metadata
dict
text
stringlengths
60
3.49M
{ "source": "jkleve/python_boilers", "score": 3 }
#### File: jkleve/python_boilers/argparse_logzero_boiler.py ```python from argparse import ArgumentParser import logging import logzero from logzero import logger import sys # __author__ = None # __license__ = None __version__ = '0.1.0' PROGRAM_NAME = 'argparse logzero boiler' LOGGING_FORMAT = '%(asctime)s %(levelname)-7s %(name)s: %(message)s' LOGGING_DATEFMT = '%H:%M:%S' def program_description(): """Returns a string with a description of the program """ return None def configure_logging(verbosity): if verbosity == 1: logzero.loglevel(logging.INFO) elif verbosity >= 2: logzero.loglevel(logging.DEBUG) else: logzero.loglevel(logging.WARNING) def main(args): pass if __name__ == '__main__': parser = ArgumentParser(prog=PROGRAM_NAME, description=program_description()) parser.add_argument('-v', '--verbose', default=0, action='count', help='verbosity level. counting (e.g. -v, -vv)') parser.add_argument('--version', action='version', version='%(prog)s {__version__}'.format(**globals())) # parser.add_argument('-n', '--number', type=int) args = parser.parse_args() configure_logging(args.verbose) main(args) ```
{ "source": "jklewis99/furiosa", "score": 3 }
#### File: jklewis99/furiosa/automate_testing.py ```python import pandas as pd from furiosanet import test, get_layers_from_file def main(): ''' test models saved in the csv ''' models = pd.read_csv("model-evaluation.csv", index_col=0).index.tolist() for model in models: weights_file = "weights/automated/" + model layers = get_layers_from_file(weights_file) test(weights_file, layers, show_fig=False) if __name__ == "__main__": main() ``` #### File: jklewis99/furiosa/automate_training.py ```python import random import numpy as np from furiosanet import train def main(): ''' randomly create a model and train it ''' num_trails = 100 hidden_layers = np.arange(2, 6, 1) range_params = np.arange(20, 5000, 10) for _ in range(num_trails): layers = np.random.choice(range_params, random.choice(hidden_layers)).tolist() train(layers, "mean_squared_error", scale_input=True) if __name__ == "__main__": main() ``` #### File: video-editor-cached/classes/clip.py ```python import numpy as np from moviepy.editor import VideoFileClip from moviepy.editor import ImageClip import cv2 # TODO: import fps of project PROJECT_FPS = 24 # TODO: create fucntion that separates audio data # and video data to create thier respective clips class Clip(): ''' top level class for audio and video clips ''' def __init__(self): # self.__duration = None self.media = None # def get_duration(self): # return self.__duration class FuriosaVideoClip(Clip): ''' class of furiosa video clip object can be created from an imported path OR from a moviepy VideoClip object ''' def __init__(self, path=None, clip=None, start=0, end=None): super(FuriosaVideoClip, self).__init__() self.path_extension = None self.__duration = end self.end = 0 self.start = 0 self.clip_name = None self.video_clip = None self.__original = None self.create_video_clip(path=path, clip=clip, start=start, end=end) def create_video_clip(self, path=None, clip=None, start=0, end=None): ''' top-level method to instantiate this object's attributes ''' if path: self.video_clip_from_path(path) elif clip: self.video_clip_from_clip(clip, start, end) else: print('ERROR: Must specify a path or reference to moviepy VideoClip') self.__set_duration() def video_clip_from_path(self, path): ''' create a video clip out of the file path specified Parameters ---------- path: String of path to file with supported extension ''' self.path_extension = path.split(".")[-1] if self.path_extension in ['jpg', 'png', 'jpeg']: self.video_clip = self.__original = ImageClip(path, fps=PROJECT_FPS, duration=self.__duration) elif self.path_extension in ['mp4', 'mov', 'avi', 'gif']: self.video_clip = self.__original = VideoFileClip(path) else: print('ERROR: File Specified could not be found or the extension \ is not currently supported.') self.end = self.video_clip.duration def video_clip_from_clip(self, clip, start, end): ''' create a video clip out of a reference to moviepy VideoClip Parameters ---------- clip: moviepy VideoFileClip object start: time (float) in reference to clip from which to start new clip end: time (float) in refernce to clip at which to end new clip ''' self.__original = clip self.video_clip = clip.subclip(start, end) self.start = start self.end = end def trim(self, trim_from, time): ''' method to cut the ends of a clip Parameters ---------- trim_from: the end from which the trimming will occur, but it must be "front" or "back" time: time stamp of when video will now start/end Return ------ the updated copy of the new clip ''' # TODO: trim out of bounds (front trim exceeds end of clip) # I would like for this check to be outside of this method if trim_from == "front": self.start = time self.video_clip = self.video_clip.subclip(t_start=time) elif trim_from == "back": self.end = time self.video_clip = self.video_clip.subclip(t_end=time) self.__set_duration() return self.video_clip # I may not need to return # TODO: this method may be better outside of the current clip def split(self, split_point=None): ''' method to split current video clip into 2 video clips, but preserves the original clip in both. This method will make the current clip the first subclip and will return a reference to teh new second subclip Parameters ---------- split_point: defaults to the midpoint, but will accept a floating point number specifying time at which to split Return ------ tuple of references to self and new clip ''' if not split_point: split_point = self.end / 2.0 previous_end = self.end self.trim("back", split_point) # subclip is self.video_clip # create a reference to a new FuriosaVideoClip object subclip2 = FuriosaVideoClip(clip=self.__original, start=split_point, end=previous_end) self.__set_duration() return self, subclip2 # TODO: iterable effects, though this is not a recommended method def apply_filter(self): all_frames = [frame for frame in self.video_clip.iter_frames()] # TODO: Transfer VideoClip object methods to moviepy objects and methods def extract_frames(self, path): video = cv2.VideoCapture(path) height, width = self.get_dimensions(path) num_frames = self.count_frames(path) # create numpy array for all the frames (convert video to array) video = self.numpy_video(path, num_frames, height, width) return video def numpy_video(self, path, num_frames, height, width, num_channels=3): # TODO: address failure on high resolution videos of long duration video = cv2.VideoCapture(path) video_array = np.empty((num_frames, height, width, num_channels), np.dtype('uint8')) frame_idx = 0 while video.isOpened(): ret, frame = video.read() if ret: video_array[frame_idx] = frame else: print("1 ERROR: Error reading video", frame_idx) break frame_idx += 1 video.release() return video_array def get_dimensions(self, path): video = cv2.VideoCapture(path) w, h = int(video.get(cv2.CAP_PROP_FRAME_WIDTH)), int(video.get(cv2.CAP_PROP_FRAME_HEIGHT)) video.release() return h, w def count_frames(self, path): video = cv2.VideoCapture(path) num_frames = 0 try: num_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) except: num_frames = self.manual_count_frames(video) video.release() return num_frames def manual_count_frames(self, video): num_frames = 0 while video.isOpened(): ret, frame = video.read() if not ret: print("2 ERROR: Error reading video.") num_frames += 1 return num_frames def reset(self): self.video = self.__original # TODO: getters def get_original(self): return self.__original def get_duration(self): return self.__duration # TODO: private methods def __set_duration(self): self.__duration = self.end - self.start class AudioClip(Clip): def __init__(self): super(AudioClip, self).__init__() self.audio_name = None # TODO: User moviepy to get audio array from video ``` #### File: furiosa/video-editor-cached/trial_painter.py ```python import cv2 from PyQt5.QtWidgets import QMainWindow, QLabel, QPushButton, QSizePolicy, QApplication, QWidget from PyQt5.QtGui import QPainter, QPen, QPixmap, QImage from PyQt5.QtCore import QCoreApplication, QRectF, Qt, QRect, QMetaObject import numpy as np import sys import time from moviepy.editor import VideoFileClip class Demo(QWidget): def __init__(self): super().__init__() self.video = VideoFileClip(r'C:\Users\jklew\Videos\Music\Fractalia.MP4') im_np = self.video.get_frame(0) self.image = QImage(im_np, im_np.shape[1], im_np.shape[0], QImage.Format_RGB888) def paintEvent(self, event): pen = QPen() pen.setWidth(5) painter = QPainter(self) painter.drawImage(self.rect(), self.image) painter.setPen(pen) painter.drawEllipse(300, 300, 500, 500) def display_clip(self, fps=60, audio=False, audio_fps=22050, audio_buffersize=3000, audio_nbytes=2): """ Displays the clip in a window, at the given frames per second (of movie) rate. It will avoid that the clip be played faster than normal, but it cannot avoid the clip to be played slower than normal if the computations are complex. In this case, try reducing the ``fps``. Parameters ------------ fps Number of frames per seconds in the displayed video. audio ``True`` (default) if you want the clip's audio be played during the preview. audio_fps The frames per second to use when generating the audio sound. fullscreen ``True`` if you want the preview to be displayed fullscreen. """ # compute and splash the first image # TODO: change pgame to a widget in Qt # screen = pg.display.set_mode(clip.size, flags) audio = audio and (clip.audio is not None) if audio: # the sound will be played in parrallel. We are not # paralellizing it on different CPUs because it seems that # pygame and openCV already use several cpus it seems. # two synchro-flags to tell whether audio and video are ready videoFlag = threading.Event() audioFlag = threading.Event() # launch the thread audiothread = threading.Thread(target=clip.audio.preview, args=(audio_fps, audio_buffersize, audio_nbytes, audioFlag, videoFlag)) audiothread.start() clip = self.video img = clip.get_frame(0) self.imdisplay(img) if audio: # synchronize with audio videoFlag.set() # say to the audio: video is ready audioFlag.wait() # wait for the audio to be ready result = [] t0 = time.time() for t in np.arange(1.0 / fps, clip.duration-.001, 1.0 / fps): img = clip.get_frame(t) print(img.shape) t1 = time.time() time.sleep(max(0, t - (t1-t0))) # loop at framerate specified self.imdisplay(img) #, screen) def imdisplay(self, img_array): # fill the widget with the image array # TODO: Qt widget self.image = QImage(img_array, img_array.shape[1], img_array.shape[0], QImage.Format_RGB888) self.repaint() def main(): app = QApplication(sys.argv) demo = Demo() demo.show() demo.display_clip() sys.exit(app.exec_()) main() ```
{ "source": "jklewis99/hypertriviation", "score": 3 }
#### File: backend/api/models.py ```python from django.db import models import string import random import uuid import math from authentication.models import HypertriviationUser def generate_unique_code(length=8): while True: code = ''.join(random.choices(string.ascii_uppercase, k=length)) if FixationSession.objects.filter(code=code).count() == 0: break return code class FixationCategory(models.TextChoices): OTHER = "Other" MUSIC = "Music" class TimeLimitOptions(models.IntegerChoices): FAST = 30 MODERATE = 60 SLOW = 120 UNLIMITED = 1e6 class Room(models.Model): code = models.CharField( max_length=8, default=generate_unique_code, unique=True) host = models.CharField(max_length=50, unique=True) guest_can_pause = models.BooleanField(null=False, default=False) votes_to_skip = models.IntegerField(null=False, default=1) created_at = models.DateTimeField(auto_now_add=True) current_song = models.CharField(max_length=50, null=True) def __str__(self): return self.code class User(models.Model): """ Stores a single user entry, containing publicly accessible information """ username = models.CharField(max_length=32, unique=True) first_name = models.CharField(max_length=32) last_name = models.CharField(max_length=32) spotify_authenticated_ind = models.BooleanField(null=False, default=False) email = models.CharField(max_length=64) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.username class Fixation(models.Model): """ Stores a single fixation entry, which defines the trivia session """ created_by = models.ForeignKey(HypertriviationUser, on_delete=models.CASCADE, null=False) fixation_title = models.CharField(max_length=50, unique=False) category = models.TextField(choices=FixationCategory.choices, default=FixationCategory.OTHER) description = models.CharField(max_length=240, null=True) img_url = models.CharField(max_length=1000, null=True) # change this keep_shuffled = models.BooleanField(default=True) spotify_playlist_id = models.CharField(max_length=128, null=True) spotify_random_start_ind = models.BooleanField(default=True) default_duration = models.IntegerField(null=False, default=10) question_count = models.IntegerField(null=False, default=0) rating = models.FloatField(null=False, default=0) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) # TODO: add description def __str__(self): return self.fixation_title class FixationQuestion(models.Model): """ Stores a single fixation question entry, which defines the fixation question """ fixation = models.ForeignKey(Fixation, null=True, on_delete=models.CASCADE) question_idx = models.IntegerField(null=False) question_txt = models.CharField(max_length=512, null=False) multiple_choice_ind = models.BooleanField(default=True) img_url = models.CharField(max_length=512, null=True) video_playback_url = models.CharField(max_length=512, null=True) created_by = models.ForeignKey(HypertriviationUser, on_delete=models.CASCADE) question_category = models.CharField(max_length=128, null=True) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.question_txt class FixationAnswer(models.Model): """ Stores a single fixation answer entry, which defines a possible fixation answer """ question = models.ForeignKey(FixationQuestion, related_name='answers', null=True, on_delete=models.CASCADE) answer_txt = models.CharField(max_length=512, null=False) correct_answer_ind = models.BooleanField(default=True) created_by = models.ForeignKey(HypertriviationUser, on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True) updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.answer_txt class FixationSession(models.Model): """ Stores a single fixation session entry, which contains the real time metadata for a trivia session """ code = models.CharField( max_length=8, default=generate_unique_code, unique=True) host = models.CharField(max_length=64, unique=True) hosted_by = models.ForeignKey(HypertriviationUser, null=False, on_delete=models.CASCADE) fixation = models.ForeignKey(Fixation, null=True, on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True) current_song = models.CharField(max_length=64, null=True) # TODO: add settings (time limit, hints, etc.) def __str__(self): return self.code class FixationSessionPlayer(models.Model): """ Stores a single fixation session user entry, designated by the code of FixationSession """ player_session_id = models.UUIDField(primary_key=True, default=uuid.uuid4) fixation_session = models.ForeignKey(FixationSession, null=False, on_delete=models.CASCADE) display_name = models.CharField(max_length=16) active_ind = models.BooleanField(null=False, default=True) added_at = models.DateTimeField(auto_now_add=True) def __str__(self): return self.display_name + ": " + self.fixation_session.code def get_self(self): return { "player_session_id": str(self.player_session_id), "display_name": self.display_name, "fixation_session": self.fixation_session.code } class FixationSessionSettings(models.Model): """ Stores a fixation session settings entry, designated by the code of FixationSession """ fixation_session = models.ForeignKey(FixationSession, null=False, on_delete=models.CASCADE) show_hints_ind = models.BooleanField(null=False, default=True) multiple_choice_ind = models.BooleanField(null=False, default=True) random_shuffle_ind = models.BooleanField(null=False, default=True) stop_on_answer_ind = models.BooleanField(null=False, default=False) spotify_random_start_ind = models.BooleanField(null=True, default=False) time_limit = models.IntegerField(choices=TimeLimitOptions.choices, default=TimeLimitOptions.UNLIMITED) active_ind = models.BooleanField(null=False, default=True) created_ts = models.DateTimeField(auto_now_add=True) def __str__(self): return self.fixation_session.code ``` #### File: backend/api/tests.py ```python from django.test import TestCase from django.conf import settings # Create your tests here. # test get user token for websockets class SettingsTestCase(TestCase): def test_generate_websockets_token(self): from django.contrib.auth import get_user_model User = get_user_model() user = User.objects.create_user('jklew', '<EMAIL>', 'richardnixon') user = User.objects.get(username="jklew") from sesame.utils import get_token token = get_token(user) self.assertIs(token, "this"); ``` #### File: backend/authentication/models.py ```python from django.db import models from django.contrib.auth.models import AbstractUser # Create your models here. class HypertriviationUser(AbstractUser): """ Stores a single user entry """ # username = models.CharField(max_length=32, unique=True) first_name = models.CharField(max_length=32) last_name = models.CharField(max_length=32) spotify_authenticated_ind = models.BooleanField(null=False, default=False) # email = models.CharField(max_length=64) # created_at = models.DateTimeField(auto_now_add=True) # updated_at = models.DateTimeField(auto_now=True) def __str__(self): return self.username + " " + self.last_name ```
{ "source": "jklewis99/magical-movie-poster-processing", "score": 3 }
#### File: jklewis99/magical-movie-poster-processing/generate_train_test.py ```python import pandas as pd from sklearn.model_selection import train_test_split def main(): metadata = pd.read_csv("data/movies-metadata-cleaned.csv").drop( columns=['Language', 'Poster', 'Country', 'Director', 'Released', 'Writer', 'Genre', 'Actors']) ratings = pd.get_dummies(metadata['Rated'], prefix='rated') # one hot encode "Rated" column metadata = metadata.drop(columns=["Rated"]).join(ratings) # replace "Rated" with one_hot metadata = metadata.dropna() # drop the missing box_office values posters = pd.read_csv("data/posters-and-genres.csv").drop(columns=["Genre"]).rename(columns={"Id": "imdbID"}) data = metadata.merge(posters, on='imdbID').drop_duplicates() # add genres data = data[((data['Short'] != 1) & ( data['N/A'] != 1))] data = data.drop(columns=['Reality-TV', 'Short', 'N/A']) cols = data.columns.tolist() cols = cols[1:2] + cols[5:6] + cols[2:5] + cols[6:] + cols[0:1] data = data[cols] # reorder columns train, test = train_test_split(data, test_size=0.2) # generate train and test data train.to_csv("data/train_data.csv", index=False) test.to_csv("data/test_data.csv", index=False) if __name__ == "__main__": main() ``` #### File: magical-movie-poster-processing/utils/data_read.py ```python import os import numpy as np import pandas as pd from utils.read_images import read_images from utils.misc import get_genres from sklearn.model_selection import train_test_split def split_data(data="data/posters-and-genres.csv", img_shape=(299, 299)): ''' read data from the csv file containing the id of movies and the labels Keyword Arguments ========== data: location of poster dataset img_shape: (299, 299) for input size to XceptionNet Return ========== tuple of numpy arrays: (x_train, x_test, y_train, y_test) ''' imgs, genres = load_data(data, img_shape=img_shape) # call the sklearn train_test_split method x_train, x_test, y_train, y_test = train_test_split(imgs, genres, test_size=0.2, random_state=3520) return x_train, x_test, y_train, y_test def load_train_test(training_data='data/train_data.csv', testing_data='data/test_data.csv', img_shape=(299,299)): ''' top level method for getting the training and test data for the CNN models Parameters ========== `training_data`: path to csv file containing training data `testing_data`: path to csv file containing training data Return ========== x_train, y_train, x_test, y_test ''' x_train, y_train, _, genres = load_data(training_data, img_shape=img_shape) x_test, y_test, _, _ = load_data(testing_data, img_shape=img_shape) return x_train, y_train, x_test, y_test, genres def load_data(data='data/test_data.csv', posters_csv="data/posters-and-genres.csv", img_shape=(299,299)): ''' load and read data for testing or training or other tasks associated with CNNs, where the data is specified by the `data` parameter. Method merges `data` with `posters_csv` and extracts the matching ImdbIDs, then reads the images and saves them into a numpy array. Parameters ========== `data`: any csv containing column imdbID, and whose imdbIDs are in `posters_csv` `posters_csv`: csv with data on poster image id and encoded genres Return ========== (imgs, labels, img_ids, genres) numpy array of images, numpy array of labels per image, numpy array of image ids, and a list of the column names of the labels ''' data_ids = pd.read_csv(data)['imdbID'].values ids_and_genres = pd.read_csv(posters_csv).drop(columns=['Genre']) ids_and_genres = ids_and_genres.loc[ids_and_genres['Id'].isin(data_ids)] img_ids = ids_and_genres['Id'].values # isolate the ids labels = ids_and_genres.loc[:, ids_and_genres.columns != 'Id'].values # isolate the genre labels print("\nLoading images........") # read in all the images into an array, return number of indices used (used to combat memory error) imgs, subset_size = read_images(img_ids, dimensions=img_shape) print("DONE!\n") # if there was a memory error, update the labels as were updated within read_images functions labels = labels[:subset_size] # genres = ids_and_genres.columns[-labels.shape[1]:] genres = get_genres() return imgs, labels, img_ids, genres ```
{ "source": "jklewis99/MultimodalDeepfakeDetection", "score": 2 }
#### File: jklewis99/MultimodalDeepfakeDetection/fouriernet_train.py ```python from tqdm import tqdm import os import torch import numpy as np import matplotlib.pyplot as plt # from Utils.errors import * from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import torch.optim as optim from torch import nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter('runs/fouriernet-val-e-5-lstm-4') # %% labelmap = {'real': 0, 'fake': 1} # %% dct_path = '/home/itdfh/data/dfdc-subset/train-6-dct-all' spc_path = '/home/itdfh/data/dfdc-subset/train-6-spectrograms' # ## Load data # ### Listing files # In[2]: def tensor_file_lists(dct_path, spc_path, max_files=None, perc=.9): dct_files_train, spc_files_train = [], [] dct_files_val, spc_files_val = [], [] for label in ['real', 'fake']: train_files = [] val_files = [] all_files = os.listdir(os.path.join(dct_path, label)) for i, p in enumerate(all_files): base_dir = os.path.join(label, p) full_base_dir = os.path.join(dct_path, base_dir) if i < len(all_files) * .9: train_files.extend([os.path.join(base_dir, p) for p in os.listdir(full_base_dir)]) else: val_files.extend([os.path.join(base_dir, p) for p in os.listdir(full_base_dir)]) dct_files_train.extend([(os.path.join(dct_path, p[:-6]+'30.npy'), labelmap[label]) for p in train_files if p[-6:] == '30.npy']) spc_files_train.extend([(os.path.join(spc_path, p[:-6]+'30.pt'), labelmap[label]) for p in train_files if p[-6:] == '30.npy']) dct_files_val.extend([(os.path.join(dct_path, p[:-6]+'30.npy'), labelmap[label]) for p in val_files if p[-6:] == '30.npy']) spc_files_val.extend([(os.path.join(spc_path, p[:-6]+'30.pt'), labelmap[label]) for p in val_files if p[-6:] == '30.npy']) return dct_files_train, spc_files_train, dct_files_val, spc_files_val # %% dct_files_train, spc_files_train, dct_files_val, spc_files_val = tensor_file_lists( dct_path, spc_path) # In[3]: spc_files_train[0], dct_files_train[0] # ### Checking match # ### Keeping matches # In[6]: clean_spc_files_train = [spc_files_train[i] for i, (f, label) in enumerate( spc_files_train) if os.path.exists(f)] clean_dct_files_train = [dct_files_train[i] for i, (f, label) in enumerate( spc_files_train) if os.path.exists(f)] spc_files_train = clean_spc_files_train dct_files_train = clean_dct_files_train spc_files_train_clean = [] dct_files_train_clean = [] for f1, f2 in zip(dct_files_train, spc_files_train): if not torch.isnan(torch.load(f2[0]).sum()) and not np.isnan(np.load(f1[0]).sum()): dct_files_train_clean.append(f1) spc_files_train_clean.append(f2) dct_files_train = dct_files_train_clean spc_files_train = spc_files_train_clean clean_spc_files_val = [spc_files_val[i] for i, (f, label) in enumerate( spc_files_val) if os.path.exists(f)] clean_dct_files_val = [dct_files_val[i] for i, (f, label) in enumerate( spc_files_val) if os.path.exists(f)] spc_files_val = clean_spc_files_val dct_files_val = clean_dct_files_val spc_files_val_clean = [] dct_files_val_clean = [] for f1, f2 in zip(dct_files_val, spc_files_val): if not torch.isnan(torch.load(f2[0]).sum()) and not np.isnan(np.load(f1[0]).sum()): dct_files_val_clean.append(f1) spc_files_val_clean.append(f2) dct_files_val = dct_files_val_clean spc_files_val = spc_files_val_clean # ### `FourierDataset` # In[8]: class FourierDataset(Dataset): ''' LipSpeech data set for concatenating lntionNet Features and dstrogram features ''' def __init__(self, dct_files, spc_files, max_spc_size=700): """ Args: DeepSpeech (string): Path to the csv file with annotations. LipNet (string): Directory with all the images. """ self.max_spc_size = max_spc_size self.dct_files, self.spc_files = dct_files, spc_files def __len__(self): return len(self.dct_files) def __getitem__(self, idx): dctf, label = self.dct_files[idx] spcf, label = self.spc_files[idx] dct_feats = np.load(dctf) dct_feats = torch.tensor(dct_feats) specs = torch.load(spcf, map_location=torch.device('cpu'))[ :, :self.max_spc_size] spc_feats = torch.zeros((specs.shape[0], self.max_spc_size)) spc_feats[:, :specs.shape[-1]] = specs fourier_feats = torch.cat([dct_feats.float(), spc_feats], dim=1) label = torch.tensor(label).long() return fourier_feats, label # %% trainset = FourierDataset(dct_files_train, spc_files_train) valset = FourierDataset(dct_files_val, spc_files_val) # In[12]: class FourierNet(nn.Module): def __init__(self, feature_size, num_layers=2, num_hidden_nodes=512, device='cuda'): super(FourierNet, self).__init__() self.device = device self.num_layers = num_layers self.num_hidden_nodes = num_hidden_nodes # input dim is 167, output 200 self.lstm = nn.LSTM(feature_size, num_hidden_nodes, batch_first=True, num_layers=num_layers) # fully connected self.fc1 = nn.Linear(num_hidden_nodes, num_hidden_nodes) self.act = nn.ReLU() self.fc2 = nn.Linear(num_hidden_nodes, 2) self.softmax = nn.Softmax() def forward(self, x, hidden): print(x.device, hidden[0].device) y, hidden = self.lstm(x, hidden) # returns the two outputs y = y[:, -1, :] # get only the last output y = self.fc1(y) y = self.act(y) y = self.fc2(y) y = F.softmax(y, dim=1) return y, hidden def init_hidden(self, batch_size): weight = next(self.parameters()).data hidden = (weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_().to(self.device), weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_().to(self.device)) return hidden # In[15]: model = FourierNet(1465, num_layers=4) # In[17]: def train(model, trainset, loss_function, optimizer, valset=None, epochs=1000, batch_size=50, device='cuda'): global writer # epsilon = 1e-6 model = model.to(device) trainloader = DataLoader(trainset, shuffle=True, batch_size=batch_size, drop_last=True) if valset is not None: valloader = DataLoader(valset, shuffle=True, batch_size=batch_size, drop_last=True) hidden = model.init_hidden(batch_size) for h in hidden: h = h.to(device) print_every = 100 i = 0 losses = [] accs = [] vaccs = [] vlosses = [] running_loss = 0.0 running_acc = 0.0 # again, normally you would NOT do 100 epochs, it is toy data for epoch in range(epochs): for inp, labels in trainloader: # renamed sequence to inp because inp is a batch of sequences optimizer.zero_grad() # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() inp = inp.float().to(device) labels = labels.to(device) # Step 2. Run our forward pass. tag_scores, h = model(inp, hidden) # tag_scores = tag_scores.add(epsilon) # Step 3. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss = loss_function(tag_scores, labels) # torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) loss.backward() optimizer.step() running_acc += torch.mean((tag_scores.argmax(dim=1) == labels).float()).item() # print statistics running_loss += loss.item() if i % print_every == print_every-1: print('[%d, %5d] loss: %.3f - acc: %.3f' % (epoch + 1, i + 1, running_loss / print_every, running_acc * 100 / print_every)) writer.add_scalar('train/loss', running_loss / print_every, i) writer.add_scalar('train/acc', running_acc * 100 / print_every, i) losses.append(running_loss / print_every) accs.append(running_acc * 100 / print_every) running_loss = 0.0 running_acc = 0.0 i += 1 if valset is not None: with torch.no_grad(): val_accs, val_losses = [], [] for inp, labels in valloader: inp = inp.float().to(device) labels = labels.to(device) tag_scores, h = model(inp, hidden) loss = loss_function(tag_scores, labels) val_accs.append(torch.mean((tag_scores.argmax(dim=1) == labels).float()).item()) val_losses.append(loss) val_accs = torch.mean(torch.tensor(val_accs)) val_losses = torch.mean(torch.tensor(val_losses)) writer.add_scalar('val/acc', val_accs * 100, epoch) writer.add_scalar('val/loss', val_losses, epoch) vaccs.append(val_accs) vlosses.append(val_losses) return losses, accs, vlosses, vaccs # In[18]: model = model.cuda() loss_function = nn.NLLLoss().cuda() optimizer = optim.Adam(model.parameters(), lr=1e-5) losses, accs, vlosses, vaccs = train(model, trainset, loss_function, optimizer, valset=valset, epochs=1000, batch_size=64) # In[ ]: ``` #### File: jklewis99/MultimodalDeepfakeDetection/frimage_train.py ```python import os import torch import numpy as np import matplotlib.pyplot as plt # from Utils.errors import * from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils import torch.optim as optim from torch import nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter writer = SummaryWriter('runs/frimage-2') # %% labelmap = {'real': 0, 'fake': 1} # %% spec_path = '/home/itdfh/data/dfdc-subset/train-6-spectrograms' xcep_path = '/home/itdfh/data/dfdc-subset/train-6-xception' # %% def tensor_file_lists(spec_path, xcep_path, max_files=None, perc=.9): spec_files_train, xcep_files_train = [], [] spec_files_val, xcep_files_val = [], [] for label in ['real', 'fake']: train_files = [] val_files = [] all_files = os.listdir(os.path.join(spec_path, label)) for i, p in enumerate(all_files): base_dir = os.path.join(label, p) full_base_dir = os.path.join(spec_path, base_dir) if i < len(all_files) * .9: train_files.extend([os.path.join(base_dir, p) for p in os.listdir(full_base_dir)]) else: val_files.extend([os.path.join(base_dir, p) for p in os.listdir(full_base_dir)]) spec_files_train.extend([(os.path.join(spec_path, p), labelmap[label]) for p in train_files if p[-5:] == '30.pt']) xcep_files_train.extend([(os.path.join(xcep_path, p), labelmap[label]) for p in train_files if p[-5:] == '30.pt']) spec_files_val.extend([(os.path.join(spec_path, p), labelmap[label]) for p in val_files if p[-5:] == '30.pt']) xcep_files_val.extend([(os.path.join(xcep_path, p), labelmap[label]) for p in val_files if p[-5:] == '30.pt']) return spec_files_train, xcep_files_train, spec_files_val, xcep_files_val # %% the cleanage spec_files_train, xcep_files_train, spec_files_val, xcep_files_val = tensor_file_lists( spec_path, xcep_path) spec_files_train_clean = [] xcep_files_train_clean = [] for f1, f2 in zip(xcep_files_train, spec_files_train): if not torch.isnan(torch.load(f2[0], map_location=torch.device('cpu')).sum()) and not torch.isnan(torch.load(f1[0], map_location=torch.device('cpu')).sum()): xcep_files_train_clean.append(f1) spec_files_train_clean.append(f2) xcep_files_train = xcep_files_train_clean spec_files_train = spec_files_train_clean clean_spec_files_val = [spec_files_val[i] for i, (f, label) in enumerate( spec_files_val) if os.path.exists(f)] clean_xcep_files_val = [xcep_files_val[i] for i, (f, label) in enumerate( spec_files_val) if os.path.exists(f)] spec_files_val = clean_spec_files_val xcep_files_val = clean_xcep_files_val spec_files_val_clean = [] xcep_files_val_clean = [] for f1, f2 in zip(xcep_files_val, spec_files_val): if not torch.isnan(torch.load(f2[0], map_location=torch.device('cpu')).sum()) and not torch.isnan(torch.load(f1[0], map_location=torch.device('cpu')).sum()): xcep_files_val_clean.append(f1) spec_files_val_clean.append(f2) xcep_files_val = xcep_files_val_clean spec_files_val = spec_files_val_clean # %% class FrimagenetDataset(Dataset): ''' FrimageNet data set for concatenating XceptionNet Features and Spectrogram features ''' def __init__(self, spec_files, xcep_files, seq_size=30, max_spec_size=700): """ Args: spectrogram_folder (string): Path to the csv file with annotations. xception_features_folder (string): Directory with all the images. """ self.max_spec_size = max_spec_size self.seq_size = seq_size self.spec_files, self.xcep_files = spec_files, xcep_files def __len__(self): return len(self.spec_files) def __getitem__(self, idx): sf, label = self.spec_files[idx] xf, label = self.xcep_files[idx] # loading spec_feats with 0 padding spec_feats = torch.zeros((self.seq_size, self.max_spec_size)) specs = torch.load(sf, map_location=torch.device('cpu'))[ :, :self.max_spec_size] spec_feats[:, :specs.shape[-1]] = specs xcep_feats = torch.load(xf, map_location=torch.device('cpu')) x = torch.cat((xcep_feats, spec_feats), dim=-1) label = torch.tensor(label).long() return x, label # %% trainset = FrimagenetDataset( spec_files_train, xcep_files_train) valset = FrimagenetDataset(spec_files_val, xcep_files_val) class FrimageNet(nn.Module): def __init__(self, feature_size, num_layers=2, num_hidden_nodes=1024, device='cuda'): super(FrimageNet, self).__init__() self.device = device self.num_layers = num_layers self.num_hidden_nodes = num_hidden_nodes # input dim is 167, output 200 self.lstm = nn.LSTM(feature_size, num_hidden_nodes, batch_first=True, num_layers=num_layers) # fully connected self.fc1 = nn.Linear(num_hidden_nodes, num_hidden_nodes) self.act = nn.ReLU() self.fc2 = nn.Linear(num_hidden_nodes, 2) self.softmax = nn.Softmax() def forward(self, x, hidden): y, hidden = self.lstm(x, hidden) y = y[:, -1, :] y = self.fc1(y) y = self.act(y) y = self.fc2(y) y = F.log_softmax(y, dim=1) return y, hidden def init_hidden(self, batch_size): weight = next(self.parameters()).data hidden = (weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_().to(self.device), weight.new(self.num_layers, batch_size, self.num_hidden_nodes).zero_().to(self.device)) return hidden model = FrimageNet(2748) def train(model, trainset, loss_function, optimizer, valset=None, epochs=1000, batch_size=50, device='cuda'): global writer epsilon = 1e-6 model = model.to(device) trainloader = DataLoader(trainset, shuffle=True, batch_size=batch_size, drop_last=True) if valset is not None: valloader = DataLoader(valset, shuffle=True, batch_size=batch_size, drop_last=True) hidden = model.init_hidden(batch_size) for h in hidden: h = h.to(device) print_every = 5 i = 0 losses = [] accs = [] vaccs = [] vlosses = [] running_loss = 0.0 running_acc = 0.0 # again, normally you would NOT do 100 epochs, it is toy data for epoch in range(epochs): for inp, labels in trainloader: # renamed sequence to inp because inp is a batch of sequences optimizer.zero_grad() # Step 1. Remember that Pytorch accumulates gradients. # We need to clear them out before each instance model.zero_grad() inp = inp.float().to(device) labels = labels.to(device) # Step 2. Run our forward pass. tag_scores, h = model(inp, hidden) tag_scores = tag_scores.add(epsilon) # Step 3. Compute the loss, gradients, and update the parameters by # calling optimizer.step() loss = loss_function(tag_scores, labels) # torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) loss.backward() optimizer.step() running_acc += torch.mean((tag_scores.argmax(dim=1) == labels).float()).item() # print statistics running_loss += loss.item() if i % print_every == print_every-1: print('[%d, %5d] loss: %.3f - acc: %.3f' % (epoch + 1, i + 1, running_loss / print_every, running_acc * 100 / print_every)) writer.add_scalar('train/loss', running_loss / print_every, i) writer.add_scalar('train/acc', running_acc * 100 / print_every, i) losses.append(running_loss / print_every) accs.append(running_acc * 100 / print_every) running_loss = 0.0 running_acc = 0.0 i += 1 if valset is not None: with torch.no_grad(): val_accs, val_losses = [], [] for inp, labels in valloader: inp = inp.float().to(device) labels = labels.to(device) tag_scores, h = model(inp, hidden) loss = loss_function(tag_scores, labels) val_accs.append(torch.mean((tag_scores.argmax(dim=1) == labels).float()).item()) val_losses.append(loss) val_accs = torch.mean(torch.tensor(val_accs)) val_losses = torch.mean(torch.tensor(val_losses)) writer.add_scalar('val/loss', val_accs * 100, epoch) writer.add_scalar('val/acc', val_losses, epoch) vaccs.append(val_accs) vlosses.append(val_losses) return losses, accs, vlosses, vaccs loss_function = nn.NLLLoss().cuda() optimizer = optim.Adam(model.parameters(), lr=1e-5) losses, accs, vlosses, vaccs = train(model, trainset, loss_function, optimizer, epochs=1000, batch_size=200, valset=valset) ```
{ "source": "jklf5/Spider", "score": 3 }
#### File: Spider/Corporate_Financial_Reporting_for_Shanghai_and_Shenzhen_A_Shares/test2_small_module.py ```python import requests from pyquery import PyQuery as pq import os work_cwd = os.path.abspath('..') path_stock_info = work_cwd + \ r'/Corporate_Financial_Reporting_for_Shanghai_and_Shenzhen_A_Shares/Stock_info' def f(file_name): stock_num_list = list() stock_name_list = list() stock_info_list = list() f_stock_info = open( path_stock_info + '/' + file_name + '.txt', 'r') # 打开一个文件,用于只读 stock_info_list = f_stock_info.readlines() f_stock_info.close() # stock_info = ['000631:顺发恒业\n', '600485:*ST信威\n', '002259:*ST升达\n'] #测试用 for item in stock_info_list: # print(item) item = item[:-1] # 切去最后的\n num = item[:6] # 分割成编号 name = item[7:] # 分割成名称 # 股票名称中存在'*',将*替换为^,否则在创建文件时候会出错 flag = name.find('*') if flag is not -1: name = name.replace('*', '^') stock_num_list.append(num) stock_name_list.append(name) return stock_info_list, stock_num_list, stock_name_list if __name__ == "__main__": # 将股票的编号和名称提取出来存为两个列表 # stock_num_list = list() # stock_name_list = list() # stock_info_list = list() stock_info_list, stock_num_list, stock_name_list = f('stock_info_test') stock_info_unfinished_list = f('stock_info_unfinished') # print(stock_info_list, stock_num_list, stock_name_list) print(stock_info_unfinished_list[0]) if len(stock_info_unfinished_list[0]) is not 0: index = stock_info_list.index(stock_info_unfinished_list[0][1]) else: index = 1 # stock_temp_for_unfinished = stock_info_list[index-1:] for stock_index in range(index-1, len(stock_num_list)-3): print(stock_name_list[stock_index]) stock_temp_for_unfinished = stock_info_list[stock_index+1:] with open(path_stock_info + '/test.txt', 'w') as f: for each in stock_temp_for_unfinished: f.write(each) f.close() ``` #### File: ScrapySpider/spiders/itcast.py ```python import scrapy from ScrapySpider.items import ScrapyspiderItem class ItcastSpider(scrapy.Spider): name = 'itcast' allowed_domains = ['www.itcast.cn'] start_urls = ['http://www.itcast.cn/channel/teacher.shtml'] def parse(self, response): node_list=response.xpath("//div[@class='li_txt']") #用来存储所有items字段 for node in node_list: #创建items对象,用来存储信息 item=ScrapyspiderItem() name=node.xpath("./h3/text()").extract() title=node.xpath("./h4/text()").extract() info=node.xpath("./p/text()").extract() item['name']=name[0] item['title']=title[0] item['info']=info[0] yield item ```
{ "source": "JKlingPhotos/OpenGoPro", "score": 2 }
#### File: python/sdk_wireless_camera_control/noxfile.py ```python from pathlib import Path from typing import Any import nox from nox_poetry import session nox.options.sessions = "format", "lint", "tests", "docstrings", "docs", "safety" @session(python=["3.9"]) def format(session) -> None: """Run black code formatter.""" session.install("black") session.run("black", "--check", "open_gopro", "tests", "noxfile.py", "docs/conf.py") @session(python=["3.8", "3.9", "3.10"]) def lint(session) -> None: """Lint using flake8.""" session.install(".") session.install( "pylint", "mypy", "types-requests", "construct-typing", ) session.run("mypy", "open_gopro") session.run("pylint", "open_gopro") @session(python=["3.8", "3.9", "3.10"]) def tests(session) -> None: """Run the test suite.""" session.install(".") session.install( "pytest", "pytest-cov", "pytest-asyncio", "pytest-mock", "pytest-html", "coverage[toml]", "requests-mock", ) session.run("pytest", "tests/unit", "--cov-fail-under=70") @session(python=["3.9"]) def docstrings(session) -> None: """Validate docstrings.""" session.install("darglint") session.run("darglint", "open_gopro") @session(python=["3.9"]) def docs(session) -> None: """Build the documentation.""" session.install(".") session.install( "sphinx", "sphinx-autodoc-typehints", "sphinx-rtd-theme", "sphinxcontrib-napoleon", ) session.run("sphinx-build", "docs", "docs/build") # Clean up for Jekyll consumption session.run( "rm", "-rf", "docs/build/.doctrees", "/docs/build/_sources", "/docs/build/_static/fonts", external=True ) @session(python=["3.8", "3.9", "3.10"]) def safety(session) -> None: """Scan dependencies for insecure packages.""" session.install("safety") session.run( "safety", "check", f"--file={Path(session.virtualenv.location) / 'tmp' / 'requirements.txt'}", "--full-report", ) ``` #### File: open_gopro/api/builders.py ```python from __future__ import annotations import enum import types import logging from pathlib import Path from datetime import datetime from abc import ABC, abstractmethod from dataclasses import dataclass from typing import ( Any, ClassVar, TypeVar, Generic, Type, Union, no_type_check, Optional, Dict, Callable, Tuple, List, Set, ) from _collections_abc import Iterable import wrapt import betterproto from construct import Int8ub, Int16ub, Struct, Adapter, GreedyBytes from open_gopro.responses import ( BytesParser, BytesBuilder, BytesParserBuilder, JsonParser, GoProResp, StringBuilder, ) from open_gopro.constants import ( ActionId, FeatureId, BleUUID, CmdId, ResponseType, SettingId, QueryCmdId, StatusId, ErrorCode, GoProUUIDs, ) from open_gopro.communication_client import GoProBle, GoProWifi from open_gopro.util import build_log_rx_str, build_log_tx_str, custom_betterproto_to_dict logger = logging.getLogger(__name__) SettingValueType = TypeVar("SettingValueType") CommandValueType = TypeVar("CommandValueType") ####################################################### General ############################################## @wrapt.decorator def log_query( wrapped: Callable, instance: Union[BleSetting, BleStatus, WifiSetting], args: Any, kwargs: Any ) -> GoProResp: """Log a query write Args: wrapped (Callable): query to log instance (Union[BleSetting, BleStatus, WifiSetting]): status / setting that owns the write args (Any): positional args kwargs (Any): keyword args Returns: GoProResp: received response from write """ logger.info(build_log_tx_str(f"{wrapped.__name__} : {instance.identifier}")) response = wrapped(*args, **kwargs) logger.info(build_log_rx_str(response)) return response ######################################################## BLE ################################################# def build_enum_adapter(target: Type[enum.Enum]) -> Adapter: """Build an enum to Construct parsing and building adapter This adapter only works on byte data of length 1 Args: target (Type[enum.Enum]): Enum to use use for parsing / building Returns: Adapter: adapter to be used by Construct """ class EnumByteAdapter(Adapter): """An enum to Construct adapter""" target: ClassVar[Type[enum.Enum]] def _decode(self, obj: bytearray, *_: Any) -> enum.Enum: """Parse a bytestream of length 1 into an Enum Args: obj (bytearray): bytestream to parse _ (Any): Not used Returns: enum.Enum: Enum value """ return self.target(obj) def _encode(self, obj: Union[enum.Enum, int], *_: Any) -> int: """Adapt an enum for use by Construct Args: obj (Union[enum.Enum, int]): Enum to adapt _ (Any): Not used Returns: int: int value of Enum """ return obj if isinstance(obj, int) else obj.value setattr(EnumByteAdapter, "target", target) return EnumByteAdapter(Int8ub) status_struct = Struct("status" / build_enum_adapter(ErrorCode)) class DeprecatedAdapter(Adapter): """Used to return "DEPRECATED" when a deprecated setting / status is attempted to be parsed / built""" def _decode(self, *_: Any) -> str: """Return "DEPRECATED" when parse() is called Args: _ (Any): Not used Returns: str: "DEPRECATED" """ return "DEPRECATED" def _encode(self, *_: Any) -> str: """Return "DEPRECATED" when parse() is called Args: _ (Any): Not used Returns: str: "DEPRECATED" """ return self._decode() class DateTimeAdapter(Adapter): """Translate between different date time representations""" def _decode(self, obj: Union[List, str], *_: Any) -> datetime: """Translate string or list of bytes into datetime Args: obj (list): input _ (Any): Not used Raises: TypeError: Unsupported input type Returns: datetime: built datetime """ if isinstance(obj, str): # comes as '%14%01%02%03%09%2F' year, *remaining = [int(x, 16) for x in obj.split("%")[1:]] return datetime(year + 2000, *remaining) # type: ignore if isinstance(obj, list): # When received from BLE, it includes garbage first byte obj = obj[-7:] year = Int16ub.parse(bytes(obj[0:2])) return datetime(year, *[int(x) for x in obj[2:]]) # type: ignore raise TypeError("Type must be in (str, list)") def _encode(self, obj: Union[datetime, str], *_: Any) -> Union[bytes, str]: """Translate datetime into bytes or pass through string Args: obj (Union[datetime, str]): Input _ (Any): Not used Raises: TypeError: Unsupported input type Returns: Union[bytes, str]: built bytes """ if isinstance(obj, datetime): year = [int(x) for x in Int16ub.build(obj.year)] return bytes([*year, obj.month, obj.day, obj.hour, obj.minute, obj.second]) if isinstance(obj, str): return obj raise TypeError("Type must be in (datetime, str)") # Ignoring because hitting this mypy bug: https://github.com/python/mypy/issues/5374 @dataclass # type: ignore class BleCommand(ABC): """The base class for all BLE commands to store common info Args: communicator (GoProBle): BLE client to read / write uuid (BleUUID): BleUUID to read / write to """ communicator: GoProBle uuid: BleUUID def __post_init__(self) -> None: self.communicator._add_parser(self._identifier, self._response_parser) @property @abstractmethod def _identifier(self) -> ResponseType: raise NotImplementedError @property @abstractmethod def _response_parser(self) -> BytesParser: raise NotImplementedError @dataclass class BleReadCommand(BleCommand): """A BLE command that reads data from a BleUUID Args: communicator (GoProBle): BLE client to read uuid (BleUUID): BleUUID to read to response_parser (BytesParser): the parser that will parse the received bytestream into a JSON dict """ response_parser: BytesParser @property def _identifier(self) -> ResponseType: return self.uuid @property def _response_parser(self) -> BytesParser: return self.response_parser # pylint: disable=missing-return-doc def __call__(self) -> GoProResp: # noqa: D102 logger.info(build_log_tx_str(self.uuid.name)) response = self.communicator._read_characteristic(self.uuid) logger.info(build_log_rx_str(f"{self.uuid.name} : {response}")) return response @dataclass class BleWriteNoParamsCommand(BleCommand): """A BLE command that writes to a BleUUID and does not accept any parameters Args: communicator (GoProBle): BLE client to write uuid (BleUUID): BleUUID to write to cmd (CmdId): Command ID that is being sent response_parser (Optional[ConstructBytesParser]): the parser that will parse the received bytestream into a JSON dict. Defaults to None """ cmd: CmdId response_parser: Optional[BytesParser] = None @property def _identifier(self) -> ResponseType: return self.cmd @property def _response_parser(self) -> BytesParser: return status_struct if self.response_parser is None else status_struct + self.response_parser # pylint: disable=missing-return-doc def __call__(self) -> GoProResp: # noqa: D102 logger.info(build_log_tx_str(self.cmd.name)) # Build data buffer data = bytearray([self.cmd.value]) data.insert(0, len(data)) # Send the data and receive the response response = self.communicator._write_characteristic_receive_notification(self.uuid, data) logger.info(build_log_rx_str(response)) return response @dataclass class BleWriteWithParamsCommand(BleCommand, Generic[CommandValueType]): """A BLE command that writes to a BleUUID and does not accept any parameters Args: communicator (GoProBle): BLE client to write uuid (BleUUID): BleUUID to write to cmd (CmdId): Command ID that is being sent param_builder (BytesBuilder): is responsible for building the bytestream to send from the input params response_parser (Optional[BytesParser]): the parser that will parse the received bytestream into a JSON dict """ cmd: CmdId param_builder: BytesBuilder response_parser: Optional[BytesParser] = None @property def _identifier(self) -> ResponseType: return self.cmd @property def _response_parser(self) -> BytesParser: return status_struct if self.response_parser is None else status_struct + self.response_parser # pylint: disable=missing-return-doc def __call__(self, value: CommandValueType) -> GoProResp: # noqa: D102 logger.info(build_log_tx_str(f"{self.cmd.name}: {str(value)}")) # Build data buffer data = bytearray([self.cmd.value]) # Mypy is not understanding the subclass check here param = value.value if issubclass(type(value), enum.Enum) else value # type: ignore # There must be a param builder if we have a param param = self.param_builder.build(param) data.extend([len(param), *param]) data.insert(0, len(data)) # Send the data and receive the response response = self.communicator._write_characteristic_receive_notification(self.uuid, data) logger.info(build_log_rx_str(response)) return response @dataclass class RegisterUnregisterAll(BleWriteNoParamsCommand): """Base class for register / unregister all commands This will loop over all of the elements (i.e. settings / statusess found from the element_set entry of the producer tuple parameter) and individually register / unregister (depending on the action parameter) each element in the set Args: producer: (Optional[Tuple[Union[Type[SettingId], Type[StatusId]], QueryCmdId]]): Tuple of (element_set, query command) where element_set is the GoProEnum that this command relates to, i.e. SettingId for settings, StatusId for Statuses action: (Optional[Action]): whether to register or unregister """ class Action(enum.Enum): """Enum to differentiate between register actions""" REGISTER = enum.auto() UNREGISTER = enum.auto() producer: Optional[Tuple[Union[Type[SettingId], Type[StatusId]], QueryCmdId]] = None action: Optional[Action] = None def __post_init__(self) -> None: # TODO refactor to not use dataclasses since derived classes can't have non default members if base classes do assert self.producer is not None assert self.action is not None # pylint: disable=missing-return-doc def __call__(self) -> GoProResp: # noqa: D102 assert self.producer is not None assert self.action is not None element_set = self.producer[0] responded_command = self.producer[1] response = super().__call__() if response.is_ok: for element in element_set: ( self.communicator._register_listener if self.action is RegisterUnregisterAll.Action.REGISTER else self.communicator._unregister_listener )( # Ignoring typing because this seems correct and looks like mypy error (responded_command, element) # type: ignore ) return response def build_protobuf_adapter(protobuf: Type[betterproto.Message]) -> Adapter: """Build a protobuf to Construct parsing (only) adapter Args: protobuf (Type[betterproto.Message]): protobuf to use as parser Returns: Adapter: adapter to be used by Construct """ class ProtobufConstructAdapter(Adapter): """Adapt a protobuf to be used by Construct (for parsing only)""" protobuf: Type[betterproto.Message] # TODO use instance instead of class def _decode(self, obj: bytearray, *_: Any) -> Dict[Any, Any]: """Parse a byte stream into a JSON dict using a protobuf Args: obj (bytearray): byte stream to parse _ (Any): Not used Returns: Dict[Any, Any]: parsed JSON dict """ response: betterproto.Message = self.protobuf().FromString(bytes(obj)) response.to_dict = types.MethodType(custom_betterproto_to_dict, response) # type: ignore return response.to_dict() # type: ignore def _encode(self, *_: Any) -> Any: raise NotImplementedError setattr(ProtobufConstructAdapter, "protobuf", protobuf) return ProtobufConstructAdapter(GreedyBytes) # Ignoring because hitting this mypy bug: https://github.com/python/mypy/issues/5374 @dataclass # type: ignore class BleProtoCommand(BleCommand): """A BLE command that is sent and received as using the Protobuf protocol Args: communicator (GoProBle): BLE client to write uuid (BleUUID): BleUUID to write to feature_id (CmdId): Command ID that is being sent action_id (FeatureId): protobuf specific action ID that is being sent request_proto (Type[betterproto.Message]): protobuf used to build command bytestream response_proto (Type[betterproto.Message]): protobuf used to parse received bytestream additional_matching_action_ids: (Optional[Set[ActionId]]): Other action ID's to share this parser. Defaults to None. """ feature_id: FeatureId action_id: ActionId request_proto: Type[betterproto.Message] response_proto: Type[betterproto.Message] additional_matching_action_ids: Optional[Set[ActionId]] = None def __post_init__(self) -> None: super().__post_init__() if self.additional_matching_action_ids: for action_id in self.additional_matching_action_ids: self.communicator._add_parser(action_id, self._response_parser) @property def _identifier(self) -> ResponseType: return self.action_id @property def _response_parser(self) -> BytesParser: return build_protobuf_adapter(self.response_proto) @abstractmethod @no_type_check # pylint: disable=missing-return-doc def __call__(self, *args: Any, **kwargs: Any) -> GoProResp: # noqa: D102 # The method that will actually build and send the protobuf command # This method's signature shall be overridden by the subclass. # The subclass shall then pass the arguments to this method and return it's returned response # This pattern is technically violating the Liskov substitution principle. But we are accepting this as a # tradeoff for exposing type hints on BLE Protobuf commands. logger.info( build_log_tx_str( f"{self.action_id.name} : {' '.join([*[str(a) for a in args], *[str(a) for a in kwargs.values()]])}" ) ) # Build request protobuf bytestream proto = self.request_proto() # Add args to protobuf request attrs = iter(self.__call__.__annotations__.keys()) for arg in args: param = arg.value if issubclass(type(arg), enum.Enum) else arg setattr(proto, next(attrs), param) # Add kwargs to protobuf request for name, arg in kwargs.items(): if arg is not None: param = arg.value if issubclass(type(arg), enum.Enum) else arg setattr(proto, name, param) # Prepend headers and serialize request = bytearray([self.feature_id.value, self.action_id.value, *proto.SerializeToString()]) # Prepend length request.insert(0, len(request)) # Allow exception to pass through if protobuf not completely initialized response = self.communicator._write_characteristic_receive_notification(self.uuid, request) logger.info(build_log_rx_str(response)) return response class BleSetting(Generic[SettingValueType]): """An individual camera setting that is interacted with via BLE. Args: communicator (GoProBle): Adapter to read / write settings data identifier (SettingId): ID of setting parser_builder (BytesParserBuilder): object to both parse and build setting """ def __init__( self, communicator: GoProBle, identifier: SettingId, parser_builder: BytesParserBuilder ) -> None: self.identifier = identifier self.communicator: GoProBle = communicator self.setter_uuid: BleUUID = GoProUUIDs.CQ_SETTINGS self.reader_uuid: BleUUID = GoProUUIDs.CQ_QUERY self.parser: BytesParser = parser_builder self.builder: BytesBuilder = parser_builder # Just syntactic sugar communicator._add_parser(self.identifier, self.parser) def __str__(self) -> str: # pylint: disable=missing-return-doc return str(self.identifier.name) def set(self, value: SettingValueType) -> GoProResp: """Set the value of the setting. Args: value (SettingValueType): The argument to use to set the setting value. Returns: GoProResp: Status of set """ logger.info(build_log_tx_str(f"Set {self.identifier.name}: {str(value)}")) data = bytearray([self.identifier.value]) try: param = self.builder.build(value) data.extend([len(param), *param]) except IndexError: pass data.insert(0, len(data)) response = self.communicator._write_characteristic_receive_notification(self.setter_uuid, data) logger.info(build_log_rx_str(response)) return response @log_query def get_value(self) -> GoProResp: """Get the settings value. Returns: GoProResp: settings value """ return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.GET_SETTING_VAL) ) @log_query def get_name(self) -> GoProResp: """Get the settings name. Raises: NotImplementedError: This isn't implemented on the camera """ # return self.communicator._write_characteristic_receive_notification( # self.reader_uuid, QueryCmdId.GET_SETTING_NAME, self._build_cmd(QueryCmdId.GET_SETTING_NAME) # ) raise NotImplementedError("Not implemented on camera!") @log_query def get_capabilities_values(self) -> GoProResp: """Get currently supported settings capabilities values. Returns: GoProResp: settings capabilities values """ return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.GET_CAPABILITIES_VAL) ) @log_query def get_capabilities_names(self) -> GoProResp: """Get currently supported settings capabilities names. Raises: NotImplementedError: This isn't implemented on the camera """ # return self.communicator._write_characteristic_receive_notification( # self.reader_uuid, # QueryCmdId.GET_CAPABILITIES_NAME, # self._build_cmd(QueryCmdId.GET_CAPABILITIES_NAME), # ) raise NotImplementedError("Not implemented on camera!") @log_query def register_value_update(self) -> GoProResp: """Register for asynchronous notifications when a given setting ID's value updates. Returns: GoProResp: Current value of respective setting ID """ self.communicator._register_listener((QueryCmdId.SETTING_VAL_PUSH, self.identifier)) return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.REG_SETTING_VAL_UPDATE) ) @log_query def unregister_value_update(self) -> GoProResp: """Stop receiving notifications when a given setting ID's value updates. Returns: GoProResp: Status of unregister """ self.communicator._unregister_listener((QueryCmdId.SETTING_VAL_PUSH, self.identifier)) return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.UNREG_SETTING_VAL_UPDATE) ) @log_query def register_capability_update(self) -> GoProResp: """Register for asynchronous notifications when a given setting ID's capabilities update. Returns: GoProResp: Current capabilities of respective setting ID """ self.communicator._register_listener((QueryCmdId.SETTING_CAPABILITY_PUSH, self.identifier)) return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.REG_CAPABILITIES_UPDATE) ) @log_query def unregister_capability_update(self) -> GoProResp: """Stop receiving notifications when a given setting ID's capabilities change. Returns: GoProResp: Status of unregister """ self.communicator._unregister_listener((QueryCmdId.SETTING_CAPABILITY_PUSH, self.identifier)) return self.communicator._write_characteristic_receive_notification( self.reader_uuid, self._build_cmd(QueryCmdId.UNREG_CAPABILITIES_UPDATE) ) def _build_cmd(self, cmd: QueryCmdId) -> bytearray: """Build the data to send a settings query over-the-air. Args: cmd (QueryCmdId): command to build Returns: bytearray: data to send over-the-air """ ret = bytearray([cmd.value, self.identifier.value]) ret.insert(0, len(ret)) return ret class BleStatus: """An individual camera status that is interacted with via BLE. Args: communicator (GoProBle): Adapter to read status data identifier (StatusId): ID of status """ uuid: BleUUID = GoProUUIDs.CQ_QUERY def __init__(self, communicator: GoProBle, identifier: StatusId, parser: BytesParser) -> None: self.identifier = identifier self.communicator = communicator self.parser = parser # Add to response parsing map communicator._add_parser(self.identifier, self.parser) def __str__(self) -> str: # pylint: disable=missing-return-doc return str(self.identifier.name) @log_query def get_value(self) -> GoProResp: """Get the current value of a status. Returns: GoProResp: current status value """ return self.communicator._write_characteristic_receive_notification( BleStatus.uuid, self._build_cmd(QueryCmdId.GET_STATUS_VAL) ) @log_query def register_value_update(self) -> GoProResp: """Register for asynchronous notifications when a status changes. Returns: GoProResp: current status value """ if ( response := self.communicator._write_characteristic_receive_notification( BleStatus.uuid, self._build_cmd(QueryCmdId.REG_STATUS_VAL_UPDATE) ) ).is_ok: self.communicator._register_listener((QueryCmdId.STATUS_VAL_PUSH, self.identifier)) return response @log_query def unregister_value_update(self) -> GoProResp: """Stop receiving notifications when status changes. Returns: GoProResp: Status of unregister """ if ( response := self.communicator._write_characteristic_receive_notification( BleStatus.uuid, self._build_cmd(QueryCmdId.UNREG_STATUS_VAL_UPDATE) ) ).is_ok: self.communicator._unregister_listener((QueryCmdId.STATUS_VAL_PUSH, self.identifier)) return response def _build_cmd(self, cmd: QueryCmdId) -> bytearray: """Build the data for a given status command. Args: cmd (QueryCmdId): command to build data for Returns: bytearray: data to send over-the-air """ ret = bytearray([cmd.value, self.identifier.value]) ret.insert(0, len(ret)) return ret ######################################################## Wifi ################################################# @dataclass class WifiGetJsonCommand: """The base class for all WiFi Commands. Stores common information. Args: communicator (GoProWifi): Wifi client to write command endpoint (str): endpoint to GET """ communicator: GoProWifi endpoint: str response_parser: Optional[JsonParser] = None def __post_init__(self) -> None: if self.response_parser is not None: self.communicator._add_parser(self.endpoint, self.response_parser) @dataclass class WifiGetJsonWithParams(WifiGetJsonCommand, Generic[CommandValueType]): """A Wifi command that writes to a BleUUID (with parameters) and receives JSON as response Args: communicator (GoProWifi): Wifi client to write command endpoint (str): endpoint to GET response_parser (Optional[JsonParser]): the parser that will parse the received bytestream into a JSON dict """ communicator: GoProWifi endpoint: str response_parser: Optional[JsonParser] = None param_builder: Optional[StringBuilder] = None # pylint: disable=missing-return-doc def __call__(self, value: CommandValueType) -> GoProResp: # noqa: D102 values: List[CommandValueType] = [*value] if isinstance(value, Iterable) else [value] logger.info(build_log_tx_str(f"{self.endpoint.format(*values)}")) # Build list of args as they should be represented in URL url_params = [] if self.param_builder is not None: url_params.append(self.param_builder(value)) elif issubclass(type(value), enum.Enum): url_params.append(value.value) # type: ignore else: url_params.extend(values) # type: ignore url = self.endpoint.format(*url_params) # Send to camera response = self.communicator._get(url) logger.info(build_log_rx_str(response)) return response @dataclass class WifiGetJsonNoParams(WifiGetJsonCommand): """A Wifi command that writes to a BleUUID (with parameters) and receives JSON as response Args: communicator (GoProWifi): Wifi client to write command endpoint (str): endpoint to GET response_parser (Optional[JsonParser]): the parser that will parse the received bytestream into a JSON dict """ # pylint: disable=missing-return-doc def __call__(self) -> GoProResp: # noqa: D102 logger.info(build_log_tx_str(self.endpoint)) url = self.endpoint # Send to camera response = self.communicator._get(url) logger.info(build_log_rx_str(response)) return response # Ignoring because hitting this mypy bug: https://github.com/python/mypy/issues/5374 @dataclass # type: ignore class WifiGetBinary(ABC): """A Wifi command that writes to a BleUUID (with parameters) and receives a binary stream as response Args: communicator (GoProWifi): Wifi client to write command endpoint (str): endpoint to GET """ communicator: GoProWifi endpoint: str @abstractmethod @no_type_check # pylint: disable=missing-return-doc def __call__(self, /, **kwargs) -> Path: # noqa: D102 # The method that will actually send the command and receive the stream # This method's signature shall be override by the subclass. # The subclass shall then pass the arguments to this method and return it's returned response # This pattern is technically violating the Liskov substitution principle. But we are accepting this as a # tradeoff for exposing type hints on commands. camera_file = kwargs["camera_file"] local_file = Path(kwargs["local_file"]) if "local_file" in kwargs else Path(".") / camera_file logger.info(build_log_tx_str(f"{self.endpoint.format(camera_file)} ===> {local_file}")) url = self.endpoint.format(camera_file) # Send to camera self.communicator._stream_to_file(url, local_file) logger.info(build_log_rx_str("SUCCESS")) return local_file class WifiSetting(Generic[SettingValueType]): """An individual camera setting that is interacted with via Wifi. Args: communicator (WifiCommunicator): Adapter to read / write settings data id (SettingId): ID of setting endpoint (str): HTTP endpoint to be used to set setting value """ def __init__(self, communicator: GoProWifi, identifier: SettingId) -> None: self.identifier = identifier self.communicator = communicator # Note! It is assumed that BLE and WiFi settings are symmetric so we only add to the communicator's # parser in the BLE Setting. def __str__(self) -> str: # pylint: disable=missing-return-doc return str(self.identifier.name) def set(self, value: SettingValueType) -> GoProResp: """Set the value of the setting. Args: value (SettingValueType): value to set setting Returns: GoProResp: Status of set """ logger.info(build_log_tx_str(f"Setting {self.identifier}: {value}")) # Build url. TODO fix this type error with Mixin (or passing in endpoint as argument) value = value.value if isinstance(value, enum.Enum) else value url = self.communicator._api.wifi_setting.endpoint.format(self.identifier.value, value) # type: ignore # Send to camera response = self.communicator._get(url) if response is not None: logger.info(f"-----------> \n{response}") return response ``` #### File: open_gopro/ble/services.py ```python from __future__ import annotations import csv import json import logging import uuid from pathlib import Path from enum import IntFlag, IntEnum from dataclasses import dataclass, asdict, InitVar from typing import Dict, Iterator, Generator, Mapping, Optional, Tuple, Type, no_type_check, Union, List logger = logging.getLogger(__name__) BLE_BASE_UUID = "0000{}-0000-1000-8000-00805F9B34FB" class CharProps(IntFlag): """BLE Spec-Defined Characteristic Property bitmask values""" NONE = 0x00 BROADCAST = 0x01 READ = 0x02 WRITE_NO_RSP = 0x04 WRITE_YES_RSP = 0x08 NOTIFY = 0x10 INDICATE = 0x20 AUTH_SIGN_WRITE = 0x40 EXTENDED = 0x80 NOTIFY_ENCRYPTION_REQ = 0x100 INDICATE_ENCRYPTION_REQ = 0x200 class SpecUuidNumber(IntEnum): """BLE Spec-Defined BleUUID Number values as ints""" PRIMARY_SERVICE = 0x2800 SECONDARY_SERVICE = 0x2801 INCLUDE = 0x2802 CHAR_DECLARATION = 0x2803 CHAR_EXTENDED_PROPS = 0x2900 CHAR_USER_DESCR = 0x2901 CLIENT_CHAR_CONFIG = 0x2902 SERVER_CHAR_CONFIG = 0x2903 CHAR_FORMAT = 0x2904 CHAR_AGGREGATE_FORMAT = 0x2905 class UuidLength(IntEnum): """Used to specify 8-bit or 128-bit UUIDs""" BIT_16 = 2 BIT_128 = 16 class BleUUID(uuid.UUID): """Used to identify BLE BleUUID's A extension of the standard UUID to associate a string name with the UUID and allow 8-bit UUID input """ # pylint: disable=redefined-builtin def __init__( self, name: str, uuid_format: UuidLength = UuidLength.BIT_128, hex: Optional[str] = None, bytes: Optional[bytes] = None, bytes_le: Optional[bytes] = None, int: Optional[int] = None, ) -> None: self.name: str if uuid_format is UuidLength.BIT_16: if [hex, bytes, bytes_le, int].count(None) != 3: raise ValueError("Only one of [hex, bytes, bytes_le, int] can be set.") if hex: if len(hex) != 4: raise ValueError("badly formed 8-bit hexadecimal UUID string") hex = BLE_BASE_UUID.format(hex) elif bytes: if len(bytes) != 2: raise ValueError("badly formed 8-bit byte input") bytes = uuid.UUID(hex=BLE_BASE_UUID.format(bytes.hex())).bytes elif bytes_le: raise ValueError("byte_le not possible with 8-bit UUID") elif int: int = uuid.UUID(hex=BLE_BASE_UUID.format(int.to_bytes(2, "big").hex())).int object.__setattr__(self, "name", name) # needed to work around immutability in base class super().__init__(hex=hex, bytes=bytes, bytes_le=bytes_le, int=int) def __str__(self) -> str: # pylint: disable=missing-return-doc return self.hex if self.name == "" else self.name def __repr__(self) -> str: # pylint: disable=missing-return-doc return self.__str__() @dataclass class Descriptor: """A charactersistic descriptor. Args: handle (int) : the handle of the attribute table that the descriptor resides at uuid (BleUUID): BleUUID of this descriptor value (bytes) : the byte stream value of the descriptor """ handle: int uuid: BleUUID value: Optional[bytes] = None def __str__(self) -> str: # pylint: disable=missing-return-doc return json.dumps(asdict(self), indent=4, default=str) @property def name(self) -> str: """What is the human-readable name of this characteristic? Returns: str: characteristic's name """ return self.uuid.name @dataclass class Characteristic: """A BLE charactersistic. Args: handle (int) : the handle of the attribute table that the characteristic resides at uuid (BleUUID) : the BleUUID of the characteristic props (CharProps) : the characteristic's properties (READ, WRITE, NOTIFY, etc) value (bytes) : the current byte stream value of the characteristic value init_descriptors (Optional[List[Descriptor]]) : Descriptors known at initialization (can also be set later using the descriptors property) descriptor_handle (Optional[int]) : handle of this characteristic's declaration descriptor. If not passed, defaults to handle + 1 """ handle: int uuid: BleUUID props: CharProps value: Optional[bytes] = None init_descriptors: InitVar[Optional[List[Descriptor]]] = None descriptor_handle: Optional[int] = None def __post_init__(self, init_descriptors: Optional[List[Descriptor]]) -> None: self._descriptors: Dict[BleUUID, Descriptor] = {} # Mypy should eventually support this: see https://github.com/python/mypy/issues/3004 self.descriptors = init_descriptors or [] # type: ignore if self.descriptor_handle is None: self.descriptor_handle = self.handle + 1 def __str__(self) -> str: # pylint: disable=missing-return-doc return f"{self.name} @ handle {self.handle}: {self.props.name}" @property def descriptors(self) -> Dict[BleUUID, Descriptor]: """Return uuid-to-descriptor mapping Returns: Dict[BleUUID, Descriptor]: dictionary of descriptors indexed by BleUUID """ return self._descriptors @descriptors.setter def descriptors(self, descriptors: List[Descriptor]) -> None: for descriptor in descriptors: self._descriptors[descriptor.uuid] = descriptor @property def name(self) -> str: """What is the human-readable name of this characteristic? Returns: str: characteristic's name """ return self.uuid.name @property def is_readable(self) -> bool: """Does this characteric have readable property? Returns: bool: True if readable, False if not """ return CharProps.READ in self.props @property def is_writeable_with_response(self) -> bool: """Does this characteric have writeable-with-response property? Returns: bool: True if writeable-with-response, False if not """ return CharProps.WRITE_YES_RSP in self.props @property def is_writeable_without_response(self) -> bool: """Does this characteric have writeable-without-response property? Returns: bool: True if writeable-without-response, False if not """ return CharProps.WRITE_NO_RSP in self.props @property def is_writeable(self) -> bool: """Does this characteric have writeable property? That is, does it have writeable-with-response or writeable-without-response property Returns: bool: True if writeable, False if not """ return self.is_writeable_with_response or self.is_writeable_without_response @property def is_notifiable(self) -> bool: """Does this characteric have notifiable property? Returns: bool: True if notifiable, False if not """ return CharProps.NOTIFY in self.props @property def is_indicatable(self) -> bool: """Does this characteric have indicatable property? Returns: bool: True if indicatable, False if not """ return CharProps.INDICATE in self.props @property def cccd_handle(self) -> int: """What is this characteristics CCCD (client characteristic configuration descriptor) handle Returns: int: the CCCD handle """ return self._descriptors[UUIDs.CLIENT_CHAR_CONFIG].handle @dataclass class Service: """A BLE service or grouping of Characteristics. Args: uuid (BleUUID) : the service's BleUUID start_handle(int): the attribute handle where the service begins end_handle(int): the attribute handle where the service ends. Defaults to 0xFFFF. init_chars (List[Characteristic]) : list of characteristics known at service instantation. Can be set later with the characteristics property """ uuid: BleUUID start_handle: int end_handle: int = 0xFFFF init_chars: InitVar[Optional[List[Characteristic]]] = None def __post_init__(self, init_characteristics: Optional[List[Characteristic]]) -> None: self._characteristics: Dict[BleUUID, Characteristic] = {} # Mypy should eventually support this: see https://github.com/python/mypy/issues/3004 self.characteristics = init_characteristics or [] # type: ignore def __str__(self) -> str: # pylint: disable=missing-return-doc return self.name @property def characteristics(self) -> Dict[BleUUID, Characteristic]: """Return uuid-to-characteristic mapping Returns: Dict[BleUUID, Characteristic]: Dict of characteristics indexed by uuid """ return self._characteristics @characteristics.setter def characteristics(self, characteristics: List[Characteristic]) -> None: for characteristic in characteristics: self._characteristics[characteristic.uuid] = characteristic @property def name(self) -> str: """What is the human-readable name of this characteristic? Returns: str: characteristic's name """ return self.uuid.name class GattDB: """The attribute table to store / look up BLE services, characteristics, and attributes. Args: init_services (List[Service]): A list of serices known at instantiation time. Can be updated later with the services property """ # TODO fix typing here class CharacteristicView(Mapping[BleUUID, Characteristic]): """Represent the GattDB mapping as characteristics indexed by BleUUID""" def __init__(self, db: "GattDB") -> None: self._db = db def __getitem__(self, key: BleUUID) -> Characteristic: # pylint: disable=missing-return-doc for service in self._db.services.values(): for char in service.characteristics.values(): if char.uuid == key: return char raise KeyError def __contains__(self, key: object) -> bool: # pylint: disable=missing-return-doc for service in self._db.services.values(): for char in service.characteristics.values(): if char.uuid == key: return True return False @no_type_check def __iter__(self) -> Iterator[Characteristic]: # pylint: disable=missing-return-doc return iter(self.values()) def __len__(self) -> int: # pylint: disable=missing-return-doc return sum(len(service.characteristics) for service in self._db.services.values()) @no_type_check def keys(self) -> Generator[BleUUID, None, None]: # pylint: disable=missing-return-doc def iter_keys(): for service in self._db.services.values(): for ble_uuid in service.characteristics.keys(): yield ble_uuid return iter_keys() @no_type_check def values(self) -> Generator[Characteristic, None, None]: # pylint: disable=missing-return-doc def iter_values(): for service in self._db.services.values(): for char in service.characteristics.values(): yield char return iter_values() @no_type_check def items( # pylint: disable=missing-return-doc self, ) -> Generator[Tuple[BleUUID, Characteristic], None, None]: def iter_items(): for service in self._db.services.values(): for ble_uuid, char in service.characteristics.items(): yield (ble_uuid, char) return iter_items() def __init__(self, init_services: List[Service]) -> None: self._services: Dict[BleUUID, Service] = {} # TODO add ServicesView to align with characteristics # Mypy should eventually support this: see https://github.com/python/mypy/issues/3004 self.services = init_services # type: ignore self.characteristics = self.CharacteristicView(self) @property def services(self) -> Dict[BleUUID, Service]: """Return uuid-to-service mapping Returns: Dict[BleUUID, Service]: Dict of services indexed by uuid """ return self._services @services.setter def services(self, services: List[Service]) -> None: for service in services: self._services[service.uuid] = service def handle2uuid(self, handle: int) -> BleUUID: """Get a BleUUID from a handle. Args: handle (int): the handle to search for Raises: KeyError: No characteristic was found at this handle Returns: BleUUID: The found BleUUID """ for s in self.services.values(): for c in s.characteristics.values(): if c.handle == handle: return c.uuid raise KeyError(f"Matching BleUUID not found for handle {handle}") def uuid2handle(self, ble_uuid: BleUUID) -> int: """Convert a handle to a BleUUID Args: ble_uuid (BleUUID): BleUUID to translate Returns: int: the handle in the Gatt Database where this BleUUID resides """ return self.characteristics[ble_uuid].handle def dump_to_csv(self, file: Path = Path("attributes.csv")) -> None: """Dump discovered services to a csv file. Args: file (Path): File to write to. Defaults to "./attributes.csv". """ with open(file, mode="w") as f: logger.debug(f"Dumping discovered BLE characteristics to {file}") w = csv.writer(f, delimiter=",", quotechar='"', quoting=csv.QUOTE_MINIMAL) w.writerow(["handle", "description", BleUUID, "properties", "value"]) # For each service in table for service in self.services.values(): w.writerow( [ service.start_handle, SpecUuidNumber.PRIMARY_SERVICE, service.uuid.hex, service.name, "SERVICE", ] ) # For each characteristic in service for char in service.characteristics.values(): w.writerow( [char.descriptor_handle, SpecUuidNumber.CHAR_DECLARATION, "28:03", str(char.props), ""] ) w.writerow([char.handle, char.name, char.uuid.hex, "", char.value]) # For each descriptor in characteristic for descriptor in char.descriptors.values(): w.writerow( [descriptor.handle, descriptor.name, descriptor.uuid.hex, "", descriptor.value] ) class UUIDsMeta(type): """The metaclass used to build a UUIDs container Upon creation of a new UUIDs class, this will store the BleUUID names in an internal mapping indexed by UUID as int """ @no_type_check # pylint: disable=missing-return-doc def __new__(cls, name, bases, dct) -> UUIDsMeta: # noqa x = super().__new__(cls, name, bases, dct) x._int2uuid = {} for db in [*[base.__dict__ for base in bases], dct]: for _, ble_uuid in [(k, v) for k, v in db.items() if not k.startswith("_")]: if not isinstance(ble_uuid, BleUUID): raise TypeError("This class can only be composed of BleUUID attributes") x._int2uuid[ble_uuid.int] = ble_uuid return x @no_type_check def __getitem__(cls, key: Union[uuid.UUID, int, str]) -> BleUUID: # pylint: disable=missing-return-doc if isinstance(key, uuid.UUID): return cls._int2uuid[key.int] if isinstance(key, int): return cls._int2uuid[key] if isinstance(key, str): return cls._int2uuid[uuid.UUID(hex=key).int] raise TypeError("Key must be of type Union[uuid.UUID, int, str]") @no_type_check def __contains__(cls, key: Union[uuid.UUID, int, str]) -> bool: # pylint: disable=missing-return-doc if isinstance(key, uuid.UUID): return key.int in cls._int2uuid if isinstance(key, int): return key in cls._int2uuid if isinstance(key, str): # Built uuid.UUID to use it's normalizing return uuid.UUID(hex=key).int in cls._int2uuid raise TypeError("Key must be of type Union[uuid.UUID, int, str]") @no_type_check def __iter__(cls): # pylint: disable=missing-return-doc for item in cls._int2uuid.items(): yield item @dataclass(frozen=True) class UUIDs(metaclass=UUIDsMeta): """BLE Spec-defined UUIDs that are common across all applications. Also functions as a dict to look up UUID's by str, int, or BleUUID """ @no_type_check def __new__(cls: Type[UUIDs]) -> Type[UUIDs]: # noqa raise Exception("This class shall not be instantiated") # GATT Identifiers PRIMARY_SERVICE = BleUUID( "Primary Service", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.PRIMARY_SERVICE, ) SECONDARY_SERVICE = BleUUID( "Secondary Service", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.SECONDARY_SERVICE, ) INCLUDE = BleUUID( "Characteristic Include Descriptor", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.INCLUDE, ) CHAR_DECLARATION = BleUUID( "Characteristic Declaration", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CHAR_DECLARATION, ) CHAR_EXTENDED_PROPS = BleUUID( "Characteristic Extended Properties", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CHAR_EXTENDED_PROPS, ) CHAR_USER_DESCR = BleUUID( "Characteristic User Description", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CHAR_USER_DESCR, ) CLIENT_CHAR_CONFIG = BleUUID( "Client Characteristic Configuration", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CLIENT_CHAR_CONFIG, ) SERVER_CHAR_CONFIG = BleUUID( "Server Characteristic Configuration", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.SERVER_CHAR_CONFIG, ) CHAR_FORMAT = BleUUID( "Characteristic Format", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CHAR_FORMAT, ) CHAR_AGGREGATE_FORMAT = BleUUID( "Characteristic Aggregate Format", uuid_format=UuidLength.BIT_16, int=SpecUuidNumber.CHAR_AGGREGATE_FORMAT, ) # Generic Attribute Service S_GENERIC_ATT = BleUUID("Generic Attribute Service", hex=BLE_BASE_UUID.format("1801")) # Generic Access Service S_GENERIC_ACCESS = BleUUID("Generic Access Service", hex=BLE_BASE_UUID.format("1800")) ACC_DEVICE_NAME = BleUUID("Device Name", hex=BLE_BASE_UUID.format("2a00")) ACC_APPEARANCE = BleUUID("Appearance", hex=BLE_BASE_UUID.format("2a01")) ACC_PREF_CONN_PARAMS = BleUUID("Preferred Connection Parameters", hex=BLE_BASE_UUID.format("2a04")) ACC_CENTRAL_ADDR_RES = BleUUID("Central Address Resolution", hex=BLE_BASE_UUID.format("2aa6")) # Tx Power S_TX_POWER = BleUUID("Tx Power Service", hex=BLE_BASE_UUID.format("1804")) TX_POWER_LEVEL = BleUUID("Tx Power Level", hex=BLE_BASE_UUID.format("2a07")) # Battery Service S_BATTERY = BleUUID("Battery Service", hex=BLE_BASE_UUID.format("180f")) BATT_LEVEL = BleUUID("Battery Level", hex=BLE_BASE_UUID.format("2a19")) # Device Information Service S_DEV_INFO = BleUUID("Device Information Service", hex=BLE_BASE_UUID.format("180a")) INF_MAN_NAME = BleUUID("Manufacturer Name", hex=BLE_BASE_UUID.format("2a29")) INF_MODEL_NUM = BleUUID("Model Number", hex=BLE_BASE_UUID.format("2a24")) INF_SERIAL_NUM = BleUUID("Serial Number", hex=BLE_BASE_UUID.format("2a25")) INF_FW_REV = BleUUID("Firmware Revision", hex=BLE_BASE_UUID.format("2a26")) INF_HW_REV = BleUUID("Hardware Revision", hex=BLE_BASE_UUID.format("2a27")) INF_SW_REV = BleUUID("Software Revision", hex=BLE_BASE_UUID.format("2a28")) INF_SYS_ID = BleUUID("System ID", hex=BLE_BASE_UUID.format("2a23")) INF_CERT_DATA = BleUUID("Certification Data", hex=BLE_BASE_UUID.format("2a2a")) INF_PNP_ID = BleUUID("PNP ID", hex=BLE_BASE_UUID.format("2a50")) ``` #### File: tutorial_modules/tutorial_5_connect_wifi/wifi_enable.py ```python import sys import time import asyncio import logging import argparse from binascii import hexlify from typing import Tuple, Optional from bleak import BleakClient from tutorial_modules import GOPRO_BASE_UUID, connect_ble logging.basicConfig(level=logging.INFO) logger = logging.getLogger() async def enable_wifi(identifier: str = None) -> Tuple[str, str, BleakClient]: """Connect to a GoPro via BLE, find its WiFi AP SSID and password, and enable its WiFI AP If identifier is None, the first discovered GoPro will be connected to. Args: identifier (str, optional): Last 4 digits of GoPro serial number. Defaults to None. Returns: Tuple[str, str]: ssid, password """ # Synchronization event to wait until notification response is received event = asyncio.Event() # UUIDs to write to and receive responses from, and read from COMMAND_REQ_UUID = GOPRO_BASE_UUID.format("0072") COMMAND_RSP_UUID = GOPRO_BASE_UUID.format("0073") WIFI_AP_SSID_UUID = GOPRO_BASE_UUID.format("0002") WIFI_AP_PASSWORD_UUID = <PASSWORD>("<PASSWORD>") client: BleakClient def notification_handler(handle: int, data: bytes) -> None: logger.info(f'Received response at {handle=}: {hexlify(data, ":")!r}') # If this is the correct handle and the status is success, the command was a success if client.services.characteristics[handle].uuid == COMMAND_RSP_UUID and data[2] == 0x00: logger.info("Command sent successfully") # Anything else is unexpected. This shouldn't happen else: logger.error("Unexpected response") # Notify the writer event.set() client = await connect_ble(notification_handler, identifier) # Read from WiFi AP SSID BleUUID logger.info("Reading the WiFi AP SSID") ssid = await client.read_gatt_char(WIFI_AP_SSID_UUID) ssid = ssid.decode() logger.info(f"SSID is {ssid}") # Read from WiFi AP Password BleUUID logger.info("Reading the WiFi AP password") password = await client.read_gatt_char(WIFI_AP_PASSWORD_UUID) password = password.decode() logger.info(f"Password is {password}") # Write to the Command Request BleUUID to enable WiFi logger.info("Enabling the WiFi AP") event.clear() await client.write_gatt_char(COMMAND_REQ_UUID, bytearray([0x03, 0x17, 0x01, 0x01])) await event.wait() # Wait to receive the notification response logger.info("WiFi AP is enabled") return ssid, password, client async def main(identifier: Optional[str], timeout: Optional[int]) -> None: *_, client = await enable_wifi(identifier) if not timeout: logger.info("Maintaining BLE Connection indefinitely. Send keyboard interrupt to exit.") while True: time.sleep(1) else: logger.info(f"Maintaining BLE connection for {timeout} seconds") time.sleep(timeout) await client.disconnect() if __name__ == "__main__": parser = argparse.ArgumentParser( description="Connect to a GoPro camera via BLE, get WiFi info, and enable WiFi." ) parser.add_argument( "-i", "--identifier", type=str, help="Last 4 digits of GoPro serial number, which is the last 4 digits of the default \ camera SSID. If not used, first discovered GoPro will be connected to", default=None, ) parser.add_argument( "-t", "--timeout", type=int, help="time in seconds to maintain connection before disconnecting. If not set, will maintain connection indefinitely", default=None, ) args = parser.parse_args() try: asyncio.run(main(args.identifier, args.timeout)) except: sys.exit(-1) else: sys.exit(0) ```
{ "source": "jklippel/synapse", "score": 2 }
#### File: synapse/handlers/event_auth.py ```python from typing import TYPE_CHECKING from synapse.api.constants import EventTypes, JoinRules from synapse.api.room_versions import RoomVersion from synapse.types import StateMap if TYPE_CHECKING: from synapse.server import HomeServer class EventAuthHandler: """ This class contains methods for authenticating events added to room graphs. """ def __init__(self, hs: "HomeServer"): self._store = hs.get_datastore() async def can_join_without_invite( self, state_ids: StateMap[str], room_version: RoomVersion, user_id: str ) -> bool: """ Check whether a user can join a room without an invite. When joining a room with restricted joined rules (as defined in MSC3083), the membership of spaces must be checked during join. Args: state_ids: The state of the room as it currently is. room_version: The room version of the room being joined. user_id: The user joining the room. Returns: True if the user can join the room, false otherwise. """ # This only applies to room versions which support the new join rule. if not room_version.msc3083_join_rules: return True # If there's no join rule, then it defaults to invite (so this doesn't apply). join_rules_event_id = state_ids.get((EventTypes.JoinRules, ""), None) if not join_rules_event_id: return True # If the join rule is not restricted, this doesn't apply. join_rules_event = await self._store.get_event(join_rules_event_id) if join_rules_event.content.get("join_rule") != JoinRules.MSC3083_RESTRICTED: return True # If allowed is of the wrong form, then only allow invited users. allowed_spaces = join_rules_event.content.get("allow", []) if not isinstance(allowed_spaces, list): return False # Get the list of joined rooms and see if there's an overlap. joined_rooms = await self._store.get_rooms_for_user(user_id) # Pull out the other room IDs, invalid data gets filtered. for space in allowed_spaces: if not isinstance(space, dict): continue space_id = space.get("space") if not isinstance(space_id, str): continue # The user was joined to one of the spaces specified, they can join # this room! if space_id in joined_rooms: return True # The user was not in any of the required spaces. return False ```
{ "source": "jklmn13/junction", "score": 2 }
#### File: junction/feedback/service.py ```python from collections import defaultdict # Third Party Stuff from django.core.exceptions import ObjectDoesNotExist from django.db import IntegrityError, transaction from django.db.models import Count # Junction Stuff from junction.devices.models import Device from junction.schedule.models import ScheduleItem, ScheduleItemType from .models import ( ChoiceFeedbackQuestion, ChoiceFeedbackQuestionValue, ScheduleItemChoiceFeedback, ScheduleItemTextFeedback, TextFeedbackQuestion ) COLORS = ["#46BFBD", "#FDB45C", "#F7464A"] def get_feedback_questions(conference_id): """Get all feedback questions for the conference. {'talk': {'Text': [{'id': 1, 'title': 'How was the speaker ?', 'is_required': True}], 'Workshop': [{'id': 1, 'title': 'How was the content ?', 'is_required': True, allowed_values: [{'title': 'Awesome', 'id': 2}, {'title': 'Bad', 'id': 3}, {'title': 'Ok', 'id': 4}}]}] }} """ text_questions = get_text_feedback_questions( conference_id=conference_id) choice_questions = get_choice_feedback_questions( conference_id=conference_id) return _merge_questions(text_questions=text_questions, choice_questions=choice_questions) def get_text_feedback_questions(conference_id): """Get all text questions for the conference organized by schedule item type. Return dict contain all questions with schedule item type in dict. """ qs = TextFeedbackQuestion.objects.filter(conference_id=conference_id) return _get_question_oragnized_by_type(qs) def get_choice_feedback_questions(conference_id): """Get all choice based questions for the conference organized by schedule item type. """ qs = ChoiceFeedbackQuestion.objects.filter( conference_id=conference_id).select_related('allowed_values') return _get_question_oragnized_by_type(qs) def has_submitted(feedback, device_uuid): """ """ device = Device.objects.get(uuid=device_uuid) text_feedback = ScheduleItemTextFeedback.objects.filter( schedule_item_id=feedback.validated_data['schedule_item_id'], device=device) if text_feedback: return True choice_feedback = ScheduleItemChoiceFeedback.objects.filter( schedule_item_id=feedback.validated_data['schedule_item_id'], device=device) return choice_feedback def _has_required_ids(master, submitted): for item in master: if item not in submitted: return False return True def has_required_fields_data(feedback): try: data = feedback.validated_data sch = ScheduleItem.objects.get(pk=data['schedule_item_id']) sch_type = ScheduleItemType.objects.get( title=sch.type) t_ids = TextFeedbackQuestion.objects.filter( schedule_item_type=sch_type, conference=sch.conference, is_required=True).values_list( 'id', flat=True) if not data.get('text'): if t_ids: return False, "Text Feedback is missing" else: submitted_t_ids = {d['id'] for d in data.get('text')} if not _has_required_ids(master=t_ids, submitted=submitted_t_ids): return False, "Required text questions are missing" c_ids = ChoiceFeedbackQuestion.objects.filter( schedule_item_type=sch_type, conference=sch.conference, is_required=True).values_list( 'id', flat=True) if not data.get('choices'): if c_ids: return False, "Choice feedback is missing" else: submitted_c_ids = {d['id'] for d in data.get('choices')} if not _has_required_ids(master=c_ids, submitted=submitted_c_ids): return False, "Choice feedback is missing" return True, "" except ObjectDoesNotExist as e: print(e) return False def create(feedback, device_uuid): device = Device.objects.get(uuid=device_uuid) schedule_item_id = feedback.validated_data['schedule_item_id'] try: with transaction.atomic(): text, choices = [], [] if feedback.validated_data.get('text'): text = create_text_feedback( schedule_item_id=schedule_item_id, feedbacks=feedback.validated_data.get('text'), device=device) if feedback.validated_data.get('choices'): choices = create_choice_feedback( schedule_item_id=schedule_item_id, feedbacks=feedback.validated_data.get('choices'), device=device) return {'text': text, 'choices': choices} except (IntegrityError, ObjectDoesNotExist) as e: print(e) # Replace with log return False def create_text_feedback(schedule_item_id, feedbacks, device): text = [] for feedback in feedbacks: obj = ScheduleItemTextFeedback.objects.create( schedule_item_id=schedule_item_id, question_id=feedback['id'], text=feedback['text'], device=device) d = {'id': obj.id, 'text': obj.text, 'question_id': feedback['id'], 'schedule_item_id': schedule_item_id} text.append(d) return text def create_choice_feedback(schedule_item_id, feedbacks, device): choices = [] for feedback in feedbacks: value = ChoiceFeedbackQuestionValue.objects.get( question_id=feedback['id'], id=feedback['value_id']) obj = ScheduleItemChoiceFeedback.objects.create( schedule_item_id=schedule_item_id, device=device, question_id=feedback['id'], value=value.value) d = {'id': obj.id, 'value_id': value.id, 'question_id': feedback['id'], 'schedule_item_id': schedule_item_id} choices.append(d) return choices def get_feedback(schedule_item): feedback = {'text': _get_text_feedback(schedule_item=schedule_item), 'choices': _get_choice_feedback( schedule_item=schedule_item)} return feedback def _get_text_feedback(schedule_item): questions = TextFeedbackQuestion.objects.filter( schedule_item_type__title=schedule_item.type) text = [{'question': question, 'values': ScheduleItemTextFeedback.objects.filter( question=question, schedule_item=schedule_item)} for question in questions] return text def _get_choice_feedback(schedule_item): questions = ChoiceFeedbackQuestion.objects.filter( schedule_item_type__title=schedule_item.type).select_related( 'allowed_values') choices = [] for question in questions: values = ScheduleItemChoiceFeedback.objects.filter( schedule_item=schedule_item, question=question).values( 'value').annotate(Count('value')) d = {'question': question, 'values': _get_choice_value_for_chart(question=question, values=values)} choices.append(d) return choices def _get_choice_value_for_chart(question, values): data = [] for index, value in enumerate(values): d = {'label': str(question.allowed_values.get( value=value['value']).title)} d['value'] = value['value__count'] d['color'] = COLORS[index] data.append(d) return data def _get_question_oragnized_by_type(qs): questions = defaultdict(list) for question in qs: questions[question.schedule_item_type.title].append( question.to_response()) return questions def _merge_questions(text_questions, choice_questions): """Merge the choice and text based questions into schedule type {'Talk': {'text': [..], 'choice': [...]},} """ types = set(text_questions.keys()) types.union(list(choice_questions.keys())) questions = {} for item in types: questions[item] = {'text': text_questions.get(item), 'choice': choice_questions.get(item)} return questions ``` #### File: junction/proposals/permissions.py ```python from django.core.exceptions import PermissionDenied # Junction Stuff from junction.conferences.models import ConferenceProposalReviewer from .models import ProposalSectionReviewer def is_proposal_author(user, proposal): return user.is_authenticated() and proposal.author == user def is_proposal_reviewer(user, conference): authenticated = user.is_authenticated() is_reviewer = ConferenceProposalReviewer.objects.filter( reviewer=user.id, conference=conference, active=True).exists() return authenticated and is_reviewer def is_proposal_section_reviewer(user, conference, proposal): return user.is_authenticated() and ProposalSectionReviewer.objects.filter( conference_reviewer__reviewer=user, conference_reviewer__conference=conference, proposal_section=proposal.proposal_section, active=True).exists() def is_proposal_author_or_proposal_reviewer(user, conference, proposal): reviewer = is_proposal_reviewer(user, conference) author = is_proposal_author(user, proposal) return reviewer or author def is_proposal_author_or_proposal_section_reviewer(user, conference, proposal): return is_proposal_author(user, proposal) or \ is_proposal_section_reviewer(user, conference, proposal) def is_proposal_author_or_permisson_denied(user, proposal): if is_proposal_author(user, proposal): return True raise PermissionDenied ``` #### File: junction/proposals/services.py ```python from __future__ import absolute_import, unicode_literals # Standard Library import logging # Third Party Stuff from django.conf import settings from markdown2 import markdown # Junction Stuff from junction.base.emailer import send_email from .models import ProposalSection, ProposalSectionReviewer logger = logging.getLogger(__name__) def markdown_to_html(md): """ Convert given markdown to html. :param md: string :return: string - converted html """ return markdown(md) def send_mail_for_new_comment(proposal_comment, host): proposal = proposal_comment.proposal login_url = '{}?next={}'.format(settings.LOGIN_URL, proposal.get_absolute_url()) send_to = comment_recipients(proposal_comment) commenter = proposal_comment.commenter proposal_comment.comment = markdown_to_html(proposal_comment.comment) for to in send_to: if to == proposal_comment.commenter: continue send_email(to=to, template_dir='proposals/email/comment', context={'to': to, 'host': host, 'login_url': login_url, 'proposal': proposal, 'comment': proposal_comment, 'commenter': commenter, 'by_author': commenter == proposal.author}) def comment_recipients(proposal_comment): proposal = proposal_comment.proposal if proposal_comment.reviewer: recipients = _get_proposal_section_reviewers( proposal=proposal) elif proposal_comment.private: recipients = _get_proposal_section_reviewers( proposal=proposal) recipients.add(proposal.author) else: recipients = { comment.commenter for comment in proposal.proposalcomment_set .all().select_related('commenter')} recipients.add(proposal.author) return recipients def send_mail_for_new_proposal(proposal, host): proposal_section = ProposalSection.objects.get( pk=proposal.proposal_section_id) send_to = [p.conference_reviewer.reviewer for p in ProposalSectionReviewer.objects.filter( proposal_section=proposal_section, active=True)] proposal_url = proposal.get_absolute_url() login_url = settings.LOGIN_URL for to in send_to: if to == proposal.author: continue send_email(to=to, template_dir='proposals/email/proposal', context={'to': to, 'proposal': proposal, 'proposal_section': proposal_section, 'host': host, 'proposal_url': proposal_url, 'login_url': login_url}) def _get_proposal_section_reviewers(proposal): proposal_reviewers = set(ProposalSectionReviewer.objects.filter( proposal_section=proposal.proposal_section)) recipients = {proposal_reviewer.conference_reviewer.reviewer for proposal_reviewer in proposal_reviewers} return recipients def send_mail_for_proposal_content(conference, proposal, host): """ Send mail to proposal author to upload content for proposal. """ login_url = '{}?next={}'.format(settings.LOGIN_URL, proposal.get_absolute_url()) author = proposal.author author_name = author.get_full_name() or author.username context = { 'host': host, 'login_url': login_url, 'conference': conference, 'proposal': proposal, 'author_name': author_name, } return send_email(to=author, template_dir='proposals/email/upload_content', context=context) ```
{ "source": "jklmnn/directory2rss", "score": 3 }
