metadata
dict
text
stringlengths
60
3.49M
{ "source": "jkbradley/spark-ml", "score": 3 }
#### File: python/ml/parameters.py ```python class Param: def __init__(self, parent, name, doc, defaultValue): self.parent = parent self.name = name self.doc = doc self.defaultValue = defaultValue def withValue(self, value): return ParamPair(self, value) def __str__(self): return "{0}/{1}: {2} (default: {3})".format(self.parent, self.name, self.doc, self.defaultValue) def __repr__(self): return "{0}/{1}".format(self.parent, self.name) class ParamPair: def __init__(self, param, value): assert isinstance(param, Param) self.param = param self.value = value class ParamMap: def __init__(self): self.params = {} def put(self, param, value): self.params[param] = value return self def getOrDefault(self, param): return self.params[param] if param in self.params else param.defaultValue def copy(self): newMap = ParamMap() newMap.params = self.params.copy() return newMap def __repr__(self): return self.params.__repr__() class ParamGridBuilder: def __init__(self): self.paramGrid = {} def add(self, param, value): return self.addMulti(param, [value,]) def addMulti(self, param, values): self.paramGrid[param] = values return self def build(self): paramMaps = [ParamMap(),] for (param, values) in self.paramGrid.items(): newParamMaps = [] for paramMap in paramMaps: for v in values: newParamMap = paramMap.copy() newParamMap.put(param, v) newParamMaps.append(newParamMap) paramMaps = newParamMaps return paramMaps ```
{ "source": "jkbrandt/loudml", "score": 2 }
#### File: loudml/loudml/dummystorage.py ```python from .storage import Storage class DummyStorage(Storage): """ Dummy Loud ML storage for testing """ def model_exists(self, name): return False def template_exists(self, name): return False def get_model_data(self, name, ckpt_name=None): return {} def get_template_data(self, name): return {} def list_models(self): return [] def list_checkpoints(self, name): return [] def list_templates(self): return [] def create_model(self, model): pass def delete_model(self, name): pass def create_template(self, template): pass def delete_template(self, name): pass def save_model(self, model, save_state=True): pass def save_state(self, model, ckpt_name=None): pass def set_current_ckpt(self, model_name, ckpt_name): pass def get_current_ckpt(self, model_name): return None def load_model(self, name, ckpt_name=None): return None def load_model_from_template(self, _name, *args, **kwargs): return None def get_model_hook(self, model_name, hook_name): return None def list_model_hooks(self, model_name): return [] def set_model_hook(self, model_name, hook_name, hook_type, config=None): pass def delete_model_hook(self, model_name, hook_name): pass ``` #### File: loudml/loudml/errors.py ```python class LoudMLException(Exception): """Loud ML exception""" code = 500 def __init__(self, msg=None): super().__init__(msg or self.__doc__) class Conflict(LoudMLException): """Conflict""" code = 409 class BucketError(LoudMLException): """Error occured on bucket query""" code = 500 def __init__(self, bucket, error=None): self.bucket = bucket self.error = error or self.__doc__ def __str__(self): return "bucket[{}]: {}".format(self.bucket, self.error) class BucketNotFound(BucketError): """Bucket not found""" code = 404 def __str__(self): return "{} (name = '{}')".format(self.error, self.bucket) class Invalid(LoudMLException): """Data is invalid""" code = 400 def __init__(self, error, name=None, path=None, hint=None): self.error = error self.name = name self.path = path self.hint = hint def __str__(self): hint = "" if self.hint is None else " ({})".format(self.hint) if self.path is None or len(self.path) == 0: return "{} is invalid: {}{}".format( self.name or "data", self.error, hint, ) else: path = '.'.join([str(key) for key in self.path]) return "invalid field {}: {}{}".format(path, self.error, hint) class LimitReached(LoudMLException): """Limit reached""" code = 429 class ModelExists(LoudMLException): """Model exists""" code = 409 class ModelNotFound(LoudMLException): """Model not found""" code = 404 def __init__(self, name=None, version=None): self.name = name self.version = version def __str__(self): if self.version and self.name: name = " ({} version {})".format(self.name, self.version) else: name = "" if self.name is None else " ({})".format(self.name) return "Model{} not found".format(name) class ModelNotTrained(LoudMLException): """Model not trained""" code = 400 class UnsupportedBucket(LoudMLException): """Unsupported bucket type""" code = 501 def __init__(self, bucket_type, error=None): self.bucket_type = bucket_type self.error = error or self.__doc__ def __str__(self): return "{} (type = '{}')".format(self.error, self.bucket_type) class UnsupportedMetric(LoudMLException): """Unsupported metric""" code = 501 def __init__(self, metric, error=None): self.metric = metric self.error = error or self.__doc__ def __str__(self): return "{} (type = '{}')".format(self.error, self.metric) class UnsupportedModel(LoudMLException): """Unsupported model""" code = 501 def __init__(self, model_type, error=None): self.model_type = model_type self.error = error or self.__doc__ def __str__(self): return "{} (type = '{}')".format(self.error, self.model_type) class Forbidden(LoudMLException): """Forbidden""" code = 403 class NotFound(LoudMLException): """Not found""" code = 404 class NoData(NotFound): """No data""" class TransportError(LoudMLException): """ Exception raised when LML returns a non-OK (>=400) HTTP status code. Or when an actual connection error happens; in that case the ``status_code`` will be set to ``'N/A'``. """ code = 503 @property def status_code(self): """ The HTTP status code of the response that precipitated the error or ``'N/A'`` if not applicable. """ return self.args[0] @property def error(self): """ A string error message. """ return self.args[1] @property def info(self): """ Dict of returned error info from LML, where available, underlying exception when not. """ return self.args[2] def __str__(self): cause = '' try: if self.info: cause = ', %r' % self.info['error']['root_cause'][0]['reason'] except LookupError: pass return '%s(%s, %r%s)' % ( self.__class__.__name__, self.status_code, self.error, cause) class ConnectionError(TransportError): """ Error raised when there was an exception while talking to LML. Original exception from the underlying :class:`~elasticsearch.Connection` implementation is available as ``.info.`` """ def __str__(self): return 'ConnectionError(%s) caused by: %s(%s)' % ( self.error, self.info.__class__.__name__, self.info) class SSLError(ConnectionError): """ Error raised when encountering SSL errors. """ class ConnectionTimeout(ConnectionError): """ A network timeout. Doesn't cause a node retry by default. """ def __str__(self): return 'ConnectionTimeout caused by - %s(%s)' % ( self.info.__class__.__name__, self.info) ``` #### File: loudml/loudml/mongo.py ```python import logging import math import numpy as np import pymongo from voluptuous import ( All, Length, Optional, Required, ) from . import ( errors, schemas, ) from .misc import ( make_ts, parse_addr, ) from loudml.bucket import Bucket def _tk(key): return "$" + key def _build_query(feature, timestamp_field, boundaries): field = feature.field metric = feature.metric group_by = _tk(timestamp_field) query = [] if feature.match_all: match = [] for tag in feature.match_all: k, v = tag['tag'], tag['value'] match.append({k: v}) query.append({'$match': {'$or': match}}) if metric == "count": return query + [ {'$match': {field: {'$exists': True}}}, {'$bucket': { 'groupBy': group_by, 'boundaries': boundaries, 'default': None, 'output': {feature.name: {'$sum': 1}}, }} ] if metric == "mean": metric = "avg" return query + [ {'$bucket': { 'groupBy': group_by, 'boundaries': boundaries, 'default': None, 'output': {feature.name: { _tk(metric): _tk(field), }} }} ] def catch_query_error(func): def wrapper(self, *args, **kwargs): try: return func(self, *args, **kwargs) except ( pymongo.errors.PyMongoError ) as exn: raise errors.BucketError(self.name, str(exn)) return wrapper class MongoBucket(Bucket): """ MongoDB bucket """ SCHEMA = Bucket.SCHEMA.extend({ Required('addr'): str, Required('database'): str, Required('collection'): schemas.key, Optional('username'): All(schemas.key, Length(max=256)), Optional('password'): str, Optional('auth_source'): str, }) def __init__(self, cfg): cfg['type'] = 'mongodb' super().__init__(cfg) self._client = None self._db = None self._pending = {} self._nb_pending = 0 @property def collection(self): return self.cfg['collection'] @property def client(self): if self._client is None: addr = parse_addr(self.cfg['addr'], default_port=8086) logging.info( "connecting to mongodb on %s:%d, using database '%s'", addr['host'], addr['port'], self.cfg['database'], ) kwargs = {} username = self.cfg.get('username') if username: kwargs['username'] = username kwargs['password'] = self.cfg.get('password') auth_src = self.cfg.get('auth_source') if auth_src: kwargs['authSource'] = auth_src self._client = pymongo.MongoClient( host=addr['host'], port=addr['port'], **kwargs ) return self._client @property def db(self): if self._db is None: self._db = self.client[self.cfg['database']] return self._db @catch_query_error def init(self, *args, **kwargs): return @catch_query_error def drop(self, db=None): self.client.drop_database(db or self.cfg['database']) def nb_pending(self): return self._nb_pending def enqueue(self, collection, request): if collection not in self._pending: self._pending[collection] = [] self._pending[collection].append(request) self._nb_pending += 1 def clear_pending(self): self._pending = {} def insert_data( self, data, tags=None, ): if tags is not None: for tag, tag_val in tags.items(): data[tag] = tag_val self.enqueue(self.collection, pymongo.InsertOne(data)) def insert_times_data( self, ts, data, tags=None, *args, **kwargs ): """ Insert data """ ts = make_ts(ts) data = data.copy() data[self.timestamp_field] = ts self.insert_data(data, tags=tags) @catch_query_error def send_bulk(self, pending): """ Send data to MongoDB """ for collection, requests in pending.items(): self.db[collection].bulk_write(requests) @catch_query_error def get_times_data( self, bucket_interval, features, from_date, to_date, ): bucket_interval = int(bucket_interval) from_ts = int(math.floor(make_ts(from_date) / bucket_interval) * bucket_interval) to_ts = int(math.ceil(make_ts(to_date) / bucket_interval) * bucket_interval) boundaries = list( range(from_ts, to_ts + bucket_interval, bucket_interval)) nb_buckets = len(boundaries) buckets = np.full((nb_buckets, len(features)), np.nan, dtype=float) nb_buckets_found = 0 for i, feature in enumerate(features): query = _build_query(feature, self.timestamp_field, boundaries) resp = self.db[self.collection].aggregate(query) for entry in resp: ts = entry['_id'] if ts is None: continue value = entry[feature.name] j = int((ts - from_ts) / bucket_interval) buckets[j][i] = value if j >= nb_buckets_found: nb_buckets_found = j + 1 if nb_buckets_found == 0: raise errors.NoData() result = [] ts = from_ts for bucket in buckets[0:nb_buckets_found]: result.append((ts - from_ts, list(bucket), ts)) ts += bucket_interval return result ``` #### File: loudml/loudml/schemas.py ```python import loudml.errors from voluptuous import ( All, Any, Boolean, Invalid, Length, Match, message, Required, Optional, Range, Schema, ) import voluptuous as vol from urllib.parse import urlparse from .misc import ( make_ts, parse_timedelta, ) key = All( str, Length(min=1), Match("^[a-zA-Z0-9-_@]+$"), ) time_str_key = All( str, Length(min=1), Match("^[:0-9]+$"), ) dotted_key = All( str, Length(min=1), Match("^[a-zA-Z0-9-_@.]+$"), ) bracket_key = All( str, Length(min=1), Match("^{{[a-zA-Z0-9-_@.]+}}$"), ) seasonality = Schema({ Optional('daytime', default=False): Boolean(), Optional('weekday', default=False): Boolean(), }) score = Any(All(Any(int, float), Range(min=0, max=100)), None) class Url: """Validate an URL.""" def __init__(self, **kwargs): self._kwargs = kwargs def __call__(self, v): url_in = str(v) res = urlparse(url_in) if len(res.fragment) or len(res.query) or len(res.scheme): raise vol.Invalid( 'You have attempted to access a restricted URL, the URL contains invalid data.') # noqa if not len(res.path) or res.path[0] != '/': raise vol.Invalid( 'You have attempted to access a restricted URL, the URL contains invalid path.') # noqa return res.path ScheduledJob = Schema({ Required('name'): All(str, Length(max=256)), Required('method'): Any('head', 'get', 'post', 'patch', 'delete'), Required('relative_url'): All(str, Url()), Optional('params'): Schema({str: Any(int, float, str, bool)}), Optional('json'): Schema({str: Any(int, float, str, bool)}), Required('every'): Schema({ Required('count'): Any(int, float), Required('unit'): Any( 'second', 'seconds', 'minute', 'minutes', 'hour', 'hours', 'day', 'days', 'week', 'weeks', 'monday', 'tuesday', 'wednesday', 'thursday', 'friday', 'saturday', 'sunday', ), Optional('at'): All(time_str_key, Length(max=256)), }), }) class TimeDelta: """ Schema for time-delta """ def __init__(self, **kwargs): self._kwargs = kwargs def __call__(self, v): parse_timedelta(v, **self._kwargs) return v @message('expected absolute or relative date', cls=Invalid) def Timestamp(v): """ Schema for timestamps """ try: make_ts(v) except TypeError: raise ValueError("value expected") return v def validate(schema, data, name=None): """ Validate data against a schema """ try: return schema(data) except Invalid as exn: raise loudml.errors.Invalid( exn.error_message, name=name, path=exn.path, ) ``` #### File: loudml/tests/test_filestorage.py ```python from loudml.filestorage import FileStorage from loudml.donut import DonutModel from loudml import ( errors, ) import loudml.vendor import datetime import logging import tempfile import unittest logging.getLogger('tensorflow').disabled = True FEATURES = [ { 'name': 'avg_foo', 'metric': 'avg', 'field': 'foo', 'default': 0, }, ] class TestFileStorage(unittest.TestCase): def test_create_and_list(self): with tempfile.TemporaryDirectory() as tmp: storage = FileStorage(tmp) # Create model = DonutModel(dict( name='test-1', offset=30, span=300, bucket_interval=3, interval=60, features=FEATURES, max_threshold=70, min_threshold=60, )) self.assertEqual(model.type, 'donut') storage.create_model(model) self.assertTrue(storage.model_exists(model.name)) # Create model = DonutModel(dict( name='test-2', offset=56, span=200, bucket_interval=20, interval=120, features=FEATURES, max_threshold=70, min_threshold=60, )) storage.create_model(model) # List self.assertEqual(storage.list_models(), ["test-1", "test-2"]) # Delete storage.delete_model("test-1") self.assertFalse(storage.model_exists("test-1")) self.assertEqual(storage.list_models(), ["test-2"]) with self.assertRaises(errors.ModelNotFound): storage.get_model_data("test-1") # Rebuild model = storage.load_model("test-2") self.assertEqual(model.type, 'donut') self.assertEqual(model.name, 'test-2') self.assertEqual(model.offset, 56) ``` #### File: loudml/tests/test_metrics.py ```python import unittest from unittest import mock from unittest.mock import MagicMock from loudml.metrics import send_metrics from loudml.metrics import MyConfigParser from loudml.dummystorage import DummyStorage def mocked_get_distribution(*args, **kwargs): class distribution: version = '1.5' return distribution() def mocked_requests_post(*args, **kwargs): pass class TestMetrics(unittest.TestCase): @mock.patch('pkg_resources.get_distribution', side_effect=mocked_get_distribution) @mock.patch('requests.post', side_effect=mocked_requests_post) def test_send_metrics(self, mock_get, mock_get2): config = {'enable': True} storage = DummyStorage() storage.list_models = MagicMock(return_value=['foo', 'bar']) MyConfigParser.read = MagicMock() MyConfigParser.get = MagicMock(return_value='CentOS') send_metrics(config, storage) storage.list_models.assert_called() ``` #### File: loudml/tests/test_schemas.py ```python import unittest import loudml.vendor from loudml import ( errors, schemas, ) class TestSchemas(unittest.TestCase): def valid(self, value): schemas.validate(self.schema, value) def invalid(self, value): with self.assertRaises(errors.Invalid): schemas.validate(self.schema, value) def test_key(self): self.schema = schemas.key self.valid("foo") self.valid("foo_bar") self.valid("Foo-Bar") self.valid("00_foo_00_bar_001") self.valid("_foo") self.invalid("") self.invalid("foo/bar") self.invalid(".foo") def test_timestamp(self): self.schema = schemas.Timestamp() self.valid("now") self.valid("now-1d") self.valid("2018-01-08T09:39:26.123Z") self.valid("1515404366.123") self.valid(1515404366.123) self.invalid("") self.invalid(None) self.invalid("foo") ```
{ "source": "jkbren/networks-and-dataviz", "score": 3 }
#### File: jkbren/networks-and-dataviz/tail_estimation.py ```python import sys import time import argparse import os import warnings import numpy as np from matplotlib import pyplot as plt # ========================================= # ========== Auxiliary Functions ========== # ========================================= def add_uniform_noise(data_sequence, p = 1): """ Function to add uniform random noise to a given dataset. Uniform noise in range [-5*10^(-p), 5*10^(-p)] is added to each data entry. For integer-valued sequences, p = 1. Args: data_sequence: numpy array of data to be processed. p: integer parameter controlling noise amplitude. Returns: numpy array with noise-added entries. """ if p < 1: print("Parameter p should be greater or equal to 1.") return None noise = np.random.uniform(-5.*10**(-p), 5*10**(-p), size = len(data_sequence)) randomized_data_sequence = data_sequence + noise # ensure there are no negative entries after noise is added randomized_data_sequence = randomized_data_sequence[np.where(randomized_data_sequence > 0)] return randomized_data_sequence def get_distribution(data_sequence, number_of_bins = 30): """ Function to get a log-binned distribution of a given dataset. Args: data_sequence: numpy array with data to calculate log-binned PDF on. number_of_bins: number of logarithmic bins to use. Returns: x, y: numpy arrays containing midpoints of bins and corresponding PDF values. """ # define the support of the distribution lower_bound = min(data_sequence) upper_bound = max(data_sequence) # define bin edges log = np.log10 lower_bound = log(lower_bound) if lower_bound > 0 else -1 upper_bound = log(upper_bound) bins = np.logspace(lower_bound, upper_bound, number_of_bins) # compute the histogram using numpy y, __ = np.histogram(data_sequence, bins = bins, density = True) # for each bin, compute its midpoint x = bins[1:] - np.diff(bins) / 2.0 # if bin is empty, drop it from the resulting list drop_indices = [i for i,k in enumerate(y) if k == 0.0] x = [k for i,k in enumerate(x) if i not in drop_indices] y = [k for i,k in enumerate(y) if i not in drop_indices] return x, y def get_ccdf(degree_sequence): """ Function to get CCDF of the list of degrees. Args: degree_sequence: numpy array of nodes' degrees. Returns: uniques: unique degree values met in the sequence. 1-CDF: CCDF values corresponding to the unique values from the 'uniques' array. """ uniques, counts = np.unique(degree_sequence, return_counts=True) cumprob = np.cumsum(counts).astype(np.double) / (degree_sequence.size) return uniques[::-1], (1. - cumprob)[::-1] # ================================================ # ========== Hill Tail Index Estimation ========== # ================================================ def get_moments_estimates_1(ordered_data): """ Function to calculate first moments array given an ordered data sequence. Decreasing ordering is required. Args: ordered_data: numpy array of ordered data for which the 1st moment (Hill estimator) is calculated. Returns: M1: numpy array of 1st moments (Hill estimator) corresponding to all possible order statistics of the dataset. """ logs_1 = np.log(ordered_data) logs_1_cumsum = np.cumsum(logs_1[:-1]) k_vector = np.arange(1, len(ordered_data)) M1 = (1./k_vector)*logs_1_cumsum - logs_1[1:] return M1 def get_moments_estimates_2(ordered_data): """ Function to calculate first and second moments arrays given an ordered data sequence. Decreasing ordering is required. Args: ordered_data: numpy array of ordered data for which the 1st (Hill estimator) and 2nd moments are calculated. Returns: M1: numpy array of 1st moments (Hill estimator) corresponding to all possible order statistics of the dataset. M2: numpy array of 2nd moments corresponding to all possible order statistics of the dataset. """ logs_1 = np.log(ordered_data) logs_2 = (np.log(ordered_data))**2 logs_1_cumsum = np.cumsum(logs_1[:-1]) logs_2_cumsum = np.cumsum(logs_2[:-1]) k_vector = np.arange(1, len(ordered_data)) M1 = (1./k_vector)*logs_1_cumsum - logs_1[1:] M2 = (1./k_vector)*logs_2_cumsum - (2.*logs_1[1:]/k_vector)*logs_1_cumsum\ + logs_2[1:] return M1, M2 def get_moments_estimates_3(ordered_data): """ Function to calculate first, second and third moments arrays given an ordered data sequence. Decreasing ordering is required. Args: ordered_data: numpy array of ordered data for which the 1st (Hill estimator), 2nd and 3rd moments are calculated. Returns: M1: numpy array of 1st moments (Hill estimator) corresponding to all possible order statistics of the dataset. M2: numpy array of 2nd moments corresponding to all possible order statistics of the dataset. M3: numpy array of 3rd moments corresponding to all possible order statistics of the dataset. """ logs_1 = np.log(ordered_data) logs_2 = (np.log(ordered_data))**2 logs_3 = (np.log(ordered_data))**3 logs_1_cumsum = np.cumsum(logs_1[:-1]) logs_2_cumsum = np.cumsum(logs_2[:-1]) logs_3_cumsum = np.cumsum(logs_3[:-1]) k_vector = np.arange(1, len(ordered_data)) M1 = (1./k_vector)*logs_1_cumsum - logs_1[1:] M2 = (1./k_vector)*logs_2_cumsum - (2.*logs_1[1:]/k_vector)*logs_1_cumsum\ + logs_2[1:] M3 = (1./k_vector)*logs_3_cumsum - (3.*logs_1[1:]/k_vector)*logs_2_cumsum\ + (3.*logs_2[1:]/k_vector)*logs_1_cumsum - logs_3[1:] # cleaning exceptional cases clean_indices = np.where((M2 <= 0) | (M3 == 0) | (np.abs(1.-(M1**2)/M2) < 1e-10)\ |(np.abs(1.-(M1*M2)/M3) < 1e-10)) M1[clean_indices] = np.nan M2[clean_indices] = np.nan M3[clean_indices] = np.nan return M1, M2, M3 def hill_dbs(ordered_data, t_bootstrap = 0.5, r_bootstrap = 500, eps_stop = 1.0, verbose = False, diagn_plots = False): """ Function to perform double-bootstrap procedure for Hill estimator. Args: ordered_data: numpy array for which double-bootstrap is performed. Decreasing ordering is required. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: k_star: number of order statistics optimal for estimation according to the double-bootstrap procedure. x1_arr: array of fractions of order statistics used for the 1st bootstrap sample. n1_amse: array of AMSE values produced by the 1st bootstrap sample. k1_min: value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample. max_index1: index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. x2_arr: array of fractions of order statistics used for the 2nd bootstrap sample. n2_amse: array of AMSE values produced by the 2nd bootstrap sample. k2_min: value of fraction of order statistics corresponding to the minimum of AMSE for the 2nd bootstrap sample. max_index2: index of the 2nd bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. """ if verbose: print("Performing Hill double-bootstrap...") n = len(ordered_data) eps_bootstrap = 0.5*(1+np.log(int(t_bootstrap*n))/np.log(n)) n1 = int(n**eps_bootstrap) samples_n1 = np.zeros(n1-1) good_counts1 = np.zeros(n1-1) k1 = None k2 = None min_index1 = 1 min_index2 = 1 while k2 == None: # first bootstrap with n1 sample size for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n1, replace = True) sample[::-1].sort() M1, M2 = get_moments_estimates_2(sample) current_amse1 = (M2 - 2.*(M1)**2)**2 samples_n1 += current_amse1 good_counts1[np.where(current_amse1 != np.nan)] += 1 averaged_delta = samples_n1 / good_counts1 max_index1 = (np.abs(np.linspace(1./n1, 1.0, n1) - eps_stop)).argmin() k1 = np.nanargmin(averaged_delta[min_index1:max_index1]) + 1 + min_index1 #take care of indexing if diagn_plots: n1_amse = averaged_delta x1_arr = np.linspace(1./n1, 1.0, n1) # second bootstrap with n2 sample size n2 = int(n1*n1/float(n)) samples_n2 = np.zeros(n2-1) good_counts2 = np.zeros(n2-1) for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n2, replace = True) sample[::-1].sort() M1, M2 = get_moments_estimates_2(sample) current_amse2 = (M2 - 2.*(M1**2))**2 samples_n2 += current_amse2 good_counts2[np.where(current_amse2 != np.nan)] += 1 max_index2 = (np.abs(np.linspace(1./n2, 1.0, n2) - eps_stop)).argmin() averaged_delta = samples_n2 / good_counts2 max_index1 = (np.abs(np.linspace(1./n1, 1.0, n1) - eps_stop)).argmin() k2 = np.nanargmin(averaged_delta[min_index2:max_index2]) + 1 + min_index2 #take care of indexing if diagn_plots: n2_amse = averaged_delta x2_arr = np.linspace(1./n2, 1.0, n2) if k2 > k1: print("Warning (Hill): k2 > k1, AMSE false minimum suspected, resampling...") # move left AMSE boundary to avoid numerical issues min_index1 = min_index1 + int(0.005*n) min_index2 = min_index2 + int(0.005*n) k2 = None ''' # this constant is provided in the Danielsson's paper # use instead of rho below if needed rho = (np.log(k1)/(2.*np.log(n1) - np.log(k1)))\ **(2.*(np.log(n1) - np.log(k1))/(np.log(n1))) ''' # this constant is provided in Qi's paper rho = (1. - (2*(np.log(k1) - np.log(n1))/(np.log(k1))))**(np.log(k1)/np.log(n1) - 1.) k_star = (k1*k1/float(k2)) * rho k_star = int(np.round(k_star)) # enforce k_star to pick 2nd value (rare cases of extreme cutoffs) if k_star == 0: k_star = 2 if int(k_star) >= len(ordered_data): print("WARNING: estimated threshold k is larger than the size of data") k_star = len(ordered_data)-1 if verbose: print("--- Hill double-bootstrap information ---") print("Size of the 1st bootstrap sample n1:", n1) print("Size of the 2nd bootstrap sample n2:", n2) print("Estimated k1:", k1) print("Estimated k2:", k2) print("Estimated constant rho:", rho) print("Estimated optimal k:", k_star) print("-----------------------------------------") if not diagn_plots: x1_arr, x2_arr, n1_amse, n2_amse = None, None, None, None return k_star, x1_arr, n1_amse, k1/float(n1), max_index1, x2_arr, n2_amse, k2/float(n2), max_index2 def hill_estimator(ordered_data, bootstrap = True, t_bootstrap = 0.5, r_bootstrap = 500, verbose = False, diagn_plots = False, eps_stop = 0.99): """ Function to calculate Hill estimator for a given dataset. If bootstrap flag is True, double-bootstrap procedure for estimation of the optimal number of order statistics is performed. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. bootstrap: flag to switch on/off double-bootstrap procedure. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: results: list containing an array of order statistics, an array of corresponding tail index estimates, the optimal order statistic estimated by double- bootstrap and the corresponding tail index, an array of fractions of order statistics used for the 1st bootstrap sample with an array of corresponding AMSE values, value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample, index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter; and the same characteristics for the 2nd bootstrap sample. """ k_arr = np.arange(1, len(ordered_data)) xi_arr = get_moments_estimates_1(ordered_data) if bootstrap: results = hill_dbs(ordered_data, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) k_star, x1_arr, n1_amse, k1, max_index1, x2_arr, n2_amse, k2, max_index2 = results while k_star == None: print("Resampling...") results = hill_dbs(ordered_data, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) k_star, x1_arr, n1_amse, k1, max_index1, x2_arr, n2_amse, k2, max_index2 = results xi_star = xi_arr[k_star-1] print("Adjusted Hill estimated gamma:", 1 + 1./xi_star) print("**********") else: k_star, xi_star = None, None x1_arr, n1_amse, k1, max_index1 = 4*[None] x2_arr, n2_amse, k2, max_index2 = 4*[None] results = [k_arr, xi_arr, k_star, xi_star, x1_arr, n1_amse, k1, max_index1,\ x2_arr, n2_amse, k2, max_index2] return results def smooth_hill_estimator(ordered_data, r_smooth = 2): """ Function to calculate smooth Hill estimator for a given ordered dataset. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. r_smooth: integer parameter controlling the width of smoothing window. Typically small value such as 2 or 3. Returns: k_arr: numpy array of order statistics based on the data provided. xi_arr: numpy array of tail index estimates corresponding to the order statistics array k_arr. """ n = len(ordered_data) M1 = get_moments_estimates_1(ordered_data) xi_arr = np.zeros(int(np.floor(float(n)/r_smooth))) k_arr = np.arange(1, int(np.floor(float(n)/r_smooth))+1) xi_arr[0] = M1[0] bin_lengths = np.array([1.]+[float((r_smooth-1)*k) for k in k_arr[:-1]]) cum_sum = 0.0 for i in range(1, r_smooth*int(np.floor(float(n)/r_smooth))-1): k = i cum_sum += M1[k] if (k+1) % (r_smooth) == 0: xi_arr[int(k+1)//int(r_smooth)] = cum_sum cum_sum -= M1[int(k+1)//int(r_smooth)] xi_arr = xi_arr/bin_lengths return k_arr, xi_arr # =================================================== # ========== Moments Tail Index Estimation ========== # =================================================== def moments_dbs_prefactor(xi_n, n1, k1): """ Function to calculate pre-factor used in moments double-bootstrap procedure. Args: xi_n: moments tail index estimate corresponding to sqrt(n)-th order statistic. n1: size of the 1st bootstrap in double-bootstrap procedure. k1: estimated optimal order statistic based on the 1st bootstrap sample. Returns: prefactor: constant used in estimation of the optimal stopping order statistic for moments estimator. """ def V_sq(xi_n): if xi_n >= 0: V = 1. + (xi_n)**2 return V else: a = (1.-xi_n)**2 b = (1-2*xi_n)*(6*((xi_n)**2)-xi_n+1) c = (1.-3*xi_n)*(1-4*xi_n) V = a*b/c return V def V_bar_sq(xi_n): if xi_n >= 0: V = 0.25*(1+(xi_n)**2) return V else: a = 0.25*((1-xi_n)**2) b = 1-8*xi_n+48*(xi_n**2)-154*(xi_n**3) c = 263*(xi_n**4)-222*(xi_n**5)+72*(xi_n**6) d = (1.-2*xi_n)*(1-3*xi_n)*(1-4*xi_n) e = (1.-5*xi_n)*(1-6*xi_n) V = a*(b+c)/(d*e) return V def b(xi_n, rho): if xi_n < rho: a1 = (1.-xi_n)*(1-2*xi_n) a2 = (1.-rho-xi_n)*(1.-rho-2*xi_n) return a1/a2 elif xi_n >= rho and xi_n < 0: return 1./(1-xi_n) else: b = (xi_n/(rho*(1.-rho))) + (1./((1-rho)**2)) return b def b_bar(xi_n, rho): if xi_n < rho: a1 = 0.5*(-rho*(1-xi_n)**2) a2 = (1.-xi_n-rho)*(1-2*xi_n-rho)*(1-3*xi_n-rho) return a1/a2 elif xi_n >= rho and xi_n < 0: a1 = 1-2*xi_n-np.sqrt((1-xi_n)*(1-2.*xi_n)) a2 = (1.-xi_n)*(1-2*xi_n) return a1/a2 else: b = (-1.)*((rho + xi_n*(1-rho))/(2*(1-rho)**3)) return b rho = np.log(k1)/(2*np.log(k1) - 2.*np.log(n1)) a = (V_sq(xi_n)) * (b_bar(xi_n, rho)**2) b = V_bar_sq(xi_n) * (b(xi_n, rho)**2) prefactor = (a/b)**(1./(1. - 2*rho)) return prefactor def moments_dbs(ordered_data, xi_n, t_bootstrap = 0.5, r_bootstrap = 500, eps_stop = 1.0, verbose = False, diagn_plots = False): """ Function to perform double-bootstrap procedure for moments estimator. Args: ordered_data: numpy array for which double-bootstrap is performed. Decreasing ordering is required. xi_n: moments tail index estimate corresponding to sqrt(n)-th order statistic. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: k_star: number of order statistics optimal for estimation according to the double-bootstrap procedure. x1_arr: array of fractions of order statistics used for the 1st bootstrap sample. n1_amse: array of AMSE values produced by the 1st bootstrap sample. k1_min: value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample. max_index1: index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. x2_arr: array of fractions of order statistics used for the 2nd bootstrap sample. n2_amse: array of AMSE values produced by the 2nd bootstrap sample. k2_min: value of fraction of order statistics corresponding to the minimum of AMSE for the 2nd bootstrap sample. max_index2: index of the 2nd bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. """ if verbose: print("Performing moments double-bootstrap...") n = len(ordered_data) eps_bootstrap = 0.5*(1+np.log(int(t_bootstrap*n))/np.log(n)) # first bootstrap with n1 sample size n1 = int(n**eps_bootstrap) samples_n1 = np.zeros(n1-1) good_counts1 = np.zeros(n1-1) for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n1, replace = True) sample[::-1].sort() M1, M2, M3 = get_moments_estimates_3(sample) xi_2 = M1 + 1. - 0.5*((1. - (M1*M1)/M2))**(-1.) xi_3 = np.sqrt(0.5*M2) + 1. - (2./3.)*(1. / (1. - M1*M2/M3)) samples_n1 += (xi_2 - xi_3)**2 good_counts1[np.where((xi_2 - xi_3)**2 != np.nan)] += 1 max_index1 = (np.abs(np.linspace(1./n1, 1.0, n1) - eps_stop)).argmin() averaged_delta = samples_n1 / good_counts1 k1 = np.nanargmin(averaged_delta[:max_index1]) + 1 #take care of indexing if diagn_plots: n1_amse = averaged_delta x1_arr = np.linspace(1./n1, 1.0, n1) #r second bootstrap with n2 sample size n2 = int(n1*n1/float(n)) samples_n2 = np.zeros(n2-1) good_counts2 = np.zeros(n2-1) for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n2, replace = True) sample[::-1].sort() M1, M2, M3 = get_moments_estimates_3(sample) xi_2 = M1 + 1. - 0.5*(1. - (M1*M1)/M2)**(-1.) xi_3 = np.sqrt(0.5*M2) + 1. - (2./3.)*(1. / (1. - M1*M2/M3)) samples_n2 += (xi_2 - xi_3)**2 good_counts2[np.where((xi_2 - xi_3)**2 != np.nan)] += 1 max_index2 = (np.abs(np.linspace(1./n2, 1.0, n2) - eps_stop)).argmin() averaged_delta = samples_n2 / good_counts2 k2 = np.nanargmin(averaged_delta[:max_index2]) + 1 #take care of indexing if diagn_plots: n2_amse = averaged_delta x2_arr = np.linspace(1./n2, 1.0, n2) if k2 > k1: print("WARNING(moments): estimated k2 is greater than k1! Re-doing bootstrap...") return 9*[None] #calculate estimated optimal stopping k prefactor = moments_dbs_prefactor(xi_n, n1, k1) k_star = int((k1*k1/float(k2)) * prefactor) if int(k_star) >= len(ordered_data): print("WARNING: estimated threshold k is larger than the size of data") k_star = len(ordered_data)-1 if verbose: print("--- Moments double-bootstrap information ---") print("Size of the 1st bootstrap sample n1:", n1) print("Size of the 2nd bootstrap sample n2:", n2) print("Estimated k1:", k1) print("Estimated k2:", k2) print("Estimated constant:", prefactor) print("Estimated optimal k:", k_star) print("--------------------------------------------") if not diagn_plots: x1_arr, x2_arr, n1_amse, n2_amse = None, None, None, None return k_star, x1_arr, n1_amse, k1/float(n1), max_index1, x2_arr, n2_amse, k2/float(n2), max_index2 def moments_estimator(ordered_data, bootstrap = True, t_bootstrap = 0.5, r_bootstrap = 500, verbose = False, diagn_plots = False, eps_stop = 0.99): """ Function to calculate moments estimator for a given dataset. If bootstrap flag is True, double-bootstrap procedure for estimation of the optimal number of order statistics is performed. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. bootstrap: flag to switch on/off double-bootstrap procedure. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: results: list containing an array of order statistics, an array of corresponding tail index estimates, the optimal order statistic estimated by double- bootstrap and the corresponding tail index, an array of fractions of order statistics used for the 1st bootstrap sample with an array of corresponding AMSE values, value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample, index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter; and the same characteristics for the 2nd bootstrap sample. """ n = len(ordered_data) M1, M2 = get_moments_estimates_2(ordered_data) xi_arr = M1 + 1. - 0.5*(1. - (M1*M1)/M2)**(-1) k_arr = np.arange(1, len(ordered_data)) if bootstrap: xi_n = xi_arr[int(np.floor(n**0.5))-1] results = moments_dbs(ordered_data, xi_n, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) while results[0] == None: print("Resampling...") results = moments_dbs(ordered_data, xi_n, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) k_star, x1_arr, n1_amse, k1, max_index1, x2_arr, n2_amse, k2, max_index2 = results xi_star = xi_arr[k_star-1] if xi_star <= 0: print ("Moments estimated gamma: infinity (xi <= 0).") else: print ("Moments estimated gamma:", 1 + 1./xi_star) print("**********") else: k_star, xi_star = None, None x1_arr, n1_amse, k1, max_index1 = 4*[None] x2_arr, n2_amse, k2, max_index2 = 4*[None] results = [k_arr, xi_arr, k_star, xi_star, x1_arr, n1_amse, k1, max_index1,\ x2_arr, n2_amse, k2, max_index2] return results # ======================================================= # ========== Kernel-type Tail Index Estimation ========== # ======================================================= def get_biweight_kernel_estimates(ordered_data, hsteps, alpha): """ Function to calculate biweight kernel-type estimates for tail index. Biweight kernel is defined as: phi(u) = (15/8) * (1 - u^2)^2 Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. hsteps: parameter controlling number of bandwidth steps of the kernel-type estimator. alpha: parameter controlling the amount of "smoothing" for the kernel-type estimator. Should be greater than 0.5. Returns: h_arr: numpy array of fractions of order statistics included in kernel-type tail index estimation. xi_arr: numpy array with tail index estimated corresponding to different fractions of order statistics included listed in h_arr array. """ n = len(ordered_data) logs = np.log(ordered_data) differences = logs[:-1] - logs[1:] i_arr = np.arange(1, n)/float(n) i3_arr = i_arr**3 i5_arr = i_arr**5 i_alpha_arr = i_arr**alpha i_alpha2_arr = i_arr**(2.+alpha) i_alpha4_arr = i_arr**(4.+alpha) t1 = np.cumsum(i_arr*differences) t2 = np.cumsum(i3_arr*differences) t3 = np.cumsum(i5_arr*differences) t4 = np.cumsum(i_alpha_arr*differences) t5 = np.cumsum(i_alpha2_arr*differences) t6 = np.cumsum(i_alpha4_arr*differences) h_arr = np.logspace(np.log10(1./n), np.log10(1.0), hsteps) max_i_vector = (np.floor((n*h_arr))-2.).astype(int) gamma_pos = (15./(8*h_arr))*t1[max_i_vector]\ - (15./(4*(h_arr**3)))*t2[max_i_vector]\ + (15./(8*(h_arr**5)))*t3[max_i_vector] q1 = (15./(8*h_arr))*t4[max_i_vector]\ + (15./(8*(h_arr**5)))*t6[max_i_vector]\ - (15./(4*(h_arr**3)))*t5[max_i_vector] q2 = (15.*(1+alpha)/(8*h_arr))*t4[max_i_vector]\ + (15.*(5+alpha)/(8*(h_arr**5)))*t6[max_i_vector]\ - (15.*(3+alpha)/(4*(h_arr**3)))*t5[max_i_vector] xi_arr = gamma_pos -1. + q2/q1 return h_arr, xi_arr def get_triweight_kernel_estimates(ordered_data, hsteps, alpha): """ Function to calculate triweight kernel-type estimates for tail index. Triweight kernel is defined as: phi(u) = (35/16) * (1 - u^2)^3 Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. hsteps: parameter controlling number of bandwidth steps of the kernel-type estimator. alpha: parameter controlling the amount of "smoothing" for the kernel-type estimator. Should be greater than 0.5. Returns: h_arr: numpy array of fractions of order statistics included in kernel-type tail index estimation. xi_arr: numpy array with tail index estimated corresponding to different fractions of order statistics included listed in h_arr array. """ n = len(ordered_data) logs = np.log(ordered_data) differences = logs[:-1] - logs[1:] i_arr = np.arange(1, n)/float(n) i3_arr = i_arr**3 i5_arr = i_arr**5 i7_arr = i_arr**7 i_alpha_arr = i_arr**alpha i_alpha2_arr = i_arr**(2.+alpha) i_alpha4_arr = i_arr**(4.+alpha) i_alpha6_arr = i_arr**(6.+alpha) t1 = np.cumsum(i_arr*differences) t2 = np.cumsum(i3_arr*differences) t3 = np.cumsum(i5_arr*differences) t4 = np.cumsum(i7_arr*differences) t5 = np.cumsum(i_alpha_arr*differences) t6 = np.cumsum(i_alpha2_arr*differences) t7 = np.cumsum(i_alpha4_arr*differences) t8 = np.cumsum(i_alpha6_arr*differences) h_arr = np.logspace(np.log10(1./n), np.log10(1.0), hsteps) max_i_vector = (np.floor((n*h_arr))-2.).astype(int) gamma_pos = (35./(16*h_arr))*t1[max_i_vector]\ - (105./(16*(h_arr**3)))*t2[max_i_vector]\ + (105./(16*(h_arr**5)))*t3[max_i_vector]\ - (35./(16*(h_arr**7)))*t4[max_i_vector] q1 = (35./(16*h_arr))*t5[max_i_vector]\ + (105./(16*(h_arr**5)))*t7[max_i_vector]\ - (105./(16*(h_arr**3)))*t6[max_i_vector]\ - (35./(16*(h_arr**7)))*t8[max_i_vector] q2 = (35.*(1+alpha)/(16*h_arr))*t5[max_i_vector] \ + (105.*(5+alpha)/(16*(h_arr**5)))*t7[max_i_vector] \ - (105.*(3+alpha)/(16*(h_arr**3)))*t6[max_i_vector] \ - (35.*(7+alpha)/(16*(h_arr**7)))*t8[max_i_vector] xi_arr = gamma_pos - 1. + q2/q1 return h_arr, xi_arr def kernel_type_dbs(ordered_data, hsteps, t_bootstrap = 0.5, r_bootstrap = 500, alpha = 0.6, eps_stop = 1.0, verbose = False, diagn_plots = False): """ Function to perform double-bootstrap procedure for moments estimator. Args: ordered_data: numpy array for which double-bootstrap is performed. Decreasing ordering is required. hsteps: parameter controlling number of bandwidth steps of the kernel-type estimator. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. alpha: parameter controlling the amount of "smoothing" for the kernel-type estimator. Should be greater than 0.5. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: h_star: fraction of order statistics optimal for estimation according to the double-bootstrap procedure. x1_arr: array of fractions of order statistics used for the 1st bootstrap sample. n1_amse: array of AMSE values produced by the 1st bootstrap sample. h1: value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample. max_k_index1: index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. x2_arr: array of fractions of order statistics used for the 2nd bootstrap sample. n2_amse: array of AMSE values produced by the 2nd bootstrap sample. h2: value of fraction of order statistics corresponding to the minimum of AMSE for the 2nd bootstrap sample. max_k_index2: index of the 2nd bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter. """ if verbose: print("Performing kernel double-bootstrap...") n = len(ordered_data) eps_bootstrap = 0.5*(1+np.log(int(t_bootstrap*n))/np.log(n)) # first bootstrap with n1 sample size n1 = int(n**eps_bootstrap) samples_n1 = np.zeros(hsteps) good_counts1 = np.zeros(hsteps) for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n1, replace = True) sample[::-1].sort() _, xi2_arr = get_biweight_kernel_estimates(sample, hsteps, alpha) _, xi3_arr = get_triweight_kernel_estimates(sample, hsteps, alpha) samples_n1 += (xi2_arr - xi3_arr)**2 good_counts1[np.where((xi2_arr - xi3_arr)**2 != np.nan)] += 1 max_index1 = (np.abs(np.logspace(np.log10(1./n1), np.log10(1.0), hsteps) - eps_stop)).argmin() x1_arr = np.logspace(np.log10(1./n1), np.log10(1.0), hsteps) averaged_delta = samples_n1 / good_counts1 h1 = x1_arr[np.nanargmin(averaged_delta[:max_index1])] if diagn_plots: n1_amse = averaged_delta # second bootstrap with n2 sample size n2 = int(n1*n1/float(n)) if n2 < hsteps: sys.exit("Number of h points is larger than number "+\ "of order statistics! Please either increase "+\ "the size of 2nd bootstrap or decrease number "+\ "of h grid points.") samples_n2 = np.zeros(hsteps) good_counts2 = np.zeros(hsteps) for i in range(r_bootstrap): sample = np.random.choice(ordered_data, n2, replace = True) sample[::-1].sort() _, xi2_arr = get_biweight_kernel_estimates(sample, hsteps, alpha) _, xi3_arr = get_triweight_kernel_estimates(sample, hsteps, alpha) samples_n2 += (xi2_arr - xi3_arr)**2 good_counts2[np.where((xi2_arr - xi3_arr)**2 != np.nan)] += 1 max_index2 = (np.abs(np.logspace(np.log10(1./n2), np.log10(1.0), hsteps) - eps_stop)).argmin() x2_arr = np.logspace(np.log10(1./n2), np.log10(1.0), hsteps) averaged_delta = samples_n2 / good_counts2 h2 = x2_arr[np.nanargmin(averaged_delta[:max_index2])] if diagn_plots: n2_amse = averaged_delta A = (143.*((np.log(n1) + np.log(h1))**2)/(3*(np.log(n1) - 13. * np.log(h1))**2))\ **(-np.log(h1)/np.log(n1)) h_star = (h1*h1/float(h2)) * A if h_star > 1: print("WARNING: estimated threshold is larger than the size of data!") print("WARNING: optimal h is set to 1...") h_star = 1. if verbose: print("--- Kernel-type double-bootstrap information ---") print("Size of the 1st bootstrap sample n1:", n1) print("Size of the 2nd bootstrap sample n2:", n2) print("Estimated h1:", h1) print("Estimated h2:", h2) print("Estimated constant A:", A) print("Estimated optimal h:", h_star) print("------------------------------------------------") if not diagn_plots: x1_arr, x2_arr, n1_amse, n2_amse = None, None, None, None if x1_arr is not None: max_k_index1 = x1_arr[max_index1] else: max_k_index1 = None if x2_arr is not None: max_k_index2 = x2_arr[max_index2] else: max_k_index2 = None return h_star, x1_arr, n1_amse, h1, max_k_index1, x2_arr, n2_amse, h2, max_k_index2 def kernel_type_estimator(ordered_data, hsteps, alpha = 0.6, bootstrap = True, t_bootstrap = 0.5, r_bootstrap = 500, verbose = False, diagn_plots = False, eps_stop = 0.99): """ Function to calculate kernel-type estimator for a given dataset. If bootstrap flag is True, double-bootstrap procedure for estimation of the optimal number of order statistics is performed. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. hsteps: parameter controlling number of bandwidth steps of the kernel-type estimator. alpha: parameter controlling the amount of "smoothing" for the kernel-type estimator. Should be greater than 0.5. bootstrap: flag to switch on/off double-bootstrap procedure. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. verbose: flag controlling bootstrap verbosity. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. Returns: results: list containing an array of fractions of order statistics, an array of corresponding tail index estimates, the optimal order statistic estimated by double- bootstrap and the corresponding tail index, an array of fractions of order statistics used for the 1st bootstrap sample with an array of corresponding AMSE values, value of fraction of order statistics corresponding to the minimum of AMSE for the 1st bootstrap sample, index of the 1st bootstrap sample's order statistics array corresponding to the minimization boundary set by eps_stop parameter; and the same characteristics for the 2nd bootstrap sample. """ n = len(ordered_data) h_arr, xi_arr = get_biweight_kernel_estimates(ordered_data, hsteps, alpha = alpha) if bootstrap: results = kernel_type_dbs(ordered_data, hsteps, t_bootstrap = t_bootstrap, alpha = alpha, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) h_star, x1_arr, n1_amse, h1, max_index1, x2_arr, n2_amse, h2, max_index2 = results while h_star == None: print("Resampling...") results = kernel_type_dbs(ordered_data, hsteps, t_bootstrap = t_bootstrap, alpha = alpha, r_bootstrap = r_bootstrap, verbose = verbose, diagn_plots = diagn_plots, eps_stop = eps_stop) h_star, x1_arr, n1_amse, h1, max_index1, x2_arr, n2_amse, h2, max_index2 = results #get k index which corresponds to h_star k_star = np.argmin(np.abs(h_arr - h_star)) xi_star = xi_arr[k_star] k_arr = [] k_star = int(np.floor(h_arr[k_star]*n))-1 k_arr = np.floor((h_arr * n)) if xi_star <= 0: print ("Kernel-type estimated gamma: infinity (xi <= 0).") else: print ("Kernel-type estimated gamma:", 1 + 1./xi_star) print("**********") else: k_star, xi_star = None, None x1_arr, n1_amse, h1, max_index1 = 4*[None] x2_arr, n2_amse, h2, max_index2 = 4*[None] k_arr = np.floor(h_arr * n) results = [np.array(k_arr), xi_arr, k_star, xi_star, x1_arr, n1_amse, h1, max_index1,\ x2_arr, n2_amse, h2, max_index2] return results # ==================================================== # ========== Pickands Tail Index Estimation ========== # ==================================================== def pickands_estimator(ordered_data): """ Function to calculate Pickands estimator for the tail index. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. Returns: k_arr: array containing order statistics used for Pickands estimator calculation. Note that only estimates up to floor(n/4)-th order statistic can be calculated. xi_arr: array containing tail index estimates corresponding to k-order statistics provided in k_arr. """ n = len(ordered_data) indices_k = np.arange(1, int(np.floor(n/4.))+1) indices_2k = 2*indices_k indices_4k = 4*indices_k Z_k = ordered_data[indices_k-1] Z_2k = ordered_data[indices_2k-1] Z_4k = ordered_data[indices_4k-1] xi_arr = (1./np.log(2)) * np.log((Z_k - Z_2k) / (Z_2k - Z_4k)) k_arr = np.array([float(i) for i in range(1, int(np.floor(n/4.))+1)]) return k_arr, xi_arr # ================================================== # ========== Plotting and Data Processing ========== # ================================================== def make_plots(ordered_data, output_file_path, number_of_bins, r_smooth, alpha, hsteps, bootstrap_flag, t_bootstrap, r_bootstrap, diagn_plots, eps_stop, theta1, theta2, verbose, noise_flag, p_noise, savedata): """ Function to create plots and save tail index estimation data. Args: ordered_data: numpy array for which tail index estimation is performed. Decreasing ordering is required. output_file_path: file path to which plots should be saved. number_of_bins: number of log-bins for degree distribution. r_smooth: integer parameter controlling the width of smoothing window. Typically small value such as 2 or 3. alpha: parameter controlling the amount of "smoothing" for the kernel-type estimator. Should be greater than 0.5. hsteps: parameter controlling number of bandwidth steps of the kernel-type estimator. bootstrap_flag: flag to switch on/off double-bootstrap procedure. t_bootstrap: parameter controlling the size of the 2nd bootstrap. Defined from n2 = n*(t_bootstrap). r_bootstrap: number of bootstrap resamplings for the 1st and 2nd bootstraps. diagn_plots: flag to switch on/off generation of AMSE diagnostic plots. eps_stop: parameter controlling range of AMSE minimization. Defined as the fraction of order statistics to consider during the AMSE minimization step. theta1: Lower bound of plotting range, defined as k_min = ceil(n^theta1). Overwritten if plots behave badly within the range. theta2: Upper bound of plotting range, defined as k_max = floor(n^theta2). Overwritten if plots behave badly within the range. verbose: flag controlling bootstrap verbosity. noise_flag: Switch on/off uniform noise in range [-5*10^(-p), 5*10^(-p)] that is added to each data point. Used for integer-valued sequences with p = 1 (default = 1). p_noise: integer parameter controlling noise amplitude. savedata: Flag to save data files in the directory with plots. """ output_dir = os.path.dirname(os.path.realpath(output_file_path)) output_name = os.path.splitext(os.path.basename(output_file_path))[0] # calculate log-binned PDF if verbose: print("Calculating PDF...") t1 =time.time() x_pdf, y_pdf = get_distribution(ordered_data, number_of_bins = number_of_bins) t2 =time.time() if verbose: print("Elapsed time(PDF):", t2-t1) if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_pdf.dat"), "w") as f: for i in range(len(x_pdf)): f.write(str(x_pdf[i]) + " " + str(y_pdf[i]) + "\n") # calculate CCDF if verbose: print("Calculating CCDF...") t1 = time.time() x_ccdf, y_ccdf = get_ccdf(ordered_data) t2 = time.time() if verbose: print("Elapsed time:", t2-t1) if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_ccdf.dat"), "w") as f: for i in range(len(x_ccdf)): f.write(str(x_ccdf[i]) + " " + str(y_ccdf[i]) + "\n") # add noise if needed if noise_flag: original_discrete_data = ordered_data discrete_ordered_data = ordered_data discrete_ordered_data[::-1].sort() ordered_data = add_uniform_noise(ordered_data, p = p_noise) ordered_data[::-1].sort() # perform Pickands estimation if verbose: print("Calculating Pickands...") t1=time.time() k_p_arr, xi_p_arr = pickands_estimator(ordered_data) t2 =time.time() if verbose: print("Elapsed time (Pickands):", t2-t1) if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_pickands.dat"), "w") as f: for i in range(len(k_p_arr)): f.write(str(k_p_arr[i]) + " " + str(xi_p_arr[i]) + "\n") # perform smooth Hill estimation if verbose: print("Calculating smooth Hill...") t1=time.time() k_sh_arr, xi_sh_arr = smooth_hill_estimator(ordered_data, r_smooth = r_smooth) t2=time.time() if verbose: print("Elapsed time (smooth Hill):", t2-t1) if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_sm_hill.dat"), "w") as f: for i in range(len(k_sh_arr)): f.write(str(k_sh_arr[i]) + " " + str(xi_sh_arr[i]) + "\n") # perform adjusted Hill estimation if verbose: print("Calculating adjusted Hill...") t1 = time.time() hill_results = hill_estimator(ordered_data, bootstrap = bootstrap_flag, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, diagn_plots = diagn_plots, eps_stop = eps_stop, verbose = verbose) t2 =time.time() if verbose: print("Elapsed time (Hill):", t2-t1) k_h_arr = hill_results[0] xi_h_arr = hill_results[1] k_h_star = hill_results[2] xi_h_star = hill_results[3] x1_h_arr, n1_h_amse, k1_h, max_h_index1 = hill_results[4:8] x2_h_arr, n2_h_amse, k2_h, max_h_index2 = hill_results[8:] if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_adj_hill_plot.dat"), "w") as f: for i in range(len(k_h_arr)): f.write(str(k_h_arr[i]) + " " + str(xi_h_arr[i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_adj_hill_estimate.dat"), "w") as f: f.write(str(k_h_star) + " " + str(xi_h_star) + "\n") # perform moments estimation if verbose: print("Calculating moments...") t1 = time.time() moments_results = moments_estimator(ordered_data, bootstrap = bootstrap_flag, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, diagn_plots = diagn_plots, eps_stop = eps_stop, verbose = verbose) t2 = time.time() if verbose: print("Elapsed time (moments):", t2-t1) k_m_arr = moments_results[0] xi_m_arr = moments_results[1] k_m_star = moments_results[2] xi_m_star = moments_results[3] x1_m_arr, n1_m_amse, k1_m, max_m_index1 = moments_results[4:8] x2_m_arr, n2_m_amse, k2_m, max_m_index2 = moments_results[8:] if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_mom_plot.dat"), "w") as f: for i in range(len(k_m_arr)): f.write(str(k_m_arr[i]) + " " + str(xi_m_arr[i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_mom_estimate.dat"), "w") as f: f.write(str(k_m_star) + " " + str(xi_m_star) + "\n") # perform kernel-type estimation if verbose: print("Calculating kernel-type...") t1 = time.time() kernel_type_results = kernel_type_estimator(ordered_data, hsteps, alpha = alpha, bootstrap = bootstrap_flag, t_bootstrap = t_bootstrap, r_bootstrap = r_bootstrap, diagn_plots = diagn_plots, eps_stop = eps_stop, verbose = verbose) t2 = time.time() if verbose: print("Elapsed time (kernel-type):", t2-t1) k_k_arr = kernel_type_results[0] xi_k_arr = kernel_type_results[1] k_k_star = kernel_type_results[2] xi_k_star = kernel_type_results[3] x1_k_arr, n1_k_amse, h1, max_k_index1 = kernel_type_results[4:8] x2_k_arr, n2_k_amse, h2, max_k_index2 = kernel_type_results[8:] if bootstrap_flag: k_k1_star = np.argmin(np.abs(k_k_arr - k_k_star)) if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_kern_plot.dat"), "w") as f: for i in range(len(k_k_arr)): f.write(str(k_k_arr[i]) + " " + str(xi_k_arr[i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_kern_estimate.dat"), "w") as f: f.write(str(k_k_arr[k_k1_star]) + " " + str(xi_k_arr[k_k1_star]) + "\n") # plotting part if verbose: print("Making plots...") fig, axes = plt.subplots(3, 2, figsize = (12, 16)) for ax in axes.reshape(-1): ax.tick_params(direction='out', length=6, width=1.5, labelsize = 12, which = 'major') ax.tick_params(direction='out', length=3, width=1, which = 'minor') [i.set_linewidth(1.5) for i in ax.spines.values()] # plot PDF axes[0,0].set_xlabel(r"Degree $k$", fontsize = 20) axes[0,0].set_ylabel(r"$P(k)$", fontsize = 20) axes[0,0].loglog(x_pdf, y_pdf, color = "#386cb0", marker = "s", lw = 1.5, markeredgecolor = "black") # plot CCDF axes[0,1].set_xlabel(r"Degree $k$", fontsize = 20) axes[0,1].set_ylabel(r"$\bar{F}(k)$", fontsize = 20) axes[0,1].set_xscale("log") axes[0,1].set_yscale("log") axes[0,1].step(x_ccdf, y_ccdf, color = "#386cb0", lw = 1.5) # draw scalings if noise_flag: xmin = discrete_ordered_data[k_h_star] else: xmin = ordered_data[k_h_star] x = x_ccdf[np.where(x_ccdf >= xmin)] l = np.mean(y_ccdf[np.where(x == xmin)]) alpha = 1./xi_h_star if xi_h_star > 0: axes[0,1].plot(x, [l*(float(xmin)/k)**alpha for k in x], color = '#fb8072', ls = '--', lw = 2, label = r"Adj. Hill Scaling $(\alpha="+\ str(np.round(1./xi_h_star, decimals = 3))+r")$") axes[0,1].plot((x[-1]), [l*(float(xmin)/x[-1])**(alpha)], color = "#fb8072", ls = 'none', marker = 'o', markerfacecolor = 'none', markeredgecolor = "#fb8072", markeredgewidth = 3, markersize = 10) if noise_flag: xmin = discrete_ordered_data[k_m_star] else: xmin = ordered_data[k_m_star] x = x_ccdf[np.where(x_ccdf >= xmin)] l = np.mean(y_ccdf[np.where(x == xmin)]) alpha = 1./xi_m_star if xi_m_star > 0: axes[0,1].plot(x, [l*(float(xmin)/k)**alpha for k in x], color = '#8dd3c7', ls = '--', lw = 2, label = r"Moments Scaling $(\alpha="+\ str(np.round(1./xi_m_star, decimals = 3))+r")$") axes[0,1].plot((x[-1]), [l*(float(xmin)/x[-1])**(alpha)], color = "#8dd3c7", ls = 'none', marker = 'o', markerfacecolor = 'none', markeredgecolor = "#8dd3c7", markeredgewidth = 3, markersize = 10) if noise_flag: xmin = discrete_ordered_data[k_k_star] else: xmin = ordered_data[k_k_star] x = x_ccdf[np.where(x_ccdf >= xmin)] l = np.mean(y_ccdf[np.where(x == xmin)]) alpha = 1./xi_k_star if xi_k_star > 0: axes[0,1].plot(x, [l*(float(xmin)/k)**alpha for k in x], color = '#fdb462', ls = '--', lw = 2, label = r"Kernel Scaling $(\alpha="+\ str(np.round(1./xi_k_star, decimals = 3))+r")$") axes[0,1].plot((x[-1]), [l*(float(xmin)/x[-1])**(alpha)], color = "#8dd3c7", ls = 'none', marker = 'o', markerfacecolor = 'none', markeredgecolor = "#fdb462", markeredgewidth = 3, markersize = 10) axes[0,1].legend(loc = 'best') # define min and max order statistics to plot min_k = int(np.ceil(len(k_h_arr)**theta1)) - 1 max_k = int(np.floor(len(k_h_arr)**theta2)) - 1 # check if estimators' values are not too off in these bounds min_k_index = (np.abs(k_sh_arr - min_k)).argmin() max_k_index = (np.abs(k_sh_arr - max_k)).argmin() if (xi_sh_arr[min_k_index] <= -3 or xi_sh_arr[min_k_index] >= 3): indices_to_plot_sh = np.where((xi_sh_arr <= 3) & (xi_sh_arr >= -3)) elif (xi_sh_arr[max_k_index] <= -3 or xi_sh_arr[max_k_index] >= 3): indices_to_plot_sh = np.where((xi_sh_arr <= 3) & (xi_sh_arr >= -3)) else: indices_to_plot_sh = np.where((k_sh_arr <= max_k) & (k_sh_arr >= min_k)) axes[1,0].set_xlabel(r"Number of Order Statistics $\kappa$", fontsize = 20) axes[1,0].set_ylabel(r"Estimated $\hat{\xi}$", fontsize = 20) # plot smooth Hill axes[1,0].plot(k_sh_arr[indices_to_plot_sh], xi_sh_arr[indices_to_plot_sh], color = "#b3de69", alpha = 0.8, label = "Smooth Hill", zorder = 10) # plot adjusted Hill # check if estimators' values are not too off in these bounds if (xi_h_arr[min_k-1] <= -3 or xi_h_arr[min_k-1] >= 3): indices_to_plot_h = np.where((xi_h_arr <= 3) & (xi_h_arr >= -3)) elif (xi_h_arr[max_k-1] <= -3 or xi_h_arr[max_k-1] >= 3): indices_to_plot_h = np.where((xi_h_arr <= 3) & (xi_h_arr >= -3)) else: indices_to_plot_h = np.where((k_h_arr <= max_k) & (k_h_arr >= min_k)) axes[1,0].plot(k_h_arr[indices_to_plot_h], xi_h_arr[indices_to_plot_h], color = "#fb8072", alpha = 0.8, label = "Adjusted Hill", zorder = 10) if bootstrap_flag: axes[1,0].scatter([k_h_arr[k_h_star-1]], [xi_h_arr[k_h_star-1]], color = "#fb8072", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Hill}="\ +str(np.round([xi_h_arr[k_h_star-1]][0], decimals = 3))\ +r"$") axes[1,0].legend(loc = "best") axes[1,1].set_xlabel(r"Number of Order Statistics $\kappa$", fontsize = 20) axes[1,1].set_ylabel(r"Estimated $\hat{\xi}$", fontsize = 20) axes[1,1].set_xscale("log") # plot smooth Hill axes[1,1].plot(k_sh_arr[indices_to_plot_sh], xi_sh_arr[indices_to_plot_sh], color = "#b3de69", alpha = 0.8, label = "Smooth Hill", zorder = 10) # plot adjusted Hill indices_to_plot = np.where((k_h_arr <= max_k) & (k_h_arr >= min_k)) axes[1,1].plot(k_h_arr[indices_to_plot_h], xi_h_arr[indices_to_plot_h], color = "#fb8072", alpha = 0.8, label = "Adjusted Hill", zorder = 10) if bootstrap_flag: axes[1,1].scatter([k_h_arr[k_h_star-1]], [xi_h_arr[k_h_star-1]], color = "#fb8072", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Hill}="\ +str(np.round([xi_h_arr[k_h_star-1]][0], decimals = 3))\ +r"$") axes[1,1].legend(loc = "best") axes[2,0].set_xlabel(r"Number of Order Statistics $\kappa$", fontsize = 20) axes[2,0].set_ylabel(r"Estimated $\hat{\xi}$", fontsize = 20) #plot Pickands min_k_index = (np.abs(k_p_arr - min_k)).argmin() max_k_index = (np.abs(k_p_arr - max_k)).argmin() if (xi_p_arr[min_k_index] <= -3 or xi_p_arr[min_k_index] >= 3): indices_to_plot_p = np.where((xi_p_arr <= 3) & (xi_p_arr >= -3)) elif (xi_p_arr[max_k_index] <= -3 or xi_p_arr[max_k_index] >= 3): indices_to_plot_p = np.where((xi_p_arr <= 3) & (xi_p_arr >= -3)) else: indices_to_plot_p = np.where((k_p_arr <= max_k) & (k_p_arr >= min_k)) axes[2,0].plot(k_p_arr[indices_to_plot_p], xi_p_arr[indices_to_plot_p], color = "#bc80bd", alpha = 0.8, label = "Pickands", zorder = 10) #plot moments if (xi_m_arr[min_k-1] <= -3 or xi_m_arr[min_k-1] >= 3): indices_to_plot_m = np.where((xi_m_arr <= 3) & (xi_m_arr >= -3)) elif (xi_m_arr[max_k-1] <= -3 or xi_m_arr[max_k-1] >= 3): indices_to_plot_m = np.where((xi_m_arr <= 3) & (xi_m_arr >= -3)) else: indices_to_plot_m = np.where((k_m_arr <= max_k) & (k_m_arr >= min_k)) axes[2,0].plot(k_m_arr[indices_to_plot_m], xi_m_arr[indices_to_plot_m], color = "#8dd3c7", alpha = 0.8, label = "Moments", zorder = 10) if bootstrap_flag: axes[2,0].scatter([k_m_arr[k_m_star-1]], [xi_m_arr[k_m_star-1]], color = "#8dd3c7", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Moments}="\ +str(np.round([xi_m_arr[k_m_star-1]][0], decimals = 3))\ +r"$") #plot kernel-type min_k_index = (np.abs(k_k_arr - min_k)).argmin() max_k_index = (np.abs(k_k_arr - max_k)).argmin() if (xi_k_arr[min_k_index] <= -3 or xi_k_arr[min_k_index] >= 3): indices_to_plot_k = np.where((xi_k_arr <= 3) & (xi_k_arr >= -3)) elif (xi_k_arr[max_k_index] <= -3 or xi_k_arr[max_k_index] >= 3): indices_to_plot_k = np.where((xi_k_arr <= 3) & (xi_k_arr >= -3)) else: indices_to_plot_k = list(range(min_k_index, max_k_index)) #indices_to_plot_k = np.where((xi_k_arr <= 3) & (xi_k_arr >= -3)) axes[2,0].plot(k_k_arr[indices_to_plot_k], xi_k_arr[indices_to_plot_k], color = "#fdb462", alpha = 0.8, label = "Kernel", zorder = 10) if bootstrap_flag: axes[2,0].scatter([k_k_arr[k_k1_star-1]], [xi_k_arr[k_k1_star-1]], color = "#fdb462", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Kernel}="\ +str(np.round([xi_k_arr[k_k1_star-1]][0], decimals = 3))\ +r"$") axes[2,0].legend(loc = "best") # for clarity purposes, display only xi region between -1 and 1 axes[2,0].set_ylim((-0.5,1.5)) axes[2,1].set_xlabel(r"Number of Order Statistics $\kappa$", fontsize = 20) axes[2,1].set_ylabel(r"Estimated $\hat{\xi}$", fontsize = 20) axes[2,1].set_xscale("log") #plot Pickands axes[2,1].plot(k_p_arr[indices_to_plot_p], xi_p_arr[indices_to_plot_p], color = "#bc80bd", alpha = 0.8, label = "Pickands", zorder = 10) #plot moments axes[2,1].plot(k_m_arr[indices_to_plot_m], xi_m_arr[indices_to_plot_m], color = "#8dd3c7", alpha = 0.8, label = "Moments", zorder = 10) if bootstrap_flag: axes[2,1].scatter([k_m_arr[k_m_star-1]], [xi_m_arr[k_m_star-1]], color = "#8dd3c7", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Moments}="\ +str(np.round([xi_m_arr[k_m_star-1]][0], decimals = 3))\ +r"$") #plot kernel-type axes[2,1].plot(k_k_arr[indices_to_plot_k], xi_k_arr[indices_to_plot_k], color = "#fdb462", alpha = 0.8, label = "Kernel", zorder = 10) if bootstrap_flag: axes[2,1].scatter([k_k_arr[k_k1_star-1]], [xi_k_arr[k_k1_star-1]], color = "#fdb462", marker = "*", s = 100, edgecolor = "black", zorder = 20, label = r"$\widehat{\xi}^{Kernel}="\ +str(np.round([xi_k_arr[k_k1_star-1]][0], decimals = 3))\ +r"$") # for clarity purposes, display only xi region between -1 and 1 axes[2,1].set_ylim((-0.5,1.5)) axes[2,1].legend(loc = "best") if diagn_plots: fig_d, axes_d = plt.subplots(1, 3, figsize = (18, 6)) # filter out boundary values using theta parameters for Hill min_k1 = 2 max_k1 = len(x1_h_arr) - 1 min_k2 = 2 max_k2 = len(x2_h_arr) - 1 axes_d[0].set_yscale("log") axes_d[0].set_xscale("log") axes_d[1].set_xscale("log") axes_d[2].set_xscale("log") n1_h_amse[np.where((n1_h_amse == np.inf) |\ (n1_h_amse == -np.inf))] = np.nan axes_d[0].set_ylim((0.1*np.nanmin(n1_h_amse[min_k1:max_k1]), 1.0)) axes_d[0].set_xlabel("Fraction of Bootstrap Order Statistics", fontsize = 20) axes_d[0].set_ylabel(r"$\langle AMSE \rangle$", fontsize = 20) axes_d[0].set_title("Adjusted Hill Estimator", fontsize = 20) # plot AMSE and corresponding minimum axes_d[0].plot(x1_h_arr[min_k1:max_k1], n1_h_amse[min_k1:max_k1], alpha = 0.5, lw = 1.5, color = "#d55e00", label = r"$n_1$ samples") axes_d[0].scatter([k1_h], [n1_h_amse[int(len(x1_h_arr)*k1_h)-1]], color = "#d55e00", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_1$ sample") axes_d[0].plot(x2_h_arr[min_k2:max_k2], n2_h_amse[min_k2:max_k2], alpha = 0.5, lw = 1.5, color = "#0072b2", label = r"$n_2$ samples") axes_d[0].scatter([k2_h], [n2_h_amse[int(len(x2_h_arr)*k2_h)-1]], color = "#0072b2", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_2$ sample") axes_d[0].axvline(max_h_index1/float(len(x1_h_arr)), color = "#d55e00", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_1$ sample") axes_d[0].axvline(max_h_index2/float(len(x2_h_arr)), color = "#0072b2", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_2$ sample") axes_d[0].legend(loc = "best") if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_adjhill_diagn1.dat"), "w") as f: for i in range(len(x1_h_arr[min_k1:max_k1])): f.write(str(x1_h_arr[min_k1:max_k1][i]) + " " + str(n1_h_amse[min_k1:max_k1][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_adjhill_diagn2.dat"), "w") as f: for i in range(len(x2_h_arr[min_k2:max_k2])): f.write(str(x2_h_arr[min_k2:max_k2][i]) + " " + str(n2_h_amse[min_k2:max_k2][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_adjhill_diagn_points.dat"), "w") as f: f.write("Min for n1 sample: "+str(k1_h)+" "+str(n1_h_amse[int(len(x1_h_arr)*k1_h)-1])+"\n") f.write("Min for n2 sample: "+str(k2_h)+" "+str(n2_h_amse[int(len(x2_h_arr)*k2_h)-1])+"\n") f.write("Minimization boundary for n1 sample: "+str(max_h_index1/float(len(x1_h_arr)))+"\n") f.write("Minimization boundary for n2 sample: "+str(max_h_index2/float(len(x2_h_arr)))+"\n") # filter out boundary values using theta parameters for moments min_k1 = 2 max_k1 = len(x1_m_arr) - 1 min_k2 = 2 max_k2 = len(x2_m_arr) - 1 n1_m_amse[np.where((n1_m_amse == np.inf) |\ (n1_m_amse == -np.inf))] = np.nan axes_d[1].set_yscale("log") axes_d[1].set_ylim((0.1*np.nanmin(n1_m_amse[min_k1:max_k1]), 1.0)) axes_d[1].set_xlabel("Fraction of Bootstrap Order Statistics", fontsize = 20) axes_d[1].set_ylabel(r"$\langle AMSE \rangle$", fontsize = 20) axes_d[1].set_title("Moments Estimator", fontsize = 20) # plot AMSE and corresponding minimum axes_d[1].plot(x1_m_arr[min_k1:max_k1], n1_m_amse[min_k1:max_k1], alpha = 0.5, lw = 1.5, color = "#d55e00", label = r"$n_1$ samples") axes_d[1].scatter([k1_m], [n1_m_amse[int(len(x1_m_arr)*k1_m)-1]], color = "#d55e00", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_1$ sample") axes_d[1].plot(x2_m_arr[min_k2:max_k2], n2_m_amse[min_k2:max_k2], alpha = 0.5, lw = 1.5, color = "#0072b2", label = r"$n_2$ samples") axes_d[1].scatter([k2_m], [n2_m_amse[int(len(x2_m_arr)*k2_m)-1]], color = "#0072b2", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_2$ sample") axes_d[1].axvline(max_m_index1/float(len(x1_m_arr)), color = "#d55e00", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_1$ sample") axes_d[1].axvline(max_m_index2/float(len(x2_m_arr)), color = "#0072b2", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_2$ sample") axes_d[1].legend(loc = "best") if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_mom_diagn1.dat"), "w") as f: for i in range(len(x1_m_arr[min_k1:max_k1])): f.write(str(x1_m_arr[min_k1:max_k1][i]) + " " + str(n1_m_amse[min_k1:max_k1][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_mom_diagn2.dat"), "w") as f: for i in range(len(x2_m_arr[min_k2:max_k2])): f.write(str(x2_m_arr[min_k2:max_k2][i]) + " " + str(n2_m_amse[min_k2:max_k2][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_mom_diagn_points.dat"), "w") as f: f.write("Min for n1 sample: "+str(k1_m)+" "+str(n1_m_amse[int(len(x1_m_arr)*k1_m)-1])+"\n") f.write("Min for n2 sample: "+str(k2_m)+" "+str(n2_m_amse[int(len(x2_m_arr)*k2_m)-1])+"\n") f.write("Minimization boundary for n1 sample: "+str(max_m_index1/float(len(x1_m_arr)))+"\n") f.write("Minimization boundary for n2 sample: "+str(max_m_index2/float(len(x2_m_arr)))+"\n") min_k1 = 2 max_k1 = len(x1_k_arr) min_k2 = 2 max_k2 = len(x2_k_arr) n1_k_amse[np.where((n1_k_amse == np.inf) |\ (n1_k_amse == -np.inf))] = np.nan axes_d[2].set_yscale("log") axes_d[2].set_ylim((0.1*np.nanmin(n1_k_amse[min_k1:max_k1]), 1.0)) axes_d[2].set_xlabel("Fraction of Bootstrap Order Statistics", fontsize = 20) axes_d[2].set_ylabel(r"$\langle AMSE \rangle$", fontsize = 20) axes_d[2].set_title("Kernel-type Estimator", fontsize = 20) # plot AMSE and corresponding minimum axes_d[2].plot(x1_k_arr[min_k1:max_k1], n1_k_amse[min_k1:max_k1], alpha = 0.5, lw = 1.5, color = "#d55e00", label = r"$n_1$ samples") axes_d[2].scatter([h1], [n1_k_amse[np.where(x1_k_arr == h1)]], color = "#d55e00", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_1$ sample") # plot boundary of minimization axes_d[2].axvline(max_k_index1, color = "#d55e00", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_2$ sample") axes_d[2].plot(x2_k_arr[min_k2:max_k2], n2_k_amse[min_k2:max_k2], alpha = 0.5, lw = 1.5, color = "#0072b2", label = r"$n_2$ samples") axes_d[2].scatter([h2], [n2_k_amse[np.where(x2_k_arr == h2)]], color = "#0072b2", marker = 'o', edgecolor = "black", alpha = 0.5, label = r"Min for $n_2$ sample") axes_d[2].axvline(max_k_index2, color = "#0072b2", ls = '--', alpha = 0.5, label = r"Minimization boundary for $n_2$ sample") axes_d[2].legend(loc = "best") if savedata == 1: with open(os.path.join(output_dir+"/"+output_name+"_kern_diagn1.dat"), "w") as f: for i in range(len(x1_k_arr[min_k1:max_k1])): f.write(str(x1_k_arr[min_k1:max_k1][i]) + " " + str(n1_k_amse[min_k1:max_k1][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_kern_diagn2.dat"), "w") as f: for i in range(len(x2_m_arr[min_k2:max_k2])): f.write(str(x2_k_arr[min_k2:max_k2][i]) + " " + str(n2_k_amse[min_k2:max_k2][i]) + "\n") with open(os.path.join(output_dir+"/"+output_name+"_kern_diagn_points.dat"), "w") as f: f.write("Min for n1 sample: "+str(h1)+" "+str(n1_k_amse[np.where(x1_k_arr == h1)][0])+"\n") f.write("Min for n2 sample: "+str(h2)+" "+str(n2_k_amse[np.where(x2_k_arr == h2)][0])+"\n") f.write("Minimization boundary for n1 sample: "+str(n1_k_amse[int(max_k_index1*hsteps)-1])+"\n") f.write("Minimization boundary for n2 sample: "+str(n2_k_amse[int(max_k_index2*hsteps)-1])+"\n") fig_d.tight_layout() diag_plots_path = output_dir+"/"+output_name+"_diag.pdf" fig_d.savefig(diag_plots_path) fig.tight_layout(pad = 0.2) fig.savefig(output_file_path) # ========================== # ========== Main ========== # ========================== def main(): #ignore warnings other than explicit ones warnings.filterwarnings("ignore") parser = argparse.ArgumentParser(description = "Script to compute tail index estimates\ for a provided dataset.") parser.add_argument("sequence_file_path", help = "Path to a data sequence.", type = str) parser.add_argument("output_file_path", help = "Output path for plots. Use either PDF or\ PNG format.", type = str) parser.add_argument("--nbins", help = "Number of bins for degree\ distribution (default = 30)", type = int, default = 30) parser.add_argument("--rsmooth", help = "Smoothing parameter for smooth Hill estimator\ (default = 2)", type = int, default = 2) parser.add_argument("--alphakernel", help = "Alpha parameter used for kernel-type estimator.\ Should be greater than 0.5 (default = 0.6).", type = float, default = 0.6) parser.add_argument("--hsteps", help = "Parameter to select number of bandwidth\ steps for kernel-type estimator, (default = 200).", type = int, default = 200) parser.add_argument("--noise", help = "Switch on/off uniform noise in range\ [-5*10^(-p), 5*10^(-p)] that is added to each\ data point. Used for integer-valued sequences\ with p = 1 (default = 1).", type = int, default = 1) parser.add_argument("--pnoise", help = "Uniform noise parameter corresponding to\ the rounding error of the data sequence. For integer\ values it equals to 1. (default = 1).", type = int, default = 1) parser.add_argument("--bootstrap", help = "Flag to switch on/off double-bootstrap\ algorithm for defining optimal order statistic\ of Hill, moments and kernel-type estimators.\ (default = 1)", type = int, default = 1) parser.add_argument("--tbootstrap", help = "Fraction of bootstrap samples in the 2nd\ bootstrap defined as n*tbootstrap, i.e., for\ n*0.5 a n/2 is the size of a single bootstrap\ sample (default = 0.5).", type = float, default = 0.5) parser.add_argument("--rbootstrap", help = "Number of bootstrap resamplings used in\ double-bootstrap. Note that each sample results\ are stored in an array, so be careful about the\ memory (default = 500).", type = int, default = 500) parser.add_argument("--amseborder", help = "Upper bound for order statistic to consider\ for double-bootstrap AMSE minimizer.\ Entries that are smaller or equal to the border value\ are ignored during AMSE minimization (default = 1).", type = float, default = 1.0) parser.add_argument("--theta1", help = "Lower bound of plotting range, defined as\ k_min = ceil(n^theta1), (default = 0.01).\ Overwritten if plots behave badly within the range.", type = float, default = 0.01) parser.add_argument("--theta2", help = "Upper bound of plotting range, defined as\ k_max = floor(n^theta2), (default = 0.99).\ Overwritten if plots behave badly within the range.", type = float, default = 0.99) parser.add_argument("--diagplots", help = "Flag to switch on/off plotting AMSE statistics\ for Hill/moments/kernel-type double-bootstrap algorithm.\ Used for diagnostics when double-bootstrap provides unstable\ results. Can be used to find proper amseborder parameter.\ (default = 0).", type = int, default = 0) parser.add_argument("--verbose", help = "Verbosity of bootstrap procedure.\ (default = 0).", type = int, default = 0) parser.add_argument("--savedata", help = "Flag to save data files in the directory\ with plots.\ (default = 0)", type = int, default = 0) parser.add_argument("--delimiter", help = "Delimiter used in the input file.\ Options are: whitespace, tab, comma, semicolon.", type = str, default = "whitespace") args = parser.parse_args() # check arguments for consistency if args.nbins <= 0: parser.error("Number of bins should be greater than 0.") if args.rsmooth < 2: parser.error("r_smooth should be greater than 1.") if args.alphakernel <= 0.5: parser.error("alpha of kernel estimator should be grater than 0.5.") if args.hsteps <= 0: parser.error("hsteps should be greater than 0.") if args.noise != 0 and args.noise != 1: parser.error("noise flag should be 0 or 1.") if args.pnoise < 0: parser.error("pnoise parameter should be greater or equal to 0.") if args.bootstrap != 0 and args.bootstrap != 1: parser.error("bootstrap flag should be 0 or 1.") if args.tbootstrap <= 0.0 or args.tbootstrap >= 1.0: parser.error("tbootstrap should be in range (0, 1).") if args.rbootstrap <= 0: parser.error("Number of bootstrap resamples should be greater than 0.") if args.amseborder <= 0.0: parser.error("amseborder should be greater than 0.") if args.diagplots != 0 and args.diagplots != 1: parser.error("diagplots flag should be 0 or 1.") if args.verbose != 0 and args.verbose != 1: parser.error("verbose flag should be 0 or 1.") if args.savedata != 0 and args.savedata != 1: parser.error("savedata flag should be 0 or 1.") if args.theta1 < 0.0 or args.theta1 > 1.0: parser.error("Theta parameters should be in [0,1] range, where theta1 < theta2.") if args.theta2 < 0.0 or args.theta2 > 1.0: parser.error("Theta parameters should be in [0,1] range, where theta1 < theta2.") if args.theta2 <= args.theta1: parser.error("Theta parameters should be in [0,1] range, where theta1 < theta2.") if args.delimiter not in set(['whitespace', 'tab', 'comma', 'semicolon']): parser.error("Delimiter provided is not supported.") number_of_bins = args.nbins r_smooth = args.rsmooth alpha = args.alphakernel hsteps = args.hsteps if args.noise == 1: noise_flag = True else: noise_flag = False p_noise = args.pnoise if args.bootstrap == 1: bootstrap_flag = True else: bootstrap_flag = False t_bootstrap = args.tbootstrap r_bootstrap = args.rbootstrap amse_border = args.amseborder if args.diagplots == 1: diagnostic_plots_flag = True else: diagnostic_plots_flag = False if args.verbose == 1: verbose = True else: verbose = False if args.delimiter == "whitespace": delimiter = " " elif args.delimiter == "tab": delimiter = "\t" elif args.delimiter == "comma": delimiter = "," elif args.delimiter == "semicolon": delimiter = ";" # check for number of entries N = 0 with open(args.sequence_file_path, "r") as f: for line in f: degree, count = line.strip().split(delimiter) N += int(count) print("========== Tail Index Estimation ==========") print("Number of data entries: %i" % N) ordered_data = np.zeros(N) current_index = 0 with open(args.sequence_file_path, "r") as f: for line in f: degree, count = line.strip().split(delimiter) ordered_data[current_index:current_index + int(count)] = float(degree) current_index += int(count) #enforce minimization boundary to the order statistics larger than border value eps_stop = 1 - float(len(ordered_data[np.where(ordered_data <= amse_border)]))\ /len(ordered_data) print("========================") print("Selected AMSE border value: %0.4f"%amse_border) print("Selected fraction of order statistics boundary for AMSE minimization: %0.4f"%eps_stop) print("========================") make_plots(ordered_data, args.output_file_path, number_of_bins, r_smooth, alpha, hsteps, bootstrap_flag, t_bootstrap, r_bootstrap, diagnostic_plots_flag, eps_stop, args.theta1, args.theta2, verbose, noise_flag, p_noise, args.savedata) if __name__ == '__main__': t1 = time.time() main() t2 = time.time() print("Elapsed time (total):", t2-t1) ```
{ "source": "jkbren/rank-turbulence-divergence", "score": 3 }
#### File: rank-turbulence-divergence/code/rtd.py ```python import numpy as np from collections import Counter import itertools as it from scipy.stats import rankdata def get_combined_domain(X1, X2): """ Returns a list of the unique elements in two list-like objects. Note that there's a lot of ways to make this function, but given how the rest of the rank-turbulence divergence function is structured, it's nice to have this self-contained version. Parameters ---------- X1, X2 (list or np.ndarray or dict): Two list-like objects with domains that need to be joined. Returns ------- combined_domain (list): List of unique elements in the two inputs. """ combined_domain = list(set(X1) | set(X2)) return combined_domain def get_rank_dictionary(X, C): """ Returns a dictionary where the keys are the items being ranked and the values are their corresponding ranks, using fractional rankings. Parameters ---------- X (list or np.ndarray or dict): Either a list of raw data (which will need to be counted and reshaped) or a dictionary of {element:counts} or a rank-ordered list of elements. See the documentation for rank_turbulence_divergence for more details about what types of inputs should be provided. C (dict): Empty dictionary to be populated by counts, then ranked. Returns ------- R (dict): dict where the keys are the ranked elements and the values are their fractional ranking. N (int): Number of unique elements in X. """ if type(X) == dict: dtype_dict = True N = len(X) c = X.copy() else: dtype_dict = False N = len(set(list(X))) if not dtype_dict: if len(np.unique(X)) == len(X): m = list(range(len(X))) aug = [[v] * (m[len(m) - i - 1] + 1) for i, v in enumerate(X)] x = list(it.chain.from_iterable(aug)) c = dict(Counter(x)) else: c = dict(Counter(X)) for k, v in c.items(): C[k] += v d = list(C.keys()) counts = list(C.values()) # strange step, but scipy's ranking function is reversed ranking = len(counts) - rankdata(counts) + 1 R = dict(zip(d, ranking)) return R, N def rank_turbulence_divergence(X1, X2, alpha=1.0): r""" Calculates the rank turbulence divergence between two ordered rankings, $R_1$ and $R_2$. This is done via the following equation, with a tunable ``inverse temperature'' parameter, alpha. $ D_{\alpha}^{R}(R_1||R_2) = \dfrac{1}{\mathcal{N}_{1,2;\alpha}} \dfrac{\alpha+1}{\alpha} \sum_{\tau \in R_{1,2;\alpha}} \Big\vert \dfrac{1}{\big[r_{\tau,1}\big]^\alpha} - \dfrac{1}{\big[r_{\tau,2}\big]^\alpha} \Big\vert^{1/(\alpha+1)} $ where The $\mathcal{N}_{1,2,\alpha}$ term refers to a normalization factor that forces the rank-turbulence divergence between 0 and 1, as follows: $ \mathcal{N}_{1,2;\alpha} = \dfrac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \Big\vert \dfrac{1}{\big[r_{\tau,1}\big]^\alpha} - \dfrac{1}{\big[N_1+\frac{1}{2}N_2\big]^\alpha} \Big\vert^{1/(\alpha+1)} + \dfrac{\alpha+1}{\alpha} \sum_{\tau \in R_1} \Big\vert \dfrac{1}{\big[N_2 + \frac{1}{2}N_1\big]^\alpha} - \dfrac{1}{\big[r_{\tau,2}\big]^\alpha} \Big\vert^{1/(\alpha+1)} $ where $N_1$ and $N_2$ are the sizes of $R_1$ and $R_2$ (i.e. the number) of things being ranked. Parameters ---------- X1, X2 (list or np.ndarray, or dict): Two rank-ordered vectors, that do not need to be of the same domain. It admits the following datatypes: 1) X1 = ['mary','jane','chelea','ann'], X2 = ['ann','jane','barb','crystal'] ...as two already-ranked lists of $\tau$s. In X1, then, 'mary' would be in rank position 1.0, 'jane' in 2.0, etc. 2) X1 = ['mary','mary','mary','mary','mary','mary','jane','jane', 'jane','chelsea','chelsea','barb'] X2 = ['ann','ann','ann','ann','ann','jane','jane','jane', 'jane','barb','barb','crystal'] ...as two "raw" datasets, without pre-counting the number of elements in each list. Ultimately, in X1, 'mary' shows up 6 timees, 'jane' shows up 3 times, 'chelsea' shows up 2 times, and 'ann' shows up once. This function transforms this input data into a dictionary of counts, then ultimately a dictionary of ranks, such that $R_1$ and $R_2$ vectors for this example are the same as in the first example. 3) X1 = {'mary':6, 'jane':3, 'chelsea':2, 'ann':1} X2 = {'ann':5, 'jane':4, 'barb':2, 'crystal':1} ...as two dictionaries of {tau:count}. This might be useful in a setting where you're given, for example, vote counts (i.e., {'<NAME>':4000, '<NAME>':2000, ... etc}). alpha (float): Tuning parameter, acts like an inverse temperature, such that a higher value will ``zoom in'' on the data, making small deviations appear very important to the final ranking. alpha ranges from 0 to infinity. Returns ------- Q (float): The rank turbulence divergence between $R_1$ and $R_2$, a scalar value between 0 and 1. """ combined_domain = get_combined_domain(X1, X2) C1 = {i: 0 for i in combined_domain} C2 = {i: 0 for i in combined_domain} # Turn both vectors into dictionaries where the key is $\tau$, the property # that's being ranked (popular baby names, sports teams, etc.), and the # values are their (fractional) rank. This is gonna be useful when we loop # through all $\tau$s in order to calculate the rank turbulence divergence. R1, N1 = get_rank_dictionary(X1, C1) R2, N2 = get_rank_dictionary(X2, C2) # Then we're gonna be using certain terms frequently, so might as well # turn those values into their own variables and give them useless names. alph_exp = 1 / (alpha+1) alph_mul = (alpha+1) / alpha normN1 = (N1 + 0.5 * N2)**(-alpha) normN2 = (N2 + 0.5 * N1)**(-alpha) # as we loop through the elements in combined_domain, we'll be gradually # adding to these numbers. norm_1 = 0 norm_2 = 0 Q = 0 for tau in combined_domain: r1tau_exp_negalpha = R1[tau]**(-alpha) r2tau_exp_negalpha = R2[tau]**(-alpha) dQ = np.abs(r1tau_exp_negalpha - r2tau_exp_negalpha) norm_1 += np.abs(r1tau_exp_negalpha - normN1)**alph_exp norm_2 += np.abs(normN2 - r2tau_exp_negalpha)**alph_exp Q += dQ**alph_exp Cr = alph_mul * norm_1 + alph_mul * norm_2 Q = 1/Cr * alph_mul * Q return Q def main(): """Empty main function.""" return if __name__ == '__main__': main() ```
{ "source": "jkcaldwe/Robinhood", "score": 3 }
#### File: Robinhood/docs/qtapp.py ```python import sys from PyQt5.QtWidgets import QMainWindow, QPushButton, QApplication from PyQt5 import QtCore import logging import auto_trader #Support default dict list from collections import defaultdict #Date import datetime #configure logging to print debug messages on the screen logging.basicConfig(level=logging.DEBUG) class TraderGui(QMainWindow): def __init__(self): super().__init__() self.initUI() # Define global variables for the class instance self.quoteTimer = QtCore.QTimer(); self.positionTimer = QtCore.QTimer(); #Support for control symbols which influence the market self.control_symbols = ["SPY"]; #Symbols of the positions I'm currently in with quantities self.position_symbols = defaultdict(list); #Symbols for positions which the app has sold with quantities sold self.sold_symbols = defaultdict(list); #compiled dict will all above symbols. Stores previous close, open and stock prices every x minutes to be used by the analysis and weighted average self.position_quotes = defaultdict(list); #takes data from position quotes to store weighted linear averages every x minutes as defined by timers self.weighted_averages = defaultdict(list); # Call main trader logic self.main(); def initUI(self): # Define UI elements btn1 = QPushButton("Button 1", self) btn1.move(30, 50) btn2 = QPushButton("Button 2", self) btn2.move(150, 50) #Connect UI elements to slots btn1.clicked.connect(self.buttonClicked) btn2.clicked.connect(self.buttonClicked) self.statusBar() #Define main window self.setGeometry(300, 300, 290, 150) self.setWindowTitle('Event sender') self.show() def main(self): #log in and return trade handle. 'self' defines it as a global across the class self.my_trader = auto_trader.login(); auto_trader.buyPosition(self.my_trader, "UUUU", 2); # # Get current open positions and quantity of the position # self.position_symbols = auto_trader.getCurrentPositions(self.my_trader); # logging.info(self.position_symbols); # #Create data array for each symbol in my positions and initialize with opening and current quote # position_quotes_init = defaultdict(list); # self.position_quotes = auto_trader.populateQuoteData(self.position_symbols, self.sold_symbols, self.control_symbols, position_quotes_init); # logging.info(self.position_quotes); # #Create a timer and append current quote data to the position quote list # self.quoteTimer.timeout.connect(self.func_quoteTimer); # #Timer will repeat every 2 minutes # self.quoteTimer.start(30000); # self.positionTimer.timeout.connect(self.func_posSymbolsTimer); # #Trigger every 15 minutes to update current positions # self.positionTimer.start(900000); def buttonClicked(self): sender = self.sender() self.statusBar().showMessage(sender.text() + ' was pressed') logging.info(sender.text() + ' was pressed'); def func_quoteTimer(self): #Update postion quotes with new data every time timer expires self.position_quotes = auto_trader.populateQuoteData(self.position_symbols, self.sold_symbols, self.control_symbols, self.position_quotes); #Define the window size for the moving average window_size = 3 #Find data for each position and if there is enough to generate a running weighted average, do it and put in weigted average dict for symbol in self.position_quotes: tempQuoteList = self.position_quotes[symbol]; logging.info(tempQuoteList); if (len(tempQuoteList) > (window_size + 1)): #Append returned weighted average for the window size to the weighted averages list self.weighted_averages[symbol].append(auto_trader.calcWeightedAverage(tempQuoteList, window_size)); logging.info (self.weighted_averages); #send weighted averages list for buy/sell analysis def func_posSymbolsTimer(self): self.position_symbols = auto_trader.getCurrentPositions(self.my_trader); logging.info(self.position_symbols); #Define timer as global so it will keep running while app is alive # timer = QtCore.QTimer(); # Global to get position quotes # position_quotes = []; #Start application app = QApplication(sys.argv) autoTrader = TraderGui() sys.exit(app.exec_()) ```
{ "source": "jkcg-learning/MPoseDataset_2021", "score": 2 }
#### File: MPoseDataset_2021/scripts/create_rgb_pose.py ```python from scripts.init_vars import * import os import glob import scripts.lib.lib_seq as ls import numpy as np # remove empty frames at the beginning and at the end def trim_seq(s, d, f): if d[0] == 0: start = next(i for i, obj in enumerate(d) if obj == 1) else: start = 0 if d[-1] == 0: end = -1-next(i for i, obj in enumerate(d[::-1]) if obj == 1) return s[:, :, start:end], d[start:end], f[start:end] else: return s[:, :, start:], d[start:], f[start:] # split sequence in parts with min_frame_length >= frames >= max_frame_length def split_seq(s, d, f, meta, video, trim=True): if trim: s, d, f = trim_seq(s, d, f) s = s[:, :, d == 1] frames = f[d == 1] for count, start in enumerate(range(0, s.shape[2], max_frame_length)): sub_s = s[:, :, start:start+max_frame_length] fra = frames[start:start + max_frame_length] if sub_s.shape[2] >= min_frame_length: name = '{}-{}-{}'.format(meta['sample'].replace('.avi', ''), int(fra[0]), int(fra[-1])) ls.save_sequence(seq=sub_s, det=np.ones((sub_s.shape[2])), fra=fra, name=name, meta=meta, video=video) def read_video(path): vidcap = cv2.VideoCapture(path) success, image = vidcap.read() frames = [] while success: frames.append(image) success, image = vidcap.read() vidcap.release() cv2.destroyAllWindows() return frames def create_rgb_pose(force=False, verbose=True): jsons = os.listdir(paths['json']) print(paths['json']) print(paths['rgb']) if any(os.scandir(paths['rgb'])) and not force: if verbose: print('RGB and Poses already processed, skipping...') return for i in jsons: print(i) meta = ls.get_meta(i) print(meta) if glob.glob(os.path.join(paths['rgb'], i.split('.')[-2]+'-*')) and not force: if verbose: print(f'{i} already processed, skipping...') continue elif verbose: print('Processing {}...'.format(i)) video = read_video(os.path.join(paths['video'], i)) seq, det, fra = ls.read_sequence(paths['json'] + i) split_seq(s=seq, d=det, f=fra, meta=meta, video=video) ``` #### File: MPoseDataset_2021/scripts/create_splits.py ```python from scripts.init_vars import * import pandas as pd from scripts.lib.lib_common import read_poses testing_actors = {1: ['person12', 'person23', 'person08', 'person02', 'person24', 'anna', 'jiawei', 'andreas3', 'julien3', 'daniel3', 'alba2', 'clare3', 'andreas2', 'jon', 'joe', 'lyova', 'shahar', 's02', 's07', 'ss1', 'ss4'], 2: ['person01', 'person07', 'person16', 'person20', 'person25', 'karam', 'zeyu', 'florian1', 'daniel2', 'andreas1', 'nicolas3', 'amel1', 'chiara3', 'jean', 'haidi', 'daria', 'eli', 's08', 's05', 'ss7', 'ss8'], 3: ['person03', 'person11', 'person17', 'person21', 'person14', 'scott', 'zaid', 'hedlena3', 'julien1', 'nicolas2', 'amel3', 'daniel1', 'chiara1', 'hansung', 'nikos', 'moshe', 'ira', 's04', 's10', 'ss2', 'ss5']} def create_splits(force=False, verbose=True): if os.path.isfile(logs_path + 'train_test_split1.txt') and not force: if verbose: print(f'Splits already generated, skipping...') return report = read_poses() for i in range(1, 4): split = pd.DataFrame({'sample': report.loc[report.actor.isin(testing_actors[i]), 'sample'], 'set': 'test'}) split = pd.concat([split, pd.DataFrame({'sample': report.loc[~report.actor.isin(testing_actors[i]), 'sample'], 'set': 'train'})]) split.to_csv(logs_path + 'train_test_split{}.txt'.format(i), sep='\t', index=None, header=None) if verbose: print('Splits generated!') ``` #### File: MPoseDataset_2021/scripts/extract_posenet_pose.py ```python import shutil from zipfile import ZipFile from scripts.init_vars import archives_paths, paths import os import tarfile def unzip(filename, save_to): with ZipFile(filename, 'r') as zipObj: for member in zipObj.namelist(): file = os.path.basename(member) # skip directories if not file: continue source = zipObj.open(member) target = open(os.path.join(save_to, file), "wb") with source, target: shutil.copyfileobj(source, target) def extract_posenet_pose(force=False, verbose=True): if verbose: print('Extracting PoseNet poses...') if any(os.scandir(paths['posenet'])) and not force: if verbose: print('\t{} already extracted, skipping...'.format(os.listdir(archives_paths['posenet'])[0])) else: if verbose: print('\tExtracting: {}'.format(os.listdir(archives_paths['posenet'])[0])) unzip(filename=os.path.join(archives_paths['posenet'], os.listdir(archives_paths['posenet'])[0]), save_to=paths['posenet']) ``` #### File: scripts/lib/lib_common.py ```python from scripts.init_vars import paths import os import pickle import pandas as pd import numpy as np import warnings def read_poses(path=paths['pose']): report = pd.DataFrame(columns=['sample', 'dataset', 'actor', 'action', 'length', 'aver_conf', 'fn%']) for i in sorted(os.listdir(path)): with open(os.path.join(path, i), 'rb') as f: d = pickle.load(f) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) report = report.append({'sample': d['name'], 'dataset': d['dataset'], 'actor': d['actor'], 'action': d['action'], 'length': d['length'], 'aver_conf': np.nanmean(d['seq'][:, 2, :]), 'fn%': np.isnan(d['seq'][:, [0, 1], :]).sum()/d['seq'][:, [0, 1], :].size}, ignore_index=True) return report ``` #### File: MPoseDataset_2021/scripts/refine_dataset.py ```python import os from scripts.init_vars import * import pandas as pd from scripts.lib.lib_seq import get_meta import pickle as pkl def change_meta(file, new_action): dict = pkl.load(open(file, 'rb')) dict['name'] = os.path.basename(file)[:-2].replace(dict['action'], new_action) dict['action'] = new_action pkl.dump(dict, open(file, 'wb')) def refine_data(verbose=False): # redefine outliers (reassign/remove) for i in os.listdir(misc_paths['outliers']): outliers = pd.read_csv(os.path.join(misc_paths['outliers'], i), delimiter='\t', header=None) for k, row in outliers.iterrows(): sample = row[0] new_action = row[1] meta = get_meta(sample, is_video=False) if meta['action'] == new_action: continue else: if new_action in actions.keys(): new_sample = sample.replace(meta['action'], new_action) old = os.path.join(paths['rgb'], sample+'.avi') new = os.path.join(paths['rgb'], new_sample+'.avi') if (not os.path.exists(old)) and os.path.exists(new): if verbose: print('\t (done previously) renamed: {} into {}'.format(sample, new_sample)) elif os.path.exists(old) and (not os.path.exists(new)): os.rename(old, new) old = os.path.join(paths['pose'], sample+'.p') new = os.path.join(paths['pose'], new_sample+'.p') change_meta(file=old, new_action=new_action) os.rename(old, new) print('Renamed: {} into {}'.format(sample, new_sample)) elif new_action == 'remove': old = os.path.join(paths['rgb'], sample+'.avi') if not os.path.exists(old): if verbose: print('\t (done previously) TRASHED: {}'.format(sample)) else: os.remove(os.path.join(paths['rgb'], sample + '.avi')) os.remove(os.path.join(paths['pose'], sample + '.p')) print('TRASHED: {}'.format(sample)) def refine_dataset(verbose=False): print('Refining Data...') refine_data(verbose=verbose) print('Checking Everything...') refine_data() ```
{ "source": "jkchandalia/toxic-comment-classifier", "score": 3 }
#### File: toxic-comment-classifier/flask_model/app.py ```python import pickle import numpy as np import pandas as pd from flask import Flask, request from joblib import dump, load from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB import json model = None app = Flask(__name__) def load_model(): global model global vectorizer # model variable refers to the global variable model = load('models/model.joblib') preprocessor = load('models/preprocessing.joblib') @app.route('/') def home_endpoint(): return 'Hello World!' @app.route('/predict', methods=['POST']) def get_prediction(): if request.method == 'POST': data = request.get_json() # Get data posted as a json comment_vectorized = preprocessor.transform(data) out = list(model.predict_proba(comment_vectorized)[:,1]) return json.dumps(out) if __name__ == '__main__': load_model() # load model at the beginning once only app.run(host='0.0.0.0', port=80, ssl_context='adhoc') ``` #### File: toxic-comment-classifier/gcp/main.py ```python import json import numpy as np import pandas as pd from joblib import load from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB model = load('models/model.joblib') preprocessor = load('models/preprocessing.joblib') def get_toxicity_prediction(request): # For more information about CORS and CORS preflight requests, see # https://developer.mozilla.org/en-US/docs/Glossary/Preflight_request # for more information. # Set CORS headers for the preflight request if request.method == 'OPTIONS': # Allows POST requests from any origin with the Content-Type # header and caches preflight response for an 3600s headers = { 'Access-Control-Allow-Origin': '*', 'Access-Control-Allow-Methods': 'POST', 'Access-Control-Allow-Headers': 'Content-Type', 'Access-Control-Max-Age': '3600' } return ('', 204, headers) # Set CORS headers for the main request headers = { 'Access-Control-Allow-Origin': '*' } data = request.get_json(silent=True) # Get data posted as a json comment_vectorized = preprocessor.transform(data) pred_proba = model.predict_proba(comment_vectorized)[:,1] out = list(zip(data,pred_proba)) #prediction = model.predict_proba(data_vectorized)[:,1] # runs globally loaded model on the data return (json.dumps(out), 200, headers) ``` #### File: toxic-comment-classifier/tests/test_model.py ```python from toxicity.model import apply_count_vectorizer, run_naive_bayes_classifier import numpy as np import pandas as pd import unittest from joblib import dump, load import os from sklearn.naive_bayes import MultinomialNB class TestApplyCountVectorizer(unittest.TestCase): def setUp(self): data_file_path = "dummy_data/xdummy.txt" with open(data_file_path) as f: self.xdummy = f.readlines() def test_count_vectorizer(self): count_train, count_valid = apply_count_vectorizer(self.xdummy, self.xdummy) xmatrix = [[1, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 1, 0]] self.assertEqual(count_train.shape, (7,4)) self.assertTrue(np.all(count_train.todense()==count_train.todense())) self.assertTrue(np.all(xmatrix==count_train.todense())) def test_output_path(self): output_path = "dummy_data" count_train, count_valid = apply_count_vectorizer( self.xdummy, self.xdummy, output_path=output_path) self.assertTrue(os.path.exists(output_path + "/count_vectorizer.joblib")) os.remove(output_path + "/count_vectorizer.joblib") class TestRunNaiveBayes(unittest.TestCase): def setUp(self): self.count_train = [[1, 1, 1, 0], [1, 0, 0, 1], [1, 0, 1, 1], [0, 0, 0, 0], [0, 0, 0, 1], [0, 1, 0, 0], [0, 1, 1, 0]] self.ytrain = [1, 1, 1, 0, 0, 0, 1] def test_instance(self): self.assertIsInstance(run_naive_bayes_classifier(self.count_train, self.ytrain), MultinomialNB) def test_output_path(self): output_path = "dummy_data" nb_classifier = run_naive_bayes_classifier( self.count_train, self.ytrain, output_path=output_path) self.assertTrue(os.path.exists(output_path + "/nb_classifier.joblib")) os.remove(output_path + "/nb_classifier.joblib") ``` #### File: toxic-comment-classifier/toxicity/analysis.py ```python def explore_comment_length(x, y): texts=x.astype(str) tokenizer=fast_tokenizer chunk_size=256 all_ids = [] for i in tqdm(range(0, len(texts), chunk_size)): text_chunk = texts[i:i+chunk_size].tolist() encs = tokenizer.encode_batch(text_chunk) all_ids.extend([enc.ids for enc in encs]) lens = [] for j in range(len(all_ids)): lens.append(len(all_ids[j])) plt.hist(lens, 50) plt.yscale('log') long_index = (np.array(lens)>500) long_index = (np.array(lens)>500) print('Number of comments: ' + str(len(long_index))) print('Number of toxic comments: ' + str(sum(y))) print('Number of comments longer than 500 tokens: ' + str(sum(long_index))) print('Number of toxic comments longer than 500 tokens: ' + str(sum(y[long_index]))) encoded = tokenizer.encode_batch(['man walks down the street happily don''t you think @fire aslkfd291o']) print(encoded[0].ids) for id_item in encoded[0].ids: print(tokenizer.id_to_token(id_item)) #Testcase fast_tokenizer.token_to_id('[UNK]') print(fast_tokenizer.token_to_id('Man')) print(fast_tokenizer.token_to_id('man')) fast_tokenizer.id_to_token(28995) ``` #### File: toxic-comment-classifier/toxicity/model_embeddings.py ```python import os import numpy as np import tensorflow as tf from tqdm import tqdm from tensorflow.keras.layers import Input from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model from keras.models import Sequential from keras.layers.recurrent import LSTM, GRU,SimpleRNN from keras.layers.core import Dense, Activation, Dropout from keras.layers.embeddings import Embedding from keras.layers.normalization import BatchNormalization from keras.utils import np_utils from sklearn import preprocessing, decomposition, model_selection, metrics, pipeline from keras.layers import GlobalMaxPooling1D, Conv1D, MaxPooling1D, Flatten, Bidirectional, SpatialDropout1D from keras.preprocessing import sequence, text from keras.callbacks import EarlyStopping, History, ModelCheckpoint, TensorBoard, History from tensorflow.keras.metrics import Accuracy, AUC def create_embedding_index(glove_embedding_path): embeddings_index = {} f = open(glove_embedding_path + 'glove840b300dtxt/glove.840B.300d.txt','r',encoding='utf-8') for line in tqdm(f): values = line.split(' ') word = values[0] coefs = np.asarray([float(val) for val in values[1:]]) embeddings_index[word] = coefs f.close() return embeddings_index def create_embedding_matrix(word_index, embeddings_index, output_path=None): # create an embedding matrix for the words we have in the dataset embedding_matrix = np.zeros((len(word_index) + 1, 300)) for word, i in tqdm(word_index.items()): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: embedding_matrix[i] = embedding_vector if output_path: np.save(output_path, embedding_matrix) return embedding_matrix def load_embeddings(input_path): embedding_matrix = np.load(input_path) return embedding_matrix def build_model(word_index, embedding_matrix, max_len, transformer_trainable=False): """ Function for training the model """ # A simple LSTM with glove embeddings and one dense layer model = Sequential() model.add(Embedding(len(word_index) + 1, 300, weights=[embedding_matrix], input_length=max_len, trainable=transformer_trainable)) model.add(LSTM(100, activation="tanh", recurrent_activation="sigmoid", dropout=0.2, recurrent_dropout=0.1)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='adam',metrics=['accuracy', AUC(curve='PR')]) return model def tokenize(xtrain, xvalid, max_len): # using keras tokenizer here token = text.Tokenizer(num_words=None) token.fit_on_texts(list(xtrain) + list(xvalid)) xtrain_seq = token.texts_to_sequences(xtrain) xvalid_seq = token.texts_to_sequences(xvalid) #zero pad the sequences xtrain_pad = sequence.pad_sequences(xtrain_seq, maxlen=max_len) xvalid_pad = sequence.pad_sequences(xvalid_seq, maxlen=max_len) word_index = token.word_index return xtrain_pad, xvalid_pad, word_index ```
{ "source": "jkchandra/CNNFashionImageClassifer", "score": 2 }
#### File: jkchandra/CNNFashionImageClassifer/CNN_VCG19_TransferLearning.py ```python import numpy as np import cv2 import matplotlib.pyplot as plt #%matplotlib inline #from __future__ import print_function import keras from keras.models import Sequential, Model from keras import optimizers from keras.layers import Dense, Conv2D, MaxPooling2D, Dropout, Flatten, ZeroPadding2D, Convolution2D from keras.utils import to_categorical from skimage import io, transform import glob import os import tensorflow as tf import time from PIL import Image import re import csv from keras.preprocessing.image import ImageDataGenerator def atoi(text): return int(text) if text.isdigit() else text def natural_keys(text): return [ atoi(c) for c in re.split('(\d+)', text) ] def importTrain2(): # trainset path path = 'INSERT PATH' # resize all pictures to 128 * 128, subjective to adjustment w = 299 h = 299 cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)] imgs = [] labels = [] paths = [] count = 0 for idx, folder in enumerate(cate): for im in glob.glob(folder + '/*.jpg'): paths.append(im) paths.sort(key=natural_keys) for im in paths: img = cv2.imread(im) if (img is None): print('The image:%s cannot be identified.' % im ) continue img1 = cv2.resize(img, (w, h)) imgs.append(img1) labels.append(idx) count += 1 print("Finished importing folder %s" % folder) paths = [] imgsnp = np.asarray(imgs) labelsnp = np.asarray(labels) result = [imgsnp, labelsnp] return result def importTest2(): # testset path path = test_path # resize all pictures to 128 * 128, subjective to adjustment w = img_width h = img_height cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)] imgs = [] labels = [] paths = [] count = 0 for idx, folder in enumerate(cate): for im in glob.glob(folder + '/*.jpg'): paths.append(im) paths.sort(key=natural_keys) for im in paths: img = cv2.imread(im) if (img is None): print('The image:%s cannot be identified.' % im ) continue img1 = cv2.resize(img, (w, h)) imgs.append(img1) labels.append(idx) count += 1 print("Finished importing folder %s" % folder) paths = [] imgsnp = np.asarray(imgs) labelsnp = np.asarray(labels) result = [imgsnp, labelsnp] return result # Used to create a CNN model def createModel1(): # Following the VCG16 Architecture for CNN model = Sequential() model.add(ZeroPadding2D((1,1),input_shape=(3,128,128))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(64, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(128, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(256, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(ZeroPadding2D((1,1))) model.add(Convolution2D(512, 3, 3, activation='relu')) model.add(MaxPooling2D((2,2), strides=(2,2))) model.add(Flatten()) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(4096, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1000, activation='softmax')) if weights_path: model.load_weights(weights_path) return model def createModel2(): model = Sequential() # The first two layers with 32 filters of window size 3x3 model.add(Conv2D(32, (7, 7), padding='same', activation='relu', input_shape=input_shape)) model.add(Conv2D(32, (7, 7), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (7, 7), padding='same', activation='relu')) model.add(Conv2D(64, (7, 7), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Conv2D(64, (7, 7), padding='same', activation='relu')) model.add(Conv2D(64, (7, 7), activation='relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) model.add(Flatten()) model.add(Dense(512, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(nClasses, activation='softmax')) return model def exportCSV(pred): with open('predict_result.csv', 'w', newline='') as f: header = ['id','category'] # input headers name. writer = csv.DictWriter(f, header) writer.writeheader() for i in range(0,len(pred)): writer.writerow({ 'id': i+1, 'category':pred[i] }) def plot_acc(history): plt.plot(history.history['acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend('train', loc='upper left') plt.show() plt.savefig('Accuracy.png') # summarize history for loss def plot_loss(history): plt.plot(history.history['loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend('train', loc='upper left') plt.show() plt.savefig('Loss.png') #Eliminate corrupted files and counts the number of images for the train set def openTrain(path): cate = [path + x for x in os.listdir(path) if os.path.isdir(path + x)] count = 0 for idx, folder in enumerate(cate): for im in glob.glob(folder + '/*.jpg'): img = cv2.imread(im) if (img is None): print('The image:%s cannot be identified.' % im) newname = im.replace('.jpg', 'txt') # convert file type, so it won't affect fit_generator os.rename(im, newname) continue count += 1 print("Finished reading folder %s" % folder) print("Total number of uncorrupted images: %d" % count) return count #Builds the Datagen, DataGenerator and the Class Dictionary def build_gen(source): datagen = ImageDataGenerator(rescale = 1./255, zoom_range=0.3, rotation_range=30, width_shift_range=0.25, height_shift_range=0.25, horizontal_flip=True, vertical_flip=False) generator = datagen.flow_from_directory( source, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical') class_dictionary = generator.class_indices return generator, class_dictionary # MAIN APP STARTS HERE -------------------------------------------------- from keras.backend.tensorflow_backend import set_session config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = "0" #session = tf.Session(config=config) set_session(tf.Session(config=config)) np.random.seed(1337) #train = importTrain2() train_path = 'INPUT PATH HERE' test_path = 'INPUT PATH HERE' img_height = 244 img_width = 244 NB_IV3_LAYERS_TO_FREEZE = 172 countTrain = openTrain(train_path) test = importTest2() #trainImages = train[0] #trainLabels = train[1] testImages = test[0] testLabels = test[1] #classes = np.unique(trainLabels) #nClasses = len(classes) #print(trainImages.shape) print(testImages.shape) #nRows, nCols, nDims = trainImages.shape[1:] #trainData = trainImages.reshape(trainImages.shape[0], nRows, nCols, nDims) testData = testImages.reshape(testImages.shape[0], img_width, img_height, 3) input_shape = (img_width, img_height, 3) # Change to float datatype #trainData = trainData.astype('float32') testData = testData.astype('float32') # Scale the data to lie between 0 to 1 #trainData /= 255 testData /= 255 # Change the labels from integer to categorical data #trainLabels_onehot = to_categorical(trainLabels) testLabels_onehot = to_categorical(testLabels) #model1 = createModel2() #Creating model using VCG19 ----------------------------------------------------------------------------------------------------------------------------- #model = keras.applications.inception_resnet_v2.InceptionResNetV2(include_top=False, weights='imagenet', input_shape=) model = keras.applications.inception_v3.InceptionV3(include_top=False, weights='imagenet', input_shape=(img_width,img_height,3)) #model = applications.VGG19(weights = "imagenet", include_top=False, input_shape = ) #model1 = keras.applications.inception_resnet_v2.InceptionResNetV2(include_top=False, weights='imagenet', input_tensor=None, input_shape=(128,128,3), pooling=None, classes=nClasses) #hyperparameters batch_size = 256 epochs = 50 sPerEpoch = int(float(countTrain)/float(batch_size)) #Freezing layer for layer in model.layers[:NB_IV3_LAYERS_TO_FREEZE]: layer.trainable = False for layer in model.layers[NB_IV3_LAYERS_TO_FREEZE:]: layer.trainable = True x = model.output x = Flatten()(x) x = Dense(1024, activation="relu")(x) x = Dropout(0.5)(x) x = Dense(1024, activation="relu")(x) predictions = Dense(18, activation="softmax")(x) # creating the final model model_final = Model(input = model.input, output = predictions) #compiling the model model_final.compile(loss = "categorical_crossentropy", optimizer = optimizers.SGD(lr=0.0001, momentum=0.9), metrics=["accuracy"]) #model1.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model_final.summary() #Data Generator ---------------------------------------------------------------------------------------------------------------------------------------------- #Builds the generator generator, class_dictionary = build_gen(train_path) # Trains the model #model1.fit(trainData, trainLabels_onehot, batch_size=batch_size, epochs=epochs, verbose=1) history = model_final.fit_generator(generator = generator, steps_per_epoch = sPerEpoch, epochs = epochs) #Predicts the output of the model prob = model_final.predict(testData) pred = prob.argmax(axis=-1) print(pred) exportCSV(pred) #Saves the model model_final.save('my_model.h5') #Plots the accuracy and the loss function of the model #plots the graphs plot_loss(history) plot_acc(history) #model2.evaluate(test_data, test_labels_one_hot) ```
{ "source": "jkchandra/JobPortalPredictiveAnalytics", "score": 3 }
#### File: jkchandra/JobPortalPredictiveAnalytics/lookUpReplace.py ```python import numpy as np import pandas as pd import re import collections import csv #import files skills_synonyms = pd.read_csv("skills_synonyms.csv") skills_td_cut = pd.read_csv("skills_td_cut.csv") #Create a Synonym dictionary skills_synonyms["sub"] = skills_synonyms["sub"].apply(lambda x: x.split(";")) skills_synonyms.head() skills_dict = (skills_synonyms.set_index('main').T.to_dict('index'))['sub'] skills_dict changedWord = [] def findSynonym(value): for root, synonymArr in skills_dict.items(): for synonym in synonymArr: if (synonym == value.lower()): return root return value # For each word in skills_td_cut swap the value of the synonym to the root word for value in skills_td_cut['word']: changedWord.append(findSynonym(value)) #overwrite the word with the changed word skills_td_cut["word"] = changedWord #write into csv file skills_td_cut.to_csv("skills_td_cut_syn.csv", index = False) #Go back to Data ```
{ "source": "JKChang2015/Checkio", "score": 4 }
#### File: Checkio/Checkio/between_markers.py ```python def between_markers(text: str, begin: str, end: str) -> str: """ returns substring between two given markers """ start = text.find(begin) + len(begin) if begin in text else None stop = text.find(end) if end in text else None return text[start:stop] if __name__ == '__main__': print('Example:') print(between_markers('What is >apple<', '>', '<')) # These "asserts" are used for self-checking and not for testing assert between_markers('What is >apple<', '>', '<') == "apple", "One sym" assert between_markers("<head><title>My new site</title></head>", "<title>", "</title>") == "My new site", "HTML" assert between_markers('No[/b] hi', '[b]', '[/b]') == 'No', 'No opened' assert between_markers('No [b]hi', '[b]', '[/b]') == 'hi', 'No close' assert between_markers('No hi', '[b]', '[/b]') == 'No hi', 'No markers at all' assert between_markers('No <hi>', '>', '<') == '', 'Wrong direction' print('Wow, you are doing pretty good. Time to check it!') ``` #### File: Checkio/Checkio/bigger_price.py ```python def bigger_price(limit, data): """ TOP most expensive goods """ res = sorted(data, key=lambda k: k['price'], reverse=True) return res[:limit] if __name__ == '__main__': from pprint import pprint print('Example:') pprint(bigger_price(2, [ {"name": "bread", "price": 100}, {"name": "wine", "price": 138}, {"name": "meat", "price": 15}, {"name": "water", "price": 1} ])) # These "asserts" using for self-checking and not for auto-testing assert bigger_price(2, [ {"name": "bread", "price": 100}, {"name": "wine", "price": 138}, {"name": "meat", "price": 15}, {"name": "water", "price": 1} ]) == [ {"name": "wine", "price": 138}, {"name": "bread", "price": 100} ], "First" assert bigger_price(1, [ {"name": "pen", "price": 5}, {"name": "whiteboard", "price": 170} ]) == [{"name": "whiteboard", "price": 170}], "Second" print('Done! Looks like it is fine. Go and check it') ``` #### File: Checkio/Checkio/date_and_time_convertor.py ```python def date_time(t): # replace this for solution from datetime import datetime res = datetime.strptime(t, "%d.%m.%Y %H:%M") if res.hour == 1: h = res.strftime(' %-H hour') else: h = res.strftime(' %-H hours') if res.minute == 1: m = res.strftime(' %-M minute') else: m = res.strftime(' %-M minutes') return res.strftime('%-d %B %Y year') + h + m if __name__ == '__main__': print("Example:") print(date_time('01.01.2000 00:00')) # These "asserts" using only for self-checking and not necessary for auto-testing assert date_time("01.01.2000 00:00") == "1 January 2000 year 0 hours 0 minutes", "Millenium" assert date_time("09.05.1945 06:30") == "9 May 1945 year 6 hours 30 minutes", "Victory" assert date_time("20.11.1990 03:55") == "20 November 1990 year 3 hours 55 minutes", "Somebody was born" print("Coding complete? Click 'Check' to earn cool rewards!") ``` #### File: Checkio/Checkio/digits_multiplication.py ```python def checkio(number): from functools import reduce l = [int(x) for x in str(number) if x != '0'] return reduce((lambda x, y: x * y), l) # These "asserts" using only for self-checking and not necessary for auto-testing if __name__ == '__main__': assert checkio(123405) == 120 assert checkio(999) == 729 assert checkio(1000) == 1 assert checkio(1111) == 1 print("Coding complete? Click 'Check' to review your tests and earn cool rewards!") ``` #### File: Checkio/Checkio/find_sequence.py ```python def check(matrix, x, y, dx, dy): v = matrix[x][y] for i in range(3): x += dx y += dy if x >= len(matrix) or x < 0: return False if y >= len(matrix[0]) or y < 0: return False if matrix[x][y] != v: return False return True def checkio(matrix): for i in range(0, len(matrix)): for j in range(0, len(matrix[0])): # horizontally if check(matrix, i, j, 0, 1): return True # vertically if check(matrix, i, j, 1, 1): return True # diagonally NW-SE if check(matrix, i, j, 1, 0): return True # diagonally NE-SW if check(matrix, i, j, 1, -1): return True return False if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing assert checkio([ [1, 2, 1, 1], [1, 1, 4, 1], [1, 3, 1, 6], [1, 7, 2, 5] ]) == True, "Vertical" assert checkio([ [7, 1, 4, 1], [1, 2, 5, 2], [3, 4, 1, 3], [1, 1, 8, 1] ]) == False, "Nothing here" assert checkio([ [2, 1, 1, 6, 1], [1, 3, 2, 1, 1], [4, 1, 1, 3, 1], [5, 5, 5, 5, 5], [1, 1, 3, 1, 1] ]) == True, "Long Horizontal" assert checkio([ [7, 1, 1, 8, 1, 1], [1, 1, 7, 3, 1, 5], [2, 3, 1, 2, 5, 1], [1, 1, 1, 5, 1, 4], [4, 6, 5, 1, 3, 1], [1, 1, 9, 1, 2, 1] ]) == True, "Diagonal" ``` #### File: Checkio/Checkio/fizz_buzz.py ```python def checkio(number): if number % 3 == 0 and number % 5 == 0: return "Fizz Buzz" elif number % 3 == 0: return "Fizz" elif number % 5 == 0: return "Buzz" else: return str(number) # These "asserts" using only for self-checking and not necessary for auto-testing if __name__ == '__main__': assert checkio(15) == "Fizz Buzz", "15 is divisible by 3 and 5" assert checkio(6) == "Fizz", "6 is divisible by 3" assert checkio(5) == "Buzz", "5 is divisible by 5" assert checkio(7) == "7", "7 is not divisible by 3 or 5" print("Coding complete? Click 'Check' to review your tests and earn cool rewards!") ``` #### File: Checkio/Checkio/index_power.py ```python def index_power(array, n): """ Find Nth power of the element with index N. """ if n > len(array) - 1: return -1 return array[n] ** n if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing assert index_power([1, 2, 3, 4], 2) == 9, "Square" assert index_power([1, 3, 10, 100], 3) == 1000000, "Cube" assert index_power([0, 1], 0) == 1, "Zero power" assert index_power([1, 2], 3) == -1, "IndexError" print("Coding complete? Click 'Check' to review your tests and earn cool rewards!") ``` #### File: Checkio/Checkio/long_repeat.py ```python def long_repeat(line): """ length the longest substring that consists of the same char """ count = ['', 0] maxCount = 0 for i in list(line): if i == count[0]: count[1] += 1 else: count[0] = i count[1] = 1 if count[1] > maxCount: maxCount = count[1] return maxCount if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing assert long_repeat('sdsffffse') == 4, "First" assert long_repeat('ddvvrwwwrggg') == 3, "Second" assert long_repeat('abababaab') == 2, "Third" assert long_repeat('') == 0, "Empty" print('"Run" is good. How is "Check"?') ``` #### File: Checkio/Checkio/numbers_factory.py ```python def checkio(number): ans = '' digit = 9 while digit > 1: if number % digit != 0: digit -= 1 else: ans = str(digit) + ans number /= digit if number == 1: return int(ans) else: return 0 if __name__ == '__main__': #These "asserts" using only for self-checking and not necessary for auto-testing assert checkio(20) == 45, "1st example" assert checkio(21) == 37, "2nd example" assert checkio(17) == 0, "3rd example" assert checkio(33) == 0, "4th example" assert checkio(3125) == 55555, "5th example" assert checkio(9973) == 0, "6th example" ``` #### File: Checkio/Checkio/say_hi.py ```python def say_hi(name, age): """ Hi! """ return ('Hi. My name is %s and I\'m %d years old' % (name, age)) if __name__ == '__main__': # These "asserts" using only for self-checking and not necessary for auto-testing assert say_hi("Alex", 32) == "Hi. My name is Alex and I'm 32 years old", "First" assert say_hi("Frank", 68) == "Hi. My name is Frank and I'm 68 years old", "Second" print('Done. Time to Check.') ``` #### File: Checkio/Checkio/sun_angle.py ```python def sun_angle(time): t = time.split(':') hour, mini = int(t[0]), int(t[1]) if hour < 6 or hour > 18: return "I don't see the sun!" else: n = hour - 6 + (mini / 60) return n * 180 / 12 if __name__ == '__main__': print("Example:") print(sun_angle("07:00")) # These "asserts" using only for self-checking and not necessary for auto-testing assert sun_angle("07:00") == 15 assert sun_angle("01:23") == "I don't see the sun!" assert sun_angle("18:01") == "I don't see the sun!" print("Coding complete? Click 'Check' to earn cool rewards!") ``` #### File: Checkio/Checkio/time_converter_12_to_24.py ```python def time_converter(time): t, sign = time.split(' ') hour, mini = t.split(':') if sign == 'a.m.': if int(hour) < 10: return '0' + t elif hour == '12': return '00' + ':' + mini else: return time else: if hour == '12': return t else: return str(int(hour) + 12) + ':' + mini if __name__ == '__main__': print("Example:") print(time_converter('12:30 p.m.')) # These "asserts" using only for self-checking and not necessary for auto-testing assert time_converter('12:30 p.m.') == '12:30' assert time_converter('9:00 a.m.') == '09:00' assert time_converter('11:15 p.m.') == '23:15' print("Coding complete? Click 'Check' to earn cool rewards!") ```
{ "source": "JKChang2015/Machine_Learning", "score": 3 }
#### File: axe/KNN/KNN.py ```python TANG/axe/KNN/KNN.py # KNN # Created by JKChang # 27/01/2020, 15:53 # Tag: # Description: import operator import matplotlib.pyplot as plt from numpy import * def createDataSet(): group = array([[1.0, 1.1], [1.0, 1.0], [0, 0], [0, 0.1]]) labels = ['A', 'A', 'B', 'B'] return group, labels def drawGraph(group, labels): for i, label in enumerate(labels): x = group[i][0] y = group[i][1] plt.scatter(x, y, marker='x', color='red') plt.text(x + 0.01, y + 0.01, label, fontsize=9) plt.show() def classify(newInput, dataSet, labels, k): dataSetSize = dataSet.shape[0] ## step 1: calculate Euclidean distance # tile(A, reps): Construct an array by repeating A reps times # the following copy numSamples rows for dataSet diffMat = tile(newInput, (dataSetSize, 1))- dataSet # Subtract element-wise sqDiffMat = diffMat ** 2 # squared for the subtract sqDistances = sqDiffMat.sum(axis=1) # sum is performed by row distances = sqDistances ** 0.5 ## step 2: sort the distance # argsort() returns the indices that would sort an array in a ascending order sortedDistIndicies = distances.argsort() classCount = {} for i in range(k): ## step 3: choose the min k distance voteIlabel = labels[sortedDistIndicies[i]] ## step 4: count the times labels occur # when the key voteLabel is not in dictionary classCount, get() will return 0 classCount[voteIlabel] = classCount.get(voteIlabel, 0) + 1 ## step 5: the max voted class will return sortedClassCount = sorted(classCount.items(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] group, labels = createDataSet() drawGraph(group, labels) print(classify([0.5, 0.5], group, labels, 2)) ``` #### File: Yudi TANG/KNN/knn.py ```python import numpy as np import pandas as pd features = [ 'accommodates', 'bedrooms', 'bathrooms', 'beds', 'price', 'minimum_nights', 'maximum_nights', 'number_of_reviews' ] dc_listings = pd.read_csv('listings.csv')[features] dc_listings['price'] = dc_listings['price'].str.replace("\$|,", '').astype(float) train_df = dc_listings.copy().iloc[:2792] test_df = dc_listings.copy().iloc[2792:] def predict_price(new_listing_value, feature_column): print(new_listing_value) temp_df = train_df temp_df['difference'] = np.abs(dc_listings[feature_column] - new_listing_value) # difference temp_df = temp_df.sort_values('difference') # sort according to the difference knn_5 = temp_df.price.iloc[:5] predicted_price = knn_5.mean() # mean value of 5 nearest ones return (predicted_price) test_df['predicted_price'] = test_df.accommodates.apply(predict_price, feature_column='accommodates') ```
{ "source": "JKChang2015/semantic_dev_tech_test", "score": 3 }
#### File: semantic_dev_tech_test/Exercises/wine.py ```python from owlready2 import get_ontology from owlready2 import sync_reasoner # List all grape growing regions (in the ontology) def get_all_regions(): ''' Get all grape growing regions :return: List of grape growing regions ''' onto = get_ontology('file://./wine.owl').load() with onto: sync_reasoner() return [x.name for x in onto.region.instances()] # List all varietals (in the ontology) def get_all_varietals(): ''' Get all grape varietals, include also_called :return: List of grape varietals ''' onto = get_ontology('file://./wine.owl').load() with onto: sync_reasoner() subs = onto.varietal.descendants() subs.remove(onto.varietal) res = [x.name for x in subs] for c in subs: if len(c.also_called) > 0: res += c.also_called return res # List all types (classes) of wine (in the ontology) def get_all_types(): ''' List all types of wine :return: List of wine types ''' onto = get_ontology('file://./wine.owl').load() with onto: sync_reasoner() subs = onto.color.descendants() subs.remove(onto.color) return [x.name for x in subs] # Query for wine types and individual wines by: colour, varietal, region def query(color=None, varietal=None, region=None): ''' :param color: wine color :param varietal: grape varietal :param region: region :return: types and individuals by given colour, varietal and region ''' onto = get_ontology('file://./wine.owl').load() with onto: sync_reasoner() wines = onto.wine.descendants() wines.remove(onto.wine) res = list(wines.copy()) for wine in wines: if color: wine_c = [x.name.lower() for x in wine.has_color] if color.lower() not in wine_c: res.remove(wine) continue if varietal: wine_v = [x.name.lower() for x in wine.made_from] if varietal.lower() not in wine_v: res.remove(wine) continue if region: wine_r = [x.name.lower() for x in wine.grown_in] if region.lower() not in wine_r: res.remove(wine) continue for i in res: try: if len(i.instances()) > 0: inst = i.instances() res += inst except: pass return list(set([x.name for x in res])) ```
{ "source": "jkchen2/JshBot", "score": 3 }
#### File: JshBot/jshbot/parser.py ```python import discord import re from discord.abc import PrivateChannel from jshbot import commands, utilities, logger from jshbot.commands import ArgTypes from jshbot.exceptions import ConfiguredBotException, BotException CBException = ConfiguredBotException('Parser') def split_parameters(parameters, include_quotes=False, quote_list=False): """Splits up the given parameters by spaces and quotes. Keyword arguments: include_quotes -- The quotes attached to the parameters will be included. quote_list -- Gets a list of indices that represent parameters that were grouped because of quotes. """ if not parameters: if quote_list: return ([], []) else: return [] split = re.split('( +)', parameters) quoted_indices = [] joined_split = [] add_start = -1 add_end = -1 for index, entry in enumerate(split): if entry.startswith('"'): add_start = index if (entry.endswith('"') and not entry.endswith('\\"') and len(entry) > 1 and add_start != -1): add_end = index + 1 if add_start == -1: # Add entry normally joined_split.append(entry) elif add_end != -1: # Join entries in quotes quoted_indices.append(len(joined_split)) combined = ''.join(split[add_start:add_end]) if include_quotes: joined_split.append(combined) else: joined_split.append(combined[1:-1]) add_start = -1 add_end = -1 if add_start != -1: # Unclosed quote logger.warn("Detected an unclosed quote: " + split[add_start]) joined_split.append(''.join(split[add_start:index + 1])) if quote_list: return (joined_split, quoted_indices) else: return joined_split async def match_subcommand(bot, command, parameters, message, match_closest=False): """Matches the given parameters to a valid subcommand from the command. Returns a tuple of the subcommand, options, and arguments. If match_closest is True, returns the closest matching subcommand or None. No processing (conversion, checking) is done, and returns only the subcommand or None. """ parameters, quoted_indices = split_parameters(parameters, quote_list=True) closest_index = -1 closest_index_matches = 0 closest_index_error = None stripped_parameters = parameters[::2] for subcommand in command.subcommands: current_index = 0 matches = 0 options = {} arguments = [] last_opt_index = -1 arg_index = -1 used_opts = [] exhausted_opts = len(subcommand.opts) == 0 not_found_error = None while current_index < len(stripped_parameters): current = stripped_parameters[current_index] if not exhausted_opts: # Check opts if current_index * 2 in quoted_indices: # Quoted elements are always arguments exhausted_opts = True found_opt = subcommand.opts.get(current.lower(), None) if not exhausted_opts and found_opt: if subcommand.strict_syntax: # Check strict syntax if found_opt.index < last_opt_index: # Syntax out of order exhausted_opts = True else: last_opt_index = found_opt.index if not exhausted_opts: if found_opt.name in options: # Duplicate. Skip to args exhausted_opts = True else: # Check for attached argument if found_opt.attached: # Required attached argument if current_index + 1 >= len(stripped_parameters): not_found_error = ( 'Option {opt.name_string} requires an attached parameter, ' '{opt.attached_string}.'.format(opt=found_opt)) matches += 3 else: current_index += 1 options[found_opt.name] = stripped_parameters[current_index] matches += 6 else: # No attached argument required options[found_opt.name] = None matches += 5 used_opts.append(found_opt) else: # Option not found. Skip to args exhausted_opts = True if exhausted_opts: # No more matching opts - check for optional opts current_index -= 1 # Search args where we left off remaining_opts = [o for o in subcommand.opts.values() if o not in used_opts] for opt in remaining_opts: if opt.optional: matches += 1 if opt.always_include: options[opt.name] = opt.default else: # Not optional. Unfit subcommand not_found_error = 'Option {} is required.'.format(opt.name_string) break else: # Check args arg_index += 1 if arg_index >= len(subcommand.args): # Too many arguments not_found_error = 'Too many arguments.' else: matches += 1 arg = subcommand.args[arg_index] if arg.argtype in (ArgTypes.SINGLE, ArgTypes.OPTIONAL): arguments.append(current) else: # Instant finish grouped arguments if arg.argtype in (ArgTypes.SPLIT, ArgTypes.SPLIT_OPTIONAL): arguments += stripped_parameters[current_index:] else: # Merged split_arguments = [] quote_index = current_index * 2 for segment in parameters[current_index * 2:]: if quote_index in quoted_indices: # Add quotes back in split_arguments.append('"{}"'.format(segment)) else: split_arguments.append(segment) quote_index += 1 arguments += [''.join(split_arguments)] break if not_found_error: # Skip rest of loop and evaluate matches break current_index += 1 # Finished opt/arg while loop if not not_found_error and not exhausted_opts: # Opts remain remaining_opts = [o for o in subcommand.opts.values() if o not in used_opts] for opt in remaining_opts: if opt.optional: matches += 1 if opt.always_include: options[opt.name] = opt.default else: # Not optional. Unfit subcommand not_found_error = 'Option {} is required.'.format(opt.name_string) break if not not_found_error and arg_index < len(subcommand.args) - 1: # Optional arguments arg_index += 1 arg = subcommand.args[arg_index] if arg.argtype is ArgTypes.OPTIONAL: matches += 1 while (arg and arg.argtype is ArgTypes.OPTIONAL and arg_index < len(subcommand.args)): arguments.append(arg.default) arg_index += 1 try: arg = subcommand.args[arg_index] except: arg = None if arg and arg.argtype in (ArgTypes.SPLIT_OPTIONAL, ArgTypes.MERGED_OPTIONAL): matches += 1 arguments.append(arg.default) elif arg: not_found_error = 'No value given for argument {}.'.format(arg.help_string) if not not_found_error: # Check for message attachment if subcommand.attaches: if message.attachments or subcommand.attaches.optional: matches += 6 else: not_found_error = 'Missing attachment **__`{name}`__**'.format( name=subcommand.attaches.name) elif message.attachments: # No attachment argument, but attachment was provided not_found_error = 'No attachment required, but one was given.' if not_found_error: # Find closest subcommand if matches > closest_index_matches: closest_index = subcommand.index closest_index_matches = matches closest_index_error = not_found_error else: # Subcommand found. Convert and check if subcommand.confidence_threshold is not None: # Confidence threshold if closest_index_matches >= subcommand.confidence_threshold: continue # Skip valid match due to low confidence # No additional processing if match_closest: if matches <= 1 and matches < closest_index_matches: # No confidence continue else: return subcommand # Cannot match parameters in a direct message if disabled elif not subcommand.allow_direct and isinstance(message.channel, PrivateChannel): return subcommand, {}, [] # Fill in options and arguments else: for option_name, value in options.items(): # Check options current_opt = subcommand.opts[option_name] if value is not None: new_value = await current_opt.convert_and_check(bot, message, value) if new_value is not None: options[option_name] = new_value for index, pair in enumerate(zip(subcommand.args, arguments)): # Check arguments arg, value = pair if (value is not None or arg.argtype in (ArgTypes.SINGLE, ArgTypes.SPLIT, ArgTypes.MERGED)): if arg.argtype not in (ArgTypes.SINGLE, ArgTypes.OPTIONAL): new_values = await arg.convert_and_check( bot, message, arguments[index:]) arguments = arguments[:index] + new_values break else: new_value = await arg.convert_and_check(bot, message, value) arguments[index] = new_value return subcommand, options, arguments # Looped through all subcommands. Not found if closest_index == -1 or closest_index_matches <= 1: # Low confidence guess = command else: guess = command.subcommands[closest_index] if match_closest: return guess else: if isinstance(guess, commands.SubCommand): syntax_error = 'Invalid syntax: {}'.format(closest_index_error) else: guess = command syntax_error = 'Invalid syntax.' invoker = utilities.get_invoker(bot, guild=message.guild) raise CBException( syntax_error, embed_fields=guess.help_embed_fields, embed_format={'invoker': invoker}) async def fill_shortcut(bot, shortcut, parameters, message): parameters = split_parameters(parameters, include_quotes=True) stripped_parameters = parameters[::2] arguments_dictionary = {} current_index = -1 for current_index, current in enumerate(stripped_parameters): if current_index >= len(shortcut.args): invoker = utilities.get_invoker(bot, guild=message.guild) raise CBException( "Too many arguments.", embed_fields=shortcut.help_embed_fields, embed_format={'invoker': invoker}) else: arg = shortcut.args[current_index] if arg.argtype in (ArgTypes.SINGLE, ArgTypes.OPTIONAL): arguments_dictionary[arg.name] = current else: # Instant finish grouped arguments if arg.argtype in (ArgTypes.SPLIT, ArgTypes.SPLIT_OPTIONAL): arguments_dictionary[arg.name] = ''.join(stripped_parameters[current_index:]) else: # Merged arguments_dictionary[arg.name] = ''.join(parameters[current_index * 2:]) break # TODO: TEST THIS! logger.debug("Finished shortcut loop. %s", arguments_dictionary) if current_index < len(shortcut.args) - 1: # Check for optional arguments arg = shortcut.args[current_index + 1] if arg.argtype is ArgTypes.OPTIONAL: while (arg and arg.argtype is ArgTypes.OPTIONAL and current_index < len(shortcut.args)): arguments_dictionary[arg.name] = '' if arg.default is None else arg.default current_index += 1 try: arg = shortcut.args[current_index] except: arg = None if arg and arg.argtype in (ArgTypes.SPLIT_OPTIONAL, ArgTypes.MERGED_OPTIONAL): arguments_dictionary[arg.name] = '' if arg.default is None else arg.default elif arg: invoker = utilities.get_invoker(bot, guild=message.guild) raise CBException( "Not enough arguments.", embed_fields=shortcut.help_embed_fields, embed_format={'invoker': invoker}) logger.debug("Finished checking for optional arguments. %s", arguments_dictionary) for arg in shortcut.args: value = arguments_dictionary[arg.name] if value is not None: new_value = await arg.convert_and_check(bot, message, value) arguments_dictionary[arg.name] = new_value return shortcut.replacement.format(**arguments_dictionary).strip() async def parse(bot, command, parameters, message): """Parses the parameters and returns a tuple. This matches the parameters to a subcommand. The tuple is (base, subcommand_index, options, arguments). """ parameters = parameters.strip() # Safety strip if isinstance(command, commands.Shortcut): # Fill replacement string logger.debug("Filling shortcut...") parameters = await fill_shortcut(bot, command, parameters, message) command = command.command # command is actually a Shortcut. Not confusing at all logger.debug("Shortcut filled to: [%s]", parameters) subcommand, options, arguments = await match_subcommand(bot, command, parameters, message) return (subcommand, options, arguments) # return (command, subcommand.index, options, arguments, command.keywords) async def guess_command( bot, text, message, safe=True, substitute_shortcuts=True, suggest_help=True): """Guesses the closest command or subcommand. Keyword arguments: safe -- Returns None if no command was guessed substitute_shortcuts -- Fills in the shortcut (if found) and guesses a command from that suggest_help -- Suggests that the user run the regular help command """ if not text: if safe: return None else: raise CBException("No guess text.") text = text.strip() split_content = text.split(' ', 1) if len(split_content) == 1: split_content.append('') base, parameters = split_content base = base.lower() try: command = bot.commands[base] except KeyError: if safe: return None else: if suggest_help: invoker = utilities.get_invoker(bot, message=message) additional = ' To see the menu, type `{}help`'.format(invoker) else: additional = '' raise CBException("Invalid base.{}".format(additional)) if isinstance(command, commands.Shortcut) and substitute_shortcuts: try: parameters = await fill_shortcut(bot, command, parameters, message) command = command.command except BotException: return command.command if not parameters or isinstance(command, commands.Shortcut): return command else: return await match_subcommand(bot, command, parameters, message, match_closest=True) ``` #### File: JshBot/jshbot/utilities.py ```python import asyncio import datetime import functools import io import os import shutil import socket import time import zipfile import aiohttp import discord from urllib.parse import urlparse from psycopg2.extras import Json from jshbot import data, configurations, core, logger from jshbot.exceptions import BotException, ConfiguredBotException CBException = ConfiguredBotException('Utilities') # Voice region time offsets (no DST) VOICE_REGIONS = { 'us-west': -8, 'us-east': -5, 'us-south': -6, 'us-central': -6, 'eu-west': 1, # West European Summer Time 'eu-central': 2, # Central European Summer Time 'singapore': 8, 'london': 0, 'sydney': 10, 'amsterdam': 2, # CEST 'frankfurt': 2, # CEST 'brazil': -3, 'vip-us-east': -5, 'vip-us-west': -8, 'vip-amsterdam': 2 # CEST } # Integer to emoji conversion NUMBER_EMOJIS = [ ':zero:', ':one:', ':two:', ':three:', ':four:', ':five:', ':six:', ':seven:', ':eight:', ':nine:', ':keycap_ten:' ] class BaseConverter(): def __init__(self): self.error_reason = "Unknown conversion error" def get_convert_error(self, *args): return self.error_reason class MemberConverter(BaseConverter): def __init__(self, server_only=True, live_check=None, attribute=None): self.server_only = server_only self.live_check = live_check self.attribute = attribute super().__init__() async def __call__(self, bot, message, value, *a): if self.live_check: self.server_only = self.live_check(bot, message, value, *a) guild = message.guild if self.server_only else None try: return await data.fetch_member( bot, value, guild=guild, strict=self.server_only, attribute=self.attribute) except BotException as e: self.set_error_reason(e, 'member') def set_error_reason(self, error, convert_type): if error.error_details.startswith('Duplicate'): pre_format = "Duplicate {}s found.".format(convert_type) else: pre_format = "{} '{}' not found.".format(convert_type.title(), error.other_details) self.error_reason = pre_format + ' Please use a mention or raw user ID.' assert False # To trigger the conversion error class ChannelConverter(MemberConverter): def __init__(self, server_only=True, live_check=None, constraint=None, attribute=None): """Constraint can be used to specify only text or voice channels. The constraitn can either be discord.VoiceChannel or discord.TextChannel """ self.server_only = server_only self.constraint = constraint super().__init__(live_check=live_check, attribute=attribute) def __call__(self, bot, message, value, *a): if self.live_check: guild = self.live_check(bot, message, value, *a) else: guild = message.guild if self.server_only else None try: return data.get_channel( bot, value, guild=guild, strict=self.server_only, constraint=self.constraint, attribute=self.attribute) except BotException as e: self.set_error_reason(e, 'channel') class RoleConverter(MemberConverter): def __init__(self, attribute=None): super().__init__(attribute=attribute) def __call__(self, bot, message, value, *a): try: return data.get_role(bot, value, message.guild, attribute=self.attribute) except BotException as e: self.set_error_reason(e, 'role') class PercentageConverter(BaseConverter): def __init__(self, accuracy=3): self.accuracy = int(accuracy) super().__init__() def __call__(self, bot, message, value, *a): cleaned = value.strip('%') try: converted = float(cleaned) except: raise CBException("Must be a percentage.") else: if self.accuracy is not None: converted = round(converted, self.accuracy) return converted/100 class HexColorConverter(BaseConverter): def __call__(self, bot, message, value, *a): try: return discord.Color(int(value.lower()[-6:], 16)) except: raise CBException("Invalid hex color.") def add_bot_permissions(bot, plugin_name, **permissions): """Adds the given permissions to the bot for authentication generation.""" dummy = discord.Permissions() for permission in permissions: try: getattr(dummy, permission.lower()) except: # Permission not found raise CBException("Permission '{}' does not exist".format(permission)) current = data.get( bot, plugin_name, 'permissions', create=True, volatile=True) if current is None: data.add(bot, plugin_name, 'permissions', permissions, volatile=True) def get_permission_bits(bot): """Calculates all of the permissions for each plugin.""" dummy = discord.Permissions() for plugin in bot.plugins.keys(): for permission in data.get( bot, plugin, 'permissions', volatile=True, default={}): setattr(dummy, permission.lower(), True) return dummy.value async def can_interact(bot, member, channel_id=None): """Checks that the given member can be interacted with. This ensures that the user is: Not a bot Not blocked in the server Additionally, if the user is a member (guild exists): Not in a blocked channel Not blacklisted by the botowners If given a channel ID, also checks that the bot is not muted in there This also checks for maintenace mode """ if data.is_owner(bot, member.id): return True elif member.bot or member.id in data.get(bot, 'core', 'blacklist', default=[]): return False elif bot.maintenance_mode: return False # Guild specific check guild = getattr(member, 'guild', None) if guild: if data.is_mod(bot, member=member): return True guild_data = data.get(bot, 'core', None, guild.id, default={}) if (guild_data.get('muted', False) or (channel_id in guild_data.get('muted_channels', [])) or (member.id in guild_data.get('blocked', []))): return False return True async def download_url( bot, url, headers={'User-Agent': 'Mozilla/5.0'}, include_name=False, extension=None, filename=None, use_fp=False): """Asynchronously downloads the given file to the temp folder. Returns the path of the downloaded file. If include_name is True, returns a tuple of the file location and the file name. If use_fp, this will use a BytesIO object instead of downloading to a file. """ if use_fp: fp = io.BytesIO() else: if not filename: filename = get_cleaned_filename(url, extension=extension) file_location = '{0}/temp/{1}'.format(bot.path, filename) try: response_code, downloaded_bytes = await get_url(bot, url, get_bytes=True, headers=headers) if response_code != 200: raise CBException("Failed to download file.", response_code) if use_fp: fp.write(downloaded_bytes) fp.seek(0) return fp else: with open(file_location, 'wb') as download: download.write(downloaded_bytes) if include_name: return (file_location, filename) else: return file_location except Exception as e: raise CBException("Failed to download the file.", e=e) def delete_temporary_file(bot, filename, safe=True): """Deletes the given file from the temp folder.""" try: os.remove('{0}/temp/{1}'.format(bot.path, filename)) except Exception as e: if not safe: raise CBException("File could not be deleted.", e=e) def get_temporary_file(bot, filename, safe=True): """Gets the filename from the temp folder.""" test_path = '{0}/temp/{1}'.format(bot.path, filename) if os.path.isfile(test_path): return test_path elif safe: return None else: raise CBException("Temporary file not found.") def add_temporary_file(bot, bytes_io, filename, seek=True, overwrite=True, safe=False): """Dumps the binary file into the temp folder.""" test_path = '{0}/temp/{1}'.format(bot.path, filename) if os.path.isfile(test_path) and not overwrite and not safe: raise CBException("Temporary file already exists.") else: try: if seek and bytes_io.seekable(): bytes_io.seek(0) write_type = 'w' if isinstance(bytes_io, io.StringIO) else 'wb' with open(test_path, write_type) as temp_file: temp_file.write(bytes_io.read()) except Exception as e: if not safe: raise CBException("Failed to write temporary file.", e=e) def get_plugin_file(bot, filename, safe=True): """Gets the plugin file in the plugin_data directory.""" test_path = '{0}/plugins/plugin_data/{1}'.format(bot.path, filename) if os.path.isfile(test_path): return test_path elif safe: return None else: raise CBException("Plugin file '{}' not found.".format(filename)) def valid_url(url): """Checks that the given URL is Discord embed friendly. Or at least, it tries.""" def _valid_string(segment, main=True): if not len(segment): return False for c in [ord(it.lower()) for it in segment]: if not (97 <= c <= 122 or (main and (48 <= c <= 57 or c == 45))): return False return True test = urlparse(url) if not (test.scheme and test.netloc and '.' in test.netloc): return False # Discord only accepts http or https if test.scheme not in ('http', 'https'): return False # Test for valid netloc netloc_split = test.netloc.split('.') if (len(netloc_split) < 2): return False # http://foo tld = test.netloc.split('.')[-1] if not (len(tld) >= 2 and _valid_string(tld, main=False)): return False # http://foo.123 for segment in netloc_split[:-1]: if not _valid_string(segment): return False # http://foo..bar or http://fo*o.bar for c in url: if not 33 <= ord(c) <= 126: return False # non-ASCII only URLs return True async def get_url(bot, urls, headers={}, read_response=True, get_bytes=False): """Uses aiohttp to asynchronously get a url response, or multiple.""" async def fetch(url, read_method='text'): if not url: # Why return (None, None) async with session.get(str(url)) as response: return ( response.status, (await getattr(response, read_method)()) if read_response else response) read_method = 'read' if get_bytes else 'text' try: async with aiohttp.ClientSession(headers=headers, loop=bot.loop) as session: if isinstance(urls, (list, tuple)): result = await parallelize(fetch(url, read_method) for url in urls) else: result = await fetch(urls, read_method) return result except Exception as e: raise CBException("Failed to retrieve a URL.", e=e) async def request( bot, method, url, session_kwargs={}, method_kwargs={}, response_method='text', response_method_kwargs={}): """Wraps aiohttp methods for making a request.""" async with aiohttp.ClientSession(**session_kwargs) as session: async with getattr(session, method)(url, **method_kwargs) as response: return (response, await getattr(response, response_method)(**response_method_kwargs)) async def upload_to_discord(bot, fp, filename=None, rewind=True, close=False): """Uploads the given file-like object to the upload channel. If the upload channel is specified in the configuration files, files will be uploaded there. Otherwise, a new guild will be created, and used as the upload channel.""" channel_id = configurations.get(bot, 'core', 'upload_channel') if not channel_id: # Check to see if a guild was already created channel_id = data.get(bot, 'core', 'upload_channel') channel = data.get_channel(bot, channel_id, safe=True) # TODO: Remove. Guild creation via bots is a whitelisted process if channel is None: # Create guild logger.debug("Creating guild for upload channel...") try: guild = await bot.create_guild('uploads') except Exception as e: raise CBException( "Failed to create upload guild. This bot is not whitelisted " "to create guilds.", e=e) data.add(bot, 'core', 'upload_channel', guild.id) channel = bot.get_channel(guild.id) if channel is None: # Shouldn't happen raise CBException("Failed to get upload channel.") try: discord_file = discord.File(fp, filename=filename) message = await channel.send(file=discord_file) upload_url = message.attachments[0].url except Exception as e: raise CBException("Failed to upload file.", e=e) try: if close: fp.close() elif rewind: fp.seek(0) except: pass return upload_url async def upload_logs(bot): """Uploads any log files to the debug channel.""" log_zip_location = '{0}/temp/debug_log_files.zip'.format(bot.path) log_zip_file = zipfile.ZipFile(log_zip_location, mode='w') log_location = '{0}/temp/debug_logs.txt'.format(bot.path) compression = zipfile.ZIP_DEFLATED if os.path.exists(log_location): log_zip_file.write( log_location, arcname=os.path.basename(log_location), compress_type=compression) for log_number in range(5): next_location = log_location + '.{}'.format(log_number + 1) if os.path.exists(next_location): log_zip_file.write( next_location, arcname=os.path.basename(next_location), compress_type=compression) log_zip_file.close() debug_channel = bot.get_channel(configurations.get(bot, 'core', 'debug_channel')) discord_file = discord.File(log_zip_location, filename='all_logs.zip') await debug_channel.send(content='All logs:', file=discord_file) async def parallelize(coroutines, return_exceptions=False, propagate_error=False): """Uses asyncio.gather to "parallelize" the coroutines (not really).""" try: return await asyncio.gather(*coroutines, return_exceptions=return_exceptions) except Exception as e: if propagate_error: raise e else: raise CBException("Failed to await coroutines.", e=e) def future(function, *args, **kwargs): """Returns the given function as a future.""" loop = asyncio.get_event_loop() function = functools.partial(function, *args, **kwargs) return loop.run_in_executor(None, function) # TODO: Deprecate in favor of clean_text def get_cleaned_filename(name, cleaner=False, limit=200, extension=None): """Cleans up the filename to a limited set of ASCII characters.""" if extension: extension = '.{}'.format(extension) limit -= len(extension) else: extension = '' cleaned_list = [] for char in name: if cleaner: # Does not include underscores or dashes if char.isalnum(): cleaned_list.append(char) else: if char.isalnum() or ord(char) in (95, 45): cleaned_list.append(char) if len(cleaned_list) > limit: # Because Windows file limitations cleaned_list = cleaned_list[:limit] return ''.join(cleaned_list).lower() + extension def clean_text(text, level=2, limit=200, custom=None, lowercase=True): """Cleans up the text to a limited set of ASCII characters. level 0: Standard ASCII characters or alphanumeric unicode level 1: Alphanumeric (unicode) or dash, underscore, space level 2: Alphanumeric (unicode) or dash, underscore (default) level 3: Alphanumeric (unicode) only level 4: Alphanumeric (ASCII) only """ if custom: sifter = custom else: sifter = ( lambda x: x if (x.isalnum() or 32 <= ord(x) <= 126) else '', lambda x: x if (x.isalnum() or ord(x) in (95, 45, 32)) else '', lambda x: x if (x.isalnum() or ord(x) in (95, 45)) else '', lambda x: x if x.isalnum() else '', lambda x: x if (x.isalnum() and ord(x) < 127) else '' )[level] cleaned = ''.join(sifter(char) for char in text[:limit]) return cleaned.lower() if lowercase else cleaned def filter_everyone(text): """Removes mentionable instances of @everyone and @here.""" return text.replace('@everyone', '@\u200beveryone').replace('@here', '@\u200bhere') def get_player(bot, guild_id): """Gets the voice player on the given guild. None otherwise.""" return data.get(bot, 'core', 'voice_player', guild_id=guild_id, volatile=True) def set_player(bot, guild_id, player): """Sets the voice player of the given guild.""" data.add(bot, 'core', 'voice_player', player, guild_id=guild_id, volatile=True) async def join_and_ready(bot, voice_channel, is_mod=False, reconnect=False): """Joins the voice channel and stops any audio playing. Returns the voice_client object from voice_channel.connect() """ guild = voice_channel.guild muted_channels = data.get(bot, 'core', 'muted_channels', guild_id=guild.id, default=[]) if voice_channel == guild.afk_channel: raise CBException("This is the AFK channel.") if voice_channel.id in muted_channels and not is_mod: raise CBException("The bot is muted in this voice channel.") if reconnect: try: await stop_audio(bot, guild) except: pass voice_client = guild.voice_client if not voice_client: try: voice_client = await asyncio.wait_for( voice_channel.connect(timeout=5.0, reconnect=False), timeout=10.0, loop=bot.loop) except asyncio.TimeoutError as e: try: await stop_audio(bot, guild, force=True) except: pass raise CBException("Timed out trying to join the voice channel.") except Exception as e: try: await stop_audio(bot, guild) except: pass raise CBException("Failed to join the voice channel.", e=e) if voice_client.is_playing(): voice_client.stop() else: if voice_client.is_playing(): voice_client.stop() if voice_client.channel != voice_channel: try: await voice_client.move_to(voice_channel) except Exception as e: try: await stop_audio(bot, guild) except: pass raise CBException("Failed to move to the voice channel.", e=e) return voice_client async def stop_audio(bot, guild, member=None, safe=True, disconnect=True, force=False): """Stops any playing audio. Keyword arguments: member -- Checks that the the bot is connected to the member's voice channel. The safe option overrides this. safe -- Prevents exceptions from being thrown. Can be seen as 'silent'. disconnect -- Disconnects from the voice channel. force -- If disconnect is set, forces the disconnect. """ voice_client = guild.voice_client if not voice_client: if safe: return else: raise CBException("Bot not connected to a voice channel.") member_voice = member.voice.channel if member and member.voice else None if member and voice_client.channel != member_voice: if not safe: raise CBException("Bot not connected to your voice channel.") else: voice_client.stop() if disconnect: await voice_client.disconnect(force=force) async def play_and_leave(bot, guild, audio_source, delay=30): """Plays the audio source, and then leaves the voice channel. If the delay is negative, the bot will not leave the voice channel. """ voice_client = guild.voice_client if voice_client is None: raise CBException("Voice client is missing.") async def _leave(): await asyncio.sleep(delay) test_voice_client = guild.voice_client if not test_voice_client or test_voice_client.source != audio_source: logger.debug("Voice client changed. Automatic disconnect cancelled.") else: try: await voice_client.disconnect() except Exception as e: raise CBException("Failed to disconnect from the voice channel.", e=e) def _start_leave(error): if error: raise CBException("Player failed to finish.", error) elif delay >= 0: asyncio.ensure_future(_leave(), loop=bot.loop) voice_client.play(audio_source, after=_start_leave) def get_time_string(total_seconds, text=False, full=False, resolution=2): """Gets either digital-clock-like time or time in plain English.""" total_seconds = int(total_seconds) values = [ #('weeks', int(total_seconds / 604800)), # Weeks are more confusing than days ('days', int(total_seconds / 86400)), ('hours', int((total_seconds % 86400) / 3600)), ('minutes', int((total_seconds % 3600) / 60)), ('seconds', int(total_seconds % 60)) ] result = [] if text: for scale, value in values: if value > 0: if not full and len(result) == 1 and values[0][1] >= 7: break # Lower resolution if there are several days already result.append('{} {}{}'.format( value, scale[:-1], '' if value == 1 else 's')) if not full and len(result) >= resolution: break for it in range(len(result) - 2): result.insert((it * 2) + 1, ', ') if len(result) > 1: result.insert(-1, ' and ') else: for scale, value in values: if value > 0 or full or scale == 'minutes': if scale in ('hours', 'minutes', 'seconds') and full: format_string = '{:0>2}' else: format_string = '{}' result.append(format_string.format(value)) full = True return ('' if text else ':').join(result) def get_formatted_message(message): """Gets a log-friendly format of the given message.""" if message.edited_at: edited = ' (edited {})'.format(message.edited_at) else: edited = '' if message.attachments: urls = [attachment.url for attachment in message.attachments] attached = ' (attached {})'.format(urls) else: attached = '' return ("{0.author.name}#{0.author.discriminator} ({0.author.id}) " "at {0.created_at}{1}{2}:\r\n\t{0.content}").format( message, edited, attached) async def get_log_text(bot, channel, **log_arguments): """Wrapper function for Carter's time machine.""" messages = [] async for message in channel.history(**log_arguments): messages.append(message) return '\r\n\r\n'.join(get_formatted_message(message) for message in reversed(messages)) async def send_text_as_file(channel, text, filename, extra=None, extension='txt'): """Sends the given text as a text file.""" discord_file = discord.File( get_text_as_file(text), filename='{}.{}'.format(filename, extension)) reference = await channel.send(content=extra, file=discord_file) return reference def get_text_as_file(text): """Converts the text into a bytes object using BytesIO.""" try: return io.BytesIO(bytes(str(text), 'utf-8')) except Exception as e: raise CBException("Failed to convert text to a file.", e=e) def get_invoker(bot, guild=None, message=None): """Gets a suitable command invoker for the bot. If a guild is specified, this will check for a custom invoker and whether or not mention mode is enabled. If a message is specified, this will obtain a guild as long as the message was not sent in a private channel. """ if message and isinstance(message.channel, discord.TextChannel): guild = message.guild if guild: guild_data = data.get( bot, 'core', None, guild_id=guild.id, default={}) if guild_data.get('mention_mode', False): invoker = '{} '.format(guild.me.display_name) else: invoker = guild_data.get('command_invoker', None) else: invoker = None if invoker is None: invoker = bot.command_invokers[0] return invoker async def notify_owners(bot, message, user_id=None): """Sends all owners a direct message with the given text. If user_id is specified, this will check that the user is not in the blacklist. """ if bot.selfbot: logger.info("Owner notification:\n{}".format(message)) else: if user_id: blacklist = data.get(bot, 'core', 'blacklist', default=[]) if user_id in blacklist: await asyncio.sleep(0.5) return for owner in bot.owners: try: user = await bot.fetch_user(owner) if len(message) > 1990: await send_text_as_file(user, message, 'notification') else: await user.send(message) except Exception as e: logger.error("Failed to notify owner %s: %s", owner, e) def docker_send_command(command): """Sends the database Docker container a command.""" logger.debug("Sending database container command: %s", command) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(0.1) s.connect(('db', 2345)) s.send(bytes(command, 'ascii')) s.close() def docker_receive_exit_code(): """Waits until an exit code is returned from the database Docker container.""" s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(30) s.bind(('', 2345)) s.listen(1) connection, _ = s.accept() response = connection.recv(64) connection.close() s.close() logger.debug("Database container response: %s", response) return response # TODO: Add specific table dumping def db_backup(bot, safe=True): """Use the Docker setup to backup the database.""" if not bot.docker_mode: return try: logger.debug("Attemping to connect to the database container...") if bot.dump_exclusions: exclusions = '-T "' + '" -T "'.join(bot.dump_exclusions) + '"' else: exclusions = '' command = ( 'pg_dump -U postgres -F c {} postgres > ' '/external/data/db_dump'.format(exclusions)) docker_send_command(command) logger.debug("Told database container to backup") except Exception as e: logger.warn("Failed to communicate with the database container: %s", e) if safe: return raise CBException("Failed to communicate with the database container.", e=e) # Read response code from database container try: return docker_receive_exit_code() except Exception as e: logger.warn("Failed to receive a response from the database container: %s", e) if safe: return raise CBException("Failed to receive a response from the database container.", e=e) def make_backup(bot): """Makes a backup of the data directory.""" logger.info("Making backup...") db_backup(bot) backup_indices = '{0}/temp/backup{{}}.zip'.format(bot.path) if os.path.isfile(backup_indices.format(5)): os.remove(backup_indices.format(5)) for it in range(1, 5): backup_file_from = backup_indices.format(5-it) backup_file_to = backup_indices.format(6-it) if os.path.isfile(backup_file_from): os.rename(backup_file_from, backup_file_to) shutil.make_archive(backup_indices.format(1)[:-4], 'zip', '{}/data'.format(bot.path)) logger.info("Finished making backup.") def restore_backup(bot, backup_file): """Restores a backup file given the backup filename.""" logger.info("Restoring from a backup file...") try: core.bot_data = {'global_users': {}, 'global_plugins': {}} core.volatile_data = {'global_users': {}, 'global_plugins': {}} shutil.unpack_archive(backup_file, '{}/data'.format(bot.path)) data.check_all(bot) data.load_data(bot) except Exception as e: raise CBException("Failed to extract backup.", e=e) logger.info("Finished data restore.") def restore_db_backup(bot, tables=[]): """Restores a database dump backup file. If tables is specified, this will restore those instead of the entire database. """ logger.info("Restoring database...") try: if tables: specific_tables = '-t "' + '" -t "'.join(tables) + '"' else: specific_tables = '' command = 'pg_restore -U postgres -d postgres {} /external/temp/db_dump'.format(specific_tables) docker_send_command(command) return docker_receive_exit_code() except Exception as e: raise CBException("Failed to restore backup.", e=e) logger.info("Finished database restore.") def get_timezone_offset(bot, guild_id=None, utc_dt=None, utc_seconds=None, as_string=False): """Converts the time to a guild's (guessed) local time. Keyword arguments: guild_id -- Retrieves the configured timezone of the given guild, or guesses it based on the voice server region. utc_dt -- A timezone-naive datetime object that gets shifted by the offset. utc_seconds -- An integer value that gets shifted by the offset. as_string -- The UTC offset is returned as a UTC+X string instead of an integer value. If either utc_dt or utc_seconds are specified, the return type will be a tuple of two elements. The first element is the offset value, the second element is the shifted datetime object or seconds value. """ if guild_id is None: offset = 0 else: offset = data.get(bot, 'core', 'timezone', guild_id=guild_id) if offset is None: guild = bot.get_guild(guild_id) offset = VOICE_REGIONS.get(str(guild.region), 0) if 'us-' in str(guild.region): # Apply DST offset if utc_dt and utc_dt.dst(): in_dst = utc_dt.timetuple().tm_isdst > 0 else: in_dst = time.localtime(time.time()).tm_isdst > 0 if in_dst: offset += 1 if as_string: result = 'UTC{}'.format(('+' + str(offset)) if offset >= 0 else offset) else: result = offset if utc_dt: # Convert UTC datetime object to "local" time return (result, utc_dt + datetime.timedelta(hours=offset)) if utc_seconds is not None: # Convert UTC seconds to offset return (result, utc_seconds + (3600 * offset)) else: return result def get_schedule_entries( bot, plugin_name, search=None, destination=None, custom_match=None, custom_args=[]): """Gets the entries given the search or match arguments.""" if custom_match: where_arg = custom_match input_args = custom_args else: where_arg = 'plugin = %s' input_args = [plugin_name] if search is not None: where_arg += ' AND search = %s' input_args.append(search) if destination is not None: where_arg += ' AND destination = %s' input_args.append(destination) cursor = data.db_select( bot, from_arg='schedule', where_arg=where_arg, additional='ORDER BY time ASC', input_args=input_args, safe=False) return cursor.fetchall() def remove_schedule_entries( bot, plugin_name, search=None, destination=None, custom_match=None, custom_args=[]): """Removes the entries given the search or match arguments.""" if custom_match: where_arg = custom_match input_args = custom_args else: where_arg = 'plugin = %s' input_args = [plugin_name] if search is not None: where_arg += ' AND search = %s' input_args.append(search) if destination is not None: where_arg += ' AND destination = %s' input_args.append(destination) return data.db_delete(bot, 'schedule', where_arg=where_arg, input_args=input_args) def update_schedule_entries( bot, plugin_name, search=None, destination=None, function=None, payload=None, new_search=None, new_time=None, new_destination=None, info=None, custom_match=None, custom_args=[]): """Updates the schedule entry with the given fields. If any field is left as None, it will not be changed. If custom_match is given, it must be a proper WHERE SQL clause. Otherwise it will look for a direct match with search. Returns the number of entries modified. """ if custom_match: where_arg = custom_match input_args = custom_args else: where_arg = 'plugin = %s' input_args = [plugin_name] if search is not None: where_arg += ' AND search = %s' input_args.append(search) if destination is not None: where_arg += ' AND destination = %s' input_args.append(destination) set_args = [] set_input_args = [] if function: set_args.append('function=%s') set_input_args.append(function.__name__) if payload: set_args.append('payload=%s') set_input_args.append(Json(payload)) if new_time is not None: set_args.append('time=%s') set_input_args.append(int(new_time)) if new_search is not None: set_args.append('search=%s') set_input_args.append(new_search) if new_destination: set_args.append('destination=%s') set_input_args.append(new_destination) if info is not None: set_args.append('info=%s') set_input_args.append(info) set_arg = ', '.join(set_args) input_args = set_input_args + input_args data.db_update(bot, 'schedule', set_arg=set_arg, where_arg=where_arg, input_args=input_args) asyncio.ensure_future(_start_scheduler(bot)) def schedule( bot, plugin_name, scheduled_time, function, payload=None, search=None, destination=None, info=None): """Adds the entry to the schedule table and starts the timer. It should be noted that the function CANNOT be a lambda function. It must be a function residing in the top level of the plugin. Time should be a number in seconds from the epoch. The asynchronous function should take 6 arguments: bot -- An instance of the bot. scheduled_time -- Time at which the given function should be called. payload -- Same as the keyword argument. search -- Same as the keyword argument. destination -- Same as the keyword argument. late -- Whether or not the function was called late due to bot downtime. info -- Same as the keyword argument. id -- Unique ID assigned to the entry when it was created. Usually unused. Keyword arguments: payload -- Standard json-serializable dictionary search -- Used to assist in later deletion or modification destination -- Starts with either a 'c' or 'u', then the ID of the channel or user This is used to help determine what will need to be messaged. info -- Used as a description for the scheduled event if `!base notifications` is used. """ input_args = [ int(scheduled_time), plugin_name, function.__name__, Json(payload), search, destination, info ] data.db_insert(bot, 'schedule', input_args=input_args, safe=False) asyncio.ensure_future(_start_scheduler(bot)) def get_messageable(bot, destination): """Takes a destination in the schedule table format and returns a messageable.""" try: if destination[0] == 'u': # User get = bot.get_user elif destination[0] == 'c': # Channel get = bot.get_channel else: raise CBException("Must be either a user `u` or channel `c`.") return get(int(destination[1:])) except Exception as e: raise CBException("Invalid destination format.", e=e) async def _schedule_timer(bot, entry, delay): task_comparison = bot.schedule_timer await asyncio.sleep(0.5) logger.debug("Scheduler sleeping for %s seconds...", delay) await asyncio.sleep(delay) if task_comparison is not bot.schedule_timer: logger.debug("_schedule_timer was not cancelled! Cancelling this scheduler...") return if int(time.time() + 1) < entry.time: logger.warn("_schedule_timer was about to delete the entry early! Restarting loop...") asyncio.ensure_future(_start_scheduler(bot)) return try: deleted = data.db_delete( bot, 'schedule', where_arg='id=%s', input_args=[entry.id], safe=False) except Exception as e: logger.warn("_schedule_timer failed to delete a schedule entry. %s", e) if deleted: try: logger.debug("_schedule_timer done sleeping for %s seconds!", delay) function = getattr(bot.plugins[entry.plugin], entry.function) late = delay < -60 asyncio.ensure_future(function( bot, entry.time, entry.payload, entry.search, entry.destination, late, entry.info, entry.id)) except Exception as e: logger.warn("Failed to execute scheduled function: %s", e) asyncio.ensure_future(_start_scheduler(bot)) async def _start_scheduler(bot): """Starts the interal scheduler.""" await bot.wait_until_ready() if bot.schedule_timer: # Scheduler already running bot.schedule_timer.cancel() bot.schedule_timer = None cursor = data.db_select( bot, from_arg='schedule', additional='ORDER BY time ASC', limit=1, safe=False) result = cursor.fetchone() if result: delta = result.time - time.time() logger.debug("Starting scheduled event %s", result.id) bot.schedule_timer = asyncio.ensure_future(_schedule_timer(bot, result, delta)) else: logger.debug("No pending scheduled event available.") ```
{ "source": "jkchen2/JshBot-plugins", "score": 2 }
