metadata
dict
text
stringlengths
60
3.49M
{ "source": "JJS-X/PiOT", "score": 3 }
#### File: graph/connexion/checkpassword.py ```python import re import sys import crypt import cherrypy def checkpass(username, password): passwd = open("/etc/shadow","r") goodpassword = None for line in passwd: if username in line: goodpassword = line if not goodpassword is None: table=goodpassword.split(":") hash=table[1].split("$") if (crypt.crypt(password, "$"+hash[1]+"$"+hash[2]+"$") == table[1]): return "True" else: return "False" else: return "not user" def setCookie(): cookie = cherrypy.response.cookie cookie['cookieName'] = 'test' cookie['cookieName']['path'] = '/' cookie['cookieName']['max-age'] = 3600 cookie['cookieName']['version'] = 1 def readCookie(): cookie = cherrypy.request.cookie for name in cookie.keys(): if name == "cookieName": if cookie[name].value == "test": return True return False # def readCookie(): # cookie = cherrypy.request.cookie # res = """<html><body>Hi, you sent me %s cookies.<br /> # Here is a list of cookie names/values:<br />""" % len(cookie) # for name in cookie.keys(): # res += "name: %s, value: %s<br>" % (name, cookie[name].value) # return res + "</body></html>" ```
{ "source": "jjt20/scripts", "score": 3 }
#### File: scripts/util/compute_connectivity_files.py ```python import numpy as np import os PRD = os.environ['PRD'] SUBJ_ID = os.environ['SUBJ_ID'] PARCEL = os.environ['PARCEL'] def compute_triangle_areas(vertices, triangles): """Calculates the area of triangles making up a surface.""" tri_u = vertices[triangles[:, 1], :] - vertices[triangles[:, 0], :] tri_v = vertices[triangles[:, 2], :] - vertices[triangles[:, 0], :] tri_norm = np.cross(tri_u, tri_v) triangle_areas = np.sqrt(np.sum(tri_norm ** 2, axis=1)) / 2.0 triangle_areas = triangle_areas[:, np.newaxis] return triangle_areas def compute_region_areas(triangles_areas, vertex_triangles): avt = np.array(vertex_triangles) #NOTE: Slightly overestimates as it counts overlapping border triangles, # but, not really a problem provided triangle-size << region-size. regs = map(set, avt) region_triangles = set.union(*regs) region_surface_area = triangle_areas[list(region_triangles)].sum() return region_surface_area def compute_region_orientation(vertex_normals): average_orientation = np.zeros((1, 3)) # Average orientation of the region orient = vertex_normals[:, :] avg_orient = np.mean(orient, axis=0) average_orientation = avg_orient / np.sqrt(np.sum(avg_orient ** 2)) region_orientation = average_orientation return region_orientation def compute_vertex_triangles(number_of_vertices, number_of_triangles, triangles): vertex_triangles = [[] for _ in range(number_of_vertices)] for k in range(number_of_triangles): vertex_triangles[triangles[k, 0]].append(k) vertex_triangles[triangles[k, 1]].append(k) vertex_triangles[triangles[k, 2]].append(k) return vertex_triangles def compute_vertex_normals(number_of_vertices, vertex_triangles, triangles, triangle_angles, triangle_normals, vertices): """ Estimates vertex normals, based on triangle normals weighted by the angle they subtend at each vertex... """ vert_norms = np.zeros((number_of_vertices, 3)) bad_normal_count = 0 for k in range(number_of_vertices): try: tri_list = list(vertex_triangles[k]) angle_mask = triangles[tri_list, :] == k angles = triangle_angles[tri_list, :] angles = angles[angle_mask][:, np.newaxis] angle_scaling = angles / np.sum(angles, axis=0) vert_norms[k, :] = np.mean(angle_scaling * triangle_normals[tri_list, :], axis=0) # Scale by angle subtended. vert_norms[k, :] = vert_norms[k, :] / np.sqrt(np.sum(vert_norms[k, :] ** 2, axis=0)) # Normalise to unit vectors. except (ValueError, FloatingPointError): # If normals are bad, default to position vector # A nicer solution would be to detect degenerate triangles and ignore their # contribution to the vertex normal vert_norms[k, :] = vertices[k] / np.sqrt(vertices[k].dot(vertices[k])) bad_normal_count += 1 if bad_normal_count: print(" %d vertices have bad normals" % bad_normal_count) return vert_norms def compute_triangle_angles(vertices, number_of_triangles, triangles): """ Calculates the inner angles of all the triangles which make up a surface """ verts = vertices # TODO: Should be possible with arrays, ie not nested loops... # A short profile indicates this function takes 95% of the time to compute normals # (this was a direct translation of some old matlab code) angles = np.zeros((number_of_triangles, 3)) for tt in range(number_of_triangles): triangle = triangles[tt, :] for ta in range(3): ang = np.roll(triangle, -ta) angles[tt, ta] = np.arccos(np.dot( (verts[ang[1], :] - verts[ang[0], :]) / np.sqrt(np.sum((verts[ang[1], :] - verts[ang[0], :]) ** 2, axis=0)), (verts[ang[2], :] - verts[ang[0], :]) / np.sqrt(np.sum((verts[ang[2], :] - verts[ang[0], :]) ** 2, axis=0)))) return angles def compute_triangle_normals(triangles, vertices): """Calculates triangle normals.""" tri_u = vertices[triangles[:, 1], :] - vertices[triangles[:, 0], :] tri_v = vertices[triangles[:, 2], :] - vertices[triangles[:, 0], :] tri_norm = np.cross(tri_u, tri_v) try: triangle_normals = tri_norm / np.sqrt(np.sum(tri_norm ** 2, axis=1))[:, np.newaxis] except FloatingPointError: #TODO: NaN generation would stop execution, however for normals this case could maybe be # handled in a better way. triangle_normals = tri_norm return triangle_normals def compute_region_areas_cortex(triangle_areas, vertex_triangles, region_mapping, list_name): regions = np.unique(region_mapping) region_surface_area = np.zeros((list_name.shape[0], 1)) avt = np.array(vertex_triangles) #NOTE: Slightly overestimates as it counts overlapping border triangles, # but, not really a problem provided triangle-size << region-size. for k in regions: regs = map(set, avt[region_mapping == k]) region_triangles = set.union(*regs) region_surface_area[k] = triangle_areas[list(region_triangles)].sum() return region_surface_area def compute_region_orientation_cortex(vertex_normals, region_mapping, list_name): regions = np.unique(region_mapping) average_orientation = np.zeros((list_name.shape[0], 3)) #Average orientation of the region for k in regions: orient = vertex_normals[region_mapping == k, :] avg_orient = np.mean(orient, axis=0) average_orientation[k, :] = avg_orient / np.sqrt(np.sum(avg_orient ** 2)) return average_orientation def compute_region_center_cortex(vertices, region_mapping, list_name): regions = np.unique(region_mapping) region_center= np.zeros((list_name.shape[0], 3)) #Average orientation of the region for k in regions: vert = vertices[region_mapping == k, :] region_center[k, :] = np.mean(vert, axis=0) return region_center if __name__ == '__main__': # Cortex # import data verts = np.loadtxt(os.path.join(PRD, SUBJ_ID, 'surface', 'vertices.txt')) tri = np.loadtxt(os.path.join(PRD, SUBJ_ID, 'surface', 'triangles.txt')) tri = tri.astype(int) region_mapping = np.loadtxt(os.path.join(PRD, SUBJ_ID, 'surface', 'region_mapping.txt')).astype(int) # save connectivity and tract length matrices weights = np.loadtxt(os.path.join(PRD, 'connectivity', 'weights.csv')) tract_lengths = np.loadtxt(os.path.join(PRD, 'connectivity', 'tract_lengths.csv')) weights = weights + weights.transpose() - np.diag(np.diag(weights)) # add the first region weights = np.vstack([np.zeros((1, weights.shape[0])), weights]) weights = np.hstack([np.zeros((weights.shape[0], 1)), weights]) tract_lengths = tract_lengths + tract_lengths.transpose() # because diagonal nul tract_lengths = np.vstack([np.zeros((1, tract_lengths.shape[0])), tract_lengths]) tract_lengths = np.hstack([np.zeros((tract_lengths.shape[0], 1)), tract_lengths]) np.savetxt(os.path.join(PRD, SUBJ_ID, 'connectivity', 'weights.txt'), weights, fmt='%d') np.savetxt(os.path.join(PRD, SUBJ_ID, 'connectivity', 'tract_lengths.txt'), tract_lengths, fmt='%.3f') # name of the centers list_name = np.loadtxt(open(os.path.join('share', 'reference_table_' + PARCEL + ".csv"), "r"), delimiter=",", skiprows=1, usecols=(1, ), dtype='str') # compute centers centers = compute_region_center_cortex(verts, region_mapping, list_name) # calculate average orientations number_of_vertices = int(verts.shape[0]) number_of_triangles = int(tri.shape[0]) vertex_triangles = compute_vertex_triangles(number_of_vertices, number_of_triangles, tri) triangle_normals = compute_triangle_normals(tri, verts) triangle_angles = compute_triangle_angles(verts, number_of_triangles, tri) vertex_normals = compute_vertex_normals(number_of_vertices, vertex_triangles, tri, triangle_angles, triangle_normals, verts) orientations = compute_region_orientation_cortex(vertex_normals, region_mapping, list_name) # compute areas triangle_areas = compute_triangle_areas(verts, tri) areas = compute_region_areas_cortex(triangle_areas, vertex_triangles, region_mapping, list_name) # subcorticals corr_table = np.loadtxt(open(os.path.join('share', 'reference_table_' + PARCEL + ".csv"), "r"), delimiter=",", skiprows=1, usecols=(0, 5)) for val in ['16', '08', '10', '11', '12', '13', '17', '18', '26', '47', '49', '50', '51', '52', '53', '54', '58']: verts = np.loadtxt(os.path.join(PRD, 'surface', 'subcortical', 'aseg_0'+str(val)+'_vert.txt')) tri = np.loadtxt(os.path.join(PRD, 'surface', 'subcortical', 'aseg_0'+str(val)+'_tri.txt')) tri = tri.astype(int) curr_center = np.mean(verts, axis=0) indx = int(corr_table[np.nonzero(corr_table[:, 0] == np.int(val)), 1]) centers[indx, :] = curr_center # Now calculate average orientations number_of_vertices = int(verts.shape[0]) number_of_triangles = int(tri.shape[0]) vertex_triangles = compute_vertex_triangles(number_of_vertices, number_of_triangles, tri) triangle_normals = compute_triangle_normals(tri, verts) triangle_angles = compute_triangle_angles(verts, number_of_triangles, tri) vertex_normals = compute_vertex_normals(number_of_vertices, vertex_triangles, tri, triangle_angles, triangle_normals, verts) average_orientation = compute_region_orientation(vertex_normals) orientations[indx, :] = average_orientation triangle_areas = compute_triangle_areas(verts, tri) region_areas = compute_region_areas(triangle_areas, vertex_triangles) areas[indx] = region_areas # save orientations and areas np.savetxt(os.path.join(PRD, SUBJ_ID, 'connectivity/areas.txt'), areas, fmt='%.2f') np.savetxt(os.path.join(PRD, SUBJ_ID, 'connectivity/average_orientations.txt'), orientations, fmt='%.2f %.2f %.2f') f = open(os.path.join(PRD, SUBJ_ID, 'connectivity/centres.txt'), 'w') for i, name in enumerate(list_name): f.write(str(name) +' ') for j in range(3): f.write('{:.4f} '.format(centers[i, j])) f.write('\n') f.close() # save cortical ref_table = np.loadtxt(open(os.path.join('share', 'reference_table_' + PARCEL + ".csv"), "rb"), delimiter=",", skiprows=1, usecols=(7,)) np.savetxt(os.path.join(PRD, SUBJ_ID, 'connectivity/cortical.txt'), ref_table, fmt='%d') ``` #### File: scripts/util/region_mapping.py ```python import numpy as np import os import os.path as op import sys rl = sys.argv[1] PRD = os.environ['PRD'] FS = os.environ['FS'] SUBJ_ID = os.environ['SUBJ_ID'] PARCEL = os.environ['PARCEL'] #TODO: use nibabel read_annot function instead def read_annot(fname): """Read a Freesurfer annotation from a .annot file. Note : Copied from nibabel Parameters ---------- fname : str Path to annotation file Returns ------- annot : numpy array, shape=(n_verts) Annotation id at each vertex ctab : numpy array, shape=(n_entries, 5) RGBA + label id colortable array names : list of str List of region names as stored in the annot file """ if not op.isfile(fname): dir_name = op.split(fname)[0] if not op.isdir(dir_name): raise IOError('Directory for annotation does not exist: %s', fname) cands = os.listdir(dir_name) cands = [c for c in cands if '.annot' in c] if len(cands) == 0: raise IOError('No such file %s, no candidate parcellations ' 'found in directory' % fname) else: raise IOError('No such file %s, candidate parcellations in ' 'that directory: %s' % (fname, ', '.join(cands))) with open(fname, "rb") as fid: n_verts = np.fromfile(fid, '>i4', 1)[0] data = np.fromfile(fid, '>i4', n_verts * 2).reshape(n_verts, 2) annot = data[data[:, 0], 1] ctab_exists = np.fromfile(fid, '>i4', 1)[0] if not ctab_exists: raise Exception('Color table not found in annotation file') n_entries = np.fromfile(fid, '>i4', 1)[0] if n_entries > 0: length = np.fromfile(fid, '>i4', 1)[0] orig_tab = np.fromfile(fid, '>c', length) orig_tab = orig_tab[:-1] names = list() ctab = np.zeros((n_entries, 5), np.int) for i in range(n_entries): name_length = np.fromfile(fid, '>i4', 1)[0] name = np.fromfile(fid, "|S%d" % name_length, 1)[0] names.append(name) ctab[i, :4] = np.fromfile(fid, '>i4', 4) ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) + ctab[i, 2] * (2 ** 16) + ctab[i, 3] * (2 ** 24)) else: ctab_version = -n_entries if ctab_version != 2: raise Exception('Color table version not supported') n_entries = np.fromfile(fid, '>i4', 1)[0] ctab = np.zeros((n_entries, 5), np.int) length = np.fromfile(fid, '>i4', 1)[0] np.fromfile(fid, "|S%d" % length, 1) # Orig table path entries_to_read = np.fromfile(fid, '>i4', 1)[0] names = list() for i in range(entries_to_read): np.fromfile(fid, '>i4', 1) # Structure name_length = np.fromfile(fid, '>i4', 1)[0] name = np.fromfile(fid, "|S%d" % name_length, 1)[0] names.append(name) ctab[i, :4] = np.fromfile(fid, '>i4', 4) ctab[i, 4] = (ctab[i, 0] + ctab[i, 1] * (2 ** 8) + ctab[i, 2] * (2 ** 16)) # convert to more common alpha value ctab[:, 3] = 255 - ctab[:, 3] return annot, ctab, names if PARCEL=='desikan': L, _, _ = read_annot(os.path.join(FS, SUBJ_ID, 'label', rl + '.aparc.annot')) elif PARCEL=='destrieux': L, _, _ = read_annot(os.path.join(FS, SUBJ_ID, 'label', rl + '.aparc.a2009s.annot')) elif PARCEL=='HCP-MMP': raise NotImplementedError #TODO volumetric parcellation script L, _, _ = read_annot(os.path.join('share', rl + '.HCP-MMP1.annot')) elif PARCEL=='Yeo-7nets': raise NotImplementedError #TODO volumetric parcellation script L, _, _ = read_annot(os.path.join('share', rl + '.Yeo_7nets.annot')) elif PARCEL=='Yeo-17nets': raise NotImplementedError #TODO volumetric parcellation script L, _, _ = read_annot(os.path.join('share', rl + '.Yeo_17nets.annot')) # using the ref table instead of the annot to reorder the region indices as we want for the region mapping ref_table = np.loadtxt(open(os.path.join('share', 'reference_table_' + PARCEL + ".csv"), "rb"), delimiter=",", skiprows=1, usecols=(5,6)) vl = np.loadtxt(os.path.join(PRD, 'surface', rl + '_vertices_low.txt')) # vertices low vh = np.loadtxt(os.path.join(PRD, 'surface', rl + '_vertices_high.txt')) # vertices high reg_map = [] for vli in vl: pos = np.argmin(np.sum(np.abs(vh - vli), 1)) if rl == 'lh': # colors are the same for left and right hemispheres find_tab = np.nonzero(ref_table[:, 1] == L[pos])[0][0] elif rl=='rh': find_tab = np.nonzero(ref_table[:, 1] == L[pos])[0][-1] reg_map.append(ref_table[find_tab, 0]) np.savetxt(os.path.join(PRD, 'surface', rl + '_region_mapping_low_not_corrected.txt'), reg_map) ```
{ "source": "JJTech0130/pypyjs-pwa", "score": 2 }
#### File: modules/ctypes_config_cache/dumpcache.py ```python import sys, os from ctypes_configure import dumpcache def dumpcache2(basename, config): size = 32 if sys.maxint <= 2**32 else 64 filename = '_%s_%s_.py' % (basename, size) dumpcache.dumpcache(__file__, filename, config) # filename = os.path.join(os.path.dirname(__file__), '_%s_cache.py' % (basename,)) g = open(filename, 'w') print >> g, '''\ import sys _size = 32 if sys.maxint <= 2**32 else 64 # XXX relative import, should be removed together with # XXX the relative imports done e.g. by lib_pypy/pypy_test/test_hashlib _mod = __import__("_%s_%%s_" %% (_size,), globals(), locals(), ["*"]) globals().update(_mod.__dict__)\ ''' % (basename,) g.close() ```
{ "source": "jjtechuy/lumino", "score": 2 }
#### File: network/proxies/token.py ```python import structlog from eth_utils import is_binary_address, to_checksum_address, to_normalized_address from raiden.constants import GAS_LIMIT_FOR_TOKEN_CONTRACT_CALL from raiden.exceptions import RaidenUnrecoverableError, TransactionThrew from raiden.network.rpc.client import check_address_has_code from raiden.network.rpc.smartcontract_proxy import ContractProxy from raiden.network.rpc.transactions import check_transaction_threw from raiden.utils import pex, safe_gas_limit from raiden.utils.typing import Address, BlockSpecification, TokenAmount from raiden_contracts.constants import CONTRACT_HUMAN_STANDARD_TOKEN from raiden_contracts.contract_manager import ContractManager log = structlog.get_logger(__name__) # pylint: disable=invalid-name # Determined by safe_gas_limit(estimateGas(approve)) on 17/01/19 with geth 1.8.20 GAS_REQUIRED_FOR_APPROVE = 58792 class Token: def __init__( self, jsonrpc_client, token_address, contract_manager: ContractManager, ): contract = jsonrpc_client.new_contract( contract_manager.get_contract_abi(CONTRACT_HUMAN_STANDARD_TOKEN), to_normalized_address(token_address), ) proxy = ContractProxy(jsonrpc_client, contract) if not is_binary_address(token_address): raise ValueError('token_address must be a valid address') check_address_has_code(jsonrpc_client, token_address, 'Token') self.address = token_address self.client = jsonrpc_client self.node_address = jsonrpc_client.address self.proxy = proxy def allowance(self, owner, spender, block_identifier): return self.proxy.contract.functions.allowance( to_checksum_address(owner), to_checksum_address(spender), ).call(block_identifier=block_identifier) def approve(self, allowed_address: Address, allowance: TokenAmount): """ Aprove `allowed_address` to transfer up to `deposit` amount of token. Note: For channel deposit please use the channel proxy, since it does additional validations. """ log_details = { 'node': pex(self.node_address), 'contract': pex(self.address), 'allowed_address': pex(allowed_address), 'allowance': allowance, } checking_block = self.client.get_checking_block() error_prefix = 'Call to approve will fail' gas_limit = self.proxy.estimate_gas( checking_block, 'approve', to_checksum_address(allowed_address), allowance, ) if gas_limit: error_prefix = 'Call to approve failed' log.debug('approve called', **log_details) transaction_hash = self.proxy.transact( 'approve', safe_gas_limit(gas_limit), to_checksum_address(allowed_address), allowance, ) self.client.poll(transaction_hash) receipt_or_none = check_transaction_threw(self.client, transaction_hash) transaction_executed = gas_limit is not None if not transaction_executed or receipt_or_none: if transaction_executed: block = receipt_or_none['blockNumber'] else: block = checking_block self.proxy.jsonrpc_client.check_for_insufficient_eth( transaction_name='approve', transaction_executed=transaction_executed, required_gas=GAS_REQUIRED_FOR_APPROVE, block_identifier=block, ) msg = self._check_why_approved_failed(allowance, block) error_msg = f'{error_prefix}. {msg}' log.critical(error_msg, **log_details) raise RaidenUnrecoverableError(error_msg) log.info('approve successful', **log_details) def _check_why_approved_failed( self, allowance: TokenAmount, block_identifier: BlockSpecification, ) -> str: user_balance = self.balance_of( address=self.client.address, block_identifier=block_identifier, ) # If the balance is zero, either the smart contract doesnt have a # balanceOf function or the actual balance is zero if user_balance == 0: msg = ( "Approve failed. \n" "Your account balance is 0 (zero), either the smart " "contract is not a valid ERC20 token or you don't have funds " "to use for openning a channel. " ) # The approve call failed, check the user has enough balance # (assuming the token smart contract may check for the maximum # allowance, which is not necessarily the case) elif user_balance < allowance: msg = ( f'Approve failed. \n' f'Your account balance is {user_balance}. ' f'The requested allowance is {allowance}. ' f'The smart contract may be rejecting your request due to the ' f'lack of balance.' ) # If the user has enough balance, warn the user the smart contract # may not have the approve function. else: msg = ( f'Approve failed. \n' f'Your account balance is {user_balance}. Nevertheless the call to' f'approve failed. Please make sure the corresponding smart ' f'contract is a valid ERC20 token.' ).format(user_balance) return msg def balance_of(self, address, block_identifier='latest'): """ Return the balance of `address`. """ return self.proxy.contract.functions.balanceOf( to_checksum_address(address), ).call(block_identifier=block_identifier) def transfer(self, to_address, amount): log_details = { 'node': pex(self.node_address), 'contract': pex(self.address), 'to_address': pex(to_address), 'amount': amount, } log.debug('transfer called', **log_details) startgas = GAS_LIMIT_FOR_TOKEN_CONTRACT_CALL transaction_hash = self.proxy.transact( 'transfer', safe_gas_limit(startgas), to_checksum_address(to_address), amount, ) self.client.poll(transaction_hash) receipt_or_none = check_transaction_threw(self.client, transaction_hash) if receipt_or_none: log.critical('transfer failed', **log_details) raise TransactionThrew('Transfer', receipt_or_none) # TODO: check Transfer event (issue: #2598) log.info('transfer successful', **log_details) ``` #### File: lumino/raiden/routing.py ```python from heapq import heappop, heappush from typing import Any, Dict, List, Tuple import networkx import requests import structlog from eth_utils import to_canonical_address, to_checksum_address from raiden.constants import DEFAULT_HTTP_REQUEST_TIMEOUT from raiden.transfer import channel, views from raiden.transfer.state import ( CHANNEL_STATE_OPENED, NODE_NETWORK_REACHABLE, NODE_NETWORK_UNKNOWN, ChainState, NettingChannelState, RouteState, ) from raiden.utils import pex, typing log = structlog.get_logger(__name__) # pylint: disable=invalid-name def check_channel_constraints( channel_state: NettingChannelState, from_address: typing.InitiatorAddress, partner_address: typing.Address, amount: int, network_statuses: Dict[typing.Address, str], routing_module: str, ) -> bool: # check channel state if channel.get_status(channel_state) != CHANNEL_STATE_OPENED: log.info( 'Channel is not opened, ignoring', from_address=pex(from_address), partner_address=pex(partner_address), routing_source=routing_module, ) return False # check channel distributable distributable = channel.get_distributable( channel_state.our_state, channel_state.partner_state, ) if amount > distributable: log.info( 'Channel doesnt have enough funds, ignoring', from_address=pex(from_address), partner_address=pex(partner_address), amount=amount, distributable=distributable, routing_source=routing_module, ) return False # check channel partner reachability network_state = network_statuses.get(partner_address, NODE_NETWORK_UNKNOWN) if network_state != NODE_NETWORK_REACHABLE: log.info( 'Partner for channel isn\'t reachable, ignoring', from_address=pex(from_address), partner_address=pex(partner_address), status=network_state, routing_source=routing_module, ) return False return True def get_best_routes( chain_state: ChainState, token_network_id: typing.TokenNetworkID, from_address: typing.InitiatorAddress, to_address: typing.TargetAddress, amount: int, previous_address: typing.Optional[typing.Address], config: Dict[str, Any], ) -> List[RouteState]: services_config = config.get('services', None) if services_config and services_config['pathfinding_service_address'] is not None: pfs_answer_ok, pfs_routes = get_best_routes_pfs( chain_state=chain_state, token_network_id=token_network_id, from_address=from_address, to_address=to_address, amount=amount, previous_address=previous_address, config=services_config, ) if pfs_answer_ok: return pfs_routes else: log.warning( 'Request to Pathfinding Service was not successful, ' 'falling back to internal routing.', ) return get_best_routes_internal( chain_state=chain_state, token_network_id=token_network_id, from_address=from_address, to_address=to_address, amount=amount, previous_address=previous_address, ) def get_best_routes_internal( chain_state: ChainState, token_network_id: typing.TokenNetworkID, from_address: typing.InitiatorAddress, to_address: typing.TargetAddress, amount: int, previous_address: typing.Optional[typing.Address], ) -> List[RouteState]: """ Returns a list of channels that can be used to make a transfer. This will filter out channels that are not open and don't have enough capacity. """ # TODO: Route ranking. # Rate each route to optimize the fee price/quality of each route and add a # rate from in the range [0.0,1.0]. available_routes = list() token_network = views.get_token_network_by_identifier( chain_state, token_network_id, ) network_statuses = views.get_networkstatuses(chain_state) neighbors_heap = list() try: all_neighbors = networkx.all_neighbors(token_network.network_graph.network, from_address) except networkx.NetworkXError: # If `our_address` is not in the graph, no channels opened with the # address return list() for partner_address in all_neighbors: # don't send the message backwards if partner_address == previous_address: continue channel_state = views.get_channelstate_by_token_network_and_partner( chain_state, token_network_id, partner_address, ) channel_constraints_fulfilled = check_channel_constraints( channel_state=channel_state, from_address=from_address, partner_address=partner_address, amount=amount, network_statuses=network_statuses, routing_module='Internal Routing', ) if not channel_constraints_fulfilled: continue nonrefundable = amount > channel.get_distributable( channel_state.partner_state, channel_state.our_state, ) try: length = networkx.shortest_path_length( token_network.network_graph.network, partner_address, to_address, ) heappush( neighbors_heap, (length, nonrefundable, partner_address, channel_state.identifier), ) except (networkx.NetworkXNoPath, networkx.NodeNotFound): pass if not neighbors_heap: log.warning( 'No routes available', from_address=pex(from_address), to_address=pex(to_address), ) return list() while neighbors_heap: *_, partner_address, channel_state_id = heappop(neighbors_heap) route_state = RouteState(partner_address, channel_state_id) available_routes.append(route_state) return available_routes def get_best_routes_pfs( chain_state: ChainState, token_network_id: typing.TokenNetworkID, from_address: typing.InitiatorAddress, to_address: typing.TargetAddress, amount: int, previous_address: typing.Optional[typing.Address], config: Dict[str, Any], ) -> Tuple[bool, List[RouteState]]: pfs_path = '{}/api/v1/{}/paths'.format( config['pathfinding_service_address'], to_checksum_address(token_network_id), ) payload = { 'from': to_checksum_address(from_address), 'to': to_checksum_address(to_address), 'value': amount, 'max_paths': config['pathfinding_max_paths'], } # check that the response is successful try: response = requests.get(pfs_path, params=payload, timeout=DEFAULT_HTTP_REQUEST_TIMEOUT) except requests.RequestException: log.warning( 'Could not connect to Pathfinding Service', request=pfs_path, parameters=payload, exc_info=True, ) return False, [] # check that the response contains valid json try: response_json = response.json() except ValueError: log.warning( 'Pathfinding Service returned invalid JSON', response_text=response.text, exc_info=True, ) return False, [] if response.status_code != 200: log_info = { 'error_code': response.status_code, } error = response_json.get('errors') if error is not None: log_info['pfs_error'] = error log.info( 'Pathfinding Service returned error code', **log_info, ) return False, [] if response_json.get('result') is None: log.info( 'Pathfinding Service returned unexpected result', result=response_json, ) return False, [] paths = [] network_statuses = views.get_networkstatuses(chain_state) for path_object in response_json['result']: path = path_object['path'] # get the second entry, as the first one is the node itself # also needs to be converted to canonical representation partner_address = to_canonical_address(path[1]) # don't route back if partner_address == previous_address: continue channel_state = views.get_channelstate_by_token_network_and_partner( chain_state=chain_state, token_network_id=token_network_id, partner_address=partner_address, ) channel_constraints_fulfilled = check_channel_constraints( channel_state=channel_state, from_address=from_address, partner_address=partner_address, amount=amount, network_statuses=network_statuses, routing_module='Pathfinding Service', ) if not channel_constraints_fulfilled: continue paths.append(RouteState( node_address=partner_address, channel_identifier=channel_state.identifier, )) return True, paths ``` #### File: integration/contracts/test_token.py ```python from eth_utils import to_canonical_address, to_checksum_address from raiden.network.proxies import Token from raiden.network.rpc.client import JSONRPCClient from raiden.utils import privatekey_to_address def test_token( deploy_client, token_proxy, private_keys, web3, contract_manager, ): privkey = private_keys[1] address = privatekey_to_address(privkey) address = to_canonical_address(address) other_client = JSONRPCClient(web3, privkey) other_token_proxy = Token( jsonrpc_client=other_client, token_address=to_canonical_address(token_proxy.proxy.contract.address), contract_manager=contract_manager, ) # send some funds from deployer to generated address transfer_funds = 100 token_proxy.transfer(address, transfer_funds) assert transfer_funds == token_proxy.balance_of(address) allow_funds = 100 token_proxy.approve(address, allow_funds) assert allow_funds == token_proxy.proxy.contract.functions.allowance( to_checksum_address(deploy_client.address), to_checksum_address(address), ).call(block_identifier='latest') other_token_proxy.transfer(deploy_client.address, transfer_funds) assert token_proxy.balance_of(address) == 0 ``` #### File: tests/unit/test_upgrade.py ```python import random from datetime import datetime from pathlib import Path from unittest.mock import patch from raiden.storage.serialize import JSONSerializer from raiden.storage.sqlite import SQLiteStorage from raiden.tests.utils import factories from raiden.transfer.state_change import ActionInitChain from raiden.utils.upgrades import UpgradeManager def setup_storage(db_path): storage = SQLiteStorage(str(db_path), JSONSerializer()) storage.write_state_change( ActionInitChain( pseudo_random_generator=random.Random(), block_number=1, our_address=factories.make_address(), chain_id=1, ), datetime.utcnow().isoformat(timespec='milliseconds'), ) return storage def test_upgrade_manager_restores_backup(tmp_path): db_path = tmp_path / Path('v17_log.db') upgrade_manager = UpgradeManager(db_filename=db_path) old_db_filename = tmp_path / Path('v16_log.db') storage = None with patch('raiden.utils.upgrades.older_db_file') as older_db_file: older_db_file.return_value = str(old_db_filename) storage = setup_storage(old_db_filename) with patch('raiden.storage.sqlite.RAIDEN_DB_VERSION', new=16): storage.update_version() upgrade_manager.run() # Once restored, the state changes written above should be # in the restored database storage = SQLiteStorage(str(db_path), JSONSerializer()) state_change_record = storage.get_latest_state_change_by_data_field( {'_type': 'raiden.transfer.state_change.ActionInitChain'}, ) assert state_change_record.data is not None assert not old_db_filename.exists() assert Path(str(old_db_filename).replace('_log.db', '_log.backup')).exists() ``` #### File: raiden/transfer/architecture.py ```python from copy import deepcopy from raiden.transfer.queue_identifier import QueueIdentifier from raiden.utils.typing import ( Address, BlockExpiration, BlockNumber, ChannelID, List, MessageID, Optional, T_BlockNumber, T_ChannelID, TransactionHash, ) # Quick overview # -------------- # # Goals: # - Reliable failure recovery. # # Approach: # - Use a write-ahead-log for state changes. Under a node restart the # latest state snapshot can be recovered and the pending state changes # reaplied. # # Requirements: # - The function call `state_transition(curr_state, state_change)` must be # deterministic, the recovery depends on the re-execution of the state changes # from the WAL and must produce the same result. # - StateChange must be idempotent because the partner node might be recovering # from a failure and a Event might be produced more than once. # # Requirements that are enforced: # - A state_transition function must not produce a result that must be further # processed, i.e. the state change must be self contained and the result state # tree must be serializable to produce a snapshot. To enforce this inputs and # outputs are separated under different class hierarquies (StateChange and Event). class State: """ An isolated state, modified by StateChange messages. Notes: - Don't duplicate the same state data in two different States, instead use identifiers. - State objects may be nested. - State classes don't have logic by design. - Each iteration must operate on fresh copy of the state, treating the old objects as immutable. - This class is used as a marker for states. """ __slots__ = () class StateChange: """ Declare the transition to be applied in a state object. StateChanges are incoming events that change this node state (eg. a blockchain event, a new packet, an error). It is not used for the node to communicate with the outer world. Nomenclature convention: - 'Receive' prefix for protocol messages. - 'ContractReceive' prefix for smart contract logs. - 'Action' prefix for other interactions. Notes: - These objects don't have logic by design. - This class is used as a marker for state changes. """ __slots__ = () def to_dict(self): return { attr: value for attr, value in self.__dict__.items() if not attr.startswith('_') } class Event: """ Events produced by the execution of a state change. Nomenclature convention: - 'Send' prefix for protocol messages. - 'ContractSend' prefix for smart contract function calls. - 'Event' for node events. Notes: - This class is used as a marker for events. - These objects don't have logic by design. - Separate events are preferred because there is a decoupling of what the upper layer will use the events for. """ __slots__ = () class SendMessageEvent(Event): """ Marker used for events which represent off-chain protocol messages tied to a channel. Messages are sent only once, delivery is guaranteed by the transport and not by the state machine """ def __init__( self, recipient: Address, channel_identifier: ChannelID, message_identifier: MessageID, ): # Note that here and only here channel identifier can also be 0 which stands # for the identifier of no channel (i.e. the global queue) if not isinstance(channel_identifier, T_ChannelID): raise ValueError('channel identifier must be of type T_ChannelIdentifier') self.recipient = recipient self.queue_identifier = QueueIdentifier( recipient=recipient, channel_identifier=channel_identifier, ) self.message_identifier = message_identifier def __eq__(self, other): return ( isinstance(other, SendMessageEvent) and self.recipient == other.recipient and self.queue_identifier == other.queue_identifier and self.message_identifier == other.message_identifier ) def __ne__(self, other): return not self.__eq__(other) class AuthenticatedSenderStateChange(StateChange): """ Marker used for state changes for which the sender has been verified. """ def __init__(self, sender): self.sender = sender def __eq__(self, other): return ( isinstance(other, AuthenticatedSenderStateChange) and self.sender == other.sender ) def __ne__(self, other): return not self.__eq__(other) class BalanceProofStateChange(AuthenticatedSenderStateChange): """ Marker used for state changes which contain a balance proof. """ def __init__(self, balance_proof): super().__init__(sender=balance_proof.sender) self.balance_proof = balance_proof def __eq__(self, other): return ( isinstance(other, BalanceProofStateChange) and super().__eq__(other) and self.balance_proof == other.balance_proof ) def __ne__(self, other): return not self.__eq__(other) class ContractSendEvent(Event): """ Marker used for events which represent on-chain transactions. """ pass class ContractSendExpirableEvent(ContractSendEvent): """ Marker used for events which represent on-chain transactions which are time dependent. """ def __init__(self, expiration: BlockExpiration): self.expiration = expiration def __eq__(self, other): return ( isinstance(other, ContractSendExpirableEvent) and self.expiration == other.expiration ) def __ne__(self, other): return not self.__eq__(other) class ContractReceiveStateChange(StateChange): """ Marker used for state changes which represent on-chain logs. """ def __init__(self, transaction_hash: TransactionHash, block_number: BlockNumber): if not isinstance(block_number, T_BlockNumber): raise ValueError('block_number must be of type block_number') self.transaction_hash = transaction_hash self.block_number = block_number def __eq__(self, other): return ( isinstance(other, ContractReceiveStateChange) and self.transaction_hash == other.transaction_hash and self.block_number == other.block_number ) def __ne__(self, other): return not self.__eq__(other) class StateManager: """ The mutable storage for the application state, this storage can do state transitions by applying the StateChanges to the current State. """ __slots__ = ( 'state_transition', 'current_state', ) def __init__(self, state_transition, current_state): """ Initialize the state manager. Args: state_transition: function that can apply a StateChange message. current_state: current application state. """ if not callable(state_transition): raise ValueError('state_transition must be a callable') self.state_transition = state_transition self.current_state = current_state def dispatch(self, state_change: StateChange) -> List[Event]: """ Apply the `state_change` in the current machine and return the resulting events. Args: state_change: An object representation of a state change. Return: A list of events produced by the state transition. It's the upper layer's responsibility to decided how to handle these events. """ assert isinstance(state_change, StateChange) # the state objects must be treated as immutable, so make a copy of the # current state and pass the copy to the state machine to be modified. next_state = deepcopy(self.current_state) # update the current state by applying the change iteration = self.state_transition( next_state, state_change, ) assert isinstance(iteration, TransitionResult) self.current_state = iteration.new_state events = iteration.events assert isinstance(self.current_state, (State, type(None))) assert all(isinstance(e, Event) for e in events) return events def __eq__(self, other): return ( isinstance(other, StateManager) and self.state_transition == other.state_transition and self.current_state == other.current_state ) def __ne__(self, other): return not self.__eq__(other) class TransitionResult: """ Representes the result of applying a single state change. When a task is completed the new_state is set to None, allowing the parent task to cleanup after the child. """ __slots__ = ( 'new_state', 'events', ) def __init__(self, new_state: Optional[State], events: List[Event]): self.new_state = new_state self.events = events def __eq__(self, other): return ( isinstance(other, TransitionResult) and self.new_state == other.new_state and self.events == other.events ) def __ne__(self, other): return not self.__eq__(other) ``` #### File: raiden/transfer/queue_identifier.py ```python from eth_utils import to_canonical_address, to_checksum_address from raiden.utils import pex from raiden.utils.typing import Address, Any, ChannelID, Dict class QueueIdentifier: def __init__( self, recipient: Address, channel_identifier: ChannelID, ): self.recipient = recipient self.channel_identifier = channel_identifier def __repr__(self): return '<QueueIdentifier recipient:{} channel_identifier:{}>'.format( pex(self.recipient), self.channel_identifier, ) def __eq__(self, other): return ( isinstance(other, QueueIdentifier) and self.recipient == other.recipient and self.channel_identifier == other.channel_identifier ) def __ne__(self, other): return not self.__eq__(other) def __hash__(self): return hash((self.recipient, self.channel_identifier)) def to_dict(self) -> Dict[str, Any]: return { 'recipient': to_checksum_address(self.recipient), 'channel_identifier': self.channel_identifier, } @classmethod def from_dict(cls, data: Dict[str, Any]) -> 'QueueIdentifier': restored = cls( recipient=to_canonical_address(data['recipient']), channel_identifier=data['channel_identifier'], ) return restored ```
{ "source": "JJtheNOOB/NLP", "score": 4 }
#### File: NLP/Latent Semantic Analysis/tokenizing.py ```python import nltk from nltk.stem import WordNetLemmatizer #Setting up lemmetizer, transform words to their original form word_lemmetizer = WordNetLemmatizer() #Read in all the titles and save them into a list called titles titles = [line.rstrip() for line in open('C:/Users/lianj/Desktop/Udemy/NLP_machine_learning_examples-master/nlp_class/all_book_titles.txt')] #Read in stopwords and make them into a set stopwords = set(w.rstrip() for w in open('C:/Users/lianj/Desktop/Udemy/NLP_machine_learning_examples-master/nlp_class/stopwords.txt')) #Append additional stop words into the set stopwords = stopwords.union({ 'introduction', 'edition', 'series', 'application', 'approach', 'card', 'access', 'package', 'plus', 'etext', 'brief', 'vol', 'fundamental', 'guide', 'essential', 'printed', 'third', 'second', 'fourth', }) #Now start processing the words def tokenizer(s): s = s.lower() #Make everything in lower case tokens = nltk.tokenize.word_tokenize(s) #split string into words tokens = [t for t in tokens if len(t) > 2] #Remove short words that is less than 2 characters long (not going to be so usefyul) tokens = [word_lemmetizer.lemmatize(t) for t in tokens] #Now we starts to lemmetize our tokens tokens = [t for t in tokens if t not in stopwords] #Remove all the stop words tokens = [t for t in tokens if not any(c.isdigit() for c in t)] #looping through all the tokens and its characters to remove the numbers return tokens word_index_map = {} current_index = 0 all_tokens = [] error_count = 0 for title in titles: try: title = title.encode('ascii', 'ignore').decode('utf-8') # QA: this will throw exception if bad characters tokens = tokenizer(title) #process the title all_tokens.append(tokens) #Append the tokens from the titles into tokens list for token in tokens: if token not in word_index_map: word_index_map[token] = current_index current_index += 1 except Exception as e: print(e) print(title) error_count += 1 print(index_word_map) ```
{ "source": "jjthomas/metaflow-tvm", "score": 2 }
#### File: nnvm/testing/rnntc.py ```python from .. import symbol as sym from . utils import create_workload EMBED_SIZE = 1024 LENGTH = 20 def sru_node(x, c): x1 = sym.dense(data=x, units=EMBED_SIZE) x2 = sym.dense(data=x, units=EMBED_SIZE) f = sym.sigmoid(data=x2) x3 = sym.dense(data=x, units=EMBED_SIZE) r = sym.sigmoid(data=x3) outC = sym.elemwise_add(sym.elemwise_mul(f, c), sym.elemwise_mul(f, x1)) outH = sym.elemwise_add(sym.elemwise_mul(r, outC), sym.elemwise_mul(r, x)) return (outC, outH) def get_symbol(): data = sym.Variable('data') data = sym.flatten(data=data) splits = sym.split(data, indices_or_sections=LENGTH, axis=1) lastC = splits[0] hs = [] for i in range(LENGTH): lastC, h = sru_node(splits[i], lastC) hs.append(h) hs.append(lastC) return sym.concatenate(*hs, axis=1) def get_workload(batch_size, image_shape=(1, 1, EMBED_SIZE * LENGTH), dtype="float32"): """Get benchmark workload for a simple multilayer perceptron Parameters ---------- batch_size : int The batch size used in the model num_classes : int, optional Number of claseses image_shape : tuple, optional The input image shape dtype : str, optional The data type Returns ------- net : nnvm.symbol The computational graph params : dict of str to NDArray The parameters. """ net = get_symbol() return create_workload(net, batch_size, image_shape, dtype) ```
{ "source": "jjthomas/mflowgen", "score": 3 }
#### File: mflowgen/components/Graph.py ```python from __future__ import print_function from .Edge import Edge from .Step import Step from ..utils import get_top_dir class Graph( object ): def __init__( s ): s._edges_i = {} s._edges_o = {} s._steps = {} #----------------------------------------------------------------------- # API to help build the graph interactively #----------------------------------------------------------------------- # ADKs def set_adk( s, adk, default=True ): if default: s.adk = Step( get_top_dir() + '/adks/' + adk, default=False ) else: s.adk = Step( adk, default=False ) s.add_step( s.adk ) def get_adk_step( s ): return s.adk # Steps def add_step( s, step ): key = step.get_name() assert key not in s._steps.keys(), \ 'add_step -- Duplicate step!' \ 'If this is intentional, first change the step name' s._steps[ key ] = step def get_step( s, step_name ): return s._steps[ step_name ] def all_steps( s ): return s._steps.keys() # Edges -- incoming and outgoing adjacency lists def get_edges_i( s, step_name ): try: return s._edges_i[ step_name ] except KeyError: return [] def get_edges_o( s, step_name ): try: return s._edges_o[ step_name ] except KeyError: return [] # Quality-of-life utility function def dangling_inputs( s ): dangling = [] for step_name in s.all_steps(): incoming_edges = s.get_edges_i( step_name ) incoming_edge_f_names = [ e.get_dst()[1] for e in incoming_edges ] inputs = s.get_step( step_name ).all_inputs() if inputs: for x in inputs: if x not in incoming_edge_f_names: dangling.append( ( step_name, x ) ) if dangling: for step_name, f_name in dangling: msg = 'Dangling input in step "{}": {}' msg = msg.format( step_name, f_name ) print( msg ) else: print( 'No dangling inputs in graph' ) #----------------------------------------------------------------------- # Connect #----------------------------------------------------------------------- def connect( s, l_handle, r_handle ): # Twizzle and figure out which side is the src and which is the dst l_step_name, l_direction, l_handle_name = l_handle r_step_name, r_direction, r_handle_name = r_handle if l_direction == 'inputs': assert r_direction == 'outputs', \ 'connect -- Must connect an input to an output' src_handle = r_handle dst_handle = l_handle elif r_direction == 'inputs': assert l_direction == 'outputs', \ 'connect -- Must connect an input to an output' src_handle = l_handle dst_handle = r_handle else: assert False, \ 'connect -- Must connect an input to an output' # Create an edge from src to dst src_step_name, src_direction, src_f = src_handle dst_step_name, dst_direction, dst_f = dst_handle if dst_step_name not in s._edges_i.keys(): s._edges_i[ dst_step_name ] = [] if src_step_name not in s._edges_o.keys(): s._edges_o[ src_step_name ] = [] src = ( src_step_name, src_f ) dst = ( dst_step_name, dst_f ) e = Edge( src, dst ) # Add this edge to tracking s._edges_i[ dst_step_name ].append( e ) s._edges_o[ src_step_name ].append( e ) def connect_by_name( s, src, dst ): # Get the step (in case the user provided step names instead) if type( src ) != Step: src_step = s.get_step( src ) else: src_step = src src_step_name = src_step.get_name() assert src_step_name in s.all_steps(), \ 'connect_by_name -- ' \ 'Step "{}" not found in graph'.format( src_step_name ) if type( dst ) != Step: dst_step = s.get_step( dst ) else: dst_step = dst dst_step_name = dst_step.get_name() assert dst_step_name in s.all_steps(), \ 'connect_by_name -- ' \ 'Step "{}" not found in graph'.format( dst_step_name ) # Find same-name matches between the src output and dst input src_outputs = src_step.all_outputs() dst_inputs = dst_step.all_inputs() overlap = set( src_outputs ).intersection( set( dst_inputs ) ) # For all overlaps, connect src to dst for name in overlap: l_handle = src_step.o( name ) r_handle = dst_step.i( name ) s.connect( l_handle, r_handle ) #----------------------------------------------------------------------- # Parameter system #----------------------------------------------------------------------- def update_params( s, params ): for step_name in s.all_steps(): s.get_step( step_name ).update_params( params ) def expand_params( s ): for step_name in s.all_steps(): s.get_step( step_name ).expand_params() #----------------------------------------------------------------------- # Design-space exploration #----------------------------------------------------------------------- # param_space # # Spins out new copies of the step across the parameter space. # # For example, for a graph like this: # # +-----+ +-----------+ +-----------+ # | foo | -> | bar | -> | baz | # | | | ( p = 1 ) | | | # +-----+ +-----------+ +-----------+ # # this call: # # s.param_space( 'bar', 'p', [ 1, 2, 3 ] ) # # will be transformed into a graph like this: # # +-----------+ +-----------+ # +-> | bar-p-1 | -> | baz-p-1 | # | | ( p = 1 ) | | | # | +-----------+ +-----------+ # +-----+ | +-----------+ +-----------+ # | foo | --> | bar-p-2 | -> | baz-p-2 | # | | | | ( p = 2 ) | | | # +-----+ | +-----------+ +-----------+ # | +-----------+ +-----------+ # +-> | bar-p-3 | -> | baz-p-3 | # | ( p = 3 ) | | | # +-----------+ +-----------+ # # Returns a list of (parameterized) steps (i.e., 'bar-p-1', 'bar-p-2', # and 'bar-p-3'). # def param_space( s, step, param_name, param_space ): # Get the step name (in case the user provided a step object instead) if type( step ) != str: step_name = step.get_name() else: step_name = step step = s.get_step( step_name ) assert step_name in s.all_steps(), \ 'param_space -- ' \ 'Step "{}" not found in graph'.format( step_name ) # Remove the step and its incoming edges from the graph del( s._steps[ step_name ] ) elist_i = s._param_space_helper_remove_incoming_edges( step_name ) # Now spin out new copies of the step across the parameter space new_steps = [] for p in param_space: p_step = step.clone() p_step.set_param( param_name, p ) p_step.set_name( step_name + '-' + param_name + '-' + str(p) ) s.add_step( p_step ) for e in elist_i: src_step_name, src_f = e.get_src() dst_step_name, dst_f = e.get_dst() src_step = s.get_step( src_step_name ) s.connect( src_step.o( src_f ), p_step.i( dst_f ) ) new_steps.append( p_step ) # Get the steps that directly depended on this step dep_steps = s._param_space_helper_get_dependent_steps( step_name ) # For each dependent step, replicate and connect to the new steps for dep_step in dep_steps: s._param_space_helper( step = dep_step, old_src = step, new_srcs = new_steps, param_name = param_name, param_space = param_space ) return new_steps def _param_space_helper( s, step, old_src, new_srcs, param_name, param_space ): step_name = step.get_name() # Remove the step and its incoming edges from the graph del( s._steps[ step_name ] ) elist_i = s._param_space_helper_remove_incoming_edges( step_name ) # Now spin out new copies of the step + attach them to new srcs new_steps = [] for i, p in enumerate( param_space ): p_step = step.clone() p_step.set_name( step_name + '-' + param_name + '-' + str(p) ) s.add_step( p_step ) for e in elist_i: src_step_name, src_f = e.get_src() dst_step_name, dst_f = e.get_dst() if src_step_name == old_src.get_name(): src_step = new_srcs[i] else: src_step = s.get_step( src_step_name ) s.connect( src_step.o( src_f ), p_step.i( dst_f ) ) new_steps.append( p_step ) # Get the steps that directly depended on this step dep_steps = s._param_space_helper_get_dependent_steps( step_name ) # For each dependent step, replicate and connect to the new steps for dep_step in dep_steps: s._param_space_helper( step = dep_step, old_src = step, new_srcs = new_steps, param_name = param_name, param_space = param_space ) return new_steps def _param_space_helper_remove_incoming_edges( s, step_name ): try: elist_i = s._edges_i[ step_name ] del( s._edges_i[ step_name ] ) # Delete edges in incoming edge list for e in elist_i: # Also delete these edges in outgoing edge lists src_step_name, src_f = e.get_src() src_elist_o = s._edges_o[src_step_name] del( src_elist_o[ src_elist_o.index( e ) ] ) except KeyError: elist_i = [] return elist_i def _param_space_helper_get_dependent_steps( s, step_name ): dep_steps = set() try: elist_o = s._edges_o[ step_name ] except KeyError: elist_o = [] for e in elist_o: dst_step_name, dst_f = e.get_dst() dep_steps.add( s.get_step( dst_step_name ) ) return dep_steps #----------------------------------------------------------------------- # Ninja helpers #----------------------------------------------------------------------- def escape_dollars( s ): for step_name in s.all_steps(): s.get_step( step_name ).escape_dollars() #----------------------------------------------------------------------- # Drawing #----------------------------------------------------------------------- # plot # # Dumps a graphviz dot file def plot( s, dot_title='', dot_f='graph.dot' ): # Templates for generating graphviz dot statements graph_template = \ '''\ digraph {{ label="{title}"; labelloc="t"; fontsize=60; size="8.5;11"; ratio="fill"; margin=0; pad=1; rankdir="TB"; concentrate=true; splines=polyline; center=true; nodesep=1.2; ranksep=0.8; {nodes} {edges} }}\ ''' node_template = \ '{dot_id} [ fontsize=24, width=2, penwidth=2, shape=Mrecord, ' + \ 'label="{{ {i} | \\n{name}\\n\\n | {o} }}", color=black ];' edge_template = \ '{src_dot_id}:{src_port_id}:s -> {dst_dot_id}:{dst_port_id}:n ' + \ '[ arrowsize=2, penwidth=2 ];' # Helper function def dot_format_fix( x ): return x.replace( '-', '_' ).replace( '.', '_' ) # Loop over all steps and generate a graphviz node declaration # # Each step will become a graphviz "record" shape, which has a special # label syntax that dot interprets to extract the ports. # # Basically, a label "{ <in1> in1_text | foobar | <out1> out1_text }" # turns into a three-section node: # # - the input with dot ID "in1" # - the name "foobar" # - the output with dot ID "out1" # dot_nodes = [] for step_name in s.all_steps(): step = s.get_step( step_name ) port_str = '<{dot_port_id}> {label}' i_port_strs = [] o_port_strs = [] for _input in sorted( step.all_inputs() ): dot_port_id = dot_format_fix( 'i_' + _input ) i_port_strs.append( \ port_str.format( dot_port_id=dot_port_id, label=_input ) ) for _output in sorted( step.all_outputs() ): dot_port_id = dot_format_fix( 'o_' + _output ) o_port_strs.append( \ port_str.format( dot_port_id=dot_port_id, label=_output ) ) node_cfg = {} node_cfg['dot_id'] = dot_format_fix( step_name ) node_cfg['name'] = '\n' + step_name + '\n\n' node_cfg['i'] = '{ ' + ' | '.join( i_port_strs ) + ' }' node_cfg['o'] = '{ ' + ' | '.join( o_port_strs ) + ' }' dot_nodes.append( node_template.format( **node_cfg ) ) # Loop over all edges and generate graphviz edge commands # # A command like "foo -> bar" will draw an edge from foo to bar. # dot_edges = [] for elist in s._edges_i.values(): for e in elist: src_step_name, src_f = e.get_src() dst_step_name, dst_f = e.get_dst() e_cfg = {} e_cfg['src_dot_id'] = dot_format_fix( src_step_name ) e_cfg['src_port_id'] = dot_format_fix( 'o_' + src_f ) e_cfg['dst_dot_id'] = dot_format_fix( dst_step_name ) e_cfg['dst_port_id'] = dot_format_fix( 'i_' + dst_f ) dot_edges.append( edge_template.format( **e_cfg ) ) # Write out the graphviz dot graph file with open( dot_f, 'w' ) as fd: graph_cfg = {} graph_cfg['title'] = dot_title graph_cfg['nodes'] = '\n'.join( dot_nodes ) graph_cfg['edges'] = '\n'.join( dot_edges ) fd.write( graph_template.format( **graph_cfg ) ) #----------------------------------------------------------------------- # Graph traversal order #----------------------------------------------------------------------- def topological_sort( s ): order = [] # Make a deep copy of the edges (destructive algorithm) edges_deep_copy = {} for step_name, elist in s._edges_i.items(): edges_deep_copy[ step_name ] = list(elist) edges = edges_deep_copy # Consider all steps in the graph steps = set( s.all_steps() ) # Topological sort while( steps ): steps_with_deps = set( edges.keys() ) steps_without_deps = steps.difference( steps_with_deps ) order.extend( steps_without_deps ) steps = steps_with_deps keys_to_delete = [] for step_name, elist in edges.items(): idx_to_delete = [] for i, e in enumerate( elist ): if e.get_src()[0] in order: idx_to_delete.append( i ) for i in reversed( idx_to_delete ): del( elist[i] ) if elist == []: keys_to_delete.append( step_name ) for k in keys_to_delete: del( edges[k] ) return order ```
{ "source": "jjthrash/Fabricius", "score": 2 }
#### File: Fabricius/v0.1/sync.py ```python import re from typing import Dict, Tuple, List from aqt import mw from aqt.utils import showInfo, showText from .roam.real import Client, InputError from .tools.markdown2.lib.markdown2 import markdown DEBUGWARNING = True DEBUGVERBOSE = False # Dict keys for config.json CONFIG_API_KEY_K = "apiKey" CONFIG_API_TOKEN_K = "apiToken" CONFIG_GRAPH_NAME_K = "graphName" CONFIG_API_URL_K = "roamAPIUrl" CONFIG_CARD_K = "cards" CONFIG_CARD_MODEL_K = "model" CONFIG_CARD_DECK_K = "deck" CONFIG_CARD_TAGS_K = "tagMap" def debugInfo(s): if DEBUGVERBOSE: showInfo(s) def debugWarning(s): if DEBUGWARNING: showInfo(s) def showAndThrowErrors(errors: List[str]): if len(errors) != 0: errorStr = "; ".join(errors) showInfo(errorStr) raise Exception(errorStr) class Syncer: def __init__(self): config = mw.addonManager.getConfig(__name__) errors = [] for k in [ CONFIG_API_KEY_K, CONFIG_API_TOKEN_K, CONFIG_GRAPH_NAME_K, CONFIG_API_URL_K, CONFIG_CARD_K, ]: if not k in config: errors.append('did not find required key "{}" in config.json'.format(k)) showAndThrowErrors(errors) for i, cardConfig in enumerate(config[CONFIG_CARD_K]): for k in [CONFIG_CARD_MODEL_K, CONFIG_CARD_DECK_K, CONFIG_CARD_TAGS_K]: if not k in cardConfig: errors.append( 'did not find required key "{}" for card at index {} in config.json'.format( k, i ) ) showAndThrowErrors(errors) self.errorLog = [] self.roamClient = Client( config[CONFIG_GRAPH_NAME_K], config[CONFIG_API_KEY_K], config[CONFIG_API_TOKEN_K], config[CONFIG_API_URL_K], ) # idea is to build a single query that will get all relevant blocks? # or is it possible that there will be too much data for a single api call? # def buildQuery(): def sync(self): config = mw.addonManager.getConfig(__name__) for cardCfg in config[CONFIG_CARD_K]: modelName = cardCfg[CONFIG_CARD_MODEL_K] deckName = cardCfg[CONFIG_CARD_DECK_K] deckID = mw.col.decks.id(deckName, create=True) mw.col.decks.select(deckID) model = mw.col.models.byName(modelName) if not model: showInfo( 'no such model "{}", please create it before proceeding. Sync stopped.'.format( modelName ) ) return deck = mw.col.decks.get(deckID, default=False) if not deck: showInfo( 'no such deck "{}", please create it before proceeding. Sync stopped.'.format( deck ) ) return deck["mid"] = model["id"] for tag, field in cardCfg[CONFIG_CARD_TAGS_K].items(): # [(uid, text, timestamp)] matchingBlocks = self.roamClient.queryForTag(tag) for block in matchingBlocks: self.createOrUpdateNote( {field: (block.text, block.uid)}, block.modifiedTime, deckID ) mw.col.decks.save(deck) mw.col.save() if len(self.errorLog) > 0: showAndThrowErrors(self.errorLog) def createOrUpdateNote( self, res: Dict[str, Tuple[str, str]], blockModifiedTime: str, did: int ): for textField, data in res.items(): text, uid = data refField = refFieldFromTextField(textField) queryByRef = "{}:{}".format(refField, uid) ids = mw.col.find_notes(queryByRef) if not ids: debugInfo("card not found for query {}".format(queryByRef)) note = mw.col.newNote() note[refField] = uid note[textField] = convertToCloze(text) mw.col.add_note(note, did) else: debugInfo("note found for query {} - {}".format(queryByRef, ids)) if len(ids) > 1: showText( 'should never happen: more than 1 note found with block ref {}. Please search for the duplicate and delete it. You can use the query "{}". After deleting, run Fabricus Sync again.'.format( ids, queryByRef, ) ) debugInfo("note ids found = {}".format(ids)) # update the card based on date id = ids[0] note = mw.col.getNote(id) # Roam returns in msecs noteModifiedTime = int(note.mod) * 1000 debugInfo( "noteModifiedTime {}, blockModifiedTime {}, (noteModifiedTime>blockModifiedTime)? {}".format( noteModifiedTime, blockModifiedTime, (noteModifiedTime > blockModifiedTime), ) ) # Text is from Roam # note[textField] is from Anki. textInAnkiFormat = convertToCloze(text) if note[textField] == textInAnkiFormat: debugInfo("skipping this note/block since contents are the same") continue if noteModifiedTime > int(blockModifiedTime): debugInfo( "note modified later: changing block (({})) in roam with text {}".format( uid, note[textField] ) ) try: self.roamClient.updateBlock( uid, convertToRoamBlock(note[textField]) ) except InputError as e: self.logError(e) else: debugWarning( "block modified later: changing note {} in anki with text {}".format( id, textInAnkiFormat ) ) # change note note[textField] = textInAnkiFormat note.flush() debugWarning(note.__repr__()) def logError(self, t: str): self.errorLog.append(t) def convertToCloze(s: str): res = re.sub(r"{\s*c(\d*):([^}]*)}", r"{{c\g<1>::\g<2>}}", s) res = basicMarkdownToHtml(res) return res def convertToRoamBlock(s: str): res = re.sub(r"{{c(\d*)::([^}]*)}}", r"{c\g<1>:\g<2>}", s) res = basicHtmlToMarkdown(res) return res # Markdown <-> HTML conversion using regex is hacky but the best we can do for now. # 1 hour investigation with html->md and md->html libraries proved unsuccessful with too many edge cases. # Main issue is that both fns need to be "inverses" otherwise cards will start to get mis-formatted. # Issue: now there is no easy way to write these literals in flashcard blocks. def basicHtmlToMarkdown(s: str): s = s.replace("<b>", "**") s = s.replace("</b>", "**") s = s.replace("<i>", "__") s = s.replace("</i>", "__") s = s.replace("&nbsp;", " ") return s def basicMarkdownToHtml(s: str): # ungreedy match res = re.sub(r"\*\*(.*?)\*\*", r"<b>\g<1></b>", s) # ungreedy match res = re.sub(r"__(.*?)__", r"<i>\g<1></i>", res) return res def refFieldFromTextField(s): return "{}UID".format(s) ```
{ "source": "JJToB/honeygrove", "score": 2 }
#### File: honeygrove/honeygrove/config.py ```python from pathlib import PurePath import pickle # Utility methods to pickle some config parts def load_object(path): with open(str(path), 'rb') as f: return pickle.load(f) def save_object(obj, path): with open(str(path), 'wb') as f: pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL) # With this we get dot-notation for config subsections class ConfigSection: pass # Honeygrove configuration class Config: # General configuration general = ConfigSection() general.id = "HG1" general.description = {"Name": str(general.id), "Location": "Hamburg, Germany", "Description": "Honeygrove instance #1"} general.address = "0.0.0.0" general.hostname = "euve256525" # Default maximum connections per host per service general.max_connections_per_host = 100 # True = use UTC, False = use System Time general.use_utc = True # Set this to False if you do not want to use broker or broker is # unavailable on your machine. Currently, the management-console # and the EKStack can not be used without communication via Broker. general.use_broker = False # Set this to True if you want your output as parsable json format # for example to forward with logstash general.output_json = False # Set this to False if you do not want to use geoip or no database # is available on your machine. general.use_geoip = False # List of service names that should be enabled at startup # (defaults to all implemented services if letf empty) general.enabled_services = [] # Logfile and output configuration logging = ConfigSection() # Status: Includes INFO-, HEARTBEAT-, RESPONSE- and ERROR-messages logging.print_status = True logging.print_alerts = True # Alerts: Includes LOGIN-, REQUEST-, FILE-, and SYN-messages logging.log_status = True logging.log_alerts = True # Folder configuration # All folder are relative to `folder.base`, so it is usually sufficient to only change this folder = ConfigSection() # Base path for resources and logs folder.base = PurePath('/var/honeygrove') # Resource related folders folder.resources = folder.base / 'resources' # Folder for emulated filesystem used by all services folder.filesystem = folder.resources / 'filesystem' / 'unix.xml' folder.honeytoken_files = folder.resources / 'honeytoken_files' folder.quarantine = folder.resources / 'quarantine' folder.tls = folder.resources / 'tls' if general.use_geoip: folder.geo_ip = folder.resources / 'geo_ip.db' # Log folder (currently only a single file) folder.log = folder.base / 'logs' / 'log.txt' # Ports without specific service listen = ConfigSection() listen.name = "LISTEN" listen.ports = [r for r in range(1, 5000)] tcp_scan = ConfigSection() tcp_scan.name = "TCP Scan Detector" tcp_scan.ports = [r for r in range(1, 5000)] # Timeframe in which ACK packets are expected to return # (to distinguish between port scans and valid connection attempts) tcp_scan.timeout = 5 # Services which are not bound to a single port multiple_port_services = [listen.name, tcp_scan.name] # HTTP service configuration http = ConfigSection() http.name = "HTTP" http.port = 80 http.connections_per_host = general.max_connections_per_host # Modify to simulate another server http.response_headers = {'Last-Modified': "Sun, 07 Aug 2019 08:02:22 GMT", 'Cache-Control': "no-store, no-cache, must-revalidate, post-check=0, pre-check=0", 'Pragma': "no-cache", 'Content-Type': "text/html; charset=UTF-8"} # To add your own HTML file you need to add it at httpSupportedSites # and add it into the dictionary below with its index. A # content page is optional. The first site is the login site, the # second one is the content page. The html login file needs # to have a login field with the name "log" and a password field # with the name of "<PASSWORD>" http.resource_folder = folder.resources / 'http' http.html_dictionary_path = http.resource_folder / 'html_dictionary.pkl' http.html_dictionary_content = load_object(http.html_dictionary_path) def save_html_dictionary(self): save_object(self.http.html_dictionary_content, self.http.html_dictionary_path) # HTTPS service configuration https = ConfigSection() https.name = "HTTPS" https.port = 443 https.connections_per_host = general.max_connections_per_host # TLS configuration https.tls_key = folder.tls / 'https.key' https.tls_cert = folder.tls / 'https.crt' # SSH service configuration ssh = ConfigSection() ssh.name = "SSH" ssh.port = 22 ssh.connections_per_host = general.max_connections_per_host # must start with "SSH-2.0-" ssh.banner = b'SSH-2.0-' + general.hostname.encode() ssh.resource_folder = folder.resources / 'ssh' ssh.database_path = ssh.resource_folder / 'database.json' ssh.helptext_folder = ssh.resource_folder / 'helptexts' ssh.gnuhelp_folder = ssh.resource_folder / 'gnuhelp' ssh.real_shell = False ssh.accept_files = True ssh.accept_keys = False # Telnet service configuration telnet = ConfigSection() telnet.name = "Telnet" telnet.port = 23 telnet.connections_per_host = general.max_connections_per_host # Currently not implemented telnet.real_shell = False # FTP service configuration ftp = ConfigSection() ftp.name = "FTP" ftp.port = 21 ftp.connections_per_host = general.max_connections_per_host ftp.accept_files = True # Email (POP3(S), SMTP(S), IMAP(S)) related configuration email = ConfigSection() email.resource_folder = folder.resources / 'email' email.database_path = email.resource_folder / 'database.py' # TLS configuration email.tls_key = folder.tls / 'email.key' email.tls_cert = folder.tls / 'email.crt' # SMTP service configuration smtp = ConfigSection() smtp.name = "SMTP" smtp.port = 25 smtp.connections_per_host = general.max_connections_per_host # CRAM-MD5 and SCRAM-SHA-1 aren't yet implemented! (using them anyway crashes the connection) smtp.authentication_methods = {"PLAIN": True, "LOGIN": True, "CRAM-MD5": False, "SCRAM-SHA-1": False} # SMTPS (SMTP + TLS) service configuration smtps = ConfigSection() smtps.name = "SMTPS" smtps.port = 587 smtps.connections_per_host = general.max_connections_per_host # POP3 service configuration pop3 = ConfigSection() pop3.name = "POP3" pop3.port = 110 pop3.connections_per_host = general.max_connections_per_host # POP3S (POP3 + TLS) service configuration pop3s = ConfigSection() pop3s.name = "POP3S" pop3s.port = 995 pop3s.connections_per_host = general.max_connections_per_host # IMAP service configuration imap = ConfigSection() imap.name = "IMAP" imap.port = 143 imap.connections_per_host = general.max_connections_per_host # CRAM-MD5 and SCRAM-SHA-1 aren't yet implemented! (using them anyway crashes the connection) imap.authentication_methods = smtp.authentication_methods # IMAPS (IMAP + TLS) service configuration imaps = ConfigSection() imaps.name = "IMAPS" imaps.port = 993 imaps.connections_per_host = general.max_connections_per_host # Enable all known services if none are explicitly configured above if not general.enabled_services: general.enabled_services = [http.name, https.name, ssh.name, telnet.name, ftp.name, smtp.name, smtps.name, pop3.name, pop3s.name, imap.name, imaps.name, tcp_scan.name] # HoneytokenDB configuration honeytoken = ConfigSection() honeytoken.database_file = folder.resources / 'honeytokendb' / 'database.txt' honeytoken.generating = {"SSH": ["SSH", "FTP", "HTTP"], "HTTP": ["HTTP", "SSH"], "FTP": ["FTP"]} honeytoken.probabilities = {"SSH": 0.5, "FTP": 0.1, "HTTP": 0.9, "Telnet": 0.8} # True: password acceptance via hash, False: random acceptance honeytoken.accept_via_hash = True honeytoken.hash_seed = '__honeygrove__' # username length limits honeytoken.username_min = 6 honeytoken.username_max = 24 # password length limits honeytoken.password_min = 6 honeytoken.password_max = 24 # Optional: Broker configuration if (general.use_broker): broker = ConfigSection() # Optional: IP/port to listen on (e.g. for connections from the management console) broker.listen = False broker.listen_ip = '127.0.0.1' broker.listen_port = 8888 # Optional: IP/port to peer to at startup (e.g. for connection to the CIM) broker.peer = False broker.peer_ip = '127.0.0.1' broker.peer_port = 34445 # Optional: SSL Authentication broker.ssl_ca_file = None # Path to CA file broker.ssl_ca_path = None # Path to directory with CA files broker.ssl_certificate = None # Own certificate broker.ssl_key_file = None # Own key ``` #### File: honeygrove/core/ServiceController.py ```python from honeygrove import log from honeygrove.config import Config from honeygrove.services import ServiceBaseModel # from honeygrove.tests.testresources import serviceControllerTestPkg # Actually used import threading from twisted.internet import reactor class ServiceController(): def __init__(self): """ Instantiates all subclasses of ServiceBaseModel and keeps track of them in a dict. """ threading.Thread(target=reactor.run, args=(False,)).start() self.serviceList = [] for service in ServiceBaseModel.ServiceBaseModel.__subclasses__(): self.serviceList.append(service()) self.serviceDict = dict([(service._name, service) for service in self.serviceList]) self.listen = self.serviceDict[Config.listen.name] self.runningServicesDict = dict([]) def startService(self, name): """ Starts the given service and adds it to threadDict :param name: Name of the service (str) """ service = self.serviceDict[name] address = service._address if service._port: address += ":{}".format(service._port) log.info("{}: Starting on {}".format(name, address)) if name not in self.runningServicesDict: if name not in Config.multiple_port_services: self.listen.stopOnPort(service._port) service.startService() self.runningServicesDict[name] = service return True else: return False def stopService(self, name): """ Stops the given service and removes it from threadDict :param name: Name of the service (str) """ log.info("Stop Service: " + name) if name in self.runningServicesDict: self.serviceDict[name].stopService() self.runningServicesDict.pop(name) if name not in Config.noPortSpecificService: self.listen.startOnPort(self.serviceDict[name]._port) return True else: return False ``` #### File: honeygrove/services/ServiceBaseModel.py ```python from honeygrove import log from honeygrove.config import Config from abc import ABC, abstractmethod from twisted.internet import reactor from twisted.internet.protocol import Factory from twisted.protocols.policies import WrappingFactory class ServiceBaseModel(ABC): def __init__(self): """ Initializeses some needed service parts. Only add variables here if they are needet in all services. """ self._fService = Factory() self._fService.clients = dict([]) # Only these variables should be changeable self._name = None self._address = Config.general.address self._port = None self._stop = True # XXX: Not used currently? self._status = None self._limiter = None self._transport = None def startService(self): """ Starts the specific service """ self._stop = False self._transport = reactor.listenTCP(self._port, self._limiter, interface=self._address) def stopService(self): """ Stops the specific service :return: """ self._stop = True self._transport.stopListening() def changePort(self, port): """ changes the port. If it is not possible the service will be terminatet. Eg. port is already in use. :param port: int """ self.stopService() self._port = port self.startService() class Limiter(WrappingFactory): # name = Name of the service # max_conns = Maximum number of connections per host def __init__(self, service, name, max_conns): super(Limiter, self).__init__(service) self._maxConnectionsPerPeer = max_conns self._name = name def startFactory(self): self.peerConnections = {} def buildProtocol(self, addr): peerHost = addr.host connectionCount = self.peerConnections.get(peerHost, 0) if connectionCount >= self._maxConnectionsPerPeer: log.limit_reached(self._name, peerHost) return None self.peerConnections[peerHost] = connectionCount + 1 return WrappingFactory.buildProtocol(self, addr) # p = "protocol"? def unregisterProtocol(self, p): peerHost = p.getPeer().host self.peerConnections[peerHost] -= 1 if self.peerConnections[peerHost] == 0: del self.peerConnections[peerHost] ``` #### File: honeygrove/tests/FilesystemParser_Test.py ```python import unittest from honeygrove.core.FilesystemParser import FilesystemParser from honeygrove.tests.testresources import __path__ as resources from honeygrove.tests.testresources import testconfig as config class FilesystemParserUnixTest(unittest.TestCase): def setUp(self): FilesystemParser.honeytoken_directory = config.tokendir self.fp = FilesystemParser(resources._path[0] + '/test_unix.xml') def test_get_absolute_path(self): self.assertEqual("/home/root", self.fp.get_absolute_path("../../bin/../home/root")) self.assertEqual("/bin", self.fp.get_absolute_path("/../home/../bin")) def test_tree_contains(self): self.assertTrue(self.fp.tree_contains("id_rsa.pub")) self.assertFalse(self.fp.tree_contains("michgibtsnicht")) def test_add_honeytoken_files(self): self.assertTrue(self.fp.tree_contains("id_rsa")) self.assertTrue(self.fp.tree_contains("id_rsa.pub")) self.assertTrue(self.fp.tree_contains("suspicious_data.txt")) def test_get_element(self): self.assertEqual(self.fp.get_element([]).attrib['name'], "/") def test_get_current_path(self): self.fp.cd("/home/root") self.assertEqual(self.fp.get_current_path(), "/home/root") self.fp.cd("..") self.assertEqual(self.fp.get_current_path(), "/home") self.fp.cd("/") self.assertEqual(self.fp.get_current_path(), "/") def test_get_formatted_path(self): self.fp.cd("/home/root") self.assertEqual(self.fp.get_formatted_path(), "~") self.fp.cd("/home") self.assertFalse(self.fp.get_formatted_path() == "~") def test_mkdir(self): self.fp.mkdir("new_folder_01") self.assertTrue(self.fp.tree_contains("new_folder_01")) self.assertEqual(self.fp.ls().count("new_folder_01"), 1) # pruefen, dass nicht mehrfach erzeugt self.fp.mkdir("~/new_folder_02") self.assertTrue(self.fp.tree_contains("new_folder_02")) self.fp.mkdir("../new_folder_03") self.assertTrue(self.fp.tree_contains("new_folder_03")) response = self.fp.mkdir("~/new_folder_02") self.assertEqual(response, "mkdir: cannot create directory 'new_folder_02': File exists") def test_touch(self): self.fp.mkdir("new_file_01") self.assertTrue(self.fp.tree_contains("new_file_01")) self.assertEqual(self.fp.ls().count("new_file_01"), 1) # pruefen, dass nicht mehrfach erzeugt self.fp.mkdir("~/new_file_02") self.assertTrue(self.fp.tree_contains("new_file_02")) self.fp.mkdir("../new_file_03") self.assertTrue(self.fp.tree_contains("new_file_03")) def test_ls(self): self.assertEqual(self.fp.ls("/var"), "log\nmail\nspool\ntmp\n") self.assertEqual(self.fp.ls("/var/log"), "") self.fp.cd("~") self.assertEqual(self.fp.ls(".ssh"), "id_rsa\nid_rsa.pub\n") def test_change_dir(self): path = self.fp.get_current_path() # alten Pfad merken self.fp.cd("./..") self.assertEqual(self.fp.get_current_path().split("/")[-1], path.split("/")[-2]) # neuer Pfad = alter Pfad ohne letzten / self.fp.cd("~") path = self.fp.get_current_path() # alten Pfad merken self.fp.cd("../.") self.assertEqual(self.fp.get_current_path().split("/")[-1], path.split("/")[-2]) # neuer Pfad = alter Pfad ohne letzten / self.fp.cd("/") self.assertEqual(self.fp.get_current_path(), "/") self.fp.cd("~") self.assertEqual(self.fp.get_formatted_path(), "~") self.fp.cd("../..") self.fp.cd("../../..") self.assertEqual(self.fp.get_current_path(), "/") path = "mich/gibtsnicht" self.assertEqual(self.fp.cd(path), path + ": No such file or directory") path = "~~" self.assertEqual(self.fp.cd(path), path + ": No such file or directory") def test_get_absoulte_path(self): self.fp.cd("/home/root") self.assertEqual(self.fp.get_absolute_path("~"), "/home/root") self.assertEqual(self.fp.get_absolute_path("./."), "/home/root") self.assertEqual(self.fp.get_absolute_path("./"), "/home/root") self.assertEqual(self.fp.get_absolute_path("."), "/home/root") self.assertEqual(self.fp.get_absolute_path("/"), "/") self.assertEqual(self.fp.get_absolute_path("/home"), "/home") self.assertEqual(self.fp.get_absolute_path("/home/../bin"), "/bin") self.assertEqual(self.fp.get_absolute_path(""), "") self.fp.cd("/") self.assertEqual(self.fp.get_absolute_path("C:\\Benutzer"), "/C:\\Benutzer") self.assertEqual(self.fp.get_absolute_path("/#wasistdaßfür1Verzeichnis,_vong_Name_her?\\\n"), "/#wasistdaßfür1Verzeichnis,_vong_Name_her?\\\n") self.assertEqual(self.fp.get_absolute_path("/PfadDarfMitSlashEnden/"), "/PfadDarfMitSlashEnden") def test_valid_dir(self): self.assertTrue(self.fp.valid_directory("/home/root")) self.assertTrue(self.fp.valid_directory("/home/root/")) self.assertTrue(self.fp.valid_directory("/")) self.assertTrue(self.fp.valid_directory("~")) self.assertTrue(self.fp.valid_directory("..")) self.assertTrue(self.fp.valid_directory("./..")) self.assertTrue(self.fp.valid_directory("../..")) self.assertTrue(self.fp.valid_directory(".")) self.assertTrue(self.fp.valid_directory("./.")) self.assertTrue(self.fp.valid_directory("../.")) self.assertFalse(self.fp.valid_directory("...")) def test_valid_file(self): self.assertTrue(self.fp.valid_file("~/.ssh/id_rsa")) self.assertTrue(self.fp.valid_file("~/.ssh/id_rsa.pub")) self.assertFalse(self.fp.valid_file("michgibtsnicht!1!")) def test_delete(self): self.fp.cd("/") self.fp.mkdir("testdir") self.fp.cd("testdir") self.fp.cd("..") self.assertTrue("testdir" in self.fp.ls()) self.assertEqual(self.fp.ls().count("testdir"), 1) self.fp.delete("testdir") self.assertFalse("testdir" in self.fp.ls()) self.fp.touch("testfile") self.assertTrue("testfile" in self.fp.ls()) self.assertEqual(self.fp.ls().count("testfile"), 1) response = self.fp.delete(".") self.assertEqual(response, "rm: refusing to remove '.' or '..' directory: skipping '.'") response = self.fp.delete("..") self.assertEqual(response, "rm: refusing to remove '.' or '..' directory: skipping '..'") def test_rename(self): self.fp.cd("/") self.fp.touch("old_name") self.fp.rename("old_name", "new_name") self.assertFalse("old_name" in self.fp.ls()) self.assertTrue("new_name" in self.fp.ls()) self.assertEqual(self.fp.ls().count("new_name"), 1) def test_move(self): self.fp.cd("/") self.fp.mkdir("testdir") self.fp.touch("testfile") response = self.fp.move("testfile", "testdir") self.assertEqual(response, "Not possible") self.fp.mkdir("testdir/testrecursive") self.fp.move("testdir", "/bin/testdir") self.assertFalse("testdir" in self.fp.ls()) self.assertTrue("testdir" in self.fp.ls("/bin")) self.assertEqual(self.fp.ls("/bin").count("testdir"), 1) self.assertTrue("testrecursive" in self.fp.ls("/bin/testdir")) self.assertEqual(self.fp.ls("/bin/testdir").count("testrecursive"), 1) def test_cat(self): self.fp.cd("~") self.assertTrue("-----BEGIN RSA PRIVATE KEY-----" in self.fp.cat(".ssh/id_rsa")) self.assertFalse(self.fp.cat("~/suspicious_data.txt") == "") class FilesystemParserWindowsTest(unittest.TestCase): def setUp(self): FilesystemParser.honeytoken_directory = config.tokendir self.fp = FilesystemParser(resources._path[0] + '/test_dir_sys.xml') def test_get_absolute_path(self): self.assertEqual(self.fp.get_absolute_path("~"), "/Benutzer/TestUser") def test_tree_contains(self): self.assertTrue(self.fp.tree_contains("scan_01.jpg")) self.assertTrue(self.fp.tree_contains("Firefox")) self.assertTrue(self.fp.tree_contains("id_rsa")) self.assertFalse(self.fp.tree_contains("michgibtsnicht")) def test_add_honeytoken_files(self): print(self.fp.ls()) self.assertTrue(self.fp.tree_contains("id_rsa")) self.assertTrue(self.fp.tree_contains("suspicious_data.txt")) def test_get_element(self): self.assertEqual(self.fp.get_element([]).attrib['name'], "C:") def test_get_current_path(self): self.fp.cd("\Programme\Firefox") self.assertEqual(self.fp.get_current_path(), "/Programme/Firefox") self.fp.cd("..") self.assertEqual(self.fp.get_current_path(), "/Programme") self.fp.cd("\\") self.assertEqual(self.fp.get_current_path(), "/") def test_mkdir(self): self.fp.mkdir("new_folder_01") self.assertTrue(self.fp.tree_contains("new_folder_01")) self.assertEqual(self.fp.ls().count("new_folder_01"), 1) # pruefen, dass nicht mehrfach erzeugt self.fp.mkdir("~/new_folder_02") self.assertTrue(self.fp.tree_contains("new_folder_02")) self.fp.mkdir("../new_folder_03") self.assertTrue(self.fp.tree_contains("new_folder_03")) response = self.fp.mkdir("~/new_folder_02") self.assertEqual(response, "mkdir: cannot create directory 'new_folder_02': File exists") def test_touch(self): self.fp.mkdir("new_file_01") self.assertTrue(self.fp.tree_contains("new_file_01")) self.assertEqual(self.fp.ls().count("new_file_01"), 1) # pruefen, dass nicht mehrfach erzeugt self.fp.mkdir("~/new_file_02") self.assertTrue(self.fp.tree_contains("new_file_02")) self.fp.mkdir("../new_file_03") self.assertTrue(self.fp.tree_contains("new_file_03")) def test_ls(self): self.assertEqual(self.fp.ls("\Benutzer\TestUser\Musik"), "asdf.mp3\n") self.assertEqual(self.fp.ls("~/Downloads/"), "") def test_change_dir(self): path = self.fp.get_current_path() # alten Pfad merken self.fp.cd("./..") self.assertEqual(self.fp.get_current_path().split("/")[-1], path.split("/")[-2]) # neuer Pfad = alter Pfad ohne letzten / self.fp.cd("~") path = self.fp.get_current_path() # alten Pfad merken self.fp.cd("../.") self.assertEqual(self.fp.get_current_path().split("/")[-1], path.split("/")[-2]) # neuer Pfad = alter Pfad ohne letzten / self.fp.cd("/") self.assertEqual(self.fp.get_current_path(), "/") self.fp.cd("~") self.assertEqual(self.fp.get_formatted_path(), "C:\\Benutzer\\TestUser") self.fp.cd("../..") self.fp.cd("../../..") self.assertEqual(self.fp.get_current_path(), "/") path = "mich/gibtsnicht" self.assertEqual(self.fp.cd(path), path + ": No such file or directory") path = "~~" self.assertEqual(self.fp.cd(path), path + ": No such file or directory") def test_valid_dir(self): self.fp.cd("~") self.assertTrue(self.fp.valid_directory("..\..\Programme\Firefox")) self.assertTrue(self.fp.valid_directory("/")) self.assertTrue(self.fp.valid_directory("~")) self.assertTrue(self.fp.valid_directory("..")) self.assertTrue(self.fp.valid_directory("./..")) self.assertTrue(self.fp.valid_directory("../..")) self.assertTrue(self.fp.valid_directory(".")) self.assertTrue(self.fp.valid_directory("./.")) self.assertTrue(self.fp.valid_directory("../.")) self.assertFalse(self.fp.valid_directory("...")) def test_valid_file(self): self.assertFalse(self.fp.valid_file("michgibtsnicht!1!")) def test_delete(self): self.fp.cd("/") self.fp.mkdir("testdir") self.fp.cd("testdir") self.fp.cd("..") self.assertTrue("testdir" in self.fp.ls()) self.assertEqual(self.fp.ls().count("testdir"), 1) self.fp.delete("testdir") self.assertFalse("testdir" in self.fp.ls()) self.fp.touch("testfile") self.assertTrue("testfile" in self.fp.ls()) self.assertEqual(self.fp.ls().count("testfile"), 1) response = self.fp.delete(".") self.assertEqual(response, "rm: refusing to remove '.' or '..' directory: skipping '.'") response = self.fp.delete("..") self.assertEqual(response, "rm: refusing to remove '.' or '..' directory: skipping '..'") def test_rename(self): self.fp.cd("/") self.fp.touch("old_name") self.fp.rename("old_name", "new_name") self.assertFalse("old_name" in self.fp.ls()) self.assertTrue("new_name" in self.fp.ls()) self.assertEqual(self.fp.ls().count("new_name"), 1) def test_move(self): self.fp.cd("/") self.fp.mkdir("testdir") self.fp.touch("testfile") response = self.fp.move("testfile", "testdir") self.assertEqual(response, "Not possible") # self.fp.mkdir("testdir/testrecursive") # self.fp.move("testdir", "/bin/testdir") # self.assertFalse("testdir" in self.fp.ls()) # self.assertTrue("testdir" in self.fp.ls("/bin")) # self.assertEqual(self.fp.ls("/bin").count("testdir"), 1) # self.assertTrue("testrecursive" in self.fp.ls("/bin/testdir")) # self.assertEqual(self.fp.ls("/bin/testdir").count("testrecursive"), 1) def test_cat(self): # self.assertTrue("-----BEGIN RSA PRIVATE KEY-----" in self.fp.cat("~/.ssh/id_rsa")) # self.assertTrue("ssh-rsa " in self.fp.cat("~/.ssh/id_rsa.pub")) self.assertFalse(self.fp.cat("~/suspicious_data.txt") == "") ``` #### File: honeygrove/tests/HoneyAdapter_Test.py ```python from honeygrove.tests.testresources import testconfig as config from honeygrove.tests.testresources.honeyadaptertest import incoming_messages as messages, outgoing_messages as answers from honeygrove.tests.testresources.honeyadaptertest.DummyAdapter import BrokerEndpoint, DummyAdapter as HoneyAdapter import mock import os from os.path import join, isfile import unittest class HoneyAdapter_Test(unittest.TestCase): def setUp(self): self.adapter = HoneyAdapter() self.patch = mock.patch.object(BrokerEndpoint, 'sendMessageToTopic') self.patched = self.patch.start() def test_ping(self): msg = messages.msg_ping self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_ping) def test_getAllServices(self): msg = messages.msg_get_all_services_id self.adapter.handle_messages([[msg]]) self.assertTrue(self.patched.call_count == 1) msg = messages.msg_get_all_services_all self.adapter.handle_messages([[msg]]) self.assertTrue(self.patched.call_count == 2) def test_startServices(self): msg = messages.msg_start_services self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_started_services) def test_stopServices(self): msg = messages.msg_stop_services self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_stopped_services) def test_getSettings(self): msg = messages.msg_get_settings self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_get_settings) def test_set_filesys(self): msg = messages.msg_set_filesys self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_set_filesys) msg = messages.msg_set_invalid_1_filesys self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_set_invalid_filesys) msg = messages.msg_set_invalid_2_filesys self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_set_invalid_filesys) def test_get_filesys(self): msg = messages.msg_get_filesys self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_get_filesys) def test_getTokenFiles(self): addTokenFile("suspicious_data.txt", "a:b:c:d") addTokenFile("mytoken", "sometoken") msg = messages.msg_get_token_files self.adapter.handle_messages([[msg]]) self.assertTrue(self.patched.call_count == 1) removenTokenFile("suspicious_data.txt") removenTokenFile("mytoken") def test_AddTokenFile(self): filepath = config.tokendir_adapter + '/new_token.txt' # Case 1: Non Existent File msg = messages.msg_add_token_file self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_add_token_file) with open(filepath) as f: s = f.read() self.assertEqual(s, "File as String") # Case 2: Existent File msg = messages.msg_add_token_file_existent self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_add_token_file) with open(filepath) as f: s = f.read() self.assertEqual(s, "New File as String") removenTokenFile("new_token.txt") def test_RemoveTokenFile(self): # Case 1: Specific Files addTokenFile("tf1", "Content") addTokenFile("tf2", "Content") msg = messages.msg_rem_token_files self.adapter.handle_messages([[msg]]) self.patched.assert_called_with('answer', answers.answ_remove_token_file) # Make sure they are deleted self.assertFalse(isfile(join(config.tokendir_adapter, "tf1"))) self.assertFalse(isfile(join(config.tokendir_adapter, "tf2"))) # Case 2: All Files addTokenFile("tf3", "Content") msg = messages.msg_rem_all_token_files self.adapter.handle_messages([[msg]]) # Make sure everything is deleted self.assertFalse(os.listdir(config.tokendir_adapter)) # directory stays trackable addTokenFile("afile", " ") def test_setSettings(self): # CASE 1: Service Not Running old_tokenprob = config.honeytokendbProbabilities['LISTEN'] msg = messages.msg_set_settings self.adapter.handle_messages([[msg]]) # Correct Answer Was Sent self.patched.assert_called_with('answer', answers.answ_set_settings) # New Token Probability Was Set self.assertTrue(config.honeytokendbProbabilities['LISTEN'] != old_tokenprob) # New Port Was Set service = self.adapter.controller.serviceDict['LISTEN'] new_ports = service._port self.assertEqual(new_ports, [9, 8, 7]) # CASE 2: Service Running old_tokenprob = config.honeytokendbProbabilities['TESTSERVICEB'] msg = messages.msg_set_settings_run self.adapter.handle_messages([[msg]]) # Correct Answer Was Sent (Included Port) self.patched.assert_called_with('answer', answers.answ_set_settings_run) # New Token Probability Was Set self.assertTrue(config.honeytokendbProbabilities['TESTSERVICEB'] != old_tokenprob) def addTokenFile(name, content): path = join(config.tokendir_adapter, name) with open(path, 'w+') as file: file.write(content) def removenTokenFile(name): os.remove(join(config.tokendir_adapter, name)) ``` #### File: honeygrove/tests/HoneytokenDB_Test.py ```python import unittest from honeygrove.core.HoneytokenDB import HoneytokenDataBase import twisted.cred.credentials as credentials from twisted.cred.error import UnauthorizedLogin class HoneyTokenDBTest(unittest.TestCase): databasefile = 'testresources/testdatabase.txt' servicename = 'MyServiceName' sep = ':' def addCredentials(self, credstring): with open(self.databasefile, 'w') as file: file.write(credstring) def clearCredentials(self): with open(self.databasefile, 'w') as file: file.seek(0) def setUp(self): HoneytokenDataBase.filepath = self.databasefile self.db = HoneytokenDataBase(self.servicename) def test_validCreds(self): username = 'usermcuserface' pw = '<PASSWORD>' c = credentials.UsernamePassword(username, pw) # Write them to Database credstring = self.servicename + self.sep + username + self.sep + pw + self.sep self.addCredentials(credstring) # Make sure you got UserName back ==> creds are valid actual = self.db.requestAvatarId(c).result self.assertEqual(username, actual) # Delete creds from file self.clearCredentials() def test_inValidCreds(self): c = credentials.UsernamePassword('id<PASSWORD>', '<PASSWORD>') actual = self.db.requestAvatarId(c).result.value self.assertTrue(isinstance(actual, UnauthorizedLogin)) ``` #### File: honeygrove/tests/ListenService_Test.py ```python from honeygrove.config import Config from honeygrove.core.ServiceController import ServiceController from honeygrove.services.ListenService import ListenService import twisted.internet.reactor import unittest class ListenServiceTest(unittest.TestCase): listen = None Controller = None @classmethod def setUpClass(cls): Config.listenServicePorts = [9991, 9992] def setUp(self): ListenServiceTest.listen = ListenService() ListenServiceTest.Controller = ServiceController() ListenServiceTest.Controller.listen = ListenServiceTest.listen def tearDown(self): ListenServiceTest.listen.stopService() twisted.internet.reactor.callFromThread(twisted.internet.reactor.stop) def testInit(self): """ Test if all Ports are initialisiert """ self.assertEqual(ListenServiceTest.listen._port, [9991, 9992]) self.assertEqual(ListenServiceTest.listen._stop, True) self.assertEqual(ListenServiceTest.listen._transport, dict([])) def testStart(self): """ Tests if the service is active after start """ self.assertRaises(KeyError, lambda: ListenServiceTest.listen._transport[9991]) self.assertRaises(KeyError, lambda: ListenServiceTest.listen._transport[9992]) ListenServiceTest.listen.startService() self.assertNotEqual(ListenServiceTest.listen._transport[9991], None) self.assertNotEqual(ListenServiceTest.listen._transport[9992], None) def testStopOnPort(self): """ Tests if an specific service can start on a port used by ListenService """ ListenServiceTest.listen.startService() self.assertNotEqual(ListenServiceTest.listen._transport[9991], None) self.assertNotEqual(ListenServiceTest.listen._transport[9992], None) ListenServiceTest.Controller.startService("serviceControllerTestService") self.assertRaises(KeyError, lambda: ListenServiceTest.listen._transport[9991]) def testStartOnPort(self): """ Test if the service will start automaticly after a service stops on the port """ ListenServiceTest.Controller.startService("serviceControllerTestService") ListenServiceTest.listen.startService() ListenServiceTest.listen.stopOnPort(9991) self.assertNotEqual(ListenServiceTest.listen._transport[9992], None) ListenServiceTest.Controller.stopService("serviceControllerTestService") self.assertNotEqual(ListenServiceTest.listen._transport[9991], None) ```
{ "source": "jjtoledo/Treinamento-Data-Science", "score": 4 }
#### File: jjtoledo/Treinamento-Data-Science/factorial.py ```python def factorial(n): while n > 1: n = n * (n - 1) return n # print factorial(4) # >>> 24 # print factorial(5) # >>> 120 # print factorial(6) # >>> 720 ``` #### File: jjtoledo/Treinamento-Data-Science/print_all_links.py ```python def get_next_target(page): start_link = page.find('<a href=') # Insert your code below here if (start_link == -1): return None, 0 else: start_quote = page.find('"', start_link) end_quote = page.find('"', start_quote + 1) url = page[start_quote + 1:end_quote] return url, end_quote def print_all_links(page): while True: url, endpos = get_next_target(page) if url: print url page = page[endpos:] else: break page = '<a href="www.testes.com" fiopajidoa jiopafdopafho <a href="www.jfioafp.com" fdsaf' print_all_links(page) ``` #### File: jjtoledo/Treinamento-Data-Science/sum_procedure.py ```python def sum(a, b): a = a + b # correct def sum1(a, b): a = a + b return a print sum1(1, 2) ```
{ "source": "jjtolton/pyxfn", "score": 3 }
#### File: pyxfn/xfn/xfn.py ```python import builtins import itertools import random from collections import deque from functools import reduce __author__ = "<NAME>" class Reduced: def __init__(self, x): self.value = x class ThrowReduced(Exception): pass class nil: """The absence of a value. Used to differentiate where 'None' might be considered a valid value. Try not to use this as a return value or pass it around, otherwise it loses effectiveness. Primarily used in the kwargs.""" def is_reduced(x): return isinstance(x, Reduced) def reduced(x): return Reduced(x) def comp(*fns): def composed(x): return xreduce(lambda a, b: b(a), reversed(fns), x) return composed def undreduced(x): if is_reduced(x): return x.value return x def ensure_reduced(x): if is_reduced(x): return x else: return reduced(x) def xreduce(f, coll, init): # reduce with a cc style escape for "reduced" values try: def ccshim(a, b): res = f(a, b) if is_reduced(res): xreduce.res = undreduced(res) raise ThrowReduced else: return res return reduce(ccshim, coll, init) except ThrowReduced: return xreduce.res def transduce(xfn, fn_start, fn_end, init, coll): def arrity_shim(*args): if len(args) == 2: return fn_start(*args) elif len(args) == 1: return fn_end(*args) else: raise Exception("This shouldn't have happened. " "Please open a ticket. Thanks. --J") f = xfn(arrity_shim) res = xreduce(f, coll, init) return f(res) def eduction(*xfn, multi=False): *xfns, initial = xfn xs = iter(initial) def eductor(*args): def eductor0(): return None def eductor1(acc): return acc def eductor2(acc, o): eductor.__next.appendleft(o) return acc mapper = {0: eductor0, 1: eductor1, 2: eductor2} return mapper[len(args)](*args) eductor.__next = deque() xfns = comp(*xfns)(eductor) completed = False while not completed: try: while len(eductor.__next) == 0 and not completed: if multi is True: x = xfns(*[None, *next(xs)]) else: x = xfns(None, next(xs)) if is_reduced(x): xfns(None) completed = True while eductor.__next: yield eductor.__next.pop() except StopIteration: xfns(None) completed = True while eductor.__next: yield eductor.__next.pop() def xmap(f): def _map(rf): def map0(): return rf() def map1(a): return rf(a) def map2(a, b): return rf(a, f(b)) def mapn(a, b, *c): return rf(a, f(b, *c)) mapper = {0: map0, 1: map1, 2: map2} def __map(*args): return mapper.get(len(args), mapn)(*args) return __map return _map def map(*args): if len(args) >= 2: return builtins.map(*args) else: return xmap(*args) def xfilter(pred): def _filter(rf): def filter1(res): return rf(res) def filter2(res, input): if pred(input): return rf(res, input) else: return res mapper = {0: rf, 1: filter1, 2: filter2} def __filter(*args): return mapper[len(args)](*args) return __filter return _filter def filter(*args): if len(args) > 2: return filter(*args) else: return xfilter(*args) def preserving_reduced(rf): def _preserving_reduced(a, b): res = rf(a, b) if is_reduced(res): return reduced(res) return res return _preserving_reduced def cat(rf): rf1 = preserving_reduced(rf) def cat2(res, input): return xreduce(rf1, input, res) mapper = {0: rf, 1: rf, 2: cat2} def _cat(*args): return mapper[len(args)](*args) return _cat def drop(n): def _drop(rf): def __drop(*args): return __drop.mapper[len(args)](*args) def drop2(res, input): n = __drop.n __drop.n -= 1 if n > 0: return res else: return rf(res, input) mapper = {0: rf, 1: rf, 2: drop2} __drop.mapper = mapper __drop.n = n return __drop return _drop def drop_while(pred): def _drop_while(rf): def __drop_while(*args): return __drop_while.mapper[len(args)](*args) def drop2(res, input): should_drop = __drop_while.should_drop if should_drop and pred(input): return res else: __drop_while.should_drop = False return rf(res, input) __drop_while.should_drop = True __drop_while.mapper = {0: rf, 1: rf, 2: drop2} return __drop_while return _drop_while def interpose(sep): def _interpose(rf): def __interpose(*args): return __interpose.mapper[len(args)](*args) def interpose2(res, input): if __interpose.started is True: sepr = rf(res, sep) if is_reduced(sep): return sepr else: return rf(sepr, input) else: __interpose.started = True return rf(res, input) __interpose.mapper = {0: rf, 1: rf, 2: interpose2} __interpose.started = False return __interpose return _interpose def remove(pred): return xfilter(lambda x: not pred(x)) def distinct(rf): def _distinct(*args): return _distinct.mapper[len(args)](*args) def distinct2(res, input): if input in _distinct.seen: return res else: _distinct.seen.add(input) return rf(res, input) _distinct.mapper = {0: rf, 1: rf, 2: distinct2} _distinct.seen = set() return _distinct def partition_all(n): def _partition_all(rf): def __partition_all(*args): return __partition_all.mapper[len(args)](*args) def partition_all1(res): if len(__partition_all.a) != 0: v = [x for x in __partition_all.a] __partition_all.a.clear() res = undreduced(rf(res, v)) return rf(res) def partition_all2(res, input): __partition_all.a.append(input) if len(__partition_all.a) == n: v = [x for x in __partition_all.a] __partition_all.a.clear() return rf(res, v) else: return res __partition_all.mapper = {0: rf, 1: partition_all1, 2: partition_all2} __partition_all.a = [] return __partition_all return _partition_all def take_while(pred): def _take_while(rf): def __take_while(*args): return __take_while.mapper[len(args)](*args) def take_while2(res, input): if pred(input): return rf(res, input) else: return reduced(res) __take_while.mapper = {0: rf, 1: rf, 2: take_while2} return __take_while return _take_while def take_nth(n): def _take_nth(rf): def __take_nth(*args): return __take_nth.mapper[len(args)](*args) def take_nth2(res, input): __take_nth.ia += 1 i = __take_nth.ia if i % n == 0: return rf(res, input) else: return res __take_nth.mapper = {0: rf, 1: rf, 2: take_nth2} __take_nth.ia = -1 return __take_nth return _take_nth def partition_by(f): def _partition_by(rf): def __partition_by(*args): return __partition_by.mapper[len(args)](*args) def partition_by1(res): if len(__partition_by.a) != 0: v = [] while __partition_by.a: v.append(__partition_by.a.pop()) __partition_by.a.clear() res = undreduced(rf(res, v)) return rf(res) def partition_by2(res, input): pval = __partition_by.pa.pop() val = f(input) __partition_by.pa.append(val) if pval is nil or val == pval: __partition_by.a.appendleft(input) return res else: v = [] while __partition_by.a: v.append(__partition_by.a.pop()) res = rf(res, v) if not is_reduced(res): __partition_by.a.appendleft(input) return res __partition_by.pa = [nil] __partition_by.a = deque() __partition_by.mapper = {0: rf, 1: partition_by1, 2: partition_by2} return __partition_by return _partition_by class Halt: def __init__(self, value): self.value = value def halt_when(pred, retf=nil): if retf is nil: retf = None def _halt_when(rf): def __halt_when(*args): return __halt_when.mapper[len(args)](*args) def halt_when1(res): if isinstance(res, Halt): return res.value return rf(res) def halt_when2(res, input): if pred(input): if retf: res = retf(rf(res), input) else: res = input return reduced(Halt(res)) else: return rf(res, input) __halt_when.mapper = {0: rf, 1: halt_when1, 2: halt_when2} return __halt_when return _halt_when def map_indexed(f): def _map_indexed(rf): def __map_indexed(*args): return __map_indexed.mapper[len(args)](*args) def map_indexed2(res, input): __map_indexed.i += 1 return rf(res, f(__map_indexed.i, input)) __map_indexed.i = -1 __map_indexed.mapper = {0: rf, 1: rf, 2: map_indexed2} return __map_indexed return _map_indexed def keep_indexed(f): def _keep_indexed(rf): def __keep_indexed(*args): return __keep_indexed.mapper[len(args)](*args) def keep_indexed2(res, input): __keep_indexed.i += 1 i = __keep_indexed.i v = f(i, input) if v is None: return res else: return rf(res, v) __keep_indexed.i = -1 __keep_indexed.mapper = {0: rf, 1: rf, 2: keep_indexed2} return __keep_indexed return _keep_indexed def take(n): def _take(rf): def __take(*args): return __take.mapper[len(args)](*args) def take2(res, input): n = __take.na __take.na -= 1 nn = __take.na if n > 0: res = rf(res, input) else: res = res if nn <= 0: return ensure_reduced(res) return res __take.na = n __take.mapper = {0: rf, 1: rf, 2: take2} return __take return _take def mapcat(f): return comp(map(f), cat) def random_sample(prob): return filter(lambda _: random.random() < prob) if __name__ == '__main__': def inc(x): return x + 1 def identity(x): return x print(transduce(comp(map(inc), map(inc)), lambda a, b: a + b, identity, 0, range(10))) print(transduce(comp(cat, map(inc)), lambda a, b: [*a, b], identity, [], [[1, 2], [3, 4]])) print(list(eduction(cat, map(inc), drop_while(lambda x: x < 5), drop(10), take(20), filter(lambda x: x % 2 == 0), [range(4), range(4), range(20)]))) print(list(eduction(take_while(lambda x: x < 5), interpose("-"), distinct, partition_all(2), range(10)))) print(list(eduction(take_while(lambda x: x < 3), range(10)))) print(list(eduction(take_nth(3), partition_all(2), interpose("-"), list(range(10))))) print(transduce(comp(take_nth(3), partition_all(2), interpose("-"), map(lambda x: [x] if isinstance(x, str) else x), cat, xmap(str)), lambda a, b: (a.append(b), a)[1], lambda res: ''.join(res), [], range(20))) print(list(eduction(partition_by(lambda x: x < 4), range(10)))) print(transduce(halt_when(lambda x: x == 10, lambda res, input: ( reduce(lambda a, b: a + b, res, input))), lambda x, y: (x.append(y), x)[1], identity, [], range(20))) print(list(eduction(map_indexed(lambda a, b: [a, b]), range(10)))) print(list(eduction(keep_indexed(lambda i, x: i + x if i < 10 else None), range(20)))) print(tuple(eduction(take(10), range(10)))) print(transduce( comp(random_sample(0.01), mapcat(lambda x: [x] * x), take(1000)), lambda res, x: (res.append(x), res)[-1], lambda res: res, [], range(10000))) # reduced stress test # # while True: # sum(transduce( # comp(random_sample(0.01), # mapcat(lambda x: [x] * x), # take(1000)), # lambda res, x: (res.append(x), res)[-1], lambda res: res, [], # range(10000))) ```
{ "source": "jjuch/covid19_model", "score": 2 }
#### File: covid19_model/data_20_07_11/analysis_parts.py ```python import numpy as np import datetime import matplotlib.pyplot as plt from scipy import optimize from pyswarms.single.global_best import GlobalBestPSO from pyswarms.utils.plotters import plot_cost_history from analysis import load_and_process_data from fracDiffDelay import FOPFDD def calculate_error_PSO(x, ref_data, Ts, Tmax): K_list = x[:, 0] tau_list = x[:, 1] alpha_list = x[:, 2] L_list = x[:, 3] res = [] for i in range(len(L_list)): K, tau, alpha, L = K_list[i], tau_list[i], alpha_list[i], L_list[i] model = FOPFDD(K, tau, alpha, L) t, y = model.step_response(Ts, Tmax, verbose=False) weight = np.ones(int(Tmax)) weight = [1/t_el for t_el in t] kwad_difference_per_sample = [(r - y_el)**2 * w for r, y_el, w in zip(ref_data, y, weight)] # print(K, ', ', tau, ', ', alpha, ', ', L, ' : ', sum(kwad_difference_per_sample)) res.append(sum(kwad_difference_per_sample)) return np.array(res) if __name__ == "__main__": file_name = 'cum_cases_flanders.csv' t_fl, data_fl = load_and_process_data(file_name, plot=False) # Important dates National Security Board start_date = datetime.date(2020, 1, 24) # https://ec.europa.eu/info/live-work-travel-eu/health/coronavirus-response/timeline-eu-action_en dates = [datetime.date(2020, 3, 18), datetime.date(2020, 5, 18)] dates.insert(0, start_date) dates_converted = [(d - start_date).days for d in dates] print(dict(zip(dates, dates_converted))) dates_converted.append(len(t_fl)) t_cut = [t_fl[dates_converted[i]:dates_converted[i + 1]] for i in range(len(dates_converted[1:]))] data_cut = [data_fl[dates_converted[i]:dates_converted[i + 1]] for i in range(len(dates_converted[1:]))] # plt.figure() # plt.plot(t_fl, data_fl, linewidth=4, label='original') # for part in range(len(t_cut)): # plt.plot(t_cut[part], data_cut[part], label='part {}'.format(part + 1)) # plt.legend() # plt.show() ####### Part 1 K = 1.2 tau = 26 alpha = 0.8 L = 95 fopfdd1 = FOPFDD(K, tau, alpha, L) t_1, y_1 = fopfdd1.step_response(1, t_cut[0][-1], verbose=True) if False: plt.figure() plt.plot(t_cut[0], data_cut[0], label='data') plt.plot(t_1, y_1, label='model') plt.legend() plt.xlabel('Time [days]') plt.ylabel('Cumulative cases') plt.title('Flanders') plt.show() ################ FOPFDD model - PSO # # Create bounds # K_min, K_max = 1, 1.5 # tau_min, tau_max = 1, 100 # alpha_min, alpha_max = 0.75, 0.85 # L_min, L_max = 50, 150 # bounds = (np.array([K_min, tau_min, alpha_min, L_min]), np.array([K_max, tau_max, alpha_max, L_max])) # # Initialize swarm # options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} # kwargs = {"ref_data": data_cut[0] , "Ts": 1 , "Tmax": t_cut[0][-1]} # optimizer = GlobalBestPSO(n_particles=10, dimensions=4, options=options, bounds=bounds) # cost, pos = optimizer.optimize(calculate_error_PSO, iters=50, **kwargs) # plot_cost_history(cost_history=optimizer.cost_history) # plt.show() # pos = np.array([1.2, 38, 0.81572044, 90.25755211]) # fopfdd1_opt = FOPFDD(*pos.tolist()) # t1_opt, data1_opt = fopfdd1_opt.step_response(1, t_cut[0][-1], verbose=True) # plt.figure() # plt.plot(t_cut[0], data_cut[0], label='data') # plt.plot(t1_opt, data1_opt, label='model') # plt.legend() # plt.xlabel('Time [days]') # plt.ylabel('Cumulative cases') # plt.title('Flanders') # plt.show() ################ FOPFDD model - PSO # # Create bounds # K_min, K_max = 1, 1.5 # tau_min, tau_max = 1, 100 # alpha_min, alpha_max = 0.75, 0.85 # L_min, L_max = 50, 150 # bounds = (np.array([K_min, tau_min, alpha_min, L_min]), np.array([K_max, tau_max, alpha_max, L_max])) # # Initialize swarm # options = {'c1': 0.5, 'c2': 0.3, 'w': 0.9} # kwargs = {"ref_data": data_cut[0] , "Ts": 1 , "Tmax": t_cut[0][-1]} # optimizer = GlobalBestPSO(n_particles=10, dimensions=4, options=options, bounds=bounds) # cost, pos = optimizer.optimize(calculate_error_PSO, iters=50, **kwargs) # plot_cost_history(cost_history=optimizer.cost_history) # plt.show() # pos = np.array([1.2, 38, 0.81572044, 90.25755211]) # fopfdd1_opt = FOPFDD(*pos.tolist()) # t1_opt, data1_opt = fopfdd1_opt.step_response(1, t_cut[0][-1], verbose=True) # plt.figure() # plt.plot(t_cut[0], data_cut[0], label='data') # plt.plot(t1_opt, data1_opt, label='model') # plt.legend() # plt.xlabel('Time [days]') # plt.ylabel('Cumulative cases') # plt.title('Flanders') # plt.show() ####### Part 2 K = 6 tau = 38 alpha = 0.974 L = 45 fopfdd2 = FOPFDD(K, tau, alpha, L) t_2, y_2 = fopfdd2.step_response(1, 200, verbose=True) if True: plt.figure() plt.plot(t_cut[1], data_cut[1], label='data') plt.plot(t_2, y_2, label='model') plt.legend() plt.xlabel('Time [days]') plt.ylabel('Cumulative cases') plt.title('Flanders') plt.show() ```
{ "source": "jjuch/simupy", "score": 2 }
#### File: simupy/systems/symbolic.py ```python import sympy as sp from sympy.physics.mechanics import dynamicsymbols from sympy.physics.mechanics.functions import find_dynamicsymbols from simupy.utils.symbolic import (lambdify_with_vector_args, grad, DEFAULT_LAMBDIFY_MODULES) from simupy.array import Array from simupy.systems import DynamicalSystem as DynamicalSystemBase DEFAULT_CODE_GENERATOR = lambdify_with_vector_args DEFAULT_CODE_GENERATOR_ARGS = { 'modules': DEFAULT_LAMBDIFY_MODULES } empty_array = lambda: [] class DynamicalSystem(DynamicalSystemBase): def __init__(self, state_equation=None, state=None, input_=None, output_equation=None, constants_values={}, dt=0, initial_condition=None, code_generator=None, code_generator_args={}): """ DynamicalSystem constructor, used to create systems from symbolic expressions. Parameters ---------- state_equation : array_like of sympy Expressions, optional Vector valued expression for the derivative of the state. state : array_like of sympy symbols, optional Vector of symbols representing the components of the state, in the desired order, matching state_equation. input_ : array_like of sympy symbols, optional Vector of symbols representing the components of the input, in the desired order. state_equation may depend on the system input. If the system has no state, the output_equation may depend on the system input. output_equation : array_like of sympy Expressions Vector valued expression for the output of the system. constants_values : dict Dictionary of constants substitutions. dt : float Sampling rate of system. Use 0 for continuous time systems. initial_condition : array_like of numerical values, optional Array or Matrix used as the initial condition of the system. Defaults to zeros of the same dimension as the state. code_generator : callable, optional Function to be used as code generator. code_generator_args : dict, optional Dictionary of keyword args to pass to the code generator. By default, the code generator uses a wrapper for ``sympy.lambdify``. You can change it by passing the system initialization arguments ``code_generator`` (the function) and additional keyword arguments to the generator in a dictionary ``code_generator_args``. You can change the defaults for future systems by changing the module values. See the readme or docs for an example. """ self.constants_values = constants_values self.state = state self.input = input_ self.code_generator = code_generator or DEFAULT_CODE_GENERATOR code_gen_args_to_set = DEFAULT_CODE_GENERATOR_ARGS.copy() code_gen_args_to_set.update(code_generator_args) self.code_generator_args = code_gen_args_to_set self.state_equation = state_equation self.output_equation = output_equation self.initial_condition = initial_condition self.dt = dt self.validate() @property def state(self): return self._state @state.setter def state(self, state): if state is None: # or other checks? state = empty_array() if isinstance(state, sp.Expr): state = Array([state]) self.dim_state = len(state) self._state = state @property def input(self): return self._inputs @input.setter def input(self, input_): if input_ is None: # or other checks? input_ = empty_array() if isinstance(input_, sp.Expr): # check it's a single dynamicsymbol? input_ = Array([input_]) self.dim_input = len(input_) self._inputs = input_ @property def state_equation(self): return self._state_equation @state_equation.setter def state_equation(self, state_equation): if state_equation is None: # or other checks? state_equation = empty_array() else: assert len(state_equation) == len(self.state) assert find_dynamicsymbols(state_equation) <= ( set(self.state) | set(self.input) ) assert state_equation.atoms(sp.Symbol) <= ( set(self.constants_values.keys()) | set([dynamicsymbols._t]) ) self._state_equation = state_equation self.update_state_equation_function() self.state_jacobian_equation = grad(self.state_equation, self.state) self.update_state_jacobian_function() self.input_jacobian_equation = grad(self.state_equation, self.input) self.update_input_jacobian_function() @property def output_equation(self): return self._output_equation @output_equation.setter def output_equation(self, output_equation): if isinstance(output_equation, sp.Expr): output_equation = Array([output_equation]) if output_equation is None and self.dim_state == 0: output_equation = empty_array() else: if output_equation is None: output_equation = self.state assert output_equation.atoms(sp.Symbol) <= ( set(self.constants_values.keys()) | set([dynamicsymbols._t]) ) if self.dim_state: assert find_dynamicsymbols(output_equation) <= set(self.state) # or set(self.input) TODO: augment state to allow inputs in output equation if two systems (one stateless and one statefull) are placed in parallel. else: assert find_dynamicsymbols(output_equation) <= set(self.input) self.dim_output = len(output_equation) self._output_equation = output_equation self.update_output_equation_function() def update_state_equation_function(self): if not self.dim_state or self.state_equation == empty_array(): return self.state_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.state_equation.subs(self.constants_values), **self.code_generator_args ) def update_state_jacobian_function(self): if not self.dim_state or self.state_equation == empty_array(): return self.state_jacobian_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.state_jacobian_equation.subs(self.constants_values), **self.code_generator_args ) def update_input_jacobian_function(self): # TODO: state-less systems should have an input/output jacobian if not self.dim_state or self.state_equation == empty_array(): return self.input_jacobian_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state) + sp.flatten(self.input), self.input_jacobian_equation.subs(self.constants_values), **self.code_generator_args ) def update_output_equation_function(self): if not self.dim_output or self.output_equation == empty_array(): return if self.dim_state: self.output_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.state), self.output_equation.subs(self.constants_values), **self.code_generator_args ) else: self.output_equation_function = self.code_generator( [dynamicsymbols._t] + sp.flatten(self.input), self.output_equation.subs(self.constants_values), **self.code_generator_args ) def prepare_to_integrate(self): self.update_output_equation_function() self.update_state_equation_function() def copy(self): copy = self.__class__( state_equation=self.state_equation, state=self.state, input_=self.input, output_equation=self.output_equation, constants_values=self.constants_values, dt=self.dt ) copy.output_equation_function = self.output_equation_function copy.state_equation_function = self.state_equation_function return copy def equilibrium_points(self, input_=None): return sp.solve(self.state_equation, self.state, dict=True) class MemorylessSystem(DynamicalSystem): """ A system with no state. With no input, can represent a signal (function of time only). For example, a stochastic signal could interpolate points and use prepare_to_integrate to re-seed the data. """ def __init__(self, input_=None, output_equation=None, **kwargs): """ DynamicalSystem constructor Parameters ---------- input_ : array_like of sympy symbols Vector of symbols representing the components of the input, in the desired order. The output may depend on the system input. output_equation : array_like of sympy Expressions Vector valued expression for the output of the system. """ super().__init__( input_=input_, output_equation=output_equation, **kwargs) @property def state(self): return self._state @state.setter def state(self, state): if state is None: # or other checks? state = empty_array() else: raise ValueError("Memoryless system should not have state or " + "state_equation") self.dim_state = len(state) self._state = state ```
{ "source": "jjude/euler", "score": 4 }
#### File: euler/003/soln.py ```python import sys sys.setrecursionlimit(10000) def findLargestPrimeFactorOf(number, currentPrime = 2): if number <= 1: return currentPrime if number % currentPrime == 0: return findLargestPrimeFactorOf(number / currentPrime, currentPrime) else: return findLargestPrimeFactorOf(number, currentPrime + 1) print(findLargestPrimeFactorOf(600851475143)) # without recursion p = 2 n = 600851475143 while n > 1: if n % p == 0: n = n / p else: p = p + 1 print p ```
{ "source": "jjuiddong/KIST-MachineLearning-Tutorial-2016", "score": 3 }
#### File: KIST-MachineLearning-Tutorial-2016/KIST_MachineLearning/clustering_kmeans.py ```python import sklearn.decomposition import sklearn.preprocessing import sklearn.cluster import numpy as np import pandas as pd import elice_utils import kmeans_utils def main(): champs_df = pd.read_pickle('champ_df.pd') # 1 champ_pca_array = run_PCA(champs_df, 2) champ_classes = run_kmeans(champ_pca_array, 5, [0, 30, 60, 90, 120]) # 4 print(elice_utils.plot_champions(champs_df, champ_pca_array, champ_classes)) # 5 print(get_champs_by_cluster(champs_df, champ_classes, 3)) def run_kmeans(champ_pca_array, num_clusters, initial_centroid_indices): # Implement K-Means algorithm using sklearn.cluster.KMeans. # 2 classifier = sklearn.cluster.KMeans(n_clusters = num_clusters, init = np.array(champ_pca_array[initial_centroid_indices]), n_init=1) classifier.fit(champ_pca_array) # 3 return classifier.labels_ def run_PCA(champs_df, num_components): return kmeans_utils.run_PCA(champs_df, num_components) def get_champs_by_cluster(champs_df, champ_classes, cluster_idx): return champs_df.index[champ_classes == cluster_idx].values if __name__ == '__main__': main() ``` #### File: KIST-MachineLearning-Tutorial-2016/KIST_MachineLearning/clustering_lol.py ```python import sklearn.decomposition import sklearn.preprocessing import numpy as np import pandas as pd import elice_utils import scipy.spatial.distance import operator def main(): # 1 champs_df = pd.read_pickle('champ_df.pd') champ_pca_array = run_PCA(champs_df, 2) # 5 elice_utils.plot_champions(champs_df, champ_pca_array) print(get_closest_champions(champs_df, champ_pca_array, "Ashe", 10)) def run_PCA(champs_df, num_components): # 2 # Normalize Attributes scaler = sklearn.preprocessing.MinMaxScaler() for champs_dim in champs_df: champs_df[champs_dim] = scaler.fit_transform(np.array(champs_df[champs_dim]).astype('float64')) # 3 # Run PCA pca = sklearn.decomposition.PCA(n_components=num_components) pca.fit(champs_df) # 4 champ_pca_array = pca.transform(champs_df) return champ_pca_array def get_closest_champions(champs_df, champ_pca_array, champ_name, num_champions): # Get the champion index champ_list = champs_df.index.tolist() try: champ_idx = champ_list.index(champ_name) except: return "%s is not in the champion list" % champ_name # Get the euclidean distance # Use scipy.spatial.distance.euclidean(A, B) distance_from_current_champ = {} for i in range(0, len(champ_list)): distance_from_current_champ[champ_list[i]] = \ scipy.spatial.distance.euclidean( champ_pca_array[champ_idx], champ_pca_array[i] ) # Sort dictionary according to the value sorted_champs = sorted(distance_from_current_champ.items(), key=operator.itemgetter(1)) # Return top 10 champs except current one if num_champions > len(champ_list) - 1: return "num_champions is too large" else: return sorted_champs[1:1 + num_champions] if __name__ == '__main__': main() ``` #### File: KIST-MachineLearning-Tutorial-2016/KIST_MachineLearning/clustering_pandas.py ```python import numpy as np import pandas as pd def main(): do_exercise() def do_exercise(): # 1 # 2 aapl_bars = pd.read_csv("./AAPL.csv") # 3 date_index = aapl_bars.pop('Date') aapl_bars.index = pd.to_datetime(date_index) # 4 twoseries_dict = {'Open': aapl_bars.Open, 'Close': aapl_bars.Close, 'Volume': aapl_bars.Volume} df = pd.DataFrame(twoseries_dict) #5 print(df[:]['2003-04' : '1989']) return df if __name__ == "__main__": main() ``` #### File: KIST-MachineLearning-Tutorial-2016/KIST_MachineLearning/perceptron_feedforwardpropagation.py ```python from sklearn.neural_network import MLPClassifier import numpy as np #import elice_utils def main(): # 1 X, Y = read_data('case_2.txt') # try to use different datasets clf = train_MLP_classifier(X, Y) report_clf_stats(clf, X, Y) #elice_utils.visualize(clf, X, Y) def train_MLP_classifier(X, Y): # 2 clf = MLPClassifier(hidden_layer_sizes=(1000,1000,1000,1000,1000,1000)) # try changing the number of hidden layers clf.fit(X, Y) return clf def report_clf_stats(clf, X, Y): # 1. measure accuracy hit = 0 miss = 0 for x, y in zip(X, Y): if clf.predict([x])[0] == y: hit += 1 else: miss += 1 print("Accuracy: %.1lf%%" % float(100 * hit / (hit + miss))) def read_data(filename): X = [] Y = [] with open(filename) as fp: N, M = fp.readline().split() N = int(N) M = int(M) for i in range(N): line = fp.readline().split() for j in range(M): X.append([i, j]) Y.append(int(line[j])) X = np.array(X) Y = np.array(Y) return (X, Y) if __name__ == "__main__": main() ```
{ "source": "jjulian91/NLP_QA_Python", "score": 3 }
#### File: mainframe/do_magic/dataQuery.py ```python import mysql.connector from mysql.connector import Error import do_magic.answerFinder as answer #todo refactor the search -- do non %like% search first.. if no result then do %like%. def dbQuery(select_statement): try: connection = mysql.connector.connect(host='localhost', database='nba_facts', user='root', password='<PASSWORD>', auth_plugin='mysql_native_password') if connection.is_connected(): db_Info = connection.get_server_info() # print("Connected to MySQL Server version ", db_Info) cursor = connection.cursor() cursor.execute("select database();") record = cursor.fetchone() # print("Your connected to database: ", record) query = connection.cursor() query.execute(select_statement) records = query.fetchall() return records except Error as e: print("Error while connecting to MySQL", e) finally: if (connection.is_connected()): cursor.close() connection.close() # print("MySQL connection is closed") def dbInsert(statement): try: connection = mysql.connector.connect(host='localhost', database='nba_facts', user='root', password='<PASSWORD>', auth_plugin='mysql_native_password') if connection.is_connected(): db_Info = connection.get_server_info() # print("Connected to MySQL Server version ", db_Info) cursor = connection.cursor() cursor.execute("select database();") cursor.execute(statement) connection.commit() except Error as e: print("Error while connecting to MySQL", e) finally: if (connection.is_connected()): cursor.close() connection.close() # print("MySQL connection is closed") def search_phrase_DB(word): return dbQuery("select * from phrase join lookup_table as LU on phrase.FK=LU.PK where Phrase" " like " + "'%" + word + "%'") def search_EXACT_phrase(word): return dbQuery("select * from phrase join lookup_table as LU on phrase.FK=LU.PK where LOWER(Phrase) = LOWER(" + "'" + word + "')") def search_player_dB(word): return dbQuery("select * from player_data where LOWER(name) LIKE LOWER ('%" + word + "%')") def search_stats_DB(word): return dbQuery("select * from stats where LOWER(name) LIKE LOWER ('%" + word + "%')") def search_player_dB_noLike(word): return dbQuery("select * from player_data where LOWER(name) = LOWER ('" + word + "')") def search_stats_DB_noLike(word): return dbQuery("select * from stats where LOWER(name) = LOWER ('" + word + "')") def search_stats_DB_exact_match(word): #duplicate for playerDB and Phrase DB return dbQuery("select * from stats where name = "+ word + "") # the following functions require word being the RESOLVED column NAME from the stats table. def search_stats_max_DB(columnName, searchYear): return dbQuery( "SELECT * FROM stats WHERE Year = "+ searchYear + " ORDER BY "+columnName+" DESC LIMIT 1") def search_stats_max_no_year_DB(columnName): return dbQuery( "SELECT * FROM stats WHERE "+ columnName +" = ( SELECT MAX("+columnName+") FROM stats) ORDER BY "+columnName +" DESC LIMIT 1") def search_stats_min_DB(columnName, searchYear): return dbQuery( "SELECT * FROM stats WHERE "+ columnName +" IS NOT NULL) AND Year = "+ searchYear + " ORDER BY " + columnName+" ASC LIMIT 1") def search_stats_min_no_year_DB(columnName): return dbQuery( "SELECT * FROM stats WHERE "+ columnName +" = ( SELECT MIN("+columnName+") FROM stats WHERE "+ columnName + " IS NOT NULL) ORDER BY "+columnName+ " ASC LIMIT 1") ``` #### File: mainframe/do_magic/voila.py ```python import nltk from nltk.corpus import stopwords from spellchecker import SpellChecker from nltk.tag import StanfordPOSTagger from nltk.stem import WordNetLemmatizer from nltk import pos_tag from nltk.tokenize import word_tokenize from nltk.chunk import conlltags2tree from nltk.tree import Tree counter = y = 0 check = SpellChecker() def tag_Sentence(tokenized): import os jarpath = "C:/Program Files/Java/jdk-11.0.2/bin/java.exe" java_path = jarpath os.environ['JAVAHOME'] = java_path dirname = os.path.dirname(__file__) jar = os.path.join(dirname, '../../stanford-postagger-full-2018-10-16/stanford-postagger-3.9.2.jar') model = os.path.join(dirname, '../../stanford-postagger-full-2018-10-16/models/english-left3words-distsim.tagger') stanfordPOS = StanfordPOSTagger(model, jar, encoding='utf-8') postaggedwords = stanfordPOS.tag(tokenized) return postaggedwords # Process text def process_text(txt_file): token_text = word_tokenize(txt_file) return token_text # NLTK POS and NER taggers def nltk_tagger(token_text): tagged = nltk.pos_tag(token_text) ne_tagged = nltk.ne_chunk(tagged) return (ne_tagged) # Tag tokens with standard NLP BIO tags def bio_tagger(ne_tagged): bio_tagged = [] prev_tag = "O" for token, tag in ne_tagged: if tag == "O": #O bio_tagged.append((token, tag)) prev_tag = tag continue if tag != "O" and prev_tag == "O": # Begin NE bio_tagged.append((token, "B-"+tag)) prev_tag = tag elif prev_tag != "O" and prev_tag == tag: # Inside NE bio_tagged.append((token, "I-"+tag)) prev_tag = tag elif prev_tag != "O" and prev_tag != tag: # Adjacent NE bio_tagged.append((token, "B-"+tag)) prev_tag = tag return bio_tagged # Create tree def stanford_tree(bio_tagged): tokens, ne_tags = zip(*bio_tagged) pos_tags = [pos for token, pos in pos_tag(tokens)] conlltags = [(token, pos, ne) for token, pos, ne in zip(tokens, pos_tags, ne_tags)] ne_tree = conlltags2tree(conlltags) return ne_tree # Parse named entities from tree def structure_ne(ne_tree): ne = [] for subtree in ne_tree: if type(subtree) == Tree: # If subtree is a noun chunk, i.e. NE != "O" ne_label = subtree.label() ne_string = " ".join([token for token, pos in subtree.leaves()]) ne.append((ne_string, ne_label)) return ne def spell_check(tokenized): spelledWords = check.correction(tokenized) if spelledWords != tokenized: print(f'did you mean, {spelledWords}?') inputval = input('[y/N]: ') if inputval == 'y': return spelledWords else: # lets go another route and find some other matches candidates = check.candidates(tokenized) if len(candidates) > 1: for i, candidate in enumerate(candidates): print(f'[{i}] [{candidate}]') # if yes to any of these then we return this and run a db query on this print(f'[{len(candidates)}] [None]') val = int(input('here are some more options, please choose one: ')) if val >= len(candidates): return to_list = list(candidates) return to_list[val] else: return tokenized def get_most_recent(statresults): #finish implementing max = statresults[0] for entry in statresults: if entry[2] > max[2]: max = entry return max def get_basewords(tokenized): getBase = WordNetLemmatizer() baseWords = [] for word in tokenized: baseWords.append(getBase.lemmatize(word)) return baseWords # we can create/delete stop words as we please to better suit our domain. def get_stopwords(tokenized): stop_words = set(stopwords.words('english')) - {"where", "over"} stop_words.add("go") _stopwords = [words for words in tokenized if not words in stop_words] return _stopwords def runstat(): global counter, y counter += 1 value = input('Was this helpful? [y/N]: ') if value == 'y': y += 1 return print(f'percentage accurate: {float(y / counter)}') def singlequoteSQLfix(val): index = val.find("'") return val[:index] + "''" + val[index + 1:] if index != -1 else val def addToList(resultsList, results): for result in results: resultsList.append(result) ```
{ "source": "jjulien/azure-query", "score": 3 }
#### File: cli/commands/__init__.py ```python import argparse class AQCLIException(Exception): pass class AQCommand: description = "This command has no specific description" def __init__(self, name, login): if not name: raise AQCLIException("You must pass a name when creating an application") self.name = name self.login = login self.parser = argparse.ArgumentParser() subparsers = self.parser.add_subparsers(help=self.description) self.sub_parser = subparsers.add_parser(name) self.sub_parser.add_argument("--beta", action="store_true", default=False) self.parse_args() # This method should be used if your application requires any arg parsing def parse_args(self): pass def display_extra_help(self): pass def display_help(self): self.parser.print_help() self.display_extra_help() def run(self): raise AQCLIException(f"No run method was found for application {self.name}") class ODataAPICommand(AQCommand): query_params = {} # OData Query Options Described Here # https://docs.microsoft.com/en-us/graph/query-parameters#odata-system-query-options odata_query_options = ['count', 'expand', 'filter', 'format', 'orderby', 'search', 'select', 'skip', 'top'] def __init__(self, name, login): super().__init__(name, login) self.add_odata_query_params() def parse_args(self): self.sub_parser.add_argument("--count", help="Retrieves the total count of matching resources.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#count-parameter") self.sub_parser.add_argument("--expand", help="Retrieves related resources.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#expand-parameter") self.sub_parser.add_argument("--filter", help="Filters results (rows).\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#filter-parameter") self.sub_parser.add_argument("--format", help="Returns the results in the specified media format.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#format-parameter") self.sub_parser.add_argument("--orderby", help="Orders results.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#orderby-parameter") self.sub_parser.add_argument("--search", help="Returns results based on search criteria. Currently supported " "on messages and person collections." "https://docs.microsoft.com/en-us/graph/query-parameters#search-parameter") self.sub_parser.add_argument("--select", help="Filters properties (columns).\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#select-parameter") self.sub_parser.add_argument("--skip", help="Indexes into a result set. Also used by some APIs to implement " "paging and can be used together with $top to manually page " "results.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#skip-parameter") self.sub_parser.add_argument("--top", help="Sets the page size of results.\nDetails: " "https://docs.microsoft.com/en-us/graph/query-parameters#top-parameter") def add_odata_query_params(self): parsed = vars(self.parser.parse_args()) for option in self.odata_query_options: if option in parsed.keys(): # The v1 endpoint still requires some options to be prefixed with $, so prepending this to be safe self.query_params[f'${option}'] = parsed[option] ```
{ "source": "jjulik/keezer-pi", "score": 3 }
#### File: keezer-pi/client/keezer_client.py ```python import os import time import json import logging import requests import traceback import time import ConfigParser import io import threading import RPi.GPIO as GPIO # The primary sensor will be used for all sensor readings and determines # whether we need to run the freezer. # The secondary sensor will be used as a backup if the primary fails # until the primary comes online again. config_file = os.environ.get('KEEZER_CLIENT_SETTINGS') if config_file is None: config_file = 'keezer_client.cfg' with open(config_file, 'r') as f: config_text = f.read() default_config = { 'secondary_temp': None, 'url': None, 'api_token': None, 'temperature': 40.0, 'deviation': 2.0, 'min_runtime': 60, 'cooldown': 300, 'fridge_name': 'fridgey' } config = ConfigParser.SafeConfigParser(default_config, allow_no_value=True) config.readfp(io.BytesIO(config_text)) primary_sensor_name = config.get('sensor', 'primary_temp') secondary_sensor_name = config.get('sensor', 'secondary_temp') relay_gpio_pin = config.getint('sensor', 'relay_pin') server_url = config.get('server', 'url') api_token = config.get('server', 'api_token') desired_temperature = config.getfloat('fridge', 'temperature') deviation = config.getfloat('fridge', 'deviation') min_runtime = config.getint('fridge', 'min_runtime') cooldown = config.getint('fridge', 'cooldown') fridge_name = config.get('fridge', 'fridge_name') max_temperature = desired_temperature + deviation FORMAT = '%(asctime)-15s %(message)s' logging.basicConfig(filename='keezer_client.log',level=logging.ERROR,format=FORMAT) logger = logging.getLogger('keezer_client') def post_async(url, headers, data): try: requests.post(url, headers=headers, data=json.dumps(data)) except Exception: # don't log these errors # it could fill up the log fast if the server goes down return def post_exception(formatted_exception): if server_url is None or api_token is None: return url = server_url + 'api/error' headers = { 'Authorization': api_token, 'Content-Type': 'application/json' } data = { 'time': time.time(), 'error': formatted_exception } # fire and forget postErrorThread = threading.Thread(target=post_async, args=(url,headers,data)) postErrorThread.start() def post_reading(reading): if server_url is None or api_token is None: return url = server_url + 'api/reading' headers = { 'Authorization': api_token, 'Content-Type': 'application/json' } data = { 'time': reading.time, 'reading': reading.reading, 'sensorDescription': reading.sensor_name } postReadingThread = threading.Thread(target=post_async, args=(url,headers,data)) postReadingThread.start() class Reading(): def __init__(self, sensor_name, reading, reading_time): self.sensor_name = sensor_name self.reading = reading self.time = reading_time # Inherit from dictionary for easy JSON serialization. class Sensor(dict): def __init__(self, name): self.file_name = '/sys/bus/w1/devices/' + name + '/w1_slave' dict.__init__(self, name=name, file_name=self.file_name) self.name = name def get_reading(self): try: f = open(self.file_name, 'r') lines = f.readlines() reading_time = time.time() equals_pos = lines[1].find('t=') if equals_pos != -1: raw_temp = float(lines[1][equals_pos+2:]) #murica temp_f = (raw_temp / 1000.0) * 9.0 / 5.0 + 32.0 return Reading(self.name, temp_f, reading_time) except Exception: logger.exception('Error reading sensor value for {0}'.format(self.name)) post_exception(traceback.format_exc()) return None os.system('modprobe w1-gpio') os.system('modprobe w1-therm') primary_sensor = Sensor(primary_sensor_name) secondary_sensor = None if secondary_sensor_name is not None: secondary_sensor = Sensor(secondary_sensor_name) try: # setup gpio pin for relay # we are using BCM numbering GPIO.setmode(GPIO.BCM) GPIO.setup(relay_gpio_pin, GPIO.OUT) GPIO.output(relay_gpio_pin, False) # keep track of when the fridge was last turned on or off # we don't want to be turning it on/off frequently fridge_turned_on = 0 fridge_turned_off = 0 fridge_enabled = False while True: primary_reading = primary_sensor.get_reading() secondary_reading = None if secondary_sensor is not None: secondary_reading = secondary_sensor.get_reading() if primary_reading is not None: post_reading(primary_reading) if secondary_reading is not None: post_reading(secondary_reading) reading_to_use = primary_reading if reading_to_use is None: reading_to_use = secondary_reading if reading_to_use is None and fridge_enabled: GPIO.output(relay_gpio_pin, False) fridge_enabled = False fridge_turned_off = time.time() power_reading = Reading(fridge_name, 0, fridge_turned_off) post_reading(power_reading) if reading_to_use is not None: if fridge_enabled: run_time = time.time() - fridge_turned_on if reading_to_use.reading < desired_temperature and run_time >= min_runtime: GPIO.output(relay_gpio_pin, False) fridge_enabled = False fridge_turned_off = time.time() power_reading = Reading(fridge_name, 0, fridge_turned_off) post_reading(power_reading) else: time_since_last_ran = time.time() - fridge_turned_off if reading_to_use.reading > max_temperature and time_since_last_ran >= cooldown: GPIO.output(relay_gpio_pin, True) fridge_enabled = True fridge_turned_on = time.time() power_reading = Reading(fridge_name, 1, fridge_turned_on) post_reading(power_reading) time.sleep(1) except KeyboardInterrupt: GPIO.cleanup() exit(1) except Exception: GPIO.cleanup() logger.exception('Fatal error in main loop') post_exception(traceback.format_exc()) ```
{ "source": "jj-umn/metaquantome", "score": 2 }
#### File: metaquantome/modules/run_viz.py ```python import os import subprocess import json from metaquantome.util.utils import BASE_DIR from metaquantome.classes.SampleGroups import SampleGroups def run_viz(plottype, img, infile, strip=None, mode=None, meancol=None, nterms='5', target_rank=None, barcol=6, # barplot, stacked_bar textannot=None, fc_name=None, fc_corr_p=None, flip_fc=False, gosplit=False, # volcano sinfo=None, filter_to_sig=False, alpha='0.05', # heatmap calculate_sep=False, # pca whichway=None, name=None, id=None, target_onto=None, # ft_dist width='5', height='5', tabfile=None, feature_cluster_size=2, sample_cluster_size=2): """ Wrapper script for the command-line R visualizations The documentation for each of the arguments is in cli.py :return: None """ r_script_path = os.path.join(BASE_DIR, 'modules', 'viz.R') cmd = ['Rscript', '--vanilla', r_script_path, plottype, img, infile] if plottype == "bar": cmd += [mode, meancol, nterms, width, height, target_rank, target_onto, barcol, tabfile] elif plottype == "volcano": cmd += [str(textannot), fc_name, fc_corr_p, flip_fc, gosplit, width, height, tabfile] elif plottype == "heatmap": samp_grps = SampleGroups(sinfo) all_intcols_str = ','.join(samp_grps.all_intcols) json_dump = json.dumps(samp_grps.sample_names) cmd += [all_intcols_str, json_dump, filter_to_sig, alpha, width, height, strip, feature_cluster_size, sample_cluster_size, fc_corr_p] elif plottype == "pca": samp_grps = SampleGroups(sinfo) all_intcols_str = ','.join(samp_grps.all_intcols) json_dump = json.dumps(samp_grps.sample_names) cmd += [all_intcols_str, json_dump, calculate_sep, width, height, strip] elif plottype == "ft_dist": cmd += [whichway, name, id, meancol, nterms, width, height, target_rank, target_onto, barcol, tabfile] if plottype == "stacked_bar": samp_grps = SampleGroups(sinfo) all_intcols_str = ','.join(samp_grps.all_intcols) json_dump = json.dumps(samp_grps.sample_names) cmd += [all_intcols_str, json_dump, nterms, target_rank, width, height, tabfile] else: ValueError("Wrong plot type. Must be bar, volcano, heatmap, ft_dist, stacked_bar, or pca.") # ensure that all elements are strings (even booleans, etc) cmd_string = [str(elem) for elem in cmd] # run the visualizations, suppressing any output to stdout with open(os.devnull, 'w') as fnull: subprocess.run(cmd_string, stdout=fnull, check=True) ``` #### File: metaquantome/util/expand_io.py ```python import pandas as pd from metaquantome.util.check_args import function_check, tax_check from metaquantome.util.utils import MISSING_VALUES def read_and_join_files(mode, pep_colname_int, pep_colname_func, pep_colname_tax, samp_grps, int_file, tax_file=None, func_file=None, func_colname=None, tax_colname=None): """ Reads in intensity, function, and/or taxonomy files, and joins all on the peptide column. :param pep_colname_func: name of the peptide column in the function file :param pep_colname_tax: name of the peptide column in the taxonomy file :param pep_colname_int: name of the peptide column in the intensity file :param mode: analysis mode - either 'f', 't', or 'ft' :param samp_grps: SampleGroups() object :param int_file: path to intensity file :param tax_file: path to taxonomy file. required for 't' and 'ft' modes :param func_file: path to function file. required for 'f' and 'ft' modes :param func_colname: column name of functional annotation in function file :param tax_colname: column name of taxonomic annotation in taxonomy file :return: joined dataframe; missing intensities as 0. """ # intensity int = read_intensity_table(int_file, samp_grps, pep_colname_int) # start df list dfs = [int] if mode == 't' or mode == 'ft': tax_check(tax_file, tax_colname) tax = read_taxonomy_table(tax_file, pep_colname_tax, tax_colname) dfs.append(tax) if mode == 'f' or mode == 'ft': function_check(func_file, func_colname) func = read_function_table(func_file, pep_colname_func, func_colname) dfs.append(func) # join all dfs_joined = join_on_peptide(dfs) dfs_joined.index.name = 'peptide' return dfs_joined def read_intensity_table(file, samp_grps, pep_colname_int): """ read the file containing peptide intensities to a pandas dataframe. :param file: path to intensity file. must be tab-separated :param samp_grps: SampleGroups object :param pep_colname_int: name of peptide column in intensity table :return: intensity table; missing values as 0 """ # read in data df = pd.read_table(file, sep="\t", index_col=pep_colname_int, dtype=samp_grps.dict_numeric_cols, na_values=MISSING_VALUES, low_memory=False) # only intcols (in case table has extra cols) int_df = df.loc[:, samp_grps.all_intcols] # drop rows where all intensities are NA int_df.dropna(axis=0, how="all", inplace=True) # change remaining missing intensities to 0, for arithmetic (changed back to NA for export) values = {x: 0 for x in samp_grps.all_intcols} int_df.fillna(values, inplace=True) return int_df def read_taxonomy_table(file, pep_colname_tax, tax_colname): """ read taxonomy table, such as Unipept output. Peptides with no annotation are dropped. :param file: path to taxonomy file :param pep_colname_tax: string, peptide sequence column name :param tax_colname: string, taxonomy identifier column name :return: a pandas dataframe where index is peptide sequence and the single column is the associated ncbi taxid """ # always read as character df = pd.read_table(file, sep="\t", index_col=pep_colname_tax, na_values=MISSING_VALUES, dtype={tax_colname: object}) # take only specified column df_tax = df.loc[:, [tax_colname]] # drop nas df_tax.dropna(inplace=True, axis=0) return df_tax def read_function_table(file, pep_colname_func, func_colname): """ read functional annotation table to Pandas dataframe. Peptides with no annotation are dropped. :param file: path to tab-separated function file :param pep_colname_func: name of peptide column in function column :param func_colname: name of functional annotation column in function table :return: pandas dataframe where index is peptide sequence and single column is associated functional annotation. """ df = pd.read_table(file, sep="\t", index_col=pep_colname_func, na_values=MISSING_VALUES) df_new = df[[func_colname]].copy() # drop nas df_new.dropna(inplace=True, axis=0) return df_new def join_on_peptide(dfs): """ Inner join a list of dataframes on the index. :param dfs: list of pandas dataframes :return: joined dataframe. """ # join inner means that only peptides present in all dfs will be kept df_all = dfs.pop(0) while len(dfs) > 0: df_other = dfs.pop(0) df_all = df_all.join(df_other, how="inner") return df_all def read_nopep_table(file, mode, samp_grps, func_colname=None, tax_colname=None): """ Read in a pre-joined table (rather than 3 separate tables) :param file: file with intensity and functional or taxonomic terms :param mode: f, tax, or ft :param samp_grps: SampleGroups() object :param func_colname: name of column with functional terms :param tax_colname: name of column with taxonomic annotations :return: dataframe, missing values as 0 """ newdict = samp_grps.dict_numeric_cols.copy() newdict[func_colname] = object newdict[tax_colname] = object df = pd.read_table(file, sep="\t", dtype=newdict, na_values=MISSING_VALUES, low_memory=False) # change remaining missing intensities to 0, for arithmetic (changed back to NA for export) values = {x: 0 for x in samp_grps.all_intcols} df.fillna(values, inplace=True) # drop rows where function is missing (for mode 'f'), taxonomy is missing (mode 't'), # or both function and taxonomy are missing (mode 'ft') sub = list() if mode == 'f': sub = [func_colname] elif mode == 't': sub = [tax_colname] elif mode == 'ft': sub = [func_colname, tax_colname] df.dropna(how='all', subset=sub, inplace=True) return df def write_out_general(df, outfile, cols): """ Write a pandas dataframe as a tab-separated file. Keeps header, does not write index; missing values are represented as NA :param df: dataframe :param outfile: path to output file :param cols: columns to be written, in desired order :return: None """ df.to_csv(outfile, columns=cols, sep="\t", header=True, index=False, na_rep="NA") def define_outfile_cols_expand(samp_grps, ontology, mode): """ define columns for writing the expand output file :param samp_grps: SampleGroups object :param ontology: functional ontology. only required for 'f' or 'ft' modes :param mode: f, t, or ft :return: a list of relevant columns in the correct order """ int_cols = [] int_cols += samp_grps.mean_names + samp_grps.all_intcols node_cols = [] if ontology != "cog": node_cols += samp_grps.n_peptide_names_flat # ft doesn't have samp_children if mode != 'ft': node_cols += samp_grps.samp_children_names_flat quant_cols = int_cols + node_cols if mode == 'f': if ontology == 'go': cols = ['id', 'name', 'namespace'] + quant_cols elif ontology == 'cog': cols = ['id', 'description'] + quant_cols elif ontology == 'ec': cols = ['id', 'description'] + quant_cols else: raise ValueError("Invalid ontology. Expected one of: %s" % ['go', 'cog', 'ec']) elif mode == 't': cols = ['id', 'taxon_name', 'rank'] + quant_cols elif mode == 'ft': cols = ['go_id', 'name', 'namespace', 'tax_id', 'taxon_name', 'rank'] + quant_cols else: raise ValueError("Invalid mode. Expected one of: %s" % ['f', 't', 'ft']) return cols ``` #### File: tests/travis/testAnnotationHierarchy.py ```python import unittest import pandas as pd from metaquantome.classes.AnnotationNode import AnnotationNode from metaquantome.classes.AnnotationHierarchy import AnnotationHierarchy from metaquantome.databases.NCBITaxonomyDb import NCBITaxonomyDb from metaquantome.databases.GeneOntologyDb import GeneOntologyDb from metaquantome.databases.EnzymeDb import EnzymeDb from metaquantome.util.utils import TEST_DIR class TestAnnotationHierarchyNcbi(unittest.TestCase): def _create_sapiens_db(self): db = NCBITaxonomyDb(TEST_DIR) sample_set = {9604, 9605, 9606} # hominidae (family), homo (genus), homo sapiens (species) ah = AnnotationHierarchy(db, sample_set, 'samp1') return ah, sample_set def testInit(self): ah, sample_set = self._create_sapiens_db() self.assertIsInstance(ah.db, NCBITaxonomyDb) self.assertSetEqual(ah.sample_set, sample_set) self.assertDictEqual(ah.nodes, dict()) def testUpdateNode(self): ah, sample_set = self._create_sapiens_db() # one sample child testid = 9605 intensity = 200 ah._add_node_with_ancestors(testid, intensity) testid2 = 9606 ah._add_node_with_ancestors(testid2, intensity) ah._define_sample_children() updated_node = ah.nodes[testid] self.assertIsInstance(updated_node, AnnotationNode) self.assertEqual(updated_node.intensity, intensity*2) self.assertEqual(updated_node.n_sample_children, 1) def testAggregateNodes(self): ah, sample_set = self._create_sapiens_db() testids = [9604, 9605, 9606] test_intensities = [500, 200, 300] for i in range(0, 3): ah._add_node_with_ancestors(testids[i], test_intensities[i]) self.assertEqual(ah.nodes[9604].intensity, 1000) class TestAnnotationHierarchyGO(unittest.TestCase): def _create_go_db(self): db = GeneOntologyDb(TEST_DIR) sample_set = {'GO:0008150', # biological process 'GO:0008283', # cell proliferation (child of BP) 'GO:0033687', # osteoblast proliferation (child of cell pro) 'GO:0036093', # germ cell proliferation (child of cell pro) 'GO:0022414', # reproductive process (child of BP) 'GO:1903046', # meiotic cell cycle process (child of rep pro) 'GO:0051026'} # chiasma assembly, child of meiotic ah = AnnotationHierarchy(db, sample_set, 'samp1') return ah, sample_set def testInit(self): ah, sample_set = self._create_go_db() self.assertIsInstance(ah.db, GeneOntologyDb) self.assertSetEqual(ah.sample_set, sample_set) self.assertDictEqual(ah.nodes, dict()) def testUpdateNode(self): ah, sample_set = self._create_go_db() # one sample child testid = 'GO:0051026' intensity = 100 ah._add_node_with_ancestors(testid, intensity) updated_node = ah.nodes[testid] self.assertIsInstance(updated_node, AnnotationNode) self.assertEqual(updated_node.intensity, intensity) ah._define_sample_children() self.assertEqual(updated_node.n_sample_children, 0) def testAggregateNodes(self): ah, sample_set = self._create_go_db() testids = ['GO:0008150', # biological process 'GO:0008283', # cell proliferation (child of BP) 'GO:0033687', # osteoblast proliferation (child of cell pro) 'GO:0036093', # germ cell proliferation (child of cell pro and rep pro) 'GO:0022414', # reproductive process (child of BP) 'GO:1903046', # meiotic cell cycle process (child of rep pro) 'GO:0051026'] # chiasma assembly, child of meiotic test_intensities = [0, 0, 0, 100, 50, 200, 300] for i in range(0, len(test_intensities)): ah._add_node_with_ancestors(testids[i], test_intensities[i]) self.assertEqual(ah.nodes['GO:0022414'].intensity, 650) class TestAnnotationHierarchyEc(unittest.TestCase): def _create_ec_db(self): db = EnzymeDb(TEST_DIR) sample_set = {'1.1.4.-', '1.1.4.1', '1.1.4.2', '6.5.-.-', '6.-.-.-'} ah = AnnotationHierarchy(db, sample_set, 'samp1') return ah, sample_set def testInit(self): ah, sample_set = self._create_ec_db() self.assertIsInstance(ah.db, EnzymeDb) self.assertSetEqual(ah.sample_set, sample_set) self.assertDictEqual(ah.nodes, dict()) def testUpdateNode(self): ah, sample_set = self._create_ec_db() # one sample child testids = ['1.1.4.-', '1.1.4.1', '1.1.4.2'] intensity = 100 for i in testids: ah._add_node_with_ancestors(i, intensity) updated_node = ah.nodes[testids[0]] print(ah.nodes['1.1.-.-'].intensity) ah._define_sample_children() self.assertIsInstance(updated_node, AnnotationNode) self.assertEqual(updated_node.intensity, intensity*3) self.assertEqual(updated_node.n_sample_children, 2) def testAggregateNodes(self): ah, sample_set = self._create_ec_db() testids = ['1.1.4.-', '1.1.4.1', '1.1.4.2', '6.5.-.-'] test_intensities = [500, 200, 300, 0] for i in range(0, 3): ah._add_node_with_ancestors(testids[i], test_intensities[i]) self.assertEqual(ah.nodes['1.1.4.-'].intensity, 1000) def testToDataframe(self): ah, sample_set = self._create_ec_db() test_set = ['1.1.4.-', '1.1.4.1', '1.1.4.2', '1.1.4.-', '1.1.4.1', '1.1.4.2', '6.5.-.-', '6.5.-.-', '6.-.-.-', '6.-.-.-'] # set to one, so it's equal to number of peptides test_intensity = 1 for id in test_set: ah._add_node_with_ancestors(id, test_intensity) # expanded sample set is all nodes ah._define_sample_children() # the sample set is as below: # sample_set = {'1.1.4.-', # '1.1.4.1', # '1.1.4.2', # '6.5.-.-', # '6.-.-.-'} # ah.get_informative_nodes(0, 0) # expected exp_df = pd.DataFrame({'samp1': [6, 6, 6, 2, 2, 4, 2], 'samp1_n_peptide': [6, 6, 6, 2, 2, 4, 2], 'samp1_n_samp_children': [1, 1, 2, 0, 0, 1, 0]}, index= ['1.-.-.-', '1.1.-.-', '1.1.4.-', '1.1.4.1', '1.1.4.2', '6.-.-.-', '6.5.-.-']).sort_index(axis=0).sort_index(axis=1) df = ah.to_dataframe().sort_index(axis=0).sort_index(axis=1) self.assertTrue(df.equals(exp_df)) if __name__ == '__main__': unittest.main() ``` #### File: tests/travis/testExpand.py ```python import unittest import numpy as np import pandas as pd from metaquantome.databases import GeneOntologyDb as godb import metaquantome.modules.expand as expand from metaquantome.classes.SampleGroups import SampleGroups from metaquantome.util.testutils import testfile from metaquantome.util.utils import TEST_DIR class TestExpandUtils(unittest.TestCase): # test dataframe # 9604 has no peptides observed in either sample, but has enough from the other peptides # 9606 has one peptide observed in one sample and two in the other # 9605 has two peptides in each sample, but has 1 child and is a leaf # 9599 only has one peptide peptide = ['A', 'B', 'C', 'D', 'E', 'F', 'G'] lca = [9604, 9604, 9605, 9605, 9606, 9606, 9599] samp1 = [1, 1, 1, 1, 1, 0, 2] samp2 = [0, 1, 1, 1, 1, 1, 2] samp3 = [1, 1, 0, 1, 1, 0, 2] samp_grps = SampleGroups('{"grp1": ["samp1", "samp2", "samp3"]}') test_df = pd.DataFrame({'lca': lca, 'samp1': samp1, 'samp2': samp2, 'samp3': samp3}, index=[peptide]) def testCalcMeans(self): calk = expand.calc_means(self.test_df, self.samp_grps)['grp1_mean'] expected_means = pd.Series(np.log2([2/3, 1, 2/3, 1, 1, 1/3, 2]), index=[self.peptide], name='grp1_mean') self.assertTrue(calk.equals(expected_means)) df = pd.DataFrame({'s1_1': [4, 4], 's1_2': [2, 2], 's2_1': [5, 10], 's2_2': [7, 16]}) samps = SampleGroups('{"s1": ["s1_1", "s1_2"], "s2": ["s2_1", "s2_2"]}') means = expand.calc_means(df, samps) self.assertTrue(means['s1_mean'].equals(pd.Series({0: np.log2(3.0), 1: np.log2(3.0)}, name="s1_mean"))) class TestFunctionalAnalysisExpand(unittest.TestCase): db = godb.GeneOntologyDb(TEST_DIR, slim_down=True) def testSingleInt(self): func=testfile('simple_func.tab') int=testfile('simple_int.tab') go_df = expand.expand('f', sinfo='{"s1": ["int"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_file=func, func_colname='go', ontology='go') self.assertEqual(go_df.loc["GO:0022610"]['int'], np.log2(200)) self.assertEqual(go_df.loc["GO:0008152"]['int'], np.log2(100)) def testMultipleInt(self): func = testfile('multiple_func.tab') int = testfile('multiple_int.tab') go_df = expand.expand('f', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_file=func, func_colname='go', ontology='go') self.assertEqual(go_df.loc['GO:0008152']['int1'], np.log2(10)) self.assertEqual(go_df.loc['GO:0022610']['int2'], np.log2(30)) # missing values (zeros, nans, NA's, etc) are turned into NaN's self.assertTrue(np.isnan(go_df.loc['GO:0000003']['int3'])) return go_df def testNopep(self): nopep=testfile('nopep.tab') go_df = expand.expand('f', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=None, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_colname='go', ontology='go', nopep=True, nopep_file=nopep).sort_index(axis=1) self.assertEqual(go_df.loc['GO:0008152']['int1'], np.log2(10)) self.assertEqual(go_df.loc['GO:0022610']['int2'], np.log2(30)) # missing values (zeros, nans, NA's, etc) are turned into NaN's self.assertTrue(np.isnan(go_df.loc['GO:0000003']['int3'])) # now, test that the results are the same as obtained through the peptide method df = self.testMultipleInt().sort_index(axis=1) self.assertTrue(df.equals(go_df)) def testSlimDown(self): func=testfile('func_eggnog.tab') int=testfile('int_eggnog.tab') outfile=testfile('eggnog_out.tab') sinfo='{"NS": ["int737NS", "int852NS", "int867NS"], "WS": ["int737WS", "int852WS", "int867WS"]}' go_df = expand.expand('f', sinfo=sinfo, int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_file=func, func_colname='go', ontology='go', slim_down=True, outfile=outfile) # test that all go terms are in slim # load slim returned_gos = set(go_df['id']) # potential of unknown, so just drop that returned_gos.discard('unknown') self.assertTrue(returned_gos.issubset(self.db.goslim.keys())) def testCog(self): func=testfile('multiple_func.tab') int=testfile('multiple_int.tab') cog_df = expand.expand('f', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', func_file=func, func_colname='cog', ontology='cog') self.assertEqual(cog_df.loc["C"]['s1_mean'], np.log2((10+20+70)/3)) self.assertEqual(cog_df.loc["N"]['int2'], np.log2(30)) def testSimpleEc(self): func=testfile('simple_ec.tab') int=testfile('simple_int.tab') ec_df = expand.expand('f', sinfo='{"s1": ["int"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_file=func, func_colname='ec', ontology='ec') self.assertEqual(ec_df.loc["3.4.11.-"]['int'], np.log2(100)) self.assertEqual(ec_df.loc["3.4.-.-"]['int'], np.log2(300)) def testMultipleEc(self): func=testfile('multiple_func.tab') int=testfile('multiple_int.tab') ec_df = expand.expand('f', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, func_file=func, func_colname='ec', ontology='ec') self.assertEqual(ec_df.loc['3.4.-.-']['int1'], np.log2(50)) self.assertEqual(ec_df.loc['1.2.-.-']['int2'], np.log2(50)) # missing values (zeros, nans, NA's, etc) are turned into NaN's self.assertTrue(np.isnan(ec_df.loc['1.2.-.-']['int3'])) class TestTaxonomyAnalysisExpand(unittest.TestCase): def testSingleBasic(self): tax = testfile('simple_tax.tab') int = testfile('simple_int.tab') tax_df = expand.expand('t', sinfo='{"s1": ["int"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, tax_file=tax, tax_colname='lca') self.assertEqual(tax_df.query("taxon_name == 'Helicobacter pylori'")['int'].values, np.log2(100)) def testWrite(self): tax = testfile('simple_tax.tab') int = testfile('simple_int.tab') out = testfile('taxonomy_write_simple.tab') df = expand.expand(mode='t', sinfo='{"samp1": ["int"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, outfile=out, tax_file=tax, tax_colname='lca') written = pd.read_table(out) self.assertAlmostEqual(written.query("taxon_name == 'Clostridioides difficile'")['samp1_mean'].values[0], np.log2(200)) def testMultCols(self): tax=testfile('multiple_tax.tab') int=testfile('multiple_int.tab') tax_df = expand.expand('t', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, tax_file=tax, tax_colname='lca') self.assertEqual(tax_df.query("rank == 'phylum' and taxon_name == 'Proteobacteria'")['int3'].values[0], np.log2(70)) def testNopep(self): nopep=testfile('nopep.tab') tax_df = expand.expand('t', sinfo='{"s1": ["int1", "int2", "int3"]}', int_file=None, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, tax_colname='lca', nopep=True, nopep_file=nopep) self.assertEqual(tax_df.query("rank == 'phylum' and taxon_name == 'Proteobacteria'")['int3'].values[0], np.log2(70)) def testParentIntensityHigher(self): """ make sure that parents always have higher intensity than children """ tax=testfile('test_root_sum_uni.tab') int=testfile('test_root_sum_int.tab') tax_df = expand.expand('t', sinfo='{"A": ["int"]}', int_file=int, pep_colname_int='peptide', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, tax_file=tax, tax_colname='taxon_id') # filter to phylum and below tax_df_filt = tax_df[(tax_df["rank"] != 'no rank') & (tax_df["rank"] != 'superkingdom')] # firmicutes phylum should be highest ints = tax_df_filt['int'] self.assertEqual(ints.max(), ints[1239]) # strep genus intensity should be greater than or equal to that of strep species self.assertGreaterEqual(ints[1301], ints[1302]) self.assertGreaterEqual(ints[1301], ints[1305]) class TestFunctionTaxonomyAnalysis(unittest.TestCase): def testDifferentNames(self): tax = testfile('ft_tax.tab') func = testfile('ft_func.tab') int = testfile('ft_int.tab') ft = expand.expand('ft', sinfo='{"A": ["int"]}', int_file=int, pep_colname_int='Sequence', pep_colname_func='peptide', pep_colname_tax='peptide', data_dir=TEST_DIR, tax_file=tax, tax_colname='lca', func_file=func, func_colname="go") self.assertIn("A_mean", list(ft)) if __name__=='__main__': unittest.main() ```
{ "source": "jjunhyub/2021_timetraveler", "score": 2 }