#### File: jklmnn/directory2rss/d2rss.py ```python import requests from bs4 import BeautifulSoup from flask import Flask, request import PyRSS2Gen import datetime from urllib.parse import unquote app = Flask(__name__) def get_entries(url, verify): content = requests.get(url, verify=verify) soup = BeautifulSoup(content.text, "lxml") rows = soup.find_all("tr") entries = [] if rows: # Apache for row in rows[3:-1]: if row.find_all("a")[0]['href'].endswith("/"): entries.extend(get_entries(url + ("" if url.endswith("/") else "/") + row.find_all("a")[0]['href'], verify)) else: entries.append(PyRSS2Gen.RSSItem( title = unquote(row.find_all("a")[0].text), link = url + ("" if url.endswith("/") else "/") + row.find_all("a")[0]['href'], guid = PyRSS2Gen.Guid(row.find_all("a")[0].text), pubDate = datetime.datetime.strptime(row.find_all("td")[2].text.strip(), "%Y-%m-%d %H:%M"))) else: # Nginx rows = soup.find_all("a") if rows[0]['href'] == "../": rows = rows[1:] for row in rows: if row['href'].endswith("/"): entries.extend(get_entries(url + ("" if url.endswith("/") else "/") + row['href'], verify)) else: entries.append(PyRSS2Gen.RSSItem( title = unquote(row['href']), link = url + ("" if url.endswith("/") else "/") + row['href'], guid = PyRSS2Gen.Guid(row.text), pubDate = datetime.datetime.strptime(" ".join(row.next_sibling.strip(" ").split(" ")[0:2]), "%d-%b-%Y %H:%M"))) return entries def fetch(url, verify): return PyRSS2Gen.RSS2( title = url, link = url, lastBuildDate = datetime.datetime.now(), items = get_entries(url, verify), description = "" ) @app.route('/') def get_data(): url = request.args.get("url") noverify = request.args.get("noverify") if url: return fetch(url, noverify != "yes").to_xml() return "no url specified" if __name__ == "__main__": app.run(debug=True) ```
{ "source": "jklopf/tensorbayes", "score": 3 }
#### File: tensorbayes/other/first_snips.py ```python def sample_sigma2_b(betas, NZ, v0B, s0B): # sample variance of betas df = v0B+NZ scale = (tf_squared_norm(betas)+v0B*s0B)/df sample = rinvchisq(df, scale) return sample def sample_sigma2_e(N, epsilon, v0E, s0E): # sample variance of residuals df = v0E + N scale = (tf_squared_norm(epsilon)+v0E*s0E)/df sample = rinvchisq(df, scale) return sample def sample_pi(M, mNZ): # sample mixture weight sample = rbeta(mNZ+1, M-mNZ+1) return sample # Variables Ebeta = np.zeros((M,1)) #Numpy array delta = np.zeros([M,1]) #Numpy array NZ = tf.Variable(0.) epsilon = tf.Variable(Y) Pi = tf.Variable(0.5) Sigma2_e = tf.Variable(tf_squared_norm(Y) / (N*0.5)) Sigma2_b = tf.Variable(rbeta(1.0,1.0)) # Placeholders Ebeta_ = tf.placeholder(tf.float32, shape=(M,1)) colx = tf.placeholder(tf.float32, shape=(N,1)) ind_ = tf.placeholder(tf.int32, shape=()) # Constants # Parameterization of hyperpriors for variances v0E = tf.constant(4.0) v0B = tf.constant(4.0) s0B = Sigma2_b.initialized_value() / 2 s0E = Sigma2_e.initialized_value() / 2 with tf.Session() as sess: # Initialize variable sess.run(tf.global_variables_initializer()) # Iterate Gibbs sampling # scheme 'num_iter' times for i in range(num_iter): # Set a new random order of marker index = np.random.permutation(M) # Parse and process columns in random order for marker in index: sess.run(epsilon.assign_add(colx * Ebeta[marker]), feed_dict={colx: x[:,marker].reshape(N,1)}) Cj = tf_squared_norm(colx) + Sigma2_e/Sigma2_b rj = tf.tensordot(tf.transpose(colx), epsilon, 1)[0] ratio = tf.exp(-(tf.square(rj)/(2*Cj*Sigma2_e)))\ *tf.sqrt((Sigma2_b*Cj)/Sigma2_e) pij = Pi / (Pi + ratio*(1-Pi)) delta[marker] = sess.run(rbernoulli(pij),\ feed_dict={colx: x[:,marker].reshape(N,1)}) # Beta(j) conditionnal on delta(j) if (delta[marker]==0): Ebeta[marker]=0 elif (delta[marker]==1): Ebeta[marker] = sess.run(rnorm(rj/Cj,Sigma2_e/Cj),\ feed_dict={colx: x[:,marker].reshape(N,1)}) # update residuals sess.run(epsilon.assign_sub(colx * Ebeta[marker]),\ feed_dict={colx: x[:,marker].reshape(N,1)}) # Fullpass over, sample other parameters sess.run(NZ.assign(np.sum(delta))) sess.run(Pi.assign(sample_pi(M,NZ))) sess.run(Sigma2_b.assign(sample_sigma2_b(Ebeta_,NZ,v0B,s0B)), feed_dict= {Ebeta_: Ebeta}) sess.run(Sigma2_e.assign(sample_sigma2_e(N,epsilon,v0E,s0E))) ``` #### File: tensorbayes/python/tbd.py ```python import tensorflow as tf import tensorflow_probability as tfp import numpy as np import time tfd = tfp.distributions # Start time measures start_time = time.clock() # Reset the graph tf.reset_default_graph() # Reproducibility # Seed setting for reproducable research. # Set numpy seed np.random.seed(1234) # Set graph-level seed tf.set_random_seed(1234) # Util functions def tf_squared_norm(vector): sum_of_squares = tf.reduce_sum(tf.square(vector)) return sum_of_squares def np_squared_norm(vector): sum_of_squares = np.sum(np.square(vector)) return sum_of_squares # ## Distributions functions # # rnorm is defined using the variance (i.e sigma^2) def rnorm(mean, var): sd = tf.sqrt(var) dist = tfd.Normal(loc= mean, scale= sd) return dist.sample() def rbeta(alpha, beta): dist = tfd.Beta(alpha, beta) return dist.sample() def rinvchisq(df, scale): # scale factor = tau^2 dist = tfd.Chi2(df) return (df * scale)/dist.sample() def rbernoulli(p): dist = tfd.Bernoulli(probs=p) return dist.sample() # Sampling functions # # sample mean def sample_mu(N, Sigma2_e, Y, X, beta): mean = tf.reduce_sum(tf.subtract(Y, tf.matmul(X, beta)))/N var = Sigma2_e/N return rnorm(mean, var) # sample variance of beta def sample_sigma2_b( beta, NZ, v0B, s0B): df = v0B+NZ scale = (tf_squared_norm(beta)+v0B*s0B) / df return rinvchisq(df, scale) # sample error variance of Y def sample_sigma2_e( N, epsilon, v0E, s0E): df = v0E + N scale = (tf_squared_norm(epsilon) + v0E*s0E) / df return rinvchisq(df, scale) # sample mixture weight def sample_w( M, NZ): w=rbeta(1+NZ,1+M-NZ) return w ## Simulate data # Var(g) = 0.7 # Var(Beta_true) = Var(g) / M # Var(error) = 1 - Var(g) def build_toy_dataset(N, M, var_g): sigma_b = np.sqrt(var_g/M) sigma_e = np.sqrt(1 - var_g) beta_true = np.random.normal(0, sigma_b , M) x = sigma_b * np.random.randn(N, M) y = np.dot(x, beta_true) + np.random.normal(0, sigma_e, N) return x, y, beta_true # Simulated data parameters N = 100 # number of data points M = 10 # number of features var_g = 0.7 # M * var(Beta_true) x, y, beta_true = build_toy_dataset(N, M, var_g) X = tf.constant(x, shape=[N,M], dtype=tf.float32) Y = tf.constant(y, shape = [N,1], dtype=tf.float32) # Could be implemented: # building datasets using TF API without numpy # # Alternative simulated data # beta_true = tf.constant(0.25, shape=[M,1], dtype=tf.float32) # x = np.random.randn(N,M) # X = tf.constant(x, dtype = tf.float32) # Y = tf.matmul(X, beta_true) + (tf.random_normal([N,1]) * 0.375) # Precomputations sm = np.zeros(M) for i in range(M): sm[i] = np_squared_norm(x[:,i]) # Parameters setup # # Distinction between constant and variables # Variables: values might change between evaluation of the graph # (if something changes within the graph, it should be a variable) Emu = tf.Variable(0., dtype=tf.float32) Ebeta = tf.Variable(tf.zeros([M,1]), dtype=tf.float32) Ew = tf.Variable(0.) epsilon = tf.Variable(Y) NZ = tf.Variable(0.) Sigma2_e = tf.Variable(tf_squared_norm(Y) / (N*0.5)) Sigma2_b = tf.Variable(rbeta(1.0,1.0)) vEmu = tf.ones([N,1]) colx = tf.placeholder(tf.float32, shape=(N,1)) # Alternatives parameterization of hyperpriors for variances v0E = tf.constant(0.001) v0B = tf.constant(0.001) s0B = Sigma2_b.initialized_value() / 2 s0E = Sigma2_e.initialized_value() / 2 print_dict = {'Emu': Emu, 'Ew': Ew, 'NZ': NZ, 'Sigma2_e': Sigma2_e, 'Sigma2_b': Sigma2_b} # Tensorboard graph #writer = tf.summary.FileWriter('.') #writer.add_graph(tf.get_default_graph()) # updates ops # Emu_up = Emu.assign(sample_mu(N, Sigma2_e, Y, X, Ebeta_)) #sess.run(Cj.assign(tf.reduce_sum(tf.pow(X[:,marker],2)) + Sigma2_e/Sigma2_b)) #adjusted variance #sess.run(rj.assign(tf.matmul(tf.reshape(X[:,marker], [1,N]),epsilon)[0][0])) # mean, tensordot instead of matmul ? #sess.run(ratio.assign(tf.exp(-(tf.pow(rj,2))/(2*Cj*Sigma2_e))*tf.sqrt((Sigma2_b*Cj)/Sigma2_e))) #sess.run(pij.assign(Ew/(Ew+ratio*(1-Ew)))) def cond_true(): return rnorm(rj/Cj,Sigma2_e/Cj) def cond_false(): return 0. # Number of Gibbs sampling iterations num_iter = 30 with tf.Session() as sess: # Initialize variable sess.run(tf.global_variables_initializer()) # Begin Gibbs iterations for i in range(num_iter): time_in = time.clock() # Print progress print("Gibbs sampling iteration: ", i) # Assign a random order of marker index = np.random.permutation(M) # Sample mu sess.run(Emu.assign(sample_mu(N, Sigma2_e, Y, X, Ebeta))) # matmul here # Reset NZ parameter sess.run(NZ.assign(0.)) # Compute beta for each marker #print("Current marker:", end=" ") print("Current marker:") for marker in index: print(marker, end=" ", flush=True) feed = x[:,marker].reshape(N,1) sess.run(epsilon.assign_add(colx * Ebeta[marker]), feed_dict={colx: feed}) #TODO have the assign op elsewhere and write below tf control dep # of that assignment Cj = tf_squared_norm(colx) + Sigma2_e/Sigma2_b rj = tf.tensordot(tf.transpose(colx), epsilon, 1)[0] ratio = tf.exp( - ( tf.square(rj) / ( 2*Cj*Sigma2_e ))) * tf.sqrt((Sigma2_b*Cj)/Sigma2_e) pij = Ew / (Ew + ratio*(1-Ew)) # TODO: replace with tf.cond sess.run(Ebeta[marker,0].assign(tf.cond(tf.not_equal(rbernoulli(pij)[0],0),cond_true, cond_false)), feed_dict={colx: feed}) sess.run(tf.cond(tf.not_equal(Ebeta[marker,0], 0.),lambda: NZ.assign_add(1.), lambda: NZ.assign_add(0.))) sess.run(epsilon.assign_sub(colx * Ebeta[marker,0]), feed_dict={colx: feed}) #for i in range(len(Ebeta)): # print(Ebeta[i], "\t", ny[i]) #sess.run(NZ.assign(np.sum(ny))) sess.run(Ew.assign(sample_w(M,NZ))) #sess.run(Ebeta_.assign(Ebeta)) sess.run(epsilon.assign(Y-tf.matmul(X,Ebeta)-vEmu*Emu)) sess.run(Sigma2_b.assign(sample_sigma2_b(Ebeta,NZ,v0B,s0B))) sess.run(Sigma2_e.assign(sample_sigma2_e(N,epsilon,v0E,s0E))) # Print operations print("\n") print(sess.run(print_dict)) print(" ") time_out = time.clock() print('Time for the ', i, 'th iteration: ', time_out - time_in, ' seconds') print(" ") # ## Print results print("Ebeta" + '\t'+ ' beta_true') for i in range(M): print(Ebeta[i], "\t", beta_true[i]) # ## Printe time print('Time elapsed: ') print(time.clock() - start_time, "seconds") ``` #### File: tensorbayes/python/TensorBayes_v3.3.py ```python import tensorflow as tf import tensorflow_probability as tfp import numpy as np import time tfd = tfp.distributions ''' This version is able to retrieve the simulated parameters and store the history of the sampling, as NumPyBayes_v2.py does. The next version will implement the tensorflow dataset API instead of placeholders to feed data, and will be called: - TensorBayes_v3.3.py ''' # Start time measures start_time = time.clock() # Reset the graph tf.reset_default_graph() # Reproducibility # Seed setting for reproducible research. # # Set NumPy seed np.random.seed(1234) # Set graph-level seed tf.set_random_seed(1234) # Util functions def tf_squared_norm(vector): sum_of_squares = tf.reduce_sum(tf.square(vector)) return sum_of_squares def np_squared_norm(vector): sum_of_squares = np.sum(np.square(vector)) return sum_of_squares # ## Distributions functions # # rnorm is defined using the variance (i.e sigma^2) def rnorm(mean, var): sd = tf.sqrt(var) dist = tfd.Normal(loc= mean, scale= sd) sample = dist.sample() return sample def rbeta(a, b): dist = tfd.Beta(a, b) sample = dist.sample() return sample def rinvchisq(df, scale): # scale factor = tau^2 dist = tfd.Chi2(df) sample = (df * scale)/dist.sample() return sample def rbernoulli(p): dist = tfd.Bernoulli(probs=p) sample = dist.sample() return sample # Sampling functions # # sample mean def sample_mu(N, Sigma2_e, Y, X, betas): mean = tf.reduce_sum(tf.subtract(Y, tf.matmul(X, betas)))/N var = Sigma2_e/N sample = rnorm(mean,var) return sample # sample variance of beta def sample_sigma2_b(betas, NZ, v0B, s0B): df = v0B+NZ scale = (tf_squared_norm(betas)+v0B*s0B) / df sample = rinvchisq(df, scale) return sample # sample error variance of Y def sample_sigma2_e(N, epsilon, v0E, s0E): df = v0E + N scale = (tf_squared_norm(epsilon) + v0E*s0E) / df sample = rinvchisq(df, scale) return sample # sample mixture weight def sample_w(M, NZ): sample = rbeta(NZ+1, M-NZ+1) return sample # sample a beta def sample_beta(x_j, eps, s2e, s2b, w, beta_old): eps = eps + (x_j*beta_old) Cj = tf_squared_norm(x_j) + s2e/s2b rj = tf.tensordot(tf.transpose(x_j), eps, 1)[0,0] ratio = tf.exp( - ( tf.square(rj) / ( 2*Cj*s2e ))) * tf.sqrt((s2b*Cj)/s2e) pij = w / (w + ratio*(1-w)) toss = rbernoulli(pij) def case_zero(): return 0., 0. # could return a list [beta,ny] def case_one(): return rnorm(rj/Cj, s2e/Cj), 1. # could return a list [beta,ny] beta_new, ny_new = tf.cond(tf.equal(toss,1),case_one, case_zero) #beta_new, incl = tf.case([(tf.equal(toss, 0), case_zero)], default=case_one) # maybe use tf.cond since we only got 1 pair ? # do we handle ny/nz here ? eps = eps - (x_j*beta_new) return beta_new, ny_new, eps # could return a list [beta,ny] ## Simulate data def build_toy_dataset(N, M, var_g): sigma_b = np.sqrt(var_g/M) sigma_e = np.sqrt(1 - var_g) beta_true = np.random.normal(0, sigma_b , M) x = sigma_b * np.random.randn(N, M) y = np.dot(x, beta_true) + np.random.normal(0, sigma_e, N) return x, y, beta_true.reshape(M,1) # Simulated data parameters N = 5000 # number of data points M = 10 # number of features var_g = 0.7 # M * var(Beta_true) # Var(Beta_true) = Var(g) / M # Var(error) = 1 - Var(g) x, y, beta_true = build_toy_dataset(N, M, var_g) X = tf.constant(x, shape=[N,M], dtype=tf.float32) Y = tf.constant(y, shape=[N,1], dtype=tf.float32) # Could be implemented: # building datasets using TF API without numpy # # Precomputations - not practicable with huge datasets # sm = np.zeros(M) # for i in range(M): # sm[i] = np_squared_norm(x[:,i]) ''' TODO: Actually implement all the algorithm optimizations of the reference article which are not implemented here. Depends on later implementations of input pipeline. ''' # Parameters setup # # Distinction between constant and variables # Variables: values might change between evaluation of the graph # (if something changes within the graph, it should be a variable) # Variables: Emu = tf.Variable(0., dtype=tf.float32) Ebeta = tf.Variable(tf.zeros([M,1], dtype=tf.float32), dtype=tf.float32) Ny = tf.Variable(tf.zeros(M, dtype=tf.float32), dtype=tf.float32) NZ = tf.Variable(0., dtype=tf.float32) Ew = tf.Variable(0., dtype=tf.float32) epsilon = tf.Variable(Y, dtype=tf.float32) Sigma2_e = tf.Variable(tf_squared_norm(Y) / (N*0.5), dtype=tf.float32) Sigma2_b = tf.Variable(rbeta(1., 1.), dtype=tf.float32) # Constants: vEmu = tf.ones([N,1], dtype=tf.float32) v0E = tf.constant(0.001, dtype=tf.float32) v0B = tf.constant(0.001, dtype=tf.float32) s0B = Sigma2_b.initialized_value() / 2 s0E = Sigma2_e.initialized_value() / 2 # Placeholders: Xj = tf.placeholder(tf.float32, shape=(N,1)) ind = tf.placeholder(tf.int32, shape=()) # Print stuff: # TODO: construct the op with tf.print() so that values get automatically printed print_dict = {'Emu': Emu, 'Ew': Ew, 'NZ': NZ, 'Sigma2_e': Sigma2_e, 'Sigma2_b': Sigma2_b} # Tensorboard graph # TODO: look up what TensorBoard can do, this can be used in the end to have a graph representation of the algorithm. # Also, for graph clarity, operations should be named. #writer = tf.summary.FileWriter('.') #writer.add_graph(tf.get_default_graph()) # Computations ta_beta, ta_ny, ta_eps = sample_beta(Xj, epsilon, Sigma2_e, Sigma2_b, Ew, Ebeta[ind,0]) # Ebeta[ind] might be replaced by using dictionnaries key/value instead. ta_epsilon = Y - tf.matmul(X,Ebeta) - vEmu*Emu ta_s2b = sample_sigma2_b(Ebeta,NZ,v0B,s0B) ta_s2e = sample_sigma2_e(N,epsilon,v0E,s0E) ta_nz = tf.reduce_sum(Ny) # Assignment ops # As we don't chain assignment operations, assignment does not require to return the evaluation of the new value # therefore, all read_value are set to False. No idea if this changes anything. emu_up = Emu.assign(sample_mu(N, Sigma2_e, Y, X, Ebeta), read_value=False) beta_item_assign_op = Ebeta[ind,0].assign(ta_beta) # when doing item assignment, read_value becomes an unexpected parameter, ny_item_assign_op = Ny[ind].assign(ta_ny) # as tensorflow doesn't know what to return the single item or the whole variable nz_up = NZ.assign(ta_nz, read_value=False) eps_up_fl = epsilon.assign(ta_eps, read_value=False) eps_up = epsilon.assign(ta_epsilon, read_value=False) ew_up = Ew.assign(sample_w(M,NZ), read_value=False) s2b_up = Sigma2_b.assign(ta_s2b, read_value=False) s2e_up = Sigma2_e.assign(ta_s2e, read_value=False) up_grp = tf.group(beta_item_assign_op, ny_item_assign_op, eps_up) # Run with `read_value = True`: 63.4s # Run with `read_value = False`: 62.2s # Log definition: param_log = [] # order: Sigma2_e, Sigma2_b beta_log = [] # as rank 1 vector # Number of Gibbs sampling iterations num_iter = 5000 burned_samples_threshold = 2000 with tf.Session() as sess: # Initialize variable sess.run(tf.global_variables_initializer()) # Gibbs sampler iterations print('\n', "Beginning of sampling: each dot = 500 iterations", '\n') for i in range(num_iter): # TODO: replace with tf.while ? if(i%500 == 0): print(".",end='', flush=True) #sess.run(emu_up) #sess.run(ny_reset) index = np.random.permutation(M) for marker in index: current_col = x[:,[marker]] feed = {ind: marker, Xj: current_col} sess.run(up_grp, feed_dict=feed) sess.run(nz_up) sess.run(ew_up) #sess.run(eps_up) sess.run(s2b_up) sess.run(s2e_up) # Print operations # print(sess.run(print_dict)) # Logs if(i > burned_samples_threshold): param_log.append(sess.run([Sigma2_e, Sigma2_b])) beta_log.append(np.array(sess.run(Ebeta)).reshape(M)) print("\n") print("End of sampling" + '\n') # Time elapsed total_time = np.round(time.clock() - start_time, 5) print("Time elapsed: " + str(total_time) + "s" + '\n') # Results param_log = np.array(param_log) mean_Sigma2_e = np.round(np.mean(param_log[:,0]),5) mean_Sigma2_b = np.round(np.mean(param_log[:,1]),5) mean_betas = np.round(np.mean(beta_log, axis=0),5).reshape([M,1]) # Results printing print("Parameters: " + '\n') #print(" ") print("Mean Sigma2_e:", mean_Sigma2_e,'\t', "Expected Sigma2_e:", 1-var_g) print("Mean Sigma2_b:", mean_Sigma2_b,'\t', "Expected Sigma2_b:", var_g / M, "\n") print("Coefficients:" + '\n') print("Computed" + '\t' + '\t' + "Expected" ) for i in range(M): print(mean_betas[i,0], '\t', '\t', beta_true[i,0] ) ```
{ "source": "jkloth/pyxml", "score": 4 }
#### File: demo/dom/dom_from_html_file.py ```python from xml.dom.ext.reader import HtmlLib from xml.dom import ext def read_html_from_file(fileName): #build a DOM tree from the file reader = HtmlLib.Reader() dom_object = reader.fromUri(fileName) #strip any ignorable white-space in preparation for pretty-printing ext.StripHtml(dom_object) #pretty-print the node ext.PrettyPrint(dom_object) #reclaim the object reader.releaseNode(dom_object); if __name__ == '__main__': import sys read_html_from_file(sys.argv[1]) ``` #### File: demo/dom/xptr.py ```python import re,string,sys from xml.dom import Node from xml.dom import ext # Spec deviations: # - html keyword not supported # - negative instance numbers not supported # - #cdata node type selector not supported # - * for attribute values/names not supported # - preceding keyword not supported # - span keyword unsupported # - support 'string' location terms # Spec questions # - what if locator fails? # - what to do with "span(...).child(1)"? # - how to continue from a set of selected nodes? # - attr: error if does not use element as source? # - should distinguish between semantic errors and failures? # - can string terms locate inside attr vals? # - are the string loc semantics a bit extreme? perhaps restrict to one node? # - how to represent span and string results in terms of the DOM? # Global variables version="0.20" specver="WD-xptr-19980303" # Useful regular expressions reg_sym=re.compile("[a-z]+|\\(|\\)|\\.|[-+]?[1-9][0-9]*|[A-Za-z_:][\-A-Za-z_:.0-9]*|,|#[a-z]+|\\*|\"[^\"]*\"|'[^']*'") reg_sym_param=re.compile(",|\)|\"|'") reg_name=re.compile("[A-Za-z_:][\-A-Za-z_:.0-9]*") # Some exceptions class XPointerException(Exception): "Means something went wrong when attempting to follow an XPointer." pass class XPointerParseException(XPointerException): "Means the XPointer was syntactically invalid." def __init__(self,msg,pos): self.__msg=msg self.__pos=pos def get_pos(self): return self.__pos def __str__(self): return self.__msg % self.__pos class XPointerFailedException(XPointerException): "Means the XPointer was logically invalid." pass class XPointerUnsupportedException(XPointerException): "Means the XPointer used unsupported constructs." pass # Simple XPointer lexical analyzer class SymbolGenerator: "Chops XPointers up into distinct symbols." def __init__(self,xpointer): self.__data=xpointer self.__pos=0 self.__last_was_param=0 self.__next_is="" def get_pos(self): "Returns the current position in the string." return self.__pos def more_symbols(self): "True if there are more symbols in the XPointer." return self.__pos<len(self.__data) or self.__next_is!="" def next_symbol(self): "Returns the next XPointer symbol." if self.__next_is!="": tmp=self.__next_is self.__next_is="" return tmp if self.__last_was_param: self.__last_was_param=0 sym="" count=0 while self.more_symbols(): n=self.next_symbol() if n=='"' or n=="'": pos=string.find(self.__data,n,self.__pos) if pos==-1: raise XPointerParseException("Unmatched %s at %d" % \ n,self.__pos) sym=self.__data[self.__pos-1:pos+1] self.__pos=pos+1 elif n=="(": count=count+1 elif n==")": count=count-1 if count<0: if sym=="": return ")" else: self.__next_is=")" return sym elif n=="," and count==0: self.__last_was_param=1 self.__next_is="," return sym sym=sym+n mo=reg_sym.match(self.__data,self.__pos) if mo==None: raise XPointerParseException("Invalid symbol at position %d", self.__pos) self.__pos=self.__pos+len(mo.group(0)) self.__last_was_param= mo.group(0)=="(" return mo.group(0) # Simple XPointer parser class XPointerParser: """Simple XPointer parser that parses XPointers firing events that receive terms and parameters.""" def __init__(self,xpointer): self.__sgen=SymbolGenerator(xpointer) self.__first_term=1 self.__prev=None def __skip_over(self,symbol): if self.__sgen.next_symbol()!=symbol: raise XPointerParseException("Expected '"+symbol+"' at %s", self.__sgen.get_pos()) def __is_valid(self,symbol,regexp): mo=regexp.match(symbol) return mo!=None and len(mo.group(0))==len(symbol) def __parse_instance_or_all(self,iora): if iora!="all": try: return int(iora) except ValueError,e: raise XPointerParseException("Expected number or 'all' at %s", self.__sgen.get_pos()) else: return "all" def parse(self): "Runs through the entire XPointer, firing events." sym="." while sym==".": name=self.__sgen.next_symbol() if name=="(": name="" # Names can be defaulted else: self.__skip_over("(") sym=self.__sgen.next_symbol() if sym!=")": params=[sym] sym=self.__sgen.next_symbol() else: params=[] while sym==",": params.append(self.__sgen.next_symbol()) sym=self.__sgen.next_symbol() if sym!=")": raise XPointerParseException("Expected ')' at %s", self.__sgen.get_pos()) self.dispatch_term(name,params) if self.__sgen.more_symbols(): sym=self.__sgen.next_symbol() else: return # If the XPointer ends correctly, we'll return from the if above raise XPointerParseException("Expected '.' at %s", self.__sgen.get_pos()) def dispatch_term(self,name,params): """Called when a term is encountered to analyze it and fire more detailed events.""" if self.__first_term: if name=="root" or name=="origin" or name=="id" or name=="html": if name=="root" or name=="origin": if len(params)!=0: raise XPointerParseException(name+" terms have no " "parameters (at %s)", self.__sgen.get_pos()) else: param=None elif name=="id" or name=="html": if len(params)!=1: raise XPointerParseException(name+" terms require one " "parameter (at %s)", self.__sgen.get_pos()) else: param=params[0] # XXX Validate parameter self.__first_term=0 self.handle_abs_term(name,param) return else: self.handle_abs_term("root",None) else: if name=="" and self.__prev!=None: name=self.__prev if name=="child" or name=="ancestor" or name=="psibling" or \ name=="fsibling" or name=="descendant" or name=="following" or \ name=="preceding": self.parse_rel_term(name,params) elif name=="span": self.parse_span_term(params) elif name=="attr": self.parse_attr_term(params) elif name=="string": self.parse_string_term(params) else: raise XPointerParseException("Illegal term type "+name+\ " at %s",self.__sgen.get_pos()) self.__prev=name def parse_rel_term(self,name,params): "Parses the arguments of relative location terms and fires the event." no=self.__parse_instance_or_all(params[0]) if len(params)>1: type=params[1] if not (type=="#element" or type=="#pi" or type=="#comment" or \ type=="#text" or type=="#cdata" or type=="#all" or \ self.__is_valid(type,reg_name)): raise XPointerParseException("Invalid type at %s", self.__sgen.get_pos()) else: type="#element" attrs=[] ix=2 while ix+1<len(params): if not self.__is_valid(params[ix],reg_name): raise XPointerParseException("Not a valid name at %s", self.__sgen.get_pos()) attrs.append((params[ix],params[ix+1])) ix=ix+2 self.handle_rel_term(name,no,type,attrs) def parse_span_term(self,params): "Parses the arguments of the span term and fires the event." raise XPointerUnsupportedException("'span' keyword unsupported.") def parse_attr_term(self,params): "Parses the argument of the attr term and fires the event." if len(params)!=1: raise XPointerParseException("'attr' location terms must have " "exactly one parameter (at %s)", self.__sgen.get_pos()) if not self.__is_valid(params[0],reg_name): raise XPointerParseException("'%s' is not a valid attribute " "name at %s" % name, self.__sgen.get_pos()) self.handle_attr_term(params[0]) def parse_string_term(self,params): "Parses the argument of the string term and fires the event." no=self.__parse_instance_or_all(params[0]) if len(params)>1: skiplit=params[1] else: skiplit=None if len(params)>2: if params[2]=="end": pos="end" else: try: pos=int(params[2]) except ValueError,e: raise XPointerParseException("Expected number at %s", self.__sgen.get_pos()) if pos==0: raise XPointerParseException("0 is not an acceptable " "value at %s", self.__sgen.get_pos()) else: pos=None if len(params)>3: try: length=int(params[3]) except ValueError,e: raise XPointerParseException("Expected number at %s", self.__sgen.get_pos()) else: length=0 self.handle_string_term(no,skiplit,pos,length) # Event methods to be overridden def handle_abs_term(self,name,param): "Called to handle absolute location terms." pass def handle_rel_term(self,name,no,type,attrs): "Called to handle relative location terms." pass def handle_attr_term(self,attr_name): "Called to handle 'attr' location terms." pass def handle_span_term(self,frm,to): "Called to handle 'span' location terms." pass def handle_string_term(self,no,skiplit,pos,length): "Called to handle 'string' location terms." pass # ----- XPointer implementation that navigates a DOM tree # Iterator classes class DescendantIterator: def __init__(self): self.stack=[] def __call__(self,node): next=node.firstChild if next==None: next=node.nextSibling while next==None: if self.stack==[]: raise XPointerFailedException("No matching node") next=self.stack[-1].nextSibling del self.stack[-1] self.stack.append(next) return next class FollowingIterator: def __init__(self): self.seen_hash={} self.skip_child=0 def __call__(self,node): if not self.skip_child: next=node.firstChild else: self.skip_child=0 next=None if next==None: next=node.getNextSibling() if next==None: next=node.parentNode self.skip_child=1 # Don't go down, we've been there :-) if next.GI=="#DOCUMENT": raise XPointerFailedException("No matching node") if self.seen_hash.has_key(next.id()): next=node.nextSibling prev=node while next==None: next=prev.parentNode self.skip_child=1 # Don't go down, we've been there :-) prev=next if next.nodeName=="#DOCUMENT": raise XPointerFailedException("No matching node") if self.seen_hash.has_key(next.id()): next=prev.nextSibling if next!=None: self.skip_child=0 else: # We're above all the nodes we've looked at. Throw out the # hashed objects. self.seen_hash.clear() self.seen_hash[next.id()]=1 return next # The implementation itself class XDOMLocator(XPointerParser): def __init__(self, xpointer, document): XPointerParser.__init__(self, xpointer) self.__node=document self.__first=1 self.__prev=None def __node_matches(self,node,type,attrs): "Checks whether a DOM node matches a foo(2,SECTION,ID,I5) selector." if type==node.nodeName or \ (type=="#element" and node.nodeType == Node.ELEMENT_NODE) or \ (type=="#pi" and node.nodeType == Node.PROCESSING_INSTRUCTION_NODE) or \ (type=="#comment" and node.nodeType == Node.COMMENT_NODE) or \ (type=="#text" and node.nodeType == Node.TEXT_NODE) or \ (type=="#cdata" and node.nodeType == Node.CDATA_SECTION_NODE) or \ type=="#all": if attrs!=None: for (a,v) in attrs: try: if v!=node.getAttribute(a): return 0 except KeyError,e: return 0 return 1 else: return 0 def __get_node(self,no,type,attrs,iterator): """General method that iterates through the tree calling the iterator on the current node for each step to get the next node.""" count=0 current=iterator(self.__node) while current!=None: if self.__node_matches(current,type,attrs): count=count+1 if count==no: return current current=iterator(current) raise XPointerFailedException("No matching node") def __get_child(self,no,type,attrs): if type==None: candidates = self.__node.childNodes else: candidates = [] for obj in self.__node.childNodes: if self.__node_matches(obj,type,attrs): candidates.append(obj) try: return candidates[no-1] except IndexError,e: raise XPointerFailedException("No matching node") def get_node(self): "Returns the located node." return self.__node def handle_abs_term(self,name,param): "Called to handle absolute location terms." if name=="root": if self.__node.nodeType != Node.DOCUMENT_NODE: raise XPointerFailedException("Expected document node") self.__node=self.__node.documentElement elif name=="origin": pass # Just work from current node elif name=="id": self.__node=ext.GetElementById(self.__node, param) elif name=="html": raise XPointerUnsupportedException("Term type 'html' unsupported.") def handle_rel_term(self,name,no,type,attrs): "Called to handle relative location terms." if name=="child": next=self.__get_child(no,type,attrs) elif name=="ancestor": next=self.__get_node(no,type,attrs,DOM.Node._get_parentNode) elif name=="psibling": next=self.__get_node(no,type,attrs,DOM.Node._get_previousSibling) elif name=="fsibling": next=self.__get_node(no,type,attrs,DOM.Node._get_nextSibling) elif name=="descendant": next=self.__get_node(no,type,attrs,DescendantIterator()) elif name=="following": next=self.__get_node(no,type,attrs,FollowingIterator()) self.__node=next self.__prev=name def handle_attr_term(self, attr_name): if __node.nodeType != Node.ELEMENT_NODE: raise XPointerFailedException("'attr' location term used from " "non-element node") if not self.__node.attributes.has_key(attr_name): raise XPointerFailedException("Non-existent attribute '%s' located" " by 'attr' term" % attr_name) self.__node=self.__node.attributes.getNamedItem(attr_name) def handle_string_term(self,no,skiplit,pos,length): raise XPointerUnsupportedException("'string' location terms not " "supported") def LocateNode(node, xpointer): try: xp=XDOMLocator(xpointer, node) xp.parse() return xp.get_node() except XPointerParseException,e: print "ERROR: "+str(e) ``` #### File: demo/quotes/qtfmt.py ```python __doc__ = """Usage: qtfmt.py [options] file1.xml file2.xml ... If no filenames are provided, standard input will be read. Available options: -f or --fortune Produce output for the fortune(1) program -h or --html Produce HTML output -t or --text Produce plain text output -m N or --max N Suppress quotations longer than N lines; defaults to 0, which suppresses no quotations at all. """ import string, re, cgi, types import codecs from xml.sax import saxlib, saxexts def simplify(t, indent="", width=79): """Strip out redundant spaces, and insert newlines to wrap the text at the given width.""" t = string.strip(t) t = re.sub('\s+', " ", t) if t=="": return t t = indent + t t2 = "" while len(t) > width: index = string.rfind(t, ' ', 0, width) if index == -1: t2 = t2 + t[:width] ; t = t[width:] else: t2 = t2 + t[:index] ; t = t[index+1:] t2 = t2 + '\n' return t2 + t class Quotation: """Encapsulates a single quotation. Attributes: stack -- used during construction and then deleted text -- A list of Text() instances, or subclasses of Text(), containing the text of the quotation. source -- A list of Text() instances, or subclasses of Text(), containing the source of the quotation. (Optional) author -- A list of Text() instances, or subclasses of Text(), containing the author of the quotation. (Optional) Methods: as_fortune() -- return the quotation formatted for fortune as_html() -- return an HTML version of the quotation as_text() -- return a plain text version of the quotation """ def __init__(self): self.stack = [ Text() ] self.text = [] def as_text(self): "Convert instance into a pure text form" output = "" def flatten(textobj): "Flatten a list of subclasses of Text into a list of paragraphs" if type(textobj) != types.ListType: textlist=[textobj] else: textlist = textobj paragraph = "" ; paralist = [] for t in textlist: if (isinstance(t, PreformattedText) or isinstance(t, CodeFormattedText) ): paralist.append(paragraph) paragraph = "" paralist.append(t) elif isinstance(t, Break): paragraph = paragraph + t.as_text() paralist.append(paragraph) paragraph = "" else: paragraph = paragraph + t.as_text() paralist.append(paragraph) return paralist # Flatten the list of instances into a list of paragraphs paralist = flatten(self.text) if len(paralist) > 1: indent = 2*" " else: indent = "" for para in paralist: if isinstance(para, PreformattedText) or isinstance(para, CodeFormattedText): output = output + para.as_text() else: output = output + simplify(para, indent) + '\n' attr = "" for i in ['author', 'source']: if hasattr(self, i): paralist = flatten(getattr(self, i)) text = string.join(paralist) if attr: attr = attr + ', ' text = string.lower(text[:1]) + text[1:] attr = attr + text attr=simplify(attr, width = 79 - 4 - 3) if attr: output = output + ' -- '+re.sub('\n', '\n ', attr) return output + '\n' def as_fortune(self): return self.as_text() + '%' def as_html(self): output = "<P>" def flatten(textobj): if type(textobj) != types.ListType: textlist = [textobj] else: textlist = textobj paragraph = "" ; paralist = [] for t in textlist: paragraph = paragraph + t.as_html() if isinstance(t, Break): paralist.append(paragraph) paragraph = "" paralist.append(paragraph) return paralist paralist = flatten(self.text) for para in paralist: output = output + string.strip(para) + '\n' attr = "" for i in ['author', 'source']: if hasattr(self, i): paralist = flatten(getattr(self, i)) text = string.join(paralist) attr=attr + ('<P CLASS=%s>' % i) + string.strip(text) return output + attr # Text and its subclasses are used to hold chunks of text; instances # know how to display themselves as plain text or as HTML. class Text: "Plain text" def __init__(self, text=""): self.text = text # We need to allow adding a string to Text instances. def __add__(self, val): newtext = self.text + str(val) # __class__ must be used so subclasses create instances of themselves. return self.__class__(newtext) def __str__(self): return self.text def __repr__(self): s = string.strip(self.text) if len(s) > 15: s = s[0:15] + '...' return '<%s: "%s">' % (self.__class__.__name__, s) def as_text(self): return self.text def as_html(self): return cgi.escape(self.text) class PreformattedText(Text): "Text inside <pre>...</pre>" def as_text(self): return str(self.text) def as_html(self): return '<pre>' + cgi.escape(str(self.text)) + '</pre>' class CodeFormattedText(Text): "Text inside <code>...</code>" def as_text(self): return str(self.text) def as_html(self): return '<code>' + cgi.escape(str(self.text)) + '</code>' class CitedText(Text): "Text inside <cite>...</cite>" def as_text(self): return '_' + simplify(str(self.text)) + '_' def as_html(self): return '<cite>' + string.strip(cgi.escape(str(self.text))) + '</cite>' class ForeignText(Text): "Foreign words, from Latin or French or whatever." def as_text(self): return '_' + simplify(str(self.text)) + '_' def as_html(self): return '<i>' + string.strip(cgi.escape(str(self.text))) + '</i>' class EmphasizedText(Text): "Text inside <em>...</em>" def as_text(self): return '*' + simplify(str(self.text)) + '*' def as_html(self): return '<em>' + string.strip(cgi.escape(str(self.text))) + '</em>' class Break(Text): def as_text(self): return "" def as_html(self): return "<P>" # The QuotationDocHandler class is a SAX handler class that will # convert a marked-up document using the quotations DTD into a list of # quotation objects. class QuotationDocHandler(saxlib.HandlerBase): def __init__(self, process_func): self.process_func = process_func self.newqt = None # Errors should be signaled, so we'll output a message and raise # the exception to stop processing def fatalError(self, exception): sys.stderr.write('ERROR: '+ str(exception)+'\n') sys.exit(1) error = fatalError warning = fatalError def characters(self, ch, start, length): if self.newqt != None: s = ch[start:start+length] # Undo the UTF-8 encoding, converting to ISO Latin1, which # is the default character set used for HTML. latin1_encode = codecs.lookup('iso-8859-1') [0] unicode_str = s s, consumed = latin1_encode( unicode_str ) assert consumed == len( unicode_str ) self.newqt.stack[-1] = self.newqt.stack[-1] + s def startDocument(self): self.quote_list = [] def startElement(self, name, attrs): methname = 'start_'+str(name) if hasattr(self, methname): method = getattr(self, methname) method(attrs) else: sys.stderr.write('unknown start tag: <' + name + ' ') for name, value in attrs.items(): sys.stderr.write(name + '=' + '"' + value + '" ') sys.stderr.write('>\n') def endElement(self, name): methname = 'end_'+str(name) if hasattr(self, methname): method = getattr(self, methname) method() else: sys.stderr.write('unknown end tag: </' + name + '>\n') # There's nothing to be done for the <quotations> tag def start_quotations(self, attrs): pass def end_quotations(self): pass def start_quotation(self, attrs): if self.newqt == None: self.newqt = Quotation() def end_quotation(self): st = self.newqt.stack for i in range(len(st)): if type(st[i]) == types.StringType: st[i] = Text(st[i]) self.newqt.text=self.newqt.text + st del self.newqt.stack if self.process_func: self.process_func(self.newqt) else: print "Completed quotation\n ", self.newqt.__dict__ self.newqt=Quotation() # Attributes of a quotation: <author>...</author> and <source>...</source> def start_author(self, data): # Add the current contents of the stack to the text of the quotation self.newqt.text = self.newqt.text + self.newqt.stack # Reset the stack self.newqt.stack = [ Text() ] def end_author(self): # Set the author attribute to contents of the stack; you can't # have more than one <author> tag per quotation. self.newqt.author = self.newqt.stack # Reset the stack for more text. self.newqt.stack = [ Text() ] # The code for the <source> tag is exactly parallel to that for <author> def start_source(self, data): self.newqt.text = self.newqt.text + self.newqt.stack self.newqt.stack = [ Text() ] def end_source(self): self.newqt.source = self.newqt.stack self.newqt.stack = [ Text() ] # Text markups: <br/> for breaks, <pre>...</pre> for preformatted # text, <em>...</em> for emphasis, <cite>...</cite> for citations. def start_br(self, data): # Add a Break instance, and a new Text instance. self.newqt.stack.append(Break()) self.newqt.stack.append( Text() ) def end_br(self): pass def start_pre(self, data): self.newqt.stack.append( Text() ) def end_pre(self): self.newqt.stack[-1] = PreformattedText(self.newqt.stack[-1]) self.newqt.stack.append( Text() ) def start_code(self, data): self.newqt.stack.append( Text() ) def end_code(self): self.newqt.stack[-1] = CodeFormattedText(self.newqt.stack[-1]) self.newqt.stack.append( Text() ) def start_em(self, data): self.newqt.stack.append( Text() ) def end_em(self): self.newqt.stack[-1] = EmphasizedText(self.newqt.stack[-1]) self.newqt.stack.append( Text() ) def start_cite(self, data): self.newqt.stack.append( Text() ) def end_cite(self): self.newqt.stack[-1] = CitedText(self.newqt.stack[-1]) self.newqt.stack.append( Text() ) def start_foreign(self, data): self.newqt.stack.append( Text() ) def end_foreign(self): self.newqt.stack[-1] = ForeignText(self.newqt.stack[-1]) self.newqt.stack.append( Text() ) if __name__ == '__main__': import sys, getopt # Process the command-line arguments opts, args = getopt.getopt(sys.argv[1:], 'fthm:r', ['fortune', 'text', 'html', 'max=', 'help', 'randomize'] ) # Set defaults maxlength = 0 ; method = 'as_fortune' randomize = 0 # Process arguments for opt, arg in opts: if opt in ['-f', '--fortune']: method='as_fortune' elif opt in ['-t', '--text']: method = 'as_text' elif opt in ['-h', '--html']: method = 'as_html' elif opt in ['-m', '--max']: maxlength = string.atoi(arg) elif opt in ['-r', '--randomize']: randomize = 1 elif opt == '--help': print __doc__ ; sys.exit(0) # This function will simply output each quotation by calling the # desired method, as long as it's not suppressed by a setting of # --max. qtlist = [] def process_func(qt, qtlist=qtlist, maxlength=maxlength, method=method): func = getattr(qt, method) output = func() length = string.count(output, '\n') if maxlength!=0 and length > maxlength: return qtlist.append(output) # Loop over the input files; use sys.stdin if no files are specified if len(args) == 0: args = [sys.stdin] for file in args: if type(file) == types.StringType: input = open(file, 'r') else: input = file # Enforce the use of the Expat parser, because the code needs to be # sure that the output will be UTF-8 encoded. p=saxexts.XMLParserFactory.make_parser(["xml.sax.drivers.drv_pyexpat"]) dh = QuotationDocHandler(process_func) p.setDocumentHandler(dh) p.setErrorHandler(dh) p.parseFile(input) if type(file) == types.StringType: input.close() p.close() # Randomize the order of the quotations if randomize: import whrandom q2 = [] for i in range(len(qtlist)): qt = whrandom.randint(0,len(qtlist)-1 ) q2.append( qtlist[qt] ) qtlist[qt:qt+1] = [] assert len(qtlist) == 0 qtlist = q2 for quote in qtlist: print quote # We're done! ``` #### File: demo/sgmlop/benchxml.py ```python import time, sys, os from xml.parsers import xmllib, sgmlop SIZE = 16384 FILE = "hamlet.xml" try: FILE = sys.argv[1] except IndexError: pass print "---", FILE, "---" bytes = os.stat(FILE)[6] # -------------------------------------------------------------------- # 1) sgmlop with null parser (no registered callbacks) def test1(): fp = open(FILE) parser = sgmlop.XMLParser() while 1: data = fp.read(SIZE) if not data: break parser.feed(data) parser.close() fp.close() # -------------------------------------------------------------------- # 2) sgmlop with dummy parser class sgmlopDummy: def finish_starttag(self, tag, data): pass def finish_endtag(self, tag): pass def handle_entityref(self, data): pass def handle_data(self, data): pass def handle_proc(self, name, data): pass def handle_cdata(self, data): pass def handle_charref(self, data): pass def handle_comment(self, data): pass def handle_special(self, data): pass def test2(): fp = open(FILE) out = sgmlopDummy() parser = sgmlop.XMLParser() parser.register(out) while 1: data = fp.read(SIZE) if not data: break parser.feed(data) parser.close() fp.close() # -------------------------------------------------------------------- # 3) accelerated xmllib class FastXMLParser(xmllib.FastXMLParser): def unknown_starttag(self, tag, data): pass def unknown_endtag(self, tag): pass def handle_entityref(self, data): pass def handle_data(self, data): pass def handle_cdata(self, data): pass def test3(): fp = open(FILE) parser = FastXMLParser() while 1: data = fp.read(SIZE) if not data: break parser.feed(data) parser.close() fp.close() # -------------------------------------------------------------------- # 4) old xmllib class SlowXMLParser(xmllib.SlowXMLParser): def unknown_starttag(self, tag, data): pass def unknown_endtag(self, tag): pass def handle_entityref(self, data): pass def handle_data(self, data): pass def handle_cdata(self, data): pass def test4(): fp = open(FILE) parser = SlowXMLParser() while 1: data = fp.read(SIZE) if not data: break parser.feed(data) parser.close() fp.close() # -------------------------------------------------------------------- # 5) xmltok parser try: import xmltok except (ImportError, SystemError): xmltok = None class xmltokDummy: def do_tag(self, tag, data): pass def do_endtag(self, tag): pass def do_entity(self, tag, data): pass def do_data(self, data): pass def test5(): fp = open(FILE) out = xmltokDummy() parser = xmltok.ParserCreate() parser.StartElementHandler = out.do_tag parser.EndElementHandler = out.do_endtag parser.CharacterDataHandler = out.do_data parser.ProcessingInstructionHandler = out.do_entity while 1: data = fp.read(SIZE) if not data: break parser.Parse(data) parser.Parse("", 1) fp.close() # ==================================================================== # main test = test1 t = time.clock() test(); test(); test(); test(); test(); t = (time.clock() - t) / 5 print "sgmlop/null parser:", round(t, 3), "seconds;", print int(bytes / t), "bytes per second" time1 = t test = test2 t = time.clock() test(); test(); test(); test(); test(); t = (time.clock() - t) / 5 print "sgmlop/dummy parser:", round(t, 3), "seconds;", print int(bytes / t), "bytes per second" time2 = t test = test3 t = time.clock() test(); test(); t = (time.clock() - t) / 2 print "xmllib/fast parser:", round(t, 3), "seconds;", print int(bytes / t), "bytes per second" time3 = t test = test4 t = time.clock() test(); t = (time.clock() - t) / 1 print "xmllib/slow parser:", round(t, 3), "seconds;", print int(bytes / t), "bytes per second" time4 = t print print "normalized timings:" print "slow xmllib ", 1.0 print "fast xmllib ", round(time3/time4, 3), "(%sx)" % round(time4/time3, 1) print "sgmlop dummy", round(time2/time4, 3), "(%sx)" % round(time4/time2, 1) print "sgmlop null ", round(time1/time4, 3), "(%sx)" % round(time4/time1, 1) print ``` #### File: demo/xbel/lynx_parse.py ```python import bookmark import re def parse_lynx_file(bms, input): """Convert a Lynx 2.8 bookmark file to XBEL, reading from the input file object, and write to the output file object.""" # Read the whole file into memory data = input.read() # Get the title m = re.search("<title>(.*?)</title>", data, re.IGNORECASE) if m is None: title = "Untitled" else: title = m.group(1) bms.add_folder( title ) hrefpat = re.compile( r"""^ \s* <li> \s* <a \s+ href \s* = \s* "(?P<url> [^"]* )" \s*> (?P<name> .*? ) </a>""", re.IGNORECASE| re.DOTALL | re.VERBOSE | re.MULTILINE) pos = 0 while 1: m = hrefpat.search(data, pos) if m is None: break pos = m.end() url, name = m.group(1,2) bms.add_bookmark( name, href = url) bms.leave_folder() if __name__ == '__main__': import sys, glob if len(sys.argv)<2 or len(sys.argv)>3: print print "A simple utility to convert Lynx bookmarks to XBEL." print print "Usage: " print " lynx_parse.py <lynx-directory> [<xbel-file>]" sys.exit(1) bms = bookmark.Bookmarks() # Determine the owner on Unix platforms import os, pwd uid = os.getuid() t = pwd.getpwuid( uid ) bms.owner = t[4] glob_pattern = os.path.join(sys.argv[1], '*.html') file_list = glob.glob( glob_pattern ) for file in file_list: input = open(file) parse_lynx_file(bms, input) if len(sys.argv)==3: out=open(sys.argv[2],"w") bms.dump_xbel(out) out.close() else: bms.dump_xbel() # Done ``` #### File: demo/xbel/xbel2html.py ```python import sys from xml.sax import make_parser,saxlib,saxutils # --- HTML templates top=\ """ <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <HTML> <HEAD> <TITLE>%s</TITLE> <META NAME="Generator" CONTENT="xbel2html"> <META HTTP-EQUIV="Content-Type" CONTENT="text/html; charset=%s"> </HEAD> <BODY> <H1>%s</H1> """ bottom=\ """ <HR> <ADDRESS> Converted from XBEL by xbel2html. </ADDRESS> </BODY> </HTML> """ # --- DocumentHandler class XBELHandler(saxlib.ContentHandler): def __init__(self,writer=sys.stdout,encoding='utf-8'): self.stack=[] self.writer=writer self.last_url=None self.inside_ul=0 self.level=0 self.encoding=encoding def startElement(self,name,attrs): self.stack.append(name) self.data = '' if name=="bookmark": self.last_url=attrs["href"].encode(self.encoding) def characters(self,data): self.data += data.encode(self.encoding) def endElement(self,name): data = self.data if self.stack[-1]=="title" and self.stack[-2]=="xbel": self.writer.write(top % (data,self.encoding,data)) self.state=None if self.stack[-1]=="desc" and self.stack[-2]=="xbel": self.writer.write("<P>%s</P>\n" % data) if self.stack[-1]=="title" and self.stack[-2]=="bookmark": if not self.inside_ul: self.inside_ul=1 self.writer.write("<UL>\n") self.writer.write('<LI><A HREF="%s">%s</A>. \n' % (self.last_url,data)) if self.stack[-1]=="desc" and self.stack[-2]=="bookmark": self.writer.write(data+"\n\n") if self.stack[-1]=="title" and self.stack[-2]=="folder": self.writer.write("<LI><B>%s</B>\n" % data) self.writer.write("<UL>\n") self.inside_ul=1 del self.stack[-1] if name=="folder": self.writer.write("</UL>\n") def endDocument(self): self.writer.write("</UL>\n") self.writer.write(bottom) # --- Main program if __name__ == '__main__': p=make_parser() from xml.sax.handler import feature_external_ges p.setFeature(feature_external_ges, 0) p.setContentHandler(XBELHandler()) p.setErrorHandler(saxutils.ErrorPrinter()) p.parse(sys.argv[1]) ``` #### File: jkloth/pyxml/setup.py ```python import sys, os, string from distutils.core import setup, Extension from setupext import Data_Files, install_Data_Files, wininst_request_delete from distutils.sysconfig import get_config_var, get_config_vars from distutils.sysconfig import parse_config_h, get_config_h_filename # I want to override the default build directory so the extension # modules are compiled and placed in the build/xml directory # tree. This is a bit clumsy, but I don't see a better way to do # this at the moment. ext_modules = [] # Rename xml to _xmlplus for Python 2.x if sys.hexversion < 0x2000000: def xml(s): return "xml"+s else: def xml(s): return "_xmlplus"+s # special command-line arguments LIBEXPAT = None LDFLAGS = [] args = sys.argv[:] extra_packages = [] with_xpath = 1 with_xslt = 0 for arg in args: if string.find(arg, '--with-libexpat=') == 0: LIBEXPAT = string.split(arg, '=')[1] sys.argv.remove(arg) elif string.find(arg, '--ldflags=') == 0: LDFLAGS = string.split(string.split(arg, '=')[1]) sys.argv.remove(arg) elif arg == '--with-xpath': with_xpath = 1 sys.argv.remove(arg) elif arg == '--with-xslt': with_xslt = 1 sys.argv.remove(arg) elif arg == '--without-xpath': with_xpath = 0 sys.argv.remove(arg) elif arg == '--without-xslt': with_xslt = 0 sys.argv.remove(arg) if sys.platform.startswith("darwin"): # Fixup various Mac OS X issues if get_config_var("LDSHARED").find("-flat_namespace") == -1: LDFLAGS.append('-flat_namespace') if get_config_var("LDFLAGS").find("-arch i386") != -1: # Remove the erroneous duplicate -arch flag globally new_flags = get_config_var('LDFLAGS').replace('-arch i386', '') get_config_vars()['LDFLAGS'] = new_flags if with_xpath: extra_packages.append(xml('.xpath')) if with_xslt: extra_packages.append(xml('.xslt')) def get_expat_prefix(): if LIBEXPAT: return LIBEXPAT # XXX temporarily disable usage of installed expat # until we figure out a way to determine its version return for p in ("/usr", "/usr/local"): incs = os.path.join(p, "include") libs = os.path.join(p, "lib") if os.path.isfile(os.path.join(incs, "expat.h")) \ and (os.path.isfile(os.path.join(libs, "libexpat.so")) or os.path.isfile(os.path.join(libs, "libexpat.a"))): return p expat_prefix = get_expat_prefix() sources = ['extensions/pyexpat.c'] if expat_prefix: define_macros = [('HAVE_EXPAT_H', None)] include_dirs = [os.path.join(expat_prefix, "include")] libraries = ['expat'] library_dirs = [os.path.join(expat_prefix, "lib")] else: # To build expat 1.95.x, we need to find out the byteorder if sys.byteorder == "little": xmlbo = "1234" else: xmlbo = "4321" define_macros = [ ('XML_NS', '1'), ('XML_DTD', '1'), ('BYTEORDER', xmlbo), ('XML_CONTEXT_BYTES','1024'), ] if sys.platform == "win32": # HAVE_MEMMOVE is not in PC/pyconfig.h define_macros.extend([ ('HAVE_MEMMOVE', '1'), ('XML_STATIC', ''), ]) include_dirs = ['extensions/expat/lib'] sources.extend([ 'extensions/expat/lib/xmlparse.c', 'extensions/expat/lib/xmlrole.c', 'extensions/expat/lib/xmltok.c', ]) libraries = [] library_dirs = [] config_h = get_config_h_filename() config_h_vars = parse_config_h(open(config_h)) for feature_macro in ['HAVE_MEMMOVE', 'HAVE_BCOPY']: if config_h_vars.has_key(feature_macro): define_macros.append((feature_macro, '1')) ext_modules.append( Extension(xml('.parsers.pyexpat'), define_macros=define_macros, include_dirs=include_dirs, library_dirs=library_dirs, libraries=libraries, extra_link_args=LDFLAGS, sources=sources )) # Build sgmlop ext_modules.append( Extension(xml('.parsers.sgmlop'), extra_link_args=LDFLAGS, sources=['extensions/sgmlop.c'], )) # Build boolean ext_modules.append( Extension(xml('.utils.boolean'), extra_link_args=LDFLAGS, sources=['extensions/boolean.c'], )) # On Windows, install the documentation into a directory xmldoc, along # with xml/_xmlplus. For RPMs, docs are installed into the RPM doc # directory via setup.cfg (usuall /usr/doc). On all other systems, the # documentation is not installed. doc2xmldoc = 0 if sys.platform == 'win32': doc2xmldoc = 1 # This is a fragment from MANIFEST.in which should contain all # files which are considered documentation (doc, demo, test, plus some # toplevel files) # distutils 1.0 has a bug where # recursive-include test/output test_* # is translated into a pattern ^test\\output\.*test\_[^/]*$ # on windows, which results in files not being included. Work around # this bug by using graft where possible. docfiles=""" recursive-include doc *.html *.tex *.txt *.gif *.css *.api *.web recursive-include demo README *.py *.xml *.dtd *.html *.htm include demo/genxml/data.txt include demo/dom/html2html include demo/xbel/doc/xbel.bib include demo/xbel/doc/xbel.tex include demo/xmlproc/catalog.soc recursive-include test *.py *.xml *.html *.dtd include test/test.xml.out graft test/output include ANNOUNCE CREDITS LICENCE README* TODO global-exclude */CVS/* """ if doc2xmldoc: xmldocfiles = [ Data_Files(copy_to = 'xmldoc', template = string.split(docfiles,"\n"), preserve_path = 1) ] else: xmldocfiles = [] setup (name = "PyXML", version = "0.8.5", # Needs to match xml/__init__.version_info description = "Python/XML package", author = "XML-SIG", author_email = "<EMAIL>", url = "http://www.python.org/sigs/xml-sig/", long_description = """XML Parsers and API for Python This version of PyXML was tested with Python 2.x. """, # Override certain command classes with our own ones cmdclass = {'install_data':install_Data_Files, 'bdist_wininst':wininst_request_delete }, package_dir = {xml(''):'xml'}, data_files = [Data_Files(base_dir='install_lib', copy_to=xml('/dom/de/LC_MESSAGES'), files=['xml/dom/de/LC_MESSAGES/4Suite.mo']), Data_Files(base_dir='install_lib', copy_to=xml('/dom/en_US/LC_MESSAGES'), files=['xml/dom/en_US/LC_MESSAGES/4Suite.mo']), Data_Files(base_dir='install_lib', copy_to=xml('/dom/fr/LC_MESSAGES'), files=['xml/dom/fr/LC_MESSAGES/4Suite.mo']), ] + xmldocfiles, packages = [xml(''), xml('.dom'), xml('.dom.html'), xml('.dom.ext'), xml('.dom.ext.reader'), xml('.marshal'), xml('.unicode'), xml('.parsers'), xml('.parsers.xmlproc'), xml('.sax'), xml('.sax.drivers'), xml('.sax.drivers2'), xml('.utils'), xml('.schema'), #xml('.xpath'), xml('.xslt') ] + extra_packages, ext_modules = ext_modules, scripts = ['scripts/xmlproc_parse', 'scripts/xmlproc_val'] ) ``` #### File: dom/ext/test_memory.py ```python import Cyclops,sys from xml.dom.ext.reader import Sax2 from xml.dom import ext def test(): data = sys.stdin.read() doc = Sax2.FromXml(data) b1 = doc.createElementNS("http://foo.com","foo:branch") c1 = doc.createElementNS("http://foo.com","foo:child1") c2 = doc.createElementNS("http://foo.com","foo:child2") b1.setAttributeNS("http://foo.com","foo:a1","value-1") a1 = b1.getAttributeNodeNS("http://foo.com","a1") a1.value = "This shouldn't leak" b1.appendChild(c1) b1.appendChild(c2) doc.documentElement.appendChild(b1) r1 = doc.createElementNS("http://foo.com","foo:replace") doc.documentElement.replaceChild(r1,b1) b1.removeChild(c2) import cStringIO s = cStringIO.StringIO() import xml.dom.ext xml.dom.ext.Print(doc, stream = s) ext.ReleaseNode(doc) ext.ReleaseNode(b1) doc = Sax2.FromXml(data) ext.ReleaseNode(doc) if __name__ == '__main__': cy = Cyclops.CycleFinder() cy.run(test) cy.find_cycles() cy.show_cycles() ``` #### File: dom/ext/test_single_elements.py ```python def test(inFile): from xml.dom.ext.reader import HtmlLib from xml.dom import ext from xml.dom import Node from xml.dom.html import HTMLDocument doc = HTMLDocument.HTMLDocument() HtmlLib.FromHtmlStream(inFile,doc) print doc ext.PrettyPrint(doc) if __name__ == '__main__': import sys inFile = sys.stdin if len(sys.argv) == 2: inFile = open(sys.argv[1],'r') test(inFile) ``` #### File: dom/html/test_basefont.py ```python from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLBaseFontElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') b = doc.createElement('BaseFont') print 'testing get/set' testAttribute(b,'color'); testAttribute(b,'face'); testAttribute(b,'size'); print 'get/set works' if __name__ == '__main__': test(); ``` #### File: dom/html/test_col.py ```python from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLTableColElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') c = doc.createElement('COL'); print 'testing get/set' testAttribute(c,'ch'); testAttribute(c,'chOff'); testIntAttribute(c,'span'); testAttribute(c,'width'); c._set_align('left') rt = c._get_align() if rt != 'Left': error('get/set align failed') c._set_vAlign('top') rt = c._get_vAlign() if rt != 'Top': error('get/set vAlign failed') print 'get/set works' if __name__ == '__main__': test(); ``` #### File: dom/html/test_dl.py ```python from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLDListElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') d = doc.createElement('DL') print 'testing get and set' testIntAttribute(d,'compact') print 'get/set works' if __name__ == '__main__': test(); ``` #### File: dom/html/test_h.py ```python from util import testAttribute, error from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLHeadingElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') h = doc.createElement('H1') print 'testing get/set' h._set_align('left') rt = h._get_align() if rt != 'Left': error('get/set align failed') print 'get/set works' if __name__ == '__main__': test() ``` #### File: dom/html/test_isindex.py ```python from util import error from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLIsIndexElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') i = doc.createElement('IsIndex') f = doc.createElement('Form') print 'testing get/set of Prompt' testAttribute(i,'prompt'); print 'get/set Prompt works' print 'testing getForm' f.appendChild(i) if i._get_form().nodeName != f.nodeName: error('getForm failed') print 'getForm works' if __name__ == '__main__': test() ``` #### File: dom/html/test_label.py ```python from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLLabelElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') l = doc.createElement('LABEL') print 'testing get/set attributes' testAttribute(l,'accessKey') testAttribute(l,'htmlFor') print 'get/set works' if __name__ == '__main__': test() ``` #### File: dom/html/test.py ```python fileList = ['Collection', 'Element', 'HTML', 'HEAD', 'LINK', 'TITLE', 'META', 'BASE', 'ISINDEX', 'STYLE', 'BODY', 'FORM', 'SELECT', 'OPTGROUP', 'OPTION', 'INPUT', 'TEXTAREA', 'BUTTON', 'LABEL', 'FIELDSET', 'LEGEND', 'UL', 'OL', 'DL', 'DIR', 'MENU', 'LI', 'BLOCKQUOTE', 'DIV', 'P', 'H', 'Q', 'PRE', 'BR', 'BASEFONT', 'FONT', 'HR', 'MOD', 'A', 'IMG', 'OBJECT', 'PARAM', 'APPLET', 'MAP', 'AREA', 'SCRIPT', 'CAPTION', 'COL', 'TD', 'TR', 'SECTION', 'TABLE', 'FRAMESET', 'FRAME', 'IFRAME', 'DOCUMENT', 'HTML_DOM_IMPLEMENTATION', ] import string def test(files): print 'Testing HTML Level 1' for file in files: print '**********Testing HTML %s**********' % file exec 'import test_%s;_mod = test_%s' % (string.lower(file),string.lower(file)); _mod.test(); if __name__ == '__main__': import sys if len(sys.argv) <2: test(fileList) else: test(sys.argv[1:]); ``` #### File: dom/html/test_section.py ```python from util import testAttribute from util import error def test(): print 'testing source code syntax' from xml.dom.html import HTMLTableSectionElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') s = doc.createElement('TFOOT') #Row index and section row index tested in section print 'testing get/set' testAttribute(s,'ch') testAttribute(s,'chOff') s._set_align('left') rt = s._get_align() if rt != 'Left': error('get/set align failed') s._set_vAlign('Top') rt = s._get_vAlign() if rt != 'Top': error('get/set align failed') print 'get/set works' print 'testing insertRow,deleteRow, getRows, and TR.getRowSelectionIndex' try: r1 = s.insertRow(-1) error('insertRow(-1) does not raise exception'); except: pass r1 = s.insertRow(0) if r1 == None: error('insertRow(0) failed'); r2 = s.insertRow(1) if r2 == None: error('insertRow(1) failed'); if r2._get_sectionRowIndex() != 1: error('getSectionRowIndex Failed'); rows = s._get_rows() if rows._get_length() != 2: error('getRows failed') if rows.item(0).nodeName != r1.nodeName: error('getRows failed') if rows.item(1).nodeName != r2.nodeName: error('getRows failed') try: s.deleteRow(-1) error('deleteRow(-1) does not raise exception') except: pass s.deleteRow(1) if r2._get_rowIndex() != -1: error('deleted row still in tree') if s._get_rows()._get_length() != 1: error('deleteRow failed'); s.deleteRow(0) if s._get_rows()._get_length() != 0: error('deleteRow(0) failed') print 'insertRow, deleteRow, getRows, and TR.getSelectionRowIndex works' if __name__ == '__main__': test() ``` #### File: dom/html/test_textarea.py ```python from util import error from util import testAttribute from util import testIntAttribute def test(): print 'testing source code syntax' from xml.dom.html import HTMLTextAreaElement from xml.dom import implementation doc = implementation.createHTMLDocument('Title') t = doc.createElement('TEXTAREA') print 'testing get/set of attributes' testAttribute(t,'defaultValue'); testAttribute(t,'accessKey'); testIntAttribute(t,'cols'); testIntAttribute(t,'disabled'); testAttribute(t,'name'); testIntAttribute(t,'readonly'); testIntAttribute(t,'rows'); testIntAttribute(t,'tabIndex'); print 'get/set work' print 'testing clone node' t2 = t.cloneNode(1) if t2._get_defaultValue() != t._get_defaultValue(): error('cloneNode did not set the default value'); print 'cloneNode works' if __name__ == '__main__': test() ``` #### File: test/dom/test_nodeiterator.py ```python from TestSuite import EMPTY_NAMESPACE def test(tester): tester.startGroup('NodeIterator') tester.startTest('Checking syntax') try: from xml.dom import NodeIterator from xml.dom.NodeIterator import NodeIterator except: tester.error('Error in syntax', 1) tester.testDone() tester.startTest('Creating test environment') from xml.dom import implementation doc = implementation.createDocument(EMPTY_NAMESPACE,None,None); #xml_string = '<a><b><c/><d/></b><e><f/><g/></e></a>' try: a = doc.createElement('a') b = doc.createElement('b') c = doc.createElement('c') d = doc.createElement('d') e = doc.createElement('e') f = doc.createElement('f') g = doc.createElement('g') except: tester.error('Couldn\'t create elements') try: b.appendChild(c) b.appendChild(d) a.appendChild(b) e.appendChild(f) e.appendChild(g) a.appendChild(e) doc.appendChild(a) except: tester.error('Counl\'t append to DOM tree') from xml.dom.NodeFilter import NodeFilter nit = doc.createNodeIterator(doc, NodeFilter.SHOW_ELEMENT, None,1) tester.testDone() tester.startTest('Iterating forward') curr_node = nit.nextNode() while curr_node: curr_node = nit.nextNode() tester.testDone() tester.startTest('Iterating in reverse') curr_node = nit.previousNode() while curr_node: curr_node = nit.previousNode() tester.testDone() tester.startTest('Iterating forward again') curr_node = nit.nextNode() while curr_node: curr_node = nit.nextNode() tester.testDone() return tester.groupDone() if __name__ == '__main__': import sys import TestSuite tester = TestSuite.TestSuite() retVal = test(tester) sys.exit(retVal) ``` #### File: test/dom/test_nodelist.py ```python from TestSuite import EMPTY_NAMESPACE from xml.dom import DOMException from xml.dom import NO_MODIFICATION_ALLOWED_ERR def get_exception_name(code): import types from xml import dom for (name,value) in vars(dom).items(): if (type(value) == types.IntType and value == code): return name def test(tester): tester.startGroup('NodeList') tester.startTest('Checking syntax') try: from xml.dom import NodeList from xml.dom.NodeList import NodeList except: tester.error('Error in syntax',1) tester.testDone() tester.startTest('Creating the test environment') try: from xml.dom import implementation dt = implementation.createDocumentType('','','') doc = implementation.createDocument(EMPTY_NAMESPACE,'ROOT',dt) except: tester.error('Error creating document') nodes = [] try: for ctr in range(3): nodes.append(doc.createElement('Node%d' %ctr)) except: tester.error("Error creating nodes") e = doc.createElement('PARENT') try: for n in nodes: e.appendChild(n) except: tester.error('Error appending nodes') nl = e.childNodes tester.testDone() tester.startTest("Testing attributes") if nl.length != 3: tester.error('length reports wrong amount') try: nl.length = 5 except DOMException, x: if x.code != NO_MODIFICATION_ALLOWED_ERR: name = get_exception_name(x.code) tester.error("Wrong exception '%s', expected NOMODIFICATION_ALLOWED_ERR" % name) else: tester.error('length not read-only') tester.testDone() tester.startTest("Testing item()") if nl.item(0).nodeName != nodes[0].nodeName: tester.error("Item returns wrong item") if nl.item(3) != None: tester.error("Item returns something on invalid index") tester.testDone() return tester.groupDone() if __name__ == '__main__': import sys import TestSuite tester = TestSuite.TestSuite() retVal = test(tester) sys.exit(retVal) ``` #### File: test/dom/test.py ```python import string, time import TestSuite ### Methods ### def runTests(tests, testSuite): banner = 'Performing a test of DOM Core/Traversal/HTML' markers = '#'*((testSuite.columns - len(banner)) / 2 - 1) print markers, banner, markers total = 0.0 for test in tests: module = __import__('test_' + string.lower(test)) start = time.time() module.test(testSuite) total = total + time.time() - start return total ### Application ### if __name__ == '__main__': logLevel = 1 logFile = None haltOnError = 1 test_list = ['Node', 'NodeList', 'NamedNodeMap', 'NodeIterator', 'TreeWalker', 'Attr', 'Element', 'DocumentFragment', 'Document', 'DOMImplementation', 'CharacterData', 'Comment', 'Text', 'CDATASection', 'DocumentType', 'Entity', 'EntityReference', 'Notation', 'ProcessingInstruction', 'Range', 'Struct', 'HTML', #'Demo', #'Pythonic' ] import sys, os, getopt prog_name = os.path.split(sys.argv[0])[1] short_opts = 'hl:nqtv:' long_opts = ['help', 'log=', 'no-error' 'tests' 'quiet', 'verbose=' ] usage = '''Usage: %s [options] [[all] [test]...] Options: -h, --help Print this message and exit -l, --log <file> Write output to a log file (default=%s) -n, --no-error Continue testing if error condition -q, --quiet Display as little as possible -t, --tests Show a list of tests that can be run -v, --verbose <level> Set the output level (default=%s) 0 - display nothing 1 - errors only (same as --quiet) 2 - warnings and errors 3 - information, warnings and errors 4 - display everything ''' %(prog_name, logFile, logLevel) command_line_error = 0 bad_options = [] finished = 0 args = sys.argv[1:] while not finished: try: optlist, args = getopt.getopt(args, short_opts, long_opts) except getopt.error, data: bad_options.append(string.split(data)[1]) args.remove(bad_options[-1]) command_line_error = 1 else: finished = 1 display_usage = 0 display_tests = 0 for op in optlist: if op[0] == '-h' or op[0] == '--help': display_usage = 1 elif op[0] == "-l" or op[0] == '--log': logFile = op[1] elif op[0] == '-n' or op[0] == '--no-error': haltOnError = 0 elif op[0] == '-t' or op[0] == '--tests': display_tests = 1 elif op[0] == '-q' or op[0] == '--quiet': logLevel = 1 elif op[0] == '-v' or op[0] == '--verbose': logLevel = int(op[1]) all_tests = 0 if args: lower_test = [] for test in test_list: lower_test.append(string.lower(test)) for test in args: if string.lower(test) == 'all': all_tests = 1 break if string.lower(test) not in lower_test: print "%s: Test not found '%s'" %(prog_name, test) args.remove(test) display_tests = 1 if len(args) and not all_tests: tests = args elif not display_tests: tests = test_list if command_line_error or display_usage or display_tests: for op in bad_options: print "%s: Unrecognized option '%s'" %(prog_name,op) if display_usage: print usage if display_tests: print 'Available tests are:' for t in test_list: print ' %s' % t sys.exit(command_line_error) testSuite = TestSuite.TestSuite(haltOnError) total = runTests(tests, testSuite) print "Test Time - %.3f secs" % total ``` #### File: pyxml/test/test_dom.py ```python import StringIO, sys from xml.dom import Node # MUST be first from xml.dom import implementation, DOMException from xml.dom import HIERARCHY_REQUEST_ERR, NOT_FOUND_ERR from xml.dom import INDEX_SIZE_ERR, INVALID_CHARACTER_ERR, SYNTAX_ERR from xml.dom.ext.reader.Sax2 import FromXml from xml.dom.ext import PrettyPrint # Internal test function: traverse a DOM tree, then verify that all # the parent pointers are correct. Do NOT take this function as an # example of using the Python DOM interface; it knows about the hidden # details of the DOM implementation in order to check them. def _check_dom_tree(t): "Verify that all the parent pointers in a DOM tree are correct" parent = {} # Dict mapping _nodeData instances to their parent nodes = [] # Cumulative list of all the _nodeDatas encountered Queue = [t] # Queue for breadth-first traversal of tree # Do a breadth-first traversal of the DOM tree t while Queue: node = Queue[0] children = node.childNodes for c in children: # Store this node as the parent of each child parent[c] = node # Add each child to the cumulative list nodes.append(c) # Append each child to the queue Queue.append(c) # Remove the node we've just processed Queue = Queue[1:] # OK, now walk over all the children, checking that .parentNode # is correct. count = 0 for n in nodes: p = n.parentNode if p is None: assert not parent.has_key(n) else: assert p == parent[n] count = count + 1 test_text = """<?xml version="1.0"?> <doc> <title>This is a test</title> <h1>Don't panic</h1> <p>Maybe it will work.</p> <h2>We can handle it</h2> <h3>Yes we can</h3> <h3>Or maybe not</h3> End of test. </doc> """ doc = FromXml(test_text) _check_dom_tree(doc) print 'Simple document' PrettyPrint(doc, sys.stdout) print # Example from the docstring at the top of xml.dom.core.py doc = implementation.createDocument(None,None,None) html = doc.createElement('html') html.setAttribute('attr', 'value') head = doc.createElement('head') title = doc.createElement('title') text = doc.createTextNode("Title goes here") title.appendChild(text) head.appendChild(title) html.appendChild(head) doc.appendChild (html) _check_dom_tree(doc) print '\nOutput of docstring example' PrettyPrint(doc, sys.stdout) print # Detailed test suite for the DOM from xml.dom import Document print '\nRunning detailed test suite' def check(cond, explanation, expected=0): truth = eval(cond) if not truth: if expected: print "XFAIL:", else: print ' *** Failed:', print explanation, '\n\t', cond doc = implementation.createDocument(None,None,None) check('isinstance(doc, Document.Document)', 'createDocument returns a Document') check('doc.parentNode == None', 'Documents have no parent') # Check that documents can only have one child n1 = doc.createElement('n1') ; n2 = doc.createElement('n2') pi = doc.createProcessingInstruction("Processing", "Instruction") doc.appendChild(pi) doc.appendChild(n1) try: doc.appendChild(n1) # n1 should be removed, and then added again except DOMException: print "XFAIL: 4DOM does not support multiple insertion of same node" try: doc.appendChild(n2) except DOMException,e: assert e.code==HIERARCHY_REQUEST_ERR else: print " *** Failed: Document.insertBefore didn't raise HierarchyRequestException" doc.replaceChild(n2, n1) # Should work try: doc.replaceChild(n1, pi) except DOMException,e: assert e.code==HIERARCHY_REQUEST_ERR else: print " *** Failed: Document.replaceChild didn't raise HierarchyRequestException" doc.replaceChild(n2, pi) # Should also work check('pi.parentNode == None', 'Document.replaceChild: PI should have no parent') try: doc.removeChild(n2) except DOMException: print "XFAIL" check('n2.parentNode == None', 'Document.removeChild: n2 should have no parent') # Check adding and deletion with DocumentFragments fragment = doc.createDocumentFragment() ; fragment.appendChild( n1 ) doc.appendChild( fragment ) check('fragment.parentNode == None', 'Doc.appendChild: fragment has no parent') check('n1.parentNode.nodeType == Node.DOCUMENT_NODE', 'Doc.appendChild: n1 now has document as parent') fragment = doc.createDocumentFragment() ; fragment.appendChild( n1 ) n2 = doc.createElement('n2') ; fragment.appendChild( n2 ) try: doc.appendChild( fragment ) except DOMException,e: assert e.code == HIERARCHY_REQUEST_ERR else: print " *** Failed: Document.fragment.appendChild didn't raise HierarchyRequestException" fragment = doc.createDocumentFragment() ; fragment.appendChild( n1 ) n2 = doc.createElement('n2') ; fragment.appendChild( n2 ) doc.appendChild( pi ) try: doc.replaceChild(fragment, pi) except DOMException: assert e.code==HIERARCHY_REQUEST_ERR else: print " *** Failed: Document.fragment.replaceChild didn't raise HierarchyRequestException" #FIXME - fragment.removeChild(n2) fragment.appendChild(pi) doc.appendChild( fragment) check('n1.parentNode == doc', "Document.fragment.replaceChild parent node is correct") _check_dom_tree(doc) # Check adding and deleting children for ordinary nodes n1 = doc.createElement('n1') ; n2 = doc.createElement('n2') check( 'n1.parentNode == None', 'newly created Element has no parent') e1 = doc.createTextNode('e1') ; e2 = doc.createTextNode('e2') e3 = doc.createTextNode('e3') n1.appendChild( e1 ) ; n1.appendChild( e2 ) ; n2.appendChild(e3) # Test .insertBefore with refChild set to a node n2.insertBefore(e1, e3) check('len(n1.childNodes) == 1', "insertBefore: node1 has 1 child") check('len(n2.childNodes) == 2', "insertBefore: node2 has 2 children") check('n1.firstChild.data=="e2"', "insertBefore: node1's child is e2") check('n2.firstChild.data=="e1"', "insertBefore: node2's first child is e1") check('n2.lastChild.data=="e3"', "insertBefore: node2's last child is e3") check('e1.parentNode.tagName == "n2"', "insertBefore: e1's parent is n2") check('e2.parentNode.tagName == "n1"', "insertBefore: e2's parent is n1") check('e3.parentNode.tagName == "n2"', "insertBefore: e3's parent is n3") try: n2.insertBefore(e1, e2) except DOMException,e: assert e.code==NOT_FOUND_ERR else: print " *** Failed: insertBefore didn't raise NotFoundException" # Test .insertBefore with refChild==None n2.insertBefore(e1, None) check('len(n2.childNodes) == 2', "None insertBefore: node1 has 2 children") check('n2.firstChild.data=="e3"', "None insertBefore: node2's first child is e3") check('n2.lastChild.data=="e1"', "None insertBefore: node2's last child is e1") # Test replaceChild ret = n1.replaceChild(e1, e2) check('e2.parentNode == None', "replaceChild: e2 has no parent") check('len(n1.childNodes) == 1', "replaceChild: node1 has 1 child") check('n1.firstChild.data=="e1"', "replaceChild: node1's only child is e1") check('ret.data == "e2"', "replaceChild: returned value node1's only child is e1") try: n1.replaceChild(e2, e2) except DOMException,e: assert e.code==NOT_FOUND_ERR else: print " *** Failed: insertBefore didn't raise NotFoundException" # Test removeChild ret = n1.removeChild( e1 ) check('e1.parentNode == None', "removeChild: e1 has no parent") check('ret.data == "e1"', "removeChild: e1 is the returned value") try: n1.removeChild(e2) except DOMException,e: assert e.code==NOT_FOUND_ERR else: print " *** Failed: removeChild didn't raise NotFoundException" # XXX two more cases for adding stuff: normal, Document, DocumentFragment # Test the functions in the CharacterData interface text = doc.createTextNode('Hello world') #FIXME - check('text[0:5].value == "Hello"', 'text: slicing a node') try: text.substringData(-5, 5) except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: substringData didn't raise IndexSizeException (negative)" try: text.substringData(200, 5) except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: substringData didn't raise IndexSizeException (larger)" try: text.substringData(5, -5) except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: substringData didn't raise IndexSizeException (negcount)" text.appendData('!') check('text.data == "Hello world!"', 'text: appendData') try: text.insertData(-5, 'string') except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: insertData didn't raise IndexSizeException (negative)" try: text.insertData(200, 'string') except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: insertData didn't raise IndexSizeException (larger)" text.insertData(5, ',') check('text.data == "Hello, world!"', 'text: insertData of ","') try: text.deleteData(-5, 5) except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: deleteData didn't raise IndexSizeException (negative)" try: text.deleteData(200, 5) except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: deleteData didn't raise IndexSizeException (larger)" text.deleteData(0, 5) check('text.data == ", world!"', 'text: deleteData of first 5 chars') try: text.replaceData(-5, 5, 'Top of the') except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: replaceData didn't raise IndexSizeException (negative)" try: text.replaceData(200, 5, 'Top of the') except DOMException,e: assert e.code==INDEX_SIZE_ERR else: print " *** Failed: replaceData didn't raise IndexSizeException (larger)" text.replaceData(0, 1, 'Top of the') check('text.data == "Top of the world!"', 'text: deleteData of first 5 chars') # Test the Element class e = doc.createElement('elem') attr = doc.createAttribute('attr2') attr.value = "v2" #check('e.toxml() == "<elem />"', 'Element: empty element') check('e.tagName == "elem"', 'Element: tag name') check('len(e.attributes) == 0', 'Element: empty get_attributes') check('e.getAttribute("dummy") == ""', 'Element: empty getAttribute') check('e.getAttributeNode("dummy") == None', 'Element: empty getAttributeNode') try: e.setAttribute('dummy', attr) except DOMException,x: assert x.code == SYNTAX_ERR # Spec says invalid character for name not value # assert x.code==INVALID_CHARACTER_ERR else: print " *** Failed: setAttribute didn't raise InvalidCharacterException" e.setAttribute('dummy', 'value') #check('e.toxml() == "<elem dummy=\'value\' />"', 'Element with 1 attribute') check('e.getAttribute("dummy") == "value"', 'Element: getAttribute w/ value') check('e.getAttributeNode("dummy").value == "value"', 'Element: getAttributeNode w/ value') a2 = e.getAttributeNode( 'dummy' ) check('a2.parentNode == None', 'Attribute: should have no parent') check('a2.value == "value"', 'Attribute: value is correct') e.removeAttribute('dummy') check('len(e.attributes) == 0', 'Element: attribute removed') e.setAttributeNode(attr) check('e.attributes[0].value == "v2"', 'Element: attribute node added') a2 = doc.createAttribute('attr2') a2.value = 'v3' ret = e.setAttributeNode(a2) check('e.attributes[0].value == "v3"', 'Element: attribute node replaced') check('ret.value == "v2"', 'Element: deleted attribute node returned') e.removeAttributeNode(a2) check('len(e.attributes) == 0', 'Element: attribute node removed') # Check handling of namespace prefixes #FIXME (start) #e.setAttribute('xmlns', 'http://defaulturi') #e.setAttribute('xmlns:html', 'http://htmluri') #check('e.ns_prefix[""] == "http://defaulturi"', # 'Default namespace with setAttribute') #check('e.ns_prefix["html"] == "http://htmluri"', # 'Prefixed namespace with setAttribute') #e.removeAttribute('xmlns:html') #check('not e.ns_prefix.has_key("html")', # 'Prefixed namespace with removeAttribute') #e.removeAttribute('xmlns') #check('len(e.ns_prefix) == 0', 'Default namespace with removeAttribute') #default = doc.createAttribute('xmlns') ; default.value = "http://defaulturi" #html = doc.createAttribute('xmlns:html') ; html.value = "http://htmluri" #e.setAttributeNode(default) ; e.setAttributeNode(html) #check('e.ns_prefix[""] == "http://defaulturi"', # 'Default namespace with setAttributeNode') #check('e.ns_prefix["html"] == "http://htmluri"', # 'Prefixed namespace with setAttributeNode') #e.removeAttributeNode(html) #check('not e.ns_prefix.has_key("html")', # 'Prefixed namespace with removeAttribute') #e.removeAttributeNode(default) #FIXME (end) # # Check getElementsByTagName # check('len(e.getElementsByTagName("elem")) == 0', "getElementsByTagName doesn't return element") check('len(e.getElementsByTagName("*")) == 0', "getElementsByTagName doesn't return element") # Check CharacterData interfaces using Text nodes t1 = doc.createTextNode('first') ; e.appendChild( t1 ) t2 = doc.createTextNode('second') ; e.appendChild( t2 ) t3 = doc.createTextNode('third') ; e.appendChild( t3 ) #check('e.toxml() == "<elem>firstsecondthird</elem>"', # "Element: content of three Text nodes as children") check('len(e.childNodes) == 3', 'Element: three Text nodes as children') e.normalize() check('e.firstChild.data == "firstsecondthird"', "Element: normalized Text nodes") check('len(e.childNodes) == 1', 'Element: should be one normalized Text node') check('t2.parentNode == None', 'Element: normalized t2 should have no parent') check('t3.parentNode == None', 'Element: normalized t3 should have no parent') # Text node t1.splitText(5) check('e.firstChild.data == "first"', "Element: newly split Text nodes") check('len(e.childNodes) == 2', 'Text: should be two split Text nodes') check('e.lastChild.data == "secondthird"', "Element: newly split Text nodes") # Check comparisons; e1 and e2 are different proxies for the same underlying # node n1 = doc.createElement('n1') ; n2 = doc.createElement('n2') n1.appendChild(n2) e1 = n1 ; e2 = n2.parentNode check('e1 is e2', 'Two proxies are different according to "is" operator') check('e1 == e2', 'Two proxies are different according to "==" operator') # Done at last! print 'Test suite completed' ``` #### File: pyxml/test/test_domreg.py ```python import unittest import test_support from xml.dom import domreg def parse_feature_string(s): # helper to make sure the results are always plain lists return list(domreg._parse_feature_string(s)) class DomregTestCase(unittest.TestCase): def setUp(self): domreg.registerDOMImplementation("its-a-fake", self.getDOMImplementation) def getDOMImplementation(self): self.fake = FakeDOM(self.my_features) return self.fake def test_simple(self): self.assertEqual(parse_feature_string("simple"), [("simple", None)]) self.assertEqual(parse_feature_string("simple 1.0"), [("simple", "1.0")]) self.assertEqual(parse_feature_string("simple complex"), [("simple", None), ("complex", None)]) self.assertEqual(parse_feature_string("simple 2 complex 3.1.4.2"), [("simple", "2"), ("complex", "3.1.4.2")]) def test_extra_version(self): self.assertRaises(ValueError, domreg._parse_feature_string, "1.0") self.assertRaises(ValueError, domreg._parse_feature_string, "1 simple") self.assertRaises(ValueError, domreg._parse_feature_string, "simple 1 2") def test_find_myself(self): self.my_features = [("splat", "1"), ("splat", "2"), ("splat", None)] self.failUnless(domreg.getDOMImplementation(features="splat") is self.fake) self.failUnless(domreg.getDOMImplementation(features="splat 1") is self.fake) self.failUnless(domreg.getDOMImplementation(features="splat 2") is self.fake) self.failUnless(domreg.getDOMImplementation(features="splat 1 splat 2") is self.fake) self.failUnless(domreg.getDOMImplementation(features="splat 2 splat 1") is self.fake) def _test_cant_find(self): # This test is disabled since we need to determine what the # right thing to do is. ;-( The DOM Level 3 draft says # getDOMImplementation() should return null when there isn't a # match, but the existing Python API raises ImportError. self.my_features = [] self.failUnless(domreg.getDOMImplementation(features="splat") is None) self.failUnless(domreg.getDOMImplementation(features="splat 1") is None) class FakeDOM: def __init__(self, features): self.__features = features def hasFeature(self, feature, version): return (feature, version) in self.__features def test_suite(): return unittest.makeSuite(DomregTestCase) def test_main(): test_support.run_suite(test_suite()) if __name__ == "__main__": test_support.verbose = 1 test_main() ``` #### File: pyxml/test/test_filter.py ```python import pprint import sys from xml.dom import xmlbuilder, expatbuilder, Node from xml.dom.NodeFilter import NodeFilter class Filter(xmlbuilder.DOMBuilderFilter): whatToShow = NodeFilter.SHOW_ELEMENT def startContainer(self, node): assert node.nodeType == Node.ELEMENT_NODE if node.tagName == "skipthis": return self.FILTER_SKIP elif node.tagName == "rejectbefore": return self.FILTER_REJECT elif node.tagName == "stopbefore": return self.FILTER_INTERRUPT else: return self.FILTER_ACCEPT def acceptNode(self, node): assert node.nodeType == Node.ELEMENT_NODE if node.tagName == "skipafter": return self.FILTER_SKIP elif node.tagName == "rejectafter": return self.FILTER_REJECT elif node.tagName == "stopafter": return self.FILTER_INTERRUPT else: return self.FILTER_ACCEPT class RecordingFilter: # Inheriting from xml.dom.xmlbuilder.DOMBuilderFilter is not # required, so we won't inherit from it this time to make sure it # isn't a problem. We have to implement the entire interface # directly. whatToShow = NodeFilter.SHOW_ALL def __init__(self): self.events = [] def startContainer(self, node): self.events.append(("start", node.nodeType, str(node.nodeName))) return xmlbuilder.DOMBuilderFilter.FILTER_ACCEPT def acceptNode(self, node): self.events.append(("accept", node.nodeType, str(node.nodeName))) return xmlbuilder.DOMBuilderFilter.FILTER_ACCEPT simple_options = xmlbuilder.Options() simple_options.filter = Filter() simple_options.namespaces = 0 record_options = xmlbuilder.Options() record_options.namespaces = 0 def checkResult(src): print dom = expatbuilder.makeBuilder(simple_options).parseString(src) print dom.toxml() dom.unlink() def checkFilterEvents(src, record, what=NodeFilter.SHOW_ALL): record_options.filter = RecordingFilter() record_options.filter.whatToShow = what dom = expatbuilder.makeBuilder(record_options).parseString(src) if record != record_options.filter.events: print print "Received filter events:" pprint.pprint(record_options.filter.events) print print "Expected filter events:" pprint.pprint(record) dom.unlink() # a simple case of skipping an element checkResult("<doc><e><skipthis>text<e/>more</skipthis>abc</e>xyz</doc>") # skip an element nested indirectly within another skipped element checkResult('''\ <doc>Text. <skipthis>Nested text. <skipthis>Nested text in skipthis element.</skipthis> More nested text. </skipthis>Outer text.</doc> ''') # skip an element nested indirectly within another skipped element checkResult('''\ <doc>Text. <skipthis>Nested text. <nested-element> <skipthis>Nested text in skipthis element.</skipthis> More nested text. </nested-element> More text. </skipthis>Outer text.</doc> ''') checkResult("<doc><rejectbefore/></doc>") checkResult("<doc><rejectafter/></doc>") checkResult('''\ <doc><rejectbefore> Text. <?my processing instruction?> <more stuff="foo"/> <!-- a comment --> </rejectbefore></doc> ''') checkResult('''\ <doc><rejectafter> Text. <?my processing instruction?> <more stuff="foo"/> <!-- a comment --> </rejectafter></doc> ''') # Make sure the document element is not passed to the filter: checkResult("<rejectbefore/>") checkResult("<rejectafter/>") checkResult("<stopbefore/>") checkResult("<doc>text<stopbefore> and </stopbefore>more</doc>") checkResult("<doc>text<stopafter> and </stopafter>more</doc>") checkResult("<doc><a/><skipafter>text</skipafter><a/></doc>") checkFilterEvents("<doc/>", []) checkFilterEvents("<doc attr='value'/>", []) checkFilterEvents("<doc><e/></doc>", [ ("start", Node.ELEMENT_NODE, "e"), ("accept", Node.ELEMENT_NODE, "e"), ]) src = """\ <!DOCTYPE doc [ <!ENTITY e 'foo'> <!NOTATION n SYSTEM 'http://xml.python.org/notation/n'> ]> <!-- comment --> <?sample pi?> <doc><e attr='value'><?pi data?><!--comment--></e></doc> """ checkFilterEvents(src, [ ("accept", Node.DOCUMENT_TYPE_NODE, "doc"), ("accept", Node.ENTITY_NODE, "e"), ("accept", Node.NOTATION_NODE, "n"), ("accept", Node.COMMENT_NODE, "#comment"), ("accept", Node.PROCESSING_INSTRUCTION_NODE, "sample"), ("start", Node.ELEMENT_NODE, "e"), ("accept", Node.PROCESSING_INSTRUCTION_NODE, "pi"), ("accept", Node.COMMENT_NODE, "#comment"), ("accept", Node.ELEMENT_NODE, "e"), ]) # Show everything except a couple of things to the filter, to check # that whatToShow is implemented. This isn't sufficient to be a # black-box test, but will get us started. checkFilterEvents(src, [ ("accept", Node.DOCUMENT_TYPE_NODE, "doc"), ("accept", Node.ENTITY_NODE, "e"), ("accept", Node.NOTATION_NODE, "n"), ("accept", Node.PROCESSING_INSTRUCTION_NODE, "sample"), ("start", Node.ELEMENT_NODE, "e"), ("accept", Node.PROCESSING_INSTRUCTION_NODE, "pi"), ("accept", Node.ELEMENT_NODE, "e"), ], what=NodeFilter.SHOW_ALL & ~NodeFilter.SHOW_COMMENT) checkFilterEvents(src, [ ("accept", Node.DOCUMENT_TYPE_NODE, "doc"), ("accept", Node.ENTITY_NODE, "e"), ("accept", Node.NOTATION_NODE, "n"), ("accept", Node.COMMENT_NODE, "#comment"), ("start", Node.ELEMENT_NODE, "e"), ("accept", Node.COMMENT_NODE, "#comment"), ("accept", Node.ELEMENT_NODE, "e"), ], what=NodeFilter.SHOW_ALL & ~NodeFilter.SHOW_PROCESSING_INSTRUCTION) ``` #### File: pyxml/test/test_pyexpat.py ```python try: import xml.parsers.expat except ImportError: import pyexpat from xml.parsers import expat class Outputter: def StartElementHandler(self, name, attrs): print 'Start element:\n\t', repr(name), "{", # attrs may contain characters >127, which are printed hex in Python # 2.1, but octal in earlier versions keys = attrs.keys() keys.sort() for k in keys: v = attrs[k] value = "" for c in v: if ord(c)>=256: value = "%s\\u%.4x" % (value, ord(c)) elif ord(c)>=128: value = "%s\\x%.2x" % (value, ord(c)) else: value = value + c print "%s: %s," % (repr(k),repr(value)), print "}" def EndElementHandler(self, name): print 'End element:\n\t', repr(name) def CharacterDataHandler(self, data): data = data.strip() if data: print 'Character data:' print '\t', repr(data) def ProcessingInstructionHandler(self, target, data): print 'PI:\n\t', repr(target), repr(data) def StartNamespaceDeclHandler(self, prefix, uri): print 'NS decl:\n\t', repr(prefix), repr(uri) def EndNamespaceDeclHandler(self, prefix): print 'End of NS decl:\n\t', repr(prefix) def StartCdataSectionHandler(self): print 'Start of CDATA section' def EndCdataSectionHandler(self): print 'End of CDATA section' def CommentHandler(self, text): print 'Comment:\n\t', repr(text) def NotationDeclHandler(self, *args): name, base, sysid, pubid = args print 'Notation declared:', args def UnparsedEntityDeclHandler(self, *args): entityName, base, systemId, publicId, notationName = args print 'Unparsed entity decl:\n\t', args def NotStandaloneHandler(self, userData): print 'Not standalone' return 1 def ExternalEntityRefHandler(self, *args): context, base, sysId, pubId = args print 'External entity ref:', args[1:] return 1 def SkippedEntityHandler(self, *args): print 'Skipped entity ref:', args def DefaultHandler(self, userData): pass def DefaultHandlerExpand(self, userData): pass def confirm(ok): if ok: print "OK." else: print "Not OK." out = Outputter() parser = expat.ParserCreate(namespace_separator='!') # Test getting/setting returns_unicode parser.returns_unicode = 0; confirm(parser.returns_unicode == 0) parser.returns_unicode = 1; confirm(parser.returns_unicode == 1) parser.returns_unicode = 2; confirm(parser.returns_unicode == 1) parser.returns_unicode = 0; confirm(parser.returns_unicode == 0) # Test getting/setting ordered_attributes parser.ordered_attributes = 0; confirm(parser.ordered_attributes == 0) parser.ordered_attributes = 1; confirm(parser.ordered_attributes == 1) parser.ordered_attributes = 2; confirm(parser.ordered_attributes == 1) parser.ordered_attributes = 0; confirm(parser.ordered_attributes == 0) # Test getting/setting specified_attributes parser.specified_attributes = 0; confirm(parser.specified_attributes == 0) parser.specified_attributes = 1; confirm(parser.specified_attributes == 1) parser.specified_attributes = 2; confirm(parser.specified_attributes == 1) parser.specified_attributes = 0; confirm(parser.specified_attributes == 0) HANDLER_NAMES = [ 'StartElementHandler', 'EndElementHandler', 'CharacterDataHandler', 'ProcessingInstructionHandler', 'UnparsedEntityDeclHandler', 'NotationDeclHandler', 'StartNamespaceDeclHandler', 'EndNamespaceDeclHandler', 'CommentHandler', 'StartCdataSectionHandler', 'EndCdataSectionHandler', 'DefaultHandler', 'DefaultHandlerExpand', #'NotStandaloneHandler', 'ExternalEntityRefHandler', 'SkippedEntityHandler', ] for name in HANDLER_NAMES: setattr(parser, name, getattr(out, name)) data = '''\ <?xml version="1.0" encoding="iso-8859-1" standalone="no"?> <?xml-stylesheet href="stylesheet.css"?> <!-- comment data --> <!DOCTYPE quotations SYSTEM "quotations.dtd" [ <!ELEMENT root ANY> <!NOTATION notation SYSTEM "notation.jpeg"> <!ENTITY acirc "&#226;"> <!ENTITY external_entity SYSTEM "entity.file"> <!ENTITY unparsed_entity SYSTEM "entity.file" NDATA notation> %unparsed_entity; ]> <root attr1="value1" attr2="value2&#8000;"> <myns:subelement xmlns:myns="http://www.python.org/namespace"> Contents of subelements </myns:subelement> <sub2><![CDATA[contents of CDATA section]]></sub2> &external_entity; </root> ''' # Produce UTF-8 output parser.returns_unicode = 0 try: parser.Parse(data, 1) except expat.error: print '** Error', parser.ErrorCode, expat.ErrorString(parser.ErrorCode) print '** Line', parser.ErrorLineNumber print '** Column', parser.ErrorColumnNumber print '** Byte', parser.ErrorByteIndex # Try the parse again, this time producing Unicode output parser = expat.ParserCreate(namespace_separator='!') parser.returns_unicode = 1 for name in HANDLER_NAMES: setattr(parser, name, getattr(out, name)) try: parser.Parse(data, 1) except expat.error: print '** Error', parser.ErrorCode, expat.ErrorString(parser.ErrorCode) print '** Line', parser.ErrorLineNumber print '** Column', parser.ErrorColumnNumber print '** Byte', parser.ErrorByteIndex # Try parsing a file parser = expat.ParserCreate(namespace_separator='!') parser.returns_unicode = 1 for name in HANDLER_NAMES: setattr(parser, name, getattr(out, name)) import StringIO file = StringIO.StringIO(data) try: parser.ParseFile(file) except expat.error: print '** Error', parser.ErrorCode, expat.ErrorString(parser.ErrorCode) print '** Line', parser.ErrorLineNumber print '** Column', parser.ErrorColumnNumber print '** Byte', parser.ErrorByteIndex # Tests that make sure we get errors when the namespace_separator value # is illegal, and that we don't for good values: print print "Testing constructor for proper handling of namespace_separator values:" expat.ParserCreate() expat.ParserCreate(namespace_separator=None) expat.ParserCreate(namespace_separator=' ') print "Legal values tested o.k." try: expat.ParserCreate(namespace_separator=42) except TypeError, e: print "Caught expected TypeError." else: print "Failed to catch expected TypeError." try: expat.ParserCreate(namespace_separator='too long') except ValueError, e: print "Caught expected ValueError." else: print "Failed to catch expected ValueError." # ParserCreate() needs to accept a namespace_separator of zero length # to satisfy the requirements of RDF applications that are required # to simply glue together the namespace URI and the localname. Though # considered a wart of the RDF specifications, it needs to be supported. # # See XML-SIG mailing list thread starting with # http://mail.python.org/pipermail/xml-sig/2001-April/005202.html # expat.ParserCreate(namespace_separator='') # too short # Test the interning machinery. p = expat.ParserCreate() L = [] def collector(name, *args): L.append(name) p.StartElementHandler = collector p.EndElementHandler = collector p.Parse("<e> <e/> <e></e> </e>", 1) tag = L[0] if len(L) != 6: print "L should only contain 6 entries; found", len(L) for entry in L: if tag is not entry: print "expected L to contain many references to the same string", print "(it didn't)" print "L =", `L` break # Weird public ID bug reported by <NAME>; he was only able to # tickle this under Zope with ParsedXML and PyXML 0.7 installed. text = '''\ <?xml version="1.0" ?> <!DOCTYPE foo SYSTEM "foo"> <doc>Test</doc> ''' def start_doctype_decl_handler(doctypeName, systemId, publicId, has_internal_subset): if publicId is not None: print "Unexpect publicId: " + `publicId` if systemId != "foo": print "Unexpect systemId: " + `systemId` p = expat.ParserCreate() p.StartDoctypeDeclHandler = start_doctype_decl_handler p.Parse(text, 1) # Tests of the buffer_text attribute. import sys class TextCollector: def __init__(self, parser): self.stuff = [] def check(self, expected, label): require(self.stuff == expected, "%s\nstuff = %s\nexpected = %s" % (label, `self.stuff`, `map(unicode, expected)`)) def CharacterDataHandler(self, text): self.stuff.append(text) def StartElementHandler(self, name, attrs): self.stuff.append("<%s>" % name) bt = attrs.get("buffer-text") if bt == "yes": parser.buffer_text = 1 elif bt == "no": parser.buffer_text = 0 def EndElementHandler(self, name): self.stuff.append("</%s>" % name) def CommentHandler(self, data): self.stuff.append("<!--%s-->" % data) def require(cond, label): # similar to confirm(), but no extraneous output if not cond: raise TestFailed(label) def setup(handlers=[]): parser = expat.ParserCreate() require(not parser.buffer_text, "buffer_text not disabled by default") parser.buffer_text = 1 handler = TextCollector(parser) parser.CharacterDataHandler = handler.CharacterDataHandler for name in handlers: setattr(parser, name, getattr(handler, name)) return parser, handler parser, handler = setup() require(parser.buffer_text, "text buffering either not acknowledged or not enabled") parser.Parse("<a>1<b/>2<c/>3</a>", 1) handler.check(["123"], "buffered text not properly collapsed") # XXX This test exposes more detail of Expat's text chunking than we # XXX like, but it tests what we need to concisely. parser, handler = setup(["StartElementHandler"]) parser.Parse("<a>1<b buffer-text='no'/>2\n3<c buffer-text='yes'/>4\n5</a>", 1) handler.check(["<a>", "1", "<b>", "2", "\n", "3", "<c>", "4\n5"], "buffering control not reacting as expected") parser, handler = setup() parser.Parse("<a>1<b/>&lt;2&gt;<c/>&#32;\n&#x20;3</a>", 1) handler.check(["1<2> \n 3"], "buffered text not properly collapsed") parser, handler = setup(["StartElementHandler"]) parser.Parse("<a>1<b/>2<c/>3</a>", 1) handler.check(["<a>", "1", "<b>", "2", "<c>", "3"], "buffered text not properly split") parser, handler = setup(["StartElementHandler", "EndElementHandler"]) parser.CharacterDataHandler = None parser.Parse("<a>1<b/>2<c/>3</a>", 1) handler.check(["<a>", "<b>", "</b>", "<c>", "</c>", "</a>"], "huh?") parser, handler = setup(["StartElementHandler", "EndElementHandler"]) parser.Parse("<a>1<b></b>2<c/>3</a>", 1) handler.check(["<a>", "1", "<b>", "</b>", "2", "<c>", "</c>", "3", "</a>"], "huh?") parser, handler = setup(["CommentHandler", "EndElementHandler", "StartElementHandler"]) parser.Parse("<a>1<b/>2<c></c>345</a> ", 1) handler.check(["<a>", "1", "<b>", "</b>", "2", "<c>", "</c>", "345", "</a>"], "buffered text not properly split") parser, handler = setup(["CommentHandler", "EndElementHandler", "StartElementHandler"]) parser.Parse("<a>1<b/>2<c></c>3<!--abc-->4<!--def-->5</a> ", 1) handler.check(["<a>", "1", "<b>", "</b>", "2", "<c>", "</c>", "3", "<!--abc-->", "4", "<!--def-->", "5", "</a>"], "buffered text not properly split") # Tests of namespace_triplets support. text = '''\ <doc xmlns:foo="http://xml.python.org/x" xmlns:bar="http://xml.python.org/x"> <foo:e foo:a1="a1" bar:a2="a2"/> <bar:e foo:a1="a1" bar:a2="a2"/> <e a2="a2" xmlns="http://xml.python.org/e"/> </doc> ''' expected_info = [ ("doc", {}), ("http://xml.python.org/x e foo", {"http://xml.python.org/x a1 foo": "a1", "http://xml.python.org/x a2 bar": "a2"}), "http://xml.python.org/x e foo", ("http://xml.python.org/x e bar", {"http://xml.python.org/x a1 foo": "a1", "http://xml.python.org/x a2 bar": "a2"}), "http://xml.python.org/x e bar", ("http://xml.python.org/e e", {"a2": "a2"}), "http://xml.python.org/e e", "doc" ] class Handler: def __init__(self, parser): self.info = [] parser.StartElementHandler = self.StartElementHandler parser.EndElementHandler = self.EndElementHandler def StartElementHandler(self, name, attrs): self.info.append((name, attrs)) def EndElementHandler(self, name): self.info.append(name) p = expat.ParserCreate(namespace_separator=" ") p.namespace_prefixes = 1 h = Handler(p) p.Parse(text, 1) if h.info != expected_info: raise ValueError, ("got bad element information:\n " + `h.info`) ``` #### File: pyxml/test/test_saxdrivers.py ```python from xml.sax.saxutils import XMLGenerator, ContentGenerator from xml.sax import handler, SAXReaderNotAvailable import xml.sax.saxexts import xml.sax.sax2exts from cStringIO import StringIO from test.test_support import verbose, TestFailed, findfile try: import warnings except ImportError: pass else: warnings.filterwarnings("ignore", ".* xmllib .* obsolete.*", DeprecationWarning, 'xmllib$') tests=0 fails=0 xml_test = open(findfile("test.xml.out")).read() xml_test_out = open(findfile("test.xml.out")).read() expected_failures=[ "xml.sax.drivers.drv_sgmlop", # does not handle &quot; entity reference "xml.sax.drivers.drv_xmllib", # reports S before first tag, # does not report xmlns: attribute ] def summarize(p,result): global tests,fails tests=tests+1 if result == xml_test_out: if p in expected_failures: print p,"XPASS" else: print p,"PASS" elif p in expected_failures: print p,"XFAIL" else: print p,"FAIL" fails=fails+1 if verbose: print result #open("test.xml."+p,"w").write(result.getvalue()) def test_sax1(): factory=xml.sax.saxexts.XMLParserFactory for p in factory.get_parser_list(): try: parser = factory._create_parser(p) except ImportError: print p,"NOT SUPPORTED" continue except SAXReaderNotAvailable: print p,"NOT SUPPORTED" continue result = StringIO() xmlgen = ContentGenerator(result) parser.setDocumentHandler(xmlgen) # We should not pass file names to parse; we don't have # any URLs, either parser.parseFile(open(findfile("test.xml"))) summarize(p,result.getvalue()) def test_sax2(): factory = xml.sax.sax2exts.XMLParserFactory for p in factory.get_parser_list(): try: parser = factory._create_parser(p) except ImportError: print p,"NOT SUPPORTED" continue except SAXReaderNotAvailable: print p,"NOT SUPPORTED" continue # Don't try to test namespace support, yet parser.setFeature(handler.feature_namespaces,0) result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) # In SAX2, we can pass an open file object to parse() parser.parse(open(findfile("test.xml"))) summarize(p,result.getvalue()) def test_incremental(): global tests, fails factory = xml.sax.sax2exts.XMLParserFactory for p in factory.get_parser_list(): try: parser = factory._create_parser(p) except ImportError: print p,"NOT SUPPORTED" continue except SAXReaderNotAvailable: print p,"NOT SUPPORTED" continue if not hasattr(parser, "feed"): continue # Don't try to test namespace support, yet result = StringIO() xmlgen = XMLGenerator(result) parser.setContentHandler(xmlgen) parser.feed("<doc>") parser.feed("</doc>") parser.close() tests = tests + 1 if result.getvalue() == '<?xml version="1.0" encoding="iso-8859-1"?>\n<doc></doc>': print p, "PASS" else: print p, "FAIL" fails = fails + 1 items = locals().items() items.sort() for (name, value) in items: if name[ : 5] == "test_": value() print "%d tests, %d failures" % (tests, fails) if fails != 0: raise TestFailed, "%d of %d tests failed" % (fails, tests) ``` #### File: pyxml/test/test_saxutils.py ```python import unittest from os.path import dirname, abspath, join from xml.sax.saxutils import escape, absolute_system_id class EscapeTC(unittest.TestCase): def test(self): v1, v2 = escape('&<>'), '&amp;&lt;&gt;' self.assertEquals(v1, v2) v1, v2 = escape('foo&amp;bar'), 'foo&amp;amp;bar' self.assertEquals(v1, v2) v1, v2 = escape('< test > &', {'test': '&myentity;'}), '&lt; &myentity; &gt; &amp;' self.assertEquals(v1, v2) v1, v2 = escape('&\'"<>', {'"': '&quot;', "'": '&apos;'}), '&amp;&apos;&quot;&lt;&gt;' self.assertEquals(v1, v2) TEST_DIR = abspath(dirname(__file__)) + '/' class AbsoluteSystemIdTC(unittest.TestCase): def test_base(self): res = absolute_system_id('http://www.xml.com') self.assertEquals(res, 'http://www.xml.com') res = absolute_system_id('http://www.xml.com', 'http://whatever') self.assertEquals(res, 'http://www.xml.com') res = absolute_system_id('quotes.xml') self.assertEquals(res, 'file://%s' % join(TEST_DIR, 'quotes.xml')) def test_relative(self): # FIXME: empty authority // added by MakeUrlLibSafe (actually by # urlunsplit), which is probably acceptable since the sysid is designed # to be used by urlopen res = absolute_system_id('quotes.xml', 'file:%s' % TEST_DIR) self.assertEquals(res, 'file://%squotes.xml' % TEST_DIR) res = absolute_system_id('relative.xml', 'file:/base') self.assertEquals(res, 'file:///relative.xml') res = absolute_system_id('relative.xml', 'file:/base/') self.assertEquals(res, 'file:///base/relative.xml') res = absolute_system_id('file:relative.xml', 'file:/base') self.assertEquals(res, 'file:///relative.xml') def test_no_base_scheme(self): # FIXME: warning ? self.assertRaises(ValueError, absolute_system_id, 'file:relative.xml', '/base') if __name__ == '__main__': unittest.main() ```
{ "source": "JklqmYao1994/TRICAL", "score": 2 }
