false', help='Whether to use adadelta (default is rmsprop)') parser.add_argument('--sgd', action='store_true', help='Whether to use sgd (default is rmsprop)') parser.add_argument('--BidirDecoder', action='store_false', help='Whether to use BidirDecoder') opt = parser.parse_args() print(opt) # 输出参数list # Modify # opt.alphabet = result assert opt.ngpu == 1, "Multi-GPU training is not supported yet, due to the variant lengths of the text in a batch." if opt.experiment is None: opt.experiment = 'expr' os.system('mkdir {0}'.format(opt.experiment)) opt.manualSeed = random.randint(1, 10000) # fix seed random.seed(opt.manualSeed) np.random.seed(opt.manualSeed) torch.manual_seed(opt.manualSeed) cudnn.benchmark = True #---------save logger---------# log = logger('/home/msy/HARN_Moran/logger/asrn_se50_OCRdata_50') # log = logger('./logger/asrn_se50_lsvt_50') # # 保存日志的路径 / 需要改 #-----------------------------# if not torch.cuda.is_available(): assert not opt.cuda, 'You don\'t have a CUDA device.' if torch.cuda.is_available() and not opt.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") train_nips_dataset = dataset.lmdbDataset(root=opt.train_nips, transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder) assert train_nips_dataset ''' train_cvpr_dataset = dataset.lmdbDataset(root=opt.train_cvpr, transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder) assert train_cvpr_dataset ''' ''' train_dataset = torch.utils.data.ConcatDataset([train_nips_dataset, train_cvpr_dataset]) ''' train_dataset = train_nips_dataset train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=opt.batchSize, shuffle=False, sampler=dataset.randomSequentialSampler(train_dataset, opt.batchSize), num_workers=int(opt.workers)) test_dataset = dataset.lmdbDataset(root=opt.valroot, transform=dataset.resizeNormalize((opt.imgW, opt.imgH)), reverse=opt.BidirDecoder) nclass = len(opt.alphabet.split(opt.sep)) # 一共有多少类,英文是36,中文就是wordlist,系统只认名字为wordlist.py的文件,记得将需要用的文件改为这个名字 nc = 1 converter = utils.strLabelConverterForAttention(opt.alphabet, opt.sep) # 给每个字一个编号,例如:中(2)国(30)人(65);convert是id和字符之间的转换 criterion = torch.nn.CrossEntropyLoss() if opt.cuda: MORAN = MORAN(nc, nclass, opt.nh, opt.targetH, opt.targetW, BidirDecoder=opt.BidirDecoder, CUDA=opt.cuda, log=log) else: MORAN = MORAN(nc, nclass, opt.nh, opt.targetH, opt.targetW, BidirDecoder=opt.BidirDecoder, inputDataType='torch.FloatTensor', CUDA=opt.cuda, log=log) if opt.MORAN != '': print('loading pretrained model from %s' % opt.MORAN) if opt.cuda: state_dict = torch.load(opt.MORAN) else: state_dict = torch.load(opt.MORAN, map_location='cpu') MORAN_state_dict_rename = OrderedDict() for k, v in state_dict.items(): name = k.replace("module.", "") # remove `module.` MORAN_state_dict_rename[name] = v MORAN.load_state_dict(MORAN_state_dict_rename, strict=True) image = torch.FloatTensor(opt.batchSize, nc, opt.imgH, opt.imgW) text = torch.LongTensor(opt.batchSize * 5) text_rev = torch.LongTensor(opt.batchSize * 5) length = torch.IntTensor(opt.batchSize) if opt.cuda: MORAN.cuda() MORAN = torch.nn.DataParallel(MORAN, device_ids=range(opt.ngpu)) image = image.cuda() text = text.cuda() text_rev = text_rev.cuda() criterion = criterion.cuda() image = Variable(image) # 把图片转换成 CUDA 可以识别的 Variable 变量 text = Variable(text) text_rev = Variable(text_rev) length = Variable(length) # loss averager loss_avg = utils.averager() # setup optimizer # 优化器的选择,这里用的Adam if opt.adam: optimizer = optim.Adam(MORAN.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) elif opt.adadelta: optimizer = optim.Adadelta(MORAN.parameters(), lr=opt.lr) elif opt.sgd: optimizer = optim.SGD(MORAN.parameters(), lr=opt.lr, momentum=0.9) else: optimizer = optim.RMSprop(MORAN.parameters(), lr=opt.lr) def levenshtein(s1, s2): # 莱温斯坦距离,编辑距离的一种 if len(s1) < len(s2): return levenshtein(s2, s1) # len(s1) >= len(s2) if len(s2) == 0: return len(s1) previous_row = range(len(s2) + 1) for i, c1 in enumerate(s1): current_row = [i + 1] for j, c2 in enumerate(s2): insertions = previous_row[j + 1] + 1 deletions = current_row[j] + 1 substitutions = previous_row[j] + (c1 != c2) current_row.append(min(insertions, deletions, substitutions)) previous_row = current_row return previous_row[-1] def val(dataset, criterion, max_iter=10000, steps=None): data_loader = torch.utils.data.DataLoader( dataset, shuffle=False, batch_size=opt.batchSize, num_workers=int(opt.workers)) # opt.batchSize val_iter = iter(data_loader) max_iter = min(max_iter, len(data_loader)) n_correct = 0 n_total = 0 distance = 0.0 loss_avg = utils.averager() #f = open('./log.txt', 'a', encoding='utf-8') for i in range(max_iter): # 设置很大的循环数值(达不到此值就会收敛) data = val_iter.next() if opt.BidirDecoder: cpu_images, cpu_texts, cpu_texts_rev = data # data是dataloader导入的东西 utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts, scanned=True) # 这个encode是将字符encode成id t_rev, _ = converter.encode(cpu_texts_rev, scanned=True) utils.loadData(text, t) utils.loadData(text_rev, t_rev) utils.loadData(length, l) preds0, preds1 = MORAN(image, length, text, text_rev, debug=False, test=True, steps=steps) # 跑模型HARN cost = criterion(torch.cat([preds0, preds1], 0), torch.cat([text, text_rev], 0)) preds0_prob, preds0 = preds0.max(1) # 取概率最大top1的结果 preds0 = preds0.view(-1) preds0_prob = preds0_prob.view(-1) # 维度的变形(好像是 sim_preds0 = converter.decode(preds0.data, length.data) # 将 id decode为字 preds1_prob, preds1 = preds1.max(1) preds1 = preds1.view(-1) preds1_prob = preds1_prob.view(-1) sim_preds1 = converter.decode(preds1.data, length.data) sim_preds = [] # 预测出来的字 for j in range(cpu_images.size(0)): # 对字典进行处理,把单个字符连成字符串 text_begin = 0 if j == 0 else length.data[:j].sum() if torch.mean(preds0_prob[text_begin:text_begin + len(sim_preds0[j].split('$')[0] + '$')]).item() > \ torch.mean(preds1_prob[text_begin:text_begin + len(sim_preds1[j].split('$')[0] + '$')]).item(): sim_preds.append(sim_preds0[j].split('$')[0] + '$') else: sim_preds.append(sim_preds1[j].split('$')[0][-1::-1] + '$') else: # 用不到的另一种情况 cpu_images, cpu_texts = data utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts, scanned=True) utils.loadData(text, t) utils.loadData(length, l) preds = MORAN(image, length, text, text_rev, test=True) cost = criterion(preds, text) _, preds = preds.max(1) preds = preds.view(-1) sim_preds = converter.decode(preds.data, length.data) loss_avg.add(cost) # 计算loss的平均值 for pred, target in zip(sim_preds, cpu_texts): # 与GroundTruth的对比,cpu_texts是GroundTruth,sim_preds是连接起来的字符串 if pred == target.lower(): # 完全匹配量 n_correct += 1 #f.write("pred %s\t target %s\n" % (pred, target)) distance += levenshtein(pred, target) / max(len(pred), len(target)) # 莱温斯坦距离 n_total += 1 # 完成了一个单词 #f.close() # print and save # 跑完之后输出到日志中 for pred, gt in zip(sim_preds, cpu_texts): gt = ''.join(gt.split(opt.sep)) print('%-20s, gt: %-20s' % (pred, gt)) print("correct / total: %d / %d, " % (n_correct, n_total)) print('levenshtein distance: %f' % (distance / n_total)) accuracy = n_correct / float(n_total) log.scalar_summary('Validation/levenshtein distance', distance / n_total, steps) log.scalar_summary('Validation/loss', loss_avg.val(), steps) log.scalar_summary('Validation/accuracy', accuracy, steps) print('Test loss: %f, accuray: %f' % (loss_avg.val(), accuracy)) return accuracy def trainBatch(steps): data = train_iter.next() if opt.BidirDecoder: cpu_images, cpu_texts, cpu_texts_rev = data utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts, scanned=True) t_rev, _ = converter.encode(cpu_texts_rev, scanned=True) utils.loadData(text, t) utils.loadData(text_rev, t_rev) utils.loadData(length, l) preds0, preds1 = MORAN(image, length, text, text_rev) cost = criterion(torch.cat([preds0, preds1], 0), torch.cat([text, text_rev], 0)) else: cpu_images, cpu_texts = data utils.loadData(image, cpu_images) t, l = converter.encode(cpu_texts, scanned=True) utils.loadData(text, t) utils.loadData(length, l) preds = MORAN(image, length, text, text_rev) cost = criterion(preds, text) MORAN.zero_grad() cost.backward() # 反向传播 optimizer.step() # 优化器 return cost if __name__ == '__main__': t0 = time.time() acc, acc_tmp = 0, 0 print(' === HARN === ') for epoch in range(opt.niter): # --------------------------stage train-------------------------------# 分段训练,不需要 # boundary = int(opt.IndividualStep) # print('stage train:', boundary) # if boundary >= epoch >= 0: # optimizer = optim.Adadelta(MORAN.module.ASRN.parameters(), lr=opt.lr) # elif 2 * boundary >= epoch > boundary: # optimizer = optim.Adadelta(MORAN.module.MORN.parameters(), lr=opt.lr) # else: # optimizer = optim.Adadelta(MORAN.parameters(), lr=opt.lr) # --------------------------------------------------------------------# print(" === Loading Train Data ===") train_iter = iter(train_loader) i = 0 while i < len(train_loader): # len():数据大小 # print("main函数里,可迭代次数为 %d" % len(train_loader)) steps = i + epoch * len(train_loader) # step用来计算什么时候进行存储/打印 if steps % opt.valInterval == 0: for p in MORAN.parameters(): p.requires_grad = False MORAN.eval() print('-------------------------------') # train的一些打印信息 acc_tmp = val(test_dataset, criterion, steps=steps) if acc_tmp > acc: acc = acc_tmp try: time.sleep(0.01) torch.save(MORAN.state_dict(), '{0}/{1}_{2}.pth'.format(opt.experiment, i, str(acc)[:6])) except RuntimeError: print("RuntimeError") pass for p in MORAN.parameters(): p.requires_grad = True MORAN.train() cost = trainBatch(steps) loss_avg.add(cost) if i % opt.displayInterval == 0: t1 = time.time() # niter是参数部分设置的epoch数量 print('Epoch: %d/%d; iter: %d/%d; Loss: %f; time: %.2f s;' % (epoch, opt.niter, i, len(train_loader), loss_avg.val(), t1 - t0)), log.scalar_summary('train loss', loss_avg.val(), i) # 拟合到90多/拟合到1,完全收敛,训练充分 log.scalar_summary('speed batches/persec', i / (time.time() - t0), i) loss_avg.reset() t0 = time.time() ''' t1 = time.time() # niter是参数部分设置的epoch数量 print('Epoch: %d/%d; iter: %d/%d; Loss: %f; time: %.2f s;' % (epoch, opt.niter, i, len(train_loader), loss_avg.val(), t1 - t0)), log.scalar_summary('train loss', loss_avg.val(), steps) # 拟合到90多/拟合到1,完全收敛,训练充分 log.scalar_summary('speed batches/persec', steps / (time.time() - t0), steps) loss_avg.reset() t0 = time.time() if steps % opt.displayInterval == 0: t1 = time.time() # niter是参数部分设置的epoch数量 print('Epoch: %d/%d; iter: %d/%d; Loss: %f; time: %.2f s;' % (epoch, opt.niter, i, len(train_loader), loss_avg.val(), t1 - t0)), log.scalar_summary('train loss', loss_avg.val(), steps) # 拟合到90多/拟合到1,完全收敛,训练充分 log.scalar_summary('speed batches/persec', steps / (time.time() - t0), steps) loss_avg.reset() t0 = time.time() ''' i += 1 ``` #### File: HARN/models/convnet.py ```python import torch import torch.nn as nn import torch.nn.init as init import torch.nn.functional as F from collections import OrderedDict from senet.se_module import SELayer from torchsummary import summary class DefaultCNN(nn.Module): def __init__(self, imgH, nc, leakyRelu=False): super(DefaultCNN, self).__init__() assert imgH % 16 == 0, 'Image height has to be a multiple of 16' ks = [3, 3, 3, 3, 3, 3, 2] ps = [1, 1, 1, 1, 1, 1, 0] ss = [1, 1, 1, 1, 1, 1, 1] nm = [64, 128, 256, 256, 512, 512, 512] cnn = nn.Sequential() def convRelu(i, batchNormalization=False): nIn = nc if i == 0 else nm[i - 1] nOut = nm[i] cnn.add_module('conv{0}'.format(i), nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i])) if batchNormalization: cnn.add_module('batchnorm{0}'.format(i), nn.BatchNorm2d(nOut)) if leakyRelu: cnn.add_module('relu{0}'.format(i), nn.LeakyReLU(0.2, inplace=True)) else: cnn.add_module('relu{0}'.format(i), nn.ReLU(True)) convRelu(0, True) cnn.add_module('pooling{0}'.format(0), nn.MaxPool2d(2, 2)) convRelu(1, True) cnn.add_module('pooling{0}'.format(1), nn.MaxPool2d(2, 2)) convRelu(2, True) convRelu(3, True) cnn.add_module('pooling{0}'.format(2), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) convRelu(4, True) convRelu(5, True) cnn.add_module('pooling{0}'.format(3), nn.MaxPool2d((2, 2), (2, 1), (0, 1))) convRelu(6, True) self.cnn = cnn print("Initializing cnn net weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, input): conv = self.cnn(input) return conv def defaultcnn(**kwargs): model = DefaultCNN(imgH=32, nc=1) return model # -------------------------------------------------------------------------------# class _DenseLayer(nn.Sequential): def __init__(self, num_input_features, growth_rate, bn_size, drop_rate): super(_DenseLayer, self).__init__() self.add_module('norm1', nn.BatchNorm2d(num_input_features)), self.add_module('relu1', nn.ReLU(inplace=True)), self.add_module('conv1', nn.Conv2d(num_input_features, bn_size * growth_rate, kernel_size=1, stride=1, bias=False)), self.add_module('norm2', nn.BatchNorm2d(bn_size * growth_rate)), self.add_module('relu2', nn.ReLU(inplace=True)), self.add_module('conv2', nn.Conv2d(bn_size * growth_rate, growth_rate, kernel_size=3, stride=1, padding=1, bias=False)), self.drop_rate = drop_rate def forward(self, x): new_features = super(_DenseLayer, self).forward(x) if self.drop_rate > 0: new_features = F.dropout(new_features, p=self.drop_rate, training=self.training) return torch.cat([x, new_features], 1) class _DenseBlock(nn.Sequential): def __init__(self, num_layers, num_input_features, bn_size, growth_rate, drop_rate): super(_DenseBlock, self).__init__() for i in range(num_layers): layer = _DenseLayer(num_input_features + i * growth_rate, growth_rate, bn_size, drop_rate) self.add_module('denselayer%d' % (i + 1), layer) class _Transition(nn.Sequential): def __init__(self, num_input_features, num_output_features, iblock): super(_Transition, self).__init__() assert iblock < 4, "There are maximal 4 blocks." self.ks = [2, 2, 2] self.h_ss = [2, 2, 2] self.w_ss = [1, 1, 1] self.w_pad = [1, 1, 1] self.add_module('norm', nn.BatchNorm2d(num_input_features)) self.add_module('relu', nn.ReLU(inplace=True)) self.add_module('conv', nn.Conv2d(num_input_features, num_output_features, kernel_size=1, stride=1, bias=False)) self.add_module('pool', nn.AvgPool2d((self.ks[iblock], self.ks[iblock]), (self.h_ss[iblock], self.w_ss[iblock]), (0, self.w_pad[iblock]))) class DenseNet(nn.Module): def __init__(self, num_in, growth_rate=32, block_config=(6, 12, 24, 16), num_init_features=64, bn_size=4, drop_rate=0): super(DenseNet, self).__init__() self.relu = nn.ReLU(inplace=True) self.features = nn.Sequential(OrderedDict([ ('conv0', nn.Conv2d(num_in, num_init_features, kernel_size=3, stride=2, padding=1, bias=False)), ('norm0', nn.BatchNorm2d(num_init_features)), ('relu0', nn.ReLU(inplace=True)), ('pool0', nn.MaxPool2d(kernel_size=2, stride=2)), ])) num_features = num_init_features # Each denseblock for i, num_layers in enumerate(block_config): block = _DenseBlock(num_layers=num_layers, num_input_features=num_features, bn_size=bn_size, growth_rate=growth_rate, drop_rate=drop_rate) self.features.add_module('denseblock%d' % (i + 1), block) num_features = num_features + num_layers * growth_rate if i != len(block_config) - 1: trans = _Transition(num_input_features=num_features, num_output_features=num_features // 2, iblock=i) self.features.add_module('transition%d' % (i + 1), trans) num_features = num_features // 2 # Final batch norm self.features.add_module('norm5', nn.BatchNorm2d(num_features)) # Official init from torch repo # print("Initializing Dense net weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, x): features = self.features(x) out = self.relu(features) # out = F.avg_pool2d(out, kernel_size=7, stride=1).view(features.size(0), -1) return out def DenseNet121(**kwargs): print("Initializing DenseNet121 net weights...") model = DenseNet(num_in=1, num_init_features=64, growth_rate=32, block_config=(6, 12, 24, 16), **kwargs) return model def DenseNet169(**kwargs): print("Initializing DenseNet169 net weights...") model = DenseNet(num_in=1, num_init_features=64, growth_rate=32, block_config=(6, 12, 32, 32), **kwargs) return model def DenseNet201(**kwargs): print("Initializing DenseNet201 net weights...") model = DenseNet(num_in=1, num_init_features=64, growth_rate=32, block_config=(6, 12, 48, 32), **kwargs) return model #######Resnet####### def conv3x3(in_planes, out_planes, stride=(1, 1)): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=(1, 1), downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=(1, 1), downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__(self, num_in, block, layers): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(num_in, 64, kernel_size=7, stride=1, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=(2, 2)) self.layer2 = self._make_layer(block, 128, layers[1], stride=(2, 1)) self.layer3 = self._make_layer(block, 256, layers[2], stride=(2, 1)) self.layer4 = self._make_layer(block, 512, layers[3], stride=(2, 1)) # Official init from torch repo # print("Initializing Resnet net weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=(1, 1)): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def ResNet18(**kwargs): print("Initializing Resnet18 net weights...") model = ResNet(num_in=1, block=BasicBlock, layers=[2, 2, 2, 2], **kwargs) return model def ResNet34(**kwargs): print("Initializing Resnet34 net weights...") model = ResNet(num_in=1, block=BasicBlock, layers=[3, 4, 6, 3], **kwargs) return model def ResNet50(**kwargs): print("Initializing Resnet50 net weights...") model = ResNet(num_in=1, block=Bottleneck, layers=[3, 4, 6, 3], **kwargs) return model def ResNet101(**kwargs): model = ResNet(num_in=1, block=Bottleneck, layers=[3, 4, 23, 3], **kwargs) return model def ResNet101(**kwargs): model = ResNet(num_in=1, block=Bottleneck, layers=[3, 4, 36, 3], **kwargs) return model #######-----------SEResnet-----------####### def conv3x3(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class SEBasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): super(SEBasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes, 1) self.bn2 = nn.BatchNorm2d(planes) self.se = SELayer(planes, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEBottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16): super(SEBottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.bn3 = nn.BatchNorm2d(planes * 4) self.relu = nn.ReLU(inplace=True) self.se = SELayer(planes * 4, reduction) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) out = self.se(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class SEResNet(nn.Module): def __init__(self, num_in, block, layers): self.inplanes = 64 super(SEResNet, self).__init__() self.conv1 = nn.Conv2d(num_in, 64, kernel_size=7, stride=1, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu1 = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=(2, 2)) self.layer2 = self._make_layer(block, 128, layers[1], stride=(2, 1)) self.layer3 = self._make_layer(block, 256, layers[2], stride=(2, 1)) self.layer4 = self._make_layer(block, 512, layers[3], stride=(2, 1)) # Official init from torch repo # print("Initializing SEResNet weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=(1, 1)): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x def se_resnet18(**kwargs): print("Initializing SE_Resnet18 net weights...") model = SEResNet(num_in=1, block=SEBasicBlock, layers=[2, 2, 2, 2], **kwargs) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet34(**kwargs): print("Initializing SE_Resnet34 net weights...") model = SEResNet(num_in=1, block=SEBasicBlock, layers=[3, 4, 6, 3], **kwargs) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet50(**kwargs): print("Initializing SE_Resnet50 net weights...") model = SEResNet(num_in=1, block=SEBottleneck, layers=[3, 4, 6, 3], **kwargs) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet101(**kwargs): model = SEResNet(num_in=3, block=SEBottleneck, layers=[3, 4, 23, 3], **kwargs) model.avgpool = nn.AdaptiveAvgPool2d(1) return model def se_resnet152(**kwargs): model = SEResNet(num_in=3, block=SEBottleneck, layers=[3, 8, 36, 3], **kwargs) model.avgpool = nn.AdaptiveAvgPool2d(1) return model #######-----------SEcnn-----------####### class selayer(nn.Module): def __init__(self, i): super(selayer, self).__init__() ks = [3, 3, 3, 3, 3, 3, 2] ps = [1, 1, 1, 1, 1, 1, 0] ss = [1, 1, 1, 1, 1, 1, 1] nm = [64, 128, 256, 256, 512, 512, 512] nIn = nc if i == 0 else nm[i - 1] nOut = nm[i] self.conv = nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i]) self.bn = nn.BatchNorm2d(nOut) self.relu = nn.ReLU(inplace=True) self.se = SELayer(nOut, 16) def forward(self, x): out = self.conv(x) out = self.bn(out) out = self.relu(out) out = self.se(out) return out class SECNN(nn.Module): def __init__(self, imgH, nc, leakyRelu=False): super(SECNN, self).__init__() assert imgH % 16 == 0, 'Image height has to be a multiple of 16' self.layer0 = nn.Conv2d(nc, 64, 3, 1, 1) self.bn0 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.pool0 = nn.MaxPool2d(2, 2) self.layer1 = selayer(1) self.pool1 = nn.MaxPool2d(2, 2) self.layer2 = selayer(2) self.layer3 = selayer(3) self.pool2 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) self.layer4 = selayer(4) self.layer5 = selayer(5) self.pool3 = nn.MaxPool2d((2, 2), (2, 1), (0, 1)) self.layer6 = selayer(6) # self.conv6 = nn.Conv2d(512, 512, 2, 1, 0) # self.bn6 = nn.BatchNorm2d(512) print("Initializing secnn weights...") for m in self.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal_(m.weight.data) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, input): # print('input:', input.shape) x = self.layer0(input) x = self.bn0(x) x = self.relu(x) x = self.pool0(x) x = self.layer1(x) x = self.pool1(x) x = self.layer2(x) x = self.layer3(x) x = self.pool2(x) x = self.layer4(x) x = self.layer5(x) x = self.pool3(x) x = self.layer6(x) # x = self.conv6(x) # x = self.bn6(x) # print ('secnn_out:',x.shape) return x def secnn(**kwargs): model = SECNN(imgH=32, nc=1) # print(model) return model if __name__ == '__main__': model = secnn().cuda() summary(model, (3, 32, 100)) ``` #### File: models/.ipynb_checkpoints/morn-checkpoint.py ```python import torch import torch.nn as nn from torch.autograd import Variable import numpy as np class MORN(nn.Module): def __init__(self, nc, targetH, targetW, inputDataType='torch.cuda.FloatTensor', maxBatch=256, CUDA=True, log=None): super(MORN, self).__init__() self.targetH = targetH self.targetW = targetW self.inputDataType = inputDataType self.maxBatch = maxBatch self.cuda = CUDA self.log = log self.cnn = nn.Sequential( nn.MaxPool2d(2, 2), nn.Conv2d(nc, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(True), nn.MaxPool2d(2, 2), nn.Conv2d(64, 128, 3, 1, 1), nn.BatchNorm2d(128), nn.ReLU(True), nn.MaxPool2d(2, 2), nn.Conv2d(128, 64, 3, 1, 1), nn.BatchNorm2d(64), nn.ReLU(True), nn.Conv2d(64, 16, 3, 1, 1), nn.BatchNorm2d(16), nn.ReLU(True), nn.Conv2d(16, 2, 3, 1, 1), nn.BatchNorm2d(2) ) self.pool = nn.MaxPool2d(2, 1) h_list = np.arange(self.targetH) * 2. / (self.targetH - 1) - 1 w_list = np.arange(self.targetW) * 2. / (self.targetW - 1) - 1 grid = np.meshgrid( w_list, h_list, indexing='ij' ) grid = np.stack(grid, axis=-1) grid = np.transpose(grid, (1, 0, 2)) grid = np.expand_dims(grid, 0) grid = np.tile(grid, [maxBatch, 1, 1, 1]) grid = torch.from_numpy(grid).type(self.inputDataType) if self.cuda: grid = grid.cuda() self.grid = Variable(grid, requires_grad=False) self.grid_x = self.grid[:, :, :, 0].unsqueeze(3) self.grid_y = self.grid[:, :, :, 1].unsqueeze(3) def forward(self, x, test, enhance=1, debug=False, steps=None): if not test and np.random.random() > 0.5: return nn.functional.interpolate(x, size=(self.targetH, self.targetW), mode='bilinear') if not test: enhance = 0 assert x.size(0) <= self.maxBatch assert x.data.type() == self.inputDataType grid = self.grid[:x.size(0)] grid_x = self.grid_x[:x.size(0)] grid_y = self.grid_y[:x.size(0)] x_small = nn.functional.interpolate(x, size=(self.targetH, self.targetW), mode='bilinear') offsets = self.cnn(x_small) offsets_posi = nn.functional.relu(offsets, inplace=False) offsets_nega = nn.functional.relu(-offsets, inplace=False) offsets_pool = self.pool(offsets_posi) - self.pool(offsets_nega) offsets_grid = nn.functional.grid_sample(offsets_pool, grid) offsets_grid = offsets_grid.permute(0, 2, 3, 1).contiguous() offsets_grid_x = offsets_grid[:, :, :, 0].unsqueeze(3) offsets_grid_y = offsets_grid[:, :, :, 1].unsqueeze(3) offsets_x = torch.cat([grid_x + offsets_grid_x, grid_y + offsets_grid_y], 3) # offsets_x = torch.cat([grid_x, grid_y + offsets_grid], 3) x_rectified = nn.functional.grid_sample(x, offsets_x) for iteration in range(enhance): offsets = self.cnn(x_rectified) offsets_posi = nn.functional.relu(offsets, inplace=False) offsets_nega = nn.functional.relu(-offsets, inplace=False) offsets_pool = self.pool(offsets_posi) - self.pool(offsets_nega) offsets_grid += nn.functional.grid_sample(offsets_pool, grid).permute(0, 2, 3, 1).contiguous() offsets_grid_x = offsets_grid[:, :, :, 0].unsqueeze(3) offsets_grid_y = offsets_grid[:, :, :, 1].unsqueeze(3) offsets_x = torch.cat([grid_x + offsets_grid_x, grid_y + offsets_grid_y], 3) # offsets_x = torch.cat([grid_x, grid_y + offsets_grid], 3) x_rectified = nn.functional.grid_sample(x, offsets_x) if debug: offsets_mean = torch.mean(offsets_grid.view(x.size(0), -1), 1) offsets_max, _ = torch.max(offsets_grid.view(x.size(0), -1), 1) offsets_min, _ = torch.min(offsets_grid.view(x.size(0), -1), 1) import matplotlib.pyplot as plt from colour import Color from torchvision import transforms import cv2 alpha = 0.7 density_range = 256 cmap = plt.get_cmap("rainbow") blue = Color("blue") hex_colors = list(blue.range_to(Color("red"), density_range)) rgb_colors = [[rgb * 255 for rgb in color.rgb] for color in hex_colors][::-1] to_pil_image = transforms.ToPILImage() for i in range(1): img_small = x_small[i].data.cpu().mul_(0.5).add_(0.5) img = to_pil_image(img_small) img = np.array(img) if len(img.shape) == 2: img = cv2.merge([img.copy()] * 3) img_copy_x = img.copy() img_copy_y = img.copy() v_max = offsets_max.data[i].cpu() v_min = offsets_min.data[i].cpu() img_offsets_x = (offsets_grid[i][:, :, 0]).view(1, self.targetH, self.targetW).data.cpu().add_(-v_min).mul_( 1. / (v_max - v_min)) img_offsets_y = (offsets_grid[i][:, :, 1]).view(1, self.targetH, self.targetW).data.cpu().add_(-v_min).mul_( 1. / (v_max - v_min)) img_offsets_x = to_pil_image(img_offsets_x) img_offsets_y = to_pil_image(img_offsets_y) img_offsets_x = np.array(img_offsets_x) img_offsets_y = np.array(img_offsets_y) color_map_x = np.empty([self.targetH, self.targetW, 3], dtype=int) color_map_y = np.empty([self.targetH, self.targetW, 3], dtype=int) for h_i in range(self.targetH): for w_i in range(self.targetW): color_map_x[h_i][w_i] = rgb_colors[int(img_offsets_x[h_i, w_i] / 256. * density_range)] color_map_y[h_i][w_i] = rgb_colors[int(img_offsets_y[h_i, w_i] / 256. * density_range)] color_map_x = color_map_x.astype(np.uint8) color_map_y = color_map_y.astype(np.uint8) cv2.addWeighted(color_map_x, alpha, img_copy_x, 1 - alpha, 0, img_copy_x) cv2.addWeighted(color_map_y, alpha, img_copy_y, 1 - alpha, 0, img_copy_y) img_processed = x_rectified[i].data.cpu().mul_(0.5).add_(0.5) img_processed = to_pil_image(img_processed) img_processed = np.array(img_processed) if len(img_processed.shape) == 2: img_processed = cv2.merge([img_processed.copy()] * 3) total_img = np.ones([self.targetH, self.targetW * 4 + 15, 3], dtype=int) * 255 total_img[0:self.targetH, 0:self.targetW] = img total_img[0:self.targetH, self.targetW + 5:2 * self.targetW + 5] = img_copy_x total_img[0:self.targetH, self.targetW * 2 + 10:3 * self.targetW + 10] = img_copy_y total_img[0:self.targetH, self.targetW * 3 + 15:4 * self.targetW + 15] = img_processed total_img = cv2.resize(total_img.astype(np.uint8), (800, 100)) # cv2.imshow("Input_Offsets_Output", total_img) # cv2.waitKey() self.log.image_summary('attention_map', [total_img], steps) # cv2.imwrite('attention_map', total_img) # return x_rectified, total_img return x_rectified return x_rectified ``` #### File: MORAN_V2/module/crann.py ```python import models.convnet as ConvNets import models.recurrent as SeqNets import torch.nn as nn import torch.nn.parallel import torch.distributed as dist class CRANN(nn.Module): def __init__(self, crann_config, n_class): super(CRANN, self).__init__() self.ngpu = crann_config['N_GPU'] cnn_conf = crann_config['CNN'] print('Constructing {}'.format(cnn_conf['MODEL'])) self.cnn = ConvNets.__dict__[cnn_conf['MODEL']]() rnn_conf = crann_config['RNN'] print('Constructing {}'.format(rnn_conf['MODEL'])) self.rnn = SeqNets.__dict__[rnn_conf['MODEL']](rnn_conf, n_class) def forward(self, input): c_feat = data_parallel(self.cnn, input, self.ngpu) b, c, h, w = c_feat.size() #print("feature size, b:{0}, c:{1}, h:{2}, w:{3}".format(b, c, h, w)) assert h == 1, "the height of the conv must be 1" c_feat = c_feat.squeeze(2) c_feat = c_feat.permute(2, 0, 1) # [w, b, c] output = data_parallel(self.rnn, c_feat, self.ngpu, dim=1) return output def data_parallel(model, input, ngpu, dim=0): #dist.init_process_group(init_method='file:///workspace/mnt/group/ocr-fd-group/zhangpeiyao/CRNN/zhang/sharedfile',backend="gloo",world_size=4,group_name="pytorch_test") if isinstance(input.data, torch.cuda.FloatTensor) and ngpu > 1: output = nn.parallel.data_parallel(model, input, range(ngpu), dim=dim) #output = nn.parallel.DistributedDataParallel(model, input, range(ngpu), dim=dim) else: output = model(input.cuda())##################### return output ``` #### File: DocumentSRModel/databuilder/rvl_cdip.py ```python import os import cv2 import numpy as np import random from tqdm import tqdm TEMP_CACHE_NAME = './~temp.png' gaussian_blur_params = [1, 3, 3, 3, 3, 3, 5] def build_dataset(data_dir, new_dir='datasets', dataset_name='rvl-cdip', mode='train'): origin_dir = os.path.join(data_dir, dataset_name) label_path = os.path.join(origin_dir, 'labels', mode+'.txt') image_dir = os.path.join(origin_dir, 'images') local_dir = os.path.join(new_dir, dataset_name+'_'+mode) train_dir = os.path.join(new_dir, dataset_name+'_'+mode+'_train') valid_dir = os.path.join(new_dir, dataset_name+'_'+mode+'_valid') test_dir = os.path.join(new_dir, dataset_name+'_'+mode+'_test') if not os.path.exists(origin_dir): print(origin_dir) raise Exception('Original dataset path not exists') if not os.path.exists(local_dir): os.makedirs(local_dir) if not os.path.exists(train_dir): os.makedirs(train_dir) if not os.path.exists(test_dir): os.makedirs(test_dir) if not os.path.exists(valid_dir): os.makedirs(valid_dir) label_file = open(label_path, 'r') res_dict = {} for idx, imgline in tqdm(enumerate(label_file)): res = imgline.split(' ') img_path, label = res[0], res[1] img_name = img_path.split('/')[-1] # load origin image if not os.path.exists(os.path.join(image_dir, img_path)): print('! Image is not exists:' + img_path) continue else: hr_img = cv2.imread(os.path.join(image_dir, img_path)) if hr_img is None: print('! Image is None:' + img_path) continue if label not in res_dict.keys(): res_dict[label] = [(img_path, img_name)] else: res_dict[label].append((img_path, img_name)) # cv2.imwrite(os.path.join(local_dir, img_name), hr_img) idx = 0 for key in tqdm(res_dict.keys()): for img_path, img_name in res_dict[key]: hr_img = cv2.imread(os.path.join(image_dir, img_path)) if idx % 10 == 0: cv2.imwrite(os.path.join(test_dir, img_name), hr_img) elif idx % 10 == 1: cv2.imwrite(os.path.join(valid_dir, img_name), hr_img) else: cv2.imwrite(os.path.join(train_dir, img_name), hr_img) idx += 1 # def build_dataset(data_dir, new_dir='datasets', dataset_name='rvl-cdip', mode='train'): # origin_dir = os.path.join(data_dir, dataset_name) # label_path = os.path.join(origin_dir, 'labels', mode+'.txt') # image_dir = os.path.join(origin_dir, 'images') # local_dir = os.path.join(new_dir, dataset_name+'_'+mode) # if not os.path.exists(origin_dir): # print(origin_dir) # raise Exception('Original dataset path not exists') # if not os.path.exists(local_dir): # os.makedirs(local_dir) # os.makedirs(os.path.join(local_dir, 'LR')) # os.makedirs(os.path.join(local_dir, 'LRN')) # os.makedirs(os.path.join(local_dir, 'HR')) # label_file = open(label_path, 'r') # for idx, imgline in tqdm(enumerate(label_file)): # img_path = imgline.split(' ')[0] # img_name = img_path.split('/')[-1] # # load origin image # if not os.path.exists(os.path.join(image_dir, img_path)): # print('! Image is not exists:' + img_path) # continue # else: # hr_img = cv2.imread(os.path.join(image_dir, img_path)) # if hr_img is None: # print('! Image is None:' + img_path) # continue # # build general low resolution image # lr_img = cv2.resize(hr_img, None, None, 0.5, 0.5) # lrn_img = lr_img.copy() # # build noisy low resolution image # prob = random.random() # if prob <= 0.45: # degradation = 'compression' # elif prob <= 0.85: # degradation = 'gaussian blur' # elif prob <= 0.7: # degradation = 'gaussian noise' # elif prob < 0.8: # degradation = 'salt pepper noise' # # additional degradation # if degradation == 'compression': # r1 = np.random.randint(5, 95) # r2 = np.random.randint(2, 10) # cv2.imwrite(TEMP_CACHE_NAME, lr_img, [int(cv2.IMWRITE_JPEG_QUALITY), r1]) # lrn_img = cv2.imread(TEMP_CACHE_NAME) # cv2.imwrite(TEMP_CACHE_NAME, lrn_img, [int(cv2.IMWRITE_PNG_COMPRESSION), r2]) # lrn_img = cv2.imread(TEMP_CACHE_NAME) # elif degradation == 'gaussian blur': # r = int(np.random.choice(gaussian_blur_params)) # lrn_img = cv2.GaussianBlur(lr_img, (r, r), 0) # elif degradation == 'salt pepper noise': # pass # cv2.imwrite(os.path.join(local_dir, 'HR', img_name), hr_img) # cv2.imwrite(os.path.join(local_dir, 'LR', img_name), lr_img) # cv2.imwrite(os.path.join(local_dir, 'LRN', img_name), lrn_img) # if os.path.exists(TEMP_CACHE_NAME): # os.remove(TEMP_CACHE_NAME) ``` #### File: super_resolution_model/DocumentSRModel/dataloader.py ```python import os from PIL import Image, ImageFilter import cv2 import random import numpy as np import torch import torch.utils.data as Data import torchvision.transforms as Transforms def is_image_file(filename): return any(filename.endswith(extension) for extension in [".png", ".jpg", ".jpeg", ".bmp", '.tif', '.tiff']) def load_img(filepath, type='RGB'): img = Image.open(filepath).convert(type) return img def calculate_valid_crop_size(crop_size, scale_factor): return crop_size - (crop_size % scale_factor) class TrainDataset(Data.Dataset): def __init__(self, image_dir, crop_size=512, scale_factor=4, random_scale=True, rotate=True, fliplr=True, fliptb=True): super(TrainDataset, self).__init__() self.image_dir = image_dir self.image_filenames = [] self.image_filenames.extend(os.path.join(image_dir, x) for x in sorted(os.listdir(image_dir)) if is_image_file(x)) self.crop_size = crop_size self.scale_factor = scale_factor self.random_scale = random_scale self.rotate = rotate self.fliplr = fliplr self.fliptb = fliptb h_w_scale = 1 self.crop_size_h = calculate_valid_crop_size(self.crop_size // h_w_scale, self.scale_factor) self.crop_size_w = self.crop_size_h * h_w_scale def __getitem__(self, index): # load image img = load_img(self.image_filenames[index]) # determine valid HR image size with scale factor hr_img_w = self.crop_size_w hr_img_h = self.crop_size_h # determine LR image size lr_img_w_2x = hr_img_w // (self.scale_factor // 2) lr_img_h_2x = hr_img_h // (self.scale_factor // 2) lr_img_w_4x = hr_img_w // self.scale_factor lr_img_h_4x = hr_img_h // self.scale_factor # random scaling between [0.5, 1.0] if self.random_scale: eps = 1e-3 ratio = random.randint(5, 10) * 0.1 if hr_img_w * ratio < self.crop_size_w: ratio = self.crop_size_W / hr_img_w + eps if hr_img_h * ratio < self.crop_size_h: ratio = self.crop_size_h / hr_img_h + eps scale_w = int(hr_img_w * ratio) scale_h = int(hr_img_h * ratio) transform = Transforms.Resize( (scale_h, scale_w), interpolation=Image.ANTIALIAS) img = transform(img) # random crop on image transform = Transforms.RandomCrop((self.crop_size_h, self.crop_size_w)) img = transform(img) # random rotation between [90, 180, 270] degrees if self.rotate: rv = random.randint(0, 3) img = img.rotate(90 * rv, expand=True) # random horizontal flip if self.fliplr: transform = Transforms.RandomHorizontalFlip() img = transform(img) # random vertical flip if self.fliptb: if random.random() < 0.5: img = img.transpose(Image.FLIP_TOP_BOTTOM) hr_img = Transforms.CenterCrop((hr_img_h, hr_img_w))(img) lr2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.ANTIALIAS)(hr_img) lr4x_img = Transforms.Resize((lr_img_h_4x, lr_img_w_4x), interpolation=Image.ANTIALIAS)(hr_img) bc2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.BICUBIC)(lr4x_img) bc4x_img = Transforms.Resize((hr_img_h, hr_img_w), interpolation=Image.BICUBIC)(lr4x_img) # Tensor Transform img_transform = Transforms.ToTensor() hr_img = img_transform(hr_img) lr2x_img = img_transform(lr2x_img) lr4x_img = img_transform(lr4x_img) bc2x_img = img_transform(bc2x_img) bc4x_img = img_transform(bc4x_img) # print(hr_img.size()) # print(lr2x_img.size()) # print(lr4x_img.size()) # print(bc2x_img.size()) # print(bc4x_img.size()) return hr_img, lr2x_img, lr4x_img, bc2x_img, bc4x_img def __len__(self): return len(self.image_filenames) class DevDataset(Data.Dataset): def __init__(self, image_dir): super(DevDataset, self).__init__() self.image_dir = image_dir self.image_filenames = [] self.image_filenames.extend(os.path.join(image_dir, x) for x in sorted(os.listdir(image_dir)) if is_image_file(x)) def __getitem__(self, index): # load image img = load_img(self.image_filenames[index]) width = img.size[0] height = img.size[1] # determine LR image size lr_img_w_4x = width // 4 lr_img_h_4x = height // 4 lr_img_w_2x = lr_img_w_4x * 2 lr_img_h_2x = lr_img_h_4x * 2 hr_img_w = lr_img_w_4x * 4 hr_img_h = lr_img_h_4x * 4 hr_img = Transforms.Resize((hr_img_h, hr_img_w))(img) lr2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.ANTIALIAS)(hr_img) lr4x_img = Transforms.Resize((lr_img_h_4x, lr_img_w_4x), interpolation=Image.ANTIALIAS)(hr_img) bc2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.BICUBIC)(lr4x_img) bc4x_img = Transforms.Resize((hr_img_h, hr_img_w), interpolation=Image.BICUBIC)(lr4x_img) # Tensor Transform img_transform = Transforms.ToTensor() hr_img = img_transform(hr_img) lr2x_img = img_transform(lr2x_img) lr4x_img = img_transform(lr4x_img) bc2x_img = img_transform(bc2x_img) bc4x_img = img_transform(bc4x_img) return hr_img, lr2x_img, lr4x_img, bc2x_img, bc4x_img def __len__(self): return len(self.image_filenames) class TestDataset(Data.Dataset): def __init__(self, image_dir): super(TestDataset, self).__init__() self.image_dir = image_dir self.image_filenames = [] self.image_filenames.extend(os.path.join(image_dir, x) for x in sorted(os.listdir(image_dir)) if is_image_file(x)) def __getitem__(self, index): # load image img = load_img(self.image_filenames[index]) width = img.size[0] height = img.size[1] # determine LR image size lr_img_w_4x = width // 4 lr_img_h_4x = height // 4 lr_img_w_2x = lr_img_w_4x * 2 lr_img_h_2x = lr_img_h_4x * 2 hr_img_w = lr_img_w_4x * 4 hr_img_h = lr_img_h_4x * 4 hr_img = Transforms.Resize((hr_img_h, hr_img_w))(img) lr2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.ANTIALIAS)(hr_img) lr4x_img = Transforms.Resize((lr_img_h_4x, lr_img_w_4x), interpolation=Image.ANTIALIAS)(hr_img) bc2x_img = Transforms.Resize((lr_img_h_2x, lr_img_w_2x), interpolation=Image.BICUBIC)(lr4x_img) bc4x_img = Transforms.Resize((hr_img_h, hr_img_w), interpolation=Image.BICUBIC)(lr4x_img) # Tensor Transform img_transform = Transforms.ToTensor() hr_img = img_transform(hr_img) lr2x_img = img_transform(lr2x_img) lr4x_img = img_transform(lr4x_img) bc2x_img = img_transform(bc2x_img) bc4x_img = img_transform(bc4x_img) return hr_img, lr2x_img, lr4x_img, bc2x_img, bc4x_img def __len__(self): return len(self.image_filenames) ``` #### File: DocumentSRModel/utils/motionblur.py ```python import os import cv2 import numpy as np from math import ceil import matplotlib.pyplot as plt from scipy import signal, misc class BlurImage(object): def blur_image_path(self, img_path, PSFs=None, part=None, path_to_save=None, show=False): """ :param image_path: path to square, RGB image. :param PSFs: array of Kernels. :param part: int number of kernel to use. :param path__to_save: folder to save results. """ if os.path.isfile(img_path): original = misc.imread(image_path) result = self.blur_image(self, img, PSFs, part, path_to_save, show) else: raise Exception('Not correct path to image.') def blur_image(self, img, PSFs=None, part=None, path_to_save=None, show=False): """ :param img: square, RGB image. :param PSFs: array of Kernels. :param part: int number of kernel to use. :param path_to_save: folder to save results. """ img_shape = img.shape if len(img_shape) < 3: # raise Exception('We support only RGB images yet.') print('We support only RGB images yet.') return None elif img_shape[0] != img_shape[1]: # raise Exception('We support only square images yet.') print('We support only square images yet.') return None if PSFs is None: if path_to_save is None: PSFs = PSF(canvas=img_shape[0]).fit() else: PSFs = PSF(canvas=img_shape[0], path_to_save=os.path.join(path_to_save, 'PSFs.png')).fit(save=True) if part is None: psf = PSFs else: psf = [PSFs[part]] yN, xN, channel = img_shape key, kex = PSFs[0].shape delta = yN - key if delta < 0: print('resolution of image should be higher than kernel') return None # assert delta >= 0, 'resolution of image should be higher than kernel' result = [] if len(psf) > 1: for p in psf: tmp = np.pad(p, delta // 2, 'constant') cv2.normalize(tmp, tmp, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) # blured = np.zeros(img_shape) blured = cv2.normalize(img, img, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) blured[:, :, 0] = np.array(signal.fftconvolve(blured[:, :, 0], tmp, 'same')) blured[:, :, 1] = np.array(signal.fftconvolve(blured[:, :, 1], tmp, 'same')) blured[:, :, 2] = np.array(signal.fftconvolve(blured[:, :, 2], tmp, 'same')) blured = cv2.normalize(blured, blured, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) blured = cv2.cvtColor(blured, cv2.COLOR_RGB2BGR) result.append(np.abs(blured)) else: psf = psf[0] tmp = np.pad(psf, delta // 2, 'constant') cv2.normalize(tmp, tmp, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) blured = cv2.normalize(img, img, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) blured[:, :, 0] = np.array(signal.fftconvolve(blured[:, :, 0], tmp, 'same')) blured[:, :, 1] = np.array(signal.fftconvolve(blured[:, :, 1], tmp, 'same')) blured[:, :, 2] = np.array(signal.fftconvolve(blured[:, :, 2], tmp, 'same')) blured = cv2.normalize(blured, blured, alpha=0, beta=1, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_32F) blured = cv2.cvtColor(blured, cv2.COLOR_RGB2BGR) result.append(np.abs(blured)) if show: self.__plot_canvas(result) return result def __plot_canvas(self, result): if len(result) == 0: raise Exception('Please run blur_image() method first.') else: plt.close() plt.axis('off') fig, axes = plt.subplots(1, len(result), figsize=(10, 10)) if len(result) > 1: for i in range(len(result)): axes[i].imshow(result[i]) else: plt.axis('off') plt.imshow(result[0]) plt.show() class Trajectory(object): def __init__(self, canvas=64, iters=2000, max_len=60, expl=None, path_to_save=None): """ Generates a variety of random motion trajectories in continuous domain as in [Boracchi and Foi 2012]. Each trajectory consists of a complex-valued vector determining the discrete positions of a particle following a 2-D random motion in continuous domain. The particle has an initial velocity vector which, at each iteration, is affected by a Gaussian perturbation and by a deterministic inertial component, directed toward the previous particle position. In addition, with a small probability, an impulsive (abrupt) perturbation aiming at inverting the particle velocity may arises, mimicking a sudden movement that occurs when the user presses the camera button or tries to compensate the camera shake. At each step, the velocity is normalized to guarantee that trajectories corresponding to equal exposures have the same length. Each perturbation ( Gaussian, inertial, and impulsive) is ruled by its own parameter. Rectilinear Blur as in [Boracchi and Foi 2011] can be obtained by setting anxiety to 0 (when no impulsive changes occurs :param canvas: size of domain where our trajectory os defined. :param iters: number of iterations for definition of our trajectory. :param max_len: maximum length of our trajectory. :param expl: this param helps to define probability of big shake. Recommended expl = 0.005. :param path_to_save: where to save if you need. """ self.canvas = canvas self.iters = iters self.max_len = max_len if expl is None: self.expl = 0.1 * np.random.uniform(0, 1) else: self.expl = expl if path_to_save is None: pass else: self.path_to_save = path_to_save self.tot_length = None self.big_expl_count = None self.x = None def fit(self, show=False, save=False): """ Generate motion, you can save or plot, coordinates of motion you can find in x property. Also you can fin properties tot_length, big_expl_count. :param show: default False. :param save: default False. :return: x (vector of motion). """ tot_length = 0 big_expl_count = 0 # how to be near the previous position # TODO: I can change this paramether for 0.1 and make kernel at all image centripetal = 0.7 * np.random.uniform(0, 1) # probability of big shake prob_big_shake = 0.2 * np.random.uniform(0, 1) # term determining, at each sample, the random component of the new direction gaussian_shake = 10 * np.random.uniform(0, 1) init_angle = 360 * np.random.uniform(0, 1) img_v0 = np.sin(np.deg2rad(init_angle)) real_v0 = np.cos(np.deg2rad(init_angle)) v0 = complex(real=real_v0, imag=img_v0) v = v0 * self.max_len / (self.iters - 1) if self.expl > 0: v = v0 * self.expl x = np.array([complex(real=0, imag=0)] * (self.iters)) for t in range(0, self.iters - 1): if np.random.uniform() < prob_big_shake * self.expl: next_direction = 2 * v * (np.exp(complex(real=0, imag=np.pi + (np.random.uniform() - 0.5)))) big_expl_count += 1 else: next_direction = 0 dv = next_direction + self.expl * ( gaussian_shake * complex(real=np.random.randn(), imag=np.random.randn()) - centripetal * x[t]) * ( self.max_len / (self.iters - 1)) v += dv v = (v / float(np.abs(v))) * (self.max_len / float((self.iters - 1))) x[t + 1] = x[t] + v tot_length = tot_length + abs(x[t + 1] - x[t]) # centere the motion x += complex(real=-np.min(x.real), imag=-np.min(x.imag)) x = x - complex(real=x[0].real % 1., imag=x[0].imag % 1.) + complex(1, 1) x += complex(real=ceil((self.canvas - max(x.real)) / 2), imag=ceil((self.canvas - max(x.imag)) / 2)) self.tot_length = tot_length self.big_expl_count = big_expl_count self.x = x if show or save: self.__plot_canvas(show, save) return self def __plot_canvas(self, show, save): if self.x is None: raise Exception("Please run fit() method first") else: plt.close() plt.plot(self.x.real, self.x.imag, '-', color='blue') plt.xlim((0, self.canvas)) plt.ylim((0, self.canvas)) if show and save: plt.savefig(self.path_to_save) plt.show() elif save: if self.path_to_save is None: raise Exception('Please create Trajectory instance with path_to_save') plt.savefig(self.path_to_save) elif show: plt.show() class PSF(object): def __init__(self, canvas=None, trajectory=None, fraction=None, path_to_save=None): if canvas is None: self.canvas = (canvas, canvas) else: self.canvas = (canvas, canvas) if trajectory is None: self.trajectory = Trajectory(canvas=canvas, expl=0.005).fit(show=False, save=False) else: self.trajectory = trajectory.x if fraction is None: self.fraction = [1/100, 1/10, 1/2, 1] else: self.fraction = fraction self.path_to_save = path_to_save self.PSFnumber = len(self.fraction) self.iters = len(self.trajectory) self.PSFs = [] def fit(self, show=False, save=False): PSF = np.zeros(self.canvas) triangle_fun = lambda x: np.maximum(0, (1 - np.abs(x))) triangle_fun_prod = lambda x, y: np.multiply(triangle_fun(x), triangle_fun(y)) for j in range(self.PSFnumber): if j == 0: prevT = 0 else: prevT = self.fraction[j - 1] for t in range(len(self.trajectory)): # print(j, t) if (self.fraction[j] * self.iters >= t) and (prevT * self.iters < t - 1): t_proportion = 1 elif (self.fraction[j] * self.iters >= t - 1) and (prevT * self.iters < t - 1): t_proportion = self.fraction[j] * self.iters - (t - 1) elif (self.fraction[j] * self.iters >= t) and (prevT * self.iters < t): t_proportion = t - (prevT * self.iters) elif (self.fraction[j] * self.iters >= t - 1) and (prevT * self.iters < t): t_proportion = (self.fraction[j] - prevT) * self.iters else: t_proportion = 0 m2 = int(np.minimum(self.canvas[1] - 1, np.maximum(1, np.math.floor(self.trajectory[t].real)))) M2 = int(m2 + 1) m1 = int(np.minimum(self.canvas[0] - 1, np.maximum(1, np.math.floor(self.trajectory[t].imag)))) M1 = int(m1 + 1) PSF[m1, m2] += t_proportion * triangle_fun_prod( self.trajectory[t].real - m2, self.trajectory[t].imag - m1 ) PSF[m1, M2] += t_proportion * triangle_fun_prod( self.trajectory[t].real - M2, self.trajectory[t].imag - m1 ) PSF[M1, m2] += t_proportion * triangle_fun_prod( self.trajectory[t].real - m2, self.trajectory[t].imag - M1 ) PSF[M1, M2] += t_proportion * triangle_fun_prod( self.trajectory[t].real - M2, self.trajectory[t].imag - M1 ) self.PSFs.append(PSF / (self.iters)) if show or save: self.__plot_canvas(show, save) return self.PSFs def __plot_canvas(self, show, save): if len(self.PSFs) == 0: raise Exception("Please run fit() method first.") else: plt.close() fig, axes = plt.subplots(1, self.PSFnumber, figsize=(10, 10)) for i in range(self.PSFnumber): axes[i].imshow(self.PSFs[i], cmap='gray') if show and save: if self.path_to_save is None: raise Exception('Please create Trajectory instance with path_to_save') plt.savefig(self.path_to_save) plt.show() elif save: if self.path_to_save is None: raise Exception('Please create Trajectory instance with path_to_save') plt.savefig(self.path_to_save) elif show: plt.show() if __name__ == '__main__': folder = 'E:\\work\\proj\\relation_loc\\data\\test' folder_to_save = 'E:\\work\\proj\\relation_loc\\data\\test\\save' params = [0.01, 0.009, 0.008, 0.007, 0.005, 0.003] blurtool = BlurImage() for path in os.listdir(folder): print(path) trajectory = Trajectory(canvas=64, max_len=60, expl=np.random.choice(params)).fit() psf = PSF(canvas=64, trajectory=trajectory).fit() original = misc.imread(os.path.join(folder, path)) original = misc.imresize(original, (1024, 1024)) blurtool.blur_image(original, PSFs=psf, part=np.random.choice([1, 2, 3]), path_to_save=folder_to_save, show=True) # BlurImage(os.path.join(folder, path), PSFs=psf, # path__to_save=folder_to_save, part=np.random.choice([1, 2, 3])).\ # blur_image(show=True) ``` #### File: DocumentSRModel/utils/normalize.py ```python import torch.nn as nn import torchvision import torchvision.transforms as transforms IMAGENET_MEAN = [0.485, 0.456, 0.406] IMAGENET_STD = [0.229, 0.224, 0.225] def weights_init_normal(m, mean=0.0, std=0.02): classname = m.__class__.__name__ if isinstance(m, nn.Linear): m.weight.data.normal_(mean, std) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.Conv2d): m.weight.data.normal_(mean, std) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.ConvTranspose2d): m.weight.data.normal_(mean, std) if m.bias is not None: m.bias.data.zero_() elif isinstance(m, nn.BatchNorm2d): m.weight.data.normal_(1.0, 0.02) if m.bias is not None: m.bias.data.zero_() def norm(imgs, vgg=True): # normalize for pre-trained vgg model if vgg: transform = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) # normalize [-1, 1] else: transform = transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) size = list(imgs.shape) res = imgs.clone() if len(size) == 4: for i in range(size[0]): res[i] = transform(res[i]) else: res = transform(imgs) return res def denorm(imgs, vgg=True): size = list(imgs.shape) res = imgs.clone() if vgg: transform = transforms.Normalize(mean=[-2.118, -2.036, -1.804], std=[4.367, 4.464, 4.444]) if len(size) == 4: for i in range(size[0]): res[i] = transform(imgs[i]) else: res = transform(res) else: if len(size) == 4: for i in range(size[0]): res[i] = ((res[i] + 1) / 2).clamp(0, 1) else: res = (res + 1) / 2 res = res.clamp(0, 1) return res ``` #### File: model/test/AdvancedEAST.py ```python def test_AdvancedEAST(config_file): import sys sys.path.append('./detection_model/AdvancedEAST') import os import time import argparse import numpy as np import torch from multiprocessing import Pool, RLock, set_start_method from PIL import Image, ImageDraw from tqdm import tqdm import json from utils.preprocess import point_inside_of_quad from utils.data_utils import transform from network.AEast import East import AdvancedEAST.nms.nms as NMS from tools.Pascal_VOC import eval_func import config as cfg from yacs.config import CfgNode as CN def read_config_file(config_file): f = open(config_file) opt = CN.load_cfg(f) return opt opt = read_config_file(config_file) def sigmoid(x): """`y = 1 / (1 + exp(-x))`""" return 1 / (1 + np.exp(-x)) def resize_image(img_size): '''size shall be divided by 32, required by network.''' dsize = np.asarray(img_size, dtype=np.float32) tsize = opt.train_size ratio = tsize / np.max(dsize) dsize = np.rint(dsize * ratio).astype(np.int32) dsize = dsize - dsize % 32 return dsize[0], dsize[1] def res2json(result_dir): """ method: generate json file """ res_list = os.listdir(result_dir) res_dict = {} for rf in tqdm(res_list, desc='toJSON'): if rf[-4:] == '.txt': respath = os.path.join(result_dir, rf) with open(respath, 'r') as f: reslines = f.readlines() reskey = rf[:-4] res_dict[reskey] = [{'points': np.rint(np.asarray(l.replace('\n', '').split(','), np.float32)).astype( np.int32).reshape(-1, 2).tolist()} for l in reslines] jpath = os.path.join(result_dir, 'res.json') with open(jpath, 'w') as jf: json.dump(res_dict, jf) return jpath def res2json_1(result_dir): res_list = os.listdir(result_dir) res_dict = {} for rf in tqdm(res_list, desc='toJSON'): if rf[-4:] == '.txt': respath = os.path.join(result_dir, rf) with open(respath, 'r') as f: reslines = f.readlines() reskey = rf[3:-4] res_dict[reskey] = [{'points': np.rint( np.asarray(l.replace('\n', '').split(',')[:8], np.float32)).astype(np.int32).reshape(-1, 2).tolist()} for l in reslines] jpath = os.path.join(result_dir, 'res.json') with open(jpath, 'w') as jf: json.dump(res_dict, jf) return jpath class Wrapped: def __init__(self, model, img_dir, isDraw): self.model = model self.img_dir = img_dir self.isDraw = isDraw self.result_dir = opt.result_dir + opt.task_id + '/' if not os.path.exists(self.result_dir): os.makedirs(self.result_dir) def init_lock(self, lock_): global lock lock = lock_ def __call__(self): img_list = [img_name for img_name in os.listdir(self.img_dir)] miss = [] if opt.batch_size_per_gpu > 1: set_start_method('forkserver') lock_ = RLock() processes = 2 pool = Pool(processes=processes, initializer=self.init_lock, initargs=(lock_,)) with tqdm(total=len(img_list), desc='Detect') as pbar: for _, r in enumerate(pool.imap_unordered(self.process, img_list)): if r[0] == 0: miss.append(r[1]) pbar.update() pool.close() pool.join() else: for img_name in tqdm(img_list): r = self.process(img_name) if r[0] == 0: miss.append(r[1]) print(f"{len(miss)} images no detection.") print(miss) input_json_path = res2json(self.result_dir) gt_json_path = opt.gt_json_path eval_func(input_json_path, gt_json_path, opt.iou_threshold) def process(self, img_name): txt_path = self.result_dir + img_name[:-4] + '.txt' if os.path.exists(txt_path): with open(txt_path, 'r') as f_txt: txt_items = f_txt.readlines() return len(txt_items), img_name img_path = os.path.join(self.img_dir, img_name) im = Image.open(img_path).convert('RGB') if opt.predict_cut_text_line: im_array = np.array(im, dtype=np.float32) d_width, d_height = resize_image(im.size) scale_ratio_w = d_width / im.width scale_ratio_h = d_height / im.height im = im.resize((d_width, d_height), Image.BICUBIC) x = transform(im) x = x[np.newaxis, :] y = self.model(x.cuda()).cpu().detach().numpy() y = np.squeeze(y) y[:, :, :3] = sigmoid(y[:, :, :3]) cond = np.greater_equal(y[:, :, 0], opt.pixel_threshold) activation_pixels = np.asarray(np.where(cond), dtype=np.int32) quad_scores, quad_after_nms = NMS.nms(y, activation_pixels[0], activation_pixels[1]) if self.isDraw: quad_im = im.copy() draw = ImageDraw.Draw(im) for i, j in zip(activation_pixels[0], activation_pixels[1]): px = (j + 0.5) * opt.pixel_size py = (i + 0.5) * opt.pixel_size line_width, line_color = 1, 'aqua' if y[i, j, 1] >= opt.side_vertex_pixel_threshold: if y[i, j, 2] < opt.trunc_threshold: line_width, line_color = 2, 'yellow' elif y[i, j, 2] >= 1 - opt.trunc_threshold: line_width, line_color = 2, 'green' draw.line([(px - 0.5 * opt.pixel_size, py - 0.5 * opt.pixel_size), (px + 0.5 * opt.pixel_size, py - 0.5 * opt.pixel_size), (px + 0.5 * opt.pixel_size, py + 0.5 * opt.pixel_size), (px - 0.5 * opt.pixel_size, py + 0.5 * opt.pixel_size), (px - 0.5 * opt.pixel_size, py - 0.5 * opt.pixel_size)], width=line_width, fill=line_color) im.save(self.result_dir + img_name[:-4] + '_act.jpg') quad_draw = ImageDraw.Draw(quad_im) txt_items = [] invalid = 0 for score, geo, s in zip(quad_scores, quad_after_nms, range(len(quad_scores))): if np.amin(score) > 0: if self.isDraw: quad_draw.line([tuple(geo[0]), tuple(geo[1]), tuple(geo[2]), tuple(geo[3]), tuple(geo[0])], width=2, fill='aqua') if opt.predict_cut_text_line: self.cut_text_line(geo, scale_ratio_w, scale_ratio_h, im_array, img_name, s) rescaled_geo = geo / [scale_ratio_w, scale_ratio_h] rescaled_geo_list = np.reshape(rescaled_geo, (8,)).tolist() txt_item = ','.join(map(str, rescaled_geo_list)) txt_items.append(txt_item + '\n') else: invalid += 1 if self.isDraw: quad_im.save(self.result_dir + img_name[:-4] + '_predict.jpg') # print(f'{invalid} quads invalid with vertex num less then 4.') with open(txt_path, 'w') as f_txt: f_txt.writelines(txt_items) return (len(txt_items), img_name) def cut_text_line(self, geo, scale_ratio_w, scale_ratio_h, im_array, img_name, s): geo /= [scale_ratio_w, scale_ratio_h] p_min = np.amin(geo, axis=0) p_max = np.amax(geo, axis=0) min_xy = p_min.astype(int) max_xy = p_max.astype(int) + 2 sub_im_arr = im_array[min_xy[1]:max_xy[1], min_xy[0]:max_xy[0], :].copy() for m in range(min_xy[1], max_xy[1]): for n in range(min_xy[0], max_xy[0]): if not point_inside_of_quad(n, m, geo, p_min, p_max): sub_im_arr[m - min_xy[1], n - min_xy[0], :] = 255 sub_im = Image.fromarray(sub_im_arr.astype('uint8')).convert('RGB') sub_im.save(self.result_dir + img_name[:-4] + '_subim%d.jpg' % s) print(f'Task id: {opt.task_id}') assert int(opt.task_id[2:]) in opt.size_group, f'input size shall be in {opt.size_group}' cp_file = '3T1280_best.pth.tar' cp_path = os.path.join(opt.result_dir, cp_file) assert os.path.isfile(cp_path), 'Checkpoint file does not exist.' print(f'Loading {cp_path}') checkpoint = torch.load(cp_path) model = East() model = model.cuda() model.load_state_dict(checkpoint['state_dict']) model.eval() wrap = Wrapped(model, opt.val_img, opt.draw) wrap() ``` #### File: FudanOCR/model/test_entry.py ```python from __future__ import absolute_import import sys sys.path.append('./recognition_model/') sys.path.append('./detection_model/') sys.path.append("./super_resolution_model/") sys.path.append("./maskrcnn_benchmark_architecture/") print("当前系统环境变量为:",sys.path) from test.moran_v2 import test_moran_v2 from test.AdvancedEAST import test_AdvancedEAST from test.grcnn import test_grcnn # from train.fasterrcnn import train_fasterrcnn from test.east import test_east from test.TextSnake import test_TextSnake from test.PSENet import test_psenet from test.DocumentSRModel import test_documentsrmodel from test.HARN import test_HARN from test.PixelLink import test_PixelLink from test.maskscoring_rcnn import test_maskscoring_rcnn from test.LSN import test_LSN from yacs.config import CfgNode as CN import argparse import re # 在这个位置扩充函数 function_dict = { 'MORAN_V2': test_moran_v2, 'AdvancedEAST': test_AdvancedEAST, 'GRCNN': test_grcnn, 'EAST': test_east, # 'fasterrcnn': train_fasterrcnn, 'TextSnake': test_TextSnake, 'PSENet' : test_psenet, 'DocumentSRModel' : test_documentsrmodel, 'HARN': test_HARN, 'PixelLink': test_PixelLink, 'maskscoring_rcnn': test_maskscoring_rcnn, 'LSN': LSN, 'Your Model Name': 'Your Model Function' } def read_config_file(config_file): # 用yaml重构配置文件 f = open(config_file) result = CN.load_cfg(f) return result parser = argparse.ArgumentParser() parser.add_argument('--config_file', required=True, help='path to config file') opt = parser.parse_args() if __name__ == '__main__': # 读取配置文件 result = read_config_file(opt.config_file) # 通过 '_' 区分调用模型的名称,并调用函数 model_name = result.model function = function_dict[model_name] # 调用函数,传入配置文件 function(opt.config_file) ``` #### File: model/test/LSN.py ```python def test_LSN(config_file): from __future__ import print_function, division import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import numpy as np from lib.model.networkFactory import networkFactory from lib.datasets.ctw import CTWDataset, ToTensor from torchvision import transforms from torch.utils.data import DataLoader import os from skimage import io,transform,measure,draw import cv2 import matplotlib.pyplot as plt from matplotlib.patches import Circle import scipy.io as sio from lib.datasets.proposal_generate import ProposalGenerate from lib.utils.connect import generate_proposal from lib.model.unet.unet_model import UNet import math import pickle from config import config as config, init_config SHOW = True def toNp(x): return x.data.cpu().numpy() def toVar(x): if torch.cuda.is_available(): x = x.cuda() return Variable(x) class Demo(object): """docstring for Demo""" def __init__(self,modelHome,gtPath): global SHOW super(Demo, self).__init__() self.nf = networkFactory(modelHome) self.gts = None self.gtPath = gtPath self.sumProposal = 0 self.sumHit = 0 self.sumGt = 0 self.ratio = 0 self.show = SHOW self.filename = None self.savePath = './result' self.savepredict = './predict' self.testnum = 0 self.strides = [8,16,32,64] self.PG = ProposalGenerate() def report(self,image,res): #print(res) pass def saveResult(self,apprContours): self.testnum+=1 print(str(self.testnum)+'/300') ans = {} ans['accuInf'] = apprContours sio.savemat(self.savePath+'/'+self.filename.split('.')[0]+'.mat',ans) # def is_rect_overlap(self,rec1,rec2): # nMaxLeft = 0 # nMaxTop = 0 # nMinRight = 0 # nMinBottom = 0 # nMaxLeft = np.maximum(rec1[:,0],rec2[:,0]) # nMaxTop = np.maximum(rec1[:,1],rec2[:,1]) # nMinRight = np.minimum(rec1[:,2],rec2[:,2]) # nMinBottom = np.minimum(rec1[:,3],rec2[:,3]) # ans = np.ones((len(rec1),len(rec2))) # idx = np.where((nMaxLeft > nMinRight)|nMaxTop > nMinBottom)[0] # ans[:,idx] = 0 # return ans # def merge_mask_box(self,box1,box2,mask1,mask2): # proposal = box1 # proposal[0] = min(box1[0],box2[0]) # proposal[1] = min(box1[1],box2[1]) # proposal[2] = max(box1[2],box2[2]) # proposal[3] = max(box1[3],box2[3]) # mask = np.zeros((int(proposal[2]-proposal[0]),int(proposal[3]-proposal[1]))) # mask[box1[0]-proposal[0]:box1[2]-proposal[0],box1[1]-proposal[1]:box1[3]-proposal[1]]+=(mask1) # mask[box2[0]-proposal[0]:box2[2]-proposal[0],box2[1]-proposal[1]:box2[3]-proposal[1]]+=(mask2) # cv2.imshow('mask',(mask*125).astype(np.uint8)) # cv2.waitKey(0) # return proposal,mask # def connect(self,image,pred_mask,bbox,threshold = 0.5): # showimage = image.copy() # proposal_box = [] # proposal_mask = [] # for idx,box in enumerate(bbox): # if(len(proposal_box)==0): # proposal_box.append(box) # proposal_mask.append(pred_mask[idx]>0.5) # continue # box_overlap = self.is_rect_overlap(np.array([box]),np.array(proposal_box))[0] # box_overlap_idx = np.where(box_overlap>=1)[0] # over_threshold_idx = [] # for i in box_overlap_idx: # propposal,mask = self.merge_mask_box(box,proposal_box[i],pred_mask[idx]>0.5,proposal_mask[i]) # mask_iou = np.sum(mask>1)/np.sum(mask>0) # if mask_iou>threshold: # over_threshold_idx.append(i) # proposal = box # mask = pred_mask[idx]>0.5 # for j in over_threshold_idx: # proposal,mask = self.merge_mask_box(proposal,proposal_box[j],mask,proposal_mask[j]) # for j in over_threshold_idx: # proposal_box.remove(proposal_box[j]) # proposal_mask.remove(proposal_mask[j]) # proposal_box.append(proposal) # proposal_mask.append(mask) # return proposal_box,proposal_mask def display(self,image,res,pred_mask,bbox,sample,circle_labels_pred,all_circle,bbox_score,show=False,threshold=0.5): # def display(self,image,circle_labels_pred,all_circle,show=False,threshold=0.4): # ============================================================================== # mask_all = nn.functional.softmax(pred_mask) # score,pred_mask_all = torch.max(mask_all,1) # mask_all = mask_all.view(-1,28,28,2) # pred_mask_all = torch.max(mask_all,3)[1] pred_mask_all = pred_mask.data.cpu().numpy() # pred_mask_all = pred_mask.data.cpu().numpy() image = image.astype(np.uint8) showimage = image.copy() showmask = np.zeros((image.shape[0],image.shape[1])).astype(np.uint8) score_list = bbox_score.data.cpu().numpy() print(score_list.shape) print(pred_mask_all.shape) # print(len(bbox)) savepath = './result/'+config.filename if not os.path.exists(savepath): os.makedirs(savepath) if not os.path.exists(savepath+"/mask"): os.makedirs(savepath+"/mask") if not os.path.exists(savepath+"/bbox"): os.makedirs(savepath+"/bbox") if not os.path.exists(savepath+"/score"): os.makedirs(savepath+"/score") np.save(savepath+"/mask/"+self.filename.split('.')[0]+"_mask.npy", pred_mask_all) np.save(savepath+"/bbox/"+self.filename.split('.')[0]+"_bbox.npy", bbox.data.cpu().numpy()) np.save(savepath+"/score/"+self.filename.split('.')[0]+"_score.npy", score_list) # np.save("./result/ratio/"+self.filename.split('.')[0]+"_ratio.npy", ) # cv2.imwrite("./result/image/"+self.filename,image) # anspts = generate_proposal(image,pred_mask_all,bbox.data.cpu().numpy()) # outputfile = open('./result/predict/'+self.filename.split('.')[0]+'.txt','w') # for poly in anspts: # cv2.polylines(image,[poly],True,(0,0,255),3) # # write_poly = poly[:,::-1].reshape(-1) # write_poly = poly.reshape(-1) # print(write_poly) # write_poly = write_poly/self.ratio # write_poly = np.array(write_poly,dtype=np.int32).tolist() # print(write_poly) # write_string = ','.join(str(i) for i in write_poly) # print(write_string) # outputfile.write(write_string+'\n') # cv2.imshow('image',image) # cv2.waitKey(30) # cv2.imwrite("./result/disp/"+self.filename,image) # outputfile.close() # ============================================================================== # for idx,box in enumerate(bbox): # score = score_list[idx] # box = box.data.cpu().numpy().astype(np.int32) # # print(score) # # print(box) # if box[0]<0 or box[1]<0: # continue # if box[2]>=showimage.shape[1] or box[3]>=showimage.shape[0]: # continue # if(score<threshold): # continue # cv2.rectangle(showimage,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(0,0,255),3) # mask = np.maximum(pred_mask_all[idx],0) # cv2.imshow('origin_mask',np.array(mask*255,dtype=np.uint8)) # # print(mask) # w,h = int(box[2])-int(box[0]),int(box[3])-int(box[1]) # # print(box) # # print(mask) # resize_mask = cv2.resize(mask,(w,h),interpolation=cv2.INTER_NEAREST)*255 # # print(resize_mask) # showmask[int(box[1]):int(box[3]),int(box[0]):int(box[2])] = np.maximum(showmask[int(box[1]):int(box[3]),int(box[0]):int(box[2])],resize_mask.astype(np.uint8)) # # print(resize_mask) # cv2.imshow('resize_mask',resize_mask.astype(np.uint8)) # cv2.imshow('showmask',showmask) # cv2.imshow('showimage',showimage) # cv2.waitKey(0) # ============================================================================== # image = image.astype(np.uint8) # showimage2 = image.copy() # cv2.imshow('showimage2',showimage2) # cv2.waitKey(0) # for stride in self.strides: # circle_labels = nn.functional.softmax(circle_labels_pred[str(stride)]) # circle_labels = circle_labels.data.cpu().numpy() # # print(circle_labels) # pos_idx = np.where(circle_labels[:,1]>=0.5)[0] # print(stride,len(pos_idx)) # circle = all_circle[str(stride)] # for idx in pos_idx: # box = circle[idx] # cv2.rectangle(showimage2,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(0,0,255),3) # cv2.imshow('showimage2',showimage2) # cv2.waitKey(0) # ============================================================================== # mask_all = nn.functional.softmax(pred_mask) # score,pred_mask_all = torch.max(mask_all,1) # mask_all = mask_all.view(-1,14,14,2) # pred_mask_all = mask_all[:,:,:,1]>=0.5 # pred_mask_all = pred_mask_all.view(-1,14,14) # image = image.astype(np.uint8) # pred_mask = pred_mask.squeeze().data.cpu().numpy().astype(np.float32) # bbox = bbox.data.cpu().numpy().astype(np.float32) # showmask = np.zeros((image.shape[0],image.shape[1])).astype(np.uint8) # show_point = image.copy() # # np.save("./result/mask.npy", pred_mask) # # np.save("./result/bbox.npy", bbox) # # cv2.imwrite('./result/image.jpg',image) # # proposal_image = image.copy() # for i,box in enumerate(bbox): # cv2.rectangle(image,(int(box[0]),int(box[1])),(int(box[2]),int(box[3])),(0,0,255),3) # cv2.circle(show_point,(int((box[0]+box[2])/2),int((box[1]+box[3])/2)),3,(255,0,0),3) # w,h = int(box[2]-box[0]),int(box[3]-box[1]) # mask = pred_mask[i] # # print(mask) # resize_mask = cv2.resize(mask,(w,h),interpolation=cv2.INTER_NEAREST)*255 # showmask[int(box[1]):int(box[3]),int(box[0]):int(box[2])] = (showmask[int(box[1]):int(box[3]),int(box[0]):int(box[2])] | resize_mask.astype(np.uint8)) # # print(np.max(resize_mask)) # # print(resize_mask.astype(np.uint8)) # # cv2.imshow('region',(mask*255).astype(np.uint8)) # # cv2.imshow('mask',resize_mask.astype(np.uint8)) # # proposal_box,proposal_mask = self.connect(image,pred_mask,bbox) # # for proposal in proposal_box: # # cv2.rectangle(proposal_image,(int(proposal[0]),int(proposal[1])),(int(proposal[2]),int(proposal[3])),(0,0,255),3) # cv2.imshow('image',image.astype(np.uint8)) # # cv2.imshow('proposal_image',proposal_image.astype(np.uint8)) # cv2.imshow('showmask',showmask) # cv2.imshow('show_point',show_point) # cv2.waitKey(0) def rescale(self,image,preferredShort = 768,maxLong = 2048): h,w,_ = image.shape longSide = max(h,w) shortSide = min(h,w) self.ratio = preferredShort*1.0/shortSide if self.ratio*longSide > maxLong: self.ratio = maxLong*1.0/longSide image = cv2.resize(image,None,None,self.ratio,self.ratio,interpolation=cv2.INTER_LINEAR) return image def alignDim(self,image): h2,w2,_ = image.shape H2 = int(math.ceil(h2/64.0)*64) W2 = int(math.ceil(w2/64.0)*64) ret_image = np.zeros((H2,W2,_)) ret_image[:h2,:w2,:] = image return ret_image def toTensor(self,image): # pixel_means = np.array([[[102.9801, 115.9465, 122.7717]]]) # image -= pixel_means mean = np.array([0.485, 0.456, 0.406]) std = np.array([0.229, 0.224, 0.225]) image = (image - mean)/std image = image.transpose((2,0,1)) return torch.from_numpy((image.astype(np.float32))) def peerSingleImage(self,image,imageName,display = True,report = True): image = self.rescale(image) image = self.alignDim(image) # cvimage = self.alignDim(cvimage) sample = {} ptss = [[[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1],[1,1]]] bbx = [[1,1,1,1]] all_circle = {} for stride in self.strides: # print(stride) labels=None all_anchors = None labels,all_anchors,mask_label= self.PG.run(stride,np.array([2,2.5,3,3.5]),[1],image.shape[0]/stride,image.shape[1]/stride,[image.shape[0],image.shape[1],1],0,ptss,image,bbx) sample[str(stride)] = all_anchors all_circle[str(stride)] = Variable(torch.from_numpy(np.ascontiguousarray(sample[str(stride)].astype(np.float32))).squeeze().cuda(),requires_grad=False) tensorimage = image.copy() tensor = self.toTensor(tensorimage).unsqueeze(0) tensor = Variable(tensor.cuda(),requires_grad = False) res = None # print(tensor) # print('XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX\n') self.model.eval() threshold = 0.5 testMaxNum = 1000 print(self.model) circle_labels_pred,pred_mask,bbox,bbox_idx,pos_idx_stride,bbox_score = self.model.forward(tensor,all_circle,None,istraining=False,threshold=threshold,testMaxNum=testMaxNum) # # pred_mask = pred_mask.view(-1,14,14) if report: self.report(image,res) if display: self.display(image,res,pred_mask,bbox,sample,circle_labels_pred,all_circle,bbox_score,threshold=threshold) torch.cuda.empty_cache() # self.display(image,circle_labels_pred,all_circle,threshold=threshold) def peerGalary(self,imageFolder,display=True,report = True): F = False for filename in sorted(os.listdir(imageFolder)): print(filename) self.filename = filename # if not filename == '1072.jpg': # continue # if filename == '1342.jpg': # F=True # if not F: # continue # image = io.imread(os.path.join(imageFolder,filename),plugin = 'pil') image = cv2.imread(os.path.join(imageFolder,filename)) if len(image)==2: image = image[0] self.peerSingleImage(image,filename,display,report) def prepareNetwork(self,networkPath,type='vgg16'): torch.cuda.set_device(1) if type == 'vgg16': self.savePath = self.savePath+'/'+networkPath.split('/')[-2]+'/'+networkPath.split('/')[-1].split('.')[0] # if not os.path.exists(self.savePath): # os.makedirs(self.savePath) self.model = self.nf.vgg16() pretrainedDict = torch.load(networkPath,map_location='cpu') modelDict = self.model.state_dict() pretrainedDict = {k: v for k, v in pretrainedDict.items() if k in modelDict} modelDict.update(pretrainedDict) self.model.load_state_dict(modelDict) print('Load model:{}'.format(networkPath)) self.model.cuda() self.model.eval() elif type == 'resnet34': self.savePath = self.savePath+'/'+networkPath.split('/')[-2]+'/'+networkPath.split('/')[-1].split('.')[0] # if not os.path.exists(self.savePath): # os.makedirs(self.savePath) self.model = self.nf.resnet34() pretrainedDict = torch.load(networkPath,map_location='cpu') modelDict = self.model.state_dict() pretrainedDict = {k: v for k, v in pretrainedDict.items() if k in modelDict} modelDict.update(pretrainedDict) self.model.load_state_dict(modelDict) print('Load model:{}'.format(networkPath)) self.model.cuda() self.model.eval() elif type == 'resnet50': self.savePath = self.savePath+'/'+networkPath.split('/')[-2]+'/'+networkPath.split('/')[-1].split('.')[0] # if not os.path.exists(self.savePath): # os.makedirs(self.savePath) self.model = self.nf.resnet50() pretrainedDict = torch.load(networkPath,map_location='cpu') modelDict = self.model.state_dict() pretrainedDict = {k: v for k, v in pretrainedDict.items() if k in modelDict} modelDict.update(pretrainedDict) self.model.load_state_dict(modelDict) print('Load model:{}'.format(networkPath)) self.model.cuda() self.model.eval() elif type == 'unet': self.savePath = self.savePath+'/'+networkPath.split('/')[-2]+'/'+networkPath.split('/')[-1].split('.')[0] # if not os.path.exists(self.savePath): # os.makedirs(self.savePath) self.model = UNet(3,1) pretrainedDict = torch.load(networkPath,map_location='cpu') modelDict = self.model.state_dict() pretrainedDict = {k: v for k, v in pretrainedDict.items() if k in modelDict} modelDict.update(pretrainedDict) self.model.load_state_dict(modelDict) print('Load model:{}'.format(networkPath)) self.model.cuda() self.model.eval() demo = Demo('./pretrainmodel','/data/2019AAAI/data/ctw1500/train/text_label_curve') demo.prepareNetwork('/data/2019AAAI/output/config013/92.model',type=config.net) demo.peerGalary('/data/2019AAAI/data/test',display = True,report = False) #config.testDatasetroot +'/text_image' # /home/zhouzhao/Documents/Invoice_test/20170823/ZZSDK # /home/zhouzhao/Projects/STD/DataSet/Images/Test ``` #### File: model/train/AdvancedEAST.py ```python def train_AEAST(config_file): import sys sys.path.append('./detection_model/AdvancedEAST') import os import argparse import time import numpy as numpy import torch import torch.nn as nn import torch.backends.cudnn as cudnn from torch.utils.data import DataLoader from torch.optim import Adam from torch.optim.lr_scheduler import LambdaLR from tqdm import tqdm import config as cfg from utils.data_utils import custom_dset, collate_fn from network.AEast import East from network.loss import LossFunc from utils.utils import AverageMeter, save_log from utils.earlystop import EarlyStopping os.environ["CUDA_VISIBLE_DEVICES"] = "0,3" from yacs.config import CfgNode as CN def read_config_file(config_file): f = open(config_file) opt = CN.load_cfg(f) return opt opt = read_config_file(config_file) class Wrapped: def __init__(self, train_loader, val_loader, model, criterion, optimizer, scheduler, start_epoch, val_loss_min): self.train_loader = train_loader self.val_loader = val_loader self.model = model self.criterion = criterion self.optimizer = optimizer self.scheduler = scheduler # self.start_epoch = start_epoch # self.tick = time.strftime("%Y%m%d-%H-%M-%S", time.localtime(time.time())) self.earlystopping = EarlyStopping(opt.patience, val_loss_min) def __call__(self): for epoch in tqdm(range(self.start_epoch + 1, opt.max_epoch + 1), desc='Epoch'): if epoch == 1: tqdm.write("Validating pretrained model.") self.validate(0) if epoch > 1 and epoch % opt.decay_step == 0: tqdm.write("Learning rate - Epoch: [{0}]: {1}".format(epoch - 1,self.optimizer.param_groups[0]['lr'])) self.train(epoch) if self.validate(epoch): # if earlystop print('Earlystopping activates. Training stopped.') break def validate(self, epoch): losses = AverageMeter() self.model.eval() for i, (img, gt) in tqdm(enumerate(self.val_loader), desc='Val', total=len(self.val_loader)): img = img.cuda() gt = gt.cuda() east_detect = self.model(img) loss = self.criterion(gt, east_detect) losses.update(loss.item(), img.size(0)) tqdm.write('Validate Loss - Epoch: [{0}] Avg Loss {1}'.format(epoch,losses.avg)) save_log(losses, epoch, i + 1, len(self.val_loader), self.tick, split='Validation') earlystop, save = self.earlystopping(losses.avg) if not earlystop and save: state = { 'epoch': epoch, 'state_dict': self.model.module.state_dict(), 'optimizer': self.optimizer.state_dict(), 'scheduler': self.scheduler.state_dict(), 'val_loss_min': losses.avg } self.earlystopping.save_checkpoint(state, losses.avg) return earlystop def train(self, epoch): losses = AverageMeter() self.model.train() for i, (img, gt) in tqdm(enumerate(self.train_loader), desc='Train', total=len(self.train_loader)): img = img.cuda() gt = gt.cuda() east_detect = self.model(img) loss = self.criterion(gt, east_detect) losses.update(loss.item(), img.size(0)) # backward propagation self.scheduler.step() self.optimizer.zero_grad() loss.backward() self.optimizer.step() if (i + 1) % opt.print_step == 0: tqdm.write( 'Training loss - Epoch: [{0}][{1}/{2}] Loss {loss.val:.4f} Avg Loss {loss.avg:.4f}'.format( epoch, i + 1, len(self.train_loader), loss=losses)) save_log(losses, epoch, i + 1, len(self.train_loader), self.tick, split='Training') class LRPolicy: def __init__(self, rate, step): self.rate = rate self.step = step def __call__(self, it): return self.rate ** (it // self.step) print('=== AdvancedEAST ===') print('Task id: {0}'.format(opt.task_id)) print('=== Initialzing DataLoader ===') print('Multi-processing on {0} cores'.format(opt.num_process)) batch_size = opt.batch_size_per_gpu trainset = custom_dset(split='train') valset = custom_dset(split='val') train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=True, collate_fn=collate_fn, num_workers=opt.num_workers, drop_last=False) val_loader = DataLoader(valset, batch_size=1, collate_fn=collate_fn, num_workers=opt.num_workers) print('=== Building Network ===') model = East() model = model.cuda() os.environ["CUDA_VISIBLE_DEVICES"] = "1,2" model = nn.DataParallel(model, device_ids=opt.gpu_ids) # 数据并行 params = sum(p.numel() for p in model.parameters() if p.requires_grad) print('Total parameters: {0}'.format(params)) cudnn.benchmark = True criterion = LossFunc() optimizer = Adam(model.parameters(), lr=opt.lr_rate) # decay every opt.decay_step epoch / every decay_step iter decay_step = len(train_loader) * opt.decay_step scheduler = LambdaLR(optimizer, lr_lambda=LRPolicy(rate=opt.decay_rate, step=decay_step)) print('Batch size: {0}'.format(batch_size)) print('Initial learning rate: {0}\nDecay step: {1}\nDecay rate: {2}\nPatience: {3}'.format( opt.lr_rate, opt.decay_step, opt.decay_rate, opt.patience)) start_epoch = 0 val_loss_min = None print('=== Training ===') wrap = Wrapped(train_loader, val_loader, model, criterion, optimizer, scheduler, start_epoch, val_loss_min) wrap() ``` #### File: model/train/TextSnake.py ```python from __future__ import print_function def train_TextSnake(config_file): import sys sys.path.append('./detection_model/TextSnake_pytorch') import os import time import torch import torch.backends.cudnn as cudnn import torch.utils.data as data from torch.optim import lr_scheduler import torchvision.utils as vutils from tensorboardX import SummaryWriter from dataset.total_text import TotalText from network.loss import TextLoss from network.textnet import TextNet from util.augmentation import EvalTransform, NewAugmentation from util.config import config as cfg, update_config, print_config, init_config from util.misc import AverageMeter from util.misc import mkdirs, to_device from util.option import BaseOptions from util.visualize import visualize_network_output from yacs.config import CfgNode as CN global total_iter total_iter = 0 def read_config_file(config_file): """ read config information form yaml file """ f = open(config_file) opt = CN.load_cfg(f) return opt opt = read_config_file(config_file) def adjust_learning_rate(optimizer, i): if 0 <= i*opt.batch_size < 100000: lr = opt.lr elif 100000 <= i*opt.batch_size < 400000: lr = opt.lr * 0.1 else: lr = opt.lr * 0.1 * (0.94 ** ((i*opt.batch_size-300000) // 100000)) for param_group in optimizer.param_groups: param_group['lr'] = lr def adjust_requires_grad(model, i): if 0 <= i < 4000: for name, param in model.named_parameters(): if name == 'conv1.0.weight' or name == 'conv1.0.bias' or \ name == 'conv1.1.weight' or name == 'conv1.1.bias': param.requires_grad = False else: for name, param in model.named_parameters(): if name == 'conv1.0.weight' or name == 'conv1.0.bias' or \ name == 'conv1.1.weight' or name == 'conv1.1.bias': param.requires_grad = True def save_model(model, optimizer, scheduler, epoch): save_dir = os.path.join(opt.save_dir, opt.exp_name) if not os.path.exists(save_dir): mkdirs(save_dir) save_path = os.path.join(save_dir, 'textsnake_{}_{}.pth'.format(model.backbone_name, epoch)) print('Saving to {}.'.format(save_path)) state_dict = { 'epoch': epoch, 'model': model.state_dict(), 'optim': optimizer.state_dict() # 'scheduler': scheduler.state_dict() } torch.save(state_dict, save_path) def load_model(save_path): print('Loading from {}.'.format(save_path)) checkpoint = torch.load(save_path) return checkpoint def train(model, train_loader, criterion, scheduler, optimizer, epoch, summary_writer): start = time.time() losses = AverageMeter() batch_time = AverageMeter() data_time = AverageMeter() end = time.time() model.train() global total_iter for i, (img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, meta) in enumerate(train_loader): data_time.update(time.time() - end) img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map = to_device( img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map) output = model(img) tr_loss, tcl_loss, sin_loss, cos_loss, radii_loss = \ criterion(output, tr_mask, tcl_mask, sin_map, cos_map, radius_map, train_mask, total_iter) loss = tr_loss + tcl_loss + sin_loss + cos_loss + radii_loss # backward # scheduler.step() optimizer.zero_grad() loss.backward() optimizer.step() losses.update(loss.item()) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if opt.viz and i < opt.vis_num: visualize_network_output(output, tr_mask, tcl_mask, prefix='train_{}'.format(i)) if i % opt.display_freq == 0: print('Epoch: [ {} ][ {:03d} / {:03d} ] - Loss: {:.4f} - tr_loss: {:.4f} - tcl_loss: {:.4f} - sin_loss: {:.4f} - cos_loss: {:.4f} - radii_loss: {:.4f} - {:.2f}s/step'.format( epoch, i, len(train_loader), loss.item(), tr_loss.item(), tcl_loss.item(), sin_loss.item(), cos_loss.item(), radii_loss.item(), batch_time.avg) ) # write summary if total_iter % opt.summary_freq == 0: print('Summary in {}'.format(os.path.join(opt.summary_dir, opt.exp_name))) tr_pred = output[:, 0:2].softmax(dim=1)[:, 1:2] tcl_pred = output[:, 2:4].softmax(dim=1)[:, 1:2] summary_writer.add_image('input_image', vutils.make_grid(img, normalize=True), total_iter) summary_writer.add_image('tr/tr_pred', vutils.make_grid(tr_pred * 255, normalize=True), total_iter) summary_writer.add_image('tr/tr_mask', vutils.make_grid(torch.unsqueeze(tr_mask * train_mask, 1) * 255), total_iter) summary_writer.add_image('tcl/tcl_pred', vutils.make_grid(tcl_pred * 255, normalize=True), total_iter) summary_writer.add_image('tcl/tcl_mask', vutils.make_grid(torch.unsqueeze(tcl_mask * train_mask, 1) * 255), total_iter) summary_writer.add_scalar('learning_rate', optimizer.param_groups[0]['lr'], total_iter) summary_writer.add_scalar('model/tr_loss', tr_loss.item(), total_iter) summary_writer.add_scalar('model/tcl_loss', tcl_loss.item(), total_iter) summary_writer.add_scalar('model/sin_loss', sin_loss.item(), total_iter) summary_writer.add_scalar('model/cos_loss', cos_loss.item(), total_iter) summary_writer.add_scalar('model/radii_loss', radii_loss.item(), total_iter) summary_writer.add_scalar('model/loss', loss.item(), total_iter) total_iter += 1 print('Speed: {}s /step, {}s /epoch'.format(batch_time.avg, time.time() - start)) if epoch % opt.save_freq == 0: save_model(model, optimizer, scheduler, epoch) print('Training Loss: {}'.format(losses.avg)) def validation(model, valid_loader, criterion): """ print a series of loss information """ model.eval() losses = AverageMeter() for i, (img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map, meta) in enumerate(valid_loader): print(meta['image_id']) img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map = to_device( img, train_mask, tr_mask, tcl_mask, radius_map, sin_map, cos_map) output = model(img) tr_loss, tcl_loss, sin_loss, cos_loss, radii_loss = \ criterion(output, tr_mask, tcl_mask, sin_map, cos_map, radius_map, train_mask) loss = tr_loss + tcl_loss + sin_loss + cos_loss + radii_loss losses.update(loss.item()) if opt.viz and i < opt.vis_num: visualize_network_output(output, tr_mask, tcl_mask, prefix='val_{}'.format(i)) if i % opt.display_freq == 0: print( 'Validation: - Loss: {:.4f} - tr_loss: {:.4f} - tcl_loss: {:.4f} - sin_loss: {:.4f} - cos_loss: {:.4f} - radii_loss: {:.4f}'.format( loss.item(), tr_loss.item(), tcl_loss.item(), sin_loss.item(), cos_loss.item(), radii_loss.item()) ) print('Validation Loss: {}'.format(losses.avg)) # parse arguments torch.cuda.set_device(opt.num_device) option = BaseOptions(config_file) args = option.initialize() init_config(opt, config_file) update_config(opt, args) print_config(opt) data_root = os.path.join(opt.data_root, opt.dataset) trainset = TotalText( data_root=data_root, ignore_list=os.path.join(data_root, 'ignore_list.txt'), is_training=True, transform=NewAugmentation(size=opt.input_size, mean=opt.means, std=opt.stds, maxlen=1280, minlen=512) ) train_loader = data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers) # Model model = TextNet(backbone=opt.backbone, output_channel=7) model = model.to(opt.device) if opt.cuda: cudnn.benchmark = True criterion = TextLoss() optimizer = torch.optim.Adam(model.parameters(), lr=opt.lr) # scheduler = lr_scheduler.StepLR(optimizer, step_size=10000, gamma=0.94) # if opt.dataset == 'ArT_train': # scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[10000, 50000], gamma=0.1) # elif opt.dataset == 'LSVT_full_train': # scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=[10000, 50000], gamma=0.1) # load model if resume if opt.resume is not False: checkpoint = load_model(opt.resume) opt.start_epoch = checkpoint['epoch'] model.load_state_dict(checkpoint['model']) optimizer.load_state_dict(checkpoint['optim']) # scheduler.load_state_dict(checkpoint['scheduler']) total_iter = checkpoint['epoch'] * len(train_loader) if not os.path.exists(os.path.join(opt.summary_dir, opt.exp_name)): os.mkdir(os.path.join(opt.summary_dir, opt.exp_name)) summary_writer = SummaryWriter(log_dir=os.path.join(opt.summary_dir, opt.exp_name)) print('Start training TextSnake.') for epoch in range(opt.start_epoch, opt.max_epoch): adjust_learning_rate(optimizer, total_iter) train(model, train_loader, criterion, None, optimizer, epoch, summary_writer) print('End.') ``` #### File: FudanOCR/utils/Detval.py ```python def detval(input, gt, cfg): import numpy as np import json from utils.polygon_wrapper import iod from utils.polygon_wrapper import area_of_intersection from utils.polygon_wrapper import area import os input_json_path = input#os.path.join(cfg.ADDRESS.OUTPUT_DIR, 'result.json') gt_json_path = gt#os.path.join(cfg.ADDRESS.DETECTION.TRAIN_GT_DIR, 'train_labels.json') global val_result def input_reading(polygons): det = [] for polygon in polygons: polygon['points'] = np.array(polygon['points']) det.append(polygon) return det def gt_reading(gt_dict, img_key): polygons = gt_dict[img_key] gt = [] for polygon in polygons: polygon['points'] = np.array(polygon['points']) gt.append(polygon) return gt def detection_filtering(detections, groundtruths, threshold=0.5): """ ignore detected illegal text region """ before_filter_num = len(detections) for gt_id, gt in enumerate(groundtruths): if (gt['transcription'] == '###') and (gt['points'].shape[1] > 1): gt_x = list(map(int, np.squeeze(gt['points'][:, 0]))) gt_y = list(map(int, np.squeeze(gt['points'][:, 1]))) for det_id, detection in enumerate(detections): det_x = list(map(int, np.squeeze(detection['points'][:, 0]))) det_y = list(map(int, np.squeeze(detection['points'][:, 1]))) det_gt_iou = iod(det_x, det_y, gt_x, gt_y) if det_gt_iou > threshold: detections[det_id] = [] detections[:] = [item for item in detections if item != []] if before_filter_num - len(detections) > 0: print("Ignore {} illegal detections".format(before_filter_num - len(detections))) return detections def gt_filtering(groundtruths): before_filter_num = len(groundtruths) for gt_id, gt in enumerate(groundtruths): if gt['transcription'] == '###' or gt['points'].shape[0] < 3: groundtruths[gt_id] = [] groundtruths[:] = [item for item in groundtruths if item != []] if before_filter_num - len(groundtruths) > 0: print("Ignore {} illegal groundtruths".format(before_filter_num - len(groundtruths))) return groundtruths def generate_json(cfg): if cfg.BASE.MODEL == 'TEXTNET': from model.detection_model.TextSnake_pytorch.util import global_data val_result = global_data._get_det_value() with open(os.path.join(cfg.ADDRESS.DET_RESULT_DIR, 'result.json'), 'w') as f: json.dump(val_result, f) def sigma_calculation(det_x, det_y, gt_x, gt_y): """ sigma = inter_area / gt_area """ return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) / area(gt_x, gt_y)), 2) def tau_calculation(det_x, det_y, gt_x, gt_y): """ tau = inter_area / det_area """ return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) / area(det_x, det_y)), 2) def one_to_one(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag): """ Args: local_sigma_table: local_tau_table: local_accumulative_recall: local_accumulative_precision: global_accumulative_recall: global_accumulative_precision: gt_flag: det_flag: Returns: """ for gt_id in range(num_gt): qualified_sigma_candidates = np.where(local_sigma_table[gt_id, :] > tr) num_qualified_sigma_candidates = qualified_sigma_candidates[0].shape[0] qualified_tau_candidates = np.where(local_tau_table[gt_id, :] > tp) num_qualified_tau_candidates = qualified_tau_candidates[0].shape[0] if (num_qualified_sigma_candidates == 1) and (num_qualified_tau_candidates == 1): global_accumulative_recall = global_accumulative_recall + 1.0 global_accumulative_precision = global_accumulative_precision + 1.0 local_accumulative_recall = local_accumulative_recall + 1.0 local_accumulative_precision = local_accumulative_precision + 1.0 gt_flag[0, gt_id] = 1 matched_det_id = np.where(local_sigma_table[gt_id, :] > tr) det_flag[0, matched_det_id] = 1 return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag def one_to_many(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag): for gt_id in range(num_gt): # skip the following if the groundtruth was matched if gt_flag[0, gt_id] > 0: continue non_zero_in_sigma = np.where(local_sigma_table[gt_id, :] > 0) num_non_zero_in_sigma = non_zero_in_sigma[0].shape[0] if num_non_zero_in_sigma >= k: # search for all detections that overlaps with this groundtruth qualified_tau_candidates = np.where((local_tau_table[gt_id, :] >= tp) & (det_flag[0, :] == 0)) num_qualified_tau_candidates = qualified_tau_candidates[0].shape[0] if num_qualified_tau_candidates == 1: if local_tau_table[gt_id, qualified_tau_candidates] >= tp and local_sigma_table[gt_id, qualified_tau_candidates] >= tr: # became an one-to-one case global_accumulative_recall = global_accumulative_recall + 1.0 global_accumulative_precision = global_accumulative_precision + 1.0 local_accumulative_recall = local_accumulative_recall + 1.0 local_accumulative_precision = local_accumulative_precision + 1.0 gt_flag[0, gt_id] = 1 det_flag[0, qualified_tau_candidates] = 1 elif np.sum(local_sigma_table[gt_id, qualified_tau_candidates]) >= tr: gt_flag[0, gt_id] = 1 det_flag[0, qualified_tau_candidates] = 1 global_accumulative_recall = global_accumulative_recall + fsc_k global_accumulative_precision = global_accumulative_precision + num_qualified_tau_candidates * fsc_k local_accumulative_recall = local_accumulative_recall + fsc_k local_accumulative_precision = local_accumulative_precision + num_qualified_tau_candidates * fsc_k return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag def many_to_many(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag): for det_id in range(num_det): # skip the following if the detection was matched if det_flag[0, det_id] > 0: continue non_zero_in_tau = np.where(local_tau_table[:, det_id] > 0) num_non_zero_in_tau = non_zero_in_tau[0].shape[0] if num_non_zero_in_tau >= k: # search for all detections that overlaps with this groundtruth qualified_sigma_candidates = np.where((local_sigma_table[:, det_id] >= tp) & (gt_flag[0, :] == 0)) num_qualified_sigma_candidates = qualified_sigma_candidates[0].shape[0] if num_qualified_sigma_candidates == 1: if local_tau_table[qualified_sigma_candidates, det_id] >= tp and local_sigma_table[qualified_sigma_candidates, det_id] >= tr: # became an one-to-one case global_accumulative_recall = global_accumulative_recall + 1.0 global_accumulative_precision = global_accumulative_precision + 1.0 local_accumulative_recall = local_accumulative_recall + 1.0 local_accumulative_precision = local_accumulative_precision + 1.0 gt_flag[0, qualified_sigma_candidates] = 1 det_flag[0, det_id] = 1 elif np.sum(local_tau_table[qualified_sigma_candidates, det_id]) >= tp: det_flag[0, det_id] = 1 gt_flag[0, qualified_sigma_candidates] = 1 global_accumulative_recall = global_accumulative_recall + num_qualified_sigma_candidates * fsc_k global_accumulative_precision = global_accumulative_precision + fsc_k local_accumulative_recall = local_accumulative_recall + num_qualified_sigma_candidates * fsc_k local_accumulative_precision = local_accumulative_precision + fsc_k return local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag # Initial config global_tp = 0 global_fp = 0 global_fn = 0 global_sigma = [] global_tau = [] tr = 0.7 tp = 0.6 fsc_k = 0.8 k = 2 # load json file as dict generate_json(cfg) with open(input_json_path, 'r') as f: input_dict = json.load(f) with open(gt_json_path, 'r') as f: gt_dict = json.load(f) for input_img_key, input_cnts in input_dict.items(): print(input_img_key) detections = input_reading(input_cnts) groundtruths = gt_reading(gt_dict, input_img_key.replace('res', 'gt')) detections = detection_filtering(detections, groundtruths) # filters detections overlapping with DC area groundtruths = gt_filtering(groundtruths) local_sigma_table = np.zeros((len(groundtruths), len(detections))) local_tau_table = np.zeros((len(groundtruths), len(detections))) for gt_id, gt in enumerate(groundtruths): if len(detections) > 0: gt_x = list(map(int, np.squeeze(gt['points'][:, 0]))) gt_y = list(map(int, np.squeeze(gt['points'][:, 1]))) for det_id, detection in enumerate(detections): det_x = list(map(int, np.squeeze(detection['points'][:, 0]))) det_y = list(map(int, np.squeeze(detection['points'][:, 1]))) local_sigma_table[gt_id, det_id] = sigma_calculation(det_x, det_y, gt_x, gt_y) local_tau_table[gt_id, det_id] = tau_calculation(det_x, det_y, gt_x, gt_y) global_sigma.append(local_sigma_table) global_tau.append(local_tau_table) global_accumulative_recall = 0 global_accumulative_precision = 0 total_num_gt = 0 total_num_det = 0 print('############## Evaluate Result ###############') input_list = list(input_dict.keys()) for idx in range(len(global_sigma)): local_sigma_table = global_sigma[idx] local_tau_table = global_tau[idx] num_gt = local_sigma_table.shape[0] num_det = local_sigma_table.shape[1] total_num_gt = total_num_gt + num_gt total_num_det = total_num_det + num_det local_accumulative_recall = 0 local_accumulative_precision = 0 gt_flag = np.zeros((1, num_gt)) det_flag = np.zeros((1, num_det)) #######first check for one-to-one case########## local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \ gt_flag, det_flag = one_to_one(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag) #######then check for one-to-many case########## local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \ gt_flag, det_flag = one_to_many(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag) #######then check for many-to-many case########## local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, \ gt_flag, det_flag = many_to_many(local_sigma_table, local_tau_table, local_accumulative_recall, local_accumulative_precision, global_accumulative_recall, global_accumulative_precision, gt_flag, det_flag) # print each image evaluate result try: local_precision = local_accumulative_precision / num_det except ZeroDivisionError: local_precision = 0 try: local_recall = local_accumulative_recall / num_gt except ZeroDivisionError: local_recall = 0 print('{0:12} Precision: {1:.4f}, Recall: {2:.4f}'.format(input_list[idx].replace('res', 'gt') + '.jpg', local_precision, local_recall)) # print global evaluate result try: recall = global_accumulative_recall / total_num_gt except ZeroDivisionError: recall = 0 try: precision = global_accumulative_precision / total_num_det except ZeroDivisionError: precision = 0 try: f_score = 2*precision*recall/(precision+recall) except ZeroDivisionError: f_score = 0 print('Global Precision: {:.4f}, Recall: {:.4f}, f_score: {:.4f}'.format(precision, recall, f_score)) print('over') return precision, recall, f_score ``` #### File: FudanOCR/utils/downloadCallback.py ```python def callbackfunc(blocknum, blocksize, totalsize): '''回调函数 @blocknum: 已经下载的数据块 @blocksize: 数据块的大小 @totalsize: 远程文件的大小 ''' percent = 100.0 * blocknum * blocksize / totalsize nowLoad = blocknum * blocksize / 1024 / 1024 total = totalsize / 1024 / 1024 if percent > 100: percent = 100 print("\r %.2fM/%.2fM %.2f%%" % (nowLoad, total, percent), end=" ") ``` #### File: FudanOCR/utils/strLabelConverterForCTC.py ```python import torch import torch.nn as nn import collections import random import numpy as np import cv2 from faker import Faker # from CNumber import cnumber import datetime class strLabelConverterForCTC(object): def __init__(self, alphabet): self.alphabet = alphabet + ' ' # for `-1` index self.dict = {} for i, char in enumerate(alphabet): # NOTE: 0 is reserved for 'blank' required by wrap_ctc self.dict[char] = i + 1 def encode(self, text, depth=0, lower=True): """Support batch or single str.""" if isinstance(text, str): if lower: text = text.lower() for char in text: # Fix the bug if self.alphabet.find(char) == -1: print(char) text = [self.dict[char] for char in text] length = [len(text)] elif isinstance(text, collections.Iterable): length = [len(s) for s in text] text = ''.join(text) text, _ = self.encode(text) if depth: return text, len(text) return (torch.IntTensor(text), torch.IntTensor(length)) def decode(self, t, length, raw=False): if length.numel() == 1: length = length[0] t = t[:length] if raw: return ''.join([self.alphabet[i - 1] for i in t]) else: char_list = [] for i in range(length): if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])): char_list.append(self.alphabet[t[i] - 1]) return ''.join(char_list).replace(' ', '') else: texts = [] index = 0 for i in range(length.numel()): l = length[i] texts.append(self.decode( t[index:index + l], torch.IntTensor([l]), raw=raw)) index += l return texts ```
{ "source": "jingyi1997/pytorch-adda", "score": 3 }
#### File: pytorch-adda/datasets/usps.py ```python import gzip import os import pickle import pdb import urllib import cv2 import numpy as np import torch import torch.utils.data as data from torchvision import datasets, transforms from datasets.memcached_dataset import McDataset import params class USPS(data.Dataset): """USPS Dataset. Args: root (string): Root directory of dataset where dataset file exist. train (bool, optional): If True, resample from dataset randomly. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. transform (callable, optional): A function/transform that takes in an PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` """ url = "https://raw.githubusercontent.com/mingyuliutw/CoGAN/master/cogan_pytorch/data/uspssample/usps_28x28.pkl" def __init__(self, root, train=True, transform=None, download=False): """Init USPS dataset.""" # init params self.root = os.path.expanduser(root) self.filename = "usps_28x28.pkl" self.train = train # Num of Train = 7438, Num ot Test 1860 self.transform = transform self.dataset_size = None # download dataset. if download: self.download() if not self._check_exists(): raise RuntimeError("Dataset not found." + " You can use download=True to download it") self.train_data, self.train_labels = self.load_samples() if self.train: total_num_samples = self.train_labels.shape[0] indices = np.arange(total_num_samples) np.random.shuffle(indices) self.train_data = self.train_data[indices[0:self.dataset_size], ::] self.train_labels = self.train_labels[indices[0:self.dataset_size]] self.train_data *= 255.0 dump_images(self.train_data, self.train_labels, 'data/raw/testing') pdb.set_trace() self.train_data = self.train_data.transpose( (0, 2, 3, 1)) # convert to HWC def __getitem__(self, index): """Get images and target for data loader. Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, label = self.train_data[index, ::], self.train_labels[index] if self.transform is not None: img = self.transform(img) label = torch.LongTensor([np.int64(label).item()]) # label = torch.FloatTensor([label.item()]) return img, label def __len__(self): """Return size of dataset.""" return self.dataset_size def _check_exists(self): """Check if dataset is download and in right place.""" return os.path.exists(os.path.join(self.root, self.filename)) def download(self): """Download dataset.""" filename = os.path.join(self.root, self.filename) dirname = os.path.dirname(filename) if not os.path.isdir(dirname): os.makedirs(dirname) if os.path.isfile(filename): return print("Download %s to %s" % (self.url, os.path.abspath(filename))) urllib.request.urlretrieve(self.url, filename) print("[DONE]") return def load_samples(self): """Load sample images from dataset.""" filename = os.path.join(self.root, self.filename) f = gzip.open(filename, "rb") data_set = pickle.load(f, encoding="bytes") f.close() if self.train: images = data_set[0][0] labels = data_set[0][1] self.dataset_size = labels.shape[0] else: images = data_set[1][0] labels = data_set[1][1] self.dataset_size = labels.shape[0] return images, labels def get_usps(train): """Get USPS dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), transforms.Normalize( mean=params.dataset_mean, std=params.dataset_std)]) # dataset and data loader #usps_dataset = USPS(root=params.data_root, # train=train, # transform=pre_process, # download=False) if train: usps_dataset = McDataset(root_dir=params.tgt_dataset_root,meta_file = params.tgt_dataset_list, transform=pre_process) else: usps_dataset = McDataset(root_dir=params.tgt_dataset_eval_root,meta_file = params.tgt_dataset_eval_list, transform=pre_process) usps_data_loader = torch.utils.data.DataLoader( dataset=usps_dataset, batch_size=params.batch_size, shuffle=True) return usps_data_loader def dump_images(images, labels, img_dir): for i in range(10): img_sub_dir = os.path.join(img_dir, str(i)) os.makedirs(img_sub_dir) img_num = 0 for image, label in zip(images, labels): img_path = os.path.join(img_dir, str(label), str(img_num)+'.png') img_num += 1 cv2.imwrite(img_path, np.squeeze(image, axis=0)) if img_num % 100 == 0: print('%d images have been writen'.format(img_num)) ```
{ "source": "jingyi1997/UFDN", "score": 2 }