#### File: configs/photorealistic_model_nas_11111110101100001100011011110100/train_decoder.py ```python import sys sys.path.insert(0, '/mnt/home/xiaoxiang/haozhe/style_nas_2/models/') import numpy as np import torch import os import cv2 from torch import optim import torch.nn as nn from torch.utils.data import DataLoader from torchvision.utils import make_grid from torch.utils.data.sampler import RandomSampler import torch.autograd as autograd from tqdm import tqdm from matplotlib import pyplot as plt from dataset import TransferDataset from torch.utils.serialization import load_lua import argparse from models_photorealistic_nas.VGG_with_decoder import encoder, decoder abs_dir = os.path.abspath(os.path.dirname(__file__)) def load_nets(): encoder_param = load_lua('/mnt/home/xiaoxiang/haozhe/style_nas_2/models/models_photorealistic_nas/vgg_normalised_conv5_1.t7') net_e = encoder(encoder_param) net_d = decoder() return net_e, net_d def get_gram_matrix(f): n, c, h, w = f.size(0), f.size(1), f.size(2), f.size(3) f = f.view(n, c, -1) gram = f.bmm(f.transpose(1, 2)) / (h * w) return gram def get_loss(encoder, decoder, content, d0_control, d1_control, d2_control, d3_control, d4_control, d5_control): fc = encoder(content) content_new = decoder(*fc, d0_control, d1_control, d2_control, d3_control, d4_control, d5_control) fc_new = encoder(content_new) mse_loss = nn.MSELoss() loss_r = mse_loss(content_new, content) loss_p_list = [] for i in range(5): loss_p_list.append(mse_loss(fc_new[i], fc[i])) loss_p = sum(loss_p_list) / len(loss_p_list) loss = 0.5 * loss_r + 0.5 * loss_p return loss def get_dataloader(content_root): transferset = TransferDataset(content_root) loader = DataLoader(transferset, 16, True, num_workers=16, drop_last=True) return loader def adjust_learning_rate(optimizer, epoch): for param_group in optimizer.param_groups: param_group['lr'] = param_group['lr'] * (0.95 ** epoch) def show_results(content, style, no_train, train): plt.subplot(221) plt.imshow(content) plt.title('content') plt.subplot(222) plt.imshow(style) plt.title('style') plt.subplot(223) plt.imshow(no_train) plt.title('close_form') plt.subplot(224) plt.imshow(train) plt.title('close_form + train_decoder') plt.show() def train_single_epoch(args, epoch, encoder, decoder, loader, optimizer, alpha_train=0): for i, content_batch in enumerate(loader): content_batch.requires_grad = False d0_control = args.d_control[:5] d1_control = args.d_control[5: 8] d2_control = args.d_control[9: 16] d3_control = args.d_control[16: 23] d4_control = args.d_control[23: 28] d5_control = args.d_control[28: 32] d0_control = [int(i) for i in d0_control] d1_control = [int(i) for i in d1_control] d2_control = [int(i) for i in d2_control] d3_control = [int(i) for i in d3_control] d4_control = [int(i) for i in d4_control] d5_control = [int(i) for i in d5_control] if args.gpu is not None: content_batch = content_batch.cuda() loss = get_loss(encoder, decoder, content_batch, d0_control, d1_control, d2_control, d3_control, d4_control, d5_control) if i % 1000 == 0: print('epoch: %d | batch: %d | loss: %.4f' % (epoch, i, loss.cpu().data)) optimizer.zero_grad() loss.backward(retain_graph=False) optimizer.step() def train(args, content_root, encoder, decoder): MAX_EPOCH = args.max_epoch for param in encoder.parameters(): param.requires_grad = False decoder.train(), encoder.eval() loader = get_dataloader(content_root) optimizer = optim.Adam(decoder.parameters(), lr=1e-4, betas=(0.5, 0.9)) for i in range(MAX_EPOCH): train_single_epoch(args, i, encoder, decoder, loader, optimizer) state_dict = decoder.state_dict() for key in state_dict.keys(): state_dict[key] = state_dict[key].cpu() torch.save(state_dict, '{:s}/decoder_epoch_{:d}.pth.tar'.format(args.save_dir, i + 1)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=0) parser.add_argument('-s', '--save_dir', default=os.path.join(abs_dir, 'trained_models_nas')) parser.add_argument('-d', '--d_control') parser.add_argument('-me', '--max_epoch', default=5, type=int) args = parser.parse_args() if not os.path.isdir(args.save_dir): os.mkdir(args.save_dir) if args.gpu is not None: os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu) net_e, net_d = load_nets() if args.gpu is not None: net_e.cuda() net_d.cuda() train(args, '/mnt/home/xiaoxiang/haozhe/VOCdevkit/VOC2012/JPEGImages', net_e, net_d) ``` #### File: configs/photorealistic_model_nas_11111110101100001100011011110100/validation.py ```python import sys sys.path.insert(0, '/mnt/home/xiaoxiang/haozhe/style_nas_2/models/') import numpy as np import os import cv2 import torch import torch.nn as nn from matplotlib import pyplot as plt from dataset import TransferDataset from torch.utils.serialization import load_lua import argparse from torchvision import utils from torchvision import transforms from models_photorealistic_nas.VGG_with_decoder import encoder, decoder0, decoder1, decoder2, decoder3, decoder4, decoder5 from wct import transform abs_dir = os.path.abspath(os.path.dirname(__file__)) def load_net(): encoder_param = load_lua('/mnt/home/xiaoxiang/haozhe/style_nas_2/models/models_photorealistic_nas/vgg_normalised_conv5_1.t7') net_e = encoder(encoder_param) net_d0 = decoder0() net_d0.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) net_d1 = decoder1() net_d1.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) net_d2 = decoder2() net_d2.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) net_d3 = decoder3() net_d3.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) net_d4 = decoder4() net_d4.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) net_d5 = decoder5() net_d5.load_state_dict(torch.load(os.path.join(abs_dir, 'trained_models_nas/decoder_epoch_2.pth.tar'))) return net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5 def get_test_list(root_dir): test_list = os.listdir(root_dir) test_list = [os.path.join(root_dir, i) for i in test_list] return test_list def get_a_image(path): img = cv2.imread(path, cv2.IMREAD_COLOR) return img def resize_save(content, style, out): if content.shape[0] < content.shape[1]: out_h = 512 out_w = np.int32(512.0 * content.shape[1] / content.shape[0]) else: out_w = 512 out_h = np.int32(512.0 * content.shape[0] / content.shape[1]) content = cv2.resize(content, (out_w, out_h), cv2.INTER_AREA) style = cv2.resize(style, (out_w, out_h), cv2.INTER_AREA) out = cv2.resize(out, (out_w, out_h), cv2.INTER_AREA) return content, style, out def resize_imgs(content, style): c_h = 384 c_w = 768 s_h = 384 s_w = 768 # c_h = content.shape[0] # c_w = content.shape[1] # s_h = style.shape[0] # s_w = style.shape[1] # c_ratio = np.float32(c_h) / c_w # s_ratio = np.float32(s_h) / s_w # if (c_ratio / s_ratio > 4.0) or (s_ratio / c_ratio > 4.0): # c_h_out = 512 # c_w_out = 512 # s_h_out = 512 # s_w_out = 512 # elif c_ratio < 1: # c_h = 512 # c_w = np.int32(c_h / c_ratio) # s_h = c_h # s_w = c_w # elif c_ratio >= 1: # c_w = 512 # c_h = np.int32(c_w * c_ratio) # s_h = c_h # s_w = c_w content = cv2.resize(content, (c_w, c_h), cv2.INTER_AREA) style = cv2.resize(style, (s_w, s_h), cv2.INTER_AREA) return content, style def handmake_mse(result, target): return torch.mean((result - target) ** 2) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=0) args = parser.parse_args() net_e, _, _, _, _, _, _ = load_net() if args.gpu is not None: net_e.cuda(), net_e.eval() validation_list = get_test_list(os.path.join(abs_dir, 'result_val_nas')) benchmark_list = get_test_list('/mnt/home/xiaoxiang/haozhe/style_nas_2/benchmark') validation_list = [i for i in validation_list if '.jpg' in i] benchmark_list = [i for i in benchmark_list if '.jpg' in i] validation_list.sort() benchmark_list.sort() mse_loss = nn.MSELoss() loss_r_list = [] loss_p_list = [] for k in range(len(validation_list[:])): validation_path = validation_list[k] benchmark_path = benchmark_list[k] print('----- validate pair %d -------' % (k)) validation_img = get_a_image(validation_path) benchmark_img = get_a_image(benchmark_path) validation_img, benchmark_img = resize_imgs(validation_img, benchmark_img) validation_img = transforms.ToTensor()(validation_img) benchmark_img = transforms.ToTensor()(benchmark_img) validation_img = validation_img.unsqueeze(0) benchmark_img = benchmark_img.unsqueeze(0) if args.gpu is not None: validation_img = validation_img.cuda() benchmark_img = benchmark_img.cuda() validation_f = list(net_e(validation_img)) benchmark_f = list(net_e(benchmark_img)) loss_r = handmake_mse(validation_img, benchmark_img).cpu().data.numpy() loss_p_list = [] for i in range(5): loss_p_list.append(handmake_mse(validation_f[i], benchmark_f[i]).cpu().data.numpy()) loss_p = sum(loss_p_list) / len(loss_p_list) loss_r_list.append(loss_r) loss_p_list.append(loss_p) overall_loss_r = '%.4f' % (sum(loss_r_list) / len(loss_r_list)) overall_loss_p = '%.4f' % (sum(loss_p_list) / len(loss_p_list)) with open(os.path.join(abs_dir, 'result.txt'), 'w') as f: f.write('%s %s' % (overall_loss_r, overall_loss_p)) ``` #### File: jjunhyub/2021_timetraveler/convert_torch.py ```python from __future__ import print_function import sys sys.path.append('/home/junhyub/documents/StyleNAS/') import os import math import torch import argparse import numpy as np import torch.nn as nn import torch.optim as optim import torch.legacy.nn as lnn import torch.nn.functional as F from functools import reduce from torch.autograd import Variable from torch.utils.serialization import load_lua class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): # result is Variables list [Variable1, Variable2, ...] return list(map(self.lambda_func,self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): # result is a Variable return reduce(self.lambda_func,self.forward_prepare(input)) def copy_param(m,n): if m.weight is not None: n.weight.data.copy_(m.weight) if m.bias is not None: n.bias.data.copy_(m.bias) if hasattr(n,'running_mean'): n.running_mean.copy_(m.running_mean) if hasattr(n,'running_var'): n.running_var.copy_(m.running_var) def add_submodule(seq, *args): for n in args: seq.add_module(str(len(seq._modules)),n) def lua_recursive_model(module,seq): for m in module.modules: name = type(m).__name__ real = m if name == 'TorchObject': name = m._typename.replace('cudnn.','') m = m._obj if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM': if not hasattr(m,'groups') or m.groups is None: m.groups=1 n = nn.Conv2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,bias=(m.bias is not None)) copy_param(m,n) add_submodule(seq,n) elif name == 'SpatialBatchNormalization': n = nn.BatchNorm2d(m.running_mean.size(0), m.eps, m.momentum, m.affine) copy_param(m,n) add_submodule(seq,n) elif name == 'VolumetricBatchNormalization': n = nn.BatchNorm3d(m.running_mean.size(0), m.eps, m.momentum, m.affine) copy_param(m, n) add_submodule(seq, n) elif name == 'ReLU': n = nn.ReLU() add_submodule(seq,n) elif name == 'Sigmoid': n = nn.Sigmoid() add_submodule(seq,n) elif name == 'SpatialMaxPooling': n = nn.MaxPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode) add_submodule(seq,n) elif name == 'SpatialAveragePooling': n = nn.AvgPool2d((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),ceil_mode=m.ceil_mode) add_submodule(seq,n) elif name == 'SpatialUpSamplingNearest': n = nn.UpsamplingNearest2d(scale_factor=m.scale_factor) add_submodule(seq,n) elif name == 'View': n = Lambda(lambda x: x.view(x.size(0),-1)) add_submodule(seq,n) elif name == 'Reshape': n = Lambda(lambda x: x.view(x.size(0),-1)) add_submodule(seq,n) elif name == 'Linear': # Linear in pytorch only accept 2D input n1 = Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x ) n2 = nn.Linear(m.weight.size(1),m.weight.size(0),bias=(m.bias is not None)) copy_param(m,n2) n = nn.Sequential(n1,n2) add_submodule(seq,n) elif name == 'Dropout': m.inplace = False n = nn.Dropout(m.p) add_submodule(seq,n) elif name == 'SoftMax': n = nn.Softmax() add_submodule(seq,n) elif name == 'Identity': n = Lambda(lambda x: x) # do nothing add_submodule(seq,n) elif name == 'SpatialFullConvolution': n = nn.ConvTranspose2d(m.nInputPlane,m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH)) copy_param(m,n) add_submodule(seq,n) elif name == 'VolumetricFullConvolution': n = nn.ConvTranspose3d(m.nInputPlane,m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups) copy_param(m,n) add_submodule(seq, n) elif name == 'SpatialReplicationPadding': n = nn.ReplicationPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b)) add_submodule(seq,n) elif name == 'SpatialReflectionPadding': n = nn.ReflectionPad2d((m.pad_l,m.pad_r,m.pad_t,m.pad_b)) add_submodule(seq,n) elif name == 'Copy': n = Lambda(lambda x: x) # do nothing add_submodule(seq,n) elif name == 'Narrow': n = Lambda(lambda x,a=(m.dimension,m.index,m.length): x.narrow(*a)) add_submodule(seq,n) elif name == 'SpatialCrossMapLRN': lrn = lnn.SpatialCrossMapLRN(m.size,m.alpha,m.beta,m.k) n = Lambda(lambda x,lrn=lrn: Variable(lrn.forward(x.data))) add_submodule(seq,n) elif name == 'Sequential': n = nn.Sequential() lua_recursive_model(m,n) add_submodule(seq,n) elif name == 'ConcatTable': # output is list n = LambdaMap(lambda x: x) lua_recursive_model(m,n) add_submodule(seq,n) elif name == 'CAddTable': # input is list n = LambdaReduce(lambda x,y: x+y) add_submodule(seq,n) elif name == 'Concat': dim = m.dimension n = LambdaReduce(lambda x,y,dim=dim: torch.cat((x,y),dim)) lua_recursive_model(m,n) add_submodule(seq,n) elif name == 'TorchObject': print('Not Implement',name,real._typename) else: print('Not Implement',name) def lua_recursive_source(module): s = [] for m in module.modules: name = type(m).__name__ real = m if name == 'TorchObject': name = m._typename.replace('cudnn.','') m = m._obj if name == 'SpatialConvolution' or name == 'nn.SpatialConvolutionMM': if not hasattr(m,'groups') or m.groups is None: m.groups=1 s += ['nn.Conv2d({},{},{},{},{},{},{},bias={}),#Conv2d'.format(m.nInputPlane, m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),1,m.groups,m.bias is not None)] elif name == 'SpatialBatchNormalization': s += ['nn.BatchNorm2d({},{},{},{}),#BatchNorm2d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)] elif name == 'VolumetricBatchNormalization': s += ['nn.BatchNorm3d({},{},{},{}),#BatchNorm3d'.format(m.running_mean.size(0), m.eps, m.momentum, m.affine)] elif name == 'ReLU': s += ['nn.ReLU()'] elif name == 'Sigmoid': s += ['nn.Sigmoid()'] elif name == 'SpatialMaxPooling': s += ['nn.MaxPool2d({},{},{},ceil_mode={}),#MaxPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)] elif name == 'SpatialAveragePooling': s += ['nn.AvgPool2d({},{},{},ceil_mode={}),#AvgPool2d'.format((m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),m.ceil_mode)] elif name == 'SpatialUpSamplingNearest': s += ['nn.UpsamplingNearest2d(scale_factor={})'.format(m.scale_factor)] elif name == 'View': s += ['Lambda(lambda x: x.view(x.size(0),-1)), # View'] elif name == 'Reshape': s += ['Lambda(lambda x: x.view(x.size(0),-1)), # Reshape'] elif name == 'Linear': s1 = 'Lambda(lambda x: x.view(1,-1) if 1==len(x.size()) else x )' s2 = 'nn.Linear({},{},bias={})'.format(m.weight.size(1),m.weight.size(0),(m.bias is not None)) s += ['nn.Sequential({},{}),#Linear'.format(s1,s2)] elif name == 'Dropout': s += ['nn.Dropout({})'.format(m.p)] elif name == 'SoftMax': s += ['nn.Softmax()'] elif name == 'Identity': s += ['Lambda(lambda x: x), # Identity'] elif name == 'SpatialFullConvolution': s += ['nn.ConvTranspose2d({},{},{},{},{},{})'.format(m.nInputPlane, m.nOutputPlane,(m.kW,m.kH),(m.dW,m.dH),(m.padW,m.padH),(m.adjW,m.adjH))] elif name == 'VolumetricFullConvolution': s += ['nn.ConvTranspose3d({},{},{},{},{},{},{})'.format(m.nInputPlane, m.nOutputPlane,(m.kT,m.kW,m.kH),(m.dT,m.dW,m.dH),(m.padT,m.padW,m.padH),(m.adjT,m.adjW,m.adjH),m.groups)] elif name == 'SpatialReplicationPadding': s += ['nn.ReplicationPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))] elif name == 'SpatialReflectionPadding': s += ['nn.ReflectionPad2d({})'.format((m.pad_l,m.pad_r,m.pad_t,m.pad_b))] elif name == 'Copy': s += ['Lambda(lambda x: x), # Copy'] elif name == 'Narrow': s += ['Lambda(lambda x,a={}: x.narrow(*a))'.format((m.dimension,m.index,m.length))] elif name == 'SpatialCrossMapLRN': lrn = 'lnn.SpatialCrossMapLRN(*{})'.format((m.size,m.alpha,m.beta,m.k)) s += ['Lambda(lambda x,lrn={}: Variable(lrn.forward(x.data)))'.format(lrn)] elif name == 'Sequential': s += ['nn.Sequential( # Sequential'] s += lua_recursive_source(m) s += [')'] elif name == 'ConcatTable': s += ['LambdaMap(lambda x: x, # ConcatTable'] s += lua_recursive_source(m) s += [')'] elif name == 'CAddTable': s += ['LambdaReduce(lambda x,y: x+y), # CAddTable'] elif name == 'Concat': dim = m.dimension s += ['LambdaReduce(lambda x,y,dim={}: torch.cat((x,y),dim), # Concat'.format(m.dimension)] s += lua_recursive_source(m) s += [')'] else: s += '# ' + name + ' Not Implement,\n' s = map(lambda x: '\t{}'.format(x),s) return s def simplify_source(s): s = map(lambda x: x.replace(',(1, 1),(0, 0),1,1,bias=True),#Conv2d',')'),s) s = map(lambda x: x.replace(',(0, 0),1,1,bias=True),#Conv2d',')'),s) s = map(lambda x: x.replace(',1,1,bias=True),#Conv2d',')'),s) s = map(lambda x: x.replace(',bias=True),#Conv2d',')'),s) s = map(lambda x: x.replace('),#Conv2d',')'),s) s = map(lambda x: x.replace(',1e-05,0.1,True),#BatchNorm2d',')'),s) s = map(lambda x: x.replace('),#BatchNorm2d',')'),s) s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#MaxPool2d',')'),s) s = map(lambda x: x.replace(',ceil_mode=False),#MaxPool2d',')'),s) s = map(lambda x: x.replace('),#MaxPool2d',')'),s) s = map(lambda x: x.replace(',(0, 0),ceil_mode=False),#AvgPool2d',')'),s) s = map(lambda x: x.replace(',ceil_mode=False),#AvgPool2d',')'),s) s = map(lambda x: x.replace(',bias=True)),#Linear',')), # Linear'),s) s = map(lambda x: x.replace(')),#Linear',')), # Linear'),s) s = map(lambda x: '{},\n'.format(x),s) s = map(lambda x: x[1:],s) s = reduce(lambda x,y: x+y, s) return s def torch_to_pytorch(t7_filename,outputname=None): model = load_lua(t7_filename,unknown_classes=True) if type(model).__name__=='hashable_uniq_dict': model=model.model model.gradInput = None slist = lua_recursive_source(lnn.Sequential().add(model)) s = simplify_source(slist) header = ''' import torch import torch.nn as nn import torch.legacy.nn as lnn from functools import reduce from torch.autograd import Variable class LambdaBase(nn.Sequential): def __init__(self, fn, *args): super(LambdaBase, self).__init__(*args) self.lambda_func = fn def forward_prepare(self, input): output = [] for module in self._modules.values(): output.append(module(input)) return output if output else input class Lambda(LambdaBase): def forward(self, input): return self.lambda_func(self.forward_prepare(input)) class LambdaMap(LambdaBase): def forward(self, input): return list(map(self.lambda_func,self.forward_prepare(input))) class LambdaReduce(LambdaBase): def forward(self, input): return reduce(self.lambda_func,self.forward_prepare(input)) ''' varname = t7_filename.replace('.t7','').replace('.','_').replace('-','_') s = '{}\n\n{} = {}'.format(header,varname,s[:-2]) if outputname is None: outputname=varname with open(outputname+'.py', "w") as pyfile: pyfile.write(s) n = nn.Sequential() lua_recursive_model(model,n) torch.save(n.state_dict(),outputname+'.pth') parser = argparse.ArgumentParser(description='Convert torch t7 model to pytorch') parser.add_argument('--model','-m', type=str, required=True, help='torch model file in t7 format') parser.add_argument('--output', '-o', type=str, default=None, help='output file name prefix, xxx.py xxx.pth') args = parser.parse_args() torch_to_pytorch(args.model,args.output) ``` #### File: models/models_photorealistic_nas/wct.py ```python import torch def whiten_and_color(cF,sF): cFSize = cF.size() c_mean = torch.mean(cF,1) # c x (h x w) c_mean = c_mean.unsqueeze(1).expand_as(cF) cF = cF - c_mean contentConv = torch.mm(cF,cF.t()).div(cFSize[1]-1) + torch.eye(cFSize[0]).double().cuda() c_u,c_e,c_v = torch.svd(contentConv,some=False) k_c = cFSize[0] for i in range(cFSize[0]): if c_e[i] < 0.00001: k_c = i break sFSize = sF.size() s_mean = torch.mean(sF,1) sF = sF - s_mean.unsqueeze(1).expand_as(sF) styleConv = torch.mm(sF,sF.t()).div(sFSize[1]-1) s_u,s_e,s_v = torch.svd(styleConv,some=False) k_s = sFSize[0] for i in range(sFSize[0]): if s_e[i] < 0.00001: k_s = i break c_d = (c_e[0:k_c]).pow(-0.5) step1 = torch.mm(c_v[:,0:k_c],torch.diag(c_d)) step2 = torch.mm(step1,(c_v[:,0:k_c].t())) whiten_cF = torch.mm(step2,cF) s_d = (s_e[0:k_s]).pow(0.5) targetFeature = torch.mm(torch.mm(torch.mm(s_v[:,0:k_s],torch.diag(s_d)),(s_v[:,0:k_s].t())),whiten_cF) targetFeature = targetFeature + s_mean.unsqueeze(1).expand_as(targetFeature) return targetFeature def transform(cF,sF,alpha): cF = cF.double() sF = sF.double() if len(cF.size()) == 4: cF = cF[0] if len(sF.size()) == 4: sF = sF[0] C,W,H = cF.size(0),cF.size(1),cF.size(2) _,W1,H1 = sF.size(0),sF.size(1),sF.size(2) cFView = cF.view(C,-1) sFView = sF.view(C,-1) targetFeature = whiten_and_color(cFView,sFView) targetFeature = targetFeature.view_as(cF) csF = alpha * targetFeature + (1.0 - alpha) * cF csF = csF.float().unsqueeze(0) return csF ``` #### File: 2021_timetraveler/PhotoNAS/dataset.py ```python import numpy as np import os import cv2 from torch.utils.data import Dataset from torchvision import transforms from PIL import Image Image.MAX_IMAGE_PIXELS = None from matplotlib import pyplot as plt class TransferDataset(Dataset): def __init__(self, content_dir): super(TransferDataset, self).__init__() self.content_dir = content_dir self.content_name_list = self.get_name_list(self.content_dir) self.transforms = self.transform() def get_name_list(self, name): name_list = os.listdir(name) name_list = [os.path.join(name, i) for i in name_list] np.random.shuffle(name_list) return name_list def transform(self): data_transform = transforms.Compose([ # transforms.RandomRotation(15), # transforms.RandomResizedCrop(size=512, scale=(0.5, 1.0)), # transforms.RandomHorizontalFlip(), transforms.Resize((512, 512)), transforms.ToTensor() ]) return data_transform def __len__(self): a = len(self.content_name_list) return a def __getitem__(self, item): img = Image.open(self.content_name_list[item]).convert('RGB') img_out = self.transforms(img) return img_out ``` #### File: 2021_timetraveler/PhotoNAS/test_decoder.py ```python import sys sys.path.insert(0, '/gpfs/share/home/1601210097/projects/style_transfer_aaai/stylenas/') import numpy as np import os import cv2 import torch import torch.nn as nn from matplotlib import pyplot as plt from dataset import TransferDataset from torch.utils.serialization import load_lua import argparse from torchvision import utils from torchvision import transforms from models_photorealistic_nas.VGG_with_decoder import encoder, decoder0, decoder1, decoder2, decoder3, decoder4, decoder5 def load_net(): encoder_param = load_lua('../../models_anti_multi_level_pyramid_stage_decoder_in/vgg_normalised_conv5_1.t7') net_e = encoder(encoder_param) net_d0 = decoder0() net_d0.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) net_d1 = decoder1() net_d1.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) net_d2 = decoder2() net_d2.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) net_d3 = decoder3() net_d3.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) net_d4 = decoder4() net_d4.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) net_d5 = decoder5() net_d5.load_state_dict(torch.load('./trained_models_anti_multi_level/decoder_epoch_5.pth.tar')) return net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5 def get_test_list(root_dir): test_list = os.listdir(root_dir) test_list = [os.path.join(root_dir, i) for i in test_list] return test_list def get_a_image(path): img = cv2.imread(path, cv2.IMREAD_COLOR) return img if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-g', '--gpu', default=0) parser.add_argument('-s', '--save_dir', default='./test_results') parser.add_argument('-c', '--content', default='/gpfs/share/home/1601210097/projects/style_transfer/content_images') args = parser.parse_args() if not os.path.isdir(args.save_dir): os.mkdir(args.save_dir) net_e, net_d0, net_d1, net_d2, net_d3, net_d4, net_d5 = load_net() if args.gpu is not None: net_e.cuda(), net_e.eval() net_d0.cuda(), net_d0.eval() net_d1.cuda(), net_d1.eval() net_d2.cuda(), net_d2.eval() net_d3.cuda(), net_d3.eval() net_d4.cuda(), net_d4.eval() net_d5.cuda(), net_d5.eval() test_img_list = get_test_list(args.content) for i, img_path in enumerate(test_img_list): print('----- testing img %d -------' % i) img_save_in = get_a_image(img_path) img_save_in = cv2.resize(img_save_in, (512, 512), cv2.INTER_AREA) img = transforms.ToTensor()(img_save_in) img = img.unsqueeze(0) if args.gpu is not None: img = img.cuda() features = list(net_e(img)) features[0] = net_d0(*features) features[0] = net_d1(*features) features[0] = net_d2(*features) features[0] = net_d3(*features) features[0] = net_d4(*features) features[0] = net_d5(*features) out = features[0].cpu().data.float() utils.save_image(out, os.path.join(args.save_dir, 'comp_%d.jpg' % i)) out = cv2.imread(os.path.join(args.save_dir, 'comp_%d.jpg' % i)) out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB) out_compare = np.concatenate((img_save_in, out), 1) cv2.imwrite(os.path.join(args.save_dir, 'comp_%d.jpg' % i), out_compare) ``` #### File: jjunhyub/2021_timetraveler/style_nas.py ```python import os import numpy import random import collections import multiprocessing as mp DIM = 32 class Model(object): def __init__(self): self.dim = DIM self.path = None self.arch = None self.arch_str = None self.loss_r = None self.loss_p = None self.loss_m = None self.accuracy = None def make_dir(self): os.system('cp -r ./configs/photorealistic_model_nas ./configs/photorealistic_model_nas_%s' % self.arch_str) self.path = './configs/photorealistic_model_nas_%s' % self.arch_str def train(self): # This command is used to allocate computing resource and train the decoder. Please change the command ``srun -p 1080Ti --gres=gpu:1 --cpus-per-task 5 -n 1'' according to settings of your server cluster. os.system('srun -p 1080Ti --gres=gpu:1 --cpus-per-task 5 -n 1 python3 %s/train_decoder.py -d %s -me 2' % (self.path, self.arch_str)) def evaluate(self): # This command is used to allocate computing resource and make photorealistic style transfer. Please change the command ``srun -p 1080Ti_dbg --gres=gpu:1 --cpus-per-task 5 -n 1'' according to settings of your server cluster. os.system('srun -p 1080Ti_dbg --gres=gpu:1 --cpus-per-task 5 -n 1 python3 %s/photo_transfer.py -d %s' % (self.path, self.arch_str)) # This command is used to allocate computing resource and validate style-transferred results. Please change the command ``srun -p 1080Ti_dbg --gres=gpu:1 --cpus-per-task 5 -n 1'' according to settings of your server cluster. os.system('srun -p 1080Ti_dbg --gres=gpu:1 --cpus-per-task 5 -n 1 python3 %s/validation.py' % self.path) with open('%s/result.txt' % self.path, 'r') as f: acc = f.readline() this_arch = bin(self.arch)[2:] while len(this_arch) != DIM: this_arch = '0' + this_arch control_index = [int(i) for i in this_arch] self.loss_r = acc.split(' ')[0] self.loss_p = acc.split(' ')[1] self.loss_r = float(self.loss_r) self.loss_p = float(self.loss_p) self.loss_m = sum(control_index) / len(control_index) acc = 0.8 * self.loss_r + 0.1 * self.loss_p + 0.1 * self.loss_m return acc, self.loss_r, self.loss_p, self.loss_m def random_architecture(): return random.randint(0, 2**DIM - 1) def mutate_arch(parent_arch): position = random.randint(0, DIM - 1) child_arch = parent_arch ^ (1 << position) return child_arch if __name__ == '__main__': cycles = 200 population_size = 50 sample_size = 10 population = collections.deque() history = [] def train_val_model(i): model = Model() model.arch = random_architecture() model.arch_str = bin(model.arch)[2:] while len(model.arch_str) != DIM: model.arch_str = '0' + model.arch_str model.make_dir() model.train() model.accuracy, loss_r, loss_p, loss_m = model.evaluate() print('| acc: %.4f | loss_recon: %.4f | loss_perc: %.4f | loss_mode: %.4f |' % (model.accuracy, loss_r, loss_p, loss_m)) return model p1 = mp.Pool() res = p1.map(train_val_model, range(population_size)) p1.close() p1.join() for model in res: with open('./record.txt', 'a') as f: f.write('%s, %.4f, %.4f, %.4f, %.4f\n' % (model.arch_str, model.accuracy, model.loss_r, model.loss_p, model.loss_m)) population.append(model) history.append(model) while len(history) < cycles: childs = [] sample = [] while len(sample) < sample_size: candidate = random.choice(list(population)) sample.append(candidate) parent = min(sample, key=lambda i: i.accuracy) child = Model() child.arch = mutate_arch(parent.arch) child.arch_str = bin(child.arch)[2:] while len(child.arch_str) != DIM: child.arch_str = '0' + child.arch_str child.make_dir() child.train() child.accuracy, loss_r, loss_p, loss_m = child.evaluate() print('| acc: %.4f | loss_recon: %.4f | loss_perc: %.4f | loss_mode: %.4f |' % (child.accuracy, loss_r, loss_p, loss_m)) childs.append(child) population.append(child) history.append(child) population.popleft() with open('./record.txt', 'a') as f: f.write('%s, %.4f, %.4f, %.4f, %.4f\n' % (child.arch_str, child.accuracy, child.loss_r, child.loss_p, child.loss_m)) ```
{ "source": "Jjunxi/wintoto", "score": 3 }
#### File: wintoto/server/superspider.py ```python import time import json import datetime import requests from urllib.parse import urlencode import re from bs4 import BeautifulSoup from requests.exceptions import ConnectionError import threading import queue NUMBER_THREAD = 50 all_lucks = [] lock = threading.RLock() q = queue.Queue() index_url = 'http://www.singaporepools.com.sg/DataFileArchive/Lottery/Output/toto_result_draw_list_en.html' detail_url = 'http://www.singaporepools.com.sg/en/product/sr/Pages/toto_results.aspx' def handle_detail_page(q): while not q.empty(): item = q.get() detail = get_page_detail(item[0]) if detail: flag = parse_page_detail(detail) if not flag: print('Fail:{}'.format(item[1])) q.put(item) else: # print(item[1]) q.task_done() def get_page_index(): val = datetime.datetime.now().strftime("%Yy%mm%dd%Hh%Mm") data = {'v': val} params = urlencode(data) url = index_url + '?' + params response = requests.get(url) if response.status_code == 200: return response.text def parse_page_index(html): pattern = re.compile("queryString='(.*?)' value=.*?'True'>(.*?)</option>", re.S) items = re.findall(pattern, html) print(len(items)) for item in items: yield item def get_page_detail(param): url = detail_url + '?' + param try: response = requests.get(url) if response.status_code == 200: return response.text except ConnectionError: print('connection') return None def get_text(soup, tag, class_name): ele = soup.find(tag, class_=class_name) if ele: return ele.text else: print('fail parse') return None def parse_page_detail(html): soup = BeautifulSoup(html, 'html.parser') lucks = [] for i in range(6): luck = get_text(soup, 'td', 'win'+str(i+1)) if luck: lucks.append(int(luck)) else: return False additional = get_text(soup, 'td', 'additional') if additional: lucks.append(int(additional)) else: return False print(lucks) global all_lucks with lock: all_lucks.append(lucks) with open('lucks.txt', 'w') as outfile: json.dump(all_lucks, outfile) outfile.close() return True def main(): threads = [] text = get_page_index() for item in parse_page_index(text): q.put(item) # th = threading.Thread(target=handle_detail_page, args=(item[0], item[1], )) # th.setDaemon(False) # threads.append(th) # th.start() # here sleep is must time.sleep(0.1) # the number of thread cannot be small for i in range(NUMBER_THREAD): th = threading.Thread(target=handle_detail_page, args=(q, )) # th.setDaemon(True) threads.append(th) th.start() # q.join() for th in threads: th.join() print(len(all_lucks)) if __name__ == '__main__': # start = datetime.datetime.now() main() # end = datetime.datetime.now() # print(end-start) ```
{ "source": "JJuOn/Few-shot_Class_Incremental_Learning", "score": 2 }
#### File: Few-shot_Class_Incremental_Learning/eval/util.py ```python import torch import time import numpy as np import io import base64 from PIL import Image import scipy class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def mean_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * t._ppf((1+confidence)/2., n-1) return m, h def normalize(x): norm = x.pow(2).sum(1, keepdim=True).pow(1. / 2) return x.div(norm) def image_formatter(im): im = ((im / np.max(im, axis=(1,2), keepdims=True)) * 255).astype('uint8').transpose((1,2,0)) im = Image.fromarray(im) rawBytes = io.BytesIO() im.save(rawBytes, "PNG") # TODO: why this is required here ? rawBytes.seek(0) # return to the start of the file decoded = base64.b64encode(rawBytes.read()).decode() return f'<img src="data:image/jpeg;base64,{decoded}">' def freeze_backbone_weights(backbone, opt, epoch, exclude=['classifier.transform']): if opt.freeze_backbone_at == epoch: print("Freezing the backbone.") for name, param in backbone.named_parameters(): param.requires_grad = False if any(map(lambda s: name.startswith(s), exclude)): # why not; name in exclude: print("Not frozen: ", name) param.requires_grad = True def NN(support, support_ys, query): """nearest classifier""" support = np.expand_dims(support.transpose(), 0) query = np.expand_dims(query, 2) diff = np.multiply(query - support, query - support) distance = diff.sum(1) min_idx = np.argmin(distance, axis=1) pred = [support_ys[idx] for idx in min_idx] return pred def Cosine(support, support_ys, query): """Cosine classifier""" support_norm = np.linalg.norm(support, axis=1, keepdims=True) support = support / support_norm query_norm = np.linalg.norm(query, axis=1, keepdims=True) query = query / query_norm cosine_distance = query @ support.transpose() max_idx = np.argmax(cosine_distance, axis=1) pred = [support_ys[idx] for idx in max_idx] return pred def get_optim(net, opt): if opt.adam: optimizer = torch.optim.Adam(net.parameters(), lr=opt.learning_rate, weight_decay=0.0005) else: optimizer = torch.optim.SGD(net.parameters(), lr=opt.learning_rate, momentum=opt.momentum, weight_decay=opt.weight_decay) return optimizer def get_vocab(loaders): vocabs = [] for loader in loaders: label2human = loader.dataset.label2human vocab = [name for name in label2human if name != ''] vocabs.append(vocab) return vocabs def get_vocabs(base_loader=None, novel_loader=None, query_ys=None): vocab_all = [] vocab_base = None if base_loader is not None: label2human_base = base_loader.dataset.label2human vocab_base = [name for name in label2human_base if name != ''] vocab_all += vocab_base vocab_novel, orig2id = None, None if novel_loader is not None: novel_ids = np.sort(np.unique(query_ys)) label2human_novel = novel_loader.dataset.label2human vocab_novel = [label2human_novel[i] for i in novel_ids] orig2id = dict(zip(novel_ids, len(vocab_base) + np.arange(len(novel_ids)))) vocab_all += vocab_novel return vocab_base, vocab_all, vocab_novel, orig2id def drop_a_dim(data): #TODO why do we need this in the first place? support_xs, support_ys, query_xs, query_ys = data batch_size, _, height, width, channel = support_xs.size() support_xs = support_xs.view(-1, height, width, channel) query_xs = query_xs.view(-1, height, width, channel) support_ys = support_ys.view(-1).detach().numpy() # TODO query_ys = query_ys.view(-1).detach().numpy() return (support_xs, support_ys, query_xs, query_ys) def get_batch_cycle(meta_trainloader_it, meta_trainloader): try: data = next(meta_trainloader_it) except StopIteration: meta_trainloader_it = iter(meta_trainloader) data = next(meta_trainloader_it) return data def log_episode(novel_labels, vocab_novel, epoch, novel_acc, base_acc, running_base, running_novel): avg_score = (novel_acc + base_acc) / 2 running_avg = (running_base + running_novel) / 2 print('\n{:25} {:}\n' '{:25} {:}\n' '{:25} {:}\n' '{:25} {:.4f}\n' '{:25} {:.4f}\n' '{:25} {:.4f}\n' '{:25} {:.4f}\n' '{:25} {:.4f}\n' '{:25} {:.4f}\n'.format("Classes:", novel_labels, "Labels:", vocab_novel, "Fine-tuning epochs:", epoch-1, "Novel acc:", novel_acc, "Base acc:", base_acc, "Average:", avg_score, "Runnning Base Avg:", running_base, "Running Novel Avg:", running_novel, "Running Average:", running_avg, ), flush=True) def validate(val_loader, model, criterion, opt): """One epoch validation""" batch_time = AverageMeter() losses = AverageMeter() top1 = AverageMeter() top5 = AverageMeter() # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for idx, (input, target, _) in enumerate(val_loader): input = input.float() if torch.cuda.is_available(): input = input.cuda() target = target.cuda().long() # compute output output = model(input) if opt.dataset == "tieredImageNet" and opt.augment_pretrain_wtrainb: output = output[:,:200] loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), input.size(0)) top1.update(acc1[0], input.size(0)) top5.update(acc5[0], input.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() if idx % opt.print_freq == 0: print('Test: [{0}/{1}]\t' 'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t' 'Loss {loss.val:.4f} ({loss.avg:.4f})\t' 'Acc@1 {top1.val:.3f} ({top1.avg:.3f})\t' 'Acc@5 {top5.val:.3f} ({top5.avg:.3f})'.format( idx, len(val_loader), batch_time=batch_time, loss=losses, top1=top1, top5=top5)) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}' .format(top1=top1, top5=top5)) return top1.avg, top5.avg, losses.avg ```
{ "source": "jjuppe/Hybrid-Genetic-Search-with-Adaptive-Diversity-Control", "score": 4 }
#### File: jjuppe/Hybrid-Genetic-Search-with-Adaptive-Diversity-Control/tools.py ```python import numpy as np def get_rank_array(arr, type="asc"): """ This helper function returns an array indicating the rank of the value at each position Args: arr: NumpyArray type: asc or desc """ length_array = len(arr) if type == "asc": sort_key = arr.argsort() else: sort_key = (-arr).argsort() rank_array = [True] * length_array for i in range(length_array): # get the position of the value in the original array that is at rank i val_pos = sort_key[i] # set the rank i at position val_pos rank_array[val_pos] = i return rank_array def distance(start, stop): """ Basic distance function for euclidean distance Args: start: VRPNode as start stop: VRPNode as stop Returns: euclidean distance """ x_dist = np.subtract(start.x, stop.x) y_dist = np.subtract(start.y, stop.y) x_dist_square = np.square(x_dist) y_dist_square = np.square(y_dist) return np.sqrt(np.add(x_dist_square, y_dist_square)) def normalized_hamming_distance(instance1, instance2): """ Annotation: The paper computes the difference based on the depot and service chromosome. As we simplified the problem to cut the time-window constraint and therefore only performed it on the depot chrom. Args: instance1: object of type instance instance2: object of type instance Returns: """ depot_chromosome1 = instance1.depot_chromosome depot_chromosome2 = instance2.depot_chromosome n = instance1.vrp_data.nr_customers # get sum of equal depot_allocation of customers sum_val = 0 for key in depot_chromosome1: if depot_chromosome1[key] != depot_chromosome2[key]: sum_val += 1 return sum_val / n def get_hemming_distance_matrix(merged_population): """ Small helper function to get the normalized hemming distance Args: merged_population: merged population of instances of type "individual" Returns: distance matrix of all individuals contained """ dist_matrix = [] for indiv1 in merged_population: dist_arr = [normalized_hamming_distance(indiv1, indiv2) for indiv2 in merged_population] dist_matrix.append(dist_arr) return dist_matrix def remove_column(matrix, i): """ remove all column entries at position i """ for row in matrix: try: del row[i] except IndexError: print(None) raise IndexError("blaaaa") class Queue: """ Helper class for the Split algorithm This class implements a double-ended queue and some operations that are necessary for performing the Split algorithm """ def __init__(self): self.queue = list() def pop_front(self): self.queue.__delitem__(0) def pop_back(self): self.queue.pop() def front(self): return self.queue[0] def front2(self): return self.queue[1] def back(self): return self.queue[-1] def push_back(self, t): self.queue.append(t) if __name__ == "__main__": # TODO Test diversity population array print(None) ```
{ "source": "jjurm/bonedoctor", "score": 3 }
#### File: python/abnormality_classifier/train_model.py ```python from keras.applications.densenet import DenseNet169 from keras.layers import Dense, Flatten from keras.models import Sequential from keras.callbacks import ModelCheckpoint import numpy # load data print('loading data') training_images = numpy.load('training_images') training_labels = numpy.load('training_labels') validation_images = numpy.load('validation_images') validation_labels = numpy.load('validation_labels') # build model and initialise with imagenet pretrained weights print('building model and initialising weights') densenet = DenseNet169(include_top=False, weights=None, input_tensor=None, input_shape=(320,320,3), pooling=None, classes=False) densenet.load_weights('densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5') model = Sequential() model.add(densenet) model.add(Flatten()) model.add(Dense(1, activation='sigmoid')) # loss function normal_fraction = abnormal_fraction = def weighted_binary_crossentropy(y_true, y_pred): return - normal_fraction * y_true * math.log(y_pred) - abnormal_fraction * (1 - y_true) * math.log(1 - y_pred) # compile model print('compiling model') model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) # set checkpoints print('setting checkpoints') filepath="weights-{epoch:02d}-{val_acc:.2f}.hdf5" checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=False) callbacks_list = [checkpoint] # fit model and evaluate on validation dataset print('fitting model') model.fit(x=training_images, y=training_labels, validation_data=(validation_images, validation_labels), callbacks=callbacks_list, epochs=3, batch_size=8) ```
{ "source": "jjurm/py-lcd", "score": 3 }
#### File: jjurm/py-lcd/CharLCD.py ```python from time import sleep class CharLCD: MODE_COMMAND = 0 MODE_DATA = 1 LOW = 0 HIGH = 1 # commands CMD_CLEARDISPLAY = 0x01 CMD_RETURNHOME = 0x02 CMD_ENTRYMODESET = 0x04 CMD_DISPLAYCONTROL = 0x08 CMD_CURSORSHIFT = 0x10 CMD_FUNCTIONSET = 0x20 CMD_SETCGRAMADDR = 0x40 CMD_SETDDRAMADDR = 0x80 # Entry mode SHIFTED_TRUE = 1 SHIFTED_FALSE = 0 CURSORMOVEMENT_INCREASE = 1 CURSORMOVEMENT_DECREASE = 0 # Display control BLINKING_ON = 1 BLINKING_OFF = 0 CURSOR_ON = 1 CURSOR_OFF = 0 DISPLAY_ON = 1 DISPLAY_OFF = 0 # Cursor shift SHIFTDIRECTION_RIGHT = 1 SHIFTDIRECTION_LEFT = 0 SHIFT_DISPLAYSHIFT = 1 SHIFT_CURSORMOVE = 0 # Function set DOTSIZE_5x10DOTS = 1 # or 5x11 DOTSIZE_5x7DOTS = 0 # or 5x8 MULTILINE_2LINE = 1 MULTILINE_1LINE = 0 BITMODE_8BIT = 1 BITMODE_4BIT = 0 def __init__(self, pin_rs=25, pin_e=24, pins_db=[12, 16, 20, 21], pin_backlight=None, cols=16, rows=2, dotsize=None): # === Default configuration === # Entry mode self.shifted = self.SHIFTED_FALSE self.cursorMovement = self.CURSORMOVEMENT_INCREASE # Display control self.blinking = self.BLINKING_OFF self.cursor = self.CURSOR_OFF self.display = self.DISPLAY_ON # Function set self.dotsize = self.DOTSIZE_5x7DOTS self.multiline = self.MULTILINE_1LINE self.bitmode = self.BITMODE_8BIT # === Arguments === self.pin_rs = pin_rs self.pin_e = pin_e self.pins_db = pins_db if len(self.pins_db) < 8: self.bitmode = self.BITMODE_4BIT self.cols = cols self.rows = rows if dotsize == None: dotsize = self.DOTSIZE_5x7DOTS self.dotsize = dotsize self.multiline = (self.MULTILINE_2LINE if rows >= 2 else self.MULTILINE_1LINE) # === GPIO === import RPi.GPIO as GPIO self.GPIO = GPIO self.GPIO.setmode(self.GPIO.BCM) self.GPIO.setwarnings(False) self.GPIO.setup(self.pin_e, self.GPIO.OUT) self.GPIO.setup(self.pin_rs, self.GPIO.OUT) pins = 4 if self.bitmode == self.BITMODE_4BIT else 8 for i in range(pins): self.GPIO.setup(self.pins_db[-pins + i], self.GPIO.OUT) self.GPIO.output(self.pin_e, self.LOW) # Backlight pin self.pin_backlight = pin_backlight if self.pin_backlight is not None: self.GPIO.setup(self.pin_backlight, self.GPIO.OUT) self.GPIO.output(self.pin_backlight, self.LOW) # === Inicialization === if self.bitmode == self.BITMODE_8BIT: # 8bit mode # initialisation sequence of 3 function set commands self.pushFunctionSet() self.msleep(4.5) # wait > 4.1ms # second attempt self.pushFunctionSet() self.usleep(150) # wait > 100us # third attempt self.pushFunctionSet() else: # 4bit mode # initialisation starts in 8bit mode self.write4bits(0x03) self.msleep(4.5) # wait > 4.1ms # second attempt self.write4bits(0x03) self.usleep(150) # wait > 100us # third attempt self.write4bits(0x03) # proceed to 4bit communication self.write4bits(0x02) # finally start configuration self.pushFunctionSet() self.pushDisplayControl() self.clear() self.pushEntryMode() def toRange(self, val, minimum, maximum): ''' Ensures that the value will be in the specified range ''' if val > maximum: val = maximum if val < minimum: val = minimum return val def msleep(self, milliseconds): ''' Sleeps for specified number of milliseconds ''' sleep(milliseconds / float(1000)) def usleep(self, microseconds): ''' Sleeps for specified number of microseconds ''' sleep(microseconds / float(1000000)) def pulseEnable(self): ''' Makes standard short pulse on Enable pin ''' self.GPIO.output(self.pin_e, False) self.usleep(10) # enable pulse must be > 450ns self.GPIO.output(self.pin_e, True) self.usleep(10) # enable pulse must be > 450ns self.GPIO.output(self.pin_e, False) self.usleep(100) # commands need > 37us to settle def writeBits(self, bits, value): ''' Writes specific number of bits of value and makes pulse ''' for i in range(bits): self.GPIO.output(self.pins_db[-bits + i], (value >> i) & 0x01) self.pulseEnable() def write4bits(self, value): ''' Writes last 4 bits of value and makes pulse ''' self.writeBits(4, value) def write8bits(self, value): ''' Writes last 8 bits of value and makes pulse ''' self.writeBits(8, value) def send(self, value, mode): ''' Writes value with given mode, auto 4/8-bit selection ''' self.GPIO.output(self.pin_rs, mode) if self.bitmode == self.BITMODE_8BIT: self.write8bits(value & 0xFF) else: self.write4bits((value >> 4) & 0xF) self.write4bits(value & 0xF) def command(self, value): ''' Sends value as command ''' self.send(value, self.MODE_COMMAND) def data(self, value): ''' Sends value as data ''' self.send(value, self.MODE_DATA) def pushEntryMode(self): self.command(self.CMD_ENTRYMODESET | (0x01 * self.shifted) | (0x02 * self.cursorMovement) ) def pushDisplayControl(self): self.command(self.CMD_DISPLAYCONTROL | (0x01 * self.blinking) | (0x02 * self.cursor) | (0x04 * self.display) ) def pushFunctionSet(self): self.command(self.CMD_FUNCTIONSET | (0x04 * self.dotsize) | (0x08 * self.multiline) | (0x10 * self.bitmode) ) def clear(self): ''' Clears display (and returns cursor home) ''' self.command(self.CMD_CLEARDISPLAY) def home(self): ''' Returns cursor home ''' self.command(self.CMD_RETURNHOME) def close(self, clear=False): if clear: self.clear() self.GPIO.cleanup() def moveCursor(self, col=0, row=0): ''' Moves cursor to specified position ''' col = self.toRange(col, 0, self.cols - 1) row = self.toRange(row, 0, self.rows - 1) offsets = [0x00, 0x40, 0x00 + self.cols, 0x40 + self.cols] self.command(self.CMD_SETDDRAMADDR | (offsets[row] + col)) def shift(self, count=1, display=True): ''' Shifts the cursor given # of times to the left (count can be negative); can also shift display (default) ''' if count > 0: direction = self.SHIFTDIRECTION_LEFT elif count < 0: direction = self.SHIFTDIRECTION_RIGHT else: return count = abs(count) for i in range(count): self.command(self.CMD_CURSORSHIFT | (0x04 * direction) | (0x08 * (self.SHIFT_DISPLAYSHIFT if display else self.SHIFT_CURSORMOVE)) ) def setShifted(self, shifted): ''' When enabled, display will shift after each data operation ''' self.shifted = bool(shifted) self.pushEntryMode() def setCursorMovement(self, cursorMovement): ''' Set direction to move cursor after each data operation ''' if cursorMovement == -1: self.cursorMovement = cursorMovement else: self.cursorMovement = bool(cursorMovement) self.pushEntryMode() def setBlinking(self, blinking): ''' Turns blinking cursor on/off ''' self.blinking = bool(blinking) self.pushDisplayControl() def setCursor(self, cursor): ''' Turns cursor pattern on/off ''' self.cursor = bool(cursor) self.pushDisplayControl() def setDisplay(self, display): ''' Turns display on/off ''' self.display = bool(display) self.pushDisplayControl() def createChar(self, addr, bytemap): ''' Creates character at given address (0-7) ''' addr &= 0x7 self.command(self.CMD_SETCGRAMADDR | (addr << 3)) for i in range(8): if i < len(bytemap): self.data(bytemap[i]) else: self.data(0x00) def setBackLight(self, on): if self.pin_backlight is not None: self.GPIO.output(self.pin_backlight, on) def write(self, string): ''' Writes string char by char ''' for char in string: self.data(ord(char)) def wline(self, line, string=""): ''' Writes string to specified line (clears whole line) ''' string = string.ljust(self.cols) self.moveCursor(0, line) self.write(string) ```
{ "source": "jjur/nbpickup-client-python", "score": 2 }
#### File: nbpickup/EventHandlers/autosave_gradebook.py ```python import logging from watchdog.events import FileSystemEventHandler # Setting up the logging logger = logging.getLogger(__name__) log_file = logging.FileHandler("nbpickup_autosaving.log") log_console = logging.StreamHandler() log_file.setLevel(logging.DEBUG) log_console.setLevel(logging.WARNING) log_file.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) log_console.setFormatter(logging.Formatter('%(name)s - %(levelname)s - %(message)s')) logger.addHandler(log_file) logger.addHandler(log_console) logger.setLevel(logging.DEBUG) class GradebookAutoSaveEventHandler(FileSystemEventHandler): """Captures and deals with autosaving of nbpickup files""" def __init__(self, nbpickup_client, folder="/", callback=False): super().__init__() self.nbpickup = nbpickup_client self.folder = folder self.callback = callback def on_moved(self, event): """Handles both rename and move events""" super().on_moved(event) logger.warning("Gradebook Moved: from %s to %s" % (event.src_path, event.dest_path)) def on_created(self, event): super().on_created(event) what = 'directory' if event.is_directory else 'file' logger.info("Created %s: %s" % (what, event.src_path)) if not event.is_directory: path = "/".join(event.src_path.split("/")[:-1]) filename = event.src_path.split("/")[-1] self.nbpickup.upload_gradebook_file(filename, path) def on_deleted(self, event): super().on_deleted(event) logger.warning("Gradebook Deleted: %s" % (event.src_path)) def on_modified(self, event): super().on_modified(event) what = 'directory' if event.is_directory else 'file' logger.info("Modified %s: %s" % (what, event.src_path)) if not event.is_directory: path = "/".join(event.src_path.split("/")[:-1]) filename = event.src_path.split("/")[-1] self.nbpickup.upload_gradebook_file(filename, path) # Callback for updating grades if self.callback: self.callback() ```
{ "source": "JJusti/CrypTen", "score": 2 }
#### File: CrypTen/test/test_mpc.py ```python import itertools import logging import math import unittest import crypten import crypten.communicator as comm import torch import torch.nn.functional as F from crypten.common.functions.pooling import _pool2d_reshape from crypten.common.rng import generate_kbit_random_tensor, generate_random_ring_element from crypten.common.tensor_types import is_float_tensor from crypten.config import cfg from crypten.mpc import MPCTensor, ptype as Ptype from crypten.mpc.primitives import ArithmeticSharedTensor, BinarySharedTensor from test.multiprocess_test_case import MultiProcessTestCase, get_random_test_tensor class TestMPC(object): """ This class tests all functions of MPCTensor. """ def _get_random_test_tensor(self, *args, **kwargs): return get_random_test_tensor(device=self.device, *args, **kwargs) def _check(self, encrypted_tensor, reference, msg, dst=None, tolerance=None): if tolerance is None: tolerance = getattr(self, "default_tolerance", 0.05) tensor = encrypted_tensor.get_plain_text(dst=dst) if dst is not None and dst != self.rank: self.assertIsNone(tensor) return # Check sizes match self.assertTrue(tensor.size() == reference.size(), msg) self.assertTrue(is_float_tensor(reference), "reference must be a float") if tensor.device != reference.device: tensor = tensor.cpu() reference = reference.cpu() diff = (tensor - reference).abs_() norm_diff = diff.div(tensor.abs() + reference.abs()).abs_() test_passed = norm_diff.le(tolerance) + diff.le(tolerance * 0.1) test_passed = test_passed.gt(0).all().item() == 1 if not test_passed: logging.info(msg) logging.info("Result %s" % tensor) logging.info("Reference %s" % reference) logging.info("Result - Reference = %s" % (tensor - reference)) self.assertTrue(test_passed, msg=msg) def _check_tuple(self, encrypted_tuple, reference, msg, tolerance=None): self.assertTrue(isinstance(encrypted_tuple, tuple)) self.assertEqual(len(encrypted_tuple), len(reference)) for i in range(len(reference)): self._check(encrypted_tuple[i], reference[i], msg, tolerance=tolerance) def test_repr(self): a = self._get_random_test_tensor(size=(1,)) arithmetic = MPCTensor(a, ptype=Ptype.arithmetic) binary = MPCTensor(a, ptype=Ptype.binary) # Make sure these don't crash print(arithmetic) repr(arithmetic) print(binary) repr(binary) def test_from_shares(self): """Tests MPCTensor.from_shares() functionality.""" # settings for test: num_parties = int(self.world_size) size = (5, 4) def _generate_tensor(ptype): reference = self._get_random_test_tensor(size=size, is_float=False) # generate arithmetic sharing of reference tensor: if ptype == Ptype.arithmetic: zero_shares = generate_random_ring_element( (num_parties, *size), device=self.device ) zero_shares = zero_shares - zero_shares.roll(1, dims=0) shares = list(zero_shares.unbind(0)) shares[0] += reference # generate binary sharing of reference tensor: else: zero_shares = generate_kbit_random_tensor( (num_parties, *size), device=self.device ) zero_shares = zero_shares ^ zero_shares.roll(1, dims=0) shares = list(zero_shares.unbind(0)) shares[0] ^= reference # return shares and reference: return shares, reference # test both types: for ptype in [Ptype.arithmetic, Ptype.binary]: # generate shares, sync them between parties, and create tensor: shares, reference = _generate_tensor(ptype) share = comm.get().scatter(shares, 0) encrypted_tensor = MPCTensor.from_shares(share, ptype=ptype) # check resulting tensor: self.assertIsInstance(encrypted_tensor, MPCTensor) self.assertEqual(encrypted_tensor.ptype, ptype) self.assertIsInstance(encrypted_tensor._tensor, ptype.to_tensor()) decrypted_tensor = encrypted_tensor.reveal() self.assertTrue(torch.all(decrypted_tensor.eq(reference)).item()) def test_share_attr(self): """Tests share attribute getter and setter""" for is_float in (True, False): reference = self._get_random_test_tensor(is_float=is_float) encrypted_tensor = MPCTensor(reference) underlying_tensor = encrypted_tensor.share self.assertTrue( torch.equal(encrypted_tensor.share, underlying_tensor), "share getter failed", ) new_share = self._get_random_test_tensor(is_float=False) encrypted_tensor.share = new_share self.assertTrue( torch.equal(encrypted_tensor.share, new_share), "share setter failed" ) def test_encrypt_decrypt(self): """ Tests tensor encryption and decryption for both positive and negative values. """ sizes = [ (), (1,), (5,), (1, 1), (1, 5), (5, 1), (5, 5), (1, 5, 5), (5, 1, 5), (5, 5, 1), (5, 5, 5), (1, 3, 32, 32), (5, 3, 32, 32), ] for size in sizes: # encryption and decryption without source: reference = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(reference) self._check(encrypted_tensor, reference, "en/decryption failed") for dst in range(self.world_size): self._check( encrypted_tensor, reference, "en/decryption failed", dst=dst ) # test creation via new() function: encrypted_tensor2 = encrypted_tensor.new(reference) self.assertIsInstance( encrypted_tensor2, MPCTensor, "new() returns incorrect type" ) self._check(encrypted_tensor2, reference, "en/decryption failed") # TODO: Implement broadcast_size on GPU if self.device.type == "cuda": continue # encryption and decryption with source: for src in range(self.world_size): input_tensor = reference if src == self.rank else [] encrypted_tensor = MPCTensor(input_tensor, src=src, broadcast_size=True) for dst in range(self.world_size): self._check( encrypted_tensor, reference, "en/decryption with broadcast_size failed", dst=dst, ) # MPCTensors cannot be initialized with None: with self.assertRaises(ValueError): _ = MPCTensor(None) def test_arithmetic(self): """Tests arithmetic functions on encrypted tensor.""" arithmetic_functions = ["add", "add_", "sub", "sub_", "mul", "mul_"] for func in arithmetic_functions: for tensor_type in [lambda x: x, MPCTensor]: tensor1 = self._get_random_test_tensor(is_float=True) tensor2 = self._get_random_test_tensor(is_float=True) encrypted = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) reference = getattr(tensor1, func)(tensor2) encrypted_out = getattr(encrypted, func)(encrypted2) self._check( encrypted_out, reference, "%s %s failed" % ("private" if tensor_type == MPCTensor else "public", func), ) if "_" in func: # Check in-place op worked self._check( encrypted, reference, "%s %s failed" % ("private" if tensor_type == MPCTensor else "public", func), ) else: # Check original is not modified self._check( encrypted, tensor1, "%s %s failed" % ("private" if tensor_type == MPCTensor else "public", func), ) # Check encrypted vector with encrypted scalar works. tensor1 = self._get_random_test_tensor(is_float=True) tensor2 = self._get_random_test_tensor(is_float=True, size=(1,)) encrypted1 = MPCTensor(tensor1) encrypted2 = MPCTensor(tensor2) reference = getattr(tensor1, func)(tensor2) encrypted_out = getattr(encrypted1, func)(encrypted2) self._check(encrypted_out, reference, "private %s failed" % func) tensor = self._get_random_test_tensor(is_float=True) reference = tensor * tensor encrypted = MPCTensor(tensor) encrypted_out = encrypted.square() self._check(encrypted_out, reference, "square failed") # Test radd, rsub, and rmul reference = 2 + tensor1 encrypted = MPCTensor(tensor1) encrypted_out = 2 + encrypted self._check(encrypted_out, reference, "right add failed") reference = 2 - tensor1 encrypted_out = 2 - encrypted self._check(encrypted_out, reference, "right sub failed") reference = 2 * tensor1 encrypted_out = 2 * encrypted self._check(encrypted_out, reference, "right mul failed") def test_sum(self): """Tests sum reduction on encrypted tensor.""" tensor = self._get_random_test_tensor(size=(100, 100), is_float=True) encrypted = MPCTensor(tensor) self._check(encrypted.sum(), tensor.sum(), "sum failed") for dim in [0, 1]: reference = tensor.sum(dim) encrypted_out = encrypted.sum(dim) self._check(encrypted_out, reference, "sum failed") def test_prod(self): """Tests prod reduction on encrypted tensor.""" tensor = self._get_random_test_tensor(size=(3, 3), max_value=3, is_float=False) encrypted = MPCTensor(tensor) self._check(encrypted.prod(), tensor.prod().float(), "prod failed") tensor = self._get_random_test_tensor( size=(5, 5, 5), max_value=3, is_float=False ) encrypted = MPCTensor(tensor) for dim in [0, 1, 2]: reference = tensor.prod(dim).float() encrypted_out = encrypted.prod(dim) self._check(encrypted_out, reference, "prod failed") def test_ptype(self): """Test that ptype attribute creates the correct type of encrypted tensor""" ptype_values = [crypten.mpc.arithmetic, crypten.mpc.binary] tensor_types = [ArithmeticSharedTensor, BinarySharedTensor] for i, curr_ptype in enumerate(ptype_values): tensor = self._get_random_test_tensor(is_float=False) encr_tensor = crypten.cryptensor(tensor, ptype=curr_ptype) assert isinstance(encr_tensor._tensor, tensor_types[i]), "ptype test failed" def test_div(self): """Tests division of encrypted tensor by scalar and tensor.""" for function in ["div", "div_"]: for scalar in [2, 2.0]: tensor = self._get_random_test_tensor(is_float=True) reference = tensor.float().div(scalar) encrypted_tensor = MPCTensor(tensor) encrypted_tensor = getattr(encrypted_tensor, function)(scalar) self._check(encrypted_tensor, reference, "scalar division failed") # multiply denominator by 10 to avoid dividing by small num divisor = self._get_random_test_tensor(is_float=True, ex_zero=True) * 10 reference = tensor.div(divisor) encrypted_tensor = MPCTensor(tensor) encrypted_tensor = getattr(encrypted_tensor, function)(divisor) self._check(encrypted_tensor, reference, "tensor division failed") def test_mean(self): """Tests computing means of encrypted tensors.""" tensor = self._get_random_test_tensor(size=(5, 10, 15), is_float=True) encrypted = MPCTensor(tensor) self._check(encrypted.mean(), tensor.mean(), "mean failed") for dim in [0, 1, 2]: reference = tensor.mean(dim) encrypted_out = encrypted.mean(dim) self._check(encrypted_out, reference, "mean failed") def test_var(self): """Tests computing variances of encrypted tensors.""" tensor = self._get_random_test_tensor(size=(5, 10, 15), is_float=True) encrypted = MPCTensor(tensor) self._check(encrypted.var(), tensor.var(), "var failed") for dim in [0, 1, 2]: reference = tensor.var(dim) encrypted_out = encrypted.var(dim) self._check(encrypted_out, reference, "var failed") def test_matmul(self): """Test matrix multiplication.""" for tensor_type in [lambda x: x, MPCTensor]: tensor = self._get_random_test_tensor(max_value=7, is_float=True) for width in range(2, tensor.nelement()): matrix_size = (tensor.nelement(), width) matrix = self._get_random_test_tensor( max_value=7, size=matrix_size, is_float=True ) reference = tensor.matmul(matrix) encrypted_tensor = MPCTensor(tensor) matrix = tensor_type(matrix) encrypted_tensor = encrypted_tensor.matmul(matrix) self._check( encrypted_tensor, reference, "Private-%s matrix multiplication failed" % ("private" if tensor_type == MPCTensor else "public"), ) def test_dot_ger(self): """Test dot product of vector and encrypted tensor.""" for tensor_type in [lambda x: x, MPCTensor]: tensor1 = self._get_random_test_tensor(is_float=True).squeeze() tensor2 = self._get_random_test_tensor(is_float=True).squeeze() dot_reference = tensor1.dot(tensor2) ger_reference = torch.ger(tensor1, tensor2) tensor2 = tensor_type(tensor2) # dot encrypted_tensor = MPCTensor(tensor1) encrypted_out = encrypted_tensor.dot(tensor2) self._check( encrypted_out, dot_reference, "%s dot product failed" % "private" if tensor_type == MPCTensor else "public", ) # ger encrypted_tensor = MPCTensor(tensor1) encrypted_out = encrypted_tensor.ger(tensor2) self._check( encrypted_out, ger_reference, "%s outer product failed" % "private" if tensor_type == MPCTensor else "public", ) def test_squeeze(self): tensor = self._get_random_test_tensor(is_float=True) for dim in [0, 1, 2]: # Test unsqueeze reference = tensor.unsqueeze(dim) encrypted = MPCTensor(tensor) encrypted_out = encrypted.unsqueeze(dim) self._check(encrypted_out, reference, "unsqueeze failed") # Test squeeze encrypted = MPCTensor(tensor.unsqueeze(0)) encrypted_out = encrypted.squeeze() self._check(encrypted_out, reference.squeeze(), "squeeze failed") # Check that the encrypted_out and encrypted point to the same # thing. encrypted_out[0:2] = torch.tensor( [0, 1], dtype=torch.float, device=self.device ) ref = encrypted.squeeze().get_plain_text() self._check(encrypted_out, ref, "squeeze failed") def test_transpose(self): sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 1), (5, 5), (1, 5, 5), (5, 1, 5), (5, 5, 1), (5, 5, 5), (1, 3, 32, 32), (5, 3, 32, 32), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) if len(size) == 2: # t() asserts dim == 2 reference = tensor.t() encrypted_out = encrypted_tensor.t() self._check(encrypted_out, reference, "t() failed") for dim0 in range(len(size)): for dim1 in range(len(size)): reference = tensor.transpose(dim0, dim1) encrypted_out = encrypted_tensor.transpose(dim0, dim1) self._check(encrypted_out, reference, "transpose failed") def test_conv1d_smaller_signal_one_channel(self): self._conv1d(5, 1) def test_conv1d_smaller_signal_many_channels(self): self._conv1d(5, 5) def test_conv1d_larger_signal_one_channel(self): self._conv1d(16, 1) def test_conv1d_larger_signal_many_channels(self): self._conv1d(16, 5) def _conv1d(self, signal_size, in_channels): """Test convolution of encrypted tensor with public/private tensors.""" nbatches = [1, 3] kernel_sizes = [1, 2, 3] ochannels = [1, 3, 6] paddings = [0, 1] strides = [1, 2] dilations = [1, 2] groupings = [1, 2] for func_name in ["conv1d", "conv_transpose1d"]: for kernel_type in [lambda x: x, MPCTensor]: for ( batches, kernel_size, out_channels, padding, stride, dilation, groups, ) in itertools.product( nbatches, kernel_sizes, ochannels, paddings, strides, dilations, groupings, ): # group convolution is not supported on GPU if self.device.type == "cuda" and groups > 1: continue input_size = (batches, in_channels * groups, signal_size) signal = self._get_random_test_tensor( size=input_size, is_float=True ) if func_name == "conv1d": k_size = (out_channels * groups, in_channels, kernel_size) else: k_size = (in_channels * groups, out_channels, kernel_size) kernel = self._get_random_test_tensor(size=k_size, is_float=True) reference = getattr(F, func_name)( signal, kernel, padding=padding, stride=stride, dilation=dilation, groups=groups, ) encrypted_signal = MPCTensor(signal) encrypted_kernel = kernel_type(kernel) encrypted_conv = getattr(encrypted_signal, func_name)( encrypted_kernel, padding=padding, stride=stride, dilation=dilation, groups=groups, ) self._check(encrypted_conv, reference, f"{func_name} failed") def test_conv2d_square_image_one_channel(self): self._conv2d((5, 5), 1, "conv2d") def test_conv_transpose2d_square_image_one_channel(self): self._conv2d((5, 5), 1, "conv_transpose2d") def test_conv2d_square_image_many_channels(self): self._conv2d((5, 5), 5, "conv2d") def test_conv_transpose2d_square_image_many_channels(self): self._conv2d((5, 5), 5, "conv_transpose2d") def test_conv2d_rectangular_image_one_channel(self): self._conv2d((16, 7), 1, "conv2d") def test_conv_transpose2d_rectangular_image_one_channel(self): self._conv2d((16, 7), 1, "conv_transpose2d") def test_conv2d_rectangular_image_many_channels(self): self._conv2d((16, 7), 5, "conv2d") def test_conv_transpose2d_rectangular_image_many_channels(self): self._conv2d((16, 7), 5, "conv_transpose2d") def _conv2d(self, image_size, in_channels, func_name): """Test convolution of encrypted tensor with public/private tensors.""" nbatches = [1, 3] kernel_sizes = [(1, 1), (2, 2), (2, 3)] ochannels = [1, 3] paddings = [0, 1, (0, 1)] strides = [1, 2, (1, 2)] dilations = [1, 2] groupings = [1, 2] assert func_name in [ "conv2d", "conv_transpose2d", ], f"Invalid func_name: {func_name}" for kernel_type in [lambda x: x, MPCTensor]: for ( batches, kernel_size, out_channels, padding, stride, dilation, groups, ) in itertools.product( nbatches, kernel_sizes, ochannels, paddings, strides, dilations, groupings, ): # group convolution is not supported on GPU if self.device.type == "cuda" and groups > 1: continue # sample input: input_size = (batches, in_channels * groups, *image_size) input = self._get_random_test_tensor(size=input_size, is_float=True) # sample filtering kernel: if func_name == "conv2d": k_size = (out_channels * groups, in_channels, *kernel_size) else: k_size = (in_channels * groups, out_channels, *kernel_size) kernel = self._get_random_test_tensor(size=k_size, is_float=True) # perform filtering: encr_matrix = MPCTensor(input) encr_kernel = kernel_type(kernel) encr_conv = getattr(encr_matrix, func_name)( encr_kernel, padding=padding, stride=stride, dilation=dilation, groups=groups, ) # check that result is correct: reference = getattr(F, func_name)( input, kernel, padding=padding, stride=stride, dilation=dilation, groups=groups, ) self._check(encr_conv, reference, "%s failed" % func_name) def test_max_pooling(self): """Test max_pool of encrypted tensor.""" def _assert_index_match( indices, encrypted_indices, matrix_size, kernel_size, **kwargs, ): # Assert each kernel is one-hot self.assertTrue( encrypted_indices.get_plain_text() .sum(-1) .sum(-1) .eq(torch.ones_like(indices)) .all(), "Encrypted indices are not one-hot", ) # Populate tensor with kernel indices arange_size = matrix_size[-2:] index_values = torch.arange(arange_size.numel(), device=indices.device) index_values = index_values.view(arange_size) index_values = index_values.expand(matrix_size) # Ensure encrypted indices are correct index_mask, size = _pool2d_reshape(index_values, kernel_size, **kwargs) index_mask = index_mask.view(*size, kernel_size, kernel_size) crypten_indices = encrypted_indices.mul(index_mask).sum(-1).sum(-1) self._check( crypten_indices, indices.float(), "max_pool2d indexing is incorrect" ) dilations = [1, 2] for width in range(2, 5): for kernel_size in range(1, width): matrix_size = (1, 4, 5, width) matrix = self._get_random_test_tensor(size=matrix_size, is_float=True) strides = list(range(1, kernel_size + 1)) + [(1, kernel_size)] paddings = range(kernel_size // 2 + 1) for ( stride, padding, dilation, ceil_mode, return_indices, ) in itertools.product( strides, paddings, dilations, [False, True], [False, True], ): kwargs = { "stride": stride, "padding": padding, "dilation": dilation, "ceil_mode": ceil_mode, "return_indices": return_indices, } # Skip kernels that lead to 0-size outputs if (kernel_size - 1) * dilation > width - 1: continue reference = F.max_pool2d(matrix, kernel_size, **kwargs) encrypted_matrix = MPCTensor(matrix) encrypted_pool = encrypted_matrix.max_pool2d(kernel_size, **kwargs) if return_indices: indices = reference[1] encrypted_indices = encrypted_pool[1] kwargs.pop("return_indices") _assert_index_match( indices, encrypted_indices, matrix.size(), kernel_size, **kwargs, ) encrypted_pool = encrypted_pool[0] reference = reference[0] self._check(encrypted_pool, reference, "max_pool2d failed") def test_avg_pooling(self): """Test avg_pool of encrypted tensor.""" for width in range(2, 5): for kernel_size in range(1, width): matrix_size = (1, 4, 5, width) matrix = self._get_random_test_tensor(size=matrix_size, is_float=True) strides = list(range(1, kernel_size + 1)) + [(1, kernel_size)] paddings = range(kernel_size // 2 + 1) for stride, padding in itertools.product(strides, paddings): kwargs = {"stride": stride, "padding": padding} reference = F.avg_pool2d(matrix, kernel_size, **kwargs) encrypted_matrix = MPCTensor(matrix) encrypted_pool = encrypted_matrix.avg_pool2d(kernel_size, **kwargs) self._check(encrypted_pool, reference, "avg_pool2d failed") def test_adaptive_pooling(self): """test adaptive_avg_pool2d and adaptive_max_pool2d""" for in_size in range(1, 11): for out_size in list(range(1, in_size + 1)) + [None]: input_size = (1, in_size, in_size) output_size = (out_size, out_size) tensor = self._get_random_test_tensor( size=input_size, is_float=True ).unsqueeze(0) encrypted = MPCTensor(tensor) # Test adaptive_avg_pool2d reference = F.adaptive_avg_pool2d(tensor, output_size) encrypted_out = encrypted.adaptive_avg_pool2d(output_size) self._check(encrypted_out, reference, "adaptive_avg_pool2d failed") # Test adapvite_max_pool2d for return_indices in [False, True]: reference = F.adaptive_max_pool2d( tensor, output_size, return_indices=return_indices ) encrypted_out = encrypted.adaptive_max_pool2d( output_size, return_indices=return_indices ) if return_indices: encrypted_out = encrypted_out[0] reference = reference[0] self._check(encrypted_out, reference, "adaptive_max_pool2d failed") def test_take(self): """Tests take function on encrypted tensor""" tensor_size = [5, 5, 5, 5] index = torch.tensor( [[[1, 2], [3, 4]], [[4, 2], [1, 3]]], dtype=torch.long, device=self.device ) tensor = self._get_random_test_tensor(size=tensor_size, is_float=True) # Test when dimension!=None for dimension in range(0, 4): ndarray = tensor.cpu().numpy() reference = torch.from_numpy(ndarray.take(index.cpu(), dimension)) encrypted_tensor = MPCTensor(tensor) encrypted_out = encrypted_tensor.take(index, dimension) self._check(encrypted_out, reference, "take function failed: dimension set") # Test when dimension is default (i.e. None) sizes = [(15,), (5, 10), (15, 10, 5)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) take_indices = [[0], [10], [0, 5, 10]] for indices in take_indices: indices = torch.tensor(indices, device=self.device) self._check( encrypted_tensor.take(indices), tensor.take(indices), f"take failed with indices {indices}", ) def test_neg(self): """Test negative on encrypted tensor.""" for width in range(2, 5): matrix_size = (5, width) matrix = self._get_random_test_tensor(size=matrix_size, is_float=True) encrypted_matrix = MPCTensor(matrix) self._check(-encrypted_matrix, -matrix, "__neg__ failed") for func_name in ["neg", "neg_"]: reference = getattr(matrix, func_name)() encrypted_output = getattr(encrypted_matrix, func_name)() self._check(encrypted_output, reference, "%s failed" % func_name) def test_relu(self): """Test relu on encrypted tensor.""" for width in range(2, 5): matrix_size = (5, width) matrix = self._get_random_test_tensor(size=matrix_size, is_float=True) # Generate some negative values matrix2 = self._get_random_test_tensor(size=matrix_size, is_float=True) matrix = matrix - matrix2 encrypted_matrix = MPCTensor(matrix) reference = F.relu_(matrix) encrypted_matrix = encrypted_matrix.relu() self._check(encrypted_matrix, reference, "relu failed") def test_comparators(self): """Test comparators (>, >=, <, <=, ==, !=)""" for comp in ["gt", "ge", "lt", "le", "eq", "ne"]: for tensor_type in [lambda x: x, MPCTensor]: tensor1 = self._get_random_test_tensor(is_float=True) tensor2 = self._get_random_test_tensor(is_float=True) encrypted_tensor1 = MPCTensor(tensor1) encrypted_tensor2 = tensor_type(tensor2) reference = getattr(tensor1, comp)(tensor2).float() encrypted_out = getattr(encrypted_tensor1, comp)(encrypted_tensor2) self._check(encrypted_out, reference, "%s comparator failed" % comp) # Check deterministic example to guarantee all combinations tensor1 = torch.tensor([2.0, 3.0, 1.0, 2.0, 2.0]) tensor2 = torch.tensor([2.0, 2.0, 2.0, 3.0, 1.0]) encrypted_tensor1 = MPCTensor(tensor1) encrypted_tensor2 = tensor_type(tensor2) reference = getattr(tensor1, comp)(tensor2).float() encrypted_out = getattr(encrypted_tensor1, comp)(encrypted_tensor2) self._check(encrypted_out, reference, "%s comparator failed" % comp) def test_max_min_pairwise(self): """Tests max and min for the deterministic constant (n^2) algorithm""" self._max_min("pairwise") def test_max_min_log_reduction(self): """Tests max and min for log reduction algorithm""" self._max_min("log_reduction") def test_max_min_double_log_reduction(self): """Tests max and min for double log reduction algorithm""" self._max_min("double_log_reduction") def test_max_min_accelerated_cascade(self): """Tests max and min for accelerated cascading algorithm""" self._max_min("accelerated_cascade") def _max_min(self, method): """Test max and min for the specified algorithm""" sizes = [ (), (1,), (5,), (1, 1), (1, 5), (5, 5), (1, 1, 1), (5, 5, 5), (1, 1, 1, 1), (5, 5, 5, 5), ] test_cases = [ torch.tensor( [[1, 1, 2, 1, 4, 1, 3, 4]], dtype=torch.float, device=self.device ) ] + [self._get_random_test_tensor(size=size, is_float=False) for size in sizes] for tensor in test_cases: tensor = tensor.float() encrypted_tensor = MPCTensor(tensor) for comp in ["max", "min"]: reference = getattr(tensor, comp)() with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)() self._check(encrypted_out, reference, "%s reduction failed" % comp) for dim in range(tensor.dim()): for keepdim in [False, True]: reference = getattr(tensor, comp)(dim, keepdim=keepdim) # Test with one_hot = False with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)( dim, keepdim=keepdim, one_hot=False ) # Check max / min values are correct self._check( encrypted_out[0], reference[0], "%s reduction failed" % comp ) # Test argmax / argmin values are correct out_encr = encrypted_out[1] out_decr = out_encr.get_plain_text().long() argmax_ref = reference[1] # Must index into tensor since ties are broken randomly # so crypten and PyTorch can return different indices. # This checks that they index to the same value. if not keepdim: out_decr = out_decr.unsqueeze(dim) argmax_ref = argmax_ref.unsqueeze(dim) mpc_result = tensor.gather(dim, out_decr) torch_result = tensor.gather(dim, argmax_ref) self.assertTrue( (mpc_result == torch_result).all().item(), "%s reduction failed" % comp, ) # Test indices with one_hot = True with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)( dim, keepdim=keepdim, one_hot=True ) # Check argmax results val_ref = reference[0] out_encr = encrypted_out[1] out_decr = out_encr.get_plain_text() self.assertTrue((out_decr.sum(dim) == 1).all()) self.assertTrue( ( out_decr.mul(tensor).sum(dim, keepdim=keepdim) == val_ref ).all() ) def test_argmax_argmin_pairwise(self): """Tests argmax and argmin for the deterministic constant (n^2) algorithm""" self._argmax_argmin("pairwise") def test_argmax_argmin_log_reduction(self): """Tests argmax and argmin for log reduction algorithm""" self._argmax_argmin("log_reduction") def test_argmax_argmin_double_log_reduction(self): """Tests argmax and argmin for double log reduction algorithm""" self._argmax_argmin("double_log_reduction") def test_argmax_argmin_accelerated_cascade(self): """Tests max and min for accelerated cascading algorithm""" self._max_min("accelerated_cascade") def _argmax_argmin(self, method): """Test argmax and argmin for specified algorithm""" sizes = [ (), (1,), (5,), (1, 1), (1, 5), (5, 5), (1, 1, 1), (5, 5, 5), (1, 1, 1, 1), (5, 5, 5, 5), ] test_cases = [ torch.tensor( [[1, 1, 2, 1, 4, 1, 3, 4]], dtype=torch.float, device=self.device ) ] + [self._get_random_test_tensor(size=size, is_float=False) for size in sizes] for tensor in test_cases: tensor = tensor.float() encrypted_tensor = MPCTensor(tensor) for comp in ["argmax", "argmin"]: cmp = comp[3:] value = getattr(tensor, cmp)() # test with one_hot = False with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)(one_hot=False) # Must index into tensor since ties are broken randomly # so crypten and PyTorch can return different indices. # This checks that they index to the same value. decrypted_out = encrypted_out.get_plain_text() if tensor.dim() == 0: # if input is 0-d, argmax should be 0 self.assertEqual(decrypted_out, 0) else: decrypted_val = tensor.flatten()[decrypted_out.long()] self.assertTrue(decrypted_val.eq(value).all().item()) # test with one_hot = False with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)(one_hot=True) one_hot_indices = (tensor == value).float() decrypted_out = encrypted_out.get_plain_text() self.assertTrue(decrypted_out.sum() == 1) self.assertTrue(decrypted_out.mul(one_hot_indices).sum() == 1) for dim in range(tensor.dim()): for keepdim in [False, True]: # Compute one-hot argmax/min reference in plaintext values, indices = getattr(tensor, cmp)(dim, keepdim=keepdim) # test with one_hot = False with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)( dim, keepdim=keepdim, one_hot=False ) # Must index into tensor since ties are broken randomly # so crypten and PyTorch can return different indices. # This checks that they index to the same value.abs decrypted_out = encrypted_out.get_plain_text() if not keepdim: decrypted_out = decrypted_out.unsqueeze(dim) indices = indices.unsqueeze(dim) decrypted_val = tensor.gather(dim, decrypted_out.long()) reference = tensor.gather(dim, indices) self.assertTrue(decrypted_val.eq(reference).all().item()) # test with one_hot = True with cfg.temp_override({"functions.max_method": method}): encrypted_out = getattr(encrypted_tensor, comp)( dim, keepdim=keepdim, one_hot=True ) decrypted_out = encrypted_out.get_plain_text() if not keepdim: values = values.unsqueeze(dim) one_hot_indices = tensor.eq(values).float() self.assertTrue(decrypted_out.sum(dim).eq(1).all()) self.assertTrue( decrypted_out.mul(one_hot_indices).sum(dim).eq(1).all() ) def test_abs_sign(self): """Test absolute value function""" for op in ["abs", "sign"]: tensor = self._get_random_test_tensor(is_float=True) if op == "sign": # do not test on 0 since torch.tensor([0]).sign() = 0 tensor = tensor + (tensor == 0).float() encrypted_tensor = MPCTensor(tensor) reference = getattr(tensor, op)() encrypted_out = getattr(encrypted_tensor, op)() self._check(encrypted_out, reference, "%s failed" % op) def test_approximations(self): """Test appoximate functions (exp, log, sqrt, reciprocal, pos_pow)""" def test_with_inputs(func, input): encrypted_tensor = MPCTensor(input) reference = getattr(tensor, func)() encrypted_out = getattr(encrypted_tensor, func)() self._check(encrypted_out, reference, "%s failed" % func) # Test on [-10, 10] range full_range_cases = ["exp"] tensor = torch.tensor( [0.01 * i for i in range(-1000, 1001, 1)], device=self.device ) for func in full_range_cases: test_with_inputs(func, tensor) # Test on [0, 10] range tensor[tensor == 0] = 1.0 non_zero_cases = ["reciprocal"] for func in non_zero_cases: test_with_inputs(func, tensor) # Test on [0, 10] range tensor = tensor[1001:] pos_cases = ["log", "sqrt"] for func in pos_cases: test_with_inputs(func, tensor) # Test pos_pow with several exponents encrypted_tensor = MPCTensor(tensor) # Reduced the max_value so approximations have less absolute error tensor_exponent = self._get_random_test_tensor( max_value=2, size=tensor.size(), is_float=True ) exponents = [-3, -2, -1, 0, 1, 2, 3, tensor_exponent] exponents += [MPCTensor(tensor_exponent)] for p in exponents: if isinstance(p, MPCTensor): reference = tensor.pow(p.get_plain_text()) else: reference = tensor.pow(p) encrypted_out = encrypted_tensor.pos_pow(p) self._check(encrypted_out, reference, f"pos_pow failed with power {p}") def test_norm(self): """Tests p-norm""" for p in [1, 1.5, 2, 3, float("inf"), "fro"]: for dim in [None, 0, 1, 2]: tensor = self._get_random_test_tensor(size=(3, 3, 3), is_float=True) / 5 if dim is None: reference = tensor.norm(p=p) else: reference = tensor.norm(p=p, dim=dim) encrypted = MPCTensor(tensor) encrypted_out = encrypted.norm(p=p, dim=dim) self._check(encrypted_out, reference, f"{p}-norm failed", tolerance=0.5) def test_logistic(self): """Tests logistic functions (sigmoid, tanh)""" tensor = torch.tensor( [0.01 * i for i in range(-1000, 1001, 1)], device=self.device ) encrypted_tensor = MPCTensor(tensor) cases = ["sigmoid", "tanh"] for func in cases: reference = getattr(tensor, func)() encrypted_out = getattr(encrypted_tensor, func)() self._check(encrypted_out, reference, "%s failed" % func) def test_hardtanh(self): tensor = torch.arange(-10, 10, dtype=torch.float32) encrypted = MPCTensor(tensor) for minval in range(-10, 10): for maxval in range(minval, 11): reference = torch.nn.functional.hardtanh(tensor, minval, maxval) encrypted_out = encrypted.hardtanh(minval, maxval) self._check(encrypted_out, reference, "hardtanh failed") def test_inplace_warning(self): """Tests that a warning is thrown that indicates that the `inplace` kwarg is ignored when a function is called with `inplace=True` """ tensor = get_random_test_tensor(is_float=True) encrypted = MPCTensor(tensor) functions = ["dropout", "_feature_dropout"] for func in functions: warning_str = ( f"CrypTen {func} does not support inplace computation during training." ) with self.assertLogs(logger=logging.getLogger(), level="WARNING") as cm: getattr(encrypted, func)(inplace=True) self.assertTrue(f"WARNING:root:{warning_str}" in cm.output) def test_cos_sin(self): """Tests trigonometric functions (cos, sin)""" tensor = torch.tensor( [0.01 * i for i in range(-1000, 1001, 1)], device=self.device ) encrypted_tensor = MPCTensor(tensor) cases = ["cos", "sin"] for func in cases: reference = getattr(tensor, func)() encrypted_out = getattr(encrypted_tensor, func)() self._check(encrypted_out, reference, "%s failed" % func) def test_softmax(self): """Test softmax and log_softmax function""" for softmax_fn in ["softmax", "log_softmax"]: # Test 0-dim tensor: tensor = self._get_random_test_tensor(size=(), is_float=True) reference = getattr(tensor, softmax_fn)(0) encrypted_tensor = MPCTensor(tensor) encrypted_out = getattr(encrypted_tensor, softmax_fn)(0) self._check(encrypted_out, reference, "0-dim tensor %s failed" % softmax_fn) # Test all other sizes sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 1), (5, 5), (1, 5, 5), (5, 1, 5), (5, 5, 1), (5, 5, 5), (1, 5, 5, 5), (5, 5, 5, 5), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) / 5 encrypted_tensor = MPCTensor(tensor) for dim in range(tensor.dim()): reference = getattr(tensor, softmax_fn)(dim) encrypted_out = getattr(encrypted_tensor, softmax_fn)(dim) self._check(encrypted_out, reference, "%s failed" % softmax_fn) def test_get_set(self): """Tests element setting and getting by index""" for tensor_type in [lambda x: x, MPCTensor]: for size in range(1, 5): # Test __getitem__ tensor = self._get_random_test_tensor(size=(size, size), is_float=True) reference = tensor[:, 0] encrypted_tensor = MPCTensor(tensor) encrypted_out = encrypted_tensor[:, 0] self._check(encrypted_out, reference, "getitem failed") reference = tensor[0, :] encrypted_out = encrypted_tensor[0, :] self._check(encrypted_out, reference, "getitem failed") # Test __setitem__ tensor2 = self._get_random_test_tensor(size=(size,), is_float=True) reference = tensor.clone() reference[:, 0] = tensor2 encrypted_out = MPCTensor(tensor) encrypted2 = tensor_type(tensor2) encrypted_out[:, 0] = encrypted2 self._check( encrypted_out, reference, "%s setitem failed" % type(encrypted2) ) reference = tensor.clone() reference[0, :] = tensor2 encrypted_out = MPCTensor(tensor) encrypted2 = tensor_type(tensor2) encrypted_out[0, :] = encrypted2 self._check( encrypted_out, reference, "%s setitem failed" % type(encrypted2) ) def test_pad(self): """Tests padding""" sizes = [(1,), (5,), (1, 1), (5, 5), (5, 5, 5), (5, 3, 32, 32)] pads = [ (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), (1, 1, 1, 1), (2, 2, 1, 1), (2, 2, 2, 2), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) for pad in pads: for value in [0, 1, 10]: if tensor.dim() < 2: pad = pad[:2] reference = torch.nn.functional.pad(tensor, pad, value=value) encrypted_value = MPCTensor(value, device=self.device) encrypted_out = encrypted_tensor.pad(pad, value=encrypted_value) encrypted_out2 = encrypted_tensor.pad(pad, value=value) self._check(encrypted_out, reference, "pad failed") self._check(encrypted_out2, reference, "pad failed") def test_index_add(self): """Test index_add function of encrypted tensor""" index_add_functions = ["index_add", "index_add_"] tensor_size1 = [5, 5, 5, 5] index = torch.tensor( [1, 2, 3, 4, 4, 2, 1, 3], dtype=torch.long, device=self.device ) for dimension in range(0, 4): tensor_size2 = [5, 5, 5, 5] tensor_size2[dimension] = index.size(0) for func in index_add_functions: for tensor_type in [lambda x: x, MPCTensor]: tensor1 = self._get_random_test_tensor( size=tensor_size1, is_float=True ) tensor2 = self._get_random_test_tensor( size=tensor_size2, is_float=True ) encrypted = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) reference = getattr(tensor1, func)(dimension, index, tensor2) encrypted_out = getattr(encrypted, func)( dimension, index, encrypted2 ) private_type = tensor_type == MPCTensor self._check( encrypted_out, reference, "%s %s failed" % ("private" if private_type else "public", func), ) if func.endswith("_"): # Check in-place index_add worked self._check( encrypted, reference, "%s %s failed" % ("private" if private_type else "public", func), ) else: # Check original is not modified self._check( encrypted, tensor1, "%s %s failed" % ( "private" if tensor_type == MPCTensor else "public", func, ), ) def test_scatter(self): """Test scatter/scatter_add function of encrypted tensor""" funcs = ["scatter", "scatter_", "scatter_add", "scatter_add_"] sizes = [(5, 5), (5, 5, 5), (5, 5, 5, 5)] for func in funcs: for size in sizes: for tensor_type in [lambda x: x, MPCTensor]: for dim in range(len(size)): tensor1 = self._get_random_test_tensor(size=size, is_float=True) tensor2 = self._get_random_test_tensor(size=size, is_float=True) index = self._get_random_test_tensor(size=size, is_float=False) index = index.abs().clamp(0, 4) encrypted = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) reference = getattr(tensor1, func)(dim, index, tensor2) encrypted_out = getattr(encrypted, func)(dim, index, encrypted2) private = tensor_type == MPCTensor self._check( encrypted_out, reference, "%s %s failed" % ("private" if private else "public", func), ) if func.endswith("_"): # Check in-place scatter/scatter_add worked self._check( encrypted, reference, "%s %s failed" % ("private" if private else "public", func), ) else: # Check original is not modified self._check( encrypted, tensor1, "%s %s failed" % ("private" if private else "public", func), ) def test_broadcast_arithmetic_ops(self): """Test broadcast of arithmetic functions.""" arithmetic_functions = ["add", "sub", "mul", "div"] # TODO: Add broadcasting for pos_pow since it can take a tensor argument arithmetic_sizes = [ (), (1,), (2,), (1, 1), (1, 2), (2, 1), (2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 1), (2, 1, 1), (2, 2, 2), (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 1), (1, 2, 1, 1), (2, 1, 1, 1), (2, 2, 2, 2), ] for tensor_type in [lambda x: x, MPCTensor]: for func in arithmetic_functions: for size1, size2 in itertools.combinations(arithmetic_sizes, 2): exclude_zero = True if func == "div" else False # multiply denominator by 10 to avoid dividing by small num const = 10 if func == "div" else 1 tensor1 = self._get_random_test_tensor(size=size1, is_float=True) tensor2 = self._get_random_test_tensor( size=size2, is_float=True, ex_zero=exclude_zero ) tensor2 *= const encrypted1 = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) reference = getattr(tensor1, func)(tensor2) encrypted_out = getattr(encrypted1, func)(encrypted2) private = isinstance(encrypted2, MPCTensor) self._check( encrypted_out, reference, "%s %s broadcast failed" % ("private" if private else "public", func), ) # Test with integer tensor tensor2 = self._get_random_test_tensor( size=size2, is_float=False, ex_zero=exclude_zero ) tensor2 *= const reference = getattr(tensor1, func)(tensor2.float()) encrypted_out = getattr(encrypted1, func)(tensor2) self._check( encrypted_out, reference, "%s broadcast failed with public integer tensor" % func, ) def test_broadcast_matmul(self): """Test broadcast of matmul.""" matmul_sizes = [(1, 1), (1, 5), (5, 1), (5, 5)] batch_dims = [(), (1,), (5,), (1, 1), (1, 5), (5, 5)] for tensor_type in [lambda x: x, MPCTensor]: for size in matmul_sizes: for batch1, batch2 in itertools.combinations(batch_dims, 2): size1 = (*batch1, *size) size2 = (*batch2, *size) tensor1 = self._get_random_test_tensor(size=size1, is_float=True) tensor2 = self._get_random_test_tensor(size=size2, is_float=True) tensor2 = tensor2.transpose(-2, -1) encrypted1 = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) reference = tensor1.matmul(tensor2) encrypted_out = encrypted1.matmul(encrypted2) private = isinstance(encrypted2, MPCTensor) self._check( encrypted_out, reference, "%s matmul broadcast failed" % ("private" if private else "public"), ) # Test with integer tensor tensor2 = self._get_random_test_tensor(size=size2, is_float=False) tensor2 = tensor2.float().transpose(-2, -1) reference = tensor1.matmul(tensor2) encrypted_out = encrypted1.matmul(tensor2) self._check( encrypted_out, reference, "matmul broadcast failed with public integer tensor", ) def test_inplace(self): """Test inplace vs. out-of-place functions""" for op in ["add", "sub", "mul", "div"]: for tensor_type in [lambda x: x, MPCTensor]: tensor1 = self._get_random_test_tensor(is_float=True) tensor2 = self._get_random_test_tensor(is_float=True) reference = getattr(torch, op)(tensor1, tensor2) encrypted1 = MPCTensor(tensor1) encrypted2 = tensor_type(tensor2) input_tensor_id = id(encrypted1._tensor) input_encrypted_id = id(encrypted1) # Test that out-of-place functions do not modify the input private = isinstance(encrypted2, MPCTensor) encrypted_out = getattr(encrypted1, op)(encrypted2) self._check( encrypted1, tensor1, "%s out-of-place %s modifies input" % ("private" if private else "public", op), ) self._check( encrypted_out, reference, "%s out-of-place %s produces incorrect output" % ("private" if private else "public", op), ) self.assertFalse(id(encrypted_out._tensor) == input_tensor_id) self.assertFalse(id(encrypted_out) == input_encrypted_id) # Test that in-place functions modify the input encrypted_out = getattr(encrypted1, op + "_")(encrypted2) self._check( encrypted1, reference, "%s in-place %s_ does not modify input" % ("private" if private else "public", op), ) self._check( encrypted_out, reference, "%s in-place %s_ produces incorrect output" % ("private" if private else "public", op), ) self.assertTrue(id(encrypted_out._tensor) == input_tensor_id) self.assertTrue(id(encrypted_out) == input_encrypted_id) def test_copy_clone(self): """Tests shallow_copy and clone of encrypted tensors.""" sizes = [(5,), (1, 5), (5, 10, 15)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) # test shallow_copy encrypted_tensor_shallow = encrypted_tensor.shallow_copy() self.assertEqual( id(encrypted_tensor_shallow._tensor), id(encrypted_tensor._tensor) ) self._check(encrypted_tensor_shallow, tensor, "shallow_copy failed") # test clone encrypted_tensor_clone = encrypted_tensor.clone() self.assertNotEqual( id(encrypted_tensor_clone._tensor), id(encrypted_tensor._tensor) ) self._check(encrypted_tensor_clone, tensor, "clone failed") def test_copy_(self): """Tests copy_ function.""" sizes = [(5,), (1, 5), (5, 10, 15)] for size in sizes: tensor1 = self._get_random_test_tensor(size=size, is_float=True) tensor2 = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor1 = MPCTensor(tensor1) encrypted_tensor2 = MPCTensor(tensor2) encrypted_tensor1.copy_(encrypted_tensor2) self._check(encrypted_tensor1, tensor2, "copy_ failed") def test_index_select(self): """Tests index_select of encrypted tensors.""" sizes = [(5,), (5, 10), (5, 10, 15)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) indices = [[0], [0, 3], [0, 2, 4]] for dim in range(tensor.dim()): for index in indices: index_tensor = torch.tensor( index, dtype=torch.long, device=self.device ) reference = tensor.index_select(dim, index_tensor) encrypted_out = encrypted_tensor.index_select(dim, index_tensor) self._check( encrypted_out, reference, "index_select failed at dim {dim} and index {index}", ) def test_narrow(self): """Tests narrow function.""" sizes = [(5, 6), (5, 6, 7), (6, 7, 8, 9)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encr_tensor = MPCTensor(tensor) for dim in range(len(size)): for start in range(size[dim] - 2): for length in range(1, size[dim] - start): tensor_narrow = tensor.narrow(dim, start, length) encr_tensor_narrow = encr_tensor.narrow(dim, start, length) self._check( encr_tensor_narrow, tensor_narrow, "narrow failed along dimension %d" % dim, ) def test_repeat_expand(self): """Tests repeat and expand of encrypted tensors.""" sizes = [(1, 8), (4, 1, 8)] repeat_dims = [(4, 2, 1), (4, 2, 10)] expand_dims = [(4, 2, 8), (4, 5, 8), (10, 4, 5, 8)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) for dims in repeat_dims: encrypted_tensor_repeated = encrypted_tensor.repeat(*dims) # test that repeat copies tensor's data self.assertNotEqual( id(encrypted_tensor_repeated._tensor), id(encrypted_tensor._tensor) ) self._check( encrypted_tensor_repeated, tensor.repeat(*dims), f"repeat failed with dims {dims}", ) for dims in expand_dims: encrypted_tensor_expanded = encrypted_tensor.expand(*dims) # test that expand creates a view into the same underlying tensor self.assertNotEqual( id(encrypted_tensor_expanded.share), id(encrypted_tensor.share) ) self._check( encrypted_tensor_expanded, tensor.expand(*dims), f"repeat failed with dims {dims}", ) def test_view_flatten(self): """Tests view and flatten of encrypted tensors.""" sizes = [(100,), (4, 25), (2, 5, 10)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) for dim in range(tensor.dim()): self._check( encrypted_tensor.flatten(start_dim=dim), tensor.flatten(start_dim=dim), f"flatten failed with dim {dim}", ) shapes = [100, (5, 20), (10, 2, 5), (-1, 10)] for shape in shapes: self._check( encrypted_tensor.view(shape), tensor.view(shape), f"view failed with shape {shape}", ) def test_roll(self): """Tests roll of encrypted tensors.""" sizes = [(10, 1), (5, 2), (5, 10, 15)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) roll_shifts = [1, 2, 3, (2, 1)] roll_dims = [0, 1, 0, (0, 1)] for shifts, dims in zip(roll_shifts, roll_dims): encrypted_tensor_rolled = encrypted_tensor.roll(shifts, dims=dims) self.assertEqual(encrypted_tensor_rolled.numel(), tensor.numel()) self._check( encrypted_tensor_rolled, tensor.roll(shifts, dims=dims), f"roll failed with shift {shifts} and dims {dims}", ) def test_unfold(self): """Tests unfold of encrypted tensors.""" tensor_sizes = [(8,), (15, 10, 5), (5, 10, 15, 20)] for tensor_size in tensor_sizes: tensor = self._get_random_test_tensor(size=tensor_size, is_float=True) encrypted_tensor = MPCTensor(tensor) for size, step in itertools.product(range(1, 4), range(1, 4)): # check unfold along higher dimension if possible for dim in range(tensor.dim()): self._check( encrypted_tensor.unfold(dim, size, step), tensor.unfold(dim, size, step), "unfold failed with dim " f"{dim}, size {size}, and step {step}", ) def test_to(self): """Tests Arithemetic/Binary SharedTensor type conversions.""" from crypten.mpc.ptype import ptype as Ptype tensor_sizes = [(), (1,), (5,), (1, 1), (5, 5), (1, 1, 1), (5, 5, 5)] for size in tensor_sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) binary_encrypted_tensor = encrypted_tensor.to(Ptype.binary) self.assertEqual(binary_encrypted_tensor.ptype, Ptype.binary) # check original encrypted_tensor was not modified after conversion self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to BinarySharedTensor.", ) encrypted_from_binary = binary_encrypted_tensor.to(Ptype.arithmetic) self._check( encrypted_from_binary, tensor, "to failed from BinarySharedTensor to ArithmeticSharedTensor", ) # Test API tensor = self._get_random_test_tensor(size=(5,), is_float=True) encrypted_tensor = MPCTensor(tensor) if torch.cuda.is_available(): encrypted_tensor = encrypted_tensor.to("cuda") self.assertEqual(encrypted_tensor.device.type, "cuda") self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to cuda", ) encrypted_tensor = encrypted_tensor.to(device="cuda") self.assertEqual(encrypted_tensor.device.type, "cuda") self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to cuda", ) encrypted_tensor = encrypted_tensor.to("cpu") self.assertEqual(encrypted_tensor.device.type, "cpu") self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to cpu", ) encrypted_tensor = encrypted_tensor.to(device="cpu") self.assertEqual(encrypted_tensor.device.type, "cpu") self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to cpu", ) encrypted_tensor = encrypted_tensor.to(ptype=Ptype.binary) self.assertEqual(encrypted_tensor.device.type, "cpu") self.assertEqual(encrypted_tensor.ptype, Ptype.binary) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to BinarySharedTensor.", ) encrypted_tensor = encrypted_tensor.to(ptype=Ptype.arithmetic) self.assertEqual(encrypted_tensor.device.type, "cpu") self.assertEqual(encrypted_tensor.ptype, Ptype.arithmetic) self._check( encrypted_tensor, tensor, "encrypted_tensor was modified during conversion to ArithmeticSharedTensor.", ) def test_cumsum(self): """Tests cumulative sum on encrypted tensors.""" sizes = [(8,), (5, 10), (15, 10, 5)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) for dim in range(tensor.dim()): self._check( encrypted_tensor.cumsum(dim), tensor.cumsum(dim), f"cumsum failed along {dim} dim", ) def test_trace(self): """Tests trace operation on 2D encrypted tensors.""" sizes = [(3, 3), (10, 10), (2, 3)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) self._check(encrypted_tensor.trace(), tensor.trace(), "trace failed") def test_flip(self): """Tests flip operation on encrypted tensors.""" sizes = [(5,), (5, 10), (5, 10, 15)] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor = MPCTensor(tensor) flip_dims = [(0,), (0, 1), (0, 1, 2)] for dims in flip_dims: if len(dims) <= tensor.dim(): self._check( encrypted_tensor.flip(dims), tensor.flip(dims), f"flip failed with {dims} dims", ) def test_control_flow_failure(self): """Tests that control flow fails as expected""" tensor = self._get_random_test_tensor(is_float=True) encrypted_tensor = MPCTensor(tensor) with self.assertRaises(RuntimeError): if encrypted_tensor: pass with self.assertRaises(RuntimeError): tensor = 5 if encrypted_tensor else 0 with self.assertRaises(RuntimeError): if False: pass elif encrypted_tensor: pass def test_where(self): """Tests where() conditional element selection""" sizes = [(10,), (5, 10), (1, 5, 10)] y_types = [lambda x: x, MPCTensor] for size, y_type in itertools.product(sizes, y_types): tensor1 = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor1 = MPCTensor(tensor1) tensor2 = self._get_random_test_tensor(size=size, is_float=True) encrypted_tensor2 = y_type(tensor2) condition_tensor = ( self._get_random_test_tensor(max_value=1, size=size, is_float=False) + 1 ) condition_encrypted = MPCTensor(condition_tensor) condition_bool = condition_tensor.bool() reference_out = tensor1.where(condition_bool, tensor2) encrypted_out = encrypted_tensor1.where(condition_bool, encrypted_tensor2) y_is_private = y_type == MPCTensor self._check( encrypted_out, reference_out, f"{'private' if y_is_private else 'public'} y " "where failed with public condition", ) encrypted_out = encrypted_tensor1.where( condition_encrypted, encrypted_tensor2 ) self._check( encrypted_out, reference_out, f"{'private' if y_is_private else 'public'} y " "where failed with private condition", ) # test scalar y scalar = self._get_random_test_tensor(max_value=0, size=[1], is_float=True) self._check( encrypted_tensor1.where(condition_bool, scalar), tensor1.where(condition_bool, scalar), "where failed against scalar y with public condition", ) self._check( encrypted_tensor1.where(condition_encrypted, scalar), tensor1.where(condition_bool, scalar), "where failed against scalar y with private condition", ) def test_unbind(self): """Tests unbind""" sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 5), (1, 1, 1), (5, 5, 5), (1, 1, 1, 1), (5, 5, 5, 5), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted = MPCTensor(tensor) for dim in range(tensor.dim()): reference = tensor.unbind(dim) encrypted_out = encrypted.unbind(dim) self._check_tuple(encrypted_out, reference, "unbind failed") def test_split(self): """Tests split""" sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 5), (1, 1, 1), (5, 5, 5), (1, 1, 1, 1), (5, 5, 5, 5), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, is_float=True) encrypted = MPCTensor(tensor) for dim in range(tensor.dim()): # Get random split split = self._get_random_test_tensor( size=(), max_value=tensor.size(dim) ) split = split.abs().clamp(0, tensor.size(dim) - 1) split = split.item() # Test int split int_split = 1 if split == 0 else split reference = tensor.split(int_split, dim=dim) encrypted_out = encrypted.split(int_split, dim=dim) self._check_tuple(encrypted_out, reference, "split failed") # Test list split split = [split, tensor.size(dim) - split] reference = tensor.split(split, dim=dim) encrypted_out = encrypted.split(split, dim=dim) self._check_tuple(encrypted_out, reference, "split failed") def test_set(self): """Tests set correctly re-assigns encrypted shares""" sizes = [(1, 5), (5, 10), (15, 10, 5)] for size in sizes: tensor1 = self._get_random_test_tensor(size=size, is_float=True) encrypted1 = MPCTensor(tensor1) tensor2 = self._get_random_test_tensor(size=size, is_float=True) encrypted2 = MPCTensor(tensor2) # check encrypted set encrypted1.set(encrypted2) self._check( encrypted1, tensor2, f"set with encrypted other failed with size {size}" ) # check plain text set encrypted1 = MPCTensor(tensor1) encrypted1.set(tensor2) self._check( encrypted1, tensor2, f"set with unencrypted other failed with size {size}", ) def test_polynomial(self): """Tests polynomial function""" sizes = [ (1,), (5,), (1, 1), (1, 5), (5, 5), (1, 1, 1), (5, 5, 5), (1, 1, 1, 1), (5, 5, 5, 5), ] for size in sizes: tensor = self._get_random_test_tensor(size=size, max_value=3, is_float=True) encrypted = MPCTensor(tensor) for terms in range(1, 5): coeffs = self._get_random_test_tensor( size=(terms,), max_value=3, is_float=True ) reference = torch.zeros(size=tensor.size(), device=self.device) for i, term in enumerate(coeffs.tolist()): reference += term * tensor.pow(i + 1) # Test list coeffs encrypted_out = encrypted.polynomial(coeffs.tolist()) self._check(encrypted_out, reference, "polynomial failed") # Test plaintext tensor coeffs encrypted_out = encrypted.polynomial(coeffs) self._check(encrypted_out, reference, "polynomial failed") # Test encrypted tensor coeffs coeffs_enc = MPCTensor(coeffs) encrypted_out = encrypted.polynomial(coeffs_enc) self._check(encrypted_out, reference, "polynomial failed") def test_gather(self): """Test gather function of encrypted tensor""" sizes = [(5, 5), (5, 5, 5), (5, 5, 5, 5)] for size in sizes: for dim in range(len(size)): tensor = self._get_random_test_tensor(size=size, is_float=True) index = self._get_random_test_tensor(size=size, is_float=False) index = index.abs().clamp(0, 4) encrypted = MPCTensor(tensor) reference = tensor.gather(dim, index) encrypted_out = encrypted.gather(dim, index) self._check(encrypted_out, reference, f"gather failed with size {size}") def test_dropout(self): """ Tests the dropout functions. Directly compares the zero and non-zero entries of the input tensor, since we cannot force the encrypted and unencrypted versions to generate identical random output. Also confirms that the number of zeros in the encrypted dropout function is as expected. """ all_prob_values = [x * 0.2 for x in range(5)] def get_first_nonzero_value(x): x = x.flatten() x = x[x.abs().ge(1e-4)] x = x.take(torch.tensor(0)) return x # check that the encrypted and plaintext versions scale # identically, by testing on all-ones tensor for prob in all_prob_values: tensor = torch.ones([10, 10, 10], device=self.device).float() encr_tensor = MPCTensor(tensor) dropout_encr = encr_tensor.dropout(prob, training=True) dropout_decr = dropout_encr.get_plain_text() dropout_plain = F.dropout(tensor, prob, training=True) # All non-zero values should be identical in both tensors, so # compare any one of them decr_nonzero_value = get_first_nonzero_value(dropout_decr) plaintext_nonzero_value = get_first_nonzero_value(dropout_plain) self.assertTrue( math.isclose( decr_nonzero_value, plaintext_nonzero_value, rel_tol=1e-2, abs_tol=1e-2, ) ) for dropout_fn in ["dropout", "_feature_dropout"]: for prob in all_prob_values: for size in [(5, 10), (5, 10, 15), (5, 10, 15, 20)]: for inplace in [False, True]: for training in [False, True]: tensor = self._get_random_test_tensor( size=size, ex_zero=True, min_value=1.0, is_float=True ) encr_tensor = MPCTensor(tensor) dropout_encr = getattr(encr_tensor, dropout_fn)( prob, inplace=inplace, training=training ) if training: # Check the scaling for non-zero elements dropout_decr = dropout_encr.get_plain_text() scaled_tensor = tensor / (1 - prob) reference = dropout_decr.where( dropout_decr == 0, scaled_tensor ) else: reference = tensor self._check( dropout_encr, reference, f"dropout failed with size {size} and probability " f"{prob}", ) if inplace: self._check( encr_tensor, reference, f"in-place dropout failed with size {size} and " f"probability {prob}", ) else: self._check( encr_tensor, tensor, "out-of-place dropout modifies input", ) # Check that channels that are zeroed are all zeros if dropout_fn in [ "dropout2d", "dropout3d", "feature_dropout", ]: dropout_encr_flat = dropout_encr.flatten( start_dim=0, end_dim=1 ) dropout_flat = dropout_encr_flat.get_plain_text() for i in range(0, dropout_flat.size(0)): all_zeros = (dropout_flat[i] == 0).all() all_nonzeros = (dropout_flat[i] != 0).all() self.assertTrue( all_zeros or all_nonzeros, f"{dropout_fn} failed for size {size} with " f"training {training} and inplace {inplace}", ) # Check the expected number of zero elements # For speed, restrict test to single p = 0.4 encr_tensor = MPCTensor(torch.empty((int(1e5), 2, 2)).fill_(1).to(self.device)) dropout_encr = encr_tensor.dropout(0.4) dropout_tensor = dropout_encr.get_plain_text() frac_zero = float((dropout_tensor == 0).sum()) / dropout_tensor.nelement() self.assertTrue(math.isclose(frac_zero, 0.4, rel_tol=1e-2, abs_tol=1e-2)) def test_tuple_cache(self): # Skip RSS setting since it does not generate tuples if cfg.mpc.protocol == "replicated": return # TODO: encorporate wrap_rng for 3PC+ settings if comm.get().get_world_size() > 2: return provider = crypten.mpc.get_default_provider() # Test tracing attribute crypten.trace() self.assertTrue(provider.tracing) x = get_random_test_tensor(is_float=True) x = crypten.cryptensor(x) _ = x.square() _ = x * x _ = x.matmul(x.t()) _ = x.relu() y = x.unsqueeze(0) _ = y.conv1d(y, stride=2) # Populate reference requests ref_names = ["square"] ref_names += ["generate_additive_triple"] * 2 ref_names += ["generate_binary_triple"] * 7 + ["B2A_rng"] ref_names += ["generate_additive_triple"] * 2 ref_args = [ (torch.Size([1, 5]),), (torch.Size([1, 5]), torch.Size([1, 5]), "mul"), (torch.Size([1, 5]), torch.Size([5, 1]), "matmul"), (torch.Size([1, 1, 5]), torch.Size([1, 1, 5])), ] ref_args += [(torch.Size([2, 1, 1, 5]), torch.Size([2, 1, 1, 5]))] * 6 ref_args += [(torch.Size([1, 5]),)] ref_args += [(torch.Size([1, 5]), torch.Size([1, 5]), "mul")] ref_args += [(torch.Size([1, 1, 5]), torch.Size([1, 1, 5]), "conv1d")] kwargs = {"device": torch.device("cpu")} conv_kwargs = {"device": torch.device("cpu"), "stride": 2} requests = [(ref_names[i], ref_args[i], kwargs) for i in range(12)] requests += [(ref_names[12], ref_args[12], conv_kwargs)] self.assertEqual( provider.request_cache, requests, "TupleProvider request cache incorrect", ) crypten.trace(False) self.assertFalse(provider.tracing) # Check that cache populates as expected crypten.fill_cache() kwargs = frozenset(kwargs.items()) conv_kwargs = frozenset(conv_kwargs.items()) keys = [(ref_names[i], ref_args[i], kwargs) for i in range(12)] keys += [(ref_names[12], ref_args[12], conv_kwargs)] self.assertEqual( set(provider.tuple_cache.keys()), set(keys), "TupleProvider tuple_cache populated incorrectly", ) # Test that function calls return from cache when trace is off crypten.trace(False) _ = x.square() _ = x * x _ = x.matmul(x.t()) _ = x.relu() y = x.unsqueeze(0) _ = y.conv1d(y, stride=2) for v in provider.tuple_cache.values(): self.assertEqual( len(v), 0, msg="TupleProvider is not popping tuples properly from cache" ) # Run all unit tests with both TFP and TTP providers class TestTFP(MultiProcessTestCase, TestMPC): def setUp(self): self._original_provider = cfg.mpc.provider crypten.CrypTensor.set_grad_enabled(False) cfg.mpc.provider = "TFP" super(TestTFP, self).setUp() def tearDown(self): cfg.mpc.provider = self._original_provider crypten.CrypTensor.set_grad_enabled(True) super(TestTFP, self).tearDown() class TestTTP(MultiProcessTestCase, TestMPC): def setUp(self): self._original_provider = cfg.mpc.provider crypten.CrypTensor.set_grad_enabled(False) cfg.mpc.provider = "TTP" super(TestTTP, self).setUp() def tearDown(self): cfg.mpc.provider = self._original_provider crypten.CrypTensor.set_grad_enabled(True) super(TestTTP, self).tearDown() class Test3PC(MultiProcessTestCase, TestMPC): def setUp(self): super(Test3PC, self).setUp(world_size=3) class TestRSS(MultiProcessTestCase, TestMPC): def setUp(self): self._original_protocol = cfg.mpc.protocol cfg.mpc.protocol = "replicated" super(TestRSS, self).setUp(world_size=3) def tearDown(self): cfg.mpc.protocol = self._original_protocol super(TestRSS, self).tearDown() # This code only runs when executing the file outside the test harness (e.g. # via the buck target of another test) if __name__ == "__main__": unittest.main() ```
{ "source": "jjvanzon/JJ.TryOut", "score": 3 }
#### File: glib-2.0/gdb/glib.py ```python Components/Mono-3.2.3/share/glib-2.0/gdb/glib.py import gdb # This is not quite right, as local vars may override symname def read_global_var (symname): return gdb.selected_frame().read_var(symname) def g_quark_to_string (quark): if quark == None: return None quark = long(quark) if quark == 0: return None val = read_global_var ("g_quarks") max_q = long(read_global_var ("g_quark_seq_id")) if quark < max_q: return val[quark].string() return None # We override the node printers too, so that node->next is not expanded class GListNodePrinter: "Prints a GList node" def __init__ (self, val): self.val = val def to_string (self): return "{data=%s, next=0x%x, prev=0x%x}" % (str(self.val["data"]), long(self.val["next"]), long(self.val["prev"])) class GSListNodePrinter: "Prints a GSList node" def __init__ (self, val): self.val = val def to_string (self): return "{data=%s, next=0x%x}" % (str(self.val["data"]), long(self.val["next"])) class GListPrinter: "Prints a GList" class _iterator: def __init__(self, head, listtype): self.link = head self.listtype = listtype self.count = 0 def __iter__(self): return self def next(self): if self.link == 0: raise StopIteration data = self.link['data'] self.link = self.link['next'] count = self.count self.count = self.count + 1 return ('[%d]' % count, data) def __init__ (self, val, listtype): self.val = val self.listtype = listtype def children(self): return self._iterator(self.val, self.listtype) def to_string (self): return "0x%x" % (long(self.val)) def display_hint (self): return "array" class GHashPrinter: "Prints a GHashTable" class _iterator: def __init__(self, ht, keys_are_strings): self.ht = ht if ht != 0: self.array = ht["nodes"] self.size = ht["size"] self.pos = 0 self.keys_are_strings = keys_are_strings self.value = None def __iter__(self): return self def next(self): if self.ht == 0: raise StopIteration if self.value != None: v = self.value self.value = None return v while long(self.pos) < long(self.size): node = self.array[self.pos] self.pos = self.pos + 1 if long (node["key_hash"]) >= 2: key = node["key"] val = node["value"] if self.keys_are_strings: key = key.cast (gdb.lookup_type("char").pointer()) # Queue value for next result self.value = ('[%dv]'% (self.pos), val) # Return key return ('[%dk]'% (self.pos), key) raise StopIteration def __init__ (self, val): self.val = val self.keys_are_strings = False try: string_hash = read_global_var ("g_str_hash") except: string_hash = None if self.val != 0 and string_hash != None and self.val["hash_func"] == string_hash: self.keys_are_strings = True def children(self): return self._iterator(self.val, self.keys_are_strings) def to_string (self): return "0x%x" % (long(self.val)) def display_hint (self): return "map" def pretty_printer_lookup (val): if is_g_type_instance (val): return GTypePrettyPrinter (val) def pretty_printer_lookup (val): # None yet, want things like hash table and list type = val.type.unqualified() # If it points to a reference, get the reference. if type.code == gdb.TYPE_CODE_REF: type = type.target () if type.code == gdb.TYPE_CODE_PTR: type = type.target().unqualified() t = str(type) if t == "GList": return GListPrinter(val, "GList") if t == "GSList": return GListPrinter(val, "GSList") if t == "GHashTable": return GHashPrinter(val) else: t = str(type) if t == "GList": return GListNodePrinter(val) if t == "GSList *": return GListPrinter(val, "GSList") return None def register (obj): if obj == None: obj = gdb obj.pretty_printers.append(pretty_printer_lookup) class ForeachCommand (gdb.Command): """Foreach on list""" def __init__ (self): super (ForeachCommand, self).__init__ ("gforeach", gdb.COMMAND_DATA, gdb.COMPLETE_SYMBOL) def valid_name (self, name): if not name[0].isalpha(): return False return True def parse_args (self, arg): i = arg.find(" ") if i <= 0: raise Exception ("No var specified") var = arg[:i] if not self.valid_name(var): raise Exception ("Invalid variable name") while i < len (arg) and arg[i].isspace(): i = i + 1 if arg[i:i+2] != "in": raise Exception ("Invalid syntax, missing in") i = i + 2 while i < len (arg) and arg[i].isspace(): i = i + 1 colon = arg.find (":", i) if colon == -1: raise Exception ("Invalid syntax, missing colon") val = arg[i:colon] colon = colon + 1 while colon < len (arg) and arg[colon].isspace(): colon = colon + 1 command = arg[colon:] return (var, val, command) def do_iter(self, arg, item, command): item = item.cast (gdb.lookup_type("void").pointer()) item = long(item) to_eval = "set $%s = (void *)0x%x\n"%(arg, item) gdb.execute(to_eval) gdb.execute(command) def slist_iterator (self, arg, container, command): l = container.cast (gdb.lookup_type("GSList").pointer()) while long(l) != 0: self.do_iter (arg, l["data"], command) l = l["next"] def list_iterator (self, arg, container, command): l = container.cast (gdb.lookup_type("GList").pointer()) while long(l) != 0: self.do_iter (arg, l["data"], command) l = l["next"] def pick_iterator (self, container): t = container.type.unqualified() if t.code == gdb.TYPE_CODE_PTR: t = t.target().unqualified() t = str(t) if t == "GSList": return self.slist_iterator if t == "GList": return self.list_iterator raise Exception("Invalid container type %s"%(str(container.type))) def invoke (self, arg, from_tty): (var, container, command) = self.parse_args(arg) container = gdb.parse_and_eval (container) func = self.pick_iterator(container) func(var, container, command) ForeachCommand () ```
{ "source": "jjvdhoven/IPFIT5-LH", "score": 3 }
#### File: IPFIT5-LH/EventLog_Scan/event_log_scanner.py ```python import win32evtlog import traceback import sys import logging import json import os new_dir = "Output\\" if not os.path.exists(new_dir): os.makedirs(new_dir) logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) formatter = logging.Formatter('%(levelname)s:%(funcName)s:%(message)s') file_handler = logging.FileHandler('Output\\eventScannerResults.log') file_handler.setFormatter(formatter) logger.addHandler(file_handler) class EventLogScanner: run = True auditSuccesArray = [] auditFailArray = [] informationTypeArray = [] warningTypeArray = [] errorTypeArray = [] machine = "localhost" def __init__(self, eventRequestArray): # eventRequestArray.sort(key=lambda x: x.LogType, reverse=True) self.divideInputInAppropriateList(eventRequestArray) self.runScanner(self.machine) ''''divide input into one of 5 lists that are required to open that specifik event log''' def divideInputInAppropriateList(self, eventRequestArray): for i, event in enumerate(eventRequestArray): if event.LogType == "EVENTLOG_AUDIT_FAILURE" or event.LogType == "ALL": event.ID = i self.auditFailArray.append(event) if event.LogType == "EVENTLOG_AUDIT_SUCCESS" or event.LogType == "ALL": event.ID = i self.auditSuccesArray.append(event) if event.LogType == "EVENTLOG_INFORMATION_TYPE" or event.LogType == "ALL": event.ID = i self.informationTypeArray.append(event) if event.LogType == "EVENTLOG_WARNING_TYPE" or event.LogType == "ALL": event.ID = i self.warningTypeArray.append(event) if event.LogType == "EVENTLOG_ERROR_TYPE" or event.LogType == "ALL": event.ID = i self.errorTypeArray.append(event) def compareLogRecordWithList(self, eventArray, readRecord): """"* this function is strongly dependant on a the list being sorted on all values with NONE at the bottom Very important that the array values are in the same order as that the list is sorted *""" seenValue = False parameterNameArray = ['EventType', 'EventID', 'Sid', 'SourceName', 'StringInserts', 'EventCategory', 'Data', 'ComputerName'] indexOfParameters = 0 givenParamToCheck = "event." + parameterNameArray[indexOfParameters] readParamToCheck = "readRecord." + parameterNameArray[indexOfParameters] try: for event in eventArray: if eval(givenParamToCheck) == eval(readParamToCheck): self.compareIOCRecordWithLogRecord(event, readRecord) seenValue = True elif eval(givenParamToCheck) != eval(readParamToCheck) and seenValue: if eval(givenParamToCheck) is None: indexOfParameters += 1 givenParamToCheck = "event." + parameterNameArray[indexOfParameters] readParamToCheck = "readRecord." + parameterNameArray[indexOfParameters] seenValue = False if eval(givenParamToCheck) == eval(readParamToCheck): self.compareIOCRecordWithLogRecord(event, readRecord) seenValue = True elif eval(givenParamToCheck) is None and not seenValue: indexOfParameters += 1 givenParamToCheck = "event." + parameterNameArray[indexOfParameters] readParamToCheck = "readRecord." + parameterNameArray[indexOfParameters] if eval(givenParamToCheck) == eval(readParamToCheck): self.compareIOCRecordWithLogRecord(event, readRecord) seenValue = True except: try: logger.info(traceback.print_exc(sys.exc_info())) except: logger.info("Exeption Cant compare record with Input List") def compareIOCRecordWithLogRecord(self, givenIOCRecord, readLogRecord): """Compare amount of parameters given with the amount of matches within the LOG record if all given values are equal it is a match """ amountOfParametersGiven = 0 amountOfMatchesFound = 0 parameterNameArray = ['EventType', 'EventID', 'Sid', 'SourceName', 'StringInserts', 'EventCategory', 'Data', 'ComputerName'] """For each Parameter defined in the parameterNameArray: make a string for both objects with the parameter we want to check parse the string to an expression and check if the value is not None if the value is not None check if is equal to the read object """ for parameterName in parameterNameArray: givenParamToCheck = "givenIOCRecord." + parameterName readParamToCheck = "readLogRecord." + parameterName if eval(givenParamToCheck) is not None: amountOfParametersGiven += 1 if eval(givenParamToCheck) == eval(readParamToCheck): amountOfMatchesFound += 1 if amountOfParametersGiven == amountOfMatchesFound: givenIOCRecord.Found = True try: record = {"matchID": str(givenIOCRecord.ID), "Reserved": str(readLogRecord.Reserved), "RecordNumber": str(readLogRecord.RecordNumber), "TimeGenerated": str(readLogRecord.TimeGenerated), "TimeWritten": str(readLogRecord.TimeWritten), "EventType": str(readLogRecord.EventType), "EventID": str(readLogRecord.EventID), "ReservedFlags": str(readLogRecord.ReservedFlags), "ClosingRecordNumber": str(readLogRecord.ClosingRecordNumber), "Sid": str(readLogRecord.Sid), "SourceName": str(readLogRecord.SourceName), "EventCategory": str(readLogRecord.EventCategory), "StringInserts": str(readLogRecord.StringInserts), "Data": str(readLogRecord.Data), "ComputerName": str(readLogRecord.ComputerName)} self.writeOutput(record) except Exception as e: logger.info(e) try: logger.info(traceback.print_exc(sys.exc_info())) except: logger.info('Exception Log Record Cant be Constucted') else: return False def readEventLog(self, server, log_type, eventArray): ''' Reads the log_type (e.g., "Application" or "System") Windows events from the specified server. ''' try: """Open Log File and sort array on Event ID""" log_handle = win32evtlog.OpenEventLog(server, log_type) flags = win32evtlog.EVENTLOG_BACKWARDS_READ | win32evtlog.EVENTLOG_SEQUENTIAL_READ total = win32evtlog.GetNumberOfEventLogRecords(log_handle) try: eventArray.sort(key=lambda x: (x.EventType or 0, x.EventID or 0, x.Sid or 0, x.SourceName or '', x.StringInserts or '', x.EventCategory or 0, x.Data or '', x.ComputerName or ''), reverse=True) except Exception as e: print(e) try: logger.info(traceback.print_exc(sys.exc_info())) except: logger.info('Exception sort went wrong') logger.info("Scanning through {} events on {} in {}".format(total, server, log_type)) """As long as there are events keep reading""" readEvent_count = 0 readEvents = 1 while readEvents: readEvents = win32evtlog.ReadEventLog(log_handle, flags, 0) for readEvent in readEvents: self.compareLogRecordWithList(eventArray, readEvent) readEvent_count += 1 """"Close Log File""" logger.info("Scanned through {} events on {} in {}".format(readEvent_count, server, log_type)) win32evtlog.CloseEventLog(log_handle) except: logger.info("I cant read yar bastard") try: logger.info(traceback.print_exc(sys.exc_info())) except: logger.info('Exception while printing traceback') def runScanner(self, machine): """While run is true 1. read logtype from input 2. read logtypes """ if self.auditFailArray: self.readEventLog(machine, 'EVENTLOG_AUDIT_FAILURE', self.auditFailArray) self.writeInputRecords(self.auditFailArray) if self.auditSuccesArray: self.readEventLog(machine, 'EVENTLOG_AUDIT_SUCCESS', self.auditSuccesArray) self.writeInputRecords(self.auditSuccesArray) if self.informationTypeArray: self.readEventLog(machine, 'EVENTLOG_INFORMATION_TYPE', self.informationTypeArray) self.writeInputRecords(self.informationTypeArray) if self.warningTypeArray: self.readEventLog(machine, 'EVENTLOG_WARNING_TYPE', self.warningTypeArray) self.writeInputRecords(self.warningTypeArray) if self.errorTypeArray: self.readEventLog(machine, 'EVENTLOG_ERROR_TYPE', self.errorTypeArray) self.writeInputRecords(self.errorTypeArray) def writeInputRecords(self, inputArray): for event in inputArray: record = {'ID': str(event.ID), 'EventType': str(event.EventType), 'EventID': str(event.EventID), 'Sid': str(event.Sid), 'SourceName': str(event.SourceName), 'EventCategory': str(event.EventCategory), 'StringInsterts': str(event.StringInserts), 'Data': str(event.Data), 'ComputerName': str(event.ComputerName), 'logType': str(event.LogType), 'Found': str(event.Found)} self.writeOutput(record) def writeOutput(self, line): File = open("Output\\eventOutput.json", "a") File.write(json.dumps(line)) File.write("\n") File.close() # def stopScanner(self): # self.run = False # return ``` #### File: IPFIT5-LH/EventLog_Scan/event_main.py ```python from EventLog_Scan import event_log_scanner import win32evtlog import traceback import sys from EventLog_Scan import EventRequest def readEventLog(server, log_type): # Reads the log_type (e.g. "Application" or "System" from the Windows event viewer on the specified server try: # Open the log file and sort array on Event ID's log_handle = win32evtlog.OpenEventLog(server, log_type) flags = win32evtlog.EVENTLOG_BACKWARDS_READ | win32evtlog.EVENTLOG_SEQUENTIAL_READ total = win32evtlog.GetNumberOfEventLogRecords(log_handle) print("Scanning through {} events on {} in {}".format(total, server, log_type)) # As long as there are events, keep reading readEvent_count = 1 readEvents = 1 events = [] while readEvents: readEvents = win32evtlog.ReadEventLog(log_handle, flags, 1) for event in readEvents: events.append(event) readEvent_count += 1 win32evtlog.CloseEventLog(log_handle) return events except: print("I can't read yar bastard") try: print(traceback.print_exc(sys.exc_info())) except: print("Exception whilst printing traceback") def main(): input_array = [] event1 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", "information_type") event2 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", "audit_succes") event3 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", "audit_failure") event4 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", "error_type") event5 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", "warning_type") event6 = EventRequest.EventRequest(13, 14, 233434, "lala", "evil.exe", 34, "lala", "mijnComputer", " ") input_array.append(event1) input_array.append(event2) input_array.append(event3) input_array.append(event4) input_array.append(event5) input_array.append(event6) try: scan = event_log_scanner.EventLogScanner(input_array) except: try: print(traceback.print_exc(sys.exc_info())) except: print("Exception whilst printing traceback") if __name__ == "__main__": main() ``` #### File: IPFIT5-LH/File_scan/file_scanner.py ```python import os import logging """ This script was made by <NAME> for NFIR, unless specified, all code in this document was written by the former name. Refactoring and writing to output file by <NAME> to comply with PEP8 Conversion of list item to string and int was done by <NAME>. """ filesList = [] def input_check(p_1, p_2): logging.info("\n---FILE SCANNER---") output = open(r"Output\file-scan-results.txt", "w") output.write("\n\n") output.write(120 * "-") output.write("\nFILE SCANNING RESULTS\n") output.write(120 * "-") # convert list to list without , and [] # convert list to str variable p1 = str(','.join(p_1)) p2 = str(','.join(p_2)) try: p2 = int(p2) if isinstance(p2, int): p2 = int(p2) else: p2 = str(p2) except: p2 = p2 if isinstance(p1, str) and isinstance(p2, str): if p1.__contains__("\\"): for root, subdirs, files in os.walk(p1): for file in files: if file.__contains__(p2): output.write("\nPath: ") output.write(root) output.write("\nFile name: ") output.write(str(file)) output.write("\n") print('\nPath: ' + root + '\n' + 'File Name: ' + str(file)) logging.info("Path: " + root + " File Name: " + str(file)) output.write("\n") output.write(120 * "-") output.write("\n\n") elif p2.__contains__("\\"): for root, subdirs, files in os.walk(p2): for file in files: if file.__contains__(p1): output.write("\nPath: ") output.write(root) output.write("\nFile name: ") output.write(str(file)) output.write("\n") print('\nPath: ' + root + '\n' + 'File Name: ' + str(file)) logging.info("Path: " + root + " File Name: " + str(file)) output.write("\n") output.write(120 * "-") output.write("\n\n") elif isinstance(p2, int): # TO DO write the logic when P2 is int for path, subdirs, files in os.walk(p1): for name in files: filesList.append(os.path.join(path, name)) for i in filesList: file_size = os.path.getsize(str(i)) if file_size >= p2 * 1024: output.write("\nThe file name is: ") output.write(str(i)) output.write("\nThe file size is: ") output.write(str(file_size / 2014)) output.write(" kilobytes") output.write("\n") print("\nThe File: " + str(i) + " File Size is: " + str(file_size / 1024) + " kiloBytes") logging.info("The File: " + str(i) + " File Size is: " + str(file_size / 1024) + " kiloBytes") output.write("\n") output.write(120 * "-") output.write("\n\n") elif isinstance(p1, int): for path, subdirs, files in os.walk(p2): for name in files: filesList.append(os.path.join(path, name)) for i in filesList: file_size = os.path.getsize(str(i)) if file_size >= p1 * 1024: output.write("\nThe file name is: ") output.write(str(i)) output.write("\nThe file size is: ") output.write(str(file_size / 2014)) output.write(" kilobytes") output.write("\n") print("\nThe File: " + str(i) + " is: " + str(file_size / 1024) + " kiloBytes") logging.info("The File: " + str(i) + " is: " + str(file_size / 1024) + " kiloBytes") output.write("\n") output.write(120 * "-") output.write("\n\n") else: print("input error") logging.info("input error") if __name__ == "__main__": # InputCheck(P1, P2) print("if __name__" == "__main__") ``` #### File: jjvdhoven/IPFIT5-LH/main.py ```python from Input import InputValidator as ir from Input import InputInterpeter as ii from EventLog_Scan import event_log_scanner as els from File_scan import file_scanner as fs from Registry import read_registry as rreg from Processes import process_scanner as pss import sys import output import os import logging # Set logging settings and create newline, upon starting this function logging.basicConfig(filename="Output\\logging.log", level=logging.INFO, format='%(asctime)s, %(levelname)s, ' '%(funcName)s, ''%(message)s') def make_output_dir(): output_dir = "Output\\" if not os.path.exists(output_dir): os.makedirs(output_dir) # Function that gets the input from the IOC List input file def get_input(): logging.info("\n---GET INPUT---") logging.info("Started getting config from the config file") # Make objects logging.info("Creating input objects") validate = ir.InputValidator() interpret = ii.InputInterpeter() # Validate the config file and return the raw_string[] logging.info("Getting lists from config file") registry_list, file_list, event_list, process_list = validate.getInput(r"IOC_lijst.txt") # Parse hkey_list and add it to a variable logging.info("Binding registry lists to variables: hkey_list") registry_list = interpret.transformRegistryInput(registry_list) # Parse file_list and add it to a variable logging.info("Binding file list to variable: file_list") file_list = interpret.transformFileInput(file_list) # Parse event_list and add it to a variable logging.info("Binding event list to variable: event_list") event_list = interpret.transformEventInput(event_list) # Parse process_list and add it to a variable logging.info("Binding event list to variable: process_list") process_list = interpret.transformProcessInput(process_list) # Parse config_list and add it to a variable logging.info("Binding event list to variable: config_list") # config_list = interpret.transformConfigInput(config_list) # Returning newly created variables logging.info("Returning made variables: hkey_list, path_list, file_list, event_list, process_list, config_list") return registry_list, file_list, event_list, process_list # Function that controls what scanner gets called when def order_of_calling(registry_list, file_list, event_list, process_list): logging.info("\n---SCANNER CONTROL---") logging.info("Started calling scanners with given input") logging.info("Starting registry scan") rreg.main(registry_list) logging.info("Starting process scanner") pss.main(process_list) logging.info("Starting event log scanner") els.EventLogScanner(event_list) logging.info("Starting file scanner") fs.input_check(file_list[0], file_list[1]) output.main() print("") input("Press ENTER to quit") logging.info("Exiting program") sys.exit(0) # Main function of the script def main(): logging.info("\n---MAIN OF PROGRAM---") logging.info("Checking if output directory exists") make_output_dir() logging.info("Retrieving input from config file") registry_list, file_list, event_list, process_list = get_input() logging.info("Starting scanner calling function with config file input") order_of_calling(registry_list, file_list, event_list, process_list) if __name__ == '__main__': main() ``` #### File: IPFIT5-LH/Main-test/Files.py ```python import os Folder_path = os.getcwd() print(Folder_path) def listDir(dir): fileNames = os.listdir(dir) for fileName in fileNames: print ('File Name: '+ fileName) print ('Folder Path: '+ os.path.abspath(os.path.join(dir, fileName))) if __name__ == '__main__': listDir(Folder_path) ```
{ "source": "jjvdhoven/IPFIT6-scraper", "score": 3 }
#### File: scraper-main/CodeBase/marktplaats.py ```python import csv import requests from bs4 import BeautifulSoup from openpyxl import Workbook from datetime import datetime import os.path as osp import helpers as h from helpers import get_searchterms as gst # Class for the item for writing to CSV/Excel class Item: title = "" price = "" summary = "" seller = "" date = "" location = "" seller_url = "" seller_website = "" # Create the URL to use for the scraper def create_url(item_query, item_postalcode, item_distance): url = 'https://www.marktplaats.nl' url += '/q/:' + item_query url += '/#distanceMeters:' + item_distance url += '|postcode:' + item_postalcode return url # Write the results to a external file for storage and analysis def write_to_csv(items, file_name, query): with open(f'../persistant/Marktplaats/marktplaats_{file_name}.csv', 'a+', newline='') as write_obj: csv_writer = csv.writer(write_obj) csv_writer.writerow([f"The current query is: {query}"]) csv_writer.writerow(['Title', 'Price', 'Summary', "Seller", "Date", "Location", "Seller url", "Seller website"]) for item in items: csv_writer.writerow([item.title, item.price, item.summary, item.seller, item.date, item.location, item.seller_url, item.seller_website]) csv_writer.writerow('') write_obj.close() # Convert the CSV file to a Excel file for easier reading def convert_csv_to_xsl(file_name): wb = Workbook() ws = wb.active with open(f"../persistant/Marktplaats/marktplaats_{file_name}.csv", 'r') as f: for row in csv.reader(f): ws.append(row) wb.save(f'../persistant/Marktplaats/marktplaats-{file_name}.xlsx') def is_correct_response(response): # Check that the response returned 'success' return response == 'success' def is_defined_item(element): if element is not None: return element else: return "not Available" # Collect the listings with help form the entered search terms def get_listings(url, timestr, query): source = requests.get(url) marktplaats = BeautifulSoup(source.text, 'lxml') # Returns entire page body = marktplaats.find('body') # Returns website body search_result = is_defined_item(body.find('ul', class_='mp-Listings--list-view')) list_of_articles = [] try: for article in search_result: try: # Get all product links item_link = article.a['href'] # Get all product titles item_title = is_defined_item(article.find('h3')).text # Get items short summary item_summary = is_defined_item(article.find('p')).text # Get the name of the seller item_seller = is_defined_item(article.find('span', class_="mp-Listing-seller-name")).text # Get the link to the sellers Marktplaats profile gen_item_seller_link = is_defined_item(article.find('a', class_="mp-TextLink"))['href'] if "/u/" in gen_item_seller_link: item_seller_link = "https://www.marktplaats.nl" + gen_item_seller_link # Get the price of the item item_price = is_defined_item(article.find('span', class_="mp-Listing-price mp-text-price-label")).text item_price = item_price.replace("\xc2\xa0", " ") # Get the date the item was posted item_date = is_defined_item(article.find('span', class_="mp-Listing-date mp-Listing-date--desktop")).text # Get the location from where the seller is selling from item_location = is_defined_item(article.find('span', class_="mp-Listing-location")).text # Get the external website the seller promotes in the listing item_seller_website = is_defined_item(article.find('a', class_="mp-Listing-sellerCoverLink"))['href'] myObj = Item() myObj.title = item_title.strip() myObj.price = item_price.strip() myObj.summary = item_summary.strip() myObj.seller = item_seller.strip() myObj.date = item_date.strip() myObj.location = item_location.strip() myObj.url = item_link.strip() myObj.seller_url = item_seller_link.strip() myObj.seller_website = item_seller_website.strip() list_of_articles.append(myObj) except Exception as e: summary_ = "None" title_ = "None" href = "None" price = "None" print(e) except Exception as e: print(e) write_to_csv(list_of_articles, timestr, query) convert_csv_to_xsl(timestr) def main(file_name_time): i = 0 id = "mp" postalcode = '1011ab' distance = '25000' query_list = gst(id) while i < len(query_list): current_url = create_url(query_list[i], postalcode, distance) print(f"Current URL to search: {current_url}") get_listings(current_url, file_name_time, query_list[i]) i += 1 if __name__ == "__main__": fn = "2020" main(fn) ```
{ "source": "JJWagner/EnigmaCribber", "score": 4 }
#### File: JJWagner/EnigmaCribber/enigmacribber.py ```python def bound(input): # Wraps offsets around the wheel. # i.e. Z + 1 = A # B - 5 = W if input > 25: return (input - 26) elif input < 0: return (input + 26) else: return input def rotor_RtoL (rotor, index, rotorpos): # Compute the rotor offsets for signals # flowing from right (input/plugboard) # to left (reflector). # position = bound(index + rotorpos) return bound(rotor[position] - rotorpos) def rotor_LtoR (rotor, index, rotorpos): # Compute the rotor offsets for signals # flowing from left (reflector) to # right (input/plugboard) # position = bound(index + rotorpos) for idx in range(26): if rotor[idx] == position: return bound(idx - rotorpos) def rotors_advance(LeftRotorPos, MiddleRotorPos, RightRotorPos, LeftRotor, MiddleRotor, RightRotor): # Advance three rotors (args), paying # attention to the notch placement # and double-stepping at the appropriate # times. # # Pull the notch positions off the ends # of the wheel arrays LeftRotorNotch = LeftRotor[26] MiddleRotorNotch = MiddleRotor[26] RightRotorNotch = RightRotor[26] advanceRandM = False advanceMandL = False # If any of the pawls will fall in a # notch, set a flag. if(RightRotorPos == RightRotorNotch): advanceRandM = True if(MiddleRotorPos == MiddleRotorNotch): advanceMandL = True # the rightmost rotor always advances RightRotorPos = bound(RightRotorPos + 1) # the middle one advances if its pawl falls # in the rightmost wheel's notch, or if # the left wheel's pawl falls in the middle # wheel's notch. Take care of the first # condition here if(advanceRandM and not advanceMandL): MiddleRotorPos = bound(MiddleRotorPos + 1) # If the left wheel's pawl falls in the # middle wheel's notch, advance them both. if(advanceMandL): MiddleRotorPos = bound(MiddleRotorPos + 1) LeftRotorPos = bound(LeftRotorPos + 1) rotors_advance.RightRotorPos = RightRotorPos rotors_advance.MiddleRotorPos = MiddleRotorPos rotors_advance.LeftRotorPos = LeftRotorPos def Compute(stepcount, signalin, RotorL, RotorM, RotorR, RotorLPos, RotorMPos, RotorRPos, Reflector): # Automate stepping the rotors and # computing the substitutions back # and forth across the wheels and # reflector # for step in range(stepcount): rotors_advance(RotorLPos, RotorMPos, RotorRPos, RotorL, RotorM, RotorR) RotorRPos = rotors_advance.RightRotorPos RotorMPos = rotors_advance.MiddleRotorPos RotorLPos = rotors_advance.LeftRotorPos # finished advancing. save rotor positions # for the function caller Compute.RotorRPos = RotorRPos Compute.RotorMPos = RotorMPos Compute.RotorLPos = RotorLPos # compute offsets from input/plugboard to reflector RotorROutL = rotor_RtoL(RotorR, signalin, RotorRPos) RotorMOutL = rotor_RtoL(RotorM, RotorROutL, RotorMPos) RotorLOutL = rotor_RtoL(RotorL, RotorMOutL, RotorLPos) ReflectorOutR = rotor_RtoL(Reflector, RotorLOutL, 0) # compute offsets from reflector back to the input/plugboard RotorLOutR = rotor_LtoR(RotorL, ReflectorOutR, RotorLPos) RotorMOutR = rotor_LtoR(RotorM, RotorLOutR, RotorMPos) RotorROutR = rotor_LtoR(RotorR, RotorMOutR, RotorRPos) return RotorROutR # # Constants and variables # # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 alpha = "a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","s","t","u","v","w","x","y","z" alphastr = "abcdefghijklmnopqrstuvwxyz" #rotor definitions. the notch position is encoded in element 26 rotorI = 4,10,12,5,11,6,3,16,21,25,13,19,14,22,24,7,23,20,18,15,0,8,1,17,2,9, 16 rotorII = 0,9,3,10,18,8,17,20,23,1,11,7,22,19,12,2,16,6,25,13,15,24,5,21,14,4, 4 rotorIII = 1,3,5,7,9,11,2,15,17,19,23,21,25,13,24,4,8,22,6,0,10,12,20,18,16,14, 21 reflecB = 24,17,20,7,16,18,11,3,15,23,13,6,14,10,12,8,4,1,5,25,2,22,21,9,0,19 # Set ciphertext and crib text, and rotor order ciphertext = "YJBDELCZ" cribtext = "THECACHE" rotorL = rotorI rotorM = rotorII rotorR = rotorIII reflector = reflecB CandidateRotorPositions = [] ReducedRotorPositions = [] # Create initial list of candidate positions for rotorLpos in range(26): for rotorMpos in range(26): for rotorRpos in range(26): CandidateRotorPositions.append([rotorLpos, rotorMpos, rotorRpos]) for ch in range(len(ciphertext)): cipherchar = alphastr.index(ciphertext[ch].lower()) target = alphastr.index(cribtext[ch].lower()) #print(cipherchar, alpha[cipherchar], target, alpha[target]) total = 0 count = 0 for rotorPositions in range(len(CandidateRotorPositions)): count += 1 rotorLstart = CandidateRotorPositions[rotorPositions][0] rotorMstart = CandidateRotorPositions[rotorPositions][1] rotorRstart = CandidateRotorPositions[rotorPositions][2] #print("Run ", ch, " Starting positions: \t", alpha[rotorLstart], alpha[rotorMstart], alpha[rotorRstart]) if(Compute(ch + 1, cipherchar, rotorL, rotorM, rotorR, rotorLstart, rotorMstart, rotorRstart, reflector) == target): #print("Found! starting positions: ", alpha[rotorLstart], alpha[rotorMstart], alpha[rotorRstart]) #print(" ending positions: ", alpha[Compute.RotorLPos], alpha[Compute.RotorMPos], alpha[Compute.RotorRPos]) ReducedRotorPositions.append([rotorLstart, rotorMstart, rotorRstart]) total += 1 print("Character ", ch, "\tPositions tested:", count, "\tStarting Positions Found:", total) CandidateRotorPositions = ReducedRotorPositions ReducedRotorPositions = [] for rotorPositions in CandidateRotorPositions: print("Possible starting rotor configuration: ", alpha[rotorPositions[0]], alpha[rotorPositions[1]], alpha[rotorPositions[2]]) ```
{ "source": "jjwallman/gscholartex", "score": 3 }
#### File: jjwallman/gscholartex/gscholartex.py ```python import itertools from bs4 import BeautifulSoup import datetime # I have yet to work out how to automatically obtain a web page with more than # 20 articles due to restrictions on the Google Scholar API # The current workaround is to manually load the web page, click "show more", # and save the resulting html def clean_number(string): if string is None: return 0 return ''.join(s for s in string if s.isdigit()) def reformat_entry(html_string, unwanted_strings): for phrase in unwanted_strings: if html_string.text.find(phrase) != -1: return None ref_data = html_string.contents[0].contents ret = {'title': ref_data[0], 'authors': ref_data[1].contents[0]} journal = ref_data[2].contents[0] journal = journal.replace("arXiv preprint ", "") journal = journal.split("(") try: journal[1] = journal[1].split(")")[1] except IndexError: pass journal = "".join(journal) journal = journal.split(", ") try: journal[1] = "".join(itertools.takewhile(str.isdigit, journal[1])) except IndexError: pass ret['journal'] = ", ".join(journal) ret['year'] = clean_number(ref_data[2].contents[1].contents[0]) try: ret['citations'] = int(html_string.contents[1].contents[0]) except IndexError: ret['citations'] = 0 return ret def extract_publications(html_doc, unwanted_strings=None): """ Extract publications and citation data from a saved Google Scholar page. Parameters ---------- html_doc, str file name of the saved web page unwanted_strings, an iterable of str strings to filter out "publications" that should not be counted """ if unwanted_strings is None: unwanted_strings = ["APS", "Bulletin"] f = open(html_doc, "r", encoding='utf8') doc = f.read() f.close() soup = BeautifulSoup(doc, 'html.parser') for a in soup.findAll('a'): a.replaceWithChildren() # Stripping out refs, buttons, etc labels = {'button': None, 'td': {"class": "gsc_a_x"}, 'th': {'class': "gsc_a_x"}, 'tr': {'id': "gsc_a_tr0"}} for k, v in labels.items(): if v is None: for entry in soup.findAll(k): entry.decompose() else: for entry in soup.findAll(k, v): entry.decompose() for div in soup.find_all('th', {'class': "gsc_a_t"}): for div2 in div.find_all('div', recursive=False): div2.decompose() pubs = soup.find_all('tr', {'class': 'gsc_a_tr'}) pubs = [reformat_entry(pub, unwanted_strings) for pub in pubs] pubs = [pub for pub in pubs if pub is not None] cites = [int(c.contents[0]) for c in soup.find_all('span', {'class': 'gsc_g_al'})] years = [int(y.contents[0]) for y in soup.find_all('span', {'class': 'gsc_g_t'})] return pubs, {year: cite for year, cite in zip(years, cites)} def citation_metrics(publications): """ Return the h_index and total number of citations calculated from a list of publications. """ cite_counts = sorted([v['citations'] for v in publications], reverse=True) for j, k in enumerate(cite_counts): if j + 1 > k: return j, sum(cite_counts) return len(cite_counts), sum(cite_counts) def clean_cite(num_cites): if num_cites == 0: return "" if num_cites == 1: return " 1 citation." return " {} citations.".format(num_cites) def bib_entry(publication): return "\\item {}. {}, {} ({}).{}\n".format(publication['title'], publication['authors'], publication['journal'], publication['year'], clean_cite(publication['citations'])) def scholar_to_tex(html_doc, output, unwanted_strings=None): """ Extract publications and citation data from a saved Google Scholar page. The data is written to a file for inclusion in a LaTeX document. Parameters ---------- html_doc, str file name of the saved web page output, str file name for the output unwanted_strings, an iterable of str strings to filter out "publications" that should not be counted """ pubs, cites = extract_publications(html_doc, unwanted_strings) h_index, total_cites = citation_metrics(pubs) f = open(output, 'w') f.write("\\UseRawInputEncoding") f.write("\\newcommand{\\citedata}{%s}\n" % " ".join(str(a) for a in cites.items())) f.write("\\newcommand{\\citedate}{%s}\n" % datetime.date.today()) f.write("\\newcommand{\\hindex}{%d}\n" % h_index) f.write("\\newcommand{\\numcites}{%d}\n" % total_cites) f.write("\\newcommand{\\printpubs}{%s}" % "".join([bib_entry(pub) for pub in pubs])) f.close() ```
{ "source": "JJwangbilin/fastapi-example", "score": 2 }
#### File: app/core/jwt.py ```python from datetime import datetime, timedelta from typing import Optional import jwt from fastapi import Depends, Header from jwt import PyJWTError from starlette.exceptions import HTTPException from starlette.status import HTTP_403_FORBIDDEN, HTTP_404_NOT_FOUND from fastapi.security import OAuth2PasswordBearer from app.crud.user import get_user from app.db.mongodb import AsyncIOMotorClient, get_database from app.models.token import TokenPayload from app.models.user import User from app.core.config import JWT_TOKEN_PREFIX, SECRET_KEY, ACCESS_TOKEN_EXPIRE_MINUTES ALGORITHM = "HS256" # Header中authorization信息校验,校验token的前缀 def _get_authorization_token(Authorization: str = Header(...)): token_prefix, token = Authorization.split(" ") if token_prefix != JWT_TOKEN_PREFIX: raise HTTPException( status_code=HTTP_403_FORBIDDEN, detail="令牌信息错误" ) return token # Swagger UI oauth2_scheme = OAuth2PasswordBearer(tokenUrl="/api/users/login") # 解密token,从db中获取用户信息 async def _get_current_user(db: AsyncIOMotorClient = Depends(get_database), token: str = Depends(oauth2_scheme)) -> User: try: payload = jwt.decode(token, str(SECRET_KEY), algorithms=[ALGORITHM]) # TokenPayload可校验解密后内容 token_data = TokenPayload(**payload) except PyJWTError: raise HTTPException( status_code=HTTP_403_FORBIDDEN, detail="无效的授权信息" ) # TODO 校验token是否过期token_data.exp 和当前时间比较 dbuser = await get_user(db, id=token_data.id) if not dbuser: raise HTTPException(status_code=HTTP_404_NOT_FOUND, detail="用户不存在") if not dbuser.activated: raise HTTPException(status_code=HTTP_403_FORBIDDEN, detail="用户被冻结,如需申诉,请联系管理员") user = User(**dbuser.dict(), token=token) return user # 公开内容,无token可访问 def _get_authorization_token_optional(Authorization: str = Header(None)): if Authorization: return _get_authorization_token(Authorization) return "" # 可选项,用户信息 async def _get_current_user_optional(db: AsyncIOMotorClient = Depends(get_database), token: str = Depends(_get_authorization_token_optional), ) -> Optional[User]: if token: return await _get_current_user(db, token) return None # 获取当前用户信息,required=True,必须拥有token才可访问,False,公开内容 def get_current_user_authorizer(*, required: bool = True): if required: return _get_current_user else: return _get_current_user_optional # 创建token # token包含exp,和用户自定义的json数据 def create_access_token(*, data: dict, expires_delta: Optional[timedelta] = None): to_encode = data.copy() if expires_delta: expire = datetime.utcnow() + expires_delta else: expire = datetime.utcnow() + timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES) to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, str(SECRET_KEY), algorithm=ALGORITHM) return encoded_jwt ``` #### File: app/models/user.py ```python from pydantic import BaseModel, UUID1, EmailStr, HttpUrl, Field from app.models.common import IDModel, CreatedAtModel, UpdatedAtModel from typing import List, Optional from enum import Enum from datetime import datetime from app.common.security import verify_password class _ChannelEnum(str, Enum): RG = '注册' WX = '微信' QQ = 'QQ' GIT = 'GitHub' class UserBase(BaseModel): username: str email: Optional[EmailStr] = None mobile: str = Field(None, regex='^1[3456789]\d{9}$') unionid: str = Field(None, title='三方登录唯一id') channel: _ChannelEnum role: List[int] remark: str = None thumb: HttpUrl activated: bool class User(UserBase): token: str class UserInDB(UserBase): id: str = "" salt: str = "" hashed_password: str = "" updatedAt: datetime createdAt: datetime def check_password(self, password: str): return verify_password(self.salt + password, self.hashed_password) class UserInResponse(BaseModel): user: User # 写入数据库,和前端请求参数无关 class UserInCreate(UserBase, IDModel, CreatedAtModel, UpdatedAtModel): password: str ```
{ "source": "jjwang/laibot-client", "score": 3 }
#### File: laibot-client/client/app_utils.py ```python import smtplib from email.MIMEText import MIMEText import urllib2 import re from pytz import timezone def sendEmail(SUBJECT, BODY, TO, FROM, SENDER, PASSWORD, SMTP_SERVER): """Sends an HTML email.""" for body_charset in 'US-ASCII', 'ISO-8859-1', 'UTF-8': try: BODY.encode(body_charset) except UnicodeError: pass else: break msg = MIMEText(BODY.encode(body_charset), 'html', body_charset) msg['From'] = SENDER msg['To'] = TO msg['Subject'] = SUBJECT SMTP_PORT = 587 session = smtplib.SMTP(SMTP_SERVER, SMTP_PORT) session.starttls() session.login(FROM, PASSWORD) session.sendmail(SENDER, TO, msg.as_string()) session.quit() def emailUser(profile, SUBJECT="", BODY=""): """ sends an email. Arguments: profile -- contains information related to the user (e.g., email address) SUBJECT -- subject line of the email BODY -- body text of the email """ def generateSMSEmail(profile): """ Generates an email from a user's phone number based on their carrier. """ if profile['carrier'] is None or not profile['phone_number']: return None return str(profile['phone_number']) + "@" + profile['carrier'] if profile['prefers_email'] and profile['gmail_address']: # add footer if BODY: BODY = profile['first_name'] + \ ",<br><br>Here are your top headlines:" + BODY BODY += "<br>Sent from your Jasper" recipient = profile['gmail_address'] if profile['first_name'] and profile['last_name']: recipient = profile['first_name'] + " " + \ profile['last_name'] + " <%s>" % recipient else: recipient = generateSMSEmail(profile) if not recipient: return False try: if 'mailgun' in profile: user = profile['mailgun']['username'] password = profile['mailgun']['password'] server = 'smtp.mailgun.org' else: user = profile['gmail_address'] password = profile['gmail_password'] server = 'smtp.gmail.com' sendEmail(SUBJECT, BODY, recipient, user, "Jasper <jasper>", password, server) return True except Exception: return False def getTimezone(profile): """ Returns the pytz timezone for a given profile. Arguments: profile -- contains information related to the user (e.g., email address) """ try: return timezone(profile['timezone']) except Exception: return None def generateTinyURL(URL): """ Generates a compressed URL. Arguments: URL -- the original URL to-be compressed """ target = "http://tinyurl.com/api-create.php?url=" + URL response = urllib2.urlopen(target) return response.read() def isNegative(phrase): """ Returns True if the input phrase has a negative sentiment. Arguments: phrase -- the input phrase to-be evaluated """ return bool(re.search(r'\b(no(t)?|don\'t|stop|end)\b', phrase, re.IGNORECASE)) def isPositive(phrase): """ Returns True if the input phrase has a positive sentiment. Arguments: phrase -- the input phrase to-be evaluated """ return bool(re.search(r'\b(sure|yes|yeah|go)\b', phrase, re.IGNORECASE)) ``` #### File: laibot-client/client/jasperpath.py ```python import os # Jasper main directory APP_PATH = os.path.normpath(os.path.join( os.path.dirname(os.path.abspath(__file__)), os.pardir)) DATA_PATH = os.path.join(APP_PATH, "static") LIB_PATH = os.path.join(APP_PATH, "client") TOOLS_PATH = os.path.join(APP_PATH, "tools") PLUGIN_PATH = os.path.join(LIB_PATH, "modules") CONFIG_PATH = os.path.join(APP_PATH, 'conf') TJBOT_PATH = os.path.join(APP_PATH, '../tjbot/bootstrap/tests/') def config(*fname): return os.path.join(CONFIG_PATH, *fname) def data(*fname): return os.path.join(DATA_PATH, *fname) def tjbot(*fname): return os.path.join(TJBOT_PATH, *fname) def hotword(): return '<PASSWORD>' ``` #### File: laibot-client/tests/test_modules.py ```python import unittest from client import test_mic from client.modules import Unclear DEFAULT_PROFILE = { 'prefers_email': False, 'location': 'Cape Town', 'timezone': 'US/Eastern', 'phone_number': '012344321' } class TestModules(unittest.TestCase): def setUp(self): self.profile = DEFAULT_PROFILE self.send = False def runConversation(self, query, inputs, module): """Generic method for spoofing conversation. Arguments: query -- The initial input to the server. inputs -- Additional input, if conversation is extended. Returns: The server's responses, in a list. """ self.assertTrue(module.isValid(query)) mic = test_mic.Mic(inputs) module.handle(query, mic, self.profile) return mic.outputs def testUnclear(self): query = "What time is it?" inputs = [] self.runConversation(query, inputs, Unclear) ```
{ "source": "jjwatts/gigantum-base-images", "score": 3 }
#### File: gigantum-base-images/python3-figantleaf/altmetric.py ```python import requests from hashlib import sha1 import hmac import configparser from urllib.parse import urlencode, quote_plus import twitter altproperties_location="/home/giguser/.dimensions/dsl.ini" api_url = "https://www.altmetric.com/explorer/api/" def ConfigSectionMap(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.get(section, option) #if dict1[option] == -1: #print ("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 Config = configparser.ConfigParser() Config.read(altproperties_location) aprops = ConfigSectionMap("altmetric") secret=aprops['secret'] key=aprops['key'] def altmetric_auth(secret,filters): my_hmac = hmac.new(bytes(secret, 'UTF-8'), bytes(filters, 'UTF-8'), sha1) digest = my_hmac.hexdigest() return digest def querystrings(afilter,base='filter'): digeststring = [] urlstring = [] for k in sorted(list(afilter.keys())): if type(afilter[k]) == str: urlstring.append("{}[{}]={}".format(base,k,afilter[k])) digeststring.append("{}|{}".format(k,afilter[k])) if type(afilter[k]) == list: digeststring.append("{}|{}".format(k,"|".join(sorted(afilter[k])))) for i in afilter[k]: urlstring.append("{}[{}][]={}".format(base,k,i)) return dict( digest="|".join(digeststring), url="&".join(urlstring).replace('[','%5B').replace(']','%5D') ) def init_altmetric_query(afilter,endpoint, api_url=api_url, page=None): urlpage = "" if page is not None: urlpage = querystrings(page,base='page')['url'] query = "{}{}/?digest={}&{}&key={}&{}".format(api_url, endpoint, altmetric_auth(secret,querystrings(afilter)['digest']), querystrings(afilter)['url'], key, urlpage) #print(query) return requests.get(query) # twitter tprops = ConfigSectionMap("twitter") consumer_key=tprops['consumer_key'] consumer_secret=tprops['consumer_secret'] access_token_key=tprops['access_token_key'] access_token_secret=tprops['access_token_secret'] twitterapi = twitter.Api(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token_key=access_token_key, access_token_secret=access_token_secret) ``` #### File: gigantum-base-images/python3-figantleaf/progress.py ```python import time, sys from IPython.display import clear_output def update_progress(progress): bar_length = 20 if isinstance(progress, int): progress = float(progress) if not isinstance(progress, float): progress = 0 if progress < 0: progress = 0 if progress >= 1: progress = 1 block = int(round(bar_length * progress)) clear_output(wait = True) text = "Progress: [{0}] {1:.1f}%".format( "#" * block + "-" * (bar_length - block), progress * 100) print(text) ```
{ "source": "jjwatts/gigantum-client", "score": 2 }