#### File: python/TRICAL/__init__.py ```python import os import sys from ctypes import * """ This is a simple Python interface wrapper around TRICAL, designed more as a convenient interface for tests than anything else. If run directly (i.e. `python -m TRICAL`), we read expect comma-separated readings on stdin (3 values per line, ending with \\n), and write calibrated values on stdout in the same format. """ _TRICAL = None class _Instance(Structure): def __repr__(self): fields = { "field_norm": self.field_norm, "measurement_noise": self.measurement_noise, "state": tuple(self.state), "state_covariance": tuple(self.state_covariance), "measurement_count": self.measurement_count } return str(fields) def _init(): """ Loads the TRICAL library and sets up the ctypes interface. Called automatically the first time a Python instance is created. """ global _TRICAL # TODO: search properly lib = os.path.join(os.path.dirname(__file__), "libTRICAL.dylib") _TRICAL = cdll.LoadLibrary(lib) # Set up the _Instance structure based on the definition in TRICAL.h _Instance._fields_ = [ ("field_norm", c_float), ("measurement_noise", c_float), ("state", c_float * 9), ("state_covariance", c_float * 9 * 9), ("measurement_count", c_uint) ] _TRICAL.TRICAL_init.argtypes = [POINTER(_Instance)] _TRICAL.TRICAL_init.restype = None _TRICAL.TRICAL_norm_set.argtypes = [POINTER(_Instance), c_float] _TRICAL.TRICAL_norm_set.restype = None _TRICAL.TRICAL_norm_get.argtypes = [POINTER(_Instance)] _TRICAL.TRICAL_norm_get.restype = c_float _TRICAL.TRICAL_noise_set.argtypes = [POINTER(_Instance), c_float] _TRICAL.TRICAL_noise_set.restype = None _TRICAL.TRICAL_noise_get.argtypes = [POINTER(_Instance)] _TRICAL.TRICAL_noise_get.restype = c_float _TRICAL.TRICAL_measurement_count_get.argtypes = [POINTER(_Instance)] _TRICAL.TRICAL_measurement_count_get.restype = c_uint _TRICAL.TRICAL_estimate_update.argtypes = [POINTER(_Instance), POINTER(c_float * 3)] _TRICAL.TRICAL_estimate_update.restype = None _TRICAL.TRICAL_estimate_get.argtypes = [POINTER(_Instance), POINTER(c_float * 3), POINTER(c_float * 9)] _TRICAL.TRICAL_estimate_get.restype = None _TRICAL.TRICAL_estimate_get_ext.argtypes = [POINTER(_Instance), POINTER(c_float * 3), POINTER(c_float * 9), POINTER(c_float * 3), POINTER(c_float * 9)] _TRICAL.TRICAL_estimate_get_ext.restype = None _TRICAL.TRICAL_measurement_calibrate.argtypes = [POINTER(_Instance), POINTER(c_float * 3), POINTER(c_float * 3)] _TRICAL.TRICAL_measurement_calibrate.restype = None class Instance(object): def __init__(self, field_norm=1.0, measurement_noise=1e-6): """ Create a new TRICAL instance with the supplied field norm (magnitude) and measurement noise. The field norm should be the expected magnitude of the field at the sensor location, and the measurement noise should be the standard deviation of the error in sensor readings (the error being presumed to be white Gaussian noise). """ if not _TRICAL: _init() # Sanity-check the input parameters if field_norm <= 0.0: raise ValueError("Field norm must be > 0.0 (got %f)" % field_norm) if measurement_noise <= 0.0: raise ValueError("Measurement noise must be > 0.0 (got %f)" % measurement_noise) # Initialize the internal (C) instance self._instance = _Instance() _TRICAL.TRICAL_init(self._instance) _TRICAL.TRICAL_norm_set(self._instance, field_norm) _TRICAL.TRICAL_noise_set(self._instance, measurement_noise) # Initialize the Python-accessible calibration estimate self.bias = (0.0, 0.0, 0.0) self.scale = (0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0) self.measurement_count = 0 def update(self, measurement): """ Update the calibration estimate based on a new measurement. """ if not measurement or len(measurement) != 3: raise ValueError("Measurement must be a sequence with 3 items") _TRICAL.TRICAL_estimate_update(self._instance, (c_float * 3)(*measurement)) bias = (c_float * 3)() scale = (c_float * 9)() _TRICAL.TRICAL_estimate_get(self._instance, bias, scale) self.bias = tuple(bias[0:3]) self.scale = tuple(scale[0:9]) self.measurement_count = \ _TRICAL.TRICAL_measurement_count_get(self._instance) def calibrate(self, measurement): """ Given a measurement, return a calibrated measurement based on the current calibration estimate. """ if not measurement or len(measurement) != 3: raise ValueError("Measurement must be a sequence with 3 items") calibrated_measurement = (c_float * 3)() _TRICAL.TRICAL_measurement_calibrate(self._instance, (c_float * 3)(*measurement), calibrated_measurement) return tuple(calibrated_measurement[0:3]) def _squared_norm(v): return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] def generate_html_viz(instance, samples): """ Generate a WebGL visualisation of """ import math import pkg_resources raw_data = samples iteratively_calibrated_data = [] squared_magnitude = 0.0 # Iterate over the samples and generate the iteratively calibrated data for measurement in samples: instance.update(measurement) calibrated_measurement = instance.calibrate(measurement) iteratively_calibrated_data.append(calibrated_measurement) # Update the maximum magnitude seen squared_magnitude = max(squared_magnitude, _squared_norm(measurement)) squared_magnitude = max(squared_magnitude, _squared_norm(calibrated_measurement)) # And now insert them into the appropriate part of the HTML. Try the # pkg_resources way, but if the package hasn't actually been installed # then look for it in the same directory as this file try: html_path = pkg_resources.resource_filename("TRICAL", "viz.html") html = open(html_path, "rb").read() except IOError: html_path = os.path.join(os.path.dirname(__file__), "viz.html") html = open(html_path, "rb").read() # Insert the visualisation data -- output measurements as a single array # of points raw_points = ",\n".join(",".join("%.4f" % v for v in measurement) for measurement in raw_data) calibrated_points = ",\n".join(",".join( "%.4f" % v for v in measurement) for measurement in calibrated_data) html = html.replace("{{raw}}", "[" + raw_points + "]") html = html.replace("{{calibrated}}", "[" + calibrated_points + "]") # TODO: maybe insert the calibration estimate as well? html = html.replace("{{magnitude}}", "%.3f" % math.sqrt(squared_magnitude)) html = html.replace("{{fieldNorm}}", "%.3f" % instance._instance.field_norm) return html ```
{ "source": "jkluter/MLG", "score": 2 }
#### File: jkluter/MLG/image.py ```python import matplotlib.pyplot as plt import numpy as np from MLG import imagepath, paperpath, path from imageio import imread import matplotlib.cbook as cbook from MLG.utils import color_own from matplotlib import rc __all__ = ['dark','Image_Window','Image_precision','Image_Illustration','Image_Illustration_Multi','Image_compare_micro','Image_astroshift', 'create_all_Image'] def dark(onof = 0): if onof is 'on': plt.style.use('dark_background') elif onof is 'off': plt.style.use('default') elif onof == True: plt.style.use('dark_background') else: plt.style.use('default') def Image_Window(string = 'resolve_Window', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) else: black = color_own([0.,0.,0.,1]) c1 = color_own([0,1,1,1]) c2 = color_own([1,0,0,1]) c3 = color_own([1,1,0.2,1]) c4 = color_own([0.4,0.4,0.4,1]) c_star = [c1,c2,c3,c4] c_grid1 = color_own([0,int(dark),1,1]) c_grid2 = color_own([0.5,1,0,1]) star= np.array([[0, 0],[0.1,0.9],[-1,-1.1],[-0.5,0.1]]) fig = plt.figure(figsize = [12,12]) x_width = 0.059 y_width = 0.177 #------------------------------------------------------------ # axis plt.xticks( fontsize = 25) plt.yticks( fontsize = 25) plt.grid(True) plt.axis('equal') plt.axis([-1.5,1.5,-1.4,1.6]) plt.ylabel('Across-scan direction (AC) [arcsec]', fontsize = 30) plt.xlabel('Along-scan direction (AL) [arcsec]', fontsize = 30) #------------------------------------------------------------ #------------------------------------------------------------ #Grid Major Star for i in range(-6,7): plt.plot([-6*x_width,6*x_width], [i*y_width,i*y_width], c = c_grid1,linewidth = 3) plt.plot([i*x_width,i*x_width], [-6*y_width,6*y_width], c = c_grid1, linewidth = 3) plt.text(0,1.4,"Along-scan direction\n $12\,\mathrm{pix} \\times 0.059 \mathrm{''/pix} = 0.708\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 0) plt.text(0.7,0,"Across-scan direction\n $12\,\mathrm{pix} \\times 0.177 \mathrm{''/pix} = 2.124\mathrm{''}$",fontsize = 25, verticalalignment = 'center', horizontalalignment = 'center', rotation = 90) plt.arrow(0,6*y_width+2*x_width, -6*x_width+0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(0,6*y_width+2*x_width, 6*x_width-0.02,0,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, -6*y_width+0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.arrow(8*x_width,0,0, 6*y_width-0.02,color= black, head_width=0.1,\ overhang = 0.5, length_includes_head=True ,zorder = 10, linewidth = 3) plt.scatter(star[:1,0], star[:1,1], marker=(5, 1),c = c_star[:1], s = [3000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_1.png', format = 'png') #------------------------------------------------------------ #------------------------------------------------------------ #Grid Minor Star plt.scatter(star[1:3,0], star[1:3,1], marker=(5, 1),c = c_star[1:3], s = [2000,2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_2.png', format = 'png') for i in range(-5,8): plt.plot([-15*x_width,-6*x_width], [i*y_width,i*y_width], c = c_grid2,linewidth = 3, zorder = -1) for i in range(-15,-5): plt.plot([i*x_width,i*x_width], [-5*y_width,7*y_width], c = c_grid2, linewidth = 3, zorder = -1) plt.scatter(star[3:,0], star[3:,1], marker=(5, 1),c = c_star[3:], s = [2000], zorder = 1000) if pres: fig.savefig(imagepath + string + '_3.png', format = 'png') #------------------------------------------------------------ fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_precision(string = 'Sig_vs_Gmag', Gaia_precision = path+'InputTable/resolution_Gaia.png', pres = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0.5,1,0,1]) color5 = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0.85,0,0,1]) color2 = color_own([0,0,1,1]) color3 = color_own([0,1,1,1]) color4 = color_own([0,1,0,1]) color5 = color_own([1,1,0,1]) fig = plt.figure(figsize = [12,10]) Gmag = np.arange(4,22,0.01) datafile = cbook.get_sample_data(Gaia_precision) img = imread(datafile) z = 10 ** (0.4 * (np.maximum(Gmag, 14) - 15)) #(14-np.minimum(Gmag, 14)) z2 = 10 ** (0.4 * (np.maximum(Gmag, 12) - 15)) sig_pi = (-1.631 + 680.766 * z2 + 32.732 * z2**2)**0.5/1000 sig_fov2 =(-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75 +0.1 sig_fov3 = sig_fov2 / np.sqrt(9) plt.plot([0,1],[-5,-5], c = color1, linewidth = 3, label = 'formal precision from Gaia DR2 (per CCD)' ) plt.plot([0,1],[-5,-5], c = color2, linewidth = 3, label = 'actual precision from Gaia DR2 (per CCD)' ) plt.yticks([np.log10(i) for i in [20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02, 0.01]],[20,10, 5,2,1, 0.5,0.2,0.1, 0.05,0.02,0.01], fontsize = 25) plt.xticks( fontsize = 25) plt.ylabel('Standard deviation of AL field angle [mas]', fontsize = 30) plt.xlabel('G magnitude', fontsize = 30) plt.imshow(img, zorder=0, extent=[5, 21.04, np.log10(0.0195),np.log10(10)]) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.plot(Gmag,np.log10(sig_pi), '--',c = color3, dashes =(5,5), linewidth = 3, label= 'predicted end-of-mission parallax error') if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov2), ':' , c = color4, linewidth = 5, label= 'used Standard deviation (per CCD)' ) if pres: plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '_3.png', format = 'png') plt.plot(Gmag,np.log10(sig_fov3) ,c = color5,linewidth = 7, label= 'used Standard deviation for 9 CCD observations' ) plt.plot([5, 21.04, 21.04,5,5], [np.log10(0.0195),np.log10(0.0195),np.log10(10),np.log10(10),np.log10(0.0195)], linewidth = 2, color = [0.5,0.5,0.5,1], zorder = 0.1) plt.axis('auto') plt.xlim([4,22]) plt.ylim([np.log10(0.005),np.log10(40)]) plt.legend(loc = 'upper left',fontsize = 20) fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration(string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) color1 = color_own([0,1,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0.5,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) else: black = color_own([0.,0.,0.,1]) color1 = color_own([0,0,1,1]) color2 = color_own([1,0.5,0,1]) color3 = color_own([0,1,0,1]) color4 = color_own([1,0,1,1]) color5 = color_own([0,1,1,1]) color6 = color_own([0,1,1,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 1.5 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') for i in range(len(t)): xm1 =np.array([-1,1]) * np.cos(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1]) * np.sin(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1]) * np.cos(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1]) * np.sin(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= color1, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= color2, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = color1,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = color2, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') if i% 2 == 0: plt.plot(xm2,ym2, color = black, linewidth = 3,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 3,zorder = 1) else: plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm1,ym1, color = 'grey', linewidth = 2, zorder = -1) #if i ==0 : plt.plot(x1,y1, color = color3, linewidth = 3) plt.plot(x2,y2, color = color1, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) plt.plot(X2,Y2, color = color2, linewidth = 3) plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = color3, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') plt.text(4,7.5,'Star 1',color = color2,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration2 (string = 'Illustration'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi #Position_lens x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) #unlensed Position_source x2 = np.linspace(5,9,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d = np.sqrt((x1-x2)**2 + (y1-y2)**2) TE = 2 X2 = x2 + (x2-x1) * TE/(d**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 fig = plt.figure(figsize= (12,8)) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') #--------------------------------------------------------------- #axis plt.xlim([-0.5,14]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.text(2,1.5,'Lens',color = grey, fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') #--------------------------------------------------------------- # Motion source plt.plot(x1,y1, color = grey, linewidth = 7) fig.savefig(imagepath + string + '_1.png', format = 'png') plt.text(4,7.5,'Source',color = blue,fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.plot(x2,y2, color = cyan, linestyle= '--',dashes=(10, 5), linewidth = 3, zorder = -1) fig.savefig(imagepath + string + '_2.png', format = 'png') plt.plot(X2,Y2, color = blue, linewidth = 3) for i in range(len(t)): plt.plot([x2[t[i]],X2[t[i]]],[y2[t[i]],Y2[t[i]]],':',color = black) fig.savefig(imagepath + string + '_3.png', format = 'png') delta = 0.05 for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] plt.plot(xm2,ym2, color = black, linewidth = 1,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 1,zorder = 1) fig.savefig(imagepath + string + '_4.png', format = 'png') for i in range(len(t)): xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] dsc = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC[1]/2,dSC[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttx2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc[1]/2-0.2,dsc[1]/2-0.2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i % 2 == 0: plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = red,linewidth = 3 , linestyle= '--',dashes=(10, 10)) plt.plot(ttX2[1:3],ttY2[1:3],color = orange, linewidth = 3,linestyle= '-') plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') #if i ==0 : fig.savefig(imagepath + string + '_5.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_Illustration_Multi(string = 'Illustration_Multi'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string black = color_own([0.7,0.7,0.7,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,.5,0,1]) else: black = color_own([0.,0.,0.,1]) grey = color_own([.5,.5,0.5,1]) cyan = color_own([0,1,1,1]) blue = color_own([0,0,1,1]) lime = color_own([0.6,1.2,0,1]) green = color_own([0,1,0,1]) red = color_own([1,0,0,1]) orange = color_own([1,1,0,1]) t = np.array([12, 35, 41, 61, 73, 89]) scandir = np.array([0.1, 0.7, 0.4, 0.8 , 0.2, 0.1])*np.pi x1 = np.linspace(1,13,100) + 0.3 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y1 = np.linspace(1,3,100) + 0.3* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x2 = np.linspace(3,7,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y2 = np.linspace(7,4.5,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) x3 = np.linspace(12,10,100)# + 0.03 * np.sin(np.linspace(np.pi/4,12*np.pi/4,100)) y3 = np.linspace(8,6,100)# + 0.03* np.cos(np.linspace(np.pi/4,12*np.pi/4,100)) d2 = np.sqrt((x1-x2)**2 + (y1-y2)**2) d3 = np.sqrt((x1-x3)**2 + (y1-y3)**2) TE = 1.5 X2 = x2 + (x2-x1) * TE/(d2**2 +2*TE) Y2 = y2 + (y2-y1) * TE/(d2**2 +2*TE) X3 = x3 + (x3-x1) * TE/(d3**2 +2*TE) Y3 = y3 + (y3-y1) * TE/(d3**2 +2*TE) dX2 = x1-X2 dY2 = y1-Y2 dx2 = x1-x2 dy2 = y1-y2 dX3 = x1-X3 dY3 = y1-Y3 dx3 = x1-x3 dy3 = y1-y3 fig = plt.figure(figsize= (12,8.8)) plt.subplots_adjust( top=0.95, bottom=0.05, left=0.05, right=0.95, hspace=0.0, wspace=0.2) ax = plt.subplot(111) ax.axis('equal') ax.axis('off') for i in range(len(t)): delta = 0.05 xm1 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + x1[t[i]] ym1 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + y1[t[i]] xm2 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X2[t[i]] ym2 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y2[t[i]] xm3 =np.array([-1,1,1,-1,-1]) * np.cos(scandir[i]) + delta * np.array([-1,-1,1,1,-1]) * np.sin(scandir[i]) + X3[t[i]] ym3 =np.array([-1,1,1,-1,-1]) * np.sin(scandir[i]) - delta * np.array([-1,-1,1,1,-1]) * np.cos(scandir[i]) + Y3[t[i]] dSC3 = ((dX3[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY3[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dSC2 = ((dX2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dY2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dsc3 = ((dx3[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy3[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] dsc2 = ((dx2[t[i]]).reshape(-1,1)*[np.sin(scandir[i]),np.cos(scandir[i])] \ + (dy2[t[i]]).reshape(-1,1) *[-np.cos(scandir[i]),np.sin(scandir[i])])[0] ttX2 = np.array([0,-dSC2[1]/2,dSC2[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X2[t[i]],X2[t[i]]]) ttY2 = np.array([0,-dSC2[1]/2,dSC2[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y2[t[i]],Y2[t[i]]]) ttX3 = np.array([0,-dSC3[1]/2,dSC3[1]/2,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X3[t[i]],X3[t[i]]]) ttY3 = np.array([0,-dSC3[1]/2,dSC3[1]/2,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y3[t[i]],Y3[t[i]]]) ttx2 = np.array([0,-dsc2[1]/2-0.3,dsc2[1]/2-0.3,0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x2[t[i]],x2[t[i]]]) tty2 = np.array([0,-dsc2[1]/2-0.3,dsc2[1]/2-0.3,0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y2[t[i]],y2[t[i]]]) if i == 3: off = [-0.4,-0.2] else: off = [0,-0.2] ttx3 = np.array([0,-dsc3[1]/2+off[1],dsc3[1]/2+off[1],0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],x3[t[i]],x3[t[i]]]) tty3 = np.array([0,-dsc3[1]/2+off[1],dsc3[1]/2+off[1],0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],y3[t[i]],y3[t[i]]]) ttX3 = np.array([0,-dSC3[1]/2+off[0],dSC3[1]/2+off[0],0]) * np.cos(scandir[i]) + ([x1[t[i]],x1[t[i]],X3[t[i]],X3[t[i]]]) ttY3 = np.array([0,-dSC3[1]/2+off[0],dSC3[1]/2+off[0],0]) * np.sin(scandir[i]) +([y1[t[i]],y1[t[i]],Y3[t[i]],Y3[t[i]]]) ''' if i % 2 == 0: plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color = color_own([0,0,1,1]),head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color = color_own([0,0,1,1]),head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttX2[1:3],ttY2[1:3],color = [158/200,1/200,66/200, 1], linewidth = 3,linestyle= '-') plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') ''' if i% 2 == 0: plt.plot(xm2,ym2, color = black, linewidth = 1,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 1,zorder = 1) plt.arrow(ttX2[2],ttY2[2], 0.0001*(ttX2[2]-ttX2[1]),0.0001*(ttY2[2]-ttY2[1]),color=red ,head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX2[1],ttY2[1], 0.0001*(ttX2[1]-ttX2[2]),0.0001*(ttY2[1]-ttY2[2]),color=red ,head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) plt.plot(ttX2[0:2],ttY2[0:2],color = black, linestyle= ':') plt.plot(ttX2[1:3],ttY2[1:3],color = red, linewidth = 3) plt.plot(ttX2[2:],ttY2[2:],color = black, linestyle= ':') plt.plot(ttx2[0:2],tty2[0:2],color = black, linestyle= ':') plt.plot(ttx2[1:3],tty2[1:3],color = orange, linewidth = 3,linestyle= '-', dashes=(10, 2)) plt.plot(ttx2[2:],tty2[2:],color = black, linestyle= ':') plt.arrow(ttx2[2],tty2[2], 0.0001*(ttx2[2]-ttx2[1]),0.0001*(tty2[2]-tty2[1]),color = orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx2[1],tty2[1], 0.0001*(ttx2[1]-ttx2[2]),0.0001*(tty2[1]-tty2[2]),color = orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) if i >=3: plt.plot(ttX3[0:2],ttY3[0:2],color = black, linestyle= ':') plt.plot(ttX3[1:3],ttY3[1:3],color = red, linewidth = 3) plt.plot(ttX3[2:],ttY3[2:],color = black, linestyle= ':') plt.arrow(ttX3[2],ttY3[2], 0.0001*(ttX3[2]-ttX3[1]),0.0001*(ttY3[2]-ttY3[1]),color=red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX3[1],ttY3[1], 0.0001*(ttX3[1]-ttX3[2]),0.0001*(ttY3[1]-ttY3[2]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.plot(xm3,ym3, color = black, linewidth = 1,zorder = 1) plt.plot(ttx3[0:2],tty3[0:2],color = black, linestyle= ':') plt.plot(ttx3[1:3],tty3[1:3],color = orange, linewidth = 3,linestyle= '-', dashes=(10, 2)) plt.plot(ttx3[2:],tty3[2:],color = black, linestyle= ':') plt.arrow(ttx3[2],tty3[2], 0.0001*(ttx3[2]-ttx3[1]),0.0001*(tty3[2]-tty3[1]),color = orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx3[1],tty3[1], 0.0001*(ttx3[1]-ttx3[2]),0.0001*(tty3[1]-tty3[2]),color = orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) ''' else: plt.plot(xm3,ym3, color = 'grey', linewidth = 2, zorder = -1) ''' elif i >=3: plt.plot(xm3,ym3, color = black, linewidth = 1,zorder = 1) plt.plot(xm1,ym1, color = black, linewidth = 1,zorder = 1) #plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(ttX3[0:2],ttY3[0:2],color = black, linestyle= ':') plt.plot(ttX3[1:3],ttY3[1:3],color = red, linewidth = 3 ) plt.plot(ttX3[2:],ttY3[2:],color = black, linestyle= ':') plt.arrow(ttX3[2],ttY3[2], 0.0001*(ttX3[2]-ttX3[1]),0.0001*(ttY3[2]-ttY3[1]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttX3[1],ttY3[1], 0.0001*(ttX3[1]-ttX3[2]),0.0001*(ttY3[1]-ttY3[2]),color= red, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.plot(ttx3[0:2],tty3[0:2],color = black, linestyle= ':') plt.plot(ttx3[1:3],tty3[1:3],color = orange, linewidth = 3,linestyle= '-', dashes=(10, 2)) plt.plot(ttx3[2:],tty3[2:],color = black, linestyle= ':') plt.arrow(ttx3[2],tty3[2], 0.0001*(ttx3[2]-ttx3[1]),0.0001*(tty3[2]-tty3[1]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True ,zorder = 10) plt.arrow(ttx3[1],tty3[1], 0.0001*(ttx3[1]-ttx3[2]),0.0001*(tty3[1]-tty3[2]),color= orange, head_width=0.2,\ overhang = 0.5, length_includes_head=True, zorder = 10) ''' else: plt.plot(xm3,ym3, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm2,ym2, color = 'grey', linewidth = 2, zorder = -1) plt.plot(xm1,ym1, color = 'grey', linewidth = 2, zorder = -1) ''' #if i ==0 : plt.plot(x1,y1, color = grey, linewidth = 7) plt.plot(x2,y2, color = cyan, linestyle= '--',dashes=(6, 2), linewidth = 3, zorder = -1) plt.plot(X2,Y2, color = blue, linewidth = 3) plt.plot(x3,y3, color = lime, linestyle= '--',dashes=(6, 2), linewidth = 3, zorder = -1) plt.plot(X3,Y3, color = green, linewidth = 3) plt.xlim([-0.2,13.5]) xr = 12 yr = 7 plt.text(xr-0.8,0,'RA $\cdot$ cos(Dec)',verticalalignment = 'center',fontsize = 25) plt.text(0,yr + 0.25,'Dec',fontsize = 25, horizontalalignment = 'center', rotation = 90) plt.text(2,1.5,'Lens',color = grey,fontsize = 25, horizontalalignment = 'center', rotation = 0, weight = 'bold') plt.text(4,7.5,'Star 1',color = blue, fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.text(11,8,'Star 2',color = green, fontsize = 25, horizontalalignment = 'center', rotation = 0,weight = 'bold') plt.arrow(-0.025,0,xr-1,0,width = 0.05,overhang = 0.5,head_width = 0.5, head_length = 0.5,color= black, zorder = 100,length_includes_head=True) plt.arrow(0,-0.025,0,yr-0.5,width = 0.05,overhang = 0.5,head_width = 0.5,head_length = 0.5,color= black, zorder = 100,length_includes_head=True) fig.savefig(imagepath + string + '.png', format = 'png') print('Create Image: '+ imagepath+ string + '.png') if paperpath is not None: fig.savefig(paperpath + string + '.png', format = 'png') plt.close(fig) def Image_compare_micro(string = 'aml_vs_pml.png'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' dark= 'black' in plt.rcParams['savefig.facecolor'] if dark: string = 'dark_'+string c1 =color_own([1,1,0,1]) c2 =color_own([1,0,1,1]) c3 =color_own([0.6,1.2,0,1]) c4 =color_own([0,1,1,1]) else: c1 =color_own([0,0,1,1]) c2 =color_own([1,0,0,1]) c3 =color_own([0.5,1,0,1]) c4 =color_own([1,0,1,1]) rc('xtick', labelsize=24) rc('ytick', labelsize=24) Separation_E1 = 20 Separation_E2 = 2 Separation_E3 = 20 xx1 = np.array(range(-1000,1000,1)) xx2 = xx1 xx3 = xx1 yy1 = xx1*0+10 yy2 = xx1*0+1 yy3 = xx1*0+200 uu1 = np.sqrt(xx1*xx1+yy1*yy1)/Separation_E1 uu2 = np.sqrt(xx2*xx2+yy2*yy2)/Separation_E2 uu3 = np.sqrt(xx3*xx3+yy3*yy3)/Separation_E3 dSeparation1 = uu1/(uu1*uu1 + 2)*Separation_E1 dSeparation2 = uu2/(uu2*uu2 + 2)*Separation_E2 dSeparation3 = uu3/(uu3*uu3 + 2)*Separation_E3 A1 = (uu1*uu1+2)/(uu1*np.sqrt(uu1*uu1+4)) A2 = (uu2*uu2+2)/(uu2*np.sqrt(uu2*uu2+4)) A3 = (uu3*uu3+2)/(uu3*np.sqrt(uu3*uu3+4)) dm1 = 2.5*np.log10(A1) dm2 = 2.5*np.log10(A2) dm3 = 2.5*np.log10(A3) xx1 = xx1/250 xx2 = xx2/250 xx3 = xx3/250 figure = plt.figure(figsize = (12,12)) plt.subplots_adjust(hspace=0.1) ax1 = plt.subplot2grid((2,1), (0, 0), rowspan=1) plt.plot(xx1,dSeparation1, color = c1,linewidth = 4) line1, = plt.plot(xx2,dSeparation2,color = c3 ,linewidth = 4) plt.plot(xx3,dSeparation3,linestyle = '--',color = c4,linewidth = 4) line1.set_dashes([10, 2, 10, 2]) plt.yticks([1,2,3,4,5,6,7,8],['1.0 ','2.0 ','3.0 ','4.0 ','5.0 ','6.0 ','7.0 ','8.0 ']) plt.ylim([0,8]) plt.ylabel('Shift [mas]',fontsize = 30) plt.plot(xx1,xx1*0+0.5, color=c2,linewidth = 3) ax1.tick_params(length=6, width=2) ax1.tick_params(which='minor', length=4,width=2) xticklabels1 = ax1.get_xticklabels() plt.setp(xticklabels1, visible=False) ax2 = plt.subplot2grid((2,1), (1, 0), rowspan=1,sharex=ax1) plt.semilogy(xx1,dm1,color = c1,linewidth = 4) line1, = plt.semilogy(xx2,dm2,color = c3,linewidth = 4) plt.semilogy(xx3,dm3,linestyle = '--',color = c4,linewidth = 4) line1.set_dashes([10, 2, 10, 2]) plt.semilogy(xx1,xx1*0+0.001, color= c2 ,linewidth = 3) plt.ylim([0.0001,1]) plt.ylabel('Magnification [mag]',fontsize = 30) ax2.tick_params(length=6, width=2) ax2.tick_params(which='minor', length=4,width=2) plt.xlabel('$\Delta$ T [yr]',fontsize = 30) figure.savefig(imagepath+ string,format = 'png') print('Create Image: '+ imagepath+ string + '.png') plt.close(figure) def Image_astroshift(string = 'astroshift'): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' fig,ax = plt.subplots(figsize = [12,12] ) x = np.array([-100+0.1*t for t in range(2000)]) ThetaE = 12.75 umin = 0.75 ThetaE = 12.75 fls = 10 siz = 10 y = np.array([ThetaE*umin for i in x]) ax.set_xlim(-30,30) ax.set_ylim(-30,30) ux =np.array([x[i]/ThetaE for i in range(len(x))]) uy =np.array([y[i]/ThetaE for i in range(len(x))]) u = np.array([np.sqrt(np.power(ux[i],2)+np.power(uy[i],2)) for i in range(len(x))]) theta_px = - (np.sqrt(u*u+4) - u)/(2 * u) * x theta_py = - (np.sqrt(u*u+4) - u)/(2 * u) * y theta_mx = - (-np.sqrt(u*u+4) - u)/(2 * u) * x theta_my = - (-np.sqrt(u*u+4) - u)/(2 * u) * y delta_thetax = -x/(np.power(u,2)+2) delta_thetay = -y/(np.power(u,2)+2) plt.plot(x,y,'r',linewidth = 2) plt.plot(theta_px,theta_py,'b--',linewidth = 2) plt.plot(theta_mx,theta_my,'b--',linewidth = 2) plt.plot(delta_thetax,delta_thetay,color='green',linewidth = 2) xx = [ThetaE * np.sin(2*np.pi*i/1000)+6 for i in range(1000)] yy = [ThetaE * np.cos(2*np.pi*i/1000)+ThetaE*umin for i in range(1000)] step = 30 x = x[10::step] y = y[10::step] theta_px = theta_px[10::step] theta_py = theta_py[10::step] theta_mx = theta_mx[10::step] theta_my = theta_my[10::step] delta_thetax = delta_thetax[10::step] delta_thetay = delta_thetay[10::step] plt.plot(x,y,'rx', markersize = siz, markeredgewidth = 3) plt.plot(theta_px,theta_py,'bs', markersize = siz) plt.plot(theta_mx,theta_my,'bs', markersize = siz) plt.plot(delta_thetax,delta_thetay,'o', color='green') n = np.where(np.array(x) == 6.0)[0][0] plt.plot(x[n],y[n],'rx',markersize = siz * 1.5,markeredgewidth = 4) plt.plot(theta_px[n],theta_py[n],'bs',markersize = siz * 1.5) plt.plot(theta_mx[n],theta_my[n],'bs',markersize = siz * 1.5) plt.plot(delta_thetax[n],delta_thetay[n],'o', color='green',markersize = siz * 1.5) plt.plot(xx,yy,color='black') plt.plot([-60,60],[-10*ThetaE*umin ,10 * ThetaE*umin ], '--', color = 'black', dashes=[10,5]) plt.xlabel(r'$\delta\theta_{x} [\mathrm{mas}]$', fontsize = 30) plt.ylabel(r'$\delta\theta_{y} [\mathrm{mas}]$', fontsize = 30) plt.arrow(13.5,21,2,-1,width = 0.1,head_width = 0.70,head_length = 1,color= 'black', zorder = 100) plt.arrow(6.75,10.75,2,0,width = 0.1,head_width = 0.70,head_length = 1,color= 'red', zorder = 100) plt.arrow(11,18,2,-0.6,width = 0.1,head_width = 0.70,head_length = 1,color= 'blue', zorder = 100) plt.arrow(-1,-5,-2,0.7,width = 0.1,head_width = 0.7,head_length = 1,color= 'green', zorder = 100) plt.arrow(-4,-9,-2,1,width = 0.1,head_width = 0.7,head_length = 1,color= 'blue', zorder = 100) #plt.scatter([0],[0],s = 100, c='k', zorder = 1000) plt.plot([0],[0],'k*',markersize = siz * 2) plt.text(-10,20, '$-$',color = 'blue', fontsize = 50) plt.text(7,-10, '$+$',color = 'blue',fontsize = 50) plt.xticks( fontsize = 25) plt.yticks( fontsize = 25) fig.savefig(imagepath + string + '.png') if paperpath is not None: fig.savefig(paperpath+ string + '.png') print('Create Image: '+ imagepath+ string + '.png') def create_all_Image(): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' # code to create all images in default mode at once for j in range(1,-1,-1): dark(j) for i in __all__: #loop over all functions in this code if 'Image_' in i: exec(i+'()') if __name__ == '__main__': create_all_Image() ``` #### File: jkluter/MLG/name.py ```python import numpy as np __all__ = ['name'] def name(event_id, no_name = True, silent = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' event_id = np.int64(event_id) where = np.where(namelist['ID'] == event_id)[0] if len(where)== 0: if not silent:print('Not in list:', event_id) if no_name: return 'DR2: '+ str(event_id) else: return '' if len(where)==1: if namelist[where[0]]['Name'] == '' : if no_name: return 'DR2: '+ str(event_id) else: return '' else: return namelist[where[0]]['Name'] if len(where)>1: if not silent:print('douplikat:', event_id) return namelist[where[0]]['Name'] def name_good(event_id, silent = False): '''------------------------------------------------------------ Description: --------------------------------------------------------------- Input: --------------------------------------------------------------- Output: ------------------------------------------------------------''' event_id = np.int64(event_id) where = np.where(namelist['ID'] == event_id)[0] if len(where)== 0: return True elif len(where)==1: return bool(namelist[where[0]]['Good']) print(1) elif len(where)>1: if not silent:print('douplikat:', event_id) return namelist[where[0]]['Good'] return True namelist = np.array([ (5853498713160606720, '<NAME>', True), (1872046574983497216, '61 C<NAME>', True), (5332606522595645952, 'LAWD 37', True), (1872046574983507456, '61 Cyg A', True), (5254061535097566848, 'L 143-23', True), (4516199240734836608, 'Ross 733', True), (4472832130942575872, "Barnard's star" , True), (5951824121022278144, 'GJ 674', True), (5339892367683264384, "Innes' star", True), (470826482635701376, '<NAME> B', True), (6710522912622915712, 'UCAC3 86-396928', True), (1543076475514008064, 'G 123-61B', True), (5696640563228494464, 'WT 1550', True), (1964791583368232832, 'tau Cyg A', True), (4687445500635789184, 'OGLE SMC115.5 319', True), (1978296747258230912, 'LSPM J2129+4720', True), (2315857227976341504, 'HD 2404', True), (429297924157113856, 'G 217-32', True), (1157210463244589568, 'G 15-11', True), (2390377345808152832, 'HD 222506', True), (1935209944575937024, 'UCAC4 677-123934', True), (4793869292650732160, 'UPM J0537-4924', True), (6677000246203170944, 'HD 197484', True), (4687511776265158400, 'L 51-47', True), (5492622847798742272, 'L 240-16', True), (1543076475509704192, 'G 123-61A', True), (4544176352376541312, 'LP 506-50 A', True), (6522256697697129600, 'LEHPM 6274', True), (4529285391522200320, '109 Her', True), (6128259487711387008, 'L 328-36', True), (6585158207436506368, 'HD 207450', True), (5309386791195469824, 'HD 85228', True), (1961141200470502400, 'LSPM J2154+4344', True), (3347284175186268160, 'UCAC4 527-018168', True), (5396870945686245504, 'HD 97073', True), (5902780301768699392, 'HD 136466A', True), (3398414352092062720, 'G 100-35B', True), (4924486979061864832, 'CD-53 40', True), (4657982643495556608, 'OGLE LMC162.5 41235', True), (577478114092768384, 'G 114-33', True), (6368299918479525632, 'UCAC3 27-74415', True), (6036143915373978880, 'HD 144179A', True), (5225957639881367552, 'L 66-82', True), (5921433963191695872, 'LAWD 68', True), (4623882630333283328, 'L 31-84', True), (5559827605531610240, 'CD-43 3055', True), (2534338503471881728, 'G 70-55A', True), (2846620421603149312, 'G 129-51', True), (5302618648583292800, 'PM J08503-5848', True), (4451575895403432064, 'G 16-29', True), (5930568598406530048, 'HD 149192', True), (3763681215875388288, 'G 163-21', True), (4116840541184279296, 'L 702-43', True), (2759428629829608064, 'G 29-73', True), (5736464668224470400, 'L 820-19', True), (2912585037597833856, 'LP 838-28 A', True), (5235714289453482240, 'L 103-12', True), (1382796061323905024, 'TYC 3064-1282-1', True), (546488928621555328, 'G 245-47A', True), (6213824650812054528, 'LP 859-51', True), (5134154157033028352, 'LP 828-36', True), (2790883634570755968, 'LP 350-66', True), (5600272625752039296, 'L 601-78', True), (6874112547575038336, 'LP 814-25', True), (6549824370485770112, 'UCAC4 260-200149', True), (5608893346278863616, 'LP 896-12 A', True), (4056233810947522304, 'HD 316899', True), (654826970401335296, 'HD 66553', True), (6054954738289909632, 'HD 108500A', True), (4149572555606973568, 'LP 748-33', True), (2826159850241446784, 'HD 222474A', True), (2358524597030794112, 'V* YZ Cet', True), (1875076004382831616, 'BD+21 4747A', True), (6415630939116638464, 'EC 19249-7343', True), (1444367711752056960, 'LP 379-98', True), (1625058605098521600, 'HD 146868', True), (239070631455336064, 'BD+39 710A', True), (568432427635050240, 'G 245-68', True), (4937000898855759104, 'GJ 86', False), (5032229910174557056, 'HD 5425A', True), (2870877194301321088, 'TYC 2752-1121-1', True), (6916644779774493696, 'LP 636-60', True), (5359745012164917632, 'L 250-10', True), (2646280705713202816, 'BD+00 5017', True), (5243594081269535872, 'L 100-115', True), (5429919108417092096, 'LP 462-88', True), (5979367986779538432, 'CD-32 12693', True), (4041006743145526656, 'LP 486-32', True), (835871554301614848, 'LSPM J1047+5016', True), (5895473600324039680, 'L 260-120', True), (3585636855608873984, 'HD 102392A', True), (4228023259961831296, 'HD 197623', True), (101283987497967360, 'HD 13482A', True), (5393446658454453632, 'DENIS J1048.0-3956', True), (3842095911266162432, 'HD 78663', True), (4198685678421509376, 'HD 177758', True), (643819484616249984, 'mu. Leo', True), (4786715182805934592, 'HD 30361A', True), (4269932382606282112, 'eta Ser', True), (5941940988948890112, 'HD 330763A', True), (6031475835680030720, 'L 555-14', True), (1568219729458240128, 'HD 110833', True), (1015799283499485440, 'HD 77006', True), (3202470247468181632, 'BD-06 855', True), (488099359330834432, 'HD 22399', True), (1251328585567327744, 'HD 120065', True), (962141157557751552, 'G 101-35', True), (416158489625704320, 'G 172-11', True), (1962597885872344704, 'BD+43 4138', True), (4361365433110271232, 'HD 156826', True), (1817982759302341376, 'HD 347427', True), (2937651222655480832, 'HD 44573', True), (5657306462454704640, 'HD 85725', True), (4780100658292046592, 'L 230-188', True), (5941478335062267392, 'L 338-152', True), (6254033894120917760, 'L 768-119', True), (6209995700348976896, 'LP 915-41', True), (1136512191212093440, 'G 251-35', True), (5650153825784353280, 'HD 78643', True), (5413531987125139712, 'PM J10195-4622', True), (2028065934962125184, 'Ross 165A', True), (6787883382523590400, 'HD 201989', True), (3934198156329809152, 'HD 110315', True), (4657193606465368704, 'HD 39194', True), (598180646733241216, 'G 46-2', True), (5801950515627094400, 'HD 155918', True), (829777377964973952, 'HD 92855', True), (5856411869205581568, 'HD 109200', True), (466294295706341760, 'HD 18757', True), (533621859441169920, 'Ross 318', True), (4535144998232287232, 'HD 171314', True), (5534742080239458048, 'HD 66020', True), (5849427049801267200, 'HD 124584', True), (4293318823182081408, 'HD 180617', True), (1193030490492925824, 'gam Ser', True), (689004018040211072, '75 Cnc', True) ], dtype=[('ID','i8'),('Name','U25'), ('Good',bool)]) ``` #### File: MLG/Simulation/MonteCarlo.py ```python from MLG import path,default_table, message_folder, Version,Subversion from MLG.Simulation import RawData from MLG.Simulation import RealData from MLG.Modeling import fitting_micro , fitting_motion from MLG.Math import percentile from joblib import Parallel, delayed import numpy as np import time import pickle import datetime import glob import os __all__ = ['StartMC','loadPkl', 'calcParallel'] def StartMC(EventList, namelist = None, keywords = {}, **kwargs): '''------------------------------------------------------------ Description: This Function distribute the calculation for the MonteCarlo simulation on multiple CPU_Cores and stors the results in an PKL file uses the joblib package for parallel computing --------------------------------------------------------------- Input: EventList: String of the input table or List of Lens source paris for each event or MC_results for vary the mass also namelist: List of names for each event (for ploting routine, if None use of the index) --------------------------------------------------------------- Output: MC_result: Dictnary of the results. Contains: 'Header': List of all control imputs, and Code Version 'Results': List of the fit parameters 'Input_parameter': List of the input parameters 'Results_ext_obs': List of the fit parameters with external_obs if ext_obs > 0 'Chi2': List of the reduced CHI2 'Eventlist': (see Input) 'Names': (see Input) ------------------------------------------------------------''' #-------------------------------------------------------------- #Update controle keywords keywords.update(kwargs) num_core = keywords.get('num_core', 6) # Number of cores instring = keywords.get('instring', '') # string for the save files message = keywords.get('message', False) # write the process of the computation to an file DR3 = keywords.get('DR3', False) # Use of the Data of DR3 only extended = keywords.get('extended', False) # Use of the 10 years data of the extended mission vary_eta = keywords.get('vary_eta', False) # Use an new scaninglaw for 2020.5-2024.5 ext_obs = keywords.get('ext_obs', False) # include external observations n_error_picks = keywords.get('n_error_picks', 500) # Number of pickt Observation from the error ellips n_par_picks = keywords.get('n_par_picks', 1) # Number of pickt input Parameters from the error ellips namelist = keywords.get('namelist', namelist) # Check if namelist is given in the keyword dictionary #-------------------------------------------------------------- #-------------------------------------------------------------- #Create random seeds for the calculation seed = [] for i in range(num_core): seed.append((int(time.time()*10**9))**4 %4294967295) keywords['seed']=seed #-------------------------------------------------------------- #-------------------------------------------------------------- #Load Table if EventList is an string if isinstance(EventList, str) == True: if EventList == '': EventList,_ = RealData.loadRealData(default_table) else: EventList,_ = RealData.loadRealData(EventList) #-------------------------------------------------------------- #-------------------------------------------------------------- # start calculations with varing the mass if a dict is given if isinstance(EventList, dict) == True: print('vary mass') #-------------------------------------------------------------- # extract lists from Dictionary MC_Results = EventList res_all_events = MC_Results['Results'] par_all_events = MC_Results['Input_parameter'] EventList = MC_Results['Eventlist'] namelist = MC_Results['Names'] header = MC_Results['Header'] #-------------------------------------------------------------- #-------------------------------------------------------------- # only consider the events with an error < 100% EventList = [EventList[i] for i in range(len(res_all_events)) \ if (percentile(res_all_events[i][:,0])[0]> 0)] if namelist is None: namelist_good = None else: namelist_good = [namelist[i] for i in range(len(res_all_events)) \ if (percentile(res_all_events[i][:,0])[0]> 0)] #-------------------------------------------------------------- #-------------------------------------------------------------- # update control keywords keywords['Good']=True # indication calculation of the good events only goodstr = 'Good_' # string for indication calculation of the good events only keywords['vary_par']=5 # vary all parameters n_error_picks = keywords.get('n_error_picks', 500) #check if value is given in keywords else set to defaut keywords['n_par_picks']=n_par_picks n_par_picks = keywords.get('n_par_picks', 100) #check if value is given in keywords else set to defaut keywords['n_error_picks']=n_error_picks #-------------------------------------------------------------- #-------------------------------------------------------------- # start first calculation elif isinstance(EventList, list) == True: #-------------------------------------------------------------- # update control keywords keywords['n_par_picks']=n_par_picks # Update keyword keywords['n_error_picks']=n_error_picks # Update keyword keywords['vary_par']=keywords.get('vary_par', 1) # vary only non given parameters keywords['Good']=False # indication calculation of the good events only goodstr='' #-------------------------------------------------------------- #-------------------------------------------------------------- #set default namelist to integer (not comparable within different inputs) if namelist == None: namelist == [str(i) for i in range(len(EventList))] #-------------------------------------------------------------- #-------------------------------------------------------------- # exclude different filetypes else: print ('Input Error!') return #-------------------------------------------------------------- #-------------------------------------------------------------- # create header if instring is not '': instring = instring + '_' if DR3: #use only events before 2019.5 for DR3 EventList = [EventList[kkk] for kkk in range(len(EventList)) if EventList[kkk][0].getTca() < 2019.5 ] header = len(EventList),3,n_error_picks,n_par_picks, keywords,Version+'.'+Subversion elif extended or vary_eta or ext_obs: #use the data of the extended mission header = len(EventList),10,n_error_picks,n_par_picks,keywords, Version+'.'+Subversion else: header = len(EventList),5,n_error_picks,n_par_picks,keywords, Version+'.'+Subversion print(time.ctime()) print(header) #-------------------------------------------------------------- #-------------------------------------------------------------- # Distribute on different cores num_events = len(EventList) events_per_core = num_events/num_core #calculation of multiple events (proxima centauri tend to take as much computation time as all other events) if len(EventList[0]) > 10 and num_core > 2: events_per_core = (num_events-1)/(num_core -1) for core in range(num_core): partstring = path+'Simulation/evpart/eventlist_'+goodstr+instring+'part_%i.pkl' % core if core == 0: f = open(partstring, 'wb') pickle.dump([EventList[0],], f) f.close() elif core == num_core -1: f = open(partstring, 'wb') pickle.dump(EventList[1 + round(events_per_core * (core - 1)):], f) f.close() else: f = open(partstring, 'wb') pickle.dump(EventList[1 + round(events_per_core * (core - 1)) : 1 + round(events_per_core * (core))], f) f.close() #distribute events equaly else: for core in range(num_core): partstring = path+'Simulation/evpart/eventlist_'+goodstr+instring+'part_%i.pkl' % core if core == num_core -1: f = open(partstring, 'wb') pickle.dump(EventList[round(events_per_core * core):], f) f.close() else: f = open(partstring, 'wb') pickle.dump(EventList[round(events_per_core * core) : round(events_per_core * (core + 1))], f) f.close() #-------------------------------------------------------------- #-------------------------------------------------------------- #start calculations parallel if num_core != 1: res_par = Parallel(n_jobs=num_core)(delayed(calcParallel)(i,instring, keywords) for i in range(num_core)) else: res_par = [calcParallel(0,instring, keywords),] #-------------------------------------------------------------- #-------------------------------------------------------------- #merge the results for the parallel computations res_all_events = [] par_all_events = [] res_no_ML_events = [] chi2_events = [] for res_par_core in res_par: for par_event in res_par_core[1]: par_all_events.append(par_event) for res_event in res_par_core[0]: res_all_events.append(res_event) for res_no_event in res_par_core[2]: res_no_ML_events.append(res_no_event) for res_no_event in res_par_core[3]: chi2_events.append(res_no_event) if ext_obs: MC_Results = {'Header': header,'Results':res_all_events,'Input_parameter':par_all_events,\ 'Results_ext_obs':res_no_ML_events, 'Chi2':chi2_events,'Eventlist':EventList,'Names':namelist} else: MC_Results = {'Header': header,'Results':res_all_events,'Input_parameter':par_all_events,\ 'Results_no_ML':res_no_ML_events, 'Chi2':chi2_events,'Eventlist':EventList,'Names':namelist} #-------------------------------------------------------------- #-------------------------------------------------------------- # save results as pkl file string = path + 'Data/MC'+goodstr[:-1] +'_'+ instring + datetime.datetime.today().strftime('%d-%m-%Y')\ + '_%.f_%.f_%.f_%.f.pkl' % (header[:4]) f = open(string, 'wb') pickle.dump(MC_Results, f) print(string) if message: os.system('cp ' + string + ' ' + message_folder) return MC_Results def loadPkl(filename = '',Good = False, extended = False, n_error_picks = False, n_par_picks=False): '''------------------------------------------------------------ Load the MC_results PKL files () --------------------------------------------------------------- Input: filename: filename expected in the MLG/Data Folder --------------------------------------------------------------- Output: MC_Results: Dictonary containg results from StartMC ------------------------------------------------------------''' if len(glob.glob(filename)) == 0: if Good: good = 'Good' else: good = '' if extended: ex = string(extended) + '_' else: ex = '*_' if n_error_picks: er = string(extended) + '_' else: er = '*_' if n_par_picks: pa = string(extended) + '.pkl' else: pa = '*.pkl' gstring= (path + 'Data/MC' + good + '*_' + ex + er + pa) g = glob.glob(gstring) string = g[-1] if filename != '': if len(glob.glob(path + 'Data/' + filename)) == 0: print('File not found! Using standard file') else: string = glob.glob(path + 'Data/' + filename)[0] else: print('Using standard file') else: string = glob.glob(filename)[0] print(string) f = open(string,'rb') pkl = pickle.load(f) f.close() if isinstance(pkl,dict): #from Version 3.1 if 'Results_comp' in pkl.keys(): pkl['Results_ext_obs'] = pkl.pop('Results') pkl['Results'] = pkl.pop('Results_comp') MC_Results = pkl else: #until Version 3.1 if len(pkl) == 6: chi2_events = None EventList, res_all_events, par_all_events,res_no_ML_events,namelist,header = pkl try: par_all_events[0].x print(1) except AttributeError: pass else: qq = par_all_events par_all_events = res_no_ML_events res_no_ML_events = par_all_events elif len(pkl) == 7: EventList, res_all_events, par_all_events,res_no_ML_events,\ chi2_events,namelist,header = pkl try: par_all_events[0].x print(1) except AttributeError: pass else: qq = par_all_events par_all_events = res_no_ML_events res_no_ML_events = qq # Transform format to 3.1 MC_Results = {'Header': header,'Results':res_all_events,'Input_parameter':par_all_events,\ 'Results_no_ML':res_no_ML_events, 'Chi2':chi2_events,'Eventlist':EventList,'Names':namelist} return MC_Results def calcParallel(part, instring, keywords = {} ,**kwargs): '''------------------------------------------------------------ Description: creats sets of observations for a part of the Eventlist and fits the data --------------------------------------------------------------- Input: part: which part of the EventList instring: file string of the EventList keywords/kwargs: setup values for the simulation (see below) --------------------------------------------------------------- Output: res_part: results of the individual fits (contains a separate list for each events) par_part: Inputparameters of the indiciual fits (contains a separate list for each events) res_no_ML: result without microlensing chi2_red_part: Chi2 values of the individual fits (contains a separate list for each events) ------------------------------------------------------------''' #--------------------------------------------------------------- #extract keywords keywords.update(kwargs) seed = keywords.get('seed', None) # seed's for the randomised process Good = keywords.get('Good', False) # Second loop with variation of the mass extended = keywords.get('extended', False) # Use of the data for extended Mission ext_obs = keywords.get('ext_obs', False) # ext_obs include external observations DR3 = keywords.get('DR3', False) # Use of the data for DR3 only exact = keywords.get('exact', False) # Use the exact astrometric shift or the approximation n_error_picks= keywords.get('n_error_picks', 500) # number of picks from the error elips of the measurements n_par_picks = keywords.get('n_par_picks', 1) # number of different picks of input parameters vary_par = keywords.get('vary_par', 1) # which parameters should be varied for n_par_picks prefit_motion= keywords.get('prefit_motion', False) # fit the propermotion with out microlensing as preput vary_eta = keywords.get('vary_eta', False) #Use data while vary eta onlysource = keywords.get('onlysource', False) # use the data of the source only timer = keywords.get('timer', False) # print computing-time for different steps message = keywords.get('message', False) # save messeage file for keeping track of the process silent = keywords.get('silent', True) # boolen if information shoul not be printed #--------------------------------------------------------------- #--------------------------------------------------------------- # computationtime tracker cputt = [0.,0.,0.,0.,0.,0.,0] cputt[0] -= time.time() # update seed for the randomised process if seed is not None: np.random.seed(seed[part]) #--------------------------------------------------------------- #--------------------------------------------------------------- # initilise arrays for storing the results # fit results res_part = [] # fit results without microlensing res_no_ML = [] # input parameters par_part = [] # Chi2_reduced value chi2_red_part = [] chi2_red_mot_part = [] #--------------------------------------------------------------- #--------------------------------------------------------------- # load part of the Eventlist if Good: partstring = path+'Simulation/evpart/eventlist_Good_'+instring+'part_%i.pkl' % part f = open(partstring,'rb') EventList = pickle.load(f) f.close os.remove(path+'Simulation/evpart/eventlist_Good_'+instring+'part_%i.pkl' % part) else: partstring = path+'Simulation/evpart/eventlist_'+instring+'part_%i.pkl' % part f = open(partstring,'rb') EventList = pickle.load(f) f.close os.remove(path+'Simulation/evpart/eventlist_'+instring+'part_%i.pkl' % part) cputt[0] += time.time() #--------------------------------------------------------------- for i1 in range(len(EventList)): #--------------------------------------------------------------- # updat process tracker if message: os.system('touch %s.%s-%s-0.message'%(message_folder+instring[:-1],part,i1)) #--------------------------------------------------------------- cputt[1] -= time.time() #--------------------------------------------------------------- # initilise list for each event # fit results res_single = [] res_external_obs = [] #for comparison (test) # input parameters par_single = [] # Observations (for fitting without microlensing) Obs_save = [] # Chi2_reduced value chi2_red_single = [] #--------------------------------------------------------------- #get Stars Stars = EventList[i1] #--------------------------------------------------------------- # create observations from real scanning law RealObs = RealData.getRealObs(Stars[0],Stars[1],**keywords) Data = RawData.Data(Stars,*RealObs,**keywords) Obs,Starnumber,Epoch,Obs_err, sc_scandir = Data.Observations(**keywords) #--------------------------------------------------------------- cputt[1] += time.time() for i2 in range(n_par_picks): #loop over each set of differen input parameters par = Data.par[i2] for i3 in range(n_error_picks): #loop over each set of differen picks from the error ellips of the Observation cputt[6] = -time.time() cputt[2] -= time.time() # include outliers 5% chance if ext_obs: outliers = np.random.uniform(0,1,len(Starnumber[i2])) outliers[-4*ext_obs:] = 1 #keep the external observations n = np.where(outliers > 0.05) else: n = np.where(np.random.uniform(0,1,len(Starnumber[i2])) > 0.05) #--------------------------------------------------------------- # get the right set of observations Obs_i = Obs[i2][i3][n] if len(Obs_i) < 11+4*ext_obs: # not enought observation re = -999* np.ones(len(Stars)*5+1) res_single.append(re) chi2_red_single.append(-999.) par_single.append(par) cputt[2] += time.time() res_external_obs.append(re) else: # get the right set of observations # (identical within each set of input parameters) Starnumber_i = Starnumber[i2][n] Epoch_i = Epoch[i2][n] Obs_err_i = Obs_err[i2][n] sc_scandir_i = sc_scandir[i2][n] #--------------------------------------------------------------- #--------------------------------------------------------------- #compare with external observations (test) if ext_obs: res_ext= fitting_micro.Fit_Micro(Obs_i,Starnumber_i,Epoch_i,Obs_err_i, sc_scandir_i,\ bounds = True, **keywords) res_external_obs.append(res_ext.x) # remove external observations Obs_i=Obs_i[:-4*ext_obs] Obs_err_i = Obs_err_i[:-4*ext_obs] Starnumber_i = Starnumber_i[:-4*ext_obs] Epoch_i = Epoch_i[:-4*ext_obs] sc_scandir_i = sc_scandir_i[:-4*ext_obs] #--------------------------------------------------------------- #--------------------------------------------------------------- # store observations Obs_save.append([Obs_i, Starnumber_i,Epoch_i, Obs_err_i, sc_scandir_i]) cputt[2] += time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- # Fit model to the observational data cputt[3] -= time.time() res= fitting_micro.Fit_Micro(Obs_i,Starnumber_i,Epoch_i,Obs_err_i, sc_scandir_i,\ bounds = True, **keywords) cputt[3] -= time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- #store results cputt[4] -= time.time() if len(res.x) != len(Stars)*5+1: #Check if all stars have observations re = -999* np.ones(len(Stars)*5+1) re[:len(res.x)] = res.x re[len(res.x):] = None if len(res.x) == 6 : re[0] = -999 res_single.append(re) else: res_single.append(res.x) chi2_red_single.append(res.cost * 2 / (len(res.fun) - 11)) par_single.append(par) cputt[4] += time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- #print computing time (for optimisation) if timer: if not (i3 % 100): cputt[5] += time.time() print('Part %i-%i Step %i %.2f' % (part,i1,i3,cputt[6])) if time.time() - ti > 10: return 0 #--------------------------------------------------------------- #--------------------------------------------------------------- # updat process tracker if message: os.system('mv %s.%s-%s-%s.message %s.%s-%s-%s.message'%\ (message_folder + instring[:-1], part, i1, i2,\ message_folder + instring[:-1], part, i1, i2+1)) #--------------------------------------------------------------- if not silent: print(i3, time.time() - ti) #--------------------------------------------------------------- # sort results cputt[5] -= time.time() res_single = np.stack(res_single) res_part.append(res_single) par_single = np.stack(par_single) par_part.append(par_single) chi2_red_single = np.stack(chi2_red_single) chi2_red_part.append(chi2_red_single) #--------------------------------------------------------------- #compare without external observations (test) if ext_obs: res_external_obs = np.stack(res_external_obs) res_no_ML.append(res_external_obs) #--------------------------------------------------------------- #--------------------------------------------------------------- # fit mean result also without microlensing if len(res_single[:,0]) > 1: if ext_obs: chi2_red_micro_best = 0 chi2_red_motion = 0 else: p50 = percentile(res_single[:,0])[1] if p50 == -999: chi2_red_mot_part.append(-999) chi2_red_micro_best = -999 res_no_ML.append(-999*np.ones(5*len(Stars))) chi2_red_motion = -999 else: best = np.where(res_single[:,0] == p50)[0][0] res_motion = fitting_motion.Fit_Motion(*Obs_save[best],**keywords) res_no_ML.append(res_motion.x) chi2_red_micro_best = chi2_red_single[best] chi2_red_motion= res_motion.cost * 2 / (len(Obs_save[best][1]) - 10) chi2_red_mot_part.append(chi2_red_motion) cputt[5] += time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- # print computing time (for optimisation) if timer: print('MC %.0f-%.0f: %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f' % (part,i1,*tuple(cputt))) #--------------------------------------------------------------- else: #--------------------------------------------------------------- # print statistics if len(res_single[:,0]) > 1: print('%.0f-%.0f: %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %.3f, %s'\ % (part,i1, Stars[0].mass,*percentile(res_single[:,0]), chi2_red_micro_best,chi2_red_motion, time.ctime().split(' ')[3])) #--------------------------------------------------------------- if not silent: print('Part {} done!'.format(part)) #--------------------------------------------------------------- # updat process tracker if message: os.system('rm %s.%s*.message'%(message_folder+instring[:-1],part)) os.system('touch %s.%s.Done.message'%(message_folder+instring[:-1],part)) #--------------------------------------------------------------- return res_part, par_part, res_no_ML,chi2_red_part ``` #### File: MLG/Simulation/RawData.py ```python import numpy as np from MLG.Math import dist, dist_scandir,cosdeg,sindeg,sinmas,cosmas, unitFac from MLG.StellarMotion import getSun,t_0,stars_position_micro import time __all__ = ['Star','Data','sigmaGaia', 'resolvable', 'MassGmag'] class Star(object): '''--------------------------------------------------------------- Defines a star object with position in deg, proper motion in mas/yr parallax in mas Gmag Source_ID mass in M_sun epoch of the closest aproach in Julian Year ---------------------------------------------------------------''' def __init__(self,pos,pos_err,pm,pm_err,px,px_err, Gmag, mass = 0,mass_err = 0, id = -1, unit_pos = 'deg',unit_pos_err = 'mas', unit_pm = 'mas/yr', unit_px = 'mas',tca = -1, eta = 0): '''--------------------------------------------------------------- initialise the Star ------------------------------------------------------------------ Input: pos: position vector [ra,dec] pos_error: error of the position vector [ra_err,dec_err] pm: propermotion vector: [pmra,pmdec] pm_err: error of the propermotion vector [ra_err,dec_err] px: parallax px_err: error of the parallax Gmag: Magnitude of the Star mass: Mass of the lens mass_err: error of the mass id: source_id unit_pos: unit of the given position unit_pos_err: unit of the given error of the position unit_pm: unit of the given propermotion unit_px: unit of the given parallax tca: epoach of the closest approach eta: value to store eta ---------------------------------------------------------------''' self.unit = ['deg','mas/yr','mas','mas'] self.alpha = pos[0] * unitFac(unit_pos,'deg') self.delta = pos[1] * unitFac(unit_pos,'deg') self.alpha_err = pos_err[0] * unitFac(unit_pos_err,'mas') self.delta_err = pos_err[1] * unitFac(unit_pos_err,'mas') self.pmalpha = pm[0] * unitFac(unit_pm,'mas/yr') self.pmdelta = pm[1] * unitFac(unit_pm,'mas/yr') self.pmalpha_err = pm_err[0] * unitFac(unit_pm,'mas/yr') self.pmdelta_err = pm_err[1] * unitFac(unit_pm,'mas/yr') self.px = px * unitFac(unit_pm,'mas') self.px_err = px_err * unitFac(unit_pm,'mas') self.Gmag = Gmag if mass < 0: # use an random value for m self.mass = np.random.uniform(0.07,1.5) self.mass_err = 0.1*self.mass else: self.mass = mass if mass_err == 0 : self.mass_err = 0.1 * mass # use an 10 % error else: self.mass_err = mass_err self.id = id self.tca = tca self.eta = eta def getParameters(self, vary_par = 0, **kwargs ): '''--------------------------------------------------------------- returns mass of the lens and the astrometric parameter including variation in the error Input: vary_par == 0: return the original values vary_par == 1: returns the original values + a pm,px from the typical distribution if pm + px is unknown vary_par == 2: returns the o vary_par == 3: returns random mass from the error distrbution + orignal astrometric parameters vary_par == 4: returns random mass from the error distrbution + orignal astrometric parameters + random pm,px from the typical distribution if pm + px is unknown vary_par == 5: returns random pics from the error distrbution ---------------------------------------------------------------''' #vary the mass if vary_par > 2 and self.mass_err > 0: mass = np.random.normal(self.mass, self.mass_err) else: mass = self.mass #vary all astrometric parameters if vary_par % 3 == 2: alpha_r = np.random.normal(self.alpha, self.alpha_err * unitFac(self.unit[3],self.unit[0])) delta_r = np.random.normal(self.delta, self.delta_err * unitFac(self.unit[3],self.unit[0])) if self.pmalpha != 0: pmalpha_r = np.random.normal(self.pmalpha, self.pmalpha_err) pmdelta_r = np.random.normal(self.pmdelta, self.pmdelta_err) px_r = np.random.normal(self.px, self.px_err) else: #pic from a typical distribution pmtot = np.random.normal(5,3) pmdir = np.random.uniform(-np.pi,np.pi) pmalpha_r = pmtot * np.cos(pmdir) pmdelta_r = pmtot * np.sin(pmdir) px_r = np.random.normal(2,1) while px_r <= 0: px_r = np.random.normal(2,1) else: alpha_r = self.alpha delta_r = self.delta if self.pmalpha != 0 or vary_par % 3 == 0: #orignal astrometric parameters pmalpha_r = self.pmalpha pmdelta_r = self.pmdelta px_r = self.px else: #pic from a typical distribution pmtot = np.random.normal(5,3) pmdir = np.random.uniform(-np.pi,np.pi) pmalpha_r = pmtot * np.cos(pmdir) pmdelta_r = pmtot * np.sin(pmdir) px_r = np.random.normal(2,1) while px_r <= 0: px_r = np.random.normal(2,1) return [mass, alpha_r, delta_r, pmalpha_r, pmdelta_r, px_r] def getPos(self,unit='deg'): #returns the 2015.5 position return self.alpha* unitFac('deg',unit),self.delta* unitFac('deg',unit) def getPm(self, unit='mas/yr'): #returns the propermotion return self.pmalpha * unitFac('mas/yr',unit),self.pmdelta * unitFac('mas/yr',unit) def getPx(self, unit='mas'): #returns the parallax try: return self.px * unitFac('mas',unit) except: return self.parallax * unitFac('mas',unit) #old variable name def getMag(self): #returns the G Magnitude return(self.Gmag) def getMass(self): #returns the Mass of the lens return self.mass def getId(self): #returns the Source_id return(self.id) def getTca(self): #returns the epoch of the closest approach return self.tca def getEta(self): #returns eta return(self.eta) class Data(object): '''--------------------------------------------------------------- Stars: List of Stars NumStars: Number of stars Mass_lens: Mass for each observational Data data: [[Star_ID,alpha,delta,Epoch,Scandir, loc, NCCD],...] for each set par: input parameters for each set par: input parameters for each set ---------------------------------------------------------------''' def __init__(self, Stars, Epoch, ScanDir, NCCD, Mass = None,\ out_unit = 'deg', n_par_picks = None, onlysource = False,timer =False, **kwargs): '''--------------------------------------------------------------- Creats simulated sets of noice free observational Data (i.e no observational errors are included) Creats one observation for every source and every epoch (if resolvable) ------------------------------------------------------------------ Input: Stars: vector of 1 lens and multiple source stars Epoch: epoch of observation for the event ScanDir: Position angle of the scan dirrection for each epoch [rad] NCCD: Number of CCD for the observation Mass: mass of the lens out_unit: unit of the observations n_par_picks2: number of different Sets if none return one set 1 if list: [number of differne parameters, number of different masses] onlysource: returns only data of the source timer: print computing time for different steps) **kwargs: vary_par for Star.getParameters exact for StelarMotion.stars_position_micro ext_obs for resolvable ---------------------------------------------------------------''' #compunting-time-tracker cputt = [0,0,0] cputt[0] -= time.time() #----------------------------------------------------------------- # Determine number of different sets if n_par_picks is None: n_par = 1 n_mass = 1 elif isinstance(n_par_picks, list): n_par = n_par_picks[0] n_mass = n_par_picks[1] else: n_mass = n_par_picks n_par= n_par_picks #----------------------------------------------------------------- #----------------------------------------------------------------- #unit of the data and input parameters self.Stars = np.array(Stars) self.unit = [out_unit, *Stars[0].unit] # Number of stars self.NumStars = len(Stars) # setup Data array dat_multi = [] # setup array for multiple sets of input parameters par_multi = np.zeros((n_par,len(Stars) * 5 + 1)) # setup array for G magnitudes Gmag =np.zeros(len(Stars)) for pick in range(n_par): for i in range(len(Stars)): if i == 0: #store parameters of the lens par_multi[pick,0:6] = Stars[i].getParameters(**kwargs) if Mass is not None: par_multi[pick,0] = Mass elif pick%(n_par/n_mass) != 0: par_multi[pick,0] = par_multi[pick-1,0] elif pick == 0: self.Mass_lens = par_multi[pick,0] else: #store parameters of the Sources par_multi[pick,5*i+1 : 5*i+6] = Stars[i].getParameters(**kwargs)[1:] # store Gmagnitude of lens and source if pick == 0: Gmag[i] = Stars[i].getMag() #----------------------------------------------------------------- #----------------------------------------------------------------- #caluclate sin(alpha),cos(alpha),sin(delta),cos(delta) if 'deg' in self.unit[1]: scsc = sindeg(par_multi[0,1]), cosdeg(par_multi[0,1]), sindeg(par_multi[0,2]),\ max(cosdeg(par_multi[0,2]), 1e-16) if 'mas' in self.unit[1]: scsc = sinmas(par_multi[0,2]), cosmas(par_multi[0,1]), sinmas(par_multi[0,2]),\ max(cosmas(par_multi[0,2]), 1e-16) if 'arcsec' in self.unit[1]: scsc = sinmas(par_multi[0,1]/1000), cosmas(par_multi[0,1]/1000), sinmas(par_multi[0,2]/1000),\ max(cosmas(par_multi[0,2]/1000), 1e-16) #----------------------------------------------------------------- cputt[0] += time.time() cputt[1] -= time.time() #----------------------------------------------------------------- # positional shift due to the parallax # calculat position of Lagrange point 2 L2 = getSun(t_0 + Epoch).T # caluate the invers Jacobean for the parallax effect loc = np.repeat(np.stack([(scsc[0] * L2[:,0] - scsc[1] * L2[:,1])\ / max(scsc[3],1e-6),\ scsc[1] * scsc[2] * L2[:,0] + scsc[0] * scsc[2]\ * L2[:,1] - scsc[3] * L2[:,2]]).T.reshape(-1,1,2),self.NumStars,axis = 1) #----------------------------------------------------------------- #----------------------------------------------------------------- # Calculat position for each star # epoch for all Stars Epoch_vec = np.repeat(Epoch.reshape(-1,1),self.NumStars,axis = 1) # identifier for all Stars num = np.arange(self.NumStars) num_vec = np.repeat(num.reshape(1,-1),len(Epoch), axis = 0) # observed position of lens and sources for every parameterpick pos_vec = stars_position_micro(par_multi,num_vec.reshape(-1),Epoch_vec.reshape(-1), loc_vec = loc.reshape(-1,2),scsc = scsc, out_unit = self.unit[0], unit_pos = self.unit[1], unit_pm = self.unit[2], unit_px = self.unit[3], **kwargs) pos_vec = pos_vec.reshape(n_par,-1,self.NumStars,2) #----------------------------------------------------------------- #Translate NCCD and ScanDir into numpy arrays ScanDir= np.array(ScanDir) NCCD = np.array(NCCD) cputt[1] += time.time() cputt[2] -= time.time() #loop over parameter pics for k in range(n_par): #get position for this set of parameters pos_k = pos_vec[k] if onlysource: #return only the observations of the source W = np.ones((len(pos_k),len(Gmag))) W[:,0]=0 else: #check if lens and sources are resolvable which = resolvable(pos_k,Gmag,ScanDir, **kwargs) #store ID,alpha,delta,Epoch,ScanDir, Loc, NCCD for each resolved datapoint dat = np.hstack([which[1].reshape(-1,1),pos_k[which],Epoch[which[0]].reshape(-1,1),\ ScanDir[which[0]].reshape(-1,1),loc[which[0],0,:],NCCD[which[0]].reshape(-1,1)]) dat_multi.append(dat) cputt[2] += time.time() #print computing time if timer: print('RD: %.2f, %.2f, %.2f' % tuple(cputt)) self.data= dat_multi self.par = par_multi def Observations(self, n_error_picks = None, timer = False,**kwargs): '''--------------------------------------------------------------- Description: Creates sets of observations (including noise) from Noise free data ------------------------------------------------------------------ Input: n_error_picks: number of picks from the errorelipse ------------------------------------------------------------------ Output: Obs: list of [alpha,delta] for all Observation StarID: list of StarID's for all Observation Epoch: list of Epochs for all Observation sigAL: list of precision in along-scan dirrection for all Observations sc_ScanDir: list of [sin(ScanDir),cos(ScanDir)] for all Observations ---------------------------------------------------------------''' #compunting-time-tracker cputt = [0,0,0,0] cputt[0] -= time.time() #if isinstance(self.data, list): #combine all datasets dat = np.vstack(self.data) #determine length of each dataset length = np.array([len(i) for i in self.data]) # first Index of each dataset index = np.array([np.sum(length[:i]) for i in range(1,len(self.data))]).astype(int) #else: # dat=self.data if n_error_picks is None: n_error_picks = 1 cputt[0] += time.time() cputt[1]-= time.time() #--------------------------------------------------------------- #get StarID,Epoch ScanDir NCCD for each observation StarID = dat[:,0].astype(int) Epoch = dat[:,3] ScanDir = dat[:,4] NCCD = dat[:,7] #--------------------------------------------------------------- #--------------------------------------------------------------- #calculate accuracy of gaia if self.Stars is None or len(StarID) == 0: #accuracy in along-scan dirrection sigAL = sigmaGaia() * np.ones([len(dat[:,0])]) #set across-scan accuracy to 1 arcsec (is not used for fitting) sigAC = 1000 * np.ones([len(dat[:,0])]) else: #accuracy in along-scan dirrection sigAL = sigmaGaia_np(self.Stars[StarID])/np.sqrt(NCCD) #set across-scan accuracy to 1 arcsec (is not used for fitting) sigAC = 1000 * np.ones([len(dat[:,0])]) #--------------------------------------------------------------- #--------------------------------------------------------------- #create multidimensional random valu from gaussian distribution rand = np.random.normal(0,1,len(dat)*2*n_error_picks).reshape(n_error_picks,-1, 1,2) cputt[1] += time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- #Transform into alpha-delta for each observation cputt[2] -= time.time() co = np.cos(ScanDir) si = np.sin(ScanDir) sc_ScanDir = np.vstack([si,co]).T cd = cosdeg(dat[:,2]) trans = np.zeros((1,len(dat),2,2)) trans[0,:,0,0] = sigAL * si/cd/3.6e6 trans[0,:,0,1] = - sigAC * co/cd/3.6e6 trans[0,:,1,0] = co*sigAL/3.6e6 trans[0,:,1,1] = si*sigAC/3.6e6 Obs = np.sum(trans*rand,3) + dat[:,1:3] cputt[2] += time.time() #--------------------------------------------------------------- #--------------------------------------------------------------- # order output cputt[3] -= time.time() #if isinstance(self.data, list): Obs = np.split(Obs,index, axis = 1) StarID = np.split(StarID,index) Epoch =np.split(Epoch,index) sigAL = np.split(sigAL,index) sc_ScanDir = np.split(sc_ScanDir,index) cputt[3] += time.time() #--------------------------------------------------------------- if timer: print('OB: %.4f,%.4f,%.4f,%.4f' % tuple(cputt)) return Obs,StarID,Epoch, sigAL, sc_ScanDir def sigmaGaia(Stars=None, Gmag = None): '''--------------------------------------------------------------- Calculate Gaias accuracy in along scan direction from G magnitud ------------------------------------------------------------------ Input: Stars: Star Object Gmag: apparent G magnitude (only if Stars == None) ------------------------------------------------------------------ Output: sigmaCCD: Sigma in alongscan direction for one CCD observation in mas ---------------------------------------------------------------''' if Stars is None: if Gmag is not None: z = 10 ** (0.4 * (np.maximum(Gmag, 14) - 15)) sigmaCCD =((-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75+0.1) else: return 1 else: z = 10 ** (0.4 * (np.maximum(Stars.getMag(), 12) - 15)) sigmaCCD =((-1.631 + 680.766 * z + 32.732 * z**2)**0.5/1000 *7.75+0.1) return sigmaCCD sigmaGaia_np = np.vectorize(sigmaGaia) def resolvable(pos_vec, Gmag , ScanDir, ext_obs = False,**kwargs): ''' --------------------------------------------------------------- checks if two or more stars are within one readout window Input pos_vec: position for each star and each observation Gmag: G Magnitude of the Stars ScanDir: Position angle of the scan direction for each observation ext_obs: external observations: exclude the last 2*n data points from checking ------------------------------------------------------------------ Output Indicees for resolvabel observation ---------------------------------------------------------------''' #----------------------------------------------------------------- # limits for the allong-scan and crosscan dirrections direction AL_lim= 59*6 *np.ones(len(Gmag)) AL_lim[np.where(Gmag < 13)] = 59*9 # bright sources hav an larger readout window AC_lim= 177*6 *np.ones(len(Gmag)) Lim = np.vstack([AL_lim,AC_lim]).T #----------------------------------------------------------------- unitfactor = 3.6e6 #translate deg to mas #----------------------------------------------------------------- if len(pos_vec.shape) == 3: # check if multiple observations are given #split pos to ra and dec ra = pos_vec[:,:,0] dec = pos_vec[:,:,1] Gmag = np.repeat([Gmag],len(ra),axis = 0) # repeat Gmag for each observation # [sin cos] and [cos -sin] of the scan dirrection sc_scandir = np.array([np.sin(ScanDir),np.cos(ScanDir)]).T cs_scandir = np.array([np.cos(ScanDir),-np.sin(ScanDir)]).T #Check if all other stars are outside of therir readout window Window = np.sum(np.floor(np.abs(((np.repeat(ra.reshape(len(ra),-1,1,1),len(ra[0]),axis = 2)\ - np.repeat(ra.reshape(len(ra),1,-1,1),len(ra[0]),axis = 1))\ *sc_scandir.reshape(-1,1,1,2) * np.cos(dec[:,0]).reshape(-1,1,1,1)\ +(np.repeat(dec.reshape(len(dec),-1,1,1),len(dec[0]),axis = 2) \ - np.repeat(dec.reshape(len(dec),1,-1,1),len(dec[0]),axis = 1))\ *cs_scandir.reshape(-1,1,1,2))*unitfactor/Lim.reshape(1,1,-1,2))),axis =3) # Check if on star is brighter than the other CompG = np.maximum(np.repeat(Gmag.reshape(len(ra),1,-1),len(ra[0]),axis = 1) \ - np.repeat(Gmag.reshape(len(ra),-1,1),len(ra[0]),axis = 2) -1, 0) # Identity matrix to avoid comparison with itself I = np.repeat([np.eye(len(ra[0]))],len(ra), axis = 0) for i in range(0,2 * ext_obs): I[-i-1] = np.ones(len(ra[0])) resolve = np.prod(Window+CompG+I, axis = 2) #exclude observation if all are False else: #only one observation is given #split pos to ra and dec ra = pos_vec[:,1] dec = pos_vec[:,1] # [sin cos] and [cos -sin] of the scan dirrection sc_scandir = [np.sin(scandir),np.cos(scandir)] cs_scandir = [np.cos(scandir),-np.sin(scandir)] #Check if all other stars are outside of therir readout window Window = np.sum(np.floor(np.abs(((np.repeat(ra.reshape(-1,1,1),len(ra),axis = 1) \ - np.repeat(ra.reshape(1,-1,1),len(ra),axis = 0)) * np.cos(dec[0])*sc_scandir\ + (np.repeat(dec.reshape(-1,1,1),len(ra),axis = 1 ) \ - np.repeat(dec.reshape(1,-1,1),len(ra),axis = 0)) * cs_scandir)*unitfactor/Lim)),\ axis =2) # Check if on star is brighter than the other CompG = np.maximum(np.repeat(Gmag.reshape(1,-1),len(ra),axis = 0) \ - np.repeat(Gmag.reshape(-1,1),len(ra),axis = 1) -1, 0) # Identity matrix to avoid comparison with itself I = np.eye(len(ra)) resolve = np.prod(Window+CompG+I, axis = 1) return np.where(resolve) def MassGmag(Gmag,px): '''--------------------------------------------------------------- Returns the mass of an star based on the absolut G magnitude and Mass luminosity relations (see Klüter et al 2018) --------------------------------------------------------------- Input Gmag: aparent G magnitude px: Parallax in mas Output mass: in M_sun ---------------------------------------------------------------''' Gabs = Gmag + 5 * math.log(px/100, 10) a1,b1,c1,a2,b2,n = [7.86232823e-03, -2.90891912e-01, 1.18248766e+00, -3.01175062e-01, 1.88952947e+00, 8.71127084e+01] Mass = pow(pow(np.exp(a1*Gabs*Gabs+b1*Gabs +c1),-n)+pow(np.exp(a2*Gabs+b2),-n), -1/n) return max(0.07, Mass) ``` #### File: jkluter/MLG/utils.py ```python import matplotlib.pyplot as plt import numpy as np __all__ = ['color_own'] def color_own(length, rng = [0,1], colormap = plt.cm.gist_rainbow, ): m = 1 w = np.array([245,245,245,0]).reshape(-1,4) m = np.array([145,22,104,0]).reshape(-1,4) c = np.array([0,176,230,0]).reshape(-1,4) y = np.array([250,194,0,0]).reshape(-1,4) r = np.array([225,0,35,0]).reshape(-1,4) g = np.array([1,143,53,0]).reshape(-1,4) b = np.array([0,66,148,0]).reshape(-1,4) alpha = [0,0,0,255] if isinstance(length, int): color_give = False c1 = colormap(np.linspace(*rng,length)).reshape(-1,4) else: color_give = True c1 = np.array(length).reshape(-1,4) cmin = np.argmin(c1[:,:3],axis = 1) cmax = np.argmax(c1[:,:3],axis = 1) case1 = np.where((cmin == 0)) case2 = np.where((cmin == 1)) case3 = np.where((cmin == 2)) case4 = np.where((cmax == 0)) case5 = np.where((cmax == 1)) case6 = np.where((cmax == 2)) wms = np.sort(c1[:,:3],axis = 1) white = wms[:,0].reshape(-1,1) wms = wms -white mix = wms[:,1].reshape(-1,1) wms = wms -mix col = wms[:,2].reshape(-1,1) color = w * white color[case1] += c * mix[case1] color[case2] += m * mix[case2] color[case3] += y * mix[case3] color[case4] += r * col[case4] color[case5] += g * col[case5] color[case6] += b * col[case6] color += alpha if color_give: if len(color) == len(length): return color/255 else: return color.reshape(4)/255 return color/255 ```
{ "source": "jklvv/stock", "score": 2 }
#### File: stock/fund/fund_share_update.py ```python "# -*- coding" import math import re """ @author:xda @file:fund_share_update.py @time:2021/01/20 """ # 基金份额 import sys sys.path.append('..') from configure.settings import DBSelector, send_from_aliyun from common.BaseService import BaseService from configure.util import notify import requests import warnings import datetime warnings.filterwarnings("ignore") from sqlalchemy.orm import relationship from sqlalchemy import Column, String, INTEGER, VARCHAR, DATE, DateTime, ForeignKey, FLOAT from sqlalchemy.orm import sessionmaker from sqlalchemy.ext.declarative import declarative_base # 创建对象的基类: Base = declarative_base() class FundBaseInfoModel(Base): # 表的名字: __tablename__ = 'LOF_BaseInfo' # 表的结构: id = Column(INTEGER, primary_key=True, autoincrement=True) code = Column(VARCHAR(6), comment='基金代码', unique=True) name = Column(VARCHAR(40), comment='基金名称') category = Column(VARCHAR(8), comment='基金类别') invest_type = Column(VARCHAR(6), comment='投资类别') manager_name = Column(VARCHAR(48), comment='管理人呢名称') issue_date = Column(DATE, comment='上市日期') # child = relationship('ShareModel', back_populates='LOF_BaseInfo') child = relationship('ShareModel') def __str__(self): return f'<{self.code}><{self.name}>' class ShareModel(Base): # 表的名字: __tablename__ = 'LOF_Share' # 表的结构: id = Column(INTEGER, primary_key=True, autoincrement=True) code = Column(VARCHAR(6), ForeignKey('LOF_BaseInfo.code'), comment='代码') date = Column(DATE, comment='份额日期') share = Column(FLOAT, comment='份额 单位:万份') parent = relationship('FundBaseInfoModel') # parent = relationship('FundBaseInfoModel', back_populates='LOF_Share') crawltime = Column(DateTime, comment='爬取日期') class Fund(BaseService): def __init__(self, first_use=False): super(Fund, self).__init__(f'../log/{self.__class__.__name__}.log') self.first_use = first_use self.engine = self.get_engine() def get_engine(self): return DBSelector().get_engine('db_stock') def create_table(self): # 初始化数据库连接: Base.metadata.create_all(self.engine) # 创建表结构 def get_session(self): return sessionmaker(bind=self.engine) def get(self, url, retry=5, js=True): start = 0 while start < retry: try: response = self.session.get(url, headers=self.headers, verify=False) except Exception as e: self.logger.error(e) start += 1 else: if js: content = response.json() else: content = response.text return content if start == retry: self.logger.error('重试太多') return None class SZFundShare(Fund): def __init__(self, first_use=False): super(SZFundShare, self).__init__(first_use) # self.url = 'http://fund.szse.cn/api/report/ShowReport/data?SHOWTYPE=JSON&CATALOGID=1000_lf&TABKEY=tab1&PAGENO={}&selectJjlb=LOF&random=0.019172632634173903' self.all_fund_url = 'http://fund.szse.cn/api/report/ShowReport/data?SHOWTYPE=JSON&CATALOGID=1000_lf&TABKEY=tab1&PAGENO={}&random=0.1292751130110099' self.session = requests.Session() self.logger.info('start...sz fund') self.LAST_TEXT = '' if self.first_use: self.create_table() self.db_session = self.get_session() self.sess = self.db_session() self.logger.info(f'{self.today} start to crawl....') @property def headers(self): _header= { "Accept": "application/json, text/javascript, */*; q=0.01", "Accept-Encoding": "gzip, deflate", "Accept-Language": "zh,en;q=0.9,en-US;q=0.8,zh-CN;q=0.7", "Cache-Control": "no-cache", "Connection": "keep-alive", "Content-Type": "application/json", "Host": "fund.szse.cn", "Pragma": "no-cache", "Referer": "http://fund.szse.cn/marketdata/fundslist/index.html?catalogId=1000_lf&selectJjlb=ETF", "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.66 Safari/537.36", "X-Request-Type": "ajax", "X-Requested-With": "XMLHttpRequest", } return _header def convert(self, float_str): try: return_float = float(float_str) except: return_float = None return return_float def json_parse(self, js_data): date = (datetime.date.today() + datetime.timedelta(days=-1)).strftime('%Y-%m-%d') # 手动算的前一天 ? data = js_data[0].get('data', []) if not data: self.stop = True return None for item in data: jjlb = item['jjlb'] tzlb = item['tzlb'] # ssrq = item['ssrq'] name = self.extract_name(item['jjjcurl']) dqgm = self.convert_number(item['dqgm']) # 当前规模 glrmc = self.extract_glrmc(item['glrmc']) # 管理人名称 code = self.extract_code(item['sys_key']) yield (jjlb, tzlb, ssrq, dqgm, glrmc, code, name, date) def extract_name(self, name): return re.search('<u>(.*?)</u>', name).group(1) def extract_code(self, code): return re.search('<u>(\d{6})</u>', code).group(1) def extract_glrmc(self, glrmc): if re.search(('\<a.*?\>(.*?)\</a\>'), glrmc): glrmc = re.search(('\<a.*?\>(.*?)\</a\>'), glrmc).group(1).strip() return glrmc def model_process(self, jjlb, tzlb, ssrq, dqgm, glrmc, code, name, date): obj = self.sess.query(FundBaseInfoModel).filter_by(code=code).first() if not obj: base_info = FundBaseInfoModel( code=code, name=name, category=jjlb, invest_type=tzlb, manager_name=glrmc, issue_date=ssrq, ) self.sess.add(base_info) self.sess.commit() share_info = ShareModel( code=code, date=date, share=dqgm, crawltime=datetime.datetime.now(), ) self.sess.add(share_info) self.sess.commit() def convert_number(self, s): return float(s.replace(',', '')) def run(self): page = 1 self.stop = False while not self.stop: content = self.get(self.all_fund_url.format(page)) for item in self.json_parse(content): self.model_process(*item) page += 1 class SHFundShare(Fund): def __init__(self, kind,date,first_use=False): super(SHFundShare, self).__init__(first_use) self.lof_url = 'http://query.sse.com.cn/commonQuery.do?=&jsonCallBack=jsonpCallback1681&sqlId=COMMON_SSE_FUND_LOF_SCALE_CX_S&pageHelp.pageSize=10000&FILEDATE={}&_=161146986468' self.etf_url = 'http://query.sse.com.cn/commonQuery.do?jsonCallBack=jsonpCallback28550&isPagination=true&pageHelp.pageSize=25&pageHelp.pageNo={}&pageHelp.cacheSize=1&sqlId=COMMON_SSE_ZQPZ_ETFZL_XXPL_ETFGM_SEARCH_L&STAT_DATE={}&pageHelp.beginPage={}&pageHelp.endPage=30&_=1611473902414' # self.today_ = '20210122' # LOF if date=='now': self.today_ = (datetime.datetime.now()+ datetime.timedelta(days=-1)).strftime('%Y%m%d') else: self.today_=self.today = date # self.today ='2021-01-22' # ETF self.ETF_COUNT_PER_PAGE = 25 self.url_option_dict = { 'ETF': {'url': self.etf_url, 'date': self.today}, 'LOF': {'url': self.lof_url, 'date': self.today_} } self.kind=kind.lower() self.session = requests.Session() self.logger.info('start...sh fund') self.LAST_TEXT = '' if self.first_use: self.create_table() self.db_session = self.get_session() self.sess = self.db_session() @property def headers(self): return { "Host": "query.sse.com.cn", "User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:84.0) Gecko/20100101 Firefox/84.0", "Accept": "*/*", "Accept-Language": "en-US,en;q=0.5", "Accept-Encoding": "gzip, deflate", "Connection": "keep-alive", "Referer": "http://www.sse.com.cn/market/funddata/volumn/lofvolumn/", } def crawl_lof(self): options = self.url_option_dict['LOF'] date = options.get('date') url = options.get('url') content = self.get(url.format(date), js=False) js_data = self.jsonp2json(content) self.process_lof(js_data) def process_lof(self, js_data): result = js_data.get('result') for item in result: code = item['FUND_CODE'] name = item['FUND_ABBR'] date = item['TRADE_DATE'] try: share = float(item['INTERNAL_VOL'].replace(',','')) except Exception as e: print(e) share=None self.process_model(code, name, date, share, 'LOF') def crawl_etf(self): options = self.url_option_dict['ETF'] date = options.get('date') url = options.get('url') current_page = 1 while True: content = self.get(url.format(current_page, date, current_page), js=False) js_data = self.jsonp2json(content) total_count = js_data.get('pageHelp').get('total') print(f'page : {current_page}') self.process_etf(js_data) max_page = math.ceil(total_count / self.ETF_COUNT_PER_PAGE) # 每页 10个 if current_page > max_page: break current_page += 1 def process_etf(self, js_data): result = js_data.get('result') for item in result: code = item['SEC_CODE'] name = item['SEC_NAME'] date = item['STAT_DATE'] share = item['TOT_VOL'] try: share = float(share) except Exception as e: print(e) self.process_model(code, name, date, share, 'ETF') def run(self): 'LOF 与 ETF' # for type_, options in self.url_option_dict.items(): if self.kind=='etf': self.logger.info('crawling etf .....') self.crawl_etf() if self.kind=='lof': self.logger.info('crawling lof .....') self.crawl_lof() def process_model(self, code, name, date, share, type_): obj = self.sess.query(FundBaseInfoModel).filter_by(code=code).first() if not obj: obj = FundBaseInfoModel( code=code, name=name, category=type_, invest_type='', manager_name='', issue_date=None, ) try: self.sess.add(obj) except Exception as e: print(e) else: self.sess.commit() print(f'插入一条记录{code},{date}') if not self.sess.query(ShareModel).filter_by(code=code, date=date).first(): share_info = ShareModel( code=code, date=date, share=share, crawltime=datetime.datetime.now(), ) try: self.sess.add(share_info) except Exception as e: print(e) else: print(f'插入一条记录{code},{date}') self.sess.commit() if __name__ == '__main__': app = SZFundShare(first_use=False) app.run() app = SHFundShare(first_use=False) app.run() ```
{ "source": "jklwonder/youtube-data-api", "score": 3 }