#### File: UFDN/src/ufdn.py ```python import torch import torch.nn as nn from torch.autograd import Variable def get_act(name): if name == 'LeakyReLU': return nn.LeakyReLU(0.2) elif name == 'ReLU': return nn.ReLU() elif name == 'Tanh': return nn.Tanh() elif name == '': return None else: raise NameError('Unknown activation:'+name) def LoadModel(name,parameter,img_size,input_dim): if name == 'vae': code_dim = parameter['code_dim'] enc_list = [] for layer,para in enumerate(parameter['encoder']): if para[0] == 'conv': if layer==0: init_dim = input_dim next_dim,kernel_size,stride,pad,bn,act = para[1:7] act = get_act(act) enc_list.append((para[0],(init_dim, next_dim,kernel_size,stride,pad,bn,act))) init_dim = next_dim else: raise NameError('Unknown encoder layer type:'+para[0]) dec_list = [] for layer,para in enumerate(parameter['decoder']): if para[0] == 'conv': next_dim,kernel_size,stride,pad,bn,act,insert_code = para[1:8] act = get_act(act) dec_list.append((para[0],(init_dim, next_dim,kernel_size,stride,pad,bn,act),insert_code)) init_dim = next_dim else: raise NameError('Unknown decoder layer type:'+para[0]) return UFDN(enc_list,dec_list,code_dim) elif name == 'nn': dnet_list = [] init_dim = input_dim for para in parameter['dnn']: if para[0] == 'fc': next_dim,bn,act,dropout = para[1:5] act = get_act(act) dnet_list.append((para[0],(init_dim, next_dim,bn,act,dropout))) init_dim = next_dim else: raise NameError('Unknown nn layer type:'+para[0]) return Discriminator(dnet_list) elif name == 'cnn': dnet_list = [] init_dim = input_dim cur_img_size = img_size reshaped = False for layer,para in enumerate(parameter['dnn']): if para[0] == 'conv': next_dim,kernel_size,stride,pad,bn,act = para[1:7] act = get_act(act) dnet_list.append((para[0],(init_dim, next_dim,kernel_size,stride,pad,bn,act))) init_dim = next_dim cur_img_size /= 2 elif para[0] == 'fc': if not reshaped: init_dim = int(cur_img_size*cur_img_size*init_dim) reshaped = True next_dim,bn,act,dropout = para[1:5] act = get_act(act) dnet_list.append((para[0],(init_dim, next_dim,bn,act,dropout))) init_dim = next_dim else: raise NameError('Unknown encoder layer type:'+para[0]) return Discriminator(dnet_list) else: raise NameError('Unknown model type:'+name) # custom weights initialization def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: m.weight.data.normal_(0.0, 0.02) elif classname.find('BatchNorm') != -1: m.weight.data.normal_(0.0, 0.02) m.bias.data.fill_(0) # create a Convolution/Deconvolution block def ConvBlock(c_in, c_out, k=4, s=2, p=1, norm='bn', activation=None, transpose=False, dropout=None): layers = [] if transpose: layers.append(nn.ConvTranspose2d(c_in, c_out, kernel_size=k, stride=s, padding=p)) else: layers.append( nn.Conv2d(c_in, c_out, kernel_size=k, stride=s, padding=p)) if dropout: layers.append(nn.Dropout2d(dropout)) if norm == 'bn': layers.append(nn.BatchNorm2d(c_out)) if activation is not None: layers.append(activation) return nn.Sequential(*layers) # create a fully connected layer def FC(c_in, c_out, norm='bn', activation=None, dropout=None): layers = [] layers.append(nn.Linear(c_in,c_out)) if dropout: if dropout>0: layers.append(nn.Dropout(dropout)) if norm == 'bn': layers.append(nn.BatchNorm1d(c_out)) if activation is not None: layers.append(activation) return nn.Sequential(*layers) # UFDN model # Reference : https://github.com/pytorch/examples/blob/master/vae/main.py # list of layer should be a list with each element being (layer type,(layer parameter)) # fc should occur after/before any convblock if used in encoder/decoder # e.g. ('conv',( input_dim, neurons, kernel size, stride, padding, normalization, activation)) # ('fc' ,( input_dim, neurons, normalization, activation)) class UFDN(nn.Module): def __init__(self, enc_list, dec_list, attr_dim): super(UFDN, self).__init__() ### Encoder self.enc_layers = [] for l in range(len(enc_list)): self.enc_layers.append(enc_list[l][0]) if enc_list[l][0] == 'conv': c_in,c_out,k,s,p,norm,act = enc_list[l][1] if l == len(enc_list) -1 : setattr(self, 'enc_mu', ConvBlock(c_in,c_out,k,s,p,norm,act,transpose=False)) setattr(self, 'enc_logvar', ConvBlock(c_in,c_out,k,s,p,norm,act,transpose=False)) else: setattr(self, 'enc_'+str(l), ConvBlock(c_in,c_out,k,s,p,norm,act,transpose=False)) elif enc_list[l][0] == 'fc': c_in,c_out,norm,act = enc_list[l][1] if l == len(enc_list) -1 : setattr(self, 'enc_mu', FC(c_in,c_out,norm,act)) setattr(self, 'enc_logvar', FC(c_in,c_out,norm,act)) else: setattr(self, 'enc_'+str(l), FC(c_in,c_out,norm,act)) else: raise ValueError('Unreconized layer type') ### Decoder self.dec_layers = [] self.attr_dim = attr_dim for l in range(len(dec_list)): self.dec_layers.append((dec_list[l][0],dec_list[l][2])) if dec_list[l][0] == 'conv': c_in,c_out,k,s,p,norm,act = dec_list[l][1] if dec_list[l][2]: c_in += self.attr_dim setattr(self, 'dec_'+str(l), ConvBlock(c_in,c_out,k,s,p,norm,act,transpose=True)) elif dec_list[l][0] == 'fc': c_in,c_out,norm,act = dec_list[l][1] if dec_list[l][2]: c_in += self.attr_dim setattr(self, 'dec_'+str(l), FC(c_in,c_out,norm,act)) else: raise ValueError('Unreconized layer type') self.apply(weights_init) def encode(self, x): for l in range(len(self.enc_layers)-1): if (self.enc_layers[l] == 'fc') and (len(x.size())>2): batch_size = x.size()[0] x = x.view(batch_size,-1) x = getattr(self, 'enc_'+str(l))(x) if (self.enc_layers[-1] == 'fc') and (len(x.size())>2): batch_size = x.size()[0] x = x.view(batch_size,-1) mu = getattr(self, 'enc_mu')(x) logvar = getattr(self, 'enc_logvar')(x) return mu, logvar def reparameterize(self, mu, logvar): if self.training: std = logvar.mul(0.5).exp_() eps = Variable(std.data.new(std.size()).normal_()) return eps.mul(std).add_(mu) else: return mu def decode(self, z, insert_attrs = None): for l in range(len(self.dec_layers)): if (self.dec_layers[l][0] != 'fc') and (len(z.size()) != 4): z = z.unsqueeze(-1).unsqueeze(-1) if (insert_attrs is not None) and (self.dec_layers[l][1]): if len(z.size()) == 2: z = torch.cat([z,insert_attrs],dim=1) else: H,W = z.size()[2], z.size()[3] z = torch.cat([z,insert_attrs.unsqueeze(-1).unsqueeze(-1).repeat(1,1,H,W)],dim=1) z = getattr(self, 'dec_'+str(l))(z) return z def forward(self, x, insert_attrs = None, return_enc = False): batch_size = x.size()[0] mu, logvar = self.encode(x) if len(mu.size()) > 2: mu = mu.view(batch_size,-1) logvar = logvar.view(batch_size,-1) z = self.reparameterize(mu, logvar) if return_enc: return z else: return self.decode(z,insert_attrs), mu, logvar class Discriminator(nn.Module): def __init__(self, layer_list): super(Discriminator, self).__init__() self.layer_list = [] for l in range(len(layer_list)-1): self.layer_list.append(layer_list[l][0]) if layer_list[l][0] == 'conv': c_in,c_out,k,s,p,norm,act = layer_list[l][1] setattr(self, 'layer_'+str(l), ConvBlock(c_in,c_out,k,s,p,norm,act,transpose=False)) elif layer_list[l][0] == 'fc': c_in,c_out,norm,act,drop = layer_list[l][1] setattr(self, 'layer_'+str(l), FC(c_in,c_out,norm,act,drop)) else: raise ValueError('Unreconized layer type') self.layer_list.append(layer_list[-1][0]) c_in,c_out,norm,act,_ = layer_list[-1][1] if not isinstance(c_out, list): c_out = [c_out] self.output_dim = len(c_out) for idx,d in enumerate(c_out): setattr(self, 'layer_out_'+str(idx), FC(c_in,d,norm,act,0)) self.apply(weights_init) def forward(self, x): for l in range(len(self.layer_list)-1): if (self.layer_list[l] == 'fc') and (len(x.size()) != 2): batch_size = x.size()[0] x = x.view(batch_size,-1) x = getattr(self, 'layer_'+str(l))(x) output = [] for d in range(self.output_dim): output.append(getattr(self,'layer_out_'+str(d))(x)) if self.output_dim == 1: return output[0] else: return tuple(output) ```
{ "source": "jingyi7777/adapt-seq-design", "score": 3 }
#### File: data/scripts/curate_ccf005_pairs.py ```python CONTEXT_NT = 20 from collections import defaultdict import csv import gzip import math import statistics def read_input(in_fn): """Read annotated (summarized) input csv file. In this file, every line represents a guide-target pair. Args: in_fn: path to input file Returns: list of dicts where each element corresponds to a row """ col_names = {} lines = [] with open(in_fn) as f: for i, line in enumerate(f): # Split the line and skip the first column (row number) ls = line.rstrip().split(',') ls = ls[1:] if i == 0: # Read header for j, col_name in enumerate(ls): col_names[j] = col_name else: # Read line row = {} for j, val in enumerate(ls): row[col_names[j]] = val lines += [row] return lines def read_droplet_input(in_droplets): """Read input csv file of droplets. In this file, every line represents a droplet. There may be multiple droplets for each guide-target pair, so a pair can be represented by many lines. This file is messy -- e.g., newline characters within quotes -- so let's use the csv module here to read. Args: in_droplets: path to input file Returns: list of dicts where each element corresponds to a droplet """ # Only keep a subset of the columns cols_to_keep = ['Target', 'crRNA', 'k'] col_name_idx = {} lines = [] with gzip.open(in_droplets, 'rt') as f: reader = csv.reader(f) col_names = next(reader, None) col_name_idx = {k: i for i, k in enumerate(col_names)} for i, ls in enumerate(reader): row = {} for col in cols_to_keep: row[col] = ls[col_name_idx[col]] lines += [row] return lines def filter_controls(rows): """Remove crRNA controls from rows. This leaves in target controls. Returns: rows with only experiments """ rows_filtered = [] for row in rows: if row['guide_type'] == 'exp': # Check this row assert 'control' not in row['crRNA'] rows_filtered += [row] else: # Check this is a control assert row['guide_type'] == 'neg' or row['guide_type'] == 'pos' assert 'control' in row['crRNA'] return rows_filtered def filter_inactive_guides(rows): """Filter two inactive guides. For some reason, two guides were completely inactive -- probably a technical issue. Filter these out. Returns: rows with two inactive guides filtered """ inactive_guides = ['block18_guide0', 'block7_guide13'] rows_filtered = [] for row in rows: if row['crRNA'] in inactive_guides: # Verify this is inactive assert float(row['median']) < -2.5 else: # Keep it rows_filtered += [row] return rows_filtered def hamming_dist(a, b): """Compute Hamming distance between two strings. """ assert len(a) == len(b) return sum(1 for i in range(len(a)) if a[i] != b[i]) def reverse_complement(x): """Construct reverse complement of string. """ rc = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} x = x.upper() return ''.join(rc[b] for b in x[::-1]) def reformat_row(row): """Verify and summarize contents of a row. Args: row: dict representing a row (guide-target pair) Returns: row with new columns, removed columns, and renamed columns """ # Check that guide_target is the reverse complement of spacer_seq spacer_rc = reverse_complement(row['spacer_seq'].replace('u', 't')) assert spacer_rc == row['guide_target'] guide_seq = row['guide_target'] guide_pos = int(row['pos']) full_target_seq = row['target_seq'] # Check that the Hamming distance to the target is reasonable target_at_guide = full_target_seq[guide_pos:(guide_pos + len(guide_seq))] hd = hamming_dist(guide_seq, target_at_guide) if row['target_type'] == 'exp': # 1 mismatch (if mismatch is within guide) if int(float(row['mismatch_position'])) < 28: assert hd == 1 else: assert hd == 0 elif row['target_type'] == 'pos': # matching assert hd == 0 elif row['target_type'] == 'neg': # not matching assert hd > 1 # Extract target sequence before and after guide (context) target_before = full_target_seq[(guide_pos - CONTEXT_NT):guide_pos] target_after = full_target_seq[(guide_pos + len(guide_seq)):(guide_pos + len(guide_seq) + CONTEXT_NT)] assert (target_before + target_at_guide + target_after) in full_target_seq # Add 'N' before or after target context if there are no bases there if len(target_before) < CONTEXT_NT: missing_bases = CONTEXT_NT - len(target_before) target_before = 'N'*missing_bases + target_before if len(target_after) < CONTEXT_NT: missing_bases = CONTEXT_NT - len(target_after) target_after = 'N'*missing_bases + target_after # Check the PFS if row['PFS'] != '': assert row['PFS'] == target_after[:2] # Extract the block block = int(float(row['block'])) assert block == float(row['block']) # Remake row row_new = {} row_new['crrna'] = row['crRNA'] row_new['target'] = row['Target'] row_new['guide_seq'] = guide_seq row_new['guide_pos_nt'] = guide_pos row_new['target_at_guide'] = target_at_guide row_new['target_before'] = target_before row_new['target_after'] = target_after row_new['crrna_block'] = block row_new['type'] = row['target_type'] row_new['guide_target_hamming_dist'] = hd row_new['out_logk_median'] = float(row['median']) row_new['out_logk_stdev'] = float(row['std']) if row['count'] != '1' else 0 row_new['out_logk_replicate_count'] = int(row['count']) return row_new def add_replicate_measurements(rows, droplets): """Add a column giving replicate information to each row. Each technical replicate measurement is a droplet. For each guide-target pair, there are 1 or more replicate measurements. Args: rows: list of dicts, where each element represents a guide-target pair droplets: list of dicts, where each element represents a droplet Returns: rows with an added column 'out_logk_measurements', as given by the individual droplets """ # Construct a mapping {(target, crRNA): [replicate measurements]} measurements = defaultdict(list) for droplet in droplets: # Note that, in droplets, 'k' is really log(k) target = droplet['Target'] crrna = droplet['crRNA'] logk = float(droplet['k']) measurements[(target, crrna)].append(logk) rows_new = [] for row in rows: # Fetch and sort the list of measurements for this guide-target pair m = measurements[(row['target'], row['crrna'])] m = sorted(m) # Check that the summary statistics agree with the measurements assert len(m) >= 1 assert row['out_logk_replicate_count'] == len(m) assert math.isclose(row['out_logk_median'], statistics.median(m), rel_tol=1e-5) if len(m) == 1: assert row['out_logk_stdev'] == 0 else: assert math.isclose(row['out_logk_stdev'], statistics.stdev(m), rel_tol=1e-5) # Comma-separate the measurements m_str = ','.join(str(v) for v in m) row['out_logk_measurements'] = m_str rows_new += [row] return rows_new def write_output(rows, out_fn): """Write a TSV file output, after reformatting. """ cols = ['guide_seq', 'guide_pos_nt', 'target_at_guide', 'target_before', 'target_after', 'crrna_block', 'type', 'guide_target_hamming_dist', 'out_logk_median', 'out_logk_stdev', 'out_logk_replicate_count', 'out_logk_measurements'] with open(out_fn, 'w') as fw: def write_list(l): fw.write('\t'.join([str(x) for x in l]) + '\n') write_list(cols) for row in rows: row_list = [row[c] for c in cols] write_list(row_list) def main(): # Paths to input/output files IN = "CCF005_pairs_annotated.csv" IN_DROPLETS = "CCF005_pairs_droplets.filtered.csv.gz" OUT = "CCF-curated/CCF005_pairs_annotated.curated.tsv" rows = read_input(IN) rows = filter_controls(rows) rows = filter_inactive_guides(rows) # Reformat rows and check a few things new_rows = [] for row in rows: row_new = reformat_row(row) new_rows += [row_new] rows = new_rows # Add droplet-level (replicate) measurements droplets = read_droplet_input(IN_DROPLETS) rows = add_replicate_measurements(rows, droplets) write_output(rows, OUT) if __name__ == "__main__": main() ``` #### File: data/scripts/resample_ccf_data.py ```python import gzip import numpy as np import merge_ccf_data def make_row_per_measurement(cols, col_idx, rows, num_replicates_to_sample=10): """Resample measurements, making one row per measurement. Args: cols: list of column names col_idx: dict {column name: index of column} rows: list of rows across multiple datasets num_replicates_to_sample: number of measurements to sample, with replacement, for each guide-target row Returns: cols and rows, with one measurement per row; cols is slightly different (for 'out_*' values) than the input cols """ cols_input = [c for c in cols if not c.startswith('out_')] new_cols = cols_input + ['out_logk_measurement'] new_rows = [] num_with_sufficient_replicates = 0 for row in rows: # Start the new rows with input (non-output) values new_row_start = [] for c in cols_input: new_row_start += [row[col_idx[c]]] # Get measurements for this guide-target pair measurements_str = row[col_idx['out_logk_measurements']].split(',') measurements = [float(x) for x in measurements_str] measurements_sampled = np.random.choice(measurements, size=num_replicates_to_sample) if len(measurements) >= num_replicates_to_sample: num_with_sufficient_replicates += 1 for m in measurements_sampled: new_row = new_row_start + [m] new_rows += [new_row] print(("Number of input rows (guide-target pairs) with >= %d " "measurements is %d of %d") % (num_replicates_to_sample, num_with_sufficient_replicates, len(rows))) return new_cols, new_rows def write_rows(cols, rows, out_fn): """Write a .tsv.gz file output. Args: cols: list of column names rows: list of rows, merged out_fn: path to output TSV file """ with gzip.open(out_fn, 'wt') as fw: def write_list(l): fw.write('\t'.join([str(x) for x in l]) + '\n') # Write header write_list(cols) # Write each row for row in rows: write_list(row) def main(): # Set seed np.random.seed(1) # Paths to input/output files IN_CCF = "CCF-curated/CCF_merged_pairs_annotated.curated.tsv" OUT = "CCF-curated/CCF_merged_pairs_annotated.curated.resampled.tsv.gz" # Read cols, col_idx, rows = merge_ccf_data.read_curated_data(IN_CCF) # Transform to have 1 row per measurement new_cols, new_rows = make_row_per_measurement(cols, col_idx, rows) # Write write_rows(new_cols, new_rows, OUT) if __name__ == "__main__": main() ``` #### File: jingyi7777/adapt-seq-design/predictor_baseline.py ```python import argparse import fnn import parse_data import predictor import random import rnn import numpy as np import scipy import sklearn import sklearn.ensemble import sklearn.linear_model import sklearn.metrics import sklearn.model_selection import sklearn.utils import tensorflow as tf gpus_are_available = len(tf.config.list_physical_devices('GPU')) > 0 def parse_args(): """Parse arguments. Returns: argument namespace """ # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('--dataset', choices=['cas13'], default='cas13', help=("Dataset to use.")) parser.add_argument('--cas13-subset', choices=['exp', 'pos', 'neg', 'exp-and-pos'], help=("Use a subset of the Cas13 data. See parse_data module " "for descriptions of the subsets. To use all data, do not " "set.")) parser.add_argument('--cas13-classify', action='store_true', help=("If set, only classify Cas13 activity into inactive/active")) parser.add_argument('--cas13-regress-on-all', action='store_true', help=("If set, perform regression for Cas13 data on all data " "(this can be reduced using --cas13-subset)")) parser.add_argument('--cas13-regress-only-on-active', action='store_true', help=("If set, perform regression for Cas13 data only on the " "active class")) parser.add_argument('--cas13-normalize-crrna-activity', action='store_true', help=("If set, normalize the activity of each crRNA (guide) " "across its targets to have mean 0 and stdev 1; this means " "prediction is performed based on target differences (e.g., " "mismatches) rather than inherent sequence of the crRNA")) parser.add_argument('--cas13-use-difference-from-wildtype-activity', action='store_true', help=("If set, use the activity value of a guide g and target t " "pair to be the difference between the measured activity of " "g-t and the mean activity between g and all wildtype " "(matching) targets of g; this means prediction is " "performed based on targeted differences (e.g., mismatches) " "rather than inherent sequence of the crRNA")) parser.add_argument('--context-nt', type=int, default=10, help=("nt of target sequence context to include alongside each " "guide")) parser.add_argument('--regression-scoring-method', choices=['mse', 'rho'], default='rho', help=("Method to use for scoring regression results; 'mse' for " "mean squared error, 'rho' for Spearman rank correlation")) parser.add_argument('--test-split-frac', type=float, default=0.3, help=("Fraction of the dataset to use for testing the final " "model")) parser.add_argument('--models-to-use', nargs='+', help=("List of model names to use. If not set, use all.")) parser.add_argument('--nested-cross-val', action='store_true', help=("If set, perform nested cross-validation to evaluate " "model selection, rather than just cross-validation to " "select a single model")) parser.add_argument('--nested-cross-val-outer-num-splits', type=int, default=5, help=("Number of outer folds to use for nested cross-validation")) parser.add_argument('--nested-cross-val-out-tsv', help=("Path to output TSV at which to write metrics on the " "validation data for each outer fold of nested " "cross-validation (one row per outer fold; each column " "gives a metric)")) parser.add_argument('--nested-cross-val-feat-coeffs-out-tsv', help=("Path to output TSV at which to write a coefficient for " "each feature (only linear models) for each outer fold " "of nested cross-validation")) parser.add_argument('--nested-cross-val-run-for', nargs='+', type=int, help=("If set, only run the given outer splits (0-based). If " "not set, run for all.")) parser.add_argument('--seed', type=int, default=1, help=("Random seed")) args = parser.parse_args() # Print the arguments provided print(args) return args def set_seed(seed): """Set tensorflow and numpy seed. sklearn appears to use the numpy random number generator, so setting the numpy seed applies to that too. Args: seed: random seed """ tf.random.set_seed(seed) np.random.seed(seed) def random_search_cv(model_name, model_obj, cv, scorer, n_iter=100): """Construct a RandomizedSearchCV object. Args: model_name: name of model model_obj: model object; either a scikit-learn estimator or one that follows its interface cv: cross-validation splitting iterator scorer: scoring function to use n_iter: number of samples for random search Returns: sklearn.model_selection.RandomizedSearchCV object """ # In some cases (e.g., pulling from distributions whose log is uniform), # we'll want to just draw many samples and have RandomizedSearchCV draw # from these; specify how many samples we draw and provide as # representative of the space space_size = 1000 # Set params if model_name == 'l1_lr': params = { 'alpha': np.logspace(-8, 8, base=10.0, num=space_size) } elif model_name == 'l2_lr': params = { 'alpha': np.logspace(-8, 8, base=10.0, num=space_size) } elif model_name == 'l1l2_lr': params = { 'l1_ratio': 1.0 - np.logspace(-5, 0, base=2.0, num=space_size)[::-1] + 2.0**(-5), 'alpha': np.logspace(-8, 8, base=10.0, num=space_size) } elif model_name == 'l1_logit': params = { 'C': np.logspace(-4, 4, base=10.0, num=space_size) } elif model_name == 'l2_logit': params = { 'C': np.logspace(-4, 4, base=10.0, num=space_size) } elif model_name == 'l1l2_logit': params = { 'l1_ratio': 1.0 - np.logspace(-5, 0, base=2.0, num=space_size)[::-1] + 2.0**(-5), 'C': np.logspace(-4, 4, base=10.0, num=space_size) } elif model_name == 'gbt': params = { 'learning_rate': np.logspace(-2, 0, base=10.0, num=space_size), 'n_estimators': np.logspace(0, 8, base=2, num=space_size).astype(int), 'min_samples_split': np.logspace(1, 3, base=2, num=space_size).astype(int), 'min_samples_leaf': np.logspace(0, 2, base=2, num=space_size).astype(int), 'max_depth': np.logspace(1, 3, base=2, num=space_size).astype(int), 'max_features': [None, 0.1, 'sqrt', 'log2'] } elif model_name == 'rf': # For max_depth, set 'None' 1/2 of the time params = { 'n_estimators': np.logspace(0, 8, base=2, num=space_size).astype(int), 'min_samples_split': np.logspace(1, 3, base=2, num=space_size).astype(int), 'min_samples_leaf': np.logspace(0, 2, base=2, num=space_size).astype(int), 'max_depth': [None]*space_size + list(np.logspace(1, 4, base=2, num=space_size).astype(int)), 'max_features': [None, 0.1, 'sqrt', 'log2'] } elif model_name == 'mlp': # Constructing a space of layer_dims requires choosing the number of # layers and the dimensions of each; note that layer_dims does NOT # include the output layer of the MLP (which has dimension=1) layer_dims = [] for i in range(space_size): num_layers = np.random.randint(1, 4) dims = [np.random.randint(4, 128) for _ in range(num_layers)] layer_dims += [dims] params = { 'layer_dims': layer_dims, 'dropout_rate': scipy.stats.uniform(0, 0.5), 'activation_fn': ['relu', 'elu'], 'batch_size': [16] } elif model_name == 'lstm': params = { 'units': np.logspace(1, 8, base=2, num=space_size).astype(int), 'bidirectional': [False, True], 'embed_dim': [None]*4 + list(range(1, 9)), 'dropout_rate': scipy.stats.uniform(0, 0.5), 'batch_size': [16] } elif model_name == 'svm': params = { 'C': np.logspace(-8, 8, base=10.0, num=space_size), 'penalty': ['l1', 'l2'] } else: raise Exception("Unknown model: '%s'" % model_name) if model_name == 'lstm' or model_name == 'mlp': # Do not parallelize (to avoid memory issues); TensorFlow will already # take advantage of multiple GPUs or CPUs if available n_jobs = 1 if model_name == 'lstm': # Use a smaller search space; this is slow to train n_iter = 50 else: # Use all but 1 CPU (n_jobs=-2) n_jobs = -2 rs_cv = sklearn.model_selection.RandomizedSearchCV(model_obj, params, cv=cv, refit=True, scoring=scorer, n_iter=n_iter, n_jobs=n_jobs) return rs_cv def classify(x_train, y_train, x_test, y_test, parsers, num_inner_splits=5, scoring_method='auc-roc', models_to_use=None, feat_coeffs_out_tsv_f=None): """Perform classification. Test data is used for evaluating the model with the best choice of hyperparameters, after refitting across *all* the train data. Args: x_{train,test}: input data for train/test y_{train,test}: output labels for train/test num_inner_splits: number of splits for cross-validation parsers: parse_data parsers to use for splitting data scoring_method: method to use for scoring test results; 'auc-roc' (auROC) or 'auc-pr' (auPR) models_to_use: list of models to test; if None, test all feat_coeffs_out_tsv_f: if set, file handler to which to write coefficients for each feature (linear models only; only for the best estimator after hyperparameter search) Returns: dict {model: {input feats: metrics on test data for best choice of hyperparameters for model}} """ # Check models_to_use all_models = ['logit', 'l1_logit', 'l2_logit', 'l1l2_logit', 'gbt', 'rf', 'svm', 'mlp', 'lstm'] if models_to_use is None: models_to_use = all_models assert set(models_to_use).issubset(all_models) # Set the input feats to use for different models # Use the same choice for all models *except* lstm, which should be in a # series form where each time step corresponds to a position input_feats = {} for m in all_models: if m == 'lstm': input_feats[m] = ['onehot'] else: input_feats[m] = ['onehot-flat', 'onehot-simple', 'handcrafted', 'combined'] # Determine class weights # For this, just use the 'onehot' input features; class weights should be # the same across all y_train_labels = list(y_train['onehot']) class_weight = sklearn.utils.class_weight.compute_class_weight( 'balanced', sorted(np.unique(y_train_labels)), y_train_labels) class_weight = list(class_weight) class_weight = {i: weight for i, weight in enumerate(class_weight)} # With models, perform cross-validation to determine hyperparameters # Most of the built-in cross-validators find the best choice based on # R^2; some of them do not support a custom scoring function via a # `scoring=...` argument. So instead wrap the regression with a # GridSearchCV object, which does support a custom scoring metric. Use # spearman rank correlation coefficient for this. def cv(feats): return parsers[feats].split(x_train[feats], y_train[feats], num_inner_splits, stratify_by_pos=True, yield_indices=True) def auc_roc_f(y, y_pred): return sklearn.metrics.roc_auc_score(y, y_pred) def auc_pr_f(y, y_pred): pr_precision, pr_recall, pr_thresholds = sklearn.metrics.precision_recall_curve( y, y_pred, pos_label=1) return sklearn.metrics.auc(pr_recall, pr_precision) auc_roc_scorer = sklearn.metrics.make_scorer(auc_roc_f, greater_is_better=True) auc_pr_scorer = sklearn.metrics.make_scorer(auc_pr_f, greater_is_better=True) if scoring_method == 'auc-roc': scorer = auc_roc_scorer elif scoring_method == 'auc-pr': scorer = auc_pr_scorer else: raise ValueError("Unknown scoring method %s" % scoring_method) def fit_and_test_model(clf, model_name, model_desc, hyperparams, feats, inspect_feat_coeffs=False): """Fit and test model. Args: clf: classifier model object model_name: short string naming model model_desc: string describing model hyperparams: list [p] of hyperparameters where each p is a string and clf.p gives the value chosen by the hyperparameter search feats: input features type inspect_feat_coeffs: if set, save the feature coefficients with their descriptions and print the top ones (by absolute value) Returns: dict giving metrics for the best choice of model hyperparameters """ # Fit model clf.fit(x_train[feats], y_train[feats]) if inspect_feat_coeffs: # Combine coefficients with their descriptions if hasattr(clf, 'coef_'): coeffs = clf.coef_ else: # clf is likely a CV (e.g., RandomizedSearchCV) object coeffs = clf.best_estimator_.coef_ if len(coeffs) == 1: coeffs = coeffs[0] coef_descriptions = parsers[feats].baseline_descriptions assert len(coeffs) == len(coef_descriptions) cd = zip(coeffs, coef_descriptions) # Sort (reverse) by absolute value of coefficient cd_sorted = sorted(cd, key=lambda x: abs(x[0]), reverse=True) # Print top 10 coefficients with descriptions print('Top feature coefficients:') for coeff, description in cd_sorted[:10]: print(' ', description, ':', coeff) # Save all feature coefficients to a file, if set if feat_coeffs_out_tsv_f is not None: for coeff, description in cd_sorted: row = [model_name, feats, description, coeff] line = '\t'.join(str(c) for c in row) feat_coeffs_out_tsv_f.write(line + '\n') # Test model y_pred = clf.predict(x_test[feats]) y_pred_class = [0 if y < 0.5 else 1 for y in y_pred] # Compute metrics (for auROC and auPR) # This initially performed this calculation with *both* TensorFlow # and scikit-learn to report both results. However, it seems that # using TensorFlow for this calculation sometimes leads to a strange # crash caused by the GPU running out of memory (possibly because # there are multiple processes (jobs) for the hyperparameter search and # TensorFlow tries to use all of the GPU's memory). The results between # scikit-learn and TensorFlow were virtually identical for auROC, and # where very close for auPR (reporting avg. precision along with auPR # should alleviate calculation concerns). auc_roc_sk = auc_roc_f(y_test[feats], y_pred) auc_pr_sk = auc_pr_f(y_test[feats], y_pred) avg_prec = sklearn.metrics.average_precision_score(y_test[feats], y_pred) accuracy = sklearn.metrics.accuracy_score(y_test[feats], y_pred_class) # Print metrics print('#'*20) print("Classification with {}".format(model_desc)) if type(hyperparams) is list: for p in hyperparams: print(" best {} = {}".format(p, getattr(clf, p))) else: print(" best params = {}".format(hyperparams.best_params_)) print(" auROC (SK) = {}".format(auc_roc_sk)) print(" auPR (SK) = {}".format(auc_pr_sk)) print(" Avg. prec = {}".format(avg_prec)) print(" Accuracy = {}".format(accuracy)) print('#'*20) return {'auc-roc': auc_roc_sk, 'auc-pr': auc_pr_sk, 'avg-prec': avg_prec, 'accuracy': accuracy, '1_minus_auc-roc': 1.0-auc_roc_sk} # Logistic regression (no regularization) def logit(feats): clf = sklearn.linear_model.LogisticRegression(penalty='none', class_weight=class_weight, solver='lbfgs', max_iter=100) # no CV because there are no hyperparameters return fit_and_test_model(clf, 'logit', 'Logisitic regression', hyperparams=[], feats=feats, inspect_feat_coeffs=True) # L1 logistic regression def l1_logit(feats): clf = sklearn.linear_model.LogisticRegression(penalty='l1', class_weight=class_weight, solver='saga', max_iter=100, tol=0.0001) clf_cv = random_search_cv('l1_logit', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'l1_logit', 'L1 logistic regression', hyperparams=clf_cv, feats=feats, inspect_feat_coeffs=True) # L2 logistic regression def l2_logit(feats): clf = sklearn.linear_model.LogisticRegression(penalty='l2', class_weight=class_weight, solver='lbfgs', max_iter=100, tol=0.0001) clf_cv = random_search_cv('l2_logit', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'l2_logit', 'L2 logistic regression', hyperparams=clf_cv, feats=feats, inspect_feat_coeffs=True) # Elastic net (L1+L2 logistic regression) def l1l2_logit(feats): clf = sklearn.linear_model.LogisticRegression(penalty='elasticnet', class_weight=class_weight, solver='saga', max_iter=100, tol=0.0001) clf_cv = random_search_cv('l1l2_logit', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'l1l2_logit', 'L1+L2 logistic regression', hyperparams=clf_cv, feats=feats, inspect_feat_coeffs=True) # Gradient-boosted classification trees def gbt(feats): # It seems this does not support class_weight clf = sklearn.ensemble.GradientBoostingClassifier(loss='deviance', tol=0.001) clf_cv = random_search_cv('gbt', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'gbt', 'Gradient boosting classification', hyperparams=clf_cv, feats=feats) # Random forest classification def rf(feats): clf = sklearn.ensemble.RandomForestClassifier(criterion='gini', class_weight=class_weight) clf_cv = random_search_cv('rf', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'rf', 'Random forest classification', hyperparams=clf_cv, feats=feats) # SVM def svm(feats): # sklearn's SVC has a fit time that is quadratic in the number of # samples; to be faster, this uses LinearSVC (with the downside being # that it does not support higher-dimensional kernels) clf = sklearn.svm.LinearSVC(class_weight=class_weight, tol=0.0001) clf_cv = random_search_cv('svm', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'svm', 'SVM', hyperparams=clf_cv, feats=feats) # MLP def mlp(feats): clf = fnn.MultilayerPerceptron(parsers[feats].context_nt, regression=False, class_weight=class_weight) clf_cv = random_search_cv('mlp', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'mlp', 'Multilayer perceptron', hyperparams=clf_cv, feats=feats) # LSTM def lstm(feats): clf = rnn.LSTM(parsers[feats].context_nt, regression=False, class_weight=class_weight) clf_cv = random_search_cv('lstm', clf, cv(feats), scorer) return fit_and_test_model(clf_cv, 'lstm', 'LSTM', hyperparams=clf_cv, feats=feats) metrics_for_models = {} for model_name in models_to_use: metrics_for_models[model_name] = {} for feats in input_feats[model_name]: print(("Running and evaluating model '%s' with input feature '%s'") % (model_name, feats)) model_fn = locals()[model_name] metrics_for_models[model_name][feats] = model_fn(feats) return metrics_for_models def regress(x_train, y_train, x_test, y_test, parsers, num_inner_splits=5, scoring_method='rho', models_to_use=None, feat_coeffs_out_tsv_f=None): """Perform regression. Test data is used for evaluating the model with the best choice of hyperparameters, after refitting across *all* the train data. Args: x_{train,test}: input data for train/test y_{train,test}: output labels for train/test num_inner_splits: number of splits for cross-validation parsers: parse_data parsers to use for splitting data scoring_method: method to use for scoring test results; 'mse' (mean squared error) or 'rho' (Spearman's rank correlation) models_to_use: list of models to test; if None, test all feat_coeffs_out_tsv_f: if set, file handler to which to write coefficients for each feature (linear models only; only for the best estimator after hyperparameter search) Returns: dict {model: {input feats: metrics on test data for best choice of hyperparameters for model}} """ # Check models_to_use all_models = ['lr', 'l1_lr', 'l2_lr', 'l1l2_lr', 'gbt', 'rf', 'mlp', 'lstm'] if models_to_use is None: models_to_use = all_models assert set(models_to_use).issubset(all_models) # Set the input feats to use for different models # Use the same choice for all models *except* lstm, which should be in a # series form where each time step corresponds to a position input_feats = {} for m in all_models: if m == 'lstm': input_feats[m] = ['onehot'] else: input_feats[m] = ['onehot-flat', 'onehot-simple', 'handcrafted', 'combined'] # With models, perform cross-validation to determine hyperparameters # Most of the built-in cross-validators find the best choice based on # R^2; some of them do not support a custom scoring function via a # `scoring=...` argument. So instead wrap the regression with a # GridSearchCV object, which does support a custom scoring metric. Use # spearman rank correlation coefficient for this. def cv(feats): return parsers[feats].split(x_train[feats], y_train[feats], num_inner_splits, stratify_by_pos=True, yield_indices=True) def rho_f(y, y_pred): rho, _ = scipy.stats.spearmanr(y, y_pred) return rho rho_scorer = sklearn.metrics.make_scorer(rho_f, greater_is_better=True) mse_scorer = sklearn.metrics.make_scorer( sklearn.metrics.mean_squared_error, greater_is_better=False) if scoring_method == 'mse': scorer = mse_scorer elif scoring_method == 'rho': scorer = rho_scorer else: raise ValueError("Unknown scoring method %s" % scoring_method) def fit_and_test_model(reg, model_name, model_desc, hyperparams, feats, inspect_feat_coeffs=False): """Fit and test model. Args: reg: regression model object model_name: short string naming model model_desc: string describing model hyperparams: list [p] of hyperparameters where each p is a string and reg.p gives the value chosen by the hyperparameter search feats: input features type inspect_feat_coeffs: if set, save the feature coefficients with their descriptions and print the top ones (by absolute value) Returns: dict giving metrics for the best choice of model hyperparameters """ # Fit model reg.fit(x_train[feats], y_train[feats]) if inspect_feat_coeffs: # Combine coefficients with their descriptions if hasattr(reg, 'coef_'): coeffs = reg.coef_ else: # ref is likely a CV (e.g., RandomizedSearchCV) object coeffs = reg.best_estimator_.coef_ if len(coeffs) == 1: coeffs = coeffs[0] coef_descriptions = parsers[feats].baseline_descriptions assert len(coeffs) == len(coef_descriptions) cd = zip(coeffs, coef_descriptions) # Sort (reverse) by absolute value of coefficient cd_sorted = sorted(cd, key=lambda x: abs(x[0]), reverse=True) # Print top 10 coefficients with descriptions print('Top feature coefficients:') for coeff, description in cd_sorted[:10]: print(' ', description, ':', coeff) # Save all feature coefficients to a file, if set if feat_coeffs_out_tsv_f is not None: for coeff, description in cd_sorted: row = [model_name, feats, description, coeff] line = '\t'.join(str(c) for c in row) feat_coeffs_out_tsv_f.write(line + '\n') # Test model y_pred = reg.predict(x_test[feats]) # Compute metrics mse = sklearn.metrics.mean_squared_error(y_test[feats], y_pred) mae = sklearn.metrics.mean_absolute_error(y_test[feats], y_pred) R2 = sklearn.metrics.r2_score(y_test[feats], y_pred) r, _ = scipy.stats.pearsonr(y_test[feats], y_pred) rho, _ = scipy.stats.spearmanr(y_test[feats], y_pred) # Note that R2 does not necessarily equal r^2 here. The value R2 # is computed by definition of R^2 (1 minus (residual sum of # squares)/(total sum of squares)) from the true vs. predicted # values. This is why R2 can be negative: it can do an even worse # job with prediction than just predicting the mean. r is computed # by simple least squares regression between y_test and y_pred, and # finding the Pearson's r of this curve (since this is simple # linear regression, r^2 should be nonnegative). The value R2 measures # the goodness-of-fit of the specific linear correlation # y_pred = y_test, whereas r measures the correlation from the # regression (y_pred = m*y_test + b). # Print metrics print('#'*20) print("Regression with {}".format(model_desc)) if type(hyperparams) is list: for p in hyperparams: print(" best {} = {}".format(p, getattr(reg, p))) else: print(" best params = {}".format(hyperparams.best_params_)) print(" MSE = {}".format(mse)) print(" MAE = {}".format(mae)) print(" R^2 = {}".format(R2)) print(" r = {}".format(r)) print(" rho = {}".format(rho)) print('#'*20) return {'mse': mse, 'mae': mae, 'r2': R2, 'r': r, 'rho': rho, '1_minus_rho': 1.0-rho} # Linear regression (no regularization) def lr(feats): reg = sklearn.linear_model.LinearRegression(copy_X=True) # no CV because there are no hyperparameters return fit_and_test_model(reg, 'lr', 'Linear regression', hyperparams=[], feats=feats, inspect_feat_coeffs=True) # Note: # For below models, increasing `max_iter` or increasing `tol` can reduce # the warning 'ConvergenceWarning: Objective did not converge.' # L1 linear regression def l1_lr(feats): reg = sklearn.linear_model.Lasso(max_iter=1000, tol=0.0001, copy_X=True) reg_cv = random_search_cv('l1_lr', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'l1_lr', 'L1 linear regression', hyperparams=reg_cv, feats=feats, inspect_feat_coeffs=True) # L2 linear regression def l2_lr(feats): reg = sklearn.linear_model.Ridge(max_iter=1000, tol=0.0001, copy_X=True) reg_cv = random_search_cv('l2_lr', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'l2_lr', 'L2 linear regression', hyperparams=reg_cv, feats=feats, inspect_feat_coeffs=True) # Elastic net (L1+L2 linear regression) # Recommendation for l1_ratio is to place more values close to 1 (lasso) # and fewer closer to 0 (ridge) # A note to explain some potential confusion in the choice of # l1_ratio: Ridge might be better than Lasso according to rho, but # l1_ratio could still be chosen to be high (close to Lasso) # especially if Lasso/Ridge are close; in part, this could be because # fit_and_test_model() prints values on a hold-out set, but chooses # hyperparameters on splits of the train set def l1l2_lr(feats): reg = sklearn.linear_model.ElasticNet(max_iter=1000, tol=0.0001, copy_X=True) reg_cv = random_search_cv('l1l2_lr', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'l1l2_lr', 'L1+L2 linear regression', hyperparams=reg_cv, feats=feats, inspect_feat_coeffs=True) # Gradient-boosted regression trees def gbt(feats): reg = sklearn.ensemble.GradientBoostingRegressor(loss='ls', tol=0.0001) reg_cv = random_search_cv('gbt', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'gbt', 'Gradient Boosting regression', hyperparams=reg_cv, feats=feats) # Random forest regression def rf(feats): reg = sklearn.ensemble.RandomForestRegressor(criterion='mse') reg_cv = random_search_cv('rf', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'rf', 'Random forest regression', hyperparams=reg_cv, feats=feats) # MLP def mlp(feats): reg = fnn.MultilayerPerceptron(parsers[feats].context_nt, regression=True) reg_cv = random_search_cv('mlp', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'mlp', 'Multilayer perceptron', hyperparams=reg_cv, feats=feats) # LSTM def lstm(feats): reg = rnn.LSTM(parsers[feats].context_nt, regression=True) reg_cv = random_search_cv('lstm', reg, cv(feats), scorer) return fit_and_test_model(reg_cv, 'lstm', 'LSTM', hyperparams=reg_cv, feats=feats) metrics_for_models = {} for model_name in models_to_use: metrics_for_models[model_name] = {} for feats in input_feats[model_name]: print(("Running and evaluating model '%s' with input feature '%s'") % (model_name, feats)) model_fn = locals()[model_name] metrics_for_models[model_name][feats] = model_fn(feats) return metrics_for_models def nested_cross_validate(x, y, num_outer_splits, regression, parsers, regression_scoring_method=None, models_to_use=None, feat_coeffs_out_tsv_f=None, outer_splits_to_run=None): """Perform nested cross-validation to validate model and search. Args: x: input data y: labels num_outer_splits: number of folds in the outer cross-validation procedure regression: True if performing regression; False if classification parsers: parse_data parsers to use for splitting data regression_scoring_method: if regression, method to use for evaluating a model ('mse' or 'rho') models_to_use: list of models to test; if None, test all feat_coeffs_out_tsv_f: if set, file handler to which to write coefficients for each feature (linear models only; only for the best estimator after hyperparameter search) outer_splits_to_run: if set, a list of outer splits to run (0-based); if not set, run all Returns: list x where each x[i] is an output of regress() or classify() on an outer fold """ fold_results = [] i = 0 outer_split_iters = [] outer_split_iters_feats = [] for k in parsers.keys(): outer_split_iters += [parsers[k].split(x[k], y[k], num_splits=num_outer_splits, stratify_by_pos=True)] outer_split_iters_feats += [k] for xy in zip(*outer_split_iters): print('STARTING OUTER FOLD {} of {}'.format(i+1, num_outer_splits)) if outer_splits_to_run is not None: if i not in outer_splits_to_run: print(' Skipping this outer split') fold_results += [None] i += 1 # Advance random number generator random.random() np.random.random() tf.random.uniform([1]) continue x_train = {} y_train = {} x_validate = {} y_validate = {} for k, xy_k in zip(outer_split_iters_feats, xy): x_train[k], y_train[k], x_validate[k], y_validate[k] = xy_k assert len(x_train[k]) == len(y_train[k]) assert len(x_validate[k]) == len(y_validate[k]) print(('Input feats {}: There are n={} train points and n={} ' 'validation points').format( k, len(x_train[k]), len(x_validate[k]))) # Search for hyperparameters on this outer fold of the data if regression: metrics_for_models = regress(x_train, y_train, x_validate, y_validate, parsers, scoring_method=regression_scoring_method, models_to_use=models_to_use, feat_coeffs_out_tsv_f=feat_coeffs_out_tsv_f) else: metrics_for_models = classify(x_train, y_train, x_validate, y_validate, parsers, models_to_use=models_to_use, feat_coeffs_out_tsv_f=feat_coeffs_out_tsv_f) fold_results += [metrics_for_models] # Print metrics on this fold print('Results on fold {}'.format(i+1)) print(' Metrics on validation data') for model in metrics_for_models.keys(): print(' Model: {}'.format(model)) for feats in metrics_for_models[model].keys(): print(' Input feats: {}'.format(feats)) for metric in metrics_for_models[model][feats].keys(): print(' {} = {}'.format(metric, metrics_for_models[model][feats][metric])) print(('FINISHED OUTER FOLD {} of {}').format(i+1, num_outer_splits)) i += 1 return fold_results def main(): # Read arguments args = parse_args() # Set seed set_seed(args.seed) # Read data multiple times, each with different types of features x_train = {} y_train = {} x_validate = {} y_validate = {} x_test = {} y_test = {} parsers = {} split_frac = (1.0 - args.test_split_frac, 0.0, args.test_split_frac) for feats in ['onehot', 'onehot-flat', 'onehot-simple', 'handcrafted', 'combined']: if feats == 'onehot': # For parse_data, treat this as not constructing features for # baseline make_feats_for_baseline = None else: make_feats_for_baseline = feats data_parser = predictor.read_data(args, split_frac=split_frac, make_feats_for_baseline=make_feats_for_baseline) x_train[feats], y_train[feats] = data_parser.train_set() x_validate[feats], y_validate[feats] = data_parser.validate_set() x_test[feats], y_test[feats] = data_parser.test_set() parsers[feats] = data_parser # Convert column to 1D array y_train[feats] = y_train[feats].ravel() y_validate[feats] = y_validate[feats].ravel() y_test[feats] = y_test[feats].ravel() # Determine, based on the dataset, whether to do regression or # classification if args.dataset == 'cas13': if args.cas13_classify: regression = False else: regression = True if args.nested_cross_val: # Perform nested cross-validation if args.test_split_frac > 0: print(('WARNING: Performing nested cross-validation but there is ' 'unused test data; it may make sense to set ' '--test-split-frac to 0')) if args.nested_cross_val_feat_coeffs_out_tsv: feat_coeffs_out_tsv_f = open( args.nested_cross_val_feat_coeffs_out_tsv, 'w') header = ['model', 'feats_type', 'feat_description', 'coeff'] feat_coeffs_out_tsv_f.write('\t'.join(header) + '\n') else: feat_coeffs_out_tsv_f = None fold_results = nested_cross_validate(x_train, y_train, args.nested_cross_val_outer_num_splits, regression, parsers, regression_scoring_method=args.regression_scoring_method, models_to_use=args.models_to_use, feat_coeffs_out_tsv_f=feat_coeffs_out_tsv_f, outer_splits_to_run=args.nested_cross_val_run_for) if feat_coeffs_out_tsv_f is not None: feat_coeffs_out_tsv_f.close() if args.nested_cross_val_out_tsv: # Write fold results to a tsv file if regression: metrics = ['mse', 'mae', 'r', 'r2', 'rho'] else: metrics = ['auc-roc', 'auc-pr', 'avg-prec', 'accuracy'] with open(args.nested_cross_val_out_tsv, 'w') as fw: header = ['fold', 'model', 'feats_type'] + metrics fw.write('\t'.join(header) + '\n') for fold in range(len(fold_results)): metrics_for_models = fold_results[fold] if metrics_for_models is None: continue for model in metrics_for_models.keys(): for feats in metrics_for_models[model].keys(): row = [fold, model, feats] for metric in metrics: row += [metrics_for_models[model][feats][metric]] fw.write('\t'.join(str(r) for r in row) + '\n') else: # Simply perform a hyperparameter search for each model if regression: regress(x_train, y_train, x_test, y_test, parsers, scoring_method=args.regression_scoring_method, models_to_use=args.models_to_use) else: classify(x_train, y_train, x_test, y_test, parsers, models_to_use=args.models_to_use) if __name__ == "__main__": main() ``` #### File: jingyi7777/adapt-seq-design/predictor.py ```python import argparse from collections import defaultdict import gzip import os import pickle import fnn import parse_data import numpy as np import scipy import sklearn import sklearn.metrics import tensorflow as tf __author__ = '<NAME> <<EMAIL>>' def parse_args(): """Parse arguments. Returns: argument namespace """ # Parse arguments parser = argparse.ArgumentParser() parser.add_argument('--load-model', help=("Path from which to load parameters and model weights " "for model found by hyperparameter search; if set, " "any other arguments provided about the model " "architecture or hyperparameters will be overridden and " "this will skip training and only test the model")) parser.add_argument('--load-model-as-tf-savedmodel', help=("Path to directory containing a model in TensorFlow's " "SavedModel architecture; this cannot be set along " "with --load-model")) parser.add_argument('--dataset', choices=['cas13'], default='cas13', help=("Dataset to use.")) parser.add_argument('--cas13-subset', choices=['exp', 'pos', 'neg', 'exp-and-pos'], help=("Use a subset of the Cas13 data. See parse_data module " "for descriptions of the subsets. To use all data, do not " "set.")) parser.add_argument('--cas13-classify', action='store_true', help=("If set, only classify Cas13 activity into inactive/active")) parser.add_argument('--cas13-regress-on-all', action='store_true', help=("If set, perform regression for Cas13 data on all data " "(this can be reduced using --cas13-subset)")) parser.add_argument('--cas13-regress-only-on-active', action='store_true', help=("If set, perform regression for Cas13 data only on the " "active class")) parser.add_argument('--cas13-normalize-crrna-activity', action='store_true', help=("If set, normalize the activity of each crRNA (guide) " "across its targets to have mean 0 and stdev 1; this means " "prediction is performed based on target differences (e.g., " "mismatches) rather than inherent sequence of the crRNA")) parser.add_argument('--cas13-use-difference-from-wildtype-activity', action='store_true', help=("If set, use the activity value of a guide g and target t " "pair to be the difference between the measured activity of " "g-t and the mean activity between g and all wildtype " "(matching) targets of g; this means prediction is " "performed based on targeted differences (e.g., mismatches) " "rather than inherent sequence of the crRNA")) parser.add_argument('--use-median-measurement', action='store_true', help=("If set, use the median measurment across replicates " "(instead, resample)")) parser.add_argument('--context-nt', type=int, default=10, help=("nt of target sequence context to include alongside each " "guide")) parser.add_argument('--conv-filter-width', type=int, nargs='+', help=("Width of the convolutional filter (nt) (or multiple widths " "to perform parallel convolutions). If not set, do not " "use convolutional layers (or the batch norm or pooling " "that follow it).")) parser.add_argument('--conv-num-filters', type=int, default=20, help=("Number of convolutional filters (i.e., output channels) " "in the first layer")) parser.add_argument('--pool-window-width', type=int, default=2, help=("Width of the pooling window")) parser.add_argument('--fully-connected-dim', type=int, nargs='+', default=[20], help=("Dimension of each fully connected layer (i.e., of its " "output space); specify multiple dimensions for multiple " "fully connected layers")) parser.add_argument('--pool-strategy', choices=['max', 'avg', 'max-and-avg'], default='max', help=("For pooling, 'max' only does max pooling; 'avg' only does " "average pooling; 'max-and-avg' does both and concatenates.")) parser.add_argument('--locally-connected-width', type=int, nargs='+', help=("If set, width (kernel size) of the locally connected layer. " "Use multiple widths to have parallel locally connected layers " "that get concatenated. If not set, do not use have a locally " "connected layer.")) parser.add_argument('--locally-connected-dim', type=int, default=1, help=("Dimension of each locally connected layer (i.e., of its " "output space)")) parser.add_argument('--skip-batch-norm', action='store_true', help=("If set, skip batch normalization layer")) parser.add_argument('--add-gc-content', action='store_true', help=("If set, add GC content of a guide explicitly into the " "first fully connected layer of the predictor")) parser.add_argument('--activation-fn', choices=['relu', 'elu'], default='relu', help=("Activation function to use on hidden layers")) parser.add_argument('--dropout-rate', type=float, default=0.25, help=("Rate of dropout in between the 2 fully connected layers")) parser.add_argument('--l2-factor', type=float, default=0, help=("L2 regularization factor. This is applied to weights " "(kernal_regularizer). Note that this does not regularize " "bias of activity.")) parser.add_argument('--sample-weight-scaling-factor', type=float, default=0, help=("Hyperparameter p where sample weight is (1 + p*[" "difference in activity from mean wildtype activity]); " "p must be >= 0. Note that p=0 means that all samples are " "weighted the same; higher p means that guide-target pairs " "whose activity deviates from the wildtype from the guide " "are treated as more important. This is only used for " "regression.")) parser.add_argument('--batch-size', type=int, default=32, help=("Batch size")) parser.add_argument('--learning-rate', type=float, default=0.00001, help=("Learning rate for Adam optimizer")) parser.add_argument('--max-num-epochs', type=int, default=1000, help=("Maximum number of training epochs (this employs early " "stopping)")) parser.add_argument('--test-split-frac', type=float, default=0.3, help=("Fraction of the dataset to use for testing the final " "model")) parser.add_argument('--seed', type=int, default=1, help=("Random seed")) parser.add_argument('--serialize-model-with-tf-savedmodel', help=("Serialize the model with TensorFlow's SavedModel format. " "This should be a directory in which to serialize the " "model; this saves the entire model (architecture, " "weights, training configuration")) parser.add_argument('--plot-roc-curve', help=("If set, path to PDF at which to save plot of ROC curve")) parser.add_argument('--plot-predictions', help=("If set, path to PDF at which to save plot of predictions " "vs. true values")) parser.add_argument('--write-test-tsv', help=("If set, path to .tsv.gz at which to write test results, " "including sequences in the test set and predictions " "(one row per test data point)")) parser.add_argument('--determine-classifier-threshold-for-precision', type=float, default=0.975, help=("If set, determine thresholds (across folds) that " "achieve this precision; does not use test data")) parser.add_argument('--filter-test-data-by-classification-score', nargs=2, help=("If set, only test on data that is classified as active. " "This consists of 2 arguments: (1) path to TSV file " "written by test functions with classification scores; " "(2) score to use as threshold for classifying (>= " "threshold is active). This is useful when evaluating " "regression models trained on active data points; we " "want to test only on data that has been classified as " "active.")) args = parser.parse_args() # Print the arguments provided print(args) return args def set_seed(seed): """Set tensorflow and numpy seed. Args: seed: random seed """ tf.random.set_seed(seed) np.random.seed(seed) def read_data(args, split_frac=None, make_feats_for_baseline=None): """Read input/output data. Args: args: argument namespace split_frac: if set, (train, validate, test) fractions (must sum to 1); if None, use 0.3 for the test set, 0.7*(2/3) for the train set, and 0.7*(1/3) for the validate set use_validation: if True, have the validation set be 1/3 of what would be the training set (and the training set be the other 2/3); if False, do not have a validation set make_feats_for_baseline: if set, make feature vector for baseline models; see parse_data module for description of values Returns: data parser object from parse_data """ if make_feats_for_baseline is not None and args.dataset != 'cas13': raise Exception("make_feats_for_baseline only works with Cas13 data") # Read data if args.dataset == 'cas13': parser_class = parse_data.Cas13ActivityParser subset = args.cas13_subset if args.cas13_classify: regression = False else: regression = True if split_frac is None: test_frac = 0.3 train_frac = (1.0 - test_frac) * (2.0/3.0) validation_frac = (1.0 - test_frac) * (1.0/3.0) else: train_frac, validation_frac, test_frac = split_frac data_parser = parser_class( subset=subset, context_nt=args.context_nt, split=(train_frac, validation_frac, test_frac), shuffle_seed=args.seed, stratify_by_pos=True, use_median_measurement=args.use_median_measurement) if args.dataset == 'cas13': classify_activity = args.cas13_classify regress_on_all = args.cas13_regress_on_all regress_only_on_active = args.cas13_regress_only_on_active data_parser.set_activity_mode( classify_activity, regress_on_all, regress_only_on_active) if make_feats_for_baseline is not None: data_parser.set_make_feats_for_baseline(make_feats_for_baseline) if args.cas13_normalize_crrna_activity: data_parser.set_normalize_crrna_activity() if args.cas13_use_difference_from_wildtype_activity: data_parser.set_use_difference_from_wildtype_activity() data_parser.read() x_train, y_train = data_parser.train_set() x_validate, y_validate = data_parser.validate_set() x_test, y_test = data_parser.test_set() # Print the size of each data set data_sizes = 'DATA SIZES - Train: {}, Validate: {}, Test: {}' print(data_sizes.format(len(x_train), len(x_validate), len(x_test))) if regression: # Print the mean outputs and its variance print('Mean train output: {}'.format(np.mean(y_train))) print('Variance of train output: {}'.format(np.var(y_train))) else: # Print the fraction of the training data points that are in each class classes = set(tuple(y) for y in y_train) for c in classes: num_c = sum(1 for y in y_train if tuple(y) == c) frac_c = float(num_c) / len(y_train) frac_c_msg = 'Fraction of train data in class {}: {}' print(frac_c_msg.format(c, frac_c)) if len(x_validate) == 0: print('No validation data') else: for c in classes: num_c = sum(1 for y in y_validate if tuple(y) == c) frac_c = float(num_c) / len(y_validate) frac_c_msg = 'Fraction of validate data in class {}: {}' print(frac_c_msg.format(c, frac_c)) for c in classes: num_c = sum(1 for y in y_test if tuple(y) == c) frac_c = float(num_c) / len(y_test) frac_c_msg = 'Fraction of test data in class {}: {}' print(frac_c_msg.format(c, frac_c)) if args.dataset == 'cas13' and args.cas13_classify: print('Note that inactive=1 and active=0') return data_parser def make_dataset_and_batch(x, y, batch_size=32): """Make tensorflow dataset and batch. Args: x: input data y: outputs (labels if classification) batch_size: batch size Returns: batched tf.data.Dataset object """ return tf.data.Dataset.from_tensor_slices((x, y)).batch(batch_size) def load_model(load_path, params, x_train, y_train): """Construct model and load weights according to hyperparameter search. Args: load_path: path containing model weights params: dict of parameters x_train, y_train: train data (only needed for data shape and class weights) Returns:.. fnn.CasCNNWithParallelFilters object """ # First construct the model model = construct_model(params, x_train.shape, regression=params['regression'], y_train=y_train, compile_for_keras=True) # Note: Previoulsly, this would have to train the model on one # data point (reason below); however, this is no longer needed with Keras # See https://www.tensorflow.org/beta/guide/keras/saving_and_serializing # for details on loading a serialized subclassed model # To initialize variables used by the optimizers and any stateful metric # variables, we need to train it on some data before calling `load_weights`; # note that it appears this is necessary (otherwise, there are no variables # in the model, and nothing gets loaded) # Only train the models on one data point, and for 1 epoch def copy_weights(model): # Copy weights, so we can verify that they changed after loading return [tf.Variable(w) for w in model.weights] def weights_are_eq(weights1, weights2): # Determine whether weights1 == weights2 for w1, w2 in zip(weights1, weights2): # 'w1' and 'w2' are each collections of weights (e.g., the kernel # for some layer); they are tf.Variable objects (effectively, # tensors) # Make a tensor containing element-wise boolean comparisons (it # is a 1D tensor with True/False) elwise_eq = tf.equal(w1, w2) # Check if all elements in 'elwise_eq' are True (this will make a # Tensor with one element, True or False) all_are_eq_tensor = tf.reduce_all(elwise_eq) # Convert the tensor 'all_are_eq_tensor' to a boolean all_are_eq = all_are_eq_tensor.numpy() if not all_are_eq: return False return True def load_weights(model, fn): # Load weights # There are some concerns about whether weights are actually being # loaded (e.g., https://github.com/tensorflow/tensorflow/issues/27937), # so check that they have changed after calling `load_weights` # Use expect_partial() to silence warnings because this will not # load optimizer parameters, which are loaded in construct_model() w_before = copy_weights(model) w_before2 = copy_weights(model) model.load_weights(os.path.join(load_path, fn)).expect_partial() w_after = copy_weights(model) w_after2 = copy_weights(model) assert (weights_are_eq(w_before, w_before2) is True) assert (weights_are_eq(w_before, w_after) is False) assert (weights_are_eq(w_after, w_after2) is True) load_weights(model, 'model.weights') return model def construct_model(params, shape, regression=False, compile_for_keras=True, y_train=None, parallelize_over_gpus=False): """Construct model. This uses the fnn module. This can also compile the model for Keras, to use multiple GPUs if available. Args: params: dict of hyperparameters shape: shape of input data; only used for printing model summary regression: if True, perform regression; if False, classification compile_for_keras: if set, compile for keras y_train: training data to use for computing class weights; only needed if compile_for_keras is True and regression is False parallelize_over_gpus: if True, parallelize over all available GPUs Returns: fnn.CasCNNWithParallelFilters object """ if not compile_for_keras: # Just return a model return fnn.construct_model(params, shape, regression=regression) def make(): model = fnn.construct_model(params, shape, regression=regression) # Define an optimizer, loss, metrics, etc. if model.regression: # When doing regression, sometimes the output would always be the # same value regardless of input; decreasing the learning rate fixed this optimizer = tf.keras.optimizers.Adam(lr=model.learning_rate) loss = 'mse' # Note that using other custom metrics like R^2, Pearson, etc. (as # implemented above) seems to raise errors; they are really only # needed during testing metrics = ['mse', 'mae'] model.class_weight = None else: optimizer = tf.keras.optimizers.Adam(lr=model.learning_rate) loss = 'binary_crossentropy' # using class_weight should weight # Note that using other custom metrics like auROC (as implemented # above) seems to raise errors; they are really only needed during # testing metrics = ['bce', 'accuracy'] assert y_train is not None y_train_labels = [y_train[i][0] for i in range(len(y_train))] class_weight = sklearn.utils.class_weight.compute_class_weight( 'balanced', sorted(np.unique(y_train_labels)), y_train_labels) model.class_weight = {i: weight for i, weight in enumerate(class_weight)} # Compile the model model.compile(optimizer=optimizer, loss=loss, metrics=metrics) return model if parallelize_over_gpus: # Use a MirroredStrategy to take advantage of multiple GPUs, if there are # multiple strategy = tf.distribute.MirroredStrategy() with strategy.scope(): model = make() else: model = make() return model def pred_from_nt(model, pairs): """Predict activity from nucleotide sequence. Args: model: model object with call() function pairs: list of tuples (target with context, guide) Returns: output of model.call() """ FASTA_CODES = {'A': set(('A')), 'T': set(('T')), 'C': set(('C')), 'G': set(('G')), 'K': set(('G', 'T')), 'M': set(('A', 'C')), 'R': set(('A', 'G')), 'Y': set(('C', 'T')), 'S': set(('C', 'G')), 'W': set(('A', 'T')), 'B': set(('C', 'G', 'T')), 'V': set(('A', 'C', 'G')), 'H': set(('A', 'C', 'T')), 'D': set(('A', 'G', 'T')), 'N': set(('A', 'T', 'C', 'G'))} onehot_idx = {'A': 0, 'C': 1, 'G': 2, 'T': 3} def onehot(b): # One-hot encoding of base b real_bases = FASTA_CODES[b] v = [0, 0, 0, 0] for b_real in real_bases: assert b_real in onehot_idx.keys() v[onehot_idx[b_real]] = 1.0 / len(real_bases) return v context_nt = model.context_nt l = 2*context_nt + len(pairs[0][1]) x = np.empty((len(pairs), l, 8), dtype='f') for i, (target_with_context, guide) in enumerate(pairs): assert len(target_with_context) == 2*context_nt + len(guide) # Determine one-hot encodings -- i.e., an input vector input_vec = [] for pos in range(context_nt): v_target = onehot(target_with_context[pos]) v_guide = [0, 0, 0, 0] input_vec += [v_target + v_guide] for pos in range(len(guide)): v_target = onehot(target_with_context[context_nt + pos]) v_guide = onehot(guide[pos]) input_vec += [v_target + v_guide] for pos in range(context_nt): v_target = onehot(target_with_context[context_nt + len(guide) + pos]) v_guide = [0, 0, 0, 0] input_vec += [v_target + v_guide] input_vec = np.array(input_vec, dtype='f') x[i] = input_vec pred_activity = model.call(x, training=False) pred_activity = [p[0] for p in pred_activity.numpy()] return pred_activity def load_model_for_cas13_regression_on_active(load_path): """Construct model and load parameters and weights. This wraps load_model(), without the need to specify x_train, etc. for initializing variables. Args: load_path: path containing model weights Returns:.. fnn.CasCNNWithParallelFilters object """ # Load parameters load_path_params = os.path.join(load_path, 'model.params.pkl') with open(load_path_params, 'rb') as f: saved_params = pickle.load(f) params = {'dataset': 'cas13', 'cas13_subset': 'exp-and-pos', 'cas13_regress_only_on_active': True} for k, v in saved_params.items(): params[k] = v # Load data; we only need 1 data point, which is used to initialize # variables parser_class = parse_data.Cas13ActivityParser subset = 'exp-and-pos' regression = True test_frac = 0.3 train_frac = (1.0 - test_frac) * (2.0/3.0) validation_frac = (1.0 - test_frac) * (1.0/3.0) context_nt = params['context_nt'] data_parser = parser_class( subset=subset, context_nt=context_nt, split=(train_frac, validation_frac, test_frac), shuffle_seed=1, stratify_by_pos=True) data_parser.set_activity_mode(False, False, True) data_parser.read() x_train, y_train = data_parser.train_set() # Load the model return load_model(load_path, params, x_train, y_train) def determine_classifier_threshold_for_precision(params, x, y, num_splits, data_parser, precision_threshold): """Find a threshold, via cross-valiation, to achieve a desired precision. This focuses on precision because it is an important metric for deploying assays. It finds the smallest threshold that achieves a desired precision. It does this across multiple splits of the training data. Args: params: model parameters (model should *not* be pre-trained) x, y: data to perform cross-validation with num_splits: number of folds to compute threshold data_parser: object to parse data from parse_data precision_threshold: desired threshold on precision Returns: list of thresholds, one per split """ # Construct a function that the test function will callback best_thresholds = [] def find_threshold(y_true, y_pred): # Compute threshold pr_curve = sklearn.metrics.precision_recall_curve(y_true, y_pred) precision, recall, thresholds = pr_curve # Find the smallest threshold (highest i) where precision is # >= precision_threshold for i, prec in enumerate(precision): if prec >= precision_threshold: thres = float(thresholds[i]) break best_thresholds.append(thres) import predictor_hyperparam_search as phs phs.cross_validate(params, x, y, num_splits, False, callback=find_threshold, dp=data_parser) return best_thresholds def filter_test_data_by_classification_score(x_test, y_test, data_parser, classification_test_tsv, score_threshold): """Select test data points that are classified as positive. This is useful if we wish to evaluate regression that was trained on active data points. We would first classify the test data, and then only evaluate regression using the data points that are classified as active. Args: x_test, y_test: test data data_parser: object to parse data from parse_data classification_test_tsv: the output TSV file ('write_test_tsv') written by the test functions score_threshold: classification score (between 0 and 1); deem all test data with scores >= SCORE_THRESHOLD to be active/positive Returns: list of tuples (x_test, y_test), filtered to only contain active data points """ # Read all rows in classification_test_tsv header_idx = {} rows = [] with gzip.open(classification_test_tsv, 'rt') as f: for i, line in enumerate(f): ls = line.rstrip().split('\t') if i == 0: # Parse header for j in range(len(ls)): header_idx[ls[j]] = j else: rows += [ls] rows_new = [] for row in rows: row_dict = {k: row[header_idx[k]] for k in header_idx.keys()} rows_new += [row_dict] rows = rows_new # Convert x_test, y_test into the same encoding that is # used in the test TSV; keep just the target and guide # as strings, and crRNA position, which is enough to # uniquely identify data points (up to technical replicates) # In particular, map a tuple of that to indices of the test # data encoding_idx = defaultdict(list) for i in range(len(x_test)): m = data_parser.seq_features_from_encoding(x_test[i]) crrna_pos = data_parser.pos_for_input(x_test[i]) enc = (m['target'], m['guide'], crrna_pos) encoding_idx[enc].append(i) # Keep all test data that is classified as active # Note that there are replicates, but all the replicates for a single # guide-target pair will have the same classification score because the # classification is deterministic and depends only on the guide-target # sequence (however their measured activity may differ). So if a # guide-target pair is classified as active, keep all of its replicates; # and if it is classified as inactive, discard all replicates x_test_filtered, y_test_filtered = [], [] added_enc = set() for row in rows: enc = (row['target'], row['guide'], int(row['crrna_pos'])) if enc in added_enc: # Already added data points for this continue if float(row['predicted_activity']) >= score_threshold: # Classify this as active, and add all data points (replicates) # for this guide-target pair for i in encoding_idx[enc]: x_test_filtered.append(x_test[i]) y_test_filtered.append(y_test[i]) added_enc.add(enc) x_test_filtered = np.array(x_test_filtered) y_test_filtered = np.array(y_test_filtered) return x_test_filtered, y_test_filtered ##################################################################### ##################################################################### # Custom functions for training and testing ##################################################################### ##################################################################### # For classification, use cross-entropy as the loss function # This expects sigmoids (values in [0,1]) as the output; it will # transform back to logits (not bounded betweem 0 and 1) before # calling tf.nn.sigmoid_cross_entropy_with_logits bce_per_sample = tf.keras.losses.BinaryCrossentropy() # For regression, use mean squared error as the loss function mse_per_sample = tf.keras.losses.MeanSquaredError() # When outputting loss, take the mean across the samples from each batch train_loss_metric = tf.keras.metrics.Mean(name='train_loss') validate_loss_metric = tf.keras.metrics.Mean(name='validate_loss') test_loss_metric = tf.keras.metrics.Mean(name='test_loss') # Define metrics for regression # tf.keras.metrics does not have Pearson correlation or Spearman's correlation, # so we have to define these; note that it becomes much easier to use these # outside of the tf.function functions rather than inside of them (like the # other metrics are used) # This also defines a metric for R^2 (below, R2Score) # Note that R2Score does not necessarily equal r^2 here, where r is # pearson_corr. The value R2Score is computed by definition of R^2 (1 minus # (residual sum of squares)/(total sum of squares)) from the true vs. predicted # values. This is why R2Score can be negative: it can do an even worse job with # prediction than just predicting the mean. r is computed by simple least # squares regression between y_true and y_pred, and finding the Pearson's r of # this curve (since this is simple linear regression, r^2 should be # nonnegative). The value R2 measures the goodness-of-fit of the specific # linear correlation y_pred = y_true, whereas r measures the correlation from # the regression (y_pred = m*y_true + b). def pearson_corr(y_true, y_pred): if len(y_true) < 2: # Avoid exception r = np.nan else: r, _ = scipy.stats.pearsonr(y_true, y_pred) return r def spearman_corr(y_true, y_pred): if len(y_true) < 2: # Avoid exception rho = np.nan else: rho, _ = scipy.stats.spearmanr(y_true, y_pred) return rho class CustomMetric: def __init__(self, name): self.__name__ = name self.y_true = [] self.y_pred = [] def __call__(self, y_true, y_pred): # Save y_true and y_pred (tensors) into a list self.y_true += [y_true] self.y_pred += [y_pred] def to_np_array(self): # Concat tensors and convert to numpy arrays y_true_np = tf.reshape(tf.concat(self.y_true, 0), [-1]).numpy() y_pred_np = tf.reshape(tf.concat(self.y_pred, 0), [-1]).numpy() return y_true_np, y_pred_np def result(self): raise NotImplementedError("result() must be implemented in a subclass") def reset_states(self): self.y_true = [] self.y_pred = [] class Correlation(CustomMetric): def __init__(self, corrtype, name='correlation'): assert corrtype in ('pearson_corr', 'spearman_corr') if corrtype == 'pearson_corr': self.corr_fn = pearson_corr if corrtype == 'spearman_corr': self.corr_fn = spearman_corr super().__init__(name) def result(self): y_true_np, y_pred_np = super(Correlation, self).to_np_array() return self.corr_fn(y_true_np, y_pred_np) class R2Score(CustomMetric): def __init__(self, name='r2_score'): super().__init__(name) def result(self): y_true_np, y_pred_np = super(R2Score, self).to_np_array() return sklearn.metrics.r2_score(y_true_np, y_pred_np) train_mse_metric = tf.keras.metrics.MeanSquaredError(name='train_mse') train_mse_weighted_metric = tf.keras.metrics.MeanSquaredError(name='train_mse_weighted') train_mae_metric = tf.keras.metrics.MeanAbsoluteError(name='train_mae') train_mape_metric = tf.keras.metrics.MeanAbsolutePercentageError(name='train_mape') train_r2_score_metric = R2Score(name='train_r2_score') train_pearson_corr_metric = Correlation('pearson_corr', name='train_pearson_corr') train_spearman_corr_metric = Correlation('spearman_corr', name='train_spearman_corr') validate_mse_metric = tf.keras.metrics.MeanSquaredError(name='validate_mse') validate_mse_weighted_metric = tf.keras.metrics.MeanSquaredError(name='validate_mse_weighted') validate_mae_metric = tf.keras.metrics.MeanAbsoluteError(name='validate_mae') validate_mape_metric = tf.keras.metrics.MeanAbsolutePercentageError(name='validate_mape') validate_r2_score_metric = R2Score(name='validate_r2_score') validate_pearson_corr_metric = Correlation('pearson_corr', name='validate_pearson_corr') validate_spearman_corr_metric = Correlation('spearman_corr', name='validate_spearman_corr') test_mse_metric = tf.keras.metrics.MeanSquaredError(name='test_mse') test_mse_weighted_metric = tf.keras.metrics.MeanSquaredError(name='test_mse_weighted') test_mae_metric = tf.keras.metrics.MeanAbsoluteError(name='test_mae') test_mape_metric = tf.keras.metrics.MeanAbsolutePercentageError(name='test_mape') test_r2_score_metric = R2Score(name='test_r2_score') test_pearson_corr_metric = Correlation('pearson_corr', name='test_pearson_corr') test_spearman_corr_metric = Correlation('spearman_corr', name='test_spearman_corr') # Define metrics for classification # Report on the accuracy and AUC for each epoch (each metric is updated # with data from each batch, and computed using data from all batches) train_bce_metric = tf.keras.metrics.BinaryCrossentropy(name='train_bce') train_bce_weighted_metric = tf.keras.metrics.BinaryCrossentropy(name='train_bce_weighted') train_accuracy_metric = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') train_auc_roc_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='ROC', name='train_auc_roc') train_auc_pr_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='PR', name='train_auc_pr') validate_bce_metric = tf.keras.metrics.BinaryCrossentropy(name='validate_bce') validate_bce_weighted_metric = tf.keras.metrics.BinaryCrossentropy(name='validate_bce_weighted') validate_accuracy_metric = tf.keras.metrics.BinaryAccuracy(name='validate_accuracy') validate_auc_roc_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='ROC', name='validate_auc_roc') validate_auc_pr_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='PR', name='validate_auc_pr') test_bce_metric = tf.keras.metrics.BinaryCrossentropy(name='test_bce') test_bce_weighted_metric = tf.keras.metrics.BinaryCrossentropy(name='test_bce_weighted') test_accuracy_metric = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') test_auc_roc_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='ROC', name='test_auc_roc') test_auc_pr_metric = tf.keras.metrics.AUC( num_thresholds=200, curve='PR', name='test_auc_pr') # Store the model and optimizer as global (module-wide) variables # If passing them directly to train_step(), validate_step(), and test_step(), # TensorFlow complains about having to do tf.function retracing, which is # expensive and due to passing Python objects instead of tensors _model = None _optimizer = None # Train the model using GradientTape; this is called on each batch def train_step(seqs, outputs, sample_weight=None): if _model.regression: loss_fn = mse_per_sample else: loss_fn = bce_per_sample with tf.GradientTape() as tape: # Compute predictions and loss # Pass along `training=True` so that this can be given to # the batchnorm and dropout layers; an alternative to passing # it along would be to use `tf.keras.backend.set_learning_phase(1)` # to set the training phase predictions = _model(seqs, training=True) prediction_loss = loss_fn(outputs, predictions, sample_weight=sample_weight) # Add the regularization losses regularization_loss = tf.add_n(_model.losses) loss = prediction_loss + regularization_loss # Compute gradients and opitmize parameters gradients = tape.gradient(loss, _model.trainable_variables) _optimizer.apply_gradients(zip(gradients, _model.trainable_variables)) # Record metrics train_loss_metric(loss) if _model.regression: train_mse_metric(outputs, predictions) train_mse_weighted_metric(outputs, predictions, sample_weight=sample_weight) train_mae_metric(outputs, predictions) train_mape_metric(outputs, predictions) else: train_bce_metric(outputs, predictions) train_bce_weighted_metric(outputs, predictions, sample_weight=sample_weight) train_accuracy_metric(outputs, predictions) train_auc_roc_metric(outputs, predictions) train_auc_pr_metric(outputs, predictions) return outputs, predictions # Define functions for computing validation and test metrics; these are # called on each batch def validate_step(seqs, outputs, sample_weight=None): # Compute predictions and loss predictions = _model(seqs, training=False) if _model.regression: loss_fn = mse_per_sample else: loss_fn = bce_per_sample prediction_loss = loss_fn(outputs, predictions, sample_weight=sample_weight) regularization_loss = tf.add_n(_model.losses) loss = prediction_loss + regularization_loss # Record metrics validate_loss_metric(loss) if _model.regression: validate_mse_metric(outputs, predictions) validate_mse_weighted_metric(outputs, predictions, sample_weight=sample_weight) validate_mae_metric(outputs, predictions) validate_mape_metric(outputs, predictions) else: validate_bce_metric(outputs, predictions) validate_bce_weighted_metric(outputs, predictions, sample_weight=sample_weight) validate_accuracy_metric(outputs, predictions) validate_auc_roc_metric(outputs, predictions) validate_auc_pr_metric(outputs, predictions) return outputs, predictions def test_step(seqs, outputs, sample_weight=None): # Compute predictions predictions = _model(seqs, training=False) if _model.regression: loss_fn = mse_per_sample else: loss_fn = bce_per_sample prediction_loss = loss_fn(outputs, predictions, sample_weight=sample_weight) regularization_loss = tf.add_n(_model.losses) loss = prediction_loss + regularization_loss # Record metrics test_loss_metric(loss) if _model.regression: test_mse_metric(outputs, predictions) test_mse_weighted_metric(outputs, predictions, sample_weight=sample_weight) test_mae_metric(outputs, predictions) test_mape_metric(outputs, predictions) else: test_bce_metric(outputs, predictions) test_bce_weighted_metric(outputs, predictions, sample_weight=sample_weight) test_accuracy_metric(outputs, predictions) test_auc_roc_metric(outputs, predictions) test_auc_pr_metric(outputs, predictions) return outputs, predictions # Here we will effectively implement tf.keras.callbacks.EarlyStopping() to # decide when to stop training; because we are not using model.fit(..) we # cannot use this callback out-of-the-box # Set the number of epochs that must pass with no improvement in the # validation loss, after which we will stop training STOPPING_PATIENCE = 2 def train_and_validate(model, x_train, y_train, x_validate, y_validate, max_num_epochs, data_parser): """Train the model and also validate on each epoch. Args: model: model object x_train, y_train: training input and outputs (labels, if classification) x_validate, y_validate: validation input and outputs (labels, if classification) max_num_epochs: maximum number of epochs to train for data_parser: data parser object from parse_data Returns: tuple (dict with training metrics at the end, dict with validation metrics at the end); keys in the dicts are 'loss' and ('bce' or 'mse') and ('auc-roc' or 'r-spearman') """ # Define an optimizer if model.regression: # When doing regression, sometimes the output would always be the # same value regardless of input; decreasing the learning rate fixed this optimizer = tf.keras.optimizers.Adam(lr=model.learning_rate) else: optimizer = tf.keras.optimizers.Adam(lr=model.learning_rate) # Set the global module-level variables _model and _optimizer, needed by # train_step() and validate_step() global _model global _optimizer _model = model _optimizer = optimizer # model may be new, and calling train_step on a new model will yield # an error; tf.function was designed such that a new one is needed # whenever there is a new model # (see # https://github.com/tensorflow/tensorflow/issues/27525#issuecomment-481025914) tf_train_step = tf.function(train_step) tf_validate_step = tf.function(validate_step) train_ds = make_dataset_and_batch(x_train, y_train, batch_size=model.batch_size) validate_ds = make_dataset_and_batch(x_validate, y_validate, batch_size=model.batch_size) # For classification, determine class weights if not model.regression: y_train_labels = [y_train[i][0] for i in range(len(y_train))] class_weights = sklearn.utils.class_weight.compute_class_weight( 'balanced', sorted(np.unique(y_train_labels)), y_train_labels) class_weights = list(class_weights) model.class_weights = class_weights print('Using class weights: {}'.format(class_weights)) # For regression, determine mean sample weight so that we can # normalize to have mean=1 if model.regression: train_weights = [] for seqs, outputs in train_ds: train_weights += [data_parser.sample_regression_weight(xi, yi, p=model.sample_weight_scaling_factor) for xi, yi in zip(seqs, outputs)] train_weight_mean = np.mean(train_weights) validate_weights = [] for seqs, outputs in validate_ds: validate_weights += [data_parser.sample_regression_weight(xi, yi, p=model.sample_weight_scaling_factor) for xi, yi in zip(seqs, outputs)] validate_weight_mean = np.mean(validate_weights) else: train_weight_mean = None validate_weight_mean = None def determine_sample_weights(seqs, outputs, norm_factor=None): if not model.regression: # Classification; weight by class labels = [int(o.numpy()[0]) for o in outputs] return [class_weights[label] for label in labels] else: # Regression; weight by variance weights = [data_parser.sample_regression_weight(xi, yi, p=model.sample_weight_scaling_factor) for xi, yi in zip(seqs, outputs)] if norm_factor is not None: weights = [w / norm_factor for w in weights] return weights # Compute weights for all samples once, rather than having to do so in # every epoch train_ds_weights = [] for seqs, outputs in train_ds: sample_weight = determine_sample_weights(seqs, outputs, norm_factor=train_weight_mean) train_ds_weights += [sample_weight] validate_ds_weights = [] for seqs, outputs in validate_ds: sample_weight = determine_sample_weights(seqs, outputs, norm_factor=validate_weight_mean) validate_ds_weights += [sample_weight] best_val_loss = None num_epochs_past_best_loss = 0 for epoch in range(max_num_epochs): # Train on each batch for i, (seqs, outputs) in enumerate(train_ds): sample_weight = tf.constant(train_ds_weights[i]) y_true, y_pred = tf_train_step(seqs, outputs, sample_weight=sample_weight) if model.regression: train_r2_score_metric(y_true, y_pred) train_pearson_corr_metric(y_true, y_pred) train_spearman_corr_metric(y_true, y_pred) # Validate on each batch # Note that we could run the validation data through the model all # at once (not batched), but batching may help with memory usage by # reducing how much data is run through the network at once for i, (seqs, outputs) in enumerate(validate_ds): sample_weight = tf.constant(validate_ds_weights[i]) y_true, y_pred = tf_validate_step(seqs, outputs, sample_weight=sample_weight) if model.regression: validate_r2_score_metric(y_true, y_pred) validate_pearson_corr_metric(y_true, y_pred) validate_spearman_corr_metric(y_true, y_pred) # A note on one easy source of confusion (written here for # classification, but it may apply to weighted MSE with regression as # well): # We might think the prediction_loss as calculated by train_step() and # validate_step() should be equal to the weighted BCE because the loss # function is binary cross-entropy. However, it appears that the loss # funcion calculation multiples the binary cross-entropy for each # sample i by sample_weight[i], directly as it is given. On the other # hand, it seems that {train,validate}_bce_weighted_metric normalize # the input sample weights (sample_weight) before the multiplication. # As a result, the prediction_loss (and thus the train or validate loss # value) can be quite different than weighted BCE; this might be # especially true for validation, as the class weights are computed # over the train data so, for validation, the sample weights might not # have a mean of 1. One way to see this is that, when multiplying the # sample_weight input to {train,validate}_step() by a scalar, the loss # value is multipled by that scalar but the weighted BCE is unchanged. # As a result, the loss value on different validation/test sets might # not be comparable, but the weighted BCE might be. The normalization # by {train,validate}_bce_weighted_metric seems to happen *per batch* # (i.e., on the call to update state), rather than on the calculation # at the end -- likely because it computes the updated mean every time # the state is updated. One way to see this is to change, above: # ``` # y_true, y_pred = tf_train_step(seqs, outputs, # sample_weight=sample_weight) # ``` # to # ``` # y_true, y_pred = tf_train_step(seqs, outputs, # sample_weight=(1.0/np.mean(sample_weight))*sample_weight) # ``` # so that a normalized sample_weight is passed for each batch; the loss # function value (namely, predicted_loss) should adjust whereas the # weighted BCE metric should not change, and the two will now equal # each other. As a result of this per batch normalization, I would lean # toward ignoring the weighted BCE metric (and likely weighted MSE # too); variation across batches will likely make it an unreliable # metric. # Log the metrics from this epoch print('EPOCH {}'.format(epoch+1)) print(' Train metrics:') print(' Loss: {}'.format(train_loss_metric.result())) if model.regression: print(' MSE: {}'.format(train_mse_metric.result())) print(' Weighted MSE: {}'.format(train_mse_weighted_metric.result())) print(' MAE: {}'.format(train_mae_metric.result())) print(' MAPE: {}'.format(train_mape_metric.result())) print(' R^2 score: {}'.format(train_r2_score_metric.result())) print(' r-Pearson: {}'.format(train_pearson_corr_metric.result())) print(' r-Spearman: {}'.format(train_spearman_corr_metric.result())) else: print(' BCE: {}'.format(train_bce_metric.result())) print(' Weighted BCE: {}'.format(train_bce_weighted_metric.result())) print(' Accuracy: {}'.format(train_accuracy_metric.result())) print(' AUC-ROC: {}'.format(train_auc_roc_metric.result())) print(' AUC-PR: {}'.format(train_auc_pr_metric.result())) print(' Validate metrics:') print(' Loss: {}'.format(validate_loss_metric.result())) if model.regression: print(' MSE: {}'.format(validate_mse_metric.result())) print(' Weighted MSE: {}'.format(validate_mse_weighted_metric.result())) print(' MAE: {}'.format(validate_mae_metric.result())) print(' MAPE: {}'.format(validate_mape_metric.result())) print(' R^2 score: {}'.format(validate_r2_score_metric.result())) print(' r-Pearson: {}'.format(validate_pearson_corr_metric.result())) print(' r-Spearman: {}'.format(validate_spearman_corr_metric.result())) else: print(' BCE: {}'.format(validate_bce_metric.result())) print(' Weighted BCE: {}'.format(validate_bce_weighted_metric.result())) print(' Accuracy: {}'.format(validate_accuracy_metric.result())) print(' AUC-ROC: {}'.format(validate_auc_roc_metric.result())) print(' AUC-PR: {}'.format(validate_auc_pr_metric.result())) train_loss = train_loss_metric.result() val_loss = validate_loss_metric.result() if model.regression: train_mse = train_mse_metric.result() train_pearson_corr = train_pearson_corr_metric.result() train_spearman_corr = train_spearman_corr_metric.result() val_mse = validate_mse_metric.result() val_pearson_corr = validate_pearson_corr_metric.result() val_spearman_corr = validate_spearman_corr_metric.result() else: train_bce = train_bce_metric.result() train_bce_weighted = train_bce_weighted_metric.result() train_auc_roc = train_auc_roc_metric.result() train_auc_pr = train_auc_pr_metric.result() val_bce = validate_bce_metric.result() val_bce_weighted = validate_bce_weighted_metric.result() val_auc_roc = validate_auc_roc_metric.result() val_auc_pr = validate_auc_pr_metric.result() # Reset metric states so they are not cumulative over epochs train_loss_metric.reset_states() train_mse_metric.reset_states() train_mse_weighted_metric.reset_states() train_mae_metric.reset_states() train_mape_metric.reset_states() train_r2_score_metric.reset_states() train_pearson_corr_metric.reset_states() train_spearman_corr_metric.reset_states() train_bce_metric.reset_states() train_bce_weighted_metric.reset_states() train_accuracy_metric.reset_states() train_auc_roc_metric.reset_states() train_auc_pr_metric.reset_states() validate_loss_metric.reset_states() validate_mse_metric.reset_states() validate_mse_weighted_metric.reset_states() validate_mae_metric.reset_states() validate_mape_metric.reset_states() validate_r2_score_metric.reset_states() validate_pearson_corr_metric.reset_states() validate_spearman_corr_metric.reset_states() validate_bce_metric.reset_states() validate_bce_weighted_metric.reset_states() validate_accuracy_metric.reset_states() validate_auc_roc_metric.reset_states() validate_auc_pr_metric.reset_states() # Decide whether to stop at this epoch if best_val_loss is None or val_loss < best_val_loss: # Update the best validation loss best_val_loss = val_loss num_epochs_past_best_loss = 0 else: # This loss is worse than one seen before num_epochs_past_best_loss += 1 if num_epochs_past_best_loss >= STOPPING_PATIENCE: # Stop here print(' Stopping at EPOCH {}'.format(epoch+1)) break if model.regression: train_metrics = {'loss': train_loss.numpy(), 'mse': train_mse.numpy(), 'r-pearson': train_pearson_corr, 'r-spearman': train_spearman_corr} val_metrics = {'loss': val_loss.numpy(), 'mse': val_mse.numpy(), 'r-pearson': val_pearson_corr, 'r-spearman': val_spearman_corr} else: train_metrics = {'loss': train_loss.numpy(), 'bce': train_bce.numpy(), 'weighted-bce': train_bce_weighted.numpy(), 'auc-pr': train_auc_pr.numpy(), 'auc-roc': train_auc_roc.numpy()} val_metrics = {'loss': val_loss.numpy(), 'bce': val_bce.numpy(), 'weighted-bce': val_bce_weighted.numpy(), 'auc-pr': val_auc_pr.numpy(), 'auc-roc': val_auc_roc.numpy()} return train_metrics, val_metrics def test(model, x_test, y_test, data_parser, plot_roc_curve=None, plot_predictions=None, write_test_tsv=None, y_train=None): """Test a model. This prints metrics. Args: model: model object x_test, y_test: testing input and outputs (labels, if classification) data_parser: data parser object from parse_data plot_roc_curve: if set, path to PDF at which to save plot of ROC curve plot_predictions: if set, path to PDF at which to save plot of predictions vs. true values write_test_tsv: if set, path to TSV at which to write data on predictions as well as the testing sequences (one row per data point) y_train: (optional) if set, print metrics if the predictor simply predicts the mean of the training data Returns: dict with test metrics at the end (keys are 'loss' and ('bce' or 'mse') and ('auc-roc' or 'r-spearman')) """ # Set the global module-level variables _model, needed by test_step() global _model _model = model tf_test_step = tf.function(test_step) test_ds = make_dataset_and_batch(x_test, y_test, batch_size=model.batch_size) # For regression, determine mean sample weight so that we can # normalize to have mean=1 if model.regression: test_weights = [] for seqs, outputs in test_ds: test_weights += [data_parser.sample_regression_weight(xi, yi, p=model.sample_weight_scaling_factor) for xi, yi in zip(seqs, outputs)] test_weight_mean = np.mean(test_weights) else: test_weight_mean = None def determine_sample_weights(seqs, outputs, norm_factor=None): if not model.regression: # Classification; weight by class labels = [int(o.numpy()[0]) for o in outputs] return [model.class_weights[label] for label in labels] else: # Regression; weight by variance weights = [data_parser.sample_regression_weight(xi, yi, p=model.sample_weight_scaling_factor) for xi, yi in zip(seqs, outputs)] if norm_factor is not None: weights = [w / norm_factor for w in weights] return weights all_true = [] all_predictions = [] for seqs, outputs in test_ds: sample_weight = determine_sample_weights(seqs, outputs, norm_factor=test_weight_mean) sample_weight = tf.constant(sample_weight) y_true, y_pred = tf_test_step(seqs, outputs, sample_weight=sample_weight) if model.regression: test_r2_score_metric(y_true, y_pred) test_pearson_corr_metric(y_true, y_pred) test_spearman_corr_metric(y_true, y_pred) all_true += list(tf.reshape(y_true, [-1]).numpy()) all_predictions += list(tf.reshape(y_pred, [-1]).numpy()) # Check the ordering: y_test should be the same as all_true # (y_test is a 2d array: [[value], [value], ..., [value]] so it must # be flattened prior to comparison) assert np.allclose(y_test.flatten(), all_true) # See note in train_and_validate() for discrepancy between loss and # weighted metric values. print('TEST DONE') print(' Test metrics:') print(' Loss: {}'.format(test_loss_metric.result())) if model.regression: print(' MSE: {}'.format(test_mse_metric.result())) print(' Weighted MSE: {}'.format(test_mse_weighted_metric.result())) print(' MAE: {}'.format(test_mae_metric.result())) print(' MAPE: {}'.format(test_mape_metric.result())) print(' R^2 score: {}'.format(test_r2_score_metric.result())) print(' r-Pearson: {}'.format(test_pearson_corr_metric.result())) print(' r-Spearman: {}'.format(test_spearman_corr_metric.result())) else: print(' BCE: {}'.format(test_bce_metric.result())) print(' Weighted BCE: {}'.format(test_bce_weighted_metric.result())) print(' Accuracy: {}'.format(test_accuracy_metric.result())) print(' AUC-ROC: {}'.format(test_auc_roc_metric.result())) print(' AUC-PR: {}'.format(test_auc_pr_metric.result())) test_loss = test_loss_metric.result() if model.regression: test_mse = test_mse_metric.result() test_pearson_corr = test_pearson_corr_metric.result() test_spearman_corr = test_spearman_corr_metric.result() else: test_bce = test_bce_metric.result() test_bce_weighted = test_bce_weighted_metric.result() test_auc_roc = test_auc_roc_metric.result() test_auc_pr = test_auc_pr_metric.result() test_loss_metric.reset_states() test_mse_metric.reset_states() test_mse_weighted_metric.reset_states() test_mae_metric.reset_states() test_mape_metric.reset_states() test_r2_score_metric.reset_states() test_pearson_corr_metric.reset_states() test_spearman_corr_metric.reset_states() test_bce_metric.reset_states() test_bce_weighted_metric.reset_states() test_accuracy_metric.reset_states() test_auc_roc_metric.reset_states() test_auc_pr_metric.reset_states() if model.regression and y_train is not None: # Print what the MSE would be if only predicting the mean of # the training data print(' MSE on test data if predicting mean of train data:', np.mean(np.square(np.mean(y_train) - np.array(all_true)))) x_test_pos = [data_parser.pos_for_input(xi) for xi in x_test] if write_test_tsv: # Determine features for all input sequences seq_feats = [] for i in range(len(x_test)): seq_feats += [data_parser.seq_features_from_encoding(x_test[i])] cols = ['target', 'target_without_context', 'guide', 'hamming_dist', 'cas13a_pfs', 'crrna_pos', 'true_activity', 'predicted_activity'] with gzip.open(write_test_tsv, 'wt') as fw: def write_row(row): fw.write('\t'.join(str(x) for x in row) + '\n') # Write header write_row(cols) # Write row for each data point for i in range(len(x_test)): def val(k): if k == 'true_activity': return all_true[i] elif k == 'predicted_activity': return all_predictions[i] elif k == 'crrna_pos': if x_test_pos is None: # Use -1 if position is unknown return -1 else: # x_test_pos[i] gives position of x_test[i] return x_test_pos[i] else: return seq_feats[i][k] write_row([val(k) for k in cols]) if plot_roc_curve: from sklearn.metrics import roc_curve import matplotlib.pyplot as plt fpr, tpr, thresholds = roc_curve(all_true, all_predictions) plt.figure(1) plt.plot(fpr, tpr) plt.xlabel('False positive rate') plt.ylabel('True positive rate') plt.title('ROC curve') plt.show() plt.savefig(plot_roc_curve) if plot_predictions: import matplotlib.pyplot as plt plt.figure(1) plt.scatter(all_true, all_predictions, c=x_test_pos) plt.xlabel('True value') plt.ylabel('Predicted value') plt.title('True vs. predicted values') plt.show() plt.savefig(plot_predictions) if model.regression: test_metrics = {'loss': test_loss.numpy(), 'mse': test_mse.numpy(), 'r-pearson': test_pearson_corr, 'r-spearman': test_spearman_corr} else: test_metrics = {'loss': test_loss.numpy(), 'bce': test_bce.numpy(), 'weighted-bce': test_bce_weighted.numpy(), 'auc-pr': test_auc_pr.numpy(), 'auc-roc': test_auc_roc.numpy()} return test_metrics ##################################################################### ##################################################################### ##################################################################### ##################################################################### ##################################################################### ##################################################################### # Functions to train and test using Keras # # Compared to the custom functions above, this provides less # flexibility but makes it simpler and possible to train across # multiple GPUs. ##################################################################### ##################################################################### def train_with_keras(model, x_train, y_train, x_validate, y_validate, max_num_epochs=50): """Fit a model using Keras. The model must have already been compiled (e.g., with construct_model() above). Args: model: compiled model, e.g., output by construct_model() x_train/y_train: training data x_validate/y_validate: validation data; also used for early stopping max_num_epochs: maximum number of epochs to train for; note that the number it is trained for should be less due to early stopping """ # Setup early stopping # The validation data is only used for early stopping es = tf.keras.callbacks.EarlyStopping(monitor='val_loss', mode='min', patience=10, restore_best_weights=True) # Fit the model model.fit(x_train, y_train, validation_data=(x_validate, y_validate), batch_size=model.batch_size, callbacks=[es], class_weight=model.class_weight, epochs=max_num_epochs, verbose=2) def test_with_keras(model, x_test, y_test, data_parser, write_test_tsv=None, callback=None, regression=False): """Test a model. This prints metrics. Args: model: model object x_test, y_test: testing input and outputs (labels, if classification) data_parser: data parser object from parse_data write_test_tsv: if set, path to TSV at which to write data on predictions as well as the testing sequences (one row per data point) callback: if set, a function to call that accepts the true and predicted test values -- called like callback(y_true, f_pred) regression: True iff this is testing a model for regression; this is only used if model.regression is not available Returns: dict with test metrics at the end (keys are 'loss' and ('bce' or 'mse') and ('auc-roc' or 'r-spearman')) """ # model may not have batch_size if it is loaded from a SavedModel # serialization # But the batch_size should not matter for testing, so just use 32 if hasattr(model, 'batch_size'): batch_size = model.batch_size else: batch_size = 32 # Likewise, model may not have regression attribute if it is loaded # from a SavedModel serialization # Override the argument given to this function if it does; otherwise # just use the argument if hasattr(model, 'regression'): regression = model.regression # Evaluate on test data test_metrics = model.evaluate(x_test, y_test, batch_size=batch_size) # Turn test_metrics from list into dict test_metrics = dict(zip(model.metrics_names, test_metrics)) y_true = y_test y_pred = model.predict(x_test, batch_size=batch_size) if write_test_tsv: x_test_pos = [data_parser.pos_for_input(xi) for xi in x_test] # Determine features for all input sequences seq_feats = [] for i in range(len(x_test)): seq_feats += [data_parser.seq_features_from_encoding(x_test[i])] cols = ['target', 'target_without_context', 'guide', 'hamming_dist', 'cas13a_pfs', 'crrna_pos', 'true_activity', 'predicted_activity'] with gzip.open(write_test_tsv, 'wt') as fw: def write_row(row): fw.write('\t'.join(str(x) for x in row) + '\n') # Write header write_row(cols) # Write row for each data point for i in range(len(x_test)): def val(k): if k == 'true_activity': yt = y_true[i] assert len(yt) == 1 return yt[0] elif k == 'predicted_activity': yp = y_pred[i] assert len(yp) == 1 return yp[0] elif k == 'crrna_pos': if x_test_pos is None: # Use -1 if position is unknown return -1 else: # x_test_pos[i] gives position of x_test[i] return x_test_pos[i] else: return seq_feats[i][k] write_row([val(k) for k in cols]) if regression: mse_metric = tf.keras.metrics.MeanSquaredError() mse_metric(y_true, y_pred) mse = mse_metric.result().numpy() pearson_corr_metric = Correlation('pearson_corr') pearson_corr_metric(y_true, y_pred) pearson_corr = pearson_corr_metric.result() spearman_corr_metric = Correlation('spearman_corr') spearman_corr_metric(y_true, y_pred) spearman_corr = spearman_corr_metric.result() test_metrics = {'loss': test_metrics['loss'], 'mse': mse, 'r-pearson': pearson_corr, 'r-spearman': spearman_corr} else: bce_metric = tf.keras.metrics.BinaryCrossentropy() bce_metric(y_true, y_pred) bce = bce_metric.result().numpy() auc_pr_metric = tf.keras.metrics.AUC(num_thresholds=500, curve='PR') auc_pr_metric(y_true, y_pred) auc_pr = auc_pr_metric.result().numpy() auc_roc_metric = tf.keras.metrics.AUC(num_thresholds=500, curve='ROC') auc_roc_metric(y_true, y_pred) auc_roc = auc_roc_metric.result().numpy() test_metrics = {'loss': test_metrics['loss'], 'bce': bce, 'auc-pr': auc_pr, 'auc-roc': auc_roc} print('TEST METRICS:', test_metrics) if callback is not None: callback(y_true, y_pred) return test_metrics ##################################################################### ##################################################################### ##################################################################### ##################################################################### def main(): # Read arguments and data args = parse_args() if args.load_model: # Read saved parameters and load them into the args namespace print('Loading parameters for model..') load_path_params = os.path.join(args.load_model, 'model.params.pkl') with open(load_path_params, 'rb') as f: saved_params = pickle.load(f) params = vars(args) for k, v in saved_params.items(): print("Setting argument '{}'={}".format(k, v)) params[k] = v if args.test_split_frac: train_and_validate_split_frac = 1.0 - args.test_split_frac if not (args.load_model or args.load_model_as_tf_savedmodel): # Since this will be training a model, reserve validation # data (25%) for early stopping validate_frac = 0.2*train_and_validate_split_frac train_frac = train_and_validate_split_frac - validate_frac else: train_frac = train_and_validate_split_frac validate_frac = 0.0 split_frac = (train_frac, validate_frac, args.test_split_frac) else: split_frac = None # Set seed and read data set_seed(args.seed) data_parser = read_data(args, split_frac=split_frac) x_train, y_train = data_parser.train_set() x_validate, y_validate = data_parser.validate_set() x_test, y_test = data_parser.test_set() # Determine, based on the dataset, whether to do regression or # classification if args.dataset == 'cas13': if args.cas13_classify: regression = False else: regression = True if regression and args.plot_roc_curve: raise Exception(("Can only use --plot-roc-curve when doing " "classification")) if not regression and args.plot_predictions: raise Exception(("Can only use --plot-predictions when doing " "regression")) if args.load_model and args.load_model_as_tf_savedmodel: raise Exception(("Cannot set both --load-model and " "--load-model-as-tf-savedmodel")) if args.load_model: # Load the model weights; the model architecture is specified # by params print('Loading model weights..') model = load_model(args.load_model, params, x_train, y_train) print('Done loading model.') elif args.load_model_as_tf_savedmodel: # Load a model saved with TensorFlow's SavedModel format # This contains both model architecture and weights model = tf.keras.models.load_model( args.load_model_as_tf_savedmodel) else: # Construct model params = vars(args) model = construct_model(params, x_train.shape, regression, compile_for_keras=True, y_train=y_train) # Train the model, with validation train_with_keras(model, x_train, y_train, x_validate, y_validate) if args.filter_test_data_by_classification_score: if not regression: raise Exception(("Can only use --filter-test-data-by-classification-" "score when testing regression")) classification_test_tsv, score_threshold = args.filter_test_data_by_classification_score score_threshold = float(score_threshold) x_test, y_test = filter_test_data_by_classification_score( x_test, y_test, data_parser, classification_test_tsv, score_threshold) # Test the model test_with_keras(model, x_test, y_test, data_parser, write_test_tsv=args.write_test_tsv, regression=regression) if (not regression) and (not args.load_model_as_tf_savedmodel): # Determine threshold for classifier # Note that this should only use params; it should *not* use # a pre-trained model with loaded weights # This does not use test data print('Determining classifier threshold via cross-validation') num_splits = 5 thresholds = determine_classifier_threshold_for_precision( params, x_train, y_train, num_splits, data_parser, args.determine_classifier_threshold_for_precision) print(('Mean threshold across folds to achieve precision of %f = %f') % (args.determine_classifier_threshold_for_precision, np.mean(thresholds))) print(('Median threshold across folds to achieve precision of %f = %f') % (args.determine_classifier_threshold_for_precision, np.median(thresholds))) print(' Thresholds are:', thresholds) if args.serialize_model_with_tf_savedmodel: # Serialize the model using TensorFlow's SavedModel format # This saves model architecture, weights, and training configuration model.save(args.serialize_model_with_tf_savedmodel) if __name__ == "__main__": main() ```
{ "source": "jingyi7777/CasRx_guide_efficiency", "score": 3 }