#### File: api/connections/list.py ```python import base64 import graphene class ListBasedConnection(object): def __init__(self, edges, cursors, args): """Class to provide Relay compliant pagination for list based connections Args: edges(list): A list of edge data cursors(list): A list of cursors for edges args(dict): The input arguments to the resolve method Returns: ListBasedConnection """ self.edges = edges self.cursors = cursors self.args = args self.page_info = None def apply(self): """Method to apply cursors to the edges Returns: None """ if "first" in self.args and "last" in self.args: raise ValueError("`first` and `last` arguments cannot be used together") # Verify valid slicing args if "first" in self.args: if int(self.args["first"]) < 0: raise ValueError("`first` must be greater than 0") if "last" in self.args: if int(self.args["last"]) < 0: raise ValueError("`last` must be greater than 0") # Apply cursor filters after_index = None before_index = None if "after" in self.args: if self.args["after"] in self.cursors: # Remove edges after cursor after_index = int(base64.b64decode(self.args["after"])) else: raise ValueError("`after` cursor is invalid") if "before" in self.args: if self.args["before"] in self.cursors: # Remove edges after cursor before_index = int(base64.b64decode(self.args["before"])) else: raise ValueError("`before` cursor is invalid") if after_index is not None and before_index is not None: self.edges = self.edges[after_index + 1:before_index] self.cursors = self.cursors[after_index + 1:before_index] elif after_index is not None: self.edges = self.edges[after_index + 1:] self.cursors = self.cursors[after_index + 1:] elif before_index is not None: self.edges = self.edges[:before_index] self.cursors = self.cursors[:before_index] pre_slice_len = len(self.edges) # Apply slicing filters if "first" in self.args: if len(self.edges) > int(self.args["first"]): self.edges = self.edges[:int(self.args["first"])] self.cursors = self.cursors[:int(self.args["first"])] if "last" in self.args: if len(self.edges) > int(self.args["last"]): self.edges = self.edges[-int(self.args["last"]):] self.cursors = self.cursors[-int(self.args["last"]):] # Compute page info status has_previous_page = False if "last" not in self.args or len(self.edges) == 0: has_previous_page = False elif pre_slice_len > int(self.args["last"]): has_previous_page = True has_next_page = False if "first" not in self.args or len(self.edges) == 0: has_next_page = False elif pre_slice_len > int(self.args["first"]): has_next_page = True if len(self.edges) == 0: start_cursor, end_cursor = None, None else: start_cursor, end_cursor = self.cursors[0], self.cursors[-1] # startCursor and endCursor self.page_info = graphene.relay.PageInfo(has_next_page=has_next_page, has_previous_page=has_previous_page, start_cursor=start_cursor, end_cursor=end_cursor) ``` #### File: lmsrvcore/middleware/metric.py ```python from gtmcore.logging import LMLogger from time import time as timer import json logger = LMLogger.get_logger() def time_all_resolvers_middleware(next, root, info, **args): """Middleware to time and log all resolvers""" start = timer() return_value = next(root, info, **args) duration = timer() - start data = {"metric_type": "field_resolver_duration", "parent_type": root._meta.name if root and hasattr(root, '_meta') else '', "field_name": info.field_name, "duration_ms": round(duration * 1000, 2)} logger.info(f"METRIC :: {json.dumps(data)}") return return_value ``` #### File: lmsrvcore/tests/test_identity.py ```python import pytest from flask import current_app from mock import patch from lmsrvcore.auth.identity import get_identity_manager_instance, AuthenticationError from lmsrvcore.middleware import AuthorizationMiddleware, error_middleware, time_all_resolvers_middleware, \ DataloaderMiddleware from lmsrvcore.tests.fixtures import fixture_working_dir_with_cached_user from gtmcore.configuration import Configuration from gtmcore.auth.local import LocalIdentityManager class MockCurrentApp(object): """Mock class to test get_identity_manager_instance() without Flask in the loop""" def __init__(self, id_manager=None): self.config = {"LABMGR_ID_MGR": id_manager} class MockFlaskContext(object): """Mock class to test middleware""" def __init__(self): self.headers = {"Authorization": "Bearer adkajshfgklujasdhfiuashfiusahf"} self.labbook_loader = None class MockGrapheneInfo(object): """Mock class to test middleware""" def __init__(self): self.context = MockFlaskContext() class TestAuthIdentity(object): def test_get_identity_manager_instance(self, fixture_working_dir_with_cached_user): """Test getting identity manager in a flask app""" # Test normal mgr = get_identity_manager_instance() assert type(mgr) == LocalIdentityManager # Test when no mgr is set current_app.config["LABMGR_ID_MGR"] = None mgr = get_identity_manager_instance() assert mgr is None # Test when mgr is missing from the current Flask application config del current_app.config["LABMGR_ID_MGR"] with pytest.raises(AuthenticationError): get_identity_manager_instance() def test_authorization_middleware_user_local(self, fixture_working_dir_with_cached_user): """Test authorization middlewhere when loading a user exists locally""" def next_fnc(root, info, **args): """Dummy method to test next chain in middleware""" assert root == "something" assert type(info) == MockGrapheneInfo assert args['foo'] == "a" assert args['bar'] == "b" # Create a mocked info obj and remove the auth header since you are testing the logged in user pull from cache fake_info = MockGrapheneInfo() del fake_info.context.headers["Authorization"] mw = AuthorizationMiddleware() mw.resolve(next_fnc, "something", fake_info, foo="a", bar="b") def test_authorization_middleware_bad_header(self, fixture_working_dir_with_cached_user): """Test authorization middlewhere when a token header is malformed""" def next_fnc(root, info, **args): """Dummy method to test next chain in middleware""" assert "Should not get here" fake_info = MockGrapheneInfo() fake_info.context.headers["Authorization"] = "Token <PASSWORD>" mw = AuthorizationMiddleware() with pytest.raises(AuthenticationError): mw.resolve(next_fnc, "something", fake_info, foo="a", bar="b") # TODO: Add test when easier to mock a token # def test_authorization_middleware_token(self): # """Test authorization middlewhere when a token is provided""" # pass ``` #### File: api/objects/commit.py ```python import graphene from gtmcore.workflows.gitlab import GitLabManager from gtmcore.inventory.inventory import InventoryManager from gtmcore.inventory.branching import BranchManager from lmsrvcore.auth.identity import parse_token from lmsrvcore.auth.user import get_logged_in_username from lmsrvcore.api.interfaces import GitCommit, GitRepository class LabbookCommit(graphene.ObjectType, interfaces=(graphene.relay.Node, GitRepository, GitCommit)): """An object representing a commit to a LabBook""" @classmethod def get_node(cls, info, id): """Method to resolve the object based on it's Node ID""" # Parse the key owner, name, hash_str = id.split("&") return LabbookCommit(id=f"{owner}&{name}&{hash_str}", name=name, owner=owner, hash=hash_str) def resolve_id(self, info): """Resolve the unique Node id for this object""" if not self.id: if not self.owner or not self.name or not self.hash: raise ValueError("Resolving a LabbookCommit Node ID requires owner, name, and hash to be set") self.id = f"{self.owner}&{self.name}&{self.hash}" def resolve_short_hash(self, info): """Resolve the short_hash field""" return self.hash[:8] def resolve_committed_on(self, info): """Resolve the committed_on field""" return info.context.labbook_loader.load(f"{get_logged_in_username()}&{self.owner}&{self.name}").then( lambda labbook: labbook.git.repo.commit(self.hash).committed_datetime.isoformat()) class Branch(graphene.ObjectType, interfaces=(graphene.relay.Node, GitRepository)): """ Represents a branch in the repo """ branch_name = graphene.String(required=True) # If true, indicates this branch is currently checked out is_active = graphene.Boolean() # Indicates whether this branch exists in the local repo is_local = graphene.Boolean() # Indicates whether this branch exists remotely is_remote = graphene.Boolean() # Indicates whether this branch can be merged into the current active branch is_mergeable = graphene.Boolean() # Count of commits on remote not present in local branch commits_behind = graphene.Int() # Count of commits on local branch not present in remote. commits_ahead = graphene.Int() @classmethod def get_node(cls, info, id): owner, labbook_name, branch_name = id.split('&') return Branch(owner=owner, name=labbook_name, branch_name=branch_name) def resolve_id(self, info): return '&'.join((self.owner, self.name, self.branch_name)) def resolve_is_active(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) return BranchManager(lb).active_branch == self.branch_name def resolve_is_local(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) return self.branch_name in BranchManager(lb).branches_local def resolve_is_remote(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) return self.branch_name in BranchManager(lb).branches_remote def resolve_is_mergeable(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) mergeable = self.branch_name in BranchManager(lb).branches_local \ and self.branch_name != BranchManager(lb).active_branch return mergeable @classmethod def _configure_git(cls, lb, info) -> GitLabManager: # Extract valid Bearer token # TODO - This code is duplicated all over the place, must be refactored. token = None if hasattr(info.context.headers, 'environ'): if "HTTP_AUTHORIZATION" in info.context.headers.environ: token = parse_token(info.context.headers.environ["HTTP_AUTHORIZATION"]) if not token: raise ValueError("Authorization header not provided. " "Must have a valid session to query for collaborators") default_remote = lb.client_config.config['git']['default_remote'] admin_service = None for remote in lb.client_config.config['git']['remotes']: if default_remote == remote: admin_service = lb.client_config.config['git']['remotes'][remote]['admin_service'] break if not admin_service: raise ValueError('admin_service could not be found') # Configure git creds mgr = GitLabManager(default_remote, admin_service, access_token=token) mgr.configure_git_credentials(default_remote, get_logged_in_username()) return mgr def resolve_commits_ahead(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) self._configure_git(lb, info) bm = BranchManager(lb) return bm.get_commits_ahead(branch_name=self.branch_name) def resolve_commits_behind(self, info): lb = InventoryManager().load_labbook(get_logged_in_username(), self.owner, self.name) self._configure_git(lb, info) bm = BranchManager(lb) return bm.get_commits_behind(branch_name=self.branch_name) ``` #### File: lmsrvlabbook/tests/int_labbook_mutations.py ```python import multiprocessing import os import pprint import pytest import shutil import time from mock import patch import requests from gtmcore.environment import ComponentManager from gtmcore.dispatcher import Dispatcher, JobKey from gtmcore.inventory.inventory import InventoryManager from lmsrvlabbook.tests.fixtures import fixture_working_dir_env_repo_scoped, fixture_working_dir from gtmcore.fixtures import ENV_UNIT_TEST_REPO, ENV_UNIT_TEST_BASE, ENV_UNIT_TEST_REV import service @pytest.fixture() def start_server(): pass class SampleMockObject(object): def method_to_mock(self): with open('/tmp/cats', 'w') as f: f.write("If you see this file, things didn't work") def mocky(self): with open('/tmp/dogs', 'w') as f: f.write("This indicates the mocking in a subprocess worked!") def invoker(): return SampleMockObject().method_to_mock() @pytest.fixture(scope="session") def pause(): time.sleep(3) class TestLabbookMutation(object): def test_mocking_in_subprocess(self): # This test should remain to validate that mocking applies to classes # loaded by a sub-process of this pytest process. if os.path.exists('/tmp/cats'): os.remove('/tmp/cats') if os.path.exists('/tmp/dogs'): os.remove('/tmp/dogs') with patch.object(SampleMockObject, 'method_to_mock', mocky): assert not os.path.exists('/tmp/cats') proc = multiprocessing.Process(target=invoker) proc.daemon = True proc.start() time.sleep(1) assert not os.path.exists('/tmp/cats') assert os.path.exists('/tmp/dogs') def test_launch_api_server(self, pause, fixture_working_dir_env_repo_scoped): proc = multiprocessing.Process(target=service.main, kwargs={'debug': False}) proc.daemon = True proc.start() time.sleep(4) assert proc.is_alive() proc.terminate() def test_insert_file(self, fixture_working_dir_env_repo_scoped): # TODO - Pending on integration tests working. pass def test_export_and_import_lb(self, fixture_working_dir_env_repo_scoped): api_server_proc = multiprocessing.Process(target=service.main, kwargs={'debug': False}) api_server_proc.daemon = True api_server_proc.start() assert api_server_proc.is_alive() time.sleep(5) assert api_server_proc.is_alive() # Make and validate request assert api_server_proc.is_alive() lb_name = "mutation-export-import-unittest" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook("default", "default", lb_name, description="Import/Export Mutation Testing.") cm = ComponentManager(lb) cm.add_base(ENV_UNIT_TEST_REPO, 'ut-busybox', 0) assert api_server_proc.is_alive() export_query = """ mutation export { exportLabbook(input: { owner: "default", labbookName: "%s" }) { jobKey } } """ % lb.name r = fixture_working_dir_env_repo_scoped[2].execute(export_query) pprint.pprint(r) # Sleep while the background job completes, and then delete new lb. time.sleep(5) d = Dispatcher() job_status = d.query_task(JobKey(r['data']['exportLabbook']['jobKey'])) # Delete existing labbook in file system. shutil.rmtree(lb.root_dir) assert api_server_proc.is_alive() assert job_status.status == 'finished' assert not os.path.exists(lb.root_dir) assert os.path.exists(job_status.result) pprint.pprint(job_status.result) if os.path.exists(os.path.join('/tmp', os.path.basename(job_status.result))): os.remove(os.path.join('/tmp', os.path.basename(job_status.result))) new_path = shutil.move(job_status.result, '/tmp') # Now, import the labbook that was just exported. export_query = """ mutation import { importLabbook(input: { }) { jobKey } } """ files = {'uploadFile': open(new_path, 'rb')} qry = {"query": export_query} assert api_server_proc.is_alive() r = requests.post('http://localhost:10001/labbook/', data=qry, files=files) time.sleep(0.5) pprint.pprint(r) assert 'errors' not in r time.sleep(2) ``` #### File: lmsrvlabbook/tests/test_dataloader_package.py ```python import pytest import os from lmsrvlabbook.tests.fixtures import fixture_working_dir, build_image_for_jupyterlab from promise import Promise from lmsrvlabbook.dataloader.package import PackageLatestVersionLoader class TestDataloaderPackage(object): def test_load_one_pip(self, build_image_for_jupyterlab): """Test loading 1 package""" key = "pip&gtmunit1" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] loader = PackageLatestVersionLoader([key], lb, username) promise1 = loader.load(key) assert isinstance(promise1, Promise) pkg = promise1.get() assert pkg == '0.12.4' def test_load_many_pip(self, build_image_for_jupyterlab): """Test loading many labbooks""" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] keys = ["pip&gtmunit1", "pip&gtmunit2", "pip&gtmunit3"] loader = PackageLatestVersionLoader(keys, lb, username) promise1 = loader.load_many(keys) assert isinstance(promise1, Promise) version_list = promise1.get() assert len(version_list) == 3 assert version_list[0] == "0.12.4" assert version_list[1] == "12.2" assert version_list[2] == "5.0" def test_load_many_conda(self, build_image_for_jupyterlab): """Test loading many labbooks""" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] keys = ["conda3&cdutil", "conda3&python-coveralls", "conda3&nltk"] loader = PackageLatestVersionLoader(keys, lb, username) promise1 = loader.load_many(keys) assert isinstance(promise1, Promise) version_list = promise1.get() assert len(version_list) == 3 assert version_list[0] == "8.1" assert version_list[1] == "2.9.1" assert version_list[2] == "3.2.5" def test_load_many_conda2(self, build_image_for_jupyterlab): """Test loading many labbooks""" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] keys = ["conda3&cdutil", "conda3&python-coveralls", "conda3&nltk"] loader = PackageLatestVersionLoader(keys, lb, username) promise1 = loader.load_many(keys) assert isinstance(promise1, Promise) version_list = promise1.get() assert len(version_list) == 3 assert version_list[0] == "8.1" assert version_list[1] == "2.9.1" assert version_list[2] == "3.2.5" def test_load_many_mixed(self, build_image_for_jupyterlab): """Test loading many labbooks""" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] keys = ["conda3&cdutil", "pip&gtmunit1", "conda3&nltk"] loader = PackageLatestVersionLoader(keys, lb, username) promise1 = loader.load_many(keys) assert isinstance(promise1, Promise) version_list = promise1.get() assert len(version_list) == 3 assert version_list[0] == "8.1" assert version_list[1] == "0.12.4" assert version_list[2] == "3.2.5" def test_load_invalid_package(self, build_image_for_jupyterlab): """Test loading many labbooks""" lb, username = build_image_for_jupyterlab[0], build_image_for_jupyterlab[5] keys = ["pip&scipysdfsdfs", "<KEY>"] loader = PackageLatestVersionLoader(keys, lb, username) promise1 = loader.load_many(keys) assert isinstance(promise1, Promise) with pytest.raises(Exception): version_list = promise1.get() ``` #### File: lmsrvlabbook/tests/test_dataset_collaborator_mutations.py ```python import responses from werkzeug.test import EnvironBuilder from werkzeug.wrappers import Request from lmsrvlabbook.tests.fixtures import fixture_working_dir import pytest from gtmcore.inventory.inventory import InventoryManager @pytest.fixture() def mock_create_dataset(fixture_working_dir): # Create a labbook in the temporary directory im = InventoryManager(fixture_working_dir[0]) ds = im.create_dataset("default", "default", "dataset1", storage_type="gigantum_object_v1", description="Test labbook 1") responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects?search=dataset1', json=[{ "id": 22, "description": "", }], status=200, match_querystring=True) yield fixture_working_dir class TestDatasetCollaboratorMutations(object): @responses.activate def test_add_collaborator(self, mock_create_dataset): """Test adding a collaborator to a dataset""" # Setup REST mocks responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "<NAME>", "username": "default", "state": "active", "access_level": 30 } ], status=200) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json={ "id": 100, "name": "<NAME>", "username": "default", "state": "active", }, status=201) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None }, { "id": 100, "name": "<NAME>", "username": "person100", "access_level": 30, "expires_at": None } ], status=200) # Mock the request context so a fake authorization header is present builder = EnvironBuilder(path='/labbook', method='POST', headers={'Authorization': 'Bearer AJDFHASD'}) env = builder.get_environ() req = Request(environ=env) query = """ mutation AddCollaborator { addDatasetCollaborator( input: { owner: "default", datasetName: "dataset1", username: "default" permissions: "readwrite" }) { updatedDataset { collaborators { collaboratorUsername } canManageCollaborators } } } """ r = mock_create_dataset[2].execute(query, context_value=req) assert 'errors' not in r assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][0]['collaboratorUsername'] == 'janed' assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][1]['collaboratorUsername'] == 'person100' assert r['data']['addDatasetCollaborator']['updatedDataset']['canManageCollaborators'] is False @responses.activate def test_add_collaborator_as_owner(self, mock_create_dataset): """Test adding a collaborator to a LabBook""" # Setup REST mocks responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "<NAME>", "username": "default", "state": "active", } ], status=200) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json={ "id": 100, "name": "<NAME>", "username": "default", "state": "active", }, status=201) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members/100', status=204) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json=[ { "id": 29, "name": "Default User", "username": "default", "access_level": 40, "expires_at": None }, { "id": 100, "name": "<NAME>", "username": "person100", "access_level": 30, "expires_at": None } ], status=200) # Mock the request context so a fake authorization header is present builder = EnvironBuilder(path='/labbook', method='POST', headers={'Authorization': 'Bearer AJDFHASD'}) env = builder.get_environ() req = Request(environ=env) query = """ mutation AddCollaborator { addDatasetCollaborator( input: { owner: "default", datasetName: "dataset1", username: "default" permissions: "owner" }) { updatedDataset { collaborators { collaboratorUsername } canManageCollaborators } } } """ r = mock_create_dataset[2].execute(query, context_value=req) assert 'errors' not in r assert r['data']['addDatasetCollaborator']['updatedDataset']['canManageCollaborators'] is True assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][0]['collaboratorUsername'] == 'default' assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][1]['collaboratorUsername'] == 'person100' @responses.activate def test_delete_collaborator(self, mock_create_dataset): """Test deleting a collaborator from a LabBook""" # Setup REST mocks responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "<NAME>", "username": "default", "state": "active", } ], status=200) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members/100', status=204) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None } ], status=200) # Mock the request context so a fake authorization header is present builder = EnvironBuilder(path='/labbook', method='DELETE', headers={'Authorization': 'Bearer AJDFHASD'}) env = builder.get_environ() req = Request(environ=env) query = """ mutation DeleteCollaborator { deleteDatasetCollaborator( input: { owner: "default", datasetName: "dataset1", username: "default" }) { updatedDataset { collaborators { collaboratorUsername } } } } """ r = mock_create_dataset[2].execute(query, context_value=req) assert 'errors' not in r assert r['data']['deleteDatasetCollaborator']['updatedDataset']['collaborators'][0]['collaboratorUsername'] == 'janed' @responses.activate def test_change_collaborator_permissions(self, mock_create_dataset): """Test adding a collaborator to a dataset""" # Setup REST mocks responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "<NAME>", "username": "default", "state": "active", "access_level": 30 } ], status=200) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json={ "username": "default", "access_level": 30, }, status=201) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None }, { "id": 100, "name": "<NAME>", "username": "default", "access_level": 30, "expires_at": None } ], status=200) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members/100', status=204) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json={ "username": "default", "access_level": 20, }, status=201) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/default%2Fdataset1/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None }, { "id": 100, "name": "<NAME>", "username": "default", "access_level": 20, "expires_at": None } ], status=200) # Mock the request context so a fake authorization header is present builder = EnvironBuilder(path='/labbook', method='POST', headers={'Authorization': 'Bearer AJDFHASD'}) env = builder.get_environ() req = Request(environ=env) query = """ mutation AddCollaborator { addDatasetCollaborator( input: { owner: "default", datasetName: "dataset1", username: "default" permissions: "readwrite" }) { updatedDataset { collaborators { collaboratorUsername } canManageCollaborators } } } """ r = mock_create_dataset[2].execute(query, context_value=req) assert 'errors' not in r assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][0]['collaboratorUsername'] == 'janed' assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][1]['collaboratorUsername'] == 'default' assert r['data']['addDatasetCollaborator']['updatedDataset']['canManageCollaborators'] is False query = """ mutation AddCollaborator { addDatasetCollaborator( input: { owner: "default", datasetName: "dataset1", username: "default" permissions: "readonly" }) { updatedDataset { collaborators { collaboratorUsername } canManageCollaborators } } } """ r = mock_create_dataset[2].execute(query, context_value=req) assert 'errors' not in r assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][0]['collaboratorUsername'] == 'janed' assert r['data']['addDatasetCollaborator']['updatedDataset']['collaborators'][1]['collaboratorUsername'] == 'default' assert r['data']['addDatasetCollaborator']['updatedDataset']['canManageCollaborators'] is False ``` #### File: lmsrvlabbook/tests/test_dataset_files_queries.py ```python import pytest import os from snapshottest import snapshot from lmsrvlabbook.tests.fixtures import fixture_single_dataset class TestDatasetFilesQueries(object): def test_get_dataset_files(self, fixture_single_dataset, snapshot): query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles(first: 2) { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles(first: 1, after: "MQ==") { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles(first: 100, after: "MQ==") { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) def test_get_dataset_files_missing(self, fixture_single_dataset, snapshot): query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) ds = fixture_single_dataset[3] cache_mgr = fixture_single_dataset[4] revision = ds.git.repo.head.commit.hexsha os.remove(os.path.join(cache_mgr.cache_root, revision, 'test1.txt')) os.remove(os.path.join(cache_mgr.cache_root, revision, 'test2.txt')) query = """{ dataset(name: "test-dataset", owner: "default") { id name description allFiles { edges{ node { key isDir isFavorite isLocal size } cursor } pageInfo{ hasNextPage hasPreviousPage endCursor } } } } """ r = fixture_single_dataset[2].execute(query) assert 'errors' not in r snapshot.assert_match(r) ``` #### File: lmsrvlabbook/tests/test_dataset_upload_files_mutations.py ```python import os import io import math import tempfile import pytest from graphene.test import Client from werkzeug.datastructures import FileStorage from gtmcore.inventory.inventory import InventoryManager from gtmcore.dataset.cache.filesystem import HostFilesystemCache from gtmcore.dataset.manifest import Manifest from lmsrvcore.middleware import DataloaderMiddleware from lmsrvlabbook.tests.fixtures import fixture_working_dir @pytest.fixture() def mock_create_dataset(fixture_working_dir): # Create a dataset in the temporary directory im = InventoryManager(fixture_working_dir[0]) ds = im.create_dataset("default", "default", "dataset1", storage_type="gigantum_object_v1", description="my dataset") # name of the config file, temporary working directory, the schema yield fixture_working_dir class TestDatasetUploadFilesMutations(object): def test_add_file(self, mock_create_dataset): """Test adding a new file to a labbook""" class DummyContext(object): def __init__(self, file_handle): self.dataset_loader = None self.files = {'uploadChunk': file_handle} client = Client(mock_create_dataset[3], middleware=[DataloaderMiddleware()]) # Create file to upload test_file = os.path.join(tempfile.gettempdir(), "myValidFile.dat") est_size = 9000000 try: os.remove(test_file) except: pass with open(test_file, 'wb') as tf: tf.write(os.urandom(est_size)) new_file_size = os.path.getsize(tf.name) # Get upload params chunk_size = 4194000 file_info = os.stat(test_file) file_size = int(file_info.st_size / 1000) total_chunks = int(math.ceil(file_info.st_size / chunk_size)) ds = InventoryManager(mock_create_dataset[0]).load_dataset('default', 'default', 'dataset1') fsc = HostFilesystemCache(ds, 'default') target_file = os.path.join(fsc.current_revision_dir, "myValidFile.dat") txid = "000-unitest-transaction" with open(test_file, 'rb') as tf: # Check for file to exist (shouldn't yet) assert os.path.exists(target_file) is False for chunk_index in range(total_chunks): # Upload a chunk chunk = io.BytesIO() chunk.write(tf.read(chunk_size)) chunk.seek(0) file = FileStorage(chunk) query = f""" mutation addDatasetFile{{ addDatasetFile(input:{{owner:"default", datasetName: "dataset1", filePath: "myValidFile.dat", transactionId: "{txid}", chunkUploadParams:{{ uploadId: "fdsfdsfdsfdfs", chunkSize: {chunk_size}, totalChunks: {total_chunks}, chunkIndex: {chunk_index}, fileSizeKb: {file_size}, filename: "{os.path.basename(test_file)}" }} }}) {{ newDatasetFileEdge {{ node{{ id key isDir size }} }} }} }} """ r = client.execute(query, context_value=DummyContext(file)) assert 'errors' not in r # So, these will only be populated once the last chunk is uploaded. Will be None otherwise. assert r['data']['addDatasetFile']['newDatasetFileEdge']['node']['isDir'] is False assert r['data']['addDatasetFile']['newDatasetFileEdge']['node']['key'] == 'myValidFile.dat' assert r['data']['addDatasetFile']['newDatasetFileEdge']['node']['size'] == f"{new_file_size}" # When done uploading, file should exist in the labbook assert os.path.exists(target_file) assert os.path.isfile(target_file) complete_query = f""" mutation completeQuery {{ completeDatasetUploadTransaction(input: {{ owner: "default", datasetName: "dataset1", transactionId: "{txid}" }}) {{ success }} }} """ r = client.execute(complete_query, context_value=DummyContext(file)) assert 'errors' not in r m = Manifest(ds, 'default') status = m.status() assert len(status.created) == 0 assert len(status.modified) == 0 assert len(status.deleted) == 0 assert 'Uploaded 1 new file(s)' in ds.git.log()[0]['message'] def test_add_file_errors(self, mock_create_dataset, snapshot): """Test new file error handling""" class DummyContext(object): def __init__(self, file_handle): self.labbook_loader = None self.files = {'blah': file_handle} client = Client(mock_create_dataset[3]) query = f""" mutation addDatasetFile{{ addDatasetFile(input:{{owner:"default", datasetName: "dataset1", filePath: "myValidFile.dat", transactionId: "adsfasdfasdf", chunkUploadParams:{{ uploadId: "fdsfdsfdsfdfs", chunkSize: 200, totalChunks: 2, chunkIndex: 0, fileSizeKb: 6777, filename: "asdfh" }} }}) {{ newDatasetFileEdge {{ node{{ id key isDir size }} }} }} }} """ # Fail because no file r = client.execute(query, context_value=DummyContext(None)) assert 'errors' in r ``` #### File: lmsrvlabbook/tests/test_environment_component_mutations.py ```python import pytest import yaml import os import graphql from snapshottest import snapshot from lmsrvlabbook.tests.fixtures import fixture_working_dir_env_repo_scoped from gtmcore.inventory.inventory import InventoryManager class TestAddComponentMutations(object): def test_add_package(self, fixture_working_dir_env_repo_scoped, snapshot): """Test listing labbooks""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'catbook-package-tester', description="LB to test package mutation") # Add a base image pkg_query = """ mutation myPkgMutation { addPackageComponents (input: { owner: "default", labbookName: "catbook-package-tester", packages: [{manager: "conda3", package: "python-coveralls", version: "2.9.1"}] }) { clientMutationId newPackageComponentEdges { node{ id manager package version fromBase } cursor } } } """ snapshot.assert_match(fixture_working_dir_env_repo_scoped[2].execute(pkg_query)) def test_add_multiple_packages(self, fixture_working_dir_env_repo_scoped, snapshot): """Test listing labbooks""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'catbook-package-tester-multi', description="LB to test package mutation") labbook_dir = lb.root_dir # Add a base image pkg_query = """ mutation myPkgMutation { addPackageComponents (input: { owner: "default", labbookName: "catbook-package-tester-multi", packages: [{manager: "pip3", package: "gtmunit1", version: "0.12.4"}, {manager: "pip3", package: "gtmunit2", version: "1.14.1"}] }) { clientMutationId newPackageComponentEdges { node{ id manager package version fromBase } cursor } } } """ snapshot.assert_match(fixture_working_dir_env_repo_scoped[2].execute(pkg_query)) # Validate the LabBook .gigantum/env/ directory assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager')) is True assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit1.yaml')) assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit2.yaml')) with open(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit1.yaml')) as pkg_yaml: package_info_dict = yaml.safe_load(pkg_yaml) assert package_info_dict['package'] == 'gtmunit1' assert package_info_dict['manager'] == 'pip3' assert package_info_dict['version'] == '0.12.4' assert package_info_dict['from_base'] is False with open(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit2.yaml')) as pkg_yaml: package_info_dict = yaml.safe_load(pkg_yaml) assert package_info_dict['package'] == 'gtmunit2' assert package_info_dict['manager'] == 'pip3' assert package_info_dict['version'] == '1.14.1' assert package_info_dict['from_base'] is False def test_add_packages_multiple_mgr_error(self, fixture_working_dir_env_repo_scoped, snapshot): """Test listing labbooks""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'catbook-package-tester-mgr-errors', description="LB to test package mutation") # Test with version missing pkg_query = """ mutation myPkgMutation { addPackageComponents (input: { owner: "default", labbookName: "catbook-package-tester-mgr-errors", packages: [{manager: "pip3", package: "requests", version: "2.18.4"}, {manager: "conda3", package: "responses", version: "1.4"}] }) { clientMutationId newPackageComponentEdges { node{ id manager package version fromBase } cursor } } } """ result = fixture_working_dir_env_repo_scoped[2].execute(pkg_query) assert "errors" in result assert result['errors'][0]['message'] == 'Only batch add packages via 1 package manager at a time.' def test_add_package_no_version(self, fixture_working_dir_env_repo_scoped, snapshot): """Test adding a package but omitting the version""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'catbook-package-no-version', description="LB to test package mutation") # Add a base image pkg_query = """ mutation myPkgMutation { addPackageComponents (input: { owner: "default", labbookName: "catbook-package-no-version", packages: [{manager: "pip3", package: "gtmunit1"}] }) { clientMutationId newPackageComponentEdges { node{ id manager package version fromBase } cursor } } } """ result = fixture_working_dir_env_repo_scoped[2].execute(pkg_query) assert "errors" in result assert result['errors'][0]['message'] == "'version'" def test_remove_package(self, fixture_working_dir_env_repo_scoped, snapshot): """Test removing a package from a labbook""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'catbook-package-tester-remove', description="LB to test package mutation") labbook_dir = lb.root_dir # Add a pip package pkg_query = """ mutation myPkgMutation { addPackageComponents (input: { owner: "default", labbookName: "catbook-package-tester-remove", packages: [{manager: "pip3", package: "gtmunit1", version: "0.12.4"}, {manager: "pip3", package: "gtmunit2", version: "1.14.1"}] }) { clientMutationId newPackageComponentEdges { node{ id } } } } """ snapshot.assert_match(fixture_working_dir_env_repo_scoped[2].execute(pkg_query)) # Assert that the dependency was added assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit1.yaml')) assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit2.yaml')) # Remove a pip package pkg_query = """ mutation myPkgMutation { removePackageComponents (input: { owner: "default", labbookName: "catbook-package-tester-remove", packages: ["gtmunit2"], manager: "pip3" }) { clientMutationId success } } """ snapshot.assert_match(fixture_working_dir_env_repo_scoped[2].execute(pkg_query)) # Assert that the dependency is gone assert not os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit2.yaml')) assert os.path.exists(os.path.join(labbook_dir, '.gigantum', 'env', 'package_manager', 'pip3_gtmunit1.yaml')) def test_custom_docker_snippet_success(self, fixture_working_dir_env_repo_scoped): """Test adding a custom dependency""" im = InventoryManager(fixture_working_dir_env_repo_scoped[0]) lb = im.create_labbook('default', 'default', 'custom-docker-lb-unittest', description="Testing custom docker and stuff") client = fixture_working_dir_env_repo_scoped[2] query = """ mutation addCustomDocker($labbook_name: String!, $owner: String!, $custom_docker: String!) { addCustomDocker(input: { owner: $owner, labbookName: $labbook_name, dockerContent: $custom_docker }) { updatedEnvironment { dockerSnippet } } } """ vars = {'labbook_name': "custom-docker-lb-unittest", 'owner': 'default', 'custom_docker': "RUN true"} r = client.execute(query, variable_values=vars) assert 'errors' not in r assert r['data']['addCustomDocker']['updatedEnvironment']['dockerSnippet'] == "RUN true" remove_query = """ mutation removeCustomDocker($labbook_name: String!, $owner: String!) { removeCustomDocker(input: { owner: $owner, labbookName: $labbook_name }) { updatedEnvironment { dockerSnippet } } } """ vars = {'labbook_name': "custom-docker-lb-unittest", 'owner': 'default'} r = client.execute(remove_query, variable_values=vars) assert 'errors' not in r assert r['data']['removeCustomDocker']['updatedEnvironment']['dockerSnippet'] == "" ``` #### File: lmsrvlabbook/tests/test_jobstatus_queries.py ```python import pytest import multiprocessing import threading import pprint import time import json from lmsrvlabbook.tests.fixtures import fixture_working_dir from graphene.test import Client import graphene from mock import patch import rq from gtmcore.dispatcher import Dispatcher, jobs from gtmcore.configuration import Configuration @pytest.fixture() def temporary_worker(): """A pytest fixture that creates a temporary directory and a config file to match. Deletes directory after test""" def run_worker(): with rq.Connection(): qs = 'labmanager_unittests' w = rq.Worker(qs) w.work() # This task is used to kill the worker. Sometimes if tests fail the worker runs forever and # holds up the entire process. This gives each test 25 seconds to run before killing the worker # and forcing the test to fail. def watch_proc(p): count = 0 while count < 4: count = count + 1 time.sleep(1) try: p.terminate() except: pass worker_proc = multiprocessing.Process(target=run_worker) worker_proc.start() watchdog_thread = threading.Thread(target=watch_proc, args=(worker_proc,)) watchdog_thread.start() dispatcher = Dispatcher('labmanager_unittests') yield worker_proc, dispatcher class TestLabBookServiceQueries(object): def test_query_finished_task(self, fixture_working_dir, temporary_worker): """Test listing labbooks""" w, d = temporary_worker job_id = d.dispatch_task(jobs.test_exit_success) time.sleep(1) query = """ { jobStatus(jobId: "%s") { result status jobMetadata failureMessage startedAt finishedAt } } """ % job_id.key_str try: r = fixture_working_dir[2].execute(query) assert 'errors' not in r assert int(r['data']['jobStatus']['result']) == 0 assert r['data']['jobStatus']['status'] == 'finished' assert r['data']['jobStatus']['startedAt'] is not None assert r['data']['jobStatus']['failureMessage'] is None assert r['data']['jobStatus']['finishedAt'] assert r['data']['jobStatus']['jobMetadata'] == '{}' except: w.terminate() raise w.terminate() def test_query_failed_task(self, fixture_working_dir, temporary_worker): """Test listing labbooks""" w, d = temporary_worker job_id = d.dispatch_task(jobs.test_exit_fail) time.sleep(1) query = """ { jobStatus(jobId: "%s") { result status jobMetadata failureMessage startedAt finishedAt } } """ % job_id try: r = fixture_working_dir[2].execute(query) assert 'errors' not in r assert r['data']['jobStatus']['result'] is None assert r['data']['jobStatus']['status'] == 'failed' assert r['data']['jobStatus']['failureMessage'] == \ 'Exception: Intentional Exception from job `test_exit_fail`' assert r['data']['jobStatus']['startedAt'] is not None assert r['data']['jobStatus']['finishedAt'] is not None # Assert the following dict is empty assert not json.loads(r['data']['jobStatus']['jobMetadata']) except: w.terminate() raise w.terminate() def test_query_started_task(self, fixture_working_dir, temporary_worker): """Test listing labbooks""" w, d = temporary_worker job_id = d.dispatch_task(jobs.test_sleep, args=(2,)) time.sleep(1) query = """ { jobStatus(jobId: "%s") { result status jobMetadata failureMessage startedAt finishedAt } } """ % job_id try: r = fixture_working_dir[2].execute(query) pprint.pprint(r) assert 'errors' not in r assert r['data']['jobStatus']['result'] is None assert r['data']['jobStatus']['status'] == 'started' assert r['data']['jobStatus']['failureMessage'] is None assert r['data']['jobStatus']['startedAt'] is not None assert json.loads(r['data']['jobStatus']['jobMetadata'])['sample'] == 'test_sleep metadata' except: time.sleep(3) w.terminate() raise time.sleep(3) w.terminate() def test_query_queued_task(self, fixture_working_dir, temporary_worker): """Test listing labbooks""" w, d = temporary_worker job_id1 = d.dispatch_task(jobs.test_sleep, args=(2,)) job_id2 = d.dispatch_task(jobs.test_sleep, args=(2,)) time.sleep(0.5) query = """ { jobStatus(jobId: "%s") { result status jobMetadata failureMessage startedAt finishedAt } } """ % job_id2 try: r = fixture_working_dir[2].execute(query) pprint.pprint(r) assert 'errors' not in r assert r['data']['jobStatus']['result'] is None assert r['data']['jobStatus']['status'] == 'queued' assert r['data']['jobStatus']['failureMessage'] is None assert r['data']['jobStatus']['startedAt'] is None except: time.sleep(5) w.terminate() raise time.sleep(5) w.terminate() ``` #### File: activity/tests/test_activitydetailrecord.py ```python import pytest import json from gtmcore.activity.records import ActivityDetailRecord, ActivityDetailType, ActivityAction class TestActivityDetailRecord(object): def test_constructor(self): """Test the constructor""" adr = ActivityDetailRecord(ActivityDetailType.CODE) assert type(adr) == ActivityDetailRecord assert adr.type == ActivityDetailType.CODE assert adr.key is None assert adr.show is True assert adr.importance == 0 assert adr.tags == [] assert adr.data == {} adr = ActivityDetailRecord(ActivityDetailType.CODE, key="my_key", show=False, importance=23) assert type(adr) == ActivityDetailRecord assert adr.type == ActivityDetailType.CODE assert adr.key == "my_key" assert adr.show is False assert adr.importance == 23 assert adr.tags == [] assert adr.data == {} def test_log_str_prop(self): """Test the log string property""" adr = ActivityDetailRecord(ActivityDetailType.CODE_EXECUTED, key="my_key", show=False, importance=233) assert adr.log_str == "3,0,233,my_key,0" adr = ActivityDetailRecord(ActivityDetailType.OUTPUT_DATA, key="my_key", show=True, importance=25) assert adr.log_str == "1,1,25,my_key,0" adr = ActivityDetailRecord(ActivityDetailType.OUTPUT_DATA, key="my_key", show=True, importance=25, action=ActivityAction.EDIT) assert adr.log_str == "1,1,25,my_key,2" def test_from_log_str_legacy(self): """Test the creating from a log string""" adr = ActivityDetailRecord.from_log_str("2,1,25,my_key") assert type(adr) == ActivityDetailRecord assert adr.type == ActivityDetailType.RESULT assert adr.key == "my_key" assert adr.show is True assert adr.importance == 25 assert adr.tags == [] assert adr.data == {} assert adr.action == ActivityAction.NOACTION def test_from_log_str(self): """Test the creating from a log string""" adr = ActivityDetailRecord.from_log_str("2,1,25,my_key,3") assert type(adr) == ActivityDetailRecord assert adr.type == ActivityDetailType.RESULT assert adr.key == "my_key" assert adr.show is True assert adr.importance == 25 assert adr.tags == [] assert adr.data == {} assert adr.action == ActivityAction.DELETE def test_add_value(self): """Test adding values to the detail object""" adr = ActivityDetailRecord(ActivityDetailType.CODE_EXECUTED, key="my_key2") adr.add_value("text/plain", "this is some data") adr.add_value("text/html", "<p>this is some data<\p>") assert len(adr.data.keys()) == 2 assert adr.data["text/plain"] == "this is some data" assert adr.data["text/html"] == "<p>this is some data<\p>" with pytest.raises(ValueError): adr.add_value("text/html", "<p>this is some data<\p>") def test_data_size(self): """Test getting the size of details stored""" adr = ActivityDetailRecord(ActivityDetailType.CODE_EXECUTED, key="my_key2") assert adr.data_size == 0 adr.add_value("text/plain", "0000000000") assert adr.data_size == 10 adr.add_value("text/html", "0000000000") assert adr.data_size == 20 def test_to_dict(self): """Test converting to a dictionary""" adr = ActivityDetailRecord(ActivityDetailType.CODE_EXECUTED, key="my_key2", show=True, importance=25) adr.add_value("text/plain", "this is some data") adr.add_value("text/html", "<p>this is some data<\p>") dict_obj = adr.to_dict() assert type(dict_obj) == dict assert dict_obj['type'] == 3 assert dict_obj['action'] == 0 assert dict_obj['importance'] == 25 assert dict_obj['show'] == 1 assert dict_obj['data'] == {"text/plain": "this is some data", "text/html": "<p>this is some data<\p>"} def test_to_bytes_from_bytes(self): """Test converting to a byte array""" adr = ActivityDetailRecord(ActivityDetailType.CODE_EXECUTED, key="my_key3", show=True, importance=225, action=ActivityAction.CREATE) adr.add_value("text/plain", "this is some data") byte_array_no_compression = adr.to_bytes(compress=False) assert type(byte_array_no_compression) == bytes adr2 = ActivityDetailRecord.from_bytes(byte_array_no_compression, decompress=False) assert type(adr2) == ActivityDetailRecord assert adr2.type == ActivityDetailType.CODE_EXECUTED assert adr2.action == ActivityAction.CREATE assert adr2.key is None assert adr2.show is True assert adr2.importance == 225 assert adr2.tags == [] assert adr2.data == {"text/plain": "this is some data"} def test_compression(self): """Test compression on large objects""" adr = ActivityDetailRecord(ActivityDetailType.INPUT_DATA, key="my_ke3", show=True, importance=125) adr.add_value("text/plain", "this is some data00000000000000000000000000000000000" * 1000) byte_array_no_compression = adr.to_bytes(compress=False) assert type(byte_array_no_compression) == bytes adr2 = ActivityDetailRecord(ActivityDetailType.INPUT_DATA, key="my_ke3", show=True, importance=125) adr2.add_value("text/plain", "this is some data00000000000000000000000000000000000" * 1000) byte_array_compression = adr2.to_bytes(compress=True) assert type(byte_array_compression) == bytes assert len(byte_array_compression) < len(byte_array_no_compression) adr3 = ActivityDetailRecord.from_bytes(byte_array_compression, decompress=True) assert type(adr3) == ActivityDetailRecord assert adr3.type == ActivityDetailType.INPUT_DATA assert adr3.action == ActivityAction.NOACTION assert adr3.key is None assert adr3.show is True assert adr3.importance == 125 assert adr3.tags == [] assert adr3.data == adr.data def test_to_json(self): """Test converting to json""" adr = ActivityDetailRecord(ActivityDetailType.ENVIRONMENT, key="my_key3", show=True, importance=225) adr.add_value("text/plain", "this is some data") adr_in_json = adr.to_json() assert type(adr_in_json) == str json_dict = json.loads(adr_in_json) assert json_dict['type'] == 0 assert json_dict['importance'] == 225 assert json_dict['show'] is True assert json_dict['data'] == {'text/plain': "this is some data"} def test_jsonify_data(self): """Test converting to json""" adr = ActivityDetailRecord(ActivityDetailType.ENVIRONMENT, key="my_key3fgjg", show=True, importance=45) adr.add_value("text/plain", "this is some data to jsonify") adr.add_value("text/markdown", "this is some data to `jsonify`") data = adr.jsonify_data() assert type(data) == dict assert len(data.keys()) == 2 assert data['text/plain'] == "this is some data to jsonify" assert data['text/markdown'] == "this is some data to `jsonify`" ``` #### File: activity/tests/test_detaildb.py ```python import pytest import os from gtmcore.fixtures import mock_labbook, mock_config_with_detaildb from gtmcore.activity.detaildb import ActivityDetailDB class TestDetailDB(object): def test_constructor(self, mock_labbook): """Test the constructor""" db = ActivityDetailDB(mock_labbook[2].root_dir, mock_labbook[2].checkout_id, 4000000) assert type(db) == ActivityDetailDB assert db.logfile_limit == 4000000 assert db.checkout_id == mock_labbook[2].checkout_id def test_file_number(self, mock_config_with_detaildb): """Test the file_number property""" assert mock_config_with_detaildb[0].file_number == 0 assert mock_config_with_detaildb[0].file_number == 0 def test_file_number_reload(self, mock_config_with_detaildb): """Test the file_number property""" assert mock_config_with_detaildb[0].file_number == 0 mock_config_with_detaildb[0]._write_metadata_file(increment=True) assert mock_config_with_detaildb[0].file_number == 1 # reset locally stored file_number new_detail_db_instance = ActivityDetailDB(mock_config_with_detaildb[1].root_dir, mock_config_with_detaildb[1].checkout_id) assert new_detail_db_instance.file_number == 1 def test_file_number_new_checkout_context(self, mock_config_with_detaildb): """Test the file_number property if a new branch has been created""" assert mock_config_with_detaildb[0].file_number == 0 mock_config_with_detaildb[0]._write_metadata_file(increment=True) assert mock_config_with_detaildb[0].file_number == 1 # reset locally stored file_number by changing the checkout ID mock_config_with_detaildb[0].checkout_id = "adsl;jkadksflj;" assert mock_config_with_detaildb[0].file_number == 0 def test_increment_metadata(self, mock_config_with_detaildb): """Test the file_number property if a new branch has been created""" assert mock_config_with_detaildb[0].file_number == 0 mock_config_with_detaildb[0]._write_metadata_file(increment=False) assert mock_config_with_detaildb[0].file_number == 0 mock_config_with_detaildb[0]._write_metadata_file(increment=True) assert mock_config_with_detaildb[0].file_number == 1 def test_generate_detail_header(self, mock_config_with_detaildb): """Test generating a detail header""" assert mock_config_with_detaildb[0]._generate_detail_header(10, 20) == \ b'__g__lsn\x00\x00\x00\x00\n\x00\x00\x00\x14\x00\x00\x00' # Increment the file number a bunch for _ in range(49): mock_config_with_detaildb[0]._write_metadata_file(increment=True) assert mock_config_with_detaildb[0]._generate_detail_header(511564, 6455412) == \ b'__g__lsn1\x00\x00\x00L\xce\x07\x00t\x80b\x00' def test_parse_detail_header(self, mock_config_with_detaildb): """Test parsing a detail header""" assert mock_config_with_detaildb[0]._parse_detail_header(b'__g__lsn\x00\x00\x00\x00\n\x00\x00\x00\x14\x00\x00\x00') == \ (0, 10, 20) assert mock_config_with_detaildb[0]._parse_detail_header(b'__g__lsn1\x00\x00\x00L\xce\x07\x00t\x80b\x00') == \ (49, 511564, 6455412) def test_parse_detail_key(self, mock_config_with_detaildb): """Test generating a detail key""" basename, detail_header = mock_config_with_detaildb[0]._parse_detail_key('<KEY> assert type(basename) == str assert len(basename) == 36 assert detail_header == b'__g__lsn\x00\x00\x00\x00\n\x00\x00\x00\x14\x00\x00\x00' def test_file_rotate(self, mock_labbook): """Test rotating the file""" db = ActivityDetailDB(mock_labbook[2].root_dir, mock_labbook[2].checkout_id, 2000) fp = db._open_for_append_and_rotate() fp.write(("blah").encode()) fp.close() # assert file exists assert os.path.join(db.root_path, db.basename + '_0') == fp.name assert os.path.exists(os.path.join(db.root_path, db.basename + '_0')) is True assert os.path.exists(os.path.join(db.root_path, db.basename + '_1')) is False fp = db._open_for_append_and_rotate() fp.write(("blah" * 3000).encode()) fp.close() # assert same file exists assert os.path.join(db.root_path, db.basename + '_0') == fp.name assert os.path.exists(os.path.join(db.root_path, db.basename + '_0')) is True assert os.path.exists(os.path.join(db.root_path, db.basename + '_1')) is False fp = db._open_for_append_and_rotate() # assert it rolled assert os.path.join(db.root_path, db.basename + '_1') == fp.name assert os.path.exists(os.path.join(db.root_path, db.basename + '_0')) is True assert os.path.exists(os.path.join(db.root_path, db.basename + '_1')) is True def test_put_get(self, mock_config_with_detaildb): """Test putting and getting a record""" my_val = b'thisisastreamofstuff' detail_key = mock_config_with_detaildb[0].put(my_val) basename, detail_header = mock_config_with_detaildb[0]._parse_detail_key(detail_key) file_num, offset, length = mock_config_with_detaildb[0]._parse_detail_header(detail_header) assert file_num == 0 assert offset == 0 assert length == len(my_val) return_val = mock_config_with_detaildb[0].get(detail_key) assert return_val == my_val def test_put_get_errors(self, mock_config_with_detaildb): """Test putting and getting a record with validation errors""" with pytest.raises(ValueError): detail_key = mock_config_with_detaildb[0].put("astringvalue") with pytest.raises(ValueError): detail_key = mock_config_with_detaildb[0].get(None) with pytest.raises(ValueError): detail_key = mock_config_with_detaildb[0].get("") with pytest.raises(ValueError): detail_key = mock_config_with_detaildb[0].get(b"abytekey") ``` #### File: gtmcore/configuration/utils.py ```python import time import subprocess from typing import List from gtmcore.logging import LMLogger logger = LMLogger.get_logger() def call_subprocess(cmd_tokens: List[str], cwd: str, check: bool = True, shell: bool = False) -> str: """Execute a subprocess call and properly benchmark and log Args: cmd_tokens: List of command tokens, e.g., ['ls', '-la'] cwd: Current working directory check: Raise exception if command fails shell: Run as shell command (not recommended) Returns: Decoded stdout of called process after completing Raises: subprocess.CalledProcessError """ logger.debug(f"Executing `{' '.join(cmd_tokens)}` in {cwd}") start_time = time.time() try: r = subprocess.run(cmd_tokens, cwd=cwd, stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=check, shell=shell) finish_time = time.time() elapsed_time = finish_time - start_time logger.debug(f"Finished command `{' '.join(cmd_tokens)}` in {elapsed_time:.2f}s") if elapsed_time > 1.0: logger.warning(f"Successful command `{' '.join(cmd_tokens)}` took {elapsed_time:.2f}s") return (r.stdout or b"").decode() except subprocess.CalledProcessError as x: fail_time = time.time() - start_time logger.error(f"Command failed `{' '.join(cmd_tokens)}` after {fail_time:.2f}s: " f"stderr={x.stderr}, stdout={x.stdout}") raise ``` #### File: gtmcore/container/core.py ```python import os import docker import docker.errors import hashlib import time import json from typing import Callable, Optional from gtmcore.configuration import get_docker_client, Configuration from gtmcore.logging import LMLogger from gtmcore.inventory.inventory import InventoryManager, InventoryException from gtmcore.container.utils import infer_docker_image_name, ps_search from gtmcore.container.exceptions import ContainerBuildException from gtmcore.dataset.cache import get_cache_manager_class from gtmcore.container.cuda import should_launch_with_cuda_support logger = LMLogger.get_logger() def get_labmanager_ip() -> Optional[str]: """Method to get the monitored lab book container's IP address on the Docker bridge network Returns: str of IP address """ client = get_docker_client() container = [c for c in client.containers.list() if 'gigantum.labmanager' in c.name and 'gmlb-' not in c.name][0] ip = container.attrs['NetworkSettings']['Networks']['bridge']['IPAddress'] logger.info("container {} IP: {}".format(container.name, ip)) return ip def get_container_ip(lb_key: str) -> str: """Return the IP address of the given labbook container""" client = get_docker_client() container = client.containers.get(lb_key) return container.attrs['NetworkSettings']['Networks']['bridge']['IPAddress'] def _get_cached_image(env_dir: str, image_name: str) -> Optional[str]: """ Get Docker image id for the given environment specification (if it exsits). This helps to determine if we can avoid having to rebuild the Docker image by hashing the environemnt specification and determine if it changed. Any change in content or version will cause the checksum to be different, necessitating a rebuild. If there's no change, however, we can avoid potentially costly rebuilds of the image. Args: env_dir: Environment directoryt for a LabBook image_name: Name of the LabBook Docker image Returns: docker image id (Optional) """ # Determine if we need to rebuild by testing if the environment changed cache_dir = '/mnt/gigantum/.labmanager/image-cache' if not os.path.exists(cache_dir): logger.info(f"Making environment cache at {cache_dir}") os.makedirs(cache_dir, exist_ok=True) env_cache_path = os.path.join(cache_dir, f"{image_name}.cache") m = hashlib.sha256() for root, dirs, files in os.walk(env_dir): for f in [n for n in files if '.yaml' in n]: m.update(os.path.join(root, f).encode()) m.update(open(os.path.join(root, f)).read().encode()) env_cksum = m.hexdigest() if os.path.exists(env_cache_path): old_env_cksum = open(env_cache_path).read() else: with open(env_cache_path, 'w') as cfile: cfile.write(env_cksum) return None if env_cksum == old_env_cksum: try: i = get_docker_client().images.get(name=image_name) return i.id except docker.errors.ImageNotFound: pass else: # Env checksum hash is outdated. Remove it. os.remove(env_cache_path) with open(env_cache_path, 'w') as cfile: cfile.write(env_cksum) return None def _remove_docker_image(image_name: str) -> None: try: get_docker_client().images.get(name=image_name) get_docker_client().images.remove(image_name) except docker.errors.ImageNotFound: logger.warning(f"Attempted to delete Docker image {image_name}, but not found") def build_docker_image(root_dir: str, username: str, nocache: bool = False, override_image_tag: Optional[str] = None, feedback_callback: Optional[Callable] = None) -> str: """ Build a new docker image from the Dockerfile at the given directory, give this image the name defined by the image_name argument. Note! This method is static, it should **NOT** use any global variables or any other reference to global state. Also note - This will delete any existing image pertaining to the given labbook. Thus if this call fails, there will be no docker images pertaining to that labbook. Args: root_dir: LabBook root directory (obtained by LabBook.root_dir) override_image_tag: Tag of docker image; in general this should not be explicitly set. username: Username of active user. nocache: If True do not use docker cache. feedback_callback: Optional method taking one argument (a string) to process each line of output Returns: A string container the short docker id of the newly built image. Raises: ContainerBuildException if container build fails. """ if not os.path.exists(root_dir): raise ValueError(f'Expected env directory `{root_dir}` does not exist.') env_dir = os.path.join(root_dir, '.gigantum', 'env') lb = InventoryManager().load_labbook_from_directory(root_dir) # Build image owner = InventoryManager().query_owner(lb) image_name = override_image_tag or infer_docker_image_name(labbook_name=lb.name, owner=owner, username=username) reuse_image_id = _get_cached_image(env_dir, image_name) if reuse_image_id: logger.info(f"Reusing Docker image for {str(lb)}") if feedback_callback: feedback_callback(f"Using cached image {reuse_image_id}") return reuse_image_id try: image_id = None # From: https://docker-py.readthedocs.io/en/stable/api.html#docker.api.build.BuildApiMixin.build # This builds the image and generates output status text. for line in docker.from_env().api.build(path=env_dir, tag=image_name, pull=True, nocache=nocache, forcerm=True): ldict = json.loads(line) stream = (ldict.get("stream") or "").strip() if feedback_callback: feedback_callback(stream) status = (ldict.get("status") or "").strip() if feedback_callback: feedback_callback(status) if 'Successfully built'.lower() in stream.lower(): # When build, final line is in form of "Successfully build 02faas3" # There is no other (simple) way to grab the image ID image_id = stream.split(' ')[-1] except docker.errors.BuildError as e: _remove_docker_image(image_name) raise ContainerBuildException(e) if not image_id: _remove_docker_image(image_name) raise ContainerBuildException(f"Cannot determine docker image on LabBook from {root_dir}") return image_id def start_labbook_container(labbook_root: str, config_path: str, username: str, override_image_id: Optional[str] = None) -> str: """ Start a Docker container from a given image_name. Args: labbook_root: Root dir of labbook config_path: Path to LabBook configuration file. override_image_id: Optional explicit docker image id (do not infer). username: Username of active user. Do not use with override_image_id. Returns: Tuple containing docker container id, dict mapping of exposed ports. Raises: """ if username and override_image_id: raise ValueError('Argument username and override_image_id cannot both be set') lb = InventoryManager(config_file=config_path).load_labbook_from_directory(labbook_root) if not override_image_id: owner = InventoryManager().query_owner(lb) tag = infer_docker_image_name(lb.name, owner, username) else: tag = override_image_id mnt_point = labbook_root.replace('/mnt/gigantum', os.environ['HOST_WORK_DIR']) volumes_dict = { mnt_point: {'bind': '/mnt/labbook', 'mode': 'cached'}, 'labmanager_share_vol': {'bind': '/mnt/share', 'mode': 'rw'} } # Set up additional bind mounts for datasets if needed. submodules = lb.git.list_submodules() for submodule in submodules: try: namespace, dataset_name = submodule['name'].split("&") submodule_dir = os.path.join(lb.root_dir, '.gigantum', 'datasets', namespace, dataset_name) ds = InventoryManager().load_dataset_from_directory(submodule_dir) ds.namespace = namespace cm_class = get_cache_manager_class(ds.client_config) cm = cm_class(ds, username) ds_cache_dir = cm.current_revision_dir.replace('/mnt/gigantum', os.environ['HOST_WORK_DIR']) volumes_dict[ds_cache_dir] = {'bind': f'/mnt/labbook/input/{ds.name}', 'mode': 'ro'} except InventoryException: continue # If re-mapping permissions, be sure to configure the container if 'LOCAL_USER_ID' in os.environ: env_var = [f"LOCAL_USER_ID={os.environ['LOCAL_USER_ID']}"] else: env_var = ["WINDOWS_HOST=1"] # Get resource limits resource_args = dict() memory_limit = lb.client_config.config['container']['memory'] cpu_limit = lb.client_config.config['container']['cpu'] gpu_shared_mem = lb.client_config.config['container']['gpu_shared_mem'] if memory_limit: # If memory_limit not None, pass to Docker to limit memory allocation to container resource_args["mem_limit"] = memory_limit if cpu_limit: # If cpu_limit not None, pass to Docker to limit CPU allocation to container # "nano_cpus" is an integer in factional parts of a CPU resource_args["nano_cpus"] = round(cpu_limit * 1e9) docker_client = get_docker_client() # run with nvidia-docker if we have GPU support on the Host compatible with the project should_run_nvidia, reason = should_launch_with_cuda_support(lb.cuda_version) if should_run_nvidia: logger.info(f"Launching container with GPU support:{reason}") if gpu_shared_mem: resource_args["shm_size"] = gpu_shared_mem container_id = docker_client.containers.run(tag, detach=True, init=True, name=tag, environment=env_var, volumes=volumes_dict, runtime='nvidia', **resource_args).id else: logger.info(f"Launching container without GPU support. {reason}") container_id = docker_client.containers.run(tag, detach=True, init=True, name=tag, environment=env_var, volumes=volumes_dict, **resource_args).id labmanager_ip = "" try: labmanager_ip = get_labmanager_ip() or "" except IndexError: logger.warning("Cannot find labmanager IP") labmanager_ip = labmanager_ip.strip() cmd = f"echo {labmanager_ip} > /home/giguser/labmanager_ip" for timeout in range(20): time.sleep(0.5) if docker_client.containers.get(container_id).status == 'running': r = docker_client.containers.get(container_id).exec_run(f'sh -c "{cmd}"') logger.info(f"Response to write labmanager_ip in {tag}: {r}") break else: logger.error("After 10 seconds could not write IP to labmanager container." f" Container status = {docker_client.containers.get(container_id).status}") return container_id def stop_labbook_container(container_id: str) -> bool: """ Stop a running docker container. Args: container_id: ID of container to stop. Returns True if stopped, False if it was never running. """ try: client = get_docker_client() build_container = client.containers.get(container_id) build_container.stop(timeout=10) build_container.remove() return True except docker.errors.NotFound: # No container to stop, but no reason to throw an exception return False ``` #### File: gtmcore/dataset/dataset.py ```python import os import re import yaml import datetime import json from typing import (Dict, Optional) from gtmcore.gitlib import GitAuthor from gtmcore.dataset.schemas import validate_dataset_schema from gtmcore.activity import ActivityStore, ActivityRecord, ActivityDetailType, ActivityType,\ ActivityAction, ActivityDetailRecord from gtmcore.dataset.storage import get_storage_backend, StorageBackend from gtmcore.inventory.repository import Repository class Dataset(Repository): """Class representing a single LabBook""" _default_activity_type = ActivityType.DATASET _default_activity_detail_type = ActivityDetailType.DATASET _default_activity_section = "Dataset Root" def __init__(self, config_file: Optional[str] = None, namespace: Optional[str] = None, author: Optional[GitAuthor] = None) -> None: super().__init__(config_file, author) # TODO - Need a more formalizes solution for differentiating Datasets from other repo types self.client_config.config['git']['lfs_enabled'] = False self.namespace = namespace self._backend: Optional[StorageBackend] = None def __str__(self): if self._root_dir: return f'<Dataset at `{self._root_dir}`>' else: return f'<Dataset UNINITIALIZED>' def __eq__(self, other): return isinstance(other, Dataset) and other.root_dir == self.root_dir @property def id(self) -> str: if self._data: return self._data["id"] else: raise ValueError("No ID assigned to the Dataset.") @property def name(self) -> str: if self._data: return self._data["name"] else: raise ValueError("No name assigned to the Dataset.") @name.setter def name(self, value: str) -> None: if not value: raise ValueError("value cannot be None or empty") if not self._data: self._data = {'name': value} else: self._data["name"] = value self._validate_gigantum_data() # Update data file self._save_gigantum_data() # Rename directory if self._root_dir: base_dir, _ = self._root_dir.rsplit(os.path.sep, 1) os.rename(self._root_dir, os.path.join(base_dir, value)) else: raise ValueError("Dataset root dir not specified. Failed to configure git.") # Update the root directory to the new directory name self._set_root_dir(os.path.join(base_dir, value)) @property def creation_date(self) -> Optional[datetime.datetime]: """Get creation date from the gigantum.yaml file""" if self._data: created_at = self._data["created_on"] d = datetime.datetime.strptime(created_at, '%Y-%m-%dT%H:%M:%S.%f') d = d.replace(tzinfo=datetime.timezone.utc) # Make tz aware so rendering in API is consistent d = d.replace(microsecond=0) # Make all times consistent return d else: raise ValueError("No creation date set.") @property def build_details(self) -> str: return self._data["build_info"] @property def description(self) -> str: if self._data: return self._data["description"] else: raise ValueError("No description assigned to this Dataset.") @description.setter def description(self, value) -> None: if not self._data: self._data = {'description': value} else: self._data["description"] = value self._save_gigantum_data() @property def storage_type(self) -> str: if self._data: return self._data["storage_type"] else: raise ValueError("No storage type assigned to this Dataset.") @storage_type.setter def storage_type(self, value) -> None: if not self._data: self._data = {'storage_type': value} else: self._data["storage_type"] = value self._save_gigantum_data() def is_managed(self) -> bool: """Property to check if the dataset is managed""" is_managed = self.backend.metadata.get("is_managed") return is_managed if is_managed is not None else False @property def backend(self) -> StorageBackend: """Property to access the storage backend for this dataset""" if not self._backend: self._backend = get_storage_backend(self.storage_type) self._backend.configuration = self.backend_config return self._backend @property def backend_config(self) -> dict: """Property to load the storage.json file""" config_file = os.path.join(self.root_dir, ".gigantum", "backend.json") if os.path.exists(config_file): with open(os.path.join(self.root_dir, ".gigantum", "backend.json"), 'rt') as sf: data = json.load(sf) else: data = dict() return data @backend_config.setter def backend_config(self, data: dict) -> None: """Save storage config data""" if self._backend: self._backend.configuration = data # Remove defaults set at runtime that shouldn't be persisted if "username" in data: del data["username"] if "gigantum_bearer_token" in data: del data["gigantum_bearer_token"] if "gigantum_id_token" in data: del data["gigantum_id_token"] config_file = os.path.join(self.root_dir, ".gigantum", "backend.json") with open(config_file, 'wt') as sf: json.dump(data, sf, indent=2) self.git.add(config_file) cm = self.git.commit("Updating backend config") ar = ActivityRecord(ActivityType.DATASET, message="Updated Dataset storage backend configuration", show=True, importance=255, linked_commit=cm.hexsha, tags=['config']) adr = ActivityDetailRecord(ActivityDetailType.DATASET, show=False, importance=255, action=ActivityAction.EDIT) d = json.dumps(data, indent=2) adr.add_value('text/markdown', f"Updated dataset storage backend configuration:\n\n ```{d}```") ar.add_detail_object(adr) ars = ActivityStore(self) ars.create_activity_record(ar) def _save_gigantum_data(self) -> None: """Method to save changes to the LabBook Returns: None """ if not self.root_dir: raise ValueError("No root directory assigned to Dataset. Failed to get root directory.") with open(os.path.join(self.root_dir, ".gigantum", "gigantum.yaml"), 'wt') as df: df.write(yaml.safe_dump(self._data, default_flow_style=False)) df.flush() def _load_gigantum_data(self) -> None: """Method to load the dataset YAML file to a dictionary Returns: None """ if not self.root_dir: raise ValueError("No root directory assigned to Dataset. Failed to get root directory.") with open(os.path.join(self.root_dir, ".gigantum", "gigantum.yaml"), 'rt') as df: self._data = yaml.safe_load(df) def _validate_gigantum_data(self) -> None: """Method to validate the Dataset data file contents Returns: None """ if not re.match("^(?!-)(?!.*--)[a-z0-9-]+(?<!-)$", self.name): raise ValueError("Invalid `name`. Only a-z 0-9 and hyphens allowed. No leading or trailing hyphens.") if len(self.name) > 100: raise ValueError("Invalid `name`. Max length is 100 characters") # Validate schema is supported by running version of the software and valid if not validate_dataset_schema(self.schema, self.data): import json errmsg = f"Schema in Dataset {str(self)} does not match indicated version {self.schema}" raise ValueError(errmsg) ``` #### File: dataset/io/manager.py ```python import os from typing import List, Callable import subprocess import glob from natsort import natsorted from operator import attrgetter from gtmcore.dataset.dataset import Dataset from gtmcore.dataset.manifest import Manifest from gtmcore.dataset.io import PushObject, PushResult, PullResult, PullObject from gtmcore.logging import LMLogger logger = LMLogger.get_logger() class IOManager(object): """Class to manage file IO with remote storage backends and glue everything together""" def __init__(self, dataset: Dataset, manifest: Manifest) -> None: self.dataset = dataset self.manifest = manifest self.push_dir = os.path.join(self.manifest.cache_mgr.cache_root, 'objects', '.push') # Property to keep status state if needed when appending messages self._status_msg = "" def _commit_in_branch(self, commit_hash: str) -> bool: """Method to check if a commit is in the current branch, ignoring the last commit. This is used for the purpose of only pushing objects that are part of the current branch. We ignore the last commit because objects to push are stored in a file named with the revision at which the files were written. This is different from the revision that contains the files (after written and untracked, changes are committed and then an activity record is created with another commit). The last commit can be used in a different branch where objects were written, but can't contain any objects to push in the current branch. Args: commit_hash(str): Commit hash to check if in branch Returns: bool """ try: subprocess.run(['git', 'merge-base', '--is-ancestor', commit_hash, 'HEAD~1'], check=True, cwd=self.dataset.root_dir) return True except subprocess.CalledProcessError: return False def objects_to_push(self, remove_duplicates: bool = False) -> List[PushObject]: """Return a list of named tuples of all objects that need to be pushed Returns: List[namedtuple] """ objects = list() if os.path.exists(self.push_dir): push_files = [f for f in os.listdir(self.push_dir) if os.path.isfile(os.path.join(self.push_dir, f))] if push_files: object_ids: List[str] = list() for pf in push_files: if os.path.basename(pf) == '.DS_Store': continue if not self._commit_in_branch(pf): continue with open(os.path.join(self.push_dir, pf), 'rt') as pfh: lines = pfh.readlines() lines = sorted(lines) for line in lines: line = line.strip() dataset_path, object_path = line.split(',') _, object_id = object_path.rsplit('/', 1) # Handle de-duplicating objects if the backend supports it if remove_duplicates is True: if object_id in object_ids: continue object_ids.append(object_id) objects.append(PushObject(dataset_path=dataset_path, object_path=object_path, revision=pf)) objects = natsorted(objects, key=attrgetter('dataset_path')) return objects def num_objects_to_push(self, remove_duplicates: bool = False) -> int: """Helper to get the total number of objects to push Returns: int """ return len(self.objects_to_push(remove_duplicates)) def _log_updater(self, message: str, append: bool = False) -> None: """A status updater method that simply logs. Used by default if a custom status updater isn't provided in some methods that are expected to run in the background. Args: message(str): Message to update Returns: None """ if append: self._status_msg = f"{self._status_msg}\n{message}" else: self._status_msg = message logger.info(self._status_msg) def push_objects(self, status_update_fn: Callable = None) -> PushResult: """Method to push all available objects This method hands most of the work over to the StorageBackend implementation for the dataset. It is expected that the StorageBackend will return a PushResult named tuple so the user can be properly notified and everything stays consistent. Returns: IOResult """ if not status_update_fn: status_update_fn = self._log_updater objs: List[PushObject] = self.objects_to_push(remove_duplicates=self.dataset.backend.client_should_dedup_on_push) try: self.dataset.backend.prepare_push(self.dataset, objs, status_update_fn) result = self.dataset.backend.push_objects(self.dataset, objs, status_update_fn) logger.warning(result) self.dataset.backend.finalize_push(self.dataset, status_update_fn) except Exception as err: logger.exception(err) raise # Remove push files that have been processed files = glob.glob(f'{self.push_dir}/*') for f in files: os.remove(f) # Collect objects that still need to be pushed due to errors and write push files for failed_push in result.failure: self.manifest.queue_to_push(failed_push.object_path, failed_push.dataset_path, failed_push.revision) return result def _gen_pull_objects(self, keys: List[str]) -> List[PullObject]: """ Args: keys: Returns: """ result = list() revision = self.manifest.dataset_revision for key in keys: data = self.manifest.dataset_to_object_path(key) result.append(PullObject(object_path=data, revision=revision, dataset_path=key)) return result def pull_objects(self, keys: List[str], status_update_fn: Callable = None) -> PullResult: """Method to pull a single object This method hands most of the work over to the StorageBackend implementation for the dataset. It is expected that the StorageBackend will return a PushResult named tuple so the user can be properly notified and everything stays consistent. Returns: PullResult """ if not status_update_fn: status_update_fn = self._log_updater objs: List[PullObject] = self._gen_pull_objects(keys) # Pull the object self.dataset.backend.prepare_pull(self.dataset, objs, status_update_fn) result = self.dataset.backend.pull_objects(self.dataset, objs, status_update_fn) self.dataset.backend.finalize_pull(self.dataset, status_update_fn) # Relink the revision self.manifest.link_revision() # Return pull result return result def pull_all(self, status_update_fn: Callable = None) -> PullResult: """Helper to pull every object in the dataset, ignoring files that already exist and linking files if needed Args: status_update_fn: Callable to provide status during pull Returns: PullResult """ keys_to_pull = list() for key in self.manifest.manifest: # If dir, skip if key[-1] == os.path.sep: continue # If object is linked to the revision already, skip revision_path = os.path.join(self.manifest.cache_mgr.current_revision_dir, key) if os.path.exists(revision_path): continue # Check if file exists in object cache and simply needs to be linked obj_path = self.manifest.dataset_to_object_path(key) if os.path.isfile(obj_path): os.link(obj_path, revision_path) continue # Queue for downloading keys_to_pull.append(key) if keys_to_pull: return self.pull_objects(keys_to_pull, status_update_fn) else: return PullResult(success=[], failure=[], message="Dataset already downloaded.") ``` #### File: dataset/tests/test_hash.py ```python import pytest import os import time from pathlib import Path from hashlib import blake2b from gtmcore.dataset.manifest.hash import SmartHash from gtmcore.fixtures.datasets import mock_dataset_with_cache_dir, mock_dataset_with_manifest def helper_append_file(cache_dir, revision, rel_path, content): with open(os.path.join(cache_dir, revision, rel_path), 'at') as fh: fh.write(content) class TestHashing(object): def test_init(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) assert sh.fast_hash_data == {} @pytest.mark.asyncio async def test_hash(self, event_loop, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision assert sh.fast_hash_data == {} filename = "test1.txt" helper_append_file(cache_dir, revision, filename, "pupper") assert sh.fast_hash_data == {} assert sh.is_cached(filename) is False assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False hash_result = await sh.hash([filename]) hash_result = hash_result[0] assert len(hash_result) == 128 @pytest.mark.asyncio async def test_hash_same_as_nonchunked(self, event_loop, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision filename = "test1.txt" helper_append_file(cache_dir, revision, filename, "asdfdsfgkdfshuhwedfgft345wfd" * 100000) assert sh.fast_hash_data == {} assert sh.is_cached(filename) is False assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False hash_result = await sh.hash([filename]) hash_result = hash_result[0] h = blake2b() with open(sh.get_abs_path(filename), 'rb') as fh: h.update(fh.read()) assert hash_result == h.hexdigest() @pytest.mark.asyncio async def test_hash_same_as_nonchunked_multiple(self, event_loop, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision filename1 = "test1.txt" helper_append_file(cache_dir, revision, filename1, "asdfdsfgkdfshuhwedfgft345wfd" * 100000) assert sh.is_cached(filename1) is False filename2 = "test2.txt" helper_append_file(cache_dir, revision, filename2, "gfggfgfgfgwee" * 100000) assert sh.is_cached(filename2) is False assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False assert sh.fast_hash_data == {} h = blake2b() with open(sh.get_abs_path(filename1), 'rb') as fh: h.update(fh.read()) hash1 = h.hexdigest() h = blake2b() with open(sh.get_abs_path(filename2), 'rb') as fh: h.update(fh.read()) hash2 = h.hexdigest() hash_result = await sh.hash([filename1, filename2]) assert hash1 == hash_result[0] assert hash2 == hash_result[1] hash_result = await sh.hash([filename2, filename1]) assert hash2 == hash_result[0] assert hash1 == hash_result[1] @pytest.mark.asyncio async def test_hash_list(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision os.makedirs(os.path.join(cache_dir, revision, "test_dir")) filenames = ["test1.txt", "test2.txt", "test3.txt", "test_dir/nested.txt"] for f in filenames: helper_append_file(cache_dir, revision, f, "sdfadfgfdgh") filenames.append('test_dir/') # Append the directory, since dirs can be stored in the manifest hash_results = await sh.hash(filenames) assert len(hash_results) == 5 @pytest.mark.asyncio async def test_hash_big(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision os.makedirs(os.path.join(cache_dir, revision, "test_dir")) helper_append_file(cache_dir, revision, 'test1.txt', "asdf " * 100000000) helper_append_file(cache_dir, revision, 'test2.txt', "hgfd " * 100000000) helper_append_file(cache_dir, revision, 'test3.txt', "jjhf " * 10000000) helper_append_file(cache_dir, revision, 'test4.txt', "jjhf " * 10000000) filenames = ['test1.txt', 'test2.txt', 'test3.txt', 'test4.txt'] hash_results = await sh.hash(filenames) assert len(hash_results) == 4 for hr in hash_results: assert len(hr) == 128 assert hash_results[0] != hash_results[1] assert hash_results[0] != hash_results[2] assert hash_results[0] != hash_results[3] assert hash_results[1] != hash_results[2] assert hash_results[1] != hash_results[3] assert hash_results[2] == hash_results[3] def test_fast_hash_save(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision assert sh.fast_hash_data == {} assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False filename = "test1.txt" helper_append_file(cache_dir, revision, filename, "pupper") hash_result1 = sh.fast_hash([filename], save=False) assert sh.fast_hash_data == {} assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False hash_result2 = sh.fast_hash([filename]) assert hash_result1 == hash_result2 assert filename in sh.fast_hash_data assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is True def test_has_changed_fast(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision assert sh.fast_hash_data == {} assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is False filename = "test1.txt" helper_append_file(cache_dir, revision, filename, "pupper") assert sh.is_cached(filename) is False hash_result = sh.fast_hash([filename]) hash_result = hash_result[0] fname, fsize, mtime = hash_result.split("||") assert fname == "test1.txt" assert fsize == '6' assert sh.fast_hash_data is not None assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is True assert sh.is_cached(filename) is True assert sh.has_changed_fast(filename) is False time.sleep(1.1) assert sh.has_changed_fast(filename) is False # Change file helper_append_file(cache_dir, revision, filename, "jgfdjfdgsjfdgsj") assert sh.has_changed_fast(filename) is True assert sh.has_changed_fast(filename) is True sh.fast_hash([filename]) assert sh.has_changed_fast(filename) is False # Touch file, so only change mtime time.sleep(1.1) Path(sh.get_abs_path(filename)).touch() assert sh.has_changed_fast(filename) is True sh.fast_hash([filename]) assert sh.has_changed_fast(filename) is False def test_has_changed_fast_from_loaded(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision assert sh.fast_hash_data == {} filename = "test1.txt" helper_append_file(cache_dir, revision, filename, "pupper") hash_result = sh.fast_hash([filename]) hash_result = hash_result[0] fname, fsize, mtime = hash_result.split("||") assert fname == "test1.txt" assert fsize == '6' assert sh.fast_hash_data is not None assert os.path.exists(os.path.join(cache_dir, revision, ".smarthash")) is True assert sh.is_cached(filename) is True assert sh.has_changed_fast(filename) is False sh2 = SmartHash(ds.root_dir, cache_dir, revision) assert sh2.fast_hash_data is not None assert sh2.is_cached(filename) is True assert sh2.has_changed_fast(filename) is False assert sh2.fast_hash_data[filename] == hash_result def test_fast_hash_list(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision os.makedirs(os.path.join(cache_dir, revision, "test_dir")) filenames = ["test1.txt", "test2.txt", "test3.txt", "test_dir/nested.txt"] for f in filenames: helper_append_file(cache_dir, revision, f, "sdfadfgfdgh") filenames.append('test_dir/') # Append the directory, since dirs can be stored in the manifest hash_results = sh.fast_hash(filenames) assert len(hash_results) == 5 for fname, result in zip(filenames, hash_results): if fname == 'test_dir/': assert len(result.split("||")) == 3 path, fsize, _ = result.split("||") assert path == fname assert fsize == '4096' else: assert len(result.split("||")) == 3 path, fsize, _ = result.split("||") assert path == fname assert fsize == '11' def test_fast_hash_big(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision helper_append_file(cache_dir, revision, 'test1.txt', "asdf " * 100000000) helper_append_file(cache_dir, revision, 'test2.txt', "hgfd " * 100000000) helper_append_file(cache_dir, revision, 'test3.txt', "jjh " * 10000000) helper_append_file(cache_dir, revision, 'test4.txt', "jjh " * 10000000) filenames = ['test1.txt', 'test2.txt', 'test3.txt', 'test4.txt'] hash_results = sh.fast_hash(filenames) fname, fsize, mtime = hash_results[0].split("||") assert 'test1.txt' == fname assert fsize == "500000000" fname, fsize, mtime = hash_results[1].split("||") assert 'test2.txt' in fname assert fsize == "500000000" fname, fsize, mtime = hash_results[2].split("||") assert 'test3.txt' in fname assert fsize == "40000000" fname, fsize, mtime = hash_results[3].split("||") assert 'test4.txt' in fname assert fsize == "40000000" assert hash_results[2] != hash_results[3] def test_get_deleted_files(self, mock_dataset_with_manifest): ds, manifest, working_dir = mock_dataset_with_manifest sh = SmartHash(ds.root_dir, manifest.cache_mgr.cache_root, manifest.dataset_revision) cache_dir = manifest.cache_mgr.cache_root revision = manifest.dataset_revision os.makedirs(os.path.join(cache_dir, revision, "test_dir")) filenames = ["test1.txt", "test2.txt", "test3.txt", "test_dir/nested.txt"] for f in filenames: helper_append_file(cache_dir, revision, f, "sdfadfgfdgh") hash_results = sh.fast_hash(filenames) assert len(hash_results) == 4 assert len(sh.get_deleted_files(filenames)) == 0 test_new_filenames = ["test1.txt", "test_dir/nested.txt"] deleted = sh.get_deleted_files(test_new_filenames) assert len(deleted) == 2 assert deleted[0] == "test2.txt" assert deleted[1] == "test3.txt" ``` #### File: dispatcher/tests/test_dispatcher.py ```python import getpass import threading import json import time import shutil import pytest import datetime import pprint import multiprocessing import tempfile import uuid import os import rq_scheduler import rq from gtmcore.imagebuilder import ImageBuilder from gtmcore.configuration import get_docker_client from gtmcore.environment import ComponentManager, RepositoryManager from gtmcore.fixtures import mock_config_file import gtmcore.fixtures from gtmcore.dispatcher import Dispatcher from gtmcore.labbook import LabBook from gtmcore.inventory.inventory import InventoryManager import gtmcore.dispatcher.jobs as bg_jobs @pytest.fixture() def temporary_worker(): """A pytest fixture that creates a temporary directory and a config file to match. Deletes directory after test""" def run_worker(): with rq.Connection(): qs = 'labmanager_unittests' w = rq.Worker(qs) w.work() # This task is used to kill the worker. Sometimes if tests fail the worker runs forever and # holds up the entire process. This gives each test 25 seconds to run before killing the worker # and forcing the test to fail. def watch_proc(p): count = 0 while count < 15: count = count + 1 time.sleep(1) try: p.terminate() except: pass worker_proc = multiprocessing.Process(target=run_worker) worker_proc.start() watchdog_thread = threading.Thread(target=watch_proc, args=(worker_proc,)) watchdog_thread.start() dispatcher = Dispatcher('labmanager_unittests') yield worker_proc, dispatcher worker_proc.terminate() class TestDispatcher(object): def test_unallowed_task_not_run(self, temporary_worker): w, d = temporary_worker def oh_no(cats, dogs, bees): raise RuntimeError("This should never happen!") try: # Only allowed tasks may be dispatched. d.dispatch_task(oh_no, args=('x', 1, None)) except ValueError as e: assert 'not in available' in str(e), "Attempt should result in ValueError" else: assert False, "Method not in registry should not have been allowed to run" w.terminate() def test_simple_task(self, temporary_worker): w, d = temporary_worker job_ref = d.dispatch_task(bg_jobs.test_exit_success) time.sleep(1) try: res = d.query_task(job_ref) assert res assert res.status == 'finished' assert res.result == 0 assert res.failure_message is None assert res.finished_at is not None finally: w.terminate() def test_failing_task(self, temporary_worker): w, d = temporary_worker job_ref = d.dispatch_task(bg_jobs.test_exit_fail) time.sleep(1) res = d.query_task(job_ref) assert res assert res.status == 'failed' assert res.failure_message == 'Exception: Intentional Exception from job `test_exit_fail`' w.terminate() def test_query_failed_tasks(self, temporary_worker): w, d = temporary_worker job_ref = d.dispatch_task(bg_jobs.test_exit_fail) time.sleep(1) assert job_ref in [j.job_key for j in d.failed_jobs] assert job_ref not in [j.job_key for j in d.finished_jobs] t = d.query_task(job_ref) t.failure_message == 'Exception: Intentional Exception from job `test_exit_fail`' w.terminate() def test_query_complete_tasks(self, temporary_worker): w, d = temporary_worker job_ref = d.dispatch_task(bg_jobs.test_exit_success) time.sleep(1) assert job_ref in [j.job_key for j in d.finished_jobs] assert job_ref not in [j.job_key for j in d.failed_jobs] def test_abort(self, temporary_worker): w, d = temporary_worker job_ref_1 = d.dispatch_task(bg_jobs.test_sleep, args=(3,)) time.sleep(1.2) assert d.query_task(job_ref_1).status == 'started' d.abort_task(job_ref_1) time.sleep(0.1) j = d.query_task(job_ref_1) # There should be no result, cause it was cancelled assert j.result is None # RQ should identify the task as failed assert j.status == "failed" # Now assert the worker pid is still alive (so it can be assigned something else) worker_pid = w.pid try: os.kill(int(worker_pid), 0) assert True, "Worker process is still hanging around." except OSError: assert False, "Worker process is killed" def test_simple_dependent_job(self, temporary_worker): w, d = temporary_worker job_ref_1 = d.dispatch_task(bg_jobs.test_sleep, args=(2,)) job_ref_2 = d.dispatch_task(bg_jobs.test_exit_success, dependent_job=job_ref_1) time.sleep(0.5) assert d.query_task(job_ref_2).status == 'deferred' time.sleep(3) assert d.query_task(job_ref_1).status == 'finished' assert d.query_task(job_ref_2).status == 'finished' n = d.query_task(job_ref_1) assert n.meta.get('sample') == 'test_sleep metadata' def test_fail_dependent_job(self, temporary_worker): w, d = temporary_worker job_ref_1 = d.dispatch_task(bg_jobs.test_exit_fail) job_ref_2 = d.dispatch_task(bg_jobs.test_exit_success, dependent_job=job_ref_1) time.sleep(3) assert d.query_task(job_ref_1).status == 'failed' assert d.query_task(job_ref_2).status == 'deferred' def test_simple_scheduler(self, temporary_worker, mock_config_file): # Run a simple tasks that increments the integer contained in a file. w, d = temporary_worker path = "/tmp/labmanager-unit-test-{}".format(os.getpid()) if os.path.exists(path): os.remove(path) d.schedule_task(bg_jobs.test_incr, args=(path,), repeat=3, interval=2) time.sleep(8) try: with open(path) as fp: assert json.load(fp)['amt'] == 3 except Exception as e: raise e finally: pass def test_run_only_once(self, temporary_worker, mock_config_file): # Assert that this method only gets called once. w, d = temporary_worker path = "/tmp/labmanager-unit-test-{}".format(os.getpid()) if os.path.exists(path): os.remove(path) future_t = datetime.datetime.utcnow() + datetime.timedelta(seconds=1) jr = d.schedule_task(bg_jobs.test_incr, scheduled_time=future_t, args=(path,), repeat=0) time.sleep(4) try: with open(path) as fp: assert json.load(fp)['amt'] == 1 except Exception as e: raise e finally: w.terminate() pass def test_schedule_with_repeat_is_zero(self, temporary_worker, mock_config_file): # When repeat is zero, it should run only once. w, d = temporary_worker path = "/tmp/labmanager-unit-test-{}".format(os.getpid()) if os.path.exists(path): os.remove(path) try: jr = d.schedule_task(bg_jobs.test_incr, args=(path,), repeat=0, interval=4) time.sleep(6) n = d.unschedule_task(jr) time.sleep(5) with open(path) as fp: assert json.load(fp)['amt'] in [1], "When repeat=0, the task should run only once." finally: w.terminate() def test_unschedule_task(self, temporary_worker, mock_config_file): w, d = temporary_worker path = "/tmp/labmanager-unit-test-{}".format(os.getpid()) if os.path.exists(path): os.remove(path) try: future_t = datetime.datetime.utcnow() + datetime.timedelta(seconds=5) jr = d.schedule_task(bg_jobs.test_incr, scheduled_time=future_t, args=(path,), repeat=4, interval=1) time.sleep(2) n = d.unschedule_task(jr) assert n, "Task should have been cancelled, instead it was not found." time.sleep(5) assert not os.path.exists(path=path) finally: w.terminate() def test_unschedule_midway_through(self, temporary_worker, mock_config_file): w, d = temporary_worker path = "/tmp/labmanager-unit-test-{}".format(os.getpid()) if os.path.exists(path): os.remove(path) try: future_t = None # i.e., start right now. jr = d.schedule_task(bg_jobs.test_incr, scheduled_time=future_t, args=(path,), repeat=6, interval=5) time.sleep(8) n = d.unschedule_task(jr) assert n, "Task should have been cancelled, instead it was not found." time.sleep(5) with open(path) as fp: assert json.load(fp)['amt'] in [2] finally: w.terminate() ``` #### File: gtmcore/dispatcher/worker.py ```python import multiprocessing import argparse import os from gtmcore.logging import LMLogger from rq import Connection, Queue, Worker logger = LMLogger.get_logger() def start_rq_worker(queue_name: str) -> None: try: with Connection(): q = Queue(name=queue_name) logger.info("Starting RQ worker for queue `{}` in pid {}".format(queue_name, os.getpid())) Worker(q).work() except Exception as e: logger.exception("Worker in pid {} failed with exception {}".format(os.getpid(), e)) raise if __name__ == '__main__': parser = argparse.ArgumentParser(description='Run any number of RQ workers') parser.add_argument('count', type=int, help='Number of workers') try: args = parser.parse_args() except Exception as e: logger.exception(e) raise logger.info("Starting {} RQ workers...".format(args.count)) procs = [] for i in range(0, args.count): p = multiprocessing.Process(target=start_rq_worker, args=('labmanager_jobs',)) p.start() procs.append(p) logger.info("Started {} worker processes".format(len(procs))) for p in procs: p.join() ``` #### File: gtmcore/environment/apt.py ```python from typing import (List, Dict, Optional) from gtmcore.environment.packagemanager import PackageManager, PackageResult from gtmcore.container.container import ContainerOperations from gtmcore.labbook import LabBook from gtmcore.logging import LMLogger logger = LMLogger.get_logger() class AptPackageManager(PackageManager): """Class to implement the apt package manager Note: apt is somewhat limiting in the ability to access old versions of packages """ def search(self, search_str: str, labbook: LabBook, username: str) -> List[str]: """Method to search a package manager for packages based on a string. The string can be a partial string. Args: search_str: The string to search on labbook: Subject LabBook username: username of current user Returns: list(str): The list of package names that match the search string """ result = ContainerOperations.run_command(f"apt-cache search {search_str}", labbook, username, fallback_image=self.fallback_image(labbook)) packages = [] if result: lines = result.decode('utf-8').split('\n') for l in lines: if l: packages.append(l.split(" - ")[0]) return packages def list_versions(self, package_name: str, labbook: LabBook, username: str) -> List[str]: """Method to list all available versions of a package based on the package name Args: package_name: Name of the package to query labbook: Subject LabBook username: Username of current user Returns: list(str): Version strings """ result = ContainerOperations.run_command(f"apt-cache madison {package_name}", labbook, username, override_image_tag=self.fallback_image(labbook)) package_versions: List[str] = [] if result: lines = result.decode('utf-8').split('\n') for l in lines: if l: parts = l.split(" | ") if parts[1] not in package_versions: package_versions.append(parts[1].strip()) else: raise ValueError(f"Package {package_name} not found in apt.") return package_versions def latest_version(self, package_name: str, labbook: LabBook, username: str) -> str: """Method to get the latest version string for a package Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: str: latest version string """ versions = self.list_versions(package_name, labbook, username) if versions: return versions[0] else: raise ValueError("Could not retrieve version list for provided package name") def latest_versions(self, package_names: List[str], labbook: LabBook, username: str) -> List[str]: """Method to get the latest version string for a list of packages Args: package_names: list of names of the packages to query labbook: Subject LabBook username: username of current user Returns: list: latest version strings """ return [self.latest_version(pkg, labbook, username) for pkg in package_names] def list_installed_packages(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all packages that are currently installed Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format (name: <package name>, version: <version string>) Returns: list """ result = ContainerOperations.run_command("apt list --installed", labbook, username, fallback_image=self.fallback_image(labbook)) packages = [] if result: lines = result.decode('utf-8').split('\n') for line in lines: if line is not None and line != "Listing..." and "/" in line: parts = line.split(" ") package_name, _ = parts[0].split("/") version = parts[1].strip() packages.append({'name': package_name, 'version': version}) return packages def list_available_updates(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all installed packages that could be updated and the new version string Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format {name: <package name>, version: <currently installed version string>, latest_version: <latest version string>} Returns: list """ result = ContainerOperations.run_command("apt list --upgradable", labbook, username, fallback_image=self.fallback_image(labbook)) packages = [] if result: lines = result.decode('utf-8').split('\n') for line in lines: if line is not None and line != "Listing..." and "/" in line: package_name, version_info_t = line.split("/") version_info = version_info_t.split(' ') packages.append({'name': package_name, 'latest_version': version_info[1], 'version': version_info[5][:-1]}) return packages def validate_packages(self, package_list: List[Dict[str, str]], labbook: LabBook, username: str) \ -> List[PackageResult]: """Method to validate a list of packages, and if needed fill in any missing versions Should check both the provided package name and version. If the version is omitted, it should be generated from the latest version. Args: package_list: A list of dictionaries of packages to validate labbook: The labbook instance username: The username for the logged in user Returns: namedtuple: namedtuple indicating if the package and version are valid """ result = list() for package in package_list: pkg_result = PackageResult(package=package['package'], version=package['version'], error=True) try: version_list = self.list_versions(package['package'], labbook, username) except ValueError: result.append(pkg_result) continue if not version_list: # If here, no versions found for the package...so invalid result.append(pkg_result) else: if package['version']: if package['version'] in version_list: # Both package name and version are valid pkg_result = pkg_result._replace(error=False) result.append(pkg_result) else: # The package version is not in the list, so invalid result.append(pkg_result) else: # You need to look up the version and then add try: pkg_result = pkg_result._replace(version=self.latest_version(package['package'], labbook, username)) pkg_result = pkg_result._replace(error=False) result.append(pkg_result) except ValueError: result.append(pkg_result) return result def generate_docker_install_snippet(self, packages: List[Dict[str, str]], single_line: bool = False) -> List[str]: """Method to generate a docker snippet to install 1 or more packages Args: packages(list(dict)): A list of package names and versions to install single_line(bool): If true, collapse Returns: list """ package_strings = [f"{x['name']}" for x in packages] if single_line: return [f"RUN apt-get -y --no-install-recommends install {' '.join(package_strings)}"] else: docker_strings = [f"RUN apt-get -y --no-install-recommends install {x}" for x in package_strings] return docker_strings ``` #### File: gtmcore/environment/packagemanager.py ```python import abc from typing import (List, Dict, Optional) from collections import namedtuple from gtmcore.labbook import LabBook import gtmcore.environment # A namedtuple for the result of package validation PackageResult = namedtuple('PackageResult', ['package', 'version', 'error']) class PackageManager(metaclass=abc.ABCMeta): """Class to implement the standard interface for all available Package Managers """ @staticmethod def fallback_image(labbook: LabBook) -> str: """ Generate the image name of the LabManager if the docker image for the given labbook cannot be found. """ cm = getattr(gtmcore.environment, 'ComponentManager')(labbook) base = cm.base_fields return f"{base['image']['namespace']}" \ f"/{base['image']['repository']}" \ f":{base['image']['tag']}" @abc.abstractmethod def search(self, search_str: str, labbook: LabBook, username: str) -> List[str]: """Method to search a package manager for packages based on a string. The string can be a partial string. Args: search_str: The string to search on labbook: Subject LabBook username: username of current user Returns: list(str): The list of package names that match the search string """ raise NotImplemented @abc.abstractmethod def list_versions(self, package_name: str, labbook: LabBook, username: str) -> List[str]: """Method to list all available versions of a package based on the package name with the latest package first Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: list(str): Version strings """ raise NotImplemented @abc.abstractmethod def latest_version(self, package_name: str, labbook: LabBook, username: str) -> str: """Method to get the latest version string for a package Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: str: latest version string """ raise NotImplemented @abc.abstractmethod def latest_versions(self, package_names: List[str], labbook: LabBook, username: str) -> List[str]: """Method to get the latest version string for a list of packages Args: package_names(list): list of names of the packages to query labbook: Subject LabBook username: username of current user Returns: list: latest version strings """ raise NotImplemented @abc.abstractmethod def list_installed_packages(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all packages that are currently installed Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format {name: <package name>, version: <version string>} Returns: list """ raise NotImplemented @abc.abstractmethod def list_available_updates(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all installed packages that could be updated and the new version string Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format {name: <package name>, version: <currently installed version string>, latest_version: <latest version string>} Returns: list """ raise NotImplemented @abc.abstractmethod def validate_packages(self, package_list: List[Dict[str, str]], labbook: LabBook, username: str) \ -> List[PackageResult]: """Method to validate a list of packages, and if needed fill in any missing versions Should check both the provided package name and version. If the version is omitted, it should be generated from the latest version. Args: package_list(list): A list of dictionaries of packages to validate labbook(str): The labbook instance username(str): The username for the logged in user Returns: namedtuple: namedtuple indicating if the package and version are valid """ raise NotImplemented @abc.abstractmethod def generate_docker_install_snippet(self, packages: List[Dict[str, str]], single_line: bool = False) -> List[str]: """Method to generate a docker snippet to install 1 or more packages Args: packages(list(dict)): A list of package names and versions to install single_line(bool): If true, collapse Returns: str """ raise NotImplemented ``` #### File: environment/tests/test_environment_repository.py ```python import pytest from gtmcore.environment import BaseRepository from gtmcore.fixtures import (mock_config_with_repo, ENV_UNIT_TEST_REPO, ENV_UNIT_TEST_BASE, ENV_UNIT_TEST_REV) class TestEnvironmentRepository(object): def test_get_list_index_base_image(self, mock_config_with_repo): """Test accessing the list version of the index""" repo = BaseRepository(mock_config_with_repo[0]) data = repo.get_base_list() assert type(data) == list assert len(data) == 5 assert any(n.get('id') == ENV_UNIT_TEST_BASE for n in data) assert any(n.get('repository') == ENV_UNIT_TEST_REPO for n in data) def test_get_component_index_base(self, mock_config_with_repo): """Test accessing the detail version of the index""" repo = BaseRepository(mock_config_with_repo[0]) data = repo.get_base_versions(ENV_UNIT_TEST_REPO, ENV_UNIT_TEST_BASE) assert type(data) == list assert len(data) >= 1 assert data[-1][1]['id'] == ENV_UNIT_TEST_BASE assert data[-1][1]['repository'] == ENV_UNIT_TEST_REPO def test_get_component_version_base(self, mock_config_with_repo): """Test accessing the a single version of the index""" repo = BaseRepository(mock_config_with_repo[0]) data = repo.get_base(ENV_UNIT_TEST_REPO, ENV_UNIT_TEST_BASE, ENV_UNIT_TEST_REV) assert type(data) == dict assert data['id'] == ENV_UNIT_TEST_BASE assert data['revision'] == ENV_UNIT_TEST_REV assert 'image' in data assert len(data['package_managers']) == 2 assert data['repository'] == ENV_UNIT_TEST_REPO def test_get_component_version_base_does_not_exist(self, mock_config_with_repo): """Test accessing the a single version of the index that does not exist""" repo = BaseRepository(mock_config_with_repo[0]) with pytest.raises(ValueError): repo.get_base('gig-dev_environment-componentsXXX', 'quickstart-jupyterlab', '0.1') with pytest.raises(ValueError): repo.get_base(ENV_UNIT_TEST_REPO, 'quickstart-jupyterlab', '3') with pytest.raises(ValueError): repo.get_base(ENV_UNIT_TEST_REPO, 'quickstart-jupyterlabXXX', 0) with pytest.raises(ValueError): repo.get_base(ENV_UNIT_TEST_REPO, 'quickstart-jupyterlab', 99) ``` #### File: gtmcore/environment/utils.py ```python from gtmcore.environment.packagemanager import PackageManager from gtmcore.environment.pip import PipPackageManager from gtmcore.environment.conda import Conda2PackageManager, Conda3PackageManager from gtmcore.environment.apt import AptPackageManager def get_package_manager(manager: str) -> PackageManager: """Helper class to instantiate a package manager based on manager string""" if manager in ["pip2", "pip3", "pip"]: return PipPackageManager() elif manager == "conda2": return Conda2PackageManager() elif manager == "conda3": return Conda3PackageManager() elif manager in ["apt", "apt-get"]: return AptPackageManager() else: raise ValueError(f"Unsupported package manager `{manager}`") ``` #### File: files/tests/test_labbook_fileops.py ```python import pytest import tempfile import os import pprint from gtmcore.labbook import LabBook from gtmcore.files import FileOperations as FO from gtmcore.fixtures import mock_config_file, mock_labbook, remote_labbook_repo, sample_src_file class TestLabbookFileOperations(object): def test_insert_file_success_1(self, mock_labbook, sample_src_file): lb = mock_labbook[2] new_file_data = FO.insert_file(lb, "code", sample_src_file) base_name = os.path.basename(sample_src_file) assert os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) assert new_file_data['key'] == f'{base_name}' assert new_file_data['is_dir'] is False assert new_file_data['is_favorite'] is False def test_insert_file_upload_id(self, mock_labbook): lb = mock_labbook[2] test_file = os.path.join(tempfile.gettempdir(), "asdfasdf-testfile.txt") with open(test_file, 'wt') as sample_f: # Fill sample file with some deterministic crap sample_f.write("n4%nm4%M435A EF87kn*C" * 40) # This is basically checking for rename new_file_data = FO.insert_file(lb, "code", test_file, "testfile.txt") assert os.path.exists(os.path.join(lb.root_dir, 'code', 'testfile.txt')) assert new_file_data['key'] == 'testfile.txt' assert new_file_data['is_dir'] is False def test_insert_file_success_2(self, mock_labbook, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, "output/testdir") new_file_data = FO.insert_file(lb, "output", sample_src_file, "testdir") base_name = os.path.basename(new_file_data['key']) assert os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir', base_name)) assert new_file_data['key'] == f'testdir/{base_name}' assert new_file_data['is_dir'] is False def test_insert_and_make_intermediary_directories(self, mock_labbook, sample_src_file): lb = mock_labbook[2] FO.insert_file(lb, "code", sample_src_file, "/super/random/dir/inside.file") p = os.path.join(lb.root_dir, 'code', "super/random/dir/inside.file") assert os.path.isfile(p) def test_insert_file_fail_due_to_gitignore(self, mock_labbook): lb = mock_labbook[2] git_hash_1 = lb.git.commit_hash lines = [l.strip() for l in open(os.path.join(lb.root_dir, '.gitignore')).readlines()] assert any(['.DS_Store' in l for l in lines]) # Note: .DS_Store is in the gitignore directory. test_file = os.path.join(tempfile.gettempdir(), ".DS_Store") with open(test_file, 'wt') as sample_f: # Fill sample file with some deterministic crap sample_f.write("This file should not be allowed to be inserted into labbook. " * 40) git_hash_2 = lb.git.commit_hash with pytest.raises(Exception): r = lb.insert_file('input', src_file=sample_f.name, dst_dir='') # Make sure no commits were made assert git_hash_1 == git_hash_2 # Make sure the inserted file that doesn't match wasn't added. assert '.DS_Store' not in os.listdir(os.path.join(lb.root_dir, 'input')) def test_remove_file_success(self, mock_labbook, sample_src_file): lb = mock_labbook[2] new_file_data = FO.insert_file(lb, "code", sample_src_file) base_name = os.path.basename(new_file_data['key']) assert os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) FO.delete_files(lb, 'code', [base_name]) assert not os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) def test_remove_file_fail(self, mock_labbook, sample_src_file): lb = mock_labbook[2] FO.insert_file(lb, "code", sample_src_file) new_file_path = os.path.join('blah', 'invalid.txt') with pytest.raises(ValueError): FO.delete_files(lb, 'code', [new_file_path]) def test_remove_file_fail_old_prototype(self, mock_labbook, sample_src_file): lb = mock_labbook[2] new_file_data = FO.insert_file(lb, "code", sample_src_file) base_name = os.path.basename(new_file_data['key']) assert os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) with pytest.raises(ValueError): FO.delete_files(lb, 'code', base_name) def test_remove_dir(self, mock_labbook, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, "output/testdir") new_file_path = FO.insert_file(lb, "output", sample_src_file, "testdir") base_name = os.path.basename(new_file_path['key']) assert os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir', base_name)) # Note! Now that remove() uses force=True, no special action is needed for directories. # Delete the directory FO.delete_files(lb, "output", ["testdir"]) assert not os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir', base_name)) assert not os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir')) def test_remove_empty_dir(self, mock_labbook, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, "output/testdir") new_file_path = FO.insert_file(lb, "output", sample_src_file, "testdir") base_name = os.path.basename(new_file_path['key']) assert os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir', base_name)) # Delete the directory FO.delete_files(lb, "output", ["testdir"]) assert not os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir', base_name)) assert not os.path.exists(os.path.join(lb.root_dir, 'output', 'testdir')) def test_remove_many_files(self, mock_labbook, sample_src_file): lb = mock_labbook[2] test_files = [f"testfile{x}.txt" for x in range(15)] for test_file in test_files: with open(os.path.join(lb.root_dir, 'code', test_file), 'wt') as sample_f: sample_f.write("blah") assert os.path.exists(os.path.join(lb.root_dir, 'code', test_file)) lb.git.add_all() lb.git.commit("making test data") FO.delete_files(lb, "code", test_files) for test_file in test_files: assert not os.path.exists(os.path.join(lb.root_dir, 'code', test_file)) def test_move_file_as_rename_in_same_dir(self, mock_labbook, sample_src_file): lb = mock_labbook[2] # insert file new_file_data = FO.insert_file(lb, "code", sample_src_file, '') base_name = os.path.basename(new_file_data['key']) assert os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) assert new_file_data['key'] == base_name # move to rename moved_rel_path = os.path.join(f'{base_name}.MOVED') r = FO.move_file(lb, 'code', new_file_data['key'], moved_rel_path) assert len(r) == 1 assert not os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) assert os.path.exists(os.path.join(lb.root_dir, 'code', f'{base_name}.MOVED')) assert os.path.isfile(os.path.join(lb.root_dir, 'code', f'{base_name}.MOVED')) def test_move_single_file(self, mock_labbook, mock_config_file, sample_src_file): lb = mock_labbook[2] f = FO.insert_file(lb, 'code', sample_src_file)['key'] FO.makedir(lb, 'code/target_dir') results = FO.move_file(lb, 'code', f, 'target_dir') assert len(results) == 1 pprint.pprint(results) assert results[0]['is_dir'] == False assert results[0]['key'] == 'target_dir/' + os.path.basename(sample_src_file) def test_move_single_file_to_section_top(self, mock_labbook, mock_config_file, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, 'code/inner_dir') f = FO.insert_file(lb, 'code', sample_src_file, 'inner_dir')['key'] # Move file to top of code section results = FO.move_file(lb, 'code', f, dst_rel_path='') # Results should be returned for "code" -- the file just moved there and the assert len(results) == 1 assert results[0]['is_dir'] == False assert results[0]['key'] == os.path.basename(f) def test_move_empty_directory(self, mock_labbook, mock_config_file, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, 'code/stable_dir') FO.makedir(lb, 'code/empty_dir') # We'll move "empty_dir" into "stable_dir" - there should only be one element in returned list res = FO.move_file(lb, 'code', 'empty_dir', 'stable_dir') assert len(res) == 1 assert res[0]['is_dir'] is True assert res[0]['key'] == 'stable_dir/empty_dir/' def test_move_loaded_directory_with_one_file(self, mock_labbook, mock_config_file, sample_src_file): lb = mock_labbook[2] new_file_data = FO.insert_file(lb, "code", sample_src_file) base_name = os.path.basename(new_file_data['key']) assert os.path.exists(os.path.join(lb.root_dir, 'code', base_name)) # make new subdir os.makedirs(os.path.join(lb.root_dir, 'code', 'subdir')) # .. and then put a file in it mv_file_res = FO.move_file(lb, "code", base_name, os.path.join('subdir', base_name)) # Should be 2, because it returns the info of the directory it was moved into assert len(mv_file_res) == 1 assert mv_file_res[0]['key'] == f'subdir/{base_name}' assert mv_file_res[0]['is_dir'] == False # Move "subdir" into "target_dir", there should be two activity records FO.makedir(lb, "code/target_dir", create_activity_record=True) mv_dir_res = FO.move_file(lb, "code", 'subdir', 'target_dir') assert len(mv_dir_res) == 2 assert mv_dir_res[0]['key'] == 'target_dir/subdir/' assert mv_dir_res[0]['is_dir'] is True assert mv_dir_res[1]['key'] == f'target_dir/subdir/{base_name}' assert mv_dir_res[1]['is_dir'] is False assert not os.path.exists(os.path.join(lb.root_dir, 'code', 'subdir')) assert os.path.exists(os.path.join(lb.root_dir, 'code', 'target_dir/subdir')) def test_move_loaded_directory_with_full_tree(self, mock_labbook, mock_config_file, sample_src_file): lb = mock_labbook[2] FO.makedir(lb, 'code/level_1/level_2A', create_activity_record=True) FO.makedir(lb, 'code/level_1/level_2B', create_activity_record=True) FO.makedir(lb, 'code/target_dir', create_activity_record=True) FO.makedir(lb, 'code/target_dir/existing_dir_counted_anyway', create_activity_record=True) FO.makedir(lb, 'code/this-dir-must-be-ignored', create_activity_record=True) FO.insert_file(lb, 'code', sample_src_file, dst_path='level_1/level_2B') # Move "level_1" into target_dir results = FO.move_file(lb, 'code', 'level_1', 'target_dir') assert len(results) == 4 def test_makedir_simple(self, mock_labbook): # Note that "score" refers to the count of .gitkeep files. lb = mock_labbook[2] long_dir = "code/non/existant/dir/should/now/be/made" dirs = ["code/cat_dir", "code/dog_dir", "code/mouse_dir/", "code/mouse_dir/new_dir", long_dir] for d in dirs: FO.makedir(lb, d) assert os.path.isdir(os.path.join(lb.root_dir, d)) assert os.path.isfile(os.path.join(lb.root_dir, d, '.gitkeep')) score = 0 for root, dirs, files in os.walk(os.path.join(lb.root_dir, 'code', 'non')): for f in files: if f == '.gitkeep': score += 1 # Ensure that count of .gitkeep files equals the number of subdirs, excluding the code dir. assert score == len(LabBook.make_path_relative(long_dir).split(os.sep)) - 1 def test_makedir_record(self, mock_labbook): # Note that "score" refers to the count of .gitkeep files. lb = mock_labbook[2] assert os.path.exists(os.path.join(lb.root_dir, 'code', 'test')) is False FO.makedir(lb, "code/test", create_activity_record=True) assert os.path.exists(os.path.join(lb.root_dir, 'code', 'test')) is True assert lb.is_repo_clean is True FO.makedir(lb, "code/test2", create_activity_record=False) assert os.path.exists(os.path.join(lb.root_dir, 'code', 'test2')) is True assert lb.is_repo_clean is False def test_walkdir(self, mock_labbook): lb = mock_labbook[2] dirs = ["code/cat_dir", "code/dog_dir", "code/mouse_dir/", "code/mouse_dir/new_dir", "code/.hidden_dir"] for d in dirs: FO.makedir(lb, d) for d in ['.hidden_dir/', '', 'dog_dir', 'mouse_dir/new_dir/']: open('/tmp/myfile.c', 'w').write('data') FO.insert_file(lb, 'code', '/tmp/myfile.c', d) dir_walks_hidden = FO.walkdir(lb, 'code', show_hidden=True) assert any([os.path.basename('/tmp/myfile.c') in d['key'] for d in dir_walks_hidden]) assert not any(['.git' in d['key'].split(os.path.sep) for d in dir_walks_hidden]) assert not any(['.gigantum' in d['key'] for d in dir_walks_hidden]) assert all([d['key'][0] != '/' for d in dir_walks_hidden]) # Spot check some entries assert len(dir_walks_hidden) == 15 assert dir_walks_hidden[0]['key'] == '.hidden_dir/' assert dir_walks_hidden[0]['is_dir'] is True assert dir_walks_hidden[3]['key'] == 'mouse_dir/' assert dir_walks_hidden[3]['is_dir'] is True assert dir_walks_hidden[6]['key'] == '.hidden_dir/.gitkeep' assert dir_walks_hidden[6]['is_dir'] is False assert dir_walks_hidden[13]['key'] == 'mouse_dir/new_dir/.gitkeep' assert dir_walks_hidden[13]['is_dir'] is False # Since the file is in a hidden directory, it should not be found. dir_walks = FO.walkdir(lb, 'code') # Spot check some entries assert len(dir_walks) == 7 assert dir_walks[0]['key'] == 'cat_dir/' assert dir_walks[0]['is_dir'] is True assert dir_walks[1]['key'] == 'dog_dir/' assert dir_walks[1]['is_dir'] is True assert dir_walks[2]['key'] == 'mouse_dir/' assert dir_walks[2]['is_dir'] is True assert dir_walks[3]['is_dir'] is False assert dir_walks[4]['is_dir'] is False assert dir_walks[5]['is_dir'] is True assert dir_walks[5]['key'] == 'mouse_dir/new_dir/' assert dir_walks[6]['is_dir'] is False def test_listdir(self, mock_labbook, sample_src_file): def write_test_file(base, name): with open(os.path.join(base, name), 'wt') as f: f.write("Blah blah") lb = mock_labbook[2] dirs = ["code/new_dir", ".hidden_dir"] for d in dirs: FO.makedir(lb, d) write_test_file(lb.root_dir, 'test1.txt') write_test_file(lb.root_dir, 'test2.txt') write_test_file(lb.root_dir, '.hidden.txt') write_test_file(lb.root_dir, 'code/test_subdir1.txt') write_test_file(lb.root_dir, 'code/test_subdir2.txt') write_test_file(lb.root_dir, 'code/new_dir/tester.txt') # List just the code dir data = FO.listdir(lb, "code", base_path='') assert len(data) == 3 assert data[0]['key'] == 'new_dir/' assert data[1]['key'] == 'test_subdir1.txt' assert data[2]['key'] == 'test_subdir2.txt' data = FO.listdir(lb, "input", base_path='') assert len(data) == 0 # List just the code/subdir dir data = FO.listdir(lb, "code", base_path='new_dir') assert len(data) == 1 assert data[0]['key'] == 'new_dir/tester.txt' def test_listdir_expect_error(self, mock_labbook, sample_src_file): lb = mock_labbook[2] with pytest.raises(ValueError): FO.listdir(lb, "code", base_path='blah') def test_walkdir_with_favorites(self, mock_labbook, sample_src_file): lb = mock_labbook[2] dirs = ["code/cat_dir", "code/dog_dir"] for d in dirs: FO.makedir(lb, d) sfile = '/tmp/testwalkdirwithfavorites.file' for d in ['', 'dog_dir', 'cat_dir']: open(sfile, 'w').write('xxx') FO.insert_file(lb, 'code', sfile, d) sample_filename = os.path.basename(sfile) # Since the file is in a hidden directory, it should not be found. dir_walks = FO.walkdir(lb, 'code') # Spot check some entries assert len(dir_walks) == 5 assert dir_walks[0]['key'] == 'cat_dir/' assert dir_walks[0]['is_dir'] is True assert dir_walks[0]['is_favorite'] is False assert dir_walks[1]['key'] == 'dog_dir/' assert dir_walks[1]['is_dir'] is True assert dir_walks[1]['is_favorite'] is False assert dir_walks[2]['is_favorite'] is False assert dir_walks[2]['is_dir'] is False assert dir_walks[3]['is_favorite'] is False assert dir_walks[3]['is_dir'] is False assert dir_walks[4]['is_favorite'] is False assert dir_walks[4]['is_dir'] is False lb.create_favorite("code", sample_filename, description="Fav 1") lb.create_favorite("code", f"dog_dir/{sample_filename}", description="Fav 2") lb.create_favorite("code", f"cat_dir/", description="Fav 3", is_dir=True) dir_walks = FO.walkdir(lb, 'code') # Spot check some entries assert len(dir_walks) == 5 assert dir_walks[0]['key'] == 'cat_dir/' assert dir_walks[0]['is_dir'] is True assert dir_walks[0]['is_favorite'] is True assert dir_walks[1]['key'] == 'dog_dir/' assert dir_walks[1]['is_dir'] is True assert dir_walks[1]['is_favorite'] is False assert dir_walks[2]['is_favorite'] is True assert dir_walks[2]['is_dir'] is False assert dir_walks[3]['is_favorite'] is False assert dir_walks[3]['is_dir'] is False assert dir_walks[4]['is_favorite'] is True assert dir_walks[4]['is_dir'] is False ``` #### File: gtmcore/gitlib/git_fs_shim.py ```python from gtmcore.gitlib.git_fs import GitFilesystem from gtmcore.logging import LMLogger import subprocess logger = LMLogger.get_logger() class GitFilesystemShimmed(GitFilesystem): def add(self, filename): """Add a file to a commit Args: filename(str): Filename to add. Returns: None """ logger.info("Adding file {} to Git repository in {}".format(filename, self.working_directory)) try: r = subprocess.run(['git', 'add', f'{filename}'], stderr=subprocess.PIPE, stdout=subprocess.PIPE, check=True, cwd=self.working_directory) except subprocess.CalledProcessError as x: logger.error(f'{x.stdout}, {x.stderr}') raise ``` #### File: gtmcore/gitlib/git.py ```python import abc import importlib from typing import Dict, List, Optional, Tuple # Dictionary of supported implementations. # Key is the value to put in the config_dict["backend"]. # Value is a list with the first entry being the module and the second the class SUPPORTED_GIT_INTERFACES = {'filesystem': ["gtmcore.gitlib.git_fs", "GitFilesystem"], 'filesystem-shim': ["gtmcore.gitlib.git_fs_shim", "GitFilesystemShimmed"]} def get_git_interface(config_dict): """Factory method that instantiates a GitInterface implementation based on provided configuration information Note: `backend` is a required key in config_dict that specifies the gitlib backend implementation to use. Supported Implementations: - "filesystem" - Provides an interface that works on any repo on the filesystem Args: config_dict(dict): Dictionary of configuration information Returns: GitRepoInterface """ if "backend" not in config_dict: raise ValueError("You must specify the `backend` parameter to instantiate a GitInterface implementation") if config_dict["backend"] not in SUPPORTED_GIT_INTERFACES: raise ValueError("Unsupported `backend` parameter {}. Valid backends: {}".format(config_dict["backend"], ",".join(SUPPORTED_GIT_INTERFACES.keys()))) # If you are here OK to import class backend_class = getattr(importlib.import_module(SUPPORTED_GIT_INTERFACES[config_dict["backend"]][0]), SUPPORTED_GIT_INTERFACES[config_dict["backend"]][1]) # Instantiate with the config dict and return to the user return backend_class(config_dict) class GitAuthor(object): """Simple Class to store user information for author/committer""" def __init__(self, name, email): """ Args: name(str): User's first and last name email(str): User's email address """ self.name = name self.email = email def __str__(self): return "{} - {}".format(self.name, self.email) class GitRepoInterface(metaclass=abc.ABCMeta): def __init__(self, config_dict, author=None, committer=None): """Constructor config_dict should contain any custom params needed for the backend. For example, the working directory for a local backend or a service URL for a web service based backend. Args: config_dict(dict): Configuration details for the interface author(GitAuthor): User info for the author, if omitted, assume the "system" committer(GitAuthor): User info for the committer. If omitted, set to the author """ self.config = config_dict self.author = None self.committer = None self.working_directory = None self.update_author(author=author, committer=committer) def set_working_directory(self, directory): """Method to change the current working directory of the repository Args: directory(str): Absolute path to the working dir Returns: None """ raise NotImplemented def update_author(self, author, committer=None): """Method to get the current branch name Args: author(GitAuthor): User info for the author, if omitted, assume the "system" committer(GitAuthor): User info for the committer. If omitted, set to the author Returns: None """ if author: if type(author) != GitAuthor: raise ValueError("Must provide a GitAuthor instance to specify the author") self.author = author else: self.author = GitAuthor("Gigantum AutoCommit", "<EMAIL>") if committer: if type(committer) != GitAuthor: raise ValueError("Must provide a GitAuthor instance to specify the committer") self.committer = committer else: self.committer = GitAuthor("Gigantum AutoCommit", "<EMAIL>") @property def commit_hash(self): """Get the current commit hash Returns: str """ raise NotImplemented @property def commit_hash_short(self): """Get the current commit hash, limit to 8 characters Returns: str """ raise NotImplemented @property def committed_on(self): """Get the datetime the commit occurred Returns: datetime.datetime """ raise NotImplemented @property def git_path(self): """Get the full git path of the active branch Returns: str """ raise NotImplemented @abc.abstractmethod def get_current_branch_name(self): """Method to get the current branch name Returns: str """ raise NotImplemented # CREATE METHODS @abc.abstractmethod def initialize(self, bare=False): """Initialize a new repo Args: bare(bool): If True, use the --bare option Returns: None """ raise NotImplemented @abc.abstractmethod def clone(self, source, directory: Optional[str] = None): """Clone a repo Args: source (str): Git ssh or https string to clone Returns: None """ raise NotImplemented # CREATE METHODS # LOCAL CHANGE METHODS @abc.abstractmethod def status(self) -> Dict[str, List[Tuple[str, str]]]: """Get the status of a repo Should return a dictionary of lists of tuples of the following format: { "staged_new": [(filename, status), ...], "unstaged": [(filename, status), ...], "untracked": [filename, ...] } status is the status of the file (new, modified, deleted) Returns: (dict(list)) """ raise NotImplemented @abc.abstractmethod def add(self, filename): """Add a file to a commit Args: filename(str): Filename to add. Returns: None """ raise NotImplemented @abc.abstractmethod def add_all(self, relative_directory=None): """Add all changes/files using the `git add -A` command Args: relative_directory(str): Relative directory (from the root_dir) to add everything Returns: None """ raise NotImplemented @abc.abstractmethod def remove(self, filename, force=False, keep_file=True): """Remove a file from tracking Args: filename(str): Filename to remove. force(bool): Force removal keep_file(bool): If true, don't delete the file (e.g. use the --cached flag) Returns: None """ raise NotImplemented @abc.abstractmethod def diff_unstaged(self, filename=None, ignore_white_space=True): """Method to return the diff for unstaged files, optionally for a specific file Returns a dictionary of the format: { "#": [(<line_string>, <change_string>), ...], ... } Args: filename(str): Optional filename to filter diff. If omitted all files will be diffed ignore_white_space (bool): If True, ignore whitespace during diff. True if omitted Returns: dict """ raise NotImplemented @abc.abstractmethod def diff_staged(self, filename=None, ignore_white_space=True): """Method to return the diff for staged files, optionally for a specific file Returns a dictionary of the format: { "#": [(<line_string>, <change_string>), ...], ... } Args: filename(str): Optional filename to filter diff. If omitted all files will be diffed ignore_white_space (bool): If True, ignore whitespace during diff. True if omitted Returns: dict """ raise NotImplemented @abc.abstractmethod def diff_commits(self, commit_a='HEAD~1', commit_b='HEAD', ignore_white_space=True): """Method to return the diff between two commits Returns a dictionary of the format: { "#": [(<line_string>, <change_string>), ...], ... } Args: commit_a(str): Commit hash for the first commit commit_b(str): Commit hash for the second commit ignore_white_space (bool): If True, ignore whitespace during diff. True if omitted Returns: dict """ raise NotImplemented @abc.abstractmethod def commit(self, message, author=None, committer=None): """Method to perform a commit operation Commit operation should use self.author and self.committer. If author/committer provided the implementation should update self.author and self.committer Args: message(str): Commit message author(GitAuthor): User info for the author, if omitted, assume the "system" committer(GitAuthor): User info for the committer. If omitted, set to the author Returns: git.Commit -- hash of new commit """ raise NotImplemented # LOCAL CHANGE METHODS # HISTORY METHODS @abc.abstractmethod def log(self, path_info=None, max_count=10, filename=None, skip=None, since=None, author=None): """Method to get the commit history, optionally for a single file, with pagination support Returns an ordered list of dictionaries, one entry per commit. Dictionary format: { "commit": <commit hash (str)>, "author": {"name": <name (str)>, "email": <email (str)>}, "committer": {"name": <name (str)>, "email": <email (str)>}, "committed_on": <commit datetime (datetime.datetime)>, "message: <commit message (str)> } Args: path_info(str): Optional path info to filter (e.g., hash1, hash2..hash1, master) filename(str): Optional filename to filter on max_count(int): Optional number of commit records to return skip(int): Optional number of commit records to skip (supports building pagination) since(datetime.datetime): Optional *date* to limit on author(str): Optional filter based on author name Returns: (list(dict)) """ raise NotImplemented @abc.abstractmethod def log_entry(self, commit): """Method to get single commit records Returns a single dictionary in format: { "commit": <commit hash (str)>, "author": {"name": <name (str)>, "email": <email (str)>}, "committer": {"name": <name (str)>, "email": <email (str)>}, "committed_on": <commit datetime (datetime.datetime)>, "message: <commit message (str)> } Args: commit: <commit hash (str)> Returns: (dict) """ raise NotImplemented @abc.abstractmethod def blame(self, filename): """Method to get the revision and author for each line of a file Returns an ordered list of dictionaries, one entry per change. Dictionary format: { "commit": <commit (str)>, "author": {"name": <name (str)>, "email": <email (str)>}, "committed_on": <datetime (datetime)>, "message": <commit message (str)> "content": <content block (str)> } Args: filename(str): Filename to query Returns: list(dict) """ raise NotImplemented # HISTORY METHODS # BRANCH METHODS @abc.abstractmethod def create_branch(self, name): """Method to create a new branch from the current HEAD Args: name(str): Name of the branch Returns: None """ raise NotImplemented @abc.abstractmethod def publish_branch(self, branch_name, remote_name="origin"): """Method to track a remote branch, check it out, and push Args: branch_name(str): Name of the branch remote_name(str): Name of the remote Returns: None """ raise NotImplemented @abc.abstractmethod def list_branches(self) -> Dict[str, List[str]]: """Method to list branches. Should return a dictionary of the format: { "local": [<name>, ...] "remote": [<name>, ...] } where local are branches currently available locally Returns: dict """ raise NotImplemented @abc.abstractmethod def delete_branch(self, name, remote=False, force=False): """Method to delete a branch Args: name(str): Name of the branch to delete remote(bool): If True, delete a remote branch force(bool): If True, force delete Returns: None """ raise NotImplemented @abc.abstractmethod def rename_branch(self, old_name, new_name): """Method to rename a branch Args: old_name(str): The old branch name new_name(str): The new branch name Returns: None """ raise NotImplemented @abc.abstractmethod def checkout(self, branch_name: str): """Method to switch to a different branch Args: branch_name(str): Name of the branch to switch to Returns: None """ raise NotImplemented # BRANCH METHODS # TAG METHODS @abc.abstractmethod def create_tag(self, name, message): """Method to create a tag Args: name(str): Name of the tag message(str): Message with the tag Returns: None """ raise NotImplemented def list_tags(self): """Method to list tags Returns: (list(dict)): list of dicts with `name` and `message` fields """ raise NotImplemented # TAG METHODS # REMOTE METHODS @abc.abstractmethod def list_remotes(self): """Method to list remote information Returns a list of dictionaries with the format: { "name": <remote name>, "url": <remote location>, } Returns: list(dict) """ raise NotImplemented @abc.abstractmethod def add_remote(self, name, url, kwargs=None): """Method to add a new remote Args: name(str): Name of the remote url(str): Connection string to the remote kwargs(dict): Dictionary of kwargs to send to the git remote add command Returns: None """ raise NotImplemented @abc.abstractmethod def remove_remote(self, name): """Method to remove a remote Args: name(str): Name of the remote Returns: None """ raise NotImplemented @abc.abstractmethod def fetch(self, refspec=None, remote="origin"): """Method to download objects and refs from a remote Args: refspec(str): string describing the mapping between remote ref and local ref remote(str): name of remote, default to `origin` Returns: None """ raise NotImplemented @abc.abstractmethod def pull(self, refspec=None, remote="origin"): """Method fetch and integrate a remote Args: refspec(str): string describing the mapping between remote ref and local ref remote(str): name of remote, default to `origin` Returns: None """ raise NotImplemented @abc.abstractmethod def push(self, remote_name="origin", refspec=None, tags=False): """Method update remote refs along with associated objects Args: remote_name(str): Name of the remote repository tags(bool): If true, push tags Returns: """ raise NotImplemented # REMOTE METHODS # MERGE METHODS @abc.abstractmethod def merge(self, branch_name): """Method to join a future branch history with the current branch Args: branch_name(str): Name of the FUTURE branch to merge into the current PAST branch Returns: None """ raise NotImplemented # MERGE METHODS # UNDO METHODS @abc.abstractmethod def discard_changes(self, filename=None): """Discard all changes, or changes in a single file. Args: filename(str): Optional filename. If omitted, all changes are discarded Returns: None """ raise NotImplemented # UNDO METHODS # SUBMODULE METHODS @abc.abstractmethod def add_submodule(self, name, relative_path, repository, branch=None): """Method to add a submodule at the provided relative path to the repo root and commit the change Args: name(str): Name for the submodule relative_path(str): Relative path from the repo root where the submodule should go repository(str): URL to the remote repository branch(str): If not None, the branch that should be used Returns: None """ raise NotImplemented @abc.abstractmethod def list_submodules(self): """Method to list submodules Should return a list of dicts with the format: { "name": <name of the submodule>, "url": <url of repo>, "branch": <name of the branch> } Returns: list(dict) """ raise NotImplemented @abc.abstractmethod def update_submodules(self, init=True): """Method to update submodules and optionally init if needed Args: init(bool): Flag indicating if submodules should be initialized Returns: None """ raise NotImplemented @abc.abstractmethod def remove_submodules(self, submodule_name): """Method to remove submodule reference and delete the files submodule_path: submodule_name(str): Name of the submodule Returns: None """ raise NotImplemented ``` #### File: gtmcore/imagebuilder/imagebuilder.py ```python import datetime import functools import glob import os import yaml from gtmcore.environment.componentmanager import ComponentManager from typing import (Any, Dict, List) from gtmcore.labbook import LabBook from gtmcore.logging import LMLogger from gtmcore.environment.utils import get_package_manager from gtmcore.mitmproxy.mitmproxy import CURRENT_MITMPROXY_TAG logger = LMLogger.get_logger() class ImageBuilder(object): """Class to ingest indexes describing base images, environments, and dependencies into Dockerfiles. """ def __init__(self, labbook: LabBook) -> None: """Create a new image builder given the path to labbook. Args: labbook: Subject LabBook """ self.labbook = labbook if not os.path.exists(self.labbook.root_dir): raise IOError("Labbook directory {} does not exist.".format(self.labbook.root_dir)) self._validate_labbook_tree() def _get_yaml_files(self, directory: str) -> List[str]: """Method to get all YAML files in a directory Args: directory(str): Directory to search Returns: list """ return [x for x in glob.glob("{}{}*.yaml".format(directory, os.path.sep))] def _validate_labbook_tree(self) -> None: """Throw exception if labbook directory structure not in expected format. """ subdirs = [['.gigantum'], ['.gigantum', 'env'], ['.gigantum', 'env', 'base'], ['.gigantum', 'env', 'custom'], ['.gigantum', 'env', 'package_manager']] for subdir in subdirs: if not os.path.exists(os.path.join(self.labbook.root_dir, *subdir)): raise ValueError("Labbook directory missing subdir `{}'".format(subdir)) def _extra_base_images(self) -> List[str]: """Add other needed images via multi-stage build""" docker_lines = [] cm = ComponentManager(self.labbook) if 'rstudio' in cm.base_fields['development_tools']: docker_lines.append("FROM gigantum/mitmproxy_proxy:" + CURRENT_MITMPROXY_TAG) return docker_lines def _import_baseimage_fields(self) -> Dict[str, Any]: """Load fields from base_image yaml file into a convenient dict. """ root_dir = os.path.join(self.labbook.root_dir, '.gigantum', 'env', 'base') base_images = self._get_yaml_files(root_dir) logger.debug("Searching {} for base image file".format(root_dir)) if len(base_images) != 1: raise ValueError(f"There should only be one base image in {root_dir}, found {len(base_images)}") logger.info("Using {} as base image file for labbook at {}.".format(base_images[0], self.labbook.root_dir)) with open(base_images[0]) as base_image_file: fields = yaml.safe_load(base_image_file) return fields def _load_baseimage(self) -> List[str]: """Search expected directory structure to find the base image. Only one should exist. """ fields = self._import_baseimage_fields() generation_ts = str(datetime.datetime.now()) docker_owner_ns = fields['image']['namespace'] docker_repo = fields['image']['repository'] docker_tag = fields['image']['tag'] docker_lines: List[str] = list() docker_lines.append("# Dockerfile generated on {}".format(generation_ts)) docker_lines.append("# Name: {}".format(fields["name"])) docker_lines.append("# Description: {}".format(fields["description"])) docker_lines.append("") # Must remove '_' if its in docker hub namespace. prefix = '' if '_' in docker_owner_ns else f'{docker_owner_ns}/' docker_lines.append("FROM {}{}:{}".format(prefix, docker_repo, docker_tag)) return docker_lines def _load_packages(self) -> List[str]: """Load packages from yaml files in expected location in directory tree. """ root_dir = os.path.join(self.labbook.root_dir, '.gigantum', 'env', 'package_manager') package_files = [os.path.join(root_dir, n) for n in os.listdir(root_dir) if 'yaml' in n] docker_lines = ['## Adding individual packages'] apt_updated = False for package in sorted(package_files): pkg_fields: Dict[str, Any] = {} with open(package) as package_content: pkg_fields.update(yaml.safe_load(package_content)) # Generate the appropriate docker command for the given package info pkg_info = {"name": str(pkg_fields['package']), "version": str(pkg_fields.get('version'))} if not pkg_fields.get('from_base'): if pkg_fields['manager'] == 'apt' and not apt_updated: docker_lines.append('RUN apt-get -y update') apt_updated = True docker_lines.extend( get_package_manager(pkg_fields['manager']).generate_docker_install_snippet([pkg_info])) return docker_lines def _load_docker_snippets(self) -> List[str]: docker_lines = ['# Custom docker snippets'] root_dir = os.path.join(self.labbook.root_dir, '.gigantum', 'env', 'docker') if not os.path.exists(root_dir): logger.warning(f"No `docker` subdirectory for environment in labbook") return [] for snippet_file in [f for f in os.listdir(root_dir) if '.yaml' in f]: docker_data = yaml.safe_load(open(os.path.join(root_dir, snippet_file))) docker_lines.append(f'# Custom Docker: {docker_data["name"]} - {len(docker_data["content"])}' f'line(s) - (Created {docker_data["timestamp_utc"]})') docker_lines.extend(docker_data['content']) return docker_lines def _post_image_hook(self) -> List[str]: """Contents that must be after baseimages but before development environments. """ docker_lines = ["# Post-image creation hooks", 'COPY entrypoint.sh /usr/local/bin/entrypoint.sh', 'RUN chmod u+x /usr/local/bin/entrypoint.sh', ''] return docker_lines def _entrypoint_hooks(self): """ Contents of docker setup that must be at end of Dockerfile. """ env_vars = "ENV LB_HOME=/mnt/labbook" env_vars = f"{env_vars} LB_CODE=/mnt/labbook/code" env_vars = f"{env_vars} LB_INPUT=/mnt/labbook/input" env_vars = f"{env_vars} LB_OUTPUT=/mnt/labbook/output" env_vars = f"{env_vars} PROJECT_ROOT=/mnt/labbook" env_vars = f"{env_vars} PROJECT_CODE=/mnt/labbook/code" env_vars = f"{env_vars} PROJECT_INPUT=/mnt/labbook/input" env_vars = f"{env_vars} PROJECT_OUTPUT=/mnt/labbook/output" return [ '## Entrypoint hooks', env_vars, "# Run Environment", 'ENTRYPOINT ["/usr/local/bin/entrypoint.sh"]', 'WORKDIR /mnt/labbook', '', '# Use this command to make the container run indefinitely', 'CMD ["tail", "-f", "/dev/null"]', ''] def assemble_dockerfile(self, write: bool = True) -> str: """Create the content of a Dockerfile per the fields in the indexed data. Returns: str - Content of Dockerfile in single string using os.linesep as line separator. """ assembly_pipeline = [self._extra_base_images, self._load_baseimage, self._load_packages, self._load_docker_snippets, self._post_image_hook, self._entrypoint_hooks] # flat map the results of executing the pipeline. try: docker_lines: List[str] = functools.reduce(lambda a, b: a + b, [f() for f in assembly_pipeline], []) except KeyError as e: logger.error('Component file missing key: {}'.format(e)) raise except Exception as e: logger.error(e) raise dockerfile_name = os.path.join(self.labbook.root_dir, ".gigantum", "env", "Dockerfile") if write: logger.info("Writing Dockerfile to {}".format(dockerfile_name)) with open(dockerfile_name, "w") as dockerfile: dockerfile.write('\n'.join(docker_lines)) else: logger.info("Dockerfile NOT being written; write=False; {}".format(dockerfile_name)) return os.linesep.join(docker_lines) ``` #### File: gtmcore/logging/timefunc.py ```python import time from .logger import LMLogger logger = LMLogger.get_logger() def timefunc(method): """ Decorator to be used to time functions. The usage is: @timefunc def function(....) in which `def function....` is the standard invocation. This is a debuggined and logging utility only and should not be left aroud in production code. Used for performance instrumentation. """ def timed(*args, **kw): ts = time.time() result = method(*args, **kw) te = time.time() logger.info('function: %r %2.2f ms' % (method.__name__, (te - ts) * 1000)) return result return timed ``` #### File: workflows/tests/test_gitlab.py ```python import pytest import responses from gtmcore.workflows.gitlab import GitLabManager, ProjectPermissions, GitLabException @pytest.fixture() def gitlab_mngr_fixture(): """A pytest fixture that returns a GitLabRepositoryManager instance""" yield GitLabManager("repo.gigantum.io", "usersrv.gigantum.io", "fakeaccesstoken") @pytest.fixture() def property_mocks_fixture(): """A pytest fixture that returns a GitLabRepositoryManager instance""" responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook', json=[{ "id": 26, "description": "", }], status=200) yield class TestGitLabManager(object): @responses.activate def test_user_token(self, gitlab_mngr_fixture): """test the user_token property""" # Setup responses mock for this test responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) assert gitlab_mngr_fixture._gitlab_token is None # Get token token = gitlab_mngr_fixture.user_token assert token == '<PASSWORD>' assert gitlab_mngr_fixture._gitlab_token == '<PASSWORD>' # Assert token is returned and set on second call and does not make a request responses.add(responses.GET, 'https://usersrv.gigantum.io/key', status=400) assert token == gitlab_mngr_fixture.user_token @responses.activate def test_user_token_error(self, gitlab_mngr_fixture): """test the user_token property""" # Setup responses mock for this test responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'message': 'it failed'}, status=400) # Make sure error is raised when getting the key fails and returns !=200 with pytest.raises(GitLabException): _ = gitlab_mngr_fixture.user_token def test_repository_id(self): """test the repository_id property""" assert GitLabManager.get_repository_id("tester", "test-lb-1") == "tester%2Ftest-lb-1" @responses.activate def test_exists_true(self, property_mocks_fixture, gitlab_mngr_fixture): """test the exists method for a repo that should exist""" assert gitlab_mngr_fixture.repository_exists("testuser", "test-labbook") is True @responses.activate def test_exists_false(self, gitlab_mngr_fixture): """test the exists method for a repo that should not exist""" responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fderp', json=[{ "message": "404 Project Not Found" }], status=404) assert gitlab_mngr_fixture.repository_exists("testuser", "derp") is False @responses.activate def test_create(self, gitlab_mngr_fixture, property_mocks_fixture): """test the create method""" # Setup responses mock for this test responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects', json={ "id": 27, "description": "", }, status=201) responses.add(responses.POST, 'https://usersrv.gigantum.io/webhook/testuser/new-labbook', json={ "success": True }, status=201) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "message": "404 Project Not Found" }], status=404) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "id": 27, "description": "", }], status=200) gitlab_mngr_fixture.create_labbook("testuser", "new-labbook", visibility="private") assert gitlab_mngr_fixture.repository_exists("testuser", "new-labbook") is True @responses.activate def test_create_errors(self, gitlab_mngr_fixture, property_mocks_fixture): """test the create method""" # Should fail because the repo "already exists" with pytest.raises(ValueError): gitlab_mngr_fixture.create_labbook("testuser", "test-labbook", visibility="private") # Should fail because the call to gitlab failed responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects', json={ "id": 27, "description": "", }, status=400) with pytest.raises(ValueError): gitlab_mngr_fixture.create_labbook("testuser", "test-labbook", visibility="private") @responses.activate def test_get_collaborators(self, gitlab_mngr_fixture, property_mocks_fixture): """Test the get_collaborators method""" responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": ProjectPermissions.OWNER.value, "expires_at": None }, { "id": 30, "name": "<NAME>", "username": "jd", "access_level": ProjectPermissions.READ_ONLY.value, "expires_at": None } ], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', status=400) collaborators = gitlab_mngr_fixture.get_collaborators("testuser", "test-labbook") assert len(collaborators) == 2 assert collaborators[0] == (29, 'janed', ProjectPermissions.OWNER) assert collaborators[1] == (30, 'jd', ProjectPermissions.READ_ONLY) # Verify it fails on error to gitlab (should get second mock on second call) with pytest.raises(ValueError): gitlab_mngr_fixture.get_collaborators("testuser", "test-labbook") @responses.activate def test_add_collaborator(self, gitlab_mngr_fixture, property_mocks_fixture): """Test the add_collaborator method""" responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "New Person", "username": "person100", "state": "active", } ], status=200) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json={ "id": 100, "name": "New Person", "username": "person100", "state": "active", }, status=201) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None }, { "id": 100, "name": "New Person", "username": "person100", "access_level": 30, "expires_at": None } ], status=200) gitlab_mngr_fixture.add_collaborator("testuser", "test-labbook", "person100", ProjectPermissions.READ_WRITE) collaborators = gitlab_mngr_fixture.get_collaborators("testuser", "test-labbook") assert len(collaborators) == 2 assert collaborators[0] == (29, 'janed', ProjectPermissions.OWNER) assert collaborators[1] == (100, 'person100', ProjectPermissions.READ_WRITE) @responses.activate def test_add_collaborator_errors(self, gitlab_mngr_fixture, property_mocks_fixture): """Test the add_collaborator method exception handling""" responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "New Person", "username": "person100", "state": "active", } ], status=400) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "New Person", "username": "person100", "state": "active", } ], status=201) responses.add(responses.POST, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json={ "id": 100, "name": "New Person", "username": "person100", "state": "active", }, status=400) with pytest.raises(ValueError): _ = gitlab_mngr_fixture.add_collaborator("testuser", "test-labbook", "person100", ProjectPermissions.OWNER) with pytest.raises(ValueError): _ = gitlab_mngr_fixture.add_collaborator("testuser", "test-labbook", "person100", ProjectPermissions.READ_ONLY) @responses.activate def test_delete_collaborator(self, gitlab_mngr_fixture, property_mocks_fixture): """Test the delete_collaborator method""" responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "New Person", "username": "person100", "state": "active", } ], status=200) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members/100', status=204) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None } ], status=200) gitlab_mngr_fixture.delete_collaborator("testuser", "test-labbook", 'person100') collaborators = gitlab_mngr_fixture.get_collaborators("testuser", "test-labbook") assert len(collaborators) == 1 assert collaborators[0] == (29, 'janed', ProjectPermissions.OWNER) @responses.activate def test_delete_collaborator_error(self, gitlab_mngr_fixture, property_mocks_fixture): """Test the delete_collaborator method exception handling""" responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/users?username=person100', json=[ { "id": 100, "name": "<NAME>", "username": "person100", "state": "active", } ], status=200) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members/100', status=204) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook/members', json=[ { "id": 29, "name": "<NAME>", "username": "janed", "access_level": 40, "expires_at": None } ], status=400) # What is this test even for? # gitlab_mngr_fixture.delete_collaborator("testuser", "test-labbook", 'person100') # with pytest.raises(TestGitLabManager): # gitlab_mngr_fixture.delete_collaborator("testuser", "test-labbook", 'person100') @responses.activate def test_error_on_missing_repo(self, gitlab_mngr_fixture): """Test the exception handling on a repo when it doesn't exist""" responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Ftest-labbook', json=[{ "message": "404 Project Not Found" }], status=404) with pytest.raises(ValueError): gitlab_mngr_fixture.get_collaborators("testuser", "test-labbook") with pytest.raises(ValueError): gitlab_mngr_fixture.add_collaborator("testuser", "test-labbook", "test", ProjectPermissions.READ_ONLY) with pytest.raises(ValueError): gitlab_mngr_fixture.delete_collaborator("testuser", "test-labbook", 100) @responses.activate def test_configure_git_credentials(self, gitlab_mngr_fixture): """test the configure_git_credentials method""" host = "test.gigantum.io" username = "testuser" # Setup responses mock for this test responses.add(responses.GET, 'https://usersrv.gigantum.io/key', json={'key': 'afaketoken'}, status=200) # Check that creds are empty token = gitlab_mngr_fixture._check_if_git_credentials_configured(host, username) assert token is None # Set creds gitlab_mngr_fixture.configure_git_credentials(host, username) # Check that creds are configured token = gitlab_mngr_fixture._check_if_git_credentials_configured(host, username) assert token == "<PASSWORD>" # Set creds gitlab_mngr_fixture.clear_git_credentials(host) # Check that creds are configured token = gitlab_mngr_fixture._check_if_git_credentials_configured(host, username) assert token is None @responses.activate def test_delete(self, gitlab_mngr_fixture, property_mocks_fixture): """test the create method""" # Setup responses mock for this test responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "id": 27, "description": "", }], status=200) responses.add(responses.DELETE, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json={ "message": "202 Accepted" }, status=202) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "message": "404 Project Not Found" }], status=404) responses.add(responses.GET, 'https://repo.gigantum.io/api/v4/projects/testuser%2Fnew-labbook', json=[{ "message": "404 Project Not Found" }], status=404) responses.add(responses.DELETE, 'https://usersrv.gigantum.io/webhook/testuser/new-labbook', json={}, status=204) assert gitlab_mngr_fixture.repository_exists("testuser", "new-labbook") is True gitlab_mngr_fixture.remove_repository("testuser", "new-labbook") assert gitlab_mngr_fixture.repository_exists("testuser", "new-labbook") is False with pytest.raises(ValueError): gitlab_mngr_fixture.remove_repository("testuser", "new-labbook") ``` #### File: gigantum-client/testing/Test_02_ImportExport.py ```python import time import uuid import pprint import json from colors import color from misc import (gqlquery as run_query, endpt_post, USERNAME, make_random_file, container_under_test, drop_file, cleanup_random_files) createLabbookQuery = ''' mutation CreateLabbook($name: String!) { createLabbook(input: { name: $name, description: "Created via test harness", repository: "gigantum_environment-components", componentId: "python3-minimal", revision: 4 }) { labbook { id name } } } ''' labbookQuery = ''' query GetLabbook($owner: String!, $name: String!) { labbook(name: $name, owner: $owner) { id owner name description sizeBytes backgroundJobs { jobKey status result jobMetadata failureMessage } } } ''' exportLabbookQuery = ''' mutation export($owner: String!, $name: String!) { exportLabbook(input: { owner: $owner, labbookName: $name }) { jobKey } } ''' def export_labbook(endpoint, variables) -> float: # Publish labbook mutation v = variables d = run_query(endpoint, 'Export Labbook', exportLabbookQuery, v) job_key = d['data']['publishLabbook']['jobKey'] waiting = True t0 = time.time() while waiting: d = run_query(endpoint, 'Query Export Status', labbookQuery, variables) bgjobs = d['data']['labbook']['backgroundJobs'] for j in bgjobs: md = json.loads(j['jobMetadata']) if md.get('method') == 'export_labbook': if j['status'] in ['failed', 'finished']: tfin = time.time() pub_time = tfin-t0 print(f'Exported project {d["data"]["labbook"]["owner"]}' f'/{d["data"]["labbook"]["name"]} ' f'(size {d["data"]["labbook"]["sizeBytes"]}b) ' f'in {pub_time:.2f}s') waiting = False return pub_time time.sleep(1) def check_limit(desc, time_allowed, time_executed): if time_executed > time_allowed: failt = color('OVERTIME', 'orange') print(f'[{failt}] {desc} (max {time_allowed:.2f}s; took {time_executed:.2f}s)') else: passt = color('PASS', 'green') print(f'[{passt}] {desc} (max {time_allowed:.2f}s; took {time_executed:.2f}s)') if __name__ == '__main__': lbname = f'cli-{uuid.uuid4().hex[:4]}' print(f'Using labbook name: {lbname}') endpoint = endpt_post container_id = container_under_test() run_query(endpoint, 'Create Labbook', createLabbookQuery, {'name': lbname}) drop_file(container_id, make_random_file(1000000), USERNAME, USERNAME, lbname, 'code') drop_file(container_id, make_random_file(1000000), USERNAME, USERNAME, lbname, 'input') t = export_labbook(endpoint, variables={'name': lbname, 'owner': USERNAME}) check_limit("Export 2MB LB", 5.0, t) print(f'## Export {lbname} (50 MB file in code and input)') drop_file(container_id, make_random_file(50000000), USERNAME, USERNAME, lbname, 'code') drop_file(container_id, make_random_file(50000000), USERNAME, USERNAME, lbname, 'input') t = export_labbook(endpoint, variables={'name': lbname, 'owner': USERNAME}) check_limit("Export 100MB LB", 15.0, t) print(f'## Export {lbname} (100MB file in code and input)') drop_file(container_id, make_random_file(1000000000), USERNAME, USERNAME, lbname, 'code') drop_file(container_id, make_random_file(1000000000), USERNAME, USERNAME, lbname, 'input') t = export_labbook(endpoint, variables={'name': lbname, 'owner': USERNAME}) check_limit("Export 2GB LB", 40.0, t) cleanup_random_files() ```
{ "source": "jjw-DL/mmdetection3d_Noted", "score": 3 }
#### File: core/utils/gaussian.py ```python import numpy as np import torch def gaussian_2d(shape, sigma=1): """Generate gaussian map. Args: shape (list[int]): Shape of the map. sigma (float): Sigma to generate gaussian map. Defaults to 1. Returns: np.ndarray: Generated gaussian map. """ m, n = [(ss - 1.) / 2. for ss in shape] y, x = np.ogrid[-m:m + 1, -n:n + 1] h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) h[h < np.finfo(h.dtype).eps * h.max()] = 0 return h def draw_heatmap_gaussian(heatmap, center, radius, k=1): """Get gaussian masked heatmap. Args: heatmap (torch.Tensor): Heatmap to be masked. center (torch.Tensor): Center coord of the heatmap. radius (int): Radius of gausian. K (int): Multiple of masked_gaussian. Defaults to 1. Returns: torch.Tensor: Masked heatmap. """ diameter = 2 * radius + 1 # eg:radius=2 gaussian = gaussian_2d((diameter, diameter), sigma=diameter / 6) # 根据半径生成gaussian map eg:(5,5) x, y = int(center[0]), int(center[1]) # 获取中心坐标 height, width = heatmap.shape[0:2] # 获取heatmap的高和宽 # 对gaussian map上下左右进行截断防止越界 left, right = min(x, radius), min(width - x, radius + 1) # eg:2 和 3 top, bottom = min(y, radius), min(height - y, radius + 1)# eg:2 和 3 masked_heatmap = heatmap[y - top:y + bottom, x - left:x + right] # 截取heatmap的mask masked_gaussian = torch.from_numpy( gaussian[radius - top:radius + bottom, radius - left:radius + right]).to(heatmap.device, torch.float32) # 截取gaussian map并转化为tensor 0 - 5 if min(masked_gaussian.shape) > 0 and min(masked_heatmap.shape) > 0: torch.max(masked_heatmap, masked_gaussian * k, out=masked_heatmap) # 将gaussian赋值到mask对应位置,masked_heatmap与heatmap在内存上是一样的 return heatmap def gaussian_radius(det_size, min_overlap=0.5): """Get radius of gaussian. Args: det_size (tuple[torch.Tensor]): Size of the detection result. min_overlap (float): Gaussian_overlap. Defaults to 0.5. Returns: torch.Tensor: Computed radius. """ height, width = det_size a1 = 1 b1 = (height + width) c1 = width * height * (1 - min_overlap) / (1 + min_overlap) sq1 = torch.sqrt(b1**2 - 4 * a1 * c1) r1 = (b1 + sq1) / 2 a2 = 4 b2 = 2 * (height + width) c2 = (1 - min_overlap) * width * height sq2 = torch.sqrt(b2**2 - 4 * a2 * c2) r2 = (b2 + sq2) / 2 a3 = 4 * min_overlap b3 = -2 * min_overlap * (height + width) c3 = (min_overlap - 1) * width * height sq3 = torch.sqrt(b3**2 - 4 * a3 * c3) r3 = (b3 + sq3) / 2 return min(r1, r2, r3) ```
{ "source": "jjwhitham/latitude_challenge", "score": 3 }
#### File: latitude_challenge/delimited_writer/fixed_width_writer.py ```python import random import os # For generating cp1252 characters from encodings.cp1252 import decoding_table class MockFixedWidthFileWriter: """ A helper class to generate mock fixed width data for testing delimited_writer.py """ def __init__(self, encoding_props, fixed_width_newline): self.encoding_props = encoding_props self.fixed_width_newline = fixed_width_newline def generate_fixed_width_data(self): """ Using the decoding table for cp1252, picks a random character for each column. Fills the column with a random multiple of this character, between 1 and the column length, padding to the right with spaces. """ data = [] # Generate 10 lines of data num_lines = 10 for line in range(num_lines): line_data = [] offsets = self.encoding_props.offsets for offset in offsets: repeats = random.randint(1, offset) column_data = "" # Choose a random char from decoding table, skipping the # first 33 chars, as they are hardware control chars/non-visible rand_char = random.randint(33, 255) # Replace control char (127), undefined chars ('\ufffe') # & no-break space (160) with "!" if rand_char in [127, 129, 141, 143, 144, 157, 160]: rand_char = 33 column_data += decoding_table[rand_char] * repeats line_data.append(column_data.ljust(offset)) data.append(line_data) return data def write_fixed_width_file(self, fixed_width_data): """ Writes fixed width file with specified newline=fixed_width_newline. f.write("\n") to achieve this in a platform-independent way, as per Python docs: https://docs.python.org/3/library/os.html#os.linesep """ fixed_width_filename = self.encoding_props.fixed_width_filename fixed_width_newline = self.fixed_width_newline fixed_width_encoding = self.encoding_props.fixed_width_encoding with open( fixed_width_filename, "w", encoding=fixed_width_encoding, newline=fixed_width_newline, ) as f: for line in fixed_width_data: for field in line: f.write(field) f.write("\n") ```
{ "source": "jjwilke/sst-macro", "score": 3 }
#### File: bin/tools/ref.py ```python import os files = """ """ def check_files(fxn): configStatus = "" try: configStatus = open("../config.status").read() except: sys.exit("could not find valid config.status file") import re match = re.compile("srcdir=(.*)").search(configStatus) if not match: sys.exit("could not located srcdir in config.status") srcdir = match.groups()[0].strip().strip('"').strip("'") refdir = os.path.join(srcdir, "tests", "reference") for f in files.strip().splitlines(): path = f.strip().split()[0] fname = os.path.split(path)[-1].replace("chk","tmp") ref = os.path.join(refdir, fname.replace("tmp","ref")) fxn(fname, ref) ```
{ "source": "JJWilliams27/Cricket_RainAffectedMatchAnalysis", "score": 3 }
#### File: JJWilliams27/Cricket_RainAffectedMatchAnalysis/scrape_cricinfo.py ```python import pandas as pd import pdb import requests from espncricinfo.player import Player from espncricinfo.match import Match from espncricinfo.series import Series # Get cricket world cup #cwc19 = Series('8039') # Get all matches #matches = Series.get_events_for_season(cwc19,2019) # Construct original table #groupstage = pd.read_csv('cwc19_final_table.csv') # Get County Championship #cchamp1 = Series('8052') #cchamp2 = Series('8204') # Get county champsionship seasons print('Getting Match IDs') #matches = Series.get_events_for_season(cchamp1,2018) #matches.append(Series.get_events_for_season(cchamp2,2018)) m=Match(1166949) i1,i2,i3,i4 = m.getbattingdataframe() pdb.set_trace() req = requests.get(m.json_url) url = m.espn_api_url def get_json(url): r = requests.get(url) if r.status_code == 404: raise "Not Found" else: return r.json() test = get_json(url) #notes #gameInfo #debuts #rosters #matchcards #news #article #videos #leaders #header pdb.set_trace() ```
{ "source": "JJWilliams27/Reddit_NLP", "score": 3 }