#### File: youtube-data-api/youtube_api/youtube_api_utils.py ```python import sys import json import datetime import requests import html import tldextract from bs4 import BeautifulSoup, Comment import re import signal from urllib.parse import urlparse from urllib.parse import parse_qs ''' This contains utilities used by other functions in the YoutubeDataApi class, as well as a few convenience functions for data analysis. ''' __all__ = [ '_chunker', '_load_response', '_text_from_html', 'parse_yt_datetime', 'strip_video_id_from_url', 'get_upload_playlist_id', 'get_liked_playlist_id', 'is_user', 'strip_youtube_id', 'get_channel_id_from_custom_url', 'get_url_from_video_id' ] class TimeoutError(Exception): pass class timeout: def __init__(self, seconds=1, error_message='Timeout'): self.seconds = seconds self.error_message = error_message def handle_timeout(self, signum, frame): raise TimeoutError(self.error_message) def __enter__(self): signal.signal(signal.SIGALRM, self.handle_timeout) signal.alarm(self.seconds) def __exit__(self, type, value, traceback): signal.alarm(0) def _chunker(l, chunksize): """Yield successive ``chunksize``-sized chunks from l.""" for i in range(0, len(l), chunksize): yield l[i:i + chunksize] def _load_response(response): ''' Loads the response to json, and checks for errors. ''' response.raise_for_status() response_json = json.loads(response.text) return response_json def _text_from_html(html_body): ''' Gets clean text from html. ''' def _tag_visible(element): '''Gets the text elements we're interested in''' if element.parent.name in ['style', 'script', 'head', 'title', 'meta', '[document]']: return False if isinstance(element, Comment): return False return True soup = BeautifulSoup(html_body, 'html.parser') raw_text = soup.findAll(text=True) visible_text = filter(_tag_visible, raw_text) text = u" ".join(t.strip() for t in visible_text) text = re.sub(r"[\n\t]", ' ', text) text = re.sub(r'<.+?>', '', text) text = html.unescape(text) text = ' '.join(text.split()) return text def parse_yt_datetime(date_str): ''' Parses a date string returned from YouTube's API into a Python datetime. ''' date = None if date_str: try: date = datetime.datetime.strptime(date_str,"%Y-%m-%dT%H:%M:%S.%fZ") except: pass return date def strip_video_id_from_url(url): '''Strips the video_id from YouTube URL.''' domain = tldextract.extract(url).registered_domain url_ = None if 'youtu.be' in domain: url_ = url[url.rindex('/') + 1:] if '?' in url_: url_ = url_[:url_.rindex('?')] elif "youtube.com" in domain and "embed" in url: url_ = url.rpartition("/")[-1].partition("?")[0] elif "youtube.com" in domain and "attribution_link" in url: u = urlparse(url) # Get and parse the query string, which will look like: #. a=--oPiH1x0pU&u=%2Fwatch%3Fv%3DHR1Ta25HkBM%26feature%3Dshare q = parse_qs(u.query) # Now we have a decoded query string, e.g., 'u':['/watch?v=HR1Ta25HkBM&feature=share'] if ( 'u' in q ): # Parse like it was a normal /watch url q = parse_qs(urlparse(q['u'][0]).query) if ( 'v' in q ): url_ = q['v'][0] elif ( 'video_id' in q ): url_ = q['video_id'][0] elif "youtube.com" in domain: u = urlparse(url) q = parse_qs(u.query) if ( 'v' in q ): url_ = q['v'][0] elif ( 'video_id' in q ): url_ = q['video_id'][0] return url_ def get_upload_playlist_id(channel_id): '''Given a channel_id, returns the user uploaded playlist id.''' playlist_id = 'UU' + channel_id[2:] return playlist_id def get_liked_playlist_id(channel_id): '''Given a channel_id, returns the user liked playlist id.''' playlist_id = 'LL' + channel_id[2:] return playlist_id def is_user(channel_url): ''' Checks if url is channel or user ''' if 'youtube.com/user/' in channel_url: return True elif 'youtube.com/channel/' in channel_url: return False else: raise Exception("Didn't recognize url {}".format(channel_url)) def strip_youtube_id(channel_url): ''' From a URL returns the YT ID. ''' return (channel_url.rstrip('/').replace('/featured', '') .split('/')[-1].split('#')[0]) def get_channel_id_from_custom_url(url): ''' Gets channel id from a url of a custom url IE: http://youtube.com/stefbot returns a channel_id IE: UCuMo0RRtnNDuMB8DV5stEag ''' r = requests.get(url) soup = BeautifulSoup(r.content, 'lxml') class_ = ('yt-uix-button yt-uix-button-size-default ' 'yt-uix-button-subscribe-branded ' 'yt-uix-button-has-icon no-icon-markup ' 'yt-uix-subscription-button yt-can-buffer') channel_id = soup.find('button', class_=class_).get('data-channel-external-id') return channel_id def get_url_from_video_id(video_id): ''' Given a video id, this function returns the full URL. ''' url = "https://youtube.com/watch?v={}".format(video_id) return url ```
{ "source": "jklymak/dolfyn", "score": 3 }
#### File: dolfyn/adp/clean.py ```python import numpy as np import xarray as xr from scipy.signal import medfilt from ..tools.misc import medfiltnan from ..rotate.api import rotate2 from ..rotate.base import _make_model, quaternion2orient def set_range_offset(ds, h_deploy): """ Adds an instrument's height above seafloor (for an up-facing instrument) or depth below water surface (for a down-facing instrument) to the range coordinate. Also adds an attribute to the Dataset with the current "h_deploy" distance. Parameters ---------- ds : xarray.Dataset The adcp dataset to ajust 'range' on h_deploy : numeric Deployment location in the water column, in [m] Returns ------- None, operates "in place" Notes ----- `Center of bin 1 = h_deploy + blank_dist + cell_size` Nortek doesn't take `h_deploy` into account, so the range that DOLfYN calculates distance is from the ADCP transducers. TRDI asks for `h_deploy` input in their deployment software and is thereby known by DOLfYN. If the ADCP is mounted on a tripod on the seafloor, `h_deploy` will be the height of the tripod +/- any extra distance to the transducer faces. If the instrument is vessel-mounted, `h_deploy` is the distance between the surface and downward-facing ADCP's transducers. """ r = [s for s in ds.dims if 'range' in s] for val in r: ds[val] = ds[val].values + h_deploy ds[val].attrs['units'] = 'm' if hasattr(ds, 'h_deploy'): ds.attrs['h_deploy'] += h_deploy else: ds.attrs['h_deploy'] = h_deploy def find_surface(ds, thresh=10, nfilt=None): """ Find the surface (water level or seafloor) from amplitude data and adds the variable "depth" to the input Dataset. Parameters ---------- ds : xarray.Dataset The full adcp dataset thresh : int Specifies the threshold used in detecting the surface. (The amount that amplitude must increase by near the surface for it to be considered a surface hit) nfilt : int Specifies the width of the median filter applied, must be odd Returns ------- None, operates "in place" """ # This finds the maximum of the echo profile: inds = np.argmax(ds.amp.values, axis=1) # This finds the first point that increases (away from the profiler) in # the echo profile edf = np.diff(ds.amp.values.astype(np.int16), axis=1) inds2 = np.max((edf < 0) * np.arange(ds.vel.shape[1] - 1, dtype=np.uint8)[None, :, None], axis=1) + 1 # Calculate the depth of these quantities d1 = ds.range.values[inds] d2 = ds.range.values[inds2] # Combine them: D = np.vstack((d1, d2)) # Take the median value as the estimate of the surface: d = np.median(D, axis=0) # Throw out values that do not increase near the surface by *thresh* for ip in range(ds.vel.shape[1]): itmp = np.min(inds[:, ip]) if (edf[itmp:, :, ip] < thresh).all(): d[ip] = np.NaN if nfilt: dfilt = medfiltnan(d, nfilt, thresh=.4) dfilt[dfilt == 0] = np.NaN d = dfilt ds['depth'] = xr.DataArray(d, dims=['time'], attrs={'units': 'm'}) def find_surface_from_P(ds, salinity=35): """ Calculates the distance to the water surface. Temperature and salinity are used to calculate seawater density, which is in turn used with the pressure data to calculate depth. Parameters ---------- ds : xarray.Dataset The full adcp dataset salinity: numeric Water salinity in psu Returns ------- None, operates "in place" and adds the variables "water_density" and "depth" to the input dataset. Notes ----- Requires that the instrument's pressure sensor was calibrated/zeroed before deployment to remove atmospheric pressure. Calculates seawater density at normal atmospheric pressure according to the UNESCO 1981 equation of state. Does not include hydrostatic pressure. """ # Density calcation T = ds.temp.values S = salinity # standard mean ocean water rho_smow = 999.842594 + 6.793953e-2*T - 9.095290e-3*T**2 + \ 1.001685e-4*T**3 - 1.120083e-6*T**4 + 6.536332e-9*T**5 # at water surface B1 = 8.2449e-1 - 4.0899e-3*T + 7.6438e-5*T**2 - 8.2467e-7*T**3 + 5.3875e-9*T**4 C1 = -5.7246e-3 + 1.0227e-4*T - 1.6546e-6*T**2 d0 = 4.8314e-4 rho_atm0 = rho_smow + B1*S + C1*S**1.5 + d0*S**2 # Depth = pressure (conversion from dbar to MPa) / water weight d = (ds.pressure*10000)/(9.81*rho_atm0) if hasattr(ds, 'h_deploy'): d += ds.h_deploy description = "Water depth to seafloor" else: description = "Water depth to ADCP" ds['water_density'] = xr.DataArray( rho_atm0, dims=['time'], attrs={'units': 'kg/m^3', 'description': 'Water density according to UNESCO 1981 equation of state'}) ds['depth'] = xr.DataArray(d, dims=['time'], attrs={ 'units': 'm', 'description': description}) def nan_beyond_surface(ds, val=np.nan): """ Mask the values of 3D data (vel, amp, corr, echo) that are beyond the surface. Parameters ---------- ds : xarray.Dataset The adcp dataset to clean val : nan or numeric Specifies the value to set the bad values to (default np.nan). Returns ------- ds : xarray.Dataset The adcp dataset where relevant arrays with values greater than `depth` are set to NaN Notes ----- Surface interference expected to happen at `r > depth * cos(beam_angle)` """ ds = ds.copy(deep=True) # Get all variables with 'range' coordinate var = [h for h in ds.keys() if any(s for s in ds[h].dims if 'range' in s)] if 'nortek' in _make_model(ds): beam_angle = 25 * (np.pi/180) else: # TRDI try: beam_angle = ds.beam_angle except: beam_angle = 20 * (np.pi/180) bds = ds.range > (ds.depth * np.cos(beam_angle) - ds.cell_size) if 'echo' in var: bds_echo = ds.range_echo > ds.depth ds['echo'].values[..., bds_echo] = val var.remove('echo') for nm in var: a = ds[nm].values if 'corr' in nm: a[..., bds] = 0 else: a[..., bds] = val ds[nm].values = a return ds def val_exceeds_thresh(var, thresh=5, val=np.nan): """ Find values of a variable that exceed a threshold value, and assign "val" to the velocity data where the threshold is exceeded. Parameters ---------- var : xarray.DataArray Variable to clean thresh : numeric The maximum value of velocity to screen val : nan or numeric Specifies the value to set the bad values to (default np.nan) Returns ------- ds : xarray.Dataset The adcp dataset with datapoints beyond thresh are set to `val` """ var = var.copy(deep=True) bd = np.zeros(var.shape, dtype='bool') bd |= (np.abs(var.values) > thresh) var.values[bd] = val return var def correlation_filter(ds, thresh=50, val=np.nan): """ Filters out velocity data where correlation is below a threshold in the beam correlation data. Parameters ---------- ds : xarray.Dataset The adcp dataset to clean. thresh : numeric The maximum value of correlation to screen, in counts or % val : numeric Value to set masked correlation data to, default is nan Returns ------- ds : xarray.Dataset Velocity data with low correlation values set to `val` Notes ----- Does not edit correlation or amplitude data. """ ds = ds.copy(deep=True) # 4 or 5 beam if hasattr(ds, 'vel_b5'): tag = ['', '_b5'] else: tag = [''] # copy original ref frame coord_sys_orig = ds.coord_sys # correlation is always in beam coordinates rotate2(ds, 'beam', inplace=True) for tg in tag: mask = (ds['corr'+tg].values <= thresh) ds['vel'+tg].values[mask] = val ds['vel'+tg].attrs['Comments'] = 'Filtered of data with a correlation value below ' + \ str(thresh) + ds.corr.units rotate2(ds, coord_sys_orig, inplace=True) return ds def medfilt_orient(ds, nfilt=7): """ Median filters the orientation data (heading-pitch-roll or quaternions) Parameters ---------- ds : xarray.Dataset The adcp dataset to clean nfilt : numeric The length of the median-filtering kernel *nfilt* must be odd. Return ------ ds : xarray.Dataset The adcp dataset with the filtered orientation data See Also -------- scipy.signal.medfilt() """ ds = ds.copy(deep=True) if getattr(ds, 'has_imu'): q_filt = np.zeros(ds.quaternion.shape) for i in range(ds.quaternion.q.size): q_filt[i] = medfilt(ds.quaternion[i].values, nfilt) ds.quaternion.values = q_filt ds['orientmat'] = quaternion2orient(ds.quaternion) return ds else: # non Nortek AHRS-equipped instruments do_these = ['pitch', 'roll', 'heading'] for nm in do_these: ds[nm].values = medfilt(ds[nm].values, nfilt) return ds.drop_vars('orientmat') def fillgaps_time(var, method='cubic', max_gap=None): """ Fill gaps (nan values) in var across time using the specified method Parameters ---------- var : xarray.DataArray The variable to clean method : string Interpolation method to use max_gap : numeric Max number of consective NaN's to interpolate across Returns ------- ds : xarray.Dataset The adcp dataset with gaps in velocity interpolated across time See Also -------- xarray.DataArray.interpolate_na() """ var = var.copy(deep=True) time_dim = [t for t in var.dims if 'time' in t][0] return var.interpolate_na(dim=time_dim, method=method, use_coordinate=True, max_gap=max_gap) def fillgaps_depth(var, method='cubic', max_gap=None): """ Fill gaps (nan values) in var along the depth profile using the specified method Parameters ---------- var : xarray.DataArray The variable to clean method : string Interpolation method to use max_gap : numeric Max number of consective NaN's to interpolate across Returns ------- ds : xarray.Dataset The adcp dataset with gaps in velocity interpolated across depth profiles See Also -------- xarray.DataArray.interpolate_na() """ var = var.copy(deep=True) range_dim = [t for t in var.dims if 'range' in t][0] return var.interpolate_na(dim=range_dim, method=method, use_coordinate=False, max_gap=max_gap) ``` #### File: dolfyn/adv/clean.py ```python import numpy as np import warnings from ..tools.misc import group, slice1d_along_axis warnings.filterwarnings('ignore', category=np.RankWarning) sin = np.sin cos = np.cos def clean_fill(u, mask, npt=12, method='cubic', max_gap=None): """ Interpolate over mask values in timeseries data using the specified method Parameters ---------- u : xarray.DataArray The dataArray to clean. mask : bool Logical tensor of elements to "nan" out (from `spikeThresh`, `rangeLimit`, or `GN2002`) and replace npt : int The number of points on either side of the bad values that interpolation occurs over method : string Interpolation scheme to use (linear, cubic, pchip, etc) max_gap : int Max number of consective nan's to interpolate across, must be <= npt/2 Returns ------- da : xarray.DataArray The dataArray with nan's filled in See Also -------- xarray.DataArray.interpolate_na() """ if max_gap: assert max_gap <= npt, 'Max_gap must be less than half of npt' # Apply mask u.values[..., mask] = np.nan # Remove bad data for 2D+ and 1D timeseries variables if 'dir' in u.dims: for i in range(u.shape[0]): u[i] = _interp_nan(u[i], npt, method, max_gap) else: u = _interp_nan(u, npt, method, max_gap) return u def _interp_nan(da, npt, method, max_gap): """ Interpolate over the points in `bad` that are True. Parameters ---------- da : xarray.DataArray The field to be cleaned npt : int The number of points on either side of the gap that the fit occurs over """ searching = True bds = da.isnull().values ntail = 0 pos = 0 # The index array: i = np.arange(len(da), dtype=np.uint32) while pos < len(da): if searching: # Check the point if bds[pos]: # If it's bad, mark the start start = max(pos - npt, 0) # And stop searching. searching = False pos += 1 # Continue... else: # Another bad point? if bds[pos]: # Yes # Reset ntail ntail = 0 else: # No # Add to the tail of the block. ntail += 1 pos += 1 if (ntail == npt or pos == len(da)): # This is the block we are interpolating over i_int = i[start:pos] da[i_int] = da[i_int].interpolate_na(dim='time', method=method, use_coordinate=True, max_gap=max_gap) # Reset searching = True ntail = 0 return da def spike_thresh(u, thresh=10): """ Returns a logical vector where a spike in `u` of magnitude greater than `thresh` occurs. Both 'Negative' and 'positive' spikes are found. Parameters ---------- u : xarray.DataArray The timeseries data to clean. thresh : int Magnitude of velocity spike, must be positive. Returns ------- mask : |np.ndarray| Logical vector with spikes labeled as 'True' """ du = np.diff(u.values, prepend=0) bds1 = ((du > thresh) & (du < -thresh)) bds2 = ((du < -thresh) & (du > thresh)) return bds1 + bds2 def range_limit(u, range=[-5, 5]): """ Returns a logical vector that is True where the values of `u` are outside of `range`. Parameters ---------- u : xarray.DataArray The timeseries data to clean. range : list Min and max magnitudes beyond which are masked Returns ------- mask : |np.ndarray| Logical vector with spikes labeled as 'True' """ return ~((range[0] < u.values) & (u.values < range[1])) def _calcab(al, Lu_std_u, Lu_std_d2u): """Solve equations 10 and 11 of Goring+Nikora2002 """ return tuple(np.linalg.solve( np.array([[cos(al) ** 2, sin(al) ** 2], [sin(al) ** 2, cos(al) ** 2]]), np.array([(Lu_std_u) ** 2, (Lu_std_d2u) ** 2]))) def _phaseSpaceThresh(u): if u.ndim == 1: u = u[:, None] u = np.array(u) Lu = (2 * np.log(u.shape[0])) ** 0.5 u = u - u.mean(0) du = np.zeros_like(u) d2u = np.zeros_like(u) # Take the centered difference. du[1:-1] = (u[2:] - u[:-2]) / 2 # And again. d2u[2:-2] = (du[1:-1][2:] - du[1:-1][:-2]) / 2 p = (u ** 2 + du ** 2 + d2u ** 2) std_u = np.std(u, axis=0) std_du = np.std(du, axis=0) std_d2u = np.std(d2u, axis=0) alpha = np.arctan2(np.sum(u * d2u, axis=0), np.sum(u ** 2, axis=0)) a = np.empty_like(alpha) b = np.empty_like(alpha) with warnings.catch_warnings() as w: warnings.filterwarnings('ignore', category=RuntimeWarning, message='invalid value encountered in ') for idx, al in enumerate(alpha): a[idx], b[idx] = _calcab(al, Lu * std_u[idx], Lu * std_d2u[idx]) if np.any(np.isnan(a)) or np.any(np.isnan(a[idx])): print('Coefficient calculation error') theta = np.arctan2(du, u) phi = np.arctan2((du ** 2 + u ** 2) ** 0.5, d2u) pe = (((sin(phi) * cos(theta) * cos(alpha) + cos(phi) * sin(alpha)) ** 2) / a + ((sin(phi) * cos(theta) * sin(alpha) - cos(phi) * cos(alpha)) ** 2) / b + ((sin(phi) * sin(theta)) ** 2) / (Lu * std_du) ** 2) ** -1 pe[:, np.isnan(pe[0, :])] = 0 return (p > pe).flatten('F') def GN2002(u, npt=5000): """ The Goring & Nikora 2002 'despiking' method, with Wahl2003 correction. Returns a logical vector that is true where spikes are identified. Parameters ---------- u : xarray.DataArray The velocity array (1D or 3D) to clean. npt : int The number of points over which to perform the method. Returns ------- mask : |np.ndarray| Logical vector with spikes labeled as 'True' """ if not isinstance(u, np.ndarray): return GN2002(u.values, npt=npt) if u.ndim > 1: mask = np.zeros(u.shape, dtype='bool') for slc in slice1d_along_axis(u.shape, -1): mask[slc] = GN2002(u[slc], npt=npt) return mask mask = np.zeros(len(u), dtype='bool') # Find large bad segments (>npt/10): # group returns a vector of slice objects. bad_segs = group(np.isnan(u), min_length=int(npt//10)) if bad_segs.size > 0: # Break them up into separate regions: sp = 0 ep = len(u) # Skip start and end bad_segs: if bad_segs[0].start == sp: sp = bad_segs[0].stop bad_segs = bad_segs[1:] if bad_segs[-1].stop == ep: ep = bad_segs[-1].start bad_segs = bad_segs[:-1] for ind in range(len(bad_segs)): bs = bad_segs[ind] # bs is a slice object. # Clean the good region: mask[sp:bs.start] = GN2002(u[sp:bs.start], npt=npt) sp = bs.stop # Clean the last good region. mask[sp:ep] = GN2002(u[sp:ep], npt=npt) return mask c = 0 ntot = len(u) nbins = int(ntot // npt) mask_last = np.zeros_like(mask) + np.inf mask[0] = True # make sure we start. while mask.any(): mask[:nbins * npt] = _phaseSpaceThresh( np.array(np.reshape(u[:(nbins * npt)], (npt, nbins), order='F'))) mask[-npt:] = _phaseSpaceThresh(u[-npt:]) c += 1 if c >= 100: raise Exception('GN2002 loop-limit exceeded.') if mask.sum() >= mask_last.sum(): break mask_last = mask.copy() return mask ``` #### File: dolfyn/tests/test_motion.py ```python from dolfyn.tests import test_read_adv as tv #from dolfyn.tests import test_read_adp as tp from dolfyn.tests.base import load_netcdf as load, save_netcdf as save, assert_allclose import dolfyn.adv.api as avm def test_motion_adv(make_data=False): tdm = tv.dat_imu.copy(deep=True) tdm = avm.correct_motion(tdm) # user added metadata tdmj = tv.dat_imu_json.copy(deep=True) tdmj = avm.correct_motion(tdmj) # set declination and then correct tdm10 = tv.dat_imu.copy(deep=True) tdm10.velds.set_declination(10.0, inplace=True) tdm10 = avm.correct_motion(tdm10) # test setting declination to 0 doesn't affect correction tdm0 = tv.dat_imu.copy(deep=True) tdm0.velds.set_declination(0.0, inplace=True) tdm0 = avm.correct_motion(tdm0) tdm0.attrs.pop('declination') tdm0.attrs.pop('declination_in_orientmat') # test motion-corrected data rotation tdmE = tv.dat_imu.copy(deep=True) tdmE.velds.set_declination(10.0, inplace=True) tdmE.velds.rotate2('earth', inplace=True) tdmE = avm.correct_motion(tdmE) if make_data: save(tdm, 'vector_data_imu01_mc.nc') save(tdm10, 'vector_data_imu01_mcDeclin10.nc') save(tdmj, 'vector_data_imu01-json_mc.nc') return cdm10 = load('vector_data_imu01_mcDeclin10.nc') assert_allclose(tdm, load('vector_data_imu01_mc.nc'), atol=1e-7) assert_allclose(tdm10, tdmj, atol=1e-7) assert_allclose(tdm0, tdm, atol=1e-7) assert_allclose(tdm10, cdm10, atol=1e-7) assert_allclose(tdmE, cdm10, atol=1e-7) assert_allclose(tdmj, load('vector_data_imu01-json_mc.nc'), atol=1e-7) def test_sep_probes(make_data=False): tdm = tv.dat_imu.copy(deep=True) tdm = avm.correct_motion(tdm, separate_probes=True) if make_data: save(tdm, 'vector_data_imu01_mcsp.nc') return assert_allclose(tdm, load('vector_data_imu01_mcsp.nc'), atol=1e-7) # def test_motion_adcp(): # # Correction for ADCPs not completed yet # tdm = tp.dat_sig_i.copy(deep=True) # avm.set_inst2head_rotmat(tdm, rotmat=np.eye(4), inplace=True) # 4th doesn't matter # tdm.attrs['inst2head_vec'] = np.array([0,0,0,0]) # tdmc = avm.correct_motion(tdm) # assert type(tdm)==type(tdmc) # simple way of making sure tdmc exists ``` #### File: dolfyn/tests/test_shortcuts.py ```python from dolfyn.tests import test_read_adv as tv from dolfyn.tests.base import load_netcdf as load, save_netcdf as save, rfnm from dolfyn import rotate2 import dolfyn.adv.api as avm from xarray.testing import assert_allclose import xarray as xr import os class adv_setup(): def __init__(self, tv): dat = tv.dat.copy(deep=True) self.dat = rotate2(dat, 'earth', inplace=False) self.tdat = avm.calc_turbulence(self.dat, n_bin=20.0, fs=self.dat.fs) short = xr.Dataset() short['u'] = self.tdat.velds.u short['v'] = self.tdat.velds.v short['w'] = self.tdat.velds.w short['U'] = self.tdat.velds.U short['U_mag'] = self.tdat.velds.U_mag short['U_dir'] = self.tdat.velds.U_dir short['U_dir_N'] = self.dat.velds.U_dir short["upup_"] = self.tdat.velds.upup_ short["vpvp_"] = self.tdat.velds.vpvp_ short["wpwp_"] = self.tdat.velds.wpwp_ short["upvp_"] = self.tdat.velds.upvp_ short["upwp_"] = self.tdat.velds.upwp_ short["vpwp_"] = self.tdat.velds.vpwp_ short['tke'] = self.tdat.velds.tke short['I'] = self.tdat.velds.I short['E_coh'] = self.tdat.velds.E_coh short['I_tke'] = self.tdat.velds.I_tke self.short = short def test_shortcuts(make_data=False): test_dat = adv_setup(tv) if make_data: save(test_dat.short, 'vector_data01_u.nc') return assert_allclose(test_dat.short, load('vector_data01_u.nc'), atol=1e-6) def test_save_complex_data(): test_dat = adv_setup(tv) save(test_dat.short, 'test_save.nc') assert os.path.exists(rfnm('test_save.nc')) ``` #### File: dolfyn/tests/test_vs_nortek.py ```python from dolfyn.tests import test_read_adp as tr from dolfyn.tests import base from dolfyn.rotate.api import rotate2 from numpy.testing import assert_allclose import numpy as np import scipy.io as sio """ Testing against velocity and bottom-track velocity data in Nortek mat files exported from SignatureDeployment. inst2earth rotation fails for AHRS-equipped istruments and I don't know why - I believe it's due to an RC filter (or some such) on Nortek's side after they load in the orientation matrix from the AHRS (Check out the difference colorplots compared to non-AHRS instruments.) Using HPR- or quaterion-calc'd orientation matrices doesn't close the gap. """ def load_nortek_matfile(filename): # remember to transpose this data data = sio.loadmat(filename, struct_as_record=False, squeeze_me=True) d = data['Data'] # print(d._fieldnames) burst = 'Burst' bt = 'BottomTrack' beam = ['_VelBeam1', '_VelBeam2', '_VelBeam3', '_VelBeam4'] b5 = 'IBurst_VelBeam5' inst = ['_VelX', '_VelY', '_VelZ1', '_VelZ2'] earth = ['_VelEast', '_VelNorth', '_VelUp1', '_VelUp2'] axis = {'beam': beam, 'inst': inst, 'earth': earth} AHRS = 'Burst_AHRSRotationMatrix' # , 'IBurst_AHRSRotationMatrix'] vel = {'beam': {}, 'inst': {}, 'earth': {}} for ky in vel.keys(): for i in range(len(axis[ky])): vel[ky][i] = np.transpose(getattr(d, burst+axis[ky][i])) vel[ky] = np.stack((vel[ky][0], vel[ky][1], vel[ky][2], vel[ky][3]), axis=0) if AHRS in d._fieldnames: vel['omat'] = np.transpose(getattr(d, AHRS)) if b5 in d._fieldnames: vel['b5'] = np.transpose(getattr(d, b5)) #vel['omat5'] = getattr(d, AHRS[1]) if bt+beam[0] in d._fieldnames: vel_bt = {'beam': {}, 'inst': {}, 'earth': {}} for ky in vel_bt.keys(): for i in range(len(axis[ky])): vel_bt[ky][i] = np.transpose(getattr(d, bt+axis[ky][i])) vel_bt[ky] = np.stack((vel_bt[ky][0], vel_bt[ky][1], vel_bt[ky][2], vel_bt[ky][3]), axis=0) return vel, vel_bt else: return vel def rotate(axis): # BenchFile01.ad2cp td_sig = rotate2(tr.dat_sig, axis, inplace=False) # Sig1000_IMU.ad2cp no userdata td_sig_i = rotate2(tr.dat_sig_i, axis, inplace=False) # VelEchoBT01.ad2cp td_sig_ieb = rotate2(tr.dat_sig_ieb, axis, inplace=False) # Sig500_Echo.ad2cp td_sig_ie = rotate2(tr.dat_sig_ie, axis, inplace=False) td_sig_vel = load_nortek_matfile(base.rfnm('BenchFile01.mat')) td_sig_i_vel = load_nortek_matfile(base.rfnm('Sig1000_IMU.mat')) td_sig_ieb_vel, vel_bt = load_nortek_matfile(base.rfnm('VelEchoBT01.mat')) td_sig_ie_vel = load_nortek_matfile(base.rfnm('Sig500_Echo.mat')) nens = 100 # ARHS inst2earth orientation matrix check # Checks the 1,1 element because the nortek orientmat's shape is [9,:] as # opposed to [3,3,:] if axis == 'inst': assert_allclose(td_sig_i.orientmat[0][0].values, td_sig_i_vel['omat'][0, :nens], atol=1e-7) assert_allclose(td_sig_ieb.orientmat[0][0].values, td_sig_ieb_vel['omat'][0, :][..., :nens], atol=1e-7) # 4-beam velocity assert_allclose(td_sig.vel.values, td_sig_vel[axis][..., :nens], atol=1e-5) assert_allclose(td_sig_i.vel.values, td_sig_i_vel[axis][..., :nens], atol=5e-3) assert_allclose(td_sig_ieb.vel.values, td_sig_ieb_vel[axis][..., :nens], atol=5e-3) assert_allclose(td_sig_ie.vel.values, td_sig_ie_vel[axis][..., :nens], atol=1e-5) # 5th-beam velocity if axis == 'beam': assert_allclose(td_sig_i.vel_b5.values, td_sig_i_vel['b5'][..., :nens], atol=1e-5) assert_allclose(td_sig_ieb.vel_b5.values, td_sig_ieb_vel['b5'][..., :nens], atol=1e-5) assert_allclose(td_sig_ie.vel_b5.values, td_sig_ie_vel['b5'][..., :nens], atol=1e-5) # bottom-track assert_allclose(td_sig_ieb.vel_bt.values, vel_bt[axis][..., :nens], atol=5e-3) def test_rotate2_beam(): rotate('beam') def test_rotate2_inst(): rotate('inst') def test_rotate2_earth(): rotate('earth') ```
{ "source": "jklymak/gcalcli", "score": 3 }
#### File: gcalcli/tests/test_input_validation.py ```python import pytest from gcalcli.validators import validate_input, ValidationError from gcalcli.validators import (STR_NOT_EMPTY, PARSABLE_DATE, PARSABLE_DURATION, STR_TO_INT, STR_ALLOW_EMPTY, REMINDER, VALID_COLORS) import gcalcli.validators # Tests required: # # * Title: any string, not blank # * Location: any string, allow blank # * When: string that can be parsed by dateutil # * Duration: string that can be cast to int # * Description: any string, allow blank # * Color: any string matching: blueberry, lavendar, grape, etc, or blank # * Reminder: a valid reminder def test_any_string_not_blank_validator(monkeypatch): # Empty string raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "") with pytest.raises(ValidationError) as ve: validate_input(STR_NOT_EMPTY) assert ve.value.message == ("Input here cannot be empty. " "(Ctrl-C to exit)\n") # None raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: None) with pytest.raises(ValidationError) as ve: validate_input(STR_NOT_EMPTY) assert ve.value.message == ("Input here cannot be empty. " "(Ctrl-C to exit)\n") # Valid string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "Valid Text") assert validate_input(STR_NOT_EMPTY) == "Valid Text" def test_any_string_parsable_by_dateutil(monkeypatch): # non-date raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "NON-DATE STR") with pytest.raises(ValidationError) as ve: validate_input(PARSABLE_DATE) assert ve.value.message == ( "Expected format: a date (e.g. 2019-01-01, tomorrow 10am, " "2nd Jan, Jan 4th, etc) or valid time if today. " "(Ctrl-C to exit)\n" ) # date string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "2nd January") assert validate_input(PARSABLE_DATE) == "2nd January" def test_any_string_parsable_by_parsedatetime(monkeypatch): # non-date raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "NON-DATE STR") with pytest.raises(ValidationError) as ve: validate_input(PARSABLE_DURATION) assert ve.value.message == ( 'Expected format: a duration (e.g. 1m, 1s, 1h3m)' '(Ctrl-C to exit)\n' ) # duration string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "1m") assert validate_input(PARSABLE_DURATION) == "1m" # duration string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "1h2m") assert validate_input(PARSABLE_DURATION) == "1h2m" def test_string_can_be_cast_to_int(monkeypatch): # non int-castable string raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "X") with pytest.raises(ValidationError) as ve: validate_input(STR_TO_INT) assert ve.value.message == ("Input here must be a number. " "(Ctrl-C to exit)\n") # int string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "10") assert validate_input(STR_TO_INT) == "10" def test_for_valid_colour_name(monkeypatch): # non valid colour raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "purple") with pytest.raises(ValidationError) as ve: validate_input(VALID_COLORS) assert ve.value.message == ( "Expected colors are: lavender, sage, grape, flamingo, banana, " "tangerine, peacock, graphite, blueberry, basil, tomato. " "(Ctrl-C to exit)\n" ) # valid colour passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "grape") assert validate_input(VALID_COLORS) == "grape" # empty str passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "") assert validate_input(VALID_COLORS) == "" def test_any_string_and_blank(monkeypatch): # string passes monkeypatch.setattr(gcalcli.validators, "input", lambda: "TEST") assert validate_input(STR_ALLOW_EMPTY) == "TEST" def test_reminder(monkeypatch): # valid reminders pass monkeypatch.setattr(gcalcli.validators, "input", lambda: "10m email") assert validate_input(REMINDER) == "10m email" monkeypatch.setattr(gcalcli.validators, "input", lambda: "10 popup") assert validate_input(REMINDER) == "10 popup" monkeypatch.setattr(gcalcli.validators, "input", lambda: "10m sms") assert validate_input(REMINDER) == "10m sms" monkeypatch.setattr(gcalcli.validators, "input", lambda: "12323") assert validate_input(REMINDER) == "12323" # invalid reminder raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "meaningless") with pytest.raises(ValidationError) as ve: validate_input(REMINDER) assert ve.value.message == ('Expected format: <number><w|d|h|m> ' '<popup|email|sms>. (Ctrl-C to exit)\n') # invalid reminder raises ValidationError monkeypatch.setattr(gcalcli.validators, "input", lambda: "") with pytest.raises(ValidationError) as ve: validate_input(REMINDER) assert ve.value.message == ('Expected format: <number><w|d|h|m> ' '<popup|email|sms>. (Ctrl-C to exit)\n') ```
{ "source": "jklymak/mpl-bench", "score": 2 }
#### File: mpl-bench/benchmarks/image.py ```python from __future__ import absolute_import, division, print_function import distutils.version import numpy as np import matplotlib import matplotlib.pyplot as plt MPL_VERSION = distutils.version.LooseVersion(matplotlib.__version__) class InterpolationSuite: params = ('none', 'nearest', 'bilinear', 'bicubic') param_names = ('interpolation', ) def setup(self, interpolation): self.data = np.arange(100).reshape((10, 10)) self.fig, self.ax = plt.subplots(dpi=100) self.ax.set_xlim(0, 3) self.ax.set_ylim(0, 3) def teardown(self, interpolation): plt.close(self.fig) def time_setup(self, interpolation): self.ax.imshow(self.data, interpolation=interpolation, extent=(1, 2, 1, 2)) def time_full_draw(self, interpolation): self.ax.imshow(self.data, interpolation=interpolation, extent=(1, 2, 1, 2)) self.fig.canvas.draw() class MaskSuite: # Test mask image two ways: Using nans and using a masked array. params = ('nan', 'mask') param_names = ('method', ) def setup(self, method): if method == 'nan': A = np.ones((5, 5)) A[1:2, 1:2] = np.nan elif method == 'mask': A = np.zeros((5, 5), dtype=bool) A[1:2, 1:2] = True A = np.ma.masked_array(np.ones((5, 5), dtype=np.uint16), A) else: raise NotImplementedError('%s is not a known masking method' % (method, )) self.A = A self.fig, self.ax = plt.subplots(dpi=100) def teardown(self, method): plt.close(self.fig) def time_setup(self, method): self.ax.imshow(self.A, interpolation='nearest') def time_full_draw(self, method): self.ax.imshow(self.A, interpolation='nearest') self.fig.canvas.draw() class TypeSuite: # Test both endianness, some alternate float and non-float types. params = ('<f8', '>f8', np.longdouble, int, bool) param_names = ('dtype', ) def setup(self, t): if t == np.longdouble and MPL_VERSION < '2.1.0': raise NotImplementedError( 'Long double not supported in this Matplotlib version') x = np.arange(10) X, Y = np.meshgrid(x, x) Z = ((X - 5)**2 + (Y - 5)**2)**0.5 self.data = Z.astype(t) self.fig, self.ax = plt.subplots(dpi=100) def teardown(self, t): if t == np.longdouble and MPL_VERSION < '2.1.0': return plt.close(self.fig) def time_setup(self, t): self.ax.imshow(self.data) def time_full_draw(self, t): self.ax.imshow(self.data) self.fig.canvas.draw() ```
{ "source": "jklymak/pick_waypoints", "score": 4 }
#### File: pick_waypoints/pick_waypoints/example.py ```python __all__ = [ "example_function", ] import numpy as np def example_function(ax, data, above_color="r", below_color="k", **kwargs): """ An example function that makes a scatter plot with points colored differently depending on if they are above or below `y=0`. Parameters ---------- ax : matplotlib axis The axis to plot on. data : (N, 2) array-like The data to make a plot from above_color : color-like, default: 'r' The color of points with `y>0` below_color : color-like, default: 'k' The color of points with `y<0` kwargs : Passed through to `ax.scatter` Returns ------- MarkerCollection """ colors = np.array([above_color] * data.shape[0]) colors[data[:, 1] < 0] = below_color return ax.scatter(data[:, 0], data[:, 1], c=colors, **kwargs) ```
{ "source": "jklymak/veros", "score": 2 }
#### File: veros/test/setup_test.py ```python import pytest @pytest.fixture(autouse=True) def ensure_diskless(): from veros import runtime_settings object.__setattr__(runtime_settings, "diskless_mode", True) def test_setup_acc(): from veros.setups.acc import ACCSetup sim = ACCSetup() sim.setup() with sim.state.settings.unlock(): sim.state.settings.runlen = sim.state.settings.dt_tracer * 20 sim.run() def test_setup_acc_basic(): from veros.setups.acc_basic import ACCBasicSetup sim = ACCBasicSetup() sim.setup() with sim.state.settings.unlock(): sim.state.settings.runlen = sim.state.settings.dt_tracer * 20 sim.run() def test_setup_4deg(): from veros.setups.global_4deg import GlobalFourDegreeSetup sim = GlobalFourDegreeSetup() sim.setup() with sim.state.settings.unlock(): sim.state.settings.runlen = sim.state.settings.dt_tracer * 20 sim.run() def test_setup_flexible(): from veros.setups.global_flexible import GlobalFlexibleResolutionSetup sim = GlobalFlexibleResolutionSetup( override=dict( nx=100, ny=50, dt_tracer=3600, dt_mom=3600, ) ) sim.setup() with sim.state.settings.unlock(): sim.state.settings.runlen = sim.state.settings.dt_tracer * 20 sim.run() def test_setup_1deg(): from veros.setups.global_1deg import GlobalOneDegreeSetup # too big to test GlobalOneDegreeSetup() def test_setup_north_atlantic(): from veros.setups.north_atlantic import NorthAtlanticSetup sim = NorthAtlanticSetup(override=dict(nx=100, ny=100, nz=50)) sim.setup() with sim.state.settings.unlock(): sim.state.settings.runlen = sim.state.settings.dt_tracer sim.run() ``` #### File: veros/test/state_test.py ```python import pytest from veros.state import VerosSettings, VerosVariables, VerosState @pytest.fixture def dummy_settings(): from veros.settings import SETTINGS return VerosSettings(SETTINGS) @pytest.fixture def dummy_variables(): from veros.variables import VARIABLES, DIM_TO_SHAPE_VAR fixed_dims = {k: 10 for k in DIM_TO_SHAPE_VAR.keys()} return VerosVariables(VARIABLES, fixed_dims) @pytest.fixture def dummy_state(): from veros.variables import VARIABLES, DIM_TO_SHAPE_VAR from veros.settings import SETTINGS return VerosState(VARIABLES, SETTINGS, DIM_TO_SHAPE_VAR) def test_lock_settings(dummy_settings): orig_val = dummy_settings.dt_tracer with pytest.raises(RuntimeError): dummy_settings.dt_tracer = 0 assert dummy_settings.dt_tracer == orig_val with dummy_settings.unlock(): dummy_settings.dt_tracer = 1 assert dummy_settings.dt_tracer == 1 def test_settings_repr(dummy_settings): with dummy_settings.unlock(): dummy_settings.dt_tracer = 1 assert "dt_tracer = 1.0," in repr(dummy_settings) def test_variables_repr(dummy_variables): from veros.core.operators import numpy as npx array_type = type(npx.array([])) assert f"tau = {array_type} with shape (), dtype int32," in repr(dummy_variables) def test_to_xarray(dummy_state): pytest.importorskip("xarray") dummy_state.initialize_variables() ds = dummy_state.to_xarray() # settings assert tuple(ds.attrs.keys()) == tuple(dummy_state.settings.fields()) assert tuple(ds.attrs.values()) == tuple(dummy_state.settings.values()) # dimensions used_dims = set() for var, meta in dummy_state.var_meta.items(): if var in dummy_state.variables: if meta.dims is None: continue used_dims |= set(meta.dims) assert set(ds.coords.keys()) == used_dims for dim in used_dims: assert int(ds.dims[dim]) == dummy_state.dimensions[dim] # variables for var in dummy_state.variables.fields(): assert var in ds def test_variable_init(dummy_state): with pytest.raises(RuntimeError): dummy_state.variables dummy_state.initialize_variables() assert isinstance(dummy_state.variables, VerosVariables) with pytest.raises(RuntimeError): dummy_state.initialize_variables() def test_set_dimension(dummy_state): with dummy_state.settings.unlock(): dummy_state.settings.nx = 10 assert dummy_state.dimensions["xt"] == 10 dummy_state.dimensions["foobar"] = 42 assert dummy_state.dimensions["foobar"] == 42 with pytest.raises(RuntimeError): dummy_state.dimensions["xt"] = 11 assert dummy_state._dimensions["xt"] == "nx" def test_resize_dimension(dummy_state): from veros.state import resize_dimension with dummy_state.settings.unlock(): dummy_state.settings.nx = 10 dummy_state.initialize_variables() assert dummy_state.dimensions["xt"] == 10 assert dummy_state.variables.dxt.shape == (14,) resize_dimension(dummy_state, "xt", 100) assert dummy_state.dimensions["xt"] == 100 assert dummy_state.variables.dxt.shape == (104,) def test_timers(dummy_state): from veros.timer import Timer timer = dummy_state.timers["foobar"] assert isinstance(timer, Timer) ``` #### File: veros/core/momentum.py ```python from veros.core.operators import numpy as npx from veros import veros_routine, veros_kernel, KernelOutput, runtime_settings from veros.variables import allocate from veros.core import friction, streamfunction from veros.core.operators import update, update_add, at @veros_kernel def tend_coriolisf(state): """ time tendency due to Coriolis force """ vs = state.variables settings = state.settings vs.du_cor = update( vs.du_cor, at[2:-2, 2:-2], 0.25 * vs.maskU[2:-2, 2:-2] * ( vs.coriolis_t[2:-2, 2:-2, npx.newaxis] * (vs.v[2:-2, 2:-2, :, vs.tau] + vs.v[2:-2, 1:-3, :, vs.tau]) * vs.dxt[2:-2, npx.newaxis, npx.newaxis] / vs.dxu[2:-2, npx.newaxis, npx.newaxis] + vs.coriolis_t[3:-1, 2:-2, npx.newaxis] * (vs.v[3:-1, 2:-2, :, vs.tau] + vs.v[3:-1, 1:-3, :, vs.tau]) * vs.dxt[3:-1, npx.newaxis, npx.newaxis] / vs.dxu[2:-2, npx.newaxis, npx.newaxis] ), ) vs.dv_cor = update( vs.dv_cor, at[2:-2, 2:-2], -0.25 * vs.maskV[2:-2, 2:-2] * ( vs.coriolis_t[2:-2, 2:-2, npx.newaxis] * (vs.u[1:-3, 2:-2, :, vs.tau] + vs.u[2:-2, 2:-2, :, vs.tau]) * vs.dyt[npx.newaxis, 2:-2, npx.newaxis] * vs.cost[npx.newaxis, 2:-2, npx.newaxis] / (vs.dyu[npx.newaxis, 2:-2, npx.newaxis] * vs.cosu[npx.newaxis, 2:-2, npx.newaxis]) + vs.coriolis_t[2:-2, 3:-1, npx.newaxis] * (vs.u[1:-3, 3:-1, :, vs.tau] + vs.u[2:-2, 3:-1, :, vs.tau]) * vs.dyt[npx.newaxis, 3:-1, npx.newaxis] * vs.cost[npx.newaxis, 3:-1, npx.newaxis] / (vs.dyu[npx.newaxis, 2:-2, npx.newaxis] * vs.cosu[npx.newaxis, 2:-2, npx.newaxis]) ), ) """ time tendency due to metric terms """ if settings.coord_degree: vs.du_cor = update_add( vs.du_cor, at[2:-2, 2:-2], vs.maskU[2:-2, 2:-2] * 0.125 * vs.tantr[npx.newaxis, 2:-2, npx.newaxis] * ( (vs.u[2:-2, 2:-2, :, vs.tau] + vs.u[1:-3, 2:-2, :, vs.tau]) * (vs.v[2:-2, 2:-2, :, vs.tau] + vs.v[2:-2, 1:-3, :, vs.tau]) * vs.dxt[2:-2, npx.newaxis, npx.newaxis] / vs.dxu[2:-2, npx.newaxis, npx.newaxis] + (vs.u[3:-1, 2:-2, :, vs.tau] + vs.u[2:-2, 2:-2, :, vs.tau]) * (vs.v[3:-1, 2:-2, :, vs.tau] + vs.v[3:-1, 1:-3, :, vs.tau]) * vs.dxt[3:-1, npx.newaxis, npx.newaxis] / vs.dxu[2:-2, npx.newaxis, npx.newaxis] ), ) vs.dv_cor = update_add( vs.dv_cor, at[2:-2, 2:-2], -1 * vs.maskV[2:-2, 2:-2] * 0.125 * ( vs.tantr[npx.newaxis, 2:-2, npx.newaxis] * (vs.u[2:-2, 2:-2, :, vs.tau] + vs.u[1:-3, 2:-2, :, vs.tau]) ** 2 * vs.dyt[npx.newaxis, 2:-2, npx.newaxis] * vs.cost[npx.newaxis, 2:-2, npx.newaxis] / (vs.dyu[npx.newaxis, 2:-2, npx.newaxis] * vs.cosu[npx.newaxis, 2:-2, npx.newaxis]) + vs.tantr[npx.newaxis, 3:-1, npx.newaxis] * (vs.u[2:-2, 3:-1, :, vs.tau] + vs.u[1:-3, 3:-1, :, vs.tau]) ** 2 * vs.dyt[npx.newaxis, 3:-1, npx.newaxis] * vs.cost[npx.newaxis, 3:-1, npx.newaxis] / (vs.dyu[npx.newaxis, 2:-2, npx.newaxis] * vs.cosu[npx.newaxis, 2:-2, npx.newaxis]) ), ) """ transfer to time tendencies """ vs.du = update(vs.du, at[2:-2, 2:-2, :, vs.tau], vs.du_cor[2:-2, 2:-2]) vs.dv = update(vs.dv, at[2:-2, 2:-2, :, vs.tau], vs.dv_cor[2:-2, 2:-2]) return KernelOutput(du=vs.du, dv=vs.dv, du_cor=vs.du_cor, dv_cor=vs.dv_cor) @veros_kernel def tend_tauxyf(state): """ wind stress forcing """ vs = state.variables settings = state.settings if runtime_settings.pyom_compatibility_mode: vs.du = update_add( vs.du, at[2:-2, 2:-2, -1, vs.tau], vs.maskU[2:-2, 2:-2, -1] * vs.surface_taux[2:-2, 2:-2] / vs.dzt[-1] ) vs.dv = update_add( vs.dv, at[2:-2, 2:-2, -1, vs.tau], vs.maskV[2:-2, 2:-2, -1] * vs.surface_tauy[2:-2, 2:-2] / vs.dzt[-1] ) else: vs.du = update_add( vs.du, at[2:-2, 2:-2, -1, vs.tau], vs.maskU[2:-2, 2:-2, -1] * vs.surface_taux[2:-2, 2:-2] / vs.dzt[-1] / settings.rho_0, ) vs.dv = update_add( vs.dv, at[2:-2, 2:-2, -1, vs.tau], vs.maskV[2:-2, 2:-2, -1] * vs.surface_tauy[2:-2, 2:-2] / vs.dzt[-1] / settings.rho_0, ) return KernelOutput(du=vs.du, dv=vs.dv) @veros_kernel def momentum_advection(state): """ Advection of momentum with second order which is energy conserving """ vs = state.variables """ Code from MITgcm """ utr = vs.u[..., vs.tau] * vs.maskU * vs.dyt[npx.newaxis, :, npx.newaxis] * vs.dzt[npx.newaxis, npx.newaxis, :] vtr = ( vs.dzt[npx.newaxis, npx.newaxis, :] * vs.cosu[npx.newaxis, :, npx.newaxis] * vs.dxt[:, npx.newaxis, npx.newaxis] * vs.v[..., vs.tau] * vs.maskV ) wtr = vs.w[..., vs.tau] * vs.maskW * vs.area_t[:, :, npx.newaxis] """ for zonal momentum """ flux_east = allocate(state.dimensions, ("xu", "yt", "zt")) flux_north = allocate(state.dimensions, ("xt", "yu", "zt")) flux_top = allocate(state.dimensions, ("xt", "yt", "zw")) flux_east = update( flux_east, at[1:-2, 2:-2], 0.25 * (vs.u[1:-2, 2:-2, :, vs.tau] + vs.u[2:-1, 2:-2, :, vs.tau]) * (utr[2:-1, 2:-2] + utr[1:-2, 2:-2]), ) flux_north = update( flux_north, at[2:-2, 1:-2], 0.25 * (vs.u[2:-2, 1:-2, :, vs.tau] + vs.u[2:-2, 2:-1, :, vs.tau]) * (vtr[3:-1, 1:-2] + vtr[2:-2, 1:-2]), ) flux_top = update( flux_top, at[2:-2, 2:-2, :-1], 0.25 * (vs.u[2:-2, 2:-2, 1:, vs.tau] + vs.u[2:-2, 2:-2, :-1, vs.tau]) * (wtr[2:-2, 2:-2, :-1] + wtr[3:-1, 2:-2, :-1]), ) vs.du_adv = update( vs.du_adv, at[2:-2, 2:-2], -1 * vs.maskU[2:-2, 2:-2] * (flux_east[2:-2, 2:-2] - flux_east[1:-3, 2:-2] + flux_north[2:-2, 2:-2] - flux_north[2:-2, 1:-3]) / (vs.dzt[npx.newaxis, npx.newaxis, :] * vs.area_u[2:-2, 2:-2, npx.newaxis]), ) tmp = vs.maskU / (vs.dzt * vs.area_u[:, :, npx.newaxis]) vs.du_adv = vs.du_adv - tmp * flux_top vs.du_adv = update_add(vs.du_adv, at[:, :, 1:], tmp[:, :, 1:] * flux_top[:, :, :-1]) """ for meridional momentum """ flux_top = update(flux_top, at[...], 0.0) flux_east = update( flux_east, at[1:-2, 2:-2], 0.25 * (vs.v[1:-2, 2:-2, :, vs.tau] + vs.v[2:-1, 2:-2, :, vs.tau]) * (utr[1:-2, 3:-1] + utr[1:-2, 2:-2]), ) flux_north = update( flux_north, at[2:-2, 1:-2], 0.25 * (vs.v[2:-2, 1:-2, :, vs.tau] + vs.v[2:-2, 2:-1, :, vs.tau]) * (vtr[2:-2, 2:-1] + vtr[2:-2, 1:-2]), ) flux_top = update( flux_top, at[2:-2, 2:-2, :-1], 0.25 * (vs.v[2:-2, 2:-2, 1:, vs.tau] + vs.v[2:-2, 2:-2, :-1, vs.tau]) * (wtr[2:-2, 2:-2, :-1] + wtr[2:-2, 3:-1, :-1]), ) vs.dv_adv = update( vs.dv_adv, at[2:-2, 2:-2], -1 * vs.maskV[2:-2, 2:-2] * (flux_east[2:-2, 2:-2] - flux_east[1:-3, 2:-2] + flux_north[2:-2, 2:-2] - flux_north[2:-2, 1:-3]) / (vs.dzt * vs.area_v[2:-2, 2:-2, npx.newaxis]), ) tmp = vs.maskV / (vs.dzt * vs.area_v[:, :, npx.newaxis]) vs.dv_adv = vs.dv_adv - tmp * flux_top vs.dv_adv = update_add(vs.dv_adv, at[:, :, 1:], tmp[:, :, 1:] * flux_top[:, :, :-1]) vs.du = update_add(vs.du, at[:, :, :, vs.tau], vs.du_adv) vs.dv = update_add(vs.dv, at[:, :, :, vs.tau], vs.dv_adv) return KernelOutput(du=vs.du, dv=vs.dv, du_adv=vs.du_adv, dv_adv=vs.dv_adv) @veros_routine def vertical_velocity(state): vs = state.variables vs.update(vertical_velocity_kernel(state)) @veros_kernel def vertical_velocity_kernel(state): """ vertical velocity from continuity : \\int_0^z w_z dz = w(z)-w(0) = - \\int dz (u_x + v_y) w(z) = -int dz u_x + v_y """ vs = state.variables fxa = allocate(state.dimensions, ("xt", "yt", "zw")) # integrate from bottom to surface to see error in w fxa = update( fxa, at[1:, 1:, 0], -1 * vs.maskW[1:, 1:, 0] * vs.dzt[0] * ( (vs.u[1:, 1:, 0, vs.taup1] - vs.u[:-1, 1:, 0, vs.taup1]) / (vs.cost[npx.newaxis, 1:] * vs.dxt[1:, npx.newaxis]) + ( vs.cosu[npx.newaxis, 1:] * vs.v[1:, 1:, 0, vs.taup1] - vs.cosu[npx.newaxis, :-1] * vs.v[1:, :-1, 0, vs.taup1] ) / (vs.cost[npx.newaxis, 1:] * vs.dyt[npx.newaxis, 1:]) ), ) fxa = update( fxa, at[1:, 1:, 1:], -1 * vs.maskW[1:, 1:, 1:] * vs.dzt[npx.newaxis, npx.newaxis, 1:] * ( (vs.u[1:, 1:, 1:, vs.taup1] - vs.u[:-1, 1:, 1:, vs.taup1]) / (vs.cost[npx.newaxis, 1:, npx.newaxis] * vs.dxt[1:, npx.newaxis, npx.newaxis]) + ( vs.cosu[npx.newaxis, 1:, npx.newaxis] * vs.v[1:, 1:, 1:, vs.taup1] - vs.cosu[npx.newaxis, :-1, npx.newaxis] * vs.v[1:, :-1, 1:, vs.taup1] ) / (vs.cost[npx.newaxis, 1:, npx.newaxis] * vs.dyt[npx.newaxis, 1:, npx.newaxis]) ), ) vs.w = update(vs.w, at[1:, 1:, :, vs.taup1], npx.cumsum(fxa[1:, 1:, :], axis=2)) return KernelOutput(w=vs.w) @veros_routine def momentum(state): """ solve for momentum for taup1 """ vs = state.variables """ time tendency due to Coriolis force """ vs.update(tend_coriolisf(state)) """ wind stress forcing """ vs.update(tend_tauxyf(state)) """ advection """ vs.update(momentum_advection(state)) with state.timers["friction"]: friction.friction(state) """ external mode """ with state.timers["pressure"]: streamfunction.solve_streamfunction(state) ``` #### File: veros/veros/variables.py ```python from veros import runtime_settings class Variable: def __init__( self, name, dims, units="", long_description="", dtype=None, time_dependent=True, scale=1.0, write_to_restart=False, extra_attributes=None, mask=None, active=True, initial=None, ): if dims is not None: dims = tuple(dims) self.name = name self.dims = dims self.units = units self.long_description = long_description self.dtype = dtype self.time_dependent = time_dependent self.scale = scale self.write_to_restart = write_to_restart self.active = active self.initial = initial self.get_mask = lambda vs: None if mask is not None: if not callable(mask): raise TypeError("mask argument has to be callable") self.get_mask = mask elif dims is not None: if dims[:3] in DEFAULT_MASKS: self.get_mask = DEFAULT_MASKS[dims[:3]] elif dims[:2] in DEFAULT_MASKS: self.get_mask = DEFAULT_MASKS[dims[:2]] #: Additional attributes to be written in netCDF output self.extra_attributes = extra_attributes or {} def __repr__(self): attr_str = [] for v in vars(self): attr_str.append(f"{v}={getattr(self, v)}") attr_str = ", ".join(attr_str) return f"{self.__class__.__qualname__}({attr_str})" # fill value for netCDF output (invalid data is replaced by this value) FILL_VALUE = -1e18 # XT = ("xt",) XU = ("xu",) YT = ("yt",) YU = ("yu",) ZT = ("zt",) ZW = ("zw",) T_HOR = ("xt", "yt") U_HOR = ("xu", "yt") V_HOR = ("xt", "yu") ZETA_HOR = ("xu", "yu") T_GRID = ("xt", "yt", "zt") U_GRID = ("xu", "yt", "zt") V_GRID = ("xt", "yu", "zt") W_GRID = ("xt", "yt", "zw") ZETA_GRID = ("xu", "yu", "zt") TIMESTEPS = ("timesteps",) ISLE = ("isle",) TENSOR_COMP = ("tensor1", "tensor2") # those are written to netCDF output by default BASE_DIMENSIONS = XT + XU + YT + YU + ZT + ZW + ISLE GHOST_DIMENSIONS = ("xt", "yt", "xu", "yu") # these are the settings that are getting used to determine shapes DIM_TO_SHAPE_VAR = { "xt": "nx", "xu": "nx", "yt": "ny", "yu": "ny", "zt": "nz", "zw": "nz", "timesteps": 3, "tensor1": 2, "tensor2": 2, "isle": 0, } DEFAULT_MASKS = { T_HOR: lambda vs: vs.maskT[:, :, -1], U_HOR: lambda vs: vs.maskU[:, :, -1], V_HOR: lambda vs: vs.maskV[:, :, -1], ZETA_HOR: lambda vs: vs.maskZ[:, :, -1], T_GRID: lambda vs: vs.maskT, U_GRID: lambda vs: vs.maskU, V_GRID: lambda vs: vs.maskV, W_GRID: lambda vs: vs.maskW, ZETA_GRID: lambda vs: vs.maskZ, } # custom mask for streamfunction ZETA_HOR_ERODED = lambda vs: vs.maskZ[:, :, -1] | vs.boundary_mask.sum(axis=2) # noqa: E731 def get_shape(dimensions, grid, include_ghosts=True, local=True): from veros.routines import CURRENT_CONTEXT from veros.distributed import SCATTERED_DIMENSIONS if grid is None: return () px, py = runtime_settings.num_proc grid_shapes = dict(dimensions) if local and CURRENT_CONTEXT.is_dist_safe: for pxi, dims in zip((px, py), SCATTERED_DIMENSIONS): for dim in dims: if dim not in grid_shapes: continue grid_shapes[dim] = grid_shapes[dim] // pxi if include_ghosts: for d in GHOST_DIMENSIONS: if d in grid_shapes: grid_shapes[d] += 4 shape = [] for grid_dim in grid: if isinstance(grid_dim, int): shape.append(grid_dim) continue if grid_dim not in grid_shapes: raise ValueError(f"unrecognized dimension {grid_dim}") shape.append(grid_shapes[grid_dim]) return tuple(shape) def remove_ghosts(array, dims): if dims is None: # scalar return array ghost_mask = tuple(slice(2, -2) if dim in GHOST_DIMENSIONS else slice(None) for dim in dims) return array[ghost_mask] VARIABLES = { # scalars "tau": Variable( "Index of current time step", None, "", "Index of current time step", dtype="int32", initial=1, write_to_restart=True, ), "taup1": Variable( "Index of next time step", None, "", "Index of next time step", dtype="int32", initial=2, write_to_restart=True ), "taum1": Variable( "Index of last time step", None, "", "Index of last time step", dtype="int32", initial=0, write_to_restart=True ), "time": Variable( "Current time", None, "", "Current time", write_to_restart=True, ), "itt": Variable("Current iteration", None, "", "Current iteration", dtype="int32", initial=0), # base variables "dxt": Variable("Zonal T-grid spacing", XT, "m", "Zonal (x) spacing of T-grid point", time_dependent=False), "dxu": Variable("Zonal U-grid spacing", XU, "m", "Zonal (x) spacing of U-grid point", time_dependent=False), "dyt": Variable( "Meridional T-grid spacing", YT, "m", "Meridional (y) spacing of T-grid point", time_dependent=False ), "dyu": Variable( "Meridional U-grid spacing", YU, "m", "Meridional (y) spacing of U-grid point", time_dependent=False ), "zt": Variable( "Vertical coordinate (T)", ZT, "m", "Vertical coordinate", time_dependent=False, extra_attributes={"positive": "up"}, ), "zw": Variable( "Vertical coordinate (W)", ZW, "m", "Vertical coordinate", time_dependent=False, extra_attributes={"positive": "up"}, ), "dzt": Variable("Vertical spacing (T)", ZT, "m", "Vertical spacing", time_dependent=False), "dzw": Variable("Vertical spacing (W)", ZW, "m", "Vertical spacing", time_dependent=False), "cost": Variable("Metric factor (T)", YT, "1", "Metric factor for spherical coordinates", time_dependent=False), "cosu": Variable("Metric factor (U)", YU, "1", "Metric factor for spherical coordinates", time_dependent=False), "tantr": Variable("Metric factor", YT, "1", "Metric factor for spherical coordinates", time_dependent=False), "coriolis_t": Variable( "Coriolis frequency", T_HOR, "1/s", "Coriolis frequency at T grid point", time_dependent=False ), "kbot": Variable( "Index of deepest cell", T_HOR, "", "Index of the deepest grid cell (counting from 1, 0 means all land)", dtype="int32", time_dependent=False, ), "ht": Variable("Total depth (T)", T_HOR, "m", "Total depth of the water column", time_dependent=False), "hu": Variable("Total depth (U)", U_HOR, "m", "Total depth of the water column", time_dependent=False), "hv": Variable("Total depth (V)", V_HOR, "m", "Total depth of the water column", time_dependent=False), "hur": Variable( "Total depth (U), masked", U_HOR, "m", "Total depth of the water column (masked)", time_dependent=False ), "hvr": Variable( "Total depth (V), masked", V_HOR, "m", "Total depth of the water column (masked)", time_dependent=False ), "beta": Variable( "Change of Coriolis freq.", T_HOR, "1/(ms)", "Change of Coriolis frequency with latitude", time_dependent=False ), "area_t": Variable("Area of T-box", T_HOR, "m^2", "Area of T-box", time_dependent=False), "area_u": Variable("Area of U-box", U_HOR, "m^2", "Area of U-box", time_dependent=False), "area_v": Variable("Area of V-box", V_HOR, "m^2", "Area of V-box", time_dependent=False), "maskT": Variable( "Mask for tracer points", T_GRID, "", "Mask in physical space for tracer points", time_dependent=False, dtype="bool", ), "maskU": Variable( "Mask for U points", U_GRID, "", "Mask in physical space for U points", time_dependent=False, dtype="bool", ), "maskV": Variable( "Mask for V points", V_GRID, "", "Mask in physical space for V points", time_dependent=False, dtype="bool", ), "maskW": Variable( "Mask for W points", W_GRID, "", "Mask in physical space for W points", time_dependent=False, dtype="bool", ), "maskZ": Variable( "Mask for Zeta points", ZETA_GRID, "", "Mask in physical space for Zeta points", time_dependent=False, dtype="bool", ), "rho": Variable( "Density", T_GRID + TIMESTEPS, "kg/m^3", "In-situ density anomaly, relative to the surface mean value of 1024 kg/m^3", write_to_restart=True, ), "prho": Variable( "Potential density", T_GRID, "kg/m^3", "Potential density anomaly, relative to the surface mean value of 1024 kg/m^3 " "(identical to in-situ density anomaly for equation of state type 1, 2, and 4)", ), "int_drhodT": Variable( "Der. of dyn. enthalpy by temperature", T_GRID + TIMESTEPS, "kg / (m^2 deg C)", "Partial derivative of dynamic enthalpy by temperature", write_to_restart=True, ), "int_drhodS": Variable( "Der. of dyn. enthalpy by salinity", T_GRID + TIMESTEPS, "kg / (m^2 g / kg)", "Partial derivative of dynamic enthalpy by salinity", write_to_restart=True, ), "Nsqr": Variable( "Square of stability frequency", W_GRID + TIMESTEPS, "1/s^2", "Square of stability frequency", write_to_restart=True, ), "Hd": Variable("Dynamic enthalpy", T_GRID + TIMESTEPS, "m^2/s^2", "Dynamic enthalpy", write_to_restart=True), "dHd": Variable( "Change of dyn. enth. by adv.", T_GRID + TIMESTEPS, "m^2/s^3", "Change of dynamic enthalpy due to advection", write_to_restart=True, ), "temp": Variable("Temperature", T_GRID + TIMESTEPS, "deg C", "Conservative temperature", write_to_restart=True), "dtemp": Variable( "Temperature tendency", T_GRID + TIMESTEPS, "deg C/s", "Conservative temperature tendency", write_to_restart=True, ), "salt": Variable("Salinity", T_GRID + TIMESTEPS, "g/kg", "Salinity", write_to_restart=True), "dsalt": Variable("Salinity tendency", T_GRID + TIMESTEPS, "g/(kg s)", "Salinity tendency", write_to_restart=True), "dtemp_vmix": Variable( "Change of temp. by vertical mixing", T_GRID, "deg C/s", "Change of temperature due to vertical mixing", ), "dtemp_hmix": Variable( "Change of temp. by horizontal mixing", T_GRID, "deg C/s", "Change of temperature due to horizontal mixing", ), "dsalt_vmix": Variable( "Change of sal. by vertical mixing", T_GRID, "deg C/s", "Change of salinity due to vertical mixing", ), "dsalt_hmix": Variable( "Change of sal. by horizontal mixing", T_GRID, "deg C/s", "Change of salinity due to horizontal mixing", ), "dtemp_iso": Variable( "Change of temp. by isop. mixing", T_GRID, "deg C/s", "Change of temperature due to isopycnal mixing plus skew mixing", ), "dsalt_iso": Variable( "Change of sal. by isop. mixing", T_GRID, "deg C/s", "Change of salinity due to isopycnal mixing plus skew mixing", ), "forc_temp_surface": Variable( "Surface temperature flux", T_HOR, "m deg C/s", "Surface temperature flux", ), "forc_salt_surface": Variable( "Surface salinity flux", T_HOR, "m g/s kg", "Surface salinity flux", ), "u": Variable("Zonal velocity", U_GRID + TIMESTEPS, "m/s", "Zonal velocity", write_to_restart=True), "v": Variable("Meridional velocity", V_GRID + TIMESTEPS, "m/s", "Meridional velocity", write_to_restart=True), "w": Variable("Vertical velocity", W_GRID + TIMESTEPS, "m/s", "Vertical velocity", write_to_restart=True), "du": Variable( "Zonal velocity tendency", U_GRID + TIMESTEPS, "m/s", "Zonal velocity tendency", write_to_restart=True ), "dv": Variable( "Meridional velocity tendency", V_GRID + TIMESTEPS, "m/s", "Meridional velocity tendency", write_to_restart=True ), "du_cor": Variable("Change of u by Coriolis force", U_GRID, "m/s^2", "Change of u due to Coriolis force"), "dv_cor": Variable("Change of v by Coriolis force", V_GRID, "m/s^2", "Change of v due to Coriolis force"), "du_mix": Variable( "Change of u by vertical mixing", U_GRID, "m/s^2", "Change of u due to implicit vertical mixing" ), "dv_mix": Variable( "Change of v by vertical mixing", V_GRID, "m/s^2", "Change of v due to implicit vertical mixing" ), "du_adv": Variable("Change of u by advection", U_GRID, "m/s^2", "Change of u due to advection"), "dv_adv": Variable("Change of v by advection", V_GRID, "m/s^2", "Change of v due to advection"), "p_hydro": Variable("Hydrostatic pressure", T_GRID, "m^2/s^2", "Hydrostatic pressure"), "kappaM": Variable("Vertical viscosity", T_GRID, "m^2/s", "Vertical viscosity"), "kappaH": Variable("Vertical diffusivity", W_GRID, "m^2/s", "Vertical diffusivity"), "surface_taux": Variable( "Surface wind stress", U_HOR, "N/m^2", "Zonal surface wind stress", ), "surface_tauy": Variable( "Surface wind stress", V_HOR, "N/m^2", "Meridional surface wind stress", ), "forc_rho_surface": Variable("Surface density flux", T_HOR, "kg / (m^2 s)", "Surface potential density flux"), "psi": Variable( "Streamfunction", ZETA_HOR + TIMESTEPS, "m^3/s", "Barotropic streamfunction", write_to_restart=True, mask=ZETA_HOR_ERODED, ), "dpsi": Variable( "Streamfunction tendency", ZETA_HOR + TIMESTEPS, "m^3/s^2", "Streamfunction tendency", write_to_restart=True ), "land_map": Variable("Land map", T_HOR, "", "Land map", dtype="int32"), "isle": Variable("Island number", ISLE, "", "Island number"), "psin": Variable( "Boundary streamfunction", ZETA_HOR + ISLE, "m^3/s", "Boundary streamfunction", time_dependent=False, mask=ZETA_HOR_ERODED, ), "dpsin": Variable( "Boundary streamfunction factor", ISLE + TIMESTEPS, "m^3/s^2", "Boundary streamfunction factor", write_to_restart=True, ), "line_psin": Variable( "Boundary line integrals", ISLE + ISLE, "m^4/s^2", "Boundary line integrals", time_dependent=False ), "boundary_mask": Variable("Boundary mask", T_HOR + ISLE, "", "Boundary mask", time_dependent=False, dtype="bool"), "line_dir_south_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_north_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_east_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "line_dir_west_mask": Variable( "Line integral mask", T_HOR + ISLE, "", "Line integral mask", time_dependent=False, dtype="bool" ), "K_gm": Variable("Skewness diffusivity", W_GRID, "m^2/s", "GM diffusivity, either constant or from EKE model"), "K_iso": Variable("Isopycnal diffusivity", W_GRID, "m^2/s", "Along-isopycnal diffusivity"), "K_diss_v": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Kinetic energy dissipation by vertical, rayleigh and bottom friction", write_to_restart=True, ), "K_diss_bot": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Mean energy dissipation by bottom and rayleigh friction" ), "K_diss_h": Variable( "Dissipation of kinetic Energy", W_GRID, "m^2/s^3", "Kinetic energy dissipation by horizontal friction" ), "K_diss_gm": Variable( "Dissipation of mean energy", W_GRID, "m^2/s^3", "Mean energy dissipation by GM (TRM formalism only)", ), "P_diss_v": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by vertical diffusion" ), "P_diss_nonlin": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by nonlinear equation of state", ), "P_diss_iso": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by isopycnal mixing" ), "P_diss_skew": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by GM (w/o TRM)" ), "P_diss_hmix": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by horizontal mixing" ), "P_diss_adv": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by advection" ), "P_diss_sources": Variable( "Dissipation of potential Energy", W_GRID, "m^2/s^3", "Potential energy dissipation by external sources (e.g. restoring zones)", ), "u_wgrid": Variable("U on W grid", W_GRID, "m/s", "Zonal velocity interpolated to W grid points"), "v_wgrid": Variable("V on W grid", W_GRID, "m/s", "Meridional velocity interpolated to W grid points"), "w_wgrid": Variable("W on W grid", W_GRID, "m/s", "Vertical velocity interpolated to W grid points"), "xt": Variable( "Zonal coordinate (T)", XT, lambda settings: "degrees_east" if settings.coord_degree else "km", "Zonal (x) coordinate of T-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "xu": Variable( "Zonal coordinate (U)", XU, lambda settings: "degrees_east" if settings.coord_degree else "km", "Zonal (x) coordinate of U-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "yt": Variable( "Meridional coordinate (T)", YT, lambda settings: "degrees_north" if settings.coord_degree else "km", "Meridional (y) coordinate of T-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "yu": Variable( "Meridional coordinate (U)", YU, lambda settings: "degrees_north" if settings.coord_degree else "km", "Meridional (y) coordinate of U-grid point", time_dependent=False, scale=lambda settings: 1 if settings.coord_degree else 1e-3, ), "temp_source": Variable( "Source of temperature", T_GRID, "K/s", "Non-conservative source of temperature", active=lambda settings: settings.enable_tempsalt_sources, ), "salt_source": Variable( "Source of salt", T_GRID, "g/(kg s)", "Non-conservative source of salt", active=lambda settings: settings.enable_tempsalt_sources, ), "u_source": Variable( "Source of zonal velocity", U_GRID, "m/s^2", "Non-conservative source of zonal velocity", active=lambda settings: settings.enable_momentum_sources, ), "v_source": Variable( "Source of meridional velocity", V_GRID, "m/s^2", "Non-conservative source of meridional velocity", active=lambda settings: settings.enable_momentum_sources, ), "K_11": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "K_22": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "K_33": Variable( "Isopycnal mixing coefficient", T_GRID, "m^2/s", "Isopycnal mixing tensor component", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_ez": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Vertical isopycnal diffusion coefficient on eastern face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_nz": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Vertical isopycnal diffusion coefficient on northern face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_bx": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Zonal isopycnal diffusion coefficient on bottom face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "Ai_by": Variable( "Isopycnal diffusion coefficient", T_GRID + TENSOR_COMP, "Meridional isopycnal diffusion coefficient on bottom face of T cell", "1", active=lambda settings: settings.enable_neutral_diffusion, ), "B1_gm": Variable( "Zonal component of GM streamfunction", V_GRID, "m^2/s", "Zonal component of GM streamfunction", active=lambda settings: settings.enable_skew_diffusion, ), "B2_gm": Variable( "Meridional component of GM streamfunction", U_GRID, "m^2/s", "Meridional component of GM streamfunction", active=lambda settings: settings.enable_skew_diffusion, ), "r_bot_var_u": Variable( "Bottom friction coeff.", U_HOR, "1/s", "Zonal bottom friction coefficient", active=lambda settings: settings.enable_bottom_friction_var, ), "r_bot_var_v": Variable( "Bottom friction coeff.", V_HOR, "1/s", "Meridional bottom friction coefficient", active=lambda settings: settings.enable_bottom_friction_var, ), "kappa_gm": Variable( "Vertical diffusivity", W_GRID, "m^2/s", "Vertical diffusivity", active=lambda settings: settings.enable_TEM_friction, ), "tke": Variable( "Turbulent kinetic energy", W_GRID + TIMESTEPS, "m^2/s^2", "Turbulent kinetic energy", write_to_restart=True, active=lambda settings: settings.enable_tke, ), "sqrttke": Variable( "Square-root of TKE", W_GRID, "m/s", "Square-root of TKE", active=lambda settings: settings.enable_tke, ), "dtke": Variable( "Turbulent kinetic energy tendency", W_GRID + TIMESTEPS, "m^2/s^3", "Turbulent kinetic energy tendency", write_to_restart=True, active=lambda settings: settings.enable_tke, ), "Prandtlnumber": Variable( "Prandtl number", W_GRID, "", "Prandtl number", active=lambda settings: settings.enable_tke, ), "mxl": Variable( "Mixing length", W_GRID, "m", "Mixing length", active=lambda settings: settings.enable_tke, ), "forc_tke_surface": Variable( "TKE surface flux", T_HOR, "m^3/s^3", "TKE surface flux", active=lambda settings: settings.enable_tke, ), "tke_diss": Variable( "TKE dissipation", W_GRID, "m^2/s^3", "TKE dissipation", active=lambda settings: settings.enable_tke, ), "tke_surf_corr": Variable( "Correction of TKE surface flux", T_HOR, "m^3/s^3", "Correction of TKE surface flux", active=lambda settings: settings.enable_tke, ), "eke": Variable( "meso-scale energy", W_GRID + TIMESTEPS, "m^2/s^2", "meso-scale energy", write_to_restart=True, active=lambda settings: settings.enable_eke, ), "deke": Variable( "meso-scale energy tendency", W_GRID + TIMESTEPS, "m^2/s^3", "meso-scale energy tendency", write_to_restart=True, active=lambda settings: settings.enable_eke, ), "sqrteke": Variable( "square-root of eke", W_GRID, "m/s", "square-root of eke", active=lambda settings: settings.enable_eke, ), "L_rossby": Variable( "Rossby radius", T_HOR, "m", "Rossby radius", active=lambda settings: settings.enable_eke, ), "L_rhines": Variable( "Rhines scale", W_GRID, "m", "Rhines scale", active=lambda settings: settings.enable_eke, ), "eke_len": Variable( "Eddy length scale", T_GRID, "m", "Eddy length scale", active=lambda settings: settings.enable_eke, ), "eke_diss_iw": Variable( "Dissipation of EKE to IW", W_GRID, "m^2/s^3", "Dissipation of EKE to internal waves", active=lambda settings: settings.enable_eke, ), "eke_diss_tke": Variable( "Dissipation of EKE to TKE", W_GRID, "m^2/s^3", "Dissipation of EKE to TKE", active=lambda settings: settings.enable_eke, ), "E_iw": Variable( "Internal wave energy", W_GRID + TIMESTEPS, "m^2/s^2", "Internal wave energy", write_to_restart=True, active=lambda settings: settings.enable_idemix, ), "dE_iw": Variable( "Internal wave energy tendency", W_GRID + TIMESTEPS, "m^2/s^2", "Internal wave energy tendency", write_to_restart=True, active=lambda settings: settings.enable_idemix, ), "c0": Variable( "Vertical IW group velocity", W_GRID, "m/s", "Vertical internal wave group velocity", active=lambda settings: settings.enable_idemix, ), "v0": Variable( "Horizontal IW group velocity", W_GRID, "m/s", "Horizontal internal wave group velocity", active=lambda settings: settings.enable_idemix, ), "alpha_c": Variable( "?", W_GRID, "?", "?", active=lambda settings: settings.enable_idemix, ), "iw_diss": Variable( "IW dissipation", W_GRID, "m^2/s^3", "Internal wave dissipation", active=lambda settings: settings.enable_idemix, ), "forc_iw_surface": Variable( "IW surface forcing", T_HOR, "m^3/s^3", "Internal wave surface forcing", time_dependent=False, active=lambda settings: settings.enable_idemix, ), "forc_iw_bottom": Variable( "IW bottom forcing", T_HOR, "m^3/s^3", "Internal wave bottom forcing", time_dependent=False, active=lambda settings: settings.enable_idemix, ), } def manifest_metadata(var_meta, settings): """Evaluate callable metadata fields given the current settings.""" from copy import copy out = {} for var_name, var_val in var_meta.items(): var_val = copy(var_val) for attr, attr_val in vars(var_val).items(): if callable(attr_val) and attr != "get_mask": setattr(var_val, attr, attr_val(settings)) out[var_name] = var_val return out def allocate(dimensions, grid, dtype=None, include_ghosts=True, local=True, fill=0): from veros.core.operators import numpy as npx if dtype is None: dtype = runtime_settings.float_type shape = get_shape(dimensions, grid, include_ghosts=include_ghosts, local=local) out = npx.full(shape, fill, dtype=dtype) if runtime_settings.backend == "numpy": out.flags.writeable = False return out ```
{ "source": "jklynch/bad_seed", "score": 2 }
#### File: SULI/src/tensorForceEnv.py ```python import numpy as np import gym from gym import spaces from random import random from tensorforce.environments import Environment from tensorforce.agents import Agent from tensorforce.execution import Runner from heapq import nlargest def stdDeviaiton(array): cleanedUp = np.array([]) for elem in array: if elem != 0: cleanedUp = np.append(cleanedUp, elem) return np.std(cleanedUp) class CustomEnvironment(Environment): # LEFT = 0 # RIGHT = 1 sum = 0 extraCounter = 3 firstCount = 0 secondCount = 0 thirdCount = 0 # SAMPLES = 5 # TRIALS = 10 # GRID = [] # def __init__(self): def __init__(self, grid_size=10): super().__init__() self.startingPoint = 3 # Size of the 1D-grid self.grid_size = grid_size # Initialize the agent at the right of the grid self.agent_pos = self.startingPoint self._max_episode_timesteps = 500 self.TRIALS = 100 self.SAMPLES = 5 self.GRID = [] self.minSampling = {} self.stdDev = {} # self.stdDevSim = {} self.sum = 0 self.reward = 0 # self.extraCounter = self.startingPoint # self.simulation = [[0, 0, 0, 0, 0, 0, 7, 2, 0, 0], [0, 3, 0, 0, 0, 3, 0, 0, 0, 0],[0, 0, 2, 9, 0, 0, 0, 0, 0, 0],[0, 0, 0, 0, 1, 0, 0, 1, 0, 0],[0, 0, 0, 0, 0, 0, 1, 0, 8, 0]] for i in range(self.SAMPLES): col = [] for j in range(self.TRIALS): if j < self.startingPoint: col.append(random()) else: col.append(0) self.GRID.append(col) for i in range(self.SAMPLES): self.minSampling[i] = 0 for i in range(self.SAMPLES): self.stdDev[i] = self.startingPoint # for i in range(self.SAMPLES): # self.stdDevSim[i] = 0 # for i in range(self.SAMPLES): # print(i) # print(self.simulation[i]) # print(stdDeviaiton(array=[0, 0, 0, 0, 0, 0, 1, 0, 8, 0])) # self.stdDevSim[i] = stdDeviaiton(array=self.simulation[i]) # print(self.stdDevSim) # print(nlargest(3, self.stdDevSim, key=self.stdDevSim.get)) # Define action and observation space # They must be gym.spaces objects # Example when using discrete actions, we have two: left and right n_actions = self.SAMPLES self.action_space = spaces.Discrete(n_actions) # The observation will be the coordinate of the agent # this can be described both by Discrete and Box space self.observation_space = spaces.Box(low=0, high=self.SAMPLES, shape=(self.SAMPLES, self.TRIALS), dtype=np.float32) def states(self): return dict(type='float', shape=(1)) def actions(self): return dict(type='int', num_values=self.SAMPLES) # Optional, should only be defined if environment has a natural maximum # episode length def max_episode_timesteps(self): return super().max_episode_timesteps() # # # Optional # def close(self): # pass def reset(self): # self.extraCounter = self.startingPoint CustomEnvironment.extraCounter = self.startingPoint self.reward = 0 self.agent_pos = self.startingPoint for i in range(self.SAMPLES): for j in range(self.TRIALS): if j < self.startingPoint: self.GRID[i][j] = random() else: self.GRID[i][j] = 0 for i in range(self.SAMPLES): self.minSampling[i] = 0 # here we convert to float32 to make it more general (in case we want to use continuous actions) return np.array([self.agent_pos]).astype(np.float32) def execute(self, actions): # self.extraCounter += 1 CustomEnvironment.extraCounter += 1 maxStdDev = [] reward = 0 if (actions >= 0 and actions < self.SAMPLES): for i in range(self.SAMPLES): self.stdDev[i] = stdDeviaiton(array=self.GRID[i]) maxStdDev = nlargest(3, self.stdDev, key=self.stdDev.get) print(actions, maxStdDev) if actions == maxStdDev[0]: CustomEnvironment.firstCount += 1 self.reward += 1 if actions == maxStdDev[1]: CustomEnvironment.secondCount += 1 self.reward += 1 if actions == maxStdDev[2]: CustomEnvironment.thirdCount += 1 self.reward += 1 # print(maxStdDev, actions) # if self.agent_pos <= self.TRIALS: self.GRID[actions][self.agent_pos] = random() self.minSampling[actions] += 1 self.agent_pos += 1 print(self.reward) else: raise ValueError("Received invalid action={} which is not part of the action space".format(actions)) # Account for the boundaries of the grid self.agent_pos = np.clip(self.agent_pos, 0, self.TRIALS) # Are we at the right of the grid? done = bool(self.agent_pos == self.TRIALS) if done: reward = self.reward # reward += 1 self.sum += 1 if self.sum > 0: CustomEnvironment.sum += reward print(self.minSampling) returning = np.array([self.agent_pos]).astype(np.float32), reward, done return returning def runEnv(): environment = Environment.create( environment=CustomEnvironment, max_episode_timesteps=500 ) agent = Agent.create(agent='a2c', environment=environment, batch_size=10, learning_rate=1e-3) # Train for 200 episodes # for _ in range(2): # states = environment.reset() # terminal = False # while CustomEnvironment.extraCounter != 100: # actions = agent.act(states=states) # # print(actions) # # print(states) # states, terminal, reward = environment.execute(actions=actions) # agent.observe(terminal=terminal, reward=reward) # Evaluate for 100 episodes sum_rewards = 0.0 for _ in range(1): states = environment.reset() internals = agent.initial_internals() terminal = False while CustomEnvironment.extraCounter != 100: actions, internals = agent.act(states=states, internals=internals, independent=True) states, terminal, reward = environment.execute(actions=actions) sum_rewards += reward # print('Mean episode reward:', sum_rewards / 100) print(CustomEnvironment.firstCount) print(CustomEnvironment.secondCount) print(CustomEnvironment.thirdCount) print(CustomEnvironment.sum) # Close agent and environment agent.close() environment.close() if __name__ == "__main__": runEnv() ```
{ "source": "jklynch/bluesky-kafka", "score": 2 }
#### File: bluesky_kafka/tests/conftest.py ```python import os import tempfile from contextlib import contextmanager import intake import numpy as np import pytest import yaml from bluesky.tests.conftest import RE # noqa from ophyd.tests.conftest import hw # noqa from bluesky_kafka import BlueskyConsumer, Publisher from bluesky_kafka.utils import create_topics, delete_topics TEST_TOPIC = "bluesky-kafka-test" TEST_TOPIC2 = "bluesky2-kafka-test" def pytest_addoption(parser): """ Add `--kafka-bootstrap-servers` to the pytest command line parser. """ parser.addoption( "--kafka-bootstrap-servers", action="store", default="127.0.0.1:9092", help="comma-separated list of address:port for Kafka bootstrap servers", ) @pytest.fixture(scope="function") def kafka_bootstrap_servers(request): """ Return a comma-delimited string of Kafka bootstrap server host:port specified on the pytest command line with option --kafka-bootstrap-servers. Parameters ---------- request : pytest request fixture Returns ------- comma-delimited string of Kafka bootstrap server host:port """ return request.config.getoption("--kafka-bootstrap-servers") @pytest.fixture(scope="function") def broker_authorization_config(): return { # "security.protocol": "SASL_PLAINTEXT", # "sasl.mechanisms": "PLAIN", # "sasl.username": "user", # "sasl.password": "password", } @pytest.fixture(scope="function") def temporary_topics(kafka_bootstrap_servers, broker_authorization_config): """ Use this "factory as a fixture and context manager" to cleanly create new topics and delete them after a test. If `bootstrap_servers` is not specified to the factory function then the `kafka_bootstrap_servers` fixture will be used. Parameters ---------- kafka_bootstrap_servers : pytest fixture comma-delimited str of Kafka bootstrap server host:port specified on the pytest command line broker_authorization_config: dict Kafka broker authentication parameters for the test broker """ @contextmanager def _temporary_topics(topics, bootstrap_servers=None, admin_client_config=None): if bootstrap_servers is None: bootstrap_servers = kafka_bootstrap_servers if admin_client_config is None: admin_client_config = broker_authorization_config try: # delete existing requested topics # this will delete any un-consumed messages # the intention is to make tests repeatable by ensuring # they always start with a topics having no "old" messages delete_topics( bootstrap_servers=bootstrap_servers, topics_to_delete=topics, admin_client_config=admin_client_config, ) create_topics( bootstrap_servers=bootstrap_servers, topics_to_create=topics, admin_client_config=admin_client_config, ) yield topics finally: delete_topics( bootstrap_servers=bootstrap_servers, topics_to_delete=topics, admin_client_config=admin_client_config, ) return _temporary_topics @pytest.fixture(scope="function") def publisher_factory(kafka_bootstrap_servers, broker_authorization_config): """ Use this "factory as a fixture" to create one or more Publishers in a test function. If `bootstrap_servers` is not specified to the factory function then the `kafka_bootstrap_servers` fixture will be used. The `serializer` parameter can be passed through **kwargs of the factory function. For example: def test_something(publisher_factory): publisher_abc = publisher_factory(topic="abc") publisher_xyz = publisher_factory(topic="xyz", serializer=pickle.dumps) ... Parameters ---------- kafka_bootstrap_servers : pytest fixture comma-delimited str of Kafka bootstrap server host:port specified on the pytest command line broker_authorization_config: dict Kafka broker authentication parameters for the test broker Returns ------- _publisher_factory : function(topic, key, producer_config, flush_on_stop_doc, **kwargs) a factory function returning bluesky_kafka.Publisher instances constructed with the specified arguments """ def _publisher_factory( topic, bootstrap_servers=None, key=None, producer_config=None, **kwargs, ): """ Parameters ---------- topic : str Topic to which all messages will be published. bootstrap_servers: str Comma-delimited list of Kafka server addresses as a string such as ``'127.0.0.1:9092'``; default is the value of the pytest command line parameter --kafka-bootstrap-servers key : str Kafka "key" string. Specify a key to maintain message order. If None is specified no ordering will be imposed on messages. producer_config : dict, optional Dictionary configuration information used to construct the underlying Kafka Producer. **kwargs **kwargs will be passed to bluesky_kafka.Publisher() and may include on_delivery, flush_on_stop_doc, and serializer Returns ------- publisher : bluesky_kafka.Publisher a Publisher instance constructed with the specified arguments """ if bootstrap_servers is None: bootstrap_servers = kafka_bootstrap_servers if producer_config is None: # this default configuration is not guaranteed # to be generally appropriate producer_config = { "acks": 1, "enable.idempotence": False, "request.timeout.ms": 1000, } producer_config.update(broker_authorization_config) return Publisher( topic=topic, key=key, bootstrap_servers=bootstrap_servers, producer_config=producer_config, **kwargs, ) return _publisher_factory @pytest.fixture(scope="function") def consume_documents_from_kafka_until_first_stop_document( kafka_bootstrap_servers, broker_authorization_config ): """Use this fixture to consume Kafka messages containing bluesky (name, document) tuples. This fixture will construct a BlueskyConsumer and run its polling loop. When the first stop document is encountered the consumer polling loop will terminate so the test function can continue. Parameters ---------- kafka_bootstrap_servers : pytest fixture comma-delimited str of Kafka bootstrap server host:port specified on the pytest command line broker_authorization_config: dict Kafka broker authentication parameters for the test broker Returns ------- _consume_documents_from_kafka: function(topic, bootstrap_servers=None, **bluesky_consumer_kwargs) -> List[(name, document)] calling this function will consume Kafka messages and place the (name, document) tuples into a list; when the first stop document is encountered the consumer polling loop will terminate and the document list will be returned """ def _consume_documents_from_kafka( kafka_topic, bootstrap_servers=None, consumer_config=None, **bluesky_consumer_kwargs, ): """ Parameters ---------- kafka_topic: str Kafka messages with this topic will be consumed bootstrap_servers: str, optional Comma-delimited list of Kafka server addresses as a string such as ``'127.0.0.1:9092'``; default is the value of the pytest command line parameter --kafka-bootstrap-servers consumer_config: dict, optional Dictionary of Kafka consumer configuration parameters bluesky_consumer_kwargs: Allows polling_duration and deserializer to be passed the the BlueskyConsumer Returns ------- consumed_bluesky_documents: list list of (name, document) tuples delivered by Kafka """ if bootstrap_servers is None: bootstrap_servers = kafka_bootstrap_servers if consumer_config is None: consumer_config = { # this consumer is intended to read messages that # have already been published, so it is necessary # to specify "earliest" here "auto.offset.reset": "earliest", } consumer_config.update(broker_authorization_config) consumed_bluesky_documents = [] def store_consumed_document(consumer, topic, name, document): """This function appends to a list all documents received by the consumer. Parameters ---------- consumer: bluesky_kafka.BlueskyConsumer unused topic: str unused name: str bluesky document name, such as "start", "descriptor", "event", etc document: dict dictionary of bluesky document data """ consumed_bluesky_documents.append((name, document)) bluesky_consumer = BlueskyConsumer( topics=[kafka_topic], bootstrap_servers=bootstrap_servers, group_id=f"{kafka_topic}.consumer.group", consumer_config=consumer_config, process_document=store_consumed_document, **bluesky_consumer_kwargs, ) def until_first_stop_document(): """ This function returns False to end the BlueskyConsumer polling loop after seeing a "stop" document. Without something like this the polling loop will never end. """ if "stop" in [name for name, _ in consumed_bluesky_documents]: return False else: return True # start() will return when 'until_first_stop_document' returns False bluesky_consumer.start( continue_polling=until_first_stop_document, ) return consumed_bluesky_documents return _consume_documents_from_kafka @pytest.fixture(scope="function") def publisher(request, kafka_bootstrap_servers, broker_authorization_config): # work with a single broker producer_config = { "acks": 1, "enable.idempotence": False, "request.timeout.ms": 5000, } producer_config.update(broker_authorization_config) return Publisher( topic=TEST_TOPIC, bootstrap_servers=kafka_bootstrap_servers, key="kafka-unit-test-key", producer_config=producer_config, flush_on_stop_doc=True, ) @pytest.fixture(scope="function") def publisher2(request, kafka_bootstrap_servers, broker_authorization_config): # work with a single broker producer_config = { "acks": 1, "enable.idempotence": False, "request.timeout.ms": 5000, } producer_config.update(broker_authorization_config) return Publisher( topic=TEST_TOPIC2, bootstrap_servers=kafka_bootstrap_servers, key="kafka-unit-test-key", # work with a single broker producer_config=producer_config, flush_on_stop_doc=True, ) @pytest.fixture(scope="function") def mongo_client(request): mongobox = pytest.importorskip("mongobox") box = mongobox.MongoBox() box.start() return box.client() @pytest.fixture(scope="function") def mongo_uri(request, mongo_client): return f"mongodb://{mongo_client.address[0]}:{mongo_client.address[1]}" @pytest.fixture(scope="function") def numpy_md(request): return { "numpy_data": {"nested": np.array([1, 2, 3])}, "numpy_scalar": np.float64(3), "numpy_array": np.ones((3, 3)), } @pytest.fixture(scope="function") def data_broker(request, mongo_uri): TMP_DIR = tempfile.mkdtemp() YAML_FILENAME = "intake_test_catalog.yml" fullname = os.path.join(TMP_DIR, YAML_FILENAME) # Write a catalog file. with open(fullname, "w") as f: f.write( f""" sources: xyz: description: Some imaginary beamline driver: "bluesky-mongo-normalized-catalog" container: catalog args: metadatastore_db: {mongo_uri}/{TEST_TOPIC} asset_registry_db: {mongo_uri}/{TEST_TOPIC} handler_registry: NPY_SEQ: ophyd.sim.NumpySeqHandler metadata: beamline: "00-ID" xyz2: description: Some imaginary beamline driver: "bluesky-mongo-normalized-catalog" container: catalog args: metadatastore_db: {mongo_uri}/{TEST_TOPIC2} asset_registry_db: {mongo_uri}/{TEST_TOPIC2} handler_registry: NPY_SEQ: ophyd.sim.NumpySeqHandler metadata: beamline: "00-ID" """ ) def load_config(filename): package_directory = os.path.dirname(os.path.abspath(__file__)) filename = os.path.join(package_directory, filename) with open(filename) as f: return yaml.load(f, Loader=getattr(yaml, "FullLoader", yaml.Loader)) # Create a databroker with the catalog config file. return intake.open_catalog(fullname) ```
{ "source": "jklynch/bluesky-mpl", "score": 3 }
#### File: bluesky_mpl/artists/grid.py ```python from event_model import DocumentRouter import matplotlib.pyplot as plt import numpy class Grid(DocumentRouter): """ Draw a matplotlib AxesImage Arist update it for each Event. The purposes of this callback is to create (on initialization) of a matplotlib grid image and then update it with new data for every `event`. NOTE: Some important parameters are fed in through **kwargs like `extent` which defines the axes min and max and `origin` which defines if the grid co-ordinates start in the bottom left or top left of the plot. For more info see https://matplotlib.org/tutorials/intermediate/imshow_extent.html or https://matplotlib.org/api/_as_gen/matplotlib.axes.Axes.imshow.html#matplotlib.axes.Axes.imshow Parameters ---------- func : callable This must accept a BulkEvent and return three lists of floats (x grid co-ordinates, y grid co-ordinates and grid position intensity values). The three lists must contain an equal number of items, but that number is arbitrary. That is, a given document may add one new point, no new points or multiple new points to the plot. shape : tuple The (row, col) shape of the grid. ax : matplotlib Axes, optional. if ``None``, a new Figure and Axes are created. **kwargs Passed through to :meth:`Axes.imshow` to style the AxesImage object. """ def __init__(self, func, shape, *, ax=None, **kwargs): self.func = func self.shape = shape if ax is None: _, ax = plt.subplots() self.ax = ax self.grid_data = numpy.full(self.shape, numpy.nan) self.image, = ax.imshow(self.grid_data, **kwargs) def event_page(self, doc): ''' Takes in a bulk_events document and updates grid_data with the values returned from self.func(doc) Parameters ---------- doc : dict The bulk event dictionary that contains the 'data' and 'timestamps' associated with the bulk event. Returns ------- x_coords, y_coords, I_vals : Lists These are lists of x co-ordinate, y co-ordinate and intensity values arising from the bulk event. ''' x_coords, y_coords, I_vals = self.func(doc) self._update(x_coords, y_coords, I_vals) def _update(self, x_coords, y_coords, I_vals): ''' Updates self.grid_data with the values from the lists x_coords, y_coords, I_vals. Parameters ---------- x_coords, y_coords, I_vals : Lists These are lists of x co-ordinate, y co-ordinate and intensity values arising from the event. The length of all three lists must be the same. ''' if not len(x_coords) == len(y_coords) == len(I_vals): raise ValueError("User function is expected to provide the same " "number of x, y and I points. Got {0} x points, " "{1} y points and {2} I values." "".format(len(x_coords), len(y_coords), len(I_vals))) if not x_coords: # No new data, Short-circuit. return # Update grid_data and the plot. self.grid_data[x_coords, y_coords] = I_vals self.image.set_array(self.grid_data) ``` #### File: bluesky_mpl/artists/image.py ```python import logging from event_model import DocumentRouter import numpy log = logging.getLogger(__name__) class Image(DocumentRouter): """ Draw a matplotlib Image Arist update it for each Event. Parameters ---------- func : callable This must accept an EventPage and return two lists of floats (x points and y points). The two lists must contain an equal number of items, but that number is arbitrary. That is, a given document may add one new point to the plot, no new points, or multiple new points. label_template : string This string will be formatted with the RunStart document. Any missing values will be filled with '?'. If the keyword argument 'label' is given, this argument will be ignored. ax : matplotlib Axes, optional If None, a new Figure and Axes are created. **kwargs Passed through to :meth:`Axes.plot` to style Line object. """ def __init__(self, func, shape, *, label_template='{scan_id} [{uid:.8}]', ax=None, **kwargs): self.func = func if ax is None: import matplotlib.pyplot as plt _, ax = plt.subplots() self.ax = ax if len(self.ax.images) == 1: self.image, = self.ax.images elif len(self.ax.images) == 0: self.image = ax.imshow(numpy.zeros(shape), **kwargs) self.ax.figure.colorbar(self.image, ax=self.ax) self.label_template = label_template else: raise ValueError(f"Expected ax to be an axis with no image " f"artists or one image artist. Found " f"ax.images={self.ax.images}") def event_page(self, doc): data = self.func(doc) if data is not None: self._update(data) def _update(self, arr): """ Takes in new array data and redraws plot if they are not empty. """ if arr.ndim != 2: raise ValueError( f'The number of dimensions must be 2, but received array ' f'has {arr.ndim} number of dimensions.') self.image.set_array(arr) new_clim = self.infer_clim(self.image.get_clim(), arr) self.image.set_clim(*new_clim) self.ax.figure.canvas.draw_idle() def infer_clim(self, current_clim, arr): return (min(current_clim[0], arr.min()), max(current_clim[1], arr.max())) ``` #### File: bluesky-mpl/bluesky_mpl/demo.py ```python import logging from multiprocessing import Process, Queue from pathlib import Path from suitcase.jsonl import Serializer from bluesky import RunEngine from ophyd.sim import det, det4, noisy_det, motor, motor1, motor2, img from bluesky.plans import scan, count, grid_scan from bluesky.preprocessors import SupplementalData from event_model import RunRouter from ophyd.sim import SynSignal import numpy as np det.kind = 'hinted' noisy_det.kind = 'hinted' det4.kind = 'hinted' log = logging.getLogger('bluesky_mpl') random_img = SynSignal(func=lambda: np.random.random((5, 10, 10)), name='random_img') def generate_example_catalog(data_path): data_path = Path(data_path) def factory(name, doc): serializer = Serializer(data_path / 'abc') serializer('start', doc) return [serializer], [] RE = RunEngine() sd = SupplementalData() RE.preprocessors.append(sd) sd.baseline.extend([motor1, motor2]) rr = RunRouter([factory]) RE.subscribe(rr) RE(count([det])) RE(count([noisy_det], 5)) RE(scan([det], motor, -1, 1, 7)) RE(grid_scan([det4], motor1, -1, 1, 4, motor2, -1, 1, 7, False)) RE(scan([det], motor, -1, 1, motor2, -1, 1, 5)) RE(count([noisy_det, det], 5)) RE(count([random_img], 5)) RE(count([img], 5)) def factory(name, doc): serializer = Serializer(data_path / 'xyz') serializer('start', doc) return [serializer], [] RE = RunEngine() rr = RunRouter([factory]) RE.subscribe(rr) RE(count([det], 3)) catalog_filepath = data_path / 'catalog.yml' with open(catalog_filepath, 'w') as file: file.write(f''' sources: abc: description: Some imaginary beamline driver: bluesky-jsonl-catalog container: catalog args: paths: {Path(data_path) / 'abc' / '*.jsonl'} handler_registry: NPY_SEQ: ophyd.sim.NumpySeqHandler metadata: beamline: "00-ID" xyz: description: Some imaginary beamline driver: bluesky-jsonl-catalog container: catalog args: paths: {Path(data_path) / 'xyz' / '*.jsonl'} handler_registry: NPY_SEQ: ophyd.sim.NumpySeqHandler metadata: beamline: "99-ID" ''') return str(catalog_filepath) def run_proxy(queue): """ Run Proxy on random, free ports and communicate the port numbers back. """ from bluesky.callbacks.zmq import Proxy proxy = Proxy() queue.put((proxy.in_port, proxy.out_port)) proxy.start() def run_publisher(in_port, data_path): """ Acquire data in an infinite loop and publish it. """ import asyncio from bluesky.callbacks.zmq import Publisher from suitcase.jsonl import Serializer from ophyd.sim import noisy_det, motor1, motor2 from bluesky.plans import count from bluesky.preprocessors import SupplementalData from bluesky.plan_stubs import sleep publisher = Publisher(f'localhost:{in_port}') RE = RunEngine(loop=asyncio.new_event_loop()) sd = SupplementalData() RE.preprocessors.append(sd) sd.baseline.extend([motor1, motor2]) RE.subscribe(publisher) def factory(name, doc): serializer = Serializer(data_path / 'abc', flush=True) serializer('start', doc) return [serializer], [] rr = RunRouter([factory]) RE.subscribe(rr) def infinite_plan(): while True: yield from sleep(3) yield from count([noisy_det], 20, delay=0.5) yield from count([random_img], 10, delay=1) # Just as a convenience, avoid collission with scan_ids of runs in Catalog. RE.md['scan_id'] = 100 try: RE(infinite_plan()) finally: RE.halt() def stream_example_data(data_path): data_path = Path(data_path) log.debug(f"Serializing example data into directory {data_path!s}") queue = Queue() proxy_process = Process(target=run_proxy, args=(queue,)) proxy_process.start() in_port, out_port = queue.get() log.debug(f"Demo Proxy is listening on port {in_port} and publishing to {out_port}.") publisher_process = Process(target=run_publisher, args=(in_port, data_path)) publisher_process.start() log.debug("Demo acquisition has started.") return f'localhost:{out_port}', proxy_process, publisher_process ``` #### File: bluesky_mpl/heuristics/image.py ```python import functools import logging import numpy from traitlets import default from traitlets.traitlets import Dict, Type from traitlets.config import Configurable from ..utils import load_config, Callable log = logging.getLogger('bluesky_mpl') def first_frame(event_page, image_key): """ Extract the first frame image data to plot out of an EventPage. """ if event_page['seq_num'][0] == 1: data = numpy.asarray(event_page['data'][image_key]) log.debug('Image from %s has shape %r', image_key, data.shape) if data.ndim == 3: # Axes are event axis, y, x. Slice out the first event. return data[0, ...] elif data.ndim == 4: # Axes are event axis, 'num_images' stack, y, x. # Slice out the first event and sum along 'num_images' stack. return data[0, ...].sum(0) else: raise ValueError( f'The number of dimensions for the image_key "{image_key}" ' f'must be 3 or 4 for event page {event_page}, but received array ' f'has {data.ndim} number of dimensions.') else: return None def latest_frame(event_page, image_key): """ Extract the most recent frame of image data to plot out of an EventPage. """ data = numpy.asarray(event_page['data'][image_key]) if event_page['seq_num'][0] == 1: # Just log once per event stream. log.debug('Image from %s has shape %r', image_key, data.shape) if data.ndim == 3: # Axes are event axis, y, x. Slice out the first event. return data[0, ...] elif data.ndim == 4: # Axes are event axis, 'num_images' stack, y, x. # Slice out the first event and sum along 'num_images' stack. return data[0, ...].sum(0) else: raise ValueError( f'The number of dimensions for the image_key "{image_key}" ' f'must be 3 for event page {event_page}, but received array ' f'has {data.ndim} number of dimensions.') class BaseImageManager(Configurable): """ Manage the image plots for one FigureManager. """ imshow_options = Dict({}, config=True) image_class = Type() @default('image_class') def default_image_class(self): # By defining the default value of image_class dynamically here, we # avoid importing matplotlib if some non-matplotlib image_class is # specfied by configuration. from ..artists.mpl.image import Image return Image def __init__(self, fig_manager, dimensions): self.update_config(load_config()) self.fig_manager = fig_manager self.start_doc = None # We do not actually do anything with self.dimensions, just stashing it # here in case we need it later. self.dimensions = dimensions def __call__(self, name, start_doc): # We do not actually do anything with self.start_doc, just stashing it # here in case we need it later. self.start_doc = start_doc return [], [self.subfactory] def subfactory(self, name, descriptor_doc): image_keys = {} for key, data_key in descriptor_doc['data_keys'].items(): ndim = len(data_key['shape'] or []) # We want to record a shape that will match the arr.shape # of the arrays we will see later. Ophyd has been writing # incorrect info into descriptors. We try to detect and correct # that here. if ndim == 2: shape = data_key['shape'] image_keys[key] = shape elif ndim == 3: # ophyd <1.4.0 gives (x, y, z) where z is 0 # Maybe the better way to detect this is start['version']['ophyd']. if data_key['shape'][-1] == 0: object_keys = descriptor_doc.get('object_keys', {}) for object_name, data_keys in object_keys.items(): if key in data_keys: object_name = object_name # used below break else: log.debug("Couldn't find %s in object_keys %r", key, object_keys) # Unable to handle this. Skip it. continue num_images = descriptor_doc['configuration'][object_name]['data'].get('num_images', -1) x, y, _ = data_key['shape'] shape = (num_images, y, x) image_keys[key] = shape[1:] # Stash (y, x) shape alone. log.debug("Patching the shape in the data key for %s" "from %r to %r", key, data_key['shape'], shape) else: # Assume we are getting correct metadata. shape = data_key['shape'][1:] # Stash (y, x) shape alone. image_keys[key] = shape else: continue log.debug('%s has %d-dimensional image of shape %r', key, ndim, shape) callbacks = [] for image_key, shape in image_keys.items(): caption_desc = f'{" ".join(self.func.__name__.split("_")).capitalize()}' figure_label = f'{caption_desc} of {image_key}' fig = self.fig_manager.get_figure( ('image', image_key), figure_label, 1) # If we are reusing an existing figure, it will have a second axis # for the colorbar, which we should ignore. # This is likely a bit brittle. ax, *_possible_colorbar = fig.axes log.debug('plot image %s', image_key) func = functools.partial(self.func, image_key=image_key) image = self.image_class(func, shape=shape, ax=ax, **self.imshow_options) callbacks.append(image) for callback in callbacks: callback('start', self.start_doc) callback('descriptor', descriptor_doc) return callbacks class FirstFrameImageManager(BaseImageManager): func = Callable(first_frame, config=True) class LatestFrameImageManager(BaseImageManager): func = Callable(latest_frame, config=True) ``` #### File: bluesky_mpl/qt/viewer.py ```python import functools import os import re import event_model import matplotlib from traitlets.traitlets import Dict, DottedObjectName, List from qtpy.QtWidgets import QApplication, QMainWindow, QWidget, QVBoxLayout from qtpy.QtCore import QObject, Signal from qtpy import QtCore, QtGui from .figures import FigureDispatcher from .utils import ( ConfigurableQTabWidget, ) from ..utils import load_config @functools.lru_cache(maxsize=1) def _get_teleporter(): class Teleporter(QObject): name_doc_escape = Signal(str, dict, bool) return Teleporter class QtAwareCallback: def __init__(self, *args, use_teleporter=None, **kwargs): if use_teleporter is None: use_teleporter = 'qt' in matplotlib.get_backend().lower() if use_teleporter: Teleporter = _get_teleporter() self.__teleporter = Teleporter() self.__teleporter.name_doc_escape.connect(self._dispatch) else: self.__teleporter = None super().__init__(*args, **kwargs) def __call__(self, name, doc, validate=False): if self.__teleporter is not None: self.__teleporter.name_doc_escape.emit(name, doc, validate) else: self._dispatch(name, doc, validate) class QRunRouter(event_model.RunRouter, QtAwareCallback): ... qApp = None def _create_qApp(): """ Create QApplicaiton if one does not exist. Return QApplication.instance(). Vendored from matplotlib.backends.backend_qt5 with changes: - Assume Qt5, removing tolerance for Qt4. - Applicaiton has been changed (matplotlib -> bluesky). """ global qApp if qApp is None: app = QApplication.instance() if app is None: # check for DISPLAY env variable on X11 build of Qt try: from PyQt5 import QtX11Extras # noqa is_x11_build = True except ImportError: is_x11_build = False else: is_x11_build = hasattr(QtGui, "QX11Info") if is_x11_build: display = os.environ.get('DISPLAY') if display is None or not re.search(r':\d', display): raise RuntimeError('Invalid DISPLAY variable') try: QApplication.setAttribute( QtCore.Qt.AA_EnableHighDpiScaling) except AttributeError: # Attribute only exists for Qt>=5.6. pass qApp = QApplication(["bluesky"]) qApp.lastWindowClosed.connect(qApp.quit) else: qApp = app try: qApp.setAttribute(QtCore.Qt.AA_UseHighDpiPixmaps) except AttributeError: pass def start_viewer(): matplotlib.use('Qt5Agg') _create_qApp() main_window = QMainWindow() viewer = Viewer() main_window.setCentralWidget(viewer) main_window.show() # Avoid letting main_window be garbage collected. viewer._main_window = main_window return viewer class Viewer(QWidget): name_doc = Signal(str, dict) def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) layout = QVBoxLayout() outer_tab_container = OuterTabContainer() layout.addWidget(outer_tab_container) self.setLayout(layout) self.name_doc.connect(outer_tab_container.run_router) def __call__(self, name, doc): self.name_doc.emit(name, doc) class OuterTabContainer(ConfigurableQTabWidget): def __init__(self, *args, **kwargs): self.update_config(load_config()) self.overplot = False self.run_router = QRunRouter( [self.get_tab_run_router]) super().__init__(*args, **kwargs) def get_tab_run_router(self, name, doc): if self.overplot: tab = self.currentWidget() else: tab = InnerTabContainer() label = '' # TODO: What should this be? self.addTab(tab, label) tab.run_router('start', doc) return [tab.run_router], [] class InnerTabContainer(ConfigurableQTabWidget): factories = List([FigureDispatcher], config=True) handler_registry = Dict(DottedObjectName(), config=True) def __init__(self, *args, **kwargs): self.update_config(load_config()) super().__init__(*args, **kwargs) self.run_router = QRunRouter( [factory(self.addTab) for factory in self.factories], handler_registry=self.handler_registry) ```
{ "source": "jklynch/bluesky-widgets", "score": 3 }