#### File: JshBot-plugins/data_converter/data_converter.py ```python import discord from jshbot import utilities, data, configurations, plugins, logger from jshbot.exceptions import BotException, ConfiguredBotException from jshbot.commands import ( Command, SubCommand, Shortcut, ArgTypes, Attachment, Arg, Opt, MessageTypes, Response) __version__ = '0.1.0' CBException = ConfiguredBotException('0.3 to 0.4 plugin') @plugins.command_spawner def get_commands(bot): return [Command('convertdata', hidden=True, elevated_level=3)] async def get_response(bot, context): for guild in bot.guilds: convert_core(bot, guild) if 'tags.py' in bot.plugins: convert_tags(bot, guild) return Response("Converted.") def convert_core(bot, guild): if data.get(bot, 'core', None, guild_id=guild.id): logger.warn("Guild %s (%s) already had core converted", guild.name, guild.id) return base_data = data.get(bot, 'base', None, guild_id=guild.id, default={}) if 'disabled' in base_data: # TODO: Iterate through toggled commands pass if 'blocked' in base_data: replacement = [] for entry in base_data['blocked']: replacement.append(int(entry)) base_data['blocked'] = replacement if 'muted_channels' in base_data: replacement = [] for entry in base_data['muted_channels']: replacement.append(int(entry)) base_data['muted_channels'] = replacement if 'moderators' in base_data: del base_data['moderators'] if base_data: for key, value in base_data.items(): data.add(bot, 'core', key, value, guild_id=guild.id) data.remove(bot, 'base', None, guild_id=guild.id) def convert_tags(bot, guild): if not data.get(bot, 'tags.py', 'tags', guild_id=guild.id): logger.warn("Guild %s (%s) already had tags converted", guild.name, guild.id) return tags = data.get(bot, 'tags.py', 'tags', guild_id=guild.id, default={}) add_tag = bot.plugins['tags.py']._add_tag #key,value,length,volume,name,flags,author,hits,created,last_used,last_used_by,complex,extra for key, tag in tags.items(): to_insert = [ key, # key tag['value'], # value tag['length'], # length tag['volume'], # volume tag['name'], # name tag['flags'], # flags int(tag['author']), # author tag['hits'], # hits int(tag['created']), # created int(tag['last_used']), # last_used None, # last_used_by {}, # complex {} # extra ] add_tag(bot, to_insert, guild.id) data.remove(bot, 'tags.py', 'tags', guild_id=guild.id, safe=True) ``` #### File: JshBot-plugins/no_awoo/no_awoo.py ```python import time import random import unicodedata import re import discord from jshbot import utilities, configurations, plugins, data, logger from jshbot.exceptions import ConfiguredBotException from jshbot.commands import ( Command, SubCommand, Shortcut, ArgTypes, Attachment, Arg, Opt, MessageTypes, Response) __version__ = '0.1.4' CBException = ConfiguredBotException('Awoo police') uses_configuration = True statements = None substitutions = None fine = None BASIC_MATCH = re.compile(r'\ba+w+oo+\b') ADVANCED_MATCH = re.compile(r'\ba+[a\s]*w+[w\s]*o\s*o+(\b|[\sise])') PLEA_MATCH = re.compile(r'legali[zs]e *a+w+oo+') @plugins.command_spawner def get_commands(bot): return [Command( 'awoo', subcommands=[ SubCommand(doc='Get fined.', allow_direct=False, function=awoo), SubCommand( Opt('stats'), Arg('user', argtype=ArgTypes.MERGED_OPTIONAL, convert=utilities.MemberConverter(server_only=False)), doc='See how much money you or the given user owes.', function=awoo_stats), SubCommand( Opt('leaderboard'), doc='See the list of worst offenders.', function=awoo_leaderboard), SubCommand( Opt('toggle'), Arg('channel', argtype=ArgTypes.SPLIT_OPTIONAL, convert=utilities.ChannelConverter(constraint=discord.TextChannel), doc='Toggles detection in this channel.'), doc='Toggles awoo detection.', function=awoo_toggle, elevated_level=1), SubCommand( Opt('whitelist'), Arg('user', argtype=ArgTypes.MERGED_OPTIONAL, convert=utilities.MemberConverter()), doc='Whitelist users from detection.', function=awoo_whitelist, elevated_level=1), SubCommand( Opt('reset'), Arg('user', argtype=ArgTypes.MERGED, convert=utilities.MemberConverter()), function=awoo_reset, elevated_level=3)], shortcuts=[ Shortcut( 'astats', 'stats {arguments}', Arg('arguments', argtype=ArgTypes.MERGED_OPTIONAL)), Shortcut('aleaderboard', 'leaderboard') ], description='Consult the criminal database.')] @plugins.db_template_spawner def get_templates(bot): return { 'awoo_template': ( "user_id bigint UNIQUE," "debt decimal," "violations integer," "sneaky integer") } @plugins.on_load def setup_awoo_table(bot): data.db_create_table(bot, 'awoo', template='awoo_template') user_index = 'IX_awoo_order' if not data.db_exists(bot, user_index): data.db_execute(bot, 'CREATE INDEX {} ON awoo (debt DESC)'.format(user_index)) async def awoo(bot, context): if not _awoo_check(bot, context.message): # User has been whitelisted. Force a violation await _violation_notification(bot, context.message, 1) async def awoo_stats(bot, context): """Pulls stats on the given user.""" user = context.arguments[0] or context.author cursor = data.db_select(bot, from_arg='awoo', where_arg='user_id=%s', input_args=[user.id]) entry = cursor.fetchone() if cursor else None if not entry: raise CBException( '{} has not made a single awoo violation. What a good cookie.'.format(user.mention)) embed = discord.Embed(title=':scales: Awoo violation statistics', description=user.mention) embed.add_field(name='Debt', value='${}'.format(entry.debt)) embed.add_field(name='Violations', value='{}'.format(entry.violations)) return Response(embed=embed) async def awoo_leaderboard(bot, context): """Displays the top 10 violators.""" cursor = data.db_select(bot, from_arg='awoo', additional='ORDER BY debt DESC', limit=10) entries = cursor.fetchall() if cursor else [] if not entries: raise CBException("Nobody has made any awoo violations yet!") stats = [[], []] # debt/violations, user for index, entry in enumerate(entries): stats[0].append('`{0}.` ${1.debt} | {1.violations}'.format(index + 1, entry)) user = await data.fetch_member(bot, entry.user_id, safe=True, attribute='mention') user = user or 'Unknown ({})'.format(entry.user_id) stats[1].append('`\u200b`{}'.format(user)) embed = discord.Embed(title=':scales: Awoo violation leaderboard') embed.add_field(name='Debt | Violations', value='\n'.join(stats[0])) embed.add_field(name='User', value='\n'.join(stats[1])) return Response(embed=embed) async def awoo_toggle(bot, context): """Toggles awoo detection for either the guild or the given channel.""" guild_awoo_data = data.get( bot, __name__, None, guild_id=context.guild.id, default={}, create=True) # Channel if context.arguments[0]: changes = [] for channel in context.arguments: if channel.id in guild_awoo_data.get('disabled_channels', []): action = 'is now' data.list_data_remove( bot, __name__, 'disabled_channels', value=channel.id, guild_id=context.guild.id) else: action = 'is no longer' data.list_data_append( bot, __name__, 'disabled_channels', channel.id, guild_id=context.guild.id) changes.append('{} {} being monitored.'.format(channel.mention, action)) return Response(content='\n'.join(changes)) # Guild else: guild_awoo_data['enabled'] = not guild_awoo_data.get('enabled', False) return Response(content='Detection is now {}abled'.format( 'en' if guild_awoo_data['enabled'] else 'dis')) async def awoo_whitelist(bot, context): """(De)whitelists the given user.""" user = context.arguments[0] whitelist = data.get(bot, __name__, 'whitelist', guild_id=context.guild.id, default=[]) # (De)whitelist user if user: if user.id in whitelist: action = 'removed from' data.list_data_remove(bot, __name__, 'whitelist', value=user.id, guild_id=context.guild.id) else: action = 'added to' data.list_data_append(bot, __name__, 'whitelist', user.id, guild_id=context.guild.id) return Response(content="User {} the whitelist.".format(action)) # Show whitelisted users else: if not whitelist: raise CBException("There are no whitelisted users.") users = [ ( (await data.fetch_member(bot, it, attribute='mention', safe=True)) or 'Unknown ({})'.format(it) ) for it in whitelist] return Response( embed=discord.Embed(title="Whitelisted users", description=', '.join(users))) async def awoo_reset(bot, context): """Removes the given user from the database.""" user = context.arguments[0] removed = data.db_delete(bot, 'awoo', where_arg='user_id=%s', input_args=[user.id]) if not removed: raise CBException("User not in violation database.") return Response(content="User removed from the database.") def _awoo_check(bot, message, show_filtered=''): """ Checks for awoo violations. Tier 1: Standard match Tier 2: Bypass attempt match Tier 3: Legalization plea """ # Initial content check content = show_filtered or (message.clean_content.lower() if message.content else '') author, channel = message.author, message.channel if not content or author.bot or isinstance(channel, discord.abc.PrivateChannel): return # Ignore muted guilds, channels, and users guild_data = data.get(bot, 'core', None, message.guild.id, default={}) if (guild_data.get('muted', False) or channel.id in guild_data.get('muted_channels', []) or author.id in guild_data.get('blocked', [])): return # Ignore disabled guilds, disabled channels and whitelisted users guild_awoo_data = data.get(bot, __name__, None, guild_id=message.guild.id, default={}) if (not guild_awoo_data.get('enabled', False) or channel.id in guild_awoo_data.get('disabled_channels', []) or author.id in guild_awoo_data.get('whitelist', [])): return # Tier 3: Legalization plea if PLEA_MATCH.search(content): return 3 # Tier 1: Basic check if BASIC_MATCH.search(content): return 1 # Tier 2: Advanced check filtered = content for key, values in substitutions: for value in values: filtered = filtered.replace(value, key) _check = lambda c: c.isalpha() or c.isspace() filtered = ''.join(c.lower() for c in unicodedata.normalize('NFKD', filtered) if _check(c)) if ADVANCED_MATCH.search(filtered): return 2 # Debug if show_filtered: return filtered async def _violation_notification(bot, message, awoo_tier, send_message=True): """ Logs the violation and (optionally) sends the user a notification. Standard notification: once per violation, up to 1 time None: 2 violations Silence notification: 1 violation Reset period for notifications is 1 minute. Stress indicates a number of users making a violation within a 60 second period. Tier 1: 3 members Tier 2: 5 members Tier 3: 8 members """ author, channel = message.author, message.channel current_time = time.time() violation_data = data.get( bot, __name__, 'user_violation', user_id=author.id, volatile=True) channel_violation_data = data.get( bot, __name__, 'channel_violation', channel_id=channel.id, volatile=True) if not violation_data or current_time - violation_data['time'] >= 60: violation_data = {'time': 0, 'violations': 0} data.add(bot, __name__, 'user_violation', violation_data, user_id=author.id, volatile=True) if not channel_violation_data or current_time - channel_violation_data['time'] >= 60: channel_violation_data = {'time': 0, 'violators': set(), 'sent_tier': 0} data.add( bot, __name__, 'channel_violation', channel_violation_data, channel_id=channel.id, volatile=True) violation_data['violations'] += 1 violation_data['time'] = current_time channel_violation_data['violators'].add(author.id) channel_violation_data['time'] = current_time # Update table set_arg = 'debt = debt+%s, violations = violations+1' if awoo_tier == 2: set_arg += ', sneaky = sneaky+1' cursor = data.db_select(bot, from_arg='awoo', where_arg='user_id=%s', input_args=[author.id]) entry = cursor.fetchone() if cursor else None if entry: data.db_update( bot, 'awoo', set_arg=set_arg, where_arg='user_id=%s', input_args=[fine, author.id]) else: data.db_insert(bot, 'awoo', input_args=[author.id, fine, 1, 1 if awoo_tier == 2 else 0]) # Add a snarky message depending on the tier if awoo_tier == 2: # Attempted bypass snark = random.choice(statements['bypass']) + '\n' elif awoo_tier == 3: # Legalization plea snark = random.choice(statements['legalize']) + '\n' else: snark = '' # Notify user logger.debug("Violations: %s", violation_data['violations']) text = '' if violation_data['violations'] <= 1: text = "{}{} has been fined ${} for an awoo violation.".format(snark, author.mention, fine) elif violation_data['violations'] == 4: text = "{} {}".format(author.mention, random.choice(statements['silence'])) elif awoo_tier == 3 and violation_data['violations'] <= 3: # Legalization plea, but silent text = snark if send_message and text: await channel.send(content=text) else: await message.add_reaction(random.choice(['🚩', '🛑', '❌', '⛔', '🚫'])) # Stress violators, sent_tier = channel_violation_data['violators'], channel_violation_data['sent_tier'] if (len(violators) == 3 and sent_tier == 0 or len(violators) == 5 and sent_tier == 1 or len(violators) == 8 and sent_tier == 2): if send_message: await message.channel.send(random.choice(statements['stress'][sent_tier])) channel_violation_data['sent_tier'] += 1 @plugins.listen_for('on_message') async def check_awoo_messages(bot, message): awoo_tier = _awoo_check(bot, message) if awoo_tier: # Awoo detected await _violation_notification(bot, message, awoo_tier) @plugins.listen_for('on_message_edit') async def check_awoo_edits(bot, message_before, message_after): if _awoo_check(bot, message_before): # Prevent a little edit abuse return awoo_tier = _awoo_check(bot, message_after) if awoo_tier: await _violation_notification(bot, message_after, awoo_tier, send_message=False) @plugins.listen_for('bot_on_ready_boot') async def setup_globals(bot): global statements, substitutions, fine statements = configurations.get(bot, __name__, extra='statements', extension='json') substitutions = configurations.get(bot, __name__, extra='substitutions', extension='json') fine = configurations.get(bot, __name__, 'fine') ``` #### File: JshBot-plugins/playlist/playlist.py ```python import random import asyncio import time import math import yaml import discord from urllib.parse import urlparse from collections import OrderedDict, deque from psycopg2.extras import Json from datetime import datetime from enum import Enum, IntEnum from youtube_dl import YoutubeDL from tinytag import TinyTag from jshbot import utilities, configurations, data, plugins, logger from jshbot.exceptions import ConfiguredBotException, BotException from jshbot.commands import ( Command, SubCommand, Shortcut, ArgTypes, Attachment, Arg, Opt, MessageTypes, Response) __version__ = '0.3.12' CBException = ConfiguredBotException('Music playlist') uses_configuration = True TITLE_LIMIT = 50 # Track title character limit in the track explorer URL_LIMIT = 140 # Track URL limit to be displayed in the track explorer MIRROR_TIMER = 60 # Chat mirror timer in seconds class States(IntEnum): PLAYING, PAUSED, STOPPED, LOADING = range(4) class Modes(IntEnum): PLAYLIST, QUEUE = range(2) class Control(IntEnum): ALL, PARTIAL, DJS = range(3) @plugins.command_spawner def get_commands(bot): max_threshold = configurations.get(bot, __name__, key='max_threshold') max_cutoff = configurations.get(bot, __name__, key='max_cutoff') max_user_track_limit = configurations.get(bot, __name__, key='max_user_track_limit') max_total_track_limit = configurations.get(bot, __name__, key='max_total_track_limit') async def check_whitelist(bot, context): config = configurations.get(bot, __name__) if config['use_whitelist'] and context.guild.id not in config['whitelist']: raise CBException("This server is not in the music player whitelist.") new_commands = [] new_commands.append(Command( 'playlist', subcommands=[ SubCommand( Opt('tracks'), doc='View the entire playlist', function=format_tracklist), SubCommand( Opt('import'), Opt('youtube', attached='url', optional=True, quotes_recommended=False), Attachment('tracklist file', optional=True), doc='Adds the tracks in the attached tracklist file, ' 'or from the YouTube playlist link. Only DJs can import ' 'tracks to prevent abuse.', function=import_tracklist), SubCommand( Opt('info'), Arg('track number', quotes_recommended=False, convert=int), doc='Retrieves the song information of the given track number.', function=get_info), SubCommand( Opt('add'), Arg('query', argtype=ArgTypes.MERGED), doc='Adds a song to the playlist. Can either be a URL to a supported site ' '(YouTube, Bandcamp, SoundCloud, etc.) or a YouTube search query', function=add_track), SubCommand( Opt('remove'), Arg('track number', quotes_recommended=False, convert=int), doc='Removes the given track number from the playlist.', function=remove_track), SubCommand( Opt('volume'), Arg('percent', quotes_recommended=False, convert=utilities.PercentageConverter(), check=lambda b, m, v, *a: 0.01 <= v <= 1.0, check_error='Must be between 1% and 100% inclusive.'), doc='Sets the player volume to the given percentage.', function=set_volume), SubCommand( Opt('configure'), Opt('threshold', attached='seconds', optional=True, group='options', quotes_recommended=False, convert=int, check=lambda b, m, v, *a: 10 <= v <= max_threshold, check_error='Must be between 10 and {} seconds.'.format(max_threshold)), Opt('cutoff', attached='seconds', optional=True, group='options', quotes_recommended=False, convert=int, check=lambda b, m, v, *a: 10 <= v <= max_cutoff, check_error='Must be between 10 and {} seconds.'.format(max_cutoff)), Opt('usertracks', attached='limit', optional=True, group='options', quotes_recommended=False, convert=int, check=lambda b, m, v, *a: 0 <= v <= max_user_track_limit, check_error='Must be between 0 and {}.'.format(max_user_track_limit), doc='Limits the number of tracks users can add to the player. 0 for no limit'), Opt('totaltracks', attached='limit', optional=True, group='options', quotes_recommended=False, convert=int, check=lambda b, m, v, *a: 0 <= v <= max_total_track_limit, check_error='Must be between 0 and {}.'.format(max_total_track_limit), doc='Limits the total number of tracks for the player. 0 for no limit'), Opt('djrole', attached='role', optional=True, group='options', convert=utilities.RoleConverter()), Opt('channel', attached='text channel', optional=True, group='options', quotes_recommended=False, convert=utilities.ChannelConverter(constraint=discord.TextChannel), doc='Sets the text channel the player will use for the interface.'), Opt('switchcontrol', optional=True, group='options', doc='Switches between DJ only, partial, and public control types.'), Opt('switchmode', optional=True, group='options', doc='Switches between repeating playlist and single play queue mode.'), Opt('mirrorchat', optional=True, group='options', doc='Mirrors the last few chat messages to a message above the player.'), Opt('autodisconnect', optional=True, group='options', doc='Automatically disconnects the bot if all users leave the channel.'), doc='Configures the music player properties.', function=configure_player), SubCommand(Opt('clear'), doc='Clears the playlist.', function=clear_playlist), SubCommand( Opt('page'), Arg('number', convert=int, quotes_recommended=False), doc='Displays the given page.', function=skip_to_page), SubCommand( Opt('swap'), Arg('track 1', convert=int, quotes_recommended=False), Arg('track 2', convert=int, quotes_recommended=False), doc='Swaps the position of the given tracks.', function=swap_tracks), SubCommand( Opt('control'), Opt('pause', optional=True, group='action'), Opt('resume', optional=True, group='action'), Opt('stop', optional=True, group='action'), Opt('next', optional=True, group='action'), Opt('skip', optional=True, group='action'), Opt('previous', optional=True, group='action'), doc='Basic controls for the player. Only one option can be provided at a time.', confidence_threshold=10, function=control_player), SubCommand( Opt('play'), Opt('track', attached='track number', optional=True, quotes_recommended=False, convert=int, doc='Plays the given track number.'), Arg('query', argtype=ArgTypes.MERGED_OPTIONAL, doc='Either a URL to a supported site (YouTube, Bandcamp, ' 'SoundCloud, etc.), or a YouTube search query.'), confidence_threshold=5, doc='Plays (or adds) the given track.', function=setup_player, id='play'), SubCommand(doc='Shows the music player interface.', function=setup_player, id='show'), ], shortcuts=[ Shortcut('p', '{arguments}', Arg('arguments', argtype=ArgTypes.MERGED_OPTIONAL)), Shortcut('add', 'add {query}', Arg('query', argtype=ArgTypes.MERGED)), Shortcut('remove', 'remove {number}', Arg('number', argtype=ArgTypes.MERGED)), Shortcut('volume', 'volume {percent}', Arg('percent', argtype=ArgTypes.MERGED)), Shortcut( 'play', 'play {arguments}', Arg('arguments', argtype=ArgTypes.MERGED_OPTIONAL)), Shortcut('pause', 'control pause'), Shortcut('resume', 'control resume'), Shortcut('skip', 'control skip'), Shortcut('next', 'control next'), Shortcut('previous', 'control previous')], allow_direct=False, category='music', pre_check=check_whitelist, description='Play music.')) return new_commands @plugins.db_template_spawner def get_templates(bot): return { 'playlist_template': ( "url text," "downloadurl text," "title text," "duration integer," "userid bigint," "timestamp bigint," "extra json," "id serial UNIQUE" ) } class MusicPlayer(): def __init__(self, bot, message, autoplay=False, track_index=None): # Discord information self.bot = bot self.channel = message.channel self.author = message.author self.voice_channel = message.author.voice.channel self.guild = message.guild self.voice_client = None self.source = None self.embed = None self.message = None # Set later self.satellite_message = None self.satellite_data = None self.mirror_message = None self.mirror_last_notification = None self.mirror_notifications = deque(maxlen=5) self.mirror_chats = deque(maxlen=12) # Update/internal tasks self.timer_task = None # Player timer self.command_task = None # Waits for reaction commands self.progress_task = None # Refreshes the progress bar self.state_check_task = None # Checks voice state changes self.chat_mirror_task = None # Mirrors chat every 10 seconds self.autoplay_task = None # Short-lived task for autostarting the player # Player information self.state = States.LOADING self.loading_interface = False self.first_time_startup = True self.now_playing = None self.notification = None self.page = 0 self.progress = 0 self.start_time = 0 self.last_interface_update = 0 self.listeners = 0 self.skip_voters = [] self.skip_threshold = 0.5 self.shuffle_stack = [] self.autopaused = False self.tracklist = None self.tracklist_url = '' self.tracklist_time = 0 self.tracklist_update_time = 0 self.update_tracklist() self.update_config() if self.mode == Modes.QUEUE: self.track_index = 0 # Track index in queue mode doesn't change else: if self.shuffle and self.tracklist: self.track_index = random.randint(0, len(self.tracklist) - 1) else: self.track_index = data.get( self.bot, __name__, 'last_index', guild_id=self.guild.id, default=0) if not 0 <= self.track_index < len(self.tracklist): self.track_index = 0 # Build interface asyncio.ensure_future(self._connect(autoplay=autoplay, track_index=track_index)) def update_config(self): guild_id = self.guild.id default_threshold = configurations.get(self.bot, __name__, key='max_threshold') default_cutoff = configurations.get(self.bot, __name__, key='max_cutoff') self.threshold = data.get( self.bot, __name__, 'threshold', guild_id=guild_id, default=default_threshold) self.cutoff = data.get( self.bot, __name__, 'cutoff', guild_id=guild_id, default=default_cutoff) self.control = data.get( self.bot, __name__, 'control', guild_id=guild_id, default=Control.PARTIAL) self.mode = data.get( self.bot, __name__, 'mode', guild_id=guild_id, default=Modes.QUEUE) self.shuffle = data.get( self.bot, __name__, 'shuffle', guild_id=guild_id, default=Modes.QUEUE) self.mirror_chat = data.get( self.bot, __name__, 'mirror_chat', guild_id=guild_id, default=False) self.auto_disconnect = data.get( self.bot, __name__, 'auto_disconnect', guild_id=guild_id, default=False) self.volume = data.get(self.bot, __name__, 'volume', guild_id=guild_id, default=1.0) if self.source: self.source.volume = self.volume # Actively update threshold/cutoff timer if self.timer_task and self.state == States.PLAYING: self.timer_task.cancel() self.timer_task = asyncio.ensure_future( self._track_timer(*self._get_delay(config_update=True))) async def _connect(self, autoplay=False, track_index=None): is_mod = data.is_mod(self.bot, member=self.author) try: self.voice_client = await utilities.join_and_ready( self.bot, self.voice_channel, is_mod=is_mod, reconnect=True) except Exception as e: self.state = States.STOPPED error = CBException("Failed to start the player interface.", e=e) await self.channel.send(embed=error.embed) else: await asyncio.sleep(1) # Safety sleep await self._build_interface() # Start playback if necessary if autoplay: self.autoplay_task = asyncio.ensure_future( self._autoplay(track_index=track_index)) async def _autoplay(self, track_index=None): safety_timeout = 0 while self.state == States.LOADING: if safety_timeout > 30: raise CBException("Autoplay failed.") await asyncio.sleep(0.5) safety_timeout += 0.5 asyncio.ensure_future(self.play(track_index=track_index, author=self.author)) def update_tracklist(self): self.tracklist_update_time = time.time() self.tracklist = _get_tracklist(self.bot, self.guild) async def update_state(self): if self.state == States.STOPPED: return if not (self.voice_client and self.voice_channel): logger.warn("update_state detected that the bot disconnected. Stopping now.") await self.stop( text="The player has been stopped due to an undetected disconnection.") elif ( (self.voice_client.is_playing() and self.voice_client.source != self.source) or self.guild.me not in self.voice_channel.members): logger.warn("update_state detected an unstopped instance. Stopping now.") await self.stop( text="The player has been stopped due to a different audio source being in use.") async def reset_player_messages(self): """Rebuilds the set of 3 messages if one is somehow deleted.""" await self.set_new_message(self.message) self.mirror_last_notification = "" self.notification = "A message was unexpectedly deleted." async def set_new_message(self, message, autoplay=False, track_index=None): """Bumps up the player interface to the bottom of the channel.""" # Prevent issues with trying to set a new message too quickly if self.loading_interface: logger.warn("Ignoring interface refresh reques as the interface is still loading") if autoplay: self.autoplay_task = asyncio.ensure_future( self._autoplay(track_index=track_index)) return self.loading_interface = True if self.command_task: self.command_task.cancel() if self.progress_task: self.progress_task.cancel() if self.state_check_task: self.state_check_task.cancel() if self.chat_mirror_task: self.chat_mirror_task.cancel() if self.message: for old_message in (self.message, self.satellite_message, self.mirror_message): try: await old_message.delete() except Exception as e: logger.warn("Couldn't delete original messages: %s", e) self.channel = message.channel self.author = message.author self.satellite_data = None # Force update asyncio.ensure_future(self._build_interface(resume=self.state == States.PLAYING)) if autoplay: self.autoplay_task = asyncio.ensure_future( self._autoplay(track_index=track_index)) async def _build_interface(self, resume=False): """Sets up player messages and the main interface structure.""" self.state = States.LOADING self.loading_interface = True self.satellite_message = await self.channel.send(embed=discord.Embed(title="\u200b")) self.mirror_message = await self.channel.send(embed=discord.Embed(title="\u200b")) embed = discord.Embed(colour=discord.Colour(0xffab00)) embed.add_field( # Title name=':arrows_counterclockwise: **[]**', value='**`[{}]` [ `0:00` / `0:00` ]**'.format('-' * 50), inline=False) embed.add_field(name='---', value='---', inline=False) # Info embed.add_field(name='---', value='---', inline=False) # Listeners embed.add_field(name='---', value='---\n' * 6, inline=False) # Tracklist embed.add_field(name='---', value='---') # Notification self.embed = embed self.message = await self.channel.send(embed=embed) self.command_task = asyncio.ensure_future(self._command_listener(resume=resume)) async def _progress_loop(self): """Refreshes the progress bar.""" await asyncio.sleep(5) while True: await self.update_state() if self.state == States.PLAYING: self.update_listeners(update_interface=False) if time.time() - self.last_interface_update >= 4: asyncio.ensure_future(self.update_interface()) asyncio.ensure_future(self.update_satellite()) await asyncio.sleep(5) elif self.state in (States.PAUSED, States.LOADING): # TODO: Implement idle timeout await asyncio.sleep(1) else: # Stopped logger.warn("Progress loop wasn't cancelled for some reason. Stopping loop...") return async def _chat_mirror_loop(self): """Mirrors chat messages after 10 seconds.""" async def _delete_and_update(message): await asyncio.sleep(MIRROR_TIMER) if self.state == States.STOPPED or not self.mirror_chat: return try: await message.delete() except Exception as e: pass else: await self.update_mirror(new_chat=message) while True: message = await self.bot.wait_for('message') if (not self.mirror_chat or not message or self.state == States.STOPPED or message.channel != self.channel): continue # Don't log player messages by the bot or non-standard messages (like pins) player_messages = (self.message.id, self.satellite_message.id, self.mirror_message.id) if message.type is discord.MessageType.default and message.id not in player_messages: asyncio.ensure_future(_delete_and_update(message)) async def _listener_loop(self): """Checks the state of members in the voice channel.""" class VoiceChange(Enum): NORMAL, LEFT, JOINED = range(3) def check(member, before, after): if member.guild != self.guild: return VoiceChange.NORMAL elif not member == self.bot.user and (member.bot or not (before or after)): return VoiceChange.NORMAL elif after and after.channel == self.voice_channel: if not before or before.channel != self.voice_channel: return VoiceChange.JOINED elif before and before.channel == self.voice_channel: if not after or after.channel != self.voice_channel: return VoiceChange.LEFT return VoiceChange.NORMAL # Preliminary check self.listeners = len([it for it in self.voice_channel.members if not it.bot]) # Wait on voice state updates to determine users entering/leaving while True: result = await self.bot.wait_for('voice_state_update') if not result: continue elif self.state == States.STOPPED: return member, before, after = result # Check for self changes if member == self.bot.user and member.guild == self.guild: if not after: # Disconnected # TODO: Consider adding failsafe stop logger.warn("Voice disconnected, detected from _listener_loop.") return if before != after: logger.debug("Bot was dragged to a new voice channel.") if after.channel == self.guild.afk_channel: # TODO: Act on AFK channel logger.warn("Moved to the AFK channel. Failsafe stopping.") self.voice_channel = after.channel self.voice_client = self.guild.voice_client # Update listener count self.listeners = len([it for it in self.voice_channel.members if not it.bot]) logger.debug("Voice state updated. Listeners: %s", self.listeners) self.update_listeners(update_interface=False) voice_change = check(*result) if voice_change is VoiceChange.LEFT: if member.id in self.skip_voters: self.skip_voters.remove(member.id) asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) elif voice_change is VoiceChange.JOINED: asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) if self.listeners == 0: if self.auto_disconnect: asyncio.ensure_future( self.stop( text=( "The player has been stopped due to all users leaving the channel." ) ) ) else: self.autopaused = True self.notification = "The player has been automatically paused" asyncio.ensure_future(self.pause()) def update_listeners(self, update_interface=True): """Updates the number of listeners and skips the song if enough people have voted.""" current_listeners = [it.id for it in self.voice_channel.members] for member_id in self.skip_voters[:]: if member_id not in current_listeners: self.skip_voters.remove(member_id) # Skip if enough votes needed_votes = math.ceil(self.listeners * self.skip_threshold) if needed_votes and len(self.skip_voters) >= needed_votes: index_string = '[[Track{}]{}]'.format( ' {}'.format(self.track_index + 1) if self.mode == Modes.PLAYLIST else '', _build_shortlink(self.bot, self.now_playing)) self.notification = "{} was voteskipped ({} vote{})".format( index_string, len(self.skip_voters), '' if len(self.skip_voters) == 1 else 's') del self.skip_voters[:] self._skip_track() elif update_interface: asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) async def update_interface(self, notification_text='', ignore_ratelimit=False): """Calls the other functions to update the main interface.""" await self.update_notification(text=notification_text) await self.update_title() await self.update_info() await self.update_footer() if not ignore_ratelimit and time.time() - self.last_interface_update < 1: return try: await self.message.edit(content=None, embed=self.embed) self.last_interface_update = time.time() except discord.NotFound: await self.reset_player_messages() async def update_satellite(self): """Updates the satellite with track data.""" if not self.now_playing and self.satellite_data: # Player stopped self.satellite_data = None await self.satellite_message.edit(embed=discord.Embed()) return elif not self.now_playing or self.now_playing.extra == self.satellite_data: return self.satellite_data = extra = self.now_playing.extra embed = discord.Embed() keys = ('uploader', 'views', 'likes', 'dislikes', 'uploaded') if any(key in extra for key in keys): info_list = ['{}: {}'.format(key.title(), extra[key]) for key in keys if key in extra] embed.add_field(name='Info', value='\n'.join(info_list)) if 'description' in extra: description = extra['description'] chunks = [description[it:it + 1000] for it in range(0, len(description), 1000)] if len(chunks) > 3: chunks = chunks[:3] chunks[-1] += '…' for index, chunk in enumerate(chunks): embed.add_field(name='Description' if index == 0 else '\u200b', value=chunk) if 'thumbnail' in extra: embed.set_image(url=extra['thumbnail']) if 'artist_thumbnail' in extra: embed.set_thumbnail(url=extra['artist_thumbnail']) try: await self.satellite_message.edit(embed=embed) except discord.NotFound: await self.reset_player_messages() async def update_mirror(self, new_notification=None, new_chat=None): """Updates the mirror message with notification or chat data.""" if new_notification: if new_notification != self.mirror_last_notification: self.mirror_last_notification = new_notification self.mirror_notifications.append(new_notification) if new_chat: self.mirror_chats.append(new_chat) embed = discord.Embed() while sum(len(it) for it in self.mirror_notifications) > 1000: self.mirror_notifications.popleft() notifications = '\u200b' + '\n'.join(self.mirror_notifications) embed.add_field(name='Recent notifications:', value=notifications, inline=False) if self.mirror_chat: for _ in range(3): embed.add_field(name='\u200b', value='\u200b', inline=False) formatted_chats = [] def _length_check(segment_index): """Checks the length of a set of 4 messages given the segment.""" segment = formatted_chats[4 * segment_index:4 * segment_index + 4] return sum(len(it) for it in segment) < 1000 # Format messages for message in self.mirror_chats: if message.attachments: attachment = ' [(Attachment)]({})'.format(message.attachments[0].url) else: attachment = '' if message.content: content = message.content elif message.embeds: title, description = message.embeds[0].title, message.embeds[0].description title_text = '{}: '.format(title) if title else '' description_text = description if description else '[No description]' content = '{}{}'.format(title_text, description_text) else: content = '[Empty message]' if len(content) > 500: content = content[:500] + '…' content = content.replace('```', '\`\`\`') formatted_chats.append('[{}{}]: {}'.format( message.author.mention, attachment, content)) # Remove messages if one is too long for it in range(2, -1, -1): while not _length_check(it): del formatted_chats[0] # Set embeds segments = [formatted_chats[it:it + 4] for it in range(0, 12, 4)] for index, segment in enumerate(segments): embed.set_field_at( index + 1, name='Recent chat messages:' if index == 0 else '\u200b', value='\u200b' + '\n'.join(segment), inline=False) try: await self.mirror_message.edit(embed=embed) except discord.NotFound: await self.reset_player_messages() async def update_footer(self): """Updates volume display, control type, and player mode in the footer.""" if self.volume < 0.3: volume_indicator = '\U0001F508' elif self.volume < 0.6: volume_indicator = '\U0001F509' else: volume_indicator = '\U0001F50A' footer_text = '{}: {}% | {} | {}{}{} | Click \u2753 for help'.format( volume_indicator, int(self.volume * 100), ('Public', 'Partially public', 'DJs only')[self.control], '\U0001F500 ' if self.mode == Modes.PLAYLIST and self.shuffle else '', ('Playlist', 'Queue')[self.mode], ' | Mirroring chat' if self.mirror_chat else '') self.embed.set_footer(text=footer_text) async def update_title(self): """Updates the now playing title and progress bar""" # Calculate progress and set embed color if self.state == States.PLAYING: progress = self.progress + (time.time() - self.start_time) status_icon = ':arrow_forward:' color = discord.Color(0x3b88c3) elif self.state == States.PAUSED: progress = self.progress status_icon = ':pause_button:' color = discord.Color(0xccd6dd) else: progress = 0 status_icon = ':arrows_counterclockwise:' color = discord.Color(0xffab00) self.embed.color = color # Set title and progress if self.now_playing: title = _truncate_title(self.now_playing.title, limit=60) duration = self.now_playing.duration else: title = '---' duration = 0 new_name = '{} **[{}]**'.format(status_icon, title) percentage = 0 if duration == 0 else progress / duration progress_bar = '\u2588' * int(50 * percentage) new_value = '**`[{:-<50}]` [ `{}` / `{}` ]**'.format( progress_bar, utilities.get_time_string(progress), utilities.get_time_string(duration)) self.embed.set_field_at(0, name=new_name, value=new_value, inline=False) async def update_info(self): """Updates the info, listeners, and track list explorer display.""" # Listeners new_name = '{} listener{}'.format(self.listeners, '' if self.listeners == 1 else 's') new_value = '[ {} / {} ] :eject: votes needed to skip'.format( len(self.skip_voters), math.ceil(self.listeners * self.skip_threshold)) self.embed.set_field_at(2, name=new_name, value=new_value, inline=False) # Tracklist slice total_tracks = len(self.tracklist) total_duration = sum(it.duration for it in self.tracklist) total_pages = max(int((total_tracks + 4) / 5), 1) self.page %= total_pages displayed_tracks = self.tracklist[self.page * 5:(self.page * 5) + 5] # Build individual track entries from slice info = ['---'] * 5 + ['Page [ {} / {} ]'.format(self.page + 1, total_pages)] for index, entry in enumerate(displayed_tracks): duration = utilities.get_time_string(entry.duration) entry_index = (self.page * 5) + index + 1 full_title = entry.title.replace('`', '').replace('*', '') title = _truncate_title(full_title) use_indicator = entry_index == self.track_index + 1 and self.mode == Modes.PLAYLIST info[index] = ('**[`{}{}`]{}**: ({}) *{}*'.format( '▶ ' if use_indicator else '', entry_index, _build_shortlink(self.bot, entry), duration, title)) new_value = '\n'.join(info) # Total tracks and runtime player_mode = 'queued' if self.mode == Modes.QUEUE else 'in the playlist' if total_tracks > 0: new_name = '{} track{} {} (runtime of {}):'.format( total_tracks, '' if total_tracks == 1 else 's', player_mode, utilities.get_time_string(total_duration, text=True)) else: new_name = 'No tracks {}'.format(player_mode) self.embed.set_field_at(3, name=new_name, value=new_value, inline=False) # Info if self.now_playing: new_name = 'Info:' time_ago = time.time() - self.now_playing.timestamp index_string = '[[Track{}]{}]'.format( ' {}'.format(self.track_index + 1) if self.mode == Modes.PLAYLIST else '', _build_shortlink(self.bot, self.now_playing)) new_value = 'Playing: {} Added by <@{}> {} ago'.format( index_string, self.now_playing.userid, utilities.get_time_string(time_ago, text=True)) else: new_name = '---' new_value = '---' # Determine next track if len(self.tracklist) == 0: next_index = -1 new_value += '\n---' elif self.now_playing is None: next_index = 0 if self.mode == Modes.QUEUE else self.track_index elif self.track_index + 1 >= len(self.tracklist): next_index = 0 else: if self.mode == Modes.PLAYLIST: next_index = self.track_index + 1 else: next_index = 0 # Show next track if available if next_index != -1: next_track = self.tracklist[next_index] if next_index >= 0: if self.mode == Modes.PLAYLIST and self.shuffle: new_value += '\nUp next: [Track ?]' else: new_value += '\nUp next: {}'.format( _build_track_details(self.bot, next_track, next_index)) self.embed.set_field_at(1, name=new_name, value=new_value, inline=False) async def update_notification(self, text=''): if text: self.notification = text elif not self.notification: self.notification = 'No notification.' if self.notification != self.mirror_last_notification: asyncio.ensure_future(self.update_mirror(new_notification=self.notification)) self.embed.set_field_at(4, name='Notification:', value=self.notification) def _skip_track(self): """Skips the current track (even if paused).""" delta = 1 if self.mode == Modes.PLAYLIST else 0 if self.mode == Modes.PLAYLIST and self.shuffle: if self.now_playing: self.shuffle_stack.append(self.now_playing.id) if len(self.tracklist) > 1: new_track_index = random.randint(0, len(self.tracklist) - 2) if new_track_index >= self.track_index: new_track_index += 1 else: new_track_index = 0 else: new_track_index = self.track_index + delta asyncio.ensure_future(self.play(track_index=new_track_index)) async def _track_timer(self, sleeptime, use_skip=False): """Sleeps until the end of the song or cutoff. Plays the next track afterwards.""" logger.debug("Sleeping for %s seconds. Time: %s", sleeptime, time.time()) track_check = self.now_playing await asyncio.sleep(sleeptime) logger.debug("Finished sleeping for %s seconds. Time: %s", sleeptime, time.time()) await self.update_state() if self.state == States.STOPPED or track_check != self.now_playing: logger.debug("The track timer resumed?") return while self.state == States.LOADING: logger.warn("Player was moved while the track was loading.") await asyncio.sleep(1) if self.mode == Modes.PLAYLIST and self.shuffle: logger.debug("Adding track %s to the shuffle stack", track_check.title) self.shuffle_stack.append(track_check.id) if len(self.tracklist) > 1: new_track_index = random.randint(0, len(self.tracklist) - 2) if new_track_index >= self.track_index: new_track_index += 1 else: new_track_index = 0 asyncio.ensure_future(self.play(track_index=new_track_index, skipped=use_skip)) else: logger.debug('_track_timer is moving on: %s', use_skip) asyncio.ensure_future(self.play(skipped=use_skip)) def _get_delay(self, config_update=False): # Gets track delay with cutoff if self.now_playing.duration > self.threshold: duration = self.cutoff use_skip = self.now_playing else: duration = self.now_playing.duration use_skip = False if config_update: current_progress = self.progress + time.time() - self.start_time else: current_progress = self.progress return (max(duration - current_progress, 0), use_skip) async def play(self, track_index=None, skipped=False, wrap_track_numbers=True, author=None): """Plays (the given track). Keyword arguments: track_index -- The specific track to play. In queue mode, -1 indicates to repeat the current track. skipped -- Whether or not the last track was skipped due to a length constraint. wrap_track_numbers -- Wraps out-of-bounds track indices to the nearest edge. author -- If provided, displays a notification on who started the player. """ # Ignore loading player if self.state in (States.LOADING, States.STOPPED): return # Resume player if paused if (self.state == States.PAUSED and self.now_playing and self.progress and track_index is None): self.state = States.PLAYING self.voice_client.resume() self.start_time = time.time() self.timer_task = asyncio.ensure_future(self._track_timer(*self._get_delay())) author_text = '{} resumed the player'.format(author.mention) if author else '' asyncio.ensure_future(self.update_interface(notification_text=author_text)) self.autopaused = False # Reset single-time resume state return # No more tracks left to play if len(self.tracklist) == 0 and not (track_index == -1 and self.state == States.PLAYING): self.notification = "There are no more tracks in the queue" if self.voice_client.is_playing(): self.voice_client.stop() self.source = None self.now_playing = None self.first_time_startup = True # Reset so non-DJs can start the player again self.progress = 0 self.state = States.PAUSED asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) asyncio.ensure_future(self.update_satellite()) return # No track index was given - act as a skip if track_index is None and self.now_playing: if self.mode == Modes.PLAYLIST: self.track_index = (self.track_index + 1) % len(self.tracklist) # A specific track index was given elif track_index is not None: if track_index != -1 and not 0 <= track_index < len(self.tracklist): if wrap_track_numbers: if track_index >= len(self.tracklist): track_index = 0 elif track_index < 0: track_index = -1 else: self.notification = ( 'Index must be between 1 and {} inclusive'.format(len(self.tracklist))) asyncio.ensure_future(self.update_interface()) return # Wrap a backwards skip to the end of the playlist in playlist mode if self.mode == Modes.PLAYLIST: if track_index == -1: track_index = len(self.tracklist) - 1 self.track_index = track_index # Track from playlist if self.mode == Modes.PLAYLIST: track = self.tracklist[self.track_index] # Track from queue else: # Repeat current track if track_index == -1: if self.now_playing: track = self.now_playing else: return # Skip to specific track by removing it from the database first else: if track_index is None: track_index = 0 track = self.tracklist[0 if track_index == -1 else track_index] data.db_delete( self.bot, 'playlist', table_suffix=self.guild.id, where_arg='id=%s', input_args=[track.id]) self.update_tracklist() self.autopaused = False # Reset single-time resume state # Setup the player logger.debug("Preparing to play the next track.") self.page = int(self.track_index / 5) del self.skip_voters[:] if self.state == States.PLAYING: if self.voice_client.is_playing(): self.voice_client.stop() if self.timer_task: self.timer_task.cancel() self.first_time_startup = not bool(self.now_playing) self.state = States.LOADING self.now_playing = track sound_file = data.get_from_cache(self.bot, None, url=track.url) # Audio not found in cache, download now instead if not sound_file: asyncio.ensure_future(self.update_interface()) logger.debug("Not found in cache. Downloading...") try: options = {'format': 'bestaudio/best', 'noplaylist': True} downloader = YoutubeDL(options) sound_file = await data.add_to_cache_ydl(self.bot, downloader, track.url) except Exception as e: # Attempt to redownload from base url logger.warn("Failed to download track %s\n%s", track.url, e) self.notification = "Failed to download {}. Failsafe skipping...".format( track.title) self.state = States.PAUSED self._skip_track() return # TODO: Add exception handling # TODO: Change ffmpeg_options for docker version #ffmpeg_options = '-protocol_whitelist "file,http,https,tcp,tls"' #audio_source = discord.FFmpegPCMAudio(sound_file, before_options=ffmpeg_options) audio_source = discord.FFmpegPCMAudio(sound_file) # Set volume and play audio audio_source = discord.PCMVolumeTransformer(audio_source, volume=self.volume) self.voice_client.play(audio_source) self.source = audio_source # Record progress time self.progress = 0 self.start_time = time.time() self.state = States.PLAYING self.timer_task = asyncio.ensure_future(self._track_timer(*self._get_delay())) if skipped: self.notification = ( 'The track *{}* was cut short because it exceeded ' 'the song length threshold of {} seconds.'.format( _build_hyperlink(self.bot, skipped), self.threshold)) elif self.first_time_startup and author: self.notification = '{} started the player'.format(author.mention) asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) data.add(self.bot, __name__, 'last_index', self.track_index, guild_id=self.guild.id) async def pause(self, author=None): if (self.state in (States.PAUSED, States.LOADING, States.STOPPED) or self.voice_client is None or not self.voice_client.is_playing()): return if self.timer_task: self.timer_task.cancel() self.voice_client.pause() self.state = States.PAUSED self.progress += time.time() - self.start_time author_text = '{} paused the player'.format(author.mention) if author else '' asyncio.ensure_future(self.update_interface( notification_text=author_text, ignore_ratelimit=True)) async def stop(self, text="The player has been stopped."): logger.debug("Stopping the player!") await utilities.stop_audio(self.bot, self.guild) self.state = States.STOPPED self.now_playing = None try: if self.voice_client: self.voice_client.stop() if self.timer_task: self.timer_task.cancel() if self.command_task: self.command_task.cancel() if self.progress_task: self.progress_task.cancel() if self.state_check_task: self.state_check_task.cancel() if self.chat_mirror_task: self.chat_mirror_task.cancel() except Exception as e: logger.warn("Failed to stop some task. %s", e) try: asyncio.ensure_future(self.satellite_message.delete()) asyncio.ensure_future(self.mirror_message.delete()) asyncio.ensure_future(self.message.clear_reactions()) asyncio.ensure_future(self.message.edit(content=text, embed=None)) except Exception as e: logger.warn("Failed to modify the original message %s", e) pass async def track_navigate(self, use_skip, member): """Navigates the track (next, previous, or repeat). Returns True if successful.""" is_dj = data.has_custom_role(self.bot, __name__, 'dj', member=member) # Build skip text use_repeat = time.time() - self.start_time >= 10 and self.now_playing self_skip = False if use_skip: skip_format = '{} skipped {}' if self.now_playing and self.now_playing.userid == member.id: self_skip = True elif not self.now_playing: skip_format = '{} played the queued track' else: if self.now_playing and (use_repeat or self.mode == Modes.QUEUE): skip_format = '{} repeated {}' elif self.now_playing: skip_format = '{} skipped back from {}' else: skip_format = '{} skipped back a track' # Skip track only if the user is a DJ or was the one that added it if not self_skip and not is_dj and not self.control == Control.ALL: return False if self.now_playing: track_details = _build_track_details( self.bot, self.now_playing, self.track_index) else: track_details = '' self.notification = skip_format.format(member.mention, track_details) # Determine track delta if self.mode == Modes.PLAYLIST: # Repeat track if more than 10 seconds have elapsed start_delta = 1 if self.now_playing else 0 delta = start_delta if use_skip else (0 if use_repeat else -1) else: delta = 0 if use_skip else -1 if self.mode == Modes.PLAYLIST and self.shuffle and delta != 0: last_track = None if not use_skip and self.shuffle_stack: # Check shuffle stack first last_track_id = self.shuffle_stack.pop() for new_track_index, track in enumerate(self.tracklist): if track.id == last_track_id: last_track = track break if last_track is None: if self.now_playing: self.shuffle_stack.append(self.now_playing.id) if len(self.tracklist) > 1: new_track_index = random.randint(0, len(self.tracklist) - 2) if new_track_index >= self.track_index: new_track_index += 1 else: new_track_index = 0 else: new_track_index = self.track_index + delta asyncio.ensure_future(self.play(track_index=new_track_index)) return True async def _command_listener(self, resume=False): valid_commands = ('⏮', '⏯', '⏭', '⏹', '🔀', '🎵', '⬅', '⏺', '➡', '⏏', '❓') async def _add_buttons(): """Adds the buttons in the background to show interface immediately.""" for reaction in valid_commands: try: await self.message.add_reaction(reaction) except Exception as e: logger.warn("Failed to add reaction: %s", e) # Check reactions are proper for reaction in self.message.reactions: users = await self.bot.get_reaction_users(reaction) for user in users: if user != self.bot.user: await self.message.remove_reaction(reaction.emoji, user) # Safety interface update asyncio.ensure_future(self.update_interface()) await asyncio.sleep(1) self.loading_interface = False self.progress_task = asyncio.ensure_future(self._progress_loop()) self.state_check_task = asyncio.ensure_future(self._listener_loop()) self.chat_mirror_task = asyncio.ensure_future(self._chat_mirror_loop()) self.page = int(self.track_index / 5) asyncio.ensure_future(self.update_interface()) asyncio.ensure_future(_add_buttons()) # Startup - finished loading basics if self.state == States.LOADING: self.state = States.PLAYING if resume else States.PAUSED try: # TODO: Remove try/except block while True: # Wait on reaction command kwargs = {'check': lambda r, u: r.message.id == self.message.id and not u.bot} logger.debug("Waiting on command...") result = await self.bot.wait_for('reaction_add', **kwargs) if result is None or self.state == States.STOPPED: return elif result[1] == self.bot.user: continue # Check validity of reaction command, member = result[0].emoji, result[1] logger.debug("Player interaction: %s: %s", member, command) is_dj = data.has_custom_role(self.bot, __name__, 'dj', member=member) if not await utilities.can_interact(self.bot, member, channel_id=self.channel.id): continue asyncio.ensure_future(self.message.remove_reaction(command, member)) if not is_dj and (member not in self.voice_channel.members or self.state == States.LOADING or command not in valid_commands): continue # Check player control type restricted_commands = [ set(), # Public (valid_commands[0],) + valid_commands[3:5], # Partially public valid_commands[:10] # DJ Only ][self.control] if command in restricted_commands and not is_dj: logger.debug("Ignoring command (insufficient permissions)") continue # Play/pause and skip if command in valid_commands[:3]: logger.debug("Play|pause and skip selected") # Play/pause if command == valid_commands[1]: permissions = self.control == Control.ALL or is_dj if self.state == States.PLAYING and permissions: asyncio.ensure_future(self.pause(author=member)) elif self.state == States.PAUSED: if permissions or self.autopaused or self.first_time_startup: asyncio.ensure_future(self.play(author=member)) # Skip elif self.state != States.LOADING: use_skip = command == valid_commands[2] asyncio.ensure_future(self.track_navigate(use_skip, member)) # Stop player elif command == valid_commands[3]: await self.stop( text="The player has been stopped by {}.".format(member.mention)) return # Shuffle mode elif command == valid_commands[4]: if self.mode == Modes.PLAYLIST: self.shuffle = not self.shuffle data.add( self.bot, __name__, 'shuffle', self.shuffle, guild_id=self.guild.id) asyncio.ensure_future(self.update_interface()) # Generate tracklist elif command == valid_commands[5]: logger.debug("Tracklist selected") if self.tracklist: if self.tracklist_time != self.tracklist_update_time: self.tracklist_time = self.tracklist_update_time tracklist_string = await _build_tracklist( self.bot, self.guild, self.tracklist) tracklist_file = utilities.get_text_as_file(tracklist_string) url = await utilities.upload_to_discord( self.bot, tracklist_file, filename='tracklist.txt') self.tracklist_url = url text = '[Click here]({}) to download the tracklist'.format( self.tracklist_url) asyncio.ensure_future(self.update_interface(notification_text=text)) # Track list navigation elif command in valid_commands[6:9]: logger.debug("Track list navigation selected") if command == valid_commands[7]: # Reset to the current page self.page = int(self.track_index / 5) else: self.page += -1 if command == valid_commands[6] else 1 asyncio.ensure_future(self.update_interface(ignore_ratelimit=True)) # Voteskip elif command == valid_commands[9]: logger.debug("Vote skip selected") if self.state != States.PLAYING or member.bot: continue elif member.id in self.skip_voters: self.skip_voters.remove(member.id) logger.debug("Vote by %s was removed.", member) elif member in self.voice_channel.members: self.skip_voters.append(member.id) logger.debug("Vote by %s was added.", member) else: continue self.update_listeners() # Help elif command == valid_commands[10]: logger.debug("Help selected") button_help = ( '⏮, ⏯, ⏭, ⏹: Back, Play|Pause, Next, Stop\n' '🔀: Shuffle (playlist mode only)\n' '🎵: Generate tracklist\n' '⬅, ➡: Track page navigation\n' '⏺: Reset track page to current playing track\n' '⏏: Voteskip (must be listening)\n' '❓: This help page' ) permissions_help = ( '**DJs only:** Only DJs can manage the player.\n' '**Partially public:** Everybody can ' 'add tracks, change track pages, and voteskip. ' 'You can skip your own tracks as well.\n' '**Public:** Everybody has full control ' '(except removing other people\'s ' 'tracks and importing tracklists).' ) status_help = ( ':arrow_forward: (Blue): Playing a track\n' ':pause_button: (White): Paused\n' ':arrows_counterclockwise: (Orange): Loading' ) command_help = ( 'To add tracks:\n`{0}`\u200b{1[3].help_string}\n' 'To remove tracks:\n`{0}`\u200b{1[4].help_string}\n' 'To add tracks and/or skip to a track:\n' '`{0}`\u200b{1[11].help_string}\n\n' 'Examples (using the shortcut):\n' '`{0}add Erasure Always`\n' '`{0}remove 1`\n' '`{0}play Toto Africa`\n' '`{0}play track 7`\n' 'For more, type: `help playlist`' ).format( utilities.get_invoker(self.bot, guild=self.guild), self.bot.commands['playlist'].subcommands) help_embed = discord.Embed(title=':question: Music player help') help_embed.add_field(name='Basic usage:', value=command_help) help_embed.add_field(name='Buttons:', value=button_help) help_embed.add_field(name='Control types:', value=permissions_help) help_embed.add_field(name='Status icons:', value=status_help) asyncio.ensure_future(member.send(embed=help_embed)) except Exception as e: if not isinstance(e, asyncio.CancelledError): self.bot.extra = e logger.warn("Something bad happened (%s). %s", type(e), e) # Link builders def _build_hyperlink(bot, track): full_title = track.title.replace('`', '').replace('*', '') title = _truncate_title(full_title) return '[{0}]({1} "{2} (added by <@{3}>)")'.format(title, track.url, full_title, track.userid) def _build_shortlink(bot, track): """Like _build_hyperlink, but for the URL portion only.""" display_url = 'http://dis.gd' if len(track.url) > URL_LIMIT else track.url display_title = _truncate_title(track.title.replace('`', '')) return '({} "{} (added by <@{}>)")'.format(display_url, display_title, track.userid) def _build_track_details(bot, track, index): """Creates a string that shows a one liner of the track""" full_title = track.title.replace('`', '').replace('*', '') title = _truncate_title(full_title) return '[[Track {}]({} "{} (added by <@{}>)")] ({}) *{}*'.format( index + 1, track.url, full_title, track.userid, utilities.get_time_string(track.duration), title) def _truncate_title(text, limit=TITLE_LIMIT): """Truncates the text to the given limit if it is too long.""" return (text[:limit] + '…') if len(text) > limit else text def _get_tracklist(bot, guild): cursor = data.db_select( bot, from_arg='playlist', additional='ORDER BY id ASC', table_suffix=guild.id) return cursor.fetchall() if cursor else () def _get_music_player(bot, guild): return data.get(bot, __name__, 'music_player', guild_id=guild.id, volatile=True) async def _check_active_player(bot, guild, autodelete_time=5): """Tries to get the active music player and whether or not the interface is active.""" import_lock = data.get(bot, __name__, 'import_lock', guild_id=guild.id, volatile=True) if import_lock: raise CBException("A track import is in progress. Please wait for it to finish.") music_player = _get_music_player(bot, guild) if music_player: await music_player.update_state() use_player_interface = music_player.state is not States.STOPPED else: use_player_interface = False autodelete = autodelete_time if use_player_interface else 0 return music_player, use_player_interface, autodelete def _check_total_tracks_limits(bot, author): """Ensures that limits of the track list are respected. Returns tracklist.""" # Limits user_track_limit = data.get( bot, __name__, key='user_track_limit', guild_id=author.guild.id, default=configurations.get(bot, __name__, key='max_user_track_limit')) total_track_limit = data.get( bot, __name__, key='total_track_limit', guild_id=author.guild.id, default=configurations.get(bot, __name__, key='max_total_track_limit')) # Checks tracklist = _get_tracklist(bot, author.guild) if data.has_custom_role(bot, __name__, 'dj', member=author): # DJs ignore limits return tracklist if total_track_limit and len(tracklist) >= total_track_limit: raise CBException("The track limit of {} has been reached.".format(total_track_limit)) user_tracks = [it for it in tracklist if it.userid == author.id] if user_track_limit and len(user_tracks) >= user_track_limit: raise CBException( "You cannot add any more songs right now (limit {}).".format(user_track_limit)) return tracklist async def _add_track_with_url(bot, guild, check_url, user_id=0, timestamp=0): """Checks the given url and adds it to the database.""" options = {'format': 'bestaudio/best', 'noplaylist': True, 'default-search': 'ytsearch'} downloader = YoutubeDL(options) # Check for a direct URL (SO: 7160737) try: test = urlparse(check_url) is_url = test.scheme and test.netloc and test.path except: is_url = False if not is_url and not check_url.lower().startswith('ytsearch:'): check_url = 'ytsearch:' + check_url.strip() # Get information about the track try: info = await utilities.future(downloader.extract_info, check_url, download=False) if not is_url: # Select first result on search info = info['entries'][0] check_url = info['webpage_url'] except BotException as e: raise e # Pass up except Exception as e: raise CBException("Failed to fetch information from the URL.", e=e) return await _add_track_to_db( bot, guild, check_url, info, user_id=user_id, timestamp=timestamp) async def _add_track_to_db(bot, guild, check_url, info, user_id=0, timestamp=0): """Adds the given track info to the database.""" hard_threshold = configurations.get(bot, __name__, key='hard_threshold') bot.extra = info try: chosen_format = info['formats'][0] download_url = chosen_format['url'] title = info.get('title', 'Unknown') thumbnail = info.get('thumbnail', None) likes = info.get('like_count', None) dislikes = info.get('dislike_count', None) views = info.get('view_count', None) description = info.get('description', None) upload_date = info.get('upload_date', None) uploader = info.get('uploader', None) if 'duration' in info: duration = int(info['duration']) else: # Manual download and check extension = chosen_format['ext'] sound_file, filename = await utilities.download_url( bot, download_url, extension=extension, include_name=True) duration = int(TinyTag.get(sound_file).duration) utilities.delete_temporary_file(bot, filename) except BotException as e: raise e # Pass up except Exception as e: raise CBException("Failed to get duration from the URL.", e=e) if duration > hard_threshold: raise CBException( "Song is longer than the hard threshold of {} seconds.".format(hard_threshold)) # Prepare data for insertion extra_data = {} if thumbnail is not None: extra_data['thumbnail'] = thumbnail if likes is not None: extra_data['likes'] = likes if dislikes is not None: extra_data['dislikes'] = dislikes if views is not None: extra_data['views'] = views if description is not None: extra_data['description'] = description if upload_date is not None: extra_data['uploaded'] = '{}/{}/{}'.format( upload_date[4:6], upload_date[6:8], upload_date[:4]) if uploader is not None: extra_data['uploader'] = uploader entry_data = [ check_url, download_url, title, duration, user_id, timestamp if timestamp else time.time(), Json(extra_data) ] return data.db_insert( bot, 'playlist', table_suffix=guild.id, input_args=entry_data, create='playlist_template') async def add_track(bot, context): """Adds a track to the playlist (via command).""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) # Check channel restriction channel_id = data.get(bot, __name__, 'channel', guild_id=context.guild.id) if not channel_id: raise CBException("No channel configured for the music player.") channel_restriction = data.get_channel(bot, channel_id) is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) if context.channel.id != channel_id and not is_dj: raise CBException("You can only add tracks in {}".format(channel_restriction.mention)) # Check control restriction control = data.get( bot, __name__, 'control', guild_id=context.guild.id, default=Control.PARTIAL) if not is_dj and control == Control.DJS: raise CBException("You must be a DJ to add tracks.", autodelete=autodelete) default_threshold = configurations.get(bot, __name__, key='max_threshold') default_cutoff = configurations.get(bot, __name__, key='max_cutoff') guild_id = context.guild.id threshold = data.get(bot, __name__, 'threshold', guild_id=guild_id, default=default_threshold) cutoff = data.get(bot, __name__, 'cutoff', guild_id=guild_id, default=default_cutoff) # Add track to the playlist check_url = context.arguments[0] try: tracklist = _check_total_tracks_limits(bot, context.author) cursor = await _add_track_with_url( bot, context.guild, check_url, user_id=context.author.id) track = cursor.fetchone() except BotException as e: e.autodelete = autodelete raise e response = '{} added {}'.format( context.author.mention, _build_track_details(bot, track, len(tracklist))) if track.duration > threshold: response += ( "\nTrack is longer than the threshold length ({} seconds), so " "only the first {} seconds will be played".format(threshold, cutoff)) # Check the music player again, as it may have stopped while we were download the url music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) if use_player_interface: music_player.update_tracklist() await music_player.update_interface(notification_text=response) return Response( embed=discord.Embed(description=response), message_type=MessageTypes.REPLACE if use_player_interface else MessageTypes.NORMAL, delete_after=autodelete if use_player_interface else None, extra=autodelete if use_player_interface else None) async def remove_track(bot, context): music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) # Check track index tracklist = _get_tracklist(bot, context.guild) if not tracklist: raise CBException("The playlist queue is empty.", autodelete=autodelete) index = context.arguments[0] - 1 if not 0 <= index < len(tracklist): raise CBException("Invalid index. Must be between 1 and {} inclusive.".format( len(tracklist)), autodelete=autodelete) # Check permissions is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) control = data.get( bot, __name__, 'control', guild_id=context.guild.id, default=Control.PARTIAL) track = tracklist[index] if control == Control.DJS and not is_dj: raise CBException("You must be a DJ to remove entries.", autodelete=autodelete) elif track.userid != context.author.id and not is_dj: raise CBException( "You must be the user who added the entry, or a DJ.", autodelete=autodelete) data.db_delete( bot, 'playlist', table_suffix=context.guild.id, where_arg='id=%s', input_args=[track.id]) response = '{} removed {}'.format( context.author.mention, _build_track_details(bot, track, index)) # Change current index if necessary if use_player_interface: music_player.update_tracklist() if music_player.mode == Modes.PLAYLIST: use_skip = index == music_player.track_index if index <= music_player.track_index: # Shift track index down music_player.track_index -= 1 if use_skip: # Skip track due to removing the current track music_player._skip_track() await music_player.update_interface(notification_text=response) return Response( embed=discord.Embed(description=response), message_type=MessageTypes.REPLACE if use_player_interface else MessageTypes.NORMAL, delete_after=autodelete if use_player_interface else None, extra=autodelete if use_player_interface else None) async def _build_tracklist(bot, guild, tracklist): header = ( '# Tracklist generated: {3[1]} {3[0]}\r\n' '# Guild: {0}\r\n' '# Total tracks: {1}\r\n' '# Runtime: {2}\r\n' ).format( guild.name, len(tracklist), utilities.get_time_string(sum(it.duration for it in tracklist), text=True, full=True), utilities.get_timezone_offset( bot, guild_id=guild.id, utc_dt=datetime.utcnow(), as_string=True)) tracklist_text_list = [header] template = ( '{}: |\r\n' ' {}\r\n' # Title ' {}\r\n' # URL ' Added by {} at {} {}\r\n' # Info ' Duration: {} ID|Timestamp: {}|{}\r\n' # Duration, internal info ) all_guild_members = await guild.fetch_members(limit=None).flatten() for index, track in enumerate(tracklist): track_author = ( (await data.fetch_member(bot, track.userid, safe=True, search=all_guild_members)) or 'Unknown') offset, upload_time = utilities.get_timezone_offset( bot, guild_id=guild.id, utc_seconds=track.timestamp, as_string=True) upload_time_text = time.strftime('%H:%M %m/%d/%Y', time.gmtime(upload_time)) tracklist_text_list.append(template.format( index + 1, track.title, track.url, track_author, upload_time_text, offset, utilities.get_time_string(track.duration), track.userid, track.timestamp)) return '\r\n'.join(tracklist_text_list) async def format_tracklist(bot, context): music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) # Format tracklist into user-friendly yaml tracklist = _get_tracklist(bot, context.guild) if not tracklist: raise CBException("The playlist queue is empty.", autodelete=autodelete) tracklist_string = await _build_tracklist(bot, context.guild, tracklist) tracklist_file = utilities.get_text_as_file(tracklist_string) if use_player_interface: url = await utilities.upload_to_discord(bot, tracklist_file, filename='tracklist.txt') await music_player.update_interface( notification_text='[Click here]({}) to download the current tracklist'.format(url)) return Response(content='Tracklist file updated.', delete_after=5) else: return Response( content='Tracks:', file=discord.File(tracklist_file, filename='tracklist.txt')) async def import_tracklist(bot, context): music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) use_youtube_playlist = 'youtube' in context.options if not (bool(context.message.attachments) ^ use_youtube_playlist): raise CBException( "Must include an attachment or a YouTube playlist URL.", autodelete=autodelete) if not data.has_custom_role(bot, __name__, 'dj', member=context.author): raise CBException("You must be a DJ to import tracks.") if use_player_interface: raise CBException( 'The player must be stopped before importing tracks.', autodelete=autodelete) data.add(bot, __name__, 'import_lock', True, guild_id=context.guild.id, volatile=True) try: # Get tracklist data from playlist URL if use_youtube_playlist: downloader = YoutubeDL() info = await utilities.future( downloader.extract_info, context.options['youtube'], download=False) # tracklist_data = list(it['webpage_url'] for it in info['entries']) tracklist_data = info['entries'] # Get tracklist data from file else: use_youtube_playlist = False file_url = context.message.attachments[0].url tracklist_file = await utilities.download_url(bot, file_url, use_fp=True) tracklist_data = yaml.safe_load(tracklist_file) if isinstance(tracklist_data, str): # Read lines instead tracklist_file.seek(0) tracklist_blob = tracklist_file.read().decode('utf8').replace('\r\n', '\n').strip() tracklist_data = tracklist_blob.split('\n') logger.debug("Tracklist data: %s", tracklist_data) if not tracklist_data or len(tracklist_data) == 0: raise CBException("The tracklist file is empty.") elif len(tracklist_data) > 100: raise CBException("Cannot import more than 100 tracks at a time.") except Exception as e: data.remove(bot, __name__, 'import_lock', guild_id=context.guild.id, volatile=True) if isinstance(e, BotException): raise e else: raise CBException("Failed to load the tracklist file.", e=e) return Response( content="Importing tracks...", message_type=MessageTypes.ACTIVE, extra=(tracklist_data, use_youtube_playlist), extra_function=_import_tracklist_status) async def _import_tracklist_status(bot, context, response): last_update_time = time.time() total_imported = 0 tracklist_data, use_youtube_playlist = response.extra async def _update_notification(last_update_time): if time.time() - last_update_time > 5: await response.message.edit(content="Importing tracks... [ {} / {} ]".format( total_imported, len(tracklist_data))) return time.time() return last_update_time try: if use_youtube_playlist: for info in tracklist_data: await _add_track_to_db( bot, context.guild, info['webpage_url'], info, context.author.id, int(time.time())) total_imported += 1 last_update_time = await _update_notification(last_update_time) else: if isinstance(tracklist_data, list): tracklist_data = OrderedDict((it[0], it[1]) for it in enumerate(tracklist_data)) for _, track_blob in sorted(tracklist_data.items()): cleaned = track_blob.strip() if not cleaned: continue elif '\n' in cleaned: title, url, _, info, _ = track_blob.split('\n') user_id, _, timestamp = info.split()[3].partition('|') else: title = url = track_blob user_id, timestamp = context.author.id, time.time() _check_total_tracks_limits(bot, context.author) await _add_track_with_url(bot, context.guild, url, int(user_id), int(timestamp)) total_imported += 1 last_update_time = await _update_notification(last_update_time) except Exception as e: data.remove(bot, __name__, 'import_lock', guild_id=context.guild.id, volatile=True) try: raise CBException("Failed to import track {}".format(title), e=e) except NameError: raise CBException("Failed to import tracks.", e=e) data.remove(bot, __name__, 'import_lock', guild_id=context.guild.id, volatile=True) await response.message.edit(content="Imported {} track{}.".format( total_imported, '' if total_imported == 1 else 's')) async def get_info(bot, context): """Gets the information for the given track in the playlist.""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) tracklist = _get_tracklist(bot, context.guild) if not tracklist: raise CBException("The playlist queue is empty.", autodelete=autodelete) index = context.arguments[0] - 1 if not 0 <= index < len(tracklist): raise CBException("Invalid index. Must be between 1 and {} inclusive.".format( len(tracklist)), autodelete=autodelete) track_info = tracklist[index] title = _truncate_title(track_info.title) time_ago = time.time() - track_info.timestamp added_by_text = "Added by <@{}> {} ago.".format( track_info.userid, utilities.get_time_string(time_ago, text=True)) duration_text = "Duration: ({})".format(utilities.get_time_string(track_info.duration)) response = "Info for track {}:".format(index + 1) if use_player_interface: # Add notification track_link = _build_hyperlink(bot, track_info) info_text = "{}\n{}\n{}\n{}".format(response, track_link, duration_text, added_by_text) music_player.page = int(index / 5) await music_player.update_interface(notification_text=info_text, ignore_ratelimit=True) return Response(message_type=MessageTypes.REPLACE, extra=autodelete) else: response += "\n{}\n{}\n{}\n{}".format(title, track_info.url, duration_text, added_by_text) return Response(content=response) async def set_volume(bot, context): music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) # Check control restriction is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) control = data.get( bot, __name__, 'control', guild_id=context.guild.id, default=Control.PARTIAL) if not is_dj and control != Control.ALL: raise CBException("You must be a DJ to change the volume.", autodelete=autodelete) volume = context.arguments[0] data.add(bot, __name__, 'volume', volume, guild_id=context.guild.id) if use_player_interface: music_player.update_config() await music_player.update_interface( notification_text='<@{}> set the volume to {:.2f}%'.format( context.author.id, volume * 100)) return Response( content="Volume set to {:.2f}%.".format(volume * 100), message_type=MessageTypes.REPLACE if use_player_interface else MessageTypes.NORMAL, delete_after=autodelete if use_player_interface else None, extra=autodelete if use_player_interface else None) async def configure_player(bot, context): music_player, use_player_interface, autodelete = await _check_active_player( bot, context.guild, autodelete_time=10) options = context.options if use_player_interface: if 'switchmode' in options: raise CBException( "Cannot switch player modes while it is active.", autodelete=autodelete) elif 'channel' in options: raise CBException( "Cannot set text channel while the player is active.", autodelete=autodelete) guild_id = context.guild.id changes = [] is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) is_mod = context.elevation > 0 dj_prereq = "You must be a DJ in order to " mod_prereq = "You must be a bot moderator in order to " if 'threshold' in options: if not is_dj: raise CBException(dj_prereq + "change the length threshold.") threshold = options['threshold'] data.add(bot, __name__, 'threshold', threshold, guild_id=guild_id) changes.append('Duration threshold set to {} seconds.'.format(threshold)) if 'cutoff' in options: if not is_dj: raise CBException(dj_prereq + "change the length cutoff.") cutoff = options['cutoff'] data.add(bot, __name__, 'cutoff', cutoff, guild_id=guild_id) changes.append('Cutoff set to {} seconds.'.format(cutoff)) if 'usertracks' in options: if not is_dj: raise CBException(dj_prereq + "change the user track limit.") limit = options['usertracks'] data.add(bot, __name__, 'user_track_limit', limit, guild_id=guild_id) changes.append('User track limit set to {} track(s).'.format(limit)) if 'totaltracks' in options: if not is_dj: raise CBException(dj_prereq + "change the total track limit.") limit = options['totaltracks'] data.add(bot, __name__, 'total_track_limit', limit, guild_id=guild_id) changes.append('Total track limit set to {} track(s).'.format(limit)) if 'djrole' in options: if not is_mod: raise CBException(mod_prereq + "change the DJ role.") dj_role = options['djrole'] data.add_custom_role(bot, __name__, 'dj', dj_role) changes.append('Set the DJ role to {}.'.format(dj_role.mention)) if 'channel' in options: if not is_mod: raise CBException(mod_prereq + "change the player channel.") text_channel = options['channel'] data.add(bot, __name__, 'channel', text_channel.id, guild_id=guild_id) changes.append('Set the text channel restriction to {}.'.format(text_channel.mention)) if 'switchcontrol' in options: if not is_mod: raise CBException(mod_prereq + "cycle control modes.") control = data.get(bot, __name__, 'control', guild_id=guild_id, default=Control.PARTIAL) control = 0 if control == len(Control) - 1 else control + 1 data.add(bot, __name__, 'control', control, guild_id=guild_id) changes.append('Cycled the playlist permissions control mode to: {}'.format( ('Public', 'Partially public', 'DJs only')[control])) if 'switchmode' in options: if not is_mod: raise CBException(mod_prereq + "cycle player modes.") mode = data.get(bot, __name__, 'mode', guild_id=guild_id, default=Modes.QUEUE) mode = 0 if mode == len(Modes) - 1 else mode + 1 data.add(bot, __name__, 'mode', mode, guild_id=guild_id) changes.append('Cycled the playlist mode to: {}'.format(('Playlist', 'Queue')[mode])) if 'mirrorchat' in options: if not is_mod: raise CBException(mod_prereq + "toggle chat mirroring.") mirror = not data.get(bot, __name__, 'mirror_chat', guild_id=guild_id, default=False) data.add(bot, __name__, 'mirror_chat', mirror, guild_id=guild_id) changes.append('{}abled chat mirroring.'.format('En' if mirror else 'Dis')) if 'autodisconnect' in options: if not is_mod: raise CBException(mod_prereq + "toggle automatic disconnecting.") auto_disconnect = not data.get( bot, __name__, 'auto_disconnect', guild_id=guild_id, default=False) data.add(bot, __name__, 'auto_disconnect', auto_disconnect, guild_id=guild_id) changes.append('{}abled auto disconnecting.'.format('En' if auto_disconnect else 'Dis')) # Defaults default_threshold = configurations.get(bot, __name__, key='max_threshold') default_cutoff = configurations.get(bot, __name__, key='max_cutoff') default_total_track_limit = configurations.get(bot, __name__, key='max_total_track_limit') default_user_track_limit = configurations.get(bot, __name__, key='max_user_track_limit') # Format and display all settings threshold = data.get(bot, __name__, 'threshold', guild_id=guild_id, default=default_threshold) cutoff = data.get(bot, __name__, 'cutoff', guild_id=guild_id, default=default_cutoff) total_track_limit = data.get( bot, __name__, key='total_track_limit', guild_id=guild_id, default=default_total_track_limit) user_track_limit = data.get( bot, __name__, key='user_track_limit', guild_id=guild_id, default=default_user_track_limit) dj_role = data.get_custom_role(bot, __name__, 'dj', context.guild) control = data.get(bot, __name__, 'control', guild_id=guild_id, default=Control.PARTIAL) mode = data.get(bot, __name__, 'mode', guild_id=guild_id, default=Modes.QUEUE) chat_mirroring = data.get(bot, __name__, 'mirror_chat', guild_id=guild_id, default=False) auto_disconnect = data.get(bot, __name__, 'auto_disconnect', guild_id=guild_id, default=False) text_channel_id = data.get(bot, __name__, 'channel', guild_id=guild_id) text_channel = context.guild.get_channel(text_channel_id) embed = discord.Embed( title='Player configuration', description=( 'Text channel: {}\nTotal track limit: {}\n' 'User track limit: {}\nThreshold: {}\nCutoff: {}\n' 'DJ Role: {}\nControl: {}\nPlayer mode: {}\n' 'Chat mirroring: {}\nAutomatic disconnecting: {}'.format( text_channel.mention if text_channel else 'None', '{} tracks'.format(total_track_limit), '{} tracks'.format(user_track_limit), '{} seconds'.format(threshold), '{} seconds'.format(cutoff), dj_role.mention if dj_role else 'None', ('Public', 'Partially public', 'DJs only')[control], ('Repeating playlist', 'Single play queue')[mode], chat_mirroring, auto_disconnect) ) ) if changes: embed.add_field(name="Changes", value='\n'.join(changes)) if use_player_interface: music_player.update_config() await music_player.update_interface('{}:\n{}'.format( context.author.mention, '\n'.join(changes))) return Response( embed=embed, message_type=MessageTypes.REPLACE if use_player_interface else MessageTypes.NORMAL, delete_after=autodelete if use_player_interface else None, extra=autodelete if use_player_interface else None) async def clear_playlist(bot, context): music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) if use_player_interface: raise CBException( "Cannot clear playlist tracks when the player is active.", autodelete=autodelete) return Response( content="Say 'yes' to confirm clearning the playlist.", message_type=MessageTypes.WAIT, extra_function=_confirm_clear_playlist, extra={ 'event': 'message', 'kwargs': { 'timeout': 30, # Default 300 'check': lambda m: m.author == context.author, } } ) async def _confirm_clear_playlist(bot, context, response, result): """Menu for confirming a playlist clear.""" if result is None: # Timed out edit = 'Playlist clear timed out.' elif result.content.lower() == 'yes': # music_player = _get_music_player(bot, context.guild) _, use_player_interface, autodelete = await _check_active_player(bot, context.guild) if use_player_interface: raise CBException( "Cannot clear playlist tracks when the player is active.", autodelete=autodelete) data.db_drop_table(bot, 'playlist', table_suffix=context.guild.id, safe=True) edit = 'Playlist has been cleared.' else: edit = 'Playlist clear cancelled.' await response.message.edit(content=edit) async def skip_to_page(bot, context): """Skips to a certain page of the tracklist in the player interface.""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) if not use_player_interface: raise CBException("The player interface must be active.") # Check page number tracklist = music_player.tracklist page_number = context.arguments[0] - 1 total_pages = max(int((len(tracklist) + 4) / 5), 1) if not 0 <= page_number <= total_pages - 1: raise CBException( "Invalid page number. Must be between 1 and {} inclusive.".format(total_pages), autodelete=autodelete) music_player.page = page_number await music_player.update_interface(ignore_ratelimit=True) return Response(message_type=MessageTypes.REPLACE, extra=1) async def swap_tracks(bot, context): """Swaps the given two tracks in the playlist.""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) # Check control restriction control = data.get( bot, __name__, 'control', guild_id=context.guild.id, default=Control.PARTIAL) is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) if not is_dj and control != Control.ALL: raise CBException("You must be a DJ to swap tracks.", autodelete=autodelete) # Check index validity tracklist = _get_tracklist(bot, context.guild) swap = [] for index in context.arguments: if not 1 <= index <= len(tracklist): raise CBException( "Index must be between 1 and {}".format(len(tracklist)), autodelete=autodelete) swap.append(tracklist[index - 1]) # Swap tracks set_arg = ( '(url, downloadurl, title, duration, userid, timestamp, extra) = ' '(%s, %s, %s, %s, %s, %s, %s)') for index, track in enumerate(swap): data.db_update( bot, 'playlist', table_suffix=context.guild.id, set_arg=set_arg, where_arg='id=%s', input_args=[ track.url, track.downloadurl, track.title, track.duration, track.userid, track.timestamp, Json(track.extra), swap[index - 1].id]) # Add notification and skip track if necessary response = '{} swapped tracks {} and {}'.format(context.author.mention, *context.arguments) if use_player_interface: music_player.update_tracklist() if music_player.track_index + 1 in context.arguments: asyncio.ensure_future(music_player.play(track_index=music_player.track_index)) await music_player.update_interface(notification_text=response, ignore_ratelimit=True) return Response(message_type=MessageTypes.REPLACE, extra=autodelete) else: return Response(content=response) async def _check_player_restrictions( bot, context, music_player, use_player_interface, autodelete): """Ensures that the user in the context can interact with the player.""" # Channel restriction checks channel_restriction_id = data.get(bot, __name__, 'channel', guild_id=context.guild.id) if channel_restriction_id not in [it.id for it in context.guild.channels]: raise CBException( "The music player does not have an assigned text channel. Please see " "`{}help playlist configure` for more information.".format( utilities.get_invoker(bot, guild=context.guild))) if channel_restriction_id != context.channel.id: channel_restriction = data.get_channel(bot, channel_restriction_id, guild=context.guild) raise CBException( "The music player must be used in the assigned text channel, {}.".format( channel_restriction.mention)) # Voice channel checks if not context.author.voice: raise CBException( "You must be in a voice channel to use the player.", autodelete=autodelete) voice_channel = context.author.voice.channel if use_player_interface and music_player.voice_channel != voice_channel: raise CBException( "You must be in the same voice channel as the bot.", autodelete=autodelete) elif use_player_interface and music_player.state == States.LOADING: raise CBException("Playlist is loading, please wait.", autodelete=autodelete) async def control_player(bot, context): """Basic control of the player (like pausing/stopping/skipping etc.""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) if len(context.options) != 2: raise CBException("Only one action must be provided.", autodelete=autodelete) if not use_player_interface: raise CBException("The music player is not active.") await _check_player_restrictions(bot, context, music_player, use_player_interface, autodelete) is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) permissions = music_player.control == Control.ALL or is_dj try: action = "[Unknown]" if 'next' in context.options or 'skip' in context.options: action = 'skip the current track' assert permissions or music_player.control == Control.PARTIAL result = await music_player.track_navigate(True, context.author) if not result: # Add to vote skip list instead if (music_player.state == States.PLAYING and context.author.id not in music_player.skip_voters): action += '. Voting to skip instead' music_player.skip_voters.append(context.author.id) music_player.update_listeners() assert False elif 'resume' in context.options: action = 'resume the player' assert permissions or music_player.autopaused or music_player.first_time_startup asyncio.ensure_future(music_player.play(author=context.author)) else: if 'pause' in context.options: action = 'pause the player' assert permissions asyncio.ensure_future(music_player.pause(author=context.author)) elif 'stop' in context.options: action = 'stop the player' assert permissions asyncio.ensure_future(music_player.stop( text="The player has been stopped by {}.".format(context.author.mention))) elif 'previous' in context.options: action = 'skip to the previous track' assert permissions asyncio.ensure_future(music_player.track_navigate(False, context.author)) except AssertionError: raise CBException( "You have insufficient permissions to {}.".format(action), autodelete=autodelete) # Delete message return Response(message_type=MessageTypes.REPLACE, extra=1) async def setup_player(bot, context): """Starts the player interface and starts playing a track if selected.""" music_player, use_player_interface, autodelete = await _check_active_player(bot, context.guild) await _check_player_restrictions(bot, context, music_player, use_player_interface, autodelete) use_play_command = context.subcommand.id == 'play' if use_play_command and (context.arguments[0] and 'track' in context.options): raise CBException( "Cannot supply the track and query paramters at the same time.", autodelete=autodelete) # Check given track index if given # Get mode from persistent data because the player may not exist yet track_index = None track = None adding_track = False if use_play_command: if 'track' in context.options: # Play track index track_index = context.options['track'] tracklist = _get_tracklist(bot, context.guild) if not 0 < track_index <= len(tracklist): raise CBException( "Track index must be between 1 and {} inclusive.".format(len(tracklist)), autodelete=autodelete) track_index -= 1 track = tracklist[track_index] elif context.arguments[0]: # Query given (add track) adding_track = True add_track_response = await add_track(bot, context) await bot.handle_response(context.message, add_track_response, context=context) await _check_player_restrictions( bot, context, music_player, use_player_interface, autodelete ) # Check autoplay permissions use_autoplay = False if use_play_command: is_dj = data.has_custom_role(bot, __name__, 'dj', member=context.author) control_type = data.get( bot, __name__, 'control', guild_id=context.guild.id, default=Control.PARTIAL) use_autoplay = ( control_type == Control.ALL or is_dj or (control_type == Control.PARTIAL and (not music_player or music_player.first_time_startup))) # Setup new player if music_player is None or music_player.state == States.STOPPED: logger.debug("Creating new music player.") music_player = MusicPlayer( bot, context.message, autoplay=use_autoplay, track_index=track_index) data.add( bot, __name__, 'music_player', music_player, guild_id=context.guild.id, volatile=True) # Update player message or change tracks else: if use_autoplay and track_index is not None: music_player.notification = '{} skipped to {}'.format( context.author.mention, _build_track_details(bot, track, track_index)) play_track = bool( use_autoplay and (music_player.state == States.PAUSED or track_index is not None)) # Check if messages can just be replaced message_history = await context.channel.history(limit=3).flatten() message_ids = list(it.id for it in message_history) if (len(message_history) > 2 and music_player.message.id in message_ids and not context.subcommand.id == 'show'): if play_track: asyncio.ensure_future(music_player.play( track_index=track_index, author=context.author)) else: await music_player.set_new_message( context.message, autoplay=use_autoplay if play_track else None, track_index=track_index) # Delete any immediate play/skip commands, but keep track add messages. if not adding_track: return Response(message_type=MessageTypes.REPLACE) ``` #### File: JshBot-plugins/ude/ude.py ```python import json import datetime import discord from jshbot import utilities, configurations, plugins, logger from jshbot.exceptions import ConfiguredBotException from jshbot.commands import Command, Response __version__ = '0.1.0' CBException = ConfiguredBotException('Emoji updater') uses_configuration = True @plugins.command_spawner def get_commands(bot): return [Command('ude', elevated_level=3, hidden=True)] async def get_response(bot, context): if 'discrank.py' not in bot.plugins: raise CBException("Discrank plugin not detected.") discrank_plugin = bot.plugins['discrank.py'] champions, spells = discrank_plugin.CHAMPIONS, discrank_plugin.SPELLS chunks = [bot.get_guild(it).emojis for it in configurations.get(bot, __name__, 'guilds')] emojis = [it for chunk in chunks for it in chunk] final = { 'champions': {'id': {}, 'name': {}}, 'spells': {'id': {}, 'name': {}}, 'bdt': {'blue': {}, 'red': {}} } for emoji in emojis: if emoji.name.startswith('Champion'): clean_name = emoji.name.split('_')[1].lower() if clean_name not in champions: raise CBException("Champion {} not found.".format(clean_name)) item_id = champions[clean_name]['id'] final['champions']['id'][str(item_id)] = str(emoji) final['champions']['name'][clean_name] = str(emoji) elif emoji.name.startswith('Spell'): clean_name = emoji.name.split('_')[1].lower() if clean_name not in spells: raise CBException("Spell {} not found.".format(clean_name)) item_id = spells[clean_name]['id'] final['spells']['id'][str(item_id)] = str(emoji) final['spells']['name'][clean_name] = str(emoji) elif emoji.name.startswith(('Red', 'Blue')): color, name = emoji.name.split('_') final['bdt'][color.lower()][name.lower()] = str(emoji) else: raise CBException("Invalid emoji detected: {}".format(emoji.name)) final_json = json.dumps(final, sort_keys=True, indent=4) json_file = utilities.get_text_as_file(final_json) file_url = await utilities.upload_to_discord( bot, json_file, filename='lol_emojis.json', close=True) embed = discord.Embed( description='[Click here to download]({})'.format(file_url), colour=discord.Colour(0x4CAF50), timestamp=datetime.datetime.utcnow()) embed.set_footer(text="Updated") try: update_channel = bot.get_channel(configurations.get(bot, __name__, 'update_channel')) message_id = configurations.get(bot, __name__, 'update_message') update_message = await update_channel.fetch_message(message_id) await update_message.edit(content='', embed=embed) except Exception as e: raise CBException("Failed to edit the update message.", e=e) return Response(content="Updated!") ```
{ "source": "jkchen2/riotapichallenge2k16", "score": 3 }
#### File: riotapichallenge2k16/jshbot/commands.py ```python import discord import asyncio import logging import sys from jshbot.exceptions import BotException, ErrorTypes EXCEPTION = 'Commands' def convert_plans(plans): ''' Converts user-friendly(ish) plans into the system-friendly version. Convert: "?opt1 opt2: ::+" To: [[(True, "opt1", False), (False, "opt2", True)], '::+'] Convert: "*" To: [[], '*'] ''' new_plans = [] required = True argument = False for plan in plans: # Convert each individual plan split = plan.split() new_plan = [[], ''] for block in split: # Parse each option if block[0] in (':', '^', '&', '+', '#'): # Last part new_plan[1] = block break required = block[0] == '?' argument = block[-1] == ':' block = block.strip('?').strip(':') new_plan[0].append((required, block, argument)) new_plans.append(new_plan) return new_plans def add_commands(bot, new_commands, plugin): ''' Checks that all keys in the new dictionary are unique from those in the old dictionary. If all keys are good, add them to the bot commands dictionary. ''' # No shortcuts if not new_commands: return # Check that there are no command name collisions for key in new_commands: is_shortcut = type(new_commands[key][0]) is str if key in bot.commands: raise BotException(ErrorTypes.FATAL, EXCEPTION, "Attempting to add a command that already exists", key) if is_shortcut: bot.commands[key] = new_commands[key] else: new_plans = convert_plans(new_commands[key][0]) # Convert and add bot.commands[key] = ((new_plans, new_commands[key][1]), plugin) def add_manual(bot, manual): ''' Adds the manual entries to the bot manual dictionary. ''' # Do practically the same thing for manual entries if not manual: # No manual entry :c return for key in manual: if key in bot.manual: raise BotException(ErrorTypes.FATAL, EXCEPTION, "Attempting to add a manual entry that already exists", key) else: bot.manual[key] = manual[key] def get_command_pair(bot, base): ''' Returns a touple of the command pair with the given base and whether or not it is a shortcut. ''' try: is_shortcut = type(bot.commands[base][0]) is str if is_shortcut: command_pair = bot.commands[base] else: command_pair = bot.commands[base][0] return (command_pair, is_shortcut) except KeyError: return (None, None) async def execute(bot, message, parsed_command): ''' Gets the proper response for the parsed command by first getting the plugin, then calling the get_response function associated with that plugin. ''' # Get plugin base = parsed_command[0] plugin_name = bot.commands[base][1] plugin = bot.plugins[plugin_name][0] direct = message.channel.is_private # Execute plugin's get_response return await (plugin.get_response(bot, message, parsed_command, direct)) ``` #### File: riotapichallenge2k16/jshbot/core.py ```python import asyncio import discord import logging import os.path import time import sys import os # Debug import traceback from jshbot import configurations, plugins, commands, servers, parser, data from jshbot.exceptions import ErrorTypes, BotException EXCEPTION = 'Core' class Bot(discord.Client): def __init__(self, debug): self.version = '0.3.0-alpha' self.date = 'May 9th, 2016' self.time = int(time.time()) self.readable_time = time.strftime('%c') self.debug = debug if self.debug: logging.debug("=== Starting up JshBot {} ===".format(self.version)) logging.debug("=== Time: {} ===".format(self.readable_time)) else: print("=== Starting up JshBot {} ===".format(self.version)) print("=== Time: {} ===".format(self.readable_time)) super().__init__() self.path = os.path.split(os.path.realpath(__file__))[0][:-7] logging.debug("Setting directory to {}".format(self.path)); logging.debug("Loading plugins and commands...") self.commands = {} # Set by get_plugins self.manual = {} # Set by get_plugins self.data = {} # Set by individual plugins self.plugins = plugins.get_plugins(self) self.directories = data.get_directories(self) logging.debug("Loading configurations...") self.configurations = configurations.get_configurations(self) logging.debug("Loading server data...") self.servers_data = servers.get_servers_data(self) # Extras self.edit_dictionary = {} def interrupt_say(self, channel_id, message, channel=None): ''' Allows plugins to send messages without having to return directly from get_response. This should mostly be avoided, and just used for errors or other immediately relevant notifications. ''' if not channel: try: channel = discord.utils.get( self.get_all_channels(), id=channel_id) except: raise BotException(ErrorTypes.RECOVERABLE, EXCEPTION, "Server {} could not be found.".format(server_id)) asyncio.ensure_future(self.send_message(channel, message)) def get_token(self): return self.configurations['core']['token'] def usage_reminder(self, base): ''' Uses the base module to get the usage reminder for a command. ''' base_module = self.plugins['base'][0] return base_module.get_usage_reminder(self, base) def can_respond(self, message): ''' Determines whether or not the bot can respond to the given message. Checks that the message has text, matches an invoker, and that the server/channel/user is not muted or blocked. Admins/moderators override. If the message is a direct message, respond if there is a valid invoker. ''' # Ignore empty messages and messages by bots if (not message.content or message.author.bot or message.author.id == self.user.id): return False # Bot responds to mentions only if self.configurations['core']['mention_mode']: if (not message.content.startswith(self.user.mention) or len(message.content.split(' ', 1)) == 1): return False # Any command invoker will do else: if (message.content[0] not in self.configurations['core']['command_invokers'] and not message.content.startswith(self.user.mention)): return False # Respond to direct messages if message.channel.is_private: return True author_id = message.author.id server_data = self.servers_data[message.server.id] try: # Owners/moderators override everything channel_id = message.channel.id if ((author_id in self.configurations['core']['owners']) or (author_id in server_data['moderators'])): return True # Server/channel muted, or user is blocked if ((server_data['muted']) or (channel_id in server_data['muted_channels']) or (author_id in server_data['blocked'])): return False except KeyError as e: # Bot may not have updated fast enough logging.warn("Failed to find server in can_respond(): " + str(e)) servers.check_all(self) time.sleep(5) # remove later return self.can_respond(message) return True # Clear to respond async def on_message(self, message): plugins.broadcast_event(self, 2, message) # Ensure bot can respond properly if not self.can_respond(message): return # Ensure command is valid if message.content.startswith(self.user.mention): split_content = message.content.split(' ', 2)[1:] else: split_content = message.content[1:].split(' ', 1) if len(split_content) == 1: # No spaces split_content.append('') base, parameters = split_content command_pair, shortcut = commands.get_command_pair(self, base) if not command_pair: # Suitable command not found logging.debug("Suitable command not found: " + base) return # Bot is clear to get response. Send typing to signify if self.configurations['core']['send_typing']: await self.send_typing(message.channel) # Parse command and reply try: print(message.author.name + ': ' + message.content) parsed_command = parser.parse( self, base, parameters, command_pair, shortcut) print('\t' + str(parsed_command)) response = await (commands.execute(self, message, parsed_command)) except BotException as e: # Respond with error message response = (str(e), False, 0, None) except Exception as e: # General error logging.error(e) traceback.print_exc() error = 'Uh oh. The bot encountered an exception: {0}: {1}'.format( type(e).__name__, e) response = (error, False, 0, None) message_reference = await self.send_message( message.channel, response[0], tts=response[1]) # A response looks like this: # (text, tts, message_type, extra) # message_type can be: # 0 - normal # 1 - permanent # 2 - terminal (deletes itself after 'extra' seconds) # 3 - active (pass the reference back to the plugin to edit) # If message_type is >= 1, do not add to the edit dictionary # TODO: Add normal message response to the edit dictionary if response[2] == 2: # Terminal await asyncio.sleep(response[3]) await self.delete_message(message_reference) async def on_ready(self): plugins.broadcast_event(self, 0) # Make sure server data is ready servers.check_all(self) if self.debug: logging.debug("=== {} online ===".format(self.user.name)) else: print("=== {} online ===".format(self.user.name)) async def on_error(self, event, *args, **kwargs): plugins.broadcast_event(self, 1, event, *args, **kwargs) async def on_socket_raw_receive(self, msg): plugins.broadcast_event(self, 3, msg) async def on_socket_raw_send(self, payload): plugins.broadcast_event(self, 4, payload) async def on_message_delete(self, message): plugins.broadcast_event(self, 5, message) async def on_message_edit(self, before, after): plugins.broadcast_event(self, 6, before, after) async def on_channel_delete(self, channel): plugins.broadcast_event(self, 7, channel) async def on_channel_create(self, channel): plugins.broadcast_event(self, 8, channel) async def on_channel_update(self, before, after): plugins.broadcast_event(self, 9, before, after) async def on_member_join(self, member): plugins.broadcast_event(self, 10, member) async def on_member_update(self, before, after): plugins.broadcast_event(self, 11, before, after) async def on_server_join(self, server): plugins.broadcast_event(self, 12, server) async def on_server_remove(self, server): plugins.broadcast_event(self, 13, server) async def on_server_update(self, before, after): plugins.broadcast_event(self, 14, before, after) async def on_server_role_create(self, server, role): plugins.broadcast_event(self, 15, server, role) async def on_server_role_delete(self, server, role): plugins.broadcast_event(self, 16, server, role) async def on_server_role_update(self, before, after): plugins.broadcast_event(self, 17, before, after) async def on_server_available(self, server): plugins.broadcast_event(self, 18, server) async def on_server_unavailable(self, server): plugins.broadcast_event(self, 19, server) async def on_voice_state_update(self, before, after): plugins.broadcast_event(self, 20, before, after) async def on_member_ban(self, member): plugins.broadcast_event(self, 21, member) async def on_member_unban(self, server, user): plugins.broadcast_event(self, 22, server, user) async def on_typing(self, channel, user, when): plugins.broadcast_event(self, 23, channel, user, when) def save_data(self): ''' Saves all data. For now, this will just be the servers file. ''' logging.debug("Saving data...") servers.save_data(self) logging.debug("Saving data complete.") def restart(self): logging.debug("Attempting to restart the bot...") self.save_data() asyncio.ensure_future(self.logout()) os.system('python3.5 ' + self.path + '/start.py') def shutdown(self): logging.debug("Writing data on shutdown...") self.save_data() logging.debug("Closing down!") asyncio.ensure_future(self.logout()) sys.exit() def initialize(debug=False): if debug: logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) bot = Bot(debug) bot.run(bot.get_token()) logging.error("Bot disconnected. Shutting down...") bot.shutdown() ``` #### File: riotapichallenge2k16/jshbot/plugins.py ```python import asyncio import discord import logging import os.path import importlib.util import sys # Debug import traceback from jshbot import core, configurations, commands from jshbot.exceptions import ErrorTypes, BotException EXCEPTION = 'Plugins' def get_plugins(bot): ''' Gets a list of all of the plugins and stores them as a key/value pair of the plugin name and the module itself (renamed to plugin for the user). ''' directory = bot.path + '/plugins' try: plugins_list = os.listdir(directory) except: raise BotException(ErrorTypes.STARTUP, EXCEPTION, "Plugins directory not found") valid_plugins = {} # Add base plugin from jshbot import base command_pairs, shortcuts, manual = base.get_commands() commands.add_commands(bot, command_pairs, 'base') commands.add_commands(bot, shortcuts, 'base') commands.add_manual(bot, manual) valid_plugins['base'] = [base] # Get plugin commands for plugin in plugins_list: if plugin[0] in ('.', '_') or plugin == 'base': # Dang swap files continue try: spec = importlib.util.spec_from_file_location( plugin, directory + '/{}'.format(plugin)) module = importlib.util.module_from_spec(spec) spec.loader.exec_module(module) command_pairs, shortcuts, manual = module.get_commands() commands.add_commands(bot, command_pairs, plugin) commands.add_commands(bot, shortcuts, plugin) commands.add_manual(bot, manual) except Exception as e: traceback.print_exc() raise BotException(ErrorTypes.STARTUP, EXCEPTION, "Failed to import external plugin", plugin, e=e) else: logging.debug("Adding plugin {}".format(plugin)) valid_plugins[plugin] = [module] # Get functions to broadcast events = ['on_ready', 'on_error', 'on_message', 'on_socket_raw_receive', 'on_socket_raw_send', 'on_message_delete', 'on_message_edit', 'on_channel_delete', 'on_channel_create', 'on_channel_update', 'on_member_join', 'on_member_update', 'on_server_join', 'on_server_remove', 'on_server_update', 'on_server_role_create', 'on_server_role_delete', 'on_server_role_update', 'on_server_available', 'on_server_unavailable', 'on_voice_state_update', 'on_member_ban', 'on_member_unban', 'on_typing'] for plugin_name, plugin in valid_plugins.items(): functions = [] for event in events: functions.append(getattr(plugin[0], event, None)) valid_plugins[plugin_name].append(functions) if len(valid_plugins): logging.debug("Loaded {} plugin(s)".format(len(valid_plugins))) return valid_plugins def broadcast_event(bot, event_index, *args): ''' Loops through all of the plugins and looks to see if the event index specified is associated it. If it is, call that function with args. ''' for plugin_name, plugin_pair in bot.plugins.items(): function = plugin_pair[1][event_index] if function: asyncio.ensure_future(function(bot, *args)) ```
{ "source": "JKChenFZ/hclib", "score": 2 }
#### File: nexus/library/bundle.py ```python from machines import Workstation,Job from simulation import Simulation,NullSimulationInput,NullSimulationAnalyzer class SimulationBundleInput(NullSimulationInput): None #end class SimulationBundleInput class SimulationBundleAnalyzer(NullSimulationAnalyzer): None #end class SimulationBundleAnalyzer class SimulationBundle(Simulation): input_type = SimulationBundleInput analyzer_type = SimulationBundleAnalyzer generic_identifier = 'bundle' image_directory = 'bundle' preserve = Simulation.preserve & set(['sims']) def __init__(self,*sims,**kwargs): if len(sims)==1 and isinstance(sims[0],list): sims = sims[0] #end if if len(sims)==0: self.error('attempted to bundle 0 simulations\n at least one simulation must be provided to bundle') #end if for sim in sims: if not isinstance(sim,Simulation): self.error('attempted to bundle non-simulation object: '+sim.__class__.__name__) #end if #end for relative_paths = False if 'relative' in kwargs: relative_paths = kwargs['relative'] del kwargs['relative'] #end if self.sims = sims self.bundle_jobs(relative=relative_paths) self.system = None if not 'path' in kwargs: kwargs['path'] = self.sims[0].path #end if if not 'job' in kwargs: kwargs['job'] = self.job #end if Simulation.__init__(self,**kwargs) self.infile = None if isinstance(self.job.get_machine(),Workstation): self.outfile = None self.errfile = None #end if self.bundle_dependencies() #sims in bundle should not submit jobs for sim in sims: sim.skip_submit = True #end for #end def __init__ #def init_job(self): # None # this is to override the default behavior of Simulation ##end def init_job def bundle_dependencies(self): deps = [] for sim in self.sims: for d in sim.dependencies: deps.append((d.sim,'other')) #end for #end for self.depends(*deps) #end def bundle_dependencies def bundle_jobs(self,relative=False): jobs = [] job0 = self.sims[0].job time = Job.zero_time() nodes = 0 cores = 0 threads = job0.threads queue = job0.queue same_threads = True same_queue = True machine_names = set() for sim in self.sims: job = sim.job nodes += job.nodes cores += job.cores same_threads = same_threads and threads==job.threads same_queue = same_queue and queue==job.queue time = job.max_time(time) machine = job.get_machine() machine_names.add(machine.name) jobs.append(job) #end for if not same_threads: self.error('bundling jobs with different numbers of threads is not yet supported',trace=False) #end if if not same_queue: self.error('bundling jobs with different queues is not allowed',trace=False) #end if machine_names = list(machine_names) if len(machine_names)!=1: self.error('attempted to bundle jobs across these machines: '+str(machine_names)+'\n jobs may only be bundled on the same machine',trace=False) #end if self.job = Job( bundled_jobs = jobs, relative = relative, queue = queue, nodes = nodes, cores = cores, threads = threads, machine = machine_names[0], **time ) #end def bundle_jobs def pre_write_inputs(self,save_image): for sim in self.sims: if not sim.setup: sim.write_inputs(save_image) #end if #end for #end def pre_write_inputs def pre_send_files(self,enter): for sim in self.sims: if not sim.sent_files: sim.send_files(enter) #end if #end for #end def pre_send_files def post_submit(self): for sim in self.sims: sim.submitted = True #end for #end def post_submit def pre_check_status(self): if self.job.finished: for sim in self.sims: sim.job.finished = True #end for #end if for sim in self.sims: sim.check_status() #end for #end def pre_check_status def check_sim_status(self): finished = True for sim in self.sims: finished = finished and sim.finished #end for self.finished = finished #end def check_sim_status def get_output_files(self): return list() #end def get_output_files def app_command(self): return None #end def app_command #end class SimulationBundle def bundle(*sims,**kwargs): return SimulationBundle(*sims,**kwargs) #end def bundle ``` #### File: nexus/library/generic.py ```python import sys import traceback from copy import deepcopy from abilities import AllAbilities,genbase exit_call = exit class obj(AllAbilities): logfile = sys.stdout def copy(self): return self._copy() def copies(self,count): return self._copies(count) def iteritems(self): return self._iteritems() def keys(self): return self._keys() def values(self): return self._values() def inverse(self): return self._inverse() def set(self,**variables): return self._set(**variables) def clear(self): self._clear() def add_attribute(self,name,value=None): self._add_attribute(name,value) def add_attributes(self,*names,**attributes): self._add_attributes(*names,**attributes) #def transfer_from(self,other,copy=False): # self._transfer_from(other,copy) #def transfer_to(self,other,copy=False): # self._transfer_to(other,copy) def append(self,value): self._append(value) def save(self,fpath=None): self._save(fpath) def load(self,fpath): self._load(fpath) def list(self,*names): if len(names)==0: names = list(self.keys()) names.sort() #end if values = [] for name in names: values.append(self[name]) #end if return values #end def list def tuple(self,*names): return tuple(self.list(*names)) #end def tuple def obj(self,*names): o = obj() o.transfer_from(self,keys=names,copy=False) return o #end def obj def first(self): return self[min(self.keys())] #end def first def last(self): return self[max(self.keys())] #end def last def open_log(self,filepath): self.logfile = open(filepath,'w') #end def open_log def close_log(self): self.logfile.close() #end def close_log def _write(self,s): self.logfile.write(s) #end def _write def write(self,s): self._write(s) #end def write def logna(self,*items): s='' for item in items: s+=str(item)+' ' #end for self.logfile.write(s) #end def logna def log(self,*items): s='' for item in items: s+=str(item)+' ' #end for s+='\n' self.logfile.write(s) #end def log def error(self,message,header=None,exit=True,trace=True,post_header=' Error:'): pad = 4*' ' if header==None: header = self.__class__.__name__ #end if self.log(header+post_header) self.log(pad+message.replace('\n','\n'+pad)) if exit: self.log(' exiting.\n') if trace: traceback.print_stack() #end if exit_call() #end if #end def error def warn(self,message,header=None,post_header=' Warning:'): pad = 4*' ' if header==None: header=self.__class__.__name__ #end if self.log(header+post_header) self.log(pad+message.replace('\n','\n'+pad)) #end def error @classmethod def class_error(cls,message,header=None,exit=True,trace=True,post_header=' Error:'): pad = 4*' ' if header==None: header = cls.__name__ #end if cls.logfile.write(header+post_header+'\n') cls.logfile.write(('\n'+message).replace('\n','\n'+pad)+'\n') if exit: cls.logfile.write(' exiting.\n\n') if trace: traceback.print_stack() #end if exit_call() #end if #end def class_error @classmethod def class_warn(cls,message,header=None,post_header=' Warning:'): pad = 4*' ' if header==None: header=cls.__name__ #end if cls.logfile.write(header+post_header+'\n') cls.logfile.write(('\n'+message).replace('\n','\n'+pad)+'\n') #end def error def transfer_from(self,other,keys=None,copy=False): if keys==None: keys = other.keys() #end if if not copy: for k in keys: self[k]=other[k] #end for else: for k in keys: self[k]=deepcopy(other[k]) #end for #end if #end def transfer_from def transfer_to(self,other,keys=None,copy=False): if keys==None: keys = self.keys() #end if if not copy: for k in keys: other[k]=self[k] #end for else: for k in keys: other[k]=deepcopy(self[k]) #end for #end if #end def transfer_to def move_from(self,other,keys=None): if keys==None: keys = other.keys() #end if for k in keys: self[k]=other[k] del other[k] #end for #end def move_from def move_to(self,other,keys=None): other.move_from(self,keys) #end def move_to def copy_from(self,other,keys=None,deep=False): self.transfer_from(other,keys,copy=deep) #end def copy_from def copy_to(self,other,keys=None,deep=False): self.transfer_to(other,keys,copy=deep) #end def copy_to def delete(self,*names): if len(names)==1: name = names[0] value = self[name] del self[name] return value else: if len(names)==0: names = sorted(obj.keys(self)) #end if values = [] for name in names: values.append(self[name]) del self[name] #end for return values #end if #end def delete #end class obj import copy import cPickle class generic(genbase): logfile = sys.stdout def __init__(self,*vals,**kwargs): if len(vals)==1 and isinstance(vals[0],(dict,generic)): self.add_attributes(**vals[0]) self.add_attributes(**kwargs) else: self.add_attributes(*vals,**kwargs) #end for #end def __init__ def _dict(self): return self.__dict__ #end def __get_dict def _alt(self): return self.__dict__ #end def __alt def __len__(self): return len(self._dict()) #end def __len__ def __contains__(self,name): return name in self._dict() #end def __contains__ def __getitem__(self,name): return self._dict()[name] #end def __getitem__ def __setitem__(self,name,value): self._dict()[name] = value #end def __setitem__ def __delitem__(self,name): del self._dict()[name] #end def __delitem__ def __repr__(self): s='' stype = type(s) d = self._dict() mem = list(d.keys()) mem.sort() for m in mem: v=d[m] if hasattr(v,'__class__'): s+=' {0:<20} {1:<20}\n'.format(m,v.__class__.__name__) else: s+=' {0:<20} {1:<20}\n'.format(m,type(v)) #end if #end for return s #end def __repr__ def __iter__(self): d = self._dict() for item in d.__dict__: yield d[item] #end for #end def __iter__ def __str__(self,nindent=1): pad = ' ' npad = nindent*pad s='' stype = type(s) normal = [] qable = [] for k,v in self._dict().iteritems(): if type(k)!=stype or k[0]!='_': if isinstance(v,(generic,obj)): qable.append(k) else: normal.append(k) #end if #end if #end for normal.sort() qable.sort() for k in normal: v = self[k] indent = npad+18*' ' vstr = str(v).replace('\n','\n'+indent) s+=npad+'{0:<15} = '.format(k)+vstr+'\n' #end for for k in qable: v = self[k] s+=npad+str(k)+'\n' s+=v.__str__(nindent+1) if isinstance(k,str): s+=npad+'end '+k+'\n' #end if #end for return s #end def __str__ def copy(self): return copy.deepcopy(self) #end def copy def iteritems(self): return self._dict().iteritems() #end def iteritems def keys(self): return self._dict().keys() #end def keys def values(self): return self._dict().values() #end def keys def inverse(self): new = self.__class__() d = dict((v,k) for k, v in self.iteritems()) new.add_attributes(**d) return new #end def inverse def set(self,**variables): for name,value in variables.iteritems(): self[name]=value #end for return self #end def set def clear(self): self._dict().clear() #end def clear def add_attribute(self,name,value=None): self[name] = value #end def add_attribute def add_attributes(self,*names,**attributes): for name in names: self[name] = None #end for for name,value in attributes.iteritems(): self[name]=value #end for #end def add_attributes def append(self,value): self[len(self)] = value #end def append def save(self,fpath=None): if fpath==None: fpath='./'+self.__class__.__name__+'.p' #end if fobj = open(fpath,'w') binary = cPickle.HIGHEST_PROTOCOL cPickle.dump(self,fobj,binary) fobj.close() del fobj del binary return #end def save def load(self,fpath=None): if fpath==None: fpath='./'+self.__class__.__name__+'.p' #end if fobj = open(fpath,'r') tmp = cPickle.load(fobj) fobj.close() d = self.__dict__ d.clear() for k,v in tmp.__dict__.iteritems(): d[k] = v #end for del fobj del tmp return #end def load def transfer_from(self,other,keys=None,copy=False): if keys==None: keys = other.keys() #end if if not copy: for k in keys: self[k]=other[k] #end for else: for k in keys: self[k]=deepcopy(other[k]) #end for #end if #end def transfer_from def transfer_to(self,other,keys=None,copy=False): if keys==None: keys = self.keys() #end if if not copy: for k in keys: other[k]=self[k] #end for else: for k in keys: other[k]=deepcopy(self[k]) #end for #end if #end def transfer_to def move_from(self,other,keys=None): if keys==None: keys = other.keys() #end if for k in keys: self[k]=other[k] del other[k] #end for #end def move_from def move_to(self,other,keys=None): other.move_from(self,keys) #end def move_to def copy_from(self,other,keys=None,deep=False): self.transfer_from(other,keys,copy=deep) #end def copy_from def copy_to(self,other,keys=None,deep=False): self.transfer_to(other,keys,copy=deep) #end def copy_to def delete(self,*names): if len(names)==1: name = names[0] value = self[name] del self[name] return value else: if len(names)==0: names = sorted(generic.keys(self)) #end if values = [] for name in names: values.append(self[name]) del self[name] #end for return values #end if #end def delete def list(self,*names): if len(names)==0: names = list(generic.keys(self)) names.sort() #end if values = [] for name in names: values.append(self[name]) #end if return values #end def list def tuple(self,*names): return tuple(self.list(*names)) #end def tuple def obj(self,*names): o = obj() o.transfer_from(self,keys=names,copy=False) return o #end def obj def first(self): return self[min(self.keys())] #end def first def last(self): return self[max(self.keys())] #end def last def open_log(self,filepath): self._alt().logfile = open(filepath,'w') #end def open_log def close_log(self): self._alt().logfile.close() #end def close_log def write(self,s): self._alt().logfile.write(s) #end def write def logna(self,*items): s='' for item in items: s+=str(item)+' ' #end for self._alt().logfile.write(s) #end def logna def log(self,*items): s='' for item in items: s+=str(item)+' ' #end for s+='\n' self._alt().logfile.write(s) #end def log def error(self,message,header=None,exit=True,trace=True,post_header=' Error:'): pad = 4*' ' if header==None: header = self.__class__.__name__ #end if self.log(header+post_header) self.log(pad+message.replace('\n','\n'+pad)) if exit: self.log(' exiting.\n') if trace: traceback.print_stack() #end if exit_call() #end if #end def error def warn(self,message,header=None,post_header=' Warning:'): pad = 4*' ' if header==None: header=self.__class__.__name__ #end if self.log(header+post_header) self.log(pad+message.replace('\n','\n'+pad)) #end def error @classmethod def class_error(cls,message,header=None,exit=True,trace=True,post_header=' Error:'): pad = 4*' ' if header==None: header = cls.__name__ #end if cls.logfile.write(header+post_header) cls.logfile.write(pad+message.replace('\n','\n'+pad)+'\n') if exit: cls.logfile.write(' exiting.\n\n') if trace: traceback.print_stack() #end if exit_call() #end if #end def class_error def _copy(self,*args,**kwargs): return generic.copy(self,*args,**kwargs) def _iteritems(self,*args,**kwargs): return generic.iteritems(self,*args,**kwargs) def _keys(self,*args,**kwargs): return generic.keys(self,*args,**kwargs) def _values(self,*args,**kwargs): generic.values(self,*args,**kwargs) def _inverse(self,*args,**kwargs): return generic.inverse(self,*args,**kwargs) def _set(self,*args,**kwargs): generic.set(self,*args,**kwargs) def _clear(self,*args,**kwargs): generic.clear(self,*args,**kwargs) def _add_attribute(self,*args,**kwargs): generic.add_attribute(self,*args,**kwargs) def _add_attributes(self,*args,**kwargs): generic.add_attributes(self,*args,**kwargs) def _append(self,*args,**kwargs): generic.append(self,*args,**kwargs) def _save(self,*args,**kwargs): generic.save(self,*args,**kwargs) def _load(self,*args,**kwargs): generic.load(self,*args,**kwargs) def _transfer_from(self,*args,**kwargs): generic.transfer_from(self,*args,**kwargs) def _transfer_to(self,*args,**kwargs): generic.transfer_to(self,*args,**kwargs) def _move_from(self,*args,**kwargs): generic.move_from(self,*args,**kwargs) def _move_to(self,*args,**kwargs): generic.move_to(self,*args,**kwargs) def _copy_from(self,*args,**kwargs): generic.copy_from(self,*args,**kwargs) def _copy_to(self,*args,**kwargs): generic.copy_to(self,*args,**kwargs) def _delete(self,*args,**kwargs): generic.delete(self,*args,**kwargs) def _list(self,*args,**kwargs): return generic.list(self,*args,**kwargs) def _tuple(self,*args,**kwargs): return generic.tuple(self,*args,**kwargs) def _obj(self,*args,**kwargs): return generic.obj(self,*args,**kwargs) def _first(self,*args,**kwargs): return generic.first(self,*args,**kwargs) def _last(self,*args,**kwargs): return generic.last(self,*args,**kwargs) def _open_log(self,*args,**kwargs): generic.open_log(self,*args,**kwargs) def _close_log(self,*args,**kwargs): generic.close_log(self,*args,**kwargs) def _write(self,*args,**kwargs): generic.write(self,*args,**kwargs) def _logna(self,*args,**kwargs): generic.logna(self,*args,**kwargs) def _log(self,*args,**kwargs): generic.log(self,*args,**kwargs) def _error(self,*args,**kwargs): generic.error(self,*args,**kwargs) def _warn(self,*args,**kwargs): generic.warn(self,*args,**kwargs) #end class generic class hidden(generic): def __init__(self,*vals,**kwargs): d = object.__getattribute__(self,'__dict__') d['_hidden_'] = generic() d['_public_'] = generic() d = self._dict() generic.__init__(self,*vals,**kwargs) #end def __init__ def _dict(self): return self.__dict__['_public_'] #end def __get_dict def _alt(self): return self.__dict__['_hidden_'] #end def __alt def __getattribute__(self,name): d = object.__getattribute__(self,'__dict__') if '_public_' in d: p = d['_public_'] if name in p: return p[name] else: return object.__getattribute__(self,name) #end if else: return object.__getattribute__(self,name) #end if #end def __getattribute__ def __setattr__(self,name,value): self._dict()[name] = value #end def __setattr__ def __delattr__(self,name): del self._dict()[name] #end def __delattr__ def hidden(self): return self.__dict__['_hidden_'] #end def hidden def public(self): return self.__dict__['_public_'] #end def public def _hidden(self): return hidden.hidden(self) #end def _hidden def _public(self): return hidden.public(self) #end def _public #end class hidden ``` #### File: nexus/library/project_base.py ```python import os import traceback import gc as garbage_collector from memory import resident from generic import obj from developer import DevBase modes = obj( none = 0, setup = 1, send_files = 2, submit = 3, get_output = 4, analyze = 5, stages = 6, all = 7 ) class Pobj(DevBase): gc = garbage_collector gc.enable() mode = modes.stages generate_only = False status_only = False monitor = True skip_submission = False emulate = False #override application and use application_emulator verbose = True debug = False trace = False load_images = True sleep = 3 local_directory = './' remote_directory = local_directory file_locations = [local_directory] runs = 'runs' results = 'results' #pseudo_dir = os.path.join(local_directory,'pseudopotentials') pseudo_dir = None pseudopotentials = None modes = modes primary_modes = ['setup','send_files','submit','get_output','analyze'] dependent_modes = set(['submit']) stages = [] stages_set = set(stages) wrote_something = False # for pretty printing @staticmethod def set_mode(mode): if mode in Pobj.modes: Pobj.mode = Pobj.modes[mode] else: print 'settings Error: invalid mode specified: '+mode+'\n valid modes are '+str(Pobj.modes.keys()) #end if #end def set_mode def mem_usage(self): return int(resident()/1e6) #end def mem_usage indent = ' ' def log(self,*texts,**kwargs): if self.verbose: if len(kwargs)>0: n = kwargs['n'] else: n=0 #end if text='' for t in texts: text+=str(t)+' ' #end for pad = n*self.indent self.logfile.write(pad+text.replace('\n','\n'+pad)+'\n') #end if Pobj.wrote_something = True #end def log #@classmethod #def class_error(cls,msg,source=None,n=0,trace=True): # if source==None: # source = cls.__name__ # #end if # pad = n*cls.indent # text=pad+source+' Error: '+msg # text = '\n'+text.replace('\n','\n'+pad)+'\n\n' # cls.logfile.write(text) # if trace: # traceback.print_stack() # #end if # exit() ##end def class_error # #@classmethod #def class_warn(cls,msg,source=None,n=0): # if source==None: # source = cls.__name__ # #end if # pad = n*cls.indent # text=pad+source+' Warning: '+msg # cls.logfile.write(text.replace('\n','\n'+pad)+'\n') ##end def class_warn def dlog(self,*texts,**kwargs): if self.debug: #self.log('mem_usage',self.mem_usage(),n=5) self.log(*texts,**kwargs) #end if #end def dlog def tlog(self,*texts,**kwargs): if self.trace: self.log(*texts,**kwargs) w,s,j,f,g,a=int(self.setup),int(self.submitted),int(self.job.finished),int(self.finished),int(self.got_output),int(self.analyzed) self.log('w,s,j,f,g,a',w,s,j,f,g,a,n=kwargs['n']+1) #self.log('dependencies',self.dependencies.keys(),n=kwargs['n']+1) #self.log('dependents ',self.dependents.keys(),n=kwargs['n']+1) #end if #end def tlog working_directory = None def enter(self,directory,changedir=True,msg=''): self.working_directory = os.getcwd() self.log(' Entering '+directory,msg) if changedir: os.chdir(directory) #end if pad = ' ' return pad #end def enter def leave(self): os.chdir(self.working_directory) #end def leave #end class Pobj ``` #### File: nexus/library/qmcpack_analyzer_base.py ```python from numpy import minimum,resize from generic import obj from hdfreader import HDFgroup from qaobject import QAobject from debug import * class QAinformation(obj): None #end class QAinformation class QAdata(QAobject): def zero(self): for value in self: value[:] = 0 #end for #self.sum() #end def zero def minsize(self,other): for name,value in self.iteritems(): if name in other: self[name] = resize(value,minimum(value.shape,other[name].shape)) else: self.error(name+' not found in minsize partner') #end if #end for #self.sum() #end def minsize def accumulate(self,other): for name,value in self.iteritems(): if name in other: value += other[name][0:len(value)] else: self.error(name+' not found in accumulate partner') #end if #end for #self.sum() #end def accumulate def normalize(self,normalization): for value in self: value/=normalization #end for #self.sum() #end def normalize def sum(self): s = 0 for value in self: s+=value.sum() #end for print ' sum = {0}'.format(s) #end def sum #end class QAdata class QAHDFdata(QAdata): def zero(self): for name,value in self.iteritems(): if isinstance(value,HDFgroup): value.zero('value','value_squared') #end if #end for #end def zero def minsize(self,other): for name,value in self.iteritems(): if isinstance(value,HDFgroup): if name in other and isinstance(other[name],HDFgroup): value.minsize(other[name],'value','value_squared') else: self.error(name+' not found in minsize partner') #end if #end if #end for #end def minsize def accumulate(self,other): for name,value in self.iteritems(): if isinstance(value,HDFgroup): if name in other and isinstance(other[name],HDFgroup): value.accumulate(other[name],'value','value_squared') else: self.error(name+' not found in accumulate partner') #end if #end if #end for #end def accumulate def normalize(self,normalization): for value in self: if isinstance(value,HDFgroup): value.normalize(normalization,'value','value_squared') #end if #end for #end def normalize #end class QAHDFdata class QAanalyzer(QAobject): verbose_vlog = False capabilities = None request = None run_info = None method_info = None opt_methods = set(['opt','linear','cslinear']) vmc_methods = set(['vmc']) dmc_methods = set(['dmc']) allowed_settings = [] @classmethod def settings(cls,**kwargs): invalid = list(set(kwargs.keys())-set(allowed_settings)) if len(invalid)>0: cls.class_error('invalid variable names encountered in settings\n invalid names: {0}\n valid options are: {1}'.format(invalid,allowed_settings)) #end if for name,value in kwargs.iteritems(): cls.__dict__[name] = value #end for #end def settings def __init__(self,nindent=0): self.info = QAinformation( initialized = False, data_loaded = False, analyzed = False, nindent = nindent ) self.vlog('building '+self.__class__.__name__) #end def __init__ def subindent(self): return self.info.nindent+1 #end def indent def vlog(self,msg,n=0): if QAanalyzer.verbose_vlog: self.log(msg,n=self.info.nindent+n) #end if #end def vlog def reset_indicators(self,initialized=None,data_loaded=None,analyzed=None): if initialized!=None: self.info.initialized = initialized #end if if data_loaded!=None: self.info.data_loaded = data_loaded #end if if analyzed!=None: self.info.analyzed = analyzed #end if #end def reset_indicators def init_sub_analyzers(self): self.not_implemented() #end def init_sub_analyzers def load_data_local(self): None #end def load_data_local def remove_data_local(self): if 'data' in self: del self.data #end if #end def remove_data_local def analyze_local(self): None #end def analyze_local def set_global_info(self): None #end def set_global_info def unset_global_info(self): None #end def unset_global_info def traverse(self,function,block_name=None,callpost=True,**kwargs): if not callpost: cls.__dict__[func_name](self,**kwargs) #end if if block_name is None or not self.info[block_name]: for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.traverse(value,func_name,block_name,callpost,**kwargs) elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.traverse(v,func_name,block_name,callpost,**kwargs) #end if #end for #end if #end for #end if if block_name!=None: self.info[block_name] = True #end if if callpost: cls.__dict__[func_name](self,**kwargs) #end if #end def traverse def propagate_indicators(self,**kwargs): self.reset_indicators(**kwargs) for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.propagate_indicators(**kwargs) elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.propagate_indicators(**kwargs) #end if #end for #end if #end for #end def propagate_indicators def load_data(self): if not self.info.data_loaded: self.vlog('loading '+self.__class__.__name__+' data',n=1) self.load_data_local() self.info.data_loaded = True #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.load_data() elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.load_data() #end if #end for #end if #end for #end def load_data def analyze(self,force=False): self.set_global_info() if not self.info.data_loaded: self.load_data_local() self.info.data_loaded = True #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.analyze(force) elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.analyze(force) #end if #end for #end if #end for if not self.info.analyzed or force: self.vlog('analyzing {0} data'.format(self.__class__.__name__),n=1) self.analyze_local() self.info.analyzed = True #end if self.unset_global_info() #end def analyze def remove_data(self): self.vlog('removing '+self.__class__.__name__+' data',n=1) names = list(self.keys()) for name in names: if isinstance(self[name],QAdata): del self[name] #end if #end for for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.remove_data() elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.remove_data() #end if #end for #end if #end for #end def remove_data def zero_data(self): self.vlog('zeroing '+self.__class__.__name__+' data',n=1) for value in self: if isinstance(value,QAdata): value.zero() #end if #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.zero_data() elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.zero_data() #end if #end for #end if #end for #end def zero_data def minsize_data(self,other): self.vlog('minsizing '+self.__class__.__name__+' data',n=1) for name,value in self.iteritems(): if isinstance(value,QAdata): if name in other and isinstance(other[name],value.__class__): value.minsize(other[name]) else: self.error('data '+name+' not found in minsize_data partner') #end if #end if #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): if name in other and isinstance(other[name],value.__class__): ovalue = other[name] else: self.error('analyzer '+name+' not found in minsize_data partner') #end if value.minsize_data(ovalue) elif isinstance(value,QAanalyzerCollection): if name in other and isinstance(other[name],QAanalyzerCollection): ovalue = other[name] else: self.error('collection '+name+' not found in minsize_data partner') #end if for n,v in value.iteritems(): if isinstance(v,QAanalyzer): if n in ovalue and isinstance(ovalue[n],v.__class__): ov = ovalue[n] else: self.error('analyzer '+n+' not found in minsize_data partner collection '+name) #end if v.minsize_data(ov) #end if #end for #end if #end for #end def minsize_data def accumulate_data(self,other): self.vlog('accumulating '+self.__class__.__name__+' data',n=1) for name,value in self.iteritems(): if isinstance(value,QAdata): if name in other and isinstance(other[name],value.__class__): value.accumulate(other[name]) else: self.error('data '+name+' not found in accumulate_data partner') #end if #end if #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): if name in other and isinstance(other[name],value.__class__): ovalue = other[name] else: self.error('analyzer '+name+' not found in accumulate_data partner') #end if value.accumulate_data(ovalue) elif isinstance(value,QAanalyzerCollection): if name in other and isinstance(other[name],QAanalyzerCollection): ovalue = other[name] else: self.error('collection '+name+' not found in accumulate_data partner') #end if for n,v in value.iteritems(): if isinstance(v,QAanalyzer): if n in ovalue and isinstance(ovalue[n],v.__class__): ov = ovalue[n] else: self.error('analyzer '+n+' not found in accumulate_data partner collection '+name) #end if v.accumulate_data(ov) #end if #end for #end if #end for #end def accumulate_data def normalize_data(self,normalization): self.vlog('normalizing '+self.__class__.__name__+' data',n=1) for value in self: if isinstance(value,QAdata): value.normalize(normalization) #end if #end if for name,value in self.iteritems(): if isinstance(value,QAanalyzer): value.normalize_data(normalization) elif isinstance(value,QAanalyzerCollection): for n,v in value.iteritems(): if isinstance(v,QAanalyzer): v.normalize_data(normalization) #end if #end for #end if #end for #end def normalize_data #end class QAanalyzer class QAanalyzerCollection(QAobject): None #end class QAanalyzerCollection ``` #### File: nexus/library/vasp_analyzer.py ```python import os from numpy import array,zeros from generic import obj from simulation import Simulation,SimulationAnalyzer from vasp_input import VaspInput from developer import DevBase from debug import * # vasp xml reader classes/functions class VXML(DevBase): basic_types = set('i v dimension field set time'.split()) data_types = obj(int=int,string=str,float=float) def __init__(self,tag,attr=None): self._tag = tag self._lines = [] self._attr = None self._value = None if attr!=None and len(attr)>0: self._attr = obj() tokens = attr.split('"') next=0 for token in tokens: next+=1 if len(token)>0 and token[-1]=='=': name = token.strip()[:-1] self._attr[name]=tokens[next].replace(' ','_').replace('-','_').lower() #end if #end for #end if #end def __init__ def _is_empty(self): return len(self)-4==0 #end def _is_empty def _add(self,new): tag = new._tag if not tag in self: self[tag] = new else: cur = self[tag] if 0 in cur: cur._append(new) else: coll = VXMLcoll(tag) coll._append(cur) coll._append(new) self[tag] = coll #end if #end if #end def _add def _parse(self): # rename sub objects if name is present for name in list(self.keys()): value = self[name] if isinstance(value,VXML): if value._attr!=None and 'name' in value._attr: del self[name] self[value._attr.name] = value del value._attr.name elif isinstance(value,VXMLcoll): for n in list(value.keys()): v = value[n] if isinstance(v,VXML): if v._attr!=None and 'name' in v._attr: del value[n] self[v._attr.name] = v del v._attr.name #end if #end if #end for if len(value)==0: del self[name] else: value._reorder() #end if #end if #end if #end for # have all sub objects parse (read fields, set _value) for v in self: if isinstance(v,VXML): v._parse() #end if #end for lines = self._lines if len(lines)>0: #fail = False #try: if self._tag=='array': self._parse_array(lines) else: self._parse_values(lines) #end if #except Exception,e: # print '_parse failed!' # print e # print self # print tag # print attr # print lines[0:min(10,len(lines))] # print # print # fail = True ##end try #if fail: # self.error('parse failed please see information above','read_vxml') ##end if #end if # if sub-objects resolve to a value, replace with that value for name in list(self.keys()): value = self[name] if isinstance(value,VXML) and value._value!=None: self[name] = value._value #end if #end for # assign attributes if self._attr!=None: if 'type' in self._attr: del self._attr.type #end if self.transfer_from(self._attr) #end if return #end def _parse def _parse_values(self,lines): if len(lines)==1 and not '<' in lines[0]: self._value = readval(lines[0]) else: arr = None for line in lines: start = line.startswith('<') and not line.startswith('</') end = line.endswith('>') if start: fline = line else: fline += line #end if if end: tokens = fline.replace('<','|').replace('>','|').split('|') tn = tokens[1] val = readval(tokens[2].strip()) if 'name=' in tn: name = tn.split('name="',1)[1].split('"')[0].lower() self[name] = val elif arr is None: arr = [val] else: arr.append(val) #end if #end if #end for if arr!=None: self._value = array(arr) #end if #end if #end def parse_values def _parse_array(self,lines): #print 'parsing array' dims = obj() fields = obj() dim_counts = None field_list = [] level = -1 set_dims = False for line in lines: if line.startswith('<'): if line.startswith('<dimension'): tokens = line.replace('<','|').replace('>','|').split('|') tn = tokens[1] dname = tokens[2].lower().replace(' ','_').replace('-','_') if 'dim=' in tn: d = int(tn.split('dim="',1)[1].split('"')[0]) dims[d] = dname else: dims.append(dname) #end if elif line.startswith('<field'): tokens = line.replace('<','|').replace('>','|').split('|') tn = tokens[1] fname = tokens[2].lower().replace(' ','_').replace('-','_') if 'type=' in tn: t = tn.split('type="',1)[1].split('"')[0] if t in VXML.data_types: dtype = VXML.data_types[t] else: self.error('field type {0} is unrecognized: {1}'.format(t,line)) #end if else: dtype = float #end if fields.append(obj(name=fname,dtype=dtype)) elif line.startswith('<set'): if not set_dims: dims = dims.list() dims.reverse() dims = tuple(dims) dim_counts = zeros((len(dims),),dtype=int) set_dims = True #end if level += 1 dim_counts[level]=0 elif line.startswith('</set'): level -= 1 if level!=-1: dim_counts[level]+=1 #end if else: self.error('array parsing failed\n unrecognized xml encountered: {0}'.format(line),'read_vxml') #end if else: dim_counts[level]+=1 field_list.append(line.split()) #end if #end for self.dims = dims for findex,field in fields.iteritems(): lst = [] for field_vals in field_list: lst.append(field_vals[findex]) #end for arr = array(lst,dtype=field.dtype).ravel() arr.shape = tuple(dim_counts) self[field.name] = arr #end for #print ' done' #end def _parse_array def _remove_empty(self): for n in list(self.keys()): v = self[n] if isinstance(v,VXML): v._remove_empty() if isinstance(v,VXMLcoll) and v._is_empty(): del self[n] #end if #end if #end for #end def _remove_empty def _remove_hidden(self): del self._tag del self._attr del self._lines del self._value for v in self: if isinstance(v,VXML): v._remove_hidden() #end if #end for #end def _remove_hidden() #end class VXML class VXMLcoll(VXML): def _append(self,new): index = len(self)-4 self[index]=new #end def _append def _reorder(self): n=0 for key in sorted(self.keys()): value = self[key] if isinstance(value,VXML): del self[key] self[n]=value n+=1 #end if #end for #end def _reorder #end class VXMLcoll booldict = dict(T=True,F=False) def readval(val): fail = False split = False if isinstance(val,str): split = ' ' in val #end if if isinstance(val,list) or split: if split: val = val.split() #end if try: v = array(val,dtype=int) except: try: v = array(val,dtype=float) except: try: v = array(val,dtype=str) except: fail = True #end try #end try #end try elif val in booldict: v = booldict[val] else: try: v = int(val) except: try: v = float(val) except: v = val #end try #end try #end if if fail: VXML.class_error('failed to read value: "{0}"'.format(val),'read_vxml') #end if return v #end def readval def read_vxml(filepath): if not os.path.exists(filepath): VXML.class_error('file {0} does not exist'.format(filepath),'read_vxml') #end if #print 'read' contents = open(filepath,'r').read() #print 'replace' contents = contents.replace('<rc>',' ').replace('</rc>',' ') contents = contents.replace('<r>' ,' ').replace('</r>' ,' ') contents = contents.replace('<c>' ,' ').replace('</c>' ,' ') #print 'split lines' lines = contents.splitlines() #print 'process lines' root = VXML('vasprun') stack = [root] cur = stack[0] for line in lines: ls = line.strip() if ls.startswith('</'): tag = ls[2:-1] if tag==cur._tag: stack.pop() cur = stack[-1] #print len(stack)*' '+'end '+tag else: cur._lines.append(ls) #end if elif ls.startswith('<?'): None elif ls.startswith('<'): ta,rest = ls[1:].split('>',1) tokens = ta.split(' ',1) tag = tokens[0] if not tag in VXML.basic_types: if len(tokens)==1: attr = None else: attr = tokens[1].strip() #end if if ls.endswith('</{0}>'.format(tag)): new = VXML(tag,attr) new._lines.append(ls.replace('<','|').replace('>','|').split('|')[2]) cur._add(new) #print len(stack)*' '+'end '+tag else: #print len(stack)*' '+tag new = VXML(tag,attr) cur._add(new) cur = new stack.append(cur) #end if else: cur._lines.append(ls) #end if else: cur._lines.append(ls) #end if #end for if len(stack)!=1: VXML.class_error('read failed\nxml tree did not seem to close') #end if #print 'parse' root._parse() root._remove_empty() root._remove_hidden() #print 'done' return root #end def read_vxml # vasp outcar functions class VaspLines(DevBase): def __init__(self,lines): self.pointer = 0 self.lines = lines #end def __init__ def advance_line(self,amount): self.pointer += amount return self.lines[self.pointer] #end def advance_line def advance_token(self,token): psave = self.pointer for line in self.lines[self.pointer:]: if token in line: return line #end if self.pointer += 1 #end while self.pointer = psave return None #end def advance def advance(self,amount): self.pointer += amount #end def advance def remainder(self): return self.lines[self.pointer:] #end def remainder def rewind(self,point=0): self.pointer = point #end def rewind def get_line(self,point=None): if point is None: point = self.pointer #end if return self.lines[point] #end def get_line def get_line_ahead(self,nahead): return self.lines[self.pointer+nahead] #end def get_line_ahead #end class VaspLines def read_outcar_header_values(vlines,odata): line = vlines.advance_token('TOTEN') odata.total_energy = float(line.split()[4]) vlines.advance_token('energy without entropy') #end def read_outcar_header_values def read_outcar_core_potentials(vlines,odata): line = vlines.advance_token('the test charge radii are') odata.core_potential_radii = array(line.split()[5:],dtype=float) vlines.advance(2) n = 0 cpots = [] for line in vlines.remainder(): ls = line.strip() n+=1 if len(ls)==0: break #end if tokens = line.replace('-',' -').split() cpots.extend(tokens[1::2]) #end for odata.core_potentials = array(cpots,dtype=float) vlines.advance(n) #end def read_outcar_core_potentials def read_outcar_fermi_energy(vlines,odata): line = vlines.advance_token('E-fermi') odata.Efermi = float(line.split()[2]) #end def read_outcar_fermi_energy def read_outcar_bands(vlines,odata): bands = obj() line = vlines.advance_token('spin component') if line!=None: last_empty = True n = 0 for line in vlines.remainder(): if len(line)>2: if line[1]=='s': ns = int(line.split()[2]) spin = obj() bands[ns] = spin elif line[1]=='k': tokens = line.split() nk = int(tokens[1]) kp = array(tokens[3:],dtype=float) kpoint = obj(kpoint=kp,energies=[],occupations=[]) spin[nk]=kpoint elif line[2]=='b': None else: bnum,energy,occ = line.split() kpoint.energies.append(float(energy)) kpoint.occupations.append(float(occ)) #end if last_empty = False else: if last_empty: break #end if last_empty = True #end if n+=1 #end for vlines.advance(n) #end if for ns,spin in bands.iteritems(): for nk,kpoint in spin.iteritems(): kpoint.energies = array(kpoint.energies,dtype=float) kpoint.occupations = array(kpoint.occupations,dtype=float) #end for #end for odata.bands = bands #end def read_outcar_bands def read_outcar_charge_mag(vlines,odata,token): ion = obj(s=[],p=[],d=[],tot=[]) total = obj() vlines.advance_token(token) vlines.advance(4) prev_end = False n=0 for line in vlines.remainder(): n+=1 if prev_end: break #end if if line[0]=='-': prev_end = True else: vals = array(line.split()[1:],dtype=float) ion.s.append(vals[0]) ion.p.append(vals[1]) ion.d.append(vals[2]) ion.tot.append(vals[3]) #end if #end for for channel,vals in ion.iteritems(): ion[channel] = array(vals,dtype=float) #end for vlines.advance(n) vals = array(line.split()[1:],dtype=float) total.s = vals[0] total.p = vals[1] total.d = vals[2] total.tot = vals[3] return ion,total #end def read_outcar_charge_mag def read_outcar_total_charge(vlines,odata): ion,total = read_outcar_charge_mag(vlines,odata,'total charge ') # trailing space is important odata.ion_charge = ion odata.total_charge = total #end def read_outcar_total_charge def read_outcar_magnetization(vlines,odata): ion,total = read_outcar_charge_mag(vlines,odata,'magnetization') odata.ion_magnetization = ion odata.total_magnetization = total #end def read_outcar_magnetization def read_outcar_stress(vlines,odata): vlines.advance_token('FORCE on cell') line = vlines.advance_line(1) dirs = line.split()[1:] st = array(vlines.advance_token('Total').split()[1:],dtype=float) st_kb = array(vlines.advance_line(1).split()[2:],dtype=float) pressure = float(vlines.advance_line(1).split()[3]) stress = obj() stress_kb = obj() for i in range(len(dirs)): d = dirs[i].lower() stress[d] = st[i] stress_kb[d] = st_kb[i] #end for odata.stress = stress odata.stress_kb = stress_kb odata.pressure = pressure #end def read_outcar_stress def read_outcar_cell(vlines,odata): vlines.advance_token('VOLUME and BASIS') volume = float(vlines.advance_line(3).split()[-1]) a1 = vlines.advance_line(2).split()[0:3] a2 = vlines.advance_line(1).split()[0:3] a3 = vlines.advance_line(1).split()[0:3] lattice_vectors = array([a1,a2,a3],dtype=float) odata.volume = volume odata.lattice_vectors = lattice_vectors #end def read_outcar_cell def read_outcar_position_force(vlines,odata): position = [] force = [] vlines.advance_token('POSITION') vlines.advance(2) prev_end = False for line in vlines.remainder(): if prev_end: break #end if if line[1]=='-': prev_end = True else: tokens = line.split() position.append(tokens[0:3]) force.append(tokens[3:6]) #end if #end for total_drift = line.split()[2:5] odata.position = array(position,dtype=float) odata.force = array(force,dtype=float) odata.total_drift = array(total_drift,dtype=float) #end def read_outcar_position_force def read_outcar_accounting(vlines,odata): time = obj() memory = obj() vlines.advance_token('General timing and accounting') vlines.advance(2) time.cpu = float(vlines.advance_line(1).split()[-1]) time.user = float(vlines.advance_line(1).split()[-1]) time.system = float(vlines.advance_line(1).split()[-1]) time.elapsed = float(vlines.advance_line(1).split()[-1]) vlines.advance(1) memory.maximum = float(vlines.advance_line(1).split()[-1]) memory.average = float(vlines.advance_line(1).split()[-1]) odata.time = time odata.memory = memory #end def read_outcar_accounting class OutcarData(DevBase): any_functions = [ ('header_values' , read_outcar_header_values ), ] elast_functions = [ ('core_potentials' , read_outcar_core_potentials), ('fermi_energy' , read_outcar_fermi_energy ), ('bands' , read_outcar_bands ), ('total_charge' , read_outcar_total_charge ), ('magnetization' , read_outcar_magnetization ), ('stress' , read_outcar_stress ), ('cell' , read_outcar_cell ), ('position_force' , read_outcar_position_force ), ] ilast_functions = [ ('accounting' , read_outcar_accounting ), ] read_outcar_functions = any_functions + elast_functions + ilast_functions def __init__(self,filepath=None,lines=None): if filepath!=None: if not os.path.exists(filepath): self.error('file {0} does not exist'.format(filepath)) #end if f = open(filepath,'r') lines = f.read().splitlines() f.close() #end if self.vlines = VaspLines(lines) #end def __init__ def read(self,ilast=False,elast=False,all=True): ilast |= all elast |= all vlines = self.vlines del self.vlines read_functions = [] read_functions.extend(self.any_functions) if elast: read_functions.extend(self.elast_functions) if ilast: read_functions.extend(self.ilast_functions) #end if #end if for quantity,read_function in read_functions: try: read_function(vlines,self) except: None #end try #end for #end def read #end class OutcarData # main analyzer class class VaspAnalyzer(SimulationAnalyzer): def __init__(self,arg0=None,xml=False,analyze=False): path = None prefix = None incar = None outcar = None xmlfile = None if isinstance(arg0,Simulation): sim = arg0 file = sim.infile path = sim.locdir elif arg0!=None: path,file = os.path.split(arg0) else: file = '' xml = False #end if if len(file)>0: if file.endswith('INCAR'): incar = file prefix = file.replace('INCAR','').strip() elif file.endswith('OUTCAR'): prefix = file.replace('OUTCAR','').strip() else: self.error('please provide the path to an INCAR or OUTCAR file') #end if outcar = prefix+'OUTCAR' xmlfile = prefix+'vasprun.xml' if prefix=='': prefix=None #end if #end if self.info = obj( path = path, prefix = prefix, incar = incar, outcar = outcar, xmlfile = xmlfile, xml = xml ) if analyze: self.analyze() #end if #end def __init__ def analyze(self,outcar=None): if outcar is None and self.info.outcar!=None: outcar = os.path.join(self.info.path,self.info.outcar) #ned if if self.info.xml: self.xmldata = read_vxml(os.path.join(self.info.path,self.info.xmlfile)) #end if if outcar!=None: self.analyze_outcar(outcar) #end if #end def analyze def analyze_outcar(self,outcar): if not os.path.exists(outcar): self.error('outcar file {0} does not exist'.format(outcar)) #end if oc = open(outcar,'r') lines = oc.read().splitlines() oc.close() del oc # gather initialization lines init = [] n = 0 for line in lines: if len(line)>0 and line[0]=='-' and 'Iteration' in line: break #end if init.append(line) n+=1 #end for # gather lines for each iteration ion_steps = obj() for line in lines[n:]: if len(line)>0 and line[0]=='-' and 'Iteration' in line: iteration = [] inum,enum = line.strip(' -Iteration)').split('(') inum = int(inum) enum = int(enum) if not inum in ion_steps: ion_steps[inum] = obj() #end if ion_steps[inum][enum] = OutcarData(lines=iteration) #end if iteration.append(line) #end for del lines del n # read data from each iteration if len(ion_steps)>0: imax = array(ion_steps.keys(),dtype=int).max() for inum,ion_step in ion_steps.iteritems(): ilast = inum==imax if len(ion_step)>0: emax = array(ion_step.keys(),dtype=int).max() for enum,elec_step in ion_step.iteritems(): elast = enum==emax elec_step.read(ilast,elast,all=False) if ilast and elast: self.transfer_from(elec_step) #end if #end for #end if #end for #end if self.ion_steps = ion_steps #end def analyze_outcar #end class VaspAnalyzer ``` #### File: src/GUI/qmcGUI.py ```python import pygtk pygtk.require('2.0') import gtk import pango from Geometry import * from Wavefunction import * from Run import * from xml.dom import getDOMImplementation from xml.dom.ext import PrettyPrint from os.path import basename import os.path viewerOkay = True try: import gtk.gtkgl from OpenGL.GL import * from OpenGL.GLU import * except ImportError: viewerOkay = False if (viewerOkay): from StructViewer import * class MainManager (gtk.UIManager): def __init__(self): gtk.UIManager.__init__(self) def Setup(self): FileGroup = gtk.ActionGroup("File") FileAction = gtk.Action("File", "_File", "File operations", None) self.SaveAction = gtk.Action ("Save", "_Save", "Save qmcPACK input.", gtk.STOCK_SAVE) self.SaveAsAction = gtk.Action ("SaveAs", "Save _As", "Save qmcPACK input with a new name", gtk.STOCK_SAVE_AS) self.QuitAction = gtk.Action("Quit", "_Quit", "Exit qmcGUI", gtk.STOCK_QUIT) FileGroup.add_action(FileAction) FileGroup.add_action(self.SaveAction) FileGroup.add_action(self.SaveAsAction) FileGroup.add_action(self.QuitAction) ViewGroup = gtk.ActionGroup("View") ViewAction = gtk.Action("View", "_View", "View operations", None) self.StructureAction = gtk.Action ("Structure", "_Structure", "View structure", None) ViewGroup.add_action(ViewAction) ViewGroup.add_action(self.StructureAction) HelpGroup = gtk.ActionGroup("Help") HelpAction = gtk.Action("Help", "_Help", "User assistance", gtk.STOCK_HELP) self.AboutAction = gtk.Action ("About", "_About", "About qmcGUI", gtk.STOCK_ABOUT) HelpGroup.add_action (HelpAction); HelpGroup.add_action (self.AboutAction); self.insert_action_group (FileGroup, 0) self.insert_action_group (ViewGroup, -1) self.insert_action_group (HelpGroup, -1) descriptor = "<ui> "\ " <menubar name=\"MenuBar\"> "\ " <menu action=\"File\"> "\ " <menuitem action=\"Save\"/> "\ " <menuitem action=\"SaveAs\"/> "\ " <menuitem action=\"Quit\"/> "\ " </menu> "\ " <menu action=\"View\"> "\ " <menuitem action=\"Structure\"/> "\ " </menu> "\ " <menu action=\"Help\"> "\ " <menuitem action=\"About\"/> "\ " </menu> "\ " </menubar> "\ "</ui> " self.add_ui_from_string(descriptor) class GUIAboutDialog(gtk.AboutDialog): def __init__(self): gtk.AboutDialog.__init__(self) self.set_name ("qmcPACK Input Builder") self.set_version("0.1") self.set_copyright("Copyright 2007, GNU Public License") self.set_website("http://cms.mcc.uiuc.edu/qmcpack/index.php/QMCPACK_Wiki_Home") self.set_authors(["<NAME> (<EMAIL>)"]) ############################################################# # function relativeto # # return a the name of file2 relative to the path of file1 # # Example: # # file1 = "/home/kesler/BN/abc.xml" # # file2 = "/home/kesler/pseudo/B.xml" # # print relativeto (file1, file2) yields "../pseudo/B.xml" # ############################################################# def relative2 (file1, file2): dir1 = os.path.dirname(file1) dir2 = os.path.dirname(file2) dirlist1 = dir1.split ('/') dirlist2 = dir2.split ('/') if (dirlist1[0] == ''): dirlist1.remove('') if (dirlist2[0] == ''): dirlist2.remove('') print "dirlist1 = " + repr(dirlist1) common = "" i = 0 mindirs = min (len(dirlist1), len(dirlist2)) while ((i < mindirs) and (dirlist1[i] == dirlist2[i])): common = common + '/' + dirlist1[i] i = i+1 common = common dirstrip = dir1.replace(common,'',1) filestrip = file2.replace(common+'/','',1) striplist = dirstrip.split('/') rel = "" for d in striplist: if (d != ""): rel = rel + "../" rel = rel + filestrip return rel def relativeto (file1, file2): dir = os.path.dirname (file2) common = os.path.commonprefix((file1, dir)) dirstrip = dir.lstrip(common) filestrip = file2.lstrip(common) dirlist = dirstrip.split('/') rel = "" for d in dirlist: if (d != ""): rel = rel + "../" rel = rel + filestrip return rel class GUI: def __init__(self): self.window = gtk.Window(gtk.WINDOW_TOPLEVEL) self.window.set_title ('qmcPACK Input Builder') manager = MainManager() self.window.add_accel_group (manager.get_accel_group()) manager.Setup() mainMenu = manager.get_widget("/MenuBar") mainBox = gtk.VBox() mainBox.pack_start (mainMenu, False, False) # Connect menu callbacks manager.SaveAsAction.connect("activate", self.save_as_callback) manager.SaveAction.connect("activate", self.save_callback) self.About = GUIAboutDialog() manager.AboutAction.connect("activate", self.about_callback) self.window.connect("delete_event", self.delete) notebook = gtk.Notebook() notebook.set_tab_pos (gtk.POS_LEFT) self.GeometryFrame = Geometry() self.WavefunctionFrame = Wavefunction(self.GeometryFrame) self.RunFrame = Run() notebook.append_page (self.GeometryFrame, gtk.Label("Geometry")) notebook.append_page (self.WavefunctionFrame, gtk.Label("Wave function")) notebook.append_page (self.RunFrame, gtk.Label("Run")) if (viewerOkay): self.Viewer = StructureViewer() notebook.append_page(self.Viewer, gtk.Label("Viewer")) mainBox.pack_start (notebook, False, False, 5) self.window.add (mainBox) # Setup dialogs buttons = (gtk.STOCK_CANCEL,gtk.RESPONSE_CANCEL,gtk.STOCK_SAVE,gtk.RESPONSE_OK) self.SaveAsDialog = gtk.FileChooserDialog("Save qmcPACK input as", \ self.window, gtk.FILE_CHOOSER_ACTION_SAVE, buttons) self.SaveAsDialog.hide() self.Filename = None self.window.show_all() def about_callback (self, action): self.About.run() def save_as_callback(self, action): if (self.SaveAsDialog.run() == gtk.RESPONSE_OK): self.Filename = self.SaveAsDialog.get_filename() self.write_qmcPACK(self.Filename) self.window.set_title (basename(self.Filename)) self.SaveAsDialog.hide() def save_callback(self, action): if (self.Filename == None): self.save_as_callback(action) else: self.write_qmcPACK (self.Filename) def write_qmcPACK(self, filename): impl = getDOMImplementation() doc = impl.createDocument(None, "qmcPACK", None) topElem = doc.documentElement # Write out structural geometry elements systemElem = doc.createElement("qmcsystem") systemElem.setAttribute("dim", "3") # Simulation cell information cellElem = doc.createElement ("simulationcell") latticeElem = doc.createElement ("parameter") latticeElem.setAttribute("name", "lattice") latticeText = doc.createTextNode("\n"+self.GeometryFrame.get_lattice_text()+" ") latticeElem.appendChild (latticeText) bcondsElem = doc.createElement ("bconds") bcondsText = doc.createTextNode(" " + self.GeometryFrame.get_periodic_text() + " ") bcondsElem.appendChild (bcondsText) cellElem.appendChild (latticeElem) cellElem.appendChild (bcondsElem) # Atom position information particleSetElem = doc.createElement ("particleset") particleSetElem.setAttribute ("name", "i") particleSetElem.setAttribute ("size", repr (self.GeometryFrame.get_num_atoms())) systemElem.appendChild(cellElem) # Ion types ionData = self.GeometryFrame.get_atom_data() bareIons = False pseudoIons = False for data in ionData: groupElem = doc.createElement ("group") groupElem.setAttribute("name", data[0]) chargeElem = doc.createElement("parameter") chargeElem.setAttribute("name", "charge") chargeElem.appendChild(doc.createTextNode(repr(data[2]))) valenceElem = doc.createElement("parameter") valenceElem.setAttribute("name", "valence") valenceElem.appendChild(doc.createTextNode(repr(data[2]))) zElem = doc.createElement("parameter") zElem.setAttribute("name", "atomicnumber") zElem.appendChild(doc.createTextNode(repr(data[1]))) groupElem.appendChild(chargeElem) groupElem.appendChild(valenceElem) groupElem.appendChild(zElem) particleSetElem.appendChild (groupElem) if ((data[3]=="Nonlocal PP") or (data[3] == "LocalPP")): pseudoIons = True else: bareIons = True # Add atom positions posElem = doc.createElement("attrib") posElem.setAttribute("name", "position") posElem.setAttribute("datatype", "posArray") posElem.setAttribute("condition", "1") positions = self.GeometryFrame.AtomPos.get_atom_positions() posText = "\n" for pos in positions: rowText = " " + ("%12.6f %12.6f %12.6f" % (pos[0], pos[1], pos[2])) + "\n" posText = posText + rowText posText = posText + " " posElem.appendChild(doc.createTextNode(posText)) particleSetElem.appendChild(posElem) # Add atom types idElem = doc.createElement("attrib") idElem.setAttribute ("name", "ionid") idElem.setAttribute ("datatype", "stringArray") idText = "\n " ids = self.GeometryFrame.AtomPos.get_atom_types() for id in ids: if (id != None): idText = idText + id + " " idText = idText + "\n " idElem.appendChild(doc.createTextNode(idText)) particleSetElem.appendChild(idElem) systemElem.appendChild(particleSetElem) # Add hamiltonian section hamElem = doc.createElement("hamiltonian") hamElem.setAttribute("name", "h0") hamElem.setAttribute("type", "generic") hamElem.setAttribute("targey", "e") # e-e interaction eeElem = doc.createElement("pairpot") eeElem.setAttribute("name", "ElecElec") eeElem.setAttribute("name", "coulomb") eeElem.setAttribute("source", "e") hamElem.appendChild(eeElem) # e-ion interaction # Pseudopotentials if (pseudoIons): pseudoElem = doc.createElement("pairpot") pseudoElem.setAttribute("type", "pseudo") pseudoElem.setAttribute("name", "PseudoPot") pseudoElem.setAttribute("source", "i") pseudoElem.setAttribute("wavefunction", "psi0") pseudoElem.setAttribute("format", "xml") for data in ionData: if (data[3] == "Nonlocal PP"): pElem = doc.createElement ("pseudo") pElem.setAttribute("elementType", data[0]) if (data[4] == None): print "Warning: nonlocal pseudopotential file not set." else: pElem.setAttribute("href", \ relative2(filename,data[4])) pseudoElem.appendChild (pElem) hamElem.appendChild(pseudoElem) if (bareIons): bareElem = doc.createElement("pairpot") bareElem.setAttribute("name", "barIon") bareElem.setAttribute("type", "coulomb") hamElem.appendChild (bareElem) systemElem.appendChild(hamElem) topElem.appendChild (systemElem) ######################### # Write run information # ######################### for run in self.RunFrame.RunList: runtype = run.TypeCombo.get_active_text() runElem = doc.createElement ("qmc") runElem.setAttribute("method", runtype) runElem.setAttribute("target", "e") paramList = run.get_param_list() for param in paramList: paramElem = doc.createElement("parameter") paramElem.setAttribute("name", param[0]) textElem = doc.createTextNode (param[1]) paramElem.appendChild (textElem) runElem.appendChild (paramElem) topElem.appendChild (runElem) file = open (filename, "w") PrettyPrint (doc, file) file.close() def delete(self, widget, event=None): gtk.main_quit() return False def run(self): gtk.main() if __name__ == "__main__": gui = GUI() gui.run() ``` #### File: qmcpack/utils/Energy.py ```python from numpy import * import sys def corr(i,x,mean,var): N=len(x) if var < 1.0e-10:#if the variance is 0 return an effectively infinity corr return 1 corr=1.0/var*1.0/(N-i)*sum((x[0:N-i]-mean)*(x[i:N]-mean)) return corr def Stats(x): N=len(x) mean=sum(x)/(N+0.0) xSquared=x*x var=sum(xSquared)/(N+0.0)-mean*mean i=0 tempC=0.5 kappa=0.0 while (tempC>0 and i<(N-1)): kappa=kappa+2.0*tempC i=i+1 tempC=corr(i,x,mean,var) if kappa == 0.0: kappa = 1.0 Neff=(N+0.0)/(kappa+0.0) if (Neff == 0.0): Neff = 1.0 error=sqrt(var/Neff) return (mean,var,error,kappa) def Block (x, blockfactor): N = len(x) Nblocks = N / blockfactor xb = zeros(Nblocks) for i in range(0,Nblocks): start = i*blockfactor end = (i+1)*blockfactor xb[i] = sum(x[start:end])/(blockfactor+0.0) return xb def MeanErrorString (mean, error): if (mean!=0.0): meanDigits = math.floor(math.log(abs(mean))/math.log(10)) else: meanDigits=2 if (isnan(error)): error = 0.0 if (error!=0.0): rightDigits = -math.floor(math.log(error)/math.log(10))+1 else: rightDigits=8 if (rightDigits < 0): rightDigits = 0 formatstr = '%1.' + '%d' % (rightDigits) + 'f' meanstr = formatstr % mean errorstr = formatstr % error return meanstr + ' +/- ' + errorstr # return (meanstr, errorstr) file = open (sys.argv[1], 'r') names = file.readline().split() file.close() s = loadtxt(sys.argv[1]) c = s.shape[0] factor = 1.0 if (len(sys.argv) > 4): c = int(sys.argv[4]) if (len(sys.argv) > 3): factor = float(sys.argv[3]) s = s / factor if len(sys.argv) > 2: first = int(sys.argv[2]) else: first = 20 #data = s[first:c,1] #(avg, var, error, kapp) = Stats(data) #print "Kappa = " + repr(kapp) Ewald = 0.0 MPC = 0.0 KEcorr = 0.0 totE = 0.0 err = 0.0 for i in range(2,len(names)): n = names[i]; data = s[first:c,i-1] (avg, var, error, kapp) = Stats(data) if (n == 'AcceptRatio' or n=='BlockCPU' or n=='BlockWeight'): avg *= factor error *= factor if (n == 'ElecElec'): Ewald = avg if (n == 'MPC'): MPC = avg if (n == 'KEcorr'): KEcorr = avg if (n == 'LocalEnergy'): totE = avg err = error if (n == 'LocalEnergy_sq'): E = s[first:c,i-2] (eavg, evar, eerr, ekapp) = Stats(E) variance = avg/factor - eavg*eavg n = 'Variance' avg = variance print '%-20s = %s' % (n, MeanErrorString(avg,error)) correction = KEcorr if (Ewald !=0.0 and MPC != 0.0): correction += MPC - Ewald if (abs(correction) > 1.0e-12): print '-----------------------------------------------------' print '%-20s = %s' % ('Corrected energy', MeanErrorString(totE+correction,err)) #E = s[first:c,1]; #Vloc = s[first:c,2]; #KE = s[first:c,3]; #E_E = s[first:c,4]; #locPP = s[first:c,5]; #NLPP = s[first:c,6]; #IonIon = s[first:c,7]; #avg = mean (E); #var = mean ((E-avg)*(E-avg)); #err = sqrt(var/c); #N = len(E) #print "Blockfactor Std Error" #errlist = [] #for factor in range(10,N/2,10): # Eblock = Block(E,factor) # E2 = Eblock*Eblock # avg = sum (Eblock)/(len(Eblock)+0.0) # var = var=sum((Eblock-avg)*(Eblock-avg))/(len(Eblock)+0.0) # error = sqrt (var/(len(Eblock)+0.0)) # errlist.append(error) # print " %4d %8.6f" % (factor, error) #(avg, var, error, kapp) = Stats(E) #error = max(errlist) #print "E = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(Vloc) #print "Vloc = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(KE) #print "KE = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(E_E) #print "E_E = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(locPP) #print "locPP = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(NLPP) #print "NLPP = " + MeanErrorString(avg,error) #(avg, var, error, kapp) = Stats(IonIon) #print "IonIon = " + repr(avg) ``` #### File: hclib/tools/median.py ```python import os import sys def median(mylist): sorts = sorted(mylist) length = len(sorts) if not length % 2: return (sorts[length / 2] + sorts[length / 2 - 1]) / 2.0 return sorts[length / 2] l = [] for line in sys.stdin: l.append(float(line)) print str(median(l)) ``` #### File: hclib/tools/timeline.py ```python import numpy as np import matplotlib.pyplot as plt import sys import os class Task: def __init__(self, start, lbl, event_id): self.start = start self.elapsed = -1 self.lbl = lbl self.event_id = event_id def set_elapsed(self, end_time): assert self.elapsed == -1 self.elapsed = end_time - self.start def normalize_start(self, min_time): self.start = self.start - min_time def is_int(s): try: int(s) return True except ValueError: return False colors_iter = 0 colors = [('r', 'Red'), ('y', 'Yellow'), ('b', 'Blue'), ('g', 'Green'), ('c', 'Cyan'), ('m', 'Magenta'), ('#FA8072', 'Salmon'), ('#808000', 'Olive'), ('#FF00FF', 'Fuchsia')] colors_dict = {} for color in colors: colors_dict[color[0]] = color[1] labels = {} max_timestamp = 0 min_timestamp = None if len(sys.argv) != 2: print('usage: python timeline.py timeline') sys.exit(1) fp = open(sys.argv[1], 'r') total_events = 0 tasks = {} line_no = 1 for line in fp: tokens = line.split(' ') total_events += 1 timestamp = int(tokens[0]) thread = int(tokens[1]) event_type = tokens[2] transition = tokens[3] event_id = int(tokens[4]) if event_type not in labels: if colors_iter >= len(colors): print('Ran out of colors, add some') sys.exit(1) labels[event_type] = colors[colors_iter][0] colors_iter += 1 if not thread in tasks: tasks[thread] = [] if transition == 'START': tasks[thread].append(Task(timestamp, event_type, event_id)) if min_timestamp is None: min_timestamp = timestamp else: min_timestamp = min(min_timestamp, timestamp) elif transition == 'END': found = None for task in tasks[thread]: if task.event_id == event_id: assert found is None found = task assert not found is None found.set_elapsed(timestamp) max_timestamp = max(max_timestamp, timestamp) else: print('Unsupported transition "' + transition + '" at line ' + str(line_no)) sys.exit(1) line_no = line_no + 1 fig = plt.figure(num=0, figsize=(18, 6), dpi=80) width = 0.35 # the width of the bars: can also be len(x) sequence color_counter = 0 ind = 0 x_labels = [] print('Elapsed time: ' + str(float(max_timestamp - min_timestamp) / 1000000.0) + ' ms') print(str(total_events) + ' events in total') for lbl in labels: print(lbl + ': ' + colors_dict[labels[lbl]]) for thread in sorted(tasks.keys()): x_labels.append(str(thread)) task_no = 1 for t in tasks[thread]: t.normalize_start(min_timestamp) if task_no % 5000 == 0: print(str(thread) + ' ' + str(task_no) + '/' + str(len(tasks[thread]))) # Plot in microseconds plt.barh(ind, float(t.elapsed) / 1000000.0, height=width, left=(float(t.start) / 1000000.0), linewidth=1, color=labels[t.lbl]) task_no = task_no + 1 ind = ind + width plt.ylabel('Threads') plt.xlabel('Time (ms)') plt.yticks(np.arange(0, len(tasks.keys()), width) + width/2., x_labels) plt.axis([ 0, float(max_timestamp-min_timestamp) / 1000000.0, 0, ind ]) plt.show() ```
{ "source": "jkchengh/s2m2", "score": 3 }