#### File: Deep-learning/dataset/all_guide_cd_validation_dataset.py ```python import pandas as pd import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split import random from dataset.dataset_utils import * def all_guide_cd_validation_dataset(args): dataframe = pd.read_csv('../../data/integrated_guide_feature_filtered_f24_mismatch3_all_features.csv') num_examples = len(dataframe['gene'].values) #lin_seq_dict, lin_result_dict = parse_guide_linearfold_fasta_into_dict_contrafold() encoded_guides = [one_hot_encode_sequence(guide) for guide in dataframe['guide'].values] #encoded_linearfold = [one_hot_encode_linearfold(lin_seq_dict[guide], remove_universal_start=True) for guide in # dataframe['guide'].values] other_single_value_inputs = np.empty((9, num_examples)) other_single_value_inputs[0, :] = dataframe['linearfold_vals'].values other_single_value_inputs[1, :] = dataframe['is_5UTR'].values other_single_value_inputs[2, :] = dataframe['is_CDS'].values other_single_value_inputs[3, :] = dataframe['is_3UTR'].values other_single_value_inputs[4, :] = dataframe['refseq_target_transcript_percent'].values other_single_value_inputs[5, :] = dataframe['target unfold energy'] other_single_value_inputs[6, :] = dataframe['UTR5_position'].values other_single_value_inputs[7, :] = dataframe['CDS_position'].values other_single_value_inputs[8, :] = dataframe['UTR3_position'].values #classes = 1- dataframe['old_binary_relative_ratio_gene20'].values classes = dataframe['binary_relative_ratio_075f'].values outputs = dataframe['relative_ratio'].values if args.regression else classes.astype(np.float32) #outputs = outputs.tolist() all_cols = [encoded_guides, # will be N x 4 from guide encoding normalize(other_single_value_inputs.T), # classes, outputs ] #tr = all_cols if args.kfold == None: tr, val, te_train = create_gene_splits(dataframe['gene'].values, all_cols) else: #tr, val = create_gene_splits_no_test_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) #tr, val, te_train = create_gene_splits_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) #tr, val, te_train = create_gene_splits_filter1_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) #tr, val = create_gene_splits_filter1_no_test_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) tr, val = create_gene_splits_filter1_test_asval_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) # test set data, cd validation tedf = pd.read_csv('dataset/cdscreen_filtered_t1_new_features_ratios.csv') encoded_guides_te = [one_hot_encode_sequence(guide) for guide in tedf['guide'].values] num_examples_te = len(tedf['guide'].values) outputs_te = tedf['t1_bin1_to_sum_bin14_rank_withr3'].values if args.regression else tedf['t1_binary_relative_ratio_withrep3'].values #outputs_te =outputs_te.tolist() other_single_value_inputs_te = np.empty((9, num_examples_te)) other_single_value_inputs_te[0, :] = tedf['linf_contrafold_val'].values/max(dataframe['linearfold_vals'].values) #normalize as the training data other_single_value_inputs_te[1, :] = tedf['is_5UTR'].values other_single_value_inputs_te[2, :] = tedf['is_CDS'].values other_single_value_inputs_te[3, :] = tedf['is_3UTR'].values other_single_value_inputs_te[4, :] = tedf['refseq_target_transcript_percent'].values other_single_value_inputs_te[5, :] = tedf['target_flank_ddg']/max(dataframe['target unfold energy'].values) other_single_value_inputs_te[6, :] = tedf['UTR5_position']/max(dataframe['UTR5_position'].values) other_single_value_inputs_te[7, :] = tedf['CDS_position']/max(dataframe['CDS_position'].values) other_single_value_inputs_te[8, :] = tedf['UTR3_position']/max(dataframe['UTR3_position'].values) all_cols_te = [encoded_guides_te, # will be N x 4 from guide encoding other_single_value_inputs_te.T, outputs_te ] te = all_cols_te tr_out = tr[-1] tr = tuple(tr[:-1]) val_out = val[-1] val = tuple(val[:-1]) te_out = te[-1] te = tuple(te[:-1]) train_dataset = tf.data.Dataset.from_tensor_slices((tr, tr_out)) val_dataset = tf.data.Dataset.from_tensor_slices((val, val_out)) test_dataset = tf.data.Dataset.from_tensor_slices((te, te_out)) # shuffle and batch train_dataset = prep_dataset(train_dataset, batch_size=128) val_dataset = prep_dataset(val_dataset, batch_size=128) test_dataset = prep_dataset(test_dataset, batch_size=128) return train_dataset, val_dataset, test_dataset ``` #### File: Deep-learning/dataset/guide_all_features_9f_dataset.py ```python import pandas as pd import numpy as np import tensorflow as tf from sklearn.model_selection import train_test_split import random #from dataset.dataset_filtered_utils import * from dataset.dataset_utils import * #from dataset.dataset_utils import normalize def guide_all_features_9f_dataset(args): dataframe = pd.read_csv('../../data/integrated_guide_feature_filtered_f24_mismatch3_all_features.csv') num_examples = len(dataframe['gene'].values) #lin_seq_dict, lin_result_dict = parse_guide_linearfold_fasta_into_dict() #lin_seq_dict, lin_result_dict = parse_guide_linearfold_fasta_into_dict_contrafold() encoded_guides = [one_hot_encode_sequence(guide) for guide in dataframe['guide'].values] #encoded_linearfold = [one_hot_encode_linearfold(lin_seq_dict[guide], remove_universal_start=True) for guide in # dataframe['guide'].values] # encoded_guides = [reverse_complement_encoding(guide) for guide in dataframe['guide'].values] #target with nearby seq, dg of native and unfolded # flank_l = int(args.flanklength) # lin_seq_flanks_dict, lin_result_flanks_dict = parse_target_flanks_linearfold_fasta_into_dict_contrafold(flank_len = flank_l) # linearfold_vals_target = [lin_result_flanks_dict[target_flanks] for target_flanks in dataframe['nearby_seq_all_'+str(flank_l)].values] #native energy # #lin_seq_flanks = [lin_seq_flanks_dict[target_flanks] for target_flanks in dataframe['nearby_seq_all_100'].values] # unfold_lin_seq_flanks_dict, unfold_lin_result_flanks_dict = parse_target_flanks_constraints_linearfold_fasta_into_dict_contrafold(flank_len = flank_l) # unfold_linearfold_vals_target = [unfold_lin_result_flanks_dict[target_flanks] for target_flanks in dataframe['nearby_seq_all_'+str(flank_l)].values] #unfolded target energy # ddg = [] #energy required to unfold the guide binding region # for jj in range(num_examples): # ddg.append((linearfold_vals_target[jj]-unfold_linearfold_vals_target[jj])) classes = dataframe['binary_relative_ratio_075f'].values outputs = dataframe['relative_ratio'].values if args.regression else classes.astype(np.float32) other_single_value_inputs = np.empty((9, num_examples)) other_single_value_inputs[0, :] = dataframe['linearfold_vals'].values other_single_value_inputs[1, :] = dataframe['is_5UTR'].values other_single_value_inputs[2, :] = dataframe['is_CDS'].values other_single_value_inputs[3, :] = dataframe['is_3UTR'].values other_single_value_inputs[4, :] = dataframe['refseq_target_transcript_percent'].values other_single_value_inputs[5, :] = dataframe['target unfold energy'].values other_single_value_inputs[6, :] = dataframe['UTR5_position'].values other_single_value_inputs[7, :] = dataframe['CDS_position'].values other_single_value_inputs[8, :] = dataframe['UTR3_position'].values #other_single_value_inputs[9, :] = dataframe['linearfold_dr_flag'].values #other_single_value_inputs[10, :] = dataframe['GC_content'].values all_cols = [encoded_guides, normalize(other_single_value_inputs.T), # classes, outputs ] if args.kfold == None: tr, val, te = create_gene_splits(dataframe['gene'].values, all_cols) else: #tr, val, te = create_gene_splits_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) tr, val, te = create_gene_splits_filter1_kfold(dataframe['gene'].values, all_cols, args.kfold, args.split) tr_out = tr[-1] tr = tuple(tr[:-1]) val_out = val[-1] val = tuple(val[:-1]) te_out = te[-1] te = tuple(te[:-1]) train_dataset = tf.data.Dataset.from_tensor_slices((tr, tr_out)) val_dataset = tf.data.Dataset.from_tensor_slices((val, val_out)) test_dataset = tf.data.Dataset.from_tensor_slices((te, te_out)) # shuffle and batch train_dataset = prep_dataset(train_dataset, batch_size=128) val_dataset = prep_dataset(val_dataset, batch_size=128) test_dataset = prep_dataset(test_dataset, batch_size=128) return train_dataset, val_dataset, test_dataset ``` #### File: Deep-learning/models/__init__.py ```python import importlib def find_model_using_name(model_name): """Import the module "models/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = "models." + model_name + "_model" modellib = importlib.import_module(model_filename) model = None target_model_name_if_func = model_name + '_model' target_model_name_if_class = model_name.replace('_', '') + 'model' for name, potential_model_creator in modellib.__dict__.items(): if name.lower() == target_model_name_if_func.lower() or name.lower() == target_model_name_if_class.lower(): model = potential_model_creator if model is None: print("In %s.py, there should be a function that matches %s or class that matches %s in lowercase." % ( model_filename, target_model_name_if_func, target_model_name_if_class)) exit(0) return model def find_hp_model_using_name(model_name): """Import the module "models/[model_name]_model.py". In the file, the class called DatasetNameModel() will be instantiated. It has to be a subclass of BaseModel, and it is case-insensitive. """ model_filename = "models." + model_name + "_model" modellib = importlib.import_module(model_filename) model = None target_model_name_if_func = model_name + '_model_hp' target_model_name_if_class = model_name.replace('_', '') + 'model_hp' for name, potential_model_creator in modellib.__dict__.items(): if name.lower() == target_model_name_if_func.lower() or name.lower() == target_model_name_if_class.lower(): model = potential_model_creator if model is None: print("In %s.py, there should be a function that matches %s or class that matches %s in lowercase." % ( model_filename, target_model_name_if_func, target_model_name_if_class)) exit(0) return model if __name__ == '__main__': model = find_model_using_name('no_gene_seq_lstm')() print(model) ``` #### File: models/Deep-learning/predict_ensemble.py ```python import tensorflow as tf from tensorflow import keras import tensorflow_addons as tfa import datetime import pdb import numpy as np from dataset import find_dataset_generator_using_name from models import find_model_using_name from options.options import get_arguments from matplotlib import pyplot as plt from utils import * tf.random.set_seed(0) #random.seed(0) np.random.seed(0) def logits_mean_absolute_error(y_true, y_pred): y_pred = tf.sigmoid(y_pred) return keras.metrics.mean_absolute_error(y_true, y_pred) def logits_mean_squared_error(y_true, y_pred): y_pred = tf.sigmoid(y_pred) return keras.metrics.mean_squared_error(y_true, y_pred) def wbce(y_true, y_pred, weight1 = 1, weight0 = 1) : y_true = tf.keras.clip(y_true, K.epsilon(), 1-K.epsilon()) y_pred = tf.keras.clip(y_pred, K.epsilon(), 1-K.epsilon()) logloss = -(y_true * K.log(y_pred) * weight1 + (1 - y_true) * K.log(1 - y_pred) * weight0 ) return tf.keras.mean( logloss, axis=-1) def predict_ensemble(args): model_generator = find_model_using_name(args.model) dataset_generator = find_dataset_generator_using_name(args.dataset) model = model_generator(args) model: keras.Model train_dataset, val_dataset, test_dataset = dataset_generator(args) unshuffled_train = train_dataset train_dataset = train_dataset.shuffle(len(train_dataset), reshuffle_each_iteration=True) if args.saved != None: predict_allf = [] for s in range(9): unique_train_signature = '%s/%s/%s/%s' % ( dataset_generator.__name__, model_generator.__name__, 'regression' if args.regression else 'classification', ('fold_'+ str(s))) #model_path = 'saved_model/'+unique_train_signature model_path = args.saved+('/fold_'+ str(s)) if args.regression: model = keras.models.load_model(model_path,custom_objects={'logits_mean_absolute_error':logits_mean_absolute_error,'logits_mean_squared_error':logits_mean_squared_error}) else: model = keras.models.load_model(model_path) output = np.array(model.predict(test_dataset).flat) predict_allf.append(output) predict_allf = np.array(predict_allf) # mean across ensemble members predict_mean = np.mean(predict_allf, axis=0) #sigmoid outputs = np.array(list(tf.sigmoid(predict_mean).numpy().flat)) #labels = [label for (inputs, label) in test_dataset.unbatch()] labels = np.array([label for (input, label) in test_dataset.unbatch().as_numpy_iterator()]) test_inputs = [inputs for (inputs, label) in test_dataset.unbatch()] if len(test_inputs[0]) == 2: test_sequences =[np.array(sequences) for (sequences, features) in test_inputs] test_features = [features for (sequences, features) in test_inputs] else: test_sequences = [np.array(sequences[0]) for sequences in test_inputs] def encoded_nuc_to_str(encoded_seq): indices = np.argmax(encoded_seq, axis=1) return ''.join([base_positions[i] for i in indices]) test_predic =[] for i in range(len(outputs)): nuc_sequence = encoded_nuc_to_str(test_sequences[i][:,0:4]) test_predic.append([nuc_sequence,outputs[i],labels[i]]) #test_predic.append([nuc_sequence,outputs[i]]) test_df = pd.DataFrame(test_predic, columns = ['spacer sequence', 'predicted_value_sigmoid','true label']) #test_df['output rank'] = test_df['predicted_value_sigmoid'].rank(ascending=False) dataset_folder = 'results/' + args.dataset + '/' #model_folder = dataset_folder + model_name + '/' model_folder = dataset_folder + args.model + '_classification/' if not os.path.exists(dataset_folder): os.mkdir(dataset_folder) if not os.path.exists(model_folder): os.mkdir(model_folder) test_df.to_csv('%s%s_%s_ensemble.csv' % (model_folder, "test_prediction", 'gl-'+str(args.guidelength))) #evaluate score = roc_auc_score(labels, outputs) #fpr, tpr, _ = roc_curve(labels, outputs) print('AUROC: '+str(score)) average_precision = average_precision_score(labels, outputs) #precision, recall, thres_prc = precision_recall_curve(labels, outputs) print('AUPRC: '+str(average_precision)) # #stats for different thresholds # thres_list = [0.8, 0.9,0.95] # for thres in thres_list: # print(thres) # df_pre_good = test_df[test_df['predicted_value_sigmoid']>thres] # true_bin_ratio = df_pre_good['true label'].values # num_real_gg = np.count_nonzero(true_bin_ratio) # if len(true_bin_ratio)>0: # gg_ratio = num_real_gg/len(true_bin_ratio) # print('true good guide percent '+str(gg_ratio)) else: if args.focal: loss = lambda y_true, y_pred: tfa.losses.sigmoid_focal_crossentropy(y_true, y_pred, from_logits=True) else: loss = tf.keras.losses.BinaryCrossentropy(from_logits=True) optimizer = keras.optimizers.Adam(lr=args.lr) if args.regression: metrics = [logits_mean_absolute_error, logits_mean_squared_error] model.compile(optimizer=optimizer, loss=tf.keras.losses.MeanSquaredError(), metrics=metrics) else: # metrics = ['accuracy', keras.metrics.Precision(), keras.metrics.Recall()] #doesn't work with logits metrics = ['accuracy'] model.compile(optimizer=optimizer, loss=loss, metrics=metrics) unique_train_signature = '%s/%s/%s/%s' % ( dataset_generator.__name__, model_generator.__name__, 'regression' if args.regression else 'classification', ('fold_'+ str(args.split)) #datetime.datetime.now().isoformat() ) callbacks = [ keras.callbacks.EarlyStopping(patience=16, restore_best_weights=True), keras.callbacks.TensorBoard(log_dir='logs/%s' % unique_train_signature, # update_freq=100 ), keras.callbacks.ModelCheckpoint('checkpoints/%s' % unique_train_signature, save_best_only=True) ] if args.weighted: #weight_zeros = 1.0 / (0.8 * 2.0) # 1 / (% of class * number of classes) #weight_ones = 1.0 / (0.2 * 2.0) weight_zeros = 1.0 weight_ones = 2.0 class_weights = {0: weight_zeros, 1: weight_ones} history = model.fit(train_dataset, epochs=200, validation_data=val_dataset, verbose=1, callbacks=callbacks, class_weight=class_weights ) else: history = model.fit(train_dataset, epochs=200, validation_data=val_dataset, verbose=1, callbacks=callbacks ) model.save('saved_model/%s' % unique_train_signature) #if args.regression: # get_regression_metrics_cd(model, test_dataset, args.regression, args.kfold, args.split, model_name=args.model, dataset_name=args.dataset) # get_pseudo_roc_for_regression(model, test_dataset, args.regression, args.kfold, args.split, model_name=args.model, dataset_name=args.dataset) #else: # fig, (ax1, ax2) = plt.subplots(1, 2) # get_classification_metrics(model, unshuffled_train, fig, ax1, ax2, args.regression, args.kfold, args.split, args.guidelength, model_name=args.model + ' on train', # dataset_name=args.dataset, save=False) # get_classification_metrics(model, val_dataset, fig, ax1, ax2, args.regression, args.kfold, args.split, args.guidelength, model_name=args.model + ' on val', dataset_name=args.dataset, # save=False) # classification_analysis_new(args.testset_path, model, test_dataset, args.regression, args.kfold, args.split, args.guidelength, model_name=args.model, dataset_name=args.dataset) if args.gradients: integrated_gradients(model, test_dataset, args.regression, args.kfold, args.split, model_name=args.model, dataset_name=args.dataset) print("done!") if __name__ == '__main__': # Enable the following 3 lines if using a graphics card and you get CUDNN_STATUS_INTERNAL_ERROR args = get_arguments() gpus = tf.config.experimental.list_physical_devices('GPU') if len(gpus) > 0: gpus_to_use = args.gpu_ids.split(",") for i in range(len(gpus_to_use)): gpu_id = int(gpus_to_use[i]) tf.config.experimental.set_memory_growth(gpus[gpu_id], True) predict_ensemble(args) ```
{ "source": "jingyibo123/FCGF", "score": 3 }
#### File: FCGF/util/file.py ```python import os import re from os import listdir from os.path import isfile, isdir, join, splitext def read_txt(path): """Read txt file into lines. """ with open(path) as f: lines = f.readlines() lines = [x.strip() for x in lines] return lines def ensure_dir(path): if not os.path.exists(path): os.makedirs(path, mode=0o755) def sorted_alphanum(file_list_ordered): def convert(text): return int(text) if text.isdigit() else text def alphanum_key(key): return [convert(c) for c in re.split('([0-9]+)', key)] return sorted(file_list_ordered, key=alphanum_key) def get_file_list(path, extension=None): if extension is None: file_list = [join(path, f) for f in listdir(path) if isfile(join(path, f))] else: file_list = [ join(path, f) for f in listdir(path) if isfile(join(path, f)) and splitext(f)[1] == extension ] file_list = sorted_alphanum(file_list) return file_list def get_file_list_specific(path, color_depth, extension=None): if extension is None: file_list = [join(path, f) for f in listdir(path) if isfile(join(path, f))] else: file_list = [ join(path, f) for f in listdir(path) if isfile(join(path, f)) and color_depth in f and splitext(f)[1] == extension ] file_list = sorted_alphanum(file_list) return file_list def get_folder_list(path): folder_list = [join(path, f) for f in listdir(path) if isdir(join(path, f))] folder_list = sorted_alphanum(folder_list) return folder_list ```
{ "source": "jingyibo123/MinkowskiEngine", "score": 2 }
#### File: MinkowskiEngine/utils/quantization.py ```python import torch import numpy as np from collections import Sequence import MinkowskiEngineBackend as MEB def fnv_hash_vec(arr): """ FNV64-1A """ assert arr.ndim == 2 # Floor first for negative coordinates arr = arr.copy() arr = arr.astype(np.uint64, copy=False) hashed_arr = np.uint64(14695981039346656037) * \ np.ones(arr.shape[0], dtype=np.uint64) for j in range(arr.shape[1]): hashed_arr *= np.uint64(1099511628211) hashed_arr = np.bitwise_xor(hashed_arr, arr[:, j]) return hashed_arr def ravel_hash_vec(arr): """ Ravel the coordinates after subtracting the min coordinates. """ assert arr.ndim == 2 arr = arr.copy() arr -= arr.min(0) arr = arr.astype(np.uint64, copy=False) arr_max = arr.max(0).astype(np.uint64) + 1 keys = np.zeros(arr.shape[0], dtype=np.uint64) # Fortran style indexing for j in range(arr.shape[1] - 1): keys += arr[:, j] keys *= arr_max[j + 1] keys += arr[:, -1] return keys def quantize(coords): r"""Returns a unique index map and an inverse index map. Args: :attr:`coords` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a matrix of size :math:`N \times D` where :math:`N` is the number of points in the :math:`D` dimensional space. Returns: :attr:`unique_map` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a list of indices that defines unique coordinates. :attr:`coords[unique_map]` is the unique coordinates. :attr:`inverse_map` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a list of indices that defines the inverse map that recovers the original coordinates. :attr:`coords[unique_map[inverse_map]] == coords` Example:: >>> unique_map, inverse_map = quantize(coords) >>> unique_coords = coords[unique_map] >>> print(unique_coords[inverse_map] == coords) # True, ..., True >>> print(coords[unique_map[inverse_map]] == coords) # True, ..., True """ assert isinstance(coords, np.ndarray) or isinstance(coords, torch.Tensor), \ "Invalid coords type" if isinstance(coords, np.ndarray): assert coords.dtype == np.int32, f"Invalid coords type {coords.dtype} != np.int32" return MEB.quantize_np(coords.astype(np.int32)) else: # Type check done inside return MEB.quantize_th(coords.int()) def quantize_label(coords, labels, ignore_label): assert isinstance(coords, np.ndarray) or isinstance(coords, torch.Tensor), \ "Invalid coords type" if isinstance(coords, np.ndarray): assert isinstance(labels, np.ndarray) assert coords.dtype == np.int32, f"Invalid coords type {coords.dtype} != np.int32" assert labels.dtype == np.int32, f"Invalid label type {labels.dtype} != np.int32" return MEB.quantize_label_np(coords, labels, ignore_label) else: assert isinstance(labels, torch.Tensor) # Type check done inside return MEB.quantize_label_th(coords, labels.int(), ignore_label) def sparse_quantize(coords, feats=None, labels=None, ignore_label=-100, return_index=False, return_inverse=False, quantization_size=None): r"""Given coordinates, and features (optionally labels), the function generates quantized (voxelized) coordinates. Args: :attr:`coords` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`): a matrix of size :math:`N \times D` where :math:`N` is the number of points in the :math:`D` dimensional space. :attr:`feats` (:attr:`numpy.ndarray` or :attr:`torch.Tensor`, optional): a matrix of size :math:`N \times D_F` where :math:`N` is the number of points and :math:`D_F` is the dimension of the features. Must have the same container as `coords` (i.e. if `coords` is a torch.Tensor, `feats` must also be a torch.Tensor). :attr:`labels` (:attr:`numpy.ndarray` or :attr:`torch.IntTensor`, optional): integer labels associated to eah coordinates. Must have the same container as `coords` (i.e. if `coords` is a torch.Tensor, `labels` must also be a torch.Tensor). For classification where a set of points are mapped to one label, do not feed the labels. :attr:`ignore_label` (:attr:`int`, optional): the int value of the IGNORE LABEL. :attr:`torch.nn.CrossEntropyLoss(ignore_index=ignore_label)` :attr:`return_index` (:attr:`bool`, optional): set True if you want the indices of the quantized coordinates. False by default. :attr:`return_inverse` (:attr:`bool`, optional): set True if you want the indices that can recover the discretized original coordinates. False by default. `return_index` must be True when `return_reverse` is True. Example:: >>> unique_map, inverse_map = sparse_quantize(discrete_coords, return_index=True, return_inverse=True) >>> unique_coords = discrete_coords[unique_map] >>> print(unique_coords[inverse_map] == discrete_coords) # True :attr:`quantization_size` (:attr:`float`, :attr:`list`, or :attr:`numpy.ndarray`, optional): the length of the each side of the hyperrectangle of of the grid cell. Example:: >>> # Segmentation >>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100) >>> coords, feats, labels = MinkowskiEngine.utils.sparse_quantize( >>> coords, feats, labels, ignore_label=-100, quantization_size=0.1) >>> output = net(MinkowskiEngine.SparseTensor(feats, coords)) >>> loss = criterion(output.F, labels.long()) >>> >>> # Classification >>> criterion = torch.nn.CrossEntropyLoss(ignore_index=-100) >>> coords, feats = MinkowskiEngine.utils.sparse_quantize(coords, feats) >>> output = net(MinkowskiEngine.SparseTensor(feats, coords)) >>> loss = criterion(output.F, labels.long()) """ assert isinstance(coords, np.ndarray) or isinstance(coords, torch.Tensor), \ 'Coords must be either np.array or torch.Tensor.' use_label = labels is not None use_feat = feats is not None assert coords.ndim == 2, \ "The coordinates must be a 2D matrix. The shape of the input is " + str(coords.shape) if return_inverse: assert return_index, "return_reverse must be set with return_index" if use_feat: assert feats.ndim == 2 assert coords.shape[0] == feats.shape[0] if use_label: assert coords.shape[0] == len(labels) dimension = coords.shape[1] # Quantize the coordinates if quantization_size is not None: if isinstance(quantization_size, (Sequence, np.ndarray, torch.Tensor)): assert len( quantization_size ) == dimension, "Quantization size and coordinates size mismatch." if isinstance(coords, np.ndarray): quantization_size = np.array([i for i in quantization_size]) discrete_coords = np.floor(coords / quantization_size) else: quantization_size = torch.Tensor([i for i in quantization_size]) discrete_coords = (coords / quantization_size).floor() elif np.isscalar(quantization_size): # Assume that it is a scalar if quantization_size == 1: discrete_coords = coords else: discrete_coords = np.floor(coords / quantization_size) else: raise ValueError('Not supported type for quantization_size.') else: discrete_coords = coords discrete_coords = np.floor(discrete_coords) if isinstance(coords, np.ndarray): discrete_coords = discrete_coords.astype(np.int32) else: discrete_coords = discrete_coords.int() # Return values accordingly if use_label: mapping, colabels = quantize_label(discrete_coords, labels, ignore_label) if return_index: return mapping, colabels else: if use_feat: return discrete_coords[mapping], feats[mapping], colabels else: return discrete_coords[mapping], colabels else: unique_map, inverse_map = quantize(discrete_coords) if return_index: if return_inverse: return unique_map, inverse_map else: return unique_map else: if use_feat: return discrete_coords[unique_map], feats[unique_map] else: return discrete_coords[unique_map] ```
{ "source": "jingyibo123/sudoku_detector_opencv", "score": 2 }
#### File: sudoku_detector_opencv/py/eval_detect.py ```python import cv2 import numpy as np from timer import Timer from sudoku_detector import parse_sudoku, find_grid, extract_digits, locate_digit_in_cell from solve import solver from svm import train_svm, SZ import os import json import xlsxwriter from datashape.coretypes import int32 SZ = 9 timer = Timer(True) image_path = '../../resource/images/all/' generate_digit_path = '../../resource/extractedDigits/' generate_cell_path = '../../resource/extractedCells/' def search_testfiles(path = image_path): filenames = [] for filename in os.listdir(path): if filename.endswith(".jpg"): filenames.append(filename.rstrip(".jpg")) if filename.endswith(".png"): filenames.append(filename.rstrip(".png")) return filenames def extract_digit_samples_from_puzzles(): filenames = search_testfiles() for name in filenames: expected = load_dat(name) img = cv2.imread(image_path + name + '.jpg') gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) grid = find_grid(gray) if grid is None: continue digit_images = extract_digits(grid) for pos, digit in digit_images.items(): cv2.imwrite(generate_digit_path+'all/from'+name+'_digit'+str(expected[pos])+'_pos'+str(pos)+'.png', digit) cv2.imwrite(generate_digit_path+str(expected[pos])+'/'+'from'+name+'_digit'+str(expected[pos])+'_pos'+str(pos)+'.png', digit) def extract_cells_from_puzzles(): filenames = search_testfiles(image_path) # read from file with open('../../resource/images_grid_pts.txt', 'r') as f: img_grid_pts = json.load(f) for name in filenames: expected = load_dat(name) img = cv2.imread(image_path + name + '.jpg') square = np.asarray(img_grid_pts[name], np.float32) grid_rows = int(square[3][1] - square[0][1] + square[2][1] - square[1][1]) // 2 grid_cols = int(square[1][0] - square[0][0] + square[2][0] - square[3][0]) // 2 h = np.array([ [0,0],[grid_cols - 1,0],[grid_cols - 1,grid_rows - 1],[0,grid_rows - 1] ],np.float32) # perspective transformation retval = cv2.getPerspectiveTransform(square,h) grid = cv2.warpPerspective(img,retval,(grid_cols, grid_rows)) v_lines = [int(i * grid.shape[1] / SZ) for i in range(0, SZ + 1)] h_lines = [int(i * grid.shape[0] / SZ) for i in range(0, SZ + 1)] for n in range(81): cell = grid[h_lines[n//SZ]:h_lines[n//SZ + 1], v_lines[n%SZ]:v_lines[n%SZ + 1]] cell = cv2.resize(cell, (128, 128)); cv2.imwrite(generate_cell_path+'all/from'+name+'_digit'+str(expected[n])+'_pos'+str(n)+'.png', cell) cv2.imwrite(generate_cell_path+str(expected[n])+'/'+'from'+name+'_digit'+str(expected[n])+'_pos'+str(n)+'.png', cell) pass def load_dat(filename): digits = [] with open(image_path + filename +".dat") as f: txt_lines = f.readlines()[2:] for l in txt_lines: digits.extend([int(s) for s in l.strip().split(' ')]) return(digits) def eval_digits(result, expected): re = {} result = np.int8(result).ravel() expected = np.int8(expected).ravel() total = 0 for ex in expected: if ex != 0: total = total + 1 re['total'] = total # re['total'] = int(np.count_nonzero(expected)) re['missed'] = 0 if np.count_nonzero(result) < np.count_nonzero(expected): re['missed'] = int(np.count_nonzero(expected) - np.count_nonzero(result)) re['wrong'] = int(np.sum(result != expected) - re['missed']) return re def eval_all(): imgs = search_testfiles(image_path) incorrect = {} eval_result = {} timer.timeit() notGrid = 0 for name in imgs: expected = load_dat(name) digits = parse_sudoku(image_path + name + '.jpg') if digits is None: print("grid not found", name) notGrid = notGrid + 1 continue re = eval_digits(digits, expected) eval_result[name] = re if sum(digits) != 0: for i in range(81): if expected[i] != digits[i]: inc = {'pos': i, 'expected': expected[i], 'result': digits[i]} incorrect[name] = inc print("grid not found : " + str(notGrid)) timer.timeit('all images processed') print(incorrect) total = [r['total'] for k, r in eval_result.items()] miss = [r['missed'] for k, r in eval_result.items()] wrong = [r['wrong'] for k, r in eval_result.items()] print('total :', sum(total), 'correct :', sum(total)-sum(miss)-sum(wrong), 'missed :', sum(miss), 'wrong :', sum(wrong), 'correct ratio :', 1-sum(wrong)/(sum(total)-sum(miss))) return eval_result def generate_digit_box(): """ use opencv to locate digit in grid images, output the rounding box coordinates and draw the box on the grid image. """ imgs = search_testfiles('../../resource/output/grid/all/') # read from file img_grid_pts = dict() for name in imgs: expected = load_dat(name) boxes = dict() grid = cv2.imread('../../resource/output/grid/all/' + name + '.png') grid_gray = cv2.cvtColor(grid,cv2.COLOR_BGR2GRAY) grid_blur = cv2.GaussianBlur(grid_gray,(7, 7),0) grid_thresh = cv2.adaptiveThreshold(grid_blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 15, 2) # Use morphology to remove noise kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2)) grid_thresh = cv2.morphologyEx(grid_thresh, cv2.MORPH_OPEN, kernel) v_lines = [int(i * grid.shape[1] / SZ) for i in range(0, SZ + 1)] h_lines = [int(i * grid.shape[0] / SZ) for i in range(0, SZ + 1)] for n in range(81): if expected[n] == 0: continue cell_raw = grid_thresh[h_lines[n//SZ]:h_lines[n//SZ + 1], v_lines[n%SZ]:v_lines[n%SZ + 1]] digit = locate_digit_in_cell(n, cell_raw) if digit is None or len(digit) != 4 : print("digit not located", name, n) continue for d in digit: d[0] = d[0] + v_lines[n%SZ] d[1] = d[1] + h_lines[n//SZ] grid = cv2.line(grid, tuple(digit[0]), tuple(digit[1]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[1]), tuple(digit[2]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[2]), tuple(digit[3]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[3]), tuple(digit[0]), (255,0,0),1) boxes[n] = digit cv2.imwrite('../../resource/output/grid/all_boxes/' + name + '.png', grid) img_grid_pts[name] = boxes # write to file with open('../../resource/grid_digit_boxes.txt', 'w') as f: json.dump(img_grid_pts, f) def draw_digit_box(): path = '../../resource/output/grid/all/' imgs = search_testfiles(path) # read from file with open('../../resource/grid_digit_boxes.txt', 'r') as f: img_grid_pts = json.load(f) for name in imgs: expected = load_dat(name) grid = cv2.imread('../../resource/output/grid/all/' + name + '.png') for n in range(81): if expected[n] == 0: continue if str(n) not in img_grid_pts[name]: print("box not defined for ", name, " cell no.", n) continue digit = img_grid_pts[name][str(n)] grid = cv2.line(grid, tuple(digit[0]), tuple(digit[1]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[1]), tuple(digit[2]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[2]), tuple(digit[3]), (255,0,0),1) grid = cv2.line(grid, tuple(digit[3]), tuple(digit[0]), (255,0,0),1) cv2.imwrite('../../resource/output/grid/all_boxes/' + name + '.png', grid) def class_int_to_text(row_label): if row_label == 1: return 'one' if row_label == 2: return 'two' if row_label == 3: return 'three' if row_label == 4: return 'four' if row_label == 5: return 'five' if row_label == 6: return 'six' if row_label == 7: return 'seven' if row_label == 8: return 'eight' if row_label == 9: return 'nine' else: return None def generate_grid_digits_label_csv(): path = '../../resource/output/grid/all/' imgs = search_testfiles(path) # read from file with open('../../resource/grid_digit_boxes.txt', 'r') as f: img_grid_pts = json.load(f) sep = ";" with open('../../resource/grid_digit_labels.csv', 'w') as f: f.write("filename"+sep+"width"+sep+"height"+sep+"class"+sep+"xmin"+sep+"ymin"+sep+"xmax"+sep+"ymax\n") for name in imgs: expected = load_dat(name) grid = cv2.imread('../../resource/output/grid/all/' + name + '.png') for n in range(81): if expected[n] == 0: continue if str(n) not in img_grid_pts[name]: print("box not defined for ", name, " cell no.", n) continue f.write(name + ".png" + sep + str(grid.shape[1]) + sep + str(grid.shape[0]) + sep + class_int_to_text(expected[n]) + sep + str(img_grid_pts[name][str(n)][0][0]) + sep + str(img_grid_pts[name][str(n)][0][1]) + sep + str(img_grid_pts[name][str(n)][2][0]) + sep + str(img_grid_pts[name][str(n)][2][1]) + "\n") def generate_puzzle_grid_label_csv(): path = '../../resource/images/all/' imgs = search_testfiles(path) # read from file with open('../../resource/images_grid_pts.txt', 'r') as f: img_grid_pts = json.load(f) sep = ";" with open('../../resource/images_grid_pts.csv', 'w') as f: f.write("filename"+sep+"width"+sep+"height"+sep+"class"+sep+"xmin"+sep+"ymin"+sep+"xmax"+sep+"ymax\n") for name in imgs: img = cv2.imread('../../resource/images/all/' + name + '.jpg') max = np.asarray(img_grid_pts[name], dtype=np.int32).max(axis=0) min = np.asarray(img_grid_pts[name], dtype=np.int32).min(axis=0) f.write(name + ".jpg" + sep + str(img.shape[1]) + sep + str(img.shape[0]) + sep + "sudoku" + sep + str(min[0]) + sep + str(min[1]) + sep + str(max[0]) + sep + str(max[1]) + "\n") def eval_one(name): expected = load_dat(name) digits = parse_sudoku(image_path + name + '.jpg') if digits is None: print("grid not found") return # TODO loop result to find wrong ones incorrect = [] for i in range(81): if expected[i] != digits[i]: inc = {'pos': i, 'expected': expected[i], 'result': digits[i]} incorrect.append(inc) print("incorrect : ", incorrect) re = eval_digits(digits, expected) print(re) def xlsx(re): # write to xlsx with xlsxwriter.Workbook('eval_all.xlsx') as book: # Raw data sheet = book.add_worksheet('raw') # fetch data # Fill worksheet # write column names sheet.write(0, 1, "Total") sheet.write(0, 2, "missed") sheet.write(0, 3, "wrong") j = 1 for k, r in re.items(): sheet.write(j, 0, k) sheet.write(j, 1, r['total']) sheet.write(j, 2, r['missed']) sheet.write(j, 3, r['wrong']) j = j + 1 if __name__ == '__main__': # train_svm() # eval_one("image1024")# high resolution, clear, mid curl # eval_one("image211") # middle resolution, clear, mid curl # eval_one("image25") # low resolution, blurry, mid curl # eval_one("image17") # low resolution, blurry # parse_sudoku("../../resource/cascade.png") # eval_one("image153") # easy # eval_one("image34") # blurry # eval_one("image1087") # re = eval_all() # extract_cells_from_puzzles() # extract_digit_samples_from_puzzles() # xlsx(re) ``` #### File: sudoku_detector_opencv/py/timer.py ```python import time class Timer(): def __init__(self, active): self.time = time.time() self.start_time = time.time() self.active = active def timeit(self, msg = None): if msg and self.active: print('--------------------Time : ', '{0:.2f}'.format(time.time()*1000.0 - self.time*1000.0) , 'ms used for ____', msg ) self.time = time.time() def total_time(self, msg = ''): if self.active: print('--------------------Total time used '+msg+' : ', '{0:.2f}'.format(time.time()*1000.0 - self.start_time*1000.0), ' ms') ```
{ "source": "Jingyi-hu/reportdetails", "score": 3 }
#### File: reportdetails/src/gnss_process.py ```python import gnssmapper as gm import warnings warnings.filterwarnings("ignore") import copy import pandas as pd import numpy as np from datetime import datetime, timedelta import geopandas as gpd def create_geodata(x): """ create one geodataframe for input list where each elemnt is geopandas dataframe of gnss receiverpoints Parameters ---------- x : list list of the multify gnss geopandas dataframe data. Returns ------- geodataframe: combine all elements in the list of gnss receiverpoints including: time Cn0DbHz svid receiver position (as point geometry) """ list_len = len(x) pilot_log = pd.concat(x[i][['time','Cn0DbHz','svid','geometry']] for i in range(list_len)) return pilot_log def time_form(gdf): """ change the time form in geodataframe from microseconds to seconds Parameters ---------- gdf : geodataframe geodataframe of gnss data which has column of time Returns ------- geodataframe: new time form in %Year-%month-%dayT%Hour:%Minite:%Second """ gdf['time'] = gdf['time'].dt.strftime("%Y-%m-%dT%H:%M:%S") return gdf def valid_svid(gdf): """ removed invalid satellites from geodataframe Parameters ---------- gdf : geodataframe geodataframe of gnss data which has column of svid Returns ------- geodataframe: geodataframe of gnss data and the satellites are gps,glonass,beidou and galileo """ #define all valid satellites svid = ('G01', 'G02', 'G03', 'G04', 'G05', 'G06', 'G07', 'G08', 'G09', 'G10', 'G11', 'G12', 'G13', 'G14', 'G15', 'G16', 'G17', 'G18', 'G19', 'G20', 'G21', 'G22', 'G23', 'G24', 'G25', 'G26', 'G27', 'G28', 'G29', 'G30', 'G31', 'G32', 'R01', 'R02', 'R03', 'R04', 'R05', 'R06', 'R07', 'R08', 'R09', 'R10', 'R11', 'R12', 'R13', 'R14', 'R15', 'R16', 'R17', 'R18', 'R19', 'R20', 'R21', 'R22', 'R23', 'R24', 'C01', 'C02', 'C03', 'C04', 'C05', 'C06', 'C07', 'C08', 'C09', 'C10', 'C11', 'C12', 'C13', 'C14', 'C15', 'C16', 'C17', 'C18', 'C19', 'C20', 'C21', 'C22', 'C23', 'C24', 'C25', 'C26', 'C27', 'C28', 'C29', 'C30', 'C31', 'C32', 'C33', 'C34', 'C35', 'C36', 'C37', 'E01', 'E02', 'E03', 'E04', 'E05', 'E06', 'E07', 'E08', 'E09', 'E10', 'E11', 'E12', 'E13', 'E14', 'E15', 'E16', 'E17', 'E18', 'E19', 'E20', 'E21', 'E22', 'E23', 'E24', 'E25', 'E26', 'E27', 'E28', 'E29', 'E30', 'E31', 'E32', 'E33', 'E34', 'E35', 'E36') gdf = gdf.loc[gdf['svid'].isin(svid),['svid','time','Cn0DbHz','geometry']] return gdf def data_format(gdf): """ Adjust data format Parameters ---------- gdf : geodataframe geodataframe of gnss data Returns ------- geodataframe: geodataframe of gnss data with new format and sea level """ #Adjust data format gdf.time = gdf.time.astype('datetime64') gdf.svid = gdf.svid.astype('string') #re-define ground sea level of altitude gdf.geometry=gpd.points_from_xy(gdf.geometry.x,gdf.geometry.y,float(381)) return gdf def data_sort(gdf,str): """ sort the geodataframe by special string Parameters ---------- gdf : geodataframe geodataframe of gnss data str: sort based on this string Returns ------- geodataframe: geodataframe of gnss data after sorting """ gdf = gdf.sort_values(by = [str]) return gdf def day_night(gdf): """ divide the geodataframe by day and night Parameters ---------- gdf : geodataframe geodataframe of gnss data Returns ------- geodataframe: two geodataframes of gnss data, one is data collected during data, another is during night """ #add day column to define different data collected day gdf['day'] = gdf['time'].apply(lambda r:r.day) gdf_day = gdf[gdf['day']==1] gdf_night = gdf[gdf['day']==3] return gdf_day,gdf_night ``` #### File: reportdetails/tests/test_distance.py ```python import unittest import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np import geopandas as gpd import math from math import sin,cos #The algorithm is only for the data of east longitude and north latitude def distance(longitudeA,latitudeA,longitudeB,latitudeB): #define radius of earth R = 6371.004 MLonA = longitudeA MLonB = longitudeB #since points are at north latitude MLatA = 90 - latitudeA MLatB = 90 - latitudeB C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB)+cos(MLatA)*cos(MLatB) #here ignore 1000since want to test in kilometers distance = round(R*np.arccos(C)*math.pi/180,0) return distance class TestDistance(unittest.TestCase): def test_distance(self): #Approximately 111 kilometers at a longitude self.assertEqual(distance(190,35,191,35), 111) #Approximately 111 kilometers at a latitude self.assertEqual(distance(190,35,190,36), 111) unittest.main() ``` #### File: reportdetails/tests/test_random_frac.py ```python import unittest import pandas as pd def random_frac(gdf,x): df = pd.DataFrame() sample = gdf.sample(frac=(x+1)/10,axis=0) df = df.append(sample) return df class TestRandomFrac(unittest.TestCase): def test_random_frac(self): data = { 'person':['a','b','c','d','e','f','g','h','i','j'], 'age':[24,23,30,4,21,53,20,45,48,60]} df = pd.DataFrame(data) self.assertEqual(len(random_frac(df,3)), 4) unittest.main() ``` #### File: reportdetails/tests/test_rms.py ```python import unittest import math def rmse(x): a = sum(((x[j] -405) **2) for j in range(len(x))) b = a/len(x) c = math.sqrt(b) return c class TestRMSE(unittest.TestCase): def test_rmse(self): numbers = [400,410,420,430,440,450] self.assertAlmostEqual(int(rmse(numbers)), 26) self.assertEqual(round(rmse(numbers),7), 26.2995564) unittest.main() ```
{ "source": "jingyi-ju/algorithm", "score": 4 }
#### File: jingyi-ju/algorithm/selectionSort.py ```python from helper import swap def selection_sort(list): ''' best and worst case runtime: Θ(n^2) ''' for i in range(0,len(list)-1): # after n-1 iterations, n-1 smallest elements in L subarray min = i for j in range(i+1,len(list)): # elements are compared in both B-case and W-case if list[j] < list[min]: min = j swap(list,min,i) ```
{ "source": "jingyonghou/STD_Q2014", "score": 3 }
#### File: STD_Q2014/script/getPhone2StateMap.py ```python import sys SIL_SET={"int", "pau", "spk"} def append_dim(num, dim_count, dim_list): for i in range(num): dim_list.append(dim_count) dim_count += 1 if __name__=="__main__": if len(sys.argv) < 3: print("USAGE: " + sys.argv[0] + " phone_list phone_2_state_map\n") exit(1) phone_list = open(sys.argv[1]).readlines() fid = open(sys.argv[2], "w") dim_count=0 phone_2_state_map = [[]] for phone in phone_list: if(phone.strip() in SIL_SET): append_dim(3, dim_count, phone_2_state_map[0]) dim_count += 3 else: phone_2_state_map.append([]) append_dim(3, dim_count, phone_2_state_map[-1]) dim_count += 3 for i in range(len(phone_2_state_map)): for j in range(len(phone_2_state_map[i])): fid.write("%d %d\n" % (i, phone_2_state_map[i][j])) fid.close() ``` #### File: STD_Q2014/script/getPhoneBoundary.py ```python import sys from dataIn import HTKFeat_read import numpy as np import distance_matrix as DM THRESHOLD=0.5 DELAY=1 def is_boundary(SIL_probability_mean, threshold=THRESHOLD): return SIL_probability_mean < threshold def time_delay(data, step): dim = data.shape[1] if(step == 0): return data elif(step>=0): new_data = data[step:, :] pad_data = np.tile((np.zeros([1, dim])+1)/dim, [step, 1]) return np.concatenate([new_data, pad_data]) else: new_data = data[0:step, :] pad_data = np.tile((np.zeros([1, dim])+1)/dim, (-step, dim)) return np.concatenate([new_data, pad_data]) def write_list(fid, list_): for i in range(len(list_)-1): fid.writelines(str(list_[i])+" ") fid.writelines(str(list_[-1])+ "\n") if __name__=="__main__": if len(sys.argv) < 5: print("USAGE: " + sys.argv[0] + " data_dir data_list output_data_type input_data_types\n") exit(1) data_dir = sys.argv[1] data_lists = open(sys.argv[2]).readlines() output_data_type = sys.argv[3] input_data_types = [] for i in range(4, len(sys.argv)): input_data_types.append(sys.argv[i]) input_data_type_len = len(input_data_types) for i in range(len(data_lists)): utterance_id = data_lists[i].strip() fid = open(data_dir + utterance_id + "." + output_data_type, "w") differences = [] for input_data_type in input_data_types: input_file = data_dir + utterance_id + "." + input_data_type data = HTKFeat_read(input_file).getall() delay_data = time_delay(data, DELAY) differences.append(DM.innetProduct_dot(data, delay_data)) write_list(fid, np.mean(differences, axis=0)) fid.close() ``` #### File: STD_Q2014/script/PhonePosteriorVAD.py ```python import sys from dataIn import HTKFeat_read import numpy as np THRESHOLD=0.5 def VAD(SIL_probability_mean, threshold=THRESHOLD): return SIL_probability_mean < threshold def write_list(fid, list_): for i in range(len(list_)-1): fid.writelines(str(list_[i])) fid.writelines(str(list_[-1])) if __name__=="__main__": if len(sys.argv) < 5: print("USAGE: " + sys.argv[0] + " data_dir data_list output_data_type input_data_types\n") exit(1) data_dir = sys.argv[1] data_lists = open(sys.argv[2]).readlines() output_data_type = sys.argv[3] input_data_types = [] for i in range(4, len(sys.argv)): input_data_types.append(sys.argv[i]) input_data_type_len = len(input_data_types) for i in range(len(data_lists)): utterance_id = data_lists[i].strip() SIL_probability = [] for input_data_type in input_data_types: input_file = data_dir + utterance_id + "." + input_data_type data = HTKFeat_read(input_file).getall() SIL_probability.append(data[:, 0]) SIL_probability_mean = np.mean(SIL_probability, axis=0) VAD_result = VAD(SIL_probability_mean) VAD_sesult_int = [int(element) for element in VAD_result] output_file = data_dir + utterance_id + "." + output_data_type fid = open(output_file, "w") write_list(fid, VAD_sesult_int) fid.close() ```
{ "source": "jingyonghou/TIMIT_STD", "score": 3 }
#### File: TIMIT_STD/DownSampling_STD/Distance.py ```python import sys import numpy as np def KLdivergence(matrix_a, matrix_b, symmetrized=1): height = matrix_a.shape[0] width = matrix_b.shape[0] matrix_a_log = np.log(matrix_a) matrix_b_log = np.log(matrix_b) vector_a_log_a = np.zeros([height, 1]); vector_b_log_b = np.zeros([width, 1]); for i in range(height): vector_a_log_a[i, 0] = np.dot(np.array([matrix_a[i, :]]), np.array([matrix_a_log[i, :]]).T)[0][0] for i in range(width): vector_b_log_b[i, 0] = np.dot(np.array([matrix_b[i, :]]), np.array([matrix_b_log[i, :]]).T)[0][0] matrix_a_log_b = np.dot(matrix_a, matrix_b_log.T) matrix_b_log_a = np.dot(matrix_b, matrix_a_log.T) if symmetrized==1: distance_matrix = 0.5 * (vector_a_log_a - matrix_a_log_b) + 0.5 * (vector_b_log_b.T - matrix_b_log_a.T) else: distance_matrix = vector_a_log_a - matrix_a_log_b return distance_matrix def innerProduct(matrix_a, matrix_b): distance_matrix = np.dot(matrix_a, matrix_b.T) return 1 - distance_matrix distance_function={"KL-divergence":KLdivergence, "cosine":innerProduct, "inner-product":innerProduct} def distance(matrix_a, matrix_b, distance_type, sub_num=40): height = matrix_a.shape[0] width = matrix_b.shape[0] dim = matrix_a.shape[1] distance_matrix = np.zeros([height, width]) if dim%sub_num != 0: print("Error: dimmension error!\n") exit(1) else: encode_num = dim//sub_num for i in range(encode_num): mydistance=distance_function[distance_type] distance_matrix = distance_matrix + mydistance(matrix_a[:, i*sub_num:(i+1)*sub_num], matrix_b[:, i*sub_num:(i+1)*sub_num]) return distance_matrix/encode_num ``` #### File: TIMIT_STD/DownSampling_STD/DTW.py ```python import numpy as np def subsequenceDTW(dist,debug=False): '''subsequneceDTW''' if debug: cost,path = _python_subseq_dtw(dist) else: cost,path = _subseq_dtw(dist) return cost,path def _python_subseq_dtw(dist): '''Pure python, slow version of DTW''' nx,ny = dist.shape cost = np.zeros(dist.shape) trace = np.zeros(dist.shape,dtype=np.int) length = np.zeros(dist.shape,dtype=np.int) length[0,:] = 1 length[:,0] = range(1,nx+1) cost[0,:] = dist[0,:] cost[:,0] = np.cumsum(dist[:,0]) trace[0,:] = 1 trace[:,0] = 0 for i in xrange(1,nx): for j in xrange(1,ny): accum_cost = dist[i,j] + np.array((cost[i-1,j], cost[i,j-1], cost[i-1,j-1])) accum_len = np.array((length[i-1,j],length[i,j-1],length[i-1,j-1]+1))+1 avg_cost = accum_cost/accum_len trace[i,j] = avg_cost.argmin() length[i,j] = accum_len[trace[i,j]] cost[i,j] = accum_cost[trace[i,j]] cost[nx-1,:] /= length[nx-1,:] dtwCost = cost[nx-1,:].min() endPoint = cost[nx-1,:].argmin() path = [(nx-1,endPoint)] j = endPoint while not (i == 0): s = trace[i,j] if s == 0: i -= 1 elif s == 1: j -= 1 else: i -= 1 j -= 1 path.append((i,j)) return dtwCost,np.array(path)[::-1] # Shenanigans for running the fast C version of DTW, # but falling back to pure python if needed try: from scipy.weave import inline from scipy.weave.converters import blitz except ImportError: _subseq_dtw = _python_subseq_dtw else: def _subseq_dtw(dist): '''Fast DTW, with inlined C''' nx,ny = dist.shape rv = [0.0,0] #dtwcost,p path = np.zeros((nx+ny,2),dtype=np.int) code = ''' int i,j; double* cost = new double[ny]; for (j=0; j<ny; ++j) cost[j] = dist(0,j); char** trace = new char*[nx]; int** length = new int*[nx]; for (i=0; i<nx; ++i) { trace[i] = new char[ny]; trace[i][0] = 0; length[i] = new int[ny]; length[i][0] = i+1; } for (j=0; j<ny; ++j) { trace[0][j] = 1; length[0][j] =1; } double diag,c; for (i=1; i<nx; ++i){ diag = cost[0]; cost[0] += dist(i,0); for (j=1; j<ny; ++j){ // c <- min(cost[j],cost[j-1],diag), trace <- argmin //////////////////////////////////////////////////// double avg_cost1 = (cost[j]+dist(i,j))/(length[i-1][j]+1); double avg_cost2 = (cost[j-1]+dist(i,j))/(length[i][j-1]+1); double avg_diag = (diag+dist(i,j))/(length[i-1][j-1]+2); if (avg_diag < avg_cost1){ if (avg_diag < avg_cost2){ c = diag; trace[i][j] = 2; length[i][j] = length[i-1][j-1]+2; } else { c = cost[j-1]; trace[i][j] = 1; length[i][j] = length[i][j-1]+1; } } else if (avg_cost1 < avg_cost2){ c = cost[j]; trace[i][j] = 0; length[i][j] = length[i-1][j]+1; } else { c = cost[j-1]; trace[i][j] = 1; length[i][j] = length[i][j-1]+1; } diag = cost[j]; cost[j] = dist(i,j) + c; } } rv[0] = cost[0]/length[nx-1][0]; for(i=1;i<ny;i++) { float avg_cost = cost[i]/length[nx-1][i]; if(rv[0]>avg_cost) { rv[0] = avg_cost; j = i; } } delete[] cost; i = nx-1; int p = nx+ny-1; for (;p>=0; --p){ path(p,0) = i; path(p,1) = j; if (i==0) break; switch (trace[i][j]){ case 0: --i; break; case 1: --j; break; default: --i; --j; } } for (i=0; i<nx; ++i) delete[] trace[i]; delete[] trace; for (i=0; i<nx; ++i) delete[] length[i]; delete[] length; rv[1] = p; ''' inline(code,('nx','ny','rv','dist','path'),type_converters=blitz) return rv[0],path[rv[1]:] ``` #### File: TIMIT_STD/Partial_STD/split.py ```python import sys import numpy as np import os import shutil def split_file_by_row(filepath,newfilenum): file_object=open(filepath,'r') s=filepath.rfind('/') fileID=filepath.strip()[s+1:] try: i=0 all_the_text=[] for line in file_object: i=i+1 all_the_text.append(line) #print line n=i print n index=n//newfilenum print index for i in range(1,newfilenum): file_object_write=open(fileID+'%d' % i,'w') for line in all_the_text[int((i-1)*index):int(i*index)]: file_object_write.write(line) file_object_write.close() file_object_write=open(fileID+'%d' % newfilenum,'w') for line in all_the_text[int((newfilenum-1)*index):]: file_object_write.write(line) file_object_write.close() finally: file_object.close() if __name__ == '__main__': if len(sys.argv)<3: print("USAGE: fileList splitNum") fileList=sys.argv[1] splitNum=int(sys.argv[2]) split_file_by_row(fileList,splitNum) ``` #### File: TIMIT_STD/script/evaluation.py ```python import numpy as np import sys def longest_common_substring(s1, s2): # not dynamic programing, just brute force way. m = [[0] * (1 + len(s2)) for i in xrange(1 + len(s1))] longest, x_longest = 0, 0 for x in xrange(1, 1 + len(s1)): for y in xrange(1, 1 + len(s2)): if s1[x - 1] == s2[y - 1]: m[x][y] = m[x - 1][y - 1] + 1 if m[x][y] > longest: longest = m[x][y] x_longest = x else: m[x][y] = 0 return s1[x_longest - longest: x_longest] def relevant(querylistitem,doc): ind_s = querylistitem.rfind('/') ind_e = querylistitem.rfind('_') query = querylistitem.strip()[ind_s+1:ind_e] fid = open(doc.strip()+'.WRD') lines = fid.readlines() fid.close() for line in lines: word = line.split()[2] lcs = longest_common_substring(word,query) #print 'linelength:'+str(len(lcs)) +'\t' + 'query ' + '"' + query + '"' + ' length: ' + str(len(query)) #print 'ratio: ' + str(float(len(lcs))/len(query)) if float(len(lcs))/len(query)>=0.8 : #if word != query: # print("Warnning: " + word + ", " + query + "\n" ) return True return False def evaluate(costlist, test_dir, doclist, keyword_dir, querylist): ''' costlist = [query_1_list,...,query_n_list] doclist: the path list for the every doc querylist: the path list for the querys ''' PatNset = [] APset = [] Pat10set = [] for i in range(0,len(querylist)): ranklist = np.array(costlist[i]).argsort() # percision[i] = num_rele/(i+1),num_rele is the number of the hits in the first i Precision = [] num_rele = 0.0 sum_precision = 0.0 #print 'query' + str(i) + ':' + str(len(ranklist)); for j in range(0,len(ranklist)): doc = doclist[ranklist[j]] isRele = False if relevant(keyword_dir+querylist[i], test_dir+doc): #print 'true' num_rele = num_rele+1 isRele = True Precision.append(num_rele/(j+1)) if isRele == True: sum_precision += Precision[-1] # print j+1,Precision[-1] #ind_s = querylist[i].rfind('/') #ind_e = querylist[i].rfind('_') #word = querylist[i].strip()[ind_s+1:ind_e] #fid = open("std_out.log","a") #fid.write("The hit numbers in the first 500 utterances for keyword " + word + " :\t " + str(Precision[499]*500) + "/" + str(num_rele)+"\t"+ str(Precision[499]*500/num_rele) +"\n") #fid.close() Pat10set.append(Precision[9]) N = int(num_rele) #print querylist[i].strip()[31:-2],N PatNset.append(Precision[N-1]) APset.append(sum_precision/N) #print(str(Pat10set[-1]) + " " + str(PatNset[-1]) + " " + str(APset[-1])) print(str(APset[-1]) + "\t" + str(PatNset[-1]) + "\t" + str(Pat10set[-1])) num_of_querys = len(querylist) MAP = sum(APset)/num_of_querys PatN = sum(PatNset)/num_of_querys Pat10 = sum(Pat10set)/num_of_querys # print PatNset # print Pat10set return MAP,PatN,Pat10 if __name__=='__main__': if len(sys.argv) < 5: print 'USAGE: result_dir keywordlist test_dir testlist' exit(1) result_dir = sys.argv[1] fid = open(sys.argv[2]) keywordlist = fid.readlines() fid.close() test_dir = sys.argv[3] fid = open(sys.argv[4]) testlist = fid.readlines() fid.close() costlist = [] for keyword in keywordlist: result_fid = open(result_dir + keyword.strip() + ".RESULT") resList = result_fid.readlines() result_fid.close(); scoreList = []; for res in resList: #testID,tbeg,dur,score = res.strip().split(); score = res.strip(); scoreList.append(float(score)); costlist.append(scoreList); MAP,PatN,Pat10 = evaluate(costlist, test_dir, testlist, result_dir, keywordlist) print('MAP=%.3f PatN=%.3f Pat10=%.3f'%(MAP,PatN,Pat10)) ```
{ "source": "jingyonghou/XY_QByE_STD", "score": 3 }
#### File: XY_QByE_STD/script/get_keyword_audio.py ```python import sys import numpy as np from XiaoYingWave import XiaoYingWave import json import log def build_wav_dict(text_file): wav_dict = {} text_list = open(text_file).readlines() for line in text_list: fields = line.strip().split() text_id = fields[0] text = " ".join(fields[1:]) wav_dict[text_id] = XiaoYingWave(text_id, text) return wav_dict def build_score_dict(jsonlistfile): score_dict = {} json_list = open(jsonlistfile).readlines() for line in json_list: fields = line.strip().split("/") text_id = "_".join(fields[-4:-2]) time_stamp = fields[-2][-8:] if(not score_dict.has_key(text_id)): score_dict[text_id]={} json_items = open(line.strip()).readlines() for json_item in json_items: json_entity = json.loads(json_item.strip()) if json_entity.has_key("AudioName"): audio_id = str(json_entity["AudioName"]) elif json_entity.has_key("audioName"): audio_id = str(json_entity["audioName"]) else: log.Error("bad json file:%s"%json_item) if json_entity.has_key("Score"): score = float(json_entity["Score"]) elif json_entity.has_key("score"): score = float(json_entity["score"]) else: log.Error("bad json file:%s"%json_item) score_id = time_stamp + "_" + audio_id if score_dict[text_id].has_key(score_id): log.Error("repeated score_id: %s for text_id: %s"%(score_id, text_id)) score_dict[text_id][score_id] = score return score_dict def build_exclude_list(exclude_list_file): exclude_dict = {} exclude_list=open(exclude_list_file).readlines() for line in exclude_list: fields = line.strip().split("/") text_id = "_".join(fields[-4:-2]) time_stamp = fields[-2][-8:] audio_id = fields[-1] if not exclude_dict.has_key(text_id): exclude_dict[text_id]=[] exclude_dict[text_id].append(time_stamp + "_" + audio_id) return exclude_dict def set_wav(wav_dict, score_dict, exclude_dict): for text_id in wav_dict.keys(): if (not score_dict.has_key(text_id)) or (len(exclude_dict[text_id])==len(score_dict[text_id])): log.Error("we don't have audio for the text_id:%s"%text_id) for wav_id, score in score_dict[text_id].items(): if not wav_id in exclude_dict[text_id]: wav_dict[text_id].setWavList(wav_id, score) def select_wav(wav_dict, score_low, score_high, num, output_dir): uttscpfid = open(output_dir + "/utter.list", "w") wavscpfid = open(output_dir + "/wav.scp", "w") textfid = open(output_dir + "/text", "w") for text_id in wav_dict: selected_wav_list = wav_dict[text_id].getWav(score_low, score_high, num) for i in range(len(selected_wav_list)): utt_id = text_id + "_" + str(i).zfill(2) text = wav_dict[text_id].getText() text_dir = "/".join(text_id.split("_")) utt_file = "SystemLogInfo" + "/".join(selected_wav_list[i].split("_")) wav_file = "SystemLogInfo" + "/".join(selected_wav_list[i].split("_")) + ".wav" uttscpfid.writelines(text_dir + "/" + utt_file + "\n") wavscpfid.writelines(utt_id + " " + text_dir + "/" + wav_file + "\n") textfid.writelines(utt_id + " " + text + "\n") if __name__=="__main__": if(len(sys.argv) < 8): print("USAGE: python " + sys.argv[0] + " text jsonfile.list exclude_list score_low score_high num output_dir") exit(1) wav_dict = build_wav_dict(sys.argv[1]) score_dict = build_score_dict(sys.argv[2]) exclude_dict = build_exclude_list(sys.argv[3]) set_wav(wav_dict, score_dict, exclude_dict) score_low = float(sys.argv[4]) score_high = float(sys.argv[5]) number = int(sys.argv[6]) output_dir = sys.argv[7] select_wav(wav_dict, score_low, score_high, number, output_dir) ``` #### File: XY_QByE_STD/script/prepare_template.py ```python import sys import os import random def sampling(source_list_dict, select_num): selected_list_dict={} for keyword in source_list_dict.keys(): actual_num = min(len(source_list_dict[keyword]), select_num) selected_list = random.sample(source_list_dict[keyword], actual_num) selected_list_dict[keyword] = selected_list return selected_list_dict def mkdir(path): is_exists = os.path.exists(path) if not is_exists: os.makedirs(path) def get_file(path, suffix): file_list = [] items = os.listdir(path) for x in items: if os.path.isfile(path + "/" + x) and x.endswith(suffix): file_list.append(path + "/" + x) #print(path + "/" + x) elif os.path.isdir(path + "/" + x): file_list += get_file(path + "/" + x, suffix) return file_list if __name__=="__main__": if(len(sys.argv)<3): print("UDAGE: python "+ sys.argv[0]+ " keyword_all_list_file max_template_num random_num keyword_selected_list_file") exit(1) source_list_file = sys.argv[1] select_num = int(sys.argv[2]) random_num = int(sys.argv[3]) selected_list_file_fake = sys.argv[4] source_list_dict = {} for item in open(source_list_file).readlines(): keyword = item.strip().split("_")[0] if not source_list_dict.has_key(keyword): source_list_dict[keyword] = [] source_list_dict[keyword].append(item) #for keyword in source_list_dict.keys(): # print("%s %d\n"%(keyword, len(source_list_dict[keyword]))) for i in range(1, random_num+1): selected_list_dict = sampling(source_list_dict, select_num) selected_list_file_real = selected_list_file_fake.replace("XXX", str(i)) fid = open(selected_list_file_real, "w") for keyword in selected_list_dict.keys(): for item in selected_list_dict[keyword]: fid.writelines(item) fid.close() ``` #### File: XY_QByE_STD/script/score_fusion.py ```python import sys import numpy as np def m_norm(scorelist): hist, bin_edges = np.histogram(scorelist,40) index = hist.argmax(); peak = (bin_edges[index] + bin_edges[index+1])/2 slist_peak = np.array([x for x in scorelist if x >= peak]) scorelist = (scorelist - peak)/slist_peak.std() return scorelist def z_norm(scorelist): #scorelist = (np.array(scorelist)-min(scorelist))/(max(scorelist)-min(scorelist)) mean = np.mean(scorelist) std = np.std(scorelist) print std scorelist = (np.array(scorelist)-mean)/std return scorelist def min_max_norm(scorelist): min_v = min(scorelist) max_v = max(scorelist) if (max_v-min_v)>0.00001: norm_scorelist = (np.array(scorelist)-min_v)/(max_v-min_v) else: max_v-min_v norm_scorelist = np.array(scorelist) return norm_scorelist def get_score_all_list(result_dir, keyword_list): score_all_list = [] for keyword in keyword_list: result_fid = open(result_dir + keyword.strip() + ".RESULT") result_list = result_fid.readlines() result_fid.close() score_list = [] for res in result_list: score = float(res.strip().split()[0]) score_list.append(score) score_all_list.append(score_list) return score_all_list def fusion(score_all_list1, score_all_list2, factor): if len(score_all_list1) != len(score_all_list2): print("Error: bad length of score list") fusion_score_all_list = [] for i in range(len(score_all_list1)): #norm_score_list1 = m_norm(score_all_list1[i]) #norm_score_list2 = m_norm(score_all_list2[i]) norm_score_list1 = min_max_norm(score_all_list1[i]) norm_score_list2 = min_max_norm(score_all_list2[i]) fusion_score_list = [] for j in range(len(norm_score_list1)): #if norm_score_list2[j] > 1: # fusion_score_list.append(norm_score_list1[j]) #else: # fusion_score_list.append(factor*norm_score_list1[j]+(1-factor)*norm_score_list2[j]) fusion_score_list.append(factor*norm_score_list1[j]+(1-factor)*norm_score_list2[j]) fusion_score_all_list.append(fusion_score_list) return fusion_score_all_list if __name__=="__main__": if len(sys.argv) < 6: print("UDAGE: python "+ sys.argv[0]+ "keyword_list_file result_dir1 result_dir2 fusion_dir") exit(1) keyword_list = open(sys.argv[1]).readlines() result_dir1 = sys.argv[2] result_dir2 = sys.argv[3] factor = float(sys.argv[4]) fusion_dir = sys.argv[5] score_all_list1 = get_score_all_list(result_dir1, keyword_list) score_all_list2 = get_score_all_list(result_dir2, keyword_list) fusion_score_all_list = fusion(score_all_list1, score_all_list2, factor) for i in range(len(keyword_list)): fid = open(fusion_dir + keyword_list[i].strip() + ".RESULT","w") for x in fusion_score_all_list[i]: fid.writelines("%f\n"%x) fid.close() ```
{ "source": "Jingyu6/forl_2021", "score": 2 }
#### File: forl_2021/algos/cqgp.py ```python from typing import Any, Dict, Optional, Sequence from d3rlpy.constants import IMPL_NOT_INITIALIZED_ERROR, ActionSpace from d3rlpy.dataset import TransitionMiniBatch from d3rlpy.algos.base import AlgoBase from .sklearn_impl.cqgp_impl import CQGPImpl class CQGP(AlgoBase): _impl: Optional[CQGPImpl] _gamma: float _max_buffer_size: int _q_std_multiplier: int def __init__( self, *, batch_size: int = 32, n_steps: int = 1, gamma: float = 0.99, impl: Optional[CQGPImpl] = None, max_buffer_size: int = 1000, q_std_multiplier: int = 20, **kwargs: Any, ): super().__init__( batch_size=batch_size, n_steps=n_steps, gamma=gamma, # use only frames = 1 for now n_frames=1, # disable scalar functionality for now due to lack of support for np.ndarray scaler=None, reward_scaler=None, kwargs=kwargs, ) self._impl = impl self._gamma = gamma self._max_buffer_size = max_buffer_size self._q_std_multiplier = q_std_multiplier def _create_impl( self, observation_shape: Sequence[int], action_size: int ) -> None: self._impl = CQGPImpl( observation_shape=observation_shape, action_size=action_size, gamma=self._gamma, max_buffer_size=self._max_buffer_size, q_std_multiplier=self._q_std_multiplier ) self._impl.build() def _update(self, batch: TransitionMiniBatch) -> Dict[str, float]: assert self._impl is not None, IMPL_NOT_INITIALIZED_ERROR loss = self._impl.update(batch) return { "loss": loss } def get_action_type(self) -> ActionSpace: return ActionSpace.DISCRETE ``` #### File: algos/sklearn_impl/base.py ```python import numpy as np from typing import Optional, Sequence, Any, Union, List, Tuple from d3rlpy.algos.base import AlgoImplBase class SklearnImplBase(AlgoImplBase): _observation_shape: Sequence[int] _action_size: int def __init__( self, observation_shape: Sequence[int], action_size: int, ): self._observation_shape = observation_shape self._action_size = action_size def predict_best_action(self, states: Union[np.ndarray, List[Any]]) -> np.ndarray: if isinstance(states, np.ndarray): assert states.ndim > 1, "Input must have batch dimension." return self._predict_best_action(states) else: # later use a decorator for conversion states = np.array(states) return self._predict_best_action(states) def _predict_best_action(self, states: np.ndarray) -> np.ndarray: raise NotImplementedError def sample_action(self, states: Union[np.ndarray, List[Any]]) -> np.ndarray: if isinstance(states, np.ndarray): assert states.ndim > 1, "Input must have batch dimension." return self._sample_action(states) else: # later use a decorator for conversion raise TypeError def _sample_action(self, states: np.ndarray) -> np.ndarray: raise NotImplementedError def predict_value( self, states: Union[np.ndarray, List[Any]], actions: Union[np.ndarray, List[Any]], with_std: bool = False, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: if isinstance(states, np.ndarray) and isinstance(actions, np.ndarray): assert states.ndim > 1, "Input must have batch dimension." return self._predict_value(states, actions, with_std) else: # later use a decorator for conversion raise TypeError def _predict_value( self, states: np.ndarray, actions: np.ndarray, with_std: bool, ) -> Union[np.ndarray, Tuple[np.ndarray, np.ndarray]]: raise NotImplementedError """ From ImplBase """ def save_model(self, fname: str) -> None: pass def load_model(self, fname: str) -> None: pass @property def observation_shape(self) -> Sequence[int]: return self._observation_shape @property def action_size(self) -> int: return self._action_size """ From AlgoImplBase """ def save_policy(self, fname: str, as_onnx: bool) -> None: pass def copy_policy_from(self, impl: AlgoImplBase) -> None: pass def copy_policy_optim_from(self, impl: AlgoImplBase) -> None: pass def copy_q_function_from(self, impl: AlgoImplBase) -> None: pass def copy_q_function_optim_from(self, impl: AlgoImplBase) -> None: pass def reset_optimizer_states(self) -> None: pass ``` #### File: Jingyu6/forl_2021/run.py ```python import os import shutil import random import argparse import d3rlpy import matplotlib.pyplot as plt import numpy as np from d3rlpy.algos import DQN, DiscreteCQL, DiscreteBC, DiscreteSAC, DiscreteBCQ from d3rlpy.metrics import evaluate_on_environment from algos.cqgp import CQGP from datasets import get_episodes from visualization.data_plot import plot_records_in_dir parser = argparse.ArgumentParser() parser.add_argument("-e", "--env", type=str, default='cartpole-random', choices=[ 'cartpole-replay', 'cartpole-random', 'acrobot-replay']) parser.add_argument("-t", "--testing", action="store_true") parser.add_argument("-n", "--num_of_trials", type=int, default=5) parser.add_argument("-x", "--num_of_episodes", type=int, default=20) parser.add_argument("-i", "--num_of_epochs", type=int, default=25) parser.add_argument("-m", "--q_std_multiplier", type=int, default=20) args = parser.parse_args() print("Start experiments: ", args) if args.testing: LOG_DIR = os.path.join('d3rlpy_logs/test', args.env) if os.path.isdir(LOG_DIR): shutil.rmtree(LOG_DIR) else: LOG_DIR = os.path.join('d3rlpy_logs/', args.env) ALGOS = [CQGP, DQN, DiscreteCQL, DiscreteBC, DiscreteSAC, DiscreteBCQ] def set_random_seed(s): d3rlpy.seed(t) random.seed(t) np.random.seed(t) for t in range(args.num_of_trials): set_random_seed(t + 227 + 1998) # obtain dataset episodes, env = get_episodes(args.env, args.num_of_episodes) env.seed(t) transition_len = sum([len(episode) for episode in episodes]) print('Total size: ', transition_len) for algo in ALGOS: # setup algorithm agent = algo(max_buffer_size=transition_len, q_std_multiplier=args.q_std_multiplier) agent.fit( episodes, eval_episodes=[None], # dummy n_epochs=args.num_of_epochs, scorers={ 'rewards': evaluate_on_environment(env) }, logdir=LOG_DIR ) # plot the results plot_records_in_dir(log_dir=LOG_DIR, env_name=args.env, value_description='rewards') ``` #### File: forl_2021/visualization/data_parser.py ```python import pandas as pd # type: ignore from pathlib import Path from typing import List, Dict, Any, Optional, Union, Callable, Tuple from abc import ABC, abstractmethod class Records: """ class representing data for plotting """ def __init__( self, epochs: List[int], steps: List[int], values: List[int], algo_name: Optional[str], trial_name: Optional[str], value_description: str ): self._algo_name = algo_name self._trial_name = trial_name self._value_description = value_description self._epochs = epochs self._steps = steps self._values = values def __repr__(self) -> str: return 'Data records of {} for algorithm {}, experiment {}, total length {}.'.format( self._value_description, self._algo_name, self._trial_name, self.__len__() ) def __len__(self) -> int: return len(self._epochs) def __index__(self, idx) -> Dict[str, Any]: if idx < self.__len__(): return dict(epoch=self._epochs[idx], step=self._steps[idx], value=self._values[idx]) return {} def get_data(self, max_len: int = None) -> Dict[str, List[int]]: max_len = max_len or self.__len__() return dict(epochs=self._epochs[:max_len], steps=self._steps[:max_len], values=self._values[:max_len]) @property def algo_name(self): return self._algo_name @property def trial_name(self): return self._trial_name @property def value_description(self): return self._value_description class DataParser(ABC): """ base class dealing with parsing logics """ def __init__(self): pass @abstractmethod def parse(self, data_source: Any, algo_name: str, trial_name: str, value_description: str ) -> Records: pass class CSVDataParser(DataParser): """ Generic CSV parser into format Records """ def __init__(self): super(CSVDataParser, self).__init__() def parse( self, csv_path: str, algo_name: str = None, trial_name: str = None, value_description: str = 'value' ) -> Records: print(csv_path) assert Path(csv_path).is_file(), 'Invalid csv file path.' data = pd.read_csv(csv_path, names=['epoch', 'step', value_description]) parsed_data = Records( data['epoch'].tolist(), data['step'].tolist(), data[value_description].tolist(), algo_name, trial_name, value_description ) return parsed_data class D3rlpyCSVDataParser(CSVDataParser): """ D3rlpy CSV parser that extracts algo name and experiment automatically """ def __init__(self, parse_experiment_name: Callable[[str], Tuple[str, str, str]] = None): super(D3rlpyCSVDataParser, self).__init__() self._parse_experiment_name = parse_experiment_name def parse( self, log_dir: str, algo_name: str = None, trial_name: str = None, value_description: str = 'loss' ) -> Records: # the log dir path should have a folder name like ${ALGO}_${EXPERIMENT} log_dir_path = Path(log_dir) base_name = log_dir_path.name assert log_dir_path.is_dir(), 'Invalid log directory.' assert '_' in base_name, 'The folder should have ALGONAME_EXPERIMENTNAME format.' delim_idx = base_name.find('_') if self._parse_experiment_name: algo_name, _, trial_name = self._parse_experiment_name(base_name) else: algo_name, trial_name = algo_name or base_name[:delim_idx], trial_name or base_name[delim_idx+1:] csv_path = log_dir_path / (value_description + '.csv') return super().parse( str(csv_path), algo_name, trial_name, value_description ) ``` #### File: forl_2021/visualization/data_plot.py ```python import gym # type: ignore import matplotlib # type: ignore import matplotlib.pyplot as plt # type: ignore import numpy as np from pathlib import Path # type: ignore from typing import List, Union, Literal, Dict, Any from visualization.data_parser import Records, D3rlpyCSVDataParser def plot_records_list( axes: matplotlib.axes.Axes, records_list: List[Records], env_name: str, value_description: str = 'loss', horizon_name: Union[Literal['epochs', 'steps']] = 'epochs', **kwargs: Any # arguments to the plot function ) -> None: """ Plot the graph of different algorithms, each algorithm contains multiple experiments, all experiments are from the same environment """ assert len(records_list) > 0, "Can not pass in empty records." # group them together algo_to_records: Dict[str, List[Records]] = {} for records in records_list: algo_name = records.algo_name if algo_name not in algo_to_records: algo_to_records[algo_name] = [] algo_to_records[algo_name].append(records) # make sure all algorithms have the same number of experiments experiment_counts = set([len(data) for data in algo_to_records.values()]) assert len(experiment_counts) == 1, \ "All algorithms should have the same number of experiments" # truncate horizon (assuming monotonic increasing) min_horizon = min([len(records.get_data()[horizon_name]) for records in records_list]) for algo_name in sorted(algo_to_records.keys()): print(algo_name) algo_records_list = algo_to_records[algo_name] horizon = algo_records_list[0].get_data(min_horizon)[horizon_name] values = np.array([records.get_data(min_horizon)['values'] for records in algo_records_list]) value_mean = np.mean(values, axis=0) value_std = np.std(values, axis=0) axes.plot(horizon, value_mean, **kwargs) axes.fill_between(horizon, value_mean - value_std, value_mean + value_std, alpha=0.2, interpolate=True) axes.set_title('{}: {} plots of {} over {} trials'.format( env_name, value_description, horizon_name, next(iter(experiment_counts)))) axes.set_ylabel(value_description) axes.set_xlabel(horizon_name) axes.legend(sorted(list(algo_to_records.keys()))) def plot_records_in_dir( log_dir: str, env_name: str, value_description: str = 'loss', horizon_name: Union[Literal['epochs', 'steps']] = 'epochs', **kwargs: Any ) -> None: log_dir_path = Path(log_dir) assert log_dir_path.is_dir(), "Invalid log dir." parser = D3rlpyCSVDataParser() records_list: List[Records] = [] for sub_dir in log_dir_path.iterdir(): records_list.append(parser.parse(str(sub_dir), value_description=value_description)) plot_records_list(plt.gca(), records_list, env_name, value_description, horizon_name, **kwargs) plt.show() ```
{ "source": "jingyuanchan/HERO_Video_Feature_Extractor", "score": 2 }
#### File: HERO_Video_Feature_Extractor/mil-nce/model.py ```python import torch as th from s3dg import S3D def build_model(args): print(f'Loading S3D with checkpoint {args.s3d_ckpt}...') model = S3D() model = model.cuda() model_data = th.load(args.s3d_ckpt) model.load_state_dict(model_data, strict=False) model.eval() return model ``` #### File: slowfast/extract_feature/model.py ```python import slowfast.utils.checkpoint as cu from slowfast.models import model_builder def build_model(cfg): """ Build slowfast model Args: cfg (CfgNode): configs. Details can be found in slowfast/config/defaults.py """ # Build the video model and print model statistics. model = model_builder.build_model(cfg) # Load a checkpoint to test if applicable. if cfg.TEST.CHECKPOINT_FILE_PATH != "": cu.load_checkpoint( cfg.TEST.CHECKPOINT_FILE_PATH, model, cfg.NUM_GPUS > 1, None, inflation=False, convert_from_caffe2=cfg.TEST.CHECKPOINT_TYPE == "caffe2", ) elif cu.has_checkpoint(cfg.OUTPUT_DIR): last_checkpoint = cu.get_last_checkpoint(cfg.OUTPUT_DIR) cu.load_checkpoint(last_checkpoint, model, cfg.NUM_GPUS > 1) elif cfg.TRAIN.CHECKPOINT_FILE_PATH != "": # If no checkpoint found in TEST.CHECKPOINT_FILE_PATH or in the current # checkpoint folder, try to load checkpint from # TRAIN.CHECKPOINT_FILE_PATH and test it. cu.load_checkpoint( cfg.TRAIN.CHECKPOINT_FILE_PATH, model, cfg.NUM_GPUS > 1, None, inflation=False, convert_from_caffe2=cfg.TRAIN.CHECKPOINT_TYPE == "caffe2", ) else: # raise NotImplementedError("Unknown way to load checkpoint.") print("Testing with random initialization. Only for debugging.") return model ``` #### File: slowfast/extract_feature/yuv_reader.py ```python import torch import numpy as np import cv2 class YuvRgbConverter(object): def __init__(self, device=torch.device('cuda')): self.T = torch.tensor( [[1.164, 1.164, 1.164], [0, -0.392, 2.017], [1.596, -0.813, 0]], requires_grad=False ).to(device) self.bias = torch.tensor([-16, -128, -128], requires_grad=False).float().to(device) @torch.no_grad() def __call__(self, yuv): rgb = (yuv+self.bias).matmul(self.T).detach().clamp_(0, 255) return rgb def read_y(w, h, binary): x = np.frombuffer(binary, dtype=np.uint8).reshape((h, w)) return torch.from_numpy(x).float() def read_uv(w, h, binary): x = np.frombuffer(binary, dtype=np.uint8 ).reshape((h//2, w//2)) x = cv2.resize(x, (w, h), cv2.INTER_NEAREST) return torch.from_numpy(x).float() def read_yuv420p(binary, w, h): assert w % 2 == h % 2 == 0 tot_len = len(binary) frame_length = w*h*6//4 n_frame = tot_len // frame_length n_pix = w*h uv_len = n_pix // 4 yuv = torch.Tensor(n_frame, h, w, 3) y_starts = range(0, tot_len, frame_length) for i, st in enumerate(y_starts): yuv.data[i, ..., 0] = read_y(w, h, binary[st: st+n_pix]).data u_starts = range(n_pix, tot_len, frame_length) for i, st in enumerate(u_starts): yuv.data[i, ..., 1] = read_uv(w, h, binary[st: st+uv_len]).data v_starts = range(n_pix+uv_len, tot_len, frame_length) for i, st in enumerate(v_starts): yuv.data[i, ..., 2] = read_uv(w, h, binary[st: st+uv_len]).data return yuv ```
{ "source": "jingyuanchan/Pose_Baseline", "score": 2 }
#### File: Pose_Baseline/misc/utils.py ```python import cv2 import munkres import numpy as np import torch # solution proposed in https://github.com/pytorch/pytorch/issues/229#issuecomment-299424875 def flip_tensor(tensor, dim=0): """ flip the tensor on the dimension dim """ inv_idx = torch.arange(tensor.shape[dim] - 1, -1, -1).to(tensor.device) return tensor.index_select(dim, inv_idx) # # derived from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch def flip_back(output_flipped, matched_parts): assert len(output_flipped.shape) == 4, 'output_flipped has to be [batch_size, num_joints, height, width]' output_flipped = flip_tensor(output_flipped, dim=-1) for pair in matched_parts: tmp = output_flipped[:, pair[0]].clone() output_flipped[:, pair[0]] = output_flipped[:, pair[1]] output_flipped[:, pair[1]] = tmp return output_flipped def fliplr_joints(joints, joints_vis, width, matched_parts): # Flip horizontal joints[:, 0] = width - joints[:, 0] - 1 # Change left-right parts for pair in matched_parts: joints[pair[0], :], joints[pair[1], :] = \ joints[pair[1], :], joints[pair[0], :].copy() joints_vis[pair[0], :], joints_vis[pair[1], :] = \ joints_vis[pair[1], :], joints_vis[pair[0], :].copy() return joints * joints_vis, joints_vis def get_affine_transform(center, scale, rot, output_size, shift=np.array([0, 0], dtype=np.float32), inv=0): if not isinstance(scale, np.ndarray) and not isinstance(scale, list): print(scale) scale = np.array([scale, scale]) scale_tmp = scale * 1.0 * 200.0 # It was scale_tmp = scale * 200.0 src_w = scale_tmp[0] dst_w = output_size[0] dst_h = output_size[1] rot_rad = np.pi * rot / 180 src_dir = get_dir([0, src_w * -0.5], rot_rad) dst_dir = np.array([0, dst_w * -0.5], np.float32) src = np.zeros((3, 2), dtype=np.float32) dst = np.zeros((3, 2), dtype=np.float32) src[0, :] = center + scale_tmp * shift src[1, :] = center + src_dir + scale_tmp * shift dst[0, :] = [dst_w * 0.5, dst_h * 0.5] dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir src[2:, :] = get_3rd_point(src[0, :], src[1, :]) dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :]) if inv: trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) else: trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) return trans def affine_transform(pt, t): new_pt = np.array([pt[0], pt[1], 1.]).T new_pt = np.dot(t, new_pt) return new_pt[:2] def get_3rd_point(a, b): direct = a - b return b + np.array([-direct[1], direct[0]], dtype=np.float32) def get_dir(src_point, rot_rad): sn, cs = np.sin(rot_rad), np.cos(rot_rad) src_result = [0, 0] src_result[0] = src_point[0] * cs - src_point[1] * sn src_result[1] = src_point[0] * sn + src_point[1] * cs return src_result def crop(img, center, scale, output_size, rot=0, interpolation=cv2.INTER_LINEAR): trans = get_affine_transform(center, scale, rot, output_size) dst_img = cv2.warpAffine( img, trans, (int(output_size[0]), int(output_size[1])), flags=interpolation ) return dst_img # # # # derived from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch def calc_dists(preds, target, normalize): preds = preds.type(torch.float32) target = target.type(torch.float32) dists = torch.zeros((preds.shape[1], preds.shape[0])).to(preds.device) for n in range(preds.shape[0]): for c in range(preds.shape[1]): if target[n, c, 0] > 1 and target[n, c, 1] > 1: normed_preds = preds[n, c, :] / normalize[n] normed_targets = target[n, c, :] / normalize[n] # # dists[c, n] = np.linalg.norm(normed_preds - normed_targets) dists[c, n] = torch.norm(normed_preds - normed_targets) else: dists[c, n] = -1 return dists def dist_acc(dists, thr=0.5): """ Return percentage below threshold while ignoring values with a -1 """ dist_cal = torch.ne(dists, -1) num_dist_cal = dist_cal.sum() if num_dist_cal > 0: return torch.lt(dists[dist_cal], thr).float().sum() / num_dist_cal else: return -1 def evaluate_pck_accuracy(output, target, hm_type='gaussian', thr=0.5): """ Calculate accuracy according to PCK, but uses ground truth heatmap rather than x,y locations First value to be returned is average accuracy across 'idxs', followed by individual accuracies """ idx = list(range(output.shape[1])) if hm_type == 'gaussian': pred, _ = get_max_preds(output) target, _ = get_max_preds(target) h = output.shape[2] w = output.shape[3] norm = torch.ones((pred.shape[0], 2)) * torch.tensor([h, w], dtype=torch.float32) / 10 # Why they divide this by 10? norm = norm.to(output.device) else: raise NotImplementedError dists = calc_dists(pred, target, norm) acc = torch.zeros(len(idx)).to(dists.device) avg_acc = 0 cnt = 0 for i in range(len(idx)): acc[i] = dist_acc(dists[idx[i]], thr=thr) if acc[i] >= 0: avg_acc = avg_acc + acc[i] cnt += 1 avg_acc = avg_acc / cnt if cnt != 0 else 0 return acc, avg_acc, cnt, pred, target # # # # Operations on bounding boxes (rectangles) def bbox_area(bbox): """ Area of a bounding box (a rectangles). Args: bbox (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) Returns: float: Bounding box area. """ x1, y1, x2, y2 = bbox dx = x2 - x1 dy = y2 - y1 return dx * dy def bbox_intersection(bbox_a, bbox_b): """ Intersection between two buonding boxes (two rectangles). Args: bbox_a (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) bbox_b (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) Returns: (:class:`np.ndarray`, float): Intersection limits and area. Format: (x_min, y_min, x_max, y_max), area """ x1 = np.max((bbox_a[0], bbox_b[0])) # Left x2 = np.min((bbox_a[2], bbox_b[2])) # Right y1 = np.max((bbox_a[1], bbox_b[1])) # Top y2 = np.min((bbox_a[3], bbox_b[3])) # Bottom if x2 < x1 or y2 < y1: bbox_i = np.asarray([0, 0, 0, 0]) area_i = 0 else: bbox_i = np.asarray([x1, y1, x2, y2], dtype=bbox_a.dtype) area_i = bbox_area(bbox_i) return bbox_i, area_i def bbox_union(bbox_a, bbox_b): """ Union between two buonding boxes (two rectangles). Args: bbox_a (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) bbox_b (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) Returns: float: Union. """ area_a = bbox_area(bbox_a) area_b = bbox_area(bbox_b) bbox_i, area_i = bbox_intersection(bbox_a, bbox_b) area_u = area_a + area_b - area_i return area_u def bbox_iou(bbox_a, bbox_b): """ Intersection over Union (IoU) between two buonding boxes (two rectangles). Args: bbox_a (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) bbox_b (:class:`np.ndarray`): rectangle in the form (x_min, y_min, x_max, y_max) Returns: float: Intersection over Union (IoU). """ area_u = bbox_union(bbox_a, bbox_b) bbox_i, area_i = bbox_intersection(bbox_a, bbox_b) iou = area_i / area_u return iou # # # # Bounding box/pose similarity and association def oks_iou(g, d, a_g, a_d, sigmas=None, in_vis_thre=None): if not isinstance(sigmas, np.ndarray): sigmas = np.array( [.26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2) ** 2 xg = g[:, 0] yg = g[:, 1] vg = g[:, 2] ious = np.zeros((d.shape[0])) for n_d in range(0, d.shape[0]): xd = d[n_d, :, 0] yd = d[n_d, :, 1] vd = d[n_d, :, 2] dx = xd - xg dy = yd - yg e = (dx ** 2 + dy ** 2) / vars / ((a_g + a_d[n_d]) / 2 + np.spacing(1)) / 2 if in_vis_thre is not None: ind = list(vg > in_vis_thre) and list(vd > in_vis_thre) e = e[ind] ious[n_d] = np.sum(np.exp(-e)) / e.shape[0] if e.shape[0] != 0 else 0.0 return ious def compute_similarity_matrices(bboxes_a, bboxes_b, poses_a, poses_b): assert len(bboxes_a) == len(poses_a) and len(bboxes_b) == len(poses_b) result_bbox = np.zeros((len(bboxes_a), len(bboxes_b)), dtype=np.float32) result_pose = np.zeros((len(poses_a), len(poses_b)), dtype=np.float32) for i, (bbox_a, pose_a) in enumerate(zip(bboxes_a, poses_a)): area_bboxes_b = np.asarray([bbox_area(bbox_b) for bbox_b in bboxes_b]) result_pose[i, :] = oks_iou(pose_a, poses_b, bbox_area(bbox_a), area_bboxes_b) for j, (bbox_b, pose_b) in enumerate(zip(bboxes_b, poses_b)): result_bbox[i, j] = bbox_iou(bbox_a, bbox_b) return result_bbox, result_pose def find_person_id_associations(boxes, pts, prev_boxes, prev_pts, prev_person_ids, next_person_id=0, pose_alpha=0.5, similarity_threshold=0.5, smoothing_alpha=0.): """ Find associations between previous and current skeletons and apply temporal smoothing. It requires previous and current bounding boxes, skeletons, and previous person_ids. Args: boxes (:class:`np.ndarray`): current person bounding boxes pts (:class:`np.ndarray`): current human joints prev_boxes (:class:`np.ndarray`): previous person bounding boxes prev_pts (:class:`np.ndarray`): previous human joints prev_person_ids (:class:`np.ndarray`): previous person ids next_person_id (int): the id that will be assigned to the next novel detected person Default: 0 pose_alpha (float): parameter to weight between bounding box similarity and pose (oks) similarity. pose_alpha * pose_similarity + (1 - pose_alpha) * bbox_similarity Default: 0.5 similarity_threshold (float): lower similarity threshold to have a correct match between previous and current detections. Default: 0.5 smoothing_alpha (float): linear temporal smoothing filter. Set 0 to disable, 1 to keep the previous detection. Default: 0.1 Returns: (:class:`np.ndarray`, :class:`np.ndarray`, :class:`np.ndarray`): A list with (boxes, pts, person_ids) where boxes and pts are temporally smoothed. """ bbox_similarity_matrix, pose_similarity_matrix = compute_similarity_matrices(boxes, prev_boxes, pts, prev_pts) similarity_matrix = pose_similarity_matrix * pose_alpha + bbox_similarity_matrix * (1 - pose_alpha) m = munkres.Munkres() assignments = np.asarray(m.compute((1 - similarity_matrix).tolist())) # Munkres require a cost => 1 - similarity person_ids = np.ones(len(pts), dtype=np.int32) * -1 for assignment in assignments: if similarity_matrix[assignment[0], assignment[1]] > similarity_threshold: person_ids[assignment[0]] = prev_person_ids[assignment[1]] if smoothing_alpha: boxes[assignment[0]] = (1 - smoothing_alpha) * boxes[assignment[0]] + \ smoothing_alpha * prev_boxes[assignment[1]] pts[assignment[0]] = (1 - smoothing_alpha) * pts[assignment[0]] + \ smoothing_alpha * prev_pts[assignment[1]] person_ids[person_ids == -1] = np.arange(next_person_id, next_person_id + np.sum(person_ids == -1)) return boxes, pts, person_ids # # # # derived from https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation def get_multi_stage_outputs(model, image, with_flip=False, project2image=False, size_projected=None, nof_joints=17, max_batch_size=128): heatmaps_avg = 0 num_heatmaps = 0 heatmaps = [] tags = [] # inference # outputs is a list with (default) shape # [(batch, nof_joints*2, height//4, width//4), (batch, nof_joints, height//2, width//2)] # but it could also be (no checkpoints with this configuration) # [(batch, nof_joints*2, height//4, width//4), (batch, nof_joints*2, height//2, width//2), (batch, nof_joints, height, width)] if len(image) <= max_batch_size: outputs = model(image) else: outputs = [ torch.empty((image.shape[0], nof_joints * 2, image.shape[-2] // 4, image.shape[-1] // 4), device=image.device), torch.empty((image.shape[0], nof_joints, image.shape[-2] // 2, image.shape[-1] // 2), device=image.device) ] for i in range(0, len(image), max_batch_size): out = model(image[i:i + max_batch_size]) outputs[0][i:i + max_batch_size] = out[0] outputs[1][i:i + max_batch_size] = out[1] # get higher output resolution higher_resolution = (outputs[-1].shape[-2], outputs[-1].shape[-1]) for i, output in enumerate(outputs): if i != len(outputs) - 1: output = torch.nn.functional.interpolate( output, size=higher_resolution, mode='bilinear', align_corners=False ) heatmaps_avg += output[:, :nof_joints] num_heatmaps += 1 if output.shape[1] > nof_joints: tags.append(output[:, nof_joints:]) if num_heatmaps > 0: heatmaps.append(heatmaps_avg / num_heatmaps) if with_flip: # ToDo raise NotImplementedError # if 'coco' in cfg.DATASET.DATASET: # dataset_name = 'COCO' # elif 'crowd_pose' in cfg.DATASET.DATASET: # dataset_name = 'CROWDPOSE' # else: # raise ValueError('Please implement flip_index for new dataset: %s.' % cfg.DATASET.DATASET) # flip_index = FLIP_CONFIG[dataset_name + '_WITH_CENTER'] \ # if cfg.DATASET.WITH_CENTER else FLIP_CONFIG[dataset_name] # # heatmaps_avg = 0 # num_heatmaps = 0 # outputs_flip = model(torch.flip(image, [3])) # for i in range(len(outputs_flip)): # output = outputs_flip[i] # if len(outputs_flip) > 1 and i != len(outputs_flip) - 1: # output = torch.nn.functional.interpolate( # output, # size=(outputs_flip[-1].size(2), outputs_flip[-1].size(3)), # mode='bilinear', # align_corners=False # ) # output = torch.flip(output, [3]) # outputs.append(output) # # offset_feat = cfg.DATASET.NUM_JOINTS \ # if cfg.LOSS.WITH_HEATMAPS_LOSS[i] else 0 # # if cfg.LOSS.WITH_HEATMAPS_LOSS[i] and cfg.TEST.WITH_HEATMAPS[i]: # heatmaps_avg += \ # output[:, :cfg.DATASET.NUM_JOINTS][:, flip_index, :, :] # num_heatmaps += 1 # # if cfg.LOSS.WITH_AE_LOSS[i] and cfg.TEST.WITH_AE[i]: # tags.append(output[:, offset_feat:]) # if cfg.MODEL.TAG_PER_JOINT: # tags[-1] = tags[-1][:, flip_index, :, :] # # heatmaps.append(heatmaps_avg/num_heatmaps) if project2image and size_projected: heatmaps = [ torch.nn.functional.interpolate( hms, size=(size_projected[1], size_projected[0]), mode='bilinear', align_corners=False ) for hms in heatmaps ] tags = [ torch.nn.functional.interpolate( tms, size=(size_projected[1], size_projected[0]), mode='bilinear', align_corners=False ) for tms in tags ] return outputs, heatmaps, tags def aggregate_results(scale_factor, final_heatmaps, tags_list, heatmaps, tags, with_flip=False, project2image=False): if scale_factor == 1: if final_heatmaps is not None and not project2image: tags = [ torch.nn.functional.interpolate( tms, size=(final_heatmaps.size(2), final_heatmaps.size(3)), mode='bilinear', align_corners=False ) for tms in tags ] for tms in tags: tags_list.append(torch.unsqueeze(tms, dim=4)) heatmaps_avg = (heatmaps[0] + heatmaps[1]) / 2.0 if with_flip else heatmaps[0] if final_heatmaps is None: final_heatmaps = heatmaps_avg elif project2image: final_heatmaps += heatmaps_avg else: final_heatmaps += torch.nn.functional.interpolate( heatmaps_avg, size=(final_heatmaps.size(2), final_heatmaps.size(3)), mode='bilinear', align_corners=False ) return final_heatmaps, tags_list def transform_preds(coords, center, scale, output_size): # target_coords = np.zeros(coords.shape) target_coords = coords.copy() trans = get_affine_transform(center, scale, 0, output_size, inv=1) for p in range(coords.shape[0]): target_coords[p, 0:2] = affine_transform(coords[p, 0:2], trans) return target_coords def resize(image, input_size, interpolation=cv2.INTER_LINEAR): h, w, _ = image.shape center = np.array([int(w / 2.0 + 0.5), int(h / 2.0 + 0.5)]) if w < h: w_resized = input_size h_resized = int((input_size / w * h + 63) // 64 * 64) scale_w = w / 200.0 scale_h = h_resized / w_resized * w / 200.0 else: h_resized = input_size w_resized = int((input_size / h * w + 63) // 64 * 64) scale_h = h / 200.0 scale_w = w_resized / h_resized * h / 200.0 scale = np.array([scale_w, scale_h]) trans = get_affine_transform(center, scale, 0, (w_resized, h_resized)) image_resized = cv2.warpAffine( image, trans, (int(w_resized), int(h_resized)), flags=interpolation ) return image_resized, center, scale def get_multi_scale_size(image, input_size, current_scale, min_scale): h, w, _ = image.shape center = np.array([int(w / 2.0 + 0.5), int(h / 2.0 + 0.5)]) # calculate the size for min_scale min_input_size = int((min_scale * input_size + 63) // 64 * 64) if w < h: w_resized = int(min_input_size * current_scale / min_scale) h_resized = int( int((min_input_size / w * h + 63) // 64 * 64) * current_scale / min_scale ) scale_w = w / 200.0 scale_h = h_resized / w_resized * w / 200.0 else: h_resized = int(min_input_size * current_scale / min_scale) w_resized = int( int((min_input_size / h * w + 63) // 64 * 64) * current_scale / min_scale ) scale_h = h / 200.0 scale_w = w_resized / h_resized * h / 200.0 return (w_resized, h_resized), center, np.array([scale_w, scale_h]) def resize_align_multi_scale(image, input_size, current_scale, min_scale, interpolation=cv2.INTER_LINEAR): size_resized, center, scale = get_multi_scale_size( image, input_size, current_scale, min_scale ) trans = get_affine_transform(center, scale, 0, size_resized) image_resized = cv2.warpAffine( image, trans, size_resized, # (int(w_resized), int(h_resized)), flags=interpolation ) return image_resized, size_resized, center, scale def get_final_preds(grouped_joints, center, scale, heatmap_size): final_results = [] # for each image for i in range(len(grouped_joints)): final_results.insert(i, []) # for each detected person for person in grouped_joints[i]: # joints = np.zeros((person.shape[0], 3)) joints = transform_preds(person.cpu().numpy(), center, scale, heatmap_size) final_results[i].append(joints) return final_results # # ``` #### File: jingyuanchan/Pose_Baseline/SimpleHigherHRNet.py ```python from collections import OrderedDict import cv2 import numpy as np import torch from torchvision.transforms import transforms from models.higherhrnet import HigherHRNet from misc.HeatmapParser import HeatmapParser from misc.utils import get_multi_scale_size, resize_align_multi_scale, get_multi_stage_outputs, aggregate_results, get_final_preds, bbox_iou class SimpleHigherHRNet: """ SimpleHigherHRNet class. The class provides a simple and customizable method to load the HigherHRNet network, load the official pre-trained weights, and predict the human pose on single images or a batch of images. """ def __init__(self, c, nof_joints, checkpoint_path, model_name='HigherHRNet', resolution=512, interpolation=cv2.INTER_LINEAR, return_heatmaps=False, return_bounding_boxes=False, filter_redundant_poses=True, max_nof_people=30, max_batch_size=32, device=torch.device("cpu")): """ Initializes a new SimpleHigherHRNet object. HigherHRNet is initialized on the torch.device("device") and its pre-trained weights will be loaded from disk. Args: c (int): number of channels (when using HigherHRNet model). nof_joints (int): number of joints. checkpoint_path (str): path to an official higherhrnet checkpoint. model_name (str): model name (just HigherHRNet at the moment). Valid names for HigherHRNet are: `HigherHRNet`, `higherhrnet` Default: "HigherHRNet" resolution (int): higherhrnet input resolution - format: int == min(width, height). Default: 512 interpolation (int): opencv interpolation algorithm. Default: cv2.INTER_LINEAR return_heatmaps (bool): if True, heatmaps will be returned along with poses by self.predict. Default: False return_bounding_boxes (bool): if True, bounding boxes will be returned along with poses by self.predict. Default: False filter_redundant_poses (bool): if True, redundant poses (poses being almost identical) are filtered out. Default: True max_nof_people (int): maximum number of detectable people. Default: 30 max_batch_size (int): maximum batch size used in higherhrnet inference. Useless without multiperson=True. Default: 16 device (:class:`torch.device` or str): the higherhrnet (and yolo) inference will be run on this device. Default: torch.device("cpu") """ self.c = c self.nof_joints = nof_joints self.checkpoint_path = checkpoint_path self.model_name = model_name self.resolution = resolution self.interpolation = interpolation self.return_heatmaps = return_heatmaps self.return_bounding_boxes = return_bounding_boxes self.filter_redundant_poses = filter_redundant_poses self.max_nof_people = max_nof_people self.max_batch_size = max_batch_size self.device = device # assert nof_joints in (14, 15, 17) if self.nof_joints == 14: self.joint_set = 'crowdpose' elif self.nof_joints == 15: self.joint_set = 'mpii' elif self.nof_joints == 17: self.joint_set = 'coco' else: raise ValueError('Wrong number of joints.') if model_name in ('HigherHRNet', 'higherhrnet'): self.model = HigherHRNet(c=c, nof_joints=nof_joints) else: raise ValueError('Wrong model name.') checkpoint = torch.load(checkpoint_path, map_location=self.device) if 'model' in checkpoint: checkpoint = checkpoint['model'] # fix issue with official high-resolution weights checkpoint = OrderedDict([(k[2:] if k[:2] == '1.' else k, v) for k, v in checkpoint.items()]) self.model.load_state_dict(checkpoint) if 'cuda' in str(self.device): print("device: 'cuda' - ", end="") if 'cuda' == str(self.device): # if device is set to 'cuda', all available GPUs will be used print("%d GPU(s) will be used" % torch.cuda.device_count()) device_ids = None else: # if device is set to 'cuda:IDS', only that/those device(s) will be used print("GPU(s) '%s' will be used" % str(self.device)) device_ids = [int(x) for x in str(self.device)[5:].split(',')] self.model = torch.nn.DataParallel(self.model, device_ids=device_ids) elif 'cpu' == str(self.device): print("device: 'cpu'") else: raise ValueError('Wrong device name.') self.model = self.model.to(device) self.model.eval() self.output_parser = HeatmapParser(num_joints=self.nof_joints, joint_set=self.joint_set, max_num_people=self.max_nof_people, ignore_too_much=True, detection_threshold=0.3) self.transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) def predict(self, image): """ Predicts the human pose on a single image or a stack of n images. Args: image (:class:`np.ndarray`): the image(s) on which the human pose will be estimated. image is expected to be in the opencv format. image can be: - a single image with shape=(height, width, BGR color channel) - a stack of n images with shape=(n, height, width, BGR color channel) Returns: :class:`np.ndarray` or list: a numpy array containing human joints for each (detected) person. Format: if image is a single image: shape=(# of people, # of joints (nof_joints), 3); dtype=(np.float32). if image is a stack of n images: list of n np.ndarrays with shape=(# of people, # of joints (nof_joints), 3); dtype=(np.float32). Each joint has 3 values: (y position, x position, joint confidence). If self.return_heatmaps, the class returns a list with (heatmaps, human joints) If self.return_bounding_boxes, the class returns a list with (bounding boxes, human joints) If self.return_heatmaps and self.return_bounding_boxes, the class returns a list with (heatmaps, bounding boxes, human joints) """ if len(image.shape) == 3: return self._predict_single(image) elif len(image.shape) == 4: return self._predict_batch(image) else: raise ValueError('Wrong image format.') def _predict_single(self, image): ret = self._predict_batch(image[None, ...]) if len(ret) > 1: # heatmaps and/or bboxes and joints ret = [r[0] for r in ret] else: # joints only ret = ret[0] return ret def _predict_batch(self, image): with torch.no_grad(): heatmaps_list = None tags_list = [] # scales and base (size, center, scale) scales = (1,) # ToDo add support to multiple scales scales = sorted(scales, reverse=True) base_size, base_center, base_scale = get_multi_scale_size( image[0], self.resolution, 1, 1 ) # for each scale (at the moment, just one scale) for idx, scale in enumerate(scales): # rescale image, convert to tensor, move to device images = list() for img in image: image, size_resized, _, _ = resize_align_multi_scale( img, self.resolution, scale, min(scales), interpolation=self.interpolation ) image = self.transform(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).unsqueeze(dim=0) image = image.to(self.device) images.append(image) images = torch.cat(images) # inference # output: list of HigherHRNet outputs (heatmaps) # avg_heatmaps: averaged heatmaps # tags: per-pixel identity ids. # See Newell et al., Associative Embedding: End-to-End Learning for Joint Detection and # Grouping, NIPS 2017. https://arxiv.org/abs/1611.05424 or # http://papers.nips.cc/paper/6822-associative-embedding-end-to-end-learning-for-joint-detection-and-grouping outputs, heatmaps, tags = get_multi_stage_outputs( self.model, images, with_flip=False, project2image=True, size_projected=size_resized, nof_joints=self.nof_joints, max_batch_size=self.max_batch_size ) # aggregate the multiple heatmaps and tags heatmaps_list, tags_list = aggregate_results( scale, heatmaps_list, tags_list, heatmaps, tags, with_flip=False, project2image=True ) heatmaps = heatmaps_list.float() / len(scales) tags = torch.cat(tags_list, dim=4) # refine prediction # grouped has the shape (people, joints, 4) -> 4: (x, y, confidence, tag) # scores has the shape (people, ) and corresponds to the person confidence before refinement grouped, scores = self.output_parser.parse( heatmaps, tags, adjust=True, refine=True # ToDo parametrize these two parameters ) # get final predictions final_results = get_final_preds( grouped, base_center, base_scale, [heatmaps.shape[3], heatmaps.shape[2]] ) if self.filter_redundant_poses: # filter redundant poses - this step filters out poses whose joints have, on average, a difference # lower than 3 pixels # this is useful when refine=True in self.output_parser.parse because that step joins together # skeleton parts belonging to the same people (but then it does not remove redundant skeletons) final_pts = [] # for each image for i in range(len(final_results)): final_pts.insert(i, list()) # for each person for pts in final_results[i]: if len(final_pts[i]) > 0: diff = np.mean(np.abs(np.array(final_pts[i])[..., :2] - pts[..., :2]), axis=(1, 2)) if np.any(diff < 3): # average diff between this pose and another one is less than 3 pixels continue final_pts[i].append(pts) final_results = final_pts pts = [] boxes = [] for i in range(len(final_results)): pts.insert(i, np.asarray(final_results[i])) if len(pts[i]) > 0: pts[i][..., [0, 1]] = pts[i][..., [1, 0]] # restoring (y, x) order as in SimpleHRNet pts[i] = pts[i][..., :3] if self.return_bounding_boxes: left_top = np.min(pts[i][..., 0:2], axis=1) right_bottom = np.max(pts[i][..., 0:2], axis=1) # [x1, y1, x2, y2] boxes.insert(i, np.stack( [left_top[:, 1], left_top[:, 0], right_bottom[:, 1], right_bottom[:, 0]], axis=-1 )) else: boxes.insert(i, []) res = list() if self.return_heatmaps: res.append(heatmaps) if self.return_bounding_boxes: res.append(boxes) res.append(pts) if len(res) > 1: return res else: return res[0] if __name__ == '__main__': hhrnet = SimpleHigherHRNet( c=32, nof_joints=17, checkpoint_path='./weights/pose_higher_hrnet_w32_512.pth', resolution=512, device='cuda' ) # img = np.ones((384, 256, 3), dtype=np.uint8) import cv2 img = cv2.imread('./sample.jpg', cv2.IMREAD_ANYCOLOR) hhrnet.predict(img) ```
{ "source": "JingyueLu/GNN_branching", "score": 2 }