#### File: examples/advanced/qt_with_RE_worker.py ```python from bluesky_widgets.utils.streaming import stream_documents_into_runs from bluesky_widgets.qt.zmq_dispatcher import RemoteDispatcher from bluesky_widgets.models.plot_builders import Lines from bluesky_widgets.qt.figures import QtFigure from bluesky_widgets.qt import gui_qt from bluesky_queueserver.manager.comms import ZMQCommSendThreads import sys import time def main(): with gui_qt("Example App"): worker_address, message_bus_address = sys.argv[1:] dispatcher = RemoteDispatcher(message_bus_address) client = ZMQCommSendThreads(zmq_server_address=worker_address) # NOTE: this example starts only if RE Manager is idle and the queue is cleared. # Those are optional steps that ensure that the code in this example is executed correctly. # Check if RE Worker environment already exists and RE manager is idle. status = client.send_message(method="status") if status["manager_state"] != "idle": raise RuntimeError( f"RE Manager state must be 'idle': current state: {status['manager_state']}" ) # Clear the queue. response = client.send_message(method="queue_clear") if not response["success"]: raise RuntimeError(f"Failed to clear the plan queue: {response['msg']}") # Open the new environment only if it does not exist. if not status["worker_environment_exists"]: # Initiate opening of RE Worker environment response = client.send_message(method="environment_open") if not response["success"]: raise RuntimeError( f"Failed to open RE Worker environment: {response['msg']}" ) # Wait for the environment to be created. t_timeout = 10 t_stop = time.time() + t_timeout while True: status2 = client.send_message(method="status") if ( status2["worker_environment_exists"] and status2["manager_state"] == "idle" ): break if time.time() > t_stop: raise RuntimeError("Failed to start RE Worker: timeout occurred") time.sleep(0.5) # Add plan to queue response = client.send_message( method="queue_item_add", params={ "plan": {"name": "scan", "args": [["det"], "motor", -5, 5, 11]}, "user": "", "user_group": "admin", }, ) if not response["success"]: raise RuntimeError(f"Failed to add plan to the queue: {response['msg']}") model = Lines("motor", ["det"], max_runs=3) dispatcher.subscribe(stream_documents_into_runs(model.add_run)) view = QtFigure(model.figure) view.show() dispatcher.start() response = client.send_message(method="queue_start") if not response["success"]: raise RuntimeError(f"Failed to start the queue: {response['msg']}") if __name__ == "__main__": main() ``` #### File: auto_plot_builders/_tests/test_auto_images.py ```python from bluesky_live.run_builder import build_simple_run import numpy from .. import AutoImages from ....headless.figures import HeadlessFigures def test_images(): "Test AutoImages with a 2D array." run = build_simple_run({"ccd": numpy.random.random((11, 13))}) model = AutoImages() view = HeadlessFigures(model.figures) assert not model.figures model.add_run(run) assert len(model.figures) == 1 assert model.figures[0].axes[0].artists view.close() def test_images_multiple_fields(): "Test AutoImages with multiple fields with varied shapes." run = build_simple_run( { "ccd": numpy.random.random((11, 13)), "ccd2": numpy.random.random((17, 19, 23)), } ) model = AutoImages() view = HeadlessFigures(model.figures) assert not model.figures model.add_run(run) assert len(model.figures) == 2 assert model.figures[0].axes[0].artists assert model.figures[1].axes[0].artists view.close() ``` #### File: auto_plot_builders/_tests/test_auto_lines.py ```python from bluesky_live.run_builder import build_simple_run from .. import AutoLines from ....headless.figures import HeadlessFigures # Make some runs to use. runs = [ build_simple_run( {"motor": [1, 2], "det": [10, 20], "det2": [15, 25]}, metadata={"scan_id": 1 + i}, ) for i in range(10) ] MAX_RUNS = 3 def test_pinned(): "Test AutoLines with 'pinned' and un-pinned runs." NUM_YS = 2 model = AutoLines(max_runs=MAX_RUNS) view = HeadlessFigures(model.figures) assert not model.figures # Add MAX_RUNS and then some more and check that they do get bumped off. for run in runs[:5]: model.add_run(run) assert len(model.plot_builders[0].runs) <= MAX_RUNS assert runs[2:5] == list(model.plot_builders[0].runs) assert len(model.figures) == 1 # Add a pinned run. pinned_run = runs[5] model.add_run(pinned_run, pinned=True) assert ( frozenset([pinned_run.metadata["start"]["uid"]]) == model.plot_builders[0].pinned ) for run in runs[6:]: model.add_run(run) assert len(model.plot_builders[0].runs) == 1 + MAX_RUNS for axes_index in range(NUM_YS): assert len(model.figures[0].axes[axes_index].artists) == (1 + MAX_RUNS) # Check that it hasn't been bumped off. assert pinned_run in model.plot_builders[0].runs assert len(model.figures) == 1 # Remove the pinned run. model.discard_run(pinned_run) assert len(model.plot_builders[0].runs) == MAX_RUNS for axes_index in range(NUM_YS): assert len(model.figures[0].axes[axes_index].artists) == MAX_RUNS assert pinned_run not in model.plot_builders[0].runs view.close() def test_decrease_max_runs(): "Decreasing max_runs should remove the runs and their associated lines." INITIAL_MAX_RUNS = 5 model = AutoLines(max_runs=INITIAL_MAX_RUNS) view = HeadlessFigures(model.figures) for run in runs[:5]: model.add_run(run) assert len(model.plot_builders[0].runs) == INITIAL_MAX_RUNS assert len(model.figures[0].axes[0].artists) == INITIAL_MAX_RUNS # Decrease max_runs. model.max_runs = MAX_RUNS assert len(model.plot_builders[0].runs) == MAX_RUNS assert len(model.figures[0].axes[0].artists) == MAX_RUNS view.close() ``` #### File: models/_tests/test_figures.py ```python from bluesky_live.run_builder import RunBuilder from bluesky_live.event import CallbackException import pytest from ...models.plot_specs import ( AxesAlreadySet, Figure, FigureList, Axes, Line, Image, ) # Generate example data. with RunBuilder() as builder: builder.add_stream("primary", data={"a": [1, 2, 3], "b": [1, 4, 9]}) run = builder.get_run() def transform(run): ds = run.primary.read() return {"x": ds["a"], "y": ds["b"]} def func(run): line = Line.from_run(transform, run, "label") axes = Axes(artists=[line], x_label="a", y_label="b", title="axes title") figure = Figure((axes,), title="figure title") return figure def test_figure(FigureView): "Basic test: create a FigureView." figure = func(run) FigureView(figure) def test_figures(FigureViews): "Basic test: create FigureViews." figure = func(run) another_figure = func(run) figures = FigureList([figure, another_figure]) FigureViews(figures) def test_figure_title_syncing(FigureView): model = func(run) view = FigureView(model) initial = model.title assert view.figure._suptitle.get_text() == initial expected = "figure title changed" model.title = expected assert model.title == expected # Is there no public matplotlib API for this? # https://stackoverflow.com/a/48917679 assert view.figure._suptitle.get_text() == expected def test_short_title_syncing(FigureViews, request): QtFigures = pytest.importorskip("bluesky_widgets.qt.figures.QtFigures") if request.getfixturevalue("FigureViews") is not QtFigures: pytest.skip("This tests details of the QtFigures view.") model = func(run) figures = FigureList([model]) view = FigureViews(figures) actual_title = view.figures[model.uuid].figure._suptitle.get_text() assert view.tabText(0) == actual_title expected_short_title = "new short title" model.short_title = expected_short_title assert model.short_title == expected_short_title actual_title = view.figures[model.uuid].figure._suptitle.get_text() assert view.tabText(0) == expected_short_title assert actual_title == model.title expected_title = "new title" model.title = expected_title assert view.tabText(0) == model.short_title model.short_title = None assert view.tabText(0) == expected_title def test_non_null_short_title_syncing(FigureViews, request): QtFigures = pytest.importorskip("bluesky_widgets.qt.figures.QtFigures") if request.getfixturevalue("FigureViews") is not QtFigures: pytest.skip("This tests details of the QtFigures view.") model = func(run) model.short_title = "short title" figures = FigureList([model]) view = FigureViews(figures) actual_title = view.figures[model.uuid].figure._suptitle.get_text() assert view.tabText(0) == model.short_title assert actual_title == model.title @pytest.mark.parametrize( ("model_property", "mpl_method"), [("title", "get_title"), ("x_label", "get_xlabel"), ("y_label", "get_ylabel")], ) def test_axes_syncing(FigureView, model_property, mpl_method): model = func(run) view = FigureView(model) initial = getattr(model.axes[0], model_property) assert getattr(view.figure.axes[0], mpl_method)() == initial expected = "axes title changed" setattr(model.axes[0], model_property, expected) assert getattr(model.axes[0], model_property) == expected assert getattr(view.figure.axes[0], mpl_method)() == expected def test_axes_set_figure(): "Adding axes to a figure sets their figure." axes = Axes() assert axes.figure is None figure = Figure((axes,), title="figure title") assert axes.figure is figure # Once axes belong to a figure, they cannot belong to another figure. with pytest.raises(RuntimeError): Figure((axes,), title="figure title") with pytest.raises(AttributeError): figure.axes = (axes,) # not settable artist_set_axes_params = pytest.mark.parametrize( "artist_factory", # These are factories because each artist can only be assigned to Axes once # in its lifecycle. For each test that these params are used in, we need a # fresh instance. [ lambda: Line.from_run(transform, run, "label"), lambda: Image.from_run(transform, run, "label"), ], ids=["lines", "images"], ) @artist_set_axes_params def test_artist_set_axes_at_init(artist_factory): "Adding an artist to axes at init time sets its axes." artist = artist_factory() axes = Axes(artists=[artist]) assert artist in axes.artists assert artist in axes.by_uuid.values() assert artist.axes is axes # Once line belong to a axes, it cannot belong to another axes. with pytest.raises(CallbackException) as exc_info: Axes(artists=[artist]) exc = exc_info.value assert hasattr(exc, "__cause__") and isinstance(exc.__cause__, AxesAlreadySet) @artist_set_axes_params def test_artist_set_axes_after_init(artist_factory): "Adding an artist to axes after init time sets its axes." artist = artist_factory() axes = Axes() axes.artists.append(artist) assert artist in axes.artists assert artist in axes.by_uuid.values() assert artist.axes is axes # Once line belong to a axes, it cannot belong to another axes. with pytest.raises(CallbackException) as exc_info: Axes(artists=[artist]) exc = exc_info.value assert hasattr(exc, "__cause__") and isinstance(exc.__cause__, AxesAlreadySet) ``` #### File: models/_tests/test_rastered_image.py ```python from bluesky_live.run_builder import RunBuilder import pytest import numpy from ..plot_builders import RasteredImages from ..plot_specs import Axes, Figure @pytest.fixture def non_snaking_run(): # Test data md = {"motors": ["y", "x"], "shape": [2, 2], "snaking": (False, False)} with RunBuilder(md) as builder: builder.add_stream( "primary", data={"ccd": [1, 2, 3, 4], "x": [0, 1, 0, 1], "y": [0, 0, 1, 1]} ) run = builder.get_run() return run @pytest.fixture def snaking_run(): # Test data md = {"motors": ["y", "x"], "shape": [2, 2], "snaking": (False, True)} with RunBuilder(md) as builder: builder.add_stream( "primary", data={"ccd": [1, 2, 3, 4], "x": [0, 1, 1, 0], "y": [0, 0, 1, 1]} ) run = builder.get_run() return run def test_rastered_image(non_snaking_run, FigureView): "Test RasteredImages with a 2D array." run = non_snaking_run model = RasteredImages("ccd", shape=(2, 2)) view = FigureView(model.figure) assert not model.figure.axes[0].artists model.add_run(run) assert model.figure.axes[0].artists view.close() def test_x_y_positive_change_x_y_limits(non_snaking_run, FigureView): "Test x_positive and y_positive change x_limits and y_limits" run = non_snaking_run model = RasteredImages("ccd", shape=(2, 2), x_positive="left", y_positive="down") view = FigureView(model.figure) model.add_run(run) expected_x_lims = expected_y_lims = (1.5, -0.5) assert model.axes.x_limits == expected_x_lims assert model.axes.y_limits == expected_y_lims model.x_positive = "right" model.y_positive = "up" expected_x_lims = expected_y_lims = (-0.5, 1.5) assert model.axes.x_limits == expected_x_lims assert model.axes.y_limits == expected_y_lims view.close() def test_x_y_limits_change_x_y_positive(non_snaking_run, FigureView): "Test x_limits and y_limits change x_positive and y_positive" run = non_snaking_run axes = Axes(x_limits=(1.5, -0.5), y_limits=(1.5, -0.5)) Figure((axes,), title="") model = RasteredImages("ccd", shape=(2, 2), axes=axes) view = FigureView(model.figure) model.add_run(run) assert model.x_positive == "left" assert model.y_positive == "down" model.axes.x_limits = model.axes.y_limits = (-0.5, 1.5) assert model.x_positive == "right" assert model.y_positive == "up" view.close() def test_non_snaking_image_data(non_snaking_run, FigureView): run = non_snaking_run model = RasteredImages("ccd", shape=(2, 2)) model.add_run(run) view = FigureView(model.figure) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [3, 4]] assert numpy.array_equal(actual_data, expected_data) view.close() def test_snaking_image_data(snaking_run, FigureView): run = snaking_run model = RasteredImages("ccd", shape=(2, 2)) view = FigureView(model.figure) model.add_run(run) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [4, 3]] assert numpy.array_equal(actual_data, expected_data) view.close() def test_non_snaking_image_data_positions(FigureView): md = {"motors": ["y", "x"], "shape": [2, 2], "snaking": (False, False)} model = RasteredImages("ccd", shape=(2, 2)) view = FigureView(model.figure) with RunBuilder(md) as builder: ccd = iter([1, 2, 3, 4]) x = iter([0, 1, 0, 1]) y = iter([0, 0, 1, 1]) run = builder.get_run() model.add_run(run) # First data point builder.add_stream( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, numpy.nan], [numpy.nan, numpy.nan]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Second point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [numpy.nan, numpy.nan]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Third point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [3, numpy.nan]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Fourth point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [3, 4]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) view.close() def test_snaking_image_data_positions(FigureView): md = {"motors": ["y", "x"], "shape": [2, 2], "snaking": (False, True)} model = RasteredImages("ccd", shape=(2, 2)) view = FigureView(model.figure) with RunBuilder(md) as builder: ccd = iter([1, 2, 3, 4]) x = iter([0, 1, 1, 0]) y = iter([0, 0, 1, 1]) run = builder.get_run() model.add_run(run) # First data point builder.add_stream( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, numpy.nan], [numpy.nan, numpy.nan]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Second point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [numpy.nan, numpy.nan]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Third point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [numpy.nan, 3]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) # Fourth point builder.add_data( "primary", data={"ccd": [next(ccd)], "x": [next(x)], "y": [next(y)]} ) actual_data = model.figure.axes[0].artists[0].update()["array"] expected_data = [[1, 2], [4, 3]] assert numpy.array_equal(actual_data, expected_data, equal_nan=True) view.close() def test_figure_set_after_instantiation(): axes = Axes() model = RasteredImages("ccd", shape=(2, 2), axes=axes) assert model.figure is None figure = Figure((axes,), title="") assert model.figure is figure ```
{ "source": "jklynch/databroker", "score": 3 }
#### File: databroker/databroker/discovery.py ```python import collections from databroker.utils import list_configs, lookup_config, CONFIG_SEARCH_PATH import entrypoints from intake.catalog import Catalog from intake.catalog.entry import CatalogEntry import warnings class EntrypointEntry(CatalogEntry): """ A catalog entry for an entrypoint. """ def __init__(self, entrypoint): self._entrypoint = entrypoint def __repr__(self): return f"<Entry containing Catalog named {self.name}>" @property def name(self): return self._entrypoint.name def describe(self): """Basic information about this entry""" return {'name': self.name, 'module_name': self._entrypoint.module_name, 'object_name': self._entrypoint.object_name, 'distro': self._entrypoint.distro, 'extras': self._entrypoint.extras} def get(self): """Instantiate the DataSource for the given parameters""" return self._entrypoint.load() class EntrypointsCatalog(Catalog): """ A catalog of discovered entrypoint catalogs. """ def __init__(self, *args, entrypoints_group='intake.catalogs', paths=None, **kwargs): self._entrypoints_group = entrypoints_group self._paths = paths super().__init__(*args, **kwargs) def _load(self): catalogs = entrypoints.get_group_named(self._entrypoints_group, path=self._paths) self.name = self.name or 'EntrypointsCatalog' self.description = (self.description or f'EntrypointsCatalog of {len(catalogs)} catalogs.') for name, entrypoint in catalogs.items(): try: self._entries[name] = EntrypointEntry(entrypoint) except Exception as e: warnings.warn(f"Failed to load {name}, {entrypoint}, {e!r}.") class V0Entry(CatalogEntry): def __init__(self, name, *args, **kwargs): self._name = name super().__init__(*args, **kwargs) def __repr__(self): return f"<Entry containing Catalog named {self._name}>" def describe(self): return {"name": self._name} def get(self): # Hide this import here so that # importing v2 doesn't import v1 unless we actually use it. from databroker import v1 config = lookup_config(self._name) catalog = v1.from_config(config) # might return v0, v1, or v2 Broker if not hasattr(catalog, 'v2'): raise ValueError("The config file could not be parsed for v2-style access.") return catalog.v2 # works if catalog is v1-style or v2-style class V0Catalog(Catalog): """ Build v2.Brokers based on any v0-style configs we can find. """ def __init__(self, *args, paths=CONFIG_SEARCH_PATH, **kwargs): self._paths = paths super().__init__(*args, **kwargs) def _load(self): for name in list_configs(paths=self._paths): self._entries[name] = V0Entry(name) class MergedCatalog(Catalog): """ A Catalog that merges the entries of a list of catalogs. """ def __init__(self, catalogs, *args, **kwargs): self._catalogs = catalogs super().__init__(*args, **kwargs) def _load(self): for catalog in self._catalogs: catalog._load() def _make_entries_container(self): return collections.ChainMap(*(catalog._entries for catalog in self._catalogs)) ``` #### File: databroker/databroker/projector.py ```python import xarray from importlib import import_module from .core import BlueskyRun class ProjectionError(Exception): pass def get_run_projection(run: BlueskyRun, projection_name: str = None): """Finds a projection in the run. If projection_name is provided, searches through the projections in the run to find a match. Otherwise, looks in the run to see if there is only one projection. If so, returns it. Parameters ---------- run : BlueskyRun Run to investigate for a projection projection_name : str, optional name of the projection to look for, by default None Returns ------- dict returns a projection dictionary, or None of not found Raises ------ KeyError If the a projection_name is specified and there is more than one projection in the run with that name """ if projection_name is not None: projections = [projection for projection in run.metadata['start']['projections'] if projection.get('name') == projection_name] if len(projections) > 1: raise KeyError("Multiple projections of name {projection_name} found") if len(projections) == 1: return projections[0] if len(projections) == 0: return None if 'projections' in run.metadata['start'] and len(run.metadata['start']['projections']) == 1: return run.metadata['start']['projections'][0] return None def get_calculated_value(run: BlueskyRun, key: str, mapping: dict): """Calls and returns the callable from the calculated projection mapping. It is ancticipated that the return will be and xarray.DataArray. This should be expressed in the familiar 'module:func' syntax borrowed from python entry-points. An example implementation of a calculated field projection entry: '/projection/key': { "type": "calculated", "callable": "foo.bar:really_fun", "args": ['arg1'], "kwargs": {"foo": "bar"}} And a corresponding function implementation might be: def really_fun(run, *args, **kwargs)" # args will be ['arg1'] # kwargs will be {"foo": "bar"} # for this calculated field return xarray.DataArray[[1, 2, 3]] Parameters ---------- run : BlueskyRun run which can be used for the calcuation key : str key name for this projection mapping : dict full contents of this projection Returns ------- any result of calling the method specified in the calcated field in the projection Raises ------ ProjectionError [description] """ callable_name = mapping['callable'] try: module_name, function_name = callable_name.split(":") module = import_module(module_name) callable_func = getattr(module, function_name) except ProjectionError as e: raise ProjectionError('Error importing callable {function_name}', e) calc_args = mapping['args'] calc_kwargs = mapping['kwargs'] return callable_func(run, *calc_args, **calc_kwargs) def project_xarray(run: BlueskyRun, *args, projection=None, projection_name=None, **kwargs): """Produces an xarray Dataset by projecting the provided run. Selects projection based on logic of get_run_projection(). Projections come with multiple types: linked, and caclulated. Calculated fields are only supported in the data (not at the top-level attrs). Calculated fields in projections schema contain a callable field. This should be expressed in the familiar 'module:func' syntax borrowed from python entry-points. All projections with "location"="configuration" will look in the start document for metadata. Each field will be added to the return Dataset's attrs dictionary keyed on projection key. All projections with "location"="event" will look for a field in a stream. Parameters ---------- run : BlueskyRun run to project projection_name : str, optional name of a projection to select in the run, by default None projection : dict, optional projection not from the run to use, by default None Returns ------- xarray.Dataset The return Dataset will contain: - single value data (typically from the run start) in the return Dataset's attrs dict, keyed on the projection key. These are projections marked "location": "configuration" - multi-value data (typically from a stream). Keys for the dict-like xarray.Dataset match keys in the passed-in projection. These are projections with "location": "linked" Raises ------ ProjectionError """ try: if projection is None: projection = get_run_projection(run, projection_name) if projection is None: raise ProjectionError("Projection could not be found") attrs = {} # will populate the return Dataset attrs field data_vars = {} # will populate the return Dataset DataArrays for field_key, mapping in projection['projection'].items(): # go through each projection projection_type = mapping['type'] projection_location = mapping.get('location') projection_data = None projection_linked_field = mapping.get('field') # single value data that will go in the top # dataset's attributes if projection_location == 'configuration': attrs[field_key] = run.metadata['start'][projection_linked_field] continue # added to return Dataset in data_vars dict if projection_type == "calculated": data_vars[field_key] = get_calculated_value(run, field_key, mapping) continue # added to return Dataset in data_vars dict if projection_location == 'event': projection_stream = mapping.get('stream') if projection_stream is None: raise ProjectionError(f'stream missing for event projection: {field_key}') data_vars[field_key] = run[projection_stream].to_dask()[projection_linked_field] elif projection_location == 'configuration': attrs[field_key] = projection_data else: raise KeyError(f'Unknown location: {projection_location} in projection.') except Exception as e: raise ProjectionError('Error projecting run') from e return xarray.Dataset(data_vars, attrs=attrs) ``` #### File: databroker/databroker/v1.py ```python from collections.abc import Iterable from collections import defaultdict from datetime import datetime import pandas import re import warnings import time import humanize import jinja2 import os import shutil from types import SimpleNamespace import tzlocal import xarray import event_model import intake import pymongo # Toolz and CyToolz have identical APIs -- same test suite, docstrings. try: from cytoolz.dicttoolz import merge except ImportError: from toolz.dicttoolz import merge from .utils import (ALL, format_time, get_fields, wrap_in_deprecated_doct, ensure_path_exists, lookup_config, transpose) # The v2 API is expected to grow more options for filled than just True/False # (e.g. 'delayed') so it expects a string instead of a boolean. _FILL = {True: 'yes', False: 'no'} def temp_config(): raise NotImplementedError("Use temp() instead, which returns a v1.Broker.") def temp(): from .v2 import temp catalog = temp() return Broker(catalog) class Registry: """ An accessor that serves as a backward-compatible shim for Broker.reg """ def __init__(self, catalog): self._catalog = catalog @property def handler_reg(self): return self._catalog.handler_registry @property def root_map(self): return self._catalog.root_map def register_handler(self, key, handler, overwrite=False): return self._catalog.register_handler( key, handler, overwrite=overwrite) def deregister_handler(self, key): return self._catalog.deregister_handler(key) def copy_files(self, resource, new_root, verify=False, file_rename_hook=None, run_start_uid=None): """ Copy files associated with a resource to a new directory. The registered handler must have a `get_file_list` method and the process running this method must have read/write access to both the source and destination file systems. This method does *not* update the assets dataregistry_template. Internally the resource level directory information is stored as two parts: the root and the resource_path. The 'root' is the non-semantic component (typically a mount point) and the 'resource_path' is the 'semantic' part of the file path. For example, it is common to collect data into paths that look like ``/mnt/DATA/2016/04/28``. In this case we could split this as ``/mnt/DATA`` as the 'root' and ``2016/04/28`` as the resource_path. Parameters ---------- resource : Document The resource to move the files of new_root : str The new 'root' to copy the files into verify : bool, optional (False) Verify that the move happened correctly. This currently is not implemented and will raise if ``verify == True``. file_rename_hook : callable, optional If provided, must be a callable with signature :: def hook(file_counter, total_number, old_name, new_name): pass This will be run in the inner loop of the file copy step and is run inside of an unconditional try/except block. See Also -------- `RegistryMoving.shift_root` `RegistryMoving.change_root` """ if verify: raise NotImplementedError('Verification is not implemented yet') def rename_hook_wrapper(hook): if hook is None: def noop(n, total, old_name, new_name): return return noop def safe_hook(n, total, old_name, new_name): try: hook(n, total, old_name, new_name) except Exception: pass return safe_hook file_rename_hook = rename_hook_wrapper(file_rename_hook) run_start_uid = resource.get('run_start', run_start_uid) if run_start_uid is None: raise ValueError( "If the Resource document has no `run_start` key, the " "caller must provide run_start_uid.") file_list = self._catalog[run_start_uid].get_file_list(resource) # check that all files share the same root old_root = resource.get('root') if not old_root: warnings.warn("There is no 'root' in this resource which " "is required to be able to change the root. " "Please use `fs.shift_root` to move some of " "the path from the 'resource_path' to the " "'root'. For now assuming '/' as root") old_root = os.path.sep for f in file_list: if not f.startswith(old_root): raise RuntimeError('something is very wrong, the files ' 'do not all share the same root, ABORT') # sort out where new files should go new_file_list = [os.path.join(new_root, os.path.relpath(f, old_root)) for f in file_list] N = len(new_file_list) # copy the files to the new location for n, (fin, fout) in enumerate(zip(file_list, new_file_list)): # copy files file_rename_hook(n, N, fin, fout) ensure_path_exists(os.path.dirname(fout)) shutil.copy2(fin, fout) return zip(file_list, new_file_list) class Broker: """ This supports the original Broker API but implemented on intake.Catalog. """ def __init__(self, catalog, *, serializer=None, external_fetchers=None): self._catalog = catalog self.__serializer = serializer self.external_fetchers = external_fetchers or {} self.prepare_hook = wrap_in_deprecated_doct self.aliases = {} self.filters = {} self.v2._Broker__v1 = self self._reg = Registry(catalog) @property def _serializer(self): if self.__serializer is None: # The method _get_serializer is an optional method implememented on # some Broker subclasses to support the Broker.insert() method, # which is pending deprecation. if hasattr(self._catalog, '_get_serializer'): self.__serializer = self._catalog._get_serializer() return self.__serializer @property def reg(self): "Registry of externally-stored data" return self._reg @property def name(self): return self._catalog.name @property def v1(self): "A self-reference. This makes v1.Broker and v2.Broker symmetric." return self @property def v2(self): "Accessor to the version 2 API." return self._catalog @classmethod def from_config(cls, config, auto_register=True, name=None): return from_config( config=config, auto_register=auto_register, name=name) def get_config(self): """ Return the v0 config dict this was created from, or None if N/A. """ if hasattr(self, '_config'): return self._config @classmethod def named(cls, name, auto_register=True): """ Create a new Broker instance using a configuration file with this name. Configuration file search path: * ``~/.config/databroker/{name}.yml`` * ``{python}/../etc/databroker/{name}.yml`` * ``/etc/databroker/{name}.yml`` where ``{python}`` is the location of the current Python binary, as reported by ``sys.executable``. It will use the first match it finds. Special Case: The name ``'temp'`` creates a new, temporary configuration. Subsequent calls to ``Broker.named('temp')`` will create separate configurations. Any data saved using this temporary configuration will not be accessible once the ``Broker`` instance has been deleted. Parameters ---------- name : string auto_register : boolean, optional By default, automatically register built-in asset handlers (classes that handle I/O for externally stored data). Set this to ``False`` to do all registration manually. Returns ------- db : Broker """ if name == 'temp': return temp() else: try: config = lookup_config(name) except FileNotFoundError: # Continue on to the v2 way. pass else: db = cls.from_config(config, auto_register=auto_register, name=name) return db catalog = getattr(intake.cat, name) return Broker(catalog) @property def fs(self): warnings.warn("fs is deprecated, use `db.reg` instead", stacklevel=2) return self.reg def stream_names_given_header(self): return list(self._catalog) def fetch_external(self, start, stop): return {k: func(start, stop) for k, func in self.external_fetchers.items()} def _patch_state(self, catalog): "Copy references to v1 state." catalog.v1.aliases = self.aliases catalog.v1.filters = self.filters catalog.v1.prepare_hook = self.prepare_hook def __call__(self, text_search=None, **kwargs): data_key = kwargs.pop('data_key', None) tz = tzlocal.get_localzone().zone if self.filters: filters = self.filters.copy() format_time(filters, tz) # mutates in place catalog = self._catalog.search(filters) self._patch_state(catalog) else: catalog = self._catalog if text_search: kwargs.update({'$text': {'$search': text_search}}) format_time(kwargs, tz) # mutates in place result_catalog = catalog.search(kwargs) self._patch_state(result_catalog) return Results(self, result_catalog, data_key) def __getitem__(self, key): # If this came from a client, we might be getting '-1'. if not isinstance(key, str) and isinstance(key, Iterable): return [self[item] for item in key] if isinstance(key, slice): if key.start is not None and key.start > -1: raise ValueError("slice.start must be negative. You gave me " "key=%s The offending part is key.start=%s" % (key, key.start)) if key.stop is not None and key.stop > 0: raise ValueError("slice.stop must be <= 0. You gave me key=%s. " "The offending part is key.stop = %s" % (key, key.stop)) if key.start is None: raise ValueError("slice.start cannot be None because we do not " "support slicing infinitely into the past; " "the size of the result is non-deterministic " "and could become too large.") return [self[index] for index in reversed(range(key.start, key.stop or 0, key.step or 1))] datasource = self._catalog[key] return Header(datasource) get_fields = staticmethod(get_fields) def get_documents(self, headers, stream_name=ALL, fields=None, fill=False, handler_registry=None): """ Get all documents from one or more runs. Parameters ---------- headers : Header or iterable of Headers The headers to fetch the events for stream_name : str, optional Get events from only "event stream" with this name. Default is `ALL` which yields documents for all streams. fields : List[str], optional whitelist of field names of interest; if None, all are returned Default is None fill : bool or Iterable[str], optional Which fields to fill. If `True`, fill all possible fields. Each event will have the data filled for the intersection of it's external keys and the fields requested filled. Default is False handler_registry : dict, optional mapping asset pecs (strings) to handlers (callable classes) Yields ------ name : str The name of the kind of document doc : dict The payload, may be RunStart, RunStop, EventDescriptor, or Event. Raises ------ ValueError if any key in `fields` is not in at least one descriptor pre header. """ if handler_registry is not None: raise NotImplementedError("The handler_registry must be set when " "the Broker is initialized, usually specified " "in a configuration file.") headers = _ensure_list(headers) no_fields_filter = False if fields is None: no_fields_filter = True fields = [] fields = set(fields) comp_re = _compile_re(fields) for header in headers: uid = header.start['uid'] descs = header.descriptors per_desc_discards = {} per_desc_extra_data = {} per_desc_extra_ts = {} for d in descs: (all_extra_dk, all_extra_data, all_extra_ts, discard_fields) = _extract_extra_data( header.start, header.stop, d, fields, comp_re, no_fields_filter) per_desc_discards[d['uid']] = discard_fields per_desc_extra_data[d['uid']] = all_extra_data per_desc_extra_ts[d['uid']] = all_extra_ts d = d.copy() dict.__setitem__(d, 'data_keys', d['data_keys'].copy()) for k in discard_fields: del d['data_keys'][k] d['data_keys'].update(all_extra_dk) if not len(d['data_keys']) and not len(all_extra_data): continue def merge_config_into_event(event): # Mutate event in place, adding in data and timestamps from the # descriptor's 'configuration' key. event_data = event['data'] # cache for perf desc = event['descriptor'] event_timestamps = event['timestamps'] event_data.update(per_desc_extra_data[desc]) event_timestamps.update(per_desc_extra_ts[desc]) discard_fields = per_desc_discards[desc] for field in discard_fields: del event_data[field] del event_timestamps[field] get_documents_router = _GetDocumentsRouter(self.prepare_hook, merge_config_into_event, stream_name=stream_name) for name, doc in self._catalog[uid].canonical(fill=_FILL[bool(fill)], strict_order=True): yield from get_documents_router(name, doc) def get_events(self, headers, stream_name='primary', fields=None, fill=False, handler_registry=None): """ Get Event documents from one or more runs. Parameters ---------- headers : Header or iterable of Headers The headers to fetch the events for stream_name : str, optional Get events from only "event stream" with this name. Default is 'primary' fields : List[str], optional whitelist of field names of interest; if None, all are returned Default is None fill : bool or Iterable[str], optional Which fields to fill. If `True`, fill all possible fields. Each event will have the data filled for the intersection of it's external keys and the fields requested filled. Default is False handler_registry : dict, optional mapping asset specs (strings) to handlers (callable classes) Yields ------ event : Event The event, optionally with non-scalar data filled in Raises ------ ValueError if any key in `fields` is not in at least one descriptor pre header. """ if handler_registry is not None: raise NotImplementedError("The handler_registry must be set when " "the Broker is initialized, usually specified " "in a configuration file.") for name, doc in self.get_documents(headers, fields=fields, stream_name=stream_name, fill=fill, handler_registry=handler_registry): if name == 'event': yield doc def get_table(self, headers, stream_name='primary', fields=None, fill=False, handler_registry=None, convert_times=True, timezone=None, localize_times=True): """ Load the data from one or more runs as a table (``pandas.DataFrame``). Parameters ---------- headers : Header or iterable of Headers The headers to fetch the events for stream_name : str, optional Get events from only "event stream" with this name. Default is 'primary' fields : List[str], optional whitelist of field names of interest; if None, all are returned Default is None fill : bool or Iterable[str], optional Which fields to fill. If `True`, fill all possible fields. Each event will have the data filled for the intersection of it's external keys and the fields requested filled. Default is False handler_registry : dict, optional mapping filestore specs (strings) to handlers (callable classes) convert_times : bool, optional Whether to convert times from float (seconds since 1970) to numpy datetime64, using pandas. True by default. timezone : str, optional e.g., 'US/Eastern'; if None, use metadatastore configuration in `self.mds.config['timezone']` handler_registry : dict, optional mapping asset specs (strings) to handlers (callable classes) localize_times : bool, optional If the times should be localized to the 'local' time zone. If True (the default) the time stamps are converted to the localtime zone (as configure in mds). This is problematic for several reasons: - apparent gaps or duplicate times around DST transitions - incompatibility with every other time stamp (which is in UTC) however, this makes the dataframe repr look nicer This implies convert_times. Defaults to True to preserve back-compatibility. Returns ------- table : pandas.DataFrame """ if handler_registry is not None: raise NotImplementedError( "The handler_registry must be set when " "the Broker is initialized, usually specified " "in a configuration file.") headers = _ensure_list(headers) # TODO --- Use local time I guess. # if timezone is None: # timezone = self.mds.config['timezone'] no_fields_filter = False if fields is None: no_fields_filter = True fields = [] fields = set(fields) comp_re = _compile_re(fields) dfs = [] for header in headers: descs = header.descriptors start = header.start stop = header.stop descs = [desc for desc in descs if desc.get('name') == stream_name] for descriptor in descs: (all_extra_dk, all_extra_data, all_extra_ts, discard_fields) = _extract_extra_data( start, stop, descriptor, fields, comp_re, no_fields_filter) all_events = [ doc for name, doc in self.get_documents(header, stream_name=stream_name, fill=fill) if name == 'event' and doc['descriptor'] == descriptor['uid']] seq_nums = [ev['seq_num'] for ev in all_events] times = [ev['time'] for ev in all_events] keys = list(descriptor['data_keys']) data = transpose(all_events, keys, 'data') # timestamps = transpose(all_events, keys, 'timestamps') df = pandas.DataFrame(index=seq_nums) # if converting to datetime64 (in utc or 'local' tz) if convert_times or localize_times: times = pandas.to_datetime(times, unit='s') # make sure this is a series times = pandas.Series(times, index=seq_nums) # if localizing to 'local' time if localize_times: times = (times .dt.tz_localize('UTC') # first make tz aware # .dt.tz_convert(timezone) # convert to 'local' .dt.tz_localize(None) # make naive again ) df['time'] = times for field, values in data.items(): if field in discard_fields: continue df[field] = values if list(df.columns) == ['time']: # no content continue for field, v in all_extra_data.items(): df[field] = v dfs.append(df) if dfs: result = pandas.concat(dfs) else: # edge case: no data result = pandas.DataFrame() result.index.name = 'seq_num' return result def get_images(self, headers, name, stream_name='primary', handler_registry=None,): """ This method is deprecated. Use Broker.get_documents instead. Load image data from one or more runs into a lazy array-like object. Parameters ---------- headers : Header or list of Headers name : string field name (data key) of a detector handler_registry : dict, optional mapping spec names (strings) to handlers (callable classes) Examples -------- >>> header = db[-1] >>> images = Images(header, 'my_detector_lightfield') >>> for image in images: # do something """ # Defer this import so that pims is an optional dependency. from ._legacy_images import Images headers = _ensure_list(headers) datasets = [header.xarray_dask(stream_name=stream_name) for header in headers] if handler_registry is not None: raise NotImplementedError( "The handler_registry parameter is no longer supported " "and must be None.") dataset = xarray.merge(datasets) data_array = dataset[name] return Images(data_array=data_array) def alias(self, key, **query): """ Create an alias for a query. Parameters ---------- key : string must be a valid Python identifier query : keyword argument comprising a query Examples -------- Define an alias that searches for headers with purpose='calibration'. >>> db.alias('cal', purpose='calibration') Use it. >>> headers = db.cal # -> db(purpose='calibration') Review defined aliases. >>> db.aliases {'cal': {'purpose': 'calibration'}} """ if hasattr(self, key) and key not in self.aliases: raise ValueError("'%s' is not a legal alias." % key) self.aliases[key] = query def dynamic_alias(self, key, func): """ Create an alias for a "dynamic" query, a function that returns a query. Parameters ---------- key : string must be a valid Python identifier func : callable When called with no arguments, must return a dict that is a valid query. Examples -------- Define an alias to get headers from the last 24 hours. >>> import time >>> db.dynamic_alias('today', ... lambda: {'since': time.time() - 24*60*60}) Use it. >>> headers = db.today Define an alias to get headers with the 'user' field in metadata matches the current logged-in user. >>> import getpass >>> db.dynamic_alias('mine', lambda: {'user': getpass.getuser()}) Use it >>> headers = db.mine """ if hasattr(self, key) and key not in self.aliases: raise ValueError("'%s' is not a legal alias." % key) self.aliases[key] = func def add_filter(self, **kwargs): """ Add query to the list of 'filter' queries. Any query passed to ``db.add_filter()`` is stashed and "AND-ed" with all future queries. ``db.add_filter(**kwargs)`` is just a convenient way to spell ``db.filters.update(**kwargs)``. Examples -------- Filter all searches to restrict results to a specific user after a March 2017. >>> db.add_filter(user='Dan') >>> db.add_filter(since='2017-3') The following query is equivalent to ``db(user='Dan', plan_name='scan')``. >>> db(plan_name='scan') Review current filters. >>> db.filters {'user': 'Dan', 'since': '2017-3'} Clear filters. >>> db.clear_filters() See Also -------- :meth:`Broker.clear_filters` """ self.filters.update(**kwargs) def clear_filters(self, **kwargs): """ Clear all 'filter' queries. Filter queries are combined with every given query using '$and', acting as a filter to restrict the results. ``Broker.clear_filters()`` is just a convenient way to spell ``Broker.filters.clear()``. See Also -------- :meth:`Broker.add_filter` """ self.filters.clear() def __getattr__(self, key): try: query = self.aliases[key] except KeyError: raise AttributeError(key) if callable(query): query = query() return self(**query) def restream(self, headers, fields=None, fill=False): """ Get all Documents from given run(s). This output can be used as a drop-in replacement for the output of the bluesky Run Engine. Parameters ---------- headers : Header or iterable of Headers header or headers to fetch the documents for fields : list, optional whitelist of field names of interest; if None, all are returned fill : bool, optional Whether externally-stored data should be filled in. Defaults to False. Yields ------ name, doc : tuple string name of the Document type and the Document itself. Example: ('start', {'time': ..., ...}) Examples -------- >>> def f(name, doc): ... # do something ... >>> h = db[-1] # most recent header >>> for name, doc in restream(h): ... f(name, doc) See Also -------- :meth:`Broker.process` """ for payload in self.get_documents(headers, fields=fields, fill=fill): yield payload stream = restream # compat def process(self, headers, func, fields=None, fill=False): """ Pass all the documents from one or more runs into a callback. This output can be used as a drop-in replacement for the output of the bluesky Run Engine. Parameters ---------- headers : Header or iterable of Headers header or headers to process documents from func : callable function with the signature `f(name, doc)` where `name` is a string and `doc` is a dict fields : list, optional whitelist of field names of interest; if None, all are returned fill : bool, optional Whether externally-stored data should be filled in. Defaults to False. Examples -------- >>> def f(name, doc): ... # do something ... >>> h = db[-1] # most recent header >>> process(h, f) See Also -------- :meth:`Broker.restream` """ for name, doc in self.get_documents(headers, fields=fields, fill=fill): func(name, doc) def export(self, headers, db, new_root=None, copy_kwargs=None): """ Serialize a list of runs. If a new_root is passed files associated with the run will be moved to this new location, and the corresponding resource document will be updated with the new_root. Parameters ---------- headers : databroker.header one or more run headers that are going to be exported db : databroker.Broker an instance of databroker.Broker class that will be the target to export info new_root : str optional. root directory of files that are going to be exported copy_kwargs : dict or None passed through to the ``copy_files`` method on Registry; None by default Returns ------ file_pairs : list list of (old_file_path, new_file_path) pairs generated by ``copy_files`` method on Registry. """ if copy_kwargs is None: copy_kwargs = {} if isinstance(headers, Header): headers = [headers] file_pairs = [] for header in headers: for name, doc in self._catalog[header.start['uid']].canonical(fill='no'): if name == 'event_page': for event in event_model.unpack_event_page(doc): db.insert('event', event) elif name == 'resource' and new_root: copy_kwargs.setdefault('run_start_uid', header.start['uid']) file_pairs.extend(self.reg.copy_files(doc, new_root, **copy_kwargs)) new_resource = doc.to_dict() new_resource['root'] = new_root db.insert(name, new_resource) else: db.insert(name, doc) return file_pairs def export_size(self, headers): """ Get the size of files associated with a list of headers. Parameters ---------- headers : :class:databroker.Header: one or more headers that are going to be exported Returns ------- total_size : float total size of all the files associated with the ``headers`` in Gb """ headers = _ensure_list(headers) total_size = 0 for header in headers: run = self._catalog[header.start['uid']] for name, doc in self._catalog[header.start['uid']].canonical(fill='no'): if name == 'resource': for filepath in run.get_file_list(doc): total_size += os.path.getsize(filepath) return total_size * 1e-9 def insert(self, name, doc): if self._serializer is None: raise RuntimeError("No Serializer was configured for this.") warnings.warn( "The method Broker.insert may be removed in a future release of " "databroker.", PendingDeprecationWarning) self._serializer(name, doc) # Make a reasonable effort to keep the Catalog in sync with new data. if name == 'stop': self._catalog.force_reload() def fill_event(*args, **kwargs): raise NotImplementedError("This method is no longer supported. If you " "need this please contact the developers by " "opening an issue here: " "https://github.com/bluesky/databroker/issues/new ") def fill_events(*args, **kwargs): raise NotImplementedError("This method is no longer supported. If you " "need this please contact the developers by " "opening an issue here: " "https://github.com/bluesky/databroker/issues/new ") def stats(self): "Access MongoDB storage statistics for this database." return self.v2.stats() class Header: """ This supports the original Header API but implemented on intake's Entry. """ def __init__(self, datasource): self.__data_source = datasource self.db = datasource.catalog_object.v1 self.ext = None # TODO md = datasource.describe()['metadata'] self._start = md['start'] self._stop = md['stop'] self.ext = SimpleNamespace( **self.db.fetch_external(self.start, self.stop)) @property def _data_source(self): return self.__data_source @property def start(self): return self.db.prepare_hook('start', self._start) @property def uid(self): return self._start['uid'] @property def stop(self): if self._stop is None: self._stop = self.__data_source.describe()['metadata']['stop'] or {} return self.db.prepare_hook('stop', self._stop) def __eq__(self, other): return self.start == other.start @property def descriptors(self): descriptors = self._data_source._descriptors return sorted([self.db.prepare_hook('descriptor', doc) for doc in descriptors], key=lambda d: d['time'], reverse=True) @property def stream_names(self): return list(self.__data_source) # These methods mock part of the dict interface. It has been proposed that # we might remove them for 1.0. def __getitem__(self, k): if k in ('start', 'descriptors', 'stop', 'ext'): return getattr(self, k) else: raise KeyError(k) def get(self, *args, **kwargs): return getattr(self, *args, **kwargs) def items(self): for k in self.keys(): yield k, getattr(self, k) def values(self): for k in self.keys(): yield getattr(self, k) def keys(self): for k in ('start', 'descriptors', 'stop', 'ext'): yield k def __iter__(self): return self.keys() def xarray(self, stream_name='primary'): return self._data_source[stream_name].read() def xarray_dask(self, stream_name='primary'): return self._data_source[stream_name].to_dask() def table(self, stream_name='primary', fields=None, fill=False, timezone=None, convert_times=True, localize_times=True): ''' Load the data from one event stream as a table (``pandas.DataFrame``). Parameters ---------- stream_name : str, optional Get events from only "event stream" with this name. Default is 'primary' fields : List[str], optional whitelist of field names of interest; if None, all are returned Default is None fill : bool or Iterable[str], optional Which fields to fill. If `True`, fill all possible fields. Each event will have the data filled for the intersection of it's external keys and the fields requested filled. Default is False handler_registry : dict, optional mapping filestore specs (strings) to handlers (callable classes) convert_times : bool, optional Whether to convert times from float (seconds since 1970) to numpy datetime64, using pandas. True by default. timezone : str, optional e.g., 'US/Eastern'; if None, use metadatastore configuration in `self.mds.config['timezone']` localize_times : bool, optional If the times should be localized to the 'local' time zone. If True (the default) the time stamps are converted to the localtime zone (as configure in mds). This is problematic for several reasons: - apparent gaps or duplicate times around DST transitions - incompatibility with every other time stamp (which is in UTC) however, this makes the dataframe repr look nicer This implies convert_times. Defaults to True to preserve back-compatibility. Returns ------- table : pandas.DataFrame Examples -------- Load the 'primary' data stream from the most recent run into a table. >>> h = db[-1] >>> h.table() This is equivalent. (The default stream_name is 'primary'.) >>> h.table(stream_name='primary') time intensity 0 2017-07-16 12:12:37.239582345 102 1 2017-07-16 12:12:39.958385283 103 Load the 'baseline' data stream. >>> h.table(stream_name='baseline') time temperature 0 2017-07-16 12:12:35.128515999 273 1 2017-07-16 12:12:40.128515999 274 ''' return self.db.get_table(self, fields=fields, stream_name=stream_name, fill=fill, timezone=timezone, convert_times=convert_times, localize_times=localize_times) def documents(self, stream_name=ALL, fields=None, fill=False): """ Load all documents from the run. This is a generator the yields ``(name, doc)``. Parameters ---------- stream_name : string or ``ALL``, optional Filter results by stream name (e.g., 'primary', 'baseline'). The default, ``ALL``, combines results from all streams. fill : bool, optional Whether externally-stored data should be filled in. False by default. Yields ------ name, doc : (string, dict) Examples -------- Loop through the documents from a run. >>> h = db[-1] >>> for name, doc in h.documents(): ... # do something """ gen = self.db.get_documents(self, fields=fields, stream_name=stream_name, fill=fill) for payload in gen: yield payload def data(self, field, stream_name='primary', fill=True): """ Extract data for one field. This is convenient for loading image data. Parameters ---------- field : string such as 'image' or 'intensity' stream_name : string, optional Get data from a single "event stream." Default is 'primary' fill : bool, optional If the data should be filled. Yields ------ data """ for event in self.events(stream_name=stream_name, fields=[field], fill=fill): yield event['data'][field] def stream(self, *args, **kwargs): warnings.warn( "The 'stream' method been renamed to 'documents'. The old name " "will be removed in the future.") for payload in self.documents(*args, **kwargs): yield payload def fields(self, stream_name=ALL): """ Return the names of the fields ('data keys') in this run. Parameters ---------- stream_name : string or ``ALL``, optional Filter results by stream name (e.g., 'primary', 'baseline'). The default, ``ALL``, combines results from all streams. Returns ------- fields : set Examples -------- Load the most recent run and list its fields. >>> h = db[-1] >>> h.fields() {'eiger_stats1_total', 'eiger_image'} See Also -------- :meth:`Header.devices` """ fields = set() for descriptor in self.descriptors: if stream_name is ALL or descriptor.get('name') == stream_name: fields.update(descriptor['data_keys']) return fields def devices(self, stream_name=ALL): """ Return the names of the devices in this run. Parameters ---------- stream_name : string or ``ALL``, optional Filter results by stream name (e.g., 'primary', 'baseline'). The default, ``ALL``, combines results from all streams. Returns ------- devices : set Examples -------- Load the most recent run and list its devices. >>> h = db[-1] >>> h.devices() {'eiger'} See Also -------- :meth:`Header.fields` """ result = set() for d in self.descriptors: if stream_name is ALL or stream_name == d.get('name', 'primary'): result.update(d['object_keys']) return result def config_data(self, device_name): """ Extract device configuration data from Event Descriptors. This refers to the data obtained from ``device.read_configuration()``. See example below. The result is structed as a [...deep breath...] dictionary of lists of dictionaries because: * The device might have been read in multiple event streams ('primary', 'baseline', etc.). Each stream name is a key in the outer dictionary. * The configuration is typically read once per event stream, but in general may be read multiple times if the configuration is changed mid-stream. Thus, a list is needed. * Each device typically produces multiple configuration fields ('exposure_time', 'period', etc.). These are the keys of the inner dictionary. Parameters ---------- device_name : string device name (originally obtained from the ``name`` attribute of some readable Device) Returns ------- result : dict mapping each stream name (such as 'primary' or 'baseline') to a list of data dictionaries Examples -------- Get the device configuration recorded for the device named 'eiger'. >>> h.config_data('eiger') {'primary': [{'exposure_time': 1.0}]} Assign the exposure time to a variable. >>> exp_time = h.config_data('eiger')['primary'][0]['exposure_time'] How did we know that ``'eiger'`` was a valid argument? We can query for the complete list of device names: >>> h.devices() {'eiger', 'cs700'} """ result = defaultdict(list) for d in sorted(self.descriptors, key=lambda d: d['time']): config = d['configuration'].get(device_name) if config: result[d.get('name')].append(config['data']) return dict(result) # strip off defaultdict behavior def events(self, stream_name='primary', fields=None, fill=False): """ Load all Event documents from one event stream. This is a generator the yields Event documents. Parameters ---------- stream_name : str, optional Get events from only "event stream" with this name. Default is 'primary' fields : List[str], optional whitelist of field names of interest; if None, all are returned Default is None fill : bool or Iterable[str], optional Which fields to fill. If `True`, fill all possible fields. Each event will have the data filled for the intersection of it's external keys and the fields requested filled. Default is False Yields ------ doc : dict Examples -------- Loop through the Event documents from a run. This is 'lazy', meaning that only one Event at a time is loaded into memory. >>> h = db[-1] >>> for event in h.events(): ... # do something List the Events documents from a run, loading them all into memory at once. >>> events = list(h.events()) """ ev_gen = self.db.get_events([self], stream_name=stream_name, fields=fields, fill=fill) for ev in ev_gen: yield ev def _repr_html_(self): env = jinja2.Environment() env.filters['human_time'] = _pretty_print_time template = env.from_string(_HTML_TEMPLATE) return template.render(document=self) class Results: """ Iterable object encapsulating a results set of Headers Parameters ---------- catalog : Catalog search results data_key : string or None Special query parameter that filters results """ def __init__(self, broker, catalog, data_key): self._broker = broker self._catalog = catalog self._data_key = data_key def __iter__(self): # TODO Catalog.walk() fails. We should probably support Catalog.items(). for uid, entry in self._catalog._entries.items(): header = Header(entry()) if self._data_key is None: yield header else: # Only include this header in the result if `data_key` is found # in one of its descriptors' data_keys. for descriptor in header.descriptors: if self._data_key in descriptor['data_keys']: yield header break def _ensure_list(headers): try: headers.items() except AttributeError: return headers else: return [headers] def _compile_re(fields=[]): """ Return a regular expression object based on a list of regular expressions. Parameters ---------- fields : list, optional List of regular expressions. If fields is empty returns a general RE. Returns ------- comp_re : regular expression object """ if len(fields) == 0: fields = ['.*'] f = ["(?:" + regex + r")\Z" for regex in fields] comp_re = re.compile('|'.join(f)) return comp_re def _extract_extra_data(start, stop, d, fields, comp_re, no_fields_filter): def _project_header_data(source_data, source_ts, selected_fields, comp_re): """Extract values from a header for merging into events Parameters ---------- source : dict selected_fields : set comp_re : SRE_Pattern Returns ------- data_keys : dict data : dict timestamps : dict """ fields = (set(filter(comp_re.match, source_data)) - selected_fields) data = {k: source_data[k] for k in fields} timestamps = {k: source_ts[k] for k in fields} return {}, data, timestamps if fields: event_fields = set(d['data_keys']) selected_fields = set(filter(comp_re.match, event_fields)) discard_fields = event_fields - selected_fields else: discard_fields = set() selected_fields = set(d['data_keys']) objs_config = d.get('configuration', {}).values() config_data = merge(obj_conf['data'] for obj_conf in objs_config) config_ts = merge(obj_conf['timestamps'] for obj_conf in objs_config) all_extra_data = {} all_extra_ts = {} all_extra_dk = {} if not no_fields_filter: for dt, ts in [(config_data, config_ts), (start, defaultdict(lambda: start['time'])), (stop, defaultdict(lambda: stop['time']))]: # Look in the descriptor, then start, then stop. l_dk, l_data, l_ts = _project_header_data( dt, ts, selected_fields, comp_re) all_extra_data.update(l_data) all_extra_ts.update(l_ts) selected_fields.update(l_data) all_extra_dk.update(l_dk) return (all_extra_dk, all_extra_data, all_extra_ts, discard_fields) _HTML_TEMPLATE = """ {% macro rtable(doc, cap) -%} <table> <caption> {{ cap }} </caption> {%- for key, value in doc | dictsort recursive -%} <tr> <th> {{ key }} </th> <td> {%- if value.items -%} <table> {{ loop(value | dictsort) }} </table> {%- elif value is iterable and value is not string -%} <table> {%- set outer_loop = loop -%} {%- for stuff in value -%} {%- if stuff.items -%} {{ outer_loop(stuff | dictsort) }} {%- else -%} <tr><td>{{ stuff }}</td></tr> {%- endif -%} {%- endfor -%} </table> {%- else -%} {%- if key == 'time' -%} {{ value | human_time }} {%- else -%} {{ value }} {%- endif -%} {%- endif -%} </td> </tr> {%- endfor -%} </table> {%- endmacro %} <table> <tr> <td>{{ rtable(document.start, 'Start') }}</td> </tr <tr> <td>{{ rtable(document.stop, 'Stop') }}</td> </tr> <tr> <td> <table> <caption>Descriptors</caption> {%- for d in document.descriptors -%} <tr> <td> {{ rtable(d, d.get('name')) }} </td> </tr> {%- endfor -%} </table> </td> </tr> </table> """ def _pretty_print_time(timestamp): # timestamp needs to be a float or fromtimestamp() will barf timestamp = float(timestamp) dt = datetime.fromtimestamp(timestamp).isoformat() ago = humanize.naturaltime(time.time() - timestamp) return '{ago} ({date})'.format(ago=ago, date=dt) class InvalidConfig(Exception): """Raised when the configuration file is invalid.""" ... def from_config(config, auto_register=True, name=None): """ Build (some version of) a Broker instance from a v0 configuration dict. This method accepts v1 config files. This can return a ``v0.Broker``, ``v1.Broker``, or ``v2.Broker`` depending on the contents of ``config``. If config contains the key 'api_version', it should be set to a value 0, 1, 0, or 2. That setting will be respected until there is an error, in which case a warning will be issued and we will fall back to v0. If no 'api_version' is explicitly set by the configuration file, version 1 will be used. """ forced_version = config.get('api_version') if forced_version == 0: from . import v0 return v0.Broker.from_config(config, auto_register, name) try: catalog = _from_v0_config(config, auto_register, name) except InvalidConfig: raise except Exception as exc: warnings.warn( f"Failed to load config. Falling back to v0." f"Exception was: {exc}") from . import v0 return v0.Broker.from_config(config, auto_register, name) if forced_version == 2: return catalog elif forced_version is None or forced_version == 1: broker = Broker(catalog) broker._config = config # HACK to support Broker.get_config() return broker else: raise ValueError(f"Cannot handle api_version {forced_version}") def _from_v0_config(config, auto_register, name): mds_module = config['metadatastore']['module'] if mds_module != 'databroker.headersource.mongo': raise NotImplementedError( f"Unable to handle metadatastore.module {mds_module!r}") mds_class = config['metadatastore']['class'] if mds_class not in ('MDS', 'MDSRO'): raise NotImplementedError( f"Unable to handle metadatastore.class {mds_class!r}") assets_module = config['assets']['module'] if assets_module != 'databroker.assets.mongo': raise NotImplementedError( f"Unable to handle assets.module {assets_module!r}") assets_class = config['assets']['class'] if assets_class not in ('Registry', 'RegistryRO'): raise NotImplementedError( f"Unable to handle assets.class {assets_class!r}") # Get the mongo databases. metadatastore_db = _get_mongo_database(config['metadatastore']['config']) asset_registry_db = _get_mongo_database(config['assets']['config']) from ._drivers.mongo_normalized import BlueskyMongoCatalog from .core import discover_handlers # Update the handler registry. handler_registry = {} if auto_register: handler_registry.update(discover_handlers()) # In v0, config-specified handlers are *added* to any default ones. for spec, contents in config.get('handlers', {}).items(): dotted_object = '.'.join((contents['module'], contents['class'])) handler_registry[spec] = dotted_object root_map = config.get('root_map') transforms = config.get('transforms') return BlueskyMongoCatalog(metadatastore_db, asset_registry_db, handler_registry=handler_registry, root_map=root_map, name=name, transforms=transforms) _mongo_clients = {} # cache of pymongo.MongoClient instances def _get_mongo_database(config): """ Return a MongoClient.database. Use a cache in order to reuse the MongoClient. """ # Check that config contains either uri, or host/port, but not both. if {'uri', 'host'} <= set(config) or {'uri', 'port'} <= set(config): raise InvalidConfig( "The config file must define either uri, or host/port, but not both.") uri = config.get('uri') database = config['database'] # If this statement is True then uri does not exist in the config. # If the config has username and password, turn it into a uri. # This is only here for backward compatibility. if {'mongo_user', 'mongo_pwd', 'host', 'port'} <= set(config): uri = (f"mongodb://{config['mongo_user']}:{config['mongo_pwd']}@" "f{config['host']}:{config['port']}/") if uri: try: client = _mongo_clients[uri] except KeyError: client = pymongo.MongoClient(uri) _mongo_clients[uri] = client else: host = config.get('host') port = config.get('port') try: client = _mongo_clients[(host, port)] except KeyError: client = pymongo.MongoClient(host, port) _mongo_clients[(host, port)] = client return client[database] class _GetDocumentsRouter: """ This is used by Broker.get_documents. It employs a pattern similar to event_model.DocumentRouter, but the methods are generators instead of functions. """ def __init__(self, prepare_hook, merge_config_into_event, stream_name): self.prepare_hook = prepare_hook self.merge_config_into_event = merge_config_into_event self.stream_name = stream_name self._descriptors = set() def __call__(self, name, doc): # Special case when there is no Run Stop doc. # In v0, we returned an empty dict here. We now think better of it. if name == 'stop' and doc is None: doc = {} for new_name, new_doc in getattr(self, name)(doc): yield new_name, self.prepare_hook(new_name, new_doc) def descriptor(self, doc): "Cache descriptor uid and pass it through if it is stream of interest." if self.stream_name is ALL or doc.get('name', 'primary') == self.stream_name: self._descriptors.add(doc['uid']) yield 'descriptor', doc def event_page(self, doc): "Unpack into events and pass them to event method for more processing." if doc['descriptor'] in self._descriptors: for event in event_model.unpack_event_page(doc): yield from self.event(event) def event(self, doc): "Apply merge_config_into_event." if doc['descriptor'] in self._descriptors: # Mutate event in place, merging in content from other documents # and discarding fields excluded by the user. self.merge_config_into_event(doc) # If the mutation above leaves event['data'] empty, omit it. if doc['data']: yield 'event', doc def datum_page(self, doc): "Unpack into datum." for datum in event_model.unpack_datum_page(doc): yield 'datum', datum def datum(self, doc): yield 'datum', doc def start(self, doc): yield 'start', doc def stop(self, doc): yield 'stop', doc def resource(self, doc): yield 'resource', doc ```
{ "source": "jklynch/diffrascape", "score": 3 }
#### File: diffrascape/env/karm.py ```python import gym import numpy as np class KArm(gym.Env): """ """ k = 10 action_space = gym.spaces.Discrete(n=k) observation_space = gym.spaces.Box(low=0.0, high=1.0, shape=(k, 1)), dtype=np.fload def __init__(self, width, height): self.observation_space = gym.spaces.Box( low=-10.0, high=5.0, shape=(width, height, 1), dtype=np.float ) self.width = width self.height = height self.grid_world = None self.start_point = None self.current_point = None self.action_table = np.array([[-1, 0], [1, 0], [0, -1], [0, 1]]) def reset(self): self.grid_world = np.random.choice( a=[-5.0, 0.0, 5.0], size=(self.width, self.height, 1), ) self.start_point = (self.width // 2, self.height // 2) self.grid_world[self.start_point[0], self.start_point[1], 0] = -10.0 self.current_point = self.start_point return self.grid_world def step(self, action): """ Parameters ---------- action: int 0 - current_point + (-1, 0) 1 - current_point + ( 1, 0) 2 - current_point + ( 0, -1) 3 - current_point + ( 0, 1) """ assert 0 <= action <= 3 self.current_point += self.action_table[action] if ( 0 < self.current_point[0] < self.width and 0 < self.current_point[1] < self.height ): reward = ( -1.0 + self.grid_world[self.current_point[0], self.current_point[1], 0] ) done = False self.grid_world[self.current_point[0], self.current_point[1], 0] = -10.0 else: reward = 1.0 done = True return self.grid_world, reward, done, {} def get_current_grid_value(self, w, h): return self.grid_world[w, h] ``` #### File: diffrascape/tests/test_bad_seeds.py ```python from diffrascape.env import BadSeeds def test_construct(): bad_seeds = BadSeeds() bad_seeds_states = bad_seeds.states() print(f"### states: {bad_seeds_states}") assert bad_seeds_states["shape"][0] == 6 bad_seeds_actions = bad_seeds.actions() print(f"### actions: {bad_seeds_actions}") assert bad_seeds_actions["num_values"] == 3 ```
{ "source": "jklynch/iqsq", "score": 3 }
#### File: iqsq/iqsq/__init__.py ```python import pandas as pd from scipy.spatial.distance import cdist from ._version import get_versions __version__ = get_versions()["version"] del get_versions def read_aff_elements(path, *args, **kwargs): return pd.read_csv(filepath_or_buffer=path, *args, **kwargs) def read_aff_parameters(path, *args, **kwargs): return pd.read_csv(filepath_or_buffer=path, *args, **kwargs) def read_atom_positions(atom_positions_path): """Load data from .xyz file. no header """ atom_positions_df = pd.read_table( filepath_or_buffer=atom_positions_path, header=None, names=["x", "y", "z"], index_col=0, delim_whitespace=True, ) # atom_positions_df.columns = ["x", "y", "z"] return atom_positions_df def build_atom_distance_matrix(atom_positions_df): """Construct a distance matrix from atom positions. Parameters ---------- atom_positions_df: pandas.DataFrame a 3xN dataframe with index x,y,z and one column per atom for example: x y z Na 0 0 1 Cl 0 1 0 Na 1 0 0 Returns ------- pandas.DataFrame NxN distance matrix with atom names on index and columns for example: Na Cl Na Na 0.0 1.414 1.414 Cl 1.414 0.0 1.414 Na 1.414 1.414 0.0 """ atom_distance_matrix = cdist( atom_positions_df.to_numpy(), atom_positions_df.to_numpy() ) atom_distance_matrix_df = pd.DataFrame( data=atom_distance_matrix, columns=atom_positions_df.index, index=atom_positions_df.index, ) # set index name to None, otherwise it is "0" and that looks # odd when the dataframe is printed atom_distance_matrix_df.index.name = None return atom_distance_matrix_df ``` #### File: iqsq/tests/test_build_atom_distance_matrix.py ```python from pathlib import Path import numpy as np from iqsq import build_atom_distance_matrix, read_atom_positions def test_build_atom_distance_matrix(tmp_path): atom_positions_path = tmp_path / Path("atom_positions.txt") with open(atom_positions_path, "wt") as f: f.write( """\ Na 0 0 1 Cl 0 1 0 """ ) atom_positions_df = read_atom_positions(atom_positions_path=atom_positions_path) atom_distance_matrix_df = build_atom_distance_matrix( atom_positions_df=atom_positions_df ) assert atom_distance_matrix_df.shape == (2, 2) assert atom_distance_matrix_df.index[0] == "Na" assert atom_distance_matrix_df.index[1] == "Cl" assert atom_distance_matrix_df.columns[0] == "Na" assert atom_distance_matrix_df.columns[1] == "Cl" assert atom_distance_matrix_df.iloc[0, 0] == 0.0 assert atom_distance_matrix_df.iloc[1, 0] == np.sqrt(2) assert atom_distance_matrix_df.iloc[0, 1] == np.sqrt(2) assert atom_distance_matrix_df.iloc[1, 1] == 0.0 ``` #### File: iqsq/tests/test_read_aff.py ```python from pathlib import Path from iqsq import read_aff_elements def test_read_aff_elements(tmp_path): test_aff_elements_path = tmp_path / Path("aff_elements.txt") with open(test_aff_elements_path, "wt") as f: f.write( """\ H H1- He Li Li1+ """ ) aff_elements_df = read_aff_elements(path=test_aff_elements_path, header=None) assert aff_elements_df.shape == (5, 1) assert aff_elements_df.iloc[0, 0] == "H" assert aff_elements_df.iloc[-1, 0] == "Li1+" def test_read_aff_parameters(tmp_path): test_aff_parameters_path = tmp_path / Path("aff_parameters.txt") with open(test_aff_parameters_path, "wt") as f: f.write( """\ 0.489918 20.659300 0.262003 7.740390 0.196767 49.551900 0.049879 2.201590 0.001305 0.897661 53.136800 0.565616 15.187000 0.415815 186.576000 0.116973 3.567090 0.002389 0.873400 9.103700 0.630900 3.356800 0.311200 22.927600 0.178000 0.982100 0.006400 1.128200 3.954600 0.750800 1.052400 0.617500 85.390500 0.465300 168.261000 0.037700 0.696800 4.623700 0.788800 1.955700 0.341400 0.631600 0.156300 10.095300 0.016700 """ ) aff_parameters_df = read_aff_elements( path=test_aff_parameters_path, header=None, delim_whitespace=True ) assert aff_parameters_df.shape == (5, 9) assert aff_parameters_df.iloc[0, 0] == 0.489918 assert aff_parameters_df.iloc[-1, -1] == 0.016700 ```
{ "source": "jklynch/lix-workers", "score": 3 }
#### File: lix/export/util.py ```python from collections.abc import Mapping import json def _safe_attrs_assignment(h5_group, a_mapping): a_mapping = _clean_dict(a_mapping) for key, value in a_mapping.items(): # Special-case None, which fails too late to catch below. if value is None: value = "None" # Try storing natively. try: h5_group.attrs[key] = value # Fallback: Save the repr, which in many cases can be used to # recreate the object. except TypeError: h5_group.attrs[key] = json.dumps(value) def _clean_dict(a_mapping): a_mapping = dict(a_mapping) for k, v in list(a_mapping.items()): # Store dictionaries as JSON strings. if isinstance(v, Mapping): a_mapping[k] = _clean_dict(a_mapping[k]) continue try: json.dumps(v) except TypeError: a_mapping[k] = str(v) return a_mapping ```
{ "source": "jklynch/mr-fitty", "score": 2 }
#### File: mr-fitty/mrfitty/combination_fit.py ```python import collections from concurrent.futures import ProcessPoolExecutor, as_completed import itertools import logging from operator import attrgetter import os.path import time import traceback import warnings import matplotlib matplotlib.use("pdf", force=True) import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import numpy as np import pandas as pd import scipy.cluster.hierarchy as hc from scipy.spatial.distance import pdist from sklearn.utils import shuffle from mrfitty.base import ( InterpolatedSpectrumSet, InterpolatedReferenceSpectraSet, SpectrumFit, ) from mrfitty.plot import ( add_date_time_footer, plot_fit, plot_reference_tree, # plot_prediction_errors, plot_stacked_fit, ) def grouper(iterable, n, fillvalue=None): "Collect data into fixed-length chunks or blocks" # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx" args = [iter(iterable)] * n return itertools.zip_longest(*args, fillvalue=fillvalue) class FitFailed(Exception): pass class CombinationFitResults: """CombinationFitResults""" def __init__(self, spectrum, best_fit, component_count_fit_table): self.spectrum = spectrum self.best_fit = best_fit self.component_count_fit_table = component_count_fit_table class AllCombinationFitTask: def __init__( self, ls, reference_spectrum_list, unknown_spectrum_list, energy_range_builder, best_fits_plot_limit, component_count_range=range(4), ): self.ls = ls self.reference_spectrum_list = reference_spectrum_list self.unknown_spectrum_list = unknown_spectrum_list self.energy_range_builder = energy_range_builder self.best_fits_plot_limit = best_fits_plot_limit self.component_count_range = component_count_range self.fit_table = None def fit_all(self, plots_pdf_dp): """ using self.fit_table here seems to be causing this intermittent error: concurrent.futures.process._RemoteTraceback: Traceback (most recent call last): File "/home/jlynch/miniconda3/envs/mrf/lib/python3.7/multiprocessing/queues.py", line 236, in _feed obj = _ForkingPickler.dumps(obj) File "/home/jlynch/miniconda3/envs/mrf/lib/python3.7/multiprocessing/reduction.py", line 51, in dumps cls(buf, protocol).dump(obj) RuntimeError: OrderedDict mutated during iteration Parameters ---------- plots_pdf_dp Returns ------- """ log = logging.getLogger(name="fit_all") os.makedirs(plots_pdf_dp, exist_ok=True) futures = dict() failed_fits = list() _fit_table = collections.OrderedDict() with ProcessPoolExecutor(max_workers=4) as executor: for unknown_spectrum in sorted( self.unknown_spectrum_list, key=lambda s: s.file_name ): future = executor.submit( self.fit_and_plot_exc, unknown_spectrum, plots_pdf_dp ) futures[future] = unknown_spectrum for future in as_completed(futures): unknown_spectrum = futures[future] log.info("completed %s fit", unknown_spectrum.file_name) try: fit_results = future.result() _fit_table[unknown_spectrum] = fit_results except (Exception, BaseException): log.exception("trouble in paradise") traceback.print_exc() failed_fits.append(unknown_spectrum) if len(failed_fits) > 0: print("failed fits:") print("\n".join(failed_fits)) self.fit_table = _fit_table return self.fit_table def fit_and_plot_exc(self, unknown_spectrum, plots_pdf_dp): log = logging.getLogger(name=f"fit_and_plot_exc:{unknown_spectrum.file_name}") try: return self.fit_and_plot( unknown_spectrum=unknown_spectrum, plots_pdf_dp=plots_pdf_dp ) except (BaseException, Exception): log.exception("trouble in fit_and_plot_exc") traceback.print_exc() raise def fit_and_plot(self, unknown_spectrum, plots_pdf_dp): log = logging.getLogger(name=f"fit_and_plot:{unknown_spectrum.file_name}") log.debug("fitting %s", unknown_spectrum.file_name) t0 = time.time() best_fit, fit_table = self.fit(unknown_spectrum) t1 = time.time() log.info("fit %s in %5.3fs", unknown_spectrum.file_name, t1 - t0) fit_results = CombinationFitResults( spectrum=unknown_spectrum, best_fit=best_fit, component_count_fit_table=fit_table, ) file_base_name, _ = os.path.splitext( os.path.basename(unknown_spectrum.file_name) ) plots_pdf_fp = os.path.join(plots_pdf_dp, file_base_name + "_fit.pdf") with PdfPages(plots_pdf_fp) as plot_file, warnings.catch_warnings(): warnings.simplefilter("ignore") log.info("writing plots file {}".format(plots_pdf_dp)) # create plot log.info("plotting fit for %s", unknown_spectrum.file_name) f_list = self.plot_top_fits( spectrum=unknown_spectrum, fit_results=fit_results ) for f in f_list: plot_file.savefig(f) plt.close(f) f = plot_fit( spectrum=unknown_spectrum, any_given_fit=fit_results.best_fit, title="Best Fit", fit_quality_labels=self.get_fit_quality_score_text( any_given_fit=fit_results.best_fit ), ) plot_file.savefig(f) plt.close(f) f = plot_stacked_fit( spectrum=unknown_spectrum, any_given_fit=fit_results.best_fit, title="Best Fit", fit_quality_labels=self.get_fit_quality_score_text( any_given_fit=fit_results.best_fit ), ) plot_file.savefig(f) plt.close(f) clustering_parameters = { "linkage_method": "complete", "pdist_metric": "correlation", } # use these for reference tree plots interpolation_energy_range, _ = self.energy_range_builder.build_range( unknown_spectrum=unknown_spectrum, reference_spectrum_seq=self.reference_spectrum_list, ) interpolated_reference_set_df = ( InterpolatedSpectrumSet.get_interpolated_spectrum_set_df( energy_range=interpolation_energy_range, spectrum_set=set(self.reference_spectrum_list), ) ) reference_spectra_linkage, cutoff_distance = self.cluster_reference_spectra( interpolated_reference_set_df, **clustering_parameters ) h = plot_reference_tree( linkage_distance_variable_by_sample=reference_spectra_linkage, reference_df=interpolated_reference_set_df, cutoff_distance=cutoff_distance, title="Best Fit\n{}".format(unknown_spectrum.file_name), reference_spectra_names=[ r.file_name for r in fit_results.best_fit.reference_spectra_seq ], **clustering_parameters, ) plot_file.savefig(h) plt.close(h) ordinal_list = ( "1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th", ) # plot the best n-component fit for n in sorted(fit_table.keys()): log.info( "plotting %d-component fit for %s", n, unknown_spectrum.file_name ) n_component_fit_results = fit_table[n] # here only plot the best fit for each component count for i, fit in enumerate(n_component_fit_results): if i < self.best_fits_plot_limit: title = "{} Best {}-Component Fit".format(ordinal_list[i], n) f = plot_fit( spectrum=unknown_spectrum, any_given_fit=fit, title=title, fit_quality_labels=self.get_fit_quality_score_text( any_given_fit=fit ), ) plot_file.savefig(f) plt.close(f) # if hasattr(fit, "prediction_errors"): # g = plot_prediction_errors( # spectrum=unknown_spectrum, # fit=fit, # title=title, # ) # plot_file.savefig(g) # plt.close(g) h = plot_reference_tree( linkage_distance_variable_by_sample=reference_spectra_linkage, reference_df=interpolated_reference_set_df, cutoff_distance=cutoff_distance, title=title + "\n" + unknown_spectrum.file_name, reference_spectra_names=[ r.file_name for r in fit.reference_spectra_seq ], **clustering_parameters, ) plot_file.savefig(h) plt.close(h) else: break return fit_results # tried to speed up mrfitty by distributing the work in this function # there was no speedup # apparently this is not where a lot of time is spent def fit(self, unknown_spectrum): log = logging.getLogger(name=unknown_spectrum.file_name) log.info("fitting unknown spectrum %s", unknown_spectrum.file_name) interpolated_reference_spectra = InterpolatedReferenceSpectraSet( unknown_spectrum=unknown_spectrum, reference_set=self.reference_spectrum_list, ) # fit all combinations of reference_spectra # all_counts_spectrum_fit_table looks like this: # { 1: [...list of 1-component fits sorted by NSS...], # 2: [...list of 2-component fits sorted by NSS...], # ... # } all_counts_spectrum_fit_table = collections.defaultdict(list) reference_combination_grouper = grouper( self.reference_combination_iter(self.component_count_range), n=1000 ) for reference_combination_group in reference_combination_grouper: log.debug( "fitting group of %d reference combinations", len(reference_combination_group), ) fits, failed_fits = self.do_some_fits( unknown_spectrum=unknown_spectrum, interpolated_reference_spectra=interpolated_reference_spectra, reference_spectra_combinations=reference_combination_group, ) log.debug("%d successful fits", len(fits)) # append new fits to the appropriate lists # but do not sort yet for fit in fits: reference_count = len(fit.reference_spectra_seq) spectrum_fit_list = all_counts_spectrum_fit_table[reference_count] spectrum_fit_list.append(fit) # now sort and trim each list to the best 100 fits for ( reference_count, spectrum_fit_list, ) in all_counts_spectrum_fit_table.items(): log.debug( "sorting %d-component fit list with %d fits", reference_count, len(spectrum_fit_list), ) spectrum_fit_list.sort(key=attrgetter("nss")) # when there are many reference spectra the list of fits can get extremely long # and eat up all of memory # so keep only the top 100 fits for each component count if len(spectrum_fit_list) > 100: log.debug( "trimming %d-component fit list with %d fits", reference_count, len(spectrum_fit_list), ) all_counts_spectrum_fit_table[reference_count] = spectrum_fit_list[ :100 ] log.debug("%d failed fits", len(failed_fits)) best_fit = self.choose_best_component_count(all_counts_spectrum_fit_table) return best_fit, all_counts_spectrum_fit_table def do_some_fits( self, unknown_spectrum, interpolated_reference_spectra, reference_spectra_combinations, ): log = logging.getLogger(name=unknown_spectrum.file_name) fits = [] failed_fits = [] log.debug( "do_some_fits for %d reference combinations", len(reference_spectra_combinations), ) for reference_spectra_combination in reference_spectra_combinations: log.debug("fitting to reference_spectra %s", reference_spectra_combination) if reference_spectra_combination is None: pass else: try: spectrum_fit = self.fit_references_to_unknown( interpolated_reference_spectra=interpolated_reference_spectra, reference_spectra_subset=reference_spectra_combination, ) fits.append(spectrum_fit) except FitFailed: # this is a common occurrence when using ordinary linear regression # it is not an 'error' just something that happens and needs to be handled msg = 'failed to fit unknown "{}" to references\n\t{}'.format( unknown_spectrum.file_name, "\n\t".join( [r.file_name for r in reference_spectra_combination] ), ) failed_fits.append(msg) log.debug("returning %d fits, %d failed fits", len(fits), len(failed_fits)) return fits, failed_fits def reference_combination_iter(self, component_count_range): for component_count in component_count_range: for reference_spectra_combination in itertools.combinations( self.reference_spectrum_list, component_count ): yield reference_spectra_combination def fit_references_to_unknown( self, interpolated_reference_spectra, reference_spectra_subset ): interpolated_data = ( interpolated_reference_spectra.get_reference_subset_and_unknown_df( reference_list=reference_spectra_subset, energy_range_builder=self.energy_range_builder, ) ) interpolated_reference_spectra_subset_df = interpolated_data[ "reference_subset_df" ] unknown_spectrum_df = interpolated_data["unknown_subset_df"] lm = self.ls() lm.fit( interpolated_reference_spectra_subset_df.values, unknown_spectrum_df.norm.values, ) if any(lm.coef_ < 0.0): msg = "negative coefficients while fitting:\n{}".format(lm.coef_) raise FitFailed(msg) else: reference_spectra_coef_x = lm.coef_ spectrum_fit = SpectrumFit( interpolant_incident_energy=interpolated_reference_spectra_subset_df.index, reference_spectra_A_df=interpolated_reference_spectra_subset_df, unknown_spectrum=interpolated_data["unknown_subset_spectrum"], reference_spectra_seq=reference_spectra_subset, reference_spectra_coef_x=reference_spectra_coef_x, ) return spectrum_fit def choose_best_component_count(self, all_counts_spectrum_fit_table): """ Choose the best fit from the best fits for each component count. :param all_counts_spectrum_fit_table: dictionary with component count keys and values list of spectrum fits in sorted order :return: instance of SpectrumFit """ log = logging.getLogger(name=self.__class__.__name__) best_fit = None previous_nss = 1.0 for component_count in sorted(all_counts_spectrum_fit_table.keys()): best_fit_for_component_count = all_counts_spectrum_fit_table[ component_count ][0] improvement = ( previous_nss - best_fit_for_component_count.nss ) / previous_nss log.debug( "improvement: {:5.3f} for {}".format( improvement, best_fit_for_component_count ) ) if improvement < 0.10: break else: best_fit = best_fit_for_component_count previous_nss = best_fit.nss log.debug("best fit: {}".format(best_fit)) return best_fit def write_table(self, table_file_path): """ sample name, residual, reference 1, fraction 1, reference 2, fraction 2, ... :param table_file_path: :return: """ # log = logging.getLogger(name=self.__class__.__name__) table_file_dir_path, _ = os.path.split(table_file_path) os.makedirs(table_file_dir_path, exist_ok=True) with open(table_file_path, "wt") as table_file: table_file.write( "spectrum\tNSS\tresidual percent\treference 1\tpercent 1\treference 2\tpercent 2\treference 3\tpercent 3\n" # noqa ) for spectrum, fit_results in self.fit_table.items(): table_file.write(spectrum.file_name) table_file.write("\t") table_file.write("{:8.5f}\t".format(fit_results.best_fit.nss)) table_file.write( "{:5.3f}".format(fit_results.best_fit.residuals_contribution) ) for ( ref_name, ref_pct, ) in fit_results.best_fit.reference_contribution_percent_sr.sort_values( ascending=False ).items(): table_file.write("\t") table_file.write(ref_name) table_file.write("\t{:5.3f}".format(ref_pct)) table_file.write("\n") def plot_top_fits(self, spectrum, fit_results): # log = logging.getLogger(name=self.__class__.__name__) figure_list = [] for i, component_count in enumerate( fit_results.component_count_fit_table.keys() ): f, ax = plt.subplots() f.suptitle(spectrum.file_name + "\n" + "Fit Path") sorted_fits = fit_results.component_count_fit_table[component_count][:10] ax.scatter( y=range(len(sorted_fits)), x=[spectrum_fit.nss for spectrum_fit in sorted_fits], ) ax.set_title("{} component(s)".format(component_count)) ax.set_xlabel("NSS") ax.set_ylabel("order") add_date_time_footer(ax) f.tight_layout() figure_list.append(f) return figure_list def get_fit_quality_score_text(self, any_given_fit): return ["MSE: {:8.5f}".format(any_given_fit.nss)] @staticmethod def permute_row_elements(df): for i in range(df.shape[0]): df.values[i, :] = shuffle(df.values[i, :]) return df def cluster_reference_spectra( self, reference_df, pdist_metric="correlation", linkage_method="complete" ): # log = logging.getLogger(name=self.__class__.__name__) distance_for_sample_pairs = pdist( X=np.transpose(reference_df.values), metric=pdist_metric ) # plt.figure() # plt.title(title) # plt.hist(distance_for_sample_pairs) # plt.xlabel('{} distance'.format(pdist_metric)) # plt.ylabel('{} pairs'.format(variable_by_sample_df.shape)) # plt.show() resample_count = 1000 expected_distance_list = [] for i in range(resample_count): # permute the elements of each row of variable_by_sample_df p_variable_by_sample_df = self.permute_row_elements(reference_df.copy()) p_distance_for_sample_pairs = pdist( X=np.transpose(p_variable_by_sample_df.values), metric=pdist_metric ) p_linkage_distance_variable_by_sample = hc.linkage( y=p_distance_for_sample_pairs, method=linkage_method ) p_dendrogram = hc.dendrogram( Z=p_linkage_distance_variable_by_sample, no_plot=True ) expected_distance_list.extend( [d for (_, _, d, _) in p_dendrogram["dcoord"]] ) p = 95.0 # alpha = 1.0 - p / 100.0 cutoff_distance = np.percentile(expected_distance_list, q=p) # print('cutoff distance is {}'.format(cutoff_distance)) # plt.figure() # plt.hist(expected_distance_list) # plt.title('dendrogram distance null distribution') # plt.show() linkage_distance_variable_by_sample = hc.linkage( y=distance_for_sample_pairs, method=linkage_method ) return linkage_distance_variable_by_sample, cutoff_distance def write_best_fit_arrays(self, best_fit_dir_path): log = logging.getLogger(name=self.__class__.