#### File: s2m2/models/auv.py ```python from math import * import numpy as np import random from scipy.integrate import odeint from models.agent import * from math import * import numpy as np from numpy.linalg import inv, norm class AUV(Agent): def __init__(self, size, velocity, k): self.size = size self.velocity = velocity self.k = k def model(self, q, t, u): # x, y, z, roll, pitch, yaw x, y, z, phi, theta, psi = q v = u[0] wx, wy, wz = u[1] xdot = v * cos(psi) * cos(theta) ydot = v * sin(psi) * cos(theta) zdot = v * sin(theta) phidot = wx + wy * sin(phi) * tan(theta) + wz * cos(phi) * tan(theta) thetadot = wy * cos(phi) - wz * sin(phi) psidot = wy * sin(phi) * (1 / cos(theta)) + wz * cos(phi) * (1 / cos(theta)) return [xdot, ydot, zdot, phidot, thetadot, psidot] def controller(self, q, qref, uref): x, y, z, phi, theta, psi = q c_phi = cos(phi) c_theta = cos(theta) c_psi = cos(psi) s_phi = sin(phi) s_theta = sin(theta) s_psi = sin(psi) k_1, k_2, k_3 = self.k R = np.array( [[c_psi * c_theta, c_psi * s_theta * s_phi - s_psi * c_phi, c_psi * s_theta * c_phi + s_psi * s_phi], [s_psi * c_theta, s_psi * s_theta * s_phi + c_psi * c_phi, s_psi * s_theta * c_phi - c_psi * s_phi], [-s_theta, c_theta * s_phi, c_theta * c_phi]]) B_2 = np.array([[1, sin(phi) * tan(theta), cos(phi) * tan(theta)], [0, cos(phi), -sin(phi)], [0, sin(phi) * (1 / cos(theta)), cos(phi) * (1 / cos(theta))]]) phi_d, theta_d, psi_d = qref[3:6] u_2d = np.array([[phi_d]]) v_d = uref[0] # The error is calculated here. This is the error between the waypoint and # the current state e_x, e_y, e_z, e_phi, e_theta, e_psi = calculate_error(q, qref, uref, R) u_2d = np.transpose(np.array(uref[1])) B_2d = np.array([[1, sin(phi_d) * tan(theta_d), cos(phi_d) * tan(theta_d)], [0, cos(phi_d), -sin(phi_d)], [0, sin(phi_d) * (1 / cos(theta_d)), cos(phi_d) * (1 / cos(theta_d))]]) Q = np.transpose(np.array([0, e_z * v_d / k_2, e_y * v_d * cos(e_theta) / k_3])) # te P_e = np.transpose(np.array([k_1 * sin(e_phi), k_2 * sin(e_theta), k_3 * sin(e_psi)])) # This is the control law gamma = 1 v_b = v_d * (cos(e_psi) * cos(e_theta) - 1) + e_x * gamma ** 2 u_2b = inv(B_2) * (Q + (B_2d - B_2) * u_2d + P_e) u_1 = v_d + v_b u_2 = u_2d + u_2b u_2 = [u_2[0][0], u_2[1][1], u_2[2][2]] return [u_1, u_2] def bloating(self, n): return 0 k1, k2, k3, kp = self.k if n != 0: return sqrt(4*n/k2) else: return 0 def run_model(self, q0, t, qref, uref): q = [q0] u0 = [0, [0, 0, 0]] for i in range(0, len(t)): t_step = [t[i - 1], t[i]] dx, dy, dz, dphi, dtheta, dpsi = [random.uniform(-0.001, 0.001), random.uniform(-0.001, 0.001), random.uniform(-0.001, 0.001), random.uniform(-0.001, 0.001), random.uniform(-0.001, 0.001), random.uniform(-0.001, 0.001)] q1 = odeint(self.model, q0, t_step, args=(u0,)) + [dx, dy, dz, dphi, dtheta, dpsi] q0 = q1[1] q.append(q0) u0 = self.controller(q0, qref[i], uref[i]) return q def calculate_error(q, qref, uref, R): X = np.array(q[0:3]) Theta = np.array(q[3:6]) # X_d = trajectory(t[idx], T, params) X_d = np.array(qref[0:3]) Theta_d = np.array(qref[3:6]) v_d = uref[0] wx,wy,wz = uref[1] X_e = np.transpose(R)*(X_d - X) Theta_e = Theta_d - Theta return [X_e[0][0], X_e[1][1], X_e[2][2], Theta_e[0], Theta_e[1], Theta_e[2]] ```
{ "source": "jkcm/lagrangian-cset", "score": 3 }
#### File: jkcm/lagrangian-cset/met_utils.py ```python import numpy as np import warnings from scipy import integrate warnings.simplefilter("ignore") p0 = 1000. # reference pressure, hPa Rdry = 287. # gas const for dry air, J/K/kg Rvap = 461. # gas const for water vapor, J/K/kg eps = Rvap/Rdry - 1 cp = 1004. # cp_dry, specific heat of dry air at const pressure, J/K/kg g = 9.81 # grav acceleration at sea level, m/s2 lv = 2.5*10**6 # latent heat of vaporization at 0C, J/kg def smooth(x, window_len=11, window='hanning'): """smooth the data using a window with requested size. This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. Courtesy of scipy-Cookbook input: x: the input signal window_len: the dimension of the smoothing window; should be an odd integer window: the type of window from 'flat', 'hanning', 'hamming', 'bartlett', blackman', flat window will produce a moving average smoothing. output: the smoothed signal example: t=linspace(-2,2,0.1) x=sin(t)+randn(len(t))*0.1 y=smooth(x) see also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter """ if isinstance(x, list): x = np.array(x) if window_len % 2 == 0: raise ValueError("please use odd-numbered window_len only.") if x.ndim != 1: raise ValueError("smooth only accepts 1 dimension arrays.") if x.size < window_len: raise ValueError("Input vector needs to be bigger than window size.") if window_len < 3: return x if window not in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: raise ValueError("Window is one of 'flat', 'hanning', " "hamming', 'bartlett', 'blackman'") s = np.r_[x[window_len-1:0:-1], x, x[-1:-window_len:-1]] if window == 'flat': # moving average w = np.ones(window_len, 'd') else: w = eval('np.' + window + '(window_len)') y = np.convolve(w/w.sum(), s, mode='valid') return y[int(window_len/2):-int(window_len/2)] def qvs_from_p_T(p, T): """p in Pa, T in K. return is in kg/kg """ es = 611.2*np.exp(17.67*(T-273.15)/(T-29.65)) qvs = 0.622*es/(p-0.378*es) return qvs def qv_from_p_T_RH(p, T, RH): """p in Pa, T in K, Rh in pct. return is in kg/kg """ # es = 611.2*np.exp(17.67*(T-273.15)/(T-29.65)) qvs = qvs_from_p_T(p, T) rvs = qvs/(1-qvs) rv = RH/100. * rvs qv = rv/(1+rv) return qv def tvir_from_T_w(T, w): """T in L, w in kg/kg""" t_vir = T*(1+0.61*w) return t_vir def theta_from_p_T(p, T, p0=1000): theta = T * (p0/p)**(Rdry/cp) return theta def get_liquid_water_theta(temp, theta, q_l): """temp = air temp (K) theta = pot temp, q_l = liquid water MR""" theta_l = theta - (theta*lv*q_l/(temp*cp*1000)) return theta_l def density_from_p_Tv(p, Tv): return p/(Rdry*Tv) #def thetae_from_theta_w_T(theta, w, T): # """theta = pot temp in K, w = mr in kg/kg, T = temp in K""" # returnb theta*np.exp(lv*) def thetae_from_t_tdew_mr_p(t, tdew, mr, p): """From Bolton, 1980 t, tdew in K, mr in kg/kg, p in Pa """ t_lcl = 56 + 1/((1/(tdew-56))+(np.log(t/tdew)/800)) e = p*mr/(mr + 0.622) K = 0.2854 # Rdry/cp theta_lcl = t*(100000/(p-e))**K*(t/t_lcl)**(0.28*mr) theta_e = theta_lcl*np.exp((3036/t_lcl - 1.78)*mr*(1+0.488*mr)) return theta_e def get_LCL(t, t_dew, z): if np.any(t_dew > t): t_dew = np.minimum(t, t_dew) # raise ValueError('dew point temp above temp, that\'s bananas') return z + 125*(t - t_dew) def get_virtual_dry_static_energy(T, q, z): return cp*T*(1+eps*q) + g*z def get_moist_adiabatic_lapse_rate(T, p): #K and hPa es = 611.2*np.exp(17.67*(T-273.15)/(T-29.65)) # Bolton formula, es in Pa qs = 0.622*es/(p*100-0.378*es) num = 1 + lv*qs/(Rdry*T) denom = 1 + lv**2*qs/(cp*Rvap*T**2) gamma = g/cp*(1-num/denom) return gamma def get_moist_adiabat(t, p, p_arr): pass def get_Ri_profile(u, v, q, T, z, T0=None, z0=None, q0=None, filt=False): if filt: u = smooth(u, window_len=filt) v = smooth(v, window_len=filt) q = smooth(q, window_len=filt) T = smooth(T, window_len=filt) z = smooth(z, window_len=filt) if T0 is None: T0 = T[0] if z0 is None: z0 = z[0] if q0 is None: q0 = q[0] del_U_sq = u**2 + v**2 sv_0 = get_virtual_dry_static_energy(T0, q0, z0) sv_hbl = get_virtual_dry_static_energy(T, q, z) Ri_b = z*(2*g*(sv_hbl - sv_0))/(del_U_sq*(sv_hbl + sv_0 - g*z0 - g*z)) return Ri_b def Ri_pbl_ht(u, v, q, T, z, T0=None, z0=None, q0=None, smooth=False): indx = np.flatnonzero(z < 40)[-1] # avg all values below this for sfc values if T0 is None: T0 = np.nanmean(T[:indx]) if z0 is None: z0 = np.nanmean(z[:indx]) if q0 is None: q0 = np.nanmean(q[:indx]) Ri = get_Ri_profile(u, v, q, T, z, T0, z0, q0, smooth) try: indx = np.flatnonzero(np.array(Ri) > 0.25)[0] z_pbl = z[indx] if z_pbl > 4000: raise IndexError except IndexError: return 0, float('nan') return indx, z_pbl def RH_fancy_pblht_1d( z, RH): """ at least 80% of the time, one could identify a 'RH inversion base' as the altitude of max RH for which RH(zi + 300 m) - RH(zi) < -0.3. If such a layer does not exist below 4 km or the top of the sounding, we say an inversion is not present. """ if z.shape != RH.shape: raise ValueError('z and RH must have the same shape') if len(z.shape) != 1: # height axis raise ValueError('data has an invalid number of dimensions') if not (z < 4000).any(): raise ValueError('must have data below 4000m') z = smooth(z, window_len=5) RH = smooth(RH, window_len=5) # # flipped = False ## if np.all(z[100:-100] != sorted(z[100:-100])): # not in ascending order ## if np.all(z[100:-100:-1] == sorted(z[100:-100])): # in descenting order # if z[0] > z[-1]: # starts off higher # if True: # z = z[::-1] # theta = theta[::-1] # flipped = True # else: # raise ValueError("data not in ascending or descending order") # # %% z_p300 = z + 300 # i_arr = np.empty_like(z) RH_diff = np.empty_like(z) for n, zpn in enumerate(z_p300): i_arr = np.abs(z - zpn).argmin() RH_diff[n] = RH[n] - RH[i_arr] # print(RH_diff) inv_cands = np.where(RH_diff > 30)[0] RH_cands = RH[inv_cands] if len(RH_cands) == 0: if np.all(np.isnan(RH_diff)): return {'z': np.nan, 'RH': np.nan, 'i': np.nan, 'inversion': False} biggest_drop = np.nanargmax(RH_diff) z_drop=z[biggest_drop] RH_drop = RH[biggest_drop] return {'z': z_drop, 'RH': RH_drop, 'i': biggest_drop, 'inversion': False} best = np.argmax(RH_cands) best_index = inv_cands[best] RH_bot = RH[best_index] z_bot = z[best_index] return {'z': z_bot, 'RH': RH_bot, 'i': best_index, 'inversion': True} # %% # inv_cands = RH # for n,i in enumerate(i_arr): # print(z[n] - z[i]) def RH_50_pblht_1d(z, RH): """ Given z and RH, return height where RH drops below 50 """ if z.shape != RH.shape: raise ValueError('z and RH must have the same shape') if len(z.shape) != 1: # height axis raise ValueError('data has an invalid number of dimensions') if not (z < 4000).any(): raise ValueError('must have data below 4000m') z = smooth(z, window_len=5) RH = smooth(RH, window_len=5) nanfrac = sum(np.isnan(RH)/len(RH)) if np.nanmin(RH) > 50 or np.all(np.isnan(RH)) or np.nanmax(RH) < 50: # print('no inversion') return {"z": np.nan, "i": np.nan, 'inversion': False} i_min = np.where(z == z[RH < 50].min())[0][0] z_i = z[i_min] # print(z_i) # RH_i = RH[i_min] return {"z": z_i, "i":i_min, 'inversion': True} pass def Peter2_inv(z, rh, theta): idx = z<3000 rh = rh[idx] theta = theta[idx] z = z[idx] grad_rh = np.gradient(rh, z) grad2_rh = np.gradient(grad_rh, z) grad2_rh[np.where(grad2_rh>0)] = 0 # looking for a strong decrease in rh grad grad2_rh[np.where(grad_rh>0)] = 0 # must be negative grad in rh grad_theta = np.gradient(theta, z) grad2_theta = np.gradient(grad_theta, z) grad2_theta[np.where(grad2_theta<0)] = 0 #looking for a strong increase in theta grad grad2_theta[np.where(grad_theta<0)] = 0 #must be positive grad in theta grad2_prod = grad2_rh*grad2_theta return(z[np.argmin(grad2_prod)]) def moist_static_energy(t, z, q): return cp*t + g*z + lv*q def get_inversion_layer_2d(z, t, p, axis=0, handle_nans=False): res_dict = {key: np.empty(z.shape[axis]) for key in ["z_top", "z_mid", "z_bot", "i_top", "i_mid", "i_bot", "t_above_inv", "t_below_inv", "d_t_inv"]} for i,(z_i,t_i,p_i) in enumerate(zip(z,t,p)): try: res = quick_inversion(z_i,t_i,p_i) except ValueError as e: if handle_nans: res = {"z_top": np.nan, "z_mid": np.nan, "z_bot": np.nan, "i_top": np.nan, "i_mid": np.nan, "i_bot": np.nan} else: import matplotlib.pyplot as plt plt.plot(t_i[z_i<4000], z_i[z_i<4000]) raise e for key, value in res.items(): res_dict[key][i] = value return res_dict def quick_inversion(z, t, p, smooth_t=False): # z in meters, t in K, p in hPa #getting layers gamma_moist = get_moist_adiabatic_lapse_rate(T=t, p=p)*1000 if smooth_t: gamma = -np.gradient(smooth(t, window_len=31), z)*1000 else: gamma = -np.gradient(t, z)*1000 gamma[np.gradient(z)>-1] = np.nan gamma[z<330] = np.nan gamma[z>3000] = np.nan gamma[np.abs(gamma)>100] = np.nan gamma_diff = (gamma-gamma_moist)/1000 return_dict = {"z_top": np.nan, "z_mid": np.nan, "z_bot": np.nan, "i_top": np.nan, "i_mid": np.nan, "i_bot": np.nan, "t_above_inv": np.nan, "t_below_inv": np.nan, "d_t_inv": np.nan} #inversion center i_mid = np.nanargmin(gamma) # middle of inversion is where the lapse rate is the strongest if np.isnan(i_mid): print('no i_mid') return buncha_nans z_mid = z[i_mid] return_dict['i_mid'] = i_mid return_dict['z_mid'] = z_mid #inversion base max_gap = gamma[i_mid] - gamma_moist[i_mid] try: # first way to get the inversion base: where the lapse rate is sufficiently close to the moist adiabat again z_bot = np.max(z[np.logical_and(z<z[i_mid], gamma-gamma_moist>max_gap/4)]) except ValueError as v: # no crossing of the max_gap/4 line go for smallest gap below zmid cands = z<z[i_mid] # second way to get the inversion base: wherever it gets closest. if not np.any(cands): raise ValueError("no values below inversion middle!") z_bot = z[cands][np.argmin(np.abs(gamma[cands]-gamma_moist[cands]))] i_bot = np.argwhere(z==z_bot)[0][0] return_dict['i_bot'] = i_bot return_dict['z_bot'] = z_bot #inversion top top_candidates = np.logical_and(z>z[i_mid], gamma-gamma_moist>max_gap/4) if np.any(top_candidates): z_top = np.min(z[top_candidates]) # first way to get inversion top: where the lapse rate is sufficiently close to the moist adiabat again i_top = np.argwhere(z==z_top)[0][0] else: #second way to get inversion top: wherever it gets closest cands = z>z[i_mid] if not np.any(cands): raise ValueError("no values above inversion middle!") z_top = z[cands][np.argmin(np.abs(gamma[cands]-gamma_moist[cands]))] i_top = np.argwhere(z==z_top)[0][0] return_dict['i_top'] = i_top return_dict['z_top'] = z_top t_below_inv = t[i_bot] i_inv = np.logical_and(z>z_bot, z<z_top) d_t_inv = integrate.trapz(gamma_diff[i_inv], z[i_inv]) t_above_inv = t_below_inv + d_t_inv return_dict['t_above_inv'] = t_above_inv return_dict['t_below_inv'] = t_below_inv return_dict['d_t_inv'] = d_t_inv return return_dict def calc_decoupling_and_inversion_from_sounding(sounding_dict, usetheta=False, get_jumps=True, smooth_t=True): #Setting up variables z = sounding_dict['GGALT'] theta = sounding_dict['THETA'] theta_e = sounding_dict['THETAE'] qv = sounding_dict['QV'] t = sounding_dict['ATX'] if 'PSXC' in sounding_dict.keys(): p = sounding_dict['PSXC'] else: p = sounding_dict['PSX'] if not usetheta: theta_l = sounding_dict['THETAL'] ql = sounding_dict['QL'] if np.all(np.isnan(ql)): qt = qv else: qt = qv + ql else: theta_l = sounding_dict['THETA'] qt = qv #failing quietly buncha_nans = {"d_qt": np.nan, "d_theta_e": np.nan, "d_theta_l": np.nan, "alpha_thetal": np.nan, "alpha_qt":np.nan, "alpha_thetae": np.nan, "d_q_inv": np.nan, "d_t_inv": np.nan, "t_below_inv": np.nan, "t_above_inv": np.nan, "q_below_inv": np.nan, "q_above_inv": np.nan, "z_top": np.nan, "z_mid": np.nan, "z_bot": np.nan, "i_top": np.nan, "i_mid": np.nan, "i_bot": np.nan} buncha_nans['lat'] = np.nanmean(sounding_dict['GGLAT']) buncha_nans['lon'] = np.nanmean(sounding_dict['GGLON']) buncha_nans['lon_p'] =-140 + 0.8*(buncha_nans['lon']+140) + 0.4*(buncha_nans['lat']-30) buncha_nans['time'] = sounding_dict['TIME'][0] inv_levs = quick_inversion(z, t, p, smooth_t=smooth_t) buncha_nans.update(inv_levs) z_top, z_mid, z_bot = inv_levs['z_top'], inv_levs['z_mid'], inv_levs['z_bot'] i_top, i_mid, i_bot = inv_levs['i_top'], inv_levs['i_mid'], inv_levs['i_bot'] # for key, value in inv_levs.items(): # buncha_nans[key] = value # better with dict.update()? #jumps in q, t # i_upper = np.logical_and(z<=z_top, z>=z_mid) #this is the upper half of the inversion # if np.sum(i_upper) == 0: # print("error: no upper inv layer: z_top: {} z_mid: {}".format(z_top, z_mid)) # return buncha_nans # i_lower = np.logical_and(z>z_bot, z<z_mid) #this is the lower half of the inversion q_above_inv = qt[i_top] q_below_inv = qt[i_bot] d_q_inv = q_above_inv - q_below_inv buncha_nans['q_above_inv'] = q_above_inv buncha_nans['q_below_inv'] = q_below_inv buncha_nans['d_q_inv'] = d_q_inv #decoupling ests upper_25 = z_bot - (z_bot - min(z))/4. #top quarter of the MBL u_i = np.logical_and(z > upper_25, z < z_bot) lower_25 = min(z) + (z_bot - min(z))/4. #bottom quarter of the MBL l_i = np.logical_and(z < lower_25, z > min(z)) ft_base = z_top ft_top = ft_base + 500 l_ft = np.logical_and(z < ft_top, z > ft_base) #lower_free tropospheric values if z_bot - min(z) < 300 or np.sum(l_ft) == 0: return buncha_nans # can't calculate decouplng values if there is not enough MBL vertical or free-tropospheric with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) theta_e_sml = np.nanmean(theta_e[l_i]) theta_e_bzi = np.nanmean(theta_e[u_i]) theta_e_uzi = np.nanmean(theta_e[l_ft]) theta_l_sml = np.nanmean(theta_l[l_i]) theta_l_bzi = np.nanmean(theta_l[u_i]) theta_l_uzi = np.nanmean(theta_l[l_ft]) qt_sml = np.nanmean(qt[l_i]) qt_bzi = np.nanmean(qt[u_i]) qt_uzi = np.nanmean(qt[l_ft]) d_theta_e = theta_e_bzi - theta_e_sml d_theta_l = theta_l_bzi - theta_l_sml d_qt = qt_bzi - qt_sml buncha_nans['d_qt'] = d_qt buncha_nans['d_theta_l'] = d_theta_l buncha_nans['d_theta_e'] = d_theta_e alpha_thetal = (theta_l_bzi - theta_l_sml)/(theta_l_uzi - theta_l_sml) alpha_qt = (qt_bzi - qt_sml)/(qt_uzi - qt_sml) alpha_thetae = (theta_e_bzi - theta_e_sml)/(theta_e_uzi - theta_e_sml) buncha_nans['alpha_thetal'] = alpha_thetal buncha_nans['alpha_qt'] = alpha_qt buncha_nans['alpha_thetae'] = alpha_thetae return buncha_nans # hopefully no longer nans def calc_decoupling_and_zi_from_flight_data(flight_data, usetheta=False): var_list = ['GGLAT', 'GGLON', 'GGALT', 'RHUM', 'ATX', 'MR', 'THETAE', 'THETA', 'PSX', 'DPXC', 'PLWCC'] sounding_dict = {} sounding_dict['TIME'] = flight_data.time.values for i in var_list: sounding_dict[i] = flight_data[i].values if 'ATX' in var_list: sounding_dict['ATX'] = sounding_dict['ATX'] + 273.15 sounding_dict['DENS'] = density_from_p_Tv(flight_data['PSX'].values*100, flight_data['TVIR'].values+273.15) sounding_dict['QL'] = flight_data['PLWCC'].values/sounding_dict['DENS'] sounding_dict['THETAL'] = get_liquid_water_theta( sounding_dict['ATX'], sounding_dict['THETA'], sounding_dict['QL']) sounding_dict['QV'] = flight_data['MR'].values/(1+flight_data['MR'].values/1000) decoupling_dict = calc_decoupling_and_inversion_from_sounding(sounding_dict, usetheta=usetheta) # zi_dict = calc_zi_from_sounding(sounding_dict) return {**decoupling_dict} def calculate_LTS(t_700, t_1000): """calculate lower tropospheric stability t_700: 700 hPa temperature in Kelvin t_1000: 1000 hPa temperature in Kelvin returns: lower tropospheric stability in Kelvin """ theta_700 = theta_from_p_t(p=700.0, t=t_700) lts = theta_700-t_1000 return lts def calculate_moist_adiabatic_lapse_rate(t, p): """calculate moist adiabatic lapse rate from pressure, temperature p: pressure in hPa t: temperature in Kelvin returns: moist adiabatic lapse rate in Kelvin/m """ es = 611.2*np.exp(17.67*(t-273.15)/(t-29.65)) # Bolton formula, es in Pa qs = 0.622*es/(p*100-0.378*es) num = 1 + lv*qs/(Rdry*t) denom = 1 + lv**2*qs/(cp*Rvap*t**2) gamma = g/cp*(1-num/denom) return gamma def theta_from_p_t(p, t, p0=1000.0): """calculate potential temperature from pressure, temperature p: pressure in hPa t: temperature in Kelvin returns: potential temperature in Kelvin """ theta = t * (p0/p)**(Rdry/cp) return theta def calculate_LCL(t, t_dew, z=0.0): """calculate lifting condensation level from temperature, dew point, and altitude t: temperature in Kelvin t_dew: dew point temperature in Kelvin z: geopotential height in meters. defaults to 0 returns: lifting condensation level in meters raises: ValueError if any dew points are above temperatures (supersaturation) """ if np.any(t_dew > t): t_dew = np.minimum(t, t_dew) # raise ValueError('dew point temp above temp, that\'s bananas') return z + 125*(t - t_dew) def calculate_EIS(t_1000, t_850, t_700, z_1000, z_700, r_1000): """calculate estimated inversion strength from temperatures, heights, relative humidities t_1000, t_850, t_700: temperature in Kelvin at 1000, 850, and 700 hPa z_1000, z_700: geopotential height in meters at 1000 and 700 hPa r_1000: relative humidity in % at 1000 hPa returns: estimated inversion strength (EIS) in Kelvin """ if hasattr(r_1000, '__iter__'): r_1000[r_1000>100] = 100 # ignoring supersaturation for lcl calculation t_dew = t_1000-(100-r_1000)/5.0 lcl = calculate_LCL(t=t_1000, t_dew=t_dew, z=z_1000) lts = calculate_LTS(t_700=t_700, t_1000=t_1000) gamma_850 = calculate_moist_adiabatic_lapse_rate(t=t_850, p=850) eis = lts - gamma_850*(z_700-lcl) return eis # def DEC_inv_layer_from_sounding(sounding): # rh = sounding['RHUM'] # z = sounding['GGALT'] # i_above_inv = np.where(rh<60)[0] # z_above_inv = z[i_above_inv] # if np.any(i_above_inv): # z_mid = np.min(z_above_inv) # else: # z_mid = np.nan # return {'z_mid': z_mid} # def DEC_calc_decoupling_from_sounding(sounding_dict, usetheta=False, get_jumps=True, smooth_t=True): # z = sounding_dict['GGALT'] # theta = sounding_dict['THETA'] # theta_e = sounding_dict['THETAE'] # qv = sounding_dict['QV'] # t = sounding_dict['ATX'] # if 'PSXC' in sounding_dict.keys(): # p = sounding_dict['PSXC'] # else: # p = sounding_dict['PSX'] # if not usetheta: # theta_l = sounding_dict['THETAL'] # ql = sounding_dict['QL'] # if np.all(np.isnan(ql)): # qt = qv # else: # qt = qv + ql # else: # theta_l = sounding_dict['THETA'] # qt = qv # zi = heffter_pblht_1D(z, theta) # upper_25 = zi['z_bot'] - (zi['z_bot'] - min(z))/4. # u_i = np.logical_and(z > upper_25, z < zi['z_bot']) # lower_25 = min(z) + (zi['z_bot'] - min(z))/4. # l_i = np.logical_and(z < lower_25, z > min(z)) # ft_base = zi['z_bot']+500 # ft_top = ft_base + 500 # l_ft = np.logical_and(z < ft_top, z > ft_base) # buncha_nans = {"d_qt": np.nan, "d_theta_e": np.nan, "d_theta_l": np.nan, # "alpha_thetal": np.nan, "alpha_qt":np.nan, "alpha_thetae": np.nan, # "d_q_inv": np.nan, "d_t_inv": np.nan, # "t_below_inv": np.nan, "t_above_inv": np.nan, "q_below_inv": np.nan, "q_above_inv": np.nan, # "z_top": np.nan, "z_mid": np.nan, "z_bot": np.nan, "i_top": np.nan, "i_mid": np.nan, "i_bot": np.nan} # if zi['z_bot'] - min(z) < 300 or np.sum(l_ft) == 0: # return buncha_nans # with warnings.catch_warnings(): # warnings.simplefilter("ignore", category=RuntimeWarning) # theta_e_sml = np.nanmean(theta_e[l_i]) # theta_e_bzi = np.nanmean(theta_e[u_i]) # theta_e_uzi = np.nanmean(theta_e[l_ft]) # theta_l_sml = np.nanmean(theta_l[l_i]) # theta_l_bzi = np.nanmean(theta_l[u_i]) # theta_l_uzi = np.nanmean(theta_l[l_ft]) # qt_sml = np.nanmean(qt[l_i]) # qt_bzi = np.nanmean(qt[u_i]) # qt_uzi = np.nanmean(qt[l_ft]) # d_theta_e = theta_e_bzi - theta_e_sml # d_theta_l = theta_l_bzi - theta_l_sml # d_qt = qt_bzi - qt_sml # alpha_thetal = (theta_l_bzi - theta_l_sml)/(theta_l_uzi - theta_l_sml) # alpha_qt = (qt_bzi - qt_sml)/(qt_uzi - qt_sml) # alpha_thetae = (theta_e_bzi - theta_e_sml)/(theta_e_uzi - theta_e_sml) # # getting jumps across the inversion, old-fashioned way. bad for fuzzy inversions # # z_inv = inv_layer_from_sounding(sounding_dict)['z_mid'] # # i_below_inv = np.logical_and(z > z_inv-200, z < z_inv) # # i_above_inv = np.logical_and(z > z_inv, z < z_inv+200) # # q_below_inv = np.nanmax(qt[i_below_inv]) # # q_above_inv = np.nanmin(qt[i_above_inv]) # # d_q_inv = q_above_inv - q_below_inv # # t_below_inv = np.nanmin(theta[i_below_inv]) # # t_above_inv = np.nanmax(theta[i_above_inv]) # # d_t_inv = t_above_inv - t_below_inv # if get_jumps: # ### moist adiabatic way # gamma_moist = get_moist_adiabatic_lapse_rate(T=t, p=p)*1000 # if smooth_t: # gamma = -np.gradient(smooth(t, window_len=31), z)*1000 # else: # gamma = -np.gradient(t, z)*1000 # gamma[np.gradient(z)>-1] = np.nan # gamma[z<330] = np.nan # gamma[z>3000] = np.nan # gamma[np.abs(gamma)>100] = np.nan # gamma_diff = (gamma-gamma_moist)/1000 # # import matplotlib.pyplot as plt # # plt.plot(gamma, z) # # plt.ylim([0, 3000]) # # raise ValueError('hahahah') # i_mid = np.nanargmin(gamma) # if np.isnan(i_mid): # print('no i_mid') # return buncha_nans # z_mid = z[i_mid] # max_gap = gamma[i_mid] - gamma_moist[i_mid] # # z_bot = np.max(z[np.logical_and(z<z[i_mid], gamma>gamma_moist)]) # try: # z_bot = np.max(z[np.logical_and(z<z[i_mid], gamma-gamma_moist>max_gap/4)]) # except ValueError as v: # no crossing of the max_gap/4 line go for smallest gap below zmid # cands = z<z[i_mid] # if not np.any(cands): # raise ValueError("no values below inversion middle!") # z_bot = z[cands][np.argmin(np.abs(gamma[cands]-gamma_moist[cands]))] # i_bot = np.argwhere(z==z_bot)[0][0] # i_bot = np.argwhere(z==z_bot)[0][0] # top_candidates = np.logical_and(z>z[i_mid], gamma-gamma_moist>max_gap/4) # if np.any(top_candidates): # z_top = np.min(z[top_candidates]) # i_top = np.argwhere(z==z_top)[0][0] # else: # cands = z>z[i_mid] # if not np.any(cands): # import matplotlib.pyplot as plt # plt.plot(theta, z) # plt.figure() # plt.plot(gamma, z) # raise ValueError("no values above inversion middle!") # z_top = z[cands][np.argmin(np.abs(gamma[cands]-gamma_moist[cands]))] # i_top = np.argwhere(z==z_top)[0][0] # i_upper = np.logical_and(z<=z_top, z>=z_mid) # if np.sum(i_upper) == 0: # print("error: no upper inv layer: z_top: {} z_mid: {}".format(z_top, z_mid)) # return buncha_nans # i_lower = np.logical_and(z>z_bot, z<z_mid) # q_above_inv = qt[i_top] # q_below_inv = qt[i_bot] # d_q_inv = q_above_inv - q_below_inv # t_below_inv = t[i_bot] # i_inv = np.logical_and(z>z_bot, z<z_top) # d_t_inv = integrate.trapz(gamma_diff[i_inv], z[i_inv]) # t_above_inv = t_below_inv + d_t_inv # else: # i_bot, i_mid, i_top, z_bot, z_mid, z_top, q_above_inv, q_below_inv, t_above_inv, t_below_inv, d_q_inv, d_t_inv = np.nan, \ # np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan # return{"d_qt": d_qt, "d_theta_e": d_theta_e, 'd_theta_l': d_theta_l, # "alpha_thetal": alpha_thetal, "alpha_qt":alpha_qt, "alpha_thetae": alpha_thetae, # "d_q_inv": d_q_inv, "d_t_inv": d_t_inv, # "t_below_inv": t_below_inv, "t_above_inv": t_above_inv, "q_below_inv": q_below_inv, "q_above_inv": q_above_inv, # "z_top": z_top, "z_mid": z_mid, "z_bot": z_bot, "i_top": i_top, "i_mid": i_mid, "i_bot": i_bot } # def DEC_calc_zi_from_sounding(sounding_dict): # z = sounding_dict['GGALT'] # theta = sounding_dict['THETA'] # RH = sounding_dict['RHUM'] # T = sounding_dict['ATX'] # zi_dict = {} # # zi_dict['Rich'] = mu.Ri_pbl_ht(u, v, q, T, z, smooth=True) # zi_dict['RH50'] = RH_50_pblht_1d(z, RH) # zi_dict['RHCB'] = RH_fancy_pblht_1d(z, RH) # zi_dict['Heff'] = heffter_pblht_1D(z, theta) # zi_dict['Heff']['T_bot'] = T[zi_dict['Heff']['i_bot']] # zi_dict['Heff']['T_top'] = T[zi_dict['Heff']['i_top']] # zi_dict['lat'] = np.nanmean(sounding_dict['GGLAT']) # zi_dict['lon'] = np.nanmean(sounding_dict['GGLON']) # zi_dict['time'] = sounding_dict['TIME'][0] # zi_dict['lon_p'] = -140 + 0.8*(zi_dict['lon']+140) + 0.4*(zi_dict['lat']-30) # return zi_dict def DEC_heffter_pblht_1D(z, theta, find_top=False): def moving_average(a, n=3): ret = np.cumsum(a, dtype=float) ret[n:] = ret[n:] - ret[:-n] return ret[n - 1:] / n """ [courtesy of jmcgibbon] [made a little better by jkcm] Given height and theta returns the planetary boundary layer height from the Heffter criteria and the index of that height in the z-array. Assumes the data is 1-D with the axis being height. Assumes height in meters, and theta in K. """ if z.shape != theta.shape: raise ValueError('z and theta must have the same shape') if len(z.shape) != 1: # height axis raise ValueError('data has an invalid number of dimensions') if not (z < 4000).any(): raise ValueError('must have data below 4000m') # z = moving_average(z, n=5) # theta = moving_average(theta, n=3) z = smooth(z, window_len=15) theta = smooth(theta, window_len=15) flipped = False # if np.all(z[100:-100] != sorted(z[100:-100])): # not in ascending order # if np.all(z[100:-100:-1] == sorted(z[100:-100])): # in descending order if z[0] > z[-1]: # starts off higher if True: z = z[::-1] theta = theta[::-1] flipped = True else: raise ValueError("data not in ascending or descending order") dtheta = np.diff(theta) dz = np.diff(z) dtheta_dz = np.zeros_like(dtheta) valid = dz != 0 dtheta_dz[valid] = dtheta[valid]/dz[valid] del valid in_inversion = False found_inversion = False found_top = False theta_bot = np.nan z_bot = np.nan i_bot = np.nan theta_top = np.nan i_top = np.nan z_top = np.nan for i in range(z.shape[0]-1): # exclude top where dtheta_dz isn't defined if z[i] > 4000.: # not allowed to have inversion height above 4km break if in_inversion: # check if we're at PBL top if theta[i] - theta_bot > 2: found_inversion = True theta_top = theta[i] i_top = i z_top = z[i] if not find_top: break else: break #keep going up until we break the # check if we're still in an inversion # layer_dtheta_dz = (theta[i] - theta_bot)/(z[i]-z_bot) # if layer_dtheta_dz > 0.005: if dtheta_dz[i] > 0.005: # criterion for being in inversion pass # still in inversion, keep going else: in_inversion = False theta_bot = np.nan z_bot = np.nan i_bot = np.nan else: if dtheta_dz[i] > 0.005: # just entered inversion theta_bot = theta[i] i_bot = i z_bot = z[i] in_inversion = True else: # still not in inversion, keep going pass if found_inversion: if flipped: i_top = len(z)-i_top-1 i_bot = len(z)-i_bot-1 return {"z_top": z_top, "theta_top": theta_top, "i_top": i_top, "z_bot": z_bot, "theta_bot": theta_bot, "i_bot": i_bot, "inversion": True} else: # we didn't find a boundary layer height # return height of highest dtheta_dz below 4000m i_max = np.where(dtheta_dz == dtheta_dz[z[:-1] < 4000].max())[0][0] z_max = z[i_max] theta_max = theta[i_max] if flipped: i_max = len(z)-i_max-1 return {"z_top": z_max, "theta_top": theta_max, "i_top": i_max, "z_bot": z_max, "theta_bot": theta_max, "i_bot": i_max, "inversion": False} def DEC_heffter_pblht_2d(z, theta, axis=0, handle_nans=False): dummy = heffter_pblht_1D(np.arange(100), np.arange(100)) res_dict = {key: np.empty(z.shape[axis]) for key in dummy.keys()} result = np.empty(z.shape[axis]) for i,(z_i,theta_i) in enumerate(zip(z, theta)): try: res = heffter_pblht_1D(z_i,theta_i) except ValueError as e: if handle_nans: res = {"z_top": float('nan'), "theta_top": float('nan'), "i_top": float('nan'), "z_bot": float('nan'), "theta_bot": float('nan'), "i_bot": float('nan'), "inversion": False} else: raise e for key, value in res.items(): res_dict[key][i] = value return res_dict ``` #### File: jkcm/lagrangian-cset/unified_traj_data.py ```python import utils import met_utils import lagrangian_case as lc import datetime as dt import numpy as np import os import xarray as xr import matplotlib as mpl mpl.rcParams['figure.figsize'] = 12,5 import matplotlib.pyplot as plt import glob import pandas as pd from itertools import cycle from geographiclib.geodesic import Geodesic import time def xarray_from_trajectory(rfnum, trajnum, trajectory_type='500m_+72'): tdump = utils.load_flight_trajectory(rfnum, trajnum, trajectory_type=trajectory_type) ds = xr.Dataset.from_dataframe(tdump).drop(['tnum', 'gnum', 'age']) ds = ds.rename({'dtime': 'time'}) # assigning global attributes global_attrs = [ {'Title': "CSET Unified Trajectory Product"}, {'institution': "Department of Atmospheric Sciences, University of Washington"}, {'contact': "<EMAIL>"}, {'trajectory_setup': "Trajectories were run isobarically " + "from an initialization height of 500m " + "for 72 hours, using GDAS analysis met data"}, {'HYSPLIT': "Trajectories run using HYSPLIT (Hybrid Single "+ "Particle Lagrangian Integrated Trajectory Model). "+ "Acknowledgements to the NOAA Air Resources Laboratory "+ "(ARL) for the provision of the HYSPLIT transport and "+ "dispersion model used in this publication."}, {'references': "<NAME>., <NAME>, <NAME>., Stunder, "+ "B.J.B., <NAME>., and <NAME>., (2015). NOAA's "+ "HYSPLIT atmospheric transport and dispersion modeling "+ "system, Bull. Amer. Meteor. Soc., 96, 2059-2077, "+ "http://dx.doi.org/10.1175/BAMS-D-14-00110.1"}, {'CSET_flight': rfnum}, {'flight_trajectory': str(trajnum)}] for i in global_attrs: # note: an OrderedDict would be tidier, but does not unpack in order ds = ds.assign_attrs(**i) # assigning variable attributes var_attrs = { 'lon': {'long_name': 'longitude', 'units': 'degrees N'}, 'lat': {'long_name': 'latitude', 'units': 'degrees E'}, 'fhour': {'long_name': 'forecast_lead_time', 'units': 'hours'}, 'pres': {'long_name':'trajectory_pressure', 'units': 'hPa'}, 'height': {'long_name': 'trajectory_height_above_ground', 'units': 'meters'}} for k,v in var_attrs.items(): ds[k] = ds[k].assign_attrs(**v) return ds def save_trajectory_to_netcdf(ds, location): ds.to_netcdf(location) def add_ERA_ens_to_trajectory(ds, box_degrees=2): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels ens_files = [os.path.join(utils.ERA_ens_source, i) for i in sorted(os.listdir(utils.ERA_ens_source))] with xr.open_mfdataset(sorted(ens_files)) as data: data = data.rename({'level': 'ens_level'}) ds.coords['number'] = data.coords['number'] ds.coords['ens_level'] = data.coords['ens_level'] if 'w' in data.data_vars.keys() and 'sp' in data.data_vars.keys(): data['dspdt'] = (data.sp.dims, np.gradient(data.sp, np.median(np.gradient(data.time.values)/np.timedelta64(1, 's')), axis=0), {'units': "Pa s**-1", 'long_name': "Surface pressure tendency", 'standard_name': 'tendency_of_surface_air_pressure'}) data['w_corr'] = (data.w.dims, data.w - data.dspdt, {'units': data.w.units, 'long_name': 'Vertical velocity (sp-corrected)'}) for var in data.data_vars.keys(): var_shape = data[var].isel(time=0, latitude=0, longitude=0).shape vals = [] for (lat, lon, time) in zip(lats, lons%360, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print('out of range of data') print(lat, lon, time) vals.append(np.full(var_shape, float('nan'), dtype='float')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss_shape = tuple([v for v,i in zip(z.shape,z.dims) if i in ['latitude', 'longitude'] ]) gauss = utils.gauss2D(shape=gauss_shape, sigma=gauss_shape[-1]) filtered = z * gauss # filtered2 = z.values * gauss vals.append(filtered.sum(dim=('latitude', 'longitude')).values) ds['ERA_ens_'+var] = (tuple(x for x in data[var].dims if x not in ['latitude', 'longitude']), np.array(vals), data[var].attrs) # return ds print('adding ensemble temperatures') ens_temp_files = [os.path.join(utils.ERA_ens_temp_source, i) for i in sorted(os.listdir(utils.ERA_ens_temp_source))] with xr.open_mfdataset(sorted(ens_temp_files)) as data: data = data.rename({'level': 'ens_level'}) # ds.coords['number'] = data.coords['number'] # ds.coords['ens_level'] = data.coords['ens_level'] for var in data.data_vars.keys(): var_shape = data[var].isel(time=0, latitude=0, longitude=0).shape vals = [] for (lat, lon, time) in zip(lats, lons, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print('out of range of data') print(lat, lon, time) print(np.max(data.coords['latitude'].values), np.min(data.coords['latitude'].values)) print(np.max(data.coords['longitude'].values), np.min(data.coords['longitude'].values)) vals.append(np.full(var_shape, float('nan'), dtype='float')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss_shape = tuple([v for v,i in zip(z.shape,z.dims) if i in ['latitude', 'longitude'] ]) gauss = utils.gauss2D(shape=gauss_shape, sigma=gauss_shape[-1]) filtered = z * gauss # filtered2 = z.values * gauss vals.append(filtered.sum(dim=('latitude', 'longitude')).values) ds['ERA_ens_'+var] = (tuple(x for x in data[var].dims if x not in ['latitude', 'longitude']), np.array(vals), data[var].attrs) return ds def add_ERA_to_trajectory(ds, box_degrees=2): """Retrieve ERA5 data in a box around a trajectory Assumes ERA5 data is 0.3x0.3 degrees Returns an xarray Dataset """ lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels unique_days = set([utils.as_datetime(i).date() for i in times]) files = [os.path.join(utils.ERA_source, "ERA5.pres.NEP.{:%Y-%m-%d}.nc".format(i)) for i in unique_days] flux_files = [os.path.join(utils.ERA_source, "ERA5.flux.NEP.{:%Y-%m-%d}.nc".format(i)) for i in unique_days] with xr.open_mfdataset(sorted(files)) as data: #return_ds = xr.Dataset(coords={'time': ds.coords['time'], 'level': data.coords['level']}) ds.coords['level'] = data.coords['level'] #adding in q: T = data['t'].values RH = data['r'].values p = np.broadcast_to(data.coords['level'].values[None, :, None, None], T.shape)*100 q = utils.qv_from_p_T_RH(p, T, RH) data['q'] = (('time', 'level', 'latitude', 'longitude'), q) data['q'] = data['q'].assign_attrs({'units': "kg kg**-1", 'long_name': "specific_humidity", 'dependencies': 'ERA_t, ERA_p, ERA_r'}) MR = q/(1-q) data['MR'] = (('time', 'level', 'latitude', 'longitude'), MR) data['MR'] = data['MR'].assign_attrs({'units': "kg kg**-1", 'long_name': "mixing_ratio", 'dependencies': 'ERA_t, ERA_p, ERA_r'}) # adding gradients in for z, t, and q. Assuming constant grid spacing. for var in ['t', 'q', 'z', 'u', 'v', 'MR']: [_,_,dvardj, dvardi] = np.gradient(data[var].values) dlatdy = 360/4.000786e7 # degrees lat per meter y def get_dlondx(lat) : return(360/(np.cos(np.deg2rad(lat))*4.0075017e7)) lat_spaces = np.diff(data.coords['latitude'].values) lon_spaces = np.diff(data.coords['longitude'].values) assert(np.allclose(lat_spaces, -0.3, atol=0.01) and np.allclose(lon_spaces, 0.3, atol=0.05)) dlondi = np.mean(lon_spaces) dlatdj = np.mean(lat_spaces) dlondx = get_dlondx(data.coords['latitude'].values) dvardx = dvardi/dlondi*dlondx[None,None,:,None] dvardy = dvardj/dlatdj*dlatdy data['d{}dx'.format(var)] = (('time', 'level', 'latitude', 'longitude'), dvardx) data['d{}dy'.format(var)] = (('time', 'level', 'latitude', 'longitude'), dvardy) grad_attrs = {'q': {'units': "kg kg**-1 m**-1", 'long_name': "{}_gradient_of_specific_humidity", 'dependencies': "ERA_t, ERA_p, ERA_r"}, 't': {'units': "K m**-1", 'long_name': "{}_gradient_of_temperature", 'dependencies': "ERA_t"}, 'z': {'units': "m**2 s**-2 m**-1", 'long_name': "{}_gradient_of_geopotential", 'dependencies': "ERA_z"}, 'u': {'units': "m s**-1 m**-1", 'long_name': "{}_gradient_of_zonal_wind", 'dependencies': "ERA_u"}, 'v': {'units': "m s**-1 m**-1", 'long_name': "{}_gradient_of_meridional_wind", 'dependencies': "ERA_v"}, 'MR': {'units': "kg kg**-1 m**-1", 'long_name': "{}_gradient_of_mixing_ratio", 'dependencies': "ERA_t, ERA_p, ERA_r"}} for key, val in grad_attrs.items(): for (n, drn) in [('x', 'eastward'), ('y', 'northward')]: attrs = val.copy() var = 'd{}d{}'.format(key, n) attrs['long_name'] = attrs['long_name'].format(drn) data[var] = data[var].assign_attrs(attrs) for var in data.data_vars.keys(): vals = [] for (lat, lon, time) in zip(lats, lons%360, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print('out of range of data') print(lat, lon, time) vals.append(np.full_like(data.coords['level'], float('nan'), dtype='float')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) # print(time) # print(x.time[0]) z = x.sel(method='nearest', tolerance=np.timedelta64(1, 'h'), time=time) #z = y.sel(method='nearest', tolerance=50, level=pres) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees # print(z.shape) gauss = utils.gauss2D(shape=z.shape[1:], sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered, axis=(1,2))) ds['ERA_'+var] = (('time', 'level'), np.array(vals)) ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(data[var].attrs) t_1000 = ds.ERA_t.sel(level=1000).values theta_700 = met_utils.theta_from_p_T(p=700, T=ds.ERA_t.sel(level=700).values) LTS = theta_700-t_1000 ds['ERA_LTS'] = (('time'), np.array(LTS)) ds['ERA_LTS'] = ds['ERA_LTS'].assign_attrs( {"long_name": "Lower tropospheric stability", "units": "K", "_FillValue": "NaN"}) t_dew = t_1000-(100-ds.ERA_r.sel(level=1000).values)/5 lcl = met_utils.get_LCL(t=t_1000, t_dew=t_dew, z=ds.ERA_z.sel(level=1000).values/9.81) z_700 = ds.ERA_z.sel(level=700).values/9.81 gamma_850 = met_utils.get_moist_adiabatic_lapse_rate(ds.ERA_t.sel(level=850).values, 850) eis = LTS - gamma_850*(z_700-lcl) ds['ERA_EIS'] = (('time'), np.array(eis)) ds['ERA_EIS'] = ds['ERA_EIS'].assign_attrs( {"long_name": "Estimated inversion strength", "units": "K", "_FillValue": "NaN"}) with xr.open_mfdataset(sorted(flux_files)) as flux_data: for var in flux_data.data_vars.keys(): # if var not in ['sshf', 'slhf']: # continue vals = [] for (lat, lon, time) in zip(lats, lons%360, times): if lat > np.max(flux_data.coords['latitude']) or lat < np.min(flux_data.coords['latitude']) or \ lon > np.max(flux_data.coords['longitude']) or lon < np.min(flux_data.coords['longitude']): print('out of range of data') print(lat, lon, time) vals.append(float('nan')) continue x = flux_data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) gauss = utils.gauss2D(shape=z.shape, sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered)) ds['ERA_'+var] = (('time'), np.array(vals)) ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(flux_data[var].attrs) return ds def add_MERRA_to_trajectory(ds, box_degrees=2): lats, lons, times = ds.lat.values, ds.lon.values, utils.as_datetime(ds.time.values) unique_days = set([utils.as_datetime(i).date() for i in times]) files = [os.path.join(utils.MERRA_source, "svc_MERRA2_400.inst3_3d_aer_Nv.{:%Y%m%d}.nc4".format(i)) for i in unique_days] with xr.open_mfdataset(sorted(files)) as data: # data = xr.open_mfdataset(sorted(files)) # if True: ds.coords['lev'] = data.coords['lev'] for var in data.data_vars.keys(): # var = 'RH' # if True: vals = [] for (lat, lon, time) in zip(lats, lons, times): # lat, lon, time = lats[1], lons[1], times[1] # if True: time = time.replace(tzinfo=None) x = data[var].sel(lon=slice(lon - box_degrees/2, lon + box_degrees/2), lat=slice(lat - box_degrees/2, lat + box_degrees/2)) y = x.sel(method='nearest', tolerance=dt.timedelta(minutes=119), time=time) z = y.sel(method='nearest', tolerance=50, level=pres) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss = utils.gauss2D(shape=z.shape[1:], sigma=z.shape[1]) filtered = z.values * gauss vals.append(np.sum(filtered, axis=(1,2))) ds['MERRA2_'+var] = (('time', 'level'), np.array(vals)) ds['MERRA2_'+var] = ds['MERRA2_'+var].assign_attrs(data[var].attrs) return ds # var_list = ['SO4', 'RH'] # MERRA_ds = utils.get_MERRA_data(var_list=var_list, lats=lats, lons=lons, times=times, # pressures=pressures, box_degrees=2) # ds = xr.merge([ds, MERRA_ds.rename({'RH': 'MERRA_RH', 'SO4': 'MERRA_SO4', 'time': 'dtime'})]) # t_data.append(ds) def add_speeds_to_trajectories(ds): """Add speed variables to trajectory. used centered difference of distances traveled """ lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values heading_starts, heading_ends, seg_speeds = [], [], [] for i in range(len(lats)-1): geod = Geodesic.WGS84.Inverse(lats[i], lons[i], lats[i+1], lons[i+1]) dtime = (times[i+1]-times[i])/np.timedelta64(1, 's') heading_starts.append(geod['azi1']) heading_ends.append(geod['azi2']) seg_speeds.append(geod['s12']/dtime) #speeds are centered difference, except at start and end, where they are speeds of #first and last trajectory segments #headings are average of end azimuth of previous segment/start azimuth of next geodesic segment, #except at start and end, where are just the start/end azimuths of the first/last geodesic speeds = np.mean(np.vstack([seg_speeds+[seg_speeds[-1]],[seg_speeds[0]]+seg_speeds]), axis=0) # headings = np.mean(np.vstack([[heading_starts[0]]+heading_ends, heading_starts+[heading_ends[-1]]]), axis=0) THIS HAD A BUG def radial_mean(h1, h2): diff = ((h2-h1)+180)%360-180 return h1 + diff/2 headings = radial_mean(np.array([heading_starts[0]]+heading_ends), np.array(heading_starts+[heading_ends[-1]])) u = speeds*np.cos(np.deg2rad(90-headings)) v = speeds*np.sin(np.deg2rad(90-headings)) ds['traj_u'] = (('time'), u) ds['traj_v'] = (('time'), v) ds['traj_hdg'] = (('time'), headings) ds['traj_spd'] = (('time'), speeds) return ds def add_advection_to_trajectory(ds): """Add advection to trajectory after adding ERA data """ names = dict(u='ERA_u', v='ERA_v', u_t='traj_u', v_t='traj_v', dtdx='ERA_dtdx', dtdy='ERA_dtdy', dqdx='ERA_dqdx', dqdy='ERA_dqdy', dMRdx='ERA_dMRdx', dMRdy='ERA_dMRdy') assert np.all([i in ds.data_vars.keys() for i in names.values()]) rel_adv_of_T = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dtdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dtdy']].values) rel_adv_of_q = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dqdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dqdy']].values) rel_adv_of_MR = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dMRdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dMRdy']].values) T_adv_attr = {'units': "K s**-1", 'long_name': "trajectory_relative_advection_of_temperature", 'dependencies': 'ERA_t, traj_u, traj_v, ERA_u, ERA_v'} q_adv_attr = {'units': "kg kg**-1 s**-1", 'long_name': "trajectory_relative_advection_of_specific_humidity", 'dependencies': 'ERA_q, traj_u, traj_v, ERA_u, ERA_v'} MR_adv_attr = {'units': "kg kg**-1 s**-1", 'long_name': "trajectory_relative_advection_of_mixing ratio", 'dependencies': 'ERA_q, traj_u, traj_v, ERA_u, ERA_v'} ds['ERA_T_adv'] = (('time', 'level'), rel_adv_of_T) ds['ERA_T_adv'] = ds['ERA_T_adv'].assign_attrs(**T_adv_attr) ds['ERA_q_adv'] = (('time', 'level'), rel_adv_of_q) ds['ERA_q_adv'] = ds['ERA_q_adv'].assign_attrs(**q_adv_attr) ds['ERA_MR_adv'] = (('time', 'level'), rel_adv_of_MR) ds['ERA_MR_adv'] = ds['ERA_MR_adv'].assign_attrs(**MR_adv_attr) return ds def add_upwind_profile_to_trajectory(ds, dist=200, box_avg=2): """Add 'upwind' profile (not a true profile since the location varies with height) for alternative nudging method. Add only T_upwind, q_upwind, and MR_upwind vars """ T_upwind = np.full_like(ds.ERA_t, np.nan) q_upwind = np.full_like(ds.ERA_q, np.nan) MR_upwind = np.full_like(ds.ERA_MR, np.nan) for i, t in enumerate(ds.time): for j, l in enumerate(ds.level): u = ds.ERA_u.sel(time=t, level=l) v = ds.ERA_v.sel(time=t, level=l) def add_ERA_sfc_data(ds, box_degrees=2): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels unique_days = set([utils.as_datetime(i).date() for i in times]) sfc_files = [os.path.join(utils.ERA_source, "ERA5.sfc.NEP.{:%Y-%m-%d}.nc".format(i)) for i in unique_days] with xr.open_mfdataset(sorted(sfc_files)) as data: for var in data.data_vars.keys(): vals = [] for (lat, lon, time) in zip(lats, lons%360, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print('out of range of data') print(lat, lon, time) vals.append(float('nan')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', tolerance=np.timedelta64(minutes=59), time=time) gauss = utils.gauss2D(shape=z.shape, sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered)) ds['ERA_'+var] = (('time'), np.array(vals)) ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(data[var].attrs) # lhf = ds['ERA_ie'].values*2264705 # ds['ERA_ilhf'] = (('time'), lhf) # ds['ERA_ilhf'] = ds['ERA_ilhf'].assign_attrs({"long_name": "Instantaneous surface latent heat flux", # "units": "W m**-2", # "_FillValue": "NaN"}) # ds['ERA_'+var] = ds['ERA_'+var] return ds def add_GOES_obs(ds): #rfnum = ds[''] return ds def add_MODISPBL_to_trajectory(ds, box_degrees=3): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values MODIS_day_idx = np.argwhere([i.hour == 23 for i in utils.as_datetime(times)]).squeeze() MODIS_night_idx = np.argwhere([i.hour == 11 for i in utils.as_datetime(times)]).squeeze() # dayfile = '/home/disk/eos4/jkcm/Data/CSET/Ryan/Daily_1x1_JHISTO_CTH_c6_day_v2_calboxes_top10_Interp_hif_zb_2011-2016.nc' dayfile = '/home/disk/eos4/jkcm/Data/CSET/Ryan/Daily_1x1_JHISTO_CTH_c6_day_v2_calboxes_top10_Interp_hif_zb_2011-2016_corrected.nc' nightfile = '/home/disk/eos4/jkcm/Data/CSET/Ryan/Daily_1x1_JHISTO_CTH_c6_night_v2_calboxes_top10_Interp_hif_zb_2011-2016.nc' vals = [] stds = [] nanfrac = [] for i in range(len(times)): if i in MODIS_day_idx: f = dayfile elif i in MODIS_night_idx: f = nightfile else: vals.append(np.nan) stds.append(np.nan) nanfrac.append(np.nan) continue with xr.open_dataset(f) as data: lat, lon, time = lats[i], lons[i], utils.as_datetime(times[i]) t_idx = np.argwhere(np.logical_and(data['days'].values == time.timetuple().tm_yday, data['years'].values == time.year))[0][0] x = data['cth'].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.isel(time=t_idx).values vals.append(np.nanmean(z)) stds.append(np.nanstd(z)) nanfrac.append(np.sum(np.isnan(z))/z.size) ds['MODIS_CTH'] = (('time'), np.array(vals)) ds['MODIS_CTH_std'] = (('time'), np.array(stds)) ds['MODIS_CTH_nanfrac'] = (('time'), np.array(nanfrac)) return ds def make_trajectory(rfnum, trajnum, save=False, trajectory_type='500m_+72'): ds = xarray_from_trajectory(rfnum, trajnum, trajectory_type) ds = add_speeds_to_trajectories(ds) print("adding ERA...") ds = add_ERA_to_trajectory(ds) print('adding advection...') ds = add_advection_to_trajectory(ds) print('adding ERA sfc data...') ds = add_ERA_sfc_data(ds) print('adding ERA ensemble data...') ds = add_ERA_ens_to_trajectory(ds) print('adding GOES data...') ds = add_GOES_obs(ds) print("adding MODIS...") ds = add_MODISPBL_to_trajectory(ds) # print("adding MERRA...") # ds = add_MERRA_to_trajectory(ds) if save: save_trajectory_to_netcdf(ds, save) return ds if __name__ == "__main__": force_override = True for case_num, case in lc.all_cases.items(): print('working on case {}'.format(case_num)) # if case_num not in [6, 10]: # continue flight = case['TLC_name'].split("_")[1][:4].lower() traj_list = case['TLC_name'].split('_')[2].split('-') for dirn in ['forward', 'backward']: nc_dirstring = '48h_backward' if dirn == 'backward' else '72h_forward' for traj in traj_list: name = os.path.join(utils.trajectory_netcdf_dir, "{}_{}_{}.nc".format(flight, nc_dirstring, traj)) print("working on {}...".format(os.path.basename(name))) if os.path.exists(name): print("already exists!") if not force_override: continue else: print('overriding') os.rename(name, os.path.join(utils.trajectory_netcdf_dir, 'old', "{}_{}_{}.nc".format(flight, nc_dirstring, traj))) # ds = make_trajectory(rfnum=flight, trajnum=float(traj), save=name); trajectory_type = '500m_-48' if dirn == 'backward' else '500m_+72' ds = make_trajectory(rfnum=flight, trajnum=float(traj), save=name, trajectory_type=trajectory_type); #ds = add_ERA_sfc_data(ds) #ds = make_trajectory(rfnum='rf06', trajnum=2.3, save=False) #save_trajectory_to_netcdf(ds, r'/home/disk/eos4/jkcm/Data/CSET/model_forcings/rf06_traj_2.3_fullcolumn_withz.nc') # all_trajs = {'rf06': [1.6, 2.0, 2.3, 2.6, 3.0], # 'rf10': [5.5, 6.0]} # for flight, traj_list in all_trajs.items(): # for traj in traj_list: # name = os.path.join(utils.trajectory_netcdf_dir, "{}_MODIS_traj_{:0.1f}.nc".format(flight, traj)) # print("working on {}...".format(os.path.basename(name))) # ds = make_trajectory(rfnum=flight, trajnum=traj, save=name); # ds = make_trajectory(rfnum='rf06', trajnum=2.3, save=False) # save_trajectory_to_netcdf(ds, r'/home/disk/eos4/jkcm/Data/CSET/Lagrangian_project/trajectory_files/rf06_MODIS_traj_2.3.nc') # ds = make_trajectory(rfnum='rf10', trajnum=6.0, save=False) # save_trajectory_to_netcdf(ds, r'/home/disk/eos4/jkcm/Data/CSET/Lagrangian_project/trajectory_files/rf10_MODIS_traj_6.0.nc') ```
{ "source": "jkcm/mesoscale-morphology", "score": 2 }
#### File: mesoscale-morphology/data_processing/MERRA_subset.py ```python from Lagrangian_CSET import met_utils as mu import numpy as np import glob import xarray as xr import time for year in [2014, 2015, 2016]: for month in np.arange(1,13): #MERRA_data = xr.open_mfdataset(sorted(glob.glob(r'/home/disk/eos4/jkcm/Data/CSET/MERRA/unified_2/*.unified*.nc4')), combine='by_coords') # MERRA2_data = xr.open_mfdataset(sorted(glob.glob(r'/home/disk/eos4/jkcm/Data/MERRA/pressure/*.inst3_3d_asm_Np*.nc')), combine='by_coords') # MERRA2_data = xr.open_dataset(r'/home/disk/eos4/jkcm/Data/MERRA/measures/MERRA2_400.inst3_3d_asm_Np.SEP.nc') MERRA2_data = xr.open_mfdataset(f'/home/disk/eos4/jkcm/Data/MERRA/measures/lev/MERRA2_400.inst3_3d_asm_Np.{str(year)}{month:02}*.SUB.nc', combine='by_coords') MERRA2_data['lon'] = MERRA2_data.lon%360 # MERRA2_csp = xr.open_dataset(r'/home/disk/eos4/jkcm/Data/MERRA/measures/MERRA2_400.tavg1_2d_csp_Nx.SEP.nc') MERRA2_csp = xr.open_mfdataset(f'/home/disk/eos4/jkcm/Data/MERRA/measures/cloud/MERRA2_400.tavg1_2d_csp_Nx.{str(year)}{month:02}*.nc4.nc4', combine='by_coords') MERRA2_csp['lon'] = MERRA2_csp.lon%360 # MERRA2_sfc = xr.open_mfdataset(sorted(glob.glob(r'/home/disk/eos4/jkcm/Data/MERRA/sfc/*.inst*.nc4')), combine='by_coords') # MERRA2_sfc = xr.open_dataset(r'/home/disk/eos4/jkcm/Data/MERRA/measures/MERRA2_400.instU_2d_asm_Nx.SEP.nc') MERRA2_sfc = xr.open_mfdataset(f'/home/disk/eos4/jkcm/Data/MERRA/measures/sfc/MERRA2_400.inst1_2d_asm_Nx.{str(year)}{month:02}*.nc4.nc4', combine='by_coords') MERRA2_sfc['lon'] = MERRA2_sfc.lon%360 #add some sfc stuffs time_arr = [True if i in MERRA2_data.time.values else False for i in MERRA2_sfc.time.values] MERRA2_sfc_subs = MERRA2_sfc.isel(time=time_arr) MERRA2_data['SST'] = MERRA2_sfc_subs['TS'] MERRA2_data['U10M'] = MERRA2_sfc_subs['U10M'] MERRA2_data['V10M'] = MERRA2_sfc_subs['V10M'] MERRA2_data['T2M'] = MERRA2_sfc_subs['T2M'] MERRA2_data['TQL'] = MERRA2_sfc_subs['TQL'] MERRA2_data['TQV'] = MERRA2_sfc_subs['TQV'] wspd = np.sqrt(MERRA2_sfc_subs['U10M'].values**2 + MERRA2_sfc_subs['V10M'].values**2) MERRA2_sfc_subs['WSPD_10M'] = (('time', 'lat', 'lon'), wspd) MERRA2_sfc_subs['WSPD_10M'] = MERRA2_sfc_subs['WSPD_10M'].assign_attrs( {"long_name": "wind speed 10m", "units": "m s**-1"}) MERRA2_data['WSPD_10M'] = MERRA2_sfc_subs['WSPD_10M'] #add some COSP stuffs time_arr = np.full(MERRA2_csp.time.values.shape, False) for i, t in enumerate(MERRA2_data.time.values): time_arr[np.argmin(np.abs(MERRA2_csp.time.values-t))] = True MERRA2_csp_subs = MERRA2_csp.isel(time=time_arr) MERRA2_csp_subs = MERRA2_csp_subs.assign_coords(time=MERRA2_data.time) MERRA2_data['ISCCPALB'] = MERRA2_csp_subs['ISCCPALB'] MERRA2_data['MDSCLDFRCLO'] = MERRA2_csp_subs['MDSCLDFRCLO'] MERRA2_data['MDSH2OPATH'] = MERRA2_csp_subs['MDSH2OPATH'] MERRA2_data['MDSH2OPATH'] = MERRA2_csp_subs['MDSH2OPATH'] MERRA2_data['MDSCLDSZH20'] = MERRA2_csp_subs['MDSCLDSZH20'] MERRA2_data['MDSOPTHCKH2O'] = MERRA2_csp_subs['MDSOPTHCKH2O'] #some spare levs MERRA2_data["RH_700"] = MERRA2_data.RH.sel(lev=700) MERRA2_data["T_700"] = MERRA2_data.T.sel(lev=700) # #ADD SOME MORE MERRA VARS t_1000 = MERRA2_data.T.sel(lev=1000) theta_700 = mu.theta_from_p_T(p=700, T=MERRA2_data.T.sel(lev=700)) LTS = theta_700-t_1000 t_dew = t_1000-(100-100*MERRA2_data.RH.sel(lev=1000))/5 lcl = mu.get_LCL(t=t_1000, t_dew=t_dew, z=MERRA2_data.H.sel(lev=1000)) z_700 = MERRA2_data.H.sel(lev=700) gamma_850 = mu.get_moist_adiabatic_lapse_rate(MERRA2_data.T.sel(lev=850), 850) EIS = LTS - gamma_850*(z_700-lcl) MERRA2_data['LTS'] = LTS MERRA2_data['EIS'] = EIS t_v = mu.tvir_from_T_w(MERRA2_data.T, MERRA2_data.QV) rho = mu.density_from_p_Tv(MERRA2_data.lev*100, t_v) MERRA2_data['dzdt'] = -MERRA2_data['OMEGA']/(9.81*rho) MERRA2_data['div_700'] = MERRA2_data['dzdt'].sel(lev=700)/MERRA2_data['H'].sel(lev=700) theta_sst = mu.theta_from_p_T(p=MERRA2_data.PS/100, T=MERRA2_data.SST) theta_800 = mu.theta_from_p_T(p=800, T=MERRA2_data.T.sel(lev=800)) MERRA2_data['M'] = theta_sst - theta_800 [_, dtdi, dtdj] = np.gradient(MERRA2_data.SST) #di is dlat, dj is dlon lat_spaces = np.diff(MERRA2_data.coords['lon'].values) lon_spaces = np.diff(MERRA2_data.coords['lon'].values) assert(np.allclose(lat_spaces, 0.625, atol=0.01) and np.allclose(lon_spaces, 0.625, atol=0.05)) # PREVIOUSLY HAD NEGATIVE LAT_SPACES dlondj = np.mean(lon_spaces) dlatdi = np.mean(lat_spaces) def get_dlondx(lat) : return(360/(np.cos(np.deg2rad(lat))*4.0075017e7)) dlondx = get_dlondx(MERRA2_data.coords['lat'].values) dlatdy = 360/4.000786e7 # degrees lat per meter y dtdx = dtdj/dlondj*dlondx[None,:,None] dtdy = dtdi/dlatdi*dlatdy T_adv = -(MERRA2_data.U10M.values*dtdx + MERRA2_data.V10M.values*dtdy) MERRA2_data['T_adv'] = (('time', 'lat', 'lon'), T_adv, {'units': "K s**-1", 'long_name': "temperature_advection"}) #ADDING SOME MERRA DIVERGENCE STUFFS dudi = np.gradient(MERRA2_data.U10M)[2] dvdj = np.gradient(MERRA2_data.V10M)[1] dlatdy = 360/4.000786e7 # degrees lat per meter y def get_dlondx(lat) : return(360/(np.cos(np.deg2rad(lat))*4.0075017e7)) dlondx = get_dlondx(MERRA2_data.coords['lat'].values) lat_spaces = np.diff(MERRA2_data.coords['lat'].values) lon_spaces = np.diff(MERRA2_data.coords['lon'].values) assert(np.allclose(lat_spaces, 0.5, atol=0.01) and np.allclose(lon_spaces, 0.625, atol=0.05)) dlondi = np.mean(lon_spaces) dlatdj = np.mean(lat_spaces) dudx = dudi/dlondi*dlondx[None, :, None] dvdy = dvdj/dlatdj*dlatdy div = dudx + dvdy MERRA2_data['sfc_div'] = (('time', 'lat', 'lon'), div) MERRA2_data['sfc_div'] = MERRA2_data['sfc_div'].assign_attrs( {"long_name": "wind divergence 10m", "units": "s**-1"}) MERRA_subset = MERRA2_data[['H', 'PS', 'SST', 'U10M', 'V10M', 'LTS', 'EIS', 'dzdt', 'sfc_div', 'RH_700', 'T_700', 'WSPD_10M', 'div_700', 'TQV', 'TQL', 'T2M', 'M', 'T_adv', 'ISCCPALB', 'MDSCLDFRCLO', 'MDSH2OPATH', 'MDSCLDSZH20', 'MDSOPTHCKH2O']] for key, var in MERRA_subset.data_vars.items(): print(key) print(var.dtype) comp = dict(zlib=True, complevel=2) MERRA_subset.to_netcdf(f'/home/disk/eos4/jkcm/Data/MERRA/measures/subset/2/MERRA2.unified_subset.{str(year)}{month:02}.nc', engine='h5netcdf', encoding={var: comp for var in MERRA_subset.data_vars}) ``` #### File: mesoscale-morphology/data_processing/regrid_rain_rate.py ```python import sys import os import glob import numpy as np import re import xarray as xr import datetime as dt from itertools import product from multiprocessing import Pool, cpu_count, current_process from classified_cset.utils import LoopTimer class Groupby: # note: adapted from https://github.com/esantorella/hdfe. MIT license required upon publication def __init__(self, keys): self.keys, self.keys_as_int = np.unique(keys, return_inverse = True) self.n_keys = max(self.keys_as_int) + 1 self.set_indices() def set_indices(self): self.indices = [[] for i in range(self.n_keys)] for i, k in enumerate(self.keys_as_int): self.indices[k].append(i) self.indices = [np.array(elt) for elt in self.indices] def apply(self, function, vector, broadcast=False): if broadcast: result = np.zeros(len(vector)) for idx in self.indices: result[idx] = function(vector[idx]) else: result = np.zeros(self.n_keys) for k, idx in enumerate(self.indices): result[k] = function(vector[idx]) return result def read_file(f): data = xr.open_dataset(f) year = data.time_vars.isel(yr_day_utc=0).values day = data.time_vars.isel(yr_day_utc=1).values utc = data.time_vars.isel(yr_day_utc=2).values total_secs = (utc*3600) secs = total_secs//1 msecs = 1000*total_secs%1 dtime = np.datetime64(f'{np.median(year):0.0f}-01-01')+np.timedelta64(1, 'D')*(day-1)+np.timedelta64(1, 's')*(secs)+np.timedelta64(1, 'ms')*(msecs) data['datetime']= (data.longitude.dims, np.broadcast_to(dtime, data.longitude.shape)) data = data.drop(labels=['time_vars']) data['longitude'] = data['longitude']%360 return data def load_test_data(): testfile = '/home/disk/eos5/rmeast/rain_rates_89/2015/AMSR2_89GHz_pcp_est_2015_206_day.nc' data = read_file(testfile) return data def make_gridded_dataset(data, res=0.25): """ Big ugly function to make a lat/lon gridded netcdf out L2 AMSR precip retrievals. In lieu of proper docstrings, because if you're reading this I forgot to polish this before sharing, I'll explain the gist of what's happening. Real simple, we take our data, smoosh it so that each obs falls at the nearest lat/lon point on our regular grid, group the data by which grid box it falls in, and calculate the relevant stats of the distribution of obs in each grid box. Stats are then returned as an xarray dataset. """ def round_nearest(arr, res): nans = np.isnan(arr) ret = (((arr+res/2)/res)//1)*res ret[nans] = np.nan return ret def reshape_incomplete_array(complete_idx, incomplete_idx, vals, shape): new_vals = np.full_like(complete_idx, fill_value=np.nan) for idx, val in zip(incomplete_idx, vals): new_vals[idx] = val return new_vals.reshape(shape) rain_stats_dict = {0: {'name': 'rain_prob', 'long_name': 'Probability of Rain', 'standard_name': 'rain_probability', 'units': '0-1'}, 1: {'name': 'rain_rate', 'long_name': 'Rain Rate', 'standard_name': 'rain_rate', 'units': 'mm hr^-1'}, 2: {'name': 'rain_rwr', 'long_name': 'Rain Rate While Raining', 'standard_name': 'conditional_rain_rate', 'units': 'mm hr^-1'}, 3: {'name': 'rain_max', 'long_name': 'Max Rain Rate', 'standard_name': 'max_rain_rate', 'units': 'mm hr^-1'}} func_dict = {'mean': np.nanmean, 'median': np.nanmedian, '25_pctile': lambda x: np.nanpercentile(x, 25), '75_pctile': lambda x: np.nanpercentile(x, 75), 'min': np.nanmin, 'max': np.nanmax} if not 1/res == int(1/res): raise ValueError("I haven't gone through to test whether this will work for any resolution that's not a unit fraction.") #setting up new grid and gridbox index grid_lats = np.arange(-90, 90, res) grid_lons = np.arange(0, 360, res) grid_coords = np.array(list(product(grid_lats, grid_lons))) full_grid_lats = grid_coords[:,0] full_grid_lons = grid_coords[:,1] grid_coords_lats_idx = (full_grid_lats+90)/res grid_coords_lons_idx = full_grid_lons/res grid_combined_idx = (360/res)*grid_coords_lats_idx + grid_coords_lons_idx assert(len(np.unique(grid_combined_idx)) == len(grid_combined_idx)) #setting up old data unique index old_lats = data.latitude.values.flatten() old_lons = data.longitude.values.flatten() good_filt = np.logical_and(~np.isnan(old_lats), ~np.isnan(old_lons)) old_lats, old_lons = old_lats[good_filt], old_lons[good_filt] lats_regrid = round_nearest(old_lats, res) lons_regrid = round_nearest(old_lons, res)%360 lats_regrid_idx = (lats_regrid+90)/res lons_regrid_idx = lons_regrid/res unique_combined_idx = (360/res)*lats_regrid_idx + lons_regrid_idx assert(set(unique_combined_idx).issubset(grid_combined_idx)) #grouping old data by box grouped = Groupby(unique_combined_idx.astype(int)) def new_reshape(vals): """Reshapes value from groupby operation to an unfilled lat/lon grid""" return reshape_incomplete_array(grid_combined_idx, grouped.keys, vals, shape=(len(grid_lats), len(grid_lons))) ds = xr.Dataset() ds['latitude'] = grid_lats ds['longitude'] = grid_lons ds.attrs['comments'] = "gridded netcdf created by <EMAIL>, adapted from R Eastman AMSR 89 GHz retrievals. " +\ "https://doi.org/10.1175/JTECH-D-18-0185.1" ds.attrs['creation date'] = str(dt.datetime.utcnow()) ds.attrs['resolution'] = f'{str(res)} deg' ds['obs_count'] = (('latitude', 'longitude'), new_reshape(grouped.apply(len, np.empty_like(unique_combined_idx)))) ds['not_nan_count'] = (('latitude', 'longitude'), new_reshape(grouped.apply( lambda x: sum(~np.isnan(x)), np.empty_like(unique_combined_idx)))) ds['time'] = (('latitude', 'longitude'), new_reshape(grouped.apply( lambda x: np.nanmean(x.astype('int64')).astype('datetime64[ns]'), data['datetime'].values.flatten()[good_filt]))) for k, v in rain_stats_dict.items(): print('working on '+v['name']) sys.stdout.flush() old_data = data.rain_stats.isel(prob_rate_rwr_max=k).values.flatten()[good_filt] for func_name, func in func_dict.items(): new_vals = new_reshape(grouped.apply(func, old_data)) new_dict = {'long_name': f"{v['long_name']}_{func_name}", 'standard_name': f"{v['standard_name']}_{func_name}", 'units': v['units']} ds[f"{v['name']}_{func_name}"] = (('latitude', 'longitude'), new_vals, new_dict) # print(f"{v['name']}_{func_name}") sys.stdout.flush() print('finishing one') sys.stdout.flush() return ds def process_file(f): print(os.path.basename(f)) date = dt.datetime.strptime(os.path.basename(f)[20:28], '%Y_%j') data = read_file(f) ds = make_gridded_dataset(data, res=0.25) ds = ds.expand_dims({'date': [date]}) save_name = os.path.join(r'/home/disk/eos9/jkcm/Data/rain/2016', os.path.basename(f)[:-3]+'_gridded.nc') print(f'saving {save_name}...') sys.stdout.flush() comp = dict(zlib=True, complevel=2) ds.to_netcdf(save_name, engine='h5netcdf', encoding={var: comp for var in ds.data_vars}) if __name__ == "__main__": files_2014 = glob.glob('/home/disk/eos5/rmeast/rain_rates_89/2014/AMSR2_89GHz_pcp_est_2014_*_day.nc') files_2015 = glob.glob('/home/disk/eos5/rmeast/rain_rates_89/2015/AMSR2_89GHz_pcp_est_2015_*_day.nc') files_2016 = glob.glob('/home/disk/eos5/rmeast/rain_rates_89/2016/AMSR2_89GHz_pcp_est_2016_*_day.nc') # done_2014 = [os.path.basename(i)[:-11] for i in glob.glob('/home/disk/eos9/jkcm/Data/rain/2014/AMSR2_89*.nc')] # done_2015 = [os.path.basename(i)[:-11] for i in glob.glob('/home/disk/eos9/jkcm/Data/rain/2015/AMSR2_89*.nc')] # not_done_2014 = [i for i in files_2014 if os.path.basename(i)[:-3] not in done_2014] # not_done_2015 = [i for i in files_2015 if os.path.basename(i)[:-3] not in done_2015] with Pool(16) as p: p.map(process_file, files_2016) #doing 2015 ```
{ "source": "jkcm/uw-trace", "score": 2 }
#### File: uwtrajectory/ERA5/add_to_trajectory.py ```python import numpy as np import xarray as xr import os from .. import utils, met_utils, config from ..LoopTimer import LoopTimer def add_ERA_ens_to_trajectory(ds, box_degrees=2): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.25/2)) # go up/down/left/right this many pixels unique_days = set([utils.as_datetime(i).date() for i in times]) ens_files = [os.path.join(config.ERA_ens_source, config.ERA_ens_fmt.format(i)) for i in unique_days] with xr.open_mfdataset(sorted(ens_files), combine='by_coords') as data: # data = data.rename({'level': 'ens_level'}) ds.coords['number'] = data.coords['number'] # ds.coords['ens_level'] = data.coords['ens_level'] if 'w' in data.data_vars.keys() and 'sp' in data.data_vars.keys(): data['dspdt'] = (data.sp.dims, np.gradient(data.sp, np.median(np.gradient(data.time.values)/np.timedelta64(1, 's')), axis=0), {'units': "Pa s**-1", 'long_name': "Surface pressure tendency", 'standard_name': 'tendency_of_surface_air_pressure'}) data['w_corr'] = (data.w.dims, data.w - data.dspdt, {'units': data.w.units, 'long_name': 'Vertical velocity (sp-corrected)'}) for var in data.data_vars.keys(): var_shape = data[var].isel(time=0, latitude=0, longitude=0).shape vals = [] for (lat, lon, time) in zip(lats, lons, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print(f'out of range of data" {lat}, {lon}, {time}') vals.append(np.full(var_shape, float('nan'), dtype='float')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss_shape = tuple([v for v,i in zip(z.shape,z.dims) if i in ['latitude', 'longitude'] ]) gauss = utils.gauss2D(shape=gauss_shape, sigma=gauss_shape[-1]) filtered = z * gauss vals.append(filtered.sum(dim=('latitude', 'longitude')).values) ds['ERA_ens_'+var] = (tuple(x for x in data[var].dims if x not in ['latitude', 'longitude']), np.array(vals), data[var].attrs) # print('adding ensemble temperatures...') # ens_temp_files = [os.path.join(utils.ERA_ens_temp_source, i) for i in sorted(os.listdir(utils.ERA_ens_temp_source))] # with xr.open_mfdataset(sorted(ens_temp_files), combine='by_coords') as data: # data = data.rename({'level': 'ens_level'}) # #ds.coords['number'] = data.coords['number'] # #ds.coords['ens_level'] = data.coords['ens_level'] # for var in data.data_vars.keys(): # var_shape = data[var].isel(time=0, latitude=0, longitude=0).shape # vals = [] # for (lat, lon, time) in zip(lats, lons, times): # if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ # lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): # print('out of range of data') # print(lat, lon, time) # print(np.max(data.coords['latitude'].values), np.min(data.coords['latitude'].values)) # print(np.max(data.coords['longitude'].values), np.min(data.coords['longitude'].values)) # vals.append(np.full(var_shape, float('nan'), dtype='float')) # continue # x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), # latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) # z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) # #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees # gauss_shape = tuple([v for v,i in zip(z.shape,z.dims) if i in ['latitude', 'longitude'] ]) # gauss = utils.gauss2D(shape=gauss_shape, sigma=gauss_shape[-1]) # filtered = z * gauss # vals.append(filtered.sum(dim=('latitude', 'longitude')).values) # ds['ERA_ens_'+var] = (tuple(x for x in data[var].dims if x not in ['latitude', 'longitude']), np.array(vals), data[var].attrs) return ds def add_ERA_to_trajectory(ds, box_degrees=2): """Retrieve ERA5 data in a box around a trajectory Assumes ERA5 data is 0.3x0.3 degrees Returns an xarray Dataset """ lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels unique_days = set([utils.as_datetime(i).date() for i in times]) files = [os.path.join(config.ERA_source, config.ERA_fmt.format(i)) for i in unique_days] # flux_files = [os.path.join(utils.ERA_source, "ERA5.flux.NEP.{:%Y-%m-%d}.nc".format(i)) # for i in unique_days] with xr.open_mfdataset(sorted(files), combine='by_coords') as full_dataset: data = full_dataset.sel(latitude=slice(np.max(lats)+box_degrees, np.min(lats)-box_degrees), longitude=slice(np.min(lons)-box_degrees, np.max(lons)+box_degrees)) print('prepping data...') ds.coords['level'] = data.coords['level'] #adding in q: T = data['t'].values RH = data['r'].values p = np.broadcast_to(data.coords['level'].values[None, :, None, None], T.shape)*100 q = utils.qv_from_p_T_RH(p, T, RH) data['q'] = (('time', 'level', 'latitude', 'longitude'), q) data['q'] = data['q'].assign_attrs({'units': "kg kg**-1", 'long_name': "specific_humidity", 'dependencies': 'ERA_t, ERA_p, ERA_r'}) MR = q/(1-q) data['MR'] = (('time', 'level', 'latitude', 'longitude'), MR) data['MR'] = data['MR'].assign_attrs({'units': "kg kg**-1", 'long_name': "mixing_ratio", 'dependencies': 'ERA_t, ERA_p, ERA_r'}) # adding gradients in for z, t, and q. Assuming constant grid spacing. for var in ['t', 'q', 'z', 'u', 'v', 'MR']: print(f'creating gradient in {var}...', end="\r") [_,_,dvardj, dvardi] = np.gradient(data[var].values) dlatdy = 360/4.000786e7 # degrees lat per meter y def get_dlondx(lat) : return(360/(np.cos(np.deg2rad(lat))*4.0075017e7)) lat_spaces = np.diff(data.coords['latitude'].values) lon_spaces = np.diff(data.coords['longitude'].values) try: assert(np.allclose(lat_spaces, -0.25, atol=0.01) and np.allclose(lon_spaces, 0.25, atol=0.05)) except AssertionError as e: print(np.unique(lat_spaces)) print(np.unique(lon_spaces)) raise e dlondi = np.mean(lon_spaces) dlatdj = np.mean(lat_spaces) dlondx = get_dlondx(data.coords['latitude'].values) dvardx = dvardi/dlondi*dlondx[None,None,:,None] dvardy = dvardj/dlatdj*dlatdy data['d{}dx'.format(var)] = (('time', 'level', 'latitude', 'longitude'), dvardx) data['d{}dy'.format(var)] = (('time', 'level', 'latitude', 'longitude'), dvardy) grad_attrs = {'q': {'units': "kg kg**-1 m**-1", 'long_name': "{}_gradient_of_specific_humidity", 'dependencies': "ERA_t, ERA_p, ERA_r"}, 't': {'units': "K m**-1", 'long_name': "{}_gradient_of_temperature", 'dependencies': "ERA_t"}, 'z': {'units': "m**2 s**-2 m**-1", 'long_name': "{}_gradient_of_geopotential", 'dependencies': "ERA_z"}, 'u': {'units': "m s**-1 m**-1", 'long_name': "{}_gradient_of_zonal_wind", 'dependencies': "ERA_u"}, 'v': {'units': "m s**-1 m**-1", 'long_name': "{}_gradient_of_meridional_wind", 'dependencies': "ERA_v"}, 'MR': {'units': "kg kg**-1 m**-1", 'long_name': "{}_gradient_of_mixing_ratio", 'dependencies': "ERA_t, ERA_p, ERA_r"}} for key, val in grad_attrs.items(): for (n, drn) in [('x', 'eastward'), ('y', 'northward')]: attrs = val.copy() var = 'd{}d{}'.format(key, n) attrs['long_name'] = attrs['long_name'].format(drn) data[var] = data[var].assign_attrs(attrs) print('\ndone') for var in data.data_vars.keys(): vals = [] print(f'working on {var}...') lt = LoopTimer(len(lats)) for i, (lat, lon, time) in enumerate(zip(lats, lons, times)): lt.update() if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print(f'out of range of data" {lat}, {lon}, {time}') print(np.max(data.coords['latitude']), np.min(data.coords['latitude']), np.max(data.coords['longitude']) , np.min(data.coords['longitude'])) vals.append(np.full_like(data.coords['level'], float('nan'), dtype='float')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', tolerance=np.timedelta64(1, 'h'), time=time) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss = utils.gauss2D(shape=z.shape[1:], sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered, axis=(1,2))) print('') ds['ERA_'+var] = (('time', 'level'), np.array(vals)) ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(data[var].attrs) t_1000 = ds.ERA_t.sel(level=1000).values theta_700 = met_utils.theta_from_p_T(p=700, T=ds.ERA_t.sel(level=700).values) LTS = theta_700-t_1000 ds['ERA_LTS'] = (('time'), np.array(LTS)) ds['ERA_LTS'] = ds['ERA_LTS'].assign_attrs( {"long_name": "Lower tropospheric stability", "units": "K", "_FillValue": "NaN"}) t_dew = t_1000-(100-ds.ERA_r.sel(level=1000).values)/5 lcl = met_utils.calculate_LCL(t=t_1000, t_dew=t_dew, z=ds.ERA_z.sel(level=1000).values/9.81) z_700 = ds.ERA_z.sel(level=700).values/9.81 gamma_850 = met_utils.get_moist_adiabatic_lapse_rate(ds.ERA_t.sel(level=850).values, 850) eis = LTS - gamma_850*(z_700-lcl) ds['ERA_EIS'] = (('time'), np.array(eis)) ds['ERA_EIS'] = ds['ERA_EIS'].assign_attrs( {"long_name": "Estimated inversion strength", "units": "K", "_FillValue": "NaN"}) # with xr.open_mfdataset(sorted(flux_files), combine='by_coords') as flux_data: # for var in flux_data.data_vars.keys(): # vals = [] # for (lat, lon, time) in zip(lats, lons%360, times): # if lat > np.max(flux_data.coords['latitude']) or lat < np.min(flux_data.coords['latitude']) or \ # lon > np.max(flux_data.coords['longitude']) or lon < np.min(flux_data.coords['longitude']): # print(f'out of range of data" {lat}, {lon}, {time}') # vals.append(float('nan')) # continue # x = flux_data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), # latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) # z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(1, 'h')) # gauss = utils.gauss2D(shape=z.shape, sigma=z.shape[0]) # filtered = z.values * gauss # vals.append(np.sum(filtered)) # ds['ERA_'+var] = (('time'), np.array(vals)) # ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(flux_data[var].attrs) ds.attrs['ERA_params'] = f'ERA5 data acquired from ECWMF Copernicus at cds.climate.copernicus.eu/. statistics computed over a {box_degrees}-deg average centered on trajectory. EIS and LTS computed according to Wood and Bretherton (2006) and Klein and Hartmann (1993) respectively.' ds.attrs['ERA_reference'] = 'Copernicus Climate Change Service (C3S) (2017): ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate . Copernicus Climate Change Service Climate Data Store (CDS), date of access. https://cds.climate.copernicus.eu/cdsapp#!/home' return ds def add_ERA_sfc_to_trajectory(ds, box_degrees=2): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels unique_days = set([utils.as_datetime(i).date() for i in times]) sfc_files = [os.path.join(config.ERA_source, config.ERA_sfc_fmt.format(i)) for i in unique_days] with xr.open_mfdataset(sorted(sfc_files), combine='by_coords') as data: for var in data.data_vars.keys(): vals = [] for (lat, lon, time) in zip(lats, lons, times): if lat > np.max(data.coords['latitude']) or lat < np.min(data.coords['latitude']) or \ lon > np.max(data.coords['longitude']) or lon < np.min(data.coords['longitude']): print('out of range of data') print(lat, lon, time) vals.append(float('nan')) continue x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) z = x.sel(method='nearest', tolerance=np.timedelta64(59, 'm'), time=time) gauss = utils.gauss2D(shape=z.shape, sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered)) ds['ERA_'+var] = (('time'), np.array(vals)) ds['ERA_'+var] = ds['ERA_'+var].assign_attrs(data[var].attrs) return ds def add_advection_to_trajectory(ds): """Add advection to trajectory after adding ERA data TODO make data dependencies explicit """ names = dict(u='ERA_u', v='ERA_v', u_t='traj_u', v_t='traj_v', dtdx='ERA_dtdx', dtdy='ERA_dtdy', dqdx='ERA_dqdx', dqdy='ERA_dqdy', dMRdx='ERA_dMRdx', dMRdy='ERA_dMRdy') assert np.all([i in ds.data_vars.keys() for i in names.values()]) rel_adv_of_T = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dtdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dtdy']].values) rel_adv_of_q = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dqdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dqdy']].values) rel_adv_of_MR = -((ds[names['u']].values-ds[names['u_t']].values[:, None])*ds[names['dMRdx']].values + \ (ds[names['v']].values-ds[names['v_t']].values[:, None])*ds[names['dMRdy']].values) T_adv_attr = {'units': "K s**-1", 'long_name': "trajectory_relative_advection_of_temperature", 'dependencies': 'ERA_t, traj_u, traj_v, ERA_u, ERA_v'} q_adv_attr = {'units': "kg kg**-1 s**-1", 'long_name': "trajectory_relative_advection_of_specific_humidity", 'dependencies': 'ERA_q, traj_u, traj_v, ERA_u, ERA_v'} MR_adv_attr = {'units': "kg kg**-1 s**-1", 'long_name': "trajectory_relative_advection_of_mixing ratio", 'dependencies': 'ERA_q, traj_u, traj_v, ERA_u, ERA_v'} ds['ERA_T_adv'] = (('time', 'level'), rel_adv_of_T) ds['ERA_T_adv'] = ds['ERA_T_adv'].assign_attrs(**T_adv_attr) ds['ERA_q_adv'] = (('time', 'level'), rel_adv_of_q) ds['ERA_q_adv'] = ds['ERA_q_adv'].assign_attrs(**q_adv_attr) ds['ERA_MR_adv'] = (('time', 'level'), rel_adv_of_MR) ds['ERA_MR_adv'] = ds['ERA_MR_adv'].assign_attrs(**MR_adv_attr) return ds ``` #### File: uwtrajectory/MERRA2/add_to_trajectory.py ```python from .. import utils, les_utils, config import os import xarray as xr import numpy as np def add_MERRA_to_trajectory(ds, box_degrees=2): """Add MERRA-inferred aerosol number concentrations to trajectory. """ lats, lons, times = ds.lat.values, ds.lon.values, utils.as_datetime(ds.time.values) unique_days = set([utils.as_datetime(i).date() for i in times]) files = [os.path.join(config.MERRA_dir, config.MERRA_fmt.format(i)) for i in unique_days] # if location=='nep': # files = [os.path.join("/home/disk/eos4/jkcm/Data/MERRA/3h/", "more_vertical", "MERRA2_400.inst3_3d_aer_Nv.{:%Y%m%d}.nc4.nc4".format(i)) # for i in unique_days] # elif location=='sea': # files = [os.path.join("/home/disk/eos4/jkcm/Data/MERRA/sea/new/", "MERRA2_400.inst3_3d_aer_Nv.{:%Y%m%d}.SUB.nc".format(i)) # for i in unique_days] with xr.open_mfdataset(sorted(files), combine='by_coords') as merra_data: if np.abs(np.mean(ds.lon.values))>90: # i.e. our trajectory is closer to 180 than it is to 0 lon. force to 0-360 merra_data.coords['lon'] = merra_data['lon']%360 lons = lons%360 else: merra_data.coords['lon'] = (merra_data['lon']+180)%360-180 lons = (lons+180)%360-180 merra_data = merra_data.sel(lat=slice(np.min(lats)-2, np.max(lats)+2), lon=slice(np.min(lons)-2, np.max(lons)+2)) # calculating MERRA pressure levels and heights dz = merra_data.DELP/(9.81*merra_data.AIRDENS) assert(merra_data.DELP.dims[1]=='lev') assert(dz.dims[1]=='lev') assert(dz.lev[-1]==72) z = dz[:,::-1,:,:].cumsum(axis=1)[:,::-1,:,:] z.load() z[:, :-1, :, :] = (z.values[:, 1:, :, :]+z.values[:, :-1, :, :])/2 z[:, -1,:,:] = z[:, -1,:,:]/2 p = -merra_data.DELP[:,::-1,:,:].cumsum(axis=1)[:,::-1,:,:] p = p + merra_data.PS p.load() p[:, :-1, :, :] = (p.values[:, 1:, :, :]+p.values[:, :-1, :, :])/2 p[:, -1,:,:] = (p[:, -1,:,:]+merra_data.PS)/2 merra_data['H'] = z merra_data.H.attrs = {'long_name': 'mid_layer_heights', 'units': 'm'} merra_data['PL'] = p merra_data.PL.attrs = {'long_name': 'mid_level_pressure', 'units': 'Pa'} vals_to_add = ['Na_tot', 'Na_tot_corr', 'H', 'PL', 'RH', 'AIRDENS'] na_tot = np.zeros_like(merra_data.SS001.values) new_vals = [] for varname,params in les_utils.merra_species_dict_colarco.items(): vals_to_add.append(varname) var = merra_data[varname] num=les_utils.mass_to_number(mass=var, air_density=merra_data.AIRDENS.values, shape_params=params) na_tot = na_tot+num merra_data[varname+'_Na'] = (('time', 'lev', 'lat', 'lon'), num) new_vals.append(varname+'_Na') merra_data['Na_tot'] = (('time', 'lev', 'lat', 'lon'), na_tot, {'long_name': 'total aerosol number concentration, >100 um', 'units': 'cm**-3'}) merra_data['Na_tot_corr'] = (('time', 'lev', 'lat', 'lon'), np.exp(1.24*np.log(na_tot) + 0.18), {'long_name': 'total aerosol number concentration, >100 um, corrected to aircraft', 'units': 'cm**-3'}) merra_data['Na_tot_corr_BL_logfit'] = (('time', 'lev', 'lat', 'lon'), np.exp(0.63*np.log(na_tot) + 2.42), {'long_name': 'total aerosol number concentration, >100 um, corrected to aircraft (boundary layer obs only)', 'units': 'cm**-3'}) ds = ds.assign_coords(lev = les_utils.MERRA_lev(merra_data.lev)) merra_data = merra_data.assign_coords(lev = les_utils.MERRA_lev(merra_data.lev)) for var in vals_to_add+new_vals: var_shape = merra_data[var].isel(time=0, lat=0, lon=0).shape vals = [] for (lat, lon, time) in zip(lats, lons, times): if lat > np.max(merra_data.coords['lat']) or lat < np.min(merra_data.coords['lat']) or \ lon > np.max(merra_data.coords['lon']) or lon < np.min(merra_data.coords['lon']): print(f'out of range of data" {lat}, {lon}, {time}') print(merra_data.coords['lat']) print(merra_data.coords['lon']) raise ValueError() continue try: x = merra_data[var].sel(lon=slice(lon - box_degrees/2, lon + box_degrees/2), lat=slice(lat - box_degrees/2, lat + box_degrees/2)) except KeyError as e: print(var) print(lon, lat) print(merra_data.lon) print(merra_data.lat) raise e z = x.sel(method='nearest', time=time, tolerance=np.timedelta64(2, 'h')) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss_shape = tuple([v for v,i in zip(z.shape,z.dims) if i in ['lat', 'lon'] ]) gauss = utils.gauss2D(shape=gauss_shape, sigma=gauss_shape[-1]) filtered = z * gauss vals.append(filtered.sum(dim=('lat', 'lon')).values) if var in vals_to_add: attrs = merra_data[var].attrs elif var in new_vals: attrs = {'long_name': merra_data[var[:-3]].long_name + ', inferred aerosol number concentration', 'units':'cm**-3'} ds['MERRA_'+var] = (tuple(x for x in merra_data[var].dims if x not in ['lat', 'lon']), np.array(vals), attrs) ds['MERRA_Na_tot_mass'] = ds.MERRA_OCPHILIC + ds.MERRA_OCPHOBIC + ds.MERRA_BCPHILIC + \ ds.MERRA_BCPHOBIC + ds.MERRA_SO4 + ds.MERRA_DU001 + ds.MERRA_DU002 +\ ds.MERRA_DU003 +ds.MERRA_DU004 + ds.MERRA_DU005 + ds.MERRA_SS001 + \ ds.MERRA_SS002 + ds.MERRA_SS003 + ds.MERRA_SS004 + ds.MERRA_SS005 # #akn=aitken = everything below 80nm # #acc = accumulution = everything between 80 and 1000 # #crs=coarse = everything above 1000 mass_acc_dict = {} mass_akn_dict = {} mass_crs_dict = {} num_acc_dict = {} num_akn_dict = {} num_crs_dict = {} for x in ['MERRA_OCPHILIC', 'MERRA_OCPHOBIC', 'MERRA_BCPHILIC', 'MERRA_BCPHOBIC', 'MERRA_SO4']: params = les_utils.merra_species_dict_colarco[x.split('_')[1]] data = ds[x] rho = ds.MERRA_AIRDENS.values n0 = les_utils.get_n0(mass=data.values, density=params['density'], r_max=50, r_min=0.001, std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) mass_acc_dict[x] = les_utils.get_m_subset(density=params['density'], n0=n0, r_min=0.08, r_max=1, std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) mass_akn_dict[x] = les_utils.get_m_subset(density=params['density'], n0=n0, r_min=0.01, r_max=0.08, std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) mass_crs_dict[x] = les_utils.get_m_subset(density=params['density'], n0=n0, r_min=1, r_max=params['upper'], std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) num_acc_dict[x] = les_utils.get_n_subset(n0, r_min=0.08, r_max=1, std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) num_akn_dict[x] = les_utils.get_n_subset(n0, r_min=0.01, r_max=0.08, std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) num_crs_dict[x] = les_utils.get_n_subset(n0, r_min=1, r_max=params['upper'], std_dev=params['geometric_std_dev'], mode_radius=params['mode_radius']) ds[x+'_n0'] = (('time', 'lev'), n0*rho) mass_acc_attrs = {'long_name': 'accumulation mode aerosol mass', 'units': 'kg kg**-1'} mass_akn_attrs = {'long_name': 'aikten mode aerosol mass', 'units': 'kg kg**-1'} mass_crs_attrs = {'long_name': 'coarse mode aerosol mass', 'units': 'kg kg**-1'} ds['MERRA_acc_mass'] = (('time', 'lev'), np.sum(list(mass_acc_dict.values()), axis=0) + \ ds.MERRA_DU001.values + ds.MERRA_SS002.values + ds.MERRA_SS003.values, mass_acc_attrs) ds['MERRA_akn_mass'] = (('time', 'lev'), np.sum(list(mass_akn_dict.values()), axis=0) + \ ds.MERRA_SS001.values, mass_akn_attrs) ds['MERRA_crs_mass'] = (('time', 'lev'), np.sum(list(mass_crs_dict.values()), axis=0) + \ ds.MERRA_DU002.values + ds.MERRA_DU003.values + ds.MERRA_DU004.values + ds.MERRA_DU005.values + \ ds.MERRA_SS004.values + ds.MERRA_SS005.values, mass_crs_attrs) num_acc_attrs = {'long_name': 'accumulation mode aerosol number', 'units': 'kg kg**-1'} num_akn_attrs = {'long_name': 'aikten mode aerosol number', 'units': 'kg kg**-1'} num_crs_attrs = {'long_name': 'coarse mode aerosol number', 'units': 'kg kg**-1'} ds['MERRA_acc_num'] = (('time', 'lev'), np.sum(list(num_acc_dict.values()), axis=0) + \ ds.MERRA_DU001_Na.values + ds.MERRA_SS002_Na.values + ds.MERRA_SS003_Na.values, mass_acc_attrs) ds.lev.attrs['long_name'] = 'model level pressure' ds.lev.attrs['units'] = 'millibars' ds.attrs['MERRA_params'] = f'MERRA-2 data primarily downloaded from NASA GMAO, and statistics computed over a {box_degrees}-deg average centered on trajectory. For aerosol estimates (Na), equivalent aerosol number is computed based on aerosol mass consistent with the MERRA2-assumed aerosol optical properties. Contact <EMAIL> for details.' ds.attrs['MERRA_reference'] = 'MERRA-2 data available at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2.' return ds def new_add_MERRA_to_trajectory(ds, box_degrees=2): ds['MERRA_Na_tot_mass'] = ds.MERRA_OCPHILIC + ds.MERRA_OCPHOBIC + ds.MERRA_BCPHILIC + ds.MERRA_BCPHOBIC + ds.MERRA_SO4 + ds.MERRA_DU001 + ds.MERRA_DU002 + ds.MERRA_DU003 +ds.MERRA_DU004 + \ ds.MERRA_DU005 + ds.MERRA_SS001 + ds.MERRA_SS002 + ds.MERRA_SS003 + ds.MERRA_SS004 + ds.MERRA_SS005 #akn=aitken = everything below 80nm #acc = accumulution = everything between 80 and 1000 #crs=coarse = everything above 1000 mass_acc_dict = {} mass_aik_dict = {} mass_crs_dict = {} num_acc_dict = {} num_aik_dict = {} num_crs_dict = {} # for x in ['MERRA_OCPHILIC', 'MERRA_OCPHOBIC', 'MERRA_BCPHILIC', 'MERRA_BCPHOBIC', 'MERRA_SO4']: # ds['MERRA_Na_acc_mass'] = # ds['MERRA_Na_akn_mass'] = # ds['MERRA_Na_crs_mass'] = # ds['MERRA_akn_num'] = # ds['MERRA_acc_num'] = # ds['MERRA_crs_num'] = return ds #aitken = low-100nm #add aikten NUMBER #add aikten mass ``` #### File: uwtrajectory/SSMI/add_to_trajectory.py ```python from .. import config import numpy as np import xarray as xr import glob def add_SSMI_to_trajectory(ds, box_degrees=2, hour_tolerance=0.5): lats, lons, times = ds.lat.values, ds.lon.values, ds.time.values cloud_vals = np.full_like(lats, fill_value=np.nan) vapor_vals = np.full_like(lats, fill_value=np.nan) wspd_vals = np.full_like(lats, fill_value=np.nan) cloud_vals_std = np.full_like(lats, fill_value=np.nan) vapor_vals_std = np.full_like(lats, fill_value=np.nan) wspd_vals_std = np.full_like(lats, fill_value=np.nan) count_vals = np.full_like(lats, fill_value=np.nan) total_vals = np.full_like(lats, fill_value=np.nan) sats = ['f15', 'f16' ,'f17', 'f18'] for sat in sats: ssmi_data = xr.open_mfdataset(glob.glob(config.SSMI_file_fmt.format(sat)), concat_dim='time', combine='by_coords') for i, (lat, lon, time) in enumerate(zip(lats, lons%360, times)): for orbit_segment in [0,1]: ds_sub = ssmi_data.sel(time=time-np.timedelta64(1-orbit_segment, 'D'), method='nearest', tolerance=np.timedelta64(24, 'h')).sel(orbit_segment=orbit_segment) #note to future users: because of the longitude of CSET, the 1-day offset is included. This is a hardcoded value to deal with the fact that the UTC # day of SSMI doesn't line up when you're near the antimeridian. Future use should deal with this better, by deciding whether or not to add a day # based on the longitude being considered. ds_sub2 = ds_sub.sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat - box_degrees/2, lat + box_degrees/2)) sel_date = ds_sub2.UTCtime nsample = 1-(np.sum(ds_sub2.nodata)/np.size(ds_sub2.nodata)).values if nsample < 0.5: # print('no samples') # print(f'skipping {time}') continue else: meantime = np.nanmean(ds_sub2.UTCtime.values) sampletime = ds_sub2.time.values + np.timedelta64(int(meantime), 'h') + np.timedelta64(int(60*(meantime - int(meantime))), 'm') miss = (time-sampletime)/np.timedelta64(1, 'h') if np.abs(miss)<hour_tolerance: #print(f'{sat}: found data at {time}, off by {miss} hours. sample fill is {nsample:.0%}') # print(np.sum(~np.isnan(ds_sub2.cloud).values), np.sum(~np.isnan(ds_sub2.vapor).values), np.sum(~np.isnan(ds_sub2.wspd_mf)).values) # print(np.size(ds_sub2.nodata.values)-np.sum(ds_sub2.nodata.values), np.sum(~ds_sub2.nodata).values) cloud_vals[i] = np.nanmean(ds_sub2.cloud) vapor_vals[i] = np.nanmean(ds_sub2.vapor) wspd_vals[i] = np.nanmean(ds_sub2.wspd_mf) count_vals[i] = np.sum(~np.isnan(ds_sub2.cloud)) total_vals[i] = np.size(ds_sub2.cloud.values) cloud_vals_std[i] = np.nanstd(ds_sub2.cloud) vapor_vals_std[i] = np.nanstd(ds_sub2.vapor) wspd_vals_std[i] = np.nanstd(ds_sub2.wspd_mf) # else: # print('outside hour tolerance') # break ds['SSMI_LWP'] = (('time'), np.array(cloud_vals), ds_sub2.cloud.attrs) ds['SSMI_LWP_std'] = (('time'), np.array(cloud_vals_std), ds_sub2.cloud.attrs) ds['SSMI_WVP'] = (('time'), np.array(vapor_vals), ds_sub2.vapor.attrs) ds['SSMI_VWP_std'] = (('time'), np.array(vapor_vals_std), ds_sub2.vapor.attrs) ds['SSMI_WSPD'] = (('time'), np.array(wspd_vals), ds_sub2.wspd_mf.attrs) ds['SSMI_WSPD_std'] = (('time'), np.array(wspd_vals_std), ds_sub2.wspd_mf.attrs) ds['SSMI_n_samples'] = (('time'), np.array(count_vals), {'long_name': 'SSMI number of data samples'}) ds['SSMI_n_total'] = (('time'), np.array(total_vals), {'long_name': 'SSMI total number of pixels'}) # print(np.size(ds_sub2.values)) ds['SSMI_WSPD_std'] = (('time'), np.array(wspd_vals_std), ds_sub2.wspd_mf.attrs) for i in ['SSMI_LWP_std', 'SSMI_VWP_std', 'SSMI_WSPD_std']: ds[i].attrs['long_name'] = ds[i].attrs['long_name']+' standard deviation over box' ds.attrs['SSMI_params'] = f'SSM/I data added from satellites {", ".join(sats).upper()}; statistics computed over a {box_degrees}-deg average centered on trajectory' ds.attrs['SSMI_reference'] = f"SSM/I and SSMIS data are produced by Remote Sensing Systems. Data are available at www.remss.com/missions/ssmi." return ds ``` #### File: uw-trace/uwtrajectory/utils.py ```python import pytz import os import re import pandas as pd import netCDF4 as nc4 import datetime as dt import numpy as np import matplotlib.pyplot as plt from matplotlib import cm, rc from ftplib import FTP from mpl_toolkits.basemap import Basemap from time import sleep from urllib.request import urlopen from urllib.error import HTTPError import collections import matplotlib.path as path import glob # import xlrd import xarray as xr import warnings import collections import pickle import sys from . import met_utils as mu from scipy.interpolate import interp1d # %% Parameters SMALL_SIZE = 16 MEDIUM_SIZE = 20 BIGGER_SIZE = 24 rc('font', size=SMALL_SIZE) # controls default text sizes rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title rc('axes', labelsize=SMALL_SIZE) # fontsize of the x and y labels rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels rc('legend', fontsize=SMALL_SIZE) # legend fontsize rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title rc('figure', dpi=100) font = {'family' : 'DejaVu Sans', 'weight' : 'normal'} rc('font', **font) #cset flight case names all_cases = { 1: {'ALC_name': 'ALC_RF02B-RF03CD', 'TLC_name': 'TLC_RF02-RF03_1.0-1.5-2.0', #opt 1.0, fine 'trajectories': [0, 1]}, 2: {'ALC_name': 'ALC_RF02C-RF03AB', 'TLC_name': 'TLC_RF02-RF03_0.5-1.0', #opt 1.0, fine 'trajectories': [0, 1]}, 3: {'ALC_name': 'ALC_RF04A-RF05CDE', 'TLC_name': 'TLC_RF04-RF05_2.0-2.3-2.5-3.0', #opt 2.0. check 'trajectories': [0, 1]}, 4: {'ALC_name': 'ALC_RF04BC-RF05AB', 'TLC_name': 'TLC_RF04-RF05_1.0-2.0', #opt 2.0, ok 'trajectories': [0, 1]}, 5: {'ALC_name': 'ALC_RF06A-RF07BCDE', 'TLC_name': 'TLC_RF06-RF07_3.5-4.0-4.3-4.6-5.0', #opt 3.0, check 3.5 'trajectories': [0, 1]}, 6: {'ALC_name': 'ALC_RF06BC-RF07A', 'TLC_name': 'TLC_RF06-RF07_1.6-2.0-2.3-2.6-3.0', #opt 1.6, check 'trajectories': [0, 1]}, 7: {'ALC_name': 'ALC_RF08A-RF09DEF', 'TLC_name': 'TLC_RF08-RF09_4.0-4.5-5.0', 'trajectories': [0, 1]}, 8: {'ALC_name': 'ALC_RF08B-RF09BC', 'TLC_name': 'TLC_RF08-RF09_3.0-3.5', 'trajectories': [0, 1]}, 9: {'ALC_name': 'ALC_RF08CD-RF09A', 'TLC_name': 'TLC_RF08-RF09_1.5-2.0', 'trajectories': [0, 1]}, 10: {'ALC_name': 'ALC_RF10A-RF11DE', 'TLC_name': 'TLC_RF10-RF11_5.5-6.0', #opt 5.0, removed 'trajectories': [0, 1]}, 11: {'ALC_name': 'ALC_RF10BC-RF11BC', 'TLC_name': 'TLC_RF10-RF11_3.0-3.5-4.0-5.0', #opt 5.0, fine 'trajectories': [0, 1]}, 12: {'ALC_name': 'ALC_RF10D-RF11A', 'TLC_name': 'TLC_RF10-RF11_1.0-1.5', #opt 1.0, ok 'trajectories': [0, 1]}, 13: {'ALC_name': 'ALC_RF12A-RF13E', 'TLC_name': 'TLC_RF12-RF13_4.5', #opt 5.0, removed 'trajectories': [0, 1]}, 14: {'ALC_name': 'ALC_RF12B-RF13CD', 'TLC_name': 'TLC_RF12-RF13_3.0-3.5', #added 3.0, ok 'trajectories': [0, 1]}, 15: {'ALC_name': 'ALC_RF12C-RF13B', 'TLC_name': 'TLC_RF12-RF13_2.5-3.0', 'trajectories': [0, 1]}, 16: {'ALC_name': 'ALC_RF14A-RF15CDE', 'TLC_name': 'TLC_RF14-RF15_3.5-4.0', 'trajectories': [0, 1]}, 17: {'ALC_name': 'ALC_RF14B-RF15B', 'TLC_name': 'TLC_RF14-RF15_3.0', 'trajectories': [0, 1]}, 18: {'ALC_name': 'ALC_RF14CD-RF15A', 'TLC_name': 'TLC_RF14-RF15_1.0-2.0', 'trajectories': [0, 1]} } def get_lon_prime(lat, lon, lon0=-140, lat0=30): lonp = lon0 + 0.8*(lon-lon0) + 0.4*(lat-lat0) return lonp def nan_helper(y): """Helper to handle indices and logical indices of NaNs. Input: - y, 1d numpy array with possible NaNs Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices Example: >>> # linear interpolation of NaNs >>> nans, x= nan_helper(y) >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans]) """ return np.isnan(y), lambda z: z.nonzero()[0] def gauss2D(shape=(3,3),sigma=0.5): """ 2D gaussian mask - should give the same result as MATLAB's fspecial('gaussian',[shape],[sigma]) """ m,n = [(ss-1.)/2. for ss in shape] y,x = np.ogrid[-m:m+1,-n:n+1] h = np.exp( -(x*x + y*y) / (2.*sigma*sigma) ) h[ h < np.finfo(h.dtype).eps*h.max() ] = 0 sumh = h.sum() if sumh != 0: h /= sumh return h def closest_index(lat_traj, lon_traj, lat, lon): dist = ((lat - lat_traj)**2 + (lon - lon_traj)**2)**(0.5) return np.unravel_index(np.nanargmin(dist), dist.shape) def get_GOES_files_for_dates(date_array): # if True: all_GOES_files = sorted(glob.glob(r'/home/disk/eos4/jkcm/Data/CSET/GOES/VISST_pixel/G15V03.0.NH.*.NC')) all_GOES_date_strings = [i[-22:-10] for i in all_GOES_files] relevant_dates = [dt.datetime.strftime(i, '%Y%j.%H%M') for i in sorted(as_datetime(date_array))] relevant_files = sorted([all_GOES_files[all_GOES_date_strings.index(d)] for d in relevant_dates]) return relevant_files def get_ERA_data(var_list, lats, lons, times, pressures, box_degrees=2): """Retrieve ERA5 data in a box around a trajectory Assumes ERA5 data is 0.3x0.3 degrees Returns an xarray Dataset """ space_index = int(np.round(box_degrees/0.3/2)) # go up/down/left/right this many pixels assert len(lats) == len(lons) == len(times) == len(pressures) unique_days = set([as_datetime(i).date() for i in times]) files = [os.path.join(ERA_source, "ERA5.pres.NEP.{:%Y-%m-%d}.nc".format(i)) for i in unique_days] return_ds = xr.Dataset(coords={'time': times}) with xr.open_mfdataset(sorted(files)) as data: for var in var_list: vals = [] for (lat, lon, time, pres) in zip(lats, lons%360, times, pressures): x = data[var].sel(longitude=slice(lon - box_degrees/2, lon + box_degrees/2), latitude=slice(lat + box_degrees/2, lat - box_degrees/2)) y = x.sel(method='nearest', tolerance=np.timedelta64(minutes=59), time=time) z = y.sel(method='nearest', tolerance=50, level=pres) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss = gauss2D(shape=z.shape, sigma=z.shape[0]) filtered = z.values * gauss vals.append(np.sum(filtered)) da = xr.DataArray(data=vals, coords={'time': times}, dims=['time']) return_ds[var] = da return return_ds lev_map = {'1': 0.0100, '2': 0.0200, '3': 0.0327, '4': 0.0476, '5': 0.0660, '6': 0.0893, '7': 0.1197, '8': 0.1595, '9': 0.2113, '10': 0.2785, '11': 0.3650, '12': 0.4758, '13': 0.6168, '14': 0.7951, '15': 1.0194, '16': 1.3005, '17': 1.6508, '18': 2.0850, '19': 2.6202, '20': 3.2764, '21': 4.0766, '22': 5.0468, '23': 6.2168, '24': 7.6198, '25': 9.2929, '26': 11.2769, '27': 13.6434, '28': 16.4571, '29': 19.7916, '30': 23.7304, '31': 28.3678, '32': 33.8100, '33': 40.1754, '34': 47.6439, '35': 56.3879, '36': 66.6034, '37': 78.5123, '38': 92.3657, '39': 108.6630, '40': 127.8370, '41': 150.3930, '42': 176.9300, '43': 208.1520, '44': 244.8750, '45': 288.0830, '46': 337.5000, '47': 375.0000, '48': 412.5000, '49': 450.0000, '50': 487.5000, '51': 525.0000, '52': 562.5000, '53': 600.0000, '54': 637.5000, '55': 675.0000, '56': 700.0000, '57': 725.0000, '58': 750.0000, '59': 775.0000, '60': 800.0000, '61': 820.0000, '62': 835.0000, '63': 850.0000, '64': 865.0000, '65': 880.0000, '66': 895.0000, '67': 910.0000, '68': 925.0000, '69': 940.0000, '70': 955.0000, '71': 970.0000, '72': 985.0000} pres_map = {} for k, v in lev_map.items(): pres_map[v] = int(k) def get_MERRA_level(pressure): a, b = zip(*[(float(k), v) for k, v in lev_map.items()]) levels = sorted(a) pressures = sorted(b) return(interp1d(pressures, levels)(pressure)) def MERRA_lev(lev, invert=False, lev_map=lev_map): if invert: pres_map = {} for k, v in lev_map.items(): pres_map[str(v)] = int(k) lev_map = pres_map if isinstance(lev, collections.Iterable): pres = [lev_map[str(int(i))] for i in lev] else: pres = lev_map[int(float(str(lev)))] return pres def get_MERRA_data(var_list, lats, lons, times, pressures, box_degrees=2): """Retrieve ERA5 data in a box around a trajectory Assumes ERA5 data is 0.3x0.3 degrees Returns an xarray Dataset """ # Merra lat spacing is 0.5 deg (n-s), lon-spacing is 0.625 (e-w) #lat_space_index = int(np.round(box_degrees/0.5/2)) # go up/down this many pixels #lon_space_index = int(np.round(box_degrees / 0.625 / 2)) # go left-right this many pixels assert len(lats) == len(lons) == len(times) == len(pressures) unique_days = set([as_datetime(i).date() for i in times]) files = [os.path.join(MERRA_source, "svc_MERRA2_400.inst3_3d_aer_Nv.{:%Y%m%d}.nc4".format(i)) for i in unique_days] return_ds = xr.Dataset(coords={'time': times}) with xr.open_mfdataset(sorted(files)) as data: for var in var_list: vals = [] for (lat, lon, time, pres) in zip(lats, (lons+180)%360-180, times, pressures): x = data[var].sel(lon=slice(lon - box_degrees/2, lon + box_degrees/2), lat=slice(lat - box_degrees/2, lat + box_degrees/2)) y = x.sel(method='nearest', tolerance=dt.timedelta(minutes=179), time=time) z = y.sel(method='nearest', tolerance=1, lev=get_MERRA_level(pres)) #this applies a 2D gaussian the width of z, i.e. sigma=box_degrees gauss = gauss2D(shape=z.shape, sigma=max(z.shape)) filtered = z.values * gauss vals.append(np.sum(filtered)) da = xr.DataArray(data=vals, coords={'time': times}, dims=['time']) return_ds[var] = da return return_ds def dep_get_MERRA_var(varname, nc, make_vol=True): if varname == 'SALT': salt_names = ['SS{:03}'.format(i) for i in range(1, 3)] var = np.sum([nc[name][:] for name in salt_names], axis=0) var_name_str = 'Sea Salt Mixing Ratio (all bins)' units = nc['SS001'].units elif varname == 'DUST': dust_names = ['DU{:03}'.format(i) for i in range(1, 2)] var = np.sum([nc[name][:] for name in dust_names], axis=0) var_name_str = 'Dust Mixing Ratio (all bins)' units = nc['DU001'].units elif varname == 'BC': BC_names = ['BCPHILIC', 'BCPHOBIC'] var = np.sum([nc[name][:] for name in BC_names], axis=0) var_name_str = 'Black Carbon Mixing Ratio (total)' units = nc['BCPHILIC'].units elif varname == 'OC': OC_names = ['OCPHILIC', 'OCPHOBIC'] var = np.sum([nc[name][:] for name in OC_names], axis=0) var_name_str = 'Organic Carbon Mixing Ratio (total)' units = nc['OCPHILIC'].units elif varname == 'SG': SG_names = ['DMS', 'MSA', 'SO2'] var = np.sum([nc[name][:] for name in SG_names], axis=0) var_name_str = 'Sulfur Compounds Mixing Ratio (total)' units = nc['OCPHILIC'].units elif varname == 'AEROSOL': aa_names = ['SS001', 'SS002', 'DU001', 'BCPHILIC', 'BCPHOBIC', 'OCPHILIC', 'OCPHOBIC', 'SO4'] var = np.sum([nc[name][:] for name in aa_names], axis=0) var_name_str = 'Particulate Aerosol Mixing Ratio (total)' units = nc['BCPHILIC'].units else: var = nc[varname][:].squeeze() # (time, pres, lats, lons) var_name_str = (' ').join(nc[varname].long_name.split('_')) units = nc[varname].units # Sorting out units and variable names, converting to volumetric if units == "kg kg-1" and np.mean(var) < 0.01: # dealing with aerosol if make_vol: dens = nc['AIRDENS'][:].squeeze() # (time, pres, lats, lons) var = var * dens * 10**9 units = r' (${\mu}g m^{-3}$)' else: var = var*10**9 units = r' (${\mu}g kg^{-1}$)' else: units = (r'\_').join(units.split('_')) var_str = var_name_str + ' (' + units + ')' return var, var_str def CSET_date_from_table(date, time): """return datetime object from CSET Lookup Table-formatted date and time """ d = as_datetime(dt.datetime.strptime(str(int(date)), '%m%d%y') + dt.timedelta(seconds=time)) return d def add_leg_sequence_labels(df, start_times, end_times, legs, sequences): """add leg labels to insitu data.""" # data = self.flight_data sequence_array = np.empty(df.time.values.shape, dtype='U1') leg_array = np.empty(df.time.values.shape, dtype='U1') df['leg'] = (('time'), leg_array) df['sequence'] = (('time'), sequence_array) for s, e, leg, seq in zip(start_times, end_times, legs, sequences): which_times = np.logical_and(as_datetime(df['time'].values) >= s, as_datetime(df['time'].values) <= e) df['leg'][which_times] = leg df['sequence'][which_times] = seq df = df.set_coords(['leg', 'sequence'])#, inplace=True) return df, sequences # self.sequences = sorted(list(set(sequences))) def flightpair_from_flight(flight): if isinstance(flight, str): if len(flight) == 4: flight = int(flight[2:]) else: flight = int(flight) if not flight in range(2, 16): raise ValueError('invalid flight number') if flight % 2 == 0: return ('rf{:02d}_rf{:02d}'.format(flight, flight + 1)) elif flight % 2 == 1: return ('rf{:02d}_rf{:02d}'.format(flight - 1, flight)) def get_waypoint_data(flight, waypoint_type='a'): # selecting wp file flightpair = flightpair_from_flight(flight) floc = r'/home/disk/eos4/jkcm/Data/CSET/Trajectories/{}_waypoints'.format(waypoint_type) wpfile = os.path.join(floc, flightpair.upper() + '_{}_waypoints.txt'.format(waypoint_type)) # parsing def parseFunc(y, m, d, H, M): return dt.datetime(int(y), int(m), int(d), int(H), int(M)) columns = ['lab', 'outlat', 'outlon', 'out_Y', 'out_M', 'out_D', 'out_HH', 'out_MM', 'retlat', 'retlon', 'ret_Y', 'ret_M', 'ret_D', 'ret_HH', 'ret_MM'] if waypoint_type == 'b': columns.append('dist') data = pd.read_table(wpfile, names=columns, skiprows=3, engine='python', date_parser=parseFunc, index_col='lab', sep='\s+', # delim_whitespace=True, parse_dates={'out_time': ['out_Y', 'out_M', 'out_D', 'out_HH', 'out_MM'], 'ret_time': ['ret_Y', 'ret_M', 'ret_D', 'ret_HH', 'ret_MM']}) return (data) def qv_from_p_T_RH(p, T, RH): """p in Pa, T in K, Rh in pct. return is in kg/kg """ es = 611.2*np.exp(17.67*(T-273.15)/(T-29.65)) qvs = 0.622*es/(p-es) qv = qvs*RH/100 return qv # qvs = 0.622*es/(p-0.378*es) # rvs = qvs/(1-qvs) # rv = RH/100. * rvs # qv = rv/(1+rv) # return qv def load_flight_trajectory(flight, number, trajectory_type='500m_+72'): flightpair = flightpair_from_flight(flight) wp_data = get_waypoint_data(flight=flight, waypoint_type='a') out_date = wp_data.loc[number, 'out_time'] trajectory_loc = r'/home/disk/eos4/jkcm/Data/CSET/Trajectories/{}'.format(flightpair) trajectory_name = r'analysis.UW_HYSPLIT_GFS.{:%Y%m%d%H%M}.airmass_trajectories_{}.txt'.format(out_date, trajectory_type) t_data = read_tdump(os.path.join(trajectory_loc, trajectory_name)) return (t_data.sort_values('dtime')) def load_flightplan(infile): with open(infile, 'rb') as readfile: flightplan = pickle.load(readfile) return flightplan def load_flight_file(infile): """ loads a flight file from disk. Opposite of make_flight_file """ with open(infile, 'rb') as readfile: flightplan = pickle.load(readfile) return flightplan def read_CSET_Lookup_Table(path=None, rf_num=None, sequences=None, legs=None, variables=None): """Read in data from the CSET Lookup Table. Arguments ---------- path : str string representing the location of the lookup table rf_num : str or list, int list of integers of research flights, or 'all' for all flights legs : str or list, str list of strings representing the LEG NAMES for which variables should be retrieved, or 'all' for all variables b: below cloud c: in cloud a: above cloud p: porpoise m: Mather sounding k: Kona sounding f: ferry u: up sounding d: down sounding sequences : str or list, str list of strings representing the SEQUENCE NAMES for which variables should be retrieved, or 'all' for all defined sequences. first sequence of each flight is 'A', last is C-E depending on how many sequences were performed. NOTE: 'all' is NOT the same as leaving this as None (default). 'all' will explicitly look at all the sequences, so any upper-level data would be excluded. None will look only at rf_num and specified legs, ignoring sequences entirely. variables: list, str list of strings representing variables you want as list. leave blank to get error message with all options. Useful ones are 'Date', 'ST', 'ET' for date, start time, and end time Returns ---------- ret_dict : dict dictionary with m+2 entries, where m is the number of requested vars: 'rf': an array of length n the research flights 'sequence': an array of length n of the sequences for each variable, a dictionary with units and a length n array of variable values """ # warnings.warn("NOTE: usage change Feb 2018: sequences now refers to flight sequence (A,B,...) " # "and legs refers to portion of flight ('b', 'p'), etc. see docstring") if path is None: path = r'/home/disk/eos4/jkcm/Data/CSET/LookupTable_all_flights.xls' sheet = xlrd.open_workbook(path).sheet_by_index(0) leg_colnum = np.argwhere(np.array(sheet.row_values(11)) == 'Leg Name').flatten()[0] all_legs = [str(i) for i in sheet.col_values(leg_colnum)[18:]] flight_colnum = np.argwhere(np.array(sheet.row_values(11)) == 'Research Flight Number').flatten()[0] all_flights = [int(i) for i in sheet.col_values(flight_colnum)[18:]] seq_colnum = np.argwhere(np.array(sheet.row_values(11)) == 'Sequence Name').flatten()[0] all_sequences = [str(i) for i in sheet.col_values(seq_colnum)[18:]] abb_cell = [str(i.value) for i in sheet.col_slice(0, 0, 10)] val_cell = [str(i.value) for i in sheet.col_slice(1, 0, 10)] varab = [str(i.value) for i in sheet.row_slice(12, 3, 39)] vname = [str(i.value).ljust(28) for i in sheet.row_slice(11, 3, 39)] vunit = [str(i.value).ljust(6) for i in sheet.row_slice(16, 3, 39)] if legs == 'all': legs = [str(i) for i in set(all_legs)] elif isinstance(legs, str): legs = [legs] if rf_num == 'all': rf_num = [i for i in set(all_flights)] elif isinstance(rf_num, int): rf_num = [rf_num] if sequences == 'all': sequences = [str(i) for i in set(all_sequences)] elif isinstance(sequences, str): sequences = [sequences] # if there is missing input, print some helpful information mess = "Missing or incorrect input, printing help" if rf_num is None or not set(rf_num) <= set(all_flights): mess += ("\n\nspecify the RESEARCH FLIGHTS (rf_num) you want as list." "\noptions are {}".format(str([i for i in set(all_flights)]))) mess += "\nor select 'all'" if legs is None or not set(legs) <= set(all_legs): abbs = ['{}: {}'.format(a, b) for (a, b) in zip(abb_cell, val_cell)] mess += ("\n\nspecify the LEG NAMES (legs) you want as list.\n" "options are: \n{}".format('\n'.join(abbs))) mess += "\nor select 'all'" if sequences is not None and not set(sequences) <= set(all_sequences): mess += ("\n\neither leave SEQUENCE NAMES (seqs) blank to \n" "ignore sequences, or else specify as list, or select 'all'") if variables is None or not set(variables) <= set(varab): var = ['{}{}{}'.format(a.ljust(14), b, c) for (a, b, c) in zip(varab, vname, vunit)] mess += ("\n\nspecify the VARIABLES (variables) you want as list.\n" "options are: \n{}".format('\n'.join(var))) if len(mess) > 41: raise ValueError(mess) # otherwise return the requested values as a dict of dicts\ rows, = np.where( [False]*18 + [True if (l in legs and f in rf_num) else False for l, f in zip(all_legs, all_flights)]) if sequences is not None: seqrows, = np.where( [False]*18 + [True if s in sequences else False for s in all_sequences]) rows = np.intersect1d(rows, seqrows) cols, = np.where( [False]*3 + [True if v in variables else False for v in varab]) rf = np.array([int(sheet.cell(r, flight_colnum).value) for r in rows]) leg = np.array([str(sheet.cell(r, leg_colnum).value) for r in rows]) seq = np.array([str(sheet.cell(r, seq_colnum).value) for r in rows]) ret_dict = {'rf': rf, 'leg': leg, 'seq': seq} for c in cols: varname = str(sheet.cell(12, c).value) units = str(sheet.cell(16, c).value) values = np.array([sheet.cell(r, c).value for r in rows]) ret_dict[varname] = {'units': units, 'values': values} return ret_dict def get_leg_times_by_sequence(flightnum, sequence, leg): path = r'/home/disk/eos4/jkcm/Data/CSET/LookupTable_all_flights.xls' flight = read_CSET_Lookup_Table(path, rf_num=flightnum, sequences=[sequence], legs=[leg], variables=['Date', 'ST', 'ET']) start_times = as_datetime([CSET_date_from_table(d, t) for d, t in zip(flight['Date']['values'], flight['ST']['values'])]) end_times = as_datetime([CSET_date_from_table(d, t) for d, t in zip(flight['Date']['values'], flight['ET']['values'])]) sounding_times = list(zip(flight['rf'], start_times, end_times)) return(sounding_times[0][1], sounding_times[0][2]) def read_CSET_data(fname, var_list=None, start_date=None, end_date=None): """read in CSET UHSAS .nc file and returns requested variables """ with nc4.Dataset(fname, 'r') as nc: timevar = nc.variables['Time'] date = nc4.num2date(timevar[:], units=timevar.units) if start_date is None: start_date = date[0] if end_date is None: end_date = date[-1] indx = np.logical_and(date >= start_date, date <= end_date) date = date[indx] ret_dict = {'Date': date} for var_name in var_list: ret_dict[var_name] = nc.variables[var_name][:].squeeze()[indx] return ret_dict def get_GOES_data(variable_list, lat, lon, time, degree, dlat=12, dlon=21): def GOES_file_from_date(time, location, max_distance=3): """Return the goes filename corresponding to the time in the location folder max_distance is the max number of hours away we are allowed to validly look dlat is number of lat indexes per degree, same for dlon """ # offs = 0 if time.minute < 30 else 1 f, b = np.arange(max_distance) + 1, -np.arange(max_distance) offs = np.hstack(zip(f,b)) if time.minute > 30 else np.hstack(zip(b,f)) for off in offs: file = "G15V03.0.NH.{:%Y%j.%H}00.PX.08K.NC".format(time + dt.timedelta(hours=int(off))) if os.path.exists(os.path.join(location, file)): return os.path.join(location, file) raise IOError("no GOES file found!") file_name = GOES_file_from_date(time, GOES_source) with xr.open_dataset(file_name) as data: # if True: # data = xr.open_dataset(file_name) [k for (k,v) in data.coords.items()] ret_dict = {} lats = data.coords['latitude'].values lons = data.coords['longitude'].values ilat, ilon = closest_index(lat, lon, lats, lons) # dlat = lats[ilat-1,ilon] - lats[ilat,ilon] # dlon = lons[ilat,ilon+1] - lons[ilat,ilon] # delta_lat = degree/2/dlat # delta_lon = degree/2/dlon # lat_mask = np.logical_and(lats > lat - degree/2., lats < lat + degree/2.) # lon_mask = np.logical_and(lats > lat - degree/2., lats < lat + degree/2.) # crd_mask = np.logical_and(lat_mask, lon_mask) delta_lat = int((degree/2)*dlat) delta_lon = int((degree/2)*dlon) # print(delta_lat) # print(delta_lon) latslice = slice(ilat-delta_lat,ilat+delta_lat) lonslice = slice(ilon-delta_lon,ilon+delta_lon) ret_dict['lat'] = lats[latslice,lonslice] ret_dict['lon'] = lons[latslice,lonslice] for variable in variable_list: # variable = 'visible_count' if variable not in data.data_vars.keys(): raise ValueError("{} variable not in dataset!") vardata = data.data_vars[variable].values[latslice,lonslice] ret_dict[variable] = vardata # ret_dict[variable] = data.data_vars[variable].loc[dict(image_y=latslice, # image_x=lonslice)] return ret_dict def get_flight_start_end_times(rf_num, lookup_table_path): if rf_num == 16: start_time = dt.datetime(2015, 8, 12, 15, 25) end_time = dt.datetime(2015, 8, 12, 22, 5) return (start_time, end_time) x = read_CSET_Lookup_Table(lookup_table_path, rf_num=[rf_num], legs=['m', 'k'], variables=['Date', 'ST', 'ET']) if rf_num % 2 == 0: # westward leg, m is start, k is end start_time = CSET_date_from_table(x['Date']['values'][0], x['ST']['values'][0]) end_time = CSET_date_from_table(x['Date']['values'][1], x['ET']['values'][1]) else: # eastward leg start_time = CSET_date_from_table(x['Date']['values'][0], x['ST']['values'][0]) end_time = CSET_date_from_table(x['Date']['values'][1], x['ET']['values'][1]) return (start_time, end_time) def make_landmask_dep(lats, lons): def points_in_polys(points, polys): result = [] # mask = np.empty_like(points)*False for poly in polys: # mask = path.contains_points(points, poly) polypath = path.Path(poly) mask = polypath.contains_points(points) # result.extend(points[mask]) points = points[~mask] return np.array(result) m = Basemap(projection='moll',lon_0=0,resolution='c') m.drawcoastlines() m.fillcontinents(color='coral',lake_color='aqua') x, y = m(lons, lats) # loc = np.c_[x, y] # loc = np.array([(a, b) for a, b in zip(x, y)]) loc = np.array([(a, b) for a, b in zip(x.ravel(), y.ravel())]) polys = [p.boundary for p in m.landpolygons] # path = path.Path land_loc = points_in_polys(loc, polys) mask = np.array([True if a in land_loc else False for a in loc]).reshape(x.shape) return mask def make_landmask(lats, lons): m = Basemap(projection='cyl', resolution='c') x, y = m(lons.ravel(), lats.ravel()) locations = np.c_[x, y] polygons = [path.Path(p.boundary) for p in m.landpolygons] result = np.zeros(len(locations), dtype=bool) for polygon in polygons: result += np.array(polygon.contains_points(locations)) return result.reshape(lats.shape) def varcheck(fname, attr): with nc4.Dataset(fname) as dataset: if attr in list(dataset.variables.keys()): # print 'okay' return True else: print(fname) return False def get_hysplit_files(run_date, run_hours): """Get HYSPLIT files required to run trajectories, return as list of files run_date: date of trajectory initialization run_hours: hours of trajectory. negative number means backward trajectory """ today = dt.datetime.today() start_date = min(run_date, run_date + dt.timedelta(hours=run_hours)) end_date = max(run_date, run_date + dt.timedelta(hours=run_hours)) days_since_start = (today.date() - start_date.date()).days days_since_end = (today.date() - end_date.date()).days file_list = [] while days_since_start > 0: # add all analysis files from previous days date_to_add = today - dt.timedelta(days=days_since_start) if date_to_add > end_date: break try: f, d = get_hysplit_analysis(date_to_add) file_list.append(f) except ValueError: print(('could not find analysis for {}'.format(date_to_add))) days_since_start -= 1 if days_since_end < 1: # trajectory either ends today or in future f, d = get_hysplit_appended_files(today) file_list.append(f) f, d = get_hysplit_forecast_files(today) file_list.append(f) return file_list def get_hysplit_analysis(date): """ gets hysplit analysis file for day in date. if the file is already acquired, will not download it again. if the file does not exist yet raises error. """ ftp = FTP('arlftp.arlhq.noaa.gov') ftp.login() ftp.cwd('/archives/gdas0p5') rx = re.compile('{:%Y%m%d}_gdas0p5\Z'.format(date)) files = sorted(filter(rx.match, ftp.nlst())) if len(files) == 0: raise ValueError("ARL: No analysis available for {:%Y%m%d} yet...".format(date)) newest = files[-1] savedir = os.path.join(HYSPLIT_source, 'analysis') if not os.path.exists(savedir): os.makedirs(savedir) print(("ARL: Attempting to find analysis file {} locally...".format(newest))) if os.path.isfile(os.path.join(savedir, newest)): print("ARL: File already acquired, not downloading it again.") else: print("ARL: File not found, will grab it from archives.") try: ftp.retrbinary("RETR " + newest, open(os.path.join(savedir, newest), 'wb').write) except: print("ARL: Error in ftp transfer.") raise print('ARL: Analysis file successfully downloaded') savedfile = os.path.join(savedir, newest) print(('ARL: {}'.format(savedfile))) return savedfile, date def get_hysplit_appended_files(date=None): """ Gets most recent HYSPLIT appended files on date. Returns file location and initialization time (in the appended case that means the end of the file, so gfsa for 18Z on the 12th is relevant from 18Z on the 10th through the 12th, for instance) """ f, d = get_hysplit_forecast_files(date, model='gfsa') return f, d def get_hysplit_forecast_files(date=None, model='gfsf'): """ Gets most recent HYSPLIT forecast files on date. Finds most recent file on ARL server. If it already exists on disk, does nothing and returns location on disk and initialization date. If it does not exist on disk, downloads and then returns the same. """ def try_FTP_connect(ftpname): counter = 0 while True: try: ftp = FTP(ftpname) return ftp except Exception as e: counter += 1 sleep(1) if counter > 20: raise e if date is None: date = dt.datetime.utcnow() ftp = try_FTP_connect('arlftp.arlhq.noaa.gov') ftp.login() ftp.cwd('/forecast/{:%Y%m%d/}'.format(date)) rx = re.compile('hysplit.*.{}\Z'.format(model)) files = list(filter(rx.match, ftp.nlst())) if len(files) == 0: # too early in the day print(('ARL: no recent {} matches, looking at yesterday instead'.format(model))) date = date - dt.timedelta(days=1) ftp.cwd('/forecast/{:%Y%m%d/}'.format(date)) files = list(filter(rx.match, ftp.nlst())) newest = files[-1] savedir = os.path.join(HYSPLIT_source, 'forecast', '{:%Y%m%d}'.format(date)) if not os.path.exists(savedir): os.makedirs(savedir) print(("ARL: Attempting to find {} for {:%Y-%m-%d}...".format(newest, date))) if os.path.isfile(os.path.join(savedir, newest)): print("ARL: File already acquired, not downloading it again.") else: print("ARL: File not found, will grab it from server.") try: ftp.retrbinary("RETR " + newest, open(os.path.join(savedir, newest), 'wb').write) except: print("AR:L Error in ftp transfer.") raise print('ARL: File successfully downloaded') inittime = int(newest.split('.')[-2][1:3]) initdate = date.replace(hour=inittime, minute=0, second=0, microsecond=0) savedfile = os.path.join(savedir, newest) print(("ARL: file saves as {}".format(savedfile))) return(savedfile, initdate) def write_control_file(start_time, coords, hyfile_list, hours, vertical_type, init_height, tdumpdir): """ This file generates the CONTROL files used for running the trajectories. start_time - the datetime object of when the trajectory should start coords - list of decimal [lat, lon] pairs. N and E are positive. hyfile_list - list of HYSPLIT source files on which to run model hours- negative hours means backwards run vertical_type: 0 'data' ie vertical velocity fields 1 isobaric 2 isentropic 3 constant density 4 constant internal sigma coord 5 from velocity divergence 6 something wacky to convert from msl to HYSPLIT's above ground level 7 spatially averaged vertical velocity """ fl = os.path.join(HYSPLIT_workdir, 'CONTROL') f = open(fl, 'w') f.write(start_time.strftime('%y %m %d %H\n')) f.writelines([str(len(coords)), '\n']) for j in coords: f.write('{} {} {}\n'.format(str(j[0]), str(j[1]), init_height)) f.writelines([str(hours), '\n']) f.writelines([str(vertical_type), '\n', '10000.0\n']) f.write('{}\n'.format(len(hyfile_list))) for hyfile in hyfile_list: f.writelines([ os.path.dirname(hyfile), os.sep, '\n', os.path.basename(hyfile), '\n']) f.writelines([tdumpdir, os.sep, '\n', 'tdump', start_time.strftime('%Y%m%dH%H%M'), '\n']) f.close() return os.path.join(tdumpdir, 'tdump'+start_time.strftime('%Y%m%dH%H%M')) def read_tdump(tdump): """ Read a tdump file as output by the HYSPLIT Trajectory Model Returns a pandas DataFrame object. """ def parseFunc(y, m, d, H, M): return dt.datetime(int('20'+y), int(m), int(d), int(H), int(M)) columns = ['tnum', 'gnum', 'y', 'm', 'd', 'H', 'M', 'fhour', 'age', 'lat', 'lon', 'height', 'pres'] tmp = pd.read_table(tdump, nrows=100, header=None) l = [len(i[0]) for i in tmp.values] skiprows = l.index(max(l)) D = pd.read_table(tdump, names=columns, skiprows=skiprows, engine='python', sep='\s+', # delim_whitespace=True, parse_dates={'dtime': ['y', 'm', 'd', 'H', 'M']}, date_parser=parseFunc, index_col='dtime') return D def bmap(ax=None, drawlines=True, llr=None, par_labs=[1, 1, 0, 0], mer_labs=[0, 0, 1, 1], merspace=15, parspace=15, **kwargs): if ax is None: fig, ax = plt.subplots() if llr is None: lat_range = latlon_range['lat'] lon_range = latlon_range['lon'] else: lat_range = llr['lat'] lon_range = llr['lon'] if 'projection' not in kwargs.keys(): kwargs['projection'] = 'cyl' kwargs['rsphere'] =(6378137.00, 6356752.3142) m = Basemap(llcrnrlon=lon_range[0], llcrnrlat=lat_range[0], urcrnrlon=lon_range[1], urcrnrlat=lat_range[1], ax=ax, resolution='l', **kwargs) if drawlines: m.drawparallels(np.arange(-90., 90., parspace), labels=par_labs, fontsize=14) m.drawmeridians(np.arange(-180., 180., merspace), labels=mer_labs, fontsize=14) m.drawcoastlines() m.fillcontinents(color="white", lake_color="white") return m def read_flightpath(flightfile): """read in flight file netcdf and return as dict. """ with nc4.Dataset(flightfile, 'r') as flt_nc: lats = flt_nc.variables['LATC'][:].copy() lons = flt_nc.variables['LONC'][:].copy() alt = flt_nc.variables['ALT'][:].copy() timevar = flt_nc.variables['Time'] date = nc4.num2date(timevar[:], units=timevar.units) if isinstance(lats, np.ma.core.MaskedArray): m = np.logical_or(lats.mask, lons.mask) lats = lats.data[~m] lons = lons.data[~m] alt = alt.data[~m] date = date[~m] fp = {'lats': lats, 'lons': lons, 'date': date, 'alt': alt} return fp def gridder(SW, NW, NE, SE, numlats=6, numlons=6): """each point is a [lat lon] corner of the desired area""" lat_starts = np.linspace(SW[0], NW[0], numlats) lon_starts = np.linspace(SW[1], SE[1], numlons) lat_ends = np.linspace(SE[0], NE[0], numlats) lon_ends = np.linspace(NW[1], NE[1], numlons) lat_weight = np.linspace(0., 1., numlats) lon_weight = np.linspace(0., 1., numlons) lat = (1. - lon_weight[:, None])*lat_starts[None, :] +\ lon_weight[:, None]*lat_ends[None, :] lon = (1. - lat_weight[:, None])*lon_starts[None, :] +\ lat_weight[:, None]*lon_ends[None, :] l = [] for i in range(numlats): for j in range(numlons): l.append((lat[j, i], lon[i, j])) return(l) def plot_gridpoints(coords, outfile=None): fig = plt.figure() ax = fig.add_axes([0, 0, 1, 1]) m = bmap(ax=ax, proj='cyl', drawlines=True) m.drawgreatcircle(-121.3, 38.6, -156, 19.8, linestyle='--', c='black') colors = cm.rainbow(np.linspace(0, 1, len(coords))) for i, crd in enumerate(coords): m.plot(crd[1], crd[0], '*', c=colors[i], latlon=True, ms=12, label=i) x, y = m(crd[1]+.5, crd[0]+.5) ax.annotate(str(i), xy=(x, y), xytext=(x, y), xycoords='data', textcoords='data', fontsize=6) if outfile is not None: ax.patch.set_visible(False) fig.savefig(outfile, dpi=300, transparent=True, bbox_inches='tight', pad_inches=0) def plot_trajectory(date=None, filename=None): if date is None and filename is None: print('give me a date (YYYY-MM-DD) or a file, dummy') return elif date: datet = dt.datetime.strptime(date, '%Y-%m-%d') filename = os.path.join(trajectory_dir, 'tdump'+datet.strftime('%Y%m%dH%H%M')) fig, ax, m_ax = make_map_plot() add_tdump_to_plot(m_ax, filename) return def make_map_plot(ax=None, llr=None, **kwargs): if ax is None: fig, ax = plt.subplots(figsize=(7, 8)) else: fig = ax.get_figure() m_ax = bmap(ax=ax, llr=llr, **kwargs) # m_ax.drawgreatcircle(-121.3, 38.6, -156, 19.8, linestyle='--', c='black') m_ax.plot(-121.3, 38.6, 's', ms=8, c='black', latlon=True) m_ax.plot(-156, 19.8, '*', ms=12, c='black', latlon=True) # m_ax.plot(-118.2, 33.77, 's', ms=8, c='red', latlon=True) return fig, ax, m_ax def nan_correlate(x, y): x, y = np.array(x), np.array(y) index = np.logical_and(~np.isnan(x), ~np.isnan(y)) return np.corrcoef(x[index], y[index])[0][1] def plot_single(t, m=None, c=None, i=None): m.plot(t.lon.values, t.lat.values, c=c, latlon=True, label=t.tnum[0]) m.plot(t.lon.values[::6], t.lat.values[::6], '.', c=c, latlon=True) m.plot(t.lon.values[0], t.lat.values[0], '*', c=c, latlon=True, ms=12) m.plot(t.lon.values[-1], t.lat.values[-1], 's', c=c, latlon=True, ms=8) if i is not None: plt.annotate(str(i), xy=(t.lon.values[0]+.5, t.lat.values[0]+.5)) return m def add_tdump_to_plot(m_ax, tdump): T = read_tdump(tdump) t = T.groupby('tnum') colors = cm.rainbow(np.linspace(0, 1, len(list(t.groups.keys())))) for i, k in enumerate(t.groups.keys()): m_ax = plot_single(t.get_group(k), m=m_ax, c=colors[i], i=i) return def get_pesky_GOES_files(): badfiles = [] with open(r'/home/disk/p/jkcm/Code/Lagrangian_CSET/GOES_Extractor.log', 'r') as f: for line in f: if r'/home/disk/eos4/mcgibbon/nobackup/GOES' in line: if line not in badfiles: badfiles.append(line) with open(r'/home/disk/p/jkcm/Code/Lagrangian_CSET/flawed_GOES.log', 'w') as g: for line in sorted(badfiles): if os.path.exists(line[:-1]): size = '{:3.0f}'.format(os.path.getsize(line[:-1])/1024) # print size else: size = 'NA ' replace_GOES_file(line[:-1]) g.writelines(size + ' ' + line) def replace_GOES_file(filename, savedir=None): oldfilename = os.path.basename(filename) year = int(oldfilename[12:16]) date = dt.datetime(year, 1, 1) + dt.timedelta(days=int(oldfilename[16:19]) - 1) newfilename = 'prod.goes-west.visst-pixel-netcdf.{:%Y%m%d}.{}'.format( date, oldfilename) floc = 'prod/goes-west/visst-pixel-netcdf/{:%Y/%m/%d}/'.format(date) server = r'http://cloudsgate2.larc.nasa.gov/' url = server + floc + newfilename try: response = urlopen(url) except HTTPError: print('could not find file!') return print('file found, downloading') if savedir is None: savedir = GOES_source print(('old size is {}KB'.format(os.path.getsize(filename)/1024.))) if os.path.dirname(filename) == savedir: print('moving old file') if not os.path.exists(os.path.join(savedir, 'old')): os.makedirs(os.path.join(savedir, 'old')) os.rename(filename, os.path.join(savedir, 'old', oldfilename)) save_file = os.path.join(savedir, oldfilename) with open(save_file, 'wb') as fp: while True: chunk = response.read(16384) if not chunk: break fp.write(chunk) print(('new size = {}KB'.format(os.path.getsize(save_file)/1024.))) def as_datetime(date, timezone=pytz.UTC): "Converts all datetimes types to datetime.datetime with TZ = UTC" def to_dt(d, timezone): """does all the heavy lifting """ supported_types = (np.datetime64, dt.datetime) if not isinstance(d, supported_types): raise TypeError('type not supported: {}'.format(type(d))) if isinstance(d, np.datetime64): # TODO: add timezoneawareness here ts = (d - np.datetime64('1970-01-01T00:00:00Z')) / np.timedelta64(1, 's') d = dt.datetime.utcfromtimestamp(ts) if isinstance(d, pd.Timestamp): d = d.to_datetime() if isinstance(d, dt.datetime): if d.tzinfo is None: return(d.replace(tzinfo=timezone)) else: return(d.astimezone(timezone)) if isinstance(date, (collections.Sequence, np.ndarray)): return np.array([to_dt(x, timezone) for x in date]) return to_dt(date, timezone) datemap = {'20150701': 'RF01', '20150707': 'RF02', '20150709': 'RF03', '20150712': 'RF04', '20150714': 'RF05', '20150717': 'RF06', '20150719': 'RF07', '20150722': 'RF08', '20150724': 'RF09', '20150727': 'RF10', '20150729': 'RF11', '20150801': 'RF12', '20150803': 'RF13', '20150807': 'RF14', '20150809': 'RF15', '20150812': 'RF16'} def get_data_from_dropsonde(file): # file = os.path.join(dropsonde_dir, 'D20150712_201424_PQC.nc') data = xr.open_dataset(file) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) index = data.GPSAlt.values < 4000 ret = {} ret['TIME']=as_datetime(data.time_offset.values[index]) ret['GGLAT']=data.Lat.values[index] ret['GGLON']=data.Lon.values[index] ret['GGALT']=data.GPSAlt.values[index] ret['RHUM']=data.RH.values[index] ret['ATX']=data.Temp.values[index]+273.15 ret['PSX']=data.Press.values[index] ret['DPXC']= data.Dewpt.values[index]+273.15 ret['QV'] = mu.qv_from_p_T_RH(ret['PSX']*100, ret['ATX'], ret['RHUM'])*1000 ret['MR'] = ret['QV']/(1-ret['QV']/1000) ret['TVIR'] = mu.tvir_from_T_w(ret['ATX'], ret['MR']/1000) ret['DENS'] = mu.density_from_p_Tv(ret['PSX']*100, ret['TVIR']) ret['THETA']= mu.theta_from_p_T(ret['PSX'], ret['ATX']) ret['THETAE']= mu.thetae_from_t_tdew_mr_p(ret['ATX'], ret['DPXC'], ret['MR']/1000, ret['PSX']*100) #equiv pot temp, K we can get this if we really want ret['QL'] = np.full_like(ret['PSX'], fill_value=np.nan) ret['THETAL'] = np.full_like(ret['PSX'], fill_value=np.nan) ret['PLWCC']= np.full_like(ret['PSX'], fill_value=np.nan) return ret def date_interp(dates_new, dates_old, vals_old, bounds_error=False): if not isinstance(dates_new, (collections.Sequence, np.ndarray)): dates_new = np.array([dates_new]) dates_new = as_datetime(dates_new) dates_old = as_datetime(dates_old) ref = min(min(dates_old), min(dates_new)) d_new = [(i-ref).total_seconds() for i in dates_new] d_old = [(i-ref).total_seconds() for i in dates_old] vals_new = interp1d(d_old, vals_old, bounds_error=bounds_error)(d_new).squeeze() if vals_new.shape == (): return vals_new.item() return vals_new def get_cloud_only_vals(dataset, flip_cloud_mask=False): # cloud if ql_cdp > 0.01 g/kg and RH > 95% lwc_cdp = dataset['PLWCD_LWOI'] rhodt = dataset['RHODT'] mr = dataset['MR'] cheat_airdens = rhodt/mr lwmr_cdp = lwc_cdp/cheat_airdens lw_index = lwmr_cdp > 0.01 RH_index = dataset['RHUM'] > 95 cloud_index = np.logical_and(RH_index, lw_index) if flip_cloud_mask: cloud_index = np.logical_not(cloud_index) return dataset.isel(time=cloud_index) ```
{ "source": "jk/cocoapod-badges", "score": 2 }
#### File: podbadge/utils/helpers.py ```python __author__ = 'Flavio' from django.conf import settings from django.utils import simplejson import urllib import urllib2 import mimetypes def prepare_shield(vendor, status): url = shield_url(vendor, clean_info(status)) return fetch_shield(url) def shield_url(vendor, status): return 'http://%(service)s/%(vendor)s-%(status)s-%(color)s.png' % { 'service': settings.SHIELD_SERVICE, 'color': settings.SHIELD_COLOR, 'vendor': vendor, 'status': status, } def fetch_shield(url): contents = urllib2.urlopen(url).read() mimetype = mimetypes.guess_type(url) return contents, mimetype def clean_info(info): clean = info.replace('-', '--').replace(' ', '_') return urllib.quote(clean) def get_pod_info(podname): url = 'http://cocoapods.org/api/v1/pod/%s.json' % (podname, ) response = urllib2.urlopen(url) return simplejson.loads(response.read()) ```
{ "source": "jkcso/oss2021", "score": 2 }
#### File: api/oss_hugo/Ruaml_YAML_Formatter.py ```python from ruamel.yaml import YAML class RuamlYAMLHandler(BaseHandler): """ Load and export YAML metadata. By default, this handler uses YAML's "safe" mode, though it's possible to override that. """ FM_BOUNDARY = re.compile(r'^-{3,}$', re.MULTILINE) START_DELIMITER = END_DELIMITER = "---" def load(self, fm, **kwargs): """ Parse YAML front matter. This uses yaml.SafeLoader by default. """ kwargs.setdefault('Loader', SafeLoader) return yaml.load(fm, **kwargs) def export(self, metadata, **kwargs): """ Export metadata as YAML. This uses yaml.SafeDumper by default. """ kwargs.setdefault('Dumper', SafeDumper) kwargs.setdefault('default_flow_style', False) kwargs.setdefault('allow_unicode', True) metadata = yaml.dump(metadata, **kwargs).strip() return u(metadata) # ensure unicode ``` #### File: api/tests/test_API_Hugo_OSS.py ```python from unittest import TestCase import frontmatter from pbx_gs_python_utils.utils.Dev import Dev from pbx_gs_python_utils.utils.Files import Files from oss_hugo.API_Hugo_OSS import API_Hugo_OSS from oss_hugo.OSS_Participant import OSS_Participant from oss_hugo.OSS_Session import OSS_Session class test_API_Hugo_OSS(TestCase): def setUp(self): self.api = API_Hugo_OSS() self.result = None def tearDown(self): if self.result is not None: Dev.pprint(self.result) def test_df_field(self): df = self.api.df_field('chapter_leader').set_index('title') data = df.to_dict()['chapter_leader'] assert data['<NAME>'] == 'Belgium' def test_md_files_in_folder(self): assert len(self.api.md_files_in_folder('content/participant')) > 50 def test_md_files_participants(self): assert len(self.api.md_files_participants()) >50 def test_md_files_sessions(self): assert len(self.api.md_files_sessions()) >50 def test_participants(self): participants = self.api.participants() assert len(participants) > 50 assert set(participants.values().__iter__().__next__()) == {'content', 'path', 'metadata'} def test_participants__return_oss_participants(self): participants = self.api.participants(return_oss_participants=True) assert len(participants) > 50 assert type(list(participants.values())[0]) == OSS_Participant assert '<NAME>' in set(participants) def test_participants_metadatas(self): assert len(self.api.participants_metadatas()) > 50 def test_sessions(self): sessions = self.api.sessions() assert len(sessions) > 50 assert set(sessions.values().__iter__().__next__()) == {'content', 'path', 'metadata'} def test_sessions__return_oss_sessions(self): sessions = self.api.sessions(return_oss_sessions=True) assert len(sessions) > 50 assert type(list(sessions.values())[0]) is OSS_Session assert 'Threat Model' in set(sessions) def test_sessions_metadatas(self): assert len(self.api.sessions_metadatas()) > 50 def test_sessions_oss(self): assert len(self.api.sessions_oss()) > 50 ``` #### File: api/tests/test_OSS_Schedule.py ```python from unittest import TestCase from pbx_gs_python_utils.utils.Dev import Dev from oss_hugo.OSS_Schedule import OSS_Schedule from oss_hugo.OSS_Session import OSS_Session class test_OSS_Schedule(TestCase): def setUp(self): self.schedule = OSS_Schedule() self.result = None def tearDown(self): if self.result is not None: Dev.pprint(self.result) def test_sessions_mapped_by_size(self): self.result = self.schedule.sessions_mapped_by_size() def test_df_sessions_registered_participants(self): self.result = self.schedule.df_sessions_registered_participants() ```
{ "source": "jkcw/vocabquiz-autogen", "score": 3 }
#### File: vocabquiz-autogen/vocabquiz-autogen/RequestVocabData.py ```python import requests import json import secretKey secret_key = secretKey.secret_key #vocab = "get" #api_request = requests.get('https://www.dictionaryapi.com/api/v3/references/collegiate/json/' + vocab + '?key=' + secret_key) #js = api_request.json() file = open('vocab-cache.txt', "r") js = json.load(file) file.close() #print(js[0]['def'][0]['sseq']) #for i in js[0]['def'][0]['sseq']: # print(i) for i in js[0]['def'][0]['sseq'][0]: definition = i[1]['dt'][0][1] # TODO: There might be more than one example example = i[1]['dt'][1][1][0]['t'] print(definition) print(example) class RequestVocabData: def __init__(self, vocab): self.vocab = vocab.lower() self.js_dict = [] self.part_of_speech = [] def http_api_request(self): api_request = requests.get('https://api.dictionaryapi.dev/api/v2/entries/en/' + self.vocab) js = api_request.json() try: self.js_dict = js[0] return True except: return False def get_all_part_of_speech(self): self.part_of_speech = self.js_dict["meanings"] ```
{ "source": "jkCXf9X4/hass_script_engine", "score": 3 }
#### File: decorator/default/proximity.py ```python from datetime import datetime, timedelta, timezone from logging import fatal from custom_components.script_engine.decorator.abc.valid_decorator import ValidDecorator from custom_components.script_engine.decorator.abc.decorator import Decorator from custom_components.script_engine.decorator.decorator_type import DecoratorType class Proximity(ValidDecorator): """ Decorator that ensures that a function can not be called to closely again """ def __init__(self, hours=0, minutes=1, *args, **kwargs): super().__init__(*args, **kwargs) self.hours = hours self.minutes = minutes def time_is_outside_proximity(self): return (self.state_switch_time + timedelta(hours=self.hours, minutes=self.minutes)) < datetime.now(timezone.utc) def validate(self) -> bool: if self.state_switch_time == None or self.time_is_outside_proximity(): return True return False def execute(self, *args, **kwargs): self.update_state() kwargs["result"][self.handler.get_index(self)] = self.state return super().execute(*args, **kwargs) ``` #### File: decorator/post/arguments.py ```python from typing import List from custom_components.script_engine.decorator.abc.decorator import Decorator from custom_components.script_engine.decorator.decorator_type import DecoratorType from custom_components.script_engine.event.event_wrapper import StateChangedEvent from homeassistant.core import Event, State class Arguments(Decorator): """ Extracts the event states and wrap's the under the return_name kwarg """ def __init__(self, ids: List[str], key: str, return_name: str = "attributes", *args, **kwargs): super().__init__(*args, **kwargs) self.decorator_type = DecoratorType.POST self.return_name = return_name self.ids = ids self.key = key def execute(self, *args, **kwargs): events: List[StateChangedEvent] = kwargs.get("events", []) events = [i for i in events if i.entity_id in self.ids] attributes_dict = {} for i in events: attributes_dict[i.entity_id] = i.new_state.attributes[self.key] attributes = kwargs.get(self.return_name, []) attributes.append(attributes_dict) kwargs[self.return_name] = attributes return super().execute(*args, **kwargs) ```
{ "source": "jkCXf9X4/script_engine", "score": 3 }
#### File: script_engine/decorator/debug.py ```python from custom_components.script_engine.decorator.base_decorator import BaseDecorator class Debug(BaseDecorator): """ Sets the debug flag to the decorators after in the chain """ def __init__(self, *args, **kwargs): super().__init__() # *args, **kwargs) self.decorator_type = "Debug" self.name = type(self).__name__ def get_setup_output(self, *args, **kwargs): kwargs["debug"] = True return super().get_setup_output(*args, **kwargs) ``` #### File: script_engine/decorator/if_state.py ```python from typing import Any, Callable, Optional from custom_components.script_engine.decorator.state import State from custom_components.script_engine.hass.extension.state import StateExt class IfState(State): """ Decorator that checks if a state is valid """ def __init__(self, id: str, state: Optional[Any] = "*", bigger_than: Optional[Any] = "*", smaller_than: Optional[Any] = "*", custom_eval: Optional[Callable[[Any ,Any], bool]] = None, custom_eval_condition: Optional[Any] = True, stay_valid: Optional[bool] = False, *args, **kwargs): super().__init__(id, state=state, previous_state="*", bigger_than=bigger_than, smaller_than=smaller_than, custom_eval=custom_eval, custom_eval_condition=custom_eval_condition, stay_valid= stay_valid, *args, **kwargs) self.decorator_type = "IfState" self.name = type(self).__name__ def setup(self, *args, **kwargs): return super().setup(*args, **kwargs) def get_default_output(self, *args, **kwargs): # overwrite base method state = kwargs.get("states", []) state.append(self.new_state) kwargs["states"] = state return args, kwargs def default(self, *args, **kwargs): self.new_state = self.hass.states.get(self.id) return super().default(*args, **kwargs) ``` #### File: script_engine/decorator/proximity.py ```python from datetime import datetime, timedelta, timezone from custom_components.script_engine.decorator.base_decorator import BaseDecorator class Proximity(BaseDecorator): """ Decorator that ensures that a function can not be called to closely again """ def __init__(self, hours=0, minutes=1, *args, **kwargs): super().__init__(*args, **kwargs) self.decorator_type = "Proximity" self.name = type(self).__name__ self.hours = hours self.minutes = minutes self.last_trigger = None def time_inside_frame_from_timeframe_to_now(dt: datetime, hours=0, minutes=0): if (datetime.now(timezone.utc) - timedelta(hours=hours, minutes=minutes)) < dt: return True else: return False def default(self, *args, **kwargs): if self.last_trigger == None or self.time_inside_frame_from_timeframe_to_now(datetime.now(), self.hours, self.minutes): self.last_trigger = datetime.now() not self.debug or self.log.debug(f"Proximity decorator is valid, continuing") return super().default(*args, **kwargs) not self.debug or self.log.debug(f"Proximity decorator is not valid, aborting") return False ``` #### File: script_engine/decorator/to_state.py ```python from typing import Any, Callable, Optional from custom_components.script_engine.event.event_distributor import EventDistributor from custom_components.script_engine.event.event_wrapper import StateChangedEvent from custom_components.script_engine.decorator.state import State class ToState(State): """ Decorator that is used to subscribe to and validate event states """ def __init__(self, id: str, state: Optional[Any] = "*", previous_state: Optional[Any] = "*", bigger_than: Optional[Any] = "*", smaller_than: Optional[Any] = "*", custom_eval: Optional[Callable[[Any ,Any], bool]] = None, custom_eval_condition: Optional[Any] = True, stay_valid: Optional[bool] = False, *args, **kwargs): super().__init__(id, state=state, previous_state=previous_state, bigger_than=bigger_than, smaller_than=smaller_than, custom_eval=custom_eval, custom_eval_condition=custom_eval_condition, stay_valid=stay_valid, *args, **kwargs) self.decorator_type = "IfState" self.name = type(self).__name__ self.event_distributor = EventDistributor(self.hass, debug=self.debug) def setup(self, *args, **kwargs): self.event: StateChangedEvent = None self.previous_valid = None self.event_distributor.register_callback(self.id, callback=self.new_event) return super().setup(*args, **kwargs) def new_event(self, *args, **kwargs): """ Extracts the states from the event, then consuming it to prevent any other decorator from using it Calls the first decorator and starts the walk down the decorator chain """ self.event = kwargs.get("event", None) kwargs.pop("event", None) # Store which decorator is the event trigger kwargs["trigger"] = self self.new_state = self.event.new_state self.old_state = self.event.old_state not self.debug or self.log.debug(f"\n----New event----\nFunction: {self.get_wrapped_function_name()}, Decorator: {self.id} \nNew: {self.new_state}, Old: {self.old_state}") new_valid = self.is_valid(self.new_state, self.old_state) if new_valid != self.previous_valid: self.previous_valid = new_valid not self.debug or self.log.debug(f"A switch in state, proceding, new valid state: {new_valid}") self.decorators[0].default(*args, **kwargs) else: not self.debug or self.log.debug(f"No switch in state, aborting, state: {new_valid}") def get_default_output(self, *args, **kwargs): events = kwargs.get("events", []) events.append(self.event) kwargs["events"] = events return args, kwargs def default(self, *args, **kwargs): not self.debug or self.log.debug(f"Default to_state: {self}") return super().default(*args, **kwargs) def teardown(self, *args, **kwargs): self.event_distributor.remove_callback(self.id, callback=self.new_event) return super().teardown(*args, **kwargs) ``` #### File: hass/extension/light.py ```python import logging from homeassistant.core import HomeAssistant, State from .service import ServiceExt from .state import StateExt class LightExt: _logger = logging.getLogger(__name__) ON_STATE = "on" OFF_STATE = "off" UNKNOWN_STATE = "" @classmethod def turn_on(cls, hass : HomeAssistant, id, data={}, debug=False): ServiceExt.call_service(hass,"light" , "turn_on", service_data=data, target= {"entity_id" : id}, debug=debug) @classmethod def turn_off(cls, hass: HomeAssistant, id, data={}, debug=False): ServiceExt.call_service(hass,"light" , "turn_off", service_data=data, target= {"entity_id" : id}, debug=debug) @classmethod def get_std_attributes(cls, hass :HomeAssistant, id, debug=False): state = hass.states.get(id) if state == None: raise Exception(f"Exception, {id} state not existing") else: on_off = state.state attributes = ["brightness", "color_temp" ] #, "rgb_color", "rgbw_color", "rgbww_color"] data = {} for i in attributes: if state.attributes.get(i, None) != None: data[i] = state.attributes[i] return on_off, data ```
{ "source": "jkd2021/YOLACT-with-lane-detection", "score": 3 }
#### File: jkd2021/YOLACT-with-lane-detection/LD.py ```python import cv2 import numpy as np class LaneDetection: # some of the codes is functional with other project, if there are some misunderstanding, just ignore def LD(picture = None): # lines : np.array([]) # lines_Hough_al : np.array([]) left_lines_fitted, right_lines_fitted = np.array([[0, 0], [0, 0]]), np.array([[0, 0], [0, 0]]) # read the orignal picture if picture is not None: # gray scale + Canny frame = LaneDetection.app_canny(picture) # make mask mask = LaneDetection.mask(frame) # put mask on the cannyed grayscale frame masked_edge_img = cv2.bitwise_and(frame, mask) # display the cannyed + masked grayscale frame # LaneDetection.show_masked(canny_remote, masked_edge_img) # do Hough Transform on the cannyed + masked grayscale frame, and # seperate the lines into left ones and right ones lines = cv2.HoughLinesP(masked_edge_img, 1, np.pi / 100, 15, minLineLength=00, maxLineGap=20) if lines is not None: left_lines = [line for line in lines if -0.5 > LaneDetection.calculate_slope(line)] right_lines = [line for line in lines if LaneDetection.calculate_slope(line) > 0.5] # Remove noisy lines left_lines = LaneDetection.reject_abnormal_lines(left_lines, 0.1) right_lines = LaneDetection.reject_abnormal_lines(right_lines, 0.1) # Fit the left and right lane lines separately left_lines_fitted = LaneDetection.least_squares_fit(left_lines) right_lines_fitted = LaneDetection.least_squares_fit(right_lines) if left_lines_fitted is None: left_lines_fitted = np.array([[0, 0], [0, 0]]) if right_lines_fitted is None: right_lines_fitted = np.array([[0, 0], [0, 0]]) return left_lines_fitted, right_lines_fitted return left_lines_fitted, right_lines_fitted # slope_calculation def calculate_slope(line): x_1, y_1, x_2, y_2 = line[0] # line:[[x1,y1,x2,y2], [], []...] return (y_2 - y_1) / (x_2 - x_1 + 0.01) # calculate the scope of every single line # Package of Canny def app_canny(picture): img = picture minThreshold = 60 maxThreshold = 130 edges = cv2.Canny(img, minThreshold, maxThreshold) return edges # mask making(trapezoid area in front of the car) def mask(frame): mask = np.zeros_like(frame) height = mask.shape[0] height_bevel = int(0.75 * height) length = mask.shape[1] length_bevel = int(0.6 * length) length_under = int(0.2 * length) mask = cv2.fillPoly(mask, np.array([[[length_under, height], [length - length_bevel, height_bevel], [length_bevel, height_bevel], [length - length_under, height], [length_under, height]]]), color=255) ########## the size of mask and the parameters in cv2.fillPoly() needs to be modified ########## for different scenarios (camera pointing angle and orientation), in order ########## to achieve the effect of recognition of the specified area in the image return mask # firstly calculate the mean slope in both lists of lines, if there are abnormal lines, which have # great deviation with others in the same side, they will be rejected as noise. After rejection will # the lines be fitted into left and right lanes by using least square fitting. def reject_abnormal_lines(lines, threshold): slopes = [LaneDetection.calculate_slope(line) for line in lines] # ----------------------------------------------------------------------------------------------------- # i = 0 # while True: # if i + 1 > len(slopes): # these codes equals to the parameter # break # tuning in line 69 / 70 # if 0.5 > abs(slopes[i]): # slopes.pop(i) # lines.pop(i) # i = i # else: # i += 1 # ----------------------------------------------------------------------------------------------------- while len(slopes) > 0: mean = np.mean(slopes) diff = [abs(slope - mean) for slope in slopes] max_slope = np.argmax(diff) if diff[max_slope] > threshold: slopes.pop(max_slope) lines.pop(max_slope) else: break return lines # least square fitting def least_squares_fit(lines): """ :param (line in lines): set of lines, [np.array([x_1, y_1, x_2, y_2]), [np.array([x_1, y_1, x_2, y_2]),...]] :return: end points of a line, np.array([[xmin, ymin], [xmax, ymax]]) """ # 1.取出所有坐标点 x_coords = np.ravel([[line[0][0], line[0][2]] for line in lines]) # 第一个[0]代表横向,第二位[]代表取位 y_coords = np.ravel([[line[0][1], line[0][3]] for line in lines]) # 1.进行直线拟合,得到多项式系数 if lines != None: if len(x_coords) >= 1: poly = np.polyfit(x_coords, y_coords, deg=1) # 1.根据多项式系数,计算两个直线上的点,用于唯一确定这条直线 point_min = (np.min(x_coords), np.polyval(poly, np.min(x_coords))) point_max = (np.max(x_coords), np.polyval(poly, np.max(x_coords))) return np.array([point_min, point_max], dtype=np.int) else: pass else: pass ## error report class CustomError(Exception): def __init__(self,ErrorInfo): super().__init__(self) self.errorinfo=ErrorInfo def __str__(self): return self.errorinfo ```
{ "source": "jkdelauney/web-project1", "score": 3 }
#### File: jkdelauney/web-project1/import.py ```python import csv import os import sys from sqlalchemy import create_engine from sqlalchemy.orm import scoped_session, sessionmaker if not os.getenv("DATABASE_URL"): raise RuntimeError("DATABASE_URL is not set") engine = create_engine(os.getenv("DATABASE_URL")) db = scoped_session(sessionmaker(bind=engine)) def main(): # db.execute("DROP TABLE IF EXISTS books CASCADE") db.execute( "CREATE TABLE IF NOT EXISTS books (id SERIAL PRIMARY KEY,isbn varchar(13) NOT NULL, title character varying NOT NULL, author character varying NOT NULL, year character(4) NOT NULL)" ) r_count = 0 f = open("books.csv") reader = csv.reader(f) next(reader) # advance past column headers for isbn, title, author, year in reader: # isbn, title, author, year db.execute( "INSERT INTO books (isbn, title, author, year) VALUES (:isbn, :title, :author, :year)", {"isbn": isbn, "title": title, "author": author, "year": year}, ) sys.stdout.write(".") sys.stdout.flush() r_count += 1 db.commit() print(f"\nRecords imported: {r_count}") if __name__ == "__main__": main() ```
{ "source": "jkderrick028/Theoretical_Neuroscience", "score": 3 }
#### File: Programming/Python/pop3.py ```python import pickle import numpy as np def load_data(path): with open(path, 'rb') as f: data = pickle.load(f) return data # question 9 data = load_data("pop_coding_3.4.pickle") c = [data['c1'], data['c2'], data['c3'], data['c4']] r = [data['r1'], data['r2'], data['r3'], data['r4']] data = load_data("tuning_3.4.pickle") stim = data['stim'] n = [data['neuron1'], data['neuron2'], data['neuron3'], data['neuron4']] n_max = [np.max(np.mean(ni, axis=0)) for ni in n] arg = np.divide([rr.mean() for rr in r], n_max) popultion = np.multiply(c, arg.T) popultion = popultion.sum(axis=1) angle = np.arctan(-popultion[0] / popultion[1]) answer = 180 - angle * 180.0 / np.pi print(answer) ```
{ "source": "jkdf2/markov_bots", "score": 4 }