#### File: JJWilliams27/Reddit_NLP/plot_time_series_subplot.py ```python import os import pandas as pd import numpy as np import datetime as dt import csv import matplotlib.pyplot as plt from tqdm import tqdm import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # All Posts # Read CSV df = pd.read_csv('ClimateSkepticsAllPosts.csv',index_col=0,parse_dates=True) def get_yearmonth(timestamp): month = timestamp[5:7] year = timestamp[:4] monthyear = str(year) + '/' + str(month) return monthyear df['YearMonth'] = df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months df_grp = df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame dateTime = pd.DataFrame() dateTime['YearMonth'] = Y_M dateTime['Posts'] = Num_Posts dateTime.to_csv('ClimateSkeptics_Posts_per_Month.csv') datetime_list = [] for i in list(range(0,len(dateTime))): month = int(dateTime['YearMonth'][i][5:7]) year = int(dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) dateTime['Date'] = datetime_list # All Submissions # Read CSV path=os.getcwd() fullpath=path+'/Outputs/CS_FULL/LDA_Dataframes/topic_timeseries_10.csv' df = pd.read_csv(fullpath,index_col=0,parse_dates=True) df['YearMonth'] = df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months df_grp = df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame dateTime2 = pd.DataFrame() dateTime2['YearMonth'] = Y_M dateTime2['Posts'] = Num_Posts dateTime2.to_csv('ClimateSkeptics_Submissions_per_Month.csv') datetime_list = [] for i in list(range(0,len(dateTime2))): month = int(dateTime2['YearMonth'][i][5:7]) year = int(dateTime2['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) dateTime2['Date'] = datetime_list # Get Subscribers subs = pd.read_csv('climateskeptics_subscribers.csv') subs.columns = ['timestamp','Subscribers'] datetime_list = [] for i in list(range(0,len(subs))): day = subs['timestamp'][i][:2] month = subs['timestamp'][i][3:5] year = subs['timestamp'][i][6:10] datetime_list.append(dt.date(int(year),int(month),int(day))) subs['Date'] = datetime_list # NOW DO SPECIFIC SEARCHES # CLIMATEGATE cgate_posts = pd.read_csv('CS_CGate_posts.csv') cgate_posts = cgate_posts.drop(['title','url','comms_num'],axis=1) cgate_coms = pd.read_csv('CS_CGate_comments.csv') cgate_df = pd.concat([cgate_posts,cgate_coms]) cgate_df['YearMonth'] = cgate_df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months cgate_df.drop_duplicates(subset ="id", keep = 'first', inplace = True) # Remove duplicates based on ID cgate_df_grp = cgate_df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in cgate_df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame CG_dateTime = pd.DataFrame() CG_dateTime['YearMonth'] = Y_M CG_dateTime['Posts'] = Num_Posts datetime_list = [] for i in list(range(0,len(CG_dateTime))): month = int(CG_dateTime['YearMonth'][i][5:7]) year = int(CG_dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) CG_dateTime['Date'] = datetime_list # IPCC AR4 ipcc_posts = pd.read_csv('CS_IPCC_posts.csv') ipcc_posts = ipcc_posts.drop(['title','url','comms_num'],axis=1) ipcc_coms = pd.read_csv('CS_IPCC_comments.csv') ipcc_df = pd.concat([ipcc_posts,ipcc_coms]) ipcc_df['YearMonth'] = ipcc_df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months ipcc_df.drop_duplicates(subset ="id", keep = 'first', inplace = True) # Remove duplicates based on ID ipcc_df_grp = ipcc_df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in ipcc_df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame IPCC_dateTime = pd.DataFrame() IPCC_dateTime['YearMonth'] = Y_M IPCC_dateTime['Posts'] = Num_Posts datetime_list = [] for i in list(range(0,len(IPCC_dateTime))): month = int(IPCC_dateTime['YearMonth'][i][5:7]) year = int(IPCC_dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) IPCC_dateTime['Date'] = datetime_list # Paris COP21 cop21_posts = pd.read_csv('CS_COP21_posts.csv') cop21_posts = cop21_posts.drop(['title','url','comms_num'],axis=1) cop21_coms = pd.read_csv('CS_COP21_comments.csv') cop21_df = pd.concat([cop21_posts,cop21_coms]) cop21_df.drop_duplicates(subset ="id", keep = 'first', inplace = True) # Remove duplicates based on ID cop21_df['YearMonth'] = cop21_df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months cop21_df_grp = cop21_df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in cop21_df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame COP21_dateTime = pd.DataFrame() COP21_dateTime['YearMonth'] = Y_M COP21_dateTime['Posts'] = Num_Posts datetime_list = [] for i in list(range(0,len(COP21_dateTime))): month = int(COP21_dateTime['YearMonth'][i][5:7]) year = int(COP21_dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) COP21_dateTime['Date'] = datetime_list # Cooling/Snow/Freeze/Cold cold_posts = pd.read_csv('CS_cooling_posts.csv') cold_posts = cold_posts.drop(['title','url','comms_num'],axis=1) cold_coms = pd.read_csv('CS_cooling_comments.csv') cold_df = pd.concat([cold_posts,cold_coms]) cold_df.drop_duplicates(subset ="id", keep = 'first', inplace = True) # Remove duplicates based on ID cold_df['YearMonth'] = cold_df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months cold_df_grp = cold_df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in cold_df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame cold_dateTime = pd.DataFrame() cold_dateTime['YearMonth'] = Y_M cold_dateTime['Posts'] = Num_Posts datetime_list = [] for i in list(range(0,len(cold_dateTime))): month = int(cold_dateTime['YearMonth'][i][5:7]) year = int(cold_dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) cold_dateTime['Date'] = datetime_list # Plot fig = plt.figure() ax = plt.subplot(221) ax.text(0.02, 0.95, 'A', transform=ax.transAxes,fontsize=16, fontweight='bold', va='top') p1 = dateTime.plot(x='Date',y='Posts',linewidth=3,legend=False,fontsize=10,color='coral',ax=ax) p1.set_ylabel("Number of Posts", fontsize=14) p1.set_xlabel("Date", fontsize=14) ax2 = plt.subplot(222) ax2.text(0.02, 0.95, 'B', transform=ax2.transAxes,fontsize=16, fontweight='bold', va='top') p2 = dateTime2.plot(x='Date',y='Posts',linewidth=3,legend=False,fontsize=10,color='crimson',ax=ax2) p2.set_ylabel("Number of Submissions", fontsize=14) p2.set_xlabel("Date", fontsize=14) ax3 = plt.subplot(223) ax3.text(0.02, 0.95, 'C', transform=ax3.transAxes,fontsize=16, fontweight='bold', va='top') p3 = subs.plot(x='Date',y='Subscribers',linewidth=3,legend=False,fontsize=10,color='lightskyblue',ax=ax3) p3.set_xlim(min(dateTime['Date']), max(dateTime['Date'])) p3.set_xlabel("Date",fontsize=14) p3.set_ylabel("Subscribers",fontsize=14) ax4 = plt.subplot(224) ax4.text(0.02, 0.95, 'D', transform=ax4.transAxes,fontsize=16, fontweight='bold', va='top') p4 = CG_dateTime.plot(x='Date',y='Posts',legend=False,fontsize=10,color='blue',ax=ax4,label='"Climategate"') IPCC_dateTime.plot(x='Date',y='Posts',legend=False,fontsize=10,color='red',ax=ax4,label='"IPCC"') COP21_dateTime.plot(x='Date',y='Posts',legend=False,fontsize=10,color='magenta',ax=ax4,label='"Paris"') cold_dateTime.plot(x='Date',y='Posts',legend=False,fontsize=10,color='cyan',ax=ax4,label='"Cooling"') ax4.set_xlabel("Date", fontsize=14) ax4.set_ylabel("Number of Submissions", fontsize=14) ax4.legend(loc='upper right') #fig.tight_layout() plt.show() ``` #### File: JJWilliams27/Reddit_NLP/scrape_reddit.py ```python import praw from psaw import PushshiftAPI import pandas as pd import datetime as dt import os # Options save_posts = 1 save_comments = 1 get_top_submissions = 0 get_all_submissions = 1 get_comments_for_timeseries = 0 get_submissions_for_timeseries = 0 # All Posts start_epoch = int(dt.datetime(2008, 1, 1).timestamp()) # Set start point for post extraction number_of_submissions = None # Set number of posts (None = all posts) # Create Functions def get_date(created): return dt.datetime.fromtimestamp(created) # Set up Reddit API reddit = praw.Reddit(client_id='INSERT_CLIENT_ID_HERE', \ client_secret='INSERT_CLIENT_SECRET_HERE', \ user_agent='INSERT_USER_AGENT_HERE', \ username='INSERT_USERNAME_HERE', \ password='<PASSWORD>') api = PushshiftAPI(reddit) # Use Pushshift API to get around 1000 submission limit imposed by praw # Access Climate Skepticism Subreddit subreddit = reddit.subreddit('ClimateSkeptics') # Loop through top submissions and append to output dataframe if get_top_submissions == 1: # Create Output Dictionary topics_dict = { "title":[], \ "score":[], \ "id":[], "url":[], \ "comms_num": [], \ "created": [], \ "body":[]} # Access Top x posts print("Retrieving Submissions") top_subreddit = subreddit.top(limit=500) print("Appending Submissions to Dataframe") count = 0 for submission in top_subreddit: print(count) path = os.getcwd() conversedict = {} dirname = path + '/Comments' if not os.path.exists(dirname): os.mkdir(dirname) outname = dirname + '/' + submission.id + '.csv' # Remove limit on comment extraction submission.comments.replace_more(limit=None) topics_dict["title"].append(submission.title) topics_dict["score"].append(submission.score) topics_dict["id"].append(submission.id) topics_dict["url"].append(submission.url) topics_dict["comms_num"].append(submission.num_comments) topics_dict["created"].append(submission.created) topics_dict["body"].append(submission.selftext) temp_array = [] for comment in submission.comments.list(): temp_array.append(comment) if comment.id not in conversedict: comment.created = get_date(comment.created) conversedict[comment.id] = [comment.body,comment.ups,comment.created,{}] # Original = [comment.body,{}] if comment.parent() != submission.id: parent = str(comment.parent()) conversedict[parent][3][comment.id] = [comment.ups, comment.body, comment.created] #conversedict[comment.id] = [comment.body,{}] #if comment.parent() != submission.id: # parent = str(comment.parent()) # pdb.set_trace() # conversedict[parent][1][comment.id] = [comment.ups, comment.body] converse_df = pd.DataFrame(conversedict) count = count+1 if save_comments == 1: converse_df.to_csv('%s' %(outname), index=False) # Convert Dictionary to Pandas Dataframe print("Creating Dataframe") topics_data = pd.DataFrame(topics_dict) # Convert Date to Timestamp _timestamp = topics_data["created"].apply(get_date) topics_data = topics_data.assign(timestamp = _timestamp) # Export as CSV if save_posts == 1: print("Saving as csv") topics_data.to_csv('%sTop500Posts_Test.csv' %(subreddit), index=False) if get_all_submissions == 1: years=[2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019] total_posts = [] for year in years: print('Getting Submissions for %s' %(year)) start_epoch = int(dt.datetime(year, 1, 1).timestamp()) # Set start point for post extraction end_epoch = int(dt.datetime(year,12,31).timestamp()) # Set end point # Create Output Dictionary topics_dict = { "title":[], \ "score":[], \ "id":[], "url":[], \ "comms_num": [], \ "created": [], \ "body":[]} # Access Top x posts print("Retrieving Submissions") all_subreddit = list(api.search_submissions(before=end_epoch,after=start_epoch,subreddit=subreddit,filter=['url','author','title','subreddit'],limit=number_of_submissions)) total_posts.append(len(all_subreddit)) print("Appending Submissions to Dataframe") count = 1 num = len(all_subreddit) for submission in all_subreddit: print(str(count) + '/' + str(num)) path = os.getcwd() dirname = path + '/Comments' conversedict = {} if not os.path.exists(dirname): os.mkdir(dirname) outname = dirname + '/' + submission.id + '.csv' # Remove limit on comment extraction topics_dict["title"].append(submission.title) topics_dict["score"].append(submission.score) topics_dict["id"].append(submission.id) topics_dict["url"].append(submission.url) topics_dict["comms_num"].append(submission.num_comments) topics_dict["created"].append(submission.created) topics_dict["body"].append(submission.selftext) temp_array = [] for comment in submission.comments.list(): temp_array.append(comment) if comment.id not in conversedict: try: conversedict[comment.id] = [comment.body,comment.ups,comment.created,{}] # Original = [comment.body,{}] if comment.parent() != submission.id: parent = str(comment.parent()) conversedict[parent][3][comment.id] = [comment.ups, comment.body, comment.created] #conversedict[comment.id] = [comment.body,{}] #if comment.parent() != submission.id: # parent = str(comment.parent()) # pdb.set_trace() # conversedict[parent][1][comment.id] = [comment.ups, comment.body] except: pass # Skip if no comments converse_df = pd.DataFrame(conversedict) count = count+1 if save_comments == 1: converse_df.to_csv('%s' %(outname), index=False) # Convert Dictionary to Pandas Dataframe print("Creating Dataframe") topics_data = pd.DataFrame(topics_dict) # Convert Date to Timestamp _timestamp = topics_data["created"].apply(get_date) topics_data = topics_data.assign(timestamp = _timestamp) if save_posts == 1: print("Saving as csv") topics_data.to_csv('%sAllPosts' %(subreddit) + str(year) + '.csv', index=False) if get_comments_for_timeseries == 1: # Create Output Dictionary topics_dict = { "created":[], \ "score":[], \ "id":[], \ "body": []} searches = ['IPCC','AR4','AR5'] # Kirilenko et al 2015 use climate change and global warming as search terms for search in searches: # Access Top x posts print("Retrieving Submissions") all_subreddit_comments = list(api.search_comments(q=search,after=start_epoch,subreddit=subreddit,filter=['url','author','title','subreddit'],limit=number_of_submissions)) print("Appending Comments to Dataframe") count = 0 num = len(all_subreddit_comments) for submission in all_subreddit_comments: print(str(count) + '/' + str(num)) path = os.getcwd() dirname = path + '/Comments' if not os.path.exists(dirname): os.mkdir(dirname) outname = dirname + '/' + submission.id + '.csv' # Remove limit on comment extraction topics_dict["created"].append(submission.created) topics_dict["score"].append(submission.score) topics_dict["id"].append(submission.id) topics_dict["body"].append(submission.body) count = count+1 # Convert Dictionary to Pandas Dataframe print("Creating Dataframe") topics_data = pd.DataFrame(topics_dict) # Convert Date to Timestamp _timestamp = topics_data["created"].apply(get_date) topics_data = topics_data.assign(timestamp = _timestamp) # Export as CSV if save_posts == 1: print("Saving as csv") topics_data.to_csv('%s_IPCC_Comments.csv' %(subreddit), index=False) if get_submissions_for_timeseries == 1: # Create Output Dictionary topics_dict = { "created":[], \ "score":[], \ "id":[], "url":[], \ "comms_num": [], \ "title": [], \ "body":[]} searches = ['IPCC','AR4','AR5'] # Kirilenko et al 2015 use climate change and global warming as search terms for search in searches: # Access Top x posts print("Retrieving Submissions") all_subreddit = list(api.search_submissions(q=search,after=start_epoch,subreddit=subreddit,filter=['url','author','title','subreddit'],limit=number_of_submissions)) print("Appending Submissions to Dataframe") count = 0 num = len(all_subreddit) for submission in all_subreddit: print(str(count) + '/' + str(num)) path = os.getcwd() dirname = path + '/Comments' if not os.path.exists(dirname): os.mkdir(dirname) outname = dirname + '/' + submission.id + '.csv' # Remove limit on comment extraction topics_dict["created"].append(submission.created) topics_dict["title"].append(submission.title) topics_dict["score"].append(submission.score) topics_dict["id"].append(submission.id) topics_dict["url"].append(submission.url) topics_dict["comms_num"].append(submission.num_comments) topics_dict["body"].append(submission.selftext) count = count+1 # Convert Dictionary to Pandas Dataframe print("Creating Dataframe") topics_data = pd.DataFrame(topics_dict) # Convert Date to Timestamp _timestamp = topics_data["created"].apply(get_date) topics_data = topics_data.assign(timestamp = _timestamp) # Export as CSV if save_posts == 1: print("Saving as csv") topics_data.to_csv('%s_IPCC_Posts.csv' %(subreddit), index=False) ```
{ "source": "jjwithanr/todocal", "score": 3 }
#### File: jjwithanr/todocal/todocal.py ```python import tkinter as tk from tkinter import ttk, messagebox, font from datetime import * import sqlite3 as sq import GoogleCal class Scheduler(tk.Frame): def __init__(self, root, task): tk.Frame.__init__(self, root) self.root = root self.task = task self.selected = [] self._draw() def show_tasks(self): self.Tasks.delete(0,'end') for i in self.task: self.Tasks.insert('end', i) def get_selected(self): self.selected = [self.task[i] for i in self.Tasks.curselection()] self.selectWindow.destroy() self.schedule_event() def open_task_selection(self) -> list: # Create new window self.selectWindow = tk.Toplevel(self.root) self.selectWindow.title("Choose tasks to schedule") self.selectWindow.geometry("400x300") icon = tk.PhotoImage(file="todo-icon.png") self.selectWindow.iconphoto(False, icon) # Window widgets scrollbar = tk.Scrollbar(self.selectWindow) scrollbar.pack(side="right", fill = "both") self.Tasks = tk.Listbox(self.selectWindow, height=11, width=30, font=font.Font(size=15), selectmode=tk.EXTENDED) self.Tasks.pack(fill=tk.BOTH, expand=True) self.Tasks.config(yscrollcommand = scrollbar.set) scrollbar.config(command=self.Tasks.yview) # ! add warning for no selected tasks? self.close_bio_btn = tk.Button(self.selectWindow, text="Confirm", width=25, command=self.get_selected) self.close_bio_btn.pack(side=tk.TOP, pady=5) self.show_tasks() return self.selected def schedule_event(self): # ? move spinbox to selectedWindow? # ? add footer saying what Google account signed into. # ! sign-in button and schedule button? def getAvailability() -> dict: # Get time from spinboxes and convert to string s = self.start_hour.get() + ":" + self.start_min.get() + self.start_clock12hr.get() e = self.end_hour.get() + ":" + self.end_min.get() + self.end_clock12hr.get() if not (s and e): messagebox.showerror("Error", "Invalid time range") return {} # Convert string into datetime time objects start = datetime.strptime(s, "%I:%M%p").time() end = datetime.strptime(e, "%I:%M%p").time() if start >= end: messagebox.showerror("Error","Invalid time range") return {1:1} else: # * insert setting for time duration here return GoogleCal.schedule_time(start, end, time_duaration=7) if not self.task: # Must have a task to schedule task messagebox.showinfo('Cannot schedule', 'Add a task') else: # Check busyness and find available date scheduled_times = getAvailability() if scheduled_times == {1:1}: return 0 elif scheduled_times: # All tasks are in the description # NOTE: can use settings for single select task scheduling? this is default ... GoogleCal.create_event(scheduled_times["start"], scheduled_times["end"], description="\n".join(self.selected) if self.selected else "\n".join(self.task)) started = scheduled_times["start"].strftime("%I:%M%p") ended = scheduled_times["end"].strftime("%I:%M%p") date = scheduled_times["end"].strftime("%b %d") messagebox.showinfo("Sucess", "Created event from " + started + " to " + ended + " on " + date) else: messagebox.showinfo("Failure", "You are unavailable during this time") def _draw(self): scheduleFrame = tk.Frame(master=self.root) scheduleFrame.pack(fill=tk.BOTH, side=tk.BOTTOM, expand=False) calendarLabel = ttk.Label(scheduleFrame, text='Schedule Time:') calendarLabel.pack(side=tk.LEFT, padx=5) # Spinboxes to pick time self.start_hour = ttk.Spinbox(master=scheduleFrame, from_=1,to=12, wrap=True, width=3, state="readonly") self.start_hour.set(4) self.start_hour.pack(side=tk.LEFT, padx=5) self.start_min = ttk.Spinbox(master=scheduleFrame, from_=0,to=59, wrap=True, width=3, state="readonly") self.start_min.set(0) self.start_min.pack(side=tk.LEFT, padx=5) self.start_clock12hr = ttk.Spinbox(master=scheduleFrame, values=("AM", "PM"), wrap=True, width=3) self.start_clock12hr.set("PM") self.start_clock12hr.pack(side=tk.LEFT, padx=5) bufferLabel = tk.Label(scheduleFrame, text="to") bufferLabel.pack(side=tk.LEFT, padx=5) self.end_hour = ttk.Spinbox(master=scheduleFrame, from_=1,to=12, wrap=True, width=3, state="readonly") self.end_hour.set(6) self.end_hour.pack(side=tk.LEFT, padx=5) self.end_min = ttk.Spinbox(master=scheduleFrame, from_=0,to=59, wrap=True, width=3, state="readonly") self.end_min.set(0) self.end_min.pack(side=tk.LEFT, padx=5) self.end_clock12hr = ttk.Spinbox(master=scheduleFrame, values=("AM", "PM"), wrap=True, width=3) self.end_clock12hr.set("PM") self.end_clock12hr.pack(side=tk.LEFT, padx=5) # Callback to create event for desired time scheduleBtn = ttk.Button(scheduleFrame, text='Confirm', width=10, command=self.open_task_selection) scheduleBtn.pack(side=tk.LEFT, padx=5) class View(tk.Frame): def __init__(self, root): tk.Frame.__init__(self, root) self.root = root self._draw() def _draw(self): scrollbar = tk.Scrollbar(self.root) scrollbar.pack(side="right", fill = "both") viewFrame = tk.Frame(master=self.root) viewFrame.pack(fill=tk.BOTH, side=tk.LEFT, expand=True, padx=10, pady=10) self.viewTasks = tk.Listbox(viewFrame, height=11, width = 30, font=font.Font(size=15), selectmode=tk.SINGLE) self.viewTasks.pack(fill=tk.BOTH, side=tk.LEFT, expand=True) self.viewTasks.config(yscrollcommand = scrollbar.set) scrollbar.config(command=self.viewTasks.yview) self.viewTasks.config(selectmode=tk.SINGLE) # ? Add a scheduled tasks view? shows which ones are already assigned with its date next to it? class MainApp(tk.Frame): def __init__(self, root): tk.Frame.__init__(self, root) self.root = root self._init_database() self._draw() def addTask(self): word = self.entry.get() if len(word)==0: messagebox.showinfo('Empty Entry', 'Enter task name') else: self.task.append(word) self.cur.execute('insert into tasks values (?)', (word,)) self.listUpdate() self.entry.delete(0,'end') def listUpdate(self): self.clearList() for i in self.task: self.view.viewTasks.insert('end', i) def delOne(self): try: val = self.view.viewTasks.get(self.view.viewTasks.curselection()) if val in self.task: self.oldTasks.append(val) self.task.remove(val) self.listUpdate() self.cur.execute('delete from tasks where title = ?', (val,)) except: messagebox.showinfo('Cannot Delete', 'No Task Item Selected') def deleteAll(self): mb = messagebox.askyesno('Delete All','Are you sure?') if mb == True: while(len(self.task) != 0): deleted = self.task.pop() self.oldTasks.append(deleted) self.cur.execute('delete from tasks') self.listUpdate() def undoTask(self): try: word = self.oldTasks.pop() self.task.append(word) self.cur.execute('insert into tasks values (?)', (word,)) self.listUpdate() except: messagebox.showerror("Error", "Nothing to undo") def clearList(self): self.view.viewTasks.delete(0,'end') def bye(self): self.root.destroy() def retrieveDB(self): while(len(self.task) != 0): self.task.pop() for row in self.cur.execute('select title from tasks'): self.task.append(row[0]) def _init_database(self): self.conn = sq.connect('todo.db') self.cur = self.conn.cursor() self.cur.execute('create table if not exists tasks (title text)') self.task = [] self.oldTasks = [] self.oldIndex = 0 def new_settings(self): self.settingsWindow = tk.Toplevel(self.root) self.settingsWindow.title("Scheduler Settings") self.settingsWindow.geometry("400x200") # Configure time length # self.new_bio_entry = tk.Entry(self.settingsWindow, width=50) # self.new_bio_entry.pack() # ! convert this to # of weeks / week label self.start_hour = ttk.Spinbox(master=settingsWindow, from_=1,to=4, wrap=True, width=5, state="readonly") self.start_hour.set(1) self.start_hour.pack(padx=5) self.start_min = ttk.Spinbox(master=settingsWindow, from_=0,to=59, wrap=True, width=3, state="readonly") self.start_min.set(0) self.start_min.pack(side=tk.LEFT, padx=5) # Confirm button self.change_bio_btn = tk.Button(self.settingsWindow, text="Update bio", width=25, command=self.save_bio) self.change_bio_btn.pack(pady=5) def _draw(self): menu_bar = tk.Menu(self.root) self.root['menu'] = menu_bar menu_settings = tk.Menu(menu_bar, tearoff=0) menu_bar.add_cascade(menu=menu_settings, label='Settings') # Change from 1 week to up to 1 month # ! time settings # Change from all tasks in description to single select task and make that the title menu_settings.add_command(label="Schedule Preferences", command = lambda x: x) # Add buttons buttonFrame = tk.Frame(master=self.root, width=50) buttonFrame.pack(fill=tk.BOTH, side=tk.LEFT, padx=10) todoLabel = ttk.Label(buttonFrame, text = 'To-Do List') todoLabel.pack(pady=7) taskLabel = ttk.Label(buttonFrame, text='Enter task title: ') taskLabel.pack(pady=5) self.entry = ttk.Entry(buttonFrame, width=21) self.entry.pack(pady=5) addBtn = ttk.Button(buttonFrame, text='Add task', width=20, command=self.addTask) addBtn.pack(pady=5) delBtn = ttk.Button(buttonFrame, text='Delete', width=20, command=self.delOne) delBtn.pack(pady=5) clearBtn = ttk.Button(buttonFrame, text='Delete all', width=20, command=self.deleteAll) clearBtn.pack(pady=5) undoBtn = ttk.Button(buttonFrame, text='Undo delete', width=20, command=self.undoTask) undoBtn.pack(pady=5) exitBtn = ttk.Button(buttonFrame, text='Exit', width=20, command=self.bye) exitBtn.pack(pady=5) self.scheduler = Scheduler(self.root, self.task) self.view = View(self.root) self.retrieveDB() self.listUpdate() self.root.mainloop() self.conn.commit() self.cur.close() if __name__ == "__main__": root = tk.Tk() root.title('ToDo Cal') icon = tk.PhotoImage(file="todo-icon.png") root.iconphoto(False, icon) root.geometry("650x280") root.configure(bg="#d6d6d6") root.minsize(650, 280) MainApp(root) ```
{ "source": "JJWLewis/tiny_python_projects", "score": 4 }
#### File: tiny_python_projects/02_crowsnest/crowsnest.py ```python import argparse def get_args(): """Get the comand-line arguments""" parser = argparse.ArgumentParser( description='Rock the Casbah', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('word', metavar='word', default='octopus', help='Name of thing seen') return parser.parse_args() def main(): """Sentence Constructor""" thing_seen = get_args().word if start_vowel(thing_seen): article = 'An' if thing_seen[0].isupper() else 'an' else: article = 'A' if thing_seen[0].isupper() else 'a' print(f'Ahoy, Captain, {article} {thing_seen} off the larboard bow!') def start_vowel(word): """Checks if word starts with a vowel. Returns True if so""" return word[0].lower() in ['a', 'e', 'i', 'o', 'u'] if __name__ == "__main__": main() ```
{ "source": "j-jwolf/language-speed-test", "score": 3 }
#### File: language-speed-test/src/test.py ```python import sys import time import os def read(fn): with open(fn) as f: data = f.readlines() return data def write(fn, data): f = open(fn, "w") for line in data: f.write(line) f.close() return def consoleOut(fn): command = "IF EXIST "+fn+" ( rm "+fn+" )" res = os.system(command) if(res != 0): print("PROCESS RETURNED "+res) return def main(): start = time.time() fn = sys.argv[1] destination = sys.argv[2] testCount = int(sys.argv[3]) destroyAfter = int(sys.argv[4]) print("new file name: ", destination, end="\n") print("Starting test, reading file ", fn, " ", testCount, " times\n-----------------------", end="\n") for i in range(testCount): data = read(fn) write(destination, data) if(destroyAfter): consoleOut(destination) end = time.time() print("Time elapsed: ", (end-start)) return main() ```
{ "source": "j-jwolf/weather", "score": 3 }
#### File: src/pyfiles/getcoords.py ```python import os import sys import json def main(): fn = "loc.txt" with open(fn) as file: content = file.readlines() rawData = "" for line in content: rawData += line jsonList = json.loads(rawData) coords = jsonList["loc"] print(coords) return main() ```
{ "source": "jjwong/codefights", "score": 2 }
#### File: python/2_slithering_in_strings/convert_tabs.py ```python def convertTabs(code, x): return re.sub('\t', ' ' * x, code) ``` #### File: python/2_slithering_in_strings/feedback_review.py ```python import textwrap def feedbackReview(feedback, size): return textwrap.wrap(feedback, width=size) ``` #### File: python/3_lurking_in_lists/print_list.py ```python def printList(lst): return "This is your list: " + str(lst) ``` #### File: python/3_lurking_in_lists/remove_tasks.py ```python def removeTasks(k, toDo): del toDo[k-1::k] return toDo ```
{ "source": "jjx323/VIfIP", "score": 3 }
#### File: jjx323/VIfIP/addNoise.py ```python import numpy as np import matplotlib.pyplot as plt def addGaussianNoise(d, para, testMode='n'): # This function add noises as follows: # d_i = d_i with probability 1-para['rate'] # d_i = d_i + \epsilon \xi_i with probability para['rate'] # where \xi_i follow the standard normal distribution, # para['rate'] is the corruption percentage, # para['noise_level'] is the noise level, # # The output: # d: the noisy data; # sig: is the covariance of the added noises. # # Ref: <NAME>, A variational Bayesian method to inverse problems with implusive noise, # Journal of Computational Physics, 231, 2012, 423-435 (Page 428, Section 4). if testMode == 'y': np.random.seed(1) noise_level = para['noise_level'] len_d = len(d) r = para['rate'] noise = np.random.normal(0, 1, len_d) select = (np.random.uniform(0, 1, len_d) < r) d = d + noise_level*np.max(np.abs(d))*noise*select sig = noise_level*np.max(np.abs(d)) return d, sig def addImplusiveNoise(d, para, testMode='n'): # This function add noise as follows: # d_i = d_i with probability 1-para['rate'] # d_i = d_i + para['noise_levle']*U[-1, 1] with probability para['rate'] # Here, U[-1, 1] stands for uniform probability distribution between -1 and 1 # para['rate'] is the corruption percentage, # para['noise_level'] is the noise level, # # The output: # d: the noisy data if testMode == 'y': np.random.seed(1) noise_level = para['noise_level'] len_d = len(d) r = para['rate'] select = (np.random.uniform(0, 1, len_d) < r) noise = np.random.uniform(-1, 1, len_d) d = d + noise_level*noise*select return d ```
{ "source": "jjxsg/cricNotifier", "score": 3 }
#### File: cricNotifier/utils/cli.py ```python import argparse def parse_arguments(): parser = argparse.ArgumentParser(description="cricNotifier") parser.add_argument('-t', '--timeout', help='duration of system notification') parser.add_argument('-i', '--interval', help='duration between each notification') parser.add_argument('-nl', '--nologs', action='store_true', help='disable console logs', default=False ) args = parser.parse_args() return args, parser ```
{ "source": "jjxs/xuanke", "score": 2 }
#### File: xuanke/xuanke/urls.py ```python from django.contrib import admin from django.urls import path from xuanzuo.views import WechatLoginView, SeatApiView, SeatListApiView # def trigger_error(request): # division_by_zero = 1 / 0 urlpatterns = [ path('admin/', admin.site.urls), path('member/login', WechatLoginView.as_view()), path('seat', SeatApiView.as_view()), path('seatList', SeatListApiView.as_view()), # path('sentry-debug/', trigger_error), ] ```
{ "source": "jjxu217/pytorch-sso", "score": 3 }
#### File: classification/models/alexnet.py ```python import torch.nn as nn import torch.nn.functional as F from torchsso.utils.accumulator import TensorAccumulator __all__ = ['alexnet', 'alexnet_mcdropout'] class AlexNet(nn.Module): def __init__(self, num_classes=10): super().__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=5) self.conv2 = nn.Conv2d(64, 192, kernel_size=5, padding=2) self.conv3 = nn.Conv2d(192, 384, kernel_size=3, padding=1) self.conv4 = nn.Conv2d(384, 256, kernel_size=3, padding=1) self.conv5 = nn.Conv2d(256, 256, kernel_size=3, padding=1) self.fc = nn.Linear(256, num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.relu(self.conv5(x)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(x.size(0), -1) x = self.fc(x) return x class AlexNetMCDropout(AlexNet): mc_dropout = True def __init__(self, num_classes=10, dropout_ratio=0.5, val_mc=10): super(AlexNetMCDropout, self).__init__(num_classes) self.dropout_ratio = dropout_ratio self.val_mc = val_mc def forward(self, x): dropout_ratio = self.dropout_ratio x = F.relu(F.dropout(self.conv1(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(F.dropout(self.conv2(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = F.relu(F.dropout(self.conv3(x), p=dropout_ratio)) x = F.relu(F.dropout(self.conv4(x), p=dropout_ratio)) x = F.relu(F.dropout(self.conv5(x), p=dropout_ratio)) x = F.max_pool2d(x, kernel_size=2, stride=2) x = x.view(x.size(0), -1) x = self.fc(x) return x def prediction(self, x): acc_prob = TensorAccumulator() m = self.val_mc for _ in range(m): output = self.forward(x) prob = F.softmax(output, dim=1) acc_prob.update(prob, scale=1/m) prob = acc_prob.get() return prob def alexnet(**kwargs): r"""AlexNet model architecture from the `"One weird trick..." <https://arxiv.org/abs/1404.5997>`_ paper. """ model = AlexNet(**kwargs) return model def alexnet_mcdropout(**kwargs): model = AlexNetMCDropout(**kwargs) return model ``` #### File: torchsso/autograd/samplegrad.py ```python from contextlib import contextmanager import torch import torch.nn as nn import torch.nn.functional as F @contextmanager def save_sample_grads(model: nn.Module): handles = [] for module in model.children(): params = list(module.parameters()) params = [p for p in params if p.requires_grad] if len(params) == 0: continue handles.append(module.register_forward_hook(_forward_postprocess)) handles.append(module.register_backward_hook(_backward_postprocess)) yield for handle in handles: handle.remove() def _forward_postprocess(module: nn.Module, input: torch.Tensor, output: torch.Tensor): data_input = input[0].clone().detach() if isinstance(module, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)): bnorm = module f = bnorm.num_features if isinstance(module, nn.BatchNorm1d): shape = (1, f) elif isinstance(module, nn.BatchNorm2d): shape = (1, f, 1, 1) else: shape = (1, f, 1, 1, 1) # restore normalized input data_input_norm = (output - bnorm.bias.view(shape)).div(bnorm.weight.view(shape)) data_input = data_input_norm setattr(module, 'data_input', data_input) def _backward_postprocess(module: nn.Module, grad_input: torch.Tensor, grad_output: torch.Tensor): grad_output = grad_output[0].clone().detach() data_input = getattr(module, 'data_input', None) assert data_input is not None, 'backward is called before forward.' assert data_input.size(0) == grad_output.size(0) args = [module, data_input, grad_output] if isinstance(module, nn.Linear): grad_linear(*args) elif isinstance(module, nn.Conv2d): grad_conv2d(*args) elif isinstance(module, nn.BatchNorm1d): grad_batchnorm1d(*args) elif isinstance(module, nn.BatchNorm2d): grad_batchnorm2d(*args) else: raise ValueError(f'Unsupported module class: {module.__class__}.') def grad_linear(module: nn.Module, data_input: torch.Tensor, grad_output: torch.Tensor): assert isinstance(module, nn.Linear) linear = module assert data_input.ndimension() == 2 # n x f_in assert grad_output.ndimension() == 2 # n x f_out if linear.weight.requires_grad: grads = torch.einsum('bi,bj->bij', grad_output, data_input) # n x f_out x f_in setattr(linear.weight, 'grads', grads) # n x f_out x f_in if hasattr(linear, 'bias') and linear.bias.requires_grad: setattr(linear.bias, 'grads', grad_output) # n x f_out def grad_conv2d(module: nn.Module, data_input: torch.Tensor, grad_output: torch.Tensor): assert isinstance(module, nn.Conv2d) conv2d = module assert data_input.ndimension() == 4 # n x c_in x h_in x w_in assert grad_output.ndimension() == 4 # n x c_out x h_out x w_out if conv2d.weight.requires_grad: # n x (c_in)(k_h)(k_w) x (h_out)(w_out) input2d = F.unfold(data_input, kernel_size=conv2d.kernel_size, stride=conv2d.stride, padding=conv2d.padding, dilation=conv2d.dilation) # n x c_out x h_out x w_out n, c_out, h, w = grad_output.size() # n x c_out x (h_out)(w_out) grad_output2d = grad_output.view(n, c_out, -1) c_out, c_in, k_h, k_w = conv2d.weight.size() grads_2d = torch.einsum('bik,bjk->bij', grad_output2d, input2d) # n x c_out x (c_in)(k_h)(k_w) setattr(conv2d.weight, 'grads', grads_2d.view(n, c_out, c_in, k_h, k_w)) # n x c_out x c_in x k_h x k_w if hasattr(conv2d, 'bias') and conv2d.bias.requires_grad: setattr(conv2d.bias, 'grads', grad_output.sum(dim=(2, 3))) # n x c_out def grad_batchnorm1d(module: nn.Module, data_input: torch.Tensor, grad_output: torch.Tensor): assert isinstance(module, nn.BatchNorm1d) batchnorm1d = module assert data_input.ndimension() == 2 # n x f assert grad_output.ndimension() == 2 # n x f assert batchnorm1d.affine if batchnorm1d.weight.requires_grad: grads = data_input.mul(grad_output) # n x f setattr(batchnorm1d.weight, 'grads', grads) if batchnorm1d.bias.requires_grad: setattr(batchnorm1d.bias, 'grads', grad_output) # n x f def grad_batchnorm2d(module: nn.Module, data_input: torch.Tensor, grad_output: torch.Tensor): assert isinstance(module, nn.BatchNorm2d) batchnorm2d = module assert data_input.ndimension() == 4 # n x c x h x w assert grad_output.ndimension() == 4 # n x c x h x w assert batchnorm2d.affine if batchnorm2d.weight.requires_grad: grads = data_input.mul(grad_output).sum(dim=(2, 3)) # n x c setattr(batchnorm2d.weight, 'grads', grads) if batchnorm2d.bias.requires_grad: setattr(batchnorm2d.bias, 'grads', grad_output.sum(dim=(2, 3))) # n x c ``` #### File: curv/cov/batchnorm.py ```python from torchsso import Curvature, DiagCurvature class CovBatchNorm1d(Curvature): def update_in_backward(self, grad_output_data): pass class DiagCovBatchNorm1d(DiagCurvature): def update_in_backward(self, grad_output): data_input = getattr(self._module, 'data_input', None) # n x f assert data_input is not None in_in = data_input.mul(data_input) # n x f grad_grad = grad_output.mul(grad_output) # n x f data_w = in_in.mul(grad_grad).mean(dim=0) # f x 1 self._data = [data_w] if self.bias: data_b = grad_grad.mean(dim=0) # f x 1 self._data.append(data_b) class CovBatchNorm2d(Curvature): def update_in_backward(self, grad_output): pass class DiagCovBatchNorm2d(DiagCurvature): def update_in_backward(self, grad_out): data_input = getattr(self._module, 'data_input', None) # n x c x h x w assert data_input is not None in_in = data_input.mul(data_input).sum(dim=(2, 3)) # n x c grad_grad = grad_out.mul(grad_out).sum(dim=(2, 3)) # n x c data_w = in_in.mul(grad_grad).mean(dim=0) # c x 1 self._data = [data_w] if self.bias: data_b = grad_grad.mean(dim=0) # c x 1 self._data.append(data_b) ``` #### File: curv/cov/linear.py ```python import torch from torchsso import Curvature, DiagCurvature, KronCurvature class CovLinear(Curvature): def update_in_backward(self, grad_output): data_input = getattr(self._module, 'data_input', None) # n x f_in assert data_input is not None n = data_input.shape[0] if self.bias: ones = torch.ones((n, 1), device=data_input.device, dtype=data_input.dtype) data_input = torch.cat((data_input, ones), 1) # n x (f_in+1) grad = torch.einsum('bi,bj->bij', grad_output, data_input) # n x f_out x f_in grad = grad.reshape((n, -1)) # n x (f_out)(f_in) data = torch.einsum('bi,bj->ij', grad, grad) self._data = [data] def precondition_grad(self, params): pass class DiagCovLinear(DiagCurvature): def update_in_backward(self, grad_output): data_input = getattr(self._module, 'data_input', None) # n x f_in assert data_input is not None n = data_input.shape[0] in_in = data_input.mul(data_input) # n x f_in grad_grad = grad_output.mul(grad_output) # n x f_out data_w = torch.einsum('ki,kj->ij', grad_grad, in_in).div(n) # f_out x f_in self._data = [data_w] if self.bias: data_b = grad_grad.mean(dim=0) # f_out x 1 self._data.append(data_b) class KronCovLinear(KronCurvature): def update_in_forward(self, input_data): n = input_data.shape[0] # n x f_in if self.bias: ones = input_data.new_ones((n, 1)) # shape: n x (f_in+1) input_data = torch.cat((input_data, ones), 1) # f_in x f_in or (f_in+1) x (f_in+1) A = torch.einsum('ki,kj->ij', input_data, input_data).div(n) self._A = A def update_in_backward(self, grad_output): n = grad_output.shape[0] # n x f_out # f_out x f_out G = torch.einsum( 'ki,kj->ij', grad_output, grad_output).div(n) self._G = G def precondition_grad(self, params): A_inv, G_inv = self.inv # todo check params == list? if self.bias: grad = torch.cat( (params[0].grad, params[1].grad.view(-1, 1)), 1) preconditioned_grad = G_inv.mm(grad).mm(A_inv) params[0].grad.copy_(preconditioned_grad[:, :-1]) params[1].grad.copy_(preconditioned_grad[:, -1]) else: grad = params[0].grad preconditioned_grad = G_inv.mm(grad).mm(A_inv) params[0].grad.copy_(preconditioned_grad) def sample_params(self, params, mean, std_scale): A_ic, G_ic = self.std if self.bias: m = torch.cat( (mean[0], mean[1].view(-1, 1)), 1) param = m.add(std_scale, G_ic.mm( torch.randn_like(m)).mm(A_ic)) params[0].data.copy_(param[:, 0:-1]) params[1].data.copy_(param[:, -1]) else: m = mean[0] param = mean.add(std_scale, G_ic.mm( torch.randn_like(m)).mm(A_ic)) params[0].data = param def _get_shape(self): linear = self._module w = getattr(linear, 'weight') f_out, f_in = w.shape G_shape = (f_out, f_out) if self.bias: A_shape = (f_in + 1, f_in + 1) else: A_shape = (f_in, f_in) return A_shape, G_shape ``` #### File: curv/fisher/batchnorm.py ```python import torch from torchsso import DiagCovBatchNorm2d, Fisher class DiagFisherBatchNorm2d(DiagCovBatchNorm2d, Fisher): def __init__(self, *args, **kwargs): DiagCovBatchNorm2d.__init__(self, *args, **kwargs) Fisher.__init__(self) def update_in_backward(self, grad_out): if self.do_backward: assert self.prob is not None data_input = getattr(self._module, 'data_input', None) # n x c x h x w assert data_input is not None n = grad_out.shape[0] # n x c x h x w pg = torch.mul(grad_out, self.prob.reshape(n, 1, 1, 1)) grad_grad = pg.mul(grad_out).sum(dim=(2, 3)) # n x c in_in = data_input.mul(data_input).sum(dim=(2, 3)) # n x c data_w = in_in.mul(grad_grad).mean(dim=0) # c x 1 self._data = [data_w] if self.bias: data_b = grad_grad.mean(dim=0) # c x 1 self._data.append(data_b) self.accumulate_cov(self._data) else: self._data = self.finalize() ``` #### File: curv/fisher/__init__.py ```python import torch import torch.nn.functional as F from torchsso.utils import TensorAccumulator class Fisher(object): def __init__(self): self.prob = None self._do_backward = True self._acc_cov = TensorAccumulator() @property def do_backward(self): return self._do_backward def turn_on_backward(self): self._do_backward = True def turn_off_backward(self): self._do_backward = False def accumulate_cov(self, cov): self._acc_cov.update(cov) def finalize(self): return self._acc_cov.get() def update_as_presoftmax(self, prob): raise NotImplementedError('This method supports only torchsso.KronFisherLinear.') def get_closure_for_fisher(optimizer, model, data, target, approx_type=None, num_mc=1): _APPROX_TYPE_MC = 'mc' def turn_off_param_grad(): for group in optimizer.param_groups: group['curv'].turn_on_backward() for param in group['params']: param.requires_grad = False def turn_on_param_grad(): for group in optimizer.param_groups: group['curv'].turn_off_backward() for param in group['params']: param.requires_grad = True def closure(): for group in optimizer.param_groups: assert isinstance(group['curv'], Fisher), f"Invalid Curvature type: {type(group['curv'])}." optimizer.zero_grad() output = model(data) prob = F.softmax(output, dim=1) is_sampling = approx_type is None or approx_type == _APPROX_TYPE_MC if is_sampling: turn_off_param_grad() if approx_type == _APPROX_TYPE_MC: dist = torch.distributions.Categorical(prob) _target = dist.sample((num_mc,)) for group in optimizer.param_groups: group['curv'].prob = torch.ones_like(prob[:, 0]).div(num_mc) for i in range(num_mc): loss = F.cross_entropy(output, _target[i]) loss.backward(retain_graph=True) else: for i in range(model.num_classes): for group in optimizer.param_groups: group['curv'].prob = prob[:, i] loss = F.cross_entropy(output, torch.ones_like(target).mul(i)) loss.backward(retain_graph=True) turn_on_param_grad() else: raise ValueError('Invalid approx type: {}'.format(approx_type)) loss = F.cross_entropy(output, target) loss.backward() return loss, output return closure ``` #### File: curv/hessian/conv.py ```python from torchsso import KronCovConv2d, KronHessian class KronHessianConv2d(KronCovConv2d, KronHessian): def __init__(self, module, ema_decay=1., damping=0, post_curv=None, recursive_approx=False): KronHessian.__init__(self, module, ema_decay, damping, post_curv, recursive_approx) def update_in_backward(self, grad_output): KronHessian.update_in_backward(self, grad_output) ``` #### File: utils/chainer_communicators/__init__.py ```python import numpy as np def create_communicator(communicator_name='pure_nccl', mpi_comm=None, rsv_comm_dtype=np.float32, agv_comm_dtype=np.float32, use_hiercoll=False, dims=None, ): if mpi_comm is None: import mpi4py.MPI mpi_comm = mpi4py.MPI.COMM_WORLD if communicator_name != 'pure_nccl' and rsv_comm_dtype != np.float32: raise ValueError( 'rsv_comm_dtype is only available at \'pure_nccl\' communicator') if communicator_name != 'pure_nccl' and agv_comm_dtype != np.float32: raise ValueError( 'agv_comm_dtype is only available at \'pure_nccl\' communicator') if communicator_name != 'pure_nccl' and dims is not None: raise ValueError( 'dims is only available at \'pure_nccl\' communicator') if communicator_name == 'pure_nccl': from torchsso.utils.chainer_communicators.pure_nccl_communicator \ import PureNCCLCommunicator return PureNCCLCommunicator(mpi_comm, rsv_comm_dtype=rsv_comm_dtype, agv_comm_dtype=agv_comm_dtype, use_hiercoll=use_hiercoll, dims=dims ) else: raise ValueError( 'Unrecognized communicator_name: {}'.format(communicator_name)) ``` #### File: torchsso/utils/cholesky_cupy.py ```python try: import cupy from torchsso.utils.cupy import to_cupy, from_cupy except: # print("No cupy detected") pass def cholesky(m, upper=True): m_cp = to_cupy(m) m_chl_cp = cupy.linalg.decomposition.cholesky(m_cp) if upper: m_chl_cp = m_chl_cp.transpose() return from_cupy(m_chl_cp) ``` #### File: torchsso/utils/logger.py ```python import os import time import json import shutil # Select the best-resolution timer function try: _get_time = time.perf_counter except AttributeError: if os.name == 'nt': _get_time = time.clock else: _get_time = time.time class Logger(object): def __init__(self, out, logname): self.out = out self.logname = logname self._log = [] self._start_at = None if not os.path.isdir(self.out): os.makedirs(self.out) def start(self): self._start_at = _get_time() @property def elapsed_time(self): if self._start_at is None: raise RuntimeError('training has not been started yet') return _get_time() - self._start_at def write(self, log): self._log.append(log) tmp_path = os.path.join(self.out, 'tmp') with open(tmp_path, 'w') as f: json.dump(self._log, f, indent=4) path = os.path.join(self.out, self.logname) shutil.move(tmp_path, path) ```
{ "source": "JJYDXFS/ChoutuXiuXiu", "score": 3 }
#### File: ChoutuXiuXiu/py_modules/FaceLoc.py ```python import cv2 import face_recognition import json def myFaceLoc(BASE_DIR, img_path, timestamp): ''' 人脸定位模块 @param BASE_DIR: 服务器存储文件全局路径 img_path: 待检测的图片路径 timestamp: 时间戳,用于生成图片命名 @return 返回图片相对前端的路径 ''' image = cv2.imread(img_path) face_locations_noCNN=face_recognition.face_locations(image) face_num2=len(face_locations_noCNN) for i in range(0,face_num2): top = face_locations_noCNN[i][0] right = face_locations_noCNN[i][1] bottom = face_locations_noCNN[i][2] left = face_locations_noCNN[i][3] start = (left, top) end = (right, bottom) color = (0,255,255) thickness = 2 cv2.rectangle(image, start, end, color, thickness) outname = BASE_DIR+"\\results\\face_"+timestamp+".jpg" cv2.imwrite(outname,image) return json.dumps({'result_list':['results\\face_'+timestamp+'.jpg']},ensure_ascii=False) ``` #### File: ChoutuXiuXiu/py_modules/FaceRe.py ```python import cv2 import face_recognition import numpy as np import json def myFaceRe(BASE_DIR, imageData, index, timestamp, save_path): ''' 人脸识别模块 @refer https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py @param BASE_DIR: 服务器存储文件全局路径 imageData: 图像数据,单图检测传入图片路径,视频检测传入图片数据 index: index=-1时对应单图检测,index为正整数时对应视频检测的图片下标 timestamp: 时间戳,用于定义新建目录名 save_path: 图片保存路径,仅在index≠-1时有效 @return 单图检测模式下返回图片相对前端的路径 视频检测模式下不返回有意义值 ''' if index == -1: unknown_img = cv2.imread(imageData) else: unknown_img = imageData face_locations = face_recognition.face_locations(unknown_img) face_encodings = face_recognition.face_encodings(unknown_img, face_locations) # 导入人脸数据 name_list = ['<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','<NAME>','Duke of Edinburgh','IU','song wei','The Queen Mother','King George V'] known_face_encodings = np.load(BASE_DIR+'\\data\\face_encoding.npy') face_names = [] # if len(face_encodings) == 0 : # print("没有识别到人脸") for face_encoding in face_encodings: matches = face_recognition.compare_faces(known_face_encodings, face_encoding) name = "Unknown" # 直接使用最短距离 face_distances = face_recognition.face_distance(known_face_encodings, face_encoding) best_match_index = np.argmin(face_distances) if matches[best_match_index]: name = name_list[best_match_index] face_names.append(name) # 标记结果 for (top, right, bottom, left), name in zip(face_locations, face_names): cv2.rectangle(unknown_img, (left, top), (right, bottom), (0, 0, 200), 2) cv2.rectangle(unknown_img, (left, bottom - 35), (right, bottom), (0, 0, 200), cv2.FILLED) font = cv2.FONT_HERSHEY_DUPLEX cv2.putText(unknown_img, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1) if index == -1: # 对于单张识别 outname = BASE_DIR + "\\results\\face_"+timestamp+".jpg" cv2.imwrite(outname,unknown_img) return json.dumps({'result_list':['results\\face_'+timestamp+'.jpg']},ensure_ascii=False) else: # 对于视频识别,按给定保存路径存,并命名 outname = save_path+"\\image{}.jpg".format(index) cv2.imwrite(outname,unknown_img) return ```
{ "source": "jjyr/akamodel", "score": 3 }
#### File: akamodel/akamodel/metadata.py ```python from sqlalchemy import MetaData as RawMetaData class MetaData(object): def __init__(self, raw_metadata=None): self._model_dict = dict() self._raw_metadata = raw_metadata or RawMetaData() def register(self, model): self._model_dict[model.__name__] = model def get_model_by_name(self, name): return self._model_dict[name] ``` #### File: jjyr/akamodel/setup.py ```python from __future__ import unicode_literals import logging import subprocess import sys from setuptools import Command from setuptools import find_packages, setup LOG = logging.getLogger(__name__) description = "An ActiveRecord-like ORM in python world" class TestCommand(Command): user_options = [] def initialize_options(self): pass def finalize_options(self): pass def run(self): # import here, cause outside the eggs aren't loaded import pytest errno = pytest.main(['tests']) sys.exit(errno) setup(name='akamodel', version='0.0.0', license='Apache-2.0', description=description, long_description=open('README.md', encoding='utf-8').read(), author='<NAME>', author_email='<EMAIL>', cmdclass={'test': TestCommand}, platforms=['unix', 'linux', 'osx'], packages=find_packages(), install_requires=[ 'sqlalchemy' ], entry_points={ 'console_scripts': [ ], }, classifiers=[ 'Intended Audience :: Developers', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Topic :: Software Development :: Libraries', ], ) ```
{ "source": "jjYukgm/SSL_multi_decoder", "score": 2 }
#### File: jjYukgm/SSL_multi_decoder/analysis_plot.py ```python import sys import os import numpy as np # plot from laplotter import LossAccPlotter, MultiPlotter from collections import OrderedDict import time import pdb # pdb.set_trace() # pdb.set_trace = lambda: None # import matplotlib # matplotlib.use('Agg') def str2flo(str): if 'nan' in str: flo = 0. else: flo = float(str) return flo def calculate_remaining(t1, t2, i, total): progress = (i + 0.) / total elapsed_time = t2 - t1 if progress > 0: remaining_time = elapsed_time * (1/progress) - elapsed_time else: remaining_time = 0 # return progress, remaining_time psec = int(remaining_time % 60) pmin = int(remaining_time // 60) time_str = '[{:8.2%}], remain: {:2d}:{:2d} '.format(progress, pmin, psec) time_str = '| ' + time_str return time_str def check_val(data, suffix, b_size=None): dict = locals() ema = None tri = None # plot_data = {'X': [], 'Y': [], 'legend': []} if not b_size: b_size = 100 batch_per_epoch = int((50000 + 100 - 1) / b_size) # in data_loader: unlabel_size = tr_size # batch_per_epoch /= 500 # vis_period ## load loss data log_path = os.path.join('{}_log'.format(data), '{}.FM+VI.{}.txt'.format(data, suffix)) log_file2 = open(log_path, "r") st_time = time.time() fi_len = 0 for li in log_file2: li_or = li.split(" | ") if len(li_or) == 1: continue if ema is None and "ema" in li_or[3]: ema = True if tri is None and "tri" in li_or[4]: tri = True fi_len += 1 # print("file len: {}".format(fi_len)) if not ema: ema = False if not tri: tri = False dict["batch_per_epoch"] = batch_per_epoch dict["log_path"] = log_path dict["fi_len"] = fi_len dict["ema"] = ema dict["tri"] = tri return dict def plot_loss_err(data, suffix, fi_len, ema, batch_per_epoch, **kwargs): ## load loss data log_path = kwargs["log_path"] log_file2 = open(log_path, "r") st_time = time.time() # plot settings save_to_filepath = os.path.join("{}_log".format(data), "{}_plot_loss_err.png".format(suffix)) plotter = LossAccPlotter(title="{} loss over time".format(suffix), save_to_filepath=save_to_filepath, show_regressions=True, show_averages=True, show_loss_plot=True, show_err_plot=True, show_ema_plot=ema, show_plot_window=False, x_label="Epoch") i = 0 for li in log_file2: li_or = li.split(" | ") if len(li_or) == 1: continue iter = li_or[0].split("\t")[0][1:] loss_train = str2flo(li_or[0].split(":")[1].split(",")[0]) err_train = str2flo(li_or[0].split(",")[1]) loss_val = str2flo(li_or[1].split(":")[1].split(",")[0]) err_val = str2flo(li_or[1].split(",")[1]) ema_err_train = ema_err_val = None if ema: ema_err_train = li_or[3].split(":")[1].split(",")[0] ema_err_val = li_or[3].split(",")[1] if "None" not in ema_err_train: ema_err_train = str2flo(ema_err_train) ema_err_val = str2flo(ema_err_val) else: ema_err_train = ema_err_val = None float_epoch = str2flo(iter) / batch_per_epoch plotter.add_values(float_epoch, loss_train=loss_train, loss_val=loss_val, err_train=err_train, err_val=err_val, ema_err_train=ema_err_train, ema_err_val=ema_err_val, redraw=False) i += 1 time_str = "{}\r".format(calculate_remaining(st_time, time.time(), i, fi_len)) sys.stdout.write(time_str) sys.stdout.flush() sys.stdout.write("\n") log_file2.close() plotter.redraw() # save as image # plotter.block() def plot_losses(data, suffix, fi_len, batch_per_epoch, **kwargs): # plot_data = {'X': [], 'Y': [], 'legend': []} other_loss = OrderedDict() # plot settings save_to_filepath = os.path.join("{}_log".format(data), "{}_plot_losses.png".format(suffix)) plotter = LossAccPlotter(title="{} loss over time".format(suffix), save_to_filepath=save_to_filepath, show_regressions=False, show_averages=False, show_other_loss=True, show_log_loss=True, show_loss_plot=True, show_err_plot=True, show_plot_window=False, epo_max=1000, x_label="Epoch") ## load loss data log_path = kwargs["log_path"] log_file2 = open(log_path, "r") st_time = time.time() i = 0 for li in log_file2: li_or = li.split(" | ") if len(li_or) == 1: continue iter = li_or[0].split("\t")[0][1:] loss_train = str2flo(li_or[0].split(":")[1].split(",")[0]) err_train = str2flo(li_or[0].split(",")[1]) loss_val = str2flo(li_or[1].split(":")[1].split(",")[0]) err_val = str2flo(li_or[1].split(",")[1]) for li2 in li_or: if "loss" not in li2: continue # pdb.set_trace() key = li2.split(": ")[0] value = str2flo(li2.split(": ")[1]) if key == 'vi loss': value *= 1e-2 other_loss[key] = value float_epoch = str2flo(iter) / batch_per_epoch plotter.add_values(float_epoch, loss_train=loss_train, loss_val=loss_val, err_train=err_train, err_val=err_val, redraw=False, other_loss = other_loss) i += 1 time_str = "{}\r".format(calculate_remaining(st_time, time.time(), i, fi_len)) # print(time_string, end = '\r') sys.stdout.write(time_str) sys.stdout.flush() sys.stdout.write("\n") sys.stdout.flush() log_file2.close() plotter.redraw() # save as image # plotter.block() def plot_values(data, suffix, fi_len, batch_per_epoch, **kwargs): # plot gen acc and unl acc # plot_data = {'X': [], 'Y': [], 'legend': []} other_value = OrderedDict() # plot settings save_to_filepath = os.path.join("{}_log".format(data), "{}_plot_values.png".format(suffix)) plotter = MultiPlotter(title="{} Accuracy over time".format(suffix), save_to_filepath=save_to_filepath, show_regressions=False, show_averages=False, show_plot_window=False, epo_max=1000, x_label="Epoch") ## load loss data log_path = kwargs["log_path"] log_file2 = open(log_path, "r") st_time = time.time() i = 0 for li in log_file2: li_or = li.split(" | ") if len(li_or) == 1: continue iter = li_or[0].split("\t")[0][1:] li_ev = li.split("[Eval]")[1].split(" | ")[0].split(",") for li2 in li_ev: if "acc" not in li2: continue # pdb.set_trace() key = li2.split(": ")[0] value = str2flo(li2.split(": ")[1]) other_value[key] = value float_epoch = str2flo(iter) / batch_per_epoch plotter.add_values(float_epoch, other_value = other_value, redraw=False) i += 1 time_str = "{}\r".format(calculate_remaining(st_time, time.time(), i, fi_len)) # print(time_string, end = '\r') sys.stdout.write(time_str) sys.stdout.flush() sys.stdout.write("\n") sys.stdout.flush() log_file2.close() plotter.redraw() # save as image # plotter.block() def plot_tri(data, suffix, fi_len, batch_per_epoch, tri, ema, **kwargs): assert tri, "tri Something Wrong" # plot gen acc and unl acc # plot_data = {'X': [], 'Y': [], 'legend': []} other_value = OrderedDict() # plot settings save_to_filepath = os.path.join("{}_log".format(data), "{}_plot_tri.png".format(suffix)) plotter = MultiPlotter(title="{} ErrorRate over time".format(suffix), save_to_filepath=save_to_filepath, show_regressions=False, show_averages=False, show_plot_window=False, epo_max=1000, x_label="Epoch") ## load loss data log_path = kwargs["log_path"] log_file2 = open(log_path, "r") st_time = time.time() i = 0 for li in log_file2: li_or = li.split(" | ") if len(li_or) == 1: continue iter = li_or[0].split("\t")[0][1:] other_value["err_train"] = str2flo(li_or[0].split(",")[1]) other_value["err_val"] = str2flo(li_or[1].split(",")[1]) if ema: ema_err_train = li_or[3].split(":")[1].split(",")[0] ema_err_val = li_or[3].split(",")[1] if "None" not in ema_err_train: ema_err_train = str2flo(ema_err_train) ema_err_val = str2flo(ema_err_val) else: ema_err_train = ema_err_val = None other_value["ema_err_train"] = ema_err_train other_value["ema_err_val"] = ema_err_val # tri tri_2 = li_or[4].split(":")[1].split(",")[0] tri_3 = li_or[4].split(",")[1] other_value["tri_2"] = str2flo(tri_2) other_value["tri_3"] = str2flo(tri_3) float_epoch = str2flo(iter) / batch_per_epoch plotter.add_values(float_epoch, other_value = other_value, redraw=False) i += 1 time_str = "{}\r".format(calculate_remaining(st_time, time.time(), i, fi_len)) # print(time_string, end = '\r') sys.stdout.write(time_str) sys.stdout.flush() sys.stdout.write("\n") sys.stdout.flush() log_file2.close() plotter.redraw() # save as image # plotter.block() def main(): if len(sys.argv) < 3: # 1 print("Usage:{} <DATA> <WHO> [batchsize]".format(sys.argv[0])) sys.exit(1) # 2 if len(sys.argv) > 3: b_size = int(sys.argv[3]) else: b_size = None dict = {"data": sys.argv[1], "suffix": sys.argv[2], "b_size": b_size} dict = check_val(**dict) plot_loss_err(**dict) plot_losses(**dict) plot_values(**dict) if dict["tri"]: plot_tri(**dict) if __name__ == "__main__": main() ``` #### File: jjYukgm/SSL_multi_decoder/cmgmd_tester.py ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torchvision.utils as vutils import data import config import model import random import time import os, sys import math import argparse from collections import OrderedDict import numpy as np import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.colors import LinearSegmentedColormap # from sklearn.preprocessing import scale from sklearn.manifold import TSNE # from PIL import Image from utils import * # from cifarmg_trainer import Trainer import losses, ramps import copy # from metrics import ArcMarginProduct # cosine distance from losses import FocalLoss # import random import pdb # pdb.set_trace() # pdb.set_trace = lambda: None class Tester(object): def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) assert os.path.exists(self.config.save_dir), "There is no log folder" # try to load config log_path = os.path.join(self.config.save_dir, '{}.FM+VI.{}.txt'.format(self.config.dataset, self.config.suffix)) if os.path.isfile(log_path): print("log config covering...") logger = open(log_path, 'r') keep_str = ['dis_channels'] keep_val = ['last_epochs', 'last_epo_lbl'] for li in logger: if "|" in li: break key, val = li.split(" : ") val = val[:-1] # abort \n if key in keep_val: continue elif key not in keep_str: val = self.int_float_bool(val) setattr(self.config, key, val) logger.close() # self.labeled_loader, self.unlabeled_loader, self.dev_loader, self.special_set = data.get_cifar_loaders_test( # config) self.loaders = data.get_data_loaders_test(config) if config.mu: self.label_list = range(config.num_label) in_channels = [int(i) for i in config.dis_channels.split(",")] self.dis = model.Unet_Discriminator(config, in_channels=in_channels).cuda() self.ema_dis = model.Unet_Discriminator(config, in_channels=in_channels).cuda() else: self.dis = model.Discriminative(config).cuda() self.ema_dis = model.Discriminative(config).cuda() # , ema=True).cuda() if config.mu: self.gen = nn.ModuleList() self.gen.append(model.UNetWithResnetEncoder(n_classes=3, res=config.gen_mode).cuda()) for i in range(config.num_label-1): self.gen.append(model.ResnetDecoder_skip(n_classes=3, res=config.gen_mode).cuda()) elif hasattr(self.config, 'gen_mode') and self.config.gen_mode != "non": self.gen = model.generator(image_side=config.image_side, noise_size=config.noise_size, large=config.double_input_size, gen_mode=config.gen_mode).cuda() dis_para = [{'params': self.dis.parameters()}, ] if 'm' in config.dis_mode: # svhn: 168; cifar:192 self.m_criterion = FocalLoss(gamma=2) if config.dis_double: self.dis_dou = model.Discriminative_out(config).cuda() dis_para.append({'params': self.dis_dou.parameters()}) if config.gen_mode == "z2i": self.enc = model.Encoder(config.image_side, noise_size=config.noise_size, output_params=True).cuda() self.d_criterion = nn.CrossEntropyLoss() if config.consistency_type == 'mse': self.consistency_criterion = losses.softmax_mse_loss # F.MSELoss() # (size_average=False) elif config.consistency_type == 'kl': self.consistency_criterion = losses.softmax_kl_loss # nn.KLDivLoss() # (size_average=False) else: pass self.consistency_weight = 0 disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() # for arcface self.s = 30.0 m = 0.50 self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m # for tsne self.gen_feat = None self.p_fs = tuple([ int(i) for i in self.config.p_fs.split(",")]) # for mu self.img_per_cls = None def int_float_bool(self, value): try: value = int(value) except: pass if isinstance(value, str): try: value = float(value) except: pass if isinstance(value, str): if "False" in value: value = False elif "true" in value: value = True return value def _get_vis_images(self, labels): labels = labels.data.cpu() vis_images = self.special_set.index_select(0, labels) return vis_images def gram_matrix(self, y): (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram def get_feat(self, images, mu_layers=5, ema=False): if self.config.mu: return self.gen[0](images, encode=True) else: if ema: return self.ema_dis(images, feat=True) return self.dis(images, feat=True) def eval_true_fake(self, data_loader, max_batch=None): self.gen.eval() self.dis.eval() # if not 'd' in self.config.dis_mode: # self.metric_fc.eval() # self.enc.eval() cnt = 0 unl_acc, gen_acc, max_unl_acc, max_gen_acc = 0., 0., 0., 0. for i, (images, _) in enumerate(data_loader.get_iter()): images = Variable(images.cuda(), volatile=True) if self.config.gen_mode == "z2i": noise = Variable(torch.Tensor(images.size(0), self.config.noise_size).uniform_().cuda(), volatile=True) gen_feat = self.get_feat(self.gen(noise)) elif self.config.gen_mode == "i2i": gen_feat = self.get_feat(self.gen(images)) else: gen_feat = self.get_feat(self.gen[i%self.config.num_label](images)) unl_feat = self.get_feat(images) unl_logits = self.dis.out_net(unl_feat) gen_logits = self.dis.out_net(gen_feat) unl_logsumexp = log_sum_exp(unl_logits) gen_logsumexp = log_sum_exp(gen_logits) ##### Monitoring (eval mode) # true-fake accuracy unl_acc += torch.mean(nn.functional.sigmoid(unl_logsumexp).gt(0.5).float()).data[0] gen_acc += torch.mean(nn.functional.sigmoid(gen_logsumexp).gt(0.5).float()).data[0] # top-1 logit compared to 0: to verify Assumption (2) and (3) max_unl_acc += torch.mean(unl_logits.max(1)[0].gt(0.0).float()).data[0] max_gen_acc += torch.mean(gen_logits.max(1)[0].gt(0.0).float()).data[0] cnt += 1 if max_batch is not None and i >= max_batch - 1: break return unl_acc / cnt, gen_acc / cnt, max_unl_acc / cnt, max_gen_acc / cnt def eval(self, data_loader, max_batch=None, ema=False, tri=0): if ema: # if self.consistency_weight == 0.: # return 0. dis = self.ema_dis else: dis = self.dis if tri == 0: dis_out = dis.out_net elif tri == 2: dis_out = self.dis_dou.out_net3 else: # 1 dis_out = self.dis_dou.out_net2 self.gen.eval() dis.eval() # self.enc.eval() loss, incorrect, cnt = 0, 0, 0 for i, (images, labels) in enumerate(data_loader.get_iter()): images = Variable(images.cuda(), volatile=True) labels = Variable(labels.cuda(), volatile=True) feat = self.get_feat(images, ema=ema) pred_prob = dis_out(feat) loss += self.d_criterion(pred_prob, labels).data[0] cnt += 1 incorrect += torch.ne(torch.max(pred_prob, 1)[1], labels).data.sum() if max_batch is not None and i >= max_batch - 1: break return loss / cnt, incorrect def visualize_iter(self, data_loader=None, bsize=400, iters=1, data_suffix="g", gzlab=-1): assert data_loader is not None or "g" in data_suffix, "g or loader" iter_num = lambda a, b: int((len(a) + b - 1) // b) if data_loader is not None and ("g" not in data_suffix or iters == -1): iters = iter_num(data_loader, bsize) elif iters != -1 and self.config.declbl and self.config.mu and not self.config.nstf: iters = iter_num(data_loader, bsize) nrow = int(bsize ** 0.5) start_time = time.time() first_str = "{} iters: {}".format(data_suffix, iters) for i in range(iters): data_suffix2 = data_suffix + "{:03d}".format(i) self.visualize(data_loader, vis_size=bsize, data_suffix=data_suffix2, nrow=nrow, gzlab=gzlab) time_str = self.calculate_remaining(start_time, time.time(), float(i) / iters) sys.stdout.write('\r{}{}'.format(first_str, time_str)) # ta sys.stdout.flush() sys.stdout.write('\n') sys.stdout.flush() def visualize(self, data_loader=None, vis_size=100, data_suffix="g", nrow=10, gzlab=-1): self.gen.eval() self.dis.eval() # vis_size = 100 lab = None if self.config.gen_mode == "z2i" and data_loader is None: if gzlab > 0: lab = torch.Tensor(range(gzlab)) lab = lab.unsqueeze(1).repeat(1, vis_size / gzlab).view(-1).long() labels_oh = Variable(torch.zeros(vis_size, gzlab).scatter_(1, lab.unsqueeze(1), 1).cuda()) noise = Variable(torch.Tensor(vis_size, self.config.noise_size - gzlab).uniform_().cuda()) noise = torch.cat((labels_oh, noise), dim=1) else: noise = Variable(torch.Tensor(vis_size, self.config.noise_size).uniform_().cuda()) gen_images = self.gen(noise) elif self.config.gen_mode == "i2i": gen_images = [] cnt = 0 while (True): images, _ = data_loader.next() images = Variable(images.cuda(), volatile=True) gen_image = self.gen(images) gen_images.append(gen_image) cnt += data_loader.batch_size if cnt + data_loader.batch_size > vis_size: break gen_images = torch.cat(gen_images, 0) elif "g" not in data_suffix and data_loader is not None: # just image gen_images = None i, cnt = 0, 0 while (True): images, labs = data_loader.next() images = Variable(images.cuda(), volatile=True) if i == 0: gen_images = images lab = labs else: gen_images = torch.cat((gen_images, images), 0) lab = torch.cat((lab, labs), 0) i += 1 cnt += data_loader.batch_size if cnt + data_loader.batch_size > vis_size: break elif self.config.declbl and self.config.mu and not self.config.tsne \ and not self.config.nsg and self.config.nstf: # category-wised img in a row ori_images = [] gen_images = [] for i in range(self.config.num_label): ori_images.append([]) gen_images.append([]) while (True): cnt = 0 images, labs = data_loader.next() for i in range(self.config.num_label): i_count = sum(labs == i) if i_count == 0 and len(ori_images[i]) == 0: cnt += 1 if i_count == 0 or len(ori_images[i]) > 0: continue inds = (labs == i).nonzero().squeeze() ori_images[i] = images[inds,:,:,:][0].unsqueeze(0) if cnt == 0: break ori_images = torch.cat(ori_images, 0) ori_images = Variable(ori_images.cuda(), volatile=True) inp_feat = self.gen[0](ori_images, skip_encode=True) for i in range(self.config.num_label): gen_image = self.gen[i].decode(inp_feat) gen_images[i].append(gen_image) for i in range(self.config.num_label): gen_images[i] = torch.cat(gen_images[i], 0) # .squeeze(0).transpose(0, 1) o_size = ori_images.size() gen_images = torch.stack(gen_images, 0).transpose(0, 1).contiguous().view(-1, o_size[1], o_size[2], o_size[3]) # gen_images = torch.cat(gen_images, 0) elif self.config.declbl and self.config.mu: ori_images = [] gen_images = [] for i in range(self.config.num_label): ori_images.append([]) gen_images.append([]) cnt = 0 img_per_cls = np.zeros(self.config.num_label, dtype=int) while (True): images, labs = data_loader.next() images = Variable(images.cuda(), volatile=True) inp_feat = self.gen[0](images, skip_encode=True) for i in range(self.config.num_label): i_count = sum(labs == i) if i_count == 0: continue img_per_cls[i] += i_count inds = (labs == i).nonzero().squeeze().cuda() i_feat = dict() for j in inp_feat.keys(): i_feat[j] = inp_feat[j][inds,:,:,:] gen_image = self.gen[i].decode(i_feat) ori_images[i].append(images[inds,:,:,:]) gen_images[i].append(gen_image) cnt += data_loader.batch_size if cnt + data_loader.batch_size > vis_size: break for i in range(self.config.num_label): if len(gen_images[i]) != 0: ori_images[i] = torch.cat(ori_images[i], 0) gen_images[i] = torch.cat(gen_images[i], 0) elif self.config.mu: # mu ori_images = [] gen_images = [] cnt = 0 img_per_cls = data_loader.batch_size # // self.config.num_label while (True): images, _ = data_loader.next() images = Variable(images.cuda(), volatile=True) ori_images.append(images) inp_feat = self.gen[0](images, skip_encode=True) # , [range(i*img_per_cls, (i+1)*img_per_cls)], skip_encode=True) for i in range(self.config.num_label): gen_image = self.gen[i].decode(inp_feat) gen_images.append(gen_image) cnt += img_per_cls * self.config.num_label if cnt + img_per_cls * self.config.num_label > vis_size: break ori_images = torch.cat(ori_images, 0) gen_images = torch.cat(gen_images, 0) # for tsne if "g" in data_suffix and self.config.tsne: if self.config.mu and self.config.declbl: # may diff # every cls if self.gen_feat is None: self.gen_feat = [None] * self.config.num_label for i in range(self.config.num_label): if img_per_cls[i] != 0: feat = self.get_feat(gen_images[i]).data if self.gen_feat[i] is None: self.gen_feat[i] = feat else: self.gen_feat[i] = torch.cat((self.gen_feat[i], feat), dim=0) if self.img_per_cls is None: self.img_per_cls = img_per_cls else: self.img_per_cls += img_per_cls else: feat = self.get_feat(gen_images).data if self.config.mu and self.img_per_cls is None: self.img_per_cls = img_per_cls if self.gen_feat is None: self.gen_feat = feat else: self.gen_feat = torch.cat((self.gen_feat, feat), dim=0) if self.config.nsg: return if type(gen_images) == list: ori_images = torch.cat(ori_images, 0) gen_images = torch.cat(gen_images, 0) if self.config.declbl and self.config.mu and not self.config.tsne \ and not self.config.nsg and self.config.nstf: nrow = gen_images.size(0) // self.config.num_label save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(gen_images.data.cpu(), save_path, normalize=True, range=(-1, 1), nrow=nrow) if "g" in data_suffix and data_loader is not None: save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}_ori.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(ori_images.data.cpu(), save_path, normalize=True, range=(-1, 1), nrow=1) if self.config.nstf: return # dis true img gen_logits = self.dis.out_net(self.get_feat(gen_images)) # pdb.set_trace() # self.visualize_accs(gen_images, gen_logits, data_suffix) # gen_images = Variable(torch.Tensor([batch, 3, 32, 32])).cuda # gen_logits = Variable(torch.Tensor([batch])).cuda gen_logsumexp = log_sum_exp(gen_logits) acc = nn.functional.sigmoid(gen_logsumexp).gt(0.5).data.long() max_acc = gen_logits.max(1)[0].detach().gt(0.0).data.long() # acc_images[1-acc,:,:,:] *= 0 acc_ind = acc.unsqueeze(1).repeat(1, gen_images.nelement() / gen_images.size(0)).view(gen_images.size()) acc_ind = acc_ind.float() err_ind = 1 - acc_ind if acc_ind.sum() > 0: acc_images = gen_images.clone().data # acc img acc_images -= 2 * err_ind save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}ac.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(acc_images.cpu(), save_path, normalize=True, range=(-1, 1), nrow=nrow) # gen_err if err_ind.sum() > 0: err_images = gen_images.clone().data # err_images[acc,:,:,:] *= 0 err_images -= 2 * acc_ind save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}er.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(err_images.cpu(), save_path, normalize=True, range=(-1, 1), nrow=nrow) # acc_images[1-max_acc,:,:,:] *= 0 acc_ind = max_acc.unsqueeze(1).repeat(1, gen_images.nelement() / gen_images.size(0)).view(gen_images.size()) acc_ind = acc_ind.float() err_ind = 1 - acc_ind if acc_ind.sum() > 0: acc_images = gen_images.clone().data # max_acc img acc_images -= 2 * err_ind save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}mac.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(acc_images.cpu(), save_path, normalize=True, range=(-1, 1), nrow=nrow) if err_ind.sum() > 0: # max_gen_err err_images = gen_images.clone().data # err_images[max_acc,:,:,:] *= 0 err_images -= 2 * acc_ind save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}mer.png'.format(self.config.dataset, self.config.suffix, data_suffix)) vutils.save_image(err_images.cpu(), save_path, normalize=True, range=(-1, 1), nrow=nrow) # record report save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.{}.txt'.format(self.config.dataset, self.config.suffix, data_suffix)) save_str = "" topk = self.config.num_label val, ind = torch.topk(gen_logits, topk) val, ind = val.data.cpu().numpy(), ind.data.cpu().numpy() acc, max_acc = acc.cpu().numpy(), max_acc.cpu().numpy() save_str += "sum{}_m{}/{} ".format(acc.sum(), max_acc.sum(), acc.shape[0]) if lab is not None: # real data should have label lab = lab.numpy() acc_str_row = lambda a: "{}_m{} {}: ".format(acc[a], max_acc[a], lab[a]) pred_accumu = lab[ind[:, 0] == lab] lab_accumu = lab else: acc_str_row = lambda a: "{}_m{}: ".format(acc[a], max_acc[a]) pred_accumu = ind[max_acc * acc > 0, 0] lab_accumu = ind[:, 0] # accumulate all labels for i in range(gen_logits.size(1)): save_str += "{}({}/{}) ".format(i, np.sum(pred_accumu == i), np.sum(lab_accumu == i)) save_str += "\n" for i in range(vis_size): save_str += acc_str_row(i) for j in range(topk): save_str += "{}({}) ".format(ind[i, j], val[i, j]) save_str += "\n" logger = open(save_path, 'wb') logger.write(save_str) def tsne(self, data_suffix="u"): # g check if not hasattr(self.config, 'gen_mode') or self.config.gen_mode == "non": data_suffix = data_suffix.replace("g", "") # value check if data_suffix == "": print("No suffix!") return # get real feature cifar_feats = lbls = None u_lbls = g_lab = None if "u" in data_suffix: cifar_feats, u_lbls = self.eval_feats(self.loaders[0], data="u") lbls = u_lbls.copy() # if self.config.te: # cifar_feats = cifar_feats[:1000] # lbls = lbls[:1000] if "l" in data_suffix : if not len(self.loaders) > 2: print("You cannot plot {}".format(data_suffix)) return feats, l_lbls = self.eval_feats(self.loaders[2], data="l") if cifar_feats is None: cifar_feats = feats lbls = l_lbls else: pass # cifar_feats = np.concatenate((cifar_feats, feats), axis=0) # lbls = np.concatenate((lbls, l_lbls), axis=0) if "d" in data_suffix: feats, d_lbls = self.eval_feats(self.loaders[1], data="d") if cifar_feats is None: cifar_feats = feats lbls = d_lbls else: cifar_feats = np.concatenate((cifar_feats, feats), axis=0) lbls = np.concatenate((lbls, d_lbls), axis=0) num_label = self.config.num_label g_offset = 20 if self.config.dataset == "coil20" else 10 # get fake feature if "g" in data_suffix: if self.config.mu and self.config.declbl: num_label += self.config.num_label g_lab = [] for i in range(self.config.num_label): g_lab.append(np.array([g_offset+i]*self.img_per_cls[i])) g_lab = np.concatenate(g_lab) elif self.config.mu: num_label += self.config.num_label iter_num = self.gen_feat.shape[0] / (self.img_per_cls * self.config.num_label) g_lab = np.tile(np.arange(g_offset, g_offset+self.config.num_label).repeat(self.img_per_cls), iter_num) else: num_label += 1 g_lab = np.array([g_offset]).repeat(self.gen_feat.shape[0]) if cifar_feats is None: cifar_feats = self.gen_feat lbls = g_lab else: cifar_feats = np.concatenate((cifar_feats, self.gen_feat), axis=0) lbls = np.concatenate((lbls, g_lab), axis=0) data_num = [u_lbls.shape[0], g_lab.shape[0]] \ if "g" in data_suffix and "u" in data_suffix else None self.plot_scatter(cifar_feats, lbls, data_suffix, data_num) if not self.config.banl == "": # pdb.set_trace() data_suffix2 = data_suffix+"_" + self.config.banl banl = str(self.config.banl) ban_e = [int(i) for i in banl.split(",")] ban_ind = np.array([], dtype=int) for i in ban_e: ban_ind = np.concatenate((ban_ind, np.where(lbls == i)[0]), axis=0) num_label -= 1 if self.config.mu: ban_ind = np.concatenate((ban_ind, np.where(lbls == g_offset+i)[0]), axis=0) num_label -= 1 # ban_ind.sort() mask = np.ones(len(lbls), dtype=bool) mask[ban_ind] = False lbls2 = lbls[mask] cifar_feats2 = cifar_feats[mask] if self.config.mu: num_ul = num_label // 2 else: num_ul = num_label - 1 data_num = [(u_lbls.shape[0]//self.config.num_label) * num_ul, g_lab.shape[0]] \ if "g" in data_suffix and "u" in data_suffix else None self.plot_scatter(cifar_feats2, lbls2, data_suffix2, data_num) if not self.config.showlab == "": data_num = [u_lbls.shape[0]//self.config.num_label, g_lab.shape[0]] \ if "g" in data_suffix and "u" in data_suffix else None for i in self.config.showlab.split(","): data_suffix2 = data_suffix+"_" + i show_e = int(i) mask = np.where(lbls == show_e)[0] mask = np.concatenate((mask, np.where(lbls == g_offset)[0]), axis=0) # ban_ind.sort() lbls2 = lbls[mask] cifar_feats2 = cifar_feats[mask] self.plot_scatter(cifar_feats2, lbls2, data_suffix2, data_num) def plot_scatter(self, feats, y_dist, data_suffix, data_num=None): # x_dist = ts_feat # y_dist = lbls print("Plot tsne {}".format(data_suffix)) splitul = False if "u" in data_suffix and "l" in data_suffix: print("Also Plot tsne {}2".format(data_suffix)) assert data_num is not None, "data_num is None" splitul = True if self.config.te: print("TSNE point num: {}".format(len(y_dist))) x_dist = TSNE(n_components=2).fit_transform(feats) x_dist *= self.config.p_scale if self.config.te: print("after TSNE transform") # plot plt.ioff() # fig = plt.figure(figsize=self.p_fs, dpi=self.config.p_d) # fig.add_subplot(111) fig, ax = plt.subplots(figsize=self.p_fs, dpi=self.config.p_d) if self.config.num_label <= 10: colors = {-1: 'lightblue', 0: '#FF7070', 1: '#FFAA70', 2: '#FFEB62', 3: '#C1FF62', 4: '#68FFAF', 5: '#68FFFF', 6: '#76BBFF', 7: '#767FFF', 8: '#A476FF', 9: '#FF76FF', 10: '#D20000', 11: '#C95000', 12: '#C9AE00', 13: '#78C900', 14: '#00C95E', 15: '#03ACAC', 16: '#145FAB', 17: '#353EB9', 18: '#6134B9', 19: '#CA46CA'} # 0: 'salmon', 1: 'yellow', 2: 'lime', 3: 'orange', 4: 'dodgerblue', # 5: 'skyblue', 6: 'violet', 7: 'cyan', 8: 'pink', 9: 'palegreen', # 10: 'darkred', 11: 'tan', 12: 'limegreen', 13: 'darkorange', 14: 'steelblue', # 15: 'royalblue', 16: 'darkviolet', 17: 'darkcyan', 18: 'deeppink', 19: 'darkseagreen'} else: colors = {-1: 'lightblue', 0: '#FFA680', 1: '#FFC980', 2: '#FFED80', 3: '#EFFF80', 4: '#CBFF80', 5: '#A6FF80', 6: '#82FF80', 7: '#80FFA2', 8: '#80FFC6', 9: '#80FFEB', 10: '#80F1FF', 11: '#80CDFF', 12: '#80A9FF', 13: '#8084FF', 14: '#A080FF', 15: '#C480FF', 16: '#E980FF', 17: '#FF80F3', 18: '#FF80CF', 19: '#FF80AB', 20: '#C00000', 21: '#C03600', 22: '#C06D00', 23: '#C0A300', 24: '#A6C000', 25: '#70C000', 26: '#3AC000', 27: '#03C000', 28: '#00C033', 29: '#00C06A', 30: '#00C0A0', 31: '#00AAC0', 32: '#0073C0', 33: '#003DC0', 34: '#0006C0', 35: '#3000C0', 36: '#6600C0', 37: '#9D00C0', 38: '#C000AD', 39: '#C00076'} unique_lbl = np.array(sorted(np.unique(y_dist))) num_gls = len(colors)-1 # lbl<10: 21-1; el: 41-1 for i in range(-1, num_gls): # remove labels which are outside y_dist if i not in unique_lbl: colors.pop(i) # remap key and label, start_label: ?; last lbl: num_gls num_lbl = len(unique_lbl) if self.config.mu: g_min_lbl = num_gls - self.config.num_label + 1 else: g_min_lbl = num_gls if self.config.te: print("unique_lbl: {}".format(unique_lbl)) print("num: {}; g_num: {}; gml: {}".format(num_lbl, np.sum(unique_lbl >= 10), g_min_lbl)) for i in range(num_lbl): ori_lbl = unique_lbl[num_lbl-1-i] new_lbl = num_gls-i colors[new_lbl] = colors[ori_lbl] del colors[ori_lbl] y_dist[y_dist == ori_lbl] = new_lbl co_keys = sorted(colors.keys()) co_list = [colors[i] for i in co_keys] cm = LinearSegmentedColormap.from_list( 'plotcm', co_list, N=len(co_list)) for i in co_keys: g_mask = y_dist == i if i < g_min_lbl: plt.scatter(x_dist[g_mask, 0], x_dist[g_mask, 1], c=colors[i], cmap=cm, marker="x", s=self.config.p_s, alpha=self.config.p_alpha) else: plt.scatter(x_dist[g_mask, 0], x_dist[g_mask, 1], c=colors[i], cmap=cm, marker="o", facecolors='none', edgecolors=colors[i], s=self.config.p_s, alpha=self.config.p_alpha) # sc = plt.scatter(x_dist[:, 0], x_dist[:, 1], c=y_dist, cmap=cm, marker=",", # s=self.config.p_s, alpha=self.config.p_alpha) x_min, x_max = x_dist[:, 0].min() - 1, x_dist[:, 0].max() + 1 y_min, y_max = x_dist[:, 1].min() - 1, x_dist[:, 1].max() + 1 plt.title('TSNE {}'.format(data_suffix)) plt.axis((x_min, x_max, y_min, y_max)) cax, _ = matplotlib.colorbar.make_axes(ax) normalize = matplotlib.colors.Normalize(vmin=min(unique_lbl), vmax=max(unique_lbl)) cb = matplotlib.colorbar.ColorbarBase(cax, cmap=cm, norm=normalize) # cb = plt.colorbar(cm) cb.set_ticks([0, max(colors.keys())]) cb.set_ticklabels(["", ""]) fig.canvas.draw() # save as image save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.tsne.{}.png'.format(self.config.dataset, self.config.suffix, data_suffix)) plt.savefig(save_path, bbox_inches='tight') plt.close('all') # split u, l ver if splitul: data_suffix += '2' colors = {0: 'lightblue', 1: 'g', 2: 'r'} # lbl_str = {0: 'unlabel', 1: 'label', 2: 'gen'} # from matplotlib.colors import LinearSegmentedColormap cm = LinearSegmentedColormap.from_list( 'splitul', colors.values(), N=len(colors)) ist = {0: 0, 1: data_num[0], 2: - data_num[1]} ied = {0: data_num[0], 2: None} # 0: u_lbls.shape[0], 1: u_lbls.shape[0] + l_lbls.shape[0] plt.ioff() fig = plt.figure(figsize=self.p_fs, dpi=self.config.p_d) fig.add_subplot(111) # draw the figure first... for g in colors.keys(): # u, g if g == 1: if "_" in data_suffix: continue assert len(self.loaders) >= 4, "no label ind" ix = self.loaders[3] ix = ix[ix < x_dist.shape[0]] y_dist[ix] = g else: y_dist[ist[g]:ied[g]] = g sc = plt.scatter(x_dist[:, 0], x_dist[:, 1], c=y_dist, cmap=cm, marker=",", s=self.config.p_s, alpha=self.config.p_alpha) plt.title('TSNE {}'.format(data_suffix)) cb = plt.colorbar(sc) cb.set_ticks([0, colors.keys()[-1]]) cb.set_ticklabels(["", ""]) plt.axis((x_min, x_max, y_min, y_max)) fig.canvas.draw() # save as image save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.tsne.{}.png'.format(self.config.dataset, self.config.suffix, data_suffix)) plt.savefig(save_path, bbox_inches='tight') plt.close('all') # plot ul data_suffix = data_suffix[:-1]+"3" colors.pop(2) cm = LinearSegmentedColormap.from_list( 'gul3', colors.values(), N=len(colors)) fig = plt.figure(figsize=self.p_fs, dpi=self.config.p_d) fig.add_subplot(111) g_mask = y_dist != 2 x_dist = x_dist[g_mask] y_dist = y_dist[g_mask] sc = plt.scatter(x_dist[:, 0], x_dist[:, 1], c=y_dist, cmap=cm, marker=",", s=self.config.p_s, alpha=self.config.p_alpha) plt.title('TSNE {}'.format(data_suffix)) cb = plt.colorbar(sc) cb.set_ticks([0, colors.keys()[-1]]) cb.set_ticklabels(["", ""]) plt.axis((x_min, x_max, y_min, y_max)) fig.canvas.draw() # save as image save_path = os.path.join(self.config.save_dir, 'Te{}.FM+VI.{}.tsne.{}.png'.format(self.config.dataset, self.config.suffix, data_suffix)) plt.savefig(save_path, bbox_inches='tight') plt.close('all') def eval_feats(self, data_loader, data="u"): if data == "u": if not hasattr(self, 'u_lbl'): self.u_feats, self.u_lbl = self.eval_feat(data_loader) return self.u_feats, self.u_lbl elif data == "l": if not hasattr(self, 'l_lbl'): self.l_feats, self.l_lbl = self.eval_feat(data_loader) return self.l_feats, self.l_lbl elif data == "d": if not hasattr(self, 'd_lbl'): self.d_feats, self.d_lbl = self.eval_feat(data_loader) return self.d_feats, self.d_lbl else: print("There is no data={}".format(data)) def eval_feat(self, data_loader, max_batch=None, ema=False): if ema: dis = self.ema_dis else: dis = self.dis self.gen.eval() dis.eval() # self.enc.eval() # if self.config.te: # max_batch = 1 feats = lbls = None for i, (images, labels) in enumerate(data_loader.get_iter(shuffle=False)): images = Variable(images.cuda(), volatile=True) labels = Variable(labels.cuda(), volatile=True) feat = self.get_feat(images, ema=ema) if i == 0: feats = feat.data.clone() lbls = labels.data.clone() else: feats = torch.cat((feats, feat.data.clone()), dim=0) lbls = torch.cat((lbls, labels.data.clone()), dim=0) if max_batch is not None and i >= max_batch - 1: break feats, lbls = feats.cpu().numpy(), lbls.cpu().numpy() return feats, lbls def calculate_remaining(self, t1, t2, progress): # ta elapsed_time = t2 - t1 if (progress > 0): remaining_time = elapsed_time * (1 / progress) - elapsed_time else: remaining_time = 0 # elapsed time esec = int(elapsed_time % 60) emin = int((elapsed_time // 60) % 60) ehr = int(elapsed_time / 3600) # remaining_time rsec = int(remaining_time % 60) rmin = int((remaining_time // 60) % 60) rhr = int(remaining_time / 3600) time_str = '[{:8.2%}], {:3d}:{:2d}:{:2d}<{:3d}:{:2d}:{:2d} '.format(progress, ehr, emin, esec, rhr, rmin, rsec) time_str = '| ' + time_str return time_str def load_model(self, net, net_label, epo_label): # ta load_filename = 'VI.{}_{}_net_{}.pth'.format(self.config.suffix, epo_label, net_label) load_path = os.path.join(self.config.save_dir, load_filename) if not os.path.exists(load_path): print("There is no {}!".format(load_filename)) return load_net = torch.load(load_path) net.cpu() model.load_my_state_dict(net, load_net) if torch.cuda.is_available(): net.cuda() def resume(self, epo_label): # ta # load old self.load_model(self.dis, 'D', epo_label) if hasattr(self.config, 'con_coef'): self.load_model(self.ema_dis, 'M', epo_label) if hasattr(self.config, 'gen_mode') and self.config.gen_mode != "non": self.load_model(self.gen, 'G', epo_label) if hasattr(self.config, 'gen_mode') and self.config.gen_mode == "z2i": self.load_model(self.enc, 'E', epo_label) if hasattr(self.config, 'dis_double') and self.config.dis_double: self.load_model(self.dis_dou, 'D2', epo_label) def test(self): config = self.config batch_per_epoch = int((len(self.loaders[0]) + config.train_batch_size - 1) / config.train_batch_size) iter_num = batch_per_epoch * (config.last_epochs - 1) if config.last_epo_lbl != 0: iter_num = config.last_epo_lbl if config.mu: config.suffix = "{}_s{}".format(config.suffix, config.train_step) self.resume(iter_num) # turn save_dir into another folder self.config.save_dir = os.path.join(self.config.save_dir, 'T{}'.format(self.config.suffix)) if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) gzlab = -1 if config.gzlab: gzlab = config.num_label if config.te: config.gen_iter = 2 if config.gen_iter == 1: if config.gen_mode == "z2i": self.visualize(gzlab=gzlab) else: self.visualize(self.loaders[0]) else: if config.gen_mode == "z2i": self.visualize_iter(bsize=100, iters=config.gen_iter, data_suffix="g", gzlab=gzlab) else: self.visualize_iter(data_loader=self.loaders[0], bsize=self.loaders[0].batch_size, iters=config.gen_iter, data_suffix="g", gzlab=gzlab) if config.alldata: print("loader num: {}".format(len(self.loaders))) self.visualize_iter(self.loaders[1], 400, data_suffix="d") self.visualize_iter(self.loaders[0], 400, data_suffix="u") if len(self.loaders) >= 3: self.visualize_iter(self.loaders[2], 400, data_suffix="l") if config.tsne: if hasattr(self, 'gen'): if self.config.mu and self.config.declbl: if config.gen_iter != -1: assert config.gen_iter * self.loaders[0].batch_size <= len(self.loaders[0]), \ "out of dataset: {}*{} > {}".format(config.gen_iter, self.loaders[0].batch_size, len(self.loaders[0])) img_num = config.gen_iter * self.loaders[0].batch_size // config.num_label self.img_per_cls = [img_num] * config.num_label for i in range(config.num_label): self.gen_feat[i] = self.gen_feat[i][:img_num] self.gen_feat = torch.cat(self.gen_feat, 0) print("# gen_feat: {}; ipc: {}".format(self.gen_feat.size(0), self.img_per_cls)) self.gen_feat = self.gen_feat.cpu().numpy() if config.te: # self.tsne("g") # t1\ self.tsne("gul") # self.tsne("gu") else: if config.mu: self.tsne("g") self.tsne("gu") self.tsne("gl") self.tsne("gul") self.tsne("gd") if __name__ == '__main__': cc = config.cifarmg_config() parser = argparse.ArgumentParser(description='cmgmd_tester.py') parser.add_argument('-suffix', default='mg0', type=str, help="Suffix added to the save images.") parser.add_argument('-r', dest='resume', action='store_true') parser.add_argument('-dataset', default=cc.dataset, type=str, help="dataset: cifar, stl10, coil20") parser.add_argument('-last_epochs', default=cc.last_epochs, type=int, help="last epochs") parser.add_argument('-last_epo_lbl', default=0, type=int, help="last epoch lbl") parser.add_argument('-gen_iter', default=1, type=int, help="gen iteration times. def: 1; full: -1") parser.add_argument('-cmp', default='winter', type=str, help="color map name") parser.add_argument('-alldata', dest='alldata', action='store_true', help="plot dev, unl, lab image same as gen") parser.add_argument('-gzlab', dest='gzlab', action='store_true', help="Gen z add label") parser.add_argument('-nsg', dest='nsg', action='store_true', help="no save gen img") parser.add_argument('-nstf', dest='nstf', action='store_true', help="no save gen true/fake ana") parser.add_argument('-tsne', dest='tsne', action='store_true', help="plot tsne") parser.add_argument('-banl', default='', type=str, help="the lab num be ignored on tsne. ex: 0,1,2") parser.add_argument('-showlab', default='', type=str, help="the only lab num be shown on tsne. ex: 0,1") parser.add_argument('-p_fs', default='12,9', type=str, help="plot fig size, def: 12,9") parser.add_argument('-p_d', default=300, type=int, help="plot dpi, def: 300") parser.add_argument('-p_scale', default=20.0, type=float, help="plot point scale, def: 20.0") parser.add_argument('-p_s', default=20.0, type=float, help="plot s, def: 20.0") parser.add_argument('-p_alpha', default=0.5, type=float, help="plot alpha, def:0.5") parser.add_argument('-te', dest='te', action='store_true', help="just for test colorbar") parser.add_argument('-mu', dest='mu', action='store_true', help="mu series: G(En De), D(Classifier)") parser.add_argument('-dl', dest='declbl', action='store_true', help="mu series: decode same label image") parser.set_defaults(alldata=False) parser.set_defaults(gzlab=False) parser.set_defaults(tsne=False) parser.set_defaults(nsg=False) parser.set_defaults(nstf=False) parser.set_defaults(te=False) parser.set_defaults(mu=False) parser.set_defaults(declbl=False) parser.add_argument('-image_side', default="32", type=int, help="cifar: 32, stl10: 96") parser.add_argument('-noise_size', default=cc.noise_size, type=int, help="gen noise size") parser.add_argument('-train_batch_size', default=cc.train_batch_size, type=int, help="labeled batch size") parser.add_argument('-train_batch_size_2', default=cc.train_batch_size_2, type=int, help="unlabeled batch size") parser.add_argument('-gen_mode', default=cc.gen_mode, type=str, help="gen model mode: z2i, i2i") parser.add_argument('-d', dest='double_input_size', action='store_true', help="double input size") parser.add_argument('-f', dest='flip', action='store_true', help="flip input or not") parser.add_argument('-dd', dest='dis_double', action='store_true', help="dis double") parser.add_argument('-dt', dest='dis_triple', action='store_true', help="dis tri") parser.set_defaults(resume=False) parser.set_defaults(double_input_size=cc.double_input_size) parser.set_defaults(flip=cc.flip) args = parser.parse_args() tester = Tester(cc, args) tester.test() ``` #### File: jjYukgm/SSL_multi_decoder/multi_decoder_trainer.py ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.autograd import Variable import torchvision.utils as vutils import data import config import model import random import time import os, sys import math import argparse from collections import OrderedDict import numpy as np from utils import * import losses, ramps import copy # from metrics import ArcMarginProduct # cosine distance from losses import FocalLoss # import random # import pdb # pdb.set_trace() # pdb.set_trace = lambda: None class Trainer(object): def __init__(self, config, args): self.config = config for k, v in args.__dict__.items(): setattr(self.config, k, v) setattr(self.config, 'save_dir', '{}_log'.format(self.config.dataset)) if not os.path.exists(self.config.save_dir): os.makedirs(self.config.save_dir) disp_str = '' for attr in sorted(dir(self.config), key=lambda x: len(x)): if not attr.startswith('__'): disp_str += '{} : {}\n'.format(attr, getattr(self.config, attr)) sys.stdout.write(disp_str) sys.stdout.flush() self.labeled_loader, self.unlabeled_loader, self.dev_loader, self.special_set \ = data.get_data_loaders(config) self.gen = nn.ModuleList() self.gen.append(model.UNetWithResnetEncoder(n_classes=3, res=config.gen_mode).cuda()) for i in range(config.num_label-1): self.gen.append(model.ResnetDecoder_skip(n_classes=3, res=config.gen_mode).cuda()) if config.train_step != 1: batch_per_epoch = int((len(self.unlabeled_loader) + config.train_batch_size - 1) / config.train_batch_size) if config.step1_epo_lbl is not 0: epo_label = config.step1_epo_lbl else: epo_label = self.config.step1_epo * batch_per_epoch self.load_model(self.gen, 'G', epo_label, suffix=config.suffix+"_s1") for i in range(1, config.num_label): # clone decoders self.gen[i].up_blocks = copy.deepcopy(self.gen[0].up_blocks) # create dis in_channels = [int(i) for i in config.dis_channels.split(",")] self.dis = model.Unet_Discriminator(config, in_channels=in_channels, ucnet=config.dis_uc).cuda() self.ema_dis = model.Unet_Discriminator(config, in_channels=in_channels, ucnet=config.dis_uc).cuda() # , ema=True).cuda() if hasattr(self, 'dis'): dis_para = [{'params': self.dis.parameters()},] if config.dis_double: self.dis_dou = model.Discriminative_out(config).cuda() dis_para.append({'params': self.dis_dou.parameters()}) self.dis_optimizer = optim.Adam(dis_para, lr=config.dis_lr, betas=(0.5, 0.999)) # self.dis_optimizer = optim.SGD(self.dis.parameters(), lr=config.dis_lr, # momentum=config.momentum, # weight_decay=config.weight_decay, # nesterov=config.nesterov) if hasattr(self, 'gen'): if config.gop == 'SGD': self.gen_optimizer = optim.SGD(self.gen.parameters(), lr=config.gen_lr, momentum=config.momentum, weight_decay=config.weight_decay, nesterov=config.nesterov) else: self.gen_optimizer = optim.Adam(self.gen.parameters(), lr=config.gen_lr, betas=(0.0, 0.999)) self.d_criterion = nn.CrossEntropyLoss() if config.consistency_type == 'mse': self.consistency_criterion = losses.softmax_mse_loss # F.MSELoss() # (size_average=False) elif config.consistency_type == 'kl': self.consistency_criterion = losses.softmax_kl_loss # nn.KLDivLoss() # (size_average=False) else: pass self.consistency_weight = 0 # add step into data suffix self.config.suffix+="_s{}".format(config.train_step) log_path = os.path.join(self.config.save_dir, '{}.FM+VI.{}.txt'.format( self.config.dataset, self.config.suffix)) if config.resume: self.logger = open(log_path, 'ab') else: self.logger = open(log_path, 'wb') self.logger.write(disp_str) # for arcface self.s = 30.0 m = 0.50 self.cos_m = math.cos(m) self.sin_m = math.sin(m) self.th = math.cos(math.pi - m) self.mm = math.sin(math.pi - m) * m # for dg start epoch if config.dg_start > 0: self.dg_flag = False else: self.dg_flag = True # for enc lab update: self.lab_feat_cen = None if hasattr(self, 'dis'): print self.dis def _get_vis_images(self, labels): labels = labels.data.cpu() vis_images = self.special_set.index_select(0, labels) return vis_images def gram_matrix(self, y): (b, ch, h, w) = y.size() features = y.view(b, ch, w * h) features_t = features.transpose(1, 2) gram = features.bmm(features_t) / (ch * h * w) return gram def arcface_loss(self, x, linear, label): w = linear.weight cosine = F.linear(F.normalize(x), F.normalize(w)) sine = torch.sqrt(1.0 - torch.pow(cosine, 2)) phi = cosine * self.cos_m - sine * self.sin_m # if self.easy_margin: # # phi = torch.where(cosine > 0, phi, cosine) # phi = phi * (cosine > 0).float() + cosine *(cosine <= 0).float() # else: # phi = torch.where(cosine > self.th, phi, cosine - self.mm) phi = phi * (cosine > self.th).float() + (cosine - self.mm)*(cosine <= self.th).float() # --------------------------- convert label to one-hot --------------------------- # one_hot = torch.zeros(cosine.size(), device='cuda') one_hot = Variable(torch.zeros(cosine.size()).cuda()) one_hot.scatter_(1, label.view(-1, 1).long(), 1) # -------------torch.where(out_i = {x_i if condition_i else y_i) ------------- output = (one_hot * phi) + ((1.0 - one_hot) * cosine) # you can use torch.where if your torch.__version__ is 0.4 output *= self.s return output def step1_train(self, iter=None): # use unlabeled data train self.gen.train() # lab_images, lab_labels = self.labeled_loader.next() # lab_images, lab_labels = Variable(lab_images.cuda()), Variable(lab_labels.cuda()) unl_images,_ = self.unlabeled_loader.next() unl_images = Variable(unl_images.cuda()) # lab_cons_loss = 0 unl_cons_loss = 0 # 1 class/ gen[decoder] gen_feat2 = self.gen[0](unl_images, skip_encode=True) # for i in range(self.config.num_label): gen_images2 = self.gen[0].decode(gen_feat2) if self.config.rssim: unl_cons_loss += - losses.SSIM(gen_images2, unl_images) else: unl_cons_loss += nn.MSELoss()(gen_images2, unl_images) # mask = (lab_labels == i).nonzero() # if mask.nelement() <= 1: # continue # input_images = lab_images[mask[:,0]] # gen_feat = self.gen[0](input_images, skip_encode=True) # gen_images = self.gen[i].decode(gen_feat) # lab_cons_loss += nn.MSELoss()(gen_images, input_images) # unl_cons_loss /= self.config.num_label g_loss = unl_cons_loss # g_loss = lab_cons_loss + unl_cons_loss self.gen_optimizer.zero_grad() g_loss.backward() self.gen_optimizer.step() monitor_dict = OrderedDict() # monitor_dict['lab con loss'] = lab_cons_loss.data[0] monitor_dict['unl con loss'] = unl_cons_loss.data[0] return monitor_dict def step2_train(self, iter=0, labeled=None, vis=False): config = self.config self.dis.train() # self.ema_dis.train() if config.dis_double: self.dis_dou.train() if hasattr(self, 'gen'): self.gen.train() ##### train Dis lab_images, lab_labels = self.labeled_loader.next() lab_images, lab_labels = Variable(lab_images.cuda()), Variable(lab_labels.cuda()) unl_images, _ = self.unlabeled_loader.next() unl_images = Variable(unl_images.cuda()) lab_loss = 0 lab_loss2 = 0 cons_loss = 0 nei_loss = 0 tri_loss = 0 ult_loss = 0 dgl_loss = 0 lab_feat = self.gen[0](lab_images, encode=True) unl_feat = self.gen[0](unl_images, encode=True) gen_feat = None # if iter % config.dg_ratio == 0: gen_feat = self.gen[0](self.get_gens_img(unl_images).detach(), encode=True) if config.dis_uc: unl_logits, unl_uc = self.dis(unl_feat, uc=True) lab_logits, lab_uc = self.dis(lab_feat, uc=True) else: unl_logits = self.dis(unl_feat) lab_logits = self.dis(lab_feat) if gen_feat is not None: gen_logits = self.dis(gen_feat) # Standard classification loss if config.dis_uc: lab_loss,_ = losses.uncertainty_loss(self.d_criterion, lab_logits, lab_uc, lab_labels) else: lab_loss = self.d_criterion(lab_logits, lab_labels) if config.dis_double: lab_logits2 = self.dis_dou(lab_feat) lab_loss2 += self.d_criterion(lab_logits2, lab_labels) if config.dis_triple: lab_logits2 = self.dis_dou.out_net3(lab_feat) lab_loss2 += self.d_criterion(lab_logits2, lab_labels) lab_loss *= config.dl_weight lab_loss2 *= config.dl_weight # GAN true-fake loss: sumexp(logits) is seen as the input to the sigmoid unl_logsumexp = log_sum_exp(unl_logits) if gen_feat is not None: gen_logsumexp = log_sum_exp(gen_logits) true_loss = - 0.5 * torch.mean(unl_logsumexp) + 0.5 * torch.mean(F.softplus(unl_logsumexp)) fake_loss = 0 if gen_feat is not None: fake_loss = 0.5 * torch.mean(F.softplus(gen_logsumexp)) unl_loss = config.du_weight * true_loss if self.dg_flag: unl_loss += config.dg_weight * fake_loss # ema consistency loss if config.nei_coef > 0 or config.con_coef > 0: ema_unl_logits = self.ema_dis(unl_feat) ema_unl_logits = Variable(ema_unl_logits.detach().data, requires_grad=False) if config.con_coef > 0: if config.dis_uc: cons_loss,_ = losses.uncertainty_loss(self.consistency_criterion, unl_logits, unl_uc, ema_unl_logits) else: cons_loss = self.consistency_criterion(unl_logits, ema_unl_logits) cons_loss *= self.consistency_weight * config.con_coef cons_loss /= (config.train_batch_size + config.train_batch_size_2) if config.dis_double and config.dt_weight > 0: # todo: add double, triple unl_logits2 = self.dis_dou(unl_feat) _, unl_lab1 = torch.max(unl_logits, 1) _, unl_lab2 = torch.max(unl_logits2, 1) tri_loss += self.d_criterion(unl_logits, unl_lab2) tri_loss += self.d_criterion(unl_logits2, unl_lab1) # GAN true-fake loss unl_logsumexp = log_sum_exp(unl_logits2) gen_logsumexp = log_sum_exp(self.dis_dou(gen_feat)) true_loss = - 0.5 * torch.mean(unl_logsumexp) + 0.5 * torch.mean(F.softplus(unl_logsumexp)) fake_loss = 0.5 * torch.mean(F.softplus(gen_logsumexp)) ult_loss += true_loss + fake_loss if config.dis_triple: unl_logits3 = self.dis_dou.out_net3(unl_feat) _, unl_lab3 = torch.max(unl_logits3, 1) tri_loss += self.d_criterion(unl_logits, unl_lab3) tri_loss += self.d_criterion(unl_logits2, unl_lab3) tri_loss += self.d_criterion(unl_logits3, unl_lab1) tri_loss += self.d_criterion(unl_logits3, unl_lab2) unl_logsumexp = log_sum_exp(unl_logits3) gen_logsumexp = log_sum_exp(self.dis_dou.out_net3(gen_feat)) true_loss = - 0.5 * torch.mean(unl_logsumexp) + 0.5 * torch.mean(F.softplus(unl_logsumexp)) fake_loss = 0.5 * torch.mean(F.softplus(gen_logsumexp)) ult_loss += true_loss + fake_loss tri_loss *= config.dt_weight ult_loss *= config.ut_weight if config.dgl_weight > 0: gen_lab_img, new_lbls = self.get_gens_img(lab_images, lbls=lab_labels) dgl_feat = self.gen[0](gen_lab_img, encode=True) if config.dis_uc: dgl_logits, dgl_uc = self.dis(dgl_feat, uc=True) dgl_loss,_ = losses.uncertainty_loss(self.d_criterion, dgl_logits, dgl_uc, new_lbls) else: dgl_logits = self.dis(dgl_feat) dgl_loss = self.d_criterion(dgl_logits, new_lbls) dgl_loss *= config.dgl_weight d_loss = lab_loss + unl_loss + cons_loss + lab_loss2 + tri_loss + ult_loss + dgl_loss ##### Monitoring (train mode) # true-fake accuracy unl_acc = torch.mean(nn.functional.sigmoid(unl_logsumexp.detach()).gt(0.5).float()) # top-1 logit compared to 0: to verify Assumption (2) and (3) max_unl_acc = torch.mean(unl_logits.max(1)[0].detach().gt(0.0).float()) gen_acc = None if gen_feat is not None: gen_acc = torch.mean(nn.functional.sigmoid(gen_logsumexp.detach()).gt(0.5).float()) max_gen_acc = torch.mean(gen_logits.max(1)[0].detach().gt(0.0).float()) self.dis_optimizer.zero_grad() if iter % (config.dg_ratio*config.eg_ratio) == 0: self.gen_optimizer.zero_grad() d_loss.backward() self.dis_optimizer.step() if iter % (config.dg_ratio*config.eg_ratio) == 0: self.gen_optimizer.step() # del no need # del gen_images del lab_feat del unl_feat del unl_logits if gen_feat is not None: del gen_logits del gen_feat ##### train Gen and Enc tv_loss = 0 st_loss = 0 fm_loss = 0 gl_loss = 0 gn_loss = 0 gr_loss = 0 gc_loss = 0 ef_loss = 0 el_loss = 0 # enc lab center if iter % (self.batch_per_epoch*config.eg_ratio) == 0 and \ (config.el_weight > 0 or config.gl_weight > 0): self.cal_lab_feat_cen() # update # d / 1 g if iter % config.dg_ratio == 0: lab_feat = self.gen[0](lab_images, encode=True).detach() unl_feat = self.gen[0](unl_images, encode=True).detach() gen_images = self.get_gens_img(unl_images, spbatch=True, partcode=config.halfgnoise) unl_images = unl_images[range(gen_images.size(0))] img_per_gen = gen_images.size(0) // config.num_label if config.el_weight > 0: # lbl mean cluster for i in range(config.num_label): mask = (lab_labels == i).nonzero() mask_num = mask.nelement() if mask_num < 1: continue part_lab_feat = lab_feat[mask[:,0]] el_loss += nn.KLDivLoss()(part_lab_feat, self.lab_feat_cen[i].repeat(mask_num, 1)) el_loss *= config.el_weight if config.ef_weight > 0: # lbl std < ts, total std > ts better ts = config.ef_ts for i in range(config.num_label): mask = (lab_labels == i).nonzero() mask_num = mask.nelement() if mask_num <= 1: continue part_lab_feat = lab_feat[mask[:,0]] plf_std = torch.std(part_lab_feat, 0) ef_loss += torch.mean(torch.max(plf_std - ts, Variable(torch.zeros(plf_std.size())).cuda())) ef_loss += ts # total std ef_std = torch.std(unl_feat, 0) ef_loss += torch.mean(torch.max(ts - ef_std, Variable(torch.zeros(ef_std.size())).cuda())) ef_loss *= config.ef_weight if config.gf_weight > 0 or config.gn_weight > 0 or config.gl_weight > 0: gen_feat = self.gen[0](gen_images, encode=True) # gen lab feat loss: mean(En(xl)) - mean(En(De(En(xl)))) if config.gl_weight > 0: for i in range(config.num_label): gen_unl_feat = torch.mean(gen_feat[range(i*img_per_gen, (i+1)*img_per_gen)], 0) gl_loss += nn.KLDivLoss()(gen_unl_feat, self.lab_feat_cen[i]) gl_loss *= config.gl_weight # # diff_ul = torch.abs(torch.mean(lab_feat, 0) - torch.mean(unl_feat, 0)) # gl_ts = torch.mean(diff_ul) * 2 # for i in range(config.num_label): # mask = (lab_labels == i).nonzero() # mask_num = mask.nelement() # if mask_num < 1: # continue # # part_lab_images = lab_images[mask[:,0]] # # gen_lab_feat = self.gen[0](self.gen[i].decode( # # self.gen[0](part_lab_images, skip_encode=True)), encode=True) # mean_mask_feat = lab_feat[mask[:,0]] # if mask_num != 1: # mean_mask_feat = torch.mean(mean_mask_feat, 0) # # gen_lab_feat = torch.mean(gen_lab_feat, 0) # # gen_unl_feat = self.gen[i].decode(self.gen[0](unl_images, skip_encode=True)) # gen_unl_feat = torch.mean(gen_feat[range(i*img_per_gen, (i+1)*img_per_gen)], 0) # diff = torch.abs(mean_mask_feat - gen_unl_feat) # gl_loss += mask_num * \ # torch.mean(torch.max(diff - gl_ts, # Variable(torch.zeros(diff.size())).cuda())) # gl_loss /= lab_feat.size(0) # gl_loss *= config.gl_weight # Feature matching loss: En(xu) - En(De(En(xu))) if config.gf_weight > 0: fm_loss += nn.KLDivLoss()(torch.mean(gen_feat, 0), torch.mean(unl_feat, 0)) + \ torch.mean(torch.abs(torch.std(gen_feat, 0) - torch.std(unl_feat, 0))) # fm_loss = torch.mean(torch.abs(gen_feat - unl_feat[:gen_feat.size(0)])) fm_loss *= config.gf_weight if config.gc_weight > 0: key_ = "layer_{}".format(model.UNetWithResnetEncoder.DEPTH - 1) feat_size = self.gen[0](unl_images, skip_encode=True)[key_][:img_per_gen*config.num_label].size() rand_codes = Variable(torch.rand(feat_size).cuda()) # .unsqueeze(-1).unsqueeze(-1) gen_rand_feat = self.gen[0]( self.get_gens_img(unl_images, codes=rand_codes), encode=True) rand_codes = rand_codes.mean(3, True).mean(2, True) # .repeat(config.num_label, 1) gc_loss = nn.MSELoss()(gen_rand_feat, rand_codes) gc_loss *= config.gc_weight # reconstruction loss if config.gr_weight > 0: unl_tmp = unl_images[:img_per_gen].repeat(config.num_label, 1, 1, 1) # blur # get nn.L1Loss;F.MSELoss;nn.KLDivLoss if self.config.rssim: gr_loss = -losses.SSIM()(gen_images, unl_tmp) else: gr_loss = nn.MSELoss()(gen_images, unl_tmp) gr_loss *= config.gr_weight # could impact the gr # gen neighbor loss: same => closer; diff => farther if config.gn_weight > 0: pos, neg = 0, 0 diff = None for j in range(config.num_label-1): gen_feat_j = gen_feat[range(j*img_per_gen, (j+1)*img_per_gen)] for i in range(j+1, config.num_label): # if i <= j: # continue diff_ = gen_feat_j - \ gen_feat[range(i*img_per_gen, (i+1)*img_per_gen)] diff_ = torch.mean(torch.abs(diff_), 0, True) if diff is None: diff = diff_ else: diff = torch.cat((diff, diff_), dim=0) mean_gen_feat_j = torch.mean(gen_feat_j, 0, True).repeat(img_per_gen, 1).detach() pos += nn.KLDivLoss()(gen_feat_j, mean_gen_feat_j) gen_feat_j = gen_feat[range((config.num_label-1)*img_per_gen, (config.num_label)*img_per_gen)] mean_gen_feat_j = torch.mean(gen_feat_j, 0, True).repeat(img_per_gen, 1).detach() pos += nn.KLDivLoss()(gen_feat_j, mean_gen_feat_j) # pos /= config.num_label # diff = torch.mean(diff, 0, True) neg = torch.mean(torch.max(config.nei_margin - diff, Variable(torch.zeros(diff.size()).cuda()))) # neg /= (config.num_label - 1) * gen_feat.size(1) # * config.num_label gn_loss = pos + neg # (torch.mean(torch.cat((pos, neg), 0))) gn_loss *= self.consistency_weight * config.gn_weight # neighbor loss if config.nei_coef > 0: tot_feat = torch.cat((lab_feat, unl_feat), dim=0) inds = torch.randperm(tot_feat.size(0)).cuda() # pdb.set_trace() # topk do if config.nei_top>1: _, ema_lbl = torch.topk(ema_unl_logits,config.nei_top,dim=1) ema_lbl = torch.zeros(ema_unl_logits.size()).cuda().scatter_(1,ema_lbl.data.long(),1) lab_labels_tmp = torch.zeros(lab_logits.size()).cuda().scatter_(1,lab_labels.data.long().unsqueeze(1),1) ema_lbl = Variable(torch.cat((lab_labels_tmp, ema_lbl), dim=0)) ema_lbl = ema_lbl[inds] nei_mask = ema_lbl[:config.train_batch_size] * ema_lbl[config.train_batch_size:] nei_mask = torch.sum(nei_mask, 1).float() / config.nei_top else: # top1 do _, ema_lbl = torch.max(ema_unl_logits, 1) ema_lbl = torch.cat((lab_labels, ema_lbl), dim=0) ema_lbl = ema_lbl[inds] nei_mask = torch.eq(ema_lbl[:config.train_batch_size], ema_lbl[config.train_batch_size:]).float() # nei or not tot_feat = tot_feat[inds] diff = tot_feat[:config.train_batch_size] - tot_feat[config.train_batch_size:] diff = torch.sqrt(torch.mean(diff ** 2, 1)) pos = nei_mask * diff neg = (1 - nei_mask) * (torch.max(config.nei_margin - diff, Variable(torch.zeros(diff.size())).cuda()) ** 2) nei_loss = self.consistency_weight * config.nei_coef * \ (torch.mean(pos + neg)) # tv losss if config.tv_weight > 0: (_, c_x, h_x, w_x) = gen_images.size() count_h = c_x * (h_x - 1) * w_x count_w = c_x * h_x * (w_x - 1) h_tv = torch.pow((gen_images[:, :, 1:, :] - gen_images[:, :, :-1, :]), 2).sum() w_tv = torch.pow((gen_images[:, :, :, 1:] - gen_images[:, :, :, :-1]), 2).sum() tv_loss = config.tv_weight * (h_tv / count_h + w_tv / count_w) / config.train_batch_size if config.st_weight > 0: # key = "layer_{}".format(model.UNetWithResnet50Encoder.DEPTH - 1) # gen_gram = self.gen[0](gen_images, skip_encode=True) # gen_gram = gen_gram[key] # gen_gram = self.gram_matrix(gen_gram) # unl_gram = self.gen[0](unl_images, skip_encode=True) # unl_gram = unl_gram[key].detach() # unl_gram = self.gram_matrix(unl_gram) gen_gram = self.gram_matrix(gen_images) unl_gram = self.gram_matrix(unl_images) st_loss += config.st_weight * nn.KLDivLoss()(gen_gram, unl_gram) # Generator loss g_loss = Variable(torch.zeros((1,1)), requires_grad=True).cuda() + \ fm_loss + nei_loss + \ ef_loss + el_loss + \ tv_loss + st_loss + \ gl_loss + gn_loss + gr_loss + gc_loss self.gen_optimizer.zero_grad() g_loss.backward() self.gen_optimizer.step() monitor_dict = OrderedDict() monitor_dict['unl acc'] = unl_acc.data[0] if gen_acc is not None: monitor_dict['gen acc'] = gen_acc.data[0] * config.dg_ratio else: monitor_dict['gen acc'] = 0 monitor_dict['max unl acc'] = max_unl_acc.data[0] if gen_acc is not None: monitor_dict['max gen acc'] = max_gen_acc.data[0] * config.dg_ratio else: monitor_dict['max gen acc'] = 0 monitor_dict['lab loss'] = lab_loss.data[0] monitor_dict['unl loss'] = unl_loss.data[0] if config.dgl_weight > 0: monitor_dict['dgl loss'] = dgl_loss.data[0] if config.con_coef > 0: monitor_dict['con loss'] = cons_loss.data[0] if config.dis_double: monitor_dict['la2 loss'] = lab_loss2.data[0] if config.dt_weight > 0: monitor_dict['tri loss'] = tri_loss.data[0] if config.ut_weight > 0: monitor_dict['ult loss'] = ult_loss.data[0] if hasattr(self, 'gen') and iter % config.dg_ratio == 0: if config.gf_weight > 0: monitor_dict['fm loss'] = fm_loss.data[0] * config.dg_ratio if config.ef_weight > 0: monitor_dict['ef loss'] = ef_loss.data[0] * config.dg_ratio if config.el_weight > 0: monitor_dict['el loss'] = el_loss.data[0] * config.dg_ratio if config.tv_weight > 0: monitor_dict['tv loss'] = tv_loss.data[0] * config.dg_ratio if config.st_weight > 0: monitor_dict['st loss'] = st_loss.data[0] * config.dg_ratio if config.nei_coef > 0: monitor_dict['nei loss'] = nei_loss.data[0] * config.dg_ratio if config.gl_weight > 0: monitor_dict['gl loss'] = gl_loss.data[0] * config.dg_ratio if config.gn_weight > 0: monitor_dict['gn loss'] = gn_loss.data[0] * config.dg_ratio if config.gr_weight > 0: monitor_dict['gr loss'] = gr_loss.data[0] * config.dg_ratio if config.gc_weight > 0: monitor_dict['gc loss'] = gc_loss.data[0] * config.dg_ratio # if config.gl_weight > 0: monitor_dict['gl ts'] = gl_ts.data[0] * config.dg_ratio elif iter % config.dg_ratio != 0: if config.gf_weight > 0: monitor_dict['fm loss'] = 0 if config.ef_weight > 0: monitor_dict['ef loss'] = 0 if config.el_weight > 0: monitor_dict['el loss'] = 0 if config.tv_weight > 0: monitor_dict['tv loss'] = 0 if config.st_weight > 0: monitor_dict['st loss'] = 0 if config.nei_coef > 0: monitor_dict['nei loss'] = 0 if config.gl_weight > 0: monitor_dict['gl loss'] = 0 if config.gn_weight > 0: monitor_dict['gn loss'] = 0 if config.gr_weight > 0: monitor_dict['gr loss'] = 0 if config.gc_weight > 0: monitor_dict['gc loss'] = 0 # if config.gl_weight > 0: monitor_dict['gl ts'] = 0 return monitor_dict def eval_true_fake(self, data_loader, max_batch=None): self.gen.eval() self.dis.eval() cnt = 0 unl_acc, gen_acc, max_unl_acc, max_gen_acc = 0., 0., 0., 0. for i, (images, _) in enumerate(data_loader.get_iter()): images = Variable(images.cuda(), volatile=True) unl_feat = self.gen[0](images, encode=True) gen_feat = self.gen[0](self.get_gens_img(images), encode=True) unl_logits = self.dis(unl_feat) gen_logits = self.dis(gen_feat) unl_logsumexp = log_sum_exp(unl_logits) gen_logsumexp = log_sum_exp(gen_logits) ##### Monitoring (eval mode) # true-fake accuracy unl_acc += torch.mean(nn.functional.sigmoid(unl_logsumexp).gt(0.5).float()).data[0] gen_acc += torch.mean(nn.functional.sigmoid(gen_logsumexp).gt(0.5).float()).data[0] # top-1 logit compared to 0: to verify Assumption (2) and (3) max_unl_acc += torch.mean(unl_logits.max(1)[0].gt(0.0).float()).data[0] max_gen_acc += torch.mean(gen_logits.max(1)[0].gt(0.0).float()).data[0] cnt += 1 if max_batch is not None and i >= max_batch - 1: break return unl_acc / cnt, gen_acc / cnt, max_unl_acc / cnt, max_gen_acc / cnt def eval(self, data_loader, max_batch=None, ema=False, tri=0): if ema: # if self.consistency_weight == 0.: # return 0. dis = self.ema_dis else: dis = self.dis if tri == 0: dis_out = dis elif tri == 2: dis_out = self.dis_dou.out_net3 else: # 1 dis_out = self.dis_dou.out_net2 # self.gen.eval() dis.eval() loss, incorrect, cnt = 0, 0, 0 for i, (images, labels) in enumerate(data_loader.get_iter()): images = Variable(images.cuda(), volatile=True) labels = Variable(labels.cuda(), volatile=True) feat = self.gen[0](images, encode=True) pred_prob = dis_out(feat) loss += self.d_criterion(pred_prob, labels).data[0] cnt += 1 incorrect += torch.ne(torch.max(pred_prob, 1)[1], labels).data.sum() if max_batch is not None and i >= max_batch - 1: break return loss / cnt, incorrect def get_gens_img(self, images, spbatch=False, partcode=False, lbls=None, codes=None): # images: Variable(Tensor) gen_images = [] if lbls is not None: new_lbls = [] img_per_gen = images.size(0) // self.config.num_label num_part = [] for j in range(self.config.num_label): if spbatch: num_part.append(range(img_per_gen)) elif lbls is not None: mask = (lbls == j).nonzero().squeeze() num_mask = len(mask) num_part.append(mask) if num_mask < 1: continue new_lbls += [j]*num_mask else: num_part.append(range(j*img_per_gen, (j+1)*img_per_gen)) gen_feat = self.gen[0](images, skip_encode=True) if partcode: lay_key = "layer_{}".format(model.UNetWithResnetEncoder.DEPTH - 1) keep_len = gen_feat[lay_key].size(1) // 2 gn_size = gen_feat[lay_key][:,keep_len:].size() gen_feat[lay_key] = gen_feat[lay_key][:,:keep_len] gn = Variable(torch.rand(gn_size).cuda()) * 2 gen_feat[lay_key] = torch.cat((gen_feat[lay_key], gn), 1) elif codes is not None: lay_key = "layer_{}".format(model.UNetWithResnetEncoder.DEPTH - 1) # codes = codes[:gen_feat[lay_key].size(0)] gen_feat[lay_key] = codes for j in range(self.config.num_label): if len(num_part[j]) < 1: continue j_feat = dict() for i in gen_feat.keys(): j_feat[i] = gen_feat[i][num_part[j]] gen_image = self.gen[j].decode(j_feat) gen_images.append(gen_image) gen_images = torch.cat(gen_images, 0) if lbls is not None: new_lbls = Variable(torch.from_numpy(np.array(new_lbls)).cuda()) return gen_images, new_lbls else: return gen_images def visualize(self, data_loader): self.gen.eval() # self.dis.eval() vis_size = 100 num_label = self.config.num_label img_per_batch = self.config.dev_batch_size // num_label img_per_batch *= num_label # nrow = int((10 // num_label)*num_label) inp_images = [] gen_images = [] for i, (images, _) in enumerate(data_loader.get_iter()): if i * self.config.dev_batch_size >= vis_size: break inp_images.append(images[:img_per_batch]) images = Variable(images.cuda(), volatile=True) gen_images.append(self.get_gens_img(images)) inp_images = torch.cat(inp_images, 0) gen_images = torch.cat(gen_images, 0) save_path = os.path.join(self.config.save_dir, '{}.FM+VI.{}_.png'.format(self.config.dataset, self.config.suffix)) vutils.save_image(gen_images.data.cpu(), save_path, normalize=True, range=(-1, 1), nrow=10) save_path = os.path.join(self.config.save_dir, '{}.FM+VI.{}_d.png'.format(self.config.dataset, self.config.suffix)) vutils.save_image(inp_images, save_path, normalize=True, range=(-1, 1), nrow=10) def param_init(self): def func_gen(flag): def func(m): if hasattr(m, 'init_mode'): setattr(m, 'init_mode', flag) return func images = [] num_img = 500 for i in range(num_img // self.config.train_batch_size): lab_images, _ = self.labeled_loader.next() images.append(lab_images) images = torch.cat(images, 0) if hasattr(self, 'dis'): self.dis.apply(func_gen(True)) if self.config.dis_double: self.dis_dou.apply(func_gen(True)) feat = self.gen[0](Variable(images.cuda()), encode=True) if self.config.dis_uc: logits,_ = self.dis(feat, uc=True) else: logits = self.dis(feat) if self.config.dis_double: logits = self.dis_dou(feat) if self.config.dis_triple: logits = self.dis_dou.out_net3(feat) self.dis.apply(func_gen(False)) if self.config.dis_double: self.dis_dou.apply(func_gen(False)) self.ema_dis = copy.deepcopy(self.dis) # clone weight_scale and weight def calculate_remaining(self, t1, t2, epoch): # ta tot_progress = (epoch + 0.) / self.config.max_epochs if self.config.resume: progress = (epoch - self.config.last_epochs + 0.) / (self.config.max_epochs- self.config.last_epochs) else: progress = tot_progress elapsed_time = t2 - t1 if (progress > 0): remaining_time = elapsed_time * (1 / progress) - elapsed_time else: remaining_time = 0 # elapsed time esec = int(elapsed_time % 60) emin = int((elapsed_time // 60) % 60) ehr = int(elapsed_time / 3600) # remaining_time rsec = int(remaining_time % 60) rmin = int((remaining_time // 60) % 60) rhr = int(remaining_time / 3600) time_str = '[{:8.2%}], {:3d}:{:2d}:{:2d}<{:3d}:{:2d}:{:2d} '.format(tot_progress, ehr, emin, esec, rhr, rmin, rsec) time_str = '| ' + time_str + '\n' return time_str def save_model(self, net, net_label, epo_label): # ta save_filename = 'VI.{}_{}_net_{}.pth'.format(self.config.suffix, epo_label, net_label) save_path = os.path.join(self.config.save_dir, save_filename) torch.save(net.cpu().state_dict(), save_path) if torch.cuda.is_available(): net.cuda() def del_model(self, net_label, epo_label): # ta del_filename = 'VI.{}_{}_net_{}.pth'.format(self.config.suffix, epo_label, net_label) del_path = os.path.join(self.config.save_dir, del_filename) if os.path.exists(del_path): os.remove(del_path) else: print("The file does not exist, {}".format(del_path)) def load_model(self, net, net_label, epo_label, suffix=None): # ta if suffix is None: suffix = self.config.suffix load_filename = 'VI.{}_{}_net_{}.pth'.format(suffix, epo_label, net_label) load_path = os.path.join(self.config.save_dir, load_filename) load_net = torch.load(load_path) net.cpu() model.load_my_state_dict(net, load_net) if torch.cuda.is_available(): net.cuda() def save(self, epo_label): # ta # save new if hasattr(self, 'dis'): self.save_model(self.dis, 'D', epo_label) self.save_model(self.ema_dis, 'M', epo_label) if hasattr(self, 'gen'): self.save_model(self.gen, 'G', epo_label) if hasattr(self, 'dis_dou'): self.save_model(self.dis_dou, 'D2', epo_label) # del old if epo_label >= self.config.vis_period: epo_label -= self.config.vis_period if hasattr(self, 'dis'): self.del_model('D', epo_label) self.del_model('M', epo_label) if hasattr(self, 'gen'): self.del_model('G', epo_label) if hasattr(self, 'dis_dou'): self.save_model('D2', epo_label) def resume(self, epo_label): # ta self.cal_lab_feat_cen() # load old if hasattr(self, 'dis'): self.load_model(self.dis, 'D', epo_label) self.load_model(self.ema_dis, 'M', epo_label) if hasattr(self, 'gen'): self.load_model(self.gen, 'G', epo_label) if hasattr(self, 'dis_dou'): self.load_model(self.dis_dou, 'D2', epo_label) def adjust_learning_rate(self, optimizer, lr, ini_lr, epoch): # LR warm-up to handle large minibatch sizes from https://arxiv.org/abs/1706.02677 lr = ramps.linear_rampup(epoch, self.config.lr_rampup) * (lr - ini_lr) + ini_lr # Cosine LR rampdown from https://arxiv.org/abs/1608.03983 (but one cycle only) if self.config.lr_rampdn: assert self.config.lr_rampdn >= self.config.max_epochs lr *= ramps.cosine_rampdown(epoch, self.config.lr_rampdn ) for param_group in optimizer.param_groups: param_group['lr'] = lr def update_ema_variables(self, alpha, global_step, batch_per_epoch): # ta2 # alpha: min of weight reservation, hp # global_step: history update step counts # Use the true average until the exponential average is more correct epoch = global_step / batch_per_epoch if epoch < self.config.t_start: return alpha = min(1 - 1 / (global_step + 1), alpha) if epoch == self.config.t_start \ or self.config.t_forget_coef == 0 \ or (self.config.t_forget_coef > 0. and epoch % (self.config.c_rampup * self.config.t_forget_coef) == 0): alpha = 0. for ema_param, param in zip(self.ema_dis.parameters(), self.dis.parameters()): ema_param.data.mul_(alpha).add_(1 - alpha, param.data) def get_current_consistency_weight(self, epoch): # Consistency ramp-up from https://arxiv.org/abs/1610.02242 if epoch < self.config.t_start: self.consistency_weight = 0. else: self.consistency_weight = ramps.sigmoid_rampup(epoch, self.config.c_rampup) def train(self): config = self.config batch_per_epoch = int((len(self.unlabeled_loader) + config.train_batch_size - 1) / config.train_batch_size) self.batch_per_epoch = batch_per_epoch if not config.resume: self.param_init() # self.iter_cnt = 0 iter = 0 else: # self.iter_cnt = 0 + config.last_epochs if config.last_epo_lbl is not 0: iter = config.last_epo_lbl else: iter = batch_per_epoch*(config.last_epochs) self.resume(iter) iter += 1 min_dev_incorrect = e_mdi = 1e6 monitor = OrderedDict() if config.eval_period == -1: config.eval_period = batch_per_epoch self.config.eval_period = batch_per_epoch if config.vis_period == -1: config.vis_period = batch_per_epoch if config.t_start == -1: config.t_start = 1. / batch_per_epoch min_lr = config.min_lr if hasattr(config, 'min_lr') else 0.0 last_tr_inco = [1.0] start_time = time.time() while True: if iter % batch_per_epoch == 0: epoch = iter / batch_per_epoch if not self.dg_flag and config.dg_start <= epoch: self.dg_flag = True epoch_ratio = float(epoch) / float(config.max_epochs) # use another outer max to prevent any float computation precision problem if hasattr(self, 'dis'): self.dis_optimizer.param_groups[0]['lr'] = max(min_lr, config.dis_lr * min(3. * (1. - epoch_ratio), 1.)) if hasattr(self, 'gen'): self.gen_optimizer.param_groups[0]['lr'] = max(min_lr, config.gen_lr * min(3. * (1. - epoch_ratio), 1.)) self.get_current_consistency_weight(iter / batch_per_epoch) if hasattr(self, 'dis'): self.adjust_learning_rate(self.dis_optimizer, config.dis_lr, config.ini_lr, iter / batch_per_epoch) iter_vals = getattr(self, "step{}_train".format(config.train_step))(iter=iter) if hasattr(self, 'dis'): self.update_ema_variables(self.config.ema_decay, iter, batch_per_epoch) if len(monitor.keys()) == 0: for k in iter_vals.keys(): monitor[k] = 0. # if not monitor.has_key(k): # monitor[k] = 0. for k, v in iter_vals.items(): monitor[k] += v if iter % config.eval_period == 0: if hasattr(self, 'dis'): train_loss, train_incorrect = self.eval(self.labeled_loader) dev_loss, dev_incorrect = self.eval(self.dev_loader) ema_result = self.eval(self.dev_loader, ema=True) if isinstance(ema_result, tuple): ema_train_result = self.eval(self.labeled_loader, ema=True) ema_train_result_ = ema_train_result[1] / (1.0 * len(self.labeled_loader)) ema_result_ = ema_result[1] / (1.0 * len(self.dev_loader)) if config.dis_double: _, tri_result1 = self.eval(self.dev_loader, tri=1) tri_result1 = tri_result1 / (1.0 * len(self.dev_loader)) if self.config.dis_triple: _, tri_result2 = self.eval(self.dev_loader, tri=2) tri_result2 = tri_result2 / (1.0 * len(self.dev_loader)) else: tri_result2 = 0. if hasattr(self, 'gen'): unl_acc, gen_acc, max_unl_acc, max_gen_acc = self.eval_true_fake(self.dev_loader, 10) disp_str = "#{}".format(iter) if hasattr(self, 'dis'): train_incorrect /= 1.0 * len(self.labeled_loader) dev_incorrect /= 1.0 * len(self.dev_loader) min_dev_incorrect = min(min_dev_incorrect, dev_incorrect) e_mdi = min(e_mdi, ema_result_) disp_str += '\ttrain: {:.4f}, {:.4f} | dev: {:.4f}, {:.4f} | best: {:.4f}'.format( train_loss, train_incorrect, dev_loss, dev_incorrect, min_dev_incorrect) if isinstance(ema_result, tuple): disp_str += ' | ema: {:.4f}, {:.4f}, {:.4f}'.format(ema_train_result_, ema_result_, e_mdi) else: disp_str += ' | ema: None , None' if config.dis_double: disp_str += ' | tri: {:.4f}, {:.4f}'.format(tri_result1, tri_result2) for k, v in monitor.items(): disp_str += ' | {}: {:.4f}'.format(k, v / config.eval_period) if hasattr(self, 'dis') and hasattr(self, 'gen'): disp_str += ' | [Eval] unl acc: {:.4f}, gen acc: {:.4f}, max unl acc: {:.4f}, max gen acc: {:.4f}'.format( unl_acc, gen_acc, max_unl_acc, max_gen_acc) if hasattr(self, 'dis'): disp_str += ' | dlr: {:.5f}'.format(self.dis_optimizer.param_groups[0]['lr']) elif hasattr(self, 'gen'): disp_str += ' | glr: {:.5f}'.format(self.gen_optimizer.param_groups[0]['lr']) disp_str += '\n' monitor = OrderedDict() # timer # ta time_str = self.calculate_remaining(start_time, time.time(), iter / batch_per_epoch) self.logger.write(disp_str) sys.stdout.write(disp_str) sys.stdout.write(time_str) # ta sys.stdout.flush() # stop check thres = 1 #0.4; 0.3 if hasattr(self, 'dis') and train_incorrect > sum(last_tr_inco)/len(last_tr_inco) + thres: print("tr_inco encrease > {}!".format(thres)) break elif hasattr(self, 'dis'): last_tr_inco.append(train_incorrect) if len(last_tr_inco) > 3: last_tr_inco.pop(0) epoch = iter / batch_per_epoch if epoch >= config.max_epochs: self.save(iter) self.visualize(self.dev_loader) break if iter % config.vis_period == 0: # save model # ta self.save(iter) self.visualize(self.dev_loader) iter += 1 # self.iter_cnt += 1 def cal_lab_feat_cen(self): config = self.config self.lab_feat_cen = [None] * config.num_label lab_num = [0] * config.num_label # all lab feat sum local_loader = self.labeled_loader.get_iter(shuffle=False) for img, lbl in local_loader: img, lbl = Variable(img.cuda()), Variable(lbl.cuda()) loc_feat = self.gen[0](img, encode=True).detach() for i in range(config.num_label): mask = (lbl == i).nonzero() mask_num = mask.nelement() if mask_num < 1: continue loc_feat2 = loc_feat[mask[:,0]] if mask_num != 1: loc_feat2 = torch.sum(loc_feat2, 0).unsqueeze(0) if self.lab_feat_cen[i] is None: self.lab_feat_cen[i] = loc_feat2 else: self.lab_feat_cen[i] += loc_feat2 lab_num[i] += mask_num # feat sum -> feat mean for i in range(config.num_label): self.lab_feat_cen[i] = self.lab_feat_cen[i] / lab_num[i] if __name__ == '__main__': cc = config.cifarmu_config() parser = argparse.ArgumentParser(description='multi_decoder_trainer.py') parser.add_argument('-suffix', default='md0', type=str, help="Suffix added to the save images.") parser.add_argument('-r', dest='resume', action='store_true') parser.add_argument('-num_label', default=cc.num_label, type=int, help="label num") parser.add_argument('-allowed_label', default=cc.allowed_label, type=str, help="allowed label in dataset") parser.add_argument('-dataset', default=cc.dataset, type=str, help="dataset: cifar, stl10, coil20") parser.add_argument('-image_side', default="32", type=int, help="cifar: 32, stl10: 96, coil20: 128, imagenet10: 256") parser.add_argument('-train_step', default=cc.train_step, type=int, help="train step: 1, 2") parser.add_argument('-step1_epo', default=0, type=int, help="load gen from train step 1 epo #") parser.add_argument('-step1_epo_lbl', default=0, type=int, help="load gen from train step 1 epo label #") parser.add_argument('-dg_ratio', default=5, type=int, help="update # d/g") parser.add_argument('-eg_ratio', default=1, type=int, help="update # g/enc-d") parser.add_argument('-dis_channels', default=cc.dis_channels, type=str, help="# of dis channels, r50: '1024,192'; r34: '512,192' ") parser.add_argument('-max_epochs', default=cc.max_epochs, type=int, help="max epoches") parser.add_argument('-last_epochs', default=cc.last_epochs, type=int, help="last epochs") parser.add_argument('-last_epo_lbl', default=0, type=int, help="last epochs label") parser.add_argument('-dg_start', default=cc.dg_start, type=int, help="start dis loss epoch") parser.add_argument('-eval_period', default=cc.eval_period, type=int, help="evaluate period, -1: per-epoch") parser.add_argument('-vis_period', default=cc.vis_period, type=int, help="visualize period, -1: per-epoch") parser.add_argument('-ld', '--size_labeled_data', default=cc.size_labeled_data, type=int, help="labeled data num") parser.add_argument('-ud', '--size_unlabeled_data', default=cc.size_unlabeled_data, type=int, help="unlabeled data num") parser.add_argument('-train_batch_size', default=cc.train_batch_size, type=int, help="labeled batch size") parser.add_argument('-train_batch_size_2', default=cc.train_batch_size_2, type=int, help="unlabeled batch size") parser.add_argument('-dis_lr', default=cc.dis_lr, type=float, help="discriminator learn rate") parser.add_argument('-gen_lr', default=cc.gen_lr, type=float, help="generator learn rate") # parser.add_argument('-weight_decay', default=cc.weight_decay, type=float, # help="generator weight decay") parser.add_argument('-gop', default=cc.gop, type=str, help="gen optim: Adam, SGD") parser.add_argument('-con_coef', default=cc.con_coef, type=float, help="Consistency loss content") parser.add_argument('-nei_coef', default=cc.nei_coef, type=float, help="neighbor loss content") parser.add_argument('-nei_margin', default=cc.nei_margin, type=float, help="neighbor margin content; less better") parser.add_argument('-nei_top', default=cc.nei_top, type=int, help="neighbor top-k") parser.add_argument('-c_rampup', default=cc.c_rampup, type=int, help="rampup period") parser.add_argument('-ini_lr', default=cc.ini_lr, type=float, help="lr rampup ini") parser.add_argument('-lr_rampup', default=cc.lr_rampup, type=int, help="lr rampup fin epoch") parser.add_argument('-lr_rampdn', default=cc.lr_rampdn, type=int, help="lr rampdn fin epoch") parser.add_argument('-t_forget_coef', default=cc.t_forget_coef, type=float, help="teacher corget content * c_r, 0: always forget, -1: no forget") parser.add_argument('-t_start', default=cc.t_start, type=float, help="teacher start calculate loss, -1: 2nd batch start") parser.add_argument('-dl_weight', default=cc.dl_weight, type=float, help="dis lab loss content") parser.add_argument('-du_weight', default=cc.du_weight, type=float, help="dis unlabeled loss content") parser.add_argument('-dg_weight', default=cc.dg_weight, type=float, help="dis gen loss content") parser.add_argument('-dgl_weight', default=0, type=float, help="dis gen lab loss content") parser.add_argument('-dt_weight', default=cc.dt_weight, type=float, help="dis triple loss content") parser.add_argument('-ut_weight', default=cc.ut_weight, type=float, help="dis triple gan loss content") parser.add_argument('-ef_weight', default=0, type=float, help="encode feat mean & std loss content") parser.add_argument('-ef_ts', default=0.3, type=float, help="encode feat threshold, def: 0.3") parser.add_argument('-el_weight', default=0, type=float, help="encode lab feat mean to clustering") parser.add_argument('-tv_weight', default=cc.tv_weight, type=float, help="tv loss weight") parser.add_argument('-st_weight', default=cc.st_weight, type=float, help="style loss weight") parser.add_argument('-gf_weight', default=1, type=float, help="gen feat measure loss content") parser.add_argument('-gl_weight', default=cc.gl_weight, type=float, help="gen lab feat loss content") parser.add_argument('-gn_weight', default=0, type=float, help="gen feat nei loss content") parser.add_argument('-gr_weight', default=0, type=float, help="gen reconstruct loss content") parser.add_argument('-gc_weight', default=0, type=float, help="gen code loss content") parser.add_argument('-gen_mode', default=cc.gen_mode, type=str, help="gen model mode: res '50', '34', non") parser.add_argument('-f', dest='flip', action='store_true') parser.add_argument('-dd', dest='dis_double', action='store_true', help="double dis") parser.add_argument('-dt', dest='dis_triple', action='store_true', help="trible dis") parser.add_argument('-hgn', dest='halfgnoise', action='store_true', help="whether the whole E(img) is not the input of Decoder") parser.add_argument('-rs', dest='rssim', action='store_true', help="gr loss uses ssim or not") parser.add_argument('-uc', dest='dis_uc', action='store_true', help="dis uncertainty or not") parser.set_defaults(resume=False) parser.set_defaults(dis_double=False) parser.set_defaults(dis_triple=False) parser.set_defaults(halfgnoise=False) parser.set_defaults(dis_uc=False) parser.set_defaults(rssim=False) parser.set_defaults(flip=cc.flip) args = parser.parse_args() trainer = Trainer(cc, args) trainer.train() ```
{ "source": "jjyyxx/ray", "score": 2 }
#### File: serve/pipeline/deployment_node.py ```python from typing import Any, Dict, Optional, List, Tuple, Union from ray.experimental.dag import DAGNode, InputNode from ray.serve.api import Deployment from ray.serve.handle import RayServeSyncHandle, RayServeHandle from ray.serve.pipeline.deployment_method_node import DeploymentMethodNode from ray.serve.pipeline.constants import USE_SYNC_HANDLE_KEY from ray.experimental.dag.format_utils import get_dag_node_str class DeploymentNode(DAGNode): """Represents a deployment node in a DAG authored Ray DAG API.""" def __init__( self, deployment, cls_args: Tuple[Any], cls_kwargs: Dict[str, Any], cls_options: Dict[str, Any], other_args_to_resolve: Optional[Dict[str, Any]] = None, ): self._body: Deployment = deployment super().__init__( cls_args, cls_kwargs, cls_options, other_args_to_resolve=other_args_to_resolve, ) self._deployment_handle: Union[ RayServeHandle, RayServeSyncHandle ] = self._get_serve_deployment_handle(deployment, other_args_to_resolve) if self._contains_input_node(): raise ValueError( "InputNode handles user dynamic input the the DAG, and " "cannot be used as args, kwargs, or other_args_to_resolve " "in the DeploymentNode constructor because it is not available " "at class construction or binding time." ) def _copy_impl( self, new_args: List[Any], new_kwargs: Dict[str, Any], new_options: Dict[str, Any], new_other_args_to_resolve: Dict[str, Any], ): return DeploymentNode( self._body, new_args, new_kwargs, new_options, other_args_to_resolve=new_other_args_to_resolve, ) def _execute_impl(self, *args): """Executor of DeploymentNode by ray.remote()""" return self._deployment_handle.options(**self._bound_options).remote( *self._bound_args, **self._bound_kwargs ) def _get_serve_deployment_handle( self, deployment: Deployment, bound_other_args_to_resolve: Dict[str, Any], ) -> Union[RayServeHandle, RayServeSyncHandle]: """ Return a sync or async handle of the encapsulated Deployment based on config. Args: deployment (Deployment): Deployment instance wrapped in the DAGNode. bound_other_args_to_resolve (Dict[str, Any]): Contains args used to configure DeploymentNode. Returns: RayServeHandle: Default and catch-all is to return sync handle. return async handle only if user explicitly set USE_SYNC_HANDLE_KEY with value of False. """ if USE_SYNC_HANDLE_KEY not in bound_other_args_to_resolve: # Return sync RayServeSyncHandle return deployment.get_handle(sync=True) elif bound_other_args_to_resolve.get(USE_SYNC_HANDLE_KEY) is True: # Return sync RayServeSyncHandle return deployment.get_handle(sync=True) elif bound_other_args_to_resolve.get(USE_SYNC_HANDLE_KEY) is False: # Return async RayServeHandle return deployment.get_handle(sync=False) else: raise ValueError( f"{USE_SYNC_HANDLE_KEY} should only be set with a boolean value." ) def _contains_input_node(self) -> bool: """Check if InputNode is used in children DAGNodes with current node as the root. """ children_dag_nodes = self._get_all_child_nodes() for child in children_dag_nodes: if isinstance(child, InputNode): return True return False def __getattr__(self, method_name: str): # Raise an error if the method is invalid. getattr(self._body.func_or_class, method_name) call_node = DeploymentMethodNode( self._body, method_name, (), {}, {}, other_args_to_resolve=self._bound_other_args_to_resolve, ) return call_node def __str__(self) -> str: return get_dag_node_str(self, str(self._body)) ``` #### File: pipeline/tests/test_generate.py ```python import pytest import ray from ray import serve from ray.experimental.dag import InputNode from ray.serve.pipeline.generate import ( transform_ray_dag_to_serve_dag, extract_deployments_from_serve_dag, ) from ray.serve.pipeline.tests.test_modules import Model, Combine def _validate_consistent_output( deployment, dag, handle_by_name, input=None, output=None ): """Assert same input lead to same outputs across the following: 1) Deployment handle returned from Deployment instance get_handle() 2) Original executable Ray DAG 3) Deployment handle return from serve public API get_deployment() """ deployment_handle = deployment.get_handle() assert ray.get(deployment_handle.remote(input)) == output assert ray.get(dag.execute(input)) == output handle_by_name = serve.get_deployment(handle_by_name).get_handle() assert ray.get(handle_by_name.remote(input)) == output def test_simple_single_class(serve_instance): # Assert converting both arg and kwarg model = Model._bind(2, ratio=0.3) ray_dag = model.forward._bind(InputNode()) serve_root_dag = ray_dag._apply_recursive( lambda node: transform_ray_dag_to_serve_dag(node) ) deployments = extract_deployments_from_serve_dag(serve_root_dag) assert len(deployments) == 1 deployments[0].deploy() _validate_consistent_output(deployments[0], ray_dag, "Model", input=1, output=0.6) def test_single_class_with_valid_ray_options(serve_instance): model = Model.options(num_cpus=1, memory=1000)._bind(2, ratio=0.3) ray_dag = model.forward._bind(InputNode()) serve_root_dag = ray_dag._apply_recursive( lambda node: transform_ray_dag_to_serve_dag(node) ) deployments = extract_deployments_from_serve_dag(serve_root_dag) assert len(deployments) == 1 deployments[0].deploy() _validate_consistent_output( deployments[0], ray_dag, deployments[0].name, input=1, output=0.6 ) deployment = serve.get_deployment(deployments[0].name) assert deployment.ray_actor_options == { "num_cpus": 1, "memory": 1000, "runtime_env": {}, } def test_single_class_with_invalid_deployment_options(serve_instance): model = Model.options(name="my_deployment")._bind(2, ratio=0.3) ray_dag = model.forward._bind(InputNode()) serve_root_dag = ray_dag._apply_recursive( lambda node: transform_ray_dag_to_serve_dag(node) ) deployments = extract_deployments_from_serve_dag(serve_root_dag) assert len(deployments) == 1 with pytest.raises( ValueError, match="Specifying name in ray_actor_options is not allowed" ): deployments[0].deploy() def test_multi_instantiation_class_deployment_in_init_args(serve_instance): """ Test we can pass deployments as init_arg or init_kwarg, instantiated multiple times for the same class, and we can still correctly replace args with deployment handle and parse correct deployment instances. """ m1 = Model._bind(2) m2 = Model._bind(3) combine = Combine._bind(m1, m2=m2) ray_dag = combine.__call__._bind(InputNode()) print(f"Ray DAG: \n{ray_dag}") serve_root_dag = ray_dag._apply_recursive( lambda node: transform_ray_dag_to_serve_dag(node) ) print(f"Serve DAG: \n{serve_root_dag}") deployments = extract_deployments_from_serve_dag(serve_root_dag) assert len(deployments) == 3 for deployment in deployments: deployment.deploy() _validate_consistent_output(deployments[2], ray_dag, "Combine", input=1, output=5) def test_shared_deployment_handle(serve_instance): """ Test we can re-use the same deployment handle multiple times or in multiple places, without incorrectly parsing duplicated deployments. """ m = Model._bind(2) combine = Combine._bind(m, m2=m) ray_dag = combine.__call__._bind(InputNode()) print(f"Ray DAG: \n{ray_dag}") serve_root_dag = ray_dag._apply_recursive( lambda node: transform_ray_dag_to_serve_dag(node) ) print(f"Serve DAG: \n{serve_root_dag}") deployments = extract_deployments_from_serve_dag(serve_root_dag) assert len(deployments) == 2 for deployment in deployments: deployment.deploy() _validate_consistent_output(deployments[1], ray_dag, "Combine", input=1, output=4) def test_multi_instantiation_class_nested_deployment_arg(serve_instance): """ Test we can pass deployments with **nested** init_arg or init_kwarg, instantiated multiple times for the same class, and we can still correctly replace args with deployment handle and parse correct deployment instances. """ # TODO: (jiaodong) Support nested deployment args pass def test_simple_function(serve_instance): # TODO: (jiaodong) Support function deployment node pass def test_multiple_functions(serve_instance): # TODO: (jiaodong) Support function deployment node pass def test_mix_class_and_function(serve_instance): # TODO: (jiaodong) Support function deployment node pass if __name__ == "__main__": import sys sys.exit(pytest.main(["-v", __file__])) ```
{ "source": "JJYYYY/policy_crawl", "score": 2 }
#### File: policy_crawl/common/fetch.py ```python import time import random import requests #from my_fake_useragent import UserAgent from policy_crawl.common.logger import errorlog user_agent_list = [ 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) ' 'Chrome/45.0.2454.85 Safari/537.36 115Browser/6.0.3', 'Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50', 'Mozilla/5.0 (Windows; U; Windows NT 6.1; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50', 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.0; Trident/4.0)', 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0)', 'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1', 'Opera/9.80 (Windows NT 6.1; U; en) Presto/2.8.131 Version/11.11', 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_0) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.56 Safari/535.11', 'Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SE 2.X MetaSr 1.0; SE 2.X MetaSr 1.0; .NET CLR 2.0.50727; SE 2.X MetaSr 1.0)', 'Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; Trident/5.0', 'Mozilla/5.0 (Windows NT 6.1; rv:2.0.1) Gecko/20100101 Firefox/4.0.1', ] #随机选择一个 user_agent = random.choice(user_agent_list) #传递给header headers = { 'User-Agent': user_agent } #headers = {''} def get(url,params=None,headers=headers,code="utf-8",timeout=160,**kwargs): res=requests.get(url,params=params,headers=headers,timeout=timeout,**kwargs) if res.status_code in [200,201,301]: return res.content.decode(code) else: errorlog.logger.error("url status_code 错误:%s,status_code:%s" % (url, res.status_code)) raise ConnectionError("没有连接") def post(url,data=None,headers=headers,code="utf-8",timeout=160,**kwargs): res=requests.post(url,data=data,headers=headers,timeout=timeout,**kwargs) if res.status_code in [200,201,301]: return res.content.decode(code) else: errorlog.logger.error("url status_code 错误:%s,status_code:%s" %(url,res.status_code)) raise ConnectionError("没有连接") ``` #### File: mca/all/fujian.py ```python import re import time import json from pyquery import PyQuery as pq from policy_crawl.common.fetch import get,post from policy_crawl.common.save import save from policy_crawl.common.logger import alllog,errorlog def parse_index(html): items=json.loads(html.replace("\r\n","").replace("\n","")) for item in items["docs"]: try: data = {} data["title"] = item["title"] data["content"] = item["content"] data["content_url"] = item["chnldocurl"] data["publish_time"] = item["pubtime"] data["classification"] = "福建省税务局" data["url"] = item["url"] print(data) save(data) except: pass def main(): for i in range(1,4): print(i) url="http://mzt.fujian.gov.cn/was5/web/search?channelid=229105&sortfield=-docreltime,-docorder&extension=&templet=docs.jsp&classsql=siteid%3D46*chnlid%3D18040&searchword=&prepage=20&page="+str(i)+"&r=0.26315070612868396" html=get(url) parse_index(html) if __name__ == '__main__': main() ``` #### File: npma/all/nation.py ```python import re import time import random from pyquery import PyQuery as pq from policy_crawl.common.fetch import get,post from policy_crawl.common.save import save from policy_crawl.common.logger import alllog,errorlog from policy_crawl.common.utils import get_cookie def parse_detail(html,url): alllog.logger.info("国家药品监督管理局: %s"%url) doc=pq(html) data={} data["title"]=doc("title").text() data["content"]=doc(".articlecontent3").text().replace("\n","") data["content_url"]=[item.attr("href") for item in doc(".articlecontent3 a").items()] try: data["publish_time"]=re.findall("(\d{4}年\d{1,2}月\d{1,2}日)",html)[0] # data["publish_time"]=re.findall("(\d{4}/\d{1,2}/\d{1,2})",html)[0] # data["publish_time"]=re.findall("(\d{4}-\d{1,2}-\d{1,2})",html)[0] except: data["publish_time"]="" errorlog.logger.error("url:%s 未找到publish_time"%url) data["classification"]="国家药品监督管理局" data["url"]=url print(data) save(data) def parse_index(html,cookies): doc=pq(html) items=doc(".ListColumnClass15 a").items() for item in items: url=item.attr("href") if "http" not in url: url="http://www.nmpa.gov.cn/WS04" + url.replace("../","/") try: html=get(url,cookies=cookies,code="gbk") except: errorlog.logger.error("url错误:%s"%url) parse_detail(html,url) time.sleep(random.randint(1,3)) def main(): for i in range(100,152): cookies=get_cookie("http://www.nmpa.gov.cn/WS04/CL2051/index_1.html",".ListColumnClass15","FSSBBIl1UgzbN7N80S","FSSBBIl1UgzbN7N80T") print(cookies) print(i) if i==0: url="http://www.nmpa.gov.cn/WS04/CL2051/index.html" else: url="http://www.nmpa.gov.cn/WS04/CL2051/index_"+str(i)+".html" html=get(url,cookies=cookies,code="GB18030") parse_index(html,cookies) if __name__ == '__main__': main() ``` #### File: sasac/all/anhui.py ```python import re import time from pyquery import PyQuery as pq from policy_crawl.common.fetch import get,post from policy_crawl.common.save import save from policy_crawl.common.logger import alllog,errorlog def parse_detail(html,url): alllog.logger.info("安徽省国有资产委员会: %s"%url) doc=pq(html) data={} data["title"]=doc(".s_article_top h1").text() if not data["title"]: data["title"] = doc(".dicontent_bt h1").text() data["content"]=doc(".h-content").text().replace("\n","") data["content_url"]=[item.attr("href") for item in doc(".h-content a").items()] try: # data["publish_time"]=re.findall("(\d{4}年\d{1,2}月\d{1,2}日)",html)[0] # data["publish_time"]=re.findall("(\d{4}/\d{1,2}/\d{1,2})",html)[0] data["publish_time"]=re.findall("(\d{4}-\d{1,2}-\d{1,2})",html)[0] except: data["publish_time"]="" errorlog.logger.error("url:%s 未找到publish_time"%url) if not data["content"]: data["content"] = doc(".dicontent_left").text().replace("\n", "") data["content_url"] = [item.attr("href") for item in doc(".dicontent_left a").items()] data["classification"]="安徽省国有资产委员会" data["url"]=url print(data) save(data) def parse_index(html): doc=pq(html) items=doc("#ul_list tr a").items() for item in items: url=item.attr("href") if "http" not in url: url="http://gzw.ah.gov.cn/xxgk/" + url try: html=get(url,code="gbk") except: errorlog.logger.error("url错误:%s"%url) parse_detail(html,url) time.sleep(1) def main(): url="http://gzw.ah.gov.cn/xxgk/list.jsp" for i in range(1,40): print(i) data={'strColId': '0ae0ae0d59cb48b38d86babb0edc8918', 'strTopicType': '', 'strThemeType': '', 'strWebSiteId': '1448866116912004', 'strPage': '', 'strMasTitle': '', 'year': '', '_index': '', 'PageSizeIndex': str(i), 'strIndex': '', 'strSearchContent': '', 'strTxtCnt': ''} html=post(url,data=data,code="gbk") parse_index(html) if __name__ == '__main__': main() ```
{ "source": "jjz17/FreeCell-Solitaire", "score": 3 }
#### File: mvc/model/deck.py ```python from mvc.model.card import Card, Value, Suit import random class Deck: def __init__(self): self.cards = [] self.build_deck() def build_deck(self): for value in Value: for suit in Suit: self.cards.append(Card(value, suit)) def shuffle(self): random.shuffle(self.cards) ```
{ "source": "jjz17/Natural-Strength", "score": 3 }
#### File: Natural-Strength/application/utils.py ```python import numpy as np import _pickle as cPickle from application.user_metrics import UserMetrics, DummyUserMetrics def choose_pred(current, pred): result = max(current, pred) if result == current: result *= 1.05 return result def copy_metrics(user_metric: UserMetrics): if user_metric != None: return DummyUserMetrics(user_metric.weight, user_metric.squat, user_metric.bench, user_metric.deadlift, user_metric.date) return None def generate_null_metrics(): return {'data': {'user_metric': DummyUserMetrics(None, None, None, None, None)}, 'units': ''} def handle_unit_conversion(input_unit_kg: True, output_unit_kg: False, **data): if input_unit_kg and not output_unit_kg: for key in data.keys(): # Check if data is a UserMetrics object if isinstance(data[key], UserMetrics) or isinstance(data[key], DummyUserMetrics): data[key] = metrics_kg_to_lbs(data[key]) else: data[key] = kg_to_lbs(data[key]) units = 'Lbs' elif not input_unit_kg and output_unit_kg: for key in data.keys(): data[key] = lbs_to_kg(data[key]) units = 'Kg' elif not output_unit_kg: for key in data.keys(): # Check if data is a UserMetrics object if isinstance(data[key], UserMetrics) or isinstance(data[key], DummyUserMetrics): data[key] = metrics_kg_to_lbs(data[key]) units = 'Lbs' else: units = 'Kg' return {'data': data, 'units': units} def kg_to_lbs(kg): return round(float(kg) * 2.20462, 2) def lbs_to_kg(lbs): return round(float(lbs) * 0.453592, 2) def load_model(model_file: str): return cPickle.load(open(model_file, 'rb')) def metrics_kg_to_lbs(user_metric): if user_metric == None: return None return DummyUserMetrics(kg_to_lbs(user_metric.weight), kg_to_lbs(user_metric.squat), kg_to_lbs(user_metric.bench), kg_to_lbs(user_metric.deadlift), user_metric.date) def scale_stats(scaler, stats: list): return scaler.transform(np.array(stats).reshape(1, -1)) ``` #### File: Natural-Strength/pages/example.py ```python import streamlit as st import numpy as np import pandas as pd # @st.cache def app(): st.markdown("## Data Upload") # Upload the dataset and save as csv st.markdown("### Upload a csv file for analysis.") st.write("\n") # Code to read a single file uploaded_file = st.file_uploader("Choose a file", type=['csv', 'xlsx']) global data if uploaded_file is not None: try: data = pd.read_csv(uploaded_file) except Exception as e: print(e) data = pd.read_excel(uploaded_file) # uploaded_files = st.file_uploader("Upload your CSV file here.", type='csv', accept_multiple_files=False) # # Check if file exists # if uploaded_files: # for file in uploaded_files: # file.seek(0) # uploaded_data_read = [pd.read_csv(file) for file in uploaded_files] # raw_data = pd.concat(uploaded_data_read) # uploaded_files = st.file_uploader("Upload CSV", type="csv", accept_multiple_files=False) # print(uploaded_files, type(uploaded_files)) # if uploaded_files: # for file in uploaded_files: # file.seek(0) # uploaded_data_read = [pd.read_csv(file) for file in uploaded_files] # raw_data = pd.concat(uploaded_data_read) # read temp data # data = pd.read_csv('data/2015.csv') ''' Load the data and save the columns with categories as a dataframe. This section also allows changes in the numerical and categorical columns. ''' if st.button("Load Data"): # Raw data st.dataframe(data) # utils.getProfile(data) # st.markdown("<a href='output.html' download target='_blank' > Download profiling report </a>",unsafe_allow_html=True) # HtmlFile = open("data/output.html", 'r', encoding='utf-8') # source_code = HtmlFile.read() # components.iframe("data/output.html")# Save the data to a new file data.to_csv('data/main_data.csv', index=False) # Generate a pandas profiling report # if st.button("Generate an analysis report"): # utils.getProfile(data) # Open HTML file # pass # Collect the categorical and numerical columns numeric_cols = data.select_dtypes(include=np.number).columns.tolist() categorical_cols = list(set(list(data.columns)) - set(numeric_cols)) # Save the columns as a dataframe or dictionary columns = [] # Iterate through the numerical and categorical columns and save in columns # columns = utils.genMetaData(data) # Save the columns as a dataframe with categories # Here column_name is the name of the field and the type is whether it's numerical or categorical columns_df = pd.DataFrame(columns, columns=['column_name', 'type']) columns_df.to_csv('data/metadata/column_type_desc.csv', index=False) # Display columns st.markdown("**Column Name**-**Type**") for i in range(columns_df.shape[0]): st.write(f"{i + 1}. **{columns_df.iloc[i]['column_name']}** - {columns_df.iloc[i]['type']}") st.markdown("""The above are the automated column types detected by the application in the data. In case you wish to change the column types, head over to the **Column Change** section. """) ``` #### File: Natural-Strength/src/records_scraping.py ```python import random import re import time import os from datetime import datetime import numpy as np import pandas as pd import requests from bs4 import BeautifulSoup def get_soup(url): """ Returns the BeautifulSoup object for website of the given category name in the given CL webpage's homepage Args: url(String): the given URL Returns: soup(bs4.BeautifulSoup): the BeautifulSoup object representation of the desired category page """ # Open the target category page # html = urllib.urlopen(url) html = requests.get(url) # Create a BeautifulSoup object after the HTML page is read # soup = BeautifulSoup(html.read()) soup = BeautifulSoup(html.content, "html.parser") # Close the urllib connection to avoid issues with the website html.close() return soup def get_dict(sex='M'): url = '' min_class = 0 max_class = 0 label_val = '' if sex == 'M': url = 'https://usapl.liftingdatabase.com/records-default?recordtypeid=120365&categoryid=59&weightclassid=122663' min_class = 52.0 max_class = 141.0 # ABSTRACT THIS label_val = 'USAPL Nationals 2022 - Male' else: url = 'https://usapl.liftingdatabase.com/records-default?recordtypeid=120362&categoryid=59&weightclassid=122653' min_class = 44.0 max_class = 101.0 label_val = 'USAPL Nationals 2022 - Female' soup = get_soup(url) choices = soup.find('optgroup', attrs={'label': label_val}) options = choices.find_all('option') url_class_map = {} for option in options: w_class = '' # Handle max class if option.get_text()[-1] == '+': w_class = max_class else: w_class = float(option.get_text()) * -1 if w_class >= min_class: url = option['value'] url_class_map[url] = w_class print(url_class_map) return url_class_map def get_records_df(): m_dict = get_dict('M') f_dict = get_dict('F') dicts = [(m_dict, 'https://usapl.liftingdatabase.com/records-default?recordtypeid=120365&categoryid=59&weightclassid=', 'M'), (f_dict, 'https://usapl.liftingdatabase.com/records-default?recordtypeid=120362&categoryid=59&weightclassid=', 'F')] # Create DataFrame df = pd.DataFrame(columns=['Name', 'Weight Class', 'Lift', 'Weight (kg)', 'Date', 'Sex']) for info in dicts: info_dict = info[0] target_url = info[1] sex = info[2] for url, w_class in info_dict.items(): page = str(target_url) + str(url) soup = get_soup(page) body = soup.find_all('tbody')[1] # print(body) # titles = body.find_all('th', {'colspan' : '9'}) records = body.find_all('tr', class_=None) lift = '' for count, record in enumerate(records): # even tags are lift title if count > 0 and (count - 1) % 2 == 0: lift = record.get_text().strip() # print(lift) # print(record.get_text().strip()) # odd tags are info if count > 0 and (count - 1) % 2 == 1: infos = record.find_all('td') name = infos[1] # weight_class = infos[0] weight = infos[2] date = infos[3] # Create a temporary dictionary to store the information of the current post temp_dict = {'Name': name, 'Weight Class': w_class, 'Lift': lift, 'Weight (kg)': weight, 'Date': date, 'Sex': sex} # Append the current post's information to the df DataFrame to create its respective row df = df.append(temp_dict, ignore_index=True) # for info in infos: # except print(info.get_text().strip()) # print('Running...') print('Test') time.sleep(random.randint(2, 3)) # Wrangling df['Name'] = df['Name'].apply(lambda x: x.get_text()) df['Weight (kg)'] = df['Weight (kg)'].apply( lambda x: float(x.get_text().split()[0]) if len(x.get_text()) > 0 else np.nan) df['Date'] = df['Date'].apply(lambda x: re.sub(r"[\n\t\s]*", "", x.get_text())) df['Date'] = df['Date'].apply( lambda x: datetime(1, 1, 1).date() if len(x) == 0 else datetime.strptime(x, '%m/%d/%Y').date()) return df # f = open("test2.txt", "a") # f.write('\nrecords: ' + str(datetime.now())) # f.close() df = get_records_df() df.to_csv(f'..{os.path.sep}data{os.path.sep}current_usapl_american_raw_records.csv', index=False) ``` #### File: Natural-Strength/website/app.py ```python from flask import Flask, render_template from datetime import datetime app = Flask(__name__) @app.route('/') def hello(): return 'Hello, world!' @app.route('/user/<usr>') def user_home(usr): return f'Welcome to your home, {usr}!' @app.route('/input') def user_input(): pass @app.route('/practice') def practice(): return str(datetime.now()) # return render_template('practice.html', time=time) if __name__ == '__main__': app.run() ```
{ "source": "jjz17/Sport-Ball-Image-Classifier", "score": 3 }
#### File: Sport-Ball-Image-Classifier/src/download_images.py ```python import os import random import time import urllib.request as urllib import pandas as pd def url_to_jpg(index, url, file_path): file_name = f'image{index}.jpg' full_path = f'{file_path}{file_name}' urllib.urlretrieve(url, full_path) # print(f'{file_name} saved successfully') #%% import os # main_dir = ["FolderA", "FolderB"] # common_dir = ["SubFolder1", "SubFolder2", "SubFolder3"] # Creating Directories main_dir = 'sport_ball_images' sub_dirs = ['basketball', 'soccer'] # for sub_dir in sub_dirs: try: os.makedirs(f'data{os.path.sep}{os.path.join(dir, sub_dir)}') except OSError: pass # for dir in main_dir: # for sub_dir in common_dir: # try: # os.makedirs(f'data{os.path.sep}{os.path.join(dir, sub_dir)}') # except OSError: # print('Failed') #%% df = pd.read_csv(f'..{os.path.sep}data{os.path.sep}image_urls.csv') # print(df.head()) for i in df.index: row = df.loc[i] label = row['Type'] url = row['Image_URL'] print(url) file_path = '' if label == 'Basketball': file_path = f'data{os.path.sep}sport_ball_images{os.path.sep}basketball{os.path.sep}' else: file_path = f'data{os.path.sep}sport_ball_images{os.path.sep}soccer{os.path.sep}' try: url_to_jpg(i + 1, url, file_path) print(f'Saving image {i + 1}') time.sleep(random.randint(2, 5)) except: pass # print(f'{label} {url}') #%% # url_to_jpg(500, 'http://www.pennracquet.com/images/balls_professional.png', f'data{os.path.sep}sport_ball_images{os.path.sep}soccer{os.path.sep}') ```
{ "source": "jjz369/Mask_RCNN", "score": 2 }