__name__) for spectrum, fit_results in self.fit_table.items(): file_base_name, file_name_ext = os.path.splitext(spectrum.file_name) fit_file_path = os.path.abspath(os.path.join(best_fit_dir_path, file_base_name + "_fit.txt")) log.info("writing best fit to {}".format(fit_file_path)) fit_df = pd.DataFrame( { "energy": fit_results.best_fit.interpolant_incident_energy, "spectrum": fit_results.best_fit.unknown_spectrum_b, "fit": fit_results.best_fit.fit_spectrum_b, "residual": fit_results.best_fit.residuals, } ) fit_df.to_csv(fit_file_path, sep="\t", float_format="%8.4f", index=False) ``` #### File: mr-fitty/mrfitty/database.py ```python from contextlib import contextmanager from hashlib import sha256 from sqlalchemy import create_engine from sqlalchemy import Column, Float, Integer, String from sqlalchemy import ForeignKey, Table from sqlalchemy import UniqueConstraint from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import relationship, sessionmaker FitBase = declarative_base() class DBFile(FitBase): __tablename__ = "file" id = Column(Integer, primary_key=True) path = Column(String, unique=True) digest = Column(String, unique=True) fit_reference_spectrum = Table( "fit_reference_spectrum", FitBase.metadata, Column("fit_id", ForeignKey("fit.id"), primary_key=True), Column( "reference_spectrum_id", ForeignKey("reference_spectrum.id"), primary_key=True ), ) class DBReferenceSpectrum(FitBase): __tablename__ = "reference_spectrum" __table_args__ = ( UniqueConstraint( "spectrum_file_id", "start_energy", "end_energy", name="ref_1" ), ) id = Column(Integer, primary_key=True) start_energy = Column(Float) end_energy = Column(Float) spectrum_file_id = Column(Integer, ForeignKey("file.id")) spectrum_file = relationship("DBFile") fits = relationship( "DBFit", secondary="fit_reference_spectrum", back_populates="reference_spectra", lazy="dynamic", ) class DBUnknownSpectrum(FitBase): __tablename__ = "unknown_spectrum" __table_args__ = ( UniqueConstraint( "spectrum_file_id", "start_energy", "end_energy", name="unk_1" ), ) id = Column(Integer, primary_key=True) start_energy = Column(Float) end_energy = Column(Float) spectrum_file_id = Column(Integer, ForeignKey("file.id")) spectrum_file = relationship("DBFile") fits = relationship("DBFit", back_populates="unknown_spectrum", lazy="dynamic") class DBFit(FitBase): __tablename__ = "fit" id = Column(Integer, primary_key=True) start_energy = Column(Float) end_energy = Column(Float) sse = Column(Float) unknown_spectrum_id = Column(Integer, ForeignKey("unknown_spectrum.id")) unknown_spectrum = relationship("DBUnknownSpectrum", back_populates="fits") reference_spectra = relationship( "DBReferenceSpectrum", secondary="fit_reference_spectrum", back_populates="fits" ) @contextmanager def session_scope(Session_): """Provide a transactional scope around a series of operations.""" session = Session_() try: yield session session.commit() except (BaseException, Exception): session.rollback() raise finally: session.close() class FitDatabase: def __init__(self, url, **kwargs): self.url = url self.engine = create_engine(self.url, **kwargs) self.Session = sessionmaker(bind=self.engine) def create_tables(self): FitBase.metadata.create_all(self.engine) def get_session_ctx_mgr(self): return session_scope(self.Session) @staticmethod def get_file_digest(path): h = sha256() with open(path, mode="rb") as b: h.update(b.read()) digest = h.hexdigest() return digest def insert_file(self, session, path): session.add(DBFile(path=path, digest=self.get_file_digest(path=path))) def insert_reference_spectrum(self, session, reference_spectrum): dbfile = ( session.query(DBFile) .filter(DBFile.path == reference_spectrum.file_path) .one_or_none() ) if dbfile is None: self.insert_file(session, path=reference_spectrum.file_path) dbfile = ( session.query(DBFile) .filter(DBFile.path == reference_spectrum.file_path) .one() ) else: pass dbspectrum = DBReferenceSpectrum( spectrum_file=dbfile, start_energy=reference_spectrum.data_df.index[0], end_energy=reference_spectrum.data_df.index[-1], ) session.add(dbspectrum) return dbspectrum @staticmethod def query_reference_spectra(session, path): return ( session.query(DBReferenceSpectrum) .join(DBFile) .filter(DBFile.path == path) .one() ) def insert_unknown_spectrum(self, session, unknown_spectrum): dbfile = ( session.query(DBFile) .filter(DBFile.path == unknown_spectrum.file_path) .one_or_none() ) if dbfile is None: self.insert_file(session, path=unknown_spectrum.file_path) dbfile = ( session.query(DBFile) .filter(DBFile.path == unknown_spectrum.file_path) .one() ) else: pass dbspectrum = DBUnknownSpectrum( spectrum_file=dbfile, start_energy=unknown_spectrum.data_df.index[0], end_energy=unknown_spectrum.data_df.index[-1], ) session.add(dbspectrum) return dbspectrum @staticmethod def query_unknown_spectra(session, path): """ Unknown spectrum database records are unique by path. The start and end energies for these records are not necessarily the same as for fits. Parameters ---------- session database session path path of unknown spectrum file Returns ------- One instance of DBUnknownSpectrum """ return ( session.query(DBUnknownSpectrum) .join(DBFile) .filter(DBFile.path == path) .one() ) def insert_fit(self, session, fit): """ The associated reference and unknown spectra must be already in the database. Parameters ---------- session database session fit instance of SpectrumFit """ dbfit = DBFit( start_energy=fit.get_start_energy(), end_energy=fit.get_end_energy(), sse=fit.nss, ) db_unknown_spectrum = self.query_unknown_spectra( session=session, path=fit.unknown_spectrum.file_path ) dbfit.unknown_spectrum = db_unknown_spectrum for r in fit.reference_spectra_seq: db_ref = self.query_reference_spectra(session=session, path=r.file_path) dbfit.reference_spectra.append(db_ref) session.add(dbfit) def query_fits(self, session, unknown_spectrum): db_unknown_spectrum = self.query_unknown_spectra( session=session, path=unknown_spectrum.file_path ) return ( session.query(DBFit) .filter(DBFit.unknown_spectrum_id == db_unknown_spectrum.id) .order_by(DBFit.sse) .limit(10) .all() ) ``` #### File: mr-fitty/mrfitty/fit_task_builder.py ```python import configparser from glob import glob import logging import os import re from sklearn.linear_model import LinearRegression from mrfitty.base import ( AdaptiveEnergyRangeBuilder, FixedEnergyRangeBuilder, PRM, ReferenceSpectrum, Spectrum, ) from mrfitty.prediction_error_fit import PredictionErrorFitTask from mrfitty.combination_fit import AllCombinationFitTask from mrfitty.linear_model import NonNegativeLinearRegression class ConfigurationFileError(ValueError): pass def get_config_parser(): cp = configparser.ConfigParser(allow_no_value=True, delimiters=("=",)) cp.optionxform = lambda option: option return cp def build_reference_spectrum_list_from_prm_file(prm_file_path): """ Read a PRM file to create a list of ReferenceSpectrum instances, maximum component count, and minimum component count from a PRM file. :param prm_file_path: :return: list of ReferenceSpectrum instances maximum component count minimum component count """ log = logging.getLogger(name=__file__) reference_spectrum_list = [] log.info("reading PRM file {}".format(prm_file_path)) prm = PRM.read_prm(prm_file_path) # read reference files for i, fp in enumerate(prm.reference_file_path_list): log.info("reading reference file {}: {}".format(i, fp)) reference_spectrum = ReferenceSpectrum.read_file(fp) reference_spectrum_list.append(reference_spectrum) return reference_spectrum_list, prm.nb_component_max, prm.nb_component_min def _get_required_config_value(config, section, option): if not config.has_option(section=section, option=option): raise ConfigurationFileError( 'section [{}] missing required option "{}"'.format(section, option) ) else: return config.get(section=section, option=option) def _get_required_config_value_list(config, section): if not config.has_section(section=section): raise ConfigurationFileError("required section [{}] missing".format(section)) else: return config.items(section=section) def build_reference_spectrum_list_from_config_prm_section(config): log = logging.getLogger(name=__name__) max_component_count = int(_get_required_config_value(config, "prm", "NBCompoMax")) min_component_count = int(_get_required_config_value(config, "prm", "NBCompoMin")) reference_spectrum_list = [ ReferenceSpectrum.read_file(file_path_or_buffer=option_name) for option_name, option_value in _get_required_config_value_list(config, "prm") if len(option_value) == 0 ] log.debug("NBCompoMax: %d", max_component_count) log.debug("NBCompoMin: %d", min_component_count) log.debug("Reference list length:\n %d", len(reference_spectrum_list)) if min_component_count <= 0: raise ConfigurationFileError( 'NBCompoMin must be greater than zero, not "{}"'.format(min_component_count) ) elif max_component_count <= 0: raise ConfigurationFileError( 'NBCompoMax must be greater than zero, not "{}"'.format(max_component_count) ) elif min_component_count > max_component_count: raise ConfigurationFileError( 'NBCompoMin "{}" is greater than NBCompoMax "{}"'.format( min_component_count, max_component_count ) ) else: return max_component_count, min_component_count, reference_spectrum_list def build_reference_spectrum_list_from_config_file(config): """ Read reference spectrum file glob(s) from configuration file to create and return a list of ReferenceSpectrum instances. :param config: configparser instance :return: list of ReferenceSpectrum instances """ log = logging.getLogger(name=__name__) references = config.items("references") log.debug(references) reference_spectrum_list, _ = ReferenceSpectrum.read_all( [ os.path.expanduser(reference_file_glob) for reference_file_glob, _ in references ] ) if len(reference_spectrum_list) == 0: raise ConfigurationFileError( 'no reference spectrum files were found using globs "{}"'.format(references) ) else: return reference_spectrum_list def build_unknown_spectrum_list_from_config_file(config): log = logging.getLogger(name=__name__) unknown_spectrum_file_path_list = [] for j, (unknown_spectrum_glob, _) in enumerate(config.items("data")): log.info("unknown spectrum glob: {}".format(unknown_spectrum_glob)) glob_pattern_expanded = os.path.expanduser(unknown_spectrum_glob) unknown_spectrum_file_path_list.extend(glob(glob_pattern_expanded)) log.info("found {} data files".format(len(unknown_spectrum_file_path_list))) unknown_spectrum_list = [] for unknown_spectrum_file_path in unknown_spectrum_file_path_list: log.info("reading data file {}".format(unknown_spectrum_file_path)) unknown_spectrum = Spectrum.read_file(unknown_spectrum_file_path) unknown_spectrum_list.append(unknown_spectrum) if len(unknown_spectrum_list) == 0: raise ConfigurationFileError( 'no spectrum files were found using globs "{}"'.format(config.items("data")) ) else: return unknown_spectrum_list def get_fit_parameters_from_config_file(config, prm_max_cmp, prm_min_cmp): # these are the options specified in the [fit] section: # maximum_component_count # minimum_component_count # fit_method: lsq or nnlsq # component_count_method: combination_fit or prediction_error # bootstrap_count: a positive integer, 1000 by default # log = logging.getLogger(name=__name__) if not config.has_section("fit"): raise ConfigurationFileError( "required section [fit] is missing from configuration file" ) else: if (prm_max_cmp is None) and ( not config.has_option("fit", "maximum_component_count") ): raise ConfigurationFileError( "required parameter maximum_component_count is missing " 'from section [fit] in configuration file "{}"'.format(config) ) elif (prm_min_cmp is None) and ( not config.has_option("fit", "minimum_component_count") ): raise ConfigurationFileError( "required parameter minimum_component_count is missing " "from section [fit] in configuration file {}".format(config) ) else: max_cmp = config.getint("fit", "maximum_component_count", fallback=2) if prm_max_cmp is not None: log.warning( "MaxCompo={} from PRM will be used instead of" "maximum_component_count={} from [fit] section.".format( prm_max_cmp, max_cmp ) ) max_cmp = prm_max_cmp min_cmp = config.getint("fit", "minimum_component_count", fallback=1) if prm_min_cmp is not None: log.warning( "MinCompo={} from PRM will be used instead of" "minimum_component_count={} from [fit] section.".format( prm_min_cmp, min_cmp ) ) min_cmp = prm_min_cmp config_fit_method = config.get("fit", "fit_method", fallback="lsq") if config_fit_method == "lsq": fit_method_class = LinearRegression elif config_fit_method == "nnlsq": fit_method_class = NonNegativeLinearRegression else: raise ConfigurationFileError( 'Unrecognized fit_method "{}" in section [fit]. ' "Use lsq for least-squares or nnlsq for non-negative least squares.".format( config_fit_method ) ) config_component_count_method = config.get( "fit", "component_count_method", fallback="combination_fit" ) if config_component_count_method == "combination_fit": fit_task_class = AllCombinationFitTask elif config_component_count_method == "prediction_error": fit_task_class = PredictionErrorFitTask else: raise ConfigurationFileError( 'unrecognized component_count_method "{}" in section [fit]'.format( config_component_count_method ) ) config_fit_bootstrap_count = config.get( "fit", "bootstrap_count", fallback="1000" ) if re.match(r"\d+", config_fit_bootstrap_count) is not None: bootstrap_count = int(config_fit_bootstrap_count) else: raise ConfigurationFileError( '"bootstrap_count={}" in section [fit] must be an integer greater than 0'.format( config_fit_bootstrap_count ) ) return max_cmp, min_cmp, fit_method_class, fit_task_class, bootstrap_count def get_plotting_parameters_from_config_file(config): if not config.has_section("plots"): raise ConfigurationFileError( "required section [plots] is missing from configuration file" ) else: best_fits_plot_limit = config.getint( "plots", "best_fits_plot_limit", fallback=3 ) return best_fits_plot_limit def build_fit_task(config): log = logging.getLogger(name=__name__) # read section [references] # support a PRM file such as # prm = path/to/one.prm # or # a list of one or more file globs such as # arsenic_2_reference_spectra/*.e # arsenic_3_reference_spectra/*.e prm_max_cmp = None prm_min_cmp = None if config.has_section("references"): if config.has_option("references", "prm"): prm_file_path = os.path.expanduser(config.get("references", "prm")) ( reference_spectrum_list, prm_max_cmp, prm_min_cmp, ) = build_reference_spectrum_list_from_prm_file(prm_file_path) else: reference_spectrum_list = build_reference_spectrum_list_from_config_file( config ) elif config.has_section("reference_spectra"): if config.has_option("reference_spectra", "prm"): prm_file_path = os.path.expanduser(config.get("reference_spectra", "prm")) ( reference_spectrum_list, prm_max_cmp, prm_min_cmp, ) = build_reference_spectrum_list_from_prm_file(prm_file_path) else: raise ConfigurationFileError( "section [reference_spectra] is missing required parameter prm" ) else: raise ConfigurationFileError( "configuration file is missing required section [references]" ) energy_range = get_energy_range_from_config(config) unknown_spectrum_list = build_unknown_spectrum_list_from_config_file(config) ( max_cmp, min_cmp, fit_method_class, fit_task_class, bootstrap_count, ) = get_fit_parameters_from_config_file(config, prm_max_cmp, prm_min_cmp) best_fits_plot_limit = get_plotting_parameters_from_config_file(config) if 0 < min_cmp <= max_cmp: component_count_range = range(min_cmp, max_cmp + 1) log.debug("component count range: {}".format(component_count_range)) else: raise ConfigurationFileError( f"minimum and maximum component counts are not valid:\n\tminimum: {min_cmp}\n\tmaximum: {max_cmp}" ) fit_task = fit_task_class( ls=fit_method_class, reference_spectrum_list=reference_spectrum_list, unknown_spectrum_list=unknown_spectrum_list, energy_range_builder=energy_range, component_count_range=component_count_range, best_fits_plot_limit=best_fits_plot_limit, bootstrap_count=bootstrap_count, ) return fit_task def get_energy_range_from_config(config): log = logging.getLogger(name=__name__) if config.has_option("parameters", "fit_energy_start") and config.has_option( "parameters", "fit_energy_stop" ): fit_energy_start = config.getfloat("parameters", "fit_energy_start") fit_energy_stop = config.getfloat("parameters", "fit_energy_stop") energy_range = FixedEnergyRangeBuilder(fit_energy_start, fit_energy_stop) log.info( "fitting with fixed energy range %d to %d", fit_energy_start, fit_energy_stop, ) elif not (config.has_option("parameters", "fit_energy_start")) and not ( config.has_option("parameters", "fit_energy_stop") ): energy_range = AdaptiveEnergyRangeBuilder() log.info("fitting with adaptive energy ranges") else: raise Exception( "only one of fit_energy_start and fit_energy_stop was specified in the configuration" ) return energy_range ``` #### File: mr-fitty/mrfitty/prediction_error_fit.py ```python from collections import defaultdict import logging import matplotlib.pyplot as plt import numpy as np import scikits.bootstrap import sklearn.model_selection from mrfitty.base import AdaptiveEnergyRangeBuilder from mrfitty.combination_fit import AllCombinationFitTask from mrfitty.linear_model import NonNegativeLinearRegression from mrfitty.plot import ( prediction_error_box_plots, prediction_error_confidence_interval_plot, best_fit_for_component_count_box_plots, ) class PredictionErrorFitTask(AllCombinationFitTask): def __init__( self, reference_spectrum_list, unknown_spectrum_list, ls=NonNegativeLinearRegression, energy_range_builder=AdaptiveEnergyRangeBuilder(), component_count_range=range(1, 4), best_fits_plot_limit=3, bootstrap_count=1000, ): super().__init__( ls=ls, reference_spectrum_list=reference_spectrum_list, unknown_spectrum_list=unknown_spectrum_list, energy_range_builder=energy_range_builder, best_fits_plot_limit=best_fits_plot_limit, component_count_range=component_count_range, ) self.bootstrap_count = bootstrap_count def get_fit_quality_score_text(self, any_given_fit): return [ "MSPE 95% ci of median: {:.5f} <-- {:.5f} --> {:.5f}".format( any_given_fit.median_C_p_ci_lo, any_given_fit.median_C_p, any_given_fit.median_C_p_ci_hi, ), "MSE: {:<8.5f}".format(any_given_fit.nss), ] def choose_best_component_count(self, all_counts_spectrum_fit_table): """ Calculate the prediction error statistics for top fits. Parameters ---------- all_counts_spectrum_fit_table (dict) dictionary with component count keys, sorted list of spectrum fit list values Returns ------- best_fit (SpectrumFit) the fit having lowest 95% confidence interval of median prediction error AND lowest number of reference components """ component_counts = list(all_counts_spectrum_fit_table) a_fit = all_counts_spectrum_fit_table[component_counts[0]][0] log = logging.getLogger(__name__ + ":" + a_fit.unknown_spectrum.file_name) log.debug( "choosing best component count from %s", all_counts_spectrum_fit_table ) component_count_to_median_cp = { component_count: np.Inf for component_count in all_counts_spectrum_fit_table.keys() } component_count_to_median_cp_ci_lo_hi = { component_count: (np.Inf, np.Inf) for component_count in all_counts_spectrum_fit_table.keys() } all_counts_spectrum_fit_pe_table = defaultdict(list) for component_count_i in sorted(all_counts_spectrum_fit_table.keys()): # calculate C_p for the first ? fits with component_count_i log.debug( "calculating CI of median C_p for %d component(s)", component_count_i ) sorted_fits_for_i_components = sorted( all_counts_spectrum_fit_table[component_count_i], key=lambda fit: fit.nss, ) for fit_j in sorted_fits_for_i_components[:20]: prediction_errors, _ = self.calculate_prediction_error_list( fit_j, n_splits=self.bootstrap_count ) fit_j.mean_C_p = np.mean(prediction_errors) mean_ci_lo, mean_ci_hi = scikits.bootstrap.ci( data=prediction_errors, statfunction=np.mean ) fit_j.mean_C_p_ci_lo = mean_ci_lo fit_j.mean_C_p_ci_hi = mean_ci_hi fit_j.median_C_p = np.median(prediction_errors) median_ci_lo, median_ci_hi = scikits.bootstrap.ci( data=prediction_errors, statfunction=np.median ) fit_j.median_C_p_ci_lo = median_ci_lo fit_j.median_C_p_ci_hi = median_ci_hi fit_j.prediction_errors = prediction_errors all_counts_spectrum_fit_pe_table[component_count_i].append(fit_j) all_counts_spectrum_fit_pe_table[component_count_i] = sorted( all_counts_spectrum_fit_pe_table[component_count_i], key=lambda fit: ( fit.median_C_p, fit.median_C_p_ci_lo, fit.median_C_p_ci_hi, ), ) # for each fit find all fits with overlapping ci # 4 cases: # # <-- k --> j.lo > k.hi (keep checking) # <-- j --> # # <-- k --> j.lo <= k.hi <= j.hi # <-- j --> # # <-- k --> j.lo > k.lo and j.hi < k.hi # <-- j --> # # <- k -> j.lo <= k.lo and j.hi > k.hi # <-- j --> # # <-- k --> j.lo <= k.lo <= j.hi # <-- j --> # # <-- k --> j.hi < k.lo (stop checking) # <-- j --> for fit_j in all_counts_spectrum_fit_pe_table[component_count_i]: for fit_k in all_counts_spectrum_fit_pe_table[component_count_i]: if fit_j == fit_k: log.debug( "* component count %d: %8.5f <-- %8.5f --> %8.5f", component_count_i, fit_j.median_C_p_ci_lo, fit_j.median_C_p, fit_j.median_C_p_ci_hi, ) elif fit_j.median_C_p_ci_hi < fit_k.median_C_p_ci_lo: # assuming later fits will not overlap with fit_j break elif fit_j.median_C_p_ci_lo > fit_k.median_C_p_ci_hi: # assuming later fits could overlap with fit_j pass elif ( fit_j.median_C_p_ci_lo <= fit_k.median_C_p_ci_lo <= fit_j.median_C_p_ci_hi ): log.debug( " component count %d: %8.5f <-- %8.5f --> %8.5f", component_count_i, fit_k.median_C_p_ci_lo, fit_k.median_C_p, fit_k.median_C_p_ci_hi, ) elif ( fit_j.median_C_p_ci_lo <= fit_k.median_C_p_ci_hi <= fit_j.median_C_p_ci_hi ): log.debug( " component count %d: %8.5f <-- %8.5f --> %8.5f", component_count_i, fit_k.median_C_p_ci_lo, fit_k.median_C_p, fit_k.median_C_p_ci_hi, ) else: log.debug( " component count %d: %8.5f <-- %8.5f --> %8.5f", component_count_i, fit_k.median_C_p_ci_lo, fit_k.median_C_p, fit_k.median_C_p_ci_hi, ) log.debug("***") best_fit_for_component_count = all_counts_spectrum_fit_pe_table[ component_count_i ][0] component_count_to_median_cp[ component_count_i ] = best_fit_for_component_count.median_C_p component_count_to_median_cp_ci_lo_hi[component_count_i] = ( best_fit_for_component_count.median_C_p_ci_lo, best_fit_for_component_count.median_C_p_ci_hi, ) log.debug( "component count to median cp: {}".format(component_count_to_median_cp) ) log.debug( "component count to median cp confidence interval: {}".format( component_count_to_median_cp_ci_lo_hi ) ) best_component_count, C_p_lo, C_p_hi = self.get_best_ci_component_count( component_count_to_median_cp, component_count_to_median_cp_ci_lo_hi ) best_fit = all_counts_spectrum_fit_table[best_component_count][0] log.info("best fit: {}".format(best_fit)) return best_fit @staticmethod def get_best_ci_component_count( component_count_to_median_cp, component_count_to_median_cp_ci_lo_hi, logger_name_suffix="", ): """ Use the 'best subset selection' criterion to choose the 'best' component count using confidence intervals for median C_p (prediction error). Choose the component count with the smallest median C_p. If two or more C_p confidence intervals overlap choose the lower component count. component count lo hi 1 0.3 0.4 2 0.1 0.2 :param component_count_to_median_cp: :param component_count_to_median_cp_ci_lo_hi: :param logger_name_suffix: str :return: (int) best component count """ log = logging.getLogger(name=__name__ + ":" + logger_name_suffix) best_component_count = max(component_count_to_median_cp_ci_lo_hi.keys()) n_lo, n_hi = component_count_to_median_cp_ci_lo_hi[best_component_count] for n in sorted(component_count_to_median_cp_ci_lo_hi.keys())[:-1]: n_lo, n_hi = component_count_to_median_cp_ci_lo_hi[n] n_plus_1_lo, n_plus_1_hi = component_count_to_median_cp_ci_lo_hi[n + 1] log.info("comparing C_p ci for component counts %d and %d", n, n + 1) log.info( " component count %d: %8.5f <-- %8.5f --> %8.5f", n, n_lo, component_count_to_median_cp[n], n_hi, ) log.info( " component count %d: %8.5f <-- %8.5f --> %8.5f", n + 1, n_plus_1_lo, component_count_to_median_cp[n + 1], n_plus_1_hi, ) # must handle two cases: # n_plus_1_hi >= n_lo -> choose n # n_plus_1_hi < n_lo -> try n+1 if n_plus_1_hi >= n_lo: best_component_count = n break return best_component_count, n_lo, n_hi def calculate_prediction_error_list(self, fit, n_splits, test_size=0.2): """ Given a fit calculate normalized prediction error on n_splits models with randomly withheld data. Parameters ---------- fit - instance of SpectrumFit n_splits - number of times to calculate prediction error, 1000 is recommended test_size - fraction of data to withhold from training, 0.2 is recommended Returns ------- normalized_C_p_list - list of normalized prediction errors, one per model model_residuals - (fit.reference_spectra_A_df.shape[0] x n_splits) numpy array of residuals for each model with NaNs at training indices """ normalized_C_p_list = [] model_residuals = np.full( shape=(fit.reference_spectra_A_df.shape[0], n_splits), fill_value=np.nan, dtype=np.double, ) for i, (predicted_b, train_index, test_index) in enumerate( self.fit_and_predict(fit, n_splits=n_splits, test_size=test_size) ): model_residuals[test_index, i] = ( fit.unknown_spectrum_b.values[test_index] - predicted_b ) cp = np.sqrt(np.nansum(np.square(model_residuals[test_index, i]))) normalized_cp = cp / len(test_index) normalized_C_p_list.append(normalized_cp) return normalized_C_p_list, model_residuals def fit_and_predict(self, fit, n_splits=1000, test_size=0.2): cv = sklearn.model_selection.ShuffleSplit( n_splits=n_splits, test_size=test_size ) for i, (train_index, test_index) in enumerate( cv.split(fit.reference_spectra_A_df.values) ): lm = self.ls() lm.fit( fit.reference_spectra_A_df.values[train_index], fit.unknown_spectrum_b.values[train_index], ) predicted_b = lm.predict(fit.reference_spectra_A_df.values[test_index]) yield predicted_b, train_index, test_index def plot_top_fits(self, spectrum, fit_results): # log = logging.getLogger(name=self.__class__.__name__ + ":" + spectrum.file_name) figure_list = [] top_fit_per_component_count = {} for i, component_count in enumerate( fit_results.component_count_fit_table.keys() ): pe_fits = [ fit for fit in fit_results.component_count_fit_table[component_count] if hasattr(fit, "median_C_p") ] sorted_fits = sorted(pe_fits, key=lambda fit: fit.median_C_p)[:10] top_fit_per_component_count[component_count] = sorted_fits[0] f, ax = plt.subplots() prediction_error_box_plots( ax=ax, title=f"Best {component_count}-component Fits\n{spectrum.file_name}", sorted_fits=sorted_fits, ) f.tight_layout() figure_list.append(f) g, ax = plt.subplots() prediction_error_confidence_interval_plot( ax=ax, title=f"Best {component_count}-component Fits\n{spectrum.file_name}", sorted_fits=sorted_fits, ) g.tight_layout() figure_list.append(g) f, ax = plt.subplots() best_fit_for_component_count_box_plots( ax=ax, title=f"Best Fits\n{spectrum.file_name}", top_fit_per_component_count=top_fit_per_component_count, ) f.tight_layout() figure_list.append(f) return figure_list ``` #### File: mrfitty/tests/test_fit_task_builder.py ```python import pytest from mrfitty.fit_task_builder import ( build_reference_spectrum_list_from_config_file, build_reference_spectrum_list_from_config_prm_section, build_unknown_spectrum_list_from_config_file, ConfigurationFileError, get_config_parser, get_fit_parameters_from_config_file, _get_required_config_value, ) _spectrum_file_content = """\ 11825.550 0.62757215E-02 0.62429776E-02 -0.58947170E-03 11830.550 0.30263933E-02 0.29936416E-02 -0.55479576E-03 11835.550 0.15935143E-03 0.12659210E-03 -0.45673882E-03 11840.550 -0.20089439E-02 -0.20417109E-02 -0.31491527E-03 """ def test__get_required_config_value(): config = get_config_parser() test_section = "blah" test_option = "bleh" test_value = "blih" config.add_section(section=test_section) config.set(section=test_section, option=test_option, value=test_value) assert test_value == _get_required_config_value( config=config, section=test_section, option=test_option ) with pytest.raises(ConfigurationFileError): _get_required_config_value(config=config, section="missing", option="missing") def test_build_reference_spectrum_list_from_prm_section(fs): reference_config = get_config_parser() reference_config.read_string( """\ [prm] NBCompoMax = 4 NBCompoMin = 1 arsenate_aqueous_avg_als_cal.e arsenate_sorbed_anth_avg_als_cal.e """ ) fs.create_file( file_path="arsenate_aqueous_avg_als_cal.e", contents=_spectrum_file_content ) fs.create_file( file_path="arsenate_sorbed_anth_avg_als_cal.e", contents=_spectrum_file_content ) ( max_count, min_count, reference_list, ) = build_reference_spectrum_list_from_config_prm_section(reference_config) assert max_count == 4 assert min_count == 1 assert len(reference_list) == 2 def test_build_reference_spectrum_list_from_prm_section__bad_component_counts(fs): reference_config = get_config_parser() reference_config.read_string( """\ [prm] NBCompoMax = 1 NBCompoMin = 4 arsenate_aqueous_avg_als_cal.e arsenate_sorbed_anth_avg_als_cal.e """ ) fs.create_file( file_path="arsenate_aqueous_avg_als_cal.e", contents=_spectrum_file_content ) fs.create_file( file_path="arsenate_sorbed_anth_avg_als_cal.e", contents=_spectrum_file_content ) with pytest.raises(ConfigurationFileError): build_reference_spectrum_list_from_config_prm_section(reference_config) def test_build_reference_spectrum_list_from_config_file(fs): reference_config = get_config_parser() reference_config.read_string( """\ [references] references/*.e """ ) fs.create_dir(directory_path="references") fs.create_file( file_path="references/arsenate_aqueous_avg_als_cal.e", contents=_spectrum_file_content, ) fs.create_file( file_path="references/arsenate_sorbed_anth_avg_als_cal.e", contents=_spectrum_file_content, ) reference_list = build_reference_spectrum_list_from_config_file(reference_config) assert len(reference_list) == 2 def test_build_unknown_spectrum_list_from_config_file(fs): data_config = get_config_parser() data_config.read_string( """\ [data] data/*.e """ ) fs.create_dir(directory_path="data") fs.create_file(file_path="data/data_0.e", contents=_spectrum_file_content) fs.create_file(file_path="data/data_1.e", contents=_spectrum_file_content) data_list = build_unknown_spectrum_list_from_config_file(data_config) assert len(data_list) == 2 def test_get_fit_parameters_from_config_file(): fit_config = get_config_parser() fit_config.read_string( """\ [fit] max_component_count = 3 min_component_count = 1 """ ) ( max_cmp, min_cmp, fit_method_class, fit_task_class, bootstrap_count, ) = get_fit_parameters_from_config_file(fit_config, prm_max_cmp=3, prm_min_cmp=1) assert max_cmp == 3 assert min_cmp == 1 assert bootstrap_count == 1000 def test_get_good_fit_parameter_bootstrap_count_from_config_file(): fit_config = get_config_parser() fit_config.read_string( """\ [fit] max_component_count = 3 min_component_count = 1 bootstrap_count = 2000 """ ) ( max_cmp, min_cmp, fit_method_class, fit_task_class, bootstrap_count, ) = get_fit_parameters_from_config_file(fit_config, prm_max_cmp=3, prm_min_cmp=1) assert max_cmp == 3 assert min_cmp == 1 assert bootstrap_count == 2000 def test_get_bad_fit_parameter_bootstrap_count_from_config_file(): fit_config = get_config_parser() fit_config.read_string( """\ [fit] max_component_count = 3 min_component_count = 1 bootstrap_count = haha """ ) with pytest.raises(ConfigurationFileError): ( max_cmp, min_cmp, fit_method_class, fit_task_class, bootstrap_count, ) = get_fit_parameters_from_config_file( fit_config, prm_max_cmp=3, prm_min_cmp=1 ) ``` #### File: mrfitty/tests/test_mrfitty.py ```python import logging import os.path import pytest from mrfitty.__main__ import cli from mrfitty.fit_task_builder import get_config_parser logging.basicConfig(level=logging.DEBUG) log = logging.getLogger(name=__name__) @pytest.mark.skip() def test_main(fs): # write the necessary input files: # configuration file # reference files # sample files # prm file # then check for the expected output files # plot pdf # table txt # sample fit files fs.CreateFile( "ref_1.e", """\ 1000.0\t0.01 1000.1\t0.02 1000.2\t0.03 1000.3\t0.04 1000.4\t0.05 """, ) fs.CreateFile( "ref_2.e", """\ 1000.0\t0.05 1000.1\t0.04 1000.2\t0.03 1000.3\t0.02 1000.4\t0.01 """, ) fs.CreateFile( "ref_3.e", """\ 1000.0\t0.01 1000.1\t0.01 1000.2\t0.01 1000.3\t0.01 1000.4\t0.01 """, ) fs.CreateFile( "test_main.prm", """\ NbCompoMax=3 NbCompoMin=1 ref=ref_1.e ref=ref_2.e ref=ref_3.e """, ) # sample 1 is twice ref_1 fs.CreateFile( "sample_1.e", """\ 1000.1\t0.02 1000.2\t0.04 1000.3\t0.06 """, ) # sample 2 is half ref_2 fs.CreateFile( "sample_2.e", """\ 1000.1\t0.015 1000.2\t0.010 1000.3\t0.005 """, ) # sample 3 is ref_1 plus ref_3 fs.CreateFile( "sample_3.e", """\ 1000.1\t0.03 1000.2\t0.04 1000.3\t0.05 """, ) get_config_parser() fs.CreateFile( "test_main.cfg", """\ [reference_spectra] prm = test_main.prm [data] sample*.e [output] best_fit_files_dir = . plots_pdf_fp = test_main_plots.pdf table_fp = test_main_table.txt reference_plots_pdf = test_main_reference_plots.pdf """, ) result = cli(["test_main.cfg"]) assert result.exit_code == 0 assert os.path.exists("test_main_plots.pdf") assert os.path.exists("test_main_table.txt") assert os.path.exists("sample_1_fit.txt") ```
{ "source": "jklynch/ophyd-addon", "score": 2 }
#### File: ophyd-addon/ophyd_addon/ioc_util.py ```python import contextvars import functools internal_process = contextvars.ContextVar("internal_process", default=False) def no_reentry(func): @functools.wraps(func) async def inner(*args, **kwargs): if internal_process.get(): return try: internal_process.set(True) return await func(*args, **kwargs) finally: internal_process.set(False) return inner ``` #### File: ophyd_addon/tests/test_tiffsimdetector.py ```python import pytest from bluesky.plans import count from ophyd import _caproto_shim from ophyd_addon.areadetector.document_builders import NewPerkinElmerDetector @pytest.mark.skip def test_tiffsimdetector(RE, databroker): tiff_sim_detector = NewPerkinElmerDetector(name="sim") with databroker() as db: RE.subscribe(db.insert) RE(count([tiff_sim_detector])) ```
{ "source": "jklynch/pizza-box", "score": 2 }
#### File: pizza-box/pizza_box/handlers.py ```python import os import numpy as np import pandas as pd from databroker.assets.handlers_base import HandlerBase class APBBinFileHandler(HandlerBase): "Read electrometer *.bin files" def __init__(self, fpath): # It's a text config file, which we don't store in the resources yet, parsing for now fpath_txt = f"{os.path.splitext(fpath)[0]}.txt" with open(fpath_txt, "r") as fp: content = fp.readlines() content = [x.strip() for x in content] _ = int(content[0].split(":")[1]) # Gains = [int(x) for x in content[1].split(":")[1].split(",")] # Offsets = [int(x) for x in content[2].split(":")[1].split(",")] # FAdiv = float(content[3].split(":")[1]) # FArate = float(content[4].split(":")[1]) # trigger_timestamp = float(content[5].split(":")[1].strip().replace(",", ".")) raw_data = np.fromfile(fpath, dtype=np.int32) columns = ["timestamp", "i0", "it", "ir", "iff", "aux1", "aux2", "aux3", "aux4"] num_columns = len(columns) + 1 # TODO: figure out why 1 raw_data = raw_data.reshape((raw_data.size // num_columns, num_columns)) derived_data = np.zeros((raw_data.shape[0], raw_data.shape[1] - 1)) derived_data[:, 0] = ( raw_data[:, -2] + raw_data[:, -1] * 8.0051232 * 1e-9 ) # Unix timestamp with nanoseconds for i in range(num_columns - 2): derived_data[:, i + 1] = raw_data[:, i] # ((raw_data[:, i] ) - Offsets[i]) / Gains[i] self.df = pd.DataFrame(data=derived_data, columns=columns) self.raw_data = raw_data def __call__(self): return self.df ```
{ "source": "jklynch/profile_collection_srx", "score": 2 }
#### File: profile_collection_srx/startup/61-xrf.py ```python print(f'Loading {__file__}...') import epics import os import collections import numpy as np import time as ttime import matplotlib.pyplot as plt import bluesky.plans as bp from bluesky.plans import outer_product_scan, scan from bluesky.callbacks import LiveGrid from bluesky.callbacks.fitting import PeakStats from bluesky.preprocessors import subs_wrapper import bluesky.plan_stubs as bps from bluesky.plan_stubs import mv, abs_set from bluesky.simulators import plot_raster_path def hf2dxrf(*, xstart, xnumstep, xstepsize, ystart, ynumstep, ystepsize, acqtime, shutter=True, align=False, xmotor=hf_stage.x, ymotor=hf_stage.y, numrois=1, extra_dets=[], setenergy=None, u_detune=None, echange_waittime=10, samplename=None, snake=True): '''input: xstart, xnumstep, xstepsize : float ystart, ynumstep, ystepsize : float acqtime : float acqusition time to be set for both xspress3 and F460 numrois : integer number of ROIs set to display in the live raster scans. This is for display ONLY. The actualy number of ROIs saved depend on how many are enabled and set in the read_attr However noramlly one cares only the raw XRF spectra which are all saved and will be used for fitting. energy (float): set energy, use with caution, hdcm might become misaligned u_detune (float): amount of undulator to detune in the unit of keV ''' # Record relevant metadata in the Start document, defined in 90-usersetup.py scan_md = {} get_stock_md(scan_md) scan_md['sample'] = {'name': samplename} scan_md['scan_input'] = str([xstart, xnumstep, xstepsize, ystart, ynumstep, ystepsize, acqtime]) scan_md['scaninfo'] = {'type': 'XRF', 'raster' : True} # Setup detectors dets = [sclr1, xs] dets = dets + extra_dets dets_by_name = {d.name : d for d in dets} # Scaler if (acqtime < 0.001): acqtime = 0.001 sclr1.preset_time.put(acqtime) # XS3 xs.external_trig.put(False) xs.cam.acquire_time.put(acqtime) xs.total_points.put((xnumstep + 1) * (ynumstep + 1)) if ('merlin' in dets_by_name): dpc = dets_by_name['merlin'] # Setup Merlin dpc.cam.trigger_mode.put(0) dpc.cam.acquire_time.put(acqtime) dpc.cam.acquire_period.put(acqtime + 0.005) dpc.cam.num_images.put(1) dpc.hdf5.stage_sigs['num_capture'] = (xnumstep + 1) * (ynumstep + 1) dpc._mode = SRXMode.step dpc.total_points.put((xnumstep + 1) * (ynumstep + 1)) if ('xs2' in dets_by_name): xs2 = dets_by_name['xs2'] xs2.external_trig.put(False) xs2.settings.acquire_time.put(acqtime) xs2.total_points.put((xnumstep + 1) * (ynumstep + 1)) # Setup the live callbacks livecallbacks = [] # Setup scanbroker to update time remaining def time_per_point(name, doc, st=ttime.time()): if ('seq_num' in doc.keys()): scanrecord.scan0.tpp.put((doc['time'] - st) / doc['seq_num']) scanrecord.scan0.curpt.put(int(doc['seq_num'])) scanrecord.time_remaining.put((doc['time'] - st) / doc['seq_num'] * ((xnumstep + 1) * (ynumstep + 1) - doc['seq_num']) / 3600) livecallbacks.append(time_per_point) # Setup LiveTable livetableitem = [xmotor.name, ymotor.name, i0.name] xstop = xstart + xnumstep * xstepsize ystop = ystart + ynumstep * ystepsize for roi_idx in range(numrois): roi_name = 'roi{:02}'.format(roi_idx+1) # roi_key = getattr(xs.channel1.rois, roi_name).value.name roi_key = xs.channels.channel01.get_mcaroi(mcaroi_number=roi_idx).total_rbv.name livetableitem.append(roi_key) roimap = LiveGrid((ynumstep+1, xnumstep+1), roi_key, clim=None, cmap='viridis', xlabel='x (mm)', ylabel='y (mm)', extent=[xstart, xstop, ystart, ystop], x_positive='right', y_positive='down') livecallbacks.append(roimap) if ('xs2' in dets_by_name): for roi_idx in range(numrois): roi_key = getattr(xs2.channel1.rois, roi_name).value.name livetableitem.append(roi_key) fig = plt.figure('xs2_ROI{:02}'.format(roi_idx+1)) fig.clf() roimap = LiveGrid((ynumstep+1, xnumstep+1), roi_key, clim=None, cmap='viridis', xlabel='x (mm)', ylabel='y (mm)', extent=[xstart, xstop, ystart, ystop], x_positive='right', y_positive='down', ax=fig.gca()) livecallbacks.append(roimap) if ('merlin' in dets_by_name) and (hasattr(dpc, 'stats1')): fig = plt.figure('DPC') fig.clf() dpc_tmap = LiveGrid((ynumstep+1, xnumstep+1), dpc.stats1.total.name, clim=None, cmap='viridis', xlabel='x (mm)', ylabel='y (mm)', x_positive='right', y_positive='down', extent=[xstart, xstop, ystart, ystop], ax=fig.gca()) livecallbacks.append(dpc_tmap) # Change energy (if provided) if (setenergy is not None): if (u_detune is not None): energy.detune.put(u_detune) print('Changing energy to ', setenergy) yield from mv(energy, setenergy) print('Waiting time (s) ', echange_waittime) yield from bps.sleep(echange_waittime) def at_scan(name, doc): scanrecord.current_scan.put(doc['uid'][:6]) scanrecord.current_scan_id.put(str(doc['scan_id'])) scanrecord.current_type.put(scan_md['scaninfo']['type']) scanrecord.scanning.put(True) def finalize_scan(name, doc): scanrecord.scanning.put(False) # Setup the scan hf2dxrf_scanplan = outer_product_scan(dets, ymotor, ystart, ystop, ynumstep+1, xmotor, xstart, xstop, xnumstep+1, snake, md=scan_md) hf2dxrf_scanplan = subs_wrapper(hf2dxrf_scanplan, {'all': livecallbacks, 'start': at_scan, 'stop': finalize_scan}) # Move to starting position yield from mv(xmotor, xstart, ymotor, ystart) # Peak up monochromator at this energy if (align): yield from peakup_fine(shutter=shutter) # Open shutter if (shutter): yield from mv(shut_b,'Open') # Run the scan scaninfo = yield from hf2dxrf_scanplan #TO-DO: implement fast shutter control (close) if (shutter): yield from mv(shut_b, 'Close') # Write to scan log if ('merlin' in dets_by_name): logscan_event0info('2dxrf_withdpc') # Should this be here? merlin.hdf5.stage_sigs['num_capture'] = 0 else: logscan_detailed('2dxrf') return scaninfo # I'm not sure how to use this function def multi_region_h(regions, energy_list=None, **kwargs): ret = [] for r in regions: inp = {} inp.update(kwargs) inp.update(r) rs_uid = yield from hf2dxrf(**inp) ret.extend(rs_uid) return ret # Not sure how often this will be used....but at least it's updated def hf2dxrf_repeat(num_scans=None, waittime=10, xstart=None, xnumstep=None, xstepsize=None, ystart=None, ynumstep=None, ystepsize=None, acqtime=None, numrois=0, i0map_show=False, itmap_show = False ): ''' This function will repeat the 2D XRF scans on the same spots for specified number of the scans. input: num_scans (integer): number of scans to be repeated on the same position. waittime (float): wait time in sec. between each scans. Recommand to have few seconds for the HDF5 to finish closing. Other inputs are described as in hf2dxrf. ''' if num_scans is None: raise Exception('Please specify "num_scans" as the number of scans to be run. E.g. num_scans = 3.') for i in range(num_scans): yield from hf2dxrf(xstart=xstart, xnumstep=xnumstep, xstepsize=xstepsize, ystart=ystart, ynumstep=ynumstep, ystepsize=ystepsize, acqtime=acqtime, numrois=numrois) if (i != num_scans-1): print(f'Waiting {waittime} seconds between scans...') yield from bps.sleep(waittime) def hf2dxrf_ioc(samplename=None, align=False, numrois=1, shutter=True, waittime=10): ''' invokes hf2dxrf repeatedly with parameters provided separately. waittime [sec] time to wait between scans shutter [bool] scan controls shutter ''' scanlist = [ scanrecord.scan15, scanrecord.scan14, scanrecord.scan13, scanrecord.scan12, scanrecord.scan11, scanrecord.scan10, scanrecord.scan9, scanrecord.scan8, scanrecord.scan7, scanrecord.scan6, scanrecord.scan5, scanrecord.scan4, scanrecord.scan3, scanrecord.scan2, scanrecord.scan1, scanrecord.scan0 ] Nscan = 0 for scannum in range(len(scanlist)): thisscan = scanlist.pop() Nscan = Nscan + 1 if thisscan.ena.get() == 1: scanrecord.current_scan.put('Scan {}'.format(Nscan)) xstart = thisscan.p1s.get() xnumstep = int(thisscan.p1stp.get()) xstepsize = thisscan.p1i.get() ystart = thisscan.p2s.get() ynumstep = int(thisscan.p2stp.get()) ystepsize = thisscan.p2i.get() acqtime = thisscan.acq.get() hf2dxrf_gen = yield from hf2dxrf(xstart=xstart, xnumstep=xnumstep, xstepsize=xstepsize, ystart=ystart, ynumstep=ynumstep, ystepsize=ystepsize, acqtime=acqtime, samplename=None, align=False, numrois=1, shutter=True) if (len(scanlist) is not 0): yield from bps.sleep(waittime) scanrecord.current_scan.put('') # def fermat_plan(x_range, y_range, dr, factor, exp_time=0.2): def fermat_plan(*args, **kwargs): x_range = args[0] y_range = args[1] dr = args[2] factor = args[3] # print(f'{x_range}\t{y_range}') # print(args) kwargs.setdefault('exp_time', 0.2) # Setup motors x_motor = nano_stage.sx y_motor = nano_stage.sy # Setup detectors dets = [sclr1, xs, xbpm2, merlin, bpm4, temp_nanoKB] # print("ready to call fermat_master...") yield from fermat_master_plan(dets, x_motor, y_motor, *args, **kwargs) def fermat_master_plan(*args, exp_time=None, **kwargs): # Synchronize exposure times sclr1.preset_time.put(exp_time) xs.external_trig.put(False) xs.cam.acquire_time.put(exp_time) merlin.cam.acquire_time.put(exp_time) merlin.cam.acquire_period.put(exp_time + 0.005) scan_md = {} get_stock_md(scan_md) scan_md['scan']['merlin'] = {'merlin_exp_time' : exp_time, 'merlin_exp_period' : exp_time + 0.005} plan = bp.rel_spiral_fermat(*args, **kwargs) d = plot_raster_path(plan, args[1].name, args[2].name, probe_size=.001, lw=0.5) num_points = d['path'].get_path().vertices.shape[0] print(f"Number of points: {num_points}") xs.total_points.put(num_points) yield from bps.mv(merlin.total_points, num_points, merlin.hdf5.num_capture, num_points) merlin.hdf5.stage_sigs['num_capture'] = num_points yield from rel_spiral_fermat(*args, **kwargs, md=scan_md) # Check the fermat spiral points # This does not run within the run engine # plot_raster_path(rel_spiral_fermat([], nano_stage.sx, nano_stage.sy, 2, 2, # 0.5, 1), nano_stage.sx.name, nano_stage.sy.name) def check_fermat_plan(xrange, yrange, dr, factor): xmotor = nano_stage.sx ymotor = nano_stage.sy plot_raster_path(rel_spiral_fermat([], xmotor, ymotor, xrange, yrange, dr, factor), xmotor.name, ymotor.name) ax = plt.gca() line = ax.lines[0] print(f'The scan will have {len(line.get_xdata())} points.') def export_flying_merlin2tiff(scanid=-1, wd=None): if wd is None: wd = '/home/xf05id1/current_user_data/' print('Loading data...') h = db[int(scanid)] d = h.data('merlin_image', stream_name='stream0', fill=True) d = np.array(list(d)) d = np.squeeze(d) d = np.array(d, dtype='float32') x = np.array(list(h.data('enc1', stream_name='stream0', fill=True))) y = np.array(list(h.data('enc2', stream_name='stream0', fill=True))) I0= np.array(list(h.data('i0', stream_name='stream0', fill=True))) # Flatten arrays (N, M) = x.shape x_flat = np.reshape(x, (N*M, )) y_flat = np.reshape(y, (N*M, )) I0_flat = np.reshape(I0, (N*M, )) # Get scanid if (scanid < 0): scanid = h.start['scan_id'] print('Writing data...') fn = 'scan%d.tif' % scanid fn_txt = 'scan%d.txt' % scanid io.imsave(wd + fn, d) np.savetxt(wd + fn_txt, np.array((x_flat, y_flat, I0_flat))) def export_merlin2tiff(scanid=-1, wd=None): if wd is None: wd = '/home/xf05id1/current_user_data/' print('Loading data...') h = db[int(scanid)] d = h.data('merlin_image', fill=True) d = np.array(list(d)) d = np.squeeze(d) d = np.array(d, dtype='float32') x = np.array(list(h.data('nano_stage_sx', fill=True))) y = np.array(list(h.data('nano_stage_sy', fill=True))) I0= np.array(list(h.data('sclr_i0', fill=True))) # Get scanid if (scanid < 0): scanid = h.start['scan_id'] print('Writing data...') fn = 'scan%d.tif' % scanid fn_txt = 'scan%d.txt' % scanid io.imsave(wd + fn, d) np.savetxt(wd + fn_txt, np.array((x, y, I0))) def nano_xrf(xstart, xstop, xstep, ystart, ystop, ystep, dwell, shutter=True, extra_dets=None, xmotor=nano_stage.sx, ymotor=nano_stage.sy, flag_snake=True): # calculate number of points xnum = np.int(np.abs(np.round((xstop - xstart)/xstep)) + 1) ynum = np.int(np.abs(np.round((ystop - ystart)/ystep)) + 1) # Setup detectors if extra_dets is None: extra_dets = [] dets = [sclr1, xs, xbpm2, xmotor, ymotor] + extra_dets # Record relevant metadata in the Start document, defined in 90-usersetup.py scan_md = {} get_stock_md(scan_md) # scan_md['scan_input'] = str([xstart, xstop, xstep, ystart, ystop, ystep, dwell]) # scan_md['scaninfo'] = {'type': 'XRF', # 'raster' : True} scan_md['scan']['type'] = 'XRF_STEP' scan_md['scan']['scan_input'] = [xstart, xstop, xstep, ystart, ystop, ystep, dwell] scan_md['scan']['detectors'] = [d.name for d in dets] scan_md['scan']['fast_axis'] = {'motor_name' : xmotor.name, 'units' : xmotor.motor_egu.get()} scan_md['scan']['slow_axis'] = {'motor_name' : ymotor.name, 'units' : ymotor.motor_egu.get()} scan_md['scan']['theta'] = {'val' : nano_stage.th.user_readback.get(), 'units' : nano_stage.th.motor_egu.get()} scan_md['scan']['delta'] = {'val' : 0, 'units' : xmotor.motor_egu.get()} scan_md['scan']['snake'] = 1 if flag_snake else 0 scan_md['scan']['shape'] = (xnum, ynum) # Set counting time sclr1.preset_time.put(dwell) xs.external_trig.put(False) xs.cam.acquire_time.put(dwell) xs.total_points.put(xnum * ynum) if (merlin in dets): merlin.cam.acquire_time.put(dwell) merlin.cam.acquire_period.put(dwell + 0.005) merlin.hdf5.stage_sigs['num_capture'] = xnum * ynum scan_md['scan']['merlin'] = {'merlin_exp_time' : dwell, 'merlin_exp_period' : dwell + 0.005} # LiveTable livecallbacks = [] # roi_key = getattr(xs.channel1.rois, roi_name).value.name roi_key = xs.channels.channel01.get_mcaroi(mcaroi_number=1).total_rbv.name livecallbacks.append(LiveTable([xmotor.name, ymotor.name, roi_key])) # livetableitem.append(roi_key) # roi_name = 'roi{:02}'.format(1) livecallbacks.append(LiveGrid((ynum, xnum), roi_key, clim=None, cmap='viridis', xlabel='x [um]', ylabel='y [um]', extent=[xstart, xstop, ystart, ystop], x_positive='right', y_positive='down')) myplan = grid_scan(dets, ymotor, ystart, ystop, ynum, xmotor, xstart, xstop, xnum, flag_snake, md=scan_md) myplan = subs_wrapper(myplan, {'all': livecallbacks}) # Open shutter # if (shutter): # yield from mv(shut_b,'Open') yield from check_shutters(shutter, 'Open') # grid scan uid = yield from myplan # Close shutter # if (shutter): # yield from mv(shut_b,'Close') yield from check_shutters(shutter, 'Close') return uid ```
{ "source": "jklynch/suitcase-nxsas", "score": 3 }
#### File: suitcase/nxsas/utils.py ```python from collections import Mapping, Sequence import copy import json import logging import re import h5py import numpy as np def _copy_nexus_md_to_nexus_h5(nexus_md, h5_group_or_dataset): """ Read a metadata dictionary with nexus-ish keys and create a corresponding nexus structure in an H5 file. Allowed structures: a group with _attributes: "entry" : { "NXAttributes": {"NX_Class": "NXEntry", "default": "data"} } will look like .../ <group entry> <attr "NX_Class": "NXEntry"> <attr "default: "data"> a group with a dataset: "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "program_name": "EPICS areaDetector", } will look like .../ <group "entry"> <attr "NX_Class": "NXEntry"> <attr "default: "data"> <dataset "program_name": "EPICS areaDetector"> a dataset with attributes: "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "program_name": { "_attributes": { "NDAttrDescription": "program name", "NDAttrName": "ProgramName", "NDAttrSource": "91dcLAX:GUPNumber", "NDAttrSourceType": "NDAttrSourceEPICSPV" }, "_dataset": "EPICS areaDetector", } } will look like .../ <group "entry"> <attr "NX_Class": "NXEntry"> <attr "default: "data"> <dataset "program_name": "EPICS areaDetector"> <attr "NDAttrDescription": "program name"> <attr "NDAttrName: "ProgramName"> <attr "NDAttrSource": "91dcLAX:GUPNumber"> <attr "NDAttrSourceType": "NDAttrSourceEPICSPV"> a group with a link to part of the bluesky structure "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "GUPNumber": "#bluesky/start/gup_number" } will look like .../ <group "entry"> <attr "NX_Class": "NXEntry"> <attr "default: "data"> <link "GUPNumber" to <dataset /bluesky/start/gup_number>> a group with a link with attributes to part of the bluesky structure note: the "NDAttr..."s are not NeXus "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "GUPNumber": { "_attributes": { "NDAttrDescription": "GUP proposal number", "NDAttrName": "GUPNumber", "NDAttrSource": "91dcLAX:GUPNumber", "NDAttrSourceType": "NDAttrSourceEPICSPV" }, "_link": "#bluesky/start/gup_number" } will look like .../ <group "entry"> <attr "NX_Class": "NXEntry"> <attr "default: "data"> <link "GUPNumber" to <dataset /bluesky/start/gup_number>> <attr "NDAttrDescription": "GUP proposal number"> <attr "NDAttrName": "GUPNumber"> <attr "NDAttrSource": "91dcLAX:GUPNumber"> <attr "NDAttrSourceType": "NDAttrSourceEPICSPV"> a group with subgroups: "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"} "instrument": { "_attributes": {"NX_Class": "NXInstrument",}, "name_1": "#bluesky/start/beamline_id", "name_2": { "_attributes": {"NX_This": "NXThat"}, "_link": "#bluesky/start/beamline_id", }, } For example: "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "GUPNumber": { "_attributes": { "NDAttrDescription": "GUP proposal number", "NDAttrName": "GUPNumber", "NDAttrSource": "91dcLAX:GUPNumber", "NDAttrSourceType": "NDAttrSourceEPICSPV" }, "_link": "#bluesky/start/gup_number" }, "title": { "_attributes": { "NDAttrDescription": "sample name", "NDAttrName": "SampleTitle", "NDAttrSource": "91dcLAX:sampleTitle", "NDAttrSourceType": "NDAttrSourceEPICSPV" }, "_link": "#bluesky/start/gup_number" }, "program_name": "EPICS areaDetector", "instrument": { "_attributes": {"NX_Class": "NXInstrument",}, "name_1": "#bluesky/start/beamline_id", "name_2": { "_attributes": {"NX_This": "NXThat"}, "_link": "#bluesky/start/beamline_id", }, "aperture": { "_attributes": {"NX_Class": "NXAperture",}, "vcenter": 1.0, "vsize": 2.0, "description": "USAXSslit", }, }, }, }, Parameters ---------- nexus_md: dict-like """ for nexus_key, nexus_value in nexus_md.items(): if nexus_key in ("_data", "_link"): # this key/value has already been processed continue elif nexus_key == "_attributes": for attr_name, attr_value in nexus_value.items(): h5_group_or_dataset.attrs[attr_name] = attr_value elif isinstance(nexus_value, Mapping): # we arrive here in a case such as: # "program_name": { # "_attributes": {"attr_1": "abc", "attr_2": "def"}, # "_link": "#bluesky/start/program_name" # } # where nexus_key is "program_name" and # nexus_value is the associated dictionary if "_link" in nexus_value: h5_group_or_dataset[nexus_key] = _get_h5_group_or_dataset( bluesky_document_path=_parse_bluesky_document_path( nexus_value["_link"] ), h5_file=h5_group_or_dataset.file, ) _copy_nexus_md_to_nexus_h5( nexus_md=nexus_value, h5_group_or_dataset=h5_group_or_dataset[nexus_key] ) elif "_data" in nexus_value: # we arrive here in a case such as: # "program_name": { # "_attributes": {"attr_1": "abc", "attr_2": "def"}, # "_data": "the name of the program" # } # where nexus_key is "program_name" and # nexus_value is the associated dictionary h5_group_or_dataset.create_dataset(name=nexus_key, data=nexus_value["_data"]) _copy_nexus_md_to_nexus_h5( nexus_md=nexus_value, h5_group_or_dataset=h5_group_or_dataset[nexus_key] ) else: # otherwise create a group _copy_nexus_md_to_nexus_h5( nexus_md=nexus_value, h5_group_or_dataset=h5_group_or_dataset.create_group(nexus_key), ) elif isinstance(nexus_value, str) and nexus_value.startswith("#bluesky"): # create a link bluesky_document_path = _parse_bluesky_document_path(nexus_value) h5_group_or_dataset[nexus_key] = _get_h5_group_or_dataset( bluesky_document_path, h5_group_or_dataset.file ) else: h5_group_or_dataset.create_dataset(name=nexus_key, data=nexus_value) _bluesky_doc_query_re = re.compile( r"^#bluesky/" r"(?P<doc>(start|stop|desc/(?P<stream>\w+)))" r"(?P<all_keys>(/\w+)*)" r"(@(?P<attribute>\w+))?" ) def _parse_bluesky_document_path(bluesky_document_path): """ regex101.com #bluesky/start/blah/bleh@blih : doc: start keys: ("blah", "bleh") attribute: blih #bluesky/desc/primary/blah/bleh doc: desc stream: primary keys: /blah/bleh """ m = _bluesky_doc_query_re.match(bluesky_document_path) if m is None: raise Exception(f"failed to parse '{bluesky_document_path}'") else: path_info = copy.copy(m.groupdict()) if path_info["doc"].startswith("desc"): # path_info["doc"] is "desc/stream_name" # but I want just "desc" so split off "/stream_name path_info["doc"] = path_info["doc"].split("/")[0] # path_info["all_keys"] is something like <KEY>" # but I want a tuple like ("abc", "def") so split on "/" # the first element of the split list is an empty string # leave it out with [1:] path_info["keys"] = tuple(path_info["all_keys"].split("/"))[1:] return path_info def _get_h5_group_or_dataset(bluesky_document_path, h5_file): # look up the h5 group corresponding to the bluesky document path doc = bluesky_document_path["doc"] h5_target_group = h5_file["bluesky"][doc] for key in bluesky_document_path["keys"]: h5_target_group = h5_target_group[key] return h5_target_group def _copy_metadata_to_h5_attrs(a_mapping, h5_group): """ Recursively reproduce a python "mapping" (typically a dict) as h5 nested groups and attributes. """ for key, value in a_mapping.items(): if isinstance(value, Mapping): # found a dict-like value # create a new h5 group for it # and recursively copy its keys and values to h5 groups and attributes _copy_metadata_to_h5_attrs( a_mapping=value, h5_group=h5_group.create_group(key) ) else: # a special case if value is None: value = "None" try: # this is where an h5 attribute is assigned h5_group.attrs[key] = value except TypeError: # `value` is too complicated to be a h5 attribute # an example of a key-value pair that will cause TypeError is # {'dimensions': [[['time'], 'primary']]} # instead we will store it as JSON h5_group.attrs[key] = json.dumps(value) def _copy_metadata_to_h5_datasets(a_mapping, h5_group): """ Recursively reproduce a python "mapping" (typically a dict) as h5 nested groups and datasets. """ log = logging.Logger("suitcase.nxsas", level="DEBUG") for key, value in a_mapping.items(): if isinstance(value, Mapping): # found a dict-like value # create a new h5 group for it # and recursively copy its keys and values to h5 groups and datasets group = h5_group.create_group(key) log.debug("created h5 group %s", group) _copy_metadata_to_h5_datasets(a_mapping=value, h5_group=group) else: # a special case if value is None: value = "None" elif value == b"\x00": # for example: # "en_monoen_grating_clr_enc_lss": { # "source": "PV:XF:07ID1-OP{Mono:PGM1-Ax:GrtP}Mtr_ENC_LSS_CLR_CMD.PROC", # "dtype": "integer", # "shape": [], # "units": "", # "lower_ctrl_limit": b"\x00", # "upper_ctrl_limit": b"\x00", # "object_name": "en", # # }, # will cause a ValueError: VLEN strings do not support embedded NULLs value = "" # this is where an h5 dataset is assigned # string datasets are special because they must have dtype=h5py.string_dtype() try: # use Sequence to handle list and tuple if isinstance(value, str) or ( isinstance(value, Sequence) and all([isinstance(x, str) for x in value]) ): d = h5_group.create_dataset( name=key, data=np.array(value, dtype=h5py.string_dtype()) ) else: d = h5_group.create_dataset(name=key, data=value) except TypeError as err: log.warning( "failed to create dataset for key '%s' and value '%s'", key, value ) log.warning("exception: %s", err) log.warning("storing JSON-encoded value instead") d = h5_group.create_dataset( name=key, data=np.array(json.dumps(value), dtype=h5py.string_dtype()), ) except BaseException as ex: log.warning( "failed to create dataset on group '%s' for key '%s'", h5_group, key ) log.exception(ex) raise ex log.debug("created dataset %s", d) ```
{ "source": "jklynch/suitcase-sas", "score": 2 }
#### File: nxsas/tests/test_sst_nexus_metadata.py ```python import logging import h5py import event_model from suitcase import nxsas from suitcase.nxsas.tests.rsoxs_run_documents import ( rsoxs_start_doc, rsoxs_descriptor_en_doc, rsoxs_event_page_en_doc, ) techniques_md = { "md": { "techniques": [ # SAXS technique { "version": 1, "technique": "SAXS", "nxsas": { "entry": { "_attributes": {"NX_Class": "NXEntry", "default": "data"}, "end_time": { "_attributes": { "NDAttrDescription": "image ending time", "NDAttrName": "EndTime", "NDAttrSource": "91dcLAX:SAXS:EndExposureTime", "NDAttrSourceType": "NDAttrSourceEPICSPV", }, "_link": "#bluesky/stop/time", }, "title": { "_attributes": { "NDAttrDescription": "sample name", "NDAttrName": "SampleTitle", "NDAttrSource": "91dcLAX:sampleTitle", "NDAttrSourceType": "NDAttrSourceEPICSPV", }, "_link": "#bluesky/start/sample_name", }, "program_name": "EPICS areaDetector", "instrument": { "_attributes": {"NX_Class": "NXInstrument"}, "name_1": "#bluesky/start/beamline_id", # create a link "name_2": { # create a link with attributes? "_attributes": {"NX_This": "NXThat"}, "_link": "#bluesky/start/beamline_id", }, "aperture": { "_attributes": {"NX_Class": "NXAperture"}, "vcenter": 1.0, "vsize": 2.0, "description": "USAXSslit", }, }, }, }, }, # more techniques ... ] } } def test_start_nexus_metadata(caplog, tmp_path): caplog.set_level(logging.DEBUG, logger="suitcase.nxsas") start_doc_md = {} start_doc_md.update(rsoxs_start_doc) start_doc_md.update(techniques_md) # componse_run will raise an exception if "time" or "uid" are in the metadata start_doc_md.pop("time") start_doc_md.pop("uid") documents = [] ( start_doc, compose_descriptor, compose_resource, compose_stop, ) = event_model.compose_run( # 'run start' document metadata=start_doc_md ) documents.append(("start", start_doc)) stop_doc = compose_stop() documents.append(("stop", stop_doc)) artifacts = nxsas.export(documents, tmp_path) assert len(artifacts["stream_data"]) == 1 output_filepath = artifacts["stream_data"][0] assert output_filepath.exists() with h5py.File(output_filepath, "r") as h5f: assert "bluesky" in h5f print(list(h5f["bluesky"])) assert "start" in h5f["bluesky"] assert len(h5f["bluesky"]["start"]) == 42 assert len(h5f["bluesky"].attrs) == 0 assert all(h5f["bluesky"]["start"]["detectors"][()] == ["Synced", "en_energy"]) assert all( h5f["bluesky"]["start"]["motors"][()] == ["WAXS Exposure", "SAXS Exposure", "en"] ) assert h5f["bluesky"]["start"]["num_intervals"][()] == 127 assert h5f["bluesky"]["start"]["num_points"][()] == 128 assert h5f["bluesky"]["start"]["plan_name"][()] == "full_carbon_scan_nd" assert h5f["bluesky"]["start"]["plan_type"][()] == "generator" assert h5f["bluesky"]["start"]["scan_id"][()] == 6852 assert h5f["bluesky"]["start"]["time"][()] == start_doc["time"] assert h5f["bluesky"]["start"]["uid"][()] == start_doc["uid"] assert len(h5f["bluesky"]) == 4 assert "hints" in h5f["bluesky"]["start"] assert "dimensions" in h5f["bluesky"]["start"]["hints"] # the "dimensions" attribute has been jsonified because it is complicated # assert ( # h5f["bluesky"]["hints"].attrs["dimensions"] # == '[[["random_walk:dt"], "primary"]]' # ) # assert json.loads(h5f["bluesky"]["hints"].attrs["dimensions"]) == [ # [["random_walk:dt"], "primary"] # ] assert "md" in h5f["bluesky"]["start"] assert "plan_args" in h5f["bluesky"]["start"] assert "detectors" in h5f["bluesky"]["start"]["plan_args"] # assert h5f["bluesky"]["start"]["plan_args"][()] == start_doc["plan_args"] def test_descriptor_nexus_metadata(caplog, tmp_path): caplog.set_level(logging.DEBUG, logger="suitcase.nxsas") start_doc_md = {} start_doc_md.update(rsoxs_start_doc) start_doc_md.update(techniques_md) start_doc_md.pop("time") start_doc_md.pop("uid") documents = [] ( start_doc, compose_descriptor, compose_resource, compose_stop, ) = event_model.compose_run( # 'run start' document metadata=start_doc_md ) documents.append(("start", start_doc)) descriptor_doc_md = dict() descriptor_doc_md.update(rsoxs_descriptor_en_doc) # compose_descriptor will raise an exception if "run_start" is in the metadata descriptor_doc_md.pop("run_start") descriptor_doc, _, _ = compose_descriptor(**descriptor_doc_md) documents.append(("descriptor", descriptor_doc)) stop_doc = compose_stop() documents.append(("stop", stop_doc)) artifacts = nxsas.export(documents, tmp_path) assert len(artifacts["stream_data"]) == 1 output_filepath = artifacts["stream_data"][0] assert output_filepath.exists() with h5py.File(output_filepath, "r") as h5f: assert "bluesky" in h5f print(list(h5f["bluesky"])) assert "primary" in h5f["bluesky"]["descriptors"] assert "data_keys" in h5f["bluesky"]["descriptors"]["primary"] assert "en_energy" in h5f["bluesky"]["descriptors"]["primary"]["data_keys"] def test_event_page_nexus_metadata(tmp_path): start_doc_md = {} start_doc_md.update(rsoxs_start_doc) start_doc_md.update(techniques_md) # compose_run will throw an exception if "time" and "uid" are in the metadata start_doc_md.pop("time") start_doc_md.pop("uid") documents = [] ( start_doc, compose_descriptor, compose_resource, compose_stop, ) = event_model.compose_run( # 'run start' document metadata=start_doc_md ) documents.append(("start", start_doc)) descriptor_doc_md = dict() descriptor_doc_md.update(rsoxs_descriptor_en_doc) # compose_descriptor will raise an exception if "run_start" is in the metadata descriptor_doc_md.pop("run_start") descriptor_doc, compose_event, compose_event_page = compose_descriptor( **descriptor_doc_md ) documents.append(("descriptor", descriptor_doc)) event_md = dict() event_md.update(rsoxs_event_page_en_doc) # event_md["seq_num"] = [1] # the descriptor uid will interfere with compose_event event_md.pop("descriptor") event_doc = compose_event(**event_md) documents.append(("event", event_doc)) stop_doc = compose_stop() documents.append(("stop", stop_doc)) artifacts = nxsas.export(documents, tmp_path) assert len(artifacts["stream_data"]) == 1 output_filepath = artifacts["stream_data"][0] assert output_filepath.exists() with h5py.File(output_filepath, "r") as h5f: assert "bluesky" in h5f assert "primary" in h5f["bluesky"]["events"] assert "en_energy" in h5f["bluesky"]["events"]["primary"]["data"] assert h5f["bluesky"]["events"]["primary"]["data"]["en_energy"].shape == (1,) assert h5f["bluesky"]["events"]["primary"]["data"]["en_energy"][()] == [ 270.0012299 ] # now test the NeXus structure assert "entry" in h5f assert len(h5f["entry"].attrs) == 2 assert h5f["entry"].attrs["NX_Class"] == "NXEntry" assert h5f["entry"].attrs["default"] == "data" assert "end_time" in h5f["entry"] assert isinstance(h5f["entry"]["end_time"], h5py.Dataset) print(f"end_time: {h5f['entry']['end_time']}") assert h5f["entry"]["end_time"][()] == stop_doc["time"] assert len(h5f["entry"]["end_time"].attrs) == 4 ``` #### File: nxsas/tests/test_with_example_data.py ```python from suitcase import nxsas def do_not_test_export(tmp_path, example_data): # Exercise the exporter on the myriad cases parametrized in example_data. documents = example_data() nxsas.export(documents, tmp_path) # For extra credit, capture the return value from export in a variable... # artifacts = export(documents, tmp_path) # ... and read back the data to check that it looks right. ```
{ "source": "jklynch/suitcase-utils", "score": 2 }
#### File: utils/tests/conftest.py ```python import bluesky from bluesky.tests.conftest import RE # noqa from bluesky.plans import count from bluesky.plan_stubs import trigger_and_read, configure from ophyd.sim import SynGauss, SynAxis import numpy as np try: from ophyd.sim import DirectImage except ImportError: from ophyd import Device, Component as Cpt from ophyd.sim import SynSignal class DirectImage(Device): img = Cpt(SynSignal, kind="hinted") def __init__(self, *args, func=None, **kwargs): super().__init__(*args, **kwargs) if func is not None: self.img._func = func def trigger(self): return self.img.trigger() import event_model import pytest from .. import UnknownEventType import warnings if not hasattr(SynGauss, "configure"): class SynGauss(SynGauss): def configure(self, d): if d: raise ValueError return {}, {} # This line is used to ignore the deprecation warning for bulk_events in tests warnings.filterwarnings("ignore", message="The document type 'bulk_events'*") _md = {"reason": "test", "user": "temp user", "beamline": "test_beamline"} # Some useful plans for use in testing def simple_plan(dets): """A simple plane which runs count with num=5""" md = {**_md, **{"test_plan_name": "simple_plan"}} yield from count(dets, num=5, md=md) def multi_stream_one_descriptor_plan(dets): """A plan that has two streams but on descriptor per stream)""" md = {**_md, **{"test_plan_name": "multi_stream_one_descriptor_plan"}} @bluesky.preprocessors.baseline_decorator(dets) def _plan(dets): yield from count(dets, md=md) yield from _plan(dets) def one_stream_multi_descriptors_plan(dets): '''A plan that has one stream but two descriptors per stream)''' md = {**_md, **{'test_plan_name': 'simple_plan'}} @bluesky.preprocessors.run_decorator(md=md) def _internal_plan(dets): yield from trigger_and_read(dets) for det in dets: yield from configure(det, {}) yield from trigger_and_read(dets) yield from _internal_plan(dets) def _make_single(ignore): if ignore: pytest.skip() motor = SynAxis(name="motor", labels={"motors"}) det = SynGauss( "det", motor, "motor", center=0, Imax=1, sigma=1, labels={"detectors"} ) return [det] def _make_image(ignore): if ignore: pytest.skip() direct_img = DirectImage( func=lambda: np.array(np.ones((10, 10))), name="direct", labels={"detectors"} ) return [direct_img] def _make_image_list(ignore): if ignore: pytest.skip() direct_img_list = DirectImage( func=lambda: [[1] * 10] * 10, name="direct", labels={"detectors"} ) direct_img_list.img.name = "direct_img_list" return [direct_img_list] @pytest.fixture( params=[ _make_single, _make_image, _make_image_list, lambda ignore: _make_image(ignore) + _make_image_list(ignore), ], scope="function", ) def detector_list(request): # noqa return request.param @pytest.fixture(params=["event", "bulk_events", "event_page"], scope="function") def event_type(request): def _event_type_func(ignore): if request.param in ignore: pytest.skip() return request.param return _event_type_func @pytest.fixture(params=[simple_plan, multi_stream_one_descriptor_plan, one_stream_multi_descriptors_plan], scope='function') def plan_type(request): '''Returns a function that provides plan_types for testing.''' def _plan_type_func(skip_tests_with=None): '''Skips the current test or returns the plan_type in request.param for a number of test cases. skip_tests_with : list optional pytest.skip() any test with request.param in this list ''' if skip_tests_with is None: skip_tests_with = [] if request.param in skip_tests_with: pytest.skip() return request.param return _plan_type_func @pytest.fixture(params=['test-', 'scan_{start[uid]}-'], scope='function') def file_prefix_list(request): # noqa '''Returns a function that provides file_prefixes for testing. ''' def _file_prefix_list_func(skip_tests_with=None): '''Skips the current test or returns the file prefix in request.param for a number of test cases. skip_tests_with : list optional pytest.skip() any test with request.param in this list ''' if skip_tests_with is None: skip_tests_with = [] if request.param in skip_tests_with: pytest.skip() return request.param return _file_prefix_list_func @pytest.fixture() def generate_data(RE, detector_list, event_type): # noqa '''A fixture that returns event data for a number of test cases. Returns a list of (name, doc) tuples for the plan passed in as an arg. Parameters ---------- RE : object pytest fixture object imported from `bluesky.test.conftest` detector_list : list pytest fixture defined in `suitcase.utils.conftest` which returns a list of detectors event_type : list pytest fixture defined in `suitcase.utils.conftest` which returns a list of 'event_types'. ''' def _generate_data_func(plan, skip_tests_with=None, md=None): '''Generates data to be used for testing of suitcase.*.export(..) functions Parameters ---------- plan : the plan to use to generate the test data Returns ------- collector : list A list of (name, doc) tuple pairs generated by the run engine. skip_tests_with : list, optional any test having request.param in this list will be skipped md : dict, optional metadata to be passed to the RunEngine ''' if skip_tests_with is None: skip_tests_with = [] if md is None: md = {} # define the output lists and an internal list. collector = [] event_list = [] # define the collector function depending on the event_type if event_type(skip_tests_with) == 'event': def collect(name, doc): collector.append((name, doc)) if name == 'event': event_list.append(doc) elif event_type(skip_tests_with) == 'event_page': def collect(name, doc): if name == 'event': event_list.append(doc) elif name == 'stop': collector.append(('event_page', event_model.pack_event_page( *event_list))) collector.append((name, doc)) else: collector.append((name, doc)) elif event_type(skip_tests_with) == 'bulk_events': def collect(name, doc): if name == 'event': event_list.append(doc) elif name == 'stop': collector.append(('bulk_events', {'primary': event_list})) collector.append((name, doc)) else: collector.append((name, doc)) else: raise UnknownEventType('Unknown event_type kwarg passed to ' 'suitcase.utils.events_data') # collect the documents RE(plan(detector_list(skip_tests_with)), collect, md=md) return collector return _generate_data_func @pytest.fixture def example_data(generate_data, plan_type): '''A fixture that returns event data for a number of test cases. Returns a function that returns a list of (name, doc) tuples for each of the plans in plan_type. .. note:: It is recommended that you use this fixture for testing of ``suitcase-*`` export functions, for an example see ``suitcase-tiff.tests``. This will mean that future additions to the test suite here will be automatically applied to all ``suitcase-*`` repos. Some important implementation notes: 1. These fixtures are imported into other suitcase libraries via those libraries' ``conftest.py`` file. This is automatically set up by suitcases-cookiecutter, and no additional action is required. 2. If any of the fixture parameters above are not valid for the suitcase you are designing and cause testing issues please skip them internally by adding them to the ``skip_tests_with`` kwarg list via the line ``collector = example_data(skip_tests_with=[param_to_ignore, ...])``. Take note ``param_to_ignore`` is the exact parameter, i.e. in case you want to ignore the tests against ``simple_plan`` in ``plan_type`` ``param_to_ignore`` must actually be the function, not a string reference, which will need to be imported using: ``from suitcase.utils.tests.conftest import simple_plan`` Parameters ---------- generate_data : list pytest fixture defined in `suitcase.utils.conftest` which returns a function that accepts a plan as an argument and returns name, doc pairs plan_type : list pytest fixture defined in `suitcase.utils.conftest` which returns a list of 'plans' to test against. ''' def _example_data_func(skip_tests_with=None, md=None): '''returns a list of (name, doc) tuples for a number of test cases skip_tests_with : list optional any test having request.param in this list will be skipped md : dict optional dict or dict-like object containing metadata to be added to the RunEngine ''' return generate_data( plan_type(skip_tests_with), skip_tests_with=skip_tests_with, md=md) return _example_data_func ```
{ "source": "jklynch/suitcase-xdi", "score": 2 }
#### File: suitcase-xdi/scripts/demonstration.py ```python from pprint import pprint from bluesky import RunEngine from bluesky.plans import count from bluesky.preprocessors import SupplementalData from event_model import RunRouter from suitcase.xdi import Serializer from ophyd.sim import det1, det2, det3, motor1, motor2 def pretty_print(name, doc): pprint(name) pprint(doc) def serializer_factory(name, start_doc): serializer = Serializer("xdi") serializer("start", start_doc) return [serializer], [] RE = RunEngine({}) sd = SupplementalData() RE.preprocessors.append(sd) sd.baseline = [det3, motor1, motor2] RE.subscribe(pretty_print) RE.subscribe(RunRouter([serializer_factory])) suitcase_meta_data = {"config-file-path": "XDI.toml"} xdi_meta_data = {"Element_symbol": "A", "Element_edge": "K", "Mono_d_spacing": 10.0} nx_meta_data = { "Source": {"name": "NSLS-II"}, "Instrument": {"name": "BMM"}, "Beam": {"incident_energy": 1000.0}, } dets = [det1, det2] RE( count(dets, num=5), md={"suitcase-xdi": suitcase_meta_data, "NX": nx_meta_data, "XDI": xdi_meta_data}, ) # look for file ```
{ "source": "jklypchak13/CFB_Scorigami", "score": 2 }
#### File: CFB_Scorigami/src/generate_pages.py ```python from typing import ChainMap from file_manger import get_template, write_file, read_cache, write_cache, check_directories from scraper import get_games from scorigami_table import ScorigamiTable CACHE_FILE = 'data/scorgiami_cache.json' def generate_index(score_table): max_score = score_table.max_score() template = get_template('index.html') write_file(template.render(table=score_table, max_score=max_score), 'index.html') if __name__ == "__main__": check_directories() cached_games, cached_years = read_cache(CACHE_FILE) new_games, all_years = get_games(cached_years) all_games = cached_games for year, games in new_games.items(): all_games.extend(games) table = ScorigamiTable(all_games) generate_index(table) important_games = table.extract_games() write_cache(CACHE_FILE, important_games, all_years) ``` #### File: CFB_Scorigami/test/test_file_manager.py ```python import pytest from . import context from file_manger import read_cache, write_cache from data_types import Game from datetime import date as Date @pytest.fixture def sample_games(): games = [ Game("Rutgers", "Princeton", 6, 4, Date(1869, 11, 6)), Game("Princeton", "Rutgers", 8, 0, Date(1869, 11, 13)) ] return games @pytest.fixture def sample_years(): years = [1869] return years def test_read_cache(sample_games, sample_years): input_file = 'test/data/sample_cache.json' games, years = read_cache(input_file) assert games == sample_games assert years == sample_years def test_write_cache(sample_games, sample_years): output_file = 'test/data/cache_output.json' input_file = 'test/data/sample_cache.json' write_cache(output_file, sample_games, sample_years) expected = '' with open(input_file, 'r') as fp: expected = fp.read() result = '' with open(output_file, 'r') as fp: result = fp.read() assert result == expected ```
{ "source": "jkmartindale/androguard", "score": 2 }
#### File: androguard/tests/test_ns_apk.py ```python import unittest import sys PATH_INSTALL = "./" sys.path.append(PATH_INSTALL) from androguard.core.bytecodes import apk APKS = [ "examples/NowSecure/com.kaspersky.kes.apk", "examples/NowSecure/com.king.bubblewitch3_119351.apk", ] class APKTest(unittest.TestCase): def testAPK(self): for apk_path in APKS: with open(apk_path, "r") as fd: a = apk.APK(fd.read(), True) self.assertTrue(a) if __name__ == '__main__': unittest.main() ```
{ "source": "jkmathes/slack-machine", "score": 2 }
#### File: storage/backends/dynamodb.py ```python import logging import datetime import calendar import pickle import codecs import boto3 import botocore from machine.storage.backends.base import MachineBaseStorage logger = logging.getLogger(__name__) class DynamoDBStorage(MachineBaseStorage): """ A storage plugin to allow native slack-machine storage into AWS DynamoDB Configuration of the connection to AWS itself is done via standard environment variables or pre-written configuration files, such as ~/.aws/{config} For local testing, the endpoint URL can be modified using slack-machine setting `DYNAMODB_ENDPOINT_URL` If `DYNAMODB_CREATE_TABLE` is set within slack-machine settings, this driver will create the table in AWS automatically Additionally, if you need a DynamoDB client to be customized, a custom client can be passed in with the `DYNAMODB_CLIENT` slack-machine setting Data in DynamoDB is stored as a pickled base64 string to avoid complications in setting and fetching (bytes) """ def __init__(self, settings): super().__init__(settings) args = {} if 'DYNAMODB_ENDPOINT_URL' in settings: args['endpoint_url'] = settings['DYNAMODB_ENDPOINT_URL'] self._key_prefix = settings.get('DYNAMODB_KEY_PREFIX', 'SM') self._table_name = settings.get('DYNAMODB_TABLE_NAME', 'slack-machine-state') if 'DYNAMODB_CLIENT' in settings: self._db = settings['DYNAMODB_CLIENT'] else: db = boto3.resource('dynamodb', **args) self._db = db create_table = settings.get('DYNAMODB_CREATE_TABLE', False) if create_table: try: self._table = self._db.create_table( TableName=self._table_name, KeySchema=[ {'AttributeName': 'sm-key', 'KeyType': 'HASH'} ], AttributeDefinitions=[ {'AttributeName': 'sm-key', 'AttributeType': 'S'} ], BillingMode='PAY_PER_REQUEST' ) self._table.meta.client.get_waiter('table_exists').wait(TableName=self._table_name) ttl = {'Enabled': True, 'AttributeName': 'sm-expire'} self._table.meta.client.update_time_to_live( TableName=self._table_name, TimeToLiveSpecification=ttl) except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == 'ResourceInUseException': logger.info( 'DynamoDB table[{}] exists, skipping creation'.format(self._table_name)) else: raise e self._table = self._db.Table(self._table_name) def _prefix(self, key): """ Given a slack-machine lookup key, generate a prefixed-key to be used in the DynamoDB table lookup :param key: the SM key to prefix """ return '{}:{}'.format(self._key_prefix, key) def has(self, key): """ Check if the key exists in DynamoDB :param key: the SM key to check :return: ``True/False`` whether the key exists in DynamoDB :raises ClientError: if the client was unable to communicate with DynamoDB """ try: r = self._table.get_item(Key={'sm-key': self._prefix(key)}) return True if 'Item' in r else False except botocore.exceptions.ClientError as e: logger.error('Unable to get item[{}]'.format(self._prefix(key))) raise e def get(self, key): """ Retrieve item data by key :param key: the SM key to fetch against :return: the raw data for the provided key, as (byte)string. Returns ``None`` when the key is unknown or the data has expired :raises ClientError: if the client was unable to communicate with DynamoDB """ try: r = self._table.get_item(Key={'sm-key': self._prefix(key)}) if 'Item' in r: v = r['Item']['sm-value'] return pickle.loads(codecs.decode(v.encode(), 'base64')) else: return None except botocore.exceptions.ClientError as e: logger.error('Unable to get item[{}]'.format(self._prefix(key))) raise e def set(self, key, value, expires=None): """ Store item data by key :param key: the key under which to store the data :param value: data as (byte)string :param expires: optional expiration time in seconds, after which the data should not be returned any more :raises ClientError: if the client was unable to communicate with DynamoDB """ item = { 'sm-key': self._prefix(key), 'sm-value': codecs.encode(pickle.dumps(value), 'base64').decode() } if expires: ttl = datetime.datetime.utcnow() + datetime.timedelta(seconds=expires) item['sm-expire'] = calendar.timegm(ttl.timetuple()) try: self._table.put_item(Item=item) except botocore.exceptions.ClientError as e: logger.error('Unable to set item[{}]'.format(self._prefix(key))) raise e def delete(self, key): """ Delete item data by key :param key: key for which to delete the data :raises ClientError: if the client was unable to communicate with DynamoDB """ try: self._table.delete_item(Key={'sm-key': self._prefix(key)}) except botocore.exceptions.ClientError as e: logger.error('Unable to delete item[{}]'.format(self._prefix(key))) raise e def size(self): """ Calculate the total size of the storage :return: total size of storage in bytes (integer) """ t = self._table.meta.client.describe_table(TableName=self._table_name) return t['Table']['TableSizeBytes'] ```
{ "source": "jkmathuriya/Video-Interpolation-Using-Different-OpticalFlow-Algorithms", "score": 3 }
#### File: Video-Interpolation-Using-Different-OpticalFlow-Algorithms/Functions/grdient.py ```python import numpy as np import scipy.ndimage def grad_cal(img0, img2): img0 = img0/ 255 img2 = img2 / 255 #kernels kernel_x = np.array([[-1,1],[-1, 1]]) / 4 kernel_y = np.array([[-1, -1], [1, 1]]) / 4 kernel_t = np.array([[1, 1], [1, 1]]) / 4 ## Calculating gradients by convolving kernels fx = scipy.ndimage.convolve(input=img0, weights=kernel_x)+scipy.ndimage.convolve(input=img2, weights=kernel_x) fy = scipy.ndimage.convolve(input=img0, weights=kernel_y)+scipy.ndimage.convolve(input=img2, weights=kernel_y) ft = scipy.ndimage.convolve(input=img2, weights=kernel_t)+scipy.ndimage.convolve(input=img0, weights=-1*kernel_t) return [fx,fy,ft] ``` #### File: Video-Interpolation-Using-Different-OpticalFlow-Algorithms/Multiscale_Horn_schunk/multiscale_horn_schunk.py ```python from Horn_Schunk.Horn_schunk import * from Functions.Pyramid import * from matplotlib import pyplot as plt from Functions.grdient import * def iterative_horn_schunk_flow(img0, img2,old_flow,lambada,max_iter,epsilon): a_old = old_flow[0] b_old = old_flow[1] fx, fy, ft = grad_cal(img0, img2) # warping image with old flow pred = np.round((img0 / 255 + fx * a_old + fy * b_old + ft) * 255) pred[pred > 255] = 255 # Calculating a1~ and b1~ flow, grad = horn_schunk_flow(pred, img2,lambada,max_iter,epsilon) # New flow new_a = a_old + flow[0] new_b = b_old + flow[1] return [new_a, new_b] def multiscale_horn_schunk_flow(img0, img2,lambada,max_iter,epsilon, levels): pyr0, shapes0 = pyramid_down(img0, levels) pyr2, shapes2 = pyramid_down(img2, levels) # for i in range(levels-1,-1,-1): # plt.figure() # plt.imshow(pyr0[0:shapes0[i][0],0:shapes0[i][1],i],cmap="gray") # plt.figure() # plt.imshow(pyr2[0:shapes0[i][0],0:shapes0[i][1],i], cmap="gray") # print(shapes0) # plt.show() # Calculate initial flow at lowest scale [a, b], grad = horn_schunk_flow(pyr0[0:shapes0[levels - 1][0], 0:shapes0[levels - 1][1], levels - 1], pyr2[0:shapes0[levels - 1][0], 0:shapes0[levels - 1][1], levels - 1],lambada,max_iter,epsilon) # upsample flow for next level a2 = cv2.pyrUp(a) b2 = cv2.pyrUp(b) for i in range(levels - 2, -1, -1): [a, b] = iterative_horn_schunk_flow(pyr0[0:shapes0[i][0], 0:shapes0[i][1], i], pyr2[0:shapes0[i][0], 0:shapes0[i][1], i],[a2, b2],lambada,max_iter,epsilon) # upsample flow for next level a2 = cv2.pyrUp(a) b2 = cv2.pyrUp(b) grad = grad_cal(img0, img2) return [a, b], grad ```
{ "source": "jkmiao/captcha", "score": 2 }
#### File: captcha/decap/apicode.py ```python import os from models.chimath.cm_code import CMCode from models.tggvcr.tggvcr import TGGVCR from models.tgcodesp.tgcodesp import TGcodesp import base64 from cStringIO import StringIO from urllib import urlopen class Apicode(object): def __init__(self, path='model'): """ 模型预先加载 """ self.models = {} self.models['GNE'] = TGGVCR() # 中英文通用模型 self.models['CM'] = CMCode() # 数学计算题验证码, 类似工商吉林山东或17小说网 http://passport.17k.com/mcode.jpg?r=8417905093765 self.models['gne'] = TGcodesp('gne') def predict(self, codetype, fname, code_len=None, detail=False): if codetype not in self.models: raise ValueError("input captcha type error: %s " % type) # base64编码图片 if len(fname)>1000: fname = StringIO(base64.b64decode(fname)) return self.models[codetype].predict(fname, code_len=code_len, detail=detail) def predict_url(self, codetype, url, code_len=None, detail=False): if codetype not in self.models: raise ValueError("input captcha type error: %s " % type) # 图片url if url.startswith('http'): fname = StringIO(urlopen(url).read()) return self.models[codetype].predict(fname, code_len=code_len, detail=detail) if __name__ == '__main__': test = Apicode() ctype = 'gne' path = 'img/test/%s/' % ctype.lower() fnames = [os.path.join(path, fname) for fname in os.listdir(path)][:10] for fname in fnames: print fname # base64编码 fname = base64.b64encode(open(fname).read()) print test.predict(ctype, fname, detail=True) ``` #### File: decap/train/cm_code.py ```python from keras.models import load_model from keras import backend as K from sklearn import metrics import numpy as np from PIL import Image import string import os import time class CharacterTable(object): """ 字符串编解码 """ def __init__(self): self.chars = u'0123456789abcs' self.char_indices = dict((c, i) for i, c in enumerate(self.chars)) self.indice_chars = dict((i, c) for i, c in enumerate(self.chars)) def encode(self, strs, maxlen=None): maxlen = maxlen if maxlen else len(strs) vec = np.zeros((maxlen, len(self.chars))) for i, c in enumerate(strs): vec[i, self.char_indices[c]] = 1 return vec.flatten() def decode(self, vec, n_len=6): vec = vec[:, 2:, :] ctc_decode = K.ctc_decode(vec, input_length=np.ones(vec.shape[0])*vec.shape[1])[0][0] y_out = K.get_value(ctc_decode) res = ''.join([self.indice_chars[x] for x in y_out[0]]) return res.lower() class CMCode(object): def __init__(self, model_path='model/tgcode_ctc_cm.h5'): self.ctable = CharacterTable() self.image_h = 30 self.image_w = 200 base_path = os.path.dirname(os.path.abspath(__file__)) model_path = os.path.join(base_path, model_path) self.model = load_model(model_path) def predict(self, fname): img = Image.open(fname).convert('RGB').resize((self.image_w, self.image_h), Image.ANTIALIAS) imgM = np.array(img, dtype=np.uint8).transpose(1, 0, 2) imgM = np.expand_dims(imgM, 0) y_pred = self.model.predict(imgM) y_pred = self.ctable.decode(y_pred) return y_pred if __name__ == "__main__": test = CMCode() path = 'img/test_data/cm21' fnames = [os.path.join(path, fname) for fname in os.listdir(path) if fname.endswith('jpg')][:50] start_time = time.time() cnt = 0 for fname in fnames: y_pred = test.predict(fname) y_test = fname.split('/')[-1].split('_')[0].lower() if y_pred == y_test: cnt += 1 print y_pred, y_test print 'Accuracy: ', float(cnt)/len(fnames) print 'Time: ', (time.time() - start_time) / len(fnames) ``` #### File: decap/train/gen_data_cm.py ```python from PIL import Image, ImageDraw, ImageFont import random import sys reload(sys) sys.setdefaultencoding('utf-8') """ 生成中文数字四则运算数据 c: chinese m: math """ class ImageCaptcha(object): def __init__(self, size=(200, 60)): self.bgColor = self.random_color(200, 255) self.txt_num = u'零一二三四五六七八九十壹貳叄肆伍陸柒捌玖拾' self.txt_op = list(u'加减乘+-x') + [u"加上", u"减去", "乘以"] self.txt_eq = [u'等于', '等于几'] self.image = Image.new('RGB', size, self.bgColor) def random_color(self, minc=0, maxc=255): return (random.randint(minc, maxc), random.randint(minc, maxc), random.randint(minc, maxc)) def gen_text(self, cnt=6): """ 随机生成验证码文本 """ a = random.choice(self.txt_num) b = random.choice(self.txt_op) c = random.choice(self.txt_num) d = random.choice(self.txt_eq) print a, b, c, d text = a+b+c+d return ''.join(text) def draw_text(self, pos, txt): draw = ImageDraw.Draw(self.image) fontSize = random.choice([22, 26, 28, 30]) fontType = random.choice(['simsun.ttc']) #, 'Kaiti-SC-Bold.ttf', 'DrioidSans-Bold.ttf']) font = ImageFont.truetype(fontType, fontSize) fontColor = self.random_color(1, 180) draw.text(pos, txt, font=font, fill=fontColor) def rotate(self, angle): self.image = self.image.rotate(random.randint(-1*angle, angle), expand=0) def clear_bg(self): width, height = self.image.size for x in range(width): for y in range(height): pix = self.image.getpixel((x, y)) if pix == (0, 0, 0): self.image.putpixel((x,y), self.bgColor) def random_point(self): width, height = self.image.size x = random.randint(0, width) y = random.randint(0, height) return (x, y) def add_noise(self): start_point = self.random_point() end_point = self.random_point() draw = ImageDraw.Draw(self.image) for i in range(random.randint(2, 5)): draw.line((start_point, end_point), fill=self.random_color(), width=random.randint(0,2)) def gen_captcha_image(self, text): for i, txt in enumerate(text): x = 2 + i * 30 + random.randint(-2, 2) y = random.randint(2, 10) self.draw_text((x, y), txt) self.rotate(3) self.add_noise() self.clear_bg() return self.image def label_convert(label, detail=True): """ 结果转换 """ map_dict=dict((x, y) for x,y in zip(u'零一二三四五六七八九壹貳叄肆伍陸柒捌玖加减乘除+-x', u'0123456789123456789+-*/+-*')) map_dict[u'十'] = u'10' map_dict[u'拾'] = u'10' res = '' for c in label: if c in map_dict: res += map_dict[c] if detail: res = eval(res) return str(res) if __name__ == '__main__': for i in range(10): test = ImageCaptcha() label = test.gen_text() img = test.gen_captcha_image(label) img.save('img/origin/%s_%d.jpg' % (label_convert(label), i)) if i%5==0: print i, 'done' ``` #### File: decap/train/train_model.py ```python from keras.models import Model, Input, load_model from keras.layers import * from keras.callbacks import ModelCheckpoint, EarlyStopping from keras import backend as K import numpy as np from PIL import Image import random import os from utils import CharacterTable def img_preprocess(img, image_w=200, image_h=50): """ 图片预处理, 统一规范化到 (200, 50) 宽高 :type img: PIL.Image: 输入图片 :type image_w: int 输出宽 :type image_h: int 输出高 :rtype : PIL.Image, 规范化后的图片 """ w, h = img.size new_width = w * image_h/h # 等比例缩放 img = img.resize((new_width, image_h), Image.ANTIALIAS) # 等高 extra_blank = (image_w-img.width)/2 img = img.crop((-extra_blank, 0, image_w - extra_blank, image_h)) return img def load_data(path, ctable, width=200, height=50, code_len=5): """ 载入某个文件夹下的所有图像 :type ctable: Charactable 标签编解码 :type width: int: 预处理后输出宽 :type height: int: 预处理后输出高 :type code_len: int: 答案最大长度 :rtype: [data, input_label, input_len, label_len], oriLabel """ fnames = [os.path.join(path, fname) for fname in os.listdir(path) ] if len(fnames)>30000: fnames = random.sample(fnames, 30000) data = np.zeros((len(fnames), width, height, 3)) # 数据类型 input_len = np.ones(len(fnames), dtype=np.uint8) * 19 # 21-2 reshape时的维度 input_label = np.zeros((len(fnames), code_len), dtype=np.uint8) label_len = np.zeros(len(fnames), dtype=np.uint8) oriLabel = [] for idx, fname in enumerate(fnames): try: img = Image.open(fname).convert('RGB') imgLabel = (fname.split('/')[-1].split('_')[0]).decode('utf-8') tmp = ctable.encode(imgLabel.lower()) except Exception as e: print e os.system('mv %s ../../img/error/' % (fname)) continue if len(imgLabel)<3: print 'too short label', fname os.system('mv %s ../../img/error/' % (fname)) continue else: img = img_preprocess(img, width, height) input_label[idx] = ctable.encode(imgLabel.lower()) data[idx] = np.array(img).transpose(1, 0, 2) label_len[idx] = len(imgLabel) oriLabel.append(imgLabel) return [data, input_label, input_len, label_len], oriLabel def ctc_lambda_func(args): """ 内置 ctc 损失 """ y_pred, labels, input_len, label_len = args y_pred = y_pred[:, 2:, :] return K.ctc_batch_cost(labels, y_pred, input_len, label_len) def build_model(width, height, code_len, n_class): """ 创建模型 """ input_tensor = Input((width, height, 3), name='input_tensor') x = input_tensor for i in range(3): x = Conv2D(128, (3, 3), activation='relu')(x) x = Conv2D(128, (3, 3), activation='relu')(x) x = MaxPooling2D((2,2))(x) x = BatchNormalization()(x) conv_shape = x.get_shape() print 'conv_shape', conv_shape x = Reshape(target_shape=(int(conv_shape[1]), int(conv_shape[2]*conv_shape[3])))(x) x = Bidirectional(GRU(128, return_sequences=True), name='BiGRU1')(x) x = Dropout(0.25)(x) x = Dense(n_class, activation='softmax')(x) base_model = Model(inputs=input_tensor, outputs=x) labels = Input(name='the_labels', shape=[code_len], dtype='float32') input_len = Input(name='input_len', shape=[1], dtype='int64') label_len = Input(name='label_len', shape=[1], dtype='int64') loss_out = Lambda(ctc_lambda_func, output_shape=(1,), name='ctc_loss')([x, labels, input_len, label_len]) ctc_model = Model(inputs=[input_tensor, labels, input_len, label_len], outputs=[loss_out]) # 编译 base_model.compile(loss='categorical_crossentropy', optimizer='rmsprop') ctc_model.compile(loss={'ctc_loss':lambda y_true, y_pred: y_pred}, optimizer='rmsprop') return base_model, ctc_model def train_model(path, ctable, base_model, ctc_model, model_name, code_len, acc=0.92, nb_epoch=50, test_path=None): """ 载入创建的模型结构和数据,进行训练 :type :object 训练好的模型 """ check_point = ModelCheckpoint(filepath='model/%s_weights.h5' % model_name, monitor='val_loss', save_best_only=True, save_weights_only=True) early_stopping = EarlyStopping(monitor='val_loss', patience=3) # 载入训练数据 [X_data, labels, input_len, label_len], oriLabel = load_data(path, ctable, code_len=code_len) inputs = { 'input_tensor': X_data, 'the_labels': labels, 'input_len': input_len, 'label_len': label_len } outputs = {'ctc_loss': np.zeros([len(labels)])} for epoch in range(nb_epoch/5): hist = ctc_model.fit(inputs, outputs, batch_size=32, validation_split=0.1, epochs=1, callbacks=[check_point, early_stopping]) # 每次保存验证集中loss最小的模型 train_acc = test_model(base_model, path, ctable) print epoch, 'train acc', train_acc, 'stop acc', acc if test_path: test_acc = test_model(base_model, test_path, ctable) print epoch, 'test acc', test_acc if train_acc > acc: # 准确率达到期望的acc(默认0.92) 就提前退出 break print '' return base_model def test_model(base_model, path, ctable, cnt=100, width=200, height=50): """ 指定路径模型准确率测试 :type path: 测试文件路径 :type ctable: 编解码实例 :rtype float: 指定文件夹下的图片准确率 """ fnames = [os.path.join(path, fname) for fname in os.listdir(path)] if len(fnames)<cnt: cnt = len(fnames) fnames = random.sample(fnames, cnt) # 每次随机抽取100张做测试 cnt = 0 for idx, fname in enumerate(fnames): img = Image.open(fname).convert('RGB') img = img_preprocess(img, width, height) imgM = np.array(img).transpose(1, 0, 2) imgM = np.expand_dims(imgM, 0) y_pred = base_model.predict(imgM) y_out = ctable.decode(y_pred) y_true = fname.split('/')[-1].split('_')[0].lower() if y_out == y_true: cnt += 1 if idx%10==0: print 'y_out', y_out, 'y_true',y_true acc = float(cnt)/len(fnames) return acc ```
{ "source": "jkmnt/pg", "score": 2 }
#### File: pg/utils/test_mono_drv.py ```python import socket import array import threading import random import Image, ImageFile, ImageTk, ImageDraw, ImageOps, ImageChops, ImageFont CMD_CLEAR = 0 CMD_SHOW = 1 CMD_SET_CLIP = 2 CMD_DRAW_VLINE = 3 CMD_DRAW_HLINE = 4 CMD_DRAW_LINE = 5 CMD_DRAW_FILL = 6 CMD_DRAW_FRAME = 7 CMD_DRAW_TEXTLINE = 8 def get_size(Data): Size = [0,0] Size[0] = ord(Data[0]) | (ord(Data[1]) << 8) Size[1] = ord(Data[2]) | (ord(Data[3]) << 8) return (Size[0], Size[1]) def unpack_image(Data): size = get_size(Data) Im = Image.fromstring( "1", (size[1], size[0]), Data[4:], "raw", "1;IR", 0, 1) Im = Im.rotate(90).transpose(Image.FLIP_TOP_BOTTOM) return Im def connect(): HOST = '127.0.0.1' # Local host PORT = 50007 # Server port s = socket.socket( socket.AF_INET, socket.SOCK_STREAM) s.connect((HOST, PORT)) return s # cmd Id and args are 32-bits def send_cmd(socket, cmdId, args = []): cmdReq = array.array('l', [cmdId] + args) socket.send(cmdReq) def get_ack(sock): ack = sock.recv(1024) assert ack == 'Ok\0', 'ACK error !' def draw_hline(img, args): draw = ImageDraw.Draw(img) x0, x1, y0, y1 = args[0:3] + [args[2]] draw.line([x0, y0, x1, y1], fill = not args[3]) del draw def draw_vline(img, args): draw = ImageDraw.Draw(img) x0, x1, y0, y1 = [args[0]] + args[0:3] draw.line([x0, y0, x1, y1], fill = not args[3]) del draw def draw_line(img, args): draw = ImageDraw.Draw(img) draw.line(args[0:4], fill = not args[4]) del draw def draw_fill(img, args): draw = ImageDraw.Draw(img) draw.rectangle(args[0:4], fill = not args[4], outline = not args[4]) del draw def draw_frame(img, args): draw = ImageDraw.Draw(img) draw.rectangle(args[0:4], fill = 1, outline = not args[4]) del draw def draw_textline(img, args): fnt = ImageFont.truetype('f04b_11.ttf', 8) draw = ImageDraw.Draw(img) # This font have a different offset in TTF and xbm draw.text([args[0], args[1] - 1 ], 'Test string', font = fnt, fill = not args[2]) del draw def compare_img(im0, im1): return im0.convert('1').tostring() == im1.convert('1').tostring() def reset_test(sock, clip = [0, 0, 250, 131]): send_cmd(sock, CMD_SET_CLIP, clip) get_ack(sock) send_cmd(sock, CMD_CLEAR) get_ack(sock) return Image.new( '1', (251, 160), color = 1) def get_result(sock): send_cmd(sock, CMD_SHOW) # There could be delay in socket, and data may be splitted indata = sock.recv(8192) expect = get_size(indata) expect = expect[0] * (expect[1] / 8) + 4 expect -= len(indata); while expect: new_data = sock.recv(2048) expect -= len(new_data) indata += new_data assert expect >= 0, 'Negative expect!' return unpack_image(indata) def test_vline(im, sock, args): send_cmd(sock, CMD_DRAW_VLINE, args) get_ack(sock) draw_vline(im, args) def test_hline(im, sock, args): send_cmd(sock, CMD_DRAW_HLINE, args) get_ack(sock) draw_hline(im, args) def test_fill(im, sock, args): send_cmd(sock, CMD_DRAW_FILL, args) get_ack(sock) draw_fill(im, args) def test_frame(im, sock, args): send_cmd(sock, CMD_DRAW_FRAME, args) get_ack(sock) draw_frame(im, args) def test_textline(im, sock, args): send_cmd(sock, CMD_DRAW_TEXTLINE, args) get_ack(sock) draw_textline(im, args) def test_line(im, sock, args): send_cmd(sock, CMD_DRAW_LINE, args) get_ack(sock) x0, y0, x1, y1, c = args dx = abs(x1 - x0) dy = abs(y1 - y0) if dy < dx: if x0 < x1: if y0 < y1: octant = 1 else: octant = 8 else: if y0 < y1: octant = 4 else: octant = 5 else: if x0 < x1: if y0 < y1: octant = 2 else: octant = 7 else: if y0 < y1: octant = 3 else: octant = 6 if octant in [8, 3, 2, 1]: draw_line(im, [x1, y1, x0, y0, c]) else: draw_line(im, [x0, y0, x1, y1, c]) def test_hlines(sock): for x0 in range(250): for x1 in range(250): pim = reset_test(sock) res = test_hline(pim, sock, [x0, x1, random.randint(0, 130), 1]) dut = get_result(sock) if not compare_img(pim, dut): return 'x0 = %d, x1 = %d' % (x0, x1) return 'Ok' def test_vlines(sock): for y0 in range(130): for y1 in range(130): pim = reset_test(sock) res = test_vline(pim, sock, [random.randint(0, 250), y0, y1, 1]) dut = get_result(sock) if not compare_img(pim, dut): return 'y0 = %d y1 = %d' % (y0, y1) return 'Ok' def vdiff(im0, im1): im0 = ImageOps.colorize( im0.convert('L'), (255, 0, 0), (255, 255, 255)) im1 = ImageOps.colorize( im1.convert('L'), (0, 255, 0), (255, 255, 255)) ImageChops.multiply(im0, im1).show() def test_lines(sock): for i in range(130*130): x0 = random.randint(0, 250) x1 = random.randint(0, 250) y0 = random.randint(0, 130) y1 = random.randint(0, 130) pim = reset_test(sock) res = test_line(pim, sock, [x0, y0, x1, y1, 1]) dut = get_result(sock) if not compare_img(pim, dut): vdiff(pim, dut) return 'x0 = %d y0 = %d x1 = %d y1 = %d i = %d' % (x0, y0, x1, y1, i) return 'Ok' def test_fills(sock): for y0 in range(130): for y1 in range(130): x0 = random.randint(0, 250) x1 = random.randint(0, 250) pim = reset_test(sock) res = test_fill(pim, sock, [x0, y0, x1, y1, 1]) dut = get_result(sock) if not compare_img(pim, dut): return 'x0 = %d, y0 = %d, x1 = %d, y1 = %d' % (x0, y0, y1, y1) return 'Ok' def test_frames(sock): for y0 in range(130): for y1 in range(130): x0 = random.randint(0, 250) x1 = random.randint(0, 250) # PIL generates no frame for x0 = x1. We do generate it. if x0 == x1: x1 += 1 pim = reset_test(sock) res = test_frame(pim, sock, [x0, y0, x1, y1, 1]) dut = get_result(sock) if not compare_img(pim, dut): vdiff(pim, dut) return 'x0 = %d, y0 = %d, x1 = %d, y1 = %d' % (x0, y0, x1, y1) return 'Ok' def test_textlines(sock): for x0 in range(250): for y0 in range(120): pim = reset_test(sock) res = test_textline(pim, sock, [x0, y0, 1]) dut = get_result(sock) if not compare_img(pim, dut): vdiff(pim, dut) return 'x0 = %d, y0 = %d' % (x0, y0) return 'Ok' ts = [ ['hlines', test_hlines], ['vlines', test_vlines], ['lines', test_lines], ['fills', test_fills], ['frames', test_frames], ['textlines', test_textlines], ] sock = connect() failed = [] for test in ts: print 'Testing %s' % test[0] res = test[1](sock) if res != 'Ok': print '\tFailed: %s' % res failed.append([test[0], res]) if not failed: print 'All tests passed' else: print '\nFailed tests:' for i in failed: print '%s (%s)' % (i[0], i[1]) sock.close() ```
{ "source": "jkmnt/tiny_eax_mode", "score": 3 }