#### File: jkdf2/markov_bots/rw.py ```python from enum import Enum import urllib.request import graph import pickle import argparse import sys import tempfile class Tokenization(Enum): """ word: Interpret the input as UTF-8 and split the input at any white-space characters and use the strings between the white-space as tokens. So "a b" would be ["a", "b"] as would "a\n b". character: Interpret the input as UTF-8 and use the characters as tokens. byte: Read the input as raw bytes and use individual bytes as the tokens. none: Do not tokenize. The input must be an iterable. """ word = 1 character = 2 byte = 3 none = 4 class RandomWriter(object): """ A Markov chain based random data generator. """ def __init__(self, level, tokenization=Tokenization.none): """ Initialize a random writer. Args: level: The context length or "level" of model to build. tokenization: A value from Tokenization. This specifies how the data should be tokenized. The value given for tokenization will affect what types of data are supported. """ if level < 0: raise ValueError("The level of analysis must be >= 0.") if tokenization not in Tokenization: raise ValueError("You did not provide a valid tokenization mode.") self._mode = tokenization self._level = level self._graph = None def generate(self): """ Yield random tokens using the model, infinitely. """ if self._graph is None: raise ValueError("The RandomWriter must be trained before it can" "generate tokens.") while True: yield self._graph.get_random_token() def generate_file(self, filename, amount): """ Write a file using the model. Args: filename: The name of the file to write output to. amount: The number of tokens to write. For character or byte tokens this will just output the tokens one after another. For any other type of token a space will be added between tokens. """ if self._mode is Tokenization.byte: if not hasattr(filename, 'write'): with open(filename, mode="wb") as fi: self.generate_file(fi, amount) else: gen = self.generate() filename.write(bytes(next(gen) for _ in range(amount))) else: if not hasattr(filename, 'write'): with open(filename, mode="w", encoding="utf-8") as fi: self.generate_file(fi, amount) else: for _ in range(amount): content = str(next(self.generate())) if self._mode is not Tokenization.character: content += " " filename.write(content) def save_pickle(self, filename_or_file_object): """ Write this model out as a Python pickle. Args: filename_or_file_object: A filename or file object to write to. File objects assumed to be opened in binary mode. """ if hasattr(filename_or_file_object, 'write'): pickle.dump(self, filename_or_file_object, pickle.HIGHEST_PROTOCOL) else: # Better open the file first with open(filename_or_file_object, "wb") as fi: self.save_pickle(fi) @classmethod def load_pickle(cls, filename_or_file_object): """ Loads a Python pickle and make sure it is in fact a model. Args: filename_or_file_object: A filename or file object to load from. Return: A new instance of RandomWriter which contains the loaded data. File objects assumed to be opened in binary mode. """ try: data = pickle.load(filename_or_file_object) if isinstance(data, cls): return data else: # Something bad happened raise ValueError("A RandomWriter could not be loaded from the" "file.") except TypeError: # Better open the file first with open(filename_or_file_object, "rb") as fi: data = pickle.load(fi) return data def train_url(self, url): """ Compute the probabilities based on the data downloaded from url. Args: url: The URL to download. """ if self._mode is Tokenization.none: raise ValueError("This method is only supported if the " " tokenization mode is not none.") with urllib.request.urlopen(url) as response: text = response.read() if self._mode is not Tokenization.byte: try: text = str(text, encoding="utf-8") except UnicodeDecodeError: # Can't decode as UTF-8, so just try our best text = str(text) self.train_iterable(text) def train_iterable(self, data): """ Compute the probabilities based on the data given. If the tokenization mode is none, data must be an iterable. If the tokenization mode is character or word, then data must be a string. Finally, if the tokenization mode is byte, then data must be a bytes. If the type is wrong, TypeError raised. """ data = self.validate_datatype(data) if data is None: raise TypeError("Incorrect data given for tokenization mode.") self._graph = graph.Graph() if self._level is 0: for i in range(len(data)): state = tuple(data[i:i+1]) self._graph.add_edge(state) else: for i in range(len(data) - self._level + 1): # get a slice of self._level tokens to store in the graph state = tuple(data[i:i+self._level]) self._graph.add_edge(state) def validate_datatype(self, data): """ Ensures the validity of the given data type with the Tokenization mode, returning data in the correct form for future iteration or None if invalid combination of data and mode. """ if self._mode is Tokenization.word and isinstance(data, str): return data.split() elif (self._mode is Tokenization.character and isinstance(data, str) or self._mode is Tokenization.byte and isinstance(data, bytes) or self._mode is Tokenization.none and hasattr(data, '__iter__')): return data else: return None def train_input(args): """ Constructs a RandomWriter using the given level and tokenization. Then trains on the input file or stdin. Finally, it pickles itself to the output file or stdout. """ if args.character: tokenization = Tokenization.character elif args.byte: tokenization = Tokenization.byte else: tokenization = Tokenization.word rw = RandomWriter(args.level, tokenization) if args.input is sys.stdin: data = args.input.read() rw.train_iterable(data) else: rw.train_url(args.input) rw.save_pickle(args.output) def generate_output(args): """ Constructs a RandomWriter from a pickle and proceeds to output the given amount of generated tokens. """ rw = RandomWriter.load_pickle(args.input) rw.generate_file(args.output, args.amount) if __name__ == '__main__': """ Handles parsing of command line arguments. """ parser = argparse.ArgumentParser(add_help=True) subparsers = parser.add_subparsers() # The train argument parser_train = subparsers.add_parser('train', help="Train a model given " "input and save to pickle output.") parser_train.add_argument('--input', default=sys.stdin) parser_train.add_argument('--output', default=sys.stdout.buffer) token_group = parser_train.add_mutually_exclusive_group() token_group.add_argument('--word', action='store_true') token_group.add_argument('--character', action='store_true') token_group.add_argument('--byte', action='store_true') parser_train.add_argument('--level', type=int, default=1) parser_train.set_defaults(func=train_input) # The generate argument parser_generate = subparsers.add_parser('generate', help="Generate an " "output file.") parser_generate.add_argument('--input', default=sys.stdin.buffer) parser_generate.add_argument('--output', default=sys.stdout) parser_generate.add_argument('--amount', required=True, type=int) parser_generate.set_defaults(func=generate_output) # because we are only using subparsers, argparse will not print help # by default, so do it manually. if len(sys.argv) == 1: parser.print_help() exit(1) args = parser.parse_args() args.func(args) ```
{ "source": "JKDingwall/socketpool", "score": 3 }
#### File: socketpool/examples/test_eventlet.py ```python import eventlet from socketpool.pool import ConnectionPool from socketpool.conn import TcpConnector # this handler will be run for each incoming connection in a dedicated greenlet class EchoServer(object): def __init__(self, host, port): self.host = host self.port = port self.spool = eventlet.GreenPool() self.running = False self.server = None def start(self): eventlet.spawn(self.run) def run(self): self.server = eventlet.listen((self.host, self.port)) self.running = True while self.running: try: sock, address = self.server.accept() print "accepted", address self.spool.spawn_n(self.handle, sock, address) except (SystemExit, KeyboardInterrupt): break def handle(self, sock, address): print ('New connection from %s:%s' % address) while True: data = sock.recv(1024) if not data: break sock.send(data) print ("echoed %r" % data) def stop(self): self.running = False if __name__ == '__main__': import time options = {'host': 'localhost', 'port': 6000} pool = ConnectionPool(factory=TcpConnector, options=options, backend="eventlet") server = EchoServer('localhost', 6000) server.start() epool = eventlet.GreenPool() def runpool(data): print 'ok' with pool.connection() as conn: print 'sending' sent = conn.send(data) print 'send %d bytes' % sent echo_data = conn.recv(1024) print "got %s" % data assert data == echo_data start = time.time() _ = [epool.spawn(runpool, "blahblah") for _ in xrange(20)] epool.waitall() server.stop() delay = time.time() - start ``` #### File: socketpool/socketpool/conn.py ```python import socket import time import random from socketpool import util class Connector(object): def matches(self, **match_options): raise NotImplementedError() def is_connected(self): raise NotImplementedError() def handle_exception(self, exception): raise NotImplementedError() def get_lifetime(self): raise NotImplementedError() def invalidate(self): raise NotImplementedError() class UnixConnector(Connector): def __init__(self, socket_file, backend_mod, pool=None): self._s = backend_mod.Socket(socket.AF_UNIX, socket.SOCK_STREAM) self.socket_file = socket_file self._s.connect(self.socket_file) self.backend_mod = backend_mod self._connected = True self._life = time.time() - random.randint(0, 10) self._pool = pool def __del__(self): self.release() def matches(self, **match_options): target_sock = match_options.get('socket_file') return target_sock == self.socket_file def is_connected(self): if self._connected: return util.is_connected(self._s) return False def handle_exception(self, exception): print('got an exception') print(str(exception)) def get_lifetime(self): return self._life def invalidate(self): self._s.close() self._connected = False self._life = -1 def release(self): if self._pool is not None: if self._connected: self._pool.release_connection(self) else: self._pool = None def send(self, data): return self._s.send(data) def recv(self, size=1024): return self._s.recv(size) class TcpConnector(Connector): def __init__(self, host, port, backend_mod, pool=None, mode='r', bufsize=-1): self._s = backend_mod.Socket(socket.AF_INET, socket.SOCK_STREAM) self._s.connect((host, port)) self._s_file = self._s.makefile(mode, bufsize) self.host = host self.port = port self.backend_mod = backend_mod self._connected = True # use a 'jiggle' value to make sure there is some # randomization to expiry, to avoid many conns expiring very # closely together. self._life = time.time() - random.randint(0, 10) self._pool = pool def __del__(self): self.release() def matches(self, **match_options): target_host = match_options.get('host') target_port = match_options.get('port') return target_host == self.host and target_port == self.port def is_connected(self): if self._connected: return util.is_connected(self._s) return False def handle_exception(self, exception): print('got an exception') print(str(exception)) def get_lifetime(self): return self._life def invalidate(self): self._s.close() self._s_file.close() self._connected = False self._life = -1 def release(self): if self._pool is not None: if self._connected: self._pool.release_connection(self) else: self._pool = None def read(self, size=-1): return self._s_file.read(size) def readline(self, size=-1): return self._s_file.readline(size) def readlines(self, sizehint=0): return self._s_file.readlines(sizehint) def sendall(self, *args): return self._s.sendall(*args) def send(self, data): return self._s.send(data) def recv(self, size=1024): return self._s.recv(size) ```
{ "source": "jkdufair/TweetyFeels", "score": 3 }
#### File: TweetyFeels/src/bitcoin.py ```python import json import ssl import csv import time from collections import deque import urllib.request BITCOIN_DATA_QUEUE = deque() STATS = {'count': 0} def get_bitcoin_data(): """Get price and volume, etc. from Cryptonator API""" url = 'https://api.cryptonator.com/api/ticker/btc-usd' fix_this_context = ssl.SSLContext(ssl.PROTOCOL_TLSv1) request = urllib.request.Request(url) response = urllib.request.urlopen(request, context=fix_this_context).read() STATS['count'] = STATS['count'] + 1 return json.loads(response.decode('utf-8')) def queue_bitcoin_data(bitcoin_data): """Queue the bitcoin data for writing later""" processed_bitcoin_data = { 'price': bitcoin_data['ticker']['price'], 'volume': bitcoin_data['ticker']['volume'], 'timestamp': bitcoin_data['timestamp'] } BITCOIN_DATA_QUEUE.append(processed_bitcoin_data) def write_bitcoin_data_from_buffer(): """Take the status objects from the bitcoin data buffer and append them to the csv""" print('bitcoin write_bitcoin_data_from_buffer() started') while True: time.sleep(60) with open('data/bitcoin_stream.csv', 'a') as csv_file: field_names = ['price', 'volume', 'timestamp'] writer = csv.DictWriter(csv_file, fieldnames=field_names) while BITCOIN_DATA_QUEUE: bitcoin_data = BITCOIN_DATA_QUEUE.popleft() writer.writerow(bitcoin_data) def stream_bitcoin_data(): """Poll the bitcoin data every 60 seconds and persist""" print('bitcoin stream_bitcoin_data() started') while True: queue_bitcoin_data(get_bitcoin_data()) time.sleep(60) def get_stats(): """Return statistics about counts and buffer size""" return { 'count': STATS['count'], 'buffer_size': len(BITCOIN_DATA_QUEUE) } ``` #### File: TweetyFeels/src/twitter_auth.py ```python import pickle import webbrowser import os.path import tweepy def deserialize_token(): """Get token from file if it exists""" if os.path.exists(".token"): the_file = open(".token", "rb") return pickle.load(the_file) else: return def serialize_token(token): """Save token to file""" the_file = open(".token", "wb") pickle.dump(token, the_file) def authenticate(): """Create tweepy auth object and return""" consumer_key = 'aN6bbamocujBEQkTsT4V5Ok36' consumer_secret = '<KEY>' auth = tweepy.OAuthHandler(consumer_key, consumer_secret) # "<KEY>" access_token = deserialize_token() if access_token is None: url = auth.get_authorization_url() webbrowser.open(url, new=1, autoraise=True) pin = input('Verification pin number from twitter.com: ').strip() access_token = auth.get_access_token(verifier=pin) serialize_token(access_token) auth.set_access_token(access_token[0], access_token[1]) return auth ```
{ "source": "jke94/fbref-stats", "score": 3 }
#### File: jke94/fbref-stats/stats.py ```python __author__ = "<NAME> (@JaviKarra94)" __copyright__ = "Copyright (c) 2022 <NAME>" __license__ = "MIT License" __version__ = "1.0.0" __maintainer__ = "<NAME>" __twiter__ = "@JaviKarra94" __status__ = "Production" import pandas as pd import os import matplotlib.pyplot as plt def GenerateClassificationPNGFigures(urls, leagues): """Generates a set of images about raking points by each set of leagues. Parameters ---------- urls : list List of urls with information about the leagues ranking. leagues : list Name of the leagues. """ if not os.path.exists('Classification'): os.makedirs('Classification') for item in range(0, len(urls)): dfs = pd.read_html(urls[item]) clasificacion = dfs[0] plot = clasificacion.plot(x="Squad", y=["Pts"], kind="bar", xlabel ="Teams", ylabel = "Points") fig = plot.get_figure() fig.savefig(os.path.join('.\Classification', leagues[item].strip()), bbox_inches='tight') def GenerateFullClassificationPNGFigures(urls, leagues, rows, columns): """Generates an image with subplots of images about raking points by each set of leagues. Parameters ---------- urls : list List of urls with information about the leagues ranking. leagues : list Name of the leagues. rows : list Number of rows in the plot. columns : list Number of columns in the plot. """ if not os.path.exists('Classification'): os.makedirs('Classification') figure_full, axs = plt.subplots(nrows = rows, ncols = columns, figsize=(15, 10)) figure_full.suptitle('Classification (Twitter: @JaviKarra94)') dataframes = [] plots = [] for item in range(0, len(urls)): dfs = pd.read_html(urls[item]) dataframes.append(dfs[0]) # Get clasificacion table league dataframe # Create plots for i in range(0, rows): for j in range(0, columns): plots.append(dataframes[j * rows + i].plot(x="Squad", y=["Pts"], kind="bar", ax=axs[i,j], title = leagues[j * rows + i], xlabel = "Teams", ylabel = "Points")) for item in (range(0, len(plots))): plots[item].grid(axis='y', linestyle='--') figure_full.tight_layout() figure_full.savefig(os.path.join('.\Classification', 'AllLeagues'), bbox_inches='tight') def GenerateFullGoalsForVsGoalsAgainstPNGFigures(urls, leagues, rows, columns): """Generates an image with subplots of images about local goals vs against goals set of leagues. Parameters ---------- urls : list List of urls with information about the leagues ranking. leagues : list Name of the leagues. rows : list Number of rows in the plot. columns : list Number of columns in the plot. """ if not os.path.exists('Goals'): os.makedirs('Goals') figure_full, axs = plt.subplots(nrows=rows, ncols=columns, figsize=(15, 10)) figure_full.suptitle('Goals for (GF) Vs Goals against (GA) (Twitter: @JaviKarra94)') dataframes = [] plots = [] for item in range(0, len(urls)): dfs = pd.read_html(urls[item]) dataframes.append(dfs[0]) # Get clasificacion table league dataframe # Create plots for i in range(0, rows): for j in range(0, columns): plots.append(dataframes[j * rows + i].plot(x="Squad", y=["GF","GA"], kind="bar", ax=axs[i,j], title = leagues[j * rows + i], xlabel = "Teams", ylabel = "Goals")) for item in (range(0, len(plots))): plots[item].grid(axis='y', linestyle='--') figure_full.tight_layout() figure_full.savefig(os.path.join('.\Goals', 'AllLeagues'), bbox_inches='tight') def GenerateGoalsForVsGoalsAgainstPNGFigures(urls, leagues): """Generates a set of images about local goals vs against goals set of leagues. Parameters ---------- urls : list List of urls with information about the leagues ranking. leagues : list Name of the leagues. """ if not os.path.exists('Goals'): os.makedirs('Goals') for item in range(0, len(urls)): dfs = pd.read_html(urls[item]) clasificacion = dfs[0] plot = clasificacion.plot(x="Squad", y=["GF","GA"], kind="bar", xlabel ="Teams", ylabel = "Goals") fig = plot.get_figure() fig.savefig(os.path.join('.\Goals', leagues[item].strip()), bbox_inches='tight') if __name__ == "__main__": urls = [ "https://fbref.com/en/comps/12/La-Liga-Stats", # La Liga (ESP) "https://fbref.com/en/comps/9/Premier-League-Stats", # Premiere League (ENG) "https://fbref.com/en/comps/11/Serie-A-Stats", # Serie A (ITA) "https://fbref.com/en/comps/13/Ligue-1-Stats", # Ligue 1 (FRA) "https://fbref.com/en/comps/20/Bundesliga-Stats", # Bundesliga (ALE) "https://fbref.com/en/comps/23/Eredivisie-Stats" # Eredivisie (NED) ] leagues = [ 'La Liga (ESP)', 'Premiere League (ENG)', 'Serie A (ITA)', 'Ligue 1 (FRA)', 'Bundesliga (ALE)', 'Eredivisie (NED)' ] GenerateFullClassificationPNGFigures(urls, leagues, 2, 3) GenerateClassificationPNGFigures(urls, leagues) GenerateFullGoalsForVsGoalsAgainstPNGFigures(urls, leagues, 2, 3) GenerateGoalsForVsGoalsAgainstPNGFigures(urls, leagues) ```
{ "source": "jke94/WilliamHill-WebScraping", "score": 4 }
#### File: src/utilsmodule/WilliamHillURLs.py ```python import requests from bs4 import BeautifulSoup from urlvalidator import validate_url, ValidationError class WilliamHillURLs: """Auxiliar class with data about William Hill Web to scraping data. Returns: WilliamHillURLs: An object with data and auxiliar functions. Attributes ---------- BaseURL : str William Hill URL base web page. URL_FootballOnDirect : str Football matches URL in direct on William Hill web page. URL_TenisOnDirect : str Tenis matches URL in direct on William Hill web page. URL_BasketOnDirect : str Basket matches URL in direct on William Hill web page. """ BaseURL = 'https://sports.williamhill.es/' URL_FootballOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/f%C3%BAtbol' URL_TenisOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/tenis' URL_BasketOnDirect = 'https://sports.williamhill.es/betting/es-es/en-directo/baloncesto' def GetAllUrlMatches(self, urlSport=URL_FootballOnDirect): """Get all url matchs from a sport (by default foorball urls.). Validate each URL if it´s a URL valid. Args: urlSport (str, optional): Football mathes on direct URL William Hill . Defaults to "https://sports.williamhill.es/betting/es-es/en-directo/f%C3%BAtbol". Returns: list: List with all URL matches. """ req = requests.get(urlSport) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "html.parser") aux = soup.findAll("a", {"class": ['btmarket__name btmarket__name--featured']}) auxList = [] for item in aux: try: theUrl = (self.BaseURL + item['href']).replace("//","/").replace("https:/","https://") validate_url(theUrl) auxList.append(theUrl) except ValidationError: raise ValidationError(theUrl) return auxList def GetAllMatchsPlayedActually(self, urlSport=URL_FootballOnDirect): """Get all sport matches played in the actuall moment. Args: urlSport (str, optional): A William Hill URL sport. Defaults to URL_FootballOnDirect. Returns: list: List with all matches and its bets. """ req = requests.get(urlSport) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "lxml") matches = soup.findAll("div", {"class": "btmarket__link-name btmarket__link-name--ellipsis show-for-desktop-medium"}) listaApuestas = soup.findAll("div", {"class": "btmarket__selection"}) matchList = [] for item in matches: var = item.text + ': ' + listaApuestas[0].text + ' | ' + listaApuestas[1].text + ' | ' + listaApuestas[2].text matchList.append(var) return matchList def ConvertFractionalBetToDecimalBet(self, theBet): """Convert a fraccioanl bet str to Args: theBet (str): A fractional bet. Returns: [str]: A decimal bet. """ bet = 0.0 aux = str(theBet).split('/') bet = (int(aux[0], 10) / int(aux[1], 10) ) + 1 return str(round(bet, 2)) def GetAllBetsFromURLMatch(self, url): """Get all bets actually from a match. Args: url (str): Match URL Returns: [type]: A list with the diferents bets availables. """ allBetsList = [] req = requests.get(url) soup = BeautifulSoup(req.content.decode('utf-8','ignore'), "html.parser") aux = soup.findAll("h2", {"class" : ['fl']}) # print('Number of diferent bets: ', len(aux), ', Match URL: ', url) for item in aux: allBetsList.append(item.text) # print(item.text,'|',type(item.text), item['class']) return allBetsList ```
{ "source": "jkeam/habatica-pyside2", "score": 3 }
#### File: habatica-pyside2/lib/task.py ```python from enum import Enum class Priority: @staticmethod def priority_index_to_value(index): priority_values = ['0.1', '1', '1.5', '2'] return priority_values[index] @staticmethod def priority_value_to_index(value): priority_values = ['0.1', '1', '1.5', '2'] return priority_values.index(value) class TaskType(Enum): HABIT = 'habit' DAILY = 'daily' TODO = 'todo' REWARD = 'reward' def __str__(self): return self.value class Task: def __init__(self): self.id = None self.text = '' self.notes = '' self.priority = '' ``` #### File: habatica-pyside2/lib/widget_registry.py ```python from enum import Enum class WidgetRegistryName(Enum): ITEM_GROUP_TASKS = 'item_group_tasks' TASK_INPUT = 'task_input' TASK_TEXTAREA = 'task_textarea' TASK_PRIORITY = 'task_priority' ITEM_GROUP = 'item_group' ITEM_GROUP_LAYOUT = 'item_group_layout' SAVE_BUTTON = 'save_button' class WidgetRegistry: def __init__(self): self.registry = {} def store(self, key, value): self.registry[key] = value return self def retrieve(self, key, default=None): return self.registry.get(key, default) ```
{ "source": "JKearnsl/HentaiChanApi", "score": 3 }
#### File: HentaiChanApi/hentai_chan_api/content_parser.py ```python import json import re import requests from bs4 import BeautifulSoup class MangaContent: def __init__(self, session: requests.Session, manga_url: str): self._session = session self._url = manga_url @property def images(self) -> list[str]: raw_html = self._session.get(self._url, params={'development_access': 'true'}).content raw_js = BeautifulSoup(raw_html, 'html.parser').find_all('script')[2].text var_data = raw_js.replace('createGallery(data)', '').replace(' ', '').replace('\n', '').replace("'", '"') pattern = re.compile(r"var data = (\{.*?\})$", re.MULTILINE | re.DOTALL) if var_data: obj = pattern.search(var_data).group(1) obj = json.loads(obj) return obj['fullimg'] else: return [] ```
{ "source": "j-keck/nodemcu-uploader", "score": 2 }
#### File: nodemcu-uploader/nodemcu_uploader/utils.py ```python from platform import system from os import environ from wrapt import ObjectProxy from sys import version_info __all__ = ['default_port', 'system', 'hexify', 'from_file', 'wrap', 'PY2', 'ENCODING'] PY2 = version_info.major == 2 ENCODING = 'latin1' def default_port(sysname=system()): """This returns the default port used for different systems if SERIALPORT env variable is not set""" system_default = { 'Windows': 'COM1', 'Darwin': '/dev/tty.SLAB_USBtoUART' }.get(sysname, '/dev/ttyUSB0') return environ.get('SERIALPORT', system_default) def to_hex(x): return hex(ord(x)) def hexify(byte_arr): return ':'.join((to_hex(x)[2:] for x in byte_arr)) def from_file(path): with open(path, 'rb') as f: content = f.read() return content if PY2 else content.decode(ENCODING) class DecoderWrapper(ObjectProxy): def read(self, *args, **kwargs): res = self.__wrapped__.read(*args, **kwargs) return res if PY2 else res.decode(ENCODING) def write(self, data): data = data if PY2 else data.encode(ENCODING) return self.__wrapped__.write(data) def wrap(x): return DecoderWrapper(x) ```
{ "source": "j-keck/zfs-snap-diff", "score": 2 }
#### File: tests/browser_tests/tests.py ```python import unittest from typing import Any from selenium import webdriver # type: ignore import sys import fs from browser_tests.page import Page from zfs import ZFS class Tests(unittest.TestCase): zfs = ZFS() def setUp(self) -> None: self.page = Page(headless = True) self.assertIn("ZFS-Snap-Diff", self.page.title()) def testActualFileContent(self) -> None: fs.createTestFile(self.zfs.mountpoint() + "/file.txt", ["firstline", "secondline", "thirdline"] ) self.page.selectView("Browse filesystem") self.page.selectDataset(self.zfs.dataset) self.page.findByXPath("//td[contains(.,'file.txt')]").click() self.assertIn("Current content of file.txt", self.page.findById("file-actions-header").text) self.assertIn("firstline\nsecondline\nthirdline", self.page.findByCSS("#file-actions-body > pre > code").text) def testCreateSnapshotInBrowseFilesystem(self) -> None: self.page.selectView("Browse filesystem") self.page.selectDataset(self.zfs.dataset) self.page.createSnapshot("create-snapshot-in-browse-filesystem") self.assertIn("@create-snapshot-in-browse-filesystem' created", self.page.alertText()) def testCreateSnapshotInBrowseSnapshots(self) -> None: self.page.selectView("Browse snapshots") self.page.selectDataset(self.zfs.dataset) self.page.createSnapshot("create-snapshot-in-browse-snapshots") self.assertIn("@create-snapshot-in-browse-snapshots' created", self.page.alertText()) def testDestroySnapshot(self) -> None: self.page.selectView("Browse snapshots") self.page.selectDataset(self.zfs.dataset) # create snapshot self.page.createSnapshot("destroy-snapshot") self.page.closeAlert() # destroy snapshot self.page.destroySnapshot("destroy-snapshot") self.assertIn("Snapshot 'destroy-snapshot' destroyed", self.page.alertText()) self.page.closeAlert() def testRenameSnapshot(self) -> None: self.page.selectView("Browse snapshots") self.page.selectDataset(self.zfs.dataset) # create snapshot self.page.createSnapshot("rename-snapshot") self.page.closeAlert() # rename snapshot self.page.renameSnapshot("rename-snapshot", "snapshot-rename") self.assertIn("Snapshot 'rename-snapshot' renamed to 'snapshot-rename'", self.page.alertText()) self.page.closeAlert() def testCloneSnapshot(self) -> None: self.page.selectView("Browse snapshots") self.page.selectDataset(self.zfs.dataset) # create snapshot self.page.createSnapshot("clone-snapshot") self.page.closeAlert() # clone snapshot self.page.cloneSnapshot("clone-snapshot", "cloned") self.assertIn("Snapshot 'clone-snapshot' cloned to '"+self.zfs.pool+"/cloned'", self.page.alertText()) self.page.closeAlert() def testRollbackSnapshot(self) -> None: self.page.selectView("Browse snapshots") self.page.selectDataset(self.zfs.dataset) # create snapshot self.page.createSnapshot("rollback-snapshot") self.assertIn("@rollback-snapshot' created", self.page.alertText()) self.page.closeAlert() # create a file fs.createTestFile(self.zfs.mountpoint() + "/rollback-test.txt", ["dummy"]) self.assertTrue(fs.exists(self.zfs.mountpoint() + "/rollback-test.txt")) # rollback self.page.rollbackSnapshot("rollback-snapshot") self.assertIn("Snapshot 'rollback-snapshot' rolled back", self.page.alertText()) self.assertFalse(fs.exists(self.zfs.mountpoint() + "/rollback-test.txt")) def tearDown(self) -> None: self.page.close() ```
{ "source": "jkedmiston/pandas-examples", "score": 3 }
#### File: pandas-examples/documentation_generator/process_ipynb.py ```python import os def prep_line_for_jupyter(l): """ """ if len(l) > 2: if l[0] == "#" and l[1] == "%": l = l[1:] h = l.replace('"', r'\"').replace("\n", "\\n").replace("'", r'\"') out = '"%s"' % h out += ",\n" return out def prep_lines_for_jupyter(fname): g = open(fname, 'r') lines = g.readlines() out = '' for l in lines: out += prep_line_for_jupyter(l) pass return out def replace_exec_line_if_detected(l): """ If find a line with exec(open, open the contents of that file and extract those lines and return them. """ if l.count("exec(open") == 0: retval = l else: # make sure the exec file is a python file. if l.count('.py') == 1: idx = l.index('.py') suffix = l[idx:idx+3] i = l.index('open(') + 6 while 1: test_file_to_inject = l[i:idx] + suffix if os.path.isfile(test_file_to_inject): retval = prep_lines_for_jupyter(test_file_to_inject) retval0 = '"# cell source file: %s\\n",\n' % test_file_to_inject if retval[0:2] == '"%': txt1 = retval[:-2].replace('\\n', 'xx').split('\n')[0] txt = retval[:-2][len(txt1) + 1:] retval = txt1 + retval0 + txt + "\n" retval = retval.replace('xx', '\\n') else: retval = retval0 + retval[:-2] + "\n" break i += 1 return retval def reset_execution_count_in_ipynb(fname): lines = open(fname, 'r').readlines() all_lines = [] for kk, line in enumerate(lines): if line.count('"execution_count"'): line = '"execution_count":null,\n' all_lines.append(line) g = open(fname, 'w') g.write('\n'.join(all_lines)) g.close() print("%s wrote: %s" % (__file__, g.name)) def replace_exec_cells_in_ipynb(fname, fnameout): lines = open(fname, 'r').readlines() all_lines = [] for kk, line in enumerate(lines): new_line = replace_exec_line_if_detected(line) all_lines.append(new_line) pass g = open(fnameout, "w") g.write('\n'.join(all_lines)) g.close() print("%s wrote: %s" % (__file__, g.name)) def process_ipynb(inputfile, output): print("processing %s -> %s" % (inputfile, output)) replace_exec_cells_in_ipynb(inputfile, output) reset_execution_count_in_ipynb(output) if __name__=="__main__": import argparse parser = argparse.ArgumentParser('') parser.add_argument('input') parser.add_argument('--output', dest='output', required=False, default=None) args = parser.parse_args() if args.output is None: output = args.input.replace('.ipynb', '_out.ipynb') else: output = args.output if args.input.count('.ipynb') == 0: raise Exception("expecting ipynb input, you have %s" % args.input) process_ipynb(args.input, output) ``` #### File: pandas-examples/tests/test_file_sniffer.py ```python from documentation_generator.file_sniffer import detect_multi_line_assignment from documentation_generator.file_sniffer import detect_multi_line_function from documentation_generator.process_ipynb import replace_exec_line_if_detected def test_replace_exec_line_if_detected(): """ Tests the execfile replacement capability in creating jupyter notebook from primitives. """ test_line = "exec(open('tests/test_file_sniffer.py').read())" l = replace_exec_line_if_detected(test_line) # someone cannabilistic to self test this file. test_lines = open("tests/test_file_sniffer.py").readlines() exec_lines = l.split("\n") for kk, line in enumerate(test_lines): if kk == 0: continue exec_line = exec_lines[kk + 1] # excludes \\n", from the end of lines. # the replacement puts in commas at the end of new lines, and # newlines are replaced with \\n. If # there isn't a comma then just do the \\n exclusion. # the selection starts at 1 to avoid the " at the start of the line. if exec_line[-1] == ",": exec_line = exec_line[1:-4] else: exec_line = exec_line[1:-3] test_line = test_lines[kk][:-1] if test_line.count('"') or test_line.count("\\") or test_line.count("'"): # TODO... these cases currently too complicated to test continue assert exec_line == test_line def test_detect_multi_line_assignment(): text = """ %(core)s %(nextline)s lines5 """ core = """a = testfunc([43, 44, 45, 46, 47, 48, 50, 51])""" nextline = "nextl" text = text % dict(core=core, nextline=nextline) lines = text.split('\n') lines = list(map(lambda x: x+"\n", lines)) out = detect_multi_line_assignment(0, lines) assert out['index'] == 1 assert out['continue'] == 1 out = detect_multi_line_assignment(1, lines) assert out["output"] == core + "\n" assert out["index"] == 1 + 4 assert lines[out["index"]] == nextline + "\n" def test_detect_multi_line_function(): text = """ %(core)s %(nextline)s lines5 """ core = """def a1(x): print(x) return""" nextline = "nextl" text = text % dict(core=core, nextline=nextline) lines = text.split('\n') lines = list(map(lambda x: x+"\n", lines)) out = detect_multi_line_function(0, lines) assert out['index'] == 1 assert out['continue'] == 1 out = detect_multi_line_function(1, lines) assert out["output"] == core + "\n" assert out["index"] == 1 + 3 assert lines[out["index"]] == nextline + "\n" if __name__ == "__main__": test_detect_multi_line_assignment() test_detect_multi_line_function() test_replace_exec_line_if_detected() ```
{ "source": "jkedra/flask-dance-multi-provider", "score": 2 }
#### File: flask-dance-multi-provider/app/__init__.py ```python from flask import Flask from .config import Config from .models import db, bcrypt, login_manager from .oauth import github_blueprint, google_blueprint from .views import auth_blueprint, main_blueprint from .cli import create_db, shell_context_processor def create_app(): app = Flask(__name__) app.config.from_object(Config) app.register_blueprint(github_blueprint, url_prefix="/login") app.register_blueprint(google_blueprint, url_prefix="/login") app.register_blueprint(auth_blueprint) app.register_blueprint(main_blueprint) app.cli.add_command(create_db) app.shell_context_processors.append(shell_context_processor) db.init_app(app) bcrypt.init_app(app) login_manager.init_app(app) return app ``` #### File: app/views/main.py ```python from flask import Blueprint, render_template blueprint = Blueprint("main", __name__) @blueprint.route("/") def index(): return render_template("home.j2") ```
{ "source": "jkedra/PodcastMirror", "score": 3 }
#### File: jkedra/PodcastMirror/Mirror.py ```python import os import sys # import argparse import logging import configparser from DAB import DABItem from Podcast import Podcast import datetime # # import mp3 def initLog(log, args): """Initialize logging system :params log: logger object :params args: argsparse.parse_args() """ log_levels = {None: logging.WARN, 1: logging.INFO, 2: logging.DEBUG} log.setLevel(log_levels[args.verbose]) if args.logfile: chnLog = logging.FileHandler(args.logfile, mode='a') chnLog.setFormatter( logging.Formatter("%(asctime)s [%(levelname)s]: %(message)s")) log.addHandler(chnLog) if not args.silent: # create console handler and set level to debug chnStr = logging.StreamHandler() chnStr.setFormatter(logging.Formatter("%(levelname)s:%(message)s")) log.addHandler(chnStr) def initParser(): """ https://docs.python.org/3/howto/argparse.html https://docs.python.org/3/library/argparse.html#module-argparse Returns argparse.Namespace object. """ p = argparse.ArgumentParser() p.add_argument("-v", "--verbose", action="count", help="increases verbosity") p.add_argument("-d", "--days", type=int, default=30, help="how far in the past go") p.add_argument("-t", "--target", default="DATA", help="target data directory") p.add_argument("-l", "--logfile", help="logging to file, log file path required") p.add_argument("-s", "--silent", action="store_true", help="silent mode - suppress terminal output") return p.parse_args() # MAIN PROGRAM STARTS HERE # KeyboardInterrupt args = initParser() log = logging.getLogger(__name__) initLog(log, args) config = configparser.ConfigParser() cf = config.read(['mirror.cfg', os.path.expanduser('~/.mirror.cfg')]) if len(cf) == 0: print("config file not found") sys.exit(-1) else: log.debug("config file %s" % str(cf)) baseurl = config.get("RSS", "baseurl") target_dir = config.get("Mirror", "data") or args.target if not os.path.isdir(target_dir): os.makedirs(target_dir) log.debug(f"changing dir to {target_dir}") os.chdir(target_dir) for pi in Podcast(baseurl, DABItem): podcast_age = datetime.datetime.now() - pi.date if podcast_age > datetime.timedelta(days=args.days): log.debug(f"{pi.name} {pi.date} too old") continue # can you ever download the file, reiterate if not try: pi.getsize() except (IOError, TypeError) as e: print(f"IOError, TypeError {e}") continue verbose = args.verbose and args.verbose > 1 and not args.silent pi.download_description() pi.download(verbose) ``` #### File: jkedra/PodcastMirror/test_appendThenRemove.py ```python from unittest import TestCase class TestAppendThenRemove(TestCase): def setUp(self): import tempfile with tempfile.NamedTemporaryFile(delete=False) as src: src.write(b"AAA") self.srcname = src.name with tempfile.NamedTemporaryFile(delete=False) as dst: self.dstname = dst.name @staticmethod def remove(fname): import os try: os.remove(fname) except FileNotFoundError: pass def test_appendThenRemove_unlink(self): from Podcast import appendThenRemove import os appendThenRemove(self.srcname, self.dstname) if os.path.isfile(self.srcname): self.fail('File exists but should be removed.') def tearDown(self): self.remove(self.srcname) self.remove(self.dstname) ```
{ "source": "jkeelan/faculty-cli", "score": 2 }
#### File: faculty-cli/test/test_projects.py ```python import pytest from click.testing import CliRunner from faculty_cli.cli import cli from faculty.clients.project import ProjectClient import faculty.clients.base from test.fixtures import PROJECT, USER_ID @pytest.fixture def mock_update_check(mocker): mocker.patch("faculty_cli.update.check_for_new_release") @pytest.fixture def mock_check_credentials(mocker): mocker.patch("faculty_cli.cli._check_credentials") @pytest.fixture def mock_user_id(mocker): mocker.patch("faculty_cli.auth.user_id", return_value=USER_ID) def test_list_projects( mocker, mock_update_check, mock_check_credentials, mock_profile, mock_user_id, ): runner = CliRunner() schema_mock = mocker.patch("faculty.clients.project.ProjectSchema") mocker.patch.object(ProjectClient, "_get", return_value=[PROJECT]) result = runner.invoke(cli, ["project", "list"]) assert result.exit_code == 0 assert result.output == PROJECT.name + "\n" ProjectClient._get.assert_called_once_with( "/user/{}".format(USER_ID), schema_mock.return_value ) def test_list_projects_verbose( mocker, mock_update_check, mock_check_credentials, mock_profile, mock_user_id, ): runner = CliRunner() schema_mock = mocker.patch("faculty.clients.project.ProjectSchema") mocker.patch.object(ProjectClient, "_get", return_value=[PROJECT]) result = runner.invoke(cli, ["project", "list", "-v"]) tpl = "Project Name ID\n{} {}\n" assert result.exit_code == 0 assert result.output == tpl.format(PROJECT.name, PROJECT.id) ProjectClient._get.assert_called_once_with( "/user/{}".format(USER_ID), schema_mock.return_value ) def test_create_project( mocker, mock_update_check, mock_check_credentials, mock_profile, mock_user_id, ): runner = CliRunner() mocker.patch.object(ProjectClient, "create", return_value=PROJECT) result = runner.invoke(cli, ["project", "new", "test-project"]) assert result.exit_code == 0 assert result.output == "Created project {} with ID {}\n".format( PROJECT.name, PROJECT.id ) ProjectClient.create.assert_called_once_with(USER_ID, "test-project") def test_create_project_bad_request( mocker, mock_update_check, mock_check_credentials, mock_profile, mock_user_id, ): runner = CliRunner() response = faculty.clients.base.BadRequest("response", error="some error") mocker.patch.object(ProjectClient, "create", side_effect=response) result = runner.invoke(cli, ["project", "new", "test-project"]) assert result.exit_code == 64 assert result.output == "some error\n" ```
{ "source": "jkeelan/faculty", "score": 3 }
#### File: faculty/clients/auth.py ```python from requests.auth import AuthBase class FacultyAuth(AuthBase): """Requests auth implementation for accessing Faculty services. Parameters ---------- session : faculty.session.Session The Faculty session to authenticate with To perform an authenticated request against a Faculty service, first construct an instance of this class with a session: >>> import faculty.session >>> session = faculty.session.get_session() >>> auth = FacultyAuth(session) then pass it as the ``auth`` argument when making a request with ``requests``: >>> import requests >>> requests.get( 'https://servicename.services.example.my.faculty.ai', auth=auth ) You can also set it as the ``auth`` attribute on a :class:`requests.Session`, so that subsequent requests will be authenticated automatically: >>> import requests >>> session = requests.Session() >>> session.auth = auth """ def __init__(self, session): self.session = session def __call__(self, request): access_token = self.session.access_token() header_content = "Bearer {}".format(access_token.token) request.headers["Authorization"] = header_content return request ``` #### File: faculty/clients/environment.py ```python import re from collections import namedtuple from enum import Enum from marshmallow import ( ValidationError, fields, post_load, validates, post_dump, ) from marshmallow_enum import EnumField from faculty.clients.base import BaseClient, BaseSchema class Constraint(Enum): AT_LEAST = ">=" EQUAL = "==" Version = namedtuple("Version", ["constraint", "identifier"]) PythonPackage = namedtuple("PythonPackage", ["name", "version"]) Pip = namedtuple("Pip", ["extra_index_urls", "packages"]) Conda = namedtuple("Conda", ["channels", "packages"]) PythonEnvironment = namedtuple("PythonEnvironment", ["pip", "conda"]) Apt = namedtuple("Apt", ["packages"]) AptPackage = namedtuple("AptPackage", ["name", "version"]) Script = namedtuple("Script", ["script"]) PythonSpecification = namedtuple("PythonSpecification", ["python2", "python3"]) Specification = namedtuple("Specification", ["apt", "bash", "python"]) Environment = namedtuple( "Environment", [ "id", "project_id", "name", "description", "author_id", "created_at", "updated_at", "specification", ], ) EnvironmentCreationResponse = namedtuple("EnvironmentCreationResponse", ["id"]) EnvironmentCreateUpdate = namedtuple( "EnvironmentCreateUpdate", ["name", "description", "specification"] ) PYTHON_VERSION_REGEX = re.compile( r"^(?:\d+\!)?\d+(?:\.\d+)*(?:(?:a|b|rc)\d+)?(?:\.post\d+)?(?:\.dev\d+)?$" ) APT_VERSION_REGEX = re.compile(r"^[a-zA-Z0-9\\.\\+-:~]+$") class PythonVersionSchema(BaseSchema): constraint = EnumField(Constraint, by_value=True, required=True) identifier = fields.String(required=True) @validates("identifier") def validate_version_format(self, data): if not PYTHON_VERSION_REGEX.match(data): raise ValidationError("Invalid version format") @post_load def make_version(self, data): return Version(**data) @post_dump def dump_version(self, data): self.validate_version_format(data["identifier"]) return data class AptVersionSchema(BaseSchema): constraint = EnumField(Constraint, by_value=True, required=True) identifier = fields.String(required=True) @validates("identifier") def validate_version_format(self, data): if not APT_VERSION_REGEX.match(data): raise ValidationError("Invalid version format") @post_load def make_version(self, data): return Version(**data) @post_dump def dump_version(self, data): self.validate_version_format(data["identifier"]) return data class PythonVersionField(fields.Field): """Field that serialises/deserialises a Python package version.""" def _deserialize(self, value, attr, obj, **kwargs): if value == "latest": return "latest" else: return PythonVersionSchema().load(value) def _serialize(self, value, attr, obj, **kwargs): if value == "latest": return "latest" else: return PythonVersionSchema().dump(value) class AptVersionField(fields.Field): """Field that serialises/deserialises an apt package version.""" def _deserialize(self, value, attr, obj, **kwargs): if value == "latest": return "latest" else: return AptVersionSchema().load(value) def _serialize(self, value, attr, obj, **kwargs): if value == "latest": return "latest" else: return AptVersionSchema().dump(value) class PythonPackageSchema(BaseSchema): name = fields.String(required=True) version = PythonVersionField(required=True) @post_load def make_python_package(self, data): return PythonPackage(**data) class PipSchema(BaseSchema): extra_index_urls = fields.List( fields.String(), data_key="extraIndexUrls", required=True ) packages = fields.List(fields.Nested(PythonPackageSchema()), required=True) @post_load def make_pip(self, data): return Pip(**data) class CondaSchema(BaseSchema): channels = fields.List(fields.String(), required=True) packages = fields.List(fields.Nested(PythonPackageSchema()), required=True) @post_load def make_conda(self, data): return Conda(**data) class PythonEnvironmentSchema(BaseSchema): conda = fields.Nested(CondaSchema(), required=True) pip = fields.Nested(PipSchema(), required=True) @post_load def make_python_specification(self, data): return PythonEnvironment(**data) class PythonSpecificationSchema(BaseSchema): python2 = fields.Nested( PythonEnvironmentSchema(), data_key="Python2", missing=None ) python3 = fields.Nested( PythonEnvironmentSchema(), data_key="Python3", missing=None ) @post_load def make_python(self, data): return PythonSpecification(**data) class AptPackageSchema(BaseSchema): name = fields.String(required=True) version = AptVersionField(required=True) @post_load def make_apt_package(self, data): return AptPackage(**data) class AptSchema(BaseSchema): packages = fields.List(fields.Nested(AptPackageSchema()), required=True) @post_load def make_apt(self, data): return Apt(**data) class ScriptSchema(BaseSchema): script = fields.String(required=True) @post_load def make_script(self, data): return Script(**data) class SpecificationSchema(BaseSchema): apt = fields.Nested(AptSchema(), required=True) bash = fields.List(fields.Nested(ScriptSchema()), required=True) python = fields.Nested(PythonSpecificationSchema(), required=True) @post_load def make_specification(self, data): return Specification(**data) class EnvironmentSchema(BaseSchema): id = fields.UUID(data_key="environmentId", required=True) project_id = fields.UUID(data_key="projectId", required=True) name = fields.String(required=True) description = fields.String(missing=None) author_id = fields.UUID(data_key="authorId", required=True) created_at = fields.DateTime(data_key="createdAt", required=True) updated_at = fields.DateTime(data_key="updatedAt", required=True) specification = fields.Nested(SpecificationSchema(), required=True) @post_load def make_environment(self, data): return Environment(**data) class EnvironmentCreateUpdateSchema(BaseSchema): name = fields.String(required=True) description = fields.String(missing=None) specification = fields.Nested(SpecificationSchema(), required=True) @post_load def make_environment_update(self, data): return EnvironmentCreateUpdate(**data) class EnvironmentCreationResponseSchema(BaseSchema): id = fields.UUID(data_key="environmentId", required=True) @post_load def make_environment(self, data): return EnvironmentCreationResponse(**data) class EnvironmentClient(BaseClient): SERVICE_NAME = "baskerville" def list(self, project_id): endpoint = "/project/{}/environment".format(project_id) return self._get(endpoint, EnvironmentSchema(many=True)) def get(self, project_id, environment_id): endpoint = "/project/{}/environment/{}".format( project_id, environment_id ) return self._get(endpoint, EnvironmentSchema()) def update( self, project_id, environment_id, name, specification, description=None ): content = EnvironmentCreateUpdate( name=name, specification=specification, description=description ) endpoint = "/project/{}/environment/{}".format( project_id, environment_id ) self._put_raw( endpoint, json=EnvironmentCreateUpdateSchema().dump(content) ) def create(self, project_id, name, specification, description=None): endpoint = "/project/{}/environment".format(project_id) content = EnvironmentCreateUpdate( name=name, specification=specification, description=description ) response = self._post( endpoint, EnvironmentCreationResponseSchema(), json=EnvironmentCreateUpdateSchema().dump(content), ) return response.id def delete(self, project_id, environment_id): endpoint = "/project/{}/environment/{}".format( project_id, environment_id ) self._delete_raw(endpoint) ``` #### File: faculty/clients/user.py ```python from collections import namedtuple from enum import Enum from marshmallow import fields, post_load from marshmallow_enum import EnumField from faculty.clients.base import BaseSchema, BaseClient class GlobalRole(Enum): BASIC_USER = "global-basic-user" FULL_USER = "global-full-user" ADMIN = "global-admin" User = namedtuple( "User", [ "id", "username", "full_name", "email", "created_at", "enabled", "global_roles", "is_system", ], ) class UserSchema(BaseSchema): id = fields.UUID(data_key="userId", required=True) username = fields.Str(required=True) full_name = fields.Str(data_key="fullName", missing=None) email = fields.Str(required=True) created_at = fields.DateTime(data_key="createdAt", required=True) enabled = fields.Boolean(required=True) global_roles = fields.List( EnumField(GlobalRole, by_value=True), data_key="globalRoles", missing=None, ) is_system = fields.Boolean(data_key="isSystem", required=True) @post_load def make_user(self, data): return User(**data) class UserClient(BaseClient): SERVICE_NAME = "flock" def get_user(self, user_id): endpoint = "/user/{}".format(user_id) response = self._get(endpoint, UserSchema()) return response def get_all_users(self, is_system=None, enabled=None): params = {} if is_system is not None: params["isSystem"] = "true" if is_system else "false" if enabled is not None: params["isDisabled"] = "false" if enabled else "true" endpoint = "/users" response = self._get(endpoint, UserSchema(many=True), params=params) return response def set_global_roles(self, user_id, global_roles): endpoint = "/user/{}/roles".format(user_id) response = self._put( endpoint, UserSchema(), json={"roles": global_roles} ) return response ``` #### File: faculty/datasets/util.py ```python import posixpath class DatasetsError(Exception): pass def rationalise_path(path): # All paths should be relative to root path = posixpath.join("/", path) normed = posixpath.normpath(path) if path.endswith("/") and not normed.endswith("/"): normed += "/" return normed def get_relative_path(parent_directory, directory): parent_directory = rationalise_path(parent_directory) directory = rationalise_path(directory) if not directory.startswith(parent_directory): tpl = "{} is not a sub path of {}" raise ValueError(tpl.format(directory, parent_directory)) # Remove the root relative_path = posixpath.relpath(directory, parent_directory) return relative_path ``` #### File: tests/clients/test_account.py ```python import uuid import pytest from marshmallow import ValidationError from faculty.clients.account import ( AccountClient, Account, AccountSchema, AuthenticationResponse, AuthenticationResponseSchema, ) USER_ID = uuid.uuid4() USERNAME = "joe_bloggs" ACCOUNT = Account(user_id=USER_ID, username=USERNAME) ACCOUNT_BODY = {"userId": str(USER_ID), "username": USERNAME} def test_account_schema(): data = AccountSchema().load(ACCOUNT_BODY) assert data == ACCOUNT @pytest.mark.parametrize( "data", [{}, {"userId": "not-a-uuid", "username": USERNAME}] ) def test_account_schema_invalid(data): with pytest.raises(ValidationError): AccountSchema().load(data) def test_authentication_response_schema(): data = AuthenticationResponseSchema().load({"account": ACCOUNT_BODY}) assert data == AuthenticationResponse(account=ACCOUNT) @pytest.mark.parametrize("data", [{}, {"account": "not-an-account"}]) def test_authentication_response_schema_invalid(data): with pytest.raises(ValidationError): AuthenticationResponseSchema().load(data) def test_account_client_authenticated_account(mocker): mocker.patch.object( AccountClient, "_get", return_value=AuthenticationResponse(account=ACCOUNT), ) schema_mock = mocker.patch( "faculty.clients.account.AuthenticationResponseSchema" ) client = AccountClient(mocker.Mock()) assert client.authenticated_account() == ACCOUNT AccountClient._get.assert_called_once_with( "/authenticate", schema_mock.return_value ) def test_account_client_authenticated_user_id(mocker): mocker.patch.object( AccountClient, "authenticated_account", return_value=ACCOUNT ) client = AccountClient(mocker.Mock()) assert client.authenticated_user_id() == USER_ID AccountClient.authenticated_account.assert_called_once_with() ```
{ "source": "jkeen871/pyvmomi-community-samples", "score": 3 }
#### File: pyvmomi-community-samples/samples/add_disk_to_vm.py ```python from pyVmomi import vim from pyVmomi import vmodl from pyVim.connect import SmartConnect, Disconnect import atexit import argparse import getpass def get_args(): parser = argparse.ArgumentParser( description='Arguments for talking to vCenter') parser.add_argument('-s', '--host', required=True, action='store', help='vSpehre service to connect to') parser.add_argument('-o', '--port', type=int, default=443, action='store', help='Port to connect on') parser.add_argument('-u', '--user', required=True, action='store', help='User name to use') parser.add_argument('-p', '--password', required=False, action='store', help='Password to use') parser.add_argument('-v', '--vm-name', required=False, action='store', help='name of the vm') parser.add_argument('--uuid', required=False, action='store', help='vmuuid of vm') parser.add_argument('--disk-type', required=False, action='store', default='thin', help='thick or thin') parser.add_argument('--disk-size', required=True, action='store', help='disk size, in GB, to add to the VM') args = parser.parse_args() if not args.password: args.password = <PASSWORD>( prompt='Enter password') return args def get_obj(content, vimtype, name): obj = None container = content.viewManager.CreateContainerView( content.rootFolder, vimtype, True) for c in container.view: if c.name == name: obj = c break return obj def add_disk(vm, si, disk_size, disk_type): spec = vim.vm.ConfigSpec() # get all disks on a VM, set unit_number to the next available for dev in vm.config.hardware.device: if hasattr(dev.backing, 'fileName'): unit_number = int(dev.unitNumber) + 1 # unit_number 7 reserved for scsi controller if unit_number == 7: unit_number += 1 if unit_number >= 16: print "we don't support this many disks" return # add disk here dev_changes = [] new_disk_kb = int(disk_size) * 1024 * 1024 disk_spec = vim.vm.device.VirtualDeviceSpec() disk_spec.fileOperation = "create" disk_spec.operation = vim.vm.device.VirtualDeviceSpec.Operation.add disk_spec.device = vim.vm.device.VirtualDisk() disk_spec.device.backing = \ vim.vm.device.VirtualDisk.FlatVer2BackingInfo() if disk_type == 'thin': disk_spec.device.backing.thinProvisioned = True disk_spec.device.backing.diskMode = 'persistent' disk_spec.device.unitNumber = unit_number disk_spec.device.capacityInKB = new_disk_kb disk_spec.device.controllerKey = 1000 dev_changes.append(disk_spec) spec.deviceChange = dev_changes vm.ReconfigVM_Task(spec=spec) print "%sGB disk added to %s" % (disk_size, vm.config.name) def main(): args = get_args() # connect this thing si = SmartConnect( host=args.host, user=args.user, pwd=<PASSWORD>, port=args.port) # disconnect this thing atexit.register(Disconnect, si) vm = None if args.uuid: search_index = si.content.searchIndex vm = search_index.FindByUuid(None, args.uuid, True) elif args.vm_name: content = si.RetrieveContent() vm = get_obj(content, [vim.VirtualMachine], args.vm_name) if vm: add_disk(vm, si, args.disk_size, args.disk_type) else: print "VM not found" # start this thing if __name__ == "__main__": main() ``` #### File: pyvmomi-community-samples/samples/list_datastore_info.py ```python import argparse import atexit import json from pyVim import connect from pyVmomi import vmodl from pyVmomi import vim from tools import cli def get_args(): """ Supports the command-line arguments listed below. """ parser = argparse.ArgumentParser( description='Process args for retrieving all the Virtual Machines') parser.add_argument('-s', '--host', required=True, action='store', help='Remote host to connect to') parser.add_argument('-o', '--port', type=int, default=443, action='store', help='Port to connect on') parser.add_argument('-u', '--user', required=True, action='store', help='User name to use when connecting to host') parser.add_argument('-p', '--password', required=True, action='store', help='Password to use when connecting to host') parser.add_argument('-j', '--json', default=False, action='store_true', help='Output to JSON') args = parser.parse_args() return args # http://stackoverflow.com/questions/1094841/ def sizeof_fmt(num): """ Returns the human readable version of a file size :param num: :return: """ for item in ['bytes', 'KB', 'MB', 'GB']: if num < 1024.0: return "%3.1f%s" % (num, item) num /= 1024.0 return "%3.1f%s" % (num, 'TB') def print_fs(host_fs): """ Prints the host file system volume info :param host_fs: :return: """ print "{}\t{}\t".format("Datastore: ", host_fs.volume.name) print "{}\t{}\t".format("UUID: ", host_fs.volume.uuid) print "{}\t{}\t".format("Capacity: ", sizeof_fmt( host_fs.volume.capacity)) print "{}\t{}\t".format("VMFS Version: ", host_fs.volume.version) print "{}\t{}\t".format("Is Local VMFS: ", host_fs.volume.local) print "{}\t{}\t".format("SSD: ", host_fs.volume.ssd) def main(): """ Simple command-line program for listing all ESXi datastores and their associated devices """ args = get_args() cli.prompt_for_password(args) try: service_instance = connect.SmartConnectNoSSL(host=args.host, user=args.user, pwd=args.password, port=int(args.port)) if not service_instance: print("Could not connect to the specified host using specified " "username and password") return -1 atexit.register(connect.Disconnect, service_instance) content = service_instance.RetrieveContent() # Search for all ESXi hosts objview = content.viewManager.CreateContainerView(content.rootFolder, [vim.HostSystem], True) esxi_hosts = objview.view objview.Destroy() datastores = {} for esxi_host in esxi_hosts: if not args.json: print "{}\t{}\t\n".format("ESXi Host: ", esxi_host.name) # All Filesystems on ESXi host storage_system = esxi_host.configManager.storageSystem host_file_sys_vol_mount_info = \ storage_system.fileSystemVolumeInfo.mountInfo datastore_dict = {} # Map all filesystems for host_mount_info in host_file_sys_vol_mount_info: # Extract only VMFS volumes if host_mount_info.volume.type == "VMFS": extents = host_mount_info.volume.extent if not args.json: print_fs(host_mount_info) else: datastore_details = { 'uuid': host_mount_info.volume.uuid, 'capacity': host_mount_info.volume.capacity, 'vmfs_version': host_mount_info.volume.version, 'local': host_mount_info.volume.local, 'ssd': host_mount_info.volume.ssd } extent_arr = [] extent_count = 0 for extent in extents: if not args.json: print "{}\t{}\t".format( "Extent[" + str(extent_count) + "]:", extent.diskName) extent_count += 1 else: # create an array of the devices backing the given # datastore extent_arr.append(extent.diskName) # add the extent array to the datastore info datastore_details['extents'] = extent_arr # associate datastore details with datastore name datastore_dict[host_mount_info.volume.name] = \ datastore_details if not args.json: print # associate ESXi host with the datastore it sees datastores[esxi_host.name] = datastore_dict if args.json: print json.dumps(datastores) except vmodl.MethodFault as error: print "Caught vmodl fault : " + error.msg return -1 return 0 # Start program if __name__ == "__main__": main() ``` #### File: pyvmomi-community-samples/samples/pyvmomi-to-suds.py ```python import argparse import cookielib import getpass import suds # pyvmomi-to-suds.py # # Demonstrates how to move a session between the pyVmomi client and the # generated SOAP suds client. We leverage the suds library's use of cookielib # to manipulate its cookies to match the pyVmomi cookies. That causes vCenter # to identify both clients as the same user. parser = argparse.ArgumentParser() parser.add_argument('-s', '--host', required=True, action='store', help='Remote host to connect to') parser.add_argument('-u', '--user', required=True, action='store', help='User name to use when connecting to host') parser.add_argument('-p', '--password', required=False, action='store', help='Password to use when connecting to host') parser.add_argument('-o', '--port', required=False, action='store', help="port to use, default 443", default=443) args = parser.parse_args() if args.password: password = <PASSWORD>.password else: password = <PASSWORD>( prompt='Enter password for host %s and user %s: ' % (args.host, args.user)) url = "https://%s/sdk/vimService.wsdl" % args.host client = suds.client.Client(url, location=url) def get_current_session(client): si = suds.sudsobject.Property("ServiceInstance") si._type = "ServiceInstance" sc = client.service.RetrieveServiceContent(si) property_filter_spec = client.factory.create('ns0:PropertyFilterSpec') property_spec = client.factory.create('ns0:PropertySpec') property_spec.pathSet = ['currentSession'] property_spec.type = "SessionManager" property_filter_spec.propSet = [property_spec] object_spec = client.factory.create('ns0:ObjectSpec') object_spec.obj = sc.sessionManager object_spec.skip = False property_filter_spec.objectSet = [object_spec] options = client.factory.create('ns0:RetrieveOptions') options.maxObjects = 1 results = client.service.RetrievePropertiesEx(sc.propertyCollector, specSet=[ property_filter_spec], options=options) def get_property(self, name): for obj in self.objects: if not hasattr(obj, 'propSet'): return None for prop in obj.propSet: if prop.name == name: return prop.val results.__class__.get_property = get_property return results.get_property('currentSession') print "pyVmomi login... " import pyVim.connect as connect si = connect.SmartConnectNoSSL(host=args.host, user=args.user, pwd=password, port=int(args.port)) print "current session id: %s" % si.content.sessionManager.currentSession.key pyvmomi_cookie = si._stub.cookie print "current cookie contents: %s" % pyvmomi_cookie VMWARE_COOKIE_NAME = 'vmware_soap_session' def inject_vmware_cookie_suds(client, cookie_value, domain): cookie = cookielib.Cookie(0, VMWARE_COOKIE_NAME, cookie_value, None, None, domain, None, None, "/", None, None, None, None, None, None, None, None,) client.options.transport.cookiejar.set_cookie(cookie) client.__class__.set_vmware_cookie = inject_vmware_cookie_suds print "=" * 80 print "pyvmomi to suds" si._stub.cookie = pyvmomi_cookie # extracting the cookie value: start_of_value = pyvmomi_cookie.index("=") + 1 end_of_value = pyvmomi_cookie.index(";") cookie_value = pyvmomi_cookie[start_of_value:end_of_value] session_id = si.content.sessionManager.currentSession.key print "current pyVmomi session id: %s" % session_id # injecting the cookie value: client.set_vmware_cookie(cookie_value, args.host) soap_session_id = get_current_session(client).key print "current suds session id: %s" % soap_session_id assert session_id == soap_session_id ```
{ "source": "jkeifer/arcpy-extensions", "score": 3 }
#### File: arcpy-extensions/arcpy_extensions/server_admin.py ```python from __future__ import print_function import os import sys import urllib import urllib2 import httplib import arcpy import json import re from arcpy import env class ServiceException(Exception): pass class AgsAdmin(object): def __init__(self, server, port, token=None): self.server = server self.port = port self.token = token @classmethod def connectWithToken(self, server, port, token): return AgsAdmin(server, port, token) @classmethod def connectWithoutToken(self, server, port, adminUser, adminPass, expiration=60): token = self.getToken(server, port, adminUser, adminPass, expiration=expiration) return AgsAdmin(server, port, token) @staticmethod def getToken(server, port, adminUser, adminPass, expiration=60): """Get a token required for Admin changes""" query_dict = {'username': adminUser, 'password': <PASSWORD>, 'expiration': str(expiration), 'client': 'requestip'} query_string = urllib.urlencode(query_dict) url = "http://{}:{}/arcgis/admin/generateToken".format(server, port) token = json.loads(urllib.urlopen(url + "?f=json", query_string).read()) try: return token["token"] except KeyError: raise ServiceException("No token returned. Check credientials.") def stopStartDeleteService(self, command, servicename, folder=None): """ Function to stop, start or delete a service. Requires token, server, and port. command = Stop|Start|Delete serviceList = List of services. A service must be in the <name>.<type> notation """ if folder: if folder.endswith("/"): pass else: folder = folder + "/" else: folder = "" service = urllib.quote(servicename.encode('utf8')) op_service_url = "http://{0}:{1}/arcgis/admin/services/{2}{3}/{4}?token={5}&f=json".format(self.server, self.port, folder, service, command, self.token) status = urllib2.urlopen(op_service_url, ' ').read() if not 'success' in status: raise ServiceException("Could not {0} service {1} successfully.".format(command, servicename)) else: return 0 def stopService(self, servicename): return self.stopStartDeleteService("Stop", servicename, folder=None) def startService(self, servicename): return self.stopStartDeleteService("Start", servicename, folder=None) def deleteService(self, servicename): return self.stopStartDeleteService("Delete", servicename, folder=None) def servicesInFolder(self, foldername, namefilter=None): """ """ # test if name filter is valid regex if namefilter: try: re.compile(namefilter) except re.error: raise re.error("Specified namefilter argument must be a vaild regex. Aborting.") listofservices = [] folderURL = "/arcgis/admin/services/" + foldername # This request only needs the token and the response formatting parameter params = urllib.urlencode({'token': self.token, 'f': 'json'}) headers = {"Content-type": "application/x-www-form-urlencoded", "Accept": "text/plain"} # Connect to URL and post parameters httpConn = httplib.HTTPConnection(self.server, self.port) httpConn.request("POST", folderURL, params, headers) # Read response response = httpConn.getresponse() if (response.status != 200): httpConn.close() raise ServiceException("Could not read folder information.") else: data = response.read() # Check that data returned is not an error object if not assertJsonSuccess(data): raise ServiceException("Error when reading folder information. " + str(data)) # Deserialize response into Python object dataObj = json.loads(data) httpConn.close() for item in dataObj['services']: # if namefilter, check to see if name matches; if not, skip to next item if namefilter: if not re.search(namefilter, item['serviceName']): continue listofservices.append(item['serviceName'] + "." + item['type']) return listofservices def stopStartDeleteAllServicesInFolder(self, command, foldername, namefilter=None): """ """ errorcount = 0 listofservices = self.servicesInFolder(foldername, namefilter=namefilter) if not listofservices: raise ServiceException("No services were found in the folder {0}.".format(foldername)) for service in listofservices: try: self.stopStartDeleteService(command, service, foldername) except ServiceException as e: print(e) print("Failed to {0} service {1}.".format(command.lower(), service)) errorcount += 1 return errorcount def stopAllServicesInFolder(self, foldername, namefilter=None): return self.stopStartDeleteAllServicesInFolder("Stop", foldername, namefilter=namefilter) def startAllServicesInFolder(self, foldername, namefilter=None): return self.stopStartDeleteAllServicesInFolder("Start", foldername, namefilter=namefilter) def deleteAllServicesInFolder(self, foldername, namefilter=None): return self.stopStartDeleteAllServicesInFolder("Delete", foldername, namefilter=namefilter) # A function that checks that the input JSON object # is not an error object. def assertJsonSuccess(data): obj = json.loads(data) if 'status' in obj and obj['status'] == "error": print("Error: JSON object returns an error. " + str(obj)) return False else: return True if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jkeifer/boto3-utils", "score": 3 }
#### File: boto3-utils/boto3utils/secrets.py ```python import base64 import boto3 import json def get_secret(secret_name): """ Get secrets as a dictionary from Secrets Manager """ # Create a Secrets Manager client session = boto3.session.Session() client = session.client(service_name='secretsmanager') # Will throw a botocore.exceptions.ClientError for any of # the specific exceptions for the 'GetSecretValue' API. # See https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html get_secret_value_response = client.get_secret_value(SecretId=secret_name) # Decrypts secret using the associated KMS CMK. # Depending on whether the secret is a string or binary, one of these fields will be populated. if 'SecretString' in get_secret_value_response: secret = get_secret_value_response['SecretString'] else: secret = base64.b64decode(get_secret_value_response['SecretBinary']) return json.loads(secret) ```
{ "source": "jkeiren/mCRL2", "score": 2 }
#### File: tests/python/tools.py ```python from subprocess import PIPE import os.path import re from text_utility import read_text def is_list_of(l, types): if not isinstance(l, list): return False for x in l: if not isinstance(x, types): return False return True class Node: def __init__(self, label, type, value): self.label = label self.type = type self.value = value return def __str__(self): return 'Node(label = {0}, type = {1}, value = {2})'.format(self.label, self.type, self.value) def filename(self): return '{}.{}'.format(self.label, self.type) class Tool(object): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): assert is_list_of(input_nodes, Node) assert is_list_of(output_nodes, Node) import platform self.label = label self.name = name self.toolpath = toolpath self.input_nodes = input_nodes self.output_nodes = output_nodes self.args = args self.executed = False self.value = {} if platform.system() == 'Windows': # Don't display the Windows GPF dialog if the invoked program dies. # See comp.os.ms-windows.programmer.win32 # How to suppress crash notification dialog?, <NAME> Jan 14,2004 - import ctypes SEM_NOGPFAULTERRORBOX = 0x0002 # From MSDN ctypes.windll.kernel32.SetErrorMode(SEM_NOGPFAULTERRORBOX) self.subprocess_flags = 0x8000000 #win32con.CREATE_NO_WINDOW? else: self.subprocess_flags = 0 # Raises an exception if the execution was aborted or produced an error def check_execution(self, process, timeout, memlimit, returncode): import platform import popen if process.user_time > timeout: raise popen.TimeExceededError(process.user_time) if process.max_virtual_memory > memlimit: raise popen.MemoryExceededError(process.max_virtual_memory) if returncode != 0: print(self.stderr) raise popen.ToolRuntimeError('Tool {} ended with return code {}'.format(self.name, returncode)) if platform.system() == 'Windows' and returncode == -1073740777: raise popen.ToolRuntimeError('Tool {} failed with the return code STATUS_INVALID_CRUNTIME_PARAMETER (0xC0000417)'.format(self.name)) if platform.system() == 'Windows' and returncode == -1073741571: raise popen.StackOverflowError(self.name) if platform.system() == 'Linux' and returncode == -11: raise popen.SegmentationFault(self.name) if self.stderr and 'error' in self.stderr: raise popen.ToolRuntimeError('Tool {} failed: {}'.format(self.name, self.stderr)) # If no_paths is True, then all paths in the command are excluded def arguments(self, working_directory = None, no_paths = False): if not working_directory: working_directory = os.getcwd() input_filenames = [node.filename() for node in self.input_nodes] output_filenames = [node.filename() for node in self.output_nodes if node.type != 'Bool'] filenames = input_filenames + output_filenames if not no_paths: filenames = [os.path.join(working_directory, filename) for filename in filenames] return filenames def assign_outputs(self): for node in self.output_nodes: if node.type == 'text': text = read_text(node.filename()) node.value = text else: node.value = 'executed' # value[key] is an integer def parse_number(self, text, key, regex): m = re.search(regex, text) if m != None: self.value[key] = int(m.group(1)) # value[key] is an integer def parse_numbers(self, text, key1, key2, regex): m = re.search(regex, text) if m != None: self.value[key1] = int(m.group(1)) self.value[key2] = int(m.group(2)) # value[key] is a set of strings # All occurrences of regex are processed def parse_action(self, text, key, regex): for m in re.finditer(regex, text): if not key in self.value: self.value[key] = set([]) self.value[key].add(m.group(1)) # value[key] is a boolean # multiple regular expressions are checked def parse_boolean_regexes(self, text, key, regexes): result = False for regex in regexes: if re.search(regex, text, re.DOTALL) != None: result = True self.value[key] = result # value[key] is a boolean def parse_boolean(self, text, key, regex, negated_regex = None): if negated_regex: m = re.search(negated_regex, text, re.DOTALL) if m != None: self.value[key] = False if regex: m = re.search(regex, text, re.DOTALL) if m != None: self.value[key] = True def parse_output(self): text = self.stdout + self.stderr self.parse_number(text, 'summand-count' , r'Number of summands : (\d+)') self.parse_number(text, 'tau-summand-count' , r'Number of tau-summands : (\d+)') self.parse_number(text, 'global-variable-count' , r'Number of declared global variables : (\d+)') self.parse_number(text, 'process-parameter-count' , r'Number of process parameters : (\d+)') self.parse_number(text, 'action-label-count' , r'Number of declared action labels : (\d+)') self.parse_number(text, 'used-action-label-count' , r'Number of used actions : (\d+)') self.parse_number(text, 'used-multi-action-count' , r'Number of used multi-actions : (\d+)') self.parse_number(text, 'state-count' , r'Number of states: (\d+)') self.parse_number(text, 'state-label-count' , r'Number of state labels: (\d+)') self.parse_number(text, 'action-label-count' , r'Number of action labels: (\d+)') self.parse_number(text, 'transition-count' , r'Number of transitions: (\d+)') self.parse_number(text, 'equation-count' , r'Number of equations: (\d+)') self.parse_number(text, 'mu-count' , r"Number of mu's: (\d+)") self.parse_number(text, 'nu-count' , r"Number of nu's: (\d+)") self.parse_number(text, 'block-nesting-depth' , r'Block nesting depth: (\d+)') self.parse_number(text, 'vertex-count' , r'Number of vertices in the structure graph: (\d+)') self.parse_numbers(text, 'confluent-tau-summand-count', 'tau-summand-count', r'(\d+) of (\d+) tau summands were found to be confluent') self.parse_boolean(text, 'has-state-labels' , 'Has state labels.', 'Does not have state labels.') self.parse_boolean(text, 'has-action-labels' , 'Has action labels.') self.parse_boolean(text, 'is-deterministic' , 'LTS is deterministic.', 'LTS is not deterministic.') self.parse_boolean(text, 'is-closed' , 'is closed', 'is not closed') self.parse_boolean(text, 'is-well-formed' , 'well formed', 'not well formed') self.parse_boolean(text, 'is-well-typed' , 'is well typed', 'is not well typed') self.parse_boolean(text, 'result' , r'LTSs are strongly bisimilar', 'LTSs are not strongly bisimilar') self.parse_boolean(text, 'result' , r'LTSs are branching bisimilar', 'LTSs are not branching bisimilar') self.parse_boolean(text, 'result' , r'LTSs are equal \(branching bisimilarity using the almost-O\(m log n\) Groote/Wijs algorithm\)', r'LTSs are not equal \(branching bisimilarity using the almost-O\(m log n\) Groote/Wijs algorithm\)') self.parse_boolean(text, 'result' , r'LTSs are equal \(branching bisimilarity using the O\(m log n\) Groote/Keiren/Jansen/Wijs algorithm\)', r'LTSs are not equal \(branching bisimilarity using the O\(m log n\) Groote/Keiren/Jansen/Wijs algorithm\)') self.parse_boolean(text, 'result' , r'LTSs are divergence preserving branching bisimilar', 'LTSs are not divergence preserving branching bisimilar') self.parse_boolean(text, 'result' , r'LTSs are weak bisimilar', 'LTSs are not weak bisimilar') self.parse_boolean(text, 'result' , r'LTSs are divergence preserving weak bisimilar', 'LTSs are not divergence preserving weak bisimilar') self.parse_boolean(text, 'result' , r'LTSs are strongly simulation equivalent', 'LTSs are not strongly simulation equivalent') self.parse_boolean(text, 'result' , r'LTSs are strongly trace equivalent', 'LTSs are not strongly trace equivalent') self.parse_boolean(text, 'result' , r'LTSs are weak trace equivalent', 'LTSs are not weak trace equivalent') self.parse_boolean(text, 'result' , r'LTSs are equal', 'LTSs are not equal') self.parse_boolean(text, 'result' , r'is included in', 'is not included in') self.parse_action(text, 'actions' , r"Detected action '(\w+)'") self.parse_action(text, 'actions' , r"Action '(\w+)' found") self.parse_boolean_regexes(text, 'has-deadlock' , [r'deadlock-detect: deadlock found', r'Deadlock found']) self.parse_boolean_regexes(text, 'has-divergence' , [r'divergence-detect: divergence found', r'Divergent state found']) self.parse_boolean(text, 'has-nondeterminism' , r'Nondeterministic state found') # If no_paths is True, then all paths in the command are excluded def command(self, working_directory = None, no_paths = False): args = self.arguments(working_directory, no_paths) name = self.name if not no_paths: name = os.path.join(self.toolpath, name) return ' '.join([name] + args + self.args) def check_exists(self, name): import platform if os.path.exists(name): return True if not name.endswith('.exe') and platform.system() == 'Windows': if os.path.exists(name + '.exe'): return True return False def execute(self, timeout, memlimit, verbose): import popen args = self.arguments() name = os.path.join(self.toolpath, self.name) if verbose: print('Executing ' + ' '.join([name] + args + self.args)) if not self.check_exists(name): raise popen.ToolNotFoundError(name) process = popen.Popen([name] + args + self.args, stdout=PIPE, stdin=PIPE, stderr=PIPE, creationflags=self.subprocess_flags, maxVirtLimit=memlimit, usrTimeLimit=timeout) input = None stdout, stderr = process.communicate(input) self.stdout = stdout.decode("utf-8") self.stderr = stderr.decode("utf-8") self.executed = True self.user_time = process.user_time self.max_virtual_memory = process.max_virtual_memory self.check_execution(process, timeout, memlimit, process.returncode) self.assign_outputs() self.parse_output() return process.returncode def __str__(self): import io out = io.StringIO() out.write('label = ' + str(self.label) + '\n') out.write('name = ' + str(self.name) + '\n') out.write('input = [{0}]\n'.format(', '.join([str(x) for x in self.input_nodes]))) out.write('output = [{0}]\n'.format(', '.join([str(x) for x in self.output_nodes]))) out.write('args = ' + str(self.args) + '\n') out.write('stderr = ' + str(self.stderr) + '\n') out.write('executed = ' + str(self.executed) + '\n') return out.getvalue() class SolveTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): super(SolveTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def assign_outputs(self): text = self.stdout.strip() + self.stderr.strip() if text.endswith('true'): value = True elif text.endswith('false'): value = False else: value = None self.value['solution'] = value class Lps2PbesTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): assert len(input_nodes) == 2 assert len(output_nodes) == 1 super(Lps2PbesTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def arguments(self, working_directory = None, no_paths = False): args = super(Lps2PbesTool, self).arguments(working_directory, no_paths) args.insert(1, '-f') return args class Lts2PbesTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): assert len(input_nodes) == 2 assert len(output_nodes) == 1 super(Lts2PbesTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def arguments(self, working_directory = None, no_paths = False): args = super(Lts2PbesTool, self).arguments(working_directory, no_paths) args.insert(1, '-f') return args class Lts2LpsTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): assert len(input_nodes) == 2 assert len(output_nodes) == 1 super(Lts2LpsTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def arguments(self, working_directory = None, no_paths = False): args = super(Lts2LpsTool, self).arguments(working_directory, no_paths) args.insert(1, '-l') return args class Lps2LtsDeprecatedTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): super(Lps2LtsDeprecatedTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def assign_outputs(self): self.value['has-deadlock'] = None self.value['has-nondeterminism'] = None self.value['has-divergence'] = None self.value['actions'] = set([]) super(Lps2LtsDeprecatedTool, self).assign_outputs() class Lps2LtsTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): super(Lps2LtsTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def assign_outputs(self): self.value['has-deadlock'] = None self.value['has-nondeterminism'] = None self.value['has-divergence'] = None self.value['actions'] = set([]) super(Lps2LtsTool, self).assign_outputs() class PbesSolveTool(Tool): def __init__(self, label, name, toolpath, input_nodes, output_nodes, args): super(PbesSolveTool, self).__init__(label, name, toolpath, input_nodes, output_nodes, args) def arguments(self, working_directory = None, no_paths = False): args = super(PbesSolveTool, self).arguments(working_directory, no_paths) # counter example generation if len(self.input_nodes) > 1: args[1] = '--file={}'.format(args[1]) if len(self.output_nodes) > 0: args[2] = '--evidence-file={}'.format(args[2]) return args def assign_outputs(self): text = self.stdout.strip() + self.stderr.strip() # N.B. In verbose mode, the solution may appear at the start. if text.startswith('true') or text.endswith('true'): value = True elif text.startswith('false') or text.endswith('false'): value = False else: value = None self.value['solution'] = value # mark the evidence file as executed if len(self.output_nodes) == 1: self.output_nodes[0].value = 'executed' class ToolFactory(object): def create_tool(self, label, name, toolpath, input_nodes, output_nodes, args): if name == 'lps2pbes': return Lps2PbesTool(label, name, toolpath, input_nodes, output_nodes, args) elif name == 'lts2pbes': return Lts2PbesTool(label, name, toolpath, input_nodes, output_nodes, args) elif name in ['generatelts', 'lps2lts']: return Lps2LtsTool(label, name, toolpath, input_nodes, output_nodes, args) elif name == 'lps2ltsdeprecated': return Lps2LtsDeprecatedTool(label, name, toolpath, input_nodes, output_nodes, args) elif name == 'lts2lps': return Lts2LpsTool(label, name, toolpath, input_nodes, output_nodes, args) elif name in ['pbespgsolve', 'bessolve']: return SolveTool(label, name, toolpath, input_nodes, output_nodes, args) elif name in ['pbes2bool', 'pbessolve', 'pbessolvesymbolic', 'pbessymbolicbisim']: return PbesSolveTool(label, name, toolpath, input_nodes, output_nodes, args) return Tool(label, name, toolpath, input_nodes, output_nodes, args) ``` #### File: tests/random/random_testing.py ```python import os import os.path import random import re import sys import traceback sys.path += [os.path.abspath(os.path.join(os.path.dirname(__file__), '..', 'python'))] import random_state_formula_generator from random_bes_generator import make_bes from random_pbes_generator import make_pbes import random_process_expression from testing import YmlTest from text_utility import write_text MCRL2_ROOT = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..')) MCRL2_INSTALL_DIR = os.path.join(MCRL2_ROOT, 'install', 'bin') def ymlfile(file): return '{}/tests/specifications/{}.yml'.format(MCRL2_ROOT, file) def mcrl2file(file): return os.path.join(MCRL2_ROOT, file) class RandomTest(YmlTest): def __init__(self, name, ymlfile, settings): super(RandomTest, self).__init__(name, ymlfile, [], settings) # create input files for the random test, and add the filenames to self.inputfiles def create_inputfiles(self, runpath = '.'): raise NotImplementedError # removes input files that are in the runpath directory def remove_inputfiles(self, runpath = '.'): for filename in self.inputfiles: if os.path.abspath(runpath) == os.path.abspath(os.path.dirname(filename)): os.remove(filename) def execute(self, runpath = '.'): self.create_inputfiles(runpath) super(RandomTest, self).execute(runpath) self.remove_inputfiles(runpath) class ProcessTest(RandomTest): def __init__(self, name, ymlfile, settings): super(ProcessTest, self).__init__(name, ymlfile, settings) self.actions = ['a', 'b', 'c', 'd'] self.process_identifiers = ['P', 'Q', 'R'] self.process_size = 13 self.parallel_operator_generators = random_process_expression.default_parallel_operator_generators self.process_expression_generators = random_process_expression.default_process_expression_generators self.init = None self.generate_process_parameters = False def create_inputfiles(self, runpath = '.'): filename = '{0}.mcrl2'.format(self.name, self.settings) p = random_process_expression.make_process_specification(self.parallel_operator_generators, self.process_expression_generators, self.actions, self.process_identifiers, self.process_size, self.init, self.generate_process_parameters) write_text(filename, str(p)) self.inputfiles += [filename] # generates stochastic random processes class StochasticProcessTest(ProcessTest): def __init__(self, name, ymlfile, settings): super(StochasticProcessTest, self).__init__(name, ymlfile, settings) self.process_expression_generators = { random_process_expression.make_action : 8, random_process_expression.make_delta : 1, random_process_expression.make_tau : 1, random_process_expression.make_process_instance: 2, random_process_expression.make_sum : 2, random_process_expression.make_if_then : 2, random_process_expression.make_if_then_else : 2, random_process_expression.make_choice : 5, random_process_expression.make_seq : 5, random_process_expression.make_multi_action : 1, random_process_expression.make_dist : 3, } # generates random process with higher probability of tau transitions class ProcessTauTest(ProcessTest): def __init__(self, name, testfile, settings): super(ProcessTauTest, self).__init__(name, testfile, settings) self.actions = ['a', 'b', 'c'] self.init = 'hide({a}, allow({a, b, c}, P || Q || R))' self.process_expression_generators = { random_process_expression.make_action: 8, random_process_expression.make_delta: 1, random_process_expression.make_tau: 4, random_process_expression.make_process_instance: 1, random_process_expression.make_sum: 0, random_process_expression.make_if_then: 0, random_process_expression.make_if_then_else: 0, random_process_expression.make_choice: 5, random_process_expression.make_seq: 5, random_process_expression.make_multi_action: 1, random_process_expression.make_dist: 0, } class AlphabetReduceTest(ProcessTest): def __init__(self, name, settings): super(AlphabetReduceTest, self).__init__(name, ymlfile('alphabet-reduce'), settings) self.actions = ['a', 'b', 'c', 'd', 'e'] class LpsSuminstTest(ProcessTest): def __init__(self, name, settings): super(LpsSuminstTest, self).__init__(name, ymlfile('lpssuminst'), settings) class LpsSumelmTest(ProcessTest): def __init__(self, name, settings): super(LpsSumelmTest, self).__init__(name, ymlfile('lpssumelm'), settings) class LpsParelmTest(ProcessTest): def __init__(self, name, settings): super(LpsParelmTest, self).__init__(name, ymlfile('lpsparelm'), settings) self.generate_process_parameters = True class LpsOnePointRuleRewriteTest(ProcessTest): def __init__(self, name, settings): super(LpsOnePointRuleRewriteTest, self).__init__(name, ymlfile('lpstransform'), settings) self.add_command_line_options('t2', ['-alps-one-point-rule-rewriter']) class LpsConfcheckTest(ProcessTauTest): def __init__(self, name, confluence_type, settings): self.option_map = { 'commutative' : 'C', 'commutative-disjoint' : 'c', 'disjoint' : 'd', 'triangular' : 'T', 'trivial' : 'Z' } assert confluence_type in self.option_map super(LpsConfcheckTest, self).__init__(name, ymlfile('lpsconfcheck'), settings) self.add_command_line_options('t2', ['-x' + self.option_map[confluence_type]]) class LtscompareTest(ProcessTauTest): def __init__(self, name, equivalence_type, settings): assert equivalence_type in ['bisim', 'bisim-gv', 'bisim-gjkw', 'branching-bisim', 'branching-bisim-gv', 'branching-bisim-gjkw', 'dpbranching-bisim', 'dpbranching-bisim-gv', 'dpbranching-bisim-gjkw', 'weak-bisim', 'dpweak-bisim', 'sim', 'ready-sim' , 'trace', 'weak-trace'] super(LtscompareTest, self).__init__(name, ymlfile('ltscompare'), settings) self.add_command_line_options('t3', ['-e' + equivalence_type]) self.add_command_line_options('t4', ['-e' + equivalence_type]) class StochasticLtscompareTest(StochasticProcessTest): def __init__(self, name, settings): super(StochasticLtscompareTest, self).__init__(name, ymlfile('stochastic-ltscompare'), settings) class BisimulationTest(ProcessTauTest): def __init__(self, name, equivalence_type, settings): assert equivalence_type in ['bisim', 'bisim-gv', 'bisim-gjkw', 'branching-bisim', 'branching-bisim-gv', 'branching-bisim-gjkw', 'weak-bisim'] super(BisimulationTest, self).__init__(name, ymlfile('bisimulation'), settings) self.add_command_line_options('t3', ['-e' + equivalence_type]) self.add_command_line_options('t4', ['-e' + equivalence_type]) if equivalence_type in ['branching-bisim-gv', 'branching-bisim-gjkw']: self.add_command_line_options('t7', ['-bbranching-bisim']) elif equivalence_type in ['bisim', 'bisim-gv', 'bisim-gjkw']: self.add_command_line_options('t7', ['-bstrong-bisim']) else: self.add_command_line_options('t7', ['-b' + equivalence_type]) class Lps2ltsAlgorithmsTest(ProcessTauTest): def __init__(self, name, settings): super(Lps2ltsAlgorithmsTest, self).__init__(name, ymlfile('lps2lts-algorithms'), settings) # randomly choose an algorithm actions = random.choice(['a', 'a,b', 'a,b,c']) options = [random.choice(['--deadlock', '--divergence', '--nondeterminism', '--action={}'.format(actions)])] options = [random.choice(['--deadlock', '--nondeterminism', '--action={}'.format(actions)])] if 'divergence' in options[0]: tau_actions = random.choice(['', '', 'b', 'b,c']) if tau_actions: options.append('--tau={}'.format(tau_actions)) self.add_command_line_options('t2', options) self.add_command_line_options('t3', options) class LpsConstelmTest(ProcessTest): def __init__(self, name, settings): super(LpsConstelmTest, self).__init__(name, ymlfile('lpsconstelm'), settings) self.generate_process_parameters = True class LpsBinaryTest(ProcessTest): def __init__(self, name, settings): super(LpsBinaryTest, self).__init__(name, ymlfile('lpsbinary'), settings) self.generate_process_parameters = True class LpsstategraphTest(ProcessTest): def __init__(self, name, settings): super(LpsstategraphTest, self).__init__(name, ymlfile('lpsstategraph'), settings) self.generate_process_parameters = True class Lps2pbesTest(ProcessTest): def __init__(self, name, settings): super(Lps2pbesTest, self).__init__(name, ymlfile('lps2pbes'), settings) def create_inputfiles(self, runpath = '.'): super(Lps2pbesTest, self).create_inputfiles(runpath) self.inputfiles.append(mcrl2file('examples/modal-formulas/nodeadlock.mcf')) class Lts2pbesTest(ProcessTest): def __init__(self, name, settings): super(Lts2pbesTest, self).__init__(name, ymlfile('lts2pbes'), settings) def create_inputfiles(self, runpath = '.'): super(Lts2pbesTest, self).create_inputfiles(runpath) self.inputfiles.append(mcrl2file('examples/modal-formulas/nodeadlock.mcf')) class PbesTest(RandomTest): def __init__(self, name, ymlfile, settings): super(PbesTest, self).__init__(name, ymlfile, settings) self.equation_count = 4 self.atom_count = 4 self.propvar_count = 3 self.use_quantifiers = True self.use_integers = True def create_inputfiles(self, runpath = '.'): filename = '{0}.txt'.format(self.name) p = make_pbes(self.equation_count, self.atom_count, self.propvar_count, self.use_quantifiers, use_integers=self.use_integers) write_text(filename, str(p)) self.inputfiles += [filename] # N.B. does not work yet due to unusable abstraction map class PbesabsintheTest(PbesTest): def __init__(self, name, settings): super(PbesabsintheTest, self).__init__(name, ymlfile('pbesabsinthe'), settings) # N.B. This test has been disabled, since the tool has been deprecated. class PbesabstractTest(PbesTest): def __init__(self, name, settings): super(PbesabstractTest, self).__init__(name, ymlfile('pbesabstract'), settings) class PbesbddsolveTest(PbesTest): def __init__(self, name, settings): super(PbesbddsolveTest, self).__init__(name, ymlfile('pbesbddsolve'), settings) self.use_integers = False self.use_quantifiers = False class PbesconstelmTest(PbesTest): def __init__(self, name, settings): super(PbesconstelmTest, self).__init__(name, ymlfile('pbesconstelm'), settings) class PbesparelmTest(PbesTest): def __init__(self, name, settings): super(PbesparelmTest, self).__init__(name, ymlfile('pbesparelm'), settings) class PbespareqelmTest(PbesTest): def __init__(self, name, settings): super(PbespareqelmTest, self).__init__(name, ymlfile('pbespareqelm'), settings) class Pbespor1Test(PbesTest): def __init__(self, name, settings): super(Pbespor1Test, self).__init__(name, ymlfile('pbespor1'), settings) class Pbespor2Test(ProcessTest): def __init__(self, name, settings): super(Pbespor2Test, self).__init__(name, ymlfile('pbespor2'), settings) def create_inputfiles(self, runpath = '.'): super(Pbespor2Test, self).create_inputfiles(runpath) filename = '{0}.mcf'.format(self.name, self.settings) formula = random_state_formula_generator.make_modal_formula() write_text(filename, str(formula)) self.inputfiles += [filename] class PbesrewrTest(PbesTest): def __init__(self, name, rewriter, settings): super(PbesrewrTest, self).__init__(name, ymlfile('pbesrewr'), settings) self.add_command_line_options('t2', ['-p' + rewriter]) class PbestransformTest(PbesTest): def __init__(self, name, rewriter, settings): super(PbestransformTest, self).__init__(name, ymlfile('pbestransform'), settings) self.add_command_line_options('t2', ['-a' + rewriter]) class PbesinstTest(PbesTest): def __init__(self, name, options, settings): super(PbesinstTest, self).__init__(name, ymlfile('pbesinst'), settings) self.add_command_line_options('t2', options) class PbespgsolveTest(PbesTest): def __init__(self, name, settings): super(PbespgsolveTest, self).__init__(name, ymlfile('pbespgsolve'), settings) class PbesstategraphTest(PbesTest): def __init__(self, name, settings): super(PbesstategraphTest, self).__init__(name, ymlfile('pbesstategraph'), settings) class PbessymbolicbisimTest(PbesTest): def __init__(self, name, settings): super(PbessymbolicbisimTest, self).__init__(name, ymlfile('pbessymbolicbisim'), settings) class PbessolvesymbolicTest(PbesTest): def __init__(self, name, settings): super(PbessolvesymbolicTest, self).__init__(name, ymlfile('pbessolvesymbolic'), settings) class Pbes2boolTest(PbesTest): def __init__(self, name, settings): super(Pbes2boolTest, self).__init__(name, ymlfile('pbessolve'), settings) class Pbes2boolDepthFirstTest(PbesTest): def __init__(self, name, settings): super(Pbes2boolDepthFirstTest, self).__init__(name, ymlfile('pbessolve'), settings) self.add_command_line_options('t2', ['-zdepth-first']) self.add_command_line_options('t3', ['-zdepth-first']) self.add_command_line_options('t4', ['-zdepth-first']) self.add_command_line_options('t5', ['-zdepth-first']) self.add_command_line_options('t6', ['-zdepth-first']) self.add_command_line_options('t7', ['-zdepth-first']) self.add_command_line_options('t8', ['-zdepth-first']) class Pbes2bool_counter_exampleTest(ProcessTest): def __init__(self, name, optimization, settings): super(Pbes2bool_counter_exampleTest, self).__init__(name, ymlfile('pbessolve-counter-example'), settings) if optimization in [4, 5]: self.add_command_line_options('t3', ['-l{}'.format(optimization), '--aggressive', '--prune-todo-list']) else: self.add_command_line_options('t3', ['-l{}'.format(optimization), '--prune-todo-list']) def create_inputfiles(self, runpath = '.'): super(Pbes2bool_counter_exampleTest, self).create_inputfiles(runpath) filename = '{0}.mcf'.format(self.name, self.settings) formula = random_state_formula_generator.make_modal_formula() write_text(filename, str(formula)) self.inputfiles += [filename] class Pbes_unify_parametersTest(PbesTest): def __init__(self, name, settings): super(Pbes_unify_parametersTest, self).__init__(name, ymlfile('pbes-unify-parameters'), settings) class Pbes_srfTest(PbesTest): def __init__(self, name, settings): super(Pbes_srfTest, self).__init__(name, ymlfile('pbes-srf'), settings) # N.B does not work due to unknown expressions (F_or) class SymbolicExplorationTest(PbesTest): def __init__(self, name, settings): super(SymbolicExplorationTest, self).__init__(name, ymlfile('symbolic_exploration'), settings) class BesTest(RandomTest): def __init__(self, name, ymlfile, settings): super(BesTest, self).__init__(name, ymlfile, settings) self.equation_count = 4 self.term_size = 3 def create_inputfiles(self, runpath = '.'): filename = '{0}.txt'.format(self.name, self.settings) p = make_bes(self.equation_count, self.term_size) write_text(filename, str(p)) self.inputfiles += [filename] class BessolveTest(BesTest): def __init__(self, name, settings): super(BessolveTest, self).__init__(name, ymlfile('bessolve'), settings) available_tests = { 'alphabet-reduce' : lambda name, settings: AlphabetReduceTest(name, settings) , 'lpssuminst' : lambda name, settings: LpsSuminstTest(name, settings) , 'lpssumelm' : lambda name, settings: LpsSumelmTest(name, settings) , 'lpsparelm' : lambda name, settings: LpsParelmTest(name, settings) , 'lps-quantifier-one-point' : lambda name, settings: LpsOnePointRuleRewriteTest(name, settings) , 'lpsconfcheck-commutative' : lambda name, settings: LpsConfcheckTest(name, 'commutative', settings) , 'lpsconfcheck-commutative-disjoint' : lambda name, settings: LpsConfcheckTest(name, 'commutative-disjoint', settings) , 'lpsconfcheck-disjoint' : lambda name, settings: LpsConfcheckTest(name, 'disjoint', settings) , 'lpsconfcheck-triangular' : lambda name, settings: LpsConfcheckTest(name, 'triangular', settings) , 'lpsconfcheck-trivial' : lambda name, settings: LpsConfcheckTest(name, 'trivial', settings) , 'lpsconstelm' : lambda name, settings: LpsConstelmTest(name, settings) , 'lpsbinary' : lambda name, settings: LpsBinaryTest(name, settings) , 'lps2lts-algorithms' : lambda name, settings: Lps2ltsAlgorithmsTest(name, settings) , 'lps2pbes' : lambda name, settings: Lps2pbesTest(name, settings) , 'lpsstategraph' : lambda name, settings: LpsstategraphTest(name, settings) , 'lts2pbes' : lambda name, settings: Lts2pbesTest(name, settings) , 'ltscompare-bisim' : lambda name, settings: LtscompareTest(name, 'bisim', settings) , 'ltscompare-bisim-gv' : lambda name, settings: LtscompareTest(name, 'bisim-gv', settings) , 'ltscompare-bisim-gjkw' : lambda name, settings: LtscompareTest(name, 'bisim-gjkw', settings) , 'ltscompare-branching-bisim' : lambda name, settings: LtscompareTest(name, 'branching-bisim', settings) , 'ltscompare-branching-bisim-gv' : lambda name, settings: LtscompareTest(name, 'branching-bisim-gv', settings) , 'ltscompare-branching-bisim-gjkw' : lambda name, settings: LtscompareTest(name, 'branching-bisim-gjkw', settings) , 'ltscompare-dpbranching-bisim' : lambda name, settings: LtscompareTest(name, 'dpbranching-bisim', settings) , 'ltscompare-dpbranching-bisim-gv' : lambda name, settings: LtscompareTest(name, 'dpbranching-bisim-gv', settings) , 'ltscompare-dpbranching-bisim-gjkw' : lambda name, settings: LtscompareTest(name, 'dpbranching-bisim-gjkw', settings) , 'ltscompare-weak-bisim' : lambda name, settings: LtscompareTest(name, 'weak-bisim', settings) , 'ltscompare-dpweak-bisim' : lambda name, settings: LtscompareTest(name, 'dpweak-bisim', settings) , 'ltscompare-sim' : lambda name, settings: LtscompareTest(name, 'sim', settings) , 'ltscompare-ready-sim' : lambda name, settings: LtscompareTest(name, 'ready-sim', settings) , 'ltscompare-trace' : lambda name, settings: LtscompareTest(name, 'trace', settings) , 'ltscompare-weak-trace' : lambda name, settings: LtscompareTest(name, 'weak-trace', settings) , 'bisimulation-bisim' : lambda name, settings: BisimulationTest(name, 'bisim', settings) , 'bisimulation-bisim-gv' : lambda name, settings: BisimulationTest(name, 'bisim-gv', settings) , 'bisimulation-bisim-gjkw' : lambda name, settings: BisimulationTest(name, 'bisim-gjkw', settings) , 'bisimulation-branching-bisim' : lambda name, settings: BisimulationTest(name, 'branching-bisim', settings) , 'bisimulation-branching-bisim-gv' : lambda name, settings: BisimulationTest(name, 'branching-bisim-gv', settings) , 'bisimulation-branching-bisim-gjkw' : lambda name, settings: BisimulationTest(name, 'branching-bisim-gjkw', settings) , 'bisimulation-weak-bisim' : lambda name, settings: BisimulationTest(name, 'weak-bisim', settings) , 'pbesconstelm' : lambda name, settings: PbesconstelmTest(name, settings) , 'pbesparelm' : lambda name, settings: PbesparelmTest(name, settings) , 'pbespareqelm' : lambda name, settings: PbespareqelmTest(name, settings) , 'pbespor2' : lambda name, settings: Pbespor2Test(name, settings) , 'pbesrewr-simplify' : lambda name, settings: PbesrewrTest(name, 'simplify', settings) , 'pbesrewr-pfnf' : lambda name, settings: PbesrewrTest(name, 'pfnf', settings) , 'pbesrewr-quantifier-all' : lambda name, settings: PbesrewrTest(name, 'quantifier-all', settings) , 'pbesrewr-quantifier-finite' : lambda name, settings: PbesrewrTest(name, 'quantifier-finite', settings) , 'pbesrewr-quantifier-inside' : lambda name, settings: PbesrewrTest(name, 'quantifier-inside', settings) , 'pbesrewr-quantifier-one-point' : lambda name, settings: PbesrewrTest(name, 'quantifier-one-point', settings) , 'pbesrewr-data-rewriter' : lambda name, settings: PbestransformTest(name, 'pbes-data-rewriter', settings) , 'pbesrewr-simplify-rewriter' : lambda name, settings: PbestransformTest(name, 'pbes-simplify-rewriter', settings) , 'pbesrewr-simplify-data-rewriter' : lambda name, settings: PbestransformTest(name, 'pbes-simplify-data-rewriter', settings) , 'pbesrewr-simplify-quantifiers-rewriter' : lambda name, settings: PbestransformTest(name, 'pbes-simplify-quantifiers-rewriter', settings) , 'pbesrewr-simplify-quantifiers-data-rewriter' : lambda name, settings: PbestransformTest(name, 'pbes-simplify-quantifiers-data-rewriter', settings), 'pbesinst-lazy' : lambda name, settings: PbesinstTest(name, ['-slazy'], settings) , 'pbesinst-alternative_lazy' : lambda name, settings: PbesinstTest(name, ['-salternative-lazy'], settings) , 'pbesinst-finite' : lambda name, settings: PbesinstTest(name, ['-sfinite', '-f*(*:Bool)'], settings) , 'pbespgsolve' : lambda name, settings: PbespgsolveTest(name, settings) , 'pbessolve' : lambda name, settings: Pbes2boolTest(name, settings) , 'pbessolve-depth-first' : lambda name, settings: Pbes2boolDepthFirstTest(name, settings) , 'pbessolve-counter-example-optimization-0' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 0, settings) , 'pbessolve-counter-example-optimization-1' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 1, settings) , 'pbessolve-counter-example-optimization-2' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 2, settings) , 'pbessolve-counter-example-optimization-3' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 3, settings) , 'pbessolve-counter-example-optimization-4' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 4, settings) , 'pbessolve-counter-example-optimization-5' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 5, settings) , 'pbessolve-counter-example-optimization-6' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 6, settings) , 'pbessolve-counter-example-optimization-7' : lambda name, settings: Pbes2bool_counter_exampleTest(name, 7, settings) , 'pbesstategraph' : lambda name, settings: PbesstategraphTest(name, settings) , 'pbes-unify-parameters' : lambda name, settings: Pbes_unify_parametersTest(name, settings) , 'pbes-srf' : lambda name, settings: Pbes_srfTest(name, settings) , # 'pbessymbolicbisim' : lambda name, settings: PbessymbolicbisimTest(name, settings) , # excluded from the tests because of Z3 dependency 'bessolve' : lambda name, settings: BessolveTest(name, settings) , #'stochastic-ltscompare' : lambda name, settings: StochasticLtscompareTest(name, settings) , } # These test do not work on Windows due to dependencies. if os.name != 'nt': available_tests.update({'pbessolvesymbolic' : lambda name, settings: PbessolvesymbolicTest(name, settings) }) # available_tests.update({ 'pbesbddsolve' : lambda name, settings: PbesbddsolveTest(name, settings) }) def print_names(tests): for name in sorted(tests): print(name) # Return all tests that match with pattern. In case of an exact match, only this exact match is returned. def matching_tests(tests, pattern): matches = [name for name in sorted(tests) if re.search(pattern, name)] if pattern in matches: return [pattern] return matches def main(tests): import argparse cmdline_parser = argparse.ArgumentParser() cmdline_parser.add_argument('-t', '--toolpath', dest='toolpath', help='The path where the mCRL2 tools are installed') cmdline_parser.add_argument('-r', '--repetitions', dest='repetitions', metavar='N', default='10', help='Perform N repetitions of each test') cmdline_parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', help='Display additional progress messages.') cmdline_parser.add_argument('-k', '--keep-files', dest='keep_files', action='store_true', help='Keep the files produced by the test') cmdline_parser.add_argument('-n', '--names', dest='names', action='store_true', help='Print the names of the available tests') cmdline_parser.add_argument('-p', '--pattern', dest='pattern', metavar='P', default='.', action='store', help='Run the tests that match with pattern P') cmdline_parser.add_argument('-o', '--output', dest='output', metavar='o', action='store', help='Run the tests in the given directory') args = cmdline_parser.parse_args() if args.names: print_names(tests) return toolpath = args.toolpath if not toolpath: toolpath = MCRL2_INSTALL_DIR settings = {'toolpath': toolpath, 'verbose': args.verbose, 'cleanup_files': not args.keep_files, 'allow-non-zero-return-values': True} I = range(int(args.repetitions)) if args.output: if not os.path.exists(args.output): os.mkdir(args.output) os.chdir(args.output) test_failed = False for name in matching_tests(tests, args.pattern): try: for i in I: test = tests[name]('{}_{}'.format(name, i), settings) test.execute_in_sandbox() except Exception as e: print('An exception occurred:', e.__class__, e) traceback.print_exc() test_failed = True if (test_failed): sys.exit(-1) if __name__ == '__main__': main(available_tests) ```
{ "source": "jkeljo/hacs-greeneye-monitor", "score": 2 }
#### File: custom_components/greeneye_monitor/config_flow.py ```python from __future__ import annotations from typing import Any import voluptuous as vol from homeassistant import config_entries, data_entry_flow from homeassistant.const import CONF_PORT import homeassistant.helpers.config_validation as cv from .const import DOMAIN class GreeneyeMonitorConfigFlow(config_entries.ConfigFlow, domain=DOMAIN): """Config flow for greeneye_monitor.""" VERSION = 1 async def async_step_user( self, user_input: dict[str, Any] | None = None ) -> data_entry_flow.FlowResult: """Create a config entry from UI.""" if await self.async_set_unique_id(DOMAIN): self._abort_if_unique_id_configured() if user_input is not None: data = {CONF_PORT: user_input[CONF_PORT]} return self.async_create_entry(title="GreenEye Monitor", data=data) return self.async_show_form( step_id="user", data_schema=vol.Schema({vol.Required(CONF_PORT): cv.port}) ) ```
{ "source": "jkeljo/siobrultech-protocols", "score": 3 }
#### File: siobrultech_protocols/gem/fields.py ```python from abc import ABC, abstractmethod from datetime import datetime from enum import Enum, unique from typing import Any, List @unique class ByteOrder(Enum): # Big-endian (the name comes from the GEM packet format spec) HiToLo = 1 # Little endian (the name comes from the GEM packet format spec) LoToHi = 2 @unique class Sign(Enum): Signed = 1 Unsigned = 2 class Field(ABC): def __init__(self, size: int): self._size = size @property def size(self) -> int: return self._size @abstractmethod def read(self, buffer: bytes, offset: int) -> Any: """Convert the buffer at the given offset to the proper value.""" class ByteField(Field): def __init__(self): super().__init__(size=1) def read(self, buffer: bytes, offset: int) -> bytes: return buffer[offset : offset + self.size] class BytesField(Field): def read(self, buffer: bytes, offset: int) -> bytes: return buffer[offset : offset + self.size] class NumericField(Field): def __init__(self, size: int, order: ByteOrder, signed: Sign): super().__init__(size=size) self.order: ByteOrder = order self.signed: Sign = signed def read(self, buffer: bytes, offset: int) -> int: return _parse(buffer[offset : offset + self.size], self.order, self.signed) @property def max(self) -> int: """The maximum value that can be encoded in this field.""" bits = 8 * self.size if self.signed == Sign.Unsigned: return (1 << bits) - 1 else: return (1 << (bits - 1)) - 1 class FloatingPointField(Field): def __init__(self, size: int, order: ByteOrder, signed: Sign, divisor: float): self.raw_field: NumericField = NumericField(size, order, signed) super().__init__(size=self.raw_field.size) self.divisor: float = divisor def read(self, buffer: bytes, offset: int) -> float: return self.raw_field.read(buffer, offset) / self.divisor class DateTimeField(Field): def __init__(self): super().__init__(size=6) def read(self, buffer: bytes, offset: int) -> datetime: year, month, day, hour, minute, second = buffer[offset : offset + self.size] return datetime(2000 + year, month, day, hour, minute, second) class ArrayField(Field): def __init__(self, num_elems: int, elem_field: Field): super().__init__(size=num_elems * elem_field.size) self.elem_field: Field = elem_field self.num_elems: int = num_elems def read(self, buffer: bytes, offset: int) -> List[Any]: return [ self.elem_field.read(buffer, offset + i * self.elem_field.size) for i in range(self.num_elems) ] class FloatingPointArrayField(ArrayField): elem_field: FloatingPointField def __init__( self, num_elems: int, size: int, order: ByteOrder, signed: Sign, divisor: float, ): super().__init__( num_elems=num_elems, elem_field=FloatingPointField( size=size, order=order, signed=signed, divisor=divisor ), ) def read(self, buffer: bytes, offset: int) -> List[float]: return super().read(buffer, offset) class NumericArrayField(ArrayField): elem_field: NumericField def __init__(self, num_elems: int, size: int, order: ByteOrder, signed: Sign): super().__init__( num_elems=num_elems, elem_field=NumericField(size=size, order=order, signed=signed), ) def read(self, buffer: bytes, offset: int) -> List[int]: return super().read(buffer, offset) @property def max(self) -> int: return self.elem_field.max def _parse( raw_octets: bytes, order: ByteOrder = ByteOrder.HiToLo, signed: Sign = Sign.Unsigned ) -> int: """Reads the given octets as a big-endian value. The function name comes from how such values are described in the packet format spec.""" octets = list(raw_octets) if len(octets) == 0: return 0 if order == ByteOrder.LoToHi: octets.reverse() # If this is a signed field (i.e., temperature), the highest-order # bit indicates sign. Detect this (and clear the bit so we can # compute the magnitude). # # This isn't documented in the protocol spec, but matches other # implementations. sign = 1 if signed == Sign.Signed and (octets[0] & 0x80): octets[0] &= ~0x80 sign = -1 result = 0 for octet in octets: result = (result << 8) + octet return sign * result ``` #### File: siobrultech_protocols/gem/packets.py ```python from __future__ import annotations import codecs import json from collections import OrderedDict from datetime import datetime from enum import IntEnum, unique from typing import Any, Dict, List, Optional from .fields import ( ByteField, ByteOrder, BytesField, DateTimeField, Field, FloatingPointArrayField, FloatingPointField, NumericArrayField, NumericField, Sign, ) class MalformedPacketException(Exception): pass class Packet(object): def __init__( self, packet_format: PacketFormat, voltage: float, absolute_watt_seconds: List[int], device_id: int, serial_number: int, seconds: int, pulse_counts: List[int], temperatures: List[float], polarized_watt_seconds: Optional[List[int]] = None, currents: Optional[List[float]] = None, time_stamp: Optional[datetime] = None, **kwargs: Dict[str, Any] ): self.packet_format: PacketFormat = packet_format self.voltage: float = voltage self.absolute_watt_seconds: List[int] = absolute_watt_seconds self.polarized_watt_seconds: Optional[List[int]] = polarized_watt_seconds self.currents: Optional[List[float]] = currents self.device_id: int = device_id self.serial_number: int = serial_number self.seconds: int = seconds self.pulse_counts: List[int] = pulse_counts self.temperatures: List[float] = temperatures if time_stamp: self.time_stamp: datetime = time_stamp else: self.time_stamp: datetime = datetime.now() def __str__(self) -> str: return json.dumps( { "device_id": self.device_id, "serial_number": self.serial_number, "seconds": self.seconds, "voltage": self.voltage, "absolute_watt_seconds": self.absolute_watt_seconds, "polarized_watt_seconds": self.polarized_watt_seconds, "currents": self.currents, "pulse_counts": self.pulse_counts, "temperatures": self.temperatures, "time_stamp": self.time_stamp.isoformat(), } ) @property def num_channels(self) -> int: """The number of channels in the packet given the format. There may be fewer on the device.""" return self.packet_format.num_channels @property def type(self) -> str: """The packet format type's name.""" return self.packet_format.name def delta_seconds(self, prev: int) -> int: field = self.packet_format.fields["seconds"] assert isinstance(field, NumericField) return self._delta_value(field, self.seconds, prev) def delta_pulse_count(self, index: int, prev: int) -> int: field = self.packet_format.fields["pulse_counts"] assert isinstance(field, NumericArrayField) return self._delta_value(field.elem_field, self.pulse_counts[index], prev) def delta_absolute_watt_seconds(self, index: int, prev: int) -> int: field = self.packet_format.fields["absolute_watt_seconds"] assert isinstance(field, NumericArrayField) return self._delta_value( field.elem_field, self.absolute_watt_seconds[index], prev ) def delta_polarized_watt_seconds(self, index: int, prev: int) -> int: field = self.packet_format.fields["polarized_watt_seconds"] assert isinstance(field, NumericArrayField) if self.polarized_watt_seconds is not None: return self._delta_value( field.elem_field, self.polarized_watt_seconds[index], prev ) else: return 0 def _delta_value(self, field: NumericField, cur: int, prev: int) -> int: if prev > cur: diff = field.max + 1 - prev diff += cur else: diff = cur - prev return diff @unique class PacketFormatType(IntEnum): BIN48_NET_TIME = 4 BIN48_NET = 5 BIN48_ABS = 7 BIN32_NET = 8 BIN32_ABS = 9 class PacketFormat(object): NUM_PULSE_COUNTERS: int = 4 NUM_TEMPERATURE_SENSORS: int = 8 def __init__( self, name: str, type: PacketFormatType, num_channels: int, has_net_metering: bool = False, has_time_stamp: bool = False, ): self.name: str = name self.type: PacketFormatType = type self.num_channels: int = num_channels self.fields: OrderedDict[str, Field] = OrderedDict() self.fields["header"] = NumericField(3, ByteOrder.HiToLo, Sign.Unsigned) self.fields["voltage"] = FloatingPointField( 2, ByteOrder.HiToLo, Sign.Unsigned, 10.0 ) self.fields["absolute_watt_seconds"] = NumericArrayField( num_channels, 5, ByteOrder.LoToHi, Sign.Unsigned ) if has_net_metering: self.fields["polarized_watt_seconds"] = NumericArrayField( num_channels, 5, ByteOrder.LoToHi, Sign.Unsigned ) self.fields["serial_number"] = NumericField(2, ByteOrder.HiToLo, Sign.Unsigned) self.fields["reserved"] = ByteField() self.fields["device_id"] = NumericField(1, ByteOrder.HiToLo, Sign.Unsigned) self.fields["currents"] = FloatingPointArrayField( num_channels, 2, ByteOrder.LoToHi, Sign.Unsigned, 50.0 ) self.fields["seconds"] = NumericField(3, ByteOrder.LoToHi, Sign.Unsigned) self.fields["pulse_counts"] = NumericArrayField( PacketFormat.NUM_PULSE_COUNTERS, 3, ByteOrder.LoToHi, Sign.Unsigned ) self.fields["temperatures"] = FloatingPointArrayField( PacketFormat.NUM_TEMPERATURE_SENSORS, 2, ByteOrder.LoToHi, Sign.Signed, 2.0, ) if num_channels == 32: self.fields["spare_bytes"] = BytesField(2) if has_time_stamp: self.fields["time_stamp"] = DateTimeField() self.fields["footer"] = NumericField(2, ByteOrder.HiToLo, Sign.Unsigned) self.fields["checksum"] = ByteField() @property def size(self) -> int: result = 0 for value in self.fields.values(): result += value.size return result def parse(self, packet: bytes) -> Packet: if len(packet) < self.size: raise MalformedPacketException( "Packet too short. Expected {0} bytes, found {1} bytes.".format( self.size, len(packet) ) ) _checksum(packet, self.size) offset = 0 args = { "packet_format": self, } for key, value in self.fields.items(): args[key] = value.read(packet, offset) offset += value.size if args["footer"] != 0xFFFE: raise MalformedPacketException( "bad footer {0} in packet: {1}".format( hex(args["footer"]), codecs.encode(packet, "hex") # type: ignore ) ) return Packet(**args) # type: ignore def _checksum(packet: bytes, size: int): checksum = 0 for i in packet[: size - 1]: checksum += i checksum = checksum % 256 if checksum != packet[size - 1]: raise MalformedPacketException( "bad checksum for packet: {0}".format(codecs.encode(packet[:size], "hex")) ) BIN48_NET_TIME = PacketFormat( name="BIN48-NET-TIME", type=PacketFormatType.BIN48_NET_TIME, num_channels=48, has_net_metering=True, has_time_stamp=True, ) BIN48_NET = PacketFormat( name="BIN48-NET", type=PacketFormatType.BIN48_NET, num_channels=48, has_net_metering=True, has_time_stamp=False, ) BIN48_ABS = PacketFormat( name="BIN48-ABS", type=PacketFormatType.BIN48_ABS, num_channels=48, has_net_metering=False, has_time_stamp=False, ) BIN32_NET = PacketFormat( name="BIN32-NET", type=PacketFormatType.BIN32_NET, num_channels=32, has_net_metering=True, has_time_stamp=False, ) BIN32_ABS = PacketFormat( name="BIN32-ABS", type=PacketFormatType.BIN32_ABS, num_channels=32, has_net_metering=False, has_time_stamp=False, ) ``` #### File: tests/gem/test_api.py ```python from __future__ import annotations import asyncio import unittest from datetime import datetime, timedelta from typing import Optional from unittest.async_case import IsolatedAsyncioTestCase from unittest.mock import patch import pytest from siobrultech_protocols.gem.api import ( GET_SERIAL_NUMBER, SET_DATE_AND_TIME, SET_PACKET_FORMAT, SET_PACKET_SEND_INTERVAL, SET_SECONDARY_PACKET_FORMAT, ApiCall, R, T, call_api, get_serial_number, set_date_and_time, set_packet_format, set_packet_send_interval, set_secondary_packet_format, synchronize_time, ) from siobrultech_protocols.gem.packets import PacketFormatType from siobrultech_protocols.gem.protocol import ( API_RESPONSE_WAIT_TIME, BidirectionalProtocol, PacketProtocolMessage, ) from tests.gem.mock_transport import MockRespondingTransport, MockTransport class TestApi(unittest.TestCase): def setUp(self): self._queue: asyncio.Queue[PacketProtocolMessage] = asyncio.Queue() self._transport = MockTransport() self._protocol = BidirectionalProtocol(self._queue) self._protocol.connection_made(self._transport) # Put the protocol into a state where it's ready for commands # and we can see exactly what is sent self._protocol.begin_api_request() self._transport.writes.clear() def testApiCall(self): call = ApiCall(lambda _: "REQUEST", lambda response: response) self.assertCall(call, "REQUEST", None, None, "RESPONSE".encode(), "RESPONSE") def testApiCallWithSerialNumber(self): call = ApiCall(lambda _: "^^^REQUEST", lambda response: response) self.assertCall( call, "^^^NMB02345REQUEST", None, 1002345, "RESPONSE".encode(), "RESPONSE" ) def testGetSerialNumber(self): self.assertCall( GET_SERIAL_NUMBER, "^^^RQSSRN", None, None, "1234567".encode(), 1234567 ) def testSetDateTime(self): self.assertCall( SET_DATE_AND_TIME, "^^^SYSDTM12,08,23,13,30,28\r", datetime.fromisoformat("2012-08-23 13:30:28"), None, "DTM\r\n".encode(), True, ) def testSetPacketFormat(self): self.assertCall( SET_PACKET_FORMAT, "^^^SYSPKT02", 2, None, "PKT\r\n".encode(), True, ) def testSetPacketSendInterval(self): self.assertCall( SET_PACKET_SEND_INTERVAL, "^^^SYSIVL042", 42, None, "IVL\r\n".encode(), True, ) def testSetSecondaryPacketFormat(self): self.assertCall( SET_SECONDARY_PACKET_FORMAT, "^^^SYSPKF00", 0, None, "PKF\r\n".encode(), True, ) def assertCall( self, call: ApiCall[T, R], request: str, arg: T, serial_number: Optional[int], encoded_response: bytes, parsed_response: R, ): self.assertEqual( call.send_request(self._protocol, arg, serial_number), API_RESPONSE_WAIT_TIME, ) self.assertEqual( self._transport.writes, [request.encode()], f"{request.encode()} should be written to the transport", ) self._protocol.data_received(encoded_response) self.assertEqual( call.receive_response(self._protocol), parsed_response, f"{parsed_response} should be the parsed value returned", ) class TestContextManager(IsolatedAsyncioTestCase): def setUp(self): self._queue: asyncio.Queue[PacketProtocolMessage] = asyncio.Queue() self._transport = MockTransport() self._protocol = BidirectionalProtocol(self._queue) self._protocol.connection_made(self._transport) @pytest.mark.asyncio @patch( "siobrultech_protocols.gem.protocol.API_RESPONSE_WAIT_TIME", timedelta(seconds=0), ) @patch( "siobrultech_protocols.gem.protocol.PACKET_DELAY_CLEAR_TIME", timedelta(seconds=0), ) async def testApiCall(self): call = ApiCall(lambda _: "REQUEST", lambda response: response) async with call_api(call, self._protocol) as f: self.setApiResponse("RESPONSE".encode()) response = await f(None) self.assertEqual(response, "RESPONSE") @pytest.mark.asyncio async def testTaskCanceled(self): call = ApiCall(lambda _: "REQUEST", lambda response: response) with self.assertRaises(asyncio.CancelledError): with patch("asyncio.sleep") as mock_sleep: mock_sleep.side_effect = asyncio.CancelledError async with call_api(call, self._protocol): raise AssertionError("this should not be reached") def setApiResponse(self, ecnoded_response: bytes) -> asyncio.Task[None]: async def notify_data_received() -> None: self._protocol.data_received(ecnoded_response) return asyncio.create_task( notify_data_received(), name=f"{__name__}:send_api_resonse" ) class TestApiHelpers(IsolatedAsyncioTestCase): def setUp(self): self._protocol = BidirectionalProtocol(asyncio.Queue()) patcher_API_RESPONSE_WAIT_TIME = patch( "siobrultech_protocols.gem.protocol.API_RESPONSE_WAIT_TIME", timedelta(seconds=0), ) patcher_API_RESPONSE_WAIT_TIME.start() self.addCleanup(lambda: patcher_API_RESPONSE_WAIT_TIME.stop()) patcher_PACKET_DELAY_CLEAR_TIME = patch( "siobrultech_protocols.gem.protocol.PACKET_DELAY_CLEAR_TIME", timedelta(seconds=0), ) patcher_PACKET_DELAY_CLEAR_TIME.start() self.addCleanup(lambda: patcher_PACKET_DELAY_CLEAR_TIME.stop()) @pytest.mark.asyncio async def test_get_serial_number(self): transport = MockRespondingTransport(self._protocol, "1234567".encode()) self._protocol.connection_made(transport) serial = await get_serial_number(self._protocol) self.assertEqual(serial, 1234567) @pytest.mark.asyncio async def test_set_date_and_time(self): transport = MockRespondingTransport(self._protocol, "DTM\r\n".encode()) self._protocol.connection_made(transport) success = await set_date_and_time(self._protocol, datetime(2020, 3, 11)) self.assertTrue(success) @pytest.mark.asyncio async def test_set_packet_format(self): transport = MockRespondingTransport(self._protocol, "PKT\r\n".encode()) self._protocol.connection_made(transport) success = await set_packet_format(self._protocol, PacketFormatType.BIN32_ABS) self.assertTrue(success) @pytest.mark.asyncio async def test_set_packet_send_interval(self): with self.assertRaises(ValueError): await set_packet_send_interval(self._protocol, -1) with self.assertRaises(ValueError): await set_packet_send_interval(self._protocol, 257) transport = MockRespondingTransport(self._protocol, "IVL\r\n".encode()) self._protocol.connection_made(transport) success = await set_packet_send_interval(self._protocol, 42) self.assertTrue(success) @pytest.mark.asyncio async def test_set_secondary_packet_format(self): transport = MockRespondingTransport(self._protocol, "PKF\r\n".encode()) self._protocol.connection_made(transport) success = await set_secondary_packet_format( self._protocol, PacketFormatType.BIN32_ABS ) self.assertTrue(success) @pytest.mark.asyncio async def test_synchronize_time(self): transport = MockRespondingTransport(self._protocol, "DTM\r\n".encode()) self._protocol.connection_made(transport) success = await synchronize_time(self._protocol) self.assertTrue(success) ```
{ "source": "jkeljo/sisyphus-control", "score": 2 }
#### File: sisyphus-control/sisyphus_control/data.py ```python import asyncio from collections import UserDict from typing import TYPE_CHECKING, Any, Awaitable, Callable, Dict, List, Union CollectionListener = Union[Callable[[], None], Callable[[], Awaitable[None]]] class Model(UserDict): """Holds the data about one entity in a collection.""" def __init__(self, data: Dict[str, Any]): super().__init__(data) async def update_from_changes(self, changes: 'Model') -> bool: data_changed = False for key, value in changes.items(): if not key in self or self[key] != value: self[key] = value data_changed = True return data_changed if TYPE_CHECKING: CollectionBase = UserDict[Union[str, int], Model] else: CollectionBase = UserDict class Collection(CollectionBase): """Holds all the data returned by the table, as Model objects keyed by ID.""" def __init__(self): super().__init__() self._listeners: List[CollectionListener] = [] async def add(self, item: Model) -> None: id = item.data["id"] if id in self: should_notify = await self[id].update_from_changes(item) else: self[id] = item should_notify = True if should_notify: await self._notify_listeners() def add_listener(self, listener: CollectionListener) -> None: self._listeners.append(listener) def remove_listener(self, listener: CollectionListener) -> None: self._listeners.remove(listener) async def _notify_listeners(self) -> None: listeners = list(self._listeners) for listener in listeners: await asyncio.coroutine(listener)() # type: ignore if __name__ == "__main__": import aiounittest import unittest from unittest.mock import MagicMock class CollectionTests(aiounittest.AsyncTestCase): async def test_add(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) returned = coll.get(12345) self.assertEqual(item, returned) async def test_update_does_not_remove_value(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) delta = Model({"id": 12345}) await coll.add(delta) returned = coll.get(12345) self.assertEqual(returned, item) async def test_update_adds_new_keys(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) delta = Model({"id": 12345, "key2": "value2"}) await coll.add(delta) returned = coll.get(12345) expected = Model({"id": 12345, "key": "value", "key2": "value2"}) self.assertEqual(returned, expected) async def test_update_changes_values(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) delta = Model({"id": 12345, "key": "new_value"}) await coll.add(delta) returned = coll.get(12345) self.assertEqual(returned, delta) async def test_update_notifies_listeners(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) listener = MagicMock() coll.add_listener(listener) delta = Model({"id": 12345, "key": "new_value"}) await coll.add(delta) assert listener.called async def test_no_op_update_does_not_notify_listeners(self) -> None: coll = Collection() item = Model({"id": 12345, "key": "value"}) await coll.add(item) listener = MagicMock() coll.add_listener(listener) delta = Model({"id": 12345, "key": "value"}) await coll.add(delta) assert not listener.called unittest.main() ``` #### File: sisyphus-control/sisyphus_control/playlist.py ```python from datetime import datetime from typing import Any, Dict, ForwardRef, List, Optional, Type from . import table from .data import Model from .log import log_data_change from .track import Track from .transport import TableTransport from .sisbot_json import parse_bool class Playlist: """Represents a playlist in the context of a table. If working with multiple tables that have the same playlist loaded, multiple Playlist objects will be created for that playlist -- one for each table that has it loaded.""" parent: 'table.Table' def __init__( self, table: 'table.Table', transport: TableTransport, data: Model): self.parent = table self._transport: TableTransport = transport self._data: Model = data def __str__(self) -> str: return "{name} v{version} ({num_tracks} tracks)".format( name=self.name, version=self.version, num_tracks=len(self.tracks)) @ property def id(self) -> str: return self._data["id"] @ property def name(self) -> str: return self._data["name"] @ property def tracks(self) -> List[Track]: return [ self._get_track_by_index(index) for index in self._data["sorted_tracks"]] def get_tracks_named(self, name: str) -> List[Track]: return [track for track in self.tracks if track.name == name] def _get_track_by_index(self, index: int) -> Track: return Track(self, self._transport, self._data["tracks"][index]) @ property def is_loop(self) -> bool: return parse_bool(self._data["is_loop"]) @ property def is_shuffle(self) -> bool: return parse_bool(self._data["is_shuffle"]) async def set_shuffle(self, value: bool) -> None: if self.parent.active_playlist != self: raise Exception( "set_shuffle may only be called on the active playlist") if value == self.is_shuffle: return await self._transport.post("set_shuffle", {"value": str(value).lower()}) @ property def description(self) -> str: return self._data["description"] @ property def created_time(self) -> datetime: return _parse_date(self._data["created_at"]) @ property def updated_time(self) -> datetime: return _parse_date(self._data["updated_at"]) @ property def version(self) -> int: return int(self._data["version"]) @ property def active_track(self) -> Optional[Track]: index = self._data["active_track_index"] if index < 0: return None return self._get_track_by_index(index) async def play(self, track: Optional[Track] = None) -> None: if track: if track.parent != self: raise ValueError("Track object is not part of this playlist") self._data["active_track_index"] = track.index_in_playlist self._data["active_track_id"] = track.id await self._transport.post("set_playlist", self._data.data) await self.parent.play() def _parse_date(date_str: str) -> datetime: return datetime.strptime(date_str, "%Y-%m-%d %H:%M:%S") ```
{ "source": "jkellers/traffic-cam", "score": 3 }
#### File: traffic-cam/bin/05_count_to_api.py ```python import requests from traffic_cam import classifier, io, predictor, paths from time import sleep def loop(classifier_model, predictor_model): # download image path = io.download_image() # classify image location location = classifier.move_image_by_class(source_path=path, model=classifier_model) # if image location not useful, wait and download new image if "street" not in location: print("Not a street, skipping.") return False # count persons on image persons = predictor_model.predict_image(image_path=paths.TRAIN_DIR / location / path.name, plot=False) # collect additional information for API rain = True # 90 % accuracy for Münster, good enough # build response response = { "count": persons, "timestamp": io.get_timestamp_isoformat(), "device_id": location, "data": { "rain": rain, } } print(response) # send count to API response = requests.post( "https://counting-backend.codeformuenster.org/counts/", json=response, ) if __name__ == "__main__": cl = classifier.get_classifier_model() pr = predictor.Predictor() while True: try: loop(classifier_model=cl, predictor_model=pr) sleep(10) except KeyboardInterrupt: print("Interrupted by user.") ``` #### File: traffic-cam/traffic_cam/classifier.py ```python import json import logging import shutil from pathlib import Path from typing import Dict import numpy as np import wget from tensorflow.keras.applications import MobileNet from tensorflow.keras.applications.mobilenet import preprocess_input from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras.models import Model from tensorflow.keras.models import load_model from tensorflow.keras.optimizers import Adam from tensorflow.keras.preprocessing import image from traffic_cam import paths def train_classifier_model(n_classes: int, learning_rate: float) -> Model: # build model base_model = MobileNet( weights="imagenet", include_top=False ) # imports the mobilenet model and discards the last 1000 neuron layer. x = base_model.output x = GlobalAveragePooling2D()(x) # we add dense layers so that the model can learn more complex functions # and classify for better results. x = Dense(1024, activation="relu")(x) x = Dense(1024, activation="relu")(x) # dense layer 2 x = Dense(512, activation="relu")(x) # dense layer 3 preds = Dense(n_classes, activation="softmax")( x ) # final layer with softmax activation model = Model(inputs=base_model.input, outputs=preds) # set only final layers trainable for layer in model.layers[:20]: layer.trainable = False for layer in model.layers[20:]: layer.trainable = True # compile opt = Adam(learning_rate=learning_rate) model.compile(optimizer=opt, loss="categorical_crossentropy", metrics=["accuracy"]) return model def get_classifier_model() -> Model: """Download image classifier (if not exists), and load to memory.""" if not paths.CLASSIFIER_HDF5.exists(): wget.download( url="https://github.com/codeformuenster/traffic-cam-data/blob/master/model/model.hdf5?raw=true", out=str(paths.CLASSIFIER_HDF5), ) return load_model(str(paths.CLASSIFIER_HDF5)) def classify_image(filepath: Path, model: Model) -> np.ndarray: # preprocess image img = image.load_img(str(filepath), target_size=(224, 224)) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) x = preprocess_input(x) # predict with model return model.predict(x) def move_image_by_class(source_path: Path, model: Model): predictions = classify_image(filepath=source_path, model=model) predicted_class: str = get_predicted_class(predictions=predictions) target_dir = paths.TRAIN_DIR / predicted_class target_dir.mkdir(parents=True, exist_ok=True) shutil.move(source_path, target_dir / source_path.name) logging.info(f"Moved image: {source_path.name}.") return predicted_class def load_class_indices() -> Dict[str, int]: with open(paths.CLASSES_JSON, "r") as f: classes: Dict[str, int] = json.loads(f.read()) return classes def get_predicted_class(predictions: np.ndarray) -> str: classes = load_class_indices() return list(classes.keys())[np.argmax(predictions)] ``` #### File: traffic-cam/traffic_cam/io.py ```python import argparse import datetime import logging import subprocess from pathlib import Path from typing import Optional from traffic_cam import paths def get_timestamp_isoformat() -> str: return datetime.datetime.utcnow().isoformat() def download_frame(path: str): download_command = f"""ffmpeg \ -i https://5f27cc8163c2e.streamlock.net/833/default.stream/playlist.m3u8?wowzatokenhash=0mfLM7iDsbsXsvj91j1LqHWRrf2ZMRArPtr8efxJnjU= \ -vframes 1 \ {path}""" subprocess.run(download_command.split(), check=True) def download_image() -> Optional[Path]: """Download current image and return it's path.""" timestamp = get_timestamp_isoformat() filename = f"image_{timestamp}.jpg" path = paths.DATA_DIR / filename try: download_frame(path=path) except subprocess.CalledProcessError as e: logging.error(f"Failed to download frame: {e}") return None logging.info(f"Downloaded image: {filename}.") return path def str2bool(value: str) -> bool: if isinstance(value, bool): return value if value.lower() in ("yes", "true", "t", "y", "1"): return True elif value.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") ``` #### File: traffic-cam/traffic_cam/paths.py ```python from pathlib import Path # data DATA_DIR = Path("data/") TRAIN_DIR = DATA_DIR / "train" # image classifier CLASSIFIER_DIR = Path("data/classifier/") CLASSIFIER_HDF5 = CLASSIFIER_DIR / "model.hdf5" CLASSES_JSON = CLASSIFIER_DIR / "class_indices.json" # yolo YOLO_CFG = Path("darknet/cfg/yolov3.cfg") YOLO_WEIGHTS = Path("cfg/yolov3.weights") YOLO_CLASSES = Path("data/coco.names") # output OUTPUT_DIR = Path("output/") # api CLASS_LOCATION = CLASSIFIER_DIR / "class_location.json" API_URL = "https://counting-backend.codeformuenster.org" def create_paths_if_not_exist(): """Create defined paths if they don't exist already, including parents.""" DATA_DIR.mkdir(parents=True, exist_ok=True) TRAIN_DIR.mkdir(parents=True, exist_ok=True) CLASSIFIER_DIR.mkdir(parents=True, exist_ok=True) ```
{ "source": "jkelleyrtp/electron-optimization", "score": 3 }
#### File: electron-optimization/potential_optimizer/potential_optimizer.py ```python import sys from math import sin, cos, tan, radians, sqrt, ceil import pyopencl as cl import numpy as np import pyopencl.array as cl_array from scipy.special import ellipk, ellipe import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sb import cPickle as pickle # Constants mu_0 = 1.25663706e-6 ellipe_table = ellipe(np.arange(0,1, 1.0/10000000.0)) ellipk_table = ellipk(np.arange(0,1,1.0/10000000.0)) e_charge = 1.6e-19 # Coulombs e_mass = 9.1e-31 # Kilograms ''' Takes array of coils and displays to screen. First and second coils are bounding box coils. Positions is list of positions ''' class all: def __init__(self): print '-- New all object created --' # call GPU building # initialize GPU # load single particle simulation code # pass positions, velocities, coils # electron gun function returns positions and velocities class _GPU: def __init__(self, filename, device_id = 1): # Setup OpenCL platform platform = cl.get_platforms() computes = [platform[0].get_devices()[device_id]] print "New context created on", computes self.ctx = cl.Context(devices=computes) self.queue = cl.CommandQueue(self.ctx) self.mf = cl.mem_flags # Open and build cl code f = open(filename, 'r') fstr = "".join(f.readlines()) self.program = cl.Program(self.ctx, fstr).build() def execute(self, sim, quiet=False): # 1 float is 4 bytes # Prepare input, output, and lookup val buffers self.p_buf = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf=sim.positions ) # Positions self.v_buf = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf=sim.velocities ) # Velocities self.coil_buf = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf=sim.coils ) # Coils self.c_spheres_buf = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf = sim.c_spheres)# Charge spheres self.ee = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf=sim.ee_table ) # Elliptical Integral 1 self.ek = cl.Buffer(self.ctx, self.mf.READ_ONLY | self.mf.COPY_HOST_PTR, hostbuf=sim.ek_table ) # Elliptical Integral 2 self.d_buf = cl.Buffer(self.ctx, self.mf.WRITE_ONLY, sim.bytesize * sim.num_particles * sim.num_steps) # Output r^2 buffer self.queue.finish() # Run Kernel kernelargs = (self.p_buf, self.v_buf, self.coil_buf, self.c_spheres_buf, self.ee, self.ek, self.d_buf, sim.sim_properties, sim.dt) #program.compute_trajectory(queue, (1,), None, np.array([0.0,0.01,0.01]), np.array([1.0,1.0,500000]), np.array([0,.0375,.1,0.0,.05,0.0375,-.1,0.0]), np.array([1]), np.array([1]), np.array()) if quiet!=True: print "Values successfully passed" self.program.compute_trajectory(self.queue, (int(sim.num_particles),), None, *(kernelargs)) if quiet!=True: print "Kernels started" self.queue.finish() # Dump, clean, return -- must reshape data when using float4s self.ret_val = np.empty_like(np.ndarray((sim.num_particles, sim.num_steps, sim.bytesize/4)).astype(np.float32)) read = cl.enqueue_copy(self.queue, self.ret_val, self.d_buf) self.queue.finish() read.wait() # print (read.profile.end-read.profile.start) self.d_buf.release() print "\a" if quiet!=True: print "Simulation finished" return self.ret_val class _SIMOBJECT: def __init__(self, positions, velocities, coils, num_particles, steps, bytesize=4, iter_nth = 1, dt = .0000000000002, num_coils = 2, avg_velo = 0, c_charge = 0.0): self.positions = positions.astype(np.float64) self.velocities = velocities.astype(np.float64) self.coils = np.array(coils).astype(np.float32) self.num_particles = np.int32(num_particles) self.num_steps = np.int32(steps) self.bytesize = bytesize self.ee_table = ellipe_table.astype(np.float32) self.ek_table = ellipk_table.astype(np.float32) self.dt = np.float64(dt) self.iter_nth = np.int32(iter_nth) self.num_coils = np.int32(num_coils) self.sim_properties = np.asarray([self.num_particles, self.num_steps, self.iter_nth, self.num_coils]).astype(np.int32) self.avg_velo = avg_velo self.c_spheres = np.asarray([c_charge]*num_particles, dtype = np.float64) def get_conf_times(self, store=True): conf_times = [] #print radius, z_pos, dt, iter_nth radius = self.coils[0][1] z_pos = self.coils[1][0] dt = self.dt iter_nth = self.iter_nth r_vals = self.r_vals for p in range(len(r_vals)) : x_conf = len(np.where( abs(r_vals[p][:,0]) < radius)[0]) * dt * iter_nth * 1e9 y_conf = len(np.where( abs(r_vals[p][:,1]) < radius)[0]) * dt * iter_nth * 1e9 z_conf = len(np.where( abs((z_pos/2.0) - r_vals[p][:,2]) < (z_pos/2.0))[0]) * dt * iter_nth * 1e9 conf_times.append(np.amin([x_conf,y_conf,z_conf])) if(store): self.conf_times = conf_times else: return conf_times def graph_conf_times(self, markersize = .5): def graph_clicked(event): print "clicked" self.graph_trajectory(int(event.x)) fig = plt.figure() fig.canvas.mpl_connect('button_press_event', graph_clicked) plt.subplot(121) plt.scatter(range(len(self.conf_times)), self.conf_times, s = markersize) plt.show() plt.title("Mean time: " + str(np.mean(self.conf_times)) + " | First 20% Mean: " + str(np.mean(self.conf_times[0:int(0.2 * len(self.conf_times))]))) def graph_trajectory(self, run_id): positions = self.r_vals[run_id] coil_1 = self.coils[run_id*self.num_coils] coil_2 = self.coils[run_id*self.num_coils+1] r = coil_1[1] # the radius of the circle steps = len(positions) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.plot(positions[:,0], positions[:,1], zs= positions[:,2]) ax.set_xlim([r, r * -1]) ax.set_ylim([r, r * -1]) ax.set_zlim([0, coil_2[0]]) theta = np.linspace(0, 2*np.pi, 100) # compute x1 and x2 loop_x = r*np.cos(theta) loop_y = r*np.sin(theta) loop_z=0 ax.plot(loop_x,loop_y, loop_z) ax.plot(loop_x,loop_y, coil_2[0]) ax.scatter(positions[0][0],positions[0][1],positions[0][2], color="green") ax.scatter(positions[steps-2][0],positions[steps-2][1],positions[steps-2][2], color="red") class _COIL: def __init__(self, radius = 0.05, current = 10000, z_pos = 0.0): self.radius = radius self.current = current self.z_pos = z_pos self.position = [0.0, 0.0, z_pos, 0.0] self.B_0 = self.current * mu_0 / (2.0 * self.radius) self.arr = np.array([z_pos, radius, self.B_0, 0.0]).astype(np.float32) def single_sim(self, device_id = 0): # Generate a single electron pos data # best of 1105.824 at -5000, 5000 [ 0,0.0004, -.03], [0,-5e3, 7e5] sp_charge = -1e-8 #sp_charge = -15e-9 ct = 23000 #ct = 20000 major_R = .014 #major_R = .006 zvelo = 1e6 coil_1 = self._COIL( radius = .1, current = ct, z_pos = 0.0 ) coil_2 = self._COIL( radius = .1, current = -ct, z_pos = 0.1) #coil_3 = self._COIL( radius = .03, current = 3000, z_pos = 0.06 ) #coil_4 = self._COIL( radius = .03, current = -3000, z_pos = -.01 ) coils = [coil_1.arr, coil_2.arr]#, coil_3.arr, coil_4.arr] # Constants e_charge = 1.6e-19 # Coulombs e_mass = 9.1e-31 # Kilograms e_gun_energy = 0 # measured in volts avg_velo = sqrt( (2.0 * e_gun_energy * e_charge) / e_mass) # m/s positions = np.array([[0.0000 , major_R, -0.03, 0.0,]]) #velocities = np.array([[0.0, 0, avg_velo ,0.0,]]) #9.70017400e+05 #velocities = np.array([[1e2, 0, avg_velo,0.0,]]) #9.70017400e+05 velocities = np.array([[1e3, 0, zvelo]]) #9.70017400e+05 print velocities #coils[0][2] = 0.06578967 #coils[1][2] = -0.06578967 num_particles = 1 steps = 350000; #350000; bytesize = 16 iter_nth = 36; dt = .0000000000002 self.SINGLE_SIM = self._SIMOBJECT(positions, velocities, coils, num_particles, steps,num_coils = len(coils), bytesize = bytesize, iter_nth=iter_nth, dt = dt, c_charge = sp_charge)# -3e-11)#, c_charge = -1e-7) self.SINGLE_SIM.calculator = self._GPU(path_to_integrator, device_id) self.SINGLE_SIM.r_vals = self.SINGLE_SIM.calculator.execute( self.SINGLE_SIM) a = self.SINGLE_SIM.r_vals[0] self.SINGLE_SIM.graph_trajectory(0); self.SINGLE_SIM.get_conf_times() #self.SINGLE_SIM.conf_times = self.get_conf_times(self.SINGLE_SIM.r_vals, coil_1.radius, coil_2.z_pos, dt, iter_nth) #self, r_vals, radius, z_pos, dt, iter_nth print "Total confinement:", self.SINGLE_SIM.conf_times[0] plt.title(("Total confinement:", self.SINGLE_SIM.conf_times[0], " ns")) plt.show() def generic_simulation(self, num_particles = 10000, steps = 9000000, egun_energy = 1000, coil_current = 5000, e_gun_z = -.03, c_charge = 0.0, injection_radius= .0006,memory = 3000000000): coil_1 = self._COIL( radius = .05, current = coil_current, z_pos = 0.0 ) coil_2 = self._COIL( radius = .05, current = coil_current*-1.0, z_pos = 0.05 ) coils = [coil_1.arr, coil_2.arr] # Control parameters memory = memory bytesize = 16 num_particles = num_particles total_steps = steps # ten million dt = .0000000000002 mem_p_particle = memory/num_particles # can serve so many bytes to display steps = mem_p_particle/bytesize iter_nth = total_steps/steps print "Steps: ",steps," iter_nth: ", iter_nth e_gun_energy = egun_energy # measured in volts avg_velo = sqrt( (2.0 * e_gun_energy * e_charge) / e_mass) # m/s positions = np.tile( [0.0 ,injection_radius, e_gun_z, 0.0], (num_particles, 1)) velocities = np.tile ([1e3, 0.0, avg_velo, 0.0],(num_particles, 1) ) coils = np.tile(coils,(num_particles, 1) ) c_spheres = np.asarray([c_charge]*num_particles, dtype=np.float64) return self._SIMOBJECT(positions, velocities, coils, num_particles, steps, bytesize = bytesize, iter_nth=iter_nth, dt = dt, avg_velo = avg_velo, c_charge = c_charge) def nd_paramspace(self, data, device_id = 2): ''' Data is an array shaped into a set of paramters for the simulation Data is not a meshgrid, but rathter a list of arrays for each paramter. a[0] = injection_radius a[1] = Z_velocitiy a[2] = coil_current a[3] = coil_separation a[4] = space_charge ''' paramspace = np.array(np.meshgrid(*data)).T.reshape(-1, len(data)) num_particles = len(paramspace) positions = np.zeros((num_particles, 4)) positions[:,1] = paramspace[:,0] positions[:,2] = -.03 velocities = np.zeros((num_particles, 4)) velocities[:,2] = paramspace[:,1] velocities[:,0] = 1e3 # z, r, B_0 coil_radius = 0.05 coil_current = paramspace[:,2] coil_separation = paramspace[:,3] coils = np.zeros((num_particles*2, 4)).astype(np.float32) coils[:,0][1::2] = coil_separation coils[:,1] = coil_radius # Coil radius coils[:,2] = coil_current.repeat(2) * mu_0 / (2.0 * coil_radius) coils[:,2][1::2] *= -1.0 # we want 1000 location points per run # 3gb / 1000 = 750000 max_particles per run (memory limited) #particles_per_run ppr = 65536 num_runs = int(ceil(num_particles / float(ppr) )) print "Number of runs required: " + str(num_runs) self.simulations = [] for i in range(int(num_runs)): self.simulations.append( self._SIMOBJECT(positions[ppr*i:ppr*(i+1)], velocities[ppr*i:ppr*(i+1)], coils[ppr*i:ppr*(i+1)], num_particles =ppr, steps = 400, num_coils = 2, dt = .0000000000002, bytesize = 16, iter_nth = 10000, c_charge = -1e-12)) print "All simulations created" sim_id = 0 for sim in self.simulations: print "Running simulation - " + str(sim_id) if sim_id > -1: # change this id to skip over runs if gpu crashes sim.r_vals = self._GPU(path_to_integrator, device_id).execute(sim) # Returns r_vals np.save("simulations/Simulation - part "+str(sim_id), sim.get_conf_times(store=False)) sim_id+=1 print 'Simulations complete' #self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) #self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) def paramspace_per_sc(self, device_id): slices = 25 injection_radius = np.linspace(0.0005, 0.005, slices) z_velocitiy = np.linspace(.5e6, 5e7, slices) coil_current = np.linspace(5000.0, 15000.0, slices) coil_separation = np.linspace(0.03, 0.1, slices) r_vals = self.nd_paramspace([injection_radius,z_velocitiy,coil_current,coil_separation]) def paramspace_detailed(self, device_id): injection_radius = np.linspace(0.0005, 0.01, 100) z_velocitiy = np.linspace(.5e6, 5e7, 100) coil_current = np.linspace(5000.0, 15000.0, 100) coil_separation = np.linspace(0.05, 0.1, 1) r_vals = self.nd_paramspace([injection_radius,z_velocitiy,coil_current,coil_separation], device_id) def paramspace_single(self, device_id): injection_radius = np.linspace(0.0001, 0.018, 1000) z_velocitiy = np.linspace(1e6, 5e7, 1) coil_current = np.linspace(5000.0, 15000.0, 1) coil_separation = np.linspace(0.05, 0.1, 1) r_vals = self.nd_paramspace([injection_radius,z_velocitiy,coil_current,coil_separation],device_id) def gun_v_l(self, device_id=2): self.GUN_L = self.generic_simulation(egun_energy=1000, coil_current=40000) position_arr = np.linspace(0, -0.05, self.GUN_L.num_particles ) self.GUN_L.positions[:,2] = position_arr self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) self.GUN_L.conf_times = self.GUN_L.get_conf_times() def gun_v_l(self, device_id=2): self.GUN_L = self.generic_simulation(egun_energy=1000, coil_current=40000) position_arr = np.linspace(0, -0.05, self.GUN_L.num_particles ) self.GUN_L.positions[:,2] = position_arr self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) self.GUN_L.conf_times = self.GUN_L.get_conf_times() def r_v_E(self, device_id = 2): self.GUN_L = self.generic_simulation(num_particles = 32768, egun_energy=500, coil_current=1000, e_gun_z = -.1) r_lin = np.tile(np.linspace(-0.0001, -0.001, 32 ), (1, 32))[0] l_lin = np.linspace(-.02, -.06, 32).repeat(32) v_lin = (np.linspace(.01, 1, 32) * self.GUN_L.avg_velo).repeat(1024) self.GUN_L.positions[:,0] = r_lin.repeat(32) self.GUN_L.positions[:,2] = l_lin.repeat(32) self.GUN_L.velocities[:,2] = v_lin self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) self.GUN_L.conf_times = self.GUN_L.get_conf_times() self.GUN_L.graph_conf_times() def egunE_v_CC(self,device_id = 2): cc_slices = 100 ee_slices = 150 cc = 10000 ee = 3000 row = cc_slices col = ee_slices self.GUN_L = self.generic_simulation(num_particles = (row*col), egun_energy=ee, coil_current=cc, e_gun_z = -.03, c_charge = -1e-9) v_lin = (np.linspace(.01, 1, col) * self.GUN_L.avg_velo).repeat(row) v_lin = (np.linspace(.01, 1, col) * z.GUN_L.avg_velo).repeat(row) CC_lin = np.linspace(1, cc, col).repeat(2) flip = np.ones(2 * col) flip[1::2] = flip[1::2]*-1 CC_lin = CC_lin * flip * mu_0 / (2.0 * .05) self.GUN_L.positions[:,0] = np.asarray([0.0008]*row*col) self.GUN_L.velocities[:,2] = v_lin self.GUN_L.coils[:,2] = np.tile(CC_lin, (1,row)) self.GUN_L.coils[:,0][1::2] = 0.05 self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) self.GUN_L.get_conf_times() self.GUN_L.graph_conf_times() plt.subplot(122) hm = sb.heatmap(np.asarray(self.GUN_L.conf_times).reshape(row,col), xticklabels=5, yticklabels=5, robust=False) hm.invert_yaxis() plt.title("EGUN Energy max: "+str(ee) + " | Coil Current max: " + str(cc)) plt.show() def crit_val_show(self,device_id = 2): num_slices = 1500 crit = 6.4e6 velo = 592999.453328881 v_lin = np.linspace(velo, 10000*velo, num_slices) CC_lin = v_lin / crit cc = 10000 #row = cc_slices #col = ee_slices self.GUN_L = self.generic_simulation(num_particles = (num_slices), e_gun_z = -.03) #r_lin = np.tile(np.linspace(0, -0.005, 32 ), (1, 32))[0] #l_lin = np.linspace(-.01, -.07, 32).repeat(32) #v_lin = (np.linspace(.01, 1, col) * self.GUN_L.).repeat(row) #v_lin = (np.linspace(.01, 1, col) * z.GUN_L.).repeat(row) flip = np.ones(2 * num_slices) flip[1::2] = flip[1::2]*-1 CC_lin = CC_lin.repeat(2) * flip #v_lin = CC_lin[0::2] * 10000000.0 # self.GUN_L.positions[:,0] = r_lin.repeat(32) # self.GUN_L.positions[:,2] = l_lin.repeat(32) self.GUN_L.velocities[:,2] = v_lin self.GUN_L.coils[:,2] = CC_lin self.GUN_L.calculator = self._GPU(path_to_integrator, device_id) self.GUN_L.r_vals = self.GUN_L.calculator.execute(self.GUN_L) self.GUN_L.get_conf_times() self.GUN_L.graph_conf_times() #plt.subplot(122) #hm = sb.heatmap(np.asarray(self.GUN_L.conf_times).reshape(num_slices,1), xticklabels=5, yticklabels=5, robust=False) #hm.invert_yaxis() #plt.title("EGUN Energy max: "+str(ee) + " | Coil Current max: " + str(cc)) #plt.show() def active_optimizer(self, device_id = 0, optimizer = 0): # Spins up an instance for every parameter changed and looks at which parameter positively impacted the simulation. # Sets new simulation to that paramter and retries over and over until it getss stuck num_particles = 4 leap_factor = 1.02 parameters = {"sp_charge":-11e-12 , "coil_current": 6990.0 , 'injection_radius': 0.00050, 'velocity': 12e5} coil_1 = self._COIL( radius = .05, current = parameters['coil_current'], z_pos = 0.0 ) coil_2 = self._COIL( radius = .05, current = -parameters['coil_current'], z_pos = 0.05) coils = [coil_1.arr, coil_2.arr] if (optimizer == 0): self.OPTIMIZER = self.generic_simulation(num_particles = num_particles, e_gun_z = -.03, coil_current = parameters['coil_current'], c_charge = parameters['sp_charge'], injection_radius = parameters['injection_radius'], memory = 12000000) self.OPTIMIZER.velocities[:,2] = parameters['velocity'] #sel f.OPTIMIZER.coils = [coils self.OPTIMIZER.calculator = self._GPU(path_to_integrator, device_id) self.conf_times_over_time = [] for i in range(100): self.OPTIMIZER.c_spheres *= np.asarray([leap_factor, 1.0, 1.0, 1.0]) self.OPTIMIZER.coils[:,2] *= np.asarray([1.0, leap_factor, 1.0, 1.0]).repeat(2) self.OPTIMIZER.positions[:,1] *= np.asarray([1.0, 1.0, leap_factor, 1.0]) self.OPTIMIZER.velocities[:,2] *= np.asarray([1.0, 1.0, 1.0, leap_factor]) self.OPTIMIZER.r_vals = self.OPTIMIZER.calculator.execute(self.OPTIMIZER, quiet=True) self.OPTIMIZER.get_conf_times() #self.OPTIMIZER.graph_conf_times(markersize = 10) best_run = np.argmax(self.OPTIMIZER.conf_times) if best_run == 0: #print "Raised sp_charge: " + str(self.OPTIMIZER.) self.OPTIMIZER.coils[:,2] *= np.asarray([1.0, 1.0/leap_factor, 1.0, 1.0]).repeat(2);self.OPTIMIZER.positions[:,1] *= np.asarray([1.0, 1.0, 1.0/leap_factor, 1.0]);self.OPTIMIZER.velocities[:,2] *= np.asarray([1.0, 1.0, 1.0, 1.0/leap_factor]) self.OPTIMIZER.c_spheres =self.OPTIMIZER.c_spheres[0].repeat(4) if best_run == 1: self.OPTIMIZER.c_spheres *= np.asarray([1.0/leap_factor, 1.0, 1.0, 1.0]);self.OPTIMIZER.positions[:,1] *= np.asarray([1.0, 1.0, 1.0/leap_factor, 1.0]);self.OPTIMIZER.velocities[:,2] *= np.asarray([1.0, 1.0, 1.0, 1.0/leap_factor]) self.OPTIMIZER.coils[:,2] = np.tile(self.OPTIMIZER.coils[:,2][2:4].reshape(2,1), (4,1)).reshape(8) if best_run == 2: self.OPTIMIZER.c_spheres *= np.asarray([1.0/leap_factor, 1.0, 1.0, 1.0]); self.OPTIMIZER.coils[:,2] *= np.asarray([1.0, 1.0/leap_factor, 1.0, 1.0]).repeat(2);self.OPTIMIZER.velocities[:,2] *= np.asarray([1.0, 1.0, 1.0, 1.0/leap_factor]) self.OPTIMIZER.positions[:,1] = self.OPTIMIZER.positions[:,1][2].repeat(4) if best_run == 3: self.OPTIMIZER.c_spheres *= np.asarray([1.0/leap_factor, 1.0, 1.0, 1.0]); self.OPTIMIZER.coils[:,2] *= np.asarray([1.0, 1.0/leap_factor, 1.0, 1.0]).repeat(2);self.OPTIMIZER.positions[:,1] *= np.asarray([1.0, 1.0, 1.0/leap_factor, 1.0]); self.OPTIMIZER.velocities[:,2] = self.OPTIMIZER.velocities[:,2][3].repeat(4) self.conf_times_over_time.append(np.max(self.OPTIMIZER.conf_times)) print "Stepped: " + str(i) + " | Max Time: " + str(np.max(self.OPTIMIZER.conf_times)) + " Best_run = "+str(best_run) self.OPTIMIZER.graph_conf_times(markersize = 10) self.OPTIMIZER.graph_trajectory(best_run) # now have a simulation with 4 particles, initial charge, current, velocity #def generic_simulation(self, num_particles = 10000, steps = 9000000, egun_energy = 1000, coil_current = 5000, e_gun_z = -.03, c_charge = 0.0): #path_to_integrator = '/Users/jonkelley/Desktop/temp_potentia/potential_optimizer/part1.cl' #z.dim_by_dim() #z.single_sim() #z.EGUNvsDIST() #z.single_sim() import os script_path = os.path.abspath(__file__) # i.e. /path/to/dir/foobar.py script_dir = os.path.split(script_path)[0] #i.e. /path/to/dir/ rel_path = "part1.cl" #rel_path = "trajectory_conf.cl" path_to_integrator = os.path.join(script_dir, rel_path) z = 0; if __name__ == "__main__": z = all() simulations = { 'single':z.single_sim, 'gun_v_l':z.gun_v_l, 'r_v_E':z.r_v_E, 'egunE_v_CC':z.egunE_v_CC, 'crit_val_show':z.crit_val_show, 'active_optimizer':z.active_optimizer, 'paramspace_per_sc':z.paramspace_per_sc, 'paramspace_detailed':z.paramspace_detailed, 'paramspace_single':z.paramspace_single } if len(sys.argv) == 1: # rel_path = 'part1.cl' print "single sim" z.single_sim(0) else: if sys.argv[1] == "active_optimizer": if len(sys.argv) == 3: simulations[sys.argv[1]](int(sys.argv[2]),optimizer = 0) else: simulations[sys.argv[1]](int(sys.argv[2]),sys.argv[3]) else: simulations[sys.argv[1]](int(sys.argv[2])) # hi # %run potential_optimizer.py{'single'} {0} sim = z ```
{ "source": "jkelleyrtp/FA19_POE_Final", "score": 3 }
#### File: src/realsteel/robot.py ```python from multiprocessing import Pool, Process, Queue import time from enum import Enum from realsteel.device import ROBOT_DEVICE, FAKE_DEVICE from realsteel.visualizer import DEMO_VIS, ROBOT_VIS, FAKE_VIS from realsteel.joint_input import CAMERA, KINECT, HYBRID from realsteel.kinematic import KSOLVER from realsteel.pathplanner import PATHPLANNER from realsteel.kinematic import ArmJoints # vis_mode = Enum('demo','dev','disabled') class ROBOT: """ This code processes the launch args and sets up all the moving parts to get the REAL STEEL experience up and running. Nothing in this main loop should blocking, but rather pushing data around between threads. Everything should be async. """ def __init__(self, hardware_enabled = False, visualization_mode="disabled"): # [1] Build the virtual robot from joints # [2] Set up the camera/kinect inputs to dump raw joint angles # [3] Set up the kinematic solver that takes raw joint angles and turns into robot angles # [4] Set up the path planner that maps joint angles frames # [5] Set up the physical robot interface # [6] Set up the visualizer # Process the user flags to process things like dev mode self.hardware_enabled: bool = hardware_enabled self.visualization_mode = visualization_mode # [1] Build the robot from a URDF file # TODO, allow specifying a custon URDF self.human_positions: dict = None self.robot_positions: dict = None # self.intialize_robot_from_urdf(file = "") # [2] Set up the camera/kinect input device self.joint_input = HYBRID() # [3] Set up the kinematic solver self.solver = KSOLVER() # [4] Set up the path planner self.planner = PATHPLANNER() # [5] Set up the hardware device if self.hardware_enabled: self.device = ROBOT_DEVICE() else: self.device = FAKE_DEVICE() # [6] Set up the visualizer if self.visualization_mode == "dev": self.visualizer = ROBOT_VIS(directory='robot/') elif self.visualization_mode == "demo": self.visualizer = DEMO_VIS() else: self.visualizer = FAKE_VIS() def start(self): self.main_loop() def main_loop(self): # Set up a shared queue to put human angles into input_queue = Queue() # Get the process for the input method and start it input_proc = self.joint_input.launch(input_queue) input_proc.start() # Set up the device queue to push data into device_queue = Queue() device_proq = self.device.launch(device_queue) device_proq.start() # Set the initial joints = {} joint_angles = [1, 1] while True: # Check if there's a new human joint inputs ready # if not input_queue.empty(): joints = input_queue.get() if joints['Lwri']: joint_angles = self.solver.solve(joints['Lwri']['pc']) joint = ArmJoints(joint_angles[0], joint_angles[1], 0.0) device_queue.push(joint) ```
{ "source": "jkellndorfer/qhub", "score": 2 }