#### File: convex_adversarial/examples/problems.py ```python import sys sys.path.append('.') import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import torchvision.transforms as transforms import torchvision.datasets as datasets import torch.nn.functional as F import numpy as np import torch.utils.data as td import argparse from convex_adversarial import epsilon_from_model, DualNetBounds from convex_adversarial import Dense, DenseSequential import math import os def model_wide(in_ch, out_width, k): model = nn.Sequential( nn.Conv2d(in_ch, 4*k, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(4*k, 8*k, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8*k*out_width*out_width,k*128), nn.ReLU(), nn.Linear(k*128, 10) ) return model def model_deep(in_ch, out_width, k, n1=8, n2=16, linear_size=100): def group(inf, outf, N): if N == 1: conv = [nn.Conv2d(inf, outf, 4, stride=2, padding=1), nn.ReLU()] else: conv = [nn.Conv2d(inf, outf, 3, stride=1, padding=1), nn.ReLU()] for _ in range(1,N-1): conv.append(nn.Conv2d(outf, outf, 3, stride=1, padding=1)) conv.append(nn.ReLU()) conv.append(nn.Conv2d(outf, outf, 4, stride=2, padding=1)) conv.append(nn.ReLU()) return conv conv1 = group(in_ch, n1, k) conv2 = group(n1, n2, k) model = nn.Sequential( *conv1, *conv2, Flatten(), nn.Linear(n2*out_width*out_width,linear_size), nn.ReLU(), nn.Linear(100, 10) ) return model ## 14*14*8 (1568) --> 14*14*8 (1568) --> 14*14*8 (1568) --> 392 --> 100 (5196 ReLUs) def mnist_model_deep_custom(): model = nn.Sequential( nn.Conv2d(1, 8, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8*7*7,100), nn.ReLU(), nn.Linear(100, 10) ) return model class Flatten(nn.Module): def forward(self, x): return x.view(x.size(0), -1) def mnist_loaders(batch_size, shuffle_test=False): mnist_train = datasets.MNIST("./data", train=True, download=True, transform=transforms.ToTensor()) mnist_test = datasets.MNIST("./data", train=False, download=True, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=shuffle_test, pin_memory=True) return train_loader, test_loader def fashion_mnist_loaders(batch_size): mnist_train = datasets.MNIST("./fashion_mnist", train=True, download=True, transform=transforms.ToTensor()) mnist_test = datasets.MNIST("./fashion_mnist", train=False, download=True, transform=transforms.ToTensor()) train_loader = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, pin_memory=True) return train_loader, test_loader def mnist_500(): model = nn.Sequential( Flatten(), nn.Linear(28*28,500), nn.ReLU(), nn.Linear(500, 10) ) return model def mnist_model(): model = nn.Sequential( nn.Conv2d(1, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32*7*7,100), nn.ReLU(), nn.Linear(100, 10) ) return model def mnist_model_wide(k): return model_wide(1, 7, k) def mnist_model_deep(k): return model_deep(1, 7, k) def mnist_model_large(): model = nn.Sequential( nn.Conv2d(1, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(64*7*7,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) return model def replace_10_with_0(y): return y % 10 def svhn_loaders(batch_size): train = datasets.SVHN("./data", split='train', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0) test = datasets.SVHN("./data", split='test', download=True, transform=transforms.ToTensor(), target_transform=replace_10_with_0) train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=False, pin_memory=True) return train_loader, test_loader def svhn_model(): model = nn.Sequential( nn.Conv2d(3, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32*8*8,100), nn.ReLU(), nn.Linear(100, 10) ).cuda() return model def har_loaders(batch_size): X_te = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/test/X_test.txt')).float() X_tr = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/train/X_train.txt')).float() y_te = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/test/y_test.txt')-1).long() y_tr = torch.from_numpy(np.loadtxt('./data/UCI HAR Dataset/train/y_train.txt')-1).long() har_train = td.TensorDataset(X_tr, y_tr) har_test = td.TensorDataset(X_te, y_te) train_loader = torch.utils.data.DataLoader(har_train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(har_test, batch_size=batch_size, shuffle=False, pin_memory=True) return train_loader, test_loader def har_500_model(): model = nn.Sequential( nn.Linear(561, 500), nn.ReLU(), nn.Linear(500, 6) ) return model def har_500_250_model(): model = nn.Sequential( nn.Linear(561, 500), nn.ReLU(), nn.Linear(500, 250), nn.ReLU(), nn.Linear(250, 6) ) return model def har_500_250_100_model(): model = nn.Sequential( nn.Linear(561, 500), nn.ReLU(), nn.Linear(500, 250), nn.ReLU(), nn.Linear(250, 100), nn.ReLU(), nn.Linear(100, 6) ) return model def har_resnet_model(): model = DenseSequential( Dense(nn.Linear(561, 561)), nn.ReLU(), Dense(nn.Sequential(), None, nn.Linear(561,561)), nn.ReLU(), nn.Linear(561,6) ) return model def cifar_loaders(batch_size, shuffle_test=False): normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.225, 0.225, 0.225]) train = datasets.CIFAR10('./data', train=True, download=True, transform=transforms.Compose([ transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, 4), transforms.ToTensor(), normalize, ])) test = datasets.CIFAR10('./data', train=False, transform=transforms.Compose([transforms.ToTensor(), normalize])) train_loader = torch.utils.data.DataLoader(train, batch_size=batch_size, shuffle=True, pin_memory=True) test_loader = torch.utils.data.DataLoader(test, batch_size=batch_size, shuffle=shuffle_test, pin_memory=True) return train_loader, test_loader # 6244 ReLUs # wide model def cifar_model(): model = nn.Sequential( nn.Conv2d(3, 16, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(16, 32, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(32*8*8,100), nn.ReLU(), nn.Linear(100, 10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model # 6756 ReLUs # deep model def cifar_model_deep(): model = nn.Sequential( nn.Conv2d(3, 8, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(8, 8, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(8*8*8, 100), nn.ReLU(), nn.Linear(100, 10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model # 16*16*8 (2048) --> 16*8*8 (1024) --> 100 # 3172 ReLUs (small model) def cifar_model_m2(): model = nn.Sequential( nn.Conv2d(3, 8, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(8, 16, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(16*8*8,100), nn.ReLU(), nn.Linear(100, 10) ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def cifar_model_large(): model = nn.Sequential( nn.Conv2d(3, 32, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(32, 32, 4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, 3, stride=1, padding=1), nn.ReLU(), nn.Conv2d(64, 64, 4, stride=2, padding=1), nn.ReLU(), Flatten(), nn.Linear(64*8*8,512), nn.ReLU(), nn.Linear(512,512), nn.ReLU(), nn.Linear(512,10) ) return model for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) m.bias.data.zero_() return model def cifar_model_resnet(N = 5, factor=10): def block(in_filters, out_filters, k, downsample): if not downsample: k_first = 3 skip_stride = 1 k_skip = 1 else: k_first = 4 skip_stride = 2 k_skip = 2 return [ Dense(nn.Conv2d(in_filters, out_filters, k_first, stride=skip_stride, padding=1)), nn.ReLU(), Dense(nn.Conv2d(in_filters, out_filters, k_skip, stride=skip_stride, padding=0), None, nn.Conv2d(out_filters, out_filters, k, stride=1, padding=1)), nn.ReLU() ] conv1 = [nn.Conv2d(3,16,3,stride=1,padding=1), nn.ReLU()] conv2 = block(16,16*factor,3, False) for _ in range(N): conv2.extend(block(16*factor,16*factor,3, False)) conv3 = block(16*factor,32*factor,3, True) for _ in range(N-1): conv3.extend(block(32*factor,32*factor,3, False)) conv4 = block(32*factor,64*factor,3, True) for _ in range(N-1): conv4.extend(block(64*factor,64*factor,3, False)) layers = ( conv1 + conv2 + conv3 + conv4 + [Flatten(), nn.Linear(64*factor*8*8,1000), nn.ReLU(), nn.Linear(1000, 10)] ) model = DenseSequential( *layers ) for m in model.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) if m.bias is not None: m.bias.data.zero_() return model def argparser(batch_size=50, epochs=20, seed=0, verbose=1, lr=1e-3, epsilon=0.1, starting_epsilon=None, proj=None, norm_train='l1', norm_test='l1', opt='sgd', momentum=0.9, weight_decay=5e-4): parser = argparse.ArgumentParser() # optimizer settings parser.add_argument('--opt', default=opt) parser.add_argument('--momentum', type=float, default=momentum) parser.add_argument('--weight_decay', type=float, default=weight_decay) parser.add_argument('--batch_size', type=int, default=batch_size) parser.add_argument('--test_batch_size', type=int, default=batch_size) parser.add_argument('--epochs', type=int, default=epochs) parser.add_argument("--lr", type=float, default=lr) # epsilon settings parser.add_argument("--epsilon", type=float, default=epsilon) parser.add_argument("--starting_epsilon", type=float, default=starting_epsilon) parser.add_argument('--schedule_length', type=int, default=10) # projection settings parser.add_argument('--proj', type=int, default=proj) parser.add_argument('--norm_train', default=norm_train) parser.add_argument('--norm_test', default=norm_test) # model arguments parser.add_argument('--model', default=None) parser.add_argument('--model_factor', type=int, default=8) parser.add_argument('--cascade', type=int, default=1) parser.add_argument('--method', default=None) parser.add_argument('--resnet_N', type=int, default=1) parser.add_argument('--resnet_factor', type=int, default=1) # other arguments parser.add_argument('--prefix') parser.add_argument('--load') parser.add_argument('--real_time', action='store_true') parser.add_argument('--seed', type=int, default=seed) parser.add_argument('--verbose', type=int, default=verbose) parser.add_argument('--cuda_ids', default=None) args = parser.parse_args() if args.starting_epsilon is None: args.starting_epsilon = args.epsilon if args.prefix: if args.model is not None: args.prefix += '_'+args.model if args.method is not None: args.prefix += '_'+args.method banned = ['verbose', 'prefix', 'resume', 'baseline', 'eval', 'method', 'model', 'cuda_ids', 'load', 'real_time', 'test_batch_size'] if args.method == 'baseline': banned += ['epsilon', 'starting_epsilon', 'schedule_length', 'l1_test', 'l1_train', 'm', 'l1_proj'] # Ignore these parameters for filename since we never change them banned += ['momentum', 'weight_decay'] if args.cascade == 1: banned += ['cascade'] # if not using a model that uses model_factor, # ignore model_factor if args.model not in ['wide', 'deep']: banned += ['model_factor'] # if args.model != 'resnet': banned += ['resnet_N', 'resnet_factor'] for arg in sorted(vars(args)): if arg not in banned and getattr(args,arg) is not None: args.prefix += '_' + arg + '_' +str(getattr(args, arg)) if args.schedule_length > args.epochs: raise ValueError('Schedule length for epsilon ({}) is greater than ' 'number of epochs ({})'.format(args.schedule_length, args.epochs)) else: args.prefix = 'temporary' if args.cuda_ids is not None: print('Setting CUDA_VISIBLE_DEVICES to {}'.format(args.cuda_ids)) os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_ids return args def args2kwargs(args, X=None): if args.proj is not None: kwargs = { 'proj' : args.proj, } else: kwargs = { } kwargs['parallel'] = (args.cuda_ids is not None) return kwargs def argparser_evaluate(epsilon=0.1, norm='l1'): parser = argparse.ArgumentParser() parser.add_argument("--epsilon", type=float, default=epsilon) parser.add_argument('--proj', type=int, default=None) parser.add_argument('--norm', default=norm) parser.add_argument('--model', default=None) parser.add_argument('--dataset', default='mnist') parser.add_argument('--load') parser.add_argument('--output') parser.add_argument('--real_time', action='store_true') # parser.add_argument('--seed', type=int, default=seed) parser.add_argument('--verbose', type=int, default=True) parser.add_argument('--cuda_ids', default=None) args = parser.parse_args() if args.cuda_ids is not None: print('Setting CUDA_VISIBLE_DEVICES to {}'.format(args.cuda_ids)) os.environ['CUDA_VISIBLE_DEVICES'] = args.cuda_ids return args ``` #### File: GNN_branching/plnn/branch_and_bound.py ```python import bisect import math import torch class CandidateDomain: ''' Object representing a domain as produced by the BranchAndBound algorithm. Comparison between its elements is based on the values of the lower bounds that are estimated for it. ''' def __init__(self, lb=-float('inf'), ub=float('inf'), dm=None): self.lower_bound = lb self.upper_bound = ub self.domain = dm def __lt__(self, other): return self.lower_bound < other.lower_bound def __le__(self, other): return self.lower_bound <= other.lower_bound def __eq__(self, other): return self.lower_bound == other.lower_bound def __repr__(self): string = f"[LB: {self.lower_bound:.4e}\t" \ f" UB: {self.upper_bound:.4e}\n" \ f" Domain: {self.domain}]" return string def area(self): ''' Compute the area of the domain ''' dom_sides = self.domain.select(1, 1) - self.domain.select(1, 0) dom_area = dom_sides.prod() return dom_area def no_grad(f): def g(*args, **kwargs): with torch.no_grad(): return f(*args, **kwargs) return g @no_grad def bab(net, domain, eps=1e-3, decision_bound=None, smart_branching=None): ''' Uses branch and bound algorithm to evaluate the global minimum of a given neural network. `net` : Neural Network class, defining the `get_upper_bound` and `get_lower_bound` functions `domain` : Tensor defining the search bounds at each dimension. `eps` : Maximum difference between the UB and LB over the minimum before we consider having converged `decision_bound`: If not None, stop the search if the UB and LB are both superior or both inferior to this value. Returns : Lower bound and Upper bound on the global minimum, as well as the point where the upper bound is achieved ''' nb_visited_states = 0 global_ub_point, global_ub = net.get_upper_bound(domain) global_lb = net.get_lower_bound(domain) inp_shape = domain.shape[:-1] normed_domain = torch.stack((torch.zeros(inp_shape), torch.ones(inp_shape)), 1) domain_lb = domain.select(-1, 0) domain_width = domain.select(-1, 1) - domain.select(-1, 0) domain_lb = domain_lb.contiguous().unsqueeze_(-1).expand(inp_shape + (2,)) domain_width = domain_width.unsqueeze_(-1).expand(inp_shape + (2,)) # Use objects of type CandidateDomain to store domains with their bounds. candidate_domain = CandidateDomain(lb=global_lb, ub=global_ub, dm=normed_domain) domains = [candidate_domain] # This counter is used to decide when to prune domains prune_counter = 0 while global_ub - global_lb > eps: # Pick a domain to branch over and remove that from our current list of # domains. Also potentially perform some pruning on the way. selected_candidate_domain = pick_out(domains, global_ub-eps) # Genearate new, smaller (normalized) domains using box split. if smart_branching is None: # Simply do longest edge ndoms = box_split(selected_candidate_domain.domain) else: # Follow the heuristic useful_cutoff = global_ub - eps if decision_bound is not None: useful_cutoff = min(useful_cutoff, decision_bound) ndoms = smart_box_split(selected_candidate_domain.domain, smart_branching, domain_lb, domain_width, useful_cutoff) for ndom_i in ndoms: nb_visited_states += 1 if (nb_visited_states % 10) == 0: print(f"Running Nb states visited: {nb_visited_states}") # Find the upper and lower bounds on the minimum in dom_i dom_i = domain_lb + domain_width * ndom_i dom_ub_point, dom_ub = net.get_upper_bound(dom_i) dom_lb = net.get_lower_bound(dom_i) # Update the global upper if the new upper bound found is lower. if dom_ub < global_ub: global_ub = dom_ub global_ub_point = dom_ub_point # Add the domain to our current list of domains if its lowerbound # is less than the global upperbound. if dom_lb < global_ub: candidate_domain_to_add = CandidateDomain(lb=dom_lb, ub=dom_ub, dm=ndom_i) add_domain(candidate_domain_to_add, domains) prune_counter += 1 # Prune domains whose lowerbounds are larger than or equal to the # global upperbound. # If domains list is larger than 100 items and if prune_counter has # reached a threshold, prune domains that we no longer need. if prune_counter >= 100 and len(domains) >= 100: # Remove domains with dom_lb >= global_ub domains = prune_domains(domains, global_ub-eps) prune_counter = 0 # Do a pass over all the remaining domains to evaluate how much of # the input is there left to prune # print_remaining_domain(domains) print(f"Current: lb: {global_lb}\t ub: {global_ub}") # Update the global lower bound with a lower bound that belongs # to a domain in the updated list "domains" . # TODO: This current implementation is only a global lower bound # if we sort domains by lower_bound. if len(domains) > 0: global_lb = domains[0].lower_bound print('current glb: ', global_lb) else: # if there is no more domains, we have pruned them all. global_lb = global_ub - eps # Stopping criterion if decision_bound is not None: if (global_lb >= decision_bound): break elif (global_ub < decision_bound): break return global_lb, global_ub, global_ub_point, nb_visited_states def add_domain(candidate, domains): ''' Use binary search to add the new domain `candidate` to the candidate list `domains` so that `domains` remains a sorted list. ''' bisect.insort_left(domains, candidate) def pick_out(domains, threshold): ''' Pick the first domain in the `domains` sequence that has a lower bound lower than `threshold`. Any domain appearing before the chosen one but having a lower_bound greater than the threshold is discarded. Returns: Non prunable CandidateDomain with the lowest reference_value. ''' assert len(domains) > 0, "The given domains list is empty." while True: assert len(domains) > 0, "No domain left to pick from." selected_candidate_domain = domains.pop(0) if selected_candidate_domain.lower_bound < threshold: break return selected_candidate_domain def box_split(domain): ''' Use box-constraints to split the input domain. Split by dividing the domain into two from its longest edge. Assumes a rectangular domain, which is aligned with the cartesian coordinate frame. `domain`: A 2d tensor whose rows contain lower and upper limits of the corresponding dimension. Returns: A list of sub-domains represented as 2d tensors. ''' # Find the longest edge by checking the difference of lower and upper # limits in each dimension. diff = domain[:, 1] - domain[:, 0] edgelength, dim = torch.max(diff, 0) # Unwrap from tensor containers edgelength = edgelength.item() dim = dim.item() # Now split over dimension dim: half_length = edgelength/2 # dom1: Upper bound in the 'dim'th dimension is now at halfway point. dom1 = domain.clone() dom1[dim, 1] -= half_length # dom2: Lower bound in 'dim'th dimension is now at haflway point. dom2 = domain.clone() dom2[dim, 0] += half_length sub_domains = [dom1, dom2] return sub_domains def smart_box_split(ndomain, dualnet, domain_lb, domain_width, useful_cutoff): ''' Use box-constraints to split the input domain. Split by dividing the domain into two. We decide on which dimension to split by trying all splits with a cheap lower bound. `domain`: A 2d tensor whose rows contain lower and upper limits of the corresponding dimension. Returns: A list of sub-domains represented as 2d tensors. ''' # We're going to try all possible combinations and get the bounds for each, # and pick the one with the largest (lowest lower bound of the two part) domain = domain_lb + domain_width * ndomain largest_lowest_lb = -float('inf') largest_lowest_lb_dim = None split_lbs = None for dim in range(domain.shape[0]): # Split alongst the i-th dimension dom1 = domain.clone() dom1[dim, 1] = (dom1[dim, 1] + dom1[dim, 0]) / 2 dom2 = domain.clone() dom2[dim, 0] = (dom2[dim, 1] + dom2[dim, 0]) / 2 both_doms = torch.stack([dom1, dom2], 0) lbs = dualnet.get_lower_bounds(both_doms) lowest_lb = lbs.min() if lowest_lb > largest_lowest_lb: largest_lowest_lb = lowest_lb largest_lowest_lb_dim = dim split_lbs = lbs ndom1 = ndomain.clone() ndom1[largest_lowest_lb_dim, 1] = (ndom1[largest_lowest_lb_dim, 1] + ndom1[largest_lowest_lb_dim, 0]) / 2 ndom2 = ndomain.clone() ndom2[largest_lowest_lb_dim, 0] = (ndom2[largest_lowest_lb_dim, 1] + ndom2[largest_lowest_lb_dim, 0]) / 2 sub_domains = [ndom1, ndom2] return sub_domains def prune_domains(domains, threshold): ''' Remove domain from `domains` that have a lower_bound greater than `threshold` ''' # TODO: Could do this with binary search rather than iterating. # TODO: If this is not sorted according to lower bounds, this # implementation is incorrect because we can not reason about the lower # bounds of the domain that come after for i in range(len(domains)): if domains[i].lower_bound >= threshold: domains = domains[0:i] break return domains def print_remaining_domain(domains): ''' Iterate over all the domains, measuring the part of the whole input space that they contain and print the total share it represents. ''' remaining_area = 0 for dom in domains: remaining_area += dom.area() print(f'Remaining portion of the input space: {remaining_area*100:.8f}%') ``` #### File: GNN_branching/plnn/conv_kwinter_kw.py ```python import gurobipy as grb import math import torch from convex_adversarial import DualNetwork from convex_adversarial.dual_layers import DualLinear, DualReLU from plnn.dual_network_linear_approximation import LooseDualNetworkApproximation from plnn.modules import View, Flatten from torch.autograd import Variable from torch.nn import functional as F import time from torch import nn class LinearizedNetwork: def __init__(self, layers): ''' layers: A list of Pytorch layers containing only Linear/ReLU/MaxPools ''' self.layers = layers self.net = nn.Sequential(*layers) def get_upper_bound_random(self, domain): ''' Compute an upper bound of the minimum of the network on `domain` Any feasible point is a valid upper bound on the minimum so we will perform some random testing. ''' nb_samples = 2056 nb_inp = domain.size(0) # Not a great way of sampling but this will be good enough # We want to get rows that are >= 0 rand_samples = torch.Tensor(nb_samples, nb_inp) rand_samples.uniform_(0, 1) domain_lb = domain.select(1, 0).contiguous() domain_ub = domain.select(1, 1).contiguous() domain_width = domain_ub - domain_lb domain_lb = domain_lb.view(1, nb_inp).expand(nb_samples, nb_inp) domain_width = domain_width.view(1, nb_inp).expand(nb_samples, nb_inp) with torch.no_grad(): inps = domain_lb + domain_width * rand_samples outs = self.net(inps) upper_bound, idx = torch.min(outs, dim=0) upper_bound = upper_bound[0].item() ub_point = inps[idx].squeeze() return ub_point, upper_bound def get_upper_bound_pgd(self, domain_lb, domain_ub, ub_point): ''' Compute an upper bound of the minimum of the network on `domain` Any feasible point is a valid upper bound on the minimum so we will perform some random testing. ''' nb_samples = 2056 torch.set_num_threads(1) nb_inp = torch.tensor(ub_point.size()).type(torch.long) nb_inp[0] = nb_samples nb_inp = nb_inp.tolist() # Not a great way of sampling but this will be good enough # We want to get rows that are >= 0 #rand_samples = torch.randn(nb_inp) rand_samples = torch.rand(nb_inp) best_ub = float('inf') best_ub_inp = None #domain_lb = domain.select(1, 0).contiguous() #domain_ub = domain.select(1, 1).contiguous() domain_lb = domain_lb.unsqueeze(0) domain_ub = domain_ub.unsqueeze(0) domain_width = domain_ub - domain_lb ub_point_expanded = ub_point.expand(nb_inp) domain_width = domain_width.expand(nb_inp) domain_lb = domain_lb.expand(nb_inp) inps = domain_lb + domain_width * rand_samples #inps = ub_point_expanded + (domain_width/2) * rand_samples #inps = torch.max(domain_lb, inps) #inps = torch.min(domain_ub, inps) inps[0] = ub_point.clone() inps = Variable(inps, requires_grad=True) batch_ub = float('inf') for i in range(1000): prev_batch_best = batch_ub self.net.zero_grad() #inps.zero_grad() out = self.net(inps) batch_ub = out.min().item() if batch_ub < best_ub: best_ub = batch_ub # print(f"New best lb: {best_lb}") _, idx = out.min(dim=0) best_ub_inp = inps[idx[0]] if batch_ub >= prev_batch_best: break #print(best_ub) all_samp_sum = out.sum() / nb_samples all_samp_sum.backward() grad = inps.grad max_grad, _ = grad.max(dim=0) min_grad, _ = grad.min(dim=0) grad_diff = max_grad - min_grad lr = 1e-2 * domain_width / grad_diff min_lr = lr.min() with torch.no_grad(): step = -min_lr*grad inps += step #inps= inps.clamp(domain_lb, domain_ub) inps = torch.max(domain_lb,inps) inps = torch.min(inps, domain_ub) inps = Variable(inps, requires_grad=True) return best_ub_inp, best_ub get_upper_bound = get_upper_bound_pgd class InfeasibleMaskException(Exception): pass class KWConvNetwork(LinearizedNetwork): def __init__(self, layers): ''' layers: A list of Pytorch layers containing only Linear/ReLU/MaxPools ''' super(KWConvNetwork, self).__init__(layers) def get_lower_bound(self, relu_mask, pre_lbs, pre_ubs, decision, choice): try: start = time.time() gub, glb, ub_point, new_mask, lower_bounds, upper_bounds = self.update_the_model(relu_mask, pre_lbs, pre_ubs, decision, choice) end = time.time() print('KW_Int define_linear: ', end-start) return gub, glb,ub_point, new_mask, lower_bounds, upper_bounds except InfeasibleMaskException: # The model is infeasible, so this mask is wrong. # We just return an infinite lower bound return float('inf'), float('inf'), None,relu_mask, None, None def check_optimization_success(self, introduced_constrs=None): if self.model.status == 2: # Optimization successful, nothing to complain about pass elif self.model.status == 3: self.model.remove(introduced_constrs) # The model is infeasible. We have made incompatible # assumptions, so this subdomain doesn't exist. raise InfeasibleMaskException() else: print('\n') print(f'model.status: {self.model.status}\n') raise NotImplementedError def build_the_model(self, input_domain, x, ball_eps, bounded): ''' Before the first branching, we build the model and create a mask matrix Output: relu_mask, current intermediate upper and lower bounds, a list of indices of the layers right before a Relu layer the constructed gurobi model NOTE: we keep all bounds as a list of tensors from now on. Only lower and upper bounds are kept in the same shape as layers' outputs. Mask is linearized Gurobi_var lists are lineariezd self.model_lower_bounds and self.model_upper_bounds are kepts mainly for debugging purpose and could be removed ''' new_relu_mask = [] lower_bounds = [] upper_bounds = [] ## NEW STRUCTURE: deal with all available bounds first # first get KW bounds self.loose_dual = LooseDualNetworkApproximation(self.layers, x, ball_eps) kw_lb, kw_ub, pre_relu_indices, dual_info = self.loose_dual.init_kw_bounds(bounded) # second get interval bounds if len(input_domain.size()) == 2: lower_bounds.append(input_domain[:,0].squeeze(-1)) upper_bounds.append(input_domain[:,1].squeeze(-1)) else: lower_bounds.append(input_domain[:,:,:,0].squeeze(-1)) upper_bounds.append(input_domain[:,:,:,1].squeeze(-1)) layer_idx = 1 for layer in self.layers: new_layer_lb = [] new_layer_ub = [] if type(layer) is nn.Linear: pre_lb = lower_bounds[-1] pre_ub = upper_bounds[-1] pos_w = torch.clamp(layer.weight, 0, None) neg_w = torch.clamp(layer.weight, None, 0) out_lbs = pos_w @ pre_lb + neg_w @ pre_ub + layer.bias out_ubs = pos_w @ pre_ub + neg_w @ pre_lb + layer.bias # Get the better estimates from KW and Interval Bounds new_layer_lb = torch.max(kw_lb[layer_idx], out_lbs) new_layer_ub = torch.min(kw_ub[layer_idx], out_ubs) elif type(layer) is nn.Conv2d: assert layer.dilation == (1, 1) pre_lb = lower_bounds[-1].unsqueeze(0) pre_ub = upper_bounds[-1].unsqueeze(0) pos_weight = torch.clamp(layer.weight, 0, None) neg_weight = torch.clamp(layer.weight, None, 0) out_lbs = (F.conv2d(pre_lb, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_ub, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) out_ubs = (F.conv2d(pre_ub, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_lb, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) new_layer_lb = (torch.max(kw_lb[layer_idx], out_lbs)).squeeze(0) new_layer_ub = (torch.min(kw_ub[layer_idx], out_ubs)).squeeze(0) elif type(layer) == nn.ReLU: new_layer_lb = F.relu(lower_bounds[-1]) new_layer_ub = F.relu(upper_bounds[-1]) elif type(layer) == View: continue elif type(layer) == Flatten: new_layer_lb = lower_bounds[-1].view(-1) new_layer_ub = upper_bounds[-1].view(-1) else: #print(type(layer)) raise NotImplementedError lower_bounds.append(new_layer_lb) upper_bounds.append(new_layer_ub) layer_idx += 1 # compare KW_INT bounds with KW bounds. # if they are different, reupdate the kw model for pre_idx in pre_relu_indices: if torch.sum(abs(lower_bounds[pre_idx]-kw_lb[pre_idx])>1e-4)==0 and torch.sum(abs(upper_bounds[pre_idx]-kw_ub[pre_idx])>1e-4)==0: pass else: print(f"initial kw: change_idx at {pre_idx}") lower_bounds, upper_bounds, dual_info = self.loose_dual.update_kw_bounds( pre_idx, pre_lb_all = lower_bounds, pre_ub_all = upper_bounds, dual_info = dual_info) break # record the dual_info as an attribute of the loose_dual instance # this should be the only dual instance recorded and should not # be modified #import pdb; pdb.set_trace() self.loose_dual.orig_dual = dual_info ## NEW STRUCTURE: use the computed bounds to directly introduce gurobi models # Initialize the model self.model = grb.Model() self.model.setParam('OutputFlag', False) self.model.setParam('Threads', 1) # keep a record of model's information self.gurobi_vars = [] self.relu_constrs = [] self.relu_indices_mask = [] ## Do the input layer, which is a special case inp_gurobi_vars = [] zero_var = self.model.addVar(lb=0, ub=0, obj=0, vtype=grb.GRB.CONTINUOUS, name= 'zero') if input_domain.dim() == 2: # This is a linear input. for dim, (lb, ub) in enumerate(input_domain): v = self.model.addVar(lb=lb, ub=ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'inp_{dim}') inp_gurobi_vars.append(v) else: assert input_domain.dim() == 4 for chan in range(input_domain.size(0)): chan_vars = [] for row in range(input_domain.size(1)): row_vars = [] for col in range(input_domain.size(2)): lb = input_domain[chan, row, col, 0] ub = input_domain[chan, row, col, 1] v = self.model.addVar(lb=lb, ub=ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'inp_[{chan},{row},{col}]') row_vars.append(v) chan_vars.append(row_vars) inp_gurobi_vars.append(chan_vars) self.model.update() self.gurobi_vars.append(inp_gurobi_vars) ## Do the other layers, computing for each of the neuron, its upper ## bound and lower bound layer_idx = 1 for layer in self.layers: new_layer_gurobi_vars = [] if type(layer) is nn.Linear: # Get the better estimates from KW and Interval Bounds out_lbs = lower_bounds[layer_idx] out_ubs = upper_bounds[layer_idx] for neuron_idx in range(layer.weight.size(0)): lin_expr = layer.bias[neuron_idx].item() coeffs = layer.weight[neuron_idx, :] lin_expr += grb.LinExpr(coeffs, self.gurobi_vars[-1]) out_lb = out_lbs[neuron_idx].item() out_ub = out_ubs[neuron_idx].item() v = self.model.addVar(lb=out_lb, ub=out_ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'lay{layer_idx}_{neuron_idx}') self.model.addConstr(v == lin_expr) self.model.update() new_layer_gurobi_vars.append(v) elif type(layer) is nn.Conv2d: assert layer.dilation == (1, 1) pre_lb_size = lower_bounds[layer_idx-1].unsqueeze(0).size() out_lbs = lower_bounds[layer_idx].unsqueeze(0) out_ubs = upper_bounds[layer_idx].unsqueeze(0) for out_chan_idx in range(out_lbs.size(1)): out_chan_vars = [] for out_row_idx in range(out_lbs.size(2)): out_row_vars = [] for out_col_idx in range(out_lbs.size(3)): lin_expr = layer.bias[out_chan_idx].item() for in_chan_idx in range(layer.weight.shape[1]): for ker_row_idx in range(layer.weight.shape[2]): in_row_idx = -layer.padding[0] + layer.stride[0]*out_row_idx + ker_row_idx if (in_row_idx < 0) or (in_row_idx == pre_lb_size[2]): # This is padding -> value of 0 continue for ker_col_idx in range(layer.weight.shape[3]): in_col_idx = -layer.padding[1] + layer.stride[1]*out_col_idx + ker_col_idx if (in_col_idx < 0) or (in_col_idx == pre_lb_size[3]): # This is padding -> value of 0 continue coeff = layer.weight[out_chan_idx, in_chan_idx, ker_row_idx, ker_col_idx].item() lin_expr += coeff * self.gurobi_vars[-1][in_chan_idx][in_row_idx][in_col_idx] out_lb = out_lbs[0, out_chan_idx, out_row_idx, out_col_idx].item() out_ub = out_ubs[0, out_chan_idx, out_row_idx, out_col_idx].item() v = self.model.addVar(lb=out_lb, ub=out_ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'lay{layer_idx}_[{out_chan_idx}, {out_row_idx}, {out_col_idx}]') self.model.addConstr(v == lin_expr) self.model.update() out_row_vars.append(v) out_chan_vars.append(out_row_vars) new_layer_gurobi_vars.append(out_chan_vars) elif type(layer) == nn.ReLU: new_relu_layer_constr = [] if isinstance(self.gurobi_vars[-1][0], list): # This is convolutional pre_lbs = lower_bounds[layer_idx-1] pre_ubs = upper_bounds[layer_idx-1] new_layer_mask = [] ratios_all = dual_info[0][layer_idx].d bias_all = -pre_lbs*ratios_all bias_all = bias_all*dual_info[0][layer_idx].I.squeeze(0).float() bias_all = bias_all.squeeze(0) #slope_all = pre_ubs/(pre_ubs-pre_lbs) #bias_all = -pre_lbs*slope_all #bias_all = bias_all*dual_info[0][layer_idx].I.squeeze(0).float() #ratios_all = dual_info[0][layer_idx].d for chan_idx, channel in enumerate(self.gurobi_vars[-1]): chan_vars = [] for row_idx, row in enumerate(channel): row_vars = [] for col_idx, pre_var in enumerate(row): slope = ratios_all[0,chan_idx, row_idx, col_idx].item() pre_ub = pre_ubs[chan_idx, row_idx, col_idx].item() bias = bias_all[chan_idx, row_idx, col_idx].item() if slope==1.0: # ReLU is always passing v = pre_var new_layer_mask.append(1) elif slope==0.0: v = zero_var new_layer_mask.append(0) else: lb = 0 ub = pre_ub new_layer_mask.append(-1) v =self.model.addVar(lb=lb, ub=ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'ReLU{layer_idx}_[{chan_idx},{row_idx},{col_idx}]') new_relu_layer_constr.append(self.model.addConstr(v >= pre_var)) new_relu_layer_constr.append(self.model.addConstr(v <= slope*pre_var + bias)) row_vars.append(v) chan_vars.append(row_vars) new_layer_gurobi_vars.append(chan_vars) else: pre_lbs = lower_bounds[layer_idx-1] pre_ubs = upper_bounds[layer_idx-1] new_layer_mask = [] #slope_all = pre_ubs/(pre_ubs-pre_lbs) #bias_all = -pre_lbs*slope_all #bias_all = bias_all*dual_info[0][layer_idx].I.squeeze(0).float() #ratios_all = dual_info[0][layer_idx].d.squeeze(0) ratios_all = dual_info[0][layer_idx].d.squeeze(0) bias_all = -pre_lbs*ratios_all bias_all = bias_all*dual_info[0][layer_idx].I.squeeze(0).float() assert isinstance(self.gurobi_vars[-1][0], grb.Var) for neuron_idx, pre_var in enumerate(self.gurobi_vars[-1]): pre_ub = pre_ubs[neuron_idx].item() slope = ratios_all[neuron_idx].item() bias = bias_all[neuron_idx].item() if slope==1.0: # The ReLU is always passing v = pre_var new_layer_mask.append(1) elif slope==0.0: v = zero_var # No need to add an additional constraint that v==0 # because this will be covered by the bounds we set on # the value of v. new_layer_mask.append(0) else: lb = 0 ub = pre_ub v = self.model.addVar(lb=lb, ub=ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'ReLU{layer_idx}_{neuron_idx}') new_relu_layer_constr.append(self.model.addConstr(v >= pre_var)) new_relu_layer_constr.append(self.model.addConstr(v <= slope * pre_var + bias)) new_layer_mask.append(-1) new_layer_gurobi_vars.append(v) new_relu_mask.append(torch.tensor(new_layer_mask)) self.relu_constrs.append(new_relu_layer_constr) elif type(layer) == View: continue elif type(layer) == Flatten: for chan_idx in range(len(self.gurobi_vars[-1])): for row_idx in range(len(self.gurobi_vars[-1][chan_idx])): new_layer_gurobi_vars.extend(self.gurobi_vars[-1][chan_idx][row_idx]) else: raise NotImplementedError self.gurobi_vars.append(new_layer_gurobi_vars) layer_idx += 1 # Assert that this is as expected a network with a single output assert len(self.gurobi_vars[-1]) == 1, "Network doesn't have scalar output" self.model.update() print('finished building gurobi model, calling optimize function') #import pdb; pdb.set_trace() guro_start = time.time() self.model.setObjective(self.gurobi_vars[-1][0], grb.GRB.MINIMIZE) self.model.optimize() #assert self.model.status == 2, "LP wasn't optimally solved" self.check_optimization_success() guro_end = time.time() print('Gurobi solved the lp with ', guro_end - guro_start) glb = self.gurobi_vars[-1][0].X lower_bounds[-1] = torch.tensor([glb]) inp_size = lower_bounds[0].size() mini_inp = torch.zeros(inp_size) if len(inp_size)==1: # This is a linear input. for i in range(inp_size[0]): mini_inp[i] = self.gurobi_vars[0][i].x else: for i in range(inp_size[0]): for j in range(inp_size[1]): for k in range(inp_size[2]): mini_inp[i,j,k] = self.gurobi_vars[0][i][j][k].x gub = self.net(mini_inp.unsqueeze(0)).item() # record model information # indices for undecided relu-nodes self.relu_indices_mask = [(i==-1).nonzero().view(-1).tolist() for i in new_relu_mask] # flatten high-dimensional gurobi var lists for l_idx, layer in enumerate(self.layers): if type(layer) is nn.Conv2d: flattened_gurobi = [] for chan_idx in range(len(self.gurobi_vars[l_idx+1])): for row_idx in range(len(self.gurobi_vars[l_idx+1][chan_idx])): flattened_gurobi.extend(self.gurobi_vars[l_idx+1][chan_idx][row_idx]) self.gurobi_vars[l_idx+1] = flattened_gurobi if type(self.layers[l_idx+1]) is nn.ReLU: flattened_gurobi = [] for chan_idx in range(len(self.gurobi_vars[l_idx+2])): for row_idx in range(len(self.gurobi_vars[l_idx+2][chan_idx])): flattened_gurobi.extend(self.gurobi_vars[l_idx+2][chan_idx][row_idx]) self.gurobi_vars[l_idx+2] = flattened_gurobi else: continue self.replacing_bd_index = len(lower_bounds) return gub, glb, mini_inp.unsqueeze(0), new_relu_mask, lower_bounds, upper_bounds, pre_relu_indices def update_the_model(self, relu_mask, pre_lb_all, pre_ub_all, decision, choice): ''' The model updates upper and lower bounds after introducing a relu constraint and then update the gurobi model using these updated bounds input: relu_mask: the copied mask of the parent domain, pre_lb, pre_ub: lower and upper bounds of the parent domain decision: the index of the node where we make branching decision choice: force no-passing constraint (0) or all passing constraint (1) pre_relu_indices: indices of bounds that the layers prior to a relu_layer output: global lower bound, updated mask, updated lower and upper bounds ''' # modifying the mask according to the branching decision and choice made relu_mask[decision[0]][decision[1]] = choice # Computing updated KW bounds # first changed_bounds_index should be the index of # the layer right before the relu layer we decide to split on first_changed_bounds_index = self.loose_dual.pre_relu_indices[decision[0]] self.replacing_bd_index = min(self.replacing_bd_index, first_changed_bounds_index) lower_bounds, upper_bounds, new_dual_info = self.loose_dual.update_kw_bounds(self.replacing_bd_index, pre_lb_all, pre_ub_all, decision, choice) ## DEBUG #lower_init, upper_init, _ = self.loose_dual.init_kw_bounds(False,pre_lb_all, pre_ub_all, decision, choice) #print('checking bounds') #for i in range(len(lower_init)): # assert torch.sum(torch.abs(lower_init[i]-lower_bounds[i])) < 1e-3, 'lower is wrong' # assert torch.sum(torch.abs(upper_init[i]-upper_bounds[i])) < 1e-3, 'upper is wrong' #print('passed checking') #compute interval bounds change_idx = len(lower_bounds) #assert change_idx==10, 'wrong' inter_bounds_index = first_changed_bounds_index+2 for layer in self.layers[first_changed_bounds_index+1:]: if type(layer) is nn.Linear: pre_lb = lower_bounds[inter_bounds_index-1] pre_ub = upper_bounds[inter_bounds_index-1] pos_w = torch.clamp(layer.weight, 0, None) neg_w = torch.clamp(layer.weight, None, 0) out_lbs = pos_w @ pre_lb + neg_w @ pre_ub + layer.bias out_ubs = pos_w @ pre_ub + neg_w @ pre_lb + layer.bias # Get the better estimates from KW and Interval Bounds if torch.sum(lower_bounds[inter_bounds_index]>=out_lbs).item()!= len(lower_bounds[inter_bounds_index]): lower_bounds[inter_bounds_index] = torch.max(lower_bounds[inter_bounds_index], out_lbs) change_idx = min(inter_bounds_index, change_idx) if torch.sum(upper_bounds[inter_bounds_index]<=out_ubs).item()!= len(upper_bounds[inter_bounds_index]): upper_bounds[inter_bounds_index] = torch.min(upper_bounds[inter_bounds_index], out_ubs) change_idx = min(inter_bounds_index, change_idx) elif type(layer) is nn.Conv2d: assert layer.dilation == (1, 1) pre_lb = lower_bounds[inter_bounds_index-1].unsqueeze(0) pre_ub = upper_bounds[inter_bounds_index-1].unsqueeze(0) pos_weight = torch.clamp(layer.weight, 0, None) neg_weight = torch.clamp(layer.weight, None, 0) out_lbs = (F.conv2d(pre_lb, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_ub, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) out_ubs = (F.conv2d(pre_ub, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_lb, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) #lower_bounds[inter_bounds_index] = torch.max(lower_bounds[inter_bounds_index], out_lbs).squeeze(0) #upper_bounds[inter_bounds_index] = torch.min(upper_bounds[inter_bounds_index], out_ubs).squeeze(0) if torch.sum(lower_bounds[inter_bounds_index]>=out_lbs).item()!= len(lower_bounds[inter_bounds_index].view(-1)): lower_bounds[inter_bounds_index] = torch.max(lower_bounds[inter_bounds_index], out_lbs).squeeze(0) change_idx = min(inter_bounds_index, change_idx) if torch.sum(upper_bounds[inter_bounds_index]<=out_ubs).item()!= len(upper_bounds[inter_bounds_index].view(-1)): upper_bounds[inter_bounds_index] = torch.min(upper_bounds[inter_bounds_index], out_ubs).squeeze(0) change_idx = min(inter_bounds_index, change_idx) elif type(layer) == nn.ReLU: lower_bounds[inter_bounds_index] = F.relu(lower_bounds[inter_bounds_index-1]) upper_bounds[inter_bounds_index] = F.relu(upper_bounds[inter_bounds_index-1]) elif type(layer) == View: continue elif type(layer) == Flatten: lower_bounds[inter_bounds_index] = lower_bounds[inter_bounds_index-1].view(-1) upper_bounds[inter_bounds_index] = upper_bounds[inter_bounds_index-1].view(-1) else: raise NotImplementedError inter_bounds_index += 1 if change_idx < len(lower_bounds)-1: print(f'update_kw interval is better: change_idx at {change_idx}') #lower_init, upper_init, _ = self.loose_dual.init_kw_bounds(lower_bounds, upper_bounds) lower_bounds, upper_bounds, _ = self.loose_dual.update_kw_bounds(self.replacing_bd_index, lower_bounds, upper_bounds) ## DEBUG #for i in range(len(lower_init)-1): # assert torch.sum(torch.abs(lower_init[i]-lower_bounds_k[i])) < 1e-3, 'change lower is wrong' # assert torch.sum(torch.abs(upper_init[i]-upper_bounds_k[i])) < 1e-3, 'change upper is wrong' #lower_bounds = lower_bounds_k #upper_bounds = upper_bounds_k # reintroduce ub and lb for gurobi constraints introduced_constrs = [] rep_index = self.replacing_bd_index for layer in self.layers[self.replacing_bd_index-1:]: if type(layer) is nn.Linear: for idx, var in enumerate(self.gurobi_vars[rep_index]): var.ub = upper_bounds[rep_index][idx].item() var.lb = lower_bounds[rep_index][idx].item() #self.model_lower_bounds[rep_index] = lower_bounds[rep_index].clone() #self.model_upper_bounds[rep_index] = upper_bounds[rep_index].clone() elif type(layer) is nn.Conv2d: conv_ub = upper_bounds[rep_index].view(-1) conv_lb = lower_bounds[rep_index].view(-1) for idx, var in enumerate(self.gurobi_vars[rep_index]): var.ub = conv_ub[idx].item() var.lb = conv_lb[idx].item() #self.model_lower_bounds[rep_index] = lower_bounds[rep_index].clone() #self.model_upper_bounds[rep_index] = upper_bounds[rep_index].clone() elif type(layer) is nn.ReLU: # locate relu index and remove all associated constraints relu_idx = self.loose_dual.pre_relu_indices.index(rep_index-1) #remove relu constraints self.model.remove(self.relu_constrs[relu_idx]) self.relu_constrs[relu_idx] = [] # reintroduce relu constraints pre_lbs = lower_bounds[rep_index-1].view(-1) pre_ubs = upper_bounds[rep_index-1].view(-1) for unmasked_idx in self.relu_indices_mask[relu_idx]: pre_lb = pre_lbs[unmasked_idx].item() pre_ub = pre_ubs[unmasked_idx].item() var = self.gurobi_vars[rep_index][unmasked_idx] pre_var = self.gurobi_vars[rep_index-1][unmasked_idx] if pre_lb >= 0 and pre_ub >= 0: # ReLU is always passing var.lb = pre_lb var.ub = pre_ub introduced_constrs.append(self.model.addConstr(pre_var == var)) relu_mask[relu_idx][unmasked_idx] = 1 elif pre_lb <= 0 and pre_ub <= 0: var.lb = 0 var.ub = 0 relu_mask[relu_idx][unmasked_idx] = 0 else: var.lb = 0 var.ub = pre_ub introduced_constrs.append(self.model.addConstr(var >= pre_var)) slope = pre_ub / (pre_ub - pre_lb) bias = - pre_lb * slope introduced_constrs.append(self.model.addConstr(var <= slope*pre_var + bias)) elif type(layer) is View: pass elif type(layer) is Flatten: pass else: raise NotImplementedError self.model.update() rep_index += 1 # compute optimum assert len(self.gurobi_vars[-1]) == 1, "Network doesn't have scalar output" self.model.update() #self.model.reset() self.model.setObjective(self.gurobi_vars[-1][0], grb.GRB.MINIMIZE) self.model.optimize() #assert self.model.status == 2, "LP wasn't optimally solved" self.check_optimization_success(introduced_constrs) glb = self.gurobi_vars[-1][0].X lower_bounds[-1] = torch.tensor([glb]) # get input variable values at which minimum is achieved inp_size = lower_bounds[0].size() mini_inp = torch.zeros(inp_size) if len(inp_size)==1: # This is a linear input. for i in range(inp_size[0]): mini_inp[i] = self.gurobi_vars[0][i].x else: for i in range(inp_size[0]): for j in range(inp_size[1]): for k in range(inp_size[2]): mini_inp[i,j,k] = self.gurobi_vars[0][i][j][k].x gub = self.net(mini_inp.unsqueeze(0)).item() # remove introduced vars and constraints self.model.remove(introduced_constrs) self.model.update() return gub, glb, mini_inp.unsqueeze(0), relu_mask, lower_bounds, upper_bounds ``` #### File: GNN_branching/plnn/mip_solver.py ```python import gurobipy as grb import torch from itertools import product from torch import nn from plnn.modules import View, Flatten from torch.nn import functional as F from plnn.dual_network_linear_approximation import LooseDualNetworkApproximation from plnn.network_linear_approximation import LinearizedNetwork class MIPNetwork: def __init__(self, layers): ''' layers: A list of Pytorch layers containing only Linear/ReLU/MaxPools ''' self.layers = layers self.net = nn.Sequential(*layers) # Initialize a LinearizedNetwork object to determine the lower and # upper bounds at each layer. self.lin_net = LinearizedNetwork(layers) def solve(self, inp_domain, timeout=None): ''' inp_domain: Tensor containing in each row the lower and upper bound for the corresponding dimension Returns: sat : boolean indicating whether the MIP is satisfiable. solution: Feasible point if the MIP is satisfiable, None otherwise. timeout : Maximum allowed time to run, if is not None ''' if self.lower_bounds[-1].min() > 0: print("Early stopping") # The problem is infeasible, and we haven't setup the MIP return (False, None, 0) if timeout is not None: self.model.setParam('TimeLimit', timeout) if self.check_obj_value_callback: def early_stop_cb(model, where): if where == grb.GRB.Callback.MIP: best_bound = model.cbGet(grb.GRB.Callback.MIP_OBJBND) if best_bound > 0: model.terminate() if where == grb.GRB.Callback.MIPNODE: nodeCount = model.cbGet(grb.GRB.Callback.MIPNODE_NODCNT) if (nodeCount % 100) == 0: print(f"Running Nb states visited: {nodeCount}") if where == grb.GRB.Callback.MIPSOL: obj = model.cbGet(grb.GRB.Callback.MIPSOL_OBJ) if obj < 0: # Does it have a chance at being a valid # counter-example? # Check it with the network input_vals = model.cbGetSolution(self.gurobi_vars[0]) with torch.no_grad(): if isinstance(input_vals, list): inps = torch.Tensor(input_vals).view(1, -1) else: assert isinstance(input_vals, grb.tupledict) inps = torch.Tensor([val for val in input_vals.values()]) inps = inps.view((1,) + self.lower_bounds[0].shape) out = self.net(inps).squeeze() # In case there is several output to the network, get the minimum one. out = out.min().item() if out < 0: model.terminate() else: def early_stop_cb(model, where): if where == grb.GRB.Callback.MIPNODE: nodeCount = model.cbGet(grb.GRB.Callback.MIPNODE_NODCNT) if (nodeCount % 100) == 0: print(f"Running Nb states visited: {nodeCount}") self.model.optimize(early_stop_cb) nb_visited_states = self.model.nodeCount if self.model.status is grb.GRB.INFEASIBLE: # Infeasible: No solution return (False, None, nb_visited_states) elif self.model.status is grb.GRB.OPTIMAL: # There is a feasible solution. Return the feasible solution as well. len_inp = len(self.gurobi_vars[0]) # Get the input that gives the feasible solution. #input_vals = model.cbGetSolution(self.gurobi_vars[0]) #inps = torch.Tensor([val for val in input_vals.values()]) #inps = inps.view((1,) + self.lower_bounds[0].shape) optim_val = self.gurobi_vars[-1][-1].x return (optim_val < 0, (None, optim_val), nb_visited_states) elif self.model.status is grb.GRB.INTERRUPTED: obj_bound = self.model.ObjBound if obj_bound > 0: return (False, None, nb_visited_states) else: # There is a feasible solution. Return the feasible solution as well. len_inp = len(self.gurobi_vars[0]) # Get the input that gives the feasible solution. inp = torch.Tensor(len_inp) if isinstance(self.gurobi_vars[0], list): for idx, var in enumerate(self.gurobi_vars[0]): inp[idx] = var.x else: #assert isinstance(self.gurobi_vars[0], grb.tupledict) inp = torch.zeros_like(self.lower_bounds[0]) for idx, var in self.gurobi_vars[0].items(): inp[idx] = var.x optim_val = self.gurobi_vars[-1][-1].x return (optim_val < 0, (inp, optim_val), nb_visited_states) elif self.model.status is grb.GRB.TIME_LIMIT: # We timed out, return a None Status return (None, None, nb_visited_states) else: raise Exception("Unexpected Status code") def tune(self, param_outfile, tune_timeout): self.model.Params.tuneOutput = 1 self.model.Params.tuneTimeLimit = tune_timeout self.model.tune() # Get the best set of parameters self.model.getTuneResult(0) self.model.write(param_outfile) def do_interval_analysis(self, inp_domain): self.lower_bounds = [] self.upper_bounds = [] self.lower_bounds.append(inp_domain.select(-1, 0)) self.upper_bounds.append(inp_domain.select(-1, 1)) layer_idx = 1 current_lb = self.lower_bounds[-1] current_ub = self.upper_bounds[-1] for layer in self.layers: if isinstance(layer, nn.Linear) or isinstance(layer, nn.Conv2d): if type(layer) is nn.Linear: pos_weights = torch.clamp(layer.weight, min=0) neg_weights = torch.clamp(layer.weight, max=0) new_layer_lb = torch.mv(pos_weights, current_lb) + \ torch.mv(neg_weights, current_ub) + \ layer.bias new_layer_ub = torch.mv(pos_weights, current_ub) + \ torch.mv(neg_weights, current_lb) + \ layer.bias elif type(layer) is nn.Conv2d: pre_lb = torch.Tensor(current_lb).unsqueeze(0) pre_ub = torch.Tensor(current_ub).unsqueeze(0) pos_weight = torch.clamp(layer.weight, 0, None) neg_weight = torch.clamp(layer.weight, None, 0) out_lbs = (F.conv2d(pre_lb, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_ub, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) out_ubs = (F.conv2d(pre_ub, pos_weight, layer.bias, layer.stride, layer.padding, layer.dilation, layer.groups) + F.conv2d(pre_lb, neg_weight, None, layer.stride, layer.padding, layer.dilation, layer.groups)) new_layer_lb = out_lbs.squeeze(0) new_layer_ub = out_ubs.squeeze(0) self.lower_bounds.append(new_layer_lb) self.upper_bounds.append(new_layer_ub) current_lb = new_layer_lb current_ub = new_layer_ub elif type(layer) == nn.ReLU: current_lb = torch.clamp(current_lb, min=0) current_ub = torch.clamp(current_ub, min=0) elif type(layer) == nn.MaxPool1d: new_layer_lb = [] new_layer_ub = [] assert layer.padding == 0, "Non supported Maxpool option" assert layer.dilation == 1, "Non supported Maxpool option" nb_pre = len(self.lower_bounds[-1]) window_size = layer.kernel_size stride = layer.stride pre_start_idx = 0 pre_window_end = pre_start_idx + window_size while pre_window_end <= nb_pre: lb = max(current_lb[pre_start_idx:pre_window_end]) ub = max(current_ub[pre_start_idx:pre_window_end]) new_layer_lb.append(lb) new_layer_ub.append(ub) pre_start_idx += stride pre_window_end = pre_start_idx + window_size current_lb = torch.Tensor(new_layer_lb) current_ub = torch.Tensor(new_layer_ub) self.lower_bounds.append(current_lb) self.upper_bounds.append(current_ub) elif type(layer) == View: continue elif type(layer) == Flatten: current_lb = current_lb.view(-1) current_ub = current_ub.view(-1) else: raise NotImplementedError def setup_model(self, inp_domain, use_obj_function=False, bounds="opt", parameter_file=None): ''' inp_domain: Tensor containing in each row the lower and upper bound for the corresponding dimension optimal: If False, don't use any objective function, simply add a constraint on the output If True, perform optimization and use callback to interrupt the solving when a counterexample is found bounds: string, indicate what type of method should be used to get the intermediate bounds parameter_file: Load a set of parameters for the MIP solver if a path is given. Setup the model to be optimized by Gurobi ''' if bounds == "opt": # First use define_linear_approximation from LinearizedNetwork to # compute upper and lower bounds to be able to define Ms self.lin_net.define_linear_approximation(inp_domain) self.lower_bounds = list(map(torch.Tensor, self.lin_net.lower_bounds)) self.upper_bounds = list(map(torch.Tensor, self.lin_net.upper_bounds)) elif bounds == "interval": self.do_interval_analysis(inp_domain) if self.lower_bounds[-1][0] > 0: # The problem is already guaranteed to be infeasible, # Let's not waste time setting up the MIP return elif bounds == "interval-kw": self.do_interval_analysis(inp_domain) kw_dual = LooseDualNetworkApproximation(self.layers) kw_dual.remove_maxpools(inp_domain, no_opt=True) lower_bounds, upper_bounds = kw_dual.get_intermediate_bounds(inp_domain) #print(lower_bounds) #print(upper_bounds) # We want to get the best out of interval-analysis and K&W # TODO: There is a slight problem. To use the K&W code directly, we # need to make a bunch of changes, notably remove all of the # Maxpooling and convert them to ReLUs. Quick and temporary fix: # take the max of both things if the shapes are all the same so # far, and use the one from interval analysis after the first # difference. # If the network are full ReLU, there should be no problem. # If the network are just full ReLU with a MaxPool at the end, # that's still okay because we get the best bounds until the # maxpool, and that's the last thing that we use the bounds for # This is just going to suck if we have a Maxpool early in the # network, and even then, that just means we use interval analysis # so stop complaining. for i in range(len(lower_bounds)): if lower_bounds[i].shape == self.lower_bounds[i].shape: # Keep the best lower bound lb_diff = lower_bounds[i] - self.lower_bounds[i] ub_diff = upper_bounds[i] - self.upper_bounds[i] # print(f"LB Difference (kw to interval) min: {lb_diff.min()} \t max:{lb_diff.max()}") # print(f"UB Difference (kw to interval) min: {ub_diff.min()} \t max:{ub_diff.max()}") torch.max(lower_bounds[i], self.lower_bounds[i], out=self.lower_bounds[i]) torch.min(upper_bounds[i], self.upper_bounds[i], out=self.upper_bounds[i]) else: # Mismatch in dimension. # Drop it and stop trying to improve the stuff of interval analysis break if self.lower_bounds[-1].min() > 0: # The problem is already guaranteed to be infeasible, # Let's not waste time setting up the MIP return else: raise NotImplementedError("Unknown bound computation method.") self.gurobi_vars = [] self.model = grb.Model() self.model.setParam('OutputFlag', False) self.model.setParam('Threads', 1) self.model.setParam('DualReductions', 0) if parameter_file is not None: self.model.read(parameter_file) self.zero_var = self.model.addVar(lb=0, ub=0, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'zero') # First add the input variables as Gurobi variables. if inp_domain.dim() == 2: inp_gurobi_vars = self.model.addVars([i for i in range(inp_domain.numel() // 2)], lb=self.lower_bounds[0], ub=self.upper_bounds[0], name='inp') inp_gurobi_vars = [var for key, var in inp_gurobi_vars.items()] else: inp_shape = self.lower_bounds[0].shape #inp_gurobi_vars = self.model.addVars([chan for chan in range(inp_shape[0])], # [row for row in range(inp_shape[1])], # [col for col in range(inp_shape[2])], # lb=self.lower_bounds[0].numpy(), # ub=self.upper_bounds[0].numpy(), # name='inp') #import pdb; pdb.set_trace() inp_gurobi_vars = {} for chan in range(inp_domain.size(0)): chan_vars = [] for row in range(inp_domain.size(1)): row_vars = [] for col in range(inp_domain.size(2)): lb = inp_domain[chan, row, col, 0] ub = inp_domain[chan, row, col, 1] v = self.model.addVar(lb=lb, ub=ub, obj=0, vtype=grb.GRB.CONTINUOUS, name=f'inp_[{chan},{row},{col}]') inp_gurobi_vars[(chan, row, col)] = v self.gurobi_vars.append(inp_gurobi_vars) layer_idx = 1 for layer in self.layers: if type(layer) is nn.Linear: layer_nb_out = layer.out_features pre_vars = self.gurobi_vars[-1] if isinstance(pre_vars, grb.tupledict): pre_vars = [var for key, var in sorted(pre_vars.items())] # Build all the outputs of the linear layer new_vars = self.model.addVars([i for i in range(layer_nb_out)], lb=self.lower_bounds[layer_idx], ub=self.upper_bounds[layer_idx], name=f'zhat{layer_idx}') new_layer_gurobi_vars = [var for key, var in new_vars.items()] self.model.addConstrs( ((grb.LinExpr(layer.weight[neuron_idx, :], pre_vars) + layer.bias[neuron_idx].item()) == new_vars[neuron_idx] for neuron_idx in range(layer.out_features)), name=f'lay{layer_idx}' ) elif type(layer) is nn.Conv2d: in_shape = self.lower_bounds[layer_idx-1].shape out_shape = self.lower_bounds[layer_idx].shape flat_idxs = [elt for elt in product(range(out_shape[0]), range(out_shape[1]), range(out_shape[2]))] flat_out_lbs = [self.lower_bounds[layer_idx][chan, row, col] for chan, row, col in product(range(out_shape[0]), range(out_shape[1]), range(out_shape[2]))] flat_out_ubs = [self.upper_bounds[layer_idx][chan, row, col] for chan, row, col in product(range(out_shape[0]), range(out_shape[1]), range(out_shape[2]))] new_layer_gurobi_vars = self.model.addVars(flat_idxs, lb=flat_out_lbs, ub=flat_out_ubs, name=f'zhat{layer_idx}') coeffs = [] for out_chan_idx in range(out_shape[0]): coeffs.append(layer.weight[out_chan_idx, :].view(-1)) def make_lin_expr(out_chan_idx, out_row_idx, out_col_idx): lin_bias = layer.bias[out_chan_idx].item() lin_coeffs = coeffs[out_chan_idx] start_row_idx = -layer.padding[0] + layer.stride[0]*out_row_idx end_row_idx = start_row_idx + layer.weight.shape[2] start_col_idx = -layer.padding[1] + layer.stride[1]*out_col_idx end_col_idx = start_col_idx + layer.weight.shape[3] lin_vars = [ (self.zero_var if ((row_idx < 0) or (row_idx == in_shape[1]) or (col_idx < 0) or (col_idx == in_shape[2])) else self.gurobi_vars[-1][(chan_idx, row_idx, col_idx)]) for chan_idx in range(in_shape[0]) for row_idx in range(start_row_idx, end_row_idx) for col_idx in range(start_col_idx, end_col_idx) ] lin_expr = grb.LinExpr(lin_coeffs, lin_vars) + lin_bias return lin_expr constrs = [] for out_chan_idx in range(out_shape[0]): for out_row_idx in range(out_shape[1]): for out_col_idx in range(out_shape[2]): constrs.append(make_lin_expr(out_chan_idx, out_row_idx, out_col_idx) == new_layer_gurobi_vars[(out_chan_idx, out_row_idx, out_col_idx)]) self.model.addConstrs(constr for constr in constrs) elif type(layer) == nn.ReLU: pre_lbs = self.lower_bounds[layer_idx] pre_ubs = self.upper_bounds[layer_idx] if isinstance(self.gurobi_vars[-1], grb.tupledict): amb_mask = (pre_lbs < 0) & (pre_ubs>0) if amb_mask.sum().item() != 0: to_new_preubs = pre_ubs[amb_mask] to_new_prelbs = pre_lbs[amb_mask] new_var_idxs = torch.nonzero((pre_lbs < 0) & (pre_ubs > 0)).numpy().tolist() new_var_idxs = [tuple(idxs) for idxs in new_var_idxs] new_layer_gurobi_vars = self.model.addVars(new_var_idxs, lb=0, ub=to_new_preubs, name=f'z{layer_idx}') new_binary_vars = self.model.addVars(new_var_idxs, lb=0, ub=1, vtype=grb.GRB.BINARY, name=f'delta{layer_idx}') flat_new_vars = [new_layer_gurobi_vars[idx] for idx in new_var_idxs] flat_binary_vars = [new_binary_vars[idx] for idx in new_var_idxs] pre_amb_vars = [self.gurobi_vars[-1][idx] for idx in new_var_idxs] # C1: Superior to 0 # C2: Add the constraint that it's superior to the inputs self.model.addConstrs( (flat_new_vars[idx] >= pre_amb_vars[idx] for idx in range(len(flat_new_vars))), name=f'ReLU_lb{layer_idx}' ) # C3: Below binary*upper_bound self.model.addConstrs( (flat_new_vars[idx] <= to_new_preubs[idx].item() * flat_binary_vars[idx] for idx in range(len(flat_new_vars))), name=f'ReLU{layer_idx}_ub1-' ) # C4: Below binary*lower_bound self.model.addConstrs( (flat_new_vars[idx] <= (pre_amb_vars[idx] - to_new_prelbs[idx].item() * (1 - flat_binary_vars[idx])) for idx in range(len(flat_new_vars))), name=f'ReLU{layer_idx}_ub2-' ) else: new_layer_gurobi_vars = grb.tupledict() for pos in torch.nonzero(pre_lbs >= 0).numpy().tolist(): pos = tuple(pos) new_layer_gurobi_vars[pos] = self.gurobi_vars[-1][pos] for pos in torch.nonzero(pre_ubs <= 0).numpy().tolist(): new_layer_gurobi_vars[tuple(pos)] = self.zero_var else: assert isinstance(self.gurobi_vars[-1][0], grb.Var) amb_mask = (pre_lbs < 0) & (pre_ubs > 0) if amb_mask.sum().item() == 0: pass # print("WARNING: No ambiguous ReLU at a layer") else: to_new_preubs = pre_ubs[amb_mask] new_var_idxs = torch.nonzero(amb_mask).squeeze(1).numpy().tolist() new_vars = self.model.addVars(new_var_idxs, lb=0, ub=to_new_preubs, name=f'z{layer_idx}') new_binary_vars = self.model.addVars(new_var_idxs, lb=0, ub=1, vtype=grb.GRB.BINARY, name=f'delta{layer_idx}') # C1: Superior to 0 # C2: Add the constraint that it's superior to the inputs self.model.addConstrs( (new_vars[idx] >= self.gurobi_vars[-1][idx] for idx in new_var_idxs), name=f'ReLU_lb{layer_idx}' ) # C3: Below binary*upper_bound self.model.addConstrs( (new_vars[idx] <= pre_ubs[idx].item() * new_binary_vars[idx] for idx in new_var_idxs), name=f'ReLU{layer_idx}_ub1-' ) # C4: Below binary*lower_bound self.model.addConstrs( (new_vars[idx] <= (self.gurobi_vars[-1][idx] - pre_lbs[idx].item() * (1 - new_binary_vars[idx])) for idx in new_var_idxs), name=f'ReLU{layer_idx}_ub2-' ) # Get all the variables in a list, such that we have the # output of the layer new_layer_gurobi_vars = [] new_idx = 0 for idx in range(layer_nb_out): if pre_lbs[idx] >= 0: # Pass through variable new_layer_gurobi_vars.append(self.gurobi_vars[-1][idx]) elif pre_ubs[idx] <= 0: # Blocked variable new_layer_gurobi_vars.append(self.zero_var) else: new_layer_gurobi_vars.append(new_vars[idx]) layer_idx += 1 elif type(layer) == nn.MaxPool1d: assert layer.padding == 0, "Non supported Maxpool option" assert layer.dilation == 1, "Non supported MaxPool option" nb_pre = len(self.gurobi_vars[-1]) window_size = layer.kernel_size stride = layer.stride pre_start_idx = 0 pre_window_end = pre_start_idx + window_size while pre_window_end <= nb_pre: ub_max = max(self.upper_bounds[layer_idx-1][pre_start_idx:pre_window_end]).item() window_bin_vars = [] neuron_idx = pre_start_idx % stride v = self.model.addVar(vtype=grb.GRB.CONTINUOUS, lb=-grb.GRB.INFINITY, ub=grb.GRB.INFINITY, name=f'MaxPool_out_{layer_idx}_{neuron_idx}') for pre_var_idx, pre_var in enumerate(self.gurobi_vars[-1][pre_start_idx:pre_window_end]): lb = self.lower_bounds[layer_idx-1][pre_start_idx + pre_var_idx].item() b = self.model.addVar(vtype=grb.GRB.BINARY, name= f'MaxPool_b_{layer_idx}_{neuron_idx}_{pre_var_idx}') # MIP formulation of max pooling: # # y = max(x_1, x_2, ..., x_n) # # Introduce binary variables d_1, d_2, ..., d_n: # d_i = i if x_i is the maximum value, 0 otherwise # # We know the lower (l_i) and upper bounds (u_i) for x_i # # Denote the maximum of the upper_bounds of all inputs x_i as u_max # # MIP must then satisfy the following constraints: # # Constr_1: l_i <= x_i <= u_i # Constr_2: y >= x_i # Constr_3: y <= x_i + (u_max - l_i)*(1 - d_i) # Constr_4: sum(d_1, d_2, ..., d_n) yer= 1 # Constr_1 is already satisfied due to the implementation of LinearizedNetworks. # Constr_2 self.model.addConstr(v >= pre_var) # Constr_3 self.model.addConstr(v <= pre_var + (ub_max - lb)*(1-b)) window_bin_vars.append(b) # Constr_4 self.model.addConstr(sum(window_bin_vars) == 1) self.model.update() pre_start_idx += stride pre_window_end = pre_start_idx + window_size new_layer_gurobi_vars.append(v) elif isinstance(layer, View) or isinstance(layer, Flatten): continue else: raise NotImplementedError self.gurobi_vars.append(new_layer_gurobi_vars) if len(self.gurobi_vars[-1]) == 1: # The network has a scalar output, it works like this. pass else: # The network has multiple outputs, we need to encode that the # minimum is below 0, let's add a variable here that corresponds to # the minimum min_var = self.model.addVar(vtype=grb.GRB.CONTINUOUS, lb=self.lower_bounds[-1].min().item(), ub=self.upper_bounds[-1].min().item(), name="final_output") self.model.addConstrs( (min_var <= self.gurobi_vars[-1][out_idx] for out_idx in range(len(self.gurobi_vars[-1]))), name=f'final_constraint_min_ub' ) bin_min_vars = self.model.addVars(range(len(self.gurobi_vars[-1])), vtype=grb.GRB.BINARY, lb=0, ub=1, name='final_binary') out_lbmin = self.lower_bounds[-1].min() self.model.addConstrs( (min_var >= (self.gurobi_vars[-1][out_idx] + (out_lbmin - self.upper_bounds[-1][out_idx]).item() * (1 - bin_min_vars[out_idx])) for out_idx in range(len(self.gurobi_vars[-1]))), name=f'final_constraint_min_lb' ) self.model.addConstr(sum(var for var in bin_min_vars.values()) == 1) self.gurobi_vars.append([min_var]) self.lower_bounds.append(self.lower_bounds[-1].min()) self.upper_bounds.append(self.upper_bounds[-1].min()) # Add the final constraint that the output must be less than or equal # to zero. if not use_obj_function: self.model.addConstr(self.gurobi_vars[-1][0] <= 0) self.model.setObjective(0, grb.GRB.MAXIMIZE) self.check_obj_value_callback = False else: # Set the minimization of the network output self.model.setObjective(self.gurobi_vars[-1][-1], grb.GRB.MINIMIZE) self.check_obj_value_callback = True # Optimize the model. self.model.update() #self.model.write('new_debug.lp') ```
{ "source": "jingyuexing/py-emmet", "score": 3 }
#### File: emmet/abbreviation/convert.py ```python from .parser import TokenGroup, TokenElement, TokenAttribute, is_quote, is_bracket from .tokenizer import tokens from .stringify import stringify class ConvertState: __slots__ = ('inserted', 'text', 'repeat_guard', 'repeaters', 'variables', '_text_inserted') def __init__(self, text: str = None, variables={}, max_repeat=None): self.inserted = False self.text = text self.repeat_guard = max_repeat if max_repeat is not None else 1000000 self.variables = variables self.repeaters = [] self._text_inserted = False def get_text(self, pos: int): self._text_inserted = True if isinstance(self.text, list): value = self.text[pos] if pos is not None else '\n'.join(self.text) else: value = self.text or '' return value def get_variable(self, name: str): return self.variables.get(name) if self.variables else name class Abbreviation: __slots__ = ('type', 'children') def __init__(self): self.type = 'Abbreviation' self.children = [] class AbbreviationNode: __slots__ = ('type', 'name', 'value', 'repeat', 'attributes', 'children', 'self_closing') def __init__(self, node: TokenElement, state: ConvertState): self.type = 'AbbreviationNode' self.name = stringify_name(node.name, state) if node.name else None self.value = stringify_value(node.value, state) if node.value else None self.attributes = None self.children = [] self.repeat = clone_repeater(node.repeat) if node.repeat else None self.self_closing = node.self_close "Indicates current element is self-closing, e.g. should not contain closing pair" class AbbreviationAttribute: __slots__ = ('name', 'value', 'value_type', 'boolean', 'implied') def __init__(self, name: str, value: list, value_type: str, boolean=False, implied=False): self.name = name self.value = value self.value_type = value_type "Indicates type of value stored in `.value` property" self.boolean = boolean "Attribute is boolean (e.g.name equals value)" self.implied = implied "Attribute is implied (e.g.must be outputted only if contains non-null value)" def copy(self): return AbbreviationAttribute(self.name, self.value, self.value_type, self.boolean, self.implied) def convert(abbr: TokenGroup, options={}): "Converts given token-based abbreviation into simplified and unrolled node-based abbreviation" text = options.get('text') state = ConvertState(text, options.get('variables'), options.get('max_repeat')) result = Abbreviation() result.children = convert_group(abbr, state) if text is not None and not state._text_inserted: # Text given but no implicitly repeated elements: insert it into deepest child deepest = deepest_node(result.children[-1]) if deepest: tx = '\n'.join(text) if isinstance(text, list) else text or '' insert_text(deepest, tx) return result def convert_statement(node: TokenElement, state: ConvertState): result = [] if node.repeat: # Node is repeated: we should create copies of given node # and supply context token with actual repeater state original = node.repeat repeat = clone_repeater(node.repeat) if repeat.implicit and isinstance(state.text, list): repeat.count = len(state.text) else: repeat.count = repeat.count or 1 state.repeaters.append(repeat) i = 0 while i < repeat.count: repeat.value = i node.repeat = repeat items = convert_group(node, state) if is_group(node) else convert_element(node, state) if repeat.implicit and not state.inserted: # It’s an implicit repeater but no repeater placeholders found inside, # we should insert text into deepest node target = items[-1] deepest = deepest_node(target) if target else None if deepest: insert_text(deepest, state.get_text(repeat.value)) result += items # We should output at least one repeated item even if it’s reached # repeat limit state.repeat_guard -= 1 if state.repeat_guard <= 0: break i += 1 state.repeaters.pop() node.repeat = original if repeat.implicit: state.inserted = True else: result += convert_group(node, state) if is_group(node) else convert_element(node, state) return result def convert_element(node: TokenElement, state: ConvertState): elem = AbbreviationNode(node, state) result = [elem] for child in node.elements: elem.children += convert_statement(child, state) if node.attributes: elem.attributes = [convert_attribute(attr, state) for attr in node.attributes] # In case if current node is a text-only snippet without fields, we should # put all children as siblings if not elem.name and elem.attributes is None and elem.value and not some(elem.value, is_field): result += elem.children elem.children = [] return result def convert_group(node: TokenGroup, state: ConvertState): result = [] for child in node.elements: result += convert_statement(child, state) if node.repeat: result = attach_repeater(result, node.repeat) return result def convert_attribute(node: TokenAttribute, state: ConvertState): attr = create_attribute(node, state) if node.value: tokens = node.value[:] if is_quote(tokens[0]): # It’s a quoted value: remove quotes from output but mark attribute # value as quoted quote = tokens.pop(0) if len(tokens) and tokens[-1].type == quote.type: tokens.pop() attr.value_type = 'singleQuote' if quote.single else 'doubleQuote' elif is_bracket(tokens[0], 'expression', True): # Value is expression: remove brackets but mark value type attr.value_type = 'expression' tokens.pop(0) if tokens and is_bracket(tokens[-1], 'expression', False): tokens.pop() attr.value = stringify_value(tokens, state) return attr def create_attribute(node: TokenAttribute, state: ConvertState): name = stringify_name(node.name, state) if node.name else None value_type = 'expression' if node.expression else 'raw' boolean = False implied = False if name: if name[-1] == '.': boolean = True name = name[0:-1] if name[0] == '!': implied = True name = name[1:] return AbbreviationAttribute(name, None, value_type, boolean, implied) def stringify_name(tokens: list, state: ConvertState): "Converts given token list to string" return ''.join([stringify(token, state) for token in tokens]) def stringify_value(token_list: list, state: ConvertState): "Converts given token list to value list" result = [] accum = [] for token in token_list: if is_field(token): # We should keep original fields in output since some editors has their # own syntax for field or doesn’t support fields at all so we should # capture actual field location in output stream if accum: result.append(''.join(accum)) accum = [] result.append(token) else: accum.append(stringify(token, state)) if (accum): result.append(''.join(accum)) return result def is_group(node): return isinstance(node, TokenGroup) def is_field(token): return isinstance(token, tokens.Field) and token.index is not None def deepest_node(node: AbbreviationNode): return deepest_node(node.children[-1]) if node.children else node def insert_text(node: AbbreviationNode, text: str): if node.value: last_token = node.value[-1] if isinstance(last_token, str): node.value[-1] += text else: node.value.append(text) else: node.value = [text] def attach_repeater(items: list, repeater: tokens.Repeater): for item in items: if not item.repeat: item.repeat = clone_repeater(repeater) return items def clone_repeater(repeater: tokens.Repeater): return tokens.Repeater(repeater.count, repeater.value, repeater.implicit) def some(items: list, fn: callable): for item in items: if fn(item): return True return False ``` #### File: abbreviation/parser/__init__.py ```python from ...token_scanner import TokenScanner, TokenScannerException from ..tokenizer import tokens class TokenAttribute: __slots__ = ('name', 'value', 'expression') def __init__(self, name: list=None, value: list=None, expression: bool=False): self.name = name self.value = value self.expression = expression class TokenElement: __slots__ = ('type', 'name', 'attributes', 'value', 'repeat', 'self_close', 'elements') def __init__(self): self.type = 'TokenElement' self.name = None self.attributes = None self.value = None self.repeat = None self.self_close = False self.elements = [] class TokenGroup: __slots__ = ('type', 'elements', 'repeat') def __init__(self): self.type = 'TokenGroup' self.elements = [] self.repeat = None def parse(abbr: list, options: dict={}): scanner = TokenScanner(abbr) result = statements(scanner, options) if scanner.readable(): raise scanner.error('Unexpected character') return result def statements(scanner: TokenScanner, options: dict): result = TokenGroup() ctx = result node = None stack = [] while scanner.readable(): node = element(scanner, options) or group(scanner, options) if node: ctx.elements.append(node) if scanner.consume(is_child_operator): stack.append(ctx) ctx = node elif scanner.consume(is_sibling_operator): continue elif is_climb_operator(scanner.peek()): while scanner.consume(is_climb_operator): if len(stack): ctx = stack.pop() else: break return result def group(scanner: TokenScanner, options: dict): "Consumes group from given scanner" if scanner.consume(is_group_start): result = statements(scanner, options) token = scanner.next() if is_bracket(token, 'group', False): result.repeat = repeater(scanner) return result raise scanner.error('Expecting )', token) def element(scanner: TokenScanner, options: dict): "Consumes single element from given scanner" attr = None elem = TokenElement() if element_name(scanner, options): elem.name = scanner.slice() while scanner.readable(): scanner.start = scanner.pos if not elem.repeat and not is_empty(elem) and scanner.consume(is_repeater): elem.repeat = scanner.tokens[scanner.pos - 1] elif elem.value is None and text(scanner): elem.value = get_text(scanner) else: attr = short_attribute(scanner, 'id', options) or short_attribute(scanner, 'class', options) or attribute_set(scanner) if attr is not None: if not isinstance(attr, list): attr = [attr] if elem.attributes is None: elem.attributes = attr[:] else: elem.attributes += attr else: if not is_empty(elem) and scanner.consume(is_close_operator): elem.self_close = True if not elem.repeat and scanner.consume(is_repeater): elem.repeat = scanner.tokens[scanner.pos - 1] break return elem if not is_empty(elem) else None def attribute_set(scanner: TokenScanner): "Consumes attribute set from given scanner" if scanner.consume(is_attribute_set_start): attributes = [] attr = None while scanner.readable(): attr = attribute(scanner) if attr: attributes.append(attr) elif scanner.consume(is_attribute_set_end): break elif not scanner.consume(is_white_space): raise scanner.error('Unexpected "%s" token' % scanner.peek().type) return attributes def short_attribute(scanner: TokenScanner, attr_type: str, options: dict): "Consumes attribute shorthand (class or id) from given scanner" if is_operator(scanner.peek(), attr_type): scanner.pos += 1 attr = TokenAttribute([create_literal(attr_type)]) # Consume expression after shorthand start for React-like components if options.get('jsx') and text(scanner): attr.value = get_text(scanner) attr.expression = True else: attr.value = scanner.slice() if literal(scanner) else None return attr def attribute(scanner: TokenScanner): if quoted(scanner): # Consumed quoted value: it’s a value for default attribute return TokenAttribute(value=scanner.slice()) if literal(scanner, True): name = scanner.slice() value = None if scanner.consume(is_equals) and (quoted(scanner) or literal(scanner, True)): value = scanner.slice() return TokenAttribute(name, value) def repeater(scanner: TokenScanner): if is_repeater(scanner.peek()): return scanner.next() def quoted(scanner: TokenScanner): "Consumes quoted value from given scanner, if possible" start = scanner.pos quote = scanner.peek() if is_quote(quote): scanner.pos += 1 while scanner.readable(): if is_quote(scanner.next(), quote.single): scanner.start = start return True raise scanner.error('Unclosed quote', quote) return False def literal(scanner: TokenScanner, allow_brackets=False): "Consumes literal (unquoted value) from given scanner" start = scanner.pos brackets = { 'attribute': 0, 'expression': 0, 'group': 0 } while scanner.readable(): token = scanner.peek() if brackets['expression']: # If we’re inside expression, we should consume all content in it if is_bracket(token, 'expression'): brackets[token.context] += 1 if token.open else -1 elif is_quote(token) or is_operator(token) or is_white_space(token) or is_repeater(token): break elif is_bracket(token): if not allow_brackets: break if token.open: brackets[token.context] += 1 elif not brackets[token.context]: # Stop if found unmatched closing brace: it must be handled # by parent consumer break else: brackets[token.context] -= 1 scanner.pos += 1 if start != scanner.pos: scanner.start = start return True return False def element_name(scanner: TokenScanner, options: dict): "Consumes element name from given scanner" start = scanner.pos if options.get('jsx') and scanner.consume(is_capitalized_literal): # Check for edge case: consume immediate capitalized class names # for React-like components, e.g. `Foo.Bar.Baz` while scanner.readable(): pos = scanner.pos if not scanner.consume(is_class_name_operator) or not scanner.consume(is_capitalized_literal): scanner.pos = pos break while scanner.readable() and scanner.consume(is_element_name): pass if scanner.pos != start: scanner.start = start return True return False def text(scanner: TokenScanner): "Consumes text value from given scanner" start = scanner.pos if scanner.consume(is_text_start): brackets = 0 while scanner.readable(): token = scanner.next() if is_bracket(token, 'expression'): if token.open: brackets += 1 elif not brackets: break else: brackets -= 1 scanner.start = start return True return False def get_text(scanner: TokenScanner): start = scanner.start end = scanner.pos if is_bracket(scanner.tokens[start], 'expression', True): start += 1 if is_bracket(scanner.tokens[end - 1], 'expression', False): end -= 1 return scanner.slice(start, end) def is_bracket(token: tokens.Bracket, context: str=None, is_open=None): return isinstance(token, tokens.Bracket) and \ (context is None or token.context == context) and \ (is_open is None or token.open == is_open) def is_operator(token: tokens.Operator, op_type: str=None): return isinstance(token, tokens.Operator) and (not op_type or token.operator == op_type) def is_quote(token: tokens.Quote, is_single=None): return isinstance(token, tokens.Quote) and (is_single is None or token.single == is_single) def is_white_space(token: tokens.WhiteSpace): return isinstance(token, tokens.WhiteSpace) def is_equals(token: tokens.Operator): return is_operator(token, 'equal') def is_repeater(token: tokens.Repeater): return isinstance(token, tokens.Repeater) def is_literal(token: tokens.Literal): return isinstance(token, tokens.Literal) def is_capitalized_literal(token: tokens.Literal): if is_literal(token): return 'A' <= token.value[0] <= 'Z' return False def is_element_name(token: tokens.Literal): return is_literal(token) or isinstance(token, tokens.RepeaterNumber) or isinstance(token, tokens.RepeaterPlaceholder) def is_class_name_operator(token: tokens.Operator): return is_operator(token, 'class') def is_attribute_set_start(token: tokens.Bracket): return is_bracket(token, 'attribute', True) def is_attribute_set_end(token: tokens.Bracket): return is_bracket(token, 'attribute', False) def is_text_start(token: tokens.Bracket): return is_bracket(token, 'expression', True) def is_group_start(token: tokens.Bracket): return is_bracket(token, 'group', True) def create_literal(value: str): return tokens.Literal(value) def is_empty(elem: TokenElement): return elem.name is None and elem.value is None and elem.attributes is None def is_child_operator(token: tokens.Operator): return is_operator(token, 'child') def is_sibling_operator(token: tokens.Operator): return is_operator(token, 'sibling') def is_climb_operator(token: tokens.Operator): return is_operator(token, 'climb') def is_close_operator(token: tokens.Operator): return is_operator(token, 'close') ``` #### File: emmet/abbreviation/stringify.py ```python from .tokenizer import tokens operators = { 'child': '>', 'class': '.', 'climb': '^', 'id': '#', 'equal': '=', 'close': '/', 'sibling': '+' } def stringify(token: tokens.Token, state): visitor = globals().get(token.type) if not visitor: raise Exception('Unknown token %s' % token.type) return visitor(token, state) def Literal(token: tokens.Literal, state): return token.value def Quote(token: tokens.Quote, state): return '\'' if token.single else '"' def Bracket(token: tokens.Bracket, state): if token.context == 'attribute': return '[' if token.open else ']' if token.context == 'expression': return '{' if token.open else '}' return '(' if token.open else '}' def Operator(token: tokens.Operator, state): global operators return operators.get(token.operator) def Field(token: tokens.Field, state): if token.index is not None: # It’s a field: by default, return TextMate-compatible field fmt = '${%d:%s}' if token.name else '${%s}' return fmt % (token.index, token.name) if token.name: # It’s a variable return state.get_variable(token.name) return '' def RepeaterPlaceholder(token: tokens.RepeaterPlaceholder, state): # Find closest implicit repeater repeater = None repeater_list = state.repeaters[:] repeater_list.reverse() for r in repeater_list: if r.implicit: repeater = r break state.inserted = True return state.get_text(repeater.value) if repeater else None def RepeaterNumber(token: tokens.RepeaterNumber, state): value = 1 last_ix = len(state.repeaters) - 1 if last_ix >= 0: repeater = state.repeaters[-1] if token.reverse: value = token.base + repeater.count - repeater.value - 1 else: value = token.base + repeater.value if token.parent: parent_ix = max(0, last_ix - token.parent) if parent_ix != last_ix: value += repeater.count * state.repeaters[parent_ix].value result = str(value) prefix = '0' * max(0, token.size - len(result)) return prefix + result def WhiteSpace(token, state): return ' ' ``` #### File: abbreviation/tokenizer/__init__.py ```python from ...scanner import Scanner from ...scanner_utils import is_quote, is_space, is_number, is_alpha from .utils import Chars, escaped from . import tokens OPERATOR_TYPES = dict([ (Chars.Child, 'child'), (Chars.Sibling, 'sibling'), (Chars.Climb, 'climb'), (Chars.Dot, 'class'), (Chars.Hash, 'id'), (Chars.Slash, 'close'), (Chars.Equals, 'equal') ]) def tokenize(source: str): scanner = Scanner(source) result = [] ctx = { 'group': 0, 'attribute': 0, 'expression': 0, 'quote': None } while not scanner.eof(): ch = scanner.peek() token = field(scanner, ctx) or \ repeater_placeholder(scanner) or \ repeater_number(scanner) or \ repeater(scanner) or \ white_space(scanner) or \ literal(scanner, ctx) or \ operator(scanner) or \ quote(scanner) or \ bracket(scanner) if token: result.append(token) if token.type == 'Quote': ctx['quote'] = None if ch == ctx['quote'] else ch elif token.type == 'Bracket': ctx[token.context] += 1 if token.open else -1 else: raise scanner.error('Unexpected character') return result def literal(scanner: Scanner, ctx: dict): start = scanner.pos value = [] while not scanner.eof(): "Consumes literal from given scanner" ch = scanner.peek() if ch == ctx['quote'] or ch == Chars.Dollar or is_allowed_operator(ch, ctx): # 1. Found matching quote # 2. The `$` character has special meaning in every context # 3. Depending on context, some characters should be treated as operators break if ctx['expression'] and ch == Chars.CurlyBracketClose: break if not ctx['quote'] and not ctx['expression'] and ( is_allowed_space(ch, ctx) or is_allowed_repeater(ch, ctx) or is_quote(ch) or bracket_type(ch)): # Stop for characters not allowed in unquoted literal break if escaped(scanner): value.append(scanner.current()) else: value.append(scanner.next()) if start != scanner.pos: scanner.start = start return tokens.Literal(''.join(value), start, scanner.pos) def white_space(scanner: Scanner): "Consumes white space characters as string literal from given scanner" start = scanner.pos if scanner.eat_while(is_space): return tokens.WhiteSpace(start, scanner.pos) def quote(scanner: Scanner): "Consumes quote from given scanner" ch = scanner.peek() if is_quote(ch): return tokens.Quote(ch == Chars.SingleQuote, inc_pos(scanner), scanner.pos) def bracket(scanner: Scanner): "Consumes bracket from given scanner" ch = scanner.peek() context = bracket_type(ch) if context: return tokens.Bracket(is_open_bracket(ch), context, inc_pos(scanner), scanner.pos) def operator(scanner: Scanner): "Consumes operator from given scanner" op = operator_type(scanner.peek()) if op: return tokens.Operator(op, inc_pos(scanner), scanner.pos) def repeater(scanner: Scanner): "Consumes node repeat token from current scanner position and returns its parsed value" start = scanner.pos if scanner.eat(Chars.Asterisk): scanner.start = scanner.pos count = 1 implicit = False if scanner.eat_while(is_number): count = int(scanner.current()) else: implicit = True return tokens.Repeater(count, 0, implicit, start, scanner.pos) def repeater_placeholder(scanner: Scanner): "Consumes repeater placeholder `$#` from given scanner" start = scanner.pos if scanner.eat(Chars.Dollar) and scanner.eat(Chars.Hash): return tokens.RepeaterPlaceholder(None, start, scanner.pos) scanner.pos = start def repeater_number(scanner: Scanner): "Consumes numbering token like `$` from given scanner state" start = scanner.pos if scanner.eat_while(Chars.Dollar): size = scanner.pos - start reverse = False base = 1 parent = 0 if scanner.eat(Chars.At): # Consume numbering modifiers while scanner.eat(Chars.Climb): parent += 1 reverse = scanner.eat(Chars.Dash) scanner.start = scanner.pos if scanner.eat_while(is_number): base = int(scanner.current()) scanner.start = start return tokens.RepeaterNumber(size, reverse, base, parent, start, scanner.pos) def field(scanner: Scanner, ctx: dict): start = scanner.pos # Fields are allowed inside expressions and attributes if (ctx['expression'] or ctx['attribute']) and scanner.eat(Chars.Dollar) and scanner.eat(Chars.CurlyBracketOpen): scanner.start = scanner.pos index = None name = '' if scanner.eat_while(is_number): # It’s a field index = int(scanner.current()) if scanner.eat(Chars.Colon): name = consume_placeholder(scanner) elif is_alpha(scanner.peek()): # It’s a variable name = consume_placeholder(scanner) if scanner.eat(Chars.CurlyBracketClose): return tokens.Field(name, index, start, scanner.pos) raise scanner.error('Expecting }') # If we reached here then there’s no valid field here, revert # back to starting position scanner.pos = start def consume_placeholder(scanner: Scanner): "Consumes a placeholder: value right after `:` in field. Could be empty" stack = [] scanner.start = scanner.pos while not scanner.eof(): if scanner.eat(Chars.CurlyBracketOpen): stack.append(scanner.pos) elif scanner.eat(Chars.CurlyBracketClose): if not len(stack): scanner.pos -= 1 break stack.pop() else: scanner.pos += 1 if len(stack): scanner.pos = stack.pop() raise scanner.error('Expecting }') return scanner.current() def is_allowed_operator(ch: str, ctx: dict): "Check if given character code is an operator and it’s allowed in current context" op = operator_type(ch) if not op or ctx['quote'] or ctx['expression']: # No operators inside quoted values or expressions return False # Inside attributes, only `equals` is allowed return not ctx['attribute'] or op == 'equal' def is_allowed_space(ch: str, ctx: dict): """ Check if given character is a space character and is allowed to be consumed as a space token in current context """ return is_space(ch) and not ctx['expression'] def is_allowed_repeater(ch: str, ctx: dict): "Check if given character can be consumed as repeater in current context" return ch == Chars.Asterisk and not ctx['attribute'] and not ctx['expression'] def bracket_type(ch: str): "If given character is a bracket, returns it’s type" if ch in (Chars.RoundBracketOpen, Chars.RoundBracketClose): return 'group' if ch in (Chars.SquareBracketOpen, Chars.SquareBracketClose): return 'attribute' if ch in (Chars.CurlyBracketOpen, Chars.CurlyBracketClose): return 'expression' def operator_type(ch: int): "If given character is an operator, returns it’s type" global OPERATOR_TYPES return OPERATOR_TYPES.get(ch) def is_open_bracket(ch: str): "Check if given character is an open bracket" return ch in (Chars.CurlyBracketOpen, Chars.SquareBracketOpen, Chars.RoundBracketOpen) def inc_pos(scanner: Scanner): pos = scanner.pos scanner.pos += 1 return pos ``` #### File: emmet/action_utils/css.py ```python from ..css_matcher import scan, split_value, TokenType from .utils import push_range, SelectItemModel class CSSSection: __slots__ = ('start', 'end', 'body_start', 'body_end', 'properties') def __init__(self, start: int, end: int, body_start: int, body_end: int, properties: list=None): self.start = start self.end = end self.body_start = body_start self.body_end = body_end self.properties = properties def to_json(self): result = { 'start': self.start, 'end': self.end, 'body_start': self.body_start, 'body_end': self.body_end } if self.properties: result['properties'] = [prop.to_json() for prop in self.properties] return result class CSSProperty: __slots__ = ('name', 'value', 'value_tokens', 'before', 'after') def __init__(self, code: str, name: list, before: int, start: int, end: int, delimiter: int, offset=0): self.name = (offset + name[0], offset + name[1]) self.value = (offset + start, offset + end) self.value_tokens = split_value(code[start:end], offset + start) self.before = before self.after = offset + delimiter + 1 def to_json(self): return { 'name': self.name, 'value': self.value, 'value_tokens': self.value_tokens, 'before': self.before, 'after': self.after } class ParseState: __slots__ = ('type', 'start', 'end', 'value_start', 'value_end', 'value_delimiter') def __init__(self): self.type = None self.start = -1 self.end = -1 self.value_start = -1 self.value_end = -1 self.value_delimiter = -1 def get_css_section(code: str, pos: int, properties=False) -> CSSSection: """ Returns context CSS section for given location in source code :param properties Parse inner properties """ stack = [] pool = [] result = [] result.append(None) # Skip pylint warnings def scan_callback(token_type: str, start: int, end: int, delimiter: int): if start > pos and not stack: return False if token_type == TokenType.Selector: stack.append(alloc_range(pool, start, end, delimiter)) elif token_type == TokenType.BlockEnd: sel = stack and stack.pop() if sel and sel[0] <= pos <= end: result[0] = CSSSection(sel[0], end, sel[2] + 1, start) return False release_range(pool, sel) scan(code, scan_callback) section = result[0] if section and properties: section.properties = parse_properties(code, section.body_start, section.body_end) return section def select_item_css(code: str, pos: int, is_prev=False) -> SelectItemModel: "Returns list of ranges for Select Next/Previous CSS Item action" if is_prev: return select_previous_item(code, pos) return select_next_item(code, pos) def select_next_item(code: str, pos: int) -> SelectItemModel: "Returns regions for selecting next item in CSS" result = [] result.append(None) pending_property = [] pending_property.append(None) def scan_callback(token_type: str, start: int, end: int, delimiter: int): if start < pos: return if token_type == TokenType.Selector: result[0] = SelectItemModel(start, end, [(start, end)]) return False elif token_type == TokenType.PropertyName: pending_property[0] = (start, end, delimiter) elif token_type == TokenType.PropertyValue: section = SelectItemModel(start, delimiter + 1 if delimiter != -1 else end, []) result[0] = section if pending_property[0]: # Full property range prop = pending_property[0] section.start = prop[0] push_range(section.ranges, (prop[0], section.end)) # Full value range push_range(section.ranges, (start, end)) # Value fragments for r in split_value(code[start:end]): push_range(section.ranges, (r[0] + start, r[1] + start)) return False elif pending_property[0]: prop = pending_property[0] result[0] = SelectItemModel(prop[0], prop[1], [(prop[0], prop[1])]) return False scan(code, scan_callback) return result[0] def select_previous_item(code: str, pos: int) -> SelectItemModel: "Returns regions for selecting previous item in CSS" state = ParseState() def scan_callback(token_type, start, end, delimiter): # Accumulate context until we reach given position if start >= pos and token_type != TokenType.PropertyValue: return False if token_type in (TokenType.Selector, TokenType.PropertyName): state.start = start state.end = end state.type = token_type state.value_start = state.value_end = state.value_delimiter = -1 elif token_type == TokenType.PropertyValue: state.value_start = start state.value_end = end state.value_delimiter = delimiter scan(code, scan_callback) if state.type == TokenType.Selector: return SelectItemModel(state.start, state.end, [(state.start, state.end)]) if state.type == TokenType.PropertyName: result = SelectItemModel(state.start, state.end, []) if state.value_start != -1: result.end = state.value_delimiter + 1 if state.value_delimiter != -1 else state.value_end # Full property range push_range(result.ranges, (state.start, result.end)) # Full value range push_range(result.ranges, (state.value_start, state.value_end)) # Value fragments for r in split_value(code[state.value_start:state.value_end]): push_range(result.ranges, (r[0] + state.value_start, r[1] + state.value_start)) else: push_range(result.ranges, (state.start, state.end)) return result class ParsePropertiesState: __slots__ = ('pending_name', 'nested', 'before') def __init__(self, before: int): self.pending_name = None self.nested = 0 self.before= before def parse_properties(code: str, parse_from=0, parse_to=None) -> list: """ Parses properties in `from:to` fragment of `code`. Note that `from:to` must point to CSS section content, e.g. *inside* `{` and `}` (or top-level code context), all properties found in nested sections will be ignored """ if parse_to is None: parse_to = len(code) fragment = code[parse_from:parse_to] result = [] pool = [] state = ParsePropertiesState(parse_from) def scan_callback(token_type, start: int, end: int, delimiter: int): if token_type == TokenType.Selector: state.nested += 1 elif token_type == TokenType.BlockEnd: state.nested -= 1 state.before = parse_from + end elif not state.nested: if token_type == TokenType.PropertyName: if state.pending_name: # Create property with empty value value_pos = state.pending_name[2] result.append( CSSProperty(fragment, state.pending_name, state.before, value_pos, value_pos, value_pos, parse_from)) release_range(pool, state.pending_name) state.before = parse_from + start state.pending_name = alloc_range(pool, start, end, delimiter) elif token_type == TokenType.PropertyValue: if state.pending_name: result.append( CSSProperty(fragment, state.pending_name, state.before, start, end, delimiter, parse_from)) release_range(pool, state.pending_name) state.pending_name = None state.before = parse_from + delimiter + 1 scan(fragment, scan_callback) return result def alloc_range(pool: list, start: int, end: int, delimiter: int) -> list: "Allocates new token range from pool" if pool: rng = pool.pop() rng[0] = start rng[1] = end rng[2] = delimiter return rng return [start, end, delimiter] def release_range(pool: list, rng: list): "Releases given token range and pushes it back into the pool" if rng: pool.append(rng) ``` #### File: emmet/action_utils/html.py ```python from ..html_matcher import scan, attributes, ScannerOptions, ElementType, AttributeToken from .utils import push_range, SelectItemModel, token_list class ContextTag: __slots__ = ('name', 'type', 'start', 'end', 'attributes') def __init__(self, name: str, elem_type: ElementType, start: int, end: int, attrs: list=None): self.name = name self.type = elem_type self.start = start self.end = end self.attributes = attrs def to_json(self): "Returns JSON representation of current object" result = { 'name': self.name, 'type': self.type, 'start': self.start, 'end': self.end } if self.attributes: result['attributes'] = [attr.to_json() for attr in self.attributes] return result def get_open_tag(code: str, pos: int) -> ContextTag: """ Check if there’s open or self-closing tag under given `pos` location in source code. If found, returns its name, range in source and parsed attributes """ opt = ScannerOptions() tag = [] tag.append(None) # Find open or self-closing tag, closest to given position def scan_callback(name: str, elem_type: ElementType, start: int, end: int): if start < pos < end: tag[0] = ContextTag(name, elem_type, start, end) if elem_type in (ElementType.Open, ElementType.SelfClose): tag[0].attributes = shift_attribute_ranges(attributes(code[start:end], name), start) return False if end > pos: return False scan(code, scan_callback, opt.special) return tag[0] def select_item_html(code: str, pos: int, is_prev=False, options: dict=None) -> SelectItemModel: "Returns list of ranges for Select Next/Previous Item action" if is_prev: return select_previous_item(code, pos, options) return select_next_item(code, pos, options) def select_next_item(code: str, pos: int, options: dict=None) -> SelectItemModel: "Returns list of ranges for Select Next Item action" opt = ScannerOptions(options) result = [] result.append(None) # Find open or self-closing tag, closest to given position def scan_callback(name, elem_type, start, end): if elem_type in (ElementType.Open, ElementType.SelfClose) and end > pos: # Found open or self-closing tag result[0] = get_tag_selection_model(code, name, start, end) return False scan(code, scan_callback, opt.special) return result[0] def select_previous_item(code: str, pos: int, options: dict=None) -> SelectItemModel: "Returns list of ranges for Select Previous Item action" opt = ScannerOptions(options) last = { 'name': '', 'type': None, 'start': -1, 'end': -1 } # We should find the closest open or self-closing tag left to given `pos`. def scan_callback(name: str, elem_type: ElementType, start: int, end: int): if start >= pos: return False if elem_type in (ElementType.Open, ElementType.SelfClose): # Found open or self-closing tag last['name'] = name last['type'] = elem_type last['start'] = start last['end'] = end scan(code, scan_callback, opt.special) if last['type'] is not None: return get_tag_selection_model(code, last['name'], last['start'], last['end']) def get_tag_selection_model(code: str, name: str, start: int, end: int) -> SelectItemModel: """ Parses open or self-closing tag in `start:end` range of `code` and returns its model for selecting items :param code Document source code :param name Name of matched tag """ # Add tag name range ranges = [(start + 1, start + 1 + len(name))] # Parse and add attributes ranges tag_src = code[start:end] for attr in attributes(tag_src, name): if attr.value is not None: # Attribute with value push_range(ranges, (start + attr.name_start, start + attr.value_end)) # Add (unquoted) value range val = value_range(attr) if val[0] != val[1]: push_range(ranges, (start + val[0], start + val[1])) if attr.name == 'class': # For class names, split value into space-separated tokens for token in token_list(tag_src[val[0]:val[1]], start + val[0]): push_range(ranges, token) else: # Attribute without value (boolean) push_range(ranges, (start + attr.name_start, start + attr.name_end)) return SelectItemModel(start, end, ranges) def value_range(attr: AttributeToken) -> tuple: "Returns value range of given attribute. Value range is unquoted." value = attr.value ch = value[0] last_ch = value[-1] if ch == '"' or ch == '\'': return ( attr.value_start + 1, attr.value_end - (1 if last_ch == ch else 0) ) if ch == '{' and last_ch == '}': return ( attr.value_start + 1, attr.value_end - 1 ) return (attr.value_start, attr.value_end) def shift_attribute_ranges(attrs: list, offset: int): for attr in attrs: attr.name_start += offset attr.name_end += offset if attr.value is not None: attr.value_start += offset attr.value_end += offset return attrs ``` #### File: emmet/action_utils/utils.py ```python from ..scanner_utils import is_space class SelectItemModel: __slots__ = ('start', 'end', 'ranges') def __init__(self, start: int, end: int, ranges: list=None): self.start = start self.end = end self.ranges = ranges def to_json(self): return { 'start': self.start, 'end': self.end, 'ranges': self.ranges } def push_range(ranges: list, rng: list): prev = ranges and ranges[-1] if rng and rng[0] != rng[1] and (not prev or prev[0] != rng[0] or prev[1] != rng[1]): ranges.append(rng) def token_list(value: str, offset=0): "Returns ranges of tokens in given value. Tokens are space-separated words." ranges = [] l = len(value) pos = 0 start = 0 end = 0 while pos < l: end = pos ch = value[pos] pos += 1 if is_space(ch): if start != end: ranges.append((offset + start, offset + end)) while pos < l and is_space(value[pos]): pos += 1 start = pos if start != pos: ranges.append((offset + start, offset + pos)) return ranges ``` #### File: emmet/css_abbreviation/__init__.py ```python from .tokenizer import tokenize, tokens from .parser import parser, CSSProperty, CSSValue, FunctionCall from ..scanner import ScannerException def parse(abbr: str, options={}): "Parses given abbreviation into property set" try: tokens = tokenize(abbr, options.get('value', False)) if isinstance(abbr, str) else abbr return parser(tokens, options) except ScannerException as err: if isinstance(abbr, str): err.message += '\n%s\n%s^' % (abbr, '-' * err.pos) raise err ``` #### File: emmet/css_abbreviation/parser.py ```python from .tokenizer import tokens from .tokenizer.tokens import OperatorType from ..token_scanner import TokenScanner class FunctionCall: __slots__ = ('type', 'name', 'arguments') def __init__(self, name: str, arguments: list): self.type = 'FunctionCall' self.name = name self.arguments = arguments class CSSValue: __slots__ = ('type', 'value') def __init__(self, value: list): self.type = 'CSSValue' self.value = value class CSSProperty: __slots__ = ('name', 'value', 'important') def __init__(self, name: str, value: list, important=False): self.name = name self.value = value self.important = important def parser(token_list: list, options={}): scanner = TokenScanner(token_list) result = [] while scanner.readable(): prop = consume_property(scanner, options) if prop: result.append(prop) elif not scanner.consume(is_sibling_operator): raise scanner.error('Unexpected token') return result def consume_property(scanner: TokenScanner, options={}): "Consumes single CSS property" name = None important = False value_fragment = None value = [] token = scanner.peek() if not options.get('value') and is_literal(token) and not is_function_start(scanner): scanner.pos += 1 name = token.value # Consume any following value delimiter after property name scanner.consume(is_value_delimiter) # Skip whitespace right after property name, if any scanner.consume(is_white_space) while scanner.readable(): if scanner.consume(is_important): important = True else: value_fragment = consume_value(scanner) if value_fragment: value.append(value_fragment) elif not scanner.consume(is_fragment_delimiter): break if name or value or important: return CSSProperty(name, value, important) def consume_value(scanner: TokenScanner): "Consumes single value fragment, e.g. all value tokens before comma" result = [] token = None args = None while scanner.readable(): token = scanner.peek() if is_value(token): scanner.pos += 1 args = consume_arguments(scanner) if is_literal(token) else None if args is not None: result.append(FunctionCall(token.value, args)) else: result.append(token) elif is_value_delimiter(token): scanner.pos += 1 else: break return CSSValue(result) if result else None def consume_arguments(scanner: TokenScanner): start = scanner.pos if scanner.consume(is_open_bracket): args = [] value = None while scanner.readable() and not scanner.consume(is_close_bracket): value = consume_value(scanner) if value: args.append(value) elif not scanner.consume(is_white_space) and not scanner.consume(is_argument_delimiter): raise scanner.error('Unexpected token') scanner.start = start return args def is_literal(token: tokens.Token): return isinstance(token, tokens.Literal) def is_bracket(token: tokens.Token, is_open=None): return isinstance(token, tokens.Bracket) and (is_open is None or token.open == is_open) def is_open_bracket(token: tokens.Token): return is_bracket(token, True) def is_close_bracket(token: tokens.Token): return is_bracket(token, False) def is_white_space(token: tokens.Token): return isinstance(token, tokens.WhiteSpace) def is_operator(token: tokens.Token, operator: OperatorType=None): return isinstance(token, tokens.Operator) and (not operator or token.operator == operator) def is_sibling_operator(token: tokens.Token): return is_operator(token, OperatorType.Sibling) def is_argument_delimiter(token: tokens.Token): return is_operator(token, OperatorType.ArgumentDelimiter) def is_fragment_delimiter(token: tokens.Token): return is_argument_delimiter(token) or is_white_space(token) def is_important(token: tokens.Token): return is_operator(token, OperatorType.Important) def is_value(token: tokens.Token): return isinstance(token, tokens.StringValue) or \ isinstance(token, tokens.ColorValue) or \ isinstance(token, tokens.NumberValue) or \ isinstance(token, tokens.Literal) or \ isinstance(token, tokens.Field) def is_value_delimiter(token: tokens.Token): return is_white_space(token) or \ is_operator(token, OperatorType.PropertyDelimiter) or \ is_operator(token, OperatorType.ValueDelimiter) def is_function_start(scanner: TokenScanner): max_ix = len(scanner.tokens) - 1 if scanner.pos < max_ix: t1 = scanner.tokens[scanner.pos] t2 = scanner.tokens[scanner.pos + 1] return t1 and t2 and is_literal(t1) and isinstance(t2, tokens.Bracket) ``` #### File: emmet/css_matcher/scan.py ```python from ..scanner import Scanner from ..scanner_utils import is_quote, is_space class ScanState: __slots__ = ('start', 'end', 'property_delimiter', 'property_start', 'property_end', 'expression') def __init__(self): self.start = -1 "Start location of currently consumed token" self.end = -1 "End location of currently consumed token" self.property_delimiter = -1 "Location of possible property delimiter" self.property_start = -1 "Location of possible property start" self.property_end = -1 "Location of possible property end" self.expression = 0 "In expression context" def reset(self): self.start = self.end = self.property_start = self.property_end = self.property_delimiter = -1 class TokenType: Selector = 'selector' PropertyName = 'propertyName' PropertyValue = 'propertyValue' BlockEnd = 'blockEnd' class Chars: LeftCurly = '{' RightCurly = '}' Asterisk = '*' Slash = '/' Colon = ':' Semicolon = ';' Backslash = '\\' LeftRound = '(' RightRound = ')' LF = '\n' CR = '\r' def scan(source: str, callback: callable): """ Performs fast scan of given stylesheet (CSS, LESS, SCSS) source code and runs callback for each token and its range found. The goal of this parser is to quickly determine document structure: selector, property, value and block end. It doesn’t provide detailed info about CSS atoms like compound selectors, operators, quoted string etc. to reduce memory allocations: this data can be parsed later on demand. """ scanner = Scanner(source) state = ScanState() block_end = False def notify(token_type: TokenType, delimiter: int=None, start: int=None, end: int=None): if delimiter is None: delimiter = scanner.start if start is None: start = state.start if end is None: end = state.end return callback(token_type, start, end, delimiter) is False while not scanner.eof(): if comment(scanner) or whitespace(scanner): continue scanner.start = scanner.pos block_end = scanner.eat(Chars.RightCurly) if block_end or scanner.eat(Chars.Semicolon): # Block or property end if state.property_start != -1: # We have pending property if notify(TokenType.PropertyName, state.property_delimiter, state.property_start, state.property_end): return if state.start == -1: # Explicit property value state: emit empty value state.start = state.end = scanner.start if notify(TokenType.PropertyValue): return elif state.start != -1 and notify(TokenType.PropertyName): # Flush consumed token return if block_end: state.start = scanner.start state.end = scanner.pos if notify(TokenType.BlockEnd): return state.reset() elif scanner.eat(Chars.LeftCurly): # Block start if state.start == -1 and state.property_start == -1: # No consumed selector, emit empty value as selector start state.start = state.end = scanner.pos if state.property_start != -1: # Now we know that value that looks like property name-value pair # was actually a selector state.start = state.property_start if notify(TokenType.Selector): return state.reset() elif scanner.eat(Chars.Colon) and not is_known_selector_colon(scanner, state): # Colon could be one of the following: # — property delimiter: `foo: bar`, must be in block context # — variable delimiter: `$foo: bar`, could be anywhere # — pseudo-selector: `a:hover`, could be anywhere (for LESS and SCSS) # — media query expression: `min-width: 100px`, must be inside expression context # Since I can’t easily detect `:` meaning for sure, we’ll update state # to accumulate possible property name-value pair or selector if state.property_start == -1: state.property_start = state.start state.property_end = state.end state.property_delimiter = scanner.pos - 1 state.start = state.end = -1 else: if state.start == -1: state.start = scanner.pos if scanner.eat(Chars.LeftRound): state.expression += 1 elif scanner.eat(Chars.RightRound): state.expression -= 1 elif not literal(scanner): scanner.pos += 1 state.end = scanner.pos if state.property_start != -1: # Pending property name if notify(TokenType.PropertyName, state.property_delimiter, state.property_start, state.property_end): return if state.start != -1: # There’s pending token in state notify(TokenType.PropertyValue if state.property_start != -1 else TokenType.PropertyName, -1) def whitespace(scanner: Scanner): return scanner.eat_while(is_space) def comment(scanner: Scanner): """ Consumes CSS comments from scanner: `/* * /` It’s possible that comment may not have closing part """ start = scanner.pos if scanner.eat(Chars.Slash) and scanner.eat(Chars.Asterisk): scanner.start = start while not scanner.eof(): if scanner.eat(Chars.Asterisk): if scanner.eat(Chars.Slash): return True continue scanner.pos += 1 return True else: scanner.pos = start return False def literal(scanner: Scanner): ch = scanner.peek() if is_quote(ch): scanner.start = scanner.pos scanner.pos += 1 while not scanner.eof(): if scanner.eat(ch) or scanner.eat(Chars.LF) or scanner.eat(Chars.CR): break # Skip escape character, if any scanner.eat(Chars.Backslash) scanner.pos += 1 # Do not throw if string is incomplete return True def is_known_selector_colon(scanner: Scanner, state: ScanState): "Check if current state is a known selector context for `:` delimiter" # Either inside expression like `(min-width: 10px)` or pseudo-element `::before` return state.expression or scanner.eat_while(Chars.Colon) ``` #### File: emmet/extract_abbreviation/__init__.py ```python import re from .reader import BackwardScanner from .is_html import is_html as is_at_html_tag, is_quote from .brackets import Brackets, BRACE_PAIRS from ..scanner_utils import is_alpha, is_number class ExtractedAbbreviation: __slots__ = ('abbreviation', 'location', 'start', 'end') def __init__(self, abbreviation: str, location: int, start: int, end: int): self.abbreviation = abbreviation "Extracted abbreviation" self.location = location "Location of abbreviation in input string" self.start = start "Start location of matched abbreviation, including prefix" self.end = end "End location of extracted abbreviation" def __eq__(self, other): if isinstance(other, ExtractedAbbreviation): return self.abbreviation == other.abbreviation and \ self.location == other.location and \ self.start == other.start and \ self.end == other.end raise NotImplementedError def __repr__(self): return repr({ 'abbreviation': self.abbreviation, 'location': self.location, 'start': self.start, 'end': self.end, }) SPECIAL_CHARS = '#.