#### File: jkmnt/tiny_eax_mode/cfgs.py ```python import struct import xtea try: from Crypto.Cipher import AES class AESCfg: BLOCKSIZE = 16 BLOCKSIZE_MASK = (1 << 128) - 1 ENDIAN = 'big' class ECB: def __init__(self, key): self.enc = AES.new(key, AES.MODE_ECB) def run(self, pt): return self.enc.encrypt(pt) except: pass class XTEACfg: BLOCKSIZE = 8 BLOCKSIZE_MASK = (1 << 64) - 1 ENDIAN = 'little' class ECB: def __init__(self, key): self.enc = xtea.XTEA(key) def run(self, pt): return self.enc.encrypt(pt) ``` #### File: jkmnt/tiny_eax_mode/eax.py ```python def gf_double(a, blocksize): if blocksize == 16: if a >> 127: a = (a << 1) ^ 0x87 # 0x87 for the 128 bit else: a = a << 1 else: if a >> 63: a = (a << 1) ^ 0x1B # 0x1B for 64 bit else: a = a << 1 return a & ((1 << (blocksize * 8)) - 1) def xorstrings(b0, b1): return bytes([a^b for a, b in zip(b0, b1)]) # simple pythonic implementations. the streamlike interface is in eax_stream def ctr(cfg, key, nonce, data): enc = cfg.ECB(key) out = b'' nonce_int = int.from_bytes(nonce, cfg.ENDIAN, signed=False) cnt = 0 for i in range(0, len(data), cfg.BLOCKSIZE): block = data[i:i+cfg.BLOCKSIZE] k = (nonce_int + cnt) & cfg.BLOCKSIZE_MASK k = k.to_bytes(cfg.BLOCKSIZE, cfg.ENDIAN) xorbuf = enc.run(k) out += xorstrings(block, xorbuf) cnt += 1 return out def omac(cfg, key, data, tweak): enc = cfg.ECB(key) L = enc.run(bytes([0] * cfg.BLOCKSIZE)) L_int = int.from_bytes(L, cfg.ENDIAN, signed=False) L2_int = gf_double(L_int, cfg.BLOCKSIZE) L4_int = gf_double(L2_int, cfg.BLOCKSIZE) L2 = L2_int.to_bytes(cfg.BLOCKSIZE, cfg.ENDIAN) L4 = L4_int.to_bytes(cfg.BLOCKSIZE, cfg.ENDIAN) # always big so the tweak is last byte tweakbytes = int.to_bytes(tweak, cfg.BLOCKSIZE, 'big') data = tweakbytes + data data = bytearray(data) if len(data) % cfg.BLOCKSIZE: data += bytes([0x80]) data = data.ljust((len(data) + cfg.BLOCKSIZE - 1) & -cfg.BLOCKSIZE, b'\0') data[-cfg.BLOCKSIZE:] = xorstrings(data[-cfg.BLOCKSIZE:], L4) else: data[-cfg.BLOCKSIZE:] = xorstrings(data[-cfg.BLOCKSIZE:], L2) mac = bytes(cfg.BLOCKSIZE) for i in range(0, len(data), cfg.BLOCKSIZE): block = data[i:i+cfg.BLOCKSIZE] xorred = xorstrings(block, mac) mac = enc.run(xorred) return mac def eax_enc(cfg, key, nonce, header, pt): N = omac(cfg, key, nonce, 0) H = omac(cfg, key, header, 1) ct = ctr(cfg, key, N, pt) C = omac(cfg, key, ct, 2) tag = xorstrings(xorstrings(N, C), H) return (ct, tag) # authenticate, but do not encrypt plaintext def eax_just_auth(cfg, key, nonce, header, pt): N = omac(cfg, key, nonce, 0) H = omac(cfg, key, header, 1) C = omac(cfg, key, pt, 2) tag = xorstrings(xorstrings(N, C), H) return (pt, tag) def eax_dec(cfg, key, nonce, header, ct): N = omac(cfg, key, nonce, 0) H = omac(cfg, key, header, 1) C = omac(cfg, key, ct, 2) tag_local = xorstrings(xorstrings(N, C), H) pt = ctr(cfg, key, N, ct) return (pt, tag_local) ```
{ "source": "jknagin/Udacity-CarND-P2-AdvancedLaneLines", "score": 3 }
#### File: Udacity-CarND-P2-AdvancedLaneLines/lib/calibration.py ```python import cv2 import numpy as np from lib import utils from typing import List def find_chessboard_corners(img, nx: int, ny: int): ret, corners = cv2.findChessboardCorners(img, (nx, ny), None) # corners becomes imgpoints in calibrate_camera return ret, corners def draw_chessboard_corners(img, nx: int, ny: int, corners, ret: bool): img = cv2.drawChessboardCorners(img, (nx, ny), corners, ret) return img def calibrate_camera(objpoints, imgpoints, gray_shape): ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray_shape[::-1], None, None) return ret, mtx, dist, rvecs, tvecs def calibrate_with_chessboard_images(calibration_images: List[str], nx: int, ny: int): objp = np.zeros((nx * ny, 3), dtype=np.float32) objp[:, :2] = np.mgrid[:nx, :ny].T.reshape(-1, 2) objpoints = [] imgpoints = [] gray_shape = None for calibration_image in calibration_images: img = utils.read_image(calibration_image) gray = utils.grayscale(img) gray_shape = gray.shape ret, corners = find_chessboard_corners(gray, nx, ny) # print(calibration_image, ret) if ret: objpoints.append(objp) imgpoints.append(corners) # img = draw_chessboard_corners(img, nx, ny, corners, ret) # plt.imshow(img) # plt.title(calibration_image) # plt.show() ret, mtx, dist, _, _ = calibrate_camera(objpoints, imgpoints, gray_shape) return ret, mtx, dist def undistort(img, mtx, dist): undistorted = cv2.undistort(img, mtx, dist, None, mtx) return undistorted ```
{ "source": "jknapka/gearbox", "score": 3 }
#### File: gearbox/gearbox/commandmanager.py ```python import inspect import logging import pkg_resources LOG = logging.getLogger(__name__) class EntryPointWrapper(object): """Wrap up a command class already imported to make it look like a plugin. """ def __init__(self, name, command_class): self.name = name self.command_class = command_class def load(self, require=False): return self.command_class class CommandManager(object): """Discovers commands and handles lookup based on argv data. :param namespace: String containing the setuptools entrypoint namespace for the plugins to be loaded. For example, ``'cliff.formatter.list'``. :param convert_underscores: Whether cliff should convert underscores to spaces in entry_point commands. """ def __init__(self, namespace, convert_underscores=True): self.commands = {} self.namespace = namespace self.convert_underscores = convert_underscores self._load_commands() def _load_commands(self): # NOTE(jamielennox): kept for compatability. self.load_commands(self.namespace) def load_commands(self, namespace): """Load all the commands from an entrypoint""" for ep in pkg_resources.iter_entry_points(namespace): LOG.debug('found command %r', ep.name) cmd_name = (ep.name.replace('_', ' ') if self.convert_underscores else ep.name) self.commands[cmd_name] = ep return def __iter__(self): return iter(self.commands.items()) def add_command(self, name, command_class): self.commands[name] = EntryPointWrapper(name, command_class) def find_command(self, argv): """Given an argument list, find a command and return the processor and any remaining arguments. """ search_args = argv[:] name = '' while search_args: if search_args[0].startswith('-'): name = '%s %s' % (name, search_args[0]) raise ValueError('Invalid command %r' % name) next_val = search_args.pop(0) name = '%s %s' % (name, next_val) if name else next_val if name in self.commands: cmd_ep = self.commands[name] if hasattr(cmd_ep, 'resolve'): cmd_factory = cmd_ep.resolve() else: # NOTE(dhellmann): Some fake classes don't take # require as an argument. Yay? arg_spec = inspect.getargspec(cmd_ep.load) if 'require' in arg_spec[0]: cmd_factory = cmd_ep.load(require=False) else: cmd_factory = cmd_ep.load() return (cmd_factory, name, search_args) else: raise ValueError('Unknown command %r' % next(iter(argv), '')) ``` #### File: gearbox/commands/patch.py ```python from __future__ import print_function import os import fnmatch import re from argparse import RawDescriptionHelpFormatter from gearbox.command import Command class PatchCommand(Command): def get_description(self): return r'''Patches files by replacing, appending or deleting text. This is meant to provide a quick and easy way to replace text and code in your projects. Here are a few examples, this will replace all xi:include occurrences with py:extends in all the template files recursively: $ gearbox patch -R '*.html' xi:include -r py:extends It is also possible to rely on regex and python for more complex replacements, like updating the Copyright year in your documentation: $ gearbox patch -R '*.rst' -x 'Copyright(\s*)(\d+)' -e -r '"Copyright\\g<1>"+__import__("datetime").datetime.utcnow().strftime("%Y")' Works on a line by line basis, so it is not possible to match text across multiple lines. ''' def get_parser(self, prog_name): parser = super(PatchCommand, self).get_parser(prog_name) parser.formatter_class = RawDescriptionHelpFormatter parser.add_argument('pattern', help='The glob pattern of files that should be matched') parser.add_argument('text', help='text that should be looked up in matched files.') parser.add_argument('-r', '--replace', dest='replacement', help='Replace occurrences of text with REPLACEMENT') parser.add_argument('-a', '--append', dest='addition', help='Append ADDITION after the line with matching text.') parser.add_argument('-d', '--delete', action='store_true', help='Delete lines matching text.') parser.add_argument('-x', '--regex', dest='regex', action="store_true", help='Parse the text as a regular expression.') parser.add_argument('-R', '--recursive', dest='recursive', action="store_true", help='Look for files matching pattern in subfolders too.') parser.add_argument('-e', '--eval', dest='eval', action='store_true', help='Eval the replacement as Python code before applying it.') return parser def _walk_recursive(self): for root, dirnames, filenames in os.walk(os.getcwd()): for filename in filenames: yield os.path.join(root, filename) def _walk_flat(self): root = os.getcwd() for filename in os.listdir(root): yield os.path.join(root, filename) def _replace_regex(self, line, text, replacement): return re.sub(text, replacement, line) def _replace_plain(self, line, text, replacement): return line.replace(text, replacement) def _match_regex(self, line, text): return re.search(text, line) is not None def _match_plain(self, line, text): return text in line def take_action(self, opts): walk = self._walk_flat if opts.recursive: walk = self._walk_recursive match = self._match_plain if opts.regex: match = self._match_regex replace = self._replace_plain if opts.regex: replace = self._replace_regex matches = [] for filepath in walk(): if fnmatch.fnmatch(filepath, opts.pattern): matches.append(filepath) print('%s files matching' % len(matches)) for filepath in matches: replacement = opts.replacement if opts.eval and replacement: replacement = str(eval(replacement, globals())) addition = opts.addition if opts.eval and addition: addition = str(eval(addition, globals())) matches = False lines = [] with open(filepath) as f: for line in f: if not match(line, opts.text): lines.append(line) continue matches = True empty_line = not line.strip() if opts.replacement: line = replace(line, opts.text, replacement) if empty_line or line.strip() and not opts.delete: lines.append(line) if opts.addition: lines.append(addition+'\n') print('%s Patching %s' % (matches and '!' or 'x', filepath)) if matches: with open(filepath, 'w') as f: f.writelines(lines) ``` #### File: gearbox/commands/setup_app.py ```python from __future__ import print_function import os from gearbox.command import Command from paste.deploy import appconfig class SetupAppCommand(Command): def get_description(self): return "Setup an application, given a config file" def get_parser(self, prog_name): parser = super(SetupAppCommand, self).get_parser(prog_name) parser.add_argument("-c", "--config", help='application config file to read (default: development.ini)', dest='config_file', default="development.ini") parser.add_argument('--name', action='store', dest='section_name', default=None, help='The name of the section to set up (default: app:main)') return parser def take_action(self, opts): config_spec = opts.config_file section = opts.section_name if section is None: if '#' in config_spec: config_spec, section = config_spec.split('#', 1) else: section = 'main' if not ':' in section: plain_section = section section = 'app:'+section else: plain_section = section.split(':', 1)[0] if not config_spec.startswith('config:'): config_spec = 'config:' + config_spec if plain_section != 'main': config_spec += '#' + plain_section config_file = config_spec[len('config:'):].split('#', 1)[0] config_file = os.path.join(os.getcwd(), config_file) conf = appconfig(config_spec, relative_to=os.getcwd()) ep_name = conf.context.entry_point_name ep_group = conf.context.protocol dist = conf.context.distribution if dist is None: raise RuntimeError("The section %r is not the application (probably a filter). You should add #section_name, where section_name is the section that configures your application" % plain_section) self._setup_config(dist, config_file, section, {}, verbosity=self.app.options.verbose_level) def _setup_config(self, dist, filename, section, vars, verbosity): """ Called to setup an application, given its configuration file/directory. The default implementation calls ``package.websetup.setup_config(command, filename, section, vars)`` or ``package.websetup.setup_app(command, config, vars)`` With ``setup_app`` the ``config`` object is a dictionary with the extra attributes ``global_conf``, ``local_conf`` and ``filename`` """ modules = [line.strip() for line in dist.get_metadata_lines('top_level.txt') if line.strip() and not line.strip().startswith('#')] if not modules: print('No modules are listed in top_level.txt') print('Try running python setup.py egg_info to regenerate that file') for mod_name in modules: mod_name = mod_name + '.websetup' try: mod = self._import_module(mod_name) except ImportError as e: print(e) desc = getattr(e, 'args', ['No module named websetup'])[0] if not desc.startswith('No module named websetup'): raise mod = None if mod is None: continue if hasattr(mod, 'setup_app'): if verbosity: print('Running setup_app() from %s' % mod_name) self._call_setup_app(mod.setup_app, filename, section, vars) elif hasattr(mod, 'setup_config'): if verbosity: print('Running setup_config() from %s' % mod_name) mod.setup_config(None, filename, section, vars) else: print('No setup_app() or setup_config() function in %s (%s)' % (mod.__name__, mod.__file__)) def _call_setup_app(self, func, filename, section, vars): filename = os.path.abspath(filename) if ':' in section: section = section.split(':', 1)[1] conf = 'config:%s#%s' % (filename, section) conf = appconfig(conf) conf.filename = filename func(None, conf, vars) def _import_module(self, s): """ Import a module. """ mod = __import__(s) parts = s.split('.') for part in parts[1:]: mod = getattr(mod, part) return mod ``` #### File: gearbox/gearbox/main.py ```python from __future__ import print_function import argparse import inspect import sys import os import pkg_resources import logging import warnings from .utils.plugins import find_egg_info_dir from .commands.help import HelpCommand, HelpAction from .commandmanager import CommandManager log = logging.getLogger('gearbox') class GearBox(object): NAME = os.path.splitext(os.path.basename(sys.argv[0]))[0] LOG_DATE_FORMAT = '%H:%M:%S' LOG_GEARBOX_FORMAT = '%(asctime)s,%(msecs)03d %(levelname)-5.5s [%(name)s] %(message)s' DEFAULT_VERBOSE_LEVEL = 1 def __init__(self): self.command_manager = CommandManager('gearbox.commands') self.command_manager.add_command('help', HelpCommand) self.parser = argparse.ArgumentParser(description="TurboGears2 Gearbox toolset", add_help=False) parser = self.parser parser.add_argument( '--version', action='version', version='%(prog)s {0}'.format( pkg_resources.get_distribution("gearbox").version ), ) verbose_group = parser.add_mutually_exclusive_group() verbose_group.add_argument( '-v', '--verbose', action='count', dest='verbose_level', default=self.DEFAULT_VERBOSE_LEVEL, help='Increase verbosity of output. Can be repeated.', ) verbose_group.add_argument( '-q', '--quiet', action='store_const', dest='verbose_level', const=0, help='Suppress output except warnings and errors.', ) parser.add_argument( '--log-file', action='store', default=None, help='Specify a file to log output. Disabled by default.', ) parser.add_argument( '-h', '--help', action=HelpAction, nargs=0, default=self, # tricky help="Show this help message and exit.", ) parser.add_argument( '--debug', default=False, action='store_true', help='Show tracebacks on errors.', ) parser.add_argument( '--relative', default=False, action='store_true', dest='relative_plugins', help='Load plugins and applications also from current path.', ) def _configure_logging(self): if self.options.debug: warnings.simplefilter('default') try: logging.captureWarnings(True) except AttributeError: pass root_logger = logging.getLogger('') root_logger.setLevel(logging.INFO) # Set up logging to a file if self.options.log_file: file_handler = logging.FileHandler(filename=self.options.log_file) formatter = logging.Formatter(self.LOG_GEARBOX_FORMAT, datefmt=self.LOG_DATE_FORMAT) file_handler.setFormatter(formatter) root_logger.addHandler(file_handler) # Always send higher-level messages to the console via stderr console = logging.StreamHandler(sys.stderr) console_level = {0: logging.WARNING, 1: logging.INFO, 2: logging.DEBUG, }.get(self.options.verbose_level, logging.DEBUG) console.setLevel(console_level) formatter = logging.Formatter(self.LOG_GEARBOX_FORMAT, datefmt=self.LOG_DATE_FORMAT) console.setFormatter(formatter) root_logger.addHandler(console) def run(self, argv): """Application entry point""" try: self.options, remainder = self.parser.parse_known_args(argv) self._configure_logging() if self.options.relative_plugins: curdir = os.getcwd() sys.path.insert(0, curdir) pkg_resources.working_set.add_entry(curdir) try: self._load_commands_for_current_dir() except pkg_resources.DistributionNotFound as e: try: error_msg = repr(e) except: error_msg = 'Unknown Error' log.error('Failed to load project commands with error ' '``%s``, have you installed your project?' % error_msg) except Exception as err: if hasattr(self, 'options'): debug = self.options.debug else: debug = True if debug: log.exception(err) else: log.error(err) return 1 return self._run_subcommand(remainder) def _run_subcommand(self, argv): try: subcommand = self.command_manager.find_command(argv) except ValueError as err: if self.options.debug: log.exception(err) else: log.error(err) return 2 cmd_factory, cmd_name, sub_argv = subcommand kwargs = {} if 'cmd_name' in self._getargspec(cmd_factory)[0]: # Check to see if 'cmd_name' is in cmd_factory's args kwargs['cmd_name'] = cmd_name cmd = cmd_factory(self, self.options, **kwargs) try: full_name = ' '.join([self.NAME, cmd_name]) cmd_parser = cmd.get_parser(full_name) parsed_args = cmd_parser.parse_args(sub_argv) return cmd.run(parsed_args) except Exception as err: log.exception(err) return 4 def _load_commands_for_current_dir(self): egg_info_dir = find_egg_info_dir(os.getcwd()) if egg_info_dir: package_name = os.path.splitext(os.path.basename(egg_info_dir))[0] try: pkg_resources.require(package_name) except pkg_resources.DistributionNotFound as e: msg = '%sNot Found%s: %s (is it an installed Distribution?)' if str(e) != package_name: raise pkg_resources.DistributionNotFound(msg % (str(e) + ': ', ' for', package_name)) else: raise pkg_resources.DistributionNotFound(msg % ('', '', package_name)) dist = pkg_resources.get_distribution(package_name) for epname, ep in dist.get_entry_map('gearbox.plugins').items(): self.load_commands_for_package(ep.module_name) def load_commands_for_package(self, package_name): dist = pkg_resources.get_distribution(package_name) for epname, ep in dist.get_entry_map('gearbox.project_commands').items(): self.command_manager.commands[epname.replace('_', ' ')] = ep def _getargspec(self, func): if not hasattr(inspect, 'signature'): return inspect.getargspec(func.__init__) else: # pragma: no cover sig = inspect.signature(func) args = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD ] varargs = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_POSITIONAL ] varargs = varargs[0] if varargs else None varkw = [ p.name for p in sig.parameters.values() if p.kind == inspect.Parameter.VAR_KEYWORD ] varkw = varkw[0] if varkw else None defaults = tuple(( p.default for p in sig.parameters.values() if p.kind == inspect.Parameter.POSITIONAL_OR_KEYWORD and p.default is not p.empty )) or None return args, varargs, varkw, defaults def main(): args = sys.argv[1:] gearbox = GearBox() return gearbox.run(args) ```
{ "source": "jknaresh/django-graphql-ariadne", "score": 2 }
#### File: django_apollo_example/api/queries.py ```python from api.models import Post def list_posts_resolver(obj, info): try: posts = [post.to_dict() for post in Post.get_queryset().all()] print(posts) payload = {"success": True, "posts": posts} except Exception as error: payload = {"success": False, "errors": [str(error)]} return payload ```
{ "source": "jkneng/nlp_course", "score": 3 }
#### File: nlp_course/week02_classification/seminar_main.py ```python import pandas as pd import numpy as np import nltk # DATA preview data = pd.read_csv("./Train_rev1.csv", index_col=None) print(data.shape) data['Log1pSalary'] = np.log1p(data['SalaryNormalized']).astype('float32') text_columns = ["Title", "FullDescription"] categorical_columns = ["Category", "Company", "LocationNormalized", "ContractType", "ContractTime"] TARGET_COLUMN = "Log1pSalary" data[text_columns] = data[text_columns].fillna('NaN') data[categorical_columns] = data[categorical_columns].fillna('NaN') # cast missing values to string "NaN" print(data.sample(3)) # DATA preprocessing tokenizer = nltk.tokenize.WordPunctTokenizer() # YOUR CODE HERE for col in text_columns: data[col] = data[col].map(str.lower).map(tokenizer.tokenize) # data[text_columns] = data[text_columns].apply(tokenizer.tokenize) print("Tokenized:") print(data["FullDescription"][2::100000]) print(data["FullDescription"][2][:50]) # assert data["FullDescription"][2][:50] == 'mathematical modeller / simulation analyst / opera' # assert data["Title"][54321] == 'international digital account manager ( german )' print('Tokenizer is right') from collections import Counter token_counts = Counter() # Count how many times does each token occur in both "Title" and "FullDescription" in total #TODO <YOUR CODE> for col in text_columns: for wl in data[col]: token_counts.update(wl) print("Total unique tokens :", len(token_counts)) print('\n'.join(map(str, token_counts.most_common(n=5)))) print('...') print('\n'.join(map(str, token_counts.most_common()[-3:]))) assert token_counts.most_common(1)[0][1] in range(2600000, 2700000) assert len(token_counts) in range(200000, 210000) print('Correct!') min_count = 10 # tokens from token_counts keys that had at least min_count occurrences throughout the dataset tokens = sorted(t for t, c in token_counts.items() if c >= min_count) # Add a special tokens for unknown and empty words UNK, PAD = "UNK", "PAD" tokens = [UNK, PAD] + tokens print("Vocabulary size:", len(tokens)) assert type(tokens) == list assert len(tokens) in range(32000, 35000) assert 'me' in tokens assert UNK in tokens print("Correct!") #<your code here - dict of token name to its index in tokens> token_to_id = {tok: i for i, tok in enumerate(tokens)} # map text lines into neural network-digestible matrices. UNK_IX, PAD_IX = map(token_to_id.get, [UNK, PAD]) def as_matrix(sequences, max_len=None): """ Convert a list of tokens into a matrix with padding """ if isinstance(sequences[0], str): sequences = list(map(str.split, sequences)) max_len = min(max(map(len, sequences)), max_len or float('inf')) matrix = np.full((len(sequences), max_len), np.int32(PAD_IX)) for i,seq in enumerate(sequences): row_ix = [token_to_id.get(word, UNK_IX) for word in seq[:max_len]] matrix[i, :len(row_ix)] = row_ix return matrix from sklearn.feature_extraction import DictVectorizer # we only consider top-1k most frequent companies to minimize memory usage top_companies, top_counts = zip(*Counter(data['Company']).most_common(1000)) recognized_companies = set(top_companies) data["Company"] = data["Company"].apply(lambda comp: comp if comp in recognized_companies else "Other") categorical_vectorizer = DictVectorizer(dtype=np.float32, sparse=False) categorical_vectorizer.fit(data[categorical_columns].apply(dict, axis=1)) print('apply dict:\n', data[categorical_columns].apply(dict, axis=1)) from sklearn.model_selection import train_test_split data_train, data_val = train_test_split(data, test_size=0.2, random_state=42) data_train.index = range(len(data_train)) data_val.index = range(len(data_val)) print("Train size = ", len(data_train)) print("Validation size = ", len(data_val)) # data to tensor import torch def make_batch(data, max_len=None, word_dropout=0, device=torch.device('cpu')): """ Creates a keras-friendly dict from the batch data. :param word_dropout: replaces token index with UNK_IX with this probability :returns: a dict with {'title' : int64[batch, title_max_len] """ batch = {} batch["Title"] = as_matrix(data["Title"].values, max_len) batch["FullDescription"] = as_matrix(data["FullDescription"].values, max_len) batch['Categorical'] = categorical_vectorizer.transform(data[categorical_columns].apply(dict, axis=1)) if word_dropout != 0: batch["FullDescription"] = apply_word_dropout(batch["FullDescription"], 1. - word_dropout) if TARGET_COLUMN in data.columns: batch[TARGET_COLUMN] = data[TARGET_COLUMN].values return to_tensors(batch, device) def to_tensors(batch, device): batch_tensors = dict() for key, arr in batch.items(): if key in ["FullDescription", "Title"]: batch_tensors[key] = torch.tensor(arr, device=device, dtype=torch.int64) else: batch_tensors[key] = torch.tensor(arr, device=device) return batch_tensors def apply_word_dropout(matrix, keep_prop, replace_with=UNK_IX, pad_ix=PAD_IX,): dropout_mask = np.random.choice(2, np.shape(matrix), p=[keep_prop, 1 - keep_prop]) dropout_mask &= matrix != pad_ix return np.choose(dropout_mask, [matrix, np.full_like(matrix, replace_with)]) # model definition import torch import torch.nn as nn import torch.nn.functional as F class SalaryPredictor(nn.Module): def __init__(self, n_tokens=len(tokens), n_cat_features=len(categorical_vectorizer.vocabulary_), hid_size=64): super().__init__() # YOUR CODE HERE embedding_dim = 300 self.emb = nn.Embedding(n_tokens, embedding_dim) out_channels1, out_channels2 = 32, 32 kernel_size1, kernerl_size2 = 2, 2 self.conv1 = nn.Conv1d(embedding_dim, out_channels1, kernel_size1) self.conv2 = nn.Conv1d(embedding_dim, out_channels2, kernerl_size2) self.fc_cat = nn.Linear(n_cat_features, hid_size) self.fc_out = nn.Linear(out_channels1 + out_channels2 + hid_size, 1) @staticmethod def conv_and_pool(x, conv): x = conv(x) x = F.relu(x) x = F.max_pool1d(x, x.size(2)) x = x.squeeze(2) return x def forward(self, batch): # YOUR CODE HERE x1 = self.emb(batch['Title']) x1 = x1.permute(0, 2, 1) x2 = self.emb(batch['FullDescription']) x2 = x2.permute(0, 2, 1) x1 = self.conv_and_pool(x1, self.conv1) x2 = self.conv_and_pool(x2, self.conv2) x3 = self.fc_cat(batch['Categorical']) x = torch.cat((x1, x2, x3), 1) out = self.fc_out(x) out = out.squeeze(1) return out model = SalaryPredictor() batch = make_batch(data_train[:100]) criterion = nn.MSELoss() dummy_pred = model(batch) print(dummy_pred.shape) dummy_loss = criterion(dummy_pred, batch[TARGET_COLUMN]) assert dummy_pred.shape == torch.Size([100]) assert len(torch.unique(dummy_pred)) > 20, "model returns suspiciously few unique outputs. Check your initialization" assert dummy_loss.ndim == 0 and 0. <= dummy_loss <= 250., "make sure you minimize MSE" # train and eval def iterate_minibatches(data, batch_size=256, shuffle=True, cycle=False, device=torch.device('cpu'), **kwargs): """ iterates minibatches of data in random order """ while True: indices = np.arange(len(data)) if shuffle: indices = np.random.permutation(indices) for start in range(0, len(indices), batch_size): batch = make_batch(data.iloc[indices[start : start + batch_size]], **kwargs) yield batch if not cycle: break # training import tqdm BATCH_SIZE = 16 EPOCHS = 5 DEVICE = torch.device('cpu') # TODO DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # TODO # print metrics def print_metrics(model, data, batch_size=BATCH_SIZE, name="", **kw): squared_error = abs_error = num_samples = 0.0 model.eval() with torch.no_grad(): for batch in iterate_minibatches(data, batch_size=batch_size, shuffle=False, **kw): batch_pred = model(batch) squared_error += torch.sum(torch.square(batch_pred - batch[TARGET_COLUMN])) abs_error += torch.sum(torch.abs(batch_pred - batch[TARGET_COLUMN])) num_samples += len(batch_pred) mse = squared_error.detach().cpu().numpy() / num_samples mae = abs_error.detach().cpu().numpy() / num_samples print("%s results:" % (name or "")) print("Mean square error: %.5f" % mse) print("Mean absolute error: %.5f" % mae) return mse, mae model = SalaryPredictor().to(DEVICE) criterion = nn.MSELoss(reduction='sum') optimizer = torch.optim.SGD(model.parameters(), lr=1e-4) for epoch in range(EPOCHS): print(f"epoch: {epoch}") model.train() for i, batch in tqdm.tqdm(enumerate( iterate_minibatches(data_train, batch_size=BATCH_SIZE, device=DEVICE)), total=len(data_train) // BATCH_SIZE ): pred = model(batch) loss = criterion(pred, batch[TARGET_COLUMN]) optimizer.zero_grad() loss.backward() optimizer.step() print_metrics(model, data_val) # Bonus part: explaining model predictions def explain(model, sample, col_name='Title'): """ Computes the effect each word had on model predictions """ sample = dict(sample) sample_col_tokens = [tokens[token_to_id.get(tok, 0)] for tok in sample[col_name].split()] data_drop_one_token = pd.DataFrame([sample] * (len(sample_col_tokens) + 1)) for drop_i in range(len(sample_col_tokens)): data_drop_one_token.loc[drop_i, col_name] = ' '.join(UNK if i == drop_i else tok for i, tok in enumerate(sample_col_tokens)) *predictions_drop_one_token, baseline_pred = model.predict(make_batch(data_drop_one_token))[:, 0] diffs = baseline_pred - predictions_drop_one_token return list(zip(sample_col_tokens, diffs)) from IPython.display import HTML, display_html def draw_html(tokens_and_weights, cmap=plt.get_cmap("bwr"), display=True, token_template="""<span style="background-color: {color_hex}">{token}</span>""", font_style="font-size:14px;" ): def get_color_hex(weight): rgba = cmap(1. / (1 + np.exp(weight)), bytes=True) return '#%02X%02X%02X' % rgba[:3] tokens_html = [ token_template.format(token=token, color_hex=get_color_hex(weight)) for token, weight in tokens_and_weights ] raw_html = """<p style="{}">{}</p>""".format(font_style, ' '.join(tokens_html)) if display: display_html(HTML(raw_html)) return raw_html i = 36605 tokens_and_weights = explain(model, data.loc[i], "Title") draw_html([(tok, weight * 5) for tok, weight in tokens_and_weights], font_style='font-size:20px;'); tokens_and_weights = explain(model, data.loc[i], "FullDescription") draw_html([(tok, weight * 10) for tok, weight in tokens_and_weights]); i = 12077 tokens_and_weights = explain(model, data.loc[i], "Title") draw_html([(tok, weight * 5) for tok, weight in tokens_and_weights], font_style='font-size:20px;'); tokens_and_weights = explain(model, data.loc[i], "FullDescription") draw_html([(tok, weight * 10) for tok, weight in tokens_and_weights]); i = np.random.randint(len(data)) print("Index:", i) print("Salary (gbp):", np.expm1(model.predict(make_batch(data.iloc[i: i+1]))[0, 0])) tokens_and_weights = explain(model, data.loc[i], "Title") draw_html([(tok, weight * 5) for tok, weight in tokens_and_weights], font_style='font-size:20px;'); tokens_and_weights = explain(model, data.loc[i], "FullDescription") draw_html([(tok, weight * 10) for tok, weight in tokens_and_weights]); ```
{ "source": "jknewson/WiMLib", "score": 2 }
#### File: WIMLib/Resources/Result.py ```python import json #endregion class Result(object): def __init__(self,identifier,descr = ""): self.ID = identifier self.Description = descr self.Values = {} ``` #### File: WiMLib/WIMLib/SpatialOps.py ```python #------------------------------------------------------------------------------ #----- SpatialOps.py ------------------------------------------------------------ #------------------------------------------------------------------------------ # # copyright: 2016 WiM - USGS # # authors: <NAME> - Ph.D. Student NC State University # <NAME> - USGS Web Informatics and Mapping (WiM) # # purpose: Contains reusable global spatial methods # # usage: THIS SECTION NEEDS TO BE UPDATED # # discussion: An explaination of different overlay tools is provided by the # link below. # # See: # https://blogs.esri.com/esri/arcgis/2012/10/12/comparingoverlaytools/ # # dates: 05 NOV 2016 jkn - Created / Date notation edited by jw # 03 APR 2017 jw - Modified # #------------------------------------------------------------------------------ #region "Imports" import shutil import sys import os from os.path import split import tempfile import arcpy from arcpy.sa import * from arcpy import env import traceback import json from WIMLib import WiMLogging from contextlib import contextmanager import PrismOps import numpy as np #endregion ##-------1---------2---------3---------4---------5---------6---------7---------8 ## SpatialOps ##-------+---------+---------+---------+---------+---------+---------+---------+ class SpatialOps(object): #region Constructor def __init__(self, workspacePath): self._WorkspaceDirectory = workspacePath tempdir = os.path.join(self._WorkspaceDirectory,"Temp") #make sure tempdir exists if not os.path.exists(tempdir): os.makedirs(tempdir) self._TempLocation = tempfile.mkdtemp(dir=tempdir) arcpy.env.workspace = self._TempLocation arcpy.env.overwriteOutput = True self._sm("initialized spatialOps") def __exit__(self, exc_type, exc_value, traceback): try: shutil.rmtree(self._TempLocation, True) arcpy.ResetEnvironments() arcpy.ClearEnvironment("workspace") except: self._sm("Failed to remove temp space on close","ERROR",50) #endregion #region Feature methods def Select(self, inFeature, intersectfeature, fields): arcpy.Intersect_analysis([inFeature,intersectfeature], "intersectOutput") def ProjectFeature(self, inFeature, sr): #http://joshwerts.com/blog/2015/09/10/arcpy-dot-project-in-memory-featureclass/ inSR = None out_projected_fc = None path ="" name ="" source_curs = None ins_curs = None row = None try: inSR = arcpy.Describe(inFeature).spatialReference if (inSR.name == sr.name): return inFeature name = arcpy.Describe(inFeature).name +"_proj" out_projected_fc = arcpy.management.CreateFeatureclass(self._TempLocation, name, arcpy.Describe(inFeature).shapeType, template=inFeature, spatial_reference=sr) # specify copy of all fields from source to destination fields = ["Shape@"] + [f.name for f in arcpy.ListFields(inFeature) if not f.required] # project source geometries on the fly while inserting to destination featureclass with arcpy.da.SearchCursor(inFeature, fields, spatial_reference=sr) as source_curs,\ arcpy.da.InsertCursor(out_projected_fc, fields) as ins_curs: for row in source_curs: ins_curs.insertRow(row) #next #end with return out_projected_fc except: tb = traceback.format_exc() raise Exception("Failed to project feature " +tb) finally: inSR = None out_projected_fc= None path ="" name ="" if source_curs is not None: del source_curs if ins_curs is not None: del ins_curs if row is not None: del row def PersistFeature(self,inFeature, path, name): arcpy.FeatureClassToFeatureClass_conversion(inFeature,path,name) def getAreaSqMeter(self, inFeature): AreaValue = 0 try: sr = arcpy.Describe(inFeature).spatialReference if(sr.type == "Geographic"): #USA_Contiguous_Albers_Equal_Area_Conic_USGS_version: inFeature = self.ProjectFeature(inFeature,arcpy.SpatialReference(102039))[0] sr = arcpy.Describe(inFeature).spatialReference cursor = arcpy.da.SearchCursor(inFeature, "SHAPE@") for row in cursor: AreaValue += row[0].area * sr.metersPerUnit * sr.metersPerUnit return AreaValue if (AreaValue > 0) else None except: tb = traceback.format_exc() self._sm("Error computing area "+tb,"ERROR") return None def getAreaSqKilometer(self, inFeature): AreaValue = 0 try: sr = arcpy.Describe(inFeature).spatialReference if(sr.type == "Geographic"): #USA_Contiguous_Albers_Equal_Area_Conic_USGS_version: inFeature = self.ProjectFeature(inFeature,arcpy.SpatialReference(102039))[0] sr = arcpy.Describe(inFeature).spatialReference cursor = arcpy.da.SearchCursor(inFeature, "SHAPE@") for row in cursor: AreaValue += row[0].getArea(units='SQUAREKILOMETERS') * sr.metersPerUnit * sr.metersPerUnit return AreaValue if (AreaValue > 0) else None except: tb = traceback.format_exc() self._sm("Error computing area "+tb,"ERROR") return None def spatialJoin(self, inFeature, maskfeature, fieldStr='',methodStr ='' ): mask = None fieldmappings = None try: sr = arcpy.Describe(inFeature).spatialReference mask = self.ProjectFeature(maskfeature,sr) out_projected_fc = os.path.join(self._TempLocation, "ovrlytmpsj") if(fieldStr != '' and methodStr != ''): # Create a new fieldmappings and add the two input feature classes. fieldmappings = arcpy.FieldMappings() fieldmappings.addTable(mask) fieldmappings.addTable(inFeature) #for each field + method methods = [x.strip() for x in methodStr.split(';')] Fields = [x.strip() for x in fieldStr.split(';')] #sm(Fields.count + " Fields & " + methods.count + " Methods") for field in Fields: fieldIndex = fieldmappings.findFieldMapIndex(field) for method in methods: map = self.__getFieldMap(fieldmappings,fieldIndex,method+field,method) if map is not None: fieldmappings.addFieldMap(map) #next method #next Field self._sm("performing spatial join ...") return arcpy.SpatialJoin_analysis(maskfeature, inFeature, out_projected_fc,'', '', fieldmappings,"COMPLETELY_CONTAINS") except: tb = traceback.format_exc() self._sm(tb,"Error",152) finally: mask = None #do not release out_projected_fc = None def spatialOverlay(self, inFeature, maskfeature, matchOption = "COMPLETELY_CONTAINS"): mask = None try: sr = arcpy.Describe(inFeature).spatialReference mask = self.ProjectFeature(maskfeature,sr) out_projected_fc = os.path.join(self._TempLocation, "ovrlytmpso") self._sm("performing spatial join ...") return arcpy.SpatialJoin_analysis(maskfeature, inFeature, out_projected_fc,'JOIN_ONE_TO_MANY', 'KEEP_COMMON', None, matchOption) except: tb = traceback.format_exc() self._sm(tb,"Error",152) finally: mask = None #do not release out_projected_fc = None def getFeatureStatistic(self, inFeature, maskFeature, statisticRules, fieldStr, WhereClause = "", matchOption = "COMPLETELY_CONTAINS"): ''' computes the statistic Statistic rules, semicolon separated SUM—Adds the total value for the specified field. MEAN—Calculates the average for the specified field. MIN—Finds the smallest value for all records of the specified field. MAX—Finds the largest value for all records of the specified field. RANGE—Finds the range of values (MAX minus MIN) for the specified field. STD—Finds the standard deviation on values in the specified field. COUNT—Finds the number of values included in statistical calculations. This counts each value except null values. To determine the number of null values in a field, use the COUNT statistic on the field in question, and a COUNT statistic on a different field which does not contain nulls (for example, the OID if present), then subtract the two values. FIRST—Finds the first record in the Input Table and uses its specified field value. LAST—Finds the last record in the Input Table and uses its specified field value. ''' map = [] values = {} cursor = None tblevalue=None spOverlay = None try: methods = [x.strip() for x in statisticRules.split(';')] Fields = [x.strip() for x in fieldStr.split(';')] #sm(Fields.count + " Fields & " + methods.count + " Methods") for field in Fields: for method in methods: map.append([field,method]) #next method #next Field spOverlay = self.spatialOverlay(inFeature,maskFeature,matchOption) #Validate that we have values within the polygon/basin # If we do not, set all values equal to zero if(int(arcpy.GetCount_management(spOverlay).getOutput(0)) < 1): self._sm("Basin contains no features", "WARNING") for m in map: values[m[0]]={m[1]: float(0)} return values #endif #If we do have values, then carry out spatial statistics tblevalue = arcpy.Statistics_analysis(spOverlay,os.path.join(self._TempLocation, "ftmp"),map) mappedFeilds = [x[1]+"_"+x[0] for x in map] whereClause = WhereClause self._sm("The WhereClause is: " + whereClause) cursor = arcpy.da.SearchCursor(tblevalue, mappedFeilds, whereClause) try: for row in cursor: i=0 for m in map: values[m[0]]={m[1]: float(row[i])} i+=1 return values #Is an except catch for when row contains nothing except: self._sm("Now rows were found in cursor. Setting values to zero.", "WARNING") for m in map: values[m[0]]={m[1]: float(0)} return values except: tb = traceback.format_exc() self._sm("Failed to get raster statistic " +tb,"ERROR",229) finally: #local cleanup if cursor is not None: del cursor; cursor = None if tblevalue is not None: del tblevalue; tblevalue = None if spOverlay is not None: del spOverlay; spOverlay = None def getFeatureCount(self,inFeature, maskFeature): ''' Finds the number of features ''' try: spOverlay = self.spatialOverlay(inFeature,maskFeature) val = int(arcpy.GetCount_management(spOverlay).getOutput(0)) return val except: tb = traceback.format_exc() self._sm("Failed to get raster statistic " +tb,"ERROR",229) finally: #local cleanup if spOverlay is not None: del spOverlay; spOverlay = None #endregion #region Raster methods def setpRAE(self,snapgds, directory,extentgds = None, maskgds = None): """Set Raster Analysis Environment. snapgds: snap IGeodataset directory: workspace and scratch workspace directory extentgds: extent IGeodataset maskgds: mask IGeodataset """ try: raise Exception("This is a work in progress. Its not quite right yet") #https://pro.arcgis.com/en/pro-app/arcpy/classes/env.htm arcpy.ResetEnvironments() pExists = os.path.exists(directory) #set spatial reference if maskgds is not None: #arcpy.env.outputCoordinateSystem = arcpy.Describe(maskgds).spatialReference arcpy.env.extent = arcpy.Describe(maskgds).extent #arcpy.env.mask = maskgds else: arcpy.env.outputCoordinateSystem = arcpy.Describe(snapgds).spatialReference #endif #set ouput workspace - check exists first and make if not pExists: #create one os.makedirs(directory) #endif arcpy.env.workspace = directory arcpy.env.scratchWorkspace = directory #Cell Size desc = arcpy.Describe(snapgds) arcpy.env.cellSize = snapgds #extent #if extentgds is not None: #arcpy.env.extent = extentgds arcpy.env.snapRaster = snapgds except: arcpy.ResetEnvironments() tb = traceback.format_exc() return def getValueAtCentroid(self, inFeature, inRaster): try: sr = arcpy.Describe(inRaster).spatialReference i=0 totvalue = 0 shapeName = arcpy.Describe(inFeature).shapeFieldName with arcpy.da.SearchCursor(inFeature, "SHAPE@", spatial_reference=sr) as source_curs: for row in source_curs: i = i + 1 feature = row[0] value = arcpy.GetCellValue_management(inRaster,str(feature.centroid.X) + ' ' + str(feature.centroid.Y)).getOutput(0) totvalue = float(value)/i return totvalue except: tb = traceback.format_exc() self._sm("Failed to get raster at point " +tb,"ERROR",220) raise Exception("Failed to get raster at point " +tb) def getRasterStatistic(self,inRaster, maskFeature, statisticRule): ''' computes the statistic Statistic rules: MINIMUM —Smallest value of all cells in the input raster. MAXIMUM —Largest value of all cells in the input raster. MEAN —Average of all cells in the input raster. STD —Standard deviation of all cells in the input raster. UNIQUEVALUECOUNT —Number of unique values in the input raster. TOP —Top or YMax value of the extent. LEFT —Left or XMin value of the extent. RIGHT —Right or XMax value of the extent. BOTTOM —Bottom or YMin value of the extent. CELLSIZEX —Cell size in the x-direction. CELLSIZEY —Cell size in the y-direction. VALUETYPE —Type of the cell value in the input raster: 0 = 1-bit 1 = 2-bit 2 = 4-bit 3 = 8-bit unsigned integer 4 = 8-bit signed integer 5 = 16-bit unsigned integer 6 = 16-bit signed integer 7 = 32-bit unsigned integer 8 = 32-bit signed integer 9 = 32-bit floating point 10 = 64-bit double precision 11 = 8-bit complex 12 = 16-bit complex 13 = 32-bit complex 14 = 64-bit complex COLUMNCOUNT —Number of columns in the input raster. ROWCOUNT —Number of rows in the input raster. BANDCOUNT —Number of bands in the input raster. ANYNODATA —Returns whether there is NoData in the raster. ALLNODATA —Returns whether all the pixels are NoData. This is the same as ISNULL. SENSORNAME —Name of the sensor. PRODUCTNAME —Product name related to the sensor. ACQUISITIONDATE —Date that the data was captured. SOURCETYPE —Source type. CLOUDCOVER —Amount of cloud cover as a percentage. SUNAZIMUTH —Sun azimuth, in degrees. SUNELEVATION —Sun elevation, in degrees. SENSORAZIMUTH —Sensor azimuth, in degrees. SENSORELEVATION —Sensor elevation, in degrees. OFFNADIR —Off-nadir angle, in degrees. WAVELENGTH —Wavelength range of the band, in nanometers. ''' outExtractByMask = None try: arcpy.env.cellSize = "MINOF" sr = arcpy.Describe(inRaster).spatialReference mask = self.ProjectFeature(maskFeature,sr) self._LicenseManager("Spatial") outExtractByMask = arcpy.sa.ExtractByMask(inRaster, mask) value = arcpy.GetRasterProperties_management(outExtractByMask, statisticRule) cellsize = float(arcpy.GetRasterProperties_management(inRaster, 'CELLSIZEX').getOutput(0))**2 # -- Added by JWX from below. return float(value.getOutput(0)) except: tb = traceback.format_exc() self._sm("WARNING: Failed to get raster statistic computing centroid value.","WARNING",229) cellsize = float(arcpy.GetRasterProperties_management(inRaster, 'CELLSIZEX').getOutput(0))**2 self._sm("Raster cell size: " + str(cellsize) , "WARNING") maskArea = self.getAreaSqMeter(self.mask) maskArea = maskArea*0.000001 centValue = self.getValueAtCentroid(maskFeature,inRaster) # try getting centroid if centValue in ['NaN', 'none', 0]: self._sm("WARNING: Raster statistic AND get value at centroid failed. Results likely erroneous.","WARNING") return ((maskArea/cellsize)*centValue)*cellsize #Added cellsize multiplier -- JWX finally: outExtractByMask = None mask = None if sr is not None: del sr; sr = None self._LicenseManager("Spatial",False) def getPrismStatistic(self,inRaster, maskFeature, statisticRules, timeRange, timeMethod, dataPath): ''' computes the statistic Statistic rules: MINIMUM —Smallest value of all cells in the input raster. MAXIMUM —Largest value of all cells in the input raster. MEAN —Average of all cells in the input raster. STD —Standard deviation of all cells in the input raster. UNIQUEVALUECOUNT —Number of unique values in the input raster. TOP —Top or YMax value of the extent. LEFT —Left or XMin value of the extent. RIGHT —Right or XMax value of the extent. BOTTOM —Bottom or YMin value of the extent. CELLSIZEX —Cell size in the x-direction. CELLSIZEY —Cell size in the y-direction. VALUETYPE —Type of the cell value in the input raster: 0 = 1-bit 1 = 2-bit 2 = 4-bit 3 = 8-bit unsigned integer 4 = 8-bit signed integer 5 = 16-bit unsigned integer 6 = 16-bit signed integer 7 = 32-bit unsigned integer 8 = 32-bit signed integer 9 = 32-bit floating point 10 = 64-bit double precision 11 = 8-bit complex 12 = 16-bit complex 13 = 32-bit complex 14 = 64-bit complex COLUMNCOUNT —Number of columns in the input raster. ROWCOUNT —Number of rows in the input raster. BANDCOUNT —Number of bands in the input raster. ANYNODATA —Returns whether there is NoData in the raster. ALLNODATA —Returns whether all the pixels are NoData. This is the same as ISNULL. Perhaps not relevant in this case # SENSORNAME —Name of the sensor. # PRODUCTNAME —Product name related to the sensor. # ACQUISITIONDATE —Date that the data was captured. # SOURCETYPE —Source type. # CLOUDCOVER —Amount of cloud cover as a percentage. # SUNAZIMUTH —Sun azimuth, in degrees. # SUNELEVATION —Sun elevation, in degrees. # SENSORAZIMUTH —Sensor azimuth, in degrees. # SENSORELEVATION —Sensor elevation, in degrees. # OFFNADIR —Off-nadir angle, in degrees. # WAVELENGTH —Wavelength range of the band, in nanometers. ''' try: arcpy.env.cellSize = "MINOF" sr = arcpy.Describe(inRaster).spatialReference mask = self.ProjectFeature(maskFeature,sr) self._LicenseManager("Spatial") outExtractByMask = arcpy.sa.ExtractByMask(inRaster, mask) rules = ['MINIMUM', 'MAXIMUM','MEAN','STD','UNIQUEVALUECOUNT', 'SUM'] statisticRules = [x.upper() for x in statisticRules.split(';')] computation = np.all([x in rules for x in statisticRules]) if computation == True: rasterCellIdx = arcpy.RasterToNumPyArray(outExtractByMask, nodata_to_value = -9999.00) return float(PrismOps.get_statistic(rasterCellIdx, dataPath, statisticRules, timeRange, timeMethod)) else: value = arcpy.GetRasterProperties_management(outExtractByMask, statisticRules[0]) return float(value.getOutput(0)) except: tb = traceback.format_exc() self._sm("Failed to get raster statistic " +tb,"ERROR",229) cellsize = float(arcpy.GetRasterProperties_management(inRaster, 'CELLSIZEX').getOutput(0))**2 self._sm("Raster cell size: " + str(cellsize) , "ERROR") # try getting centroid return self.getValueAtCentroid(maskFeature,inRaster) finally: outExtractByMask = None mask = None if sr is not None: del sr; sr = None self._LicenseManager("Spatial",False) def getRasterPercentAreas(self,inRaster, maskFeature, uniqueRasterIDfield='VALUE',rasterValueField='COUNT'): ''' computes the statistic ''' results ={} try: arcpy.env.cellSize = "MINOF" arcpy.env.overwriteOutput = True #define land use key value dictionary with all possible values for row in arcpy.da.SearchCursor(inRaster, uniqueRasterIDfield): results[str(row[0])] = 0 #next row #make maskRaster outExtractByMask = arcpy.sa.ExtractByMask(inRaster, maskFeature) #arcpy.BuildRasterAttributeTable_management(outExtractByMask, "Overwrite") rows = arcpy.SearchCursor(outExtractByMask, "", "", "VALUE; COUNT") for row in rows: v = row.getValue("VALUE") c = row.getValue("COUNT") print v,c ##get total cell count for percent area computation #field = arcpy.da.TableToNumPyArray('in_memory/mask.img', rasterValueField, skip_nulls=True) #sum = field[rasterValueField].sum() #loop over masked raster rows for row in arcpy.da.SearchCursor('in_memory/mask123.img', [uniqueRasterIDfield, rasterValueField] ): #get values value, count = row percentArea = float(count) results[str(row[0])] = percentArea #next row except: tb = traceback.format_exc() self._sm("Error computing Raster Percent Area " +tb,"ERROR",289) return results def getRasterPercent(self,inRaster, maskFeature, ClassificationCodes=None, uniqueRasterIDfield='VALUE',rasterValueField='COUNT'): ''' computes the raster % statistic classificationCodes = comma separated classification ID's rCode is the classification requested code[s] as comma separated string ''' attField = None attExtract = None constfield = None const1 = None mask = None sr = None try: sr = arcpy.Describe(inRaster).spatialReference mask = self.ProjectFeature(maskFeature,sr) arcpy.env.cellSize = inRaster arcpy.env.snapRaster = inRaster try: arcpy.env.mask = mask except: self._LicenseManager("Spatial") outExtractByMask = ExtractByMask(inRaster, mask) arcpy.env.mask = outExtractByMask self._LicenseManager("Spatial", False) arcpy.env.extent = arcpy.Describe(mask).extent arcpy.env.outputCoordinateSystem = sr # Check out the ArcGIS Spatial Analyst extension license self._LicenseManager("Spatial") #creates a constant of the enviroment const1 = arcpy.sa.CreateConstantRaster(1) const1.save(os.path.join(self._TempLocation,"const1.img")) constfield = arcpy.da.TableToNumPyArray(os.path.join(self._TempLocation,"const1.img"), rasterValueField, skip_nulls=True) totalCount = float(constfield[rasterValueField].sum()) if ClassificationCodes is not None: SQLClause = " OR ".join(map(lambda s: uniqueRasterIDfield +"=" + s,ClassificationCodes.strip().split(","))) else: SQLClause = "VALUE > 0" # Execute ExtractByAttributes #ensure spatial analyst is checked out attExtract = arcpy.sa.ExtractByAttributes(inRaster, SQLClause) #must save raster unique_name_img = arcpy.CreateUniqueName(os.path.join(self._TempLocation, "xxx.img")) attExtract.save(unique_name_img) if self.isRasterALLNoData(attExtract): return float(0) #Does not respect the workspace dir, so need to set it explicitly attField = arcpy.da.TableToNumPyArray(unique_name_img, rasterValueField, skip_nulls=True) #I assume I should use the same variable over, but it's unclear to me -- JWX results = (float(attField[rasterValueField].sum())/totalCount)*100 #For a percentage the result should be multiplied by 100 -- JWX except: tb = traceback.format_exc() self._sm("Error computing Raster Percent Area " +tb,"ERROR",289) return self.getValueAtCentroid(mask, inRaster) finally: #local clean up if attField is not None: del attField; attField = None attExtract = None if constfield is not None: del constfield; constfield = None const1 = None mask = None if sr is not None: del sr; sr = None self._LicenseManager("Spatial",False) return results def isRasterALLNoData(self,inRaster): try: #isNull method returns 1 if the input value is NoData, and 0 if not if inRaster.maximum is None and inRaster.minimum is None: return True else: return False; except: tb = traceback.format_exc() self._sm("Error computing Raster Percent Area " +tb,"ERROR",289) return True #endregion #region helper methods def _LicenseManager(self, extension, checkout=True): v = None licAvailability = arcpy.CheckExtension(extension) if(licAvailability == "Available"): if(checkout):v = arcpy.CheckOutExtension(extension) else: v= arcpy.CheckInExtension(extension) else:raise Exception("Lisense "+ extension +" "+ licAvailability) print v def __getFieldMap(self, mappedFields,FieldIndex, newName, mergeRule): ''' Maps the field Merge rules: First The first source value. Last The last source value. Join A concatenation of source values. You can use a delimiter to separate multiple input values. Sum The sum total of all source values. Mean The mean (average) of all source values. Median The median (middle) of all source values. Mode The source value that is the most common or has the highest frequency. Min The minimum (lowest) source value. Max The maximum (highest) source value. Standard deviation The standard deviation of all source values. Count The number of source values, excluding null values. Range The absolute difference between the minimum and maximum source values. ''' try: fieldmap = mappedFields.getFieldMap(FieldIndex) # Get the output field's properties as a field object field = fieldmap.outputField # Rename the field and pass the updated field object back into the field map field.name = newName field.aliasName = newName fieldmap.outputField = field fieldmap.mergeRule = mergeRule return fieldmap except: tb = traceback.format_exc() self._sm(tb+ " Failed to map "+ newName) return None def _sm(self,msg,type="INFO", errorID=0): WiMLogging.sm(msg,type="INFO", errorID=0) #endregion ``` #### File: WiMLib/WIMLib/UnitConverter.py ```python linear = { 'KMtoM': 1000, 'KMtoCM': 100000, 'KMtoMM': 1000000, 'KMtoMI': 0.621371, 'KMtoFT': 3280.84, 'KMtoIN': 39370.1, 'MtoKM': 0.001, 'MtoCM': 100, 'MtoMM': 1000, 'MtoMI': 0.0006213712, 'MtoFT': 0.3048, 'MtoIN': 39.37007874, 'CMtoKM': 0.00001, 'CMtoM': 0.1, 'CMtoMM': 10, 'CMtoMI': 0.0000621371, 'CMtoFT': 0.0328084, 'CMtoIN': 0.393701, 'MMtoKM': 0.000006, 'MMtoM': 0.001, 'MMtoCM': 0.1, 'MMtoMI': 0.00000062137, 'MMtoFT': 0.00328084, 'MMtoIN': 0.0393701, 'MItoKM': 1.60934, 'MItoM': 1609.34, 'MItoCM': 160934, 'MItoMM': 1609000, 'MItoFT': 5280, 'MItoIN': 63360, 'FTtoKM': 0.0003048, 'FTtoM': 3.28083, 'FTtoCM': 30.48, 'FTtoMM': 304.8, 'FTtoMI': 0.000189394, 'FTtoIN': 12, 'INtoKM': 0.0000245, 'INtoM': 0.0254, 'INtoCM': 2.54, 'INtoMM': 25.4, 'INtoMI': 0.0000157828, 'INtoFT': 0.0833333, } #Rudimentary module def Convert(value, inUnits, outUnits, dimentionality): if inUnits == outUnits: print "No Conversion Needed" else: print "In units do not match output units. A conversion will be made." #Create a string for the conversion look up rule conversionRule = '%s to %s' % (inUnits, outUnits) #Build conversion rule conversionRule.replace(" ", "") #Convert to look-up key #Choose dictionary based on being a line, area, or volume if dimentionality == 1: outValue = value * linear[conversionRule] return outValue elif dimentionality == 2: outValue = value * area[conversionRule] #Needs to be added later return outValue elif dimentionality == 3: outValue = value * volume[conversionRule] #Needs to be added later return outValue else: print "Dimentionality was undefined." ```
{ "source": "jknielse/termtable", "score": 2 }
#### File: termtable/termtable/colour_helpers.py ```python import itertools from termtable.utils import RamCacheWrapper _COLOUR_LISTS = { 'basic': [ ('00', '000000'), ('01', '800000'), ('02', '008000'), ('03', '808000'), ('04', '000080'), ('05', '800080'), ('06', '008080'), ('07', 'c0c0c0'), ('08', '808080'), ('09', 'ff0000'), ('10', '00ff00'), ('11', 'ffff00'), ('12', '0000ff'), ('13', 'ff00ff'), ('14', '00ffff'), ('15', 'ffffff'), ], 'extended': [ ('16', '000000'), ('17', '00005f'), ('18', '000087'), ('19', '0000af'), ('20', '0000d7'), ('21', '0000ff'), ('22', '005f00'), ('23', '005f5f'), ('24', '005f87'), ('25', '005faf'), ('26', '005fd7'), ('27', '005fff'), ('28', '008700'), ('29', '00875f'), ('30', '008787'), ('31', '0087af'), ('32', '0087d7'), ('33', '0087ff'), ('34', '00af00'), ('35', '00af5f'), ('36', '00af87'), ('37', '00afaf'), ('38', '00afd7'), ('39', '00afff'), ('40', '00d700'), ('41', '00d75f'), ('42', '00d787'), ('43', '00d7af'), ('44', '00d7d7'), ('45', '00d7ff'), ('46', '00ff00'), ('47', '00ff5f'), ('48', '00ff87'), ('49', '00ffaf'), ('50', '00ffd7'), ('51', '00ffff'), ('52', '5f0000'), ('53', '5f005f'), ('54', '5f0087'), ('55', '5f00af'), ('56', '5f00d7'), ('57', '5f00ff'), ('58', '5f5f00'), ('59', '5f5f5f'), ('60', '5f5f87'), ('61', '5f5faf'), ('62', '5f5fd7'), ('63', '5f5fff'), ('64', '5f8700'), ('65', '5f875f'), ('66', '5f8787'), ('67', '5f87af'), ('68', '5f87d7'), ('69', '5f87ff'), ('70', '5faf00'), ('71', '5faf5f'), ('72', '5faf87'), ('73', '5fafaf'), ('74', '5fafd7'), ('75', '5fafff'), ('76', '5fd700'), ('77', '5fd75f'), ('78', '5fd787'), ('79', '5fd7af'), ('80', '5fd7d7'), ('81', '5fd7ff'), ('82', '5fff00'), ('83', '5fff5f'), ('84', '5fff87'), ('85', '5fffaf'), ('86', '5fffd7'), ('87', '5fffff'), ('88', '870000'), ('89', '87005f'), ('90', '870087'), ('91', '8700af'), ('92', '8700d7'), ('93', '8700ff'), ('94', '875f00'), ('95', '875f5f'), ('96', '875f87'), ('97', '875faf'), ('98', '875fd7'), ('99', '875fff'), ('100', '878700'), ('101', '87875f'), ('102', '878787'), ('103', '8787af'), ('104', '8787d7'), ('105', '8787ff'), ('106', '87af00'), ('107', '87af5f'), ('108', '87af87'), ('109', '87afaf'), ('110', '87afd7'), ('111', '87afff'), ('112', '87d700'), ('113', '87d75f'), ('114', '87d787'), ('115', '87d7af'), ('116', '87d7d7'), ('117', '87d7ff'), ('118', '87ff00'), ('119', '87ff5f'), ('120', '87ff87'), ('121', '87ffaf'), ('122', '87ffd7'), ('123', '87ffff'), ('124', 'af0000'), ('125', 'af005f'), ('126', 'af0087'), ('127', 'af00af'), ('128', 'af00d7'), ('129', 'af00ff'), ('130', 'af5f00'), ('131', 'af5f5f'), ('132', 'af5f87'), ('133', 'af5faf'), ('134', 'af5fd7'), ('135', 'af5fff'), ('136', 'af8700'), ('137', 'af875f'), ('138', 'af8787'), ('139', 'af87af'), ('140', 'af87d7'), ('141', 'af87ff'), ('142', 'afaf00'), ('143', 'afaf5f'), ('144', 'afaf87'), ('145', 'afafaf'), ('146', 'afafd7'), ('147', 'afafff'), ('148', 'afd700'), ('149', 'afd75f'), ('150', 'afd787'), ('151', 'afd7af'), ('152', 'afd7d7'), ('153', 'afd7ff'), ('154', 'afff00'), ('155', 'afff5f'), ('156', 'afff87'), ('157', 'afffaf'), ('158', 'afffd7'), ('159', 'afffff'), ('160', 'd70000'), ('161', 'd7005f'), ('162', 'd70087'), ('163', 'd700af'), ('164', 'd700d7'), ('165', 'd700ff'), ('166', 'd75f00'), ('167', 'd75f5f'), ('168', 'd75f87'), ('169', 'd75faf'), ('170', 'd75fd7'), ('171', 'd75fff'), ('172', 'd78700'), ('173', 'd7875f'), ('174', 'd78787'), ('175', 'd787af'), ('176', 'd787d7'), ('177', 'd787ff'), ('178', 'd7af00'), ('179', 'd7af5f'), ('180', 'd7af87'), ('181', 'd7afaf'), ('182', 'd7afd7'), ('183', 'd7afff'), ('184', 'd7d700'), ('185', 'd7d75f'), ('186', 'd7d787'), ('187', 'd7d7af'), ('188', 'd7d7d7'), ('189', 'd7d7ff'), ('190', 'd7ff00'), ('191', 'd7ff5f'), ('192', 'd7ff87'), ('193', 'd7ffaf'), ('194', 'd7ffd7'), ('195', 'd7ffff'), ('196', 'ff0000'), ('197', 'ff005f'), ('198', 'ff0087'), ('199', 'ff00af'), ('200', 'ff00d7'), ('201', 'ff00ff'), ('202', 'ff5f00'), ('203', 'ff5f5f'), ('204', 'ff5f87'), ('205', 'ff5faf'), ('206', 'ff5fd7'), ('207', 'ff5fff'), ('208', 'ff8700'), ('209', 'ff875f'), ('210', 'ff8787'), ('211', 'ff87af'), ('212', 'ff87d7'), ('213', 'ff87ff'), ('214', 'ffaf00'), ('215', 'ffaf5f'), ('216', 'ffaf87'), ('217', 'ffafaf'), ('218', 'ffafd7'), ('219', 'ffafff'), ('220', 'ffd700'), ('221', 'ffd75f'), ('222', 'ffd787'), ('223', 'ffd7af'), ('224', 'ffd7d7'), ('225', 'ffd7ff'), ('226', 'ffff00'), ('227', 'ffff5f'), ('228', 'ffff87'), ('229', 'ffffaf'), ('230', 'ffffd7'), ('231', 'ffffff'), ], 'greyscale': [ ('232', '080808'), ('233', '121212'), ('234', '1c1c1c'), ('235', '262626'), ('236', '303030'), ('237', '3a3a3a'), ('238', '444444'), ('239', '4e4e4e'), ('240', '585858'), ('241', '626262'), ('242', '6c6c6c'), ('243', '767676'), ('244', '808080'), ('245', '8a8a8a'), ('246', '949494'), ('247', '9e9e9e'), ('248', 'a8a8a8'), ('249', 'b2b2b2'), ('250', 'bcbcbc'), ('251', 'c6c6c6'), ('252', 'd0d0d0'), ('253', 'dadada'), ('254', 'e4e4e4'), ('255', 'eeeeee'), ] } def _build_map(colour_tuples): bins = {} l = None for tup in colour_tuples: if l is None: l = len(tup[1]) component = tup[1][:2] if component not in bins: bins[component] = [] bins[component].append((tup[0], tup[1][2:])) if l == 2: for c in [key for key in bins]: bins[c] = int(bins[c][0][0]) else: for c in [key for key in bins]: bins[c] = _build_map(bins[c]) return bins def mult_colspace_to_hex(value): return str(hex(int(value * 255)))[2:].rjust(2, '0') def hex_colspace_to_mult(hex_str): value = int(hex_str, 16) return float(value)/255.0 def hex_col_to_mult(hex_col, default_alpha=1): hex_components = [hex_col[1:3], hex_col[3:5], hex_col[5:7]] if len(hex_col) == 9: hex_components.append(hex_col[7:9]) else: hex_components.append(mult_colspace_to_hex(default_alpha)) return [hex_colspace_to_mult(s) for s in hex_components] def mult_col_to_hex(mult_col): return '#{}'.format(''.join(mult_colspace_to_hex(comp) for comp in mult_col)) @RamCacheWrapper def blend_colours(fg_hex_col, bg_hex_col, default_fg_col='#ffffff', default_bg_col='#000000', default_fg_alpha=0.9, default_bg_alpha=1.0): if not fg_hex_col or fg_hex_col < 0: fg_hex_col = default_fg_col if not bg_hex_col or bg_hex_col < 0: bg_hex_col = default_bg_col fg_col = hex_col_to_mult(fg_hex_col, default_fg_alpha) bg_col = hex_col_to_mult(bg_hex_col, default_bg_alpha) res_alpha = 1.0 - (1.0 - fg_col[3]) * (1.0 - bg_col[3]) res_col = [(fg_col[i] * fg_col[3] + bg_col[i] * bg_col[3] * (1 - fg_col[3])) / res_alpha for i in xrange(3)] res_col.append(res_alpha) return mult_col_to_hex(res_col) def colour_distance(hex_col_1, hex_col_2): m1 = hex_col_to_mult(hex_col_1)[:3] m2 = hex_col_to_mult(hex_col_2)[:3] return sum((comp1 - comp2) ** 2 for comp1, comp2 in zip(m1, m2)) _BASIC_MAP = _build_map(_COLOUR_LISTS['basic']) _EXTENDED_MAP = _build_map(_COLOUR_LISTS['extended']) _GREYSCALE_MAP = _build_map(_COLOUR_LISTS['greyscale']) _TERM_COL_MAP = dict(itertools.chain(*[_COLOUR_LISTS[key] for key in _COLOUR_LISTS])) @RamCacheWrapper def get_closest_term_colour(hex_col, cmap=None, include_details=False): if hex_col.startswith('#'): hex_col = hex_col[1:] if len(hex_col) > 6: hex_col = hex_col[:6] if cmap is None: if hex_col[0:2] == hex_col[2:4] and hex_col[2:4] == hex_col[4:6]: return get_closest_term_colour(hex_col, cmap=_GREYSCALE_MAP, include_details=include_details) return get_closest_term_colour(hex_col, cmap=_EXTENDED_MAP, include_details=include_details) component = hex_col[:2] c_val = int(component, 16) closest = min((max(c_val - int(c, 16), int(c, 16) - c_val), c) for c in cmap)[1] if isinstance(cmap[closest], int): if include_details: return cmap[closest], closest return cmap[closest] if include_details: term_col, hex_part = get_closest_term_colour(hex_col[2:], cmap[closest], include_details=True) if len(hex_col) == 6: return term_col, '#' + closest + hex_part return term_col, closest + hex_part return get_closest_term_colour(hex_col[2:], cmap[closest]) def term_col_to_hex(term_col): return '#' + _TERM_COL_MAP[str(term_col)] ```
{ "source": "jknisley/aiocoap", "score": 2 }
#### File: contrib/oscore-plugtest/plugtest_common.py ```python import shutil from pathlib import Path # When Python 3.5 support is dropped (and PyPy has evolved beyond that # point), .as_posix() can be dropped import cbor from aiocoap import oscore contextdir = Path(__file__).parent / 'common-context' def get_security_context(contextname, role, contextcopy: Path): """Copy the base context (disambiguated by contextname in "ab", "cd") onto the path in contextcopy if it does not already exist, and load the resulting context with the given role. The context will be monkey-patched for debugging purposes.""" if not contextcopy.exists(): contextcopy.parent.mkdir(parents=True, exist_ok=True) shutil.copytree((contextdir / contextname).as_posix(), contextcopy.as_posix()) print("Context %s copied to %s" % (contextname, contextcopy)) secctx = oscore.FilesystemSecurityContext(contextcopy.as_posix(), role=role) original_extract_external_aad = secctx._extract_external_aad def _extract_extenal_aad(message, i_am_sender, request_partiv=None): result = original_extract_external_aad(message, i_am_sender, request_partiv) print("Verify: External AAD: bytes.fromhex(%r), %r"%(result.hex(), cbor.loads(result))) return result secctx._extract_external_aad = _extract_extenal_aad return secctx def additional_verify(description, lhs, rhs): if lhs == rhs: print("Additional verify passed: %s"%description) else: print("Additional verify failed (%s != %s): %s"%(lhs, rhs, description)) ```
{ "source": "jknofe/pi_monitor", "score": 3 }
#### File: pi_monitor/RPLCD/contextmanagers.py ```python from __future__ import print_function, division, absolute_import, unicode_literals from contextlib import contextmanager @contextmanager def cursor(lcd, row, col): """Context manager to control cursor position. Args: lcd: The CharLCD instance. row: The target row (0 index based). col: The target column (0 index based). Example: >>> with cursor(lcd, 2, 0): lcd.write_string('This is the hird row') """ lcd.cursor_pos = (row, col) yield @contextmanager def cleared(lcd): """Context manager to clear display before writing. Example: >>> with cleared(lcd): lcd.write_string('Clear display, wooo!') """ lcd.clear() yield ``` #### File: pi_monitor/RPLCD/lcd.py ```python from __future__ import print_function, division, absolute_import, unicode_literals import time from collections import namedtuple import RPi.GPIO as GPIO from . import enum # # # PYTHON 3 COMPAT # # # try: range = xrange except NameError: pass # # # BIT PATTERNS # # # # Commands LCD_CLEARDISPLAY = 0x01 LCD_RETURNHOME = 0x02 LCD_ENTRYMODESET = 0x04 LCD_DISPLAYCONTROL = 0x08 LCD_CURSORSHIFT = 0x10 LCD_FUNCTIONSET = 0x20 LCD_SETCGRAMADDR = 0x40 LCD_SETDDRAMADDR = 0x80 # Flags for display entry mode LCD_ENTRYRIGHT = 0x00 LCD_ENTRYLEFT = 0x02 LCD_ENTRYSHIFTINCREMENT = 0x01 LCD_ENTRYSHIFTDECREMENT = 0x00 # Flags for display on/off control LCD_DISPLAYON = 0x04 LCD_DISPLAYOFF = 0x00 LCD_CURSORON = 0x02 LCD_CURSOROFF = 0x00 LCD_BLINKON = 0x01 LCD_BLINKOFF = 0x00 # Flags for display/cursor shift LCD_DISPLAYMOVE = 0x08 LCD_CURSORMOVE = 0x00 # Flags for display/cursor shift LCD_DISPLAYMOVE = 0x08 LCD_CURSORMOVE = 0x00 LCD_MOVERIGHT = 0x04 LCD_MOVELEFT = 0x00 # Flags for function set LCD_8BITMODE = 0x10 LCD_4BITMODE = 0x00 LCD_2LINE = 0x08 LCD_1LINE = 0x00 LCD_5x10DOTS = 0x04 LCD_5x8DOTS = 0x00 # Flags for RS pin modes RS_INSTRUCTION = 0x00 RS_DATA = 0x01 # # # NAMEDTUPLES # # # PinConfig = namedtuple('PinConfig', 'rs rw e d0 d1 d2 d3 d4 d5 d6 d7 backlight mode') LCDConfig = namedtuple('LCDConfig', 'rows cols dotsize') # # # ENUMS # # # class Alignment(enum.Enum): left = LCD_ENTRYLEFT right = LCD_ENTRYRIGHT class ShiftMode(enum.Enum): cursor = LCD_ENTRYSHIFTDECREMENT display = LCD_ENTRYSHIFTINCREMENT class CursorMode(enum.Enum): hide = LCD_CURSOROFF | LCD_BLINKOFF line = LCD_CURSORON | LCD_BLINKOFF blink = LCD_CURSOROFF | LCD_BLINKON class BacklightMode(enum.Enum): active_high = 1 active_low = 2 # # # HELPER FUNCTIONS # # # def msleep(milliseconds): """Sleep the specified amount of milliseconds.""" time.sleep(milliseconds / 1000.0) def usleep(microseconds): """Sleep the specified amount of microseconds.""" time.sleep(microseconds / 1000000.0) # # # MAIN # # # class CharLCD(object): # Init, setup, teardown def __init__(self, pin_rs=15, pin_rw=18, pin_e=16, pins_data=[21, 22, 23, 24], pin_backlight=None, backlight_mode=BacklightMode.active_low, backlight_enabled=True, numbering_mode=GPIO.BOARD, cols=20, rows=4, dotsize=8, auto_linebreaks=True): """ Character LCD controller. The default pin numbers are based on the BOARD numbering scheme (1-26). You can save 1 pin by not using RW. Set ``pin_rw`` to ``None`` if you want this. Args: pin_rs: Pin for register select (RS). Default: 15. pin_rw: Pin for selecting read or write mode (R/W). Set this to ``None`` for read only mode. Default: 18. pin_e: Pin to start data read or write (E). Default: 16. pins_data: List of data bus pins in 8 bit mode (DB0-DB7) or in 4 bit mode (DB4-DB7) in ascending order. Default: [21, 22, 23, 24]. pin_backlight: Pin for controlling backlight on/off. Set this to ``None`` for no backlight control. Default: None. backlight_mode: Set this to one of the BacklightMode enum values to configure the operating control for the backlight. Has no effect if pin_backlight is ``None`` backlight_enabled: Set this to True to turn on the backlight or False to turn it off. Has no effect if pin_backlight is ``None`` numbering_mode: Which scheme to use for numbering of the GPIO pins, either ``GPIO.BOARD`` or ``GPIO.BCM``. Default: ``GPIO.BOARD`` (1-26). rows: Number of display rows (usually 1, 2 or 4). Default: 4. cols: Number of columns per row (usually 16 or 20). Default 20. dotsize: Some 1 line displays allow a font height of 10px. Allowed: 8 or 10. Default: 8. auto_linebreaks: Whether or not to automatically insert line breaks. Default: True. Returns: A :class:`CharLCD` instance. """ assert dotsize in [8, 10], 'The ``dotsize`` argument should be either 8 or 10.' # Set attributes self.numbering_mode = numbering_mode if len(pins_data) == 4: # 4 bit mode self.data_bus_mode = LCD_4BITMODE block1 = [None] * 4 elif len(pins_data) == 8: # 8 bit mode self.data_bus_mode = LCD_8BITMODE block1 = pins_data[:4] else: raise ValueError('There should be exactly 4 or 8 data pins.') block2 = pins_data[-4:] self.pins = PinConfig(rs=pin_rs, rw=pin_rw, e=pin_e, d0=block1[0], d1=block1[1], d2=block1[2], d3=block1[3], d4=block2[0], d5=block2[1], d6=block2[2], d7=block2[3], backlight=pin_backlight, mode=numbering_mode) self.backlight_mode = backlight_mode self.lcd = LCDConfig(rows=rows, cols=cols, dotsize=dotsize) # Setup GPIO GPIO.setmode(self.numbering_mode) for pin in list(filter(None, self.pins))[:-1]: GPIO.setup(pin, GPIO.OUT) if pin_backlight is not None: GPIO.setup(pin_backlight, GPIO.OUT) # must enable the backlight AFTER setting up GPIO self.backlight_enabled = backlight_enabled # Setup initial display configuration displayfunction = self.data_bus_mode | LCD_5x8DOTS if rows == 1: displayfunction |= LCD_1LINE elif rows in [2, 4]: # LCD only uses two lines on 4 row displays displayfunction |= LCD_2LINE if dotsize == 10: # For some 1 line displays you can select a 10px font. displayfunction |= LCD_5x10DOTS # Create content cache self._content = [[0x20] * cols for _ in range(rows)] # Set up auto linebreaks self.auto_linebreaks = auto_linebreaks self.recent_auto_linebreak = False # Initialization msleep(50) GPIO.output(self.pins.rs, 0) GPIO.output(self.pins.e, 0) if self.pins.rw is not None: GPIO.output(self.pins.rw, 0) # Choose 4 or 8 bit mode if self.data_bus_mode == LCD_4BITMODE: # Hitachi manual page 46 self._write4bits(0x03) msleep(4.5) self._write4bits(0x03) msleep(4.5) self._write4bits(0x03) usleep(100) self._write4bits(0x02) elif self.data_bus_mode == LCD_8BITMODE: # Hitachi manual page 45 self._write8bits(0x30) msleep(4.5) self._write8bits(0x30) usleep(100) self._write8bits(0x30) else: raise ValueError('Invalid data bus mode: {}'.format(self.data_bus_mode)) # Write configuration to display self.command(LCD_FUNCTIONSET | displayfunction) usleep(50) # Configure display mode self._display_mode = LCD_DISPLAYON self._cursor_mode = int(CursorMode.hide) self.command(LCD_DISPLAYCONTROL | self._display_mode | self._cursor_mode) usleep(50) # Clear display self.clear() # Configure entry mode self._text_align_mode = int(Alignment.left) self._display_shift_mode = int(ShiftMode.cursor) self._cursor_pos = (0, 0) self.command(LCD_ENTRYMODESET | self._text_align_mode | self._display_shift_mode) usleep(50) def close(self, clear=False): if clear: self.clear() GPIO.cleanup() # Properties def _get_cursor_pos(self): return self._cursor_pos def _set_cursor_pos(self, value): if not hasattr(value, '__getitem__') or len(value) != 2: raise ValueError('Cursor position should be determined by a 2-tuple.') if value[0] not in range(self.lcd.rows) or value[1] not in range(self.lcd.cols): msg = 'Cursor position {pos!r} invalid on a {lcd.rows}x{lcd.cols} LCD.' raise ValueError(msg.format(pos=value, lcd=self.lcd)) row_offsets = [0x00, 0x40, self.lcd.cols, 0x40 + self.lcd.cols] self._cursor_pos = value self.command(LCD_SETDDRAMADDR | row_offsets[value[0]] + value[1]) usleep(50) cursor_pos = property(_get_cursor_pos, _set_cursor_pos, doc='The cursor position as a 2-tuple (row, col).') def _get_text_align_mode(self): try: return Alignment[self._text_align_mode] except ValueError: raise ValueError('Internal _text_align_mode has invalid value.') def _set_text_align_mode(self, value): if value not in Alignment: raise ValueError('Cursor move mode must be of ``Alignment`` type.') self._text_align_mode = int(value) self.command(LCD_ENTRYMODESET | self._text_align_mode | self._display_shift_mode) usleep(50) text_align_mode = property(_get_text_align_mode, _set_text_align_mode, doc='The text alignment (``Alignment.left`` or ``Alignment.right``).') def _get_write_shift_mode(self): try: return ShiftMode[self._display_shift_mode] except ValueError: raise ValueError('Internal _display_shift_mode has invalid value.') def _set_write_shift_mode(self, value): if value not in ShiftMode: raise ValueError('Write shift mode must be of ``ShiftMode`` type.') self._display_shift_mode = int(value) self.command(LCD_ENTRYMODESET | self._text_align_mode | self._display_shift_mode) usleep(50) write_shift_mode = property(_get_write_shift_mode, _set_write_shift_mode, doc='The shift mode when writing (``ShiftMode.cursor`` or ``ShiftMode.display``).') def _get_display_enabled(self): return self._display_mode == LCD_DISPLAYON def _set_display_enabled(self, value): self._display_mode = LCD_DISPLAYON if value else LCD_DISPLAYOFF self.command(LCD_DISPLAYCONTROL | self._display_mode | self._cursor_mode) usleep(50) display_enabled = property(_get_display_enabled, _set_display_enabled, doc='Whether or not to display any characters.') def _get_cursor_mode(self): try: return CursorMode[self._cursor_mode] except ValueError: raise ValueError('Internal _cursor_mode has invalid value.') def _set_cursor_mode(self, value): if value not in CursorMode: raise ValueError('Cursor mode must be of ``CursorMode`` type.') self._cursor_mode = int(value) self.command(LCD_DISPLAYCONTROL | self._display_mode | self._cursor_mode) usleep(50) cursor_mode = property(_get_cursor_mode, _set_cursor_mode, doc='How the cursor should behave (``CursorMode.hide``, ' + '``CursorMode.line`` or ``CursorMode.blink``).') def _get_backlight_enabled(self): # We could probably read the current GPIO output state via sysfs, but # for now let's just store the state in the class if self.pins.backlight is None: raise ValueError('You did not configure a GPIO pin for backlight control!') return bool(self._backlight_enabled) def _set_backlight_enabled(self, value): if self.pins.backlight is None: raise ValueError('You did not configure a GPIO pin for backlight control!') if not isinstance(value, bool): raise ValueError('backlight_enabled must be set to ``True`` or ``False``.') self._backlight_enabled = value GPIO.output(self.pins.backlight, value ^ (self.backlight_mode is BacklightMode.active_low)) backlight_enabled = property(_get_backlight_enabled, _set_backlight_enabled, doc='Whether or not to turn on the backlight.') # High level commands def write_string(self, value): """Write the specified unicode string to the display. To control multiline behavior, use newline (\n) and carriage return (\r) characters. Lines that are too long automatically continue on next line, as long as ``auto_linebreaks`` has not been disabled. Make sure that you're only passing unicode objects to this function. If you're dealing with bytestrings (the default string type in Python 2), convert it to a unicode object using the ``.decode(encoding)`` method and the appropriate encoding. Example for UTF-8 encoded strings: .. code:: >>> bstring = 'Temperature: 30°C' >>> bstring 'Temperature: 30\xc2\xb0C' >>> bstring.decode('utf-8') u'Temperature: 30\xb0C' Only characters with an ``ord()`` value between 0 and 255 are currently supported. """ ignored = None # Used for ignoring manual linebreaks after auto linebreaks for char in value: # Write regular chars if char not in '\n\r': self.write(ord(char)) ignored = None continue # If an auto linebreak happened recently, ignore this write. if self.recent_auto_linebreak is True: # No newline chars have been ignored yet. Do it this time. if ignored is None: ignored = char continue # A newline character has been ignored recently. If the current # character is different, ignore it again. Otherwise, reset the # ignored character tracking. if ignored != char: # A carriage return and a newline ignored = None # Reset ignore list continue # Handle newlines and carriage returns row, col = self.cursor_pos if char == '\n': if row < self.lcd.rows - 1: self.cursor_pos = (row + 1, col) else: self.cursor_pos = (0, col) elif char == '\r': if self.text_align_mode is Alignment.left: self.cursor_pos = (row, 0) else: self.cursor_pos = (row, self.lcd.cols - 1) def clear(self): """Overwrite display with blank characters and reset cursor position.""" self.command(LCD_CLEARDISPLAY) self._cursor_pos = (0, 0) self._content = [[0x20] * self.lcd.cols for _ in range(self.lcd.rows)] msleep(2) def home(self): """Set cursor to initial position and reset any shifting.""" self.command(LCD_RETURNHOME) self._cursor_pos = (0, 0) msleep(2) def shift_display(self, amount): """Shift the display. Use negative amounts to shift left and positive amounts to shift right.""" if amount == 0: return direction = LCD_MOVERIGHT if amount > 0 else LCD_MOVELEFT for i in range(abs(amount)): self.command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | direction) usleep(50) def create_char(self, location, bitmap): """Create a new character. The HD44780 supports up to 8 custom characters (location 0-7). Args: location: The place in memory where the character is stored. Values need to be integers between 0 and 7. bitmap: The bitmap containing the character. This should be a tuple of 8 numbers, each representing a 5 pixel row. Raises: AssertionError: Raised when an invalid location is passed in or when bitmap has an incorrect size. Example:: >>> smiley = ( ... 0b00000, ... 0b01010, ... 0b01010, ... 0b00000, ... 0b10001, ... 0b10001, ... 0b01110, ... 0b00000, ... ) >>> lcd.create_char(0, smiley) """ assert 0 <= location <= 7, 'Only locations 0-7 are valid.' assert len(bitmap) == 8, 'Bitmap should have exactly 8 rows.' # Store previous position pos = self.cursor_pos # Write character to CGRAM self.command(LCD_SETCGRAMADDR | location << 3) for row in bitmap: self._send(row, RS_DATA) # Restore cursor pos self.cursor_pos = pos # Mid level commands def command(self, value): """Send a raw command to the LCD.""" self._send(value, RS_INSTRUCTION) def write(self, value): """Write a raw byte to the LCD.""" # Get current position row, col = self._cursor_pos # Write byte if changed if self._content[row][col] != value: self._send(value, RS_DATA) self._content[row][col] = value # Update content cache unchanged = False else: unchanged = True # Update cursor position. if self.text_align_mode is Alignment.left: if self.auto_linebreaks is False or col < self.lcd.cols - 1: # No newline, update internal pointer newpos = (row, col + 1) if unchanged: self.cursor_pos = newpos else: self._cursor_pos = newpos self.recent_auto_linebreak = False else: # Newline, reset pointer if row < self.lcd.rows - 1: self.cursor_pos = (row + 1, 0) else: self.cursor_pos = (0, 0) self.recent_auto_linebreak = True else: if self.auto_linebreaks is False or col > 0: # No newline, update internal pointer newpos = (row, col - 1) if unchanged: self.cursor_pos = newpos else: self._cursor_pos = newpos self.recent_auto_linebreak = False else: # Newline, reset pointer if row < self.lcd.rows - 1: self.cursor_pos = (row + 1, self.lcd.cols - 1) else: self.cursor_pos = (0, self.lcd.cols - 1) self.recent_auto_linebreak = True # Low level commands def _send(self, value, mode): """Send the specified value to the display with automatic 4bit / 8bit selection. The rs_mode is either ``RS_DATA`` or ``RS_INSTRUCTION``.""" # Choose instruction or data mode GPIO.output(self.pins.rs, mode) # If the RW pin is used, set it to low in order to write. if self.pins.rw is not None: GPIO.output(self.pins.rw, 0) # Write data out in chunks of 4 or 8 bit if self.data_bus_mode == LCD_8BITMODE: self._write8bits(value) else: self._write4bits(value >> 4) self._write4bits(value) def _write4bits(self, value): """Write 4 bits of data into the data bus.""" for i in range(4): bit = (value >> i) & 0x01 GPIO.output(self.pins[i + 7], bit) self._pulse_enable() def _write8bits(self, value): """Write 8 bits of data into the data bus.""" for i in range(8): bit = (value >> i) & 0x01 GPIO.output(self.pins[i + 3], bit) self._pulse_enable() def _pulse_enable(self): """Pulse the `enable` flag to process data.""" GPIO.output(self.pins.e, 0) usleep(1) GPIO.output(self.pins.e, 1) usleep(1) GPIO.output(self.pins.e, 0) usleep(100) # commands need > 37us to settle ```
{ "source": "jknostman3/tile-generator", "score": 2 }
#### File: ci/deployment-tests/app1_deploymenttest.py ```python import unittest import json import sys import os import requests from tile_generator import opsmgr class VerifyApp1(unittest.TestCase): def setUp(self): self.cfinfo = opsmgr.get_cfinfo() self.hostname = 'tg-test-app1.' + self.cfinfo['apps_domain'] self.url = 'http://' + self.hostname def test_responds_to_hello(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/hello', headers=headers) response.raise_for_status() def test_receives_custom_properties(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() self.assertEqual(env.get('AUTHOR'), 'Tile Ninja') self.assertEqual(env.get('CUSTOMER_NAME'), "<NAME>") self.assertEqual(env.get('STREET_ADDRESS'), 'Cartaway Alley') self.assertEqual(env.get('CITY'), 'New Jersey') self.assertEqual(env.get('ZIP_CODE'), '90310') self.assertEqual(env.get('COUNTRY'), 'country_us') def test_receives_expected_services(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() vcap_services = json.loads(env.get('VCAP_SERVICES')) def test_receives_expected_collection(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() example_collection = json.loads(env.get('EXAMPLE_COLLECTION')) self.assertTrue(isinstance(example_collection, list)) self.assertEquals(len(example_collection), 2) def test_receives_expected_selector(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() example_selector = json.loads(env.get('EXAMPLE_SELECTOR')) self.assertTrue(isinstance(example_selector, dict)) self.assertEquals(example_selector['value'], 'Filet Mignon') # self.assertEquals(example_selector['selected_option']['rarity_dropdown'], 'medium') def test_has_versioned_name(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() vcap_application = json.loads(env.get('VCAP_APPLICATION')) name = vcap_application.get('application_name') self.assertTrue(name.startswith('tg_test_app1-')) def test_is_in_correct_space(self): headers = { 'Accept': 'application/json' } response = requests.get(self.url + '/env', headers=headers) response.raise_for_status() env = response.json() vcap_application = json.loads(env.get('VCAP_APPLICATION')) space= vcap_application.get('space_name') self.assertEquals(space, 'test-tile-space') if __name__ == '__main__': unittest.main() ```
{ "source": "jknox13/iterative_hierarchical_clustering", "score": 2 }
#### File: iterative_hierarchical_clustering/flithic/clustering.py ```python import numpy as np from collections import namedtuple, deque from scipy.cluster.hierarchy import ward, fcluster from scipy.spatial.distance import pdist from scipy.stats import skew, zscore from sklearn.svm import SVC from sklearn.base import BaseEstimator from sklearn.utils import check_array from sklearn.model_selection import cross_val_score, ShuffleSplit, StratifiedShuffleSplit from sklearn.utils.validation import check_is_fitted from tree import Node, iter_bft, iter_tree def _parameter_skew_check(X, alpha=1e-8): """Returns X or Log(X) based on skew. Parameters ---------- X alpha Returns ------- """ C = X.copy() for j, col in enumerate(X.T): # each parameter, check skew log_col = np.log10(col+alpha) if skew(col) > skew(log_col): # use log_transformed parameter C[:,j] = log_col return C def _ward_cluster(X): """Clusters 1-corr using Ward distance Parameters ---------- X Returns ------- """ # pairwise (1-corr) of zscores D = pdist( X, metric="correlation" ) # return top branch split using ward linkage return fcluster( ward(D), 2, criterion="maxclust" ) def _test_clusters(X, clusters, stratified=False): """Clusters 1-corr using Ward distance Parameters ---------- X Returns ------- """ # C-SVM with radial kernel (sklearn.svm.SVC defaults) clf = SVC(C=1.0, kernel="rbf", gamma="auto") # 100 random 50/50 splits if stratified: splitter = StratifiedShuffleSplit else: splitter = ShuffleSplit cv = splitter(n_splits=100, train_size=0.5, test_size=0.5) # return score return cross_val_score(clf, X, clusters, scoring="accuracy", cv=cv) class GLIFClustering(BaseEstimator): """Clustering described in ... Recursively splits the data into clusters that satisfy ... NOTE : Docs taken heavily from: sklearn.cluster.hierarchical.AgglomerativeClustering Parameters ---------- tol : float, optional (default=0.90) Tolerance of the split... Attributes ---------- X_ : labels_ : References ---------- CITE GLIF PAPER Examples -------- >>> from cortical_paper.clustering import GLIFClustering >>> """ Cluster = namedtuple("Cluster", "indices, score, name, size") Leaf = namedtuple("Leaf", "name, indices") Split = namedtuple("Split", "name, children, score, size") def __init__(self, tol=0.80, stratified=False): self.tol = tol self.stratified = stratified def _fit_recursive(self, X, cluster, node=None): """Recursive helper for fit() skkdj Parameters ---------- Returns ------- """ if X.shape[0] < 2: # base case # must have > 2 obs to cluster! return Node(self.Leaf(cluster.name, cluster.indices)) # --------------------------------------------------------------------- # use ward w/ (1-corr) to hierarcically cluster to split # --------------------------------------------------------------------- split = _ward_cluster(X) # --------------------------------------------------------------------- # train/test svm (radial kernal on 100 random 50/50 splits of clustering # --------------------------------------------------------------------- try: scores = _test_clusters(X, split, stratified=self.stratified) except ValueError: # base case # two few of second class to split (say 9:1 or something) # assign entire population to terminal cluster return Node(self.Leaf(cluster.name, cluster.indices)) # --------------------------------------------------------------------- # if min(score) < tol (0.80 in glif paper), recursively repeat 3-5 on # each subpopulation # --------------------------------------------------------------------- score = scores.min() if score < self.tol: # base case # assign entire population to terminal cluster return Node(self.Leaf(cluster.name, cluster.indices)) # recursively split a = np.where(split == 1) b = np.where(split == 2) A = self.Cluster(cluster.indices[a], score, cluster.name + "1", len(a[0])) B = self.Cluster(cluster.indices[b], score, cluster.name + "2", len(b[0])) # add score to binary tree if node is None: node = Node(self.Split(cluster.name, (A.name, B.name), score, cluster.size)) else: # tree is built pre order raise ValueError("Should be null!!!") node.left = self._fit_recursive(X[a], A, node.left) node.right = self._fit_recursive(X[b], B, node.right) return node def _fit(self, X): """wrapper, inits cluster""" # for linkage cluster = self.Cluster( np.arange(self.n_obs_), score=0.0, name="", size=self.n_obs_) return self._fit_recursive(X, cluster) def fit(self, X, y=None): """Fit the hierarchical clustering on the data Parameters ---------- X : array-like, shape = [n_samples, n_features] The samples a.k.a. observations. y : Ignored Returns ------- self """ X_ = check_array(X, ensure_min_samples=2, estimator=self) self.n_obs_, self.n_params_ = X_.shape X_ = _parameter_skew_check(X_) # z-score all params X_ = zscore(X_) # recursively split in hierarchical fashion self._cluster_tree = self._fit(X_) return self def _get_labels(self): """...""" check_is_fitted(self, ["_cluster_tree", "n_obs_"]) i = 1 labels = np.empty(self.n_obs_) for cluster in iter_tree(self._cluster_tree, order="pre"): if isinstance(cluster, self.Leaf): labels[cluster.indices] = i i += 1 return labels @property def labels_(self): try: return self._labels except AttributeError: self._labels = self._get_labels() return self._labels def _get_linkage(self): """...:""" # NOTE : may rewrite zrow to be row index, (would be zrow+56 or smth) check_is_fitted(self, "_cluster_tree") FILL=0. #1e-20 # try 0 # returned linkage (n_obs-1)x4 Z = [] # iterates through Z, used for referencing previously formed clusters z_row = self.n_obs_ - 1 name_row_map = {} # get leaves, splits in reverse depth-first traversal order leaves, splits = [], [] for cluster in iter_bft(self._cluster_tree, reverse=True): if isinstance(cluster, self.Leaf): leaves.append(cluster) else: splits.append(cluster) # NOTE : currently generates linkages sequentially # to get the dendrogram to point to center of clusters, # will need to start in the middle for leaf in leaves: # fencepost a, b = leaf.indices[:2] tmp = [[a, b, FILL*z_row, 2]] #scipy needs monotonic distances z_row += 1 for j, index in enumerate(leaf.indices[2:]): # assign everyother observation to fencepost cluster row = [index, z_row, FILL*z_row, 3+j] tmp.append(row) z_row += 1 # update Z.extend(tmp) name_row_map[leaf.name] = z_row # DISTANCES ARE CUMMULATIVE!!! name_distance_map = dict() for split in splits: # get distance try: distance = name_distance_map[split.name] except KeyError: # no children splits distance = split.score # parent parent = split.name[:-1] try: name_distance_map[parent] += distance except KeyError: name_distance_map[parent] = distance # indices when children were formed a, b = map(name_row_map.get, split.children) row = [a, b, distance, split.size] # update Z.append(row) z_row += 1 name_row_map[split.name] = z_row # must contain doubles for scipy return np.asarray(Z, dtype=np.float64) @property def linkage_(self): try: return self._linkage except AttributeError: self._linkage = self._get_linkage() return self._linkage ``` #### File: flithic/distance/setup.py ```python from __future__ import division, print_function, absolute_import from os.path import join def configuration(parent_package='', top_path=None): from numpy.distutils.misc_util import Configuration, get_numpy_include_dirs from numpy.distutils.misc_util import get_info as get_misc_info from numpy.distutils.system_info import get_info as get_sys_info config = Configuration('distance', parent_package, top_path) config.add_data_dir('tests') # _distance_wrap config.add_extension('_distance_wrap', sources=[join('src', 'distance_wrap.c')], depends=[join('src', 'distance_impl.h')], include_dirs=[get_numpy_include_dirs()], extra_info=get_misc_info("npymath")) config.add_extension('_hausdorff', sources=['_hausdorff.c']) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict()) ``` #### File: iterative_hierarchical_clustering/tests/__init__.py ```python import os import sys def entrypoint_exists(entry_point): executable_dir = os.path.dirname(sys.executable) return os.path.exists(os.path.join(executable_dir, entry_point)) ```
{ "source": "jknox13/python-nnls", "score": 2 }
#### File: nnls/tests/test_active_set.py ```python import pytest import scipy.optimize as sopt import scipy.sparse as sp import numpy as np from numpy.testing import assert_array_almost_equal from nnls import block_pivoting, lawson_hanson def test_block_pivoting(): # design matrix size (square) n = 100 # ------------------------------------------------------------------------ # test same output as scipy.nnls # eye with noise (only useful for full rank A) rng = np.random.RandomState(10293) A = np.eye(n) + 0.1*rng.rand(n,n) b = np.arange(n) scipy_sol = sopt.nnls(A, b)[0] bp_sol = block_pivoting(A, b) assert_array_almost_equal(scipy_sol, bp_sol) # ------------------------------------------------------------------------ # test sparse A = np.eye(n) idx = rng.choice(np.arange(n**2), int(0.9*n**2), replace=False) noise = 0.1*rng.rand(n,n) noise[np.unravel_index(idx, (n,n))] = 0 A += noise csr_A = sp.csr_matrix(A.copy()) csc_A = sp.csc_matrix(A.copy()) dense_sol = block_pivoting(A, b) csr_sol = block_pivoting(csr_A, b) csc_sol = block_pivoting(csc_A, b) # check cs*_A still sparse assert sp.issparse(csr_A) assert sp.issparse(csc_A) assert_array_almost_equal(csr_sol, dense_sol) assert_array_almost_equal(csc_sol, dense_sol) def test_lawson_hanson(): # design matrix size (square) n = 100 # ------------------------------------------------------------------------ # test same output as scipy.nnls # A is the n x n Hilbert matrix A = 1. / (np.arange(1, n + 1) + np.arange(n)[:, np.newaxis]) b = np.ones(n) scipy_sol = sopt.nnls(A, b)[0] lh_sol = lawson_hanson(A, b) assert_array_almost_equal(scipy_sol, lh_sol) # ------------------------------------------------------------------------ # test sparse rng = np.random.RandomState(10293) A = np.eye(n) idx = rng.choice(np.arange(n**2), int(0.9*n**2), replace=False) noise = 0.1*rng.rand(n,n) noise[np.unravel_index(idx, (n,n))] = 0 A += noise b = np.arange(n) csr_A = sp.csr_matrix(A.copy()) csc_A = sp.csc_matrix(A.copy()) dense_sol = lawson_hanson(A, b) csr_sol = lawson_hanson(csr_A, b) csc_sol = lawson_hanson(csc_A, b) # check cs*_A still sparse assert sp.issparse(csr_A) assert sp.issparse(csc_A) assert_array_almost_equal(csr_sol, dense_sol) assert_array_almost_equal(csc_sol, dense_sol) ```
{ "source": "jknudstrup/dsf_info", "score": 2 }
#### File: dsf_info/dsfinfo/dsfinfo.py ```python def info(): print("\nSome important links: \n \n" "<NAME>'s DSF Curriculum Page: \n" "https://github.com/knathanieltucker/data-science-foundations \n \n" "General Assembly's Course Info Page: \n" "https://git.generalassemb.ly/nate/course-info/tree/master") ```
{ "source": "jknyght9/nut-forwarder-influxdb-python", "score": 3 }
#### File: nut-forwarder-influxdb-python/lib/config.py ```python import json config = {} def getNut(): name = input("NUT Server Name: ") server = input("NUT Server IP address: ") username = input("Username: ") password = input("Password: ") return {"name": name, "server": server, "username": username, "password": password} def getInfluxDb(): influxdb = {} while (True): version2 = input("InfluxDB Version2: (Y|N): ") if version2.upper() == "Y": server = input("InfluxDB Server IP address: ") token = input("Token: ") bucket = input("Bucket: ") organization = input("Organization: ") influxdb = {"server": server, "version": "2", "token": token, "bucket": bucket, "organization": organization} break elif version2.upper() == "N": server = input("InfluxDB Server IP address: ") database = input("Database: ") username = input("Username: ") password = input("Password: ") influxdb = {"server": server, "version": "1", "database": database, "username": username, "password": password} break return influxdb def generateConfig(): nutserver = [] while(True): nutserver.append(getNut()) prompt = input("More NUT Servers? (Y|N): ") if prompt.upper() == "N": break influxserver = getInfluxDb() config = {"nutservers": nutserver, "influxserver": influxserver} with open("config.json", "w") as f: f.write(json.dumps(config)) f.close() ``` #### File: jknyght9/nut-forwarder-influxdb-python/nut-forwarder-influxdb.py ```python import argparse import json import logging import os import sched import sys from telnetlib import EC import time from datetime import datetime from lib.config import generateConfig from lib.influx import send, test from lib.nut import getNutData s = sched.scheduler(time.time, time.sleep) def pushNut2Influx(sc, nutservers, influxserver): nutdata = getNutData(nutservers) for nd in nutdata: send(influxserver, { "measurement": "ups", "tags": { "server": nd["server"], "name": nd["name"], "description": nd["description"], "serial": nd["serial"] }, "fields": nd["data"], "time": datetime.utcnow() }) s.enter(60, 1, pushNut2Influx, (sc, nutservers, influxserver,)) def main(): parser = argparse.ArgumentParser(description="Forwards NUT data to InfluxDB") group = parser.add_mutually_exclusive_group() group.add_argument("-g", "--generateconfig", action="store_true", help="Generate configuration file") group.add_argument("-r", "--run", action="store_true", help="Run the program") parser.add_argument("-d", "--debug", action="store_true", help="Run in debug mode") options = parser.parse_args() logginglevel = logging.INFO if options.debug: logginglevel = logging.DEBUG logger = logging.getLogger("nut-forwarder-influxdb") logger.setLevel(logginglevel) formatter = logging.Formatter( '%(asctime)s %(name)s [%(levelname)s] %(message)s') cs = logging.StreamHandler() cs.setFormatter(formatter) logger.addHandler(cs) if options.generateconfig: generateConfig() elif options.run: if os.path.exists("config.json"): config = None with open("config.json", "rb") as f: config = f.read() config = json.loads(config) f.close() if config["influxserver"] is not None and config["nutservers"] is not None: logger.info("connecting to Influx server %s", config["influxserver"]["server"]) if test(config["influxserver"]): logger.info("logging data to Influx server") if getNutData(config["nutservers"]) is not None: logger.info("connected to NUT server(s)") s.enter(0, 1, pushNut2Influx, (s, config["nutservers"], config["influxserver"],)) s.run() else: exit() else: exit() else: logger.error("configuration file does not exist. Rerun this program with the '-g' parameter.") exit() if __name__ == "__main__": try: main() except KeyboardInterrupt: print("Shutting down") try: sys.exit(0) except SystemExit: os._exit(0) ```
{ "source": "jko0401/IT299-project", "score": 3 }