#### File: qhub/cli/destroy.py ```python import pathlib import logging from qhub.destroy import destroy_configuration from qhub.schema import verify from qhub.render import render_template from qhub.utils import load_yaml logger = logging.getLogger(__name__) def create_destroy_subcommand(subparser): subparser = subparser.add_parser("destroy") subparser.add_argument("-c", "--config", help="qhub configuration", required=True) subparser.add_argument("-o", "--output", default="./", help="output directory") subparser.add_argument( "--skip-remote-state-provision", action="store_true", help="Skip terraform state import and destroy", ) subparser.add_argument( "--disable-render", action="store_true", help="Disable auto-rendering before destroy", ) subparser.add_argument( "--full-only", action="store_true", help="Only carry out one full pass instead of targeted sections", ) subparser.set_defaults(func=handle_destroy) def handle_destroy(args): config_filename = pathlib.Path(args.config) if not config_filename.is_file(): raise ValueError( f"passed in configuration filename={config_filename} must exist" ) config = load_yaml(config_filename) verify(config) if not args.disable_render: render_template(args.output, args.config, force=True) destroy_configuration( config, args.skip_remote_state_provision, args.full_only, ) ``` #### File: qhub/qhub/initialize.py ```python import os import re import string import random import secrets import tempfile import logging import requests from qhub.provider.oauth.auth0 import create_client from qhub.provider.cicd import github from qhub.provider import git from qhub.provider.cloud import digital_ocean, azure_cloud from qhub.utils import namestr_regex, qhub_image_tag, check_cloud_credentials from .version import __version__ logger = logging.getLogger(__name__) BASE_CONFIGURATION = { "project_name": None, "provider": None, "domain": None, "certificate": { "type": "self-signed", }, "security": { "authentication": None, }, "default_images": { "jupyterhub": f"quansight/qhub-jupyterhub:{qhub_image_tag}", "jupyterlab": f"quansight/qhub-jupyterlab:{qhub_image_tag}", "dask_worker": f"quansight/qhub-dask-worker:{qhub_image_tag}", "dask_gateway": f"quansight/qhub-dask-gateway:{qhub_image_tag}", "conda_store": f"quansight/qhub-conda-store:{qhub_image_tag}", }, "storage": {"conda_store": "60Gi", "shared_filesystem": "100Gi"}, "theme": { "jupyterhub": { "hub_title": None, "hub_subtitle": None, "welcome": None, "logo": "/hub/custom/images/jupyter_qhub_logo.svg", "primary_color": "#4f4173", "secondary_color": "#957da6", "accent_color": "#32C574", "text_color": "#111111", "h1_color": "#652e8e", "h2_color": "#652e8e", } }, "helm_extensions": [], "monitoring": { "enabled": True, }, "cdsdashboards": { "enabled": True, "cds_hide_user_named_servers": True, "cds_hide_user_dashboard_servers": False, }, } CICD_CONFIGURATION = {"type": "PLACEHOLDER", "branch": "main"} AUTH_PASSWORD = { "type": "password", } AUTH_OAUTH_GITHUB = { "type": "GitHub", "config": { "client_id": "PLACEHOLDER", "client_secret": "PLACEHOLDER", }, } AUTH_OAUTH_AUTH0 = { "type": "Auth0", "config": { "client_id": "PLACEHOLDER", "client_secret": "PLACEHOLDER", "auth0_subdomain": "PLACEHOLDER", }, } LOCAL = { "node_selectors": { "general": { "key": "kubernetes.io/os", "value": "linux", }, "user": { "key": "kubernetes.io/os", "value": "linux", }, "worker": { "key": "kubernetes.io/os", "value": "linux", }, } } DIGITAL_OCEAN = { "region": "nyc3", "kubernetes_version": "PLACEHOLDER", "node_groups": { "general": {"instance": "g-4vcpu-16gb", "min_nodes": 1, "max_nodes": 1}, "user": {"instance": "g-2vcpu-8gb", "min_nodes": 1, "max_nodes": 5}, "worker": {"instance": "g-2vcpu-8gb", "min_nodes": 1, "max_nodes": 5}, }, } # Digital Ocean image slugs are listed here https://slugs.do-api.dev/ GOOGLE_PLATFORM = { "project": "PLACEHOLDER", "region": "us-central1", "kubernetes_version": "1.18.16-gke.502", "node_groups": { "general": {"instance": "n1-standard-4", "min_nodes": 1, "max_nodes": 1}, "user": {"instance": "n1-standard-2", "min_nodes": 0, "max_nodes": 5}, "worker": {"instance": "n1-standard-2", "min_nodes": 0, "max_nodes": 5}, }, } AZURE = { "region": "Central US", "kubernetes_version": "PLACEHOLDER", "node_groups": { "general": { "instance": "Standard_D4_v3", "min_nodes": 1, "max_nodes": 1, }, "user": {"instance": "Standard_D2_v2", "min_nodes": 0, "max_nodes": 5}, "worker": { "instance": "Standard_D2_v2", "min_nodes": 0, "max_nodes": 5, }, }, "storage_account_postfix": "".join( random.choices("abcdefghijklmnopqrstuvwxyz0123456789", k=8) ), } AMAZON_WEB_SERVICES = { "region": "us-west-2", "kubernetes_version": "1.18", "node_groups": { "general": {"instance": "m5.xlarge", "min_nodes": 1, "max_nodes": 1}, "user": {"instance": "m5.large", "min_nodes": 1, "max_nodes": 5}, "worker": {"instance": "m5.large", "min_nodes": 1, "max_nodes": 5}, }, } DEFAULT_PROFILES = { "jupyterlab": [ { "display_name": "Small Instance", "description": "Stable environment with 1 cpu / 4 GB ram", "default": True, "kubespawner_override": { "cpu_limit": 1, "cpu_guarantee": 0.75, "mem_limit": "4G", "mem_guarantee": "2.5G", "image": f"quansight/qhub-jupyterlab:{qhub_image_tag}", }, }, { "display_name": "Medium Instance", "description": "Stable environment with 2 cpu / 8 GB ram", "kubespawner_override": { "cpu_limit": 2, "cpu_guarantee": 1.5, "mem_limit": "8G", "mem_guarantee": "5G", "image": f"quansight/qhub-jupyterlab:{qhub_image_tag}", }, }, ], "dask_worker": { "Small Worker": { "worker_cores_limit": 1, "worker_cores": 0.75, "worker_memory_limit": "4G", "worker_memory": "2.5G", "worker_threads": 1, "image": f"quansight/qhub-dask-worker:{qhub_image_tag}", }, "Medium Worker": { "worker_cores_limit": 2, "worker_cores": 1.5, "worker_memory_limit": "8G", "worker_memory": "5G", "worker_threads": 2, "image": f"quansight/qhub-dask-worker:{qhub_image_tag}", }, }, } DEFAULT_ENVIRONMENTS = { "environment-dask.yaml": { "name": "dask", "channels": ["conda-forge"], "dependencies": [ "python", "ipykernel", "ipywidgets", "qhub-dask ==0.3.13", "python-graphviz", "numpy", "numba", "pandas", ], }, "environment-dashboard.yaml": { "name": "dashboard", "channels": ["conda-forge"], "dependencies": [ "python==3.9.7", "ipykernel==6.4.1", "ipywidgets==7.6.5", "qhub-dask==0.3.13", "param==1.11.1", "python-graphviz==0.17", "matplotlib==3.4.3", "panel==0.12.4", "voila==0.2.16", "streamlit==1.0.0", "dash==2.0.0", "cdsdashboards-singleuser==0.6.0", ], }, } def render_config( project_name, qhub_domain, cloud_provider, ci_provider, repository, auth_provider, namespace=None, repository_auto_provision=False, auth_auto_provision=False, terraform_state=None, kubernetes_version=None, disable_prompt=False, ssl_cert_email=None, ): config = BASE_CONFIGURATION config["provider"] = cloud_provider if ci_provider is not None and ci_provider != "none": config["ci_cd"] = {"type": ci_provider, "branch": "main"} if terraform_state is not None: config["terraform_state"] = {"type": terraform_state} config["theme"]["jupyterhub"]["hub_title"] = f"QHub - { project_name }" config["theme"]["jupyterhub"][ "welcome" ] = f"""Welcome to { qhub_domain }. It is maintained by <a href="http://quansight.com">Quansight staff</a>. The hub's configuration is stored in a github repository based on <a href="https://github.com/Quansight/qhub/">https://github.com/Quansight/qhub/</a>. To provide feedback and report any technical problems, please use the <a href="https://github.com/Quansight/qhub/issues">github issue tracker</a>.""" if project_name is None and not disable_prompt: project_name = input("Provide project name: ") config["project_name"] = project_name if not re.match(namestr_regex, project_name): raise ValueError( "project name should contain only letters and hyphens/underscores (but not at the start or end)" ) if namespace is not None: config["namespace"] = namespace if not re.match(namestr_regex, namespace): raise ValueError( "namespace should contain only letters and hyphens/underscores (but not at the start or end)" ) if qhub_domain is None and not disable_prompt: qhub_domain = input("Provide domain: ") config["domain"] = qhub_domain config["qhub_version"] = __version__ # Generate default password for Keycloak root user and also example-user if using password auth default_password = "".join( secrets.choice(string.ascii_letters + string.digits) for i in range(16) ) # Save default password to file default_password_filename = os.path.join( tempfile.gettempdir(), "QHUB_DEFAULT_PASSWORD" ) with open(default_password_filename, "w") as f: f.write(default_password) os.chmod(default_password_filename, 0o700) print( f"Securely generated default random password={<PASSWORD>} for Keycloak root user stored at path={default_password_filename}" ) if auth_provider == "github": config["security"]["authentication"] = AUTH_OAUTH_GITHUB print( "Visit https://github.com/settings/developers and create oauth application" ) print(f" set the homepage to: https://{qhub_domain}/") print( f" set the callback_url to: https://{qhub_domain}/auth/realms/qhub/broker/github/endpoint" ) if not disable_prompt: config["security"]["authentication"]["config"]["client_id"] = input( "Github client_id: " ) config["security"]["authentication"]["config"]["client_secret"] = input( "Github client_secret: " ) elif auth_provider == "auth0": config["security"]["authentication"] = AUTH_OAUTH_AUTH0 elif auth_provider == "password": config["security"]["authentication"] = AUTH_PASSWORD # Always use default password for keycloak root config["security"].setdefault("keycloak", {})[ "initial_root_password" ] = default_password if cloud_provider == "do": config["theme"]["jupyterhub"][ "hub_subtitle" ] = "Autoscaling Compute Environment on Digital Ocean" config["digital_ocean"] = DIGITAL_OCEAN if kubernetes_version: config["digital_ocean"]["kubernetes_version"] = kubernetes_version else: # first kubernetes version returned by Digital Ocean api is # the newest version of kubernetes supported this field needs # to be dynamically filled since digital ocean updates the # versions so frequently config["digital_ocean"][ "kubernetes_version" ] = digital_ocean.kubernetes_versions()[0]["slug"] elif cloud_provider == "gcp": config["theme"]["jupyterhub"][ "hub_subtitle" ] = "Autoscaling Compute Environment on Google Cloud Platform" config["google_cloud_platform"] = GOOGLE_PLATFORM if kubernetes_version: config["google_cloud_platform"]["kubernetes_version"] = kubernetes_version if "PROJECT_ID" in os.environ: config["google_cloud_platform"]["project"] = os.environ["PROJECT_ID"] elif not disable_prompt: config["google_cloud_platform"]["project"] = input( "Enter Google Cloud Platform Project ID: " ) elif cloud_provider == "azure": config["theme"]["jupyterhub"][ "hub_subtitle" ] = "Autoscaling Compute Environment on Azure" config["azure"] = AZURE if kubernetes_version: config["azure"]["kubernetes_version"] = kubernetes_version else: # first kubernetes version returned by azure sdk is # the newest version of kubernetes supported this field needs # to be dynamically filled since azure updates the # versions so frequently config["azure"]["kubernetes_version"] = azure_cloud.kubernetes_versions( config["azure"]["region"] )[0] elif cloud_provider == "aws": config["theme"]["jupyterhub"][ "hub_subtitle" ] = "Autoscaling Compute Environment on Amazon Web Services" config["amazon_web_services"] = AMAZON_WEB_SERVICES if kubernetes_version: config["amazon_web_services"]["kubernetes_version"] = kubernetes_version if "AWS_DEFAULT_REGION" in os.environ: config["amazon_web_services"]["region"] = os.environ["AWS_DEFAULT_REGION"] elif cloud_provider == "local": config["theme"]["jupyterhub"][ "hub_subtitle" ] = "Autoscaling Compute Environment" config["local"] = LOCAL config["profiles"] = DEFAULT_PROFILES config["environments"] = DEFAULT_ENVIRONMENTS if ssl_cert_email is not None: if not re.match("^[^ @]+@[^ @]+\\.[^ @]+$", ssl_cert_email): raise ValueError("ssl-cert-email should be a valid email address") config["certificate"] = { "type": "lets-encrypt", "acme_email": ssl_cert_email, "acme_server": "https://acme-v02.api.letsencrypt.org/directory", } if auth_auto_provision: if auth_provider == "auth0": auth0_auto_provision(config) if repository_auto_provision: GITHUB_REGEX = "(https://)?github.com/([^/]+)/([^/]+)/?" if re.search(GITHUB_REGEX, repository): match = re.search(GITHUB_REGEX, repository) git_repository = github_auto_provision( config, match.group(2), match.group(3) ) git_repository_initialize(git_repository) else: raise ValueError( f"Repository to be auto-provisioned is not the full URL of a GitHub repo: {repository}" ) return config def github_auto_provision(config, owner, repo): check_cloud_credentials( config ) # We may need env vars such as AWS_ACCESS_KEY_ID depending on provider already_exists = True try: github.get_repository(owner, repo) except requests.exceptions.HTTPError: # repo not found already_exists = False if not already_exists: try: github.create_repository( owner, repo, description=f'QHub {config["project_name"]}-{config["provider"]}', homepage=f'https://{config["domain"]}', ) except requests.exceptions.HTTPError as he: raise ValueError( f"Unable to create GitHub repo https://github.com/{owner}/{repo} - error message from GitHub is: {he}" ) else: logger.warn(f"GitHub repo https://github.com/{owner}/{repo} already exists") try: # Secrets if config["provider"] == "do": for name in { "AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "SPACES_ACCESS_KEY_ID", "SPACES_SECRET_ACCESS_KEY", "DIGITALOCEAN_TOKEN", }: github.update_secret(owner, repo, name, os.environ[name]) elif config["provider"] == "aws": for name in { "AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", }: github.update_secret(owner, repo, name, os.environ[name]) elif config["provider"] == "gcp": github.update_secret(owner, repo, "PROJECT_ID", os.environ["PROJECT_ID"]) with open(os.environ["GOOGLE_CREDENTIALS"]) as f: github.update_secret(owner, repo, "GOOGLE_CREDENTIALS", f.read()) elif config["provider"] == "azure": for name in { "ARM_CLIENT_ID", "ARM_CLIENT_SECRET", "ARM_SUBSCRIPTION_ID", "ARM_TENANT_ID", }: github.update_secret(owner, repo, name, os.environ[name]) github.update_secret( owner, repo, "REPOSITORY_ACCESS_TOKEN", os.environ["GITHUB_TOKEN"] ) except requests.exceptions.HTTPError as he: raise ValueError( f"Unable to set Secrets on GitHub repo https://github.com/{owner}/{repo} - error message from GitHub is: {he}" ) return f"[email protected]:{owner}/{repo}.git" def git_repository_initialize(git_repository): if not git.is_git_repo("./"): git.initialize_git("./") git.add_git_remote(git_repository, path="./", remote_name="origin") def auth0_auto_provision(config): auth0_config = create_client(config["domain"], config["project_name"]) config["security"]["authentication"]["config"]["client_id"] = auth0_config[ "client_id" ] config["security"]["authentication"]["config"]["client_secret"] = auth0_config[ "client_secret" ] config["security"]["authentication"]["config"]["auth0_subdomain"] = auth0_config[ "auth0_subdomain" ] ```
{ "source": "jkelowitt/GenStrIde", "score": 3 }
#### File: GenStrIde/utils/DataContainer.py ```python import numpy as np import random import sys class data_t(object): def __init__(self, data, labels=None): self.labels = labels self.data = data self.num_examples = data.shape[0] def next_batch(self, batch_size, index): idx = index * batch_size n_idx = index * batch_size + batch_size return self.data[idx:n_idx, :], self.labels[idx:n_idx, :] # expects a numpy array of data and a corresponding numpy array of labels # samples on the rows, features on the columns class DataContainer: def __init__(self, data, labels, train_split=0.8, test_split=0.2): assert(data.shape[0] == labels.shape[0]) self.num_classes = labels.shape[1] self.class_counts = {} self.train, self.test = self.partition(data, labels, train_split, test_split) # Shuffle training dataset (when creating dataset) def shuffle_and_transform(self, data, labels): stacked_d = np.vstack(data) stacked_l = np.vstack(labels) samples = random.sample(range(stacked_d.shape[0]),stacked_d.shape[0]) # convert lists to numpy arrays stacked_d = stacked_d[samples] stacked_l = stacked_l[samples] return data_t(stacked_d, stacked_l) # Shuffle training dataset (in between epochs) def shuffle(self): idxs = np.arange(self.train.data.shape[0]) np.random.shuffle(idxs) self.train.data = np.squeeze(self.train.data[idxs]) self.train.labels = np.squeeze(self.train.labels[idxs]) def partition(self, data, labels, train_split=0.8, test_split=0.2): x_train = [] y_train = [] x_test = [] y_test = [] for i in range(self.num_classes): # find where the labels are equal to the certain class idxs = np.where(np.argmax(labels, axis=1) == i)[0] np.random.shuffle(idxs) # record the class count information self.class_counts[str(i)] = idxs.shape[0] # get the int that splits the train/test sets split = int(train_split * idxs.shape[0]) # append class data to respective lists x_train.append(data[idxs[:split]]) y_train.append(labels[idxs[:split]]) x_test.append(data[idxs[split:]]) y_test.append(labels[idxs[split:]]) # format into datacontainer train = self.shuffle_and_transform(x_train, y_train) test = self.shuffle_and_transform(x_test, y_test) return [train, test] ```
{ "source": "jkelowitt/t-builder", "score": 3 }
#### File: jkelowitt/t-builder/tests.py ```python from unittest import TestCase, main from titration_class import array, Titration from compounds import strong_acids, strong_bases, weak_acids, weak_bases class TestTitrationClassModule(TestCase): def setUp(self): self.titrations = [] for t in strong_acids: for a in weak_bases: self.titrations.append( Titration( analyte=a, titrant=t, volume_analyte=25, concentration_titrant=0.10, concentration_analyte=0.10 ) ) for t in strong_bases: for a in weak_acids: self.titrations.append( Titration( analyte=a, titrant=t, volume_analyte=25, concentration_titrant=0.10, concentration_analyte=0.10 ) ) """First Derivative Tests""" def test_first_derivative_can_be_made(self): for titration in self.titrations: self.assertIsNotNone(titration.deriv(1)) def test_first_derivative_volume_size_is_correct(self): for titration in self.titrations: volume, derivative = array(titration.deriv(1)) self.assertEqual(len(volume), len(titration.ph_t)) """Second Derivative Tests""" def test_second_derivative_can_be_made(self): for titration in self.titrations: self.assertIsNotNone(titration.deriv(2)) def test_second_derivative_volume_size_is_correct(self): for titration in self.titrations: volume, derivative = array(titration.deriv(2)) self.assertEqual(len(volume), len(titration.volume_titrant_t)) # # """File Tests""" This takes too long. Involves the process of creating >450 MB of test_data. Consolidate later. # # def test_titration_file_can_be_made(self): # for titration in self.titrations: # titration.write_titration_data() # self.assertTrue(path.exists("Titration Curve Data.csv")) # remove("Titration Curve Data.csv") # # def test_relative_species_file_can_be_made(self): # for titration in self.titrations: # titration.write_alpha_data() # self.assertTrue(path.exists("Alpha Value Data.csv")) # remove("Alpha Value Data.csv") # # def test_titration_file_has_data(self): # for titration in self.titrations: # titration.write_titration_data(file_headers=True) # data = read_csv("Titration Curve Data.csv") # self.assertIsNotNone(data.head()) # remove("Titration Curve Data.csv") # # def test_relative_species_file_has_data(self): # for titration in self.titrations: # titration.write_alpha_data(file_headers=True) # data = read_csv("Alpha Value Data.csv") # self.assertIsNotNone(data.head()) # remove("Alpha Value Data.csv") # # def test_titration_file_has_correct_data(self): # for titration in self.titrations: # titration.write_titration_data(file_headers=True) # data = read_csv("Titration Curve Data.csv") # check = read_csv( # f"test_data/{titration.analyte.name}_{titration.titrant.name}_titration_data.csv".replace(" ", # "_").lower() # ) # self.assertDictEqual(data.to_dict(), check.to_dict()) # # remove("Titration Curve Data.csv") # # def test_relative_species_file_has_correct_data(self): # for titration in self.titrations: # titration.write_alpha_data(file_headers=True) # data = read_csv("Alpha Value Data.csv") # check = read_csv( # f"test_data/{titration.analyte.name}_{titration.titrant.name}_alpha_data.csv".replace(" ", "_").lower()) # self.assertDictEqual(data.head().to_dict(), check.head().to_dict()) # # remove("Alpha Value Data.csv") # # def test_analysis_file_has_correct_data(self): # for titration in self.titrations: # titration.write_analysis_data(file_headers=True) # data = read_csv("Analysis Data.csv") # check = read_csv( # f"test_data/{titration.analyte.name}_{titration.titrant.name}_analysis_data.csv".replace(" ", # "_").lower() # ) # # self.assertDictEqual(data.head(2).to_dict(), check.head(2).to_dict()) # # remove("Analysis Data.csv") """Value checks""" def test_values_have_same_length(self): for titration in self.titrations: untrimmed = [ titration.volume_titrant, titration.ph, titration.hydronium, titration.hydroxide, titration.alpha_analyte, ] length = len(untrimmed[0]) for value in untrimmed: self.assertEqual( len(value), length, ) def test_trimmed_values_have_same_length(self): for titration in self.titrations: trimmed = titration.trim_values( titration.volume_titrant, titration.ph, titration.hydronium, titration.hydroxide, titration.alpha_analyte, ) length = len(next(trimmed)) for value in trimmed: self.assertEqual(len(value), length) def test_trimmed_values_have_less_values_than_untrimmed_values(self): for titration in self.titrations: trimmed = titration.trim_values( titration.volume_titrant, titration.ph, titration.hydronium, titration.hydroxide, titration.alpha_analyte, ) untrimmed = [ titration.volume_titrant, titration.ph, titration.hydronium, titration.hydroxide, titration.alpha_analyte, ] for trim in trimmed: for untrim in untrimmed: self.assertTrue(len(trim) <= len(untrim)) """Functions Check""" def test_scaled_data_less_than_one(self): for titration in self.titrations: scaled = titration._scale_data(titration.ph, 1) for scale in scaled: self.assertTrue(scale <= 1) def test_alpha_index_scaling(self): test_list = array([[5, 4, 3, 2, 1] for _ in range(200)]) f = self.titrations[0].scale_alphas(test_list) for sl in f: self.assertSequenceEqual(list(sl), [0, 4, 6, 6, 4]) if __name__ == "__main__": main() ```
{ "source": "jkelowitt/titration-generator", "score": 3 }
#### File: jkelowitt/titration-generator/T-Builder.py ```python from webbrowser import open from dearpygui.core import * from dearpygui.simple import * import data_writing as dw from titration_class import Compound, Titration __author__ = "jkelowitt" __version__ = "v2.3.4" __license__ = "MIT" plot_width = 905 plot_height = 755 data_width = 200 def open_link(sender, data): open("https://github.com/jkelowitt/t-builder", new=2) def query(sender, data): set_plot_xlimits(sender, data[0], data[1]) set_plot_ylimits(sender, data[2], data[3]) def make_titration(): # Create compounds Analyte = Compound( name=get_value("Analyte Name"), acidic=get_value("aa"), pKas=[float(i) for i in get_value("apk").split(",")], ) Titrant = Compound( name=get_value("tname"), acidic=not get_value("aa"), pKas=[float(i) for i in get_value("tpk").split(",")], ) # Create titration object titr = Titration( analyte=Analyte, titrant=Titrant, concentration_analyte=get_value("aconc"), concentration_titrant=get_value("tconc"), volume_analyte=get_value("avol"), decimal_places=get_value("precision"), temp=get_value("temperature"), ) return titr def plot_callback(sender, data): clear_plot("Main Plot") # Band-aid fix to issue #10. Everything which needs to be kept in a certain range must have callback_data try: value = get_value(sender) if value < data[0]: set_value(sender, data[0]) clear_plot("Main Plot") return except: # If the widget doesn't give you a number to check, don't check its value. pass titr = make_titration() if sender == "b_tab_button": # Everything but the buffer tab button # Perform bjerrum calculations bx = list(titr.ph) bys = [list(alpha) for alpha in titr.alpha_analyte.T] # For every alpha value list, plot the alpha values at every pH and add the line to the plot for num, alpha in enumerate(bys): add_line_series(plot="Main Plot", name=f"species{num}", x=bx, y=alpha, weight=2) # Relabel the plot, and x and y axes configure_item("Main Plot", label="Speciation Plot", x_axis_name="pH", y_axis_name="Relative Speciation") else: # Relabel the plot, and x and y axes configure_item("Main Plot", label="Titration", x_axis_name="Volume (mL)", y_axis_name="pH") # Perform titration calculations tx = list(titr.volume_titrant_t) ty = list(titr.ph_t) # plot the calculations add_line_series( plot="Main Plot", name="Titration Curve", x=tx, y=ty, weight=2, color=[0, 255, 255, 255], # Cyan ) if get_value("buffer_regions"): vols, pHs = titr.find_buffer_points() vols = list(vols) # It's impossible to have a pH > 14 in water, don't find the buffers for a solution which cannot exist. pHs = [x for x in pHs if x < 14] add_scatter_series( plot="Main Plot", name="Buffer Points", x=vols, y=pHs, fill=[255, 0, 0, 255], # Red outline=[255, 0, 0, 255], # Red weight=2, ) # Add labels to the volumes of each point for vol, pH in zip(vols, pHs): if titr.analyte.acidic: add_annotation("Main Plot", x=vol, y=pH, text=f"{vol:.5g} mL", xoffset=5, yoffset=5) else: # Annotations need to be above the line if the solution is basic to prevent the line from clipping add_annotation( "Main Plot", x=vol, y=pH, text=f"{vol:.5g} mL", xoffset=5, yoffset=-5, ) if get_value("equiv"): vols, pHs = titr.find_equiv_points() vols = list(vols) pHs = list(pHs) add_scatter_series( plot="Main Plot", name="Equivalence Points", x=vols, y=pHs, fill=[0, 255, 0, 255], # Green outline=[0, 255, 0, 255], # Green weight=2, ) # Add labels to the volumes of each point for vol, pH in zip(vols, pHs): if titr.analyte.acidic: add_annotation("Main Plot", x=vol, y=pH, text=f"{vol:.5g} mL", xoffset=5, yoffset=5) else: # Annotations need to be above the line if the solution is basic to prevent the line from clipping add_annotation( "Main Plot", x=vol, y=pH, text=f"{vol:.5g} mL", xoffset=5, yoffset=-5, ) if get_value("1stderiv"): volume, pHderiv = titr.deriv(degree=1) data = titr._scale_data(pHderiv, get_value("1dscaler")) add_line_series( plot="Main Plot", name="First Derivative", x=list(volume), y=list(data), weight=2, color=[255, 0, 255, 255], # Purple ) if get_value("2ndderiv"): volume, pHderiv = titr.deriv(degree=2) data = titr._scale_data(pHderiv, get_value("2dscaler")) add_line_series( plot="Main Plot", name="Second Derivative", x=list(volume), y=list(data), weight=2, color=[255, 255, 0, 255], # Yellow ) def save_titr_data(sender, data): titr = make_titration() title = f"{get_value('aname')}_{get_value('tname')}_titration".replace(" ", "_") dw.write_titration_data(titr, title=title) def save_bjer_data(sender, data): titr = make_titration() title = f"{get_value('aname')}_{get_value('tname')}_species".replace(" ", "_") dw.write_alpha_data(titr, title=title) def save_ana_data(sender, data): titr = make_titration() title = f"{get_value('aname')}_{get_value('tname')}_analysis".replace(" ", "_") dw.write_analysis_data(titr, title=title) # Main gui formatting with window("Main Window", label="Something Else", autosize=True): set_main_window_size(width=1270, height=850) with tab_bar("Main Tab bar"): add_tab_button("t_tab_button", label="Titration", callback=plot_callback) add_tab_button("b_tab_button", label="Speciation", callback=plot_callback) add_same_line() add_text(" " * 127) # TODO ask for right adjust text on DPG add_same_line() add_button("T-Builder by Jkelowitt", callback=open_link, tip="Open in github in browser") with group("Data Entry", width=data_width): add_text("Analyte Data") add_input_text( "aname", label="Name", default_value="Citric Acid", callback=plot_callback, tip="Enter the name of the analyte. This is used when making the data files.", ) add_input_float( "aconc", label="Concentration (M)", default_value=0.10, callback=plot_callback, callback_data=[0], tip="Enter the concentration of the analyte in molarity.", ) add_input_text( "apk", label="pKa value(s)", default_value="3.13, 4.76, 6.40", callback=plot_callback, tip="Enter the pKa values of the analyte. Separate them with commas if there are more than one.", ) add_input_float( "avol", label="Volume (mL)", default_value=25, callback=plot_callback, callback_data=[0], tip="Enter the volume of the analyte in mL.", ) add_checkbox( "aa", label="Acidic", default_value=True, callback=plot_callback, tip="Check this box if the analyte acts as an acid during this titration.", ) # TODO This may be automatable. Think "if pKa_a > pKa_t, then..." add_dummy(height=25) add_text("Titrant Data") add_input_text( "tname", label="Name", default_value="KOH", callback=plot_callback, tip="Enter the name of the titrant. This is used when naming the data files.", ) add_input_float( "tconc", label="Concentration (M)", default_value=0.10, callback=plot_callback, callback_data=[0], tip="Enter the concentration of the titrant in molarity.", ) add_input_text( "tpk", label="pKa value(s)", default_value="14.76", callback=plot_callback, tip="Enter the pKa values of the titrant. Separate them with commas if there are more than one.", ) add_dummy(height=25) add_text("Titration Settings") add_input_int( "precision", label="Number of Points", default_value=2, callback=plot_callback, tip="The number of pH points to calculate. (10^n items)", width=65, ) add_input_int( "temperature", label="Temperature (C)", default_value=25, callback=plot_callback, tip="The temperature at which the titration occurs. (0 - 100 C)", width=65, ) add_dummy(height=25) add_text("Perform Titration Analysis") add_checkbox( "buffer_regions", label="Show Buffering Points", default_value=False, callback=plot_callback, tip="Show the center of the buffering regions on the Titration plot.", ) add_checkbox( "equiv", label="Show Equivalence Points", default_value=False, callback=plot_callback, tip="Show the equivalence points on the Titration plot.", ) add_checkbox( "1stderiv", label="Show normalized y'", default_value=False, callback=plot_callback, tip="Show the normalized 1st Derivative of the Titration plot", ) add_checkbox( "2ndderiv", label="Show normalized y''", default_value=False, callback=plot_callback, tip="Show the normalized 2nd Derivative of the Titration plot.", ) add_drag_float( "1dscaler", label="Scale y'", default_value=8, min_value=1, speed=0.1, width=80, format="%0.2f", callback=plot_callback, tip="Scale the 1st Derivative of the Titration plot.", ) add_drag_float( "2dscaler", label="Scale y''", default_value=2, min_value=1, speed=0.1, width=80, format="%0.2f", callback=plot_callback, tip="Scale the 2nd Derivative of the Titration plot.", ) add_dummy(height=25) add_text("Save Data to CSV") add_button("Save Titration Data ", callback=save_titr_data) add_button("Save Speciation Data", callback=save_bjer_data) add_button("Save Analysis Data", callback=save_ana_data) # Put the titration curve under the data entry section add_same_line() with group("TitrationPlotGroup"): add_plot( "Main Plot", label="Titration Curve", query_callback=query, width=plot_width, height=plot_height, anti_aliased=True, x_axis_name="Volume (ml)", y_axis_name="pH", ) plot_callback("equiv", []) # Make the plots appear on program start # Run the curve. if __name__ == "__main__": start_dearpygui(primary_window="Main Window") ``` #### File: jkelowitt/titration-generator/titration_class.py ```python from dataclasses import dataclass, field from typing import List, Tuple, Generator, Any import numpy as np from scipy.interpolate import InterpolatedUnivariateSpline as IUS def pk_to_k(pk) -> np.array: """Convert pK values to K values""" return np.array(10.0 ** (-np.array(pk))) def closest_value(num: float, arr: np.array) -> float: """Returns the closest value to the number in the array.""" return min(arr, key=lambda x: np.abs(x - num)) @dataclass class Compound: """ Main class used to contain information about a specific compound Parameters ---------- name : A string which holds the name of the compound acidic : A boolean which represents whether or not the compound is acidic. True --> Acidic, False -> Basic pKas: A list of floats which represents the pKa values of the compound. """ name: str acidic: bool pKas: list[float] def __post_init__(self): # The k values can become zero if the pKa value is too large ~> 330. self.ks: np.array = np.array(10.0 ** (-np.array(self.pKas))) @dataclass class Titration: """ Main Titration Class. Performs the titration of an analyte with a titrant given their concentrations and volumes. Parameters ---------- analyte : A Compound class which represents the analyte of the titration titrant : A Compound class which represents the titrant of the titration concentration_analyte : A float which represents the concentration of the analyte concentration_titrant : A float which represents the concentration of the titrant volume_analyte : A float which represents the volume of analyte being titrated Optional Parameters ------------------- pKw : A custom value for the pKw of water. Default is None. temp : A custom temperature for the temperature for the titration to take place. Default is 25C. If pKw is None, this value is used to calculate the pKw at 25C. decimal_places : The number of decimal places the titration should be simulated to. Default is 2 (2 -> 0.01). """ analyte: Compound titrant: Compound concentration_analyte: float concentration_titrant: float volume_analyte: float pKw: float = field(default=None) temp: float = field(default=25) decimal_places: int = field(default=2) def __post_init__(self): """Important values to calculate after the initialization""" # Calculate the pKw if self.pKw is not None: # If given a pKw self.kw = 10 ** (-self.pKw) else: # If given a temperature self.kw = 10 ** (-self.temp_kw(self.temp)) # The increment level for the value ranges self.precision: int = 10 ** -self.decimal_places # Value ranges self.ph, self.hydronium, self.hydroxide = self.starting_phs() # Calculate the alpha values for the compounds at each pH self.alpha_analyte = self.alpha_values(k=self.analyte.ks, acid=self.analyte.acidic) self.alpha_titrant = self.alpha_values(k=self.titrant.ks, acid=self.titrant.acidic) # Calculate and trim the volumes. self.volume_titrant, self.phi = self.calculate_volume(self.titrant.acidic) self.ph_t, self.volume_titrant_t = self.trim_values(self.ph, self.volume_titrant) def starting_phs(self, min_ph: float = None, max_ph: float = None) -> Tuple[np.array, np.array, np.array]: """Returns a range of pH, hydronium concentration, and hydroxide concentrations""" if min_ph is None: min_ph = (14 * (not self.analyte.acidic)) - np.log10(self.concentration_analyte) if max_ph is None: max_ph = (14 * (not self.titrant.acidic)) - np.log10(self.concentration_analyte) if self.analyte.acidic: ph = np.arange(min_ph, max_ph, self.precision) else: # Swap max and min pH so that the proper volume order is preserved. ph = np.arange(max_ph, min_ph, self.precision) h = 10 ** (-ph) oh = self.kw / h return ph, h, oh @staticmethod def temp_kw(temp: float) -> float: """Returns the pKw of water given a certain temperature in celsius.""" # Quadratic approximation of the data for liquid water found here: # https://www.engineeringtoolbox.com/ionization-dissociation-autoprotolysis-constant-pKw-water-heavy-deuterium-oxide-d_2004.html # 0 <= T <= 95 C # R^2 = 0.9992 a = 0.000128275 b = -0.0406144 c = 14.9368 pKw = (a * temp ** 2) + (b * temp) + c return pKw @staticmethod def _scale_data(data: np.array, a: float) -> np.array: """abs normalization""" return a * (data / (1 + np.abs(data))) @staticmethod def scale_alphas(arr: np.array) -> np.array: """Scale the alpha values by its index in the sub-array""" new_arr = [] for num, a in enumerate(np.transpose(arr)): a *= num new_arr.append(a) return np.transpose(np.array(new_arr)) def alpha_values(self, k: np.array, acid: bool = True) -> np.array: """Finds the fraction of solution which each species of compound takes up at each pH.""" # If the k values are for K_b, convert to K_a. --> K_1 = K_w / K_n , K_2 = K_w / K_(n-1) if not acid: k = self.kw / np.flip(k) # TODO results in a Div by Zero error if pKa is too large (>330) # The functionality of an acid or base can be determined by the number of dissociation constants it has. n = len(k) # Get the values for the [H+]^n power h_vals = np.array([self.hydronium ** i for i in range(n, -1, -1)]) # Get the products of the k values. k_vals = [np.prod(k[0:x]) for x in range(n + 1)] # Prod and Sum the h and k values denoms_arr = np.transpose(h_vals) * k_vals # Product of the sub-elements of the denominator denoms = np.sum(denoms_arr, axis=1) # Sum of the sub-elements of the denominator # Do the outermost alpha value calculation alphas = np.transpose(np.divide(np.transpose(denoms_arr), denoms)) # Divide and re-transpose if acid: return np.array(alphas) return np.flip(alphas, axis=0) def trim_values(self, *args: Any) -> Generator: """Returns the data ranges where the volume is non-trivial and non-absurd.""" # Go until you are 1 past the last sub-reaction. limiter = len(self.analyte.pKas) + 1 good_val_index = np.where((self.phi >= [0]) & (self.phi <= [limiter])) # Trim the values for every chosen data set rets = (arg[good_val_index] for arg in args) # Add the trimmed dataset to the return variable return rets def calculate_volume(self, acid_titrant: bool) -> Tuple[List, List]: """Calculate the volume of titrant required to reach each pH value.""" # Alpha values scaled by their index scaled_alphas_analyte = self.scale_alphas(self.alpha_analyte) scaled_alphas_titrant = self.scale_alphas(self.alpha_titrant) # Sum the scaled alpha values. Axis=1 forces the summation to occur for each individual [H+] value. summed_scaled_alphas_analyte = np.sum(scaled_alphas_analyte, axis=1) summed_scaled_alphas_titrant = np.sum(scaled_alphas_titrant, axis=1) # I found this written as delta somewhere, and thus it will be named. delta = self.hydronium - self.hydroxide # Conditional addition or subtraction based on the titrant. if acid_titrant: numerator = summed_scaled_alphas_analyte + (delta / self.concentration_analyte) denominator = summed_scaled_alphas_titrant - (delta / self.concentration_titrant) else: numerator = summed_scaled_alphas_analyte - (delta / self.concentration_analyte) denominator = summed_scaled_alphas_titrant + (delta / self.concentration_titrant) # Solve for the volume phi = numerator / denominator volume = phi * self.volume_analyte * self.concentration_analyte / self.concentration_titrant return volume, phi def find_buffer_points(self) -> Tuple[List[int], np.array]: """Find the volumes of the buffer points based on the pKa values.""" pH, volume = self.trim_values(self.ph, self.volume_titrant) pKas = np.array(self.analyte.pKas) # All the volumes where the pH equals pKa volume_indices = [] for pKa in pKas: if pKa > 14: # Should never be larger than 14 continue places = np.where(pH == closest_value(pKa, pH))[0][0] volume_indices.append(places) return volume[volume_indices], pKas def find_equiv_points(self) -> Tuple[List, List]: """Find the equivalence points based on the progression of the reaction.""" pH, volume, phi = self.trim_values(self.ph, self.volume_titrant, self.phi) points = [] for i in range(1, len(self.analyte.pKas) + 1): closest = closest_value(i, phi) points.append(np.where(phi == closest)[0][0]) return list(volume[points]), list(pH[points]) def deriv(self, degree: int) -> Tuple[np.array, np.array]: """Find the n-th derivative""" pH, volume = self.trim_values(self.ph, self.volume_titrant) # An object which makes splines spline_maker = IUS(volume, pH) # An object which calculates the derivative of those splines deriv_function = spline_maker.derivative(n=degree) # Calculate the derivative at all of the splines d = deriv_function(volume) return volume, d ```
{ "source": "jkeltner/district_profile", "score": 3 }
#### File: jkeltner/district_profile/census.py ```python import logging import httplib2 import json from api_keys import CENSUS_API_KEY # CHARTS # This is a list of all the charts we have in an array with section names. # First set of items is the section names # Each item under a section is an array with fourt items: # [Name, Description, Query Name, Annotations] # The Query Name must match to a query item below. # Annotations should be an array of String objects that should be displayed as # annotations to the chart. This is usually due to shortening variable names. census_charts = [ ["Demographics" , [ ["Age", "", "age", ["Please not that some bars are 5 year spans and others are 10 year spans."]], ["Ethnicity", "", "ethnicity", ["(1) Includes American Indians and Alaskan Natives", "(2) Includes Hawaiians and other Pacific Islanders"]], ["Eduation", "Education attaitment of individuals 25 years of age and older.", "education", []], ["School Enrollment", "Portion of population 3 yrs and older enrolled in school.", "school_enrollment", []], ["Health Insurance", "Portion of the civilian population by health insurance type", "health_insurance", []] ]], ["Economics" , [ ["Employment", "Employment status of individuals 16 years and older.", "employment", []], ["Income", "", "income", []], ["Industry", "", "industry", ["(1) Agriculture, forestry, fishing and hunting, and mining", "(2) Transportation and warehousing, and utilities", "(3) Finance and insurance, and real estate and rental and leasing", "(4) Professional, scientific, and management, and administrative and waste management services", "(5) Educational services, and health care and social assistance", "(6) Arts, entertainment, and recreation, and accommodation and food services" ]], ["Occuption", "", "occupation", [ "(1) Management, business, science, and arts occupations", "(2) Natural resources, construction, and maintenance occupations" ]], ["Class of Worker", "", "class_of_worker", ["(1) In own not incorporated business"]], ["Home Value", "Value of owner-occupied housing units", "home_value" ,[]], ["Rent", "Rental cost of occupied units", "rent" ,[]], ["Rent peer Income", "Gross rent as a percentage of gross income", "rent_per_income", []], ["Housing Vacancy", "Rate of vacancy by top of property", "housing_vacancy", []] ]] ] # QUERIES # This is the list of all queries for the charts. # In each tuple, the first item is the label for the data point. # The second item is the Census Bureau API variable name for the data point. # URL to find variables: https://api.census.gov/data/2015/acs/acs1/profile/variables.html # queries = { "age" : [ ["Under 5" , "DP05_0004PE"], ["5 to 9" , "DP05_0005PE"], ["10 to 14" , "DP05_0006PE"], ["15 to 19" , "DP05_0007PE"], ["20 to 24" , "DP05_0008PE"], ["25 to 34" , "DP05_0009PE"], ["35 to 44" , "DP05_0010PE"], ["45 to 54" , "DP05_0011PE"], ["55 to 59" , "DP05_0012PE"], ["60 to 64" , "DP05_0013PE"], ["65 to 74" , "DP05_0014PE"], ["75 to 84" , "DP05_0015PE"], ["85+" , "DP05_0016PE"] ], "class_of_worker" : [ ["Private" , "DP03_0047PE"], ["Government" , "DP03_0048PE"], ["Self-employed (1)" , "DP03_0049PE"], ["Unpaid family workers" , "DP03_0050PE"] ], "education" : [ ["No HS" , "DP02_0059PE"], ["Some HS" , "DP02_0060PE"], ["HS Grad or GED" , "DP02_0061PE"], ["Some college" , "DP02_0062PE"], ["Associate's Degree" , "DP02_0063PE"], ["Bachelor's Degree" , "DP02_0064PE"], ["Grad or Prof Degree" , "DP02_0065PE"] ], "employment" : [ ["Employed Civilian" , "DP03_0004PE"], ["Employed Military" , "DP03_0006PE"], ["Unemployed" , "DP03_0005PE"], ["Not in Labor Force" , "DP03_0007PE"] ], "ethnicity" : [ ["White" , "DP05_0032PE"], ["Hispanic" , "DP05_0067PE"], ["Black or AA" , "DP05_0033PE"], ["Native American (1)" , "DP05_0034PE"], ["Asian" , "DP05_0039PE"], ["Pacific Islander (2)" , "DP05_0047PE"], ["Other" , "DP05_0052PE"], ["2+ Races " , "DP05_0030PE"] ], "health_insurance" : [ ["Private" , "DP03_0097PE"], ["Pulic" , "DP03_0098PE"], ["Uninsured" , "DP03_0099PE"] ], "home_value" : [ ["<$50K" , "DP04_0081PE"], ["$50-100K" , "DP04_0082PE"], ["$100-150K" , "DP04_0083PE"], ["$150-200K" , "DP04_0084PE"], ["$200-300K" , "DP04_0085PE"], ["$300-500K" , "DP04_0086PE"], ["$500K-1M" , "DP04_0087PE"], ["$1M+" , "DP04_0088PE"] ], "housing_vacancy" : [ ["Howeowner" , "DP04_0004E"], ["Rental" , "DP04_0005E"] ], "income" : [ ["Under $10K" , "DP03_0052PE"], ["$10-15K" , "DP03_0053PE"], ["$15-25K" , "DP03_0054PE"], ["$25-35K" , "DP03_0055PE"], ["$35-50K" , "DP03_0056PE"], ["$50-75K" , "DP03_0057PE"], ["$75-100K" , "DP03_0058PE"], ["$100-150K" , "DP03_0059PE"], ["$150-200K" , "DP03_0060PE"], ["$200K+" , "DP03_0061PE"] ], "industry" : [ ["Agriculture (1)" , "DP03_0033PE"], ["Construction" , "DP03_0034PE"], ["Manufacturing" , "DP03_0035PE"], ["Wholesale trade" , "DP03_0036PE"], ["Retail trade" , "DP03_0037PE"], ["Transportation (2)" , "DP03_0038PE"], ["Information" , "DP03_0039PE"], ["Finance + Real Estate (3)", "DP03_0040PE"], ["Management + Science (4)" , "DP03_0041PE"], ["Education and Health (5)" , "DP03_0042PE"], ["Arts + Entertainment (6)" , "DP03_0043PE"], ["Other services" , "DP03_0044PE"], ["Public administration" , "DP03_0045PE"] ], "occupation" : [ ["Management (1)" , "DP03_0027PE"], ["Service" , "DP03_0028PE"], ["Sales and Office" , "DP03_0029PE"], ["Construction (2)" , "DP03_0030PE"], ["Production (3)" , "DP03_0031PE"] ], "rent" : [ ["<$500" , "DP04_0127PE"], ["$500-999" , "DP04_0128PE"], ["$1K-1,499" , "DP04_0129PE"], ["$1,500 - 2K" , "DP04_0130PE"], ["$2K - 2,499" , "DP04_0131PE"], ["$2,500 - 3K" , "DP04_0132PE"], ["$3K+" , "DP04_0133PE"] ], "rent_per_income" : [ ["<15%" , "DP04_0137PE"], ["15-19.9%" , "DP04_0138PE"], ["20-24.9%" , "DP04_0139PE"], ["25-29.9%" , "DP04_0140PE"], ["30-34.9%" , "DP04_0141PE"], ["35%+" , "DP04_0142PE"] ], "school_enrollment" : [ ["Preschool" , "DP02_0053PE"], ["Kindergargten" , "DP02_0054PE"], ["Grades 1-8" , "DP02_0055PE"], ["High School" , "DP02_0056PE"], ["College or Grad" , "DP02_0057PE"] ] } # Function to iterate through all the charts def getCensusData(chart_name, state, district): labels, district_data, state_data, fed_data = getChartData(queries[chart_name], state, district) resp = { "labels" : labels, "district_data" : district_data, "state_data" : state_data, "fed_data" : fed_data } return resp # Function to pull the labels/data for a particular chart. # Should be sent a dictionary of labels and the associated variable names. # These dictionaries should all the be in the charts variable above. def getChartData(query, state, district): labels = [] variables = "" for item in query: labels.append(item[0]) if (variables != ""): variables += "," variables += item[1] conn = httplib2.Http(disable_ssl_certificate_validation=True) resp, content = conn.request(getURL(variables, state, district)) district_data = json.loads(content)[1][:len(labels)] resp, content = conn.request(getURL(variables, state)) state_data = json.loads(content)[1][:len(labels)] resp, content = conn.request(getURL(variables)) fed_data = json.loads(content)[1][:len(labels)] return labels, district_data, state_data, fed_data # Simple function that builds our Census API URLs def getURL(variables, state=None, district=None): if (state and district): for_block = "congressional+district:%s&in=state:%s" % (district, state) elif (state) : for_block = "state:%s" % state else : for_block = "us:*" return "http://api.census.gov/data/2015/acs/acs1/profile?get=%s&for=%s&key=%s" % (variables, for_block, CENSUS_API_KEY) ```
{ "source": "jkenlooper/cookiecutter-chill", "score": 3 }
#### File: src/api/app.py ```python import os import sys from flask import Flask class API(Flask): "API App" def make_app(config=None, **kw): app = API('api') if config: config_file = config if config[0] == os.sep else os.path.join(os.getcwd(), config) app.config.from_pyfile(config_file) app.config.update(kw) # Import the views from llama import LlamaView # Register the views app.add_url_rule('/llama/', view_func=LlamaView.as_view('llama')) return app def main(): from gevent import pywsgi config_file = sys.argv[1] app = make_app(config=config_file) app.debug = app.config.get('DEBUG') if app.debug: app.run( host='0.0.0.0', port=5858, use_reloader=True, ) else: server = pywsgi.WSGIServer(('0.0.0.0', 5858), app) server.serve_forever(stop_timeout=10) if __name__ == "__main__": main() ```
{ "source": "jkenlooper/llama3-weboftomorrow-com", "score": 2 }
#### File: {{ cookiecutter.project_slug }}/bin/site-cfg.py ```python import sys import os.path from api.tools import loadConfig def main(): """ Prints out the value for a config name in the site.cfg file. """ config_file = sys.argv[1] name = sys.argv[2] config = loadConfig(config_file) value = config[name] print(value) if __name__ == "__main__": main() ```
{ "source": "jkennedy-usgs/sgp-gsadjust", "score": 2 }
#### File: gsadjust/data/analysis.py ```python import datetime as dt import logging import numpy as np from .adjustment import AdjustedStation class InversionError(Exception): pass def _equal_or_truncated(a, b): """For matching Gravnet output (Gravnet truncates to 6 characters)""" return a == b or a[:6] == b def numpy_inversion(adjustment): """ Pre- and post-processing data for network adjustment. The actual adjustment is carried out in adjustment.python_lsq_inversion() Parameters ---------- adjustment : Adjustment object Stores information needed for the """ adjustment.adjustmentresults.text = [] # sta_dic_LS is a dictionary, key: station name, value: column for A matrix sta_dic_ls = adjustment.sta_dic_ls loop_ls_dict = adjustment.loop_ls_dict # get number of observations: n_rel_obs = len(adjustment.deltas) n_abs_obs = len(adjustment.datums) n_meters = adjustment.n_meters ndrift = adjustment.ndrift # dict of tuples, used to identify column of drift observation in A matrix: # (loop.name, (column relative to end of A matrix, drift degree) netadj_loop_keys = adjustment.netadj_loop_keys # Initialize least squares matrices # number of unknowns nb_x = len(sta_dic_ls) + ndrift + n_meters adjustment.adjustmentresults.n_unknowns = nb_x # model matrix: A = np.zeros((n_rel_obs + n_abs_obs, nb_x)) # weight matrix: P = np.zeros((n_rel_obs + n_abs_obs, n_rel_obs + n_abs_obs)) # pas sur # observation matrix: Obs = np.zeros((n_rel_obs + n_abs_obs, 1)) # datum-free constraint vector: S = np.zeros((nb_x, 1)) row = 0 delta_keys = [] # Populate least squares matrices for delta in adjustment.deltas: delta_keys.append(delta.__hash__()) dg = delta.dg if delta.type != "assigned" else delta.assigned_dg Obs[row] = dg * delta.cal_coeff P[row, row] = 1.0 / (delta.adj_sd ** 2) A[row, sta_dic_ls[delta.sta1]] = -1 A[row, sta_dic_ls[delta.sta2]] = 1 # Populate 1 column per gravimeter for calibration coefficient if adjustment.adjustmentoptions.cal_coeff: meter = delta.meter A[row, adjustment.meter_dic[meter] + len(sta_dic_ls)] = delta.dg # Populate column(s) for drift, if included in network adjustment if delta.ls_drift is not None: loop_name = delta.ls_drift[0] # It's possible for ls_drift to have been set, but the loop method to be # something other than netadj if loop_name: if loop_ls_dict[loop_name] == "netadj": for i in range(delta.ls_drift[1]): # degree of polynomial A[ row, len(sta_dic_ls) + n_meters + netadj_loop_keys[loop_name][0] + i, ] = (delta.sta2_t - delta.sta1_t) ** (i + 1) S[sta_dic_ls[delta.sta1]] = 1 S[sta_dic_ls[delta.sta2]] = 1 row += 1 # add datum observation (absolute station(s) or station(s) with fixed values) # Key errors handled by calling routine i = 0 for datum in adjustment.datums: A[n_rel_obs + i, sta_dic_ls[datum.station]] = 1 P[n_rel_obs + i, n_rel_obs + i] = 1.0 / datum.sd ** 2 Obs[n_rel_obs + i] = datum.g i += 1 # Do the inversion adjustment.A = A adjustment.P = P adjustment.Obs = Obs adjustment.S = S adjustment.dof = n_rel_obs + n_abs_obs - nb_x adjustment.g_dic = dict() # zero-division errors are caught by caller adjustment.python_lsq_inversion() # Populate results results, sd_all = [], [] for i in range(len(sta_dic_ls)): for key, val in sta_dic_ls.items(): if val == i: try: g = float(adjustment.X[i]) sd = float(np.sqrt(adjustment.var[i])) t = AdjustedStation(key, g, sd) results.append(t) adjustment.g_dic[key] = g adjustment.sd_dic[key] = sd sd_all.append(sd) except Exception: raise InversionError("Bad variance in results.") return adjustment.adjustmentresults.avg_stdev = np.mean(sd_all) # Retrieve calibration coefficient(s) cal_dic = dict() if adjustment.adjustmentoptions.cal_coeff: for k, v in adjustment.meter_dic.items(): cal_dic[k] = ( float(1 - adjustment.X[len(sta_dic_ls) + v]), float(np.sqrt(adjustment.var[len(sta_dic_ls) + v])), ) else: for k, v in adjustment.meter_dic.items(): cal_dic[k] = (1.0, 0.0) adjustment.adjustmentresults.cal_dic = cal_dic # calculate and display statistics: adjustment.lsq_statistics() return results def compute_gravity_change(obstreemodel, table_type="simple"): """Calculates gravity change between surveys. Parameters ---------- obstreemodel : ObsTreeModel Tree structure with the data. table_type : {"simple", "full", "list"} Controls what is shown in the table. Simple: One column per time interval. Dg calculated between each interval, and between first and each subsequent interval. Full: Shows g and sd at each station, and gravity changes converted to meters of water. List: Shows station, date, g, sd for each adjusted station. Returns ------- tuple header, table, dates """ # Check that all values are positive (it should work either way, but it avoids confusion) # for i in range(obstreemodel.invisibleRootItem().rowCount()): # survey = obstreemodel.invisibleRootItem().child(i) # for ii in range(survey.results_model.rowCount()): # adj_station = survey.results_model.data(survey.results_model.index(ii, 0), # role=256) # 256=Qt.UserRole # if adj_station.g < 0: # return False compare_station, initial_station, iteration_station, iteration_name = ( None, None, None, None, ) logging.info("Calculating gravity change") first = True unique_station_names = set() unique_stations = list() for survey in obstreemodel.checked_surveys(): for ii in range(survey.rowCount()): loop = survey.child(ii) for iii in range(loop.rowCount()): station = loop.child(iii) unique_station_names.add(station.station_name) unique_stations.append(station) unique_station_names = sorted(unique_station_names) out_table_iteration, out_table_cumulative = [], [] header1, header2 = [], [] lat, lon, elev, all_g = [], [], [], [] dates, header = [], [] if table_type == "list": date_col, station_col, sd_col = [], [], [] for survey in obstreemodel.checked_surveys(): dates.append(dt.datetime.strptime(survey.name, "%Y-%m-%d")) header = ["Station", "Date", "g", "Std. dev."] for adj_station in survey.results: station_col.append(adj_station.station) date_col.append(survey.name) all_g.append(adj_station.g) sd_col.append(adj_station.sd) table = [station_col, date_col, all_g, sd_col] return header, table, dates if table_type == "full": for station in unique_station_names: station_g = [] g_header = [] # station_coords can not exist during testing, maybe other times also? try: lonc, latc, elevc = obstreemodel.station_coords[station] lon.append(f"{lonc:.5f}") lat.append(f"{latc:.5f}") elev.append(f"{elevc:.5f}") except TypeError: lat.append(-999) lon.append(-999) elev.append(-999) except KeyError: lat.append(-999) lon.append(-999) elev.append(-999) for survey in obstreemodel.checked_surveys(): g_header.append(survey.name + "_g") g_header.append(survey.name + "_sd") for adj_station in survey.results: if adj_station.station[:6] == station[:6]: station_g.append("{:0.1f}".format(adj_station.g)) station_g.append("{:0.1f}".format(adj_station.sd)) break else: station_g.append("-999") station_g.append("-999") all_g.append(station_g) for survey in obstreemodel.checked_surveys(): dates.append(dt.datetime.strptime(survey.name, "%Y-%m-%d")) diff_cumulative = [] diff_iteration = [] if table_type == "full": diff_cumulative_sd, diff_iteration_sd = [], [] if first: # Calculate both the between-survey change and the change from the initial survey initial_survey = survey.results iteration_reference = initial_survey reference_name = survey.name iteration_name = reference_name first = False else: if table_type == "simple": header1.append(f"{iteration_name}_to_{survey.name}") header2.append(f"{reference_name}_to_{survey.name}") elif table_type == "full": header1.append(f"dH2O_{iteration_name}_to_{survey.name}") header1.append(f"dH2O_sd_{iteration_name}_to_{survey.name}") header2.append(f"dH2O_{reference_name}_to_{survey.name}") header2.append(f"dH2O_sd_{reference_name}_to_{survey.name}") compare_survey = survey.results for station_name in unique_station_names: for initial_station in initial_survey: # Iterate through, look for matching station. 'if' statements deal # with Gravnet, which truncates station names to 6 characters if _equal_or_truncated(initial_station.station, station_name): break else: # If we get to the end without breaking, set it to None. initial_station = None for iteration_station in iteration_reference: if _equal_or_truncated(iteration_station.station, station_name): break else: # If we get to the end without breaking, set it to None. iteration_station = None for compare_station in compare_survey: if _equal_or_truncated(compare_station.station, station_name): break else: # If we get to the end without breaking, set it to None. compare_station = None if initial_station is not None and compare_station is not None: if table_type == "simple": diff_cumulative.append( "{:0.1f}".format(compare_station.g - initial_station.g) ) elif table_type == "full": diff_cumulative.append( "{:0.2f}".format( (compare_station.g - initial_station.g) / 41.9 ) ) var = ( np.sqrt(compare_station.sd ** 2 + initial_station.sd ** 2) / 41.9 ) if np.isnan(var): diff_cumulative_sd.append("-999") else: diff_cumulative_sd.append("{:0.2f}".format(var)) else: diff_cumulative.append("-999") if table_type == "full": diff_cumulative_sd.append("-999") # for sd column if iteration_station is not None and compare_station is not None: if table_type == "simple": diff_iteration.append( "{:0.1f}".format(compare_station.g - iteration_station.g) ) elif table_type == "full": diff_iteration.append( "{:0.2f}".format( (compare_station.g - iteration_station.g) / 41.9 ) ) var = ( np.sqrt(compare_station.sd ** 2 + iteration_station.sd ** 2) / 41.9 ) if np.isnan(var): diff_iteration_sd.append("-999") else: diff_iteration_sd.append("{:0.2f}".format(var)) else: diff_iteration.append("-999") if table_type == "full": diff_iteration_sd.append("-999") # for sd column out_table_iteration.append(diff_iteration) out_table_cumulative.append(diff_cumulative) if table_type == "full": out_table_iteration.append(diff_iteration_sd) out_table_cumulative.append(diff_cumulative_sd) iteration_reference = compare_survey iteration_name = survey.name out_table = ( [list(unique_station_names)] + out_table_iteration + out_table_cumulative ) if table_type == "simple": # deal with 2-survey case if header1 == header2: header = ["station"] + header1 table = out_table[:-1] else: header = ["station"] + header1 + header2 table = out_table return header, table, dates elif table_type == "full": # transpose table g = [list(i) for i in zip(*all_g)] table = [unique_station_names, lat, lon, elev] table += g # deal with 2-survey case if header1 == header2: header = ( ["Station", "Latitude", "Longitude", "Elevation"] + g_header + header1 ) table += out_table_iteration else: header = ( ["Station", "Latitude", "Longitude", "Elevation"] + g_header + header1 + header2 ) table += out_table_iteration table += out_table_cumulative # transpose back table = [list(i) for i in zip(*table)] return header, table, dates ``` #### File: gsadjust/drift/continuous.py ```python import logging import numpy as np from scipy.interpolate import UnivariateSpline from ..data import DeltaNormal N_PTS_IN_INTERPOLATION = 300 N_PTS_IN_EXTRAPOLATION = 200 def drift_continuous( data, plot_data, drift_x, drift_rate, method_key, tension_slider_value, extrapolation_type, weight_obs, min_time, max_time, loop_name, ): """Interpolate drift model: polynomial, spline, etc. at N_PTS_IN_INTERPOLATION points, plus N_PTS_IN_EXTRAPOLATION on either side. These values need to be relatively small for decent performance. Parameters ---------- data : list list of ObsTreeStations plot_data : list One entry per station. Each entry is a list, in the order: [[plot time values], [plot g values], station name, [g standard deviation], [time standard deviation]] drift_x : list Drift time observations (x location of points on bottom plot) drift_rate : list Drift rate observations (y location of points on bottom plot) method_key : {0, 1, 2, 3, 4} Indicates type of drift correction. 0: Constant 1: Spline 2-4: Polynomial (degree is one less than the value) tension_slider_value : int Controls tension on the interpolated spline extrapolation_type : {1, anything else} Controls how interpolation is extended from the outermost data. 1: Constant not 1: linearly extend the fitted curve at the same slope as the first/last 2 data points weight_obs : int Controls if observations are weighted when fitting a constant drift rate. Only used if drift is set to constant, not for other methods. 0: no weighting not 0: weighted min_time : float Time to extrapolate at the beginning. Should be the time of the first station occupation of the loop. max_time : float Time to extrapolate at the end. Should be the time of the last station occupation of the loop. loop_name : str loop name, for creating deltas Returns ------- delta_list : list List of deltas xp : ndarray For plotting the bottom plot yp : ndarray For plotting the bottom plot z_main : (mean_drift, sigma) These are displayed on the plot. """ xp = np.linspace(min(drift_x), max(drift_x), N_PTS_IN_INTERPOLATION) # constant drift_stats = None z_main = [] if method_key == 0: # constant drift correction if weight_obs == 0: mean_drift = sum(drift_rate) / len(drift_rate) sigma = np.std(drift_rate) / np.sqrt(len(drift_rate)) yp = np.zeros(xp.size) + mean_drift z_main = [(mean_drift, sigma)] # Weight observations according to NGA method else: drifts, drift_w = [], [] for station_data in plot_data: t, R, Rsd, tsd = ( station_data[0], station_data[1], station_data[3], station_data[4], ) if len(t) > 1: for i in range(1, len(t)): dr = R[i] - R[0] dt = (t[i] - t[0]) * 24 sdr = np.sqrt(Rsd[i] ** 2 + Rsd[0] ** 2) sdt = np.sqrt(tsd[i] ** 2 + tsd[0] ** 2) drifts.append(dr / dt) drift_sd = np.sqrt( sdr ** 2 / dt ** 2 + dr ** 2 * sdt ** 2 / dt ** 4 ) drift_w.append(1 / drift_sd ** 2) num = [] for idx, w in enumerate(drift_w): num.append(w * drifts[idx]) mean_drift = np.sum(num) / np.sum(drift_w) num = [] for idx, w in enumerate(drift_w): num.append(w * (drifts[idx] - mean_drift) ** 2) sigma_d = np.sqrt(np.sum(num) / ((len(drift_w) - 1) * np.sum(drift_w))) drift_stats = dict() drift_stats["t0"] = plot_data[0][0][0] drift_stats["sigma_d"] = sigma_d drift_stats["mean_drift"] = mean_drift yp = np.zeros(xp.size) + mean_drift z_main = [(mean_drift, sigma_d)] else: x0 = [f - np.min(drift_x) for f in drift_x] xp0 = [f - np.min(xp) for f in xp] idx = sorted(range(len(x0)), key=lambda xpt: x0[xpt]) x_sorted, drift_rate_sorted = [], [] for i in idx: x_sorted.append(x0[i]) drift_rate_sorted.append(drift_rate[i]) x0 = x_sorted drift_rate = drift_rate_sorted if method_key == 9: pass if method_key == 1: # spline try: s = UnivariateSpline(x0, drift_rate, k=3, s=tension_slider_value) xs = np.linspace(x0[0], x0[-1], N_PTS_IN_INTERPOLATION) yp = s(xs) logging.info( "Spline drift correction, tension={}".format(tension_slider_value) ) except Exception: raise IndexError else: # Polynomial interpolation. Degree is one less than the method key, e.g., # method_key == 2 is 1st order polynomial, etc. try: z_main = np.polyfit(x0, drift_rate, method_key - 1) p = np.poly1d(z_main) yp = p(xp0) logging.info( "Polynomial drift correction degree {}".format(method_key - 1) ) except np.linalg.LinAlgError as e: return np.linalg.LinAlgError # Method for extrapolating beyond fitted drift curve extent if extrapolation_type == 1: # constant new_xp = np.linspace(min_time, min(drift_x), N_PTS_IN_EXTRAPOLATION) new_xp = np.append(new_xp, xp) new_xp = np.append(new_xp, np.linspace(max(drift_x), max_time, 200)) xp = new_xp new_yp = np.ones(200) * yp[0] new_yp = np.append(new_yp, yp) new_yp = np.append(new_yp, np.ones(200) * yp[-1]) yp = new_yp else: # linear extrapolation from first two (and last two) points # get first two points x = xp[:2] y = yp[:2] z = np.polyfit(x, y, 1) p = np.poly1d(z) new_xp1 = np.linspace(min_time, min(drift_x), 200) yp1 = p(new_xp1) x = xp[-2:] y = yp[-2:] z = np.polyfit(x, y, 1) p = np.poly1d(z) new_xp2 = np.linspace(max(drift_x), max_time, 200) yp2 = p(new_xp2) xp_temp = np.append(new_xp1, xp) xp = np.append(xp_temp, new_xp2) yp_temp = np.append(yp1, yp) yp = np.append(yp_temp, yp2) delta_list = calc_cont_dg(xp, yp, data, loop_name, drift_stats) return delta_list, xp, yp, z_main def calc_cont_dg(xp, yp, data, loop_name, drift_stats): """ Calculates delta-g's while removing drift using the input drift model Parameters ---------- xp : ndarray times of continuous drift model yp : ndarray continuous drift model data : list list of ObsTreeStations loop_name : str drift_stats : dict or None If dict, observations are weighted; None if not Returns ------- list list of deltas """ first = True ypsum = [0] delta_list = [] for x, drift_rate in zip(xp, yp): if first: first = False prev_x = x else: prev_sum = ypsum[-1] interval = (x - prev_x) * 24 prev_x = x ypsum.append(prev_sum + drift_rate * interval) xp = xp.tolist() yp = ypsum # yp = yp.tolist() prev_station = data.pop(0) for station in data: # If using weighted dg if drift_stats: station.assigned_sd = np.sqrt( station.original_sd ** 2 + ((station.tmean - drift_stats["t0"]) * 24) ** 2 * drift_stats["sigma_d"] ** 2 + np.sqrt(station.t_stdev ** 2 + data[0].t_stdev ** 2) * drift_stats["mean_drift"] ** 2 ) else: station.assigned_sd = None drift1_idx = min( range(len(xp)), key=lambda i: abs(xp[i] - prev_station.tmean) ) drift1 = yp[drift1_idx] drift2_idx = min(range(len(xp)), key=lambda i: abs(xp[i] - station.tmean)) drift2 = yp[drift2_idx] delta = DeltaNormal( prev_station, station, driftcorr=drift2 - drift1, loop=loop_name ) delta_list.append(delta) prev_station = station return delta_list ``` #### File: gsadjust/file/write.py ```python import csv import logging import os import time from ..data.analysis import compute_gravity_change SEPARATOR = ' | ' def line_generator(lines): for line in lines: yield line + "\n" def export_metadata(obsTreeModel, data_path): """ Write metadata text to file. Useful for USGS data releases. The filename is generated automatically with a timestamp. Parameters ---------- obsTreeModel : MainProg data object data_path : str Path to write output Returns ------- filename or False """ filename = os.path.join( data_path, "GSadjust_MetadataText_" + time.strftime("%Y%m%d-%H%M") + ".txt" ) output_format = 'table' export_fn = { 'table': _export_metadata_table, 'text': _export_metadata_text, } fn = export_fn.get(output_format) lines = fn(obsTreeModel) if not lines: return False with open(filename, 'w') as fid: fid.write( "Attribute accuracy is evaluated from the least-squares network adjustment" " results. " ) fid.writelines(lines) return filename def _export_metadata_table(obsTreeModel): table = [ SEPARATOR.join([ "Survey", "Max. delta residual", "Max. datum residual", "Mean SD", "Deltas", "Deltas not used", "Datums", "Datums not used"]) ] sf_header_written = False for survey in obsTreeModel.checked_surveys(): if survey.adjustment.adjustmentresults.n_datums > 0: table.append( f"{survey.name} " f"{survey.adjustment.adjustmentresults.max_dg_residual:>5.1f} " f"{survey.adjustment.adjustmentresults.max_datum_residual:>5.1f} " f"{survey.adjustment.adjustmentresults.avg_stdev:>5.1f} " f"{survey.adjustment.adjustmentresults.n_deltas:>4} " f"{survey.adjustment.adjustmentresults.n_deltas_notused:>3} " f"{survey.adjustment.adjustmentresults.n_datums:>3} " f"{survey.adjustment.adjustmentresults.n_datums_notused:>3}" ) for survey in obsTreeModel.checked_surveys(): if survey.adjustment.adjustmentresults.n_datums > 0: if len(survey.adjustment.adjustmentresults.cal_dic) > 0: if not sf_header_written: table.append("Relative gravimeter scale factor(s)") table.append( "Survey | Meter | Scale factor | Scale factor S.D. (0 = specified S.F.)" ) sf_header_written = True for k, v in survey.adjustment.adjustmentresults.cal_dic.items(): table.append( "{} {:>6} {:>10.6f} {:>10.6f}".format( survey.name, k, v[0], v[1] ) ) elif survey.adjustment.adjustmentoptions.specify_cal_coeff: if not sf_header_written: table.append("Relative gravimeter scale factor(s)") table.append( "Survey | Meter | Scale factor | Scale factor S.D." ) sf_header_written = True for ( k, v, ) in survey.adjustment.adjustmentoptions.meter_cal_dict.items(): table.append( "{} {:>6} {:>10.6f} 0".format(survey.name, k, v) ) return line_generator(table) if table else False def _export_metadata_text(obsTreeModel): lines = [] for survey in obsTreeModel.checked_surveys(): if ( survey.adjustment.adjustmentresults.n_datums > 0 ): # check that there are results lines.append( f'For the {survey.name} survey, the minimum and maximum gravity-difference ' f'residuals were {survey.adjustment.adjustmentresults.min_dg_residual:0.1f} ' f'and {survey.adjustment.adjustmentresults.max_dg_residual:0.1f} ' f'microGal, respectively. The minimum and maximum datum (absolute-gravity station) residuals ' f'were {survey.adjustment.adjustmentresults.min_datum_residual:0.1f} and ' f'{survey.adjustment.adjustmentresults.max_datum_residual:0.1f} microGal, respectively. ' f'The average standard deviation of the adjusted gravity values at each station ' f'(derived from the network adjustment) was {survey.adjustment.adjustmentresults.avg_stdev:0.1f} microGal. ' ) # TODO: account for instance of 1 outlier ('1 was removed') datum_was_or_were, delta_was_or_were = 'were', 'were' outlier_or_outliers = 'outliers' if survey.adjustment.adjustmentresults.n_datums == 1: datum_was_or_were = 'was' if survey.adjustment.adjustmentresults.n_deltas_notused == 1: delta_was_or_were = 'was' outlier_or_outliers = 'an outlier' lines.append( '{} out of {} possible gravity differences were used in the adjustment ({} {} removed '.format( survey.adjustment.adjustmentresults.n_deltas, survey.adjustment.adjustmentresults.n_deltas_notused + survey.adjustment.adjustmentresults.n_deltas, survey.adjustment.adjustmentresults.n_deltas_notused, delta_was_or_were, ) ) lines.append( 'as {}). {} out of {} possible datum observations {} used. '.format( outlier_or_outliers, survey.adjustment.adjustmentresults.n_datums, survey.adjustment.adjustmentresults.n_datums_notused + survey.adjustment.adjustmentresults.n_datums, datum_was_or_were, ) ) logging.info('Metadata text written to file') return line_generator(lines) if lines else False def export_summary(obsTreeModel, data_path): """ Write summary of procesing to text file. Can be used to reproduce results. The filename is generated automatically with a timestamp. Parameters ---------- obsTreeModel : MainProg data object data_path : str Path to write output Returns ------- filename or False """ fn = os.path.join( data_path, "GSadjust_Summary_" + time.strftime("%Y%m%d-%H%M") + ".txt" ) # Write header info with open(fn, "w") as fid: fid.write( "# GSadjust processing summary, {}\n".format( time.strftime("%Y-%m-%d %H:%M") ) ) fid.write("# Station data\n") for survey in obsTreeModel.surveys(): for loop in survey.loops(): fid.write( "# Survey {}, Loop {}, Source file: {}\n".format( survey.name, loop.name, loop.source ) ) for iii in range(loop.rowCount()): station = loop.child(iii) fid.write("# " + station.summary_str) fid.write( "# Checked | Station | Raw gravity | ET correction | Corr." " gravity | Std. dev.\n" ) for sample_str in station.iter_samples(): fid.write(sample_str) fid.write("# Loop data\n") for survey in obsTreeModel.surveys(): for ii in range(survey.rowCount()): loop = survey.child(ii) fid.write( "# Survey {}, Loop {}, Source file: {}\n# ".format( survey.name, loop.name, loop.source ) ) fid.write(str(loop)) fid.write( "# Checked | Station1 | Station2 | Date | Time (UTC) | delta-g |" " Std. dev. | Drift correction\n" ) for delta in loop.deltas: fid.write( "{} {} {} {} {:.2f} {:.2f} {}\n".format( int(delta.checked / 2), delta.sta1, delta.sta2, delta.time_string(), delta.dg, delta.sd, delta.driftcorr, ) ) fid.write("# Adjustment data\n") for survey in obsTreeModel.surveys(): if survey.checkState() == 0: fid.write( "Survey {} not included in results (survey was unchecked)\n".format( survey.name ) ) else: fid.write("# Adjustment options, survey: {}\n".format(survey.name)) fid.write(str(survey.adjustment.adjustmentoptions)) fid.write( "# Deltas in the adjustment, survey: {}\n".format(survey.name) ) fid.write( "# Checked | Station1 | Station2 | Date | Time (UTC) | delta-g |" " Std. dev. | Std. dev. for adj. | Residual\n" ) for delta in survey.adjustment.deltas: fid.write("{}\n".format(delta)) fid.write( "# Datums in the adjustment, survey: {}\n".format(survey.name) ) fid.write( "# Checked | Station | Date | Gravity | Std. dev. | Residual\n" ) for datum in survey.adjustment.datums: fid.write("{}\n".format(datum)) fid.write("# Adjustment results, survey: {}\n".format(survey.name)) lines = line_generator(survey.adjustment.results_string()) fid.writelines(lines) fid.write("# Adjusted station values, survey: {}\n".format(survey.name)) fid.write("# Station | Gravity | Std. dev.\n") for adj_sta in survey.results: fid.write("{}\n".format(str(adj_sta))) return fn def export_data(obstreemodel, data_path): """ Export gravity change table to csv file The filename is generated automatically with a timestamp. Parameters ---------- obstreemodel : MainProg data object data_path : str Path to write output Returns ------- filename or False """ fn = os.path.join( data_path, "GSadjust_TabularData_" + time.strftime("%Y%m%d-%H%M") + ".csv" ) table = compute_gravity_change(obstreemodel, table_type="full") with open(fn, "w", newline="\n") as fid: wr = csv.writer(fid) wr.writerow(table[0]) for row in table[1]: wr.writerow(row) return fn ``` #### File: gui/tabs/drift.py ```python import datetime as dt import logging import numpy as np from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.dates import DateFormatter, date2num from matplotlib.figure import Figure from ..messages import MessageBox from ..widgets import IncrMinuteTimeEdit from ...data import DeltaList, DeltaNormal from ...drift import drift_continuous, drift_roman from ...models import ( DeltaTableModel, SamplesTableModel, TareTableModel, ) from ...obstree import ObsTreeLoop ########################################################################### # GSadjust drift tab ########################################################################### class TabDrift(QtWidgets.QWidget): station_label = None def __init__(self, parent): super(TabDrift, self).__init__() self.parent = parent self.dpi = 100 self.popup_menu = QtWidgets.QMenu(None) # Main window layout_main = QtWidgets.QVBoxLayout() main_vsplitter_window = QtWidgets.QSplitter(Qt.Vertical, self) # Setup drift figures (Roman and Continuous). Only one will be shown at a time. # Drift figure: default and roman self.drift_window = QtWidgets.QSplitter(Qt.Horizontal, self) self.drift_fig = Figure((3.0, 5.0), dpi=self.dpi, facecolor="white") self.drift_single_canvas = FigureCanvas(self.drift_fig) self.drift_fig.subplots_adjust(wspace=0.3) self.axes_drift_single = self.drift_fig.add_subplot(111) # Drift figure: continuous # Plot panel self.drift_cont_plotpanel = QtWidgets.QSplitter(Qt.Vertical, self) # Top plot - lines self.drift_cont_figtop = Figure((3.0, 5.0), dpi=self.dpi, facecolor="white") self.drift_cont_canvastop = FigureCanvas(self.drift_cont_figtop) self.drift_cont_figtop.subplots_adjust(wspace=0.3) self.axes_drift_cont_upper = self.drift_cont_figtop.add_subplot(111) # Bottom plot - drift curves self.drift_cont_figbot = Figure((3.0, 5.0), dpi=self.dpi, facecolor="white") self.drift_cont_canvasbot = FigureCanvas(self.drift_cont_figbot) self.drift_cont_figbot.subplots_adjust(wspace=0.3) self.axes_drift_cont_lower = self.drift_cont_figbot.add_subplot(111) # Drift tab tables self.dg_avg_table = DeltaTableModel() self.delta_view = QtWidgets.QTableView() self.cont_label_widget = QtWidgets.QWidget() ####################################################################### # Widgets for right-hand display of drift controls/options ####################################################################### # Drift method widget self.driftmethod_combobox_key = { 0: "None", 1: "Network adjustment", 2: "Roman (interpolate)", 3: "Continuous model", } self.driftmethod_combobox = QtWidgets.QComboBox() self.driftmethod_combobox.activated.connect(self.set_drift_method) for item in self.driftmethod_combobox_key.values(): self.driftmethod_combobox.addItem(item) # Widget to remove dg-observations with a long elapsed time in between self.drift_screen_elapsed_time = CustomCheckBox( "Max. time between repeats (hh:mm)" ) self.drift_screen_elapsed_time.setChecked(False) self.drift_screen_elapsed_time.clicked.connect(self.time_extent_changed) self.drift_time_spinner = IncrMinuteTimeEdit(QtCore.QTime(1, 0)) self.drift_time_spinner.timeChanged.connect(self.time_extent_changed) self.drift_time_spinner.setDisplayFormat("hh:mm") # Widget to add horizontal-extent lines to drift-rate plot self.drift_plot_hz_extent = QtWidgets.QCheckBox( "Show time-extent of drift observation" ) self.drift_plot_hz_extent.setChecked(False) self.drift_plot_hz_extent.stateChanged.connect(self.plot_drift) self.drift_plot_weighted = CustomCheckBox("Weight drift observations") self.drift_plot_weighted.setChecked(False) self.drift_plot_weighted.clicked.connect(self.update_weighted) self.tension_slider = QtWidgets.QSlider(Qt.Horizontal) self.tension_slider.setRange(10, 2500) self.tension_slider.setValue(1250) self.tension_slider.setEnabled(False) self.tension_slider.valueChanged.connect(self.update_tension) self.tension_label = QtWidgets.QLabel() self.tension_label.setText("{:2.2f}".format(self.tension_slider.value())) self.tension_label.setAlignment(Qt.AlignCenter) self.drift_polydegree_combobox_key = { 0: "Constant", 1: "Spline", 2: "1st order polynomial", 3: "2nd order polynomial", 4: "3rd order polynomial", } self.drift_polydegree_combobox = QtWidgets.QComboBox() self.drift_polydegree_combobox.activated.connect(self.drift_combobox_updated) for item in self.drift_polydegree_combobox_key.values(): self.drift_polydegree_combobox.addItem(item) self.drift_cont_behaviorcombobox_key = {0: "Extrapolate", 1: "Constant"} self.drift_cont_startendcombobox = QtWidgets.QComboBox() self.drift_cont_startendcombobox.activated.connect(self.drift_combobox_updated) for item in self.drift_cont_behaviorcombobox_key.values(): self.drift_cont_startendcombobox.addItem(item) self.offset_slider = QtWidgets.QSlider(Qt.Horizontal) self.offset_slider.setRange(0, 10) self.offset_slider.setValue(0) self.offset_slider.valueChanged.connect(self.plot_drift) drift_controls = QtWidgets.QWidget() drift_cont_control_layout = QtWidgets.QHBoxLayout() drift_control_sublayout = QtWidgets.QVBoxLayout() grid_widget = QtWidgets.QWidget() grid = QtWidgets.QGridLayout() grid.addWidget(QtWidgets.QLabel("Drift correction method"), 0, 0) grid.addWidget(self.driftmethod_combobox, 0, 1) grid.addWidget(QtWidgets.QLabel("Drift model type"), 1, 0) grid.addWidget(self.drift_polydegree_combobox, 1, 1) grid.addWidget(QtWidgets.QLabel("Behavior at start/end:"), 2, 0) grid.addWidget(self.drift_cont_startendcombobox, 2, 1) grid.addWidget(self.drift_screen_elapsed_time, 3, 0) grid.addWidget(self.drift_time_spinner, 3, 1) grid.addWidget(self.drift_plot_hz_extent, 4, 0) grid.addWidget(self.drift_plot_weighted, 5, 0) grid.addWidget(QtWidgets.QLabel("Vertical line offset"), 6, 0) grid.addWidget(self.offset_slider, 6, 1) grid.addWidget(QtWidgets.QLabel("Spline tension:"), 7, 0) grid.addWidget(self.tension_slider, 7, 1) grid.addWidget(self.tension_label, 7, 2) grid_widget.setLayout(grid) drift_control_sublayout.addWidget(grid_widget) self.tare_view = QtWidgets.QTableView() # self.tare_view.clicked.connect(self.update_tares) self.tare_view.setContextMenuPolicy(Qt.CustomContextMenu) self.tare_view.customContextMenuRequested.connect(self.tare_context_menu) self.tare_view.setModel(TareTableModel()) # # self.tare_proxy_model = QtCore.QSortFilterProxyModel(self) # self.tare_view.setModel(self.tare_proxy_model) # self.tare_view.setSortingEnabled(True) self.tare_popup_menu = QtWidgets.QMenu("tare Popup Menu", self) self.mnDeleteTare = QtWidgets.QAction("Delete tare", self) self.mnDeleteTare.triggered.connect(self.parent.delete_tare) lbl = QtWidgets.QLabel("Tares") lbl.setFont(QtGui.QFont("Times", 11, QtGui.QFont.Bold)) lbl.setFixedHeight(30) drift_control_sublayout.addItem(QtWidgets.QSpacerItem(40, 42)) drift_control_sublayout.addWidget(lbl) drift_control_sublayout.addWidget(self.tare_view) control_subwidget = QtWidgets.QWidget() control_subwidget.setLayout(drift_control_sublayout) drift_cont_control_layout.addWidget(control_subwidget) drift_cont_control_layout.addStretch() drift_controls.setLayout(drift_cont_control_layout) drift_controls.setFixedWidth(500) self.drift_cont_plotpanel.addWidget(self.drift_cont_canvastop) self.drift_cont_plotpanel.addWidget(self.drift_cont_canvasbot) self.drift_window.addWidget(self.drift_single_canvas) self.drift_window.addWidget(self.drift_cont_plotpanel) self.drift_window.addWidget(drift_controls) self.drift_window.addWidget(QtWidgets.QWidget()) main_vsplitter_window.addWidget(self.drift_window) self.drift_single_canvas.hide() lbls = QtWidgets.QHBoxLayout() lbl1 = QtWidgets.QLabel("Relative-gravity differences (delta-g's)", self) lbls.addWidget(lbl1) self.cont_label_widget.setLayout(lbls) self.cont_label_widget.setFixedHeight(30) main_vsplitter_window.addWidget(self.cont_label_widget) self.cont_label_widget.hide() self.roman_label_widget = QtWidgets.QWidget() lbls = QtWidgets.QHBoxLayout() lbl1 = QtWidgets.QLabel("Relative-gravity differences (delta-g's)", self) lbl2 = QtWidgets.QLabel("Average gravity differences", self) lbls.addWidget(lbl1) lbls.addWidget(lbl2) self.roman_label_widget.setLayout(lbls) self.roman_label_widget.setFixedHeight(30) main_vsplitter_window.addWidget(self.roman_label_widget) self.roman_label_widget.hide() # dg table (Roman method) self.dg_samples_proxy_model = QtCore.QSortFilterProxyModel(self) self.dg_samples_proxy_model.setSourceModel(SamplesTableModel()) self.dg_samples_view = QtWidgets.QTableView() self.dg_samples_view.setModel(self.dg_samples_proxy_model) self.dg_samples_view.setSortingEnabled(True) # self.delta_proxy_model = QtCore.QSortFilterProxyModel(self) # self.delta_view.setModel(self.delta_proxy_model) # self.delta_view.setSortingEnabled(True) self.delta_view.setModel(self.dg_avg_table) main_hsplitter_window = QtWidgets.QSplitter(Qt.Horizontal, self) main_hsplitter_window.addWidget(self.dg_samples_view) main_hsplitter_window.addWidget(self.delta_view) main_hsplitter_window.setMinimumHeight(300) main_vsplitter_window.addWidget(main_hsplitter_window) self.delta_view.show() self.dg_samples_view.hide() layout_main.addWidget(main_vsplitter_window) self.setLayout(layout_main) self.reset() def reset(self): self.driftmethod_combobox.setCurrentIndex(0) self.drift_polydegree_combobox.setCurrentIndex(0) self.axes_drift_single.cla() self.axes_drift_cont_lower.clear() self.axes_drift_cont_upper.clear() self.axes_drift_cont_upper.figure.canvas.draw() self.axes_drift_cont_lower.figure.canvas.draw() self.axes_drift_single.figure.canvas.draw() self.delta_view.setModel(DeltaTableModel()) self.dg_samples_view.model().sourceModel().init_data([]) self.tare_view.setModel(TareTableModel()) # This section provides the right-click context menu in the continuous drift lower plot - not implemented # def drift_newpoint_picked(self, event): # if event.button == 3: # self.drift_rate_context_menu() # # def drift_point_picked(self, event): # if event.mouseevent.button == 3: # self.drift_rate_context_menu(from_pick=True) # # def drift_rate_context_menu(self, from_pick=False): # """ # Not functional (other than showing the menu). Should allow points to be excluded, or artificial points added, # to the continuous drift correction. # :param from_pick: Boolean, True if a point was picked # """ # if from_pick: # add = QtWidgets.QAction(QtGui.QIcon(""), "Add point to drift model", self, # triggered=self.drift_cont_addpoint, # enabled=False) # remove = QtWidgets.QAction(QtGui.QIcon(""), "Remove point from model", self, # triggered=self.drift_cont_removepoint) # self.popup_menu.addAction(remove) # else: # add = QtWidgets.QAction(QtGui.QIcon(""), "Add point to drift model", self, # triggered=self.drift_cont_addpoint) # remove = QtWidgets.QAction(QtGui.QIcon(""), "Remove point from model", self, # triggered=self.drift_cont_removepoint, # enabled=False) # # self.popup_menu.addAction(add) # self.popup_menu.addAction(remove) # cursor = QtGui.QCursor() # self.popup_menu.popup(cursor.pos()) # # def drift_cont_removepoint(self): # pass # # def drift_cont_addpoint(self): # pass def time_extent_changed(self): obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) hour = self.drift_time_spinner.dateTime().time().hour() minute = self.drift_time_spinner.dateTime().time().minute() obstreeloop.time_extent_time = (hour, minute) obstreeloop.time_extent_check = self.drift_screen_elapsed_time.checkState() self.parent.update_drift_tables_and_plots() def show_line_label(self, event, axes): """ Shows the station name in the upper left of the drift plot when a line is clicked. Parameters ---------- event : Matplotlib event axes : Current axes (differs for none|netadj|roman vs continuous) """ thisline = event.artist if self.station_label is not None: self.station_label.set_text("") self.station_label = axes.text( 0.05, 0.95, thisline.name, horizontalalignment="center", verticalalignment="center", transform=axes.transAxes, ) axes.figure.canvas.draw() @staticmethod def screen_for_elapsed_time(plot_data, elapsed_time): """ For exclude repeat observations with a lot of elapsed time between occupations. Parameters ---------- plot_data : list List of lists with plot data elapsed_time : int Maximum time to be considered a repeat, in minutes Returns ------- List list with same format as plot_data, missing the data that were excluded """ new_data = [] for line in plot_data: x = [x for x in line[0]] y = [y for y in line[1]] new_x, new_y = [], [] i = 0 for i in range(1, len(x)): x_diff = x[i] - x[i - 1] if x_diff * 1440 < elapsed_time: # Check that there's at least two points in the new line segment if len(new_x) == 0: new_x += [x[i - 1], x[i]] new_y += [y[i - 1], y[i]] elif abs(new_x[-1] - x[i - 1]) < 0.0001: new_x.append(x[i]) new_y.append(y[i]) else: new_data.append([new_x, new_y, line[2]]) new_x = [x[i - 1], x[i]] new_y = [y[i - 1], y[i]] if len(new_x) > 0: new_data.append([new_x, new_y, line[2]]) return new_data def update_weighted(self): """ Callback for weight drift observations """ obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) if obstreeloop: obstreeloop.drift_cont_weighting = self.drift_plot_weighted.checkState() self.drift_plot_weighted.update_drift_plots.emit() def update_tension(self): """ Callback for spline tension slider """ self.tension_label.setText(str(self.tension_slider.value())) model = self.plot_drift() obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) self.update_delta_model(obstreeloop.drift_method, model) self.parent.update_drift_tables_and_plots() @staticmethod def calc_none_dg(data, loop_name): """ Calculates delta-g's from successive gravity observations Parameter --------- data : list list of stations from which to calculate delta-g Returns ------- list List of deltas """ deltas = [] # Take the first station from the list, or None if there aren't any. prev_station = data.pop(0) if data else None for station in data: delta = DeltaNormal(prev_station, station, driftcorr=0.0, loop=loop_name) deltas.insert(0, delta) prev_station = station return deltas def calc_netadj_dg(self, data, loop_name): """ Calculates delta-g's from successive gravity observations Parameters ---------- data : list list of stations from which to calculate delta-g loop_name : str Stored with Delta object, used later in network adjustment Returns ------- list List of deltas """ deltas = [] # Take the first station from the list, or None if there aren't any. prev_station = data.pop(0) if data else None for station in data: delta = DeltaNormal( prev_station, station, driftcorr="Adj.", ls_drift=(loop_name, self.drift_polydegree_combobox.currentIndex() - 1), loop=loop_name, ) deltas.insert(0, delta) prev_station = station return deltas @staticmethod def calc_roman_dg(data, loop_name, time_threshold=None): """ Caculates delta-g between three station occupations (one station visited once, one station visited twice) by interpolating drift at the latter station. Accommodating the time threshold is tricky. for the plotting to be correct the initial g subtracted from each measurement has to vary. Parameters ---------- data : list List of stations loop_name : str Loop name, stored in the delta objects to be created Returns ------- (roman_dg_model, avg_deltas, vert_lines) tuple with 2 pyqt models (for dg samples and average dg) and plot data for vertical lines """ # assumes stations in data are in chronological order sample_deltas, vert_lines = drift_roman(data, loop_name, time_threshold) # If there is more than one delta-g between a given station pair, average them # Setup dict to store averages '(sta1, sta2)':[g] avg_dg = dict() unique_pairs = set() for i, delta in enumerate(sample_deltas): delta_key1 = (delta.station1.station_name, delta.station2[0].station_name) delta_key2 = (delta.station2[0].station_name, delta.station1.station_name) if delta_key1 not in unique_pairs and delta_key2 not in unique_pairs: unique_pairs.add(delta_key1) avg_dg[delta_key1] = [delta] for ii in range(i + 1, len(sample_deltas)): testdelta = sample_deltas[ii] testdelta_key1 = ( testdelta.station1.station_name, testdelta.station2[0].station_name, ) testdelta_key2 = ( testdelta.station2[0].station_name, testdelta.station1.station_name, ) if delta_key1 == testdelta_key1 or delta_key1 == testdelta_key2: avg_dg[delta_key1].append(testdelta) avg_deltas = [] for station_pair in avg_dg.items(): avg_deltas.append( DeltaList(None, station_pair[1], loop=loop_name, driftcorr="Roman") ) return sample_deltas, avg_deltas, vert_lines @staticmethod def plot_tares(axes, obstreeloop): """ Plots a vertical line at the time of a tare Parameters ---------- axes : Matpotlib Axes object obstreeloop : ObsTreeLoop """ ylim = axes.get_ylim() if len(obstreeloop.tares) > 0: for tare in obstreeloop.tares: x_time = tare.datetime axes.plot([x_time, x_time], [ylim[0], ylim[1]], "gray") axes.set_ylim(ylim) axes.figure.canvas.draw() def clear_axes(self): """ Clears plot axes """ self.axes_drift_single.cla() self.axes_drift_cont_lower.clear() self.axes_drift_cont_upper.clear() self.drift_single_canvas.draw() self.drift_cont_canvasbot.draw() self.drift_cont_canvastop.draw() def plot_drift(self, obstreeloop=None, update=True): """ Function to plot drift. Typically called from self.set_drift_method(). Parameters ---------- obstreeloop : ObsTreeLoop Can either specify a loop, or by default use the currentLoopIndex. update : bool True if gui elements should be updated . (Better performance if they're only updated when visible) """ QtWidgets.QApplication.setOverrideCursor(Qt.WaitCursor) offset = 0 if type(obstreeloop) is not ObsTreeLoop: obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) obstreesurvey = obstreeloop.parent() drift_type = obstreeloop.drift_method plot_data = obstreeloop.get_data_for_plot() self.parent.obsTreeModel.reset_assigned_sd() # Check that there's station repeats. If there isn't, skip the plotting but # we still want to calculate delta-g's (except for Roman correction). no_data = True if any([True for x in plot_data if len(x[0]) > 1]): no_data = False data = obstreeloop.checked_stations() # Only include drift observations that meet time criteria time_threshold = None if self.drift_screen_elapsed_time.isChecked(): hour = self.drift_time_spinner.dateTime().time().hour() minute = self.drift_time_spinner.dateTime().time().minute() time_threshold = hour * 60 + minute plot_data = self.screen_for_elapsed_time( plot_data, elapsed_time=time_threshold ) if drift_type == "none" or drift_type == "netadj": # none, netadj, and roman all use axes_drift_single deltas = None if update: self.axes_drift_single.cla() logging.info("Plotting drift - no correction, Loop " + obstreeloop.name) # Get data for plotting for line in plot_data: if len(line[0]) > 1: # Make values relative to first station value y = [f - line[1][0] + offset for f in line[1]] x = [f for f in line[0]] if update: a = self.axes_drift_single.plot(x, y, ".-", picker=5) a[0].name = line[2] offset += self.offset_slider.value() # Plot if plot_data and not no_data and update: self.axes_drift_single.xaxis.set_major_formatter(DateFormatter("%H:%M")) self.axes_drift_single.yaxis.set_label_text( "Change in gravity since initial \nstation occupation, " + "in microGal" ) self.drift_fig.canvas.mpl_connect( "pick_event", lambda event: self.show_line_label(event, self.axes_drift_single), ) self.plot_tares(self.axes_drift_single, obstreeloop) elif update: self.axes_drift_single.cla() self.axes_drift_single.text(0.35, 0.5, "NO STATION REPEATS") if update: self.axes_drift_single.set_title( "Survey " + obstreesurvey.name + ", Loop " + obstreeloop.name ) self.drift_single_canvas.draw() if drift_type == "none": deltas = self.calc_none_dg(data, obstreeloop.name) elif drift_type == "netadj": deltas = self.calc_netadj_dg(data, obstreeloop.name) QtWidgets.QApplication.restoreOverrideCursor() elif drift_type == "continuous": logging.info("Plotting continuous drift, Loop " + obstreeloop.name) self.axes_drift_cont_lower.clear() self.axes_drift_cont_upper.clear() # Get data for plotting min_time = 100000000 max_time = 0 drift_rate, drift_time, drift_x = [], [], [] for line in plot_data: # x and y are the time and g values for each station. # Make values relative to first station value y = [f - line[1][0] + offset for f in line[1]] x = [f for f in line[0]] if min(x) < min_time: min_time = min(x) if max(x) > max_time: max_time = max(x) # Only bother plotting if there's more than one station (don't do # this otherwise, otherwise singleton stations at the start or end of # a survey won't be included when setting the min_time/max_time if len(line[0]) > 1: # Loop over the line vertices for idx, obs in enumerate(y): y[idx] = obs + offset # get drift rate for bottom plot if idx >= 1: dr = (y[idx] - y[idx - 1]) / ( (x[idx] - x[idx - 1]) * 24 ) # drift rate drift_rate.append(dr) xmean = np.mean([x[idx], x[idx - 1]]) drift_x.append(xmean) # try: drift_time.append( dt.datetime.utcfromtimestamp(xmean * 86400.0) ) # Plot horizontal extent if self.drift_plot_hz_extent.isChecked() and update: self.axes_drift_cont_lower.plot( [x[idx], x[idx - 1]], [dr, dr], "-", color="0.5" ) if update: a = self.axes_drift_cont_upper.plot(x, y, ".-", picker=5) a[0].name = line[2] offset += self.offset_slider.value() # Plot if plot_data: if update: self.axes_drift_cont_upper.xaxis.set_major_formatter( DateFormatter("%H:%M") ) self.axes_drift_cont_lower.xaxis.set_major_formatter( DateFormatter("%H:%M") ) self.axes_drift_cont_lower.plot( drift_time, drift_rate, ".", picker=2 ) xticks = self.axes_drift_cont_upper.get_xticks() self.axes_drift_cont_lower.set_xticks(xticks) xlims = self.axes_drift_cont_upper.get_xlim() self.axes_drift_cont_lower.set_xlim(xlims) self.axes_drift_cont_lower.yaxis.set_label_text( "Drift rate,\nin microGal/hr" ) self.axes_drift_cont_upper.yaxis.set_label_text( "Drift, in microGal\n(arbitrary offset)" ) self.drift_cont_figtop.canvas.mpl_connect( "pick_event", lambda event: self.show_line_label( event, self.axes_drift_cont_upper ), ) # drift_point_picked and drift_newpoint_picked are for # adding/removing points to continuous drift curve - not yet # implemented. # self.drift_cont_figbot.canvas.mpl_connect( # 'pick_event', self.drift_point_picked) # self.drift_cont_figbot.canvas.mpl_connect( # 'button_release_event', self.drift_newpoint_picked) try: z = [] deltas, xp, yp, z = drift_continuous( data, plot_data, drift_x, drift_rate, self.drift_polydegree_combobox.currentIndex(), self.tension_slider.value(), self.drift_cont_startendcombobox.currentIndex(), self.drift_plot_weighted.checkState(), min_time, max_time, obstreeloop.name, ) if update: self.plot_tares(self.axes_drift_cont_lower, obstreeloop) self.plot_tares(self.axes_drift_cont_upper, obstreeloop) ln = self.axes_drift_cont_lower.plot(xp, yp, "k-") if any(z): textcolor = "k" # type(z) = ndarray if constant drift if len(z) == 1 and type(z[0]) is tuple: mean_drift, sigma = z[0][0], z[0][1] tstat = mean_drift / sigma if ( np.abs(tstat) > 4.303 ): # Critical value for 95% CI, 2 DOF, 2-tailed t-test textcolor = "r" z = [mean_drift] format_str = { 1: "{:.2f} µGal/hr", 2: "{:.2f} µGal/hr per day", 3: "{:.2f}*t^2 {:+.2f}*t {:+.2f}", 4: "{:.2f}*t^3 {:+.2f}*t^2 {:+.2f}*t {:+.2f}", }.get(len(z), "") annot_text = format_str.format(*z) annot = self.axes_drift_cont_lower.annotate( annot_text, xy=(737287, 45), xytext=(-20, 20), textcoords="offset points", bbox=dict(boxstyle="round", fc="w"), color=textcolor, ) # arrowprops=dict(arrowstyle="->")) annot.set_visible(False) def update_annot(ind): x, y = ln[0].get_data() annot.xy = (x[ind["ind"][0]], y[ind["ind"][0]]) def hover(event): vis = annot.get_visible() if event.inaxes == self.axes_drift_cont_lower: cont, ind = ln[0].contains(event) if cont: update_annot(ind) annot.set_visible(True) # fig.canvas.draw_idle() else: if vis: annot.set_visible(False) self.drift_cont_figbot.canvas.draw_idle() self.drift_cont_figbot.canvas.mpl_connect( "motion_notify_event", hover ) self.axes_drift_cont_lower.set_ylim( np.round(min(drift_rate), 0) - 5, np.round(max(drift_rate), 0) + 5, ) self.axes_drift_cont_upper.set_title( "Survey " + obstreesurvey.name + ", Loop " + obstreeloop.name ) self.drift_cont_canvasbot.draw() self.drift_cont_canvastop.draw() QtWidgets.QApplication.restoreOverrideCursor() except IndexError as e: if self.drift_polydegree_combobox.currentIndex() == 1: MessageBox.warning( "Error", "Insufficient drift observations for spline method", ) else: MessageBox.warning("Unknown error", "Index error") self.drift_polydegree_combobox.setCurrentIndex(0) except np.linalg.LinAlgError as e: logging.error(e) MessageBox.warning( "Error", "Insufficient drift observations for polynomial method", ) self.drift_polydegree_combobox.setCurrentIndex(0) obstreeloop.drift_cont_method = 0 else: MessageBox.warning("No data available for plotting", "Plot error") # Plots vertical dashed lines showing delta-g's elif drift_type == "roman": logging.info("Plotting Roman drift, Loop " + obstreeloop.name) if update: self.axes_drift_single.cla() deltas = self.calc_roman_dg(data, obstreeloop.name, time_threshold) for line in plot_data: if len(line[0]) > 1: # Make values relative to first station value y = [f - line[1][0] for f in line[1]] x = [dt.datetime.utcfromtimestamp(f * 86400.0) for f in line[0]] a = self.axes_drift_single.plot(x, y, ".-", picker=5) a[0].name = line[2] for line in deltas[2]: if update: self.axes_drift_single.plot(line[0], line[1], "--") if plot_data and update: self.axes_drift_single.xaxis.set_major_formatter(DateFormatter("%H:%M")) if update: self.axes_drift_single.yaxis.set_label_text( "Change in gravity since initial \nstation occupation, " + "in microGal" ) self.drift_fig.canvas.mpl_connect( "pick_event", lambda event: self.show_line_label(event, self.axes_drift_single), ) self.axes_drift_single.set_title( "Survey " + obstreesurvey.name + ", Loop " + obstreeloop.name ) self.drift_single_canvas.draw() QtWidgets.QApplication.restoreOverrideCursor() QtWidgets.QApplication.restoreOverrideCursor() return deltas @staticmethod def show_all_columns(view): """ Helper function to reset columns in a view Parameters ---------- delta_view : QTableView """ model = view.model() for i in range(model.columnCount()): view.showColumn(i) def set_drift_method(self, update=True, update_adjust_tables=True): """ Called from update_drift_tables_and_plots + callback from GUI. Initiates plotting on drift tab. Parameters ---------- update : Boolean or int Controls if plots are updated. For performance, it's set to false when loading a file. It is an int when true because it's sent directly from a callback. update_adjust_tables : bool We don't want to update the adjust tables when loading a workspace (we want the deltas to be generated from the loop/station data) """ if ( self.parent.index_current_loop is None ): # Prevents crashing if no data are loaded return if type(update) is int: update = True obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) method_key = self.driftmethod_combobox.currentIndex() inv_drift_lookup = {v: k for k, v in self.parent.drift_lookup.items()} method = inv_drift_lookup[method_key] logging.info("Drift method set to " + method) obstreeloop.drift_method = method # These control the visibility of different tables # update is an int (index of menu item) when this function is called from the # menu-item callback if update: width = self.drift_window.sizes() if method == "continuous": self.drift_polydegree_combobox.setCurrentIndex( obstreeloop.drift_cont_method ) self.drift_cont_startendcombobox.setCurrentIndex( obstreeloop.drift_cont_startend ) self.drift_plot_weighted.setCheckState( obstreeloop.drift_cont_weighting ) self.drift_screen_elapsed_time.setCheckState( obstreeloop.time_extent_check ) self.drift_time_spinner.setTime( QtCore.QTime(*obstreeloop.time_extent_time) ) self.drift_continuous() else: self.disable_weighted_checkbox() if method == "none": self.drift_none() if method == "netadj": self.drift_polydegree_combobox.setCurrentIndex( obstreeloop.drift_netadj_method ) self.drift_adjust() if method == "roman": self.drift_screen_elapsed_time.setCheckState( obstreeloop.time_extent_check ) self.drift_time_spinner.setTime( QtCore.QTime(*obstreeloop.time_extent_time) ) self.drift_roman() self.set_width(width, method) model = self.plot_drift(update=update) self.update_delta_model(method, model) # Don't want to update if only switching between loops if update_adjust_tables: self.update_deltas_on_adj_tab(obstreeloop) self.parent.adjust_update_required() # When loading a workspace, deltas[0] will be a dict, meaning # we don't want to update the adjust tables at this point. # Otherwise the normal operation when the plots are update: try: if ( type( self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_survey ).deltas[0] ) != dict ): self.parent.update_adjust_tables() except IndexError: pass except TypeError: self.parent.update_adjust_tables() def update_deltas_on_adj_tab(self, obstreeloop): """ After creating/modifying deltas on the drift tab, this clears the deltas for that loop from the adjust tab, and replaces them with the new deltas. Parameters ---------- obstreeloop : ObsTreeLoop """ survey = obstreeloop.parent() # Remove old deltas try: loop_present = obstreeloop.name in survey.loops_with_deltas() if loop_present: # Remove the old deltas that correspond to this loop for delta in reversed(survey.deltas): try: if delta["loop"] == obstreeloop.name: survey.deltas.remove(delta) except TypeError: if delta.loop == obstreeloop.name: survey.deltas.remove(delta) survey.deltas += obstreeloop.deltas self.parent.set_adj_sd( survey, survey.adjustment.adjustmentoptions, loop=obstreeloop ) except TypeError: # No loops with deltas pass def set_width(self, width, method): """ Maintains relative width of plot windows when switching between drift-correction methods. Parameters ---------- width : list Width of the elements in the middle window of the drift tab, in pixels [single plot, double continuous plot, tools, spacer] Either element 1 or 2 will be set to 0 depending on the drift correction method. method : {"none", "netadj", "roman", "continuous"} Drift correction method, controls which plots are shown """ if all(w == 0 for w in width): # default is [0, 0, 0] self.drift_window.setSizes([900, 0, 500, 2000]) return if method == "none" or method == "netadj" or method == "roman": # Order so larger of first two values is first. width[:2] = sorted(width[:2], reverse=True) else: # Order so larger of first two values is last. width[:2] = sorted(width[:2]) self.drift_window.setSizes(width) def update_delta_model(self, method, model): """ Show appropriate delta model for the selected loop. This method takes the model generated by plot_drift() and assigns it to the delta_view on the drift tab. Parameters ---------- method : {"none", "netadj", "roman", "continuous"} If 'roman', show sample and average models. Otherwise, show a single model. model : list or tuple A tuple of lists (Roman method) or a list of deltas (other methods) """ obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) if model: if method == "roman": # Hide drift correction, std_for_adj, and residual columns obstreeloop.deltas = model[1] self.dg_samples_view.model().sourceModel().init_data(model[0]) self.delta_view.model().init_data(model[1]) self.show_all_columns(self.delta_view) self.delta_view.hideColumn(2) self.delta_view.hideColumn(5) self.delta_view.hideColumn(7) self.delta_view.hideColumn(8) else: obstreeloop.deltas = model self.delta_view.model().init_data(model) self.tare_view.model().init_data(obstreeloop.tares) # Hide std_for_adj and residual columns self.show_all_columns(self.delta_view) self.delta_view.hideColumn(2) self.delta_view.hideColumn(7) self.delta_view.hideColumn(8) def tare_context_menu(self, point): """ Right-click context menu on tare table Parameters ---------- point : PyQt reference to click point Determines where to show popup. """ selected = self.tare_view.selectedIndexes() if selected: self.tare_popup_menu.addAction(self.mnDeleteTare) self.tare_popup_menu.exec_(self.tare_view.mapToGlobal(point)) def drift_adjust(self): """ Update which PyQt tables are shown """ self.drift_single_canvas.show() self.drift_single_canvas.setMinimumWidth(700) self.drift_cont_plotpanel.hide() self.cont_label_widget.show() self.cont_label_widget.setMinimumHeight(50) self.roman_label_widget.hide() self.drift_window.setMinimumHeight(200) self.tension_slider.setEnabled(False) # Disable the 'none' and 'spline' options, they're not relevant self.drift_polydegree_combobox.model().item(0).setEnabled(False) self.drift_polydegree_combobox.model().item(1).setEnabled(False) self.drift_polydegree_combobox.setEnabled(True) self.drift_cont_startendcombobox.setEnabled(False) self.drift_plot_hz_extent.setEnabled(False) self.drift_plot_weighted.setEnabled(False) # self.delta_view.show() self.dg_samples_view.hide() def drift_roman(self): """ Update which PyQt tables are shown """ self.roman_label_widget.show() self.drift_single_canvas.show() self.drift_single_canvas.setMinimumWidth(700) self.drift_cont_plotpanel.hide() self.dg_samples_view.show() self.cont_label_widget.hide() self.roman_label_widget.show() self.roman_label_widget.setMinimumHeight(50) self.drift_window.setMinimumHeight(200) self.tension_slider.setEnabled(False) self.offset_slider.setEnabled(False) self.drift_plot_hz_extent.setEnabled(False) self.drift_plot_weighted.setEnabled(False) self.drift_cont_startendcombobox.setEnabled(False) self.drift_polydegree_combobox.setEnabled(False) def drift_continuous(self): """ Update which PyQt tables are shown """ self.drift_single_canvas.hide() self.drift_cont_plotpanel.show() self.drift_cont_plotpanel.setMinimumWidth(700) self.dg_samples_view.hide() # Hide std_for_adj and residual columns self.show_all_columns(self.delta_view) self.delta_view.hideColumn(8) self.delta_view.hideColumn(9) self.cont_label_widget.show() self.cont_label_widget.setMinimumHeight(50) self.roman_label_widget.hide() self.drift_window.setMinimumHeight(200) # Re-enable these options (they're disabled if netadj drift was selected) self.drift_polydegree_combobox.model().item(0).setEnabled(True) self.drift_polydegree_combobox.model().item(1).setEnabled(True) self.tension_slider.setEnabled(True) self.offset_slider.setEnabled(True) self.drift_plot_hz_extent.setEnabled(True) self.drift_cont_startendcombobox.setEnabled(True) self.drift_polydegree_combobox.setEnabled(True) if self.drift_polydegree_combobox.currentIndex() == 0: self.enable_weighted_checkbox() else: self.disable_weighted_checkbox() def drift_none(self): """ Update which PyQt tables are shown """ self.drift_single_canvas.show() self.drift_single_canvas.setMinimumWidth(700) self.drift_cont_plotpanel.hide() self.cont_label_widget.show() self.cont_label_widget.setMinimumHeight(50) self.roman_label_widget.hide() self.drift_window.setMinimumHeight(200) self.tension_slider.setEnabled(False) self.offset_slider.setEnabled(True) self.drift_polydegree_combobox.setEnabled(False) self.drift_cont_startendcombobox.setEnabled(False) self.drift_plot_hz_extent.setEnabled(False) self.drift_plot_weighted.setEnabled(False) self.dg_samples_view.hide() def disable_weighted_checkbox(self): self.drift_plot_weighted.setEnabled(False) self.drift_plot_weighted.setToolTip( "Weighted observations is only enabled when Continuous " "model drift correction method and Constant drift model type are selected." ) def enable_weighted_checkbox(self): self.drift_plot_weighted.setEnabled(True) self.drift_plot_weighted.setToolTip("") def drift_combobox_updated(self): """ Called when either the drift poly degree or extrapolate/constant combobox is changed. """ method_key = self.drift_polydegree_combobox.currentIndex() startend_key = self.drift_cont_startendcombobox.currentIndex() obstreeloop = self.parent.obsTreeModel.itemFromIndex( self.parent.index_current_loop ) drift_method = obstreeloop.drift_method if drift_method == "continuous": obstreeloop.drift_cont_method = method_key obstreeloop.drift_cont_startend = startend_key if method_key == 1: self.tension_slider.setEnabled(True) else: self.tension_slider.setEnabled(False) if method_key == 0: self.enable_weighted_checkbox() else: self.disable_weighted_checkbox() elif drift_method == "netadj": obstreeloop.drift_netadj_method = method_key self.parent.update_drift_tables_and_plots() class CustomCheckBox(QtWidgets.QCheckBox): def __init__(self, *args, **kwargs): super(CustomCheckBox, self).__init__(*args, **kwargs) update_drift_plots = QtCore.pyqtSignal() class CustomComboBox(QtWidgets.QComboBox): def __init__(self, *args, **kwargs): super(CustomCheckBox, self).__init__(*args, **kwargs) update_drift_plots = QtCore.pyqtSignal() ``` #### File: gsadjust/models/datum.py ```python from PyQt5.QtCore import QAbstractTableModel, QModelIndex, Qt, QVariant, pyqtSignal from .utils import format_numeric_column # Constants for column headers ( DATUM_STATION, DATUM_DATE, DATUM_G, DATUM_SD, N_SETS, MEAS_HEIGHT, GRADIENT, DATUM_RESIDUAL, ) = range(8) class tempStation: def __init__(self, station): self.__dict__ = station # noinspection PyUnresolvedReferences class DatumTableModel(QAbstractTableModel): """ Model to store Datums, shown on the adjust tab. """ _headers = { # As map, so do not need to be kept in order with the above. DATUM_STATION: "Station", DATUM_G: "g", DATUM_SD: "Std. dev.", DATUM_DATE: "Date", MEAS_HEIGHT: "Meas. height", GRADIENT: "Gradient", DATUM_RESIDUAL: "Residual", N_SETS: "# sets", } _attrs = { # From column constants to object attributes, for setting. DATUM_STATION: ("station", str), DATUM_G: ("g", float), DATUM_SD: ("sd", float), DATUM_DATE: ("date", lambda x: x), # pass through MEAS_HEIGHT: ("meas_height", float), GRADIENT: ("gradient", float), } signal_adjust_update_required = pyqtSignal() signal_datum_table_updated = pyqtSignal() def __init__(self): super(DatumTableModel, self).__init__() self._data = [] def headerData(self, section, orientation, role=Qt.DisplayRole): if role == Qt.TextAlignmentRole: if orientation == Qt.Horizontal: return QVariant(int(Qt.AlignLeft | Qt.AlignVCenter)) return QVariant(int(Qt.AlignRight | Qt.AlignVCenter)) if role == Qt.DisplayRole and orientation == Qt.Horizontal: return self._headers.get(section, section + 1) def insertRows(self, datum, position, rows=1, index=QModelIndex()): self.beginInsertRows(QModelIndex(), position, position + rows - 1) self._data.append(datum) self.endInsertRows() def removeRow(self, index): datum = self.data(index, role=Qt.UserRole) self.beginRemoveRows(index, index.row(), 1) self._data.remove(datum) self.endRemoveRows() self.beginResetModel() self.endResetModel() def rowCount(self, parent=None): return len(self._data) def columnCount(self, parent=None): return len(self._headers) def data(self, index, role=Qt.DisplayRole): if index.isValid(): datum = self._data[index.row()] column = index.column() if role == Qt.DisplayRole or role == Qt.EditRole: # To accommodate old save files def get_nsets(): try: return datum.n_sets except: return "NA" fn, *args = { DATUM_SD: (format, datum.sd, "0.2f"), DATUM_G: (format, datum.g, "8.1f"), DATUM_STATION: (str, datum.station), DATUM_DATE: (str, datum.date), MEAS_HEIGHT: (format, datum.meas_height, "0.2f"), GRADIENT: (format, datum.gradient, "0.2f"), DATUM_RESIDUAL: (format, datum.residual, "0.1f"), N_SETS: (get_nsets,), }.get(column, (format_numeric_column, column)) return fn(*args) elif role == Qt.CheckStateRole: # check status definition if index.column() == 0: return self.checkState(datum) elif role == Qt.UserRole: # check status definition return datum def checkState(self, datum): """ By default, everything is checked. If keepdata property from the ChannelList object is 0, it is unchecked """ if datum.checked == 0: return Qt.Unchecked else: return Qt.Checked def setData(self, index, value, role): """ If a row is unchecked, update the keepdata value to 0 setData launched when role is acting value is Qt.Checked or Qt.Unchecked """ if role == Qt.CheckStateRole and index.column() == 0: datum = self._data[index.row()] if value == Qt.Checked: datum.checked = 2 elif value == Qt.Unchecked: datum.checked = 0 self.dataChanged.emit(index, index, []) self.signal_adjust_update_required.emit() return True if role == Qt.EditRole: if index.isValid() and 0 <= index.row(): if value: try: datum = self._data[index.row()] column = index.column() # Ideally they other columns wouldn't be editable at all, but # the user can select them and enter new values. Here we # discard them unless they're in an editable column. # # Should me able to make non-editable columns readonly using a # proxy model, e.g. # https://stackoverflow.com/questions/22886912 if column in [ DATUM_STATION, DATUM_DATE, DATUM_G, DATUM_SD, MEAS_HEIGHT, GRADIENT, ]: attr, vartype = self._attrs.get(column, (None, None)) if attr: setattr(datum, attr, vartype(value)) self.dataChanged.emit(index, index, [Qt.EditRole]) except ValueError: pass return True if role == Qt.UserRole: self._data[index.row()] = value self.dataChanged.emit(index, index, []) def flags(self, index): return ( Qt.ItemIsUserCheckable | Qt.ItemIsEnabled | Qt.ItemIsSelectable | Qt.ItemIsEditable ) def clearDatums(self): self.beginRemoveRows(self.index(0, 0), 0, self.rowCount()) self._data = [] self.endRemoveRows() # The ResetModel calls is necessary to remove blank rows from the table view. self.beginResetModel() self.endResetModel() return QVariant() def datum_names(self): dn = [] for datum in self._data: dn.append(datum.station) return dn def init_data(self, data): self.beginResetModel() self._data = data self.endResetModel() self.layoutChanged.emit() # Refresh whole view.) ``` #### File: gsadjust/models/gravity.py ```python import numpy as np from PyQt5 import QtCore from PyQt5.QtCore import Qt class GravityChangeModel(QtCore.QAbstractTableModel): """ Model to store gravity change between surveys. There is only one such model per campaign. Gravity change is calculated when the respective menu item is chosen. """ def __init__(self, header, table, table_type="simple", parent=None): QtCore.QAbstractTableModel.__init__(self, parent) self._headers = {n: col for n, col in enumerate(header)} self.createArrayData(table, table_type) self.table_type = table_type def createArrayData(self, table, table_type): if table_type == "simple" or table_type == "list": array = np.array(table).transpose() elif table_type == "full": array = np.array(table) self.arraydata = array def rowCount(self, parent=None): return self.arraydata.shape[0] def columnCount(self, parent=None): return len(self._headers) def flags(self, index): return Qt.ItemIsEnabled | Qt.ItemIsSelectable def data(self, index, role): if not index.isValid(): return None if role == Qt.DisplayRole: row = index.row() column = index.column() try: value = float(self.arraydata[row][column]) if self.table_type != 'full': return format(value, "0.1f") elif column != 1 and column != 2: return format(value, "0.1f") else: return format(value, "0.5f") except ValueError: return str(self.arraydata[row][column]) def headerData(self, section, orientation, role=Qt.DisplayRole): if role == Qt.DisplayRole and orientation == Qt.Horizontal: return self._headers.get(section, section + 1) ``` #### File: gsadjust/obstree/base.py ```python from PyQt5 import QtGui from PyQt5.QtCore import Qt class ObsTreeItemBase(QtGui.QStandardItem): """ Base tree-view item used to populate data tree, used for Surveys, Loops, and Stations. Not used directly but inherited by ObsTreeStation, ...Loop, and ...Survey """ def __init__(self): super(ObsTreeItemBase, self).__init__() self.setFlags( self.flags() | Qt.ItemIsEnabled | Qt.ItemIsEditable | Qt.ItemIsUserCheckable ) self.setCheckState(Qt.Checked) self.fontweight = QtGui.QFont.Normal self.cellcolor = Qt.white ``` #### File: gsadjust/plots/network.py ```python import matplotlib import networkx as nx import numpy as np from PyQt5 import QtWidgets from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as Toolbar from ..gui.messages import MessageBox class PlotNetworkGraph(QtWidgets.QDialog): """ Networkx plot of network. If shape == 'map', accurate coordinates must be present in the input file. Parameters ---------- survey coords shape : {'Circular', 'map'} """ def __init__(self, survey, coords, shape="circular", parent=None): super(PlotNetworkGraph, self).__init__(parent) self.setWindowTitle("Network graph, Survey " + survey.name) self.survey = survey self.coords = coords self.shape = shape self.figure = matplotlib.figure.Figure() self.canvas = FigureCanvas(self.figure) self.toolbar = Toolbar(self.canvas, self) layout = QtWidgets.QVBoxLayout() layout.addWidget(self.toolbar) layout.addWidget(self.canvas) self.setLayout(layout) self.plot_network() def plot_network(self): try: edges, disabled_edge, datum_nodelist, nondatum_nodelist = self.get_data() self.plot(edges, disabled_edge, datum_nodelist, nondatum_nodelist) except KeyError as e: MessageBox.warning( "Plot error", "Error plotting network graph (Key error)", ) def get_data(self): edges = nx.MultiGraph() disabled_edges = nx.MultiGraph() datum_nodelist, nondatum_nodelist = [], [] deltas = self.survey.deltas if len(deltas) == 0: MessageBox.warning( "Plot error", "Delta table is empty. Unable to plot network graph", ) else: for i, delta in enumerate(deltas): key = f"delta_{i}" if delta.checked: edges.add_edge(delta.sta1, delta.sta2, key=key) else: disabled_edges.add_edge(delta.sta1, delta.sta2, key=key) datum_names = [datum.station for datum in self.survey.datums] for station_name in [delta.sta1, delta.sta2]: if station_name in datum_names: if station_name not in datum_nodelist: datum_nodelist.append(station_name) continue elif station_name not in nondatum_nodelist: nondatum_nodelist.append(station_name) edges.add_node(station_name) disabled_edges.add_node(station_name) return (edges, disabled_edges, datum_nodelist, nondatum_nodelist) def format_map_axis(self, ax, shape): if shape == "circular": ax.set_xlim(-1.2, 1.2) ax.set_ylim(-1.2, 1.2) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) elif shape == "map": border = 0.1 self.figure.tight_layout() xrange = np.abs(self.xmax - self.xmin) yrange = np.abs(self.ymax - self.ymin) ax.set_xlim(self.xmin - xrange * border, self.xmax + xrange * border) ax.set_ylim(self.ymin - yrange * border, self.ymax + yrange * border) ax.ticklabel_format(useOffset=False) ax.set_xlabel("(Coordinates are not projected)") def plot(self, edges, disabled_edges, datum_nodelist, nondatum_nodelist): self.figure.clear() H = nx.Graph(edges) if self.shape == "circular": pos = nx.circular_layout(H) elif self.shape == "map": pos = {} for k, v in self.coords.items(): pos[k] = (v[0], v[1]) self.xmin = min([x[0] for x in pos.values()]) self.ymin = min([x[1] for x in pos.values()]) self.xmax = max([x[0] for x in pos.values()]) self.ymax = max([x[1] for x in pos.values()]) if not nx.is_connected(H): gs = [H.subgraph(c) for c in nx.connected_components(H)] for idx, g in enumerate(gs): ax = self.figure.add_subplot(1, len(gs), idx + 1) nx.draw_networkx_edges( g, pos, ax=ax, width=1, alpha=0.4, node_size=0, edge_color="k" ) nx.draw_networkx_nodes( g, pos, ax=ax, node_color="w", alpha=0.4, with_labels=True ) nx.draw_networkx_labels(g, pos, ax=ax, font_color="orange") ax.set_title("Networks are disconnected!") self.format_map_axis(ax, self.shape) else: # edge width is proportional to number of delta-g's edgewidth = [] ax = self.figure.add_subplot(111) for (u, v, d) in H.edges(data=True): edgewidth.append(len(edges.get_edge_data(u, v)) * 2 - 1) nx.draw_networkx_edges( H, pos, ax=ax, width=edgewidth, alpha=0.4, node_size=0, edge_color="k" ) nx.draw_networkx_edges( disabled_edges, pos, ax=ax, width=1, alpha=0.4, node_size=0, edge_color="r", ) nx.draw_networkx_nodes( H, pos, ax=ax, node_size=120, nodelist=datum_nodelist, node_color="k", node_shape="^", with_labels=True, alpha=0.8, ) nx.draw_networkx_nodes( H, pos, ax=ax, node_size=120, nodelist=nondatum_nodelist, node_color="k", node_shape="o", with_labels=True, alpha=0.3, ) nx.draw_networkx_labels(H, pos, ax=ax, font_color="r") self.format_map_axis(ax, self.shape) self.canvas.draw() ``` #### File: sgp-gsadjust/gsadjust/threads.py ```python from PyQt5.QtCore import ( QObject, QRunnable, QThread, pyqtSignal, pyqtSlot, ) class RunnerKilledException(Exception): pass class GenericSignals(QObject): finished = pyqtSignal() error = pyqtSignal(object) data = pyqtSignal(object) result = pyqtSignal(object) class RunnerBase(QRunnable): signals = GenericSignals() def __init__(self, *args, **kwargs): super().__init__() self.args = args self.kwargs = args self.is_paused = False self.is_killed = False @pyqtSlot() def run(self): raise NotImplementedError def kill(self): self.is_killed = True def pause(self, pause=True): self.is_paused = pause class ThreadBase(QThread): signals = GenericSignals() def __init__(self, *args, **kwargs): super().__init__() self.args = args self.kwargs = args self.is_paused = False self.is_killed = False @pyqtSlot() def run(self): raise NotImplementedError def kill(self): self.is_killed = True def pause(self, pause=True): self.is_paused = pause ``` #### File: sgp-gsadjust/gsadjust/utils.py ```python def index_or_none(l, i): if i not in l: return None return l.index(i) def init_cal_coeff_dict(obstreemodel): """ Initiate dict for storing meter calibration coefficients. Parameters ---------- obstreemodel : ObsTreeModel Returns ------- dict key: Meter (str), value: float """ try: meter_list = {} for i in range(obstreemodel.invisibleRootItem().rowCount()): survey = obstreemodel.invisibleRootItem().child(i) for ii in range(survey.rowCount()): loop = survey.child(ii) if loop.meter not in meter_list: meter_list[loop.meter] = 1.000 return meter_list except Exception: return None def init_station_coords_dict(obstreemodel): """ Stores a single set of coordinates for each station with the obsTreeModel object. The coordinates of the last Station in the Survey > Loop > Station hierarchy will be used. """ station_coords = dict() for i in range(obstreemodel.invisibleRootItem().rowCount()): survey = obstreemodel.invisibleRootItem().child(i) for ii in range(survey.rowCount()): loop = survey.child(ii) for iii in range(loop.rowCount()): station = loop.child(iii) try: station_coords[station.station_name] = ( station.long[0], station.lat[0], station.elev[0], ) except Exception: station_coords[station.station_name] = (0, 0, 0) return station_coords ``` #### File: sgp-gsadjust/tests/test_gui.py ```python import os import numpy as np import pytest from PyQt5 import QtCore, QtWidgets import gsadjust from gsadjust.gui.dialogs import ( AddDatumFromList ) import pytestqt # from tide_correction import tide_correction_agnew @pytest.mark.skipif("TRAVIS" in os.environ, reason="Doesn't work on Travis") def test_gui(qtbot, monkeypatch): # Not sure why, but need to store and restore the path after this test pwd = os.getcwd() window = gsadjust.GSadjust.MainProg() # window.show() qtbot.addWidget(window) window.show() qtbot.wait(1000) # Open data window.open_raw_data(r'.\tests\test_BurrisData2.txt', 'Burris') window.init_gui() assert window.obsTreeModel.rowCount() == 1 # Update tide correction # Not checking that the correction is correct, just that it's been updated. # Burris meters only report correction to nearest microGal, this test will fail if the correction wasn't updated. # tide_correction_agnew(window, 35.0, -110.0, 1000.0) # assert ( # np.abs( # window.obsTreeModel.invisibleRootItem().child(0).child(0).child(0).etc[0] # + 20.6 # ) # < 0.01 # ) test_workspace = 'test1.gsa' success = window.obsTreeModel.save_workspace(test_workspace) assert success == 'test1.gsa' # Divide into loops window.divide_survey(8 / 24) qtbot.wait(2000) survey = window.obsTreeModel.invisibleRootItem().child(0) loop = survey.child(0) assert loop.rowCount() == 12 assert survey.rowCount() == 3 # Change to Drift tab window.tab_widget.setCurrentIndex(1) # Step through loops window.activate_survey_or_loop(survey.child(1).index()) qtbot.wait(1000) window.activate_survey_or_loop(survey.child(2).index()) qtbot.wait(1000) window.activate_survey_or_loop(survey.child(0).index()) qtbot.wait(2000) # Step through drift-correction styles window.tab_drift.driftmethod_combobox.setCurrentIndex(1) window.tab_drift.set_drift_method() qtbot.wait(1000) window.tab_drift.driftmethod_combobox.setCurrentIndex(2) window.tab_drift.set_drift_method() qtbot.wait(1000) window.tab_drift.driftmethod_combobox.setCurrentIndex(3) window.tab_drift.set_drift_method() qtbot.wait(1000) # window.tab_drift.driftmethod_combobox.setCurrentIndex(1) # window.tab_drift.set_drift_method() # qtbot.wait(1000) window.tab_drift.drift_plot_weighted.setCheckState(QtCore.Qt.Checked) window.tab_drift.set_drift_method() qtbot.wait(1000) window.tab_drift.drift_polydegree_combobox.setCurrentIndex(1) window.tab_drift.drift_combobox_updated() qtbot.wait(1000) window.tab_drift.drift_polydegree_combobox.setCurrentIndex(2) window.tab_drift.drift_combobox_updated() qtbot.wait(1000) window.tab_drift.drift_polydegree_combobox.setCurrentIndex(0) window.tab_drift.drift_cont_startendcombobox.setCurrentIndex(1) window.tab_drift.drift_combobox_updated() qtbot.wait(3000) window.tab_widget.setCurrentIndex(2) # Populate delta and datum tables qtbot.keyClick(window, 'a', modifier=QtCore.Qt.ControlModifier) qtbot.wait(3000) monkeypatch.setattr( AddDatumFromList, 'add_datum', classmethod(lambda *args: 'CDOT') ) adj_tab_model = window.tab_adjust.delta_view.model() first_adj_tab_delta = adj_tab_model.data( adj_tab_model.index(0, 4), QtCore.Qt.UserRole ) drift_tab_model = window.tab_drift.delta_view.model() first_drift_tab_delta = drift_tab_model.data( drift_tab_model.index(0, 4), QtCore.Qt.UserRole ) # TODO: these are sorted differently on the drift and NA tabs, so we can't just grab the first ones. # assert first_adj_tab_delta.dg == first_drift_tab_delta.dg # assert first_adj_tab_delta.driftcorr == first_drift_tab_delta.driftcorr qtbot.keyClick(window, 'd', modifier=QtCore.Qt.ControlModifier) window.adjust_network() # Verify gravnet input assert len(survey.results) == 30 assert ( len(survey.adjustment.results_string()) == 12 ) # number of lines in Numpy output assert survey.adjustment.adjustmentresults.n_deltas == 83 assert survey.adjustment.adjustmentresults.n_datums == 1 test_workspace = 'test1.gsa' success = window.obsTreeModel.save_workspace(test_workspace) assert success == 'test1.gsa' window.workspace_clear(confirm=False) assert window.obsTreeModel.rowCount() == 0 window.workspace_open_json(test_workspace) survey = window.obsTreeModel.invisibleRootItem().child(0) loop = survey.child(0) assert loop.rowCount() == 12 assert survey.rowCount() == 3 window.menus.mnAdjGravnet.setChecked(True) qtbot.wait(2000) def on_timeout(): messagebox = QtWidgets.QApplication.activeWindow() qtbot.keyClick(messagebox, QtCore.Qt.Key_Enter) QtCore.QTimer.singleShot(3000, on_timeout) window.adjust_network() # qtbot.keyClick(messagebox, QtCore.Qt.Key_Enter) window.menus.mnAdjPyLSQ.setChecked(True) window.adjust_network() for line in survey.adjustment.results_string(): elems = line.split(' ') if elems[0] == 'SD': sd0 = float(elems[-1]) # Disable some observations, save workspace, clear and reload, verify that we get the same adjustment results rows = [1, 3, 5] for row in rows: survey.deltas[row].checked = 0 window.adjust_network() for line in survey.adjustment.results_string(): elems = line.split(' ') if elems[0] == 'SD': sd1 = float(elems[-1]) # Adjustment results should be different with some observations disabled assert abs(sd0 - sd1) > 0.01 QtCore.QTimer.singleShot(1000, on_timeout) success = window.workspace_save() assert success == True qtbot.wait(2000) window.workspace_clear(confirm=False) assert window.obsTreeModel.rowCount() == 0 window.workspace_open_json(test_workspace) window.adjust_network() for line in survey.adjustment.results_string(): elems = line.split(' ') if elems[0] == 'SD': sd2 = float(elems[-1]) assert abs(sd1 - sd2) < 0.000001 os.remove(test_workspace) # window.workspace_clear(confirm=False) # window.workspace_open_json('./tests/test_workspace1.gsa') # window.workspace_append() # qtbot.keyPress(window, QtCore.Qt.Key_Tab, QtCore.Qt.ControlModifier) # qtbot.mouseClick(options_dialog.ok_button, QtCore.Qt.LeftButton, delay=1000) window.close() os.chdir(pwd) ``` #### File: sgp-gsadjust/tests/test_import.py ```python import pytest import os import gsadjust from gsadjust.file.read import read_csv, read_cg6, read_cg6tsoft def test_import_csv(): data_file = os.path.join( os.getcwd(), 'test_data', 'field', 'CG-6', 'CG-6_TestData.dat' ) with pytest.raises(IndexError): with open(data_file, 'r') as fh: data = read_csv(fh) data_file = os.path.join(os.getcwd(), 'tests', 'test_csv_data.csv') with open(data_file, 'r') as fh: data = read_csv(fh) assert len(data.raw_grav) == 95 def test_import_CG6(): data_file = os.path.join( os.getcwd(), 'test_data', 'field', 'CG-6', 'CG-6_TestData.dat' ) with open(data_file, 'r') as fh: data = read_cg6(fh) assert len(data.raw_grav) == 43 data_file = os.path.join(os.getcwd(), 'tests','test_csv_data.csv') with pytest.raises(IndexError): with open(data_file, 'r') as fh: data = read_cg6(fh) def test_import_CG6tsoft(): data_file = os.path.join( os.getcwd(), 'test_data', 'field', 'CG-6', 'CG-6_TsoftFormat.DAT' ) with open(data_file, 'r') as fh: data = read_cg6tsoft(fh) assert len(data.raw_grav) == 5515 data_file = os.path.join(os.getcwd(), 'tests', 'test_csv_data.csv') with pytest.raises(ValueError): with open(data_file, 'r') as fh: data = read_cg6tsoft(fh) ``` #### File: sgp-gsadjust/tests/test_inversion.py ```python import sys, os import pytest def test_numpy_inversion(obstreesurvey): import numpy as np # Test problem from Adjustment Computations Spatial Data Analysis, Ghilani and Wolf, Wiley # ftp://doc.nit.ac.ir/civil/m.abbaszadeh/Theory%20of%20Errors%20and%20Adjustment/ # ebooksclub.org__Adjustment_Computations__Spatial_Data_Analysis.pdf A = [[1, 0, 0], [-1, 1, 0], [0, -1, 1], [0, 0, -1], [-1, 0, 1], [0, 1, 0]] obstreesurvey.adjustment.A = np.array(A) P = [ [1 / 0.006 ** 2, 0, 0, 0, 0, 0], [0, 1 / 0.004 ** 2, 0, 0, 0, 0], [0, 0, 1 / 0.005 ** 2, 0, 0, 0], [0, 0, 0, 1 / 0.003 ** 2, 0, 0], [0, 0, 0, 0, 1 / 0.004 ** 2, 0], [0, 0, 0, 0, 0, 1 / 0.012 ** 2], ] obstreesurvey.adjustment.P = np.array(P) obs = [448.105, 5.360, -8.523, -444.944, -3.167, 453.477] obstreesurvey.adjustment.Obs = obs obstreesurvey.adjustment.dof = 3 obstreesurvey.adjustment.python_lsq_inversion() answer = np.array([448.1087, 453.4685, 444.9436]) answer_sd = 0.6575 diff = answer - obstreesurvey.adjustment.X assert max(abs(diff)) < 0.0001 assert obstreesurvey.adjustment.SDaposteriori - answer_sd < 0.0001 ```
{ "source": "jkennedy-usgs/sgp-utils", "score": 3 }
#### File: sgp-utils/ingestor/cosmos.py ```python import pandas as pd from PyQt5.QtWidgets import QMessageBox DIST_CRITERIA = 0.002 SPEED_CRITERIA = 0.5 class CR_data: cosmos_fields = ['RecordNum', 'Date Time(UTC)', 'PTB110_mb', 'P4_mb', 'P1_mb', 'T1_C', 'RH1', 'T_CS215', 'RH_CS215', 'Vbat', 'N1Cts', 'N2Cts', 'N1ETsec ', 'N2ETsec ', 'N1T(C)', 'N1RH ', 'N2T(C)', 'N2RH', 'GpsUTC', 'LatDec', 'LongDec', 'Alt', 'Qual', 'NumSats', 'HDOP', 'Speed_kmh', 'COG', 'SpeedQuality', 'strDate'] def __init__(self): super(CR_data, self).__init__() self.df = None self.file = None def load_data_from_file(self, fname): self.file = fname exclude_cols = [1, len(self.cosmos_fields)-2] data = [] try: fid = open(fname, 'r') except IOError: QMessageBox.critical(None, 'File error', 'Error opening COSMOS file') return False else: with fid: for line in fid: if line[:2] != '//': data_elements = line.split(',') try: d = [float(x.strip()) if idx not in exclude_cols else x for idx, x in enumerate(data_elements)] data.append(d) except: continue df = pd.DataFrame(data, columns=self.cosmos_fields) df['dist'] = (df['LatDec'].diff() ** 2 + df['LongDec'].diff() ** 2).pow(1. / 2) df['dt'] = pd.to_datetime(df['Date Time(UTC)']) df['Vbat'] = df['Vbat'].map('{:,.1f}'.format) df['LatDec'] = df['LatDec'].map('{:,.5f}'.format) self.df = df def split_data(self): # Criteria: # time > 5 min since last obs # speed ~= 0 # dist < 0.005 (should be redundant with first two) df = self.df data = list() durations = list() first, last = 1, 1 for i in range(1, len(self.df)): if df['dist'][i] < DIST_CRITERIA and \ (df['dt'][i] - df['dt'][i - 1]).seconds == 300: # REMOVED: # df['Speed_kmh'][i] < SPEED_CRITERIA and \ # Its possible to have two stations separated by less # than a 5 minute drive (speed would be 0 for two consecutive log entries) last += 1 else: if last - first > 1: data.append(CR_occupation(df[first:last], self.file)) durations.append(first - last) first, last = i + 1, i + 1 continue return data class CR_occupation: def __init__(self, df, file): super(CR_occupation, self).__init__() self.df = df self.file = file @property def dtime(self): # Return mean observation time dt = self.df['dt'] m = self.df['dt'].min() return (m + (dt - m).mean()).to_pydatetime() @property def duration(self): return len(self.df) if __name__ == '__main__': fname = '.\\test_data\\test.dat' cr_data = CR_data() cr_data.load_data_from_file(fname) occupations = cr_data.split_data() jeff = 1 ``` #### File: sgp-utils/sgp-utils/fg5_SY_plot.py ```python import numpy as np import pylab as plt import datetime from tkinter import filedialog from tkinter import Tk import matplotlib.dates as mdates import matplotlib.ticker as tkr import csv import os from nwis import nwis_get_data from dateutil import parser # # When saved, this exports fonts as fonts instead of paths: plt.rcParams['svg.fonttype'] = 'none' plt.interactive(False) # Parameters than can be changed presentation_style = True # Makes labels big cross_ref_file = 'SiteIDcrossref.csv' threshold = datetime.timedelta(days=5) # If within a threshold, just take the nearest data point interpolate_threshold = datetime.timedelta(days = 50) # otherwise, interpolate if the data gap is below a threshold write_output_to_file = False # Formats y-axis labels def func(x, pos): s = '{:0,d}'.format(int(x)) return s def write_to_file(filesavename, station, g_date, g, gwl, code, gap, y1, y2): with open(filesavename, 'a') as fn: fn.write('{},{},{},{},{},{},{},{}\n'.format(station, g_date, g, gwl, code, gap, y1, y2)) # Open dialog to specify input file. Alternatively, specify file directly. root = Tk() root.withdraw() data_file = filedialog.askopenfilename(title="Select text file to plot (from A10_parse.py)") if write_output_to_file: out_file = data_file[:-4] filesavename = str.replace(str(data_file), '.txt', '_SY.csv') with open(filesavename, 'w+') as fn: fn.write('Station,date,g,gwl,type,gap,start,end\n') # data_file = "SanPedro_qaqc.txt" # Matplotlibn interactive mode plt.ion() stations = [] myFmt = mdates.DateFormatter('%Y') y_format = tkr.FuncFormatter(func) # Get station list and column numbers from input file header with open(data_file) as fp: a = fp.readline() a = a.strip() tags = a.split("\t") date_col = tags.index("Date") sta_col = tags.index("Station Name") grav_col = tags.index("Gravity") for line in fp: a = line.split("\t") stations.append(a[sta_col]) # Remove duplicates stations = list(set(stations)) # Initialize blank array to hold data. First array of each list element is date, second is gravity. grav_data = [[[], []]] nwis_data = ['']*len(stations) for i in range(len(stations)-1): grav_data.append([[], []]) # Retrieve data from nwis (will return both discrete and continuous data) for station in stations: sta_index = stations.index(station) nwis_data[sta_index] = (nwis_get_data(cross_ref_file, station)) if nwis_data[sta_index] != 0: nwis_data[sta_index]['station'] = station # Get gravity data from input file with open(data_file) as fp: a = fp.readline() for line in fp: a = line.split("\t") sta = a[sta_col] sta_index = stations.index(sta) # using the dateutil parser we can plot dates directly grav_data[sta_index][0].append(parser.parse(a[date_col])) grav_data[sta_index][1].append(float(a[grav_col])) for idx, sta in enumerate(nwis_data): if sta != 0: # Could be blank station names? if sta['continuous_x'] or sta['discrete_x']: # Make sure there's some data plot_x, plot_y = [], [] min_delta_cont, min_delta_disc = datetime.timedelta(days=1000000), datetime.timedelta(days=1000000) # Iterate through the gravity values for a given station for g_idx, g_date in enumerate(grav_data[idx][0]): # find closest continuous data if sta['continuous_x']: repdate = np.repeat(g_date, len(sta['continuous_x'])) # vector of gravity-meas. dates delta_cont = np.asarray(sta['continuous_x']) - repdate # vector of time-deltas min_delta_cont = min(np.absolute(delta_cont)) idx_cont = np.argmin(np.absolute(delta_cont)) # index of gw level closest to gravity meas # and closest discrete data if sta['discrete_x']: repdate = np.repeat(g_date, len(sta['discrete_x'])) delta_disc = np.asarray(sta['discrete_x']) - repdate min_delta_disc = min(np.absolute(delta_disc)) idx_disc = np.argmin(np.absolute(delta_disc)) # check threshold if min_delta_cont < threshold or min_delta_disc < threshold: if min_delta_cont < min_delta_disc: plot_x.append(sta['continuous_y'][idx_cont]) plot_y.append(grav_data[idx][1][g_idx]) if write_output_to_file: write_to_file(filesavename, sta['station'], g_date, plot_y[-1], plot_x[-1], 'C', min_delta_cont.days, '0', '0') elif min_delta_cont > min_delta_disc: plot_x.append(sta['discrete_y'][idx_disc]) plot_y.append(grav_data[idx][1][g_idx]) if write_output_to_file: write_to_file(filesavename, sta['station'], g_date, plot_y[-1], plot_x[-1], 'D', min_delta_disc.days, '0', '0') continue else: # No water-level measurements are very close. Check if we can interpolate. interpolate = False x1, x2, y1, y2 = [], [], [], [] cont_gap, disc_gap = datetime.timedelta(days=1000000), datetime.timedelta(days=1000000) if sta['continuous_x']: # calculate continuous gap if any(i < datetime.timedelta(days=0) for i in delta_cont) and \ any(i > datetime.timedelta(days=0) for i in delta_cont): # Check if data on both sides of gap closest_neg = max([i for i in delta_cont if i <= datetime.timedelta(days=0)]) # time delta to closest negative diff closest_pos = min([i for i in delta_cont if i >= datetime.timedelta(days=0)]) idx_closest_neg_cont, = np.nonzero(delta_cont == closest_neg)[0] idx_closest_pos_cont, = np.nonzero(delta_cont == closest_pos)[0] cont_gap = np.absolute(closest_neg) + closest_pos if sta['discrete_x']: if any(i < datetime.timedelta(days=0) for i in delta_disc) and \ any(i > datetime.timedelta(days=0) for i in delta_disc): # Check if data on both sides of gap closest_neg = max([i for i in delta_disc if i <= datetime.timedelta(days=0)]) # time delta to closest negative diff closest_pos = min([i for i in delta_disc if i >= datetime.timedelta(days=0)]) idx_closest_neg_disc, = np.nonzero(delta_disc == closest_neg)[0] idx_closest_pos_disc, = np.nonzero(delta_disc == closest_pos)[0] disc_gap = np.absolute(closest_neg) + closest_pos if cont_gap < disc_gap: # interpolate the data type with the smaller gap if cont_gap < interpolate_threshold: x1 = sta['continuous_x'][idx_closest_neg_cont] x2 = sta['continuous_x'][idx_closest_pos_cont] y1 = sta['continuous_y'][idx_closest_neg_cont] y2 = sta['continuous_y'][idx_closest_pos_cont] interpolate = True gap = cont_gap elif disc_gap < cont_gap: if disc_gap < interpolate_threshold: x1 = sta['discrete_x'][idx_closest_neg_disc] x2 = sta['discrete_x'][idx_closest_pos_disc] y1 = sta['discrete_y'][idx_closest_neg_disc] y2 = sta['discrete_y'][idx_closest_pos_disc] interpolate = True gap = disc_gap if interpolate: x1 = x1.toordinal() x2 = x2.toordinal() poly = np.polyfit([x1, x2], [y1, y2], 1) p = np.poly1d(poly) interpolated_dtw= p(g_date.toordinal()) plot_x.append(interpolated_dtw) plot_y.append(grav_data[idx][1][g_idx]) print('Interpolated DTW at station {}, measurement on {}'.format(sta['station'], g_date)) print('Time gap = {}, WL change {} feet.'.format(gap, y2 - y1)) if write_output_to_file: write_to_file(filesavename, sta['station'], g_date, plot_y[-1], plot_x[-1], 'I', gap.days, y1, y2) else: if write_output_to_file: write_to_file(filesavename, sta['station'], g_date, grav_data[idx][1][g_idx], '0', 'N', '0', '0', '0') print('no valid data to interpolate at station {}, measurement on {}'.format(sta['station'], g_date)) if len(plot_y) > 1: # If there's only 1 data point, don't bother if presentation_style: font = {'family': 'normal', 'weight': 'bold', 'size': 16} plt.rc('font', **font) plt.subplots_adjust(bottom=0.15, top=0.85, hspace=0.4, left=0.25, right=0.85) plot_y = [(y-plot_y[0])/41.9 for y in plot_y] plot_x = [(x-plot_x[0])*-.3048 for x in plot_x] try: # Sometimes polyfit fails, even if there's 3 points? poly, cov = np.polyfit(plot_x, plot_y, 1, cov=True) cc = np.corrcoef(plot_x, plot_y)[0,1] line_x = np.linspace(min(plot_x)-0.2, max(plot_x)+0.2,10) p = np.poly1d(poly) line_y = p(line_x) plt.figure(facecolor='white') plt.plot(plot_x, plot_y,'.') plt.plot(line_x,line_y) plt.title(sta['station']) ax = plt.gca() plt.ylabel('Change in water storage\n(meters of free-standing water, from gravity data)') plt.xlabel('Change in groundwater level (meters)') plt.figtext(0.25, 0.85, 'Sy = %0.2f ± %0.02f' % (poly[0], np.sqrt(cov[0,0]))) plt.figtext(0.25, 0.81, 'r^2 = %0.2f' % cc) plt.savefig(sta['station'] + '.svg') plt.show() except ValueError as e: print(e) # This keeps the figure windows open until the user closes them: input() ``` #### File: sgp-utils/sgp-utils/fg5_WL_plot.py ```python from numpy import mod, ceil import matplotlib.pylab as plt from dateutil import parser import datetime from tkinter import filedialog from tkinter import Tk import matplotlib.dates as mdates import matplotlib.ticker as tkr from nwis import nwis_get_data # Parameters and default values: a10_sd = 5 # Default A-10 standard deviation, for error bars convert_to_water = True # Converts gravity change to thickness-of-water change (41.9 microGal/m) consistent_date_axes = True # Causes all plots to have the same time span (set by x_min, x_max) cross_ref_file = 'SiteIDcrossref.csv' # File with gravity station names and corresponding 15-digit USGS ID figs_per_page = 4 # plots per page meters = True # Use meters or feet # specify x-axis limits, instead of taking them from the data. If only gravity data are present (no water levels), the # date range will be taken from the gravity data. if consistent_date_axes: x_min = datetime.datetime(2016,1,1) x_max = datetime.datetime(2021,1,1) # Formats y-axis labels def func(x, pos): s = '{}'.format(x) return s # Value to subtract from observed gravity so the plotted values are reasonable offset = 978990000 # Open dialog to specify input file. Alternatively, specify file directly. data_file = filedialog.askopenfilename(title="Select text file to plot (from A10_parse.py)") # data_file = "SanPedro_qaqc.txt" # Matplotlib interactive mode plt.ioff() stations = [] myFmt = mdates.DateFormatter('%Y') y_format = tkr.FuncFormatter(func) # Get station list and column numbers with open(data_file) as fp: a = fp.readline() a = a.strip() tags = a.split("\t") date_col = tags.index("Date") sta_col = tags.index("Station Name") grav_col = tags.index("Gravity") for line in fp: a = line.split("\t") stations.append(a[sta_col]) stations = list(set(stations)) # Initialize blank array to hold data. First array of each list element is date, second is gravity. grav_data = [[[], []]] nwis_data = ['']*len(stations) for i in range(len(stations)-1): grav_data.append([[], []]) for station in stations: sta_index = stations.index(station) nwis_data[sta_index] = (nwis_get_data(cross_ref_file, station)) # Get gravity data from input file with open(data_file) as fp: a = fp.readline() for line in fp: a = line.split("\t") sta = a[sta_col] sta_index = stations.index(sta) # using the dateutil parser we can plot dates directly grav_data[sta_index][0].append(parser.parse(a[date_col])) grav_data[sta_index][1].append(float(a[grav_col]) - offset) figidx = 1 i = 0 plt.figure(figsize=(8.5, 11)) while i < len(grav_data): if nwis_data[i]: if figidx >= (figs_per_page + 1): plt.figure(figsize=(8.5, 11)) figidx = 1 plt.subplot(4,1,figidx) grav_x = grav_data[i][0] grav_y = grav_data[i][1] ytemp = [] y0 = grav_y[0] if convert_to_water: if meters: ytemp = [(p-y0) / 41.9 for p in grav_y] a10sd = a10_sd / 41.9 else: ytemp = [(p-y0) / 12.77 for p in grav_y] a10sd = a10_sd / 12.77 rng = max(ytemp) - min(ytemp) half_rng = ceil(rng) else: ytemp = [(p-y0) for p in grav_y] a10sd = a10_sd grav_y = ytemp plt.errorbar(grav_x, grav_y, yerr=a10sd, fmt='kd') ax = plt.gca() if convert_to_water: ax.set_ylim(0-half_rng, 0+half_rng) ax2 = ax.twinx() if nwis_data[i]['continuous_x']: nwis_x = nwis_data[i]['continuous_x'] nwis_y = nwis_data[i]['continuous_y'] else: nwis_x = nwis_data[i]['discrete_x'] nwis_y = nwis_data[i]['discrete_y'] if meters: # NWIS default is feet nwis_y = [meas * .3048 for meas in nwis_y] ax2.plot(nwis_x, nwis_y) ax2.invert_yaxis() # Remove scientific notation from axes labels # ax.yaxis.get_major_formatter().set_useOffset(False) # Add commas to y-axis tick mark labels ax.yaxis.set_major_formatter(y_format) # Set x-axis tick labels to just show year ax.xaxis.set_major_formatter(myFmt) if not consistent_date_axes: # Adjust ticks so they fall on Jan 1 and extend past the range of the data. If there # are data in January and December, add another year so that there is plenty of space. start_month = grav_data[i][0][0].month start_year = grav_data[i][0][0].year end_month = grav_data[i][0][-1].month end_year = grav_data[i][0][-1].year if start_month == 1: start_year = start_year-1 if end_month == 12: end_year = end_year + 1 xticks = [] for iii in range(start_year,end_year+2): xticks.append(datetime.datetime(iii,1,1)) ax.set_xticks(xticks) else: ax.set_xlim(x_min, x_max) if convert_to_water: if meters: ax.set_ylabel('Storage change,\nin m of water') else: ax.set_ylabel('Storage change,\nin ft of water') else: ax.set_ylabel('Gravity change,\nin microGal') if meters: ax2.set_ylabel('Depth to\ngroundwater, m') else: ax2.set_ylabel('Depth to\ngroundwater, ft') plt.title(stations[i]) plt.draw() plt.subplots_adjust(bottom=0.25, hspace=0.4, left=0.25, right=0.85) # When saved, this exports fonts as fonts instead of paths: plt.rcParams['svg.fonttype'] = 'none' figidx += 1 i += 1 plt.show() ```
{ "source": "jkennedyvz/DeepFaceLive", "score": 2 }