#### File: Twitter_button/models/button.py ```python import os import sys import json import random import numpy as np import skimage.draw import cv2 import matplotlib import matplotlib.pyplot as plt ROOT_DIR = os.path.abspath("../") sys.path.append(ROOT_DIR) CURR_DIR = os.path.abspath("./") from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log # Path to pre-trained weights MODEL_DIR = os.path.join(CURR_DIR, "button_logs") COCO_MODEL_PATH = os.path.join(CURR_DIR, "mask_rcnn_coco.h5") if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) ############################################################ # Configuration ############################################################ class ButtonConfig(Config): """Configuration for training on the Twitter following page screenshot figures. Derives from the base Config class and overrides values specific to the twitter following button dataset. """ # Give the configuration a recognizable name NAME = "button" # Train on 2 images per GPU. We can put multiple images on each # GPU because the images are small. IMAGES_PER_GPU = 2 # Number of classes (including background) NUM_CLASSES = 2 # background + 1 button class # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # Use a smaller anchor because some of images and objects are small RPN_ANCHOR_SCALES = (16, 32, 64, 128, 256) # use small validation steps since the epoch is small VALIDATION_STEPS = 5 ############################################################ # Datasets ############################################################ class ButtonDataset(utils.Dataset): """ load pre-treated twitter button images and masks from annotations """ def load_button(self, dataset_dir, subset): """ Load a subset of the twitter following button image datasets. Parameters ---------- dataset_dir : Root directory of the dataset subset : subsets to load: train or val """ # Add classes. We have only one class to add. self.add_class("button", 1, "button") # Train or validation datasets? assert subset in ["train", "val"] dataset_dir = os.path.join(dataset_dir, subset) # Add images annotations = json.load(open(os.path.join(dataset_dir, "via_export_json.json"))) annotations = list(annotations.values()) annotations = [a for a in annotations if a['regions']] # Get the x, y coordinaets of points of the rectangles that make up # the outline of each object instance. These are stores in the # shape_attributes (see json format above) # The if condition is needed to support VIA versions 1.x and 2.x. for a in annotations: if type(a['regions']) is dict: rectangles = [r['shape_attributes'] for r in a['regions'].values()] else: rectangles = [r['shape_attributes'] for r in a['regions']] # load_mask() needs the image size to convert rectangles to masks. # Unfortunately, VIA doesn't include it in JSON, so we must read # the image. This is only managable since the dataset is tiny. image_path = os.path.join(dataset_dir, a['filename']) image = skimage.io.imread(image_path) height, width = image.shape[:2] self.add_image( "button", image_id=a['filename'], # use file name as a unique image id path=image_path, width=width, height=height, rectangles=rectangles) def load_mask(self, image_id): """ Generate instance masks for an image. This function is modified because instead of using polygons, I used a rectangle for the annotations. Parameters ---------- image_id : the loaded internel image_id Returns ------- masks: A bool array of shape [height, width, instance count] with one mask per instance. class_ids: a 1D array of class IDs of the instance masks. """ # If not a button dataset image, delegate to parent class. image_info = self.image_info[image_id] if image_info["source"] != "button": return super(self.__class__, self).load_mask(image_id) # Convert rectangles to a bitmap mask of shape # [height, width, instance_count] info = self.image_info[image_id] mask = np.zeros([info["height"], info["width"], len(info["rectangles"])], dtype=np.uint8) for i, p in enumerate(info["rectangles"]): start = (p['y'], p['x']) extent = (p['y']+p['height'], p['x']+p['width']) # Get indexes of pixels inside the rectangle and set them to 1 rr, cc = skimage.draw.rectangle(start, extent) mask[rr, cc, i] = 1 # Return mask, and array of class IDs of each instance. Since we have # one class ID only, we return an array of 1s return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32) def image_reference(self, image_id): """Return the path of the image.""" info = self.image_info[image_id] if info["source"] == "button": return info["path"] else: super(self.__class__, self).image_reference(image_id) def train(model): """Train the model.""" # Training dataset. dataset_train = ButtonDataset() dataset_train.load_button(args.dataset, "train") dataset_train.prepare() # Validation dataset dataset_val = ButtonDataset() dataset_val.load_button(args.dataset, "val") dataset_val.prepare() # *** This training schedule is an example. Update to your needs *** # Since we're using a very small dataset, and starting from # COCO trained weights, we don't need to train too long. Also, # no need to train all layers, just the heads should do it. print("Training network heads") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE, epochs=1, layers='heads') print("Training network all") model.train(dataset_train, dataset_val, learning_rate=config.LEARNING_RATE / 10, epochs=2, layers="all") def detect(model, image_path = None): assert image_path, "Argument --image_path is required for detection" # Read image image = skimage.io.imread(args.image) # Detect objects r = model.detect([image], verbose=1)[0] print("The bounding boxes are: " r[rois]) visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'], class_names, r['scores']) if __name__ == '__main__': import argparse # Parse command line arguments parser = argparse.ArgumentParser( description='Train Mask R-CNN to detect following buttons.') parser.add_argument("command", metavar="<command>", help="'train' or 'detect'") parser.add_argument('--dataset', required=False, metavar="/path/to/button/dataset/", help='Directory of the Button dataset') parser.add_argument('--weights', required=True, metavar="/path/to/weights.h5", help="Path to weights .h5 file ") parser.add_argument('--logs', required=False, default=DEFAULT_LOGS_DIR, metavar="/path/to/logs/", help='Logs and checkpoints directory (default=logs/)') parser.add_argument('--image', required=False, metavar="path or URL to image", help='Image to apply detect') parser.add_argument('--video', required=False, metavar="path or URL to video", help='Video to apply the color splash effect on') args = parser.parse_args() # Validate arguments if args.command == "train": assert args.dataset, "Argument --dataset is required for training" elif args.command == "detect": assert args.image, "Provide --image to detect" print("Weights: ", args.weights) print("Dataset: ", args.dataset) print("Logs: ", args.logs) # Configurations if args.command == "train": config = ButtonConfig() else: class InferenceConfig(ButtonConfig): # Set batch size to 1 since we'll be running inference on # one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU GPU_COUNT = 1 IMAGES_PER_GPU = 1 config = InferenceConfig() config.display() # Create model if args.command == "train": model = modellib.MaskRCNN(mode="training", config=config, model_dir=args.logs) else: model = modellib.MaskRCNN(mode="inference", config=config, model_dir=args.logs) # Select weights file to load if args.weights.lower() == "coco": weights_path = COCO_WEIGHTS_PATH # Download weights file if not os.path.exists(weights_path): utils.download_trained_weights(weights_path) elif args.weights.lower() == "last": # Find last trained weights weights_path = model.find_last() elif args.weights.lower() == "imagenet": # Start from ImageNet trained weights weights_path = model.get_imagenet_weights() else: weights_path = args.weights # Load weights print("Loading weights ", weights_path) if args.weights.lower() == "coco": # Exclude the last layers because they require a matching # number of classes model.load_weights(weights_path, by_name=True, exclude=[ "mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) else: model.load_weights(weights_path, by_name=True) # Train or evaluate if args.command == "train": train(model) elif args.command == "detect": detect(model) else: print("'{}' is not recognized. " "Use 'train' or 'detect'".format(args.command)) ```
{ "source": "jjz369/Steam-Game-Recommender", "score": 3 }
#### File: jjz369/Steam-Game-Recommender/run_web_app.py ```python from flask import Flask, render_template import random import yaml from sqlalchemy import create_engine app = Flask(__name__) #path_steam_user_id = './data/steam_user_id.txt' config = yaml.safe_load(open('./src/config.yaml')) db_username = config['mysql']['username'] db_password = config['mysql']['password'] db_endpoint = config['mysql']['endpoint'] db_database = config['mysql']['database'] engine = create_engine('mysql+pymysql://{}:{}@{}/{}?charset=utf8mb4'.format(db_username, db_password, db_endpoint, db_database)) lst_user_id = [i[0] for i in engine.execute('select user_id from game_steam_user').fetchall()] lst_popular_games = engine.execute(''' SELECT game_steam_app.app_id, game_steam_app.name, game_steam_app.initial_price, game_steam_app.header_image FROM game_steam_app JOIN recommended_games_popularity_based ON game_steam_app.app_id = recommended_games_popularity_based.app_id AND game_steam_app.type = "game" AND game_steam_app.release_date <= CURDATE() AND game_steam_app.initial_price IS NOT NULL ORDER BY recommended_games_popularity_based.peak_today DESC LIMIT 5''').fetchall() @app.route('/') def recommender(): user_id = random.choice(lst_user_id) # user_id = 76561197960323774 # no purchase info lst_most_played_games = engine.execute(''' SELECT game_steam_app.app_id, game_steam_app.name, game_steam_app.initial_price, game_steam_app.header_image FROM game_steam_app JOIN game_steam_user ON game_steam_app.app_id = game_steam_user.app_id WHERE game_steam_user.user_id = {} AND game_steam_user.playtime_forever > 0 AND game_steam_app.type = "game" AND game_steam_app.release_date <= CURDATE() AND game_steam_app.initial_price IS NOT NULL ORDER BY game_steam_user.playtime_forever DESC LIMIT 3'''.format(user_id)).fetchall() if lst_most_played_games: favorite_app_id = lst_most_played_games[0][0] # get content based recommendation lst_content_recommended = engine.execute(''' SELECT app_id, name, initial_price, header_image FROM game_steam_app WHERE type = "game" AND release_date <= CURDATE() AND initial_price IS NOT NULL AND app_id IN ({})'''.format(','.join( [str(i) for i in engine.execute('SELECT `0`,`1`,`2` FROM recommended_games_content_based WHERE app_id = {}'.format(favorite_app_id)).first()] ) ) ).fetchall() # get item based recommendation lst_item_recommended = engine.execute(''' SELECT app_id, name, initial_price, header_image FROM game_steam_app WHERE type = "game" AND release_date <= CURDATE() AND initial_price IS NOT NULL AND app_id IN ({})'''.format(','.join( [str(i) for i in engine.execute('SELECT `0`,`1`,`2` FROM recommended_games_item_based WHERE app_id = {}'.format(favorite_app_id)).first()] ) ) ).fetchall() # get ALS based recommendation lst_als_recommended = engine.execute(''' SELECT app_id, name, initial_price, header_image FROM game_steam_app WHERE type = "game" AND release_date <= CURDATE() AND initial_price IS NOT NULL AND app_id IN ({})'''.format(','.join( [str(i) for i in engine.execute('SELECT `0`,`1`,`2` FROM recommended_games_als_based WHERE user_id = {}'.format(user_id)).first()] ) ) ).fetchall() else: lst_content_recommended = [] lst_item_recommended = [] lst_als_recommended = [] return render_template('recommendation.html', user_id = user_id, lst_most_played_games = lst_most_played_games, lst_content_recommended = lst_content_recommended, lst_item_recommended = lst_item_recommended, lst_als_recommended = lst_als_recommended, lst_popular_games = lst_popular_games) if __name__ == '__main__': app.run(debug=True) ``` #### File: Steam-Game-Recommender/src/game_details.py ```python import requests import time import json import yaml import pandas as pd from datetime import datetime from sqlalchemy import create_engine from sqlalchemy.types import Integer def get_app_details(): # The Steam API limits 200 data in 5 miniutes time. So after every 200 data, sleep for 5 minitues. Ns = 38400 current_count = Ns url = 'http://api.steampowered.com/ISteamApps/GetAppList/v2' r = requests.get(url) dic_steam_app = r.json() lst_app_id = [i.get('appid') for i in dic_steam_app.get('applist').get('apps')] with open('../data/steam_app_details_2.txt', 'w') as f: for app_id in sorted(lst_app_id)[Ns:]: for i in range(3): try: r = requests.get( url = 'http://store.steampowered.com/api/appdetails/', params = { 'appids' : app_id } ) dic_app_data = r.json() break except Exception as e: print(app_id, e) time.sleep(.5) f.write(json.dumps(dic_app_data)) f.write('\n') if current_count > Ns and current_count % 200 == 0: print("The number of games: {}, current id: {}".format(len(lst_app_id), current_count)) time.sleep(300) current_count += 1 def save_app_details(): dic_app_details = {} config = yaml.safe_load(open('config.yaml')) db_username = config['mysql']['username'] db_password = config['mysql']['password'] db_endpoint = config['mysql']['endpoint'] db_database = config['mysql']['database'] engine = create_engine('mysql+pymysql://{}:{}@{}/{}?charset=utf8mb4'.format(db_username, db_password, db_endpoint, db_database)) with open('../data/steam_app_details.txt', 'r') as f: for i in f.readlines(): try: for app_id, dic_response in json.loads(i).items(): if dic_response.get('success'): dic_app_details[app_id] = parse_steam_app_details(dic_response.get('data',{})) except: pass df_steam_app = pd.DataFrame.from_dict(dic_app_details, 'index') df_steam_app.index.name = 'app_id' df_steam_app.reset_index(inplace=True) df_steam_app.to_sql('game_steam_app', engine, if_exists='replace', index=False, chunksize = 10000, dtype={'app_id':Integer(), 'required_age':Integer()}) def parse_steam_app_details(app_data): developers = ', '.join(app_data.get('developers', [])) if not developers: developers = None publishers = ', '.join(app_data.get('publishers', [])) if not publishers: publishers = None name = app_data.get('name') required_age = app_data.get('required_age') short_description = app_data.get('short_description') if not short_description: short_description = None app_type = app_data.get('type') header_image = app_data.get('header_image') fullgame = app_data.get('fullgame',{}).get('appid') lst_categories = app_data.get('categories',[]) if lst_categories: categories = ', '.join([i.get('description') for i in lst_categories]) else: categories = None lst_genres = app_data.get('genres',[]) if lst_genres: genres = ', '.join([i.get('description') for i in lst_genres]) else: genres = None supported_languages = app_data.get('supported_languages') if supported_languages: supported_languages = supported_languages.replace('<strong>*</strong>', '').replace('<br>languages with full audio support','') if app_data.get('is_free') == True: initial_price = 0 currency = 'USD' else: if app_data.get('price_overview',{}): initial_price = app_data.get('price_overview',{}).get('initial', 0) / 100 currency = app_data.get('price_overview',{}).get('currency') else: initial_price = None currency = None if app_data.get('release_date',{}).get('coming_soon') == False: release_date = app_data.get('release_date',{}).get('date') if release_date: try: release_date = datetime.strptime(release_date, '%b %d, %Y').date() except Exception as e: try: release_date = datetime.strptime(release_date, '%d %b, %Y').date() except: try: release_date = datetime.strptime(release_date, '%b %Y').date() except: release_date = None else: release_date = None else: release_date = None dic_steam_app = { 'name' : name, 'type' : app_type, 'release_date' : release_date, 'currency' : currency, 'initial_price' : initial_price, 'short_description' : short_description, 'header_image' : header_image, 'fullgame' : fullgame, 'developers' : developers, 'publishers' : publishers, 'required_age' : required_age, 'supported_languages' : supported_languages, 'categories' : categories, 'genres' : genres, } return dic_steam_app ``` #### File: Steam-Game-Recommender/src/recommendation.py ```python import requests, re, os import pandas as pd import numpy as np import yaml from bs4 import BeautifulSoup from sqlalchemy import create_engine from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import linear_kernel from pyspark.ml.recommendation import ALS from pyspark import SparkContext from pyspark.sql import SparkSession ##################################### ##### Model 1: Popularity Based ##### ##################################### def recommendation_popularity_based(engine): url = 'https://store.steampowered.com/stats' r = requests.get(url) soup = BeautifulSoup(r.text, 'lxml') dic_current_player = {} for i in soup.find('div', {'id':'detailStats'}).find_all('tr', {'class':'player_count_row'}): lst_data = i.find_all('td') current_player = int(lst_data[0].span.string.replace(',','')) peak_today = int(lst_data[1].span.string.replace(',','')) app_id = re.findall(r'(\d+)', lst_data[-1].a.get('href'))[0] dic_current_player[app_id] = {'current_player' : current_player, 'peak_today' : peak_today} df_popularity_based_result = pd.DataFrame.from_dict(dic_current_player, 'index') df_popularity_based_result.index.name = 'app_id' df_popularity_based_result.reset_index(inplace=True) df_popularity_based_result.to_sql('recommended_games_popularity_based', engine, if_exists='replace', index = False) ##################################### ##### Model 2: Content Based ##### ##################################### def recommendation_content_based(engine): df_game_description = pd.read_sql_query( ''' SELECT app_id, short_description FROM game_steam_app WHERE short_description IS NOT NULL AND type = "game" AND name IS NOT NULL AND release_date <= CURDATE() AND initial_price IS NOT NULL ''', engine) tfidf = TfidfVectorizer(strip_accents='unicode',stop_words='english').fit_transform(df_game_description['short_description'].tolist()) lst_app_id = df_game_description['app_id'].tolist() dic_recomended = {} for row_index in range(tfidf.shape[0]): cosine_similarities = linear_kernel(tfidf[row_index:row_index+1], tfidf).flatten() top_related_rows = cosine_similarities.argsort()[-2:-22:-1] dic_recomended.update({lst_app_id[row_index]:[lst_app_id[i] for i in top_related_rows]}) df_content_based_results = pd.DataFrame.from_dict(dic_recomended, 'index') df_content_based_results.index.name = 'app_id' df_content_based_results.reset_index(inplace=True) df_content_based_results.to_sql('recommended_games_content_based',engine,if_exists='replace', index = False) # Model 3: item based def recommendation_item_based(engine): df_purchase = pd.read_sql_query( ''' SELECT app_id, user_id FROM game_steam_user WHERE playtime_forever > 15 ''', engine).pivot_table(values = 'user_id', index = ['app_id'], columns = ['user_id'], aggfunc = len, fill_value = 0) purchase_matrix = df_purchase.values lst_app_id = df_purchase.index dic_recomended_item_based = {} for index in range(purchase_matrix.shape[0]): cosine_similarities = linear_kernel(purchase_matrix[index:index+1], purchase_matrix).flatten() lst_related_app = np.argsort(-cosine_similarities)[1:101] dic_recomended_item_based.update({lst_app_id[index]:[lst_app_id[i] for i in lst_related_app]}) df_item_based_result = pd.DataFrame.from_dict(dic_recomended_item_based, 'index') df_item_based_result.index.name = 'app_id' df_item_based_result.reset_index(inplace=True) df_item_based_result.to_sql('recommended_games_item_based', engine, if_exists='replace', chunksize = 1000, index = False) # Model 4: Collaborative Filtering def recommendation_als_based(engine): config = yaml.safe_load(open('{}/config.yaml'.format(os.path.dirname(os.path.realpath(__file__))))) db_username = config['mysql']['username'] db_password = config['mysql']['password'] db_endpoint = config['mysql']['endpoint'] db_database = config['mysql']['database'] sc=SparkContext() spark = SparkSession(sc) # If haveing problem wit drivers: move your MySQL JDBC driver to the jars folder of pyspark # Ref: https://stackoverflow.com/questions/49011012/cant-connect-to-mysql-database-from-pyspark-getting-jdbc-error spark.read.format("jdbc").option("url", "jdbc:mysql://{}/{}".format(db_endpoint, db_database))\ .option("user", db_username).option("password", db_password)\ .option("dbtable", "game_steam_user")\ .option("driver", "com.mysql.cj.jdbc.Driver")\ .load().createOrReplaceTempView('user_inventory') spark.read.format("jdbc").option("url", "jdbc:mysql://{}/{}".format(db_endpoint, db_database))\ .option("user", db_username).option("password", db_password)\ .option("dbtable", "game_steam_app")\ .option("driver", "com.mysql.cj.jdbc.Driver")\ .load().createOrReplaceTempView('game_steam_app') df_user_playtime = spark.sql(''' SELECT DENSE_RANK() OVER (ORDER BY user_id) AS user, user_id, app_id AS item, LOG(playtime_forever) AS rating FROM user_inventory WHERE playtime_forever >= 5 ''') df_valid_games = spark.sql(''' SELECT app_id FROM game_steam_app WHERE short_description IS NOT NULL AND name IS NOT NULL AND type = "game" AND initial_price IS NOT NULL ''') df_user_inventory = df_user_playtime.join(df_valid_games, df_user_playtime['item'] == df_valid_games['app_id'], 'inner').select('user','user_id','item','rating') dic_real_user_id = df_user_inventory.select('user','user_id').toPandas().set_index('user')['user_id'].to_dict() als = ALS(rank = 10) model = als.fit(df_user_inventory) recommended_games = model.recommendForAllUsers(10) dic_recomended_als_based = {} for user, lst_recommended_games in recommended_games.select('user', 'recommendations.item').toPandas().set_index('user')['item'].to_dict().items(): user_id = dic_real_user_id.get(user) dic_recomended_als_based[user_id] = {} for i, app_id in enumerate(lst_recommended_games): dic_recomended_als_based[user_id].update({i:app_id}) df_als_based_result = pd.DataFrame.from_dict(dic_recomended_als_based, 'index') df_als_based_result.index.name = 'user_id' df_als_based_result.reset_index(inplace=True) df_als_based_result.to_sql('recommended_games_als_based', engine, if_exists='replace', chunksize = 1000, index = False) def build_recommendation(): config = yaml.safe_load(open('config.yaml')) db_username = config['mysql']['username'] db_password = config['mysql']['password'] db_endpoint = config['mysql']['endpoint'] db_database = config['mysql']['database'] engine = create_engine('mysql+pymysql://{}:{}@{}/{}?charset=utf8mb4'.format(db_username, db_password, db_endpoint, db_database)) recommendation_popularity_based(engine) recommendation_content_based(engine) recommendation_item_based(engine) recommendation_als_based(engine) ```
{ "source": "JJ/zap-api-python", "score": 2 }
#### File: src/zapv2/__init__.py ```python __docformat__ = 'restructuredtext' __version__ = '0.0.17' import requests from requests.packages.urllib3.exceptions import InsecureRequestWarning from .accessControl import accessControl from .acsrf import acsrf from .alert import alert from .alertFilter import alertFilter from .ascan import ascan from .ajaxSpider import ajaxSpider from .authentication import authentication from .authorization import authorization from .autoupdate import autoupdate from .brk import brk from .context import context from .core import core from .exportreport import exportreport from .forcedUser import forcedUser from .httpSessions import httpSessions from .importLogFiles import importLogFiles from .importurls import importurls from .localProxies import localProxies from .openapi import openapi from .params import params from .pnh import pnh from .pscan import pscan from .replacer import replacer from .reveal import reveal from .revisit import revisit from .ruleConfig import ruleConfig from .script import script from .search import search from .selenium import selenium from .sessionManagement import sessionManagement from .soap import soap from .spider import spider from .stats import stats from .users import users from .wappalyzer import wappalyzer from .websocket import websocket class ZAPv2(object): """ Client API implementation for integrating with ZAP v2. """ base = 'http://zap/JSON/' base_other = 'http://zap/OTHER/' def __init__(self, proxies=None, apikey=None, validate_status_code=False): """ Creates an instance of the ZAP api client. :Parameters: - `proxies`: dictionary of ZAP proxies to use. Note that all of the other classes in this directory are generated new ones will need to be manually added to this file """ self.__proxies = proxies or { 'http': 'http://127.0.0.1:8080', 'https': 'http://127.0.0.1:8080' } self.__apikey = apikey self.__validate_status_code=validate_status_code self.accessControl = accessControl(self) self.acsrf = acsrf(self) self.alert = alert(self) self.alertFilter = alertFilter(self) self.ajaxSpider = ajaxSpider(self) self.ascan = ascan(self) self.authentication = authentication(self) self.authorization = authorization(self) self.autoupdate = autoupdate(self) self.brk = brk(self) self.context = context(self) self.core = core(self) self.exportreport = exportreport(self) self.forcedUser = forcedUser(self) self.httpsessions = httpSessions(self) self.importLogFiles = importLogFiles(self) self.importurls = importurls(self) self.localProxies = localProxies(self) self.openapi = openapi(self) self.params = params(self) self.pnh = pnh(self) self.pscan = pscan(self) self.replacer = replacer(self) self.reveal = reveal(self) self.revisit = revisit(self) self.ruleConfig = ruleConfig(self) self.script = script(self) self.search = search(self) self.selenium = selenium(self) self.sessionManagement = sessionManagement(self) self.soap = soap(self) self.spider = spider(self) self.stats = stats(self) self.users = users(self) self.wappalyzer = wappalyzer(self) self.websocket = websocket(self) # not very nice, but prevents warnings when accessing the ZAP API via https requests.packages.urllib3.disable_warnings(InsecureRequestWarning) # Currently create a new session for each request to prevent request failing # e.g. when polling the spider status #self.session = requests.Session() #if apikey is not None: # self.session.headers['X-ZAP-API-Key'] = apikey def urlopen(self, url, *args, **kwargs): """ Opens a url forcing the proxies to be used. :Parameters: - `args`: all non-keyword arguments. - `kwargs`: all other keyword arguments. """ # Must never leak the API key via proxied requests return requests.get(url, proxies=self.__proxies, verify=False, *args, **kwargs).text def _request_api(self, url, query=None): """ Shortcut for an API request. Will always add the apikey (if defined) :Parameters: - `url`: the url to GET at. """ if not url.startswith('http://zap/'): # Only allow requests to the API so that we never leak the apikey raise ValueError('A non ZAP API url was specified ' + url) # In theory we should be able to reuse the session, # but there have been problems with that self.session = requests.Session() if self.__apikey is not None: self.session.headers['X-ZAP-API-Key'] = self.__apikey query = query or {} if self.__apikey is not None: # Add the apikey to get params for backwards compatibility if not query.get('apikey'): query['apikey'] = self.__apikey response = self.session.get(url, params=query, proxies=self.__proxies, verify=False) if (self.__validate_status_code and response.status_code >= 300 and response.status_code < 500): raise Exception("Non-successfull status code returned from ZAP, which indicates a bad request: " + str(response.status_code) + "response: " + response.text ) elif (self.__validate_status_code and response.status_code >= 500): raise Exception("Non-successfull status code returned from ZAP, which indicates a ZAP internal error: " + str(response.status_code) + "response: " + response.text ) return response def _request(self, url, get=None): """ Shortcut for a GET request. :Parameters: - `url`: the url to GET at. - `get`: the dictionary to turn into GET variables. """ data = self._request_api(url, get) return data.json() def _request_other(self, url, get=None): """ Shortcut for an API OTHER GET request. :Parameters: - `url`: the url to GET at. - `get`: the dictionary to turn into GET variables. """ data = self._request_api(url, get) return data.text ```
{ "source": "jjzhang166/chemfiles_cfiles", "score": 3 }
#### File: chemfiles_cfiles/tests/density.py ```python from testrun import cfiles import os TRAJECTORY = os.path.join(os.path.dirname(__file__), "data", "nt.xyz") OUTPUT = "tmp.dat" def read_data(path): data = [] with open(path) as fd: for line in fd: if line.startswith("#"): continue dist, value = map(float, line.split()) data.append((dist, value)) return data def check_density(data): for (radius, value) in data: # Check the inside of the nanotube is empty if (radius < 5.0): assert(value == 0) # Check density is zero between Oint and Si if (radius > 7.1 and radius < 7.7): assert(value == 0) def check_max(data): # Check the maximal value max_value = max(data, key=lambda u: u[1]) assert(max_value[0] > 9.5) assert(max_value[0] < 9.9) def density(selection): out, err = cfiles( "density", "-c", "24:24:25.458:90:90:120", "--max=20", "--points=200", "--radial=Z", "-s", selection, TRAJECTORY, "-o", OUTPUT ) assert(out == "") assert(err == "") data = read_data(OUTPUT) check_density(data) return data if __name__ == '__main__': tot = density("atoms: all") al = density("atoms: type Al") si = density("atoms: type Si") o = density("atoms: type O") h = density("atoms: type H") # Check tot is the sum of all the elements for radius in range(200): assert(tot[radius][1] - (al[radius][1] + si[radius][1] + o[radius][1] + h[radius][1]) < 0.1) os.unlink(OUTPUT) ```
{ "source": "jjzhang166/chemfiles", "score": 2 }
#### File: scripts/ci/check-public-headers.py ```python import os import sys import re ROOT = os.path.join(os.path.dirname(__file__), "..", "..") GENERATED_HEADERS = ["chemfiles/config.hpp", "chemfiles/exports.hpp"] ERRORS = 0 WHITELIST = [ # standard C99 headers "stdbool.h", "stdint.h", # standard C++11 headers "iterator", "functional", "cstdint", "array", "utility", "cassert", "string", "memory", "exception", "limits", "algorithm", "stdexcept", "vector", "cmath", "type_traits", "unordered_map", # chemfiles helper headers "chemfiles/span.hpp", "chemfiles/optional.hpp", "chemfiles/exports.hpp", "chemfiles/config.hpp", "chemfiles/sorted_set.hpp", "chemfiles/unreachable.hpp", # chemfiles main headers "chemfiles/generic.hpp", "chemfiles/types.hpp", "chemfiles/Atom.hpp", "chemfiles/Frame.hpp", "chemfiles/Error.hpp", "chemfiles/Residue.hpp", "chemfiles/Property.hpp", "chemfiles/Topology.hpp", "chemfiles/UnitCell.hpp", "chemfiles/Trajectory.hpp", "chemfiles/Selections.hpp", "chemfiles/Connectivity.hpp", # chemfiles capi headers "chemfiles/capi/atom.h", "chemfiles/capi/selection.h", "chemfiles/capi/trajectory.h", "chemfiles/capi/residue.h", "chemfiles/capi/property.h", "chemfiles/capi/cell.h", "chemfiles/capi/frame.h", "chemfiles/capi/types.h", "chemfiles/capi/topology.h", "chemfiles/capi/misc.h", ] def error(message): global ERRORS ERRORS += 1 print(message) def included_headers(path): includes = set() with open(path) as fd: for line in fd: if "#include" in line: matched = re.match("#include\s*[\"<](.*)[\">]", line) if not matched: error("bad include in {}: {}".format(path, line)) header = matched.groups()[0] includes.add(header) if header.startswith("chemfiles"): if header not in GENERATED_HEADERS: path = os.path.join(ROOT, "include", header) includes.update(included_headers(path)) return includes def check_allowded(headers): for header in headers: if header not in WHITELIST: error("private header {} is publicly reachable".format(header)) if __name__ == '__main__': headers = included_headers(os.path.join(ROOT, "include", "chemfiles.h")) check_allowded(headers) headers = included_headers(os.path.join(ROOT, "include", "chemfiles.hpp")) check_allowded(headers) if ERRORS != 0: sys.exit(1) ```
{ "source": "jjzhang166/dface", "score": 2 }
#### File: src/core/models.py ```python import torch import torch.nn as nn import torch.nn.functional as F def weights_init(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): nn.init.xavier_uniform(m.weight.data) nn.init.constant(m.bias, 0.1) class LossFn: def __init__(self, cls_factor=1, box_factor=1, landmark_factor=1): # loss function self.cls_factor = cls_factor self.box_factor = box_factor self.land_factor = landmark_factor self.loss_cls = nn.BCELoss() self.loss_box = nn.MSELoss() self.loss_landmark = nn.MSELoss() def cls_loss(self,gt_label,pred_label): pred_label = torch.squeeze(pred_label) gt_label = torch.squeeze(gt_label) # get the mask element which >= 0, only 0 and 1 can effect the detection loss mask = torch.ge(gt_label,0) valid_gt_label = torch.masked_select(gt_label,mask) valid_pred_label = torch.masked_select(pred_label,mask) return self.loss_cls(valid_pred_label,valid_gt_label)*self.cls_factor def box_loss(self,gt_label,gt_offset,pred_offset): pred_offset = torch.squeeze(pred_offset) gt_offset = torch.squeeze(gt_offset) gt_label = torch.squeeze(gt_label) #get the mask element which != 0 unmask = torch.eq(gt_label,0) mask = torch.eq(unmask,0) #convert mask to dim index chose_index = torch.nonzero(mask.data) chose_index = torch.squeeze(chose_index) #only valid element can effect the loss valid_gt_offset = gt_offset[chose_index,:] valid_pred_offset = pred_offset[chose_index,:] return self.loss_box(valid_pred_offset,valid_gt_offset)*self.box_factor def landmark_loss(self,gt_label,gt_landmark,pred_landmark): pred_landmark = torch.squeeze(pred_landmark) gt_landmark = torch.squeeze(gt_landmark) gt_label = torch.squeeze(gt_label) mask = torch.eq(gt_label,-2) chose_index = torch.nonzero(mask.data) chose_index = torch.squeeze(chose_index) valid_gt_landmark = gt_landmark[chose_index, :] valid_pred_landmark = pred_landmark[chose_index, :] return self.loss_landmark(valid_pred_landmark,valid_gt_landmark)*self.land_factor class PNet(nn.Module): ''' PNet ''' def __init__(self, is_train=False, use_cuda=True): super(PNet, self).__init__() self.is_train = is_train self.use_cuda = use_cuda # backend self.pre_layer = nn.Sequential( nn.Conv2d(3, 10, kernel_size=3, stride=1), # conv1 nn.PReLU(), # PReLU1 nn.MaxPool2d(kernel_size=2, stride=2), # pool1 nn.Conv2d(10, 16, kernel_size=3, stride=1), # conv2 nn.PReLU(), # PReLU2 nn.Conv2d(16, 32, kernel_size=3, stride=1), # conv3 nn.PReLU() # PReLU3 ) # detection self.conv4_1 = nn.Conv2d(32, 1, kernel_size=1, stride=1) # bounding box regresion self.conv4_2 = nn.Conv2d(32, 4, kernel_size=1, stride=1) # landmark localization self.conv4_3 = nn.Conv2d(32, 10, kernel_size=1, stride=1) # weight initiation with xavier self.apply(weights_init) def forward(self, x): x = self.pre_layer(x) label = F.sigmoid(self.conv4_1(x)) offset = self.conv4_2(x) # landmark = self.conv4_3(x) if self.is_train is True: # label_loss = LossUtil.label_loss(self.gt_label,torch.squeeze(label)) # bbox_loss = LossUtil.bbox_loss(self.gt_bbox,torch.squeeze(offset)) return label,offset #landmark = self.conv4_3(x) return label, offset class RNet(nn.Module): ''' RNet ''' def __init__(self,is_train=False, use_cuda=True): super(RNet, self).__init__() self.is_train = is_train self.use_cuda = use_cuda # backend self.pre_layer = nn.Sequential( nn.Conv2d(3, 28, kernel_size=3, stride=1), # conv1 nn.PReLU(), # prelu1 nn.MaxPool2d(kernel_size=3, stride=2), # pool1 nn.Conv2d(28, 48, kernel_size=3, stride=1), # conv2 nn.PReLU(), # prelu2 nn.MaxPool2d(kernel_size=3, stride=2), # pool2 nn.Conv2d(48, 64, kernel_size=2, stride=1), # conv3 nn.PReLU() # prelu3 ) self.conv4 = nn.Linear(64*2*2, 128) # conv4 self.prelu4 = nn.PReLU() # prelu4 # detection self.conv5_1 = nn.Linear(128, 1) # bounding box regression self.conv5_2 = nn.Linear(128, 4) # lanbmark localization self.conv5_3 = nn.Linear(128, 10) # weight initiation weih xavier self.apply(weights_init) def forward(self, x): # backend x = self.pre_layer(x) x = x.view(x.size(0), -1) x = self.conv4(x) x = self.prelu4(x) # detection det = torch.sigmoid(self.conv5_1(x)) box = self.conv5_2(x) # landmark = self.conv5_3(x) if self.is_train is True: return det, box #landmard = self.conv5_3(x) return det, box class ONet(nn.Module): ''' RNet ''' def __init__(self,is_train=False, use_cuda=True): super(ONet, self).__init__() self.is_train = is_train self.use_cuda = use_cuda # backend self.pre_layer = nn.Sequential( nn.Conv2d(3, 32, kernel_size=3, stride=1), # conv1 nn.PReLU(), # prelu1 nn.MaxPool2d(kernel_size=3, stride=2), # pool1 nn.Conv2d(32, 64, kernel_size=3, stride=1), # conv2 nn.PReLU(), # prelu2 nn.MaxPool2d(kernel_size=3, stride=2), # pool2 nn.Conv2d(64, 64, kernel_size=3, stride=1), # conv3 nn.PReLU(), # prelu3 nn.MaxPool2d(kernel_size=2,stride=2), # pool3 nn.Conv2d(64,128,kernel_size=2,stride=1), # conv4 nn.PReLU() # prelu4 ) self.conv5 = nn.Linear(128*2*2, 256) # conv5 self.prelu5 = nn.PReLU() # prelu5 # detection self.conv6_1 = nn.Linear(256, 1) # bounding box regression self.conv6_2 = nn.Linear(256, 4) # lanbmark localization self.conv6_3 = nn.Linear(256, 10) # weight initiation weih xavier self.apply(weights_init) def forward(self, x): # backend x = self.pre_layer(x) x = x.view(x.size(0), -1) x = self.conv5(x) x = self.prelu5(x) # detection det = torch.sigmoid(self.conv6_1(x)) box = self.conv6_2(x) landmark = self.conv6_3(x) if self.is_train is True: return det, box, landmark #landmard = self.conv5_3(x) return det, box, landmark ```
{ "source": "jjzhang166/FIT-Projects", "score": 3 }
#### File: IPP/2.CHA/cha.py ```python import sys import argparse #CHA:xmikus15 import Errors import os from HeaderParser import HeaderParser class ArgumentParser(argparse.ArgumentParser): def error(self, message): self.exit(Errors.BadParams, '%s: error: %s\n' % (self.prog, message)) class UniqueStore(argparse.Action): def __call__(self, parser, namespace, values, option_string): if getattr(namespace, self.dest, self.default) is not None: parser.exit(Errors.BadParams,option_string + " appears several times.\n") setattr(namespace, self.dest, values) argParser = ArgumentParser(add_help=False) argParser.add_argument('--help', action=UniqueStore, nargs=0) argParser.add_argument('--input', action=UniqueStore) argParser.add_argument('--output', action=UniqueStore) argParser.add_argument('--pretty-xml',action=UniqueStore, type=int, nargs='?', const = 4) argParser.add_argument('--no-inline',action=UniqueStore, nargs=0) argParser.add_argument('--max-par', action=UniqueStore, type=int) argParser.add_argument('--no-duplicates',action=UniqueStore, nargs=0) argParser.add_argument('--remove-whitespace',action=UniqueStore, nargs=0) args = vars(argParser.parse_args()) if args['help'] != None and len([x for x in args if args[x] != None]) > 1: sys.exit(Errors.BadParams) elif args['help'] != None: argParser.print_help() sys.exit(Errors.NoError) """ If no input was specified, traverse in current directory """ if args['input'] == None: args['input'] = './' if args['output'] != None: try: out=open(args['output'],'w',encoding='utf8') except IOError: sys.exit(Errors.OutFile) else: out = sys.stdout filesName = [] try: if os.path.isfile(args['input']): _dir = "" filesName.append(args['input']) elif os.path.isdir(os.path.expanduser(args['input'])): _dir = os.path.expanduser(args['input']) for root, dirs,files in os.walk(_dir): for name in files: if name.endswith(".h"): filesName.append(os.path.join(root,name)) else: print("File/dir not found",file=sys.stderr) sys.exit(Errors.FileNotFound) out.write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>"+"\n"*(args['pretty_xml'] != None)) out.write("<functions dir=\"%s\">" % _dir + "\n"*(args['pretty_xml'] != None)) for _file in filesName: header = HeaderParser(_file,args) header.Parse() header.ParseFunctions() _file = _file[len(_dir):] for function in header.functions: if args['pretty_xml']: out.write(" "*args['pretty_xml']) out.write("<function file=\"%s\" name=\"%s\" varargs=\"%s\" rettype=\"%s\">" % (_file,function.name.strip(),function.vargs,function.returnType.strip()) + "\n"*(args['pretty_xml'] != None)) i = 1 for param in function.parameters: if args['pretty_xml']: out.write(" "*args['pretty_xml']) out.write("<param number=\"%d\" type=\"%s\" />" % (i,param.strip()) + "\n"*(args['pretty_xml'] != None)) i += 1 if args['pretty_xml']: out.write(" "*args['pretty_xml']) out.write("</function>" + "\n"*(args['pretty_xml'] != None)) out.write("</functions>\n") except (OSError) as e: print(str(e),file=sys.stderr) sys.exit(Errors.FileNotFound) ```
{ "source": "jjzhang166/libtorrent", "score": 2 }
#### File: bindings/python/test.py ```python import libtorrent as lt import unittest import time import os import shutil import binascii # test torrent_info class test_torrent_info(unittest.TestCase): def test_bencoded_constructor(self): info = lt.torrent_info({ 'info': {'name': 'test_torrent', 'length': 1234, 'piece length': 16 * 1024, 'pieces': 'aaaaaaaaaaaaaaaaaaaa'}}) self.assertEqual(info.num_files(), 1) f = info.files() self.assertEqual(f.file_path(0), 'test_torrent') self.assertEqual(f.file_size(0), 1234) self.assertEqual(info.total_size(), 1234) class test_alerts(unittest.TestCase): def test_alert(self): ses = lt.session({'alert_mask': lt.alert.category_t.all_categories}) shutil.copy(os.path.join('..', '..', 'test', 'test_torrents', 'base.torrent'), '.') ti = lt.torrent_info('base.torrent'); h = ses.add_torrent({'ti': ti, 'save_path': os.getcwd()}) st = h.status() time.sleep(1) ses.remove_torrent(h) ses.wait_for_alert(1000) # milliseconds alerts = ses.pop_alerts() for a in alerts: print(a.message()) print(st.next_announce) self.assertEqual(st.name, 'temp') print(st.errc.message()) print(st.pieces) print(st.last_seen_complete) print(st.completed_time) print(st.progress) print(st.num_pieces) print(st.distributed_copies) print(st.paused) print(st.info_hash) self.assertEqual(st.save_path, os.getcwd()) class test_bencoder(unittest.TestCase): def test_bencode(self): encoded = lt.bencode({'a': 1, 'b': [1,2,3], 'c': 'foo'}) self.assertEqual(encoded, b'd1:ai1e1:bli1ei2ei3ee1:c3:fooe') def test_bdecode(self): encoded = b'd1:ai1e1:bli1ei2ei3ee1:c3:fooe' decoded = lt.bdecode(encoded) self.assertEqual(decoded, {b'a': 1, b'b': [1,2,3], b'c': b'foo'}) class test_sha1hash(unittest.TestCase): def test_sha1hash(self): h = 'a0'*20 s = lt.sha1_hash(binascii.unhexlify(h)) self.assertEqual(h, str(s)) class test_session(unittest.TestCase): def test_post_session_stats(self): s = lt.session({'alert_mask': lt.alert.category_t.stats_notification}) s.post_session_stats() a = s.wait_for_alert(1000) self.assertTrue(isinstance(a, lt.session_stats_alert)) self.assertTrue(isinstance(a.values, dict)) self.assertTrue(len(a.values) > 0) if __name__ == '__main__': print(lt.__version__) unittest.main() ```
{ "source": "jjzhang166/minerva", "score": 2 }
#### File: apps/lstm/lstm-lm-example.py ```python from collections import defaultdict import sys import math import time import numpy as np from scipy import linalg from scipy.special import expit # Vectorized sigmoid function import owl from owl.conv import * import owl.elewise as ele class LSTMModel: def initw(n, d): magic_number = 0.3 npa = (np.random.rand(n, d) * 2 - 1) * magic_number # U[-0.1, 0.1] return owl.from_numpy(npa).trans() def __init__(self, vocab_size, input_size, hidden_size): output_size = vocab_size self.Layers = [input_size, hidden_size, output_size] print 'Model size:', self.Layers # Recurrent weights: take x_t, h_{t-1}, and bias unit # and produce the 3 gates and the input to cell signal # self.WIFOG = owl.randn([self.Layers[0] + self.Layers[1], self.Layers[1] * 4], 0.0, 0.1) # self.BIFOG = owl.zeros([self.Layers[1] * 4, 1]) self.ig_weight_data = owl.randn([self.Layers[1], self.Layers[0]], 0.0, 0.1) self.fg_weight_data = owl.randn([self.Layers[1], self.Layers[0]], 0.0, 0.1) self.og_weight_data = owl.randn([self.Layers[1], self.Layers[0]], 0.0, 0.1) self.ff_weight_data = owl.randn([self.Layers[1], self.Layers[0]], 0.0, 0.1) self.ig_weight_prev = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.fg_weight_prev = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.og_weight_prev = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.ff_weight_prev = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.ig_weight_cell = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.fg_weight_cell = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.og_weight_cell = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.ff_weight_cell = owl.randn([self.Layers[1], self.Layers[1]], 0.0, 0.1) self.ig_weight_bias = owl.zeros([self.Layers[1], 1]) self.fg_weight_bias = owl.zeros([self.Layers[1], 1]) self.og_weight_bias = owl.zeros([self.Layers[1], 1]) self.ff_weight_bias = owl.zeros([self.Layers[1], 1]) # Decoder weights (e.g. mapping to vocabulary) self.decoder_weights = owl.randn([self.Layers[2], self.Layers[1]], 0.0, 0.1) # decoder self.decoder_bias = owl.zeros([output_size, 1]) self.emb_weight = [None] * vocab_size for i in range(vocab_size): self.emb_weight[i] = owl.randn([input_size, 1], 0.0, 0.1) def LSTM_init(): # First read in the input wids = defaultdict(lambda: len(wids)) wids['<bos>'] = 0 # begin of sentence wids['<eos>'] = 1 # end of sentence train_sents = [] test_sents = [] train_words = 0 test_words = 0 fin_train = open("./train") for line in fin_train: wordlist = ("<bos> %s <eos>" % line.strip()).split(' ') wordlist_id = [wids[w] for w in wordlist] train_words += len(wordlist) - 2 train_sents.append(wordlist_id) fin_test = open("./test") for line in fin_test: wordlist = ("<bos> %s <eos>" % line.strip()).split(' ') wordlist_id = [] for w in wordlist: if wids.has_key(w): wordlist_id.append(wids[w]) test_words += 1 test_sents.append(wordlist_id) # Define input-dependent variables N = 100 # hidden units D = N # embedding vocab_size = len(wids) # Vocabulary size print "K", vocab_size, "words", train_words, test_words return LSTMModel(vocab_size, D, N), train_sents, test_sents, train_words, test_words def LSTM_train(model, sents, words, learning_rate, EPOCH, tanhC_version = 1): # Constants N = model.Layers[1] # Number of units K = model.Layers[2] # Vocabulary size last_time = time.time() # For each epoch for epoch_id in range(1, EPOCH + 1): epoch_ll = 0 # For each sentence for sent_id, sent in enumerate(sents): #print sent_id #print "sent", sent #print "sents", sents ##### Initialize activations ##### Tau = len(sent) sent_ll = 0 # Sentence log likelihood data = [None] * Tau Hout = [None] * Tau Hout[0] = owl.zeros([N, 1]) act_ig = [None] * Tau act_fg = [None] * Tau act_og = [None] * Tau act_ff = [None] * Tau C = [None] * Tau C[0] = owl.zeros([N, 1]) dY = [None] * Tau dBd = owl.zeros([model.Layers[2], 1]) #dY.sum(0) dWd = owl.zeros([model.Layers[2], model.Layers[1]]) dHout = [None] * Tau #dY.dot(model.decoder_weights.transpose()) dEmb = [None] * Tau ##### Forward pass ##### # For each time step for t in range(1, Tau): # predict the (t+1)'th word from the t'th word data[t] = model.emb_weight[sent[t - 1]] NVector = np.zeros((K, 1)) NVector[sent[t]] = 1 target = owl.from_numpy(NVector).trans() act_ig[t] = model.ig_weight_data * data[t] + model.ig_weight_prev * Hout[t - 1] + model.ig_weight_cell * C[t - 1] + model.ig_weight_bias act_ig[t] = ele.sigm(act_ig[t]) act_fg[t] = model.fg_weight_data * data[t] + model.fg_weight_prev * Hout[t - 1] + model.fg_weight_cell * C[t - 1] + model.fg_weight_bias act_fg[t] = ele.sigm(act_fg[t]) act_ff[t] = model.ff_weight_data * data[t] + model.ff_weight_prev * Hout[t - 1] + model.ff_weight_bias act_ff[t] = ele.tanh(act_ff[t]) C[t] = ele.mult(act_ig[t], act_ff[t]) + ele.mult(act_fg[t], C[t - 1]) act_og[t] = model.og_weight_data * data[t] + model.og_weight_prev * Hout[t - 1] + model.og_weight_cell * C[t] + model.og_weight_bias act_og[t] = ele.sigm(act_og[t]) if tanhC_version: Hout[t] = ele.mult(act_og[t], ele.tanh(C[t])) else: Hout[t] = ele.mult(act_og[t], C[t]) Y = softmax(model.decoder_weights * Hout[t] + model.decoder_bias) # BP to Hout dY[t] = Y - target dBd += dY[t] dWd += dY[t] * Hout[t].trans() dHout[t] = model.decoder_weights.trans() * dY[t] # evaluation output = Y.to_numpy() # Can directly get a single element from Y # print output[0, sent[t]] sent_ll += math.log(max(output[0, sent[t]],1e-20), 2) #print "Y_0[t]",Y_o[t] #print "Y_o[t][sent[t]]",Y_o[t][sent[t]] #print np.sum(output.to_numpy()) # output = Ym[t].trans() * data[t] # sent_ll += math.log10( max(np.sum(output.to_numpy()),1e-20) ) ##### Initialize gradient vectors ##### weight_update_ig_data = owl.zeros([model.Layers[1], model.Layers[0]]) weight_update_ig_prev = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_ig_cell = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_ig_bias = owl.zeros([model.Layers[1], 1]) weight_update_fg_data = owl.zeros([model.Layers[1], model.Layers[0]]) weight_update_fg_prev = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_fg_cell = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_fg_bias = owl.zeros([model.Layers[1], 1]) weight_update_og_data = owl.zeros([model.Layers[1], model.Layers[0]]) weight_update_og_prev = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_og_cell = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_og_bias = owl.zeros([model.Layers[1], 1]) weight_update_ff_data = owl.zeros([model.Layers[1], model.Layers[0]]) weight_update_ff_prev = owl.zeros([model.Layers[1], model.Layers[1]]) weight_update_ff_bias = owl.zeros([model.Layers[1], 1]) dC = [None] * Tau for t in xrange(Tau): dC[t] = owl.zeros(C[t].shape) # Calculate the error and add it for t in reversed(range(1, Tau)): #print "sent",sent #print "t",t # BP from og controled gate and og if tanhC_version: tanhC = ele.tanh(C[t]) dTanhC = ele.mult(dHout[t], act_og[t]) sen_og = ele.mult(dHout[t], tanhC) dC[t] += ele.mult((1 - ele.mult(tanhC, tanhC)), dTanhC) else: sen_og = ele.mult(C[t], dHout[t]) dC[t] += ele.mult(act_og[t], dHout[t]) # BP from og sen_og = ele.mult(ele.mult(act_og[t], (1.0 - act_og[t])), sen_og) dHout[t - 1] = model.og_weight_prev.trans() * sen_og dC[t] += model.og_weight_cell.trans() * sen_og dEmb[t] = model.og_weight_data.trans() * sen_og # BP from fg controled gate sen_fg = ele.mult(C[t - 1], dC[t]) dC[t - 1] += ele.mult(act_fg[t], dC[t]) # BP from ig controled gate sen_ig = ele.mult(act_ff[t], dC[t]) sen_ff = ele.mult(act_ig[t], dC[t]) sen_ff = ele.mult((1 - ele.mult(act_ff[t], act_ff[t])), sen_ff) dEmb[t] += model.ff_weight_data.trans() * sen_ff # BP from fg sen_fg = ele.mult(ele.mult(act_fg[t], (1.0 - act_fg[t])), sen_fg) dHout[t - 1] += model.fg_weight_prev.trans() * sen_fg dC[t - 1] += model.fg_weight_cell.trans() * sen_fg dEmb[t] += model.fg_weight_data.trans() * sen_fg # BP from ig sen_ig = ele.mult(ele.mult(act_ig[t], (1.0 - act_ig[t])), sen_ig) dHout[t - 1] += model.ig_weight_prev.trans() * sen_ig dC[t - 1] += model.ig_weight_cell.trans() * sen_ig dEmb[t] += model.ig_weight_data.trans() * sen_ig # derivatives on weight matrix and bias weight_update_ig_data += sen_ig * data[t].trans() weight_update_ig_prev += sen_ig * Hout[t - 1].trans() weight_update_ig_cell += sen_ig * C[t - 1].trans() weight_update_ig_bias += sen_ig weight_update_fg_data += sen_fg * data[t].trans() weight_update_fg_prev += sen_fg * Hout[t - 1].trans() weight_update_fg_cell += sen_fg * C[t - 1].trans() weight_update_fg_bias += sen_fg weight_update_og_data += sen_og * data[t].trans() weight_update_og_prev += sen_og * Hout[t - 1].trans() weight_update_og_cell += sen_og * C[t].trans() weight_update_og_bias += sen_og weight_update_ff_data += sen_ff * data[t].trans() weight_update_ff_prev += sen_ff * Hout[t - 1].trans() weight_update_ff_bias += sen_ff # normalize the gradients rate = learning_rate / Tau # weight update model.ig_weight_prev -= rate * weight_update_ig_prev model.ig_weight_data -= rate * weight_update_ig_data model.ig_weight_cell -= rate * weight_update_ig_cell model.ig_weight_bias -= rate * weight_update_ig_bias model.fg_weight_prev -= rate * weight_update_fg_prev model.fg_weight_data -= rate * weight_update_fg_data model.fg_weight_cell -= rate * weight_update_fg_cell model.fg_weight_bias -= rate * weight_update_fg_bias model.og_weight_prev -= rate * weight_update_og_prev model.og_weight_data -= rate * weight_update_og_data model.og_weight_cell -= rate * weight_update_og_cell model.og_weight_bias -= rate * weight_update_og_bias model.ff_weight_prev -= rate * weight_update_ff_prev model.ff_weight_data -= rate * weight_update_ff_data model.ff_weight_bias -= rate * weight_update_ff_bias model.decoder_weights -= rate * dWd model.decoder_bias -= rate * dBd for t in range(1, Tau): model.emb_weight[sent[t - 1]] -= rate * dEmb[t] # Print results epoch_ll += sent_ll # print(" Sentence %d LL: %f" % (sent_id, sent_ll)) epoch_ent = epoch_ll * (-1) / words epoch_ppl = 2 ** epoch_ent cur_time = time.time() print("Epoch %d (alpha=%f) PPL=%f" % (epoch_id, learning_rate, epoch_ppl)) print " time consumed:", cur_time - last_time last_time = cur_time return model, learning_rate def LSTM_test(model, sents, words, tanhC_version = 1): N = model.Layers[1] K = model.Layers[2] test_ll = 0 # For each sentence for sent_id, sent in enumerate(sents): #print sent_id #print "sent", sent #print "sents", sents ##### Initialize activations ##### Tau = len(sent) sent_ll = 0 # Sentence log likelihood data = [None] * Tau Hout = [None] * Tau Hout[0] = owl.zeros([N, 1]) act_ig = [None] * Tau act_fg = [None] * Tau act_og = [None] * Tau act_ff = [None] * Tau C = [None] * Tau C[0] = owl.zeros([N, 1]) ##### Forward pass ##### # For each time step for t in range(1, Tau): # predict the (t+1)'th word from the t'th word data[t] = model.emb_weight[sent[t - 1]] act_ig[t] = model.ig_weight_data * data[t] + model.ig_weight_prev * Hout[t - 1] + model.ig_weight_cell * C[t - 1] + model.ig_weight_bias act_ig[t] = ele.sigm(act_ig[t]) act_fg[t] = model.fg_weight_data * data[t] + model.fg_weight_prev * Hout[t - 1] + model.fg_weight_cell * C[t - 1] + model.fg_weight_bias act_fg[t] = ele.sigm(act_fg[t]) act_ff[t] = model.ff_weight_data * data[t] + model.ff_weight_prev * Hout[t - 1] + model.ff_weight_bias act_ff[t] = ele.tanh(act_ff[t]) C[t] = ele.mult(act_ig[t], act_ff[t]) + ele.mult(act_fg[t], C[t - 1]) act_og[t] = model.og_weight_data * data[t] + model.og_weight_prev * Hout[t - 1] + model.og_weight_cell * C[t] + model.og_weight_bias act_og[t] = ele.sigm(act_og[t]) if tanhC_version: Hout[t] = ele.mult(act_og[t], ele.tanh(C[t])) else: Hout[t] = ele.mult(act_og[t], C[t]) Y = softmax(model.decoder_weights * Hout[t] + model.decoder_bias) # evaluation output = Y.to_numpy() # Can directly get a single element from Y # print output[0, sent[t]] sent_ll += math.log(max(output[0, sent[t]],1e-20), 2) test_ll += sent_ll test_ent = test_ll * (-1) / words test_ppl = 2 ** test_ent print "Test PPL =", test_ppl if __name__ == '__main__': #gpu = owl.create_gpu_device(1) cpu = owl.create_cpu_device() owl.set_device(cpu) model, train_sents, test_sents, train_words, test_words = LSTM_init() learning_rate = 0.1 for i in range(5): model, learning_rate = LSTM_train(model, train_sents, train_words, learning_rate, 1) LSTM_test(model, test_sents, test_words) ``` #### File: apps/mnist/mnist_io.py ```python import numpy as np import scipy.io as si def _extract(prefix, md, max_dig): ret = [] for dig in range(max_dig): samples = md[prefix + str(dig)] labels = np.empty([samples.shape[0], 1], dtype=np.float32) labels.fill(dig) ret.append(np.hstack((samples.astype(np.float32) / 256, labels))) return ret def _split_sample_and_label(merged_mb): [s, l] = np.hsplit(merged_mb, [merged_mb.shape[1] - 1]) # change label to sparse representation n = merged_mb.shape[0] ll = np.zeros([n, 10], dtype=np.float32) ll[np.arange(n), l.astype(int).flat] = 1 return (s, ll) def load_mb_from_mat(mat_file, mb_size): # load from mat md = si.loadmat(mat_file) # merge all data train_all = np.concatenate(_extract('train', md, 10)) test_all = np.concatenate(_extract('test', md, 10)) # shuffle np.random.shuffle(train_all) # make minibatch train_mb = np.vsplit(train_all, range(mb_size, train_all.shape[0], mb_size)) train_data = map(_split_sample_and_label, train_mb) test_data = _split_sample_and_label(test_all) print 'Training data: %d mini-batches' % len(train_mb) print 'Test data: %d samples' % test_all.shape[0] print train_data[0][1].shape return (train_data, test_data) ``` #### File: owl/owl/__init__.py ```python import numpy as np import libowl as _owl NArray = _owl.NArray _owl.initialize() # def initialize(): # """ Initialize Minerva System with `sys.argv` # # .. note:: # Must be called before calling any owl's API # """ # _owl.initialize() def has_cuda(): """ Check if CUDA is enabled :return: CUDA status :rtype: int """ return _owl.has_cuda() def wait_for_all(): """ Wait for all evaluation to complete .. note:: The user thread (python) will be blocked until all previous operations are finished. :return: None """ _owl.wait_for_all() def create_cpu_device(): """ Create device for running on CPU cores .. note:: At least one of :py:func:`create_cpu_device` or :py:func:`create_gpu_device` should be called before using any ``owl`` APIs. :return: A unique id for cpu device :rtype: int """ return _owl.create_cpu_device() def create_gpu_device(which): """ Create device for running on GPU card .. note:: At least one of :py:func:`create_cpu_device` or :py:func:`create_gpu_device` should be called before using any ``owl`` APIs. :param int which: which GPU card the code would be run on :return: A unique id for the device on that GPU card :rtype: int """ return _owl.create_gpu_device(which) def get_gpu_device_count(): """ Get the number of compute-capable GPU devices :return: Number of compute-capable GPU devices :rtype: int """ return _owl.get_gpu_device_count() def set_device(dev): """ Switch to the given device for running computations When ``set_device(dev)`` is called, all the subsequent codes will be run on ``dev`` till another ``set_device`` is called. :param int dev: the id of the device (usually returned by create_xxx_device) """ _owl.set_device(dev) def zeros(shape): """ Create ndarray of zero values :param shape: shape of the ndarray to create :type shape: list int :return: result ndarray :rtype: owl.NArray """ return NArray.zeros(shape) def ones(shape): """ Create ndarray of one values :param shape: shape of the ndarray to create :type shape: list int :return: result ndarray :rtype: owl.NArray """ return NArray.ones(shape) def randn(shape, mu, var): """ Create a random ndarray using normal distribution :param shape: shape of the ndarray to create :type shape: list int :param float mu: mu :param float var: variance :return: result ndarray :rtype: owl.NArray """ return NArray.randn(shape, mu, var) def randb(shape, prob): """ Create a random ndarray using bernoulli distribution :param shape: shape of the ndarray to create :type shape: list int :param float prob: probability for the value to be one :return: result ndarray :rtype: owl.NArray """ return NArray.randb(shape, prob) def from_numpy(nparr): """ Create an owl.NArray from numpy.ndarray .. note:: The content will be directly copied to Minerva's memory system. However, due to the different priority when treating dimensions between numpy and Minerva. The result ``owl.NArray``'s dimension will be *reversed*. >>> a = numpy.zeros([200, 300, 50]) >>> b = owl.from_numpy(a) >>> print b.shape [50, 300, 200] .. seealso:: :py:func:`owl.NArray.to_numpy` :param numpy.ndarray nparr: numpy ndarray :return: Minerva's ndarray :rtype: owl.NArray """ return NArray.from_numpy(np.require(nparr, dtype=np.float32, requirements=['C'])) def concat(narrays, concat_dim): """ Concatenate NArrays according to concat_dim :param narrays: inputs for concatenation :type narrays: owl.NArray :param concat_dim: the dimension to concate :type concat_dim: int :return: result of concatenation :rtype: owl.NArray """ return NArray.concat(narrays, concat_dim) def slice(src, slice_dim, st_off, slice_count): """ Slice NArrays according to slice_dim :param src: inputs for slice :type src: owl.NArray :param slice_dim: the dimension to slice :type slice_dim: int :param st_off: where to start slice :type st_off: int :param slice_count: how many data_chunk on slice_dim :slice_count: int :return: result of slicer :rtype: owl.NArray """ return NArray.slice(src, slice_dim, st_off, slice_count) # def print_profiler_result(): # """ Print result from execution profiler # # :return: None # """ # _owl.print_profiler_result() # # def reset_profiler_result(): # """ Reset execution profiler # # :return: None # """ # _owl.reset_profiler_result() # # def print_dag_to_file(fname): # """ Print the current generated dag into the give filename # # :param fname: filename for printing the dag # :type fname: str # :return: None # """ # _owl.print_dag_to_file(fname) # # def print_dot_dag_to_file(fname): # """ Print the current generated dag into the give filename in dot format # # :param fname: filename for printing the dag # :type fname: str # :return: None # """ # _owl.print_dot_dag_to_file(fname) ``` #### File: owl/net/net.py ```python import numpy as np import math import Queue import owl import owl.elewise as ele import owl.conv as co from caffe import * from netio import LMDBDataProvider from netio import ImageListDataProvider from netio import ImageWindowDataProvider class ComputeUnit(object): ''' Interface for each compute unit. In ``owl.net``, the network is graph (in fact a DAG) that is composed of ``ComputeUnit`` s. ``ComputeUnit`` is a wrap-up of Caffe's ``layer`` abstraction, but is more general and flexible in its function sigature. :ivar caffe.LayerParameter params: layer parameter in Caffe's proto structure :ivar str name: name of the unit; the name must be unique :ivar btm_names: names of the bottom units :vartype btm_names: list str :ivar top_names: names of the top units :vartype top_names: list str :ivar list int out_shape: .. note:: ``params``, ``name``, ``btm_names`` and ``top_names`` will be parsed from Caffe's network description file. ``out_shape`` should be set in :py:meth:`compute_size` ''' def __init__(self, params): self.params = params self.name = params.name self.btm_names = [] self.top_names = [] self.out = None self.out_shape = None self.rec_on_ori = None self.stride_on_ori = None self.start_on_ori = None def __str__(self): return 'N/A unit' def compute_size(self, from_btm, to_top): ''' Calculate the output size of this unit This function will be called before training during the ``compute_size`` phase. The ``compute_size`` phase is a feed-forward-like phase, during which each ``ComputeUnit``, rather than calculating the output tensor but calculating the output size (list int) for the top units. The size is usually used to calculate the weight and bias size for initialization. :param dict from_btm: input size from bottom units :param dict to_top: output size to top units .. seealso:: :py:meth:`FullyConnection.compute_size` :py:meth:`ConvConnection.compute_size` :py:meth:`Net.compute_size` ''' pass def forward(self, from_btm, to_top, phase): ''' Function for forward propagation This function will be called during forward-propagation. The function should take input in ``from_btm``, perform customized computation, and then put the result in ``to_top``. Both ``from_btm`` and ``to_top`` are ``dict`` type where key is a ``str`` of name of the bottom/top units and value is an ``owl.NArray`` served as input or output of the function. :param dict from_btm: input from bottom units :param dict to_top: output for top units :param str phase: name of the phase of the running. Currently either ``"TRAIN"`` or ``"TEST"`` ''' pass def backward(self, from_top, to_btm, phase): ''' Function for backward propagation This function will be called during backward-propagation. Similar to :py:meth:`forward`, The function should take input in ``from_top``, perform customized computation, and then put the result in ``to_btm``. The function also need to calculate the gradient (if any) and save them to the ``weightgrad`` field (see :py:meth:WeightedComputeUnit.weight_update). :param dict from_top: input from top units :param dict to_btm: output for top units :param str phase: name of the phase of the running. Currently either ``"TRAIN"`` or ``"TEST"`` ''' pass def weight_update(self, base_lr, base_weight_decay, momentum, batch_size): ''' Function for weight update This function will be called during weight update. :param float base_lr: base learning rate :param float base_weight_decay: base weight decay :param float momentum: momentum value :param int batch_size: the size of the current minibatch ''' pass class ComputeUnitSimple(ComputeUnit): ''' An auxiliary class for :py:class:`ComputeUnit` that will only have one input unit and one output unit. ''' def __init__(self, params): super(ComputeUnitSimple, self).__init__(params) def compute_size(self, from_btm, to_top): ''' Set the ``out_shape`` as the same shape of the input. Inherited classes could override this function. ''' to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] def forward(self, from_btm, to_top, phase): ''' Transform the interface from multiple input/output to only one input/output function :py:meth:`ff`. ''' to_top[self.top_names[0]] = self.ff(from_btm[self.btm_names[0]], phase) self.out = to_top[self.top_names[0]] def ff(self, act, phase): ''' Function for forward-propagation :param owl.NArray act: the activation from the bottom unit :param str phase: name of the phase of the running. Currently either ``"TRAIN"`` or ``"TEST"`` :return: the activation of this unit :rtype: owl.NArray ''' pass def backward(self, from_top, to_btm, phase): ''' Transform the interface from multiple input/output to only one input/output function :py:meth:`bp`. ''' to_btm[self.btm_names[0]] = self.bp(from_top[self.top_names[0]], phase) def bp(self, sen, phase): ''' Function for backward-propagation :param owl.NArray sen: the sensitivity (or error derivative to the input) from the top unit :return: the sensitivity of this unit :rtype: owl.NArray ''' pass class WeightedComputeUnit(ComputeUnitSimple): ''' An auxiliary class for :py:class:`ComputeUnit` with weights :ivar owl.NArray weight: weight tensor :ivar owl.NArray weightdelta: momentum of weight :ivar owl.NArray weightgrad: gradient of weight :ivar owl.NArray bias: bias tensor :ivar owl.NArray biasdelta: momentum of bias :ivar owl.NArray biasgrad: gradient of bias :ivar float lr_mult_w: learning rate multiplier for the weight of this unit :ivar float lr_mult_b: bias learning rate multiplier for the bias of this unit :ivar float decay_mult_w: decay multiplier for the weight of this unit :ivar float decay_mult_b: decay multiplier for the bias of this unit ''' def __init__(self, params): super(WeightedComputeUnit, self).__init__(params) # weights and bias self.weight = None self.weightdelta = None self.weightgrad = None self.bias = None self.biasdelta = None self.biasgrad = None self.in_shape = None self.fan_in = None self.fan_out = None # blob learning rate and weight decay if len(params.param) >= 1: self.lr_mult_w = params.param[0].lr_mult self.decay_mult_w = params.param[0].decay_mult else: self.lr_mult_w = 1 self.decay_mult_w = 1 if len(params.param) >= 2: self.lr_mult_b = params.param[1].lr_mult self.decay_mult_b = params.param[1].decay_mult else: self.lr_mult_b = 1 self.decay_mult_b = 0 #self.blobs_lr = params.blobs_lr #self.weight_decay = params.weight_decay #if len(self.blobs_lr) == 0: #self.blobs_lr = [1,1] #if len(self.weight_decay) == 0: #self.weight_decay = [1, 0] def compute_size(self, from_btm, to_top): pass def init_weights_with_filler(self): ''' Init weights & bias. The function will be called during weight initialization. Currently, four types of initializers are supported: ``"constant", "gaussian", "uniform", "xavier"``. ''' #init weight npweights = None if self.weight_filler.type == "constant": npweights = np.ones(self.wshape, dtype = np.float32) * self.weight_filler.value elif self.weight_filler.type == "gaussian": npweights = np.random.normal(self.weight_filler.mean, self.weight_filler.std, self.wshape) elif self.weight_filler.type == "uniform": npweights = np.random.uniform(self.weight_filler.min, self.weight_filler.max, self.wshape) elif self.weight_filler.type == "xavier": scale = np.sqrt(float(3)/self.fan_in) npweights = np.random.uniform(-scale, scale, self.wshape) self.weight = owl.from_numpy(npweights.astype(np.float32)).reshape(self.wshape) #init bias npwbias = None if self.bias_filler.type == "constant": npbias = np.ones(self.bshape, dtype = np.float32) * self.bias_filler.value elif self.bias_filler.type == "gaussian": npbias = np.random.normal(self.bias_filler.mean, self.bias_filler.std, self.bshape) elif self.bias_filler.type == "uniform": npbias = np.random.uniform(self.bias_filler.min, self.bias_filler.max, self.bshape) elif self.bias_filler.type == "xavier": scale = np.sqrt(float(3)/self.fan_in) npbias = np.random.uniform(-scale, scale, self.bshape) self.bias = owl.from_numpy(npbias.astype(np.float32)).reshape(self.bshape) def weight_update(self, base_lr, base_weight_decay, momentum, batch_size): ''' Update the weight & bias Using following formula: ``$_delta = momentum * $_delta - (base_lr * $_lr / batch_size) * $_grad - (base_lr * $_lr * base_wd * $_wd) * $`` , where ``$`` could be either ``weight`` or ``bias``. ''' if self.weightdelta == None: self.weightdelta = owl.zeros(self.weightgrad.shape) self.weightdelta = momentum * self.weightdelta \ - (base_lr * self.lr_mult_w / batch_size) * self.weightgrad \ - (base_lr * self.lr_mult_w * base_weight_decay * self.decay_mult_w) * self.weight self.weight = self.weight + self.weightdelta self.weightgrad = None if self.biasdelta == None: self.biasdelta = owl.zeros(self.biasgrad.shape) self.biasdelta = momentum * self.biasdelta \ - (base_lr * self.lr_mult_b / batch_size) * self.biasgrad \ - (base_lr * self.lr_mult_b * base_weight_decay * self.decay_mult_b) * self.bias self.bias = self.bias + self.biasdelta self.biasgrad = None class LinearUnit(ComputeUnitSimple): ''' Compute unit for linear transformation ''' def ff(self, x, phase): return x def bp(self, y, phase): return y def __str__(self): return 'linear' class SigmoidUnit(ComputeUnitSimple): ''' Compute unit for Sigmoid non-linearity ''' def ff(self, x, phase): return ele.sigm(x) def bp(self, y, phase): return ele.sigm_back(y) def __str__(self): return 'sigmoid' class ReluUnit(ComputeUnitSimple): ''' Compute unit for RELU non-linearity ''' def ff(self, x, phase): self.ff_x = x return ele.relu(x) def bp(self, y, phase): return ele.relu_back(y, self.ff_x) def __str__(self): return 'relu' class TanhUnit(ComputeUnitSimple): ''' Compute unit for Hyperbolic Tangine non-linearity ''' def ff(self, x, phase): return ele.tanh(x) def bp(self, y, phase): return ele.tanh_back(y) def __str__(self): return 'tanh' class PoolingUnit(ComputeUnitSimple): ''' Compute unit for Pooling .. note:: The input and output is of size ``[HWCN]``: - ``H``: image height - ``W``: image width - ``C``: number of image channels (feature maps) - ``N``: size of minibatch ''' def __init__(self, params): super(PoolingUnit, self).__init__(params) self.ppa = params.pooling_param if self.ppa.pool == PoolingParameter.PoolMethod.Value('MAX'): pool_ty = co.pool_op.max elif self.ppa.pool == PoolingParameter.PoolMethod.Value('AVE'): pool_ty = co.pool_op.average self.pooler = co.Pooler(self.ppa.kernel_size, self.ppa.kernel_size, self.ppa.stride, self.ppa.stride, self.ppa.pad, self.ppa.pad, pool_ty) def compute_size(self, from_btm, to_top): self.out_shape = from_btm[self.btm_names[0]]['out_shape'][:] ori_height = self.out_shape[0] ori_width = self.out_shape[1] self.out_shape[0] = int(np.ceil(float(self.out_shape[0] + 2 * self.ppa.pad - self.ppa.kernel_size) / self.ppa.stride)) + 1 self.out_shape[1] = int(np.ceil(float(self.out_shape[1] + 2 * self.ppa.pad - self.ppa.kernel_size) / self.ppa.stride)) + 1 if self.ppa.pad: if (self.out_shape[0] - 1) * self.ppa.stride >= ori_height + self.ppa.pad: self.out_shape[0] = self.out_shape[0] - 1 self.out_shape[1] = self.out_shape[1] - 1 to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = self.out_shape[:] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] * self.ppa.stride to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] + (self.ppa.kernel_size - 1) * from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] - self.ppa.pad * from_btm[self.btm_names[0]]['stride_on_ori'] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] def ff(self, x, phase): self.ff_x = x self.ff_y = self.pooler.ff(x) return self.ff_y def bp(self, y, phase): return self.pooler.bp(y, self.ff_y, self.ff_x) def __str__(self): return 'pooling' class DropoutUnit(ComputeUnitSimple): ''' Compute unit for dropout ''' def __init__(self, params): super(DropoutUnit, self).__init__(params) self.scale = 1.0 / (1.0 - self.params.dropout_param.dropout_ratio) self.keep_ratio = 1 - self.params.dropout_param.dropout_ratio def ff(self, x, phase): ''' Foward function of dropout The dropout mask will not be multiplied if under ``"TEST"`` mode. ''' if phase == "TRAIN": self.dropmask = owl.randb(x.shape, self.keep_ratio) return ele.mult(x, self.dropmask)*self.scale else: return x #for gradient test #return x def bp(self, y, phase): if phase == "TRAIN": return ele.mult(y, self.dropmask)*self.scale else: return y def __str__(self): return 'dropout' class SoftmaxUnit(ComputeUnit): ''' Compute unit for softmax ''' def __init__(self, params): super(SoftmaxUnit, self).__init__(params) self.loss_weight = params.loss_weight def compute_size(self, from_btm, to_top): to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] def forward(self, from_btm, to_top, phase): to_top[self.top_names[0]] = co.softmax(from_btm[self.btm_names[0]], co.soft_op.instance) self.ff_y = to_top[self.top_names[0]] #turn label into matrix form nplabel = np.zeros([self.ff_y.shape[1], self.ff_y.shape[0]], dtype=np.float32) self.strlabel = from_btm[self.btm_names[1]] for i in range(len(self.strlabel)): nplabel[i, self.strlabel[i]] = 1 self.y = owl.from_numpy(nplabel) self.out = self.ff_y def backward(self, from_top, to_btm, phase): if len(self.loss_weight) == 1: to_btm[self.btm_names[0]] = (self.ff_y - self.y)*self.loss_weight[0] else: to_btm[self.btm_names[0]] = (self.ff_y - self.y) def getloss(self): ''' Get the loss of the softmax (cross entropy) ''' lossmat = ele.mult(ele.ln(self.ff_y), self.y) res = lossmat.sum(0).sum(1).to_numpy() return -res[0][0] / lossmat.shape[1] def __str__(self): return 'softmax' class AccuracyUnit(ComputeUnit): ''' Compute unit for calculating accuracy .. note:: In terms of Minerva's lazy evaluation, the unit is a **non-lazy** one since it gets the actual contents (accuracy) out of an ``owl.NArray``. ''' def __init__(self, params): super(AccuracyUnit, self).__init__(params) self.acc = 0 self.batch_size = 0 self.top_k = params.accuracy_param.top_k def compute_size(self, from_btm, to_top): to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] def forward(self, from_btm, to_top, phase): if self.top_k == 1: predict = from_btm[self.btm_names[0]].max_index(0) ground_truth = owl.from_numpy(from_btm[self.btm_names[1]]).reshape(predict.shape) self.batch_size = from_btm[self.btm_names[0]].shape[1] correct = (predict - ground_truth).count_zero() self.acc = correct * 1.0 / self.batch_size elif self.top_k == 5: predict = from_btm[self.btm_names[0]].to_numpy() top_5 = np.argsort(predict, axis=1)[:,::-1] ground_truth = from_btm[self.btm_names[1]] self.batch_size = np.shape(ground_truth)[0] correct = 0 for i in range(self.batch_size): for t in range(5): if ground_truth[i] == top_5[i,t]: correct += 1 break self.acc = correct * 1.0 / self.batch_size else: assert(FALSE) def backward(self, from_top, to_btm, phase): pass def __str__(self): return 'accuracy' class LRNUnit(ComputeUnitSimple): ''' Compute unit for LRN ''' def __init__(self, params): super(LRNUnit, self).__init__(params) self.lrner = co.Lrner(params.lrn_param.local_size, params.lrn_param.alpha, params.lrn_param.beta) self.scale = None def ff(self, x, phase): self.ff_x = x self.scale = owl.zeros(x.shape) self.ff_y = self.lrner.ff(x, self.scale) return self.ff_y def bp(self, y, phase): return self.lrner.bp(self.ff_x, self.ff_y, self.scale, y) def __str__(self): return 'lrn' class ConcatUnit(ComputeUnit): ''' Compute unit for concatenation Concatenate input arrays along the dimension specified by Caffe's ``concat_dim_caffe`` ''' def __init__(self, params): super(ConcatUnit, self).__init__(params) self.concat_dim_caffe = params.concat_param.concat_dim self.slice_count = [] def compute_size(self, from_btm, to_top): to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] self.concat_dim = len(from_btm[self.btm_names[0]]['out_shape']) - 1 - self.concat_dim_caffe for i in range(1, len(self.btm_names)): to_top[self.top_names[0]]['out_shape'][self.concat_dim] = to_top[self.top_names[0]]['out_shape'][self.concat_dim] + from_btm[self.btm_names[i]]['out_shape'][self.concat_dim] self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] def forward(self, from_btm, to_top, phase): narrays = [] self.concat_dim = len(from_btm[self.btm_names[0]].shape) - 1 - self.concat_dim_caffe for i in range(len(self.btm_names)): narrays.append(from_btm[self.btm_names[i]]) self.slice_count.append(from_btm[self.btm_names[i]].shape[self.concat_dim]) to_top[self.top_names[0]] = owl.concat(narrays, self.concat_dim) self.out = to_top[self.top_names[0]] def backward(self, from_top, to_btm, phase): st_off = 0 for i in range(len(self.btm_names)): to_btm[self.btm_names[i]] = owl.slice(from_top[self.top_names[0]], self.concat_dim, st_off, self.slice_count[i]) st_off += self.slice_count[i] def __str__(self): return 'concat' class FullyConnection(WeightedComputeUnit): ''' Compute unit for traditional fully connected layer ''' def __init__(self, params): super(FullyConnection, self).__init__(params) self.inner_product_param = params.inner_product_param self.weight_filler = params.inner_product_param.weight_filler self.bias_filler = params.inner_product_param.bias_filler def compute_size(self, from_btm, to_top): ''' Compute the output size and also weight and bias size The weight size is ``[top_shape[0], btm_shape[0]]``; the bias size is ``[top_shape[0], 1]`` (assume both ``top`` and ``btm`` are 2-dimensional array) ''' shp = from_btm[self.btm_names[0]]['out_shape'][:] if len(shp) > 2: self.in_shape = [np.prod(shp[0:-1], dtype=np.int32), shp[-1]] else: self.in_shape = shp to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = self.in_shape[:] to_top[self.top_names[0]]['out_shape'][0] = self.inner_product_param.num_output to_top[self.top_names[0]]['out_shape'][1] = 1 self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.wshape = [self.out_shape[0], self.in_shape[0]] self.bshape = [self.out_shape[0], 1] if len(shp) > 2: #last layer is conv layer self.rec_on_ori = from_btm[self.btm_names[0]]['rec_on_ori'] + (shp[0] - 1) * from_btm[self.btm_names[0]]['stride_on_ori'] self.stride_on_ori = self.rec_on_ori else: self.rec_on_ori = from_btm[self.btm_names[0]]['rec_on_ori'] self.stride_on_ori = from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['rec_on_ori'] = self.rec_on_ori to_top[self.top_names[0]]['stride_on_ori'] = self.stride_on_ori to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] #set fan_in fan_out self.fan_out = self.inner_product_param.num_output self.fan_in = np.prod(from_btm[self.btm_names[0]]['out_shape'][0:len(from_btm[self.btm_names[0]]['out_shape'])]) def ff(self, act, phase): shp = act.shape if len(shp) > 2: a = act.reshape([np.prod(shp[0:-1], dtype=np.int32), shp[-1]]) else: a = act self.ff_act = act # save ff value if self.weight == None: self.init_weights_with_filler() return self.weight * a + self.bias def bp(self, sen, phase): shp = self.ff_act.shape if len(shp) > 2: a = self.ff_act.reshape([np.prod(shp[0:-1], dtype=np.int32), shp[-1]]) else: a = self.ff_act self.weightgrad = sen * a.trans() self.biasgrad = sen.sum(1) s = self.weight.trans() * sen if len(shp) > 2: s = s.reshape(shp) return s def __str__(self): return 'fc' class ConvConnection(WeightedComputeUnit): ''' Convolution operation .. note:: The input and output is of size ``[HWCN]``: - ``H``: image height - ``W``: image width - ``C``: number of image channels (feature maps) - ``N``: size of minibatch ''' def __init__(self, params): super(ConvConnection, self).__init__(params) self.conv_params = params.convolution_param self.convolver = co.Convolver(self.conv_params.pad, self.conv_params.pad, self.conv_params.stride, self.conv_params.stride) self.num_output = params.convolution_param.num_output self.group = params.convolution_param.group #TODO: hack, we don't want to slice agian to use it into bp as a parameter self.group_data = [] self.group_filter = [] self.group_bias = [] self.weight_filler = params.convolution_param.weight_filler self.bias_filler = params.convolution_param.bias_filler def compute_size(self, from_btm, to_top): ''' Compute the output size and also weight and bias size .. note:: The weight(kernel) size is ``[HWCiCo]``; bias shape is ``[Co]``: - ``H``: kernel_height - ``W``: kernel_width - ``Ci``: number of input channels - ``Co``: number of output channels ''' self.in_shape = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = from_btm[self.btm_names[0]]['out_shape'][:] to_top[self.top_names[0]]['out_shape'][0] = (to_top[self.top_names[0]]['out_shape'][0] + 2 * self.conv_params.pad - self.conv_params.kernel_size) / self.conv_params.stride + 1 to_top[self.top_names[0]]['out_shape'][1] = (to_top[self.top_names[0]]['out_shape'][1] + 2 * self.conv_params.pad - self.conv_params.kernel_size) / self.conv_params.stride + 1 to_top[self.top_names[0]]['out_shape'][2] = self.num_output self.out_shape = to_top[self.top_names[0]]['out_shape'][:] self.wshape = [self.conv_params.kernel_size, self.conv_params.kernel_size, self.in_shape[2], self.num_output] self.bshape = [self.out_shape[2]] to_top[self.top_names[0]]['stride_on_ori'] = from_btm[self.btm_names[0]]['stride_on_ori'] * self.conv_params.stride to_top[self.top_names[0]]['rec_on_ori'] = from_btm[self.btm_names[0]]['rec_on_ori'] + (self.conv_params.kernel_size - 1) * from_btm[self.btm_names[0]]['stride_on_ori'] to_top[self.top_names[0]]['start_on_ori'] = from_btm[self.btm_names[0]]['start_on_ori'] - self.conv_params.pad * from_btm[self.btm_names[0]]['stride_on_ori'] self.stride_on_ori = to_top[self.top_names[0]]['stride_on_ori'] self.start_on_ori = to_top[self.top_names[0]]['start_on_ori'] self.rec_on_ori = to_top[self.top_names[0]]['rec_on_ori'] #set fan_in fan_out self.fan_out = self.conv_params.kernel_size * self.conv_params.kernel_size * self.conv_params.num_output self.fan_in = self.conv_params.kernel_size * self.conv_params.kernel_size * from_btm[self.btm_names[0]]['out_shape'][2] def ff(self, act, phase): ''' Feed-forward of convolution .. warning:: Currently multi-group convolution (as in AlexNet paper) is not supported. One could walk around it by using a bigger convolution with number of feature maps doubled. ''' if self.group == 1: self.ff_act = act if self.weight == None: self.init_weights_with_filler() return self.convolver.ff(act, self.weight, self.bias) else: #currently doesn't support multi-group assert(False) def bp(self, sen, phase): ''' Backward propagation of convolution .. warning:: Currently multi-group convolution (as in AlexNet paper) is not supported. One could walk around it by using a bigger convolution with number of feature maps doubled. ''' if self.group == 1: self.weightgrad = self.convolver.weight_grad(sen, self.ff_act, self.weight) self.biasgrad = self.convolver.bias_grad(sen) return self.convolver.bp(sen, self.ff_act, self.weight) else: #currently doesn't support multi-group assert(False) def __str__(self): return 'conv' class DataUnit(ComputeUnit): ''' The base class of dataunit. :ivar dp: dataprovider, different kind of dp load data from different formats :ivar generator: the iterator produced by dataprovider ''' def __init__(self, params, num_gpu): super(DataUnit, self).__init__(params) def compute_size(self, from_btm, to_top): pass def forward(self, from_btm, to_top, phase): ''' Feed-forward of data unit will get a batch of a fixed batch_size from data provider. .. note:: Phase indicates whether it's training or testing. Usualy, the data augmentation operation for training involves some randomness, while testing doesn't ''' if self.generator == None: self.generator = self.dp.get_mb(phase) while True: try: (samples, labels) = next(self.generator) if len(labels) == 0: (samples, labels) = next(self.generator) except StopIteration: print 'Have scanned the whole dataset; start from the begginning agin' self.generator = self.dp.get_mb(phase) continue break to_top[self.top_names[0]] = owl.from_numpy(samples).reshape( [self.crop_size, self.crop_size, 3, samples.shape[0]]) #may have multiplier labels for i in range (1, len(self.top_names)): to_top[self.top_names[i]] = labels[:,i - 1] #the output of datalayer is the data not label self.out = to_top[self.top_names[0]] def backward(self, from_top, to_btm, phase): # no bp pass pass def __str__(self): return 'data' class LMDBDataUnit(DataUnit): ''' DataUnit load from LMDB. :ivar caffe.LayerParameter params: lmdb data layer param defined by Caffe, params.data_param contains information about data source, parmas.transform_param mainly defines data augmentation operations ''' def __init__(self, params, num_gpu): super(LMDBDataUnit, self).__init__(params, num_gpu) if params.include[0].phase == Phase.Value('TRAIN'): self.dp = LMDBDataProvider(params.data_param, params.transform_param, num_gpu) else: self.dp = LMDBDataProvider(params.data_param, params.transform_param, 1) self.params = params self.crop_size = params.transform_param.crop_size self.generator = None self.out = None self.multiview = False def compute_size(self, from_btm, to_top): self.out_shape = [self.params.transform_param.crop_size, self.params.transform_param.crop_size, 3, 1] to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = self.out_shape[:] to_top[self.top_names[0]]['rec_on_ori'] = 1 to_top[self.top_names[0]]['stride_on_ori'] = 1 to_top[self.top_names[0]]['start_on_ori'] = 0 self.rec_on_ori = 1 self.stride_on_ori = 1 self.start_on_ori = 0 def forward(self, from_btm, to_top, phase): ''' Feed-forward operation may vary according to phase. .. note:: LMDB data provider now support multi-view testing, if multiview == True, it will produce concequtive 10 batches of different views of the same original image ''' if self.generator == None: if self.multiview == False: self.generator = self.dp.get_mb(phase) #multiview test else: self.generator = self.dp.get_multiview_mb() while True: try: (samples, labels) = next(self.generator) if len(labels) == 0: (samples, labels) = next(self.generator) except StopIteration: print 'Have scanned the whole dataset; start from the begginning agin' if self.multiview == False: self.generator = self.dp.get_mb(phase) #multiview test else: self.generator = self.dp.get_multiview_mb() continue break to_top[self.top_names[0]] = owl.from_numpy(samples).reshape( [self.crop_size, self.crop_size, 3, samples.shape[0]]) for i in range (1, len(self.top_names)): to_top[self.top_names[i]] = labels[:,i - 1] #to_top[self.top_names[0]] = owl.zeros([self.crop_size, self.crop_size, 3, 256]) #for i in range (1, len(self.top_names)): #to_top[self.top_names[i]] = np.ones(256) self.out = to_top[self.top_names[0]] def __str__(self): return 'lmdb_data' class ImageDataUnit(DataUnit): ''' DataUnit load from raw images. :ivar caffe.LayerParameter params: image data layer param defined by Caffe, this is often used when data is limited. Loading from original image will be slower than loading from LMDB ''' def __init__(self, params, num_gpu): super(ImageDataUnit, self).__init__(params, num_gpu) if params.include[0].phase == Phase.Value('TRAIN'): self.dp = ImageListDataProvider(params.image_data_param, params.transform_param, num_gpu) else: self.dp = ImageListDataProvider(params.image_data_param, params.transform_param, 1) self.params = params self.crop_size = params.transform_param.crop_size self.generator = None def compute_size(self, from_btm, to_top): self.out_shape = [self.params.transform_param.crop_size, self.params.transform_param.crop_size, 3, 1] to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = self.out_shape[:] to_top[self.top_names[0]]['rec_on_ori'] = 1 to_top[self.top_names[0]]['stride_on_ori'] = 1 to_top[self.top_names[0]]['start_on_ori'] = 0 self.rec_on_ori = 1 self.stride_on_ori = 1 self.start_on_ori = 0 def __str__(self): return 'image_data' class ImageWindowDataUnit(DataUnit): ''' DataUnit load from image window patches. :ivar caffe.LayerParameter params: image window data layer param defined by Caffe, this is often used when data is limited and object bounding box is given ''' def __init__(self, params, num_gpu): super(ImageWindowDataUnit, self).__init__(params, num_gpu) if params.include[0].phase == Phase.Value('TRAIN'): self.dp = ImageWindowDataProvider(params.window_data_param, num_gpu) else: self.dp = ImageWindowDataProvider(params.window_data_param, 1) self.params = params self.crop_size = params.window_data_param.crop_size self.generator = None #reset generator def reset_generator(self): if self.params.include[0].phase == Phase.Value('TRAIN'): self.generator = self.dp.get_mb('TRAIN') else: self.generator = self.dp.get_mb('TEST') def compute_size(self, from_btm, to_top): self.out_shape = [self.params.window_data_param.crop_size, self.params.window_data_param.crop_size, 3, 1] to_top[self.top_names[0]] = dict() to_top[self.top_names[0]]['out_shape'] = self.out_shape[:] to_top[self.top_names[0]]['rec_on_ori'] = 1 to_top[self.top_names[0]]['stride_on_ori'] = 1 to_top[self.top_names[0]]['start_on_ori'] = 0 self.rec_on_ori = 1 self.stride_on_ori = 1 self.start_on_ori = 0 def __str__(self): return 'window_data' class Net: ''' The class for neural network structure The Net is basically a graph (DAG), of which each node is a :py:class:`ComputeUnit`. :ivar units: all the ``ComputeUnit`` s. :vartype units: list owl.net.ComputeUnit :ivar adjacent: the adjacent list (units are represented by their name) :vartype adjacent: list list str :ivar reverse_adjacent: the reverse adjacent list (units are represented by their name) :vartype reverse_adjacent: list list str :ivar dict name_to_uid: a map from units' name to the unit object :ivar loss_uids: all the units for computing loss :vartype loss_uids: list int :ivar accuracy_uids: all the units for calculating accuracy :vartype accuracy_uids: list int ''' def __init__(self): self.units = [] self.adjacent = [] self.reverse_adjacent = [] self.base_lr = 0 self.base_weight_decay = 0 self.momentum = 0 self.name_to_uid = {} self.loss_uids = [] self.accuracy_uids = [] def add_unit(self, unit): ''' Method for adding units into the graph :param owl.net.ComputeUnit unit: the unit to add ''' uid = len(self.units) self.units.append(unit) self.adjacent.append([]) self.reverse_adjacent.append([]) if not unit.name in self.name_to_uid: self.name_to_uid[unit.name] = [] self.name_to_uid[unit.name].append(uid) return uid def connect(self, u1, u2): ''' Method for connecting two units :param str u1: name of the bottom unit :param str u2: name of the top unit ''' self.adjacent[u1].append(u2) self.reverse_adjacent[u2].append(u1) def get_units_by_name(self, name): ''' Get ``ComputeUnit`` object by its name :param str name: unit name :return: the compute unit object of that name :rtype: owl.net.ComputeUnit ''' return [self.units[uid] for uid in self.name_to_uid[name]] def get_loss_units(self): ''' Get all ``ComputeUnit`` object for loss :return: all compute unit object for computing loss :rtype: list owl.net.ComputeUnit ''' return [self.units[uid] for uid in self.loss_uids] def get_accuracy_units(self): ''' Get all ``ComputeUnit`` object for accuracy :return: all compute unit object for computing accuracy :rtype: list owl.net.ComputeUnit ''' return [self.units[uid] for uid in self.accuracy_uids] def get_data_unit(self, phase = 'TRAIN'): ''' Get the ``ComputeUnit`` object for data loading :param str phase: phase name of the run :return: the compute unit object for loading data :rtype: owl.net.ComputeUnit ''' data_units = self.name_to_uid['data'] for du in data_units: if not self._is_excluded(du, phase): return self.units[du] def get_weighted_unit_ids(self): ''' Get ids for all :py:class:owl.net.WeightedComputeUnit :return: ids of all weighted compute unit :rtype: list int ''' weights_id = [] for i in xrange(len(self.units)): if isinstance(self.units[i], WeightedComputeUnit): weights_id.append(i) return weights_id def _is_excluded(self, unit, phase): p = self.units[unit].params return phase != None and len(p.include) != 0 and p.include[0].phase != Phase.Value(phase) def _toporder(self, phase = None): depcount = [len(inunits) for inunits in self.reverse_adjacent] queue = Queue.Queue() # remove dep from excluded units for unit in range(len(depcount)): if self._is_excluded(unit, phase): for l in self.adjacent[unit]: depcount[l] -= 1 # find start units for unit in range(len(depcount)): count = depcount[unit] if count == 0: queue.put(unit) # run while not queue.empty(): unit = queue.get() if self._is_excluded(unit, phase): continue yield unit for l in self.adjacent[unit]: depcount[l] -= 1 if depcount[l] == 0: queue.put(l) def _reverse_toporder(self, phase = None): depcount = [len(outunits) for outunits in self.adjacent] queue = Queue.Queue() # remove dep from excluded units for unit in range(len(depcount)): if self._is_excluded(unit, phase): for l in self.reverse_adjacent[unit]: depcount[l] -= 1 # find start units for unit in range(len(depcount)): count = depcount[unit] if count == 0: queue.put(unit) # run while not queue.empty(): unit = queue.get() if self._is_excluded(unit, phase): continue yield unit for l in self.reverse_adjacent[unit]: depcount[l] -= 1 if depcount[l] == 0: queue.put(l) def compute_size(self, phase = 'TRAIN'): ''' Perform the compute_size phase before running ''' unit_to_tops = [{} for name in self.units] for u in self._toporder(phase): from_btm = {} for btm in self.reverse_adjacent[u]: from_btm.update(unit_to_tops[btm]) self.units[u].compute_size(from_btm, unit_to_tops[u]) ''' for u in self._toporder(phase): print self.units[u].name print self.units[u].out_shape print self.units[u].rec_on_ori print self.units[u].stride_on_ori print self.units[u].start_on_ori exit(0) ''' def forward(self, phase = 'TRAIN'): ''' Perform the forward pass ''' unit_to_tops = [{} for name in self.units] for u in self._toporder(phase): from_btm = {} for btm in self.reverse_adjacent[u]: from_btm.update(unit_to_tops[btm]) self.units[u].forward(from_btm, unit_to_tops[u], phase) def forward_check(self): ''' Check forward function, use the same batch of data, remove random ''' unit_to_tops = [{} for name in self.units] for u in self._toporder('TEST'): from_btm = {} for btm in self.reverse_adjacent[u]: from_btm.update(unit_to_tops[btm]) self.units[u].forward(from_btm, unit_to_tops[u], 'CHECK') def backward(self, phase = 'TRAIN'): ''' Perform the backward pass ''' unit_to_btms = [{} for name in self.units] for u in self._reverse_toporder(phase): from_top = {} for top in self.adjacent[u]: for keys in unit_to_btms[top]: if keys in from_top: from_top[keys] += unit_to_btms[top][keys] else: from_top[keys] = unit_to_btms[top][keys] self.units[u].backward(from_top, unit_to_btms[u], phase) def update(self, uid): ''' Update weights of one compute unit of the given uid :param int uid: id of the compute unit to update ''' self.units[uid].weight_update(self.current_lr, self.base_weight_decay, self.momentum, self.batch_size) def weight_update(self): ''' Update weights for all units ''' for i in range(len(self.units)): self.update(i) def __str__(self): ret = 'digraph G {\n' for uid in range(len(self.units)): ret += 'n' + str(uid) + ' [label="' + self.units[uid].name + '"]\n' for uid in range(len(self.units)): for nuid in self.adjacent[uid]: ret += 'n' + str(uid) + ' -> n' + str(nuid) + '\n' return ret + '}\n' ``` #### File: owl/net/tools.py ```python import math import sys import time import numpy as np import owl from net import Net from net_helper import CaffeNetBuilder from caffe import * from PIL import Image import scipy import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt class HeatmapVisualizer: ''' Class of heatmap visualizer. Heat map can reveal which part of the activation is important. This information is useful when conducting detection and segmentation tasks. :ivar str solver_file: name of the solver_file, it will tell Minerva the network configuration and model saving path :ivar snapshot: saved model snapshot index :ivar str layer_name: name of the layer whose activation will be viusualized as heatmap :ivar str result_path: path for the result of visualization, heatmapvisualizer will generate a heatmap jpg for each testing image and save the image under result path. :ivar gpu: the gpu to run testing ''' def __init__(self, solver_file, snapshot, gpu_idx = 0): self.solver_file = solver_file self.snapshot = snapshot self.gpu = owl.create_gpu_device(gpu_idx) owl.set_device(self.gpu) def build_net(self): self.owl_net = Net() self.builder = CaffeNetBuilder(self.solver_file) self.snapshot_dir = self.builder.snapshot_dir self.builder.build_net(self.owl_net) self.owl_net.compute_size('TEST') self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot) def run(s, layer_name, result_path): ''' Run heatmap visualizer :param str layer_name: the layer to visualize :param str result_path: the path to save heatmap ''' feature_unit = s.owl_net.units[s.owl_net.name_to_uid[layer_name][0]] #We need the testing data unit data_unit = None for i in range(len(s.owl_net.name_to_uid['data'])): if s.owl_net.units[s.owl_net.name_to_uid['data'][i]].params.include[0].phase == 1: data_unit = s.owl_net.units[s.owl_net.name_to_uid['data'][i]] assert(data_unit) #get the mean data bp = BlobProto() #get mean file if len(data_unit.params.transform_param.mean_file) == 0: mean_data = np.ones([3, 256, 256], dtype=np.float32) assert(len(data_unit.params.transform_param.mean_value) == 3) mean_data[0] = data_unit.params.transform_param.mean_value[0] mean_data[1] = data_unit.params.transform_param.mean_value[1] mean_data[2] = data_unit.params.transform_param.mean_value[2] h_w = 256 else: with open(data_unit.params.transform_param.mean_file, 'rb') as f: bp.ParseFromString(f.read()) mean_narray = np.array(bp.data, dtype=np.float32) h_w = np.sqrt(np.shape(mean_narray)[0] / 3) mean_data = np.array(bp.data, dtype=np.float32).reshape([3, h_w, h_w]) #get the cropped img crop_size = data_unit.params.transform_param.crop_size crop_h_w = (h_w - crop_size) / 2 mean_data = mean_data[:, crop_h_w:crop_h_w + crop_size, crop_h_w:crop_h_w + crop_size] cur_img = 0 for testiteridx in range(s.owl_net.solver.test_iter[0]): s.owl_net.forward('TEST') feature = feature_unit.out.to_numpy() feature_shape = np.shape(feature) data = data_unit.out.to_numpy() img_num = feature_shape[0] #processing each image for imgidx in range(img_num): img_feature = feature[imgidx,:] #get the image gbr_img_data = data[imgidx,:] + mean_data img_data = np.zeros([data_unit.crop_size, data_unit.crop_size, 3], dtype=np.float32) img_data[:,:,0] = gbr_img_data[2,:,:] img_data[:,:,1] = gbr_img_data[1,:,:] img_data[:,:,2] = gbr_img_data[0,:,:] img_data /= 256 #get the heatmap f_h = feature_shape[2] f_w = feature_shape[3] f_c = feature_shape[1] heatmap = np.zeros([f_h, f_w], dtype=np.float32) for cidx in range(f_c): feature_map = img_feature[cidx,:] f = np.max(np.max(feature_map)) - np.mean(np.mean(feature_map)) heatmap = heatmap + f * f * feature_map #resize heatmap = scipy.misc.imresize(heatmap,[data_unit.crop_size, data_unit.crop_size]) #save fig, ax = plt.subplots(1,2) ax[0].axis('off') ax[1].axis('off') ax[0].imshow(img_data, aspect='equal') ax[1].imshow(heatmap, aspect='equal') #ax[1] = plt.pcolor(heatmap) info = '%s/%d.jpg' % (result_path, cur_img) print info fig.savefig(info) plt.close('all') cur_img += 1 print "Finish One Batch %d" % (testiteridx) feature_file.close() ``` #### File: owl/net/trainer.py ```python import math import sys import time import numpy as np import owl from net import Net import net from net_helper import CaffeNetBuilder from caffe import * from PIL import Image class NetTrainer: ''' Class for training neural network Allows user to train using Caffe's network configure format but on multiple GPUs. One could use NetTrainer as follows: >>> trainer = NetTrainer(solver_file, snapshot, num_gpu) >>> trainer.build_net() >>> trainer.run() :ivar str solver_file: path of the solver file in Caffe's proto format :ivar int snapshot: the idx of snapshot to start with :ivar int num_gpu: the number of gpu to use :ivar int sync_freq: the frequency to stop lazy evaluation and print some information. The frequency means every how many minibatches will the trainer call ``owl.wait_for_all()``. Note that this will influence the training speed. Normally, the higher value is given, the faster the training speed but the more memory is used during execution. ''' def __init__(self, solver_file, snapshot = 0, num_gpu = 1, sync_freq=1): self.solver_file = solver_file self.snapshot = snapshot self.num_gpu = num_gpu self.sync_freq = sync_freq self.gpu = [owl.create_gpu_device(i) for i in range(num_gpu)] def build_net(self): ''' Build network structure using Caffe's proto definition. It will also initialize the network either from given snapshot or from scratch (using proper initializer). During initialization, it will first try to load weight from snapshot. If failed, it will then initialize the weight accordingly. ''' self.owl_net = Net() self.builder = CaffeNetBuilder(self.solver_file) self.snapshot_dir = self.builder.snapshot_dir self.builder.build_net(self.owl_net, self.num_gpu) self.owl_net.compute_size() self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot) def run(s): ''' Run the training algorithm on multiple GPUs The basic logic is similar to the traditional single GPU training code as follows (pseudo-code):: for epoch in range(MAX_EPOCH): for i in range(NUM_MINI_BATCHES): # load i^th minibatch minibatch = loader.load(i, MINI_BATCH_SIZE) net.ff(minibatch.data) net.bp(minibatch.label) grad = net.gradient() net.update(grad, MINI_BATCH_SIZE) With Minerva's lazy evaluation and dataflow engine, we are able to modify the above logic to perform data parallelism on multiple GPUs (pseudo-code):: for epoch in range(MAX_EPOCH): for i in range(0, NUM_MINI_BATCHES, NUM_GPU): gpu_grad = [None for i in range(NUM_GPU)] for gpuid in range(NUM_GPU): # specify which gpu following codes are running on owl.set_device(gpuid) # each minibatch is split among GPUs minibatch = loader.load(i + gpuid, MINI_BATCH_SIZE / NUM_GPU) net.ff(minibatch.data) net.bp(minibatch.label) gpu_grad[gpuid] = net.gradient() net.accumulate_and_update(gpu_grad, MINI_BATCH_SIZE) So each GPU will take charge of one *mini-mini batch* training, and since all their ``ff``, ``bp`` and ``gradient`` calculations are independent among each others, they could be paralleled naturally using Minerva's DAG engine. The only problem let is ``accumulate_and_update`` of the the gradient from all GPUs. If we do it on one GPU, that GPU would become a bottleneck. The solution is to also partition the workload to different GPUs (pseudo-code):: def accumulate_and_update(gpu_grad, MINI_BATCH_SIZE): num_layers = len(gpu_grad[0]) for layer in range(num_layers): upd_gpu = layer * NUM_GPU / num_layers # specify which gpu to update the layer owl.set_device(upd_gpu) for gid in range(NUM_GPU): if gid != upd_gpu: gpu_grad[upd_gpu][layer] += gpu_grad[gid][layer] net.update_layer(layer, gpu_grad[upd_gpu][layer], MINI_BATCH_SIZE) Since the update of each layer is independent among each others, the update could be paralleled affluently. Minerva's dataflow engine transparently handles the dependency resolving, scheduling and memory copying among different devices, so users don't need to care about that. ''' wgrad = [[] for i in range(s.num_gpu)] bgrad = [[] for i in range(s.num_gpu)] last = time.time() wunits = s.owl_net.get_weighted_unit_ids() last_start = time.time() start_idx = s.snapshot * s.owl_net.solver.snapshot end_idx = s.owl_net.solver.max_iter for iteridx in range(start_idx, end_idx): # get the learning rate if s.owl_net.solver.lr_policy == "poly": s.owl_net.current_lr = s.owl_net.base_lr * pow(1 - float(iteridx) / s.owl_net.solver.max_iter, s.owl_net.solver.power) elif s.owl_net.solver.lr_policy == "step": s.owl_net.current_lr = s.owl_net.base_lr * pow(s.owl_net.solver.gamma, iteridx / s.owl_net.solver.stepsize) # train on multi-gpu for gpuid in range(s.num_gpu): owl.set_device(s.gpu[gpuid]) s.owl_net.forward('TRAIN') s.owl_net.backward('TRAIN') for wid in wunits: wgrad[gpuid].append(s.owl_net.units[wid].weightgrad) bgrad[gpuid].append(s.owl_net.units[wid].biasgrad) # weight update for i in range(len(wunits)): wid = wunits[i] upd_gpu = i * s.num_gpu / len(wunits) owl.set_device(s.gpu[upd_gpu]) for gid in range(s.num_gpu): if gid == upd_gpu: continue wgrad[upd_gpu][i] += wgrad[gid][i] bgrad[upd_gpu][i] += bgrad[gid][i] s.owl_net.units[wid].weightgrad = wgrad[upd_gpu][i] s.owl_net.units[wid].biasgrad = bgrad[upd_gpu][i] s.owl_net.update(wid) if iteridx % s.sync_freq == 0: owl.wait_for_all() thistime = time.time() - last speed = s.owl_net.batch_size * s.sync_freq / thistime print "Finished training %d minibatch (time: %s; speed: %s img/s)" % (iteridx, thistime, speed) last = time.time() wgrad = [[] for i in range(s.num_gpu)] # reset gradients bgrad = [[] for i in range(s.num_gpu)] # decide whether to display loss if (iteridx + 1) % (s.owl_net.solver.display) == 0: lossunits = s.owl_net.get_loss_units() for lu in lossunits: print "Training Loss %s: %f" % (lu.name, lu.getloss()) # decide whether to test if (iteridx + 1) % (s.owl_net.solver.test_interval) == 0: acc_num = 0 test_num = 0 for testiteridx in range(s.owl_net.solver.test_iter[0]): s.owl_net.forward('TEST') all_accunits = s.owl_net.get_accuracy_units() accunit = all_accunits[len(all_accunits)-1] #accunit = all_accunits[0] test_num += accunit.batch_size acc_num += (accunit.batch_size * accunit.acc) print "Accuracy the %d mb: %f" % (testiteridx, accunit.acc) sys.stdout.flush() print "Testing Accuracy: %f" % (float(acc_num)/test_num) # decide whether to save model if (iteridx + 1) % (s.owl_net.solver.snapshot) == 0: print "Save to snapshot %d, current lr %f" % ((iteridx + 1) / (s.owl_net.solver.snapshot), s.owl_net.current_lr) s.builder.save_net_to_file(s.owl_net, s.snapshot_dir, (iteridx + 1) / (s.owl_net.solver.snapshot)) sys.stdout.flush() def gradient_checker(s, checklayer_name): ''' Check backpropagation on multiple GPUs ''' h = 1e-2 threshold = 1e-4 checklayer = s.owl_net.units[s.owl_net.name_to_uid[checklayer_name][0]] losslayer = [] for i in xrange(len(s.owl_net.units)): if isinstance(s.owl_net.units[i], net.SoftmaxUnit): losslayer.append(i) last = None ''' wunits = [] for i in xrange(len(s.owl_net.units)): if isinstance(s.owl_net.units[i], net.WeightedComputeUnit): wunits.append(i) ''' wunits = s.owl_net.get_weighted_unit_ids() accunits = s.owl_net.get_accuracy_units() owl.set_device(s.gpu[0]) for iteridx in range(100): #disturb the weights oriweight = checklayer.weight npweight = checklayer.weight.to_numpy() weightshape = np.shape(npweight) npweight = npweight.reshape(np.prod(weightshape[0:len(weightshape)])) position = np.random.randint(0, np.shape(npweight)[0]) disturb = np.zeros(np.shape(npweight), dtype = np.float32) disturb[position] = h oriposval = npweight[position] npweight += disturb newposval = npweight[position] npweight = npweight.reshape(weightshape) checklayer.weight = owl.from_numpy(npweight) all_loss = 0 # train on multi-gpu s.owl_net.forward_check() for i in range(len(losslayer)): if len(s.owl_net.units[losslayer[i]].loss_weight) == 1: all_loss += (s.owl_net.units[losslayer[i]].getloss() * s.owl_net.units[losslayer[i]].loss_weight[0]) else: all_loss += s.owl_net.units[losslayer[i]].getloss() #get origin loss checklayer.weight = oriweight ori_all_loss = 0 # train on multi-gpu s.owl_net.forward_check() for i in range(len(losslayer)): if len(s.owl_net.units[losslayer[i]].loss_weight) == 1: ori_all_loss += (s.owl_net.units[losslayer[i]].getloss() * s.owl_net.units[losslayer[i]].loss_weight[0]) else: ori_all_loss += s.owl_net.units[losslayer[i]].getloss() s.owl_net.backward('TEST') #get analytic gradient npgrad = checklayer.weightgrad.to_numpy() npgrad = npgrad.reshape(np.prod(weightshape[0:len(weightshape)])) analy_grad = npgrad[position] / s.owl_net.units[losslayer[i]].out.shape[1] num_grad = (all_loss - ori_all_loss) / h info = "Gradient Check at positon: %d analy: %f num: %f ratio: %f" % (position, analy_grad, num_grad, analy_grad / num_grad) print info class NetTester: ''' Class for performing testing, it can be single-view or multi-view, can be top-1 or top-5 Run it as:: >>> tester = NetTester(solver_file, softmax_layer, accuracy_layer, snapshot, gpu_idx) >>> tester.build_net() >>> tester.run(multiview) :ivar str solver_file: path of the solver file in Caffe's proto format :ivar int snapshot: the snapshot for testing :ivar str softmax_layer_name: name of the softmax layer that produce prediction :ivar str accuracy_layer_name: name of the accuracy layer that produce prediction :ivar int gpu_idx: which gpu to perform the test :ivar bool multiview: whether to use multiview tester ''' def __init__(self, solver_file, softmax_layer_name, accuracy_layer_name, snapshot, gpu_idx = 0): self.solver_file = solver_file self.softmax_layer_name = softmax_layer_name self.accuracy_layer_name = accuracy_layer_name self.snapshot = snapshot self.gpu = owl.create_gpu_device(gpu_idx) owl.set_device(self.gpu) def build_net(self): self.owl_net = Net() self.builder = CaffeNetBuilder(self.solver_file) self.snapshot_dir = self.builder.snapshot_dir self.builder.build_net(self.owl_net) self.owl_net.compute_size('TEST') self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot) def run(s, multiview): #multi-view test acc_num = 0 test_num = 0 loss_unit = s.owl_net.units[s.owl_net.name_to_uid[s.softmax_layer_name][0]] accunit = s.owl_net.units[s.owl_net.name_to_uid[s.accuracy_layer_name][0]] data_unit = None for data_idx in range(len(s.owl_net.data_layers)): for i in range(len(s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]])): if s.owl_net.units[s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]][i]].params.include[0].phase == 1: data_unit = s.owl_net.units[s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]][i]] assert(data_unit) if multiview == True: data_unit.multiview = True for testiteridx in range(s.owl_net.solver.test_iter[0]): if multiview == True: for i in range(10): s.owl_net.forward('TEST') if i == 0: softmax_val = loss_unit.ff_y batch_size = softmax_val.shape[1] softmax_label = loss_unit.y else: softmax_val = softmax_val + loss_unit.ff_y test_num += batch_size if accunit.top_k == 5: predict = softmax_val.to_numpy() top_5 = np.argsort(predict, axis=1)[:,::-1] ground_truth = softmax_label.max_index(0).to_numpy() correct = 0 for i in range(batch_size): for t in range(5): if ground_truth[i] == top_5[i,t]: correct += 1 break acc_num += correct else: predict = softmax_val.max_index(0) truth = softmax_label.max_index(0) correct = (predict - truth).count_zero() acc_num += correct else: s.owl_net.forward('TEST') all_accunits = s.owl_net.get_accuracy_units() batch_size = accunit.batch_size test_num += batch_size acc_num += (batch_size * accunit.acc) correct = batch_size * accunit.acc print "Accuracy of the %d mb: %f, batch_size: %d, current mean accuracy: %f" % (testiteridx, (correct * 1.0)/batch_size, batch_size, float(acc_num)/test_num) sys.stdout.flush() print "Testing Accuracy: %f" % (float(acc_num)/test_num) class FeatureExtractor: ''' Class for extracting trained features Feature will be stored in a txt file as a matrix. The size of the feature matrix is [num_img, feature_dimension] Run it as:: >>> extractor = FeatureExtractor(solver_file, snapshot, gpu_idx) >>> extractor.build_net() >>> extractor.run(layer_name, feature_path) :ivar str solver_file: path of the solver file in Caffe's proto format :ivar int snapshot: the snapshot for testing :ivar str layer_name: name of the ayer that produce feature :ivar int gpu_idx: which gpu to perform the test ''' def __init__(self, solver_file, snapshot, gpu_idx = 0): self.solver_file = solver_file self.snapshot = snapshot self.gpu = owl.create_gpu_device(gpu_idx) owl.set_device(self.gpu) def build_net(self): self.owl_net = Net() self.builder = CaffeNetBuilder(self.solver_file) self.snapshot_dir = self.builder.snapshot_dir self.builder.build_net(self.owl_net) self.owl_net.compute_size('TEST') self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot) def run(s, layer_name, feature_path): ''' Run feature extractor :param str layer_name: the layer to extract feature from :param str feature_path: feature output path ''' feature_unit = s.owl_net.units[s.owl_net.name_to_uid[layer_name][0]] feature_file = open(feature_path, 'w') batch_dir = 0 for testiteridx in range(s.owl_net.solver.test_iter[0]): s.owl_net.forward('TEST') feature = feature_unit.out.to_numpy() feature_shape = np.shape(feature) img_num = feature_shape[0] feature_length = np.prod(feature_shape[1:len(feature_shape)]) feature = np.reshape(feature, [img_num, feature_length]) for imgidx in range(img_num): for feaidx in range(feature_length): info ='%f ' % (feature[imgidx, feaidx]) feature_file.write(info) feature_file.write('\n') print "Finish One Batch %d" % (batch_dir) batch_dir += 1 feature_file.close() class FilterVisualizer: ''' Class of filter visualizer. Find the most interested patches of a filter to demostrate the pattern that filter insterested in. It first read in several images to conduct feed-forward and find the patches have the biggest activation value for a filter. Those patches usually contains the pattern of that filter. :ivar str solver_file: name of the solver_file, it will tell Minerva the network configuration and model saving path :ivar snapshot: saved model snapshot index :ivar str layer_name: name of the layer that will be viusualized, we will visualize all the filters in that layer in one time :ivar str result_path: path for the result of visualization, filtervisualizer will generate a jpg contains the nine selected patches for each filter in layer_name and save the image under result path. :ivar gpu: the gpu to run testing ''' def __init__(self, solver_file, snapshot, layer_name, result_path, gpu_idx = 0): self.solver_file = solver_file self.snapshot = snapshot self.layer_name = layer_name self.result_path = result_path self.gpu = owl.create_gpu_device(gpu_idx) owl.set_device(self.gpu) def build_net(self): self.owl_net = Net() self.builder = CaffeNetBuilder(self.solver_file) self.snapshot_dir = self.builder.snapshot_dir self.builder.build_net(self.owl_net) self.owl_net.compute_size('TEST') self.builder.init_net_from_file(self.owl_net, self.snapshot_dir, self.snapshot) def run(s): #Need Attention, here we may have multiple data layer, just choose the TEST layer data_unit = None for data_idx in range(len(s.owl_net.data_layers)): for i in range(len(s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]])): if s.owl_net.units[s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]][i]].params.include[0].phase == 1: data_unit = s.owl_net.units[s.owl_net.name_to_uid[s.owl_net.data_layers[data_idx]][i]] assert(data_unit) bp = BlobProto() #get mean file if len(data_unit.params.transform_param.mean_file) == 0: mean_data = np.ones([3, 256, 256], dtype=np.float32) assert(len(data_unit.params.transform_param.mean_value) == 3) mean_data[0] = data_unit.params.transform_param.mean_value[0] mean_data[1] = data_unit.params.transform_param.mean_value[1] mean_data[2] = data_unit.params.transform_param.mean_value[2] h_w = 256 else: with open(data_unit.params.transform_param.mean_file, 'rb') as f: bp.ParseFromString(f.read()) mean_narray = np.array(bp.data, dtype=np.float32) h_w = np.sqrt(np.shape(mean_narray)[0] / 3) mean_data = np.array(bp.data, dtype=np.float32).reshape([3, h_w, h_w]) #get the cropped img crop_size = data_unit.params.transform_param.crop_size crop_h_w = (h_w - crop_size) / 2 mean_data = mean_data[:, crop_h_w:crop_h_w + crop_size, crop_h_w:crop_h_w + crop_size] feature_unit = s.owl_net.units[s.owl_net.name_to_uid[s.layer_name][0]] batch_dir = 0 #we use 10000 images to conduct visualization all_data = np.zeros([10000, 3, crop_size, crop_size], dtype=np.float32) feature_shape = feature_unit.out_shape all_feature = np.zeros([10000, feature_shape[2], feature_shape[1], feature_shape[0]], dtype=np.float32) print 'Begin Generating Activations from Testing Set' curimg = 0 for testiteridx in range(s.owl_net.solver.test_iter[0]): s.owl_net.forward('TEST') feature = feature_unit.out.to_numpy() batch_size = np.shape(feature)[0] all_feature[curimg:curimg+batch_size,:] = feature data = data_unit.out.to_numpy() all_data[curimg:curimg+batch_size,:] = data curimg += batch_size #HACK TODO: only take 10000 images if curimg >= 10000: break info = 'Now Processed %d images' % (curimg) print info print 'Begin Selecting Patches' #get the result patch_shape = feature_unit.rec_on_ori min_val = -float('inf') #add back the mean file for i in range(np.shape(all_data)[0]): all_data[i,:,:,:] += mean_data if len(feature_shape) == 4: #iter for each filter, for each filter, we choose nine patch from different image for i in range(feature_shape[2]): #create the result image for nine patches res_img = np.zeros([feature_unit.rec_on_ori * 3, feature_unit.rec_on_ori * 3, 3]) filter_feature = np.copy(all_feature[:,i,:,:]) for patchidx in range(9): maxidx = np.argmax(filter_feature) colidx = maxidx % feature_shape[0] maxidx = (maxidx - colidx) / feature_shape[0] rowidx = maxidx % feature_shape[1] maxidx = (maxidx - rowidx) / feature_shape[1] imgidx = maxidx info = '%d %d %d' % (imgidx, rowidx, colidx) filter_feature[imgidx,:,:] = min_val #get the patch place patch_start_row = max(0,feature_unit.start_on_ori + rowidx * feature_unit.stride_on_ori) patch_end_row = min(feature_unit.start_on_ori + rowidx * feature_unit.stride_on_ori + feature_unit.rec_on_ori, data_unit.crop_size) if patch_start_row == 0: patch_end_row = feature_unit.rec_on_ori if patch_end_row == data_unit.crop_size: patch_start_row = data_unit.crop_size - feature_unit.rec_on_ori patch_start_col = max(0,feature_unit.start_on_ori + colidx * feature_unit.stride_on_ori) patch_end_col = min(feature_unit.start_on_ori + colidx * feature_unit.stride_on_ori + feature_unit.rec_on_ori, data_unit.crop_size) if patch_start_col == 0: patch_end_col = feature_unit.rec_on_ori if patch_end_col == data_unit.crop_size: patch_start_col = data_unit.crop_size - feature_unit.rec_on_ori patch = all_data[imgidx, :, patch_start_row:patch_end_row, patch_start_col:patch_end_col] #save img to image row_in_res = patchidx / 3 col_in_res = patchidx % 3 st_row = row_in_res * patch_shape st_col = col_in_res * patch_shape #turn gbr into rgb res_img[st_row:st_row+patch_end_row - patch_start_row, st_col:st_col + patch_end_col - patch_start_col, 2] = patch[0,:,:] res_img[st_row:st_row+patch_end_row - patch_start_row, st_col:st_col + patch_end_col - patch_start_col, 1] = patch[1,:,:] res_img[st_row:st_row+patch_end_row - patch_start_row, st_col:st_col + patch_end_col - patch_start_col, 0] = patch[2,:,:] #save img res_img = Image.fromarray(res_img.astype(np.uint8)) res_path = '%s/%d.jpg' % (s.result_path, i) print res_path res_img.save(res_path, format = 'JPEG') else: #Fully Layers #iter for each filter, for each filter, we choose nine patch from different image print feature_shape for i in range(feature_shape[0]): #create the result image for nine patches res_img = np.zeros([data_unit.crop_size * 3, data_unit.crop_size * 3, 3]) filter_feature = np.copy(all_feature[:,i]) for patchidx in range(9): maxidx = np.max_index(filter_feature) imgidx = maxidx filter_feature[imgidx] = min_val #save img to image row_in_res = patchidx / 3 col_in_res = patchidx % 3 st_row = row_in_res * data_unit.crop_size st_col = col_in_res * data_unit.crop_size #turn gbr into rgb patch = all_data[imgidx,:,:,:] res_img[st_row:st_row+data_unit.crop_size,st_col:st_col+data_unit.crop_size, 2] = patch[0,:,:] res_img[st_row:st_row+data_unit.crop_size,st_col:st_col+data_unit.crop_size, 1] = patch[1,:,:] res_img[st_row:st_row+data_unit.crop_size,st_col:st_col+data_unit.crop_size, 0] = patch[2,:,:] #save img res_img = Image.fromarray(res_img.astype(np.uint8)) res_path = '%s/%d.jpg' % (s.result_path, i) print res_path res_img.save(res_path, format = 'JPEG') ``` #### File: scripts/system/dag_pretty_print.py ```python import sys import Queue from dag_utils import Dag fname = sys.argv[1] dag = Dag(fname) dag.load() name_to_comp = {n : '' for n in dag.node_attr} remains = set(dag.node_attr.keys()) def get_device_id(n): n_ty = dag.node_attr[n]['type'] if n_ty == 'd': return dag.node_attr[n]['device_id'] else: succ = dag.adj[n][0] return dag.node_attr[succ]['device_id'] # topological order visited = {n : False for n in dag.node_attr} depcount = {n : len(prev) for n, prev in dag.rev_adj.iteritems()} queue = Queue.Queue() for n, c in depcount.iteritems(): if c == 0: queue.put(n) dev_to_comp = {} while not queue.empty(): dev_to_names = {} renew_dev = set() while not queue.empty(): n = queue.get() if visited[n]: continue visited[n] = True dev = get_device_id(n) if not dev in dev_to_names: dev_to_names[dev] = [] dev_to_names[dev].append(n) #renew_dev = set(dev_to_names.keys()) for prev in dag.rev_adj[n]: prev_dev = get_device_id(prev) if prev_dev != dev: renew_dev.add(prev_dev) renew_dev.add(dev) ''' for succ in dag.adj[n]: succ_dev = get_device_id(succ) if succ_dev != dev: renew_dev.add(succ_dev) renew_dev.add(dev) ''' for dev, names in dev_to_names.iteritems(): if not dev in dev_to_comp or dev in renew_dev: dev_to_comp[dev] = names[0] for n in names: name_to_comp[n] = dev_to_comp[dev] for succ in dag.adj[n]: depcount[succ] -= 1 if depcount[succ] == 0: queue.put(succ) # comp graph comp_to_names = {} comp_adj = {} comp_rev_adj = {} for n, c in name_to_comp.iteritems(): if not c in comp_to_names: comp_to_names[c] = [] comp_adj[c] = set() comp_rev_adj[c] = set() comp_to_names[c].append(n) for n in dag.node_attr: for succ in dag.adj[n]: if name_to_comp[n] != name_to_comp[succ]: comp_adj[name_to_comp[n]].add(name_to_comp[succ]) comp_rev_adj[name_to_comp[succ]].add(name_to_comp[n]) # do some merge to reduce #nodes def merge_to(c1, c2): # there is an edge c2->c1. the func then merge c1 to c2 comp_adj[c2].remove(c1) comp_adj[c2].update(comp_adj[c1]) comp_to_names[c2] += comp_to_names[c1] for succ in comp_adj[c1]: comp_rev_adj[succ].remove(c1) comp_rev_adj[succ].add(c2) # clear comp_to_names[c1] = [] comp_adj[c1] = set() comp_rev_adj[c1] = set() ''' depcount = {n : len(prev) for n, prev in comp_rev_adj.iteritems()} queue = Queue.Queue() for n, c in depcount.iteritems(): if c == 0: queue.put(n) dev_to_comp = {} while not queue.empty(): c = queue.get() succ_lst = comp_adj[c] dev = get_device_id(c) cand_merge = None for prev in comp_rev_adj[c]: if get_device_id(prev) == dev: succ_dev = dev for succ in comp_adj[prev]: if get_device_id(succ) != dev: succ_dev = get_device_id(succ) break if succ_dev == dev: cand_merge = prev break if cand_merge != None: tmp_rev = set(comp_rev_adj[c]) tmp_rev.remove(cand_merge) merge_to(c, cand_merge) for p in tmp_rev: comp_adj[p].remove(c) break #print c, '|', tmp_rev, ' v.s. ', prev, '|', comp_rev_adj[prev] for succ in succ_lst: depcount[succ] -= 1 if depcount[succ] == 0: queue.put(succ) ''' #print {c : len(ns) for c,ns in comp_to_names.iteritems()} #print comp_adj # draw def get_device_color(d): colors = ['red', 'blue', 'green', 'orange'] return colors[int(d)] def one_node_string(n): s = n + ' ' n_ty = dag.node_attr[n]['type'] if n_ty == 'd': s += '[shape=box,style=filled,label=\"\",color=' + get_device_color(get_device_id(n)) + ']' else: s += '[style=filled,color=' + get_device_color(get_device_id(n)) + ',label=\"' + dag.node_attr[n]['name'][0:6] + '\"]' return s def get_size(n): min_size = 1 max_size = 5 min_num = 1 max_num = 200 return min_size + (max_size - min_size) * float(n - min_num) / (max_num - min_num) def comp_node_string(c, ns): s = c + ' [shape=circle,style=bold' op_names = set() for n in ns: n_ty = dag.node_attr[n]['type'] if n_ty == 'o': op_names.add(dag.node_attr[n]['name'][0:6]) s += ',label=\"#' + str(len(ns)) + '\\n' + ';'.join(list(op_names)) + '\"' size = get_size(len(ns)) s += ',height=' + str(size) + ',width=' + str(size) s += ',color=' + get_device_color(get_device_id(c)) s += ']' return s num_comps = 0 with open(fname + '.dag', 'w') as f: f.write('digraph G {\n') for c, ns in comp_to_names.iteritems(): if len(ns) == 0: continue elif len(ns) == 1: f.write(one_node_string(ns[0]) + '\n') else: f.write(comp_node_string(c, ns) + '\n') num_comps += 1 for c, adj in comp_adj.iteritems(): for succ in adj: f.write(c + ' -> ' + succ + '\n') f.write('}\n') print '#comp:', num_comps ``` #### File: scripts/system/dag_utils.py ```python import sys class Dag: def __init__(self, fname): self.fname = fname self.node_attr = {} self.adj = {} self.rev_adj = {} def load(self): with open(self.fname, 'r') as f: line = f.readline() # line == 'Nodes:' line = f.readline() while not line.startswith('Edges:'): [name, attr] = line.strip().split('>>>>') self.node_attr[name] = {pair.split('===')[0] : pair.split('===')[1] for pair in attr.split(';;;')[0:-1]} self.adj[name] = [] self.rev_adj[name] = [] line = f.readline() line = f.readline() while len(line.strip()) != 0: [src, dst] = line.strip().split(' -> ') self.adj[src].append(dst) self.rev_adj[dst].append(src) line = f.readline() if __name__ == '__main__': dag = Dag(sys.argv[1]) dag.load() ```
{ "source": "jjzhang166/seahub", "score": 2 }
#### File: api2/endpoints/share_link_zip_task.py ```python import logging import os import json import posixpath from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from django.conf import settings from seahub.api2.throttling import UserRateThrottle from seahub.api2.utils import api_error from seahub.views.file import send_file_access_msg from seahub.share.models import FileShare from seahub.utils import is_windows_operating_system, \ is_pro_version import seaserv from seaserv import seafile_api logger = logging.getLogger(__name__) class ShareLinkZipTaskView(APIView): throttle_classes = (UserRateThrottle,) def get(self, request, format=None): """ Only used for download dir when view dir share link from web. Permission checking: 1. authenticated user OR anonymous user has passed email code check(if necessary); """ # permission check if is_pro_version() and settings.ENABLE_SHARE_LINK_AUDIT: if not request.user.is_authenticated() and \ not request.session.get('anonymous_email'): # if anonymous user has passed email code check, # then his/her email info will be in session. error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) # argument check share_link_token = request.GET.get('share_link_token', None) if not share_link_token: error_msg = 'share_link_token invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) req_path = request.GET.get('path', None) if not req_path: error_msg = 'path invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # recourse check fileshare = FileShare.objects.get_valid_dir_link_by_token(share_link_token) if not fileshare: error_msg = 'share_link_token %s not found.' % share_link_token return api_error(status.HTTP_404_NOT_FOUND, error_msg) if req_path[-1] != '/': req_path += '/' if req_path == '/': real_path = fileshare.path else: real_path = posixpath.join(fileshare.path, req_path.lstrip('/')) if real_path[-1] != '/': real_path += '/' repo_id = fileshare.repo_id repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) dir_id = seafile_api.get_dir_id_by_path(repo_id, real_path) if not dir_id: error_msg = 'Folder %s not found.' % real_path return api_error(status.HTTP_404_NOT_FOUND, error_msg) # get file server access token dir_name = repo.name if real_path == '/' else \ os.path.basename(real_path.rstrip('/')) dir_size = seafile_api.get_dir_size( repo.store_id, repo.version, dir_id) if dir_size > seaserv.MAX_DOWNLOAD_DIR_SIZE: error_msg = 'Unable to download directory "%s": size is too large.' % dir_name return api_error(status.HTTP_400_BAD_REQUEST, error_msg) try: seaserv.send_message('seahub.stats', 'dir-download\t%s\t%s\t%s\t%s' % (repo_id, fileshare.username, dir_id, dir_size)) except Exception as e: logger.error(e) is_windows = 0 if is_windows_operating_system(request): is_windows = 1 fake_obj_id = { 'obj_id': dir_id, 'dir_name': dir_name, 'is_windows': is_windows } username = request.user.username try: zip_token = seafile_api.get_fileserver_access_token( repo_id, json.dumps(fake_obj_id), 'download-dir', username) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) if not zip_token: error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) if request.session.get('anonymous_email'): request.user.username = request.session.get('anonymous_email') send_file_access_msg(request, repo, real_path, 'share-link') return Response({'zip_token': zip_token}) ``` #### File: seahub/api2/permissions.py ```python from rest_framework.permissions import BasePermission from django.conf import settings from seaserv import check_permission, is_repo_owner, ccnet_api from seahub.utils import is_pro_version SAFE_METHODS = ['GET', 'HEAD', 'OPTIONS'] class IsRepoWritable(BasePermission): """ Allows access only for user who has write permission to the repo. """ def has_permission(self, request, view, obj=None): if request.method in SAFE_METHODS: return True repo_id = view.kwargs.get('repo_id', '') user = request.user.username if request.user else '' if user and check_permission(repo_id, user) == 'rw': return True return False class IsRepoAccessible(BasePermission): """ Check whether user has Read or Write permission to a repo. """ def has_permission(self, request, view, obj=None): repo_id = view.kwargs.get('repo_id', '') user = request.user.username if request.user else '' return True if check_permission(repo_id, user) else False class IsRepoOwner(BasePermission): """ Check whether user is the owner of a repo. """ def has_permission(self, request, view, obj=None): repo_id = view.kwargs.get('repo_id', '') user = request.user.username if request.user else '' return True if is_repo_owner(user, repo_id) else False class IsGroupMember(BasePermission): """ Check whether user is in a group. """ def has_permission(self, request, view, obj=None): group_id = int(view.kwargs.get('group_id', '')) username = request.user.username if request.user else '' return True if ccnet_api.is_group_user(group_id, username) else False class CanInviteGuest(BasePermission): """Check user has permission to invite a guest. """ def has_permission(self, request, *args, **kwargs): return settings.ENABLE_GUEST_INVITATION and \ request.user.permissions.can_invite_guest() class CanGenerateShareLink(BasePermission): """Check user has permission to generate share link. """ def has_permission(self, request, *args, **kwargs): return request.user.permissions.can_generate_share_link() class CanGenerateUploadLink(BasePermission): """Check user has permission to generate upload link. """ def has_permission(self, request, *args, **kwargs): return request.user.permissions.can_generate_upload_link() class CanSendShareLinkMail(BasePermission): """Check user has permission to generate upload link. """ def has_permission(self, request, *args, **kwargs): return request.user.permissions.can_send_share_link_mail() class IsProVersion(BasePermission): """ Check whether Seafile is pro version """ def has_permission(self, request, *args, **kwargs): return is_pro_version() ``` #### File: seahub/base/context_processors.py ```python import re import os from django.conf import settings as dj_settings from constance import config from seahub.settings import SEAFILE_VERSION, SITE_TITLE, SITE_NAME, \ MAX_FILE_NAME, BRANDING_CSS, LOGO_PATH, LOGO_WIDTH, LOGO_HEIGHT,\ SHOW_REPO_DOWNLOAD_BUTTON, SITE_ROOT, ENABLE_GUEST_INVITATION, \ FAVICON_PATH, ENABLE_THUMBNAIL, THUMBNAIL_SIZE_FOR_ORIGINAL, \ MEDIA_ROOT, SHOW_LOGOUT_ICON try: from seahub.settings import SEACLOUD_MODE except ImportError: SEACLOUD_MODE = False from seahub.utils import HAS_FILE_SEARCH, EVENTS_ENABLED, \ TRAFFIC_STATS_ENABLED, is_pro_version try: from seahub.settings import ENABLE_PUBFILE except ImportError: ENABLE_PUBFILE = False try: from seahub.settings import ENABLE_SYSADMIN_EXTRA except ImportError: ENABLE_SYSADMIN_EXTRA = False try: from seahub.settings import MULTI_TENANCY except ImportError: MULTI_TENANCY = False from seahub.api2.endpoints.admin.logo import CUSTOM_LOGO_PATH from seahub.api2.endpoints.admin.favicon import CUSTOM_FAVICON_PATH def base(request): """ Add seahub base configure to the context. """ try: org = request.user.org except AttributeError: org = None # extra repo id from request path, use in search repo_id_patt = r".*/([a-f0-9]{8}-[a-f0-9]{4}-4[a-f0-9]{3}-[89ab][a-f0-9]{3}-[a-f0-9]{12})/.*" m = re.match(repo_id_patt, request.get_full_path()) search_repo_id = m.group(1) if m is not None else None file_server_root = config.FILE_SERVER_ROOT if not file_server_root.endswith('/'): file_server_root += '/' logo_path = LOGO_PATH favicon_path = FAVICON_PATH # filter ajax/api request out if (not request.is_ajax()) and ("api2/" not in request.path) and \ ("api/v2.1/" not in request.path): # get logo path custom_logo_file = os.path.join(MEDIA_ROOT, CUSTOM_LOGO_PATH) if os.path.exists(custom_logo_file): logo_path = CUSTOM_LOGO_PATH # get favicon path custom_favicon_file = os.path.join(MEDIA_ROOT, CUSTOM_FAVICON_PATH) if os.path.exists(custom_favicon_file): favicon_path = CUSTOM_FAVICON_PATH return { 'seafile_version': SEAFILE_VERSION, 'site_title': SITE_TITLE, 'branding_css': BRANDING_CSS, 'favicon_path': favicon_path, 'logo_path': logo_path, 'logo_width': LOGO_WIDTH, 'logo_height': LOGO_HEIGHT, 'seacloud_mode': SEACLOUD_MODE, 'cloud_mode': request.cloud_mode, 'org': org, 'site_name': SITE_NAME, 'enable_signup': config.ENABLE_SIGNUP, 'max_file_name': MAX_FILE_NAME, 'has_file_search': HAS_FILE_SEARCH, 'enable_pubfile': ENABLE_PUBFILE, 'show_repo_download_button': SHOW_REPO_DOWNLOAD_BUTTON, 'share_link_password_min_length': config.SHARE_LINK_PASSWORD_MIN_LENGTH, 'repo_password_min_length': config.REPO_PASSWORD_MIN_LENGTH, 'events_enabled': EVENTS_ENABLED, 'traffic_stats_enabled': TRAFFIC_STATS_ENABLED, 'sysadmin_extra_enabled': ENABLE_SYSADMIN_EXTRA, 'multi_tenancy': MULTI_TENANCY, 'multi_institution': getattr(dj_settings, 'MULTI_INSTITUTION', False), 'search_repo_id': search_repo_id, 'SITE_ROOT': SITE_ROOT, 'constance_enabled': dj_settings.CONSTANCE_ENABLED, 'FILE_SERVER_ROOT': file_server_root, 'enable_thumbnail': ENABLE_THUMBNAIL, 'thumbnail_size_for_original': THUMBNAIL_SIZE_FOR_ORIGINAL, 'enable_guest_invitation': ENABLE_GUEST_INVITATION, 'enable_terms_and_conditions': dj_settings.ENABLE_TERMS_AND_CONDITIONS, 'show_logout_icon': SHOW_LOGOUT_ICON, 'is_pro': True if is_pro_version() else False, } ``` #### File: seahub/onlyoffice/views.py ```python import json import logging import os import requests import urllib2 from django.core.cache import cache from django.http import HttpResponse from django.views.decorators.csrf import csrf_exempt from seaserv import seafile_api from .settings import VERIFY_ONLYOFFICE_CERTIFICATE from seahub.utils import gen_file_upload_url # Get an instance of a logger logger = logging.getLogger(__name__) @csrf_exempt def onlyoffice_editor_callback(request): #request.body: # {"key":"<KEY>","status":1, # "users":["uid-1488351242769"], # "actions":[{"type":1,"userid":"uid-1488351242769"}]} # "key":"<KEY>","status":2,"url":"https://13.113.111.2/cache/files/Khirz6zTPdfd8_6379/output.docx/output.docx?md5=5oL0qGUqXw72D85f28JaFg==&expires=1488956681&disposition=attachment&ooname=output.docx","changesurl":"https://13.113.111.2/cache/files/Khirz6zTPdfd8_6379/changes.zip/changes.zip?md5=vx3VYwaPEOxtZDA_3yuVrg==&expires=1488956681&disposition=attachment&ooname=output.zip","history":{"serverVersion":"4.2.10","changes":[{"created":"2017-03-01 07:03:11","user":{"id":"uid-1488351774447","name":"Anonymous"}}]},"users":["uid-1488351774447"],"actions":[{"type":0,"userid":"uid-1488351774447"}]} logger.debug(request.body) if request.method != 'POST': return HttpResponse('{"error": 0}') post_data = json.loads(request.body) status = int(post_data.get('status', -1)) if status == 2: # document is ready for saving # the link to the edited document to be saved with the document storage # service. The link is present when the status value is equal to 2 or 3 only. url = post_data.get('url') context = None if VERIFY_ONLYOFFICE_CERTIFICATE is False: import ssl context = ssl._create_unverified_context() try: file_content = urllib2.urlopen(url, context=context).read() except urllib2.URLError as e: logger.error(e) else: # update file doc_key = post_data.get('key') doc_info = json.loads(cache.get("ONLYOFFICE_%s" % doc_key)) repo_id = doc_info['repo_id'] file_path = doc_info['file_path'] username = doc_info['username'] update_token = seafile_api.get_fileserver_access_token(repo_id, 'dummy', 'update', username) if not update_token: return HttpResponse('{"error": 0}') update_url = gen_file_upload_url(update_token, 'update-api') files = { 'file': file_content, 'file_name': os.path.basename(file_path), 'target_file': file_path, } requests.post(update_url, files=files) logger.info('%s updated by %s' % (repo_id + file_path, username)) return HttpResponse('{"error": 0}') ``` #### File: endpoints/admin/test_logo.py ```python import os from tests.api.apitestbase import ApiTestBase from tests.common.utils import urljoin from tests.common.common import BASE_URL from django.core.urlresolvers import reverse from seahub.settings import MEDIA_ROOT from seahub.api2.endpoints.admin.logo import CUSTOM_LOGO_PATH class AdminLogoTest(ApiTestBase): def test_update_logo(self): custom_symlink = os.path.join(MEDIA_ROOT, os.path.dirname(CUSTOM_LOGO_PATH)) if os.path.exists(custom_symlink): os.remove(custom_symlink) assert not os.path.exists(custom_symlink) # update user avatar logo_url = reverse('api-v2.1-admin-logo') logo_url = urljoin(BASE_URL, logo_url) logo_file = os.path.join(os.getcwd(), 'media/img/seafile-logo.png') with open(logo_file) as f: json_resp = self.admin_post(logo_url, files={'logo': f}).json() assert json_resp['success'] == True assert os.path.exists(custom_symlink) assert os.path.islink(custom_symlink) def test_update_logo_with_invalid_user_permission(self): # update user avatar logo_url = reverse('api-v2.1-admin-logo') logo_url = urljoin(BASE_URL, logo_url) logo_file = os.path.join(os.getcwd(), 'media/img/seafile-logo.png') with open(logo_file) as f: json_resp = self.post(logo_url, files={'logo': f}, expected=403).json() ``` #### File: api/endpoints/test_shared_repos.py ```python import json from django.core.urlresolvers import reverse import seaserv from seaserv import seafile_api from seahub.profile.models import Profile from seahub.test_utils import BaseTestCase from tests.common.utils import randstring class SharedReposTest(BaseTestCase): def share_repo_to_user(self): seafile_api.share_repo( self.repo.id, self.user.username, self.admin.username, 'rw') def share_repo_to_group(self): seafile_api.set_group_repo( self.repo.id, self.group.id, self.user.username, 'rw') def share_repo_to_public(self): seafile_api.add_inner_pub_repo( self.repo.id, 'rw') def setUp(self): self.repo_id = self.repo.id self.group_id = self.group.id self.user_name = self.user.username self.admin_name = self.admin.username self.url = reverse('api-v2.1-shared-repos') def tearDown(self): seafile_api.remove_share(self.repo_id, self.user_name, self.admin_name) seafile_api.unset_group_repo(self.repo_id, self.group_id, self.user_name) seafile_api.remove_inner_pub_repo(self.repo_id) self.remove_repo() def test_can_get_when_share_to_user(self): self.share_repo_to_user() contact_email = <EMAIL>' % (randstring(6), randstring(6)) nickname = randstring(6) p = Profile.objects.add_or_update(self.admin_name, nickname=nickname) p.contact_email = contact_email p.save() self.login_as(self.user) resp = self.client.get(self.url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['share_type'] == 'personal' assert json_resp[0]['repo_id'] == self.repo_id assert json_resp[0]['user_email'] == self.admin_name assert json_resp[0]['user_name'] == nickname assert json_resp[0]['contact_email'] == contact_email assert len(json_resp[0]['modifier_email']) > 0 assert len(json_resp[0]['modifier_name']) > 0 assert len(json_resp[0]['modifier_contact_email']) > 0 def test_can_get_when_share_to_group(self): self.share_repo_to_group() self.login_as(self.user) resp = self.client.get(self.url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['share_type'] == 'group' assert json_resp[0]['repo_id'] == self.repo_id assert json_resp[0]['group_id'] == self.group_id def test_can_get_when_share_to_public(self): self.share_repo_to_public() self.login_as(self.user) resp = self.client.get(self.url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert json_resp[0]['share_type'] == 'public' def test_get_with_invalid_repo_permission(self): self.share_repo_to_user() self.share_repo_to_group() self.share_repo_to_public() # login with admin, then get user's share repo info self.login_as(self.admin) resp = self.client.get(self.url) self.assertEqual(200, resp.status_code) json_resp = json.loads(resp.content) assert len(json_resp) == 0 def test_can_update_user_share_perm(self): self.share_repo_to_user() assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == 'rw' self.login_as(self.user) url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) data = 'permission=r&share_type=personal&user=%s' % self.admin_name resp = self.client.put(url, data, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == 'r' def test_can_update_group_share_perm(self): self.share_repo_to_group() # print seafile_api.get_folder_group_perm(self.repo_id, '/', int(self.group_id)) repos = seafile_api.get_group_repos_by_owner(self.user_name) assert repos[0].permission == 'rw' self.login_as(self.user) url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) data = 'permission=r&share_type=group&group_id=%s' % self.group_id resp = self.client.put(url, data, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) repos = seafile_api.get_group_repos_by_owner(self.user_name) assert repos[0].permission == 'r' def test_can_update_public_share_perm(self): for r in seaserv.seafserv_threaded_rpc.list_inner_pub_repos(): seafile_api.remove_inner_pub_repo(r.repo_id) self.share_repo_to_public() repos = seafile_api.list_inner_pub_repos_by_owner(self.user_name) assert repos[0].permission == 'rw' self.login_as(self.user) url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) data = 'permission=r&share_type=public' resp = self.client.put(url, data, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) repos = seafile_api.list_inner_pub_repos_by_owner(self.user_name) assert repos[0].permission == 'r' def test_delete_user_share(self): self.share_repo_to_user() # admin user can view repo assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == 'rw' self.login_as(self.user) args = '?share_type=personal&user=%s' % self.admin_name url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) + args resp = self.client.delete(url, {}, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) # admin user can NOT view repo assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == None def test_delete_group_share(self): self.share_repo_to_group() # repo in group repos = seafile_api.get_group_repos_by_owner(self.user_name) assert repos[0].permission == 'rw' self.login_as(self.user) args = '?share_type=group&group_id=%s' % self.group_id url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) + args resp = self.client.delete(url, {}, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) # repo NOT in group repos = seafile_api.get_group_repos_by_owner(self.user_name) assert len(repos) == 0 def test_delete_public_share(self): for r in seaserv.seafserv_threaded_rpc.list_inner_pub_repos(): seafile_api.remove_inner_pub_repo(r.repo_id) self.share_repo_to_public() # repo in public repos = seafile_api.list_inner_pub_repos_by_owner( self.user_name) assert repos[0].permission == 'rw' self.login_as(self.user) args = '?share_type=public' url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) + args resp = self.client.delete(url, {}, 'application/x-www-form-urlencoded') self.assertEqual(200, resp.status_code) # repo NOT in public repos = seafile_api.list_inner_pub_repos_by_owner( self.user_name) assert len(repos) == 0 def test_update_perm_if_not_owner(self): self.share_repo_to_user() # admin can view repo but NOT owner assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == 'rw' self.login_as(self.admin) url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) data = 'permission=r&share_type=personal' resp = self.client.put(url, data, 'application/x-www-form-urlencoded') self.assertEqual(403, resp.status_code) def test_delete_perm_if_not_owner(self): self.share_repo_to_user() # admin can view repo but NOT owner assert seafile_api.check_permission_by_path( self.repo_id, '/', self.admin_name) == 'rw' self.login_as(self.admin) args = '?share_type=personal&user=%s' % self.admin_name url = reverse('api-v2.1-shared-repo', args=[self.repo_id]) + args resp = self.client.delete(url, {}, 'application/x-www-form-urlencoded') self.assertEqual(403, resp.status_code) ```
{ "source": "jjzhang166/Smart-Home", "score": 3 }
#### File: Smart-Home/lib/command.py ```python from datetime import datetime from mysql import connector from lib import log from config import mysql as mysql_con class Command: # 往数据库里插入一条命令 @staticmethod def insert(text): try: conn = "" conn = connector.connect(host=mysql_con.HOST, user=mysql_con.USERNAME, password=<PASSWORD>, port=mysql_con.PORT, database=mysql_con.DATABASE, charset=mysql_con.CHARSET) cursor = conn.cursor() cursor.execute("INSERT INTO command (`content`,`status`,`posttime`) VALUES (%s,%s,%s)", (text, 0, datetime.timestamp(datetime.now()))) # 提交记录 conn.commit() log.normal("往数据库中插入新命令:" + text) except Exception as e: log.exp("往数据库中插入新命令:" + text, e) finally: if "" != conn: conn.close() # 执行完毕后设置命令状态为已完成 @staticmethod def exec(command_id): try: conn = "" conn = connector.connect(host=mysql_con.HOST, user=mysql_con.USERNAME, password=<PASSWORD>, port=mysql_con.PORT, database=mysql_con.DATABASE, charset=mysql_con.CHARSET) cursor = conn.cursor() cursor.execute("UPDATE command SET `status`=%s WHERE id=%s", ('1', command_id)) # 提交记录 conn.commit() log.normal("更新命令状态 命令编号:%d" % command_id) except Exception as e: log.exp("更新命令状态 命令编号:%d" % command_id, e) finally: if "" != conn: conn.close() ``` #### File: jjzhang166/Smart-Home/recode.py ```python import pyaudio import numpy as np from datetime import datetime import wave import time import config.recode as config from lib import log # 将data中的数据保存到名为filename的WAV文件中 def save_wave_file(file_name, data): try: with wave.open(file_name, 'wb') as wf: wf.setnchannels(1) wf.setsampwidth(2) wf.setframerate(config.RATE) wf.writeframes(b''.join(data)) except IOError as e: log.exp("保存wav文件失败: " + file_name, e) # 开始录音 def start(): # 开启声音输入 pa = pyaudio.PyAudio() stream = pa.open(format=pyaudio.paInt16, channels=1, rate=config.RATE, input=True, frames_per_buffer=config.NUM_BLOCK) save_count = 0 save_buffer = [] start_recode = 0 log.normal("开始监听麦克风...") while True: # 读入NUM_SAMPLES个取样 string_audio_data = stream.read(config.NUM_BLOCK) # 将读入的数据转换为数组 audio_data = np.fromstring(string_audio_data, dtype=np.short) # 计算大于LEVEL的取样的个数 large_sample_count = np.sum(audio_data > config.LEVEL) if large_sample_count < config.COUNT_NUM: # 未达到记录等级 if save_count > 1: save_count -= 1 save_buffer.append(string_audio_data) else: if 1 == start_recode: start_recode = 0 save_buffer.append(string_audio_data) log.normal("录音结束") else: save_buffer = [string_audio_data, ] time.sleep(0.01) else: # 达到记录等级 # 将要保存的数据存放到save_buffer中 save_buffer.append(string_audio_data) if 0 == start_recode: save_count = config.SAVE_LENGTH start_recode = 1 log.normal("开始录音") if 0 == start_recode: # 将save_buffer中的数据写入WAV文件,WAV文件的文件名是保存的时刻 if len(save_buffer) > 1: filename = "cache/sound/before_" + datetime.now().strftime("%Y-%m-%d_%H_%M_%S") + ".wav" save_wave_file(filename, save_buffer) save_buffer = [] log.normal(filename + " 保存文件") ``` #### File: Smart-Home/script/time.py ```python import sys from datetime import datetime from lib import baidu_voice # 现在时间 def time_now(): baidu_voice.Voice.tts("现在时间:%s点%s分" % (datetime.now().hour, datetime.now().minute)) # 今天日期 def time_today(): baidu_voice.Voice.tts("今天是:%s月%s号" % (datetime.now().month, datetime.now().day)) if __name__ == '__main__': param = sys.argv[1] if "now" == param: time_now() if "today" == param: time_today() ``` #### File: Smart-Home/script/weather.py ```python import sys from datetime import datetime from lib import baidu_voice from lib import log import sys from urllib import request, parse import json def get_weather(): url = 'https://api.thinkpage.cn/v3/weather/daily.json?' data = { "key": "<KEY>", "location": "anyang", "language": "zh-Hans", "unit": "c", "start": "0", "days": "2", } url = url + parse.urlencode(data) req = request.Request(url) try: with request.urlopen(req, timeout=5) as req: content = req.read().decode("utf-8") data = json.loads(content) if data and isinstance(data, dict): return data["results"][0]["daily"] else: baidu_voice.Voice.tts("天气获取失败") except Exception as e: log.exp("获取天气 %s" % url, e) baidu_voice.Voice.tts("天气获取失败") return url # 明天天气 def weather_tomorrow(): data = get_weather()[1] if "" == data["precip"]: data["precip"] = "未知" # 计算风力等级 if "" != data["wind_speed"]: if 1 > int(data["wind_speed"]): data["wind_level"] = 0 if 1 <= int(data["wind_speed"]) <= 5: data["wind_level"] = 1 if 6 <= int(data["wind_speed"]) <= 11: data["wind_level"] = 2 if 12 <= int(data["wind_speed"]) <= 19: data["wind_level"] = 3 if 20 <= int(data["wind_speed"]) <= 28: data["wind_level"] = 4 if 29 <= int(data["wind_speed"]) <= 38: data["wind_level"] = 5 if 39 <= int(data["wind_speed"]) <= 49: data["wind_level"] = 6 if 50 <= int(data["wind_speed"]) <= 61: data["wind_level"] = 7 if 62 <= int(data["wind_speed"]) <= 74: data["wind_level"] = 8 if 75 <= int(data["wind_speed"]) <= 88: data["wind_level"] = 9 if 89 <= int(data["wind_speed"]) <= 102: data["wind_level"] = 10 baidu_voice.Voice.tts("明天天气:白天%s 晚间%s 最高温度 %s度 最低温度 %s度 降水概率 %s %s风 %s级" % (data["text_day"], data["text_night"], data["high"], data["low"], data["precip"], data["wind_direction"], data["wind_level"])) # 今天天气 def weather_today(): data = get_weather()[0] if "" == data["precip"]: data["precip"] = "未知" # 计算风力等级 if "" != data["wind_speed"]: if 1 > int(data["wind_speed"]): data["wind_level"] = 0 if 1 <= int(data["wind_speed"]) <= 5: data["wind_level"] = 1 if 6 <= int(data["wind_speed"]) <= 11: data["wind_level"] = 2 if 12 <= int(data["wind_speed"]) <= 19: data["wind_level"] = 3 if 20 <= int(data["wind_speed"]) <= 28: data["wind_level"] = 4 if 29 <= int(data["wind_speed"]) <= 38: data["wind_level"] = 5 if 39 <= int(data["wind_speed"]) <= 49: data["wind_level"] = 6 if 50 <= int(data["wind_speed"]) <= 61: data["wind_level"] = 7 if 62 <= int(data["wind_speed"]) <= 74: data["wind_level"] = 8 if 75 <= int(data["wind_speed"]) <= 88: data["wind_level"] = 9 if 89 <= int(data["wind_speed"]) <= 102: data["wind_level"] = 10 baidu_voice.Voice.tts("今天天气:白天%s 晚间%s 最高温度 %s度 最低温度 %s度 降水概率 %s %s风 %s级" % (data["text_day"], data["text_night"], data["high"], data["low"], data["precip"], data["wind_direction"], data["wind_level"])) if __name__ == '__main__': param = sys.argv[1] if "today" == param: weather_today() if "tomorrow" == param: weather_tomorrow() ```
{ "source": "jjzhang166/telegram-app", "score": 2 }
#### File: telegram/tests/__init__.py ```python from autopilot.testcase import AutopilotTestCase from autopilot import platform from ubuntuuitoolkit import emulators as toolkit_emulators from autopilot.input import Mouse, Touch, Pointer from telegram import emulators from os.path import abspath, dirname, join from autopilot.matchers import Eventually from testtools.matchers import Equals import fixtures import ubuntuuitoolkit import subprocess class TelegramAppTestCase(AutopilotTestCase): def __init__(self, *args): super(TelegramAppTestCase, self).__init__(*args) self._main_view = None @property def main_view(self): if self._main_view is None: self._main_view = self.app.wait_select_single(emulators.MainView) return self._main_view def setUp(self, parameter=""): #self.pointing_device = Pointer(self.input_device_class.create()) super(TelegramAppTestCase, self).setUp() subprocess.call(['pkill', 'telegram-app']) #Preconditions: Logged In if platform.model() == "Desktop": self.app = self.launch_desktop_application(parameter) else: self.app = self.launch_mobile_application(parameter) self.assertThat(self.main_view.visible, Eventually(Equals(True))) # self.check_user_has_logged_in() # if (self.check_user_has_logged_in()): # self.assertThat(self.main_view.visible, Eventually(Equals(True))) # else: # raise RuntimeError("User must be logged in") def launch_desktop_application(self, parameter): #Setup the lib path environment variable using absolute path values, required by the app to access the necessary libs library_path = abspath(join(dirname(__file__), '..', '..', '..', '..', 'build_desktop',)) envValue = library_path + ':$LD_LIBRARY_PATH' self.useFixture(fixtures.EnvironmentVariable('LD_LIBRARY_PATH',envValue)) #Launch the test application using absolute path values full_path = abspath(join(dirname(__file__), '..', '..', '..', '..', 'build_desktop','lib','x86_64-linux-gnu','bin','telegram')) print(full_path + " " + parameter) return self.launch_test_application( full_path, parameter, app_type='qt', emulator_base=toolkit_emulators.UbuntuUIToolkitEmulatorBase) def launch_mobile_application(self, parameter): return self.launch_click_package( "com.ubuntu.telegram", app_uris=['QT_LOAD_TESTABILITY=1'], emulator_base=toolkit_emulators.UbuntuUIToolkitEmulatorBase) def check_user_has_logged_in(self): account_page = self.main_view.account_page self.assertThat(account_page.visible, Eventually(Equals(True))) # try: # self.main_view.get_account_page() # self.assertThat(self.main_view.account_page.visible, Eventually(Equals(True))) # return True # except: # return False ``` #### File: telegram/tests/test_Offline.py ```python from telegram.tests import TelegramAppTestCase from telegram import emulators # import subprocess import ubuntuuitoolkit from autopilot.matchers import Eventually from testtools.matchers import Equals from autopilot.display import Display from autopilot import platform from testtools import skipUnless class BaseTelegramTestCase(TelegramAppTestCase): def setUp(self): super(BaseTelegramTestCase, self).setUp() class OfflineTests(BaseTelegramTestCase): @skipUnless( platform.model() != "Desktop", "Offline Test is only available on Device" ) def test_check_for_offline_message(self): display = Display.create() screenWidth = display.get_screen_width() screenHeight = display.get_screen_height() #Pull menu from top self.main_view.pointing_device.drag(screenWidth-202, 0, screenWidth-202, screenHeight) #Tap Flight Mode switch self.main_view.pointing_device.move(screenWidth-130,150) self.main_view.pointing_device.click() #Close menu self.main_view.pointing_device.drag(0,screenHeight, 0,0) account_page = self.main_view.account_page # if account_page.get_default_header().title in ('Telegram', 'Connecting...'): # print("WARNING - Please turn ON Airplane Mode") self.assertThat(account_page.get_default_header().title, Eventually(Equals("Waiting for network..."))) #Pull menu from top self.main_view.pointing_device.drag(screenWidth-180, 0, screenWidth-180, screenHeight) #Tap Flight Mode switch self.main_view.pointing_device.move(screenWidth-130,150) self.main_view.pointing_device.click() #Close menu self.main_view.pointing_device.drag(0,screenHeight, 0,0) # Check header no longer says offline message self.assertThat(account_page.get_default_header().title, Eventually(Equals("Telegram"))) ``` #### File: autopilot/telegram/utilities.py ```python from autopilot.input import Keyboard """ KEYBOARD UTILITIES """ global mainKeyboard def enter_text_in_text_area(text_area, text): #Assign keyboard type mainKeyboard = Keyboard.create() #Focus TextArea and begin typing with mainKeyboard.focused_type(text_area) as kb: kb.type(text) def enter_text_in_text_area_and_press_enter(text_area, text): #Assign keyboard type mainKeyboard = Keyboard.create() #Focus TextArea and begin typing with mainKeyboard.focused_type(text_area) as kb: kb.type(text) #Simulate 'Enter' key being pressed mainKeyboard.press_and_release('Enter') ```
{ "source": "jjzhang166/tensorflow", "score": 2 }
#### File: python/eager/backprop_test.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python import pywrap_tensorflow from tensorflow.python.eager import backprop from tensorflow.python.eager import context from tensorflow.python.eager import tape from tensorflow.python.eager import tensor from tensorflow.python.eager import test from tensorflow.python.framework import dtypes from tensorflow.python.framework import tensor_shape from tensorflow.python.ops import array_ops from tensorflow.python.ops import embedding_ops from tensorflow.python.ops import gradients from tensorflow.python.ops import math_ops from tensorflow.python.ops import resource_variable_ops class BackpropTest(test.TestCase): def testAggregateGradients(self): def fn(x): ind1 = tensor.Tensor(np.array([0, 1])) ind2 = tensor.Tensor(np.array([2, 3])) ind3 = tensor.Tensor(np.array([1, 3])) # A mixture of IndexedSlices and dense tensor to aggregate. g1 = embedding_ops.embedding_lookup(x, ind1) g2 = embedding_ops.embedding_lookup(x, ind2) g3 = embedding_ops.embedding_lookup(x, ind3) g4 = math_ops.reduce_sum(x * tensor.Tensor(2.0)) return g1 * g2 * g3 * g4 var_np = np.random.rand(4, 2).astype(np.float32) var = tensor.Tensor(var_np) grad = backprop.gradients_function(fn, [0])(var)[0] with context.graph_mode(), self.test_session(): tf_var = array_ops.constant(var_np, dtypes.float32) tf_ind1 = array_ops.constant([0, 1]) tf_ind2 = array_ops.constant([2, 3]) tf_ind3 = array_ops.constant([1, 3]) tf_g1 = embedding_ops.embedding_lookup(tf_var, tf_ind1) tf_g2 = embedding_ops.embedding_lookup(tf_var, tf_ind2) tf_g3 = embedding_ops.embedding_lookup(tf_var, tf_ind3) tf_g4 = math_ops.reduce_sum(tf_var * 2.0, reduction_indices=(0, 1)) tf_y = tf_g1 * tf_g2 * tf_g3 * tf_g4 tf_grad = gradients.gradients(tf_y, [tf_var])[0] tf_dense_grad = math_ops.unsorted_segment_sum( tf_grad.values, tf_grad.indices, tf_grad.dense_shape[0]) self.assertAllClose(grad.numpy(), tf_dense_grad.eval()) def testImplicitGradWithResourceVariable(self): x = resource_variable_ops.ResourceVariable(initial_value=tensor.Tensor(1.0), name='x') def fn(): tape.watch(x.handle) b = tensor.Tensor(2.0) c = math_ops.add(x.value(), b) return math_ops.add(c, tensor.Tensor(3.0)) grad = backprop.implicit_grad(fn)()[0][1] self.assertEqual(grad.numpy(), 1.0) def testGPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') def fn(x): with context.device('/gpu:0'): b = tensor.Tensor(2.0) c = math_ops.add(x.as_gpu_tensor(), b) # TODO(apassos): remove as_cpu_tensor below by making TensorVSPace aware # of devices. return math_ops.add(c, tensor.Tensor(3.0)).as_cpu_tensor() grad = backprop.gradients_function(fn, [0])(tensor.Tensor(1.0))[0] self.assertEqual(grad.numpy(), 1.0) def testCPU(self): def fn(x): b = tensor.Tensor(2.0) c = math_ops.add(x, b) return math_ops.add(c, tensor.Tensor(3.0)) grad = backprop.gradients_function(fn, [0])(tensor.Tensor(1.0))[0] self.assertEqual(grad.numpy(), 1.0) def testTensorCopyGPU2CPU2GPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') def f(a, b): return a.as_cpu_tensor() + b.as_cpu_tensor() with context.device('/gpu:0'): a = tensor.Tensor(1.0) b = tensor.Tensor(2.0) grad = backprop.gradients_function(f, [0])(a, b)[0] self.assertEqual(grad.numpy(), 1.0) def testEmptyParams(self): def fn(a, b): return a * b x = tensor.Tensor(1.0) y = tensor.Tensor(2.0) dx, dy = backprop.gradients_function(fn)(x, y) self.assertAllEqual(dx.numpy(), y.numpy()) self.assertAllEqual(dy.numpy(), x.numpy()) def testTensorCopyCPU2GPU2CPU(self): if not context.context().num_gpus(): self.skipTest('No GPUs found') # forward: a (cpu->gpu) -> add (gpu) -> c (gpu->cpu) -> add (cpu) -> e (cpu) # back: e (cpu) -> add (cpu) -> c (cpu->gpu) -> add (gpu) -> grad (gpu->cpu) def f(a, b): with context.device('/gpu:0'): c = math_ops.add(a.as_gpu_tensor(0), b.as_gpu_tensor(0)) return math_ops.add(c.as_cpu_tensor(), tensor.Tensor(3.0)) with context.device('/cpu:0'): a = tensor.Tensor(1.0) b = tensor.Tensor(2.0) grad = backprop.gradients_function(f, [0])(a, b)[0] self.assertEqual(grad.numpy(), 1.0) def testGetAttrType(self): typ = backprop.op_attr_type('Add', 'T') self.assertEqual(typ, pywrap_tensorflow.TF_ATTR_TYPE) def testGetAttrList(self): typ = backprop.op_attr_type('MaxPool', 'ksize') self.assertEqual(typ, [pywrap_tensorflow.TF_ATTR_INT]) def testMakeAttrType(self): self.assertEqual(dtypes.float32, backprop.make_attr(pywrap_tensorflow.TF_ATTR_TYPE, 1)) def testMakeAttrTypeList(self): self.assertEqual([dtypes.float32], backprop.make_attr([pywrap_tensorflow.TF_ATTR_TYPE], [1])) def testMakeAttrShape(self): for s in ([], None, [1, 2, 3], [None, None], [1, None, 3]): expected = tensor_shape.TensorShape(s).as_proto() actual = backprop.make_attr(pywrap_tensorflow.TF_ATTR_SHAPE, s) self.assertEqual( expected, actual, msg=('For shape %r, expected %r != %r actual' % (s, expected, actual))) def testMakeAttrShapeList(self): shape_list = [[], None, [1, 2, 3], [None, None], [1, None, 3]] self.assertEqual( [tensor_shape.TensorShape(s).as_proto() for s in shape_list], backprop.make_attr([pywrap_tensorflow.TF_ATTR_SHAPE], shape_list)) if __name__ == '__main__': test.main() ``` #### File: python/estimator/run_config.py ```python from __future__ import absolute_import from __future__ import division from __future__ import print_function import copy import six from tensorflow.core.protobuf import config_pb2 _USE_DEFAULT = object() # A list of the property names in RunConfig that the user is allowed to change. _DEFAULT_REPLACEABLE_LIST = [ 'model_dir', 'tf_random_seed', 'save_summary_steps', 'save_checkpoints_steps', 'save_checkpoints_secs', 'session_config', 'keep_checkpoint_max', 'keep_checkpoint_every_n_hours', 'log_step_count_steps' ] _SAVE_CKPT_ERR = ( '`save_checkpoints_steps` and `save_checkpoints_secs` cannot be both set.' ) def _validate_save_ckpt_with_replaced_keys(new_copy, replaced_keys): """Validates the save ckpt properties.""" # Ensure one (and only one) of save_steps and save_secs is not None. # Also, if user sets one save ckpt property, say steps, the other one (secs) # should be set as None to improve usability. save_steps = new_copy.save_checkpoints_steps save_secs = new_copy.save_checkpoints_secs if ('save_checkpoints_steps' in replaced_keys and 'save_checkpoints_secs' in replaced_keys): # If user sets both properties explicitly, we need to error out if both # are set or neither of them are set. if save_steps is not None and save_secs is not None: raise ValueError(_SAVE_CKPT_ERR) elif 'save_checkpoints_steps' in replaced_keys and save_steps is not None: new_copy._save_checkpoints_secs = None # pylint: disable=protected-access elif 'save_checkpoints_secs' in replaced_keys and save_secs is not None: new_copy._save_checkpoints_steps = None # pylint: disable=protected-access def _validate_properties(run_config): """Validates the properties.""" def _validate(property_name, cond, message): property_value = getattr(run_config, property_name) if property_value is not None and not cond(property_value): raise ValueError(message) _validate('model_dir', lambda dir: dir, message='model_dir should be non-empty') _validate('save_summary_steps', lambda steps: steps >= 0, message='save_summary_steps should be >= 0') _validate('save_checkpoints_steps', lambda steps: steps >= 0, message='save_checkpoints_steps should be >= 0') _validate('save_checkpoints_secs', lambda secs: secs >= 0, message='save_checkpoints_secs should be >= 0') _validate('session_config', lambda sc: isinstance(sc, config_pb2.ConfigProto), message='session_config must be instance of ConfigProto') _validate('keep_checkpoint_max', lambda keep_max: keep_max >= 0, message='keep_checkpoint_max should be >= 0') _validate('keep_checkpoint_every_n_hours', lambda keep_hours: keep_hours > 0, message='keep_checkpoint_every_n_hours should be > 0') _validate('log_step_count_steps', lambda num_steps: num_steps > 0, message='log_step_count_steps should be > 0') _validate('tf_random_seed', lambda seed: isinstance(seed, six.integer_types), message='tf_random_seed must be integer.') class TaskType(object): MASTER = 'master' PS = 'ps' WORKER = 'worker' class RunConfig(object): """This class specifies the configurations for an `Estimator` run.""" def __init__(self, model_dir=None, tf_random_seed=1, save_summary_steps=100, save_checkpoints_steps=_USE_DEFAULT, save_checkpoints_secs=_USE_DEFAULT, session_config=None, keep_checkpoint_max=5, keep_checkpoint_every_n_hours=10000, log_step_count_steps=100): """Constructs a RunConfig. Args: model_dir: directory where model parameters, graph, etc are saved. If `None`, will use a default value set by the Estimator. tf_random_seed: Random seed for TensorFlow initializers. Setting this value allows consistency between reruns. save_summary_steps: Save summaries every this many steps. save_checkpoints_steps: Save checkpoints every this many steps. Can not be specified with `save_checkpoints_secs`. save_checkpoints_secs: Save checkpoints every this many seconds. Can not be specified with `save_checkpoints_steps`. Defaults to 600 seconds. If both `save_checkpoints_steps` and `save_checkpoints_secs` are None, then checkpoints are disabled. session_config: a ConfigProto used to set session parameters, or None. keep_checkpoint_max: The maximum number of recent checkpoint files to keep. As new files are created, older files are deleted. If None or 0, all checkpoint files are kept. Defaults to 5 (that is, the 5 most recent checkpoint files are kept.) keep_checkpoint_every_n_hours: Number of hours between each checkpoint to be saved. The default value of 10,000 hours effectively disables the feature. log_step_count_steps: The frequency, in number of global steps, that the global step/sec will be logged during training. Raises: ValueError: If both `save_checkpoints_steps` and `save_checkpoints_secs` are set. """ if (save_checkpoints_steps == _USE_DEFAULT and save_checkpoints_secs == _USE_DEFAULT): save_checkpoints_steps = None save_checkpoints_secs = 600 elif save_checkpoints_secs == _USE_DEFAULT: save_checkpoints_secs = None elif save_checkpoints_steps == _USE_DEFAULT: save_checkpoints_steps = None elif (save_checkpoints_steps is not None and save_checkpoints_secs is not None): raise ValueError(_SAVE_CKPT_ERR) RunConfig._replace( self, allowed_properties_list=_DEFAULT_REPLACEABLE_LIST, model_dir=model_dir, tf_random_seed=tf_random_seed, save_summary_steps=save_summary_steps, save_checkpoints_steps=save_checkpoints_steps, save_checkpoints_secs=save_checkpoints_secs, session_config=session_config, keep_checkpoint_max=keep_checkpoint_max, keep_checkpoint_every_n_hours=keep_checkpoint_every_n_hours, log_step_count_steps=log_step_count_steps) @property def cluster_spec(self): return None @property def evaluation_master(self): return '' @property def is_chief(self): return True @property def master(self): return '' @property def num_ps_replicas(self): return 0 @property def num_worker_replicas(self): return 1 @property def task_id(self): return 0 @property def task_type(self): return TaskType.WORKER @property def tf_random_seed(self): return self._tf_random_seed @property def save_summary_steps(self): return self._save_summary_steps @property def save_checkpoints_secs(self): return self._save_checkpoints_secs @property def session_config(self): return self._session_config @property def save_checkpoints_steps(self): return self._save_checkpoints_steps @property def keep_checkpoint_max(self): return self._keep_checkpoint_max @property def keep_checkpoint_every_n_hours(self): return self._keep_checkpoint_every_n_hours @property def log_step_count_steps(self): return self._log_step_count_steps @property def model_dir(self): return self._model_dir def replace(self, **kwargs): """Returns a new instance of `RunConfig` replacing specified properties. Only the properties in the following list are allowed to be replaced: - `model_dir`. - `tf_random_seed`, - `save_summary_steps`, - `save_checkpoints_steps`, - `save_checkpoints_secs`, - `session_config`, - `keep_checkpoint_max`, - `keep_checkpoint_every_n_hours`, - `log_step_count_steps`, In addition, either `save_checkpoints_steps` or `save_checkpoints_secs` can be set (should not be both). Args: **kwargs: keyword named properties with new values. Raises: ValueError: If any property name in `kwargs` does not exist or is not allowed to be replaced, or both `save_checkpoints_steps` and `save_checkpoints_secs` are set. Returns: a new instance of `RunConfig`. """ return RunConfig._replace( copy.deepcopy(self), allowed_properties_list=_DEFAULT_REPLACEABLE_LIST, **kwargs) @staticmethod def _replace(config, allowed_properties_list=None, **kwargs): """See `replace`. N.B.: This implementation assumes that for key named "foo", the underlying property the RunConfig holds is "_foo" (with one leading underscore). Args: config: The RunConfig to replace the values of. allowed_properties_list: The property name list allowed to be replaced. **kwargs: keyword named properties with new values. Raises: ValueError: If any property name in `kwargs` does not exist or is not allowed to be replaced, or both `save_checkpoints_steps` and `save_checkpoints_secs` are set. Returns: a new instance of `RunConfig`. """ allowed_properties_list = allowed_properties_list or [] for key, new_value in six.iteritems(kwargs): if key in allowed_properties_list: setattr(config, '_' + key, new_value) continue raise ValueError( 'Replacing {} is not supported. Allowed properties are {}.'.format( key, allowed_properties_list)) _validate_save_ckpt_with_replaced_keys(config, kwargs.keys()) _validate_properties(config) return config ```
{ "source": "jjzhang166/Vulkan", "score": 3 }