*:$-_!@%^+>/' def extract_abbreviation(line: str, pos: int=None, options={}) -> ExtractedAbbreviation: """ Extracts abbreviation from given line of source code. Options: Parser options: lookAhead: bool Allow parser to look ahead of `pos` index for searching of missing abbreviation parts. Most editors automatically inserts closing braces for `[`, `{` and `(`, which will most likely be right after current caret position. So in order to properly expand abbreviation, user must explicitly move caret right after auto-inserted braces. With this option enabled, parser will search for closing braces right after `pos`. Default is `true` type: 'markup' | 'stylesheet' Type of context syntax of expanded abbreviation. In 'stylesheet' syntax, brackets `[]` and `{}` are not supported thus not extracted. prefix: str A string that should precede abbreviation in order to make it successfully extracted. If given, the abbreviation will be extracted from the nearest `prefix` occurrence. """ if pos is None: pos = len(line) opt = create_options(options) # make sure `pos` is within line range pos = min(len(line), max(0, pos)) if opt.get('lookAhead'): pos = offset_past_auto_closed(line, pos, opt) start = get_start_offset(line, pos, opt.get('prefix', '')) if start == -1: return None scanner = BackwardScanner(line, start) scanner.pos = pos stack = [] while not scanner.sol(): ch = scanner.peek() if Brackets.CurlyR in stack: if ch == Brackets.CurlyR: stack.append(ch) scanner.pos -= 1 continue if ch != Brackets.CurlyL: scanner.pos -= 1 continue if is_close_brace(ch, opt.get('type')): stack.append(ch) elif is_open_brace(ch, opt.get('type')): if not stack or stack.pop() != BRACE_PAIRS[ch]: # unexpected brace break elif Brackets.SquareR in stack or Brackets.CurlyR in stack: # respect all characters inside attribute sets or text nodes scanner.pos -= 1 continue elif is_at_html_tag(scanner) or not is_abbreviation(ch): break scanner.pos -= 1 if not stack and scanner.pos != pos: # Found something, remove some invalid symbols from the # beginning and return abbreviation abbreviation = re.sub(r'^[*+>^]+', '', line[scanner.pos:pos]) prefix = opt.get('prefix', '') start = start - len(prefix) if prefix else pos - len(abbreviation) return ExtractedAbbreviation(abbreviation, pos - len(abbreviation), start, pos) def offset_past_auto_closed(line: str, pos: int, options: dict): """ Returns new `line` index which is right after characters beyond `pos` that editor will likely automatically close, e.g. }, ], and quotes """ # closing quote is allowed only as a next character if pos < len(line) and is_quote(line[pos]): pos += 1 # offset pointer until non-autoclosed character is found while pos < len(line) and is_close_brace(line[pos], options.get('type')): pos += 1 return pos def get_start_offset(line: str, pos: int, prefix: str): """ Returns start offset (left limit) in `line` where we should stop looking for abbreviation: it’s nearest to `pos` location of `prefix` token """ if not prefix: return 0 scanner = BackwardScanner(line) scanner.pos = pos while not scanner.sol(): if consume_pair(scanner, Brackets.SquareR, Brackets.SquareL) or consume_pair(scanner, Brackets.CurlyR, Brackets.CurlyL): continue result = scanner.pos if consume_list(scanner, prefix): return result scanner.pos -= 1 return -1 def consume_pair(scanner: BackwardScanner, close_ch: str, open_ch: str): "Consumes full character pair, if possible" start = scanner.pos if scanner.consume(close_ch): while not scanner.sol(): if scanner.consume(open_ch): return True scanner.pos -= 1 scanner.pos = start return False def consume_list(scanner: BackwardScanner, arr: list): "Consumes all character codes from given list, right-to-left, if possible" start = scanner.pos consumed = False i = len(arr) - 1 while i >= 0 and not scanner.sol(): if not scanner.consume(arr[i]): break consumed = i == 0 i -= 1 if not consumed: scanner.pos = start return consumed def is_abbreviation(ch: str): return is_alpha(ch) or is_number(ch) or ch in SPECIAL_CHARS def is_open_brace(ch: str, syntax: str): return ch == Brackets.RoundL or (syntax == 'markup' and ch in (Brackets.SquareL, Brackets.CurlyL)) def is_close_brace(ch: str, syntax: str): return ch == Brackets.RoundR or (syntax == 'markup' and ch in (Brackets.SquareR, Brackets.CurlyR)) def create_options(opt=None): options = { 'type': 'markup', 'lookAhead': True, 'prefix': '', } if opt: options.update(opt) return options ``` #### File: emmet/html_matcher/__init__.py ```python from .utils import ScannerOptions, ElementType from .scan import scan from .attributes import attributes, AttributeToken class MatchedTag: __slots__ = ('name', 'attributes', 'open', 'close') def __init__(self, name: str, attrs: list, open_range: tuple, close_range: tuple=None): self.name = name "Name of matched tag" self.attributes = attrs "List of tag attributes" self.open = open_range "Range of opening tag" self.close = close_range "Range of closing tag. If absent, tag is self-closing" class Tag: __slots__ = ('name', 'start', 'end') def __init__(self, name: str, start: int, end: int): self.name = name self.start = start self.end = end class InwardTag: __slots__ = ('name', 'ranges', 'first_child') def __init__(self, name: str, ranges: list, first_child=None): self.name = name self.ranges = ranges self.first_child = first_child class BalancedTag: __slots__ = ('name', 'open', 'close') def __init__(self, name: str, open_range: tuple, close_range: tuple=None): self.name = name "Name of matched tag" self.open = open_range "Range of opening tag" self.close = close_range "Range of closing tag. If absent, tag is self-closing" def to_json(self): json = { 'name': self.name, 'open': list(self.open) } if self.close: json['close'] = list(self.close) return json def match(source: str, pos: int, opt: dict=None) -> MatchedTag: "Finds matched tag for given `pos` location in XML/HTML `source`" # Since we expect large input document, we’ll use pooling technique # for storing tag data to reduce memory pressure and improve performance pool = [] stack = [] options = ScannerOptions(opt) result = [None] def scan_callback(name: str, elem_type: ElementType, start: int, end: int): if elem_type == ElementType.Open and is_self_close(name, options): # Found empty element in HTML mode, mark is as self-closing elem_type = ElementType.SelfClose if elem_type == ElementType.Open: # Allocate tag object from pool stack.append(alloc_tag(pool, name, start, end)) elif elem_type == ElementType.SelfClose: if start < pos < end: # Matched given self-closing tag result[0] = MatchedTag(name, get_attributes(source, start, end, name), (start, end)) return False else: tag = stack and stack[-1] if tag and tag.name == name: # Matching closing tag found if tag.start < pos < end: result[0] = MatchedTag(name, get_attributes(source, tag.start, tag.end, name), (tag.start, tag.end), (start, end)) return False if stack: # Release tag object for further re-use release_tag(pool, stack.pop()) scan(source, scan_callback, options.special) return result[0] def balanced_outward(source: str, pos: int, opt: dict=None) -> list: """ Returns balanced tag model: a list of all XML/HTML tags that could possibly match given location when moving in outward direction """ pool = [] stack = [] options = ScannerOptions(opt) result = [] def scan_callback(name: str, elem_type: ElementType, start: int, end: int): if elem_type == ElementType.Close: tag = stack and stack[-1] if tag and tag.name == name: # XXX check for invalid tag names? # Matching closing tag found, check if matched pair is a candidate # for outward balancing if tag.start < pos < end: result.append(BalancedTag(name, (tag.start, tag.end), (start, end))) # Release tag object for further re-use release_tag(pool, stack.pop()) elif elem_type == ElementType.SelfClose or is_self_close(name, options): if start < pos < end: # Matched self-closed tag result.append(BalancedTag(name, (start, end))) else: stack.append(alloc_tag(pool, name, start, end)) scan(source, scan_callback, options.special) return result def balanced_inward(source: str, pos: int, opt: dict=None) -> list: """ Returns balanced tag model: a list of all XML/HTML tags that could possibly match given location when moving in inward direction """ # Collecting tags for inward balancing is a bit trickier: we have to store # first child of every matched tag until we find the one that matches given # location pool = [] stack = [] options = ScannerOptions(opt) result = [] def alloc(name: str, start: int, end: int): if pool: tag = pool.pop() tag.name = name tag.ranges.append(start) tag.ranges.append(end) return tag return InwardTag(name, [start, end]) def release(tag: InwardTag): tag.ranges.clear() tag.first_child = None pool.append(tag) def scan_callback(name: str, elem_type: ElementType, start: int, end: int): if elem_type == ElementType.Close: if not stack: # Some sort of lone closing tag, ignore it return tag = stack[-1] if tag.name == name: # XXX check for invalid tag names? # Matching closing tag found, check if matched pair is a candidate # for outward balancing if tag.ranges[0] <= pos <= end: result.append(BalancedTag(name, (tag.ranges[0], tag.ranges[1]), (start, end))) while tag.first_child: child = tag.first_child res = BalancedTag(child.name, (child.ranges[0], child.ranges[1])) if len(child.ranges) > 2: res.close = (child.ranges[2], child.ranges[3]) result.append(res) release(tag) tag = child return False else: stack.pop() parent = stack and stack[-1] if parent and not parent.first_child: # No first child in parent node: store current tag tag.ranges.append(start) tag.ranges.append(end) parent.first_child = tag else: release(tag) elif elem_type == ElementType.SelfClose or is_self_close(name, options): if start < pos < end: # Matched self-closed tag, no need to look further result.append(BalancedTag(name, (start, end))) return False parent = stack and stack[-1] if parent and not parent.first_child: parent.first_child = alloc(name, start, end) else: stack.append(alloc(name, start, end)) scan(source, scan_callback, options.special) return result def alloc_tag(pool: list, name: str, start: int, end: int): if pool: tag = pool.pop() tag.name = name tag.start = start tag.end = end return tag return Tag(name, start, end) def release_tag(pool: list, tag: Tag): if tag: pool.append(tag) def get_attributes(source: str, start: int, end: int, name: str=None): "Returns parsed attributes from given source" attrs = attributes(source[start:end], name) for attr in attrs: attr.name_start += start attr.name_end += start if attr.value is not None: attr.value_start += start attr.value_end += start return attrs def is_self_close(name: str, options: ScannerOptions): "Check if given tag is self-close for current parsing context" return not options.xml and name in options.empty ``` #### File: emmet/html_matcher/utils.py ```python from ..scanner import Scanner from ..scanner_utils import is_space, is_quote, is_alpha, is_number, eat_pair class ElementType: Open = 1 Close = 2 SelfClose = 3 class Chars: Dash = '-' Dot = '.' Slash = '/' Colon = ':' LeftAngle = '<' RightAngle = '>' LeftRound = '(' RightRound = ')' LeftSquare = '[' RightSquare = ']' LeftCurly = '{' RightCurly = '}' Underscore = '_' Equals = '=' Asterisk = '*' Hash = '#' scan_opt = { 'throws': False } default_special = { 'style': None, 'script': ['', 'text/javascript', 'application/x-javascript', 'javascript', 'typescript', 'ts', 'coffee', 'coffeescript'] } default_empty = ['img', 'meta', 'link', 'br', 'base', 'hr', 'area', 'wbr', 'col', 'embed', 'input', 'param', 'source', 'track'] class ScannerOptions: __slots__ = ('xml', 'special', 'empty') def __init__(self, options: dict=None): if options is None: options = {} self.xml = options.get('xml', False) """ Parses given source as XML document. It alters how should-be-empty elements are treated: for example, in XML mode parser will try to locate closing pair for `<br>` tag """ self.special = options.get('special', default_special) """ List of tags that should have special parsing rules, e.g. should not parse inner content and skip to closing tag. Key is a tag name that should be considered special and value is either empty (always mark element as special) or list of `type` attribute values, which, if present with one of this value, make element special """ self.empty = options.get('empty', default_empty) """ List of elements that should be treated as empty (e.g. without closing tag) in non-XML syntax """ def consume_array(scanner: Scanner, codes: list): "Consumes array of character codes from given scanner" start = scanner.pos for ch in codes: if not scanner.eat(ch): scanner.pos = start return False scanner.start = start return True def consume_section(scanner: Scanner, prefix: list, suffix: list, allow_unclosed=False): """ Consumes section from given string which starts with `open` character codes and ends with `close` character codes :return `true` if section was consumed """ start = scanner.pos if consume_array(scanner, prefix): # consumed `<!--`, read next until we find ending part or reach the end of input while not scanner.eof(): if consume_array(scanner, suffix): scanner.start = start return True scanner.pos += 1 # unclosed section is allowed if allow_unclosed: scanner.start = start return True scanner.pos = start return False # unable to find section, revert to initial position scanner.pos = start return False def name_start_char(ch: str): # Limited XML spec: https://www.w3.org/TR/xml/#NT-NameStartChar o = ord(ch) if ch else 0 return is_alpha(ch) or \ ch == Chars.Colon or \ ch == Chars.Underscore or \ 0xC0 <= o <= 0xD6 or \ 0xD8 <= o <= 0xF6 or \ 0xF8 <= o <= 0x2FF or \ 0x370 <= o <= 0x37D or \ 0x37F <= o <= 0x1FFF def name_char(ch: str): "Check if given character can be used in a tag or attribute name" # Limited XML spec: https://www.w3.org/TR/xml/#NT-NameChar o = ord(ch) if ch else 0 return name_start_char(ch) or \ ch == Chars.Dash or \ ch == Chars.Dot or \ is_number(ch) or \ o == 0xB7 or \ 0x0300 <= o <= 0x036F def ident(scanner: Scanner): "Consumes identifier from given scanner" start = scanner.pos if scanner.eat(name_start_char): scanner.eat_while(name_char) scanner.start = start return True return False def is_terminator(ch: str): "Check if given code is tag terminator" return ch == Chars.RightAngle or ch == Chars.Slash def is_unquoted(ch: str): "Check if given character code is valid unquoted value" return ch and not is_quote(ch) and not is_space(ch) and not is_terminator(ch) def consume_paired(scanner: Scanner): """ Consumes paired tokens (like `[` and `]`) with respect of nesting and embedded quoted values :return `true` if paired token was consumed """ global scan_opt return eat_pair(scanner, Chars.LeftAngle, Chars.RightAngle, scan_opt) or \ eat_pair(scanner, Chars.LeftRound, Chars.RightRound, scan_opt) or \ eat_pair(scanner, Chars.LeftSquare, Chars.RightSquare, scan_opt) or \ eat_pair(scanner, Chars.LeftCurly, Chars.RightCurly, scan_opt) def get_unquoted_value(value: str): "Returns unquoted value of given string" # Trim quotes if value and is_quote(value[0]): value = value[1:] if is_quote(value[-1]): value = value[0:-1] return value ``` #### File: markup/format/__init__.py ```python from .html import html from .indent_format import indent_format from ...abbreviation import Abbreviation from ...config import Config def haml(abbr: Abbreviation, config: Config): return indent_format(abbr, config, { 'beforeName': '%', 'beforeAttribute': '(', 'afterAttribute': ')', 'glueAttribute': ' ', 'afterTextLine': ' |', 'booleanValue': 'true', 'selfClose': '/' }) def pug(abbr: Abbreviation, config: Config): return indent_format(abbr, config, { 'beforeAttribute': '(', 'afterAttribute': ')', 'glueAttribute': ', ', 'beforeTextLine': '| ', 'selfClose': '/' if config.options.get('output.selfClosingStyle') == 'xml' else '' }) def slim(abbr: Abbreviation, config: Config): return indent_format(abbr, config, { 'beforeAttribute': ' ', 'glueAttribute': ' ', 'beforeTextLine': '| ', 'selfClose': '/' }) ``` #### File: markup/format/utils.py ```python from .walk import WalkState from ...abbreviation import AbbreviationNode, AbbreviationAttribute from ...abbreviation.tokenizer.tokens import Field from ...config import Config from ...output_stream import OutputStream, is_inline caret = [Field('', 0)] "Default caret token" def is_snippet(node: AbbreviationNode): "Check if given node is a snippet: a node without name and attributes" return node and not node.name and not node.attributes if node else False def is_inline_element(node: AbbreviationNode, config: Config): """ Check if given node is inline-level element, e.g. element with explicitly defined node name """ return is_inline(node, config) if node else False def push_tokens(tokens: list, state: WalkState): out = state.out largest_index = -1 for t in tokens: if isinstance(t, str): out.push_string(t) else: out.push_field(state.field + t.index, t.name) if t.index > largest_index: largest_index = t.index if largest_index != -1: state.field += largest_index + 1 def split_by_lines(tokens: list): """ Splits given value token by lines: returns array where each entry is a token list for a single line """ result = [] line = [] for t in tokens: if isinstance(t, str): lines = t.splitlines() line.append(lines.pop(0) if lines else '') while lines: result.append(line) line = [lines.pop(0) or ''] else: line.append(t) if line: result.append(line) return result def should_output_attribute(attr: AbbreviationAttribute): # In case if attribute is implied, check if it has a defined value: # either non-empty value or quoted empty value return not attr.implied or attr.value_type != 'raw' or attr.value ``` #### File: markup/format/walk.py ```python from ...abbreviation import Abbreviation, AbbreviationNode from ...config import Config from ...output_stream import OutputStream class WalkState: __slots__ = ('current', 'parent', 'ancestors', 'config', 'out', 'field') def __init__(self, config: Config): self.current = None "Context node" self.parent = None "Immediate parent of currently iterated method" self.ancestors = [] "List of all ancestors of context node" self.config = config "Current output config" self.out = OutputStream(config.options) "Output stream" self.field = 1 "Current field index, used to output field marks for editor tabstops" def walk(abbr: Abbreviation, visitor: callable, state: WalkState): def callback(ctx: AbbreviationNode, index: int, items: list): parent = state.parent current = state.current state.parent = current state.current = ctx visitor(ctx, index, items, state, walk_next) state.current = current state.parent = parent def walk_next(node, index, items): state.ancestors.append(state.current) callback(node, index, items) state.ancestors.pop() for index, child in enumerate(abbr.children): callback(child, index, abbr.children) ``` #### File: emmet/math_expression/extract.py ```python from ..scanner_utils import is_space, is_number from .parser import Operator, is_sign, is_operator class BackwardScanner: __slots__ = ('text', 'pos') def __init__(self, text: str, pos=0): self.text = text self.pos = pos def prev(self): return self.text[self.pos - 1] if self.pos else '' def cur(self): return self.text[self.pos] if self.pos < len(self.text) else '' def extract(text: str, pos=None, options: dict=None) -> tuple: """ Extracts math expression from given text at specified position. Expression is extracted in backward direction. Options: :lookAhead bool Allow capturing extra expression characters right after start position. Useful for extracting expressions from text editor source which inserts paired characters like `(` and `)` to properly extract expression past caret position :whitespace: bool Allow whitespace in extracted expressions """ if pos is None: pos = len(text) opt = { 'lookAhead': True, 'whitespace': True } if options: opt.update(options) scanner = BackwardScanner(text, pos) if opt['lookAhead'] and scanner.cur() == Operator.RightParenthesis: # Basically, we should consume right parenthesis only with optional whitespace scanner.pos += 1 l = len(text) while scanner.pos < l: ch = scanner.cur() if ch != Operator.RightParenthesis and not (opt['whitespace'] and is_space(ch)): break scanner.pos += 1 end = scanner.pos braces = 0 while scanner.pos >= 0: if number(scanner): continue ch = scanner.prev() if ch == Operator.RightParenthesis: braces += 1 elif ch == Operator.LeftParenthesis: if not braces: break braces -= 1 elif not ((opt['whitespace'] and is_space(ch)) or is_sign(ch) or is_operator(ch)): break scanner.pos -= 1 if scanner.pos != end and not braces: # Trim whitespace while is_space(scanner.cur()): scanner.pos += 1 return (scanner.pos, end) def number(scanner: BackwardScanner): if is_number(scanner.prev()): scanner.pos -= 1 dot = False while scanner.pos >= 0: ch = scanner.prev() if ch == '.': if dot: # Decimal delimiter already consumed, abort break dot = True elif not is_number(ch): break scanner.pos -= 1 return True return False ``` #### File: py-emmet/emmet/output_stream.py ```python from .config import Config from .abbreviation.convert import AbbreviationAttribute, AbbreviationNode class OutputStream: __slots__ = ('options', '_value', 'level', 'offset', 'line', 'column') def __init__(self, options={}, level=0): self._value = [] self.options = options self.level = level self.offset = 0 self.line = 0 self.column = 0 @property def value(self): return ''.join(self._value) def _push(self, text: str): "Pushes raw string into output stream without any processing" l = len(text) self._value.append(text) self.offset += l self.column += l def push(self, text: str): "Pushes plain string into output stream without newline processing" process_text = self.options.get('output.text') self._push(process_text(text, offset=self.offset, line=self.line, column=self.column)) def push_string(self, value: str): "Pushes given string with possible newline formatting into output" # If given value contains newlines, we should push content line-by-line and # use `push_newline()` to maintain proper line/column state first = True for line in value.splitlines(): if not first: self.push_newline(True) first = False self.push(line) def push_newline(self, indent=None): "Pushes new line into given output stream" base_indent = self.options.get('output.baseIndent') newline = self.options.get('output.newline') self.push('%s%s' % (newline, base_indent)) self.line += 1 self.column = len(base_indent) if indent: self.push_indent(self.level if indent is True else indent) def push_indent(self, size=None): "Adds indentation of `size` to current output stream" if size is None: size = self.level indent = self.options.get('output.indent') self.push(indent * max(size, 0)) def push_field(self, index: int, placeholder: str=''): field = self.options.get('output.field') # NB: use `_push` instead of `push` to skip text processing self._push(field(index, placeholder, offset=self.offset, line=self.line, column=self.column)) def tag_name(name: str, config: Config): "Returns given tag name formatted according to given config" return str_case(name, config.options.get('output.tagCase')) def attr_name(name: str, config: Config): "Returns given attribute name formatted according to given config" return str_case(name, config.options.get('output.attributeCase')) def attr_quote(attr: AbbreviationAttribute, config: Config, is_open: bool=None): "Returns character for quoting value of given attribute" if attr.value_type == 'expression': return '{' if is_open else '}' return '\'' if config.options.get('output.attributeQuotes') == 'single' else '"' def is_boolean_attribute(attr: AbbreviationAttribute, config: Config): "Check if given attribute is boolean" if attr.boolean: return True name = (attr.name or '').lower() return name in config.options.get('output.booleanAttributes', []) def self_close(config: Config): "Returns a token for self-closing tag, depending on current options" style = config.options.get('output.selfClosingStyle') if style == 'xhtml': return ' /' if style == 'xml': return '/' return '' def is_inline(node: AbbreviationNode, config: Config): if isinstance(node, str): return node.lower() in config.options.get('inlineElements', []) # inline node is a node either with inline-level name or text-only node return is_inline(node.name, config) if node.name else bool(node.value and not node.attributes) def str_case(text: str, case_type: str): if case_type: return text.upper() if case_type == 'upper' else text.lower() return text ``` #### File: py-emmet/emmet/token_scanner.py ```python class TokenScanner: def __init__(self, tokens: list): self.tokens = tokens self.start = 0 self.pos = 0 self.size = len(tokens) def peek(self): return self.tokens[self.pos] if self.readable() else None def next(self): t = self.peek() self.pos += 1 return t def slice(self, start: int=None, end: int=None): if start is None: start = self.start if end is None: end = self.pos return self.tokens[start:end] def readable(self): return self.pos < self.size def consume(self, test: callable): token = self.peek() if token and test(token): self.pos += 1 return True return False def consume_while(self, test: callable): start = self.pos while self.consume(test): pass return self.pos != start def error(self, message: str, token=None): if token is None: token = self.peek() pos = None if token and token.start is not None: pos = token.start message += ' at %d' % pos return TokenScannerException(message, pos) class TokenScannerException(Exception): def __init__(self, message: str, pos: int): super(TokenScannerException, self).__init__(message) self.message = message self.pos = pos ``` #### File: tests/abbreviation/test_tokenizer.py ```python import unittest import sys sys.path.append('../') from emmet.abbreviation.tokenizer import tokenize def json_tokens(abbr: str): return [token.to_json() for token in tokenize(abbr)] class TestScanner(unittest.TestCase): def test_basic_abbreviations(self): self.assertEqual(json_tokens('ul>li'), [ { 'type': 'Literal', 'value': 'ul', 'start': 0, 'end': 2 }, { 'type': 'Operator', 'operator': 'child', 'start': 2, 'end': 3 }, { 'type': 'Literal', 'value': 'li', 'start': 3, 'end': 5 } ]) self.assertEqual(json_tokens('ul[title="foo+bar\'str\'" (attr)=bar]{(some > text)}'), [ { 'type': 'Literal', 'value': 'ul', 'start': 0, 'end': 2 }, { 'type': 'Bracket', 'open': True, 'context': 'attribute', 'start': 2, 'end': 3 }, { 'type': 'Literal', 'value': 'title', 'start': 3, 'end': 8 }, { 'type': 'Operator', 'operator': 'equal', 'start': 8, 'end': 9 }, { 'type': 'Quote', 'single': False, 'start': 9, 'end': 10 }, { 'type': 'Literal', 'value': 'foo+bar\'str\'', 'start': 10, 'end': 22 }, { 'type': 'Quote', 'single': False, 'start': 22, 'end': 23 }, { 'type': 'WhiteSpace', 'start': 23, 'end': 24 }, { 'type': 'Bracket', 'open': True, 'context': 'group', 'start': 24, 'end': 25 }, { 'type': 'Literal', 'value': 'attr', 'start': 25, 'end': 29 }, { 'type': 'Bracket', 'open': False, 'context': 'group', 'start': 29, 'end': 30 }, { 'type': 'Operator', 'operator': 'equal', 'start': 30, 'end': 31 }, { 'type': 'Literal', 'value': 'bar', 'start': 31, 'end': 34 }, { 'type': 'Bracket', 'open': False, 'context': 'attribute', 'start': 34, 'end': 35 }, { 'type': 'Bracket', 'open': True, 'context': 'expression', 'start': 35, 'end': 36 }, { 'type': 'Literal', 'value': '(some > text)', 'start': 36, 'end': 49 }, { 'type': 'Bracket', 'open': False, 'context': 'expression', 'start': 49, 'end': 50 } ]) self.assertEqual(json_tokens('h${some${1:field placeholder}}'), [ { 'type': 'Literal', 'value': 'h', 'start': 0, 'end': 1 }, { 'type': 'RepeaterNumber', 'size': 1, 'parent': 0, 'reverse': False, 'base': 1, 'start': 1, 'end': 2 }, { 'type': 'Bracket', 'open': True, 'context': 'expression', 'start': 2, 'end': 3 }, { 'type': 'Literal', 'value': 'some', 'start': 3, 'end': 7 }, { 'type': 'Field', 'index': 1, 'name': 'field placeholder', 'start': 7, 'end': 29 }, { 'type': 'Bracket', 'open': False, 'context': 'expression', 'start': 29, 'end': 30 } ]) self.assertEqual(json_tokens('div{[}+a{}'), [ { 'type': 'Literal', 'value': 'div', 'start': 0, 'end': 3 }, { 'type': 'Bracket', 'open': True, 'context': 'expression', 'start': 3, 'end': 4 }, { 'type': 'Literal', 'value': '[', 'start': 4, 'end': 5 }, { 'type': 'Bracket', 'open': False, 'context': 'expression', 'start': 5, 'end': 6 }, { 'type': 'Operator', 'operator': 'sibling', 'start': 6, 'end': 7 }, { 'type': 'Literal', 'value': 'a', 'start': 7, 'end': 8 }, { 'type': 'Bracket', 'open': True, 'context': 'expression', 'start': 8, 'end': 9 }, { 'type': 'Bracket', 'open': False, 'context': 'expression', 'start': 9, 'end': 10 } ]) def test_repeater(self): self.assertEqual(json_tokens('#sample*3'), [ { 'type': 'Operator', 'operator': 'id', 'start': 0, 'end': 1 }, { 'type': 'Literal', 'value': 'sample', 'start': 1, 'end': 7 }, { 'type': 'Repeater', 'count': 3, 'value': 0, 'implicit': False, 'start': 7, 'end': 9 } ]) self.assertEqual(json_tokens('div[foo*3]'), [ { 'type': 'Literal', 'value': 'div', 'start': 0, 'end': 3 }, { 'type': 'Bracket', 'open': True, 'context': 'attribute', 'start': 3, 'end': 4 }, { 'type': 'Literal', 'value': 'foo*3', 'start': 4, 'end': 9 }, { 'type': 'Bracket', 'open': False, 'context': 'attribute', 'start': 9, 'end': 10 } ]) self.assertEqual(json_tokens('({a*2})*3'), [ { 'type': 'Bracket', 'open': True, 'context': 'group', 'start': 0, 'end': 1 }, { 'type': 'Bracket', 'open': True, 'context': 'expression', 'start': 1, 'end': 2 }, { 'type': 'Literal', 'value': 'a*2', 'start': 2, 'end': 5 }, { 'type': 'Bracket', 'open': False, 'context': 'expression', 'start': 5, 'end': 6 }, { 'type': 'Bracket', 'open': False, 'context': 'group', 'start': 6, 'end': 7 }, { 'type': 'Repeater', 'count': 3, 'value': 0, 'implicit': False, 'start': 7, 'end': 9 } ]) ``` #### File: tests/action_utils/test_html.py ```python import unittest import sys import os.path sys.path.append('../../') from emmet.action_utils import select_item_html, get_open_tag def read_file(file: str): dirname = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(dirname, file), 'r') as f: return f.read(None) sample = read_file('sample.html') class TestHTMLActionUtils(unittest.TestCase): def test_select_next_item(self): # `<li class="item item_1">`: select tag name, full attribute, attribute # value and class names self.assertEqual(select_item_html(sample, 9).to_json(), { 'start': 9, 'end': 33, 'ranges': [ (10, 12), (13, 32), (20, 31), (20, 24), (25, 31) ] }) # <a href="/sample" title={expr}> self.assertEqual(select_item_html(sample, 33).to_json(), { 'start': 42, 'end': 74, 'ranges': [ (43, 44), (45, 59), (51, 58), (61, 73), (68, 72) ] }) def test_select_previous_item(self): # <a href="/sample" title={expr}> self.assertEqual(select_item_html(sample, 80, True).to_json(), { 'start': 42, 'end': 74, 'ranges': [ (43, 44), (45, 59), (51, 58), (61, 73), (68, 72) ] }) # <li class="item item_1"> self.assertEqual(select_item_html(sample, 42, True).to_json(), { 'start': 9, 'end': 33, 'ranges': [ (10, 12), (13, 32), (20, 31), (20, 24), (25, 31) ] }) def test_get_open_tag(self): self.assertEqual(get_open_tag(sample, 60).to_json(), { 'name': 'a', 'type': 1, 'start': 42, 'end': 74, 'attributes': [{ 'name': 'href', 'name_start': 45, 'name_end': 49, 'value': '"/sample"', 'value_start': 50, 'value_end': 59 }, { 'name': 'title', 'name_start': 61, 'name_end': 66, 'value': '{expr}', 'value_start': 67, 'value_end': 73 }] }) self.assertEqual(get_open_tag(sample, 15).to_json(), { 'name': 'li', 'type': 1, 'start': 9, 'end': 33, 'attributes': [{ 'name': 'class', 'name_start': 13, 'name_end': 18, 'value': '"item item_1"', 'value_start': 19, 'value_end': 32 }] }) self.assertEqual(get_open_tag(sample, 74), None) ``` #### File: tests/css_matcher/test_scan.py ```python import unittest import sys sys.path.append('../../') from emmet.css_matcher import scan def tokens(source: str): result = [] scan(source, lambda token_type, start, end, delimiter: result.append([source[start:end], token_type, start, end, delimiter])) return result class TestCSSScanner(unittest.TestCase): def test_selectors(self): self.assertEqual(tokens('a {}'), [ ['a', 'selector', 0, 1, 2], ['}', 'blockEnd', 3, 4, 3] ]) self.assertEqual(tokens('a { foo: bar; }'), [ ['a', 'selector', 0, 1, 2], ['foo', 'propertyName', 4, 7, 7], ['bar', 'propertyValue', 9, 12, 12], ['}', 'blockEnd', 14, 15, 14] ]) self.assertEqual(tokens('a { b{} }'), [ ['a', 'selector', 0, 1, 2], ['b', 'selector', 4, 5, 5], ['}', 'blockEnd', 6, 7, 6], ['}', 'blockEnd', 8, 9, 8] ]) self.assertEqual(tokens('a {:;}'), [ ['a', 'selector', 0, 1, 2], ['}', 'blockEnd', 5, 6, 5] ]) self.assertEqual(tokens('a + b.class[attr="}"] { }'), [ ['a + b.class[attr="}"]', 'selector', 0, 21, 22], ['}', 'blockEnd', 24, 25, 24] ]) self.assertEqual(tokens('a /* b */ { foo: bar; }'), [ ['a', 'selector', 0, 1, 10], ['foo', 'propertyName', 12, 15, 15], ['bar', 'propertyValue', 17, 20, 20], ['}', 'blockEnd', 22, 23, 22] ]) def test_property(self): self.assertEqual(tokens('a'), [ ['a', 'propertyName', 0, 1, -1] ]) self.assertEqual(tokens('a:b'), [ ['a', 'propertyName', 0, 1, 1], ['b', 'propertyValue', 2, 3, -1] ]) self.assertEqual(tokens('a:b;;'), [ ['a', 'propertyName', 0, 1, 1], ['b', 'propertyValue', 2, 3, 3] ]) self.assertEqual(tokens('a { b: c; d: e; }'), [ ['a', 'selector', 0, 1, 2], ['b', 'propertyName', 4, 5, 5], ['c', 'propertyValue', 7, 8, 8], ['d', 'propertyName', 10, 11, 11], ['e', 'propertyValue', 13, 14, 14], ['}', 'blockEnd', 16, 17, 16] ]) self.assertEqual(tokens('a { foo: bar "baz}" ; }'), [ ['a', 'selector', 0, 1, 2], ['foo', 'propertyName', 4, 7, 7], ['bar "baz}"', 'propertyValue', 9, 19, 20], ['}', 'blockEnd', 22, 23, 22] ]) self.assertEqual(tokens('@media (min-width: 900px) {}'), [ ['@media (min-width: 900px)', 'selector', 0, 25, 26], ['}', 'blockEnd', 27, 28, 27] ]) def test_pseudo_selectors(self): self.assertEqual(tokens('\na:hover { foo: bar "baz}" ; }'), [ ['a:hover', 'selector', 1, 8, 9], ['foo', 'propertyName', 11, 14, 14], ['bar "baz}"', 'propertyValue', 16, 26, 27], ['}', 'blockEnd', 29, 30, 29] ]) self.assertEqual(tokens('a:hover b[title=""] { padding: 10px; }'), [ ['a:hover b[title=""]', 'selector', 0, 19, 20], ['padding', 'propertyName', 22, 29, 29], ['10px', 'propertyValue', 31, 35, 35], ['}', 'blockEnd', 37, 38, 37] ]) self.assertEqual(tokens('a::before {}'), [ ['a::before', 'selector', 0, 9, 10], ['}', 'blockEnd', 11, 12, 11] ]) self.assertEqual(tokens('a { &::before { } }'), [ ['a', 'selector', 0, 1, 2], ['&::before', 'selector', 4, 13, 14], ['}', 'blockEnd', 17, 18, 17], ['}', 'blockEnd', 19, 20, 19] ]) ``` #### File: tests/html_matcher/test_balanced.py ```python import unittest import sys import os.path sys.path.append('../../') from emmet.html_matcher import balanced_inward, balanced_outward def inward(src: str, pos: int): return [tag.to_json() for tag in balanced_inward(src, pos)] def outward(src: str, pos: int): return [tag.to_json() for tag in balanced_outward(src, pos)] def read_file(file: str): dirname = os.path.dirname(os.path.abspath(__file__)) with open(os.path.join(dirname, file), 'r') as f: return f.read(None) class TestHTMLBalancedModels(unittest.TestCase): def test_outward(self): doc = read_file('sample.html') self.assertEqual(outward(doc, 0), []) self.assertEqual(outward(doc, 1), [ { 'name': 'ul', 'open': [0, 4], 'close': [179, 184] } ]) self.assertEqual(outward(doc, 73), [ { 'name': 'li', 'open': [71, 75], 'close': [147, 152] }, { 'name': 'ul', 'open': [0, 4], 'close': [179, 184] } ]) self.assertEqual(outward(doc, 114), [ { 'name': 'br', 'open': [112, 118] }, { 'name': 'div', 'open': [78, 83], 'close': [121, 127] }, { 'name': 'li', 'open': [71, 75], 'close': [147, 152] }, { 'name': 'ul', 'open': [0, 4], 'close': [179, 184] } ]) def test_inward(self): doc = read_file('sample.html') self.assertEqual(inward(doc, 0), [ { 'name': 'ul', 'open': [0, 4], 'close': [179, 184] }, { 'name': 'li', 'open': [6, 10], 'close': [25, 30] }, { 'name': 'a', 'open': [10, 21], 'close': [21, 25] } ]) self.assertEqual(inward(doc, 1), [ { 'name': 'ul', 'open': [0, 4], 'close': [179, 184] }, { 'name': 'li', 'open': [6, 10], 'close': [25, 30] }, { 'name': 'a', 'open': [10, 21], 'close': [21, 25] } ]) self.assertEqual(inward(doc, 73), [ { 'name': 'li', 'open': [71, 75], 'close': [147, 152] }, { 'name': 'div', 'open': [78, 83], 'close': [121, 127] }, { 'name': 'img', 'open': [87, 108] } ]) self.assertEqual(inward(doc, 114), [ { 'name': 'br', 'open': [112, 118] } ]) ``` #### File: py-emmet/tests/test_format.py ```python import unittest import sys sys.path.append('../') from emmet.markup import parse, html, haml, pug, slim from emmet.config import Config def tabstops(index: int, placeholder: str, **kwargs): if placeholder: return '${%d:%s}' % (index, placeholder) return '${%d}' % index default_config = Config() field = Config({ 'options': { 'output.field': tabstops } }) def create_profile(options: dict): return Config({'options': options}) def output_html(abbr: str, config=default_config): return html(parse(abbr, config), config) class TestHTMLFormat(unittest.TestCase): def test_basic(self): self.assertEqual(output_html('div>p'), '<div>\n\t<p></p>\n</div>') self.assertEqual(output_html('div>p*3'), '<div>\n\t<p></p>\n\t<p></p>\n\t<p></p>\n</div>') self.assertEqual(output_html('div#a>p.b*2>span'), '<div id="a">\n\t<p class="b"><span></span></p>\n\t<p class="b"><span></span></p>\n</div>') self.assertEqual(output_html('div>div>div'), '<div>\n\t<div>\n\t\t<div></div>\n\t</div>\n</div>') self.assertEqual(output_html('table>tr*2>td{item}*2'), '<table>\n\t<tr>\n\t\t<td>item</td>\n\t\t<td>item</td>\n\t</tr>\n\t<tr>\n\t\t<td>item</td>\n\t\t<td>item</td>\n\t</tr>\n</table>') def test_inline_elements(self): profile = create_profile({ 'output.inlineBreak': 3 }) break_inline = create_profile({ 'output.inlineBreak': 1 }) keep_inline = create_profile({ 'output.inlineBreak': 0 }) xhtml = create_profile({ 'output.selfClosingStyle': 'xhtml' }) self.assertEqual(output_html('div>a>b*3', xhtml), '<div>\n\t<a href="">\n\t\t<b></b>\n\t\t<b></b>\n\t\t<b></b>\n\t</a>\n</div>') self.assertEqual(output_html('p>i', profile), '<p><i></i></p>') self.assertEqual(output_html('p>i*2', profile), '<p><i></i><i></i></p>') self.assertEqual(output_html('p>i*2', break_inline), '<p>\n\t<i></i>\n\t<i></i>\n</p>') self.assertEqual(output_html('p>i*3', profile), '<p>\n\t<i></i>\n\t<i></i>\n\t<i></i>\n</p>') self.assertEqual(output_html('p>i*3', keep_inline), '<p><i></i><i></i><i></i></p>') self.assertEqual(output_html('i*2', profile), '<i></i><i></i>') self.assertEqual(output_html('i*3', profile), '<i></i>\n<i></i>\n<i></i>') self.assertEqual(output_html('i{a}+i{b}', profile), '<i>a</i><i>b</i>') self.assertEqual(output_html('img[src]/+p', xhtml), '<img src="" alt="" />\n<p></p>') self.assertEqual(output_html('div>img[src]/+p', xhtml), '<div>\n\t<img src="" alt="" />\n\t<p></p>\n</div>') self.assertEqual(output_html('div>p+img[src]/', xhtml), '<div>\n\t<p></p>\n\t<img src="" alt="" />\n</div>') self.assertEqual(output_html('div>p+img[src]/+p', xhtml), '<div>\n\t<p></p>\n\t<img src="" alt="" />\n\t<p></p>\n</div>') self.assertEqual(output_html('div>p+img[src]/*2+p', xhtml), '<div>\n\t<p></p>\n\t<img src="" alt="" /><img src="" alt="" />\n\t<p></p>\n</div>') self.assertEqual(output_html('div>p+img[src]/*3+p', xhtml), '<div>\n\t<p></p>\n\t<img src="" alt="" />\n\t<img src="" alt="" />\n\t<img src="" alt="" />\n\t<p></p>\n</div>') def test_generate_fields(self): self.assertEqual(output_html('a[href]', field), '<a href="${1}">${2}</a>') self.assertEqual(output_html('a[href]*2', field), '<a href="${1}">${2}</a><a href="${3}">${4}</a>') self.assertEqual(output_html('{${0} ${1:foo} ${2:bar}}*2', field), '${1} ${2:foo} ${3:bar}\n${4} ${5:foo} ${6:bar}') self.assertEqual(output_html('{${0} ${1:foo} ${2:bar}}*2'), ' foo bar\n foo bar') self.assertEqual(output_html('ul>li*2', field), '<ul>\n\t<li>${1}</li>\n\t<li>${2}</li>\n</ul>') self.assertEqual(output_html('div>img[src]/', field), '<div><img src="${1}" alt="${2}"></div>') def test_mixed_content(self): self.assertEqual(output_html('div{foo}'), '<div>foo</div>') self.assertEqual(output_html('div>{foo}'), '<div>foo</div>') self.assertEqual(output_html('div>{foo}+{bar}'), '<div>\n\tfoo\n\tbar\n</div>') self.assertEqual(output_html('div>{foo}+{bar}+p'), '<div>\n\tfoo\n\tbar\n\t<p></p>\n</div>') self.assertEqual(output_html('div>{foo}+{bar}+p+{foo}+{bar}+p'), '<div>\n\tfoo\n\tbar\n\t<p></p>\n\tfoo\n\tbar\n\t<p></p>\n</div>') self.assertEqual(output_html('div>{foo}+p+{bar}'), '<div>\n\tfoo\n\t<p></p>\n\tbar\n</div>') self.assertEqual(output_html('div>{foo}>p'), '<div>\n\tfoo\n\t<p></p>\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}'), '<div><!-- --></div>') self.assertEqual(output_html('div>{<!-- ${0} -->}+p'), '<div>\n\t<!-- -->\n\t<p></p>\n</div>') self.assertEqual(output_html('div>p+{<!-- ${0} -->}'), '<div>\n\t<p></p>\n\t<!-- -->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>p'), '<div>\n\t<!-- <p></p> -->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}*2>p'), '<div>\n\t<!-- <p></p> -->\n\t<!-- <p></p> -->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>p*2'), '<div>\n\t<!-- \n\t<p></p>\n\t<p></p>\n\t-->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}*2>p*2'), '<div>\n\t<!-- \n\t<p></p>\n\t<p></p>\n\t-->\n\t<!-- \n\t<p></p>\n\t<p></p>\n\t-->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>b'), '<div>\n\t<!-- <b></b> -->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>b*2'), '<div>\n\t<!-- <b></b><b></b> -->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>b*3'), '<div>\n\t<!-- \n\t<b></b>\n\t<b></b>\n\t<b></b>\n\t-->\n</div>') self.assertEqual(output_html('div>{<!-- ${0} -->}', field), '<div><!-- ${1} --></div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>b', field), '<div>\n\t<!-- <b>${1}</b> -->\n</div>') def test_self_closing(self): xml_style = create_profile({ 'output.selfClosingStyle': 'xml' }) html_style = create_profile({ 'output.selfClosingStyle': 'html' }) xhtml_style = create_profile({ 'output.selfClosingStyle': 'xhtml' }) self.assertEqual(output_html('img[src]/', html_style), '<img src="" alt="">') self.assertEqual(output_html('img[src]/', xhtml_style), '<img src="" alt="" />') self.assertEqual(output_html('img[src]/', xml_style), '<img src="" alt=""/>') self.assertEqual(output_html('div>img[src]/', xhtml_style), '<div><img src="" alt="" /></div>') def test_boolean_attributes(self): compact = create_profile({'output.compactBoolean': True}) no_compact = create_profile({'output.compactBoolean': False}) self.assertEqual(output_html('p[b.]', no_compact), '<p b="b"></p>') self.assertEqual(output_html('p[b.]', compact), '<p b></p>') self.assertEqual(output_html('p[contenteditable]', compact), '<p contenteditable></p>') self.assertEqual(output_html('p[contenteditable]', no_compact), '<p contenteditable="contenteditable"></p>') self.assertEqual(output_html('p[contenteditable=foo]', compact), '<p contenteditable="foo"></p>') def test_no_formatting(self): profile = create_profile({ 'output.format': False }) self.assertEqual(output_html('div>p', profile), '<div><p></p></div>') self.assertEqual(output_html('div>{foo}+p+{bar}', profile), '<div>foo<p></p>bar</div>') self.assertEqual(output_html('div>{foo}>p', profile), '<div>foo<p></p></div>') self.assertEqual(output_html('div>{<!-- ${0} -->}>p', profile), '<div><!-- <p></p> --></div>') def test_format_specific_nodes(self): self.assertEqual(output_html('{<!DOCTYPE html>}+html>(head>meta[charset=${charset}]/+title{${1:Document}})+body', field), '<!DOCTYPE html>\n<html>\n<head>\n\t<meta charset="UTF-8">\n\t<title>${2:Document}</title>\n</head>\n<body>\n\t${3}\n</body>\n</html>') def test_comment(self): opt = Config({ 'options': { 'comment.enabled': True } }) self.assertEqual(output_html('ul>li.item', opt), '<ul>\n\t<li class="item"></li>\n\t<!-- /.item -->\n</ul>') self.assertEqual(output_html('div>ul>li.item#foo', opt), '<div>\n\t<ul>\n\t\t<li class="item" id="foo"></li>\n\t\t<!-- /#foo.item -->\n\t</ul>\n</div>') opt.options['comment.after'] = ' { [%ID] }' self.assertEqual(output_html('div>ul>li.item#foo', opt), '<div>\n\t<ul>\n\t\t<li class="item" id="foo"></li> { %foo }\n\t</ul>\n</div>') def output_haml(abbr: str, config=default_config): return haml(parse(abbr, config), config) class TestHAMLFormat(unittest.TestCase): def test_basic(self): self.assertEqual(output_haml('div#header>ul.nav>li[title=test].nav-item*2'), '#header\n\t%ul.nav\n\t\t%li.nav-item(title="test") \n\t\t%li.nav-item(title="test") ') # https://github.com/emmetio/emmet/issues/446 self.assertEqual(output_haml('li>a'), '%li\n\t%a(href="") ') self.assertEqual(output_haml('div#foo[data-n1=v1 title=test data-n2=v2].bar'), '#foo.bar(data-n1="v1" title="test" data-n2="v2") ') profile = create_profile({ 'output.compactBoolean': True }) self.assertEqual(output_haml('input[disabled. foo title=test]/', profile), '%input(type="text" disabled foo="" title="test")/') profile = create_profile({ 'output.compactBoolean': False }) self.assertEqual(output_haml('input[disabled. foo title=test]/', profile), '%input(type="text" disabled=true foo="" title="test")/') def test_nodes_with_text(self): self.assertEqual(output_haml('{Text 1}'), 'Text 1') self.assertEqual(output_haml('span{Text 1}'), '%span Text 1') self.assertEqual(output_haml('span{Text 1}>b{Text 2}'), '%span Text 1\n\t%b Text 2') self.assertEqual(output_haml('span{Text 1\nText 2}>b{Text 3}'), '%span\n\tText 1 |\n\tText 2 |\n\t%b Text 3') self.assertEqual(output_haml('div>span{Text 1\nText 2\nText 123}>b{Text 3}'), '%div\n\t%span\n\t\tText 1 |\n\t\tText 2 |\n\t\tText 123 |\n\t\t%b Text 3') def test_generate_fields(self): self.assertEqual(output_haml('a[href]', field), '%a(href="${1}") ${2}') self.assertEqual(output_haml('a[href]*2', field), '%a(href="${1}") ${2}\n%a(href="${3}") ${4}') self.assertEqual(output_haml('{${0} ${1:foo} ${2:bar}}*2', field), '${1} ${2:foo} ${3:bar}${4} ${5:foo} ${6:bar}') self.assertEqual(output_haml('{${0} ${1:foo} ${2:bar}}*2'), ' foo bar foo bar') self.assertEqual(output_haml('ul>li*2', field), '%ul\n\t%li ${1}\n\t%li ${2}') self.assertEqual(output_haml('div>img[src]/', field), '%div\n\t%img(src="${1}" alt="${2}")/') def output_pug(abbr: str, config=default_config): return pug(parse(abbr, config), config) class TestPUGFormat(unittest.TestCase): def test_basic(self): self.assertEqual(output_pug('div#header>ul.nav>li[title=test].nav-item*2'), '#header\n\tul.nav\n\t\tli.nav-item(title="test") \n\t\tli.nav-item(title="test") ') self.assertEqual(output_pug('div#foo[data-n1=v1 title=test data-n2=v2].bar'), '#foo.bar(data-n1="v1", title="test", data-n2="v2") ') self.assertEqual(output_pug('input[disabled. foo title=test]'), 'input(type="text", disabled, foo="", title="test")') # Use closing slash for XML output format self.assertEqual(output_pug('input[disabled. foo title=test]', create_profile({ 'output.selfClosingStyle': 'xml' })), 'input(type="text", disabled, foo="", title="test")/'); def test_nodes_with_test(self): self.assertEqual(output_pug('{Text 1}'), 'Text 1') self.assertEqual(output_pug('span{Text 1}'), 'span Text 1') self.assertEqual(output_pug('span{Text 1}>b{Text 2}'), 'span Text 1\n\tb Text 2') self.assertEqual(output_pug('span{Text 1\nText 2}>b{Text 3}'), 'span\n\t| Text 1\n\t| Text 2\n\tb Text 3') self.assertEqual(output_pug('div>span{Text 1\nText 2}>b{Text 3}'), 'div\n\tspan\n\t\t| Text 1\n\t\t| Text 2\n\t\tb Text 3') def test_generate_fields(self): self.assertEqual(output_pug('a[href]', field), 'a(href="${1}") ${2}') self.assertEqual(output_pug('a[href]*2', field), 'a(href="${1}") ${2}\na(href="${3}") ${4}') self.assertEqual(output_pug('{${0} ${1:foo} ${2:bar}}*2', field), '${1} ${2:foo} ${3:bar}${4} ${5:foo} ${6:bar}') self.assertEqual(output_pug('{${0} ${1:foo} ${2:bar}}*2'), ' foo bar foo bar') self.assertEqual(output_pug('ul>li*2', field), 'ul\n\tli ${1}\n\tli ${2}') self.assertEqual(output_pug('div>img[src]/', field), 'div\n\timg(src="${1}", alt="${2}")') def output_slim(abbr: str, config=default_config): return slim(parse(abbr, config), config) class TestSlimFormat(unittest.TestCase): def test_basic(self): self.assertEqual(output_slim('div#header>ul.nav>li[title=test].nav-item*2'), '#header\n\tul.nav\n\t\tli.nav-item title="test" \n\t\tli.nav-item title="test" ') self.assertEqual(output_slim('div#foo[data-n1=v1 title=test data-n2=v2].bar'), '#foo.bar data-n1="v1" title="test" data-n2="v2" ') def test_nodes_with_text(self): self.assertEqual(output_slim('{Text 1}'), 'Text 1') self.assertEqual(output_slim('span{Text 1}'), 'span Text 1') self.assertEqual(output_slim('span{Text 1}>b{Text 2}'), 'span Text 1\n\tb Text 2') self.assertEqual(output_slim('span{Text 1\nText 2}>b{Text 3}'), 'span\n\t| Text 1\n\t| Text 2\n\tb Text 3') self.assertEqual(output_slim('div>span{Text 1\nText 2}>b{Text 3}'), 'div\n\tspan\n\t\t| Text 1\n\t\t| Text 2\n\t\tb Text 3') def test_generate_fields(self): self.assertEqual(output_slim('a[href]', field), 'a href="${1}" ${2}') self.assertEqual(output_slim('a[href]*2', field), 'a href="${1}" ${2}\na href="${3}" ${4}') self.assertEqual(output_slim('{${0} ${1:foo} ${2:bar}}*2', field), '${1} ${2:foo} ${3:bar}${4} ${5:foo} ${6:bar}') self.assertEqual(output_slim('{${0} ${1:foo} ${2:bar}}*2'), ' foo bar foo bar') self.assertEqual(output_slim('ul>li*2', field), 'ul\n\tli ${1}\n\tli ${2}') self.assertEqual(output_slim('div>img[src]/', field), 'div\n\timg src="${1}" alt="${2}"/') ``` #### File: py-emmet/tests/test_output_stream.py ```python import unittest import sys sys.path.append('../') from emmet.output_stream import OutputStream, tag_name, attr_name, self_close, is_inline from emmet.config import Config class TestOutputStream(unittest.TestCase): def test_stream(self): conf = Config({'options': {'output.baseIndent': '>>'}}) out = OutputStream(conf.options) out.push('aaa') self.assertEqual(out.value, 'aaa') self.assertEqual(out.line, 0) self.assertEqual(out.column, 3) self.assertEqual(out.offset, 3) out.push_string('bbb') self.assertEqual(out.value, 'aaabbb') self.assertEqual(out.line, 0) self.assertEqual(out.column, 6) self.assertEqual(out.offset, 6) # Add text with newlines out.push_string('ccc\nddd') self.assertEqual(out.value, 'aaabbbccc\n>>ddd') self.assertEqual(out.line, 1) self.assertEqual(out.column, 5) self.assertEqual(out.offset, 15) # Add newline with indent out.level += 1 out.push_newline(True) self.assertEqual(out.value, 'aaabbbccc\n>>ddd\n>>\t') self.assertEqual(out.line, 2) self.assertEqual(out.column, 3) self.assertEqual(out.offset, 19) def test_profile_tag_name(self): as_is = Config({ 'options': { 'output.tagCase': '' } }) upper = Config({ 'options': { 'output.tagCase': 'upper' } }) lower = Config({ 'options': { 'output.tagCase': 'lower' } }) self.assertEqual(tag_name('Foo', as_is), 'Foo') self.assertEqual(tag_name('bAr', as_is), 'bAr') self.assertEqual(tag_name('Foo', upper), 'FOO') self.assertEqual(tag_name('bAr', upper), 'BAR') self.assertEqual(tag_name('Foo', lower), 'foo') self.assertEqual(tag_name('bAr', lower), 'bar') def test_attribute_name(self): as_is = Config({ 'options': { 'output.attributeCase': '' } }) upper = Config({ 'options': { 'output.attributeCase': 'upper' } }) lower = Config({ 'options': { 'output.attributeCase': 'lower' } }) self.assertEqual(attr_name('Foo', as_is), 'Foo') self.assertEqual(attr_name('bAr', as_is), 'bAr') self.assertEqual(attr_name('Foo', upper), 'FOO') self.assertEqual(attr_name('bAr', upper), 'BAR') self.assertEqual(attr_name('Foo', lower), 'foo') self.assertEqual(attr_name('bAr', lower), 'bar') def test_self_close(self): html = Config({ 'options': { 'output.selfClosingStyle': 'html' } }) xhtml = Config({ 'options': { 'output.selfClosingStyle': 'xhtml' } }) xml = Config({ 'options': { 'output.selfClosingStyle': 'xml' } }) self.assertEqual(self_close(html), '') self.assertEqual(self_close(xhtml), ' /') self.assertEqual(self_close(xml), '/') def test_inline_elements(self): config = Config() self.assertEqual(is_inline('a', config), True) self.assertEqual(is_inline('b', config), True) self.assertEqual(is_inline('c', config), False) ```
{ "source": "JingyunLiang/FKP", "score": 2 }
#### File: FKP/DIPFKP/main.py ```python import os import argparse import torch import sys import numpy as np import warnings warnings.filterwarnings("ignore") import matplotlib.pyplot as plt from util import read_image, im2tensor01, map2tensor, tensor2im01, analytic_kernel, kernel_shift, evaluation_dataset from config.configs import Config from model.model import DIPFKP # for nonblind SR sys.path.append('../') from NonblindSR.usrnet import USRNet ''' # ------------------------------------------------ # main.py for DIP-KP # ------------------------------------------------ ''' def train(conf, lr_image): ''' trainer for DIPFKP, etc.''' model = DIPFKP(conf, lr_image) kernel, sr = model.train() return kernel, sr def create_params(filename, args): ''' pass parameters to Config ''' params = ['--model', args.model, '--input_image_path', os.path.join(args.input_dir, filename), '--output_dir_path', os.path.abspath(args.output_dir), '--path_KP', os.path.abspath(args.path_KP), '--sf', args.sf] if args.SR: params.append('--SR') if args.real: params.append('--real') return params def main(): # Parse the command line arguments prog = argparse.ArgumentParser() prog.add_argument('--model', type=str, default='DIPFKP', help='models: DIPFKP, DIPSoftmax, DoubleDIP.') prog.add_argument('--dataset', '-d', type=str, default='Set5', help='dataset, e.g., Set5.') prog.add_argument('--sf', type=str, default='2', help='The wanted SR scale factor') prog.add_argument('--path-nonblind', type=str, default='../data/pretrained_models/usrnet_tiny.pth', help='path for trained nonblind model') prog.add_argument('--SR', action='store_true', default=False, help='when activated - nonblind SR is performed') prog.add_argument('--real', action='store_true', default=False, help='if the input is real image') # to be overwritten automatically prog.add_argument('--path-KP', type=str, default='../data/pretrained_models/FKP_x2.pt', help='path for trained kernel prior') prog.add_argument('--input-dir', '-i', type=str, default='../data/datasets/Set5/DIPFKP_lr_x2', help='path to image input directory.') prog.add_argument('--output-dir', '-o', type=str, default='../data/log_KernelGANFKP/Set5_DIPFKP_lr_x2', help='path to image output directory') args = prog.parse_args() # overwritting paths args.path_KP = '../data/pretrained_models/FKP_x{}.pt'.format(args.sf) args.input_dir = '../data/datasets/{}/DIPFKP_lr_x{}'.format(args.dataset, args.sf) args.output_dir = '../data/log_DIPFKP/{}_{}_lr_x{}'.format(args.dataset, args.model, args.sf) # load nonblind model if args.SR: netG = USRNet(n_iter=6, h_nc=32, in_nc=4, out_nc=3, nc=[16, 32, 64, 64], nb=2, act_mode="R", downsample_mode='strideconv', upsample_mode="convtranspose") netG.load_state_dict(torch.load(args.path_nonblind), strict=True) netG.eval() for key, v in netG.named_parameters(): v.requires_grad = False netG = netG.cuda() filesource = os.listdir(os.path.abspath(args.input_dir)) filesource.sort() for filename in filesource[:]: print(filename) # kernel estimation conf = Config().parse(create_params(filename, args)) lr_image = im2tensor01(read_image(os.path.join(args.input_dir, filename))).unsqueeze(0) # crop the image to 960x960 due to memory limit if 'DIV2K' in args.input_dir: crop = int(960 / 2 / conf.sf) lr_image = lr_image[:, :, lr_image.shape[2] // 2 - crop: lr_image.shape[2] // 2 + crop, lr_image.shape[3] // 2 - crop: lr_image.shape[3] // 2 + crop] kernel, sr_dip = train(conf, lr_image) plt.imsave(os.path.join(conf.output_dir_path, '%s.png' % conf.img_name), tensor2im01(sr_dip), vmin=0, vmax=1., dpi=1) # nonblind SR if args.SR: kernel = map2tensor(kernel) sr = netG(lr_image, torch.flip(kernel, [2, 3]), int(args.sf), (10 if args.real else 0) / 255 * torch.ones([1, 1, 1, 1]).cuda()) plt.imsave(os.path.join(conf.output_dir_path, '%s.png' % conf.img_name), tensor2im01(sr), vmin=0, vmax=1., dpi=1) if not conf.verbose: evaluation_dataset(args.input_dir, conf) prog.exit(0) if __name__ == '__main__': seed = 0 np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.benchmark = True main() ```
{ "source": "jingyuyao/elitetraderoutes", "score": 3 }
#### File: elitetraderoutes/elitedata/models.py ```python from django.db import models from common.models import UUIDModel # Create your models here. class System(UUIDModel): name = models.CharField(max_length=100) needs_permit = models.NullBooleanField(default=False) primary_economy = models.CharField(max_length=100, null=True) population = models.BigIntegerField(default=0, null=True) security = models.CharField(max_length=100, null=True) allegiance = models.CharField(max_length=100, null=True) government = models.CharField(max_length=100, null=True) state = models.CharField(max_length=100, null=True) faction = models.CharField(max_length=100, null=True) power_control_faction = models.CharField(max_length=100, null=True) x = models.FloatField() y = models.FloatField() z = models.FloatField() updated_at = models.BigIntegerField() def __str__(self): return self.name class Station(UUIDModel): name = models.CharField(max_length=100) system = models.ForeignKey(System, related_name="stations", editable=False) type = models.CharField(max_length=100, null=True, blank=True) max_landing_pad_size = models.CharField(max_length=100, null=True, blank=True) # L or M distance_to_star = models.BigIntegerField(default=0, null=True, blank=True) # Might change depending on orbit??? allegiance = models.CharField(max_length=100, null=True, blank=True) government = models.CharField(max_length=100, null=True, blank=True) state = models.CharField(max_length=100, null=True, blank=True) faction = models.CharField(max_length=100, null=True, blank=True) has_repair = models.NullBooleanField(default=False, blank=True) has_blackmarket = models.NullBooleanField(default=False, blank=True) has_refuel = models.NullBooleanField(default=False, blank=True) has_rearm = models.NullBooleanField(default=False, blank=True) has_shipyard = models.NullBooleanField(default=False, blank=True) has_outfitting = models.NullBooleanField(default=False, blank=True) has_commodities = models.NullBooleanField(default=False, blank=True) updated_at = models.BigIntegerField() def __str__(self): return self.name class Commodity(UUIDModel): name = models.CharField(max_length=100) average_price = models.IntegerField(default=0, null=True, blank=True) category_id = models.IntegerField(default=0, editable=False) category_name = models.CharField(max_length=100, editable=False) def __str__(self): return self.name class StationCommodity(UUIDModel): commodity = models.ForeignKey(Commodity, related_name='station_commodities', editable=False) station = models.ForeignKey(Station, related_name='station_commodities', editable=False) buy_price = models.IntegerField(default=0) supply = models.IntegerField(default=0) supply_level = models.CharField(max_length=100, null=True, blank=True) sell_price = models.IntegerField(default=0) demand = models.IntegerField(default=0) demand_level = models.CharField(max_length=100, null=True, blank=True) created = models.DateTimeField(auto_now_add=True) class Meta: ordering = ['-created'] def __str__(self): return '%s/%s(%i/%i)' % (str(self.station), str(self.commodity), int(self.buy_price), int(self.sell_price)) ``` #### File: elitetraderoutes/elitedata/views.py ```python from rest_framework.decorators import detail_route from rest_framework.response import Response from common import permissions from .models import System, Station, Commodity, StationCommodity from .serializers import CommoditySerializer, StationSerializer, \ SystemSerializer, MinimizedSystemSerializer, StationCommoditySerializer import django_filters from common.views import WrappedModelViewSet, wrap_response # Create your views here. class SystemViewSet(WrappedModelViewSet): permission_classes = (permissions.IsAdminOrReadOnly,) queryset = System.objects.all() serializer_class = SystemSerializer search_fields = ('name',) template_name = 'frontend/system/instance.html' list_template_name = 'frontend/system/list.html' @detail_route() def stations(self, request, *args, **kwargs): """ A route to display only the stations this System contains. :param request: :param pk: :return: """ system = self.get_object() stations = Station.objects.filter(system=system) serializer = StationSerializer(stations, context={'request': request}, many=True) return wrap_response(Response({'results': serializer.data}, template_name='frontend/system/list_station.html')) @detail_route() def min(self, request, *args, **kwargs): """ A route to display the minimized System view. :param request: :param pk: :return: """ serializer = MinimizedSystemSerializer(self.get_object(), context={'request': request}) data = serializer.data data['min'] = True return wrap_response(Response(data)) class StationViewSet(WrappedModelViewSet): class StationFilter(django_filters.FilterSet): distance_to_star = django_filters.NumberFilter(lookup_type='lt') class Meta: model = Station fields = ('distance_to_star',) permission_classes = (permissions.IsAdminOrReadOnly,) queryset = Station.objects.all() serializer_class = StationSerializer filter_class = StationFilter search_fields = ('name', ) template_name = 'frontend/station/instance.html' list_template_name = 'frontend/station/list.html' class CommodityViewSet(WrappedModelViewSet): class CommodityFilter(django_filters.FilterSet): average_price = django_filters.NumberFilter(lookup_type='lt') name = django_filters.CharFilter(lookup_type='icontains') class Meta: model = Commodity fields = ('average_price', 'name') permission_classes = (permissions.IsAdminOrReadOnly,) queryset = Commodity.objects.all() serializer_class = CommoditySerializer filter_class = CommodityFilter search_fields = ('name',) template_name = 'frontend/commodity/instance.html' list_template_name = 'frontend/commodity/list.html' class StationCommodityViewSet(WrappedModelViewSet): class StationCommodityFilter(django_filters.FilterSet): class Meta: model = StationCommodity fields = { 'station': ['exact'], 'commodity': ['exact'], 'supply_level': ['exact'], 'demand_level': ['exact'], 'buy_price': ['lt', 'gt'], 'sell_price': ['lt', 'gt'], 'supply': ['lt', 'gt'], 'demand': ['lt', 'gt'], } permission_classes = (permissions.IsAdminOrReadOnly,) queryset = StationCommodity.objects.all() serializer_class = StationCommoditySerializer template_name = 'frontend/station_commodity/instance.html' list_template_name = 'frontend/station_commodity/list.html' filter_class = StationCommodityFilter search_fields = ('commodity__name', 'station__name', 'commodity__category_name') ``` #### File: elitetraderoutes/traderoutes/serializers.py ```python from rest_framework import serializers from .models import Route, Connection from elitedata.models import Station, System, Commodity from elitedata.serializers import MinimizedSystemSerializer, StationSerializer, CommoditySerializer from common.serializers import IDHyperlinkedModelSerializer class BaseConnectionSerializer(IDHyperlinkedModelSerializer): """ Base serializer for Connection model. """ route = serializers.HyperlinkedRelatedField(view_name='route-detail', queryset=Route.objects.all()) class Meta: model = Connection class WriteConnectionSerializer(BaseConnectionSerializer): """ The write serializer for the Connection class. This serializer will validate start and destination stations belong in the specified start and destination system. Note: The queryset for the system and station fields encompasses all of the objects in their respective model. This makes the default API view extremely slow as it will load up all the possible choices for selection in the view. It does not affect normal json calls. """ start_system = serializers.HyperlinkedRelatedField(view_name='system-detail', queryset=System.objects.all()) start_station = serializers.HyperlinkedRelatedField(view_name='station-detail', queryset=Station.objects.all()) destination_system = serializers.HyperlinkedRelatedField(view_name='system-detail', queryset=System.objects.all()) destination_station = serializers.HyperlinkedRelatedField(view_name='station-detail', queryset=Station.objects.all()) commodity = serializers.HyperlinkedRelatedField(view_name='commodity-detail', queryset=Commodity.objects.all()) def validate(self, data): """ Make sure start and destination stations are in start and destination systems, respectively. :param data: :return: """ self._validate_station(data['start_system'], data['start_station']) self._validate_station(data['destination_system'], data['destination_station']) return data @staticmethod def _validate_station(system, station): """ Validates whether 'station' is in 'system'. :param system: :param station: :return: """ if station not in Station.objects.filter(system=system): raise serializers.ValidationError("Station(%s) not in system(%s)." % (str(station), str(system))) class ReadConnectionSerializer(BaseConnectionSerializer): """ The read serializer for the Connection model. This serializer shows the referenced models as nested objects. """ start_system = MinimizedSystemSerializer() start_station = StationSerializer() destination_system = MinimizedSystemSerializer() destination_station = StationSerializer() commodity = CommoditySerializer() distance = serializers.SerializerMethodField() # Read only @staticmethod def get_distance(obj): return obj.distance() class BaseRouteSerializer(IDHyperlinkedModelSerializer): """ Base serializer for Route. Sub-class need to provide value for connections """ owner_name = serializers.ReadOnlyField(source='owner.username') @property def connections(self): """ A serializer for Connection """ raise NotImplementedError class Meta: model = Route class RouteSerializer(BaseRouteSerializer): """ Serializer for the Route. Includes detailed information on all the Connection the Route has. """ connections = ReadConnectionSerializer(many=True, read_only=True) class MinimizedRouteSerializer(BaseRouteSerializer): """ Minimized serializer for Route. Only contains a link each Connection the Route has. """ connections = serializers.HyperlinkedRelatedField(view_name="connection-detail", many=True, read_only=True) """ Why not use primary key relationships? - Avoids building URL - No way to misrepresent information """ # class ConnectionSerializer(serializers.ModelSerializer): # route = serializers.PrimaryKeyRelatedField(queryset=Route.objects.all()) # start_system = serializers.PrimaryKeyRelatedField(queryset=System.objects.all()) # start_station = serializers.PrimaryKeyRelatedField(queryset=Station.objects.all()) # destination_system = serializers.PrimaryKeyRelatedField(queryset=System.objects.all()) # destination_station = serializers.PrimaryKeyRelatedField(queryset=Station.objects.all()) # commodity = serializers.PrimaryKeyRelatedField(queryset=Commodity.objects.all()) # # class Meta: # model = Connection # fields = ('pk', 'route', # 'start_system', 'start_station', # 'destination_system', 'destination_station', # 'commodity', 'buy_price', 'sell_price', 'supply', 'demand') ```
{ "source": "Jingyuying/pc_compress", "score": 2 }
#### File: pc_compress/src/compress.py ```python import logging logging.basicConfig( level=logging.INFO, format='%(asctime)s.%(msecs)03d %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%Y-%m-%d %H:%M:%S") logger = logging.getLogger(__name__) import os import numpy as np import tensorflow as tf import argparse import compression_model_512 import compression_model_1024 import compression_model_2048 import pc_io import gzip from tqdm import tqdm import data_provider import open3d as o3d import glob import fpzip np.random.seed(42) tf.set_random_seed(42) ################################################################################ ### Script ################################################################################ TYPE = np.uint16 DTYPE = np.dtype(np.uint16) SHAPE_LEN = 3 def compress(nn_output): string = nn_output['string'] str_len = len(string) byte_len = np.array(str_len, dtype=TYPE).tobytes() representation = byte_len + string return representation if __name__ == '__main__': parser = argparse.ArgumentParser( prog='compress.py', description='Compress a file.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( '--input_dir', default='../ply_data', help='Input directory.') parser.add_argument( '--input_pattern', default='*.ply', help='Mesh detection pattern.') parser.add_argument( '--source_extension', help='Mesh files extension', default='.ply') parser.add_argument( '--output_dir', default='../output', help='Output directory.') parser.add_argument( '--checkpoint_dir_512', default='/data/wenxuanzheng/mix_compress/512/00005', help='Directory where to save/load model checkpoints.') parser.add_argument( '--checkpoint_dir_1024', default='/data/wenxuanzheng/mix_compress/1024/00005', help='Directory where to save/load model checkpoints.') parser.add_argument( '--checkpoint_dir_2048', default='/data/wenxuanzheng/mix_compress/2048/00005', help='Directory where to save/load model checkpoints.') parser.add_argument( '--batch_size', type=int, default=1, help='Batch size.') parser.add_argument( '--knn', type=int, help='k-nearest neighbors.', default=12) parser.add_argument( '--read_batch_size', type=int, default=1, help='Batch size for parallel reading.') parser.add_argument( '--preprocess_threads', type=int, default=16, help='Number of CPU threads to use for parallel decoding.') args = parser.parse_args() assert args.batch_size > 0, 'batch_size must be positive' args.input_dir = os.path.normpath(args.input_dir) len_input_dir = len(args.input_dir) assert os.path.exists(args.input_dir), "Input directory not found" input_glob = os.path.join(args.input_dir, args.input_pattern) files = pc_io.get_files(input_glob) assert len(files) > 0, "No input files found" filenames = [x[len_input_dir+1:] for x in files] output_files = [os.path.join(args.output_dir, x + '.bin') for x in filenames] output_infs = [os.path.join(args.output_dir, x + '.inf.bin') for x in filenames] pcQueue_512, pcQueue_1024, pcQueue_2048 = data_provider.load_data( args.input_dir, args.source_extension) centroid_list = [] furthest_distance_list = [] meta_matrix, nor_pc_512, nor_pc_1024, nor_pc_2048 = data_provider.gen_meta(centroid_list,furthest_distance_list,pcQueue_512,pcQueue_1024,pcQueue_2048) compressed_bytes = fpzip.compress(meta_matrix.astype(np.float32), precision=0, order='C') with open(output_infs[0], 'wb') as f: f.write(compressed_bytes) f.close() def patch_compress(points,model,checkpoint): estimator = tf.estimator.Estimator( model_fn=model.model_fn, model_dir=checkpoint, params={ 'checkpoint_dir': checkpoint, 'batch_size': args.batch_size, 'knn': args.knn, }) result = estimator.predict( input_fn=lambda: model.input_fn(points, args.batch_size, args.preprocess_threads, repeat=False, is_train = False), predict_keys=['string', 'x_tilde', 'y_tilde']) return result output_list = [] output_list.append(patch_compress(nor_pc_512, compression_model_512, args.checkpoint_dir_512)) output_list.append(patch_compress(nor_pc_1024, compression_model_1024, args.checkpoint_dir_1024)) output_list.append(patch_compress(nor_pc_2048, compression_model_2048, args.checkpoint_dir_2048)) with gzip.open(output_files[0], "ab") as f: patch_num_512 = len(nor_pc_512) patch_num_1024 = len(nor_pc_1024) patch_num_2048 = len(nor_pc_2048) patch_512_byte = np.array(patch_num_512, dtype=TYPE).tobytes() patch_1024_byte = np.array(patch_num_1024, dtype=TYPE).tobytes() patch_2048_byte = np.array(patch_num_2048, dtype=TYPE).tobytes() f.write(patch_512_byte + patch_1024_byte + patch_2048_byte) for i in range(len(output_list)): for ret in output_list[i]: representation = compress(ret) f.write(representation) ``` #### File: pc_compress/src/focal_loss.py ```python import tensorflow as tf import tensorflow.keras.backend as K import numpy as np # import sparse tf.enable_eager_execution() def focal_loss(y_true, y_pred, gamma=2, alpha=0.95): pt_1 = tf.where(tf.equal(y_true, 1), y_pred, tf.ones_like(y_pred)) pt_0 = tf.where(tf.equal(y_true, 0), y_pred, tf.zeros_like(y_pred)) pt_1 = K.clip(pt_1, 1e-3, .999) pt_0 = K.clip(pt_0, 1e-3, .999) return -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.sum((1-alpha) * K.pow( pt_0, gamma) * K.log(1. - pt_0)) # return -(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - ((1-alpha) * K.pow( pt_0, gamma) * K.log(1. - pt_0)), -K.sum(alpha * K.pow(1. - pt_1, gamma) * K.log(pt_1)) - K.sum((1-alpha) * K.pow( pt_0, gamma) * K.log(1. - pt_0)) def pc_to_tf(points, dense_tensor_shape): x = points x = tf.pad(x, [[0, 0], [1, 0]]) print(x) st = tf.sparse.SparseTensor(x, tf.ones_like(x[:, 0]), dense_tensor_shape) print(st) return st def process_x(x, dense_tensor_shape): x = tf.sparse.to_dense(x, default_value=0, validate_indices=False) x.set_shape(dense_tensor_shape) x = tf.cast(x, tf.float32) return x if __name__ == '__main__': coords = np.random.randint(0, 64 - 1, size=(3, 4096)) dense_tensor_shape = np.array([1, 64, 64, 64]) points = tf.constant(coords,dtype=tf.int64) points = tf.transpose(points,(1,0)) data = pc_to_tf(points,dense_tensor_shape) print(data) data = process_x(data,dense_tensor_shape) data = data.numpy() print(np.sum(data==1)) coords = torch.from_numpy(coords) coo_metrix = torch.sparse_coo_tensor(coords, torch.ones(2048), size=(64, 64, 64)) coo = coo_metrix.to_dense() coo = coo.numpy() print(np.sum(coo == 1)) # points = np.array([[0, 1, 2], # [2, 1, 2], # [0, 1, 0], # [0, 1, 1], # [2, 1, 0], # [1, 1, 2]],dtype=np.int32) # print(points.T.shape) # x = sparse.COO(coords, 1, shape=((64,) * 3)) # # y = sparse.tensordot(x, x, axes=((2, 0), (0, 1))) # # z = y.sum(axis=(0, 1, 2)) # print(z.todense()) # # data = np.array(x.todense()) # print(np.sum(data == 1)) n = 64 ndims = 3 nnz = 1000 coords = np.random.randint(0, n - 1, size=(ndims, nnz)) s = sparse.SparseArray.fromdense(coords) print(s) # print(coords) # data = np.random.random(nnz) # print(data) x = sparse.COO(coords, 1, shape=((n,) * ndims)) # y = sparse.tensordot(x, x, axes=((3, 0), (1, 2))) # z = y.sum(axis=(0, 1, 2)) data = np.array(x.todense()) print(data.shape) print(np.sum(data == 1)) # print(data) # print(data.shape) # x = tf.constant([[[[0.6, 0.3, 0.7], # [0.6, 0.3, 0.7], # [0.6, 0.3, 0.7]], # [[0.6, 0.3, 0.7], # [0.6, 0.3, 0.7], # [0.6, 0.3, 0.7]], # [[0.6, 0.3, 0.7], # [0.6, 0.3, 0.7], # [0.6, 0.3, 0.7]]]]) # print(x.shape) # x = tf.random_normal((3,3,3)) # y = np.random.randint(0,2,size=(3,3,3)) # y = tf.constant([[[[1,0,1], # [1,0,1], # [1,0,1]], # [[1,0,1], # [1,0,1], # [1,0,1]], # [[1,0,1], # [1,0,1], # [1,0,1]]]]) # x = tf.expand_dims(x,axis=0) # y = tf.expand_dims(y,axis=0) # print(focal_loss(data,x)) ``` #### File: pc_compress/src/pc_utils.py ```python import tensorflow as tf import scipy.sparse from sklearn.neighbors import KDTree import numpy as np import math import multiprocessing as multiproc from functools import partial def GridSampling(batch_size, meshgrid): ''' output Grid points as a NxD matrix params = { 'batch_size': 8 'meshgrid': [[-0.3,0.3,45],[-0.3,0.3,45]] } ''' ret = np.meshgrid(*[np.linspace(it[0], it[1], num=it[2]) for it in meshgrid]) ndim = len(meshgrid) grid = np.zeros((np.prod([it[2] for it in meshgrid]), ndim), dtype=np.float32) # MxD 2025x2 for d in range(ndim): grid[:, d] = np.reshape(ret[d], -1) g = np.repeat(grid[np.newaxis, ...], repeats=batch_size, axis=0) return g def jitter_perturbation_point_cloud(batch_data, sigma=0.005, clip=0.02): """ Randomly jitter points. jittering is per point. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, jittered batch of point clouds """ assert (clip > 0) jittered_data = tf.clip_by_value(sigma * tf.random_normal(tf.shape(batch_data)), -1 * clip, clip) jittered_data = tf.concat([batch_data[:, :, :3] + jittered_data[:, :, :3], batch_data[:, :, 3:]], axis=-1) return jittered_data def rotate_point_cloud_and_gt(batch_data, batch_gt=None): """ Randomly rotate the point clouds to augument the dataset rotation is per shape based along up direction Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ # batch_data = tf.expand_dims(batch_data,axis=0) batch_size, num_point, num_channels = batch_data.get_shape().as_list() angles = tf.random_uniform((batch_size, 3), dtype=tf.float32) * 2 * np.pi cos_x, cos_y, cos_z = tf.split(tf.cos(angles), 3, axis=-1) # 3*[B, 1] sin_x, sin_y, sin_z = tf.split(tf.sin(angles), 3, axis=-1) # 3*[B, 1] one = tf.ones_like(cos_x, dtype=tf.float32) zero = tf.zeros_like(cos_x, dtype=tf.float32) # [B, 3, 3] Rx = tf.stack( [tf.concat([one, zero, zero], axis=1), tf.concat([zero, cos_x, sin_x], axis=1), tf.concat([zero, -sin_x, cos_x], axis=1)], axis=1) Ry = tf.stack( [tf.concat([cos_y, zero, -sin_y], axis=1), tf.concat([zero, one, zero], axis=1), tf.concat([sin_y, zero, cos_y], axis=1)], axis=1) Rz = tf.stack( [tf.concat([cos_z, sin_z, zero], axis=1), tf.concat([-sin_z, cos_z, zero], axis=1), tf.concat([zero, zero, one], axis=1)], axis=1) rotation_matrix = tf.matmul(Rz, tf.matmul(Ry, Rx)) if num_channels > 3: batch_data = tf.concat( [tf.matmul(batch_data[:, :, :3], rotation_matrix), tf.matmul(batch_data[:, :, 3:], rotation_matrix), batch_data[:, :, 6:]], axis=-1) else: batch_data = tf.matmul(batch_data, rotation_matrix) if batch_gt is not None: if num_channels > 3: batch_gt = tf.concat( [tf.matmul(batch_gt[:, :, :3], rotation_matrix), tf.matmul(batch_gt[:, :, 3:], rotation_matrix), batch_gt[:, :, 6:]], axis=-1) else: batch_gt = tf.matmul(batch_gt, rotation_matrix) return batch_data def rotate_perturbation_point_cloud(batch_data, angle_sigma=0.03, angle_clip=0.09): """ Randomly perturb the point clouds by small rotations Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, rotated batch of point clouds """ batch_size, num_point, num_channels = batch_data.get_shape().as_list() angles = tf.clip_by_value(tf.random_normal((batch_size, 3)) * angle_sigma, -angle_clip, angle_clip) cos_x, cos_y, cos_z = tf.split(tf.cos(angles), 3, axis=-1) # 3*[B, 1] sin_x, sin_y, sin_z = tf.split(tf.sin(angles), 3, axis=-1) # 3*[B, 1] one = tf.ones_like(cos_x, dtype=tf.float32) zero = tf.zeros_like(cos_x, dtype=tf.float32) # [B, 3, 3] Rx = tf.stack( [tf.concat([one, zero, zero], axis=1), tf.concat([zero, cos_x, sin_x], axis=1), tf.concat([zero, -sin_x, cos_x], axis=1)], axis=1) Ry = tf.stack( [tf.concat([cos_y, zero, -sin_y], axis=1), tf.concat([zero, one, zero], axis=1), tf.concat([sin_y, zero, cos_y], axis=1)], axis=1) Rz = tf.stack( [tf.concat([cos_z, sin_z, zero], axis=1), tf.concat([-sin_z, cos_z, zero], axis=1), tf.concat([zero, zero, one], axis=1)], axis=1) rotation_matrix = tf.matmul(Rz, tf.matmul(Ry, Rx)) if num_channels > 3: batch_data = tf.concat( [tf.matmul(batch_data[:, :, :3], rotation_matrix), tf.matmul(batch_data[:, :, 3:], rotation_matrix), batch_data[:, :, 6:]], axis=-1) else: batch_data = tf.matmul(batch_data, rotation_matrix) return batch_data def random_scale_point_cloud_and_gt(batch_data, batch_gt=None, scale_low=0.5, scale_high=2): """ Randomly scale the point cloud. Scale is per point cloud. Input: BxNx3 array, original batch of point clouds Return: BxNx3 array, scaled batch of point clouds """ B, N, C = batch_data.get_shape().as_list() scales = tf.random_uniform((B, 1, 1), minval=scale_low, maxval=scale_high, dtype=tf.float32) batch_data = tf.concat([batch_data[:, :, :3] * scales, batch_data[:, :, 3:]], axis=-1) if batch_gt is not None: batch_gt = tf.concat([batch_gt[:, :, :3] * scales, batch_gt[:, :, 3:]], axis=-1) return batch_data if __name__ == '__main__': batch_size = 8 meshgrid = [[0, 1, 16], [0, 1, 16], [0, 1, 16]] grid = GridSampling(batch_size, meshgrid) ``` #### File: tf_ops/devoxelization/test_decoxel.py ```python import tensorflow as tf from tensorflow.python.framework import ops import sys import os import matplotlib.pyplot as plt import random from mpl_toolkits.mplot3d import Axes3D BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) devox_module = tf.load_op_library(os.path.join(BASE_DIR, 'tf_devoxelize.so')) sys.path.append('../voxelization') from tf_vox import group_voxel, voxelize, avg_voxel sys.path.append('../../utils') from tf_devox import trilinear_devoxelize import tf_util from plyfile import PlyData, PlyElement sys.path.append(os.path.join(BASE_DIR, '..', 'tf_ops/pc_distance')) import tf_nn_distance tf.enable_eager_execution() def get_cd_loss(pred, pc): """ pred: BxNx3, label: BxN, """ dists_forward,_,dists_backward,_ = tf_nn_distance.nn_distance(pred, pc) # loss = tf.reduce_mean(dists_forward+dists_backward) loss = (tf.reduce_mean(tf.sqrt(dists_forward)) + tf.reduce_mean(tf.sqrt(dists_backward)))/2 return loss def write_ply(tensor, name): np.savetxt(name, np.squeeze(tensor.numpy().transpose(0, 2, 1))) len = tensor.numpy().shape[2] file = os.path.join('.', name) f = open(file, "r+") lines = [line.lstrip().rstrip().replace(' ', ' ') for line in f] vertex_nums, face_nums, _ = lines[1].split() f = open(file, "w+") f.seek(0) head = "ply\nformat ascii 1.0\ncomment VCGLIB generated\nelement vertex " + '2048' + "\nproperty float x\nproperty float y\nproperty float z\nelement face " + str(0) + "\nproperty list uchar int vertex_indices\nend_header\n" f.write(head) for line in lines[:]: f.write(line + "\n") f.close() if __name__ == '__main__': import numpy as np import time for file in os.listdir('../../data'): file = os.path.join('../../data',file) plydata = PlyData.read(file) a_data = [] for i in range(plydata['vertex'].count): line = [plydata['vertex']['x'][i], plydata['vertex']['y'][i], plydata['vertex']['z'][i]] a_data.append(line) pc = np.array(a_data) coords = pc[:, :3] pts = tf.expand_dims(tf.constant(pc),axis=0) # pts = tf.transpose(pts,perm=[0, 2, 1]) # pc_input = tf.placeholder(tf.float32, shape=(2, 2048, 3)) # pts = np.tile(pts,reps=(1,1,1)) print(pts.shape) # (1, 2048, 3) pts = tf.constant(pts) voxel_feature = tf_util.pvcnn((pts,pts), scope='pvcnn_1',num_output_channels=3, resolution=64, bn=True, is_training=True, bn_decay=0.2) print(voxel_feature.shape) write_ply(tf.transpose(voxel_feature,perm=(0,2,1)), 'vox_pc.ply') # # my_output = tf.multiply(pc_input, 0.01) # # loss = tf.Variable(tf.random_normal(shape=[1])) # my_opt = tf.train.GradientDescentOptimizer(0.02) # train_step = my_opt.minimize(loss) # # # with tf.Session() as sess: # tf.global_variables_initializer().run() # for i in range(1000): # sess.run(train_step, feed_dict={pc_input: pts}) # print('Loss = ' + str(sess.run(loss, feed_dict={pc_input: pts}))) exit(-1) coords = tf.expand_dims(tf.constant(coords),axis=0) coords = tf.transpose(coords, perm=[0, 2, 1]) vox_pc, norm_pc = voxelize(coords,8) write_ply(norm_pc,'vox_orl.ply') # np.savetxt('vox.ply',np.squeeze(vox_pc.numpy().transpose(0,2,1))) # write_ply(vox_pc, 'vox_pc.ply') vox_pc = tf.cast(vox_pc, tf.int32) res = 8 # pts = tf.tile(pts,multiples=[4, 1, 1]) # vox_pc = tf.tile(vox_pc,multiples=[4, 1, 1]) indices, counts = group_voxel(res, pts, vox_pc) print(indices) print(counts) pts = tf.transpose(pts,perm=(0,2,1)) out = avg_voxel(res,pts,indices,counts) out = tf.transpose(out,perm=(0,2,1)) write_ply(out, 'vox_pc.ply') print(out.shape) print(norm_pc.shape) # feature_list = [] outs, idn, wgts = trilinear_devoxelize(norm_pc, out, 8) print(outs.shape) print(idn) write_ply(outs, 'out.ply') ``` #### File: tf_ops/devoxelization/tf_devoxel_op_test.py ```python import tensorflow as tf import numpy as np import sys,os sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'voxelization')) from tf_devox import trilinear_devoxelize # tf.enable_eager_execution() class GroupTriTest(tf.test.TestCase): def test(self): pass def test_grad(self): with self.test_session(): feature = np.random.random((8, 3, 512)).astype(np.float32) pts = np.random.random((8, 3, 2048)).astype(np.float32) pts = tf.constant(pts) features = tf.constant(feature) res = 8 out, inds, wgts = trilinear_devoxelize(pts, features, res) # print(out) # print(inds) # print(wgts) err = tf.test.compute_gradient_error(features, (8, 3, 512), out, (8, 3, 2048)) print(err) if __name__=='__main__': tf.test.main() ``` #### File: pc_compress/utils/pc_utils.py ```python import tensorflow as tf import scipy.sparse from sklearn.neighbors import KDTree import numpy as np import math import multiprocessing as multiproc from functools import partial tf.enable_eager_execution() def edges2A(edges, n_nodes, mode='P', sparse_mat_type=scipy.sparse.csr_matrix): ''' note: assume no (i,i)-like edge edges: <2xE> ''' edges = np.array(edges).astype(int) data_D = np.zeros(n_nodes, dtype=np.float32) for d in range(n_nodes): data_D[ d ] = len(np.where(edges[0] == d)[0]) # compute the number of node which pick node_i as their neighbor if mode.upper() == 'M': # 'M' means max pooling, which use the same graph matrix as the adjacency matrix data = np.ones(edges[0].shape[0], dtype=np.int32) elif mode.upper() == 'P': data = 1. / data_D[ edges[0] ] else: raise NotImplementedError("edges2A with unknown mode=" + mode) return sparse_mat_type((data, edges), shape=(n_nodes, n_nodes)) def build_graph_core(batch_data): try: points = batch_data # 2048*3 n_points = points.shape[0] edges, dis, cov, idx = knn_search(points) edges_z = edges2A(edges, n_points, mode='M', sparse_mat_type=scipy.sparse.csr_matrix) dis = np.asarray(dis)[:,1:] dis = np.reshape(dis, -1) return edges.T, edges_z, dis, cov, idx except KeyboardInterrupt: exit(-1) def build_graph(point_cloud): batch_size = point_cloud.shape[0] num_point = point_cloud.shape[0] point_dim = point_cloud.shape[1] # point_cloud = point_cloud.eval() batch_graph = [] Cov = np.zeros((batch_size, num_point, 9)) nn_idx = np.zeros((batch_size, num_point, 17)) # pool = multiproc.Pool(2) # 进程池,保证池中只有两个进程 # pool_func = partial(build_graph_core) # 先传一部分参数 # rets = pool.map(pool_func, point_cloud) # pool.close() rets = build_graph_core(point_cloud) count = 0 for ret in rets: point_graph, _, _, cov,graph_idx = ret batch_graph.append(point_graph) # Cov[count,:,:] = tf.convert_to_tensor(cov) Cov[count,:,:] = cov nn_idx[count,:,:] = graph_idx count += 1 del rets return batch_graph, Cov, nn_idx def knn_search(point_cloud, knn=16, metric='minkowski', symmetric=True): ''' Args: :param point_cloud: Nx3 :param knn: k return: ''' assert(knn > 0) #num_point = point_cloud.get_shape()[0].value num_point = point_cloud.shape[0] kdt = KDTree(point_cloud, leaf_size=30, metric=metric) dis, idx = kdt.query(point_cloud, k=knn+1, return_distance=True) cov = np.zeros((num_point, 9)) # Adjacency Matrix adjdict = dict() for i in range(num_point): nn_index = idx[i] # nearest point index # compute local covariance matrix 3*3=>1*9 cov[i] = np.cov(np.transpose(point_cloud[nn_index[1:]])).reshape(-1) for j in range(knn): if symmetric: adjdict[(i, nn_index[j+1])] = 1 adjdict[(nn_index[j+1], i)] = 1 else: adjdict[(i, nn_index[j + 1])] = 1 edges = np.array(list(adjdict.keys()), dtype=int).T return edges, dis, cov, idx def GridSamplingLayer(batch_size, meshgrid): ''' output Grid points as a NxD matrix params = { 'batch_size': 8 'meshgrid': [[-0.3,0.3,45],[-0.3,0.3,45]] } ''' ret = np.meshgrid(*[np.linspace(it[0], it[1], num=it[2]) for it in meshgrid]) ndim = len(meshgrid) grid = np.zeros((np.prod([it[2] for it in meshgrid]), ndim), dtype=np.float32) # MxD 2025x2 for d in range(ndim): grid[:, d] = np.reshape(ret[d], -1) g = np.repeat(grid[np.newaxis, ...], repeats=batch_size, axis=0) return g if __name__=='__main__': # meshgrid = [[-0.3,0.3,45],[-0.5,0.5,45]] # out = GridSamplingLayer(3, meshgrid) # print('meshgrid; ', out) pcd = np.random.random((2,2048,3)) batch_graph, Cov, idx = build_graph(pcd) print(batch_graph, Cov, idx.shape) # pcd2 = tf.Variable(tf.random_uniform([2,2048,1,3])) # idx = tf.to_int32(idx) # nn_point = tf.Variable(tf.zeros((2, 2048, 17,1 ,3))) # for i in range(2): # for j in range(2048): # nn_point[i,j].assign(tf.gather(pcd2[i],idx[i, j, :])) # print(tf.reduce_max(nn_point,axis=2)) # tf.enable_eager_execution() # pcd = np.random.random((2, 2048, 3)) # batch_graph, Cov, idx = build_graph(pcd) # pcd2 = np.random.randint(0, 100, (2, 2048, 64)) # idx = tf.to_int32(idx) # nn_point = np.zeros((2, 2048, 17, 64)) # nn_point[0:2, 0:2048] = tf.gather(pcd2[0:2], idx[0:2, 0:2048, :]).numpy() # print(tf.reduce_max(nn_point,axis=2)) # nn_point2 = np.zeros((2, 2048, 17, 64)) # for i in range(2): # for j in range(2048): # nn_point2[i:j] = tf.gather(pcd2[i],idx[i, j, :]).numpy() # print(tf.reduce_max(nn_point2,axis=2)) #print(tf.cast(idx[0][0][1],dtype=tf.int32)) #print(pcd[tf.cast(idx[0][0],dtype=tf.float32)]) #print(batch_graph) exit(-1) indices=[] values=[] for n,seq in enumerate(batch_graph[0]): indices.append(zip([n]*len(seq),range(len(seq)))) values.append(seq) index = batch_graph[0].nonzero() print(index) #print(tf.contrib.layers.dense_to_sparse(batch_graph[1])) nn_point = np.zeros((2048,16)) for i in range(3): idx = index[0] == i ele = index[1][idx] # ele = index[1][False] #print(ele) rand_idx = np.random.choice(len(ele), 16, replace=False) #print(rand_idx) ele = ele[rand_idx] nn_point[i, :] = ele #print(nn_point.shape) #print(nn_point) nn_point = nn_point.astype(np.int) pcd = pcd.astype(np.int) nn_point = pcd[0][nn_point] nn_point = np.expand_dims(nn_point,axis=0) print('---------------') print(nn_point) print(nn_point.shape) pcd = np.expand_dims(pcd,axis=2) print(pcd) print(pcd.shape) nn_point = np.concatenate(nn_point, pcd) nn_point = tf.convert_to_tensor(nn_point) nn_point = tf.reduce_max(nn_point,axis=1) nn_point = tf.maximum(nn_point,tf.squeeze(pcd,axis=0)) print(nn_point) #print(nn_point) #print(pcd[0][nn_point[0][15]]) np.maximum(pcd[0][nn_point],pcd) #ele = index[1][idx] ```
{ "source": "jingzbu/InverseVITraffic", "score": 2 }