#### File: DeepFaceLive/ui/QFaceAligner.py ```python from localization import L from xlib import qt as qtx from ..backend import FaceAligner from .widgets.QBackendPanel import QBackendPanel from .widgets.QCheckBoxCSWFlag import QCheckBoxCSWFlag from .widgets.QLabelPopupInfo import QLabelPopupInfo from .widgets.QSpinBoxCSWNumber import QSpinBoxCSWNumber from .widgets.QComboBoxCSWDynamicSingleSwitch import QComboBoxCSWDynamicSingleSwitch class QFaceAligner(QBackendPanel): def __init__(self, backend : FaceAligner): cs = backend.get_control_sheet() q_align_mode_label = QLabelPopupInfo(label=L('@QFaceAligner.align_mode'), popup_info_text=L('@QFaceAligner.help.align_mode')) q_align_mode = QComboBoxCSWDynamicSingleSwitch(cs.align_mode, reflect_state_widgets=[q_align_mode_label]) q_face_coverage_label = QLabelPopupInfo(label=L('@QFaceAligner.face_coverage'), popup_info_text=L('@QFaceAligner.help.face_coverage') ) q_face_coverage = QSpinBoxCSWNumber(cs.face_coverage, reflect_state_widgets=[q_face_coverage_label]) q_resolution_label = QLabelPopupInfo(label=L('@QFaceAligner.resolution'), popup_info_text=L('@QFaceAligner.help.resolution') ) q_resolution = QSpinBoxCSWNumber(cs.resolution, reflect_state_widgets=[q_resolution_label]) q_exclude_moving_parts_label = QLabelPopupInfo(label=L('@QFaceAligner.exclude_moving_parts'), popup_info_text=L('@QFaceAligner.help.exclude_moving_parts') ) q_exclude_moving_parts = QCheckBoxCSWFlag(cs.exclude_moving_parts, reflect_state_widgets=[q_exclude_moving_parts_label]) q_head_mode_label = QLabelPopupInfo(label=L('@QFaceAligner.head_mode'), popup_info_text=L('@QFaceAligner.help.head_mode') ) q_head_mode = QCheckBoxCSWFlag(cs.head_mode, reflect_state_widgets=[q_head_mode_label]) q_freeze_z_rotation_label = QLabelPopupInfo(label=L('@QFaceAligner.freeze_z_rotation') ) q_freeze_z_rotation = QCheckBoxCSWFlag(cs.freeze_z_rotation, reflect_state_widgets=[q_freeze_z_rotation_label]) q_x_offset_label = QLabelPopupInfo(label=L('@QFaceAligner.x_offset')) q_x_offset = QSpinBoxCSWNumber(cs.x_offset, reflect_state_widgets=[q_x_offset_label]) q_y_offset_label = QLabelPopupInfo(label=L('@QFaceAligner.y_offset')) q_y_offset = QSpinBoxCSWNumber(cs.y_offset, reflect_state_widgets=[q_y_offset_label]) grid_l = qtx.QXGridLayout(spacing=5) row = 0 grid_l.addWidget(q_align_mode_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_align_mode, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_face_coverage_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_face_coverage, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_resolution_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_resolution, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_exclude_moving_parts_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_exclude_moving_parts, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_head_mode_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_head_mode, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_freeze_z_rotation_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_freeze_z_rotation, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addLayout( qtx.QXVBoxLayout([q_x_offset_label, q_y_offset_label]), row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addLayout( qtx.QXHBoxLayout([q_x_offset, q_y_offset]), row, 1, alignment=qtx.AlignLeft ) row += 1 super().__init__(backend, L('@QFaceAligner.module_title'), layout=qtx.QXVBoxLayout([grid_l])) ``` #### File: DeepFaceLive/ui/QFaceAnimator.py ```python from pathlib import Path from localization import L from resources.gfx import QXImageDB from xlib import qt as qtx from ..backend import FaceAnimator from .widgets.QBackendPanel import QBackendPanel from .widgets.QCheckBoxCSWFlag import QCheckBoxCSWFlag from .widgets.QComboBoxCSWDynamicSingleSwitch import \ QComboBoxCSWDynamicSingleSwitch from .widgets.QLabelPopupInfo import QLabelPopupInfo from .widgets.QSpinBoxCSWNumber import QSpinBoxCSWNumber from .widgets.QXPushButtonCSWSignal import QXPushButtonCSWSignal from .widgets.QSliderCSWNumber import QSliderCSWNumber class QFaceAnimator(QBackendPanel): def __init__(self, backend : FaceAnimator, animatables_path : Path): self._animatables_path = animatables_path cs = backend.get_control_sheet() btn_open_folder = self.btn_open_folder = qtx.QXPushButton(image = QXImageDB.eye_outline('light gray'), tooltip_text='Reveal in Explorer', released=self._btn_open_folder_released, fixed_size=(24,22) ) q_device_label = QLabelPopupInfo(label=L('@common.device'), popup_info_text=L('@common.help.device') ) q_device = QComboBoxCSWDynamicSingleSwitch(cs.device, reflect_state_widgets=[q_device_label]) q_animatable_label = QLabelPopupInfo(label=L('@QFaceAnimator.animatable') ) q_animatable = QComboBoxCSWDynamicSingleSwitch(cs.animatable, reflect_state_widgets=[q_animatable_label, btn_open_folder]) q_animator_face_id_label = QLabelPopupInfo(label=L('@QFaceAnimator.animator_face_id') ) q_animator_face_id = QSpinBoxCSWNumber(cs.animator_face_id, reflect_state_widgets=[q_animator_face_id_label]) q_relative_mode_label = QLabelPopupInfo(label=L('@QFaceAnimator.relative_mode') ) q_relative_mode = QCheckBoxCSWFlag(cs.relative_mode, reflect_state_widgets=[q_relative_mode_label]) q_relative_power = QSliderCSWNumber(cs.relative_power) q_update_animatables = QXPushButtonCSWSignal(cs.update_animatables, image=QXImageDB.reload_outline('light gray'), button_size=(24,22) ) q_reset_reference_pose = QXPushButtonCSWSignal(cs.reset_reference_pose, text=L('@QFaceAnimator.reset_reference_pose') ) grid_l = qtx.QXGridLayout( spacing=5) row = 0 grid_l.addWidget(q_device_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_device, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_animatable_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addLayout(qtx.QXHBoxLayout([q_animatable, 2, btn_open_folder, 2, q_update_animatables]), row, 1 ) row += 1 grid_l.addWidget(q_animator_face_id_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addWidget(q_animator_face_id, row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_relative_mode_label, row, 0, alignment=qtx.AlignRight | qtx.AlignVCenter ) grid_l.addLayout(qtx.QXHBoxLayout([q_relative_mode,2,q_relative_power]), row, 1, alignment=qtx.AlignLeft ) row += 1 grid_l.addWidget(q_reset_reference_pose, row, 0, 1, 2 ) row += 1 super().__init__(backend, L('@QFaceAnimator.module_title'), layout=qtx.QXVBoxLayout([grid_l]) ) def _btn_open_folder_released(self): qtx.QDesktopServices.openUrl(qtx.QUrl.fromLocalFile( str(self._animatables_path) )) ``` #### File: ui/widgets/QBCFaceAlignViewer.py ```python import numpy as np from localization import L from resources.fonts import QXFontDB from xlib import qt as qtx from ... import backend class QBCFaceAlignViewer(qtx.QXCollapsibleSection): def __init__(self, backed_weak_heap : backend.BackendWeakHeap, bc : backend.BackendConnection, preview_width=256,): self._preview_width = preview_width self._timer = qtx.QXTimer(interval=16, timeout=self._on_timer_16ms, start=True) self._backed_weak_heap = backed_weak_heap self._bc = bc self._bcd_id = None layered_images = self._layered_images = qtx.QXFixedLayeredImages(preview_width, preview_width) info_label = self._info_label = qtx.QXLabel( font=QXFontDB.get_fixedwidth_font(size=7)) super().__init__(title=L('@QBCFaceAlignViewer.title'), content_layout=qtx.QXVBoxLayout([(layered_images, qtx.AlignCenter), (info_label, qtx.AlignCenter)]) ) def _on_timer_16ms(self): top_qx = self.get_top_QXWindow() if not self.is_opened() or (top_qx is not None and top_qx.is_minimized() ): return bcd_id = self._bc.get_write_id() if self._bcd_id != bcd_id: # Has new bcd version bcd, self._bcd_id = self._bc.get_by_id(bcd_id), bcd_id if bcd is not None: bcd.assign_weak_heap(self._backed_weak_heap) self._layered_images.clear_images() for fsi in bcd.get_face_swap_info_list(): face_image = bcd.get_image (fsi.face_align_image_name) if face_image is not None: h,w = face_image.shape[:2] self._layered_images.add_image(face_image) if fsi.face_align_ulmrks is not None: lmrks_layer = np.zeros( (self._preview_width, self._preview_width, 4), dtype=np.uint8) fsi.face_align_ulmrks.draw(lmrks_layer, (0,255,0,255)) if fsi.face_urect is not None and fsi.image_to_align_uni_mat is not None: aligned_uni_rect = fsi.face_urect.transform(fsi.image_to_align_uni_mat) aligned_uni_rect.draw(lmrks_layer, (0,0,255,255) ) self._layered_images.add_image(lmrks_layer) self._info_label.setText(f'{w}x{h}') return def clear(self): self._layered_images.clear_images() ``` #### File: ui/widgets/QCheckBoxCSWFlag.py ```python from xlib import qt as qtx from xlib.mp import csw as lib_csw from .QCSWControl import QCSWControl class QCheckBoxCSWFlag(QCSWControl): """ Implements lib_csw.Flag control as CheckBox """ def __init__(self, csw_flag : lib_csw.Flag.Client, reflect_state_widgets=None): if not isinstance(csw_flag, lib_csw.Flag.Client): raise ValueError('csw_flag must be an instance of Flag.Client') self._csw_flag = csw_flag csw_flag.call_on_flag(self.on_csw_flag) chbox = self._chbox = qtx.QXCheckBox(clicked=self.on_chbox_clicked) super().__init__(csw_control=csw_flag, reflect_state_widgets=reflect_state_widgets, layout=qtx.QXHBoxLayout([chbox])) def on_csw_flag(self, flag): with qtx.BlockSignals(self._chbox): self._chbox.setChecked(flag) def on_chbox_clicked(self): self._csw_flag.set_flag(self._chbox.isChecked()) ``` #### File: ui/widgets/QLabelPopupInfo.py ```python from typing import Union from resources.fonts import QXFontDB from resources.gfx import QXImageDB from xlib import qt as qtx class QLabelPopupInfo(qtx.QXWidget): def __init__(self, label : str = None, popup_info_text = None): """ text label with optional popup info on click """ super().__init__() self._has_info_text = False self._label = qtx.QXLabel(text='', hided=True) wnd_text_label = self._popup_wnd_text_label = qtx.QXLabel(text='', font=QXFontDB.get_default_font() ) wnd = self._popup_wnd = qtx.QXPopupWindow(layout=qtx.QXHBoxLayout([ qtx.QXFrame(bg_color= qtx.Qt.GlobalColor.black, layout=qtx.QXHBoxLayout([ qtx.QXFrame(layout=qtx.QXHBoxLayout([qtx.QXLabel(image=QXImageDB.information_circle_outline('yellow'), scaled_contents=True, fixed_size=(24,24)), wnd_text_label ], contents_margins=2, spacing=2)), ], contents_margins=2, spacing=2), size_policy=('fixed', 'fixed') ) ], contents_margins=0) ) info_btn = self._info_btn = qtx.QXPushButton(image=QXImageDB.information_circle_outline('light gray'), released=self._on_info_btn_released, fixed_size=(24,22), hided=True) self.setLayout(qtx.QXHBoxLayout([self._label, info_btn])) self.set_label( label ) self.set_popup_info( popup_info_text ) def set_info_icon(self): self._label.hide() self._info_btn.show() def set_label(self, label : Union[str, None]): self._info_btn.hide() self._label.setText(label) self._label.show() def set_popup_info(self, text : Union[str, None]): if text is not None: self._has_info_text = True self._popup_wnd_text_label.setText(text) else: self._has_info_text = False def enterEvent(self, ev): super().enterEvent(ev) if self.isEnabled() and self._has_info_text: self._label.set_color('yellow') def leaveEvent(self, ev): super().leaveEvent(ev) if self.isEnabled() and self._has_info_text: self._label.set_color(None) def mousePressEvent(self, ev): super().mousePressEvent(ev) self._show_popup_wnd() def _on_info_btn_released(self): self._show_popup_wnd() def _show_popup_wnd(self): if self._has_info_text: popup_wnd = self._popup_wnd popup_wnd.show() label_widget = self._label if label_widget.isHidden(): label_widget = self._info_btn screen_size = qtx.QXMainApplication.inst.primaryScreen().size() label_size = label_widget.size() global_pt = label_widget.mapToGlobal( qtx.QPoint(0, label_size.height())) popup_wnd_size = popup_wnd.size() global_pt = qtx.QPoint( min(global_pt.x(), screen_size.width() - popup_wnd_size.width()), min(global_pt.y(), screen_size.height() - popup_wnd_size.height()) ) popup_wnd.move(global_pt) ``` #### File: ui/widgets/QLineEditCSWText.py ```python from pathlib import Path from resources.fonts import QXFontDB from resources.gfx import QXImageDB from xlib import qt as qtx from xlib.mp import csw as lib_csw from .QCSWControl import QCSWControl class QLineEditCSWText(QCSWControl): def __init__(self, csw_text : lib_csw.Text.Client, font = None, reflect_state_widgets=None): """ Implements lib_csw.Text control as LineEdit """ if not isinstance(csw_text, lib_csw.Text.Client): raise ValueError('csw_path must be an instance of Text.Client') self._csw_text = csw_text self._dlg = None csw_text.call_on_text(self._on_csw_text) if font is None: font = QXFontDB.get_default_font() lineedit = self._lineedit = qtx.QXLineEdit(font=font, placeholder_text='...', size_policy=('expanding', 'fixed'), editingFinished=self.on_lineedit_editingFinished) super().__init__(csw_control=csw_text, reflect_state_widgets=reflect_state_widgets, layout=qtx.QXHBoxLayout([lineedit]) ) def _on_csw_text(self, text): with qtx.BlockSignals(self._lineedit): self._lineedit.setText(text) def on_lineedit_editingFinished(self): text = self._lineedit.text() if len(text) == 0: text = None self._csw_text.set_text(text) ``` #### File: torch/FaceAligner/FaceAligner.py ```python from functools import partial from pathlib import Path from typing import Union import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from xlib.file import SplittedFile from xlib.torch import TorchDeviceInfo, get_cpu_device_info def _make_divisible(v: float, divisor: int, min_value = None) -> int: if min_value is None: min_value = divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) if new_v < 0.9 * v: new_v += divisor return new_v class SqueezeExcitation(nn.Module): def __init__( self, in_ch: int, squeeze_channels: int, activation = nn.ReLU, scale_activation = nn.Sigmoid): super().__init__() self.avgpool = nn.AdaptiveAvgPool2d(1) self.fc1 = nn.Conv2d(in_ch, squeeze_channels, 1) self.fc2 = nn.Conv2d(squeeze_channels, in_ch, 1) self.activation = activation() self.scale_activation = scale_activation() def forward(self, input): scale = self.avgpool(input) scale = self.fc1(scale) scale = self.activation(scale) scale = self.fc2(scale) scale = self.scale_activation(scale) return scale * input class ConvNormActivation(nn.Sequential): def __init__(self, in_ch: int, out_ch: int, kernel_size: int = 3, stride: int = 1, padding = None, groups: int = 1, norm_layer = nn.BatchNorm2d, activation_layer = nn.ReLU,) -> None: if padding is None: padding = (kernel_size - 1) // 2 layers = [torch.nn.Conv2d(in_ch, out_ch, kernel_size, stride, padding, groups=groups, bias=norm_layer is None)] if norm_layer is not None: layers.append(norm_layer(out_ch)) if activation_layer is not None: layers.append(activation_layer()) super().__init__(*layers) self.out_ch = out_ch class InvertedResidual(nn.Module): def __init__(self, in_ch: int, mid_ch: int, out_ch: int, kernel: int, stride: int, use_se: bool, hs_act : bool, width_mult: float = 1.0, norm_layer = None,): super().__init__() mid_ch = _make_divisible(mid_ch * width_mult, 8) out_ch = _make_divisible(out_ch * width_mult, 8) self._is_res_connect = stride == 1 and in_ch == out_ch activation_layer = nn.Hardswish if hs_act else nn.ReLU layers = [] if mid_ch != in_ch: layers.append(ConvNormActivation(in_ch, mid_ch, kernel_size=1, norm_layer=norm_layer, activation_layer=activation_layer)) layers.append(ConvNormActivation(mid_ch, mid_ch, kernel_size=kernel, stride=stride, groups=mid_ch, norm_layer=norm_layer, activation_layer=activation_layer)) if use_se: layers.append( SqueezeExcitation(mid_ch, _make_divisible(mid_ch // 4, 8), scale_activation=nn.Hardsigmoid) ) layers.append(ConvNormActivation(mid_ch, out_ch, kernel_size=1, norm_layer=norm_layer, activation_layer=None)) self.block = nn.Sequential(*layers) self.out_ch = out_ch def forward(self, input): result = self.block(input) if self._is_res_connect: result = result + input return result class FaceAlignerNet(nn.Module): def __init__(self): super().__init__() norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01) width_mult = 1.66 self.c0 = c0 = ConvNormActivation(3, _make_divisible(16 * width_mult, 8), kernel_size=3, stride=2, norm_layer=norm_layer, activation_layer=nn.Hardswish) self.c1 = c1 = InvertedResidual ( c0.out_ch, 16, 16, 3, 1, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c2 = c2 = InvertedResidual ( c1.out_ch, 64, 24, 3, 2, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c3 = c3 = InvertedResidual ( c2.out_ch, 72, 24, 3, 1, use_se=False, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c4 = c4 = InvertedResidual ( c3.out_ch, 72, 40, 5, 2, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c5 = c5 = InvertedResidual ( c4.out_ch, 120, 40, 5, 1, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c6 = c6 = InvertedResidual ( c5.out_ch, 120, 40, 5, 1, use_se=True, hs_act=False, norm_layer=norm_layer, width_mult=width_mult) self.c7 = c7 = InvertedResidual ( c6.out_ch, 240, 80, 3, 2, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c8 = c8 = InvertedResidual ( c7.out_ch, 200, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c9 = c9 = InvertedResidual ( c8.out_ch, 184, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c10 = c10 = InvertedResidual ( c9.out_ch, 184, 80, 3, 1, use_se=False, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c11 = c11 = InvertedResidual ( c10.out_ch, 480, 112, 3, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c12 = c12 = InvertedResidual ( c11.out_ch, 672, 112, 3, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c13 = c13 = InvertedResidual ( c12.out_ch, 672, 160, 5, 2, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c14 = c14 = InvertedResidual ( c13.out_ch, 960, 160, 5, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c15 = c15 = InvertedResidual ( c14.out_ch, 960, 160, 5, 1, use_se=True, hs_act=True, norm_layer=norm_layer, width_mult=width_mult) self.c16 = c16 = ConvNormActivation(c15.out_ch, _make_divisible(6*160*width_mult, 8), kernel_size=1, norm_layer=norm_layer, activation_layer=nn.Hardswish) self.fc1 = nn.Linear(c16.out_ch, _make_divisible(c16.out_ch*1.33, 8)) self.fc1_act = nn.Hardswish() self.fc2 = nn.Linear(self.fc1.out_features, 4) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out') if m.bias is not None: nn.init.zeros_(m.bias) elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.ones_(m.weight) nn.init.zeros_(m.bias) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) nn.init.zeros_(m.bias) def forward(self, inp): x = inp x = self.c0(x) x = self.c1(x) x = self.c2(x) x = self.c3(x) x = self.c4(x) x = self.c5(x) x = self.c6(x) x = self.c7(x) x = self.c8(x) x = self.c9(x) x = self.c10(x) x = self.c11(x) x = self.c12(x) x = self.c13(x) x = self.c14(x) x = self.c15(x) x = self.c16(x) x = x.mean((-2,-1)) x = self.fc1(x) x = self.fc1_act(x) x = self.fc2(x) scale_t, angle_t, tx_t, ty_t = torch.split(x, 1, -1) aff_t = torch.cat([torch.cos(angle_t)*scale_t, -torch.sin(angle_t)*scale_t, tx_t, torch.sin(angle_t)*scale_t, torch.cos(angle_t)*scale_t, ty_t, ], dim=-1).view(-1,2,3) return aff_t ``` #### File: torch/S3FD/S3FD.py ```python import operator from pathlib import Path import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from xlib import math as lib_math from xlib.file import SplittedFile from xlib.image import ImageProcessor from xlib.torch import TorchDeviceInfo, get_cpu_device_info class S3FD: def __init__(self, device_info : TorchDeviceInfo = None ): if device_info is None: device_info = get_cpu_device_info() self.device_info = device_info path = Path(__file__).parent / 'S3FD.pth' SplittedFile.merge(path, delete_parts=False) net = self.net = S3FDNet() net.load_state_dict( torch.load(str(path) )) net.eval() if not device_info.is_cpu(): net.cuda(device_info.get_index()) def extract(self, img : np.ndarray, fixed_window, min_face_size=40): """ """ ip = ImageProcessor(img) if fixed_window != 0: fixed_window = max(64, max(1, fixed_window // 32) * 32 ) img_scale = ip.fit_in(fixed_window, fixed_window, pad_to_target=True, allow_upscale=False) else: ip.pad_to_next_divisor(64, 64) img_scale = 1.0 img = ip.ch(3).as_float32().apply( lambda img: img - [104,117,123]).get_image('NCHW') tensor = torch.from_numpy(img) if not self.device_info.is_cpu(): tensor = tensor.cuda(self.device_info.get_index()) batches_bbox = [x.data.cpu().numpy() for x in self.net(tensor)] faces_per_batch = [] for batch in range(img.shape[0]): bbox = self.refine( [ x[batch] for x in batches_bbox ] ) faces = [] for l,t,r,b,c in bbox: if img_scale != 1.0: l,t,r,b = l/img_scale, t/img_scale, r/img_scale, b/img_scale bt = b-t if min(r-l,bt) < min_face_size: continue b += bt*0.1 faces.append ( (l,t,r,b) ) #sort by largest area first faces = [ [(l,t,r,b), (r-l)*(b-t) ] for (l,t,r,b) in faces ] faces = sorted(faces, key=operator.itemgetter(1), reverse=True ) faces = [ x[0] for x in faces] faces_per_batch.append(faces) return faces_per_batch def refine(self, olist): bboxlist = [] variances = [0.1, 0.2] for i in range(len(olist) // 2): ocls, oreg = olist[i * 2], olist[i * 2 + 1] stride = 2**(i + 2) # 4,8,16,32,64,128 for hindex, windex in [*zip(*np.where(ocls[1, :, :] > 0.05))]: axc, ayc = stride / 2 + windex * stride, stride / 2 + hindex * stride score = ocls[1, hindex, windex] loc = np.ascontiguousarray(oreg[:, hindex, windex]).reshape((1, 4)) priors = np.array([[axc, ayc, stride * 4, stride * 4]]) bbox = np.concatenate((priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:], priors[:, 2:] * np.exp(loc[:, 2:] * variances[1])), 1) bbox[:, :2] -= bbox[:, 2:] / 2 bbox[:, 2:] += bbox[:, :2] x1, y1, x2, y2 = bbox[0] bboxlist.append([x1, y1, x2, y2, score]) if len(bboxlist) != 0: bboxlist = np.array(bboxlist) bboxlist = bboxlist[ lib_math.nms(bboxlist[:,0], bboxlist[:,1], bboxlist[:,2], bboxlist[:,3], bboxlist[:,4], 0.3), : ] bboxlist = [x for x in bboxlist if x[-1] >= 0.5] return bboxlist @staticmethod def save_as_onnx(onnx_filepath): s3fd = S3FD() torch.onnx.export(s3fd.net, torch.from_numpy( np.zeros( (1,3,640,640), dtype=np.float32)), str(onnx_filepath), verbose=True, training=torch.onnx.TrainingMode.EVAL, opset_version=9, do_constant_folding=True, input_names=['in'], output_names=['cls1', 'reg1', 'cls2', 'reg2', 'cls3', 'reg3', 'cls4', 'reg4', 'cls5', 'reg5', 'cls6', 'reg6'], dynamic_axes={'in' : {0:'batch_size',2:'height',3:'width'}, 'cls1' : {2:'height',3:'width'}, 'reg1' : {2:'height',3:'width'}, 'cls2' : {2:'height',3:'width'}, 'reg2' : {2:'height',3:'width'}, 'cls3' : {2:'height',3:'width'}, 'reg3' : {2:'height',3:'width'}, 'cls4' : {2:'height',3:'width'}, 'reg4' : {2:'height',3:'width'}, 'cls5' : {2:'height',3:'width'}, 'reg5' : {2:'height',3:'width'}, 'cls6' : {2:'height',3:'width'}, 'reg6' : {2:'height',3:'width'}, }, ) class L2Norm(nn.Module): def __init__(self, n_channels, scale=1.0): super().__init__() self.n_channels = n_channels self.scale = scale self.eps = 1e-10 self.weight = nn.Parameter(torch.Tensor(self.n_channels)) self.weight.data *= 0.0 self.weight.data += self.scale def forward(self, x): norm = x.pow(2).sum(dim=1, keepdim=True).sqrt() + self.eps x = x / norm * self.weight.view(1, -1, 1, 1) return x class S3FDNet(nn.Module): def __init__(self): super().__init__() self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1) self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1) self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1) self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, stride=1, padding=1) self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1) self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1) self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, stride=1, padding=1) self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, stride=1, padding=1) self.fc6 = nn.Conv2d(512, 1024, kernel_size=3, stride=1, padding=3) self.fc7 = nn.Conv2d(1024, 1024, kernel_size=1, stride=1, padding=0) self.conv6_1 = nn.Conv2d(1024, 256, kernel_size=1, stride=1, padding=0) self.conv6_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1) self.conv7_1 = nn.Conv2d(512, 128, kernel_size=1, stride=1, padding=0) self.conv7_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1) self.conv3_3_norm = L2Norm(256, scale=10) self.conv4_3_norm = L2Norm(512, scale=8) self.conv5_3_norm = L2Norm(512, scale=5) self.conv3_3_norm_mbox_conf = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1) self.conv3_3_norm_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1) self.conv4_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1) self.conv4_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1) self.conv5_3_norm_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1) self.conv5_3_norm_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1) self.fc7_mbox_conf = nn.Conv2d(1024, 2, kernel_size=3, stride=1, padding=1) self.fc7_mbox_loc = nn.Conv2d(1024, 4, kernel_size=3, stride=1, padding=1) self.conv6_2_mbox_conf = nn.Conv2d(512, 2, kernel_size=3, stride=1, padding=1) self.conv6_2_mbox_loc = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1) self.conv7_2_mbox_conf = nn.Conv2d(256, 2, kernel_size=3, stride=1, padding=1) self.conv7_2_mbox_loc = nn.Conv2d(256, 4, kernel_size=3, stride=1, padding=1) def forward(self, x): h = F.relu(self.conv1_1(x)) h = F.relu(self.conv1_2(h)) h = F.max_pool2d(h, 2, 2) h = F.relu(self.conv2_1(h)) h = F.relu(self.conv2_2(h)) h = F.max_pool2d(h, 2, 2) h = F.relu(self.conv3_1(h)) h = F.relu(self.conv3_2(h)) h = F.relu(self.conv3_3(h)) f3_3 = h h = F.max_pool2d(h, 2, 2) h = F.relu(self.conv4_1(h)) h = F.relu(self.conv4_2(h)) h = F.relu(self.conv4_3(h)) f4_3 = h h = F.max_pool2d(h, 2, 2) h = F.relu(self.conv5_1(h)) h = F.relu(self.conv5_2(h)) h = F.relu(self.conv5_3(h)) f5_3 = h h = F.max_pool2d(h, 2, 2) h = F.relu(self.fc6(h)) h = F.relu(self.fc7(h)) ffc7 = h h = F.relu(self.conv6_1(h)) h = F.relu(self.conv6_2(h)) f6_2 = h h = F.relu(self.conv7_1(h)) h = F.relu(self.conv7_2(h)) f7_2 = h f3_3 = self.conv3_3_norm(f3_3) f4_3 = self.conv4_3_norm(f4_3) f5_3 = self.conv5_3_norm(f5_3) cls1 = self.conv3_3_norm_mbox_conf(f3_3) reg1 = self.conv3_3_norm_mbox_loc(f3_3) cls2 = self.conv4_3_norm_mbox_conf(f4_3) reg2 = self.conv4_3_norm_mbox_loc(f4_3) cls3 = self.conv5_3_norm_mbox_conf(f5_3) reg3 = self.conv5_3_norm_mbox_loc(f5_3) cls4 = self.fc7_mbox_conf(ffc7) reg4 = self.fc7_mbox_loc(ffc7) cls5 = self.conv6_2_mbox_conf(f6_2) reg5 = self.conv6_2_mbox_loc(f6_2) cls6 = self.conv7_2_mbox_conf(f7_2) reg6 = self.conv7_2_mbox_loc(f7_2) # max-out background label chunk = torch.chunk(cls1, 4, 1) bmax = torch.max(torch.max(chunk[0], chunk[1]), chunk[2]) cls1 = torch.cat ([bmax,chunk[3]], dim=1) cls1, cls2, cls3, cls4, cls5, cls6 = [ F.softmax(x, dim=1) for x in [cls1, cls2, cls3, cls4, cls5, cls6] ] return [cls1, reg1, cls2, reg2, cls3, reg3, cls4, reg4, cls5, reg5, cls6, reg6] ``` #### File: win32/oleaut32/oleaut32.py ```python from ctypes import POINTER, Structure from ..wintypes import VARIANT, dll_import @dll_import('OleAut32') def VariantInit( pvarg : POINTER(VARIANT) ) -> None: ... ``` #### File: avecl/_internal/AAxes.py ```python from collections import Iterable class AAxes(Iterable): __slots__ = ['axes','ndim','_inversed'] def __init__(self, axes, shape_ndim=None): """ Constructs AAxes from user argument arguments axes AAxes Int Iterable of ints None shape_ndim(None) provide shape_ndim if axes contain negative values can raise an errors during the construction AAxes supports: A+B : concat A_axes with B_axes A-B : removes B_axes from A_axes """ if isinstance(axes, AAxes): self.axes = axes.axes self.ndim = axes.ndim self._inversed = axes._inversed elif axes is None: self.axes = None self.ndim = None self._inversed = None else: if not isinstance(axes, Iterable): axes = (axes,) if isinstance(axes, Iterable): valid_axes = [] for x in axes: if x is None: raise ValueError(f'Incorrent value {x} in axes {axes}') x = int(x) if x < 0: if shape_ndim is None: raise ValueError(f'Incorrent value {x} in axes {axes}, or provide shape_ndim') x = shape_ndim + x if x in valid_axes: raise ValueError(f'Axes must contain unique values.') valid_axes.append(x) self.axes = tuple(valid_axes) self.ndim = len(self.axes) self._inversed = None def is_none_axes(self): """ returns True if AAxes is constructed with (None) argument, i.e. all-axes """ return self.axes is None def sorted(self) -> 'AAxes': """ returns sorted AAxes """ return AAxes(sorted(self.axes)) def swapped_axes(self, axis_a, axis_b) -> 'AAxes': x = list(self.axes) if axis_a < 0: axis_a = len(x) + axis_a if axis_b < 0: axis_b = len(x) + axis_b x[axis_b], x[axis_a] = x[axis_a], x[axis_b] return AAxes( tuple(x) ) def inversed(self) -> 'AAxes': """ Returns inversed axes order Example: for (0,2,3,1) returns (0,3,1,2) """ if self.is_none_axes(): raise Exception(f'none-axes does not support inversed(). Handle none-axes by calling .is_none_axes()') if self._inversed is None: x = { axis:i for i,axis in enumerate(self.axes) } t = [] for i in range(self.ndim): axis = x.get(i, None) if axis is None: raise Exception(f'axes {self.axes} are inconsistent to do inverse order.') t.append(axis) self._inversed = AAxes(t) return self._inversed def __hash__(self): return self.axes.__hash__() def __eq__(self, other): if isinstance(other, AAxes): return self.axes == other.axes elif isinstance(other, Iterable): return self.axes == tuple(other) return False def __iter__(self): if self.is_none_axes(): raise Exception(f'none-axes does not support iteration. Handle none-axes by calling .is_none_axes()') return self.axes.__iter__() def __len__(self): return self.ndim def __getitem__(self,key): if self.is_none_axes(): raise Exception(f'none-axes does not support indexing. Handle none-axes by calling .is_none_axes()') elif isinstance(key, slice): return AAxes(self.axes[key]) return self.axes[key] def __radd__(self, o): if isinstance(o, Iterable): return AAxes( tuple(o) + self.axes) else: raise ValueError(f'unable to use type {o.__class__} in AAxes append') def __add__(self, o): if isinstance(o, Iterable): return AAxes( self.axes + tuple(o) ) else: raise ValueError(f'unable to use type {o.__class__} in AAxes append') def __rsub__(self, o): if isinstance(o, Iterable): new_axes = [] for axis in o: if axis not in self.axes: new_axes.append(axis) return AAxes(new_axes) else: raise ValueError(f'unable to use type {o.__class__} in AAxes substraction') def __sub__(self, o): if isinstance(o, Iterable): new_axes = [] o_axes = tuple(o) for axis in self.axes: if axis not in o_axes: new_axes.append(axis) return AAxes(new_axes) else: raise ValueError(f'unable to use type {o.__class__} in AAxes substraction') def __str__(self): if self.is_none_axes(): return '(None)' return str(self.axes) def __repr__(self): return 'AAxes' + self.__str__() __all__ = ['AAxes'] ``` #### File: _internal/backend/Kernel.py ```python class Kernel: """ TensorCL kernel. It does not allocate any resources, thus can be used as static variable within class. arguments kernel_text OpenCL text of kernel. Must contain only one __kernel global_shape default global_shape for .run() local_shape default local_shape for .run() """ def __init__(self, kernel_text, global_shape=None, local_shape=None): self._kernel_text = kernel_text self._global_shape = global_shape self._local_shape = local_shape def get_kernel_text(self) -> str: return self._kernel_text def get_global_shape(self): return self._global_shape def get_local_shape(self): return self._local_shape def __str__(self): return f'Kernel: \n{self._kernel_text}' def __repr__(self): return self.__str__() ``` #### File: avecl/_internal/HArgs.py ```python from typing import List import numpy as np from .backend import Device from .HTensor import HTensor from .HType import HType from .Tensor import Tensor from .AShape import AShape class HArgs: """ Helper functions for list of arguments """ @staticmethod def decompose(args): """ decompose list of args of Tensor and supported numeric values returns ( shape_list, # if scalar value -> shape is None dtype_list, # kernel_args_list # ) """ shape_list = [] dtype_list = [] kernel_args_list = [] for arg in args: if isinstance(arg, Tensor): shape_list.append(arg.shape) dtype_list.append(arg.dtype) kernel_args_list.append(arg.get_buffer()) else: if isinstance(arg, int): dtype, arg = np.int32, np.int32(arg) elif isinstance(arg, float): dtype, arg = np.float32, np.float32(arg) elif HType.is_obj_of_np_scalar_type(arg): dtype = arg.__class__ else: raise ValueError(f'Unsupported type of arg: {arg.__class__} Use Tensor or number type.') shape_list.append(None) dtype_list.append(dtype) kernel_args_list.append(arg) return tuple(shape_list), tuple(dtype_list), tuple(kernel_args_list) @staticmethod def get_shapes(args : List[Tensor]) -> List[AShape]: """ """ return tuple(t.shape for t in args) @staticmethod def check_zero_get_length(args) -> int: """ raises an error if len(args) == 0, otherwise returns len """ args_len = len(args) if len(args) == 0: raise ValueError('args must be specified') return args_len @staticmethod def check_get_same_device(args : List[Tensor]) -> Device: """ check all device of tensors are the same and return the device """ result = HTensor.all_same_device(args) if not result: raise ValueError('all Tensors must have the same device') return args[0].get_device() @staticmethod def check_all_tensors(args : List[Tensor]): """ """ if not all (isinstance(tensor, Tensor) for tensor in args): raise ValueError('All values must have type of Tensor') @staticmethod def check_get_same_shape(args : List[Tensor]) -> AShape: """ check all shapes of tensors are the same and return the shape """ shape = args[0].shape if not all (t.shape == shape for t in args): raise ValueError('All tensors must have the same shape') return shape @staticmethod def filter_tensor(args, raise_on_empty : bool): """ get only tensors from the list """ tensor_args = [arg for arg in args if isinstance(arg, Tensor) ] if raise_on_empty and len(tensor_args) == 0: raise ValueError('At least one arg must be a Tensor') return tensor_args __all__ = ['HArgs'] ``` #### File: _internal/info/SliceInfo.py ```python import math import numpy as np from ..AShape import AShape class SliceInfo: __slots__ = ['o_shape', 'o_shape_kd', 'just_reshaped','axes_bes','axes_abs_bes'] def __init__(self, shape : AShape, slices): """ Slice info. can raise ValueError,TypeError during the construction arguments slices Example o_shape result shape after slice axes_bes list of (begin,step,end) per axis if s==0, then single axis element is fetched from position b s can be negative. """ # Validate slices argument for given shape. new_slices = [] before_ellipsis = None for s in slices: if s is Ellipsis: before_ellipsis = new_slices new_slices = [] continue elif s is not None and not isinstance(s, (int,tuple) ): raise ValueError(f'unknown slice argument {s} of type {s.__class__}') new_slices.append(s) if before_ellipsis is not None: # Process Ellipsis separator new_slices_n_axes = sum([ 1 for x in new_slices if x != None]) before_ellipsis_n_axes = sum([ 1 for x in before_ellipsis if x != None]) # Expand slices by filling intermediate (None,None,None) for each remaining axis new_slices = before_ellipsis + \ [(None,None,None)]*max(0, shape.ndim-before_ellipsis_n_axes-new_slices_n_axes) + \ new_slices new_slices_n_axes = sum([ 1 for x in new_slices if x != None]) if new_slices_n_axes > shape.ndim: raise ValueError('slices arguments more than shape axes') elif new_slices_n_axes < shape.ndim: # Fill remaining axes new_slices += [(None,None,None)]*( shape.ndim - new_slices_n_axes ) slices = tuple(new_slices) # Compute shapes output_is_reshaped = True # Flag determines that output_tensor # can be just reshaped without any computation o_shape = [] # output tensor shape o_shape_kd = [] # output shape used in kernel, must match input shape axes_bes = [] axes_abs_bes = [] i_axis = 0 # Process slices arguments for v in slices: if v is None: # None is new axis # We can add unlimited number of (1,) axes at any place of shape o_shape.append(1) continue i_axis_size = shape[i_axis] i_axis += 1 if isinstance(v, int): if v < 0: v += i_axis_size if v < 0 or v >= i_axis_size: raise ValueError(f'index {v} is out of bounds for axis {i_axis} with size {i_axis_size}') b,e,s = v,v,0 else: b,e,s = v if s == 0: raise ValueError(f'slice step cannot be zero') # Fix begin, end, step values if s is None: s = 1 if b is None: b = 0 if s >= 0 else i_axis_size-1 if e is None: e = i_axis_size if s >= 0 else -1 elif e < 0: e += i_axis_size if b < 0: b += i_axis_size if s >= 0: b = np.clip(b, 0, i_axis_size) e = np.clip(e, 0, i_axis_size) if b > e: raise ValueError('for positive step, begin cannot be > end.') abs_b, abs_e, abs_s = b,e,s else: b = np.clip(b, 0, i_axis_size-1) e = np.clip(e, -1, i_axis_size) if b <= e: raise ValueError('for negative step, begin cannot be <= end.') abs_s = -s abs_e = b + 1 abs_b = b - (math.ceil( (b-e) / abs_s ) -1) * abs_s # for every o_shape_kd axis # we have exact begin,step values to fetch value from input axes_bes.append( (b,e,s)) axes_abs_bes.append( (abs_b, abs_e, abs_s)) if i_axis_size != 1 and not (b == 0 and e == i_axis_size and s == 1): # Such params of axis slice will change input, thus output cannot be as just reshaped input output_is_reshaped = False # Compute output_axis_size based on begin,end,step o_axis_size = max(0, math.ceil ( (e-b) / (s if s != 0 else 1) ) ) if o_axis_size >= 1: # >= 1 : select range of indexes, axis will remain o_shape.append(o_axis_size) # ^ othwerwise axis will be supressed # o_shape with keepdims, must match ndim of input shape o_shape_kd.append( max(1,o_axis_size) ) self.just_reshaped = output_is_reshaped self.o_shape = AShape(o_shape) self.o_shape_kd = AShape(o_shape_kd) self.axes_bes = axes_bes self.axes_abs_bes = axes_abs_bes ``` #### File: _internal/op/binary_erode_circle.py ```python from ..AShape import AShape from ..backend import Kernel from ..HKernel import HKernel from ..info import Conv2DInfo from ..SCacheton import SCacheton from ..Tensor import Tensor def binary_erode_circle (input_t : Tensor, radius : int = 1, iterations : int = 1, dtype=None): """ Binary erode operator using circle kernel with radius. input_t Tensor (...,H,W) per-element of H,W, set 1 if all neighbor elements inside circle with radius != 0. otherwise set 0. """ op = SCacheton.get(_BinaryErodeOp, input_t.shape, input_t.dtype, int(radius), dtype) device = input_t.get_device() if radius <= 0 or iterations <= 0: return input_t.copy() else: for i in range(iterations): if i == 0: buf_in = input_t else: buf_in, buf_out = buf_out, buf_in if i <= 1: buf_out = Tensor( op.o_shape, op.o_dtype, device=device ) device.run_kernel(op.forward_krn, buf_out.get_buffer(), buf_in.get_buffer() ) return buf_out class _BinaryErodeOp(): def __init__(self, i_shape : AShape, i_dtype, radius, o_dtype): self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype if i_shape.ndim < 2: raise ValueError(f'i_shape.ndim must be >= 2') KS = radius*2+1 IH,IW = i_shape[-2:] ci = Conv2DInfo(IH, IW, KS, KS, stride=1, dilation=1, padding='same') self.o_shape = o_shape = i_shape self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', o_shape, o_dtype)} {HKernel.define_tensor('I', i_shape, i_dtype)} #define PADL {ci.PADL} #define PADT {ci.PADT} #define RADIUS {radius} #define KS {KS} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)} {'#pragma unroll' if KS <= 16 else ''} for (int kh=0; kh<KS; ++kh) {'#pragma unroll' if KS <= 16 else ''} for (int kw=0; kw<KS; ++kw) {{ if ( hypot( (float)(kh-RADIUS), (float)(kw-RADIUS) ) <= RADIUS) {{ int im2 = -PADT + kh + om2; int im1 = -PADL + kw + om1; I_TYPE i_val = (im1 >= 0 & im1 < Im1 & im2 >= 0 & im2 < Im2) ? I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='im2,im1' )})) : 0; if (i_val == (I_TYPE)0) {{ O_GLOBAL_STORE(gid, (O_TYPE) 0 ); return; }} }} }} O_GLOBAL_STORE(gid, (O_TYPE) 1 ); }} """) ``` #### File: _internal/op/binary_morph.py ```python from ..Tensor import Tensor from .binary_dilate_circle import binary_dilate_circle from .binary_erode_circle import binary_erode_circle from .gaussian_blur import gaussian_blur from .pad import pad from .cast import cast def binary_morph(input_t : Tensor, erode_dilate : int, blur : float, fade_to_border : bool = False, dtype=None) -> Tensor: """ Apply optional binary erode/dilate and optional blur. input_t (...,H,W) tensor. Non zero values will be treated as 1. erode_dilate int >= 0 amount of pixels to dilate blur float >= 0 amount of pixels to blur fade_to_border(False) clip the image in order to fade smoothly to the border with specified blur amount """ x = input_t H,W = input_t.shape[-2:] x = pad(x, (...,(H,H),(W,W)), mode='constant', constant_value=0) if erode_dilate > 0: x = binary_erode_circle(x, radius=1, iterations=max(1,erode_dilate//2)) elif erode_dilate < 0: x = binary_dilate_circle(x, radius=1, iterations=max(1,-erode_dilate//2) ) if fade_to_border: h_clip_size = H + blur // 2 w_clip_size = W + blur // 2 x[...,:h_clip_size,:] = 0 x[...,-h_clip_size:,:] = 0 x[...,:,:w_clip_size] = 0 x[...,:,-w_clip_size:] = 0 if blur > 0: x = gaussian_blur(x, blur * 0.250, dtype=dtype) else: x = cast(x, dtype=dtype) return x[...,H:-H,W:-W] ``` #### File: _internal/op/remap_np_affine.py ```python import numpy as np from ..AShape import AShape from ..backend import Kernel from ..EInterpolation import EInterpolation from ..HKernel import HKernel from ..SCacheton import SCacheton from ..Tensor import Tensor def remap_np_affine (input_t : Tensor, affine_n : np.ndarray, interpolation : EInterpolation = None, inverse=False, output_size=None, post_op_text=None, dtype=None) -> Tensor: """ remap affine operator for all channels using single numpy affine mat arguments input_t Tensor (...,H,W) affine_n np.array (2,3) interpolation EInterpolation post_op_text cl kernel post operation with output float value named 'O' example 'O = 2*O;' output_size (w,h) dtype """ if affine_n.shape != (2,3): raise ValueError('affine_n.shape must be (2,3)') op = SCacheton.get(_RemapAffineOp, input_t.shape, input_t.dtype, interpolation, output_size, post_op_text, dtype) output_t = Tensor( op.o_shape, op.o_dtype, device=input_t.get_device() ) ((a, b, c), (d, e, f)) = affine_n if not inverse: # do inverse by default, match cv2.warpAffine behaviour D = a*e - b*d D = 1.0 / D if D != 0.0 else 0.0 a, b, c, d, e, f = ( e*D, -b*D, (b*f-e*c)*D , -d*D, a*D, (d*c-a*f)*D ) input_t.get_device().run_kernel(op.forward_krn, output_t.get_buffer(), input_t.get_buffer(), np.float32(a), np.float32(b), np.float32(c), np.float32(d), np.float32(e), np.float32(f) ) return output_t class _RemapAffineOp(): def __init__(self, i_shape : AShape, i_dtype, interpolation, o_size, post_op_text, o_dtype): if np.dtype(i_dtype).type == np.bool_: raise ValueError('np.bool_ dtype of i_dtype is not supported.') if i_shape.ndim < 2: raise ValueError('i_shape.ndim must be >= 2 (...,H,W)') if interpolation is None: interpolation = EInterpolation.LINEAR IH,IW = i_shape[-2:] if o_size is not None: OH,OW = o_size else: OH,OW = IH,IW o_shape = AShape( (OH,OW) ) if i_shape.ndim > 2: o_shape = i_shape[:-2] + o_shape self.o_shape = o_shape self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype if post_op_text is None: post_op_text = '' if interpolation == EInterpolation.LINEAR: self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', o_shape, o_dtype)} {HKernel.define_tensor('I', i_shape, i_dtype)} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME, float a, float b, float c, float d, float e, float f) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)} float cx01 = om1*a + om2*b + c; float cy01 = om1*d + om2*e + f; float cx0f = floor(cx01); int cx0 = (int)cx0f; float cy0f = floor(cy01); int cy0 = (int)cy0f; float cx1f = cx0f+1; int cx1 = (int)cx1f; float cy1f = cy0f+1; int cy1 = (int)cy1f; float p00 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy0,cx0')})); float p01 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy0,cx1')})); float p10 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy1,cx0')})); float p11 = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='cy1,cx1')})); p00 *= (cx1f - cx01)*(cy1f - cy01)*(cy0 >= 0 & cy0 < Im2 & cx0 >= 0 & cx0 < Im1); p01 *= (cx01 - cx0f)*(cy1f - cy01)*(cy0 >= 0 & cy0 < Im2 & cx1 >= 0 & cx1 < Im1); p10 *= (cx1f - cx01)*(cy01 - cy0f)*(cy1 >= 0 & cy1 < Im2 & cx0 >= 0 & cx0 < Im1); p11 *= (cx01 - cx0f)*(cy01 - cy0f)*(cy1 >= 0 & cy1 < Im2 & cx1 >= 0 & cx1 < Im1); float O = p00 + p01 + p10 + p11; {post_op_text} O_GLOBAL_STORE(gid, O); }} """) elif interpolation == EInterpolation.CUBIC: self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', o_shape, o_dtype)} {HKernel.define_tensor('I', i_shape, i_dtype)} float cubic(float p0, float p1, float p2, float p3, float x) {{ float a0 = p1; float a1 = p2 - p0; float a2 = 2 * p0 - 5 * p1 + 4 * p2 - p3; float a3 = 3 * (p1 - p2) + p3 - p0; return a0 + 0.5 * x * (a1 + x * (a2 + x * a3)); }} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME, float a, float b, float c, float d, float e, float f) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)} float cx01f = om1*a + om2*b + c; float cy01f = om1*d + om2*e + f; float cxf = floor(cx01f); int cx = (int)cxf; float cyf = floor(cy01f); int cy = (int)cyf; float dx = cx01f-cxf; float dy = cy01f-cyf; float row[4]; #pragma unroll for (int y=cy-1, j=0; y<=cy+2; y++, j++) {{ float col[4]; #pragma unroll for (int x=cx-1, i=0; x<=cx+2; x++, i++) {{ float sxy = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='y,x')})); col[i] = sxy*(y >= 0 & y < Im2 & x >= 0 & x < Im1); }} row[j] = cubic(col[0], col[1], col[2], col[3], dx); }} float O = cubic(row[0], row[1], row[2], row[3], dy); {post_op_text} O_GLOBAL_STORE(gid, O); }} """) elif interpolation in [EInterpolation.LANCZOS3, EInterpolation.LANCZOS4]: RAD = 3 if interpolation == EInterpolation.LANCZOS3 else 4 self.forward_krn = Kernel(global_shape=(o_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', o_shape, o_dtype)} {HKernel.define_tensor('I', i_shape, i_dtype)} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME, float a, float b, float c, float d, float e, float f) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'O', o_shape.ndim)} float cx01f = om1*a + om2*b + c; float cy01f = om1*d + om2*e + f; float cxf = floor(cx01f); int cx = (int)cxf; float cyf = floor(cy01f); int cy = (int)cyf; #define RAD {RAD} float Fy[2 * RAD]; float Fx[2 * RAD]; #pragma unroll for (int y=cy-RAD+1, j=0; y<=cy+RAD; y++, j++) {{ float dy = fabs(cy01f - y); if (dy < 1e-4) Fy[j] = 1; else if (dy > RAD) Fy[j] = 0; else Fy[j] = ( RAD * sin(M_PI * dy) * sin(M_PI * dy / RAD) ) / ( (M_PI*M_PI)*dy*dy ); }} #pragma unroll for (int x=cx-RAD+1, i=0; x<=cx+RAD; x++, i++) {{ float dx = fabs(cx01f - x); if (dx < 1e-4) Fx[i] = 1; else if (dx > RAD) Fx[i] = 0; else Fx[i] = ( RAD * sin(M_PI * dx) * sin(M_PI * dx / RAD) ) / ( (M_PI*M_PI)*dx*dx ); }} float FxFysum = 0; float O = 0; #pragma unroll for (int y=cy-RAD+1, j=0; y<=cy+RAD; y++, j++) #pragma unroll for (int x=cx-RAD+1, i=0; x<=cx+RAD; x++, i++) {{ float sxy = I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', o_shape.ndim-2, suffix='y,x')})); float Fxyv = Fx[i]*Fy[j]; FxFysum += Fxyv; O += sxy*Fxyv*(y >= 0 & y < Im2 & x >= 0 & x < Im1); }} O = O / FxFysum; {post_op_text} O_GLOBAL_STORE(gid, O); }} """) else: raise ValueError(f'Unsupported interpolation type {interpolation}') ``` #### File: _internal/op/slice_.py ```python from typing import List import numpy as np from ..AShape import AShape from ..AAxes import AAxes from ..backend import Kernel from ..HKernel import HKernel from ..HType import HType from ..info import SliceInfo from ..SCacheton import SCacheton from ..Tensor import Tensor def split(input_t : Tensor, axis, keepdims=False) -> List[Tensor]: """ arguments input_t Tensor axis """ shape = input_t.shape result = [] for i in range(shape[axis]): slices = [slice(None, None, None)]*shape.ndim slices[axis] = i if not keepdims else slice(i,i+1,1) result.append( slice_(input_t, slices) ) return result def slice_(input_t : Tensor, slices, dtype : np.dtype = None, output_t=None, is_add_to_output=False) -> Tensor: """ arguments: input_t input tensor slices argument received from class.__getitem__(slices) output_t compute result to this Tensor. Tensor may be with different shape, but should match total size. gradfn will not be set. is_add_to_output add result to output_t if output_t is set. Remark. Slicing logic is not the same as numpy: For example np[2:0:1] slice will produce invalid array with zero index, but nn.slice() will select 2 index, same as val_t[2]. """ op = SCacheton.get(_SliceOp, input_t.shape, input_t.dtype, dtype, HType.hashable_slices(slices), False if output_t is None else is_add_to_output ) o_shape = op.slice_info.o_shape if output_t is None: if op.slice_info.just_reshaped: return input_t.reshape(o_shape) else: output_t = Tensor(o_shape, op.o_dtype, device=input_t.get_device()) elif output_t.shape.size != o_shape.size: raise ValueError(f'output_t must have size {o_shape.size}') input_t.get_device().run_kernel(op.forward_krn, output_t.get_buffer(), input_t.get_buffer() ) return output_t class _SliceOp: def __init__(self, i_shape : AShape, i_dtype : np.dtype, o_dtype : np.dtype, slices, is_add_to_output): self.slice_info = slice_info = SliceInfo(i_shape, slices) self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype self.forward_krn = Kernel(global_shape=(slice_info.o_shape_kd.size,), kernel_text=f""" {HKernel.define_tensor('O', slice_info.o_shape_kd, o_dtype )} {HKernel.define_tensor('I', i_shape, i_dtype )} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'o', slice_info.o_shape_kd.ndim)} {chr(10).join( f'size_t i{i} = {b} + o{i} * {s}; ' for i, (b,e,s) in enumerate(slice_info.axes_bes) ) } {'O_STORE_ADD' if is_add_to_output else 'O_GLOBAL_STORE'}(gid, I_GLOBAL_LOAD( I_IDX({HKernel.axes_seq_enum('i', i_shape.ndim)}) ) ); }} """) ``` #### File: _internal/op/stack.py ```python import numpy as np from typing import List from ..AShape import AShape from ..backend import Kernel from ..HArgs import HArgs from ..HKernel import HKernel from ..HType import HType from ..info import StackInfo from ..SCacheton import SCacheton from ..Tensor import Tensor def stack(tensor_list : List[Tensor], axis, dtype=None, output_t=None, is_add_to_output=False): """ Stack operator. arguments: tensor_list List of Tensors axis Int output_t compute result to this Tensor. Tensor may be with different shape, but should match total size. gradfn will not be set. is_add_to_output add result to output_t if output_t is set. """ HArgs.check_zero_get_length(tensor_list) HArgs.check_all_tensors(tensor_list) device = HArgs.check_get_same_device(tensor_list) shape_list, dtype_list, _ = HArgs.decompose(tensor_list) op = SCacheton.get(_StackOp, shape_list, dtype_list, int(axis), dtype, False if output_t is None else is_add_to_output) if output_t is None: output_t = Tensor (op.info.o_shape, op.o_dtype, device=device) elif output_t.shape.size != op.info.o_shape.size: raise ValueError(f'output_t must have size {op.info.o_shape.size}') for i, krn in enumerate(op.forward_krns): device.run_kernel(krn, output_t.get_buffer(), tensor_list[i].get_buffer(), np.int64(i) ) return output_t class _StackOp: def __init__(self, shape_list : List[AShape], dtype_list : List[np.dtype], axis, o_dtype, is_add_to_output): self.stack_count = stack_count = len(shape_list) i_shape = shape_list[0] if not all (s == i_shape for s in shape_list): raise ValueError('All shapes must be the same') self.o_dtype = o_dtype = o_dtype if o_dtype is not None else HType.get_most_weighted_dtype (dtype_list) self.info = info = StackInfo(i_shape, axis, stack_count) self.forward_krns = forward_krns = [] for i_dtype in dtype_list: forward_krns.append( Kernel(global_shape=(i_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', info.o_shape, o_dtype )} {HKernel.define_tensor('I', i_shape, i_dtype )} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME, long i_new_idx) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'I', i_shape.ndim)} {'O_STORE_ADD' if is_add_to_output else 'O_GLOBAL_STORE'}( O_IDX({HKernel.axes_seq_enum('I', i_shape.ndim, new_axis=('i_new_idx', info.axis))}), I_GLOBAL_LOAD(gid) ); }} """)) ``` #### File: _internal/op/tile.py ```python import numpy as np from typing import List from ..AShape import AShape from ..backend import Kernel from ..HKernel import HKernel from ..info import TileInfo from ..SCacheton import SCacheton from ..Tensor import Tensor def tile(input_t : Tensor, tiles : List[int], dtype : np.dtype = None, output_t=None, is_add_to_output=False): """ Tile operator arguments tiles Iterable of ints dtype output_t compute result to this Tensor. Tensor may be with different shape, but should match total size. gradfn will not be set. is_add_to_output add result to output_t if output_t is set. """ op = SCacheton.get(_TileOp, input_t.shape, input_t.dtype, tuple(int(tile) for tile in tiles), dtype, False if output_t is None else is_add_to_output) if output_t is None: output_t = Tensor (op.info.o_shape, op.o_dtype, device=input_t.get_device()) elif output_t.shape.size != op.info.o_shape.size: raise ValueError(f'output_t must have size {op.info.o_shape.size}') input_t.get_device().run_kernel( op.forward_krn, output_t.get_buffer(), input_t.get_buffer()) return output_t class _TileOp: def __init__(self, i_shape : AShape, i_dtype, tiles, o_dtype, is_add_to_output): self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype self.info = info = TileInfo(i_shape, tiles) self.forward_krn = Kernel(global_shape=(info.o_shape.size,), kernel_text=f""" {HKernel.define_tensor('I', i_shape, i_dtype)} {HKernel.define_tensor('O', info.o_shape, o_dtype)} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs ('gid', 'O', info.o_shape.ndim)} {'O_STORE_ADD' if is_add_to_output else 'O_GLOBAL_STORE'} (gid, I_GLOBAL_LOAD(I_IDX_MOD({HKernel.axes_seq_enum('O', info.o_shape.ndim)})) ); }} """) ``` #### File: _internal/op/transpose.py ```python import numpy as np from ..AAxes import AAxes from ..AShape import AShape from ..backend import Kernel from ..HKernel import HKernel from ..info import TransposeInfo from ..SCacheton import SCacheton from ..Tensor import Tensor def transpose(input_t : Tensor, axes_order, op_text=None, dtype : np.dtype = None, output_t : Tensor=None, is_add_to_output=False) -> Tensor: """ arguments: axes_order Int Iterable of ints None dtype cast to dtype op_text(None) optional op with value during transpose. 'O = I' output_t compute result to this Tensor. Tensor may be with different shape, but should match total size """ op = SCacheton.get(_TransposeOp, input_t.shape, input_t.dtype, dtype, AAxes(axes_order), op_text, False if output_t is None else is_add_to_output ) if output_t is None: output_t = Tensor (op.o_shape, op.o_dtype, device=input_t.get_device()) elif output_t.shape.size != op.o_shape.size: raise ValueError(f'output_t must have size {op.o_shape.size}') input_t.get_device().run_kernel(op.forward_krn, output_t.get_buffer(), input_t.get_buffer() ) return output_t class _TransposeOp: def __init__(self, i_shape : AShape, i_dtype : np.dtype, o_dtype : np.dtype, axes_order : AAxes, op_text, is_add_to_output : bool ): self.axes_order = axes_order self.o_shape = o_shape = TransposeInfo(i_shape, axes_order).o_shape self.o_dtype = o_dtype = o_dtype if o_dtype is not None else i_dtype if op_text is None: op_text = 'O = I' self.forward_krn = Kernel(global_shape=(i_shape.size,), kernel_text=f""" {HKernel.define_tensor('O', o_shape, o_dtype)} {HKernel.define_tensor('I', i_shape, i_dtype)} __kernel void impl(__global O_PTR_TYPE* O_PTR_NAME, __global const I_PTR_TYPE* I_PTR_NAME) {{ size_t gid = get_global_id(0); {HKernel.decompose_idx_to_axes_idxs('gid', 'i', i_shape.ndim)} I_TYPE I = I_GLOBAL_LOAD(gid); O_TYPE O; {op_text}; {'O_STORE_ADD' if is_add_to_output else 'O_GLOBAL_STORE'}( O_IDX({HKernel.axes_order_enum('I', axes_order )}), O ); }}""") ``` #### File: _internal/op/warp_affine.py ```python import numpy as np from ..AShape import AShape from ..initializer import InitCoords2DArange from ..SCacheton import SCacheton from ..Tensor import Tensor from .matmul import matmul from .remap import remap def warp_affine (input_t : Tensor, affine_t : Tensor, output_size=None, dtype=None) -> Tensor: """ arguments input_t Tensor(...,H,W) affine_t Tensor(...,2,3) affine matrix example of identity affine matrix [1,0,0], [0,1,0] ...-head part of shapes will be broadcasted to each other output_size(None) tuple of 2 ints (HW) of output size if None , size will not be changed """ op = SCacheton.get(_WarpAffineOp, input_t.shape, input_t.dtype, affine_t.shape, affine_t.dtype, output_size) affine_t = affine_t.transpose( op.affine_transpose_axes, dtype=np.float32 ).reshape( (-1,3,2) ) coords_t = Tensor(op.coords_shape, np.float32, device=input_t.get_device(), initializer=op.coords_init ) coords_t = coords_t.reshape(op.coords_reshape) coords_t = matmul(coords_t, affine_t).reshape(op.coords_affined_shape) output_t = remap(input_t, coords_t, dtype=dtype) return output_t class _WarpAffineOp(): def __init__(self, i_shape : AShape, i_dtype, a_shape : AShape, a_dtype, o_size): if np.dtype(i_dtype).type == np.bool_: raise ValueError('np.bool_ dtype of i_dtype is not supported.') if np.dtype(a_dtype).type == np.bool_: raise ValueError('np.bool_ dtype of a_dtype is not supported.') if i_shape.ndim < 2: raise ValueError('i_shape.ndim must be >= 2 (...,H,W)') if a_shape.ndim < 2: raise ValueError(f'a_shape.ndim must be >= 2 (...,2,3)') if a_shape[-2] != 2 or a_shape[-1] != 3: raise ValueError('Last a_shape dims must be == (...,2,3)') IH,IW = i_shape[-2:] if o_size is not None: OH,OW = o_size else: OH,OW = IH,IW self.coords_shape = AShape( (OH,OW,3) ) self.coords_affined_shape = AShape( (OH,OW,2) ) if a_shape.ndim > 2: self.coords_shape = a_shape[:-2] + self.coords_shape self.coords_affined_shape = a_shape[:-2] + self.coords_affined_shape self.coords_init = InitCoords2DArange(0,OH-1,0,OW-1) self.coords_reshape = (-1,OH*OW,3) self.affine_transpose_axes = a_shape.axes_arange().swapped_axes(-2,-1) ``` #### File: xlib/face/FaceWarper.py ```python from typing import Iterable, Tuple, Union import cv2 import numpy as np from ..math import Affine2DMat, Affine2DUniMat class FaceWarper: def __init__(self, img_to_face_uni_mat : Affine2DUniMat, align_rot_deg : Union[None, float, Tuple[float, float] ] = [-15,15], align_scale : Union[None, float, Tuple[float, float] ] = [-0.15, 0.15], align_tx : Union[None, float, Tuple[float, float] ] = [-0.05, 0.05], align_ty : Union[None, float, Tuple[float, float] ] = [-0.05, 0.05], rw_grid_cell_count : Union[None, int, Tuple[int, int] ] = [3,7], rw_grid_rot_deg : Union[None, float, Tuple[float, float] ] = [-180,180], rw_grid_scale : Union[None, float, Tuple[float, float] ] = [-0.25, 0.25], rw_grid_tx : Union[None, float, Tuple[float, float] ] = [-0.25, 0.25], rw_grid_ty : Union[None, float, Tuple[float, float] ] = [-0.25, 0.25], rnd_state : np.random.RandomState = None, ): """ Max quality one-pass face augmentation via geometric transformations with provided random range or exact values. img_to_face_uni_mat Affine2DUniMat Affine2DUniMat given from FLandmarks2D.calc_cut it is an uniform affineMat to transform original image to aligned face align_* rw_grid_* exact augmentation parameters or range for random generation. """ self._img_to_face_uni_mat = img_to_face_uni_mat self._face_to_img_uni_mat = img_to_face_uni_mat.invert() rnd_state = np.random.RandomState() rnd_state.set_state(rnd_state.get_state() if rnd_state is not None else np.random.RandomState().get_state()) self._align_rot_deg = rnd_state.uniform(*align_rot_deg) if isinstance(align_rot_deg, Iterable) else align_rot_deg self._align_scale = rnd_state.uniform(*align_scale) if isinstance(align_scale, Iterable) else align_scale self._align_tx = rnd_state.uniform(*align_tx) if isinstance(align_tx, Iterable) else align_tx self._align_ty = rnd_state.uniform(*align_ty) if isinstance(align_ty, Iterable) else align_ty self._rw_grid_cell_count = rnd_state.randint(*rw_grid_cell_count) if isinstance(rw_grid_cell_count, Iterable) else rw_grid_cell_count self._rw_grid_rot_deg = rnd_state.uniform(*rw_grid_rot_deg) if isinstance(rw_grid_rot_deg, Iterable) else rw_grid_rot_deg self._rw_grid_scale = rnd_state.uniform(*rw_grid_scale) if isinstance(rw_grid_scale, Iterable) else rw_grid_scale self._rw_grid_tx = rnd_state.uniform(*rw_grid_tx) if isinstance(rw_grid_tx, Iterable) else rw_grid_tx self._rw_grid_ty = rnd_state.uniform(*rw_grid_ty) if isinstance(rw_grid_ty, Iterable) else rw_grid_ty self._warp_rnd_mat = Affine2DUniMat.from_transformation(0.5, 0.5, self._rw_grid_rot_deg, 1.0+self._rw_grid_scale, self._rw_grid_tx, self._rw_grid_ty) self._align_rnd_mat = Affine2DUniMat.from_transformation(0.5, 0.5, self._align_rot_deg, 1.0+self._align_scale, self._align_tx, self._align_ty) self._rnd_state_state = rnd_state.get_state() self._cached = {} def get_aligned_random_transform_mat(self) -> Affine2DUniMat: """ returns Affine2DUniMat that represents transformation from aligned face to randomly transformed aligned face """ mat1 = self._img_to_face_uni_mat mat2 = (self._face_to_img_uni_mat * self._align_rnd_mat).invert() pts = [ [0,0], [1,0], [1,1]] src_pts = mat1.transform_points(pts) dst_pts = mat2.transform_points(pts) return Affine2DUniMat.from_3_pairs(src_pts, dst_pts) def transform(self, img : np.ndarray, out_res : int, random_warp : bool = True) -> np.ndarray: """ transform an image. Subsequent calls will output the same result for any img shape and out_res. img np.ndarray (HWC) out_res int random_warp(True) bool """ H,W = img.shape[:2] key = (H,W,random_warp) data = self._cached.get(key, None) if data is None: rnd_state = np.random.RandomState() rnd_state.set_state( self._rnd_state_state ) self._cached[key] = data = self._gen(H,W, random_warp, out_res, rnd_state=rnd_state ) image_grid, face_mask = data new_img = cv2.remap(img, image_grid, None, interpolation=cv2.INTER_LANCZOS4) new_img *= face_mask return new_img def _gen(self, H, W, random_warp, out_res, rnd_state): """generate grid and mask""" # make identity grid image_grid = np.stack(np.meshgrid(np.linspace(0., 1.0, H, dtype=np.float32), np.linspace(0., 1.0, W, dtype=np.float32)), -1) if random_warp: # make a random face_warp_grid in the space of the face face_warp_grid = FaceWarper._gen_random_warp_uni_grid_diff(out_res, self._rw_grid_cell_count, 0.12, rnd_state) # apply random transformation mat of face_warp_grid to mat that transforms face to image face_warp_grid_uni_mat = self._face_to_img_uni_mat * self._warp_rnd_mat # warp face_warp_grid to the space of image using previous mat and merge with image_grid image_grid += cv2.warpAffine(face_warp_grid, face_warp_grid_uni_mat.to_exact_mat(out_res,out_res, W, H), (W,H), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT) # scale uniform grid to image size image_grid *= (H-1, W-1) # apply random transformations for align mat img_to_face_rnd_mat = (self._face_to_img_uni_mat * self._align_rnd_mat).invert().to_exact_mat(W,H,out_res,out_res) # warp image_grid to face space image_grid = cv2.warpAffine(image_grid, img_to_face_rnd_mat, (out_res,out_res), flags=cv2.INTER_CUBIC, borderMode=cv2.BORDER_REPLICATE ) # make mask to refine image-boundary visible in face space face_mask = cv2.warpAffine( np.ones( (H,W), dtype=np.uint8), img_to_face_rnd_mat, (out_res,out_res), flags=cv2.INTER_NEAREST)[...,None] return image_grid, face_mask def _gen_random_warp_uni_grid_diff(size: int, cell_count, cell_mod, rnd_state) -> np.ndarray: """ generates square uniform random warp coordinate differences grid of shape (size, size, 2) (x,y) cell_count(3) 3+ cell_mod (0.12) [ 0 .. 0.24 ] """ cell_count = max(3, cell_count) cell_mod = np.clip(cell_mod, 0, 0.24) cell_size = 1.0 / (cell_count-1) grid = np.zeros( (cell_count,cell_count, 2), dtype=np.float32 ) grid[1:-1,1:-1, 0:2] += rnd_state.uniform (low=-cell_size*cell_mod, high=cell_size*cell_mod, size=(cell_count-2, cell_count-2, 2) ) grid = cv2.resize(grid, (size, size), interpolation=cv2.INTER_CUBIC ).astype(np.float32) # Linear dump border cells to zero border_size = size // cell_count dumper = np.linspace(0, 1, border_size, dtype=np.float32) grid[:border_size, :,:] *= dumper[:,None,None] grid[-border_size:,:,:] *= dumper[::-1,None,None] grid[:,:border_size ,:] *= dumper[None,:,None] grid[:,-border_size:,:] *= dumper[None,::-1,None] return grid ``` #### File: xlib/face/UPerson.py ```python import uuid from typing import Union from .IState import IState class UPerson(IState): def __init__(self): """ """ self._uuid : Union[bytes, None] = None self._name : Union[str, None] = None self._age : Union[int, None] = None def __str__(self): return f"UPerson UUID:[...{self._uuid[-4:].hex()}] name:[{self._name}] age:[{self._age}]" def __repr__(self): return self.__str__() @staticmethod def from_state(state : dict) -> 'UPerson': ufm = UPerson() ufm.restore_state(state) return ufm def restore_state(self, state : dict): self._uuid = state.get('_uuid', None) self._name = state.get('_name', None) self._age = state.get('_age', None) def dump_state(self) -> dict: return {'_uuid' : self._uuid, '_name' : self._name, '_age' : self._age, } def get_uuid(self) -> Union[bytes, None]: if self._uuid is None: self._uuid = uuid.uuid4().bytes return self._uuid def set_uuid(self, uuid : Union[bytes, None]): if uuid is not None and not isinstance(uuid, bytes): raise ValueError(f'uuid must be an instance of bytes or None') self._uuid = uuid def get_name(self) -> Union[str, None]: return self._name def set_name(self, name : Union[str, None]): if name is not None and not isinstance(name, str): raise ValueError(f'name must be an instance of str or None') self._name = name def get_age(self) -> Union[str, None]: return self._age def set_age(self, age : Union[int, None]): if age is not None and not isinstance(age, int): raise ValueError(f'age must be an instance of int or None') self._age = age ``` #### File: xlib/image/_misc.py ```python import numpy as np def get_NHWC_shape(img : np.ndarray): """ returns NHWC shape where missed dims are 1 """ ndim = img.ndim if ndim not in [2,3,4]: raise ValueError(f'img.ndim must be 2,3,4, not {ndim}.') if ndim == 2: N, (H,W), C = 1, img.shape, 1 elif ndim == 3: N, (H,W,C) = 1, img.shape else: N,H,W,C = img.shape return N,H,W,C ``` #### File: xlib/logic/DelayedBuffers.py ```python from collections import deque from datetime import datetime class DelayedBuffers: """ Buffers temporal data and "shows" it evenly with target delay. first frame created 0 ms | 1500ms first frame arrived, set minimum target delay | more data arrived | || || | | 2000ms target delay (set by user) | ^-----buffered data-----^ | | | | | | | | | ^----show data evenly---^ """ class ProcessResult: __slots__ = ['new_data'] def __init__(self): self.new_data = None def __init__(self): self._buffers = deque() self._target_delay = 0 self._last_ts = datetime.now().timestamp() self._last_data = None self._avg_delay = 1.0 def _update_avg_frame_delay(self): buffers = self._buffers if len(buffers) >= 2: x = tuple(buffer[0] for buffer in buffers) self._avg_delay = min(1.0, (max(x)-min(x)) / (len(x)-1) ) def get_avg_delay(self): return self._avg_delay def add_buffer(self, timestamp : float, data): buffers = self._buffers buffers_len = len(buffers) for i in range(buffers_len): if timestamp < buffers[i][0]: buffers.insert( i, (timestamp, data)) self._update_avg_frame_delay() return buffers.append( (timestamp, data) ) self._update_avg_frame_delay() def set_target_delay(self, target_delay_sec : float): self._target_delay = target_delay_sec def process(self) -> 'DelayedBuffers.ProcessResult': """ processes inner logic returns DelayedBuffers.ProcessResult() """ result = DelayedBuffers.ProcessResult() buffers = self._buffers now = datetime.now().timestamp() if now - self._last_ts >= self._avg_delay: self._last_ts += self._avg_delay if len(buffers) != 0: # Find nearest to target_delay nearest_i = -1 nearest_diff = 999999 target_delay = self._target_delay buffers_to_remove = [] for i, buffer in enumerate(buffers): ts = buffer[0] diff = abs(now - ts - target_delay) if diff <= nearest_diff: nearest_i = i nearest_diff = diff buffers_to_remove.append(buffer) else: break if len(buffers_to_remove) >= 2: buffers_to_remove.pop(-1) for buffer in buffers_to_remove: buffers.remove(buffer) self._update_avg_frame_delay() if len(buffers) != 0: _, new_data = buffers[0] if not self._last_data is new_data: self._last_data = new_data result.new_data = new_data return result ``` #### File: mp/csw/Progress.py ```python from typing import Union from ...python import EventListener from .CSWBase import ControlClient, ControlHost class _ProgressBase: def __init__(self): self._progress = None self._on_progress_evl = EventListener() self._call_on_msg('progress', self._on_msg_progress) def _on_msg_progress(self, progress): self._set_progress(progress) def _set_progress(self, progress, block_event=False): if progress is not None: progress = int(progress) if self._progress != progress: self._progress = progress if not block_event: self._on_progress_evl.call(progress if progress is not None else 0) return True return False def call_on_progress(self, func_or_list): """Call when the progress is changed.""" self._on_progress_evl.add(func_or_list) def get_progress(self): return self._progress class Progress: """ Progress control with 0..100 int value Values: None : uninitialized state int/float : value """ class Config: def __init__(self, title=None): self._title = title def get_title(self) -> Union[str, None]: return self._title class Host(ControlHost, _ProgressBase): def __init__(self): ControlHost.__init__(self) _ProgressBase.__init__(self) self._config = Progress.Config() def _send_progress(self): self._send_msg('progress', self._progress) def set_progress(self, progress, block_event=False): """ progress number 0..100 block_event(False) on_progress event will not be called on this side """ if self._set_progress(progress, block_event=block_event): self._send_progress() def set_config(self, config : 'Progress.Config'): self._send_msg('config', config) class Client(ControlClient, _ProgressBase): def __init__(self): ControlClient.__init__(self) _ProgressBase.__init__(self) self._on_config_evl = EventListener() self._call_on_msg('config', self._on_msg_config) def _on_reset(self): self._set_progress(None) def _on_msg_config(self, config): self._on_config_evl.call(config) def call_on_config(self, func): self._on_config_evl.add(func) ``` #### File: qt/core/QXTimer.py ```python from PySide6.QtCore import * class QXTimer(QTimer): def __init__(self, interval=None, timeout=None, single_shot=False, start=False): super().__init__() if interval is not None: self.setInterval(interval) if timeout is not None: self.timeout.connect(timeout) if single_shot: self.setSingleShot(True) if start: self.start() ``` #### File: qt/core/widget.py ```python from collections import Iterable from PySide6.QtCore import * class BlockSignals: def __init__(self, qt_widget_or_list, block_signals=True): if not isinstance(qt_widget_or_list, (tuple,list)): qt_widget_or_list = [qt_widget_or_list] self.qt_widget_or_list = qt_widget_or_list self.block_signals = block_signals def __enter__(self): if self.block_signals: for qt_widget in self.qt_widget_or_list: qt_widget.blockSignals(True) return self def __exit__(self, *_): if self.block_signals: for qt_widget in self.qt_widget_or_list: qt_widget.blockSignals(False) def enable(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): enable(widget) else: widget.setEnabled(True) def disable(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): disable(widget) else: widget.setEnabled(False) def hide(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): hide(widget) else: widget.hide() def show(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): show(widget) else: widget.show() def show_and_enable(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): show_and_enable(widget) else: widget.show() widget.setEnabled(True) def hide_and_disable(widget_or_list): if not isinstance(widget_or_list, (tuple,list)): widget_or_list = [widget_or_list] for widget in widget_or_list: if isinstance(widget, (tuple,list)): hide_and_disable(widget) else: widget.hide() widget.setEnabled(False) def set_contents_margins(obj, contents_margins): if contents_margins is not None: if isinstance(contents_margins, int): contents_margins = (contents_margins,)*4 if isinstance(contents_margins, Iterable): obj.setContentsMargins(*contents_margins) ``` #### File: qt/widgets/QXFrameVBox.py ```python from PySide6.QtGui import * from PySide6.QtWidgets import * from .QXFrame import QXFrame from .QXVBoxLayout import QXVBoxLayout class QXFrameVBox(QXFrame): def __init__(self, widgets=None, contents_margins=0, spacing=0, **kwargs): super().__init__(layout=QXVBoxLayout(widgets=widgets, contents_margins=contents_margins, spacing=spacing), **kwargs) ``` #### File: qt/widgets/QXMainApplication.py ```python from pathlib import Path from PySide6.QtCore import * from PySide6.QtGui import * from PySide6.QtWidgets import * from ..core.QXTimer import QXTimer from ...db import KeyValueDB from .forward_declarations import forward_declarations class QXMainApplication(QApplication): inst : 'QXMainApplication' = None @staticmethod def get_singleton() -> 'QXMainApplication': if QXMainApplication.inst is None: raise Exception('QXMainApplication must be instantiated') return QXMainApplication.inst def __init__(self, app_name=None, settings_dirpath : Path = None): """ base class for MainApplication QXMainApplication.inst - singleton instance settings_dirpath(None) where the data will be saved """ super().__init__([]) if QXMainApplication.inst is not None: raise Exception('Only one singleton QXMainApplication is allowed') QXMainApplication.inst = self self._settings_dirpath = settings_dirpath if settings_dirpath is not None: self._app_data_path = settings_dirpath / 'app.dat' else: self._app_data_path = None self._hierarchy_name_count = {} self._app_db = KeyValueDB(self._app_data_path) if app_name is not None: self.setApplicationName(app_name) self.setStyle('Fusion') text_color = QColor(200,200,200) self.setStyleSheet(f""" QRadioButton::disabled {{ color: gray; }} """) pal = QPalette() pal.setColor(QPalette.ColorRole.Window, QColor(56, 56, 56)) pal.setColor(QPalette.ColorRole.Base, QColor(25, 25, 25)) pal.setColor(QPalette.ColorRole.AlternateBase, QColor(56, 56, 56)) pal.setColor(QPalette.ColorRole.ToolTipBase, text_color ) pal.setColor(QPalette.ColorRole.ToolTipText, text_color ) pal.setColor(QPalette.ColorRole.Text, text_color ) pal.setColor(QPalette.ColorRole.Button, QColor(56, 56, 56)) pal.setColor(QPalette.ColorRole.ButtonText, Qt.GlobalColor.white) pal.setColor(QPalette.ColorRole.PlaceholderText, Qt.GlobalColor.darkGray) pal.setColor(QPalette.ColorGroup.Active, QPalette.ColorRole.ButtonText, text_color) pal.setColor(QPalette.ColorGroup.Inactive, QPalette.ColorRole.ButtonText, text_color) pal.setColor(QPalette.ColorGroup.Disabled, QPalette.ColorRole.ButtonText, Qt.GlobalColor.gray) pal.setColor(QPalette.ColorRole.WindowText, text_color ) pal.setColor(QPalette.ColorGroup.Active, QPalette.ColorRole.WindowText, text_color) pal.setColor(QPalette.ColorGroup.Inactive, QPalette.ColorRole.WindowText, text_color) pal.setColor(QPalette.ColorGroup.Disabled, QPalette.ColorRole.WindowText, Qt.GlobalColor.gray) pal.setColor(QPalette.ColorGroup.Disabled, QPalette.ColorRole.Text, Qt.GlobalColor.gray) pal.setColor(QPalette.ColorRole.BrightText, Qt.GlobalColor.red) pal.setColor(QPalette.ColorRole.Link, QColor(42, 130, 218)) pal.setColor(QPalette.ColorRole.Highlight, QColor(42, 130, 218)) pal.setColor(QPalette.ColorRole.HighlightedText, Qt.GlobalColor.black) self.setPalette(pal) self._reinitialize = False self._timer = QXTimer(interval=10, timeout=self._on_10ms_timer, start=True) def _on_10ms_timer(self): self._app_db.process_messages() if self._reinitialize: self._reinitialize = False self.on_reinitialize() def register_QXWidget(self, widget) -> str: """ registers QXWidget, checks validity, returns an unique name """ hierarchy = [] iter_widget = widget while True: hierarchy.insert(0, iter_widget.__class__.__name__) iter_parent_widget = iter_widget.parentWidget() if iter_parent_widget is None: break iter_widget = iter_parent_widget if not isinstance(iter_widget, forward_declarations.QXWindow): raise Exception('Top widget must be a class of QXWindow') if len(hierarchy) == 1: # top level widgets(Windows) has no numerification return hierarchy[0] else: hierarchy_name = '.'.join(hierarchy) num = self._hierarchy_name_count.get(hierarchy_name, -1) num = self._hierarchy_name_count[hierarchy_name] = num + 1 return f'{hierarchy_name}:{num}' def clear_app_data(self): """ clear app data and reinitialize() """ self._app_db.clear() self.reinitialize() def get_app_data(self, key, default_value=None): """ returns picklable data by picklable key stored in app db returns default_value if no data """ return self._app_db.get_value(key, default_value=default_value) def set_app_data(self, key, value): """ set picklable data by picklable key stored to app db """ self._app_db.set_value(key, value ) def run(self): """ run the app """ self.exec() self._app_db.finish_pending_jobs() def reinitialize(self): """ start reinitialization of app. """ self._reinitialize = True def on_reinitialize(self): raise NotImplementedError() def get_language(self) -> str: return self.get_app_data('__app_language', 'en-US') def set_language(self, lang : str) -> str: """ lang xx-YY example: en-US ru-RU """ return self.set_app_data('__app_language', lang) ``` #### File: qt/widgets/QXOpenGLWidget.py ```python from PySide6.QtGui import * from PySide6.QtOpenGL import * from PySide6.QtOpenGLWidgets import * from PySide6.QtWidgets import * from ._part_QXWidget import _part_QXWidget class QXOpenGLWidget(QOpenGLWidget, _part_QXWidget): def __init__(self, **kwargs): super().__init__() _part_QXWidget.__init__(self, **kwargs) self._default_pal = QPalette( self.palette() ) def focusInEvent(self, ev : QFocusEvent): super().focusInEvent(ev) _part_QXWidget.focusInEvent(self, ev) def resizeEvent(self, ev : QResizeEvent): super().resizeEvent(ev) _part_QXWidget.resizeEvent(self, ev) ``` #### File: qt/widgets/QXWidgetVBox.py ```python from PySide6.QtGui import * from PySide6.QtWidgets import * from .QXWidget import QXWidget from .QXVBoxLayout import QXVBoxLayout class QXWidgetVBox(QXWidget): def __init__(self, widgets=None, contents_margins=0, spacing=0, **kwargs): super().__init__(layout=QXVBoxLayout(widgets=widgets, contents_margins=contents_margins, spacing=spacing), **kwargs) ``` #### File: xlib/sjob/run_sequence.py ```python import multiprocessing from typing import Callable, List from .. import console as lib_con def _run_sequence(barrier, init_func, init_kwargs, final_func, process_func, pipe): state = {} if init_func is not None: init_func(state, **init_kwargs) barrier.wait() while True: if pipe.poll(0.05): obj = pipe.recv() cmd = obj['cmd'] if cmd == 'job': result = process_func(state, obj['data']) pipe.send({'cmd':'result', 'data': result}) elif cmd == 'finalize': break if final_func is not None: final_func(state) def run_sequence(data_list : List, process_func : Callable, init_func : Callable = None, init_kwargs : dict = None, final_func : Callable = None, mp_count : int = None, progress_bar_desc='Processing'): """ Simple Job to process list of picklable data. init_func(state:dict, **init_kwargs) process_func(state:dict, data) -> object mp_count(None) number of subprocesses. Default - cores count. """ if mp_count is None: mp_count = multiprocessing.cpu_count() barrier = multiprocessing.Barrier(mp_count) n_data_sent = [0]*mp_count conn_list = [None]*mp_count p_list = [None]*mp_count for i in range(mp_count): s_pipe, c_pipe = conn_list[i] = multiprocessing.Pipe() p = p_list[i] = multiprocessing.Process(target=_run_sequence, args=(barrier, init_func, init_kwargs, final_func, process_func, c_pipe), daemon=True ) p.start() data_list_len = len(data_list) n_data_done = 0 i_data = 0 lib_con.progress_bar_print(0, data_list_len, desc=progress_bar_desc) result = [] while n_data_done != data_list_len: for n_conn, (s_pipe, _) in enumerate(conn_list): if i_data < data_list_len: if n_data_sent[n_conn] < 2: n_data_sent[n_conn] += 1 data = data_list[i_data] i_data += 1 s_pipe.send( {'cmd':'job', 'data':data} ) if s_pipe.poll(0): obj = s_pipe.recv() cmd = obj['cmd'] if cmd == 'result': n_data_done += 1 lib_con.progress_bar_print(n_data_done, data_list_len, desc=progress_bar_desc) n_data_sent[n_conn] -= 1 data = obj['data'] if data is not None: result.append(data) for n_conn, (s_pipe, _) in enumerate(conn_list): s_pipe.send( {'cmd':'finalize'} ) return result ``` #### File: xlib/text/ascii_table.py ```python import re from typing import Union, List _opts_halign = {'l':0,'c':1,'r':2} _opts_valign = {'t':0,'m':1,'b':2} """ test = [ '|c99 TABLE NAME', '|3 3-span left align\n multiline row |rb2 2-span right bottom align', '|c WWWWWWWWWW |c WWWWWWWWWW |c WWWWWWWWWW |c WWWWWWWWWW |c WWWWWWWWWW', '|c3 center aligned 3-span |r2 2-span right align', '|r 0 |c3 Center align\nmulti\nline\nrow |l 1.00', '|r 1 |r3 Right align\nmulti\nline\nrow |l 1.00', '| ? | s', '| ? | Three |c Two | asdasd | asdasd', '| ? |3 asdasdasdasdasdasdasdasdasdasdasda |3 asdasd', ] """ class Column: __slots__ = ['halign', 'valign', 'span', 'content'] def __init__(self, halign : int = 0, valign : int = 0, span : int = 1, content : str = None): self.halign, self.valign, self.span, self.content = halign, valign, span, content def __str__(self): return f'{self.content} s:{self.span}' def __repr__(self): return self.__str__() def split(self, sep : Union[str,int], maxsplit=-1) -> List['Column']: result = [] if isinstance(sep, int): c_split = [ self.content[:sep], self.content[sep:] ] else: c_split = self.content.split(sep, maxsplit=maxsplit) if len(c_split) == 1: return [self] for c in c_split: col = Column() col.halign = self.halign col.valign = self.valign col.span = self.span col.content = c result.append(col) return result def copy(self, content=...): if content is Ellipsis: content=self.content column = Column() column.halign = self.halign column.valign = self.valign column.span = self.span column.content = content return column def ascii_table(table_def : List[str], min_table_width : int = None, max_table_width : int = None, fixed_table_width : int = None, style_borderless = False, left_border : str= '|', right_border : str = '|', border : str= '|', row_symbol : str = '-', col_def_delim = '|', ) -> str: """ arguments table_def list of str |[options] data - defines new column options: halign: l - left (default), c - center, r - right valign: t - top (default), m - center, b - bottom 1..N - col span example: ['|c99 TABLE NAME', '|l first col |r second col'] """ if style_borderless: left_border, right_border, border, row_symbol = None, None, ' | ', None if fixed_table_width is not None: min_table_width = fixed_table_width max_table_width = fixed_table_width if min_table_width is not None and max_table_width is not None: if min_table_width > max_table_width: raise ValueError('min_table_width > max_table_width') col_spacing = len(border) if border is not None else 0 cols_count = 0 # Parse columns in table_def rows : List[List[Column]] = [] for raw_line in table_def: # Line must starts with column definition if len(raw_line) == 0 or raw_line[0] != col_def_delim: raise ValueError(f'Line does not start with | symbol, content: "{raw_line}"') # Parsing raw columns row : List[Column] = [] i_raw_col = 0 raw_line_split = raw_line.split(col_def_delim)[1:] raw_line_split_len = len(raw_line_split) for n_raw_col, raw_col in enumerate(raw_line_split): # split column options and content col_opts, col_content = ( raw_col.split(' ', maxsplit=1) + [''] )[:2] # Parse column options col = Column(content=col_content) for col_opt in re.findall('[lcr]|[tmb]|[0-9]+', col_opts.lower()): h = _opts_halign.get(col_opt, None) if h is not None: col.halign = h continue v = _opts_valign.get(col_opt, None) if v is not None: col.valign = v continue col.span = max(1, int(col_opt)) row.append(col) if n_raw_col != raw_line_split_len-1: i_raw_col += col.span else: # total max columns, by last column without span cols_count = max(cols_count, i_raw_col+1) rows.append(row) # Cut span of last cols to fit cols_count for row in rows: row[-1].span = cols_count - (sum(col.span for col in row) - row[-1].span) # Compute cols border indexes cols_border = [0]*cols_count for i_col_max in range(cols_count+1): for row in rows: i_col = 0 col_border = 0 for col in row: i_col += col.span col_max_len = max([ len(x.strip()) for x in col.content.split('\n')]) col_border = cols_border[i_col-1] = max(cols_border[i_col-1], col_border + col_max_len) if i_col >= i_col_max: break col_border += col_spacing # fix zero cols border for i_col, col_border in enumerate(cols_border): if i_col != 0 and col_border == 0: cols_border[i_col] = cols_border[i_col-1] table_width = cols_border[-1] + (len(left_border) if left_border is not None else 0) + \ (len(right_border) if right_border is not None else 0) # Determine size of table width table_width_diff = 0 if max_table_width is not None: table_width_diff = max(table_width_diff, table_width - max_table_width) if min_table_width is not None: table_width_diff = min(table_width_diff, table_width - min_table_width) if table_width_diff != 0: # >0 :shrink, <0 :expand table diffs = [ x-y for x,y in zip(cols_border, [0]+cols_border[:-1] ) ] while table_width_diff != 0: if table_width_diff > 0: max_diff = max(diffs) if max_diff <= col_spacing: raise Exception('Unable to shrink the table to fit max_table_width.') diffs[ diffs.index(max_diff) ] -= 1 else: diffs[ diffs.index(min(diffs)) ] += 1 table_width_diff += 1 if table_width_diff < 0 else -1 for i in range(len(cols_border)): cols_border[i] = diffs[i] if i == 0 else cols_border[i-1] + diffs[i] # recompute new table_width table_width = cols_border[-1] + (len(left_border) if left_border is not None else 0) + \ (len(right_border) if right_border is not None else 0) # Process columns for \n and col width new_rows : List[List[List[Column]]] = [] for row in rows: row_len = len(row) # Gather multi rows for every col cols_sub_rows = [] i_col = 0 col_border = 0 for col in row: i_col += col.span col_border_next = cols_border[i_col-1] col_width = col_border_next-col_border # slice col to sub rows by \n separator and col_width col_content_split = [ x.strip() for x in col.content.split('\n') ] cols_sub_rows.append([ x[i:i+col_width].strip() for x in col_content_split for i in range(0, len(x), col_width) ]) col_border = col_border_next + col_spacing cols_sub_rows_max = max([len(x) for x in cols_sub_rows]) for n, (col, col_sub_rows) in enumerate(zip(row, cols_sub_rows)): valign = col.valign unfilled_rows = cols_sub_rows_max-len(col_sub_rows) if valign == 0: # top col_sub_rows = col_sub_rows + ['']*unfilled_rows elif valign == 1: # center top_pad = unfilled_rows // 2 bottom_pad = unfilled_rows - top_pad col_sub_rows = ['']*top_pad + col_sub_rows + ['']*bottom_pad elif valign == 2: # bottom col_sub_rows = ['']*unfilled_rows + col_sub_rows cols_sub_rows[n] = col_sub_rows sub_rows = [ [None]*row_len for _ in range(cols_sub_rows_max) ] for n_col, col in enumerate(row): for i in range(cols_sub_rows_max): sub_rows[i][n_col] = col.copy(content=cols_sub_rows[n_col][i]) new_rows.append(sub_rows) rows = new_rows # Composing final lines lines = [] row_line = row_symbol[0]*table_width if row_symbol is not None else None if row_line is not None: lines.append(row_line) for sub_rows in rows: for row in sub_rows: line = '' if left_border is not None: line += left_border i_col = 0 for col in row: col_content = col.content if i_col == 0: col_border0 = 0 else: if border is not None: line += border col_border0 = cols_border[i_col-1] + col_spacing i_col += col.span col_border1 = cols_border[i_col-1] col_space = col_border1 - col_border0 col_remain_space = col_space-len(col_content) halign = col.halign if halign == 0: # left col_content = col_content + ' '*col_remain_space elif halign == 1: # center col_left_pad = col_remain_space // 2 col_right_pad = col_remain_space - col_left_pad col_content = ' '*col_left_pad + col_content + ' '*col_right_pad elif halign == 2: # right col_content = ' '*col_remain_space + col_content line += col_content if right_border is not None: line += right_border lines.append(line) if len(sub_rows) != 0 and row_line is not None: lines.append(row_line) return '\n'.join(lines) ```
{ "source": "jkenney9a/Bioinformatics", "score": 3 }
#### File: Bioinformatics/Codon_analysis/Codon_analysis.py ```python import sys, os, glob from Bio import Entrez from Bio import SeqIO import csv import string import numpy as np def get_gene_list(filename): """ Input: File with list of genes or list of gene output names from proteomics Output: List of gene names in file """ gene_list = [] if filename.split('.')[-1] == 'csv': with open(filename, 'r') as csvfile: reader = csv.reader(csvfile) for row in reader: if len(row) > 0: if "GN=" in row: gene = get_gene_name(row) elif ';' in row[0]: for gene in row[0].split(';'): gene = gene.strip() else: gene = row[0] gene_list.append(gene) elif filename.split('.')[-1] == 'txt': f = open(filename) for line in f: if "GN=" in line: gene = get_gene_name(line) gene_list.append(gene) else: gene_list.append(line.rstrip("\n")) f.close() return gene_list def get_gene_name(line): """ Input: A line read in from a txt or csv file from some proteomic data that contains a 'GN=' part before the gene name Output: The gene name pulled out of the line """ gene = "" start = line.find("GN=") while line[start+3] != " ": gene += line[start+3] start += 1 return gene def get_CDS_fasta_files(gene, organism): """ Input: gene name and organism Output: fasta file with CDS sequence from NCBI in fasta directory If the file already exists does not download from NCBI """ if not os.path.exists("fasta"): os.mkdir("fasta") #Checks to see if the file has already been downloaded previously #If it has not, then it will be downloaded, otherwise it will use the #previously downloaded file. This speeds up processing time and minimizes #the strain on NCBI resources filename = gene + "_" + organism if len(glob.glob("fasta\\" + filename + "*.fasta")) == 0: #Get gene id from Gene database; exclude predicted sequences search_term = gene + "[Gene Name] AND " + organism + \ "[Organism] AND mRNA[Filter] AND RefSeq[Filter] NOT PREDICTED[Title]" search_handle = Entrez.esearch(db="nucleotide", term = search_term) #Parse the resulting xml file into a dictionary and get gene ID numbers #associated with specific gene records search_record = Entrez.read(search_handle) gene_ids = search_record["IdList"] search_handle.close() count = 1 #Gets the CDS file for each gene from Entrez and creates a fasta file #for each gene entry for g in gene_ids: handle = Entrez.efetch(db="nucleotide", id=g, rettype="fasta_cds_na",\ retmode = "text") record = SeqIO.read(handle, format="fasta") SeqIO.write(record, "fasta\\" + filename + "_" + str(count)\ + ".fasta", "fasta") count += 1 def genefile_to_seq(gene, organism): """ Input: Gene and organism name for which a file exists Output: List of sequence objects associated with that gene """ filename = gene + "_" + organism filenames = glob.glob("fasta\\" + filename + "*.fasta") sequences = [] for f in filenames: sequences.append(SeqIO.read(f, "fasta")) return sequences def normalized_codon_mapping(codon_mapping): """ Input: Codon frequency mapping dictionary in form: {'codon':['AA',Freq]) Output: Normalized codon frequency map relative to max frequency for each codon {'codon':'rel freq'} Note: AA's in codon map must be encoded as single letters """ AA_List = ['A','R','N','D','C','E','Q','G','H','I','L','K','M','F','P',\ 'S','T','W','Y','V','*'] #Creates a dictionary mapping AA letter to frequencies associated with AA AA_Freq_Dict = {x:[codon_mapping[y][1] for y in codon_mapping if codon_mapping[y][0] == x] for x in AA_List} #Dictionary mapping amino acid to maximum frequency value in codon_mapping AA_Max_Freq = {x:max(AA_Freq_Dict[x]) for x in AA_Freq_Dict} #Deal with zeros at stop codons: for x in AA_Max_Freq: if AA_Max_Freq[x] == 0: AA_Max_Freq[x] = 1 #Dictionary mapping codon to relative codon frequency return {x:[codon_mapping[x][0],(codon_mapping[x][1] / AA_Max_Freq[codon_mapping[x][0]])] for x in codon_mapping} def sequence_to_codons(sequence): """ Input: Biopython sequence object Output: list containing codons in order """ codons = [] if len(sequence.seq) % 3 == 0: for x in range(len(sequence.seq)/3): codons.append(str(sequence.seq[x:x+3])) x += 3 else: return "Error, not a coding sequence" return codons def codon_map_gene(gene, organism, codon_map): """ Input: Gene name, organism and codon map Output: A list of codon mappings for given gene """ sequences = genefile_to_seq(gene, organism) gene_codons = [] for g in sequences: gene_codons.append(sequence_to_codons(g)) gene_codon_maps = [] for x in gene_codons: gene_codon_maps.append([codon_map[y][1] for y in x]) return gene_codon_maps def import_codon_map(filename): """ Input: filename (csv w/ comma delimiter) containing a codon map where the first column is codon, second column is amino acid abbreviation (one letter) and third column is value (e.g, time to decode or relative abundance etc.) Output: A codon mapping dictionary with the format of {codon: [AA, value]} """ codon_map = {} with open(filename, "r") as csvfile: reader = csv.reader(csvfile) for row in reader: row[0] = string.replace(row[0], "U", "T") codon_map[row[0]] = [row[1], float(row[2])] return codon_map def gene_codon_analysis(gene, organism, codon_map): """ Input: gene name, organism, and codon mapping This function assumes the mRNA fasta files have already been downloaded Output: A dictionary of the format: {gene_name: name, avg: mappings divided by length of transcript, total: sum of mappings, normalized: normalized mappings relative to maximum value for each AA, range_ratio: a ratio of the range of differences for protein lengths relative to maximum protein length, length_range:range of protein lengths from downloaded transcripts} """ gene_codon_maps = codon_map_gene(gene, organism, codon_map) codon_map_norm = normalized_codon_mapping(codon_map) gene_codon_maps_norm = codon_map_gene(gene, organism, codon_map_norm) if len(gene_codon_maps) == 0: return {"gene_name": gene} #Calculate sums, lengths and averages for given codon mapping codon_sums = [] protein_lengths = [] codon_first_25 = [] codon_first_third = [] for mapping in gene_codon_maps: codon_sums.append(sum(mapping)) protein_lengths.append(len(mapping)) codon_first_25.append(sum(mapping[0:24])) codon_first_third.append(sum(mapping[0:int(len(mapping)/3)])) codon_averages = [float(sums)/lengths for sums,lengths in zip(codon_sums, protein_lengths)] codon_first_25_avgs = [float(sums)/25 for sums in codon_first_25] codon_first_third_avgs = [float(sums)/int(lengths / 3) for sums, lengths in zip(codon_first_third, protein_lengths)] #Calculate normalized codon usage (i.e, relative to theoretical maximum) codon_sums_norm = [] for mapping in gene_codon_maps_norm: codon_sums_norm.append(sum(mapping) - 1) #-1 to deal with stop codon codon_averages_norm = [float(sums)/lengths for sums, lengths in zip(codon_sums_norm, protein_lengths)] protein_length_min = min(protein_lengths) protein_length_max = max(protein_lengths) protein_length_median = np.median(protein_lengths) output_avg = sum(codon_averages)/len(codon_averages) output_total = sum(codon_sums)/len(codon_sums) output_norm = sum(codon_averages_norm)/len(codon_averages_norm) output_range_ratio = (protein_length_max - protein_length_min) / float(protein_length_max) output_protein_size_range = str(protein_length_min) + " - " + str(protein_length_max) output_first_25 = sum(codon_first_25_avgs)/len(codon_first_25_avgs) output_first_third = sum(codon_first_third_avgs)/(len(codon_first_third_avgs)) output_dict = {"gene_name":gene, "avg":output_avg, "total":output_total, "normalized":output_norm, "range_ratio":output_range_ratio, "length_range":output_protein_size_range, "median_protein_length":protein_length_median, "first_25_avg": output_first_25, "first_third_avg": output_first_third} return output_dict if __name__ == "__main__": import sys download = False Entrez.email = None for arg in sys.argv[1:]: try: name, value = arg.split('=', 1) except: print "Error parsing command line argument. No '=' found" if name.lower() == "--gene_list" or name.lower() == "--list": gene_list_filename = value elif name.lower() == "--email": Entrez.email = value elif name.lower() == "--output": output_filename = value elif name.lower() == "--codon_map" or name.lower() == "--map": codon_map_filename = value elif name.lower() == "--download": download = value elif name.lower() == "--organism": organism = value gene_list = get_gene_list(gene_list_filename) codon_map = import_codon_map(codon_map_filename) if download == True or download == "T": if Entrez.email == None: print "Error. If downloading from NCBI need to provide \ email address using --email=<your email address here>" sys.exit() for gene in gene_list: get_CDS_fasta_files(gene, organism) with open(output_filename, 'wb') as csvfile: fieldnames = ['gene_name', 'avg', 'total', 'normalized', 'range_ratio', 'length_range', 'median_protein_length', 'first_25_avg', 'first_third_avg'] writer = csv.DictWriter(csvfile, fieldnames=fieldnames, restval="ERROR") writer.writeheader() counter=0 for gene in gene_list: writer.writerow(gene_codon_analysis(gene, organism, codon_map)) counter += 1 print counter, "of", len(gene_list),"genes analyzed! \r", ```
{ "source": "jkent/jkent.net", "score": 2 }
#### File: jkent.net/jkent_net/__init__.py ```python from .repository import Repository from .ext.security import ExtendedRegisterForm from flask import Flask, g, render_template from flask_mail import Mail from flask_security import Security, SQLAlchemyUserDatastore import os mail = Mail() def create_app(): global security, user_datastore # create and configure the app app = Flask(__name__, instance_relative_config=True) if os.environ.get('FLASK_ENV') == 'development': app.config['SECRET_KEY'] = 'development' app.config.from_mapping( SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(app.instance_path, 'jkent_net.db'), SQLALCHEMY_TRACK_MODIFICATIONS = False, ) app.config.from_pyfile('config.py', silent=True) app.repository_path = os.path.join(app.instance_path, 'repository') app.repository = Repository(app.repository_path) app.cache_root = os.path.join(app.instance_path, 'cache') from . import models models.init_app(app) mail.init_app(app) user_datastore = SQLAlchemyUserDatastore(models.db, models.User, models.Role) security = Security(app, user_datastore, register_form=ExtendedRegisterForm) from . import views views.init_app(app) from . import cli cli.init_app(app) return app ``` #### File: jkent.net/jkent_net/repository.py ```python from io import BytesIO import os import subprocess class Repository: def __init__(self, path): self._path = path if not os.path.exists(os.path.join(self._path, '.git')): os.makedirs(self._path, exist_ok=True) subprocess.check_call(['/usr/bin/git', '-C', self._path, 'init'], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) @property def path(self): return self._path def exists(self, path, version='HEAD'): try: subprocess.check_call(['/usr/bin/git', '-C', self._path, 'cat-file', '-e', '{}:{}'.format(version, path)], stderr=subprocess.DEVNULL) except subprocess.CalledProcessError: return False return True def read(self, path, version='HEAD'): if not version: if not os.path.isfile(os.path.join(self._path, path)): return None try: file = open(os.path.join(self._path, path), 'rb') except FileNotFoundError: return None return file else: try: data = subprocess.check_output(['/usr/bin/git', '-C', self._path, 'cat-file', '-p', '{}:{}'.format(version, path)], stderr=subprocess.DEVNULL) except subprocess.CalledProcessError: return None return BytesIO(data) def write(self, path, data): with open(os.path.join(self._path, path), 'wb') as f: f.write(data) def checkout(self, path, version='HEAD'): subprocess.check_call(['/usr/bin/git', '-C', self._path, 'checkout', version, '--', path]) subprocess.check_call(['/usr/bin/git', '-C', self._path, 'clean', '-fd', '--', path]) def add(self, path='.'): subprocess.check_call(['/usr/bin/git', '-C', self._path, 'add', path]) def commit(self, message=''): command = ['/usr/bin/git', '-C', self._path, 'commit', '-q', '--allow-empty-message', '-m', message] subprocess.check_call(command) def history(self, path=None, version='HEAD', num=None): if not version: return [] try: result = subprocess.check_output(['/usr/bin/git', '-C', self._path, 'log'] + (['-n{}'.format(num)] if num else []) + ['--pretty=format:%H %at %ae %s', version, '--', path], stderr=subprocess.DEVNULL) except subprocess.CalledProcessError: return '' results = [] for line in result.rstrip().decode('utf8').split('\n'): if line: line = tuple(line.split(' ', 3)) if self.exists(path, line[0]): results.append(line) return results def list(self, path, version='HEAD', recursive=False): if version: try: prefix = os.path.dirname(path) result = subprocess.check_output(['/usr/bin/git', '-C', self._path, 'ls-tree'] + (['-r'] if recursive else []) + ['--name-only', version, '--', path], stderr=subprocess.DEVNULL) paths = result.rstrip().split(b'\n') except subprocess.CalledProcessError: paths = [] else: prefix = os.path.dirname(os.path.join(self._path, path)) paths = [] for root, dirs, files in os.walk(os.path.join(self._path, path)): for dir in dirs: dirname = os.path.normpath(os.path.join(root, dir)) + os.sep paths.append(dirname.encode('utf8')) if recursive: dirs[:] = [d for d in dirs if not d.startswith('.')] else: dirs[:] = [] for file in files: filename = os.path.normpath(os.path.join(root, file)) paths.append(filename.encode('utf8')) paths = list(map(lambda x: x[len(prefix) + 1:], paths)) paths.sort() return paths def isdir(self, path, version='HEAD'): if version: try: result = subprocess.check_output(['/usr/bin/git', '-C', self._path, 'ls-tree', '-r', '--name-only', version, '--', path], stderr=subprocess.DEVNULL) return result.rstrip().split(b'\n')[0].decode('utf8') != path except subprocess.CalledProcessError: return False except: return False else: return os.path.isdir(os.path.join(self._path, path)) def diff(self, path, version1=None, version2=None): if version1 == version2: return False try: if version1 == None: subprocess.check_call(['/usr/bin/git', '-C', self._path, 'diff', '--exit-code', '--quiet', version2, '--', path]) elif version2 == None: subprocess.check_call(['/usr/bin/git', '-C', self._path, 'diff', '--exit-code', '--quiet', '-R', version1, '--', path]) else: subprocess.check_call(['/usr/bin/git', '-C', self._path, 'diff', '--exit-code', '--quiet', version1, version2, '--', path]) except subprocess.CalledProcessError: return True return False ``` #### File: jkent_net/views/login_github.py ```python from .. import user_datastore from ..models import db, OAuth, User from flask import flash from flask_dance.consumer import oauth_authorized from flask_dance.consumer.storage.sqla import SQLAlchemyStorage from flask_dance.contrib.github import make_github_blueprint from flask_security import current_user, login_user __all__ = ['bp'] bp = make_github_blueprint(scope='user:email') bp.storage = SQLAlchemyStorage(OAuth, db.session, user=current_user) @oauth_authorized.connect_via(bp) def github_logged_in(blueprint, token): if not token: flash('Failed to login with GitHub', category='error') return False resp = blueprint.session.get('/user') if not resp.ok: flash('Failed to fetch user info from GitHub', category='error') user_info = resp.json() resp = blueprint.session.get('/user/emails') if not resp.ok: flash('Failed to fetch email info from GitHub', category='error') return False entries = resp.json() entries = sorted(entries, key=lambda e: not e['primary']) entries = list(filter(lambda e: e['verified'], entries)) if not entries: flash('No email addresses have been verified by GitHub', category='error') return False user = None for entry in entries: user = user_datastore.find_user(email=entry['email']) if user: break if not user: user = user_datastore.create_user( email = entries[0]['email'], name = user_info['name'] ) oauth = OAuth.query.filter_by( provider = blueprint.name, user = user, ).first() if not oauth: oauth = OAuth( provider = blueprint.name, user = user, token = token, ) db.session.add_all([user, oauth]) db.session.commit() user.init_avatar(user, user_info['avatar_url'] + '&s=64') login_user(user) return False ```
{ "source": "jkent/pybot", "score": 2 }
#### File: pybot/pybot/bot.py ```python from textwrap import wrap from time import time from . import config from .client import Client from .decorators import hook, priority from .hook import HookManager, TimestampHook from .plugin import PluginManager class Bot(Client): def __init__(self, core, network): self.core = core self.network = network host = config.config[self.network].get('host') port = config.config[self.network].get('port') ssl = config.config[self.network].get('ssl', 'false') if port == None: port = 6697 if ssl else 6667 Client.__init__(self, (host, port), ssl) self.hooks = HookManager(self) self.plugins = PluginManager(self) self.hooks.install_owner(self) self.nick = None self.channels = {} self.allow_rules = {'*': {'ANY': 1}} self.deny_rules = {} for plugin in config.autoload_list(self): self.plugins.load(plugin) self.connect() def set_timer(self, fn, timestamp, owner=None): hook = TimestampHook(timestamp) hook.bind(fn, owner) self.hooks.install(hook) return hook def set_interval(self, fn, seconds, owner=None): hook = TimestampHook(time() + seconds, {'repeat': seconds}) hook.bind(fn, owner) self.hooks.install(hook) return hook def set_timeout(self, fn, seconds, owner=None): hook = TimestampHook(time() + seconds) hook.bind(fn, owner) self.hooks.install(hook) return hook def do_tick(self, timestamp): self.hooks.call_timestamp(timestamp) def privmsg(self, target, text): wraplen = 510 wraplen -= 1 + len(self.nick) # ":<nick>" wraplen -= 1 + 10 # "!<user>" wraplen -= 1 + 63 # "@<host>" wraplen -= 9 # " PRIVMSG " wraplen -= len(target) # "<target>" wraplen -= 2 # " :" for line in wrap(text, wraplen): self.send('PRIVMSG %s :%s' % (target, line)) def notice(self, target, text): wraplen = 510 wraplen -= 1 + len(self.nick) # ":<nick>" wraplen -= 1 + 10 # "!<user>" wraplen -= 1 + 63 # "@<host>" wraplen -= 8 # " NOTICE " wraplen -= len(target) # "<target>" wraplen -= 2 # " :" for line in wrap(text, wraplen): self.send('NOTICE %s :%s' % (target, line)) def join(self, channels, keys=None): if isinstance(channels, str): channels = (channels,) channels = list(map(str.lower, channels)) if channels: channel_s = ','.join(channels) if keys: if isinstance(keys, str): keys = (keys,) key_s = ','.join(keys) self.send('JOIN %s %s' % (channel_s, key_s)) pairs = list(zip(channels, keys)) for item in pairs: self.channels[item[0]] = {'key': item[1], 'joined': False, 'nicks': set()} else: self.send('JOIN %s' % channel_s) for channel in channels: self.channels[channel] = {'joined': False, 'nicks': set()} def part(self, channels, message=None): if type(channels) == str: channels = (channels,) if channels: channels = ','.join(channels) if message: self.send('PART %s :%s' % (channels, message)) else: self.send('PART %s' % channels) @hook @priority(0) def disconnect_event(self): for _, props in list(self.channels.items()): props['joined'] = False props['nicks'].clear() @hook @priority(0) def shutdown_event(self, reason): self.send('QUIT :%s' % reason) for name in self.plugins.list(): self.plugins.unload(name, True) @hook def _001_command(self, msg): self.server = msg.source self.nick = msg.param[0] @hook def _353_command(self, msg): channel = msg.param[2].lower() if channel in self.channels and self.channels[channel]['joined']: #if 'nicks' not in self.channels[channel]: # self.channels[channel]['nicks'] = set() nicks = self.channels[channel]['nicks'] for nick in msg.param[-1].split(): if nick.startswith(('~', '&', '@', '%', '+')): nicks.add(nick[1:]) else: nicks.add(nick) @hook def join_command(self, msg): channel = msg.param[0].lower() if msg.source == self.nick: if channel not in self.channels: self.channels[channel] = {} self.channels[channel]['name'] = msg.param[0] self.channels[channel]['joined'] = True elif channel in self.channels: self.channels[channel]['nicks'].add(msg.source) @hook def kick_command(self, msg): channel = msg.param[0].lower() if msg.param[1] == self.nick: if channel in self.channels: self.channels[channel]['joined'] = False if 'nicks' in self.channels[channel]: self.channels[channel]['nicks'].clear() elif channel in self.channels: self.channels[channel]['nicks'].remove(msg.source) @hook def nick_command(self, msg): new_nick = msg.param[0].lower() if msg.source == self.nick: self.nick = new_nick for _, props in list(self.channels.items()): if 'nicks' in props and msg.source in props['nicks']: props['nicks'].remove(msg.source) props['nicks'].add(new_nick) @hook @priority(0) def part_command(self, msg): channel = msg.param[0].lower() if msg.source == self.nick: if channel in self.channels: self.channels[channel]['joined'] = False if 'nicks' in self.channels[channel]: self.channels[channel]['nicks'].clear() elif channel in self.channels: self.channels[channel]['nicks'].remove(msg.source) @hook def ping_command(self, msg): self.send('PONG :%s' % msg.param[-1]) @hook @priority(0) def quit_command(self, msg): for _, props in list(self.channels.items()): if 'nicks' in props and msg.source in props['nicks']: props['nicks'].remove(msg.source) ``` #### File: pybot/pybot/config.py ```python from collections import OrderedDict from .yaml import yaml config = OrderedDict() def load(core): global config with open(core.config_path) as f: config = yaml.load(f) def autoload_list(bot): global config plugins = ['base'] for name, options in config[bot.network].get('plugins', OrderedDict()).items(): if name not in plugins and \ (not options or options.get('autoload', True)): plugins.append(name) return plugins def plugin_options(bot, plugin): global config plugin = config[bot.network].get('plugins', OrderedDict()).get(plugin) if plugin: return plugin return OrderedDict() ``` #### File: pybot/pybot/hook.py ```python import bisect import inspect import re import traceback from .message import Message url_re = re.compile( '(!)?https?://[^ /]+\.[^ /]+(?:/[^ ]*)?' ) domain_re = re.compile('https?://(?:www\.)?([^ /]+\.[^ /]+)') class Hook(object): def __init__(self, sort, extra={}): self.sort = sort self.extra = extra def __call__(self, *args): if not hasattr(self, 'fn'): Exception('attempt to call an unbound hook') return try: return self.fn(*args[:self.nargs]) except: print('%s hook error:' % type(self)) traceback.print_exc() def __lt__(self, other): return self.sort < other.sort def bind(self, fn, owner=None): if owner: self.owner = owner elif hasattr(fn, '__self__'): self.owner = fn.__self__ else: raise Exception('unable to bind hook, no owner!') self.fn = fn if inspect.ismethod(fn): self.nargs = self.fn.__func__.__code__.co_argcount - 1 self.__func__ = self.fn.__func__ else: self.nargs = self.fn.__code__.co_argcount self.__func__ = self.fn if not hasattr(self.__func__, '_priority'): self.__func__._priority = getattr(self.owner, 'default_priority', 500) if not hasattr(self.__func__, '_level'): self.__func__._level = getattr(self.owner, 'default_level', 1) class EventHook(Hook): def __init__(self, event): Hook.__init__(self, event) class CommandHook(Hook): def __init__(self, command): Hook.__init__(self, command.upper()) class TriggerHook(Hook): def __init__(self, trigger): if type(trigger) == str: l = trigger.split() else: l = trigger Hook.__init__(self, (len(l),) + tuple(l)) class TimestampHook(Hook): def __init__(self, timestamp, extra={}): Hook.__init__(self, timestamp, extra) class UrlHook(Hook): def __init__(self, domain): Hook.__init__(self, domain) class HookManager: def __init__(self, bot): self.bot = bot self.event_hooks = [] self.command_hooks = [] self.trigger_hooks = [] self.timestamp_hooks = [] self.url_hooks = [] def install(self, hook): if not isinstance(hook, Hook): raise Exception('hook is not a Hook instance') if not hasattr(hook, 'fn') or not hasattr(hook, 'owner'): raise Exception('hook not bound') default_priority = getattr(hook.owner, 'default_priority', 100) default_level = getattr(hook.owner, 'default_level', 1) hook.priority = getattr(hook.fn, '_priority', default_priority) hook.level = getattr(hook.fn, '_level', default_level) d = {EventHook: self.event_hooks, CommandHook: self.command_hooks, TriggerHook: self.trigger_hooks, TimestampHook: self.timestamp_hooks, UrlHook: self.url_hooks} l = d.get(type(hook), None) if l == None: raise Exception('unsupported hook class: %s' % type(hook)) bisect.insort_right(l, hook) def install_owner(self, owner): for _, method in inspect.getmembers(owner, inspect.ismethod): hooks = getattr(method.__func__, '_hooks', []) for hook in hooks: hook.bind(method, owner) self.install(hook) def uninstall(self, hook): d = {EventHook: self.event_hooks, CommandHook: self.command_hooks, TriggerHook: self.trigger_hooks, TimestampHook: self.timestamp_hooks, UrlHook: self.url_hooks} l = d.get(type(hook), []) l.remove(hook) def uninstall_owner(self, owner): for l in [self.event_hooks, self.command_hooks, self.trigger_hooks, self.timestamp_hooks, self.url_hooks]: l[:] = (h for h in l if h.owner != owner) def find(self, model): d = {EventHook: self.event_hooks, CommandHook: self.command_hooks, TriggerHook: self.trigger_hooks, TimestampHook: self.timestamp_hooks, UrlHook: self.url_hooks} l = d.get(type(model), []) if isinstance(model, TimestampHook): left = 0 else: left = bisect.bisect_left(l, model) right = bisect.bisect_right(l, model) hook_seq = l[left:right] hook_seq.sort(key=lambda h: -h.fn._priority) return hook_seq def call(self, hook_seq, *args): for hook in hook_seq: if isinstance(hook, TimestampHook): self.uninstall(hook) repeat = hook.extra.get('repeat', None) if repeat: hook.sort += repeat self.install(hook) if hook(*args): return True def call_event(self, event, *args): hooks = self.find(EventHook(event)) self.call(hooks, *args) if event == 'recv': msg = Message(args[0], self.bot) self.call_command(msg) def call_command(self, msg): if msg.cmd in ('NOTICE', 'PRIVMSG'): self.apply_permissions(msg) if msg.cmd == 'PRIVMSG': self.process_privmsg(msg) hooks = self.find(CommandHook(msg.cmd)) self.call(hooks, msg) def apply_permissions(self, msg): msg.permissions = {} for pattern, rules in list(self.bot.allow_rules.items()): regex = '^' + re.escape(pattern).replace('\\*', '.*') + '$' if not re.match(regex, msg.prefix): continue for plugin, level in list(rules.items()): current_level = msg.permissions.get(plugin, level) msg.permissions[plugin] = max(level, current_level) for pattern, rules in list(self.bot.deny_rules.items()): regex = '^' + re.escape(pattern).replace('\\*', '.*') + '$' if not re.match(regex, msg.prefix): continue for plugin, level in list(rules.items()): if plugin == 'ANY': for plugin, current_level in list(msg.permissions.items()): msg.permissions[plugin] = min(level, current_level) continue current_level = msg.permissions.get(plugin, level) msg.permissions[plugin] = min(level, current_level) def process_privmsg(self, msg): if msg.trigger: self.call_trigger(msg) elif msg.channel: for match in url_re.finditer(msg.param[1]): if match.group(1): continue url = match.group(0) self.call_url(msg, url) def call_trigger(self, msg): authorized = True num_words = len(msg.trigger.split()) for depth in range(num_words, 0, -1): parts = tuple(msg.trigger.split(None, depth)) hooks = self.find(TriggerHook(parts[:depth])) n = len(hooks) hooks[:] = [h for h in hooks if h.fn._level <= msg.permissions.get(h.fn.__self__.name, msg.permissions.get('ANY', 0))] if len(hooks) < n: authorized = False if not hooks: pass targstr = parts[depth] if len(parts) > depth else '' targs = (' '.join(parts[:depth]),) + tuple(targstr.split()) if self.call(hooks, msg, targs, targstr): break if not authorized: msg.reply("You don't have permission to use that trigger") def call_timestamp(self, timestamp): hooks = self.find(TimestampHook(timestamp)) self.call(hooks, timestamp) def call_url(self, msg, url): match = domain_re.match(url) if not match: return domain = match.group(1).lower() hooks = self.find(UrlHook(domain)) if self.call(hooks, msg, domain, url): return True hooks = self.find(UrlHook('any')) self.call(hooks, msg, domain, url) ``` #### File: pybot/pybot/message.py ```python import re from datetime import datetime from . import config message_re = re.compile( '^(?:' + ':(?P<prefix>' + '(?P<source>[^ !@]+)' + '(?:' + '(?:!(?P<user>[^ @]+))?' + '@(?P<host>[^ ]+)' + ')?' + ') ' + ')?' + '(?P<cmd>[^ :]+)' + '(?: (?P<params>.+))?$' ) def parse_params(params): l = [] while params: if params[0] == ':': l.append(params[1:]) break if len(l) == 14: l.append(params) break param, _, params = params.partition(' ') l.append(param) return l def parse_message(message): match = message_re.match(message) if match: d = match.groupdict() d['cmd'] = d['cmd'].upper() d['param'] = parse_params(d['params']) del d['params'] else: d = {'prefix': None, 'source': None, 'user': None, 'host': None, 'command': '', 'param': []} return d class Message(object): def __init__(self, line, bot=None): self.bot = bot self.raw = line self.reply_to = None self.time = datetime.utcnow() self.channel = None self.trigger = None self.permissions = {} self.__dict__.update(parse_message(line)) if self.cmd in ('PRIVMSG', 'NOTICE'): if self.param[0].startswith(('&', '#', '+', '!')): self.channel = self.param[0].lower() self.reply_to = self.param[0] else: self.reply_to = self.source if self.cmd == 'PRIVMSG': self._detect_trigger() def _detect_trigger(self): text = self.param[-1] directed_triggers = config.config[self.bot.network] \ .get('directed_triggers', False) if directed_triggers: if self.channel: if text.lower().startswith(self.bot.nick.lower()): nicklen = len(self.bot.nick) if len(text) > nicklen and text[nicklen] in [',', ':']: self.trigger = text[nicklen + 1:] else: self.trigger = text else: if text.startswith('!'): self.trigger = text[1:] def reply(self, text, direct=False): if not self.bot: raise Exception('No bot object bound') if not self.reply_to and not self.source: raise Exception('Nobody to reply to') direct |= not bool(self.reply_to) recipient = self.source if direct else self.reply_to self.bot.privmsg(recipient, text) ``` #### File: pybot/plugins/song.py ```python import os import re import sqlite3 from traceback import print_exc from pybot.plugin import * KEEP_RATIO = 0.1 class Plugin(BasePlugin): def on_load(self): self.db = sqlite3.connect(os.path.join(self.bot.core.data_path, 'song.db')) self.cur = self.db.cursor() query = '''CREATE TABLE IF NOT EXISTS artist ( id INTEGER PRIMARY KEY, name TEXT, UNIQUE(name) );''' self.cur.execute(query) query = '''CREATE TABLE IF NOT EXISTS track ( id INTEGER PRIMARY KEY, artist_id INTEGER, name TEXT, nick TEXT, youtube TEXT, UNIQUE(artist_id, name), FOREIGN KEY(artist_id) REFERENCES artist(id) );''' self.cur.execute(query) query = '''CREATE TRIGGER IF NOT EXISTS delete_unused_artist AFTER DELETE ON track BEGIN DELETE FROM artist WHERE id = OLD.artist_id AND (SELECT COUNT(*) FROM track WHERE artist_id = OLD.artist_id) = 0; END;''' self.cur.execute(query) self.db.commit() self.last_tracks = {} def on_unload(self): self.db.close() def add_track(self, artist, title, nick=None): track_added = False query = '''SELECT id FROM artist WHERE name = ? COLLATE NOCASE;''' self.cur.execute(query, (artist,)) row = self.cur.fetchone() if row is not None: artist_id, = row else: query = '''INSERT INTO artist (name) VALUES (?);''' self.cur.execute(query, (artist,)) artist_id = self.cur.lastrowid query = '''SELECT id FROM track WHERE artist_id = ? AND name = ? COLLATE NOCASE;''' self.cur.execute(query, (artist_id, title)) row = self.cur.fetchone() if row is not None: track_id, = row else: query = '''INSERT INTO track (artist_id, name, nick) VALUES (?, ?, ?);''' self.cur.execute(query, (artist_id, title, nick)) track_id = self.cur.lastrowid track_added = True return track_id, track_added @hook def song_trigger(self, msg, args, argstr): context = msg.reply_to if argstr: msg.reply('Unknown command, see help.') return while True: query = '''SELECT track.id, artist.name, track.name, track.youtube FROM track JOIN artist ON artist_id = artist.id ORDER BY RANDOM() LIMIT 1;''' self.cur.execute(query) row = self.cur.fetchone() if row is None: msg.reply('No songs yet!') return track_id, artist, track, youtube = row if context not in self.last_tracks or track_id not in self.last_tracks[context]: break if youtube is not None: msg.reply('%s - %s - https://youtu.be/%s' % (artist, track, youtube)) else: msg.reply('%s - %s' % (artist, track)) query = '''SELECT COUNT(*) FROM track;''' self.cur.execute(query) count, = self.cur.fetchone() keep = int(count * KEEP_RATIO) if context not in self.last_tracks: self.last_tracks[context] = [] self.last_tracks[context].append(track_id) self.last_tracks[context] = self.last_tracks[context][-keep:] @hook def song_add_trigger(self, msg, args, argstr): context = msg.reply_to try: artist, title = argstr.strip().split(' - ', 1) except: msg.reply('Song must be in "artist - track" format') return True track_id, track_added = self.add_track(artist, title, msg.source) self.db.commit() query = '''SELECT COUNT(*) FROM track;''' self.cur.execute(query) count, = self.cur.fetchone() keep = int(count * KEEP_RATIO) if context not in self.last_tracks: self.last_tracks[context] = [] self.last_tracks[context].append(track_id) self.last_tracks[context] = self.last_tracks[context][-keep:] if track_added: msg.reply('Song was added.') else: msg.reply("That song already exists!") return True @level(500) @hook def song_delete_trigger(self, msg): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''DELETE FROM track WHERE id = ?;''' self.cur.execute(query, (track_id,)) self.db.commit() del self.last_tracks[context][-1] msg.reply('Song deleted') return True @hook def song_fix_artist_trigger(self, msg, args, argstr): context = msg.reply_to if self.last_tracks.get(context) is None: msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''SELECT artist.id, artist.name FROM track JOIN artist ON artist_id = artist.id WHERE track.id = ?;''' self.cur.execute(query, (track_id,)) row = self.cur.fetchone() original_artist_id, original_artist_name = row if original_artist_name == argstr: msg.reply('No change.') return True query = '''SELECT id FROM artist WHERE name = ? LIMIT 1;''' self.cur.execute(query, (argstr,)) row = self.cur.fetchone() if row: artist_id, = row query = '''UPDATE track SET artist_id = ? WHERE id = ?;''' self.cur.execute(query, (artist_id, track_id)) query = '''SELECT COUNT(*) FROM track WHERE artist_id = ?;''' self.cur.execute(query, (original_artist_id,)) row = self.cur.fetchone() count, = row if count == 0: query = '''DELETE FROM artist WHERE id = ?;''' self.cur.execute(query, (original_artist_id,)) else: query = '''UPDATE artist SET name = ? WHERE id = ?;''' self.cur.execute(query, (argstr, original_artist_id)) msg.reply('Artist updated.') return True @hook def song_fix_title_trigger(self, msg, args, argstr): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''SELECT name FROM track WHERE id = ?;''' self.cur.execute(query, (track_id,)) row = self.cur.fetchone() original_track_name, = row if original_track_name == argstr: msg.reply('No change.') return True query = '''UPDATE track SET name = ? WHERE id = ?;''' self.cur.execute(query, (argstr, track_id)) self.db.commit() msg.reply('Title updated.') return True @hook def song_last_trigger(self, msg): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''SELECT track.id, artist.name, track.name, track.youtube FROM track JOIN artist ON artist_id = artist.id WHERE track.id = ?;''' self.cur.execute(query, (track_id,)) row = self.cur.fetchone() track_id, artist, track, youtube = row if youtube is not None: msg.reply('%s - %s - https://youtu.be/%s' % (artist, track, youtube)) else: msg.reply('%s - %s' % (artist, track)) return True @level(1000) @hook def song_load_trigger(self, msg, args, argstr): try: count = 0 filepath = os.path.join(self.bot.core.data_path, argstr) with open(filepath) as f: for line in f: line = line.strip() parts = line.split(' - ', 2) artist, title, nick = map(str.strip, parts) _, sucess = self.add_track(artist, title, nick) if sucess: count += 1 self.db.commit() except: print_exc() msg.reply('Failed to read file.') return True msg.reply('Loaded %d songs sucessfully.' % (count,)) return True @hook def song_search_trigger(self, msg, args, argstr): context = msg.reply_to query = '''SELECT track.id, track.youtube, artist.name || ' - ' || track.name AS song FROM track JOIN artist ON artist_id = artist.id WHERE song LIKE ? ORDER BY RANDOM() LIMIT 5;''' self.cur.execute(query, ('%%%s%%' % (argstr,),)) rows = self.cur.fetchall() if not rows: msg.reply('No tracks found.') return True for row in rows: track_id, youtube, song = row if youtube is not None: msg.reply('%s - https://youtu.be/%s' % (song, youtube)) else: msg.reply(song) query = '''SELECT COUNT(*) FROM track;''' self.cur.execute(query) count, = self.cur.fetchone() keep = int(count * KEEP_RATIO) if context not in self.last_tracks: self.last_tracks[context] = [] self.last_tracks[context].append(track_id) self.last_tracks[context] = self.last_tracks[context][-keep:] return True @hook def song_stats_trigger(self, msg): query = '''SELECT COUNT(*) FROM artist;''' self.cur.execute(query) artist_count, = self.cur.fetchone() query = '''SELECT COUNT(*) FROM track;''' self.cur.execute(query) track_count, = self.cur.fetchone() msg.reply('There are %d artists with %d tracks.' % (artist_count, track_count)) return True @hook def song_who_trigger(self, msg): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''SELECT nick FROM track WHERE id = ?;''' self.cur.execute(query, (track_id,)) nick, = self.cur.fetchone() if not nick: nick = 'anonymous' msg.reply('Added by %s' % (nick,)) return True @hook(('song youtube', 'song yt')) def song_youtube_trigger(self, msg, args, argstr): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True pattern = '^(?:https?://)?(?:www\.)?(?:youtu\.be/|youtube\.com(?:/embed/|/v/|/watch\?v=))([\w-]{10,12})(?:&.*)?$' m = re.match(pattern, argstr.strip()) if not m: msg.reply('That is not a valid youtube URL!') return True track_id = self.last_tracks[context][-1] youtube_id = m.group(1) query = '''UPDATE track SET youtube = ? WHERE id = ?;''' self.cur.execute(query, (youtube_id, track_id)) self.db.commit() msg.reply('Youtube link set!') return True @level(900) @hook(('song youtube delete', 'song yt delete')) def song_youtube_delete_trigger(self, msg): context = msg.reply_to if not self.last_tracks.get(context): msg.reply('No last track.') return True track_id = self.last_tracks[context][-1] query = '''UPDATE track SET youtube = NULL WHERE id = ?;''' self.cur.execute(query, (track_id,)) self.db.commit() return True ``` #### File: pybot/plugins/twitter.py ```python import re import requests import tweepy from html.parser import HTMLParser from pybot.plugin import * def tweet_cleaner(text): hp = HTMLParser() return hp.unescape(text.replace('\n', ' ').replace('\r', '')) def url_expander(sentence, msg): regex_tco = re.compile(r'https?://t.co/.*') urls = [] words = sentence.split() for word in words: m = re.match(regex_tco, word) if m: idx = words.index(word) r = requests.get(word) if r.status_code in [200, 301, 302]: msg.reply(r.url) class Plugin(BasePlugin): def on_load(self): auth = tweepy.OAuthHandler(self.config.get('apikey'), self.config.get('secret')) auth.set_access_token(self.config.get('auth_token'), self.config.get('auth_secret')) self._api = tweepy.API(auth) @hook('twitter.com') def twitter_url(self, msg, args, argstr): regx = re.compile(r'https?://twitter.com/[a-zA-Z0-9_\-]+/status/' \ r'(?P<id>[0-9]+)') m = re.match(regx, argstr) if not m: return else: twitter_id = m.group('id') try: status = self._api.get_status(twitter_id, tweet_mode='extended') msg.reply(tweet_cleaner(status.full_text)) url_expander(status.full_text, msg) except tweepy.TweepError as e: msg.reply('No Status for that ID.') return True @hook def twitter_user_trigger(self, msg, args, argstr): try: user = self._api.get_user(argstr, tweet_mode='extended') msg.reply(tweet_cleaner(user.status.full_text)) url_expander(user.status.full_text, msg) except tweepy.TweepError as e: print(e) msg.reply('No user by that name.') @hook def twitter_help_trigger(self, msg, args, argstr): msg.reply('Usage: twitter [search|user] <text> Returns most recent ' \ 'or specified by URL Tweet text.') @hook def twitter_search_trigger(self, msg, args, argstr): try: cursor = tweepy.Cursor(self._api.search, q=argstr, rpp=1, tweet_mode='extended') for c in cursor.items(1): uname = c.author.name msg.reply('@{0}: {1}'.format(uname, tweet_cleaner(c.full_text))) url_expander(c.full_text, msg) break else: msg.reply('No results.') except tweepy.TweepError as e: print(e) msg.reply('Update failed.') ``` #### File: pybot/pybot/yaml.py ```python from collections import OrderedDict from ruamel.yaml import YAML def _constr_dict(constructor, node): od = OrderedDict() for key_node, value_node in node.value: key = constructor.construct_object(key_node) value = constructor.construct_object(value_node) od[key] = value return od def _repr_dict(representer, data): return representer.represent_mapping( yaml.resolver.DEFAULT_MAPPING_TAG, data) yaml = YAML() yaml.constructor.add_constructor(yaml.resolver.DEFAULT_MAPPING_TAG, _constr_dict) yaml.representer.add_representer(OrderedDict, _repr_dict) ```
{ "source": "jkentwhite/through-a-data-point", "score": 3 }
#### File: through-a-data-point/code/controller.py ```python import sys import RPi.GPIO as GPIO import time import threading from subprocess import Popen # CONSTANTS VIDEO_FILE = "legal_landscape.mp4" GPIO.setmode(GPIO.BCM) MOTOR_A_A = 18 MOTOR_A_B = 23 MOTOR_A_C = 24 MOTOR_A_D = 25 MOTOR_B_A = 4 MOTOR_B_B = 17 MOTOR_B_C = 27 MOTOR_B_D = 22 MOTOR_C_A = 12 MOTOR_C_B = 16 MOTOR_C_C = 20 MOTOR_C_D = 21 MOTOR_D_A = 6 MOTOR_D_B = 13 MOTOR_D_C = 19 MOTOR_D_D = 26 class Motor: def __init__(self, _id, _a, _b, _c, _d): self.id = _id self.pins = [_a, _b, _c, _d] def setStep(self, values): GPIO.output(self.pins[0], values[0]) GPIO.output(self.pins[1], values[1]) GPIO.output(self.pins[2], values[2]) GPIO.output(self.pins[3], values[3]) def up(self, delay, steps): for i in range(0, steps): self.setStep([1, 0, 1, 0]) time.sleep(delay) self.setStep([0, 1, 1, 0]) time.sleep(delay) self.setStep([0, 1, 0, 1]) time.sleep(delay) self.setStep([1, 0, 0, 1]) time.sleep(delay) def down(self, delay, steps): for i in range(0, steps): self.setStep([1, 0, 0, 1]) time.sleep(delay) self.setStep([0, 1, 0, 1]) time.sleep(delay) self.setStep([0, 1, 1, 0]) time.sleep(delay) self.setStep([1, 0, 1, 0]) time.sleep(delay) def move(self, dir, delay, steps): if dir == "up": t = threading.Thread(target=self.up, args=(delay, steps)) t.start() else: t = threading.Thread(target=self.down, args=(delay, steps)) t.start() def reset(self): self.setStep([0, 0, 0, 0]) motors = [] motors.append(Motor("A", MOTOR_A_A, MOTOR_A_B, MOTOR_A_C, MOTOR_A_D)) motors.append(Motor("B", MOTOR_B_A, MOTOR_B_B, MOTOR_B_C, MOTOR_B_D)) motors.append(Motor("C", MOTOR_C_A, MOTOR_C_B, MOTOR_C_C, MOTOR_C_D)) motors.append(Motor("D", MOTOR_D_A, MOTOR_D_B, MOTOR_D_C, MOTOR_D_D)) GPIO.setup(MOTOR_A_A, GPIO.OUT) GPIO.setup(MOTOR_A_B, GPIO.OUT) GPIO.setup(MOTOR_A_C, GPIO.OUT) GPIO.setup(MOTOR_A_D, GPIO.OUT) GPIO.setup(MOTOR_B_A, GPIO.OUT) GPIO.setup(MOTOR_B_B, GPIO.OUT) GPIO.setup(MOTOR_B_C, GPIO.OUT) GPIO.setup(MOTOR_B_D, GPIO.OUT) GPIO.setup(MOTOR_C_A, GPIO.OUT) GPIO.setup(MOTOR_C_B, GPIO.OUT) GPIO.setup(MOTOR_C_C, GPIO.OUT) GPIO.setup(MOTOR_C_D, GPIO.OUT) GPIO.setup(MOTOR_D_A, GPIO.OUT) GPIO.setup(MOTOR_D_B, GPIO.OUT) GPIO.setup(MOTOR_D_C, GPIO.OUT) GPIO.setup(MOTOR_D_D, GPIO.OUT) def main(): try: for motor in motors: motor.reset() Popen(['/usr/bin/omxplayer', VIDEO_FILE]) motors[0].move("up", 0.075, 40) motors[1].move("down", 0.025, 40) motors[2].move("down", 0.055, 40) motors[3].move("up", 0.085, 40) for t in threading.enumerate(): try: t.join() except RuntimeError as err: if 'cannot join current thread' in err: continue else: raise GPIO.cleanup() except KeyboardInterrupt: print "exiting" GPIO.cleanup() sys.exit(0) main() ``` #### File: through-a-data-point/code/shifter.py ```python import sys import RPi.GPIO as GPIO import time # NOTES # each motor has a number 0-6 # each entry in the dictionary for each motor has a value for CLOCK, DATA and LATCH # TODO need to determine values for going up and going down GPIO.setmode(GPIO.BCM) ## 1 CLOCK_1 = 18 #green DATA_1 = 23 #blue LATCH_1 = 24 #orange CLOCK_2 = 6 #orange DATA_2 = 25 #purple LATCH_2 = 12 #yellow CLOCK_3 = 26 #white DATA_3 = 16 #grey LATCH_3 = 20 #white forward_first = [ 10, # 1010, 6, # 0110, 5, # 0101, 9 # 1001 ] forward_second = [160, 96, 80, 144] backward_first = [ 9, # 1001, 5, # 0101, 6, # 0110, 10 # 1010 ] backward_second = [144, 80, 96, 160] class Motor: def __init__(self, _id, _neighbour, _clock, _latch, _data, _position, _direction): self.id = _id self.clock = _clock self.latch = _latch self.data = _data self.neighbour = _neighbour self.first = (_id == "A" || _id == "C" || _id == "E") ? True : False if(self.first): self.fwd = [10, 6, 5, 9] self.bwd = [9, 5, 6, 10] else: self.fwd = [160, 96, 80, 144] self.bwd = [144, 80, 96, 160] def clock(): GPIO.output(self.clock, 1) time.sleep(.01) GPIO.output(self.clock, 0) def latch(): GPIO.output(self.latch, 1) time.sleep(.01) GPIO.output(self.latch, 0) def writePin(value): for x in range(0, 8): temp = value & 0x80 if temp == 0x80: GPIO.output(self.data, 1) else: GPIO.output(self.data, 0) clock() value = value << 0x01 latch() def up(delay, steps): for i in range(0, steps): writePin(self.fwd[0]) time.sleep(delay) writePin(self.fwd[1]) time.sleep(delay) writePin(self.fwd[2]) time.sleep(delay) writePin(self.fwd[3]) def down(delay, steps): for i in range(0, steps): writePin(self.bwd[0]) time.sleep(delay) writePin(self.bwd[1]) time.sleep(delay) writePin(self.bwd[2]) time.sleep(delay) writePin(self.bwd[3]) def reset(): for state in [0, 0, 0, 0]: writePin(state) motors = [] # motors = { # "A": { # "NEIGHBOUR": "B", # "CLOCK": CLOCK_1, # "LATCH": LATCH_1, # "DATA": DATA_1, # "DOWN": 3, # "UP": 12, # "STILL": 0, # "CURRENT": "STILL" # }, # "B": { # "NEIGHBOUR": "A", # "CLOCK": CLOCK_1, # "LATCH": LATCH_1, # "DATA": DATA_1, # "DOWN": 48, # "UP": 192, # "STILL": 0, # "CURRENT": "STILL" # }, # "C": { # "NEIGHBOUR": "D", # "CLOCK": CLOCK_2, # "LATCH": LATCH_2, # "DATA": DATA_2, # "DOWN": 3, # "UP": 12, # "STILL": 0, # "CURRENT": "STILL" # }, # "D": { # "NEIGHBOUR": "C", # "CLOCK": CLOCK_2, # "LATCH": LATCH_2, # "DATA": DATA_2, # "DOWN": 48, # "UP": 192, # "STILL": 0, # "CURRENT": "STILL" # }, # "E": { # "NEIGHBOUR": "F", # "CLOCK": CLOCK_3, # "LATCH": LATCH_3, # "DATA": DATA_3, # "DOWN": 3, # "UP": 12, # "STILL": 0, # "CURRENT": "STILL" # }, # "F": { # "NEIGHBOUR": "E", # "CLOCK": CLOCK_3, # "LATCH": LATCH_3, # "DATA": DATA_3, # "DOWN": 48, # "UP": 192, # "STILL": 0, # "CURRENT": "STILL" # } # } GPIO.setup(CLOCK_1, GPIO.OUT) GPIO.setup(DATA_1, GPIO.OUT) GPIO.setup(LATCH_1, GPIO.OUT) GPIO.setup(CLOCK_2, GPIO.OUT) GPIO.setup(DATA_2, GPIO.OUT) GPIO.setup(LATCH_2, GPIO.OUT) GPIO.setup(CLOCK_3, GPIO.OUT) GPIO.setup(DATA_3, GPIO.OUT) GPIO.setup(LATCH_3, GPIO.OUT) GPIO.output(LATCH_1, 0) #we close the latch GPIO.output(LATCH_2, 0) GPIO.output(LATCH_3, 0) GPIO.output(CLOCK_1, 0) #idk/ GPIO.output(CLOCK_2, 0) GPIO.output(CLOCK_3, 0) def pulseClock(_id): GPIO.output(motors[_id]['CLOCK'], 1) #GPIO.output(CLOCK_1, 1) time.sleep(.01) GPIO.output(motors[_id]['CLOCK'], 0) #GPIO.output(CLOCK_1, 0) def serLatch(_id): GPIO.output(motors[_id]['LATCH'], 1) #GPIO.output(LATCH_1, 1) time.sleep(.01) GPIO.output(motors[_id]['LATCH'], 0) #GPIO.output(LATCH_1, 0) #most significant bit out first! def ssrWrite(_id, _dir): motors[_id]["CURRENT"] = _dir neighbour = motors[_id]["NEIGHBOUR"] value = motors[_id][_dir] + motors[neighbour][motors[neighbour]["CURRENT"]] for x in range(0, 8): temp = value & 0x80 #we turn the base 10 value into an 8 bit digit if temp == 0x80: GPIO.output(motors[_id]['DATA'], 1) #write HIGH #GPIO.output(DATA_1, 1) else: GPIO.output(motors[_id]['DATA'], 0) #write LOW #GPIO.output(DATA_1, 0) pulseClock(_id) value = value << 0x01 #shift left serLatch(_id) def toBinary(value): binaryValue = '0b' for x in range(0, 8): temp = value & 0x80 if temp == 0x80: binaryValue = binaryValue + '1' else: binaryValue = binaryValue + '0' value = value << 1 return binaryValue def reset(): for key in motors: ssrWrite(key, "STILL") def main(): try: reset() #for key in motors: # ssrWrite(key, "DOWN") GPIO.cleanup() except KeyboardInterrupt: print "exiting" GPIO.cleanup() sys.exit(0) main() ```
{ "source": "jkereako/algorithms-2", "score": 4 }
#### File: algorithms-2/algorithms/binary_tree.py ```python def min_depth(T): if T is None: return 0 # The conditions below cover the only edge case: when the root node has only # 1 child. if T.left is None: return 1 + min_depth(T.right) if T.right is None: return 1 + min_depth(T.left) return 1 + min(min_depth(T.left), min_depth(T.right)) def max_depth(T): if T is None: return 0 return 1 + max(max_depth(T.left), max_depth(T.right)) def is_balanced(T): return max_depth(T) - min_depth(T) <= 1 def is_mirror(p, q): if p is None or q is None: return p == q return p.value == q.value and is_mirror(p.left, q.right) and is_mirror(p.right, q.left) def lca(T, p, q): if T is None: return None # This is the LCA if T.value == p or T.value == q: return T # Explore subtrees. left_lca = lca(T.left, p, q) right_lca = lca(T.right, p, q) if left_lca and right_lca: return T return left_lca if left_lca is not None else right_lca def lca_bst(T, p, q): if T is None: return None # Explore left subtree if T.value > p and T.value > q: return lca_bst(T.left, p, q) # Explore right subtree if T.value < p and T.value < q: return lca_bst(T.right, p, q) return T ```
{ "source": "jkereako/DailyCodingProblems", "score": 3 }
#### File: DailyCodingProblems/tests/test_problem_1.py ```python import src from src import problem_1 import unittest import random class TestProblem1(unittest.TestCase): def test_empty_list_is_none(self): result = problem_1.solution([], 42) self.assertIsNone(result) def test_single_element_list_is_none(self): result = problem_1.solution([2], 33) self.assertIsNone(result) def test_solution_is_in_simple_list(self): start = -3 end = 10 target_sum = 7 result = problem_1.solution([end, start], target_sum) self.assertEqual(result[0], start) self.assertEqual(result[1], end) def test_solution_is_in_complex_list(self): L = [18, 15, 2, 21, 34, -13, 10, 0, -3, 21] target_sum = 17 result = problem_1.solution(L, target_sum) self.assertEqual(result[0], 2) self.assertEqual(result[1], 15) def test_solution_is_not_in_complex_list(self): L = [18, 15, 1, 29, 34, -13, 10, 0, -3, 21] target_sum = 17 result = problem_1.solution(L, target_sum) self.assertIsNone(result) ``` #### File: DailyCodingProblems/tests/test_problem_2.py ```python import src from src import problem_2 import unittest import random class TestProblem2(unittest.TestCase): def test_empty_list_is_none(self): result = problem_2.solution([]) self.assertIsNone(result) def test_two_element_list_is_identity(self): L = [2, 3] result = problem_2.solution(L) self.assertListEqual(result, L) def test_non_zero_list(self): L = [1, 2, 3, 4, 5] result = problem_2.solution(L) solution = [120, 60, 40, 30, 24] self.assertListEqual(result, solution) def test_zero_in_list(self): L = [1, 0, 2, 3, 4, 5] result = problem_2.solution(L) self.assertIsNone(result) ```
{ "source": "jkereako/flask-api-skeleton", "score": 3 }
#### File: app/controllers/user.py ```python from flask import abort, Blueprint, request, jsonify, g, url_for from app.utils import * from app.models.user import User from app import db, auth mod = Blueprint("user", __name__, url_prefix="/api") @mod.route("/users", methods=["GET"]) def all(): return jsonify( prepare_json_response( message=None, success=True, data=[i.serialize for i in User.query.all()] ) ) @mod.route("/user", methods=["POST"]) def create(): """ $ curl -i -X POST -H "Content-Type: application/json" -d '{"username":"user","password":"<PASSWORD>"}' http://localhost:5000/api/user """ username = request.json.get("username") password = request.json.get("password") if username is None or password is None: abort(400) # missing arguments if User.query.filter_by(username=username).first() is not None: abort(400) # existing user a_user = User(username=username) a_user.hash_password(password) db.session.add(a_user) db.session.commit() return jsonify( prepare_json_response( message="User created", success=True, data={"username": a_user.username} ) ), 201, {"Location": url_for("user.single", id=a_user.id)} @mod.route("/users/<int:id>", methods=["GET"]) def single(id): user = User.query.get(id) if not user: abort(400) return jsonify( prepare_json_response( message="User found", success=True, data={"username": user.username} ) ) @mod.route("/resource", methods=["GET"]) @auth.login_required def resource(): return jsonify( prepare_json_response( message="Hi there, %s! This is a protected resource." % g.user.username, success=True, data={"username": g.user.username} ) ) @mod.route("/token", methods=["GET"]) @auth.login_required def token(): token = g.user.generate_auth_token(600) return jsonify( prepare_json_response( message=None, success=True, data={"token": token.decode("ascii"), "duration":600} ) ) @auth.verify_password def verify_password(username_or_token, password): # first try to authenticate by token user = User.verify_auth_token(username_or_token) if not user: # try to authenticate with username/password user = User.query.filter_by(username=username_or_token).first() if not user or not user.verify_password(password): return False g.user = user return True ``` #### File: app/models/user.py ```python from app import app, db from itsdangerous import (TimedJSONWebSignatureSerializer as Serializer, BadSignature, SignatureExpired) from passlib.apps import custom_app_context class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(32), index=True) password_hash = db.Column(db.String(64)) def hash_password(self, password): self.password_hash = custom_app_context.encrypt(password) def verify_password(self, password): return custom_app_context.verify(password, self.password_hash) def generate_auth_token(self, expiration=600): s = Serializer(app.config['SECRET_KEY'], expires_in=expiration) return s.dumps({'id': self.id}) @property def serialize(self): """Return object data in easily serializeable format""" return {"id":self.id,"username":self.username} @staticmethod def verify_auth_token(token): s = Serializer(app.config["SECRET_KEY"]) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.query.get(data["id"]) return user ```
{ "source": "jkereako/gysc", "score": 3 }
#### File: gysc/lib/enum.py ```python from contract import Contract class Enum(Contract): def __init__(self, name, backing_type, cases): if type(backing_type) is not str: raise TypeError("Expected \"type\" to be a str object") if not isinstance(cases, list): raise TypeError("Expected \"properties\" to be a list") Contract.__init__(self, name) self.backing_type = backing_type self.cases = cases ``` #### File: gysc/lib/generator.py ```python import os import time from swagger import Swagger from enum import Enum from struct import Struct from property import Property # http://petstore.swagger.io/v2/swagger.json class Generator(object): def __init__(self, swagger): if type(swagger) is not Swagger: raise TypeError("Expected \"swagger\" to be a Swagger object") self.swagger = swagger def generate(self): pass def mkdir(self, dir): if not os.path.exists(dir): os.mkdir(dir) ```
{ "source": "jkerkela/best-ml-stock-predictor", "score": 3 }
#### File: best-ml-stock-predictor/data_analyzer/evaluate.py ```python from IPython import display import math import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset import tools.data_item_processor as dataItemProcessor import tools.tensor_object_provider as tensorObjProvider def evaluate_model(model_regressor, evaluation_examples, evaluation_targets): """Evaluates model. In addition to evaluation, this function also prints evaluation progress information and a evaluation loss. Args: model_regressor: A trained regressor object (DNN type) evaluation_examples: A `DataFrame` containing one or more columns from `stock_dataframe` to use as input features for evaluation. evaluation_targets: A `DataFrame` containing exactly one column from `stock_dataframe` to use as target for evaluation. """ evaluate_input_fn = lambda: tensorObjProvider.train_input_fn( evaluation_examples, evaluation_targets["1_month_future_value"], num_epochs=1, shuffle=False) evaluation_predictions = model_regressor.predict(input_fn=evaluate_input_fn) evaluation_predictions = np.array([item['predictions'][0] for item in evaluation_predictions]) root_mean_squared_error = math.sqrt( metrics.mean_squared_error(evaluation_predictions, evaluation_targets)) print("Final RMSE (on test data): %0.2f" % root_mean_squared_error) data_directory = str("../data_loader/data/") evaluation_data_file = pd.read_csv(data_directory + "evaluate.csv", sep=",") evaluation_examples = dataItemProcessor.preprocess_features(evaluation_data_file) evaluation_targets = dataItemProcessor.preprocess_targets(evaluation_data_file) print("Evaluate data key indicators:") display.display(evaluation_examples.describe()) display.display(evaluation_targets.describe()) feature_columns = dataItemProcessor.construct_feature_columns(evaluation_examples) regressor = tensorObjProvider.get_DNN_regressor(features=feature_columns) evaluate_model(regressor, evaluation_examples, evaluation_targets) ```
{ "source": "jkerola/poetcli", "score": 2 }
#### File: poetcli/controllers/collectionController.py ```python from cement import Controller, ex from ..utils import databaseUtils, controllerUtils class CollectionController(Controller): class Meta: label = 'collection controls' @ex( help='set currently active collection by id or name', arguments=[ ( ['-i', '--id'], { 'help': 'collection id', 'action': 'store', 'dest': 'id' } ) ] ) def collection_active(self): if self.app.pargs.id is not None: col_id = self.app.pargs.id databaseUtils.set_active_collection(self, col_id) self.collection_list() else: col_id = databaseUtils.get_active_collection_id(self) collection = self.app.db.table('collections').get(doc_id=col_id) data = {'collection': collection} self.app.render(data, 'select_collection.help.jinja2') @ex(help='create a new collection') def collection_new(self): databaseUtils.create_poem_collection(self) @ex(help='list all collections') def collection_list(self): data = { 'collections': controllerUtils.get_all_collections(self), 'active_collection': databaseUtils.get_active_collection_id(self) } self.app.render(data, 'list_collections.jinja2') @ex( help='permanently delete collection', arguments=[ ( ['-i', '--id'], { 'help': 'collection id', 'action': 'store', 'dest': 'id' } ) ] ) def collection_delete(self): if self.app.pargs.id is not None: delete_id = self.app.pargs.id databaseUtils.delete_collection(self, delete_id) self.collection_list() else: self.app.render({}, 'delete_collection.help.jinja2') ``` #### File: poetcli/utils/controllerUtils.py ```python from cement import shell from cement.utils import fs from datetime import datetime from . import databaseUtils def get_all_collections(self): """Return all collections in the database""" return self.app.db.table('collections').all() def get_all_poems_in_active_collection(self): """Return all poems in active collection""" collection = get_active_collection(self) return self.app.db.table(collection['name']).all() def get_active_collection(self): active = databaseUtils.get_active_collection_id(self) return self.app.db.table('collections').get(doc_id=active) def create_new_poem(self): """ Creates a new temp file, launches editor and then returns file contents """ try: with fs.Tmp() as tmp: with open(tmp.file, 'w+t') as file: shell.cmd(f'nano {file.name}', capture=False) content = file.read() file.close() if len(content.strip().strip('\n')) > 0: save_poem_to_active_collection(self, content) active_id = databaseUtils.get_active_collection_id(self) active_col = databaseUtils.get_collection_by_id(self, active_id) self.app.log.info(f'Saved poem into {active_col["name"]}') else: self.app.log.warning('Empty file detected, action aborted') except FileNotFoundError: self.app.log.error( 'Could not create a temporary file to write in' ) def get_poem_by_id(self, poem_id): """Get a poem from the database by Id""" try: col_id = databaseUtils.get_active_collection_id(self) collection = databaseUtils.get_collection_by_id(self, col_id) return self.app.db.table(collection['name']).get(doc_id=poem_id) except IndexError: self.app.log.error(f'Poem id {poem_id} not found') def edit_poem(self, poem_id): """Opens poem by id in editor""" try: with fs.Tmp() as tmp: with open(tmp.file, 'w+t') as file: poem = get_poem_by_id(self, poem_id) previous_content = poem['content'] file.write(previous_content) file.read() shell.cmd(f'nano {file.name}', capture=False) file.seek(0, 0) content = file.read() file.close() if len(content.strip().strip('\n')) > 0: if content == previous_content: self.app.log.warning( 'No changes detected, no actions taken' ) else: poem = { 'created': poem['created'], 'content': content } active = get_active_collection(self) self.app.db.table(active['name']).update( poem, doc_ids=[poem_id] ) self.app.log.info('Poem updated') else: self.app.log.warning( 'Empty file detected, discarding changes' ) except FileNotFoundError: self.app.log.error( 'Could not create a temporary file to write in' ) def delete_poem(self, poem_id): """Delete poem permanently from active collection""" if get_poem_by_id(self, poem_id) is not None: active = get_active_collection(self) self.app.db.table(active['name']).remove(doc_ids=[poem_id]) self.app.log.info(f'Deleted poem {poem_id} from {active["name"]}') else: self.app.log.error(f'Poem {poem_id} not found') def save_poem_to_active_collection(self, content): """Save poem to active collection""" try: databaseUtils.init_on_empty_collection(self) now = datetime.now() poem = { 'created': now.strftime("%Y-%m-%d"), 'content': content } collection = get_active_collection(self) self.app.db.table(collection['name']).insert(poem) except Exception: self.app.log.error('Could not save poem to database') ``` #### File: poetcli/tests/test_poetcli.py ```python from pytest import raises from poetcli.main import PoetCLITest def test_poetcli(): # test poetcli without any subcommands or arguments with PoetCLITest() as app: app.run() assert app.exit_code == 0 def test_poetcli_debug(): # test that debug mode is functional argv = ['--debug'] with PoetCLITest(argv=argv) as app: app.run() assert app.debug is True def test_create_poem(): argv = [] with PoetCLITest(argv=argv) as app: app.run() output = app.last_rendered assert output is None ```
{ "source": "JKesslerPhD/FIPInjectionLogger", "score": 2 }
#### File: JKesslerPhD/FIPInjectionLogger/cron_data.py ```python import sqlalchemy as sql import pandas as pd import statsmodels.formula.api as smf from plotly.offline import plot import plotly.graph_objs as go import plotly.express as px from plotly import colors import numpy as np import json import os class Database(): def __init__(self, db_file="db.sqlite3"): db_file = os.path.dirname(__file__)+"/"+db_file self.engine = sql.create_engine('sqlite:///%s' % db_file) self.fip_stats = None self.weight = None self.summary = None self.quality = None self.email_list = None def get_email_list(self): query = """ Select * from ( select username, email, relapse_start, count(InjectionLog_injectionlog.id) as LogEntries, cast(julianday(max(InjectionLog_injectionlog.injection_time)) - julianday(min(InjectionLog_injectionlog.injection_time)) as int) as days_from_logs, case when relapse_start not NULL then cast(julianday(date('now')) - julianday(relapse_start) as int) else cast(julianday(date('now')) - julianday(min(InjectionLog_injectionlog.injection_time))-extended_treatment as int) end as days_from_time, round((julianday(date('now')) - julianday(birthday))/365,0) as cat_age, (max(InjectionLog_injectionlog.cat_weight)-min(InjectionLog_injectionlog.cat_weight))/min(InjectionLog_injectionlog.cat_weight)/cast(julianday(max(InjectionLog_injectionlog.injection_time)) - julianday(min(InjectionLog_injectionlog.injection_time)) as int)*100 as cat_weight, InjectionLog_cats.* from InjectionLog_cats, InjectionLog_injectionlog, auth_user left join InjectionLog_relapsedate on InjectionLog_cats.id = InjectionLog_relapsedate.cat_name_id where injectionlog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account =1) and InjectionLog_cats.id = InjectionLog_injectionlog.cat_name_id and InjectionLog_injectionlog.active=1 and injectionLog_cats.owner_id = auth_user.id group by injectionLog_cats.id ) where LogEntries>2 and days_from_time > 168 and (cured = 0 and bad=0) """ if not self.email_list: self.email_list = df = pd.read_sql(query, self.engine) return df def get_cat_quality(self): query = """ Select *, (cast(days/7 as int)+1) as week, case when wt_units = "lb" then round(dose/(cat_weight/2.2),0) when wt_units = "kg" then round(dose/cat_weight,0) end as dosage from ( Select gs_brand, round(julianday(injection_time) - julianday(treatment_start),0) as days, concentration * injection_amount as dose, cat_behavior_today, wt_units, cat_weight from InjectionLog_injectionlog, InjectionLog_cats, injectionLog_gsbrand where InjectionLog_injectionlog.cat_name_id=InjectionLog_cats.id and InjectionLog_gsbrand.brand = InjectionLog_injectionlog.gs_brand and InjectionLog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account = 1) ) as foo, ( Select gs_brand as brand, count(*) as total_observations, count(distinct(cat_name_id)) as logged_cats from InjectionLog_injectionlog, InjectionLog_cats where InjectionLog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account = 1) and InjectionLog_injectionlog.cat_name_id = InjectionLog_cats.id group by gs_brand ) as log where log.brand = foo.gs_brand """ if not self.quality: self.quality = df = pd.read_sql(query, self.engine) return df def get_weight(self): query = """ Select cat_weight, days, pct_change, injection_amount, gs_brand, (case when admin_method = "Oral" then cast(price as float)/(concentration) else cast(price as float)/(concentration*5) end) as price, round(case when wt_units ="kg" then starting_wt*2.2 else starting_wt end,1) as start_wt, pct_change/days*100 as ratio, round((julianday(date('now')) - julianday(birthday))/365,0) as cat_age from (Select old.cat_weight as starting_wt, round((InjectionLog_injectionlog.cat_weight-old.cat_weight)/old.cat_weight*100,0)/100 as pct_change, round(julianday(InjectionLog_injectionlog.injection_time)-julianday(old.injection_time),0) as days, coalesce(InjectionLog_usergs.price,InjectionLog_gsbrand.price) as price, coalesce(InjectionLog_usergs.concentration,InjectionLog_gsbrand.concentration) as concentration, * from InjectionLog_injectionlog, InjectionLog_cats, (select min(injection_time) as injection_time, min(cat_weight) as cat_weight, cat_name_id from InjectionLog_injectionlog group by cat_name_id) as old left join InjectionLog_gsbrand on InjectionLog_gsbrand.brand=gs_brand left join InjectionLog_usergs on InjectionLog_usergs.brand=gs_brand where InjectionLog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account =1) and old.cat_name_id = InjectionLog_injectionlog.cat_name_id and InjectionLog_cats.id = InjectionLog_injectionlog.cat_name_id ) where days>0 and ratio <5 and cat_age <10 """ if not self.weight: self.weight = df = pd.read_sql(query, self.engine) return df def get_summary(self): query = """ Select * from ( select username, relapse_start, count(InjectionLog_injectionlog.id) as LogEntries, cast(julianday(max(InjectionLog_injectionlog.injection_time)) - julianday(min(InjectionLog_injectionlog.injection_time)) as int) as days_from_logs, case when relapse_start not NULL then cast(julianday(date('now')) - julianday(relapse_start) as int) else cast(julianday(date('now')) - julianday(min(InjectionLog_injectionlog.injection_time))-extended_treatment as int) end as days_from_time, round((julianday(date('now')) - julianday(birthday))/365,0) as cat_age, (max(InjectionLog_injectionlog.cat_weight)-min(InjectionLog_injectionlog.cat_weight))/min(InjectionLog_injectionlog.cat_weight)/cast(julianday(max(InjectionLog_injectionlog.injection_time)) - julianday(min(InjectionLog_injectionlog.injection_time)) as int)*100 as cat_weight, InjectionLog_cats.* from InjectionLog_cats, InjectionLog_injectionlog, auth_user left join InjectionLog_relapsedate on InjectionLog_cats.id = InjectionLog_relapsedate.cat_name_id where injectionlog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account =1) and InjectionLog_cats.id = InjectionLog_injectionlog.cat_name_id and InjectionLog_injectionlog.active=1 and injectionLog_cats.owner_id = auth_user.id group by injectionLog_cats.id ) where LogEntries>2 """ if not self.summary: self.summary = df = pd.read_sql(query, self.engine) return df def get_relapse_stats(self): query = """ Select round(julianday('now') - julianday(treatment_start),0) as days_since_start, round(julianday(relapse_start)-julianday(treatment_start),0) as days_before_relapse, case when round(julianday(relapse_start)-julianday(treatment_start),0) > 84 THEN round(julianday(relapse_start)-julianday(treatment_start)-84,0) ELSE 0 end as days_into_observation, round(julianday('now') - julianday(relapse_start),0) as days_since_relapse, * from InjectionLog_relapsedate, InjectionLog_cats where InjectionLog_relapsedate.cat_name_id == InjectionLog_cats.id and InjectionLog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account = 1) group by cat_name_id order by relapse_start desc """ def get_fip_stats(self): query = """ Select fip_type as FIPType, sum(case when neuro=0 and ocular =0 then 1 else 0 end) as traditional, sum(case when neuro=0 and ocular=1 then 1 else 0 end) as ocular, sum(case when neuro=1 and ocular=0 then 1 else 0 end) as neuro, sum(case when neuro=1 and ocular=1 then 1 else 0 end) as neuro_and_ocular from InjectionLog_cats where injectionlog_cats.owner_id not in (Select user_id from InjectionLog_userextension where test_account =1) group by fip_type """ if not self.fip_stats: self.fip_stats = df = pd.read_sql(query, self.engine) return df class Analysis(): def __init__(self): pass def save_file(self, json_dict, filename): with open(filename,'w') as json_file: json.dump(json_dict, json_file) def generate_fip_summary(self, fip_summary): total_cats = fip_summary["traditional"]+fip_summary["ocular"]+fip_summary["neuro"]+fip_summary["neuro_and_ocular"] fip_summary = pd.melt(fip_summary,id_vars="FIPType", var_name="Symptoms") fip_fig = px.bar(fip_summary, x="FIPType", y="value", color="Symptoms", title="Frequency of Symptoms by FIP Type") fip_fig.update_layout( yaxis_title="Number of cats with symptoms") fip_div = plot(fip_fig, output_type='div', include_plotlyjs="cdn") return {"total_cats":total_cats.to_dict(),"graph":str(fip_div)} def generate_summary_stats(self,summary): cat_age = summary.groupby("cat_age").count() cat_age["age"] = cat_age.index cat_age["counts"]=cat_age["name"] age_fig = px.bar(cat_age,x="age", y="counts", title="Cats with FIP by age") age_div = plot(age_fig,output_type='div', include_plotlyjs="cdn") return {"graph":age_div} def generate_weight_figure(self,weight): fig = go.Figure() fig = px.scatter(weight, x=weight["days"], y=weight["pct_change"]*100, opacity=0.8, color=weight["start_wt"] ) fig.update_layout( title="Percent change from cat's starting weight (lb) for all logged data", xaxis_title="Days of Treatment", yaxis_title="Pct Change from Cat's Starting Weight") wt_div = plot(fig, output_type='div', include_plotlyjs="cdn") weight["cat_age"] = weight["cat_age"].astype('float') model = smf.ols(formula="pct_change ~ 0 + start_wt+days + cat_age", data=weight).fit() mult = model.params["days"] try: ints = model.params["Intercept"] except: ints = 0 daily_price = weight["price"].mean() stwt = model.params["start_wt"] age = model.params["cat_age"] model_dict = {"ints":ints,"stwt":stwt,"mult":mult, "age":age, "daily_price":daily_price} return {"graph":wt_div,"model":model_dict} def generate_cat_treatment_dist(self, summary): duration_df = summary[summary["days_from_time"]<=84].groupby("days_from_time").count() cats84 = summary[summary["days_from_time"]>84].count()[0] cured_cats = summary[summary["cured"]>0].count()[0] duration_df["Days since starting"]=duration_df.index duration_df["counts"]=duration_df["name"] duration_fig = px.bar(duration_df, x="Days since starting", y="counts", title="# of cats with data being logged relative to how many days ago treatment was started") duration_fig.update_layout( xaxis_title="Days since starting treatment", yaxis_title="# of cats with data on this site") duration_div=plot(duration_fig,output_type="div", include_plotlyjs="cdn") return {"graph":duration_div, "total_cats":str(cats84),"cured_cats":str(cured_cats)} def generate_quality_stats(self, quality, cutoff=5): ag_stats = quality.groupby(['gs_brand','week']).agg( behavior = pd.NamedAgg(column='cat_behavior_today', aggfunc=np.mean), stdev = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.std), be_max = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.max), be_min = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.min), records=pd.NamedAgg(column='cat_behavior_today', aggfunc='count') ) ag_week = quality.groupby(['week']).agg( behavior = pd.NamedAgg(column='cat_behavior_today', aggfunc=np.mean), stdev = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.std), be_max = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.max), be_min = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.min), records=pd.NamedAgg(column='cat_behavior_today', aggfunc='count') ) ag_stats["sem"] = ag_stats["stdev"]/np.sqrt( ag_stats["records"]) results = ag_stats[ag_stats["records"]>= cutoff*7] results["upper"] = results["behavior"] + results["sem"] results["lower"] = results["behavior"] - results["sem"] results = results.reset_index() ag_week.reset_index(inplace=True) sem = ag_week["stdev"] x = ag_week["week"].tolist() y = ag_week["behavior"].to_list() upper = y+sem.fillna(0) lower = y-sem.fillna(0) upper = upper.tolist() lower = lower.tolist() fig = px.scatter(x=results["week"], y=results["behavior"], color=results["gs_brand"], error_y=results["sem"]*1.96) fig.add_scatter( x=x+x[::-1], # x, then x reversed y=upper+lower[::-1], # upper, then lower reversed fill='toself', fillcolor='rgba(0,0,0,0.2)', line=dict(color='rgba(255,255,255,0)'), hoverinfo="skip", showlegend=True, name="Expected Range") fig.add_scatter( x=x, y=y, showlegend=False, line=dict(color='rgb(128,128,128,.25)'), hoverinfo='skip', mode='lines' ) fig.update_layout(yaxis_title="How the cat is doing (1-5 point scale)", xaxis_title="Week Number", title="How cats improve on GS over time", xaxis=dict(range=[0.8,max(results["week"])+.2]), yaxis=dict(range=[1,5.5]), ) quality_plot = plot(fig, output_type="div", include_plotlyjs="cdn") return {"graph":quality_plot} def generate_brand_stats(self, quality): ag_stats = quality.groupby(['gs_brand','week']).agg( behavior = pd.NamedAgg(column='cat_behavior_today', aggfunc=np.mean), stdev = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.std), be_max = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.max), be_min = pd.NamedAgg(column='cat_behavior_today',aggfunc=np.min), records=pd.NamedAgg(column='cat_behavior_today', aggfunc='count') ) results = ag_stats.reset_index() fig = px.bar(results, x="week", y="records", color="gs_brand", title="# of days of treatment logged per brand") fig.update_layout(yaxis_title="Days logged per week", xaxis_title="Week Number") brand_stats = plot(fig, output_type="div", include_plotlyjs="cdn") return {"graph":brand_stats} def generate_treatment_stats(self, summary): being_treated = summary[summary["days_from_time"]<=84].count()[0] observation_cats = summary[(summary["days_from_time"]>84) & (summary["days_from_time"]<168)].count()[0] post_treatment = summary[summary["days_from_time"]>84].count()[0] cured_cats = summary[summary["cured"]>0].count()[0] bad_outcome = summary[summary["bad"]>0].count()[0] relapse = summary[~summary["relapse_start"].isnull()] relapse_treatment = relapse[relapse["days_from_time"]<=84].count()[0] relapse_rate = relapse.count()[0]/post_treatment*100 unknown_status = post_treatment - observation_cats - bad_outcome - cured_cats results = {"being_treated":int(being_treated), "obseration_cats":int(observation_cats), "post_treatment":int(post_treatment), "cured_cats":int(cured_cats), "relapse_cats":int(relapse_treatment), "total_relapse":int(relapse.count(0)[0]), "relapse_rate":float(relapse_rate), "unk":int(unknown_status), "bad_outcome":int(bad_outcome)} return results def generate_graphs(output_file="data_output.txt"): data = Database() an = Analysis() weight = data.get_weight() summary = data.get_summary() fip_summary = data.get_fip_stats() quality = data.get_cat_quality() graph_summary = an.generate_summary_stats(summary) graph_distribution = an.generate_cat_treatment_dist(summary) graph_fip_stats = an.generate_fip_summary(fip_summary) graph_wt_change = an.generate_weight_figure(weight) graph_quality = an.generate_quality_stats(quality) brand_stats = an.generate_brand_stats(quality) treatment_stats = an.generate_treatment_stats(summary) combined_dict = { "summary":graph_summary, "distribution":graph_distribution, "fip_stats":graph_fip_stats, "weight":graph_wt_change, "quality":graph_quality, "brands":brand_stats, "treatment_stats":treatment_stats } an.save_file(combined_dict,output_file) def read_data(filename): with open(filename) as json_file: data = json.load(json_file) return data if __name__=="__main__": directory=os.path.dirname(__file__) generate_graphs(directory+"/data_output.txt") ```
{ "source": "jkeung/Movies_Analysis", "score": 3 }
#### File: jkeung/Movies_Analysis/util.py ```python from sys import argv import datetime as dt import requests from bs4 import BeautifulSoup import dateutil.parser as parse import urlparse import os import pickle import re import time OUTPUTDIR = 'output' FILENAMETEMPLATE = 'movie_dictionary' def create_dir(directory): #Check to see if directory exists if not os.path.exists(directory): os.makedirs(directory) def get_soup_from_url(url): ''' Takes url and returns bs4.BeautifulSoup class. If the soup already exists locally, it will load from file, otherwise it will pull from a url. It will also create a directory structure (in the current working directory) based on the url. Ex: 'http://www.boxofficemojo.com/movies/?id=ateam.htm' Creates: /data/www.boxofficemojo.com/movies/ateam.htm Args: url (string) Returns: soup (bs4.BeautifulSoup): ''' parsed_url = urlparse.urlparse(url) path = [] for item in parsed_url: for x in item.split(): path.append(x.replace('/', '')) outfile = path[-1] outfile = outfile[outfile.find('=') + 1:] outpath = 'data/' + '/'.join(path[1:-1]) out_pathfile = os.path.join(outpath, outfile) #Check to see if directory exists create_dir(outpath) #Check to see if file exists try: soup = pickle.load(open('{}'.format(out_pathfile), 'rb')) except: #If doesn't exist, try to get soup from page try: soup = BeautifulSoup(requests.get(url).text, 'lxml') pickle.dump(soup, open('{}'.format(out_pathfile), 'wb')) except: pass return soup def get_title(soup): ''' Function to get movie title from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: title (string): A string of the title of the movie ''' try: index = soup.title.text.find(' - Box Office Mojo') title = str(soup.title.text[:index]) return title except: return 'N/A' def get_domestic_gross(soup): ''' Function to get total domestic gross from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: number (float): A float of the domestic gross of the movie ''' try: number = soup.find_all(text='Domestic:')[0].parent.parent.parent.td.next_sibling.next_sibling.b.text number = float(number.replace(',','').replace('$','')) return number except: return 'N/A' def get_distributor(soup): ''' Function to get total domestic gross from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: word (string): The distributor of the movie ''' try: word = soup.find(text = 'Distributor: ').next_sibling.text return str(word) except: return 'N/A' def get_genre(soup): ''' Function to get genre from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: genre (string): The genre of the movie ''' try: genre = str(soup.find(text = 'Genre: ').next_sibling.text) return genre except: return 'N/A' def get_runtime(soup): ''' Function to get total movie time in minutes from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: runtime (int): The runtime of the movie ''' try: time = soup.find(text = 'Runtime: ').next_sibling.text if time.find('hrs.') > 0 and time.find('min.') > 0: hours = int(time[:time.find('hrs.')]) minutes = int(time[time.find('min.') - 3:time.find('min.')]) runtime = (hours*60) + minutes return runtime else: return None except: return 'N/A' def get_rating(soup): ''' Function to get MPAA rating from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: rating (string): The rating of the movie ''' try: rating = str(soup.find(text = 'MPAA Rating: ').next_sibling.text) return rating except: return 'N/A' def get_budget(soup): ''' Function to get production budget (in millions)from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: budget (string): The production budget of the movie ''' try: budget = str(soup.find(text = 'Production Budget: ').next_sibling.text) budget = int(budget[1:budget.find('million')]) return budget except: return 'N/A' def get_release_date(soup): ''' Function to get release date from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: date (date): The release date of the movie ''' try: date = soup.find(text = 'Release Date: ').next_sibling.text date = parse.parse(date, fuzzy = True).date() return date except: return 'N/A' def get_directors(soup): ''' Function to get directors from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: list: A list of director(s) of the movie ''' fieldlist = [] try: for x in soup.find_all(text='Director:')[0].parent.parent.parent.nextSibling.font: word = str(x.string) if word[0].isupper() and word != 'None': fieldlist.append(word) return fieldlist except: return 'N/A' def get_writers(soup): ''' Function to get writers from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: list: A list of writer(s) of the movie ''' fieldlist = [] try: for x in soup.find_all(text='Writers:')[0].parent.parent.parent.nextSibling.font: word = str(x.string) if word[0].isupper() and word != 'None': fieldlist.append(word) return fieldlist except: return 'N/A' def get_actors(soup): ''' Function to get actors from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: list: A list of actor(s) in the movie ''' fieldlist = [] try: for x in soup.find_all(text='Actors:')[0].parent.parent.parent.nextSibling.font: word = str(x.string) if word[0].isupper() and word != 'None': fieldlist.append(word) return fieldlist except: return 'N/A' def get_producers(soup): ''' Function to get producers from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: list: A list of producer(s) of the movie ''' fieldlist = [] try: for x in soup.find_all(text='Producers:')[0].parent.parent.parent.nextSibling.font: word = str(x.string) if word[0].isupper() and word != 'None': fieldlist.append(word) return fieldlist except: return 'N/A' def get_composers(soup): ''' Function to get composers from the Box Office Mojo individual movie site's soup. Args: soup (BeautifulSoup): The beautiful soup that is obtained from requests.get(url) Returns: list: A list of writer(s) of the movie ''' fieldlist = [] try: for x in soup.find_all(text='Domestic Total Gross: ')[0].parent.parent.parent.nextSibling.font: word = str(x.string) if word[0].isupper() and word != 'None': fieldlist.append(word) return fieldlist except: return 'N/A' def get_movie_dictionary(url, d = {}): ''' Function to create or append to a dictionary from the Box Office Mojo individual movie page. Args: url (string): The url of the Box Office Mojo individual movie page Ex: 'http://www.boxofficemojo.com/movies/?id=ateam.htm' Returns: d (dictionary): A dictionary of the movie ''' #Get soup from url locally or from Box Office Mojo directly soup = get_soup_from_url(url) #Get movie information title = get_title(soup) genre = get_genre(soup) gross = get_domestic_gross(soup) release_date = get_release_date(soup) runtime = get_runtime(soup) budget = get_budget(soup) rating = get_rating(soup) distributor = get_distributor(soup) directors = get_directors(soup) actors = get_actors(soup) writers = get_writers(soup) producers = get_producers(soup) #Update dictionary d.setdefault(title, {}).update({'genre':genre}) d.setdefault(title, {}).update({'gross':gross}) d.setdefault(title, {}).update({'date':release_date}) d.setdefault(title, {}).update({'runtime':runtime}) d.setdefault(title, {}).update({'budget':budget}) d.setdefault(title, {}).update({'rating':rating}) d.setdefault(title, {}).update({'distributor':distributor}) d.setdefault(title, {}).update({'directors':directors}) d.setdefault(title, {}).update({'actors':actors}) d.setdefault(title, {}).update({'writers':writers}) d.setdefault(title, {}).update({'producers':producers}) return d def get_movie_url_list(letter): ''' Function to get a list of urls of all movies that begin with a particular letter from the Box Office Mojo individual movie page. Args: letter (string): The letter to pull for movies on the Box Office Mojo A-Z listing page. Ex: 'http://www.boxofficemojo.com/movies/alphabetical.htm?letter={letter}&p=.htm' Returns: url_list2 (list): A list of urls for movies that start with letter. ''' #Create a dictionary for the number of sublinks per letter link_dict = {'#':1, 'A':10, 'B':8, 'C':7, 'D':6, 'E':7, 'F':6, 'G':7, 'H':6, 'I':6, \ 'J':4, 'K':4, 'L':5, 'M':6, 'N':5, 'O':5, 'P':7, 'Q':1, 'R':6, 'S':13, 'T':8, \ 'U':2, 'V':3, 'W':6, 'X':1, 'Y':2, 'Z':2} base = 'http://www.boxofficemojo.com/' url_list1 = ['http://www.boxofficemojo.com/movies/alphabetical.htm?letter={0}&page={1}&p=.htm'.format(letter, num) \ for num in range(1, link_dict[letter] + 1) ] url_list2 = [] for url_1 in url_list1: soupin = BeautifulSoup(requests.get(url_1).text, 'lxml') movie_list_table = soupin.find(text = 'ALPHABETICAL INDEX').parent.parent.parent.parent.parent.parent movie_list = movie_list_table.find_all('a', href=re.compile('^/movies/\?id=')) for movie in movie_list: url_list2.append(base + movie['href']) return url_list2 def update_movie_dictionary(file, url_list): ''' Function to create/load a dictionary if exists and update with movie information. Args: letter (string): The letter to pull for movies on the Box Office Mojo A-Z listing page. url_list (list): A list of urls for individual moviepages on the Box Office Mojo Returns: url_list2 (list): A list of urls for movies that start with letter. ''' try: d = pickle.load(open('{}'.format(file), 'rb')) except: d = {} for url in url_list: d.update(get_movie_dictionary(url, d)) pickle.dump(d, open('{}'.format(file), 'wb')) # def main(): # script, letter = argv # start_time = time.time() # create_dir(OUTPUTDIR) # url_list = get_movie_url_list(letter) # output_path = os.path.join(OUTPUTDIR, '{0}_{1}.p'.format(FILENAMETEMPLATE, letter)) # update_movie_dictionary(output_path, url_list) # print ("--- %s seconds ---\n") % (time.time() - start_time) # print ("Dictionary created successfully!") # if __name__ == '__main__': # main() ```
{ "source": "jkeung/mta_project", "score": 3 }
#### File: mta_project/clean_data/clean_util.py ```python from datetime import datetime, timedelta import pandas as pd import time OUTFILE = 'MTA_DATA.p' def get_data(): """Downloads data from online MTA data source Loops through all recent data, and appends it to a single csv datafile Ex. http://web.mta.info/developers/data/nyct/turnstile/turnstile_150919.txt Args: None Returns: None """ end_date = datetime.strptime(time.strftime("%y%m%d"), '%y%m%d') begin_date = datetime.strptime('141025', '%y%m%d') base_link = 'http://web.mta.info/developers/data/nyct/turnstile/turnstile_' while(begin_date < end_date): link = '{0}{1}.txt'.format(base_link, begin_date.strftime("%y%m%d")) print 'Retrieving data from {0}...'.format(link) try: new_df = pd.read_csv(link) df = df.append(new_df, ignore_index=True) except: df = pd.read_csv(link) begin_date = begin_date + timedelta(days=7) return df def add_clean_columns(df): """Cleans the dataframe Adds: 'DAY', 'MONTH', 'TIMEFRAME_ENTRIES', 'TIMEFRAME_EXITS' Removes: 'ENTRIES', 'EXITS' Filters: Keeps entries and exits only between 0 and 5000 ORDER MATTERS FOR CLEANING Args: df (pandas.DataFrame): The uncleaned pandas dataframe Returns: df (pandas.DataFrame): The cleaned pandas dataframe """ df = df.rename(columns={'EXITS ': 'EXITS'}) df = add_day_month(df) df = add_entry_exit_totals(df) df = add_traffic_column(df) df = add_time_bin_column(df) return df def add_day_month(df): """Creates columns for the Day, Day int value, and the Month Args: df (pandas.DataFrame): The original pandas dataframe Returns: df (pandas.DataFrame): The pandas dataframe with the DAY, DAY_NUM, and MONTH columns """ df['DAY'] = df['DATE'].apply( lambda x: datetime.strptime(x, '%m/%d/%Y').strftime('%a')) df['DAY_NUM'] = df['DATE'].apply( lambda x: datetime.strptime(x, '%m/%d/%Y').strftime('%w')) df['MONTH'] = df['DATE'].apply( lambda x: datetime.strptime(x, '%m/%d/%Y').strftime('%m')) return df def add_entry_exit_totals(df): """Creates two columns containing both the sum of ENTRIES and EXITS Args: df (pandas.DataFrame): The original pandas dataframe Returns: df (pandas.DataFrame): The pandas dataframe with the TIMEFRAME_ENTRIES and TIMEFRAME_EXITS columns and drops the ENTRIES and EXITS columns """ entries = df['ENTRIES'] - \ df.groupby(['C/A', 'UNIT', 'SCP', 'STATION'])['ENTRIES'].shift(1) exit = df['EXITS'] - \ df.groupby(['C/A', 'UNIT', 'SCP', 'STATION'])['EXITS'].shift(1) df['TIMEFRAME_ENTRIES'] = entries df['TIMEFRAME_EXITS'] = exit df = df.drop('ENTRIES', 1) df = df.drop('EXITS', 1) df.dropna() return df def add_traffic_column(df): """Add a TRAFFIC column that is the sum of the Entries and Exits for a station Args: df (pandas.DataFrame): The original pandas dataframe Returns: df (pandas.DataFrame): The pandas dataframe with the TRAFFIC column and TIMEFRAME_ENTRIES and TIMEFRAME_EXITS columns removed """ df = df[(df['TIMEFRAME_ENTRIES'] >= 0) & (df['TIMEFRAME_ENTRIES'] <= 5000)] df = df[(df['TIMEFRAME_EXITS'] >= 0) & (df['TIMEFRAME_EXITS'] <= 5000)] df['TRAFFIC'] = df['TIMEFRAME_ENTRIES'] + df['TIMEFRAME_EXITS'] df = df.drop('TIMEFRAME_ENTRIES', 1) df = df.drop('TIMEFRAME_EXITS', 1) return df def add_time_bin_column(df): """ Takes a dataframe and creates a column with the times binned by every 4 hours Args: df (pandas.DataFrame): The original pandas dataframe Returns: df (pandas.DataFrame): The pandas dataframe with the TIME_BIN column """ df["TIME_INT"] = df["TIME"].map(lambda x: int(x.replace(":", ""))) df["TIME_BIN"] = df["TIME_INT"].map(lambda x: get_range(x)) df = df.drop("TIME_INT", 1) return df def get_range(time): """An function used to get the correct 4 hour interval for the TIME_BIN column Takes a dataframe and creates a column with the times binned by every 4 hours Args: time (int): A time int representation in the format hhmmss Ex: noon would be represented as 120000 Returns: output (float): The 4 hour time interval that the integer input time belongs to """ hours = [0, 40000, 80000, 120000, 160000, 200000] prev = 0 output = 0.0 for h in hours: if time <= h and time > prev: output = float(h/10000) return output elif time == 200000: output = float(200000/10000) return output elif time > float(200000): output = float(24) return output # midnight elif time == 0: output = float(24) return output def main(): print "Pulling data..." df = get_data() df = add_clean_columns(df) df.to_pickle(OUTFILE) print "Pulling data complete!" print "Data saved to {0}".format(OUTFILE) if __name__ == '__main__': main() ```
{ "source": "jkeuper/transip_dyndns", "score": 3 }
#### File: jkeuper/transip_dyndns/dyndns.py ```python import sys import argparse from requests import get from transip_rest_client import TransipRestClient def getOptions(args=sys.argv[1:]): parser = argparse.ArgumentParser(description="DynDNS: Updates a DNS record for a dynamic IP address.") parser.add_argument("-u", "--user", help="Your username.", required=True) parser.add_argument("-k", "--key", help="Key file containing RSA private key.", required=True) parser.add_argument("-n", "--name", help="Name of the record (e.g. 'www').", required=True) parser.add_argument("-d", "--domain", help="Existing DNS domain (e.g. 'example.com').", required=True) parser.add_argument("-v", "--verbose", action='store_true', help="Verbose mode.") options = parser.parse_args(args) return options def find(arr , id): for x in arr: if x["name"] == id: return x def main(key, username, domain, name, verbose): with open(key, 'r') as f: my_RSA_key = f.read() if "BEGIN RSA PRIVATE KEY" not in my_RSA_key: print("Key in incorrect format, convert the key with the following command:") print("openssl rsa -in privatekey.txt -out rsaprivatekey.txt") return newIp = get('https://api.ipify.org').text if verbose: print(f"Retrieved IP from api.ipify.org: {newIp}") client = TransipRestClient(user=username, rsaprivate_key=my_RSA_key, global_key=True) entries = client.get_dns_entries(domain=domain) if verbose: print(f"Found {len(entries)} DNS entries") entry = find(entries, name) if entry is None: print(f"No ip found, adding {newIp}") client.post_dns_entry(domain=domain, name=name, expire=300, record_type='A', content=newIp) else: oldIp = entry["content"] if verbose: print(f"Found current IP in DNS entry: {oldIp}") if oldIp != newIp: print(f"Updating {oldIp} to {newIp}") client.patch_dns_entry(domain=domain, name=name, record_type='A', content=newIp) else: print(f"Not updating {oldIp}") if __name__ == "__main__": options = getOptions() if options.verbose: print("Verbose output enabled.") main(options.key, options.user, options.domain, options.name, options.verbose) ```
{ "source": "jkeyes/amzlist", "score": 4 }
#### File: amzlist/amzlist/__init__.py ```python class Node(object): """ A Node is a simple object with two attributes, `next` and `data`. `data` stores a value, and `next` holds a reference to another Node. """ strict = False def __init__(self, data): """ Initialize a new Node with the specified data. """ self.next = None """ Next text """ self.data = data """ Data text """ def __setattr__(self, key, value): """ Override `__setattr__` to ensure that next is a Node. """ if key == "next" and value: if value is not None: if not isinstance(value, Node): raise TypeError if Node.strict and value.next: # If we are in strict mode we check to make sure this # modification to `next` will not create a cycle. node = value.next while node: if node == self: raise ValueError("Cannot insert %s cycle detected" \ % (value.data)) node = node.next super(Node, self).__setattr__(key, value) def __str__(self): """ Returns the string representation e.g. A->None, or A->B. """ next = self.next.data if self.next else "None" return "%s->%s" % (self.data, next) class LinkedList(object): """ A LinkedList implementation. """ def __init__(self, strict=None): """ Initialize a new LinkedList. """ if strict is None: strict = False Node.strict = strict super(LinkedList, self).__init__() self.first_node = None @property def next(self): """ Returns the `next` Node. """ return self.first_node.next @property def data(self): """ Returns the `data` for the first Node. """ return self.first_node.data @property def last_node(self): """ Returns the last Node. """ nodes = self.as_list() if nodes: # If there are nodes return the last one. return nodes[-1] # No nodes, return None return None def prepend(self, node): """ Inserts `node` at the head of the LinkedList. """ if not isinstance(node, Node): # If the node parameter is not a Node then update it # to refer to one. node = Node(node) # The new node will store the current first_node in it's next attribute. node.next = self.first_node # Update the first_node reference to the new node. self.first_node = node def append(self, node): """ Inserts `node` at the tail of the LinkedList. """ if not isinstance(node, Node): # If the node parameter is not a Node then update it # to refer to one. node = Node(node) if self.first_node is None: # The first_node is None therefore we just set it. self.first_node = node else: # Find the last_node in the list and update it's next attribute. self.last_node.next = node def insert(self, node, after): """ Inserts `node` and makes `after.next` refer to it. """ if not isinstance(after, Node): # If the after parameter is not a Node raise an error. raise TypeError("After must be a Node not a %s" % (type(after))) if not isinstance(node, Node): # If the node parameter is not a Node then update it # to refer to one. node = Node(node) node.next = after.next after.next = node def push(self, node): """ Prepends a Node to the head. """ self.prepend(node) def pop(self): """ Returns the Node from the head, and removes it. """ res = self.first_node self.first_node = self.first_node.next return res def remove(self, node): """ Remove the specified `node`. If the `node` parameter is a Node, and it has `data` and a `next` Node then the first Node with encountered that has the same `data` and `next` attribute values will be removed. If the `node` parameter is a value other than a Node or a Node with just a `data` attribute value, then the first node encountered with the same `data` attribute is removed. """ curr, prev = self.find(node, inc_prev=True) if curr: self._remove(curr, prev) def find(self, node, inc_prev=None): """ Find the specified Node. If the `node` parameter is a Node, and it has `data` and a `next` Node then the first Node with encountered that has the same `data` and `next` attribute values will match. If the `node` parameter is a value other than a Node or a Node with just a `data` attribute value, then the first node encountered with the same `data` attribute value will match. If `inc_prev` is `True`, this method returns the node and it's previous node in a tuple, otherwise it returns the node. This method returns `None` if the node cannot be found. """ if inc_prev is None: # Default include previous node to False inc_prev = False if not isinstance(node, Node): # If the node parameter is not a Node then update it # to refer to one. node = Node(node) if node.next: # match based on Node test = lambda curr, node: curr == node else: # match based on data test = lambda curr, node: curr.data == node.data prev = None curr = self.first_node # Iterate over each node. while curr: if test(curr, node): # include the previous node in the return value if inc_prev: return (curr, prev) # just return the node else: return curr prev = curr curr = curr.next # No node could be found. raise ValueError("Node %s could not be found." % (node.data)) def _remove(self, curr, prev): """ Remove `curr` and update the next attribute for `prev`. """ if prev: # If there is a previous node then update it's next attribute # to refer to the next node of the node that is being removed. prev.next = curr.next else: # If there is no previous node then we are at the head of the list. # Update the first_node reference to the next node of the node # that is being removed. self.first_node = curr.next # Delete the node that has been delinked. del curr def reverse_iterative(self): """ Returns a new LinkedList with the Nodes in reverse order. This method uses an iterative approach. """ # Create the new LinkedList. new_list = LinkedList() # Set the initial node to reverse from. node = self.first_node # iterate over each node and stop when node is None while node: next = node.next # Prepend the node to the new list. new_list.prepend(node) # Update the node reference. node = next return new_list def reverse_recursive(self, node=None, new_list=None): """ Returns a new LinkedList with the Nodes in reverse order. This method uses a recursive approach. """ if new_list is None: # First time through we initalise the new LinkedList # and set the initial node to being reversing from. new_list = LinkedList() if node is None: node = self.first_node if node: # If we have a node then prepend it to the new list. # As all nodes are being prepended the new list will # have the nodes in the reverse order. next = node.next new_list.prepend(node) if next is not None: # If there are more nodes call this method again. self.reverse_recursive(next, new_list) # Node reference is None, so we've reached the end of # the LinkedList. return new_list def as_list(self): """ Returns this LinkedList as a `list` of Nodes. """ nodes = [] node = self.first_node while node: nodes.append(node) node = node.next return nodes def __len__(self): """ Returns the length/size of this LinkedList. """ return len(self.as_list()) def __str__(self): """ The string representation of the LinkedList. """ return "->".join([str(n.data) for n in self.as_list()]) ``` #### File: amzlist/tests/test_node.py ```python from unittest import TestCase from amzlist import Node from nose.tools import raises class NodeTest(TestCase): """ Test the Node """ @raises(TypeError) def test_no_data(self): """ Test instantiation of a Node """ Node() @raises(TypeError) def test_next_not_node(self): """ Test instantiation of a Node """ a = Node("A") a.next = "B" def test_to_str(self): """ Test instantiation of a Node """ b = Node("B") a = Node("A") a.next = b self.assertEqual("A->B", str(a)) ```
{ "source": "jkeyes/pathfinder", "score": 4 }