#### File: jjzhang166/Vulkan/deploy_all_android.py ```python import glob import os import shutil import subprocess #################### # # Functions # #################### def copy(src, dst): # Copy exact file or given by wildcard for filename in glob.glob(src): print("Copying asset '%s' to '%s'" % (os.path.basename(filename), dst)) shutil.copyfile(filename, dst) #################### # # Main # #################### print("Deploying all Android projects") allExamples = os.listdir() for example in allExamples: if example.startswith("VKTS_Example"): print("Processing '%s'" % (example)) copy(example + "/Android/bin/NativeActivity-debug.apk", example + "-debug.apk") ```
{ "source": "jjzhang166/Vulkan-LoaderAndValidationLayers", "score": 2 }
#### File: jjzhang166/Vulkan-LoaderAndValidationLayers/vk-generate.py ```python import sys import vulkan def generate_get_proc_addr_check(name): return " if (!%s || %s[0] != 'v' || %s[1] != 'k')\n" \ " return NULL;" % ((name,) * 3) class Subcommand(object): def __init__(self, argv): self.argv = argv self.headers = vulkan.headers self.protos = vulkan.protos self.outfile = None def run(self): if self.outfile: with open(self.outfile, "w") as outfile: outfile.write(self.generate()) else: print(self.generate()) def generate(self): copyright = self.generate_copyright() header = self.generate_header() body = self.generate_body() footer = self.generate_footer() contents = [] if copyright: contents.append(copyright) if header: contents.append(header) if body: contents.append(body) if footer: contents.append(footer) return "\n\n".join(contents) def generate_copyright(self): return """/* THIS FILE IS GENERATED. DO NOT EDIT. */ /* * Copyright (c) 2015-2016 The Khronos Group Inc. * Copyright (c) 2015-2016 Valve Corporation * Copyright (c) 2015-2016 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: <NAME> <<EMAIL>> */""" def generate_header(self): return "\n".join(["#include <" + h + ">" for h in self.headers]) def generate_body(self): pass def generate_footer(self): pass class DispatchTableOpsSubcommand(Subcommand): def __init__(self, argv): self.argv = argv self.headers = vulkan.headers_all self.protos = vulkan.protos_all self.outfile = None def run(self): if len(self.argv) < 1: print("DispatchTableOpsSubcommand: <prefix> unspecified") return self.prefix = self.argv[0] if len(self.argv) > 2: print("DispatchTableOpsSubcommand: <prefix> [outfile]") return if len(self.argv) == 2: self.outfile = self.argv[1] super(DispatchTableOpsSubcommand, self).run() def generate_header(self): return "\n".join(["#include <vulkan/vulkan.h>", "#include <vulkan/vk_layer.h>", "#include <string.h>"]) def _generate_init_dispatch(self, type): stmts = [] func = [] if type == "device": # GPA has to be first one and uses wrapped object stmts.append(" memset(table, 0, sizeof(*table));") stmts.append(" // Core device function pointers") stmts.append(" table->GetDeviceProcAddr = (PFN_vkGetDeviceProcAddr) gpa(device, \"vkGetDeviceProcAddr\");") for proto in self.protos: if proto.name == "CreateInstance" or proto.name == "EnumerateInstanceExtensionProperties" or \ proto.name == "EnumerateInstanceLayerProperties" or proto.params[0].ty == "VkInstance" or \ proto.params[0].ty == "VkPhysicalDevice" or proto.name == "GetDeviceProcAddr": continue if proto.name == "GetMemoryWin32HandleNV": stmts.append("#ifdef VK_USE_PLATFORM_WIN32_KHR") stmts.append(" table->%s = (PFN_vk%s) gpa(device, \"vk%s\");" % (proto.name, proto.name, proto.name)) stmts.append("#endif // VK_USE_PLATFORM_WIN32_KHR") else: stmts.append(" table->%s = (PFN_vk%s) gpa(device, \"vk%s\");" % (proto.name, proto.name, proto.name)) func.append("static inline void %s_init_device_dispatch_table(VkDevice device," % self.prefix) func.append("%s VkLayerDispatchTable *table," % (" " * len(self.prefix))) func.append("%s PFN_vkGetDeviceProcAddr gpa)" % (" " * len(self.prefix))) else: stmts.append(" memset(table, 0, sizeof(*table));") stmts.append(" // Core instance function pointers") stmts.append(" table->GetInstanceProcAddr = (PFN_vkGetInstanceProcAddr) gpa(instance, \"vkGetInstanceProcAddr\");") KHR_printed = False EXT_printed = False Win32_printed = False XLIB_printed = False XCB_printed = False MIR_printed = False WAY_printed = False Android_printed = False for proto in self.protos: if proto.params[0].ty != "VkInstance" and proto.params[0].ty != "VkPhysicalDevice" or \ proto.name == "CreateDevice" or proto.name == "GetInstanceProcAddr": continue if Win32_printed and 'Win32' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_WIN32_KHR") Win32_printed = False if XLIB_printed and 'Xlib' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_XLIB_KHR") XLIB_printed = False if XCB_printed and 'Xcb' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_XCB_KHR") XCB_printed = False if MIR_printed and 'Mir' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_MIR_KHR") MIR_printed = False if WAY_printed and 'Wayland' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_WAYLAND_KHR") WAY_printed = False if Android_printed and 'Android' not in proto.name: stmts.append("#endif // VK_USE_PLATFORM_ANDROID_KHR") Android_printed = False if 'KHR' in proto.name and 'Win32' in proto.name: if not Win32_printed: stmts.append("#ifdef VK_USE_PLATFORM_WIN32_KHR") Win32_printed = True if 'KHR' in proto.name and 'Xlib' in proto.name: if not XLIB_printed: stmts.append("#ifdef VK_USE_PLATFORM_XLIB_KHR") XLIB_printed = True if 'KHR' in proto.name and 'Xcb' in proto.name: if not XCB_printed: stmts.append("#ifdef VK_USE_PLATFORM_XCB_KHR") XCB_printed = True if 'KHR' in proto.name and 'Mir' in proto.name: if not MIR_printed: stmts.append("#ifdef VK_USE_PLATFORM_MIR_KHR") MIR_printed = True if 'KHR' in proto.name and 'Wayland' in proto.name: if not WAY_printed: stmts.append("#ifdef VK_USE_PLATFORM_WAYLAND_KHR") WAY_printed = True if 'KHR' in proto.name and 'Android' in proto.name: if not Android_printed: stmts.append("#ifdef VK_USE_PLATFORM_ANDROID_KHR") Android_printed = True if 'KHR' in proto.name and not KHR_printed: stmts.append(" // KHR instance extension function pointers") KHR_printed = True if 'EXT' in proto.name and not EXT_printed: stmts.append(" // EXT instance extension function pointers") EXT_printed = True stmts.append(" table->%s = (PFN_vk%s) gpa(instance, \"vk%s\");" % (proto.name, proto.name, proto.name)) func.append("static inline void %s_init_instance_dispatch_table(" % self.prefix) func.append("%s VkInstance instance," % (" " * len(self.prefix))) func.append("%s VkLayerInstanceDispatchTable *table," % (" " * len(self.prefix))) func.append("%s PFN_vkGetInstanceProcAddr gpa)" % (" " * len(self.prefix))) func.append("{") func.append("%s" % "\n".join(stmts)) func.append("}") return "\n".join(func) def generate_body(self): body = [self._generate_init_dispatch("device"), self._generate_init_dispatch("instance")] return "\n\n".join(body) class WinDefFileSubcommand(Subcommand): def run(self): library_exports = { "all": [], "icd": [ "vk_icdGetInstanceProcAddr", ], "layer": [ "vkGetInstanceProcAddr", "vkGetDeviceProcAddr", "vkEnumerateInstanceLayerProperties", "vkEnumerateInstanceExtensionProperties" ], "layer_multi": [ "multi2GetInstanceProcAddr", "multi1GetDeviceProcAddr" ] } if len(self.argv) < 2 or len(self.argv) > 3 or self.argv[1] not in library_exports: print("WinDefFileSubcommand: <library-name> {%s} [outfile]" % "|".join(library_exports.keys())) return self.library = self.argv[0] if self.library == "VkLayer_multi": self.exports = library_exports["layer_multi"] else: self.exports = library_exports[self.argv[1]] if len(self.argv) == 3: self.outfile = self.argv[2] super(WinDefFileSubcommand, self).run() def generate_copyright(self): return """; THIS FILE IS GENERATED. DO NOT EDIT. ;;;; Begin Copyright Notice ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ; Vulkan ; ; Copyright (c) 2015-2016 The Khronos Group Inc. ; Copyright (c) 2015-2016 Valve Corporation ; Copyright (c) 2015-2016 LunarG, Inc. ; ; Licensed under the Apache License, Version 2.0 (the "License"); ; you may not use this file except in compliance with the License. ; You may obtain a copy of the License at ; ; http://www.apache.org/licenses/LICENSE-2.0 ; ; Unless required by applicable law or agreed to in writing, software ; distributed under the License is distributed on an "AS IS" BASIS, ; WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ; See the License for the specific language governing permissions and ; limitations under the License. ; ; Author: <NAME> <<EMAIL>> ;;;; End Copyright Notice ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;""" def generate_header(self): return "; The following is required on Windows, for exporting symbols from the DLL" def generate_body(self): body = [] body.append("LIBRARY " + self.library) body.append("EXPORTS") for proto in self.exports: if self.library != "VkLayerSwapchain" or proto != "vkEnumerateInstanceExtensionProperties" and proto != "vkEnumerateInstanceLayerProperties": body.append( proto) return "\n".join(body) def main(): wsi = { "Win32", "Android", "Xcb", "Xlib", "Wayland", "Mir", "Display", "AllPlatforms" } subcommands = { "dispatch-table-ops": DispatchTableOpsSubcommand, "win-def-file": WinDefFileSubcommand, } if len(sys.argv) < 3 or sys.argv[1] not in wsi or sys.argv[2] not in subcommands: print("Usage: %s <wsi> <subcommand> [options]" % sys.argv[0]) print print("Available sucommands are: %s" % " ".join(subcommands)) exit(1) subcmd = subcommands[sys.argv[2]](sys.argv[3:]) subcmd.run() if __name__ == "__main__": main() ```
{ "source": "jjzhang166/VulkanSamples", "score": 2 }
#### File: VulkanSamples/layers/spec.py ```python import sys import xml.etree.ElementTree as etree import urllib2 ############################# # spec.py script # # Overview - this script is intended to generate validation error codes and message strings from the xhtml version of # the specification. In addition to generating the header file, it provides a number of corrollary services to aid in # generating/updating the header. # # Ideal flow - Not there currently, but the ideal flow for this script would be that you run the script, it pulls the # latest spec, compares it to the current set of generated error codes, and makes any updates as needed # # Current flow - the current flow acheives all of the ideal flow goals, but with more steps than are desired # 1. Get the spec - right now spec has to be manually generated or pulled from the web # 2. Generate header from spec - This is done in a single command line # 3. Generate database file from spec - Can be done along with step #2 above, the database file contains a list of # all error enums and message strings, along with some other info on if those errors are implemented/tested # 4. Update header using a given database file as the root and a new spec file as goal - This makes sure that existing # errors keep the same enum identifier while also making sure that new errors get a unique_id that continues on # from the end of the previous highest unique_id. # # TODO: # 1. Improve string matching to add more automation for figuring out which messages are changed vs. completely new # ############################# spec_filename = "vkspec.html" # can override w/ '-spec #' option out_filename = "vk_validation_error_messages.h" # can override w/ '-out #' option db_filename = "vk_validation_error_database.txt" # can override w/ '-gendb #' option gen_db = False # set to True when '-gendb #' option provided spec_compare = False # set to True with '-compare <db_filename>' option # This is the root spec link that is used in error messages to point users to spec sections #old_spec_url = "https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html" spec_url = "https://www.khronos.org/registry/vulkan/specs/1.0-extensions/xhtml/vkspec.html" # After the custom validation error message, this is the prefix for the standard message that includes the # spec valid usage language as well as the link to nearest section of spec to that language error_msg_prefix = "For more information refer to Vulkan Spec Section " ns = {'ns': 'http://www.w3.org/1999/xhtml'} validation_error_enum_name = "VALIDATION_ERROR_" # Dict of new enum values that should be forced to remap to old handles, explicitly set by -remap option remap_dict = {} def printHelp(): print "Usage: python spec.py [-spec <specfile.html>] [-out <headerfile.h>] [-gendb <databasefile.txt>] [-compare <databasefile.txt>] [-update] [-remap <new_id-old_id,count>] [-help]" print "\n Default script behavior is to parse the specfile and generate a header of unique error enums and corresponding error messages based on the specfile.\n" print " Default specfile is from online at %s" % (spec_url) print " Default headerfile is %s" % (out_filename) print " Default databasefile is %s" % (db_filename) print "\nIf '-gendb' option is specified then a database file is generated to default file or <databasefile.txt> if supplied. The database file stores" print " the list of enums and their error messages." print "\nIf '-compare' option is specified then the given database file will be read in as the baseline for generating the new specfile" print "\nIf '-update' option is specified this triggers the master flow to automate updating header and database files using default db file as baseline" print " and online spec file as the latest. The default header and database files will be updated in-place for review and commit to the git repo." print "\nIf '-remap' option is specified it supplies forced remapping from new enum ids to old enum ids. This should only be specified along with -update" print " option. Starting at newid and remapping to oldid, count ids will be remapped. Default count is '1' and use ':' to specify multiple remappings." class Specification: def __init__(self): self.tree = None self.val_error_dict = {} # string for enum is key that references 'error_msg' and 'api' self.error_db_dict = {} # dict of previous error values read in from database file self.delimiter = '~^~' # delimiter for db file self.implicit_count = 0 self.copyright = """/* THIS FILE IS GENERATED. DO NOT EDIT. */ /* * Vulkan * * Copyright (c) 2016 Google Inc. * Copyright (c) 2016 LunarG, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Author: <NAME> <<EMAIL>> */""" def _checkInternetSpec(self): """Verify that we can access the spec online""" try: online = urllib2.urlopen(spec_url,timeout=1) return True except urllib2.URLError as err: return False return False def loadFile(self, online=True, spec_file=spec_filename): """Load an API registry XML file into a Registry object and parse it""" # Check if spec URL is available if (online and self._checkInternetSpec()): print "Using spec from online at %s" % (spec_url) self.tree = etree.parse(urllib2.urlopen(spec_url)) else: print "Using local spec %s" % (spec_file) self.tree = etree.parse(spec_file) #self.tree.write("tree_output.xhtml") #self.tree = etree.parse("tree_output.xhtml") self.parseTree() def updateDict(self, updated_dict): """Assign internal dict to use updated_dict""" self.val_error_dict = updated_dict def parseTree(self): """Parse the registry Element, once created""" print "Parsing spec file..." unique_enum_id = 0 self.root = self.tree.getroot() #print "ROOT: %s" % self.root prev_heading = '' # Last seen section heading or sub-heading prev_link = '' # Last seen link id within the spec api_function = '' # API call that a check appears under error_strings = set() # Flag any exact duplicate error strings and skip them implicit_count = 0 for tag in self.root.iter(): # iterate down tree # Grab most recent section heading and link if tag.tag in ['h2', 'h3', 'h4']: #if tag.get('class') != 'title': # continue print "Found heading %s" % (tag.tag) prev_heading = "".join(tag.itertext()) # Insert a space between heading number & title sh_list = prev_heading.rsplit('.', 1) prev_heading = '. '.join(sh_list) prev_link = tag.get('id') print "Set prev_heading %s to have link of %s" % (prev_heading.encode("ascii", "ignore"), prev_link.encode("ascii", "ignore")) elif tag.tag == 'a': # grab any intermediate links if tag.get('id') != None: prev_link = tag.get('id') #print "Updated prev link to %s" % (prev_link) elif tag.tag == 'div' and tag.get('class') == 'listingblock': # Check and see if this is API function code_text = "".join(tag.itertext()).replace('\n', '') code_text_list = code_text.split() if len(code_text_list) > 1 and code_text_list[1].startswith('vk'): api_function = code_text_list[1].strip('(') print "Found API function: %s" % (api_function) #elif tag.tag == '{http://www.w3.org/1999/xhtml}div' and tag.get('class') == 'sidebar': elif tag.tag == 'div' and tag.get('class') == 'content': # parse down sidebar to check for valid usage cases valid_usage = False implicit = False for elem in tag.iter(): if elem.tag == 'div' and None != elem.text and 'Valid Usage' in elem.text: valid_usage = True if '(Implicit)' in elem.text: implicit = True else: implicit = False elif valid_usage and elem.tag == 'li': # grab actual valid usage requirements error_msg_str = "%s '%s' which states '%s' (%s#%s)" % (error_msg_prefix, prev_heading, "".join(elem.itertext()).replace('\n', ''), spec_url, prev_link) # Some txt has multiple spaces so split on whitespace and join w/ single space error_msg_str = " ".join(error_msg_str.split()) if error_msg_str in error_strings: print "WARNING: SKIPPING adding repeat entry for string. Please review spec and file issue as appropriate. Repeat string is: %s" % (error_msg_str) else: error_strings.add(error_msg_str) enum_str = "%s%05d" % (validation_error_enum_name, unique_enum_id) # TODO : '\' chars in spec error messages are most likely bad spec txt that needs to be updated self.val_error_dict[enum_str] = {} self.val_error_dict[enum_str]['error_msg'] = error_msg_str.encode("ascii", "ignore").replace("\\", "/") self.val_error_dict[enum_str]['api'] = api_function self.val_error_dict[enum_str]['implicit'] = False if implicit: self.val_error_dict[enum_str]['implicit'] = True self.implicit_count = self.implicit_count + 1 unique_enum_id = unique_enum_id + 1 #print "Validation Error Dict has a total of %d unique errors and contents are:\n%s" % (unique_enum_id, self.val_error_dict) def genHeader(self, header_file): """Generate a header file based on the contents of a parsed spec""" print "Generating header %s..." % (header_file) file_contents = [] file_contents.append(self.copyright) file_contents.append('\n#pragma once') file_contents.append('\n// Disable auto-formatting for generated file') file_contents.append('// clang-format off') file_contents.append('\n#include <unordered_map>') file_contents.append('\n// enum values for unique validation error codes') file_contents.append('// Corresponding validation error message for each enum is given in the mapping table below') file_contents.append('// When a given error occurs, these enum values should be passed to the as the messageCode') file_contents.append('// parameter to the PFN_vkDebugReportCallbackEXT function') enum_decl = ['enum UNIQUE_VALIDATION_ERROR_CODE {\n VALIDATION_ERROR_UNDEFINED = -1,'] error_string_map = ['static std::unordered_map<int, char const *const> validation_error_map{'] enum_value = 0 for enum in sorted(self.val_error_dict): #print "Header enum is %s" % (enum) enum_value = int(enum.split('_')[-1]) enum_decl.append(' %s = %d,' % (enum, enum_value)) error_string_map.append(' {%s, "%s"},' % (enum, self.val_error_dict[enum]['error_msg'])) enum_decl.append(' %sMAX_ENUM = %d,' % (validation_error_enum_name, enum_value + 1)) enum_decl.append('};') error_string_map.append('};\n') file_contents.extend(enum_decl) file_contents.append('\n// Mapping from unique validation error enum to the corresponding error message') file_contents.append('// The error message should be appended to the end of a custom error message that is passed') file_contents.append('// as the pMessage parameter to the PFN_vkDebugReportCallbackEXT function') file_contents.extend(error_string_map) #print "File contents: %s" % (file_contents) with open(header_file, "w") as outfile: outfile.write("\n".join(file_contents)) def analyze(self): """Print out some stats on the valid usage dict""" # Create dict for # of occurences of identical strings str_count_dict = {} unique_id_count = 0 for enum in self.val_error_dict: err_str = self.val_error_dict[enum]['error_msg'] if err_str in str_count_dict: print "Found repeat error string" str_count_dict[err_str] = str_count_dict[err_str] + 1 else: str_count_dict[err_str] = 1 unique_id_count = unique_id_count + 1 print "Processed %d unique_ids" % (unique_id_count) repeat_string = 0 for es in str_count_dict: if str_count_dict[es] > 1: repeat_string = repeat_string + 1 print "String '%s' repeated %d times" % (es, repeat_string) print "Found %d repeat strings" % (repeat_string) print "Found %d implicit checks" % (self.implicit_count) def genDB(self, db_file): """Generate a database of check_enum, check_coded?, testname, error_string""" db_lines = [] # Write header for database file db_lines.append("# This is a database file with validation error check information") db_lines.append("# Comments are denoted with '#' char") db_lines.append("# The format of the lines is:") db_lines.append("# <error_enum>%s<check_implemented>%s<testname>%s<api>%s<errormsg>%s<note>" % (self.delimiter, self.delimiter, self.delimiter, self.delimiter, self.delimiter)) db_lines.append("# error_enum: Unique error enum for this check of format %s<uniqueid>" % validation_error_enum_name) db_lines.append("# check_implemented: 'Y' if check has been implemented in layers, 'U' for unknown, or 'N' for not implemented") db_lines.append("# testname: Name of validation test for this check, 'Unknown' for unknown, or 'None' if not implmented") db_lines.append("# api: Vulkan API function that this check is related to") db_lines.append("# errormsg: The unique error message for this check that includes spec language and link") db_lines.append("# note: Free txt field with any custom notes related to the check in question") for enum in sorted(self.val_error_dict): # Default to unknown if check or test are implemented, then update below if appropriate implemented = 'U' testname = 'Unknown' note = '' implicit = self.val_error_dict[enum]['implicit'] # If we have an existing db entry for this enum, use its implemented/testname values if enum in self.error_db_dict: implemented = self.error_db_dict[enum]['check_implemented'] testname = self.error_db_dict[enum]['testname'] note = self.error_db_dict[enum]['note'] if implicit and 'implicit' not in note: # add implicit note if '' != note: note = "implicit, %s" % (note) else: note = "implicit" #print "delimiter: %s, id: %s, str: %s" % (self.delimiter, enum, self.val_error_dict[enum]) # No existing entry so default to N for implemented and None for testname db_lines.append("%s%s%s%s%s%s%s%s%s%s%s" % (enum, self.delimiter, implemented, self.delimiter, testname, self.delimiter, self.val_error_dict[enum]['api'], self.delimiter, self.val_error_dict[enum]['error_msg'], self.delimiter, note)) db_lines.append("\n") # newline at end of file print "Generating database file %s" % (db_file) with open(db_file, "w") as outfile: outfile.write("\n".join(db_lines)) def readDB(self, db_file): """Read a db file into a dict, format of each line is <enum><implemented Y|N?><testname><errormsg>""" db_dict = {} # This is a simple db of just enum->errormsg, the same as is created from spec max_id = 0 with open(db_file, "r") as infile: for line in infile: line = line.strip() if line.startswith('#') or '' == line: continue db_line = line.split(self.delimiter) if len(db_line) != 6: print "ERROR: Bad database line doesn't have 6 elements: %s" % (line) error_enum = db_line[0] implemented = db_line[1] testname = db_line[2] api = db_line[3] error_str = db_line[4] note = db_line[5] db_dict[error_enum] = error_str # Also read complete database contents into our class var for later use self.error_db_dict[error_enum] = {} self.error_db_dict[error_enum]['check_implemented'] = implemented self.error_db_dict[error_enum]['testname'] = testname self.error_db_dict[error_enum]['api'] = api self.error_db_dict[error_enum]['error_string'] = error_str self.error_db_dict[error_enum]['note'] = note unique_id = int(db_line[0].split('_')[-1]) if unique_id > max_id: max_id = unique_id return (db_dict, max_id) # Compare unique ids from original database to data generated from updated spec # 1. If a new id and error code exactly match original, great # 2. If new id is not in original, but exact error code is, need to use original error code # 3. If new id and new error are not in original, make sure new id picks up from end of original list # 4. If new id in original, but error strings don't match then: # 4a. If error string has exact match in original, update new to use original # 4b. If error string not in original, may be updated error message, manually address def compareDB(self, orig_error_msg_dict, max_id): """Compare orig database dict to new dict, report out findings, and return potential new dict for parsed spec""" # First create reverse dicts of err_strings to IDs next_id = max_id + 1 orig_err_to_id_dict = {} # Create an updated dict in-place that will be assigned to self.val_error_dict when done updated_val_error_dict = {} for enum in orig_error_msg_dict: orig_err_to_id_dict[orig_error_msg_dict[enum]] = enum new_err_to_id_dict = {} for enum in self.val_error_dict: new_err_to_id_dict[self.val_error_dict[enum]['error_msg']] = enum ids_parsed = 0 # Values to be used for the update dict update_enum = '' update_msg = '' update_api = '' # Now parse through new dict and figure out what to do with non-matching things for enum in sorted(self.val_error_dict): ids_parsed = ids_parsed + 1 enum_list = enum.split('_') # grab sections of enum for use below # Default update values to be the same update_enum = enum update_msg = self.val_error_dict[enum]['error_msg'] update_api = self.val_error_dict[enum]['api'] implicit = self.val_error_dict[enum]['implicit'] # Any user-forced remap takes precendence if enum_list[-1] in remap_dict: enum_list[-1] = remap_dict[enum_list[-1]] new_enum = "_".join(enum_list) print "NOTE: Using user-supplied remap to force %s to be %s" % (enum, new_enum) update_enum = new_enum elif enum in orig_error_msg_dict: if self.val_error_dict[enum]['error_msg'] == orig_error_msg_dict[enum]: print "Exact match for enum %s" % (enum) # Nothing to see here if enum in updated_val_error_dict: print "ERROR: About to overwrite entry for %s" % (enum) elif self.val_error_dict[enum]['error_msg'] in orig_err_to_id_dict: # Same value w/ different error id, need to anchor to original id print "Need to switch new id %s to original id %s" % (enum, orig_err_to_id_dict[self.val_error_dict[enum]['error_msg']]) # Update id at end of new enum to be same id from original enum enum_list[-1] = orig_err_to_id_dict[self.val_error_dict[enum]['error_msg']].split('_')[-1] new_enum = "_".join(enum_list) if new_enum in updated_val_error_dict: print "ERROR: About to overwrite entry for %s" % (new_enum) update_enum = new_enum else: # No error match: # First check if only link has changed, in which case keep ID but update message orig_msg_list = orig_error_msg_dict[enum].split('(', 1) new_msg_list = self.val_error_dict[enum]['error_msg'].split('(', 1) if orig_msg_list[0] == new_msg_list[0]: # Msg is same bug link has changed, keep enum & update msg print "NOTE: Found that only spec link changed for %s so keeping same id w/ new link" % (enum) # This seems to be a new error so need to pick it up from end of original unique ids & flag for review else: enum_list[-1] = "%05d" % (next_id) new_enum = "_".join(enum_list) next_id = next_id + 1 print "MANUALLY VERIFY: Updated new enum %s to be unique %s. Make sure new error msg is actually unique and not just changed" % (enum, new_enum) print " New error string: %s" % (self.val_error_dict[enum]['error_msg']) if new_enum in updated_val_error_dict: print "ERROR: About to overwrite entry for %s" % (new_enum) update_enum = new_enum else: # new enum is not in orig db if self.val_error_dict[enum]['error_msg'] in orig_err_to_id_dict: print "New enum %s not in orig dict, but exact error message matches original unique id %s" % (enum, orig_err_to_id_dict[self.val_error_dict[enum]['error_msg']]) # Update new unique_id to use original enum_list[-1] = orig_err_to_id_dict[self.val_error_dict[enum]['error_msg']].split('_')[-1] new_enum = "_".join(enum_list) if new_enum in updated_val_error_dict: print "ERROR: About to overwrite entry for %s" % (new_enum) update_enum = new_enum else: enum_list[-1] = "%05d" % (next_id) new_enum = "_".join(enum_list) next_id = next_id + 1 print "Completely new id and error code, update new id from %s to unique %s" % (enum, new_enum) if new_enum in updated_val_error_dict: print "ERROR: About to overwrite entry for %s" % (new_enum) update_enum = new_enum updated_val_error_dict[update_enum] = {} updated_val_error_dict[update_enum]['error_msg'] = update_msg updated_val_error_dict[update_enum]['api'] = update_api updated_val_error_dict[update_enum]['implicit'] = implicit # Assign parsed dict to be the udpated dict based on db compare print "In compareDB parsed %d entries" % (ids_parsed) return updated_val_error_dict def validateUpdateDict(self, update_dict): """Compare original dict vs. update dict and make sure that all of the checks are still there""" # Currently just make sure that the same # of checks as the original checks are there #orig_ids = {} orig_id_count = len(self.val_error_dict) #update_ids = {} update_id_count = len(update_dict) if orig_id_count != update_id_count: print "Original dict had %d unique_ids, but updated dict has %d!" % (orig_id_count, update_id_count) return False print "Original dict and updated dict both have %d unique_ids. Great!" % (orig_id_count) return True # TODO : include some more analysis # User passes in arg of form <new_id1>-<old_id1>[,count1]:<new_id2>-<old_id2>[,count2]:... # new_id# = the new enum id that was assigned to an error # old_id# = the previous enum id that was assigned to the same error # [,count#] = The number of ids to remap starting at new_id#=old_id# and ending at new_id[#+count#-1]=old_id[#+count#-1] # If not supplied, then ,1 is assumed, which will only update a single id def updateRemapDict(remap_string): """Set up global remap_dict based on user input""" remap_list = remap_string.split(":") for rmap in remap_list: count = 1 # Default count if none supplied id_count_list = rmap.split(',') if len(id_count_list) > 1: count = int(id_count_list[1]) new_old_id_list = id_count_list[0].split('-') for offset in range(count): remap_dict["%05d" % (int(new_old_id_list[0]) + offset)] = "%05d" % (int(new_old_id_list[1]) + offset) for new_id in sorted(remap_dict): print "Set to remap new id %s to old id %s" % (new_id, remap_dict[new_id]) if __name__ == "__main__": i = 1 use_online = True # Attempt to grab spec from online by default update_option = False while (i < len(sys.argv)): arg = sys.argv[i] i = i + 1 if (arg == '-spec'): spec_filename = sys.argv[i] # If user specifies local specfile, skip online use_online = False i = i + 1 elif (arg == '-out'): out_filename = sys.argv[i] i = i + 1 elif (arg == '-gendb'): gen_db = True # Set filename if supplied, else use default if i < len(sys.argv) and not sys.argv[i].startswith('-'): db_filename = sys.argv[i] i = i + 1 elif (arg == '-compare'): db_filename = sys.argv[i] spec_compare = True i = i + 1 elif (arg == '-update'): update_option = True spec_compare = True gen_db = True elif (arg == '-remap'): updateRemapDict(sys.argv[i]) i = i + 1 elif (arg in ['-help', '-h']): printHelp() sys.exit() if len(remap_dict) > 1 and not update_option: print "ERROR: '-remap' option can only be used along with '-update' option. Exiting." sys.exit() spec = Specification() spec.loadFile(use_online, spec_filename) #spec.parseTree() #spec.genHeader(out_filename) spec.analyze() if (spec_compare): # Read in old spec info from db file (orig_err_msg_dict, max_id) = spec.readDB(db_filename) # New spec data should already be read into self.val_error_dict updated_dict = spec.compareDB(orig_err_msg_dict, max_id) update_valid = spec.validateUpdateDict(updated_dict) if update_valid: spec.updateDict(updated_dict) else: sys.exit() if (gen_db): spec.genDB(db_filename) print "Writing out file (-out) to '%s'" % (out_filename) spec.genHeader(out_filename) ##### Example dataset # <div class="sidebar"> # <div class="titlepage"> # <div> # <div> # <p class="title"> # <strong>Valid Usage</strong> # When we get to this guy, we know we're under interesting sidebar # </p> # </div> # </div> # </div> # <div class="itemizedlist"> # <ul class="itemizedlist" style="list-style-type: disc; "> # <li class="listitem"> # <em class="parameter"> # <code>device</code> # </em> # <span class="normative">must</span> be a valid # <code class="code">VkDevice</code> handle # </li> # <li class="listitem"> # <em class="parameter"> # <code>commandPool</code> # </em> # <span class="normative">must</span> be a valid # <code class="code">VkCommandPool</code> handle # </li> # <li class="listitem"> # <em class="parameter"> # <code>flags</code> # </em> # <span class="normative">must</span> be a valid combination of # <code class="code"> # <a class="link" href="#VkCommandPoolResetFlagBits">VkCommandPoolResetFlagBits</a> # </code> values # </li> # <li class="listitem"> # <em class="parameter"> # <code>commandPool</code> # </em> # <span class="normative">must</span> have been created, allocated, or retrieved from # <em class="parameter"> # <code>device</code> # </em> # </li> # <li class="listitem">All # <code class="code">VkCommandBuffer</code> # objects allocated from # <em class="parameter"> # <code>commandPool</code> # </em> # <span class="normative">must</span> not currently be pending execution # </li> # </ul> # </div> # </div> ##### Second example dataset # <div class="sidebar"> # <div class="titlepage"> # <div> # <div> # <p class="title"> # <strong>Valid Usage</strong> # </p> # </div> # </div> # </div> # <div class="itemizedlist"> # <ul class="itemizedlist" style="list-style-type: disc; "> # <li class="listitem">The <em class="parameter"><code>queueFamilyIndex</code></em> member of any given element of <em class="parameter"><code>pQueueCreateInfos</code></em> <span class="normative">must</span> be unique within <em class="parameter"><code>pQueueCreateInfos</code></em> # </li> # </ul> # </div> # </div> # <div class="sidebar"> # <div class="titlepage"> # <div> # <div> # <p class="title"> # <strong>Valid Usage (Implicit)</strong> # </p> # </div> # </div> # </div> # <div class="itemizedlist"><ul class="itemizedlist" style="list-style-type: disc; "><li class="listitem"> #<em class="parameter"><code>sType</code></em> <span class="normative">must</span> be <code class="code">VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO</code> #</li><li class="listitem"> #<em class="parameter"><code>pNext</code></em> <span class="normative">must</span> be <code class="literal">NULL</code> #</li><li class="listitem"> #<em class="parameter"><code>flags</code></em> <span class="normative">must</span> be <code class="literal">0</code> #</li><li class="listitem"> #<em class="parameter"><code>pQueueCreateInfos</code></em> <span class="normative">must</span> be a pointer to an array of <em class="parameter"><code>queueCreateInfoCount</code></em> valid <code class="code">VkDeviceQueueCreateInfo</code> structures #</li> ```
{ "source": "jj-zhu/jadagger", "score": 2 }
#### File: jj-zhu/jadagger/run_dagger.py ```python import pickle import tensorflow as tf import numpy as np import tf_util import gym import load_policy def main(): #=========================================================================== # generate expert data #=========================================================================== # param expert_policy_file = 'experts/Humanoid-v1.pkl' envname = 'Humanoid-v1' render = 1 num_rollouts = 25 max_timesteps = 0 # policy_fn contains expert policy policy_fn = load_policy.load_policy(expert_policy_file) with tf.Session(): tf_util.initialize() import gym env = gym.make(envname) max_steps = max_timesteps or env.spec.timestep_limit returns = [] observations = [] actions = [] for i in range(num_rollouts): print('iter', i) obs = env.reset() done = False totalr = 0. steps = 0 while not done: action = policy_fn(obs[None, :]) # action using expert policy policy_fn observations.append(obs) actions.append(action) obs, r, done, _ = env.step(action) totalr += r steps += 1 if render: env.render() if steps % 100 == 0: print("%i/%i" % (steps, max_steps)) if steps >= max_steps: break returns.append(totalr) print('returns', returns) print('mean return', np.mean(returns)) print('std of return', np.std(returns)) # pass observations, actions to imitation learning obs_data = np.squeeze(np.array(observations)) act_data = np.squeeze(np.array(actions)) save_expert_mean = np.mean(returns) save_expert_std = np.std(returns) #=========================================================================== # set up the network structure for the imitation learning policy function #=========================================================================== # dim for input/output obs_dim = obs_data.shape[1] act_dim = act_data.shape[1] # architecture of the MLP policy function x = tf.placeholder(tf.float32, shape=[None, obs_dim]) yhot = tf.placeholder(tf.float32, shape=[None, act_dim]) h1 = tf.layers.dense(inputs=x, units=128, activation=tf.nn.relu) h2 = tf.layers.dense(inputs=h1, units=64, activation=tf.nn.relu) h3 = tf.layers.dense(inputs=h2, units=32, activation=tf.nn.relu) yhat = tf.layers.dense(inputs=h3, units=act_dim, activation=None) loss_l2 = tf.reduce_mean(tf.square(yhot - yhat)) train_step = tf.train.AdamOptimizer().minimize(loss_l2) #=========================================================================== # run DAgger alg #=========================================================================== with tf.Session() as sess: sess.run(tf.global_variables_initializer()) # record return and std for plotting save_mean = [] save_std = [] save_train_size = [] # loop for dagger alg for i_dagger in xrange(50): print 'DAgger iteration ', i_dagger # train a policy by fitting the MLP batch_size = 25 for step in range(10000): batch_i = np.random.randint(0, obs_data.shape[0], size=batch_size) train_step.run(feed_dict={x: obs_data[batch_i, ], yhot: act_data[batch_i, ]}) if (step % 1000 == 0): print 'opmization step ', step print 'obj value is ', loss_l2.eval(feed_dict={x:obs_data, yhot:act_data}) print 'Optimization Finished!' # use trained MLP to perform max_steps = env.spec.timestep_limit returns = [] observations = [] actions = [] for i in range(num_rollouts): print('iter', i) obs = env.reset() done = False totalr = 0. steps = 0 while not done: action = yhat.eval(feed_dict={x:obs[None, :]}) observations.append(obs) actions.append(action) obs, r, done, _ = env.step(action) totalr += r steps += 1 if render: env.render() if steps % 100 == 0: print("%i/%i" % (steps, max_steps)) if steps >= max_steps: break returns.append(totalr) print('mean return', np.mean(returns)) print('std of return', np.std(returns)) # expert labeling act_new = [] for i_label in xrange(len(observations)): act_new.append(policy_fn(observations[i_label][None, :])) # record training size train_size = obs_data.shape[0] # data aggregation obs_data = np.concatenate((obs_data, np.array(observations)), axis=0) act_data = np.concatenate((act_data, np.squeeze(np.array(act_new))), axis=0) # record mean return & std save_mean = np.append(save_mean, np.mean(returns)) save_std = np.append(save_std, np.std(returns)) save_train_size = np.append(save_train_size, train_size) dagger_results = {'means': save_mean, 'stds': save_std, 'train_size': save_train_size, 'expert_mean':save_expert_mean, 'expert_std':save_expert_std} print 'DAgger iterations finished!' if __name__ == '__main__': main() ```
{ "source": "jjzhunet9/mmdgm", "score": 2 }
#### File: mmdgm/conv-mmdgm/c_6layer_svhn_imputation_1000_for_test.py ```python import os import sys import time import math import numpy as np import theano import theano.tensor as T import theano.tensor.shared_randomstreams from util import datapy, color, paramgraphics #from optimization import optimizer from optimization import optimizer_separated from layer import FullyConnected, nonlinearity from layer import GaussianHidden, NoParamsGaussianVisiable,Pegasos #from layer import ConvMaxPool_GauInit_DNN, UnpoolConvNon_GauInit_DNN from layer import ConvMaxPool_GauInit_DNN, UnpoolConvNon_GauInit_DNN def c_6layer_svhn_imputation(seed=0, ctype='cva', pertub_type=5, pertub_prob=0, pertub_prob1=16, visualization_times=20, denoise_times=200, predir=None, n_batch=900, batch_size=500): """ Missing data imputation """ ''' svhn ''' n_channels = 3 colorImg = True dim_w = 32 dim_h = 32 dim_input=(dim_h, dim_w) n_classes = 10 first_drop=0.6 if os.environ.has_key('first_drop'): first_drop = float(os.environ['first_drop']) last_drop=1 if os.environ.has_key('last_drop'): last_drop = float(os.environ['last_drop']) nkerns_1=96 if os.environ.has_key('nkerns_1'): nkerns_1 = int(os.environ['nkerns_1']) nkerns_2=96 if os.environ.has_key('nkerns_2'): nkerns_2 = int(os.environ['nkerns_2']) opt_med='mom' if os.environ.has_key('opt_med'): opt_med = os.environ['opt_med'] train_logvar=True if os.environ.has_key('train_logvar'): train_logvar = bool(int(os.environ['train_logvar'])) dataset='svhnlcn' if os.environ.has_key('dataset'): dataset = os.environ['dataset'] n_z=256 if os.environ.has_key('n_z'): n_z = int(os.environ['n_z']) #cp->cd->cpd->cd->c nkerns=[nkerns_1, nkerns_1, nkerns_1, nkerns_2, nkerns_2] drops=[0, 1, 1, 1, 0, 1] drop_p=[1, first_drop, first_drop, first_drop, 1, last_drop] n_hidden=[n_z] logdir = 'results/imputation/'+ctype+'/svhn/'+ctype+'_6layer_'+dataset+'_' logdir += str(int(time.time()))+'/' if not os.path.exists(logdir): os.makedirs(logdir) print predir with open(logdir+'hook.txt', 'a') as f: print >>f, predir color.printRed('dataset '+dataset) test_set_x, test_set_x_pertub, pertub_label, pertub_number = datapy.load_pertub_data_svhn(dirs='data_imputation/', dataset=dataset, pertub_type=pertub_type, pertub_prob=pertub_prob, pertub_prob1=pertub_prob1) pixel_max, pixel_min = datapy.load_max_min(dirs='data_imputation/', dataset=dataset, pertub_prob=pertub_prob) # compute number of minibatches for training, validation and testing #n_train_batches = train_set_x.get_value(borrow=True).shape[0] / batch_size #n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] / batch_size n_test_batches = test_set_x.get_value(borrow=True).shape[0] / batch_size ###################### # BUILD ACTUAL MODEL # ###################### print '... building the model' # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels random_z = T.matrix('random_z') x_pertub = T.matrix('x_pertub') # the data is presented as rasterized images p_label = T.matrix('p_label') drop = T.iscalar('drop') activation = nonlinearity.relu rng = np.random.RandomState(seed) rng_share = theano.tensor.shared_randomstreams.RandomStreams(0) input_x = x_pertub.reshape((batch_size, n_channels, dim_h, dim_w)) recg_layer = [] cnn_output = [] l = [] d = [] #1 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, n_channels, dim_h, dim_w), filter_shape=(nkerns[0], n_channels, 5, 5), poolsize=(2, 2), border_mode='same', activation=activation )) if drops[0]==1: cnn_output.append(recg_layer[-1].drop_output(input=input_x, drop=drop, rng=rng_share, p=drop_p[0])) else: cnn_output.append(recg_layer[-1].output(input=input_x)) l+=[1, 2] d+=[1, 1] #2 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[0], 16, 16), filter_shape=(nkerns[1], nkerns[0], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation )) if drops[1]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[1])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 1] #3 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[1], 16, 16), filter_shape=(nkerns[2], nkerns[1], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation )) if drops[2]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[2])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 1] #4 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[2], 8, 8), filter_shape=(nkerns[3], nkerns[2], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation )) if drops[3]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[3])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 1] #5 ''' --------------------- (2,2) or (4,4) ''' recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[3], 8, 8), filter_shape=(nkerns[4], nkerns[3], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation )) if drops[4]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[4])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 1] mlp_input_x = cnn_output[-1].flatten(2) activations = [] activations.append(mlp_input_x) #1 ''' ---------------------No MLP ''' ''' recg_layer.append(FullyConnected.FullyConnected( rng=rng, n_in= 4 * 4 * nkerns[-1], n_out=n_hidden[0], activation=activation )) if drops[-1]==1: activations.append(recg_layer[-1].drop_output(input=mlp_input_x, drop=drop, rng=rng_share, p=drop_p[-1])) else: activations.append(recg_layer[-1].output(input=mlp_input_x)) ''' #stochastic layer recg_layer.append(GaussianHidden.GaussianHidden( rng=rng, input=activations[-1], n_in=4 * 4 * nkerns[-1], n_out=n_hidden[0], activation=None )) l+=[1, 2] d+=[1, 1] l+=[1, 2] d+=[1, 1] z = recg_layer[-1].sample_z(rng_share) gene_layer = [] z_output = [] random_z_output = [] #1 gene_layer.append(FullyConnected.FullyConnected( rng=rng, n_in=n_hidden[0], n_out = 4*4*nkerns[-1], activation=activation )) z_output.append(gene_layer[-1].output(input=z)) random_z_output.append(gene_layer[-1].output(input=random_z)) l+=[1, 2] d+=[1, 1] #2 ''' gene_layer.append(FullyConnected.FullyConnected( rng=rng, n_in=n_hidden[0], n_out = 4*4*nkerns[-1], activation=activation )) if drop_inverses[0]==1: z_output.append(gene_layer[-1].drop_output(input=z_output[-1], drop=drop_inverse, rng=rng_share)) random_z_output.append(gene_layer[-1].drop_output(input=random_z_output[-1], drop=drop_inverse, rng=rng_share)) else: z_output.append(gene_layer[-1].output(input=z_output[-1])) random_z_output.append(gene_layer[-1].output(input=random_z_output[-1])) ''' input_z = z_output[-1].reshape((batch_size, nkerns[-1], 4, 4)) input_random_z = random_z_output[-1].reshape((n_batch, nkerns[-1], 4, 4)) #1 gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-1], 4, 4), filter_shape=(nkerns[-2], nkerns[-1], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation )) l+=[1, 2] d+=[1, 1] z_output.append(gene_layer[-1].output(input=input_z)) random_z_output.append(gene_layer[-1].output_random_generation(input=input_random_z, n_batch=n_batch)) #2 gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-2], 8, 8), filter_shape=(nkerns[-3], nkerns[-2], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation )) l+=[1, 2] d+=[1, 1] z_output.append(gene_layer[-1].output(input=z_output[-1])) random_z_output.append(gene_layer[-1].output_random_generation(input=random_z_output[-1], n_batch=n_batch)) #3 gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-3], 8, 8), filter_shape=(nkerns[-4], nkerns[-3], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation )) l+=[1, 2] d+=[1, 1] z_output.append(gene_layer[-1].output(input=z_output[-1])) random_z_output.append(gene_layer[-1].output_random_generation(input=random_z_output[-1], n_batch=n_batch)) #4 gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-4], 16, 16), filter_shape=(nkerns[-5], nkerns[-4], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation )) l+=[1, 2] d+=[1, 1] z_output.append(gene_layer[-1].output(input=z_output[-1])) random_z_output.append(gene_layer[-1].output_random_generation(input=random_z_output[-1], n_batch=n_batch)) #5-1 stochastic layer # for this layer, the activation is None to get a Guassian mean gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-5], 16, 16), filter_shape=(n_channels, nkerns[-5], 5, 5), poolsize=(2, 2), border_mode='same', activation=None )) l+=[1, 2] d+=[1, 1] x_mean=gene_layer[-1].output(input=z_output[-1]) random_x_mean=gene_layer[-1].output_random_generation(input=random_z_output[-1], n_batch=n_batch) #5-2 stochastic layer # for this layer, the activation is None to get logvar if train_logvar: gene_layer.append(UnpoolConvNon_GauInit_DNN.UnpoolConvNon_GauInit_DNN( rng, image_shape=(batch_size, nkerns[-5], 16, 16), filter_shape=(n_channels, nkerns[-5], 5, 5), poolsize=(2, 2), border_mode='same', activation=None )) l+=[1, 2] d+=[1, 1] x_logvar=gene_layer[-1].output(input=z_output[-1]) random_x_logvar=gene_layer[-1].output_random_generation(input=random_z_output[-1], n_batch=n_batch) else: x_logvar = theano.shared(np.ones((batch_size, n_channels, dim_h, dim_w), dtype='float32')) random_x_logvar = theano.shared(np.ones((n_batch, n_channels, dim_h, dim_w), dtype='float32')) gene_layer.append(NoParamsGaussianVisiable.NoParamsGaussianVisiable( #rng=rng, #mean=z_output[-1], #data=input_x, )) logpx = gene_layer[-1].logpx(mean=x_mean, logvar=x_logvar, data=input_x) random_x = gene_layer[-1].sample_x(rng_share=rng_share, mean=random_x_mean, logvar=random_x_logvar) x_denoised = p_label*x+(1-p_label)*x_mean.flatten(2) mse = ((x - x_denoised)**2).sum() / pertub_number params=[] for g in gene_layer: params+=g.params for r in recg_layer: params+=r.params ''' train_activations = theano.function( inputs=[index], outputs=T.concatenate(activations, axis=1), givens={ x_pertub: train_set_x[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) ''' ''' valid_activations = theano.function( inputs=[index], outputs=T.concatenate(activations, axis=1), givens={ x_pertub: valid_set_x[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) ''' test_activations = theano.function( inputs=[x_pertub], outputs=T.concatenate(activations, axis=1), givens={ drop: np.cast['int32'](0) } ) imputation_model = theano.function( inputs=[index, x_pertub], outputs=[x_denoised, mse], givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], p_label:pertub_label[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0), #drop_inverse: np.cast['int32'](0) } ) ################## # Pretrain MODEL # ################## model_epoch = 100 if os.environ.has_key('model_epoch'): model_epoch = int(os.environ['model_epoch']) if predir is not None: color.printBlue('... setting parameters') color.printBlue(predir) if model_epoch == -1: pre_train = np.load(predir+'best-model.npz') else: pre_train = np.load(predir+'model-'+str(model_epoch)+'.npz') pre_train = pre_train['model'] if ctype == 'cva': for (para, pre) in zip(params, pre_train): para.set_value(pre) elif ctype == 'cmmva': for (para, pre) in zip(params, pre_train[:-2]): para.set_value(pre) else: exit() else: exit() ############### # TRAIN MODEL # ############### print '... training' scale = False epoch = 0 n_visualization = 900 pixel_max = pixel_max[:n_visualization] pixel_min = pixel_min[:n_visualization] output = np.ones((n_visualization, visualization_times+2, n_channels*dim_input[0]*dim_input[1])) output[:,0,:] = test_set_x.get_value()[:n_visualization,:] output[:,1,:] = test_set_x_pertub.get_value()[:n_visualization,:] image = paramgraphics.mat_to_img(paramgraphics.scale_max_min(output[:,0,:].T,pixel_max,pixel_min), dim_input, colorImg=colorImg, scale=scale) image.save(logdir+'data.png', 'PNG') image = paramgraphics.mat_to_img(paramgraphics.scale_max_min(output[:,1,:].T,pixel_max,pixel_min), dim_input, colorImg=colorImg, scale=scale) image.save(logdir+'data_pertub.png', 'PNG') tmp = test_set_x_pertub.get_value() while epoch < denoise_times: epoch = epoch + 1 for i in xrange(n_test_batches): d, m = imputation_model(i, tmp[i * batch_size: (i + 1) * batch_size]) tmp[i * batch_size: (i + 1) * batch_size] = np.asarray(d) if epoch<=visualization_times: output[:,epoch+1,:] = tmp[:n_visualization,:] image = paramgraphics.mat_to_img(paramgraphics.scale_max_min(tmp[:n_visualization,:].T,pixel_max,pixel_min), dim_input, colorImg=colorImg, scale=scale) image.save(logdir+'procedure-'+str(epoch)+'.png', 'PNG') np.savez(logdir+'procedure-'+str(epoch), tmp=tmp) ''' image = paramgraphics.mat_to_img((output.reshape(-1,32*32*3)).T, dim_input, colorImg=colorImg, tile_shape=(n_visualization,22), scale=scale) image.save(logdir+'output.png', 'PNG') np.savez(logdir+'output', output=output) ''' ''' # save original train features and denoise test features for i in xrange(n_train_batches): if i == 0: train_features = np.asarray(train_activations(i)) else: train_features = np.vstack((train_features, np.asarray(train_activations(i)))) for i in xrange(n_valid_batches): if i == 0: valid_features = np.asarray(valid_activations(i)) else: valid_features = np.vstack((valid_features, np.asarray(valid_activations(i)))) for i in xrange(n_test_batches): if i == 0: test_features = np.asarray(test_activations(tmp[i * batch_size: (i + 1) * batch_size])) else: test_features = np.vstack((test_features, np.asarray(test_activations(tmp[i * batch_size: (i + 1) * batch_size])))) np.save(logdir+'train_features', train_features) #np.save(logdir+'valid_features', valid_features) np.save(logdir+'test_features', test_features) ''' if __name__ == '__main__': ctype = sys.argv[1] pertub_type = int(sys.argv[2]) pertub_prob = float(sys.argv[3]) pertub_prob1 = float(sys.argv[4]) denoise_times = int(sys.argv[5]) predir = sys.argv[6] c_6layer_svhn_imputation(ctype=ctype, denoise_times=denoise_times, pertub_type=pertub_type, pertub_prob=pertub_prob, pertub_prob1=pertub_prob1, predir=predir) ``` #### File: mmdgm/conv-mmdgm/cnn_6layer_svhn.py ```python import os import sys import time import numpy as np import theano import theano.tensor as T from layer import ConvMaxPool_GauInit_DNN from layer import FullyConnected from layer import LogisticRegression, Pegasos from util import datapy, color from layer import nonlinearity from optimization import optimizer_separated def deep_cnn_6layer_svhn_final_svm(learning_rate=0.01, n_epochs=500, dataset='svhngcn_var', batch_size=500, dropout_flag=1, seed=0, predir=None, preepoch=10, activation=None, weight_decay=1e-4): ''' svhn ''' n_channels = 3 dim_w = 32 dim_h = 32 n_classes = 10 epoch_threshold = 200 if os.environ.has_key('epoch_threshold'): epoch_threshold = int(os.environ['epoch_threshold']) first_drop=0.6 if os.environ.has_key('first_drop'): first_drop = float(os.environ['first_drop']) last_drop=1 if os.environ.has_key('last_drop'): last_drop = float(os.environ['last_drop']) nkerns_1=96 if os.environ.has_key('nkerns_1'): nkerns_1 = int(os.environ['nkerns_1']) nkerns_2=96 if os.environ.has_key('nkerns_2'): nkerns_2 = int(os.environ['nkerns_2']) opt_med='adam' if os.environ.has_key('opt_med'): opt_med = os.environ['opt_med'] std = 2e-2 if os.environ.has_key('std'): std = os.environ['std'] pattern = 'hinge' if os.environ.has_key('pattern'): pattern = os.environ['pattern'] Loss_L = 1 if os.environ.has_key('Loss_L'): Loss_L = float(os.environ['Loss_L']) #cp->cd->cpd->cd->c nkerns=[nkerns_1, nkerns_1, nkerns_1, nkerns_2, nkerns_2] drops=[0, 1, 1, 1, 0, 1] drop_p=[1, first_drop, first_drop, first_drop, 1, last_drop] #skerns=[5, 3, 3, 3, 3] #pools=[2, 1, 2, 1, 1] #modes=['same']*5 logdir = 'results/supervised/cnn/svhn/deep_cnn_6layer_'+pattern+'_'+dataset+str(nkerns)+str(drops)+'_'+str(weight_decay)+'_'+str(learning_rate)+'_'+str(std)+'_'+str(Loss_L)+'_'+str(int(time.time()))+'/' if dropout_flag==1: logdir = 'results/supervised/cnn/svhn/deep_cnn_6layer_'+pattern+'_'+dataset+str(drop_p)+str(nkerns)+str(drops)+'_'+str(weight_decay)+'_'+str(learning_rate)+'_'+str(std)+'_'+str(Loss_L)+'_dropout_'+str(int(time.time()))+'/' if not os.path.exists(logdir): os.makedirs(logdir) print 'logdir:', logdir print 'deep_cnn_6layer_svm', nkerns, drops, drop_p, seed, dropout_flag print 'epoch_threshold', epoch_threshold, 'opt_med', opt_med with open(logdir+'hook.txt', 'a') as f: print >>f, 'logdir:', logdir print >>f, 'epoch_threshold', epoch_threshold, 'opt_med', opt_med print >>f, 'deep_cnn_6layer_svm', nkerns, drops, drop_p, seed, dropout_flag rng = np.random.RandomState(0) rng_share = theano.tensor.shared_randomstreams.RandomStreams(0) color.printRed('dataset '+dataset) datasets = datapy.load_data_svhn(dataset, have_matrix=True) train_set_x, train_set_y, train_y_matrix = datasets[0] test_set_x, test_set_y, test_y_matrix = datasets[1] valid_set_x, valid_set_y, valid_y_matrix = datasets[2] #datasets = datapy.load_data_svhn(dataset, have_matrix=False) #train_set_x, train_set_y = datasets[0] #test_set_x, test_set_y = datasets[1] #valid_set_x, valid_set_y = datasets[2] # compute number of minibatches for training, validation and testing n_train_batches = train_set_x.get_value(borrow=True).shape[0] n_valid_batches = valid_set_x.get_value(borrow=True).shape[0] n_test_batches = test_set_x.get_value(borrow=True).shape[0] n_train_batches /= batch_size n_valid_batches /= batch_size n_test_batches /= batch_size # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch # start-snippet-1 x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels are presented as 1D vector of # [int] labels ''' dropout ''' drop = T.iscalar('drop') y_matrix = T.imatrix('y_matrix') # labels, presented as 2D matrix of int labels print '... building the model' layer0_input = x.reshape((batch_size, n_channels, dim_h, dim_w)) if activation =='nonlinearity.relu': activation = nonlinearity.relu elif activation =='nonlinearity.tanh': activation = nonlinearity.tanh elif activation =='nonlinearity.softplus': activation = nonlinearity.softplus recg_layer = [] cnn_output = [] l = [] d = [] #1 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, n_channels, dim_h, dim_w), filter_shape=(nkerns[0], n_channels, 5, 5), poolsize=(2, 2), border_mode='same', activation=activation, std=std )) if drops[0]==1: cnn_output.append(recg_layer[-1].drop_output(layer0_input, drop=drop, rng=rng_share, p=drop_p[0])) else: cnn_output.append(recg_layer[-1].output(layer0_input)) l+=[1, 2] d+=[1, 0] #2 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[0], 16, 16), filter_shape=(nkerns[1], nkerns[0], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation, std=std )) if drops[1]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[1])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 0] #3 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[1], 16, 16), filter_shape=(nkerns[2], nkerns[1], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation, std=std )) if drops[2]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[2])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 0] #4 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[2], 8, 8), filter_shape=(nkerns[3], nkerns[2], 3, 3), poolsize=(1, 1), border_mode='same', activation=activation, std=std )) if drops[3]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[3])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 0] #5 recg_layer.append(ConvMaxPool_GauInit_DNN.ConvMaxPool_GauInit_DNN( rng, image_shape=(batch_size, nkerns[3], 8, 8), filter_shape=(nkerns[4], nkerns[3], 3, 3), poolsize=(2, 2), border_mode='same', activation=activation, std=std )) if drops[4]==1: cnn_output.append(recg_layer[-1].drop_output(cnn_output[-1], drop=drop, rng=rng_share, p=drop_p[4])) else: cnn_output.append(recg_layer[-1].output(cnn_output[-1])) l+=[1, 2] d+=[1, 0] feature = cnn_output[-1].flatten(2) # classify the values of the fully-connected sigmoidal layer ''' large weight of pegasos to avoid gradient disappeared ''' std_pegasos=std weight_decay_pegasos=weight_decay classifier = Pegasos.Pegasos(input=feature, rng=rng, n_in=nkerns[-1]*4*4, n_out=n_classes, weight_decay=0, loss=Loss_L, std=std_pegasos, pattern=pattern) #classifier = LogisticRegression.LogisticRegression( # input=feature, # n_in=nkerns[-1], # n_out=n_classes # ) l+=[1, 2] d+=[weight_decay_pegasos / weight_decay, 0] # the cost we minimize during training is the NLL of the model cost = classifier.hinge_loss(n_classes, y, y_matrix) #cost = classifier.negative_log_likelihood(y) params=[] for r in recg_layer: params+=r.params params += classifier.params # create a list of gradients for all model parameters grads = T.grad(cost, params) l_r = theano.shared(np.asarray(learning_rate, dtype=np.float32)) if opt_med=='adam': get_optimizer = optimizer_separated.get_adam_optimizer_min(learning_rate=l_r, decay1 = 0.1, decay2 = 0.001, weight_decay=weight_decay) elif opt_med=='mom': get_optimizer = optimizer_separated.get_momentum_optimizer_min(learning_rate=l_r, weight_decay=weight_decay) updates = get_optimizer(w=params,g=grads, l=l, d=d) pog = [] for (p,g) in zip(params, grads): pog.append(p.max()) pog.append((p**2).mean()) pog.append((g**2).mean()) pog.append((T.sqrt(pog[-2] / pog[-1]))/ 1e3) paramovergrad = theano.function( inputs=[index], outputs=pog, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], y_matrix: train_y_matrix[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](dropout_flag) } ) parameters = theano.function( inputs=[], outputs=params, ) # create a function to compute the mistakes that are made by the model test_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], y: test_set_y[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) valid_model = theano.function( inputs=[index], outputs=classifier.errors(y), givens={ x: valid_set_x[index * batch_size: (index + 1) * batch_size], y: valid_set_y[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) train_activations = theano.function( inputs=[index], outputs=feature, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) test_activations = theano.function( inputs=[index], outputs=feature, givens={ x: test_set_x[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](0) } ) train_model = theano.function( inputs=[index], outputs=[cost, classifier.errors(y)], updates=updates, givens={ x: train_set_x[index * batch_size: (index + 1) * batch_size], y: train_set_y[index * batch_size: (index + 1) * batch_size], y_matrix: train_y_matrix[index * batch_size: (index + 1) * batch_size], drop: np.cast['int32'](dropout_flag) } ) if predir is not None: color.printBlue('... setting parameters') color.printBlue(predir) pre_train = np.load(predir+'svhn_model-'+str(preepoch)+'.npz') pre_train = pre_train['model'] for (para, pre) in zip(params, pre_train): para.set_value(pre) this_test_losses = [test_model(i) for i in xrange(n_test_batches)] this_test_score = np.mean(this_test_losses) #print predir print 'preepoch', preepoch, 'prescore', this_test_score with open(logdir+'hook.txt', 'a') as f: print >>f, predir print >>f, 'preepoch', preepoch, 'prescore', this_test_score print '... training' validation_frequency = n_train_batches/10 best_train_loss = 10000.0 best_valid_score = 10000.0 best_epoch = 0 test_score = 0 start_time = time.clock() epoch = 0 n_epochs = 100 test_epochs = 40 record = 0 ''' pog = [paramovergrad(i) for i in xrange(n_train_batches)] pog = np.mean(pog, axis=0) #print 'before train ----------pog', pog with open(logdir+'hook.txt', 'a') as f: print >>f, 'before train ----------pog', pog ''' while (epoch < n_epochs): epoch = epoch + 1 tmp1 = time.clock() preW = None currentW = None minibatch_avg_cost = 0 train_error = 0 if (epoch - record) >= 7: record = epoch l_r.set_value(np.cast['float32'](l_r.get_value()/3.0)) print '---------', epoch, l_r.get_value() with open(logdir+'hook.txt', 'a') as f: print >>f,'---------', epoch, l_r.get_value() ''' decay_epoch = epoch - test_epochs if decay_epoch > 0 and decay_epoch % 30==0: l_r.set_value(np.cast['float32'](l_r.get_value()/3.0)) print '---------', epoch, l_r.get_value() with open(logdir+'hook.txt', 'a') as f: print >>f,'---------', epoch, l_r.get_value() ''' if epoch%5==0: ''' for i in xrange(n_train_batches): if i == 0: train_features = np.asarray(train_activations(i)) else: train_features = np.vstack((train_features, np.asarray(train_activations(i)))) for i in xrange(n_test_batches): if i == 0: test_features = np.asarray(test_activations(i)) else: test_features = np.vstack((test_features, np.asarray(test_activations(i)))) np.save(logdir+'train_features-'+str(epoch), train_features) np.save(logdir+'test_features-'+str(epoch), test_features) ''' model = parameters() for i in xrange(len(model)): model[i] = np.asarray(model[i]).astype(np.float32) np.savez(logdir+'svhn_model-'+str(epoch), model=model) for minibatch_index in xrange(n_train_batches): if (minibatch_index <11): preW = currentW currentW = parameters() for i in xrange(len(currentW)): currentW[i] = np.asarray(currentW[i]).astype(np.float32) if preW is not None: for (c,p) in zip(currentW, preW): #print minibatch_index, (c**2).mean(), ((c-p)**2).mean(), np.sqrt((c**2).mean()/((c-p)**2).mean()) with open(logdir+'delta_w.txt', 'a') as f: print >>f,minibatch_index, (c**2).mean(), ((c-p)**2).mean(), np.sqrt((c**2).mean()/((c-p)**2).mean()) co, te = train_model(minibatch_index) minibatch_avg_cost+=co train_error+=te iter = (epoch - 1) * n_train_batches + minibatch_index if (iter + 1) % validation_frequency == 0: print epoch, minibatch_index with open(logdir+'hook.txt', 'a') as f: print >>f, epoch, minibatch_index print 'Stochastic hinge loss and training error', minibatch_avg_cost / float(minibatch_index), train_error / float(minibatch_index) #print 'time', time.clock() - tmp1 with open(logdir+'hook.txt', 'a') as f: # print >>f, 'pog', pog print >>f,'Stochastic hinge loss and training error', minibatch_avg_cost / float(minibatch_index), train_error / float(minibatch_index) #print >>f,'time', time.clock() - tmp1 this_valid_losses = [valid_model(i) for i in xrange(n_valid_batches)] this_valid_score = np.mean(this_valid_losses) print( 'epoch %i, minibatch %i/%i, valid error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, #this_validation_loss * 100, this_valid_score *100. ) ) with open(logdir+'hook.txt', 'a') as f: print >>f, ( 'epoch %i, minibatch %i/%i, valid error %f %%' % ( epoch, minibatch_index + 1, n_train_batches, #this_validation_loss * 100, this_valid_score *100. ) ) if this_valid_score < best_valid_score: this_test_losses = [test_model(i) for i in xrange(n_test_batches)] this_test_score = np.mean(this_test_losses) best_valid_score = this_valid_score test_score = this_test_score best_epoch = epoch record = epoch print 'Update best model', this_test_score with open(logdir+'hook.txt', 'a') as f: print >>f,'Update best model', this_test_score print 'So far best model', best_epoch, test_score with open(logdir+'hook.txt', 'a') as f: print >>f, 'So far best model', best_epoch, test_score pogzero = np.asarray(paramovergrad(0)) #print 'pogzero', pogzero with open(logdir+'pog.txt', 'a') as f: print >>f, 'pogzero', pogzero #pog = [paramovergrad(i) for i in xrange(n_train_batches)] #pog = np.mean(pog, axis=0) #print 'pog', pog print 'So far best model', test_score with open(logdir+'hook.txt', 'a') as f: print >>f, 'So far best model', test_score end_time = time.clock() print 'The code run for %d epochs, with %f epochs/sec' % ( epoch, 1. * epoch / (end_time - start_time)) print >> sys.stderr, ('The code for file ' + os.path.split(__file__)[1] + ' ran for %.1fs' % ((end_time - start_time))) if __name__ == '__main__': activation = 'nonlinearity.'+sys.argv[1] dropout_flag = int(sys.argv[2]) learning_rate = float(sys.argv[3]) weight_decay = float(sys.argv[4]) dataset = 'svhn'+sys.argv[5] if len(sys.argv) > 6: predir = sys.argv[6] preepoch = int(sys.argv[7]) deep_cnn_6layer_svhn_final_svm(dataset=dataset,learning_rate=learning_rate, activation=activation, dropout_flag=dropout_flag, predir=predir, preepoch=preepoch, weight_decay=weight_decay) else: deep_cnn_6layer_svhn_final_svm(dataset=dataset,learning_rate=learning_rate, activation=activation, dropout_flag=dropout_flag, weight_decay=weight_decay) ``` #### File: conv-mmdgm/layer/nonlinearity.py ```python import theano.tensor as T import numpy as np import theano def dropout(rng, values, p): mask = rng.binomial(n=1, p=p, size=values.shape, dtype=theano.config.floatX) output = values * mask return np.cast[theano.config.floatX](1.0/p) * output def sigmoid(x): return T.nnet.sigmoid(x) def tanh(x): return T.tanh(x) def softplus(x): return T.log(T.exp(x) + 1) def relu(x): return x*(x>0) def relu2(x): return x*(x>0) + 0.01 * x def initialize_vector(rng, n_out, std=1e-2): z = rng.normal(0, std, size=(n_out,)) return np.asarray(z, dtype=theano.config.floatX) def initialize_matrix(rng, n_in, n_out): z = rng.normal(0, 1, size=(n_in, n_out)) / np.sqrt(n_in) return np.asarray(z, dtype=theano.config.floatX) ``` #### File: mmdgm/conv-mmdgm/lcn_svhn.py ```python import scipy.io as io import numpy as np import cPickle import os, sys import scipy.io as sio import theano import theano.tensor as T import pylearn2.expr.preprocessing as pypp import pylearn2.datasets.norb as norb import PIL.Image import pylab from util import datapy, color, paramgraphics from random import shuffle from util import lcn def perform_lcn(saveDir,strl,x, y): n_channels=(0,1,2) dim_input = (32, 32) colorImg = True x = x.astype(np.float32) print x.shape print x.max() print x.min() print np.max(np.mean(x, axis=1)) print np.min(np.mean(x, axis=1)) print strl print y[:10] print y[40:50] image = paramgraphics.mat_to_img(x[:100,:].T, dim_input, colorImg=colorImg, scale=True) image.save(saveDir+'svhn_before_lcn_gcn_norm_'+strl+'.png', 'PNG') #flatten->'b,c,0,1'->'b,0,1,c' x = x.reshape(-1,3,32,32) x = np.swapaxes(x, 1, 2) x = np.swapaxes(x, 2, 3) lcn.transform(x=x,channels=n_channels,img_shape=dim_input) #'b,0,1,c'->'b,c,0,1'->flatten print x.shape x = np.swapaxes(x, 2, 3) x = np.swapaxes(x, 1, 2) x = x.reshape((-1,32*32*3)) print x.max() print x.min() print np.max(np.mean(x, axis=1)) print np.min(np.mean(x, axis=1)) image = paramgraphics.mat_to_img(x[:100,:].T, dim_input, colorImg=colorImg, scale=True) image.save(saveDir+'svhn_after_lcn_gcn_norm_'+strl+'.png', 'PNG') return x saveDir = 'data/SVHN/MYDATA/' f = file("data/SVHN/MYDATA/svhngcn_norm.bin","rb") train_x = np.load(f) train_y = np.load(f) valid_x = np.load(f) valid_y = np.load(f) test_x = np.load(f) test_y = np.load(f) f.close() valid_x = perform_lcn(saveDir,'valid', valid_x, valid_y) test_x = perform_lcn(saveDir,'test', test_x, test_y) train_x = perform_lcn(saveDir,'train', train_x, train_y) f = file(saveDir+"svhnlcn.bin","wb") np.save(f,train_x) np.save(f,train_y) np.save(f,valid_x) np.save(f,valid_y) np.save(f,test_x) np.save(f,test_y) f.close() f = file(saveDir+"svhnlcn_only_test_for_imputation.bin","wb") np.save(f,test_x) np.save(f,test_y) f.close() ```
{ "source": "jjzhuwu/Warfarin-dosing", "score": 3 }
#### File: jjzhuwu/Warfarin-dosing/baseline.py ```python import numpy as np class Baseline: def __init__(self): pass def fit(self, X, y): pass class Fixed_Dose(Baseline): def predict(self, X): return np.array([35 for i in range(X.shape[0])]) class Clinical_Dosing_Alg(Baseline): coef = np.array([[4.0376, -0.2546, 0.0118, 0.0134, -0.6752, 0.4060, 0.0443,\ 0, 1.2799, -0.5695]]) def predict(self, X): """ Requires the columns to be same as load_data.Load_Data.choosen_columns """ ones_X = np.concatenate((np.ones((X.shape[0], 1)), X.iloc[:, 0:9]), axis=1) return np.square([email protected]) class Pharma_Dosing_Alg(Baseline): def predict(self, X): sqaured_dosage = 5.6044-0.2614*X['Age_in_decade']\ +0.0087*X['Height (cm)'] +0.0128*X['Weight (kg)'] \ -0.8677*X['VKORC1_A/G'] -1.6974*X['VKORC1_A/A'] \ -0.4854*X['VKORC1_Unknown']-0.5211*X['CYP2C9_*1/*2'] \ -0.9357*X['CYP2C9_*1/*3']-1.0616*X['CYP2C9_*2/*2'] \ -1.9206*X['CYP2C9_*2/*3']-2.3312*X['CYP2C9_*3/*3'] \ -0.2188*X['CYP2C9_Unknown']-0.1092*X['Race_Asian'] \ -0.2760*X['Race_Black or African American'] \ -0.1032*X['Race_Unknown']+1.1816*X['enzyme_inducer']\ -0.5503*X['Amiodarone (Cordarone)'] return np.square(sqaured_dosage) ``` #### File: jjzhuwu/Warfarin-dosing/linrel.py ```python import numpy as np class LinRel: def __init__(self, K, reward, delta=0.1): """ Parameters: K: number of actions reward: matrix of size K*K, reward[i][j] gives the deterministic reward when the true label is i and the prediction is j """ self.K = K self.A_s = np.array(range(K)) self.orig_reward = reward self.r = self.normalize_reward(reward) self.delta = delta self.model_name = "SupLinRel" def data_load(self, X, y, shuffle=True): self.X = X.values self.y = y X_max = np.max(X, axis=0) self.Z_max = np.append(X_max, np.ones(self.K-1)) self.T = X.shape[0] self.d = X.shape[1] self.Z = np.zeros((self.d+self.K-1, 0)) self.past_reward = np.zeros(0) if shuffle: indexes = np.random.permutation(self.T) self.X = self.X[indexes, :] self.y = self.y[indexes] def normalize_reward(self, reward): """ Normalize reward such that rewards are in [0, 1] """ reward_max = np.max(reward) reward_min = np.min(reward) normed_reward = (reward-reward_min)/(reward_max-reward_min) return normed_reward def create_zi(self, x_j, i): """ Create and normalize z_i so that normed_z_i has L2(Euclidean) norm at most 1. Assuming z_i = [x_j, 1_{i=1}, ..., 1_{i=K-1}] """ z_i = np.zeros(self.d+self.K-1) z_i[0:x_j.shape[0]] = x_j if i > 0: z_i[x_j.shape[0]+i-1]=1 normed_z_i = z_i/self.Z_max/np.sqrt(self.d+self.K-1) return normed_z_i def compute_ucb(self, j): """ A_s is a subset of {0, 1, ..., K-1} """ x_j = self.X[j, :].T if self.Z.shape[1] < self.d: return np.array([]), np.array([]) else: D, U = np.linalg.eig(self.Z @ self.Z.T) U = U.T mask_geq_1 = D >= 1 D[D < 0.5] = 0.5 D_inv_masked = np.diag(1/D * mask_geq_1) """ W contains the vectors z_i U_tilde contains the vectors u_i tilde V_tilde contains the vectorss v_i tilde """ W = np.zeros((self.d+self.K-1, self.A_s.shape[0])) for i in range(self.A_s.shape[0]): W[:, i] = self.create_zi(x_j, self.A_s[i]) UW = U @ W U_tilde = (UW.T * mask_geq_1).T V_tilde = UW - U_tilde """ A contains the transpose of a_i """ A = U_tilde.T @ D_inv_masked @ U @ self.Z width = np.sqrt(np.sum(A**2, axis=1)*np.log(2*self.T*self.K/self.delta)) + np.sqrt(np.sum(V_tilde**2, axis=0)) ucb = (self.past_reward @ A.T).reshape(-1) + width return ucb, width ``` #### File: jjzhuwu/Warfarin-dosing/utils.py ```python import numpy as np import scipy.stats def dose_to_category(y): """ Convert dose from continuous to categorical variables. Label 0 for low dosage, label 1 for medium dosage, and label 2 for high dosage. """ if len(y.shape) > 1: y = y.reshape(-1) low_bound = 21 high_bound = 49 y_cat = np.zeros((y.shape[0], 3)) y_cat[:,0] = y < low_bound y_cat[:,1] = np.logical_and(y >= low_bound, y < high_bound) y_cat[:,2] = y >= high_bound return np.argmax(y_cat, axis=1) def mean_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) w = se * scipy.stats.t.ppf((1 + confidence) / 2., n-1) return m, w ```
{ "source": "j-jzk/donors_registry", "score": 2 }
#### File: migrations/versions/9c632e7c77df_minimum_donation_count_for_each_medal.py ```python import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "9c632e7c77df" down_revision = "<PASSWORD>" branch_labels = None depends_on = None def upgrade(): op.add_column("medals", sa.Column("minimum_donations", sa.Integer(), nullable=True)) op.execute("UPDATE medals SET minimum_donations = 10 WHERE slug = 'br';") op.execute("UPDATE medals SET minimum_donations = 20 WHERE slug = 'st';") op.execute("UPDATE medals SET minimum_donations = 40 WHERE slug = 'zl';") op.execute("UPDATE medals SET minimum_donations = 80 WHERE slug = 'kr3';") op.execute("UPDATE medals SET minimum_donations = 120 WHERE slug = 'kr2';") op.execute("UPDATE medals SET minimum_donations = 160 WHERE slug = 'kr1';") op.execute("UPDATE medals SET minimum_donations = 250 WHERE slug = 'plk';") def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_column("medals", "minimum_donations") # ### end Alembic commands ### ``` #### File: donors_registry/registry/app.py ```python import logging import sys from flask import Flask, render_template from registry import batch, commands, donor, public, user from registry.extensions import ( bcrypt, csrf_protect, db, debug_toolbar, login_manager, migrate, ) from registry.utils import template_globals def create_app(config_object="registry.settings"): """Create application factory, as explained here: http://flask.pocoo.org/docs/patterns/appfactories/. :param config_object: The configuration object to use. """ app = Flask(__name__.split(".")[0]) app.config.from_object(config_object) app.context_processor(template_globals) register_extensions(app) register_blueprints(app) register_commands(app) configure_logger(app) @app.errorhandler(404) def page_not_found(e): return render_template("404.html"), 404 @app.template_filter("format_time") def format_time(date, format="%d.%m.%Y %H:%M:%S"): return date.strftime(format) return app def register_extensions(app): """Register Flask extensions.""" bcrypt.init_app(app) db.init_app(app) csrf_protect.init_app(app) login_manager.init_app(app) debug_toolbar.init_app(app) migrate.init_app(app, db) return None def register_blueprints(app): """Register Flask blueprints.""" app.register_blueprint(public.views.blueprint) app.register_blueprint(user.views.blueprint) app.register_blueprint(donor.views.blueprint) app.register_blueprint(batch.views.blueprint) return None def register_commands(app): """Register Click commands.""" app.cli.add_command(commands.create_user) app.cli.add_command(commands.install_test_data) def configure_logger(app): """Configure loggers.""" handler = logging.StreamHandler(sys.stdout) if not app.logger.handlers: app.logger.addHandler(handler) ``` #### File: registry/donor/forms.py ```python from flask_wtf import FlaskForm from wtforms import BooleanField, HiddenField, TextAreaField from wtforms.validators import DataRequired from registry.donor.models import AwardedMedals class RemoveMedalForm(FlaskForm): rodne_cislo = HiddenField(validators=[DataRequired()]) medal_id = HiddenField(validators=[DataRequired()]) def validate(self): self.awarded_medal = AwardedMedals.query.get( (self.rodne_cislo.data, self.medal_id.data) ) return self.awarded_medal is not None class AwardMedalForm(FlaskForm): medal_id = HiddenField(validators=[DataRequired()]) def add_checkboxes(self, rodna_cisla): for rodne_cislo in rodna_cisla: name = "rodne_cislo_" + rodne_cislo checkbox = BooleanField(_form=self, _name="rodne_cislo", default="checked") checkbox.data = rodne_cislo setattr(self, name, checkbox) def add_one_rodne_cislo(self, rodne_cislo): rodne_cislo_input = HiddenField( _form=self, _name="rodne_cislo", validators=[DataRequired()] ) rodne_cislo_input.data = rodne_cislo setattr(self, "rodne_cislo", rodne_cislo_input) class NoteForm(FlaskForm): rodne_cislo = HiddenField(validators=[DataRequired()]) note = TextAreaField("Poznámka k dárci") ``` #### File: donors_registry/registry/utils.py ```python from flask import flash from registry.donor.models import Medals def flash_errors(form, category="warning"): """Flash all errors for a form.""" for field, errors in form.errors.items(): for error in errors: flash(f"{getattr(form, field).label.text} - {error}", category) def template_globals(): """ Injected into all templates - all medals are needed for the nav bar """ all_medals = Medals.query.all() return dict(all_medals=all_medals) ```
{ "source": "j-jzk/opi-gcode-interpreter", "score": 3 }
#### File: opi-gcode-interpreter/opi-gcode-interpreter/motor_controller.py ```python import sys import OPi.GPIO as GPIO from time import sleep class MotorController: def __init__(self): # Distances in mm that each step of the stepper motor propels each axis self.mm_per_step = {'x': 0.000523, 'y': 0.000523, 'z': 0.000523} # This value will be used as speed for the 'rapid movement' of the machine # Measured in steps per second self.rapid_speed_maximum = 150.0 # This value will be used as the fastest to move the machine when mill is lowered # Measured in steps per second self.work_speed_maximum = 150.0 # These are the pins to control the L293D motor drivers for the CNC # in the order they are activated self.control_pins = {'x': (35, 31, 37, 33), 'y': (38, 32, 40, 36)} # 'z': (23, 27, 17, 22)} # Tracks how many steps have been taken on each axis at any point self.current_steps = {'x': 0, 'y': 0, 'z': 0} # Configure pinout options GPIO.setboard(GPIO.PCPCPLUS) GPIO.setmode(GPIO.BOARD) # Setup motor control pins for pins in self.control_pins.values(): for pin in pins: GPIO.setup(pin, GPIO.OUT) def axis_step(self, axis, direction): # Interacts with the pins to move the motor to the next step # Releases holding torque power from previously powered pin GPIO.output(self.control_pins[axis][self.current_steps[axis] % 4], 0) # Increments counter that keeps track of which part of the (4-phase) rotation cycle we are in self.current_steps[axis] += direction # print(str(axis) + ": " + str(self.current_steps[axis])) # Power next pin in phase to drive motor GPIO.output(self.control_pins[axis][self.current_steps[axis] % 4], 1) # Allows standalone running of the motor_controller script to move carts along axis by amount specified in args # Syntax is <axis> <direction> <steps> eg python motor_controller.py x -1 2400 if __name__ == "__main__": motor_controller = MotorController() for i in range(0, int(sys.argv[3])): motor_controller.axis_step(sys.argv[1], int(sys.argv[2])) sleep(1/motor_controller.work_speed_maximum) GPIO.cleanup() ```
{ "source": "j-jzk/opi-web-motor", "score": 3 }
#### File: j-jzk/opi-web-motor/app.py ```python from time import sleep from flask import Flask, render_template import atexit import motor motor.setup() app = Flask(__name__) @app.route('/') def hello(): return '<a href="/home">here</a>' @app.route('/home/') def home(): return render_template('index.html') @app.route('/set/<value>') def set(value): value = int(value) try: if value > 0: for i in range(value): motor.fw(0.008) elif value < 0: for i in range(-value): motor.bw(0.008) return "Done moving - position: %d" % (value) except: return "Error" atexit.register(motor.cleanup) ```
{ "source": "jk0/pyhole", "score": 2 }
#### File: core/irc/message.py ```python import irc.client as irclib class Message(object): def __init__(self, session, message): self.session = session self.message = message @property def message(self): return self._message @message.setter def message(self, _message): self._message = _message @property def session(self): return self._session @session.setter def session(self, _session): self._session = _session def _mangle_msg(self, msg): """Prepare the message for sending.""" if not hasattr(msg, "encode"): try: msg = str(msg) except Exception: self.session.log.error("msg cannot be converted to string") return msg = msg.split("\n") # NOTE(jk0): 10 is completely arbitrary for now. if len(msg) > 10: msg = msg[0:8] msg.append("...") return msg def dispatch(self, reply): raise NotImplementedError("Message Dispatcher is not implemented") @staticmethod def getMessage(**kwargs): return kwargs.pop("full_message") class Notice(Message): def __init__(self, session, message, target): super(Notice, self).__init__(session, message) self.target = target def dispatch(self, reply): """Dispatch message as notice.""" _reply = self._mangle_msg(reply) for line in _reply: self.session.notice(self.target, line) if irclib.is_channel(self.target): self.session.log.info("-%s- <%s> %s" % (self.target, self.session.nick, line)) else: self.session.log.info("<%s> %s" % (self.session.nick, line)) class Reply(Message): def __init__(self, session, message, source, target): super(Reply, self).__init__(session, message) self.source = source self.target = target def dispatch(self, reply): """dispatch message as a reply.""" _reply = self._mangle_msg(reply) for line in _reply: if self.session.addressed: source = self.source.split("!")[0] self.session.reply(self.target, "%s: %s" % (source, line)) self.session.log.info("-%s- <%s> %s: %s" % (self.target, self.session.nick, source, line)) else: self.session.reply(self.target, line) if irclib.is_channel(self.target): self.session.log.info("-%s- <%s> %s" % (self.target, self.session.nick, line)) else: self.session.log.info("<%s> %s" % (self.session.nick, line)) ``` #### File: pyhole/core/utils.py ```python import argparse import datetime import os import re import shutil import threading from BeautifulSoup import BeautifulStoneSoup import config import version def admin(func): """Require admin rights.""" def wrap(self, message, *args, **kwargs): if message.source in self.session.admins: return func(self, message, *args, **kwargs) return message.dispatch("Sorry, you are not authorized to do that.") wrap.__doc__ = func.__doc__ wrap.__name__ = func.__name__ wrap.__module__ = func.__module__ return wrap def require_params(func): """Require parameters.""" def wrap(self, message, params, *args, **kwargs): if not params: message.dispatch(wrap.__doc__) return return func(self, message, params, *args, **kwargs) wrap.__doc__ = func.__doc__ wrap.__name__ = func.__name__ wrap.__module__ = func.__module__ return wrap def spawn(func): """Thread-spawning decorator.""" def wrap(*args, **kwargs): t = threading.Thread(target=func, args=args, kwargs=kwargs) t.setDaemon(True) t.start() wrap.__doc__ = func.__doc__ wrap.__name__ = func.__name__ wrap.__module__ = func.__module__ return wrap def decode_entities(html): """Strip HTML entities from a string and make it printable.""" html = " ".join(str(x).strip() for x in BeautifulStoneSoup(html, convertEntities=BeautifulStoneSoup.HTML_ENTITIES).findAll( text=True)) return filter(lambda x: ord(x) > 9 and ord(x) < 127, html) def ensure_int(param): """Ensure the given param is an int.""" try: param = re.sub("\W", "", param) return int(param) except ValueError: return None def build_options(): """Generate command line options.""" parser = argparse.ArgumentParser(version=version.version_string()) parser.add_argument("-c", "--config", default=get_conf_file_path(), help="specify the path to a configuration file") parser.add_argument("-d", "--debug", action="store_true", help="show debugging output") return parser.parse_known_args()[0] def get_option(option): """Retrive an option from the command line.""" parsed_args = build_options() return vars(parsed_args).get(option) def debug_enabled(): """Return whether or not debug mode is enabled.""" debug_option = get_option("debug") debug_config = get_config().get("debug", type="bool") return debug_option or debug_config def get_home_directory(): """Return the home directory.""" home_dir = os.getenv("HOME") + "/.pyhole/" make_directory(home_dir) return home_dir def get_directory(new_dir): """Return a directory.""" home_dir = get_home_directory() new_dir = os.path.join(home_dir, new_dir, "") make_directory(new_dir) return new_dir def make_directory(directory): """Make a direectory if it doesn't exist.""" if not os.path.exists(directory): os.makedirs(directory) def get_conf_file_path(): """Return the path to the conf file.""" paths = ( "/etc/pyhole.conf", "/etc/pyhole/pyhole.conf" ) for path in paths: if os.path.exists(path): return path return get_home_directory() + "pyhole.conf" def get_conf_file(): """Return the path to the conf file.""" return get_option("config") or get_conf_file_path() def get_config(section="Pyhole"): """Return the default config object.""" return config.Config(get_conf_file(), section) def write_file(directory, file_name, data): """Write data to file.""" directory = get_directory(directory) with open(directory + file_name, "w") as open_file: open_file.write(str(data).strip()) def read_file(directory, file_name): """Read and return the data in file.""" directory = get_directory(directory) try: with open(directory + file_name, "r") as open_file: data = open_file.read() return data except IOError: return None def list_files(directory): """List files in a directory.""" directory = get_directory(directory) return os.listdir(directory) def prepare_config(): """Prepare a sample configuration file.""" conf_file = get_conf_file() if os.path.exists(conf_file): return try: print "Copying sample configuration file to: %s" % conf_file shutil.copyfile("pyhole.conf.sample", conf_file) print "Done. Please edit before running again." except IOError: # NOTE(jk0): Could not locate sample configuration file. This should # only happen when Read the Docs generates the documentation. pass def datetime_now_string(): """ISO 8601 formatted string of the current datetime.""" return datetime.datetime.utcnow().isoformat() ``` #### File: pyhole/pyhole/main.py ```python import time from pyhole.core import api from pyhole.core import logger from pyhole.core import process from pyhole.core import utils from pyhole.core import version def Main(): """Main loop.""" config = utils.get_config() log = logger.get_logger() networks = config.get("networks", type="list") log.info("Starting %s..." % version.version_string()) log.info("Connecting to networks: %s" % ", ".join(networks)) procs = [] for network in networks: proc = process.Process(network) proc.start() procs.append(proc) try: if config.get("api_enabled", type="bool"): api.run() while True: time.sleep(1) for proc in procs: if not proc.is_alive(): procs.remove(proc) if not procs: log.info("No longer connected to any networks; shutting down.") raise KeyboardInterrupt except KeyboardInterrupt: for proc in procs: proc.terminate() ``` #### File: pyhole/plugins/jira.py ```python from pyhole.core import plugin from pyhole.core import request from pyhole.core import utils class JiraClient(object): def __init__(self): jira = utils.get_config("Jira") self.auth_server = jira.get("auth_server") self.domain = jira.get("domain") self.username = jira.get("username") self.password = jira.get("password") def get(self, issue_id): url = "%s/rest/api/latest/issue/%s" % (self.auth_server, issue_id) return request.get(url, verify=False, auth=(self.username, self.password)) class Jira(plugin.Plugin): """Provide access to the Jira API.""" def __init__(self, session): self.session = session self.name = self.__class__.__name__ self.client = JiraClient() @plugin.hook_add_msg_regex("([A-Z]{2}-[0-9]{3,5})") def regex_match_issue(self, message, match, **kwargs): """Retrieve Jira ticket information (ex: AB-1234).""" try: issue_id = match.group(0) self._find_issue(message, issue_id) except Exception: return @utils.spawn def _find_issue(self, message, issue_id): """Find and display a Jira issue.""" try: issue = self.client.get(issue_id).json()["fields"] except KeyError: return assignee = issue.get("assignee") if assignee: assignee = assignee.get("displayName") msg = "%s: %s [Status: %s, Priority: %s, Assignee: %s] %s" message.dispatch(msg % ( issue_id, issue["summary"], issue["status"]["name"], issue["priority"]["name"], assignee, "%s/jira/browse/%s" % (self.client.domain, issue_id) )) ``` #### File: pyhole/plugins/kernel.py ```python import re from pyhole.core import plugin from pyhole.core import request from pyhole.core import utils class Kernel(plugin.Plugin): """Provide access to kernel.org data.""" @plugin.hook_add_command("kernel") @utils.spawn def kernel(self, message, params=None, **kwargs): """Retrieve the current kernel version (ex: .kernel)""" url = "https://www.kernel.org/kdist/finger_banner" response = request.get(url) if response.status_code != 200: return r = re.compile("(.* mainline .*)") m = r.search(response.content) kernel = m.group(1).replace(" ", "") message.dispatch(kernel) ```
{ "source": "JK117/Pi-Displayer", "score": 3 }
#### File: Pi-Displayer/em/EventManager.py ```python from queue import Queue, Empty from threading import * class EventManager: def __init__(self): """初始化事件管理器""" # 事件对象列表 self.__eventQueue = Queue() # 事件管理器开关 self.__active = False # 事件处理线程 self.__thread = Thread(target=self.run) self.__count = 0 # 这里的__handlers是一个字典,用来保存对应的事件的响应函数 # 其中每个键对应的值是一个列表,列表中保存了对该事件监听的响应函数,一对多 self.__handlers = {} def run(self): """引擎运行""" print('{}_run'.format(self.__count)) while self.__active: try: # 获取事件的阻塞时间设为1秒 event = self.__eventQueue.get(block=True, timeout=1) self.event_process(event) except Empty: pass self.__count += 1 def event_process(self, event): """处理事件""" print('{}_EventProcess'.format(self.__count)) # 检查是否存在对该事件进行监听的处理函数 if event.type_ in self.__handlers: # 若存在,则按顺序将事件传递给处理函数执行 for handler in self.__handlers[event.type_]: handler(event) self.__count += 1 def start(self): """启动""" print('{}_Start'.format(self.__count)) # 将事件管理器设为启动 self.__active = True # 启动事件处理线程 self.__thread.start() self.__count += 1 def stop(self): """停止""" print('{}_Stop'.format(self.__count)) # 将事件管理器设为停止 self.__active = False # 等待事件处理线程退出 self.__thread.join() self.__count += 1 def add_event_listener(self, type_, handler): """绑定事件和监听器处理函数""" print('{}_AddEventListener'.format(self.__count)) # 尝试获取该事件类型对应的处理函数列表,若无则创建 try: handler_list = self.__handlers[type_] except KeyError: handler_list = [] self.__handlers[type_] = handler_list if handler not in handler_list: handler_list.append(handler) print(self.__handlers) self.__count += 1 def remove_event_listener(self, type_, handler): """移除监听器的处理函数""" print('{}_RemoveEventListener'.format(self.__count)) try: handler_list = self.__handlers[type_] # 如果该函数存在于列表中,则移除 if handler in handler_list: handler_list.remove(handler) # 如果函数列表为空,则从引擎中移除该事件类型 if not handler_list: del self.__handlers[type_] except KeyError: pass self.__count += 1 def send_event(self, event): """发送事件,向事件队列中存入事件""" print('{}_SendEvent'.format(self.__count)) self.__eventQueue.put(event) self.__count += 1 class Event: def __init__(self, type_=None): self.type_ = type_ # 事件类型 self.dict = {} # 字典用于保存具体的事件数据 ``` #### File: Pi-Displayer/em/PublicAccount.py ```python from em.EventManager import * EVENT_ARTICLE = "Event_Article" # 事件源 公众号 class PublicAccounts: def __init__(self, event_manager): self.__eventManager = event_manager def write_new_article(self): # 事件对象,写了新文章 event = Event(type_=EVENT_ARTICLE) event.dict["article"] = u'如何写出更优雅的代码\n' # 发送事件 self.__eventManager.send_event(event) print(u'公众号发送新文章\n') def start_event(): public_acc = PublicAccounts(event_manager) timer = Timer(2, public_acc.write_new_article) timer.start() ```
{ "source": "JK19/Python-Neural-Networks", "score": 3 }
#### File: JK19/Python-Neural-Networks/RNA.py ```python import random import math class RNA(object): def __init__(self, entradas=3, arquitectura=[2, 1], alpha=0.5, aleatoria=None, permitir_logs=False): self.red = [] self.arquitectura = arquitectura self.n_capas = len(arquitectura) self.n_entradas = entradas self.alpha = alpha self.aleatoria = aleatoria self.permitir_logs = permitir_logs def f_aleatoria(self): try: if self.aleatoria is None: return random.uniform(-1, 1) else: return self.aleatoria() except Exception as exc: print('RN: Ha ocurrido un error en la funcion aleatoria') raise exc def generar(self): for c in range(self.n_capas): self.red.append([]) for i in range(self.arquitectura[c]): if c == 0: self.red[c].append({'pesos': [self.f_aleatoria() for j in range(self.n_entradas + 1)]}) else: self.red[c].append({'pesos': [self.f_aleatoria() for j in range(self.arquitectura[c - 1] + 1)]}) def mult(self, entrada, pesos): ret = 0 for i in range(len(entrada)): ret += entrada[i] * pesos[i] return ret def activacion(self, raw): # raw = salida en bruto de la neurona return 1 / (1 + math.exp(-raw)) def activacion_der(self, out): # out = salida de activacion de la neurona return out * (1 - out) def fw_prop(self, ejemplo): # propagar hacia adelante salida_capa = [1] + ejemplo # bias for capa in self.red: buffer = [1] # bias for n in capa: salida = self.mult(salida_capa, n['pesos']) n['salida'] = self.activacion(salida) buffer.append(n['salida']) salida_capa = buffer return salida_capa[1:] # resultado de la capa de salida def bw_prop(self, deseada): # retro-propagar la salida for c in reversed(range(len(self.red))): if c == len(self.red) - 1: # capa de salida for n in range(len(self.red[c])): error = (deseada[n] - self.red[c][n]['salida']) self.red[c][n]['delta'] = error * self.activacion_der(self.red[c][n]['salida']) else: # capas ocultas for n in range(len(self.red[c])): error_buffer = 0.0 for neurona in self.red[c + 1]: # sumatorio de pesos*deltas anteriores error_buffer += (neurona['pesos'][n + 1] * neurona['delta']) # bias self.red[c][n]['delta'] = error_buffer * self.activacion_der(self.red[c][n]['salida']) def corregir_pesos(self, ejemplo_entrada): # calculo de incrementos de peso for c in range(len(self.red)): if c == 0: salida_anterior = [1] + ejemplo_entrada else: salida_anterior = [1] + [n['salida'] for n in self.red[c - 1]] for neurona in self.red[c]: for i in range(len(salida_anterior)): neurona['pesos'][i] += self.alpha * neurona['delta'] * salida_anterior[i] def RMSE(self, buffer, n_ejemplos): return math.sqrt(buffer / n_ejemplos) def GRMSE(self, buffers, n_salidas): return sum(buffers) / n_salidas def entrenar(self, ejemplos_entrada, ejemplos_salida, epochs): for epoch in range(epochs): informe = self.single_epoch(ejemplos_entrada, ejemplos_salida) informe['numero'] = epoch if self.permitir_logs: print('--> Epoch numero {}:'.format(informe['numero'])) for i in range(len(informe['rmse'])): print('\tRMSE salida {}: {}'.format(i, informe['rmse'][i])) print('\tGRMSE de la red: {}'.format(informe['grmse'])) def single_epoch(self, ejemplos_entrada, ejemplos_salida): informe_epoch = {'deseado': [], 'obtenido': [], 'rmse': [], 'grmse': None} error_buffer = [0 for i in range(len(ejemplos_salida[0]))] # one buffer per net output for i in range(len(ejemplos_entrada)): salida = self.fw_prop(ejemplos_entrada[i]) self.bw_prop(ejemplos_salida[i]) self.corregir_pesos(ejemplos_entrada[i]) # sumatorio de errores por salida for j in range(len(salida)): error_buffer[j] += sum([(ejemplos_salida[i][j] - salida[j]) ** 2]) informe_epoch['deseado'].append(ejemplos_salida[i]) informe_epoch['obtenido'].append(salida) # fin de epoch for k in range(len(error_buffer)): # calculo de errores informe_epoch['rmse'].append(self.RMSE(error_buffer[k], len(ejemplos_entrada))) informe_epoch['grmse'] = self.GRMSE(informe_epoch['rmse'], len(informe_epoch['rmse'])) return informe_epoch if __name__ == '__main__': red = RNA(entradas=2, alpha=0.5, arquitectura=[2, 1], permitir_logs=True) red.generar() XOR_in_samples = [ [0, 0], [0, 1], [1, 0], [1, 1] ] XOR_out_samples = [ [0], [1], [1], [0] ] red.entrenar(XOR_in_samples, XOR_out_samples, 100000) for e in XOR_in_samples: print('Input: {}'.format(e)) res = red.fw_prop(e) # propagar hacia delante la entrada print('Output: {}'.format(res)) print('\n') input('Press Enter to continue') # Ejemplo usando clases de salida red = RNA(entradas=2, alpha=0.7, arquitectura=[2, 2], # 2 neuronas en la capa de salida permitir_logs=True) red.generar() XOR_in_samples = [ [0, 0], [0, 1], [1, 0], [1, 1] ] # La primera neurona representa la clase (1) y la segunda a (0) XOR_out_class_samples = [ # [(1), (0)] [0, 1], [1, 0], [1, 0], [0, 1] ] red.entrenar(XOR_in_samples, XOR_out_class_samples, 100000) for e in XOR_in_samples: print('Entrada: {}'.format(e)) true_val, false_val = red.fw_prop(e) if true_val < 0.01 and false_val > 0.99: res = 0 else: res = 1 print('Salida: {}'.format(res)) print('\n') ```
{ "source": "jk1ng/python-evtx", "score": 2 }
#### File: python-evtx/scripts/find_bugs.py ```python import sys import mmap import contextlib from Evtx.Evtx import FileHeader from Evtx.Views import evtx_record_xml_view def main(): with open(sys.argv[1], 'r') as f: with contextlib.closing(mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)) as buf: fh = FileHeader(buf, 0x0) for chunk in fh.chunks(): for record in chunk.records(): try: evtx_record_xml_view(record).encode("utf-8") except Exception as e: print str(e) print repr(e) print evtx_record_xml_view(record).encode("utf-8") return if __name__ == "__main__": main() ```
{ "source": "JK2109/web-scraping-challenge", "score": 3 }
#### File: web-scraping-challenge/Missions_to_Mars/scrape_mars.py ```python from bs4 import BeautifulSoup as bs import pandas as pd import time from webdriver_manager.chrome import ChromeDriverManager from splinter import Browser # to scrape news data from mars news site def scrape_mars_data(): # Set up Splinter executable_path = {'executable_path': ChromeDriverManager().install()} browser = Browser('chrome', **executable_path, headless=False) mars_data_dict = {} # Visit https://redplanetscience.com url1 = 'https://redplanetscience.com/' browser.visit(url1) time.sleep(1) # Scrape page into Soup html = browser.html soup = bs(html, "html.parser") # Get the latest news title and the paragraph and save it to dict mars_data_dict["news_title"] = soup.find_all('div', class_='content_title')[0].text mars_data_dict["news_paragraph"] = soup.find_all('div', class_='article_teaser_body')[0].text # Visit https://spaceimages-mars.com/ url2 = 'https://spaceimages-mars.com/' browser.visit(url2) time.sleep(1) # Scrape page into Soup html = browser.html soup = bs(html, "html.parser") featured_image_path = soup.find_all('img')[1]["src"] mars_data_dict["featured_image_url"] = url2 + featured_image_path # visit url and save the table from the link into dataframe url3 = "https://galaxyfacts-mars.com/" tables= pd.read_html(url3) # first by the first table from the result df = tables[0] # renaming columns and setting description as index df = df.rename(columns={0:"Description", 1:"Mars",2:"Earth"}) df = df.set_index("Description") df_html = (df.to_html()).replace('\n', '') mars_data_dict["mars_fact"] = df_html # visit url and save the table from the link into dataframe url4 = "https://marshemispheres.com/" browser.visit(url4) time.sleep(1) hemisphere_image_urls = [] for i in range (0,4): hemisphere_dict={} html = browser.html soup = bs(html, 'html.parser') #finding the title and appending it to a list hemisphere_title = soup.find_all("h3")[i].text hemisphere_dict["title"] = hemisphere_title.replace(" Enhanced","") # click the link to find the full resolution image browser.links.find_by_partial_text(hemisphere_title).click() html = browser.html soup = bs(html, 'html.parser') # finding the path for the full resolution imagae full_image_path = soup.find_all('a')[3]["href"] hemisphere_dict["img_url"] = url4 + full_image_path # appending dictionary to a list hemisphere_image_urls.append(hemisphere_dict) # click back button to return to the main page browser.links.find_by_partial_text('Back').click() mars_data_dict["hemisphere_image_urls"] = hemisphere_image_urls # Close the browser after scraping browser.quit() # Return results return mars_data_dict ```
{ "source": "jk4837/ShowDefinition", "score": 2 }
#### File: jk4837/ShowDefinition/ShowDefinitionEx.py ```python import sublime import sublime_plugin import re import time import html lastSymbol = None lastStartTime = time.time() settings = {} hover_view = None hide_view_ex = None def load_all_settings(): global hover_view, global_settings, settings, DEBUG, SHOW_PATH, MAX_LEN_TO_WRAP, MAX_LIST_ITEM if hover_view is not None: global_settings = hover_view.settings() settings = sublime.load_settings('show_definition_ex.sublime-settings') DEBUG = settings.get('DEBUG', False) SHOW_PATH = settings.get('show_path', True) MAX_LEN_TO_WRAP = settings.get('max_len_to_wrap', 60) MAX_LIST_ITEM = settings.get('max_list_item', 20) def plugin_loaded(): load_all_settings() def symplify_path(path): s = path.split('/'); count = 2 if count*2 < len(s): return '/'.join(s[0:count] + ['..'] + s[-count:]) return path def get_file_ex(path): path_l = path.lower() if 'makefile' in path_l: return 'makefile' return path_l[path_l.rfind('.')+1:] def file_related(ex1, ex2): global settings if ex1 == ex2: return True for r_list in settings.get('related_list',[]): rt1 = True if ex1 in r_list else False rt2 = True if ex2 in r_list else False if rt1 and rt2: return True return False hide_view = None hide_view_filename = None def show_hide_view(): global hide_view if hide_view is not None: sublime.active_window().run_command('show_panel', {'panel': 'output._show_definition_ex'}) sublime.active_window().focus_view(hide_view) def get_lint_file(filename, own_file = None): global DEBUG, hide_view, hide_view_filename, hide_view_ex, settings, global_settings if hide_view_filename == filename: return hide_view, hide_view_ex ex = get_file_ex(filename) if ex in settings.get('exclude_files',[]): # Not index file extension if DEBUG: print(' skip exclude_files file') return None, None hide_view_ex = ex if own_file: own_ex = get_file_ex(own_file) if not file_related(hide_view_ex, own_ex): if DEBUG: print(' skip none related file', (hide_view_ex, own_ex)) return None, None if hide_view is None: hide_view = sublime.active_window().create_output_panel("_show_definition_ex", True) if DEBUG: show_hide_view() content = None try: with open(filename, 'r', encoding = 'utf8') as file: content = file.read() except Exception as e: print(e, 'Cant open file:', filename) return None, None hide_view_filename = filename hide_view.run_command("select_all") hide_view.run_command("left_delete") hide_view.run_command("append", {"characters": content}) syntax_lists = settings.get('syntax_lists') syntax = None if syntax_lists: for syntax_list in syntax_lists: if hide_view_ex in syntax_list[1]: # ['h', 'hpp', 'c', 'cpp'], syntax = syntax_list[0] # "C++.sublime-syntax" if syntax is None: syntax = global_settings.get('syntax', {'extension': hide_view_ex}) if DEBUG: print(' filename:', filename, ', hide_view_ex:', hide_view_ex, ', syntax:', syntax) hide_view.assign_syntax(syntax) return hide_view, hide_view_ex def get_indent(view, point): indent_len = 1 line_start = view.find_by_class(point, False, sublime.CLASS_LINE_START) line_end = view.find_by_class(point, True, sublime.CLASS_LINE_END) loc_indent = view.find('^\t+', line_start) if -1 == loc_indent.a or -1 == loc_indent.b: loc_indent = view.find('^( )+', line_start) indent_len = 4 if loc_indent.a > line_end: return 0 return (loc_indent.b - loc_indent.a) / indent_len def ensure_func_in_class_by_indent(view, class_point, function_point): class_indent = get_indent(view, class_point) function_indent = get_indent(view, function_point) if class_indent != function_indent - 1: return False next_class_indent = view.find('^( ){0' + ',' + str(class_indent) + '}[^\t \r\n]+', class_point) if -1 == next_class_indent.a or -1 == next_class_indent.b: next_class_indent = view.find('^\t{0' + ',' + str(class_indent) + '}[^\t \r\n]+', class_point) if -1 == next_class_indent.a or -1 == next_class_indent.b: return True return next_class_indent.b > function_point def ensure_func_in_class_by_parans(view, class_point, function_point): first_semicolon = view.find(';', class_point).a first_parentheses = view.find('{', class_point).a if first_semicolon < first_parentheses: return False parentheses_l = 1 loc = first_parentheses + 1 while True: loc = view.find('{', loc) if -1 == loc.a or -1 == loc.b: break if loc.b > function_point: break loc = loc.b parentheses_l += 1 parentheses_r = 0 loc = first_parentheses + 1 while True: loc = view.find('}', loc) if -1 == loc.a or -1 == loc.b: break if loc.b > function_point: break loc = loc.b parentheses_r += 1 return parentheses_r < parentheses_l def ensure_func_in_class(view, class_point, function_point): if 'python' in view.settings().get('syntax').lower(): return ensure_func_in_class_by_indent(view, class_point, function_point) return ensure_func_in_class_by_parans(view, class_point, function_point) def parse_scope_full_name(view, region_row = None, region_col = None): global DEBUG, hide_view_ex if region_row is None or region_col is None: pt = view.sel()[0].begin() region_row, region_col = view.rowcol(pt) else: pt = view.text_point(region_row, region_col) # skip calling prec = view.substr(pt-1) if 'js' == hide_view_ex: prec_list = {'>', '!', '\(', '\{'} else: prec_list = {'.', '>', '!', '\(', '\{'} if prec in prec_list: if DEBUG: print(' skip prefix char:', prec) return if hide_view_ex in {'c', 'cpp', 'h', 'hpp'}: split_char = '::' else: split_char = '.' is_class = view.match_selector(pt, 'entity.name.class | entity.name.struct') if DEBUG: view.sel().clear() view.sel().add(sublime.Region(pt, pt)) view.show(pt) s = '' found = False # Look for any classes class_point = None class_regions = view.find_by_selector('entity.name.class | entity.name.struct') class_name = '' for r in reversed(class_regions): row, col = view.rowcol(r.a) if row <= region_row: class_point = r.a r.b = view.find("[ \n\r\{\[\(;,'\"]", r.a).a class_name = view.substr(r).strip(':') found = True break; function_point = None function_name = '' param_name = '' if not is_class: # Look for any functions function_regions = view.find_by_selector('entity.name.function') if function_regions: for r in reversed(function_regions): if r.contains(pt): function_point = r.begin() s = view.substr(view.split_by_newlines(r)[-1]) function_name = s found = True if '::' is split_char and split_char in s: sp = s.rsplit('::') class_point = None class_name = sp[0].strip() function_name = '::'.join(sp[1:]).strip() elif '.' is split_char: line = view.substr(view.expand_by_class(pt, sublime.CLASS_LINE_START | sublime.CLASS_LINE_END, " ")) pattern = re.compile(r'([A-Z][._0-9A-Za-z]*)\.' + s) match = pattern.match(line) if (match): if DEBUG: print(' line:', line) print(' match:', match.string) class_point = None class_name = match.group(1) break # for parens wrap if function_point: function_params = view.find_by_selector('meta.function.parameters | meta.method.parameters | punctuation.section.group') if function_params: for r in function_params: if function_point < r.begin(): param_name = view.substr(r) break; if DEBUG: print(' class_point:', class_point, ', class_name:', class_name, ', function_point:', function_point, ', function_name:', function_name, ', param_name', param_name, ', s:', s) if class_point is not None and function_point is not None: if not ensure_func_in_class(view, class_point, function_point): if DEBUG: print(' ',function_name, 'not in', class_name) class_name = '' if '' != class_name and '' != function_name: s = class_name + split_char + function_name else: s = class_name + function_name if '' != param_name: param_name = param_name if 0 < len(param_name) and param_name[0] != '(' else param_name[1:] param_name = param_name if 0 < len(param_name) and param_name[-1] != ')' else param_name[:-1] s = s + '(' + param_name + ')' if found: s = ('O ' if class_point == pt or function_point == pt else 'X ') + s else: # Not found, just capture the line and do something length = view.line(pt).end() - pt + 1 s = view.substr(view.line(pt)).strip(' ;\t{}(') s_next = s while len(s_next) > length and '' != s_next: s, _, s_next = s_next.partition(' ') if s == s_next: s_next = '' s = '? ' + s + ' ' + s_next s = s.strip(); s = re.sub(r'[\n\r\t]+', '', s) s = re.sub(r'[ ]+', ' ', s) s = re.sub(r',(\w)', ', \\1', s) s = s.replace('( ', '(') s = s.replace(' )', ')') if DEBUG: print(' result:', s) return s class ShowDefinitionExTestCommand(sublime_plugin.WindowCommand): def run(self): global hover_view hover_view = self.window.active_view() load_all_settings() base_dir = sublime.packages_path() + '\\ShowDefinitionEx\\' file = open(base_dir + "tests\\list.txt", "r") has_fail = False line_num = 0 if file: line = file.readline().strip() line_num += 1 while line: if line.startswith('#'): line = file.readline().strip() line_num += 1 continue ans = file.readline().strip() line_num += 1 loc = line.split(':') view, _ = get_lint_file(base_dir + loc[0]) scope_name = parse_scope_full_name(view, int(loc[1])-1, int(loc[2])-1) scope_name = scope_name.partition(' ')[2] if scope_name != ans: print('Error!!!!') print('#', line_num - 1, ' : ', line) print(' ans : ', ans) print('parse : ', scope_name) has_fail = True view.sel().clear() view.sel().add(view.text_point(int(loc[1])-1, int(loc[2])-1)) view.show(view.sel()) show_hide_view() break; line = file.readline().strip() line_num += 1 if False == has_fail: sublime.message_dialog('All test pass!') else: sublime.message_dialog('Test failed at line ' + str(line_num - 1) + '!') file.close() class ShowDefinitionExSelCommand(sublime_plugin.TextCommand): def run(self, edit): view = self.view max_popup_width, max_popup_height = view.viewport_extent() self.scope_name = parse_scope_full_name(view) view.show_popup(html.escape(self.scope_name, False) + ' <a href=1>Copy</a>', sublime.HIDE_ON_MOUSE_MOVE_AWAY, max_width= max_popup_width, max_height= max_popup_height, on_navigate= self.on_navigate) def on_navigate(self, idx): if '1' == idx: sublime.set_clipboard(self.scope_name[2:]) class ShowDefinitionExCommand(sublime_plugin.WindowCommand): def run(self, startTime, symbol, point): global lastStartTime, hover_view # skip update if startTime != lastStartTime: return self.startTime = startTime self.symbol = symbol self.point = point self.symbol_list = hover_view.window().lookup_symbol_in_index(self.symbol) if 0 == len(self.symbol_list): print('no symbol_list of', self.symbol) sublime.status_message("") return load_all_settings() self.em = hover_view.em_width() self.own_file = hover_view.file_name() self.own_row, _ = hover_view.rowcol(point) self.max_popup_width, self.max_popup_height = hover_view.viewport_extent() self.start = 0 self.had_wrap = False self.first_show = True self.show() def show(self): global hover_view, lastStartTime, DEBUG, SHOW_PATH, MAX_LEN_TO_WRAP, MAX_LIST_ITEM max_len = 0 has_more = False content_list = [] self.display_list = [] idx_range = range(self.start, len(self.symbol_list)) for idx in idx_range: # skip update if self.startTime != lastStartTime: return loc = self.symbol_list[idx] if self.own_file == loc[0] and self.own_row == loc[2][0]-1: if DEBUG: print('skip own_file') continue if DEBUG: print('parse #%d:' % (idx)) view, ex = get_lint_file(loc[0], self.own_file) scope_name = None if view: scope_name = parse_scope_full_name(view, loc[2][0]-1, loc[2][1]-1) if scope_name: max_len = max(max_len, len(scope_name)) self.display_list.append({'name': scope_name[1:], 'ex': ex, 'loc': loc}) if MAX_LIST_ITEM <= len(self.display_list): has_more = idx != len(self.symbol_list) - 1 self.start = idx + 1 break self.display_list.sort(key = lambda x: x['name']) if 0 != len(self.display_list): if self.startTime != lastStartTime: print('skip update') if SHOW_PATH: if max_len >= MAX_LEN_TO_WRAP or self.had_wrap: self.had_wrap = True str_tpl = '<a href=%d><code><i>%s</i>%s</code><br /><small style="padding-left:%dpx">%s:%d</small></a>' content = '<br />'.join([str_tpl % (idx, self.display_list[idx]['ex'][0].upper(), html.escape(self.display_list[idx]['name'], False).replace(self.symbol, '<m>' + self.symbol + '</m>', 1), 2 * self.em, html.escape(symplify_path(self.display_list[idx]['loc'][1]), False), self.display_list[idx]['loc'][2][0]) for idx in range(len(self.display_list))]) else: str_tpl = '<a href=%d><code><i>%s</i>%s</code><small style="padding-left:%dpx">%s:%d</small></a>' content = '<br />'.join([str_tpl % (idx, self.display_list[idx]['ex'][0].upper(), html.escape(self.display_list[idx]['name'], False).replace(self.symbol, '<m>' + self.symbol + '</m>', 1), (max_len-len(self.display_list[idx]['name']))*self.em + 5, html.escape(symplify_path(self.display_list[idx]['loc'][1]), False), self.display_list[idx]['loc'][2][0]) for idx in range(len(self.display_list))]) else: str_tpl = '<a href=%d><code><i>%s</i>%s</code></a>' content = '<br />'.join([str_tpl % (idx, self.display_list[idx]['ex'][0].upper(), html.escape(self.display_list[idx]['name'], False).replace(self.symbol, '<m>' + self.symbol + '</m>', 1)) for idx in range(len(self.display_list))]) if has_more: content += '<br /><br /><a href=more><n>click to see more ...</n></a>' body = """ <body id=show-definitions> <style> body { font-family: system; } h1 { font-size: 1.1rem; font-weight: bold; margin: 0 0 0.25em 0; } m { color: #FFFB9D; text-decoration: none; } code { font-family: monospace; color: #FFFFFF; text-decoration: none; } i { color: #73AE86; font-weight: bold; font-style: normal; text-decoration: none; width: 30px; } n { font-weight: bold; padding: 0px 0px 0px %dpx; } </style> <h1>Definition of <m>%s</m> %s:</h1> <p>%s</p> </body> """ % (self.em*2, self.symbol, '' if not has_more else '%d/%d' % (self.start, len(self.symbol_list)), content) if self.first_show: hover_view.show_popup(body, sublime.HIDE_ON_MOUSE_MOVE_AWAY, location= self.point, max_width= self.max_popup_width, max_height= self.max_popup_height, on_navigate= self.on_navigate) else: hover_view.update_popup(body) sublime.status_message("") def on_navigate(self, idx): global MAX_LIST_ITEM if 'more' == idx: self.first_show = False self.show() else: idx = int(idx) self.window.open_file('%s:%d:%d' % (self.display_list[idx]['loc'][0], self.display_list[idx]['loc'][2][0], self.display_list[idx]['loc'][2][1]), sublime.ENCODED_POSITION) def toggle_setting(settings, name): if True == settings.get(name): print('Disable system', name) settings.set(name, False) else: print('Enable system', name) settings.set(name, True) # toggle "show_definitions" class ShowDefinitionExToggleCommand(sublime_plugin.ApplicationCommand): def run(self): sublime.active_window().run_command('hide_popup') s = sublime.load_settings("Preferences.sublime-settings") toggle_setting(s, 'show_definitions') sublime.save_settings("Preferences.sublime-settings") def lookup_symbol(window, symbol): if len(symbol.strip()) == 0: return [] index_locations = window.lookup_symbol_in_index(symbol) open_file_locations = window.lookup_symbol_in_open_files(symbol) def file_in_location_list(fname, locations): for l in locations: if l[0] == fname: return True return False # Combine the two lists, overriding results in the index with results # from open files, while trying to preserve the order of the files in # the index. locations = [] ofl_ignore = [] for l in index_locations: if file_in_location_list(l[0], open_file_locations): if not file_in_location_list(l[0], ofl_ignore): for ofl in open_file_locations: if l[0] == ofl[0]: locations.append(ofl) ofl_ignore.append(ofl) else: locations.append(l) for ofl in open_file_locations: if not file_in_location_list(ofl[0], ofl_ignore): locations.append(ofl) return locations def symbol_at_point(view, pt): symbol = view.substr(view.expand_by_class(pt, sublime.CLASS_WORD_START | sublime.CLASS_WORD_END, "[]{}()<>:.")) locations = lookup_symbol(view.window(), symbol) if len(locations) == 0: symbol = view.substr(view.word(pt)) locations = lookup_symbol(view.window(), symbol) return symbol, locations def filter_current_symbol(view, point, symbol, locations): """ Filter the point specified from the list of symbol locations. This results in a nicer user experience so the current symbol doesn't pop up when hovering over a class definition. We don't just skip all class and function definitions for the sake of languages that split the definition and implementation. """ def match_view(path, view): fname = view.file_name() if fname is None: if path.startswith('<untitled '): path_view = view.window().find_open_file(path) return path_view and path_view.id() == view.id() return False return path == fname new_locations = [] for l in locations: if match_view(l[0], view): symbol_begin_pt = view.text_point(l[2][0] - 1, l[2][1]) symbol_end_pt = symbol_begin_pt + len(symbol) if point >= symbol_begin_pt and point <= symbol_end_pt: continue new_locations.append(l) return new_locations class ShowDefinitionExHoverCommand(sublime_plugin.EventListener): def on_hover(self, view, point, hover_zone): global hover_view, lastStartTime, lastSymbol, DEBUG load_all_settings() if sublime.HOVER_TEXT is not hover_zone or not self.is_enabled(): return # decide to show or not to show by built-in logic def score(scopes): return view.score_selector(point, scopes) # Limit where we show the hover popup if score('text.html') and not score('text.html source'): is_class = score('meta.attribute-with-value.class') is_id = score('meta.attribute-with-value.id') if not is_class and not is_id: return else: if not score('source'): return if score('comment'): return # Only show definitions in a string if there is interpolated source if score('string') and not score('string source'): return # decide to show or not to show by this package symbol, locations = symbol_at_point(view, point) locations = filter_current_symbol(view, point, symbol, locations) if not locations: if DEBUG: print('skip by symbol check') return track = True for select in ['constant.language', 'meta.statement']: # may not track if view.match_selector(point, select): track = False break if not track: for select in ['meta.function-call']: # may track if view.match_selector(point, select): track = True break if track: for select in ['meta.string', 'comment', 'storage.modifier', 'storage.type', 'keyword']: # must not track if view.match_selector(point, select): track = False break if not track: if DEBUG: print('Finally decided to skip, select:', select) return timeout = 5 if symbol is None or symbol == lastSymbol and lastStartTime + timeout > time.time(): if DEBUG: print('symbol not change skip update') return sublime.status_message("Parse definitions of " + symbol + "... 0/" + str(len(view.window().lookup_symbol_in_index(symbol)))) lastSymbol = symbol lastStartTime = time.time() hover_view = view sublime.set_timeout_async(lambda: view.window().run_command('show_definition_ex', {'symbol': symbol, 'point': point, 'startTime': lastStartTime}), 0) def is_enabled(self): return not sublime.load_settings("Preferences.sublime-settings").get('show_definitions') ``` #### File: ShowDefinition/tests/test.py ```python def funcN1(self): aabbcc class ClassA(sublime_plugin.WindowCommand): def funcA1(self): aabbcc def funcA2(self): aabbcc def funcN2(self): aabbcc class ClassB(sublime_plugin.WindowCommand): class ClassC(sublime_plugin.WindowCommand): def funcC1(self): aabbcc def funcC2(self): aabbcc def funcB1(self): aabbcc def funcN3(self): aabbcc ```
{ "source": "jk4as/Microdonation", "score": 2 }
#### File: Microdonation/microDonation/forms.py ```python from django import forms from address.forms import AddressField from .models import Order, CharityOrg, Cause, User class CartForm(forms.Form): value = forms.DecimalField(initial='1.00') cause_id = forms.IntegerField(widget=forms.HiddenInput) def __init__(self, request, *args, **kwargs): self.request = request super(CartForm, self).__init__(*args, **kwargs) class CheckoutForm(forms.ModelForm): class Meta: model = Order exclude = ('paid','order_id','charities') class CharityForm(forms.ModelForm): authorized_users = forms.CharField(required=False) charity_image = forms.FileField(required=True) class Meta: model = CharityOrg fields = [ 'name', 'description', 'contact_email', 'paypal_email', 'tags', 'authorized_users', 'charity_image', ] class CauseForm(forms.ModelForm): cause_image = forms.FileField(required=True) class Meta: model = Cause fields = [ 'name', 'description', 'tags', 'cause_image', ] class DeleteForm(forms.Form): delete = forms.BooleanField(initial=False, required=False) class BasicSearchForm(forms.Form): search_val = forms.CharField(widget=forms.TextInput(attrs={'placeholder':'Search and Explore'})) class CharitySearchForm(forms.Form): search_types = [ ('name', 'charity name'), ('min_causes', 'at least _ causes'), ('tags', 'containing one or more tags'), ] search_type = forms.CharField(label="What should be used to search for the charity?", widget=forms.Select(choices=search_types)) search_value = forms.CharField(max_length=255) ``` #### File: Microdonation/microDonation/models.py ```python from django.db import models from taggit.managers import TaggableManager from django.contrib.auth.models import AbstractBaseUser, BaseUserManager, PermissionsMixin from django.conf import settings from django.utils import timezone from address.models import AddressField # Create your models here. class UserManager(BaseUserManager): def _create_user(self, email, password, is_staff, is_superuser, **kwargs): if not email: raise ValueError('Email is required for registration') now = timezone.now() email = self.normalize_email(email) user = self.model( email=email, is_active=True, is_staff=is_staff, is_superuser=is_superuser, date_joined=now, ) user.set_password(password) user.save() return user def create_user(self, email, password, **kwargs): return self._create_user(email, password, False, False, **kwargs) def create_superuser(self, email, password, **kwargs): return self._create_user(email, password, True, True, **kwargs) class User(AbstractBaseUser, PermissionsMixin): email = models.EmailField(max_length=127, unique=True) first_name = models.CharField(max_length=127) last_name = models.CharField(max_length=127) is_staff = models.BooleanField(default=False) is_superuser = models.BooleanField(default=False) is_active = models.BooleanField(default=True) date_joined = models.DateTimeField(auto_now_add=True) # charities = models.ManyToManyField(CharityOrg) USERNAME_FIELD = 'email' EMAIL_FIELD = 'email' REQUIRED_FIELDS = [] objects = UserManager() def get_absolute_url(self): return "/users/%i" % (self.pk) class CharityOrg(models.Model): name = models.CharField(max_length=50) description = models.TextField() # photo = models.ImageField() contact_email = models.EmailField() paypal_email = models.EmailField() slug = models.SlugField(unique=False, max_length=50) tags = TaggableManager() is_deleted = models.BooleanField(default=False) authenticated_users = models.ManyToManyField(User) charity_image = models.FileField(upload_to='images/', null=True, verbose_name="", default="http://12172.16.17.32:8000/media/https:/i.pinimg.com/originals/fa/98/67/fa9867a39c2ec093bad63e91fed2bacb.jpg") def __str__(self): return self.name class Cause(models.Model): name = models.CharField(max_length=50) # 191 is max SQL length description = models.TextField() charity = models.ForeignKey(CharityOrg, on_delete=models.CASCADE) slug = models.SlugField(unique=False, max_length=50) tags = TaggableManager() cause_image = models.ImageField(upload_to='images/', default="https://i.pinimg.com/originals/fa/98/67/fa9867a39c2ec093bad63e91fed2bacb.jpg") is_deleted = models.BooleanField(default=False) def __str__(self): return "{}:{}".format(self.charity.name, self.name) class CartItem(models.Model): cart_id = models.CharField(max_length=50) value = models.DecimalField(max_digits=7, decimal_places=2) cause = models.ForeignKey(Cause, on_delete=models.CASCADE) def __str__(self): return "{}:{}".format(self.cause.name, self.id) def update_value(self, newValue): self.value = newValue self.save() class Order(models.Model): address = AddressField() contact_email = models.EmailField() date = models.DateTimeField(auto_now_add=True) paid = models.BooleanField(default=False) order_id = models.CharField(max_length=50) charities = models.ManyToManyField(CharityOrg, related_name='charity_orders') def __str__(self): return "{}:{}".format(self.id, self.contact_email) def total_cost(self): return sum([ l.value for l in self.lineitem_set.all() ]) def charity_cost(self, charity): relevant_lineitems = [] for l in self.lineitem_set.all(): if l.cause.charity == charity: relevant_lineitems.append(l) return sum([ l.value for l in relevant_lineitems]) class LineItem(models.Model): order = models.ForeignKey(Order, on_delete=models.CASCADE) value = models.DecimalField(max_digits=7, decimal_places=2) cause = models.ForeignKey(Cause, on_delete=models.CASCADE) def __str__(self): return "{}:{}:{}".format(self.charity.name, self.cause.name, self.id) ```
{ "source": "jk-5/python-wasteapi", "score": 3 }
#### File: python-wasteapi/wasteapi/wasteapi.py ```python import asyncio import json import socket from datetime import datetime, timedelta from typing import Dict, Optional import aiohttp import async_timeout from yarl import URL from .__version__ import __version__ from .const import API_BASE_URI, API_HOST, API_TO_WASTE_TYPE from .exceptions import ( WasteApiAddressError, WasteApiConnectionError, WasteApiError, ) class WasteApi: """Main class for handling connections with WasteAPI.""" def __init__( self, company_code: str, post_code: str, house_number: str, house_letter: str = None, loop=None, request_timeout: int = 10, session=None, user_agent: str = None, ): """Initialize connection with WasteAPI.""" self._loop = loop self._session = session self._close_session = False self.company_code = company_code self.post_code = post_code self.house_number = house_number self.house_letter = house_letter self.request_timeout = request_timeout self.user_agent = user_agent self._unique_id = None self._pickup = {} # type: Dict[str, datetime] if self._loop is None: self._loop = asyncio.get_event_loop() if self._session is None: self._session = aiohttp.ClientSession(loop=self._loop) self._close_session = True if self.user_agent is None: self.user_agent = "PythonWasteAPI/{}".format(__version__) async def _request(self, uri: str, method: str = "POST", data=None): """Handle a request to WasteAPI.""" url = URL.build( scheme="https", host=API_HOST, port=443, path=API_BASE_URI ).join(URL(uri)) headers = { "User-Agent": self.user_agent, "Accept": "application/json, text/plain, */*", } try: with async_timeout.timeout(self.request_timeout): response = await self._session.request( method, url, data=data, headers=headers, ssl=True ) except asyncio.TimeoutError as exception: raise WasteApiConnectionError( "Timeout occurred while connecting to WasteAPI." ) from exception except (aiohttp.ClientError, socket.gaierror) as exception: raise WasteApiConnectionError( "Error occurred while communicating with WasteAPI." ) from exception content_type = response.headers.get("Content-Type", "") if (response.status // 100) in [4, 5]: contents = await response.read() response.close() if content_type == "application/json": raise WasteApiError( response.status, json.loads(contents.decode("utf8")) ) raise WasteApiError( response.status, {"message": contents.decode("utf8")} ) if "application/json" in response.headers["Content-Type"]: return await response.json() return await response.text() async def unique_id(self) -> Optional[int]: """Return unique address ID.""" if self._unique_id is None: response = await self._request( "FetchAdress", data={ "companyCode": self.company_code, "postCode": self.post_code, "houseNumber": self.house_number, "houseLetter": self.house_letter or "", }, ) if not response.get("dataList"): raise WasteApiAddressError( "Address not found in WasteAPI service area" ) self._unique_id = response["dataList"][0]["UniqueId"] return self._unique_id async def update(self) -> None: """Fetch data from WasteAPI.""" await self.unique_id() today = datetime.now().date() response = await self._request( "GetCalendar", data={ "companyCode": self.company_code, "uniqueAddressID": self._unique_id, "startDate": today.isoformat(), "endDate": (today + timedelta(days=100)).isoformat(), }, ) for pickup in response["dataList"]: waste_type = API_TO_WASTE_TYPE.get(pickup["_pickupTypeText"]) pickup_date = None if pickup["pickupDates"]: pickup_date = datetime.strptime( min(pickup["pickupDates"]), "%Y-%m-%dT%H:%M:%S" ) self._pickup.update({waste_type: pickup_date}) # type: ignore async def next_pickup(self, waste_type: str) -> Optional[datetime]: """Return date of next pickup of the requested waste type.""" return self._pickup.get(waste_type) async def close(self) -> None: """Close open client session.""" if self._close_session: await self._session.close() async def __aenter__(self) -> "WasteApi": """Async enter.""" return self async def __aexit__(self, *exc_info) -> None: """Async exit.""" await self.close() ```
{ "source": "jkabalar/3DSSG", "score": 2 }
#### File: 3DSSG/data_processing/gen_data_scannet.py ```python if __name__ == '__main__' and __package__ is None: from os import sys sys.path.append('../') import argparse, trimesh import open3d as o3d import numpy as np from tqdm import tqdm from pathlib import Path from utils import util, util_label, define from utils.util_search import SAMPLE_METHODS,find_neighbors from utils import dataLoaderScanNet debug = True debug = False name_same_segment = define.NAME_SAME_PART def Parser(add_help=True): parser = argparse.ArgumentParser(description='Process some integers.', formatter_class = argparse.ArgumentDefaultsHelpFormatter, add_help=add_help,conflict_handler='resolve') parser.add_argument('--type', type=str, default='train', choices=['train', 'test', 'validation'], help="allow multiple rel pred outputs per pair",required=False) parser.add_argument('--label_type', type=str,default='ScanNet20', choices=['3RScan', '3RScan160', 'NYU40', 'Eigen13', 'RIO27', 'RIO7','ScanNet20'], help='label',required=False) parser.add_argument('--pth_out', type=str,default='../data/tmp', help='pth to output directory',required=False) parser.add_argument('--target_scan', type=str, default='', help='') parser.add_argument('--scan_name', type=str, default='inseg.ply', help='what is the name of the output filename of the ply generated by your segmentation method.') ## options parser.add_argument('--verbose', type=bool, default=False, help='verbal',required=False) parser.add_argument('--debug', type=int, default=0, help='debug',required=False) ## neighbor search parameters parser.add_argument('--search_method', type=str, choices=['BBOX','KNN'],default='BBOX',help='How to split the scene.') parser.add_argument('--radius_receptive', type=float,default=0.5,help='The receptive field of each seed.') # # Correspondence Parameters parser.add_argument('--max_dist', type=float,default=0.1,help='maximum distance to find corresopndence.') parser.add_argument('--min_seg_size', type=int,default=512,help='Minimum number of points of a segment.') parser.add_argument('--corr_thres', type=float,default=0.5,help='How the percentage of the points to the same target segment must exceeds this value.') parser.add_argument('--occ_thres', type=float,default=0.75,help='2nd/1st must smaller than this.') return parser def load_inseg(pth_ply): # if pth_ply.find('inseg.ply') >=0: cloud_pd = trimesh.load(pth_ply, process=False) points_pd = cloud_pd.vertices segments_pd = cloud_pd.metadata['ply_raw']['vertex']['data']['label'].flatten() # elif pth_ply.find('cvvseg.ply') >=0: return cloud_pd, points_pd, segments_pd def process(pth_scan, scan_id, label_type, verbose=False) -> list: # some params max_distance = args.max_dist filter_segment_size = args.min_seg_size # if the num of points within a segment below this threshold, discard this filter_corr_thres = args.corr_thres # if percentage of the corresponding label must exceed this value to accept the correspondence filter_occ_ratio = args.occ_thres pth_pd = os.path.join(define.SCANNET_DATA_PATH,scan_id,args.scan_name) pth_ply = os.path.join(define.SCANNET_DATA_PATH,scan_id,scan_id+define.SCANNET_PLY_SUBFIX) pth_agg = os.path.join(define.SCANNET_DATA_PATH,scan_id,scan_id+define.SCANNET_AGGRE_SUBFIX) pth_seg = os.path.join(define.SCANNET_DATA_PATH,scan_id,scan_id+define.SCANNET_SEG_SUBFIX) cloud_gt, points_gt, labels_gt, segments_gt = dataLoaderScanNet.load_scannet(pth_ply, pth_agg, pth_seg) cloud_pd, points_pd, segments_pd = load_inseg(pth_pd) # get num of segments segment_ids = np.unique(segments_pd) segment_ids = segment_ids[segment_ids!=0] if args.verbose: print('filtering input segments.. (ori num of segments:',len(segment_ids),')') segments_pd_filtered=list() for seg_id in segment_ids: pts = points_pd[np.where(segments_pd==seg_id)] if len(pts) > filter_segment_size: segments_pd_filtered.append(seg_id) segment_ids = segments_pd_filtered if args.verbose: print('there are',len(segment_ids), 'segemnts after filtering:\n', segment_ids) segs_neighbors = find_neighbors(points_pd, segments_pd, search_method,receptive_field=args.radius_receptive,selected_keys=segment_ids) ''' Check GT segments and labels ''' _, label_names, _ = util_label.getLabelMapping(args.label_type) # print('label_names:',label_names) instance2labelName = dict() size_segments_gt = dict() uni_seg_gt_ids = np.unique(segments_gt).tolist() for seg_id in uni_seg_gt_ids: indices = np.where(segments_gt == seg_id) seg = segments_gt[indices] labels = labels_gt[indices] uq_label = np.unique(labels).tolist() if len(uq_label) > 1: if verbose or debug: print('segment',seg_id,'has multiple labels (',uq_label,') in GT. Try to remove other labels.') max_id=0 max_value=0 for id in uq_label: if verbose or debug: print(id, len(labels[labels==id]), '{:1.3f}'.format(len(labels[labels==id])/len(labels))) if len(labels[labels==id])>max_value: max_value = len(labels[labels==id]) max_id = id for label in uq_label: if label == max_id: continue if len(labels[labels==id]) > filter_segment_size: # try to generate new segment new_seg_idx = max(uni_seg_gt_ids)+1 uni_seg_gt_ids.append(new_seg_idx) for idx in indices[0]: if labels_gt[idx] == label: segments_gt[idx] = new_seg_idx else: for idx in indices[0]: if labels_gt[idx] == label: segments_gt[idx] = 0 labels_gt[idx] = 0 # set other label to 0 seg = segments_gt[indices] labels = labels_gt[indices] uq_label = [max_id] if uq_label[0] == 0 or uq_label[0] > 40: name = 'none' else: name = util_label.NYU40_Label_Names[uq_label[0]-1] # print(name) if name not in label_names.values(): name = 'none' # if label_type == 'ScanNet20': # if name not in util_label.SCANNET20_Label_Names: # name = 'none' size_segments_gt[seg_id] = len(seg) instance2labelName[seg_id] = name if verbose: print('instance2labelNames:') print(instance2labelName) ''' Save as ply ''' if debug: colors = util_label.get_NYU40_color_palette() cloud_gt.visual.vertex_colors = [0,0,0,255] for seg, label_name in instance2labelName.items(): segment_indices = np.where(segments_gt == seg)[0] if label_name == 'none':continue label = util_label.NYU40_Label_Names.index(label_name)+1 for index in segment_indices: cloud_gt.visual.vertex_colors[index][:3] = colors[label] cloud_gt.export('tmp_gtcloud.ply') size_segments_pd = dict() ''' Find and count all corresponding segments''' tree = o3d.geometry.KDTreeFlann(points_gt.transpose()) count_seg_pd_2_corresponding_seg_gts = dict() # counts each segment_pd to its corresonding segment_gt for segment_id in segment_ids: segment_indices = np.where(segments_pd == segment_id)[0] segment_points = points_pd[segment_indices] size_segments_pd[segment_id] = len(segment_points) if filter_segment_size > 0: if size_segments_pd[segment_id] < filter_segment_size: continue for i in range(len(segment_points)): point = segment_points[i] k, idx, distance = tree.search_knn_vector_3d(point,1) if distance[0] > max_distance: continue segment_gt = segments_gt[idx][0] if segment_gt not in instance2labelName: continue if instance2labelName[segment_gt] == 'none': continue if segment_id not in count_seg_pd_2_corresponding_seg_gts: count_seg_pd_2_corresponding_seg_gts[segment_id] = dict() if segment_gt not in count_seg_pd_2_corresponding_seg_gts[segment_id]: count_seg_pd_2_corresponding_seg_gts[segment_id][segment_gt] = 0 count_seg_pd_2_corresponding_seg_gts[segment_id][segment_gt] += 1 if verbose or debug: print('There are {} out of {} segments have found their correponding GT segments.'.\ format(len(count_seg_pd_2_corresponding_seg_gts),len(segment_ids))) for k,i in count_seg_pd_2_corresponding_seg_gts.items(): print('\t{}: {}'.format(k,len(i))) ''' Find best corresponding segment ''' map_segment_pd_2_gt = dict() # map segment_pd to segment_gt gt_segments_2_pd_segments = dict() # how many segment_pd corresponding to this segment_gt for segment_id, cor_counter in count_seg_pd_2_corresponding_seg_gts.items(): size_pd = size_segments_pd[segment_id] if verbose or debug: print('segment_id', segment_id, size_pd) max_corr_ratio = -1 max_corr_seg = -1 list_corr_ratio = list() for segment_gt, count in cor_counter.items(): size_gt = size_segments_gt[segment_gt] corr_ratio = count/size_pd list_corr_ratio.append(corr_ratio) if corr_ratio > max_corr_ratio: max_corr_ratio = corr_ratio max_corr_seg = segment_gt if verbose or debug: print('\t{0:s} {1:3d} {2:8d} {3:2.3f} {4:2.3f}'.\ format(instance2labelName[segment_gt],segment_gt,count, count/size_gt, corr_ratio)) if len(list_corr_ratio ) > 2: list_corr_ratio = sorted(list_corr_ratio,reverse=True) occ_ratio = list_corr_ratio[1]/list_corr_ratio[0] else: occ_ratio = 0 if max_corr_ratio > filter_corr_thres and occ_ratio < filter_occ_ratio: ''' This is to prevent a segment is almost equally occupied two or more gt segments. ''' if verbose or debug: print('add correspondence of segment {:s} {:4d} to label {:4d} with the ratio {:2.3f} {:1.3f}'.\ format(instance2labelName[segment_gt],segment_id,max_corr_seg,max_corr_ratio,occ_ratio)) map_segment_pd_2_gt[segment_id] = max_corr_seg if max_corr_seg not in gt_segments_2_pd_segments: gt_segments_2_pd_segments[max_corr_seg] = list() gt_segments_2_pd_segments[max_corr_seg].append(segment_id) else: if verbose or debug: print('filter correspondence segment {:s} {:4d} to label {:4d} with the ratio {:2.3f} {:1.3f}'.\ format(instance2labelName[segment_gt],segment_id,max_corr_seg,max_corr_ratio,occ_ratio)) if verbose: print('final correspondence:') print(' pd gt') for segment, label in sorted(map_segment_pd_2_gt.items()): print("{:4d} {:4d}".format(segment,label)) print('final pd segments within the same gt segment') for gt_segment, pd_segments in sorted(gt_segments_2_pd_segments.items()): print('{} :'.format(gt_segment),end='') for pd_segment in pd_segments: print('{} '.format(pd_segment),end='') print('') ''' Save as ply ''' if debug: colors = util_label.get_NYU40_color_palette() cloud_pd.visual.vertex_colors = [0,0,0,255] for segment_pd, segment_gt in map_segment_pd_2_gt.items(): segment_indices = np.where(segments_pd == segment_pd)[0] label = util_label.NYU40_Label_Names.index(instance2labelName[segment_gt])+1 color = colors[label] for index in segment_indices: cloud_pd.visual.vertex_colors[index][:3] = color cloud_pd.export('tmp_corrcloud.ply') '''' Save as relationship_*.json ''' list_relationships = list() relationships = gen_relationship(0, map_segment_pd_2_gt, instance2labelName, gt_segments_2_pd_segments) if len(relationships["objects"]) != 0 and len(relationships['relationships']) != 0: list_relationships.append(relationships) return list_relationships, segs_neighbors def gen_relationship(split:int, map_segment_pd_2_gt:dict,instance2labelName:dict,gt_segments_2_pd_segments:dict, target_segments:list=None) -> dict: '''' Save as relationship_*.json ''' relationships = dict() relationships["scan"] = scan_id relationships["split"] = split objects = dict() for seg, segment_gt in map_segment_pd_2_gt.items(): if target_segments is not None: if seg not in target_segments: continue name = instance2labelName[segment_gt] assert(name != '-' and name != 'none') objects[int(seg)] = name relationships["objects"] = objects split_relationships = list() ''' Build "same part" relationship ''' idx_in_txt_new = 0 for _, groups in gt_segments_2_pd_segments.items(): if target_segments is not None: filtered_groups = list() for g in groups: if g in target_segments: filtered_groups.append(g) groups = filtered_groups if len(groups) <= 1: continue for i in range(len(groups)): for j in range(i+1,len(groups)): split_relationships.append([int(groups[i]),int(groups[j]), idx_in_txt_new, name_same_segment]) split_relationships.append([int(groups[j]),int(groups[i]), idx_in_txt_new, name_same_segment]) relationships["relationships"] = split_relationships return relationships if __name__ == '__main__': args = Parser().parse_args() debug |= args.debug args.verbose |= args.debug if debug: args.verbose=True if args.search_method == 'BBOX': search_method = SAMPLE_METHODS.BBOX elif args.search_method == 'KNN': search_method = SAMPLE_METHODS.RADIUS util.set_random_seed(2020) import os,json label_names, _, _ = util_label.getLabelMapping(args.label_type) classes_json = list() for key,value in label_names.items(): if value == '-':continue classes_json.append(value) target_scan=[] if args.target_scan != '': target_scan = util.read_txt_to_list(args.target_scan) scan_ids = target_scan else: if args.type == 'train': scan_ids = util.read_txt_to_list(define.SCANNET_SPLIT_TRAIN) elif args.type == 'validation': scan_ids = util.read_txt_to_list(define.SCANNET_SPLIT_VAL) valid_scans=list() relationships_new = dict() relationships_new["scans"] = list() relationships_new['neighbors'] = dict() counter= 0 for scan_id in tqdm(sorted(scan_ids)): # if len(target_scan) != 0: if scan_id not in target_scan: continue if debug or args.verbose: print(scan_id) relationships, segs_neighbors = process(define.SCANNET_DATA_PATH,scan_id,label_type = args.label_type, verbose = args.verbose) valid_scans.append(scan_id) relationships_new["scans"] += relationships relationships_new['neighbors'][scan_id] = segs_neighbors if debug: break Path(args.pth_out).mkdir(parents=True, exist_ok=True) pth_args = os.path.join(args.pth_out,'args.json') with open(pth_args, 'w') as f: tmp = vars(args) json.dump(tmp, f, indent=2) pth_relationships_json = os.path.join(args.pth_out, "relationships_" + args.type + ".json") with open(pth_relationships_json, 'w') as f: json.dump(relationships_new, f) pth_classes = os.path.join(args.pth_out, 'classes.txt') with open(pth_classes,'w') as f: for name in classes_json: if name == '-': continue f.write('{}\n'.format(name)) pth_relation = os.path.join(args.pth_out, 'relationships.txt') with open(pth_relation,'w') as f: f.write('{}\n'.format(name_same_segment)) pth_split = os.path.join(args.pth_out, args.type+'_scans.txt') with open(pth_split,'w') as f: for name in valid_scans: f.write('{}\n'.format(name)) ```
{ "source": "jkabalar/gradslam", "score": 3 }
#### File: gradslam/datasets/rio10.py ```python import os import warnings from collections import OrderedDict from typing import Optional, Union import imageio import cv2 import numpy as np import torch from torch.utils import data import datautils __all__ = ["RIO10"] class RIO10(data.Dataset): r"""Expecting the RIO10 Dataset to be in this format: .. code-block:: | ├── RIO10 | │ ├── seq02 | │ │ ├── seq02_01/ | │ │ ├──────seq | │ │ ├──────── camera.yaml | │ │ ├──────── frame-000000.color.jpg | │ │ ├──────── frame-000000.pose.txt | │ │ ├──────── frame-000000.rendered.depth.png | │ │ ├──────── frame-000001.color.jpg | │ │ ├──────── frame-000001.pose.txt | │ │ ├──────── frame-000001.rendered.depth.png | │ │ ├──────── ..... | │ │ ├──────instances | │ │ ├──────── frame-000000.color.jpg | │ │ ├──────── frame-000001.color.jpg | │ │ ├── seq02_02/ | │ │ ├── ..... | │ │ └── intrinsics.txt | │ ├── seq03 | │ ├── ... | | """ def __init__(self, basedir: str, scenes: Union[tuple, str, None], start: Optional[int] = 0, end: Optional[int] = -1, height: int = 540, width: int = 960, seg_classes: str = "nyu40", channels_first: bool = False, normalize_color: bool = False, *, return_depth: bool = True, return_intrinsics: bool = True, return_pose: bool = False, return_transform: bool = False, return_names: bool = False, return_labels: bool = False, ): super(RIO10, self).__init__() #height: 960 #width: 540 basedir = (os.path.join(basedir)) self.height = height self.width = width self.height_downsample_ratio = float(height) / 480 self.width_downsample_ratio = float(width) / 640 self.seg_classes = seg_classes self.channels_first = channels_first self.normalize_color = normalize_color self.return_depth = return_depth self.return_intrinsics = return_intrinsics self.return_pose = return_pose self.return_transform = return_transform self.return_names = return_names self.return_labels = return_labels self.color_encoding = get_color_encoding(self.seg_classes) self.intrinsics = dict() # Start and end frames. Used to determine sequence length. self.start = start self.end = end full_sequence = self.end == -1 if start < 0: raise ValueError("Start frame cannot be less than 0.") if not (end == -1 or end > start): raise ValueError( "End frame ({}) should be equal to -1 or greater than start ({})".format( end, start ) ) self.seqlen = self.end - self.start # scenes should be a tuple if isinstance(scenes, str): if os.path.isfile(scenes): with open(scenes, "r") as f: scenes = tuple(f.read().split("\n")) else: raise ValueError("incorrect filename: {} doesn't exist".format(scenes)) elif not (scenes is None or isinstance(scenes, tuple)): msg = "scenes should either be path to split.txt or tuple of scenes or None, but was of type %r instead" raise TypeError(msg % type(scenes)) # Get a list of all color, depth, pose, label and intrinsics files. colorfiles, depthfiles, posefiles = [], [], [] labelfiles, intrinsicsfiles, scene_names = [], [], [] scene_names = os.listdir(basedir) print(scene_names) for index, tmp in enumerate(scene_names): if tmp =="intrinsics.txt": print("Found intrinsics") self._get_intrinsics(basedir+"/"+tmp) scene_names.pop(index) if len(self.intrinsics) == 74: print("Loaded Intrinsics correctly") print(self.intrinsics) for seqpath in scene_names: if scenes is not None: if seqpath not in scenes: continue try: types = os.listdir(basedir+"/"+seqpath+"/") except OSError: print("Invalid directory") break type_files = "seq" type_instance = "instance" if type_files not in types: print("no files found in this scene") continue seq_colorfiles, seq_depthfiles, seq_posefiles = [], [], [] seq_labelfiles, seq_intrinsicsfiles = [], [] files = [] try: files = os.listdir(os.path.join(basedir+"/"+seqpath+"/"+type_files+"/")) files.sort() except OSError: print("Invalid directory") break for i in range(len(files)): prefix, extension = os.path.splitext(files[i]) extension = extension[1:] if extension=="jpg": #colorfiles seq_colorfiles.append(os.path.join(basedir+"/"+seqpath+"/"+type_files+"/"+files[i])) if extension=="png": #depthfiles seq_depthfiles.append(os.path.join(basedir+"/"+seqpath+"/"+type_files+"/"+files[i])) if extension=="txt": #posefiles seq_posefiles.append(os.path.join(basedir+"/"+seqpath+"/"+type_files+"/"+files[i])) #if extension=="yaml": #intrinsicsfiles # seq_intrinsicsfiles.append(files[i]) colorfiles.append(seq_colorfiles) depthfiles.append(seq_depthfiles) posefiles.append(seq_posefiles) #intrinsicsfiles.append(seq_intrinsicsfiles[0]) if type_instance not in types: print("no Instance files registered in this scene") continue try: files = os.listdir(os.path.join(basedir+"/"+seqpath+"/"+type_instance+"/")) files.sort() except OSError: print("Invalid directory") break for i in range(len(files)): prefix, extension = os.path.splitext(files[i]) extension = extension[1:] if extension=="jpg" or extension=="png": #labelfiles seq_labelfiles.append(os.path.join(basedir+"/"+seqpath+"/"+type_instance+"/"+files[i])) else: print("Folder contains files of wrong type") break labelfiles.append(seq_labelfiles) self.num_sequences = len(colorfiles) # Class members to store the list of valid filepaths. self.colorfiles = colorfiles self.depthfiles = depthfiles self.posefiles = posefiles self.labelfiles = labelfiles self.intrinsicsfiles = intrinsicsfiles self.seqnames = scene_names # Scaling factor for depth images self.scaling_factor = 1000.0 def __len__(self): r"""Returns the length of the dataset. """ return self.num_sequences def __getitem__(self, idx: int): r"""Returns the data from the sequence at index idx. Returns: color_seq (torch.Tensor): Sequence of rgb images of each frame depth_seq (torch.Tensor): Sequence of depths of each frame pose_seq (torch.Tensor): Sequence of poses of each frame transform_seq (torch.Tensor): Sequence of transformations between each frame in the sequence and the previous frame. Transformations are w.r.t. the first frame in the sequence having identity pose (relative transformations with first frame's pose as the reference transformation). First transformation in the sequence will always be `torch.eye(4)`. label_seq (torch.Tensor): Sequence of semantic segmentation labels intrinsics (torch.Tensor): Intrinsics for the current sequence seqname (str): Name of the sequence Shape: - color_seq: :math:`(L, H, W, 3)` if `channels_first` is False, else :math:`(L, 3, H, W)`. `L` denotes sequence length. - depth_seq: :math:`(L, H, W, 1)` if `channels_first` is False, else :math:`(L, 1, H, W)`. `L` denotes sequence length. - pose_seq: :math:`(L, 4, 4)` where `L` denotes sequence length. - transform_seq: :math:`(L, 4, 4)` where `L` denotes sequence length. - label_seq: :math:`(L, H, W)` where `L` denotes sequence length. - intrinsics: :math:`(1, 4, 4)` """ # Read in the color, depth, pose, label and intrinstics info. color_seq_path = self.colorfiles[idx] depth_seq_path = self.depthfiles[idx] pose_seq_path = self.posefiles[idx] if self.return_labels: label_seq_path = self.labelfiles[idx] intrinsics_path = self.intrinsicsfiles[idx] seqname = self.seqnames[idx] print("Getting scene"+seqname) color_seq, depth_seq, pose_seq, label_seq = [], [], [], [] poses = [] self.seqlen = 8 output = [] if self.return_intrinsics: intrinsics = self.intrinsics[seqname] intrinsics = torch.from_numpy(intrinsics).float() output.append(intrinsics) for i in range(self.seqlen): color = np.asarray(imageio.imread(color_seq_path[i]), dtype=float) color = self._preprocess_color(color) color = torch.from_numpy(color) color_seq.append(color) if self.return_depth: depth = np.asarray(imageio.imread(depth_seq_path[i]), dtype=np.int64) depth = self._preprocess_depth(depth) depth = torch.from_numpy(depth) depth_seq.append(depth) # if self.return_pose or self.return_transform: # pose = np.loadtxt(pose_seq_path[i]).astype(float) # poses.append(pose) # pose = torch.from_numpy(pose) # pose_seq.append(pose) # if self.return_labels: # label = np.asarray(imageio.imread(label_seq_path[i]), dtype=np.uint8) # label = self._preprocess_label(label) # label = torch.from_numpy(label) # label_seq.append(label) color_seq = torch.stack(color_seq, 0).float() output.append(color_seq) if self.return_depth: depth_seq = torch.stack(depth_seq, 0).float() output.append(depth_seq) # if self.return_pose: # pose_seq = torch.stack(pose_seq, 0).float() # pose_seq = self._preprocess_poses(pose_seq) # output.append(pose_seq) # if self.return_transform: # transform_seq = datautils.poses_to_transforms(poses) # transform_seq = [torch.from_numpy(x).float() for x in transform_seq] # transform_seq = torch.stack(transform_seq, 0).float() # output.append(transform_seq) if self.return_names: output.append(seqname) # if self.return_labels: # label_seq = torch.stack(label_seq, 0).float() # output.append(label_seq) return tuple(output) def _get_intrinsics(self, datapath: str): with open(datapath, "r") as f: lines = f.readlines() for line in lines: line = line.strip().split() seq_name = line[0] fx, fy, cx, cy = line[1], line[2], line[3], line[4] intrinsics = np.zeros((3, 3)) intrinsics[0,0] = fx intrinsics[1,1] = fy intrinsics[0,2] = cx intrinsics[0,2] = cy intrinsics[2,2] = 1 self.intrinsics[seq_name] = self._preprocess_intrinsics(intrinsics) def _preprocess_intrinsics(self, intrinsics: Union[torch.Tensor, np.ndarray]): r"""Preprocesses the intrinsics by scaling `fx`, `fy`, `cx`, `cy` based on new frame size and expanding the 0-th dimension. Args: intrinsics (torch.Tensor or np.ndarray): Intrinsics matrix to be preprocessed Returns: Output (torch.Tensor or np.ndarray): Preprocessed intrinsics Shape: - intrinsics: :math:`(4, 4)` - Output: :math:`(1, 4, 4)` """ scaled_intrinsics = datautils.scale_intrinsics( intrinsics, self.height_downsample_ratio, self.width_downsample_ratio ) if torch.is_tensor(scaled_intrinsics): return scaled_intrinsics.unsqueeze(0) elif isinstance(scaled_intrinsics, np.ndarray): return np.expand_dims(scaled_intrinsics, 0) def _preprocess_color(self, color: np.ndarray): r"""Preprocesses the color image by resizing to :math:`(H, W, C)`, (optionally) normalizing values to :math:`[0, 1]`, and (optionally) using channels first :math:`(C, H, W)` representation. Args: color (np.ndarray): Raw input rgb image Retruns: np.ndarray: Preprocessed rgb image Shape: - Input: :math:`(H_\text{old}, W_\text{old}, C)` - Output: :math:`(H, W, C)` if `self.channels_first == False`, else :math:`(C, H, W)`. """ color = cv2.resize( color, (self.width, self.height), interpolation=cv2.INTER_LINEAR ) if self.normalize_color: color = datautils.normalize_image(color) if self.channels_first: color = datautils.channels_first(color) return color def _preprocess_depth(self, depth: np.ndarray): r"""Preprocesses the depth image by resizing, adding channel dimension, and scaling values to meters. Optionally converts depth from channels last :math:`(H, W, 1)` to channels first :math:`(1, H, W)` representation. Args: depth (np.ndarray): Raw depth image Returns: np.ndarray: Preprocessed depth Shape: - depth: :math:`(H_\text{old}, W_\text{old})` - Output: :math:`(H, W, 1)` if `self.channels_first == False`, else :math:`(1, H, W)`. """ depth = cv2.resize( depth.astype(float), (self.width, self.height), interpolation=cv2.INTER_NEAREST, ) depth = np.expand_dims(depth, -1) if self.channels_first: depth = datautils.channels_first(depth) return depth / self.scaling_factor def get_color_encoding(seg_classes): r"""Gets the color palette for different sets of labels (`"nyu40"` or `"scannet20"`) Args: seg_classes (str): Determines whether to use `"nyu40"` labels or `"scannet20"` Returns: Output (OrderedDict): Label names as keys and color palettes as values. """ if seg_classes.lower() == "nyu40": # Color palette for nyu40 labels return OrderedDict( [ ("unlabeled", (0, 0, 0)), ("wall", (174, 199, 232)), ("floor", (152, 223, 138)), ("cabinet", (31, 119, 180)), ("bed", (255, 187, 120)), ("chair", (188, 189, 34)), ("sofa", (140, 86, 75)), ("table", (255, 152, 150)), ("door", (214, 39, 40)), ("window", (197, 176, 213)), ("bookshelf", (148, 103, 189)), ("picture", (196, 156, 148)), ("counter", (23, 190, 207)), ("blinds", (178, 76, 76)), ("desk", (247, 182, 210)), ("shelves", (66, 188, 102)), ("curtain", (219, 219, 141)), ("dresser", (140, 57, 197)), ("pillow", (202, 185, 52)), ("mirror", (51, 176, 203)), ("floormat", (200, 54, 131)), ("clothes", (92, 193, 61)), ("ceiling", (78, 71, 183)), ("books", (172, 114, 82)), ("refrigerator", (255, 127, 14)), ("television", (91, 163, 138)), ("paper", (153, 98, 156)), ("towel", (140, 153, 101)), ("showercurtain", (158, 218, 229)), ("box", (100, 125, 154)), ("whiteboard", (178, 127, 135)), ("person", (120, 185, 128)), ("nightstand", (146, 111, 194)), ("toilet", (44, 160, 44)), ("sink", (112, 128, 144)), ("lamp", (96, 207, 209)), ("bathtub", (227, 119, 194)), ("bag", (213, 92, 176)), ("otherstructure", (94, 106, 211)), ("otherfurniture", (82, 84, 163)), ("otherprop", (100, 85, 144)), ] ) elif seg_classes.lower() == "scannet20": # Color palette for scannet20 labels return OrderedDict( [ ("unlabeled", (0, 0, 0)), ("wall", (174, 199, 232)), ("floor", (152, 223, 138)), ("cabinet", (31, 119, 180)), ("bed", (255, 187, 120)), ("chair", (188, 189, 34)), ("sofa", (140, 86, 75)), ("table", (255, 152, 150)), ("door", (214, 39, 40)), ("window", (197, 176, 213)), ("bookshelf", (148, 103, 189)), ("picture", (196, 156, 148)), ("counter", (23, 190, 207)), ("desk", (247, 182, 210)), ("curtain", (219, 219, 141)), ("refrigerator", (255, 127, 14)), ("showercurtain", (158, 218, 229)), ("toilet", (44, 160, 44)), ("sink", (112, 128, 144)), ("bathtub", (227, 119, 194)), ("otherfurniture", (82, 84, 163)), ] ) def nyu40_to_scannet20(label): r"""Remaps a label image from the `"nyu40"` class palette to the `"scannet20"` class palette""" # Ignore indices 13, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26. 27. 29. 30. 31. 32, 35. 37. 38, 40 # Because, these classes from 'nyu40' are absent from 'scannet20'. Our label files are in # 'nyu40' format, hence this 'hack'. To see detailed class lists visit: # http://kaldir.vc.in.tum.de/scannet_benchmark/labelids_all.txt ('nyu40' labels) # http://kaldir.vc.in.tum.de/scannet_benchmark/labelids.txt ('scannet20' labels) # The remaining labels are then to be mapped onto a contiguous ordering in the range [0,20] # The remapping array comprises tuples (src, tar), where 'src' is the 'nyu40' label, and 'tar' is the # corresponding target 'scannet20' label remapping = [ (0, 0), (13, 0), (15, 0), (17, 0), (18, 0), (19, 0), (20, 0), (21, 0), (22, 0), (23, 0), (25, 0), (26, 0), (27, 0), (29, 0), (30, 0), (31, 0), (32, 0), (35, 0), (37, 0), (38, 0), (40, 0), (14, 13), (16, 14), (24, 15), (28, 16), (33, 17), (34, 18), (36, 19), (39, 20), ] for src, tar in remapping: label[np.where(label == src)] = tar return label ```
{ "source": "jkabalar/kapture-localization", "score": 2 }