#### File: InverseVITraffic/03_OD_matrix_estimation_journal18/Apr_weekend_02_OD_matrix_estimation_GLS.py ```python from util import * from util_data_storage_and_load import * import numpy as np from numpy.linalg import inv from scipy.sparse import csr_matrix, csc_matrix import json with open('../temp_files/new_route_dict_journal.json', 'r') as json_file: new_route_dict = json.load(json_file) number_of_routes = len(new_route_dict) link_label_dict = zload('../temp_files/link_label_dict_journal.pkz') number_of_links = len(link_label_dict) # implement GLS method to estimate OD demand matrix def GLS(x, A, L): """ x: sample matrix, each column is a link flow vector sample; number_of_links * K A: path-link incidence matrix P: logit route choice probability matrix L: dimension of xi ---------------- return: xi ---------------- """ K = np.size(x, 1) S = samp_cov(x) #print("rank of S is: \n") #print(matrix_rank(S)) #print("sizes of S are: \n") #print(np.size(S, 0)) #print(np.size(S, 1)) inv_S = inv(S).real A_t = A.transpose() Q_ = A_t * inv_S * A Q_ = Q_.real #Q = adj_PSD(Q_).real # Ensure Q to be PSD Q = Q_ #print("rank of Q is: \n") #print(matrix_rank(Q)) #print("sizes of Q are: \n") #print(np.size(Q, 0)) #print(np.size(Q, 1)) b = sum([A_t * inv_S * x[:, k] for k in range(K)]) # print(b[0]) # assert(1==2) model = Model("OD_matrix_estimation") xi = [] for l in range(L): xi.append(model.addVar(name='xi_' + str(l))) model.update() # Set objective: (K/2) xi' * Q * xi - b' * xi obj = 0 for i in range(L): for j in range(L): obj += (1.0 / 2) * K * xi[i] * Q[i, j] * xi[j] for l in range(L): obj += - b[l] * xi[l] model.setObjective(obj) # Add constraint: xi >= 0 for l in range(L): model.addConstr(xi[l] >= 0) #model.addConstr(xi[l] <= 5000) #fictitious_OD_list = zload('../temp_files/fictitious_OD_list') #for l in fictitious_OD_list: #model.addConstr(xi[l] == 0) model.update() #model.setParam('OutputFlag', False) model.optimize() xi_list = [] for v in model.getVars(): # print('%s %g' % (v.varName, v.x)) xi_list.append(v.x) # print('Obj: %g' % obj.getValue()) return xi_list # implement GLS method to estimate OD demand matrix def GLS_with_known_P(x, A, P, L): """ x: sample matrix, each column is a link flow vector sample; 24 * K A: path-link incidence matrix P: logit route choice probability matrix L: dimension of lam ---------------- return: lam ---------------- """ K = np.size(x, 1) S = samp_cov(x) #print("rank of S is: \n") #print(matrix_rank(S)) #print("sizes of S are: \n") #print(np.size(S, 0)) #print(np.size(S, 1)) inv_S = inv(S).real A_t = A.transpose() P_t = P.transpose() # PA' PA_t = P * A_t # AP_t AP_t = PA_t.transpose() Q_ = PA_t * inv_S * AP_t Q_ = Q_.real #Q = adj_PSD(Q_).real # Ensure Q to be PSD Q = Q_ b = sum([PA_t * inv_S * x[:, k] for k in range(K)]) model = Model("OD_matrix_estimation") lam = [] for l in range(L): lam.append(model.addVar(name='lam_' + str(l))) model.update() # Set objective: (K/2) lam' * Q * lam - b' * lam obj = 0 for i in range(L): for j in range(L): obj += (1.0 / 2) * K * lam[i] * Q[i, j] * lam[j] for l in range(L): obj += - b[l] * lam[l] model.setObjective(obj) # Add constraint: lam >= 0 for l in range(L): model.addConstr(lam[l] >= 0) model.update() model.setParam('OutputFlag', False) model.optimize() lam_list = [] for v in model.getVars(): # print('%s %g' % (v.varName, v.x)) lam_list.append(v.x) # print('Obj: %g' % obj.getValue()) return lam_list # load link_route incidence matrix A = zload('../temp_files/link_route_incidence_matrix_journal.pkz') A = A.todense() # load link counts data with open('../temp_files/link_day_minute_Apr_dict_journal_JSON.json', 'r') as json_file: link_day_minute_Apr_dict_JSON = json.load(json_file) weekend_Apr_list = [1, 7, 8, 14, 15, 21, 22, 28, 29] # weekend_Apr_list = [9, 10, 11, 12, 13] feasible_link_dict = zload('../temp_files/feasible_link_dict_journal.pkz') link_day_minute_Apr_list = [] for link_idx in [feasible_link_dict[idx] for idx in range(len(feasible_link_dict))]: for day in weekend_Apr_list: for minute_idx in range(120): key = 'link_' + str(link_idx) + '_' + str(day) link_day_minute_Apr_list.append(link_day_minute_Apr_dict_JSON[key] ['PM_flow_minute'][minute_idx]) x = np.matrix(link_day_minute_Apr_list) x = np.matrix.reshape(x, len(feasible_link_dict), 1080) # x = np.matrix.reshape(x, len(feasible_link_dict), 600) # print(np.size(x,0), np.size(x,1)) x = np.nan_to_num(x) # print(np.size(x,0), np.size(x,1)) # y = np.array(np.transpose(x)) # y = y[np.all(y != 0, axis=1)] # x = np.transpose(y) # x = np.matrix(x) # print(np.size(x,0), np.size(x,1)) # print(x[:,:2]) # print(np.size(A,0), np.size(A,1)) # load logit_route_choice_probability_matrix P = zload('../temp_files/OD_pair_route_incidence_journal.pkz') P = P.todense() L = np.size(P, 1) # dimension of xi assert(L == number_of_routes) # xi_list = GLS(x, A, number_of_routes) lam_list = GLS_with_known_P(x, A, P, number_of_routes) ``` #### File: InverseVITraffic/08_develop_new_OD_demand_estimator_MA_Dijkstra_uni_class_Apr_PM/Compute_Jacobian_MA.py ```python from util import * import json with open('./benchmark_data/MA_net.txt') as MA_flow: MA_flow_lines = MA_flow.readlines() MA_links = [] i = -8 for line in MA_flow_lines: i += 1 if i > 0: MA_links.append(line.split(' ')[1:3]) numLinks = i link_list_js = [str(int(MA_links[i][0])) + ',' + str(int(MA_links[i][1])) for \ i in range(len(MA_links))] link_list_pk = [str(int(MA_links[i][0])) + '->' + str(int(MA_links[i][1])) for \ i in range(len(MA_links))] numNodes = max([int(MA_links[i][1]) for i in range(numLinks)]) from collections import defaultdict node_neighbors_dict = defaultdict(list) for node in range(numNodes): for link in MA_links: if node == int(link[0]): node_neighbors_dict[str(node)].append(int(link[1])) with open('./benchmark_data/MA_trips.txt') as MA_trips: MA_trips_lines = MA_trips.readlines() numZones = int(MA_trips_lines[0].split(' ')[3]) od_pairs = [] for i in range(numZones+1)[1:]: for j in range(numZones+1)[1:]: if i != j: od_pairs.append([i, j]) numODpairs = len(od_pairs) # create O-D pair labels # create a dictionary mapping O-D pairs to labels import json OD_pair_label_dict = {} OD_pair_label_dict_ = {} label = 1 for i in range(numZones + 1)[1:]: for j in range(numZones + 1)[1:]: key = (i, j) OD_pair_label_dict[str(key)] = label OD_pair_label_dict_[str(label)] = key label += 1 with open('../temp_files/od_pair_label_dict_MA.json', 'w') as json_file: json.dump(OD_pair_label_dict, json_file) with open('../temp_files/od_pair_label_dict__MA.json', 'w') as json_file: json.dump(OD_pair_label_dict_, json_file) OD_pair_label_dict_refined = {} OD_pair_label_dict_refined_ = {} label = 1 for i in range(numZones + 1)[1:]: for j in range(numZones + 1)[1:]: if i != j: key = (i, j) OD_pair_label_dict_refined[str(key)] = label OD_pair_label_dict_refined_[str(label)] = key label += 1 with open('../temp_files/od_pair_label_dict_MA_refined.json', 'w') as json_file: json.dump(OD_pair_label_dict_refined, json_file) with open('../temp_files/od_pair_label_dict__MA_refined.json', 'w') as json_file: json.dump(OD_pair_label_dict_refined_, json_file) # create link labels # create a dictionary mapping directed links to labels link_label_dict = {} link_label_dict_ = {} for i in range(numLinks): link_label_dict[str(i)] = link_list_js[i] for i in range(numLinks): link_label_dict_[link_list_js[i]] = i with open('../temp_files/link_label_dict_MA.json', 'w') as json_file: json.dump(link_label_dict, json_file) with open('../temp_files/link_label_dict_MA_.json', 'w') as json_file: json.dump(link_label_dict_, json_file) # create link labels # create a dictionary mapping directed links to labels link_label_dict = {} link_label_dict_ = {} for i in range(numLinks): link_label_dict[str(i)] = link_list_pk[i] for i in range(numLinks): link_label_dict_[link_list_pk[i]] = i zdump(link_label_dict, '../temp_files/link_label_dict_MA_network.pkz') zdump(link_label_dict_, '../temp_files/link_label_dict_MA_network_.pkz') link_length_list = [] with open('./benchmark_data/MA_net.txt', 'r') as f: read_data = f.readlines() flag = 0 for row in read_data: if ';' in row: flag += 1 if flag > 1: link_length_list.append(float(row.split(' ')[4])) link_label_dict = zload('../temp_files/link_label_dict_MA_network.pkz') link_label_dict_ = zload('../temp_files/link_label_dict_MA_network_.pkz') import networkx as nx def jacobianSpiess(numNodes, numLinks, numODpairs, od_pairs, link_list_js, link_length_list): MA = nx.DiGraph() MA.add_nodes_from(range(numNodes+1)[1:]) MA_weighted_edges = [(int(link_list_js[i].split(',')[0]), int(link_list_js[i].split(',')[1]), \ link_length_list[i]) for i in range(len(link_list_js))] MA.add_weighted_edges_from(MA_weighted_edges) path = nx.all_pairs_dijkstra_path(MA) od_route_dict = {} for od in od_pairs: origi = od[0] desti = od[1] key = OD_pair_label_dict_refined[str((origi, desti))] route = str(path[origi][desti]).replace("[", "").replace(", ", "->").replace("]", "") od_route_dict[key] = route od_link_dict = {} for idx in range(len(od_route_dict)): od_link_list = [] od_node_list = od_route_dict[idx+1].split('->') for i in range(len(od_node_list)): if i < len(od_node_list) - 1: od_link_list.append(link_label_dict_[od_node_list[i] + '->' + od_node_list[i+1]]) od_link_dict[idx] = od_link_list jacob = np.zeros((numODpairs, numLinks)) for i in range(numODpairs): for j in range(numLinks): if j in od_link_dict[i]: jacob[i, j] = 1 return jacob jacob = jacobianSpiess(numNodes, numLinks, numODpairs, od_pairs, link_list_js, link_length_list) ``` #### File: InverseVITraffic/Python_files/anomaly_detection_stationary_actual.py ```python from __future__ import absolute_import, division __author__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" from util import * from util_ano_detec import * from load_dicts import * import pylab from pylab import * import json def detec_stati(N, n): """ N: number of states in the original chain n: num of samples per window """ traffic_data_with_anomaly = zload('../temp_files/traffic_data_with_anomaly_actual.pkz') traffic_data_ref = zload('../temp_files/traffic_data_ref_actual.pkz') tmc = '129+04292' month = 7 day_list = [2, 3, 5, 9, 10, 11, 12, 16, 17, 18] # July 4 is a holiday; we do not include Fridays traffic_data_ref_list = [] for hour in range(24): for minute in range(60): for day in day_list: key = str(tmc) + '_' + str(month) + '_' + str(day) + '_' + str(hour) + '_' + str(minute) traffic_data_ref_list.append(traffic_data_ref[key]) inf = min(traffic_data_ref_list) sup = max(traffic_data_ref_list) traffic_data_ref_list_quantized = [quantize(s, N, inf, sup) for s in traffic_data_ref_list] mapping_dict = {} for i in range(N): for j in range(N): mapping_dict[(i, j)] = i * N + j traffic_data_ref_list_quantized_trans = [mapping_dict[(traffic_data_ref_list_quantized[i], \ traffic_data_ref_list_quantized[i+1])] \ for i in range(len(traffic_data_ref_list_quantized)-1)] day = 19 traffic_data_with_anomaly_list = [] for hour in range(24): for minute in range(60): key = str(tmc) + '_' + str(month) + '_' + str(day) + '_' + str(hour) + '_' + str(minute) traffic_data_with_anomaly_list.append(traffic_data_with_anomaly[key]) traffic_data_with_anomaly_list_quantized = [quantize(s, N, inf, sup) for s in traffic_data_with_anomaly_list] traffic_data_with_anomaly_list_quantized_trans = \ [mapping_dict[(traffic_data_with_anomaly_list_quantized[i], \ traffic_data_with_anomaly_list_quantized[i+1])] \ for i in range(len(traffic_data_with_anomaly_list_quantized)-1)] mu_1 = mu_est(traffic_data_ref_list_quantized_trans, N) # normal PL mu_1 = mu_adjust(mu_1) # normal PL mu_01, mu1, mu_11, P1, G_11, H_11, U_11 = ChainGen_(mu_1) zdump([mu1, mu_11, P1, G_11, H_11, U_11], '../temp_files/Traffic_ano_detec_PLs_(%s_%s)_actual.pkz'%(N,n)) num_test_sample = 24 * 60 - n beta = 0.001 eta_wc = {} eta_Sanov = {} # Get thresholds for Hoeffding's test corresponding to sample length n key = str(n) + '_' + str(beta) G_list = [G_11] H_list = [H_11] U_list = [U_11] eta_1 = HoeffdingRuleMarkovRobust_(beta, G_list, H_list, U_list, n) eta_2 = - log(beta) / n eta_wc[key] = eta_1 eta_Sanov[key] = eta_2 zdump([eta_wc, eta_Sanov], '../temp_files/traffic_ano_detec_threshold_(%s_%s)_actual.pkz'%(N,n)) time_range = range(num_test_sample) eta_wc_list = [] eta_Sanov_list = [] for idx in time_range: eta_wc_list.append(np.array(eta_wc[key]).tolist()) eta_Sanov_list.append(np.array(eta_Sanov[key]).tolist()) test_sample = [] for idx in range(num_test_sample): test_sample.append(traffic_data_with_anomaly_list_quantized_trans[idx : (idx+n)]) KL = [] key = str(n) + '_' + str(beta) for idx in range(num_test_sample): KL.append(KL_est(test_sample[idx], mu_11)) zdump(KL, '../temp_files/traffic_ano_detec_KL_(%s_%s)_actual.pkz'%(N,n)) # Output the time instances reporting an anomaly alarm_instance_WC_list = [] for idx in range(num_test_sample): if KL[idx] > eta_wc_list[idx]: # print('(WC-stationary) The earliest time instance detecting the anomaly is: %s' %(idx + n)) # break alarm_instance_WC_list.append(idx + n) alarm_instance_Sanov_list = [] for idx in range(num_test_sample): if KL[idx] > eta_Sanov_list[idx]: # print('(Sanov-stationary) The earliest time instance detecting the anomaly is: %s' %(idx + n)) # break alarm_instance_Sanov_list.append(idx + n) alarm_instance_dict = {} alarm_instance_dict['WC'] = alarm_instance_WC_list alarm_instance_dict['Sanov'] = alarm_instance_Sanov_list with open('../temp_files/alarm_instance_dict_stationary_(%s_%s).json'%(N,n), 'w') as json_file: json.dump(alarm_instance_dict, json_file) plot_points(time_range, KL, eta_wc_list) plt.ylabel('divergence') plt.xlabel('time (min)') pylab.ylim(-0.01, max(KL)+0.1) pylab.xlim(0, 24 * 60) plt.savefig('../temp_files/detec_results_(%s_%s)_WC_actual.eps'%(N,n)) # plt.show() plot_points(time_range, KL, eta_Sanov_list) plt.ylabel('divergence') plt.xlabel('time (min)') pylab.ylim(-0.01, max(KL)+0.1) pylab.xlim(0, 24 * 60) plt.savefig('../temp_files/detec_results_(%s_%s)_Sanov_actual.eps'%(N,n)) # plt.show() ```
{ "source": "jingz/Flask-Boost", "score": 2 }
#### File: migrations/versions/20170110114140_fba2ed6ae503_create_init_user_management.py ```python revision = 'fba<PASSWORD>' down_revision = None from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('role', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=80), nullable=True), sa.Column('description', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('name') ) op.create_table('user', sa.Column('id', sa.Integer(), nullable=False), sa.Column('name', sa.String(length=255), nullable=True), sa.Column('email', sa.String(length=255), nullable=True), sa.Column('avatar', sa.String(length=200), nullable=True), sa.Column('password', sa.String(length=255), nullable=True), sa.Column('active', sa.Boolean(), nullable=True), sa.Column('confirm_at', sa.DateTime(), nullable=True), sa.Column('is_admin', sa.Boolean(), nullable=True), sa.Column('created_at', sa.DateTime(), nullable=True), sa.Column('auth_provider_id', sa.String(length=255), nullable=True), sa.Column('auth_provider_user_id', sa.String(length=255), nullable=True), sa.Column('auth_provider_profile_pic', sa.String(length=512), nullable=True), sa.Column('auth_provider_access_token', sa.String(length=255), nullable=True), sa.Column('auth_provider_secret', sa.String(length=255), nullable=True), sa.PrimaryKeyConstraint('id'), sa.UniqueConstraint('email'), sa.UniqueConstraint('name') ) op.create_table('users_roles', sa.Column('id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=True), sa.Column('role_id', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['role_id'], ['role.id'], ), sa.ForeignKeyConstraint(['user_id'], ['user.id'], ), sa.PrimaryKeyConstraint('id') ) def downgrade(): op.drop_table('users_roles') op.drop_table('user') op.drop_table('role') ``` #### File: application/extensions/json_validator.py ```python from functools import wraps from flask import request import jsonschema as js from .errors import error_response def validate(schema): def decorator(func): @wraps(func) def wrapper(*args, **kwargs): v = js.Draft4Validator(schema) errors = list() for error in sorted(v.iter_errors(request.json), key=str): # TODO more messages format errors.append(error.message) if errors: return error_response(errors) return func(*args, **kwargs) return wrapper return decorator # Schema Example # http://json-schema.org/example1.html ``` #### File: application/extensions/searchable_mixin.py ```python from sqlalchemy import sql import re try: basestring except NameError: basestring = str # Enhance Front-End-Like search API for SQLAlchemy Model class SearchableMixin(object): @classmethod def search(cls, di, sel=[]): """ SPECS SQL Predication ===== =========== = eq != not_eq LIKE like NOT LIKE not_like < lt > gt <= lte >= gte in in not_in not_in example given "di" is dict argument : { 'name_like': 'jing' } generate where clause : name like '%jing%' User.search({'name_like': 'sarunyoo'}) will return User's db session return raw session scoped by the class """ filter_clause, filter_params = cls._build_search_clause(di) sort_ = sql.text(cls._build_sort_clause(di)) filter_clause = sql.text(filter_clause) if len(sel) == 0: return cls.query.filter(filter_clause).\ params(**filter_params).order_by(sort_) else: return cls.query.session.query(*sel).filter(filter_clause).\ params(**filter_params).order_by(sort_) SEARCH_OPT_REGEXP = r'(((?<!not)_eq)|(_not_eq)|((?<!not)_like)|(_not_like)|((?<!not)_contains)|(_not_contains)|(_lt)|(_gt)|(_lte)|(_gte)|((?<!not)_in)|(_not_in))$' SEARCH_OPT_MAPPER = { 'eq': '=', 'not_eq': '<>', 'like': 'like', 'contains': 'like', 'not_like': 'not like', 'not_contains': 'not like', 'lt': '<', 'gt': '>', 'gte': '>=', 'lte': '<=', 'in': 'in', 'not_in': 'not in', } SEARCH_OPT_TEXT_MAPPER = { 'eq': 'equal to', 'not_eq': 'not equal to', 'like': 'contains', 'contains': 'contains', 'not_like': 'not contains', 'not_contains': 'not contains', 'lt': 'less than', 'gt': 'greater than', 'gte': 'greater than and equal to', 'lte': 'less than and equal to', 'in': 'in any', 'not_in': 'not in any', } @classmethod def explain_search_clause(cls, di, transform_key=True): text = [] for k, v in di.items(): col, opt = cls._grep_search_opt(k) if col and opt: read_pattern = u"{col} {text_opt} {v}" to = cls.SEARCH_OPT_TEXT_MAPPER.get(opt) _col = col if transform_key: _col = _col.title().replace('_', ' ') text.append(read_pattern.format(col=_col, text_opt=to, v=v)) return u" and ".join(text) @classmethod def _build_search_clause(cls, di): filter_clause = [] filter_params = {} for k, v in di.items(): col, opt = cls._grep_search_opt(k) if col and opt: __where = "%s.{col} {opt} :{column_param}" % cls.__tablename__ sql_opt = cls.SEARCH_OPT_MAPPER.get(opt) if opt in ('like', 'not_like', 'contains', 'not_contains'): # wrap value with '%' if isinstance(v, basestring): if re.match('^%.*', v) or re.match('.*%$', v): pass else: v = u"%{0}%".format(v) if opt == 'in' or opt == 'not_in': # in is a special case to # serialize value and key into where statement in_params_series = [] # :column_name_key_1 ... n = len(v) i = 1 while n != 0: _k = ":%s_%d" % (k, i) in_params_series.append(_k) # set binding params filter_params.setdefault(_k[1:], v[i-1]) i += 1 n -= 1 __where = u"{col} {opt} (%s)" % ", ".join(in_params_series) filter_text = __where.format(col=col, opt=sql_opt) filter_clause.append(filter_text) continue if sql_opt is not None: filter_text = __where.format(col=col, opt=sql_opt, column_param=k) filter_clause.append(filter_text) filter_params.setdefault(k, v) else: continue else: continue filter_clause = " and ".join(filter_clause) return (filter_clause, filter_params) @classmethod def _grep_search_opt(cls, text): match = re.search(cls.SEARCH_OPT_REGEXP, text); if match is not None: col, _ = text.split(match.group(0)) # client_code, '' opt = match.group(0)[1:] # remove a leading _ # match but the matched column is not in mapper if col not in [__col.name for __col in cls.__mapper__.c]: col = opt = None # could be just column name elif text in [__col.name for __col in cls.__mapper__.c]: col = text opt = 'eq' else: col = opt = None return (col, opt) @classmethod def _build_sort_clause(cls, di): orders = [] for k, v in di.items(): col, direction, priority = cls._grep_sort_opt(k, v) if col is not None: orders.append({ 'column': col, 'direction': direction, 'priority': priority}) # sort order by priority if len(orders) > 0: proc = lambda k: k['priority'] order_pattern = u"%s.{column} {direction}" % cls.__tablename__ return ", ".join([order_pattern.format(**d) for d in sorted(orders, key=proc)]) else: return "" SORT_KEY_REGEXP = r'^sort_by_(.*)' SORT_VALUE_REGEXP = r'(asc|desc)_?((?<=)\d+)?' # asc_1 @classmethod def _grep_sort_opt(cls, key_text, value_text): match_key = re.search(cls.SORT_KEY_REGEXP, key_text) match_val = re.search(cls.SORT_VALUE_REGEXP, value_text, re.IGNORECASE) if match_key is not None and match_val is not None: col = match_key.group(1) # client_code collate = False if col.startswith('$'): collate = True col = col[1:] direction, priority = match_val.group(1), match_val.group(2) if direction is None: direction = "ASC" if collate: direction = ("COLLATE NOCASE %s" % direction) if priority is None: priority = 99 else: priority = int(priority) # match but the matched column is not in mapper if col not in [__col.name for __col in cls.__mapper__.c]: col = direction = priority = None else: col = direction = priority = None return (col, direction, priority) ``` #### File: application/utils/admin.py ```python import datetime, re from flask import g, abort, request from functools import wraps def convert_params_for_search_format(model): params = request.args.to_dict() # remove page if have params.pop('page', None) search_params = params.copy() for k in params: if not params[k]: search_params.pop(k) for k, col_def in model.columns().items(): value = search_params.get(k) if not value: continue ptype = col_def.get('python_type') if ptype is datetime.datetime or \ ptype is datetime.date: dt_btw = value.split('to') if len(dt_btw) == 2: search_params.pop(k) search_params[k+'_gte'] = dt_btw[0].strip() search_params[k+'_lte'] = dt_btw[1].strip() return search_params, params rexp_sort_by = re.compile("^sort_by") def make_filter_params(): params = request.args.to_dict() params.pop('page', None) filter_params = params.copy() # for k in params: # # remove empty value # if not params[k]: filter_params.pop(k) # # remove sort_by keys # if rexp_sort_by.match(k): # sort_factors = filter_params.get(k).split('_') # direction = sort_factors[0] # if len(sort_factors) == 2: # priority = sort_factors[1] # else: # priority = '1' # if direction == 'asc': # filter_params[k] = 'desc_' + priority # else: # filter_params[k] = 'asc_' + priority # current_app.logger.debug(filter_params) return filter_params def admin_required(func): @wraps(func) def wrapper(*args, **kwargs): if g.user and g.user.is_admin: return func(*args, **kwargs) else: return abort(403) return wrapper def pagination(q, page, page_size=20): total = q.count() page = int(page) offset = page_size * (page - 1) q = q.offset(offset).limit(page_size) has_next = (page * page_size) < total has_prev = page > 1 end = offset + page_size if has_next else total return q, dict( page=page, start=offset + 1, end=end, has_next=has_next, next_page=(page + 1 if has_next else None), has_prev=has_prev, prev_page=(page - 1 if has_prev else None), per_page=page_size, total=total ) ```
{ "source": "JingZhang918/AI-for-trading", "score": 2 }
#### File: .Trash-0/files/helper.py ```python import scipy.stats from colour import Color import numpy as np import pandas as pd import os import tempfile import zipfile import glob import quandl import plotly as py import plotly.graph_objs as go import plotly.offline as offline_py from sklearn.preprocessing import Normalizer offline_py.init_notebook_mode(connected=True) _color_scheme = { 'background_label': '#9dbdd5', 'low_value': '#B6B2CF', 'high_value': '#2D3ECF', 'y_axis_2_text_color': 'grey', 'shadow': 'rgba(0, 0, 0, 0.75)'} def _generate_stock_trace(df): return go.Candlestick( x=df['date'], open=df['adj_open'], high=df['adj_high'], low=df['adj_low'], close=df['adj_close'], showlegend=False) def _generate_config(): return {'showLink': False, 'displayModeBar': False, 'showAxisRangeEntryBoxes': True} def _generate_buy_annotations(df, signal_column): return [{ 'x': row['date'], 'y': row['adj_close'], 'text': 'Long', 'bgcolor': _color_scheme['background_label'], 'ayref': 'y', 'ax': 0, 'ay': 20} for _, row in df[df[signal_column] == 1].iterrows()] def _generate_sell_annotations(df, signal_column): return [{ 'x': row['date'], 'y': row['adj_close'], 'text': 'Short', 'bgcolor': _color_scheme['background_label'], 'ayref': 'y', 'ax': 0, 'ay': 160} for _, row in df[df[signal_column] == -1].iterrows()] def download_quandl_dataset(database, dataset, save_path, columns, tickers, start_date, end_date): """ Download a dataset from Quandl and save it to `save_path`. Filter by columns, tickers, and date :param database: The Quandl database to download from :param dataset: The dataset to download :param save_path: The path to save the dataset :param columns: The columns to save :param tickers: The tickers to save :param start_date: The rows to save that are older than this date :param end_date: The rows to save that are younger than this date """ with tempfile.TemporaryDirectory() as tmp_dir: tmp_wiki_file = tmp_dir + 'tmp.zip' quandl.bulkdownload(database, dataset_code=dataset, filename=tmp_wiki_file) # Unzip downloaded data zip_ref = zipfile.ZipFile(tmp_wiki_file, 'r') zip_ref.extractall(tmp_dir) zip_ref.close() # Check if the zip file only contains one csv file # We're assuming that Quandl will always give us the data in a single csv file. # If it's different, we want to throw an error. csv_files = glob.glob(os.path.join(tmp_dir, '*.csv')) assert len(csv_files) == 1,\ 'Bulk download of Quandl Wiki data failed. Wrong number of csv files found. Found {} file(s).'\ .format(len(csv_files)) tmp_csv_file = csv_files[0] names = quandl.get_table('{}/{}'.format(database, dataset), ticker='EMPTY_RESULTS_TICKER').columns.values tmp_df = pd.read_csv(tmp_csv_file, names=names) tmp_df['date'] = pd.to_datetime(tmp_df['date']) # Remove unused data and save tmp_df = tmp_df[tmp_df['date'].isin(pd.date_range(start_date, end_date))] # Filter unused dates tmp_df = tmp_df[tmp_df['ticker'].isin(tickers)] # Filter unused tickers tmp_df.to_csv(save_path, columns=columns, index=False) # Filter unused columns and save def _generate_second_tetration_stock(stock_symbol, dates): """ Generate stock that follows the second tetration curve :param stock_symbol: Stock Symbol :param dates: Dates for ticker :return: Stock data """ n_stock_columns = 5 linear_line = np.linspace(1, 5, len(dates)) all_noise = ((np.random.rand(n_stock_columns, len(dates)) - 0.5) * 0.01) sector_stock = pd.DataFrame({ 'ticker': stock_symbol, 'date': dates, 'base_line': np.power(linear_line, linear_line)}) sector_stock['base_line'] = sector_stock['base_line'] + all_noise[0]*sector_stock['base_line'] sector_stock['adj_open'] = sector_stock['base_line'] + all_noise[1]*sector_stock['base_line'] sector_stock['adj_close'] = sector_stock['base_line'] + all_noise[2]*sector_stock['base_line'] sector_stock['adj_high'] = sector_stock['base_line'] + all_noise[3]*sector_stock['base_line'] sector_stock['adj_low'] = sector_stock['base_line'] + all_noise[4]*sector_stock['base_line'] sector_stock['adj_high'] = sector_stock[['adj_high', 'adj_open', 'adj_close']].max(axis=1) sector_stock['adj_low'] = sector_stock[['adj_low', 'adj_open', 'adj_close']].min(axis=1) return sector_stock.drop(columns='base_line') def generate_tb_sector(dates): """ Generate TB sector of stocks :param dates: Dates that stocks should have market data on :return: TB sector stocks """ symbol_length = 6 stock_names = [ 'kaufmanniana', 'clusiana', 'greigii', 'sylvestris', 'turkestanica', 'linifolia', 'gesneriana', 'humilis', 'tarda', 'saxatilis', 'dasystemon', 'orphanidea', 'kolpakowskiana', 'praestans', 'sprengeri', 'bakeri', 'pulchella', 'biflora', 'schrenkii', 'armena', 'vvedenskyi', 'agenensis', 'altaica', 'urumiensis'] return [ _generate_second_tetration_stock(stock_name[:symbol_length].upper(), dates) for stock_name in stock_names] def get_signal_return_pval(signal_return): """ Calculate p-value from signal returns :param signal_return: Signal returns :return: P-value """ signal_return_mean = signal_return.mean() s_hat_5 = np.std(signal_return, ddof=1) / np.sqrt(len(signal_return)) t_5 = signal_return_mean / s_hat_5 return scipy.stats.t.sf(np.abs(t_5), len(signal_return) - 1) def plot_stock(df, title): config = _generate_config() layout = go.Layout(title=title) stock_trace = _generate_stock_trace(df) offline_py.iplot({'data': [stock_trace], 'layout': layout}, config=config) def plot_high_low(df, title): config = _generate_config() layout = go.Layout(title=title) stock_trace = _generate_stock_trace(df) high_trace = go.Scatter( x=df['date'], y=df['lookback_high'], name='Column lookback_high', line={'color': _color_scheme['high_value']}) low_trace = go.Scatter( x=df['date'], y=df['lookback_low'], name='Column lookback_low', line={'color': _color_scheme['low_value']}) offline_py.iplot({'data': [stock_trace, high_trace, low_trace], 'layout': layout}, config=config) def plot_signal(df, title, signal_column): config = _generate_config() buy_annotations = _generate_buy_annotations(df, signal_column) sell_annotations = _generate_sell_annotations(df, signal_column) layout = go.Layout( title=title, annotations=buy_annotations + sell_annotations) stock_trace = _generate_stock_trace(df) offline_py.iplot({'data': [stock_trace], 'layout': layout}, config=config) def plot_lookahead_prices(df, columns, title): config = _generate_config() layout = go.Layout(title=title) colors = Color(_color_scheme['low_value']).range_to(Color(_color_scheme['high_value']), len(columns)) traces = [_generate_stock_trace(df)] for column, color in zip(columns, colors): traces.append( go.Scatter( x=df['date'], y=df[column], name='Column {}'.format(column), line={'color': str(color)})) offline_py.iplot({'data': traces, 'layout': layout}, config=config) def plot_price_returns(df, columns, title): config = _generate_config() layout = go.Layout( title=title, yaxis2={ 'title': 'Returns', 'titlefont': {'color': _color_scheme['y_axis_2_text_color']}, 'tickfont': {'color': _color_scheme['y_axis_2_text_color']}, 'overlaying': 'y', 'side': 'right'}) colors = Color(_color_scheme['low_value']).range_to(Color(_color_scheme['high_value']), len(columns)) traces = [_generate_stock_trace(df)] for column, color in zip(columns, colors): traces.append( go.Scatter( x=df['date'], y=df[column], name='Column {}'.format(column), line={'color': str(color)}, yaxis='y2')) offline_py.iplot({'data': traces, 'layout': layout}, config=config) def plot_signal_returns(df, signal_return_columns, signal_columns, titles): config = _generate_config() layout = go.Layout( yaxis2={ 'title': 'Signal Returns', 'titlefont': {'color': _color_scheme['y_axis_2_text_color']}, 'tickfont': {'color': _color_scheme['y_axis_2_text_color']}, 'overlaying': 'y', 'side': 'right'}) colors = Color(_color_scheme['low_value']).range_to(Color(_color_scheme['high_value']), len(signal_return_columns)) stock_trace = _generate_stock_trace(df) for signal_return_column, signal_column, color, title in zip(signal_return_columns, signal_columns, colors, titles): non_zero_signals = df[df[signal_return_column] != 0] signal_return_trace = go.Scatter( x=non_zero_signals['date'], y=non_zero_signals[signal_return_column], name='Column {}'.format(signal_return_column), line={'color': str(color)}, yaxis='y2') buy_annotations = _generate_buy_annotations(df, signal_column) sell_annotations = _generate_sell_annotations(df, signal_column) layout['title'] = title layout['annotations'] = buy_annotations + sell_annotations offline_py.iplot({'data': [stock_trace, signal_return_trace], 'layout': layout}, config=config) def plot_series_histograms(series_list, title, subplot_titles): assert len(series_list) == len(subplot_titles) all_values = pd.concat(series_list) x_range = [all_values.min(), all_values.max()] y_range = [0, 1500] config = _generate_config() colors = Color(_color_scheme['low_value']).range_to(Color(_color_scheme['high_value']), len(series_list)) fig = py.tools.make_subplots(rows=1, cols=len(series_list), subplot_titles=subplot_titles, print_grid=False) fig['layout'].update(title=title, showlegend=False) for series_i, (series, color) in enumerate(zip(series_list, colors), 1): filtered_series = series[series != 0].dropna() trace = go.Histogram(x=filtered_series, marker={'color': str(color)}) fig.append_trace(trace, 1, series_i) fig['layout']['xaxis{}'.format(series_i)].update(range=x_range) fig['layout']['yaxis{}'.format(series_i)].update(range=y_range) offline_py.iplot(fig, config=config) def plot_series_to_normal_histograms(series_list, title, subplot_titles): assert len(series_list) == len(subplot_titles) all_values = pd.concat(series_list) x_range = [all_values.min(), all_values.max()] y_range = [0, 1500] config = _generate_config() fig = py.tools.make_subplots(rows=1, cols=len(series_list), subplot_titles=subplot_titles, print_grid=False) fig['layout'].update(title=title) for series_i, series in enumerate(series_list, 1): filtered_series = series[series != 0].dropna() filtered_series_trace = go.Histogram( x=filtered_series, marker={'color': _color_scheme['low_value']}, name='Signal Return Distribution', showlegend=False) normal_trace = go.Histogram( x=np.random.normal(np.mean(filtered_series), np.std(filtered_series), len(filtered_series)), marker={'color': _color_scheme['shadow']}, name='Normal Distribution', showlegend=False) fig.append_trace(filtered_series_trace, 1, series_i) fig.append_trace(normal_trace, 1, series_i) fig['layout']['xaxis{}'.format(series_i)].update(range=x_range) fig['layout']['yaxis{}'.format(series_i)].update(range=y_range) # Show legened fig['data'][0]['showlegend'] = True fig['data'][1]['showlegend'] = True offline_py.iplot(fig, config=config) ``` #### File: .Trash-0/files/project_helper.py ```python import helper import scipy.stats from colour import Color import numpy as np import pandas as pd import plotly as py import plotly.graph_objs as go import plotly.offline as offline_py offline_py.init_notebook_mode(connected=True) def _generate_stock_trace(prices): return go.Scatter( name='Index', x=prices.index, y=prices, line={'color': helper.color_scheme['main_line']}) def _generate_buy_annotations(prices, signal): return [{ 'x': index, 'y': price, 'text': 'Long', 'bgcolor': helper.color_scheme['background_label'], 'ayref': 'y', 'ax': 0, 'ay': 20} for index, price in prices[signal == 1].iteritems()] def _generate_sell_annotations(prices, signal): return [{ 'x': index, 'y': price, 'text': 'Short', 'bgcolor': helper.color_scheme['background_label'], 'ayref': 'y', 'ax': 0, 'ay': 160} for index, price in prices[signal == -1].iteritems()] def _generate_second_tetration_stock(stock_symbol, dates): """ Generate stock that follows the second tetration curve :param stock_symbol: Stock Symbol :param dates: Dates for ticker :return: Stock data """ n_stock_columns = 5 linear_line = np.linspace(1, 5, len(dates)) all_noise = ((np.random.rand(n_stock_columns, len(dates)) - 0.5) * 0.01) sector_stock = pd.DataFrame({ 'ticker': stock_symbol, 'date': dates, 'base_line': np.power(linear_line, linear_line)}) sector_stock['base_line'] = sector_stock['base_line'] + all_noise[0]*sector_stock['base_line'] sector_stock['adj_open'] = sector_stock['base_line'] + all_noise[1]*sector_stock['base_line'] sector_stock['adj_close'] = sector_stock['base_line'] + all_noise[2]*sector_stock['base_line'] sector_stock['adj_high'] = sector_stock['base_line'] + all_noise[3]*sector_stock['base_line'] sector_stock['adj_low'] = sector_stock['base_line'] + all_noise[4]*sector_stock['base_line'] sector_stock['adj_high'] = sector_stock[['adj_high', 'adj_open', 'adj_close']].max(axis=1) sector_stock['adj_low'] = sector_stock[['adj_low', 'adj_open', 'adj_close']].min(axis=1) return sector_stock.drop(columns='base_line') def generate_tb_sector(dates): """ Generate TB sector of stocks :param dates: Dates that stocks should have market data on :return: TB sector stocks """ symbol_length = 6 stock_names = [ 'kaufmanniana', 'clusiana', 'greigii', 'sylvestris', 'turkestanica', 'linifolia', 'gesneriana', 'humilis', 'tarda', 'saxatilis', 'dasystemon', 'orphanidea', 'kolpakowskiana', 'praestans', 'sprengeri', 'bakeri', 'pulchella', 'biflora', 'schrenkii', 'armena', 'vvedenskyi', 'agenensis', 'altaica', 'urumiensis'] return [ _generate_second_tetration_stock(stock_name[:symbol_length].upper(), dates) for stock_name in stock_names] def get_signal_return_pval(signal_return): """ Calculate p-value from signal returns :param signal_return: Signal returns :return: P-value """ signal_return_series = signal_return.stack() signal_return_mean = signal_return_series.mean() s_hat_5 = np.std(signal_return_series, ddof=1) / np.sqrt(len(signal_return_series)) t_5 = signal_return_mean / s_hat_5 return scipy.stats.t.sf(np.abs(t_5), len(signal_return_series) - 1) def plot_stock(prices, title): config = helper.generate_config() layout = go.Layout(title=title) stock_trace = _generate_stock_trace(prices) offline_py.iplot({'data': [stock_trace], 'layout': layout}, config=config) def plot_high_low(prices, lookback_high, lookback_low, title): config = helper.generate_config() layout = go.Layout(title=title) stock_trace = _generate_stock_trace(prices) high_trace = go.Scatter( x=lookback_high.index, y=lookback_high, name='Column lookback_high', line={'color': helper.color_scheme['major_line']}) low_trace = go.Scatter( x=lookback_low.index, y=lookback_low, name='Column lookback_low', line={'color': helper.color_scheme['minor_line']}) offline_py.iplot({'data': [stock_trace, high_trace, low_trace], 'layout': layout}, config=config) def plot_signal(price, signal, title): config = helper.generate_config() buy_annotations = _generate_buy_annotations(price, signal) sell_annotations = _generate_sell_annotations(price, signal) layout = go.Layout( title=title, annotations=buy_annotations + sell_annotations) stock_trace = _generate_stock_trace(price) offline_py.iplot({'data': [stock_trace], 'layout': layout}, config=config) def plot_lookahead_prices(prices, lookahead_price_list, title): config = helper.generate_config() layout = go.Layout(title=title) colors = Color(helper.color_scheme['low_value'])\ .range_to(Color(helper.color_scheme['high_value']), len(lookahead_price_list)) traces = [_generate_stock_trace(prices)] for (lookahead_prices, lookahead_days), color in zip(lookahead_price_list, colors): traces.append( go.Scatter( x=lookahead_prices.index, y=lookahead_prices, name='{} Day Lookahead'.format(lookahead_days), line={'color': str(color)})) offline_py.iplot({'data': traces, 'layout': layout}, config=config) def plot_price_returns(prices, lookahead_returns_list, title): config = helper.generate_config() layout = go.Layout( title=title, yaxis2={ 'title': 'Returns', 'titlefont': {'color': helper.color_scheme['y_axis_2_text_color']}, 'tickfont': {'color': helper.color_scheme['y_axis_2_text_color']}, 'overlaying': 'y', 'side': 'right'}) colors = Color(helper.color_scheme['low_value'])\ .range_to(Color(helper.color_scheme['high_value']), len(lookahead_returns_list)) traces = [_generate_stock_trace(prices)] for (lookahead_returns, lookahead_days), color in zip(lookahead_returns_list, colors): traces.append( go.Scatter( x=lookahead_returns.index, y=lookahead_returns, name='{} Day Lookahead'.format(lookahead_days), line={'color': str(color)}, yaxis='y2')) offline_py.iplot({'data': traces, 'layout': layout}, config=config) def plot_signal_returns(prices, signal_return_list, titles): config = helper.generate_config() layout = go.Layout( yaxis2={ 'title': 'Signal Returns', 'titlefont': {'color': helper.color_scheme['y_axis_2_text_color']}, 'tickfont': {'color': helper.color_scheme['y_axis_2_text_color']}, 'overlaying': 'y', 'side': 'right'}) colors = Color(helper.color_scheme['low_value'])\ .range_to(Color(helper.color_scheme['high_value']), len(signal_return_list)) stock_trace = _generate_stock_trace(prices) for (signal_return, signal, lookahead_days), color, title in zip(signal_return_list, colors, titles): non_zero_signals = signal_return[signal_return != 0] signal_return_trace = go.Scatter( x=non_zero_signals.index, y=non_zero_signals, name='{} Day Lookahead'.format(lookahead_days), line={'color': str(color)}, yaxis='y2') buy_annotations = _generate_buy_annotations(prices, signal) sell_annotations = _generate_sell_annotations(prices, signal) layout['title'] = title layout['annotations'] = buy_annotations + sell_annotations offline_py.iplot({'data': [stock_trace, signal_return_trace], 'layout': layout}, config=config) def plot_signal_histograms(signal_list, title, subplot_titles): assert len(signal_list) == len(subplot_titles) signal_series_list = [signal.stack() for signal in signal_list] all_values = pd.concat(signal_series_list) x_range = [all_values.min(), all_values.max()] y_range = [0, 1500] config = helper.generate_config() colors = Color(helper.color_scheme['low_value']).range_to(Color(helper.color_scheme['high_value']), len(signal_series_list)) fig = py.tools.make_subplots(rows=1, cols=len(signal_series_list), subplot_titles=subplot_titles, print_grid=False) fig['layout'].update(title=title, showlegend=False) for series_i, (signal_series, color) in enumerate(zip(signal_series_list, colors), 1): filtered_series = signal_series[signal_series != 0].dropna() trace = go.Histogram(x=filtered_series, marker={'color': str(color)}) fig.append_trace(trace, 1, series_i) fig['layout']['xaxis{}'.format(series_i)].update(range=x_range) fig['layout']['yaxis{}'.format(series_i)].update(range=y_range) offline_py.iplot(fig, config=config) def plot_signal_to_normal_histograms(signal_list, title, subplot_titles): assert len(signal_list) == len(subplot_titles) signal_series_list = [signal.stack() for signal in signal_list] all_values = pd.concat(signal_series_list) x_range = [all_values.min(), all_values.max()] y_range = [0, 1500] config = helper.generate_config() fig = py.tools.make_subplots(rows=1, cols=len(signal_series_list), subplot_titles=subplot_titles, print_grid=False) fig['layout'].update(title=title) for series_i, signal_series in enumerate(signal_series_list, 1): filtered_series = signal_series[signal_series != 0].dropna() filtered_series_trace = go.Histogram( x=filtered_series, marker={'color': helper.color_scheme['low_value']}, name='Signal Return Distribution', showlegend=False) normal_trace = go.Histogram( x=np.random.normal(np.mean(filtered_series), np.std(filtered_series), len(filtered_series)), marker={'color': helper.color_scheme['shadow']}, name='Normal Distribution', showlegend=False) fig.append_trace(filtered_series_trace, 1, series_i) fig.append_trace(normal_trace, 1, series_i) fig['layout']['xaxis{}'.format(series_i)].update(range=x_range) fig['layout']['yaxis{}'.format(series_i)].update(range=y_range) # Show legened fig['data'][0]['showlegend'] = True fig['data'][1]['showlegend'] = True offline_py.iplot(fig, config=config) ``` #### File: .Trash-0/files/helper 4.py ```python import pandas as pd import os import tempfile import zipfile import glob from tqdm import tqdm import math import requests def download_quandl_dataset(quandl_api_key, database, dataset, save_path, columns, tickers, start_date, end_date): """ Download a dataset from Quandl and save it to `save_path`. Filter by columns, tickers, and date :param quandl_api_key: The Quandl API key :param database: The Quandl database to download from :param dataset: The dataset to download :param save_path: The path to save the dataset :param columns: The columns to save :param tickers: The tickers to save :param start_date: The rows to save that are older than this date :param end_date: The rows to save that are younger than this date """ scrape_url = 'https://www.quandl.com/api/v3/datatables/{}/{}?qopts.export=true&api_key={}'\ .format(database, dataset, quandl_api_key) scrape_request = requests.get(scrape_url) bulk_download_url = scrape_request.json()['datatable_bulk_download']['file']['link'] with tempfile.TemporaryDirectory() as tmp_dir: tmp_wiki_file = tmp_dir + 'tmp.zip' bulk_download_request = requests.get(bulk_download_url, stream=True, cookies=scrape_request.cookies) total_size = int(bulk_download_request.headers.get('content-length', 0)); block_size = 1024 * 1024 with open(tmp_wiki_file, 'wb') as f: for data in tqdm( bulk_download_request.iter_content(block_size), total=math.ceil(total_size // block_size), unit='MB', unit_scale=True, desc='Downloading Data'): f.write(data) with tqdm(total=5, desc='Transforming Data', unit='Action') as pbar: # Unzip downloaded data zip_ref = zipfile.ZipFile(tmp_wiki_file, 'r') zip_ref.extractall(tmp_dir) zip_ref.close() pbar.update(1) # Check if the zip file only contains one csv file # We're assuming that Quandl will always give us the data in a single csv file. # If it's different, we want to throw an error. csv_files = glob.glob(os.path.join(tmp_dir, '*.csv')) assert len(csv_files) == 1,\ 'Bulk download of Quandl Wiki data failed. Wrong number of csv files found. Found {} file(s).'\ .format(len(csv_files)) tmp_csv_file = csv_files[0] tmp_df = pd.read_csv(tmp_csv_file) pbar.update(1) tmp_df['date'] = pd.to_datetime(tmp_df['date']) pbar.update(1) # Remove unused data and save tmp_df = tmp_df[tmp_df['date'].isin(pd.date_range(start_date, end_date))] # Filter unused dates tmp_df = tmp_df[tmp_df['ticker'].isin(tickers)] # Filter unused tickers pbar.update(1) tmp_df.to_csv(save_path, columns=columns, index=False) # Filter unused columns and save pbar.update(1) ``` #### File: .Trash-0/files/project_helper.py ```python import numpy as np from IPython.core.display import display, HTML import plotly.graph_objs as go from plotly import tools import plotly.offline as offline_py offline_py.init_notebook_mode(connected=True) _color_scheme = { 'index': '#B6B2CF', 'etf': '#2D3ECF', 'tracking_error': '#6F91DE', 'df_header': 'silver', 'df_value': 'white', 'df_line': 'silver', 'heatmap_colorscale': [(0, '#6F91DE'), (0.5, 'grey'), (1, 'red')]} def _generate_config(): return {'showLink': False, 'displayModeBar': False, 'showAxisRangeEntryBoxes': True} def _generate_heatmap_trace(df, x_label, y_label, z_label, scale_min, scale_max): x_hover_text_values = np.tile(df.columns, (len(df.index), 1)) y_hover_text_values = np.tile(df.index, (len(df.columns), 1)) padding_len = np.full(3, max(len(x_label), len(y_label), len(z_label))) -\ [len(x_label), len(y_label), len(z_label)] # Additional padding added to ticker and date to align hover_text = y_label + ': ' + padding_len[1] * ' ' + y_hover_text_values.T + '<br>' + \ x_label + ': ' + padding_len[0] * ' ' + x_hover_text_values + '<br>' + \ z_label + ': ' + padding_len[2] * ' ' + df.applymap('{:.3f}'.format) return go.Heatmap( x=df.columns, y=df.index, z=df.values, zauto=False, zmax=scale_max, zmin=scale_min, colorscale=_color_scheme['heatmap_colorscale'], text=hover_text.values, hoverinfo='text') def _sanatize_string(string): return ''.join([i for i in string if i.isalpha()]) def large_dollar_volume_stocks(df, price_column, volume_column, top_percent): """ Get the stocks with the largest dollar volume stocks. Parameters ---------- df : DataFrame Stock prices with dates and ticker symbols price_column : str The column with the price data in `df` volume_column : str The column with the volume in `df` top_percent : float The top x percent to consider largest in the stock universe Returns ------- large_dollar_volume_stocks_symbols : List of str List of of large dollar volume stock symbols """ dollar_traded = df.groupby('ticker').apply(lambda row: sum(row[volume_column] * row[price_column])) return dollar_traded.sort_values().tail(int(len(dollar_traded) * top_percent)).index.values.tolist() def plot_benchmark_returns(index_data, etf_data, title): config = _generate_config() index_trace = go.Scatter( name='Index', x=index_data.index, y=index_data, line={'color': _color_scheme['index']}) etf_trace = go.Scatter( name='ETF', x=etf_data.index, y=etf_data, line={'color': _color_scheme['etf']}) layout = go.Layout( title=title, xaxis={'title': 'Date'}, yaxis={'title': 'Cumulative Returns', 'range': [0, 3]}) fig = go.Figure(data=[index_trace, etf_trace], layout=layout) offline_py.iplot(fig, config=config) def plot_tracking_error(tracking_error, title): config = _generate_config() trace = go.Scatter( x=tracking_error.index, y=tracking_error, line={'color': _color_scheme['tracking_error']}) layout = go.Layout( title=title, xaxis={'title': 'Date'}, yaxis={'title': 'Error', 'range': [-1.5, 1.5]}) fig = go.Figure(data=[trace], layout=layout) offline_py.iplot(fig, config=config) def print_dataframe(df, n_rows=10, n_columns=3): missing_val_str = '...' config = _generate_config() formatted_df = df.iloc[:n_rows, :n_columns] formatted_df = formatted_df.applymap('{:.3f}'.format) if len(df.columns) > n_columns: formatted_df[missing_val_str] = [missing_val_str]*len(formatted_df.index) if len(df.index) > n_rows: formatted_df.loc[missing_val_str] = [missing_val_str]*len(formatted_df.columns) trace = go.Table( type='table', columnwidth=[1, 3], header={ 'values': [''] + list(formatted_df.columns.values), 'line': {'color': _color_scheme['df_line']}, 'fill': {'color': _color_scheme['df_header']}, 'font': {'size': 13}}, cells={ 'values': formatted_df.reset_index().values.T, 'line': {'color': _color_scheme['df_line']}, 'fill': {'color': [_color_scheme['df_header'], _color_scheme['df_value']]}, 'font': {'size': 13}}) offline_py.iplot([trace], config=config) def plot_weights(weights, title): config = _generate_config() graph_path = 'graphs/{}.html'.format(_sanatize_string(title)) trace = _generate_heatmap_trace(weights, 'Date', 'Ticker', 'Weight', 0.0, 0.2) layout = go.Layout( title=title, xaxis={'title': 'Dates'}, yaxis={'title': 'Tickers'}) fig = go.Figure(data=[trace], layout=layout) offline_py.plot(fig, config=config, filename=graph_path, auto_open=False) display(HTML('The graph for {} is too large. You can view it <a href="{}" target="_blank">here</a>.' .format(title, graph_path))) def plot_returns(returns, title): config = _generate_config() graph_path = 'graphs/{}.html'.format(_sanatize_string(title)) trace = _generate_heatmap_trace(returns, 'Date', 'Ticker', 'Weight', -0.3, 0.3) layout = go.Layout( title=title, xaxis={'title': 'Dates'}, yaxis={'title': 'Tickers'}) fig = go.Figure(data=[trace], layout=layout) offline_py.plot(fig, config=config, filename=graph_path, auto_open=False) display(HTML('The graph for {} is too large. You can view it <a href="{}" target="_blank">here</a>.' .format(title, graph_path))) def plot_covariance(xty, xtx): config = _generate_config() xty_trace = go.Bar( x=xty.index, y=xty.values) xtx_trace = _generate_heatmap_trace(xtx, 'Ticker 2', 'Ticker 1', 'Covariance', 0.0, 1.0) fig = tools.make_subplots(rows=1, cols=2, subplot_titles=['XTY', 'XTX'], print_grid=False) fig.append_trace(xty_trace, 1, 1) fig.append_trace(xtx_trace, 1, 2) fig['layout']['xaxis1'].update(title='Tickers') fig['layout']['yaxis1'].update(title='Covariance') fig['layout']['xaxis2'].update(title='Tickers') fig['layout']['yaxis2'].update(title='Tickers') offline_py.iplot(fig, config=config) ``` #### File: .Trash-0/files/project_tests 4.py ```python from collections import OrderedDict import pandas as pd import numpy as np from datetime import date, timedelta pd.options.display.float_format = '{:.8f}'.format def _generate_random_tickers(n_tickers=None): min_ticker_len = 3 max_ticker_len = 5 tickers = [] if not n_tickers: n_tickers = np.random.randint(8, 14) ticker_symbol_random = np.random.randint(ord('A'), ord('Z')+1, (n_tickers, max_ticker_len)) ticker_symbol_lengths = np.random.randint(min_ticker_len, max_ticker_len, n_tickers) for ticker_symbol_rand, ticker_symbol_length in zip(ticker_symbol_random, ticker_symbol_lengths): ticker_symbol = ''.join([chr(c_id) for c_id in ticker_symbol_rand[:ticker_symbol_length]]) tickers.append(ticker_symbol) return tickers def _generate_random_dates(n_days=None): if not n_days: n_days = np.random.randint(14, 20) start_year = np.random.randint(1999, 2017) start_month = np.random.randint(1, 12) start_day = np.random.randint(1, 29) start_date = date(start_year, start_month, start_day) dates = [] for i in range(n_days): dates.append(start_date + timedelta(days=i)) return dates def _generate_random_dfs(n_df, index, columns): all_df_data = np.random.random((n_df, len(index), len(columns))) return [pd.DataFrame(df_data, index, columns) for df_data in all_df_data] def _generate_output_error_msg(fn_name, fn_inputs, fn_outputs, fn_expected_outputs): formatted_inputs = [] formatted_outputs = [] formatted_expected_outputs = [] for input_name, input_value in fn_inputs.items(): formatted_outputs.append('INPUT {}:\n{}\n'.format( input_name, str(input_value))) for output_name, output_value in fn_outputs.items(): formatted_outputs.append('OUTPUT {}:\n{}\n'.format( output_name, str(output_value))) for expected_output_name, expected_output_value in fn_expected_outputs.items(): formatted_expected_outputs.append('EXPECTED OUTPUT FOR {}:\n{}\n'.format( expected_output_name, str(expected_output_value))) return 'Wrong value for {}.\n' \ '{}\n' \ '{}\n' \ '{}' \ .format( fn_name, '\n'.join(formatted_inputs), '\n'.join(formatted_outputs), '\n'.join(formatted_expected_outputs)) def _assert_output(fn, fn_inputs, fn_expected_outputs): assert type(fn_expected_outputs) == OrderedDict fn_outputs = OrderedDict() fn_raw_out = fn(**fn_inputs) if len(fn_expected_outputs) == 1: fn_outputs[list(fn_expected_outputs)[0]] = fn_raw_out elif len(fn_expected_outputs) > 1: assert type(fn_raw_out) == tuple,\ 'Expecting function to return tuple, got type {}'.format(type(fn_raw_out)) assert len(fn_raw_out) == len(fn_expected_outputs),\ 'Expected {} outputs in tuple, only found {} outputs'.format(len(fn_expected_outputs), len(fn_raw_out)) for key_i, output_key in enumerate(fn_expected_outputs.keys()): fn_outputs[output_key] = fn_raw_out[key_i] err_message = _generate_output_error_msg( fn.__name__, fn_inputs, fn_outputs, fn_expected_outputs) for fn_out, (out_name, expected_out) in zip(fn_outputs.values(), fn_expected_outputs.items()): assert isinstance(fn_out, type(expected_out)),\ 'Wrong type for output {}. Got {}, expected {}'.format(out_name, type(fn_out), type(expected_out)) if hasattr(expected_out, 'shape'): assert fn_out.shape == expected_out.shape, \ 'Wrong shape for output {}. Got {}, expected {}'.format(out_name, fn_out.shape, expected_out.shape) if type(expected_out) == pd.DataFrame: assert set(fn_out.columns) == set(expected_out.columns), \ 'Incorrect columns for output {}\n' \ 'COLUMNS: {}\n' \ 'EXPECTED COLUMNS: {}'.format(out_name, sorted(fn_out.columns), sorted(expected_out.columns)) if type(expected_out) in {pd.DataFrame, pd.Series}: assert set(fn_out.index) == set(expected_out.index), \ 'Incorrect indices for output {}\n' \ 'INDICES: {}\n' \ 'EXPECTED INDICES: {}'.format(out_name, sorted(fn_out.index), sorted(expected_out.index)) out_is_close = np.isclose(fn_out, expected_out, equal_nan=True) if not isinstance(out_is_close, bool): out_is_close = out_is_close.all() assert out_is_close, err_message def project_test(func): def func_wrapper(*args): result = func(*args) print('Tests Passed') return result return func_wrapper @project_test def test_generate_weighted_returns(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, -0.0355852, -0.00461228, 0.00435667], [np.nan, -0.0114943, -0.00106678, 0.016446], [np.nan, -0.00326797, 0.00721311, 0.00537109]], tickers, dates), 'weights': pd.DataFrame( [ [0.0045101, 0.00761073, 0.0050893, 0.00593444], [0.0980038, 0.0780279, 0.0742108, 0.0854871], [0.0121753, 0.00943077, 0.0093783, 0.00886865]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'weighted_returns', pd.DataFrame( [ [np.nan, -0.000270829, -2.34733e-05, 2.58544e-05], [np.nan, -0.000896876, -7.91666e-05, 0.00140592], [np.nan, -3.08195e-05, 6.76467e-05, 4.76343e-05]], tickers, dates))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_generate_returns(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'close': pd.DataFrame( [ [35.4411, 34.1799, 34.0223, 34.1705], [92.1131, 91.0543, 90.9572, 92.453], [57.9708, 57.7814, 58.1982, 58.5107]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'returns', pd.DataFrame( [ [np.nan, -0.0355858, -0.0046109, 0.00435597], [np.nan, -0.0114946, -0.0010664, 0.0164451], [np.nan, -0.00326716, 0.00721339, 0.00536958]], tickers, dates))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_generate_dollar_volume_weights(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'close': pd.DataFrame( [ [35.4411, 34.1799, 34.0223, 34.1705], [92.1131, 91.0543, 90.9572, 92.453], [57.9708, 57.7814, 58.1982, 58.5107]], tickers, dates), 'volume': pd.DataFrame( [ [9.83683e+06, 1.78072e+07, 8.82982e+06, 1.06742e+07], [8.22427e+07, 6.85315e+07, 4.81601e+07, 5.68313e+07], [1.62348e+07, 1.30527e+07, 9.51201e+06, 9.31601e+06]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'dollar_volume_weights', pd.DataFrame( [ [0.0393246, 0.0800543, 0.0573905, 0.0591726], [0.854516, 0.820747, 0.836853, 0.852398], [0.106159, 0.0991989, 0.105756, 0.0884298]], tickers, dates))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_calculate_cumulative_returns(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, -0.000270829, -2.34733e-05, 2.58544e-05], [np.nan, -0.000896873, -7.91666e-05, 0.00140592], [np.nan, -3.08195e-05, 6.76468e-05, 4.76344e-05]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'cumulative_returns', pd.Series( [np.nan, 0.99880148, 0.99876653, 1.00024411], dates))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_calculate_dividend_weights(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'ex_dividend': pd.DataFrame( [ [0.0, 0.0, 0.1, 0.0], [0.0, 0.0, 0.0, 0.2], [0.0, 0.0, 0.0, 0.3]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'dividend_weights', pd.DataFrame( [ [np.nan, np.nan, 1.0, 0.16666666], [np.nan, np.nan, 0.0, 0.33333333], [np.nan, np.nan, 0.0, 0.5]], tickers, dates))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_get_covariance(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(4) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, -0.0355852, -0.00461228, 0.00435667], [np.nan, -0.0114943, -0.00106678, 0.016446], [np.nan, -0.00326797, 0.00721311, 0.00537109]], tickers, dates), 'weighted_index_returns': pd.DataFrame( [ [np.nan, -0.000270829, -2.34733e-05, 2.58544e-05], [np.nan, -0.000896873, -7.91666e-05, 0.00140592], [np.nan, -3.08195e-05, 6.76468e-05, 4.76344e-05]], tickers, dates)} fn_correct_outputs = OrderedDict([ ( 'xtx', np.array( [ [0.00130656, 0.000485597, 0.000106423], [0.000485597, 0.000403728, 0.000118201], [0.000106423, 0.000118201, 9.15572e-05]])), ( 'xty', np.array([4.92563e-05, 3.81439e-05, 1.16104e-05]))]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_rebalance_portfolio(fn): tickers = _generate_random_tickers(3) dates = _generate_random_dates(11) fn_inputs = { 'returns': pd.DataFrame( [ [np.nan, -0.0355852, -0.00461228, 0.00435667, -0.0396183, -0.0121951, 0.00685871, -0.0027248, 0.0251973,-0.026947, -0.0465612], [np.nan, -0.0114943, -0.00106678, 0.016446, -0.0104013, -0.0040344, -0.00557701, 0.000754961, 0.00678952, -0.00974095, -0.0234569], [np.nan, -0.00326797, 0.00721311, 0.00537109, -0.00501862, 0.0143183, 0.00272698, 0.019037, 0.000627943, -0.0163163, -0.00334928]], tickers, dates), 'weighted_index_returns': pd.DataFrame( [ [np.nan, -0.000270829, -2.34733e-05, 2.58544e-05, -0.000291808, -8.56712e-05, 5.10542e-05, -1.63907e-05, 0.000127297, -0.000126851, -0.000330526], [np.nan, -0.000896873, -7.91666e-05, 0.00140592, -0.000653316, -0.000246364, -0.000395049, 4.47478e-05, 0.000389117, -0.000449979, -0.00254699], [np.nan, -3.08195e-05, 6.76468e-05, 4.76344e-05, -4.24937e-05, 0.000136497, 3.14274e-05, 0.000226068, 8.55098e-06, -0.000161634, -3.06379e-05]], tickers, dates), 'shift_size': 3, 'chunk_size': 2} fn_correct_outputs = OrderedDict([ ( 'all_rebalance_weights', [ np.array([0.00012205033508460705, 0.0003019915743383353, 0.999575958090577]), np.array([1.305709815242165e-05, 8.112998801084706e-06, 0.9999788299030465]), np.array([0.3917481750142896, 0.5607687848565064, 0.0474830401292039])])]) _assert_output(fn, fn_inputs, fn_correct_outputs) @project_test def test_get_rebalance_cost(fn): fn_inputs = { 'all_rebalance_weights': [ np.array([0.00012205033508460705, 0.0003019915743383353, 0.999575958090577]), np.array([1.305709815242165e-05, 8.112998801084706e-06, 0.9999788299030465]), np.array([0.3917481750142896, 0.5607687848565064, 0.0474830401292039])], 'shift_size': 3, 'rebalance_count': 11} fn_correct_outputs = OrderedDict([('rebalancing_cost', 0.51976290)]) _assert_output(fn, fn_inputs, fn_correct_outputs) ```
{ "source": "JingZhang918/master_thesis", "score": 3 }
#### File: master_thesis/DRL_Automated_Trading/data_process.py ```python import pandas as pd import config import numpy as np def get_revised_yearly_return(df_drl) -> pd.DataFrame: # to deal companies with incomplete yearly data df_drl = df_drl.set_index(["date"]) temp1 = \ df_drl.groupby(["ticker", df_drl.index.year]).apply(lambda x: pd.Series({ "count": x.asset.count(), "first": x.asset[0], "last": x.asset[-1], } )) temp1["days"] = [config.yearly_trading_days[y] for y in temp1.index.get_level_values(1)] temp1["factor"] = temp1["days"].div(temp1["count"]) temp1["revised_return"] = (temp1["last"].div(temp1["first"])) ** temp1["factor"] temp1["revised_first"] = temp1["last"].div(temp1["revised_return"]) temp2 = temp1.groupby(level=["date"])['revised_first', 'last'].apply(np.sum) yearly_asset_return = temp2["last"].div(temp2["revised_first"]) - 1 yearly_reward_return = (df_drl.groupby([df_drl.index.year]).reward.apply(np.sum)).div(temp2["revised_first"]) return yearly_asset_return, yearly_reward_return def get_revised_monthly_return(df_drl) -> pd.DataFrame: # to deal companies with incomplete yearly data df_drl = df_drl.set_index(["date"]) temp1 = \ df_drl.groupby(["ticker", df_drl.index.year, df_drl.index.month]).apply(lambda x: pd.Series({ "count": x.asset.count(), "first": x.asset[0], "last": x.asset[-1], } )) temp1.index.names = ["ticker", "year", "month"] temp1["days"] = [config.monthly_trading_days[y][m] for y, m in zip(temp1.index.get_level_values(1), temp1.index.get_level_values(2))] temp1["factor"] = temp1["days"].div(temp1["count"]) temp1["revised_return"] = (temp1["last"].div(temp1["first"])) ** temp1["factor"] temp1["revised_first"] = temp1["last"].div(temp1["revised_return"]) temp2 = temp1.groupby(level=["year", "month"])['revised_first', 'last'].apply(np.sum) monthly_asset_return = temp2["last"].div(temp2["revised_first"]) - 1 monthly_reward_return = (df_drl.groupby([df_drl.index.year, df_drl.index.month]).reward.apply(np.sum)).div(temp2["revised_first"]) return monthly_asset_return, monthly_reward_return ```
{ "source": "JingzhaoZhang/transformerxl-noise", "score": 2 }
#### File: transformerxl-noise/pytorch/train.py ```python import argparse import time import math import os, sys import itertools import warnings def warn_with_traceback(message, category, filename, lineno, file=None, line=None): log = file if hasattr(file,'write') else sys.stderr traceback.print_stack(file=log) log.write(warnings.formatwarning(message, category, filename, lineno, line)) warnings.showwarning = warn_with_traceback import numpy as np import errno import torch import torch.nn as nn import torch.optim as optim from data_utils import get_lm_corpus from mem_transformer import MemTransformerLM from utils.exp_utils import * from utils.linalg import * from utils.data_parallel import BalancedDataParallel import warnings from tqdm import tqdm # warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description='PyTorch Transformer Language Model') parser.add_argument('--data', type=str, default='../data/wikitext-103', help='location of the data corpus') parser.add_argument('--dataset', type=str, default='wt103', choices=['wt103', 'lm1b', 'enwik8', 'text8'], help='dataset name') parser.add_argument('--n_layer', type=int, default=12, help='number of total layers') parser.add_argument('--n_head', type=int, default=10, help='number of heads') parser.add_argument('--d_head', type=int, default=50, help='head dimension') parser.add_argument('--d_embed', type=int, default=-1, help='embedding dimension') parser.add_argument('--d_model', type=int, default=500, help='model dimension') parser.add_argument('--d_inner', type=int, default=1000, help='inner dimension in FF') parser.add_argument('--dropout', type=float, default=0.0, help='global dropout rate') parser.add_argument('--dropatt', type=float, default=0.0, help='attention probability dropout rate') parser.add_argument('--init', default='normal', type=str, help='parameter initializer to use.') parser.add_argument('--emb_init', default='normal', type=str, help='parameter initializer to use.') parser.add_argument('--init_range', type=float, default=0.1, help='parameters initialized by U(-init_range, init_range)') parser.add_argument('--emb_init_range', type=float, default=0.01, help='parameters initialized by U(-init_range, init_range)') parser.add_argument('--init_std', type=float, default=0.02, help='parameters initialized by N(0, init_std)') parser.add_argument('--proj_init_std', type=float, default=0.01, help='parameters initialized by N(0, init_std)') parser.add_argument('--optim', default='adam', type=str, choices=['adam', 'sgd', 'adagrad'], help='optimizer to use.') parser.add_argument('--lr', type=float, default=0.00025, help='initial learning rate (0.00025|5 for adam|sgd)') parser.add_argument('--mom', type=float, default=0.9, help='momentum for sgd') parser.add_argument('--scheduler', default='cosine', type=str, choices=['cosine', 'inv_sqrt', 'dev_perf', 'constant'], help='lr scheduler to use.') parser.add_argument('--warmup_step', type=int, default=0, help='upper epoch limit') parser.add_argument('--decay_rate', type=float, default=0.5, help='decay factor when ReduceLROnPlateau is used') parser.add_argument('--lr_min', type=float, default=0.0, help='minimum learning rate during annealing') parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping') parser.add_argument('--clip_nonemb', action='store_true', help='only clip the gradient of non-embedding params') parser.add_argument('--max_step', type=int, default=100000, help='upper epoch limit') parser.add_argument('--batch_size', type=int, default=60, help='batch size') parser.add_argument('--batch_chunk', type=int, default=1, help='split batch into chunks to save memory') parser.add_argument('--tgt_len', type=int, default=70, help='number of tokens to predict') parser.add_argument('--eval_tgt_len', type=int, default=50, help='number of tokens to predict for evaluation') parser.add_argument('--ext_len', type=int, default=0, help='length of the extended context') parser.add_argument('--mem_len', type=int, default=0, help='length of the retained previous heads') parser.add_argument('--not_tied', action='store_true', help='do not tie the word embedding and softmax weights') parser.add_argument('--seed', type=int, default=1111, help='random seed') parser.add_argument('--cuda', action='store_true', help='use CUDA') parser.add_argument('--adaptive', action='store_true', help='use adaptive softmax') parser.add_argument('--div_val', type=int, default=1, help='divident value for adapative input and softmax') parser.add_argument('--pre_lnorm', action='store_true', help='apply LayerNorm to the input instead of the output') parser.add_argument('--varlen', action='store_true', help='use variable length') parser.add_argument('--multi_gpu', action='store_true', help='use multiple GPU') parser.add_argument('--log-interval', type=int, default=50, help='report interval') parser.add_argument('--eval-interval', type=int, default=4000, help='evaluation interval') parser.add_argument('--work_dir', default='LM-TFM', type=str, help='experiment directory.') parser.add_argument('--restart', action='store_true', help='restart training from the saved checkpoint') parser.add_argument('--restart_dir', type=str, default='', help='restart dir') parser.add_argument('--debug', action='store_true', help='run in debug mode (do not create exp dir)') parser.add_argument('--same_length', action='store_true', help='use the same attn length for all tokens') parser.add_argument('--attn_type', type=int, default=0, help='attention type. 0 for ours, 1 for Shaw et al,' '2 for Vaswani et al, 3 for Al Rfou et al.') parser.add_argument('--clamp_len', type=int, default=-1, help='use the same pos embeddings after clamp_len') parser.add_argument('--eta_min', type=float, default=0.0, help='min learning rate for cosine scheduler') parser.add_argument('--gpu0_bsz', type=int, default=-1, help='batch size on gpu 0') parser.add_argument('--max_eval_steps', type=int, default=-1, help='max eval steps') parser.add_argument('--sample_softmax', type=int, default=-1, help='number of samples in sampled softmax') parser.add_argument('--patience', type=int, default=0, help='patience') parser.add_argument('--finetune_v2', action='store_true', help='finetune v2') parser.add_argument('--finetune_v3', action='store_true', help='finetune v3') parser.add_argument('--fp16', action='store_true', help='Run in pseudo-fp16 mode (fp16 storage fp32 math).') parser.add_argument('--static-loss-scale', type=float, default=1, help='Static loss scale, positive power of 2 values can ' 'improve fp16 convergence.') parser.add_argument('--dynamic-loss-scale', action='store_true', help='Use dynamic loss scaling. If supplied, this argument' ' supersedes --static-loss-scale.') parser.add_argument('-save_noise', action='store_true') parser.add_argument('-noise_per_iter', type=int, default=500) parser.add_argument('--save-dir', type=str, default='default', help='path to save the final model') parser.add_argument('-noise_size', type=int, default=800) parser.add_argument('-save_sharpness', action='store_true') parser.add_argument('-sharpness_per_iter', type=int, default=500) parser.add_argument('-sharpness_batches', type=int, default=20) args = parser.parse_args() args.tied = not args.not_tied if args.d_embed < 0: args.d_embed = args.d_model assert args.ext_len >= 0, 'extended context length must be non-negative' assert args.batch_size % args.batch_chunk == 0 args.work_dir = '{}-{}'.format(args.work_dir, args.dataset) args.work_dir = os.path.join(args.work_dir, time.strftime('%Y%m%d-%H%M%S')) logging = create_exp_dir(args.work_dir, scripts_to_save=['train.py', 'mem_transformer.py'], debug=args.debug) # Set the random seed manually for reproducibility. np.random.seed(args.seed) torch.manual_seed(args.seed) if torch.cuda.is_available(): if not args.cuda: print('WARNING: You have a CUDA device, so you should probably run with --cuda') else: torch.cuda.manual_seed_all(args.seed) # Validate `--fp16` option if args.fp16: if not args.cuda: print('WARNING: --fp16 requires --cuda, ignoring --fp16 option') args.fp16 = False else: try: from apex.fp16_utils import FP16_Optimizer except: print('WARNING: apex not installed, ignoring --fp16 option') args.fp16 = False device = torch.device('cuda' if args.cuda else 'cpu') ############################################################################### # Load data ############################################################################### corpus = get_lm_corpus(args.data, args.dataset) ntokens = len(corpus.vocab) args.n_token = ntokens eval_batch_size = 10 tr_iter = corpus.get_iterator('train', args.batch_size, args.tgt_len, device=device, ext_len=args.ext_len) va_iter = corpus.get_iterator('valid', eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len) te_iter = corpus.get_iterator('test', eval_batch_size, args.eval_tgt_len, device=device, ext_len=args.ext_len) # adaptive softmax / embedding cutoffs, tie_projs = [], [False] if args.adaptive: assert args.dataset in ['wt103', 'lm1b'] if args.dataset == 'wt103': cutoffs = [20000, 40000, 200000] tie_projs += [True] * len(cutoffs) elif args.dataset == 'lm1b': cutoffs = [60000, 100000, 640000] tie_projs += [False] * len(cutoffs) ############################################################################### # Build the model ############################################################################### def init_weight(weight): if args.init == 'uniform': nn.init.uniform_(weight, -args.init_range, args.init_range) elif args.init == 'normal': nn.init.normal_(weight, 0.0, args.init_std) def init_bias(bias): nn.init.constant_(bias, 0.0) def weights_init(m): classname = m.__class__.__name__ if classname.find('Linear') != -1: if hasattr(m, 'weight') and m.weight is not None: init_weight(m.weight) if hasattr(m, 'bias') and m.bias is not None: init_bias(m.bias) elif classname.find('AdaptiveEmbedding') != -1: if hasattr(m, 'emb_projs'): for i in range(len(m.emb_projs)): if m.emb_projs[i] is not None: nn.init.normal_(m.emb_projs[i], 0.0, args.proj_init_std) elif classname.find('Embedding') != -1: if hasattr(m, 'weight'): init_weight(m.weight) elif classname.find('ProjectedAdaptiveLogSoftmax') != -1: if hasattr(m, 'cluster_weight') and m.cluster_weight is not None: init_weight(m.cluster_weight) if hasattr(m, 'cluster_bias') and m.cluster_bias is not None: init_bias(m.cluster_bias) if hasattr(m, 'out_projs'): for i in range(len(m.out_projs)): if m.out_projs[i] is not None: nn.init.normal_(m.out_projs[i], 0.0, args.proj_init_std) elif classname.find('LayerNorm') != -1: if hasattr(m, 'weight'): nn.init.normal_(m.weight, 1.0, args.init_std) if hasattr(m, 'bias') and m.bias is not None: init_bias(m.bias) elif classname.find('TransformerLM') != -1: if hasattr(m, 'r_emb'): init_weight(m.r_emb) if hasattr(m, 'r_w_bias'): init_weight(m.r_w_bias) if hasattr(m, 'r_r_bias'): init_weight(m.r_r_bias) if hasattr(m, 'r_bias'): init_bias(m.r_bias) def update_dropout(m): classname = m.__class__.__name__ if classname.find('Dropout') != -1: if hasattr(m, 'p'): m.p = args.dropout def update_dropatt(m): if hasattr(m, 'dropatt'): m.dropatt.p = args.dropatt if args.restart: with open(os.path.join(args.restart_dir, 'model.pt'), 'rb') as f: model = torch.load(f) if not args.fp16: model = model.float() model.apply(update_dropout) model.apply(update_dropatt) else: model = MemTransformerLM(ntokens, args.n_layer, args.n_head, args.d_model, args.d_head, args.d_inner, args.dropout, args.dropatt, tie_weight=args.tied, d_embed=args.d_embed, div_val=args.div_val, tie_projs=tie_projs, pre_lnorm=args.pre_lnorm, tgt_len=args.tgt_len, ext_len=args.ext_len, mem_len=args.mem_len, cutoffs=cutoffs, same_length=args.same_length, attn_type=args.attn_type, clamp_len=args.clamp_len, sample_softmax=args.sample_softmax) model.apply(weights_init) model.word_emb.apply(weights_init) # ensure embedding init is not overridden by out_layer in case of weight sharing args.n_all_param = sum([p.nelement() for p in model.parameters()]) args.n_nonemb_param = sum([p.nelement() for p in model.layers.parameters()]) if args.fp16: model = model.half() if args.multi_gpu: model = model.to(device) if args.gpu0_bsz >= 0: para_model = BalancedDataParallel(args.gpu0_bsz // args.batch_chunk, model, dim=1).to(device) else: para_model = nn.DataParallel(model, dim=1).to(device) else: para_model = model.to(device) #### optimizer if args.optim.lower() == 'sgd': if args.sample_softmax > 0: dense_params, sparse_params = [], [] for param in model.parameters(): if param.size() == model.word_emb.weight.size(): sparse_params.append(param) else: dense_params.append(param) optimizer_sparse = optim.SGD(sparse_params, lr=args.lr * 2) optimizer = optim.SGD(dense_params, lr=args.lr, momentum=args.mom) else: optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.mom) elif args.optim.lower() == 'adam': if args.sample_softmax > 0: dense_params, sparse_params = [], [] for param in model.parameters(): if param.size() == model.word_emb.weight.size(): sparse_params.append(param) else: dense_params.append(param) optimizer_sparse = optim.SparseAdam(sparse_params, lr=args.lr) optimizer = optim.Adam(dense_params, lr=args.lr) else: optimizer = optim.Adam(model.parameters(), lr=args.lr) elif args.optim.lower() == 'adagrad': optimizer = optim.Adagrad(model.parameters(), lr=args.lr) #### scheduler if args.scheduler == 'cosine': # here we do not set eta_min to lr_min to be backward compatible # because in previous versions eta_min is default to 0 # rather than the default value of lr_min 1e-6 scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, args.max_step, eta_min=args.eta_min) # should use eta_min arg if args.sample_softmax > 0: scheduler_sparse = optim.lr_scheduler.CosineAnnealingLR(optimizer_sparse, args.max_step, eta_min=args.eta_min) # should use eta_min arg elif args.scheduler == 'inv_sqrt': # originally used for Transformer (in Attention is all you need) def lr_lambda(step): # return a multiplier instead of a learning rate if step == 0 and args.warmup_step == 0: return 1. else: return 1. / (step ** 0.5) if step > args.warmup_step \ else step / (args.warmup_step ** 1.5) scheduler = optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lr_lambda) elif args.scheduler == 'dev_perf': scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min) if args.sample_softmax > 0: scheduler_sparse = optim.lr_scheduler.ReduceLROnPlateau(optimizer_sparse, factor=args.decay_rate, patience=args.patience, min_lr=args.lr_min) elif args.scheduler == 'constant': pass if args.cuda and args.fp16: # If args.dynamic_loss_scale is False, static_loss_scale will be used. # If args.dynamic_loss_scale is True, it will take precedence over static_loss_scale. optimizer = FP16_Optimizer(optimizer, static_loss_scale = args.static_loss_scale, dynamic_loss_scale = args.dynamic_loss_scale, dynamic_loss_args = {'init_scale': 2 ** 16}) if args.restart: if os.path.exists(os.path.join(args.restart_dir, 'optimizer.pt')): with open(os.path.join(args.restart_dir, 'optimizer.pt'), 'rb') as f: opt_state_dict = torch.load(f) optimizer.load_state_dict(opt_state_dict) else: print('Optimizer was not saved. Start from scratch.') logging('=' * 100) for k, v in args.__dict__.items(): logging(' - {} : {}'.format(k, v)) logging('=' * 100) logging('#params = {}'.format(args.n_all_param)) logging('#non emb params = {}'.format(args.n_nonemb_param)) ############################################################################### # Training code ############################################################################### def evaluate(eval_iter): # Turn on evaluation mode which disables dropout. model.eval() # If the model does not use memory at all, make the ext_len longer. # Otherwise, make the mem_len longer and keep the ext_len the same. if args.mem_len == 0: model.reset_length(args.eval_tgt_len, args.ext_len+args.tgt_len-args.eval_tgt_len, args.mem_len) else: model.reset_length(args.eval_tgt_len, args.ext_len, args.mem_len+args.tgt_len-args.eval_tgt_len) # Evaluation total_len, total_loss = 0, 0. with torch.no_grad(): mems = tuple() for i, (data, target, seq_len) in enumerate(eval_iter): if args.max_eval_steps > 0 and i >= args.max_eval_steps: break ret = model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.mean() total_loss += seq_len * loss.float().item() total_len += seq_len # Switch back to the training mode model.reset_length(args.tgt_len, args.ext_len, args.mem_len) model.train() return total_loss / total_len def compute_grad_epoch(mems, train_iter): noise_sq = [] stograd_sq = [] # Turn on training mode which enables dropout. global train_step, train_loss, best_val_loss, eval_start_time, log_start_time model.train() optimizer.zero_grad() # if args.batch_chunk > 1: # mems = [tuple() for _ in range(args.batch_chunk)] # else: # mems = tuple() for batch in range(args.noise_size): data, target, seq_len = train_iter.__next__() if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) target_chunks = torch.chunk(target, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = para_model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.batch_chunk / args.noise_size if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() else: ret = para_model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.noise_size if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() if train_step == args.max_step or batch == args.noise_size - 1: break true_grad = {} clone_grad(model, true_grad) optimizer.zero_grad() return true_grad, mems def compute_sto_grad_norm(mems, train_iter): noise_sq = [] stograd_sq = [] # Turn on training mode which enables dropout. global train_step, train_loss, best_val_loss, eval_start_time, log_start_time model.train() true_grads, mems = compute_grad_epoch(mems, train_iter) gradnorm_sq = compute_norm(true_grads) # if args.batch_chunk > 1: # mems = [tuple() for _ in range(args.batch_chunk)] # else: # mems = tuple() # train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter.get_fixlen_iter for batch in range(args.noise_size): data, target, seq_len = train_iter.__next__() model.zero_grad() if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) target_chunks = torch.chunk(target, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = para_model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.batch_chunk if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() else: ret = para_model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() sto_grads = {} clone_grad(model, sto_grads) instance_noisesq, instance_gradsq = compute_noise(sto_grads, true_grads) noise_sq.append(instance_noisesq) stograd_sq.append(instance_gradsq) if train_step == args.max_step or batch == args.noise_size - 1: break optimizer.zero_grad() return noise_sq, stograd_sq, gradnorm_sq, mems def train(cur_loss): # Turn on training mode which enables dropout. global train_step, train_loss, best_val_loss, eval_start_time, log_start_time model.train() if args.batch_chunk > 1: mems = [tuple() for _ in range(args.batch_chunk)] else: mems = tuple() train_iter = tr_iter.get_varlen_iter() if args.varlen else tr_iter.get_fixlen_iter() # cur_loss = 0 print("start training") for batch, (data, target, seq_len) in enumerate(train_iter): model.zero_grad() if args.save_sharpness and (batch % args.sharpness_per_iter == 0): logging("Saving sharpness") sharpness, mems = eigen_hessian(para_model, train_iter, args.sharpness_batches, mems) weight_names, weights = param_weights(para_model) weights_str = ['%4.4f' % w for w in weights] with open(log_valid_file, 'a') as log_vf: log_vf.write('{epoch},{sharpness: 8.5f},'.format(epoch=train_step, sharpness=sharpness) + ','.join(weights_str) + '\n') if args.save_noise and (batch % args.noise_per_iter == 0): logging("Saving noise") true_gradnorm, sto_grad_norm, sto_noise_norm = 0,0,0 noise_sq, stograd_sq, true_gradnorm, mems = compute_sto_grad_norm(mems, train_iter) sto_grad_norm = np.mean(stograd_sq) sto_noise_norm = np.mean(noise_sq) with open(log_train_file, 'a') as log_tf, open(log_valid_file, 'a') as log_vf: log_tf.write('{epoch},{loss: 8.5f},{gradnorm:3.3f},{sto_grad_norm:3.3f},{noisenorm:3.3f}\n'.format( epoch=train_step, loss=cur_loss, gradnorm=true_gradnorm, sto_grad_norm=sto_grad_norm, noisenorm=sto_noise_norm)) if args.batch_chunk > 1: data_chunks = torch.chunk(data, args.batch_chunk, 1) target_chunks = torch.chunk(target, args.batch_chunk, 1) for i in range(args.batch_chunk): data_i = data_chunks[i].contiguous() target_i = target_chunks[i].contiguous() ret = para_model(data_i, target_i, *mems[i]) loss, mems[i] = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) / args.batch_chunk if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() else: ret = para_model(data, target, *mems) loss, mems = ret[0], ret[1:] loss = loss.float().mean().type_as(loss) if args.fp16: optimizer.backward(loss) else: loss.backward() train_loss += loss.float().item() if args.fp16: optimizer.clip_master_grads(args.clip) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip) optimizer.step() if args.sample_softmax > 0: optimizer_sparse.step() # step-wise learning rate annealing train_step += 1 if args.scheduler in ['cosine', 'constant', 'dev_perf']: # linear warmup stage if train_step < args.warmup_step: curr_lr = args.lr * train_step / args.warmup_step optimizer.param_groups[0]['lr'] = curr_lr if args.sample_softmax > 0: optimizer_sparse.param_groups[0]['lr'] = curr_lr * 2 else: if args.scheduler == 'cosine': scheduler.step(train_step) if args.sample_softmax > 0: scheduler_sparse.step(train_step) elif args.scheduler == 'inv_sqrt': scheduler.step(train_step) if train_step % args.log_interval == 0: cur_loss = train_loss / args.log_interval elapsed = time.time() - log_start_time log_str = '| epoch {:3d} step {:>8d} | {:>6d} batches | lr {:.3g} ' \ '| ms/batch {:5.2f} | loss {:5.2f}'.format( epoch, train_step, batch+1, optimizer.param_groups[0]['lr'], elapsed * 1000 / args.log_interval, cur_loss) if args.dataset in ['enwik8', 'text8']: log_str += ' | bpc {:9.5f}'.format(cur_loss / math.log(2)) else: log_str += ' | ppl {:9.3f}'.format(math.exp(cur_loss)) logging(log_str) train_loss = 0 log_start_time = time.time() if train_step % args.eval_interval == 0: val_loss = evaluate(va_iter) logging('-' * 100) log_str = '| Eval {:3d} at step {:>8d} | time: {:5.2f}s ' \ '| valid loss {:5.2f}'.format( train_step // args.eval_interval, train_step, (time.time() - eval_start_time), val_loss) if args.dataset in ['enwik8', 'text8']: log_str += ' | bpc {:9.5f}'.format(val_loss / math.log(2)) else: log_str += ' | valid ppl {:9.3f}'.format(math.exp(val_loss)) logging(log_str) logging('-' * 100) # Save the model if the validation loss is the best we've seen so far. if not best_val_loss or val_loss < best_val_loss: if not args.debug: with open(os.path.join(args.work_dir, 'model.pt'), 'wb') as f: torch.save(model, f) with open(os.path.join(args.work_dir, 'optimizer.pt'), 'wb') as f: torch.save(optimizer.state_dict(), f) best_val_loss = val_loss # dev-performance based learning rate annealing if args.scheduler == 'dev_perf': scheduler.step(val_loss) if args.sample_softmax > 0: scheduler_sparse.step(val_loss) eval_start_time = time.time() if train_step == args.max_step: break return train_loss/batch # Loop over epochs. train_step = 0 train_loss = 0 best_val_loss = None log_start_time = time.time() eval_start_time = time.time() save_dir = './ckpt/' + args.save_dir + '/' log_train_file = save_dir + 'train.csv' log_valid_file = save_dir + 'sharpness.csv' try: os.makedirs(save_dir) except OSError as e: if e.errno != errno.EEXIST: raise weight_names, weights = param_weights(para_model) with open(log_train_file, 'w') as log_tf, open(log_valid_file, 'w') as log_vf: log_tf.write('epoch,loss,gradnormsq,sto_grad_normsq,noisenormsq\n') log_vf.write('epoch,sharpness,' +','.join(weight_names) + '\n') # At any point you can hit Ctrl + C to break out of training early. cur_loss = 0 for epoch in itertools.count(start=1): cur_loss = train(cur_loss) test_loss = evaluate(te_iter) if train_step == args.max_step: logging('-' * 100) logging('End of training') break # Load the best saved model. with open(os.path.join(args.work_dir, 'model.pt'), 'rb') as f: model = torch.load(f) para_model = model.to(device) # Run on test data. test_loss = evaluate(te_iter) logging('=' * 100) if args.dataset in ['enwik8', 'text8']: logging('| End of training | test loss {:5.2f} | test bpc {:9.5f}'.format( test_loss, test_loss / math.log(2))) else: logging('| End of training | test loss {:5.2f} | test ppl {:9.3f}'.format( test_loss, math.exp(test_loss))) logging('=' * 100) ```
{ "source": "JingzhaoZhang/why-clipping-accelerates", "score": 3 }
#### File: JingzhaoZhang/why-clipping-accelerates/utils.py ```python import torch import math import os import re import csv import sys class CSVLogger(object): def __init__(self, filename, args, keys): self.filename = filename self.args = args self.keys = keys self.values = {k:[] for k in keys} self.init_file() def init_file(self): # This will overwrite previous file if os.path.exists(self.filename): return directory = os.path.dirname(self.filename) if not os.path.exists(directory): os.makedirs(directory) with open(self.filename, 'w') as logfile: logwriter = csv.writer(logfile, delimiter=',') # logwriter.writerow([str(self.args)]) logwriter.writerow(self.keys) def write_row(self, values): assert len(values) == len(self.keys) if not os.path.exists(self.filename): self.init_file() with open(self.filename, 'a') as logfile: logwriter = csv.writer(logfile, delimiter=',') logwriter.writerow(values) def repackage_hidden(h): """Wraps hidden states in new Tensors, to detach them from their history.""" if isinstance(h, torch.Tensor): return h.detach() else: return tuple(repackage_hidden(v) for v in h) def batchify(data, bsz, args): # Work out how cleanly we can divide the dataset into bsz parts. nbatch = data.size(0) // bsz # Trim off any extra elements that wouldn't cleanly fit (remainders). data = data.narrow(0, 0, nbatch * bsz) # Evenly divide the data across the bsz batches. data = data.view(bsz, -1).t().contiguous() if args.cuda: data = data.cuda() return data def get_batch(source, i, args, seq_len=None, evaluation=False): seq_len = min(seq_len if seq_len else args.bptt, len(source) - 1 - i) data = source[i:i+seq_len] target = source[i+1:i+1+seq_len].view(-1) return data, target def get_model_grads(model): return [p.grad.data for _, p in model.named_parameters() if \ hasattr(p, 'grad') and (p.grad is not None)] def get_model_params(model): return [p.data for _, p in model.named_parameters() if \ hasattr(p, 'grad') and (p.grad is not None)] def norm_diff(list1, list2=None): if not list2: list2 = [0] * len(list1) assert len(list1) == len(list2) return math.sqrt(sum((list1[i]-list2[i]).norm()**2 for i in range(len(list1)))) ```
{ "source": "jingzhehu/udacity_sdcnd", "score": 2 }
#### File: term1/P3_behavior_cloning/drive.py ```python import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" import argparse import base64 import json import numpy as np import socketio import eventlet import eventlet.wsgi import time from PIL import Image from PIL import ImageOps from flask import Flask, render_template from io import BytesIO import cv2 from keras.models import model_from_json from keras.preprocessing.image import img_to_array import tensorflow as tf from tensorflow.python.ops import control_flow_ops tf.python.control_flow_ops = control_flow_ops sio = socketio.Server() app = Flask(__name__) model = None def preprocess_input(img): ''' Crop, resize and convert input image from RGB to HLS colorspace :param img: np array of uint8 :return: preprocessed image in float32 ''' img = cv2.resize(img[60:140, 40:280], (200, 66)) return cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype("float32")/255.0 - 0.5 @sio.on('telemetry') def telemetry(sid, data): # current steering angle of the car steering_angle = data["steering_angle"] # current throttle of the car throttle = data["throttle"] # current speed of the car speed = float(data["speed"]) # current image from the center camera of the car img_string = data["image"] img = Image.open(BytesIO(base64.b64decode(img_string))) # preprocess image from center camera img = np.array(img, dtype=np.uint8) img = preprocess_input(img) img = img[None, :, :, :] # predict steering angle from preprocessed image # model accepts (66, 200, 3, dtype=float32) as input steering_angle = float(model.predict(img, batch_size=1)) throttle_max = 1.0 throttle_min = -1.0 steering_threshold = 3. / 25 # targets for speed controller nominal_set_speed = 30 steering_set_speed = 30 K = 0.35 # proportional gain # slow down for turns if abs(steering_angle) > steering_threshold: set_speed = steering_set_speed else: set_speed = nominal_set_speed throttle = (set_speed - speed) * K throttle = min(throttle_max, throttle) throttle = max(throttle_min, throttle) # else don't change from previous print("steering angle {:6.3f}, throttle {:6.3f}".format(steering_angle, throttle)) send_control(steering_angle, throttle) @sio.on('connect') def connect(sid, environ): print("connect ", sid) send_control(0, 0) def send_control(steering_angle, throttle): sio.emit("steer", data={'steering_angle': steering_angle.__str__(), 'throttle': throttle.__str__()} , skip_sid=True) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Remote Driving') parser.add_argument('model', type=str, help='Path to model definition json. Model weights should be on the same path.') args = parser.parse_args() with open(args.model, 'r') as jfile: model = model_from_json(jfile.read()) model.compile("rmsprop", "mse") weights_file = args.model.replace('json', 'h5') model.load_weights(weights_file) # wrap Flask application with engineio's middleware app = socketio.Middleware(sio, app) # deploy as an eventlet WSGI server eventlet.wsgi.server(eventlet.listen(('', 4567)), app) ``` #### File: term1/P4_advanced_lane_lines/P4_advanced_lane_finding.py ```python import glob import pickle from collections import deque from itertools import product import cv2 import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import seaborn as sns from moviepy.editor import VideoFileClip from natsort import natsorted from sklearn.linear_model import ElasticNet sns.set_style("whitegrid", {'axes.grid': False}) def get_obj_img_pts(img_cal_names, num_x=9, num_y=6): '''Generate object/image points given filenames of calibration images params: num_x = the number of inner corner points along the x-axis of the test grid num_y = the number of inner corner points along the y-axis of the test grid ''' # generate object points obj_pt = np.array(list(product(range(num_y), range(num_x), range(1))), np.float32) obj_pt[:, [0, 1]] = obj_pt[:, [1, 0]] obj_pts = [] img_pts = [] img_cals = [] img_cal_names_ret = [] for idx, img_cal_name in enumerate(img_cal_names): img_cal = mpimg.imread(img_cal_name) img_gray = cv2.cvtColor(img_cal, cv2.COLOR_RGB2GRAY) ret, img_pt = cv2.findChessboardCorners(img_gray, (num_x, num_y), None) if ret: print('corners_found: {}'.format(img_cal_name)) obj_pts.append(obj_pt) img_pts.append(img_pt) # visualize the image points on calibration images cv2.drawChessboardCorners(img_cal, (num_x, num_y), img_pt, ret) img_cals.append(img_cal) img_cal_names_ret.append(img_cal_name) return obj_pts, img_pts, img_cals, img_cal_names_ret def correct_dist(img, obj_pts, img_pts): '''Undistort an image given object/image points ''' img_size = (img.shape[1], img.shape[0]) ret, mtx, dist_coeffs, rvecs, tvecs = cv2.calibrateCamera(obj_pts, img_pts, img_size, None, None) return cv2.undistort(img, mtx, dist_coeffs, None, mtx) def img_subplots(imgs, img_names=None, f_size=(12, 10), f_cols=4): '''Create subplots of images and return figure handle ''' assert (len(imgs) == len(img_names)) f_rows = np.ceil(len(imgs) / f_cols).astype('int') fig, f_axes = plt.subplots(f_rows, f_cols, figsize=f_size) fig.set_tight_layout(True) for idx, f_ax in enumerate(f_axes.reshape(-1)): f_ax.axis("off") if idx < len(imgs): img = imgs[idx] color_map = "gray" if len(img.shape) == 2 else None f_ax.imshow(img, cmap=color_map) if img_names is not None: f_ax.set_title(img_names[idx]) return fig def canny(img, low_threshold, high_threshold): """Applies the Canny transform""" return cv2.Canny(img, low_threshold, high_threshold) def region_of_interest(img, roi_vertex_scales): """Applies an image mask. Only keeps the region of the image defined by the polygon formed from `vertices`. The rest of the image is set to black. vertices shall have the shape (num_of_polygon, num_of_vertices, 2) eg: vertices = np.array([[(wd*.45, ht*.53),(wd*.05, ht), (wd*.98, ht), (wd*.55, ht*.53)]], dtype=np.int32) """ # defining a blank mask to start with mask = np.zeros_like(img) # defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(img.shape) > 2: channel_count = img.shape[2] # i.e. 3 or 4 depending on your image mask_color = (255,) * channel_count ht, wd, _ = img.shape else: mask_color = 255 ht, wd = img.shape vertices = np.int32([[(wd * wd_scale, ht * ht_scale) for (wd_scale, ht_scale) in roi_vertex_scales]]) # filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, mask_color) # returning the image only where mask pixels are nonzero masked_image = cv2.bitwise_and(img, mask) return masked_image def hough_lines(img, rho, theta, threshold, min_line_len, max_line_gap, line_thickness=2, line_color=(0, 255, 0)): """Returns an image with hough lines drawn. `img` should be the output of a Canny transform. """ lines = cv2.HoughLinesP(img, rho, theta, threshold, np.array([]), minLineLength=min_line_len, maxLineGap=max_line_gap) line_img = np.zeros((*img.shape, 3), dtype=np.uint8) draw_lines(line_img, lines, thickness=line_thickness, color=line_color) return line_img def draw_lines(img, lines, thickness=2, color=(255, 0, 0)): """ Draw interpolated lanes on img """ lane_1st, lane_2nd = [], [] height, width, _ = img.shape # separate the line segments based on slope and their position in the image for line in lines: for x1, y1, x2, y2 in line: if ((x2 - x1) != 0) and ((y2 - y1) / (x2 - x1) < 0) and ((x1 + x2) / 2 / width < 0.55): lane_1st.append(line) elif ((x2 - x1) != 0) and ((y2 - y1) / (x2 - x1) > 0) and ((x1 + x2) / 2 / width > 0.55): lane_2nd.append(line) # fit the left and right lane separately with ElasticNet x_pred = np.arange(img.shape[1]).reshape(-1, 1) for lane in [np.array(lane_1st), np.array(lane_2nd)]: lane = lane.reshape(lane.shape[0] * 2, 2) X, y = lane[:, 0], lane[:, 1] reg = ElasticNet().fit(X.reshape(-1, 1), y) y_pred = np.hstack((x_pred, reg.predict(x_pred).reshape(-1, 1))) cv2.polylines(img, np.int32([y_pred]), False, color, thickness) def gaussian_blur(img, kernel_size): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) def select_color(img, colors): ''' Return img with specified color selected colors is a list of (color_lower, color_upper) tuples ''' img_color_select = np.zeros_like(img) for color_lower, color_upper in colors: color_mask = cv2.inRange(img, color_lower, color_upper) img_color_select += cv2.bitwise_and(img, img, mask=color_mask) return img_color_select def sobel_thresh(img, th=(30, 100), kernel_size=3, op_dirs=(1, 0), debug=False): '''Absolute gradient thresholding ''' if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_sobel = np.absolute(cv2.Sobel(img, cv2.CV_64F, *op_dirs, ksize=kernel_size)) img_sobel_scaled = np.uint8(255 * img_sobel / np.max(img_sobel)) img_bin = img2binary(img_sobel_scaled, th) if debug: return img_sobel_scaled, img_bin else: return img_bin def mag_thresh(img, th=(30, 100), kernel_size=3, debug=False): '''Gradient magnitude thresholding ''' if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_sobel_x = cv2.Sobel(img, cv2.CV_64F, 1, 0, ksize=kernel_size) img_sobel_y = cv2.Sobel(img, cv2.CV_64F, 0, 1, ksize=kernel_size) img_sobel_mag = np.sqrt(img_sobel_x ** 2 + img_sobel_y ** 2) img_sobel_scaled = np.uint8(255 * img_sobel_mag / np.max(img_sobel_mag)) img_bin = img2binary(img_sobel_scaled, th) if debug: return img_sobel_scaled, img_bin else: return img_bin def img2binary(img, th=(75, 225)): '''Covert an image to a binary mask given thresholds ''' if len(img.shape) == 3: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) img_bin = np.zeros_like(img) img_bin[(img > th[0]) & (img <= th[1])] = 1 return img_bin def threshold_multi(img, roi_vertex_scales, colors_rgb, colors_hls, sobel_th=(80, 150), debug=False): img = gaussian_blur(img, kernel_size=3) img_rgb = img img_hls = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2HLS) img_yuv = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2YUV) # color selection in RGB and HLS space img_rgb_bin = img2binary(select_color(img_rgb, colors_rgb), th=[0, 255]) img_hls_bin = img2binary(select_color(img_hls, colors_hls), th=(0, 255)) img_color_bin = img_rgb_bin | img_hls_bin # U abs gradient th (YUV) img_channel = img_yuv[:, :, 1] img_u_sobel = sobel_thresh(img_channel, th=sobel_th, kernel_size=9, op_dirs=[1, 0]) # combine thresholded binary images img_bin_combined = img_color_bin | img_u_sobel img_bin_combined_roi = region_of_interest(img_bin_combined, roi_vertex_scales) if debug: return img_color_bin, img_u_sobel, img_bin_combined, img_bin_combined_roi else: return img_bin_combined_roi def get_perspective_matrix(img, src_scales, dst_scales): if len(img.shape) == 3: ht, wd, _ = img.shape elif len(img.shape) == 2: ht, wd = img.shape else: raise Exception("Only 2D images are supported.") src = np.float32([(wd * wd_scale, ht * ht_scale) for (wd_scale, ht_scale) in src_scales]) dst = np.float32([(wd * wd_scale, ht * ht_scale) for (wd_scale, ht_scale) in dst_scales]) M = cv2.getPerspectiveTransform(src, dst) inv_M = cv2.getPerspectiveTransform(dst, src) return M, inv_M, src def get_binary_lane(img_strips, window_scale, offset=0.10): '''Return a segmented lane using the sliding window method''' lane = [] window = np.array(window_scale) * img_strips[0].shape[1] for img_strip in reversed(img_strips): img_windowed = np.zeros_like(img_strip) img_windowed[:, window[0]:window[1]] = img_strip[:, window[0]:window[1]] lane_pts_x = np.where(np.sum(img_windowed, axis=0)) if len(lane_pts_x[0]) > 5: lane.append(img_windowed) lane_mean = np.mean(lane_pts_x) lane_offset = offset * img_strip.shape[1] window = [int(lane_mean - lane_offset), int(lane_mean + lane_offset)] else: lane.append(np.zeros_like(img_windowed)) return np.vstack(reversed(lane)) def fit_lane_pts(pts, y_fit_range=None, num_pts_y_fit=300): '''Return fitted points or coefficeints of 2nd order fitting x = F(y). params: pts: tuple of x_array and y_array `(x_array, y_array)` ''' pts_x, pts_y = reversed(pts) coeffs = np.polyfit(pts_y, pts_x, 2) if y_fit_range is not None: pts_y_fit = np.linspace(0, y_fit_range, num=num_pts_y_fit) pts_x_fit = np.polyval(coeffs, pts_y_fit) return pts_x_fit, pts_y_fit else: return coeffs # def fit_lane_pts_with_coeffs(coeffs, y_fit_range, num_pts_y_fit=300): # '''Return fitted points given coefficients # # params: # coeffs: 2nd order fitting coefficients with the highest order first # ''' # # pts_y_fit = np.linspace(0, y_fit_range, num=num_pts_y_fit) # pts_x_fit = np.polyval(coeffs, pts_y_fit) # # return pts_x_fit, pts_y_fit def calc_curvature(pts, xm_per_pix=3.7 / 700, ym_per_pix=30 / 720): '''Calculate curvature given scales from pixel space to real physical space''' pts = np.array(pts).T * np.array([ym_per_pix, xm_per_pix]) pts = (pts[:, 0], pts[:, 1]) coeffs = fit_lane_pts(pts) y_eval = np.max(pts[1]) curve_radius = ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0]) return curve_radius def lane_detection(img, ROI_vertex_scales, src_scales, dst_scales, colors_rgb, colors_hls, sobel_th=(80, 150), num_bins=20, window_L=(0.1, 0.45), window_R=(0.6, 0.90), draw_lane_color=(0, 255, 0), debug=False): img_corr = correct_dist(img, obj_pts, img_pts) ht, wd, _ = img.shape M, inv_M, pts_src = get_perspective_matrix(img, src_scales, dst_scales) img_warped = cv2.warpPerspective(img_corr, M, (wd, ht), flags=cv2.INTER_LINEAR) # thresholding corrected image and # perspective transformation of the resulting binary image img_bin = threshold_multi(img_corr, ROI_vertex_scales, colors_rgb=colors_rgb, colors_hls=colors_hls, sobel_th=sobel_th) img_bin_warped = cv2.warpPerspective(img_bin, M, (wd, ht), flags=cv2.INTER_LINEAR) # split perpective transformed binary image into multiple horizontal strips # img_bin_blurred = gaussian_blur(img_bin_warped, kernel_size=blur_kernel_size) img_bin_splits = np.vsplit(img_bin_warped, num_bins) # isolate the left and right lane with sliding windows lane_L = get_binary_lane(img_bin_splits, window_L) lane_R = get_binary_lane(img_bin_splits, window_R) pts_L = np.where(lane_L) pts_R = np.where(lane_R) if (len(pts_L[0]) < 3) | (len(pts_R[0]) < 3): return img_corr # calculate curvature for left/right lane pts_fit_L = fit_lane_pts(pts_L, y_fit_range=img_bin.shape[0], num_pts_y_fit=300) curve_radius_L = calc_curvature(pts_L) pts_fit_R = fit_lane_pts(pts_R, y_fit_range=img_bin.shape[0], num_pts_y_fit=300) curve_radius_R = calc_curvature(pts_R) # [curve_radius_L, curve_radius_R] # create an image to draw the lines on lane_warped_color = np.zeros_like(img_corr, dtype=np.uint8) # draw fitted points to a lane image pts_draw = np.hstack([pts_fit_L, np.fliplr(pts_fit_R)]).T.reshape(-1, 1, 2).astype(np.int) cv2.fillPoly(lane_warped_color, [pts_draw], draw_lane_color) # inverse perspective transform of lane image lane_color = cv2.warpPerspective(lane_warped_color, inv_M, (wd, ht), flags=cv2.INTER_LINEAR) # overlay detected lanes with the undistorted image img_combined = cv2.addWeighted(img_corr, 1, lane_color, 0.3, 0) if debug: print("The left curvature is {:.1f} m".format(curve_radius_L)) print("The right curvature is {:.1f} m".format(curve_radius_R)) print("") pts_warp_roi = np.int32(pts_src.reshape([-1, 1, 2])) pts_roi = np.int32([[(wd * wd_scale, ht * ht_scale) for (wd_scale, ht_scale) in ROI_vertex_scales]]) img_warp_roi = cv2.polylines(img_corr, [pts_warp_roi], True, (0, 255, 0), 5) # draw the warp region in green img_warp_roi = cv2.polylines(img_warp_roi, [pts_roi], True, (0, 0, 255), 5) # draw the roi selection in blue return img_warp_roi, img_warped, img_bin, img_bin_warped, lane_L, lane_R, lane_warped_color, img_combined else: return img_combined # Define a class to receive the characteristics of each line detection class LaneDetector: def __init__(self, N=30, TOLERANCE_CURVATURE=2, TOLERANCE_PTS=100): # append to history if the current curvature is less than TOLERANCE_CURVATURE # compared to the average curvature over N confident frames self.TOLERANCE_CURVATURE = TOLERANCE_CURVATURE # proceed with lane curve fitting if detected points are greater than TOLERANCE_PTS self.TOLERANCE_PTS = TOLERANCE_PTS # x,y values and fitted polynomial coeffs of the last n fits # assuming 30 frames per second self.N = N self.pts_fit_L_last_n = deque(maxlen=self.N) self.pts_fit_R_last_n = deque(maxlen=self.N) # average x,y values of the fitted lanes over the last n fit self.pts_L_last = None self.pts_R_last = None # radius of curvature of the line in some units self.curve_radius = 0 self.curve_radius_last_n = deque(maxlen=self.N) self.curve_radius_avg = 0 self.curve_radius_diff = 0 # distance in meters of vehicle center from the line self.vehicle_offset = None self.vehicle_offset_last_n = deque(maxlen=self.N) self.vehicle_offset_avg = None # # difference in fit coefficients between last and new fits # self.coeffs_L_last_n = deque(maxlen=self.N) # self.coeffs_R_last_n = deque(maxlen=self.N) # self.coeffs_L_avg = None # self.coeffs_R_avg = None # self.fit_coeffs_diffs = np.array([0, 0, 0], dtype='float') # lane mask self.lane_mask = None self.lane_masks = [] # problematic frames self.frame_N = 0 self.error_frame_N = 0 self.error_frames = [] def get_binary_lane(self, img_strips, window_scale, offset=0.10): '''Return a segmented lane using the sliding window method''' lane = [] img_window_masks = [] window = (np.array(window_scale) * img_strips[0].shape[1]).astype(np.int) for img_strip in reversed(img_strips): img_windowed = np.zeros_like(img_strip) img_windowed[:, window[0]:window[1]] = img_strip[:, window[0]:window[1]] img_window_mask = np.zeros_like(img_strip) img_window_mask[:, window[0]:window[1]] = 1 img_window_masks.append(img_window_mask) lane_pts_x = np.where(np.sum(img_windowed, axis=0)) if len(lane_pts_x[0]) > 5: lane.append(img_windowed) lane_mean = np.mean(lane_pts_x) lane_offset = offset * img_strip.shape[1] window = [int(lane_mean - lane_offset), int(lane_mean + lane_offset)] else: lane.append(np.zeros_like(img_windowed)) return np.vstack(reversed(lane)), np.vstack(reversed(img_window_masks)) def calc_curvature(self, pts, xm_per_pix=3.7 / 700, ym_per_pix=30 / 720): '''Calculate curvature given scales from pixel space to real physical space''' pts = np.array(pts).T * np.array([ym_per_pix, xm_per_pix]) pts = (pts[:, 0], pts[:, 1]) coeffs = fit_lane_pts(pts) y_eval = np.max(pts[1]) curve_radius = ((1 + (2 * coeffs[0] * y_eval + coeffs[1]) ** 2) ** 1.5) / np.absolute(2 * coeffs[0]) return curve_radius, coeffs def lane_detection(self, img, ROI_vertex_scales, src_scales, dst_scales, colors_rgb, colors_hls, sobel_th=(80, 150), num_bins=20, window_L=(0.1, 0.45), window_R=(0.6, 0.90), draw_lane_color=(0, 255, 0), debug=False): img_corr = correct_dist(img, obj_pts, img_pts) ht, wd, _ = img.shape M, inv_M, pts_src = get_perspective_matrix(img, src_scales, dst_scales) img_warped = cv2.warpPerspective(img_corr, M, (wd, ht), flags=cv2.INTER_LINEAR) # thresholding corrected image and # perspective transformation of the resulting binary image img_bin = threshold_multi(img_corr, ROI_vertex_scales, colors_rgb=colors_rgb, colors_hls=colors_hls, sobel_th=sobel_th) img_bin_warped = cv2.warpPerspective(img_bin, M, (wd, ht), flags=cv2.INTER_LINEAR) # split perpective transformed binary image into multiple horizontal strips img_bin_splits = np.vsplit(img_bin_warped, num_bins) # isolate the left and right lane with masks generated with sliding windows # if lane_mask is not defined, search the lane lines from scratch # else use the previous window for lane lines detection if not self.lane_mask: lane_L, mask_L = self.get_binary_lane(img_bin_splits, window_L) lane_R, mask_R = self.get_binary_lane(img_bin_splits, window_R) self.lane_mask = [mask_L, mask_R] else: mask_L, mask_R = self.lane_mask lane_L = cv2.bitwise_and(img_bin_warped, mask_L) lane_R = cv2.bitwise_and(img_bin_warped, mask_R) # get (i,j) coordinates for the lane points pts_L = np.where(lane_L) pts_R = np.where(lane_R) # if the number of lane points detected is less than TOLERANCE_PTS for either lane, # use the detected points from the last and current frame for subsequent fitting if (len(pts_L[0]) < self.TOLERANCE_PTS) | (len(pts_R[0]) < self.TOLERANCE_PTS): self.lane_mask = None self.error_frame_N += 1 self.error_frames.append(img) if self.pts_L_last is not None: # concatenate (i,j) coordinates of points detected for the last and current frame pts_L = [pts_last + pts for (pts_last, pts) in zip(self.pts_L_last, pts_L)] pts_R = [pts_last + pts for (pts_last, pts) in zip(self.pts_R_last, pts_R)] else: return img_corr else: self.pts_L_last = pts_L self.pts_R_last = pts_R # calculate curvature for left/right lane # the curve radius is estimated as the mean of left/right lane, which is smoothed over the last n frames pts_fit_L = fit_lane_pts(pts_L, y_fit_range=img_bin.shape[0], num_pts_y_fit=ht) curve_radius_L, coeffs_L = self.calc_curvature(pts_L) pts_fit_R = fit_lane_pts(pts_R, y_fit_range=img_bin.shape[0], num_pts_y_fit=ht) curve_radius_R, coeffs_R = self.calc_curvature(pts_R) self.curve_radius = np.mean([curve_radius_L, curve_radius_R]) self.curve_radius_diff = np.abs((self.curve_radius - self.curve_radius_avg) / self.curve_radius_avg) # if the lane curve difference is less than TOLERANCE_CURVATURE or is the first frame # append the current curvature and coefficients to their respective double ended queue if (self.curve_radius_diff < self.TOLERANCE_CURVATURE) or (self.frame_N == 0): self.curve_radius_last_n.append(self.curve_radius) self.curve_radius_avg = np.mean(self.curve_radius_last_n) # self.coeffs_L_last_n.append(coeffs_L) # self.coeffs_R_last_n.append(coeffs_R) # self.coeffs_L_avg = np.mean(self.coeffs_L_last_n, axis=0) # self.coeffs_R_avg = np.mean(self.coeffs_R_last_n, axis=0) else: self.lane_mask = None # estimate vehicle offset from the center of the road # using the x coordinates of the last 10 points from the bottom of the frame xm_per_pix = 3.7 / 700 # meters per pixel # here a negative sign is needed to measure offsets with respect to the center of the road self.vehicle_offset = -xm_per_pix * (np.mean(pts_fit_L[0][-10:]) + np.mean(pts_fit_R[0][-10:]) - wd) / 2 self.vehicle_offset_last_n.append(self.vehicle_offset) self.vehicle_offset_avg = np.mean(self.vehicle_offset_last_n) # create an image to draw fitted points on lane_warped_color = np.zeros_like(img_corr, dtype=np.uint8) # draw fitted points to a lane image pts_draw = np.hstack([pts_fit_L, np.fliplr(pts_fit_R)]).T.reshape(-1, 1, 2).astype(np.int) cv2.fillPoly(lane_warped_color, [pts_draw], draw_lane_color) # inverse perspective transform of lane image lane_color = cv2.warpPerspective(lane_warped_color, inv_M, (wd, ht), flags=cv2.INTER_LINEAR) lane_color = region_of_interest(lane_color, ROI_vertex_scales) # overlay detected lanes with the undistorted image img_combined = cv2.addWeighted(img_corr, 1, lane_color, 0.3, 0) # draw text onto the image img_txt = "Radius of curvature: {:7.1f}m Offset from road center: {:7.3f}m Errors: {:3.0f} /{:5.0f}".format(self.curve_radius_avg, self.vehicle_offset_avg, self.error_frame_N, self.frame_N) img_txt_offset = (int(wd * 0.01), int(ht * 0.04)) pts_txt_bounding_box = np.int32([(0, 0), (wd, 0), (wd, ht * 0.05), (0, ht * 0.05)]).reshape([-1, 1, 2]) img_combined = cv2.fillPoly(img_combined, [pts_txt_bounding_box], (43, 43, 43)) cv2.putText(img_combined, img_txt, img_txt_offset, cv2.FONT_HERSHEY_COMPLEX, 0.8, (250, 250, 250), 1) self.frame_N += 1 if debug: print("The left curvature is {:.1f} m".format(curve_radius_L)) print("The right curvature is {:.1f} m".format(curve_radius_R)) print("") # draw perspective warp and ROI bounding box pts_warp_roi = np.int32(pts_src.reshape([-1, 1, 2])) pts_roi = np.int32([[(wd * wd_scale, ht * ht_scale) for (wd_scale, ht_scale) in ROI_vertex_scales]]) img_warp_roi = cv2.polylines(img_corr, [pts_warp_roi], True, (0, 255, 0), 5) # blue for perspective transform bounding box img_warp_roi = cv2.polylines(img_warp_roi, [pts_roi], True, (0, 0, 255), 5) # green for ROI bounding box return img_warp_roi, img_warped, img_bin, img_bin_warped, lane_L, lane_R, lane_warped_color, img_combined else: return img_combined def process_image(img): # NOTE: The output you return should be a color image (3 channel) for processing video below # the solution is detailed in the function lane_detection above return lane_detector.lane_detection(img, ROI_vertex_scales, src_scales, dst_scales, colors_rgb, colors_hls, window_L=window_L, window_R=window_R, debug=False) NUM_X = 9 NUM_Y = 6 LOAD_OBJ_IMG_PTS = True img_cal_names = natsorted(glob.glob('camera_cal/*.jpg')) if not LOAD_OBJ_IMG_PTS: obj_pts, img_pts, img_cals, img_cal_names_ret = get_obj_img_pts(img_cal_names, num_x=NUM_X, num_y=NUM_Y) with open(r"obj_img_pts", "wb") as file_output: pickle.dump([obj_pts, img_pts], file_output) else: with open(r"obj_img_pts", "rb") as file_input: obj_pts, img_pts = pickle.load(file_input) ROI_vertex_scales = [(0.48, 0.59), (0.52, 0.59), (0.65, 0.65), (0.95, 1), (0.05, 1), (0.35, 0.65)] src_x_top, src_x_bot = 0.42, 0.065 # counting from the left edge src_y_top, src_y_bot = 0.67, 0 dst_x_top, dst_x_bot = 0.2, 0.2 # counting from the left edge dst_y_top, dst_y_bot = 0.2, 0 src_scales = [(src_x_top, src_y_top), (1 - src_x_top, src_y_top), (1 - src_x_bot, 1 - src_y_bot), (src_x_bot, 1 - src_y_bot)] dst_scales = [(dst_x_top, dst_y_top), (1 - dst_x_top, dst_y_top), (1 - dst_x_top, 1 - dst_y_top), (dst_x_top, 1 - dst_y_bot)] colors_rgb = [(np.uint8([190, 190, 190]), np.uint8([255, 255, 255]))] colors_hls = [(np.uint8([0, 120, 150]), np.uint8([75, 255, 255])), (np.uint8([75, 180, 0]), np.uint8([120, 255, 35]))] window_L = (0.1, 0.45) window_R = (0.6, 0.90) lane_detector = LaneDetector() # img_test_names = natsorted(glob.glob("test_images/*.jpg")) # for img_test_name in img_test_names[0:2]: # print(img_test_name) # img = mpimg.imread(img_test_name) # # imgs = lane_detector.lane_detection(img, ROI_vertex_scales, src_scales, dst_scales, # colors_rgb, colors_hls, # window_L=window_L, window_R=window_R, debug=True) # # img_names = ["undistorted", "perspective warped", "thresholded", "thresholded warped", # "left lane", "right lane", "warped detected lanes", "combined with detected lanes"] # # fig = img_subplots(imgs, img_names, f_size=(10, 12), f_cols=2) # fig.suptitle(img_test_name, y=1.05, fontsize=16) # plt.axis("on") # # plt.show() # clip_files = ["test.mp4", "challenge_video.mp4", "harder_challenge_video.mp4"] clip_files = ["project_video.mp4", "challenge_video.mp4", "harder_challenge_video.mp4"] for clip_file in clip_files[0:1]: clip = VideoFileClip(clip_file) clip_out = clip.fl_image(process_image) clip_out.write_videofile("z_sol_" + clip_file, audio=False) print("======================================================") ```
{ "source": "JingzhiYAN/taobao-traffic-bot", "score": 2 }