#### File: pathfinder/pathfinder/filters.py ```python import fnmatch as fnmatch_module import os import re from math import sqrt class Filter(object): def __and__(self, other): return AndFilter(self, other) def __or__(self, other): return OrFilter(self, other) def find(self, filepath): from pathfinder import walk_and_filter return walk_and_filter(filepath, self) class AlwaysAcceptFilter(Filter): """ Accept every path. """ def accepts(self, _): """ Always returns True. """ return True class DirectoryFilter(Filter): """ Accept directory paths. """ def accepts(self, filepath): """ Returns True if filepath represents a directory. """ return os.path.isdir(filepath) class FileFilter(Filter): """ Accept file paths. """ def accepts(self, filepath): """ Returns True if filepath represents a file. """ return os.path.isfile(filepath) class RegexFilter(Filter): """ Accept paths if they match the specified regular expression. """ def __init__(self, regex): """ Initialize the filter with the specified regular expression. """ super(RegexFilter, self).__init__() self.regex = re.compile(regex) def accepts(self, filepath): """ Returns True if the regular expression matches the filepath. """ return self.regex.match(filepath) is not None class FnmatchFilter(Filter): """ Accept paths if they match the specifed fnmatch pattern. """ def __init__(self, pattern): """ Initialize the filter with the specified fnmatch pattern. """ super(FnmatchFilter, self).__init__() self.pattern = pattern def accepts(self, filepath): """ Returns True if the fnmatch pattern matches the filepath. """ return fnmatch_module.fnmatch(filepath, self.pattern) class AndFilter(Filter, list): """ Accept paths if all of it's filters accept the path. """ def __init__(self, *args): """ Initialize the filter with the list of filters. """ list.__init__(self, args) def accepts(self, filepath): """ Returns True if all of the filters in this filter return True. """ return all(sub_filter.accepts(filepath) for sub_filter in self) class OrFilter(Filter, list): """ Accept paths if any of it's filters accept the path. """ def __init__(self, *args): """ Initialize the filter with the list of filters. """ list.__init__(self, args) def accepts(self, filepath): """ Returns True if any of the filters in this filter return True. """ return any(sub_filter.accepts(filepath) for sub_filter in self) class NotFilter(Filter): """ Negate the accept of the specified filter. """ def __init__(self, pathfilter): """ Initialize the filter with the filter it is to negate. """ super(NotFilter, self).__init__() self.pathfilter = pathfilter def accepts(self, filepath): """ Returns True of the sub-filter returns False. """ return not self.pathfilter.accepts(filepath) class DotDirectoryFilter(AndFilter): """ Do not accept a path for a directory that begins with a period. """ def __init__(self): """ Initialise the filter to ignore directories beginning with a period. """ super(DotDirectoryFilter, self).__init__( DirectoryFilter(), RegexFilter(r".*%s*\..*$" % (os.sep)) ) class SizeFilter(FileFilter): def __init__(self, max_bytes=None, min_bytes=None): self.file_filter = FileFilter() self.max_bytes = max_bytes self.min_bytes = min_bytes def accepts(self, filepath): if super(SizeFilter, self).accepts(filepath): stat = os.stat(filepath) if self.max_bytes is not None: if stat.st_size > self.max_bytes: return False if self.min_bytes is not None: if stat.st_size < self.min_bytes: return False return True return False class ImageFilter(Filter): """ Accept paths for Image files. """ def __init__(self): self.file_filter = OrFilter( FnmatchFilter("*.jpg"), FnmatchFilter("*.jpeg"), FnmatchFilter("*.png"), FnmatchFilter("*.gif"), FnmatchFilter("*.bmp"), FnmatchFilter("*.tiff"), ) def accepts(self, filepath): return self.file_filter.accepts(filepath) class ImageDimensionFilter(ImageFilter): """ Accept paths for Image files. """ def __init__( self, max_width=None, max_height=None, min_width=None, min_height=None ): super(ImageDimensionFilter, self).__init__() if min_height is None: min_height = 0 if min_width is None: min_width = 0 self.max_width = max_width self.max_height = max_height self.min_width = min_width self.min_height = min_height def accepts(self, filepath): if super(ImageDimensionFilter, self).accepts(filepath): if ( self.min_height == 0 and self.min_width == 0 and self.max_height is None and self.max_width is None ): return True from PIL import Image image = Image.open(filepath) size = image.size if self.max_width and size[0] > self.max_width: return False if self.max_height and size[1] > self.max_height: return False if self.min_width and size[0] < self.min_width: return False if self.min_height and size[1] < self.min_height: return False return True return False class GreyscaleImageFilter(ImageFilter): def accepts(self, filepath): if super(GreyscaleImageFilter, self).accepts(filepath): from PIL import Image from PIL import ImageStat image = Image.open(filepath) palette = image.getpalette() if palette: # GIF support return is_greyscale_palette(palette) stat = ImageStat.Stat(image) # B&W JPEG: 8-bit pixels, black and white if image.mode == "L": return True # if the standard deviation of the mean is less than 1 we say it's a greyscale image # where mean = average (arithmetic mean) pixel level for each band in the image. # note we ignore alpha bands here return stdv(stat.mean[:3]) < 1 return False class ColorImageFilter(ImageFilter): def accepts(self, filepath): if super(ColorImageFilter, self).accepts(filepath): from PIL import Image from PIL import ImageStat image = Image.open(filepath) palette = image.getpalette() if palette: # GIF SUPPORT return is_color_palette(palette) stat = ImageStat.Stat(image) # B&W JPEG: 8-bit pixels, black and white if image.mode == "L": return False # if the standard deviation of the mean is more than 1 we say it's a color image # where mean = average (arithmetic mean) pixel level for each band in the image. # note we ignore alpha bands here return stdv(stat.mean[:3]) > 1 return False def stdv(band_means): """Calculate the standard deviation of the image bands.""" num_bands, _sum, mean, std = len(band_means), sum(band_means), 0, 0 mean = _sum / float(num_bands) sum_diff = sum((a - mean) ** 2 for a in band_means) std = sqrt(sum_diff / float(num_bands - 1)) return std def is_greyscale_palette(palette): """Return whether the palette is greyscale only.""" for i in range(256): j = i * 3 if palette[j] != palette[j + 1] != palette[j + 2]: return False return True def is_color_palette(palette): """Return whether the palette has color.""" return not is_greyscale_palette(palette) ``` #### File: pathfinder/pathfinder/__init__.py ```python import os from pathfinder import filters def walk_and_filter(filepath, pathfilter, ignore=None, abspath=None, depth=None): """Walk the file tree and filter it's contents.""" if not os.path.exists(filepath): raise EnvironmentError(filepath) return list(walk_and_filter_generator(filepath, pathfilter, ignore, abspath, depth)) def walk_and_filter_generator( # noqa:C901 filepath, pathfilter, ignore=None, abspath=None, depth=None ): """ Walk the file tree and filter it's contents. To ignore any paths an specify an ignore filter. To return absolute paths pass True for the abspath parameter. To limit how deep into the tree you travel, specify the depth parameter. """ # by default no depth limit is enforced if depth is None: depth = -1 else: depth = int(depth) if abspath is None: abspath = False if os.path.isdir(filepath): base_path = os.path.normpath(filepath) else: base_path = os.path.normpath(os.path.dirname(filepath)) for root, dirs, files in os.walk(base_path): # descend the tree to a certain depth level = len(root.split(base_path)[1].split(os.sep)) if level > depth and depth != -1: break # process in order dirs.reverse() ignored = [] for adir in dirs: dirpath = os.path.normpath(os.path.join(root, adir)) if ignore and ignore.accepts(dirpath): ignored.append(adir) continue if pathfilter.accepts(dirpath): if abspath: hit_path = os.path.abspath(dirpath) else: hit_path = os.path.join(base_path, dirpath) yield hit_path # remove the dirs we are ignoring for adir in ignored: dirs.remove(adir) for afile in files: filepath = os.path.normpath(os.path.join(root, afile)) if ignore and ignore.accepts(filepath): continue if pathfilter.accepts(filepath): if abspath: filepath = os.path.abspath(filepath) yield filepath def find_paths( directory_path, just_dirs=None, just_files=None, regex=None, fnmatch=None, filter=None, # skipcq: PYL-W0622 ignore=None, abspath=None, depth=None, ): """Find paths in the tree rooted at filepath.""" if just_dirs: path_filter = filters.DirectoryFilter() elif just_files: path_filter = filters.FileFilter() elif regex: path_filter = filters.RegexFilter(regex) elif fnmatch: path_filter = filters.FnmatchFilter(fnmatch) elif not filter: path_filter = filters.AlwaysAcceptFilter() else: path_filter = filter return walk_and_filter(directory_path, path_filter, ignore, abspath, depth) ``` #### File: pathfinder/tests/test.py ```python import os import unittest from pathfinder import find_paths from pathfinder import walk_and_filter from pathfinder.filters import ( SizeFilter, DirectoryFilter, FileFilter, RegexFilter, AndFilter, OrFilter, NotFilter, FnmatchFilter, DotDirectoryFilter, ImageDimensionFilter, ImageFilter, ColorImageFilter, GreyscaleImageFilter, ) BASEPATH = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") class FindTest(unittest.TestCase): def test_just_dirs(self): """ Test just_dirs parameter.""" # only find directories paths = find_paths(BASEPATH, just_dirs=True) self.assertEqual(5, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) # use Filter.find paths_2 = DirectoryFilter().find(BASEPATH) self.assertEqual(paths, paths_2) def test_just_files(self): """ Test just_files parameter.""" # only find files paths = find_paths(BASEPATH, just_files=True) self.assertEqual(17, len(paths)) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.png") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.jpg") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.png") in paths) self.assertTrue(os.path.join(BASEPATH, "transparent_gs.png") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", "file8") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", ".file9") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4", "file10") in paths) # use Filter.find paths_2 = FileFilter().find(BASEPATH) self.assertEqual(paths, paths_2) def test_regex(self): """ Test regex parameter.""" # find all files and directories paths = find_paths(BASEPATH, regex=".*") self.assertEqual(22, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.png") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.jpg") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.png") in paths) self.assertTrue(os.path.join(BASEPATH, "transparent_gs.png") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", "file8") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", ".file9") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4", "file10") in paths) # use Filter.find paths_2 = RegexFilter(".*").find(BASEPATH) self.assertEqual(paths, paths_2) # find only files and directories with a t in the extension paths = find_paths(BASEPATH, regex=r".*\..*t.*$") self.assertEqual(6, len(paths)) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) # find only files and directories with 1 anywhere in the path paths = find_paths(BASEPATH, regex=".*1.*") self.assertTrue(7, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4", "file10") in paths) def test_fnmatch(self): """ Test fnmatch parameter.""" # find all files and directories paths = find_paths(BASEPATH, fnmatch="*") self.assertEqual(22, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.png") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.jpg") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.png") in paths) self.assertTrue(os.path.join(BASEPATH, "transparent_gs.png") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", "file8") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", ".file9") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4", "file10") in paths) # find only files or directories with a .txt extension paths = find_paths(BASEPATH, fnmatch="*.txt") self.assertEqual(4, len(paths)) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) def test_all(self): """ Test with no parameters. """ # find all paths paths = find_paths(BASEPATH) self.assertEqual(22, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.png") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.jpg") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.png") in paths) self.assertTrue(os.path.join(BASEPATH, "transparent_gs.png") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", "file8") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", ".file9") in paths) def test_and(self): """ Test AndFilter.""" # find directories with a 2 anywhere in the path filt = AndFilter(DirectoryFilter(), RegexFilter(".*2.*")) paths = find_paths(BASEPATH, filter=filt) self.assertEqual(1, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) # test overridden __and__ filt = DirectoryFilter() & RegexFilter(".*2.*") paths_2 = find_paths(BASEPATH, filter=filt) self.assertEqual(paths, paths_2) # use Filter.find paths_3 = AndFilter(DirectoryFilter(), RegexFilter(".*2.*")).find(BASEPATH) self.assertEqual(paths, paths_3) def test_or(self): """ Test OrFilter.""" # find all directories and any files (or directories) # with 2 in the path filt = OrFilter(DirectoryFilter(), RegexFilter(".*2.*")) paths = find_paths(BASEPATH, filter=filt) self.assertEqual(8, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) # test overridden __or__ filt = DirectoryFilter() | RegexFilter(".*2.*") paths_2 = find_paths(BASEPATH, filter=filt) self.assertEqual(paths, paths_2) # use Filter.find paths_3 = OrFilter(DirectoryFilter(), RegexFilter(".*2.*")).find(BASEPATH) self.assertEqual(paths, paths_3) def test_not(self): """ Test NotFilter.""" # find all files and directories with a .txt extension # except ones that end in 3.txt filt = AndFilter(NotFilter(FnmatchFilter("*3.txt")), FnmatchFilter("*.txt")) paths = find_paths(BASEPATH, filter=filt) self.assertEqual(3, len(paths)) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) def test_ignore(self): """ Test ignore parameter.""" # find all directories and all files and directories # with a 2 in the path and no directories that begin # with a dot filt = OrFilter(DirectoryFilter(), RegexFilter(".*2.*")) ignore = DotDirectoryFilter() paths = find_paths(BASEPATH, filter=filt, ignore=ignore) self.assertEqual(7, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) filt = FnmatchFilter("*.txt") ignore = FnmatchFilter("*4.txt") all_paths = find_paths(BASEPATH, filter=filt) self.assertEqual(4, len(all_paths)) self.assertTrue("4.txt" in " ".join(all_paths)) ignore_paths = find_paths(BASEPATH, filter=filt, ignore=ignore) self.assertEqual(3, len(ignore_paths)) self.assertFalse("4.txt" in " ".join(ignore_paths)) def test_abspath(self): """ Make sure all paths are absolute paths.""" cwd = os.getcwd() paths = find_paths(BASEPATH, filter=DirectoryFilter(), abspath=True) self.assertEqual(5, len(paths)) self.assertTrue(os.path.join(cwd, BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(cwd, BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(cwd, BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(cwd, BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(cwd, BASEPATH, ".dir4") in paths) paths = find_paths(BASEPATH, just_files=True, abspath=True) self.assertEqual(17, len(paths)) self.assertTrue(os.path.join(cwd, BASEPATH, "python_logo.png") in paths) def test_depth(self): """ Only descend a certain depth into a tree.""" paths = find_paths(BASEPATH, filter=DirectoryFilter(), depth=1) self.assertEqual(4, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) paths = find_paths(BASEPATH, filter=DirectoryFilter(), depth=2) self.assertEqual(5, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) def test_size(self): """ Find files based on size criteria. """ # all files except the image files are less than 10 bytes p_filter = SizeFilter(max_bytes=0) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(11, len(paths)) # only the image files contain data p_filter = SizeFilter(min_bytes=1) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(6, len(paths)) # three images between 450 bytes and 9000 p_filter = SizeFilter(min_bytes=450, max_bytes=9000) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(3, len(paths)) def test_image(self): """ Find all images. """ image_filter = ImageFilter() paths = walk_and_filter(BASEPATH, image_filter) self.assertEqual(6, len(paths)) def test_find_filepath(self): """ Test when the root path to a find is a file and not a directory. """ a_paths = find_paths(os.path.join(BASEPATH, "python_logo.png"), just_files=True) b_paths = find_paths(BASEPATH, just_files=True) self.assertEqual(a_paths, b_paths) try: import PIL def test_image_dimension(self): """ Find images based on dimensions. """ p_filter = ImageDimensionFilter( max_width=1000, max_height=1000, min_height=20, min_width=20 ) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(6, len(paths)) # ignore the 24x24 p_filter = ImageDimensionFilter( max_width=1000, max_height=1000, min_height=25, min_width=25 ) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(5, len(paths)) # no 24x24, but only check it based on height p_filter = ImageDimensionFilter(min_height=25) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(5, len(paths)) # only the 24x24 p_filter = ImageDimensionFilter(max_width=24, max_height=24) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(1, len(paths)) # only the 24x24, but only check it based on height p_filter = ImageDimensionFilter(max_height=24) paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(1, len(paths)) # no parameters - all images p_filter = ImageDimensionFilter() paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(6, len(paths)) def test_bw_image(self): """ Find all grey scale images. """ p_filter = GreyscaleImageFilter() paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(4, len(paths)) def test_color_image(self): """ Find all color images. """ p_filter = ColorImageFilter() paths = walk_and_filter(BASEPATH, p_filter) self.assertEqual(2, len(paths)) except ImportError: pass def test_generator(self): """ Test with no parameters. """ # find all paths paths = [] for path in find_paths(BASEPATH): paths.append(path) self.assertEqual(22, len(paths)) self.assertTrue(os.path.join(BASEPATH, "dir1") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "subdirectory") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3") in paths) self.assertTrue(os.path.join(BASEPATH, ".dir4") in paths) self.assertTrue(os.path.join(BASEPATH, "file1.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "file2.dat") in paths) self.assertTrue(os.path.join(BASEPATH, "file3.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo.png") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.gif") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.jpg") in paths) self.assertTrue(os.path.join(BASEPATH, "python_logo_gs.png") in paths) self.assertTrue(os.path.join(BASEPATH, "transparent_gs.png") in paths) self.assertTrue( os.path.join(BASEPATH, "dir1", "subdirectory", "sub.txt") in paths ) self.assertTrue(os.path.join(BASEPATH, "dir1", "file4.txt") in paths) self.assertTrue(os.path.join(BASEPATH, "dir1", "file5.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file6.log") in paths) self.assertTrue(os.path.join(BASEPATH, "dir2", "file7.html") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", "file8") in paths) self.assertTrue(os.path.join(BASEPATH, "dir3", ".file9") in paths) def test_path_does_not_exist(self): """Test when the parameter is a non-existent path.""" # only find directories with self.assertRaises(EnvironmentError): find_paths( os.path.join(os.path.dirname(BASEPATH), "doesnotexist"), just_dirs=True ) ```
{ "source": "jkeyes/python-docraptor", "score": 4 }
#### File: python-docraptor/example/basic_url.py ```python from docraptor import DocRaptor def main(): """Generate a PDF with specified url.""" docraptor = DocRaptor() print("Create test_basic_url.pdf") with open("test_basic_url.pdf", "wb") as pdf_file: pdf_file.write( docraptor.create( {"document_url": "http://docraptor.com", "test": True} ).content ) if __name__ == "__main__": main() ```
{ "source": "jkeys-nmsu/bioinformatics-scripts", "score": 3 }
#### File: jkeys-nmsu/bioinformatics-scripts/compute-fold-values.py ```python import sys #constants DEBUG = True INPUT_FILE_NAME_TRAIN = "ALL_AML_gr.thr.train.csv" OUTPUT_FILE_NAME_FOLD_VALUES = "ALL_AML_gr_no_one_folds.thr.train.csv" OUTPUT_FILE_NAME_GENE_DISTRIBUTION = "ALL_AML_gr.distribution.train.txt" FOLD_DIFF_LT_2 = 'LT2' #Val <= 2 FOLD_DIFF_2_4 = '2_4' #2 < Val <= 4 FOLD_DIFF_4_8 = '4-8' #4 < Val <= 8 FOLD_DIFF_8_16 = '8-16' #4 < Val <= 8 FOLD_DIFF_16_32 = '16-32' #... FOLD_DIFF_32_64 = '32-64' FOLD_DIFF_64_128 = '64-128' FOLD_DIFF_128_256 = '128-256' FOLD_DIFF_256_512 = '256-512' FOLD_DIFF_GT_512 = 'GT512' #globals countFoldDiffPerRange = {FOLD_DIFF_LT_2 : 0, FOLD_DIFF_2_4 : 0, FOLD_DIFF_4_8 : 0, FOLD_DIFF_8_16 : 0, FOLD_DIFF_16_32 : 0, FOLD_DIFF_32_64 : 0, FOLD_DIFF_64_128 : 0, FOLD_DIFF_128_256 : 0, FOLD_DIFF_256_512 : 0, FOLD_DIFF_GT_512 : 0} def debug(logMsg): if DEBUG: print(logMsg) def computeFoldValues(input_file_name, output_file_name, log_file_name): with open(input_file_name) as f: resultLines = [] #will need to remove all genes with fold values of 1, so store a list of all genes which do not have that value gnuplotLines = [] genesWithOneFoldRatio = {} geneFoldValues = {} #create a list of lines, stripped of the newline content = [line.rstrip('\n') for line in f] #open the file which will have the lines without one ratios; we don't want to append out_file = open(output_file_name, "w") #open the file which will have the lines without one ratios; we don't want to append out_file_gnuplot = open(log_file_name, "w") #just add the first line back to the result lines idLine = content.pop(0) resultLines.append(idLine + "\n") #writelines requires newlines #for every line, compute the fold difference for line in content: if len(line) <= 2: continue #we need every integer int_strings = line.split(',') #the first value is the name of the gene geneName = int_strings.pop(0) #set the max and min to the opposite end of the range maxVal = 20 minVal = 16000 #compute the maxima and minima of each gene for val in int_strings: val_int = int(val) if(val_int >= maxVal): maxVal = val_int if(val_int <= minVal): minVal = val_int #compute the fold difference currFoldDiff = maxVal / minVal #if maxVal eq minVal, then it has a ratio of one if maxVal == minVal: genesWithOneFoldRatio[geneName] = currFoldDiff else: resultLines.append(line + "\n") #add the computed fold difference to its range if currFoldDiff <= 2: countFoldDiffPerRange[FOLD_DIFF_LT_2] += 1 elif currFoldDiff > 2 and currFoldDiff <= 4: countFoldDiffPerRange[FOLD_DIFF_2_4] += 1 elif currFoldDiff > 4 and currFoldDiff <= 8: countFoldDiffPerRange[FOLD_DIFF_4_8] += 1 elif currFoldDiff > 8 and currFoldDiff <= 16: countFoldDiffPerRange[FOLD_DIFF_8_16] += 1 elif currFoldDiff > 16 and currFoldDiff <= 32: countFoldDiffPerRange[FOLD_DIFF_16_32] += 1 elif currFoldDiff > 32 and currFoldDiff <= 64: countFoldDiffPerRange[FOLD_DIFF_32_64] += 1 elif currFoldDiff > 64 and currFoldDiff <= 128: countFoldDiffPerRange[FOLD_DIFF_64_128] += 1 elif currFoldDiff > 128 and currFoldDiff <= 256: countFoldDiffPerRange[FOLD_DIFF_128_256] += 1 elif currFoldDiff > 256 and currFoldDiff <= 512: countFoldDiffPerRange[FOLD_DIFF_256_512] += 1 else: countFoldDiffPerRange[FOLD_DIFF_GT_512] += 1 #store the fold difference in the dictionary geneFoldValues[geneName] = currFoldDiff #end for line in content #find the largest and smallest fold diffs; also compute the range largestFoldDiff = -1 smallestFoldDiff = 16000000 for key, value in geneFoldValues.items(): geneName = key if(value >= largestFoldDiff): largestFoldDiff = value if(value <= smallestFoldDiff): smallestFoldDiff = value #now find the number of genes which have these values and record them numGenesWithLargestFoldDiff = 0 numGenesWithSmallestFoldDiff = 0 for key, value in geneFoldValues.items(): if(value == largestFoldDiff): numGenesWithLargestFoldDiff += 1 if(value == smallestFoldDiff): numGenesWithSmallestFoldDiff += 1 for key, value in countFoldDiffPerRange.items(): gnuplotLines += key + "\t" + str(value) + "\n" #end with open debug("largestFoldDiff: " + str(largestFoldDiff)) debug("smallestFoldDiff: " + str(smallestFoldDiff)) debug("numGenesWithLargestFoldDiff" + str(numGenesWithLargestFoldDiff)) debug("numGenesWithSmallestFoldDiff" + str(numGenesWithSmallestFoldDiff)) # debug("geneFoldValues (dictionary):\n" + str(geneFoldValues)) # debug("genesWithOneFoldRatio (dictionary):\n" + str(genesWithOneFoldRatio)) # debug("countFoldDiffPerRange (dictionary):\n" + str(countFoldDiffPerRange)) out_file.writelines(resultLines) out_file_gnuplot.writelines(gnuplotLines) return geneFoldValues #end computeFoldVals geneFoldValuesMain = computeFoldValues(INPUT_FILE_NAME_TRAIN, OUTPUT_FILE_NAME_FOLD_VALUES, OUTPUT_FILE_NAME_GENE_DISTRIBUTION) ```
{ "source": "jkfids/cross-correlation", "score": 2 }
#### File: cross-correlation/code/animation.py ```python import numpy as np from matplotlib import pyplot as plt from matplotlib.animation import FuncAnimation from time import time # Local modules from crosscorrelation import norm_crosscorr, spectral_crosscorr # Set parameters and plot axes length = 100 plt.rcParams.update({'font.size': 7}) fig1, (ax1, ax2, ax3) = plt.subplots(3, 1, dpi=144) fig1.tight_layout(h_pad=0, rect=[-0.025, -0.05, 1.015, 0.98]) line1, = ax1.plot([], [], lw=2, color='tab:blue') line2, = ax2.plot([], [], lw=2, color='tab:red') line3, = ax3.plot([], [], lw=2, color='purple') ax1.set_xlim([0, 1]) ax1.set_ylim([-1.5, 1.5]) ax2.set_xlim([0, 1]) ax2.set_ylim([-1.5, 1.5]) ax3.set_xlim([-.5, .5]) ax3.set_ylim([-1.2, 1.2]) ax1.set_xticks([]) ax2.set_xticks([]) ax3.set_xticks([]) ax1.set_yticks([]) ax2.set_yticks([]) ax3.set_yticks([-1, 0, 1]) ax1.title.set_text('f') ax2.title.set_text('g') ax3.title.set_text('Cross-Correlation (f\u22C6g)') x = np.linspace(0, 1, length) y = np.sin(5*2*np.pi*x) x = np.linspace(0, 1, round(1.5*length)) y = np.pad(y, (round(length/4), round(length/4))) lenx = len(x) leny = len(y) y_slide = np.pad(y, (lenx-1, lenx-1)) leny_slide = len(y_slide) x_R = np.linspace(-.5, .5, 2*lenx-1) R = norm_crosscorr(y, y) # Generate animations and save to output folder def init(): line1.set_data([], []) line2.set_data([], []) line3.set_data([], []) return line1, line2, line3, def animate(i): y_subset = y_slide[leny_slide-i-1-lenx:leny_slide-i-1] line1.set_data(x, y) line2.set_data(x, y_subset) line3.set_data(x_R[1:i+1], R[1:i+1]) return line1, line2, line3, start = time() anim = FuncAnimation(fig1, animate, init_func=init, frames=len(R)-1, interval=50, blit=True) anim.save('output/crosscorrelation.gif', writer='ffmpeg') end = time() print(f'Time elapsed (animation): {round(end - start, 2)}s') # Plot and save static versions line1.set_data([], []) line2.set_data([], []) line3.set_data([], []) ax1.plot(x, y, lw=2, color='tab:blue') ax2.plot(x, y, lw=2, color='tab:red') ax3.plot(x_R, R, lw=2, color='purple') fig1.savefig('output/sinewave_correlation.png') # Spectral cross-correlation line1.set_data([], []) line2.set_data([], []) line3.set_data([], []) ax1.plot(x, y, lw=2, color='tab:blue') ax2.plot(x, y, lw=2, color='tab:red') x_R = np.linspace(-.5, .5, lenx) spectral_R = spectral_crosscorr(y, y) ax3.clear() ax3.plot(x_R, spectral_R, lw=2, color='purple') ax3.set_xlim([-.5, .5]) ax3.set_ylim([-1.2, 1.2]) ax3.set_xticks([]) ax3.set_yticks([-1, 0, 1]) ax3.title.set_text('Spectral Cross-Correlation (f\u22C6g)') fig1.savefig('output/sinewave_spectral_correlation.png') ``` #### File: cross-correlation/code/stockcorrelation.py ```python from time import time import pandas as pd import numpy as np import pandas as pd import networkx as nx import matplotlib.pyplot as plt from matplotlib.lines import Line2D from numba import njit # Local modules from crosscorrelation import norm_corr # Colour dictionary for category colours colordict = { 'Health Care': 'tab:red', 'Industrials': 'tab:gray', 'Consumer Discretionary': 'tab:green', 'Information Technology': 'tab:blue', 'Consumer Staples': 'tab:orange', 'Utilities': 'tab:pink', 'Financials': 'darkgray', 'Materials': 'tab:cyan', 'Real Estate': 'tab:olive', 'Energy': 'tab:brown', 'Communication Services': 'tab:purple' } @njit def norm_corr2(f, g): """ Normalised correlation function that adjusts length of input vectors if they are not equal length """ try: return norm_corr(f, g) except: size = min(f.size, g.size) return norm_corr(f[-size:], g[-size:]) class StockCorr: """Stock correlation network class""" def __init__(self, companies): self.companies = pd.DataFrame( companies, columns=['Symbol', 'Name', 'Category']) self.companies = self.companies.sort_values( by='Symbol', ignore_index=True) self.categories = self.companies['Category'].unique().tolist() self.symbols = self.companies['Symbol'].tolist() self.pricehistdict = {} self.max_pricehist_len = 0 self.categ_pricehistdict = {} self.corrmatrix = np.array([]) self.categ_corrmatrix = np.array([]) self.corrmatrixdf = pd.DataFrame() self.categ_corrmatrixdf = pd.DataFrame() self.stocknetwork = nx.Graph() def gen_pricehistdict(self, pricetype='Close'): """ Generate a dictionary of price histories from csv data where symbols are keys and values are price histories """ for symb in self.symbols: df = pd.read_csv(f"data/stocks/{symb}.csv").dropna() pricehist = df[pricetype].to_numpy() self.pricehistdict[symb] = pricehist # Maximum price history length if pricehist.size > self.max_pricehist_len: self.max_pricehist_len = pricehist.size return self.pricehistdict def calc_corrmatrix(self): """ Calculate the correlation matrix between all stocks """ N = len(self.symbols) self.corrmatrix = np.zeros((N, N), dtype=np.float64) np.fill_diagonal(self.corrmatrix, 1) # Iterate over each unique pair of stocks for i, symb1 in enumerate(self.symbols): for j, symb2 in enumerate(self.symbols): if i < j: hist1 = self.pricehistdict[symb1] hist2 = self.pricehistdict[symb2] self.corrmatrix[i, j] = norm_corr2(hist1, hist2) self.corrmatrix += self.corrmatrix.T - np.identity(N) index = pd.MultiIndex.from_frame( self.companies[['Category', 'Symbol']]) self.corrmatrixdf = pd.DataFrame( self.corrmatrix, index=index, columns=index) return self.corrmatrix, self.corrmatrixdf def calc_categ_corrmatrix(self): """ Calculate the correlation matrix between category averages """ N = len(self.categories) self.categ_corrmatrix = np.zeros((N, N), dtype=np.float64) np.fill_diagonal(self.categ_corrmatrix, 1) # Calculate the compound average returns for each category for categ in self.categories: companies = self.companies[self.companies['Category'] == categ] total = np.zeros(self.max_pricehist_len) for symb in companies['Symbol'].to_list(): hist = self.pricehistdict[symb] ones = np.ones(self.max_pricehist_len) ones[-hist.size:] = hist/hist[0] total += ones self.categ_pricehistdict[categ] = total/len(companies) # Iterate over each unique pair of categories to calculate corr matrix for i, categ1 in enumerate(self.categories): for j, categ2 in enumerate(self.categories): if i < j: hist1 = self.categ_pricehistdict[categ1] hist2 = self.categ_pricehistdict[categ2] self.categ_corrmatrix[i, j] = norm_corr2(hist1, hist2) self.categ_corrmatrix += self.categ_corrmatrix.T - np.identity(N) self.categ_corrmatrixdf = pd.DataFrame(self.corrmatrix, index=self.companies, columns=self.companies) return self.categ_corrmatrix, self.categ_corrmatrixdf def gen_stocknetwork(self): """ Generate the stock correlation network as a minimum spanning tree """ G = nx.Graph() # Iterate over every unique combination of stocks for i, symb1 in enumerate(self.symbols): for j, symb2 in enumerate(self.symbols): if i < j: weight = np.sqrt(2*(1 - self.corrmatrix[i][j])) G.add_edge(symb1, symb2, weight=weight) T = nx.minimum_spanning_tree(G) self.stocknetwork = T return self.stocknetwork def draw_corrmatrix(self, mode='stock'): """Draw either the stock or category correlation matrix""" fig, ax = plt.subplots(dpi=200, figsize=(6, 6)) if mode == 'stock': im = ax.imshow(self.corrmatrix, vmin=-1, vmax=1) fig.colorbar(im, fraction=0.046, pad=0.04) ax.set_xlabel('Companies') ax.set_ylabel('Companies') return fig elif mode == 'category': im = ax.imshow(self.categ_corrmatrix, vmin=0, vmax=1) ax.set_xticks(range(len(self.categories))) ax.set_yticks(range(len(self.categories))) ax.set_xticklabels(self.categories, rotation=45, horizontalalignment='right', fontsize=8) ax.set_yticklabels(self.categories, fontsize=8) # Annotate grid for i in range(len(self.categories)): for j in range(len(self.categories)): ax.text(j, i, round(self.categ_corrmatrix[i, j], 2), ha="center", va="center", color="k", fontsize=8) fig.colorbar(im, fraction=0.046, pad=0.04) return fig def draw_network(self, colordict=colordict): """Draw the stock correlation network in the kamada kawai layout""" node_color = [] for category in self.companies['Category'].to_list(): node_color.append(colordict[category]) edge_color = [self.stocknetwork[u][v]['weight'] for u, v in self.stocknetwork.edges] fig, ax = plt.subplots(dpi=200, figsize=(8, 6)) pos = nx.kamada_kawai_layout(self.stocknetwork) # Draw nodes with colordict nodes = nx.draw_networkx_nodes(self.stocknetwork, pos, node_color=node_color, node_size=10, ax=ax) # Draw edges with colormap edges = nx.draw_networkx_edges(self.stocknetwork, pos, edge_color=edge_color, edge_cmap=plt.cm.viridis, alpha=0.7, ax=ax) # Create legend handles = [] for key, value in colordict.items(): handles.append(Line2D([0], [0], marker='o', color='w', label=key, markerfacecolor=value, markersize=7.5)) fig.colorbar(edges, fraction=0.025, pad=0.01) ax.set_axis_off() ax.legend(handles=handles, ncol=2, fontsize=7.5) return fig if __name__ == "__main__": # Load generated stock data from csv file and create class print('Loading stock data...') infodf = pd.read_csv("data/S&P500_info.csv") companies = infodf[['Symbol', 'Security', 'GICS Sector']].values.tolist() sp500 = StockCorr(companies) sp500.gen_pricehistdict() # Calculate and plot the cross-correlation matrix print('Calculating stock cross-correlation matrix...') start = time() sp500.calc_corrmatrix() end = time() print(f'Time elapsed: {round(end - start, 2)}s') fig1 = sp500.draw_corrmatrix('stock') fig1.tight_layout() fig1.savefig("output/stock_corrmatrix") # Calculate and plot the cross-correlation matrix print('Calculating category cross-correlation matrix...') start = time() sp500.calc_categ_corrmatrix() end = time() print(f'Time elapsed: {round(end - start, 2)}s') fig2 = sp500.draw_corrmatrix('category') fig2.tight_layout() fig2.savefig("output/categ_corrmatrix") # Generate the stock correlation network as a minimum spanning tree print('Generating stock correlation network...') start = time() T = sp500.gen_stocknetwork() end = time() print(f'Time elapsed: {round(end - start, 2)}s') # Draw and save the network print('Drawing graph...') node_color = [] fig3 = sp500.draw_network() fig3.tight_layout() fig3.savefig("output/stocknetwork.png") total_weight = T.size(weight='weight') print(f'Normalised Tree Length: {total_weight/T.size()}') ```
{ "source": "jkfids/forest-fire", "score": 3 }
#### File: jkfids/forest-fire/analysis.py ```python import numpy as np import matplotlib.pyplot as plt from scipy.optimize import curve_fit from matplotlib import colors from matplotlib.animation import FuncAnimation from time import time # Import ForestFire class from forestfire import ForestFire def animate_forest(forest, interval=100, frames=200, name='forestfire.gif'): """Animate a forest fire for a given number of frames (i.e. timesteps)""" start = time() cmap = colors.ListedColormap(['red', 'black', 'green']) bounds = [-1, -0.5, 0.5, 1] norm = colors.BoundaryNorm(bounds, cmap.N) fig, ax = plt.subplots() ax.axis('off') fig = plt.figure(frameon=False) fig.set_size_inches(10,10) ax = plt.Axes(fig, [0., 0., 1., 1.]) fig.add_axes(ax) def init_frame(): ax.imshow(forest.grid, cmap=cmap, norm=norm, aspect='auto') def animate(i): plt.cla() ax.imshow(forest.grid, cmap=cmap, norm=norm, aspect='auto') forest.step() #print(f'frame {i}') anim = FuncAnimation(fig, animate, init_func=init_frame, interval=interval, frames=frames) anim.save('animations/' + name) end = time() print(f'Time elapsed: {round((end - start), 2)} seconds') def plot_fractionvt(forest, t_max, plot_green=True): """Plot fraction of green and red vs t""" fig, ax = plt.subplots() ax.set_xlabel('Time') ax.set_ylabel('Grid State Fractions') ax.grid(True) props = dict(boxstyle='square', facecolor='white') textbox = ( f'L = {forest.height}\n' f'p = {forest.p}\n' f'f = {forest.f}' ) ax.text(0.865, 0.965, textbox, transform=ax.transAxes, fontsize=9, verticalalignment='top', bbox=props) forest.step(t_max) y1 = np.array(forest.s_history)/forest.size x = range(len(y1)) ax.plot(x, y1, color='red') if plot_green: y2 = np.array(forest.g_history)/forest.size ax.plot(x, y2, color='green') def gaussian(x, mu, sigma): return (1/(sigma*np.sqrt(2*np.pi)))*np.exp(-(x-mu)**2/(2*sigma**2)) def plot_firesizepd(forest, t, N, p0=[0, 0, 0], fit=False): """"Constructs a histogram of probability vs. fire size after certain time""" start = time() forest.step(t+N) firesizes = forest.s_history[t:] if fit: bin_heights, bin_borders, _ = plt.hist(firesizes, density=True, bins='auto') bin_centers = bin_borders[:-1] + np.diff(bin_borders)/2 popt, _ = curve_fit(gaussian, bin_centers, bin_heights, p0 = [1/200,7500,1000]) X = np.linspace(bin_borders[0], bin_borders[-1], 10000) plt.plot(X, gaussian(X, *popt)) plt.ylabel('Probability') plt.xlabel('Fire Size') plt.title('Fire Size Probability Distribution') end = time() print(f'Time elapsed: {round((end - start), 2)} seconds') print(f'Amplitude = {popt[0]}') print(f'Mean = {popt[1]}') print(f'Standard deviation = {popt[2]}') if fit: return popt # Fire size pdf subplots def plot_firesizepd_multi(forest1, forest2, forest3, t, N): """Plot multiple fire size probability distributions""" start = time() forest1.step(t[0]+N) forest2.step(t[1]+N) forest3.step(t[2]+N) firesizes_history1 = forest1.s_history[t[0]:] firesizes_history2 = forest2.s_history[t[0]:] firesizes_history3 = forest3.s_history[t[0]:] fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4), dpi=144) ax1.title.set_text(f'f = {forest1.f}, p = {forest1.p}') ax2.title.set_text(f'f = {forest2.f}, p = {forest2.p}') ax3.title.set_text(f'f = {forest3.f}, p = {forest3.p}') #ax1.set_ylabel('Probability') #fig.text(0.5, 0.05, 'Total Fire Size', ha='center') ax1.set_ylim(top=0.00675) ax3.set_ylim(top=0.00675) #weights1 = np.ones(len(firesizes_history1))/len(firesizes_history1) weights2 = np.ones(len(firesizes_history2))/len(firesizes_history2) #weights3 = np.ones(len(firesizes_history3))/len(firesizes_history3) bin_heights1, bin_borders1, _ = ax1.hist(firesizes_history1, density=True, bins='auto') #bin_heights1, bin_borders1, _ = ax1.hist(firesizes_history1, weights=weights1, bins=100) ax2.hist(firesizes_history2, weights=weights2, bins=100) bin_heights3, bin_borders3, _ = ax3.hist(firesizes_history3, density=True, bins='auto') #bin_heights3, bin_borders3, _ = ax3.hist(firesizes_history3, weights=weights3, bins=100) bin_centers1 = bin_borders1[:-1] + np.diff(bin_borders1)/2 popt1, _ = curve_fit(gaussian, bin_centers1, bin_heights1, p0 = [7500, 100]) X1 = np.linspace(bin_borders1[0], bin_borders1[-1], 10000) ax1.plot(X1, gaussian(X1, *popt1), label=f'μ = {round(popt1[0])}, σ = {round(popt1[1], 2)}') ax1.legend(loc='upper center') bin_centers3 = bin_borders3[:-1] + np.diff(bin_borders3)/2 popt3, _ = curve_fit(gaussian, bin_centers3, bin_heights3, p0 = [250, 50]) X3 = np.linspace(bin_borders3[0], bin_borders3[-1], 10000) ax3.plot(X3, gaussian(X3, *popt3), label=f'μ = {round(popt3[0])}, σ = {round(popt3[1], 2)}') ax3.legend(loc='upper center') end = time() fig.savefig('plots/' + 'firesizepds') print(f'Time elapsed: {round((end - start), 2)} seconds') return popt1, popt3 def plot_waitingtimespd_multi(forest1, forest2, forest3, t, N): """ Multiple plots of the probability distribution for waiting times between fires in individual sites """ start = time() forest1.step(t+N) forest2.step(t+N) forest3.step(t+N) w_history1 = forest1.w_history[-100000:] w_history2 = forest2.w_history w_history3 = forest3.w_history[-500000:] fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(12, 4), dpi=144) ax1.title.set_text(f'f = {forest1.f}, p = {forest1.p}') ax2.title.set_text(f'f = {forest2.f}, p = {forest2.p}') ax3.title.set_text(f'f = {forest3.f}, p = {forest3.p}') ax1.xaxis.set_ticks(range(2, 13, 1)) ax1.set_xlim(left=2, right=12) ax2.set_xlim(right=60) ax3.set_xlim(right=600) weights1 = np.ones(len(w_history1))/len(w_history1) ax1.hist(w_history1, weights=weights1, bins=100) ax2.hist(w_history2, density=True, bins='auto') ax3.hist(w_history3, density=True, bins='auto') end = time() fig.savefig('plots/' + 'waitingtimespds') print(f'Time elapsed: {round((end - start), 2)} seconds') def calc_steadystate(f, p): """Calculate steady state fractions""" fp1 = f*(p + 1) root = np.sqrt(fp1**2 + 10*p*fp1 + 9*p**2) #root = np.sqrt((fp1 + 9*p)*(fp1 + p)) x_r = (3*p - fp1 + root)/(8*(p + 1)) #x_g = (5*p + fp1 - root)/(8*p) x_g = 1 - (p + 1)*x_r/p return x_r, x_g ```
{ "source": "jkfids/PINN-burgers", "score": 3 }
#### File: PINN-burgers/burgers1d/analytical.py ```python import numpy as np import pandas as pd from scipy import integrate from matplotlib import pyplot as plt # Initialize matrices/constants vis = .01/np.pi # Viscocity term in Burger's equation n_x = 201 # Number of u(x, t) elements on x X = np.zeros(n_x) Y1 = np.zeros(n_x) Y2 = np.zeros(n_x) Y3 = np.zeros(n_x) Y_ani = np.zeros(n_x) # Analytical solution for Burger's equation with periodic boundary conditions # at x = [-1,1] and initial condition u(x,0) = -sin(pi*x) def f_cole(y): return np.exp(-np.cos(np.pi*y)/(2*np.pi*vis)) def integrand1(eta, x, t): return np.sin(np.pi*(x-eta))*f_cole(x-eta)*np.exp(-eta**2/(4*vis*t)) def integrand2(eta, x, t): return f_cole(x-eta)*np.exp(-eta**2/(4*vis*t)) def u_anal(x, t): if t == 0: return -np.sin(np.pi*x) else: I1 = integrate.quad(integrand1, -np.inf, np.inf, args=(x,t))[0] I2 = integrate.quad(integrand2, -np.inf, np.inf, args=(x,t))[0] return -I1/I2 # Plot u(x,t) for t1, t2, t3 over the space of X = [-1,1] def plot_anal(t1=0, t2=0.25, t3=0.5, n_x = 201): X = np.linspace(-1, 1, n_x) for i in range(n_x): Y1[i] = u_anal(X[i], t1) Y2[i] = u_anal(X[i], t2) Y3[i] = u_anal(X[i], t3) fig_static = plt.figure('static') plt.plot(X, Y1, label = f't = {t1}', linewidth=1) plt.plot(X, Y2, label = f't = {t2}', linewidth=1) plt.plot(X, Y3, label = f't = {t3}', linewidth=1) plt.ylim(-1.25,1.25) plt.legend() plt.xlabel('x') plt.ylabel('u(x,t)') plt.title("Analytical Solution for Burgers' Equation in 1D") fig_static.savefig("output/analplot1d.png") plt.close # Generate training data for PINN and save it to a csv file def gen_train(max_t, set_size=100): m = int(set_size/2) tr_init = np.zeros([m,3]) tr_bound = np.zeros([m,3]) tr_init[:,1] = np.linspace(-1, 1, m) tr_bound[:,1] = np.ones(m) - 2*np.random.randint(2, size=m) tr_bound[:,2] = np.linspace(0, max_t, m) for i in range(m): tr_init[i][0] = u_anal(tr_init[i][1], 0) tr_bound[i][0] = u_anal(tr_bound[i][1], tr_bound[i][2]) training = np.append(tr_init, tr_bound, axis=0) df = pd.DataFrame(training, columns=['u(x,t)', 'x', 't']) df.to_csv('data/train1d.csv', index=False) ```
{ "source": "jkfids/unimelb-projects", "score": 4 }
#### File: unimelb-projects/Abelian Sandpiles/sandpile.py ```python import numpy as np import math as m class SandPile: """SandPile class """ def __init__(self, width, height, threshold=4): """Initialize a sandpile with the specified width and height.""" self.width = width self.height = height self.threshold = threshold self.grid = np.zeros((width, height), dtype=int) # Initializes a toppled grid which will be used to represent which # sites have been affected by an avalanche self.toppled_grid = np.zeros((width, height), dtype=int) # Initialize various properties such as histories for avalanche # properties, mass history and time self.time = 0; self.mass_history = [self.mass()] self.grain_loss = 0 self.grain_loss_history = [] self.grain_loss_total = 0 self.topples_history = [] self.area_toppled_history = [] self.M_length_history = [] self.E_length_history = [] def drop_sand(self, n=1, site=None): """"Add `n` grains of sand to the grid. Each grains of sand is added to a random site. This function also increments the time by 1 and update the internal `mass_history`. Depending on how you want to code things, you may wish to also run the avalanche (alternatively, the avalanching might be executed elsewhere). Parameters ========== n: int The number of grains of sand of drop at this time step. If left unspecified, defaults to 1. site: The site on which the grain(s) of sand should be dropped. If `None`, a random site is used.""" # Generates a random site when non is inputted if site==None: x = np.random.randint(low=0, high=self.width); y = np.random.randint(low=0, high=self.height); # Assumes that the site is given by 1x2 array where the elements are # the row and column number respectively else: x = site[0]; y = site[1]; # Increments the site by the number of sand grains inputted self.grid[x,y] = self.grid[x,y] + n; # Avalanche is run so that all unstable sites are stabilized self.avalanche(); # Appends the length histories of the avalanche using our length functions # Also increments time and appends the mass history self.M_length_history.append(self.M_length_max(x,y,self.toppled_grid)) self.E_length_history.append(self.E_length_max(x,y,self.toppled_grid)) self.time = self.time + 1; self.mass_history.append(self.mass()); def mass(self): """Return the mass of the grid using a double sum function""" return sum(sum(self.grid)); def area_toppled(self): """Return the area toppled given the toppled_grid using a double sum""" return sum(sum(self.toppled_grid)); def M_length(self, x1, y1, x2, y2): """Return the Manhatten distance between sites [x,y] and [i,j]""" return abs(x1-x2) + abs(y1-y2); def E_length(self, x1, y1, x2, y2): """Return the Euclidean distance between sites [x,y] and [i,j]""" return m.sqrt((abs(x1-x2)**2)+(abs(y1-y2))**2); def M_length_max(self, x, y, toppled_grid): """Return the M distance between the furthest affected site due to an avalanche and the grain drop site that caused the avalanche""" length_max = 0; # Uses a double for loop to check the distance of each affected point # to the origin site and checks if it is the highest length for i in range(self.width): for j in range(self.height): if toppled_grid[i,j] == 1: length = self.M_length(x,y,i,j); if length_max < length: length_max = length; return length_max; def E_length_max(self, x, y, toppled_grid): """Return the E distance between the furthest affected site due to an avalanche and the grain drop site that caused the avalanche""" length_max = 0; # Similiar to M_length_max() for i in range(self.width): for j in range(self.height): if toppled_grid[i,j] == 1: length = self.E_length(x,y,i,j); if length_max < length: length_max = length; return length_max; def topple(self, site): """Topple the specified site.""" # Uses same site definition as in drop_sand() x = site[0]; y = site[1]; # Decreases the unstable site element by 4 and changes the respective # toppled_grid element to 1 self.grid[x,y] = self.grid[x,y] - 4; self.toppled_grid[x,y] = 1; # Uses 4 if statements to increment each of the four adjacent sites # by 1 and adjusts the respective grid elemenent. However if the site # is not within the bounds of the grid then the grain loss count is # incremented by 1. if x < (self.width-1): self.grid[x+1,y] = self.grid[x+1,y] + 1; self.toppled_grid[x+1,y] = 1; else: self.grain_loss = self.grain_loss + 1; if x > 0: self.grid[x-1,y] = self.grid[x-1,y] + 1; self.toppled_grid[x-1,y] = 1; else: self.grain_loss = self.grain_loss + 1; if y < (self.height-1): self.grid[x,y+1] = self.grid[x,y+1] + 1; self.toppled_grid[x,y+1] = 1; else: self.grain_loss = self.grain_loss + 1; if y > 0: self.grid[x,y-1] = self.grid[x,y-1] + 1; self.toppled_grid[x,y-1] = 1; else: self.grain_loss = self.grain_loss + 1; def avalanche(self): """Run the avalanche causing all sites to topple and store the stats of the avalanche in the appropriate variables. """ # Initializes avalanche properties that are recorded after the sandpile # is stabilized topples = 0; self.grain_loss=0; self.toppled_grid = np.zeros((self.width, self.height), dtype=int) # While there are any unstable sites, the function uses a double for # loop to scan through the entire grid and topple every unstable site # Also increments the topples count each time a toppling occurs while np.any(self.grid >= 4): for i in range(self.width): for j in range(self.height): if self.grid[i,j] >= 4: self.topple([i,j]); topples = topples + 1; # Appends various avalanche properties to the appropriate array histories self.topples_history.append(topples); self.grain_loss_history.append(self.grain_loss); self.grain_loss_total = self.grain_loss_total + self.grain_loss; self.area_toppled_history.append(self.area_toppled()) ``` #### File: unimelb-projects/American Roulette/roulette.py ```python import numpy as np from random import random from matplotlib import pyplot as plt from time import time from numpy.polynomial import Polynomial f = 0.05 q = 9/19 tau = 60 x_0 = 1000 x_w = 2000 x_m = 10 class Roulette: def __init__(self, x_0=x_0, x_w=x_w, x_m=x_m, f=f, q=q, tau=tau): self.f = f self.q = q self.tau = tau self.x = x_0 self.x_w = x_w self.x_m = x_m self.tau = tau self.t = 0 def play(self): rand = random() if rand < self.q: self.x += self.f*self.x elif rand > self.q: self.x -= self.f*self.x self.t += self.tau def start(self): while (self.x > self.x_m) & (self.x < self.x_w): self.play() def plot_t_pdf(N, x_0=x_0, x_w=x_0, x_m=x_m, f=f, q=q, tau=tau): start = time() fig, ax = plt.subplots(dpi=144) t_history = np.zeros(N, dtype=np.int32) for i in range(N): andrew = Roulette() andrew.start() t_history[i] = andrew.t t_mean = np.mean(t_history) bin_heights, bin_borders, _ = ax.hist(t_history, density=True, bins='auto') bin_centers = bin_borders[:-1] + np.diff(bin_borders)/2 ax.set_xlabel('Time (s)') ax.set_ylabel('Probability') end = time() fig.savefig('playtime2_pdf') print(f'Time elapsed: {round(end-start, 2)}s') return t_mean, t_history, bin_centers, bin_heights t_mean, t_history, bin_centers, bin_heights = plot_t_pdf(100000) print(f'Average playing time: {round(t_mean)}s') ``` #### File: unimelb-projects/N-Body Simulation/nbody.py ```python import numpy as np # 'numpy' is a Python module, which provides a library of # numerical functions and structures for use in Python programs # In order to m_unit = 2.e30 # Mass unit in kg l_unit = 1.496e11 # Length unit in m t_unit = 86400. # Time unit in s , ie. second per day G = 6.67e-11*m_unit*(t_unit**2)/(l_unit**3) # The gravitational constant in rescaled units # We define constants at the start of the program # It is good programming practice to avoid using "magic numbers" # in your code, in case you decide later that you want to change # the value of one of a particular constant. # You WILL need to change the values of these constants n_body = 4 # Number of bodies in the simulation max_t = 50000 # Total simulation time delta_t = 1 # Length of time step (in time units) max_step = int(max_t/delta_t) # Maximum number of time steps show_step = 10 # Show every nth step # We will use a Python structure called a 'class' to define the bodies # The class will contain the mass, positions and velocities of every # object class body: def __init__(self, name, m, x, y, vx, vy, A): self.name = name self.mass = m self.x = x self.y = y self.vx = vx self.vy = vy self.A = A # Albedo self.orbits = None # Number of orbits around the Sun self.temp = None # Surface temperature of the planet self.phi = None # Current angle of orbit around the Sun self.phi_i = None # Angle of orbit before the Euler update self.phi_o = None # Original angle at time = 0 # we will also add a function to the class that displays the # body's parameters def show(self): print("Body: %s"%self.name) print("Mass = %6.2e mass units = %6.2e kg"%(self.mass, self.mass*m_unit)) print("Position = (%6.2e,%6.2e) length units"%(self.x, self.y)) print("Velocity = (%6.2e,%6.2e) velocity units"%(self.vx,self.vy)) print("Kinetic Energy = %6.2e energy units"%(self.K_energy())) if self.temp != None: print("Surface Temperature =", int(self.temp), "K") if self.orbits != None: print("Number of Orbits:", int(self.orbits)) print("") # Calculates the distance between self and another body def r(self, body): return np.sqrt((self.x - body.x)**2 + (self.y - body.y)**2) # Calculates the kinetic energy of the body def K_energy(self): return 0.5*self.mass*(self.vx**2 + self.vy**2) # Calculates the gravitational potential energy between self and another body def V_energy(self, body): return -G*self.mass*body.mass/self.r(body) # Calculates the surface temperature of a Planet def calc_temp(self, Sun): return 279*((1-self.A)**0.25)*(self.r(Sun)**-0.5) # Now that we have defined the global variables and the body class # we are now ready to run the simulation # We will now define the initial conditions of the bodies and create # them as an object (using the 'body' class) and add them to the # 'bodies' array # define the initial conditions of the Sun name1 = 'Sun' mass1 = 1 x1 = 50 y1 = 0. vx1 = 0 vy1 = np.sqrt(G*50/x1) A1 = None # define the initial conditions of the Earth name2 = 'Earth' mass2 = 3.e-6 x2 = x1 + 1. y2 = y1 + 0. vx2 = vx1 + 0. vy2 = vy1 + np.sqrt(G*mass1/(x2-x1)) A2 = 0.4 # define the initial conditions of Jupiter name3 = 'Jupiter' mass3 = 1/1047 x3 = x1 + 5.2 y3 = y1 + 0. vx3 = vx1 + 0. vy3 = vy1 + np.sqrt(G*mass1/(x3-x1)) A3 = 0.51 # define the initial conditions of the Moon """name4 = 'Moon' mass4 = 0.0123 * mass2 x4 = x1 + x2 + 2.569e-3 y4 = y1 + y2 + 0. vx4 = vx1 + vx2 + 0. vy4 = vy1 + vy2 + np.sqrt(G*mass2/(x4-x1-x2))""" # define the initial conditions of the black hole name4 = 'Black Hole' mass4 = 50 x4 = 0 y4 = 0 vx4 = 0 vy4 = 0 A4 = None # Update the initial velocity of the Sun so the net linear momentum of the solar system = 0 vx1 -= ((vx2-vx1)*mass2 + (vx3-vx1)*mass3)/mass1 vy1 -= ((vy2-vy1)*mass2 + (vy3-vy1)*mass3)/mass1 # Does the same for the blackhole vx4 -= vx1*mass1/mass4 vy4 -= vy1*mass1/mass4 # Define an array that will contain the body classes # For now, the array is empty, but we will add bodies to it as needed bodies = np.array([]) # Add the first body to the 'bodies' array bodies = np.append(bodies, body(name1, mass1, x1, y1, vx1, vy1, A1)) bodies[0].temp = 5778 # Manually define the surface temperature of the Sun # and the second bodies = np.append(bodies, body(name2, mass2, x2, y2, vx2, vy2, A2)) # and the third and so on bodies = np.append(bodies, body(name3, mass3, x3, y3, vx3, vy3, A3)) bodies = np.append(bodies, body(name4, mass4, x4, y4, vx4, vy4, A4)) # Returns the polar components of the vector between 2 Cartesian coordinates def cart2pol(x1, y1, x2, y2): dx = x2 - x1 dy = y2 - y1 rho = np.sqrt(dx**2 + dy**2) phi = np.arctan2(dy, dx) return(rho, phi) # Returns the total energies of the system def system_energy(n_body=n_body, bodies=bodies): kinetic = 0. potential = 0. # Utilizes a for loop to sum up the kinetic energies and a double for loop # and an if statement to sum the potential energy between each unique pair for i in range(0, n_body): kinetic += bodies[i].K_energy() for j in range(0, n_body): if j > i: potential += bodies[i].V_energy(bodies[j]) return (kinetic + potential, kinetic, potential) # Initialize system/planetary properties and histories temp_history = np.array([]) initial_energies = system_energy() for i in range(1, n_body-1): bodies[i].orbits = 0. bodies[i].temp = bodies[i].calc_temp(bodies[0]) bodies[i].phi = cart2pol(bodies[0].x, bodies[0].y, bodies[i].x, bodies[i].y)[1] bodies[i].phi_o = bodies[i].phi bodies[i].phi_i = bodies[i].phi temp_history = np.append(temp_history, bodies[1].temp) # The next part of this script is a loop -- it means that the # piece of indented code will be executed a number of times, # as the variable i takes on values from 1 to n_body. # Initialize and print system properties print ("\033[4mInitial Properties\033[0m") for i in range(0, n_body): bodies[i].show() # Display name mass, position and velocity (as per the function 'show()' in the class 'body') print("System:") print("Total Kinetic = %6.3e energy units"%initial_energies[1]) print("Total Potential = %6.3e energy units"%initial_energies[2]) print("Total Energy = %6.3e energy units"%initial_energies[0]) print("") # Open a file for each body that we will write the output to # By using the open() function with the "w" (write) argument, a new # file will be created and opened at the path of the first argument f = open("outfile.csv", "w") f.write(", ".join(["Xpos body%i, Ypos body%i"%(i+1, i+1) for i in range(n_body)])+", step, time,\n") # We are now ready to run the n-body simulation time = 0. for step in range(0,max_step): # For each step, we want to record the acceleration/force between each pair of bodies # We create the two-dimensional array and populate it with zeros to begin # We want to calculate this array every step, so we create it inside the loop aFactor = np.zeros([n_body, n_body]) # Work out all the separations and determine the acceleration factor for i in range(0,n_body): for j in range(0,n_body): # The "if" statements asks the computer to make a comparison # between the current values of i and j. "!=" means not # equal to, as we do not want to calculate a self force. if i != j: xsq = (bodies[i].x - bodies[j].x)**2. ysq = (bodies[i].y - bodies[j].y)**2. rsq = xsq + ysq factor = rsq**-1.5 # update the acceleration factor array aFactor[i][j] = G*bodies[j].mass*factor aFactor[j][i] = G*bodies[i].mass*factor # Note that when we set up the class, we do not initialize the acceleration of # each body. So now we add a new feature to each of the bodies - the acceleration. for i in range(0,n_body): bodies[i].ax = 0. # Set the accelerations to 0 bodies[i].ay = 0. # And update the acceleration for each pair of bodies for i in range(0,n_body): for j in range(0,n_body): if i != j: # For each body, calculate the acceleration vector components bodies[i].ax -= aFactor[i][j] * (bodies[i].x - bodies[j].x) bodies[i].ay -= aFactor[i][j] * (bodies[i].y - bodies[j].y) # Save the initial phi values of the planets' orbit for i in range(0, n_body): if bodies[i].orbits != None: bodies[i].phi_i = cart2pol(bodies[0].x, bodies[0].y, bodies[i].x, bodies[i].y)[1] # We now update the position and velocity values for each body for i in range(0,n_body): # For each body, calculate the new velocity vector components bodies[i].vx += bodies[i].ax * delta_t; bodies[i].vy += bodies[i].ay * delta_t; # and the new position vector components bodies[i].x += bodies[i].vx * delta_t; bodies[i].y += bodies[i].vy * delta_t; # Update the phi component of the planets' orbital path then checks whether # the body has completed an orbit # See labnotes for more details for i in range(0,n_body): if bodies[i].orbits != None: bodies[i].phi = cart2pol(bodies[0].x, bodies[0].y, bodies[i].x, bodies[i].y)[1] if bodies[i].phi_o < bodies[i].phi and bodies[i].phi_o > bodies[i].phi_i: bodies[i].orbits += 1 # Update the planetary temperatures and append it to the temperature history for i in range(0,n_body): if bodies[i].A != None: bodies[i].temp = bodies[i].calc_temp(bodies[0]) temp_history = np.append(temp_history, bodies[1].temp) # Update the system energies energies = system_energy() # We don't want to write out data every step, just every show_step # times -- EXCEL can't handle more than about 4000 values. if (step%show_step)==0: for i in range(0,n_body): ## Write out the timestep, position and velocity data for each particle f.write("%0.10f,%0.10f,"%(bodies[i].x, bodies[i].y)) f.write("%5d,%6.4f\n"%(step, time)) # update the current time time+=delta_t # Once the loop is finished, close the file so we can read it. f.close() # plot # I also added legends and markers for the final positions of the bodies. import matplotlib.pyplot as plt plt.figure(figsize=(6,6), dpi=70) plt.axis('equal') # Makes the scale of the two axis equal, so circles appear as circles f = open("outfile.csv"); k = f.readlines(); f.close() x_body1 = [float(i.split(',')[0]) for i in k[1:]] y_body1 = [float(i.split(',')[1]) for i in k[1:]] x_body2 = [float(i.split(',')[2]) for i in k[1:]] y_body2 = [float(i.split(',')[3]) for i in k[1:]] x_body3 = [float(i.split(',')[4]) for i in k[1:]] y_body3 = [float(i.split(',')[5]) for i in k[1:]] x_body4 = [float(i.split(',')[6]) for i in k[1:]] y_body4 = [float(i.split(',')[7]) for i in k[1:]] plt.plot(x_body1, y_body1, c='y') plt.plot((x_body1[len(x_body1)-1]),(y_body1[len(y_body1)-1]), marker='o', c='y', label='Sun') plt.plot(x_body2, y_body2) plt.plot((x_body2[len(x_body2)-1]),(y_body2[len(y_body2)-1]), marker='o', c='#1f77b4', label='Earth') plt.plot(x_body3, y_body3) plt.plot((x_body3[len(x_body3)-1]),(y_body3[len(y_body2)-3]), marker='o', c='#ff7f0e', label='Jupiter') plt.plot(x_body4, y_body4, c='black') plt.plot((x_body4[len(x_body4)-1]),(y_body4[len(y_body4)-1]), marker='o', c='black', label='Black Hole') plt.title('Black Hole vs Solar System - 50000 days (Δt = 1)') plt.legend() plt.show() # Plot the surface temperature of Earth over the simulation t_history = delta_t*np.array([i for i in range(len(temp_history))]) plt.plot(t_history, temp_history) plt.title("Surface Temperature of Earth over Time") plt.xlabel("Time (day)") plt.ylabel("Temperature (K)") # Prints properties of the system after simulation print ("\033[4mFinal Properties\033[0m") for i in range(0, n_body): bodies[i].show() # Display name mass, position and velocity (as per the function 'show()' in the class 'body') print("System:") print("Total Kinetic = %6.3e energy units"%energies[1]) print("Total Potential = %6.3e energy units"%energies[2]) print("Total Energy = %6.3e energy units"%energies[0]) ```
{ "source": "jkfindeisen/pylibnidaqmx", "score": 3 }
#### File: examples/contrib/alternate_on_off_slow.py ```python from __future__ import division from numpy import * import labdaq.daqmx as daqmx import labdaq.daq as daq import threading,time def min2sec(minutes): return minutes*60.0 ###### setup script parameters ######## long_duration = min2sec(1.0) # twenty minutes duration = 25.0 # sec onvoltage = 5.0 offvoltage = 0.0 onstate = False gCurrentTimer = None state_verbal= {True:'On', False: 'Off'} def change_voltage(onstate): print onstate if onstate: daq.set_voltage_ch0(onvoltage) else : daq.set_voltage_ch0(offvoltage) def cycle(onstate=onstate): print "hi! Starting up loop of alternating on voltage %f with off voltage of %f every %f seconds or %f minutes" % (onvoltage, offvoltage, duration, sec2min(duration)) while 1: onstate = not onstate change_voltage(onstate) time.sleep(duration) # gCurrentTimer = threading.Timer(duration, cycle, (onstate,)) if __name__=='__main__': cycle() ```
{ "source": "jkfran/wordpress-fran", "score": 2 }
#### File: wordpress-fran/tests/helper.py ```python import requests def finish_setup(unit, user='admin', password=<PASSWORD>): h = {'User-Agent': 'Mozilla/5.0 Gecko/20100101 Firefox/12.0', 'Content-Type': 'application/x-www-form-urlencoded', 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*', 'Accept-Encoding': 'gzip, deflate'} r = requests.post('http://%s/wp-admin/install.php?step=2' % unit, headers=h, data={'weblog_title': 'Amulet Test %s' % unit, 'user_name': user, 'admin_password': password, 'admin_email': '<EMAIL>', 'admin_password2': password, 'Submit': 'Install WordPress'}, proxies=None) r.raise_for_status() ```
{ "source": "jkgeo/ckan-remote-dataloader", "score": 2 }
#### File: ckan-remote-dataloader/ckanloader/loader.py ```python import messytables import itertools from ckanapi import RemoteCKAN from datetime import datetime TYPE_MAPPING = { 'String': 'text', 'Integer': 'numeric', 'Decimal': 'numeric', 'DateUtil': 'timestamp' } TYPES = [messytables.StringType, messytables.DecimalType, messytables.IntegerType, messytables.DateUtilType] def connect(ckan_url, api_key): ckan = RemoteCKAN(ckan_url, apikey=api_key) return ckan def update_resource_details(ckan, resource_id): """ Update webstore_url and webstore_last_updated in CKAN """ url_type = 'datastore' url = f'{ckan.address}/datastore/dump/{resource_id}' modified = datetime.now().isoformat() format = 'Table' ckan.action.resource_update(id=resource_id, url=url, url_type=url_type, last_modified=modified, format=format) def chunky(iterable, n): """ Generates chunks of data that can be loaded into ckan :param n: Size of each chunks :type n: int """ it = iter(iterable) item = list(itertools.islice(it, n)) while item: yield item item = list(itertools.islice(it, n)) def parse_data(input): fh = open(input, 'rb') try: table_set = messytables.any_tableset(fh) except messytables.ReadError as e: print(e) get_row_set = lambda table_set: table_set.tables.pop() row_set = get_row_set(table_set) offset, headers = messytables.headers_guess(row_set.sample) # Some headers might have been converted from strings to floats and such. headers = [str(header) for header in headers] row_set.register_processor(messytables.headers_processor(headers)) row_set.register_processor(messytables.offset_processor(offset + 1)) types = messytables.type_guess(row_set.sample, types=TYPES, strict=True) row_set.register_processor(messytables.types_processor(types)) headers = [header.strip() for header in headers if header.strip()] headers_set = set(headers) def row_iterator(): for row in row_set: data_row = {} for index, cell in enumerate(row): column_name = cell.column.strip() if column_name not in headers_set: continue data_row[column_name] = cell.value yield data_row result = row_iterator() headers_dicts = [dict(id=field[0], type=TYPE_MAPPING[str(field[1])]) for field in zip(headers, types)] print('Determined headers and types: {headers}'.format( headers=headers_dicts)) return headers_dicts, result def update_resource(ckan, input, resource_id): _, result = parse_data(input) count = 0 for i, records in enumerate(chunky(result, 250)): count += len(records) print('Saving chunk {number}'.format(number=i)) ckan.action.datastore_upsert(resource_id=resource_id, records=records, force=True, method='insert') print('Successfully pushed {n} entries to "{res_id}".'.format( n=count, res_id=resource_id)) def new_resource(ckan, existing, input, package_id, name): if existing: resource = ckan.action.resource_show(id=package_id) else: resource = ckan.action.resource_create(package_id=package_id, name=name) headers, result = parse_data(input) count = 0 for i, records in enumerate(chunky(result, 250)): count += len(records) print('Saving chunk {number}'.format(number=i)) ckan.action.datastore_create(resource_id=resource['id'], fields=headers, records=records, force=True) update_resource_details(ckan, resource['id']) print('Successfully pushed {n} entries to "{res_id}".'.format( n=count, res_id=resource['id'])) return ```
{ "source": "jkglasbrenner/datamaterials-neighbors", "score": 3 }
#### File: datamaterials-neighbors/neighbormodels/neighbors.py ```python from typing import Dict, List, NamedTuple, Optional, Tuple, Union import numpy as np import pandas as pd from pandas import Categorical, DataFrame, IntervalIndex, Series from pandas.core.groupby import DataFrameGroupBy from pymatgen import PeriodicSite, Structure from neighbormodels.structure import label_subspecies Neighbor = Tuple[PeriodicSite, float, int] SiteNeighbors = List[Optional[Neighbor]] AllNeighborDistances = List[SiteNeighbors] NeighborDistances = Dict[str, Union[List[str], List[float], List[int]]] class NeighborData(NamedTuple): neighbor_count: DataFrame sublattice_pairs: DataFrame structure: Structure def count_neighbors(cell_structure: Structure, r: float) -> NeighborData: """Builds a data frame containing neighbor counts grouped over site-index pairs and separation distances. :param cell_structure: A pymatgen ``Structure`` object. :param r: Radius of sphere. :return: A named tuple with three field names: ``neighbor_count`` A pandas ``DataFrame`` of neighbor counts aggregated over site-index pairs and separation distances. ``sublattice_pairs`` A pandas ``DataFrame`` of neighbor distances mapped to unique bin intervals. ``structure`` A copy of the ``Structure`` object defining the crystal structure. """ cell_structure = add_subspecie_labels_if_missing(cell_structure=cell_structure) neighbor_distances_df: DataFrame = get_neighbor_distances_data_frame( cell_structure=cell_structure, r=r ) distance_bins_df: DataFrame = neighbor_distances_df.pipe( define_bins_to_group_and_sort_by_distance ) neighbor_count_df: DataFrame = neighbor_distances_df.pipe( group_site_index_pairs_by_distance, distance_bins_df=distance_bins_df ).pipe(count_neighbors_within_distance_groups).pipe(sort_neighbors_by_site_index_i) sublattice_pairs_df: pd.DataFrame = neighbor_count_df.pipe( sort_and_rank_unique_sublattice_pairs ) return NeighborData( neighbor_count=neighbor_count_df, sublattice_pairs=sublattice_pairs_df, structure=cell_structure, ) def sort_and_rank_unique_sublattice_pairs(data_frame: DataFrame) -> DataFrame: """Group, sort, and rank unique subspecies_ij and distance_bin columns. :param data_frame: A pandas ``DataFrame`` of pairwise neighbor distances. :return: A pandas ``DataFrame`` of unique sublattice pairs. """ subspecies_columns = ["subspecies_i", "subspecies_j"] sublattice_columns = subspecies_columns + ["distance_bin"] return ( data_frame.loc[:, sublattice_columns] .drop_duplicates(subset=sublattice_columns) .sort_values(sublattice_columns) .assign(rank=lambda x: x.groupby(subspecies_columns).cumcount()) .reset_index(drop=True) ) def sort_neighbors_by_site_index_i(neighbor_count_df: DataFrame) -> DataFrame: """Sort by site index i, then neighbor distances, then neighbor index j. :param neighbor_count_df: A data frame of neighbor counts aggregated over site-index pairs and separation distances. :return: A pandas ``DataFrame`` of neighbor counts aggregated over site-index pairs and separation distances sorted by site index i, then neighbor distances, then neighbor index j. """ return neighbor_count_df.sort_values(by=["i", "distance_bin", "j"]).reset_index( drop=True ) def count_neighbors_within_distance_groups( grouped_distances: DataFrameGroupBy, ) -> DataFrame: """Count number of neighbors within each group of same-distance site-index pairs. :param grouped_distances: A data frame grouped over site-index pairs, subspecies pairs, and bin intervals. :return: A pandas ``DataFrame`` of neighbor counts aggregated over site-index pairs and separation distances. """ return ( grouped_distances.apply( lambda x: pd.to_numeric(arg=x["distance_ij"].count(), downcast="integer") ) .rename("n") .reset_index() ) def group_site_index_pairs_by_distance( neighbor_distances_df: DataFrame, distance_bins_df: DataFrame ) -> DataFrameGroupBy: """Iterate over all sites, grouping by site-index pairs, subspecies pairs, and bin intervals. :param neighbor_distances_df: A pandas ``DataFrame`` containing all pairwise neighbor distances. :param distance_bins_df: A pandas ``DataFrame`` of neighbor distances mapped to unique bin intervals. :return: A data frame grouped over site-index pairs, subspecies pairs, and bin intervals. """ binned_distances: Series = pd.cut( x=neighbor_distances_df["distance_ij"], bins=distance_bins_df.index ).rename("distance_bin") return neighbor_distances_df.groupby( ["i", "j", "subspecies_i", "subspecies_j", binned_distances] ) def define_bins_to_group_and_sort_by_distance( neighbor_distances_df: DataFrame, ) -> DataFrame: """Defines bin intervals to group and sort neighbor pairs by distance. :param neighbor_distances_df: A pandas ``DataFrame`` of pairwise neighbor distances. :return: A pandas ``DataFrame`` of neighbor distances mapped to unique bin intervals. """ unique_distances: np.ndarray = find_unique_distances( distance_ij=neighbor_distances_df["distance_ij"] ) bin_intervals: IntervalIndex = define_bin_intervals( unique_distances=unique_distances ) return DataFrame( data={ "distance_bin": Categorical(values=bin_intervals, ordered=True), "distance_ij": Categorical(values=unique_distances, ordered=True), }, index=bin_intervals, ) def find_unique_distances(distance_ij: Series) -> np.ndarray: """Finds the unique distances that define the neighbor groups. :param distance_ij: A pandas ``Series`` of pairwise neighbor distances. :return: An array of unique neighbor distances. """ unique_floats: np.ndarray = np.sort(distance_ij.unique()) next_distance_not_close: np.ndarray = np.logical_not( np.isclose(unique_floats[1:], unique_floats[:-1]) ) return np.concatenate( (unique_floats[:1], unique_floats[1:][next_distance_not_close]) ) def define_bin_intervals(unique_distances: np.ndarray) -> IntervalIndex: """Constructs bin intervals used to group over neighbor distances. This binning procedure provides a robust method for grouping data based on a variable with a float data type. :param unique_distances: An array of neighbor distances returned by asking pandas to return the unique distances. :return: A pandas ``IntervalIndex`` defining bin intervals can be used to sort and group neighbor distances. """ bin_centers: np.ndarray = np.concatenate(([0], unique_distances)) bin_edges: np.ndarray = np.concatenate( [ bin_centers[:-1] + (bin_centers[1:] - bin_centers[:-1]) / 2, bin_centers[-1:] + (bin_centers[-1:] - bin_centers[-2:-1]) / 2, ] ) return IntervalIndex.from_breaks(breaks=bin_edges) def get_neighbor_distances_data_frame(cell_structure: Structure, r: float) -> DataFrame: """Get data frame of pairwise neighbor distances for each atom in the unit cell, out to a distance ``r``. :param cell_structure: A pymatgen ``Structure`` object. :param r: Radius of sphere. :return: A pandas ``DataFrame`` of pairwise neighbor distances. """ all_neighbors: AllNeighborDistances = cell_structure.get_all_neighbors( r=r, include_index=True ) neighbor_distances: NeighborDistances = extract_neighbor_distance_data( cell_structure=cell_structure, all_neighbors=all_neighbors ) return DataFrame(data=neighbor_distances) def extract_neighbor_distance_data( cell_structure: Structure, all_neighbors: AllNeighborDistances ) -> NeighborDistances: """Extracts the site indices, site species, and neighbor distances for each pair and stores it in a dictionary. :param cell_structure: A pymatgen ``Structure`` object. :param all_neighbors: A list of lists containing the neighbors for each site in the structure. :return: A dictionary of site indices, site species, and neighbor distances for each pair. """ neighbor_distances: NeighborDistances = { "i": [], "j": [], "subspecies_i": [], "subspecies_j": [], "distance_ij": [], } for site_i_index, site_i_neighbors in enumerate(all_neighbors): append_site_i_neighbor_distance_data( site_i_index=site_i_index, site_i_neighbors=site_i_neighbors, cell_structure=cell_structure, neighbor_distances=neighbor_distances, ) return neighbor_distances def append_site_i_neighbor_distance_data( site_i_index: int, site_i_neighbors: SiteNeighbors, cell_structure: Structure, neighbor_distances: NeighborDistances, ) -> None: """Helper function to append indices, species, and distances in the ``neighbor_distances`` dictionary. :param site_i_index: Site index of first site in neighbor pair. :param site_i_neighbors: A list of site i's neighbors. :param cell_structure: The pymatgen ``Structure`` object that defines the crystal structure. :param neighbor_distances: A dictionary of site indices, site species, and neighbor distances for each pair. """ for site_j in site_i_neighbors: subspecies_pair: List[str] = [ cell_structure[site_i_index].properties["subspecie"], cell_structure[site_j[2]].properties["subspecie"], ] index_pair: List[str] = [site_i_index, site_j[2]] neighbor_distances["i"].append(index_pair[0]) neighbor_distances["j"].append(index_pair[1]) neighbor_distances["subspecies_i"].append(subspecies_pair[0]) neighbor_distances["subspecies_j"].append(subspecies_pair[1]) neighbor_distances["distance_ij"].append(site_j[1]) def add_subspecie_labels_if_missing(cell_structure: Structure) -> Structure: """Makes a copy of ``cell_structure`` and then checks if ``cell_structure`` has the subspecie site property. If it does, then return the copy as-is, otherwise label each site of the copy using the site's atomic specie name and then return it. :param cell_structure: A pymatgen ``Structure`` object. :return: An exact copy of the input ``cell_structure`` object with subspecie labels added, if missing. """ cell_structure = cell_structure.copy() if "subspecie" not in cell_structure.site_properties: label_subspecies(cell_structure=cell_structure, site_indices=[]) return cell_structure ```
{ "source": "jkglasbrenner/dft-bare-susceptibility", "score": 3 }
#### File: dft-bare-susceptibility/dft_bare_susceptibility/dx_file_reader.py ```python from pathlib import Path import csv import re import gzip import numpy as np import sys # Functions def find_regexp(file_path, regexp): with gzip.open(str(file_path), 'rt') as in_file: tmp_match = regexp.findall(in_file.read()) return tmp_match def extract_from_dx_file(file_path): # Convert filepath string to Path object file_path = Path(file_path) # Extract from .dx file nx, ny, nz = find_qmesh_pts(file_path) q_vectors = find_qmesh_vectors(file_path) origin = find_origin(file_path) shape = find_shape(file_path) data_string = find_data(file_path) # Create dx data array data_list = create_dx_data_list(data_string, shape) # Convert dx format to generic numpy array format data_array = build_data_array(nx, ny, nz, shape, data_list) # Output return q_vectors, origin, data_array def find_qmesh_pts(file_path): # Create regexp regexp = re.compile(r'(?:object\s+1.*?)(\d+)(?:\s+)' '(\d+)(?:\s+)(\d+)') # Open and run regexp tmp_match = find_regexp(file_path, regexp) # Extract kpts nx, ny, nz = tmp_match[0] # Output return int(nx), int(ny), int(nz) def find_qmesh_vectors(file_path): # Create regexp re_num = r'([+-]?\d+\.?\d+(?:[eE][-+]?\d+)?)' re_exp = (r'(?:delta\s+)' + re_num + r'(?:\s+)' + re_num + r'(?:\s+)' + re_num) regexp = re.compile(re_exp) # Open and run regexp tmp_match = find_regexp(file_path, regexp) # Extract kmesh qx = tuple(float(item) for item in tmp_match[0]) qy = tuple(float(item) for item in tmp_match[1]) qz = tuple(float(item) for item in tmp_match[2]) # Convert to numpy array q_vectors = np.array([qx, qy, qz]) # Output return q_vectors def find_origin(file_path): # Create regexp re_num = r'([+-]?\d+\.?\d+(?:[eE][-+]?\d+)?)' re_exp = (r'(?:origin\s+)' + re_num + r'(?:\s+)' + re_num + r'(?:\s+)' + re_num) regexp = re.compile(re_exp) # Open and run regexp tmp_match = find_regexp(file_path, regexp) # Extract origin origin = tuple(float(item) for item in tmp_match[0]) # Output return origin def find_shape(file_path): # Create regexp re_exp = r'(?:object\s+3.*?shape\s+)(\d+)' regexp = re.compile(re_exp) # Open and run regexp tmp_match = find_regexp(file_path, regexp) # Extract kmesh shape = tmp_match[0] # Output return int(shape) def find_data(file_path): # Create regexp regexp = re.compile(r'(?:data follows.*?\n)' '((?:.*?\n)+?)(?:\s*object)') # Open and run regexp tmp_match = find_regexp(file_path, regexp) # Output return tmp_match[0] def create_dx_data_list(string, shape): # Create regexp re_exp = r'([+-]?\d+\.?\d+(?:[eE][-+]?\d+)?)' regexp = re.compile(re_exp) # Run regexp tmp_match = regexp.findall(string) # Create lists my_list = [] tmp_list = [] i = 1 for item in tmp_match: if i <= shape: tmp_list.append(float(item)) i = i + 1 if i > shape: my_list.append(tmp_list) tmp_list = [] i = 1 # Convert to numpy array my_list = np.array(my_list) # Output return my_list def build_data_array(nx, ny, nz, num_items, in_array): # Allocate numpy array tmp_array = np.zeros([num_items, nx, ny, nz]) # Count entries in in_array slice_index = int(0) end_index = slice_index + nz # Assign to array for i in range(nx): for j in range(ny): for n in range(num_items): tmp_array[n, i, j, :] = in_array[slice_index:end_index, n] slice_index = slice_index + nz end_index = slice_index + nz # Output array return tmp_array def write_file(data_array, qx, qy, qz, origin, outfilepath, data_format="csv"): # Grab data_array dimensions array_dimensions = data_array.shape if len(array_dimensions) == 3: nx, ny, nz = array_dimensions shape = None elif len(array_dimensions) == 4: shape, nx, ny, nz = array_dimensions else: sys.exit("Unexpected data structure, exiting...") # Open file if data_format == "dx": with open(str(outfilepath), 'wt') as out_file: write_header(nx, ny, nz, qx, qy, qz, origin, shape, out_file) write_data_columns(data_array, shape, nx, ny, nz, out_file) write_footer(out_file) elif data_format == "csv": with open(str(outfilepath), 'w', newline="") as out_file: write_csv_format(data_array, shape, nx, ny, nz, out_file) else: print("{0} is not a valid data format, exiting...".format(data_format)) def write_csv_format(data_array, shape, nx, ny, nz, outfile): if shape is not None: fieldnames = ["band_index", "kx", "ky", "kz", "energy"] writer = csv.DictWriter(outfile, fieldnames=fieldnames, quoting=csv.QUOTE_MINIMAL) writer.writeheader() for band_index in range(shape): for kx in range(nx): for ky in range(ny): for kz in range(nz): data_row = { "band_index": band_index, "kx": kx, "ky": ky, "kz": kz, "energy": data_array[band_index, kx, ky, kz] } writer.writerow(data_row) else: fieldnames = ["kx", "ky", "kz", "chi_real", "chi_imag"] writer = csv.DictWriter(outfile, fieldnames=fieldnames, quoting=csv.QUOTE_MINIMAL) writer.writeheader() for kx in range(nx): for ky in range(ny): for kz in range(nz): data_row = { "kx": kx, "ky": ky, "kz": kz, "chi_real": np.real(data_array[kx, ky, kz]), "chi_imag": np.imag(data_array[kx, ky, kz]) } writer.writerow(data_row) def write_data_columns(data_array, shape, nx, ny, nz, outfile): # Counters xx = 0 yy = 0 zz = 0 # Loop for printing for i in range(nx): for j in range(ny): zz = zz_loop(data_array, shape, nz, xx, yy, zz, outfile) yy = iterate_counter(yy, ny) xx = iterate_counter(xx, nx) def zz_loop(data_array, shape, nz, xx, yy, zz, outfile): # Set up output format string = '' if shape is not None: for n in range(shape): string = string + '{{i{0}:12.6f}}'.format(n) else: for n in range(2): string = string + '{{i{0}:12.6f}}'.format(n) # Printing loop for k in range(nz): line_dict = dict() if shape is not None: for n in range(shape): line_dict["i" + str(n)] = data_array[n, xx, yy, zz] else: line_dict["i0"] = np.real(data_array[xx, yy, zz]) line_dict["i1"] = np.imag(data_array[xx, yy, zz]) tmp_line = string.format(**line_dict) print(tmp_line, file=outfile) zz = iterate_counter(zz, nz) # Return counter return zz def write_header(nx, ny, nz, qx, qy, qz, origin, shape, outfile): if shape is None: shape = 2 nitems = int(nx * ny * nz) header = (' object 1 class gridpositions counts {0:>11} {1:>11} {2:>11}\n' 'origin {3:14.8f} {4:14.8f} {5:14.8f}\n' 'delta {6:11.8f} {7:11.8f} {8:11.8f}\n' 'delta {9:11.8f} {10:11.8f} {11:11.8f}\n' 'delta {12:11.8f} {13:11.8f} {14:11.8f}\n' ' object 2 class gridconnections counts {15:>11} ' '{16:>11} {17:>11}\n' ' object 3 class array type float rank 1 shape {18:>11} items' ' {19:>11}\n' ' data follows') output_str = header.format(nx, ny, nz, origin[0], origin[1], origin[2], qx[0], qx[1], qx[2], qy[0], qy[1], qy[2], qz[0], qz[1], qz[2], nx, ny, nz, shape, nitems) # Write header print(output_str, file=outfile) def write_footer(outfile): footer = (' object "regular positions regular connections" class ' 'field\n' ' component "positions" value 1\n' ' component "connections" value 2\n' ' component "data" value 3\n' ' end') # Write footer print(footer, file=outfile) def test_counter(count, qmax): if count >= qmax: count = int(0) return count else: return count def iterate_counter(count, qmax): count += int(1) return test_counter(count, qmax) def expand_data_range(data_array): # Calculate expanded parameters in_nx, in_ny, in_nz = data_array.shape nx = in_nx + 1 ny = in_ny + 1 nz = in_nz + 1 # Allocate array for expanded data new_data = np.zeros([nx, ny, nz], dtype=np.complex) # Fill existing array new_data[:-1, :-1, :-1] = data_array # Fill in end of Brillouin zone end_bz_fill(new_data, nx, ny, nz) # Return results return new_data def end_bz_fill(new_data, nx, ny, nz): for xx in range(nx): for yy in range(ny): for zz in range(nz): i = xx j = yy k = zz if (xx == (nx - 1)) or (yy == (ny - 1)) or (zz == (nz - 1)): if xx == (nx - 1): i = 0 if yy == (ny - 1): j = 0 if zz == (nz - 1): k = 0 new_data[xx, yy, zz] = new_data[i, j, k] ```
{ "source": "jkglasbrenner/sshcustodian", "score": 2 }
#### File: sshcustodian/sshcustodian/sshcustodian.py ```python from __future__ import (unicode_literals, division, absolute_import, print_function) from six.moves import filterfalse """ This module creates a subclass of the main Custodian class in the Custodian project (github.com/materialsproject/custodian), which is a wrapper that manages jobs running on computing clusters. The Custodian module is part of The Materials Project (materialsproject.org/). This subclass adds the functionality to copy the temporary directory created via monty to the scratch partitions on slave compute nodes, provided that the cluster's filesystem is configured in this way. The implementation invokes a subprocess to utilize the ssh executable installed on the cluster, so it is not particularly elegant or platform independent, nor is this solution likely to be general to all clusters. This is why this modification has not been submitted as a pull request to the main Custodian project. """ # Import modules import logging import subprocess import sys import datetime import time import os import re from itertools import islice, groupby from socket import gethostname from monty.tempfile import ScratchDir from monty.shutil import gzip_dir from monty.json import MontyEncoder from monty.serialization import dumpfn from custodian.custodian import Custodian from custodian.custodian import CustodianError # Module-level logger logger = logging.getLogger(__name__) class SSHCustodian(Custodian): """ The SSHCustodian class modifies the Custodian class from the custodian module to be able to handle clusters that have separate scratch partitions for each node. When scratch_dir_node_only is enabled, the temp_dir that monty creates will be copied to all other compute nodes used in the calculation and subsequently removed when the job is finished. """ __doc__ += Custodian.__doc__ def __init__(self, handlers, jobs, validators=None, max_errors=1, polling_time_step=10, monitor_freq=30, skip_over_errors=False, scratch_dir=None, gzipped_output=False, checkpoint=False, scratch_dir_node_only=False, pbs_nodefile=None): """ scratch_dir_node_only (bool): If set to True, custodian will grab the list of nodes in the file path provided to pbs_nodefile and use copy the temp_dir to the scratch_dir on each node over ssh. This is necessary on cluster setups where each node has its own independent scratch partition. pbs_nodefile (str): The filepath to the list of nodes to be used in a calculation. If this path does not point to a valid file, then scratch_dir_node_only will be automatically set to False. """ super(SSHCustodian, self).__init__(handlers, jobs, validators, max_errors, polling_time_step, monitor_freq, skip_over_errors, scratch_dir, gzipped_output, checkpoint) self.hostname = gethostname() if pbs_nodefile is None: self.scratch_dir_node_only = False self.slave_compute_node_list = None elif os.path.exists(pbs_nodefile): self.scratch_dir_node_only = scratch_dir_node_only self.pbs_nodefile = pbs_nodefile self.slave_compute_node_list = ( self._process_pbs_nodefile(self.pbs_nodefile, self.hostname)) else: self.scratch_dir_node_only = False self.pbs_nodefile = None self.slave_compute_node_list = None @staticmethod def _process_pbs_nodefile(pbs_nodefile, hostname): with open(pbs_nodefile) as in_file: nodelist = in_file.read().splitlines() slave_compute_node_list = [ node for node, _ in groupby(filterfalse(lambda x: x == hostname, nodelist)) ] return slave_compute_node_list def _copy_to_slave_node_dirs(self, temp_dir_path): """ Copy temporary scratch directory from master node to other nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ process_list = [] for node in self.slave_compute_node_list: command = ['rsync', '-azhq', temp_dir_path, '{0}:{1}'.format(node, os.path.abspath(self.scratch_dir))] p = subprocess.Popen(command, shell=False) process_list.append(p) # Wait for syncing to finish before moving on for process in process_list: process.wait() def _update_slave_node_vasp_input_files(self, temp_dir_path): """ Update VASP input files in the scratch partition on the slave compute nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ VASP_INPUT_FILES = [x for x in ["{0}/CHGCAR".format(temp_dir_path), "{0}/WAVECAR".format(temp_dir_path), "{0}/INCAR".format(temp_dir_path), "{0}/POSCAR".format(temp_dir_path), "{0}/POTCAR".format(temp_dir_path), "{0}/KPOINTS".format(temp_dir_path)] if os.path.exists(x)] process_list = [] for node in self.slave_compute_node_list: for filepath in VASP_INPUT_FILES: command = 'scp {0} {1}:{2}/'.format(filepath, node, temp_dir_path) p = subprocess.Popen(command, shell=True) process_list.append(p) # Wait for syncing to finish before moving on for process in process_list: process.wait() def _delete_slave_node_dirs(self, temp_dir_path): """ Delete the temporary scratch directory on the slave nodes. Args: temp_dir_path (str): The path to the temporary scratch directory. It is assumed here that the root path of the scratch directory is the same on all nodes. """ process_list = [] for node in self.slave_compute_node_list: command = 'ssh {0} "rm -rf {1}"'.format(node, temp_dir_path) p = subprocess.Popen(command, shell=True) process_list.append(p) # Wait for deletion to finish before moving on for process in process_list: process.wait() def _manage_node_scratch(self, temp_dir_path, job_start): """ Checks whether the user wants to make use of scratch partitions on each compute node, and if True, either copies the temporary directory to or deletes the temporary directory from each slave compute node. If the user does not specify to use node-specific scratch partitions, then the function does nothing. Args: temp_dir_path (str): The path to the temporary scratch directory. job_start (bool): If True, then the job has started and the temporary directory will be copied to the slave compute nodes. If False, then the temporary directories will be deleted from the slave compute nodes. """ if self.scratch_dir_node_only: if job_start: self._copy_to_slave_node_dirs(temp_dir_path) else: self._delete_slave_node_dirs(temp_dir_path) else: pass def _update_node_scratch(self, temp_dir_path, job): """ Method to update the scratch partitions on the slave compute nodes if they exist and are running a VASP job. Args: temp_dir_path (str): The path to the temporary scratch directory. job (object): The job object you intend to run. Currently supports VASP jobs. """ vasp_re = re.compile(r'vasp') if self.scratch_dir is not None: try: jobtype = job.get_jobtype() if self.scratch_dir_node_only: if vasp_re.match(jobtype): self._update_slave_node_vasp_input_files(temp_dir_path) else: pass else: pass except: pass else: pass def run(self): """ Override of Custodian.run() to include instructions to copy the temp_dir to the scratch partition on slave compute nodes if requested. """ cwd = os.getcwd() with ScratchDir(self.scratch_dir, create_symbolic_link=True, copy_to_current_on_exit=True, copy_from_current_on_enter=True) as temp_dir: self._manage_node_scratch(temp_dir_path=temp_dir, job_start=True) self.total_errors = 0 start = datetime.datetime.now() logger.info("Run started at {} in {}.".format( start, temp_dir)) v = sys.version.replace("\n", " ") logger.info("Custodian running on Python version {}".format(v)) try: # skip jobs until the restart for job_n, job in islice(enumerate(self.jobs, 1), self.restart, None): self._run_job(job_n, job, temp_dir) # Checkpoint after each job so that we can recover from # last point and remove old checkpoints if self.checkpoint: super(SSHCustodian, self)._save_checkpoint(cwd, job_n) except CustodianError as ex: logger.error(ex.message) if ex.raises: raise RuntimeError("{} errors reached: {}. Exited..." .format(self.total_errors, ex)) finally: # Log the corrections to a json file. logger.info("Logging to {}...".format(super(SSHCustodian, self).LOG_FILE)) dumpfn(self.run_log, super(SSHCustodian, self).LOG_FILE, cls=MontyEncoder, indent=4) end = datetime.datetime.now() logger.info("Run ended at {}.".format(end)) run_time = end - start logger.info("Run completed. Total time taken = {}." .format(run_time)) # Remove duplicate copy of log file, provided it ends with # ".log" for x in ([x for x in os.listdir(temp_dir) if re.match(r'\w*\.log', x)]): os.remove(os.path.join(temp_dir, x)) self._manage_node_scratch(temp_dir_path=temp_dir, job_start=False) if self.gzipped_output: gzip_dir(".") # Cleanup checkpoint files (if any) if run is successful. super(SSHCustodian, self)._delete_checkpoints(cwd) return self.run_log def _run_job(self, job_n, job, temp_dir): """ Overrides custodian.custodian._run_job() to propagate changes to input files on different scratch partitions on compute nodes, if needed. """ self.run_log.append({"job": job.as_dict(), "corrections": []}) job.setup() for attempt in range(1, self.max_errors - self.total_errors + 1): # Propagate updated input files, if needed self._update_node_scratch(temp_dir, job) logger.info( "Starting job no. {} ({}) attempt no. {}. Errors " "thus far = {}.".format( job_n, job.name, attempt, self.total_errors)) p = job.run() # Check for errors using the error handlers and perform # corrections. has_error = False # While the job is running, we use the handlers that are # monitors to monitor the job. if isinstance(p, subprocess.Popen): if self.monitors: n = 0 while True: n += 1 time.sleep(self.polling_time_step) if p.poll() is not None: break if n % self.monitor_freq == 0: has_error = self._do_check(self.monitors, p.terminate) else: p.wait() logger.info("{}.run has completed. " "Checking remaining handlers".format(job.name)) # Check for errors again, since in some cases non-monitor # handlers fix the problems detected by monitors # if an error has been found, not all handlers need to run if has_error: self._do_check([h for h in self.handlers if not h.is_monitor]) else: has_error = self._do_check(self.handlers) # If there are no errors detected, perform # postprocessing and exit. if not has_error: for v in self.validators: if v.check(): s = "Validation failed: {}".format(v) raise CustodianError(s, True, v) job.postprocess() return # check that all errors could be handled for x in self.run_log[-1]["corrections"]: if not x["actions"] and x["handler"].raises_runtime_error: s = "Unrecoverable error for handler: {}. " \ "Raising RuntimeError".format(x["handler"]) raise CustodianError(s, True, x["handler"]) for x in self.run_log[-1]["corrections"]: if not x["actions"]: s = "Unrecoverable error for handler: %s" % x["handler"] raise CustodianError(s, False, x["handler"]) logger.info("Max errors reached.") raise CustodianError("MaxErrors", True) # Inherit Custodian docstrings __init__.__doc__ = Custodian.__init__.__doc__ + __init__.__doc__ run.__doc__ = Custodian.run.__doc__ _run_job.__doc__ = Custodian._run_job.__doc__ ```
{ "source": "jkgoodrich/hail", "score": 3 }
#### File: auth/auth/exceptions.py ```python from aiohttp import web class AuthUserError(Exception): def __init__(self, message, severity): super().__init__(message) self.message = message self.ui_error_type = severity def http_response(self): return web.HTTPBadRequest(reason=self.message) class EmptyLoginID(AuthUserError): def __init__(self, username): super().__init__(f"Login id for user '{username}' must be a non-empty string.", 'error') class DuplicateLoginID(AuthUserError): def __init__(self, username, login_id): super().__init__(f"Login id '{login_id}' already exists for user '{username}'.", 'error') class DuplicateUsername(AuthUserError): def __init__(self, username, login_id): super().__init__(f"Username '{username}' already exists with login id '{login_id}'.", 'error') class InvalidUsername(AuthUserError): def __init__(self, username): super().__init__(f"Invalid username '{username}'. Must be a non-empty alphanumeric string.", 'error') class InvalidType(AuthUserError): def __init__(self, field_name, input, expected_type): super().__init__(f"Expected '{field_name}' is of type {expected_type}. Found type {type(input)}", 'error') class MultipleUserTypes(AuthUserError): def __init__(self, username): super().__init__(f"User '{username}' cannot be both a developer and a service account.", 'error') class MultipleExistingUsers(AuthUserError): def __init__(self, username, login_id): super().__init__( f"Multiple users with user name '{username}' and login id '{login_id}' appear in the database.", 'error', ) def http_response(self): return web.HTTPInternalServerError(reason=self.message) class UnknownUser(AuthUserError): def __init__(self, username): super().__init__(f"Unknown user '{username}'.", 'error') def http_response(self): return web.HTTPNotFound(reason=self.message) class PreviouslyDeletedUser(AuthUserError): def __init__(self, username): super().__init__(f"User '{username}' has already been deleted.", 'error') ``` #### File: auth/auth/flow.py ```python import abc import json import urllib.parse import aiohttp.web import google.auth.transport.requests import google.oauth2.id_token import google_auth_oauthlib.flow import msal from gear.cloud_config import get_global_config class FlowResult: def __init__(self, login_id: str, email: str, token: dict): self.login_id = login_id self.email = email self.token = token class Flow(abc.ABC): @abc.abstractmethod def initiate_flow(self, redirect_uri: str) -> dict: """ Initiates the OAuth2 flow. Usually run in response to a user clicking a login button. The returned dict should be stored in a secure session so that the server can identify to which OAuth2 flow a client is responding. In particular, the server must pass this dict to :meth:`.receive_callback` in the OAuth2 callback. """ raise NotImplementedError @abc.abstractmethod def receive_callback(self, request: aiohttp.web.Request, flow_dict: dict) -> FlowResult: """Concludes the OAuth2 flow by returning the user's identity and credentials.""" raise NotImplementedError class GoogleFlow(Flow): scopes = [ 'https://www.googleapis.com/auth/userinfo.profile', 'https://www.googleapis.com/auth/userinfo.email', 'openid', ] def __init__(self, credentials_file: str): self._credentials_file = credentials_file def initiate_flow(self, redirect_uri: str) -> dict: flow = google_auth_oauthlib.flow.Flow.from_client_secrets_file( self._credentials_file, scopes=self.scopes, state=None ) flow.redirect_uri = redirect_uri authorization_url, state = flow.authorization_url(access_type='offline', include_granted_scopes='true') return { 'authorization_url': authorization_url, 'redirect_uri': redirect_uri, 'state': state, } def receive_callback(self, request: aiohttp.web.Request, flow_dict: dict) -> FlowResult: flow = google_auth_oauthlib.flow.Flow.from_client_secrets_file( self._credentials_file, scopes=self.scopes, state=flow_dict['state'] ) flow.redirect_uri = flow_dict['callback_uri'] flow.fetch_token(code=request.query['code']) token = google.oauth2.id_token.verify_oauth2_token( flow.credentials.id_token, google.auth.transport.requests.Request() ) email = token['email'] return FlowResult(email, email, token) class AzureFlow(Flow): def __init__(self, credentials_file: str): with open(credentials_file, encoding='utf-8') as f: data = json.loads(f.read()) tenant_id = data['tenant'] authority = f'https://login.microsoftonline.com/{tenant_id}' client = msal.ConfidentialClientApplication(data['appId'], data['password'], authority) self._client = client self._tenant_id = tenant_id def initiate_flow(self, redirect_uri: str) -> dict: flow = self._client.initiate_auth_code_flow(scopes=[], redirect_uri=redirect_uri) return { 'flow': flow, 'authorization_url': flow['auth_uri'], 'state': flow['state'], } def receive_callback(self, request: aiohttp.web.Request, flow_dict: dict) -> FlowResult: query_dict = urllib.parse.parse_qs(request.query_string) query_dict = {k: v[0] for k, v in query_dict.items()} token = self._client.acquire_token_by_auth_code_flow(flow_dict['flow'], query_dict) if 'error' in token: raise Exception(f'{token}') tid = token['id_token_claims']['tid'] if tid != self._tenant_id: raise Exception('invalid tenant id') return FlowResult(token['id_token_claims']['oid'], token['id_token_claims']['preferred_username'], token) def get_flow_client(credentials_file: str) -> Flow: cloud = get_global_config()['cloud'] if cloud == 'azure': return AzureFlow(credentials_file) assert cloud == 'gcp' return GoogleFlow(credentials_file) ``` #### File: batch/batch/inst_coll_config.py ```python import asyncio import logging from typing import Dict, Optional, Tuple from gear import Database from .cloud.azure.instance_config import AzureSlimInstanceConfig from .cloud.azure.resource_utils import azure_worker_properties_to_machine_type from .cloud.gcp.instance_config import GCPSlimInstanceConfig from .cloud.gcp.resource_utils import GCP_MACHINE_FAMILY, family_worker_type_cores_to_gcp_machine_type from .cloud.resource_utils import ( adjust_cores_for_memory_request, adjust_cores_for_packability, cores_mcpu_to_memory_bytes, local_ssd_size, machine_type_to_worker_type_cores, requested_storage_bytes_to_actual_storage_gib, valid_machine_types, ) from .cloud.utils import possible_cloud_locations from .driver.billing_manager import ProductVersions from .instance_config import InstanceConfig log = logging.getLogger('inst_coll_config') def instance_config_from_pool_config( pool_config: 'PoolConfig', product_versions: ProductVersions, location: str ) -> InstanceConfig: cloud = pool_config.cloud if cloud == 'gcp': machine_type = family_worker_type_cores_to_gcp_machine_type( GCP_MACHINE_FAMILY, pool_config.worker_type, pool_config.worker_cores ) return GCPSlimInstanceConfig.create( product_versions=product_versions, machine_type=machine_type, preemptible=pool_config.preemptible, local_ssd_data_disk=pool_config.worker_local_ssd_data_disk, data_disk_size_gb=pool_config.data_disk_size_gb, boot_disk_size_gb=pool_config.boot_disk_size_gb, job_private=False, location=location, ) assert cloud == 'azure' machine_type = azure_worker_properties_to_machine_type( pool_config.worker_type, pool_config.worker_cores, pool_config.worker_local_ssd_data_disk ) return AzureSlimInstanceConfig.create( product_versions=product_versions, machine_type=machine_type, preemptible=pool_config.preemptible, local_ssd_data_disk=pool_config.worker_local_ssd_data_disk, data_disk_size_gb=pool_config.data_disk_size_gb, boot_disk_size_gb=pool_config.boot_disk_size_gb, job_private=False, location=location, ) class InstanceCollectionConfig: pass class PoolConfig(InstanceCollectionConfig): @staticmethod def from_record(record): return PoolConfig( name=record['name'], cloud=record['cloud'], worker_type=record['worker_type'], worker_cores=record['worker_cores'], worker_local_ssd_data_disk=record['worker_local_ssd_data_disk'], worker_external_ssd_data_disk_size_gb=record['worker_external_ssd_data_disk_size_gb'], enable_standing_worker=record['enable_standing_worker'], standing_worker_cores=record['standing_worker_cores'], boot_disk_size_gb=record['boot_disk_size_gb'], max_instances=record['max_instances'], max_live_instances=record['max_live_instances'], preemptible=bool(record['preemptible']), ) async def update_database(self, db: Database): await db.just_execute( ''' UPDATE pools INNER JOIN inst_colls ON pools.name = inst_colls.name SET worker_cores = %s, worker_local_ssd_data_disk = %s, worker_external_ssd_data_disk_size_gb = %s, enable_standing_worker = %s, standing_worker_cores = %s, boot_disk_size_gb = %s, max_instances = %s, max_live_instances = %s, preemptible = %s WHERE pools.name = %s; ''', ( self.worker_cores, self.worker_local_ssd_data_disk, self.worker_external_ssd_data_disk_size_gb, self.enable_standing_worker, self.standing_worker_cores, self.boot_disk_size_gb, self.max_instances, self.max_live_instances, self.preemptible, self.name, ), ) def __init__( self, name: str, cloud: str, worker_type: str, worker_cores: int, worker_local_ssd_data_disk: bool, worker_external_ssd_data_disk_size_gb: int, enable_standing_worker: bool, standing_worker_cores: int, boot_disk_size_gb: int, max_instances: int, max_live_instances: int, preemptible: bool, ): self.name = name self.cloud = cloud self.worker_type = worker_type self.worker_cores = worker_cores self.worker_local_ssd_data_disk = worker_local_ssd_data_disk self.worker_external_ssd_data_disk_size_gb = worker_external_ssd_data_disk_size_gb self.enable_standing_worker = enable_standing_worker self.standing_worker_cores = standing_worker_cores self.boot_disk_size_gb = boot_disk_size_gb self.max_instances = max_instances self.max_live_instances = max_live_instances self.preemptible = preemptible def instance_config(self, product_versions: ProductVersions, location: str) -> InstanceConfig: return instance_config_from_pool_config(self, product_versions, location) @property def data_disk_size_gb(self) -> int: if self.worker_local_ssd_data_disk: return local_ssd_size(self.cloud, self.worker_type, self.worker_cores) return self.worker_external_ssd_data_disk_size_gb @property def data_disk_size_standing_gb(self) -> int: if self.worker_local_ssd_data_disk: return local_ssd_size(self.cloud, self.worker_type, self.standing_worker_cores) return self.worker_external_ssd_data_disk_size_gb def convert_requests_to_resources(self, cores_mcpu, memory_bytes, storage_bytes): storage_gib = requested_storage_bytes_to_actual_storage_gib(self.cloud, storage_bytes, allow_zero_storage=True) if storage_gib is None: return None cores_mcpu = adjust_cores_for_memory_request(self.cloud, cores_mcpu, memory_bytes, self.worker_type) cores_mcpu = adjust_cores_for_packability(cores_mcpu) memory_bytes = cores_mcpu_to_memory_bytes(self.cloud, cores_mcpu, self.worker_type) if cores_mcpu <= self.worker_cores * 1000: return (cores_mcpu, memory_bytes, storage_gib) return None def cost_per_hour(self, resource_rates, product_versions, location, cores_mcpu, memory_bytes, storage_gib): instance_config = self.instance_config(product_versions, location) cost_per_hour = instance_config.cost_per_hour(resource_rates, cores_mcpu, memory_bytes, storage_gib) return cost_per_hour class JobPrivateInstanceManagerConfig(InstanceCollectionConfig): @staticmethod def from_record(record): return JobPrivateInstanceManagerConfig( record['name'], record['cloud'], record['boot_disk_size_gb'], record['max_instances'], record['max_live_instances'], ) def __init__(self, name, cloud, boot_disk_size_gb: int, max_instances, max_live_instances): self.name = name self.cloud = cloud self.boot_disk_size_gb = boot_disk_size_gb self.max_instances = max_instances self.max_live_instances = max_live_instances def convert_requests_to_resources(self, machine_type, storage_bytes): storage_gib = requested_storage_bytes_to_actual_storage_gib(self.cloud, storage_bytes, allow_zero_storage=False) if storage_gib is None: return None worker_type, cores = machine_type_to_worker_type_cores(self.cloud, machine_type) cores_mcpu = cores * 1000 memory_bytes = cores_mcpu_to_memory_bytes(self.cloud, cores_mcpu, worker_type) return (self.name, cores_mcpu, memory_bytes, storage_gib) class InstanceCollectionConfigs: @staticmethod async def create(db: Database): (name_pool_config, jpim_config), resource_rates, product_versions_data = await asyncio.gather( InstanceCollectionConfigs.instance_collections_from_db(db), InstanceCollectionConfigs.resource_rates_from_db(db), InstanceCollectionConfigs.product_versions_from_db(db), ) return InstanceCollectionConfigs(name_pool_config, jpim_config, resource_rates, product_versions_data) @staticmethod async def instance_collections_from_db( db: Database, ) -> Tuple[Dict[str, PoolConfig], JobPrivateInstanceManagerConfig]: records = db.execute_and_fetchall( ''' SELECT inst_colls.*, pools.* FROM inst_colls LEFT JOIN pools ON inst_colls.name = pools.name; ''' ) name_pool_config: Dict[str, PoolConfig] = {} jpim_config: Optional[JobPrivateInstanceManagerConfig] = None async for record in records: if record['is_pool']: config = PoolConfig.from_record(record) name_pool_config[config.name] = config else: config = JobPrivateInstanceManagerConfig.from_record(record) jpim_config = config assert jpim_config is not None return name_pool_config, jpim_config @staticmethod async def resource_rates_from_db(db: Database) -> Dict[str, float]: return { record['resource']: record['rate'] async for record in db.execute_and_fetchall('SELECT * FROM resources;') } @staticmethod async def product_versions_from_db(db: Database) -> Dict[str, str]: return { record['product']: record['version'] async for record in db.execute_and_fetchall('SELECT * FROM latest_product_versions;') } def __init__( self, name_pool_config: Dict[str, PoolConfig], jpim_config: JobPrivateInstanceManagerConfig, resource_rates: Dict[str, float], product_versions_data: Dict[str, str], ): self.name_pool_config = name_pool_config self.jpim_config = jpim_config self.resource_rates = resource_rates self.product_versions = ProductVersions(product_versions_data) async def refresh(self, db: Database): configs, resource_rates, product_versions_data = await asyncio.gather( InstanceCollectionConfigs.instance_collections_from_db(db), InstanceCollectionConfigs.resource_rates_from_db(db), InstanceCollectionConfigs.product_versions_from_db(db), ) self.name_pool_config, self.jpim_config = configs self.resource_rates = resource_rates self.product_versions.update(product_versions_data) def select_pool_from_cost(self, cloud, cores_mcpu, memory_bytes, storage_bytes, preemptible): assert self.resource_rates is not None optimal_result = None optimal_cost = None for pool in self.name_pool_config.values(): if pool.cloud != cloud or pool.preemptible != preemptible: continue result = pool.convert_requests_to_resources(cores_mcpu, memory_bytes, storage_bytes) if result: maybe_cores_mcpu, maybe_memory_bytes, maybe_storage_gib = result max_regional_maybe_cost = None for location in possible_cloud_locations(pool.cloud): maybe_cost = pool.cost_per_hour( self.resource_rates, self.product_versions, location, maybe_cores_mcpu, maybe_memory_bytes, maybe_storage_gib, ) if max_regional_maybe_cost is None or maybe_cost > max_regional_maybe_cost: max_regional_maybe_cost = maybe_cost if optimal_cost is None or max_regional_maybe_cost < optimal_cost: optimal_cost = max_regional_maybe_cost optimal_result = (pool.name, maybe_cores_mcpu, maybe_memory_bytes, maybe_storage_gib) return optimal_result def select_pool_from_worker_type(self, cloud, worker_type, cores_mcpu, memory_bytes, storage_bytes, preemptible): for pool in self.name_pool_config.values(): if pool.cloud == cloud and pool.worker_type == worker_type and pool.preemptible == preemptible: result = pool.convert_requests_to_resources(cores_mcpu, memory_bytes, storage_bytes) if result: actual_cores_mcpu, actual_memory_bytes, acutal_storage_gib = result return (pool.name, actual_cores_mcpu, actual_memory_bytes, acutal_storage_gib) return None def select_job_private(self, cloud, machine_type, storage_bytes): if self.jpim_config.cloud != cloud: return None return self.jpim_config.convert_requests_to_resources(machine_type, storage_bytes) def select_inst_coll( self, cloud, machine_type, preemptible, worker_type, req_cores_mcpu, req_memory_bytes, req_storage_bytes ): if worker_type is not None and machine_type is None: result = self.select_pool_from_worker_type( cloud=cloud, worker_type=worker_type, cores_mcpu=req_cores_mcpu, memory_bytes=req_memory_bytes, storage_bytes=req_storage_bytes, preemptible=preemptible, ) elif worker_type is None and machine_type is None: result = self.select_pool_from_cost( cloud=cloud, cores_mcpu=req_cores_mcpu, memory_bytes=req_memory_bytes, storage_bytes=req_storage_bytes, preemptible=preemptible, ) else: assert machine_type and machine_type in valid_machine_types(cloud) assert worker_type is None result = self.select_job_private(cloud=cloud, machine_type=machine_type, storage_bytes=req_storage_bytes) return (result, None) ``` #### File: gear/gear/time_limited_max_size_cache.py ```python import asyncio import time from typing import Awaitable, Callable, Dict, Generic, TypeVar import prometheus_client as pc # type: ignore import sortedcontainers from prometheus_async.aio import time as prom_async_time # type: ignore CACHE_HITS = pc.Counter('cache_hits_count', 'Number of Cache Hits', ['cache_name']) CACHE_MISSES = pc.Counter('cache_misses_count', 'Number of Cache Hits', ['cache_name']) CACHE_EVICTIONS = pc.Counter('cache_evictions_count', 'Number of Cache Hits', ['cache_name']) CACHE_LOAD_LATENCY = pc.Summary( 'cache_load_latency_seconds', 'Latency of loading cache values in seconds', ['cache_name'] ) T = TypeVar('T') U = TypeVar('U') class TimeLimitedMaxSizeCache(Generic[T, U]): def __init__(self, load: Callable[[T], Awaitable[U]], lifetime_ns: int, num_slots: int, cache_name: str): assert lifetime_ns > 0 assert num_slots > 0 self.load = load self.lifetime_ns = lifetime_ns self.num_slots = num_slots self.cache_name = cache_name self._futures: Dict[T, asyncio.Future] = {} self._cache: Dict[T, U] = {} self._expiry_time: Dict[T, int] = {} self._keys_by_expiry = sortedcontainers.SortedSet(key=lambda k: self._expiry_time[k]) self._shutting_down = False async def shutdown(self): """Wait for all outstanding futures to complete and prevent new lookups. This class does not manage any resources itself and this function is *not required* to be called. """ self._shutting_down = True await asyncio.wait(self._futures.values()) assert len(self._futures) == 0 async def lookup(self, k: T) -> U: if self._shutting_down: raise ValueError('Cache is shutting down.') if k in self._expiry_time: assert k in self._cache if self._expiry_time[k] <= time.monotonic_ns(): self._remove(k) if k in self._cache: CACHE_HITS.labels(cache_name=self.cache_name).inc() return self._cache[k] CACHE_MISSES.labels(cache_name=self.cache_name).inc() if k in self._futures: return await self._futures[k] self._futures[k] = asyncio.create_task(self.load(k)) try: v = await prom_async_time(CACHE_LOAD_LATENCY.labels(cache_name=self.cache_name), self._futures[k]) finally: del self._futures[k] self._put(k, v) if self._over_capacity(): CACHE_EVICTIONS.labels(cache_name=self.cache_name).inc() self._evict_oldest() return v def _put(self, k: T, v: U) -> None: expiry_time = time.monotonic_ns() + self.lifetime_ns self._cache[k] = v self._expiry_time[k] = expiry_time self._keys_by_expiry.add(k) def _remove(self, k: T) -> None: del self._cache[k] self._keys_by_expiry.remove(k) del self._expiry_time[k] def _over_capacity(self) -> bool: return len(self._keys_by_expiry) > self.num_slots def _evict_oldest(self) -> None: oldest_key = self._keys_by_expiry[0] self._remove(oldest_key) ``` #### File: hail/fs/router_fs.py ```python from typing import List, AsyncContextManager, BinaryIO, Optional import asyncio import io from hailtop.aiotools.local_fs import LocalAsyncFSURL import nest_asyncio import os import functools import glob import fnmatch from hailtop.aiotools.fs import Copier, Transfer, FileListEntry, ReadableStream, WritableStream from hailtop.aiotools.local_fs import LocalAsyncFS from hailtop.aiotools.router_fs import RouterAsyncFS from hailtop.utils import bounded_gather, async_to_blocking from .fs import FS from .stat_result import FileType, StatResult class SyncReadableStream(io.RawIOBase, BinaryIO): # type: ignore # https://github.com/python/typeshed/blob/a40d79a4e63c4e750a8d3a8012305da942251eb4/stdlib/http/client.pyi#L81 def __init__(self, ars: ReadableStream, name: str): super().__init__() self.ars = ars self._mode = 'rb' self._name = name @property def mode(self): return self._mode @property def name(self): return self._name def close(self): self.ars.close() async_to_blocking(self.ars.wait_closed()) @property def closed(self) -> bool: return self.ars.closed def fileno(self) -> int: raise OSError def flush(self): pass def isatty(self): return False def readable(self): return True def seek(self, offset, whence=None): raise OSError def seekable(self): return False def tell(self): raise io.UnsupportedOperation def truncate(self): raise io.UnsupportedOperation def writable(self): return False def writelines(self, lines): raise OSError def read(self, size=-1) -> bytes: return async_to_blocking(self.ars.read(size)) def readall(self) -> bytes: return async_to_blocking(self.ars.read(-1)) def readinto(self, b): b[:] = async_to_blocking(self.ars.readexactly(len(b))) def write(self, b): raise OSError class SyncWritableStream(io.RawIOBase, BinaryIO): # type: ignore # https://github.com/python/typeshed/blob/a40d79a4e63c4e750a8d3a8012305da942251eb4/stdlib/http/client.pyi#L81 def __init__(self, cm: AsyncContextManager[WritableStream], name: str): super().__init__() self.cm = cm self.aws = async_to_blocking(self.cm.__aenter__()) self._mode = 'wb' self._name = name @property def mode(self): return self._mode @property def name(self): return self._name def close(self): self.aws.close() async_to_blocking(self.cm.__aexit__()) @property def closed(self) -> bool: return self.aws.closed def fileno(self) -> int: raise OSError def flush(self): pass def isatty(self): return False def readable(self): return False def readline(self, size=-1): raise OSError def readlines(self, hint=-1): raise OSError def seek(self, offset, whence=None): raise OSError def seekable(self): return False def tell(self): raise io.UnsupportedOperation def truncate(self): raise io.UnsupportedOperation def writable(self): return True def read(self, size=-1): raise OSError def readall(self): raise OSError def readinto(self, b): raise OSError def write(self, b): return async_to_blocking(self.aws.write(b)) def _stat_result(is_dir: bool, size_bytes: int, path: str) -> StatResult: return StatResult( path=path.rstrip('/'), size=size_bytes, typ=FileType.DIRECTORY if is_dir else FileType.FILE, owner=None, modification_time=None) class RouterFS(FS): def __init__(self, afs: RouterAsyncFS): nest_asyncio.apply() self.afs = afs def open(self, path: str, mode: str = 'r', buffer_size: int = 8192) -> io.IOBase: del buffer_size if mode not in ('r', 'rb', 'w', 'wb'): raise ValueError(f'Unsupported mode: {repr(mode)}') strm: io.IOBase if mode[0] == 'r': strm = SyncReadableStream(async_to_blocking(self.afs.open(path)), path) else: assert mode[0] == 'w' strm = SyncWritableStream(async_to_blocking(self.afs.create(path)), path) if 'b' not in mode: strm = io.TextIOWrapper(strm, encoding='utf-8') # type: ignore # typeshed is wrong, this *is* an IOBase return strm def copy(self, src: str, dest: str, *, max_simultaneous_transfers=75): transfer = Transfer(src, dest) async def _copy(): sema = asyncio.Semaphore(max_simultaneous_transfers) await Copier.copy(self.afs, sema, transfer) return async_to_blocking(_copy()) def exists(self, path: str) -> bool: async def _exists(): dir_path = path if dir_path[-1] != '/': dir_path = dir_path + '/' return any(await asyncio.gather( self.afs.isfile(path), self.afs.isdir(dir_path))) return async_to_blocking(_exists()) def is_file(self, path: str) -> bool: return async_to_blocking(self.afs.isfile(path)) async def _async_is_dir(self, path: str) -> bool: if path[-1] != '/': path = path + '/' return await self.afs.isdir(path) def is_dir(self, path: str) -> bool: return async_to_blocking(self._async_is_dir(path)) def stat(self, path: str) -> StatResult: size_bytes, is_dir = async_to_blocking(asyncio.gather( self._size_bytes_or_none(path), self._async_is_dir(path))) if size_bytes is None: if not is_dir: raise FileNotFoundError(path) return _stat_result(True, 0, path) return _stat_result(is_dir, size_bytes, path) async def _size_bytes_or_none(self, path: str): try: return await (await self.afs.statfile(path)).size() except FileNotFoundError: return None async def _fle_to_dict(self, fle: FileListEntry) -> StatResult: async def size(): try: return await (await fle.status()).size() except IsADirectoryError: return 0 return _stat_result( *await asyncio.gather(fle.is_dir(), size(), fle.url())) def ls(self, path: str, *, error_when_file_and_directory: bool = True, _max_simultaneous_files: int = 50) -> List[StatResult]: return async_to_blocking(self._async_ls( path, error_when_file_and_directory=error_when_file_and_directory, _max_simultaneous_files=_max_simultaneous_files)) async def _async_ls(self, path: str, *, error_when_file_and_directory: bool = True, _max_simultaneous_files: int = 50) -> List[StatResult]: async def ls_no_glob(path) -> List[StatResult]: return await self._ls_no_glob(path, error_when_file_and_directory=error_when_file_and_directory, _max_simultaneous_files=_max_simultaneous_files) url = self.afs.parse_url(path) if any(glob.escape(bucket_part) != bucket_part for bucket_part in url.bucket_parts): raise ValueError(f'glob pattern only allowed in path (e.g. not in bucket): {path}') blobpath = url.path if isinstance(url, LocalAsyncFSURL) and blobpath[0] != '/': blobpath = './' + blobpath components = blobpath.split('/') assert len(components) > 0 glob_components = [] running_prefix = [] for component in components: _raise_for_incomplete_glob_group(component, path) if glob.escape(component) == component: running_prefix.append(component) else: glob_components.append((running_prefix, component)) running_prefix = [] suffix_components: List[str] = running_prefix if len(url.bucket_parts) > 0: first_prefix = '/'.join([url.scheme + ':', '', *url.bucket_parts]) else: first_prefix = url.scheme + ':' cumulative_prefixes = [first_prefix] for intervening_components, single_component_glob_pattern in glob_components: cumulative_prefixes = [ stat.path for cumulative_prefix in cumulative_prefixes for stat in await ls_no_glob('/'.join([cumulative_prefix, *intervening_components])) if fnmatch.fnmatch(stat.path, '/'.join([cumulative_prefix, *intervening_components, single_component_glob_pattern])) ] return [stat for cumulative_prefix in cumulative_prefixes for stat in await ls_no_glob('/'.join([cumulative_prefix, *suffix_components]))] async def _ls_no_glob(self, path: str, *, error_when_file_and_directory: bool = True, _max_simultaneous_files: int = 50) -> List[StatResult]: async def ls_as_dir() -> Optional[List[StatResult]]: try: return await bounded_gather( *[functools.partial(self._fle_to_dict, fle) async for fle in await self.afs.listfiles(path)], parallelism=_max_simultaneous_files) except (FileNotFoundError, NotADirectoryError): return None maybe_size, maybe_contents = await asyncio.gather( self._size_bytes_or_none(path), ls_as_dir()) if maybe_size is not None: file_stat = _stat_result(False, maybe_size, path) if maybe_contents is not None: if error_when_file_and_directory: raise ValueError(f'{path} is both a file and a directory') return [file_stat, *maybe_contents] return [file_stat] if maybe_contents is None: raise FileNotFoundError(path) return maybe_contents def mkdir(self, path: str): return async_to_blocking(self.afs.mkdir(path)) def remove(self, path: str): return async_to_blocking(self.afs.remove(path)) def rmtree(self, path: str): return async_to_blocking(self.afs.rmtree(None, path)) def supports_scheme(self, scheme: str) -> bool: return scheme in self.afs.schemes def canonicalize_path(self, path: str) -> str: if isinstance(self.afs._get_fs(path), LocalAsyncFS): if path.startswith('file:'): return 'file:' + os.path.realpath(path[5:]) return 'file:' + os.path.realpath(path) return path def _raise_for_incomplete_glob_group(component: str, full_path: str): i = 0 n = len(component) open_group = False while i < n: c = component[i] if c == '[': open_group = True if c == ']': open_group = False i += 1 if open_group: raise ValueError(f'glob groups must not include forward slashes: {component} {full_path}') ``` #### File: hail/ir/ir.py ```python import copy from collections import defaultdict import decorator import hail from hail.expr.types import dtype, HailType, hail_type, tint32, tint64, \ tfloat32, tfloat64, tstr, tbool, tarray, tstream, tndarray, tset, tdict, \ tstruct, ttuple, tinterval, tvoid from hail.ir.blockmatrix_writer import BlockMatrixWriter, BlockMatrixMultiWriter from hail.typecheck import typecheck, typecheck_method, sequenceof, numeric, \ sized_tupleof, nullable, tupleof, anytype, func_spec from hail.utils.java import Env, HailUserError, warning from hail.utils.misc import escape_str, dump_json, parsable_strings, escape_id from .base_ir import BaseIR, IR, TableIR, MatrixIR, BlockMatrixIR, _env_bind from .matrix_writer import MatrixWriter, MatrixNativeMultiWriter from .renderer import Renderer, Renderable, ParensRenderer from .table_writer import TableWriter class I32(IR): @typecheck_method(x=int) def __init__(self, x): super().__init__() self.x = x def _eq(self, other): return self.x == other.x def copy(self): return I32(self.x) def head_str(self): return self.x def _compute_type(self, env, agg_env): self._type = tint32 class I64(IR): @typecheck_method(x=int) def __init__(self, x): super().__init__() self.x = x def _eq(self, other): return self.x == other.x def copy(self): return I64(self.x) def head_str(self): return self.x def _compute_type(self, env, agg_env): self._type = tint64 class F32(IR): @typecheck_method(x=numeric) def __init__(self, x): super().__init__() self.x = x def _eq(self, other): return self.x == other.x def copy(self): return F32(self.x) def head_str(self): return self.x def _compute_type(self, env, agg_env): self._type = tfloat32 class F64(IR): @typecheck_method(x=numeric) def __init__(self, x): super().__init__() self.x = x def _eq(self, other): return self.x == other.x def copy(self): return F64(self.x) def head_str(self): return self.x def _compute_type(self, env, agg_env): self._type = tfloat64 class Str(IR): @typecheck_method(x=str) def __init__(self, x): super().__init__() self.x = x def _eq(self, other): return self.x == other.x def copy(self): return Str(self.x) def head_str(self): return f'"{escape_str(self.x)}"' def _compute_type(self, env, agg_env): self._type = tstr class FalseIR(IR): def __init__(self): super().__init__() def copy(self): return FalseIR() def _ir_name(self): return 'False' def _compute_type(self, env, agg_env): self._type = tbool class TrueIR(IR): def __init__(self): super().__init__() def copy(self): return TrueIR() def _ir_name(self): return 'True' def _compute_type(self, env, agg_env): self._type = tbool class Void(IR): def __init__(self): super().__init__() def copy(self): return Void() def _compute_type(self, env, agg_env): self._type = tvoid class Cast(IR): @typecheck_method(v=IR, typ=hail_type) def __init__(self, v, typ): super().__init__(v) self.v = v self._typ = typ @property def typ(self): return self._typ def _eq(self, other): return self._typ == other._typ @typecheck_method(v=IR) def copy(self, v): return Cast(v, self.typ) def head_str(self): return self._typ._parsable_string() def _compute_type(self, env, agg_env): self.v._compute_type(env, agg_env) self._type = self._typ class NA(IR): @typecheck_method(typ=hail_type) def __init__(self, typ): super().__init__() self._typ = typ @property def typ(self): return self._typ def _eq(self, other): return self._typ == other._typ def copy(self): return NA(self._typ) def head_str(self): return self._typ._parsable_string() def _compute_type(self, env, agg_env): self._type = self._typ class IsNA(IR): @typecheck_method(value=IR) def __init__(self, value): super().__init__(value) self.value = value @typecheck_method(value=IR) def copy(self, value): return IsNA(value) def _compute_type(self, env, agg_env): self.value._compute_type(env, agg_env) self._type = tbool class If(IR): @typecheck_method(cond=IR, cnsq=IR, altr=IR) def __init__(self, cond, cnsq, altr): super().__init__(cond, cnsq, altr) self.cond = cond self.cnsq = cnsq self.altr = altr @typecheck_method(cond=IR, cnsq=IR, altr=IR) def copy(self, cond, cnsq, altr): return If(cond, cnsq, altr) def _compute_type(self, env, agg_env): self.cond._compute_type(env, agg_env) self.cnsq._compute_type(env, agg_env) self.altr._compute_type(env, agg_env) assert (self.cnsq.typ == self.altr.typ) self._type = self.cnsq.typ def renderable_new_block(self, i): return i == 1 or i == 2 class Coalesce(IR): @typecheck_method(values=IR) def __init__(self, *values): super().__init__(*values) self.values = values @typecheck_method(values=IR) def copy(self, *values): return Coalesce(*values) def _compute_type(self, env, agg_env): first, *rest = self.values first._compute_type(env, agg_env) for x in rest: x._compute_type(env, agg_env) assert x.typ == first.typ self._type = first.typ class Let(IR): @typecheck_method(name=str, value=IR, body=IR) def __init__(self, name, value, body): super().__init__(value, body) self.name = name self.value = value self.body = body @typecheck_method(value=IR, body=IR) def copy(self, value, body): return Let(self.name, value, body) def head_str(self): return escape_id(self.name) @property def bound_variables(self): return {self.name} | super().bound_variables def _eq(self, other): return other.name == self.name def _compute_type(self, env, agg_env): self.value._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = self.body._type def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.value._type else: value = default_value return {self.name: value} else: return {} class AggLet(IR): @typecheck_method(name=str, value=IR, body=IR, is_scan=bool) def __init__(self, name, value, body, is_scan): super().__init__(value, body) self.name = name self.value = value self.body = body self.is_scan = is_scan @typecheck_method(value=IR, body=IR) def copy(self, value, body): return AggLet(self.name, value, body, self.is_scan) def head_str(self): return escape_id(self.name) + " " + str(self.is_scan) @property def bound_variables(self): return {self.name} | super().bound_variables def _eq(self, other): return other.name == self.name and other.is_scan == self.is_scan def _compute_type(self, env, agg_env): self.value._compute_type(agg_env, None) self.body._compute_type(env, _env_bind(agg_env, {self.name: self.value._type})) self._type = self.body._type def renderable_agg_bindings(self, i, default_value=None): if not self.is_scan and i == 1: if default_value is None: value = self.value._type else: value = default_value return {self.name: value} else: return {} def renderable_scan_bindings(self, i, default_value=None): if self.is_scan and i == 1: if default_value is None: value = self.value._type else: value = default_value return {self.name: value} else: return {} def renderable_uses_agg_context(self, i: int) -> bool: return not self.is_scan and i == 0 def renderable_uses_scan_context(self, i: int) -> bool: return self.is_scan and i == 0 class Ref(IR): @typecheck_method(name=str) def __init__(self, name): super().__init__() self.name = name self._free_vars = {name} def copy(self): return Ref(self.name) def head_str(self): return escape_id(self.name) def _eq(self, other): return other.name == self.name def _compute_type(self, env, agg_env): self._type = env[self.name] class TopLevelReference(Ref): @typecheck_method(name=str) def __init__(self, name): super().__init__(name) @property def is_nested_field(self): return True def copy(self): return TopLevelReference(self.name) def _ir_name(self): return 'Ref' def _compute_type(self, env, agg_env): assert self.name in env, f'{self.name} not found in {env}' self._type = env[self.name] class TailLoop(IR): @typecheck_method(name=str, body=IR, params=sequenceof(sized_tupleof(str, IR))) def __init__(self, name, body, params): super().__init__(*([v for n, v in params] + [body])) self.name = name self.params = params self.body = body def copy(self, *children): params = children[:-1] body = children[-1] assert len(params) == len(self.params) return TailLoop(self.name, [(n, v) for (n, _), v in zip(self.params, params)], body) def head_str(self): return f'{escape_id(self.name)} ({" ".join([escape_id(n) for n, _ in self.params])})' def _eq(self, other): return self.name == other.name @property def bound_variables(self): return {n for n, _ in self.params} | {self.name} | super().bound_variables def _compute_type(self, env, agg_env): for _, b in self.params: b._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(len(self.params))), agg_env) self._type = self.body.typ def renderable_bindings(self, i, default_value=None): if i == len(self.params): if default_value is None: return {self.name: None, **{n: v.typ for n, v in self.params}} else: value = default_value return {self.name: value, **{n: value for n, _ in self.params}} else: return {} class Recur(IR): @typecheck_method(name=str, args=sequenceof(IR), return_type=hail_type) def __init__(self, name, args, return_type): super().__init__(*args) self.name = name self.args = args self.return_type = return_type self._free_vars = {name} def copy(self, args): return Recur(self.name, args, self.return_type) def head_str(self): return f'{escape_id(self.name)} {self.return_type._parsable_string()}' def _eq(self, other): return other.name == self.name def _compute_type(self, env, agg_env): assert self.name in env self._type = self.return_type class ApplyBinaryPrimOp(IR): @typecheck_method(op=str, left=IR, right=IR) def __init__(self, op, left, right): super().__init__(left, right) self.op = op self.left = left self.right = right @typecheck_method(left=IR, right=IR) def copy(self, left, right): return ApplyBinaryPrimOp(self.op, left, right) def head_str(self): return escape_id(self.op) def _eq(self, other): return other.op == self.op def _compute_type(self, env, agg_env): self.left._compute_type(env, agg_env) self.right._compute_type(env, agg_env) if self.op == '/': int_types = [tint32, tint64] if self.left.typ in int_types and self.right.typ in int_types: self._type = tfloat64 elif self.left.typ == tfloat64: self._type = tfloat64 else: self._type = tfloat32 else: self._type = self.left.typ class ApplyUnaryPrimOp(IR): @typecheck_method(op=str, x=IR) def __init__(self, op, x): super().__init__(x) self.op = op self.x = x @typecheck_method(x=IR) def copy(self, x): return ApplyUnaryPrimOp(self.op, x) def head_str(self): return escape_id(self.op) def _eq(self, other): return other.op == self.op def _compute_type(self, env, agg_env): self.x._compute_type(env, agg_env) self._type = self.x.typ class ApplyComparisonOp(IR): @typecheck_method(op=str, left=IR, right=IR) def __init__(self, op, left, right): super().__init__(left, right) self.op = op self.left = left self.right = right @typecheck_method(left=IR, right=IR) def copy(self, left, right): return ApplyComparisonOp(self.op, left, right) def head_str(self): return escape_id(self.op) def _eq(self, other): return other.op == self.op def _compute_type(self, env, agg_env): self.left._compute_type(env, agg_env) self.right._compute_type(env, agg_env) self._type = tbool class MakeArray(IR): @typecheck_method(args=sequenceof(IR), type=nullable(hail_type)) def __init__(self, args, type): super().__init__(*args) self.args = args self._type = type def copy(self, *args): return MakeArray(args, self._type) def head_str(self): return self._type._parsable_string() if self._type is not None else 'None' def _eq(self, other): return other._type == self._type def _compute_type(self, env, agg_env): for a in self.args: a._compute_type(env, agg_env) if self._type is None: self._type = tarray(self.args[0].typ) class ArrayRef(IR): @typecheck_method(a=IR, i=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, a, i, error_id=None, stack_trace=None): super().__init__(a, i) self.a = a self.i = i self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(a=IR, i=IR) def copy(self, a, i): return ArrayRef(a, i, self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.i._compute_type(env, agg_env) self._type = self.a.typ.element_type class ArraySlice(IR): @typecheck_method(a=IR, start=IR, stop=nullable(IR), step=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, a, start, stop, step, error_id=None, stack_trace=None): if stop is not None: super().__init__(a, start, stop, step) else: super().__init__(a, start, step) self.a = a self.start = start self.stop = stop self.step = step self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(a=IR, start=IR, stop=nullable(IR), step=IR) def copy(self, a, start, stop, step): return ArraySlice(a, start, stop, step, self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.start._compute_type(env, agg_env) if self.stop is not None: self.stop._compute_type(env, agg_env) self.step._compute_type(env, agg_env) self._type = self.a.typ class ArrayLen(IR): @typecheck_method(a=IR) def __init__(self, a): super().__init__(a) self.a = a @typecheck_method(a=IR) def copy(self, a): return ArrayLen(a) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tint32 class ArrayZeros(IR): @typecheck_method(length=IR) def __init__(self, length): super().__init__(length) self.length = length @typecheck_method(length=IR) def copy(self, length): return ArrayZeros(length) def _compute_type(self, env, agg_env): self.length._compute_type(env, agg_env) self._type = tarray(tint32) class StreamIota(IR): @typecheck_method(start=IR, step=IR, requires_memory_management_per_element=bool) def __init__(self, start, step, requires_memory_management_per_element=False): super().__init__(start, step) self.start = start self.step = step self.requires_memory_management_per_element = requires_memory_management_per_element @typecheck_method(start=IR, step=IR) def copy(self, start, step): return StreamIota(start, step, requires_memory_management_per_element=self.requires_memory_management_per_element) def head_str(self): return f'{self.requires_memory_management_per_element}' def _compute_type(self, env, agg_env): self.start._compute_type(env, agg_env) self.step._compute_type(env, agg_env) self._type = tstream(tint32) class StreamRange(IR): @typecheck_method(start=IR, stop=IR, step=IR, requires_memory_management_per_element=bool, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, start, stop, step, requires_memory_management_per_element=False, error_id=None, stack_trace=None): super().__init__(start, stop, step) self.start = start self.stop = stop self.step = step self.requires_memory_management_per_element = requires_memory_management_per_element self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(start=IR, stop=IR, step=IR) def copy(self, start, stop, step): return StreamRange(start, stop, step, error_id=self._error_id, stack_trace=self._stack_trace) def head_str(self): return f'{self._error_id} {self.requires_memory_management_per_element}' def _compute_type(self, env, agg_env): self.start._compute_type(env, agg_env) self.stop._compute_type(env, agg_env) self.step._compute_type(env, agg_env) self._type = tstream(tint32) class StreamGrouped(IR): @typecheck_method(stream=IR, group_size=IR) def __init__(self, stream, group_size): super().__init__(stream, group_size) self.stream = stream self.group_size = group_size @typecheck_method(stream=IR, group_size=IR) def copy(self, stream=IR, group_size=IR): return StreamGrouped(stream, group_size) def _compute_type(self, env, agg_env): self.stream._compute_type(env, agg_env) self._type = tstream(self.stream._type) class MakeNDArray(IR): @typecheck_method(data=IR, shape=IR, row_major=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, data, shape, row_major, error_id=None, stack_trace=None): super().__init__(data, shape, row_major) self.data = data self.shape = shape self.row_major = row_major self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(data=IR, shape=IR, row_major=IR) def copy(self, data, shape, row_major): return MakeNDArray(data, shape, row_major, self._error_id, self._stack_trace) def _compute_type(self, env, agg_env): self.data._compute_type(env, agg_env) self.shape._compute_type(env, agg_env) self.row_major._compute_type(env, agg_env) self._type = tndarray(self.data.typ.element_type, len(self.shape.typ)) def head_str(self): return f'{self._error_id}' class NDArrayShape(IR): @typecheck_method(nd=IR) def __init__(self, nd): super().__init__(nd) self.nd = nd @typecheck_method(nd=IR) def copy(self, nd): return NDArrayShape(nd) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self._type = ttuple(*[tint64 for _ in range(self.nd.typ.ndim)]) class NDArrayReshape(IR): @typecheck_method(nd=IR, shape=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, nd, shape, error_id=None, stack_trace=None): super().__init__(nd, shape) self.nd = nd self.shape = shape self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self, nd, shape): return NDArrayReshape(nd, shape, self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self.shape._compute_type(env, agg_env) self._type = tndarray(self.nd.typ.element_type, len(self.shape.typ)) class NDArrayMap(IR): @typecheck_method(nd=IR, name=str, body=IR) def __init__(self, nd, name, body): super().__init__(nd, body) self.nd = nd self.name = name self.body = body @typecheck_method(nd=IR, body=IR) def copy(self, nd, body): return NDArrayMap(nd, self.name, body) def head_str(self): return escape_id(self.name) def _eq(self, other): return self.name == other.name @property def bound_variables(self): return {self.name} | super().bound_variables def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = tndarray(self.body.typ, self.nd.typ.ndim) def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.nd.typ.element_type else: value = default_value return {self.name: value} else: return {} class NDArrayMap2(IR): @typecheck_method(left=IR, right=IR, lname=str, rname=str, body=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, left, right, lname, rname, body, error_id=None, stack_trace=None): super().__init__(left, right, body) self.right = right self.left = left self.lname = lname self.rname = rname self.body = body self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(l=IR, r=IR, body=IR) def copy(self, left, right, body): return NDArrayMap2(left, right, self.lname, self.rname, body, self._error_id, self._stack_trace) def head_str(self): return f'{self._error_id} {escape_id(self.lname)} {escape_id(self.rname)}' def _eq(self, other): return self.lname == other.lname and \ self.rname == other.rname @property def bound_variables(self): return {self.lname, self.rname} | super().bound_variables def _compute_type(self, env, agg_env): self.left._compute_type(env, agg_env) self.right._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(2)), agg_env) self._type = tndarray(self.body.typ, self.left.typ.ndim) def renderable_bindings(self, i, default_value=None): if i == 2: if default_value is None: return {self.lname: self.left.typ.element_type, self.rname: self.right.typ.element_type} else: return {self.lname: default_value, self.rname: default_value} else: return {} class NDArrayRef(IR): @typecheck_method(nd=IR, idxs=sequenceof(IR), error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, nd, idxs, error_id=None, stack_trace=None): super().__init__(nd, *idxs) self.nd = nd self.idxs = idxs self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self, *args): return NDArrayRef(args[0], args[1:], self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) [idx._compute_type(env, agg_env) for idx in self.idxs] self._type = self.nd.typ.element_type class NDArraySlice(IR): @typecheck_method(nd=IR, slices=IR) def __init__(self, nd, slices): super().__init__(nd, slices) self.nd = nd self.slices = slices def copy(self, nd, slices): return NDArraySlice(nd, slices) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self.slices._compute_type(env, agg_env) self._type = tndarray(self.nd.typ.element_type, len([t for t in self.slices.typ.types if isinstance(t, ttuple)])) class NDArrayReindex(IR): @typecheck_method(nd=IR, idx_expr=sequenceof(int)) def __init__(self, nd, idx_expr): super().__init__(nd) self.nd = nd self.idx_expr = idx_expr @typecheck_method(nd=IR) def copy(self, nd): return NDArrayReindex(nd, self.idx_expr) def head_str(self): return f'({" ".join([str(i) for i in self.idx_expr])})' def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) n_input_dims = self.nd.typ.ndim n_output_dims = len(self.idx_expr) assert n_input_dims <= n_output_dims assert all([i < n_output_dims for i in self.idx_expr]) assert all([i in self.idx_expr for i in range(n_output_dims)]) self._type = tndarray(self.nd.typ.element_type, n_output_dims) class NDArrayAgg(IR): @typecheck_method(nd=IR, axes=sequenceof(int)) def __init__(self, nd, axes): super().__init__(nd) self.nd = nd self.axes = axes @typecheck_method(nd=IR) def copy(self, nd): return NDArrayAgg(nd, self.axes) def head_str(self): return f'({" ".join([str(i) for i in self.axes])})' def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) assert len(set(self.axes)) == len(self.axes) assert all([axis < self.nd.typ.ndim for axis in self.axes]) self._type = tndarray(self.nd.typ.element_type, self.nd.typ.ndim - len(self.axes)) class NDArrayMatMul(IR): @typecheck_method(left=IR, right=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, left, right, error_id=None, stack_trace=None): super().__init__(left, right) self.left = left self.right = right self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(left=IR, right=IR) def copy(self, left, right): return NDArrayMatMul(left, right, self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.left._compute_type(env, agg_env) self.right._compute_type(env, agg_env) ndim = hail.linalg.utils.misc._ndarray_matmul_ndim(self.left.typ.ndim, self.right.typ.ndim) from hail.expr.expressions import unify_types self._type = tndarray(unify_types(self.left.typ.element_type, self.right.typ.element_type), ndim) class NDArrayQR(IR): @typecheck_method(nd=IR, mode=str, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, nd, mode, error_id=None, stack_trace=None): super().__init__(nd) self.nd = nd self.mode = mode self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self): return NDArrayQR(self.nd, self.mode, self._error_id, self._stack_trace) def head_str(self): return f'{self._error_id} "{self.mode}"' def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) if self.mode in ["complete", "reduced"]: self._type = ttuple(tndarray(tfloat64, 2), tndarray(tfloat64, 2)) elif self.mode == "raw": self._type = ttuple(tndarray(tfloat64, 2), tndarray(tfloat64, 1)) elif self.mode == "r": self._type = tndarray(tfloat64, 2) else: raise ValueError("Cannot compute type for mode: " + self.mode) class NDArraySVD(IR): @typecheck_method(nd=IR, full_matrices=bool, compute_uv=bool, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, nd, full_matrices, compute_uv, error_id=None, stack_trace=None): super().__init__(nd) self.nd = nd self.full_matrices = full_matrices self.compute_uv = compute_uv self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self): return NDArraySVD(self.nd, self.full_matrices, self.compute_uv, self._error_id, self._stack_trace) def head_str(self): return f'{self._error_id} {self.full_matrices} {self.compute_uv}' def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) if self.compute_uv: self._type = ttuple(tndarray(tfloat64, 2), tndarray(tfloat64, 1), tndarray(tfloat64, 2)) else: self._type = tndarray(tfloat64, 1) class NDArrayInv(IR): @typecheck_method(nd=IR, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, nd, error_id=None, stack_trace=None): super().__init__(nd) self.nd = nd self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self): return NDArrayInv(self.nd, self._error_id, self._stack_trace) def head_str(self): return str(self._error_id) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self._type = tndarray(tfloat64, 2) class NDArrayConcat(IR): @typecheck_method(nds=IR, axis=int) def __init__(self, nds, axis): super().__init__(nds) self.nds = nds self.axis = axis def copy(self): return NDArrayConcat(self.nds, self.axis) def head_str(self): return self.axis def _eq(self, other): return other.nds == self.nds and \ other.axis == self.axis def _compute_type(self, env, agg_env): self.nds._compute_type(env, agg_env) self._type = self.nds.typ.element_type class NDArrayWrite(IR): @typecheck_method(nd=IR, path=IR) def __init__(self, nd, path): super().__init__(nd, path) self.nd = nd self.path = path @typecheck_method(nd=IR, path=IR) def copy(self, nd, path): return NDArrayWrite(nd, path) def _compute_type(self, env, agg_env): self.nd._compute_type(env, agg_env) self.path._compute_type(env, agg_env) self._type = tvoid @staticmethod def is_effectful() -> bool: return True class ArraySort(IR): @typecheck_method(a=IR, l_name=str, r_name=str, compare=IR) def __init__(self, a, l_name, r_name, compare): super().__init__(a, compare) self.a = a self.l_name = l_name self.r_name = r_name self.compare = compare @typecheck_method(a=IR, compare=IR) def copy(self, a, compare): return ArraySort(a, self.l_name, self.r_name, compare) def head_str(self): return f'{escape_id(self.l_name)} {escape_id(self.r_name)}' @property def bound_variables(self): return {self.l_name, self.r_name} | super().bound_variables def _eq(self, other): return other.l_name == self.l_name and other.r_name == self.r_name def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tarray(self.a.typ.element_type) def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.a.typ.element_type else: value = default_value return {self.l_name: value, self.r_name: value} else: return {} class ToSet(IR): @typecheck_method(a=IR) def __init__(self, a): super().__init__(a) self.a = a @typecheck_method(a=IR) def copy(self, a): return ToSet(a) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tset(self.a.typ.element_type) class ToDict(IR): @typecheck_method(a=IR) def __init__(self, a): super().__init__(a) self.a = a @typecheck_method(a=IR) def copy(self, a): return ToDict(a) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tdict(self.a.typ['key'], self.a.typ['value']) class ToArray(IR): @typecheck_method(a=IR) def __init__(self, a): super().__init__(a) self.a = a @typecheck_method(a=IR) def copy(self, a): return ToArray(a) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tarray(self.a.typ.element_type) class CastToArray(IR): @typecheck_method(a=IR) def __init__(self, a): super().__init__(a) self.a = a @typecheck_method(a=IR) def copy(self, a): return CastToArray(a) def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tarray(self.a.typ.element_type) class ToStream(IR): @typecheck_method(a=IR, requires_memory_management_per_element=bool) def __init__(self, a, requires_memory_management_per_element=False): super().__init__(a) self.a = a self.requires_memory_management_per_element = requires_memory_management_per_element @typecheck_method(a=IR) def copy(self, a): return ToStream(a) def head_str(self): return self.requires_memory_management_per_element def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self._type = tstream(self.a.typ.element_type) class LowerBoundOnOrderedCollection(IR): @typecheck_method(ordered_collection=IR, elem=IR, on_key=bool) def __init__(self, ordered_collection, elem, on_key): super().__init__(ordered_collection, elem) self.ordered_collection = ordered_collection self.elem = elem self.on_key = on_key @typecheck_method(ordered_collection=IR, elem=IR) def copy(self, ordered_collection, elem): return LowerBoundOnOrderedCollection(ordered_collection, elem, self.on_key) def head_str(self): return self.on_key def _compute_type(self, env, agg_env): self.ordered_collection._compute_type(env, agg_env) self.elem._compute_type(env, agg_env) self._type = tint32 class GroupByKey(IR): @typecheck_method(collection=IR) def __init__(self, collection): super().__init__(collection) self.collection = collection @typecheck_method(collection=IR) def copy(self, collection): return GroupByKey(collection) def _compute_type(self, env, agg_env): self.collection._compute_type(env, agg_env) self._type = tdict(self.collection.typ.element_type.types[0], tarray(self.collection.typ.element_type.types[1])) class StreamMap(IR): @typecheck_method(a=IR, name=str, body=IR) def __init__(self, a, name, body): super().__init__(a, body) self.a = a self.name = name self.body = body @typecheck_method(a=IR, body=IR) def copy(self, a, body): return StreamMap(a, self.name, body) def head_str(self): return escape_id(self.name) def _eq(self, other): return self.name == other.name @property def bound_variables(self): return {self.name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = tstream(self.body.typ) def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.a.typ.element_type else: value = default_value return {self.name: value} else: return {} class StreamZip(IR): @typecheck_method(streams=sequenceof(IR), names=sequenceof(str), body=IR, behavior=str, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, streams, names, body, behavior, error_id=None, stack_trace=None): super().__init__(*streams, body) self.streams = streams self.names = names self.body = body self.behavior = behavior self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @typecheck_method(children=IR) def copy(self, *children): return StreamZip(children[:-1], self.names, children[-1], self.behavior, self._error_id, self._stack_trace) def head_str(self): return f'{self._error_id} {escape_id(self.behavior)} ({" ".join(map(escape_id, self.names))})' def _eq(self, other): return self.names == other.names and self.behavior == other.behavior @property def bound_variables(self): return set(self.names) | super().bound_variables def _compute_type(self, env, agg_env): for a in self.streams: a._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(len(self.names))), agg_env) self._type = tstream(self.body.typ) def renderable_bindings(self, i, default_value=None): if i == len(self.names): return {name: default_value if default_value is not None else a.typ.element_type for name, a in zip(self.names, self.streams)} else: return {} class StreamFilter(IR): @typecheck_method(a=IR, name=str, body=IR) def __init__(self, a, name, body): super().__init__(a, body) self.a = a self.name = name self.body = body @typecheck_method(a=IR, body=IR) def copy(self, a, body): return StreamFilter(a, self.name, body) def head_str(self): return escape_id(self.name) def _eq(self, other): return self.name == other.name @property def bound_variables(self): return {self.name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = self.a.typ def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.a.typ.element_type else: value = default_value return {self.name: value} else: return {} class StreamFlatMap(IR): @typecheck_method(a=IR, name=str, body=IR) def __init__(self, a, name, body): super().__init__(a, body) self.a = a self.name = name self.body = body @typecheck_method(a=IR, body=IR) def copy(self, a, body): return StreamFlatMap(a, self.name, body) def head_str(self): return escape_id(self.name) def _eq(self, other): return self.name == other.name @property def bound_variables(self): return {self.name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = tstream(self.body.typ.element_type) def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.a.typ.element_type else: value = default_value return {self.name: value} return {} class StreamFold(IR): @typecheck_method(a=IR, zero=IR, accum_name=str, value_name=str, body=IR) def __init__(self, a, zero, accum_name, value_name, body): super().__init__(a, zero, body) self.a = a self.zero = zero self.accum_name = accum_name self.value_name = value_name self.body = body @typecheck_method(a=IR, zero=IR, body=IR) def copy(self, a, zero, body): return StreamFold(a, zero, self.accum_name, self.value_name, body) def head_str(self): return f'{escape_id(self.accum_name)} {escape_id(self.value_name)}' def _eq(self, other): return other.accum_name == self.accum_name and \ other.value_name == self.value_name @property def bound_variables(self): return {self.accum_name, self.value_name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.zero._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(2)), agg_env) self._type = self.zero.typ def renderable_bindings(self, i, default_value=None): if i == 2: if default_value is None: return {self.accum_name: self.zero.typ, self.value_name: self.a.typ.element_type} else: return {self.accum_name: default_value, self.value_name: default_value} else: return {} class StreamScan(IR): @typecheck_method(a=IR, zero=IR, accum_name=str, value_name=str, body=IR) def __init__(self, a, zero, accum_name, value_name, body): super().__init__(a, zero, body) self.a = a self.zero = zero self.accum_name = accum_name self.value_name = value_name self.body = body @typecheck_method(a=IR, zero=IR, body=IR) def copy(self, a, zero, body): return StreamScan(a, zero, self.accum_name, self.value_name, body) def head_str(self): return f'{escape_id(self.accum_name)} {escape_id(self.value_name)}' def _eq(self, other): return other.accum_name == self.accum_name and \ other.value_name == self.value_name @property def bound_variables(self): return {self.accum_name, self.value_name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.zero._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(2)), agg_env) self._type = tstream(self.body.typ) def renderable_bindings(self, i, default_value=None): if i == 2: if default_value is None: return {self.accum_name: self.zero.typ, self.value_name: self.a.typ.element_type} else: return {self.accum_name: default_value, self.value_name: default_value} else: return {} class StreamJoinRightDistinct(IR): @typecheck_method(left=IR, right=IR, l_key=sequenceof(str), r_key=sequenceof(str), l_name=str, r_name=str, join=IR, join_type=str) def __init__(self, left, right, l_key, r_key, l_name, r_name, join, join_type): super().__init__(left, right, join) self.left = left self.right = right self.l_key = l_key self.r_key = r_key self.l_name = l_name self.r_name = r_name self.join = join self.join_type = join_type @typecheck_method(left=IR, right=IR, join=IR) def copy(self, left, right, join): return StreamJoinRightDistinct(left, right, self.l_key, self.r_key, self.l_name, self.r_name, join, self.join_type) def head_str(self): return '({}) ({}) {} {} {}'.format( ' '.join([escape_id(x) for x in self.l_key]), ' '.join([escape_id(x) for x in self.r_key]), self.l_name, self.r_name, self.join_type) def _eq(self, other): return other.l_name == self.l_name and \ other.r_name == self.r_name and \ other.join_type == self.join_type @property def bound_variables(self): return {self.l_name, self.r_name} | super().bound_variables def renderable_bindings(self, i, default_value=None): if i == 2: if default_value is None: return {self.l_name: self.left.typ.element_type, self.r_name: self.right.typ.element_type} else: return {self.l_name: default_value, self.r_name: default_value} else: return {} class StreamFor(IR): @typecheck_method(a=IR, value_name=str, body=IR) def __init__(self, a, value_name, body): super().__init__(a, body) self.a = a self.value_name = value_name self.body = body @typecheck_method(a=IR, body=IR) def copy(self, a, body): return StreamFor(a, self.value_name, body) def head_str(self): return escape_id(self.value_name) def _eq(self, other): return self.value_name == other.value_name @property def bound_variables(self): return {self.value_name} | super().bound_variables def _compute_type(self, env, agg_env): self.a._compute_type(env, agg_env) self.body._compute_type(_env_bind(env, self.bindings(1)), agg_env) self._type = tvoid def renderable_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.a.typ.element_type else: value = default_value return {self.value_name: value} else: return {} class AggFilter(IR): @typecheck_method(cond=IR, agg_ir=IR, is_scan=bool) def __init__(self, cond, agg_ir, is_scan): super().__init__(cond, agg_ir) self.cond = cond self.agg_ir = agg_ir self.is_scan = is_scan @typecheck_method(cond=IR, agg_ir=IR) def copy(self, cond, agg_ir): return AggFilter(cond, agg_ir, self.is_scan) def head_str(self): return str(self.is_scan) def _eq(self, other): return self.is_scan == other.is_scan def _compute_type(self, env, agg_env): self.cond._compute_type(agg_env, None) self.agg_ir._compute_type(env, agg_env) self._type = self.agg_ir.typ def renderable_uses_agg_context(self, i: int): return i == 0 and not self.is_scan def renderable_bindings(self, i, default_value=None): if i == 1: return {BaseIR.agg_capability: default_value} else: return {} def renderable_uses_scan_context(self, i: int): return i == 0 and self.is_scan @classmethod def uses_agg_capability(cls) -> bool: return True class AggExplode(IR): @typecheck_method(s=IR, name=str, agg_body=IR, is_scan=bool) def __init__(self, s, name, agg_body, is_scan): super().__init__(s, agg_body) self.name = name self.s = s self.agg_body = agg_body self.is_scan = is_scan @typecheck_method(s=IR, agg_body=IR) def copy(self, s, agg_body): return AggExplode(s, self.name, agg_body, self.is_scan) def head_str(self): return f'{escape_id(self.name)} {self.is_scan}' def _eq(self, other): return self.name == other.name and self.is_scan == other.is_scan @property def bound_variables(self): return {self.name} | super().bound_variables def _compute_type(self, env, agg_env): self.s._compute_type(agg_env, None) self.agg_body._compute_type(env, _env_bind(agg_env, self.agg_bindings(1))) self._type = self.agg_body.typ def renderable_bindings(self, i, default_value=None): if i == 1: return {BaseIR.agg_capability: default_value} else: return {} def renderable_agg_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.s.typ.element_type else: value = default_value return {self.name: value} else: return {} def renderable_scan_bindings(self, i, default_value=None): return self.renderable_agg_bindings(i, default_value) def renderable_uses_agg_context(self, i: int): return i == 0 and not self.is_scan def renderable_uses_scan_context(self, i: int): return i == 0 and self.is_scan @classmethod def uses_agg_capability(cls) -> bool: return True class AggGroupBy(IR): @typecheck_method(key=IR, agg_ir=IR, is_scan=bool) def __init__(self, key, agg_ir, is_scan): super().__init__(key, agg_ir) self.key = key self.agg_ir = agg_ir self.is_scan = is_scan @typecheck_method(key=IR, agg_ir=IR) def copy(self, key, agg_ir): return AggGroupBy(key, agg_ir, self.is_scan) def head_str(self): return str(self.is_scan) def _eq(self, other): return self.is_scan == other.is_scan def _compute_type(self, env, agg_env): self.key._compute_type(agg_env, None) self.agg_ir._compute_type(env, agg_env) self._type = tdict(self.key.typ, self.agg_ir.typ) def renderable_bindings(self, i, default_value=None): if i == 1: return {BaseIR.agg_capability: default_value} else: return {} def renderable_uses_agg_context(self, i: int): return i == 0 and not self.is_scan def renderable_uses_scan_context(self, i: int): return i == 0 and self.is_scan @classmethod def uses_agg_capability(cls) -> bool: return True class AggArrayPerElement(IR): @typecheck_method(array=IR, element_name=str, index_name=str, agg_ir=IR, is_scan=bool) def __init__(self, array, element_name, index_name, agg_ir, is_scan): super().__init__(array, agg_ir) self.array = array self.element_name = element_name self.index_name = index_name self.agg_ir = agg_ir self.is_scan = is_scan @typecheck_method(array=IR, agg_ir=IR) def copy(self, array, agg_ir): return AggArrayPerElement(array, self.element_name, self.index_name, agg_ir, self.is_scan) def head_str(self): return f'{escape_id(self.element_name)} {escape_id(self.index_name)} {self.is_scan} False' def _eq(self, other): return self.element_name == other.element_name and self.index_name == other.index_name and self.is_scan == other.is_scan def _compute_type(self, env, agg_env): self.array._compute_type(agg_env, None) self.agg_ir._compute_type(_env_bind(env, self.bindings(1)), _env_bind(agg_env, self.agg_bindings(1))) self._type = tarray(self.agg_ir.typ) @property def bound_variables(self): return {self.element_name, self.index_name} | super().bound_variables def renderable_uses_agg_context(self, i: int): return i == 0 and not self.is_scan def renderable_uses_scan_context(self, i: int): return i == 0 and self.is_scan @classmethod def uses_agg_capability(cls) -> bool: return True def renderable_bindings(self, i, default_value=None): if i == 1: value = tint32 if default_value is None else default_value return {self.index_name: value, BaseIR.agg_capability: default_value} else: return {} def renderable_agg_bindings(self, i, default_value=None): if i == 1: if default_value is None: value = self.array.typ.element_type else: value = default_value return {self.element_name: value} else: return {} def renderable_scan_bindings(self, i, default_value=None): return self.renderable_agg_bindings(i, default_value) def _register(registry, name, f): registry[name].append(f) _aggregator_registry = defaultdict(list) def register_aggregator(name, init_params, seq_params, ret_type): _register(_aggregator_registry, name, (init_params, seq_params, ret_type)) def lookup_aggregator_return_type(name, init_args, seq_args): if name in _aggregator_registry: fns = _aggregator_registry[name] for f in fns: (init_params, seq_params, ret_type) = f for p in init_params: p.clear() for p in seq_params: p.clear() if (all(p.unify(a) for p, a in zip(init_params, init_args)) and all(p.unify(a) for p, a in zip(seq_params, seq_args))): return ret_type.subst() raise KeyError(f'aggregator {name}({ ",".join([str(t) for t in seq_args]) }) not found') class BaseApplyAggOp(IR): @typecheck_method(agg_op=str, init_op_args=sequenceof(IR), seq_op_args=sequenceof(IR)) def __init__(self, agg_op, init_op_args, seq_op_args): super().