#### File: kapture_localization/colmap/colmap_command.py ```python import logging import os import os.path as path import subprocess from typing import List, Optional import kapture from kapture.utils.paths import safe_remove_file from kapture.converter.colmap.database_extra import save_match_list logger = logging.getLogger('colmap') # point_triangulator / image_registrator options CONFIGS = [ # config 0 [], # config 1 ['--Mapper.ba_refine_focal_length', '0', '--Mapper.ba_refine_principal_point', '0', '--Mapper.ba_refine_extra_params', '0'], # config 2 ['--Mapper.ba_refine_focal_length', '0', '--Mapper.ba_refine_principal_point', '0', '--Mapper.ba_refine_extra_params', '0', '--Mapper.min_num_matches', '4', '--Mapper.init_min_num_inliers', '4', '--Mapper.abs_pose_min_num_inliers', '4', '--Mapper.abs_pose_min_inlier_ratio', '0.05', '--Mapper.ba_local_max_num_iterations', '50', '--Mapper.abs_pose_max_error', '20', '--Mapper.filter_max_reproj_error', '12'], # config 3 ['--Mapper.ba_refine_focal_length', '1', '--Mapper.ba_refine_principal_point', '0', '--Mapper.ba_refine_extra_params', '0', '--Mapper.min_num_matches', '4', '--Mapper.init_min_num_inliers', '4', '--Mapper.abs_pose_min_num_inliers', '4', '--Mapper.abs_pose_min_inlier_ratio', '0.05', '--Mapper.ba_local_max_num_iterations', '50', '--Mapper.abs_pose_max_error', '20', '--Mapper.filter_max_reproj_error', '12'] ] def run_colmap_command(colmap_binary_path: str, args: List[str]) -> None: """ run any colmap command :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param args: list of arguments that will be passed to the colmap command :type args: List[str] :raises ValueError: colmap subprocess did not return 0 """ args.insert(0, colmap_binary_path) logger.info(args) colmap_process = subprocess.Popen(args) colmap_process.wait() if colmap_process.returncode != 0: raise ValueError( '\nSubprocess Error (Return code:' f' {colmap_process.returncode} )') def run_feature_extractor(colmap_binary_path: str, colmap_use_cpu: bool, colmap_gpu_index: str, colmap_db_path: str, images_path: str, image_list_path: str, colmap_options: List[str] = None) -> None: """ run colmap feature_extractor: Perform feature extraction or import features for a set of images :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_use_cpu: add --SiftExtraction.use_gpu 0 :type colmap_use_cpu: bool :param colmap_gpu_index: add --SiftExtraction.gpu_index {colmap_gpu_index} :type colmap_gpu_index: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param images_path: value for --image_path :type images_path: str :param image_list_path: value for --image_list_path :type image_list_path: str :param colmap_options: list of additional parameters to add to the command, defaults to None :type colmap_options: List[str], optional """ feature_args = ["feature_extractor", "--database_path", colmap_db_path, "--image_path", images_path, "--image_list_path", image_list_path] if colmap_options is not None and len(colmap_options) > 0: feature_args += colmap_options if colmap_use_cpu: feature_args += [ "--SiftExtraction.use_gpu", "0" ] elif colmap_gpu_index: feature_args += [ "--SiftExtraction.gpu_index", colmap_gpu_index ] run_colmap_command(colmap_binary_path, feature_args) def run_vocab_tree_matcher(colmap_binary_path: str, colmap_use_cpu: bool, colmap_gpu_index: str, colmap_db_path: str, vocab_tree_path: str, images_path: str = "") -> None: """ run colmap vocab_tree_matcher: Perform feature matching after performing feature extraction :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_use_cpu: add --SiftExtraction.use_gpu 0 :type colmap_use_cpu: bool :param colmap_gpu_index: add --SiftExtraction.gpu_index {colmap_gpu_index} :type colmap_gpu_index: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param vocab_tree_path: value for --VocabTreeMatching.vocab_tree_path :type vocab_tree_path: str :param images_path: value for --VocabTreeMatching.match_list_path, defaults to "" :type images_path: str, optional """ vocab_tree_matcher_args = ["vocab_tree_matcher", "--database_path", colmap_db_path, "--VocabTreeMatching.vocab_tree_path", vocab_tree_path] if images_path != "": vocab_tree_matcher_args += ["--VocabTreeMatching.match_list_path", images_path] if colmap_use_cpu: vocab_tree_matcher_args += [ "--SiftMatching.use_gpu", "0" ] elif colmap_gpu_index: vocab_tree_matcher_args += [ "--SiftMatching.gpu_index", colmap_gpu_index ] run_colmap_command(colmap_binary_path, vocab_tree_matcher_args) def run_matches_importer(colmap_binary_path: str, colmap_use_cpu: bool, colmap_gpu_index: Optional[str], colmap_db_path: str, match_list_path: str) -> None: """ run colmap matches_importer: Perform geometric verification on matches :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_use_cpu: add --SiftExtraction.use_gpu 0 :type colmap_use_cpu: bool :param colmap_gpu_index: add --SiftExtraction.gpu_index {colmap_gpu_index} :type colmap_gpu_index: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param match_list_path: value for --match_list_path :type match_list_path: str """ matches_importer_args = ["matches_importer", "--database_path", colmap_db_path, "--match_list_path", match_list_path, "--match_type", 'pairs'] if colmap_use_cpu: matches_importer_args += [ "--SiftMatching.use_gpu", "0" ] elif colmap_gpu_index: matches_importer_args += [ "--SiftMatching.gpu_index", colmap_gpu_index ] run_colmap_command(colmap_binary_path, matches_importer_args) def run_matches_importer_from_kapture_matches(colmap_binary_path: str, colmap_use_cpu: bool, colmap_gpu_index: Optional[str], colmap_db_path: str, kapture_matches: kapture.Matches, force: bool = True, clean: bool = True) -> None: """ export list of matches from kapture data then run colmap matches_importer :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_use_cpu: add --SiftExtraction.use_gpu 0 :type colmap_use_cpu: bool :param colmap_gpu_index: add --SiftExtraction.gpu_index {colmap_gpu_index} :type colmap_gpu_index: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param kapture_matches: kapture data that contains the matches (that are already in the colmap database) to verify :type kapture_matches: kapture.Matches :param force: do not ask before overwriting match_list.txt, defaults to True :type force: bool, optional :param clean: remove match_list.txt before exiting, defaults to True :type clean: bool, optional """ db_dir = path.dirname(colmap_db_path) match_list_path = path.join(db_dir, 'match_list.txt') safe_remove_file(match_list_path, force) save_match_list(kapture_matches, match_list_path) run_matches_importer(colmap_binary_path, colmap_use_cpu, colmap_gpu_index, colmap_db_path, match_list_path) if clean: os.remove(match_list_path) def run_point_triangulator(colmap_binary_path: str, colmap_db_path: str, images_path: str, input_path: str, output_path: str, point_triangulator_options: List[str]) -> None: """ run colmap point_triangulator: Triangulate all observations of registered images in an existing model using the feature matches in a database :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param images_path: value for --image_path :type images_path: str :param input_path: value for --input_path :type input_path: str :param output_path: value for --output_path :type output_path: str :param point_triangulator_options: list of additional parameters to add to the command :type point_triangulator_options: List[str] """ point_triangulator_args = ["point_triangulator", "--database_path", colmap_db_path, "--image_path", images_path, "--input_path", input_path, "--output_path", output_path] if point_triangulator_options is not None and len(point_triangulator_options) > 0: point_triangulator_args += point_triangulator_options run_colmap_command(colmap_binary_path, point_triangulator_args) def run_mapper(colmap_binary_path: str, colmap_db_path: str, images_path: str, input_path: Optional[str], output_path: str, mapper_options: List[str]) -> None: """ run colmap mapper: Sparse 3D reconstruction / mapping of the dataset using SfM after performing feature extraction and matching :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param images_path: value for --image_path :type images_path: str :param input_path: value for --input_path :type input_path: Optional[str] :param output_path: value for --output_path :type output_path: str :param mapper_options: list of additional parameters to add to the command :type mapper_options: List[str] """ mapper_args = ["mapper", "--database_path", colmap_db_path, "--image_path", images_path, "--output_path", output_path] if input_path is not None: mapper_args += [ "--input_path", input_path] if mapper_options is not None and len(mapper_options) > 0: mapper_args += mapper_options run_colmap_command(colmap_binary_path, mapper_args) def run_bundle_adjustment(colmap_binary_path: str, input_path: str, output_path: str, output_rig_path: str = "") -> None: """ run colmap bundle_adjuster or colmap rig_bundle_adjuster (if output_rig_path is provided) :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param input_path: value for --input_path :type input_path: str :param output_path: value for --output_path :type output_path: str :param output_rig_path: value for --rig_config_path, if set, run rig_bundle_adjuster instead of bundle_adjuster :type output_rig_path: str, optional """ if output_rig_path: logging.info("Run bundle adjuster with rig") args = ["rig_bundle_adjuster", "--rig_config_path", output_rig_path] else: args = ["bundle_adjuster"] args.extend(["--input_path", input_path, "--output_path", output_path]) run_colmap_command(colmap_binary_path, args) def run_image_registrator(colmap_binary_path: str, colmap_db_path: str, input_path: str, output_path: str, image_registrator_options: List[str]) -> None: """ run colmap image_registrator: Register new images in the database against an existing model :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param colmap_db_path: value for --database_path :type colmap_db_path: str :param input_path: value for --input_path :type input_path: str :param output_path: value for --output_path :type output_path: str :param image_registrator_options: list of additional parameters to add to the command :type image_registrator_options: List[str] """ image_registrator_args = ["image_registrator", "--database_path", colmap_db_path, "--input_path", input_path, "--output_path", output_path] if image_registrator_options is not None and len(image_registrator_options) > 0: image_registrator_args += image_registrator_options run_colmap_command(colmap_binary_path, image_registrator_args) def run_model_converter(colmap_binary_path: str, input_path: str, output_path: str, output_type: str = 'TXT') -> None: """ run colmap model_converter with --output_type TXT: convert reconstruction from binary files to TXT files :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param input_path: value for --input_path :type input_path: str :param output_path: value for --output_path :type output_path: str """ model_converter_args = ["model_converter", "--input_path", input_path, "--output_path", output_path, "--output_type", output_type] run_colmap_command(colmap_binary_path, model_converter_args) def run_image_undistorter(colmap_binary_path: str, image_path: str, input_path: str, output_path: str) -> None: """ run colmap image_undistorter: Undistort images and/or export them for MVS or to external dense reconstruction software, such as CMVS/PMVS :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param image_path: value for -image_path :type image_path: str :param input_path: value for --input_path :type input_path: str :param output_path: value for --output_path :type output_path: str """ image_undistorter_args = ["image_undistorter", "--image_path", image_path, "--input_path", input_path, "--output_path", output_path] run_colmap_command(colmap_binary_path, image_undistorter_args) def run_patch_match_stereo(colmap_binary_path: str, workspace_path: str) -> None: """ run colmap patch_match_stereo: Dense 3D reconstruction / mapping using MVS after running the image_undistorter to initialize the workspace :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param workspace_path: value for --workspace_path :type workspace_path: str """ patch_match_stereo_args = ["patch_match_stereo", "--workspace_path", workspace_path] run_colmap_command(colmap_binary_path, patch_match_stereo_args) def run_stereo_fusion(colmap_binary_path: str, workspace_path: str, output_path: str) -> None: """ run colmap stereo_fusion :param colmap_binary_path: path to colmap executable :type colmap_binary_path: str :param workspace_path: value for --workspace_path :type workspace_path: str :param output_path: value for --output_path :type output_path: str """ stereo_fusion_args = ["stereo_fusion", "--workspace_path", workspace_path, "--output_path", output_path] run_colmap_command(colmap_binary_path, stereo_fusion_args) ``` #### File: kapture_localization/localization/reprojection_error.py ```python import numpy as np import quaternion from typing import List import cv2 import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture def compute_reprojection_error(pose: kapture.PoseTransform, num_inliers: int, inliers: List, points2D, points3D, K, distortion): """ compute reprojection error from a pose, a list of inlier indexes, the full list of 2D points and 3D points and camera parameters """ obs_2D = np.empty((num_inliers, 2), dtype=np.float) obs_3D = np.empty((1, num_inliers, 3), dtype=np.float) for i, index in enumerate(inliers): obs_2D[i, :] = points2D[index] obs_3D[0, i, :] = points3D[index] rvec, _ = cv2.Rodrigues(quaternion.as_rotation_matrix(pose.r)) tvec = pose.t estimated_points, _ = cv2.projectPoints(objectPoints=obs_3D, rvec=rvec, tvec=tvec, cameraMatrix=K, distCoeffs=distortion) estimated_points = estimated_points.reshape(obs_2D.shape) diff = estimated_points - obs_2D error = np.linalg.norm(diff, axis=1) residuals = np.sum(error) reprojection_error = residuals / num_inliers return reprojection_error ``` #### File: kapture_localization/matching/matching.py ```python from abc import ABC, abstractmethod import torch import numpy as np from kapture_localization.utils.logging import getLogger class MatchPairGenerator(ABC): @abstractmethod def match_descriptors(self, descriptors_1, descriptors_2): raise NotImplementedError() class MatchPairNnTorch(MatchPairGenerator): def __init__(self, use_cuda=True): super().__init__() self._device = torch.device("cuda:0" if use_cuda and torch.cuda.is_available() else "cpu") def match_descriptors(self, descriptors_1, descriptors_2): if descriptors_1.shape[0] == 0 or descriptors_2.shape[0] == 0: return np.zeros((0, 3)) # send data to GPU descriptors1_torch = torch.from_numpy(descriptors_1).to(self._device) descriptors2_torch = torch.from_numpy(descriptors_2).to(self._device) # make sure its double (because CUDA tensors only supports floating-point) descriptors1_torch = descriptors1_torch.float() descriptors2_torch = descriptors2_torch.float() # sanity check if not descriptors1_torch.device == self._device: getLogger().debug('descriptor on device {} (requested {})'.format(descriptors1_torch.device, self._device)) if not descriptors2_torch.device == self._device: getLogger().debug('descriptor on device {} (requested {})'.format(descriptors2_torch.device, self._device)) simmilarity_matrix = descriptors1_torch @ descriptors2_torch.t() scores = torch.max(simmilarity_matrix, dim=1)[0] nearest_neighbor_idx_1vs2 = torch.max(simmilarity_matrix, dim=1)[1] nearest_neighbor_idx_2vs1 = torch.max(simmilarity_matrix, dim=0)[1] ids1 = torch.arange(0, simmilarity_matrix.shape[0], device=descriptors1_torch.device) # cross check mask = ids1 == nearest_neighbor_idx_2vs1[nearest_neighbor_idx_1vs2] matches_torch = torch.stack( [ids1[mask].type(torch.float), nearest_neighbor_idx_1vs2[mask].type(torch.float), scores[mask]]).t() # retrieve data back from GPU matches = matches_torch.data.cpu().numpy() matches = matches.astype(np.float) return matches ``` #### File: kapture_localization/pairing/observations.py ```python import logging from itertools import combinations import multiprocessing from typing import Dict, List, Optional, Tuple, Set import gc from tqdm import tqdm from kapture_localization.utils.logging import getLogger import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture def _child_process_get_pairs(kdata_observations: List[Tuple[str, int]], imgs_map: Set[str], imgs_query: Optional[Set[str]]): result_pairs = {} pairs = list(combinations(kdata_observations, r=2)) # get all pairs from 3D point observations if len(pairs) > 1: for p in pairs: img1 = p[0][0] img2 = p[1][0] if img1 == img2: # skip pair if both images are the same continue if imgs_query is not None: # if query images are different from mapping images, i.e. if query kapture was provided if img1 in imgs_map and img1 not in imgs_query and img2 in imgs_map and img2 not in imgs_query: # skip if both images are from the mapping kapture # (because we only want to keep query-mapping pairs) continue if img1 in imgs_query and img2 in imgs_query: # skip if both images are from the query kapture (because we do not want to match query-query) continue # ensure query-mapping order in the pair file if img1 in imgs_query: pair = (img1, img2) else: pair = (img2, img1) if not pair[0] in result_pairs: result_pairs[pair[0]] = {} if not pair[1] in result_pairs[pair[0]]: result_pairs[pair[0]][pair[1]] = 0 result_pairs[pair[0]][pair[1]] += 1 else: if img1 not in imgs_map or img2 not in imgs_map: continue # ensure lexicographic order of the pairs if img1 < img2: pair = (img1, img2) else: pair = (img2, img1) if not pair[0] in result_pairs: result_pairs[pair[0]] = {} if not pair[1] in result_pairs[pair[0]]: result_pairs[pair[0]][pair[1]] = 0 result_pairs[pair[0]][pair[1]] += 1 return result_pairs def get_observation_image_pairs(keypoints_type: str, kdata: kapture.Kapture, kdata_query: Optional[kapture.Kapture], max_number_of_threads: Optional[int] = None): """ get observations pairs as dictionary """ assert kdata.records_camera is not None imgs_map = kdata.records_camera.data_list() if kdata_query is not None: assert kdata_query.records_camera is not None imgs_query = kdata_query.records_camera.data_list() else: imgs_query = None all_pairs = {} number_of_threads = multiprocessing.cpu_count() if max_number_of_threads is None else max_number_of_threads def update_all_pairs_and_progress_bar(result): for img1 in result: if img1 not in all_pairs: all_pairs[img1] = {} for img2 in result[img1]: if img2 not in all_pairs[img1]: all_pairs[img1][img2] = 0 all_pairs[img1][img2] += result[img1][img2] progress_bar.update(1) def error_callback(e): getLogger().critical(e) getLogger().debug(f'computing all possible pairs from observations, max-threads={number_of_threads}') assert kdata.observations is not None progress_bar = tqdm(total=len(kdata.observations), disable=getLogger().level >= logging.CRITICAL) imgs_map_set = set(imgs_map) imgs_query_set = set(imgs_query) if imgs_query is not None else None with multiprocessing.Pool(number_of_threads) as pool: for point3d_id in kdata.observations.keys(): if keypoints_type not in kdata.observations[point3d_id]: progress_bar.update(1) continue pool.apply_async(_child_process_get_pairs, args=(kdata.observations[point3d_id, keypoints_type], imgs_map_set, imgs_query_set), callback=update_all_pairs_and_progress_bar, error_callback=error_callback) pool.close() pool.join() progress_bar.close() return all_pairs def _child_process_get_observation_images(kdata_observations: List[Tuple[str, int]], imgs_map: Set[str], imgs_query: Optional[Set[str]]): result_observations = {} for image_name, _ in kdata_observations: if image_name not in imgs_map and (imgs_query is None or image_name not in imgs_query): continue if image_name not in result_observations: result_observations[image_name] = 0 result_observations[image_name] += 1 return result_observations def get_observation_images(keypoints_type: str, kdata: kapture.Kapture, kdata_query: Optional[kapture.Kapture], max_number_of_threads: Optional[int] = None): """ get a dictionary image -> number of observations """ assert kdata.records_camera is not None imgs_map = kdata.records_camera.data_list() if kdata_query is not None: assert kdata_query.records_camera is not None imgs_query = kdata_query.records_camera.data_list() else: imgs_query = None result_observations = {} number_of_threads = multiprocessing.cpu_count() if max_number_of_threads is None else max_number_of_threads def update_observations_and_progress_bar(result): for img1, count in result.items(): if img1 not in result_observations: result_observations[img1] = 0 result_observations[img1] += count progress_bar.update(1) def error_callback(e): getLogger().critical(e) getLogger().debug(f'computing all possible pairs from observations, max-threads={number_of_threads}') assert kdata.observations is not None progress_bar = tqdm(total=len(kdata.observations), disable=getLogger().level >= logging.CRITICAL) imgs_map_set = set(imgs_map) imgs_query_set = set(imgs_query) if imgs_query is not None else None with multiprocessing.Pool(number_of_threads) as pool: for point3d_id in kdata.observations.keys(): if keypoints_type not in kdata.observations[point3d_id]: progress_bar.update(1) continue pool.apply_async(_child_process_get_observation_images, args=(kdata.observations[point3d_id, keypoints_type], imgs_map_set, imgs_query_set), callback=update_observations_and_progress_bar, error_callback=error_callback) pool.close() pool.join() progress_bar.close() return result_observations def get_topk_observation_pairs(all_pairs: Dict[str, Dict[str, int]], records_camera: kapture.RecordsCamera, topk: int): """ convert pairs dict to list """ image_pairs = [] for img1 in sorted(records_camera.data_list()): if img1 not in all_pairs: getLogger().debug(f'{img1} has no images sharing observations') continue sorted_pairs = list(sorted(all_pairs[img1].items(), key=lambda item: item[1], reverse=True)) for img2, score in sorted_pairs[0:topk]: image_pairs.append((img1, img2, score)) return image_pairs def get_pairs_observations(kdata: kapture.Kapture, kdata_query: Optional[kapture.Kapture], keypoints_type: str, max_number_of_threads: Optional[int], iou: bool, topk: int): """ get observations pairs as list """ if iou: individual_observations = get_observation_images(keypoints_type, kdata, kdata_query, max_number_of_threads) gc.collect() else: individual_observations = None all_pairs = get_observation_image_pairs(keypoints_type, kdata, kdata_query, max_number_of_threads) if iou: assert individual_observations is not None final_pairs = {} for img1 in all_pairs.keys(): for img2 in all_pairs[img1].keys(): if img1 not in final_pairs: final_pairs[img1] = {} union = individual_observations[img1] + individual_observations[img2] - all_pairs[img1][img2] if union == 0: final_pairs[img1][img2] = 0 else: final_pairs[img1][img2] = all_pairs[img1][img2] / union all_pairs = final_pairs getLogger().info('ranking co-observation pairs...') assert kdata.records_camera is not None image_pairs = get_topk_observation_pairs(all_pairs, kdata.records_camera, topk) return image_pairs ``` #### File: kapture_localization/pose_approximation/weight_estimation.py ```python import numpy as np import cvxpy as cp from .PoseApproximationMethods import PoseApproximationMethods from kapture_localization.image_retrieval.pairing import StackedGlobalFeatures, get_similarity_matrix from kapture_localization.utils.logging import getLogger def get_interpolation_weights(method: PoseApproximationMethods, query_gfeat: StackedGlobalFeatures, map_gfeat: StackedGlobalFeatures, topk: int, additional_parameters: dict): """ compute the pose weights for the given method as a dict { query image name -> list(map image name, weight) } :param method: pose approximation method to use :type method: PoseApproximationMethods :param query_gfeat: global features for the query images :type query_gfeat: StackedGlobalFeatures :param map_gfeat: global features for the map images :type map_gfeat: StackedGlobalFeatures :param topk: the max number of top retained images :type topk: int :param additional_parameters: method specific parameters :type additional_parameters: dict """ similarity_matrix = get_similarity_matrix(query_gfeat, map_gfeat) local_topk = min(topk, similarity_matrix.shape[1]) if local_topk != topk: getLogger().warning(f'topk was set to {local_topk} instead of {topk} because there were not enough map data') similarity_sorted = np.empty((similarity_matrix.shape[0], local_topk), dtype=int) for i, scores in enumerate(similarity_matrix): indexes = np.argsort(-scores) similarity_sorted[i, :] = indexes[:local_topk] if method == PoseApproximationMethods.equal_weighted_barycenter: weights = _get_EWB_weights(similarity_matrix.shape[0], local_topk) elif method == PoseApproximationMethods.barycentric_descriptor_interpolation: weights = _get_BDI_weights(similarity_sorted, query_gfeat, map_gfeat) elif method == PoseApproximationMethods.cosine_similarity: assert 'alpha' in additional_parameters weights = _get_CSI_weights(similarity_matrix, similarity_sorted, additional_parameters['alpha']) else: raise NotImplementedError(f'{method} - unknown PoseApproximationMethods') weights_dict = {} for i, indexes in enumerate(similarity_sorted): query_name = query_gfeat.index[i] weights_dict[query_name] = list(zip(map_gfeat.index[indexes], weights[i, :])) return weights_dict def _get_EWB_weights(number_of_queries: int, topk: int): """ get equal weighted barycenter weights """ weights = np.zeros((number_of_queries, topk)) weights[:, :] = 1.0 / topk return weights def _get_BDI_weights(similarity_sorted: np.ndarray, query_gfeat: StackedGlobalFeatures, map_gfeat: StackedGlobalFeatures): """ barycentric descriptor interpolation : interpolating baseline of http://openaccess.thecvf.com/content_CVPR_2019/papers/Sattler_Understanding_the_Limitations_of_CNN-Based_Absolute_Camera_Pose_Regression_CVPR_2019_paper.pdf """ np.random.seed(0) weights = np.zeros(similarity_sorted.shape) topk = similarity_sorted.shape[1] for i in range(similarity_sorted.shape[0]): query_descriptor = query_gfeat.stacked_features[i] interpolating_descriptors = map_gfeat.stacked_features[similarity_sorted[i]] A = interpolating_descriptors.T b = query_descriptor w = cp.Variable(topk) objective = cp.Minimize(cp.sum_squares(A@w - b)) constraints = [cp.sum(w) == 1] prob = cp.Problem(objective, constraints) prob.solve() weights[i, :] = w.value return weights def _get_CSI_weights(similarity_matrix: np.ndarray, similarity_sorted: np.ndarray, alpha: float): """ cosine similarity """ weights = np.zeros(similarity_sorted.shape) for i in range(similarity_sorted.shape[0]): weights[i, :] = similarity_matrix[i, similarity_sorted[i, :]]**(alpha) weights[i, :] = weights[i, :] / np.sum(weights[i, :]) return weights ``` #### File: kapture_localization/utils/subprocess.py ```python import subprocess import sys import os import os.path as path from typing import List, Optional from kapture_localization.utils.logging import getLogger def find_in_PATH(filename: str): """ Look for file in current directory and all PATH directories :param filename: name of the file to look for :type filename: str :raises FileNotFoundError: Could not find file in any of the paths :return: the path for which path.isfile returned true :rtype: str """ if path.isfile(filename): return path.normpath(filename) os_paths = os.environ['PATH'].split(path.pathsep) for os_path in os_paths: fullpath_file = path.join(os_path, filename) if path.isfile(fullpath_file): return path.normpath(fullpath_file) raise FileNotFoundError(f'could not find {filename}') def run_python_command(local_path: str, args: List[str], python_binary: Optional[str] = None): """ run a python subprocess :param local_path: path where you expect the file to be :type local_path: str :param args: the arguments of the python process :type args: List[str] :param python_binary: path to the python binary, optional, when None, the .py file is called directly :type python_binary: Optional[str] :raises ValueError: subprocess crashed """ if python_binary is None: if path.isfile(local_path): compute_image_pairs_bin = path.normpath(local_path) else: # maybe the script was installed through pip compute_image_pairs_bin = path.basename(local_path) args.insert(0, compute_image_pairs_bin) else: if path.isfile(local_path): compute_image_pairs_bin = path.normpath(local_path) else: # maybe the script was installed through pip # with the direct binary, we need to get the full path compute_image_pairs_bin = find_in_PATH(path.basename(local_path)) args.insert(0, compute_image_pairs_bin) args.insert(0, python_binary) getLogger().debug(f'run_python_command : {args}') use_shell = sys.platform.startswith("win") python_process = subprocess.Popen(args, shell=use_shell) python_process.wait() if python_process.returncode != 0: raise ValueError('\nSubprocess Error (Return code:' f' {python_process.returncode} )') ``` #### File: kapture-localization/pipeline/kapture_hloc_pipeline_from_kapture_dataset.py ```python import argparse import logging import os import os.path as path import sys from typing import List, Optional from pathlib import Path import numpy as np # noqa: F401 import quaternion try: from pprint import pformat # noqa: F401 import h5py # noqa: F401 import cv2 # noqa: F401 from hloc import extract_features, match_features, pairs_from_covisibility # noqa: F401 from hloc import triangulation, localize_sfm, visualization # noqa: F401 except Exception as e: raise ImportError(f' {e} hloc have additional requirements compared to kapture-localization, ' 'please see https://github.com/cvg/Hierarchical-Localization/blob/master/requirements.txt ' 'and add Hierarchical-Localization to your PYTHONPATH') import pipeline_import_paths # noqa: F401 import kapture_localization.utils.logging from kapture_localization.utils.subprocess import run_python_command from kapture_localization.colmap.colmap_command import run_model_converter from kapture_localization.utils.BenchmarkFormatStyle import BenchmarkFormatStyle, get_benchmark_format_command import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture.utils.logging import kapture from kapture.io.csv import table_from_file, kapture_from_dir, kapture_to_dir, get_csv_fullpath from kapture.io.records import get_record_fullpath from kapture.converter.colmap.export_colmap import export_colmap logger = logging.getLogger('hloc_pipeline_from_kapture_dataset') def convert_pairs_to_hloc_format(pairsfile_path_kapture: str, pairsfile_path_hloc: str): """ convert kapture pairsfile to hloc pairsfile """ with open(pairsfile_path_kapture, 'r') as fid: table = list(table_from_file(fid)) os.makedirs(os.path.dirname(os.path.abspath(pairsfile_path_hloc)), exist_ok=True) with open(pairsfile_path_hloc, 'w') as fid: for query_name, map_name, _ in table: fid.write(f'{query_name} {map_name}\n') def convert_kapture_to_hloc_image_list(kapture_path: str, output_path: str): """ convert kapture records_camera to hloc image list """ skip_heavy_useless = [kapture.Trajectories, kapture.RecordsLidar, kapture.RecordsWifi, kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations] kapture_to_convert = kapture_from_dir(kapture_path, skip_list=skip_heavy_useless) output_content = [] for _, sensor_id, filename in kapture.flatten(kapture_to_convert.records_camera, is_sorted=True): line = filename output_content.append(line) with open(output_path, 'w') as fid: fid.write('\n'.join(output_content)) def export_image_list(kapture_path: str, output_path: str): """ export from kapture to image list with camera params """ skip_heavy_useless = [kapture.Trajectories, kapture.RecordsLidar, kapture.RecordsWifi, kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations] kapture_to_export = kapture_from_dir(kapture_path, skip_list=skip_heavy_useless) output_content = [] for _, sensor_id, filename in kapture.flatten(kapture_to_export.records_camera, is_sorted=True): line = filename camera = kapture_to_export.sensors[sensor_id] line += ' ' + ' '.join(camera.sensor_params) output_content.append(line) with open(output_path, 'w') as fid: fid.write('\n'.join(output_content)) def convert_results_format(image_list_with_intrinsics_path: str, results_file_in: str, results_file_out: str): """ convert hloc result file (with basename for images) to the same but with the full relative path """ with open(image_list_with_intrinsics_path) as fid: images_list = fid.readlines() # remove end line char and empty lines images_list = [line.rstrip() for line in images_list if line != '\n'] images_list = [line.split()[0] for line in images_list] with open(results_file_in) as fid: lines = fid.readlines() lines = [line.rstrip() for line in lines if line != '\n'] with open(results_file_out, 'w') as fid: for i, line in enumerate(lines): line_array = line.split() line_array[0] = images_list[i] fid.write(' '.join(line_array) + '\n') def convert_results_to_kapture(query_path: str, results: str, outpath: str): """ convert file with name qw qx qy qz tx ty tz to kapture """ skip_heavy_useless = [kapture.Trajectories, kapture.RecordsLidar, kapture.RecordsWifi, kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations] kapture_query = kapture_from_dir(query_path, skip_list=skip_heavy_useless) inverse_records_camera = {image_name: (timestamp, sensor_id) for timestamp, sensor_id, image_name in kapture.flatten(kapture_query.records_camera)} trajectories = kapture.Trajectories() with open(results) as fid: lines = fid.readlines() lines = [line.rstrip().split() for line in lines if line != '\n'] for line in lines: image_name = line[0] rotation = quaternion.quaternion(float(line[1]), float(line[2]), float(line[3]), float(line[4])) translation = [float(line[5]), float(line[6]), float(line[7])] timestamp, sensor_id = inverse_records_camera[image_name] trajectories[timestamp, sensor_id] = kapture.PoseTransform(rotation, translation) kapture_query.trajectories = trajectories kapture_to_dir(outpath, kapture_query) def hloc_pipeline_from_kapture_dataset(kapture_path_map: str, kapture_path_query: str, pairsfile_path_map: str, pairsfile_path_query: str, output_dir: str, feature_conf_str: str, matcher_conf_str: str, covisibility_clustering: bool, bins_as_str: List[str], benchmark_format_style: BenchmarkFormatStyle, colmap_binary: str, python_binary: Optional[str], skip_list: List[str]) -> None: """ run hloc on kapture data """ feature_conf = extract_features.confs[feature_conf_str] matcher_conf = match_features.confs[matcher_conf_str] images_map = get_record_fullpath(kapture_path_map) images_query = get_record_fullpath(kapture_path_query) os.makedirs(output_dir, exist_ok=True) if "convert_pairsfile_map" not in skip_list: map_pairs_hloc = path.join(output_dir, 'pairfiles/db_pairs', path.basename(pairsfile_path_map) + "_hloc.txt") convert_pairs_to_hloc_format(pairsfile_path_map, map_pairs_hloc) pairsfile_path_map = map_pairs_hloc if "convert_pairsfile_query" not in skip_list: query_pairs_hloc = path.join(output_dir, 'pairfiles/query', path.basename(pairsfile_path_query) + "_hloc.txt") convert_pairs_to_hloc_format(pairsfile_path_query, query_pairs_hloc) pairsfile_path_query = query_pairs_hloc feature_path = Path(output_dir, feature_conf['output']+'.h5') if "extract_features_map" not in skip_list: image_list_map_path = path.join(output_dir, 'image_list_map.txt') convert_kapture_to_hloc_image_list(kapture_path_map, image_list_map_path) feature_path_map = extract_features.main(feature_conf, Path( images_map), Path(output_dir), image_list=Path(image_list_map_path)) assert feature_path_map.resolve() == feature_path.resolve() if "extract_features_query" not in skip_list: image_list_query_path = path.join(output_dir, 'image_list_query.txt') convert_kapture_to_hloc_image_list(kapture_path_query, image_list_query_path) feature_path_query = extract_features.main(feature_conf, Path( images_query), Path(output_dir), image_list=Path(image_list_query_path)) assert feature_path_query.resolve() == feature_path.resolve() pairsfile_path_map_pathlib = Path(pairsfile_path_map) match_name_map = feature_conf['output'] + '_' + matcher_conf["output"] + f'_{pairsfile_path_map_pathlib.stem}' map_match_path = Path(output_dir, match_name_map+'.h5') if 'match_map_pairs' not in skip_list: map_match_path_actual = match_features.main(matcher_conf, pairsfile_path_map_pathlib, feature_conf['output'], Path(output_dir)) assert map_match_path_actual.resolve() == map_match_path.resolve() exported_mapping_path = path.join(output_dir, '3D-models/exported_from_kapture') if 'kapture_export_map_to_colmap' not in skip_list: export_colmap(kapture_path_map, path.join(exported_mapping_path, 'colmap.db'), exported_mapping_path, force_overwrite_existing=True) # convert .txt to .bin run_model_converter(colmap_binary, exported_mapping_path, exported_mapping_path, 'BIN') triangulate_path = path.join(output_dir, 'sfm_' + feature_conf_str + '_' + matcher_conf_str) if 'triangulate' not in skip_list: triangulation.main( Path(triangulate_path), Path(exported_mapping_path), Path(images_map), pairsfile_path_map_pathlib, feature_path, map_match_path, colmap_binary) pairsfile_path_query_pathlib = Path(pairsfile_path_query) match_name_query = feature_conf['output'] + '_' + matcher_conf["output"] + f'_{pairsfile_path_query_pathlib.stem}' query_match_path = Path(output_dir, match_name_query+'.h5') if 'match_query_pairs' not in skip_list: query_match_path_actual = match_features.main(matcher_conf, pairsfile_path_query_pathlib, feature_conf['output'], Path(output_dir)) assert query_match_path_actual.resolve() == query_match_path.resolve() query_as_txt = path.join(output_dir, 'image_list_with_intrinsics.txt') export_image_list(kapture_path_query, query_as_txt) results_file = path.join(output_dir, f'results_{feature_conf_str}_{matcher_conf_str}.txt') if 'localize' not in skip_list: localize_sfm.main( Path(triangulate_path), Path(query_as_txt), pairsfile_path_query_pathlib, feature_path, query_match_path, Path(results_file), covisibility_clustering=covisibility_clustering) results_full = path.join(output_dir, f'results_{feature_conf_str}_{matcher_conf_str}_fullnames.txt') results_kapture = path.join(output_dir, f'results_{feature_conf_str}_{matcher_conf_str}_kapture') if 'convert_results' not in skip_list: convert_results_format(query_as_txt, results_file, results_full) convert_results_to_kapture(kapture_path_query, results_full, results_kapture) if 'evaluate' not in skip_list and path.isfile(get_csv_fullpath(kapture.Trajectories, kapture_path_query)): local_evaluate_path = path.join(pipeline_import_paths.HERE_PATH, '../tools/kapture_evaluate.py') evaluate_args = ['-v', str(logger.level), '-i', results_kapture, '--labels', f'hloc_{feature_conf_str}_{matcher_conf_str}', '-gt', kapture_path_query, '-o', path.join(results_kapture, 'eval')] evaluate_args += ['--bins'] + bins_as_str evaluate_args.append('-f') run_python_command(local_evaluate_path, evaluate_args, python_binary) LTVL2020_output_path = path.join(output_dir, f'results_{feature_conf_str}_{matcher_conf_str}_LTVL2020_style.txt') if 'export_LTVL2020' not in skip_list: export_LTVL2020_script_name, export_LTVL2020_args = get_benchmark_format_command( benchmark_format_style, results_kapture, LTVL2020_output_path, True, logger ) local_export_LTVL2020_path = path.join(pipeline_import_paths.HERE_PATH, f'../../kapture/tools/{export_LTVL2020_script_name}') run_python_command(local_export_LTVL2020_path, export_LTVL2020_args, python_binary) def hloc_pipeline_from_kapture_dataset_get_parser(): """ get the argparse object for the kapture_hloc_pipeline_from_kapture_dataset.py command """ parser = argparse.ArgumentParser(description=('create a Colmap model (map) from data specified in kapture format.')) parser_verbosity = parser.add_mutually_exclusive_group() parser_verbosity.add_argument('-v', '--verbose', nargs='?', default=logging.WARNING, const=logging.INFO, action=kapture.utils.logging.VerbosityParser, help='verbosity level (debug, info, warning, critical, ... or int value) [warning]') parser_verbosity.add_argument('-q', '--silent', '--quiet', action='store_const', dest='verbose', const=logging.CRITICAL) parser.add_argument('-i', '--kapture-map', required=True, help='path to the kapture map directory') parser.add_argument('--query', required=True, help='input path to kapture mapping data root directory') parser.add_argument('--pairsfile-map', required=True, help='input path to mapping pairs') parser.add_argument('--pairsfile-query', required=True, help='input path to query pairs') parser.add_argument('-o', '--output', required=True, help='output directory.') parser.add_argument('--feature-conf', default='superpoint_max', choices=list(extract_features.confs.keys()), type=str, help='features to use in hloc') parser.add_argument('--matcher-conf', default='superglue', choices=list(match_features.confs.keys()), type=str, help='matcher to use in hloc') parser.add_argument('--covisibility-clustering', action='store_true', default=False, required=False, help='use covisibility_clustering=True in hloc localize') parser.add_argument('--bins', nargs='+', default=["0.25 2", "0.5 5", "5 10"], help='the desired positions/rotations thresholds for bins' 'format is string : position_threshold_in_m space rotation_threshold_in_degree') parser.add_argument('--benchmark-style', default=BenchmarkFormatStyle.Default, type=BenchmarkFormatStyle, choices=list(BenchmarkFormatStyle), help=('select which output format to use for the export_LTVL2020 part.' ' Default is the https://www.visuallocalization.net default.' ' RobotCar_Seasons, Gangnam_Station, Hyundai_Department_Store,' ' ETH_Microsoft are also part of' ' https://www.visuallocalization.net but require a different format.' ' RIO10 is for http://vmnavab26.in.tum.de/RIO10/')) parser.add_argument('-colmap', '--colmap_binary', required=False, default="colmap", help='full path to colmap binary ' '(default is "colmap", i.e. assume the binary' ' is in the user PATH).') parser_python_bin = parser.add_mutually_exclusive_group() parser_python_bin.add_argument('-python', '--python_binary', required=False, default=None, help='full path to python binary ' '(default is "None", i.e. assume the os' ' can infer the python binary from the files itself, shebang or extension).') parser_python_bin.add_argument('--auto-python-binary', action='store_true', default=False, help='use sys.executable as python binary.') parser.add_argument('-s', '--skip', choices=['convert_pairsfile_map', 'convert_pairsfile_query', 'extract_features_map', 'extract_features_query', 'match_map_pairs', 'kapture_export_map_to_colmap', 'triangulate', 'match_query_pairs', 'localize', 'convert_results', 'evaluate', 'export_LTVL2020'], nargs='+', default=[], help='steps to skip') return parser def hloc_pipeline_from_kapture_dataset_command_line(): """ Parse the command line arguments to build a colmap map and localize using the given kapture data. """ parser = hloc_pipeline_from_kapture_dataset_get_parser() args = parser.parse_args() logger.setLevel(args.verbose) if args.verbose <= logging.INFO: # also let kapture express its logs kapture.utils.logging.getLogger().setLevel(args.verbose) kapture_localization.utils.logging.getLogger().setLevel(args.verbose) args_dict = vars(args) logger.debug('kapture_hloc_pipeline_from_kapture_dataset.py \\\n' + ' \\\n'.join( '--{:20} {:100}'.format(k, str(v)) for k, v in args_dict.items())) python_binary = args.python_binary if args.auto_python_binary: python_binary = sys.executable logger.debug(f'python_binary set to {python_binary}') hloc_pipeline_from_kapture_dataset(args.kapture_map, args.query, args.pairsfile_map, args.pairsfile_query, args.output, args.feature_conf, args.matcher_conf, args.covisibility_clustering, args.bins, args.benchmark_style, args.colmap_binary, python_binary, args.skip) if __name__ == '__main__': hloc_pipeline_from_kapture_dataset_command_line() ``` #### File: kapture-localization/tools/kapture_colmap_localize.py ```python import argparse import logging import os import os.path as path import shutil from typing import List, Optional import path_to_kapture_localization # noqa: F401 import kapture_localization.utils.logging import kapture_localization.colmap.colmap_command as colmap_lib import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture import kapture.io.csv import kapture.utils.logging from kapture.utils.paths import safe_remove_file, safe_remove_any_path from kapture.core.Trajectories import rigs_remove_inplace from kapture.io.tar import TarCollection from kapture.utils.Collections import try_get_only_key_from_collection from kapture.converter.colmap.database import COLMAPDatabase import kapture.converter.colmap.database_extra as database_extra logger = logging.getLogger('colmap_localize') def colmap_localize(kapture_path: str, colmap_path: str, input_database_path: str, input_reconstruction_path: str, colmap_binary: str, pairs_file_path: Optional[str], keypoints_type: Optional[str], use_colmap_matches_importer: bool, image_registrator_options: List[str], skip_list: List[str], force: bool) -> None: """ Localize images on a colmap model using default SIFT features with the kapture data. :param kapture_path: path to the kapture to use :param colmap_path: path to the colmap build :param input_database_path: path to the map colmap.db :param input_database_path: path to the map colmap.db :param input_reconstruction_path: path to the map reconstruction folder :param colmap_binary: path to the colmap binary executable :param pairs_file_path: Optional[str], :param keypoints_type: type of keypoints, name of the keypoints subfolder :param use_colmap_matches_importer: bool, :param image_registrator_options: options for the image registrator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ # Load input files first to make sure it is OK logger.info('loading kapture files...') with kapture.io.csv.get_all_tar_handlers(kapture_path) as tar_handlers: kapture_data = kapture.io.csv.kapture_from_dir(kapture_path, pairs_file_path, tar_handlers=tar_handlers) colmap_localize_from_loaded_data(kapture_data, kapture_path, tar_handlers, colmap_path, input_database_path, input_reconstruction_path, colmap_binary, keypoints_type, use_colmap_matches_importer, image_registrator_options, skip_list, force) def colmap_localize_from_loaded_data(kapture_data: kapture.Kapture, kapture_path: str, tar_handlers: Optional[TarCollection], colmap_path: str, input_database_path: str, input_reconstruction_path: str, colmap_binary: str, keypoints_type: Optional[str], use_colmap_matches_importer: bool, image_registrator_options: List[str], skip_list: List[str], force: bool) -> None: """ Localize images on a colmap model using default SIFT features with the kapture data. :param kapture_data: kapture data to use :param kapture_path: path to the kapture to use :param tar_handler: collection of preloaded tar archives :param colmap_path: path to the colmap build :param input_database_path: path to the map colmap.db :param input_database_path: path to the map colmap.db :param input_reconstruction_path: path to the map reconstruction folder :param colmap_binary: path to the colmap binary executable :param keypoints_type: type of keypoints, name of the keypoints subfolder :param use_colmap_matches_importer: bool, :param image_registrator_options: options for the image registrator :param skip_list: list of steps to skip :param force: Silently overwrite kapture files if already exists. """ os.makedirs(colmap_path, exist_ok=True) if not (kapture_data.records_camera and kapture_data.sensors and kapture_data.keypoints and kapture_data.matches): raise ValueError('records_camera, sensors, keypoints, matches are mandatory') if kapture_data.trajectories: logger.warning("Input data contains trajectories: they will be ignored") kapture_data.trajectories.clear() else: kapture_data.trajectories = kapture.Trajectories() # COLMAP does not fully support rigs. if kapture_data.rigs is not None and kapture_data.trajectories is not None: # make sure, rigs are not used in trajectories. logger.info('remove rigs notation.') rigs_remove_inplace(kapture_data.trajectories, kapture_data.rigs) kapture_data.rigs.clear() # Prepare output # Set fixed name for COLMAP database colmap_db_path = path.join(colmap_path, 'colmap.db') image_list_path = path.join(colmap_path, 'images.list') reconstruction_path = path.join(colmap_path, "reconstruction") if 'delete_existing' not in skip_list: safe_remove_file(colmap_db_path, force) safe_remove_file(image_list_path, force) safe_remove_any_path(reconstruction_path, force) os.makedirs(reconstruction_path, exist_ok=True) # Copy colmap db to output if not os.path.exists(colmap_db_path): shutil.copy(input_database_path, colmap_db_path) # find correspondences between the colmap db and the kapture data images_all = {image_path: (ts, cam_id) for ts, shot in kapture_data.records_camera.items() for cam_id, image_path in shot.items()} colmap_db = COLMAPDatabase.connect(colmap_db_path) colmap_image_ids = database_extra.get_colmap_image_ids_from_db(colmap_db) colmap_images = database_extra.get_images_from_database(colmap_db) colmap_db.close() # dict ( kapture_camera -> colmap_camera_id ) colmap_camera_ids = {images_all[image_path][1]: colmap_cam_id for image_path, colmap_cam_id in colmap_images if image_path in images_all} images_to_add = {image_path: value for image_path, value in images_all.items() if image_path not in colmap_image_ids} flatten_images_to_add = [(ts, kapture_cam_id, image_path) for image_path, (ts, kapture_cam_id) in images_to_add.items()] if 'import_to_db' not in skip_list: logger.info("Step 1: Add precomputed keypoints and matches to colmap db") if keypoints_type is None: keypoints_type = try_get_only_key_from_collection(kapture_data.keypoints) assert keypoints_type is not None assert keypoints_type in kapture_data.keypoints assert keypoints_type in kapture_data.matches cameras_to_add = kapture.Sensors() for _, (_, kapture_cam_id) in images_to_add.items(): if kapture_cam_id not in colmap_camera_ids: kapture_cam = kapture_data.sensors[kapture_cam_id] cameras_to_add[kapture_cam_id] = kapture_cam colmap_db = COLMAPDatabase.connect(colmap_db_path) colmap_added_camera_ids = database_extra.add_cameras_to_database(cameras_to_add, colmap_db) colmap_camera_ids.update(colmap_added_camera_ids) colmap_added_image_ids = database_extra.add_images_to_database_from_flatten( colmap_db, flatten_images_to_add, kapture_data.trajectories, colmap_camera_ids) colmap_image_ids.update(colmap_added_image_ids) colmap_image_ids_reversed = {v: k for k, v in colmap_image_ids.items()} # colmap_id : name # add new features colmap_keypoints = database_extra.get_keypoints_set_from_database(colmap_db, colmap_image_ids_reversed) keypoints_all = kapture_data.keypoints[keypoints_type] keypoints_to_add = {name for name in keypoints_all if name not in colmap_keypoints} keypoints_to_add = kapture.Keypoints(keypoints_all.type_name, keypoints_all.dtype, keypoints_all.dsize, keypoints_to_add) database_extra.add_keypoints_to_database(colmap_db, keypoints_to_add, keypoints_type, kapture_path, tar_handlers, colmap_image_ids) # add new matches colmap_matches = kapture.Matches(database_extra.get_matches_set_from_database(colmap_db, colmap_image_ids_reversed)) colmap_matches.normalize() matches_all = kapture_data.matches[keypoints_type] matches_to_add = kapture.Matches({pair for pair in matches_all if pair not in colmap_matches}) # print(list(matches_to_add)) database_extra.add_matches_to_database(colmap_db, matches_to_add, keypoints_type, kapture_path, tar_handlers, colmap_image_ids, export_two_view_geometry=not use_colmap_matches_importer) colmap_db.close() if use_colmap_matches_importer: logger.info('Step 2: Run geometric verification') logger.debug('running colmap matches_importer...') if keypoints_type is None: keypoints_type = try_get_only_key_from_collection(kapture_data.matches) assert keypoints_type is not None assert keypoints_type in kapture_data.matches # compute two view geometry colmap_lib.run_matches_importer_from_kapture_matches( colmap_binary, colmap_use_cpu=True, colmap_gpu_index=None, colmap_db_path=colmap_db_path, kapture_matches=kapture_data.matches[keypoints_type], force=force) else: logger.info('Step 2: Run geometric verification - skipped') if 'image_registrator' not in skip_list: logger.info("Step 3: Run image_registrator") # run image_registrator colmap_lib.run_image_registrator( colmap_binary, colmap_db_path, input_reconstruction_path, reconstruction_path, image_registrator_options ) # run model_converter if 'model_converter' not in skip_list: logger.info("Step 4: Export reconstruction results to txt") colmap_lib.run_model_converter( colmap_binary, reconstruction_path, reconstruction_path ) def colmap_localize_command_line(): """ Parse the command line arguments to localize images on an existing colmap map using the given kapture data. """ parser = argparse.ArgumentParser(description=('localize images on a colmap model (map) ' 'from data specified in kapture format.' 'Only images and cameras are taken into account ' ' (no features or matches)')) parser_verbosity = parser.add_mutually_exclusive_group() parser_verbosity.add_argument('-v', '--verbose', nargs='?', default=logging.WARNING, const=logging.INFO, action=kapture.utils.logging.VerbosityParser, help='verbosity level (debug, info, warning, critical, ... or int value) [warning]') parser_verbosity.add_argument('-q', '--silent', '--quiet', action='store_const', dest='verbose', const=logging.CRITICAL) parser.add_argument('-f', '-y', '--force', action='store_true', default=False, help='silently delete database if already exists.') parser.add_argument('-i', '--input', required=True, help='input path to kapture data root directory') parser.add_argument('-db', '--database', help='path to COLMAP database file.') parser.add_argument('-txt', '--reconstruction', help='path to COLMAP reconstruction triplet text file.') parser.add_argument('-o', '--output', required=True, help='output directory (colmap directory).') parser.add_argument('-colmap', '--colmap_binary', required=False, default="colmap", help='full path to colmap binary ' '(default is "colmap", i.e. assume the binary' ' is in the user PATH).') parser.add_argument('--use-colmap-matches-importer', action='store_true', default=False, help='Use colmap matches_importer instead of manually filling the two_view_geometry table') parser.add_argument('--pairs-file-path', default=None, type=str, help=('text file in the csv format; where each line is image_name1, image_name2, score ' 'which contains the image pairs to match, can be used to filter loaded matches')) parser.add_argument('-kpt', '--keypoints-type', default=None, help='kapture keypoints type.') parser.add_argument('-s', '--skip', choices=['delete_existing', 'import_to_db', 'image_registrator', 'model_converter'], nargs='+', default=[], help='steps to skip') args, image_registrator_options = parser.parse_known_args() logger.setLevel(args.verbose) logging.getLogger('colmap').setLevel(args.verbose) if args.verbose <= logging.INFO: # also let kapture express its logs kapture.utils.logging.getLogger().setLevel(args.verbose) kapture_localization.utils.logging.getLogger().setLevel(args.verbose) args_dict = vars(args) args_dict['image_registrator_options'] = image_registrator_options logger.debug('colmap_localize.py \\\n' + ' \\\n'.join( '--{:20} {:100}'.format(k, str(v)) for k, v in args_dict.items())) colmap_localize(args.input, args.output, args.database, args.reconstruction, args.colmap_binary, args.pairs_file_path, args.keypoints_type, args.use_colmap_matches_importer, image_registrator_options, args.skip, args.force) if __name__ == '__main__': colmap_localize_command_line() ``` #### File: kapture-localization/tools/kapture_compute_distance_pairs.py ```python import argparse import logging import os import pathlib from typing import Optional import math from tqdm import tqdm import path_to_kapture_localization # noqa: F401 import kapture_localization.utils.logging from kapture_localization.pairing.distance import get_pairs_distance import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture import kapture.utils.logging from kapture.io.csv import kapture_from_dir, table_to_file logger = logging.getLogger('compute_distance_pairs') def compute_distance_pairs(mapping_path: str, query_path: Optional[str], output_path: str, topk: int, block_size: int, min_distance: float, max_distance: float, max_angle: float, keep_rejected: bool, max_number_of_threads: Optional[int] = None): """ compute image pairs from distance, and write the result in a text file """ skip_heavy = [kapture.RecordsLidar, kapture.RecordsWifi, kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations] logger.info(f'compute_distance_pairs. loading mapping: {mapping_path}') kdata = kapture_from_dir(mapping_path, skip_list=skip_heavy) assert kdata.sensors is not None assert kdata.records_camera is not None assert kdata.trajectories is not None if query_path is None or mapping_path == query_path: logger.info('computing mapping pairs from distance...') kdata_query = None else: logger.info('computing query pairs from distance...') kdata_query = kapture_from_dir(query_path, skip_list=skip_heavy) assert kdata_query.sensors is not None assert kdata_query.records_camera is not None assert kdata_query.trajectories is not None os.umask(0o002) p = pathlib.Path(output_path) os.makedirs(str(p.parent.resolve()), exist_ok=True) with open(output_path, 'w') as fid: if block_size == float('inf'): image_pairs = get_pairs_distance(kdata, kdata_query, topk, min_distance, max_distance, max_angle, keep_rejected, max_number_of_threads) table_to_file(fid, image_pairs, header='# query_image, map_image, score') else: if kdata_query is None: kdata_query = kdata if kdata_query.rigs is not None: assert kdata_query.trajectories is not None # for ide kapture.rigs_remove_inplace(kdata_query.trajectories, kdata_query.rigs) records_camera_list = [k for k in sorted(kapture.flatten(kdata_query.records_camera), key=lambda x: x[2])] number_of_iteration = math.ceil(len(records_camera_list) / block_size) table_to_file(fid, [], header='# query_image, map_image, score') for i in tqdm(range(number_of_iteration), disable=logging.getLogger().level >= logging.CRITICAL): sliced_records = kapture.RecordsCamera() for ts, sensor_id, img_name in records_camera_list[i * block_size:(i+1)*block_size]: if (ts, sensor_id) not in kdata_query.trajectories: continue sliced_records[(ts, sensor_id)] = img_name kdata_slice_query = kapture.Kapture( sensors=kdata_query.sensors, records_camera=sliced_records, trajectories=kdata_query.trajectories ) image_pairs = get_pairs_distance(kdata, kdata_slice_query, topk, min_distance, max_distance, max_angle, keep_rejected, max_number_of_threads) table_to_file(fid, image_pairs) logger.info('all done') def compute_distance_pairs_command_line(): parser = argparse.ArgumentParser( description=('Create image pairs files from distance. ' 'Pairs are computed between query <-> mapping or mapping <-> mapping')) parser_verbosity = parser.add_mutually_exclusive_group() parser_verbosity.add_argument('-v', '--verbose', nargs='?', default=logging.WARNING, const=logging.INFO, action=kapture.utils.logging.VerbosityParser, help='verbosity level (debug, info, warning, critical, ... or int value) [warning]') parser_verbosity.add_argument('-q', '--silent', '--quiet', action='store_const', dest='verbose', const=logging.CRITICAL) parser.add_argument('--mapping', required=True, help='input path to kapture input root directory') parser.add_argument('--query', default=None, help=('input path to a kapture root directory containing query images, ' 'keep to default None when mapping\n')) parser.add_argument('--max-distance', type=float, default=25.0, help='max distance to form a pair') parser.add_argument('--max-angle', type=float, default=45.0, help='max angle to form a pair') parser_dist = parser.add_mutually_exclusive_group() parser_dist.add_argument('--min-distance', type=float, default=0.0, help='min distance to form a pair') parser_dist.add_argument('--keep-rejected', action='store_true', default=False, help='keep pairs that are not within the thresholds bounds') parser.add_argument('--max-number-of-threads', default=None, type=int, help='By default, use as many as cpus. But you can set a limit.') parser.add_argument('--block-size', default=float('inf'), type=int, help=('number of (query) images to process at once')) parser.add_argument('-o', '--output', required=True, help='output path to pairsfile') parser.add_argument('--topk', default=None, type=int, help='the max number of top retained images') args = parser.parse_args() logger.setLevel(args.verbose) if args.verbose <= logging.DEBUG: # also let kapture express its logs kapture.utils.logging.getLogger().setLevel(args.verbose) kapture_localization.utils.logging.getLogger().setLevel(args.verbose) logger.debug(''.join(['\n\t{:13} = {}'.format(k, v) for k, v in vars(args).items()])) compute_distance_pairs(args.mapping, args.query, args.output, args.topk, args.block_size, args.min_distance, args.max_distance, args.max_angle, args.keep_rejected, args.max_number_of_threads) if __name__ == '__main__': compute_distance_pairs_command_line() ``` #### File: kapture-localization/tools/kapture_create_kapture_proxy.py ```python import argparse import logging from typing import List, Optional import path_to_kapture_localization # noqa: F401 import kapture_localization.utils.logging from kapture_localization.utils.symlink import can_use_symlinks, create_kapture_proxy import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture.utils.logging logger = logging.getLogger('create_kapture_proxy') def _convert_none_string(line: str): if line.lower() == 'none': return None return line def _convert_none_string_array(lines: Optional[List[str]]): if lines is None: return None return [_convert_none_string(line) for line in lines] def create_kapture_proxy_command_line(): parser = argparse.ArgumentParser( description='Create a proxy kapture from a source kapture with only sensors data and orphan features.') parser_verbosity = parser.add_mutually_exclusive_group() parser_verbosity.add_argument('-v', '--verbose', nargs='?', default=logging.WARNING, const=logging.INFO, action=kapture.utils.logging.VerbosityParser, help='verbosity level (debug, info, warning, critical, ... or int value) [warning]') parser_verbosity.add_argument('-q', '--silent', '--quiet', action='store_const', dest='verbose', const=logging.CRITICAL) parser.add_argument('-f', '-y', '--force', action='store_true', default=False, help='silently output folder content if it already exist.') parser.add_argument('-i', '--input', required=True, help=('input path to kapture input root directory' ' (only sensors will be used)')) parser.add_argument('-o', '--output', required=True, help='output path to the proxy kapture') parser.add_argument('-kpt', '--keypoints-path', default=None, nargs='+', help='input path to the orphan keypoints folder') parser.add_argument('-desc', '--descriptors-path', default=None, nargs='+', help='input path to the orphan descriptors folder') parser.add_argument('-gfeat', '--global-features-path', default=None, nargs='+', help='input path to the orphan global features folder') parser.add_argument('-matches', '--matches-path', default=None, nargs='+', help=('input path to the orphan matches folder, ' 'if both keypoints-path and matches-paths are given, ' 'the order of the two list must be the same (same as keypoints-type), ' 'use the none if necessary, it will be converted to None in code')) parser.add_argument('--keypoints-type', default=None, nargs='+', help='kapture keypoints types.') parser.add_argument('--descriptors-type', default=None, nargs='+', help='kapture descriptors types.') parser.add_argument('--global-features-type', default=None, nargs='+', help='kapture global features types.') args = parser.parse_args() logger.setLevel(args.verbose) if args.verbose <= logging.DEBUG: # also let kapture express its logs kapture.utils.logging.getLogger().setLevel(args.verbose) kapture_localization.utils.logging.getLogger().setLevel(args.verbose) logger.debug(''.join(['\n\t{:13} = {}'.format(k, v) for k, v in vars(args).items()])) if can_use_symlinks(): keypoints_paths = _convert_none_string_array(args.keypoints_path) descriptors_paths = args.descriptors_path global_features_path = args.global_features_path matches_paths = _convert_none_string_array(args.matches_path) keypoints_types = _convert_none_string_array(args.keypoints_type) descriptors_types = _convert_none_string_array(args.descriptors_type) global_features_types = _convert_none_string_array(args.global_features_type) create_kapture_proxy(args.output, args.input, keypoints_paths, descriptors_paths, global_features_path, matches_paths, keypoints_types, descriptors_types, global_features_types, args.force) else: raise EnvironmentError('Please restart this command as admin, it is required for os.symlink' 'see https://docs.python.org/3.6/library/os.html#os.symlink') # need to find a way to redirect output, else it closes on error... # logger.critical('Request UAC for symlink rights...') # ctypes.windll.shell32.ShellExecuteW(None, "runas", sys.executable, " ".join(sys.argv), None, 1) if __name__ == '__main__': create_kapture_proxy_command_line() ``` #### File: kapture-localization/tools/kapture_pose_approximation_from_pairsfile.py ```python import argparse import os import logging from typing import Optional import numpy as np import path_to_kapture_localization # noqa: F401 import kapture_localization.utils.logging from kapture_localization.utils.pairsfile import get_ordered_pairs_from_file import kapture_localization.utils.path_to_kapture # noqa: F401 import kapture from kapture.io.structure import delete_existing_kapture_files import kapture.utils.logging from kapture.io.csv import kapture_from_dir, kapture_to_dir from kapture.algo.pose_operations import average_pose_transform_weighted logger = logging.getLogger('pose_approximation') METHOD_DESCRIPTIONS = { 'equal_weighted_barycenter': ("EWB: assigns the same weight to all of the top k retrieved " "images with w_i = 1/k"), 'cosine_similarity': ("CSI: w_i=(1/z_i)*(transpose(d_q)*d_i)^alpha, " "z_i=sum(transpose(d_q)*d_j)^alpha") } def pose_approximation_from_pairsfile(input_path: str, pairsfile_path: str, output_path: str, query_path: Optional[str], topk: Optional[int], method: str, additional_parameters: dict, force: bool): """ localize from pairsfile """ os.makedirs(output_path, exist_ok=True) delete_existing_kapture_files(output_path, force_erase=force) logger.info(f'pose_approximation. loading mapping: {input_path}') kdata = kapture_from_dir(input_path, None, skip_list=[kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations]) if query_path is not None: logger.info(f'pose_approximation. loading query: {query_path}') kdata_query = kapture_from_dir(query_path, skip_list=[kapture.Keypoints, kapture.Descriptors, kapture.GlobalFeatures, kapture.Matches, kapture.Points3d, kapture.Observations]) else: kdata_query = kdata logger.info(f'pose_approximation. loading pairs: {pairsfile_path}') similarity_dict = get_ordered_pairs_from_file(pairsfile_path, kdata_query.records_camera, kdata.records_camera, topk) query_images = set(similarity_dict.keys()) kdata_result = kapture.Kapture(sensors=kapture.Sensors(), records_camera=kapture.RecordsCamera(), trajectories=kapture.Trajectories()) for timestamp, cam_id, image_name in kapture.flatten(kdata_query.records_camera): if image_name not in query_images: continue if cam_id not in kdata_result.sensors: kdata_result.sensors[cam_id] = kdata_query.sensors[cam_id] kdata_result.records_camera[(timestamp, cam_id)] = image_name if kdata.rigs is None: map_trajectories = kdata.trajectories else: map_trajectories = kapture.rigs_remove(kdata.trajectories, kdata.rigs) training_trajectories_reversed = {image_name: map_trajectories[(timestamp, cam_id)] for timestamp, cam_id, image_name in kapture.flatten(kdata.records_camera) if (timestamp, cam_id) in map_trajectories} records_camera_reversed = {image_name: (timestamp, cam_id) for timestamp, cam_id, image_name in kapture.flatten(kdata_result.records_camera)} for image_name, similar_images in similarity_dict.items(): pose_inv_list = [training_trajectories_reversed[k].inverse() for k, _ in similar_images] timestamp = records_camera_reversed[image_name][0] cam_id = records_camera_reversed[image_name][1] if method == 'equal_weighted_barycenter': weight_list = [1.0/len(pose_inv_list) for _ in range(len(pose_inv_list))] else: assert 'alpha' in additional_parameters alpha = additional_parameters['alpha'] weights = np.zeros((len(pose_inv_list),)) for i, (_, score) in enumerate(similar_images): weights[i] = score weights[:] = weights[:]**(alpha) weights[:] = weights[:] / np.sum(weights[:]) weight_list = weights.tolist() final_pose = average_pose_transform_weighted(pose_inv_list, weight_list).inverse() kdata_result.trajectories[(timestamp, cam_id)] = final_pose kapture_to_dir(output_path, kdata_result) logger.info('all done') def get_pose_approximation_method_argparser(method: str): parser_method = argparse.ArgumentParser(description=METHOD_DESCRIPTIONS[method], formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser_method.set_defaults(method=method) # per method parameters if method == 'cosine_similarity': parser_method.add_argument('--alpha', default=8.0, type=float, help='alpha parameter of CSI') return parser_method def pose_approximation_from_pairsfile_command_line(): parser = argparse.ArgumentParser(description='localize from pairfile', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser_verbosity = parser.add_mutually_exclusive_group() parser_verbosity.add_argument('-v', '--verbose', nargs='?', default=logging.WARNING, const=logging.INFO, action=kapture.utils.logging.VerbosityParser, help='verbosity level (debug, info, warning, critical, ... or int value) [warning]') parser_verbosity.add_argument('-q', '--silent', '--quiet', action='store_const', dest='verbose', const=logging.CRITICAL) parser.add_argument('--mapping', required=True, help=('input path to kapture input root directory.\n' 'if query is left to None, it must contains all images')) parser.add_argument('-o', '--output', required=True, help='output path to localized queries') parser.add_argument('--query', default=None, help='if left to None, timestamp, sensor_id will be taken from input, else from this') parser.add_argument('--pairsfile-path', required=True, type=str, help='text file which contains the image pairs and their score') parser.add_argument('--topk', default=None, type=int, help='override pairfile topk with this one (must be inferior or equal)') parser.add_argument('-f', '-y', '--force', action='store_true', default=False, help='Force delete output directory if already exists') list_of_pose_approx_methods = ['equal_weighted_barycenter', 'cosine_similarity'] valid_subcommands = ', '.join(list_of_pose_approx_methods) subparsers = parser.add_subparsers(title='subcommands', description=f'valid subcommands: {valid_subcommands}', help='additional help') for method in list_of_pose_approx_methods: subparsers.choices[method] = get_pose_approximation_method_argparser(method) args = parser.parse_args() logger.setLevel(args.verbose) if args.verbose <= logging.DEBUG: # also let kapture express its logs kapture.utils.logging.getLogger().setLevel(args.verbose) kapture_localization.utils.logging.getLogger().setLevel(args.verbose) logger.debug('pose_approximation_from_pairsfile.py \\\n' + ''.join(['\n\t{:13} = {}'.format(k, v) for k, v in vars(args).items()])) pose_approximation_from_pairsfile(args.mapping, args.pairsfile_path, args.output, args.query, args.topk, args.method, vars(args), args.force) if __name__ == '__main__': pose_approximation_from_pairsfile_command_line() ```
{ "source": "jkaberg/iBuff", "score": 2 }
#### File: jkaberg/iBuff/main.py ```python __author__ = '<NAME> (jkaberg), <EMAIL>' import os from sqlite3 import dbapi2 as sqlite3 from datetime import datetime from flask import Flask, request, session, g, redirect, url_for, render_template, flash app = Flask(__name__) app.config.update(dict( DATABASE=os.path.join(app.root_path, 'ibuff.db'), DEBUG=True, SECRET_KEY='development key', USERNAME='joel', PASSWORD='<PASSWORD>' )) app.config.from_envvar('IBUFF_SETTINGS', silent=True) def connect_db(): rv = sqlite3.connect(app.config['DATABASE']) rv.row_factory = sqlite3.Row return rv def init_db(): db = get_db() with app.open_resource('schema.sql', mode='r') as f: db.cursor().executescript(f.read()) db.commit() @app.cli.command('initdb') def initdb_command(): init_db() print('Initialized the database.') def get_db(): if not hasattr(g, 'sqlite_db'): g.sqlite_db = connect_db() return g.sqlite_db @app.teardown_appcontext def close_db(error): if hasattr(g, 'sqlite_db'): g.sqlite_db.close() @app.route('/', methods=['GET']) def show_workouts(): if not os.path.isfile(app.config['DATABASE']): init_db() db = get_db() cur = db.execute('SELECT title, comment, id FROM workouts ORDER BY id ASC') workouts = cur.fetchall() return render_template('show_workouts.html', workouts=workouts) @app.route('/addWorkout', methods=['POST']) def add_workout(): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() db.execute('INSERT INTO workouts (title, comment) VALUES (?, ?)', [request.form['title'], request.form['comment']]) db.commit() flash('New workout successfully added.') return redirect(url_for('show_workouts')) @app.route('/deleteWorkout/<wid>', methods=['GET']) def delete_workout(wid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() # TODO: Recursive deletion from bottom and up would be a lot better. db.execute('DELETE FROM workouts WHERE id = (?)', (wid,)) db.execute('DELETE FROM exercises WHERE workout_id = (?)', (wid,)) db.execute('DELETE FROM history WHERE workout_id = (?)', (wid,)) db.commit() flash('Successfully deleted workout.') return redirect(url_for('show_workouts')) @app.route('/showWorkout/<wid>', methods=['GET']) def show_workout(wid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() # TODO: Fix this mess, no need for 2 querys.. cur = db.execute('SELECT title, comment FROM workouts WHERE id=(?)', (wid,)) workout = cur.fetchone() cur = db.execute('SELECT id, title, comment, sets, reps FROM exercises WHERE workout_id=(?) ORDER BY id ASC', (wid,)) exercises = cur.fetchall() if exercises: eid = exercises[0]['id'] else: eid = 0 return render_template('show_workout.html', workout=workout, exercises=exercises, wid=wid, eid=eid) @app.route('/playWorkout/<wid>/<eid>/<count>', methods=['GET', 'POST']) def play_workout(wid, eid, count): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() count = int(count) eid = int(eid) last_eid = eid if count == 0 else eid - 1 # TODO: Fix this mess, too many querys..... # Get the current exercise cur = db.execute('SELECT id, title, comment, sets, reps FROM exercises WHERE workout_id = (?) ORDER BY id ASC', (wid,)) exercise = cur.fetchall() # Add history if request.method == 'POST' and count > 0: db.execute('INSERT INTO history (exercise_id, workout_id, sets, reps, weight, date_time) values (?, ? , ?, ?, ?, ?)', [last_eid, wid, request.form['sets'], request.form['reps'], request.form['weight'], datetime.now()]) db.commit() # If count equals number of exercises then we're done! if count == len(exercise): flash('Workout finished, well done!') return redirect(url_for('show_workout', wid=wid)) cur = db.execute('SELECT weight FROM history WHERE workout_id = (?) AND exercise_id = (?) ORDER BY id DESC', (wid, eid,)) weight = cur.fetchone() return render_template('play_workout.html', exercise=exercise[count], wid=wid, eid=eid + 1, last_weight=weight[0] if weight else 1, count=count + 1) @app.route('/showExercise/<wid>/<eid>', methods=['GET']) def show_exercise(wid, eid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() cur = db.execute('SELECT id, title, comment, sets, reps FROM exercises WHERE workout_id = (?) AND id = (?)', (wid, eid,)) exercise = cur.fetchone() return render_template('show_exercise.html', exercise=exercise, wid=wid) @app.route('/addExercise/<wid>', methods=['POST']) def add_exercise(wid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() db.execute('INSERT INTO exercises (title, workout_id, comment, sets, reps) values (?, ?, ?, ?, ?)', [request.form['title'], wid, request.form['comment'], request.form['sets'], request.form['reps']]) db.commit() flash('New workout successfully added.') return redirect(url_for('show_workout', wid=wid)) @app.route('/updateExercise/<wid>/<eid>', methods=['POST']) def update_exercise(wid, eid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() db.execute('UPDATE exercises SET title = (?), comment = (?), sets = (?), reps = (?) WHERE workout_id = (?) AND id = (?)', (request.form['title'], request.form['comment'], request.form['sets'], request.form['reps'], wid, eid,)) db.commit() flash('Exercise successfully updated.') return redirect(url_for('show_workout', wid=wid)) @app.route('/deleteExercise/<eid>/<wid>', methods=['GET']) def delete_exercise(eid, wid): if not session.get('logged_in'): flash('You need to login.') return redirect(url_for('login')) db = get_db() db.execute('DELETE FROM exercises WHERE id = (?)', (eid,)) db.execute('DELETE FROM history WHERE exercise_id = (?)', (eid,)) db.commit() flash('Successfully deleted exercise.') return redirect(url_for('show_workout', wid=wid)) @app.route('/login', methods=['GET', 'POST']) def login(): error = None if request.method == 'POST': if request.form['username'] != app.config['USERNAME']: error = 'Invalid username' elif request.form['password'] != app.config['PASSWORD']: error = 'Invalid password' else: # TODO: http://flask.pocoo.org/docs/0.10/quickstart/#cookies session['logged_in'] = True flash('You were logged in.') return redirect(url_for('show_workouts')) return render_template('login.html', error=error) @app.route('/logout', methods=['GET']) def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect(url_for('show_workouts')) if __name__ == '__main__': app.run(host='0.0.0.0') ```
{ "source": "jkachika/columbus-worker", "score": 3 }
#### File: colorker/service/email.py ```python import logging import threading import traceback import re from colorker.comm import messaging logger = logging.getLogger('worker') def send_mail(receivers, subject, message, html=None): """ Sends an email to the recipients. Must be called from an EngineThread. This method will not raise any exception if it fails to send a message to the recipients. :param list(str) receivers: list of recipient email addresses :param str subject: subject of the email :param str message: plain text message :param str html: HTML message """ if not isinstance(receivers, list): raise ValueError('Invalid recipients. Must be a list of email addresses.') try: if not subject or not message: raise ValueError('subject and message body are required to send the email') sender = threading.current_thread().username master = threading.current_thread().master if html is None: html = re.sub("\r?\n", "<br/>", message) request = messaging.Request(messaging.RequestType.EMAIL, messaging.WorkerEmailRequest( sender=sender, receivers=receivers, subject=subject, plain=message, html=html)) messaging.push(master, request) except Exception as e: logger.error(e.message) logger.error(traceback.format_exc()) ``` #### File: colorker/service/fusiontables.py ```python import csv import os import threading import traceback import logging import numpy as np from area import area from lxml import etree from googleapiclient.http import MediaIoBaseUpload from geojson import FeatureCollection from pykml.factory import KML_ElementMaker as KML from colorker.security import CredentialManager from colorker.settings import STORAGE logger = logging.getLogger('worker') def create_table(name, description, columns, data=None, share_with=None, admin=None, user_settings=None): """ Creates a fusion table for the given data and returns the table id. :param str name: Name of the fusion table to create :param str description: Description of the table to be created :param columns: List of dictionaries having properties name and type :type columns: list(dict) :param data: List of dictionaries (optional) :type data: list(dict) :param share_with: Single email addreess string or a List of user email addresses (gmail only) to share the created fusion table :type share_with: str or list(str) :param str admin: email address of the administrator who should have edit access to the created fusion table :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :rtype: str :return: the table id of the created fusion table """ ft_service = CredentialManager.get_fusion_tables_service(user_settings) drive_service = CredentialManager.get_drive_service(user_settings) # converting column type to fusion table supported type for column in columns: column["type"] = str(column["type"]).upper() column["type"] = "NUMBER" if column["type"] in ["INTEGER", "FLOAT", "NUMBER"] \ else "DATETIME" if column["type"] in ["TIMESTAMP", "DATETIME", "DATE"] \ else "LOCATION" if column["type"] == "LOCATION" \ else "STRING" body = dict(name=name, description=description, attribution="Created by Columbus Workflow Engine", attributionLink="http://www.columbus.cs.colostate.edu", columns=columns, isExportable=True) table = ft_service.table() result = table.insert(body=body).execute(num_retries=3) table_id = result["tableId"] logger.info("table created with id - " + table_id) permissions = drive_service.permissions() # give write access to the admin for all the created fusion tables if admin is not None: permissions.create(fileId=table_id, body={"emailAddress": admin, "type": "user", "role": "writer"}, sendNotificationEmail=False).execute(num_retries=3) permissions.create(fileId=table_id, body={"type": "anyone", "role": "reader", "allowFileDiscovery": False}).execute(num_retries=3) if share_with is not None: if isinstance(share_with, list): for user_email in share_with: if user_email.endswith("gmail.com"): logger.info("setting drive permissions for user - " + user_email) permissions.create(fileId=table_id, body={"emailAddress": user_email, "type": "user", "role": "reader"}, sendNotificationEmail=False).execute(num_retries=3) if isinstance(share_with, str) and share_with.endswith("gmail.com"): logger.info("setting drive permissions for user - " + share_with) permissions.create(fileId=table_id, body={"emailAddress": share_with, "type": "user", "role": "reader"}, sendNotificationEmail=False).execute(num_retries=3) if data is not None: keys = [column["name"] for column in columns] if user_settings is None: user_settings = threading.current_thread().settings temp_dir_path = user_settings.get(STORAGE.TEMPORARY.LOCAL, None) if not os.path.exists(temp_dir_path): os.makedirs(temp_dir_path) filename = temp_dir_path + str(table_id) + ".csv" with open(filename, 'wb') as upload_file: dict_writer = csv.DictWriter(upload_file, keys) dict_writer.writeheader() dict_writer.writerows(data) logger.info("created temporary file for upload. making call to import rows.") upload_fd = open(filename, 'rb') media_body = MediaIoBaseUpload(fd=upload_fd, mimetype="application/octet-stream") result = table.importRows(tableId=table_id, media_body=media_body, startLine=1, isStrict=True, encoding="UTF-8", delimiter=",").execute(num_retries=3) logger.info("imported - " + str(result["numRowsReceived"]) + " rows") return table_id def create_ft_from_ftc(name, description, ftc, parties=None, admin=None, user_settings=None): if isinstance(ftc, FeatureCollection) and ftc.get("columns", None) and isinstance(ftc["columns"], dict): fields = sorted(ftc["columns"].keys()) columns = [{"name": str(field), "type": str(ftc["columns"][field])} for field in fields] columns.append( {"name": "x__geometry__x", "type": "LOCATION"}) # special property to access fusion table from maps API data = [] for feature in ftc["features"]: if feature["type"] == "Feature": ft_prop = feature["properties"] if feature["geometry"]["type"] == "Point": point = feature["geometry"]["coordinates"] location = KML.Point(KML.coordinates(str(point[0]) + "," + str(point[1]))) ft_prop["x__geometry__x"] = etree.tostring(location) elif feature["geometry"]["type"] == "MultiPoint": multipoint = feature["geometry"]["coordinates"] geometries = [KML.Point(KML.coordinates(str(point[0]) + "," + str(point[1]))) for point in multipoint] location = KML.MultiGeometry() for geometry in geometries: location.append(geometry) ft_prop["x__geometry__x"] = etree.tostring(location) elif feature["geometry"]["type"] == "Polygon": polygon = feature["geometry"]["coordinates"] location = KML.Polygon() for index in range(len(polygon)): if index == 0: location.append(KML.outerBoundaryIs(KML.LinearRing(KML.coordinates( " ".join([str(point[0]) + "," + str(point[1]) for point in polygon[index]]))))) else: location.append(KML.innerBoundaryIs(KML.LinearRing(KML.coordinates( " ".join([str(point[0]) + "," + str(point[1]) for point in polygon[index]]))))) ft_prop["x__geometry__x"] = etree.tostring(location) elif feature["geometry"]["type"] == "MultiPolygon": multipolygon = feature["geometry"]["coordinates"] location = KML.MultiGeometry() for polygon in multipolygon: kml = KML.Polygon() for index in range(len(polygon)): if index == 0: kml.append(KML.outerBoundaryIs(KML.LinearRing(KML.coordinates( " ".join([str(point[0]) + "," + str(point[1]) for point in polygon[index]]))))) else: kml.append(KML.innerBoundaryIs(KML.LinearRing(KML.coordinates( " ".join([str(point[0]) + "," + str(point[1]) for point in polygon[index]]))))) location.append(kml) ft_prop["x__geometry__x"] = etree.tostring(location) elif feature["geometry"]["type"] == "LineString": linestring = feature["geometry"]["coordinates"] location = KML.LineString( KML.coordinates(" ".join([str(point[0]) + "," + str(point[1]) for point in linestring]))) ft_prop["x__geometry__x"] = etree.tostring(location) elif feature["geometry"]["type"] == "MultiLineString": multilinestring = feature["geometry"]["coordinates"] location = KML.MultiGeometry() for linestring in multilinestring: location.append(KML.LineString( KML.coordinates(" ".join([str(point[0]) + "," + str(point[1]) for point in linestring])))) ft_prop["x__geometry__x"] = etree.tostring(location) str_prop = {} for key in ft_prop.keys(): str_prop[str(key) if isinstance(key, unicode) else key] = str(ft_prop[key]) if isinstance( ft_prop[key], unicode) else ft_prop[key] data.append(str_prop) return create_table(name=name, description=description, columns=columns, data=data, share_with=parties, admin=admin, user_settings=user_settings) return None def delete_table(table_id, user_settings=None): """ Deletes a fusion table :param str table_id: identifier of the fusion table :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :raises BaseException: Any exception resulting from this operation """ try: ft_keys = str(table_id).split(',') for key in ft_keys: ft_service = CredentialManager.get_fusion_tables_service(user_settings) table = ft_service.table() table.delete(tableId=key).execute(num_retries=3) except BaseException as e: logger.error(traceback.format_exc()) raise e def read_table(table_id, user_settings=None): """ Reads a fusion table and returns its contants as a list of dictionaries :param str table_id: identifier of the fusion table :param dict user_settings: optional, A dictionary of settings specifying credentials for appropriate services. If one is not provided, then this method must be invoked by an EngineThread which defines the settings :raises BaseException: Any exception resulting from this operation """ try: ft_service = CredentialManager.get_fusion_tables_service(user_settings) query = ft_service.query() table = query.sql(sql='SELECT * FROM ' + str(table_id), hdrs=False).execute(num_retries=3) result_rows = [] columns = [str(column) for column in table['columns']] rows = table['rows'] for row in rows: result_row = {} for index, cell in enumerate(row): result_row[columns[index]] = str(cell) if isinstance(cell, unicode) else cell result_rows.append(result_row) return result_rows except BaseException as e: logger.error(traceback.format_exc()) raise e def get_polygons_from_ft(table_id, name_attr, geometry_attr, user_settings=None): # finds only the first polygon with outer boundary rows = read_table(table_id=table_id, user_settings=user_settings) polygons = [] for row in rows: polygon = dict(name=row[name_attr], geometry=[]) max_polygon = [] feature = row[geometry_attr] if 'type' not in feature: feature = feature['geometry'] if feature["type"] == "Polygon": outer_boundary = feature["coordinates"][0] for vertex in outer_boundary: polygon['geometry'].append(dict(lon=vertex[0], lat=vertex[1])) elif feature["type"] == "MultiPolygon": for boundary in feature["coordinates"]: max_polygon.append(area({"type": "Polygon", "coordinates": boundary})) index = np.argmax(np.array(max_polygon)) for vertex in feature["coordinates"][index][0]: polygon['geometry'].append(dict(lon=vertex[0], lat=vertex[1])) elif feature["type"] == "GeometryCollection": geometries = feature['geometries'] for geometry in geometries: if geometry["type"] in ["Polygon", "MultiPolygon"]: max_polygon.append(area(geometry)) else: max_polygon.append(0) index = np.argmax(np.array(max_polygon)) max_polygon = [] feature = geometries[index] if feature["type"] == "Polygon": outer_boundary = feature["coordinates"][0] for vertex in outer_boundary: polygon['geometry'].append(dict(lon=vertex[0], lat=vertex[1])) elif feature["type"] == "MultiPolygon": for boundary in feature["coordinates"]: max_polygon.append(area({"type": "Polygon", "coordinates": boundary})) index = np.argmax(np.array(max_polygon)) for vertex in feature["coordinates"][index][0]: polygon['geometry'].append(dict(lon=vertex[0], lat=vertex[1])) if len(polygon['geometry']) > 0: polygons.append(polygon) return polygons ``` #### File: columbus-worker/colorker/utils.py ```python import collections import math import time from datetime import datetime as dt import numpy def current_time_millis(): """ Gets the current time in milliseconds :rtype: int :return: current time in milliseconds """ return int(round(time.time() * 1000)) # noinspection PyBroadException def caught(try_function, *args): """ Tries a function and checks if it throws an exception. :param Callable try_function: callable object representing the function that must be tried :param list args: arguments to pass to the callable function :rtype: bool :return: True if an exception was caught, False otherwise """ try: try_function(*args) return False except BaseException: return True def is_number(s): """ Checks if the argument is a number :param str s: Any string :rtype: bool :return: True if the string is a number, False otherwise """ return False if caught(float, s) else True # finds the mean of a feature collection for a given property def mean(prop, ftc): """ Finds the mean of a property in the given feature collection. NaN values are treated as zero. :param str prop: name of the property in the feature collection :param geojson.FeatureCollection ftc: the feature collection containing that property :return: mean value of the property :rtype: float """ features = ftc['features'] result = [(float(feature['properties'][prop]) if is_number(feature['properties'][prop]) and not math.isnan( float(feature['properties'][prop])) else 0.0) for feature in features] return numpy.mean(numpy.array(result)) # finds the standard deviation of a feature collection for a given property def std(prop, ftc): """ Finds the standard deviation of a property in the given feature collection. NaN values are treated as zero. :param str prop: name of the property in the feature collection :param geojson.FeatureCollection ftc: the feature collection containing that property :return: standard deviation value of the property :rtype: float """ features = ftc['features'] result = [(float(feature['properties'][prop]) if is_number(feature['properties'][prop]) and not math.isnan( float(feature['properties'][prop])) else 0.0) for feature in features] return numpy.std(numpy.array(result)) def json_serial(obj): """ JSON serializer for objects not serializable by default json code. TODO - Add implementation for other types that are not serializable :param object obj: The object that needs to be serialized :return: json serialization of the given object :rtype: str """ if isinstance(obj, dt): s = obj.strftime('%Y-%m-%d %H:%M:%S.%f') tail = s[-7:] f = round(float(tail), 3) temp = "%.3f" % f return "%s%s" % (s[:-7], temp[1:]) if hasattr(obj, '__dict__'): return obj.__dict__ raise TypeError("Type not serializable") def deep_update(source, overrides): """ Updates a nested dictionary or similar mapping. Modifies ``source`` in place with the key-value pairs in overrides :param dict source: a dictionary that needs to be updated :param dict overrides: a dictionary that provides the new keys and values :rtype: dict :return: updated source dictionary """ for key, value in overrides.iteritems(): if isinstance(value, collections.Mapping) and value: returned = deep_update(source.get(key, {}), value) source[key] = returned else: source[key] = overrides[key] return source def lists_to_html_table(a_list): """ Converts a list of lists to a HTML table. First list becomes the header of the table. Useful while sending email from the code :param list(list) a_list: values in the form of list of lists :return: HTML table representation corresponding to the values in the lists :rtype: str """ header = "<tr><th>%s</th></tr>" % ("</th><th>".join(a_list[0])) body = "" if len(a_list) > 1: for sub_list in a_list[1:]: body += "<tr><td>%s</td></tr>\n" % ("</td><td>".join(sub_list)) return "<table>%s\n%s</table>" % (header, body) def dicts_to_html_table(a_list): """ Converts a list of dictionaries to a HTML table. Keys become the header of the table. Useful while sending email from the code :param list(dict) a_list: values in the form of list of dictionaries :return: HTML table representation corresponding to the values in the lists :rtype: str """ keys = sorted(a_list[0].keys()) header = "<tr><th>%s</th></tr>" % ("</th><th>".join(keys)) body = "" if len(a_list) > 1: for sub_dict in a_list: body += "<tr><td>%s</td></tr>\n" % ("</td><td>".join([sub_dict[key] for key in keys])) return "<table>%s\n%s</table>" % (header, body) def dict_to_html_table(a_dict): """ Converts a dictionary to a HTML table. Keys become the header of the table. Useful while sending email from the code :param dict a_dict: key value pairs in the form of a dictionary :return: HTML table representation corresponding to the values in the dictionary :rtype: str """ body = "" keys = sorted(a_dict.keys()) for key in keys: body += "<tr><th>%s</th><td>%s</td></tr>\n" % (str(key), str(a_dict[key])) return "<table>%s</table>" % body ```
{ "source": "jkacou/AutoSSL", "score": 3 }
#### File: autossl/ca_manager/base.py ```python import logging logger = logging.getLogger(__name__) class CaManager(object): def __init__(self, ca_config, staging=True, storage_api=None, **kwargs): """Base instance of interface with CA to deliver signed certificates :param ca_config: Certificate Authority configuration instance :type ca_config: ssl.CertificateAuthorityConfig :param staging: Testing mode. Use staging or test CA instance (when available). :type staging: bool :param storage_api: storage API instance :type storage_api: storage.base.Storage """ self.ca_config = ca_config self.staging = staging self.storage_api = storage_api @property def is_automated_renewal_supported(self): """Check is current CA supports automated renewal :return: True, if this CA implementation supports automated renewal :rtype: bool """ return False def get_signed_certificate(self, ssl_blueprint=None, csr_path=None, servers_api=None): """Get PEM encoded certificate using current Certificate Authority implementation :param ssl_blueprint: :type ssl_blueprint: ssl.SslBlueprint :param csr_path: path to CSR file :type csr_path: pathlib.Path :param servers_api: list of api instances to each server :type servers_api: list(server.base.Server) :return: PEM encoded signed certificate as bytes :rtype: bytes """ raise NotImplementedError("Method must be overridden in child class") ``` #### File: AutoSSL/autossl/exception.py ```python import json class AutoSslException(Exception): """Generic exception for autossl Allow to chain exceptions keeping track of origin exception """ def __init__(self, msg, original_exception=None): message = msg if original_exception: message += ": %s" % original_exception super(AutoSslException, self).__init__(message) self.__cause__ = original_exception self.__suppress_context__ = True class HttpCodeException(AutoSslException): def __init__(self, request_exception): """Exception raised when received Http response has an invalid http code :param request_exception: requests HTTP exception :type request_exception: requests.exceptions.HTTPError """ try: response_body_json = request_exception.response.json() response_body_text = json.dumps(response_body_json, indent=4, sort_keys=True) except ValueError: response_body_json = None response_body_text = request_exception.response.text exception_message = "HTTPError: => %s %s : %s" % (request_exception.request.method, request_exception.request.url, response_body_text) super(HttpCodeException, self).__init__(exception_message, original_exception=request_exception) self.status_code = request_exception.response.status_code self.response_body_text = response_body_text self.response_body_json = response_body_json class NotFound(AutoSslException): """Requested data not found""" pass class SslBlueprintInconsistency(AutoSslException): """SSL blueprint definition contains inconsistencies""" pass class InvalidCertificate(AutoSslException): """Certificate is not matching expected criteria""" pass class InvalidTrustChain(InvalidCertificate): """Certificate is not compatible with CA certificate specified""" pass class KeyMismatch(InvalidCertificate): """Certificate does not match private key""" pass class ExpiredCertificate(InvalidCertificate): """Certificate is expiring""" pass class DefinitionMismatch(InvalidCertificate): """Certificate is not matching blueprint definition""" pass class CertificateNotFound(NotFound): """Requested certificate not present on server""" pass class DeployCertificateError(AutoSslException): """Unexpected error when trying to deploy new certificate""" pass ``` #### File: autossl/storage/base.py ```python class Storage(object): def __init__(self, tracking_record_id=None, **kwargs): r"""Base interface to store data :param tracking_record_id: identified of tracking record if tracking system is used :type tracking_record_id: :param \**kwargs: key/value parameters needed for initialization :type \**kwargs: dict """ self.tracking_record_id = tracking_record_id def save_data(self, name, data_type, content=None, local_path=None, **kwargs): r"""Save specified content in storage :param name: name of the content to be stored on server side :type name: str :param data_type: type of data to save :type data_type: ssl.DataType :param content: content to be stored on server side :type content: bytes :param local_path: local path to a file to store :type local_path: pathlib.Path or str :param \**kwargs: optional key/value parameters from blueprint to save data :type \**kwargs: dict Either one of `content` or `local_path` must be specified but not both """ raise NotImplementedError("Must be overridden in storage specific implementation.") def retrieve_data(self, name, data_type, **kwargs): r"""Retrieve data from storage :param name: identifier of data to retrieve :type name: str :param data_type: type of data to retrieve :type data_type: ssl.DataType :param \**kwargs: optional key/value parameters from blueprint to retrieve data :type \**kwargs: dict :return: requested data :rtype: bytes :raise exception.NotFound: when requested data are missing in storage """ raise NotImplementedError("Must be overridden in storage specific implementation.") ``` #### File: autossl/storage/local.py ```python import logging import os import shutil from .. import exception, util from . import base logger = logging.getLogger(__name__) class LocalFileStorage(base.Storage): def __init__(self, path, tracking_record_id=None, **kwargs): super(LocalFileStorage, self).__init__(tracking_record_id=tracking_record_id, **kwargs) self.path = util.Path(os.path.expandvars(path)) if not self.path.is_dir(): raise IOError("Invalid folder path specified: '%s'" % self.path) def save_data(self, name, content=None, local_path=None, **kwargs): output_file_path = self.path / name if content is not None: if local_path: logger.warning("local_path path '{}' ignored as content also specified.".format(local_path)) output_file_path.write_bytes(content) else: shutil.copy(str(local_path), str(output_file_path)) def retrieve_data(self, name, **kwargs): file_path = self.path / name if not file_path.exists(): raise exception.NotFound("Path %s does not exists." % file_path) return file_path.read_bytes() ``` #### File: autossl/tracking/base.py ```python from enum import Enum import logging logger = logging.getLogger(__name__) class TrackingType(Enum): """list of tracking types supported.""" # End-to-end flow of certificate renewal and deployment on servers Renewal = 'renewal' # Simply deploy existing valid certificate on new or outdated servers Synchronize = 'synchronize' class Tracking(object): def __init__(self, ssl_blueprint_path, **kwargs): r"""Api to tracking server for specified input ssl blueprint :param ssl_blueprint_path: local path to ssl blueprint :type ssl_blueprint_path: pathlib.Path :param \**kwargs: generic key/value parameters :type \**kwargs: dict """ self.ssl_blueprint_path = ssl_blueprint_path def create(self, tracking_type, servers=None): """Create a tracking record with details of current SSL blueprint :param tracking_type: Type of tracking. Can be used to customized tracking record content. :type tracking_type: TrackingType :param servers: List of servers in scope of the action. All servers from config if None specified here. :type servers: list :return: Identifier for the created record :rtype: str """ logger.debug("Nothing to do for 'create' tracking default implementation.") def save_data(self, name, data_type, local_path=None, content=None, **kwargs): r"""Save input data in tracking system :param name: name of the file to attach to the tracking record :type name: str :param data_type: type of data to save :type data_type: ssl.DataType :param local_path: local path to file to attach to the tracking record :type local_path: pathlib.Path :param content: content of the file to attach to the tracking record :type content: bytes :param \**kwargs: generic key/value parameters :type kwargs: dict """ logger.debug("Nothing to do for 'save_data' tracking default implementation.") def update(self, message): """Update tracking record :param message: text to add to tracking record :type message: str """ logger.debug("Nothing to do for 'update' tracking default implementation.") def refresh(self, record_id): """Update current tracking instance with last changes from tracking record on server side :param record_id: identifier of the record to refresh """ logger.debug("Nothing to do for 'refresh' tracking default implementation.") def retrieve_data(self, name=None, data_type=None, **kwargs): r"""Retrieve specified data from tracking system :param name: Name of file/data to retrieve :type name: str :param data_type: type of data to retrieve :type data_type: ssl.DataType :param \**kwargs: generic key/value parameters :type kwargs: dict :return: file content :rtype: bytes """ logger.debug("Nothing to do for 'retrieve_data' tracking default implementation.") def close_for_failure(self, message): """Specify action is completed with a failed status :param message: custom message :type message: str """ logger.debug("Nothing to do for 'close_for_failure' tracking default implementation.") def close_for_success(self, message): """Specify action is completed with a success status :param message: custom message :type message: str """ logger.debug("Nothing to do for 'close_for_success' tracking default implementation.") ``` #### File: AutoSSL/autossl/util.py ```python import importlib import logging try: # Python 3 from pathlib import Path # noqa: F401 except ImportError: # Python 2 from pathlib2 import Path # noqa: F401 import requests import shutil from six import PY2 # noqa: F401 import tempfile from . import exception logger = logging.getLogger(__name__) def check_http_response_ok(response): """Validate http response code all codes not in 2xx will raise an exception :param response: requests Http response :type response: requests.Response :return: same http response :rtype: requests.Response :raise exception.HttpCodeException: if http status code in not in 2xx """ try: response.raise_for_status() except requests.exceptions.HTTPError as ex: raise exception.HttpCodeException(ex) return response def str_to_class(class_path): """Dynamically import and return class type from full module and class path :param class_path: :type class_path: str :return: Type of the class to instantiate :rtype: type :raise ImportError: if module does not exist :raise AttributeError: if class not found in specified module """ module_name, class_name = class_path.rsplit('.', 1) try: module_ = importlib.import_module(module_name) try: return getattr(module_, class_name) except AttributeError: logging.exception('Class %s not found in module %s.' % (class_name, module_name)) raise except ImportError: logging.exception('Module %s does not exist.' % module_name) raise class TempDir(object): def __init__(self, path=None): """Create Temporary directory that can be used with context manager for automated deletion at __exit__ :param path: local path. If None, temporary folder will be created at `__enter__` thanks to `tempfile.mkdtemp()` :type path: str or pathlib.Path """ self.input_path = path self.path = None def __enter__(self): self.path = Path(str(self.input_path) if self.input_path else tempfile.mkdtemp()) if not self.path.is_dir(): raise IOError("Specified path {} is not a directory.".format(self.path)) return self def __exit__(self, *args): if self.path.exists() and self.path.is_dir(): shutil.rmtree(str(self.path), ignore_errors=True) ``` #### File: jkacou/AutoSSL/setup.py ```python import os from pkg_resources import parse_version from sys import version_info as py_version from setuptools import setup, find_packages from setuptools import __version__ as setuptools_version HERE = os.path.abspath(os.path.dirname(__file__)) # retrieve package information about = {} with open(os.path.join(HERE, 'autossl', '__version__.py'), 'rb') as f: exec(f.read().decode('utf-8'), about) with open(os.path.join(HERE, 'README.rst'), 'rb') as readme_file: readme = readme_file.read().decode('utf-8') install_requires = [ 'six', 'cryptography', 'pyyaml', 'requests', ] extras_require = { # acme 'acme': ['acme'], # servers # tracking # storage 'git': ['GitPython'], } # ability to install automatically all dependencies extras_require['all'] = list(set(value for sublist in extras_require.values() for value in sublist)) def has_environment_marker_range_operators_support(): """Code extracted from 'pytest/setup.py' https://github.com/pytest-dev/pytest/blob/7538680c/setup.py#L31 The first known release to support environment marker with range operators it is 17.1, see: https://setuptools.readthedocs.io/en/latest/history.html#id113 """ return parse_version(setuptools_version) >= parse_version('17.1') # Compatibility with old version of setuptools if has_environment_marker_range_operators_support(): extras_require[':python_version<"3.4"'] = ['enum34', 'pathlib2'] elif py_version < (3, 4): install_requires.extend(['enum34', 'pathlib2']) setup( name=about['__title__'], version=about['__version__'], author=about['__author__'], author_email=about['__author_email__'], description=about['__description__'], long_description=readme, long_description_content_type='text/markdown', url=about['__url__'], license=about['__license__'], classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Natural Language :: English', 'Topic :: Software Development', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: 3.9', ], packages=find_packages(), entry_points={ 'console_scripts': [ 'autossl = autossl.__main__:main' ] }, platforms='Unix; MacOS X', install_requires=install_requires, extras_require=extras_require, ) ``` #### File: tests/ca_manager/test_local.py ```python import pytest from cryptography.hazmat.backends import default_backend from cryptography.x509.oid import NameOID from cryptography import x509 from autossl.ca_manager import local as local_ca from autossl.storage import local as local_storage from autossl import ssl from tests import util as tests_util @pytest.fixture(scope="function") def storage(tmp_path): yield local_storage.LocalFileStorage(path=str(tmp_path)) @pytest.fixture(scope="function") def ca_manager(storage): ca_key, ca_crt = tests_util.create_ca_certificate(ca_name='Autossl') storage.save_data(name='ca_key', data_type=ssl.DataType.PrivateKey, content=ca_key) storage.save_data(name='ca_crt', data_type=ssl.DataType.Certificate, content=ca_crt) yield local_ca.LocalCa(ca_config=None, staging=True, storage_api=storage, ca_private_key='ca_key', ca_certificate='ca_crt') def test_automated_renewal_supported(ca_manager): assert ca_manager.is_automated_renewal_supported is True @pytest.mark.parametrize('common_name', ['test.autossl.com']) def test_get_signed_certificate(ca_manager, common_name, tmp_path): _, csr_path = ssl.generate_csr(name='autossl_cert', common_name=common_name, output_path=tmp_path) crt = ca_manager.get_signed_certificate(ssl_blueprint=None, csr_path=csr_path, servers_api=None) # check CRT x509_object = x509.load_pem_x509_certificate(data=crt, backend=default_backend()) assert len(x509_object.subject.get_attributes_for_oid(NameOID.COMMON_NAME)) == 1 assert x509_object.subject.get_attributes_for_oid(NameOID.COMMON_NAME)[0].value == common_name ``` #### File: AutoSSL/tests/test_command_line_parser.py ```python import logging import pytest import autossl from autossl import util, __main__ from tests import util as tests_util def test_display_version(): assert __main__.display_version() == "Autossl version {version}".format(version=autossl.__version__) @pytest.mark.parametrize('cli_credentials, credentials_file, result', [ # full user_password credentials from cli, no credential file (['credential_1:my_username:my_pa*ss:wor$d'], None, {'credential_1': {'raw_content': 'my_username:my_pa*ss:wor$d'}}), # no password from cli, no credential file (['credential_1:my_username'], None, {'credential_1': {'raw_content': 'my_username'}}), # just credential name from cli, no credential file (['credential_1'], None, {'credential_1': {'raw_content': None}}), # full user_password credentials from cli, credential file with cli overriding file for credential_1 (['credential_1:my_username:my_pa*ss:wor$d'], tests_util.DATA_PATH / 'credentials_file', {'credential_1': {'raw_content': 'my_username:my_pa*ss:wor$d'}, 'credential_4_from_file': {'username': 'username_4', 'password': '<PASSWORD>', 'extra_parameter': 'extra_param'}, 'credential_5_from_file': {'api_key': '499ebd66-29d6-4992-9ec4-5511a92d248e', 'api_id': '12345'}}), ]) def test_parse_credentials(cli_credentials, credentials_file, result): assert __main__.parse_credentials(cli_credentials=cli_credentials, credentials_file=credentials_file) == result def test_main_parser(capsys): # check action is mandatory with pytest.raises(SystemExit): __main__.parse_arguments([]) if util.PY2: assert 'error: too few arguments' in capsys.readouterr().err else: assert 'error: the following arguments are required: action' in capsys.readouterr().err # default values (as action is mandatory, use 'version' that requires no additional parameter) parser = __main__.parse_arguments(['version']) assert parser.credentials == [] assert parser.debug is logging.INFO assert parser.staging is False assert parser.config is None assert parser.blueprint is None # parser = __main__.parse_arguments(['-u', r'domain\user:password', '--debug', 'version']) # assert parser.credentials == r'domain\user:password' # assert parser.debug is True # TODO ``` #### File: AutoSSL/tests/test_ssl_blueprint.py ```python from datetime import datetime import pytest from autossl import ssl, exception from tests import util as tests_util @pytest.mark.parametrize('cert1,cert2,is_same', [ # fully identical ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, True), # fully identical but different san order ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name3', 'name2'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, True), # fully common_name ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name4', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, False), # different san ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name4'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, False), # different expiration ({'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2020, 2, 3, 14, 38, 21)}, {'common_name': 'name1', 'sans': ['name2', 'name3'], 'expiration': datetime(2021, 2, 3, 14, 38, 21)}, False), ]) def test_ssl_blueprint___eq__(cert1, cert2, is_same): assert (ssl.SslCertificate(**cert1) == ssl.SslCertificate(**cert2)) is is_same def test_missing_blueprint(): with pytest.raises(IOError): ssl.SslBlueprint('dummy/path') def test_ssl_blueprint_no_server(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.ov.example.com_no-server.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'OV' assert ssl_blueprint.certificate.certificate_authority == 'Sectigo' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert len(ssl_blueprint.servers) == 0 def test_ov_ssl_blueprint(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.ov.example.com.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'OV' assert ssl_blueprint.certificate.certificate_authority == 'Sectigo' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 1 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization['company_name'] == 'Autossl corporation' assert ssl_blueprint.certificate.organization['street_address'] == 'Newbury street' assert ssl_blueprint.certificate.organization['city'] == 'Boston' assert ssl_blueprint.certificate.organization['state'] == 'Massachusetts' assert ssl_blueprint.certificate.organization['postal_code'] == '02115' assert ssl_blueprint.certificate.organization['country_code'] == 'US' def test_dv_ssl_blueprint(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'DV' assert ssl_blueprint.certificate.certificate_authority == 'LetsEncrypt' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 2 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization is None def test_ssl_blueprint_with_global_config(): ssl_blueprint = ssl.SslBlueprint( yaml_path=tests_util.DATA_PATH / 'tst.ov.example.com_minimal.yaml', global_config_path=tests_util.DATA_PATH / 'global_config.yaml', ) assert ssl_blueprint.name == 'auto_tst.autossl.example.com' assert ssl_blueprint.certificate.certificate_type == 'DV' assert ssl_blueprint.certificate.certificate_authority == 'LetsEncrypt' assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert ssl_blueprint.certificate.renewal_delay == 30 assert len(ssl_blueprint.servers) == 1 assert len(ssl_blueprint.certificate.sans) == 5 assert ssl_blueprint.certificate.organization['company_name'] == 'Autossl corporation' assert ssl_blueprint.certificate.organization['street_address'] == 'Newbury street' assert ssl_blueprint.certificate.organization['city'] == 'Boston' assert ssl_blueprint.certificate.organization['state'] == 'Massachusetts' assert ssl_blueprint.certificate.organization['postal_code'] == '02115' assert ssl_blueprint.certificate.organization['country_code'] == 'US' def test_ssl_blueprint_no_common_name(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt san: - tst.autossl.example.com - uat.tst.autossl.example.com - pit.tst.autossl.example.com ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') ssl_blueprint = ssl.SslBlueprint(str(blueprint_path)) assert ssl_blueprint.certificate.common_name is None assert len(ssl_blueprint.certificate.sans) == 3 def test_ssl_blueprint_no_san(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt common_name: tst.autossl.example.com ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') ssl_blueprint = ssl.SslBlueprint(str(blueprint_path)) assert ssl_blueprint.certificate.common_name == 'tst.autossl.example.com' assert len(ssl_blueprint.certificate.sans) == 0 def test_ssl_blueprint_no_commmon_name_no_san(tmp_path): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt ... """ blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') with pytest.raises(ValueError): ssl.SslBlueprint(str(blueprint_path)) @pytest.mark.parametrize('common_name,is_valid', [ ('test2_valid-test.example.com', True), ('*.example.com', True), (' test.example.com', False), ('test.example.com ', False), ('test.*.com', False), ('%1.example.com', False), ]) def test_ssl_blueprint_validate_common_name(tmp_path, common_name, is_valid): blueprint_content = u""" --- name: auto_tst.autossl.example.com servers: - type: autossl.server.local.LocalServer parameters: path: /etc/ssl/my_certificates certificate: type: DV certificate_authority: LetsEncrypt common_name: '{}' ... """.format(common_name) blueprint_path = tmp_path / 'blueprint.yaml' blueprint_path.write_text(blueprint_content, encoding='utf-8') if is_valid: ssl.SslBlueprint(str(blueprint_path)) else: with pytest.raises(ValueError): ssl.SslBlueprint(str(blueprint_path)) def test_get_domains(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.domains == { 'tst.autossl.example.com', 'uat.tst.autossl.example.com', 'pit.tst.autossl.example.com', 'cit.tst.autossl.example.com', 'mgt.tst.autossl.example.com' } def test_is_domain_matching(): assert ssl.is_domain_matching('test.example.com', 'test.example.com') assert ssl.is_domain_matching('test.example.com', 'test.example.com', True) assert ssl.is_domain_matching('test.example.com', 'test.example.com', False) assert ssl.is_domain_matching('test.example.com', 'test2.example.com') is False assert ssl.is_domain_matching('test.example.com', 'test2.example.com', True) is False assert ssl.is_domain_matching('test.example.com', 'test2.example.com', False) is False assert ssl.is_domain_matching('test.example.com', '*.example.com') is True assert ssl.is_domain_matching('test.example.com', '*.example.com', True) is False assert ssl.is_domain_matching('test.example.com', '*.example.com', False) is True def test_is_domain_list_matching(): assert ssl.is_domain_list_matching(['test.example.com'], ['test.example.com']) assert ssl.is_domain_list_matching(['test.example.com'], ['test.example.com', 'test2.example.com']) assert ssl.is_domain_list_matching(['test.example.com', 'test2.example.com'], ['test.example.com']) is False assert ssl.is_domain_list_matching(['test.example.com', 'test2.example.com'], ['*.example.com']) assert ssl.is_domain_list_matching( ['test.example.com', 'test2.example.com'], ['*.example.com'], exact_match=True) is False def test_get_config(): ssl_blueprint = ssl.SslBlueprint(tests_util.DATA_PATH / 'tst.dv.example.com.yaml') assert ssl_blueprint.get_config(name='tracking', path=['dummy_path'], default=[]) == [] assert ssl_blueprint.get_config(name='tracking', path=None, default=None) is None assert ssl_blueprint.get_config(name='storage', path=None, default=None) == { 'credentials': 'credential_1', 'data': [{'type': 'key'}, {'type': 'csr'}, {'type': 'crt'}], 'parameters': { 'git_url': 'https://git.autossl.com/git/scm/ssl/certificates.git', 'config_user_name': 'Test User', 'config_user_email': '<EMAIL>', }, 'type': 'autossl.storage.gitscm.GitStorage'} def test_check_chain_of_trust(tmp_path): crt_path = tmp_path / 'local.crt' ca_crt_path = tmp_path / 'local_ca.crt' ca_key_path = tmp_path / 'local_ca.key' # generate CA certificate key, crt = tests_util.create_ca_certificate(ca_name='Autossl') ca_crt_path.write_bytes(crt) ca_key_path.write_bytes(key) # sign a new certificate with the CA _, csr_path = ssl.generate_csr(name='autossl_cert', common_name='test.autossl.com', output_path=str(tmp_path)) crt_content = tests_util.create_signed_certificate( csr_path=csr_path, ca_crt_path=ca_crt_path, ca_key_path=ca_key_path, ) crt_path.write_bytes(crt_content) # valid trust chain should no raise any error ssl.check_chain_of_trust( chain_of_trust=[crt.decode('utf-8')], # Chain of trust comes normally from SSL blueprint so it not in bytes crt_path=crt_path, ) # generate self-signed certificate self_signed_key_path, self_signed_crt_path = tests_util.create_self_signed_certificate( crt_name="self_signed_local.crt", output_path=tmp_path, common_name='self_signed.test.autossl.com', ) # self signed certificate should not be validated by this CA with pytest.raises(exception.InvalidTrustChain): ssl.check_chain_of_trust( chain_of_trust=[crt.decode('utf-8')], # Chain of trust comes normally from SSL blueprint so it not in bytes crt_path=self_signed_crt_path, ) ``` #### File: AutoSSL/tests/test_subca.py ```python import os import shutil import tempfile import collections # external packages import pytest # autossl imports from autossl import manager, ssl, util from tests import util as tests_util CertificateKeyPair = collections.namedtuple('CertificateKeyPair', 'key crt') @pytest.fixture(scope='module') def subca_manager(): # create temporary directories use by blueprint temp_crt_dir = tempfile.mkdtemp() os.environ['AUTOSSL_CRT_PATH'] = temp_crt_dir temp_crt_dir_2 = tempfile.mkdtemp() os.environ['AUTOSSL_CRT_PATH_2'] = temp_crt_dir_2 temp_storage_dir = tempfile.mkdtemp() os.environ['AUTOSSL_STORAGE_PATH'] = temp_storage_dir temp_tracking_dir = tempfile.mkdtemp() os.environ['AUTOSSL_TRACKING_PATH'] = temp_tracking_dir yield manager.SslManager( global_config=None, blueprint_path=tests_util.DATA_PATH / 'subca.example.com.yaml', credentials=None, staging=True ) # cleanup generated artifacts shutil.rmtree(temp_crt_dir, ignore_errors=True) shutil.rmtree(temp_crt_dir_2, ignore_errors=True) shutil.rmtree(temp_storage_dir, ignore_errors=True) shutil.rmtree(temp_tracking_dir, ignore_errors=True) @pytest.fixture(scope="module") def ca_keypair_path(): key, crt = tests_util.create_ca_certificate(ca_name='Autossl') ca_temp_dir = util.Path(tempfile.mkdtemp()) ca_crt_path = ca_temp_dir / 'local_ca.crt' ca_key_path = ca_temp_dir / 'local_ca.key' ca_crt_path.write_bytes(crt) ca_key_path.write_bytes(key) yield CertificateKeyPair(ca_key_path, ca_crt_path) # cleanup temp folders shutil.rmtree(str(ca_temp_dir), ignore_errors=True) @pytest.fixture(scope="module") def subca_keypair_path(subca_manager, ca_keypair_path): storage_path = util.Path(os.environ['AUTOSSL_STORAGE_PATH']) key_path = storage_path.joinpath(subca_manager.ssl_blueprint.name + '.key') csr_path = storage_path.joinpath(subca_manager.ssl_blueprint.name + '.csr') crt_path = storage_path.joinpath(subca_manager.ssl_blueprint.name + '.crt') bundle_path = storage_path.joinpath(subca_manager.ssl_blueprint.name + '.bundle') # generate sub-CA certificate request and key subca_manager.request_renewal( force=True, # disable interactive user input ) # simulate CA signing crt_content = tests_util.create_signed_certificate( csr_path=csr_path, ca_crt_path=ca_keypair_path.crt, ca_key_path=ca_keypair_path.key, certificate_validity_days=100 ) crt_path.write_bytes(crt_content) bundle_path.write_bytes(ca_keypair_path.crt.read_bytes() + crt_content) yield CertificateKeyPair(key_path, crt_path) # valid certificate request def test_subca_ok(tmp_path, subca_manager, subca_keypair_path): # check sub-CA certificate subca_crt_path, _ = subca_manager.get_and_check_artifacts() subca_cert = ssl.SslCertificate().init_from_x509(x509_path=subca_crt_path) assert subca_cert.common_name == 'subca.example.com' # sign a new certificate with the sub-CA _, csr_path = ssl.generate_csr(name='leafcert', common_name='domain.subca.example.com', sans=['domain1.subca.example.com', 'domain2.subca.example.com'], output_path=str(tmp_path)) crt_content = tests_util.create_signed_certificate( csr_path=csr_path, ca_crt_path=subca_keypair_path.crt, ca_key_path=subca_keypair_path.key ) crt_path = tmp_path / 'leafcert.crt' crt_path.write_bytes(crt_content) # check trust chain bundle_path = os.path.join(os.environ['AUTOSSL_STORAGE_PATH'], subca_manager.ssl_blueprint.name + '.bundle') assert os.system('openssl verify -CAfile %s %s' % (bundle_path, crt_path)) == 0 # invalid certificate request, domains are not part of the authorized names def test_subca_ko(tmp_path, subca_manager, subca_keypair_path): # sign a new certificate with the sub-CA _, csr_path = ssl.generate_csr(name='invalidcert', common_name='domain.other.example.com', sans=['domain.other.example.com'], output_path=str(tmp_path)) crt_content = tests_util.create_signed_certificate( csr_path=csr_path, ca_crt_path=subca_keypair_path.crt, ca_key_path=subca_keypair_path.key ) crt_path = tmp_path / 'invalidcert.crt' crt_path.write_bytes(crt_content) # check trust chain bundle_path = os.path.join(os.environ['AUTOSSL_STORAGE_PATH'], subca_manager.ssl_blueprint.name + '.bundle') assert os.system('openssl verify -CAfile %s %s' % (bundle_path, crt_path)) != 0 ``` #### File: tests/tracking/test_base.py ```python import pytest from autossl.tracking import base from tests import util as tests_util @pytest.fixture(scope="module") def base_tracking(): ssl_blueprint_name = 'tst.ov.example.com.yaml' ssl_blueprint_path = tests_util.DATA_PATH / ssl_blueprint_name base_tracking_instance = base.Tracking(ssl_blueprint_path) # basic checks assert base_tracking_instance.ssl_blueprint_path is not None yield base_tracking_instance def test_create_basic(base_tracking): base_tracking.create(tracking_type=base.TrackingType.Renewal) def test_save_data(base_tracking): base_tracking.save_data(name=None, data_type=None, local_path=None, content=None, extra_param1='value1', extra_param2='value2') def test_update(base_tracking): base_tracking.update(message=None) def test_refresh(base_tracking): base_tracking.refresh(record_id=None) def test_retrieve_data(base_tracking): base_tracking.retrieve_data(name=None, data_type=None, extra_param1='value1', extra_param2='value2') def test_close_for_failure(base_tracking): base_tracking.close_for_failure(message=None) def test_close_for_success(base_tracking): base_tracking.close_for_success(message=None) ```
{ "source": "jkadowaki/Cosmological-Parameters", "score": 2 }
#### File: Cosmological-Parameters/scripts/multiplot.py ```python import os import re import subprocess import glob as g import numpy as np import matplotlib.pyplot as plt import scipy.interpolate as interp ################################################################################ class ImageFollower(object): 'update image in response to changes in clim or cmap on another image' def __init__(self, follower): self.follower = follower def __call__(self, leader): self.follower.set_cmap(leader.get_cmap()) self.follower.set_clim(leader.get_clim()) ################################################################################ def plot_OM_OL(arr, fname, peak=-1): plt.clf() plt.rcParams['savefig.facecolor'] = "1." plt.rc('text', usetex=True) plt.rc('font', family='serif', size='11') # Probability Density arr[np.where(arr==0.)] = np.nan im = plt.imshow(arr, interpolation='None', origin='lower', extent=[0,2.5,-1,3]) plt.colorbar(im) if peak > 0: im.set_clim(vmin=0, vmax=peak) # q0 Lines rot = 27.5 # Degrees plt.plot([0.0, 2.5],[-0.5,0.8], 'w--') plt.plot([0.0, 2.5],[0.0, 1.3], 'w--') plt.plot([0.0, 2.5],[0.5, 1.8], 'w--') plt.text(2.00, 0.80, '$q_0=-0.5$', rotation=rot, color='w') plt.text(2.00, 1.30, '$q_0=0.0$', rotation=rot, color='w') plt.text(2.00, 1.80, '$q_0=0.5$', rotation=rot, color='w') plt.text(1.25, 0.85, '$\mathrm{Decelerating}$', rotation=rot, color='w') plt.text(1.25, 1.03, '$\mathrm{Accelerating}$', rotation=rot, color='w') # Omega_tot Line rot = -46.5 # Degrees plt.plot([0.0, 2.0],[1.0, -1.0], 'w-') plt.text(1.70, -0.70, '$\Omega_\mathrm{tot}=1$',rotation=rot, color='w') plt.text(1.20, -0.37, '$\mathrm{Open}$', rotation=rot, color='w') plt.text(1.20, -0.20, '$\mathrm{Closed}$', rotation=rot, color='w') # Omega_Lambda=0 Line rot = 5 # Degrees plt.plot([0.0, 2.5],[0.0, 0.0], 'w:') plt.plot([0.0, 1.35, 1.8, 2.5],[0.0, 0.0, 0.02, 0.11], 'w-') plt.text(2.10, -0.12, '$\Omega_\mathrm{\Lambda}=0$', color='w') plt.text(1.40, -0.08, '$\mathrm{Recollapes}$', rotation=rot, color='w') plt.text(1.40, 0.13, '$\mathrm{Expands \, to \, Infinity}$', rotation=rot, color='w') # No Big Bang plt.text(0.10, 2.75, '$\mathrm{No \, Big \, Bang}$', rotation=65) # Tick Label Size plt.xticks(size=15) plt.yticks(size=15) if prob_tag in fname: h0 = re.findall('[-+]?\d+[\.]?\d*', fname)[-1] print '\t', fname, '\t', np.max(arr[~np.isnan(arr)]), '\t', np.sum(arr[~np.isnan(arr)]) plt.title('$H_0 = %s$' % h0, fontsize=20) plt.xlabel('$\Omega_\mathrm{M}$', fontsize=20) plt.ylabel('$\Omega_\Lambda$', fontsize=20) plt.savefig(fname, bbox_inches='tight') Nr = 4 Nc = 5 fig = figure() cax = fig.add_axes([0.2, 0.08, 0.6, 0.04]) w = 0.4 h = 0.22 ax = [] images = [] vmax = -1. num = 0 for i in range(Nr): for j in range(Nc): pos = [0.075 + j*1.1*w, 0.18 + i*1.2*h, w, h] a = fig.add_axes(pos) if i > 0: a.set_xticklabels([]) # Make some fake data with a range that varies # somewhat from one plot to the next. data = np.genfromtxt(file[num]) dd = ravel(data) # Manually find the max of all colors for # use in setting the color scale. vmax = max(vmax, amax(dd)) images.append(a.imshow(data, interpolation='None', origin='lower', extent=[0,2.5,-1,3])) ax.append(a) num += 1 # Set the first image as the master, with all the others # observing it for changes in cmap or norm. norm = colors.Normalize(vmin=vmin, vmax=vmax) for i, im in enumerate(images): im.set_norm(norm) if i > 0: images[0].callbacksSM.connect('changed', ImageFollower(im)) # The colorbar is also based on this master image. fig.colorbar(images[0], cax, orientation='horizontal') ################################################################################ def main(): global prob_tag, plot_ext dir = 'fine_h0_resolution/' # All files to be in directory dir text_ext = '.txt' # Any data/text file to be saved with extention text_ext plot_ext = '.0.png' # Any plots to be saved with extension plot_ext mov_ext = '.gif' prob_tag = 'prob_' # All prob. dist. to start with prefix prob_tag # Assumes file located in dir & named with prefix cs_tag & extension text_ext # Assumes information on z-, m- bin #, and h0 value in filename (in order) # e.g. 'chisq_z1_m1_h70.txt' # Code currently breaks if h0 is a non-integer value. prob_list = sorted(g.glob(os.path.join(dir, prob_tag + '*' + text_ext))) z, m, h0 = np.transpose(np.array([re.findall('[-+]?\d+[\.]?\d*', os.path.basename(f)) \ for f in prob_list])) # Iterate through every redshift, stellar mass bin for z_param in np.unique(z): for m_param in np.unique(m): print '\nz: ', z_param, ';\t m: ', m_param, '\n' index = np.where((z_param==z) * (m_param==m) == True)[0] # Iterate through every chisq file for num, file in enumerate([prob_list[i] for i in index]): # Normalize P(H0 | mu_0) h0_path = os.path.join(dir, h0_tag + 'z' + z_param + '_m' + m_param + text_ext) h0_plot = h0_path.replace(text_ext, plot_ext) h0_prob, h0_factor = normalize(np.array(h0_prob)) np.savetxt(h0_path, h0_prob) plot_H0(h0[index], h0_prob, h0_plot) #""" # Create 3D normalized cubes prob = np.array(OmOL_prob) norm = np.sum(prob[~np.isnan(prob)]) peak_value = np.max(prob[~np.isnan(prob)]/norm) print 'Prob Sum:\t', norm print 'Peak Value:\t', peak_value, '\n' for num, frame in enumerate(OmOL_prob): np.savetxt(prob_list[num], frame/norm) plot_OM_OL(frame/norm, plot_list[num], peak_value) #""" # Normalize P(Omega_M, Omega_Lambda | mu_0) OM_OL_path = os.path.join(dir, om_ol_tag + 'z' + z_param + '_m' + m_param + text_ext) OM_path = os.path.join(dir, om_tag + 'z' + z_param + '_m' + m_param + text_ext) OL_path = os.path.join(dir, ol_tag + 'z' + z_param + '_m' + m_param + text_ext) OM_OL_plot = OM_OL_path.replace(text_ext, plot_ext) OM_OL_prob, fac = normalize(np.array(OM_OL_prob)) np.savetxt(OM_OL_path, OM_OL_prob) plot_OM_OL(OM_OL_prob, OM_OL_plot) OM_OL_prob[np.isnan(OM_OL_prob)]=0. np.savetxt(OM_path, np.sum(OM_OL_prob, axis=0)) np.savetxt(OL_path, np.sum(OM_OL_prob, axis=1)) # Movie Iterating through different H0 in each z,m-bin imlist = os.path.join(dir, prob_tag + 'z' + z_param + '_m' \ + m_param + '_h*' + plot_ext) mov = imlist.replace(plot_ext, mov_ext).replace('_h*','') run('convert -delay 05x100 %s %s' % (imlist, mov)) ################################################################################ if __name__ == "__main__": main() ################################################################################ ```
{ "source": "jkadowaki/paper_plots", "score": 3 }
#### File: redshift_paper/code/high_spin_halos2.py ```python import sys sys.path.append("../code") from read_data import read_data import matplotlib.cm as cm from matplotlib.lines import Line2D import matplotlib.pyplot as plt import numpy as np from scipy import stats # Set matplotlib to use LaTeX font = {'size': 20} plt.rc('text', usetex=True) plt.rc('font', **font) ################################################################################ def best_fit(x, m, b): return m * x + b ################################################################################ def mag_vs_re(df, fname='mag_vs_re.pdf'): slope, intercept, r_value, p_value, std_err = stats.linregress(df["Mr"], df["Re"]) if fname: label = f"$R_e = {slope:.3f} M_r + {intercept:.3f}$" if intercept>0 else \ f"$R_e = {slope:.3f} M_r {intercept:.3f}$" fig = plt.figure(figsize=(5,5)) plt.scatter(df["Mr"], df["Re"], marker='.', s=5) plt.plot( [min(df["Mr"]), max(df["Mr"])], [best_fit(min(df["Mr"]), slope, intercept), best_fit(max(df["Mr"]), slope, intercept)], c='r', label=label) plt.xlim(-13.75,-17.5) plt.ylim( 1, 6.5) plt.xlabel(r"$M_r \, \mathrm{(mag)}$") plt.ylabel(r"$R_e \, \mathrm{(kpc)}$") plt.legend(loc='upper left', fontsize=12) plt.savefig(fname, bbox_inches='tight') plt.close() print("\nStarndarization Formula: " + label) return slope, intercept ################################################################################ def stellar_mass(gr_color, M_r): M_sun = 4.65 # Willmer, 2018, ApJS, 236, 47 L_r = 10**(0.4 * (M_sun - M_r)) # Solar Luminosity return L_r * 10**(1.629 * gr_color - 0.792) def axisratio_vs_re(df, select=None, bins=4, standardized=True, fname='ar_vs_re.pdf', mag_vs_re_fname=None): # Format Scientific Notation def format_scinot(num, precision=2): exponent = int(np.floor(np.log10(num))) factor = round(num/10**exponent, precision) return r"{0:.2f} \times 10^{1}".format(factor, exponent) re = "new_Re" if standardized else "Re" xlabel = r"$r'_e$" if standardized else r"$r_e \, (\mathrm{kpc})$" # Standardized Radius + Stellar Mass m, b = mag_vs_re(df, fname=mag_vs_re_fname) # Regression Parameters bins = 1 if standardized else bins # Number of Bins df["new_Re"] = df["Re"] / best_fit(df["Mr"], m, b) # Standardized Re df_high = df.loc[ df["Density"] == "High" ].sort_values("Re", ascending=False) df_low = df.loc[ df["Density"] == "Low" ].sort_values("Re", ascending=False) # Create Figure fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(8,8)) size_range = np.array([min(df[re]), max(df[re])]) ar_range = np.array([0.3,1]) plt.subplots_adjust(hspace=0.1) # Plot data ax1.scatter(df_high[re], df_high["b/a"], color='green', ec='k', marker='^', s=20*df_high["Re"]**2, lw=[1 if size<3.5 else 2.5 for size in df_high["Re"]] ) ax2.scatter(df_low[re], df_low["b/a"], color='orange', ec='k', marker='o', s=20*df_low["Re"]**2, lw=[1 if size<3.5 else 2.5 for size in df_low["Re"]] ) # Plot regression for ax, df_env in ((ax1, df_high), (ax2, df_low)): slope, intercept, r_value, p_value, std_err = stats.linregress(df_env[re], df_env["b/a"]) expectation = best_fit(size_range, slope, intercept) if p_value < 0.05: ax.plot(size_range, expectation, c='green') print("\n\nEnvironment: ", df_env["Density"].iloc[0]) print("y = m x + b: <b/a> =", slope, "r'e +", intercept) print("Corr Coeff : r =", r_value) print("P-value: p =", p_value) print("Standard Dev: d =", std_err, "\n") print(df_env[["NAME", "Re", re, "b/a"]]) # Set Limits ax1.set_ylim(ar_range) ax2.set_ylim(ar_range) ax2.set_xlim(0.6, 1.6) # Set Axis Labels ax2.set_xlabel(xlabel, fontsize=24) ax1.set_ylabel(r"$b/a$", fontsize=24) ax2.set_ylabel(r"$b/a$", fontsize=24) # Unique Markers in Legend Only (Uses Markers w/o Bold Outline) legend_elements = [ Line2D( [0], [0], marker='^', color='g', mec='k', lw=1, label=r"$\mathrm{High}$", markersize=np.sqrt(20*1.5**2)), Line2D( [0], [0], marker='o', color='orange', mec='k', lw=0, label=r"$\mathrm{Low}$", markersize=np.sqrt(20*1.5**2)) ] plt.legend(handles=legend_elements, title=r"$\mathrm{Environment \, Density}$", bbox_to_anchor=(0.7, -0.25), fontsize=14, fancybox=True, shadow=True, ncol=2) # Save Figure plt.savefig(fname, bbox_inches='tight') plt.close() ################################################################################ if __name__ == "__main__": df = read_data("../data/kadowaki2019.tsv") df = df.loc[df["Re"]<9.0] axisratio_vs_re(df, select=None, standardized=True, fname='../plots/ar_vs_re.pdf', mag_vs_re_fname='../plots/mag_vs_re.pdf') ``` #### File: redshift_paper/code/high_spin_halos.py ```python import sys sys.path.append("../code") from read_data import read_data import matplotlib.cm as cm import matplotlib.pyplot as plt import numpy as np from scipy import stats # Set matplotlib to use LaTeX font = {'size': 20} plt.rc('text', usetex=True) plt.rc('font', **font) ################################################################################ def best_fit(x, m, b): return m * x + b ################################################################################ def mag_vs_re(df, fname='mag_vs_re.pdf'): slope, intercept, r_value, p_value, std_err = stats.linregress(df["Mr"], df["Re"]) if fname: label = f"$R_e = {slope:.3f} M_r + {intercept:.3f}$" if intercept>0 else \ f"$R_e = {slope:.3f} M_r {intercept:.3f}$" fig = plt.figure(figsize=(5,5)) plt.scatter(df["Mr"], df["Re"], marker='.', s=5) plt.plot( [min(df["Mr"]), max(df["Mr"])], [best_fit(min(df["Mr"]), slope, intercept), best_fit(max(df["Mr"]), slope, intercept)], c='r', label=label) plt.xlim(-13.75,-17.5) plt.ylim( 1, 6.5) plt.xlabel(r"$M_r \, \mathrm{(mag)}$") plt.ylabel(r"$R_e \, \mathrm{(kpc)}$") plt.legend(loc='upper left', fontsize=12) plt.savefig(fname, bbox_inches='tight') plt.close() print("\nStarndarization Formula:" + label) return slope, intercept ################################################################################ def stellar_mass(gr_color, M_r): M_sun = 4.65 # Willmer, 2018, ApJS, 236, 47 L_r = 10**(0.4 * (M_sun - M_r)) # Solar Luminosity return L_r * 10**(1.629 * gr_color - 0.792) def axisratio_vs_re(df, select=None, bins=5, standardized=True, fname='ar_vs_re.pdf', mag_vs_re_fname=None): # Format Scientific Notation def format_scinot(num, precision=2): exponent = int(np.floor(np.log10(num))) factor = round(num/10**exponent, precision) return r"{0:.2f} \times 10^{1}".format(factor, exponent) re = "new_Re" if standardized else "Re" xlabel = r"$\mathrm{Standardized} \, R_e$" if standardized else r"$R_e \, (\mathrm{kpc})$" # Standardized Radius + Stellar Mass m, b = mag_vs_re(df, fname=mag_vs_re_fname) # Regression Parameters bins = 1 if standardized else bins # Number of Bins df["new_Re"] = df["Re"] / best_fit(df["Mr"], m, b) # Standardized Re df["M_star"] = stellar_mass(df["g-r"], df["Mr"]) # Stellar Mass df["color"] = ['g' if obj=="High" else 'orange' for obj in df["Density"]] df["marker"] = ['^' if obj=="High" else 'o' for obj in df["Density"]] # Compute Stellar Mass Bounds min_mass = int(np.floor(np.log10(min(df["M_star"])))) # Lower Limit max_mass = int(np.ceil(np.log10(max(df["M_star"])))) # Upper Limit bin_edge = np.logspace(min_mass, max_mass, bins+1) # Bounds colors = cm.rainbow(np.linspace(0, 1, bins)) # Colors print("Bins:", bins, bin_edge) # Create Figure fig, ax = plt.subplots(figsize=(8,8)) size_range = np.array([min(df[re]), max(df[re])]) ar_range = np.array([0.3,1]) # Iterate through all bins & plot with respective format for idx in range(bins): # Select appropriate data frame print(f"\n\nBin {idx}: {bin_edge[idx]:.2e} to {bin_edge[idx+1]:.2e}") #try: df_select = df.loc[ (df["M_star"] < bin_edge[idx+1]) & (df["M_star"] >= bin_edge[idx])] print(df_select) # Plot individual data for index, udg in df_select .iterrows(): label = r"$\mathrm{{{0}}}$".format(udg["Density"]) if standardized else \ r"${0} \leq M_* < {1}$".format( format_scinot(bin_edge[idx], 2), format_scinot(bin_edge[idx+1],2) ) ax.scatter( udg[re], udg["b/a"], color=udg["color"] if standardized else colors[idx], marker=udg["marker"], label=label) # Plot regression for df_env in (df.loc[df["Density"]=="High"], df.loc[df["Density"]=="Low"]): slope, intercept, r_value, p_value, std_err = stats.linregress(df_env[re], df_env["b/a"]) expectation = best_fit(size_range, slope, intercept) ax.plot(size_range, expectation, c=df_env.iloc[0]["color"] if standardized else colors[idx]) #except: # print("No objects in this bin.") # Set Limits ax.set_ylim(ar_range) # Set Axis Labels ax.set_xlabel(xlabel, fontsize=24) ax.set_ylabel(r"$b/a$", fontsize=24) # Unique Markers in Legend Only (Uses Markers w/o Bold Outline) handles, labels = ax.get_legend_handles_labels() unique_index = [labels.index(l) for l in set(labels)] unique = [(h,l) for i, (h,l) in enumerate(zip(handles, labels)) if i in unique_index] if standardized: ax.legend(*zip(*unique), title=r"$\mathrm{Environment \, Density}$", loc='lower right', fontsize=14, fancybox=True, shadow=True) else: ax.legend(*zip(*unique), title=r"$\mathrm{Stellar \, Mass}$", bbox_to_anchor=(0.5, -0.125), fontsize=14, fancybox=True, shadow=True, ncol=2) # Save Figure plt.savefig(fname, bbox_inches='tight') plt.close() ################################################################################ if __name__ == "__main__": df = read_data("../data/kadowaki2019.tsv") df = df.loc[df["Re"]<9.0] axisratio_vs_re(df, select=None, bins=4, standardized=True, fname='../plots/ar_vs_re.pdf', mag_vs_re_fname='../plots/mag_vs_re.pdf') ``` #### File: redshift_paper/code/pair_plot.py ```python from __future__ import print_function import warnings warnings.simplefilter("ignore", UserWarning) warnings.filterwarnings("ignore", category=UserWarning) import matplotlib.pyplot as plt plt.rc('text', usetex=True) import numpy as np import os import pandas as pd from scipy import stats import seaborn as sns import sys sys.path.append('../code') from read_data import read_data # GLOBAL VARIABLES hist_color = 'Green' hist_idx = -1 ################################################################################ """ PAIR_PLOT.py Goal: Creates Methods: (1) (2) (3) """ ################################################################################ def change_color(three_colors=False): global hist_color if not three_colors: if hist_color == 'Orange': hist_color = 'Green' else: hist_color = 'Orange' else: if hist_color == 'Green': hist_color = 'Orange' elif hist_color == 'Orange': hist_color = 'Blue' else: hist_color = 'Green' ################################################################################ def get_label_color_marker(df, efeat="LocalEnv"): # Local Environment if efeat == "LocalEnv": label = [ r'$\mathrm{Dense}$' if val=='Dense' else \ r'$\mathrm{Sparse}$' if val=='Sparse' else \ r'$\mathrm{Unconstrained}$' for val in df[efeat] ] color = [ 'lime' if val=='Dense' else \ 'orange' if val=='Sparse' else \ 'blue' for val in df[efeat] ] marker = [ '^' if val=='Dense' else \ 'o' if val=='Sparse' else \ 'x' for val in df[efeat] ] legend_title = r"$\mathrm{Local \, Environment}$" # Global/Cluster Environment elif efeat == "GlobalEnv": label = [ r'$\mathrm{Cluster}$' if val=='Cluster' else \ r'$\mathrm{Non}$-$\mathrm{Cluster}$' if val=='Non-Cluster' else \ r'$\mathrm{Unconstrained}$' for val in df[efeat] ] color = [ 'lime' if val=='Cluster' else \ 'orange' if val=='Non-Cluster' else \ 'blue' for val in df[efeat] ] marker = [ '^' if val=='Cluster' else \ 'o' if val=='Non-Cluster' else \ 'x' for val in df[efeat] ] legend_title = r"$\mathrm{Coma \, Membership}$" # Environment Density elif efeat == "Density": label = [ r'$\mathrm{High}$' if val=='High' else \ r'$\mathrm{Low}$' if val=='Low' else \ r'$\mathrm{Unconstrained}$' for val in df[efeat] ] color = [ 'lime' if val=='High' else \ 'orange' if val=='Low' else \ 'blue' for val in df[efeat] ] marker = [ '^' if val=='High' else \ 'o' if val=='Low' else \ 'x' for val in df[efeat] ] legend_title = r"$\mathrm{Density}$" else: label = [None] * len(df) color = ['b'] * len(df) marker = ['x'] * len(df) legend_title = None return label, color, marker, legend_title ################################################################################ def color_plots(df, xfeat, yfeat, efeat="GlobalEnv", mfeat="Re", flag="UV", plot_fname='color.pdf'): """ Creates color-color or color-magnitude plots. df (DataFrame) xfeat (str): Color or Magnitude Feature yfeat (str): Color or Magnitude Feature efeat (str): Environment Feature (i.e., 'LocalEnv' or 'GlobalEnv') mfeat (str): Feature to base Marker Size flag (str): Feature to Specify Detection ("Yes") or Upper Limit ("No") plot_fname (str): Filename of Plot """ # Remove NaNs & Sorts Data to Plot Big Markers First df = df[[xfeat, yfeat, mfeat, efeat, flag]].dropna() df = df.sort_values(by=[mfeat], ascending=False) # Select Legend Labels, Marker Sizes & Colors & Shapes small_thres = 1.5 # kpc large_thres = 3.5 # kpc fontsize = 30 marker_size = 40 marker_edge = 'k' thin_line = 0.3 thick_line = 2.25 label, color, marker, legend_title = get_label_color_marker(df, efeat) # Scatter Plot fig = plt.figure(figsize=(12,9)) ax = fig.add_subplot(111) for idx in range(len(df)): if df[flag].iloc[idx] == "No" and 'Mnuv' in yfeat: plt.arrow( df[xfeat].iloc[idx], df[yfeat].iloc[idx], # Dictates Arrow Size/End point dx=0, dy=-df[mfeat].iloc[idx]/max(df[mfeat]), color = color[idx], head_width = (df[mfeat].iloc[idx]/10)**2, # Add Bold Outline around `mfeat` Values above `large_thres` linewidth=thick_line if df[mfeat].iloc[idx]>large_thres else thin_line ) else: plt.scatter( df[xfeat].iloc[idx], df[yfeat].iloc[idx], label = label[idx], color = color[idx], marker = marker[idx], # Marker Radius Scales Linearly with `mfeat` Value s = marker_size * (df[mfeat].iloc[idx])**2, edgecolors=marker_edge, # Add Bold Outline around `mfeat` Values above `large_thres` linewidth=thick_line if df[mfeat].iloc[idx]>large_thres else thin_line ) plt.tick_params(which='both', direction='in', pad=10, labelsize=fontsize) plt.minorticks_on() xlabel = xfeat.replace('Mnuv','M_\mathrm{NUV}') plt.xlabel(('$' if '-' in xlabel else '$M_') + xlabel +'$', fontsize=fontsize) plt.ylabel('$'+ yfeat.replace('Mnuv','M_\mathrm{NUV}') +'$', fontsize=fontsize) plt.legend(title=legend_title) # Unique Markers in Legend Only (Uses Markers w/o Bold Outline) handles, labels = ax.get_legend_handles_labels() handles = handles[::-1] labels = labels[::-1] unique = [ (h, l) for i, (h, l) in enumerate(zip(handles, labels)) \ if l not in labels[:i] ] legend = ax.legend( *zip(*unique), loc='lower right', prop={'size':22}, title_fontsize=24, fancybox=True, frameon=True, title=legend_title ) #legend.set_title(fontsize=24) # Set Marker Size in Legend to `small_thres` Size for legend_handle in legend.legendHandles: legend_handle._sizes = [marker_size * small_thres**2] # Sets Axes Line Width for axis in ['top','bottom','left','right']: ax.spines[axis].set_linewidth(1) # Removes Border Whitespace & Save plt.tight_layout() plt.savefig(plot_fname, format='pdf') plt.close() ################################################################################ def main(data_file='kadowaki2019.tsv', data_directory='../data', plot_directory='../plots', pair_name='pair.pdf', color_name=True, plot_pair=False, udg_only=False, local_env=True, density=False, verbose=False, hack_color_fix=False): """ Args: (str) data_directory: (str) plot_directory: (str) (bool) update_dat_file: """ ############################################################################ # Data File param_file = os.path.join(data_directory, data_file) prefix = ('udgs' if udg_only else 'candidates') + '_' + \ ('density' if density else ('local' if local_env else 'global')) + '_' # Save to Plots pair_plot = os.path.join(plot_directory, prefix + pair_name) three_colors = not udg_only and local_env global hist_color if three_colors: hist_color = 'Green' else: if hack_color_fix: change_color(three_colors=three_colors) ############################################################################ df_results = read_data(param_file, udg_only=udg_only, field='Coma') efeat = 'Density' if density else ('LocalEnv' if local_env else 'GlobalEnv') df_results = df_results.sort_values(by=[efeat]) df_results = df_results.reset_index(drop=True) ############################################################################ if color_name: color_features = ["NUV-r", "g-r", "g-z"] mag_features = ["Mz"] for idx1,color in enumerate(color_features): # Color-Magnitude Plots for mag in mag_features: if mag not in color: # File Name cm_fname = os.path.join(plot_directory, prefix + color + "_" + mag + ".pdf") # Plot color_plots(df_results, xfeat=mag, yfeat=color, efeat=efeat, mfeat="Re", flag="UV", plot_fname=cm_fname) # Color-Color Plots for idx2,color2 in enumerate(color_features): if (idx1 < idx2) and all([c not in color2 for c in color.split('-')]): # File Name cc_fname = os.path.join(plot_directory, prefix + color + "_" + color2 + ".pdf") # Plot color_plots(df_results, xfeat=color2, yfeat=color, efeat=efeat, mfeat="Re", flag="UV", plot_fname= cc_fname) ############################################################################ def remove_nan(args, verbose=False): nan_idx = np.array([]) for a in args: # Ensures All List-like Data Structures are Pandas Series if type(a) == np.ndarray: a = pd.Series(a) if verbose: print("\t", a.name) # Appends All Indices Corresponding to NaNs nan_idx = np.concatenate((nan_idx, a[pd.isna(a)].index.values)) if verbose: print(nan_idx) # Stores Arguments with NaNs Removed new_args = [] for a in args: # Ensures All List-like Data Structures are Pandas Series if type(a) == np.ndarray: a = pd.Series(a) new_args.append( a.drop(nan_idx, errors="ignore") ) return new_args ############################################################################ def remove_repeating_lists(args, verbose=False): new_args = [] for a in args: if np.size(np.unique(a)) > 1: new_args.append(a) if verbose: print(new_args) return new_args ############################################################################ def hist(*args, **kwargs): if verbose: print("\nhist") new_args = remove_repeating_lists(remove_nan(args, verbose=verbose), verbose=verbose) large_args = [] min_y, max_y = 9999999, -9999999 for a in new_args: if len(a) > 4: large_args.append(a) if min(a) < min_y: min_y = min(a) if max(a) > max_y: max_y = max(a) if verbose: print(large_args) if len(large_args): hist_bins = np.linspace(min(a), max(a), 6) dist = sns.distplot(*large_args, rug=True, kde=True, hist=False, norm_hist=True, color=hist_color, bins=hist_bins) sns.distplot(*large_args, kde=False, hist=True, norm_hist=True, color=hist_color, bins=hist_bins) axes = dist.axes hist_val = np.histogram(*large_args, bins=hist_bins, density=True)[0] ylimit = np.max(hist_val) curr_ylim = axes.get_ylim()[1] if curr_ylim > 5*ylimit or ylimit > curr_ylim: axes.set_ylim(0, ylimit/0.8) axes.xaxis.set_tick_params(labelsize=50) axes.yaxis.set_tick_params(labelsize=50) change_color(three_colors = not udg_only and local_env) ############################################################################ def scatter(*args,**kwargs): plt.scatter(*args, **kwargs, s=24, edgecolor='k', linewidth=0.1) ############################################################################ if plot_pair: sns.set(style="ticks", color_codes=True) features = ["sepMpc", "MUg0", "Mg", "g-r", "Re", "b/a", "n", efeat] markers = ['^', 'o'] if not three_colors else ['^', 'o', 'x'] col_list = ['lime', 'Orange'] if not three_colors else ['lime', 'Orange', 'Blue' ] cmap_list = ['Greens', 'Oranges'] if not three_colors else ['Greens', 'Oranges', 'Blues'] env_list = sorted(df_results[efeat].unique()) col_dict = dict(zip(env_list, col_list)) cmap_dict = dict(zip(env_list, cmap_list)) ax = sns.PairGrid(data=df_results[features], hue=efeat , palette=col_dict, diag_sharey=False, hue_kws={"marker":markers}) ############################################################################ def contours(*args,**kwargs): if verbose: print("\ncontours") new_args = remove_repeating_lists(remove_nan(args, verbose=verbose), verbose=verbose) if len(new_args) > 1: print(df_results[efeat]) idx = args[0].index.values[0] label = df_results[efeat].iloc[idx] cmap = cmap_dict.get(label) if verbose: print(idx, label, cmap) if idx != 1: # Exclude Unconstrained sns.kdeplot(*new_args, cmap=cmap, shade_lowest=True) ############################################################################ ax.map_diag(hist) ax.map_lower(contours) ax.map_upper(scatter) # LEGEND LABELS if density: env_replacements = {'High':r"$\mathrm{High}$", 'Low':r"$\mathrm{Low}$"} elif local_env: env_replacements = {'Dense':r"$\mathrm{Dense}$", 'Sparse':r"$\mathrm{Sparse}$"} else: env_replacements = {'Cluster':r"$\mathrm{Cluster}$", 'Non-Cluster':r"$\mathrm{Non}$-$\mathrm{Cluster}$"} if not udg_only: env_replacements["Unconstrained"] = r"$\mathrm{Unconstrained}$" # Replace Current Labels for LaTeX Labels labels = [env_replacements[env_label] for env_label in ax._legend_data.keys()] # LEGEND HANDLES handles = ax._legend_data.values() # ADD LEGEND & Fix Placement ax.fig.legend(handles=handles, labels=labels, loc='lower center', ncol=3, fontsize=15, frameon=True, edgecolor='k', markerscale=2.5, shadow=True, title=r"$\mathrm{Environment \, Density}$" if density else \ r"$\mathrm{Local \, Environment}$" if local_env else \ r"$\mathrm{Coma \, Membership}$", title_fontsize=20) ax.fig.subplots_adjust(top=1.05, bottom=0.12) # AXIS LABELS replacements = { # Magnitudes "Mnuv":r'$M_\mathrm{NUV}$', "Mg":r'$M_g$', "Mr":r'$M_r$', "Mz":r'$M_z$', # Colors "NUV-g":r'$\mathrm{NUV} - g$', "g-r":r'$g - r$', "r-z":r'$r - z$', # Intrinsic Properties "n":r'$n$', "Re":r'$r_e \, \left( \mathrm{kpc} \right)$', "MUg0":r'$\mu \left(g,0\right) \, \left( \mathrm{mag} \, \mathrm{arcsec}^{-2} \right)$', "b/a":r'$b/a$', # Extrinsic Properties "cz":r'$cz \, \left( \mathrm{km/s} \right)$', "sepMpc":r'$r_\mathrm{proj} \, \left( \mathrm{Mpc} \right)$', "NUM500":r'$\mathrm{\# \, of \, Massive \, Companions}$' } for x_idx in range(len(features)-1): for y_idx in range(len(features)-1): ax.axes[x_idx][y_idx].tick_params(labelsize=15) xlabel = ax.axes[x_idx][y_idx].get_xlabel() ylabel = ax.axes[x_idx][y_idx].get_ylabel() if xlabel in replacements.keys(): ax.axes[x_idx][y_idx].set_xlabel(replacements[xlabel], fontsize=20) if ylabel in replacements.keys(): ax.axes[x_idx][y_idx].set_ylabel(replacements[ylabel], fontsize=20) # Save & Display Figure plt.savefig(pair_plot, bbox_inches = 'tight') plt.close() ################################################################################ if __name__ == '__main__': print("\n----------------- ALL CANDIDATES -----------------") print("\n~~~~~LOCAL~~~~~~") main(plot_pair=True, color_name=True, udg_only=False, local_env=True, verbose=False, hack_color_fix=True) print("\n~~~~~~GLOBAL~~~~~~") main(plot_pair=True, color_name=True, udg_only=False, local_env=False, hack_color_fix=False) print("\n~~~~~~DENSITY~~~~~~") main(plot_pair=True, color_name=True, udg_only=False, local_env=False, density=True, hack_color_fix=False) print("\n-------------------- ALL UDGS --------------------") print("\n~~~~~~LOCAL~~~~~~") main(plot_pair=True, color_name=True, udg_only=True, local_env=True, hack_color_fix=False) print("\n~~~~~~GLOBAL~~~~~~") main(plot_pair=True, color_name=True, udg_only=True, local_env=False, hack_color_fix=False) print("\n~~~~~~DENSITY~~~~~~") main(plot_pair=True, color_name=True, udg_only=True, local_env=False, density=True, hack_color_fix=False) ```
{ "source": "jkadowaki/SemEval2018", "score": 3 }
#### File: jkadowaki/SemEval2018/nn.py ```python from sklearn.metrics import jaccard_similarity_score, f1_score, fbeta_score import pandas as pd from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences from keras.optimizers import Adam from keras.layers import Dense, Embedding, LSTM, Bidirectional, TimeDistributed, SpatialDropout1D, GRU, GlobalMaxPool1D, SimpleRNN from keras.models import Sequential from keras.layers.normalization import BatchNormalization from keras.callbacks import Callback, EarlyStopping, ModelCheckpoint, TensorBoard import numpy as np import warnings warnings.filterwarnings('ignore') ################################################################################ emotions = ["anger", "anticipation", "disgust", "fear", "joy", "love", "optimism", "pessimism", "sadness", "surprise", "trust"] emotion_to_int = {"0": 0, "1": 1, "NONE": 0.0} tweet = "Tweet" ################################################################################ def split_xy(train_data, test_data): """ Splits dataset into tokens & labels and computers the vocabulary size and the padded sequence size. param data: (dataframe) Labelled Training or Testing set returns: Sequence of Tokens, Labels, Sequence Length, Vocabular Size """ # Split the dataset into feature and labels train_X = train_data[tweet] train_Y = train_data[emotions] test_X = test_data[tweet] test_Y = test_data[emotions] # Define Tokens all_X = pd.concat([train_X, test_X]) tokenizer = Tokenizer(split=' ') tokenizer.fit_on_texts(all_X) # Convert Tweets to Token Sequence train_token = tokenizer.texts_to_sequences(train_X) test_token = tokenizer.texts_to_sequences(test_X) # Compute Sequence Size & Vocabulary Size maxlen = max([len(x.split()) for x in all_X]) vocab_size = len(tokenizer.word_index) + 1 # Pad Token Sequences train_padded = pad_sequences(train_token, maxlen=maxlen) test_padded = pad_sequences(test_token, maxlen=maxlen) return train_padded, train_Y, test_padded, test_Y, maxlen, vocab_size ################################################################################ def lstm_model(vocab_size=2000, input_length=32): ############# HYPER-PARAMETER TUNING ############# # LSTM Parameters embed_dim = 128 lstm_units = 64 lstm2_units = 64 s_dropout = 0.0 #0.1 dropout = 0.0 #0.1 recurrent_dropout = 0.0 #0.1 # Activation, Cost, Optimization, Metrics Parameters activation = 'sigmoid' loss = 'binary_crossentropy' optimizer = 'adam' metrics = ['accuracy'] #################################################### model = Sequential() model.add( Embedding(vocab_size, embed_dim, input_length=input_length, mask_zero=True)) model.add(BatchNormalization()) model.add( Bidirectional( GRU(lstm_units, dropout=dropout, recurrent_dropout=recurrent_dropout, return_sequences=True ) )) model.add( Bidirectional( GRU(lstm2_units, dropout=dropout, recurrent_dropout=recurrent_dropout) )) model.add(Dense(len(emotions), activation=activation)) model.compile(loss=loss, optimizer=optimizer, metrics=metrics) # Tracks all Callbacks callbacks = [] # Saves Best Model Parameters checkpointer = ModelCheckpoint(filepath='/tmp/weights.hdf5', verbose=1, save_best_only=True) callbacks.append(checkpointer) # Returns LSTM Model & Best Model Parameters return model, {'callbacks': callbacks} ################################################################################ def train_and_predict(train_data: pd.DataFrame, test_data: pd.DataFrame) -> pd.DataFrame: ##### HYPER-PARAMETER TUNING ##### # Model Fitting Parameters epochs = 1 batch_size = 4 threshold = 0.331 #################################### # Split Features/Labels & Compute Sequence Length + Size of Vocabulary train_X, train_Y, test_X, test_Y, train_maxlen, train_vocab_size = split_xy(train_data, test_data) # Bidirectional LSTM Model model, params = lstm_model(vocab_size=train_vocab_size, input_length=train_maxlen) # Fit Model history = model.fit(train_X, train_Y, epochs=epochs, batch_size=batch_size, verbose=2, #validation_data=(test_X, test_Y), shuffle=True, **params) # Make Predictions for the Dev Set test_predictions = (1-threshold + model.predict(test_X)) # Saves a Copy of the Original Probabilities test_prob = test_data.copy() test_prob[emotions] = test_predictions # Classifies Each Run on the Dev Set test_predictions = test_data.copy() test_predictions[emotions] = test_prob[emotions].astype(int) return test_prob, test_predictions ################################################################################ def print_metrics(df1, df2): sim = jaccard_similarity_score(df1, df2) f1_micro = f1_score(df1, df2, average='micro') f1_macro = f1_score(df1, df2, average='macro') print("\taccuracy: {:.4f}".format(sim), "\t", "f1-micro: {:.4f}".format(f1_micro), "\t", "f1-macro: {:.4f}".format(f1_macro)) return sim ################################################################################ if __name__ == "__main__": # reads train and dev data into Pandas data frames read_csv_kwargs = dict(sep="\t", converters={e: emotion_to_int.get for e in emotions}) train_data = pd.read_csv("2018-E-c-En-train.txt", **read_csv_kwargs) test_data = pd.read_csv("2018-E-c-En-test.txt", **read_csv_kwargs) # Number of Times to Run the Prediction Algorithm num_predictions = 5 num_models = 0 for num_models in range(num_predictions): # Makes Predictions on Each Run of the Dev Set print("\n\nModel {0}:".format(num_models)) tprob, tpred = train_and_predict(train_data, test_data) tsim = print_metrics(test_data[emotions], tpred[emotions]) if num_models==0: #dev_predictions = dprob.copy() test_predictions = tprob.copy() else: #dev_predictions[emotions] += dprob[emotions] test_predictions[emotions] += tprob[emotions] """ print("Current Dev Ensemble Metrics:") temp1 = (dev_predictions[emotions]/(num_models+1)).astype(int) score = print_metrics(dev_data[emotions], temp1[emotions]) print("Current Test Ensemble Metrics:") temp2 = (test_predictions[emotions]/(num_models+1)).astype(int) print_metrics(test_data[emotions], temp2[emotions]) """ # Final Prediction Based on Multiple Runs # Reduces Run-to-Run Variations & Improves Overall Prediction Accuracy test_predictions[emotions] /= num_predictions test_predictions.to_csv("tthreshold.txt", sep="\t", index=False) # saves predictions and prints out multi-label accuracy test_predictions[emotions] = (test_predictions[emotions]).astype(int) test_predictions.to_csv("E-C_en_pred.txt", sep="\t", index=False) ```
{ "source": "jkae/knn-exercise", "score": 3 }