#### File: JingzhiYAN/taobao-traffic-bot/import requests.py ```python import requests def main(): headers = { "charset":"utf-8", "Accept-Encoding":"gzip", "referer":"https://servicewechat.com/wxffc08ac7df482a27/117/page-frame.html", "authorization":"5bda7657a4ce660001f7eed8", "auth":"<KEY>", "content-type":"application/json", "auth-sign":"<KEY>", "User-Agent":"Mozilla/5.0 (Linux; Android 7.1.2; MI 5X Build/N2G47H; wv) AppleWebKit/537.36 (KHTML, like Gecko) Version/4.0 Chrome/64.0.3282.137 Mobile Safari/537.36 MicroMessenger/6.7.3.1360(0x26070336) NetType/WIFI Language/zh_CN Process/appbrand2", "Host":"www.xiaohongshu.com", "Connection":"Keep-Alive", } # url = "http://www.xiaohongshu.com/sapi/wx_mp_api/sns/v1/homefeed?oid=homefeed.cosmetics_v2&cursor_score=&sid=session.1540996623416187718" url = "http://www.xiaohongshu.com/sapi/wx_mp_api/sns/v1/homefeed?oid=homefeed.cosmetics_v2&cursor_score=1541067389.9550&sid=session.1540996623416187718" datas = requests.get(url= url, headers=headers ).json() data = datas['data'] # print(data) for i in data: print(i) # print(i['title']) # print(i['share_link']) title = '标题: ' + i['mini_program_info']['share_title'] print(title) link_url = '链接: ' + i['share_link'] print(link_url) b_picture = '封面图片: '+ i['mini_program_info']['thumb'] print(b_picture) type = '类型: ' + i['type'] print(type) level = '级别: ' + str(i['level']) print(level) h_picture = '用户头像: ' + i['user']['images'] print(h_picture) username = '用户名: ' + i['user']['nickname'] print(username) user_id = 'userid: ' + i['user']['userid'] print(user_id) zan = '喜欢点心: ' + str(i['likes']) print(zan) # 以追加的方式及打开一个文件,文件指针放在文件结尾,追加读写! with open('text', 'a', encoding='utf-8')as f: f.write('\n'.join([title,link_url,b_picture,type,level,h_picture,username,user_id,zan])) f.write('\n' + '=' * 100 + '\n') if __name__ == "__main__": main() ```
{ "source": "jingzhongxu/teether", "score": 3 }
#### File: teether/bin/asm.py ```python import sys import teether def assemble(code): instructions = [] refs = {} for line in code.splitlines(): tokens = line.upper().split(':') if len(tokens) == 2: label = tokens[0].strip() ins = tokens[1] else: label = None ins = tokens[0] tokens = ins.split() if not tokens: continue if tokens[0] != 'PUSH': if tokens[0] not in teether.cfg.opcodes.reverse_opcodes: print('Unknown instruction "%s"' % tokens[0], file=sys.stderr) continue instructions.append((chr(teether.cfg.opcodes.reverse_opcodes[tokens[0]]), '', label)) elif tokens[0] == 'PUSH': if tokens[1].startswith('@'): ref_label = tokens[1][1:] if ref_label not in refs: refs[ref_label] = [] refs[ref_label].append(len(instructions)) instructions.append(('REFPUSH', ref_label, label)) else: v = int(tokens[1], 16) hex_v = '%x' % v if len(hex_v) % 2 == 1: hex_v = '0' + hex_v v_size = len(hex_v) / 2 instructions.append( (chr(teether.cfg.opcodes.reverse_opcodes['PUSH%d' % v_size]), bytes.fromhex(hex_v), label)) refsize = 1 while sum(len(i) + len(a) if i != 'REFPUSH' else 1 + refsize for i, a, l in instructions) >= 256 ** refsize: refsize += 1 mask = '%%0%dx' % (refsize * 2) code = '' labels = {} pc = 0 for i, a, l in instructions: if l is not None: labels[l] = pc if i == 'REFPUSH': pc += 1 + refsize else: pc += 1 + len(a) for i, a, l in instructions: if i == 'REFPUSH': i = chr(teether.cfg.opcodes.reverse_opcodes['PUSH%d' % refsize]) a = bytes.fromhex(mask % labels[a]) code += i + a return code if __name__ == '__main__': import fileinput print(assemble('\n'.join(fileinput.input())).hex()) ```
{ "source": "jingzhou123/tieba-crawler", "score": 2 }
#### File: tieba-crawler/dirbot/pipelines.py ```python from scrapy.exceptions import DropItem from twisted.enterprise import adbapi import logging import _mysql_exceptions import sys reload(sys) sys.setdefaultencoding('utf8') class TbBasePipeline(object): """docstring for TbBasePipeline""" def __init__(self, dbpool): self.dbpool = dbpool def noop(self): pass def target_spider_name(self): """TODO: Docstring for target_spider_name. :returns: TODO """ return None def do_upsert(self, conn, item, spider): """跟数据库有关的操作. :conn: TODO :item: TODO :spider: TODO :returns: TODO """ return item def process_item(self, item, spider): """TODO: Docstring for process_item. :conn: TODO :item: TODO :spider: TODO :returns: TODO """ names_or_name_str = self.target_spider_name(); if isinstance(names_or_name_str, str) and names_or_name_str != spider.name: return item if isinstance(names_or_name_str, list): for name in names_or_name_str: if name == spider.name: break return item # run db query in the thread pool d = self.dbpool.runInteraction(self.do_upsert, item, spider) d.addErrback(self._handle_error, item, spider) # at the end return the item in case of success or failure d.addBoth(lambda _: item) # return the deferred instead the item. This makes the engine to # process next item (according to CONCURRENT_ITEMS setting) after this # operation (deferred) has finished. return d def _handle_error(self, failure, item, spider): """Handle occurred on db interaction.""" # do nothing, just log logging.error(failure) @classmethod def from_settings(cls, settings): dbargs = dict( host=settings['MYSQL_HOST'], db=settings['MYSQL_DBNAME'], user=settings['MYSQL_USER'], passwd=settings['MYSQL_PASSWD'], charset='utf8', use_unicode=True, ) dbpool = adbapi.ConnectionPool('MySQLdb', **dbargs) return cls(dbpool) class TiebaPipeline(TbBasePipeline): """A pipeline to store the item in a MySQL database. This implementation uses Twisted's asynchronous database API. code below is referred from 'https://github.com/rolando/dirbot-mysql/blob/master/dirbot/pipelines.py' """ def process_item(self, item, spider): if spider.name != 'tieba': d = self.dbpool.runInteraction(self.noop, item, spider) d.addBoth(lambda _: item) return d logging.debug('processing tieba: %r' % (item)) # run db query in the thread pool d = self.dbpool.runInteraction(self._do_upsert, item, spider) d.addErrback(self._handle_error, item, spider) # at the end return the item in case of success or failure d.addBoth(lambda _: item) # return the deferred instead the item. This makes the engine to # process next item (according to CONCURRENT_ITEMS setting) after this # operation (deferred) has finished. return d def _insert_tieba_admins(self, conn, item, spider): """TODO: INSERT IGNORE ... :conn: TODO :item: TODO :spider: TODO :returns: TODO """ for name in item['admin_names']: #logging.debug("(%s, %s)" % (name, item['name'])); #right #logging.debug('%s' % (type(name))) #unicode conn.execute(""" INSERT user_manage_tieba VALUES(%s, %s) ON DUPLICATE KEY UPDATE user_name=%s, tieba_name=%s """, (name, item['name'], name, item['name'])) def _do_upsert(self, conn, item, spider): logging.debug('processing item from posts..') """Perform an insert or update.""" conn.execute("""SELECT EXISTS( SELECT name FROM tieba WHERE name = %s )""", (item['name'], )) ret = conn.fetchone()[0] if ret: conn.execute(""" UPDATE tieba SET followed_num=%s, belong_dir=%s, slogan=%s, posts_num=%s,admin_num=%s WHERE name=%s """, (item['members_num'], item['dir_name'], item['slogan'], item['posts_num'], item['admin_num'], item['name'], )) else: conn.execute(""" INSERT INTO tieba VALUES (DEFAULT, %s, %s, %s, %s, %s, %s) """, ( item['name'], item['members_num'], item['admin_num'], item['posts_num'], item['slogan'], item['dir_name'], )) self._insert_tieba_admins(conn, item, spider); def _handle_error(self, failure, item, spider): """Handle occurred on db interaction.""" # do nothing, just log logging.error(failure) class PostPipeline(TbBasePipeline): """Docstring for PostPipeline. """ def process_item(self, item, spider): """TODO: Docstring for process_item. :item: TODO :returns: TODO """ if spider.name != 'post': d = self.dbpool.runInteraction(self.noop, item, spider) d.addBoth(lambda _: item) return d logging.debug('processing post: %r' % (item)) # run db query in the thread pool d = self.dbpool.runInteraction(self._do_upsert, item, spider) d.addErrback(self._handle_error, item, spider) # at the end return the item in case of success or failure d.addBoth(lambda _: item) # return the deferred instead the item. This makes the engine to # process next item (according to CONCURRENT_ITEMS setting) after this # operation (deferred) has finished. return d def _fill_in_data(self, item): """TODO: Docstring for _fill_in_data. :item: TODO :returns: TODO """ item['id'] = int(item['id']) item['reply_num'] = int(item['reply_num']) item['post_time'] = '1970-1-1'# shim data return item def _do_upsert(self, conn, item, spider): """TODO: Docstring for _do_upsert. :returns: TODO """ #logging.debug('filtering ads...') #logging.debug('post: %r' % (item)) if item['id'] == '-1':#广告贴 return logging.debug('filtered ads...') item = self._fill_in_data(item) conn.execute( """ INSERT INTO post SET author_name=%s, tieba_name=%s, title=%s, body=%s, post_time=%s, reply_num=%s, id=%s """, ( item['author_name'], item['tieba_name'], item['title'], item['body'], item['post_time'], item['reply_num'], item['id'] ) ) def _handle_error(self, failure, item, spider): """Handle occurred on db interaction.""" # do nothing, just log logging.error(failure) class ReplyPipeline(TbBasePipeline): """Docstring for ReplyPipeline. """ def _do_upsert(self, conn, item, spider): """TODO: Docstring for _do_update. :item: TODO :spider: TODO :returns: TODO """ if item['type'] == 'MAIN': conn.execute(""" UPDATE post SET title=%s, body=%s, post_time=%s where id=%s """, ( item['title'], item['body'], item['post_time'], item['id']) ) else: logging.debug('item id: %s' % (item['id'])) conn.execute(""" INSERT INTO reply SET author_name=%s, body=%s, id=%s, title = %s, post_time=%s, post_id=%s, reply_num=%s """, ( item['author_name'], item['body'], item['id'], item['title'], item['post_time'], item['post_id'], item['reply_num'], )) def process_item(self, item, spider): if spider.name != 'reply': d = self.dbpool.runInteraction(self.noop, item, spider) d.addBoth(lambda _: item) return d logging.debug('processing reply: %r' % (item)) d = self.dbpool.runInteraction(self._do_upsert, item, spider) d.addErrback(self._handle_error, item, spider) # at the end return the item in case of success or failure d.addBoth(lambda _: item) return d class CommentPipeline(TbBasePipeline): """Docstring for CommentPipeline. """ def _do_upsert(self, conn, item, spider): """TODO: Docstring for _do_upsert. :returns: TODO """ logging.debug('item inserted: %r' % (item)) conn.execute(""" INSERT comment VALUES(%s, %s, %s, %s, %s) ON DUPLICATE KEY UPDATE id=%s, reply_id=%s, author_name=%s, body=%s, post_time=%s """, ( item['id'], item['reply_id'], item['author_name'], item['body'], item['post_time'], item['id'], item['reply_id'], item['author_name'], item['body'], item['post_time'] )) def process_item(self, item, spider): """TODO: Docstring for process_item. :item: TODO :spider: TODO :returns: TODO """ if spider.name != 'comment': d = self.dbpool.runInteraction(self.noop, item, spider) d.addBoth(lambda _: item) return d #logging.debug('processing comment: %r' % (item)) d = self.dbpool.runInteraction(self._do_upsert, item, spider) d.addErrback(self._handle_error, item, spider) # at the end return the item in case of success or failure d.addBoth(lambda _: item) return d class MemberPipeline(TbBasePipeline): def target_spider_name(self): """用户关注的贴吧. :returns: TODO """ return 'member' def do_upsert(self, conn, item, spider): """TODO: Docstring for do_upsert. :conn: TODO :item: TODO :spider: TODO :returns: TODO """ conn.execute("""INSERT INTO user_follow_tieba values(%s, %s)""", (item['user_name'], item['tieba_name'])); class UserAsFollowPipeline(TbBasePipeline): """Docstring for UserAsMemberPipeline. """ def target_spider_name(self): return 'user_follow' def do_upsert(self, conn, item, spider): conn.execute(""" UPDATE follow SET following_num=%s, followed_num=%s, tieba_age=%s, posts_num=%s, baidu_id=%s where name=%s """, ( item['following_num'], item['followed_num'], item['tieba_age'], item['posts_num'], item['baidu_id'], item['name'] ))#吧龄 (x)x.x年 发贴数: x万 or 1234 class UserAsFanPipeline(TbBasePipeline): """Docstring for UserAsMemberPipeline. """ def target_spider_name(self): return 'user_fan' def do_upsert(self, conn, item, spider): conn.execute(""" UPDATE fan SET following_num=%s, followed_num=%s, tieba_age=%s, posts_num=%s, baidu_id=%s where name=%s """, ( item['following_num'], item['followed_num'], item['tieba_age'], item['posts_num'], item['baidu_id'], item['name'] ))#吧龄 (x)x.x年 发贴数: x万 or 1234 class UserPipeline(TbBasePipeline): """Docstring for UserAsMemberPipeline. """ def target_spider_name(self): """TODO: Docstring for target_spider_name. :returns: TODO """ return ['user_member', 'user_fan', 'user_follow'] def do_upsert(self, conn, item, spider): conn.execute(""" INSERT INTO user SET following_num=%s, followed_num=%s, tieba_age=%s, posts_num=%s, baidu_id=%s, name=%s """, ( item['following_num'], item['followed_num'], item['tieba_age'], item['posts_num'], item['baidu_id'], item['name'] )) class UserAsMemberPipeline(TbBasePipeline): """Docstring for UserAsMemberPipeline. """ def target_spider_name(self): return 'user_member' def do_upsert(self, conn, item, spider): try: conn.execute("""INSERT INTO user SET following_num=%s, followed_num=%s, tieba_age=%s, posts_num=%s, name=%s, baidu_id=%s""", ( item['following_num'], item['followed_num'], item['tieba_age'], item['posts_num'], item['name'], item['baidu_id']))#吧龄 (x)x.x年 发贴数: x万 or 1234 except _mysql_exceptions.IntegrityError, e:# 有重复项,在某次已经爬下来 pass query_items = [] for tieba_name in item['following_tieba_name_array']: logging.debug('user: %r' % (item)) query_items.append((item['name'], tieba_name)) try: conn.executemany("""INSERT INTO user_follow_tieba VALUES (%s, %s)""", query_items) except _mysql_exceptions.IntegrityError, e:# 有重复项,说明是已经存在的关系,例如贴吧的会员 pass# 什么也不做 class FanPipeline(TbBasePipeline): """Docstring for FanPipeline. """ def target_spider_name(self): return 'fan' def do_upsert(self, conn, item, spider): try: conn.execute(""" INSERT INTO fan SET name=%s, baidu_id=%s """, ( item['name'], item['baidu_id'] )) except Exception, e: logging.debug(e) conn.execute(""" INSERT INTO user_follow_user SET to_user_name=%s, from_user_name=%s """, ( item['user_name_followed'], item['name'] )) class FollowPipeline(TbBasePipeline): """Docstring for FanPipeline. """ def target_spider_name(self): return 'follow' def do_upsert(self, conn, item, spider): conn.execute(""" INSERT INTO follow SET name=%s, baidu_id=%s """, ( item['name'], item['baidu_id'] )) conn.execute(""" INSERT INTO user_followed_user SET to_user_name=%s, from_user_name=%s """, ( item['user_name_following'], item['name'] )) ``` #### File: dirbot/spiders/post.py ```python from scrapy import Request from cookieSpider import CookieSpider as Spider from scrapy.selector import Selector from dirbot.settings import TIEBA_NAMES_LIST from dirbot.items import Post import logging class PostSpider(Spider): """Docstring for PostSpider. """ name = 'post' allowed_domains = ["baidu.com"] def _extract_post_id(self, href):# href = /p/123456789 try: return href.split('/')[-1] except Exception, e: return -1#没有ID的帖子就是广告,在pipeline里要过滤掉 def start_requests(self): """TODO: Docstring for start_requests. :returns: TODO """ url_list = map( lambda name: ("http://tieba.baidu.com/f?ie=utf-8&kw=" + name), TIEBA_NAMES_LIST ) for url in url_list: yield Request(url, callback=self.parse) def _parse_posts(self, response): """TODO: Docstring for _parse_posts. :response: TODO :returns: TODO """ #logging.debug('parsing a post..') tieba_name = Selector(response).css('.card_title_fname::text').extract_first().strip()[:-1]# XX吧 -> XX post_item_sels = Selector(response).css('#thread_list>li') #logging.debug('posts total num: %s', len(post_item_sels)) for sel in post_item_sels: item = Post() item['id'] = self._extract_post_id(sel.css('.j_th_tit a::attr(href)').extract_first()) #logging.debug('post id: %s' % (sel.css('.j_th_tit a::attr(href)').extract_first())) item['tieba_name'] = tieba_name item['title'] = sel.css('.j_th_tit a::text').extract_first()# 有时标题过长会被截断,在帖子回复爬虫里再爬一遍完整的标题 item['reply_num'] = sel.css('.threadlist_rep_num::text').extract_first()# 这里有可能是‘推广’,而非数字,在pipeline里过滤一遍 item['author_name'] = sel.css('.tb_icon_author a::text').extract_first() item['body'] = sel.css('.threadlist_detail .threadlist_abs_onlyline::text').extract_first() #遇到取不到帖子内容的情况,有可能是广告或者其它类型的无ID的贴子 if item['body'] is None: item['body'] = '' else: item['body'] = item['body'].strip()#去掉回车和空格 #item['post_time'] = sel.css('') #这里拿不到发贴时间,只有最后回复时间 logging.debug('帖子:%r' % (item)) yield item def should_stop(self, item): """stop crawl if possible, can be inheritted :item: TODO :returns: TODO """ return False def parse(self, response): """TODO: Docstring for pass. :response: TODO :returns: TODO """ for item in self._parse_posts(response): if not self.should_stop(item): yield item else: return if len(Selector(response).css('#frs_list_pager .next')): #贴吧的分页有的不是完整的链接 next_page_url = Selector(response).css('#frs_list_pager .next::attr(href)').extract_first() logging.debug('next_page_url %s', next_page_url) if -1 != next_page_url.find('http://tieba.baidu.com'): yield Request(next_page_url, callback=self.parse) else: yield Request('http://tieba.baidu.com' + next_page_url, callback=self.parse) ``` #### File: dirbot/spiders/user_fan.py ```python from dirbot.items import User from user import UserSpider from scrapy import Request, Selector from urlparse import urlparse, parse_qs import logging import json class UserFanSpider(UserSpider): """Docstring for UserSpider. """ name = 'user_fan'# 命名规则 user_{从哪种渠道获得的用户名称} def query_some_records(self, start_index = 0, num = 50): """TODO: Docstring for query_some_records. :start_index: TODO :num: TODO :returns: TODO """ cursor = self.conn.cursor() cursor.execute(""" SELECT name from fan limit %s, %s """, ( start_index, num ))# 去重 return cursor.fetchall() ``` #### File: dirbot/spiders/user_relation.py ```python from cookieSpider import CookieSpider from dbSpider import DbSpider from scrapy import Selector from urlparse import urlparse, parse_qs import logging class UserRelationSpider(CookieSpider, DbSpider): """must provide name and request_url_tmpl""" def __init__(self): """todo: to be defined1. """ CookieSpider.__init__(self) DbSpider.__init__(self) def query_some_records(self, start_index = 0, num = 50): """todo: docstring for query_some_records. :start_index: todo :num: todo :returns: todo """ cursor = self.conn.cursor() # baidu_id: 用户的百度16字节id cursor.execute(""" select baidu_id, name from user limit %s, %s """, ( start_index, num ))# 去重 return cursor.fetchall() def url_from_row(self, row): """todo: docstring for url_from_row. :row: todo :returns: todo """ return self.request_url_tmpl % (row[0]) # row only has user's baidu_id def next_page(self, response): """todo: docstring for next_page. :response: todo :returns: todo """ href = Selector(response).css('.next::attr(href)').extract_first() return 'http://tieba.baidu.com' + href if href else False def parse_page(self, response): """must be implemented to parse a page. :response: todo :returns: todo """ pass ```
{ "source": "jingziyou/Peppa_Pig_Face_Engine", "score": 3 }
#### File: core/api/face_detector.py ```python import numpy as np import cv2 import tensorflow as tf from config import config as cfg from lib.logger.logger import logger class FaceDetector: def __init__(self): """ the model was constructed by the params in config.py """ self.model_path=cfg.DETECT.model_path self.thres=cfg.DETECT.thres self.input_shape=cfg.DETECT.input_shape logger.info('INIT THE FACELANDMARK MODEL...') self.model =tf.saved_model.load(cfg.DETECT.model_path) def __call__(self, image): """Detect faces. Arguments: image: a numpy uint8 array with shape [height, width, 3], that represents a RGB image. Returns: boxes: a float numpy array of shape [num_faces, 5]. """ image, scale_x, scale_y = self.preprocess(image, target_width=self.input_shape[1], target_height=self.input_shape[0]) image = np.expand_dims(image, 0) res = self.model.inference(image) boxes = res['boxes'].numpy() scores = res['scores'].numpy() num_boxes = res['num_boxes'].numpy() ##sqeeze the box num_boxes = num_boxes[0] boxes = boxes[0][:num_boxes] scores = scores[0][:num_boxes] to_keep = scores > self.thres boxes = boxes[to_keep] scores = scores[to_keep] ###recorver to raw image scaler = np.array([self.input_shape[0] / scale_y, self.input_shape[1] / scale_x, self.input_shape[0] / scale_y, self.input_shape[1] / scale_x], dtype='float32') boxes = boxes * scaler scores = np.expand_dims(scores, 0).reshape([-1, 1]) #####the tf.nms produce ymin,xmin,ymax,xmax, swap it in to xmin,ymin,xmax,ymax for i in range(boxes.shape[0]): boxes[i] = np.array([boxes[i][1], boxes[i][0], boxes[i][3], boxes[i][2]]) return np.concatenate([boxes, scores], axis=1) def preprocess(self, image, target_height, target_width, label=None): ###sometimes use in objs detects h, w, c = image.shape bimage = np.zeros(shape=[target_height, target_width, c], dtype=image.dtype) + np.array(cfg.DATA.pixel_means, dtype=image.dtype) long_side = max(h, w) scale_x = scale_y = target_height / long_side image_resized = cv2.resize(image, None, fx=scale_x, fy=scale_y) h_resized, w_resized, _ = image_resized.shape bimage[:h_resized, :w_resized, :] = image_resized return bimage, scale_x, scale_y ```
{ "source": "jinh574/python-bakerbird", "score": 3 }
#### File: python-bakerbird/aho_corasick/aho_corasick.py ```python from collections import deque from .node import Node class AhoCorasick(object): def __init__(self): ''' AhoCorasick 이니셜라이징 ''' self.head = Node() self.head.fail = 0 self.pattern = set() self.idx = 1 self.aho_corasick = {0: self.head} def __call__(self, text): ''' 미리 만들어 놓음 Trie를 기반으로 AhoCorasick 알고리즘을 구현 :param text: 매칭할 텍스트 :return: 매칭 결과를 시작, 끝, 키워드 튜플 배열로 반환 [(INT start, INT end, STRING keyword), ...] ''' current = self.head ret = [] for idx, char in enumerate(text): while True: if not current.goto(char) and current.idx is not 0: current = self.aho_corasick[current.fail] else: child = current.goto(char) break if child: current = child if child.output: keyword = max(list(child.output), key=len) start = idx - len(keyword) + 1 end = start + len(keyword) ret.append((start, end, keyword)) return ret def add_pattern(self, pattern): ''' TRIE에 생성할 패턴을 입력받는 함수 :param pattern: TRIE를 생성할 패턴 :return: - ''' self.pattern.add(pattern) current = self.head for char in pattern: if char not in current.children.keys(): current.children[char] = Node(self.idx, char) self.aho_corasick[self.idx] = current.children[char] self.idx += 1 current = current.children[char] current.output.add(pattern) def add_patterns(self, patterns): ''' 배열 형식으로 패턴을 여러개를 한꺼번에 입력받는 함수 :param patterns: TRIE를 생성할 패턴 배열 :return: - ''' if type(patterns) is str: patterns = patterns.split() assert type(patterns) is list, "Please input list or str with space" for pattern in patterns: self.add_pattern(pattern) def _compute_fail_func(self): ''' 입력받은 패턴들을 기반으로 failure function을 계산하는 함수 :return: - ''' queue = deque() for node in self.head.children.values(): queue.append(node) while queue: target = queue.popleft() for node in target.children.values(): queue.append(node) idx = target.fail char = node.char current = self.aho_corasick[idx] while not current.goto(char) and current.idx is not 0: new_idx = current.fail current = self.aho_corasick[new_idx] if not current.goto(char): node.fail = current.idx else: node.fail = current.goto(char).idx node.set_output(self.aho_corasick[node.fail].output) def build(self): ''' 패턴 입력 후 트리거 함수 :return: - ''' self._compute_fail_func() if __name__ == "__main__": aho = AhoCorasick() aho.add_pattern("hi") aho.add_pattern("this") aho.build() aho("this is my first aho-corasick implemented. and") ``` #### File: jinh574/python-bakerbird/checker.py ```python import argparse from utils import load_input_data, load_output_data, save_output_data, save_check_data # 실행 매개변수 Parsing parser = argparse.ArgumentParser(description="Homework checker program") parser.add_argument("input", type=str, help="Input txt file path") parser.add_argument("output", type=str, help="Output txt file path") parser.add_argument("check", type=str, help="Check status txt file path") args = parser.parse_args() def checker_numpy(pattern_len, text_len, patterns, text): ''' Checker program core code. 패턴 2차원 배열이 Window sliding 형식으로 텍스트를 1칸씩 시프트하면서 순차 검색 후 모든 문자가 같으면 해당 position을 반환 :param pattern_len: 패턴 매트릭스의 크기 :param text_len: 텍스트 매트릭스의 크기 :param patterns: 패턴 2차원 배열 :param text:: 텍스트 2차원 배열 :return: 텍스트 내 매칭되는 모든 매트릭스의 postion을 튜플 형식으로 반환 ''' import numpy as np ret = [] pattern_np, text_np = np.array([list(v) for v in patterns]), np.array([list(v) for v in text]) for i in range(text_len - pattern_len + 1): for j in range(text_len - pattern_len + 1): mask = text_np[i:i + pattern_len, j:j + pattern_len] == pattern_np if mask.all(): ret.append((i + pattern_len - 1, j + pattern_len - 1)) return ret def checker_naive(pattern_len, text_len, patterns, text): ''' 패턴 2차원 배열이 Window sliding 형식으로 텍스트를 1칸씩 시프트하면서 순차 검색 후 모든 문자가 같으면 해당 position을 반환 :param pattern_len: 패턴 매트릭스의 크기 :param text_len: 텍스트 매트릭스의 크기 :param patterns: 패턴 2차원 배열 :param text:: 텍스트 2차원 배열 :return: 텍스트 내 매칭되는 모든 매트릭스의 postion을 튜플 형식으로 반환 ''' ret = [] pattern_arr, text_arr = [list(v) for v in patterns], [list(v) for v in text] for i in range(text_len - pattern_len + 1): for j in range(text_len - pattern_len + 1): mask = [e[j:j + pattern_len]for e in text_arr[i:i + pattern_len]] == pattern_arr if mask: ret.append((i + pattern_len - 1, j + pattern_len - 1)) return ret if __name__ == "__main__": data = load_input_data(args.input) outputs = load_output_data(args.output) check_result = checker_naive(*data) print(check_result) if check_result == outputs: save_check_data(args.check, "yes") else: save_check_data(args.check, "no") ``` #### File: jinh574/python-bakerbird/utils.py ```python import os import pathlib class Streamer(object): def __init__(self, file_path): self.f = open(file_path, "r") self.pattern_byte = 0 def next(self): if self.f.tell() == 0: line = self.f.readline().replace("\n", "") self.pattern_byte = self.f.tell() else: line = self.f.readline().replace("\n", "") return line def set_seek(self): self.f.seek(self.pattern_byte) def load_input_data_stream(path): ''' 입력 데이터 형식을 스트림 형식으로 제공하는 함수 :param path: 입력 데이터의 파일 경로 :return: 순서대로 들어오는 정보인 패턴크기, 텍스트크기, 파일 스트림 객체 반환 ''' assert os.path.exists(path), "Please check input path" stream = Streamer(path) line = stream.next() pattern_len, text_len = line.split() pattern_len, text_len = int(pattern_len), int(text_len) return pattern_len, text_len, stream def load_input_data(path): ''' 입력 데이터 형식을 파싱하고 튜플 형태로 반환하는 함수 :param path: 입력 데이터의 파일 경로 :return: 순서대로 들어오는 정보인 패턴크기, 텍스트크기, 패턴에 대한 2차원배열, 텍스트에 대한 2차원 배열을 반환 ''' assert os.path.exists(path), "Please check input path" with open(path, "r") as f: lines = [line.replace("\n", "").strip() for line in f.readlines()] pattern_len, text_len = lines[0].split() pattern_len, text_len = int(pattern_len), int(text_len) patterns = lines[1:1+pattern_len] text = lines[1+pattern_len:1+pattern_len+text_len] return pattern_len, text_len, patterns, text def load_output_data(path): ''' 출력 데이터 형식을 파싱하고 튜플 형태로 반환하는 함수 :param path: 출력 데이터의 파일 경로 :return: 한줄마다 패턴 매칭 결과를 튜플 배열로 만들어 반환 ''' assert os.path.exists(path), "Please check output path" with open(path, "r") as f: lines = [line.replace("\n","").strip().split() for line in f.readlines()] return [(int(line[0]), int(line[1])) for line in lines] def save_output_data(path, result): ''' 출력 데이터 형식대로 결과 튜플을 출력해주는 함수 :param path: 출력 데이터의 파일 경로 :param result: 매칭된 패턴의 위치 튜플의 배열 :return: - ''' dirname = os.path.dirname(path) pathlib.Path(dirname).mkdir(parents=True, exist_ok=True) with open(path, "w") as f: for i, j in result: f.write(f'{i} {j}\n') def save_check_data(path, result): ''' Check 데이터 형식대로 구현된 Baker-bird 알고리즘과 Checker program의 결과를 출력하는 함수 :param path: Check 데이터의 파일 경로 :param result: Checker 결과 :return: - ''' dirname = os.path.dirname(path) pathlib.Path(dirname).mkdir(parents=True, exist_ok=True) with open(path, "w") as f: f.write(result) ```
{ "source": "JinHai-CN/milvus", "score": 2 }
#### File: tests/milvus_benchmark/k8s_runner.py ```python import os import logging import pdb import string import time import re import random import traceback import json import csv from multiprocessing import Process import numpy as np from yaml import full_load, dump from concurrent import futures from client import MilvusClient import parser from runner import Runner from milvus_metrics.api import report from milvus_metrics.models import Env, Hardware, Server, Metric import utils logger = logging.getLogger("milvus_benchmark.k8s_runner") namespace = "milvus" default_port = 19530 DELETE_INTERVAL_TIME = 5 # INSERT_INTERVAL = 100000 INSERT_INTERVAL = 50000 timestamp = int(time.time()) default_path = "/var/lib/milvus" class K8sRunner(Runner): def __init__(self): """ Run with helm mode. Upload test result after tests finished """ super(K8sRunner, self).__init__() self.service_name = utils.get_unique_name() self.host = None self.port = default_port self.hostname = None self.env_value = None def init_env(self, server_config, server_host, deploy_mode, image_type, image_tag): """ Deploy start server with using helm and clean up env. If deploy or start failed """ logger.debug("Tests run on server host:") logger.debug(server_host) self.hostname = server_host # update values helm_path = os.path.join(os.getcwd(), "../milvus-helm/charts/milvus") values_file_path = helm_path+"/values.yaml" if not os.path.exists(values_file_path): raise Exception("File %s not existed" % values_file_path) if server_config: utils.update_values(values_file_path, deploy_mode, server_host, server_config) try: logger.debug("Start install server") self.host = utils.helm_install_server(helm_path, deploy_mode, image_tag, image_type, self.service_name, namespace) except Exception as e: logger.error("Helm install server failed: %s" % (str(e))) logger.error(traceback.format_exc()) logger.debug(server_config) self.clean_up() return False # for debugging if not self.host: logger.error("Helm install server failed") self.clean_up() return False return True def clean_up(self): """ Stop server with using helm. """ logger.debug("Start clean up: %s" % self.service_name) utils.helm_del_server(self.service_name, namespace) def report_wrapper(self, milvus_instance, env_value, hostname, collection_info, index_info, search_params, run_params=None): """ upload test result """ metric = Metric() metric.set_run_id(timestamp) metric.env = Env(env_value) metric.env.OMP_NUM_THREADS = 0 metric.hardware = Hardware(name=hostname) server_version = milvus_instance.get_server_version() server_mode = milvus_instance.get_server_mode() commit = milvus_instance.get_server_commit() metric.server = Server(version=server_version, mode=server_mode, build_commit=commit) metric.collection = collection_info metric.index = index_info metric.search = search_params metric.run_params = run_params return metric def run(self, run_type, collection): """ override runner.run """ logger.debug(run_type) logger.debug(collection) collection_name = collection["collection_name"] if "collection_name" in collection else None milvus_instance = MilvusClient(collection_name=collection_name, host=self.host) self.env_value = milvus_instance.get_server_config() # ugly implemention # remove some parts of result before uploading results self.env_value.pop("logs") if milvus_instance.get_server_mode() == "CPU": if "gpu" in self.env_value: self.env_value.pop("gpu") elif "cache.enable" in self.env_value["gpu"]: self.env_value["gpu"].pop("cache.enable") self.env_value.pop("network") if run_type == "insert_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: milvus_instance.flush() logger.debug(milvus_instance.count()) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "total_time": res["total_time"], "qps": res["qps"], "ni_time": res["ni_time"] } } report(metric) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) elif run_type == "insert_debug_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(ni_per)] start_time = time.time() i = 0 while time.time() < start_time + 2 * 24 * 3600: i = i + 1 logger.debug(i) logger.debug("Row count: %d" % milvus_instance.count()) milvus_instance.insert(insert_vectors) time.sleep(0.1) elif run_type == "insert_performance_multi_collections": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_type": index_type, "index_param": index_param } milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) milvus_instance.flush() collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "total_time": res["total_time"], "qps": res["qps"], "ni_time": res["ni_time"] } } report(metric) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) elif run_type == "insert_flush_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) logger.debug(milvus_instance.count()) start_time = time.time() milvus_instance.flush() end_time = time.time() logger.debug(milvus_instance.count()) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "flush_time": round(end_time - start_time, 1) } } report(metric) elif run_type == "build_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) index_type = collection["index_type"] index_param = collection["index_param"] collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } index_info = { "index_type": index_type, "index_param": index_param } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return search_params = {} start_time = time.time() # drop index logger.debug("Drop index") milvus_instance.drop_index() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) logger.debug(milvus_instance.count()) end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "build_performance", "value": { "build_time": round(end_time - start_time, 1), "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "delete_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ni_per = collection["ni_per"] search_params = {} collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return length = milvus_instance.count() logger.info(length) index_info = milvus_instance.describe_index() logger.info(index_info) ids = [i for i in range(length)] loops = int(length / ni_per) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_time = time.time() for i in range(loops): delete_ids = ids[i*ni_per : i*ni_per+ni_per] logger.debug("Delete %d - %d" % (delete_ids[0], delete_ids[-1])) milvus_instance.delete(delete_ids) # milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count()) logger.debug("Table row counts: %d" % milvus_instance.count()) milvus_instance.flush() end_time = time.time() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug("Table row counts: %d" % milvus_instance.count()) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": "delete_performance", "value": { "delete_time": round(end_time - start_time, 1), "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "get_ids_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) ids_length_per_segment = collection["ids_length_per_segment"] if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } search_params = {} logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) for ids_num in ids_length_per_segment: segment_num, get_ids = milvus_instance.get_rand_ids_each_segment(ids_num) start_time = time.time() _ = milvus_instance.get_entities(get_ids) total_time = time.time() - start_time avg_time = total_time / segment_num run_params = {"ids_num": ids_num} logger.info("Segment num: %d, ids num per segment: %d, run_time: %f" % (segment_num, ids_num, total_time)) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params, run_params=run_params) metric.metrics = { "type": run_type, "value": { "total_time": round(total_time, 1), "avg_time": round(avg_time, 1) } } report(metric) elif run_type == "search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) run_count = collection["run_count"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() logger.info("Start warm up query") res = self.do_query(milvus_instance, collection_name, [1], [1], 2, search_param=search_params[0]) logger.info("End warm up query") for search_param in search_params: logger.info("Search param: %s" % json.dumps(search_param)) res = self.do_query(milvus_instance, collection_name, top_ks, nqs, run_count, search_param) headers = ["Nq/Top-k"] headers.extend([str(top_k) for top_k in top_ks]) logger.info("Search param: %s" % json.dumps(search_param)) utils.print_table(headers, nqs, res) for index_nq, nq in enumerate(nqs): for index_top_k, top_k in enumerate(top_ks): search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param } search_time = res[index_nq][index_top_k] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "search_performance", "value": { "search_time": search_time } } report(metric) elif run_type == "locust_search_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser( collection_name) ### clear db ### spawn locust requests collection_num = collection["collection_num"] task = collection["task"] # . generate task code task_file = utils.get_unique_name() task_file_script = task_file + '.py' task_file_csv = task_file + '_stats.csv' task_type = task["type"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_name = task_type task_params = task["params"] collection_names = [] for i in range(collection_num): suffix = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(5)) collection_names.append(collection_name + "_" + suffix) # ##### ni_per = collection["ni_per"] build_index = collection["build_index"] # TODO: debug for c_name in collection_names: milvus_instance = MilvusClient(collection_name=c_name, host=self.host, port=self.port) if milvus_instance.exists_collection(collection_name=c_name): milvus_instance.drop(name=c_name) time.sleep(10) milvus_instance.create_collection(c_name, dimension, index_file_size, metric_type) index_info = { "build_index": build_index } if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info.update({ "index_type": index_type, "index_param": index_param }) milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, c_name, data_type, dimension, collection_size, ni_per) logger.info(res) if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: milvus_instance.flush() logger.debug("Table row counts: %d" % milvus_instance.count(name=c_name)) if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) code_str = """ import random import string from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient host = '%s' port = %s dim = %s connection_type = '%s' collection_names = %s m = MilvusClient(host=host, port=port) def get_collection_name(): return random.choice(collection_names) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) class QueryTask(User): wait_time = between(0.001, 0.002) @task() def %s(self): top_k = %s X = [[random.random() for i in range(dim)] for i in range(%s)] search_param = %s collection_name = get_collection_name() client = get_client(collection_name) client.query(X, top_k, search_param, collection_name=collection_name) """ % (self.host, self.port, dimension, connection_type, collection_names, def_name, task_params["top_k"], task_params["nq"], task_params["search_param"]) with open(task_file_script, 'w+') as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return # . retrieve and collect test statistics locust_stats = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue locust_stats = row logger.info(locust_stats) # clean up temp files search_params = { "top_k": task_params["top_k"], "nq": task_params["nq"], "nprobe": task_params["search_param"]["nprobe"] } run_params = { "connection_num": connection_num, "clients_num": clients_num, "hatch_rate": hatch_rate, "during_time": during_time } collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params, run_params) metric.metrics = { "type": run_type, "value": { "during_time": during_time, "request_count": int(locust_stats["Request Count"]), "failure_count": int(locust_stats["Failure Count"]), "qps": locust_stats["Requests/s"], "min_response_time": int(locust_stats["Min Response Time"]), "max_response_time": int(locust_stats["Max Response Time"]), "median_response_time": int(locust_stats["Median Response Time"]), "avg_response_time": int(locust_stats["Average Response Time"]) } } report(metric) elif run_type == "search_ids_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] ids_length = collection["ids_length"] ids = collection["ids"] collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) # g_id = int(ids.split("-")[1]) # l_id = int(ids.split("-")[0]) g_id_length = int(ids_length.split("-")[1]) l_id_length = int(ids_length.split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) ids_num = random.randint(l_id_length, g_id_length) ids_param = [random.randint(l_id_length, g_id_length) for _ in range(ids_num)] for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query top-k: %d, ids_num: %d, param: %s" % (top_k, ids_num, json.dumps(search_param))) result = milvus_instance.query_ids(top_k, ids_param, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_ids_stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) # for sift/deep datasets # TODO: enable elif run_type == "accuracy": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) top_ks = collection["top_ks"] nqs = collection["nqs"] collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) milvus_instance.preload_collection() true_ids_all = self.get_groundtruth_ids(collection_size) for search_param in search_params: for top_k in top_ks: for nq in nqs: # total = 0 search_param_group = { "nq": nq, "topk": top_k, "search_param": search_param } logger.info("Query params: %s" % json.dumps(search_param_group)) result_ids, _ = self.do_query_ids(milvus_instance, collection_name, top_k, nq, search_param=search_param) acc_value = self.get_recall_value(true_ids_all[:nq, :top_k].tolist(), result_ids) logger.info("Query accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "ann_accuracy": hdf5_source_file = collection["source_file"] collection_name = collection["collection_name"] index_file_sizes = collection["index_file_sizes"] index_types = collection["index_types"] index_params = collection["index_params"] top_ks = collection["top_ks"] nqs = collection["nqs"] search_params = collection["search_params"] # mapping to search param list search_params = self.generate_combinations(search_params) # mapping to index param list index_params = self.generate_combinations(index_params) data_type, dimension, metric_type = parser.parse_ann_collection_name(collection_name) dataset = utils.get_dataset(hdf5_source_file) true_ids = np.array(dataset["neighbors"]) for index_file_size in index_file_sizes: collection_info = { "dimension": dimension, "metric_type": metric_type, "index_file_size": index_file_size, "dataset_name": collection_name } if milvus_instance.exists_collection(collection_name): logger.info("Re-create collection: %s" % collection_name) milvus_instance.drop() time.sleep(DELETE_INTERVAL_TIME) milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) logger.info(milvus_instance.describe()) insert_vectors = self.normalize(metric_type, np.array(dataset["train"])) # Insert batch once # milvus_instance.insert(insert_vectors) loops = len(insert_vectors) // INSERT_INTERVAL + 1 for i in range(loops): start = i*INSERT_INTERVAL end = min((i+1)*INSERT_INTERVAL, len(insert_vectors)) tmp_vectors = insert_vectors[start:end] if start < end: if not isinstance(tmp_vectors, list): milvus_instance.insert(tmp_vectors.tolist(), ids=[i for i in range(start, end)]) else: milvus_instance.insert(tmp_vectors, ids=[i for i in range(start, end)]) milvus_instance.flush() logger.info("Table: %s, row count: %s" % (collection_name, milvus_instance.count())) if milvus_instance.count() != len(insert_vectors): logger.error("Table row count is not equal to insert vectors") return for index_type in index_types: for index_param in index_params: logger.debug("Building index with param: %s" % json.dumps(index_param)) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) logger.info("Start preload collection: %s" % collection_name) milvus_instance.preload_collection() index_info = { "index_type": index_type, "index_param": index_param } logger.debug(index_info) for search_param in search_params: for nq in nqs: query_vectors = self.normalize(metric_type, np.array(dataset["test"][:nq])) for top_k in top_ks: search_param_group = { "nq": len(query_vectors), "topk": top_k, "search_param": search_param } logger.debug(search_param_group) if not isinstance(query_vectors, list): result = milvus_instance.query(query_vectors.tolist(), top_k, search_param=search_param) else: result = milvus_instance.query(query_vectors, top_k, search_param=search_param) if len(result): logger.debug(len(result)) logger.debug(len(result[0])) result_ids = result.id_array acc_value = self.get_recall_value(true_ids[:nq, :top_k].tolist(), result_ids) logger.info("Query ann_accuracy: %s" % acc_value) metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_param_group) metric.metrics = { "type": "ann_accuracy", "value": { "acc": acc_value } } report(metric) elif run_type == "search_stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] logger.debug(start_mem_usage) start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() while time.time() < start_time + during_time * 60: search_param = {} top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) query_vectors = [[random.random() for _ in range(dimension)] for _ in range(nq)] logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors, top_k, search_param=search_param) end_mem_usage = milvus_instance.get_mem_info()["memory_used"] metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "search_stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage } } report(metric) elif run_type == "loop_stability": # init data milvus_instance.clean_db() pull_interval = collection["pull_interval"] collection_num = collection["collection_num"] concurrent = collection["concurrent"] if "concurrent" in collection else False concurrent_num = collection_num dimension = collection["dimension"] if "dimension" in collection else 128 insert_xb = collection["insert_xb"] if "insert_xb" in collection else 100000 index_types = collection["index_types"] if "index_types" in collection else ['ivf_sq8'] index_param = {"nlist": 2048} collection_names = [] milvus_instances_map = {} insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] for i in range(collection_num): name = utils.get_unique_name(prefix="collection_") collection_names.append(name) metric_type = random.choice(["l2", "ip"]) index_file_size = random.randint(10, 20) milvus_instance.create_collection(name, dimension, index_file_size, metric_type) milvus_instance = MilvusClient(collection_name=name, host=self.host) index_type = random.choice(index_types) milvus_instance.create_index(index_type, index_param=index_param) logger.info(milvus_instance.describe_index()) insert_vectors = utils.normalize(metric_type, insert_vectors) milvus_instance.insert(insert_vectors) milvus_instance.flush() milvus_instances_map.update({name: milvus_instance}) logger.info(milvus_instance.describe_index()) logger.info(milvus_instance.describe()) # loop time unit: min -> s pull_interval_seconds = pull_interval * 60 tasks = ["insert_rand", "delete_rand", "query_rand", "flush", "compact"] i = 1 while True: logger.info("Loop time: %d" % i) start_time = time.time() while time.time() - start_time < pull_interval_seconds: if concurrent: mp = [] for _ in range(concurrent_num): tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) mp.append((tmp_collection_name, task_name)) with futures.ThreadPoolExecutor(max_workers=concurrent_num) as executor: future_results = {executor.submit(getattr(milvus_instances_map[mp[j][0]], mp[j][1])): j for j in range(concurrent_num)} for future in futures.as_completed(future_results): future.result() else: tmp_collection_name = random.choice(collection_names) task_name = random.choice(tasks) logger.info(tmp_collection_name) logger.info(task_name) task_run = getattr(milvus_instances_map[tmp_collection_name], task_name) task_run() logger.debug("Restart server") utils.restart_server(self.service_name, namespace) # new connection for name in collection_names: milvus_instance = MilvusClient(collection_name=name, host=self.host) milvus_instances_map.update({name: milvus_instance}) i = i + 1 elif run_type == "stability": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser(collection_name) search_params = collection["search_params"] insert_xb = collection["insert_xb"] insert_interval = collection["insert_interval"] delete_xb = collection["delete_xb"] during_time = collection["during_time"] collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } if not milvus_instance.exists_collection(): logger.error("Table name: %s not existed" % collection_name) return logger.info(milvus_instance.count()) index_info = milvus_instance.describe_index() logger.info(index_info) g_top_k = int(collection["top_ks"].split("-")[1]) g_nq = int(collection["nqs"].split("-")[1]) l_top_k = int(collection["top_ks"].split("-")[0]) l_nq = int(collection["nqs"].split("-")[0]) milvus_instance.preload_collection() start_mem_usage = milvus_instance.get_mem_info()["memory_used"] start_row_count = milvus_instance.count() logger.debug(milvus_instance.describe_index()) logger.info(start_row_count) start_time = time.time() i = 0 ids = [] insert_vectors = [[random.random() for _ in range(dimension)] for _ in range(insert_xb)] query_vectors = [[random.random() for _ in range(dimension)] for _ in range(10000)] while time.time() < start_time + during_time * 60: i = i + 1 for j in range(insert_interval): top_k = random.randint(l_top_k, g_top_k) nq = random.randint(l_nq, g_nq) search_param = {} for k, v in search_params.items(): search_param[k] = random.randint(int(v.split("-")[0]), int(v.split("-")[1])) logger.debug("Query nq: %d, top-k: %d, param: %s" % (nq, top_k, json.dumps(search_param))) result = milvus_instance.query(query_vectors[0:nq], top_k, search_param=search_param) count = milvus_instance.count() insert_ids = [(count+x) for x in range(len(insert_vectors))] ids.extend(insert_ids) status, res = milvus_instance.insert(insert_vectors, ids=insert_ids) logger.debug("%d, row_count: %d" % (i, milvus_instance.count())) milvus_instance.delete(ids[-delete_xb:]) milvus_instance.flush() milvus_instance.compact() end_mem_usage = milvus_instance.get_mem_info()["memory_used"] end_row_count = milvus_instance.count() metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, {}) metric.metrics = { "type": "stability", "value": { "during_time": during_time, "start_mem_usage": start_mem_usage, "end_mem_usage": end_mem_usage, "diff_mem": end_mem_usage - start_mem_usage, "row_count_increments": end_row_count - start_row_count } } report(metric) elif run_type == "locust_mix_performance": (data_type, collection_size, index_file_size, dimension, metric_type) = parser.collection_parser( collection_name) ni_per = collection["ni_per"] build_index = collection["build_index"] # # TODO: debug if milvus_instance.exists_collection(): milvus_instance.drop() time.sleep(10) index_info = {} search_params = {} milvus_instance.create_collection(collection_name, dimension, index_file_size, metric_type) if build_index is True: index_type = collection["index_type"] index_param = collection["index_param"] index_info = { "index_tyoe": index_type, "index_param": index_param } milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) res = self.do_insert(milvus_instance, collection_name, data_type, dimension, collection_size, ni_per) logger.info(res) if "flush" in collection and collection["flush"] == "no": logger.debug("No manual flush") else: milvus_instance.flush() if build_index is True: logger.debug("Start build index for last file") milvus_instance.create_index(index_type, index_param) logger.debug(milvus_instance.describe_index()) ### spawn locust requests task = collection["tasks"] # generate task code task_file = utils.get_unique_name() task_file_script = task_file + '.py' task_file_csv = task_file + '_stats.csv' task_types = task["types"] connection_type = "single" connection_num = task["connection_num"] if connection_num > 1: connection_type = "multi" clients_num = task["clients_num"] hatch_rate = task["hatch_rate"] during_time = task["during_time"] def_strs = "" for task_type in task_types: _type = task_type["type"] weight = task_type["weight"] if _type == "flush": def_str = """ @task(%d) def flush(self): client = get_client(collection_name) client.flush(collection_name=collection_name) """ % weight if _type == "compact": def_str = """ @task(%d) def compact(self): client = get_client(collection_name) client.compact(collection_name) """ % weight if _type == "query": def_str = """ @task(%d) def query(self): client = get_client(collection_name) params = %s X = [[random.random() for i in range(dim)] for i in range(params["nq"])] client.query(X, params["top_k"], params["search_param"], collection_name=collection_name) """ % (weight, task_type["params"]) if _type == "insert": def_str = """ @task(%d) def insert(self): client = get_client(collection_name) params = %s ids = [random.randint(10, 1000000) for i in range(params["nb"])] X = [[random.random() for i in range(dim)] for i in range(params["nb"])] client.insert(X,ids=ids, collection_name=collection_name) """ % (weight, task_type["params"]) if _type == "delete": def_str = """ @task(%d) def delete(self): client = get_client(collection_name) ids = [random.randint(1, 1000000) for i in range(1)] client.delete(ids, collection_name) """ % weight def_strs += def_str code_str = """ import random import json from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient host = '%s' port = %s collection_name = '%s' dim = %s connection_type = '%s' m = MilvusClient(host=host, port=port) def get_client(collection_name): if connection_type == 'single': return MilvusTask(m=m) elif connection_type == 'multi': return MilvusTask(connection_type='multi', host=host, port=port, collection_name=collection_name) class MixTask(User): wait_time = between(0.001, 0.002) %s """ % (self.host, self.port, collection_name, dimension, connection_type, def_strs) print(def_strs) with open(task_file_script, "w+") as fd: fd.write(code_str) locust_cmd = "locust -f %s --headless --csv=%s -u %d -r %d -t %s" % ( task_file_script, task_file, clients_num, hatch_rate, during_time) logger.info(locust_cmd) try: res = os.system(locust_cmd) except Exception as e: logger.error(str(e)) return # . retrieve and collect test statistics locust_stats = None with open(task_file_csv, newline='') as fd: dr = csv.DictReader(fd) for row in dr: if row["Name"] != "Aggregated": continue locust_stats = row logger.info(locust_stats) collection_info = { "dimension": dimension, "metric_type": metric_type, "dataset_name": collection_name } metric = self.report_wrapper(milvus_instance, self.env_value, self.hostname, collection_info, index_info, search_params) metric.metrics = { "type": run_type, "value": { "during_time": during_time, "request_count": int(locust_stats["Request Count"]), "failure_count": int(locust_stats["Failure Count"]), "qps": locust_stats["Requests/s"], "min_response_time": int(locust_stats["Min Response Time"]), "max_response_time": int(locust_stats["Max Response Time"]), "median_response_time": int(locust_stats["Median Response Time"]), "avg_response_time": int(locust_stats["Average Response Time"]) } } report(metric) else: logger.warning("Run type: %s not defined" % run_type) return logger.debug("Test finished") ``` #### File: tests/milvus_benchmark/locust_task.py ```python import time from locust import events from client import MilvusClient class MilvusTask(object): def __init__(self, connection_type="single", **kwargs): """ Generate milvus client for locust. To make sure we can use the same function name in client as task name in Taskset/User. Params: connection_type, single/multi is optional other args: host/port/collection_name """ self.request_type = "grpc" if connection_type == "single": self.m = kwargs.get("m") elif connection_type == "multi": host = kwargs.get("host") port = kwargs.get("port") collection_name = kwargs.get("collection_name") self.m = MilvusClient(host=host, port=port, collection_name=collection_name) def __getattr__(self, name): """ Register success and failure event with using locust.events. Make sure the task function name in locust equals to te name of function in MilvusClient """ func = getattr(self.m, name) def wrapper(*args, **kwargs): start_time = time.time() try: _ = func(*args, **kwargs) total_time = int((time.time() - start_time) * 1000) events.request_success.fire(request_type=self.request_type, name=name, response_time=total_time, response_length=0) except Exception as e: total_time = int((time.time() - start_time) * 1000) events.request_failure.fire(request_type=self.request_type, name=name, response_time=total_time, exception=e, response_length=0) return wrapper ``` #### File: tests/milvus_benchmark/search_task.py ```python import random, string from locust import User, task, between from locust_task import MilvusTask from client import MilvusClient connection_type = "single" host = "192.168.1.29" port = 19531 collection_name = "sift_128_euclidean" dim = 128 m = MilvusClient(host=host, port=port, collection_name=collection_name) class QueryTask(User): wait_time = between(0.001, 0.002) print("in query task") if connection_type == "single": client = MilvusTask(m=m) else: client = MilvusTask(host=host, port=port, collection_name=collection_name) # @task() # def query(self): # top_k = 10 # X = [[random.random() for i in range(dim)] for i in range(1)] # search_param = {"nprobe": 16} # self.client.query(X, top_k, search_param) @task(1) def test_create(self): tag_name = "".join(random.choice(string.ascii_letters + string.digits) for _ in range(8)) self.client.create_partition(tag_name) @task(1) def test_drop(self): tags = m.list_partitions() tag = random.choice(tags) self.client.drop_partition(tag.tag) ``` #### File: milvus_python_test/entity/test_get_entity_by_id.py ```python import time import random import pdb import threading import logging from multiprocessing import Pool, Process import concurrent.futures import pytest from milvus import IndexType, MetricType from utils import * dim = 128 index_file_size = 10 collection_id = "get_entity_by_id" DELETE_TIMEOUT = 60 nprobe = 1 tag = "1970-01-01" top_k = 1 nb = 6000 tag = "tag" class TestGetBase: """ ****************************************************************** The following cases are used to test .get_entity_by_id` function ****************************************************************** """ def test_get_vector_A(self, connect, collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' vector = gen_single_vector(dim) status, ids = connect.insert(collection, vector) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, ids) assert status.OK() assert_equal_vector(res[0], vector[0]) def test_get_vector_B(self, connect, collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) assert status.OK() status = connect.flush([collection]) assert status.OK() length = 100 status, res = connect.get_entity_by_id(collection, ids[:length]) assert status.OK() for i in range(length): assert_equal_vector(res[i], vectors[i]) def test_get_vector_C_limit(self, connect, collection, args): ''' target: test.get_entity_by_id method: add vector, and get, limit > 1000 expected: status ok, vector returned ''' if args["handler"] == "HTTP": pytest.skip("skip in http mode") vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, ids) assert not status.OK() def test_get_vector_partition(self, connect, collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) assert status.OK() status, ids = connect.insert(collection, vectors, partition_tag=tag) assert status.OK() status = connect.flush([collection]) assert status.OK() length = 100 status, res = connect.get_entity_by_id(collection, ids[:length]) assert status.OK() for i in range(length): assert_equal_vector(res[i], vectors[i]) def test_get_vector_multi_same_ids(self, connect, collection): ''' target: test.get_entity_by_id method: add vectors, with the same id, get vector by the given id expected: status ok, get one vector ''' vectors = gen_vectors(nb, dim) ids = [i for i in range(nb)] ids[1] = 0; ids[-1] = 0 status, ids = connect.insert(collection, vectors, ids=ids) status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, [0]) assert status.OK() assert_equal_vector(res[0], vectors[0]) @pytest.fixture( scope="function", params=[ 1, 10, 100, 1000, -1 ], ) def get_id(self, request): yield request.param def test_get_vector_after_delete(self, connect, collection, get_id): ''' target: test.get_entity_by_id method: add vectors, and delete, get vector by the given id expected: status ok, get one vector ''' vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) assert status.OK() status = connect.flush([collection]) assert status.OK() id = get_id status = connect.delete_entity_by_id(collection, [ids[id]]) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, [ids[id]]) assert status.OK() assert not len(res[0]) def test_get_vector_after_delete_with_partition(self, connect, collection, get_id): ''' target: test.get_entity_by_id method: add vectors into partition, and delete, get vector by the given id expected: status ok, get one vector ''' vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) status, ids = connect.insert(collection, vectors, partition_tag=tag) assert status.OK() status = connect.flush([collection]) assert status.OK() id = get_id status = connect.delete_entity_by_id(collection, [ids[id]]) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, [ids[id]]) assert status.OK() assert not len(res[0]) def test_get_vector_id_not_exised(self, connect, collection): ''' target: test get vector, params vector_id not existed method: add vector and get expected: status ok, empty result ''' vector = gen_single_vector(dim) status, ids = connect.insert(collection, vector) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, [1]) assert status.OK() assert not len(res[0]) def test_get_vector_collection_not_existed(self, connect, collection): ''' target: test get vector, params collection_name not existed method: add vector and get expected: status not ok ''' vector = gen_single_vector(dim) status, ids = connect.insert(collection, vector) assert status.OK() status = connect.flush([collection]) assert status.OK() collection_new = gen_unique_str() status, res = connect.get_entity_by_id(collection_new, [1]) assert not status.OK() def test_get_vector_by_id_multithreads(self, connect, collection): vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) status = connect.flush([collection]) assert status.OK() get_id = ids[100:200] def get(): status, res = connect.get_entity_by_id(collection, get_id) assert status.OK() assert len(res) == len(get_id) for i in range(len(res)): assert_equal_vector(res[i], vectors[100+i]) with concurrent.futures.ThreadPoolExecutor(max_workers=5) as executor: future_results = {executor.submit( get): i for i in range(10)} for future in concurrent.futures.as_completed(future_results): future.result() # TODO: autoflush def _test_get_vector_by_id_after_delete_no_flush(self, connect, collection): vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) status = connect.flush([collection]) assert status.OK() get_id = ids[100:200] status = connect.delete_entity_by_id(collection, get_id) assert status.OK() status, res = connect.get_entity_by_id(collection, get_id) assert status.OK() assert len(res) == len(get_id) for i in range(len(res)): assert_equal_vector(res[i], vectors[100+i]) class TestGetIndexedVectors: """ ****************************************************************** The following cases are used to test .get_entity_by_id` function ****************************************************************** """ @pytest.fixture( scope="function", params=gen_simple_index() ) def get_simple_index(self, request, connect): if str(connect._cmd("mode")[1]) == "GPU": if request.param["index_type"] not in [IndexType.IVF_SQ8, IndexType.IVFLAT, IndexType.FLAT, IndexType.IVF_PQ, IndexType.IVF_SQ8H]: pytest.skip("Only support index_type: idmap/ivf") elif str(connect._cmd("mode")[1]) == "CPU": if request.param["index_type"] in [IndexType.IVF_SQ8H]: pytest.skip("CPU not support index_type: ivf_sq8h") return request.param @pytest.fixture( scope="function", params=[ 1, 10, 100, 1000, -1 ], ) def get_id(self, request): yield request.param def test_get_vectors_after_index_created(self, connect, collection, get_simple_index, get_id): ''' target: test get vector after index created method: add vector, create index and get vector expected: status ok ''' index_param = get_simple_index["index_param"] index_type = get_simple_index["index_type"] vectors = gen_vector(nb, dim) status, ids = connect.insert(collection, vectors) assert status.OK() status = connect.flush([collection]) assert status.OK() status = connect.create_index(collection, index_type, index_param) assert status.OK() id = get_id status, res = connect.get_entity_by_id(collection, [ids[id]]) assert status.OK() assert_equal_vector(res[0], vectors[id]) def test_get_vector_after_delete(self, connect, collection, get_simple_index, get_id): ''' target: test.get_entity_by_id method: add vectors, and delete, get vector by the given id expected: status ok, get one vector ''' index_param = get_simple_index["index_param"] index_type = get_simple_index["index_type"] vectors = gen_vectors(nb, dim) status, ids = connect.insert(collection, vectors) assert status.OK() status = connect.flush([collection]) assert status.OK() status = connect.create_index(collection, index_type, index_param) assert status.OK() id = get_id status = connect.delete_entity_by_id(collection, [ids[id]]) assert status.OK() status = connect.flush([collection]) assert status.OK() status, res = connect.get_entity_by_id(collection, [ids[id]]) assert status.OK() assert not len(res[0]) def test_get_vector_partition(self, connect, collection, get_simple_index, get_id): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' index_param = get_simple_index["index_param"] index_type = get_simple_index["index_type"] vectors = gen_vectors(nb, dim) status = connect.create_partition(collection, tag) ids = [i for i in range(nb)] status, ids = connect.insert(collection, vectors, ids, partition_tag=tag) assert status.OK() status = connect.flush([collection]) assert status.OK() status = connect.create_index(collection, index_type, index_param) assert status.OK() id = get_id status, res = connect.get_entity_by_id(collection, [ids[id]]) assert status.OK() assert_equal_vector(res[0], vectors[id]) class TestGetBinary: """ ****************************************************************** The following cases are used to test .get_entity_by_id` function ****************************************************************** """ def test_get_vector_A(self, connect, jac_collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' tmp, vector = gen_binary_vectors(1, dim) status, ids = connect.insert(jac_collection, vector) assert status.OK() status = connect.flush([jac_collection]) assert status.OK() status, res = connect.get_entity_by_id(jac_collection, [ids[0]]) assert status.OK() assert_equal_vector(res[0], vector[0]) def test_get_vector_B(self, connect, jac_collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' tmp, vectors = gen_binary_vectors(nb, dim) status, ids = connect.insert(jac_collection, vectors) assert status.OK() status = connect.flush([jac_collection]) assert status.OK() status, res = connect.get_entity_by_id(jac_collection, [ids[0]]) assert status.OK() assert_equal_vector(res[0], vectors[0]) def test_get_vector_multi_same_ids(self, connect, jac_collection): ''' target: test.get_entity_by_id method: add vectors, with the same id, get vector by the given id expected: status ok, get one vector ''' tmp, vectors = gen_binary_vectors(nb, dim) ids = [i for i in range(nb)] ids[0] = 0; ids[-1] = 0 status, ids = connect.insert(jac_collection, vectors, ids=ids) status = connect.flush([jac_collection]) assert status.OK() status, res = connect.get_entity_by_id(jac_collection, [0]) assert status.OK() assert_equal_vector(res[0], vectors[0]) def test_get_vector_id_not_exised(self, connect, jac_collection): ''' target: test get vector, params vector_id not existed method: add vector and get expected: status ok, empty result ''' tmp, vector = gen_binary_vectors(1, dim) status, ids = connect.insert(jac_collection, vector) assert status.OK() status = connect.flush([jac_collection]) assert status.OK() status, res = connect.get_entity_by_id(jac_collection, [1]) assert status.OK() assert not len(res[0]) def test_get_vector_collection_not_existed(self, connect, jac_collection): ''' target: test get vector, params collection_name not existed method: add vector and get expected: status not ok ''' tmp, vector = gen_binary_vectors(1, dim) status, ids = connect.insert(jac_collection, vector) assert status.OK() status = connect.flush([jac_collection]) assert status.OK() collection_new = gen_unique_str() status, res = connect.get_entity_by_id(collection_new, [1]) assert not status.OK() def test_get_vector_partition(self, connect, jac_collection): ''' target: test.get_entity_by_id method: add vector, and get expected: status ok, vector returned ''' tmp, vectors = gen_binary_vectors(nb, dim) status = connect.create_partition(jac_collection, tag) status, ids = connect.insert(jac_collection, vectors, partition_tag=tag) assert status.OK() status = connect.flush([jac_collection]) assert status.OK() status, res = connect.get_entity_by_id(jac_collection, [ids[0]]) assert status.OK() assert_equal_vector(res[0], vectors[0]) class TestGetVectorIdIngalid(object): single_vector = gen_single_vector(dim) """ Test adding vectors with invalid vectors """ @pytest.fixture( scope="function", params=gen_invalid_vector_ids() ) def gen_invalid_id(self, request): yield request.param @pytest.mark.level(2) def test_get_vector_id_invalid(self, connect, collection, gen_invalid_id): invalid_id = gen_invalid_id with pytest.raises(Exception) as e: status = connect.get_entity_by_id(collection, [invalid_id]) class TestCollectionNameInvalid(object): """ Test adding vectors with invalid collection names """ @pytest.fixture( scope="function", params=gen_invalid_collection_names() ) def get_collection_name(self, request): yield request.param @pytest.mark.level(2) def test_get_vectors_with_invalid_collection_name(self, connect, get_collection_name): collection_name = get_collection_name vectors = gen_vectors(1, dim) status, result = connect.get_entity_by_id(collection_name, [1]) assert not status.OK() ```
{ "source": "JinHai-CN/phantoscope", "score": 3 }
#### File: search/common/error.py ```python class Error(Exception): def __init__(self, message, error): self.message = message self.error = error @property def code(self): return 503 @property def name(self): return self.__class__.__name__ @property def description(self): return self.message class OperatorImportError(Error): pass class OperatorRegistError(Error): pass class PipelineCheckError(Error): pass class Insert2SQLError(Error): pass class QueryFromSQLError(Error): pass class DeleteFromSQLError(Error): pass class UpdateFromSQLError(Error): pass class NotExistError(Error): @property def code(self): return 404 class MilvusError(Error): pass class S3Error(Error): pass class DecodeError(Error): @property def code(self): return 400 class DownloadFileError(Error): @property def code(self): return 598 class PipelineIlegalError(Error): @property def code(self): return 400 class RPCExecError(Error): @property def code(self): return 503 class RequestError(Error): @property def code(self): return 400 class NoneVectorError(Error): @property def code(self): return 400 ``` #### File: search/operators/operators_api.py ```python import json from flask import Blueprint from flask_restful import reqparse from common.common import json_response from operators.operator import all_operators from operators.operator import regist_operators from operators.operator import delete_operators from operators.operator import operator_detail from operators.operator import operator_health from common.common import from_view_dict operator = Blueprint('operator', __name__) @operator.route("/") @json_response def operator_list_api(): return all_operators() @operator.route("/regist", methods=['POST']) @json_response def operator_refresh_api(): args = reqparse.RequestParser(). \ add_argument("endpoint", type=str, required=True). \ add_argument("name", type=str, required=True). \ parse_args() args = from_view_dict(args) ed = args['endpoint'] name = args['name'] return regist_operators(ed, name) @operator.route("/<name>", methods=['DELETE']) @json_response def delete_operator_api(name): return delete_operators(name) @operator.route("/<name>") @json_response def operator_detail_api(name): return operator_detail(name) @operator.route("/<name>/health") @json_response def operator_health_api(name): return operator_health(name) ```
{ "source": "JinHai-CN/pymilvus", "score": 2 }
#### File: pymilvus/tests/TestClient.py ```python import logging import pytest import mock import faker import random import sys from faker.providers import BaseProvider from thrift.transport.TSocket import TSocket from thrift.transport import TTransport sys.path.append('.') from milvus.client.Client import Milvus, Prepare, IndexType, Status, TopKQueryResult from milvus.client.Exceptions import ( NotConnectError, RepeatingConnectError, DisconnectNotConnectedClientError) from milvus.thrift import ttypes, MilvusService LOGGER = logging.getLogger(__name__) class FakerProvider(BaseProvider): def table_name(self): return 'table_name' + str(random.randint(1000, 9999)) def name(self): return 'name' + str(random.randint(1000, 9999)) def dim(self): return random.randint(0, 999) fake = faker.Faker() fake.add_provider(FakerProvider) def range_factory(): param = { 'start': str(random.randint(1, 10)), 'end': str(random.randint(11, 20)), } return Prepare.range(**param) def ranges_factory(): return [range_factory() for _ in range(5)] def table_schema_factory(): param = { 'table_name': fake.table_name(), 'dimension': random.randint(0, 999), 'index_type': IndexType.IDMAP, 'store_raw_vector': False } return Prepare.table_schema(**param) def records_factory(dimension): return Prepare.records([[random.random() for _ in range(dimension)] for _ in range(20)]) class TestConnection: param = {'host': 'localhost', 'port': '5000'} @mock.patch.object(TSocket, 'open') def test_true_connect(self, open): open.return_value = None cnn = Milvus() cnn.connect(**self.param) assert cnn.status.OK assert cnn.connected with pytest.raises(RepeatingConnectError): cnn.connect(**self.param) cnn.connect() def test_false_connect(self): cnn = Milvus() with pytest.raises(TTransport.TTransportException): cnn.connect(**self.param) LOGGER.error(cnn.status) assert not cnn.status.OK() @mock.patch.object(TSocket, 'open') def test_uri(self, open): open.return_value = None cnn = Milvus() cnn.connect(uri='tcp://127.0.0.1:9090') assert cnn.status.OK() def test_connect(self): cnn = Milvus() with pytest.raises(TTransport.TTransportException): cnn.connect('127.0.0.2') assert not cnn.status.OK() cnn.connect('127.0.0.1', '9999') assert not cnn.status.OK() cnn.connect(port='9999') assert not cnn.status.OK() cnn.connect(uri='tcp://127.0.0.1:9090') assert not cnn.status.OK() @mock.patch.object(TSocket, 'open') def test_uri_runtime_error(self, open): open.return_value = None cnn = Milvus() with pytest.raises(RuntimeError): cnn.connect(uri='http://127.0.0.1:9090') cnn.connect() assert cnn.status.OK() @mock.patch.object(TTransport.TBufferedTransport, 'close') @mock.patch.object(TSocket, 'open') def test_disconnected(self, close, open): close.return_value = None open.return_value = None cnn = Milvus() cnn.connect(**self.param) assert cnn.disconnect().OK() def test_disconnected_error(self): cnn = Milvus() cnn.status = Status(Status.PERMISSION_DENIED) with pytest.raises(DisconnectNotConnectedClientError): cnn.disconnect() class TestTable: @pytest.fixture @mock.patch.object(TSocket, 'open') def client(self, open): param = {'host': 'localhost', 'port': '5000'} open.return_value = None cnn = Milvus() cnn.connect(**param) return cnn @mock.patch.object(MilvusService.Client, 'CreateTable') def test_create_table(self, CreateTable, client): CreateTable.return_value = None param = table_schema_factory() res = client.create_table(param) assert res.OK() def test_create_table_connect_failed_status(self, client): param = table_schema_factory() with pytest.raises(NotConnectError): res = client.create_table(param) assert res == Status.CONNECT_FAILED @mock.patch.object(MilvusService.Client, 'DeleteTable') def test_delete_table(self, DeleteTable, client): DeleteTable.return_value = None table_name = 'fake_table_name' res = client.delete_table(table_name) assert res.OK def test_false_delete_table(self, client): table_name = 'fake_table_name' with pytest.raises(NotConnectError): res = client.delete_table(table_name) LOGGER.info(res) assert res == Status.CONNECT_FAILED class TestVector: @pytest.fixture @mock.patch.object(TSocket, 'open') def client(self, open): param = {'host': 'localhost', 'port': '5000'} open.return_value = None cnn = Milvus() cnn.connect(**param) return cnn @mock.patch.object(MilvusService.Client, 'AddVector') def test_add_vector(self, AddVector, client): AddVector.return_value = ['a','a'] param = { 'table_name': fake.table_name(), 'records': records_factory(256) } res, ids = client.add_vectors(**param) assert res.OK() assert isinstance(ids, list) def test_false_add_vector(self, client): param = { 'table_name': fake.table_name(), 'records': records_factory(256) } with pytest.raises(NotConnectError): res, ids = client.add_vectors(**param) assert res == Status.CONNECT_FAILED @mock.patch.object(Milvus, 'search_vectors') def test_search_vector(self, search_vectors, client): search_vectors.return_value = Status(), [[ttypes.QueryResult(111,111)]] param = { 'table_name': fake.table_name(), 'query_records': records_factory(256), 'top_k': random.randint(0, 10) } res, results = client.search_vectors(**param) assert res.OK() assert isinstance(results, (list, TopKQueryResult)) def test_false_vector(self, client): param = { 'table_name': fake.table_name(), 'query_records': records_factory(256), 'query_ranges': ranges_factory(), 'top_k': random.randint(0, 10) } with pytest.raises(NotConnectError): res, results = client.search_vectors(**param) assert res == Status.CONNECT_FAILED @mock.patch.object(Milvus, 'search_vectors_in_files') def test_search_in_files(self, search_vectors_in_files, client): search_vectors_in_files.return_value = Status(),[[ttypes.QueryResult(00,0.23)]] param = { 'table_name': fake.table_name(), 'query_records': records_factory(256), # 'query_ranges': ranges_factory(), 'file_ids': ['a'], 'top_k': random.randint(0,10) } sta, result = client.search_vectors_in_files(**param) assert sta.OK() def test_false_search_in_files(self, client): param = { 'table_name': fake.table_name(), 'query_records': records_factory(256), 'query_ranges': ranges_factory(), 'file_ids': ['a'], 'top_k': random.randint(0,10) } with pytest.raises(NotConnectError): sta, results = client.search_vectors_in_files(**param) assert sta == Status.CONNECT_FAILED @mock.patch.object(MilvusService.Client, 'DescribeTable') def test_describe_table(self, DescribeTable, client): DescribeTable.return_value = table_schema_factory() table_name = fake.table_name() res, table_schema = client.describe_table(table_name) assert res.OK() assert isinstance(table_schema, ttypes.TableSchema) def test_false_decribe_table(self, client): table_name = fake.table_name() with pytest.raises(NotConnectError): res, table_schema = client.describe_table(table_name) assert not res.OK() assert not table_schema @mock.patch.object(MilvusService.Client, 'ShowTables') def test_show_tables(self, ShowTables, client): ShowTables.return_value = [fake.table_name() for _ in range(10)] res, tables = client.show_tables() assert res.OK() assert isinstance(tables, list) def test_false_show_tables(self, client): with pytest.raises(NotConnectError): res, tables = client.show_tables() assert not res.OK() assert not tables @mock.patch.object(MilvusService.Client, 'GetTableRowCount') def test_get_table_row_count(self, GetTableRowCount, client): GetTableRowCount.return_value = 22, None res, count = client.get_table_row_count('fake_table') assert res.OK() def test_false_get_table_row_count(self, client): with pytest.raises(NotConnectError): res, count = client.get_table_row_count('fake_table') assert not res.OK() assert not count def test_client_version(self, client): res = client.client_version() assert isinstance(res, str) class TestPrepare: def test_table_schema(self): param = { 'table_name': fake.table_name(), 'dimension': random.randint(0, 999), 'index_type': IndexType.IDMAP, 'store_raw_vector': False } res = Prepare.table_schema(**param) assert isinstance(res, ttypes.TableSchema) def test_range(self): param = { 'start': '200', 'end': '1000' } res = Prepare.range(**param) assert isinstance(res, ttypes.Range) assert res.start_value == '200' assert res.end_value == '1000' def test_row_record(self): vec = [random.random() + random.randint(0, 9) for _ in range(256)] res = Prepare.row_record(vec) assert isinstance(res, ttypes.RowRecord) assert isinstance(res.vector_data, bytes) def test_records(self): vecs = [[random.random() for _ in range(256)] for _ in range(20)] res = Prepare.records(vecs) assert isinstance(res, list) assert isinstance(res[0], ttypes.RowRecord) assert isinstance(res[0].vector_data, bytes) ```
{ "source": "JinhaiZ/TP-Lamport-RabbitMQ", "score": 2 }
#### File: JinhaiZ/TP-Lamport-RabbitMQ/publisher.py ```python import pika import logging import sys import time LOG_FORMAT = ('%(levelname) -10s %(asctime)s %(name) -30s %(funcName) ' '-35s %(lineno) -5d: %(message)s') LOGGER = logging.getLogger(__name__) class Publisher(object): def __init__(self, exchange_name, queue_name): self._exchange_name = exchange_name self._queue_name = queue_name connection = pika.BlockingConnection(pika.ConnectionParameters(host='localhost')) self._connection = connection channel = connection.channel() channel.exchange_declare(exchange=exchange_name, exchange_type='fanout') self._channel = channel # lamport self._site_id = int(exchange_name[1:]) def send_REQUEST(self, time): message = "{!s},{!s}".format(self._site_id,time) self._channel.basic_publish(exchange=self._exchange_name, routing_key='', body=message, properties=pika.BasicProperties(reply_to=self._queue_name,type="REQUEST")) LOGGER.info('Broadcasted message : %s type REQUEST', message) def close_connection(self): self._connection.close() def main(exchange_name, queue_name): logging.basicConfig(level=logging.INFO, format=LOG_FORMAT) pub = Publisher(exchange_name, queue_name) try: pub.send_REQUEST(0) # time.sleep(2) # pub.send_RELEASE(3) except KeyboardInterrupt: pub.close_connection() if __name__ == '__main__': if len(sys.argv) != 3: print("usage: python publisher.py its_exchange_name its_queue_name") else: main(sys.argv[1], sys.argv[2]) ```
{ "source": "jinhan814/BOJ", "score": 3 }
#### File: BOJ/python/13705.py ```python import sys from decimal import * input = sys.stdin.readline getcontext().prec = 50 getcontext().rounding = ROUND_HALF_UP A, B, C = map(Decimal, map(int, input().split())) PI = Decimal('3.14159265358979323846264338327950288419716939937510') def Sin(x): x = x % (2 * PI) getcontext().prec += 2 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1 while s != lasts: lasts = s i += 2 fact *= i * (i - 1) num *= x * x sign *= -1 s += num / fact * sign getcontext().prec -= 2 return +s lo, hi = (C - B) / A, (C + B) / A while hi - lo > Decimal(1e-21): mid = (lo + hi) / 2 if A * mid + B * Sin(mid) < C: lo = mid else: hi = mid print(round(lo, 6)) ``` #### File: BOJ/python/8896.py ```python import sys input = lambda: sys.stdin.readline().rstrip() def conv(c): if c == 'R': return 0 if c == 'S': return 1 return 2 for _ in range(int(input())): n = int(input()) v = [input() for _ in range(n)] check = [0] * n for i in range(len(v[0])): cur = [0] * 3 for j in range(n): if not check[j]: cur[conv(v[j][i])] = 1 if sum(cur) != 2: continue win = 0 if cur[0] and cur[1] else 1 if cur[1] and cur[2] else 2 for j in range(n): if not check[j] and conv(v[j][i]) != win: check[j] = 1 print(check.index(0) + 1 if sum(check) == n - 1 else 0) ``` #### File: BOJ/python/9202.py ```python import sys input = lambda: sys.stdin.readline().rstrip() class TrieNode: def __init__(self): self.nxt = [0] * 26 self.idx = -1 class Trie: def __init__(self): self.node = [TrieNode()] def Add(self, s, idx): cur = 0 for c in s: if self.node[cur].nxt[ord(c) - 65] == 0: self.node[cur].nxt[ord(c) - 65] = len(self.node) self.node.append(TrieNode()) cur = self.node[cur].nxt[ord(c) - 65] self.node[cur].idx = idx n = int(input()) s = [input() for _ in range(n)]; input() T = Trie() board, v = [], {} visited = [[0] * 4 for _ in range(4)] for i in range(n): T.Add(s[i], i) def DFS(x, y, pos): if T.node[pos].nxt[ord(board[x][y]) - 65] == 0: return pos = T.node[pos].nxt[ord(board[x][y]) - 65]; visited[x][y] = 1 if T.node[pos].idx != -1: v.add(T.node[pos].idx) for dx, dy in ((0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1), (1, 0), (1, 1)): nx = x + dx; ny = y + dy if 0 <= nx < 4 and 0 <= ny < 4 and not visited[nx][ny]: DFS(nx, ny, pos) visited[x][y] = 0 def GetScore(n): if 3 <= n <= 4: return 1 if n == 5: return 2 if n == 6: return 3 if n == 7: return 5 if n == 8: return 11 return 0 for _ in range(int(input())): board = [input() for _ in range(4)]; v = set() for i in range(4): for j in range(4): DFS(i, j, 0) score, cnt, mx = 0, 0, '' for i in v: score += GetScore(len(s[i])) cnt += 1 if len(mx) < len(s[i]) or len(mx) == len(s[i]) and mx > s[i]: mx = s[i] print(score, mx, cnt); input() ``` #### File: BOJ/python/9251.py ```python import sys input = lambda: sys.stdin.readline().rstrip() sys.setrecursionlimit(int(1e5)) a = input() b = input() DP = [[-1] * len(b) for _ in range(len(a))] def Sol(i, j): if i < 0 or j < 0: return 0 if DP[i][j] != -1: return DP[i][j] DP[i][j] = 0 if a[i] == b[j]: DP[i][j] = Sol(i - 1, j - 1) + 1 else: DP[i][j] = max(Sol(i - 1, j), Sol(i, j - 1)) return DP[i][j] print(Sol(len(a) - 1, len(b) - 1)) ```
{ "source": "jinhan814/PyTorch-GAN-Study", "score": 2 }
#### File: PGGAN/model/custom_layer.py ```python from ast import AsyncFunctionDef import torch import torch.nn as nn import math from numpy import prod class NormalizationLayer(nn.Module): def __init__(self): super(NormalizationLayer, self).__init__() def forward(self, x, epsilon=1e-8): return x * (((x**2).mean(dim=1, keepdim=True) + epsilon).rsqrt()) def Upsampling(x, factor=2): # assert isinstance(factor, int) and factor >=1 ## 이게 있어야할까? 라는 궁금증 # if factor == 1 : ## 이것도 있어야 할까? # return x s = x.size() x = x.view(-1, s[1], s[2], 1, s[3], 1) x = x.expand(-1, s[1], s[2], factor, s[3], factor) x = x.contiguous().view(-1, s[1], s[2] * factor, s[3] * factor) ## contiguous를 써주는 이유 ''' tensor를 다양한 함수(transpose,view)등을 이용하여 변형 시킬때 size와 stride는 형태(순서)가 달라질 수 있으나 실제로 메모리상의 원소들의 위치는 바뀌지 않고 접근 인덱스만 바뀐다. 따라서 추가로 변형을 할때는 그 메모리도 재할당해줄 필요가 있다. ''' return x def Downsampling(x): return nn.functional.avg_pool2d(x, (2,2)) def getLayerNormalizationFactor(x): size = x.weight.size() fan_in = prod(size[1:]) return math.sqrt(2.0 / fan_in) class ConstrainedLayer(nn.Module): def __init__(self, module, equalized=True, lrMul=1.0, InitBiasToZero=True): super(ConstrainedLayer,self).__init__() self.module = module self.equalized = equalized self.module.weight.data.normal_(0,1) ## normal_함수: 평균, 표준편차로 정규화 self.module.weight.data /= lrMul self.weight = getLayerNormalizationFactor(self.module) *lrMul self. module.bias.data.fill_(0) def forward(self, x): x = self.module(x) x *= self.weight return x class EqualizedConv2d(ConstrainedLayer): def __init__(self, nChannelsPrevious, nChannels, kernelSize, padding=0, bias=True, **kwargs): ConstrainedLayer.__init__(self, nn.Conv2d(nChannelsPrevious, nChannels, kernelSize, padding=padding, bias=bias), **kwargs ) class EqualizedLinear(ConstrainedLayer): def __init__(self, nChannelsPrevious, nChannels, bias=True, **kwargs): ConstrainedLayer.__init__(self, nn.Linear(nChannelsPrevious, nChannels, bias=bias), **kwargs ) def MiniBatchStddev(x,subGroupSize=4): size = x.size() subGroupSize = min(size[0], subGroupSize) if size[0] % subGroupSize != 0: subGroupSize = size[0] G = int(size[0] / subGroupSize) if subGroupSize > 1: y = x.view(-1, subGroupSize, size[1], size[2], size[3]) y = torch.var(y, 1) y = torch.sqrt(y + 1e-8) y = y.view(G, -1) y = torch.mean(y, 1).view(G, 1) y = y.expand(G, size[2]*size[3]).view((G, 1, 1, size[2], size[3])) y = y.expand(G, subGroupSize, -1, -1, -1) y = y.contiguous().view((-1, 1, size[2], size[3])) else: y = torch.zeros(x.size(0), 1, x.size(2), x.size(3), device=x.device) return torch.cat([x, y], dim=1) ``` #### File: PyTorch-GAN-Study/PGGAN/train.py ```python import os import json from utils import resizing import numpy as np import random from tqdm import tqdm import torch import torch.nn as nn import torch.nn.functional as F from model.model import PGGAN from dataset import IdolDataset from torch.utils.data import DataLoader def SeedEverything(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) random.seed(seed) def Train(args): SeedEverything(args['seed']) use_cuda = torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') print(f'device: {"GPU" if use_cuda else "CPU"}') model = PGGAN(512, 3, 0.2) batch_size = args['batch_size'] latent_vector_size = 512 criterion = model.criterion train_dataset = IdolDataset(args['train_dir']) train_loader = DataLoader(train_dataset, batch_size, shuffle=True) optimizer_D = model.OptD optimizer_G = model.OptG label_real = torch.ones(batch_size, 1).to(device) label_fake = torch.zeros(batch_size, 1).to(device) model.train() for scale in range(args['scales']): model.ToDevice(device) for epoch in range(args['epochs'][scale]): print(f'epoch:{epoch}/{args["epochs"][scale]}') alpha = 1-epoch/args['epochs'][scale] if scale else 0 model.SetAlpha(alpha) loss_D_per_epoch = 0 loss_G_per_epoch = 0 for batch_idx, img in enumerate(tqdm(train_loader)): img = resizing(img, args['img_size'][scale]) img = img.to(device) z = torch.randn(batch_size, latent_vector_size).to(device) loss_D = criterion(model.DNet(img), label_real) + criterion(model.DNet(model.GNet(z)), label_fake) model.DNet.zero_grad() loss_D.backward() optimizer_D.step() # z = torch.randn(batch_size, latent_vector_size).to(device) 확인해보기! loss_G = criterion(model.DNet(model.GNet(z)), label_real) model.GNet.zero_grad() loss_G.backward() optimizer_G.step() loss_D_per_epoch += loss_D.item() loss_G_per_epoch += loss_G.item() loss_D_per_epoch = loss_D_per_epoch / (batch_idx+1) loss_G_per_epoch = loss_G_per_epoch / (batch_idx+1) print(f'Epoch: {epoch+1}/{args["epochs"][scale]}\t Loss_D: {loss_D_per_epoch:.6f}\t Loss_G: {loss_G_per_epoch:.6f}\t') model.AddScale(args['channels'][scale]) if __name__ == "__main__": json_path = "/content/PyTorch-GAN-Study/PGGAN/config.json" with open(json_path) as f: config_json = json.load(f) Train(config_json) ``` #### File: PyTorch-GAN-Study/PGGAN/utils.py ```python import numpy import torch import torch.nn.functional as F def resizing(img,s): img = F.interpolate(img,size=(s,s)) return img ```
{ "source": "jinhang/fcn", "score": 2 }
#### File: fcn/fcn/setup.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import os.path as osp import fcn def _get_data_dir(): this_dir = osp.dirname(osp.abspath(__file__)) data_dir = osp.realpath(osp.join(this_dir, '_data')) if osp.exists(data_dir): return data_dir return '' data_dir = _get_data_dir() def download_vgg16_chainermodel(): path = osp.join(data_dir, 'vgg16.chainermodel') fcn.util.download_data( pkg_name='fcn', path=path, url='https://drive.google.com/uc?id=0B9P1L--7Wd2vSlFjQlJFQjM5TEk', md5='292e6472062392f5de02ef431bba4a48', ) return path def download_fcn8s_caffemodel(): caffemodel_dir = osp.join(data_dir, 'fcn.berkeleyvision.org/voc-fcn8s') caffemodel = osp.join(caffemodel_dir, 'fcn8s-heavy-pascal.caffemodel') url_file = osp.join(caffemodel_dir, 'caffemodel-url') fcn.util.download_data( pkg_name='fcn', path=caffemodel, url=open(url_file).read().strip(), md5 = 'c03b2953ebd846c270da1a8e8f200c09', ) return caffemodel class FCN8sFromCaffeChainerModel(object): path = osp.join(data_dir, 'fcn8s_from_caffe.chainermodel') url = 'https://drive.google.com/uc?id=0B9P1L--7Wd2vTXU0QzUwSkVwOFk' md5 = 'a1083db5a47643b112af69bfa59954f9' def exists(self): return (osp.exists(self.path) and fcn.util.check_md5(self.path, self.md5)) def download(self): fcn.util.download_data( pkg_name='fcn', path=self.path, url=self.url, md5=self.md5 ) return self.path ```
{ "source": "JinhangZhu/cube-algs-dictator", "score": 3 }
#### File: JinhangZhu/cube-algs-dictator/TimeLogger.py ```python from datetime import datetime import logging class TimeLogger: def __init__(self): self._last_time = None def info(self, msg="", start=False): indent_string = '' logging.info(indent_string + msg) current_time = datetime.now() if start: self._last_time = current_time else: duration = current_time - self._last_time duration = int(duration.total_seconds() * 1000) logging.info(indent_string + 'Duration: {} ms'.format(duration)) # @staticmethod def debug(self, msg=""): indent_string = ' ' * 4 logging.debug(indent_string + msg) ```
{ "source": "JinhangZhu/mosaic-closest", "score": 3 }