__init__(*init_op_args, *seq_op_args) self.agg_op = agg_op self.init_op_args = init_op_args self.seq_op_args = seq_op_args def copy(self, *args): new_instance = self.__class__ n_seq_op_args = len(self.seq_op_args) init_op_args = args[:len(self.init_op_args)] seq_op_args = args[-n_seq_op_args:] return new_instance(self.agg_op, init_op_args, seq_op_args) def head_str(self): return f'{self.agg_op}' # Overloaded to add space after 'agg_op' even if there are no children. def render_head(self, r): return f'({self._ir_name()} {self.agg_op} ' def render_children(self, r): return [ ParensRenderer(self.init_op_args), ParensRenderer(self.seq_op_args) ] @property def aggregations(self): assert all(map(lambda c: len(c.aggregations) == 0, self.children)) return [self] def __eq__(self, other): return isinstance(other, self.__class__) and \ other.agg_op == self.agg_op and \ other.init_op_args == self.init_op_args and \ other.seq_op_args == self.seq_op_args def __hash__(self): return hash(tuple([self.agg_op, tuple(self.init_op_args), tuple(self.seq_op_args)])) def _compute_type(self, env, agg_env): for a in self.init_op_args: a._compute_type(env, agg_env) for a in self.seq_op_args: a._compute_type(agg_env, None) self._type = lookup_aggregator_return_type( self.agg_op, [a.typ for a in self.init_op_args], [a.typ for a in self.seq_op_args]) def renderable_new_block(self, i: int) -> bool: return i == 0 def renderable_idx_of_child(self, i: int) -> int: if i < len(self.init_op_args): return 0 return 1 @classmethod def uses_agg_capability(cls) -> bool: return True class ApplyAggOp(BaseApplyAggOp): @typecheck_method(agg_op=str, init_op_args=sequenceof(IR), seq_op_args=sequenceof(IR)) def __init__(self, agg_op, init_op_args, seq_op_args): super().__init__(agg_op, init_op_args, seq_op_args) def renderable_uses_agg_context(self, i: int): return i == 1 class ApplyScanOp(BaseApplyAggOp): @typecheck_method(agg_op=str, init_op_args=sequenceof(IR), seq_op_args=sequenceof(IR)) def __init__(self, agg_op, init_op_args, seq_op_args): super().__init__(agg_op, init_op_args, seq_op_args) def renderable_uses_scan_context(self, i: int): return i == 1 class AggFold(IR): @typecheck_method(zero=IR, seq_op=IR, comb_op=IR, accum_name=str, other_accum_name=str, is_scan=bool) def __init__(self, zero, seq_op, comb_op, accum_name, other_accum_name, is_scan): super().__init__(zero, seq_op, comb_op) self.zero = zero self.seq_op = seq_op self.comb_op = comb_op self.accum_name = accum_name self.other_accum_name = other_accum_name self.is_scan = is_scan if self.comb_op.free_vars - {accum_name, other_accum_name} != set([]): raise HailUserError("The comb_op function of fold cannot reference any fields on the Table or MatrixTable") def copy(self, zero, seq_op, comb_op): return AggFold(zero, seq_op, comb_op, self.accum_name, self.other_accum_name, self.is_scan) def head_str(self): return f"{self.accum_name} {self.other_accum_name} {self.is_scan}" def _compute_type(self, env, agg_env): self.zero._compute_type(env, agg_env) self.seq_op._compute_type(_env_bind(agg_env, self.bindings(1)), None) self.comb_op._compute_type(self.bindings(2), None) assert self.zero._type == self.seq_op._type assert self.zero._type == self.comb_op._type self._type = self.zero._type def renderable_bindings(self, i: int, default_value=None): dict_so_far = {} if i == 1 or i == 2: if default_value is None: dict_so_far[self.accum_name] = self.zero.typ else: dict_so_far[self.accum_name] = default_value if i == 2: if default_value is None: dict_so_far[self.other_accum_name] = self.zero.typ else: dict_so_far[self.other_accum_name] = default_value return dict_so_far def renderable_new_block(self, i: int) -> bool: return i > 0 class Begin(IR): @typecheck_method(xs=sequenceof(IR)) def __init__(self, xs): super().__init__(*xs) self.xs = xs def copy(self, *xs): return Begin(xs) def _compute_type(self, env, agg_env): for x in self.xs: x._compute_type(env, agg_env) self._type = tvoid class MakeStruct(IR): @typecheck_method(fields=sequenceof(sized_tupleof(str, IR))) def __init__(self, fields): super().__init__(*[ir for (n, ir) in fields]) self.fields = fields def copy(self, *irs): assert len(irs) == len(self.fields) return MakeStruct([(n, ir) for (n, _), ir in zip(self.fields, irs)]) def render_children(self, r): return [InsertFields.IFRenderField(escape_id(f), x) for f, x in self.fields] def __eq__(self, other): return isinstance(other, MakeStruct) \ and other.fields == self.fields def __hash__(self): return hash(tuple(self.fields)) def _compute_type(self, env, agg_env): for f, x in self.fields: x._compute_type(env, agg_env) self._type = tstruct(**{f: x.typ for f, x in self.fields}) class SelectFields(IR): @typecheck_method(old=IR, fields=sequenceof(str)) def __init__(self, old, fields): super().__init__(old) self.old = old self.fields = fields @typecheck_method(old=IR) def copy(self, old): return SelectFields(old, self.fields) def head_str(self): return '({})'.format(' '.join(map(escape_id, self.fields))) def _eq(self, other): return self.fields == other.fields def _compute_type(self, env, agg_env): self.old._compute_type(env, agg_env) self._type = self.old.typ._select_fields(self.fields) class InsertFields(IR): class IFRenderField(Renderable): def __init__(self, field, child): super().__init__() self.field = field self.child = child def render_head(self, r: Renderer): return f'({self.field} ' def render_tail(self, r: Renderer): return ')' def render_children(self, r: Renderer): return [self.child] @staticmethod @typecheck(old=IR, fields=sequenceof(sized_tupleof(str, IR)), field_order=nullable(sequenceof(str))) def construct_with_deduplication(old, fields, field_order): dd = defaultdict(int) for k, v in fields: if isinstance(v, GetField) and not isinstance(v.o, Ref): dd[v.o] += 1 replacements = {} lets = [] for k, v in dd.items(): if v > 1: uid = Env.get_uid() lets.append((uid, k)) replacements[k] = uid insert_irs = [] for k, v in fields: if isinstance(v, GetField) and v.o in replacements: insert_irs.append((k, GetField(Ref(replacements[v.o]), v.name))) else: insert_irs.append((k, v)) r = InsertFields(old, insert_irs, field_order) for uid, value in lets: r = Let(uid, value, r) return r @typecheck_method(old=IR, fields=sequenceof(sized_tupleof(str, IR)), field_order=nullable(sequenceof(str))) def __init__(self, old, fields, field_order): super().__init__(old, *[ir for (f, ir) in fields]) self.old = old self.fields = fields self.field_order = field_order def copy(self, *args): assert len(args) == len(self.fields) + 1 return InsertFields(args[0], [(n, ir) for (n, _), ir in zip(self.fields, args[1:])], self.field_order) def render_children(self, r): return [ self.old, hail.ir.RenderableStr( 'None' if self.field_order is None else parsable_strings(self.field_order)), *(InsertFields.IFRenderField(escape_id(f), x) for f, x in self.fields) ] def __eq__(self, other): return isinstance(other, InsertFields) and \ other.old == self.old and \ other.fields == self.fields and \ other.field_order == self.field_order def __hash__(self): return hash((self.old, tuple(self.fields), tuple(self.field_order) if self.field_order else None)) def _compute_type(self, env, agg_env): self.old._compute_type(env, agg_env) for f, x in self.fields: x._compute_type(env, agg_env) self._type = self.old.typ._insert_fields(**{f: x.typ for f, x in self.fields}) if self.field_order: self._type = tstruct(**{f: self._type[f] for f in self.field_order}) class GetField(IR): @typecheck_method(o=IR, name=str) def __init__(self, o, name): super().__init__(o) self.o = o self.name = name @typecheck_method(o=IR) def copy(self, o): return GetField(o, self.name) def head_str(self): return escape_id(self.name) def _eq(self, other): return self.name == other.name @property def is_nested_field(self): return self.o.is_nested_field def _compute_type(self, env, agg_env): self.o._compute_type(env, agg_env) self._type = self.o.typ[self.name] class MakeTuple(IR): @typecheck_method(elements=sequenceof(IR)) def __init__(self, elements): super().__init__(*elements) self.elements = elements def copy(self, *args): return MakeTuple(args) def head_str(self): return f'({" ".join([str(i) for i in range(len(self.elements))])})' def _compute_type(self, env, agg_env): for x in self.elements: x._compute_type(env, agg_env) self._type = ttuple(*[x.typ for x in self.elements]) class GetTupleElement(IR): @typecheck_method(o=IR, idx=int) def __init__(self, o, idx): super().__init__(o) self.o = o self.idx = idx @typecheck_method(o=IR) def copy(self, o): return GetTupleElement(o, self.idx) def head_str(self): return self.idx def _eq(self, other): return self.idx == other.idx def _compute_type(self, env, agg_env): self.o._compute_type(env, agg_env) self._type = self.o.typ.types[self.idx] class Die(IR): @typecheck_method(message=IR, typ=hail_type, error_id=nullable(int), stack_trace=nullable(str)) def __init__(self, message, typ, error_id=None, stack_trace=None): super().__init__(message) self.message = message self._typ = typ self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() @property def typ(self): return self._typ def copy(self, message): return Die(message, self._typ, self._error_id, self._stack_trace) def head_str(self): return f'{self._typ._parsable_string()} {self._error_id}' def _eq(self, other): return other._typ == self._typ def _compute_type(self, env, agg_env): self._type = self._typ @staticmethod def is_effectful() -> bool: return True class ConsoleLog(IR): @typecheck_method(message=IR, result=IR) def __init__(self, message, result): super().__init__(message, result) self.message = message self.result = result def _compute_type(self, env, agg_env): self.message._compute_type(env, agg_env) self.result._compute_type(env, agg_env) self._type = self.result._type def copy(self, message, result): return ConsoleLog(message, result) @staticmethod def is_effectful() -> bool: return True _function_registry = defaultdict(list) _seeded_function_registry = defaultdict(list) _udf_registry = dict() def clear_session_functions(): global _udf_registry for f in _udf_registry.values(): remove_function(f._name, f._param_types, f._ret_type, f._type_args) _udf_registry = dict() def remove_function(name, param_types, ret_type, type_args=()): f = (param_types, ret_type, type_args) bindings = _function_registry[name] bindings = [b for b in bindings if b != f] if not bindings: del _function_registry[name] else: _function_registry[name] = bindings def register_function(name, param_types, ret_type, type_args=()): _register(_function_registry, name, (param_types, ret_type, type_args)) def register_seeded_function(name, param_types, ret_type): _register(_seeded_function_registry, name, (param_types, ret_type)) def udf(*param_types): uid = Env.get_uid() @decorator.decorator def wrapper(__original_func, *args, **kwargs): registry = hail.ir.ir._udf_registry if uid in registry: f = registry[uid] else: f = hail.experimental.define_function(__original_func, *param_types, _name=uid) registry[uid] = f return f(*args, **kwargs) return wrapper class Apply(IR): @typecheck_method(function=str, return_type=hail_type, args=IR, error_id=nullable(int), stack_trace=nullable(str), type_args=tupleof(hail_type)) def __init__(self, function, return_type, *args, type_args=(), error_id=None, stack_trace=None,): super().__init__(*args) self.function = function self.return_type = return_type self.type_args = type_args self.args = args self._error_id = error_id self._stack_trace = stack_trace if error_id is None or stack_trace is None: self.save_error_info() def copy(self, *args): return Apply(self.function, self.return_type, *args, type_args=self.type_args, error_id=self._error_id, stack_trace=self._stack_trace,) def head_str(self): type_args = "(" + " ".join([a._parsable_string() for a in self.type_args]) + ")" return f'{self._error_id} {escape_id(self.function)} {type_args} {self.return_type._parsable_string()}' def _eq(self, other): return other.function == self.function and \ other.type_args == self.type_args and \ other.return_type == self.return_type def _compute_type(self, env, agg_env): for arg in self.args: arg._compute_type(env, agg_env) self._type = self.return_type class ApplySeeded(IR): @typecheck_method(function=str, seed=int, return_type=hail_type, args=IR) def __init__(self, function, seed, return_type, *args): if hail.current_backend().requires_lowering: warning("Seeded randomness is currently unreliable on the service. " "You may observe some unexpected behavior. Don't use for real work yet.") super().__init__(*args) self.function = function self.args = args self.seed = seed self.return_type = return_type def copy(self, *args): return ApplySeeded(self.function, self.seed, self.return_type, *args) def head_str(self): return f'{escape_id(self.function)} {self.seed} {self.return_type._parsable_string()}' def _eq(self, other): return other.function == self.function and \ other.seed == self.seed and \ other.return_type == self.return_type def _compute_type(self, env, agg_env): for arg in self.args: arg._compute_type(env, agg_env) self._type = self.return_type @staticmethod def is_effectful() -> bool: return True class TableCount(IR): @typecheck_method(child=TableIR) def __init__(self, child): super().__init__(child) self.child = child @typecheck_method(child=TableIR) def copy(self, child): return TableCount(child) def _compute_type(self, env, agg_env): self.child._compute_type() self._type = tint64 class TableGetGlobals(IR): @typecheck_method(child=TableIR) def __init__(self, child): super().__init__(child) self.child = child @typecheck_method(child=TableIR) def copy(self, child): return TableGetGlobals(child) def _compute_type(self, env, agg_env): self.child._compute_type() self._type = self.child.typ.global_type class TableCollect(IR): @typecheck_method(child=TableIR) def __init__(self, child): super().__init__(child) self.child = child @typecheck_method(child=TableIR) def copy(self, child): return TableCollect(child) def _compute_type(self, env, agg_env): self.child._compute_type() self._type = tstruct(**{'rows': tarray(self.child.typ.row_type), 'global': self.child.typ.global_type}) class TableAggregate(IR): @typecheck_method(child=TableIR, query=IR) def __init__(self, child, query): super().__init__(child, query) self.child = child self.query = query @typecheck_method(child=TableIR, query=IR) def copy(self, child, query): return TableAggregate(child, query) def _compute_type(self, env, agg_env): self.query._compute_type(self.child.typ.global_env(), self.child.typ.row_env()) self._type = self.query.typ def renderable_new_block(self, i: int): return i == 1 def renderable_bindings(self, i, default_value=None): if i == 1: env = self.child.typ.global_env(default_value) env[BaseIR.agg_capability] = default_value return env else: return {} def renderable_agg_bindings(self, i, default_value=None): return self.child.typ.row_env(default_value) if i == 1 else {} class MatrixCount(IR): @typecheck_method(child=MatrixIR) def __init__(self, child): super().__init__(child) self.child = child @typecheck_method(child=MatrixIR) def copy(self, child): return TableCount(child) def _compute_type(self, env, agg_env): self.child._compute_type() self._type = ttuple(tint64, tint32) class MatrixAggregate(IR): @typecheck_method(child=MatrixIR, query=IR) def __init__(self, child, query): super().__init__(child, query) self.child = child self.query = query @typecheck_method(child=MatrixIR, query=IR) def copy(self, child, query): return MatrixAggregate(child, query) def _compute_type(self, env, agg_env): self.query._compute_type(self.child.typ.global_env(), self.child.typ.entry_env()) self._type = self.query.typ def renderable_new_block(self, i: int): return i == 1 def renderable_bindings(self, i, default_value=None): if i == 1: env = self.child.typ.global_env(default_value) env[BaseIR.agg_capability] = default_value return env else: return {} def renderable_agg_bindings(self, i, default_value=None): return self.child.typ.entry_env(default_value) if i == 1 else {} class TableWrite(IR): @typecheck_method(child=TableIR, writer=TableWriter) def __init__(self, child, writer): super().__init__(child) self.child = child self.writer = writer @typecheck_method(child=TableIR) def copy(self, child): return TableWrite(child, self.writer) def head_str(self): return f'"{self.writer.render()}"' def _eq(self, other): return other.writer == self.writer def _compute_type(self, env, agg_env): self.child._compute_type() self._type = tvoid @staticmethod def is_effectful() -> bool: return True class MatrixWrite(IR): @typecheck_method(child=MatrixIR, matrix_writer=MatrixWriter) def __init__(self, child, matrix_writer): super().__init__(child) self.child = child self.matrix_writer = matrix_writer @typecheck_method(child=MatrixIR) def copy(self, child): return MatrixWrite(child, self.matrix_writer) def head_str(self): return f'"{self.matrix_writer.render()}"' def _eq(self, other): return other.matrix_writer == self.matrix_writer def _compute_type(self, env, agg_env): self.child._compute_type() self._type = tvoid @staticmethod def is_effectful() -> bool: return True class MatrixMultiWrite(IR): @typecheck_method(children=sequenceof(MatrixIR), writer=MatrixNativeMultiWriter) def __init__(self, children, writer): super().__init__(*children) self.writer = writer def copy(self, *children): return MatrixMultiWrite(children, self.writer) def head_str(self): return f'"{self.writer.render()}"' def _eq(self, other): return other.writer == self.writer def _compute_type(self, env, agg_env): for x in self.children: x._compute_type() self._type = tvoid @staticmethod def is_effectful() -> bool: return True class BlockMatrixCollect(IR): @typecheck_method(child=BlockMatrixIR) def __init__(self, child): super().__init__(child) self.child = child def copy(self, child): return BlockMatrixCollect(self.child) def _eq(self, other): return isinstance(other, BlockMatrixCollect) and self.child == other.child def _compute_type(self, env, agg_env): self.child._compute_type() self._type = tndarray(tfloat64, 2) class BlockMatrixWrite(IR): @typecheck_method(child=BlockMatrixIR, writer=BlockMatrixWriter) def __init__(self, child, writer): super().__init__(child) self.child = child self.writer = writer def copy(self, child): return BlockMatrixWrite(child, self.writer) def head_str(self): return f'"{self.writer.render()}"' def _eq(self, other): return self.writer == other.writer def _compute_type(self, env, agg_env): self.child._compute_type() self._type = self.writer._type() @staticmethod def is_effectful() -> bool: return True class BlockMatrixMultiWrite(IR): @typecheck_method(block_matrices=sequenceof(BlockMatrixIR), writer=BlockMatrixMultiWriter) def __init__(self, block_matrices, writer): super().__init__(*block_matrices) self.block_matrices = block_matrices self.writer = writer def copy(self, *block_matrices): return BlockMatrixMultiWrite(block_matrices, self.writer) def head_str(self): return f'"{self.writer.render()}"' def _eq(self, other): return self.writer == other.writer def _compute_type(self, env, agg_env): for x in self.block_matrices: x._compute_type() self._type = tvoid @staticmethod def is_effectful() -> bool: return True class TableToValueApply(IR): def __init__(self, child, config): super().__init__(child) self.child = child self.config = config @typecheck_method(child=TableIR) def copy(self, child): return TableToValueApply(child, self.config) def head_str(self): return dump_json(self.config) def _eq(self, other): return other.config == self.config def _compute_type(self, env, agg_env): name = self.config['name'] if name == 'ForceCountTable': self._type = tint64 elif name == 'TableCalculateNewPartitions': self._type = tarray(tinterval(self.child.typ.key_type)) else: assert name == 'NPartitionsTable', name self._type = tint32 class MatrixToValueApply(IR): def __init__(self, child, config): super().__init__(child) self.child = child self.config = config @typecheck_method(child=MatrixIR) def copy(self, child): return MatrixToValueApply(child, self.config) def head_str(self): return dump_json(self.config) def _eq(self, other): return other.config == self.config def _compute_type(self, env, agg_env): name = self.config['name'] if name == 'ForceCountMatrixTable': self._type = tint64 elif name == 'NPartitionsMatrixTable': self._type = tint32 elif name == 'MatrixExportEntriesByCol': self._type = tvoid else: assert name == 'MatrixWriteBlockMatrix', name self._type = tvoid class BlockMatrixToValueApply(IR): def __init__(self, child, config): super().__init__(child) self.child = child self.config = config @typecheck_method(child=BlockMatrixIR) def copy(self, child): new_instance = self.__class__ return new_instance(child, self.config) def head_str(self): return dump_json(self.config) def _eq(self, other): return other.config == self.config def _compute_type(self, env, agg_env): assert self.config['name'] == 'GetElement' self._type = tfloat64 class Literal(IR): @typecheck_method(typ=hail_type, value=anytype) def __init__(self, typ, value): super(Literal, self).__init__() self._typ: HailType = typ self.value = value def copy(self): return Literal(self._typ, self.value) def head_str(self): return f'{self._typ._parsable_string()} {dump_json(self._typ._convert_to_json_na(self.value))}' def _eq(self, other): return other._typ == self._typ and \ other.value == self.value def _compute_type(self, env, agg_env): self._type = self._typ class LiftMeOut(IR): @typecheck_method(child=IR) def __init__(self, child): super().__init__(child) self.child = child def copy(self, child): return LiftMeOut(child) def _compute_type(self, env, agg_env): self.child._compute_type(env, agg_env) self._type = self.child.typ class Join(IR): _idx = 0 @typecheck_method(virtual_ir=IR, temp_vars=sequenceof(str), join_exprs=sequenceof(anytype), join_func=func_spec(1, anytype)) def __init__(self, virtual_ir, temp_vars, join_exprs, join_func): super(Join, self).__init__(virtual_ir) self.virtual_ir = virtual_ir self.temp_vars = temp_vars self.join_exprs = join_exprs self.join_func = join_func self.idx = Join._idx Join._idx += 1 def copy(self, virtual_ir): # FIXME: This is pretty fucked, Joins should probably be tracked on Expression? new_instance = self.__class__ new_instance = new_instance(virtual_ir, self.temp_vars, self.join_exprs, self.join_func) new_instance.idx = self.idx return new_instance def search(self, criteria): matches = [] for e in self.join_exprs: matches += e._ir.search(criteria) matches += super(Join, self).search(criteria) return matches def render_head(self, r): return self.virtual_ir.render_head(r) def render_tail(self, r): return self.virtual_ir.render_tail(r) def render_children(self, r): return self.virtual_ir.render_children(r) def _compute_type(self, env, agg_env): self.virtual_ir._compute_type(env, agg_env) self._type = self.virtual_ir._type class JavaIR(IR): def __init__(self, jir): super(JavaIR, self).__init__() self._jir = jir super().__init__() def copy(self): return JavaIR(self._jir) def render_head(self, r): return f'(JavaIR{r.add_jir(self._jir)}' def _eq(self, other): return self._jir == other._jir def _compute_type(self, env, agg_env): self._type = dtype(self._jir.typ().toString()) def subst(ir, env, agg_env): def _subst(ir, env2=None, agg_env2=None): return subst(ir, env2 if env2 else env, agg_env2 if agg_env2 else agg_env) def delete(env, name): new_env = copy.deepcopy(env) if name in new_env: del new_env[name] return new_env if isinstance(ir, Ref): return env.get(ir.name, ir) elif isinstance(ir, Let): return Let(ir.name, _subst(ir.value), _subst(ir.body, delete(env, ir.name))) elif isinstance(ir, AggLet): return AggLet(ir.name, _subst(ir.value, agg_env, {}), _subst(ir.body, delete(env, ir.name)), ir.is_scan) elif isinstance(ir, StreamMap): return StreamMap(_subst(ir.a), ir.name, _subst(ir.body, delete(env, ir.name))) elif isinstance(ir, StreamFilter): return StreamFilter(_subst(ir.a), ir.name, _subst(ir.body, delete(env, ir.name))) elif isinstance(ir, StreamFlatMap): return StreamFlatMap(_subst(ir.a), ir.name, _subst(ir.body, delete(env, ir.name))) elif isinstance(ir, StreamFold): return StreamFold(_subst(ir.a), _subst(ir.zero), ir.accum_name, ir.value_name, _subst(ir.body, delete(delete(env, ir.accum_name), ir.value_name))) elif isinstance(ir, StreamScan): return StreamScan(_subst(ir.a), _subst(ir.zero), ir.accum_name, ir.value_name, _subst(ir.body, delete(delete(env, ir.accum_name), ir.value_name))) elif isinstance(ir, StreamFor): return StreamFor(_subst(ir.a), ir.value_name, _subst(ir.body, delete(env, ir.value_name))) elif isinstance(ir, AggFilter): return AggFilter(_subst(ir.cond, agg_env), _subst(ir.agg_ir, agg_env), ir.is_scan) elif isinstance(ir, AggExplode): return AggExplode(_subst(ir.s, agg_env), ir.name, _subst(ir.agg_body, delete(agg_env, ir.name), delete(agg_env, ir.name)), ir.is_scan) elif isinstance(ir, AggGroupBy): return AggGroupBy(_subst(ir.key, agg_env), _subst(ir.agg_ir, agg_env), ir.is_scan) elif isinstance(ir, ApplyAggOp): subst_init_op_args = [x.map_ir(lambda x: _subst(x)) for x in ir.init_op_args] subst_seq_op_args = [subst(x, agg_env, {}) for x in ir.seq_op_args] return ApplyAggOp(ir.agg_op, subst_init_op_args, subst_seq_op_args) elif isinstance(ir, AggFold): subst_seq_op = subst(ir.seq_op, agg_env, {}) return AggFold(ir.zero, subst_seq_op, ir.comb_op, ir.accum_name, ir.other_accum_name, ir.is_scan) elif isinstance(ir, AggArrayPerElement): return AggArrayPerElement(_subst(ir.array, agg_env), ir.element_name, ir.index_name, _subst(ir.agg_ir, delete(env, ir.index_name), delete(agg_env, ir.element_name)), ir.is_scan) else: assert isinstance(ir, IR) return ir.map_ir(lambda x: _subst(x)) ``` #### File: hail/methods/import_lines_helpers.py ```python from typing import List, Optional import hail as hl from hail.utils.misc import hl_plural, plural def split_lines( row: hl.StructExpression, fields: List[str], *, delimiter: str, missing: str, quote: str ) -> hl.ArrayExpression: split_array = row.text._split_line(delimiter, missing=missing, quote=quote, regex=len(delimiter) > 1) return ( hl.case() .when(hl.len(split_array) == len(fields), split_array) .or_error( hl.format( f'''error in number of fields found: in file %s Expected {len(fields)} {plural("field", len(fields))}, found %d %s on line: %s''', row.file, hl.len(split_array), hl_plural("field", hl.len(split_array)), row.text ) ) ) def match_comment(comment: str, line: hl.StringExpression) -> hl.Expression: if len(comment) == 1: return line.startswith(comment) return line.matches(comment, True) def should_remove_line( line: hl.StringExpression, *, filter: str, comment: List[str], skip_blank_lines: bool ) -> Optional[hl.BooleanExpression]: condition = None if filter is not None: condition = line.matches(filter) if len(comment) > 0: if condition is None: condition = hl.bool(False) for mark in comment: condition = condition | match_comment(mark, line) if skip_blank_lines: if condition is None: condition = hl.bool(False) condition = condition | (hl.len(line) == 0) return condition ``` #### File: hail/stats/linear_mixed_model.py ```python class LinearMixedModel(object): r"""Class representing a linear mixed model. .. warning:: This functionality is no longer implemented/supported as of Hail 0.2.94. """ def __init__(self, py, px, s, y=None, x=None, p_path=None): raise NotImplementedError("LinearMixedModel is no longer implemented/supported as of Hail 0.2.94") ``` #### File: hailtop/auth/auth.py ```python from typing import Optional, Dict, Tuple import os import aiohttp from hailtop.config import get_deploy_config, DeployConfig from hailtop.utils import async_to_blocking, request_retry_transient_errors from hailtop import httpx from .tokens import get_tokens def namespace_auth_headers(deploy_config: DeployConfig, ns: str, authorize_target: bool = True, *, token_file: Optional[str] = None ) -> Dict[str, str]: headers = {} if authorize_target: headers['Authorization'] = f'Bearer {get_tokens(token_file).namespace_token_or_error(ns)}' if deploy_config.location() == 'external' and ns != 'default': headers['X-Hail-Internal-Authorization'] = f'Bearer {get_tokens(token_file).namespace_token_or_error("default")}' return headers def service_auth_headers(deploy_config: DeployConfig, service: str, authorize_target: bool = True, *, token_file: Optional[str] = None ) -> Dict[str, str]: ns = deploy_config.service_ns(service) return namespace_auth_headers(deploy_config, ns, authorize_target, token_file=token_file) def deploy_config_and_headers_from_namespace(namespace: Optional[str] = None, *, authorize_target: bool = True) -> Tuple[DeployConfig, Dict[str, str], str]: deploy_config = get_deploy_config() if namespace is not None: deploy_config = deploy_config.with_default_namespace(namespace) else: namespace = deploy_config.default_namespace() headers = namespace_auth_headers(deploy_config, namespace, authorize_target=authorize_target) return (deploy_config, headers, namespace) async def async_get_userinfo(*, deploy_config: Optional[DeployConfig] = None, session_id: Optional[str] = None, client_session: Optional[httpx.ClientSession] = None): if deploy_config is None: deploy_config = get_deploy_config() if session_id is None: headers = service_auth_headers(deploy_config, 'auth') else: headers = {'Authorization': f'Bearer {session_id}'} userinfo_url = deploy_config.url('auth', '/api/v1alpha/userinfo') async def request(session): try: resp = await request_retry_transient_errors( session, 'GET', userinfo_url, headers=headers) return await resp.json() except aiohttp.client_exceptions.ClientResponseError as err: if err.status == 401: return None raise if client_session is None: async with httpx.client_session() as session: return await request(session) return await request(client_session) def get_userinfo(deploy_config=None, session_id=None, client_session=None): return async_to_blocking(async_get_userinfo( deploy_config=deploy_config, session_id=session_id, client_session=client_session)) def copy_paste_login(copy_paste_token: str, namespace: Optional[str] = None): return async_to_blocking(async_copy_paste_login(copy_paste_token, namespace)) async def async_copy_paste_login(copy_paste_token: str, namespace: Optional[str] = None): deploy_config, headers, namespace = deploy_config_and_headers_from_namespace(namespace, authorize_target=False) async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=5), headers=headers) as session: async with await request_retry_transient_errors( session, 'POST', deploy_config.url('auth', '/api/v1alpha/copy-paste-login'), params={'copy_paste_token': copy_paste_token}) as resp: data = await resp.json() token = data['token'] username = data['username'] tokens = get_tokens() tokens[namespace] = token dot_hail_dir = os.path.expanduser('~/.hail') if not os.path.exists(dot_hail_dir): os.mkdir(dot_hail_dir, mode=0o700) tokens.write() return namespace, username def get_user(username: str, namespace: Optional[str] = None) -> dict: return async_to_blocking(async_get_user(username, namespace)) async def async_get_user(username: str, namespace: Optional[str] = None) -> dict: deploy_config, headers, _ = deploy_config_and_headers_from_namespace(namespace) async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=30), headers=headers) as session: async with await request_retry_transient_errors( session, 'GET', deploy_config.url('auth', f'/api/v1alpha/users/{username}')) as resp: return await resp.json() def create_user(username: str, login_id: str, is_developer: bool, is_service_account: bool, namespace: Optional[str] = None): return async_to_blocking(async_create_user(username, login_id, is_developer, is_service_account, namespace=namespace)) async def async_create_user(username: str, login_id: str, is_developer: bool, is_service_account: bool, namespace: Optional[str] = None): deploy_config, headers, _ = deploy_config_and_headers_from_namespace(namespace) body = { 'login_id': login_id, 'is_developer': is_developer, 'is_service_account': is_service_account, } async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=30), headers=headers) as session: await request_retry_transient_errors( session, 'POST', deploy_config.url('auth', f'/api/v1alpha/users/{username}/create'), json=body ) def delete_user(username: str, namespace: Optional[str] = None): return async_to_blocking(async_delete_user(username, namespace=namespace)) async def async_delete_user(username: str, namespace: Optional[str] = None): deploy_config, headers, _ = deploy_config_and_headers_from_namespace(namespace) async with aiohttp.ClientSession( raise_for_status=True, timeout=aiohttp.ClientTimeout(total=300), headers=headers) as session: await request_retry_transient_errors( session, 'DELETE', deploy_config.url('auth', f'/api/v1alpha/users/{username}') ) ``` #### File: python/hailtop/httpx.py ```python from typing import Any, Tuple, Optional, Type, TypeVar, Generic, Callable, Union from types import TracebackType import orjson import aiohttp from .utils import async_to_blocking from .tls import internal_client_ssl_context, external_client_ssl_context from .config.deploy_config import get_deploy_config class ClientResponseError(aiohttp.ClientResponseError): def __init__(self, request_info: aiohttp.RequestInfo, history: Tuple[aiohttp.ClientResponse, ...], body: str = "", **kwargs): super().__init__(request_info, history, **kwargs) self.body = body def __str__(self) -> str: return (f"{self.status}, message={self.message!r}, " f"url={self.request_info.real_url!r} body={self.body!r}") def __repr__(self) -> str: args = f"{self.request_info!r}, {self.history!r}" if self.status != 0: args += f", status={self.status!r}" if self.message != "": args += f", message={self.message!r}" if self.headers is not None: args += f", headers={self.headers!r}" if self.body is not None: args += f", body={self.body!r}" return f"{type(self).__name__}({args})" class ClientResponse: def __init__(self, client_response: aiohttp.ClientResponse): self.client_response = client_response async def release(self) -> None: return await self.client_response.release() @property def closed(self) -> bool: return self.client_response.closed def close(self) -> None: return self.client_response.close() async def wait_for_close(self) -> None: return await self.wait_for_close() async def read(self) -> bytes: return await self.client_response.read() def get_encoding(self) -> str: return self.client_response.get_encoding() async def text(self, encoding: Optional[str] = None, errors: str = 'strict'): return await self.client_response.text(encoding=encoding, errors=errors) async def json(self): encoding = self.get_encoding() if encoding != 'utf-8': return await self.client_response.json() content_type = self.client_response.headers.get(aiohttp.hdrs.CONTENT_TYPE, None) assert content_type is None or content_type == 'application/json', self.client_response return orjson.loads(await self.read()) async def __aenter__(self) -> "ClientResponse": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: await self.release() class ClientSession: def __init__(self, *args, raise_for_status: bool = True, timeout: Union[aiohttp.ClientTimeout, float] = None, **kwargs): location = get_deploy_config().location() if location == 'external': tls = external_client_ssl_context() elif location == 'k8s': tls = internal_client_ssl_context() else: assert location in ('gce', 'azure') # no encryption on the internal gateway tls = external_client_ssl_context() assert 'connector' not in kwargs if timeout is None: timeout = aiohttp.ClientTimeout(total=5) self.raise_for_status = raise_for_status self.client_session = aiohttp.ClientSession( *args, timeout=timeout, raise_for_status=False, connector=aiohttp.TCPConnector(ssl=tls), **kwargs ) def request( self, method: str, url: aiohttp.client.StrOrURL, **kwargs: Any ) -> aiohttp.client._RequestContextManager: raise_for_status = kwargs.pop('raise_for_status', self.raise_for_status) async def request_and_raise_for_status(): json_data = kwargs.pop('json', None) if json_data is not None: if kwargs.get('data') is not None: raise ValueError( 'data and json parameters cannot be used at the same time') kwargs['data'] = aiohttp.BytesPayload( value=orjson.dumps(json_data), # https://github.com/ijl/orjson#serialize # # "The output is a bytes object containing UTF-8" encoding="utf-8", content_type="application/json", ) resp = await self.client_session._request(method, url, **kwargs) if raise_for_status: if resp.status >= 400: # reason should always be not None for a started response assert resp.reason is not None body = (await resp.read()).decode() await resp.release() raise ClientResponseError( resp.request_info, resp.history, status=resp.status, message=resp.reason, headers=resp.headers, body=body ) return resp return aiohttp.client._RequestContextManager(request_and_raise_for_status()) def ws_connect( self, *args, **kwargs ) -> aiohttp.client._WSRequestContextManager: return self.client_session.ws_connect(*args, **kwargs) def get( self, url: aiohttp.client.StrOrURL, *, allow_redirects: bool = True, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('GET', url, allow_redirects=allow_redirects, **kwargs) def options( self, url: aiohttp.client.StrOrURL, *, allow_redirects: bool = True, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('OPTIONS', url, allow_redirects=allow_redirects, **kwargs) def head( self, url: aiohttp.client.StrOrURL, *, allow_redirects: bool = False, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('HEAD', url, allow_redirects=allow_redirects, **kwargs) def post( self, url: aiohttp.client.StrOrURL, *, data: Any = None, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('POST', url, data=data, **kwargs) def put( self, url: aiohttp.client.StrOrURL, *, data: Any = None, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('PUT', url, data=data, **kwargs) def patch( self, url: aiohttp.client.StrOrURL, *, data: Any = None, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('PATCH', url, data=data, **kwargs) def delete( self, url: aiohttp.client.StrOrURL, **kwargs: Any ) -> aiohttp.client._RequestContextManager: return self.request('DELETE', url, **kwargs) async def close(self) -> None: await self.client_session.close() @property def closed(self) -> bool: return self.client_session.closed @property def cookie_jar(self) -> aiohttp.abc.AbstractCookieJar: return self.client_session.cookie_jar @property def version(self) -> Tuple[int, int]: return self.client_session.version async def __aenter__(self) -> "ClientSession": return self async def __aexit__( self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType], ) -> None: await self.client_session.__aexit__(exc_type, exc_val, exc_tb) def client_session(*args, **kwargs) -> ClientSession: return ClientSession(*args, **kwargs) def blocking_client_session(*args, **kwargs) -> 'BlockingClientSession': return BlockingClientSession(client_session(*args, **kwargs)) class BlockingClientResponse: def __init__(self, client_response: aiohttp.ClientResponse): self.client_response = client_response def read(self) -> bytes: return async_to_blocking(self.client_response.read()) def text(self, encoding: Optional[str] = None, errors: str = 'strict') -> str: return async_to_blocking(self.client_response.text( encoding=encoding, errors=errors)) def json(self, *, encoding: str = None, loads: aiohttp.typedefs.JSONDecoder = aiohttp.typedefs.DEFAULT_JSON_DECODER, content_type: Optional[str] = 'application/json') -> Any: return async_to_blocking(self.client_response.json( encoding=encoding, loads=loads, content_type=content_type)) def __del__(self): self.client_response.__del__() def history(self) -> Tuple[aiohttp.ClientResponse, ...]: return self.client_response.history def __repr__(self) -> str: return f'BlockingClientRepsonse({repr(self.client_response)})' @property def status(self) -> int: return self.client_response.status def raise_for_status(self) -> None: self.client_response.raise_for_status() class BlockingClientWebSocketResponse: def __init__(self, ws: aiohttp.ClientWebSocketResponse): self.ws = ws @property def closed(self) -> bool: return self.ws.closed @property def close_code(self) -> Optional[int]: return self.ws.close_code @property def protocol(self) -> Optional[str]: return self.ws.protocol @property def compress(self) -> int: return self.ws.compress @property def client_notakeover(self) -> bool: return self.ws.client_notakeover def get_extra_info(self, name: str, default: Any = None) -> Any: return self.ws.get_extra_info(name, default) def exception(self) -> Optional[BaseException]: return self.ws.exception() def ping(self, message: bytes = b'') -> None: async_to_blocking(self.ws.ping(message)) def pong(self, message: bytes = b'') -> None: async_to_blocking(self.ws.pong(message)) def send_str(self, data: str, compress: Optional[int] = None) -> None: return async_to_blocking(self.ws.send_str(data, compress)) def send_bytes(self, data: bytes, compress: Optional[int] = None) -> None: return async_to_blocking(self.ws.send_bytes(data, compress)) def send_json(self, data: Any, compress: Optional[int] = None, *, dumps: aiohttp.typedefs.JSONEncoder = aiohttp.typedefs.DEFAULT_JSON_ENCODER) -> None: return async_to_blocking(self.ws.send_json(data, compress, dumps=dumps)) def close(self, *, code: int = 1000, message: bytes = b'') -> bool: return async_to_blocking(self.ws.close(code=code, message=message)) def receive(self, timeout: Optional[float] = None) -> aiohttp.WSMessage: return async_to_blocking(self.ws.receive(timeout)) def receive_str(self, *, timeout: Optional[float] = None) -> str: return async_to_blocking(self.ws.receive_str(timeout=timeout)) def receive_bytes(self, *, timeout: Optional[float] = None) -> bytes: return async_to_blocking(self.ws.receive_bytes(timeout=timeout)) def receive_json(self, *, loads: aiohttp.typedefs.JSONDecoder = aiohttp.typedefs.DEFAULT_JSON_DECODER, timeout: Optional[float] = None) -> Any: return async_to_blocking(self.ws.receive_json(loads=loads, timeout=timeout)) def __iter__(self) -> 'BlockingClientWebSocketResponse': return self def __next__(self) -> aiohttp.WSMessage: try: return async_to_blocking(self.ws.__anext__()) except StopAsyncIteration as exc: raise StopIteration() from exc T = TypeVar('T') # pylint: disable=invalid-name U = TypeVar('U') # pylint: disable=invalid-name class AsyncToBlockingContextManager(Generic[T, U]): def __init__(self, context_manager, wrap: Callable[[T], U]): self.context_manager = context_manager self.wrap = wrap def __enter__(self) -> U: return self.wrap(async_to_blocking(self.context_manager.__aenter__())) def __exit__(self, exc_type: Optional[Type[BaseException]], exc: Optional[BaseException], tb: Optional[TracebackType]) -> None: async_to_blocking(self.context_manager.__aexit__(exc_type, exc, tb)) class BlockingClientResponseContextManager(AsyncToBlockingContextManager): def __init__(self, context_manager): super().__init__(context_manager, BlockingClientResponse) class BlockingClientWebSocketResponseContextManager(AsyncToBlockingContextManager): def __init__(self, context_manager): super().__init__(context_manager, BlockingClientWebSocketResponse) class BlockingClientSession: def __init__(self, session: ClientSession): self.session = session def request(self, method: str, url: aiohttp.typedefs.StrOrURL, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager( self.session.request(method, url, **kwargs)) def ws_connect(self, url: aiohttp.typedefs.StrOrURL, **kwargs: Any) -> BlockingClientWebSocketResponseContextManager: return BlockingClientWebSocketResponseContextManager( self.session.ws_connect(url, **kwargs)) def get(self, url: aiohttp.typedefs.StrOrURL, *, allow_redirects: bool = True, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager( self.session.get(url, allow_redirects=allow_redirects, **kwargs)) def options(self, url: aiohttp.typedefs.StrOrURL, *, allow_redirects: bool = True, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager( self.session.options(url, allow_redirects=allow_redirects, **kwargs)) def head(self, url: aiohttp.typedefs.StrOrURL, *, allow_redirects: bool = False, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager(self.session.head( url, allow_redirects=allow_redirects, **kwargs)) def post(self, url: aiohttp.typedefs.StrOrURL, *, data: Any = None, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager(self.session.post( url, data=data, **kwargs)) def put(self, url: aiohttp.typedefs.StrOrURL, *, data: Any = None, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager(self.session.put( url, data=data, **kwargs)) def patch(self, url: aiohttp.typedefs.StrOrURL, *, data: Any = None, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager(self.session.patch( url, data=data, **kwargs)) def delete(self, url: aiohttp.typedefs.StrOrURL, **kwargs: Any) -> BlockingClientResponseContextManager: return BlockingClientResponseContextManager(self.session.delete( url, **kwargs)) def close(self) -> None: async_to_blocking(self.session.close()) @property def closed(self) -> bool: return self.session.closed @property def cookie_jar(self) -> aiohttp.abc.AbstractCookieJar: return self.session.cookie_jar @property def version(self) -> Tuple[int, int]: return self.session.version def __enter__(self) -> 'BlockingClientSession': self.session = async_to_blocking(self.session.__aenter__()) return self def __exit__(self, exc_type: Optional[Type[BaseException]], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]) -> None: self.close() ``` #### File: hailtop/utils/tqdm.py ```python from typing import Union, Optional from enum import Enum class TqdmDisableOption(Enum): default = 0 def tqdm(*args, disable: Optional[Union[TqdmDisableOption, bool]] = TqdmDisableOption.default, **kwargs): from tqdm.notebook import tqdm as tqdm_notebook # pylint: disable=import-outside-toplevel from tqdm.auto import tqdm as tqdm_auto # pylint: disable=import-outside-toplevel # To tqdm_notebook, None means do not display. To standard tqdm, None means # display only when connected to a TTY. if disable == TqdmDisableOption.default: disable = False if tqdm_auto == tqdm_notebook else None return tqdm_auto(*args, disable=disable, **kwargs) ``` #### File: hail/utils/jsonx.py ```python import json import hail as hl class JSONEncoder(json.JSONEncoder): """JSONEncoder that supports some Hail types.""" def default(self, o): if isinstance(o, (hl.utils.frozendict, hl.utils.Struct)): return dict(o) if isinstance(o, hl.utils.Interval): return { "start": o.start, "end": o.end, "includes_start": o.includes_start, "includes_end": o.includes_end, } if isinstance(o, hl.genetics.Locus): return { "contig": o.contig, "position": o.position, "reference_genome": o.reference_genome, } if isinstance(o, hl.genetics.ReferenceGenome): return o.name return json.JSONEncoder.default(self, o) ``` #### File: hailtop/utils/test_utils.py ```python from hailtop.utils import (partition, url_basename, url_join, url_scheme, url_and_params, parse_docker_image_reference, grouped) from hailtop.utils.utils import digits_needed, unzip, filter_none, flatten def test_partition_zero_empty(): assert list(partition(0, [])) == [] def test_partition_even_small(): assert list(partition(3, range(3))) == [range(0, 1), range(1, 2), range(2, 3)] def test_partition_even_big(): assert list(partition(3, range(9))) == [range(0, 3), range(3, 6), range(6, 9)] def test_partition_uneven_big(): assert list(partition(2, range(9))) == [range(0, 5), range(5, 9)] def test_partition_toofew(): assert list(partition(6, range(3))) == [range(0, 1), range(1, 2), range(2, 3), range(3, 3), range(3, 3), range(3, 3)] def test_url_basename(): assert url_basename('/path/to/file') == 'file' assert url_basename('https://hail.is/path/to/file') == 'file' def test_url_join(): assert url_join('/path/to', 'file') == '/path/to/file' assert url_join('/path/to/', 'file') == '/path/to/file' assert url_join('/path/to/', '/absolute/file') == '/absolute/file' assert url_join('https://hail.is/path/to', 'file') == 'https://hail.is/path/to/file' assert url_join('https://hail.is/path/to/', 'file') == 'https://hail.is/path/to/file' assert url_join('https://hail.is/path/to/', '/absolute/file') == 'https://hail.is/absolute/file' def test_url_scheme(): assert url_scheme('https://hail.is/path/to') == 'https' assert url_scheme('/path/to') == '' def test_url_and_params(): assert url_and_params('https://example.com/') == ('https://example.com/', {}) assert url_and_params('https://example.com/foo?') == ('https://example.com/foo', {}) assert url_and_params('https://example.com/foo?a=b&c=d') == ('https://example.com/foo', {'a': 'b', 'c': 'd'}) def test_parse_docker_image_reference(): x = parse_docker_image_reference('animage') assert x.domain is None assert x.path == 'animage' assert x.tag is None assert x.digest is None assert x.name() == 'animage' assert str(x) == 'animage' x = parse_docker_image_reference('hailgenetics/animage') assert x.domain == 'hailgenetics' assert x.path == 'animage' assert x.tag is None assert x.digest is None assert x.name() == 'hailgenetics/animage' assert str(x) == 'hailgenetics/animage' x = parse_docker_image_reference('localhost:5000/animage') assert x.domain == 'localhost:5000' assert x.path == 'animage' assert x.tag is None assert x.digest is None assert x.name() == 'localhost:5000/animage' assert str(x) == 'localhost:5000/animage' x = parse_docker_image_reference('localhost:5000/a/b/name') assert x.domain == 'localhost:5000' assert x.path == 'a/b/name' assert x.tag is None assert x.digest is None assert x.name() == 'localhost:5000/a/b/name' assert str(x) == 'localhost:5000/a/b/name' x = parse_docker_image_reference('localhost:5000/a/b/name:tag') assert x.domain == 'localhost:5000' assert x.path == 'a/b/name' assert x.tag == 'tag' assert x.digest is None assert x.name() == 'localhost:5000/a/b/name' assert str(x) == 'localhost:5000/a/b/name:tag' x = parse_docker_image_reference('localhost:5000/a/b/name:tag@sha256:abc123') assert x.domain == 'localhost:5000' assert x.path == 'a/b/name' assert x.tag == 'tag' assert x.digest == 'sha256:abc123' assert x.name() == 'localhost:5000/a/b/name' assert str(x) == 'localhost:5000/a/b/name:tag@sha256:abc123' x = parse_docker_image_reference('localhost:5000/a/b/name@sha256:abc123') assert x.domain == 'localhost:5000' assert x.path == 'a/b/name' assert x.tag is None assert x.digest == 'sha256:abc123' assert x.name() == 'localhost:5000/a/b/name' assert str(x) == 'localhost:5000/a/b/name@sha256:abc123' x = parse_docker_image_reference('name@sha256:abc123') assert x.domain is None assert x.path == 'name' assert x.tag is None assert x.digest == 'sha256:abc123' assert x.name() == 'name' assert str(x) == 'name@sha256:abc123' x = parse_docker_image_reference('gcr.io/hail-vdc/batch-worker:123fds312') assert x.domain == 'gcr.io' assert x.path == 'hail-vdc/batch-worker' assert x.tag == '123fds312' assert x.digest is None assert x.name() == 'gcr.io/hail-vdc/batch-worker' assert str(x) == 'gcr.io/hail-vdc/batch-worker:123fds312' x = parse_docker_image_reference('us-docker.pkg.dev/my-project/my-repo/test-image') assert x.domain == 'us-docker.pkg.dev' assert x.path == 'my-project/my-repo/test-image' assert x.tag is None assert x.digest is None assert x.name() == 'us-docker.pkg.dev/my-project/my-repo/test-image' assert str(x) == 'us-docker.pkg.dev/my-project/my-repo/test-image' def test_grouped_size_0_groups_9_elements(): try: list(grouped(0, [1,2,3,4,5,6,7,8,9])) except ValueError: pass else: assert False def test_grouped_size_1_groups_9_elements(): actual = list(grouped(1, [1,2,3,4,5,6,7,8,9])) expected = [[1], [2], [3], [4], [5], [6], [7], [8], [9]] assert actual == expected def test_grouped_size_5_groups_9_elements(): actual = list(grouped(5, [1,2,3,4,5,6,7,8,9])) expected = [[1, 2, 3, 4, 5], [6, 7, 8, 9]] assert actual == expected def test_grouped_size_3_groups_0_elements(): actual = list(grouped(3,[])) expected = [] assert actual == expected def test_grouped_size_2_groups_1_elements(): actual = list(grouped(2,[1])) expected = [[1]] assert actual == expected def test_grouped_size_1_groups_0_elements(): actual = list(grouped(1,[0])) expected = [[0]] assert actual == expected def test_grouped_size_1_groups_5_elements(): actual = list(grouped(1,['abc', 'def', 'ghi', 'jkl', 'mno'])) expected = [['abc'], ['def'], ['ghi'], ['jkl'], ['mno']] assert actual == expected def test_grouped_size_2_groups_5_elements(): actual = list(grouped(2,['abc', 'def', 'ghi', 'jkl', 'mno'])) expected = [['abc', 'def'], ['ghi', 'jkl'], ['mno']] assert actual == expected def test_grouped_size_3_groups_6_elements(): actual = list(grouped(3,['abc', 'def', 'ghi', 'jkl', 'mno', ''])) expected = [['abc', 'def', 'ghi'], ['jkl', 'mno', '']] assert actual == expected def test_grouped_size_3_groups_7_elements(): actual = list(grouped(3,['abc', 'def', 'ghi', 'jkl', 'mno', 'pqr', 'stu'])) expected = [['abc', 'def', 'ghi'], ['jkl', 'mno', 'pqr'], ['stu']] assert actual == expected def test_unzip(): assert unzip([]) == ([], []) assert unzip([(0, 'a')]) == ([0], ['a']) assert unzip([(123, '')]) == ([123], ['']) assert unzip([(123, 'abc')]) == ([123], ['abc']) assert unzip([(123, 456), ('abc', 'def')]) == ([123, 'abc'], [456, 'def']) assert unzip([(123, 'abc'), (456, 'def'), (789, 'ghi')]) == ([123, 456, 789], ['abc', 'def', 'ghi']) def test_digits_needed(): assert digits_needed(0) == 1 assert digits_needed(1) == 1 assert digits_needed(12) == 2 assert digits_needed(333) == 3 assert digits_needed(100) == 3 assert digits_needed(3000) == 4 assert digits_needed(50000) == 5 def test_filter_none(): assert filter_none([]) == [] assert filter_none([None, []]) == [[]] assert filter_none([0, []]) == [0, []] assert filter_none([1, 2, [None]]) == [1, 2, [None]] assert filter_none([1, 3.5, 2, 4,]) == [1, 3.5, 2, 4] assert filter_none([1, 2, 3.0, None, 5]) == [1, 2, 3.0, 5] assert filter_none(['a', 'b', 'c', None]) == ['a', 'b', 'c'] assert filter_none([None, [None, [None, [None]]]]) == [[None, [None, [None]]]] def test_flatten(): assert flatten([]) == [] assert flatten([[]]) == [] assert flatten([[], []]) == [] assert flatten([[], [3]]) == [3] assert flatten([[1, 2, 3], [3], [4, 5]]) == [1, 2, 3, 3, 4, 5] assert flatten([['a', 'b', 'c'], ['d', 'e']]) == ['a', 'b', 'c', 'd', 'e'] assert flatten([[['a'], ['b']], [[1, 2, 3], [4, 5]]]) == [['a'], ['b'], [1, 2, 3], [4, 5]] assert flatten([['apples'], ['bannanas'], ['oranges']]) == ['apples', 'bannanas', 'oranges'] assert flatten([['apple', 'bannana'], ['a', 'b', 'c'], [1, 2, 3, 4]]) == ['apple', 'bannana', 'a', 'b', 'c', 1, 2, 3, 4] assert flatten([['apples'], [''], ['bannanas'], [''], ['oranges'], ['']]) == ['apples', '', 'bannanas', '', 'oranges', ''] ```
{ "source": "jkguiang/CMSMonitoring", "score": 2 }
#### File: python/CMSMonitoring/StompAMQ.py ```python from __future__ import print_function from __future__ import division import os import json import time import socket import random import logging try: import stomp except ImportError: print("No stomp module found") from uuid import uuid4 from CMSMonitoring.Validator import validate_schema, Schemas # global object which holds CMS Monitoring schemas _schemas = Schemas(update=3600, jsonschemas=False) _local_schemas = None def validate(doc, schema, logger): """ Helper function to validate given document against a schema Schemas are searched for locally, or within the central CMSMonitoring schemas. The provided schema name is compared to full file names and to their base file names (without extension). Return a list of offending keys and a list of unknown keys, or None, None if no validation has been performed. """ global _local_schemas if _local_schemas is None: # First time running, try to find the schema locally # Second time, _local_schemas will be a dictionary and this is skipped _local_schemas = {} if os.path.isfile(schema): try: _local_schemas[schema] = json.load(open(schema)) msg = 'Successfully loaded local schema {} for validation'.format(schema) logger.warn(msg) except ValueError: msg = 'Local schema {} is not json compliant'.format(schema) logger.error(msg) if schema in _local_schemas: return validate_schema(_local_schemas[schema], doc, logger) else: for sch in _schemas.schemas(): if schema in [sch, os.path.basename(sch).rsplit('.')[0]]: return validate_schema(_schemas.schemas()[sch], doc, logger) msg = "Schema not found: '{}'".format(schema) logger.error(msg) return None, None class StompyListener(object): """ Auxiliar listener class to fetch all possible states in the Stomp connection. """ def __init__(self, logger=None): logging.basicConfig(level=logging.debug) self.logger = logger if logger else logging.getLogger('StompyListener') def safe_headers(self, headers): "Return stripped headers" hdrs = dict(headers) for key in ['username', 'password', 'login', 'passcode']: if key in hdrs: hdrs[key] = 'xxx' return hdrs def on_connecting(self, host_and_port): "print debug message on_connecting" self.logger.debug('on_connecting %s', str(host_and_port)) def on_error(self, headers, message): "print debug message on_error" self.logger.debug('received an error HEADERS: %s, MESSAGE: %s', \ str(self.safe_headers(headers)), str(message)) def on_message(self, headers, body): "print debug message on_message" self.logger.debug('on_message HEADERS: %s BODY: %s', \ str(self.safe_headers(headers)), str(body)) def on_heartbeat(self): "print debug message on_heartbeat" self.logger.debug('on_heartbeat') def on_send(self, frame): "print debug message on_send" self.logger.debug('on_send HEADERS: %s, BODY: %s ...', \ str(self.safe_headers(frame.headers)), str(frame.body)[:160]) def on_connected(self, headers, body): "print debug message on_connected" self.logger.debug('on_connected HEADERS: %s, BODY: %s', \ str(self.safe_headers(headers)), str(body)) def on_disconnected(self): "print debug message on_disconnected" self.logger.debug('on_disconnected') def on_heartbeat_timeout(self): "print debug message on_heartbeat_timeout" self.logger.debug('on_heartbeat_timeout') def on_before_message(self, headers, body): "print debug message on_before_message" self.logger.debug('on_before_message HEADERS: %s, BODY: %s', \ str(self.safe_headers(headers)), str(body)) return (headers, body) def broker_ips(host, port): "Return broker IP addresses from provide host name" addr = [] for item in socket.getaddrinfo(host, int(port)): # each item is (family, socktype, proto, canonname, sockaddr) tuple # so we tack 4th element sockaddr # for IPv4 sockaddr is (address, port) # for IPv6 sockaddr is (address, port, flow info, scope id) # we are interested only in address addr.append(item[4][0]) return addr class StompAMQ(object): """ Class to generate and send notifications to a given Stomp broker and a given topic. :param username: The username to connect to the broker. :param password: The password to connect to the broker. :param producer: The 'producer' field in the notification header :param topic: The topic to be used on the broker :param validation_schema: schema to use for validation (filename of a valid json file). If 'None', skip any validation. Look for schema files locally, then in 'schemas/' folder in CMSMonitoring package or in folder defined in 'CMSMONITORING_SCHEMAS' environmental variable. :param host_and_ports: The hosts and ports list of the brokers. E.g.: [('cms-test-mb.cern.ch', 61313)] :param cert: path to certificate file :param key: path to key file :param validation_loglevel: logging level to use for validation feedback :param timeout_interval: provides timeout interval to failed broker :param ipv4_only: use ipv4 servers only """ # Version number to be added in header _version = '0.3' def __init__(self, username, password, producer, topic, validation_schema, host_and_ports=None, logger=None, cert=None, key=None, validation_loglevel=logging.WARNING, timeout_interval=600, ipv4_only=True): self._username = username self._password = password self._producer = producer self._topic = topic logging.basicConfig(level=validation_loglevel) self.logger = logger if logger else logging.getLogger('StompAMQ') self._host_and_ports = host_and_ports or [('cms-test-mb.cern.ch', 61313)] self.ip_and_ports = [] try: self.logger.info("host and ports: %s", repr(host_and_ports)) if isinstance(host_and_ports, list): for host, port in host_and_ports: for ipaddr in broker_ips(host, port): if (ipaddr, port) not in self.ip_and_ports: if ipv4_only: if ipaddr.find(':') == -1: self.ip_and_ports.append((ipaddr, port)) else: self.ip_and_ports.append((ipaddr, port)) self.logger.info("resolver: %s", self.ip_and_ports) except Exception as exp: self.logger.warn("unable to resolve host_and_ports: %s", str(exp)) self._cert = cert self._key = key self._use_ssl = True if key and cert else False # silence the INFO log records from the stomp library, until this issue gets fixed: # https://github.com/jasonrbriggs/stomp.py/issues/226 logging.getLogger("stomp.py").setLevel(logging.WARNING) self.validation_schema = validation_schema self.validation_loglevel = validation_loglevel if self.validation_schema is None: self.logger.warn('No document validation performed!') self.connections = [] if self.ip_and_ports: for idx in range(len(self.ip_and_ports)): host_and_ports = [self.ip_and_ports[idx]] try: conn = stomp.Connection(host_and_ports=host_and_ports) desc = 'host: %s' % host_and_ports if self._use_ssl: # This requires stomp >= 4.1.15 conn.set_ssl(for_hosts=host_and_ports, \ key_file=self._key, cert_file=self._cert) desc = 'host: %s, ckey: %s, cert: %s' \ % (host_and_ports, self._key, self._cert) self.connections.append((conn, desc)) except Exception as exp: msg = 'Fail to connect to message broker\n' msg += 'Host: %s\n' % str(host_and_ports) msg += 'Error: %s' % str(exp) self.logger.warn(msg) else: try: conn = stomp.Connection(host_and_ports=self._host_and_ports) desc = 'host: %s' % self._host_and_ports if self._use_ssl: # This requires stomp >= 4.1.15 conn.set_ssl(for_hosts=self._host_and_ports, \ key_file=self._key, cert_file=self._cert) desc = 'host: %s, ckey: %s, cert: %s' \ % (self._host_and_ports, self._key, self._cert) self.connections.append((conn, desc)) except Exception as exp: msg = 'Fail to connect to message broker\n' msg += 'Host: %s\n' % str(self._host_and_ports) msg += 'Error: %s' % str(exp) self.logger.warn(msg) self.timeouts = {} self.timeout_interval = timeout_interval def connect(self): "Connect to the brokers" available_connections = [] for conn, desc in self.connections: # check if we already connected, if so make it available and proceed if conn.is_connected(): available_connections.append(conn) continue conn.set_listener('StompyListener', StompyListener(self.logger)) # check if our connection failed before # if so we'll wait until timeout_interval is passed if conn in self.timeouts and \ abs(self.timeouts[conn] - time.time()) < self.timeout_interval: continue try: conn.start() # If cert/key are used, ignore username and password if self._use_ssl: conn.connect(wait=True) else: conn.connect(username=self._username, passcode=self._password, wait=True) available_connections.append(conn) # we succeed to connect to broker, remove any record in timeout dict if conn in self.timeouts: del self.timeouts[conn] self.logger.debug("Connection to %s is successful", repr(self._host_and_ports)) except Exception as exc: tstamp = time.strftime("%b %d %Y %H:%M:%S GMT", time.gmtime()) msg = "%s, connection to %s failed, error: %s" \ % (tstamp, desc, str(exc)) self.logger.error(msg) # record that our connection has failed self.timeouts[conn] = time.time() if not available_connections: return None # return random connection idx = random.randint(0, len(available_connections)-1) self.logger.debug("available connections %s, con_id %s", len(available_connections), idx) return available_connections[idx] def disconnect(self): "Disconnect from brokers" for conn, _ in self.connections: if conn.is_connected(): conn.disconnect() def send(self, data): """ Connect to the stomp host and send a single notification (or a list of notifications). :param data: Either a single notification (as returned by `make_notification`) or a list of such. :return: a list of notification bodies that failed to send """ # If only a single notification, put it in a list if isinstance(data, dict) and 'body' in data: data = [data] failedNotifications = [] for notification in data: conn = self.connect() # provide random connection to brokers if conn: result = self._send_single(conn, notification) if result: failedNotifications.append(result) self.disconnect() # disconnect all available connections to brokers if failedNotifications: self.logger.warning('Failed to send to %s %i docs out of %i', repr(self._host_and_ports), len(failedNotifications), len(data)) return failedNotifications def _send_single(self, conn, notification): """ Send a single notification to `conn` :param conn: An already connected stomp.Connection :param notification: A dictionary as returned by `make_notification` :return: The notification body in case of failure, or else None """ try: body = notification.pop('body') conn.send(destination=self._topic, headers=notification, body=json.dumps(body), ack='auto') self.logger.debug('Notification %s sent', str(notification)) except Exception as exc: self.logger.error('Notification: %s (type=%s) not send, error: %s', \ str(notification), type(notification), str(exc)) return def make_notification(self, payload, docType, docId=None, \ producer=None, ts=None, metadata=None, \ dataSubfield="data", schema=None, \ dropOffendingKeys=False, dropUnknownKeys=False): """ Produce a notification from a single payload, adding the necessary headers and metadata. Generic metadata is generated to include a timestamp, producer name, document id, and a unique id. User can pass additional metadata which updates the generic metadata. If payload already contains a metadata field, it is overwritten. :param payload: Actual data. :param docType: document type for metadata. :param docId: document id representing the notification. If none provided, a unique id is created. :param producer: The notification producer name, taken from the StompAMQ instance producer name by default. :param ts: timestamp to be added to metadata. Set as time.time() by default :param metadata: dictionary of user metadata to be added. (Updates generic metadata.) :param dataSubfield: field name to use for the actual data. If none, the data is put directly in the body. Default is "data" :param schema: Use this schema template to validate the payload. This should be the name of a json file looked for locally, or inside the folder defined in the 'CMSMONITORING_SCHEMAS' environment variable, or one of the defaults provided with the CMSMonitoring package. If 'None', the schema from the StompAMQ instance is applied. If that is also 'None', no validation is performed. :param dropOffendingKeys: Drop keys that failed validation from the notification :param dropUnknownKeys: Drop keys not present in schema from the notification :return: a single notifications with the proper headers and metadata and lists of offending and unknown keys """ producer = producer or self._producer umetadata = metadata or {} ts = ts or int(time.time()) uuid = str(uuid4()) docId = docId or uuid # Validate the payload schema = schema or self.validation_schema offending_keys, unknown_keys = [], [] if schema: offending_keys, unknown_keys = validate(payload, schema, self.logger) if offending_keys: msg = "Document {} conflicts with schema '{}'".format(docId, schema) self.logger.warn(msg) if dropOffendingKeys: for key in offending_keys: payload.pop(key) if unknown_keys: msg = "Document {} contains keys not present in schema '{}'".format(docId, schema) self.logger.warn(msg) if dropUnknownKeys: for key in unknown_keys: payload.pop(key) headers = {'type': docType, 'version': self._version, 'producer': producer} metadata = {'timestamp': ts, 'producer': producer, '_id': docId, 'uuid': uuid} metadata.update(umetadata) body = {} if dataSubfield: body[dataSubfield] = payload else: body.update(payload) body['metadata'] = metadata notification = {} notification.update(headers) notification['body'] = body return notification, offending_keys, unknown_keys ```
{ "source": "jkguiang/rtt-lab", "score": 2 }
#### File: hgg/selections/gen_selections.py ```python import awkward as ak def set_genZ(events, selection_options, debug): electron_idxs = abs(events.GenPart_pdgId) == 11 muon_idxs = abs(events.GenPart_pdgId) == 13 tau_idxs = abs(events.GenPart_pdgId) == 15 motherOfElectrons = events.GenPart_genPartIdxMother[electron_idxs] motherOfMuons = events.GenPart_genPartIdxMother[muon_idxs] motherOfTaus = events.GenPart_genPartIdxMother[tau_idxs] ZToEleEvents = ak.sum((events.GenPart_pdgId[motherOfElectrons] == 23), axis=1) >= 2 ZToMuEvents = ak.sum((events.GenPart_pdgId[motherOfMuons] == 23), axis=1) >= 2 ZToTauEvents = ak.sum((events.GenPart_pdgId[motherOfTaus] == 23), axis=1) >= 2 events["genZ_decayMode"] = 1 * ZToEleEvents + 2 * ZToMuEvents + 3 * ZToTauEvents return events ``` #### File: hgg/selections/photon_selections.py ```python import awkward import numpy import numba import hgg.selections.selection_utils as utils """ Notes: for some reason, event-level and object-level cuts seem to interfere with each other. E.g. if I do events = events[event_cut1] events.Photon = events.Photon[object_cut1] events = events[event_cut2] events will regain some of the photons that were eliminated in object_cut1 For this reason, all selections should be done in the following way: 1. Perform event-level selections (may include object-level quantities, e.g. 2 photons with pt/mgg > 0.25) 2. Trim objects with object-level selections afterwards """ def create_selected_photons(photons, branches, debug): map = {} for branch in branches: if "selectedPhoton" not in branch: continue key = branch.replace("selectedPhoton_","") map[key] = photons[branch] selected_photons = awkward.zip(map) return selected_photons def select_photons(events, photons, options, debug): #cut_diagnostics = utils.ObjectCutDiagnostics(objects = photons, cut_set = "[photon_selections.py : select_photons]", debug = debug) pt_cut = photons.pt > options["photons"]["pt"] eta_cut1 = abs(photons.eta) < options["photons"]["eta"] eta_cut2 = abs(photons.eta) < options["photons"]["transition_region_eta"][0] eta_cut3 = abs(photons.eta) > options["photons"]["transition_region_eta"][1] eta_cut = eta_cut1 & (eta_cut2 | eta_cut3) idmva_cut = photons.mvaID > options["photons"]["idmva_cut"] eveto_cut = photons.electronVeto >= options["photons"]["eveto_cut"] photon_cut = pt_cut & eta_cut & idmva_cut & eveto_cut #cut_diagnostics.add_cuts([pt_cut, eta_cut, idmva_cut, eveto_cut, photon_cut], ["pt > 25", "|eta| < 2.5", "idmva", "eveto", "all"]) return photon_cut def set_photons(events, photons, debug): events["lead_pho_ptmgg"] = photons.pt[:,0] / events.gg_mass events["sublead_pho_ptmgg"] = photons.pt[:,1] / events.gg_mass events["lead_pho_eta"] = photons.eta[:,0] events["sublead_pho_eta"] = photons.eta[:,1] events["lead_pho_idmva"] = photons.mvaID[:,0] events["sublead_pho_idmva"] = photons.mvaID[:,1] events["lead_pixelSeed"] = photons.pixelSeed[:,0] events["sublead_pixelSeed"] = photons.pixelSeed[:,1] return events ```
{ "source": "JKGu/perspective", "score": 2 }
#### File: tests/manager/test_session.py ```python import json import random from perspective import Table, PerspectiveManager data = {"a": [1, 2, 3], "b": ["a", "b", "c"]} class TestPerspectiveSession(object): def post(self, msg): '''boilerplate callback to simulate a client's `post()` method.''' msg = json.loads(msg) print("self.post: ", msg) assert msg["id"] is not None def validate_post(self, msg, expected=None): msg = json.loads(msg) if expected: assert msg == expected # test session def test_session_new_session(self, sentinel): s = sentinel(False) def handle_to_dict(msg): s.set(True) message = json.loads(msg) assert message["data"] == data message = {"id": 1, "table_name": "table1", "view_name": "view1", "cmd": "view"} manager = PerspectiveManager() session = manager.new_session() client_id = session.client_id table = Table(data) manager.host_table("table1", table) # create a view through the session to make sure it has a client id session.process(message, self.post) # make sure the client ID is attached to the new view assert len(manager._views.keys()) == 1 assert manager.get_view("view1")._client_id == client_id to_dict_message = {"id": 2, "name": "view1", "cmd": "view_method", "method": "to_dict"} session.process(to_dict_message, handle_to_dict) assert s.get() is True def test_session_multiple_new_sessions(self, sentinel): s = sentinel(0) def handle_to_dict(msg): s.set(s.get() + 1) message = json.loads(msg) assert message["data"] == { "a": [1, 2, 3, 1, 2, 3], "b": ["a", "b", "c", "str1", "str2", "str3"] } manager = PerspectiveManager() sessions = [manager.new_session() for i in range(5)] table = Table(data) manager.host_table("table1", table) # create a view on each session for i, session in enumerate(sessions): # IDs have to conflict - each viewer will send the first message as # ID = 1, so we need to make sure we handle that. msg = {"id": 1, "table_name": "table1", "view_name": "view" + str(i), "cmd": "view"} session.process(msg, self.post) manager_views = list(manager._views.keys()) for key in ["view" + str(i) for i in range(5)]: assert key in manager_views for i, session in enumerate(sessions): view = manager.get_view("view" + str(i)) assert view._client_id == session.client_id # arbitrarily do an update random_session_id = random.randint(0, 4) update_message = {"id": 2, "name": "table1", "cmd": "table_method", "method": "update", "args": [{"a": [1, 2, 3], "b": ["str1", "str2", "str3"]}]} sessions[random_session_id].process(update_message, self.post) # should reflect in all sessions for i, session in enumerate(sessions): to_dict_message = {"id": 3, "name": "view" + str(i), "cmd": "view_method", "method": "to_dict"} session.process(to_dict_message, handle_to_dict) assert s.get() == 5 def test_session_close_session_with_callbacks(self, sentinel): s = sentinel(0) manager = PerspectiveManager() session = manager.new_session() client_id = session.client_id # create a table and view using manager make_table = {"id": 1, "name": "table1", "cmd": "table", "args": [data]} session.process(make_table, self.post) make_view = {"id": 2, "table_name": "table1", "view_name": "view1", "cmd": "view"} session.process(make_view, self.post) # make sure the client ID is attached to the new view assert len(manager._views.keys()) == 1 assert manager.get_view("view1")._client_id == client_id def callback(updated): assert updated["port_id"] == 0 s.set(s.get() + 100) # simulate a client that holds callbacks by id callbacks = { 3: callback } def post_update(msg): # when `on_update` is triggered, this callback gets the message # and has to decide which callback to trigger. message = json.loads(msg) assert message["id"] is not None if message["id"] == 3: # trigger callback assert message["data"] == { "port_id": 0 } callbacks[message["id"]](message["data"]) # hook into the created view and pass it the callback make_on_update = {"id": 3, "name": "view1", "cmd": "view_method", "subscribe": True, "method": "on_update", "callback_id": "callback_1"} session.process(make_on_update, post_update) # call updates update1 = {"id": 4, "name": "table1", "cmd": "table_method", "method": "update", "args": [{"a": [4], "b": ["d"]}]} update2 = {"id": 5, "name": "table1", "cmd": "table_method", "method": "update", "args": [{"a": [5], "b": ["e"]}]} session.process(update1, self.post) session.process(update2, self.post) assert s.get() == 200 # close the session session.close() # make sure the view is gone - but not the table assert "table1" in manager._tables assert manager._views == {} assert len(manager._callback_cache) == 0 def test_session_close_multiple_sessions_with_callbacks(self, sentinel): s = sentinel(0) manager = PerspectiveManager() sessions = [manager.new_session() for i in range(5)] # create a table and view using manager make_table = {"id": 1, "name": "table1", "cmd": "table", "args": [data]} manager._process(make_table, self.post) # create a view on each session for i, session in enumerate(sessions): # IDs have to conflict - each viewer will send the first message as # ID = 1, so we need to make sure we handle that. msg = {"id": 2, "table_name": "table1", "view_name": "view" + str(i), "cmd": "view"} session.process(msg, self.post) manager_views = list(manager._views.keys()) for key in ["view" + str(i) for i in range(5)]: assert key in manager_views for i, session in enumerate(sessions): view = manager.get_view("view" + str(i)) assert view._client_id == session.client_id def callback(updated): assert updated["port_id"] == 0 s.set(s.get() + 100) # simulate a client that holds callbacks by id callbacks = { 3: callback } def post_update(msg): # when `on_update` is triggered, this callback gets the message # and has to decide which callback to trigger. message = json.loads(msg) assert message["id"] is not None if message["id"] == 3: # trigger callback assert message["data"] == { "port_id": 0 } callbacks[message["id"]](message["data"]) # create a view and an on_update on each session for i, session in enumerate(sessions): view_name = "view" + str(i) # IDs have to conflict - each viewer will send the first message as # ID = 1, so we need to make sure we handle that. msg = {"id": 2, "table_name": "table1", "view_name": view_name, "cmd": "view"} session.process(msg, self.post) make_on_update = {"id": 3, "name": view_name, "cmd": "view_method", "subscribe": True, "method": "on_update", "callback_id": "callback_1"} session.process(make_on_update, post_update) # call updates using a random session - they should propagate random_session_id = random.randint(0, 4) random_session = sessions[random_session_id] random_client_id = random_session.client_id update1 = {"id": 4, "name": "table1", "cmd": "table_method", "method": "update", "args": [{"a": [4], "b": ["d"]}]} update2 = {"id": 5, "name": "table1", "cmd": "table_method", "method": "update", "args": [{"a": [5], "b": ["e"]}]} random_session.process(update1, self.post) random_session.process(update2, self.post) # all updates processed, all callbacks fired assert s.get() == 1000 # close a random session, and make sure the other views and callbacks # are not affected random_session.close() # make sure the view is gone - but not the table assert "table1" in manager._tables assert "view" + str(random_session_id) not in manager._views.keys() assert len(manager._views.keys()) == 4 for callback in manager._callback_cache: assert callback["client_id"] != random_client_id assert len(manager._callback_cache) == 4 ``` #### File: tests/table/test_table_object.py ```python import six import sys from random import randint from perspective.table import Table from datetime import date, datetime class CustomObjectBlank(object): pass class CustomObjectStore(object): def __init__(self, value): self._value = value def _psp_dtype_(self): return "object" def __int__(self): return int(self._value) def __repr__(self): return 'test' class CustomObjectRepr(object): def __init__(self, value): self._value = value def __repr__(self): return str(self._value) class CustomObjectIntPromoteToString(CustomObjectRepr): def _psp_dtype_(self): return int class CustomObjectFloatPromoteToString(CustomObjectRepr): def _psp_dtype_(self): return float class CustomObjectIntBoth(CustomObjectRepr): def _psp_dtype_(self): return int def _psp_repr_(self): return int(self._value) + 1 class CustomObjectFloatBoth(CustomObjectRepr): def _psp_dtype_(self): return float def _psp_repr_(self): return float(self._value) + 1.0 class CustomObjectIntConvert(CustomObjectRepr): def _psp_dtype_(self): return int def __int__(self): return int(self._value) def __repr__(self): return 'test' class CustomObjectFloatConvert(CustomObjectRepr): def _psp_dtype_(self): return float def __float__(self): return float(self._value) def __repr__(self): return 'test' class CustomObjectIntConvertFromFloat(CustomObjectRepr): def _psp_dtype_(self): return int def __float__(self): return float(self._value) def __repr__(self): return 'test' class CustomObjectFloatConvertFromInt(CustomObjectRepr): def _psp_dtype_(self): return float def __int__(self): return int(self._value) def __repr__(self): return 'test' class TestTableObjectsExtract(object): def test_table_custom_object(self): data = {"a": [CustomObjectBlank()]} tbl = Table(data) assert tbl.schema() == {"a": str} assert tbl.size() == 1 assert '<perspective.tests.table.test_table_object.CustomObjectBlank object at 0x' in tbl.view().to_dict()["a"][0] def test_table_custom_object_repr(self): data = {"a": [CustomObjectRepr(1), CustomObjectRepr(2)]} tbl = Table(data) assert tbl.schema() == {"a": str} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": ["1", "2"]} def test_table_custom_object_repr_update(self): data = {"a": [CustomObjectIntBoth(1), CustomObjectIntBoth(2)]} tbl = Table(data) assert tbl.schema() == {"a": int} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": [2, 3]} tbl.update([{"a": CustomObjectIntBoth(3)}, {"a": CustomObjectIntBoth(4)}]) assert tbl.size() == 4 assert tbl.view().to_dict() == {"a": [2, 3, 4, 5]} def test_custom_object_int_promote_to_string(self): data = {"a": [CustomObjectIntPromoteToString(1), CustomObjectIntPromoteToString(2)]} tbl = Table(data) assert tbl.schema() == {"a": str} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": ["1", "2"]} def test_custom_object_float_promote_to_string(self): data = {"a": [CustomObjectFloatPromoteToString(1), CustomObjectFloatPromoteToString(2)]} tbl = Table(data) assert tbl.schema() == {"a": str} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": ["1", "2"]} def test_custom_object_int_both(self): data = {"a": [CustomObjectIntBoth(1), CustomObjectIntBoth(2)]} tbl = Table(data) assert tbl.schema() == {"a": int} assert tbl.size() == 2 # We do value + 1 just to make sure assert tbl.view().to_dict() == {"a": [2, 3]} def test_custom_object_float_both(self): data = {"a": [CustomObjectFloatBoth(1), CustomObjectFloatBoth(2)]} tbl = Table(data) assert tbl.schema() == {"a": float} assert tbl.size() == 2 # We do value + 1 just to make sure assert tbl.view().to_dict() == {"a": [2.0, 3.0]} def test_custom_object_int_convert(self): data = {"a": [CustomObjectIntConvert(1), CustomObjectIntConvert(2)]} tbl = Table(data) assert tbl.schema() == {"a": int} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": [1, 2]} def test_custom_object_float_convert(self): data = {"a": [CustomObjectFloatConvert(1), CustomObjectFloatConvert(2)]} tbl = Table(data) assert tbl.schema() == {"a": float} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": [1.0, 2.0]} def test_custom_object_int_convert_from_float(self): data = {"a": [CustomObjectIntConvertFromFloat(1), CustomObjectIntConvertFromFloat(2)]} tbl = Table(data) assert tbl.schema() == {"a": int} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": [1, 2]} def test_custom_object_float_convert_from_int(self): data = {"a": [CustomObjectFloatConvertFromInt(1), CustomObjectFloatConvertFromInt(2)]} tbl = Table(data) assert tbl.schema() == {"a": float} assert tbl.size() == 2 assert tbl.view().to_dict() == {"a": [1.0, 2.0]} class TestTableObjectsStore(object): def test_object_passthrough(self): t = CustomObjectStore(1) t2 = CustomObjectStore(2) t3 = CustomObjectStore(3) data = {"a": [t, t2, t3]} tbl = Table(data) assert tbl.schema() == {"a": object} assert tbl.size() == 3 assert tbl.view().to_dict() == {"a": [t, t2, t3]} def test_object_referencecount(self): t = CustomObjectStore(1) data = {"a": [t]} tbl = Table(data) assert tbl.schema() == {"a": object} assert tbl.size() == 1 assert tbl.view().to_dict() == {"a": [t]} # Count references # 1 for `t`, one for `data`, one for argument to sys.getrefcount, and one for the table assert sys.getrefcount(t) == 4 def test_object_referencecount_update(self): t = CustomObjectStore(1) data = {"a": [t]} tbl = Table(data) assert tbl.schema() == {"a": object} assert tbl.size() == 1 assert tbl.view().to_dict() == {"a": [t]} # Count references # 1 for `t`, one for `data`, one for argument to sys.getrefcount, and one for the table assert sys.getrefcount(t) == 4 count = randint(5, 10) for c in range(count): tbl.update([data]) # c+1 new copies, +1 for original assert tbl.size() == (c+1) + 1 # c+1 copies in the table now, +1 for original and +3 for others (`t`, `data`, arg to getrefcount) assert sys.getrefcount(t) == (c+1) + 4 def test_object_referencecount_clear(self): t = CustomObjectStore(1) data = {"a": [t]} tbl = Table(data) assert tbl.schema() == {"a": object} assert tbl.size() == 1 # Count references # 1 for `t`, one for `data`, one for argument to sys.getrefcount, and one for the table assert sys.getrefcount(t) == 4 tbl.clear() assert tbl.size() == 0 # 1 for `t`, one for `data`, one for argument to sys.getrefcount assert sys.getrefcount(t) == 3 def test_object_referencecount_update_clear(self): t = CustomObjectStore(1) data = {"a": [t]} tbl = Table(data) assert tbl.schema() == {"a": object} assert tbl.size() == 1 assert tbl.view().to_dict() == {"a": [t]} # Count references # 1 for `t`, one for `data`, one for argument to sys.getrefcount, and one for the table assert sys.getrefcount(t) == 4 # do random number of updates count = randint(5, 10) for _ in range(count): tbl.update([data]) tbl.clear() assert tbl.size() == 0 assert tbl.view().to_dict() == {} # 1 for `t`, one for `data`, one for argument to sys.getrefcount assert sys.getrefcount(t) == 3 def test_object_referencecount_update_index(self): t = CustomObjectStore(1) data = {"a": [0], "b": [t]} tbl = Table(data, index="a") assert tbl.schema() == {"a": int, "b": object} assert tbl.size() == 1 assert tbl.view().to_dict() == {"a": [0], "b": [t]} # Count references # 1 for `t`, one for `data`, one for argument to sys.getrefcount, and one for the table assert sys.getrefcount(t) == 4 # do random number of updates count = randint(5, 10) for _ in range(count): tbl.update([data]) # unchanged assert tbl.size() == 1 assert sys.getrefcount(t) == 4 tbl.clear() assert tbl.size() == 0 assert tbl.view().to_dict() == {} # 1 for `t`, one for `data`, one for argument to sys.getrefcount assert sys.getrefcount(t) == 3 def test_object_referencecount_update_complicatedsequence(self): from .object_sequence import run run() def test_object_referencecount_delete(self): t = CustomObjectStore(1) t2 = CustomObjectStore(2) t_ref_count = 2 t2_ref_count = 2 tbl = Table({"a": [1], "b": [t]}, index="a") t_ref_count += 1 assert tbl.schema() == {"a": int, "b": object} assert tbl.size() == 1 # Count references # 1 for `t`, 1 for `data`, 1 for argument to sys.getrefcount, and 1 for the table print(sys.getrefcount(t), "should be", t_ref_count) print(sys.getrefcount(t2), "should be", t2_ref_count) tbl.update({"a": [2], "b": [t]}) t_ref_count += 1 tbl.update({"a": [3], "b": [t]}) t_ref_count += 1 assert sys.getrefcount(t) == t_ref_count tbl.remove([1]) tbl.clear() assert tbl.size() == 0 assert tbl.view().to_dict() == {} print(sys.getrefcount(t), "should be", 2) assert sys.getrefcount(t) == 2 print(sys.getrefcount(t2), "should be", 2) assert sys.getrefcount(t2) == 2 def test_object_referencecount_delete(self): from .object_sequence import run2 run2() ```
{ "source": "jkh911208/gluster_manager_api", "score": 3 }
#### File: gluster_manager_api/controllers/Resource.py ```python import logging import config from db.Database import Database from controllers.Credential import Credential from util.SSHClient import SSHClient import util.convert_to_dict import util.inventory class Resource(object): def __init__(self): self.db = Database(config.mongodb_uri, config.database_name) self.db.set_collection("resource") def __del__(self): try: self.db.client.close() except Exception: pass def discover_new_node(self, node: dict) -> bool: # check if i have all the data i need required_key = ["address", "cred_id"] for key in required_key: if key not in node: raise ValueError("discover new node require address and credential id") # get credential detail from DB cred_tool = Credential() cred = cred_tool.get_one_credential_with_password(node["cred_id"]) # initiate ssh connection ssh = SSHClient(node["address"], cred["username"], cred["password"]) # check if user have sudo privilege if not ssh.check_sudo_privilege(): raise RuntimeError("User don't have sudo previlege") # check Linux distro distro = ssh.command("cat /etc/os-release") distro = util.convert_to_dict.config_to_dict(distro) try: if distro["ID"] != "centos": raise RuntimeError("Only support CentOS 7") if int(distro["VERSION_ID"]) != 7: raise RuntimeError("Only support CentOS 7") except KeyError as err: logging.exception("cannot verify the linux distro : {}".format(distro)) raise RuntimeError("Only support CentOS 7") # get disk list in dict disk_list = util.inventory.get_disk_list(ssh) # check if address exist in db exist_data = self.db.find({"address": node["address"]}) if len(exist_data) > 0: raise ValueError("node is already discovered") # write node infomation to DB return self.db.insert({ "address" : node["address"], "cred_id" : node["cred_id"], "distro" : distro["ID"], "version" : int(distro["VERSION_ID"]), "name" : distro["PRETTY_NAME"] if "PRETTY_NAME" in distro else distro["ID"] + " " + distro["VERSION_ID"], "disks": disk_list }) def get_all_nodes(self): nodes = self.db.find_all() for node in nodes: # convert ObjectId to string node["_id"] = str(node["_id"]) nodes = {"nodes" : nodes} return nodes def delete_one_node(self, node_id): # check if i have all the data i need required_key = ["id"] for key in required_key: if key not in node_id: raise ValueError("delete node requires id") #TODO # Need to add check if node is in use for cluster. if yes do not delete self.db.delete(node_id["id"]) ``` #### File: gluster_manager_api/routes/resource.py ```python import logging from controllers.Resource import Resource from flask import Blueprint, request, jsonify import paramiko resource = Blueprint("resource", __name__) resource_controller = Resource() @resource.route("/", methods=["POST"]) def discover_new_node(): if not request.is_json: return jsonify({"error": "only json request is accepted"}), 400 node = request.get_json() try: resource_controller.discover_new_node(node) return jsonify({}), 201 except paramiko.AuthenticationException as err: logging.exception("Authentication to node : {} failed, please check you credential".format(node["address"])) return jsonify({"error": err.__str__()}), 401 except Exception as err: logging.exception("Not able to discover new node with error : {}".format(err.__str__())) return jsonify({"error": err.__str__()}), 500 @resource.route("/", methods=["GET"]) def get_all_nodes(): try: nodes = resource_controller.get_all_nodes() return jsonify(nodes), 200 except Exception as err: logging.exception("not able to get all nodes from data with error : {}".format(err.__str__())) return jsonify({"error": err.__str__()}), 500 @resource.route("/", methods=["DELETE"]) def delete_one_node(): if not request.is_json: return jsonify({"error": "only json request is accepted"}), 400 node_id = request.get_json() try: deleted = resource_controller.delete_one_node(node_id) return jsonify({"deleted": True}), 200 except Exception as err: logging.exception("not able to get all nodes from data with error : {}".format(err.__str__())) return jsonify({"error": err.__str__()}), 500 ```
{ "source": "jkhaak/py3-tic-tac-toe", "score": 4 }
#### File: py3-tic-tac-toe/tic_tac_toe/utils.py ```python import itertools as it def transpose(xs): """ Transpose a matrix """ return map(list, zip(*xs)) def concat(xss): """ Concatenate list of lists. """ return list(it.chain.from_iterable(xss)) def chop(n, xs): """ Create a list of lists sized with n from list elements in xs. """ if len(xs) == 0: return [] return [xs[:n]] + chop(n, xs[n:]) def drop_at(nth, xs): """ Drop nth element in a list. Returns the init and tail of the xs without the nth element. """ if nth <= 0: return [], xs elif len(xs) < nth: return xs, [] return xs[: nth - 1], xs[nth:] def zip_with(fn, xs, ys): """ Standard python zip with function. User can define custom zipping function instead of the standard tuple. """ return [fn(a, b) for (a, b) in zip(xs, ys)] def interleave(item, xs): """ Insert an item in between every item of xs. """ if len(xs) <= 1: return xs return [xs[0]] + [item] + interleave(item, xs[1:]) ```
{ "source": "jkhadley/capstone-project", "score": 3 }
#### File: python/classification/models.py ```python import os import numpy as np import matplotlib.pyplot as plt from keras.layers import Conv2D, MaxPooling2D, concatenate,Input,Dropout,Dense from keras.models import Sequential,Model,load_model from keras.optimizers import Adam,SGD from skimage import io def alexNet(params): # unpack some of the parameters activation = params['activation'] if os.path.isfile(params['init_w']) == True: model = load_model(params['init_w']) else: init_w = params['init_w'] # make the model depths = [3,96,256,384,384,256] inputs = Input((256,256,3)) conv1 = Conv2D(depths[0], kernel_size = (12,12),strides = (4,4),activation = activation,kernel_initializer = init_w)(inputs) conv2 = Conv2D(depths[1], kernel_size = (5,5) ,strides = (1,1),activation = activation,kernel_initializer = init_w)(conv1) pool1 = MaxPooling2D(pool_size = (5,5),strides = (2,2))(conv2) conv3 = Conv2D(depths[2],kernel_size = (3,3) ,strides = (1,1),activation = activation,padding = "same",kernel_initializer = init_w)(pool1) pool2 = MaxPooling2D(pool_size = (3,3),strides = (2,2))(conv3) # add final convolutional layers conv4 = Conv2D(depths[3],kernel_size = (3,3) ,strides = (1,1),activation = activation,padding = "same",kernel_initializer = init_w)(pool2) conv5 = Conv2D(depths[4],kernel_size = (3,3) ,strides = (1,1),activation = activation,padding = "same",kernel_initializer = init_w)(conv4) conv6 = Conv2D(depths[5],kernel_size = (3,3) ,strides = (1,1),activation = activation,padding = "same",kernel_initializer = init_w)(conv5) # add dense layers dense1 = Dense(params['fc_size'],kernel_initializer = init_w)(conv6) dense2 = Dense(params['fc_size'],kernel_initializer = init_w)(dense1) outputs = Dense(params["num_of_classes"],kernel_initializer = init_w,activation= params['output_activation'])(dense2) # define the inputs and outputs model = Model(input = inputs,output = outputs) # define optimizers optimizer = SGD(lr=params['lr'],momentum = params['momentum']) # define the model optimizer and loss function model.compile(optimizer = optimizer, loss = params['loss'], metrics = ['accuracy']) return model if __name__ == "__main__": params = { 'init_w' : 'he_normal', 'lr' : 0.01, 'activation' : "relu", 'loss' : 'categorical_crossentropy', 'num_of_classes' : 4, 'output_activation' : "softmax", 'dropout' : 0.5, 'momentum': 0, 'fc_size': 32 } model = alexNet(params) model.summary() ``` #### File: python/classification/splitData.py ```python from shutil import copy import random import os def splitData(path,c,split): src = path + "/" + c trainDest = path + "/train/" + c validateDest = path + "/validate/" + c testDest = path + "/test/" + c cwd = os.getcwd() os.chdir(src) images = os.listdir() random.shuffle(images) split1 = round(split[0]*len(images)) split2 = round((split[0] + split[1])*len(images)) train = images[:split1] validate = images[split1:split2] test = images[split2:] for i in images: if i in train: copy(src + "/" + i,trainDest + "/" + i) elif i in validate: copy(src + "/" + i,validateDest + "/" + i) else: copy(src + "/" + i,testDest + "/" + i) os.chdir(cwd) if __name__ == "__main__": path = "/home/ubuntu/project/data/maize/" #path = "../../data/maize" os.chdir(path) path = os.getcwd() classes = os.listdir() os.mkdir("train") os.mkdir("validate") os.mkdir("test") for c in classes: os.mkdir("./train/" + c) os.mkdir("./validate/" + c) os.mkdir("./test/" + c) splitData(path, c,[0.8,0.1,0.1]) ``` #### File: src/python/misc.py ```python import os def dirSize(path,dirs): """Finds the size of the directories specified. Parameters ---------- path: String Location of the directories in question dirs: list OR String Which directories to include in the length Returns ------- length : int Number of images contained in the directories in question. """ oldDir = os.getcwd() os.chdir(path) cwd = os.getcwd() length = 0 if isinstance(dirs,str): dirs = [dirs] for d in dirs: path = cwd + "/" + d + "/data/" subdirs = os.listdir(path) for s in subdirs: length += len(os.listdir(path + s)) os.chdir(oldDir) return length def combineFiles(first,second): """Combine the results from multiple files. Useful for combining results from multiple inputs and saves as the first files name with a 2 appended to it. Parameters ---------- first : String Path to the first file to be combined second : String Path to the second file to be combined """ fname = first.replace(".csv","2.csv") fnew = open(fname,"w") batch = 0 with open(first,"r") as f: for line in f: batch = line.split(",")[-1] fnew.write(line) with open(second,"r") as f: i = 0 for line in f: if i != 0: line = line.split(",") line[-1] += batch fnew.write(",".join(line)) i +=1 fnew.close() def countFiles(path): """Counts the number of files in the training, validation, and test directories. Parameters ---------- path : String path to the train,validata, and test images """ os.chdir(path) dirs = ["train","validate","test"] for d in dirs: dirCnt = 0 plant = os.listdir(path + "/" + d) for i in plant: tmpDir = path + "/" + d + "/" + i + "/data/" subDirs = os.listdir(tmpDir) plntCnt = 0 for j in subDirs: plntCnt += len(os.listdir(tmpDir + j)) print(d + " " + i + ": " + str(plntCnt)) dirCnt += plntCnt print(d + ": " + str(dirCnt)) ``` #### File: src/python/modelTrainer.py ```python from keras.layers import Conv2D, MaxPooling2D, UpSampling2D, concatenate, Input, Dropout, Lambda from keras.losses import mean_squared_error, mean_absolute_error, mean_absolute_percentage_error from keras.models import Sequential, Model, load_model from keras.callbacks import ModelCheckpoint from keras.optimizers import SGD from generators import getBatchGenerators from callbacks import BatchLogger from metrics import f1Score, recall, precision, RMSE from misc import dirSize import keras.backend as K import numpy as np import os class ModelTrainer(): """Object to contain the model parameters and train the model.""" def __init__(self,dataPath,resultsPath,modelPath): """Initializes class variables. Parameters ---------- dataPath : String Path to the base directory of the data classes resultsPath : String Path to where the results csv files should be written modelPath : String Path to where the models are stored Attributes ---------- conv_depth : int, (defualt is 64) Depth of initial Convolutional layer batch_size : int, (default is 15) Number of images to load and train with before updating weights """ # initialize class variables self.model = None self.modelPath = modelPath self.resultsPath = resultsPath self.dataPath = dataPath self.saveName = None self.classMap = None self.className = None self.conv_depth = 64 self.batch_size = 15 self.input_shape = (256,256,3) self.n_classes = 2 self.metrics = ['acc'] self.init_w = 'zeros' self.old_weights = None self.loss_function = 'categorical_crossentropy' self.optimizer = None self.regression = False self.trainGen = None self.validateGen = None self.pixels = 256*256 self.dropout = 0 self.batch_log_interval = 10 self.epochs = 5 self.steps_per_epoch = 0 self.validation_steps = 0 self.train_size = 0 self.validate_size = 0 def train(self): """Trains the model specified by the parameters. Creates a model and generators based on the specified parameters and then trains it. It will save the outputs according to callback information that is specified. """ # setup model self.createModel() self.setGenerators() self.buildCallbacks() self.printParameters() # train model _ = self.model.fit_generator( generator = self.trainGen, validation_data = self.validateGen, steps_per_epoch = self.steps_per_epoch, validation_steps = self.validation_steps, epochs = self.epochs, use_multiprocessing = True, callbacks = self.callbacks) # clear save paths to avoid overwriting accidentaly self.saveName = None def evaluate(self,**kwargs): """Evaluates the model on the training and validation data. Parameters ---------- validateOnly : boolean Determines whether to evaluate only the validation data. Evaluates the trained model that is loaded through the setOldModel method. """ # setup model self.optimizer = SGD(lr = 0,momentum=0,decay = 0) self.createModel() self.setGenerators() self.printParameters() output = {} if kwargs['validationOnly'] != None: if kwargs['validationOnly'] == True: valOnly = True else: valOnly = False else: valOnly = False if valOnly == False: trainOutput = self.model.evaluate_generator( generator = self.trainGen, steps=self.steps_per_epoch, use_multiprocessing=True, verbose=1 ) output['loss'] = trainOutput[0] for i in range(len(self.metricsAsString)): output[self.metricsAsString[i]] = trainOutput[i+1] print("loss : " + str(output['loss'])) for i in range(len(self.metricsAsString)): tmp = self.metricsAsString[i] print(tmp + " : " + str(output[tmp])) validationOutput = self.model.evaluate_generator( generator = self.validateGen, steps=self.validation_steps, use_multiprocessing=True, verbose=1) output['val_loss'] = validationOutput[0] for i in range(len(self.metricsAsString)): output["val_" + self.metricsAsString[i]] = validationOutput[i+1] print("val_loss : " + str(output['val_loss'])) for i in range(len(self.metricsAsString)): tmp = "val_" + self.metricsAsString[i] print(tmp + " : " + str(output[tmp])) def continueTraining(self,model): """Further trains the specified model.""" self.setOldModel(model) self.model.compile(optimizer = self.optimizer, loss=self.loss_function, metrics=self.metrics) self.setGenerators() self.buildCallbacks() self.printParameters() # fit model to data _ = self.model.fit_generator( generator = self.trainGen, validation_data = self.validateGen, steps_per_epoch = self.steps_per_epoch, validation_steps = self.validation_steps, epochs = self.epochs, use_multiprocessing = True, callbacks = self.callbacks) def createModel(self): """Creates a U-net model based on the specified parameters. If the model is not set to a regression model, the output has the same depth and width as the input and as many layers as the number of classes. If the model is set to regression, the output is an array that contains the proportion of the image that the class is. """ outputs, inputs = baseUNet(self.input_shape, self.conv_depth, self.n_classes, self.init_w, self.dropout) if self.regression == True: outputs = Lambda(getPropOfGround)(outputs) model = Model(inputs = inputs,outputs = outputs) model.compile(optimizer = self.optimizer, loss=self.loss_function, metrics=self.metrics) if self.old_weights != None: model.set_weights(self.old_weights) self.model = model def singlePrediction(self,img): """Make a prediction using the loaded model on a single image. Parameters ---------- img : np.array Image to make prediction on """ self.optimizer = SGD(lr = 0,momentum=0,decay = 0) self.createModel() output = self.model.predict(np.expand_dims(img,axis = 0)) return output def buildCallbacks(self): """Builds the callbacks that save the model weights and results. Saves the model checkpoint and logger to the paths specified by modelPath and resultsPath, and then gives them the names specified by saveName. """ model_checkpoint = ModelCheckpoint(self.modelPath + '/' + self.saveName + '.hdf5', monitor='loss',verbose=1) logger = BatchLogger(self.resultsPath + '/' + self.saveName + "_batch.csv", self.resultsPath + '/' + self.saveName + "_epoch.csv", self.batch_log_interval, self.metricsAsString) self.callbacks = [model_checkpoint,logger] def setSaveName(self,name): """Sets the name to save the results and model weights with.""" self.saveName = name def setOldModel(self,model): """Gets the model parameters from the specified model. Gets the weights, input shape, and number of classes from the old model to load into the new model to do more training or switch model type. Parameters ---------- model: String Path to the old keras model object to be loaded """ self.modelName = model oldModel = load_model(self.modelPath + "/" + model + ".hdf5", custom_objects={'recall': recall, 'precision': precision, 'f1Score':f1Score}) self.old_weights = oldModel.get_weights() self.input_shape = oldModel.inputs[0].get_shape().as_list()[1:] self.n_classes = oldModel.outputs[0].get_shape().as_list()[-1] self.conv_depth = oldModel.layers[1].output_shape[-1] self.model = oldModel def setRegression(self): """Set the model to a regression model. Set the model to a regression model and changes the loss function to MSE. """ self.regression = True self.loss_function = mean_squared_error def setSegmentation(self): """Set the model to a segmentation model. Sets the model to segmentation and changes the loss function to categorical cross-entropy. """ self.regression = False self.loss_function = "categorical_crossentropy" def setClassMap(self,classMap): """Set the class map that specifies which directory corresponds to which class. Parameters ---------- classMap : dictionary Mapping of directories to correct output """ self.classMap = classMap self.n_classes = len(np.unique(list(classMap.values()))) + 1 # find the number of images in the data set dirs = list(classMap.keys()) self.train_size = dirSize(self.dataPath + "train",dirs) self.validate_size = dirSize(self.dataPath + "validate",dirs) # set steps per epochs self.steps_per_epoch = round(self.train_size/self.batch_size) self.validation_steps = round(self.validate_size/self.batch_size) def setClassName(self,whichDir): """Specify the single directory to use on the dataPath. Parameters ---------- whichDir: String Name of the directory to be used for training """ self.className = whichDir self.setClassMap({whichDir : 1}) def setOptimizerParams(self,lr,momentum,decay): """Set the SGD Optimizer parameters used to change the weights. Parameters ---------- lr : float [0->1] Learning rate for SGD momentum : float [0->1] Momentum for SGD decay : float[0->1] Weight decay for SGD """ self.optimizer = SGD(lr=lr,momentum=momentum,decay=decay) def setWeightInitializer(self,weights): """Set the weight initializer to use for model initialization. Parameters ---------- weights: String Weight initializer to use to intialize model with """ self.init_w = weights def setGenerators(self): """Create the training and validation data generators. Uses the batch_size, classMap, and regression parameters to create generators that will generate the appropriate data. """ shape = (self.input_shape[0],self.input_shape[1]) self.trainGen,self.validateGen = getBatchGenerators(self.batch_size, self.dataPath, shape, self.classMap, self.regression) def changeModelSavePath(self,path): """Change the path that the model is saved to. Parameters ---------- path : String Path to save the model to """ self.modelPath = path def changeDropout(self,dropout): """Change the dropout for the model. Parameters ---------- dropout: float [0->1] Proportion of nodes to randomly drop each batch update. """ self.dropout = dropout def changeResultsSavePath(self,path): """Change where the logger results are saved to. Parameters ---------- path : String Path to save the logger results to """ self.resultsPath = path def changeDataPath(self,path): """Change the directory to look for the data in. Parameters ---------- path : String Base directory that the data is located at """ self.dataPath = path def changeInputShape(self,shape): """Change the Input shape that the model should use. Parameters ---------- shape : tuple Input shape for the model """ self.input_shape = shape def changeLossFunction(self,loss): """Change the Loss Function that changes the model weights. Parameters ---------- loss : int The loss function to evaluate the model with """ self.loss_function = loss def changeBatchLogInterval(self,interval): """Change the interval that the batches are logged at. Parameters ---------- interval : int Interval that batches will be logged at """ self.batch_log_interval = interval def changeConvolutionalDepth(self,depth): """Change the depth of the initial convolutional layers that are used in the model. Parameters ----------- depth : int Depth of the first convolutional layer """ self.conv_depth = depth def changeMetrics(self, metrics): """Changes the metrics that will be used to evauluate the model. Parameters ---------- metrics : list List of metrics that will be used to evaluate the model """ if isinstance(metrics,list) == False: metrics = [metrics] self.metrics = metrics whatMetrics = [] for i in metrics: if i == RMSE: whatMetrics.append("RMSE") elif i == f1Score: whatMetrics.append("f1Score") elif i == recall: whatMetrics.append("recall") elif i == precision: whatMetrics.append("precision") elif i == mean_squared_error: whatMetrics.append("mean_squared_error") elif i == mean_absolute_error: whatMetrics.append("mean_absolute_error") elif i == mean_absolute_percentage_error: whatMetrics.append("mean_absolute_percentage_error") elif isinstance(i,str): whatMetrics.append(i) else: print("I don't know what to do with : " + str(i)) self.metricsAsString = whatMetrics def changeBatchSize(self,batch_size): """Changes the batch size of the batches that the model will be trained on. Parameters ---------- batch_size : int Number of sets of images to train on before updating the weights. """ self.batch_size = batch_size self.steps_per_epoch = round(self.train_size/self.batch_size) self.validation_steps = round(self.validate_size/self.batch_size) def changeEpochs(self,epochs): """ Changes the number of epochs that the model will train for. Parameters ---------- epochs : int Number of times the model will see all of the data """ self.epochs = epochs def printParameters(self): """Prints the model parameters.""" print("----------Model Parameters----------") print("Initial Conv. Depth : " + str(self.conv_depth)) print("Number of Classes : " + str(self.n_classes)) print("Dropout : " + str(self.dropout)) print("Activation Function : Relu") print("Input Shape : " + str(self.input_shape)) print("Batch Size : " + str(self.batch_size)) print("--------Optimizer Parameters--------") print("Learning Rate : " + str(self.optimizer.lr)) print("Momentum : " + str(self.optimizer.momentum)) print("Initial Decay : " + str(self.optimizer.initial_decay)) def baseUNet(input_shape,conv_depth,n_classes,init_w,dropout): """Creates a basic U-net segmentation model. Parameters ---------- input_shape : tuple Size of the input that the model should accept conv_depth : int Depth of the first convolutional layer n_classes : int Number of classes that the model should predict init_w : String Weight initializer to use for the nodes dropout : float [0->1] Proportion of the middle convolutional layer to randomly ignore each training iteration Returns ------- outputs : keras functional model output layer to compile the model inputs : keras layer input layer to compile the model """ inputs = Input(input_shape) c1=Conv2D(conv_depth, (3,3), activation='relu', padding='same', kernel_initializer=init_w)(inputs) c1=Conv2D(conv_depth, (3,3), activation='relu', padding="same", kernel_initializer=init_w)(c1) # pool down to next layer pool1 = MaxPooling2D((2,2),strides = (2,2))(c1) conv_depth *= 2 # convolute down again conv2 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(pool1) conv2 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv2) # pool down again pool2 = MaxPooling2D((2,2),strides = (2,2))(conv2) conv_depth *= 2 # Convolution conv3 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(pool2) conv3 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv3) # pool down pool3 = MaxPooling2D((2,2),strides = (2,2))(conv3) conv_depth *= 2 # Convolution conv4 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(pool3) conv4 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv4) # pool down pool4 = MaxPooling2D((2,2),strides = (2,2))(conv4) conv_depth *=2 # Convolution conv5 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(pool4) conv5 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv5) drop = Dropout(dropout)(conv5) conv_depth /= 2 conv_depth = int(conv_depth) # do upsampling up1 = UpSampling2D(size = (2,2))(drop) conv6 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(up1) # add in skip info cat1 = concatenate([conv4,conv6],axis = 3) conv6 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(cat1) conv6 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv6) conv_depth /= 2 conv_depth = int(conv_depth) # do upsampling up2 = UpSampling2D(size = (2,2))(conv6) conv7 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(up2) # add in skip info cat2 = concatenate([conv3,conv7],axis = 3) conv7 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(cat2) conv7 = Conv2D(conv_depth, activation = 'relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv7) conv_depth /= 2 conv_depth = int(conv_depth) # do upsampling up3 = UpSampling2D(size = (2,2))(conv7) conv8 = Conv2D(conv_depth, activation ='relu', kernel_size=(3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(up3) # add in skip info cat3 = concatenate([conv2,conv8],axis = 3) conv8 = Conv2D(conv_depth, activation ='relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(cat3) conv8 = Conv2D(conv_depth, activation ='relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv8) conv_depth /= 2 conv_depth = int(conv_depth) # do upsampling up4 = UpSampling2D(size = (2,2))(conv8) conv9 = Conv2D(conv_depth, activation ='relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(up4) # add in skip info cat4 = concatenate([c1,conv9],axis = 3) conv9 = Conv2D(conv_depth, activation ='relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(cat4) conv9 = Conv2D(conv_depth, activation ='relu', kernel_size = (3,3), strides = (1,1), padding = "same", kernel_initializer=init_w)(conv9) outputs = Conv2D(n_classes, 1, activation = 'softmax')(conv9) return outputs,inputs # functions for determining the regression output def getPropOfGround(x): """Finds and returns the proportion of the ground for each class.""" return K.sum(K.sum(x,axis = 1),axis = 1)/65536 ```
{ "source": "JKhakpour/dateparser", "score": 2 }
#### File: dateparser/dateparser/date.py ```python import calendar import collections from datetime import datetime, timedelta from warnings import warn import six import regex as re from dateutil.relativedelta import relativedelta from dateparser.date_parser import date_parser from dateparser.freshness_date_parser import freshness_date_parser from dateparser.languages.loader import LanguageDataLoader from dateparser.languages.detection import AutoDetectLanguage, ExactLanguages from dateparser.conf import apply_settings from dateparser.utils import normalize_unicode, apply_timezone_from_settings APOSTROPHE_LOOK_ALIKE_CHARS = [ u'\N{RIGHT SINGLE QUOTATION MARK}', # u'\u2019' u'\N{MODIFIER LETTER APOSTROPHE}', # u'\u02bc' u'\N{MODIFIER LETTER TURNED COMMA}', # u'\u02bb' u'\N{ARMENIAN APOSTROPHE}', # u'\u055a' u'\N{LATIN SMALL LETTER SALTILLO}', # u'\ua78c' u'\N{PRIME}', # u'\u2032' u'\N{REVERSED PRIME}', # u'\u2035' u'\N{MODIFIER LETTER PRIME}', # u'\u02b9' u'\N{FULLWIDTH APOSTROPHE}', # u'\uff07' ] RE_NBSP = re.compile(u'\xa0', flags=re.UNICODE) RE_SPACES = re.compile(r'\s+') RE_TRIM_SPACES = re.compile(r'^\s+(\S.*?)\s+$') RE_SANITIZE_SKIP = re.compile(r'\t|\n|\r|\u00bb|,\s\u0432|\u200e|\xb7|\u200f|\u064e|\u064f', flags=re.M) RE_SANITIZE_RUSSIAN = re.compile(r'([\W\d])\u0433\.', flags=re.I | re.U) RE_SANITIZE_AMPM = re.compile(r'\b([ap])(\.)?m(\.)?\b', flags=re.DOTALL | re.I) RE_SANITIZE_ON = re.compile(r'^.*?on:\s+(.*)') RE_SANITIZE_APOSTROPHE = re.compile(u'|'.join(APOSTROPHE_LOOK_ALIKE_CHARS)) RE_SEARCH_TIMESTAMP = re.compile(r'^\d{10}(?![^\d.])') def sanitize_spaces(html_string): html_string = RE_NBSP.sub(' ', html_string) html_string = RE_SPACES.sub(' ', html_string) html_string = RE_TRIM_SPACES.sub(r'\1', html_string) return html_string def date_range(begin, end, **kwargs): dateutil_error_prone_args = ['year', 'month', 'week', 'day', 'hour', 'minute', 'second'] for arg in dateutil_error_prone_args: if arg in kwargs: raise ValueError("Invalid argument: %s" % arg) step = relativedelta(**kwargs) if kwargs else relativedelta(days=1) date = begin while date < end: yield date date += step # handles edge-case when iterating months and last interval is < 30 days if kwargs.get('months', 0) > 0 and (date.year, date.month) == (end.year, end.month): yield end def get_intersecting_periods(low, high, period='day'): if period not in ['year', 'month', 'week', 'day', 'hour', 'minute', 'second', 'microsecond']: raise ValueError("Invalid period: {}".format(period)) if high <= low: return step = relativedelta(**{period + 's': 1}) current_period_start = low if isinstance(current_period_start, datetime): reset_arguments = {} for test_period in ['microsecond', 'second', 'minute', 'hour']: if test_period == period: break else: reset_arguments[test_period] = 0 current_period_start = current_period_start.replace(**reset_arguments) if period == 'week': current_period_start \ = current_period_start - timedelta(days=current_period_start.weekday()) elif period == 'month': current_period_start = current_period_start.replace(day=1) elif period == 'year': current_period_start = current_period_start.replace(month=1, day=1) while current_period_start < high: yield current_period_start current_period_start += step def sanitize_date(date_string): date_string = RE_SANITIZE_SKIP.sub(' ', date_string) date_string = RE_SANITIZE_RUSSIAN.sub(r'\1 ', date_string) # remove u'г.' (Russian for year) but not in words date_string = sanitize_spaces(date_string) date_string = RE_SANITIZE_AMPM.sub(r'\1m', date_string) date_string = RE_SANITIZE_ON.sub(r'\1', date_string) date_string = RE_SANITIZE_APOSTROPHE.sub(u"'", date_string) return date_string def get_date_from_timestamp(date_string, settings): if RE_SEARCH_TIMESTAMP.search(date_string): date_obj = datetime.fromtimestamp(int(date_string[:10])) date_obj = apply_timezone_from_settings(date_obj, settings) return date_obj def get_last_day_of_month(year, month): return calendar.monthrange(year, month)[1] def parse_with_formats(date_string, date_formats, settings): """ Parse with formats and return a dictionary with 'period' and 'obj_date'. :returns: :class:`datetime.datetime`, dict or None """ period = 'day' for date_format in date_formats: try: date_obj = datetime.strptime(date_string, date_format) except ValueError: continue else: # If format does not include the day, use last day of the month # instead of first, because the first is usually out of range. if '%d' not in date_format: period = 'month' date_obj = date_obj.replace( day=get_last_day_of_month(date_obj.year, date_obj.month)) if not ('%y' in date_format or '%Y' in date_format): today = datetime.today() date_obj = date_obj.replace(year=today.year) date_obj = apply_timezone_from_settings(date_obj, settings) return {'date_obj': date_obj, 'period': period} else: return {'date_obj': None, 'period': period} class _DateLanguageParser(object): DATE_FORMATS_ERROR_MESSAGE = "Date formats should be list, tuple or set of strings" def __init__(self, language, date_string, date_formats, settings=None): self._settings = settings if isinstance(date_formats, six.string_types): warn(self.DATE_FORMATS_ERROR_MESSAGE, FutureWarning) date_formats = [date_formats] elif not (date_formats is None or isinstance(date_formats, (list, tuple, collections.Set))): raise TypeError(self.DATE_FORMATS_ERROR_MESSAGE) self.language = language self.date_string = date_string self.date_formats = date_formats self._translated_date = None self._translated_date_with_formatting = None @classmethod def parse(cls, language, date_string, date_formats=None, settings=None): instance = cls(language, date_string, date_formats, settings) return instance._parse() def _parse(self): for parser in ( self._try_timestamp, self._try_freshness_parser, self._try_given_formats, self._try_parser, self._try_hardcoded_formats, ): date_obj = parser() if self._is_valid_date_obj(date_obj): return date_obj else: return None def _try_timestamp(self): return { 'date_obj': get_date_from_timestamp(self.date_string, self._settings), 'period': 'day', } def _try_freshness_parser(self): return freshness_date_parser.get_date_data(self._get_translated_date(), self._settings) def _try_parser(self): _order = self._settings.DATE_ORDER try: if self._settings.PREFER_LANGUAGE_DATE_ORDER: self._settings.DATE_ORDER = self.language.info.get('dateorder', _order) date_obj, period = date_parser.parse( self._get_translated_date(), settings=self._settings) self._settings.DATE_ORDER = _order return { 'date_obj': date_obj, 'period': period, } except ValueError: self._settings.DATE_ORDER = _order return None def _try_given_formats(self): if not self.date_formats: return return parse_with_formats( self._get_translated_date_with_formatting(), self.date_formats, settings=self._settings ) def _try_hardcoded_formats(self): hardcoded_date_formats = [ '%B %d, %Y, %I:%M:%S %p', '%b %d, %Y at %I:%M %p', '%d %B %Y %H:%M:%S', '%A, %B %d, %Y', '%Y-%m-%dT%H:%M:%S.%fZ' ] try: return parse_with_formats( self._get_translated_date_with_formatting(), hardcoded_date_formats, settings=self._settings ) except TypeError: return None def _get_translated_date(self): if self._translated_date is None: self._translated_date = self.language.translate( self.date_string, keep_formatting=False, settings=self._settings) return self._translated_date def _get_translated_date_with_formatting(self): if self._translated_date_with_formatting is None: self._translated_date_with_formatting = self.language.translate( self.date_string, keep_formatting=True, settings=self._settings) return self._translated_date_with_formatting def _is_valid_date_obj(self, date_obj): if not isinstance(date_obj, dict): return False if len(date_obj) != 2: return False if 'date_obj' not in date_obj or 'period' not in date_obj: return False if not date_obj['date_obj']: return False if date_obj['period'] not in ('day', 'week', 'month', 'year'): return False return True class DateDataParser(object): """ Class which handles language detection, translation and subsequent generic parsing of string representing date and/or time. :param languages: A list of two letters language codes, e.g. ['en', 'es']. If languages are given, it will not attempt to detect the language. :type languages: list :param allow_redetect_language: Enables/disables language re-detection. :type allow_redetect_language: bool :param settings: Configure customized behavior using settings defined in :mod:`dateparser.conf.Settings`. :type settings: dict :return: A parser instance :raises: ValueError - Unknown Language, TypeError - Languages argument must be a list """ language_loader = None @apply_settings def __init__(self, languages=None, allow_redetect_language=False, settings=None): self._settings = settings available_language_map = self._get_language_loader().get_language_map() if isinstance(languages, (list, tuple, collections.Set)): if all([language in available_language_map for language in languages]): languages = [available_language_map[language] for language in languages] else: unsupported_languages = set(languages) - set(available_language_map.keys()) raise ValueError( "Unknown language(s): %s" % ', '.join(map(repr, unsupported_languages))) elif languages is not None: raise TypeError("languages argument must be a list (%r given)" % type(languages)) if allow_redetect_language: self.language_detector = AutoDetectLanguage( languages if languages else list(available_language_map.values()), allow_redetection=True) elif languages: self.language_detector = ExactLanguages(languages=languages) else: self.language_detector = AutoDetectLanguage( list(available_language_map.values()), allow_redetection=False) def get_date_data(self, date_string, date_formats=None): """ Parse string representing date and/or time in recognizable localized formats. Supports parsing multiple languages and timezones. :param date_string: A string representing date and/or time in a recognizably valid format. :type date_string: str|unicode :param date_formats: A list of format strings using directives as given `here <https://docs.python.org/2/library/datetime.html#strftime-and-strptime-behavior>`_. The parser applies formats one by one, taking into account the detected languages. :type date_formats: list :return: a dict mapping keys to :mod:`datetime.datetime` object and *period*. For example: {'date_obj': datetime.datetime(2015, 6, 1, 0, 0), 'period': u'day'} :raises: ValueError - Unknown Language .. note:: *Period* values can be a 'day' (default), 'week', 'month', 'year'. *Period* represents the granularity of date parsed from the given string. In the example below, since no day information is present, the day is assumed to be current day ``16`` from *current date* (which is June 16, 2015, at the moment of writing this). Hence, the level of precision is ``month``: >>> DateDataParser().get_date_data(u'March 2015') {'date_obj': datetime.datetime(2015, 3, 16, 0, 0), 'period': u'month'} Similarly, for date strings with no day and month information present, level of precision is ``year`` and day ``16`` and month ``6`` are from *current_date*. >>> DateDataParser().get_date_data(u'2014') {'date_obj': datetime.datetime(2014, 6, 16, 0, 0), 'period': u'year'} Dates with time zone indications or UTC offsets are returned in UTC time unless specified using `Settings`_. >>> DateDataParser().get_date_data(u'23 March 2000, 1:21 PM CET') {'date_obj': datetime.datetime(2000, 3, 23, 14, 21), 'period': 'day'} """ if not(isinstance(date_string, six.text_type) or isinstance(date_string, six.string_types)): raise TypeError('Input type must be str or unicode') res = parse_with_formats(date_string, date_formats or [], self._settings) if res['date_obj']: return res if self._settings.NORMALIZE: date_string = normalize_unicode(date_string) date_string = sanitize_date(date_string) for language in self.language_detector.iterate_applicable_languages( date_string, modify=True, settings=self._settings): parsed_date = _DateLanguageParser.parse( language, date_string, date_formats, settings=self._settings) if parsed_date: parsed_date['language'] = language.shortname return parsed_date else: return {'date_obj': None, 'period': 'day', 'language': None} def get_date_tuple(self, *args, **kwargs): date_tuple = collections.namedtuple('DateData', 'date_obj period language') date_data = self.get_date_data(*args, **kwargs) return date_tuple(**date_data) @classmethod def _get_language_loader(cls): if not cls.language_loader: cls.language_loader = LanguageDataLoader() return cls.language_loader ```
{ "source": "JKhan01/SM446_TeamXYZ", "score": 3 }
#### File: SM446_TeamXYZ/chatBotStable/actions.py ```python from typing import Any, Text, Dict, List from rasa_sdk import Action, Tracker from rasa_sdk.executor import CollectingDispatcher from rasa_sdk.forms import FormAction from modules.Bitbucket import bitbucketActions from modules.ErrorSearch import searchStack import json from functions import * from jira_package import * from g5 import * from g6 import * obj = bitbucketActions() class CommitByUserForm(FormAction): def name(self) -> Text: return "commit_by_user_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: # if (tracker.get_slot("bitbucket_action")): # if ("watchers" in tracker.get_slot("bitbucket_action") or "list of watchers" in tracker.get_slot("bitbucket_action")): # return ["bitbucket_action","repo_name","owner_name"] # if (tracker.get_slot("search_keys")): # if ("who" or "who all" in tracker.get_slot("search_keys")): # return ["bitbucket_action","repo_name","owner_name"] return ["repo_name","owner_name","user_name"] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") returnAnswer = obj.get_commit_by_user(tracker.get_slot('repo_name'), tracker.get_slot('owner_name'), tracker.get_slot('user_name')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] class CommitByBranchForm(FormAction): def name(self) -> Text: return "commit_by_branch_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: # if (tracker.get_slot("bitbucket_action")): # if ("watchers" in tracker.get_slot("bitbucket_action") or "list of watchers" in tracker.get_slot("bitbucket_action")): # return ["bitbucket_action","repo_name","owner_name"] # if (tracker.get_slot("search_keys")): # if ("who" or "who all" in tracker.get_slot("search_keys")): # return ["bitbucket_action","repo_name","owner_name"] return ["repo_name","owner_name","branch_name"] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") returnAnswer = obj.get_commit_by_branch(tracker.get_slot('repo_name'), tracker.get_slot('owner_name'), tracker.get_slot('branch_name')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] class CommitMsgForm(FormAction): def name(self) -> Text: return "commit_msg_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: # if (tracker.get_slot("bitbucket_action")): # if ("watchers" in tracker.get_slot("bitbucket_action") or "list of watchers" in tracker.get_slot("bitbucket_action")): # return ["bitbucket_action","repo_name","owner_name"] # if (tracker.get_slot("search_keys")): # if ("who" or "who all" in tracker.get_slot("search_keys")): # return ["bitbucket_action","repo_name","owner_name"] return ["repo_name","owner_name","message"] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") returnAnswer = obj.get_commit_by_msg(tracker.get_slot('repo_name'), tracker.get_slot('owner_name'), tracker.get_slot('message')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] class WatcherListForm(FormAction): def name(self) -> Text: return "watcher_list_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ["repo_name","owner_name"] def submit(self,dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") returnAnswer = obj.get_watchers(tracker.get_slot('repo_name'),tracker.get_slot('owner_name')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] class ErrorSearchForm(FormAction): def __init__(self): self.error_query = "" def name(self) -> Text: return "error_search_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ["error_query"] def submit(self,dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") obj = searchStack() returnVar = {} returnVar['reply'] = obj.searchStack(tracker.get_slot("error_query")) returnVar['status'] = 200 returnVar['type'] = 'stackoverflow' returnVar = json.dumps(returnVar) dispatcher.utter_message(text=returnVar) return [] class BranchListForm(FormAction): def name(self): return "branch_list_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ["repo_name","owner_name"] def submit(self,dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") returnAnswer = obj.get_branches(tracker.get_slot('repo_name'),tracker.get_slot('owner_name')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] class RepoListForm(FormAction): def name(self): return "repo_list_form" @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ["owner_name"] def submit(self,dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") print (f"Target Repo: {tracker.get_slot('owner_name')}") returnAnswer = obj.get_repos(tracker.get_slot('owner_name')) returnAnswer['type'] = 'bitbucket' txt = json.dumps(returnAnswer) dispatcher.utter_message(text=txt) return [] # Information about all the spaces class InfoAllSpaces(Action): def name(self) -> Text: return "action_info_of_all_spaces" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: t = get_all_spaces() tx = json.dumps(t, indent=4) txt = json.loads(tx) dispatcher.utter_message(text=txt) return [] # Create a new space class CreateSpace(FormAction): def name(self) -> Text: return "create_space_form" def slot_mappings(self): # type: () -> Dict[Text: Union[Dict, List[Dict]]] return {"space": [self.from_entity(entity="space"), self.from_text()], "key": [self.from_entity(entity="key"), self.from_text()]} @staticmethod def required_slots(tracker: Tracker) -> List[Text]: """ The required entries for this function """ print("required_slots(tracker : Tracker)") return ["key", "space"] def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: #dispatcher.utter_message(text="Kya baat hai!!") #dispatcher.utter_message(template="utter_submit") a = str(tracker.get_slot('key')) b = str(tracker.get_slot('space')) def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: create_space(a, b) #return [t] #t = run(self, CollectingDispatcher, Tracker, Dict[Text, Any]) # txt = json.loads(t) dispatcher.utter_message(text="Space Created") return [] # Info of a specific space class InfoSpace(Action): def name(self) -> Text: return "action_space_info" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: a = str(tracker.get_slot("key")) t = get_info_space(a) tx = json.dumps(t, indent = 2) txt = json.loads(tx) dispatcher.utter_message(text=txt) return [] # Get pages in a space class GetPagesInSpace(Action): def name(self) -> Text: return "action_get_pages_in_a_space" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: a = str(tracker.get_slot("space")) t = get_pages_in_a_space(a) tx = json.dumps(t, indent=4) txt = json.loads(tx) dispatcher.utter_message(text=txt) return [] # Create a new page class CreatePage(FormAction): def name(self) -> Text: return "create_page_form" def slot_mappings(self): # type: () -> Dict[Text: Union[Dict, List[Dict]]] return {"space": [self.from_entity(entity="space"), self.from_text()], "title": [self.from_entity(entity="title"), self.from_text()], "body": [self.from_entity(entity="body", intent="body_entry"), self.from_text()]} # def validate_body( # self, value:Text, # dispatcher: CollectingDispatcher, # tracker: Tracker, # domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: @staticmethod def required_slots(tracker: Tracker) -> List[Text]: """ The required entries for this function """ print("required_slots(tracker : Tracker)") return ["space", "title", "body"] def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: #dispatcher.utter_message(text="Kya baat hai!!") #dispatcher.utter_message(template="utter_submit") a = str(tracker.get_slot('space')) b = str(tracker.get_slot('title')) c = str(tracker.get_slot("body")) def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: create_page(a, b, c) #dispatcher.utter_message(text="Page Created") return [] run(self, CollectingDispatcher, Tracker, Dict[Text, Any]) dispatcher.utter_message(text="Page Created") return [] # Delete a Page class DeletePage(Action): def name(self) -> Text: return "action_delete_page" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: a = int(str(tracker.get_slot("page_id"))) delete_page(a) dispatcher.utter_message(text="Page Deleted") return [] # Get Page info using id class GetPageInfoById(Action): def name(self) -> Text: return "action_get_page_info_by_id" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: a = int(str(tracker.get_slot("page_id"))) t = page_info_by_id(a) tx = json.dumps(t, indent = 2) txt = json.loads(tx) dispatcher.utter_message(text=txt) return [] # Export Page as PDF class ExportPageAsPdf(FormAction): def name(self) -> Text: return "export_page_as_pdf_form" def slot_mappings(self): # type: () -> Dict[Text: Union[Dict, List[Dict]]] return {"page_id": [self.from_entity(entity="page_id"), self.from_text()], "file_name": [self.from_entity(entity="file_name"), self.from_text()]} @staticmethod def required_slots(tracker: Tracker) -> List[Text]: """ The required entries for this function """ print("required_slots(tracker : Tracker)") return ["page_id", "file_name"] def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: #dispatcher.utter_message(text="Kya baat hai!!") #dispatcher.utter_message(template="utter_submit") a = str(tracker.get_slot('page_id')) b = str(tracker.get_slot('file_name')) def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: export_page_as_pdf(a, b) return [] run(self, CollectingDispatcher, Tracker, Dict[Text, Any]) dispatcher.utter_message(text="Page Exported") return [] class GetUserAllProject(FormAction): def name(self) -> Text: return "get_all_project_name_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return [] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_all_project_name() txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetUserInGroup(FormAction): def name(self) -> Text: return "get_user_in_group_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['group_name'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_users_in_group(tracker.get_slot('group_name')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetIssueProject(FormAction): def name(self) -> Text: return "get_issue_in_project_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['project_name'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issues_in_project(tracker.get_slot('project_name')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetIssue(FormAction): def name(self) -> Text: return "get_issue_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['issue_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue(tracker.get_slot('issue_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetEpic(FormAction): def name(self) -> Text: return "get_epic_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['epic_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue(tracker.get_slot('epic_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetTask(FormAction): def name(self) -> Text: return "get_task_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['task_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue(tracker.get_slot('task_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetStatusOfIssue(FormAction): def name(self) -> Text: return "get_status_of_issue_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['issue_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_status_of_issue(tracker.get_slot('issue_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetStatusOfEpic(FormAction): def name(self) -> Text: return "get_status_of_epic_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['epic_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_status_of_issue(tracker.get_slot('epic_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetStatusOfTask(FormAction): def name(self) -> Text: return "get_status_of_task_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['task_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_status_of_issue(tracker.get_slot('task_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetIssueVersion(FormAction): def name(self) -> Text: return "get_issue_version_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['issue_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue_version(tracker.get_slot('issue_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetEpicVersion(FormAction): def name(self) -> Text: return "get_epic_version_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['epic_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue_version(tracker.get_slot('epic_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetTaskVersion(FormAction): def name(self) -> Text: return "get_task_version_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['task_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_issue_version(tracker.get_slot('task_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetCommentIssue(FormAction): def name(self) -> Text: return "get_comment_issue_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['issue_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_comments_in_issue(tracker.get_slot('issue_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetCommentEpic(FormAction): def name(self) -> Text: return "get_comment_epic_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['epic_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_comments_in_issue(tracker.get_slot('epic_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetCommentTask(FormAction): def name(self) -> Text: return "get_comment_task_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['task_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_comments_in_issue(tracker.get_slot('task_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetWorklogIssue(FormAction): def name(self) -> Text: return "get_worklog_issue_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['issue_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_worklog_in_issue(tracker.get_slot('issue_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetWorklogTask(FormAction): def name(self) -> Text: return "get_worklog_task_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['task_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_worklog_in_issue(tracker.get_slot('task_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetWorklogEpic(FormAction): def name(self) -> Text: return "get_worklog_epic_form" ## return the same form name @staticmethod def required_slots(tracker: Tracker) -> List[Text]: return ['epic_summary'] def submit(self, dispatcher: CollectingDispatcher,tracker: Tracker,domain: Dict[Text, Any]) -> List[Dict]: dispatcher.utter_message(text="Parameters Submitted") ret_data = get_worklog_in_issue(tracker.get_slot('epic_summary')) txt = json.dumps(ret_data) dispatcher.utter_message(text=txt) return [] class GetLatestInboxEmail(Action): def name(self) -> Text: return "action_get_latest_email_in_inbox" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: op = int(tracker.latest_message.get('text')) t = LatestMailInInbox(op) # tx = json.dumps(t, indent = 4) # txt = json.loads(tx) # txtt = json.dumps(txt, indent = 2) dispatcher.utter_message(text=t) return [] class GetLatestUserEmail(Action): def name(self) -> Text: return "action_get_latest_email_from_user" # @staticmethod # def required_slots(tracker: Tracker) -> List[Text]: # """ The required entries for this function """ # print("required_slots(tracker : Tracker)") # return ["query"] def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: q = str(tracker.get_slot("query")) op = int(tracker.latest_message.get('text')) t = GetLatestMailFromUser(q, op) #tx = json.dumps(t, indent = 4) # txt = json.loads(tx) # txtt = json.dumps(txt, indent = 2) dispatcher.utter_message(text=t) return [] class GetLatestLabelEmail(Action): def name(self) -> Text: return "action_get_latest_email_from_label" # @staticmethod # def required_slots(tracker: Tracker) -> List[Text]: # """ The required entries for this function """ # print("required_slots(tracker : Tracker)") # return ["query"] def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: q = str(tracker.get_slot("query")) op = int(tracker.latest_message.get('text')) t = GetLatestMailFromLabel(q, op) #tx = json.dumps(t, indent = 4) # txt = json.loads(tx) # txtt = json.dumps(txt, indent = 2) dispatcher.utter_message(text=t) return [] class SendEmail(FormAction): def name(self) -> Text: return "send_email_form" def slot_mappings(self): # type: () -> Dict[Text: Union[Dict, List[Dict]]] return {"email_body": [self.from_entity(entity="email_body"), self.from_text()], "receiver": [self.from_entity(entity="receiver"), self.from_text()], "subject": [self.from_entity(entity="subject"), self.from_text()]} @staticmethod def required_slots(tracker: Tracker) -> List[Text]: """ The required entries for this function """ print("required_slots(tracker : Tracker)") return ["receiver", "subject", "email_body"] def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: a = str(tracker.get_slot("email_body")) b = str(tracker.get_slot("receiver")) c = str(tracker.get_slot("subject")) def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: SendMail(a, b, c) return [] run(self, CollectingDispatcher, Tracker, Dict[Text, Any]) dispatcher.utter_message(text="Email Sent") return [] class SendEmailWithAttachments(FormAction): def name(self) -> Text: return "send_email_with_attachments_form" def slot_mappings(self): # type: () -> Dict[Text: Union[Dict, List[Dict]]] return {"email_body": [self.from_entity(entity="email_body"), self.from_text()], "receiver": [self.from_entity(entity="receiver"), self.from_text()], "subject": [self.from_entity(entity="subject"), self.from_text()], "file_dir": [self.from_entity(entity="file_dir"), self.from_text()], "filename": [self.from_entity(entity="filename"), self.from_text()]} @staticmethod def required_slots(tracker: Tracker) -> List[Text]: """ The required entries for this function """ print("required_slots(tracker : Tracker)") return ["receiver", "subject", "email_body", "file_dir", "filename"] def submit(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict]: a = str(tracker.get_slot("email_body")) b = str(tracker.get_slot("receiver")) c = str(tracker.get_slot("subject")) d = str(tracker.get_slot("file_dir")) e = str(tracker.get_slot("filename")) def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: SendMailWithAttachments(a, b, c, d, e) return [] run(self, CollectingDispatcher, Tracker, Dict[Text, Any]) dispatcher.utter_message(text="Email Sent") return [] ``` #### File: SM446_TeamXYZ/chatBotStable/functions.py ```python from atlassian import Confluence from pprint import pprint import json cf = Confluence( # url= '''' atlassian wwebsite of teh end-client, # username='''' registered email-id of the end client, # password=''''' access token to access the project pages of the end client ) # Define all the Confluence functions here # Then reference these functions to the code of assistant after intent identification # Based on the intent, call a particular function # Take input, and give appropriate output # 1. Users # 2. Spaces def create_space(key, name): #key = input(print("Enter the space key:")) #name = input(print("Enter the name of the space:")) cf.create_space(key, name) print("Space Created") return (json.dumps("Space Created")) #return (print(json.dumps("Space Created"))) def get_all_spaces(): a = cf.get_all_spaces() e = [] for i in range(len(a)): d = {} d['id'] = a[i]['id'] d['key'] = a[i]['key'] d['name'] = a[i]['name'] d['status'] = a[i]['status'] d['type'] = a[i]['type'] e.append(d) #return(print(json.dumps(e, indent = 2))) return(json.dumps(e, indent = 2)) def get_info_space(key): #key = int(input("Enter the space key:")) a = cf.get_space(key, expand='description.plain,homepage') d = {} d['id'] = a['id'] d['key'] = a['key'] d['name'] = a['name'] d['status'] = a['status'] d['type'] = a['type'] d['homepage_id'] = a['homepage']['id'] d['homepage_title'] = a['homepage']['title'] return(json.dumps(d, indent = 2)) def get_pages_in_a_space(name): #name = input(print("Enter the name of the space")) a = cf.get_all_pages_from_space(name, start=0, limit=50, status=None, expand=None, content_type='page') e = [] for i in range(len(a)): d = {} d['id'] = a[i]['id'] d['status'] = a[i]['status'] d['title'] = a[i]['title'] d['type'] = a[i]['type'] e.append(d) return(json.dumps(e, indent = 2)) # 3. Pages def create_page(space, title, body): cf.create_page(space, title, body) print("Page Created") #return (json.dumps("Page Created")) #return (print(json.dumps("Page Created"))) def delete_page(id): #id = int(input(print("Enter the ID of the page:"))) cf.remove_page(id, status=None, recursive=False) print("Page Deleted") #return(print(json.dumps("Page Deleted"))) #return(json.dumps("Page Deleted")) # def check_page_exists(space, title): # #space = input(print("Enter the name of the space to be checked:")) # #title = input(print("Enter the title of the page that has to be checked:")) # pprint(cf.page_exists(space, title)) # #return (pprint(json.dumps(cf.page_exists(space, title)))) # return (json.dumps(cf.page_exists(space, title))) # def get_page_id(space, title): # #space = input(print("Enter the space name:")) # #title = input(print("Enter the title of the page:")) # print(cf.get_page_id(space, title)) # return (json.dumps(cf.get_page_id(space, title))) # #return (print(json.dumps(cf.get_page_id(space, title)))) # def get_page_space(id): # #id = int(input(print("Enter the page ID:"))) # print(cf.get_page_space(id)) # return (json.dumps(cf.get_page_space(id))) # # Page Info using title # def page_info_by_title(space, title): # a = cf.get_page_by_title(space, title, start=None, limit=None) # d = {} # d['id'] = a['id'] # d['status'] = a['status'] # d['title'] = a['title'] # d['type'] = a['type'] # return(json.dumps(d, indent = 2)) # Page info using ID def page_info_by_id(id): a = cf.get_page_by_id(id, expand=None, status=None, version=None) d = {} d['id'] = a['id'] d['status'] = a['status'] d['title'] = a['title'] d['type'] = a['type'] d['space_name'] = a['space']['name'] d['space_key'] = a['space']['key'] d['space_id'] = a['space']['id'] d['creator_email'] = a['history']['createdBy']['email'] d['creator_displayName'] = a['history']['createdBy']['displayName'] d['created_date'] = a['history']['createdDate'] return(json.dumps(d, indent = 2)) # Export Page as PDF def export_page_as_pdf(id, name): #id = int(input(print("Enter the page ID:"))) #name = input(print("Enter the name of the pdf file to be created:")) a = cf.export_page(id) def save_file(content): file_pdf = open(name, 'wb') file_pdf.write(content) file_pdf.close() print("Completed") save_file(content=a) #print(a) print("Page Exported") return (json.dumps("Page Exported")) #return (print(json.dumps("Page Exported"))) ```
{ "source": "jkhargharia/python-dlpy", "score": 2 }
#### File: dlpy/tests/test_embedding_model.py ```python import os import unittest import swat import swat.utils.testing as tm from dlpy import Dense from dlpy.applications import ResNet18_Caffe, MobileNetV1, Model from dlpy.embedding_model import EmbeddingModel from dlpy.image_embedding import ImageEmbeddingTable from dlpy.lr_scheduler import StepLR from dlpy.model import AdamSolver, Optimizer from dlpy.model import Gpu class TestImageEmbeddingModel(unittest.TestCase): # Create a class attribute to hold the cas host type server_type = None s = None server_sep = '/' data_dir = None @classmethod def setUpClass(cls): swat.reset_option() swat.options.cas.print_messages = False swat.options.interactive_mode = False cls.s = swat.CAS() cls.server_type = tm.get_cas_host_type(cls.s) cls.server_sep = '\\' if cls.server_type.startswith("lin") or cls.server_type.startswith("osx"): cls.server_sep = '/' if 'DLPY_DATA_DIR' in os.environ: cls.data_dir = os.environ.get('DLPY_DATA_DIR') if cls.data_dir.endswith(cls.server_sep): cls.data_dir = cls.data_dir[:-1] cls.data_dir += cls.server_sep if "DLPY_DATA_DIR_LOCAL" in os.environ: cls.local_dir = os.environ.get("DLPY_DATA_DIR_LOCAL") # the server path that points to DLPY_DATA_DIR_LOCAL if "DLPY_DATA_DIR_SERVER" in os.environ: cls.server_dir = os.environ.get("DLPY_DATA_DIR_SERVER") if cls.server_dir.endswith(cls.server_sep): cls.server_dir = cls.server_dir[:-1] cls.server_dir += cls.server_sep @classmethod def tearDownClass(cls): # tear down tests try: cls.s.terminate() except swat.SWATError: pass del cls.s swat.reset_option() def test_embedding_model_siamese(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test default resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_flip='HV', random_mutation='random' ) branch = resnet18_model.to_functional_model(stop_layers=resnet18_model.layers[-1]) model = EmbeddingModel.build_embedding_model(branch) res = model.print_summary() # print(res) self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 2) # test options embedding_layer = Dense(n=10) model1 = EmbeddingModel.build_embedding_model(branch, model_table='test', embedding_model_type='siamese', margin=3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() # print(res1) self.assertEqual(res1[res1['Layer'].str.contains(model1.embedding_layer_name_prefix)].shape[0], 2) # test passing in a sequential model model2 = EmbeddingModel.build_embedding_model(resnet18_model) res2 = model2.print_summary() self.assertEqual(res2[res2['Layer'].str.contains(model2.embedding_layer_name_prefix)].shape[0], 2) model3 = EmbeddingModel.build_embedding_model(resnet18_model, model_table='test2', embedding_model_type='siamese', margin=3.0, embedding_layer=embedding_layer) res3 = model3.print_summary() self.assertEqual(res3[res3['Layer'].str.contains(model3.embedding_layer_name_prefix)].shape[0], 2) def test_embedding_model_siamese_1(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test passing in a functional model vgg16 = Model(self.s) vgg16.load(path=self.data_dir + 'vgg16.sashdat') model = EmbeddingModel.build_embedding_model(vgg16) res = model.print_summary() self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 2) def test_embedding_model_triplet(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test triplet resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_flip='HV', random_mutation='random' ) branch = resnet18_model.to_functional_model(stop_layers=resnet18_model.layers[-1]) model = EmbeddingModel.build_embedding_model(branch, model_table='test', embedding_model_type='triplet', margin=-3.0) res = model.print_summary() self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 3) # test embedding layer embedding_layer = Dense(n=10) model1 = EmbeddingModel.build_embedding_model(branch, model_table='test', embedding_model_type='triplet', margin=-3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() # print(res1) self.assertEqual(res1[res1['Layer'].str.contains(model1.embedding_layer_name_prefix)].shape[0], 3) # test passing in a sequential model model2 = EmbeddingModel.build_embedding_model(resnet18_model, embedding_model_type='triplet', margin=-3.0, embedding_layer=embedding_layer) res2 = model2.print_summary() self.assertEqual(res2[res2['Layer'].str.contains(model2.embedding_layer_name_prefix)].shape[0], 3) def test_embedding_model_triplet_1(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test passing in a functional model vgg16 = Model(self.s) vgg16.load(path=self.data_dir + 'vgg16.sashdat') embedding_layer = Dense(n=10) model = EmbeddingModel.build_embedding_model(vgg16, embedding_model_type='triplet', margin=-3.0, embedding_layer=embedding_layer) res = model.print_summary() self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 3) def test_embedding_model_quartet(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test triplet resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_flip='HV', random_mutation='random' ) branch = resnet18_model.to_functional_model(stop_layers=resnet18_model.layers[-1]) model = EmbeddingModel.build_embedding_model(branch, model_table='test', embedding_model_type='quartet', margin=-3.0) res = model.print_summary() self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 4) # test embedding layer embedding_layer = Dense(n=10) model1 = EmbeddingModel.build_embedding_model(branch, model_table='test', embedding_model_type='quartet', margin=-3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() # print(res1) self.assertEqual(res1[res1['Layer'].str.contains(model1.embedding_layer_name_prefix)].shape[0], 4) # test passing in a sequential model model2 = EmbeddingModel.build_embedding_model(resnet18_model, embedding_model_type='quartet', margin=-3.0, embedding_layer=embedding_layer) res2 = model2.print_summary() self.assertEqual(res2[res2['Layer'].str.contains(model2.embedding_layer_name_prefix)].shape[0], 4) def test_embedding_model_quartet_1(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test passing in a functional model vgg16 = Model(self.s) vgg16.load(path=self.data_dir + 'vgg16.sashdat') embedding_layer = Dense(n=10) model = EmbeddingModel.build_embedding_model(vgg16, embedding_model_type='quartet', margin=-3.0, embedding_layer=embedding_layer) res = model.print_summary() self.assertEqual(res[res['Layer'].str.contains(model.embedding_layer_name_prefix)].shape[0], 4) # test fit with the data option def test_siamese_fit(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test using one data table resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_crop='RESIZETHENCROP', random_flip='HV', random_mutation='random' ) embedding_layer = Dense(n=4) model1 = EmbeddingModel.build_embedding_model(resnet18_model, model_table='test1', embedding_model_type='siamese', margin=3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() self.assertEqual(res1[res1['Layer'].str.contains(model1.embedding_layer_name_prefix)].shape[0], 2) img_path = self.server_dir + 'DogBreed_small' my_images = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=64, embedding_model_type='siamese') solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=20), clip_grad_max=100, clip_grad_min=-100) optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=3, max_epochs=5, reg_l2=0.0001) gpu = Gpu(devices=1) train_res = model1.fit_embedding_model(data=my_images, optimizer=optimizer, n_threads=1, gpu=gpu, seed=1234, record_seed=23435) print(train_res) score_res = model1.predict(data=my_images, gpu=gpu, random_crop='RESIZETHENCROP') print(score_res) # test deploy as astore self.s.loadactionset('astore') my_images_test = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=5, embedding_model_type='siamese', resize_width=224, resize_height=224) # case 1: deploy the full model as astore model1.deploy_embedding_model(output_format='astore', model_type='full', path=self.local_dir) full_astore = os.path.join(self.local_dir, model1.model_name + '.astore') with open(full_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_full', replace=True), store=store_) # run with one gpu res2 = self.s.score(rstore=dict(name='test1_full'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_', '_path_xx'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_full_gpu', replace=True)) print(res2) res = self.s.fetch(table='astore_score1_full_gpu') print(res) # remove the astore file os.remove(full_astore) # case 2: deploy the branch model as astore model1.deploy_embedding_model(output_format='astore', model_type='branch', path=self.local_dir) br_astore = os.path.join(self.local_dir, model1.model_name + '_branch.astore') with open(br_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_br', replace=True), store=store_) # run with one gpu self.s.score(rstore=dict(name='test1_br'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_br_gpu', replace=True)) res = self.s.fetch(table='astore_score1_br_gpu') print(res) os.remove(br_astore) # test fit with the path option def test_siamese_fit_1(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test using one data table resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_crop='RESIZETHENCROP', random_flip='HV', random_mutation='random' ) embedding_layer = Dense(n=4) model1 = EmbeddingModel.build_embedding_model(resnet18_model, model_table='test1', embedding_model_type='siamese', margin=3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() self.assertEqual(res1[res1['Layer'].str.contains(model1.embedding_layer_name_prefix)].shape[0], 2) img_path = self.server_dir + 'DogBreed_small' my_images = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=64, embedding_model_type='siamese') solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=20), clip_grad_max=100, clip_grad_min=-100) optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=3, max_epochs=2, reg_l2=0.0001) gpu = Gpu(devices=1) train_res = model1.fit_embedding_model(optimizer=optimizer, n_threads=1, gpu=gpu, path=img_path, n_samples=64, max_iter=2, seed=1234, record_seed=23435) print(train_res) score_res = model1.predict(data=my_images, gpu=gpu, random_crop='RESIZETHENCROP') print(score_res) # test fit with the data option def test_triplet_fit(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test using one data table resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_crop='RESIZETHENCROP', random_flip='HV', random_mutation='random' ) embedding_layer = Dense(n=4) model1 = EmbeddingModel.build_embedding_model(resnet18_model, model_table='test1', embedding_model_type='triplet', margin=-3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() print(res1) img_path = self.server_dir + 'DogBreed_small' my_images = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=64, embedding_model_type='triplet') solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=20), clip_grad_max=100, clip_grad_min=-100) optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=3, max_epochs=5, reg_l2=0.0001) gpu = Gpu(devices=1) train_res = model1.fit_embedding_model(data=my_images, optimizer=optimizer, n_threads=1, gpu=gpu, seed=1234, record_seed=23435) print(train_res) score_res = model1.predict(data=my_images, gpu=gpu, random_crop='RESIZETHENCROP') print(score_res) # test deploy as astore self.s.loadactionset('astore') my_images_test = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=5, embedding_model_type='triplet', resize_width=224, resize_height=224) # case 1: deploy the full model as astore model1.deploy_embedding_model(output_format='astore', model_type='full', path=self.local_dir) full_astore = os.path.join(self.local_dir, model1.model_name + '.astore') with open(full_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_full', replace=True), store=store_) # run with one gpu self.s.score(rstore=dict(name='test1_full'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_', '_path_1', '_path_2'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_full_gpu', replace=True)) res = self.s.fetch(table='astore_score1_full_gpu') print(res) # remove the astore file os.remove(full_astore) # case 2: deploy the branch model as astore model1.deploy_embedding_model(output_format='astore', model_type='branch', path=self.local_dir) br_astore = os.path.join(self.local_dir, model1.model_name + '_branch.astore') with open(br_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_br', replace=True), store=store_) # run with one gpu self.s.score(rstore=dict(name='test1_br'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_br_gpu', replace=True)) res = self.s.fetch(table='astore_score1_br_gpu') print(res) os.remove(br_astore) # test fit with the data option def test_quartet_fit(self): if self.server_dir is None: unittest.TestCase.skipTest(self, "DLPY_DATA_DIR_SERVER is not set in the environment variables") # test using one data table resnet18_model = ResNet18_Caffe(self.s, width=224, height=224, random_crop='RESIZETHENCROP', random_flip='HV', random_mutation='random' ) embedding_layer = Dense(n=4) model1 = EmbeddingModel.build_embedding_model(resnet18_model, model_table='test1', embedding_model_type='quartet', margin=-3.0, embedding_layer=embedding_layer) res1 = model1.print_summary() print(res1) img_path = self.server_dir + 'DogBreed_small' my_images = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=64, embedding_model_type='quartet') solver = AdamSolver(lr_scheduler=StepLR(learning_rate=0.0001, step_size=20), clip_grad_max=100, clip_grad_min=-100) optimizer = Optimizer(algorithm=solver, mini_batch_size=8, log_level=3, max_epochs=5, reg_l2=0.0001) gpu = Gpu(devices=1) train_res = model1.fit_embedding_model(data=my_images, optimizer=optimizer, n_threads=1, gpu=gpu, seed=1234, record_seed=23435) print(train_res) score_res = model1.predict(data=my_images, gpu=gpu, random_crop='RESIZETHENCROP') print(score_res) # test deploy as astore self.s.loadactionset('astore') my_images_test = ImageEmbeddingTable.load_files(self.s, path=img_path, n_samples=5, embedding_model_type='quartet', resize_width=224, resize_height=224) # case 1: deploy the full model as astore model1.deploy_embedding_model(output_format='astore', model_type='full', path=self.local_dir) full_astore = os.path.join(self.local_dir, model1.model_name + '.astore') with open(full_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_full', replace=True), store=store_) # run with one gpu self.s.score(rstore=dict(name='test1_full'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_', '_path_1', '_path_2', '_path_3'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_full_gpu', replace=True)) res = self.s.fetch(table='astore_score1_full_gpu') print(res) # remove the astore file os.remove(full_astore) # case 2: deploy the branch model as astore model1.deploy_embedding_model(output_format='astore', model_type='branch', path=self.local_dir) br_astore = os.path.join(self.local_dir, model1.model_name + '_branch.astore') with open(br_astore, mode='rb') as file: file_content = file.read() store_ = swat.blob(file_content) self.s.astore.upload(rstore=dict(name='test1_br', replace=True), store=store_) # run with one gpu self.s.score(rstore=dict(name='test1_br'), table=my_images_test, nthreads=1, # _debug=dict(ranks=0), copyvars=['_path_'], options=[dict(name='usegpu', value='1'), dict(name='NDEVICES', value='1'), dict(name='DEVICE0', value='0') ], out=dict(name='astore_score1_br_gpu', replace=True)) res = self.s.fetch(table='astore_score1_br_gpu') print(res) os.remove(br_astore) ```