#### File: knn-exercise/examples/simple_example.py ```python from pynn import kd_tree def example_generate_tree(): """ Generate an example k-d tree from US capitals. """ lat_lon = [ (32.377716, -86.300568), # Montgomery (58.301598, -134.420212), # Juneau (33.448143, -112.096962), # Phoenix (34.746613, -92.288986), # Little Rock (38.576668, -121.493629), # Sacramento (39.739227, -104.984856), # Denver (41.764046, -72.682198), # Hartford (39.157307, -75.519722), # Dover (21.307442, -157.857376), # Honolulu (30.438118, -84.281296), # Tallahassee (33.749027, -84.388229), # Atlanta (43.617775, -116.199722), # Boise (39.798363, -89.654961), # Springfield (39.768623, -86.162643), # Indianapolis (41.591087, -93.603729), # Des Moines (39.048191, -95.677956), # Topeka (38.186722, -84.875374), # Frankfort (30.457069, -91.187393), # <NAME> (44.307167, -69.781693), # Augusta (38.978764, -76.490936), # Annapolis (42.358162, -71.063698), # Boston (42.733635, -84.555328), # Lansing (44.955097, -93.102211), # <NAME> (32.303848, -90.182106), # Jackson (38.579201, -92.172935), # <NAME> (46.585709, -112.018417), # Helena (40.808075, -96.699654), # Lincoln (39.163914, -119.766121), # <NAME> (43.206898, -71.537994), # Concord (40.220596, -74.769913), # Trenton (35.68224, -105.939728), # Santa Fe (35.78043, -78.639099), # Raleigh (46.82085, -100.783318), # Bismarck (42.652843, -73.757874), # Albany (39.961346, -82.999069), # Columbus (35.492207, -97.503342), # Oklahoma City (44.938461, -123.030403), # Salem (40.264378, -76.883598), # Harrisburg (41.830914, -71.414963), # Providence (34.000343, -81.033211), # Columbia (44.367031, -100.346405), # Pierre (36.16581, -86.784241), # Nashville (30.27467, -97.740349), # Austin (40.777477, -111.888237), # Salt Lake City (44.262436, -72.580536), # Montpelier (37.538857, -77.43364), # Richmond (47.035805, -122.905014), # Olympia (38.336246, -81.612328), # Charleston (43.074684, -89.384445), # Madison (41.140259, -104.820236) # Cheyenne ] root_node = kd_tree.kdTree(lat_lon) return root_node def example_find_nearest_neighbor(): """ Find a k-d tree's nearest neighbor to a given point. <NAME>, CO should be closer to Chey<NAME> (41.140259, -104.820236) than Denver (39.739227, -104.984856) """ tree = example_generate_tree() fort_collins = (40.5566532,-105.1026712) # return kd_tree.kd_nearest_neighbor(tree, fort_collins) ```
{ "source": "jkaessens/gwas-assoc", "score": 2 }
#### File: gwas-assoc/bin/SampleQCI_pca_convert.py ```python import sys import re import os from os.path import * import string import re import gzip import math import decimal import datetime from os import listdir import subprocess # may also need some of these: # import Ingos lib #sys.path.append(join(sys.path[0], "../../all_scripts")) sys.path.append(os.environ['PYLIB_DIR'] + "/all_scripts") from all_common import * # import my lib #sys.path.append(join(sys.path[0], "../lib")) sys.path.append(os.environ['PYLIB_DIR'] + "/lib") from plink_classes import * from eigenstrat_classes import * def pca_convert(plink, eigenstrat_parameter_file, annotation_file): """ convert PLINK file data set to eigenstrat format """ # ----------------------------- # # - generate parameter file m - # # ----------------------------- # packedped = PackedPed(write_file=eigenstrat_parameter_file) packedped.set_input_PLINK_binary( bed=plink + ".bed",\ bim=plink + ".bim",\ fam=plink + ".fam") packedped.write_par_file() ; del packedped # ------------------------ # # - run convertf program - # # ------------------------ # cmd = Command( "convertf -p %s" \ %(eigenstrat_parameter_file) ) cmd.run() ; del cmd os.system("mv %s.ind %s.ind.orig" \ %(plink, plink) ) # read individualIDs and HAPMAP info from from hapmap2 fam file try: fh_anno = file(annotation_file, "r") except IOError, e: print e sys.exit(1) individuals2batch_id = {} # skip header line = fh_anno.readline().replace("\n", "") line = fh_anno.readline().replace("\n", "") while line: list = re.split("\s+",line) IID = list[1] batch_id = list[6] individuals2batch_id[IID] = batch_id line = fh_anno.readline().replace("\n", "") fh_anno.close() # re-write ind file with info on HapMap samples and batch_info try: fh_ind = file(plink + ".ind.orig", "r") fh_ind_new = file(plink + ".ind", "w") except IOError, e: print e sys.exit(1) batches = [] batches_dict = {} # no header line line = fh_ind.readline().replace("\n", "") while line: list = re.split("\s+",line) if list[0] == "": del list[0] # change info last column from "Case/Control" to batch_id if individuals2batch_id.has_key(list[0]): batch_id = individuals2batch_id[list[0]] if not batches_dict.has_key(batch_id): batches.append(batch_id) batches_dict[batch_id] = True if list[-1] == "Case": line = line.replace("Case", batch_id) elif list[-1] == "Control": line = line.replace("Control", batch_id) # nothing to replace else: print >> sys.stderr, "\n warning: could not replace case/control status for sample " +list[0]+ " by batch_id in file pca.evec file " +plink_pca + ".pca.evec ...\n\n" fh_ind_new.writelines(line +"\n") # nothing to replace else: print >> sys.stderr, "\n warning: could not found sample " +list[0]+ " in annotation file " +individuals_annotation_cases_controls_hapmap2+ " ...\n\n" fh_ind_new.writelines(line +"\n") line = fh_ind.readline().replace("\n", "") fh_ind.close() fh_ind_new.close() del batches_dict # Main if __name__ == "__main__": # check args if len(sys.argv) != 4: print "Usage: " + sys.argv[0] + " <input plink basename> <eigenstrat parameter file> <annotations>\n" sys.exit(1) pca_convert(sys.argv[1], sys.argv[2], sys.argv[3]) ``` #### File: gwas-assoc/bin/SampleQCI_variant_filter.py ```python import sys import re import os def write_snps_autosomes_noLDRegions_noATandGC_noIndels(bim, outfile): """ write only autosomal snps, remove SNPs from high LD regions (also MHC), remove A/T and C/G SNPs, remove Indels """ print "\n remove SNPs from high LD regions ..\n\n" print "\n remove A/T and C/G SNPs ...\n\n" print "\n remove insertions/deletions ...\n\n" try: bim = file(bim, "r") out = file(outfile, "w") except IOError, e: print e sys.exit(1) complement = {'A':'T', 'T':'A', 'C':'G', 'G':'C', 'D':'D', 'I':'I'} indels = {'D':'D', 'I':'I'} line = bim.readline().replace("\n","") while line: list = re.split("\s+",line) chr = int(list[0]) pos = int(list[3]) a1 = list[4] a2 = list[5] # exclude non-autosomes if 0 < chr and chr < 23: # exclude xMHC SNPs AND exclude A/T and C/G SNPs AND exclude D/I SNPs if (not ( (1 == chr and (48000000 <= pos and pos < 52000000)) or \ (2 == chr and (86000000 <= pos and pos < 100500000)) or \ (2 == chr and (134500000 <= pos and pos < 138000000)) or \ (2 == chr and (183000000 <= pos and pos < 183000000)) or \ (3 == chr and (47500000 <= pos and pos < 50000000)) or \ (3 == chr and (83500000 <= pos and pos < 87000000)) or \ (3 == chr and (89000000 <= pos and pos < 97500000)) or \ (5 == chr and (44500000 <= pos and pos < 50500000)) or \ (5 == chr and (98000000 <= pos and pos < 100500000)) or \ (5 == chr and (129000000 <= pos and pos < 132000000)) or \ (5 == chr and (135500000 <= pos and pos < 138500000)) or \ (6 == chr and (25500000 <= pos and pos < 33500000)) or \ (6 == chr and (57000000 <= pos and pos < 64000000)) or \ (6 == chr and (140000000 <= pos and pos < 142500000)) or \ (7 == chr and (55000000 <= pos and pos < 66000000)) or \ (8 == chr and (8000000 <= pos and pos < 12000000)) or \ (8 == chr and (43000000 <= pos and pos < 50000000)) or \ (8 == chr and (112000000 <= pos and pos < 115000000)) or \ (10 == chr and (37000000 <= pos and pos < 43000000)) or \ (11 == chr and (46000000 <= pos and pos < 57000000)) or \ (11 == chr and (87500000 <= pos and pos < 90500000)) or \ (12 == chr and (33000000 <= pos and pos < 40000000)) or \ (12 == chr and (109500000 <= pos and pos < 112000000)) or \ (20 == chr and (32000000 <= pos and pos < 34500000)) )) \ and (a1 != complement[a2]) \ and (not (indels.has_key(a1) or indels.has_key(a2))): # write variants for inclusion out.writelines("%s\n" %(list[1])) line = bim.readline().replace("\n","") bim.close() out.close() # Main if __name__ == "__main__": # check args if len(sys.argv) != 3: print "Usage: " + sys.argv[0] + " <bim-file> <target-file>\n" print "\twhere:\n" print "\t<bim-file> BIM input\n" print "\t<target-file> list of variants that should be filtered\n" sys.exit(1) write_snps_autosomes_noLDRegions_noATandGC_noIndels(sys.argv[1], sys.argv[2]) ``` #### File: gwas-assoc/bin/SNPQC_helpers.py ```python import sys import re import os from os.path import join, dirname # import string # import gzip # import math # import decimal # import datetime # from os import listdir # import subprocess # may also need some of these: # import Ingos lib # sys.path.append(os.path.join(os.path.dirname[0], "../../all_scripts")) sys.path.append(os.environ['PYLIB_DIR'] + "/all_scripts") sys.path.append(os.environ['PYLIB_DIR'] + "/lib") # from all_common import * # import my lib # sys.path.append(join(sys.path[0], "../lib")) # sys.path.append(os.environ['PYLIB_DIR'] + "/lib") from plink_classes import Test_missing,Frq from eigenstrat_classes import PcaLog def determine_unknown_diagnosis(annotationfile, outfile, diagnoses): """ determine samples with unknown diagnosis """ print "\n check for samples with unknown diagnosis ..\n\n" try: fh = file(annotationfile, "r") fh_w = file(outfile, "w") except IOError, e: print e sys.exit(1) # header line line = fh.readline().rstrip('\n') list = re.split("\s+", line) # delete empty elements if list[0] == "": del list[0] if list[-1] == "": del list[-1] assert(list[8] == "diagnosis") # body line = fh.readline().rstrip('\n') while line: list = re.split("\s+", line) # delete empty elements if list[0] == "": del list[0] if list[-1] == "": del list[-1] diag = list[8] if not (diag in diagnoses): fh_w.writelines(line + "\n") line = fh.readline().rstrip('\n') fh.close() fh_w.close() def extract_QCsamples_annotationfile_relativesfile(fam, individuals_annotation_QCed, related_samples_file, related_samples_file_QCed, individuals_annotation, diagnoses): """ extract only QCed samples from original annotation file """ if isinstance(diagnoses, basestring): diagnoses = diagnoses.split(',') individualIDs = {} try: fh_r = file(fam, "r") except IOError, e: print e sys.exit(1) line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if not (list[1] in individualIDs): individualIDs[list[1]] = True line = fh_r.readline().rstrip('\n') fh_r.close() # -------------------------- # # -- scan annotation file -- # # -------------------------- # try: fh_r = file(individuals_annotation, "r") fh_w = file(individuals_annotation_QCed, "w") except IOError, e: print e sys.exit(1) # read header line = fh_r.readline().rstrip('\n') fh_w.writelines(line + "\n") # read body count_samples = 0 line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] if list[1] in individualIDs: fh_w.writelines(line + "\n") count_samples += 1 line = fh_r.readline().rstrip('\n') fh_r.close() fh_w.close() assert(len(individualIDs) == count_samples) # generate diagnosis individual annotation files for diag in diagnoses: try: fh_r = file(individuals_annotation, "r") # flake8 complains that neigher join nor dirname are defined... fh_w = file(join(dirname(individuals_annotation_QCed), diag + "_QCed_annotation.txt"), "w") except IOError, e: print e sys.exit(1) # read header line = fh_r.readline().rstrip('\n') fh_w.writelines(line + "\n") # read body count_samples = 0 line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] if list[8] == diag and (list[1] in individualIDs): fh_w.writelines(line + "\n") count_samples += 1 line = fh_r.readline().rstrip('\n') fh_r.close() fh_w.close() # --------------------------------- # # -- scan flagged relatives file -- # # --------------------------------- # try: fh_r = file(related_samples_file, "r") fh_w = file(related_samples_file_QCed, "w") except IOError, e: print e sys.exit(1) # read body line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] if list[1] in individualIDs: fh_w.writelines(line + "\n") line = fh_r.readline().rstrip('\n') fh_r.close() fh_w.close() def generate_exclude_file_CON(HFresults_file, individuals_annotation_QCed, variant_exclude_file, batches_names, prefix_merged_SNPQCII, FDR_index_remove_variants, plotscript): """ determine variants failed even with the worst batch removed """ # IMPORTANT: Here exclude rejected variants from "all batches" instead of "worst batch removed" ### # THIS INDEX MUST BE SET BY USER # '4' corresponds to FDR at 1e-5, see list thresholds_FDR below # '6' corresponds to FDR at 1e-7, see list thresholds_FDR below # FDR_index_remove_variants = 4 # --------------------------------------------------------- # # -- (1) count number of batches in QCed annotation file -- # # --------------------------------------------------------- # batches_dict = {} batches_list = [] try: fh_r = file(individuals_annotation_QCed, "r") except IOError, e: print e sys.exit(1) # read header line = fh_r.readline().rstrip('\n') list = re.split("\s+", line) assert(list[6] == "batch") # read body line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] if not list[6] in batches_dict: batches_dict[list[6]] = True batches_list.append(list[6]) line = fh_r.readline().rstrip('\n') fh_r.close() numof_batches = len(batches_list) print "\n Detected the following batches for HF test (n=" + str(numof_batches) + "): ..." for i in xrange(numof_batches): print "\n " + batches_list[i] # QCed list of batches batches_list_dict = {} for i in xrange(numof_batches): batches_list_dict[batches_list[i]] = True # original list of batches print "\n Following batches were removed: ..." # for i in xrange(len(batches_names)): # if not batches_names[i] in batches_list_dict: # print "\n " + batches_names[i] # ------------------------------------------------------------ # # -- (2) read HF P-values from results file to control FDR -- # # ------------------------------------------------------------ # # TODO change HF to HF # HF_Pval_vectors HF_Pval_vector_allbatches_ctrls = [] # (HF_p-value, variant_id) HF_Pval_vector_worstbatchremoved_ctrls = [] # (HF_p-value, variant_id) try: fh_r = file(HFresults_file, "r") except IOError, e: print e sys.exit(1) line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] # four preceding columns (CHR, SNP, POS, A1) numof_pvalues = len(list[4:]) # numof_pvales - #phenotypes(CON,CD,UC) / #phenotypes(CON,CD,UC) # numof_pvales - #phenotypes(CON) / #phenotypes(CON) if not (numof_batches == (numof_pvalues - 1)): print >> sys.stderr, "abort: problem with results from splitted HF files, probably problem with jobs submitted to HP cluster." print >> sys.stderr, " Expected #numof_pvalues=" + str(numof_batches - 1) + " in " + prefix_merged_SNPQCII + "_HF.auto.R" print >> sys.stderr, " Observed #numof_pvalues=" + str(numof_batches - 1) + " in " + prefix_merged_SNPQCII + "_HF.auto.R" print >> sys.stderr, "abort: #batches_annotation=" + str(numof_batches) + " != " + str((numof_pvalues - 1)) + "=#batches_HFtest" sys.exit(1) # ----------------------------------------------------------- # # -- here the order of controls and diseases is important! -- # # ----------------------------------------------------------- # # (1) Controls if list[4] != "NA": HF_entire_collection_ctrls = float(list[4]) else: HF_entire_collection_ctrls = 1.0 # --------------------------------------------- # # -- look at p-values from entire collection -- # # --------------------------------------------- # variant_id = list[1] HF_Pval_vector_allbatches_ctrls.append((HF_entire_collection_ctrls, variant_id)) # --------------------- # # -- look at batches -- # # --------------------- # # (1) Controls HF_max_excludebatch = 0.0 count_NA = 0 # find the highest p-value (when "worst" batch removed) when # running entire ctrl collection with one batch removed at one time for i in xrange(5, 5 + numof_batches, 1): if list[i] != "NA": HF_entire_collection_exclude_particularbatch = float(list[i]) if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: HF_max_excludebatch = HF_entire_collection_exclude_particularbatch else: count_NA += 1 if numof_batches == count_NA: HF_max_excludebatch = 1.0 HF_Pval_vector_worstbatchremoved_ctrls.append((HF_max_excludebatch, variant_id)) line = fh_r.readline().rstrip('\n') fh_r.close() # ------------------------------------------------------------------- # # -- sort p-value vectors by first element of tuples, i.e. p-value -- # # ------------------------------------------------------------------- # HF_Pval_vector_allbatches_ctrls.sort(reverse=False) HF_Pval_vector_worstbatchremoved_ctrls.sort(reverse=False) assert(len(HF_Pval_vector_allbatches_ctrls) == len(HF_Pval_vector_worstbatchremoved_ctrls)) # ---------------------------------------------------------------- # # -- count #variant failed at FDR at q=1e-1,1e-2,1e-3,...,1e-10 -- # # ---------------------------------------------------------------- # thresholds_FDR = [1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10] counts_rejected_FDR_allbatches_ctrls = [0 for i in range(10)] # set count to 0 counts_rejected_FDR_worstbatchremoved_ctrls = [0 for i in range(10)] # set count to 0 # #### count total number of removeVariants from ctrls/CD/UC worstbatchremoved for each FDR # ###counts_rejected_FDR_allbatches_ctrls_CD_UC_cases = [ {} for i in range(10) ] # add dictionaries # ###counts_rejected_FDR_worstbatchremoved_ctrls_CD_UC_cases = [ {} for i in range(10) ] # add dictionaries # fill this vector with HF_Pvalues at FDR thresholds thresholds_Pvals_allbatches_ctrls = [float(0) for i in range(10)] thresholds_Pvals_worstbatchremoved_ctrls = [float(0) for i in range(10)] # ------------------------------------------------------------------------------- # # -- calculate FDR for different FDR thresholds (Benjamini and Hochberg, 1995) -- # # ------------------------------------------------------------------------------- # # (a) ctrls - for all batches and worstbatchremoved n = len(HF_Pval_vector_allbatches_ctrls) for j in xrange(len(thresholds_FDR)): break_i_loop_part1 = False break_i_loop_part2 = False for i in xrange(1, n + 1, 1): rank = i / float(n) threshold = rank * thresholds_FDR[j] if (not break_i_loop_part1) and (HF_Pval_vector_allbatches_ctrls[i - 1][0] > threshold): thresholds_Pvals_allbatches_ctrls[j] = HF_Pval_vector_allbatches_ctrls[i - 2][0] counts_rejected_FDR_allbatches_ctrls[j] = i - 1 # add variantIDs to dict for counting total number of # removeVariants from ctrls/CD/UC allbatches for each FDR # for k in xrange(i - 1): # #counts_rejected_FDR_allbatches_ctrls_CD_UC_cases[j][HF_Pval_vector_allbatches_ctrls[k][1]] = True # pass break_i_loop_part1 = True if (not break_i_loop_part2) and (HF_Pval_vector_worstbatchremoved_ctrls[i - 1][0] > threshold): thresholds_Pvals_worstbatchremoved_ctrls[j] = HF_Pval_vector_worstbatchremoved_ctrls[i - 2][0] counts_rejected_FDR_worstbatchremoved_ctrls[j] = i - 1 break_i_loop_part2 = True # add variantIDs to dict for counting total number of # removeVariants from ctrls/CD/UC worstbatchremoved for each FDR # for k in xrange(i - 1): # #counts_rejected_FDR_worstbatchremoved_ctrls_CD_UC_cases[j][HF_Pval_vector_worstbatchremoved_ctrls[k][1]] = True # pass if break_i_loop_part1 and break_i_loop_part2: break # ---------------------------------------------------------------------------------------------- # # -- (3) extract rejected variants for FDRs at threshold with index FDR_index_remove_variants -- # # ---------------------------------------------------------------------------------------------- # # IMPORTANT: Here exclude rejected variants from "all batches" instead of "worst batch removed" ### try: fh_r = file(HFresults_file, "r") fh_w = file(variant_exclude_file, "w") except IOError, e: print e sys.exit(1) # THIS INDEX MUST BE SET BY USER at the beginning of this function # '4' corresponds to FDR at 1e-5 # use variable FDR_index_remove_variants = 4 (per default) # raus dict_test = {} count_removeVariants_worstbatchremoved = 0 line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+", line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] # four preceding columns (CHR, SNP, POS, A1) numof_pvalues = len(list[4:]) # numof_pvales - #phenotypes(CON,CD,UC) / #phenotypes(CON,CD,UC) # numof_pvales - #phenotypes(CON) / #phenotypes(CON) if not (numof_batches == (numof_pvalues - 1)): print >> sys.stderr, "abort: problem with results from splitted HF files, probably problem with jobs submitted to HP cluster." print >> sys.stderr, " Expected #numof_pvalues=" + str(numof_batches - 1) + " in " + prefix_merged_SNPQCII + "_HF.auto.R" print >> sys.stderr, " Observed #numof_pvalues=" + str(numof_batches - 1) + " in " + prefix_merged_SNPQCII + "_HF.auto.R" print >> sys.stderr, "abort: #batches_annotation=" + str(numof_batches) + " != " + str((numof_pvalues - 1)) + "=#batches_HFtest" sys.exit(1) removeVariant = False # ----------------------------------------------------------- # # -- here the order of controls and diseases is important! -- # # ----------------------------------------------------------- # # (1) Controls if list[4] != "NA": HF_entire_collection_ctrls = float(list[4]) else: HF_entire_collection_ctrls = 1.0 # (1) Controls if HF_entire_collection_ctrls <= thresholds_Pvals_allbatches_ctrls[FDR_index_remove_variants]: # IMPORTANT: Here exclude rejected variants from "all batches" instead of "worst batch removed" ### removeVariant = True HF_max_excludebatch = 0.0 # find the highest p-value (when "worst" batch removed) when # running entire ctrl collection with one batch removed at one time for i in xrange(5, 5 + numof_batches, 1): if list[i] != "NA": HF_entire_collection_exclude_particularbatch = float(list[i]) if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: HF_max_excludebatch = HF_entire_collection_exclude_particularbatch # if batch with smallest HF pvalue is removed AND # HF_max_excludebatch still below equal thresholds_Pvals_worstbatchremoved_ctrls[FDR_index_remove_variants], then remove variant. if HF_max_excludebatch <= thresholds_Pvals_worstbatchremoved_ctrls[FDR_index_remove_variants]: removeVariant = True if removeVariant: dict_test[list[1]] = True count_removeVariants_worstbatchremoved += 1 fh_w.writelines(list[1] + "\n") line = fh_r.readline().rstrip('\n') fh_r.close() fh_w.close() # assert(count_removeVariants_worstbatchremoved == len(counts_rejected_FDR_worstbatchremoved_ctrls_CD_UC_cases[FDR_index_remove_variants])) # ----------------------------------------------------------------------------------- # # -- write #rejected variants for FDRs at different thresholds for plotting with R -- # # -- HF across entire collection and worstbatchremoved -- # # ----------------------------------------------------------------------------------- # try: fh_FDR_w = file(HFresults_file + ".FDRthresholds.SNPQCII.1.txt", "w") except IOError, e: print e sys.exit(1) # write header fh_FDR_w.writelines("FDR\tFail_allbatches_ctrls\tHF_pval_allbatches_ctrls\tFail_worstbatchremoved_ctrls\tHF_pval_worstbatchremoved_ctrls\n") for i in xrange(len(thresholds_FDR)): fh_FDR_w.writelines("%s" % (str(thresholds_FDR[i]))) fh_FDR_w.writelines("\t%s" % (str(counts_rejected_FDR_allbatches_ctrls[i]))) fh_FDR_w.writelines("\t%s" % (str(thresholds_Pvals_allbatches_ctrls[i]))) fh_FDR_w.writelines("\t%s" % (str(counts_rejected_FDR_worstbatchremoved_ctrls[i]))) fh_FDR_w.writelines("\t%s\n" % (str(thresholds_Pvals_worstbatchremoved_ctrls[i]))) fh_FDR_w.close() # IMPORTANT: Here exclude rejected variants from "all batches" instead of "worst batch removed" ### # plot results applying FDR thresholds os.system("R --slave --args %s %s < %s" % (HFresults_file + ".FDRthresholds.SNPQCII", str(FDR_index_remove_variants + 1), plotscript)) def determine_pca_outlier(log, fam_file, outlier_file): """ determine outlier run eigenstrat program """ pcalog = PcaLog(input_file=log) # outlier dictionary key=outlier, val=sigmage outlier = pcalog.get_outlier() del pcalog fam = {} try: fh_r = file(fam_file, "r") except IOError, e: print e sys.exit(1) line = fh_r.readline() while line: list = re.split("\s+",line) fam[list[1]] = list[0] line = fh_r.readline() fh_r.close() try: fh_w = file(outlier_file, "w") except IOError, e: print e sys.exit(1) for indiv in outlier: #fh_w.writelines(indiv + "\n") fh_w.writelines(fam[indiv] +"\t" +indiv+ "\n") fh_w.close() def addbatchinfo_32PCAs(fam, individuals_annotation, evec_file, eval_file, new_evec_file, new_eval_file): """ add batch information to final evec file """ try: fh1 = file(fam, "r") except IOError, e: print e sys.exit(1) id2fid = {} line = fh1.readline().rstrip('\n') while line: list = re.split("\s+",line) fid = list[0] indivID = list[1] id2fid[indivID] = fid line = fh1.readline().rstrip('\n') fh1.close() try: fh1 = file(individuals_annotation, "r") except IOError, e: print e sys.exit(1) id2batch = {} line = fh1.readline().rstrip('\n') line = fh1.readline().rstrip('\n') while line: list = re.split("\s+",line) indivID = list[1] batch = list[6] id2batch[indivID] = batch line = fh1.readline().rstrip('\n') fh1.close() try: fh2 = file(evec_file, "r") fh3 = file(new_evec_file, "w") except IOError, e: print e sys.exit(1) line = fh2.readline().rstrip('\n') fh3.writelines("FID\tIID" +line.replace("indivID","") + "\tbatch\n") line = fh2.readline().rstrip('\n') while line: list = re.split("\s+",line) id = list[0] fh3.writelines(id2fid[id] +"\t"+\ list[0] +"\t"+\ list[1] +"\t"+\ list[2] +"\t"+\ list[3] +"\t"+\ list[4] +"\t"+\ list[5] +"\t"+\ list[6] +"\t"+\ list[7] +"\t"+\ list[8] +"\t"+\ list[9] +"\t"+\ list[10] +"\t"+\ list[11] +"\t"+\ list[12] +"\t"+\ list[13] +"\t"+\ list[14] +"\t"+\ list[15] +"\t"+\ list[16] +"\t"+\ list[17] +"\t"+\ list[18] +"\t"+\ list[19] +"\t"+\ list[20] +"\t"+\ list[21] +"\t"+\ list[22] +"\t"+\ list[23] +"\t"+\ list[24] +"\t"+\ list[25] +"\t"+\ list[26] +"\t"+\ list[27] +"\t"+\ list[28] +"\t"+\ list[29] +"\t"+\ list[30] +"\t"+\ list[31] +"\t"+\ list[32] +"\t"+\ id2batch[id] +"\n") line = fh2.readline().rstrip('\n') fh2.close() fh3.close() os.system("cp %s %s" %(eval_file, new_eval_file)) # This function does now require the HFresults_file and the individuals annotation to contain batches for exactly one disease. # Please filter accordingly. def generate_exclude_file_for_diagnosis(HFresults_file, individuals_annotation_QCed, variant_exclude_file, prefix_merged_SNPQCII, FDR_index_remove_variants, plotscript): """ determine variants failed even with the worst batch removed """ ## IMPORTANT: Here exclude rejected variants from "worst batch removed" ### # THIS INDEX MUST BE SET BY USER # '4' corresponds to FDR at 1e-5, see list thresholds_FDR below # '6' corresponds to FDR at 1e-7, see list thresholds_FDR below ####FDR_index_remove_variants = 4 # --------------------------------------------------------- # # -- (1) count number of batches in QCed annotation file -- # # --------------------------------------------------------- # batches_dict = {} batches_list = [] try: fh_r = file(individuals_annotation_QCed, "r") except IOError, e: print e sys.exit(1) # read header line = fh_r.readline().rstrip('\n') list = re.split("\s+",line) assert(list[6] == "batch") assert(list[8] == "diagnosis") # read body line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+",line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] if not batches_dict.has_key(list[6]): batches_dict[list[6]] = True batches_list.append(list[6]) line = fh_r.readline().rstrip('\n') fh_r.close() numof_batches = len(batches_list) print "\n Detected the following batches for HF test (n=" +str(numof_batches)+ "): ..." for i in xrange(numof_batches): print "\n " +batches_list[i] # QCed list of batches batches_list_dict = {} for i in xrange(numof_batches): batches_list_dict[batches_list[i]] = True # original list of batches print "\n Following batches were removed: ..." for i in xrange(len(batches_list)): if not batches_list_dict.has_key(batches_list[i]): print "\n " +batches_list[i] # ------------------------------------------------------------ # # -- (2) read HF P-values from results file to control FDR -- # # ------------------------------------------------------------ # # HF_Pval_vectors #HF_Pval_vector_allbatches_ctrls = [] # (HF_p-value, variant_id) HF_Pval_vector_allbatches_cases = [] # (HF_p-value, variant_id) #HF_Pval_vector_worstbatchremoved_ctrls = [] # (HF_p-value, variant_id) HF_Pval_vector_worstbatchremoved_cases = [] # (HF_p-value, variant_id) try: fh_r = file(HFresults_file, "r") except IOError, e: print e sys.exit(1) print("Scanning samples...\n") line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+",line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] # four preceding columns (CHR, SNP, POS, A1) numof_pvalues = len(list[4:]) # numof_pvales - #phenotypes(CON,CD,UC) / #phenotypes(CON,CD,UC) if not (numof_batches == (numof_pvalues-2)/2): print >> sys.stderr, "abort: problem with results from splitted HF files, probably problem with jobs submitted to HP cluster." print >> sys.stderr, " Expected #numof_pvalues=" +str(numof_batches*2-2)+ " in " +HFresults_file print >> sys.stderr, " Observed #numof_pvalues=" +str(numof_batches*2-2)+ " in " +HFresults_file print >> sys.stderr, "abort: #batches_annotation=" +str(numof_batches)+ " != " +str((numof_pvalues-2)/2)+ "=#batches_HFtest" sys.exit(1) #assert(numof_batches == (numof_pvalues-3)/3) # ----------------------------------------------------------- # # -- here the order of controls and diseases is important! -- # # ----------------------------------------------------------- # # (1) Controls #if list[4] != "NA": # HF_entire_collection_ctrls = float(list[4]) #else: # HF_entire_collection_ctrls = 1.0 ##### (2) PS ####if list[5] != "NA": #### HF_entire_collection_PS_cases = float(list[5]) ####else: #### HF_entire_collection_PS_cases = 1.0 ##### (3) AS ####if list[6] != "NA": #### HF_entire_collection_AS_cases = float(list[6]) ####else: #### HF_entire_collection_AS_cases = 1.0 # (4) Cases if list[4] != "NA": HF_entire_collection_cases = float(list[4]) else: HF_entire_collection_cases = 1.0 # (5) UC #if list[6] != "NA": # HF_entire_collection_UC_cases = float(list[6]) #else: # HF_entire_collection_UC_cases = 1.0 ##### (6) PSC ####if list[9] != "NA": #### HF_entire_collection_PSC_cases = float(list[9]) ####else: #### HF_entire_collection_PSC_cases = 1.0 # --------------------------------------------- # # -- look at p-values from entire collection -- # # --------------------------------------------- # variant_id = list[1] # HF_Pval_vector_allbatches_ctrls.append( (HF_entire_collection_ctrls, variant_id) ) HF_Pval_vector_allbatches_cases.append( (HF_entire_collection_cases, variant_id) ) # --------------------- # # -- look at batches -- # # --------------------- # # (1) Controls # HF_max_excludebatch = 0.0 # count_NA = 0 # # find the highest p-value (when "worst" batch removed) when # # running entire ctrl collection with one batch removed at one time # for i in xrange(6, 6+numof_batches, 1): # if list[i] != "NA": # HF_entire_collection_exclude_particularbatch = float(list[i]) # if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: # HF_max_excludebatch = HF_entire_collection_exclude_particularbatch # else: # count_NA += 1 # if numof_batches == count_NA: # HF_max_excludebatch = 1.0 # HF_Pval_vector_worstbatchremoved_ctrls.append( (HF_max_excludebatch, variant_id) ) # (2) Cases HF_max_excludebatch = 0.0 count_NA = 0 # find the highest p-value (when "worst" batch removed) when # running entire case collection with one batch removed at one time for i in xrange(6+numof_batches, 6+2*numof_batches, 1): if list[i] != "NA": HF_entire_collection_exclude_particularbatch = float(list[i]) if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: HF_max_excludebatch = HF_entire_collection_exclude_particularbatch else: count_NA += 1 if numof_batches == count_NA: HF_max_excludebatch = 1.0 HF_Pval_vector_worstbatchremoved_cases.append( (HF_max_excludebatch, variant_id) ) line = fh_r.readline().rstrip('\n') fh_r.close() # ------------------------------------------------------------------- # # -- sort p-value vectors by first element of tuples, i.e. p-value -- # # ------------------------------------------------------------------- # #HF_Pval_vector_allbatches_ctrls.sort(reverse=False) HF_Pval_vector_allbatches_cases.sort(reverse=False) #HF_Pval_vector_worstbatchremoved_ctrls.sort(reverse=False) HF_Pval_vector_worstbatchremoved_cases.sort(reverse=False) #assert(len(HF_Pval_vector_allbatches_ctrls) == len(HF_Pval_vector_allbatches_cases)) #assert(len(HF_Pval_vector_allbatches_ctrls) == len(HF_Pval_vector_worstbatchremoved_ctrls)) #assert(len(HF_Pval_vector_allbatches_ctrls) == len(HF_Pval_vector_worstbatchremoved_cases)) # ---------------------------------------------------------------- # # -- count #variant failed at FDR at q=1e-1,1e-2,1e-3,...,1e-10 -- # # ---------------------------------------------------------------- # thresholds_FDR = [ 1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10 ] #counts_rejected_FDR_allbatches_ctrls = [ 0 for i in range(10) ] # set count to 0 counts_rejected_FDR_allbatches_cases = [ 0 for i in range(10) ] # set count to 0 #counts_rejected_FDR_worstbatchremoved_ctrls = [ 0 for i in range(10) ] # set count to 0 counts_rejected_FDR_worstbatchremoved_cases = [ 0 for i in range(10) ] # set count to 0 # count total number of removeVariants from ctrls/cases worstbatchremoved for each FDR counts_rejected_FDR_allbatches_ctrls_cases = [ {} for i in range(10) ] # add dictionaries counts_rejected_FDR_worstbatchremoved_ctrls_cases = [ {} for i in range(10) ] # add dictionaries # fill this vector with HF_Pvalues at FDR thresholds #thresholds_Pvals_allbatches_ctrls = [ float(0) for i in range(10) ] thresholds_Pvals_allbatches_cases = [ float(0) for i in range(10) ] #thresholds_Pvals_worstbatchremoved_ctrls = [ float(0) for i in range(10) ] thresholds_Pvals_worstbatchremoved_cases = [ float(0) for i in range(10) ] print("Calculating FDR for FDR thresholds...\n") # ------------------------------------------------------------------------------- # # -- calculate FDR for different FDR thresholds (Benjamini and Hochberg, 1995) -- # # ------------------------------------------------------------------------------- # # (a) ctrls - for all batches and worstbatchremoved #print(HF_Pval_vector_worstbatchremoved_ctrls) # (b) cases - for all batches and worstbatchremoved n = len (HF_Pval_vector_allbatches_cases) for j in xrange(len(thresholds_FDR)): break_i_loop_part1 = False break_i_loop_part2 = False for i in xrange(1,n+1,1): rank = i/float(n) threshold = rank*thresholds_FDR[j] if (not break_i_loop_part1) and (HF_Pval_vector_allbatches_cases[i-1][0] > threshold): thresholds_Pvals_allbatches_cases[j] = HF_Pval_vector_allbatches_cases[i-2][0] counts_rejected_FDR_allbatches_cases[j] = i-1 # add variantIDs to dict for counting total number of # removeVariants from ctrls/CD/UC allbatches for each FDR for k in xrange(i-1): counts_rejected_FDR_allbatches_ctrls_cases[j][HF_Pval_vector_allbatches_cases[k][1]] = True break_i_loop_part1 = True if (not break_i_loop_part2) and (HF_Pval_vector_worstbatchremoved_cases[i-1][0] > threshold): thresholds_Pvals_worstbatchremoved_cases[j] = HF_Pval_vector_worstbatchremoved_cases[i-2][0] counts_rejected_FDR_worstbatchremoved_cases[j] = i-1 break_i_loop_part2 = True # add variantIDs to dict for counting total number of # removeVariants from ctrls/CD/UC worstbatchremoved for each FDR for k in xrange(i-1): counts_rejected_FDR_worstbatchremoved_ctrls_cases[j][HF_Pval_vector_worstbatchremoved_cases[k][1]] = True if break_i_loop_part1 and break_i_loop_part2: break print "Case sample rejections for all batches by FDR: " print(counts_rejected_FDR_allbatches_cases) print "Case sample rejections for all but the worst batch by FDR:" print(counts_rejected_FDR_worstbatchremoved_cases) #print(HF_Pval_vector_worstbatchremoved_cases) print "Extracting rejected variants...\n" # ---------------------------------------------------------------------------------------------- # # -- (3) extract rejected variants for FDRs at threshold with index FDR_index_remove_variants -- # # ---------------------------------------------------------------------------------------------- # ## IMPORTANT: Here exclude rejected variants from "worst batch removed" ### try: fh_r = file(HFresults_file, "r") fh_w = file(variant_exclude_file, "w") except IOError, e: print e sys.exit(1) # THIS INDEX MUST BE SET BY USER at the beginning of this function # '4' corresponds to FDR at 1e-5 # use variable FDR_index_remove_variants = 4 (per default) # raus dict_test = {} count_removeVariants_worstbatchremoved = 0 line = fh_r.readline().rstrip('\n') while line: list = re.split("\s+",line) if list[0] == "": del list[0] if list[-1] == "": del list[-1] # four preceding columns (CHR, SNP, POS, A1) numof_pvalues = len(list[4:]) # numof_pvales - #phenotypes(CON,CD,UC) / #phenotypes(CON,CD,UC) if not (numof_batches == (numof_pvalues-2)/2): print >> sys.stderr, "abort: problem with results from splitted HF files, probably problem with jobs submitted to HP cluster." print >> sys.stderr, " Expected #numof_pvalues=" +str(numof_batches*2-2)+ " in " +prefix_merged_SNPQCII+ "_HF.auto.R" print >> sys.stderr, " Observed #numof_pvalues=" +str(numof_batches*2-2)+ " in " +prefix_merged_SNPQCII+ "_HF.auto.R" print >> sys.stderr, "abort: #batches_annotation=" +str(numof_batches)+ " != " +str((numof_pvalues-2)/2)+ "=#batches_HFtest" sys.exit(1) #assert(numof_batches == (numof_pvalues-3)/3) removeVariant = False # ----------------------------------------------------------- # # -- here the order of controls and diseases is important! -- # # ----------------------------------------------------------- # # (1) Controls # if list[4] != "NA": # HF_entire_collection_ctrls = float(list[4]) # else: # HF_entire_collection_ctrls = 1.0 # (4) cases if list[5] != "NA": HF_entire_collection_cases = float(list[4]) else: HF_entire_collection_cases = 1.0 # (1) Controls # if HF_entire_collection_ctrls <= thresholds_Pvals_allbatches_ctrls[FDR_index_remove_variants]: # HF_max_excludebatch = 0.0 # # find the highest p-value (when "worst" batch removed) when # # running entire ctrl collection with one batch removed at one time # for i in xrange(6, 6+numof_batches, 1): # if list[i] != "NA": # HF_entire_collection_exclude_particularbatch = float(list[i]) # if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: # HF_max_excludebatch = HF_entire_collection_exclude_particularbatch # # if batch with smallest HF pvalue is removed AND # # HF_max_excludebatch still below equal thresholds_Pvals_worstbatchremoved_ctrls[FDR_index_remove_variants], then remove variant. # if HF_max_excludebatch <= thresholds_Pvals_worstbatchremoved_ctrls[FDR_index_remove_variants]: # removeVariant = True # (2) cases if HF_entire_collection_cases <= thresholds_Pvals_allbatches_cases[FDR_index_remove_variants]: HF_max_excludebatch = 0.0 # find the highest p-value (when "worst" batch removed) when # running entire ctrl collection with one batch removed at one time for i in xrange(6+numof_batches, 6+2*numof_batches, 1): if list[i] != "NA": HF_entire_collection_exclude_particularbatch = float(list[i]) if HF_entire_collection_exclude_particularbatch > HF_max_excludebatch: HF_max_excludebatch = HF_entire_collection_exclude_particularbatch # if batch with smallest HF pvalue is removed AND # HF_max_excludebatch still below equal thresholds_Pvals_worstbatchremoved_CD_cases[FDR_index_remove_variants], then remove variant. if HF_max_excludebatch <= thresholds_Pvals_worstbatchremoved_cases[FDR_index_remove_variants]: removeVariant = True if removeVariant: dict_test[list[1]] = True count_removeVariants_worstbatchremoved += 1 fh_w.writelines(list[1] +"\n") line = fh_r.readline().rstrip('\n') fh_r.close() fh_w.close() #print("count_removeVariants_worstbatchremoved=%s counts_rejected_FDR_worstbatchremoved_ctrls_cases[FDR_index_remove_variants]=%s" %(count_removeVariants_worstbatchremoved, len(counts_rejected_FDR_worstbatchremoved_ctrls_cases[FDR_index_remove_variants]))) #print(counts_rejected_FDR_worstbatchremoved_ctrls_cases) # schlaegt fehl, sollte es aber nicht! ...oder? #assert(count_removeVariants_worstbatchremoved == len(counts_rejected_FDR_worstbatchremoved_ctrls_cases[FDR_index_remove_variants])) print("Write rejected variants\n") # ----------------------------------------------------------------------------------- # # -- write #rejected variants for FDRs at different thresholds for plotting with R -- # # -- HF across entire collection and worstbatchremoved -- # # ----------------------------------------------------------------------------------- # try: fh_FDR_w = file(HFresults_file + ".FDRthresholds.SNPQCII.1.txt", "w") except IOError, e: print e sys.exit(1) # write header fh_FDR_w.writelines("FDR\tFail_allbatches_cases\tHF_pval_allbatches_cases\tFail_worstbatchremoved_cases\tHF_pval_worstbatchremoved_cases\n") for i in xrange(len(thresholds_FDR)): fh_FDR_w.writelines("%s" %(str(thresholds_FDR[i]))) #fh_FDR_w.writelines("\t%s" %(str(len(counts_rejected_FDR_allbatches_ctrls_cases[i])))) #fh_FDR_w.writelines("\t%s" %(str(len(counts_rejected_FDR_worstbatchremoved_ctrls_cases[i])))) #fh_FDR_w.writelines("\t%s" %(str(counts_rejected_FDR_allbatches_ctrls[i]))) #fh_FDR_w.writelines("\t%s" %(str(thresholds_Pvals_allbatches_ctrls[i]))) #fh_FDR_w.writelines("\t%s" %(str(counts_rejected_FDR_worstbatchremoved_ctrls[i]))) #fh_FDR_w.writelines("\t%s" %(str(thresholds_Pvals_worstbatchremoved_ctrls[i]))) fh_FDR_w.writelines("\t%s" %(str(counts_rejected_FDR_allbatches_cases[i]))) fh_FDR_w.writelines("\t%s" %(str(thresholds_Pvals_allbatches_cases[i]))) fh_FDR_w.writelines("\t%s" %(str(counts_rejected_FDR_worstbatchremoved_cases[i]))) fh_FDR_w.writelines("\t%s\n" %(str(thresholds_Pvals_worstbatchremoved_cases[i]))) fh_FDR_w.close() print("plot\n") # plot results applying FDR thresholds os.system("R --slave --args %s %s < %s" \ %(HFresults_file + ".FDRthresholds.SNPQCII",\ str(FDR_index_remove_variants+1), \ plotscript)) ``` #### File: lib/all_scripts/all_common.py ```python import os import sys from os.path import * import ConfigParser from optparse import * from copy import deepcopy from operator import itemgetter from misc_tools import * from file_tools import * from job_submission import * #################################################################### # # Main classes and functions # #################################################################### ALL_POSSIBLE_SWITCHES = [] class Parameter_Set: def __init__(self, dict_of_params): self.__p__ = {} for d in dict_of_params: self.__p__[d] = deepcopy(dict_of_params[d]) # # simple getters # def __getitem__(self, key): self.__getattr__(key) def __getattr__(self, key): # # Any special prefix? # if key[0:4] == "SET_": k = key[4:] if self.__p__[k] == None: return False else: return True else: try: return self.__p__[key] except KeyError: return None def get_parameter_sets(parameters,options, description, switch_file): parse_possible_switches(switch_file) aop = all_option_parsing(parameters, options, description, "") return_list = [] for a in aop: return_list.append(Parameter_Set(aop[a])) return return_list def parse_possible_switches(file): global ALL_POSSIBLE_SWITCHES try: config = ConfigParser.SafeConfigParser() config.read(realpath(file)) # # Build list of all "Possible_Switch"es # for sec in config.sections(): dic = {} dic.update(config.items(sec)) p = Possible_Switch(sec, eval(dic['value_as_list']), dic['optparse_type'], dic['optparse_metavar'], dic['optparse_help'], eval(dic['default_value']), eval(dic['optparse_choices']), str(dic['short_version']), eval(dic['shell_variable']), eval(dic['ignore_params_file'])) ALL_POSSIBLE_SWITCHES.append(p) except ConfigParser.InterpolationError: abort("Error in configuration file while trying to substitute params.\n" + str(sys.exc_info()[1])) except ConfigParser.ParsingError: abort("Error in configuration file.\n" + str(sys.exc_info()[1])) class Possible_Switch: def __init__(self, switch_name, value_as_list, optparse_type, optparse_metavar, optparse_help, default_value, optparse_choices, short_version, shell_variable, ignore_params_file): # TODO: checking for params self.switch_name = switch_name self.value_as_list = value_as_list self.optparse_type = optparse_type self.optparse_metavar = optparse_metavar self.optparse_help = optparse_help self.optparse_choices = optparse_choices self.short_version = short_version self.shell_variable = shell_variable self.default_value = default_value #if default_value: # print "switch:", switch_name, "has a default value of", default_value self.ignore_params_file = ignore_params_file #################################################################### # # Other functions # #################################################################### def merge_opts_and_parameter_files(p_file, defaults_from_command_line, defaults_from_shell_variables): """ PARAMS: - parameter file to read RETURNS - A dict of dicts merged parameters for all samples """ # If there is a config file in the home directory, get the "first set of defaults" from there try: first_defaults = {} config = ConfigParser.SafeConfigParser(defaults_from_shell_variables) config.optionxform = str config.read(p_file) dfcl = eval(str(defaults_from_command_line)) # # A "false" from the command line means a --option has not been set! # So change the value to a None # for d in dfcl: if type(dfcl[d]) == type(False): if dfcl[d] == False: dfcl[d] = None result_dict = {} def special_sort(x,y): try: xx = float (x) try: yy = float (y) if xx < yy: return -1 elif xx > yy: return 1 else: return 0 except ValueError: return -1 except ValueError: try: yy = float(y) return 1 except ValueError: if x < y: return -1 elif x > y: return 1 else: return 0 sections = config.sections() sections.sort(special_sort) for sec in sections: dic = {} dic.update(config.items(sec)) for key in dfcl: value = dfcl[key] if not value == None: dic[key.lower()]=value result_dict[sec]= dic return result_dict, config.defaults() except ConfigParser.InterpolationError: abort("Error in configuration file while trying to substitute params.\n" + str(sys.exc_info()[1])) except ConfigParser.ParsingError: abort("Error in configuration file.\n" + str(sys.exc_info()[1])) def parse_all_parameter_sets(all_pars, req_pars, req_samples, instance_wide_defaults): """ RETURN: A dict of parameter sets. Maybe this sets are modifed by other sets (e.g. with "COMMAND init_set1,mod_set1,mod_set2,... ") """ # # What are requested and what are modifying sets? # Create set_modifcations! # global_modifying_sets = [] set_modifications = [] for r in req_samples: parts = r.split(",") head = parts[0] if len(parts) == 1: set_modifications.append([head]) else: tail = parts[1:] if head == "": global_modifying_sets.extend(tail) else: set_modifications.append(parts) # # If there are globally modifying sets, # append them to existens sets... # if len(global_modifying_sets) > 0: for sm in set_modifications: sm.extend(global_modifying_sets) # # Check if all requested and modifying sets exists # unfound_requested_sets = [] unfound_modifying_sets = [] for sm in set_modifications: if not sm[0] in all_pars: if not sm[0] in unfound_requested_sets: unfound_requested_sets.append(sm[0]) if len(sm) > 1: for mod_set in sm[1:]: if not mod_set in all_pars: if not mod_set in unfound_modifying_sets: unfound_modifying_sets.append(mod_set) abort_string = "" if len(unfound_requested_sets): abort_string = "\nUnable to find these requested sets: " + str(unfound_requested_sets) if len(unfound_modifying_sets): abort_string += "\nUnable to find these modifying sets: " + str(unfound_modifying_sets) if not abort_string == "": abort(abort_string) # # Now, go through the requested sets # # The resultig dict result={} for sm in set_modifications: # head and tail of each set_modification head = sm[0] tail = [] if len(sm) > 1: tail = sm[1:] # # the name of the resulting parameter set # result_set_name = head for par_set_name in tail: result_set_name += "," + par_set_name # # Start with the head # result[result_set_name] = deepcopy(all_pars[head]) # # Now go through the modifying sets of the tail # for par_set_name in tail: par_set = all_pars[par_set_name] for par_set_key in par_set: if par_set_key == "force" or par_set_key in instance_wide_defaults: pass else: par_set_value = par_set[par_set_key] result[result_set_name][par_set_key] = par_set_value return result def all_option_parsing(par_parameters,par_options, p_description, p_default_param_file ): """ PARAMS: par_parameters: list of required list of params par_options: list of optional parameters p_description: description of the calling script for optparse p_default_param_file: name of the default parameter file to look for RETURN: TODO """ p_parameters = [] for pp in par_parameters: if not pp in p_parameters: p_parameters.append(pp) p_options = [] for op in par_options: if not op in p_options: p_options.append(op) parameters_and_options = p_parameters + p_options # # prepare and start the parser # script_name = basename(sys.argv[0]) # # A dict with all possible switches # aps = {} for s in ALL_POSSIBLE_SWITCHES: aps[s.switch_name] = s default_description = "The parameter sets will be read from PARAM_SRC and can also be set/overridden using command parameters and options. PARAM_SRC can be a file or directory, where a file named '" + p_default_param_file + "' is expected." parser = OptionParser(script_name + " [options] PARAM_SRC [ set1, set2, set3 ... ]", description=p_description + "\t " + default_description, formatter=TitledHelpFormatter()) def add_switch_to_option_group(s, g): help_temp = s.optparse_help #if not help_temp[-1] in ".:,;()": # help_temp += "." if s.optparse_choices: help_temp += " CHOICES: " + str(s.optparse_choices[0]) for c in s.optparse_choices[1:]: help_temp += "," + str(c) if s.default_value: help_temp = help_temp + " \t\tDEFAULT: " + str(s.default_value) if s.optparse_type == "boolean": g.add_option(s.short_version, "--" + s.switch_name, action="store_true", default=False, help=help_temp) elif s.optparse_type == "explict_boolean": g.add_option(s.short_version, "--" + s.switch_name, metavar="[Yes|No]", help=help_temp, choices=["Yes","No"]) else: #print "switch_name", s.switch_name #g.add_option(s.short_version, "--" + s.switch_name, type=s.optparse_type, metavar=s.optparse_metavar, help=help_temp, choices=s.optparse_choices, default=s.default_value) g.add_option(s.short_version, "--" + s.switch_name, type=s.optparse_type, metavar=s.optparse_metavar, help=help_temp, choices=s.optparse_choices) # # Are there switches requested as parameters? # if len(p_parameters) > 0: # sort & unqify req. params p_parameters = sorted(list(set(p_parameters))) group_params = OptionGroup(parser, "PARAMETERS (required)", "The required parameters are usually they are defined by the parameter file specified by PARAM_SRC, but they can be overridden using options on the command line:") group_params_any_switches = False group_shell_params = OptionGroup(parser, "Shell PARAMETERS (required)", "These params are read from shell variables - if existing. The are overridden by params read from parameter file, which can themselves can be overruled using them as command line options.") group_shell_params_any_switches = False for xxx in p_parameters: po = aps[xxx] if po.shell_variable: add_switch_to_option_group(po, group_shell_params) group_shell_params_any_switches = True else: add_switch_to_option_group(po, group_params) group_params_any_switches = True if group_params_any_switches: parser.add_option_group(group_params) if group_shell_params_any_switches: parser.add_option_group(group_shell_params) # # Are there switches requested as options? # parser.add_option("--force", action="store_true", help="In case of no given args forces to start with the standard options without asking.") if len(p_options) > 0: group_shell_options = OptionGroup(parser, "Shell OPTIONS" ,"Options to be read from shell variables.") group_shell_options_any_switches = False for xxx in p_options: po = aps[xxx] if po.shell_variable: add_switch_to_option_group(po, group_shell_options) group_shell_options_any_switches = True else: #add_switch_to_option_group(po, group_options) add_switch_to_option_group(po, parser) if group_shell_options_any_switches: parser.add_option_group(group_shell_options) # # Now the magic moment: Parse the args! # opts, args = parser.parse_args() # # Is any option set that prevents reading the config file with param sets? # (Ist ein bisschen durch die Brust ins Auge...) # cmd_line_dict = eval(str(opts)) for pao in parameters_and_options: if aps[pao].ignore_params_file: # Ok, this a switch that could prevent reading the file. # Is it set? if cmd_line_dict[pao]: # # Build a result list just with the args and without reading # from a parameters sets files # d = {} for pao in parameters_and_options: d[pao] = cmd_line_dict[pao] cmd_line_params = {"DUMMY" : d} return cmd_line_params # # Really start with all standard args (if nothing is specified)? # # Check for args beginning with , modifying_sets_as_args = False requested_sets_as_args = False for a in args: if a.startswith (","): modifying_sets_as_args = True else: requested_sets_as_args =True if opts.force and requested_sets_as_args: abort("Either specify sets of params or use the '--force' option to choose all 'standard' sets of parameters.") if not requested_sets_as_args and not opts.force: print print "No sets of parameters are specified." if modifying_sets_as_args: print "(Modifying parameters sets are given.)" print s = raw_input("Do you really want to start with all 'standard' sets of parameters? [y/n]:") if s.lower() not in ("y", "yes"): abort("For help start with option '-h") # # Define the TARGET parameter file name # # Without any args, look in the local directory for a config file # If the first arg is nothing readable (like a sample number ;-) # try also the local directory if len(args) == 0 or not exists(args[0]): args.insert(0, ".") parameter_file="" if isdir(args[0]): temp = join(args[0], p_default_param_file) if isfile(temp): parameter_file=temp else: parser.error("No default parameter file '" + p_default_param_file + "' found in " + args[0]) else: if isfile(args[0]): parameter_file=args[0] else: parser.error("No default parameter named " + args[0] + "found.") # # If necessary try to read defaults from shell variables # defaults_from_shell_variables = {} for x in parameters_and_options : pao = aps[x] if pao.shell_variable: try: defaults_from_shell_variables[x.lower()] = os.environ[x] except KeyError: 0 # # Read all params from config file and merge/overide them with the comman line options # all_params, instance_wide_defaults = merge_opts_and_parameter_files(parameter_file, opts, defaults_from_shell_variables) req_samples = [] try: force_sets = instance_wide_defaults["opp.force-sets"].split(",") except KeyError: force_sets = [] requested_sets_present = False if requested_sets_as_args: for i in args[1:]: req_samples.append(i) requested_sets_present = True else: for ap in all_params: try: to_be_ignored = eval(all_params[ap]["ignore_this_sample"]) except KeyError: to_be_ignored = True if ap in force_sets: to_be_ignored = False if not to_be_ignored: req_samples.append(ap) requested_sets_present = True for i in args[1:]: if i.startswith(","): req_samples.append(i) if not requested_sets_present: if len(req_samples) == 0: abort("No sets specified (either in file or command line)") else: abort("Only modifying sets specified (either in file or command line)") parameter_sets = parse_all_parameter_sets(all_params, p_parameters, req_samples, instance_wide_defaults) # # Final checks for all sets of parameters # abort_missing_string ="" abort_choices_string = "" for ps_name in parameter_sets: ps = parameter_sets[ps_name] # # 1. Are all requested parameters present? # for rp in p_parameters: # Is there a not (yet) set parameter? if rp not in ps: # If the missing parameter is a possible shell variable ... if aps[rp].shell_variable: # ... get it from the environment ps[rp] = os.environ[rp] # Is the parameter still not set? if rp not in ps: # The use the switch default ... if aps[rp].default_value: ps[rp] = aps[rp].default_value else: # ... or write a "missing note" abort_missing_string += " " + ps_name + ": '" + rp + "'\n" # # 2. Do the params comply to any given choices? # for pao in parameters_and_options : if aps[pao].optparse_choices: if not str(ps[pao]) in aps[pao].optparse_choices: abort_choices_string += " " + ps_name + ": '" + pao + "' is '" + str(ps[pao]) + " 'instead one of: " + str(aps[pao].optparse_choices) + "\n" # # 3. Translate explicit boolean in True/False # for pao in parameters_and_options : if aps[pao].optparse_type == "explict_boolean": if ps[pao] == "Yes": ps[pao] = True else: ps[pao] = False # # 4. In case of boolean transfer a non-boolean value into False # for pao in parameters_and_options : if aps[pao].optparse_type == "boolean": try: if type(ps[pao]) != type(True): temp = str(ps[pao]).strip() if temp.lower() == "true" or temp == "": ps[pao] = True elif temp.lower() == "false": ps[pao] = False else: abort_choices_string += "Option --" + pao + " in parameter file is set to: '" + temp + "'\n (Must either be 'False' or 'True' (or empty, which equals 'True'))" except KeyError: # an optional boolean switch, that is not set ps[pao] = False # # 5. If requested split values into lists # for pao in parameters_and_options: if aps[pao].value_as_list: try: actual_type = type(ps[pao]) if not actual_type == type([]): ps[pao] = ps[pao].split(",") except: pass abort_string = "" if abort_missing_string != "": abort_string += "Missing parameters ...\n" + abort_missing_string if abort_choices_string != "": abort_string += "Parameter not one of the possible choices ...\n" + abort_choices_string if abort_string != "": abort(abort_string) return parameter_sets ``` #### File: lib/all_scripts/misc_tools.py ```python import string from subprocess import call import csv import sys from os.path import * #################################################################### # # COMMON FUNCTIONS # #################################################################### def read_table_from_csv(file_name, header_starts=["##hdr", "## hdr"], delimiter="\t"): file = open(file_name ) reader = csv.reader(file, delimiter=delimiter) result_list = [] column_names = None for row in reader: if row != []: col1 = row[0].strip() if col1 in header_starts: # a header line column_names = [] for cn in row[1:]: temp = cn.strip() if temp == "": abort("Found an 'empty' column name in the header") column_names.append(temp) elif col1[0] != "#": if column_names == None: abort("Found a data line without any preceeding header line.") if len(row) > len(column_names): abort("Data line contains more entries than header line column names.") # a data line temp_row = [] for r in row: temp_row.append(r.strip()) result_list.append( dict (zip ( column_names, temp_row) ) ) else: pass # ignoring a comment file.close() return result_list def all_members(aClass): members = {} bases = list(aClass.__bases__) bases.reverse() for base in bases: members.update(all_members(base)) members.update(vars(aClass)) return members __item_line_string__="" def item_line(s="__item_line_none_value__"): global __item_line_string__ if not s == "__item_line_none_value__": __item_line_string__ +=str(s).strip() + " " else: if not __item_line_string__ == "": print __item_line_string__ __item_line_string__ = "" def print_underlined(s, c="-", d=1): print " " * d + s print c * (len(s) + d*2) def print_header(s): ss = str(s).split("\n") textlen = 0 for s in ss: textlen = max(textlen, len(s.strip())) print print print "#" * (textlen + 8) print "#" + " " * (textlen+6) + "#" for s in ss: print "# " + s + " " * (textlen - len(s) + 1) + " #" print "#" + " " * (textlen+6) + "#" print "#" * (textlen + 8) print def print_sub_header(s): print text = " " + str(s).strip() + " " textlen = len(text) print "#" * (textlen + 2) print "#" + text print "#" * (textlen + 2) print def abort(s = "Undefinied reason !", where=None): if where: print print "Aborting script in Class:", str(where.__class__) print s print else: print print "Aborting script:" print s print sys.exit (1) #################################################################### # # Classe for easy shell execution # #################################################################### class Command: def __init__(self, cmd): self.__cmd = str(cmd) self.__args = [] def add(self, arg): self.adds("",arg) def adds(self, switch, arg): a = string.strip(str(arg)) if " " in a: a = '"' +a + '"' if self.__args == None: self.__args = [switch, a] else: self.__args.append( str (switch) + " " + a) def addj(self, *parts): self.add( join(*parts)) def set_cmd(self,cmd): self.__cmd = str(cmd) def get(self): return str(self.__cmd) + " " + string.join(join (self.__args), " ") def reset(self): self.__cmd = None self.__args = None def run(self, ignore_return = False): if self.__cmd == None: abort("Shell Command must contain at least a command to run.") ret = call(self.get(), shell=True) if ret and not ignore_return: abort ("Error while running following shell command:\n\n" + self.get()) return ret ``` #### File: lib/lib/GCTA_mlma_classes.py ```python import os import os.path import sys import re import gzip from copy import deepcopy class Mlma: """ class Mlma implements tasks on mlma output files """ def __init__(self, mlma_file, write_file=None, write_file_status_append=False): """ init """ self._mlma_file = mlma_file # name of mlma file self._write_file = write_file # name of output file self._write_file_status_append = write_file_status_append # status of write file: new or append self._snps_order = [] # order of SNPs from mlma file # only typed snps not imputed self._typed = {} # typed and/or imputed snps self._typed_imputed = {} self._snps_order_perchr = [] # order of SNPs from mlma file per chr, list of chr-lists # for each chr a list, index 0 -> chr0, index 1 -> chr1, ..., index 26 -> chr26 for i in xrange(27): self._snps_order_perchr.append([]) def map_mlma(self, typed=False): """ map p-values from mlma file into memory """ try: fh = file(self._mlma_file,"r") except IOError, e: print e sys.exit(1) typed_pattern = re.compile("^.*_typed.*$") imputed_pattern = re.compile("^.*_imputed.*$") line = fh.readline() while line: list = re.split("\s+",line) # delete empty elements if list[0] == "": del list[0] if list[-1] == "": del list[-1] rs = str(list[1]) self._snps_order.append(rs.replace("_typed","").replace("_imputed","")) # typed only if typed: self._typed[rs.replace("_typed","").replace("_imputed","")] = (list[8], "typed") # typed and/or imputed else: if typed_pattern.search(rs): self._typed_imputed[rs.replace("_typed","")] = (list[8], "typed") else: self._typed_imputed[rs.replace("_imputed","")] = (list[8], "imputed") line = fh.readline() fh.close() def free_map(self): """ free mapped mlma file from memory """ self._snps_order = [] self._typed = {} self._typed_imputed = {} def rs_get_typed_hash(self): """ get the typed rs numbers from file in hash """ return deepcopy(self._typed) ``` #### File: lib/lib/gff_classes.py ```python import os import os.path import sys import re import gzip class Gff_snps: """ class Gff_snps implements tasks on GFF files with snps """ def __init__(self, gff_file, write_file=None, write_file_status_append=False): """ init """ self._gff_file = gff_file # name of gff file self._write_file = write_file # name of output file self._write_file_status_append = write_file_status_append # status of write file: new or append self._snps_order = [] # order of SNPs from gff file # only novel snps self._novel = {} # gff snp : chr, genetic_distance, bp_position, allele1, allele2 # novel and/or known snps self._novel_known = {} # gff rs : chr, genetic_distance, bp_position, allele1, allele2 self._snps_order_perchr = [] # order of SNPs from gff file per chr, list of chr-lists # for each chr a list, index 0 -> chr1, index 1 -> chr2, etc. for i in xrange(26): self._snps_order_perchr.append([]) def write_file_set(self, write_file): """ set name of output file """ self._write_file = write_file def write_file_set_append(self): """ switch to append mode """ self._write_file_status_append = True def map_refAllele(self, novel=False): """ map GFF_snps file into memory """ try: fh = file(self._gff_file,"r") except IOError, e: print e sys.exit(1) line = fh.readline() while line: list = re.split("\s+",line) chr = list[0].replace("chr","") if chr == "X": chr = "23" elif chr == "Y": chr = "24" elif chr == "XY": chr = "25" elif chr == "M": chr = "26" assert(list[2] == list[3]) pos = list[3] feature_list = list[6:] if feature_list[-1] == "": feature_list.pop() # possible features feature_ref = re.compile("^ref=") refAllele = None for feature in feature_list: if feature_ref.search(feature): refAllele = feature.split("ref=")[1].split(";")[0] key = chr +"->"+ pos self._snps_order.append(key) # novel only if novel: self._novel[key] = refAllele # novel and/or known else: self._novel_known[key] = refAllele line = fh.readline() fh.close() def map_source_list(self, novel=False): """ map GFF_snps file into memory """ try: fh = file(self._gff_file,"r") except IOError, e: print e sys.exit(1) line = fh.readline() while line: list = re.split("\s+",line) chr = list[0].replace("chr","") if chr == "X": chr = "23" elif chr == "Y": chr = "24" elif chr == "XY": chr = "25" elif chr == "M": chr = "26" assert(list[2] == list[3]) pos = list[3] feature_list = list[6:] if feature_list[-1] == "": feature_list.pop() # possible features feature_sources = re.compile("^sources=") sources_list = [] for feature in feature_list: if feature_sources.search(feature): sources_list = feature.split("sources=")[1].split(";")[0].split(",") key = chr +"->"+ pos self._snps_order.append(key) # novel only if novel: # if additional sources if self._novel.has_key(key): for source in sources_list: self._novel[key].append(source) # if new sources else: self._novel[key] = sources_list # novel and/or known else: # if additional sources if self._novel_known.has_key(key): for source in sources_list: self._novel_known[key].append(source) # if new sources else: self._novel_known[key] = sources_list line = fh.readline() fh.close() def free_map(self): """ free mapped Gff_snp file from memory """ self._snps_order = [] self._novel = {} self._novel_known = {} def novel_known_get_feature_hash(self): """ get the feature for novel and/or known snps from gff file in hash """ return self._novel_known ```
{ "source": "jkafader-esnet/pypond", "score": 2 }
#### File: pypond/pypond/bases.py ```python import logging import os import time import types import warnings def setup_log(log_path=None): # pragma: no cover """ Usage: _log('main.start', 'happy simple log event') _log('launch', 'more={0}, complex={1} log=event'.format(100, 200)) """ # pylint: disable=redefined-variable-type logger = logging.getLogger("pypond") if not log_path: handle = logging.StreamHandler() else: # it's on you to make sure log_path is valid. logfile = '{0}/pypond.log'.format(log_path) handle = logging.FileHandler(logfile) handle.setFormatter(logging.Formatter('ts=%(asctime)s %(message)s')) logger.addHandler(handle) logger.setLevel(logging.INFO) return logger log = setup_log() # pylint: disable=invalid-name def _log(event, msg): # pragma: no cover log.info('event=%s id=%s %s', event, int(time.time()), msg) class PypondBase(object): # pylint: disable=too-few-public-methods """ Universal base class. Used to provide common functionality (logging, etc) to all the other classes. """ __slots__ = ('_logger',) def __init__(self): """ctor""" self._logger = _log def _log(self, event, msg='', format_args=tuple()): # pragma: no cover """Log events if environment variable PYPOND_LOG is set. Parameters ---------- event : str The event - ie: 'init.start' and etc. msg : str The log message format_args : tuple The args to format. This is to keep objects from being stringified in production which is a performance drag. """ if 'PYPOND_LOG' in os.environ: self._logger(event, msg.format(*format_args)) def _warn(self, msg, warn_type): # pylint: disable=no-self-use """Issue a python warning. Parameters ---------- msg : str The warning message warn_type : Exception subclass Custom warning from pypond.exceptions. """ warnings.warn(msg, warn_type, stacklevel=2) @staticmethod def _field_path_to_array(fspec): """Split the field spec if it is not already a list. Also, allow for deep fields to be passed in as a tuple because it will need to be used as a dict key in some of the processor Options. This is deployed in Event.get() to process anything passed to it, but this should also be deployed "upstream" to avoid having that split() done over and over in a loop. """ if isinstance(fspec, list) or isinstance(fspec, types.FunctionType): # corner case, but Event.map() takes field_spec as a # function, so let that pass through just in case. return fspec elif isinstance(fspec, tuple): return list(fspec) elif isinstance(fspec, str): return fspec.split('.') if fspec is None: return ['value'] # base classes for pipeline sources, etc class Observable(PypondBase): """ Base class for objects in the processing chain which need other object to listen to them. It provides a basic interface to define the relationships and to emit events to the interested observers. """ def __init__(self): super(Observable, self).__init__() self._observers = list() def emit(self, event): """add event to observers.""" for i in self._observers: i.add_event(event) def flush(self): """flush observers.""" self._log('Observable.flush') for i in self._observers: if hasattr(i, 'flush'): self._log('Observable.flush') i.flush() def add_observer(self, observer): """add an observer if it does not already exist.""" self._log('Observable.add_observer', 'obs: {0}', (observer,)) should_add = True for i in self._observers: if i == observer: should_add = False if should_add: self._observers.append(observer) def has_observers(self): """does the object have observers?""" return bool(len(self._observers) > 0) ``` #### File: pypond/pypond/exceptions.py ```python class EventException(Exception): """Custom Event exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class EventWarning(Warning): """Custom Event warning""" pass class TimeRangeException(Exception): """Custom TimeRange exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class TimeRangeWarning(Warning): """Custom TimeRange warning""" pass class IndexException(Exception): """Custom Index exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class IndexWarning(Warning): """Custom Index warning""" pass class UtilityException(Exception): """Custom Utility exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class UtilityWarning(Warning): """Custom Utility warning""" pass class PipelineException(Exception): """Custom Pipeline exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class PipelineWarning(Warning): """Custom Pipeline warning""" pass class PipelineIOException(Exception): """Custom PipelineIO exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class PipelineIOWarning(Warning): """Custom PipelineIO warning""" pass class CollectionException(Exception): """Custom Collection exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class CollectionWarning(Warning): """Custom Collection warning""" pass class TimeSeriesException(Exception): """Custom TimeSeries exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class TimeSeriesWarning(Warning): """Custom TimeSeries warning""" pass class ProcessorException(Exception): """Custom Processor exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class ProcessorWarning(Warning): """Custom Processor warning""" pass class FilterException(Exception): """Custom Filter exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class FilterWarning(Warning): """Custom Filter warning""" pass class FunctionException(Exception): """Custom Function exception""" def __init__(self, value): # pylint: disable=super-init-not-called self.value = value def __str__(self): # pragma: no cover return repr(self.value) class FunctionWarning(Warning): """Custom Function warning""" pass NAIVE_MESSAGE = 'non-naive (aware) datetime objects required' ``` #### File: pypond/pypond/index.py ```python import copy import datetime import re from .bases import PypondBase from .exceptions import IndexException, IndexWarning from .range import TimeRange from .util import ( aware_dt_from_args, dt_from_ms, localtime_from_ms, localtime_info_from_utc, monthdelta, ms_from_dt, sanitize_dt, ) UNITS = dict( s=dict(label='seconds', length=1), m=dict(label='minutes', length=60), h=dict(label='hours', length=3600), d=dict(label='days', length=86400), ) class Index(PypondBase): """ An index that represents as a string a range of time. That range may either be in UTC or local time. UTC is the default. The actual derived timerange can be found using asRange(). This will return a TimeRange instance. The original string representation can be found with toString(). A nice version for date based indexes (e.g. 2015-03) can be generated with toNiceString(format) (e.g. March, 2015). The index string arg will may be of two forms: - 2015-07-14 (day) - 2015-07 (month) - 2015 (year) or: - 1d-278 (range, in n x days, hours, minutes or seconds) Parameters ---------- s : str The index string in one of the aforementioned formats. utc : bool, optional Index interpreted as UTC or localtime. Please don't set this to false since non-UTC times are the devil. Raises ------ IndexException Raised if arg s could not be translated into a valid timerange/index. """ def __init__(self, s, utc=True): """Create the Index. """ super(Index, self).__init__() self._utc = utc self._string = s # keep track of what kind of index it is to simplify other things. self._index_type = None self._timerange = self.range_from_index_string(self._string, self._utc) if self._index_type is None: raise IndexException('could not determine timerange/index type from {arg}'.format( arg=s)) def to_json(self): """ Returns the Index as JSON, which will just be its string representation This is actually like json.loads(s) - produces the actual data structure. Returns ------- str The index string as previously outlined. """ return self._string def to_string(self): """ Simply returns the Index as its string In JS land, this is synonymous with __str__ or __unicode__ Returns ------- str The index string as previously outlined. """ return self._string def to_nice_string(self, fmt=None): """ for the calendar range style Indexes, this lets you return that calendar range as a human readable format, e.g. "June, 2014". The format specified is a Moment.format. Originally implemented at Util.niceIndexString in the JS source, this is just a greatly simplified version using self._index_type. Parameters ---------- fmt : str, optional User can pass in a valid strftime() format string. Returns ------- str FThe index text string as a formatted (strftime()) time. """ if fmt is not None and self._index_type in ('day', 'month', 'year'): return self.begin().strftime(fmt) if self._index_type == 'day': return self.begin().strftime('%B %-d %Y') elif self._index_type == 'index': return self._string elif self._index_type == 'month': return self.begin().strftime('%B') elif self._index_type == 'year': return self.begin().strftime('%Y') def as_string(self): """Alias for to_string() Returns ------- str The index string as previously outlined. """ return self.to_string() def as_timerange(self): """Returns the Index as a TimeRange Returns ------- TimeRange The underlying time range object. """ return self._timerange def begin(self): """Returns start date of the index. Returns ------- datetime.datetime Start date of the index. """ return self.as_timerange().begin() def end(self): """Returns end date of the index. Returns ------- datetime.datetime End date of the index. """ return self.as_timerange().end() def __str__(self): """call to_string() Returns ------- str String representation of the object. """ return self.to_string() @property def utc(self): """accessor for internal utc boolean.""" return self._utc # utility methods def _local_idx_warning(self, local=False): """blanket warning to avoid if statements and make pylint happy.""" if local: msg = 'year/month/day indexes will being coerced to UTC from localtime' self._warn(msg, IndexWarning) def range_from_index_string(self, idx_str, is_utc=True): # pylint: disable=too-many-locals, too-many-statements """ Generate the time range from the idx string. The index string arg will may be of two forms: - 2015-07-14 (day) - 2015-07 (month) - 2015 (year) or: - 1d-278 (range, in n x days, hours, minutes or seconds) and return a TimeRange for that time. The TimeRange may be considered to be local time or UTC time, depending on the utc flag passed in. This was in src/util.js in the original project, but the only thing using the code in that util.js was the Index class, and it makes more sense having this as a class method and setting self._index_type makes further regex analysis of the index unnecessary. Parameters ---------- idx_str : str The index string in one of the aformentioned formats is_utc : bool, optional Index interpreted as utc or localtime. Please don't use localtime. Returns ------- TimeRange A time range made from the interpreted index string. Raises ------ IndexException Raised when the string format is determined to be invalid. """ parts = idx_str.split('-') num_parts = len(parts) begin_time = None end_time = None local = False if is_utc else True if num_parts == 3: # 2015-07-14 (day) self._index_type = 'day' try: year = int(parts[0]) month = int(parts[1]) day = int(parts[2]) except ValueError: msg = 'unable to parse integer year/month/day from {arg}'.format(arg=parts) raise IndexException(msg) self._local_idx_warning(local) dtargs = dict(year=year, month=month, day=day) begin_time = aware_dt_from_args(dtargs, localize=local) end_time = (begin_time + datetime.timedelta(days=1)) - datetime.timedelta(seconds=1) elif num_parts == 2: range_re = re.match('([0-9]+)([smhd])', idx_str) if range_re: # 1d-278 (range, in n x days, hours, minutes or seconds) self._index_type = 'index' try: pos = int(parts[1]) # 1d-278 : 278 num = int(range_re.group(1)) # 1d-278 : 1 except ValueError: msg = 'unable to parse valid integers from {s}'.format(s=idx_str) msg += ' tried elements {pos} and {num}'.format( pos=parts[1], num=range_re.group(1)) raise IndexException(msg) unit = range_re.group(2) # 1d-278 : d # num day/hr/etc units * seconds in that unit * 1000 length = num * UNITS[unit].get('length') * 1000 # pos * length = ms since epoch begin_time = dt_from_ms(pos * length) if is_utc else \ localtime_from_ms(pos * length) # (pos + 1) * length is one hour/day/minute/etc later end_time = dt_from_ms((pos + 1) * length) if is_utc else \ localtime_from_ms((pos + 1) * length) else: # 2015-07 (month) self._index_type = 'month' try: year = int(parts[0]) month = int(parts[1]) except ValueError: msg = 'unable to parse integer year/month from {arg}'.format(arg=parts) raise IndexException(msg) self._local_idx_warning(local) dtargs = dict(year=year, month=month, day=1) begin_time = aware_dt_from_args(dtargs, localize=local) end_time = monthdelta(begin_time, 1) - datetime.timedelta(seconds=1) elif num_parts == 1: # 2015 (year) self._index_type = 'year' try: year = int(parts[0]) except ValueError: msg = 'unable to parse integer year from {arg}'.format(arg=parts[0]) raise IndexException(msg) self._local_idx_warning(local) dtargs = dict(year=year, month=1, day=1) begin_time = aware_dt_from_args(dtargs, localize=local) end_time = begin_time.replace(year=year + 1) - datetime.timedelta(seconds=1) if begin_time and end_time: return TimeRange(begin_time, end_time) else: return None # Static class methods # The two window_* methods were in util.js in the pond source but # they were only being called from this code, so here they are. @staticmethod def window_duration(win): """duration in ms given a window duration string. previously: Generator.getLengthFromSize. Parameters ---------- win : str An index string in the previously mentioned 1d-278 style format. Returns ------- int Duration of the index/range in ms. """ range_re = re.match('([0-9]+)([smhd])', win) if range_re: # normally would try/except, but the regex ensures it'll be a number num = int(range_re.group(1)) unit = range_re.group(2) return num * UNITS[unit].get('length') * 1000 else: return None @staticmethod def window_position_from_date(win, dtime): """window position from datetime object. Called by get_index_string_list(). previously: Generator.getBucketPosFromDate Parameters ---------- win : str Prefix if the index string. dtime : datetime.datetime Datetime to calculate suffix from. Returns ------- int The suffix for the index string. """ duration = Index.window_duration(win) ddms = ms_from_dt(sanitize_dt(dtime)) return int(ddms / duration) @staticmethod def get_index_string(win, dtime): """Return the index string given an index prefix and a datetime object. Example usage follows. :: dtime = aware_dt_from_args( dict(year=2015, month=3, day=14, hour=7, minute=32, second=22)) idx_str = Index.get_index_string('5m', dtime) self.assertEqual(idx_str, '5m-4754394') previously: Generator.bucketIndex Parameters ---------- win : str Prefix of the index string. dtime : datetime.datetime Datetime to generate index string from. Returns ------- str The index string. """ pos = Index.window_position_from_date(win, dtime) return '{win}-{pos}'.format(win=win, pos=pos) @staticmethod def get_index_string_list(win, timerange): """Given the time range, return a list of strings of index values every <prefix> tick. Example usage follows (from test suite). :: dtime_1 = aware_dt_from_args( dict(year=2015, month=3, day=14, hour=7, minute=30, second=0)) dtime_2 = aware_dt_from_args( dict(year=2015, month=3, day=14, hour=8, minute=29, second=59)) idx_list = Index.get_index_string_list('5m', TimeRange(dtime_1, dtime_2)) self.assertEqual(len(idx_list), 12) self.assertEqual(idx_list[0], '5m-4754394') self.assertEqual(idx_list[-1], '5m-4754405') previously: Generator.bucketIndexList Parameters ---------- win : str Prefix of the index string. timerange : TimeRange Time range object to generate index string from Returns ------- list A list of strings of index values at every "tick" in the range specified. """ pos1 = Index.window_position_from_date(win, timerange.begin()) pos2 = Index.window_position_from_date(win, timerange.end()) idx_list = list() if pos1 <= pos2: pos = copy.copy(pos1) while pos <= pos2: idx_list.append('{win}-{pos}'.format(win=win, pos=pos)) pos += 1 return idx_list @staticmethod def get_daily_index_string(date, utc=True): """Generate an index string with day granularity. Parameters ---------- date : datetime.datetime An aware UTC datetime object utc : bool, optional Render the index in local time this is used for display purposes to render charts in a localized way. Returns ------- string The formatted index string. """ year = date.year if utc else localtime_info_from_utc(date).get('year') month = date.strftime('%m') if utc else localtime_info_from_utc(date).get('month') day = date.strftime('%d') if utc else localtime_info_from_utc(date).get('day') return '{y}-{m}-{d}'.format(y=year, m=month, d=day) @staticmethod def get_monthly_index_string(date, utc=True): """Generate an index string with month granularity. Parameters ---------- date : datetime.datetime An aware UTC datetime object utc : bool, optional Render the index in local time this is used for display purposes to render charts in a localized way. Returns ------- string The formatted index string. """ year = date.year if utc else localtime_info_from_utc(date).get('year') month = date.strftime('%m') if utc else localtime_info_from_utc(date).get('month') return '{y}-{m}'.format(y=year, m=month) @staticmethod def get_yearly_index_string(date, utc=True): """Generate an index string with year granularity. Parameters ---------- date : datetime.datetime An aware UTC datetime object utc : bool, optional Render the index in local time this is used for display purposes to render charts in a localized way. Returns ------- string The formatted index string. """ year = date.year if utc else localtime_info_from_utc(date).get('year') return '{y}'.format(y=year) ``` #### File: pypond/pypond/pipeline.py ```python from pyrsistent import pmap from .bases import PypondBase from .event import Event from .exceptions import PipelineException, PipelineWarning from .indexed_event import IndexedEvent from .io.input import Bounded, Stream from .io.output import CollectionOut, EventOut from .processor import ( Aggregator, Align, Collapser, Converter, Filler, Filter, Mapper, Offset, Processor, Rate, Selector, Taker, ) from .series import TimeSeries from .timerange_event import TimeRangeEvent from .util import is_pmap, Options, is_function, Capsule class Runner(PypondBase): # pylint: disable=too-few-public-methods """ A runner is used to extract the chain of processing operations from a Pipeline given an Output. The idea here is to traverse back up the Pipeline(s) and build an execution chain. When the runner is started, events from the "in" are streamed into the execution chain and outputed into the "out". Rebuilding in this way enables us to handle connected pipelines: :: |-- in --> pipeline ---. |----pipeline ---| -> out The runner breaks this into the following for execution: :: _input - the "in" or from() bounded input of the upstream pipeline _processChain - the process nodes in the pipelines leading to the out _output - the supplied output destination for the batch process NOTE: There's no current way to merge multiple sources, though a time series has a TimeSeries.merge() static method for this purpose. Parameters ---------- pipeline : Pipeline The pipeline to run. output : PipelineOut The output driving this runner """ def __init__(self, pline, output): """Create a new batch runner""" super(Runner, self).__init__() self._log('Runner.init') self._pipeline = pline self._output = output self._input = None self._execution_chain = list() # We use the pipeline's chain() function to walk the # DAG back up the tree to the "in" to: # 1) assemble a list of process nodes that feed into # this pipeline, the processChain # 2) determine the _input # # NOTE: we do not currently support merging, so this is # a linear chain. process_chain = list() if self._pipeline.last() is not None: process_chain = self._pipeline.last().chain() self._input = process_chain[0].pipeline().input() else: self._input = self._pipeline.input() # Using the list of nodes in the tree that will be involved in # our processing we can build an execution chain. This is the # chain of processor clones, linked together, for our specific # processing pipeline. We run this execution chain later by # evoking start(). self._execution_chain = [self._output] prev = self._output for i in process_chain: if isinstance(i, Processor): processor = i.clone() if prev is not None: processor.add_observer(prev) self._execution_chain.append(processor) prev = processor def start(self, force=False): """Start the runner Args: force (bool, optional): force Flush at the end of the batch source to cause any buffers to emit. """ self._log('Runner.start', 'starting') # Clear any results ready for the run self._pipeline.clear_results() # The head is the first process node in the execution chain. # To process the source through the execution chain we add # each event from the input to the head. head = self._execution_chain.pop() for i in self._input.events(): head.add_event(i) # The runner indicates that it is finished with the bounded # data by sending a flush() call down the chain. If force is # set to false (the default) this is never called. if force is True: self._log('Runner.start', 'flushing') head.flush() def default_callback(*args): # pylint: disable=unused-argument """Default no-op callback for group_by in the Pipeline constructor.""" return None class Pipeline(PypondBase): # pylint: disable=too-many-public-methods """ Build a new Pipeline. A pipeline manages a processing chain, for either batch or stream processing of collection data. The argument may be either: - a Pipeline (copy ctor) - a pyrsistent.PMap in which case the internal state will be constructed from the map. Usually you would initialize a Pipeline using the factory function, rather than this object directly. Parameters ---------- arg : Pipeline, PMap, None See above. """ def __init__(self, arg=None): """New pipeline.""" super(Pipeline, self).__init__() # sorry pylint, that's just how it goes sometimes # pylint: disable=invalid-name, protected-access self._log('Pipeline.init') if isinstance(arg, Pipeline): self._d = arg._d elif is_pmap(arg): self._d = arg else: self._d = pmap( dict( type=None, input=None, # renamed from 'in' in the JS source first=None, last=None, group_by=default_callback, window_type='global', window_duration=None, emit_on='eachEvent', utc=True, ) ) self._results = list() self._results_done = False # Accessors to the current Pipeline state def input(self): """Originally called in() in JS code.""" return self._d.get('in') def mode(self): """Get the pipeline mode (ie: batch, stream). Returns ------- str The mode. """ return self._d.get('mode') def first(self): """Get the first processor Returns ------- Processor An pipeline processor. """ return self._d.get('first') def last(self): """Get the last processor Returns ------- Processor An pipeline processor. """ return self._d.get('last') def get_window_type(self): """Get the window type (global, etc). Returns ------- str The window type. """ return self._d.get('window_type') def get_window_duration(self): """Get the window duration. Returns ------- str A formatted window duration. """ return self._d.get('window_duration') def get_group_by(self): """Get the group by callback. Returns ------- function Returns the group by function. """ return self._d.get('group_by') def get_emit_on(self): """Get the emit on (eachEvent, etc). Returns ------- str The emit on string (discards, flush, etc). """ return self._d.get('emit_on') def get_utc(self): """Get the UTC state.. Returns ------- bool In UTC or not. """ return self._d.get('utc') # Results def clear_results(self): """Clear the result state of this Pipeline instance.""" self._results = None self._results_done = False def add_result(self, arg1, arg2=None): """Add the incoming result from the processor callback. Parameters ---------- arg1 : str Collection key string. arg2 : Collection or str Generally the incoming collection. """ if self._results is None: if isinstance(arg1, str) and arg2 is not None: self._results = dict() else: self._results = list() # pylint: disable=redefined-variable-type if isinstance(arg1, str) and arg2 is not None: self._results[arg1] = arg2 else: self._results.append(arg1) self._results_done = False def results_done(self): """Set result state as done.""" self._results_done = True # # Pipeline mutations # def _set_in(self, pipe_in): """ Setting the In for the Pipeline returns a new Pipeline. """ self._log('Pipeline._set_in', 'in: {0}', (pipe_in,)) mode = None source = pipe_in if isinstance(pipe_in, TimeSeries): mode = 'batch' source = pipe_in.collection() elif isinstance(pipe_in, Bounded): mode = 'batch' elif isinstance(pipe_in, Stream): mode = 'stream' else: # pragma: no cover # .from_source() already bulletproofs against this msg = 'Unknown input type' raise PipelineException(msg) new_d = self._d.update({'in': source, 'mode': mode}) return Pipeline(new_d) def _set_first(self, node): # pragma: no cover """ Set the first processing node pointed to, returning a new Pipeline. The original pipeline will still point to its orginal processing node. Currently unused. """ new_d = self._d.set('first', node) return Pipeline(new_d) def _set_last(self, node): # pragma: no cover """ Set the last processing node pointed to, returning a new Pipeline. The original pipeline will still point to its orginal processing node. Currently unused. """ new_d = self._d.set('last', node) return Pipeline(new_d) def _append(self, processor): # self._log('Pipeline._append', 'processor: {0}'.format(processor)) first = self.first() last = self.last() if first is None: first = processor if last is not None: last.add_observer(processor) last = processor new_d = self._d.update({'first': first, 'last': last}) return Pipeline(new_d) # Pipeline state chained methods def window_by(self, window_or_duration=None, utc=True): """ Set the window, returning a new Pipeline. A new window will have a type and duration associated with it. Current available types are: * fixed (e.g. every 5m) * calendar based windows (e.g. every month) Windows are a type of grouping. Typically you'd define a window on the pipeline before doing an aggregation or some other operation on the resulting grouped collection. You can combine window-based grouping with key-grouping (see groupBy()). There are several ways to define a window. The general format is an options object containing a `type` field and a `duration` field. Currently the only accepted type is `fixed`, but others are planned. For duration, this is a duration string, for example "30s" or "1d". Supported are: seconds (s), minutes (m), hours (h) and days (d). The argument here is either a string or an object with string attrs type and duration. The arg can be either a window or a duration. If no arg is supplied or set to None, the window_type is set to 'global' and there is no duration. There is also a short-cut notation for a fixed window or a calendar window. Simply supplying the duration string ("30s" for example) will result in a `fixed` window type with the supplied duration. Window *window_or_duration* may be: * A fixed interval duration (see next): "fixed" * A calendar interval: "daily," "monthly" or "yearly" Duration is of the form: * "30s" or "1d" etc - supports seconds (s), minutes (m), hours (h), days (d). When duration is passed as the arg, window_type is set to 'fixed'. Parameters ---------- window_or_duration : string, Capsule See above. utc : bool How to render the aggregations - in UTC vs. the user's local time. Can not be set to False if using a fixed window size. Returns ------- Pipeline The Pipeline. """ self._log( 'Pipeline.window_by', 'window_or_duration: {0} utc: {1}', (window_or_duration, utc) ) w_type = None duration = None if isinstance(window_or_duration, str): if window_or_duration == 'daily' or window_or_duration == 'monthly' \ or window_or_duration == 'yearly': w_type = window_or_duration else: w_type = 'fixed' duration = window_or_duration if utc is False: self._warn( 'Can not set utc=False w/a fixed window size - resetting to utc=True', PipelineWarning ) utc = True elif isinstance(window_or_duration, Capsule): w_type = window_or_duration.type duration = window_or_duration.duration else: w_type = 'global' duration = None new_d = self._d.update(dict(window_type=w_type, window_duration=duration, utc=utc)) self._log( 'Pipeline.window_by', 'new_d: {0}', (new_d,) ) return Pipeline(new_d) def clear_window(self): """ Remove windowing from the Pipeline. This will return the pipeline to no window grouping. This is useful if you have first done some aggregation by some window size and then wish to collect together the all resulting events. Returns ------- Pipeline The Pipeline """ self._log('Pipeline.clear_window') return self.window_by() def group_by(self, key=None): """ Sets a new groupBy expression. Returns a new Pipeline. Grouping is a state set on the Pipeline. Operations downstream of the group specification will use that state. For example, an aggregation would occur over any grouping specified. The key to group by. You can pass in a function that takes and event as an arg and dynamically returns the group by key. Otherwise key will be interpreted as a field_path: * a single field name or deep.column.path, or * a array style field_path ['deep', 'column', 'path'] to a single column. This is not a list of multiple columns, it is the path to a single column to pull group by keys from. For example, a column called 'status' that contains the values 'OK' and 'FAIL' - they key would be 'status' and two collections OK and FAIL will be generated. If key is None, then the default column 'value' will be used. Parameters ---------- key : function, list or string The key to group by. See above. Returns ------- Pipeline The Pipeline """ grp = None if is_function(key): grp = key elif isinstance(key, (str, list, tuple)): def get_callback(event): """gb a column value.""" return event.get(key) grp = get_callback # pylint: disable=redefined-variable-type else: grp = default_callback new_d = self._d.update(dict(group_by=grp)) return Pipeline(new_d) def clear_group_by(self): """ Remove the grouping from the pipeline. In other words recombine the events. Returns ------- Pipeline The Pipeline """ return self.group_by() def emit_on(self, trigger): """ Sets the condition under which an accumulated collection will be emitted. If specified before an aggregation this will control when the resulting event will be emitted relative to the window accumulation. Current options are: * to emit on every event, or * just when the collection is complete, or * when a flush signal is received, either manually calling done(), or at the end of a bounded source. The strings indicating how to trigger how a Collection should be emitted - can be: * "eachEvent" - when a new event comes in, all currently maintained collections will emit their result. * "discard" - when a collection is to be discarded, first it will emit. But only then. * "flush" - when a flush signal is received. The difference will depend on the output you want, how often you want to get updated, and if you need to get a partial state. There's currently no support for late data or watermarks. If an event passes comes in after a collection window, that collection is considered finished. Parameters ---------- trigger : string See above Returns ------- Pipeline The Pipeline """ new_d = self._d.set('emit_on', trigger) return Pipeline(new_d) # I/O def from_source(self, src): """ Note: originally named from() in JS code. The source to get events from. The source needs to be able to iterate its events using `for..of` loop for bounded Ins, or be able to emit() for unbounded Ins. The actual batch, or stream connection occurs when an output is defined with `to()`. Pipelines can be chained together since a source may be another Pipeline. Parameters ---------- src : Bounded, Stream or Pipeline The source for the Pipeline, or another Pipeline. Returns ------- Pipeline The Pipeline. """ self._log('Pipeline.from_source', 'called with: {0}', (src,)) if isinstance(src, (Bounded, Stream, TimeSeries)): return self._set_in(src) else: msg = 'from_source() only takes Pipeline, Bounded or Stream got: {0}'.format(src) raise PipelineException(msg) def to_event_list(self): """Directly return the results from the processor rather than passing a callback in. Returns ------- list or dict Returns the _results attribute with events. """ return self.to(EventOut) def to_keyed_collections(self): """Directly return the results from the processor rather than passing a callback in. Returns ------- list or dict Returns the _results attribute from a Pipeline object after processing. Will contain Collection objects. """ ret = self.to(CollectionOut) if ret is not None: return ret else: # return an empty dict so any calls to collection.get() won't cause # things to unceremoniously blow up and just return None instead. return dict() def to(self, out, observer=None, options=Options()): # pylint: disable=invalid-name """ Sets up the destination sink for the pipeline. For a batch mode connection, i.e. one with a Bounded source, the output is connected to a clone of the parts of the Pipeline dependencies that lead to this output. This is done by a Runner. The source input is then iterated over to process all events into the pipeline and though to the Out. For stream mode connections, the output is connected and from then on any events added to the input will be processed down the pipeline to the out. :: def cback(event): do_something_with_the_event(event) timeseries = TimeSeries(IN_OUT_DATA) ( Pipeline() .from_source(timeseries) .emit_on('flush') .collapse(['in', 'out'], 'total', Functions.sum()) .aggregate(dict(total=Functions.max())) .to(EventOut, cback) ) NOTE: arg list has been changed from the ordering in the JS source to conform to python convention. Parameters ---------- out : EventOut, CollectionOut, etc instance The output. observer : function or instance The observer. options : Options, optional Options. Returns ------- Pipeline The Pipeline. """ self._log( 'Pipeline.to', 'out: {0}, obs: {1}, opt: {2} mode: {3}', (out, observer, options, self.mode()) ) Out = out # pylint: disable=invalid-name if self.input() is None: msg = 'Tried to eval pipeline without a In. Missing from() in chain?' raise PipelineException(msg) out = Out(self, observer, options) if self.mode() == 'batch': runner = Runner(self, out) runner.start(True) if self._results_done and observer is None: return self._results elif self.mode() == 'stream': out = Out(self, observer, options) if self.first(): self.input().add_observer(self.first()) if self.last(): self.last().add_observer(out) else: self.input().add_observer(out) return self def count(self, observer, force=True): """ Outputs the count of events. Parameters ---------- observer : function The callback function. This function will be passed collection.size(), window_key, group_by_key) as args. force : bool, optional Flush at the end of processing batch events, output again with possibly partial result Returns ------- Pipeline The Pipeline. """ def override(collection, window_key, group_by_key): """ This overrides the default behavior of CollectionOut that passes collection/wkey/gbkey to the callback passed in. """ observer(collection.size(), window_key, group_by_key) return self.to(CollectionOut, override, force) def offset_by(self, offset_by, field_spec=None): """ Processor to offset a set of fields by a value. Mostly used for testing processor and pipeline operations with a simple operation. Parameters ---------- offset_by : int, float The amout to offset by. field_spec : str, list, tuple, None, optional Column or columns to look up. If you need to retrieve multiple deep nested values that ['can.be', 'done.with', 'this.notation']. A single deep value with a string.like.this. If None, the default 'value' column will be used. Returns ------- Pipeline The modified Pipeline. """ self._log('Pipeline.offset_by', 'offset: {0}', (offset_by,)) offset = Offset( self, Options( by=offset_by, field_spec=field_spec, prev=self.last() if self.last() else self ) ) return self._append(offset) def aggregate(self, fields): """ Uses the current Pipeline windowing and grouping state to build collections of events and aggregate them. IndexedEvents will be emitted out of the aggregator based on the `emitOn` state of the Pipeline. To specify what part of the incoming events should be aggregated together you specify a `fields` object. This is a map from fieldName to operator. :: uin = Stream() ( Pipeline() .from_source(uin) .window_by('1h') .emit_on('eachEvent') .aggregate( { 'in_avg': {'in': Functions.avg()}, 'out_avg': {'out': Functions.avg()} } ) .to(EventOut, cback) ) Parameters ---------- fields : dict Fields and operators to be aggregated. Deep fields may be indicated by using this.style.notation. As in the above example, they fields.keys() are the names of the new columns to be created (or an old one to be overwritten), and the value is another dict - the key is the existing column and the value is the function to apply to it when creating the new column. Returns ------- Pipeline The Pipeline """ agg = Aggregator( self, Options( fields=fields, prev=self._chain_last() ) ) return self._append(agg) def _chain_last(self): """Get the operative last for the processors Returns ------- Pipeline Returns either self.last() or self """ return self.last() if self.last() is not None else self def map(self, op): # pylint: disable=invalid-name """ Map the event stream using an operator. Parameters ---------- op : function A function that returns a new Event. Returns ------- Pipeline The Pipeline. """ res = Mapper(self, Options(op=op, prev=self._chain_last())) return self._append(res) def filter(self, op): # pylint: disable=invalid-name """ Filter the event stream using an operator Parameters ---------- op : function A function that returns True or False Returns ------- Pipeline The Pipeline """ flt = Filter( self, Options( op=op, prev=self._chain_last(), ) ) return self._append(flt) def select(self, field_spec=None): """ Select a subset of columns. Parameters ---------- field_spec : str, list, tuple, None, optional Column or columns to look up. If you need to retrieve multiple deep nested values that ['can.be', 'done.with', 'this.notation']. A single deep value with a string.like.this. If None, the default 'value' column will be used. Returns ------- Pipeline The Pipeline. """ sel = Selector( self, Options( field_spec=field_spec, prev=self._chain_last(), ) ) return self._append(sel) def collapse(self, field_spec_list, name, reducer, append=True): """ Collapse a subset of columns using a reducer function. Parameters ---------- field_spec_list : list List of columns to collapse. If you need to retrieve deep nested values that ['can.be', 'done.with', 'this.notation']. name : string The resulting output column's name. reducer : function Function to use to do the reduction. append : bool Add the new column to the existing ones, or replace them. Returns ------- Pipeline The Pipeline. """ coll = Collapser( self, Options( field_spec_list=field_spec_list, name=name, reducer=reducer, append=append, prev=self._chain_last(), ) ) return self._append(coll) def fill(self, field_spec=None, method='zero', fill_limit=None): """Take the data in this timeseries and "fill" any missing or invalid values. This could be setting None values to zero so mathematical operations will succeed, interpolate a new value, or pad with the previously given value. Parameters ---------- field_spec : str, list, tuple, None, optional Column or columns to look up. If you need to retrieve multiple deep nested values that ['can.be', 'done.with', 'this.notation']. A single deep value with a string.like.this. If None, the default column field 'value' will be used. method : str, optional Filling method: zero | linear | pad fill_limit : None, optional Set a limit on the number of consecutive events will be filled before it starts returning invalid values. For linear fill, no filling will happen if the limit is reached before a valid value is found. Returns ------- Pipeline The Pipeline. """ fill = Filler( self, Options( field_spec=field_spec, method=method, fill_limit=fill_limit, prev=self._chain_last(), ) ) return self._append(fill) def align(self, field_spec=None, window='5m', method='linear', limit=None): """ Align entry point """ align = Align( self, Options( field_spec=field_spec, window=window, limit=limit, method=method, prev=self._chain_last(), ) ) return self._append(align) def rate(self, field_spec=None, allow_negative=True): """ derivative entry point """ align = Rate( self, Options( field_spec=field_spec, allow_negative=allow_negative, prev=self._chain_last(), ) ) return self._append(align) def take(self, limit): """ Take events up to the supplied limit, per key. Parameters ---------- limit : int Integer number of events to take. global_flush: bool, optional If set to true (default is False) then the Taker will send out a single .flush() event if the limit has been exceeded and the window_type is 'global.' This can be used as a fail safe with processors that cache events (like the Filler) to ensure all events are emitted when the Pipeline is used in 'stream' mode. This is not needed in 'batch' mode because the flush signal is sent automatically. Returns ------- Pipeline The Pipeline. """ take = Taker( self, Options( limit=limit, prev=self._chain_last(), ) ) return self._append(take) def _convert_opts(self, options): # pylint: disable=no-self-use if options is None: return dict() else: return options def as_events(self, options=None): """ Converts incoming TimeRangeEvents or IndexedEvents to Events. This is helpful since some processors will emit TimeRangeEvents or IndexedEvents, which may be unsuitable for some applications. There are three options: 1. use the beginning time (options = Options(alignment='lag') 2. use the center time (options = Options(alignment='center') 3. use the end time (options = Options(alignment='lead') Parameters ---------- options : Options The options, see above. Returns ------- Pipeline The Pipeline. """ conv = Converter( self, Options( type=Event, prev=self._chain_last(), **self._convert_opts(options) ), ) return self._append(conv) def as_time_range_events(self, options=None): """ Converts incoming Events or IndexedEvents to TimeRangeEvents. There are three option for alignment: 1. time range will be in front of the timestamp - ie: options = Options(alignment='front') 2. time range will be centered on the timestamp - ie: options = Options(alignment='center') 3. time range will be positoned behind the timestamp - ie: options = Options(alignment='behind') The duration is of the form "1h" for one hour, "30s" for 30 seconds and so on. Parameters ---------- options : dict Args to add to Options - duration and alignment. Returns ------- Pipeline The Pipeline """ conv = Converter( self, Options( type=TimeRangeEvent, prev=self._chain_last(), **self._convert_opts(options) ), ) return self._append(conv) def as_indexed_events(self, options=None): """ Converts incoming Events to IndexedEvents. Note: It isn't possible to convert TimeRangeEvents to IndexedEvents. Parameters ---------- options : Options Contains the conversion options. In this case, the duration string of the Index is expected. Must contain the key 'duration' and the duration string is of the form "1h" for one hour, "30s" for 30 seconds and so on. Returns ------- TYPE Description """ conv = Converter( self, Options( type=IndexedEvent, prev=self._chain_last(), **self._convert_opts(options) ), ) return self._append(conv) # module functions ``` #### File: pypond/processor/filler.py ```python import copy import numbers from operator import truediv from pyrsistent import thaw import six from .base import Processor from ..exceptions import ProcessorException, ProcessorWarning from ..util import ( is_pipeline, is_valid, ms_from_dt, nested_get, nested_set, Options, ) class Filler(Processor): # pylint: disable=too-many-instance-attributes """ A processor that fills missing/invalid values in the event with new values (zero, interpolated or padded). When doing a linear fill, Filler instances should be chained. See the Fill/sanitize doc (sanitize.md) for details. If no field_spec is supplied, the default field 'value' will be used. Parameters ---------- arg1 : Filler or Pipeline Copy constructor or the pipeline. options : Options Options object. """ def __init__(self, arg1, options=Options()): """create the mapper""" super(Filler, self).__init__(arg1, options) self._log('Filler.init', 'uid: {0}'.format(self._id)) # options self._field_spec = None self._method = None self._mode = None self._fill_limit = None # internal members # state for pad to refer to previous event self._previous_event = None # key count for zero and pad fill self._key_count = dict() # special state for linear fill self._last_good_linear = None # cache of events pending linear fill self._linear_fill_cache = list() if isinstance(arg1, Filler): # pylint: disable=protected-access self._field_spec = arg1._field_spec self._method = arg1._method self._mode = arg1._mode self._fill_limit = arg1._fill_limit elif is_pipeline(arg1): self._field_spec = options.field_spec self._method = options.method self._mode = arg1.mode() self._fill_limit = options.fill_limit else: msg = 'Unknown arg to Filler: {0}'.format(arg1) raise ProcessorException(msg) self._log('Filler.init.Options', '{0}', (options,)) if self._method not in ('zero', 'pad', 'linear'): msg = 'Unknown method {0} passed to Filler'.format(self._method) raise ProcessorException(msg) if self._fill_limit is not None and not isinstance(self._fill_limit, int): msg = 'Arg fill_limit must be an integer' raise ProcessorException(msg) if isinstance(self._field_spec, six.string_types): self._field_spec = [self._field_spec] elif self._field_spec is None: self._field_spec = ['value'] # when using linear mode, only a single column will be processed # per instance. more details in sanitize.md if self._method == 'linear' and len(self._field_spec) != 1: msg = 'linear fill takes a path to a single column\n' msg += ' - see the sanitize documentation for usage details.' raise ProcessorException(msg) def clone(self): """clone it.""" return Filler(self) def _pad_and_zero(self, data): """ Process and fill the values at the paths as apropos when the fill method is either pad or zero. """ for path in self._field_spec: field_path = self._field_path_to_array(path) # initialize a counter for this column if tuple(field_path) not in self._key_count: self._key_count[tuple(field_path)] = 0 val = nested_get(data, field_path) # this is pointing at a path that does not exist if val == 'bad_path': self._warn('path does not exist: {0}'.format(field_path), ProcessorWarning) continue if not is_valid(val): # massage the path per selected method # have we hit the limit? if self._fill_limit is not None and \ self._key_count[tuple(field_path)] >= self._fill_limit: continue if self._method == 'zero': # set to zero nested_set(data, field_path, 0) # note that this column has been zeroed self._key_count[tuple(field_path)] += 1 elif self._method == 'pad': # set to previous value if self._previous_event is not None: if is_valid(self._previous_event.get(field_path)): nested_set( data, field_path, self._previous_event.get(field_path) ) # note that this column has been padded # on success self._key_count[tuple(field_path)] += 1 else: # it is a valid value, so reset the counter for # this column self._key_count[tuple(field_path)] = 0 def _is_valid_linear_event(self, event): """ Check to see if an even has good values when doing linear fill since we need to keep a completely intact event for the values. While we are inspecting the data payload, make a note if any of the paths are pointing at a list. Then it will trigger that filling code later. """ valid = True field_path = self._field_path_to_array(self._field_spec[0]) val = nested_get(thaw(event.data()), field_path) # this is pointing at a path that does not exist, issue a warning # can call the event valid so it will be emitted. can't fill what # isn't there. if val == 'bad_path': self._warn('path does not exist: {0}'.format(field_path), ProcessorWarning) return valid # a tracked field path is not valid so this is # not a valid linear event. also, if it is not a numeric # value, mark it as invalid and let _interpolate_event_list() # complain about/skip it. if not is_valid(val) or not isinstance(val, numbers.Number): valid = False return valid def _linear_fill(self, event): """ This handles the linear filling. It returns a list of events to be emitted. That list may only contain a single event. If an event is valid - it has valid values for all of the field paths - it is cached as "last good" and returned to be emitted. The return value is a list of one event. If an event has invalid values, it is cached to be processed later and an empty list is returned. Additional invalid events will continue to be cached until a new valid value is seen, then the cached events will be filled and returned. That will be a list of indeterminate length. """ # see if the event is valid and also if it has any # list values to be filled. is_valid_event = self._is_valid_linear_event(event) # Deal with the event as apropos depending on if it is # valid or not and if we have nor have not seen a valid # event yet. events = list() if is_valid_event and not self._linear_fill_cache: # valid event, no cached events, use as last good # and return the event. This is what we want to see. self._last_good_linear = event events.append(event) elif not is_valid_event and self._last_good_linear is not None: # an invalid event was received and we have previously # seen a valid event, so add to the cache for fill processing # later. self._linear_fill_cache.append(event) # now make sure we have not exceeded the fill_limit # if it has been set. if it has, emit all the cached # events and reset the main state such that the next # condition will continue to trigger until we see another # valid event. if self._fill_limit is not None and \ len(self._linear_fill_cache) >= self._fill_limit: for i in self._linear_fill_cache: self.emit(i) self._linear_fill_cache = list() self._last_good_linear = None elif not is_valid_event and self._last_good_linear is None: # an invalid event but we have not seen a good # event yet so there is nothing to start filling "from" # so just return and live with it. events.append(event) elif is_valid_event and self._linear_fill_cache: # a valid event was received, and there are cached events # to be processed, so process and return the filled events # to be emitted. event_list = [self._last_good_linear] + self._linear_fill_cache + [event] # the first event a.k.a. self._last_good_linear has # already been emitted either as a "good" # event or as the last event in the previous filling pass. # that's why it's being shaved off here. for i in self._interpolate_event_list(event_list)[1:]: events.append(i) # reset the cache, note as last good self._linear_fill_cache = list() self._last_good_linear = event return events def add_event(self, event): """ Perform the fill operation on the event and emit. Parameters ---------- event : Event, IndexedEvent, TimerangeEvent Any of the three event variants. """ if self.has_observers(): to_emit = list() new_data = thaw(event.data()) if self._method in ('zero', 'pad'): # zero and pad use much the same method in that # they both will emit a single event every time # add_event() is called. self._pad_and_zero(new_data) emit = event.set_data(new_data) to_emit.append(emit) # remember previous event for padding self._previous_event = emit elif self._method == 'linear': # linear filling follows a somewhat different # path since it might emit zero, one or multiple # events every time add_event() is called. for emit in self._linear_fill(event): to_emit.append(emit) # end filling logic for emitted_event in to_emit: self._log('Filler.add_event', 'emitting: {0}', (emitted_event,)) self.emit(emitted_event) def _interpolate_event_list(self, events): # pylint: disable=too-many-branches, too-many-locals """ The fundamental linear interpolation workhorse code. Process a list of events and return a new list. Does a pass for every field_spec. This is abstracted out like this because we probably want to interpolate a list of events not tied to a Collection. A Pipeline result list, etc etc. Sorry pylint, sometime you need to write a complex method. """ base_events = copy.copy(events) # new array of interpolated events for each field path new_events = list() field_path = self._field_path_to_array(self._field_spec[0]) # setup done, loop through the events. for event_enum in enumerate(base_events): # cant interpolate first or last event so just save it # as-is and move on. if event_enum[0] == 0 or event_enum[0] == len(base_events) - 1: new_events.append(event_enum[1]) continue # if a non-numeric value is encountered, stop processing # this field spec and hand back the original unfilled events. if is_valid(event_enum[1].get(field_path)) and \ not isinstance(event_enum[1].get(field_path), numbers.Number): self._warn( 'linear requires numeric values - skipping this field_spec', ProcessorWarning ) return base_events # found a bad value so start calculating. if not is_valid(event_enum[1].get(field_path)): previous_value = None previous_ts = None next_value = None next_ts = None # look to the previous event in the new_event list since # that's where previously interpolated values will be. # if found, get the timestamp as well. previous_value = new_events[event_enum[0] - 1].get(field_path) if previous_value: previous_ts = ms_from_dt(new_events[event_enum[0] - 1].timestamp()) # see about finding the next valid value and its timestamp # in the original list. next_idx = event_enum[0] + 1 while next_value is None and next_idx < len(base_events): val = base_events[next_idx].get(field_path) if is_valid(val): next_ts = ms_from_dt(base_events[next_idx].timestamp()) next_value = val # terminates the loop next_idx += 1 # previous_value should only be none if there are a string # of bad values at the beginning of the sequence. # next_value will be none if that value no longer has # valid values in the rest of the sequence. if previous_value is not None and next_value is not None: # pry the data from current event new_data = thaw(event_enum[1].data()) current_ts = ms_from_dt(event_enum[1].timestamp()) if previous_ts == next_ts: # average the two values new_val = truediv((previous_value + next_value), 2) else: point_frac = truediv( (current_ts - previous_ts), (next_ts - previous_ts)) new_val = previous_value + ((next_value - previous_value) * point_frac) # set that value to the field spec in new data nested_set(new_data, field_path, new_val) # call .set_data() to create a new event new_events.append(event_enum[1].set_data(new_data)) else: # couldn't calculate new value either way, just # keep the old event. new_events.append(event_enum[1]) else: # theoretically never called because the incoming lists # will be bookended by valid events now that we're only # processing a single column per Filler instance. # leaving here in case we start feeding this new data. new_events.append(event_enum[1]) # pragma: no cover # save the current state before doing another pass # on a different field_path return new_events def flush(self): """Don't delegate flush to superclass yet. Make sure there are no cached events (could happen if we stop seeing valid events) before passing it up the food chain.""" self._log('Filler.flush') if self.has_observers() and self._method == 'linear': self._log('Filler.flush.linear') # are there any left-over events like if a path # just stops seeing any good events so they are # never filled and emitted. for i in self._linear_fill_cache: self.emit(i) super(Filler, self).flush() ``` #### File: pypond/processor/mapper.py ```python from .base import Processor from ..exceptions import ProcessorException from ..util import is_pipeline, Options class Mapper(Processor): """ A processor which takes an operator as its only option and uses that to either output a new event. Parameters ---------- arg1 : Mapper or Pipeline Copy constructor or the pipeline. options : Options Options object. """ def __init__(self, arg1, options=Options()): """create the mapper""" super(Mapper, self).__init__(arg1, options) self._log('Mapper.init', 'uid: {0}'.format(self._id)) self._op = None if isinstance(arg1, Mapper): self._op = arg1._op # pylint: disable=protected-access elif is_pipeline(arg1): self._op = options.op else: msg = 'Unknown arg to Mapper: {0}'.format(arg1) raise ProcessorException(msg) if callable(self._op) is False: msg = 'op: {0} is not a callable function'.format(self._op) raise ProcessorException(msg) def clone(self): """clone it.""" return Mapper(self) def add_event(self, event): """ Perform the map operation on the event and emit. Parameters ---------- event : Event, IndexedEvent, TimerangeEvent Any of the three event variants. """ if self.has_observers(): evn = self._op(event) self._log('Mapper.add_event', 'emitting: {0}', (evn,)) self.emit(evn) ``` #### File: pypond/processor/taker.py ```python from .base import Processor from ..exceptions import ProcessorException from ..index import Index from ..util import is_pipeline, Options class Taker(Processor): """ A processor which limits the number of events that are processed. Parameters ---------- arg1 : Taker or Pipeline Copy constructor or the pipeline. options : Options Options object. """ def __init__(self, arg1, options=Options()): """create the mapper""" super(Taker, self).__init__(arg1, options) self._log('Taker.init', 'uid: {0}'.format(self._id)) # options self._limit = None self._window_type = None self._window_duration = None self._group_by = None # instance memebers self._count = dict() self._flush_sent = False if isinstance(arg1, Taker): # pylint: disable=protected-access self._limit = arg1._limit self._window_type = arg1._window_type self._window_duration = arg1._window_duration self._group_by = arg1._group_by elif is_pipeline(arg1): self._limit = options.limit self._window_type = arg1.get_window_type() self._window_duration = arg1.get_window_duration() self._group_by = arg1.get_group_by() else: msg = 'Unknown arg to Taker: {0}'.format(arg1) raise ProcessorException(msg) def clone(self): """clone it.""" return Taker(self) def add_event(self, event): """ Output an event that is offset. Parameters ---------- event : Event, IndexedEvent, TimerangeEvent Any of the three event variants. """ if self.has_observers(): ts = event.timestamp() window_key = None if self._window_type == 'fixed': window_key = Index.get_index_string(self._window_duration, ts) else: window_key = self._window_type group_by_key = self._group_by(event) coll_key = '{wk}::{gbk}'.format(wk=window_key, gbk=group_by_key) if \ group_by_key is not None else window_key if coll_key not in self._count: self._count[coll_key] = 0 self._count[coll_key] += 1 # emit the events for each collection key that has not reached # the limit. This is the main point of this processor. if self._count.get(coll_key) <= self._limit: self._log('Taker.add_event', 'collection key: {0}', (coll_key,)) self._log( 'Taker.add_event', 'count: {0} limit: {1}', (self._count.get(coll_key), self._limit) ) self._log('Taker.add_event', 'emitting: {0}', (event,)) self.emit(event) def flush(self): """flush""" super(Taker, self).flush() ``` #### File: pypond/pypond/timerange_event.py ```python from pyrsistent import pmap, thaw from .event import EventBase from .util import is_pmap, ms_from_dt class TimeRangeEvent(EventBase): """ The creation of an TimeRangeEvent is done by combining two parts - the timerange and the data. To construct you specify a TimeRange, along with the data. The first arg can be: - a TimeRangeEvent instance (copy ctor) - a pyrsistent.PMap, or - a python tuple, list or pyrsistent.PVector object containing two python datetime objects or ms timestamps - the args for the TimeRange object. To specify the data you can supply either: - a python dict - a pyrsistent.PMap, or - a simple type such as an integer. In the case of the simple type this is a shorthand for supplying {"value": v}. Parameters ---------- instance_or_args : TimeRange, iterable, pyrsistent.pmap See above arg2 : dict, pmap, int, float, str, optional See above. """ __slots__ = () # inheriting relevant slots, stil need this def __init__(self, instance_or_args, arg2=None): """ Create a time range event. """ # pylint doesn't like self._d but be consistent w/original code. # pylint: disable=invalid-name if isinstance(instance_or_args, TimeRangeEvent): super(TimeRangeEvent, self).__init__(instance_or_args._d) # pylint: disable=protected-access return elif is_pmap(instance_or_args): super(TimeRangeEvent, self).__init__(instance_or_args) return rng = self.timerange_from_arg(instance_or_args) data = self.data_from_arg(arg2) super(TimeRangeEvent, self).__init__(pmap(dict(range=rng, data=data))) # Query/accessor methods def to_json(self): """ Returns the TimeRangeEvent as a JSON object, essentially :: {timerange: tr, data: {key: value, ...}} This is actually like json.loads(s) - produces the actual data structure from the object internal data. Returns ------- dict Dict representation of internals (timerange, data). """ return dict( timerange=self.timerange().to_json(), data=thaw(self.data()), ) def key(self): """Returns a range string in the format 'begin,end' as expressed as ms since the epoch. Returns ------- str The begin and end of the timerange in ms since the epoch. """ return '{0},{1}'.format(ms_from_dt(self.begin()), ms_from_dt(self.end())) def type(self): # pylint: disable=no-self-use """Return the type of this event type Returns ------- class The class of this event type. """ return TimeRangeEvent def to_point(self, cols=None): """ Returns a flat array starting with the timestamp, followed by the values. Can be given an optional list of columns so the returned list will have the values in order. Primarily for the TimeSeries wire format. Parameters ---------- cols : list, optional List of data columns to order the data points in so the TimeSeries wire format lines up correctly. If not specified, the points will be whatever order that dict.values() decides to return it in. Returns ------- list Epoch ms followed by points. """ points = [self.timerange().to_json()] data = thaw(self.data()) if isinstance(cols, list): points += [data.get(x, None) for x in cols] else: points += [x for x in list(data.values())] return points def timerange_as_utc_string(self): """The timerange of this data, in UTC time, as a string. Returns ------- str Formatted time string """ return self.timerange().to_utc_string() def timerange_as_local_string(self): """The timerange of this data, in Local time, as a string. Returns ------- str Formatted time string. """ return self.timerange().to_local_string() def timestamp(self): """The timestamp of this Event data. It's just the beginning of the range in this case. Returns ------- datetime.datetime Beginning of range. """ return self.begin() def timerange(self): """The TimeRange of this data. Returns ------- TimeRange The underlying time range object. """ return self._d.get('range') def begin(self): """The begin time of this Event, which will be just the timestamp. Returns ------- datetime.datetime Beginning of range. """ return self.timerange().begin() def end(self): """The end time of this Event, which will be just the timestamp. Returns ------- datetime.datetime End of range. """ return self.timerange().end() # data setters, returns new object def set_data(self, data): """Sets the data portion of the event and returns a new TimeRangeEvent. :param data: The new data portion for this event object. :type data: dict :returns: TimeRangeEvent - a new TimeRangeEvent object. Parameters ---------- data : dict New payload to set as the data for this event. Returns ------- TimeRangeEvent A new time range event object with new data payload. """ _dnew = self._d.set('data', self.data_from_arg(data)) return TimeRangeEvent(_dnew) # Humanize def humanize_duration(self): """Humanize the timerange. Returns ------- str Humanized string of the time range. """ return self.timerange().humanize_duration() ``` #### File: pypond/tests/clean_test.py ```python import copy import datetime import unittest import warnings from pypond.collection import Collection from pypond.event import Event from pypond.exceptions import ProcessorException, ProcessorWarning, TimeSeriesException from pypond.indexed_event import IndexedEvent from pypond.io.input import Stream from pypond.io.output import CollectionOut from pypond.pipeline import Pipeline from pypond.processor import Filler from pypond.series import TimeSeries from pypond.timerange_event import TimeRangeEvent from pypond.util import aware_utcnow # global variables for the callbacks to write to. # they are alwasy reset to None by setUp() RESULT = None EVENT_LIST = [ Event(1429673400000, {'in': 1, 'out': 2}), Event(1429673460000, {'in': 3, 'out': 4}), Event(1429673520000, {'in': 5, 'out': 6}), ] TICKET_RANGE = dict( name="outages", columns=["timerange", "title", "esnet_ticket"], points=[ [[1429673400000, 1429707600000], "BOOM", "ESNET-20080101-001"], [[1429673400000, 1429707600000], "BAM!", "ESNET-20080101-002"], ], ) AVAILABILITY_DATA = dict( name="availability", columns=["index", "uptime"], points=[ ["2014-07", "100%"], ["2014-08", "88%"], ["2014-09", "95%"], ["2014-10", "99%"], ["2014-11", "91%"], ["2014-12", "99%"], ["2015-01", "100%"], ["2015-02", "92%"], ["2015-03", "99%"], ["2015-04", "87%"], ["2015-05", "92%"], ["2015-06", "100%"], ] ) class CleanBase(unittest.TestCase): def setUp(self): """set up for all tests.""" # canned collection self._canned_collection = Collection(EVENT_LIST) # canned series objects self._canned_event_series = TimeSeries( dict(name='collection', collection=self._canned_collection)) global RESULTS RESULTS = None class TestRenameFill(CleanBase): """ A set of test for the second gen methods to manipulate timeseries and events. """ def test_rename(self): """Test the renamer facility.""" # rename an Event series ts = copy.deepcopy(self._canned_event_series) renamed = ts.rename_columns({'in': 'new_in', 'out': 'new_out'}) self.assertEqual( renamed.at(0).get('new_in'), self._canned_event_series.at(0).get('in') ) self.assertEqual( renamed.at(0).get('new_out'), self._canned_event_series.at(0).get('out') ) self.assertEqual( renamed.at(1).get('new_in'), self._canned_event_series.at(1).get('in') ) self.assertEqual( renamed.at(1).get('new_out'), self._canned_event_series.at(1).get('out') ) self.assertEqual( renamed.at(2).get('new_in'), self._canned_event_series.at(2).get('in') ) self.assertEqual( renamed.at(2).get('new_out'), self._canned_event_series.at(2).get('out') ) # rename a TimeRangeEvent series ts = TimeSeries(TICKET_RANGE) renamed = ts.rename_columns({'title': 'event', 'esnet_ticket': 'ticket'}) self.assertEqual(renamed.at(0).get('event'), ts.at(0).get('title')) self.assertEqual(renamed.at(0).get('ticket'), ts.at(0).get('esnet_ticket')) self.assertEqual(renamed.at(1).get('event'), ts.at(1).get('title')) self.assertEqual(renamed.at(1).get('ticket'), ts.at(1).get('esnet_ticket')) self.assertEqual(renamed.at(0).timestamp(), ts.at(0).timestamp()) self.assertEqual(renamed.at(1).timestamp(), ts.at(1).timestamp()) # rename and IndexedEvent series ts = TimeSeries(AVAILABILITY_DATA) renamed = ts.rename_columns(dict(uptime='available')) self.assertEqual(renamed.at(0).get('available'), ts.at(0).get('uptime')) self.assertEqual(renamed.at(2).get('available'), ts.at(2).get('uptime')) self.assertEqual(renamed.at(4).get('available'), ts.at(4).get('uptime')) self.assertEqual(renamed.at(6).get('available'), ts.at(6).get('uptime')) self.assertEqual(renamed.at(0).timestamp(), ts.at(0).timestamp()) self.assertEqual(renamed.at(1).timestamp(), ts.at(1).timestamp()) self.assertEqual(renamed.at(2).timestamp(), ts.at(2).timestamp()) def test_bad_args(self): """Trigger error states for coverage.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None, 'drop': None}], [1400425948000, {'in': None, 'out': 4, 'drop': None}], [1400425949000, {'in': None, 'out': None, 'drop': 13}], [1400425950000, {'in': None, 'out': None, 'drop': 14}], [1400425960000, {'in': 9, 'out': 8, 'drop': None}], [1400425970000, {'in': 11, 'out': 10, 'drop': 16}], ] ) ts = TimeSeries(simple_missing_data) # bad ctor arg with self.assertRaises(ProcessorException): f = Filler(dict()) # invalid method with self.assertRaises(TimeSeriesException): ts.fill(method='bogus') # limit not int with self.assertRaises(ProcessorException): ts.fill(fill_limit='z') # direct access to filler via pipeline needs to take a single path with self.assertRaises(ProcessorException): pip = Pipeline() pip.fill(method='linear', field_spec=['direction.in', 'direction.out']) # invalid method with self.assertRaises(ProcessorException): pip = Pipeline() pip.fill(method='bogus') # catch bad path at various points with warnings.catch_warnings(record=True) as wrn: ts.fill(field_spec='bad.path') self.assertEqual(len(wrn), 1) self.assertTrue(issubclass(wrn[0].category, ProcessorWarning)) with warnings.catch_warnings(record=True) as wrn: ts.fill(field_spec='bad.path', method='linear') self.assertEqual(len(wrn), 1) self.assertTrue(issubclass(wrn[0].category, ProcessorWarning)) with warnings.catch_warnings(record=True) as wrn: ts.fill(field_spec='direction.bogus') self.assertEqual(len(wrn), 1) self.assertTrue(issubclass(wrn[0].category, ProcessorWarning)) # trigger warnings about non-numeric values in linear. with warnings.catch_warnings(record=True) as wrn: simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': 'non_numeric', 'out': 4}], [1400425949000, {'in': 5, 'out': None}], ] ) ts = TimeSeries(simple_missing_data) ts.fill(field_spec='direction.in', method='linear') self.assertEqual(len(wrn), 1) self.assertTrue(issubclass(wrn[0].category, ProcessorWarning)) # empty series for coverage caught a bug empty = TimeSeries(dict( name="Sensor values", columns=["time", "temperature"], points=[ ] )) self.assertEqual(empty.fill(field_spec='temperature').size(), 0) def test_zero_fill(self): """test using the filler to fill missing values with zero.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': None, 'out': 4}], [1400425949000, {'in': 5, 'out': None}], [1400425950000, {'in': None, 'out': 8}], [1400425960000, {'in': 9, 'out': None}], [1400425970000, {'in': None, 'out': 12}], ] ) ts = TimeSeries(simple_missing_data) # fill all invalid values new_ts = ts.fill(field_spec=['direction.in', 'direction.out']) self.assertEqual(new_ts.size(), 6) self.assertEqual(new_ts.at(0).get('direction.out'), 0) self.assertEqual(new_ts.at(2).get('direction.out'), 0) self.assertEqual(new_ts.at(1).get('direction.in'), 0) # fill one column new_ts = ts.fill(field_spec='direction.in') self.assertEqual(new_ts.size(), 6) self.assertEqual(new_ts.at(1).get('direction.in'), 0) self.assertEqual(new_ts.at(3).get('direction.in'), 0) self.assertIsNone(new_ts.at(0).get('direction.out')) self.assertIsNone(new_ts.at(2).get('direction.out')) def test_complex_zero_fill(self): """make sure more complex nested paths work OK""" complex_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': {'tcp': 1, 'udp': 3}, 'out': {'tcp': 2, 'udp': 3}}], [1400425948000, {'in': {'tcp': 3, 'udp': None}, 'out': {'tcp': 4, 'udp': 3}}], [1400425949000, {'in': {'tcp': 5, 'udp': None}, 'out': {'tcp': None, 'udp': 3}}], [1400425950000, {'in': {'tcp': 7, 'udp': None}, 'out': {'tcp': None, 'udp': 3}}], [1400425960000, {'in': {'tcp': 9, 'udp': 4}, 'out': {'tcp': 6, 'udp': 3}}], [1400425970000, {'in': {'tcp': 11, 'udp': 5}, 'out': {'tcp': 8, 'udp': 3}}], ] ) ts = TimeSeries(complex_missing_data) # zero fill everything new_ts = ts.fill(field_spec=['direction.out.tcp', 'direction.in.udp']) self.assertEqual(new_ts.at(0).get('direction.in.udp'), 3) self.assertEqual(new_ts.at(1).get('direction.in.udp'), 0) # fill self.assertEqual(new_ts.at(2).get('direction.in.udp'), 0) # fill self.assertEqual(new_ts.at(3).get('direction.in.udp'), 0) # fill self.assertEqual(new_ts.at(4).get('direction.in.udp'), 4) self.assertEqual(new_ts.at(5).get('direction.in.udp'), 5) self.assertEqual(new_ts.at(0).get('direction.out.tcp'), 2) self.assertEqual(new_ts.at(1).get('direction.out.tcp'), 4) self.assertEqual(new_ts.at(2).get('direction.out.tcp'), 0) # fill self.assertEqual(new_ts.at(3).get('direction.out.tcp'), 0) # fill self.assertEqual(new_ts.at(4).get('direction.out.tcp'), 6) self.assertEqual(new_ts.at(5).get('direction.out.tcp'), 8) # do it again, but only fill the out.tcp new_ts = ts.fill(field_spec=['direction.out.tcp']) self.assertEqual(new_ts.at(0).get('direction.out.tcp'), 2) self.assertEqual(new_ts.at(1).get('direction.out.tcp'), 4) self.assertEqual(new_ts.at(2).get('direction.out.tcp'), 0) # fill self.assertEqual(new_ts.at(3).get('direction.out.tcp'), 0) # fill self.assertEqual(new_ts.at(4).get('direction.out.tcp'), 6) self.assertEqual(new_ts.at(5).get('direction.out.tcp'), 8) self.assertEqual(new_ts.at(0).get('direction.in.udp'), 3) self.assertEqual(new_ts.at(1).get('direction.in.udp'), None) # no fill self.assertEqual(new_ts.at(2).get('direction.in.udp'), None) # no fill self.assertEqual(new_ts.at(3).get('direction.in.udp'), None) # no fill self.assertEqual(new_ts.at(4).get('direction.in.udp'), 4) self.assertEqual(new_ts.at(5).get('direction.in.udp'), 5) def test_linear(self): """Test linear interpolation filling returned by to_keyed_collections().""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': 2}], [1400425948000, {'in': None, 'out': None}], [1400425949000, {'in': None, 'out': None}], [1400425950000, {'in': 3, 'out': None}], [1400425960000, {'in': None, 'out': None}], [1400425970000, {'in': 5, 'out': 12}], [1400425980000, {'in': 6, 'out': 13}], ] ) ts = TimeSeries(simple_missing_data) new_ts = ts.fill(field_spec=['direction.in', 'direction.out'], method='linear') self.assertEqual(new_ts.size(), 7) self.assertEqual(new_ts.at(0).get('direction.in'), 1) self.assertEqual(new_ts.at(1).get('direction.in'), 1.6666666666666665) # filled self.assertEqual(new_ts.at(2).get('direction.in'), 2.333333333333333) # filled self.assertEqual(new_ts.at(3).get('direction.in'), 3) self.assertEqual(new_ts.at(4).get('direction.in'), 4.0) # filled self.assertEqual(new_ts.at(5).get('direction.in'), 5) self.assertEqual(new_ts.at(0).get('direction.out'), 2) self.assertEqual(new_ts.at(1).get('direction.out'), 2.4347826086956523) # filled self.assertEqual(new_ts.at(2).get('direction.out'), 2.8695652173913047) # filled self.assertEqual(new_ts.at(3).get('direction.out'), 3.304347826086957) # filled self.assertEqual(new_ts.at(4).get('direction.out'), 7.6521739130434785) # filled self.assertEqual(new_ts.at(5).get('direction.out'), 12) def test_linear_list(self): """Test linear interpolation returned as an event list.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': None, 'out': None}], [1400425949000, {'in': None, 'out': None}], [1400425950000, {'in': 3, 'out': 8}], [1400425960000, {'in': None, 'out': None}], [1400425970000, {'in': 5, 'out': 12}], [1400425980000, {'in': 6, 'out': 13}], ] ) ts = TimeSeries(simple_missing_data) # also test chaining multiple fillers together. in this series, # field_spec=['direction.in', 'direction.out'] would not start # filling until the 4th point so points 2 and 3 of direction.in # would not be filled. A chain like this will ensure both # columns will be fully filled. elist = ( Pipeline() .from_source(ts) .fill(field_spec='direction.in', method='linear') .fill(field_spec='direction.out', method='linear') .to_event_list() ) self.assertEqual(len(elist), len(simple_missing_data.get('points'))) self.assertEqual(elist[0].get('direction.in'), 1) self.assertEqual(elist[1].get('direction.in'), 1.6666666666666665) # filled self.assertEqual(elist[2].get('direction.in'), 2.333333333333333) # filled self.assertEqual(elist[3].get('direction.in'), 3) self.assertEqual(elist[4].get('direction.in'), 4.0) # filled self.assertEqual(elist[5].get('direction.in'), 5) self.assertEqual(elist[0].get('direction.out'), None) # can't fill self.assertEqual(elist[1].get('direction.out'), None) # can't fill self.assertEqual(elist[2].get('direction.out'), None) # can't fill self.assertEqual(elist[3].get('direction.out'), 8) self.assertEqual(elist[4].get('direction.out'), 10.0) # filled self.assertEqual(elist[5].get('direction.out'), 12) def test_assymetric_linear_fill(self): """Test new chained/assymetric linear default fill in TimeSeries.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': None, 'out': None}], [1400425949000, {'in': None, 'out': None}], [1400425950000, {'in': 3, 'out': 8}], [1400425960000, {'in': None, 'out': None}], [1400425970000, {'in': 5, 'out': 12}], [1400425980000, {'in': 6, 'out': 13}], ] ) ts = TimeSeries(simple_missing_data) new_ts = ts.fill(method='linear', field_spec=['direction.in', 'direction.out']) self.assertEqual(new_ts.at(0).get('direction.in'), 1) self.assertEqual(new_ts.at(1).get('direction.in'), 1.6666666666666665) # filled self.assertEqual(new_ts.at(2).get('direction.in'), 2.333333333333333) # filled self.assertEqual(new_ts.at(3).get('direction.in'), 3) self.assertEqual(new_ts.at(4).get('direction.in'), 4.0) # filled self.assertEqual(new_ts.at(5).get('direction.in'), 5) self.assertEqual(new_ts.at(0).get('direction.out'), None) # can't fill self.assertEqual(new_ts.at(1).get('direction.out'), None) # can't fill self.assertEqual(new_ts.at(2).get('direction.out'), None) # can't fill self.assertEqual(new_ts.at(3).get('direction.out'), 8) self.assertEqual(new_ts.at(4).get('direction.out'), 10.0) # filled self.assertEqual(new_ts.at(5).get('direction.out'), 12) def test_linear_stream(self): """Test streaming on linear fill""" def cback(collection, window_key, group_by): """the callback""" global RESULTS # pylint: disable=global-statement RESULTS = collection events = [ Event(1400425947000, 1), Event(1400425948000, 2), Event(1400425949000, dict(value=None)), Event(1400425950000, dict(value=None)), Event(1400425951000, dict(value=None)), Event(1400425952000, 5), Event(1400425953000, 6), Event(1400425954000, 7), ] stream = Stream() ( Pipeline() .from_source(stream) .fill(method='linear', field_spec='value') .to(CollectionOut, cback) ) for i in events: stream.add_event(i) self.assertEqual(RESULTS.size(), len(events)) self.assertEqual(RESULTS.at(0).get(), 1) self.assertEqual(RESULTS.at(1).get(), 2) self.assertEqual(RESULTS.at(2).get(), 2.75) # filled self.assertEqual(RESULTS.at(3).get(), 3.5) # filled self.assertEqual(RESULTS.at(4).get(), 4.25) # filled self.assertEqual(RESULTS.at(5).get(), 5) self.assertEqual(RESULTS.at(6).get(), 6) self.assertEqual(RESULTS.at(7).get(), 7) def test_linear_stream_limit(self): """Test streaming on linear fill with limiter""" # Sets up a state where we stop seeing a good data # on a linear fill. In this case the Taker is used to # not only limit the number of results, but also to # make sure any cached events get emitted. def cback(collection, window_key, group_by): """the callback""" global RESULTS # pylint: disable=global-statement RESULTS = collection events = [ Event(1400425947000, 1), Event(1400425948000, 2), Event(1400425949000, dict(value=None)), Event(1400425950000, 3), Event(1400425951000, dict(value=None)), Event(1400425952000, dict(value=None)), Event(1400425953000, dict(value=None)), Event(1400425954000, dict(value=None)), ] # error state first - the last 4 events won't be emitted. stream = Stream() ( Pipeline() .from_source(stream) .fill(method='linear', field_spec='value') .to(CollectionOut, cback) ) for i in events: stream.add_event(i) self.assertEqual(RESULTS.size(), 4) # shut it down and check again. stream.stop() # events "stuck" in the cache have been emitted self.assertEqual(RESULTS.size(), 8) # now use the Taker to make sure any cached events get # emitted as well - setting the fill_limit to 3 here # will make it so on the 7th event (after 3 have been # cached) those will be emitted, and then the 8th event # will be emitted because the state has been reset to # "have not seen a valid value yet" which means that # invalid events will be emitted and not cached. stream = Stream() ( Pipeline() .from_source(stream) .fill(method='linear', fill_limit=3, field_spec='value') .to(CollectionOut, cback) ) for i in events: stream.add_event(i) self.assertEqual(RESULTS.size(), 8) def test_pad_and_zero_limiting(self): """test the limiting on pad and zero options.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': None, 'out': None}], [1400425949000, {'in': None, 'out': None}], [1400425950000, {'in': 3, 'out': 8}], [1400425960000, {'in': None, 'out': None}], [1400425970000, {'in': None, 'out': 12}], [1400425980000, {'in': None, 'out': 13}], [1400425990000, {'in': 7, 'out': None}], [1400426000000, {'in': 8, 'out': None}], [1400426010000, {'in': 9, 'out': None}], [1400426020000, {'in': 10, 'out': None}], ] ) ts = TimeSeries(simple_missing_data) # verify fill limit for zero fill zero_ts = ts.fill(method='zero', fill_limit=2, field_spec=['direction.in', 'direction.out']) self.assertEqual(zero_ts.at(0).get('direction.in'), 1) self.assertEqual(zero_ts.at(1).get('direction.in'), 0) # fill self.assertEqual(zero_ts.at(2).get('direction.in'), 0) # fill self.assertEqual(zero_ts.at(3).get('direction.in'), 3) self.assertEqual(zero_ts.at(4).get('direction.in'), 0) # fill self.assertEqual(zero_ts.at(5).get('direction.in'), 0) # fill self.assertEqual(zero_ts.at(6).get('direction.in'), None) # over limit skip self.assertEqual(zero_ts.at(7).get('direction.in'), 7) self.assertEqual(zero_ts.at(8).get('direction.in'), 8) self.assertEqual(zero_ts.at(9).get('direction.in'), 9) self.assertEqual(zero_ts.at(10).get('direction.in'), 10) self.assertEqual(zero_ts.at(0).get('direction.out'), 0) # fill self.assertEqual(zero_ts.at(1).get('direction.out'), 0) # fill self.assertEqual(zero_ts.at(2).get('direction.out'), None) # over limit skip self.assertEqual(zero_ts.at(3).get('direction.out'), 8) self.assertEqual(zero_ts.at(4).get('direction.out'), 0) # fill self.assertEqual(zero_ts.at(5).get('direction.out'), 12) self.assertEqual(zero_ts.at(6).get('direction.out'), 13) self.assertEqual(zero_ts.at(7).get('direction.out'), 0) # fill self.assertEqual(zero_ts.at(8).get('direction.out'), 0) # fill self.assertEqual(zero_ts.at(9).get('direction.out'), None) # over limit skip self.assertEqual(zero_ts.at(10).get('direction.out'), None) # over limit skip # verify fill limit for pad fill pad_ts = ts.fill(method='pad', fill_limit=2, field_spec=['direction.in', 'direction.out']) self.assertEqual(pad_ts.at(0).get('direction.in'), 1) self.assertEqual(pad_ts.at(1).get('direction.in'), 1) # fill self.assertEqual(pad_ts.at(2).get('direction.in'), 1) # fill self.assertEqual(pad_ts.at(3).get('direction.in'), 3) self.assertEqual(pad_ts.at(4).get('direction.in'), 3) # fill self.assertEqual(pad_ts.at(5).get('direction.in'), 3) # fill self.assertEqual(pad_ts.at(6).get('direction.in'), None) # over limit skip self.assertEqual(pad_ts.at(7).get('direction.in'), 7) self.assertEqual(pad_ts.at(8).get('direction.in'), 8) self.assertEqual(pad_ts.at(9).get('direction.in'), 9) self.assertEqual(pad_ts.at(10).get('direction.in'), 10) self.assertEqual(pad_ts.at(0).get('direction.out'), None) # no fill start self.assertEqual(pad_ts.at(1).get('direction.out'), None) # no fill start self.assertEqual(pad_ts.at(2).get('direction.out'), None) # no fill start self.assertEqual(pad_ts.at(3).get('direction.out'), 8) self.assertEqual(pad_ts.at(4).get('direction.out'), 8) # fill self.assertEqual(pad_ts.at(5).get('direction.out'), 12) self.assertEqual(pad_ts.at(6).get('direction.out'), 13) self.assertEqual(pad_ts.at(7).get('direction.out'), 13) # fill self.assertEqual(pad_ts.at(8).get('direction.out'), 13) # fill self.assertEqual(pad_ts.at(9).get('direction.out'), None) # over limit skip self.assertEqual(pad_ts.at(10).get('direction.out'), None) # over limit skip def test_fill_event_variants(self): """fill time range and indexed events.""" range_list = [ TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=1)), {'in': 100} ), TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=2)), {'in': None} ), TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=3)), {'in': None} ), TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=4)), {'in': 90} ), TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=5)), {'in': 80} ), TimeRangeEvent( (aware_utcnow(), aware_utcnow() + datetime.timedelta(minutes=6)), {'in': 70} ), ] coll = Collection(range_list) # canned series objects rts = TimeSeries( dict(name='collection', collection=coll)) new_rts = rts.fill(field_spec='in') self.assertEqual(new_rts.at(1).get('in'), 0) self.assertEqual(new_rts.at(2).get('in'), 0) # indexed events index_list = [ IndexedEvent('1d-12355', {'value': 42}), IndexedEvent('1d-12356', {'value': None}), IndexedEvent('1d-12357', {'value': None}), IndexedEvent('1d-12358', {'value': 52}), IndexedEvent('1d-12359', {'value': 55}), IndexedEvent('1d-12360', {'value': 58}), ] coll = Collection(index_list) its = TimeSeries( dict(name='collection', collection=coll)) new_its = its.fill() self.assertEqual(new_its.at(1).get(), 0) self.assertEqual(new_its.at(2).get(), 0) def test_scan_stop(self): """stop seeking good values if there are none - for coverage.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None}], [1400425948000, {'in': 3, 'out': None}], [1400425949000, {'in': None, 'out': None}], [1400425950000, {'in': None, 'out': 8}], [1400425960000, {'in': None, 'out': None}], [1400425970000, {'in': None, 'out': 12}], [1400425980000, {'in': None, 'out': 13}], ] ) ts = TimeSeries(simple_missing_data) new_ts = ts.fill(field_spec='direction.out', method='linear') self.assertEqual(new_ts.at(2).get('direction.in'), None) self.assertEqual(new_ts.at(3).get('direction.in'), None) self.assertEqual(new_ts.at(4).get('direction.in'), None) self.assertEqual(new_ts.at(5).get('direction.in'), None) self.assertEqual(new_ts.at(6).get('direction.in'), None) def test_pad(self): """Test the pad style fill.""" simple_missing_data = dict( name="traffic", columns=["time", "direction"], points=[ [1400425947000, {'in': 1, 'out': None, 'drop': None}], [1400425948000, {'in': None, 'out': 4, 'drop': None}], [1400425949000, {'in': None, 'out': None, 'drop': 13}], [1400425950000, {'in': None, 'out': None, 'drop': 14}], [1400425960000, {'in': 9, 'out': 8, 'drop': None}], [1400425970000, {'in': 11, 'out': 10, 'drop': 16}], ] ) ts = TimeSeries(simple_missing_data) new_ts = ts.fill(method='pad', field_spec=['direction.in', 'direction.out', 'direction.drop']) self.assertEqual(new_ts.at(0).get('direction.in'), 1) self.assertEqual(new_ts.at(1).get('direction.in'), 1) # padded self.assertEqual(new_ts.at(2).get('direction.in'), 1) # padded self.assertEqual(new_ts.at(3).get('direction.in'), 1) # padded self.assertEqual(new_ts.at(4).get('direction.in'), 9) self.assertEqual(new_ts.at(5).get('direction.in'), 11) self.assertEqual(new_ts.at(0).get('direction.out'), None) # 1st can't pad self.assertEqual(new_ts.at(1).get('direction.out'), 4) self.assertEqual(new_ts.at(2).get('direction.out'), 4) # padded self.assertEqual(new_ts.at(3).get('direction.out'), 4) # padded self.assertEqual(new_ts.at(4).get('direction.out'), 8) self.assertEqual(new_ts.at(5).get('direction.out'), 10) self.assertEqual(new_ts.at(0).get('direction.drop'), None) # 1st can't pad self.assertEqual(new_ts.at(1).get('direction.drop'), None) # bad prev can't pad self.assertEqual(new_ts.at(2).get('direction.drop'), 13) self.assertEqual(new_ts.at(3).get('direction.drop'), 14) self.assertEqual(new_ts.at(4).get('direction.drop'), 14) # padded self.assertEqual(new_ts.at(5).get('direction.drop'), 16) if __name__ == '__main__': unittest.main() ``` #### File: pypond/tests/compare_test.py ```python import datetime import unittest from pypond.collection import Collection from pypond.event import Event from pypond.indexed_event import IndexedEvent from pypond.timerange_event import TimeRangeEvent from pypond.range import TimeRange from pypond.series import TimeSeries, TimeSeriesException from pypond.util import aware_utcnow, ms_from_dt, dt_from_ms EVENT_LIST = [ Event(1429673400000, {'in': 1, 'out': 2}), Event(1429673460000, {'in': 3, 'out': 4}), Event(1429673520000, {'in': 5, 'out': 6}), ] UNORDERED_EVENT_LIST = [ Event(1429673460000, {'in': 3, 'out': 4}), Event(1429673400000, {'in': 1, 'out': 2}), Event(1429673520000, {'in': 5, 'out': 6}), ] EVENT_LIST_DUP = [ Event(1429673400000, {'in': 1, 'out': 2}), Event(1429673460000, {'in': 3, 'out': 4}), Event(1429673460000, {'in': 4, 'out': 5}), Event(1429673520000, {'in': 5, 'out': 6}), ] IDX_EVENT_DUP = [ IndexedEvent('1d-12354', {'value': 42}), IndexedEvent('1d-12355', {'value': 43}), IndexedEvent('1d-12355', {'value': 44}), IndexedEvent('1d-12356', {'value': 45}), ] class BaseTestEvent(unittest.TestCase): """Base class for comparison tests.""" def setUp(self): pass class TestComparisonUtils(BaseTestEvent): """Test methods checking for/handling duplicate events and other accessors introduced in the 8.0 branch of the JS code.""" def test_at_key_and_dedup(self): """test Collection.at_key() and dedup()""" # events coll = Collection(EVENT_LIST_DUP) key_time = dt_from_ms(1429673460000) find = coll.at_key(key_time) self.assertEqual(len(find), 2) self.assertEqual(find[0].get('in'), 3) self.assertEqual(find[1].get('in'), 4) ddcoll = coll.dedup() self.assertEqual(ddcoll.size(), 3) self.assertEqual(ddcoll.at(1).get('in'), 4) # the second dup event # indexed events coll = Collection(IDX_EVENT_DUP) find = coll.at_key('1d-12355') self.assertEqual(len(find), 2) self.assertEqual(find[0].get('value'), 43) self.assertEqual(find[1].get('value'), 44) ddcoll = coll.dedup() self.assertEqual(ddcoll.size(), 3) self.assertEqual(ddcoll.at(1).get('value'), 44) # the second dup event # time range events test_end_ts = aware_utcnow() test_begin_ts = test_end_ts - datetime.timedelta(hours=12) test_end_ms = ms_from_dt(test_end_ts) test_begin_ms = ms_from_dt(test_begin_ts) dup_tre = [ TimeRangeEvent((test_begin_ms, test_end_ms), 11), TimeRangeEvent((test_begin_ms + 60000, test_end_ms + 60000), 12), TimeRangeEvent((test_begin_ms + 60000, test_end_ms + 60000), 13), TimeRangeEvent((test_begin_ms + 120000, test_end_ms + 120000), 14), ] coll = Collection(dup_tre) search = TimeRange(test_begin_ms + 60000, test_end_ms + 60000) find = coll.at_key(search) self.assertEqual(len(find), 2) self.assertEqual(find[0].get('value'), 12) self.assertEqual(find[1].get('value'), 13) ddcoll = coll.dedup() self.assertEqual(ddcoll.size(), 3) self.assertEqual(ddcoll.at(1).get('value'), 13) # the second dup event def test_list_as_map(self): """test collection.list_as_map()""" coll = Collection(EVENT_LIST_DUP) cmap = coll.event_list_as_map() self.assertEqual(len(cmap), 3) self.assertEqual(len(cmap.get(1429673400000)), 1) self.assertEqual(len(cmap.get(1429673460000)), 2) # dups def test_new_same(self): """trigger an error for coverage.""" self.assertFalse(Event.same(EVENT_LIST[0], IDX_EVENT_DUP[0])) def test_nested_merge(self): """trigger merging nested data.""" # pylint: disable=invalid-name e_ts = aware_utcnow() e1 = Event(e_ts, dict(payload=dict(a=1))) e2 = Event(e_ts, dict(payload=dict(b=2))) emerge = Event.merge([e1, e2]) self.assertEqual(emerge[0].get('payload.a'), 1) self.assertEqual(emerge[0].get('payload.b'), 2) def test_bad_args(self): """bad args for new TimeSeries functions/coverage.""" # def timeseries_list_reduce(data, series_list, reducer, field_spec=None): def test_func(): """test function.""" i = 1 return i with self.assertRaises(TimeSeriesException): TimeSeries.timeseries_list_reduce({}, {}, test_func) with self.assertRaises(TimeSeriesException): TimeSeries.timeseries_list_reduce({}, [], {}) def test_is_duplicate(self): """Test Event.is_duplicate()""" # events # pylint: disable=invalid-name e_ts = aware_utcnow() e1 = Event(e_ts, 23) e2 = Event(e_ts, 23) self.assertTrue(Event.is_duplicate(e1, e2)) self.assertTrue(Event.is_duplicate(e1, e2, ignore_values=False)) e3 = Event(e_ts, 25) self.assertTrue(Event.is_duplicate(e1, e3)) self.assertFalse(Event.is_duplicate(e1, e3, ignore_values=False)) # indexed events ie1 = IndexedEvent('1d-12355', {'value': 42}) ie2 = IndexedEvent('1d-12355', {'value': 42}) self.assertTrue(Event.is_duplicate(ie1, ie2)) self.assertTrue(Event.is_duplicate(ie1, ie2, ignore_values=False)) ie3 = IndexedEvent('1d-12355', {'value': 44}) self.assertTrue(Event.is_duplicate(ie1, ie3)) self.assertFalse(Event.is_duplicate(ie1, ie3, ignore_values=False)) # time range events test_end_ts = aware_utcnow() test_begin_ts = test_end_ts - datetime.timedelta(hours=12) test_end_ms = ms_from_dt(test_end_ts) test_begin_ms = ms_from_dt(test_begin_ts) tre1 = TimeRangeEvent((test_begin_ms, test_end_ms), 11) tre2 = TimeRangeEvent((test_begin_ms, test_end_ms), 11) self.assertTrue(Event.is_duplicate(tre1, tre2)) self.assertTrue(Event.is_duplicate(tre1, tre2, ignore_values=False)) tre3 = TimeRangeEvent((test_begin_ms, test_end_ms), 22) self.assertTrue(Event.is_duplicate(tre1, tre3)) self.assertFalse(Event.is_duplicate(tre1, tre3, ignore_values=False)) if __name__ == '__main__': unittest.main() ```