#### File: JinhangZhu/mosaic-closest/mosaic.py ```python import ctypes import re import os import multiprocessing as mp from multiprocessing.sharedctypes import RawArray import time import numpy as np import cv2 import matplotlib.pyplot as plt from scipy.spatial.distance import euclidean from tqdm import tqdm IMG_DIR = './images' RATIO = 10 threshold = 50 # Get the luminance of an image def get_luminance(source): return np.sum(source)/np.size(source) # Resize the image to be in the shape of (height, width) without distortion def resize(source, height, width): shape_row = source.shape[0] shape_col = source.shape[1] shrink_ratio = min(shape_row/height, shape_col/width) resized = cv2.resize(source, (int(shape_col/shrink_ratio)+1, int(shape_row/shrink_ratio)+1), interpolation=cv2.INTER_CUBIC) result = resized[:height, :width, :] return result # Calculate the euclidean distance between two images def img_distance(source1, source2): if source1.shape != source2.shape: msg = "shapes are different {} {}".format(source1.shape, source2.shape) raise Exception(msg) array_1 = source1.flatten() array_2 = source2.flatten() dist = euclidean(array_1, array_2) return dist # Calculate the euclidean distance between two histograms def hist_distance(source1, source2): color = ('b', 'g', 'r') hist_1 = np.zeros((256, 1, 3)) hist_2 = np.zeros((256, 1, 3)) dist = np.zeros((1, 3)) for i, col in enumerate(color): hist_1[:, :, i] = cv2.calcHist([source1], [i], None, [256], [0, 256]) hist_2[:, :, i] = cv2.calcHist([source2], [i], None, [256], [0, 256]) array_1 = hist_1.flatten() array_2 = hist_2.flatten() dist = euclidean(array_1, array_2) return dist # Calculate the euclidean distance between two histograms in channels def hist_distance_channel(source1, source2): color = ('b', 'g', 'r') hist_1 = np.zeros((256, 1, 3)) hist_2 = np.zeros((256, 1, 3)) for i, col in enumerate(color): hist_1[:, :, i] = cv2.calcHist([source1], [i], None, [256], [0, 256]) hist_2[:, :, i] = cv2.calcHist([source2], [i], None, [256], [0, 256]) dist_b = euclidean(hist_1[:, :, 0], hist_2[:, :, 0]) dist_g = euclidean(hist_1[:, :, 1], hist_2[:, :, 1]) dist_r = euclidean(hist_1[:, :, 2], hist_2[:, :, 2]) return dist_b, dist_g, dist_r # Load images in a specific directory def load_images(height, width): img_dir = IMG_DIR filenames = os.listdir(img_dir) result = [] print(len(filenames)) for filename in tqdm(filenames): if not re.search('.jpg', filename, re.I): continue try: filepath = os.path.join(img_dir, filename) source_im = cv2.imread(filepath) height_im = source_im.shape[0] width_im = source_im.shape[1] if height != height_im or width != width_im: source_im = resize(source_im, height, width) result.append(np.array(source_im)) except Exception as e: msg = 'error with {} - {}'.format(filepath, str(e)) print(msg) return np.array(result, dtype=np.uint8) # Find the similarist image from the resource images by comparing euclidean distance def find_closest_image(q, shared_resource_images, resource_images_shape, shared_result, img_shape, set_height, set_width): shared_images_array = np.frombuffer(shared_resource_images, dtype=np.uint8) resource_images = shared_images_array.reshape(resource_images_shape) while True: [row, col, pad] = q.get() print('row: {}, col: {}'.format(row, col)) # Non-grayscale original image if len(pad.shape) is 3: # min_dist_img = float("inf") # It acts as an unbounded upper value for comparison. # min_dist_hist = float("inf") # This is useful for finding lowest values min_dist_b = float("inf") min_dist_g = float("inf") min_dist_r = float("inf") min_diff_lumi_b = 255 min_diff_lumi_g = 255 min_diff_lumi_r = 255 min_img = None for resource_image in resource_images: # Calculate euclidean distance between the image and the pad # dist_img = img_distance(pad, resource_image) # dist_hist = hist_distance(pad, resource_image) dist_b, dist_g, dist_r = hist_distance_channel(pad, resource_image) # Auxiliary methods to eliminate converse-looking images diff_lumi_b = abs(get_luminance(resource_image[:, :, 0]) - get_luminance(pad[:, :, 0])) diff_lumi_g = abs(get_luminance(resource_image[:, :, 1]) - get_luminance(pad[:, :, 1])) diff_lumi_r = abs(get_luminance(resource_image[:, :, 2]) - get_luminance(pad[:, :, 2])) # and condition state_hist = dist_b < min_dist_b and dist_g < min_dist_g and dist_r < min_dist_r state_lumi = diff_lumi_b < min_diff_lumi_b and diff_lumi_g < min_diff_lumi_g and diff_lumi_r < min_diff_lumi_r state_thres = diff_lumi_b < threshold and diff_lumi_g < threshold and diff_lumi_r < threshold if state_thres: if state_hist and state_lumi: min_diff_lumi_b = diff_lumi_b min_diff_lumi_g = diff_lumi_g min_diff_lumi_r = diff_lumi_r min_dist_b = dist_b min_dist_g = dist_g min_dist_r = dist_r # Update the most similar image min_img = resource_image # Update result image in shared memory im_res = np.frombuffer(shared_result, dtype=np.uint8).reshape(img_shape) im_res[row:row+set_height, col:col+set_width, :] = min_img # Grayscale original image elif len(pad.shape) is 2: min_dist_hist = float("inf") min_diff_lumi = 255 min_img = None for resource_image in resource_images: # Calculate euclidean distance of histograms between the image and the pad dist_hist = hist_distance(pad, resource_image) # Auxiliary methods to eliminate converse-looking images diff_lumi = abs(get_luminance(resource_image) - get_luminance(pad)) state_hist = dist_hist < min_dist_hist state_lumi = diff_lumi < min_diff_lumi state_thres = diff_lumi < threshold if state_thres: if state_hist and state_lumi: min_diff_lumi = diff_lumi min_dist_hist = dist_hist resource_image = cv2.cvtColor(resource_image, cv2.COLOR_BGR2GRAY) min_img = resource_image im_res = np.frombuffer(shared_result, dtype=np.uint8).reshape(img_shape) im_res[row:row+set_height, col:col+set_width, :] = min_img # Necessary method of JoinableQueue # To terminate the finished process q.task_done() # Return a fixed shape according to the original shape def get_set_shape(): return [32, 32] # Generate the mosaic with the resource image file and the output file indicated def generate_mosaic(infile, outfile): print('Reading the background image: ' + infile) img = cv2.imread(infile) set_height, set_width = get_set_shape() img_shape = list(img.shape) # Make corresponding shape of the full image accroding to the set shape of a single one img_shape[0] = int(img_shape[0]/set_height) * set_height * RATIO img_shape[1] = int(img_shape[1]/set_width) * set_width * RATIO print('Resizing the background image...') img = cv2.resize(img, (img_shape[1], img_shape[0]), interpolation=cv2.INTER_CUBIC) # REF: cv2.resize(src, dsize[, dst[, fx[, fy[, interpolation]]]]) → dst # dsize = Size(round(dst.cols), round(dst.rows)) # #INTER_CUBIC - a bicubic interpolation over 4x4 pixel neighborhood # Print the shape of the output image print('Shape of the output image: {}'.format(img_shape)) # result image, in the same shape as modified original image im_res = np.zeros(img_shape, np.uint8) # All resource image in the set shape to be used print('Loading images as patches...') resource_images = load_images(set_height, set_width) # Get the shape of the images resource_images_shape = resource_images.shape # Return a ctypes array allocated from shared memory # The ctypes array is of the same size of what needs to be shared across multiple processes shared_resource_images = RawArray(ctypes.c_ubyte, len(resource_images.flatten())) # np.frombuffer: Intepret shared_resource_images as a 1-dimensional array # np.coyto: Copy the values from the array: shared_resource_images to another array: resource_images np.copyto(np.frombuffer(shared_resource_images, dtype=np.uint8).reshape(resource_images_shape), resource_images) # Reruen a ctypes array allocated from shared memory # The ctypes array is in the shape of the flattened output image "pool" shared_result = RawArray(ctypes.c_ubyte, len(im_res.flatten())) # Create a Queue subclass, a queue which additionally has task_done() and join() methods. join_queue = mp.JoinableQueue() for i in range(5): p = mp.Process(target=find_closest_image, # The callable object to be invoked name='Process: {}'.format(i), args=(join_queue, shared_resource_images, resource_images_shape, shared_result, img_shape, set_height, set_width), daemon=True) # Make daemon process finish execution p.start() print('Started process {}'.format(i+1)) # Generate the pads through multiple processes for row in range(0, img_shape[0], set_height): for col in range(0, img_shape[1], set_width): pad = img[row:row+set_height, col:col+set_width, :] # Put the value in the queue: Which firstly finishes calculation firstly processes the value join_queue.put([row, col, pad]) join_queue.join() # Output image file print('Writing the output image: {}'.format(outfile)) cv2.imwrite(outfile, np.frombuffer(shared_result, dtype=np.uint8).reshape(img_shape)) print('Happy ending.') if __name__ == "__main__": str_infile = "original.jpg" str_outfile = "mosaic.jpg" t = time.time() generate_mosaic(str_infile, str_outfile) elapesd = time.time() - t print('Duration time: {}'.format(elapesd)) plt.figure() plt.subplot(1, 2, 1) plt.imshow(cv2.cvtColor(cv2.imread(str_infile), cv2.COLOR_BGR2RGB)) # OpenCV stores images in BGR order instead of RGB. plt.title(str_infile) plt.subplot(1, 2, 2) plt.imshow(cv2.cvtColor(cv2.imread(str_outfile), cv2.COLOR_BGR2RGB)) plt.title(str_outfile) plt.show() ```
{ "source": "JinhangZhu/video_annotator", "score": 3 }
#### File: JinhangZhu/video_annotator/utils.py ```python import os def get_video_paths_with_places(source, endswith=None): if endswith is None: endswith = ['.mp4', '.m2ts', '.mts', '.mov', '.3gp'] need_paths = [] all_extensions = [] need_extensions = [] need_places = [] # r=root, d=directories, f = files for root, dirs, files in os.walk(source): for file in files: filename, file_extension = os.path.splitext(file) if file_extension not in all_extensions: all_extensions.append(file_extension) for end in endswith: if file.endswith(end.lower()) or file.endswith(end.upper()): abs_path = os.path.join(root, file) abs_path = abs_path.replace('\\', '/') need_paths.append(abs_path) need_places.append(abs_path.split('/')[2]) if file_extension not in need_extensions: need_extensions.append(file_extension) print("\n{} videos are found with {} types of extensions: {}".format(len(need_paths), len(need_extensions), need_extensions)) print("\nAmong all files are {} types of extensions: {}".format(len(all_extensions), all_extensions)) return need_paths, need_places if __name__ == '__main__': need_paths, need_places = get_video_paths_with_places(source='G:/Pictures', endswith=['.mp4', '.m2ts', '.mts', '.mov', '.3gp']) ```
{ "source": "jin-hao-chen/filegoback", "score": 2 }
#### File: apps/files/models.py ```python import datetime from apps import db class Category(db.Model): __tablename__ = 'category' id = db.Column(db.Integer, primary_key=True, autoincrement=True) name = db.Column(db.String(50)) is_current = db.Column(db.Boolean, default=False) expire_time = db.Column(db.DateTime, nullable=False) class File(db.Model): __tablename__ = 'file' id = db.Column(db.Integer, primary_key=True, autoincrement=True) filename = db.Column(db.String(80), nullable=False) upload_time = db.Column(db.DateTime, default=datetime.datetime.now) size = db.Column(db.Float) category_id = db.Column(db.Integer, db.ForeignKey('category.id')) sid = db.Column(db.String(10), db.ForeignKey('student.sid')) owner = db.relationship('Student', uselist=False, backref=db.backref('file')) def __init__(self, sid, filename, upload_time, size, category_id): self.sid = sid self.filename = filename self.upload_time = upload_time self.size = size self.category_id = category_id def __str__(self): return 'File(sid=%s, filename=%s, upload_time=%s, size=%s, category_id=%s)'\ % (self.sid, self.filename, self.upload_time, self.size, self.category_id) def __repr__(self): return str(self) ``` #### File: filegoback/apps/__init__.py ```python import os from settings import PROJ_DIR from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_cors import CORS db = SQLAlchemy() from apps.files.views import files_bp from apps.students.views import students_bp from apps import files from apps import students def create_app(): static_dir = os.path.join(PROJ_DIR, 'static') app = Flask(__name__, static_folder=static_dir) app.register_blueprint(files_bp, url_prefix='/api/files') app.register_blueprint(students_bp, url_prefix='/api/students') app.config['SQLALCHEMY_DATABASE_URI'] \ = 'mysql+pymysql://root:[email protected]:3306/file_go?charset=utf8mb4' app.config['SQLALCHEMY_POOL_SIZE'] = 6 app.config['SQLALCHEMY_POOL_TIMEOUT'] = 10 app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.init_app(app) CORS(app, supports_credentials=True, resources=r'/*') return app ``` #### File: apps/students/models.py ```python from apps import db class Student(db.Model): __tablename__ = 'student' id = db.Column(db.Integer, primary_key=True, autoincrement=True) sid = db.Column(db.String(10), nullable=False, unique=True) name = db.Column(db.String(32), nullable=False) is_admin = db.Column(db.Boolean, default=False) def __init__(self, sid, name, is_admin=False): self.sid = sid self.name = name self.is_admin = is_admin def __str__(self): return "<Student '%s'>" % self.sid def __repr__(self): return str(self) ``` #### File: jin-hao-chen/filegoback/manager.py ```python from flask_script import Manager from flask_migrate import (Migrate, MigrateCommand) import settings import apps from apps import create_app def main(): main_app = create_app() manager = Manager(main_app) Migrate(main_app, apps.db) manager.add_command('db', MigrateCommand) manager.run() if __name__ == '__main__': main() ```
{ "source": "jin-hao-chen/team_go_backend", "score": 2 }
#### File: apps/clubs/views.py ```python import re from django.shortcuts import render from rest_framework.viewsets import GenericViewSet from rest_framework.response import Response from clubs.models import Club from user_operations.models import Apply from clubs.models import Institute from clubs.models import UserClub from clubs.serializers import UserClubSerializer from users.models import User from clubs.serializers import ClubSerializer from clubs.serializers import InstituteSerializer from utils import restful_status from utils import model_tools class InstituteViewSet(GenericViewSet): authentication_classes = [] queryset = Institute.objects.all() serializer_class = InstituteSerializer def list(self, request, *args, **kwargs): ret_data = { 'status': restful_status.STATUS_SUCCESS } queryset = self.queryset institute_serializer = self.serializer_class(queryset, many=True) ret_data['instituteList'] = institute_serializer.data return Response(ret_data) def retrieve(self, request, *args, **kwargs): institute_id = request.META.get('PATH_INFO').split('/')[-2] ret_data = { 'status': restful_status.STATUS_SUCCESS } queryset = self.queryset institute = queryset.filter(id=institute_id).first() institute_serializer = self.serializer_class(institute, many=False) ret_data['institute'] = institute_serializer.data return Response(ret_data) class ClubListViewSet(GenericViewSet): queryset = Club.objects.all() serializer_class = ClubSerializer def list(self, request, *args, **kwargs): ret_data = { 'status': restful_status.STATUS_SUCCESS } queryset = self.queryset.order_by('-persons') user_id = request.query_params.get('userId') if not user_id: club_serializer = self.serializer_class(queryset, many=True) clubs = club_serializer.data for club in clubs: club['applications'] = Apply.objects.filter(club=Club.objects.filter(id=club['id']).first()).count() ret_data['clubList'] = clubs return Response(ret_data) user = User.objects.filter(id=user_id).first() if not user: ret_data['status'] = restful_status.STATUS_ERROR ret_data['msg'] = '此用户不存在' return Response(ret_data) clubs = queryset.filter(user=user) club_serializer = self.serializer_class(clubs, many=True) clubs = club_serializer.data for club in clubs: club['applications'] = Apply.objects.filter(club=Club.objects.filter(id=club['id']).first()).count() ret_data['clubList'] = clubs return Response(ret_data) def patch(self, request, *args, **kwargs): ret_data = { 'status': restful_status.STATUS_SUCCESS } club_id = int(request.META.get('PATH_INFO').split('/')[-2]) user = User.objects.filter(username=request.user['username']).first() if not user: ret_data['status'] = restful_status.STATUS_ERROR ret_data['msg'] = '用户' + request.user['username'] + '不存在' return Response(ret_data) club_ids = UserClub.objects.filter(user=user).values('club_id') for club_id_dict in club_ids: if club_id == club_id_dict['club_id']: club = Club.objects.filter(id=club_id).update(**request.data.get('dict')) return Response(ret_data) else: ret_data['status'] = restful_status.STATUS_ERROR ret_data['msg'] = '你没有权限保存内容' return Response(ret_data) def retrieve(self, request, *args, **kwargs): # 请求的 URL 在 request.META.PATH_INFO 中 club_id = request.META.get('PATH_INFO').split('/')[-2] ret_data = { 'status': restful_status.STATUS_SUCCESS } queryset = self.queryset.filter(id=club_id).first() description = queryset.description ret_data['description'] = description ret_data['required'] = queryset.required return Response(ret_data) class UserClubViewSet(GenericViewSet): queryset = UserClub.objects.all() serializer_class = UserClubSerializer def list(self, request, *args, **kwargs): ret_data = { 'status': restful_status.STATUS_SUCCESS } user_id = request.query_params.get('userId') queryset = self.queryset user = User.objects.filter(id=user_id).first() if not user: ret_data['status'] = restful_status.STATUS_ERROR ret_data['msg'] = '非法请求' return Response(ret_data) user_club = queryset.filter(user=user) ret_data['user_club'] = self.serializer_class(user_club, many=True).data return Response(ret_data) ``` #### File: apps/users/models.py ```python from datetime import datetime from django.db import models from django.contrib.auth.models import AbstractUser from django.utils.translation import gettext_lazy as _ from users.validators import validate_username from clubs.models import Institute from clubs.models import Club # from ckeditor_uploader.fields import RichTextUploadingField from DjangoUeditor.models import UEditorField class AdminInfo(AbstractUser): """后台管理员表 Notes ----- AdminInfo 和 学生表是分开来的, AdminInfo 是提供给后台内部使用的 一般用于后台统计数据, 导出统计数据文件等, 因此 AdminInfo 只包含了 少数的字段 """ username = models.CharField(max_length=10, validators=[validate_username], verbose_name='学号', unique=True) password = models.CharField(_('密码'), max_length=128) nickname = models.CharField(max_length=30, verbose_name='昵称', blank=True, null=True) mobile = models.CharField(max_length=11, verbose_name='手机号', blank=True, null=True) email = models.EmailField(_('邮箱'), blank=True) class Meta: verbose_name = '管理员' verbose_name_plural = verbose_name def __str__(self): return self.nickname class Teacher(models.Model): username = models.CharField(max_length=10, validators=[validate_username], verbose_name='工号', unique=True, \ null=False, blank=False) nickname = models.CharField(max_length=20, verbose_name='老师名', null=False, blank=False) mobile = models.CharField(max_length=11, verbose_name='手机号', null=False, blank=False) club = models.OneToOneField(to=Club, on_delete=models.CASCADE, verbose_name='指导的社团', null=True) class Meta: verbose_name = '指导老师' verbose_name_plural = '指导老师' def __str__(self): return self.username class User(models.Model): username = models.CharField(max_length=10, validators=[validate_username], verbose_name='学号', unique=True) password = models.CharField(verbose_name='密码', max_length=128, blank=False, null=False) nickname = models.CharField(max_length=30, verbose_name='学生名', blank=False, null=False) mobile = models.CharField(max_length=11, verbose_name='手机号', null=True, blank=True) is_admin = models.BooleanField(verbose_name='是否为管理员', null=False, blank=False, default=False) institute = models.ForeignKey(to=Institute, on_delete=models.CASCADE, verbose_name='所属学院', null=False, blank=False) admission_time = models.DateField(verbose_name='入学时间', null=False, blank=False) introduction = models.TextField(max_length=3000, verbose_name='个人简介') # introduction = UEditorField(verbose_name='个人简介', width=600, height=300, toolbars="full") icon = models.ImageField(upload_to='media/images/users/icons', null=True, blank=True) clubs = models.ManyToManyField(to=Club, verbose_name='加入的社团', null=True, blank=True) class Meta: verbose_name = '用户' verbose_name_plural = '用户' def __str__(self): return self.username class Token(models.Model): token = models.CharField(max_length=128, verbose_name='token') user = models.OneToOneField(to=User, verbose_name='用户', on_delete=models.CASCADE) create_time = models.DateTimeField(verbose_name='创建时间', default=datetime.now) class Meta: verbose_name = 'token' verbose_name_plural = verbose_name def __str__(self): return 'token' ```
{ "source": "jin-hao-chen/yank", "score": 3 }
#### File: jin-hao-chen/yank/objects.py ```python import sys import time import copy from ytypes import * from color_print import fatal_print class NilObj(object): def __init__(self): self.obj_header = ObjHeader(OT_NIL, nil_cls, self) self.nil = None def __hash__(self): return hash(self.nil) def __eq__(self, other): return hash(self.nil) == hash(other.nil) class BoolObj(object): def __init__(self, boolean): self.obj_header = ObjHeader(OT_BOOL, bool_cls, self) self.bool = boolean def __hash__(self): return hash(self.bool) def __eq__(self, other): return hash(self.bool) == hash(other.bool) class StrObj(object): def __init__(self, string): self.obj_header = ObjHeader(OT_STR, str_cls, self) self.str = str(string) def __hash__(self): return hash(self.str) def __eq__(self, other): return hash(self.str) == hash(other.str) class IntObj(object): def __init__(self, integer): self.obj_header = ObjHeader(OT_INT, int_cls, self) self.int = int(integer) def __hash__(self): return hash(self.int) def __eq__(self, other): return hash(self.int) == hash(other.int) class FloatObj(object): def __init__(self, float_): self.obj_header = ObjHeader(OT_FLOAT, float_cls, self) self.float = float(float_) def __hash__(self): return hash(self.float) def __eq__(self, other): return hash(self.float) == hash(other.float) class ListObj(object): def __init__(self, list_=[]): self.obj_header = ObjHeader(OT_LIST, list_cls, self) if not list_: list_ = [] self.list = list(list_) class MapObj(object): def __init__(self, map_=None): self.obj_header = ObjHeader(OT_MAP, map_cls, self) if not map_: map_ = {} self.map = dict(map_) class ModuleObj(object): def __init__(self, name): self.obj_header = ObjHeader(OT_MODULE, module_cls, self) self.name = name self.module_var_names = [] self.module_var_name_len = 0 self.module_var_values = [] def add_module_var(self, name): for i in range(len(self.module_var_names)): if self.module_var_names[i] == name: return i self.module_var_names.append(name) # self.module_var_values.append(value) self.module_var_name_len += 1 return self.module_var_name_len - 1 class FunObj(object): def __init__(self, name, scope=1, arg_num=0): self.obj_header = ObjHeader(OT_FUN, fun_cls, self) self.name = name self.stream = [] self.stream_num = 0 # 存放的是Python级别的字符串, 包括数字和字符串的字面量 self.constants = [] self.constant_num = 0 self.max_used_slots = 0 self.cur_idx = 0 self.scope = scope self.arg_num = arg_num def add_constant(self, value): self.constants.append(value) self.constant_num += 1 return self.constant_num - 1 def call(obj, method_name): return obj.obj_header.cls_obj.methods[method_name] def call_by_value(value, method_name): return call(value.obj(), method_name) def exit_if_false(cond): if not cond: sys.exit(1) return True def _type_to_pystr(obj): if obj.obj_header.obj_type == OT_INT: return _int_to_str(obj).str elif obj.obj_header.obj_type == OT_FLOAT: return _float_to_str(obj).str elif obj.obj_header.obj_type == OT_STR: return _str_to_str(obj).str elif obj.obj_header.obj_type == OT_LIST: return _list_to_str(obj).str elif obj.obj_header.obj_type == OT_MAP: return _map_to_str(obj).str elif obj.obj_header.obj_type == OT_NIL: return _nil_to_str(obj).str elif obj.obj_header.obj_type == OT_BOOL: return _bool_to_str(obj).str elif obj.obj_header.obj_type == OT_FUN: return _fun_to_str(obj).str elif obj.obj_header.obj_type == OT_MODULE: return _module_to_str(obj).str def type_to_pystr(start, args): obj = args[start].obj() if obj.obj_header.obj_type == OT_INT: return int_to_str(start, args).str elif obj.obj_header.obj_type == OT_FLOAT: return float_to_str(start, args).str elif obj.obj_header.obj_type == OT_STR: return str_to_str(start, args).str elif obj.obj_header.obj_type == OT_LIST: return list_to_str(start, args).str elif obj.obj_header.obj_type == OT_MAP: return map_to_str(start, args).str elif obj.obj_header.obj_type == OT_NIL: return nil_to_str(start, args).str elif obj.obj_header.obj_type == OT_BOOL: return bool_to_str(start, args).str elif obj.obj_header.obj_type == OT_FUN: return fun_to_str(start, args).str elif obj.obj_header.obj_type == OT_MODULE: return module_to_str(start, args).str def is_type(obj, obj_type): return obj.obj_header.obj_type == obj_type def args_num(pystr): left = pystr.find('(') right = pystr.rfind(')') args_str = pystr[left + 1: right] return len(args_str.split(',')) class ObjHeader(object): def __init__(self, obj_type, cls_obj, obj): self.obj_type = obj_type self.cls_obj = cls_obj self.obj = obj class ClsObj(object): def __init__(self, name): self.name = name self.methods = {} self.method_names = [] module_cls = ClsObj('module_cls') fun_cls = ClsObj('fun_cls') nil_cls = ClsObj('nil_cls') bool_cls = ClsObj('bool_cls') str_cls = ClsObj('str_cls') int_cls = ClsObj('int_cls') float_cls = ClsObj('float_cls') list_cls = ClsObj('list_cls') # map对象比较特别, 在yank中就是对象, map的remove, put, get在内部的方式是@remove, @put, @get, 因为yank中通过map实现对象的, 模仿一下js map_cls = ClsObj('map_cls') def return_true(start, args, obj): args[start].to_value(obj) return True def return_false(): return False # 参数被封装成了yank_list def fun_call(obj, args): pass def nil_to_str(start, args): obj = args[start].obj() return return_true(start, args, StrObj(str(obj.nil))) def nil_equ(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type != OT_NIL: return return_true(start, args, BoolObj(False)) return return_true(start, args, BoolObj(True)) def nil_hash(start, args): fatal_print('Runtime error, nil cannot be hashed!') return return_false() def nil_bind_methods(): nil_cls.methods['tostr()'] = nil_to_str nil_cls.methods['==(_)'] = nil_equ nil_cls.methods['hash(_)'] = nil_hash nil_cls.method_names = ['tostr()', '==(_)', 'hash()'] nil_cls.methods['_tostr()'] = _nil_to_str nil_cls.methods['_==(_)'] = _nil_equ nil_cls.methods['_hash()'] = _nil_hash def bool_to_str(start, args): obj = args[start].obj() return return_true(start, args, StrObj(str(obj.bool))) def bool_equ(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() return return_true(start, args, BoolObj(obj1.bool == obj2.bool)) def bool_hash(start, args): obj = args[start].obj() return return_true(start, args, IntObj(hash(obj.bool))) def bool_bind_methods(): bool_cls.methods['tostr()'] = bool_to_str bool_cls.methods['==(_)'] = bool_equ bool_cls.methods['hash()'] = bool_hash bool_cls.method_names = ['tostr()', '==(_)', 'hash()'] bool_cls.methods['_tostr()'] = _bool_to_str bool_cls.methods['_==(_)'] = _bool_equ bool_cls.methods['_hash()'] = _bool_hash def str_to_str(start, args): obj = args[start].obj() return return_true(start, args, StrObj(str(obj.str))) def str_equ(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() return return_true(start, args, BoolObj(obj1.str == obj2.str)) def str_hash(start, args): obj = args[start].obj() return return_true(start, args, IntObj(hash(obj.str))) def str_add(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type != OT_STR: fatal_print('Runtime error, arg2 must be string') return return_false() return return_true(start, args, StrObj(obj1.str + obj2.str)) def str_numbers(start, args): obj = args[start].obj() if obj.str.isdigit(): ret = IntObj(int(obj.str)) else: try: ret = FloatObj(float(obj.str)) except: fatal_print('Runtime error, cannot convert %s to numbers' % obj.str) return return_false() return return_true(start, args, ret) def str_at(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type != OT_STR: fatal_print('Runtime error, index must be int') return return_false() return return_true(start, args, StrObj(obj1.str[obj2.int])) def str_len(start, args): obj = args[start].obj() return return_true(start, args, IntObj(len(obj.str))) def str_emtpy(start, args): obj = args[start].obj() return return_true(start, args, BoolObj(len(obj.str) == 0)) def _str_numbers(obj): if obj.str.isdigit(): ret = IntObj(int(obj.str)) else: try: ret = FloatObj(float(obj.str)) except: fatal_print('Runtime error, cannot convert %s to numbers' % obj.str) sys.exit(1) return ret def str_bind_methods(): str_cls.methods['tostr()'] = str_to_str str_cls.methods['==(_)'] = str_equ str_cls.methods['hash()'] = str_hash str_cls.methods['+(_)'] = str_add str_cls.methods['at(_)'] = str_at str_cls.methods['len()'] = str_len str_cls.methods['empty()'] = str_emtpy str_cls.methods['numbers()'] = str_numbers str_cls.method_names = ['tostr()', '==(_)', 'hash()', '+(_)', 'at(_)', 'len()', 'empty()', 'numbers()'] str_cls.methods['_tostr()'] = _str_to_str str_cls.methods['_==(_)'] = _str_equ str_cls.methods['_hash()'] = _str_hash str_cls.methods['_+(_)'] = _str_add str_cls.methods['_at(_)'] = _str_at str_cls.methods['_len()'] = _str_len str_cls.methods['_empty()'] = _str_emtpy str_cls.methods['_numbers()'] = _str_numbers def int_to_str(start, args): obj = args[start].obj() return return_true(start, args, StrObj(str(obj.int))) def int_equ(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() return return_true(start, args, BoolObj(obj1.int == obj2.int)) def int_hash(start, args): obj = args[start].obj() return return_true(start, args, IntObj(hash(obj.int))) def int_to_float(start, args): obj = args[start].obj() return return_true(start, args, FloatObj(float(obj.int))) def int_add(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj1.obj_header.obj_type == OT_FLOAT: return return_true(start, args, FloatObj(obj1.float + obj2.float)) if obj1.obj_header.obj_type == OT_INT: return return_true(start, args, IntObj(obj1.int + obj2.int)) def int_sub(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_FLOAT: obj1 = int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj1.obj_header.obj_type == OT_FLOAT: return return_true(start, args, FloatObj(obj1.float - obj2.float)) if obj1.obj_header.obj_type == OT_INT: return return_true(start, args, IntObj(obj1.int - obj2.int)) def int_mul(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj1.obj_header.obj_type == OT_FLOAT: return return_true(start, args, FloatObj(obj1.float * obj2.float)) if obj1.obj_header.obj_type == OT_INT: return return_true(start, args, IntObj(obj1.int * obj2.int)) def int_div(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj1.obj_header.obj_type == OT_FLOAT: if obj2.float == 0.0: fatal_print('Runtime error, arg2 cannot be 0') return return_false() return return_true(FloatObj(obj1.float / obj2.float)) if obj1.obj_header.obj_type == OT_INT: if obj2.int == 0: fatal_print('Runtime error, arg2 cannot be 0') return return_false() return return_true(start, args, IntObj(obj1.int / obj2.int)) def int_mod(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, arg2 must be int') return return_false() if obj2.int == 0: fatal_print('Runtime error, arg2 cannot be 0') return return_false() return return_true(start, args, IntObj(obj1.int % obj2.int)) def int_gt(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float > obj2.float)) def int_ge(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, args is not a number') return return_false() obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float >= obj2.float)) def int_lt(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, args is not a number') return return_false() obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float < obj2.float)) def int_le(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, obj2 is not a number') return return_false() obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float <= obj2.float)) def int_bind_methods(): int_cls.methods['tostr()'] = int_to_str int_cls.methods['==(_)'] = int_equ int_cls.methods['hash()'] = int_hash int_cls.methods['float()'] = int_to_float int_cls.methods['+(_)'] = int_add int_cls.methods['-(_)'] = int_sub int_cls.methods['*(_)'] = int_mul int_cls.methods['/(_)'] = int_div int_cls.methods['%(_)'] = int_mod int_cls.methods['>(_)'] = int_gt int_cls.methods['>=(_)'] = int_ge int_cls.methods['<(_)'] = int_lt int_cls.methods['<=(_,_)'] = int_le int_cls.method_names = ['tostr()', '==(_)', 'hash()', 'float()', \ '+(_)', '-(_)', '*(_)', '/(_)', '%(_)', \ '>(_)', '>=(_)', '<(_)', '<=(_)'] int_cls.methods['_tostr(_)'] = _int_to_str int_cls.methods['_==(_,_)'] = _int_equ int_cls.methods['_hash(_)'] = _int_hash int_cls.methods['_float(_)'] = _int_to_float int_cls.methods['_+(_,_)'] = _int_add int_cls.methods['_-(_,_)'] = _int_sub int_cls.methods['_*(_,_)'] = _int_mul int_cls.methods['_/(_,_)'] = _int_div int_cls.methods['_%(_,_)'] = _int_mod int_cls.methods['_>(_,_)'] = _int_gt int_cls.methods['_>=(_,_)'] = _int_ge int_cls.methods['_<(_,_)'] = _int_lt int_cls.methods['_<=(_,_)'] = _int_le def float_to_str(start, args): obj = args[start].obj() return return_true(start, args, StrObj(str(obj.float))) def float_equ(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() return return_true(start, args, BoolObj(obj1.float == obj2.float)) def float_hash(start, args): obj = args[start].obj() return return_true(start, args, IntObj(hash(obj.float))) def float_to_int(start, args): obj = args[start].obj() return return_true(start, args, IntObj(int(obj.float))) def float_add(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() return return_true(start, args, FloatObj(obj1.float + obj2.float)) def float_sub(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() return return_true(start, args, FloatObj(obj1.float - obj2.float)) def float_mul(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_INT, OT_FLOAT]: fatal_print('Runtime error, arg2 is not a number') return return_false() return return_true(start, args, FloatObj(obj1.float * obj2.float)) def float_div(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj2.float == 0: fatal_print('Runtime error, arg2 cannot be 0') return return_false() return return_true(start, args, FloatObj(obj1.float / obj2.float)) def float_gt(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float > obj2.float)) def float_ge(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float >= obj2.float)) def float_lt(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float < obj2.float)) def float_le(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') return return_false() if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return return_true(start, args, BoolObj(obj1.float <= obj2.float)) def float_bind_methods(): float_cls.methods['tostr()'] = float_to_str float_cls.methods['==(_)'] = float_equ float_cls.methods['hash()'] = float_hash float_cls.methods['int()'] = float_to_int float_cls.methods['+(_)'] = float_add float_cls.methods['-(_)'] = float_sub float_cls.methods['*(_)'] = float_mul float_cls.methods['/(_)'] = float_div float_cls.methods['>(_)'] = float_gt float_cls.methods['>=(_)'] = float_ge float_cls.methods['<(_)'] = float_lt float_cls.methods['<=(_)'] = float_le float_cls.method_names = ['tostr()', '==(_)', 'hash()', 'int()', \ '+(_)', '-(_)', '*(_)', '/(_)', '>(_)', \ '>=(_)', '<(_)', '<=(_)'] float_cls.methods['_tostr(_)'] = _float_to_str float_cls.methods['_==(_,_)'] = _float_equ float_cls.methods['_hash(_)'] = _float_hash float_cls.methods['_int(_)'] = _float_to_int float_cls.methods['_+(_,_)'] = _float_add float_cls.methods['_-(_,_)'] = _float_sub float_cls.methods['_*(_,_)'] = _float_mul float_cls.methods['_/(_,_)'] = _float_div float_cls.methods['_>(_,_)'] = _float_gt float_cls.methods['_>=(_,_)'] = _float_ge float_cls.methods['_<(_,_)'] = _float_lt float_cls.methods['_<=(_,_)'] = _float_le def list_len(start, args): obj = args[start].obj() return return_true(start, args, IntObj(len(obj.list))) def list_to_str(start, args): obj = args[start].obj() s = '[' for item in obj.list: s += _type_to_pystr(item.obj()) + ', ' s = s[:-2] + ']' return return_true(start, args, StrObj(s)) def list_at(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, arg2 must be int') return return_false() ret = copy.copy(obj1.list[obj2.int]) args[start].value_type = ret.value_type args[start].obj_header = ret.obj_header return True def list_insert(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() obj3 = args[start + 2].obj() # obj2为下标 if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, index must be int') return return_false() obj1.list.insert(obj2.int, copy.copy(args[start + 2])) return return_true(start, args, NilObj()) def list_append(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() obj1.list.append(copy.copy(args[start + 1])) return return_true(start, args, NilObj()) def list_remove(start, args): obj1 = args[start].obj() obj2 = args[start + 1].obj() # obj2为下标 if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, index must be int') return return_false() length = list_len(obj1) if obj2.int >= length or obj2.int < 0: fatal_print('Runtime error, index out of rang') return return_false() del obj1.list[obj2.int] return return_true(start, args, NilObj()) def list_bind_methods(): list_cls.methods['len()'] = list_len list_cls.methods['tostr()'] = list_to_str list_cls.methods['insert(_,_)'] = list_insert list_cls.methods['at(_)'] = list_at list_cls.methods['remove(_)'] = list_remove list_cls.methods['append(_)'] = list_append list_cls.methods['_len(_)'] = _list_len list_cls.methods['_tostr(_)'] = _list_to_str list_cls.methods['_insert(_,_,_)'] = _list_insert list_cls.methods['_at(_,_)'] = _list_at list_cls.methods['_remove(_,_)'] = _list_remove list_cls.methods['_append(_,_)'] = _list_append list_cls.method_names = ['len()', 'tostr()', 'insert(_,_)', 'at(_)', 'remove(_)', 'append(_)'] def map_put(start, args): obj = args[start].obj() key = args[start + 1].obj() val = args[start + 2].obj() if key.obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') return return_false() obj.map[copy.copy(args[start + 1])] = copy.copy(args[start + 2]) return return_true(start, args, NilObj()) def map_get(start, args): obj = args[start].obj() key = args[start + 1].obj() if key.obj_header.obj_type == OT_NIL: fatal_print('Runtime error, key cannot be nil') return return_false() if key.obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') return return_false() if args[start + 1] not in obj.map: return return_true(start, args, NilObj()) ret = copy.copy(obj.map[args[start + 1]]) args[start].value_type = ret.value_type args[start].obj_header = ret.obj_header return True def map_remove(start, args): obj = args[start].obj() key = args[start + 1].obj() if key.obj_header.obj_type == OT_NIL: fatal_print('Runtime error, key cannot be nil') return return_false() if key.obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') return return_false() if args[start + 1] in obj.map: del obj.map[args[start + 1]] return return_true(start, args, NilObj()) def map_to_str(start, args): obj = args[start].obj() s = '{' for key in obj.map: s += _type_to_pystr(key.obj()) + ': ' + _type_to_pystr(obj.map[key].obj()) + ', ' return return_true(start, args, StrObj(s[:-2] + '}')) def map_bind_methods(): map_cls.methods['tostr()'] = map_to_str map_cls.methods['put(_,_)'] = map_put map_cls.methods['get(_)'] = map_get map_cls.methods['remove(_)'] = map_remove map_cls.methods['@put(_,_)'] = map_put map_cls.methods['@get(_)'] = map_get map_cls.methods['@remove(_)'] = map_remove map_cls.methods['@_tostr(_)'] = _map_to_str map_cls.methods['@_put(_,_,_)'] = _map_put map_cls.methods['@_get(_,_)'] = _map_get map_cls.methods['@_remove(_,_)'] = _map_remove map_cls.method_names = ['tostr()', 'put(_,_)', 'get(_)', 'remove(_)'] def module_to_str(start, args): obj = args[start].obj() addr = str(id(obj)) return return_true(start, args, StrObj('<Module(addr: %s) %s>' % (addr, obj.name))) def module_bind_methods(): module_cls.methods['tostr(_)'] = module_to_str module_cls.methods['_tostr(_)'] = _module_to_str module_cls.method_names = ['tostr()'] def fun_to_str(start, args): obj = args[start].obj() addr = str(id(obj)) return return_true(start, args, StrObj('<Function(addr: %s) %s>' % (addr, obj.name))) def fun_bind_methods(): fun_cls.methods['tostr(_)'] = fun_to_str fun_cls.methods['_tostr(_)'] = _fun_to_str def _bind_methods(): module_bind_methods() fun_bind_methods() nil_bind_methods() bool_bind_methods() str_bind_methods() int_bind_methods() float_bind_methods() list_bind_methods() map_bind_methods() # 内部使用 def _nil_to_str(obj): return StrObj(str(obj.nil)) def _nil_equ(obj1, obj2): if obj2.obj_header.obj_type != OT_NIL: return BoolObj(False) return BoolObj(True) def _nil_hash(obj): fatal_print('RuntimetimeError, nil cannot be hashed!') sys.exit(1) def _bool_to_str(obj): return StrObj(str(obj.bool)) def _bool_equ(obj1, obj2): return BoolObj(obj1.bool == obj2.bool) def _bool_hash(obj): return IntObj(hash(obj.bool)) def _str_to_str(obj): return obj def _str_equ(obj1, obj2): return BoolObj(obj1.str == obj2.str) def _str_hash(obj): return IntObj(hash(obj.str)) def _str_add(obj1, obj2): if obj2.obj_header.obj_type != OT_STR: fatal_print('Runtime error, arg2 must be string') sys.exit(1) return StrObj(obj1.str + obj2.str) def _str_at(obj1, obj2): if obj2.obj_header.obj_type != OT_STR: fatal_print('Runtime error, index must be int') sys.exit(1) return StrObj(obj1.str[obj2.int]) def _str_len(obj): return IntObj(len(obj.str)) def _str_emtpy(obj): return BoolObj(len(obj.str) == 0) def _int_to_str(obj): return StrObj(str(obj.int)) def _int_equ(obj1, obj2): obj1 = args[start].obj() obj2 = args[start + 1].obj() return BoolObj(obj1.int == obj2.int) def _int_hash(obj): return IntObj(hash(obj.int)) def _int_to_float(obj): return FloatObj(float(obj.int)) def _int_add(obj1, obj2): if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj1.obj_header.obj_type == OT_FLOAT: return FloatObj(obj1.float + obj2.float) if obj1.obj_header.obj_type == OT_INT: return IntObj(obj1.int + obj2.int) def _int_sub(obj1, obj2): if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj1.obj_header.obj_type == OT_FLOAT: return FloatObj(obj1.float - obj2.float) if obj1.obj_header.obj_type == OT_INT: return IntObj(obj1.int - obj2.int) def _int_mul(obj1, obj2): if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj1.obj_header.obj_type == OT_FLOAT: return FloatObj(obj1.float * obj2.float) if obj1.obj_header.obj_type == OT_INT: return IntObj(obj1.int * obj2.int) def _int_div(obj1, obj2): if obj2.obj_header.obj_type == OT_FLOAT: obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj1.obj_header.obj_type == OT_FLOAT: if obj2.float == 0.0: fatal_print('Runtime error, arg2 cannot be 0') sys.exit(1) return FloatObj(obj1.float / obj2.float) if obj1.obj_header.obj_type == OT_INT: if obj2.int == 0: fatal_print('Runtime error, arg2 cannot be 0') sys.exit(1) return IntObj(obj1.int / obj2.int) def _int_mod(obj1, obj2): if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, arg2 must be int') sys.exit(1) if obj2.int == 0: fatal_print('Runtime error, arg2 cannot be 0') sys.exit(1) return IntObj(obj1.int % obj2.int) def _int_gt(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float > obj2.float) def _int_ge(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, args is not a number') sys.exit(1) obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float >= obj2.float) def _int_lt(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, args is not a number') sys.exit(1) obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float < obj2.float) def _int_le(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, obj2 is not a number') sys.exit(1) obj1 = _int_to_float(obj1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float <= obj2.float) def _float_to_str(obj): return StrObj(str(obj.float)) def _float_equ(obj1, obj2): return BoolObj(obj1.float == obj2.float) def _float_hash(obj): return IntObj(hash(obj.float)) def _float_to_int(obj): return IntObj(int(obj.float)) def _float_add(obj1, obj2): if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) return FloatObj(obj1.float + obj2.float) def _float_sub(obj1, obj2): if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) return FloatObj(obj1.float - obj2.float) def _float_mul(obj1, obj2): if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_INT, OT_FLOAT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) return FloatObj(obj1.float * obj2.float) def _float_div(obj1, obj2): if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj2.float == 0: fatal_print('Runtime error, arg2 cannot be 0') return FloatObj(obj1.float / obj2.float) def _float_gt(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float > obj2.float) def _float_ge(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float >= obj2.float) def _float_lt(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float < obj2.float) def _float_le(obj1, obj2): if obj2.obj_header.obj_type not in [OT_FLOAT, OT_INT]: fatal_print('Runtime error, arg2 is not a number') sys.exit(1) if obj2.obj_header.obj_type == OT_INT: obj2 = _int_to_float(obj2) return BoolObj(obj1.float <= obj2.float) def _list_len(obj): return IntObj(len(obj.list)) def _list_to_str(obj): s = '[' for item in obj.list: s += _type_to_pystr(item.obj()) + ', ' s = s[:-2] + ']' return StrObj(s) def _list_at(obj1, obj2): if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, arg2 must be int') sys.exit(1) return obj1.list[obj2.int] def _list_insert(obj1, obj2, obj3): # obj2为下标 if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, index must be int') sys.exit(1) obj1.list.insert(obj2.int, copy.copy(obj3)) def _list_append(obj1, obj2): obj1.list.append(copy.copy(obj2)) def _list_remove(obj1, obj2): # obj2为下标 if obj2.obj_header.obj_type != OT_INT: fatal_print('Runtime error, index must be int') sys.exit(1) length = list_len(obj1) if obj2.int >= length or obj2.int < 0: fatal_print('Runtime error, index out of rang') sys.exit(1) del obj1.list[obj2.int] def _map_put(obj1, key, val): if key.obj().obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') sys.exit(1) obj.map[copy.copy(key)] = copy.copy(val) def _map_get(obj, key): if key.obj().obj_header.obj_type == OT_NIL: fatal_print('Runtime error, key cannot be nil') sys.exit(1) if key.obj().obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') sys.exit(1) if key not in obj.map: return Value.to_value(NilObj()) return copy.copy(obj.map[key]) def _map_remove(obj, key): if key.obj().obj_header.obj_type == OT_NIL: fatal_print('Runtime error, key cannot be nil') sys.exit(1) if key.obj().obj_header.obj_type in [OT_MAP, OT_LIST]: fatal_print('Runtime error, map or list cannot be hashed') sys.exit(1) if key in obj.map: del obj.map[key] def _map_to_str(obj): s = '{' for key in obj.map: s += _type_to_pystr(key.obj()) + ': ' + _type_to_pystr(obj.map[key].obj()) + ', ' return StrObj(s[:-2] + '}') def _module_to_str(obj): addr = str(id(obj)) return StrObj('<Module(addr: %s) %s>' % (addr, obj.name)) def _fun_to_str(obj): addr = str(id(obj)) return StrObj('<Function(addr: %s) %s>' % (addr, obj.name)) class Value(object): def __init__(self, obj_header=NilObj().obj_header, value_type=VT_NIL): self.obj_header = obj_header self.value_type = value_type def to_value(self, obj): self.obj_header = obj.obj_header if is_type(obj, OT_INT): self.value_type = VT_INT elif is_type(obj, OT_FLOAT): self.value_type = VT_FLOAT elif is_type(obj, OT_STR): self.value_type = VT_STR elif is_type(obj, OT_FUN): self.value_type = VT_FUN elif is_type(obj, OT_MAP): self.value_type = VT_MAP elif is_type(obj, OT_LIST): self.value_type = VT_LIST elif is_type(obj, OT_NIL): self.value_type = VT_NIL elif is_type(obj, OT_BOOL): if obj.bool: self.value_type = VT_TRUE else: self.value_type = VT_FALSE elif is_type(obj, OT_MODULE): self.value_type = VT_MODULE @classmethod def new_value(cls, obj): ret = Value(obj.obj_header) if is_type(obj, OT_INT): ret.value_type = VT_INT elif is_type(obj, OT_FLOAT): ret.value_type = VT_FLOAT elif is_type(obj, OT_STR): ret.value_type = VT_STR elif is_type(obj, OT_FUN): ret.value_type = VT_FUN elif is_type(obj, OT_MAP): ret.value_type = VT_MAP elif is_type(obj, OT_LIST): ret.value_type = VT_LIST elif is_type(obj, OT_NIL): ret.value_type = VT_NIL elif is_type(obj, OT_BOOL): if obj.bool: ret.value_type = VT_TRUE else: ret.value_type = VT_FALSE elif is_type(obj, OT_MODULE): ret.value_type = VT_MODULE return ret def clear_value(self): self.obj_header = NilObj().obj_header self.value_type = VT_NIL def obj(self): return self.obj_header.obj def __eq__(self, other): return self.__hash__() == other.__hash__() def __hash__(self): return call(self.obj(), '_hash(_)')(self.obj()).int class Frame(object): def __init__(self, thread, start): self.thread = thread self.start = start # 含头含尾 self.end = self.start def extend(self, steps=1): self.end += steps if self.thread.size - 1 - self.end <= 512: self.thread.values.extend([Value() for _ in range(self.thread.size)]) self.thread.size *= 2 def __getitem__(self, idx): return self.thread.values[self.start + idx] def __setitem__(self, idx, val): self.thread.values[self.start + idx] = val def __str__(self): return str((self.start, self.end)) class Thread(object): def __init__(self, size=1024): self.values = [Value() for _ in range(size)] self.frames = [] self.frame_num = 0 self.start = 0 self.size = size def alloc_frame(self): # 第一个frame if not self.frames: frame = Frame(self, self.start) self.frames.append(frame) self.frame_num += 1 return frame else: cur_frame = self.frames[self.frame_num - 1] next_idx = cur_frame.end + 1 if self.size - 1 - next_idx <= 512: self.values.extend([Value() for _ in range(self.size)]) self.size *= 2 frame = Frame(self, next_idx) self.frames.append(frame) self.frame_num += 1 return frame def recycle_frame(self): """回收当前的frame """ del self.frames[self.frame_num - 1] self.frame_num -= 1 # 如果还有上一个frame就返回上一个frame if self.frame_num >= 1: return self.frames[self.frame_num - 1] # 没有就返回None return None _bind_methods() ``` #### File: jin-hao-chen/yank/opcode.py ```python LOAD_CONST = 0 STORE_CONST = 1 LOAD_LOCAL = 2 STORE_LOCAL = 3 LOAD_GLOBAL = 4 STORE_GLOBAL = 5 RETURN_VALUE = 6 # 回收frame并返回返回值到老的栈顶 PUSH_NIL = 7 POP = 8 JUMP_IF_FALSE = 9 JUMP = 10 PUSH_TRUE = 11 PUSH_FALSE = 12 LOOP = 13 CALL0 = 18 CALL1 = 19 CALL2 = 20 CALL3 = 21 CALL4 = 22 CALL5 = 23 CALL6 = 24 CALL7 = 25 CALL8 = 26 CALL9 = 27 CALL10 = 28 CALL11 = 29 CALL12 = 30 CALL13 = 31 CALL14 = 32 CALL15 = 33 CALL16 = 34 CALL17 = 35 CALL18 = 36 CALL19 = 37 CALL20 = 38 AND = 50 OR = 51 NOT = 52 END = 100 def opcode_print(stream): ptr = 0 stream_len = len(stream) i = 0 while ptr < stream_len: i += 1 op = stream[ptr] s = '' if op == LOAD_CONST: s += 'LOAD_CONST ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == PUSH_TRUE: s += 'PUSH_TRUE ' elif op == PUSH_FALSE: s += 'PUSH_FALSE' elif op == CALL0: s += 'CALL0 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL1: s += 'CALL1 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL2: s += 'CALL2 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL3: s += 'CALL3 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL4: s += 'CALL4 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL5: s += 'CALL5 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL6: s += 'CALL6 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL7: s += 'CALL7 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL8: s += 'CALL8 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL9: s += 'CALL9 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL10: s += 'CALL10 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL11: s += 'CALL11' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL12: s += 'CALL12 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL13: s += 'CALL13 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL14: s += 'CALL14 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL15: s += 'CALL15 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL16: s += 'CALL16 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL17: s += 'CALL17 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL18: s += 'CALL18 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL19: s += 'CALL19 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == CALL20: s += 'CALL20 ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == PUSH_NIL: s += 'PUSH_NIL ' elif op == LOAD_LOCAL: s += 'LOAD_LOCAL ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == LOAD_GLOBAL: s += 'LOAD_GLOBAL ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == STORE_LOCAL: s += 'STORE_LOCAL ' ptr += 1 operand = stream[ptr] s += str(operand) elif op == STORE_GLOBAL: s += 'STORE_GLOBAL ' ptr += 1 operand = stream[ptr] s += str(operand) ptr += 1 print(str(i) + ' ' + s) ``` #### File: jin-hao-chen/yank/vm.py ```python from objects import (module_cls, fun_cls, nil_cls, bool_cls, str_cls, int_cls, \ float_cls, list_cls, map_cls) class VM(object): def __init__(self): self.fun_cls = fun_cls self.nil_cls = nil_cls self.bool_cls = bool_cls self.str_cls = str_cls self.int_cls = int_cls self.float_cls = float_cls self.list_cls = list_cls self.map_cls = map_cls self.module_cls = module_cls self.builtin_clses = [fun_cls, nil_cls, bool_cls, str_cls, int_cls, float_cls, list_cls, map_cls, module_cls] """ self.method_names = ['nil.tostr()', 'nil.==(_)', 'nil.hash(_)', 'bool.tostr()', 'bool.==(_)', 'bool.hash()', 'str.tostr()', 'str.==(_)', 'str.hash()','str.+(_)', 'str.at(_)', 'str.len()', 'str.empty()', 'str.numbers()', 'int.tostr()', 'int.==(_)', 'int.hash()', 'int.float()', 'int.+(_)', 'int.-(_)', 'int.*(_)', 'int./(_)', 'int.%(_)', 'int.>(_)', 'int.>=(_)', 'int.<(_)', 'int.<=(_)', 'float.tostr()', 'float.==(_)', 'float.hash()', 'float.int()', 'float.+(_)', 'float.-(_)', 'float.*(_)', 'float./(_)', 'float.>(_)', 'float.>=(_)', 'float.<(_)', 'float.<=(_)', 'list.len()', 'list.tostr()', 'list.insert(_,_)', 'list.at(_)', 'list.remove(_)', 'list.append(_)', 'map.tostr()', 'map.put(_,_)', 'map.get(_)', 'map.remove(_)', 'map.@put(_,_)', 'map.@get(_)', 'map.@remove(_)'] """ def build_core_module(self): pass ```
{ "source": "jin-hao-chen/youdaobackend", "score": 2 }
#### File: apps/advance/views.py ```python import os import time import uuid import json import datetime import io import shutil import base64 import hashlib from pydub import AudioSegment import wave from PIL import Image, ImageDraw, ImageFont from flask import Blueprint from flask.views import MethodView from flask import (request, jsonify, send_from_directory) import requests from apps import settings from apps.advance import tools advance_bp = Blueprint('advance', __name__) LANG_CODE = { '英汉': ['en', 'zh-CHS'], '汉汉': ['zh-CHS', 'zh-CHS'], '日汉': ['ja', 'zh-CHS'], '法汉': ['fr', 'zh-CHS'], '韩汉': ['ko', 'zh-CHS'], '汉英': ['zh-CHS', 'en'], '汉日': ['zh-CHS', 'ja'], '汉法': ['zh-CHS', 'fr'], '汉韩': ['zh-CHS', 'ko'] } def advance_scan_words(): ret = { 'code': settings.CODE_OK } img = request.files.get('image') out = img.read() img_base64 = base64.b64encode(out).decode('utf-8') image = Image.open(io.BytesIO(out)) data = tools.ocr(img_base64, LANG_CODE[request.form.get('lang')][0]) if data['code'] == settings.CODE_ERR: ret['code'] = settings.CODE_ERR return ret for line in data['items']: data1 = tools.scan_words(line['text'], LANG_CODE[request.form.get('lang')][0], LANG_CODE[request.form.get('lang')][1]) if data1['code'] == settings.CODE_ERR: ret['code'] = settings.CODE_ERR return ret translation = data1['item'] tools.add_text(image, translation[0], line['loc']) byteIO = io.BytesIO() image.save(byteIO, format='jpeg') item = base64.b64encode(byteIO.getvalue()).decode('utf-8') ret['item'] = item return ret def advance_image_recognize(): ret = { 'code': settings.CODE_OK } img = request.files.get('file') out = img.read() img_base64 = base64.b64encode(out).decode('utf-8') result = tools.recognize(img_base64) if result is None: ret['code'] = settings.CODE_ERR return ret data = [] for res in result: if res['score'] > 0.3: tmp = tools.scan_words(res['keyword'], LANG_CODE[request.form.get('lang')][0], LANG_CODE[request.form.get('lang')][1]) if tmp['code'] == settings.CODE_ERR: ret['code'] = settings.CODE_ERR return ret data.append(tmp['item']) ret['items'] = data return ret def advace_voice_translate(): audio = request.files['file'] prefix = audio.filename.split('.')[0] old_path = os.path.join(settings.STATIC_DIR, audio.filename) audio.save(old_path) new_path = os.path.join(settings.STATIC_DIR, prefix + '.wav') tools.mp3_to_wav(old_path, new_path) os.remove(old_path) wav_info = wave.open(new_path, 'rb') sample_rate = wav_info.getframerate() nchannels = wav_info.getnchannels() wav_info.close() with open(new_path, 'rb') as file_wav: audio_base64 = base64.b64encode(file_wav.read()).decode('utf-8') origin = tools.voice_recognize(audio_base64, 16000, nchannels, LANG_CODE[request.form.get('lang')][0]) if origin is None: os.remove(new_path) return { 'code': settings.CODE_ERR } result = tools.scan_words(origin, LANG_CODE[request.form.get('lang')][0], LANG_CODE[request.form.get('lang')][1])['item'][0] ret = { 'code': settings.CODE_OK, 'origin': origin, 'result': result } os.remove(new_path) return ret # used by search_word() def _fetch_data(data, name): if name in data.keys(): return data[name] return [] # used by search_word() def _fetch_data2(data, name1, name2): ret = _fetch_data(data, name1) if ret: if name2 in ret.keys(): return ret[name2] return ret def search_word(): ret = { 'code': settings.CODE_OK } explain = tools.translate(request.form.get('word'), LANG_CODE[request.form.get('lang')][0], LANG_CODE[request.form.get('lang')][1]) result = { 'explain': _fetch_data2(explain, 'basic', 'explains'), 'wfs': _fetch_data2(explain, 'basic', 'wfs'), 'web': _fetch_data(explain, 'web'), 'phonetic': _fetch_data2(explain, 'basic', 'phonetic'), 'translation': _fetch_data(explain, 'translation')[0], 'speakUrl': _fetch_data(explain, 'speakUrl') } ret['item'] = result return ret class AdvanceView(MethodView): methods = ['GET', 'POST'] def post(self): if request.args.get('scan_words') == 'true': return jsonify(advance_scan_words()) if request.args.get('image_recognition') == 'true': return jsonify(advance_image_recognize()) if request.args.get('voice_translate') == 'true': return jsonify(advace_voice_translate()) if request.args.get('search_word') == 'true': return jsonify(search_word()) advance_bp.add_url_rule('', view_func=AdvanceView.as_view(name='advance_view'), endpoint='advance_view', strict_slashes=True) ``` #### File: youdaobackend/apps/__init__.py ```python from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_cors import CORS from apps import settings db = SQLAlchemy() # import blueprints from apps.translation.views import translation_bp from apps.advance.views import advance_bp def create_app(): app = Flask(__name__, static_folder=settings.STATIC_DIR) app.register_blueprint(translation_bp, url_prefix=settings.API_PREFIX + '/translation') app.register_blueprint(advance_bp, url_prefix=settings.API_PREFIX + '/advance') # change your password app.config['SQLALCHEMY_DATABASE_URI'] \ = 'mysql+pymysql://root:[email protected]:3306/file_go?charset=utf8mb4' app.config['SQLALCHEMY_POOL_SIZE'] = 6 app.config['SQLALCHEMY_POOL_TIMEOUT'] = 10 app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db.init_app(app) CORS(app, supports_credentials=True, resources=r'/*') return app ```
{ "source": "jinhaotutu/flask_iot_py", "score": 2 }
#### File: jinhaotutu/flask_iot_py/main.py ```python from flask import Flask from flask_restful import reqparse, abort, Api, Resource import wx_api import dev_api import tool_api import sence_api import link_api # Flask初始化参数尽量使用你的包名,这个初始化方式是官方推荐的,官方解释:http://flask.pocoo.org/docs/0.12/api/#flask.Flask app = Flask(__name__) api = Api(app) token = '<PASSWORD>' def check_token(token_in): if (not token_in): print ('not token') return -1 elif (token_in != token): print('token error: ' + token_in) return -1 else: return 0 # get blog info class GetBlogInfo(Resource): def post(self): if (0 != check_token(reqparse.request.headers.get('token'))): abort(403) return else: return wx_api.wx_blog_info_get(reqparse.request.json) # get dev list class GetDevList(Resource): def post(self): if (0 != check_token(reqparse.request.headers.get('token'))): abort(403) return else: return dev_api.dev_list_get(reqparse.request.json) # get tool list class GetToolList(Resource): def post(self): if (0 != check_token(reqparse.request.headers.get('token'))): abort(403) return else: return tool_api.tool_list_get(reqparse.request.json) # get sence list class GetSenceList(Resource): def post(self): if (0 != check_token(reqparse.request.headers.get('token'))): abort(403) return else: return sence_api.sence_list_get(reqparse.request.json) # get link list class GetLinkList(Resource): def post(self): if (0 != check_token(reqparse.request.headers.get('token'))): abort(403) return else: return link_api.link_list_get(reqparse.request.json) ## ## Actually setup the Api resource routing here ## api.add_resource(GetBlogInfo, '/iot/blog/info/get') api.add_resource(GetDevList, '/iot/dev/list/get') api.add_resource(GetToolList, '/iot/tool/list/get') api.add_resource(GetSenceList, '/iot/sence/list/get') api.add_resource(GetLinkList, '/iot/link/list/get') if __name__ == '__main__': # init wx_api.wx_api_init() # 官方启动方式参见:http://flask.pocoo.org/docs/0.12/quickstart/#a-minimal-application app.run(host="127.0.0.1", port=8090, debug=True) #, ssl_context='adhoc') ``` #### File: jinhaotutu/flask_iot_py/sence_api.py ```python import json import requests list_test = { 'type' : 'sence', 'item' : [ { 'name' : '扫码', 'image_url' : '1234', 'dev_id' : '0000000001', 'third_url' : '1234' },{ 'name' : 'AP配网', 'image_url' : '1234', 'dev_id' : '0000000002' },{ 'name' : '蓝牙', 'image_url' : '1234', 'dev_id' : '0000000003' } ] } def sence_list_get(params): return list_test ```
{ "source": "jinheeson1008/tensorflow-lstm-regression", "score": 2 }
#### File: traceml/integrations/xgboost.py ```python import ujson from traceml import tracking from traceml.exceptions import TracemlException from traceml.logger import logger try: import xgboost as xgb from xgboost import Booster except ImportError: raise TracemlException("xgboost is required to use the tracking callback") def _get_cv(model): return getattr(model, "cvfolds", False) def _log_importance(run, model, model_folds, max_num_features, **kwargs): try: import matplotlib.pyplot as plt except ImportError: raise ImportError("Please install matplotlib to log importance") if model_folds: for i, fold in enumerate(model_folds): importance = xgb.plot_importance( fold.bst, max_num_features=max_num_features, **kwargs ) run.log_mpl_plotly_chart( name="feature_importance", figure=importance.figure, step=i ) else: importance = xgb.plot_importance( model, max_num_features=max_num_features, **kwargs ) run.log_mpl_plotly_chart(name="feature_importance", figure=importance.figure) plt.close("all") def _log_model(run, model, model_folds): def _save(file_model, file_name): asset_path = run.get_outputs_path(file_name) file_model.save_model(asset_path) run.log_model_ref(asset_path, framework="xgboost") if model_folds: for i, cvpack in enumerate(model_folds): _save(cvpack.bst, "model-{}".format(i)) else: # train case _save(model, "model") def callback( log_model: bool = True, log_importance: bool = True, max_num_features: int = None, run: "Run" = None, ): run = tracking.get_or_create_run(run) def callback(env): # Log metrics after iteration metrics = {} for item in env.evaluation_result_list: if len(item) == 2: # train case metrics[item[0]] = item[1] if len(item) == 3: # cv case metrics["{}-mean".format(item[0])] = item[1] metrics["{}-std".format(item[0])] = item[2] run.log_metrics( **metrics, step=env.iteration, ) model = getattr(env, "model") model_folds = _get_cv(env) # Log booster, end of training if log_model: _log_model(run=run, model=model, model_folds=model_folds) # Log feature importance, end of training if env.iteration + 1 == env.end_iteration and log_importance: try: _log_importance( run, model=model, model_folds=model_folds, max_num_features=max_num_features, ) except Exception as e: logger.info("Failed logging feature importance %s", e) return callback class Callback(xgb.callback.TrainingCallback): def __init__( self, run: "Run" = None, log_model: bool = True, log_importance: bool = True, importance_type: str = "gain", max_num_features: int = None, ): self.log_model: bool = log_model self.log_importance: bool = log_importance self.importance_type: str = importance_type self.max_num_features: int = max_num_features self.run = tracking.get_or_create_run(run) def after_training(self, model: Booster) -> Booster: model_folds = _get_cv(model) if self.log_model: _log_model(run=self.run, model=model, model_folds=model_folds) if self.log_importance: _log_importance( self.run, model=model, model_folds=model_folds, max_num_features=self.max_num_features, ) if model_folds: config = {} for i, fold in enumerate(model_folds): config["fold_{}_config".format(i)] = ujson.loads(fold.bst.save_config()) if config: self.run.log_inputs(**config) else: self.run.log_inputs(config=ujson.loads(model.save_config())) outputs = {} if "best_score" in model.attributes().keys(): outputs["best_score"] = model.attributes()["best_score"] if "best_iteration" in model.attributes().keys(): outputs["best_iteration"] = model.attributes()["best_iteration"] self.run.log_outputs(**outputs) return model def after_iteration(self, model: Booster, epoch: int, evals_log: dict) -> bool: metrics = {} for stage, metrics_dict in evals_log.items(): for metric_name, metric_values in evals_log[stage].items(): if _get_cv(model): mean, std = metric_values[-1] metrics["{}-{}-mean".format(stage, metric_name)] = mean metrics["{}-{}-std".format(stage, metric_name)] = std else: metrics["{}-{}".format(stage, metric_name)] = metric_values[-1] if metrics: self.run.log_metrics(step=epoch, **metrics) return False ``` #### File: processors/events_processors/events_video_processors.py ```python from polyaxon.constants.globals import UNKNOWN from polyaxon.utils.np_utils import calculate_scale_factor, to_np from polyaxon.utils.path_utils import check_or_create_path from traceml.events import V1EventVideo from traceml.logger import logger from traceml.processors.errors import MOVIEPY_ERROR_MESSAGE, NUMPY_ERROR_MESSAGE try: import numpy as np except ImportError: np = None def video( asset_path: str, tensor, fps=4, content_type="gif", asset_rel_path: str = None ): if not np: logger.warning(NUMPY_ERROR_MESSAGE) return UNKNOWN tensor = to_np(tensor) tensor = prepare_video(tensor) # If user passes in uint8, then we don't need to rescale by 255 scale_factor = calculate_scale_factor(tensor) tensor = tensor.astype(np.float32) tensor = (tensor * scale_factor).astype(np.uint8) return make_video( asset_path, tensor, fps, content_type, asset_rel_path=asset_rel_path ) def make_video( asset_path: str, tensor, fps, content_type="gif", asset_rel_path: str = None ): try: import moviepy # noqa: F401 except ImportError: logger.warning(MOVIEPY_ERROR_MESSAGE) return UNKNOWN try: from moviepy import editor as mpy except ImportError: logger.warning( "moviepy is installed, but can't import moviepy.editor.", "Some packages could be missing [imageio, requests]", ) return t, h, w, c = tensor.shape # encode sequence of images into gif string clip = mpy.ImageSequenceClip(list(tensor), fps=fps) check_or_create_path(asset_path, is_dir=False) try: # older version of moviepy if content_type == "gif": clip.write_gif(asset_path, verbose=False, progress_bar=False) else: clip.write_videofile(asset_path, verbose=False, progress_bar=False) except TypeError: if content_type == "gif": clip.write_gif(asset_path, verbose=False) else: clip.write_videofile(asset_path, verbose=False) return V1EventVideo( height=h, width=w, colorspace=c, path=asset_rel_path or asset_path, content_type=content_type, ) def prepare_video(data): """ Converts a 5D tensor [batchsize, time(frame), channel(color), height, width] into 4D tensor with dimension [time(frame), new_width, new_height, channel]. A batch of images are spreaded to a grid, which forms a frame. e.g. Video with batchsize 16 will have a 4x4 grid. """ if not np: logger.warning(NUMPY_ERROR_MESSAGE) return UNKNOWN b, t, c, h, w = data.shape if data.dtype == np.uint8: data = np.float32(data) / 255.0 def is_power2(num): return num != 0 and ((num & (num - 1)) == 0) # pad to nearest power of 2, all at once if not is_power2(data.shape[0]): len_addition = int(2 ** data.shape[0].bit_length() - data.shape[0]) data = np.concatenate( (data, np.zeros(shape=(len_addition, t, c, h, w))), axis=0 ) n_rows = 2 ** ((b.bit_length() - 1) // 2) n_cols = data.shape[0] // n_rows data = np.reshape(data, newshape=(n_rows, n_cols, t, c, h, w)) data = np.transpose(data, axes=(2, 0, 4, 1, 5, 3)) return np.reshape(data, newshape=(t, n_rows * h, n_cols * w, c)) ``` #### File: traceml/processors/psutil_processor.py ```python from typing import Dict, List from traceml.processors.events_processors import metrics_dict_to_list try: import psutil except ImportError: psutil = None def can_log_psutil_resources(): return psutil is not None def query_psutil() -> Dict: results = {} try: # psutil <= 5.6.2 did not have getloadavg: if hasattr(psutil, "getloadavg"): results["load"] = psutil.getloadavg()[0] else: # Do not log an empty metric pass except OSError: pass vm = psutil.virtual_memory() results["cpu"] = psutil.cpu_percent(interval=None) results["memory"] = vm.percent return results def get_psutils_metrics() -> List: return metrics_dict_to_list(query_psutil()) ``` #### File: traceml/processors/units_processors.py ```python from typing import Union def _sanitize_value(value: Union[str, int, float]) -> Union[int, float]: fvalue = float(value) ivalue = int(fvalue) return ivalue if ivalue == fvalue else fvalue def to_cpu_value(cpu_definition: Union[str, int, float]) -> float: try: return float(cpu_definition) except (ValueError, TypeError): pass cpu_definition = cpu_definition.lower() cpu_unit = cpu_definition[-1] cpu_value = cpu_definition[:-1] if cpu_unit == "m": cpu = _sanitize_value(cpu_value) / 1000 elif cpu_unit == "u": cpu = _sanitize_value(cpu_value) / 1000**2 elif cpu_unit == "n": cpu = _sanitize_value(cpu_value) / 1000**3 else: cpu = cpu_definition return _sanitize_value(cpu) def to_memory_bytes(mem_definition: Union[str, int, float]) -> int: try: return int(float(mem_definition)) except (ValueError, TypeError): pass def _get_value(unit, value, multiplier): if unit in multiplier.keys(): return _sanitize_value(value) * multiplier.get(unit, 1) fixed_point_unit_multiplier = { "k": 1000, "m": 1000**2, "g": 1000**3, "t": 1000**4, "p": 1000**5, "e": 1000**6, } power_two_unit_multiplier = { "ki": 1024, "mi": 1024**2, "gi": 1024**3, "ti": 1024**4, "pi": 1024**5, "ei": 1024**6, } mem_definition = mem_definition.lower() mem_unit = mem_definition[-2:] mem_value = mem_definition[:-2] memory = _get_value(mem_unit, mem_value, power_two_unit_multiplier) if memory is not None: return memory mem_unit = mem_definition[-1:] mem_value = mem_definition[:-1] memory = _get_value(mem_unit, mem_value, fixed_point_unit_multiplier) if memory is not None: return memory return 0 def to_unit_memory(number, precision: int = 2): """Creates a string representation of memory size given `number`.""" kb = 1024 number /= kb if number < 100: return "{} Ki".format(round(number, precision)) number /= kb if number < 300: return "{} Mi".format(round(number, precision)) number /= kb if number < 900: return "{} Gi".format(round(number, precision)) number /= kb if number < 900: return "{} Ti".format(round(number, precision)) number /= kb if number < 900: return "{} Pi".format(round(number, precision)) number /= kb return "{} Ei".format(round(number, precision)) def number_percentage_format(x, precision: int = None, use_comma: bool = False): if precision is None: return x eps = 0.000000001 comma = "," if use_comma else "" num_format = ( "{{0:{}.0f}}".format(comma) if abs(int(x) - x) < eps else "{{0:{}.{}f}}".format(comma, precision) ) return num_format.format(x) def to_percentage( number, rounding: int = 2, precision: int = None, use_comma: bool = False ): """Creates a percentage string representation from the given `number`. The number is multiplied by 100 before adding a '%' character. Raises `ValueError` if `number` cannot be converted to a number. """ number = float(number) * 100 number_as_int = int(number) rounded = round(number, rounding) value = ( number_as_int if number_as_int == rounded else number_percentage_format(rounded, precision, use_comma) ) return "{}%".format(value) def format_sizeof(num, suffix="B"): """ Print in human friendly format """ for unit in ["", "Ki", "Mi", "Gi", "Ti", "Pi", "Ei", "Zi"]: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, "Yi", suffix) ``` #### File: traceml/serialization/base.py ```python import os from typing import Dict, List from polyaxon.utils.path_utils import check_or_create_path from traceml.events import LoggedEventSpec from traceml.events.schemas import LoggedEventListSpec class EventWriter: EVENTS_BACKEND = "events" RESOURCES_BACKEND = "resources" def __init__(self, run_path: str, backend: str): self._events_backend = backend self._run_path = run_path self._files = {} # type: Dict[str, LoggedEventListSpec] self._closed = False def _get_event_path(self, kind: str, name: str) -> str: if self._events_backend == self.EVENTS_BACKEND: return os.path.join( self._run_path, self._events_backend, kind, "{}.plx".format(name) ) if self._events_backend == self.RESOURCES_BACKEND: return os.path.join( self._run_path, self._events_backend, kind, "{}.plx".format(name) ) raise ValueError("Unrecognized backend {}".format(self._events_backend)) def _init_events(self, events_spec: LoggedEventListSpec): event_path = self._get_event_path(kind=events_spec.kind, name=events_spec.name) # Check if the file exists otherwise initialize if not os.path.exists(event_path): check_or_create_path(event_path, is_dir=False) with open(event_path, "w") as event_file: event_file.write(events_spec.get_csv_header()) def _append_events(self, events_spec: LoggedEventListSpec): event_path = self._get_event_path(kind=events_spec.kind, name=events_spec.name) with open(event_path, "a") as event_file: event_file.write(events_spec.get_csv_events()) def _events_to_files(self, events: List[LoggedEventSpec]): for event in events: file_name = "{}.{}".format(event.kind, event.name) if file_name in self._files: self._files[file_name].events.append(event.event) else: self._files[file_name] = LoggedEventListSpec( kind=event.kind, name=event.name, events=[event.event] ) self._init_events(self._files[file_name]) def write(self, events: List[LoggedEventSpec]): if not events: return if isinstance(events, LoggedEventSpec): events = [events] self._events_to_files(events) def flush(self): for file_name in self._files: events_spec = self._files[file_name] if events_spec.events: self._append_events(events_spec) self._files[file_name].empty_events() def close(self): self.flush() self._closed = True @property def closed(self): return self._closed class BaseFileWriter: """Writes `LoggedEventSpec` to event files. The `EventFileWriter` class creates a event files in the run path, and asynchronously writes Events to the files. """ def __init__(self, run_path: str): self._run_path = run_path check_or_create_path(run_path, is_dir=True) @property def run_path(self): return self._run_path def add_event(self, event: LoggedEventSpec): if not isinstance(event, LoggedEventSpec): raise TypeError("Expected an LoggedEventSpec, " " but got %s" % type(event)) self._async_writer.write(event) def add_events(self, events: List[LoggedEventSpec]): for e in events: if not isinstance(e, LoggedEventSpec): raise TypeError("Expected an LoggedEventSpec, " " but got %s" % type(e)) self._async_writer.write(events) def flush(self): """Flushes the event files to disk. Call this method to make sure that all pending events have been written to disk. """ self._async_writer.flush() def close(self): """Performs a final flush of the event files to disk, stops the write/flush worker and closes the files. Call this method when you do not need the writer anymore. """ self._async_writer.close() ```
{ "source": "JinheonBaek/DS-RedBlackTree", "score": 3 }
#### File: JinheonBaek/DS-RedBlackTree/main.py ```python import os from Node import Node from Tree import RBT def search(): filenames = os.listdir('./input/') filename_lst = [] for filename in filenames: filename_lst.append(filename) return filename_lst def getFileData(names): data = [] _dir = './input/' for name in names: f = open(_dir + name, 'r') lines = f.readlines() tmp_data = [] for line in lines: tmp_data.append(int(line.strip("\n"))) data.append(tmp_data) f.close() return data def main(): #init names = search() datas = getFileData(names) sequence = 0 for data in datas: rbt = RBT() for i in data: if i > 0: rbt.insert(rbt.root, Node(i)) elif i < 0: rbt.delete(rbt.root, -i) else: break print("filename = " + names[sequence]) rbt.printNodeCount(rbt.root) rbt.printInsertNode(rbt.root) rbt.printDeleteNode(rbt.root) rbt.printMissNode(rbt.root) rbt.printBlackNodeCount(rbt.root) rbt.printBlackHeight(rbt.root) rbt.inOrderTraversal(rbt.root) sequence += 1 main() ```
{ "source": "JinheonBaek/ProgrammingLanguage", "score": 4 }
#### File: ProgrammingLanguage/HW4/main.py ```python import random import person, beverage def make_random_order(menus): """ Make random orders (between 1 and 9 beverages). \n This function uses random sampling with replacement. Return: list of sampled beverages (not instanced yet) """ return random.choices(list(menus.values()), k = random.randrange(1, 10)) def processCustomerOrder(employee, customer, menus): """ Process customer with one selected employee. \n """ ## Selected employee sets current customer employee.currentCustomer = customer ## Customer requests menu using get_menu() function ### In this setting, get_menu() return only true if customer.get_menu(): employee.print_menu(menus = menus) ## Customer makes order with order list randomly produced customer.make_order(make_random_order(menus)) ## Print time of the ordered beverages. ## After that, print price of the ordered beverages. print("소요시간은 {}초 입니다.".format(employee.get_time(customer = employee.currentCustomer))) print("주문하신 음료에 대한 가격은 {}원 입니다.".format(employee.get_price(customer = employee.currentCustomer))) def main(): ## employee list (our cafe shop has four employees) employeeList = [ person.Employee('창기'), person.Employee('재용'), person.Employee('건형'), person.Employee('은혁') ] ## Beverage menus (our cafe shop has below beverages) menus = { 'Americano': beverage.Americano, 'CafeLatte': beverage.CafeLatte, 'Cappuccino': beverage.Cappuccino, 'VanillaLatte': beverage.VanillaLatte, 'CafeMocha': beverage.CafeMocha, 'CaramelMaki': beverage.CaramelMaki, 'HotChocolate': beverage.HotChocolate, 'MintChocolate': beverage.MintChocolate } ## Customer Queue ### Using append, new customer is comming ### Using customerList[1:], dequeue customer that ordered beverages customerList = [] ## Customer '시우' comes into the cafe customerList.append(person.Customer('시우')) ## Process the customer in the queue. for customer in customerList: processCustomerOrder(random.choice(employeeList), customer, menus) customerList = customerList[1:] ## Customer '소영', '진헌', '하윤' come into the cafe customerList.append(person.KoreaUniver('소영')) customerList.append(person.KoreaUniver('진헌')) customerList.append(person.Youth('하윤')) ## Process the customer in the queue. for customer in customerList: processCustomerOrder(random.choice(employeeList), customer, menus) customerList = customerList[1:] ## Customer '민준', '예준' come into the cafe customerList.append(person.Customer('민준')) customerList.append(person.Youth('예준')) ## Process the customer in the queue. for customer in customerList: processCustomerOrder(random.choice(employeeList), customer, menus) customerList = customerList[1:] if __name__ == '__main__': main() ```
{ "source": "JinheonBaek/pytorch_geometric", "score": 2 }
#### File: torch_geometric/data/separate.py ```python from typing import Any from collections.abc import Mapping, Sequence from torch import Tensor from torch_sparse import SparseTensor from torch_geometric.data.data import BaseData from torch_geometric.data.storage import BaseStorage def separate(cls, batch: BaseData, idx: int, slice_dict: Any, inc_dict: Any = None, decrement: bool = True) -> BaseData: # Separates the individual element from a `batch` at index `idx`. # `separate` can handle both homogeneous and heterogeneous data objects by # individually separating all their stores. # In addition, `separate` can handle nested data structures such as # dictionaries and lists. data = cls().stores_as(batch) # We iterate over each storage object and recursively separate all its # attributes: for batch_store, data_store in zip(batch.stores, data.stores): key = batch_store._key if key is not None: attrs = slice_dict[key].keys() else: attrs = [ attr for attr in slice_dict.keys() if attr in set(batch_store.keys()) ] for attr in attrs: if key is not None: slices = slice_dict[key][attr] incs = inc_dict[key][attr] if decrement else None else: slices = slice_dict[attr] incs = inc_dict[attr] if decrement else None data_store[attr] = _separate(attr, batch_store[attr], idx, slices, incs, batch, batch_store, decrement) # The `num_nodes` attribute needs special treatment, as we cannot infer # the real number of nodes from the total number of nodes alone: if 'num_nodes' in batch_store: data_store.num_nodes = batch_store._num_nodes[idx] return data def _separate( key: str, value: Any, idx: int, slices: Any, incs: Any, batch: BaseData, store: BaseStorage, decrement: bool, ) -> Any: if isinstance(value, Mapping): # Recursively separate elements of dictionaries. return { key: _separate(key, elem, idx, slices[key], incs[key] if decrement else None, batch, store, decrement) for key, elem in value.items() } elif (isinstance(value, Sequence) and isinstance(value[0], Sequence) and not isinstance(value[0], str) and isinstance(value[0][0], (Tensor, SparseTensor))): # Recursively separate elements of lists of lists. return [ _separate(key, elem, idx, slices[i], incs[i] if decrement else None, batch, store, decrement) for i, elem in enumerate(value) ] elif isinstance(value, Tensor): # Narrow a `torch.Tensor` based on `slices`. # NOTE: We need to take care of decrementing elements appropriately. cat_dim = batch.__cat_dim__(key, value, store) start, end = slices[idx], slices[idx + 1] value = value.narrow(cat_dim or 0, start, end - start) value = value.squeeze(0) if cat_dim is None else value if decrement and (incs.dim() > 1 or int(incs[idx]) != 0): value = value - incs[idx] return value elif isinstance(value, SparseTensor) and decrement: # Narrow a `SparseTensor` based on `slices`. # NOTE: `cat_dim` may return a tuple to allow for diagonal stacking. cat_dim = batch.__cat_dim__(key, value, store) cat_dims = (cat_dim, ) if isinstance(cat_dim, int) else cat_dim for i, dim in enumerate(cat_dims): start, end = int(slices[idx][i]), int(slices[idx + 1][i]) value = value.narrow(dim, start, end - start) return value else: return value[idx] ``` #### File: torch_geometric/graphgym/model_builder.py ```python import torch from torch_geometric.graphgym.config import cfg from torch_geometric.graphgym.models.gnn import GNN import torch_geometric.graphgym.register as register network_dict = { 'gnn': GNN, } network_dict = {**register.network_dict, **network_dict} def create_model(to_device=True, dim_in=None, dim_out=None): r""" Create model for graph machine learning Args: to_device (string): The devide that the model will be transferred to dim_in (int, optional): Input dimension to the model dim_out (int, optional): Output dimension to the model """ dim_in = cfg.share.dim_in if dim_in is None else dim_in dim_out = cfg.share.dim_out if dim_out is None else dim_out # binary classification, output dim = 1 if 'classification' in cfg.dataset.task_type and dim_out == 2: dim_out = 1 model = network_dict[cfg.model.type](dim_in=dim_in, dim_out=dim_out) if to_device: model.to(torch.device(cfg.device)) return model ``` #### File: graphgym/models/layer.py ```python import torch import torch.nn as nn import torch.nn.functional as F import torch_geometric as pyg from torch_geometric.graphgym.config import cfg from torch_geometric.graphgym.models.act import act_dict from torch_geometric.graphgym.contrib.layer.generalconv import ( GeneralConvLayer, GeneralEdgeConvLayer) import torch_geometric.graphgym.register as register # General classes class GeneralLayer(nn.Module): """ General wrapper for layers Args: name (string): Name of the layer in registered :obj:`layer_dict` dim_in (int): Input dimension dim_out (int): Output dimension has_act (bool): Whether has activation after the layer has_bn (bool): Whether has BatchNorm in the layer has_l2norm (bool): Wheter has L2 normalization after the layer **kwargs (optional): Additional args """ def __init__(self, name, dim_in, dim_out, has_act=True, has_bn=True, has_l2norm=False, **kwargs): super(GeneralLayer, self).__init__() self.has_l2norm = has_l2norm has_bn = has_bn and cfg.gnn.batchnorm self.layer = layer_dict[name](dim_in, dim_out, bias=not has_bn, **kwargs) layer_wrapper = [] if has_bn: layer_wrapper.append( nn.BatchNorm1d(dim_out, eps=cfg.bn.eps, momentum=cfg.bn.mom)) if cfg.gnn.dropout > 0: layer_wrapper.append( nn.Dropout(p=cfg.gnn.dropout, inplace=cfg.mem.inplace)) if has_act: layer_wrapper.append(act_dict[cfg.gnn.act]) self.post_layer = nn.Sequential(*layer_wrapper) def forward(self, batch): batch = self.layer(batch) if isinstance(batch, torch.Tensor): batch = self.post_layer(batch) if self.has_l2norm: batch = F.normalize(batch, p=2, dim=1) else: batch.x = self.post_layer(batch.x) if self.has_l2norm: batch.x = F.normalize(batch.x, p=2, dim=1) return batch class GeneralMultiLayer(nn.Module): """ General wrapper for a stack of multiple layers Args: name (string): Name of the layer in registered :obj:`layer_dict` num_layers (int): Number of layers in the stack dim_in (int): Input dimension dim_out (int): Output dimension dim_inner (int): The dimension for the inner layers final_act (bool): Whether has activation after the layer stack **kwargs (optional): Additional args """ def __init__(self, name, num_layers, dim_in, dim_out, dim_inner=None, final_act=True, **kwargs): super(GeneralMultiLayer, self).__init__() dim_inner = dim_in if dim_inner is None else dim_inner for i in range(num_layers): d_in = dim_in if i == 0 else dim_inner d_out = dim_out if i == num_layers - 1 else dim_inner has_act = final_act if i == num_layers - 1 else True layer = GeneralLayer(name, d_in, d_out, has_act, **kwargs) self.add_module('Layer_{}'.format(i), layer) def forward(self, batch): for layer in self.children(): batch = layer(batch) return batch # ---------- Core basic layers. Input: batch; Output: batch ----------------- # class Linear(nn.Module): """ Basic Linear layer. Args: dim_in (int): Input dimension dim_out (int): Output dimension bias (bool): Whether has bias term **kwargs (optional): Additional args """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(Linear, self).__init__() self.model = nn.Linear(dim_in, dim_out, bias=bias) def forward(self, batch): if isinstance(batch, torch.Tensor): batch = self.model(batch) else: batch.x = self.model(batch.x) return batch class BatchNorm1dNode(nn.Module): """ BatchNorm for node feature. Args: dim_in (int): Input dimension """ def __init__(self, dim_in): super(BatchNorm1dNode, self).__init__() self.bn = nn.BatchNorm1d(dim_in, eps=cfg.bn.eps, momentum=cfg.bn.mom) def forward(self, batch): batch.x = self.bn(batch.x) return batch class BatchNorm1dEdge(nn.Module): """ BatchNorm for edge feature. Args: dim_in (int): Input dimension """ def __init__(self, dim_in): super(BatchNorm1dEdge, self).__init__() self.bn = nn.BatchNorm1d(dim_in, eps=cfg.bn.eps, momentum=cfg.bn.mom) def forward(self, batch): batch.edge_attr = self.bn(batch.edge_attr) return batch class MLP(nn.Module): """ Basic MLP model. Here 1-layer MLP is equivalent to a Liner layer. Args: dim_in (int): Input dimension dim_out (int): Output dimension bias (bool): Whether has bias term dim_inner (int): The dimension for the inner layers num_layers (int): Number of layers in the stack **kwargs (optional): Additional args """ def __init__(self, dim_in, dim_out, bias=True, dim_inner=None, num_layers=2, **kwargs): super(MLP, self).__init__() dim_inner = dim_in if dim_inner is None else dim_inner layers = [] if num_layers > 1: layers.append( GeneralMultiLayer('linear', num_layers - 1, dim_in, dim_inner, dim_inner, final_act=True)) layers.append(Linear(dim_inner, dim_out, bias)) else: layers.append(Linear(dim_in, dim_out, bias)) self.model = nn.Sequential(*layers) def forward(self, batch): if isinstance(batch, torch.Tensor): batch = self.model(batch) else: batch.x = self.model(batch.x) return batch class GCNConv(nn.Module): """ Graph Convolutional Network (GCN) layer """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GCNConv, self).__init__() self.model = pyg.nn.GCNConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class SAGEConv(nn.Module): """ GraphSAGE Conv layer """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(SAGEConv, self).__init__() self.model = pyg.nn.SAGEConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GATConv(nn.Module): """ Graph Attention Network (GAT) layer """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GATConv, self).__init__() self.model = pyg.nn.GATConv(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GINConv(nn.Module): """ Graph Isomorphism Network (GIN) layer """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GINConv, self).__init__() gin_nn = nn.Sequential(nn.Linear(dim_in, dim_out), nn.ReLU(), nn.Linear(dim_out, dim_out)) self.model = pyg.nn.GINConv(gin_nn) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class SplineConv(nn.Module): """ SplineCNN layer """ def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(SplineConv, self).__init__() self.model = pyg.nn.SplineConv(dim_in, dim_out, dim=1, kernel_size=2, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index, batch.edge_attr) return batch class GeneralConv(nn.Module): """A general GNN layer""" def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralConv, self).__init__() self.model = GeneralConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index) return batch class GeneralEdgeConv(nn.Module): """A general GNN layer that supports edge features as well""" def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralEdgeConv, self).__init__() self.model = GeneralEdgeConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): batch.x = self.model(batch.x, batch.edge_index, edge_feature=batch.edge_attr) return batch class GeneralSampleEdgeConv(nn.Module): """A general GNN layer that supports edge features and edge sampling""" def __init__(self, dim_in, dim_out, bias=False, **kwargs): super(GeneralSampleEdgeConv, self).__init__() self.model = GeneralEdgeConvLayer(dim_in, dim_out, bias=bias) def forward(self, batch): edge_mask = torch.rand(batch.edge_index.shape[1]) < cfg.gnn.keep_edge edge_index = batch.edge_index[:, edge_mask] edge_feature = batch.edge_attr[edge_mask, :] batch.x = self.model(batch.x, edge_index, edge_feature=edge_feature) return batch layer_dict = { 'linear': Linear, 'mlp': MLP, 'gcnconv': GCNConv, 'sageconv': SAGEConv, 'gatconv': GATConv, 'splineconv': SplineConv, 'ginconv': GINConv, 'generalconv': GeneralConv, 'generaledgeconv': GeneralEdgeConv, 'generalsampleedgeconv': GeneralSampleEdgeConv, } # register additional convs layer_dict = {**register.layer_dict, **layer_dict} ``` #### File: graphgym/models/pooling.py ```python from torch_scatter import scatter import torch_geometric.graphgym.register as register def global_add_pool(x, batch, size=None): """ Globally pool node embeddings into graph embeddings, via elementwise sum. Pooling function takes in node embedding [num_nodes x emb_dim] and batch (indices) and outputs graph embedding [num_graphs x emb_dim]. Args: x (torch.tensor): Input node embeddings batch (torch.tensor): Batch tensor that indicates which node belongs to which graph size (optional): Total number of graphs. Can be auto-inferred. Returns: Pooled graph embeddings """ size = batch.max().item() + 1 if size is None else size return scatter(x, batch, dim=0, dim_size=size, reduce='add') def global_mean_pool(x, batch, size=None): """ Globally pool node embeddings into graph embeddings, via elementwise mean. Pooling function takes in node embedding [num_nodes x emb_dim] and batch (indices) and outputs graph embedding [num_graphs x emb_dim]. Args: x (torch.tensor): Input node embeddings batch (torch.tensor): Batch tensor that indicates which node belongs to which graph size (optional): Total number of graphs. Can be auto-inferred. Returns: Pooled graph embeddings """ size = batch.max().item() + 1 if size is None else size return scatter(x, batch, dim=0, dim_size=size, reduce='mean') def global_max_pool(x, batch, size=None): """ Globally pool node embeddings into graph embeddings, via elementwise max. Pooling function takes in node embedding [num_nodes x emb_dim] and batch (indices) and outputs graph embedding [num_graphs x emb_dim]. Args: x (torch.tensor): Input node embeddings batch (torch.tensor): Batch tensor that indicates which node belongs to which graph size (optional): Total number of graphs. Can be auto-inferred. Returns: Pooled graph embeddings """ size = batch.max().item() + 1 if size is None else size return scatter(x, batch, dim=0, dim_size=size, reduce='max') pooling_dict = { 'add': global_add_pool, 'mean': global_mean_pool, 'max': global_max_pool } pooling_dict = {**register.pooling_dict, **pooling_dict} ```
{ "source": "jinho10/openshift-client-python", "score": 2 }
#### File: packages/openshift/__init__.py ```python from __future__ import absolute_import from .context import * from .base_verbs import * from .model import OpenShiftPythonException from .model import Model, Missing from .selector import * from .apiobject import * from . import naming from . import status from . import config from .ansible import ansible # Single source for module version __VERSION__ = __version__ = '1.0.6' null = None # Allow scripts to specify null in object definitions # Allows modules to trigger errors def error(msg, **kwargs): raise OpenShiftPythonException(msg, **kwargs) # Convenience method for accessing the module version def get_module_version(): return __VERSION__ ```
{ "source": "Jinho-Choi123/FTP-Server", "score": 2 }
#### File: FTP-Server/fileupload/tests.py ```python from ftp_server.settings import BASE_DIR import json from django.urls import reverse from rest_framework import status from rest_framework.test import APITestCase from .models import File, FileGroup from .serializers import FileGroupSerializer, FileSerializer import logging logger = logging.getLogger(__name__) class FileUploadTestCase1(APITestCase): def test_fileupload(self): with open(BASE_DIR/'testfiles/video1.mp4', 'rb') as video1, open(BASE_DIR/'testfiles/video2.mp4', 'rb') as video2, open(BASE_DIR/'testfiles/image1.jpg', 'rb') as image1: files = { 'uploadfile': video1, 'uploadfile': video2, 'uploadfile': image1, } response = self.client.post("/fileupload/", files = files, format='multipart') self.assertEqual(response.status_code, status.HTTP_200_OK) ``` #### File: FTP-Server/fileupload/views.py ```python import datetime from django.shortcuts import render from rest_framework.views import APIView from rest_framework.response import Response from .models import File, FileGroup from .serializers import FileSerializer, FileGroupSerializer from rest_framework.parsers import MultiPartParser, FormParser import uuid class FileUpload(APIView): def post(self, request): #files is list of file object files = request.FILES.getlist('uploadfile') filegroup_ = FileGroup() for file in files: file_ = File(group = filegroup_, content = file) filegroup_.addfile(file_) file_.save() filegroup_.save() filegroupserializer = FileGroupSerializer(filegroup_) filegroupData= filegroupserializer.data return Response(filegroupData) ```
{ "source": "jinhojang6/ai-detection-practice", "score": 2 }
#### File: detection_processing/stastics/test_face_improved.py ```python import argparse import cv2 as cv import numpy as np import analysis_perframe as pfh import analysis_stastics from keras.models import load_model import time import sys sys.path.append('..') from yolo_utils import infer_image from utils.datasets import get_labels from utils.inference import detect_faces from utils.inference import draw_text from utils.inference import draw_bounding_box from utils.inference import apply_offsets from utils.inference import load_detection_model from utils.preprocessor import preprocess_input from statistics import mode def test_face_improved(path_in, path_out, suffix = 'face_improved'): parser = argparse.ArgumentParser() FLAGS, unparsed = parser.parse_known_args() FLAGS.model_path = '../yolov3-coco/' FLAGS.weights = '../yolov3-coco/yolov3-wider_16000.weights' FLAGS.config = '../yolov3-coco/yolov3-face.cfg' FLAGS.video_path = path_in FLAGS.video_output_path = f'{path_out}_{suffix}.avi' FLAGS.labels = '../yolov3-coco/coco-labels' FLAGS.confidence = 0.1 FLAGS.threshold = 0.3 FLAGS.download_model = False FLAGS.show_time = False emotion_model_path = '../models/emotion_model.hdf5' emotion_classifier = load_model(emotion_model_path) emotion_target_size = emotion_classifier.input_shape[1:3] emotion_labels = get_labels('fer2013') emotion_offsets = (20, 40) emotion_window = [] frame_window = 10 face_cascade = cv.CascadeClassifier('../models/haarcascade_frontalface_default.xml') vid = cv.VideoCapture(FLAGS.video_path) height, width, writer = None, None, None labels = open(FLAGS.labels).read().strip().split('\n') colors = np.random.randint(0, 255, size=(len(labels), 3), dtype='uint8') net = cv.dnn.readNetFromDarknet(FLAGS.config, FLAGS.weights) layer_names = net.getLayerNames() layer_names = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] print(f'starting {suffix}') time_0 = time.time() frame_number = 0 while True: grabbed, frame = vid.read() if not grabbed: break else: frame_number += 1 if width is None or height is None: height, width = frame.shape[:2] img, boxes, confidences, classids, idxs = infer_image(net, layer_names, height, width, frame, colors, labels, FLAGS) gray_image = cv.cvtColor(img, cv.COLOR_BGR2GRAY) rgb_image = cv.cvtColor(img, cv.COLOR_BGR2RGB) faces = face_cascade.detectMultiScale(gray_image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30), flags=cv.CASCADE_SCALE_IMAGE) analysis_stastics.emotions.add_frame() for face_coordinates in faces: x1, x2, y1, y2 = apply_offsets(face_coordinates, emotion_offsets) gray_face = gray_image[y1:y2, x1:x2] try: gray_face = cv.resize(gray_face, (emotion_target_size)) except: continue gray_face = preprocess_input(gray_face, True) gray_face = np.expand_dims(gray_face, 0) gray_face = np.expand_dims(gray_face, -1) emotion_prediction = emotion_classifier.predict(gray_face) emotion_probability = np.max(emotion_prediction) emotion_label_arg = np.argmax(emotion_prediction) emotion_text = emotion_labels[emotion_label_arg] emotion_window.append(emotion_text) analysis_stastics.emotions.add_emotion(emotion_text) if len(emotion_window) > frame_window: emotion_window.pop(0) try: emotion_mode = mode(emotion_window) except: continue if emotion_text == 'angry': color = emotion_probability * np.asarray((255, 0, 0)) elif emotion_text == 'sad': color = emotion_probability * np.asarray((0, 0, 255)) elif emotion_text == 'happy': color = emotion_probability * np.asarray((255, 255, 0)) elif emotion_text == 'surprise': color = emotion_probability * np.asarray((0, 255, 255)) else: color = emotion_probability * np.asarray((0, 255, 0)) color = color.astype(int) color = color.tolist() draw_text(face_coordinates, rgb_image, emotion_mode, color, 0, -45, 1, 1) img = cv.cvtColor(rgb_image, cv.COLOR_RGB2BGR) output_array = [] for index in range(len(classids)): output_array.append({'name' : labels[classids[index]], 'percentage_probability' : confidences[index] * 100}) pfh.per_frame_handler(frame_number, output_array, suffix = suffix) if writer is None: fourcc = cv.VideoWriter_fourcc(*"MJPG") writer = cv.VideoWriter(FLAGS.video_output_path, fourcc, 30, (img.shape[1], img.shape[0]), True) writer.write(img) writer.release() vid.release() print(f'mode {suffix} finished, elapsed time : {time.time() - time_0}s') ```
{ "source": "jinhojang6/opencv-project", "score": 3 }
#### File: opencv-project/project_1/thresholding_opt1.py ```python import sys import time import numpy as np import cv2 print(sys.executable) print(sys.version) print(cv2.__version__) def evaluate_threshold(path, threshold): cap = cv2.VideoCapture(video_file) timeP = time.time() diff_sum = 0 if cap.isOpened(): ret, img = cap.read() while ret: gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh_image = cv2.threshold(gray_image, threshold, 255, cv2.THRESH_BINARY) M1 = np.sum(thresh_image) / 255 M0 = np.size(thresh_image) - M1 diff_sum += abs(M0 - M1) ret, img = cap.read() print(f'thresh {threshold}: {diff_sum}, elapsed time: {time.time() - timeP}s') return diff_sum def evaluate_section(path, value_list = [-1] * 256, init = 0, end = 255, div = 4): div = min(div, end - init) thresh_list = [0] * (div + 1) eval_list = [0] * (div + 1) for index in range(div + 1): threshold = init + ((end - init) * index // div) thresh_list[index] = threshold if value_list[threshold] < 0: value_list[threshold] = evaluate_threshold(path, threshold) eval_list[index] = value_list[threshold] for index in range(div + 1): if index == div: index_min = index break if eval_list[index + 1] > eval_list[index]: index_min = index break if div == (end - init): return thresh_list[index_min], eval_list[index_min] else: return evaluate_section(path, value_list, thresh_list[max(0, index_min - 1)], thresh_list[min(div, index_min + 1)], div) video_file = "./data/butterflies.mp4" cap = cv2.VideoCapture(video_file) print(f'frame size: {cap.get(cv2.CAP_PROP_FRAME_WIDTH)} by {cap.get(cv2.CAP_PROP_FRAME_HEIGHT)}') print(f'frame count: {cap.get(cv2.CAP_PROP_FRAME_COUNT)}') print(f'pixel count: {cap.get(cv2.CAP_PROP_FRAME_WIDTH) * cap.get(cv2.CAP_PROP_FRAME_HEIGHT) * cap.get(cv2.CAP_PROP_FRAME_COUNT) / 1000000}M') timeI = time.time() thresh_opt, diff_opt = evaluate_section(video_file) print(f'total elapsed time: {time.time() - timeI}s') print(f'optimal threshold: {thresh_opt} at diff_sum {diff_opt}') ``` #### File: opencv-project/project_2/test_default.py ```python import os from imageai.Detection import VideoObjectDetection import analysis_perframe as pfh def test_default(path_in, path_out, path_model = os.path.join(os.getcwd() , 'models\\yolo.h5'), speed = 'fast'): detector = VideoObjectDetection() detector.setModelTypeAsYOLOv3() detector.setModelPath(path_model) detector.loadModel(detection_speed = speed) #fast, faster, fastest, flash detector.detectObjectsFromVideo( input_file_path = path_in, output_file_path = path_out + '_default', frames_per_second = 20, per_frame_function = pfh.per_frame_handler, minimum_percentage_probability = 30, return_detected_frame = True ) ```
{ "source": "jinhong666/Python", "score": 2 }
#### File: AvailabilityMonitor/AmConfig/domainconfig.py ```python import configparser class DomainConf: @property def DomainName(self): return self._domainname @property def Protocol(self): return self._protocol @property def VIP(self): return self._vip @property def SrcIpList(self): return self._srcIpList @property def UrlDic(self): return self._urlDic @property def UrlValidDic(self): return self._urlValidDic def __init__(self,path): self._parser = configparser.ConfigParser() self._parser.read(path) self._domainname = self._parser.get("domain", "domainname") self._protocol = self._parser.get("domain","protocol") self._vip = self._parser.get("domain","vip") self._srcIpList = self._parser.get("domain","srcip").split(',') self._urlDic = self._readUrlDic() self._urlValidDic = self._readValidDic() def _readUrlDic(self): options = self._parser.options("address") urlDic = {} for optionName in options: urlDic[optionName] = self._parser.get("address",optionName) return urlDic def _readValidDic(self): options = self._parser.options("valid") validDic = {} for optionName in options: validDic[optionName] = self._parser.get("valid",optionName) return validDic ``` #### File: AvailabilityMonitor/Worker/__init__.py ```python from DbAccess.dbaccesser import DbAccesser from WebAccess.webaccesser import WebAccesser class MainWorker: def __init__(self,mainConf,logger): self._logger = logger self._conf = mainConf self._db = DbAccesser(self._conf.DbHost, self._conf.DbUserName, self._conf.DbPassword, self._conf.DbName) self._webAccesser = WebAccesser('') self._webAccesser.SetUserAgent("ycapp web monitor") def Work(self): for domainConf in self._conf.DomainConfs: self._checkDomain(domainConf) def _checkDomain(self, domainConf): for urlKey in list(domainConf.UrlDic.keys()): url = domainConf.UrlDic[urlKey] fullUrl = 'http://' + domainConf.DomainName + url self._webAccesser.SetUrl(fullUrl) self._checkServerByIP(domainConf.DomainName,domainConf.VIP,True) for srcIP in domainConf.SrcIpList: self._checkServerByIP(domainConf.DomainName,srcIP,False) def _checkServerByIP(self, domainName,ip,isVIP): self._logger.info("perform domain ip:" + "[" + ip + "]" + domainName) self._webAccesser.SetDomainIp(ip) status = self._checkServer() self._db.RecordMonitor(domainName, self._webAccesser.Url, ip, status, isVIP) def _checkServer(self): resData = self._webAccesser.Request() if len(resData) == 0: self._logger.info("Error\t" + self._webAccesser.Url) status = 0 else: self._logger.info("OK\t" + self._webAccesser.Url) status = 1 return status ```
{ "source": "jinhongtan/calculator3", "score": 3 }
#### File: calculator3/src/Calculator.py ```python class Calculator: def addition(self,a,b): return a + b def substraction(self,a,b): return a-b def multiplication(self,a,b): return a*b def division(self,a,b): return float(a)/float(b) ``` #### File: calculator3/src/StatisticsCalc.py ```python from Calculator import * import collections import sys import math class StatisticCalculator(Calculator): #check the list is valid # 1. not string # 2. not empty @staticmethod def check(data): if not all(isinstance(item,int) for item in data) or len(data)==0: print("Your data include string type or is empty,please give valid data") sys.exit() # calculate mean of the list @staticmethod def mean(data): StatisticCalculator.check(data) Calc1=Calculator() sum = 0 for x in data: sum= Calc1.addition(x,sum) return float(sum/len(data)) # calculate median of the list @staticmethod def median(data): StatisticCalculator.check(data) num_sorted = sorted(data) length = len(num_sorted) if length % 2 != 0: return num_sorted[int(length/2)] else: return (num_sorted[int(length/2)]+num_sorted[int((length/2)-1)])/2 # calculate mode of the list @staticmethod def mode(data): StatisticCalculator.check(data) num = [] tuple = collections.Counter(data).most_common() num.append(tuple[0][0]) for i in range(len(tuple) - 1): if tuple[i][1] == tuple[i + 1][1]: num.append(tuple[i + 1][0]) else: break return num # calculate variance of the list @staticmethod def variance(data): StatisticCalculator.check(data) average=StatisticCalculator.mean(data) res = sum((i - average) ** 2 for i in data) / (len(data)-1) return res # calculate standard variation of the list @staticmethod def stdvar(data): StatisticCalculator.check(data) average = StatisticCalculator.mean(data) res = sum((i - average) ** 2 for i in data) / (len(data)-1) return math.sqrt(res) ```