#### File: IT299-project/root/app.py ```python import dash import dash_core_components as dcc, dash_table import dash_html_components as html from dash.dependencies import Input, Output from sklearn.decomposition import PCA import plotly.express as px import db import pandas as pd from labels import FEATURES, SUMMARY, SCATTER app = dash.Dash(__name__) df = db.main_db() df = df.convert_dtypes() df['datepublished'] = pd.to_datetime(df['datepublished']) df['s_release_date'] = pd.to_datetime(df['s_release_date']) def create_options(name, list): name = [] for a in list: name.append({'label': a, 'value': a}) return name artist_options = create_options('artist_options', df[~(df['channelname'] == 'BassMusicMovement')]['artistname'].unique()) channel_options = create_options('channel_options', df[~(df['channelname'] == 'BassMusicMovement')]['channelname'].unique()) features = [ {"label": str(FEATURES[feature]), "value": str(feature)} for feature in FEATURES ] scatter = [ {"label": str(SCATTER[feature]), "value": str(feature)} for feature in SCATTER ] summary = [ {"label": str(SUMMARY[feature]), "value": str(feature)} for feature in SUMMARY ] audio_features = ['danceability', 'energy', 'music_key', 'loudness', 'music_mode', 'speechiness', 'acousticness', 'instrumentalness', 'liveness', 'valence', 'tempo', 'time_signature'] min_s_date = '2009-1-1' max_s_date = max(df['s_release_date']) min_y_date = min(df['datepublished']) max_y_date = max(df['datepublished']) color_scheme = ['#00adb5', '#E74C3C', '#3498DB', '#F39C12', '#9B59B6'] app.layout = html.Div([ html.Div(id='main-header', children=[ html.Header([ html.H1('Trap and Dubstep Exploration through YouTube and Spotify Data') ]) ], className='container'), html.Div(id='main-app', children=[ dcc.Tabs([ dcc.Tab(id='intro-tab', label='Introduction', children=[ html.Div([ html.H2('Welcome!'), html.P('This dashboard allows you to explore the electronic bass music genres of Trap and Dubstep ' 'through YouTube and Spotify data. Tracks related to these genres were gathered by scraping ' 'five popular music-discovering channels on YouTube: TrapNation, TrapCity, BassNation, ' 'UKFDubstep, and DubRebellion. Audio features data was tied to those that could be found in ' 'Spotify’s library. Brief explanations of each section of the dashboard below.'), html.H5('Filters:'), html.P('Choose to filter the dataset by artists or channels, and through different time ranges by YouTube publish or Spotify release dates. Data points can be differentiated by color through artists or channels.'), html.H5('Feature Summary:'), html.P('Compare the mean, max, min of a specific feature for each artist.'), html.H5('Compare Features:'), html.P('Select any two features to compare and see if there is a correlation between them.'), html.H5('Feature Distributions:'), html.P('A set of histograms to help visualize the frequency and distribution of audio features pertaining to the tracks of the artists or channels selected. Follow the link below to Spotify\'s explanation of each feature.'), html.A('Audio Features', href='https://developer.spotify.com/documentation/web-api/reference/#object-audiofeaturesobject'), html.H5('Similar Tracks:'), html.P('Tracks that are similar in terms of their audio features are grouped together through principal component analysis. The closer the tracks, the more similar they are.'), html.H5('Selected Track:'), html.P('Click on any data point on the Similar Tracks graph to load an embedded YouTube video and listen to the track. Some tracks may have embedding disabled and must be played on YouTube.'), html.H5('Limitations:'), html.P('> The dataset does not automatically update. The most recent data was from the end of January when everything was scraped.'), html.P('> Not all tracks uploaded to YouTube could be found on Spotify. Many SoundCloud-only tracks, unofficial releases, remixes that also represent the genres were not included in this dataset.'), html.P('> Not all Spotify tracks of artists in this dataset were included, only those uploaded and shared by the five YouTube channels were selected.'), html.P(''), html.Div([ html.P(''), html.A(html.Img(src='/assets/github.png'), href='https://github.com/jko0401/IT299-project'), html.A(html.Img(src='/assets/website.png'), href='https://jko0401.github.io/') ], className='offset-by-five columns') ], className='six columns pretty_container offset-by-three columns') ]), dcc.Tab(id='dash-tab', label='Dashboard', children=[ # Filters, Popularity Plots, Video html.Div([ html.Div([ html.Div([ html.H5('Filters'), html.Div([ html.P('Artists:'), html.Div([ dcc.Dropdown(id='artists', options=artist_options, multi=True, value=['RL Grime', 'TroyBoi', 'Eptic'], ), ]), ]), ], className='row'), html.Div([ html.Div([ html.P('Channels:'), dcc.Dropdown(id='channels', options=channel_options, multi=True, value=['TrapNation', 'TrapCity', 'BassNation', 'UKFDubstep', 'DubRebellion'] ), ]), ], className='row'), html.Div([ html.P('Differentiate Data Points By:'), dcc.RadioItems( id='color', options=[ {'label': 'Artists', 'value': 'artistname'}, {'label': 'Channels', 'value': 'channelname'}, ], value='artistname', labelStyle={'display': 'inline-block'}) ], className='row'), html.Div([ html.Div([ html.P('Spotify Release Date Range:'), dcc.DatePickerRange(id='s_date', start_date=min_s_date, end_date=max_s_date, display_format='Y/M/D' ) ]), ], className='row'), html.Div([ html.Div([ html.P('YouTube Publish Date Range:'), dcc.DatePickerRange(id='y_date', start_date=min_y_date, end_date=max_y_date, display_format='Y/M/D' ) ]), ], className='row'), ], className='pretty_container'), html.Div([ html.H5('Feature Summary'), dcc.Dropdown(id='summary', options=summary, value='popularity' ), html.Div(id='div-summary') ], className='pretty_container'), html.Div(id='div-video') ], className='three columns'), # Scatter Plots html.Div([ html.Div([ html.H5('Compare Features'), html.Div([ html.Div([ html.P('X-Axis'), dcc.Dropdown(id='feature-1', options=scatter, value='popularity' ), ], className='six columns'), html.Div([ html.P('Y-Axis'), dcc.Dropdown(id='feature-2', options=scatter, value='energy' ), ], className='six columns'), ], className='row'), html.Div(dcc.Graph(id='scatter')), ], className='pretty_container'), html.Div([ html.H5('Similar Tracks'), html.Div(dcc.Graph(id='pca')) ], className='pretty_container') ], className='five columns'), # Histograms html.Div([ html.Div([ html.H5('Feature Distributions'), html.Div(id='div-figures'), html.Div(id='filtered-data-hidden', style={'display': 'none'}) ], className='pretty_container') ], className='four columns') ]) ]) ]), ]) @app.callback( Output('filtered-data-hidden', 'children'), [Input('artists', 'value'), Input('channels', 'value'), Input('s_date', 'start_date'), Input('s_date', 'end_date'), Input('y_date', 'start_date'), Input('y_date', 'end_date')] ) def filter_df(artists, channels, start_s, end_s, start_y, end_y): if artists: df_filtered = df[df['artistname'].isin(artists[:5]) & df['channelname'].isin(channels) & df['s_release_date'].isin(pd.date_range(start_s, end_s)) & df['datepublished'].isin(pd.date_range(start_y, end_y))] elif not channels: df_filtered = df[df['artistname'].isin(artists[:5]) & df['s_release_date'].isin(pd.date_range(start_s, end_s)) & df['datepublished'].isin(pd.date_range(start_y, end_y))] else: df_filtered = df[df['channelname'].isin(channels) & df['s_release_date'].isin(pd.date_range(start_s, end_s)) & df['datepublished'].isin(pd.date_range(start_y, end_y))] return df_filtered.to_json(date_format='iso', orient='split') @app.callback( Output('div-figures', 'children'), [Input('filtered-data-hidden', 'children'), Input('color', 'value'), Input('artists', 'value'), Input('channels', 'value')] ) def plot_data(df, color, artists, channels): dff = pd.read_json(df, orient='split') figures = [] if artists and channels: color = color elif not artists: color = 'channelname' elif not channels: color = 'artistname' else: color = None for feature in FEATURES.keys(): if feature == 'music_key': bin_size = 22 elif feature == 'valence': bin_size = 2 else: bin_size = 20 f = px.histogram(dff, x=feature, nbins=bin_size, height=300, color=color, color_discrete_sequence=color_scheme[:len(artists)]) f.update_layout( margin=dict(l=20, r=20, t=20, b=20), paper_bgcolor="#393e46", showlegend=False, font_color="#eeeeee", xaxis_title=FEATURES[feature] ) figures.append(dcc.Graph(figure=f)) return figures @app.callback( Output('div-summary', 'children'), [Input('filtered-data-hidden', 'children'), Input('color', 'value'), Input('summary', 'value')] ) def summary_table(df, color, summary): dff = pd.read_json(df, orient='split') test_sum = dff.groupby('artistname').agg({summary: ['mean', 'min', 'max']}).round(2).transpose() test_sum = pd.DataFrame(test_sum).reset_index().drop(columns=['level_0']).rename(columns={'level_1': ''}) figures = dash_table.DataTable( data=test_sum.to_dict('records'), sort_action='native', columns=[{'name': str(i), 'id': str(i)} for i in test_sum.columns], style_header={'backgroundColor': '#00adb5'}, style_cell={ 'backgroundColor': '#222831', 'color': '#eeeeee' }, ) return figures @app.callback( Output('scatter', 'figure'), [Input('filtered-data-hidden', 'children'), Input('feature-1', 'value'), Input('feature-2', 'value'), Input('color', 'value'), Input('artists', 'value'), Input('channels', 'value')] ) def graph_scatter(df, feature_1, feature_2, color, artists, channels): dff = pd.read_json(df, orient='split') if artists and channels: color = color elif not artists: color = 'channelname' elif not channels: color = 'artistname' else: color = None figure = px.scatter(dff, x=feature_1, y=feature_2, custom_data=['videoid'], hover_name='s_track_name', color=color, color_discrete_sequence=color_scheme[:len(artists)], height=1000) if color == 'artistname': legend_title = 'Artist' else: legend_title = 'Channel' figure.update_layout( paper_bgcolor="#393e46", showlegend=True, font_color="#eeeeee", xaxis_title=SCATTER[feature_1], yaxis_title=SCATTER[feature_2], legend=dict( orientation="h", yanchor="middle", y=1.02, xanchor="center", x=0.5, font=dict( size=12, ), title=legend_title ) ) return figure @app.callback( Output('pca', 'figure'), [Input('filtered-data-hidden', 'children'), Input('artists', 'value'), Input('channels', 'value')] ) def pca(df, artists, channels): if not artists or not channels: return dash.no_update dff = pd.read_json(df, orient='split') X = dff[audio_features].to_numpy(dtype='float') X_id = pd.merge(dff[['s_track_name', 's_id']], dff[audio_features], left_index=True, right_index=True) pca = PCA(n_components=2) components = pca.fit_transform(X) figure = px.scatter(components, x=0, y=1, hover_name=X_id['s_track_name'], height=1000) figure.update_layout( paper_bgcolor="#393e46", showlegend=False, font_color="#eeeeee", xaxis_title='Principal Component 1', yaxis_title='Principal Component 2' ) figure.update_traces(marker=dict(color='#00adb5')) return figure @app.callback( Output('div-video', 'children'), Input('pca', 'clickData')) def display_selected_data(selectedData): if not selectedData: return html.Div([ html.H5('Selected Track'), html.Div(id='div-video'), html.P('(Click on a datapoint on the Similar Tracks graph to listen to the track)') ], className='pretty_container') else: dff = db.track_id(selectedData['points'][0]['hovertext']) vid_link = "https://www.youtube.com/embed/" + dff['videoid'][0] return html.Div([ html.Iframe(src=vid_link, className='video') ], className='video-container') if __name__ == '__main__': app.run_server(debug=True) ```
{ "source": "jkobject/CodonUsageBias", "score": 2 }
#### File: CodonUsageBias/PyCUB/espece.py ```python import requests import numpy as np import utils from scipy.stats import multinomial try: from urllib2 import urlopen as urlopen except: from urllib.request import urlopen as urlopen class Espece(object): """ docstring for Espece This is an object that contains all required information of a species for PyCUB and some nice functions to interact for each species Attributes: code: a dict from gene_name to dna_seq string (deprecated) metadata: a dict containing different metadata information that one can gather, preferentially boolean flags to classify the species for plottings and comparings name: the full scientific name of the species is_stored, state if the data is stored in HD (deprecated) link: the link to the ensembl genome num_genes: the number of gene of this species genome_size: the bp size of the coding genome name: the name of the species taxonid: the number assoxiated to this taxon copynumbers: the approx. copynumbers if any of each tRNA known of this species average_entropy: the mean CUB value for each amino acids (CUBD dimension) average_size: the mean size of each homologies var_entropy: the mean of fullvarentropy fullentropy: the array containing all CUB values from the homologies of this species fullvarentropy: the variance for each amino acids of the full CUB values of this species fullGCcount: the GC content of the full coding genome varGCcount: the variance of the GC content of the full coding genome tRNAentropy: the entropy values of the copynumbers of the tRNAs if sufficient tRNAs exist tot_homologies: the total number of homologies to cerevisiae """ code = None # dict num_genes = 0 # int genome_size = 0 # int link = None # str metadata = { "isplant_pathogen": False, "isanimal_pathogen": False, "isplant_symbiotic": False, # endophyte or mycorrhizal "isbrown_rot": False, "iswhite_rot": False } is_stored = False # bool name = '' # str taxonid = None # str copynumbers = None # dict average_entropy = None # array float average_size = None # float var_entropy = None # float fullentropy = None # array float fullvarentropy = None # array float fullGCcount = None # int varGCcount = None # float meanGChomo = None # float tRNAentropy = None # array float tot_homologies = None # int meanecai = None # float def __init__(self, **kwargs): """ can intialize the file from kwargs as a raw dictionnary for json format (output of dictify) or from regular args. """ data = kwargs.get("data", None) if data is not None: self.name = data.get("name", None) if data.get("metadata", None) is None: self.metadata = { "isplant_pathogen": False, "isanimal_pathogen": False, "isplant_symbiotic": False, # endophyte or mycorrhizal "isbrown_rot": False, "iswhite_rot": False } else: self.metadata = data.get("metadata", None) self.code = data.get("code", None) self.taxonid = data.get("taxonid", None) self.copynumbers = data.get("copynumbers", None) self.is_stored = data.get('is_stored', None) self.average_entropy = np.asarray(data["average_entropy"]) if data.get("average_entropy", False) else None self.average_size = data.get("average_size", None) self.var_entropy = data.get("var_entropy", None) self.fullentropy = np.asarray(data["fullentropy"]) if data.get("fullentropy", False) else None self.fullGCcount = data.get("fullGCcount", None) self.tRNAentropy = np.asarray(data["tRNAentropy"]) if data.get("tRNAentropy", False) else None self.num_genes = data.get("num_genes", 0) self.genome_size = data.get("genome_size", 0) self.link = data.get("link", None) self.fullvarentropy = np.asarray(data["fullvarentropy"]) if data.get("fullvarentropy", False) else None self.varGCcount = data.get("varGCcount", None) self.tot_homologies = data.get("tot_homologies", None) self.meanGChomo = data.get("meanGChomo", None) self.meanecai = data.get("meanecai", None) else: self.code = kwargs.get('code', None) self.is_stored = kwargs.get('is_stored', None) self.taxonid = kwargs.get('taxonid', '') self.name = kwargs.get('name', '') self.copynumbers = kwargs.get('copynumbers', None) self.average_entropy = kwargs.get("average_entropy", None) self.average_size = kwargs.get("average_size", None) self.var_entropy = kwargs.get("var_entropy", None) self.fullentropy = kwargs.get("fullentropy", None) self.fullGCcount = kwargs.get("fullGCcount", None) self.tRNAentropy = kwargs.get("tRNAentropy", None) self.num_genes = kwargs.get("num_genes", 0) self.genome_size = kwargs.get("genome_size", 0) self.link = kwargs.get("link", None) self.fullvarentropy = kwargs.get("fullvarentropy", None) self.varGCcount = kwargs.get("varGCcount", None) self.tot_homologies = kwargs.get("tot_homologies", None) self.metadata = kwargs.get("metadata", None) self.meanGChomo = kwargs.get("meanGChomo", None) self.meanecai = kwargs.get("meanecai", None) def __str__(self): """ will present some interesting info about this species. """ toret = '' if self.name: toret += "\nspecies: " + self.name toret += "\n----------------------------------" if self.taxonid: toret += "\ntaxonid" + str(self.taxonid) toret += "\nmetadata" + str(self.metadata) toret += "\n----------------------------------" if self.copynumbers is not None: toret += "\ncopynumbers of tRNA: " + str(self.copynumbers) if self.average_size is not None: toret += "\naverage size: " + str(self.average_size) if self.tRNAentropy is not None: toret += "\ntRNA entropy: " + str(self.tRNAentropy) if self.num_genes: toret += "\nnumber of genes: " + str(self.num_genes) if self.genome_size: toret += "\ngenome size: " + str(self.genome_size) if self.tot_homologies is not None: toret += "\ntotal number of homologies to cerevisiae: " + str(self.tot_homologies) toret += "\n----------------------------------" if self.average_entropy is not None: toret += "\naverage entropy: " + str(self.average_entropy) if self.var_entropy is not None: toret += "\nvariance of entropy: " + str(self.var_entropy) if self.fullentropy is not None: toret += "\nfull entropy: " + str(self.fullentropy) if self.fullvarentropy is not None: toret += "\nfull variance of entropy: " + str(self.fullvarentropy) if self.varGCcount is not None: toret += "\nvariance of the GC content: " + str(self.varGCcount) if self.meanecai is not None: toret += "\nmean ECAI: " + str(self.meanecai) return toret # CpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpTpTpCpCpGpApApTpApTpApTpTp # GbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbAbGbGbCbTbTbAbTbAbTbAbAbAb # CpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpTpTpCpCpGpApApTpApTpApTpTp # GbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbAbGbGbCbTbTbAbTbAbTbAbAbAb def get_tRNAcopy(self, by="entropy", setnans=False, kingdom='fungi', baseCNvalue=2): """ Retrieves tRNA copy numbers from ensembl DB will print the number of tRNAs and the number of tRNAs with a knwon codons ( the usefull ones) will stop and set a trace for the user to inspect the data to do so: please write "dat" in the console. if you see something that should be corrected please do so from the console directly or from the code if there seems to be an error in the code if it is an error in the db that you can't do anything, like a mismatched codon and amino acid, you can't do much. resume the process by typing "c" in the console. Args: species: string, the species from which you want the Trna copy number Returns: Will populate copynumbers. And tRNAentropy if by="entropy" Or will not do anything if the species is unavailable and will print it Raises: AttributeError: this is a wrong argument try frequency or entropy """ server = "http://rest.ensemblgenomes.org" if kingdom != 'vertebrate' else "http://rest.ensembl.org" print 'species: ' + self.name ext = "/lookup/genome/" + self.name + '?' add = "biotypes=tRNA;level=transcript" r = requests.get(server + ext + add, headers={"Content-Type": "application/json"}) if not r.ok: print " !! ---> unavailable species" return data = r.json() copynumber = {} for key, val in utils.anticodons.iteritems(): copynumber.update({key: {}}) for v in val: v.replace('T', 'U') copynumber[key].update({v.replace('T', 'U'): baseCNvalue}) num = 0 j = 0 for j, dat in enumerate(data): if dat["name"] is not None and len(dat["name"]) != 0: if dat["name"][0:4] == 'tRNA': try: if dat["description"] is None: if dat["name"][10:13] != '': if len(dat["name"]) == 14: codn = dat["name"][10:13] if len(dat["name"]) == 13: codn = dat["name"][9:12] if 'T' in codn: codn = codn.replace('T', 'U') else: continue else: codn = dat["description"][23:26] ami = dat["name"][5:8].upper() if ami == 'SEC': ami = 'SER' copynumber[ami][codn] += 1 num += 1 elif ami in ['TRP', 'MET', 'UND', 'SUP', 'UNK']: continue elif ami == 'PSE': codn = dat["name"][12:15].upper() for key, val in copynumber.iteritems(): if type(val) is dict: for k, v in val.iteritems(): if k == codn: copynumber[key][k] += 1 else: copynumber[ami][codn[::-1]] += 1 num += 1 except KeyError: print "KeyError" elif dat["name"][0:3] == 'trn': try: codn = dat["name"][5:8].upper() if 'T' in codn: codn = codn.replace('T', 'U') ami = utils.amino2reduce[dat["name"][3]] if ami in ['TRP', 'MET', 'UND', 'SUP', 'UNK']: continue else: copynumber[ami][codn[::-1]] += 1 num += 1 except KeyError: print "KeyError" elif dat["description"] is not None and len(dat["description"]) > 10: if dat["description"][0:4] == 'tRNA': try: codn = dat["description"][23:26] ami = dat["description"][5:8].upper() if ami == 'SEC': ami = 'SER' copynumber[ami][codn] += 1 num += 1 elif ami in ['TRP', 'MET', 'UND', 'SUP', 'UNK']: continue else: copynumber[ami][codn[::-1]] += 1 num += 1 except KeyError: print "KeyError" if num == 0: print "empty data" print "we got " + str(j) + " datapoints and managed to extract " + str(num) # we find probabilities of tRNA k = 0 if num > 100: tRNAentropy = np.zeros(18) if by == "entropy" else None for _, v in copynumber.iteritems(): n = np.array(v.values()).sum() if n > 0: for _, val in v.iteritems(): val = val / n # Else we keep the raw frequency values if by == "entropy": nbcod = len(v) # replace Cleng count = v.values() X = np.zeros(nbcod) mn = np.ones(nbcod) / nbcod if n == 0: tRNAentropy[k] = np.NaN if setnans else 0.5 else: Yg = multinomial.pmf(x=count, n=n, p=mn) # efor part div, i = divmod(n, nbcod) X[:i] = np.ceil(div) + 1 X[i:] = np.floor(div) Eg = multinomial.pmf(x=X, n=n, p=mn) # end here tRNAentropy[k] = -np.log(Yg / Eg) k += 1 elif by != "frequency": raise AttributeError("this is a wrong argument try frequency or entropy") # Here we can compute as well the entropy of the tRNA CNs when there is suficient number of val # else we can set it to zero (to NaN) this allows us to directly compare two values copynumber.update({'num': num}) # total number copynumber.update({'datapoints': j}) # possible number of datapoints self.copynumbers = copynumber if by == "entropy" and num > 100: self.tRNAentropy = tRNAentropy def gettaxons(self, kingdom='fungi'): """ Pars the ensemblgenomes REST API to retrieve the taxons id for the species from which we would not have any (downloaded via Yun for example) Raises: HTTPrequestError: not able to connect to the server """ # http: // rest.ensemblgenomes.org / info / genomes / arabidopsis_thaliana? server = "http://rest.ensemblgenomes.org" if kingdom != 'vertebrate' else "http://rest.ensembl.org" print 'species: ' + self.name ext = "/info/genomes/" + self.name + '?' r = requests.get(server + ext, headers={"Content-Type": "application/json"}) if not r.ok: r.raise_for_status() data = r.json() self.taxonid = data["species_taxonomy_id"] def get_epigenomes(self): """ get from ensembl all the data about the epigenome that could help asking interesting questions about the CUB """ # curl 'http://rest.ensemblgenomes.org/overlap/id/AT3G52430?feature=array_probe' - H 'Content-type:application/json' # curl 'http://rest.ensemblgenomes.org/overlap/id/AT3G52430?feature=repeat' - H 'Content-type:application/json' pass def _dictify(self): """ Used by the saving function. transform the object into a dictionary that can be json serializable Returns: A dict holding every element to be jsonized """ return {"name": self.name, "code": self.code, "num_genes": self.num_genes, "genome_size": self.genome_size, "link": self.link, "fullvarentropy": self.fullvarentropy.tolist() if self.fullentropy is not None else None, "varGCcount": self.varGCcount, "tot_homologies": self.tot_homologies, "taxonid": self.taxonid, "copynumbers": self.copynumbers, "metadata": self.metadata, "meanGChomo": self.meanGChomo, "meanecai": self.meanecai, "is_stored": self.is_stored, "average_entropy": self.average_entropy.tolist() if self.average_entropy is not None else None, "average_size": self.average_size, "var_entropy": self.var_entropy, "fullentropy": self.fullentropy.tolist() if self.fullentropy is not None else None, "fullGCcount": self.fullGCcount.tolist() if self.fullGCcount is not None else None, "tRNAentropy": self.tRNAentropy.tolist() if self.tRNAentropy is not None else None} ``` #### File: CodonUsageBias/PyCUB/pyCUB.py ```python import os import json import zipfile import shutil from ftplib import FTP import gzip import copy import requests from sklearn.preprocessing import normalize try: from urllib2 import urlopen as urlopen except: from urllib.request import urlopen as urlopen from sklearn.neural_network import MLPRegressor from joblib import Parallel, delayed import multiprocessing from functools32 import lru_cache from rpy2.robjects.packages import importr from ete2 import NCBITaxa from rpy2 import robjects import rpy2.robjects.packages as rpackages from rpy2.robjects.vectors import StrVector import pandas as pd import numpy as np from scipy.spatial.distance import euclidean from scipy.sparse.csgraph import dijkstra from scipy.stats import spearmanr from sklearn import manifold as man from sklearn.decomposition import PCA from sklearn.linear_model import MultiTaskLassoCV, LassoCV from sklearn import cluster import espece as spe import homoset as hset import utils import homology as h from bokeh.plotting import * from bokeh.models import * from bokeh.io import save, show from bokeh.layouts import column import matplotlib.pyplot as plt from Bio import SeqIO # Lasso, cross Validation, Principal Component Analysis, T-SNE, spearman's rho, # djikstra alg with fbonacci's boosting, multinomial distribution, # multivariate normal approximation to multinomial, multiprocessing, # parallel computing, entropy, AUC_entropy, pseudo phylodistance # by cophenetic matrix of a dendogram, cosine similarity, hyperparams grid search, # KMeans, MiniBatchKMeans, KModes, silhouette_score, calinski_harabaz_score, akaike information criterion, # bayesian information criterion binary search, recurssive function, # dynamic programming, endres distance, kulback leiber divergence, gaussian mixture clustering # neural networks, Perceptron, DBscan # python, js, REST, ftp, json, doxygen,gzip, # CAI, tRNA, CUB, 3D conformation of DNA, CUF, fungi, animals, plants, GCcount, KaKs_Scores, hydrophob, synthcost, isoepoint # HiC data, fasta, fast, # biology, genomics, genetics, population genomics, comparative genomics, computational biology, # bioinformatics, machine learning, statistics, statistical learning, informatics, computer science # knowledge discovery, datascience, big data, cloud computing, scientific computing import pdb class PyCUB(object): """ @package PyCUB is the main object of the project that allows the user to access most of the functions When using it, please follow the documentation and examples on notebooks thought you can still use it as you please and use some of the nice tricks provided here and in python Attributes: species: dictionary of Espece objects from the name of the species. (see espece.py) working_homoset: PyCUB.homoset object that stores a subset of the homologies you want to work on all_homoset PyCUB.homoset that stores the all the homologies session: str the session name you want to use (will appear in the savings for example _is_saved: bool trivial system only boolean links: dict of all the links readily available in PyCUB. for the project of <NAME> please use whatever datasets you may find usefull (you can also download from Ensembl) coeffgenes: np.array regressing values for each attributes scoregenes: the score of the regressor scorespecies: the score of the regressor coeffspecies: np.array regressing values for each attributes rho_ent: float from the scoring of spearman's rho for entropy pent: float from the scoring of spearman's rho for entropy rho_cub: float from the scoring of spearman's rho for CUB pcub: float from the scoring of spearman's rho for CUB rho_cuf: float from the scoring of spearman's rho for CUF pcuf: float from the scoring of spearman's rho for CUF """ links = {'yun': { 'homology1t500.zip': 'https://www.dropbox.com/s/fmh0ljf02twn4vw/homology1t500.zip?dl=1', 'homology501t1000.zip': 'https://www.dropbox.com/s/ld4ar5pnh0f1w1w/homology501t1000.zip?dl=1', 'homology1001t2000.zip': 'https://www.dropbox.com/s/he39xu9c0n2jw8n/homology1001t2000.zip?dl=1', 'homology2001t2500.zip': 'https://www.dropbox.com/s/8w73jbs3r0ugqb8/homology2001t2500.zip?dl=1', 'homology2501t3000.zip': 'https://www.dropbox.com/s/86d23iaetw3hmzy/homology2501t3000.zip?dl=1', 'homology3001t3500.zip': 'https://www.dropbox.com/s/mr1tefylq11l3ee/homology3001t3500.zip?dl=1', 'first50.zip': 'https://www.dropbox.com/s/m3vob12ztfqs8gh/first50.zip?dl=1'}, 'mymeta': { 'Amino Acid Properties README.txt': 'https://www.dropbox.com/s/3tb2j69l0acirt0/\ Amino%20Acid%20Properties%20README.txt?dl=1', 'Amino Acid Properties.csv': 'https://www.dropbox.com/s/g157emzyid2qi83/Amino%20Acid%20Properties.csv?dl=1', 'cerevisae_prot_abundance.csv': 'https://www.dropbox.com/s/t77016m5fqzb2fc/cerevisae_prot_abundance.csv?dl=1', 'names_with_links.csv': 'https://www.dropbox.com/s/voj26r0onvvqvx2/names_with_links.csv?dl=1', 'order_name461.csv': 'https://www.dropbox.com/s/0708046ld1pcju4/order_name461.csv?dl=1', 'Yun_Species_Context': 'https://www.dropbox.com/s/rdse1rco04hmuwf/Yun_Species_Context.csv?dl=1', 'homolist.json': 'https://www.dropbox.com/s/5a3h8hps9eozd8g/homolist.json?dl=1' }, 'meta': { 'fungi': 'ftp://ftp.ensemblgenomes.org/pub/release-39/fungi/species_metadata_EnsemblFungi.json', 'bacteria': 'ftp://ftp.ensemblgenomes.org/pub/release-39/bacteria/species_metadata_EnsemblBacteria.json', 'plants': 'ftp://ftp.ensemblgenomes.org/pub/release-39/plants/species_metadata_EnsemblPlants.json' } } species = {} working_homoset = None all_homoset = None _is_saved = False session = None coeffgenes = None scoregenes = None scorespecies = None coeffspecies = None def __init__(self, species={}, _is_saved=False, _is_loaded=False, working_homoset=None, all_homoset=None, session='session1'): """ will initialize the object with the different values you might have from another project Args: species: dictionary of Espece objects from the name of the species. (see espece.py) working_homoset : PyCUB.homoset object that stores a subset of the homologies you want to work on all_homoset PyCUB.homoset that stores the all the homologies session : str the session name you want to use (will appear in the savings for example _is_saved : bool trivial system only boolean """ self.species = species self.working_homoset = working_homoset self.all_homoset = all_homoset self._is_saved = _is_saved self._is_loaded = _is_loaded self.session = session self.homolist = None print "working on session: " + self.session if os.path.isdir('utils/save/' + session): print 'you already have a session here (just a warning)' else: os.mkdir('utils/save/' + session) # create a function to find all homologies from a species # CpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpTpTpCpCpGpApApTpApTpApTpTp # GbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbAbGbGbCbTbTbAbTbAbTbAbAbAb def getHomologylist(self, species='saccharomyces_cerevisiae', kingdom='fungi'): """ A function to retrieve the homologies directly from a given species (it is better to use one of the key species for the different kingdoms (sacharomyces, HS, Arabidopsis..)) Args: specie: str the name of the specie to get the homology from kingdom: str the kingdom where we can find this specie """ location = 'ftp.ensemblgenomes.org' if kingdom != 'vertebrate' else 'ftp.ensembl.org' release = 'release-40/' if kingdom != 'vertebrate' else 'release-93' ftp = FTP(location) ftp.login() if kingdom == 'vertebrate': kingdom = '' ftp.cwd('pub/' + release + kingdom + '/fasta/') data = [] name = [] ftp.retrlines('NLST', data.append) for d in data: if d == species: ftp.cwd(d) link = [] ftp.cwd('cds') ftp.retrlines('NLST', link.append) with open("utils/data/temp.fa.gz", "wb") as file: for i in link: if i[-9:] == "all.fa.gz": ftp.retrbinary("RETR " + i, file.write) with gzip.open("utils/data/temp.fa.gz", "rt") as handle: for record in SeqIO.parse(handle, "fasta"): name.append(record.name) self.homolist = name def get_data(self, From='yun', homonames=None, kingdom='fungi', sequence='cdna', additional='type=orthologues', saveonfiles=False, normalized=True, setnans=False, by="entropy", using="normal", tRNA=True, getCAI=True, first=20, inpar=True): """ Download the data from somewhere on the web (Ensembl, Yun(with links)) you can provide a lot of different values to scrape Ensembl's datasets it will compute from ensembl to retrieve a similar dataset as what yun's data is. Args: From: str flag 'yun' or 'ensembl': homonames: list[str] what particular homologies you want to scrap if 'all' and you have used the getHomologylist() function, will get the homologies from there kingdom: str same for kingdoms sequence: str the type of sequences you want to use additional: str additional information about the scrapping saveonfiles: bool save the unprocessed data before populating working homoset normalized: bool if you want the values to be normalized by the length of the codons (lengths are always saved) setnans: bool if you want to save the nans as metadata by: str flag 'entropy', 'entropyLocation' (entropy location), 'frequency' using: str flag 'random' 'normal' 'permutation' 'full' inpar: bool or int for parallel computing and number of core tRNA: bool whether or not to compute tRNA data getCAI: bool flag to true to retrieve the CAI as well first: int the first most expressed genes to compute the CAI ref statistics Raises: AttributeError: "you can't compute codon frequency with Yun's data...", 'not the right From' UnboundLocalError: "you have to load the homologies first" AttributeError: 'not the right From' http://rest.ensemblgenomes.org/ """ if by == 'frequency': print "you will have a larger dimensional matrix (59D)" if type(inpar) is int: num_cores = inpar else: num_cores = -1 if inpar else 1 if From == 'yun': if by is 'frequency': raise AttributeError("you can't compute codon frequency with Yun's data...") Parallel(n_jobs=8)(delayed(utils.getyun)(key, val) for key, val in self.links['yun'].iteritems()) self.load(All=False if homonames is not None else True, filename=homonames, From=From, by=by, inpar=inpar) elif From == 'ensembl': if homonames == 'all' or homonames is None: if self.homolist is None and kingdom == 'fungi': with open('utils/meta/homolist.json', "r") as f: self.homolist = json.loads(f.read()) else: if self.homolist is None: raise UnboundLocalError("you have to load the homologies first") print "using the loaded homolist from ensembl" else: self.homolist = homonames self.all_homoset = hset.HomoSet(datatype=by) print "doing all " + str(len(self.homolist)) + " homologies" print ' ' homonamelist = [] getCAI = self.createRefCAI(first=first, kingdom=kingdom) if getCAI else None if bool(inpar): values = Parallel(n_jobs=num_cores)(delayed(utils.loadfromensembl)( name, kingdom, sequence, additional, saveonfiles, normalized, setnans, i, by, using, getCAI) for i, name in enumerate(self.homolist)) for i, val in enumerate(values): if val is not None: homonamelist.append(self.homolist[i]) self.all_homoset.update({self.homolist[i]: val}) else: for i, name in enumerate(self.homolist): homo = utils.loadfromensembl(name, kingdom, sequence, additional, saveonfiles, normalized, setnans, i, by, using, getCAI) if homo is not None: homonamelist.append(name) self.all_homoset.update({name: homo}) self.all_homoset.datatype = by self.all_homoset.homo_namelist = homonamelist # TODO: test full pipeline with frequency/entropy/entropylocation taxons, species = self.all_homoset.preprocessing(withtaxons=True) if tRNA: print "computing tRNA copy numbers" for i, spece in enumerate(species): espece_val = spe.Espece(name=spece, taxonid=taxons[i]) if tRNA: espece_val.get_tRNAcopy(by=by, setnans=setnans) self.species.update({spece: espece_val}) self.all_homoset.loadhashomo() else: raise AttributeError('not the right From') def get_metadata_Ensembl(self, kingdoms): """ download it and put it where it belongs in the Espece object parse the server https://fungi.ensembl.org/info/website/ftp/index.html will also get the metadata from the kingdoms that you are analysing Args: kingdoms: str flag the type of kingdoms you wanna have 'fungi' 'bacteria' 'plants' 'animals' """ if not os.path.exists('utils/meta'): os.mkdir('utils/meta') url = self.links['meta'][kingdoms] print "downloading " + kingdoms + " with urllib" if not os.path.exists('utils/meta/' + kingdoms + '.json'): f = urlopen(url) data = f.read() with open('utils/meta/' + kingdoms + '.json', "wb") as code: code.write(data) print "downloaded" def get_mymetadata(self, From='jerem', inpar=True): """ Go ahead and design your own metadata retrieval here. obviously you woud need to change some other functions. for me it is mean protein abundances in cerevisiae cells. Args: From: str flag designer of the function to load metadatas inpar: bool for parallel processing """ if not os.path.exists('utils/meta'): os.mkdir('utils/meta') if From == 'jerem': num_cores = -1 if inpar else 1 Parallel(n_jobs=num_cores)(delayed(utils.mymeta)(key, val) for key, val in self.links['mymeta'].iteritems()) if From == 'tobias': self.import_metadataTobias() def import_metadataTobias(self): """ will import the metadata obtained from tobias for the fungi species affiliated to cerevisiae to each species for further diagnostics. Populates metadata[num_genes, plant_pathogen, animal_pathogen, genome_size, plant_symbiotic, brown_rot, white_rot] for each species and weight, mRNA_abundance, is_secreted, protein_abundance, cys_elements, decay_rate for each homology """ # species metadata data = pd.read_csv("utils/meta/Yun_Species_Context.csv") for i, species in enumerate(data["Genome"]): if species in self.species: if self.species[species].metadata is None: self.species[species].metadata = { "isplant_pathogen": False, "isanimal_pathogen": False, "isplant_symbiotic": False, # endophyte or mycorrhizal "isbrown_rot": False, "iswhite_rot": False } self.species[species].num_genes = int(data["No_Genes"][i]) self.species[species].metadata["isplant_pathogen"] = bool(data["plant_pathogen"][i]) self.species[species].metadata["isanimal_pathogen"] = bool(data["animal_pathogen"][i]) self.species[species].genome_size = int(data["Genome_Size"][i]) self.species[species].metadata["isplant_symbiotic"] = bool(data["mycorrhizal"][i] or data["endophyte"][i]) self.species[species].metadata["isbrown_rot"] = bool(data["brown_rot"][i]) self.species[species].metadata["iswhite_rot"] = bool(data["white_rot"][i]) # protein metadata data = pd.read_csv("utils/meta/protdata/tob_currated.csv") for i, homo in enumerate(data["ORF"]): if unicode(homo) in self.all_homoset.keys(): self.all_homoset[homo].weight = data["Molecular Weight (Da)"][i] self.all_homoset[homo].protein_abundance = data["Protein Abundance (molecules per cell)"][i] self.all_homoset[homo].mRNA_abundance = float(data["mRNA Abundance (molecules per cell)"][i].replace(',', '.'))\ if type(data["mRNA Abundance (molecules per cell)"][i]) is str else data["mRNA Abundance (molecules per cell)"][i] self.all_homoset[homo].decay_rate = float(data["Protein decay rate (min-1)"][i].replace(',', '.'))\ if type(data["Protein decay rate (min-1)"][i]) is str else data["Protein decay rate (min-1)"][i] data = pd.read_csv("utils/meta/protdata/PDI_substrates.csv") for i, homo in enumerate(data["ORF"]): if unicode(homo) in self.all_homoset.keys(): self.all_homoset[homo].is_secreted = True self.all_homoset[homo].protein_abundance = data["proteins_per_cell"][i] self.all_homoset[homo].cys_elements = data["Cys"][i] self.all_homoset[homo].decay_rate = data["degradation"][i] # LOADINGS AND SAVINGS def load(self, session=None, All=False, filename='first500', From=None, by='entropy', tRNA=True, inpar=True): """ Get the data that is already present on a filename Either load from Yun's datasets or from an already saved session. Is being called by get_data. But you can call it to just use one of Yun's files as well Args: From: str if this flag is set to 'yun' it means that the filename is made of Yundata in which case we will create directly the homology map in the same time as the rest of the PyCUB object. All: bool set to true if load everything from Yun by: str same flag as get_data (for Yun's files here). filename: str the particular filename when not loading them all session: str if a session name is provided, then will load a zip file from this session's folder tRNA: bool to true to compute the tRNA values inpar: int to set the number of processor (as in scikit) Returns: May return additionals if loading from a session where one decided to save more than the two All/working homologies. to be handled separately """ separation = "homology" folder = "utils/data/" if session is None else "utils/save/" + session + '/' if not self._is_loaded: if From == 'yun' and session is None: if All: # if we want them all we will take the first and then use loadmore # function filename = 'homology1t500' # then we process it according to how Yun Displays its data, trying to fill in # as much as we can homo_namelist = [] nameB = "" self.all_homoset = hset.HomoSet(datatype=by) if not os.path.exists(folder + filename): # we the file has not been zipped already zip_ref = zipfile.ZipFile(folder + filename + '.zip', 'r') zip_ref.extractall(folder + filename) zip_ref.close() note = False else: note = True file = folder + filename if len(os.listdir(file)) == 2: # the case with macos and special zipping... lame filename = file + '/' + filename else: filename = file # getting all the homology names print "Reviewing all the " + str(len(os.listdir(filename))) + " files" for f in sorted(os.listdir(filename)): if f.endswith(".txt"): nameA = f.split(separation)[0] if(nameA != nameB): nameB = nameA homo_namelist.append(nameB) self.all_homoset.homo_namelist = homo_namelist # getting all the species names and instanciating the species object df, dflink = utils.retrievenames() i = 0 df = df.sort_values(by='name') for _, row in df.iterrows(): espece_val = spe.Espece(name=row['name'], link=dflink.loc[dflink['name'] == row['name'], 'b'].tolist()[0]) if tRNA: espece_val.get_tRNAcopy(by=by) self.species.update({ row['name']: espece_val}) utils.speciestable.update({i: row['name']}) i += 1 self.all_homoset.species_namelist = df['name'].tolist() # getting the homologies now dou = 0 if by == "entropy": by = "entropyValue" if inpar: values = Parallel(n_jobs=-1)(delayed(utils.homoyun)( separation, filename, homology, by=by) for homology in homo_namelist) for i, val in enumerate(values): self.all_homoset.update({homo: h.homology( full=val[0], names=val[1].tolist(), nans=val[2], homocode=homo, lenmat=val[3], doub=val[4])}) dou += np.count_nonzero(val[4]) else: for homo in homo_namelist: val = utils.homoyun(separation, filename, homo, by=by) self.all_homoset.update({homo: h.homology( full=val[0], names=val[1].tolist(), nans=val[2], homocode=homo, lenmat=val[3], doub=val[4])}) dou += np.count_nonzero(val[4]) # create the hashomomatrix self.all_homoset.preprocessing(withnames=True) self.all_homoset.loadhashomo() self.all_homoset.datatype = by print "you had " + str(dou) + " same species homologies" print "reviewed " + str(len(homo_namelist)) + " homologies " # if we haven't change the working with processing self._is_saved = False if not note: shutil.rmtree(file) self._is_loaded = True if All: self.loadmore('homology4501t5000', by=by) self.loadmore('homology3501t4000', by=by) self.loadmore('homology2501t3000', by=by) self.loadmore('homology601t1000', by=by) self.loadmore('homology4001t4500', by=by) self.loadmore('homology3001t3500', by=by) self.loadmore('homology2001t2500', by=by) self.loadmore('homology1001t2000', by=by) print "you now have " + str(np.count_nonzero(self.all_homoset.hashomo_matrix)) +\ " genes in total" elif From is None: if not os.path.isfile(folder + filename + '.json'): print "unzipping " + folder + filename + '.json.gz' os.system("gzip -d " + folder + filename + '.json.gz') with open(folder + filename + ".json", "r") as f: print "loading from " + filename additionals = self._undictify(json.loads(f.read())) print "it worked !" os.system("gzip " + folder + filename + '.json') print "you now have " + str(np.count_nonzero(self.all_homoset.hashomo_matrix)) +\ " genes in total" return additionals else: print "hey, it looks like this object has already loaded some things" print "please use loadmore or use another object" print "you can delete this one with 'del' " def loadmore(self, filename='first500', by='entropyLocation'): """ Get the data that is already present on a filename when you already have data is usefull to load more of Yun's datasets. is called when load is set to All Args: filename: str the filename to additionaly load by: flag same as before Raises: UnboundLocalError: "You should try load first, this object is empty" """ folder = "utils/data/" separation = "homology" if self._is_loaded: # then we process it according to how Yun Displays its data, trying to fill in # as much as we can homo_namelist = [] nameB = "" if not os.path.exists(folder + filename): print "unzipping " + filename zip_ref = zipfile.ZipFile(folder + filename + '.zip', 'r') zip_ref.extractall(folder + filename) zip_ref.close() note = False else: note = True file = folder + filename if len(os.listdir(file)) < 3: file = file + '/' + filename print "Reviewing all the " + str(len(os.listdir(file))) + " files" for f in sorted(os.listdir(file)): if f.endswith(".txt"): nameA = f.split(separation)[0] if(nameA != nameB): nameB = nameA homo_namelist.append(nameB) # comparing two lists notdup = [item for item in homo_namelist if not (item in self.all_homoset.homo_namelist)] dup = len(homo_namelist) - len(notdup) if dup != 0: print "there is " + str(dup) + " duplicate from previous loads.. not cool" homo_namelist = notdup # update homonamelist self.all_homoset.homo_namelist.extend(homo_namelist) dou = 0 print "start the iteration process, I hope you haven't clusterized \ your data yet..else it won't work (for now)" num_cores = multiprocessing.cpu_count() values = Parallel(n_jobs=num_cores)(delayed(utils.homoyun)( i, homology, separation, file, self.all_homoset.species_namelist, by=by) for i, homology in enumerate(homo_namelist)) for val in values: self.all_homoset.update(val[0]) self.all_homoset.hashomo_matrix = np.vstack((self.all_homoset.hashomo_matrix, val[1]))\ if self.all_homoset.hashomo_matrix is not None else val[1] dou += val[2] print "you had " + str(dou) + " same species homologies (it can't be processed! for now)" print "reviewed " + str(len(homo_namelist)) + " homologies " self._is_saved = False if not note: shutil.rmtree(folder + filename) self._is_loaded = True print "you now have " + str(np.count_nonzero(self.all_homoset.hashomo_matrix)) +\ " genes in total" else: raise UnboundLocalError("You should try load first, this object is empty") def save(self, name, save_workspace=True, save_homo=True, add_homosets={}, cmdlinetozip="gzip"): """ call to save your work. you should call save on specific data structure if this is what you want to save. Will call other object's save, will transform all the variable into dict and save the dicts as json files. will save the df also as json files. PyCUB and homoset have their own json file. adding some params because else the object may be too big Args: name: str the name of the particular save on this session save_workspace: bool to fale not to save working_homoset save_homo: bool to false not to save all_homoset add_homosets= PyCUB.homoset homoset to add in addition to the regular ones cmdlinetozip: str you need to tell the platform how to zip on your system uses gzip by default but it needs to be installed """ filename = "utils/save/" + self.session + '/' + name + ".json" print "writing in " + name dictify = self._dictify(save_workspace, save_homo, add_homosets) data = json.dumps(dictify, indent=4, separators=(',', ': ')) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) with open(filename, 'w') as f: f.write(data) print "it worked !" # now we zip to save 90% memory space if cmdlinetozip == 'mac': os.system("ditto -c -k --sequesterRsrc " + filename + ' ' + filename + '.zip') os.remove(filename) if cmdlinetozip == 'gzip': os.system("gzip " + filename) self._is_saved = True # PREPROCESSINGS # CpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpTpTpCpCpGpApApTpApTpApTpTp # GbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbAbGbGbCbTbTbAbTbAbTbAbAbAb def get_working_homoset(self, clusternb=None, species=None, homologies=None, cleanhomo=None): """ create a subset of all_homoset on which you would like to do further computation To use once you have clustered homology groups, else takes everything. Can also be used just to get a subset of the all homosets. Args: clusternb: int set the cluster of the group you want to get need to be between 1 and homogroupnb homologies: list[str] the subset as a list you want to get from all_homoset (can be additional to a clusternb) species: list[str] the subset as a list you want to get from all_homoset (can be additional to a clusternb) cleanhomo: float if the homology is only shared by less than this amount amongst the species present in this homoset, removes them. Returns: a HomoSet object (see homoset.py) Raises: UnboundLocalError: "you have not clusterized you 'all_homoset'. you want to just use 'order_from_matrix' on it." """ leng = len(self.all_homoset.clusters) if clusternb is not None and leng > 0: # if clustering has been done if leng == len(self.all_homoset.species_namelist): # version by species homo = hset.HomoSet() ind = np.argwhere(np.asarray(self.all_homoset.clusters) == clusternb - 1)[:, 0] species_name = [self.all_homoset.species_namelist[i] for i in ind] homo.homodict = dict(self.all_homoset.homodict) homo.homodict.remove(species_name) homo.homo_namelist = self.all_homoset.homo_namelist homo.species_namelist = species_name elif leng == len(self.all_homoset.homodict): # version by homologies homo = hset.HomoSet() ind = np.argwhere(np.asarray(self.all_homoset.clusters) == clusternb - 1)[:, 0] if cleanhomo is not None: perc = self.all_homoset.hashomo_matrix.sum(1).astype(float) / self.all_homoset.hashomo_matrix.shape[1] homo_name = [self.all_homoset.homo_namelist[i] for i in ind if perc[i] > cleanhomo] else: homo_name = [self.all_homoset.homo_namelist[i] for i in ind] for x in homo_name: homo.update({x: self.all_homoset.homodict[x]}) homo.homo_namelist = homo_name homo.species_namelist = self.all_homoset.species_namelist else: raise UnboundLocalError("you have not clusterized you 'all_homoset'. you want to just use" + "'order_from_matrix' on it.") return False homo.datatype = self.all_homoset.datatype if homologies is not None: homo.homodict = {k: homo.homodict[k] for k in homologies} if species is not None: other = [item for item in homo.species_namelist if item not in species] homo.remove(sepcies=other) homo.loadhashomo() # big mistake to call this as it removes also species from the all homology as they both share the same objects # if cleanspecies is not None: # homo.clean_species(thresh=cleanspecies) # homo.loadhashomo() homo.loadfullhomo() homo.datatype = self.all_homoset.datatype self.working_homoset = homo return homo def get_subset(self, homoset, withcopy=False, clusternb=None, species=None, homologies=None): """ either changes or returns a subset of the provided homoset To use once if you want to further refine a set of homologies Args: homoset: PyCUB.homoset to get a subset from withcopy: bool to true if we don't want to change the homoset object but create a copy from it clusternb: int set the cluster of the group you want to get need to be between 1 and homogroupnb homologies: list[str] the subset as a list or a tuple of int species: list[the subset as a list, or a list of int Returns: a HomoSet object (see homoset.py) """ if withcopy: homo = copy.deepcopy(homoset) else: homo = homoset.copy() if homologies is not None: homo.homodict = {k: homoset[k] for k in homologies} if type(homologies[0]) is str else \ {homoset.homo_namelist[k]: homoset[k] for k in homologies} homo.homo_namelist = homo.homodict.keys() homo.hashomo_matrix = None homo.homo_matrix = None homo.homo_matrixnames = None homo.fulleng = None homo.red_homomatrix = None homo.homo_clusters = None homo.averagehomo_matrix = None homo.stats = {} if species is not None: other = [item for item in homoset.species_namelist if not (item in species)] homo.remove(sepcies=other) homo.loadhashomo() homo.loadfullhomo() return homo def get_full_genomes(self, kingdom='fungi', seq='cds', avg=True, by="entropy", normalized=False): """ go trought all full genome fasta files in the ftp server of ensemblgenomes and download then parse them to get the full entropy of the genome. usefull for futher comparison steps. will populate the fullentropy, fullvarentropy, fullGCcount, varGCcount of each species where the full sequence is known Args: kingdom: str flags the relevant kingdom of you current session [fungi,plants,bacteria, animals] seq: str flags the type of sequence you consider the full genome is (coding or non coding or full) [cds, all, cda] avg: bool to true if we average over each gene or get the full dna in one go. by: str flags what type of computation should be done [entropy,frequency] normalized: should we normalize the entorpy by length Raises: MemoryError: "this sequence is too long to be computed (> 1 billion bp)" """ def _compute_full_entropy(handle, by='entropy', avg=True, normalized=False, setnans=False): """ called by get full genomes, either calls utils.computeYun or process the full coding sequence in one go Private method. see 'get_full_genomes()' """ GCcount = [] val = [] if avg: for record in SeqIO.parse(handle, "fasta"): codseq = [record.seq._data[i:i + 3] for i in range(0, len(record.seq._data), 3)] valH, _, _ = utils.computeyun(codseq, setnans=setnans, normalized=normalized, by=by) val.append(valH) GCcount.append(float(record.seq._data.count('G') + record.seq._data.count('C')) / len(record.seq._data)) va = np.zeros((len(val), utils.CUBD)) for i, v in enumerate(val): va[i] = v return va, np.array(GCcount) else: print "not working, overflow ..." """ pdb.set_trace() c = [] amino = list(utils.amino) codons = dict(utils.codons) GCcount = 0. for x, record in enumerate(SeqIO.parse(handle, "fasta")): if len(c) > 1000000000: raise MemoryError("this sequence is too long to be computed (> 1 billion bp)") GCcount += (record.seq._data.count('G') + record.seq._data.count('C')) for i in range(0, len(record.seq._data), 3): c.append(record.seq._data[i:i + 3]) valH = np.zeros(len(amino)) if by != 'frequency' else np.zeros(59) # the number of codons usefull utils.CUBD = len(amino) if by != 'frequency' else 59 pos = 0 GCcount = float(GCcount) / len(c) for k, amin in enumerate(amino): subcodons = codons[amin] nbcod = len(subcodons) # replace Cleng count = np.zeros(nbcod) X = np.zeros(nbcod) mn = np.ones(nbcod) / nbcod for j, val in enumerate(c): for i, cod in enumerate(codons[amin]): if val == cod: count[i] += 1 c.pop(j) break lengsubseq = count.sum() # replace subSlength if by == 'frequency': E = count / lengsubseq valH[pos:pos + nbcod] = E pos += nbcod elif by == "entropy": Yg = multinomial.pmf(x=count, n=lengsubseq, p=mn) # efor part div, i = divmod(lengsubseq, nbcod) X[:int(i)] = np.ceil(div) + 1 X[int(i):] = np.floor(div) Eg = multinomial.pmf(x=X, n=lengsubseq, p=mn) # end here valH[k] = -np.log(Yg / Eg) / lengsubseq if normalized else -np.log(Yg / Eg) print "missed codons: "+str(len(c)) return valH, GCcount """ location = 'ftp.ensemblgenomes.org' if kingdom != 'vertebrate' else 'ftp.ensembl.org' release = 'release-40/' if kingdom != 'vertebrate' else 'release-93' ftp = FTP(location, timeout=3000) ftp.login() if kingdom == 'vertebrate': kingdom = '' ftp.cwd('pub/' + release + kingdom + '/fasta/') data = [] ftp.retrlines('NLST', data.append) species_namelist = self.species.keys() for i, d in enumerate(data): print "\rparsed " + str(i) + " over " + str(len(data)), ftp.cwd(d) if d[-10:] == 'collection': subdata = [] ftp.retrlines('NLST', subdata.append) for sub in subdata: if sub in species_namelist and self.species[sub].fullentropy is None: link = [] ftp.cwd(sub + '/' + seq) ftp.retrlines('NLST', link.append) with open("utils/data/temp.fa.gz", "wb") as file: for i in link: if i[-9:] == "all.fa.gz": ftp.retrbinary("RETR " + i, file.write) with gzip.open("utils/data/temp.fa.gz", "rt") as handle: val, gccount = _compute_full_entropy(handle, by, avg) self.species[sub].fullentropy = val.mean(0) if avg else val self.species[sub].fullvarentropy = (val.var(0)**(0.5)).mean() if avg else None self.species[sub].fullGCcount = gccount.mean() if avg else gccount self.species[sub].varGCcount = gccount.var()**(0.5) if avg else None print "done " + sub ftp.cwd('../..') os.remove("utils/data/temp.fa.gz") else: if d in species_namelist and self.species[d].fullentropy is None: link = [] ftp.cwd(seq) ftp.retrlines('NLST', link.append) with open("utils/data/temp.fa.gz", "wb") as file: for i in link: if i[-9:] == "all.fa.gz": ftp.retrbinary("RETR " + i, file.write) break with gzip.open("utils/data/temp.fa.gz", "rt") as handle: val, gccount = _compute_full_entropy(handle, by, avg) self.species[d].fullentropy = val.mean(0) if avg else val self.species[d].fullvarentropy = (val.var(0)**(0.5)).mean() if avg else None self.species[d].fullGCcount = gccount.mean() if avg else gccount self.species[d].varGCcount = gccount.var()**(0.5) if avg else None print "done " + d ftp.cwd('..') os.remove("utils/data/temp.fa.gz") ftp.cwd('..') def get_taxons(self): """ find the taxons of each referenced species (see PyCUB.Espece.gettaxons()) """ for key, val in self.species.iteritems(): try: val.gettaxons() except: print key + " has no referenced taxons" print "got taxons" def get_evolutionary_distance(self, display_tree=False, size=40): """ uses metadata of the ancestry tree and computes a theoretical evolutionary distance matrix between each species can optionaly take any hierarchical evolutionary file between a group of species will populate utils.phylo_distances with a pandas.df of the phylodistance and meandist with the average distance amongst species in the df, species are referenced by their taxon ids. you have to have taxons in your species. will also plot the distance matrix Args: display_tree: bool to true to print the phylogenetic tree as a txt (may be quite big) size: int the x size of the plot Raises: EnvironmentError: "you need to have R installed to compute the distance" """ ncbi = NCBITaxa() taxons = [] for key, val in self.species.iteritems(): if val.taxonid is not None and val.taxonid != '': taxons.append(val.taxonid) tree = ncbi.get_topology(taxons) # taxons # finding what this tree looks like if display_tree: print tree.get_ascii(attributes=["sci_name", "rank"]) with open('utils/meta/metaphylo/temp_tree.phy', 'w') as f: # maybe will be newick format... f.write(tree.write()) # """ try: # https://stackoverflow.com/questions/19894365/running-r-script-from-python base = importr('base') utiles = importr('utils') except: print EnvironmentError("you need to have R installed to compute the distance") return if not rpackages.isinstalled('treeio'): robjects.r(''' source("https://bioconductor.org/biocLite.R") biocLite("treeio") ''') robjects.r(''' treeText <- readLines("utils/meta/metaphylo/temp_tree.phy") treeText <- paste0(treeText, collapse="") library(treeio) tree <- read.tree(text = treeText) ## load tree distMat <- cophenetic(tree) write.table(distMat,"utils/meta/metaphylo/phylodistMat_temp.csv") ''') # """ df = pd.read_csv("utils/meta/metaphylo/phylodistMat_temp.csv", delim_whitespace=True) dcol = {} dind = {} for name, species in self.species.iteritems(): if species.taxonid: dind.update({int(species.taxonid): name}) dcol.update({unicode(species.taxonid): name}) df = df.rename(index=dind, columns=dcol) utils.phylo_distances = df utils.meandist = df.sum().sum() / (len(df)**2 - len(df)) self.plot_distances(size=size) def createRefCAI(self, speciestocompare='saccharomyces_cerevisiae', kingdom='fungi', first=20): """ do a compute CAI where we get Tobias' data to find highly expressed genes and use them to compute codon frequency for the reference set and use it to compute the CAI and mean CAI for each ho mology. Args: speciestocompare: str the name of the species to retrieve the genes from kingdom: str the kingdom where we can find it first: the number of highly expressed genes to retrieve """ if kingdom != 'fungi': print "if kingdom is not fungi, need to provide another file" return data = pd.read_csv("utils/meta/protdata/tob_currated.csv") homonames = data["ORF"].values expres = data["Protein Abundance (molecules per cell)"].values ind = expres.argsort() highlyexpressed = [homonames[i] for i in ind[:first]] location = 'ftp.ensemblgenomes.org' if kingdom != 'vertebrate' else 'ftp.ensembl.org' release = 'release-40/' if kingdom != 'vertebrate' else 'release-93' ftp = FTP(location) ftp.login() if kingdom == 'vertebrate': kingdom = '' ftp.cwd('pub/' + release + kingdom + '/fasta/') data = [] ftp.retrlines('NLST', data.append) for d in data: if d == speciestocompare: ftp.cwd(d) link = [] ftp.cwd('cds') ftp.retrlines('NLST', link.append) with open("utils/data/temp.fa.gz", "wb") as file: for i in link: if i[-9:] == "all.fa.gz": ftp.retrbinary("RETR " + i, file.write) codseq = [] with gzip.open("utils/data/temp.fa.gz", "rt") as handle: for record in SeqIO.parse(handle, "fasta"): if record.id in highlyexpressed: codseq.extend([record.seq._data[i:i + 3] for i in range(0, len(record.seq._data), 3)]) os.remove("utils/data/temp.fa.gz") return utils.reference_index(codseq, forcai=True) def speciestable(self): """ a copy of the utils.speciestable Returns: a copy of the utils.speciestable (dict[int,str] of species to their PyCUB coded value """ return dict(utils.speciestable) if utils.speciestable is not None else None def phylo_distances(self): """ a copy of the phylodistances dataframe see (get_evolutionary_distance()) Returns: a copy of the phylodistances dataframe see (get_evolutionary_distance()) """ return utils.phylo_distances.copy() if utils.phylo_distances is not None else None def compute_averages(self, homoset): """ compute the average entropy Will add species related averages gotten from this homoset in the species container, and in the homoset everytime you compute averages from a set, they will get erased ! Args: homoset: PyCUB.homoset from which to compute the averages """ if homoset.homo_matrix is None: homoset.loadfullhomo() if homoset.hashomo_matrix is None: homoset.loadhashomo() # we get all CUB values pertaining to one specific species from # the homoset with the full homo matrix ind, counts = np.unique(homoset.homo_matrixnames, return_counts=True) ind = homoset.homo_matrixnames.argsort() GCmat = np.zeros((len(homoset.homo_namelist), len(homoset.species_namelist))) for i, val in enumerate(homoset.homo_namelist): GCmat[i, np.array(homoset[val].names)[np.invert(homoset[val].doub)]] = homoset[val].GCcount[np.invert(homoset[val].doub)] GCmat = GCmat.sum(0) / np.count_nonzero(GCmat, 0) for i, spece in enumerate(homoset.species_namelist): self.species[spece].meanGChomo = GCmat[i] pos = 0 speciestable = dict(utils.speciestable) for i, un in enumerate(counts): aslicetoavg = homoset.homo_matrix[ind[pos:pos + un]] bslicetoavg = homoset.fulleng[ind[pos:pos + un]] self.species[speciestable[i]].average_entropy = aslicetoavg.mean(axis=0) self.species[speciestable[i]].average_size = bslicetoavg.sum(1).mean() # variances are mean variances over all values self.species[speciestable[i]].var_entropy = (aslicetoavg.var(axis=0)**(0.5)).mean() pos += un self.species[speciestable[i]].tot_homologies = un print str(float(i) / len(speciestable)) + "% have entropy" print "homology averages : " + str(homoset.homo_matrix.mean(axis=0)) homoset.averagehomo_matrix = np.array([homoset[homo].mean for homo in homoset.homo_namelist]) for _, val in homoset.iteritems(): val.compute_averages() # CpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpCpCpGpApApTpApTpApTpTpTpTpCpCpGpApApTpApTpApTpTp # GbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbGbGbCbTbTbAbTbAbTbAbAbAbGbGbCbTbTbAbTbAbTbAbAbAb def compare_species(self, to="full", showvar=True, reducer='tsne', perplexity=40, eps=0.3, size=10, varmult=1): """ compare the species according to their mean CUB, plot the mean CUB to their full CUB, to their tRNA copy numbers, to the euclidean distance of their CUB to the one of their phylogenetic matrix. in this plot, the mean entropy value is plotted as a regular homology plot but each dot is a species thus we can compare them together, moreover, the size of the dots informs oneself of the variance in entropy per species. the color intensity informs on how much this is close to what is given by the tRNA values. (additional information such as name of the species, number of tRNA values,metadata and the point from its tRNA value is plotted when hovering the dot) then we can also compare the mean of homologies or else, the full entropy of the cdna sequence per species is also computed the euclidean distance amongst the species for the full entropy to see if a difference can be linked to some evolutionary for one codon Args: size: the average size of the datapoints in the pointcloud representation of this dataset showvar: bool to true, show the mean variance in CUB values accros this homology as a variation in dot sizes eps: float the hyperparamter of the clustering algorithm applied to this dataset reducer: str the reducer to use 'tsne' or 'PCA' perplexity: int the perplexity hyperparam for tSNE Raises: UnboundLocalError: "you need to compute the averages of the all_homoset. use PyCUB.compute_averages(homoset)" UnboundLocalError: "you have to compute tRNA values, use PyCUB.get_tRNAcopy()" AttributeError: "try avg or full" """ e_subspecies = np.zeros((len(self.species), utils.CUBD)) vare_subspecies = np.zeros((len(self.species), 1)) tRNAentropydist = np.zeros(len(self.species)) tRNA_number = np.zeros((len(self.species), 1), dtype=int) genome_size = np.zeros((len(self.species), 1), dtype=int) efulldiff = np.zeros((len(self.species), 1)) fullvarentropy = np.zeros((len(self.species), 1)) varGCcount = np.zeros((len(self.species), 1)) gcfulldiff = np.zeros((len(self.species), 1)) num_genes = np.zeros((len(self.species), 1), dtype=int) meanGChomo = np.zeros((len(self.species), 1)) suff = 0 phylo_distances = self.phylo_distances() if self.species.values()[0].average_entropy is None: raise UnboundLocalError("you have to compute averages, use PyCUB.compute_averages(homoset)") for i, (name, specie) in enumerate(self.species.iteritems()): if specie.average_entropy is not None: if np.isnan(specie.average_entropy).any(): specie.average_entropy[np.isnan(specie.average_entropy)] = 0 e_subspecies[i] = specie.average_entropy vare_subspecies[i] = specie.var_entropy meanGChomo[i] = specie.meanGChomo if specie.fullentropy is not None: if np.isnan(specie.fullentropy).any(): specie.fullentropy[np.isnan(specie.fullentropy)] = 0 if np.isinf(specie.fullentropy).any(): specie.average_entropy[np.isinf(specie.average_entropy)] = 0 if specie.average_entropy is not None: efulldiff[i] = euclidean(specie.average_entropy, specie.fullentropy) gcfulldiff[i] = euclidean(specie.meanGChomo, specie.fullGCcount) varGCcount[i] = specie.varGCcount fullvarentropy[i] = specie.fullvarentropy if specie.copynumbers is not None: if specie.tRNAentropy is not None: if to == 'full' and specie.fullentropy is not None: tRNAentropydist[i] = euclidean(specie.tRNAentropy, specie.fullentropy) elif to == 'avg' and specie.average_entropy is not None: tRNAentropydist[i] = euclidean(specie.tRNAentropy, specie.average_entropy) suff += 1 # if is zero, will be black colored if specie.copynumbers.get("datapoints", False): tRNA_number[i] = specie.copynumbers["datapoints"] # if is zero, will be black colored else: raise UnboundLocalError("you have to compute tRNA values, use PyCUB.get_tRNAcopy()") if specie.genome_size: genome_size[i] = specie.genome_size if specie.num_genes: num_genes[i] = specie.num_genes # if is zero, will be black colored print "we have " + str(suff) + " species with sufficient statistics in their tRNA values" if reducer == 'tsne': red = man.TSNE(n_components=2, perplexity=perplexity).fit_transform(e_subspecies) elif reducer == 'pca': red = PCA(n_components=2).fit_transform(e_subspecies) alg = cluster.DBSCAN(eps=eps, min_samples=6, algorithm='auto', n_jobs=-1) clusters = alg.fit_predict(e_subspecies).tolist() colormap = list(utils.colormap) colors = [colormap[0] if not dist else utils.rgb2hex((126, 8, 10 + np.floor(246 * dist / tRNAentropydist.max()))) for dist in np.log(np.ma.masked_equal(tRNAentropydist, 0))] data = dict(x=red[:, 0], y=red[:, 1], species=self.species.keys(), meanentropy=["%.2f" % i.mean() for i in e_subspecies], color=colors, vare_subspecies=vare_subspecies, tRNA_number=np.log(tRNA_number), recent=colors, tRNAentropydist=np.log(np.ma.masked_equal(tRNAentropydist, 0) * 1000), genome_size=genome_size, num_genes=num_genes, efulldiff=efulldiff, gcfulldiff=gcfulldiff, gccount=meanGChomo, varGCcount=varGCcount, fullvarentropy=fullvarentropy, clusters=clusters, size=[(size / 2) + (varmult * (val.var_entropy)) if val.var_entropy != 0 else size for _, val in self.species.iteritems()] if showvar else size) # compare it to the phylogenetic distance matrix and the sizes if phylo_distances is not None: names = list(phylo_distances.index) distances = np.zeros(len(self.species)) for i, val in enumerate(self.species.keys()): if val in names: distances[i] = phylo_distances[val].values.mean() data.update({'distances': distances}) else: print "no phylo distances" labe = ["show clusters", "show num_genes", "show genome_size", "show full/mean CUB diff", "show GCcount", "show full/mean GC diff", "show GC variance", "show distance to tRNA UB", "show tRNA number", "show avg phylodistance", "show full phylo distance"] # 11 for i, (key, val) in enumerate(self.species[self.species.keys()[0]].metadata.iteritems()): labe.append("show if " + key) data.update({str(i + 11): [espe.metadata[key] if espe.metadata is not None else False for _, espe in self.species.iteritems()]}) """ to implement full phylo distance, we need to add onHover, and put in data a dict which associate for each species name, a species ordered list of normalized distance values from the phylodistance dataframe """ source = ColumnDataSource(data=data) output_notebook() callback = CustomJS(args=dict(source=source), code=utils.callback_allgenes) radio_button_group = widgets.RadioButtonGroup( labels=labe, callback=callback, active=7) hover = HoverTool(tooltips=[("species: ", "@species"), ("mean entr: ", "@meanentropy"), ("phylodistances: ", "@distances"), ("tRNA CN: ", "@tRNA_number"), ("dist2tRNA Bias Value: ", "@tRNAentropydist"), ("GCbias: ", "@gccount")]) p = figure(title="exploration of every homologies", tools=[hover, WheelZoomTool(), PanTool(), SaveTool(), ResetTool()], plot_width=800, plot_height=600) p.circle(x='x', y='y', source=source, color='color', size='size') save(column(radio_button_group, p), "utils/templot/species_compare.html") show(column(radio_button_group, p)) def compute_ages(self, homoset, preserved=True, minpreserv=0.9, minsimi=0.85, redo=False): homoset.compute_ages(preserved=preserved, minpreserv=minpreserv, minsimi=minsimi, redo=redo) def regress_on_species(self, without=[""], full=True, onlyhomo=False, perctrain=0.8, algo="lasso", eps=0.001, n_alphas=100): """ Will fit a regression curve on the CUB values of the different species according to the metadatas available for each of them. It will try to see if there is enough information in the metadata to retrieve CUB values. and if there is, how much for each metadata (if we constraint the number of regressors) is it better for mean homology CUB or full genome CUB ? or raw frequency, should we remove some data? Args: without: list[str] of flags [similarity_scores, KaKs_Scores, nans, lenmat, GCcount, weight, protein_abundance, mRNA_abundance, decay_rate, cys_elements, tot_volume, mean_hydrophobicity, glucose_cost, synthesis_steps, is_recent, meanecai] onlyhomo: bool to true if want to use only CUB from homologies full: bool flags to true to use full CUB values or meanCUB values, as regressee perctrain: the percentage of training set to total set ( the rest is used as test set) algo: str flag to lasso or nn to use either Lasso with Cross Validation, or a 2 layer neural net eps: the eps value for the Lasso n_alphas: the number of alphas for the lasso Returns: scoregenes: float, the score of the regression performed coeffgenes: the coefficient applied to each category (for each CUB value if using full) attrlist: the corresponding list[str] of attribute used Raises: UnboundLocalError: "wrong params" """ params = [] phylo_distances = self.phylo_distances() espece = self.species.values()[0] attrlist = ["average_size", "num_genes", "genome_size", "fullGCcount", "varGCcount", "tot_homologies"] dataset = np.zeros((len(self.species), utils.CUBD)) for i, (_, v) in enumerate(self.species.iteritems()): if onlyhomo or v.fullentropy is None: if v.average_entropy is not None: dataset[i] = v.average_entropy else: dataset[i] = v.fullentropy if not full: dataset = dataset.mean(1) for attr in attrlist: if getattr(espece, attr) is not None and attr not in without: arr = np.array([getattr(spece, attr) for spece in self.species.values()]).astype(float) arr = arr / arr.max() if not full: print attr + ': ' + str(spearmanr(np.ma.masked_equal(arr, 0), np.ma.masked_equal(dataset, 0), axis=None)) params.append(arr) for key in self.species.values()[0].metadata.keys(): if str(key) not in without: attrlist.append(key) params.append(np.array([spece.metadata.get(key, 0) if spece.metadata is not None else False for spece in self.species.values()]).astype(int)) if phylo_distances is not None and "phylo_distances" not in without: attrlist.append("phylo_distances") names = list(phylo_distances.index) arr = np.array([phylo_distances[val].values.mean() if val in names else 0 for val in self.species.keys()]) arr = arr / arr.max() params.append(arr) if not full: print 'phylogenetic distances: ' + str(spearmanr(np.ma.masked_equal(arr, 0), np.ma.masked_equal(dataset, 0), axis=None)) if algo == "lasso": # http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html model = MultiTaskLassoCV(eps=eps, n_alphas=n_alphas, alphas=None, fit_intercept=True, normalize=False, max_iter=1000, tol=0.0001, copy_X=False, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic') \ if full else LassoCV(eps=eps, n_alphas=n_alphas, alphas=None, fit_intercept=True, normalize=False, precompute='auto', max_iter=1000, tol=0.0001, copy_X=False, cv=None, verbose=False, n_jobs=-1, positive=False, random_state=None, selection='cyclic') elif algo == "nn" and not full: # http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html model = MLPRegressor(hidden_layer_sizes=(len(attrlist), len(attrlist)), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=1, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08) else: raise UnboundLocalError("wrong params") params = np.vstack(params).T model.fit(params[:int(len(self.species) * perctrain)], dataset[:int(len(self.species) * perctrain)]) self.scorespecies = model.score(params[int(len(self.species) * perctrain):], dataset[int(len(self.species) * perctrain):], sample_weight=None) self.coeffspecies = model.coef_.tolist() if algo == "lasso" else model.coefs_ print "the R^2 score is of: " + str(self.scorespecies) print "-------------------------------" if algo == "lasso": for i, val in enumerate(attrlist): print val + ": " + str(self.coeffspecies[i]) return self.scorespecies, self.coeffspecies, attrlist # TODO: create a model that can say if the species has a high CUB or low, given data on the species and on the protein def compare_homologies(self, homoset, homosapiens=False, mindistance=10, preserved=True, size=6, varsize=2, minpreserv=0.9, minsimi=0.9, showvar=True, eps=0.28, reducer='tsne', perplexity=40): """ finds for species with a common ancester separated by a pseudo phylogenetic distance X, genes/functions that are novel to only a subset. plot the two with their differences the differences between the two also considers an homology as highly preserved if it is shared amongst most of the species and if the average similarity score is high amongst this homology. also shows if there is a relationship between the number of amino acids the sequence does not encode for and the codon usage bias We could have used the sequence dating of ensembl but it only works for homo sapiens for now maybe use it for homosapiens later Args: homosapiens: bool to true if we should use homosapiens dataset on gene dates mindistance: int the minimal phylogenetic distance between in average in this homology to consider it highly conserved preserved: bool to true if we should find highly preserved genes or not size: the average size of the datapoints in the pointcloud representation of this dataset minpreserv: float minimal percentage of homologous species that have this homology minsimi: float minimal avg similarity between genes to consider them highly preserved showvar: bool to true, show the mean variance in CUB values accros this homology as a variation in dot sizes eps: float the hyperparamter of the clustering algorithm applied to this dataset homoset: PyCUB.homoset the homoset to use reducer: str the reducer to use 'tsne' or 'PCA' perplexity: int the perplexity hyperparam for tSNE Raises: UnboundLocalError: "you need to compute the averages of the all_homoset. use PyCUB.compute_averages(homoset)" """ if not homosapiens: if homoset[-1].isrecent is None: homoset.compute_ages(preserved=preserved, minpreserv=minpreserv, minsimi=minsimi) else: pass # TODO: code the version for homo sapiens where we know exactly this distance with more data # and better inference metrics # display the differences between recent homologies and older ones pdb.set_trace() averagehomo_matrix = np.zeros((len(homoset), utils.CUBD)) for i, homo in enumerate(homoset.homo_namelist): averagehomo_matrix[i] = homoset[homo].mean if reducer == 'tsne': red = man.TSNE(n_components=2, perplexity=perplexity).fit_transform(averagehomo_matrix) elif reducer == 'pca': red = PCA(n_components=2).fit_transform(averagehomo_matrix) else: raise AttributeError("wrong algorithm") alg = cluster.DBSCAN(eps=eps, min_samples=7, algorithm='auto', n_jobs=-1) clusters = alg.fit_predict(averagehomo_matrix).tolist() n_clusters_ = len(set(clusters)) if n_clusters_ > 10: print "ooups you have more than 10 clusters" colormap = list(utils.colormap) colors = [colormap[int(homoset[homo].ishighpreserved)] if not homoset[homo].isrecent else utils.rgb2hex((126, 88, np.floor(156 * homoset[homo].isrecent))) for homo in homoset.homo_namelist] data = dict(x=red[:, 0], y=red[:, 1], homologies=homoset.homo_namelist, meanentropy=["%.2f" % averagehomo_matrix[i].mean() for i in range(len(averagehomo_matrix))], color=colors, recent=colors, clusters=clusters, size=[size + (varsize * self.all_homoset[homo].var.mean()) if self.all_homoset[homo].var is not None else size for homo in self.all_homoset.homo_namelist] if showvar else size) # add average of similar protein name values = ["similarity_scores", "KaKs_Scores", "nans", "lenmat", "GCcount", "weight", "protein_abundance", "mRNA_abundance", "decay_rate", "is_secreted", "cys_elements", "tot_volume", "mean_hydrophobicity", "glucose_cost", "synthesis_steps", "isoelectricpoint", "meanecai", "meancai", "conservation"] labe = ["show Recent/preserved", "showclusters", "show avg similarity_scores", "show avg KaKs_Scores", "show Nans avg", "show avg Length", "show avg GCcount", "Show weight", "Show prot abundance", "Show mRNA abundance", "Show half life", "Show secreted", "Show num of cys", "Show volume", "Show hydrophobicity", "show cost (glucose)", "Show synthesis cost", "Show Pi", "Show ECAI", "Show CAI", "show amino Conservation"] # 21 templabe = labe[:2] i = 2 for val in values[:5]: if getattr(homoset[0], val) is not None: data.update({val: np.array([getattr(homoset[homo], val).mean() for homo in homoset.homo_namelist])}) templabe.append(labe[i]) else: templabe.append(" ") i += 1 for val in values[5:]: data.update({val: np.nan_to_num(np.array([getattr(homoset[homo], val) if getattr(homoset[homo], val) is not None else 0 for homo in homoset.homo_namelist]))}) templabe.append(labe[i]) i += 1 for k, v in data.iteritems(): if k == "conservation": v = v - v.min() elif k == "mRNA_abundance" or k == "protein_abundance": v = np.log(1 + v) source = ColumnDataSource(data=data) output_notebook() callback = CustomJS(args=dict(source=source), code=utils.callback_allhomo) radio_button_group = widgets.RadioButtonGroup( labels=templabe, callback=callback, active=0) hover = HoverTool(tooltips=[("homologies: ", "@homologies"), ("avg nans: ", "@nans"), ("similarity scores: ", "@similarity_scores"), ("mRNA abundance: ", "@mRNA_abundance"), ("mean ecai: ", "@meanecai"), ("amino conservation: ", "@conservation"), ("mean_entr: ", "@meanentropy"), ("length: ", "@lengths"), ("GCcount: ", "@gc")]) p = figure(title="exploration of every homologies", tools=[hover, WheelZoomTool(), PanTool(), SaveTool(), ResetTool()], plot_width=800, plot_height=600) p.circle(x='x', y='y', source=source, color='color', size='size') save(column(radio_button_group, p), "utils/templot/homology_compare.html") show(column(radio_button_group, p)) def regress_on_genes(self, homoset, full=True, without=['meanecai', 'meancai'], perctrain=0.8, algo="lasso", eps=0.001, n_alphas=100): """ Will fit a regression curve on the CUB values of the different homologies according to the metadatas available for each of them. It will try to see if there is enough information in the metadata to retrieve CUB values. and if there is, how much for each metadata (if we constraint the number of regressors) is it better for entropy values, mean entropy or ECAI values or raw frequency, should we remove some data Args: without: list[str] of flags [similarity_scores, KaKs_Scores, nans, lenmat, GCcount, weight, protein_abundance, mRNA_abundance, decay_rate, cys_elements, tot_volume, mean_hydrophobicity, glucose_cost, synthesis_steps, is_recent, meanecai] full: bool flags to true to use full CUB values or meanCUB values, as regressee homoset: PyCUB.homoset the homoset to use perctrain: the percentage of training set to total set ( the rest is used as test set) algo: str flag to lasso or nn to use either Lasso with Cross Validation, or a 2 layer neural net eps: the eps value for the Lasso n_alphas: the number of alphas for the lasso Returns: scoregenes: float, the score of the regression performed coeffgenes: the coefficient applied to each category (for each CUB value if using full) attrlist: the corresponding list[str] of attribute used Raises: UnboundLocalError: "wrong params" """ params = [] dataset = np.nan_to_num(homoset.averagehomo_matrix) if full else np.nan_to_num(homoset.averagehomo_matrix).mean(1) values = ["similarity_scores", "KaKs_Scores", "nans", "lenmat", "GCcount", "weight", "protein_abundance", "mRNA_abundance", "decay_rate", "is_secreted", "cys_elements", "tot_volume", "mean_hydrophobicity", "glucose_cost", "synthesis_steps", "isoelectricpoint", "meanecai", "meancai", "conservation"] attrlist = [] pdb.set_trace() for val in values[:5]: if val not in without: if getattr(homoset[0], val) is not None: arr = np.nan_to_num(np.array([getattr(homoset[homo], val).mean() for homo in homoset.homo_namelist])).astype(float) arr = arr / arr.max() if not full: print val + ': ' + str(spearmanr(np.ma.masked_equal(arr, 0), np.ma.masked_equal(dataset,0), axis=None)) params.append(arr) attrlist.append(val) for val in values[5:]: if val not in without: if getattr(homoset[0], val) is not None: arr = np.nan_to_num(np.array([getattr(homoset[homo], val) for homo in homoset.homo_namelist])).astype(float) arr = arr / arr.max() if not full: print val + ': ' + str(spearmanr(np.ma.masked_equal(arr, 0), np.ma.masked_equal(dataset,0), axis=None)) params.append(arr) attrlist.append(val) if algo == "lasso": # http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoCV.html print "change" model = MultiTaskLassoCV(eps=eps, n_alphas=n_alphas, alphas=None, fit_intercept=True, normalize=True, max_iter=1000, tol=0.0001, copy_X=False, cv=None, verbose=False, n_jobs=1, random_state=None, selection='cyclic')\ if full else LassoCV(eps=eps, n_alphas=n_alphas, alphas=None, fit_intercept=True, normalize=True, precompute='auto', max_iter=1000, tol=0.0001, copy_X=False, cv=None, verbose=False, n_jobs=-1, positive=False, random_state=None, selection='cyclic') elif algo == "nn" and not full: # http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html model = MLPRegressor(hidden_layer_sizes=(len(attrlist), len(attrlist)), activation='relu', solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=1, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08) else: raise UnboundLocalError("wrong params") params = np.vstack(params).T model.fit(params[:int(len(homoset.homo_namelist) * perctrain)], dataset[:int(len(homoset.homo_namelist) * perctrain)]) self.scoregenes = model.score(params[int(len(homoset.homo_namelist) * perctrain):], dataset[int(len(homoset.homo_namelist) * perctrain):], sample_weight=None) self.coeffgenes = model.coef_.tolist() if algo == "lasso" else model.coefs_ print "the R^2 score is of: " + str(self.scoregenes) print "-------------------------------" if model == "lasso": for i, val in enumerate(attrlist): print val + ": " + str(self.coeffgenes[i]) return self.scoregenes, self.coeffgenes, attrlist def getRelation2G3DD(self, species_name='saccharomyces_cerevisiae', kingdom='fungi', intrachromosome="utils/meta/3Dmodel/interactions_HindIII_fdr0.01_intra_cerevisiae.csv", interchromose=["utils/meta/3Dmodel/cerevisiae_inter1.csv", "utils/meta/3Dmodel/cerevisiae_inter2.csv", "utils/meta/3Dmodel/cerevisiae_inter3.csv", "utils/meta/3Dmodel/cerevisiae_inter4.csv", "utils/meta/3Dmodel/cerevisiae_inter5.csv"], bins=2000, seq='cds', use='diament2', euclide=False, homomean=False): """ https://www.nature.com/articles/ncomms6876 retrieve the data for the species sacharomyces cerevisiae and Schizosaccharomyces pombe and find if similarity distances of CUB using entropy between genes of this species is predictive of closeness of genes in the nucleus. Used to confirm a work on nature and see if we can have some similar results by only looking at the CUB Args: species_name: str the name of the species to look for kingdom: str the kingdom in which to find the species intrachromosome: str the location of the csv interaction data for intrachromosome respecting the format of the default file interchromose: str the location of the csv interaction data for interchromose respecting the format of the default file bins: int, the number of bin to use (a power of 2) seq: the type of sequence to compare to. (to compute the CUB from) use: str flag different types of algorithm I have made trying to understand the thing compute: str flag to different computation available euclidean: bool flag to true to compute euclidean instead of Endres Shcidelin metrics """ # get gene distance matrix from entropy value distance or Andres Schindelin metrics # compare to see how much the distance between one can explain the distance between another by # regression # retrieve the data. intra = pd.read_csv(intrachromosome, delim_whitespace=True).drop(columns=["qvalue", "freq"]) inter = pd.concat([pd.read_csv(interchro) for interchro in interchromose]).drop(columns=[ "P value", "Q value", "sequence frequency"]) # getting all the genes torname = {"HindIII fragment": "locus1", "HindIII fragment.1": "locus2", "chromosome": "chr1", "chromosome.1": "chr2"} inter = inter.rename(torname, axis="columns") df = pd.concat([intra, inter]) df = df.sort_values(by=["chr1", "locus1"]) df = df.reset_index() chrom2int = { 'I': 1, 'II': 2, 'III': 3, 'IV': 4, 'V': 5, 'VI': 6, 'VII': 7, 'VIII': 8, 'IX': 9, 'X': 10, 'XI': 11, 'XII': 12, 'XIII': 13, 'XIV': 14, 'XV': 15, 'XVI': 16, 'XVII': 17, 'XVIII': 18, 'XIX': 19, 'XX': 20, 'XXI': 21 } location = 'ftp.ensemblgenomes.org' if kingdom != 'vertebrate' else 'ftp.ensembl.org' release = 'release-40/' if kingdom != 'vertebrate' else 'release-93' ftp = FTP(location) ftp.login() if kingdom == 'vertebrate': kingdom = '' ftp.cwd('pub/' + release + kingdom + '/fasta/') data = [] ftp.retrlines('NLST', data.append) for d in data: if d in species_name: ftp.cwd(d) pdb.set_trace() link = [] ftp.cwd(seq) ftp.retrlines('NLST', link.append) with open("utils/data/temp.fa.gz", "wb") as file: for i in link: if i[-9:] == "all.fa.gz": ftp.retrbinary("RETR " + i, file.write) vals = [] cufs = [] cubs = [] names = [] positions = [] nb = 0 codons = list(utils.codamino.keys()) with gzip.open("utils/data/temp.fa.gz", "rt") as handle: for record in SeqIO.parse(handle, "fasta"): uncounted = len(record.seq._data) - (record.seq._data.count('A') + record.seq._data.count('T') + record.seq._data.count('C') + record.seq._data.count('G')) if uncounted: print "ref uncounted = " + str(uncounted) codseq = record.seq._data.replace("Y", "T").replace("R", "G").replace("K", "G")\ .replace("M", "A").replace('S', 'C').replace("W", "A").replace("B", "C").replace("D", "T")\ .replace("H", "T").replace("V", "G").replace("N", "C") else: codseq = record.seq._data codseq = [codseq[i:i + 3] for i in range(0, len(codseq), 3)] leng = len(codseq) CuF = np.zeros(64) for i, val in enumerate(codons): CuF[i] = codseq.count(val) valH, CuB, len_i, _ = utils.computeyun(codseq, setnans=False, normalized=False, by="entropy" + "frequency") if self.all_homoset.datatype=="entropylocation": valH = utils.getloc(valH, len_i) if homomean: if self.all_homoset.datatype!="frequency": other = valH else: other = CuB vals.append(self.all_homoset[record.id].mean if self.all_homoset.get(record.id, False) else other) else: vals.append(valH) cufs.append((CuF / leng).tolist()) cubs.append(CuB) nb += 1 server = "http://rest.ensemblgenomes.org" if kingdom != 'vertebrate' else "http://rest.ensembl.org" names.append(record.id) ext = "/lookup/id/" + record.id + "?expand=1" r = requests.get(server + ext, headers={"Content-Type": "application/json"}) if not r.ok: r.raise_for_status() sys.exit() print '{0} genes\r'.format(nb), decoded = r.json() chrom = chrom2int.get(str(decoded["seq_region_name"]), False) if not chrom: names.pop() vals.pop() cufs.pop() cubs.pop() continue # we associate valH to a position retrieve the positions positions.append([chrom, (decoded["start"] + decoded["end"]) / 2]) ind = sorted(range(len(positions)), key=lambda k: positions[k]) vals = np.array(vals)[ind] cufs = np.array(cufs)[ind] cubs = np.array(cubs)[ind] positions = np.array(positions)[ind] names = [names[i] for i in ind] pdb.set_trace() tempchrom = 0 tempind = 0 tempdf = df.loc[df['chr1'] == 1] gene2pos = {} pos2gene = {} dists = np.zeros(len(positions)) tempdist = 1000000 for n, val in enumerate(positions): if val[0] >= tempchrom + 1: tempdf = df.loc[df['chr1'] == val[0]] tempchrom = val[0] tempind = tempdf.index[0] maxind = tempdf.index[-1] # Here we could use a modified binar search instead while abs(tempdf['locus1'][tempind] - val[1]) <= tempdist: tempdist = abs(tempdf['locus1'][tempind] - val[1]) tempind += 1 if tempind >= maxind: break dists[n] = tempdist tempind -= 1 # we found a position tempdist = 10000000 gene2pos.update({n: [tempchrom, tempdf['locus1'][tempind]]}) if pos2gene.get((tempchrom, tempdf['locus1'][tempind]), False): pos2gene[(tempchrom, tempdf['locus1'][tempind])].append(n) else: pos2gene.update({(tempchrom, tempdf['locus1'][tempind]): [n]}) # for each gene positions we look at the closest point in the contact map (list of positison) # we create a mapping dict for that. tempchrom = 0 print "average distance is" + str(dists.mean()) missedrelation = 0 tempdf = df.loc[df['chr1'] == 1] dist3D = np.zeros((len(positions), len(positions)), dtype=int) dist3D += 1000000 np.fill_diagonal(dist3D, 0) # Doing the first one for efficiency tempdf = df.loc[df['chr1'] == 1] relatedto = tempdf.loc[tempdf['locus1'] == gene2pos[0][1]] chro = list(relatedto["chr2"]) loc = list(relatedto["locus2"]) for i in range(len(chro)): pos = pos2gene.get((chro[i], int(loc[i])), False) if pos: for p in pos: dist3D[p, 0] = 1 dist3D[0, p] = 1 for p_ in pos: dist3D[p, p_] = 1 dist3D[p_, p] = 1 else: missedrelation += 1 n = 1 for val in positions[1:]: dist3D[n, n - 1] = 1 dist3D[n - 1, n] = 1 if val[0] >= tempchrom + 1: tempdf = df.loc[df['chr1'] == val[0]] relatedto = tempdf.loc[tempdf['locus1'] == gene2pos[n][1]] chro = list(relatedto["chr2"]) loc = list(relatedto["locus2"]) for i in range(len(chro)): pos = pos2gene.get((chro[i], int(loc[i])), False) if pos: for p in pos: dist3D[p, n] = 1 dist3D[n, p] = 1 for p_ in pos: dist3D[p, p_] = 1 dist3D[p_, p] = 1 else: missedrelation += 1 n = 1 for val in positions[1:]: dist3D[n, n - 1] = 1 dist3D[n - 1, n] = 1 if val[0] >= tempchrom + 1: tempdf = df.loc[df['chr1'] == val[0]] relatedto = tempdf.loc[tempdf['locus1'] == gene2pos[n][1]] chro = list(relatedto["chr2"]) loc = list(relatedto["locus2"]) for i in range(len(chro)): pos = pos2gene.get((chro[i], int(loc[i])), False) if pos: for p in pos: dist3D[p, n] = 1 dist3D[n, p] = 1 else: missedrelation += 1 n += 1 print "got " + str(missedrelation) + " missed relation" else: gene2pos = {} pos2gene = {} dists = np.zeros(len(positions)) tempdist = 1000000 for n, val in enumerate(positions): if val[0] >= tempchrom + 1: tempdf = df.loc[df['chr1'] == val[0]] tempchrom = val[0] tempind = tempdf.index[0] maxind = tempdf.index[-1] # Here we could use a modified binar search instead while abs(tempdf['locus1'][tempind] - val[1]) <= tempdist: tempdist = abs(tempdf['locus1'][tempind] - val[1]) tempind += 1 if tempind >= maxind: break dists[n] = tempdist tempind -= 1 # we found a position tempdist = 10000000 gene2pos.update({n: [tempchrom, tempdf['locus1'][tempind]]}) if pos2gene.get((tempchrom, tempdf['locus1'][tempind]), False): pos2gene[(tempchrom, tempdf['locus1'][tempind])].append(n) else: pos2gene.update({(tempchrom, tempdf['locus1'][tempind]): [n]}) # for each gene positions we look at the closest point in the contact map (list of positison) # we create a mapping dict for that. tempchrom = 0 print "average distance is" + str(dists.mean()) missedrelation = 0 tempdf = df.loc[df['chr1'] == 1] dist3D = np.zeros((len(positions), len(positions)), dtype=int) dist3D += 1000000 np.fill_diagonal(dist3D, 0) # Doing the first one for efficiency tempdf = df.loc[df['chr1'] == 1] relatedto = tempdf.loc[tempdf['locus1'] == gene2pos[0][1]] chro = list(relatedto["chr2"]) loc = list(relatedto["locus2"]) for i in range(len(chro)): pos = pos2gene.get((chro[i], int(loc[i])), False) if pos: for p in pos: dist3D[p, 0] = 1 dist3D[0, p] = 1 else: missedrelation += 1 n = 1 for val in positions[1:]: dist3D[n, n - 1] = 1 dist3D[n - 1, n] = 1 if val[0] >= tempchrom + 1: tempdf = df.loc[df['chr1'] == val[0]] relatedto = tempdf.loc[tempdf['locus1'] == gene2pos[n][1]] chro = list(relatedto["chr2"]) loc = list(relatedto["locus2"]) for i in range(len(chro)): pos = pos2gene.get((chro[i], int(loc[i])), False) if pos: for p in pos: dist3D[p, n] = 1 dist3D[n, p] = 1 else: missedrelation += 1 n += 1 print "got " + str(missedrelation) + " missed relation" shortestpath = dijkstra(dist3D, directed=False) # to set shortest as 1 # for each genes, we look if there is a contact gene in the contact map with the mapping # if the genes are the ones next to each other, we mark them as close to each other # true also if on different chrom # then we compute 1hop distances on this matrix # # if tempchrom + 1 == val['chr1'] # val['chr1'] # for all values # we take n subsets for which we compute the average CUB, # then for each we compute a CUB distance value as a big distance # matrix of size n x n n should be 32 000 # we create another distance matrix using an Andres distance metrics on the CUF values if use != "jerem1": distcuf = np.zeros((len(positions), len(positions)), dtype=float) distcub = np.zeros((len(positions), len(positions)), dtype=float) distent = np.zeros((len(positions), len(positions)), dtype=float) # cubs = np.ma.masked_equal(cubs, 0) j = 0 for val in vals: i = 0 for comp in vals: if i < j: distent[j, i] = distent[i, j] # distcub[j, i] = distcub[i, j] # distcuf[j, i] = distcuf[i, j] elif i > j: distent[j, i] = euclidean(val, comp) if euclide else utils.endresdistance(val, comp) # distcub[j, i] = euclidean(cubs[j], cubs[i]) if euclide else utils.endresdistance(cubs[j], cubs[i]) # distcuf[j, i] = euclidean(cufs[j], cufs[i]) if euclide else utils.endresdistance(cufs[j], cufs[i]) i += 1 j += 1 print '\rdistcomputation ' + str(j) + ' over ' + str(len(vals)), if use == "diament1": div, i = divmod(len(names), bins) X = np.zeros(bins) cuf = np.zeros((bins, bins)) cub = np.zeros((bins, bins)) ent = np.zeros((bins, bins)) dist3D = np.zeros((bins, bins), dtype=float) X[:int(i)] = np.ceil(div) + 1 X[int(i):] = np.floor(div) start = 0 for num, val in enumerate(X): star = 0 for nu, va in enumerate(X): dist3D[num, nu] = shortestpath[start:start + int(val), star:star + int(va)].mean() cuf[num, nu] = distcuf[start:start + int(val), star:star + int(va)].mean() cub[num, nu] = distcub[start:start + int(val), star:star + int(va)].mean() ent[num, nu] = distent[start:start + int(val), star:star + int(va)].mean() star += int(va) start += int(val) print '\rbinninng ' + str(num), del distcuf del distcub del distent del shortestpath self.rho_ent, self.pent = spearmanr(ent, dist3D, axis=None) self.rho_cub, self.pcub = spearmanr(cub, dist3D, axis=None) self.rho_cuf, self.pcuf = spearmanr(cuf, dist3D, axis=None) elif use == "diament2": div, i = divmod(len(names)**2, bins) X = np.zeros(bins) cuf = np.zeros(bins) cub = np.zeros(bins) ent = np.zeros(bins) dist3D = np.zeros(bins) X[:int(i)] = np.ceil(div) + 1 X[int(i):] = np.floor(div) distent = np.ravel(distent) shortestpath = np.ravel(shortestpath) #distcub = np.ravel(distcub) #distcuf = np.ravel(distcuf) # for CUF ind = np.argsort(distent) distent = distent[ind] sortshortestpath = shortestpath[ind] start = 0 for i, val in enumerate(X): dist3D[i] = sortshortestpath[start:start + int(val)].mean() ent[i] = distent[start:start + int(val)].mean() start += int(val) self.rho_ent, self.pent = spearmanr(ent, dist3D) # for CUB """ ind = np.argsort(distcuf) distcuf = distcuf[ind] sortshortestpath = shortestpath[ind] start = 0 for i, val in enumerate(X): dist3D[i] = sortshortestpath[start:start + int(val)].mean() cuf[i] = distcuf[start:start + int(val)].mean() start += int(val) self.rho_cuf, self.pcuf = spearmanr(cuf, dist3D) # for CUF ind = np.argsort(distcub) distcub = distcub[ind] sortshortestpath = shortestpath[ind] start = 0 for i, val in enumerate(X): dist3D[i] = sortshortestpath[start:start + int(val)].mean() cub[i] = distcub[start:start + int(val)].mean() start += int(val) self.rho_cub, self.pcub = spearmanr(cub, dist3D) """ else: # computation jerem 1st div, i = divmod(len(names), bins) X = np.zeros(bins) cuf = np.zeros((bins, 64)) cub = np.zeros((bins, 59)) ent = np.zeros((bins, 18)) dist3D = np.zeros((bins, bins), dtype=float) X[:int(i)] = np.ceil(div) + 1 X[int(i):] = np.floor(div) start = 0 for num, val in enumerate(X): ent[num] = vals[start:start + int(val)].mean(0) cuf[num] = cufs[start:start + int(val)].mean(0) cub[num] = cubs[start:start + int(val)].mean(0) star = 0 for nu, va in enumerate(X): dist3D[num, nu] = shortestpath[start:start + int(val), star:star + int(va)].mean() star += int(va) start += int(val) print '\rbinninng ' + str(num), del vals del cufs del shortestpath distcuf = np.zeros((bins, bins), dtype=float) distcub = np.zeros((bins, bins), dtype=float) distent = np.zeros((bins, bins), dtype=float) ent = np.ma.masked_equal(ent, 0) cuf = np.ma.masked_equal(cuf, 0) cub = np.ma.masked_equal(cub, 0) j = 0 for val in ent: i = 0 for comp in ent: if i < j: distent[j, i] = distent[i, j] distcub[j, i] = distcub[i, j] distcuf[j, i] = distcuf[i, j] elif i > j: distent[j, i] = euclidean(val, comp) distcub[j, i] = utils.endresdistance(cub[j], cub[i]) distcuf[j, i] = utils.endresdistance(cuf[j], cuf[i]) i += 1 j += 1 print '\rdistcomputation ' + str(j), self.rho_ent, self.pent = spearmanr(distent, dist3D, axis=None) self.rho_cub, self.pcub = spearmanr(distcub, dist3D, axis=None) self.rho_cuf, self.pcuf = spearmanr(distcuf, dist3D, axis=None) return self.rho_ent, self.pent, self.rho_cuf, self.pcuf, self.rho_cub, self.pcub def search(value, arr): """ modified binary search for closest value search in a sorted array <NAME> @https://stackoverflow.com/questions/30245166 Args: value: a value to look for arr: array like, an array to skim Returns: the closest value present in the array """ if value < arr[0]: return arr[0] if value > arr[-1]: return arr[-1] lo = 0 hi = len(arr) - 1 while lo <= hi: mid = (hi + lo) / 2 if value < arr[mid]: hi = mid - 1 elif value > arr[mid]: lo = mid + 1 else: return arr[mid] return arr[lo] if arr[lo] - value < value - arr[hi] else arr[hi] # we then do a correlation to the two matrices and see if they are highly correlated # we will use the spearman's rho for each bins def plot_distances(self, size=40): """ plot the phylogenetic distance matrix Args: size: int the x size of the plot Raises: UnboundLocalError: "compute the phylo distance matrix first (look at the doc)" """ if utils.phylo_distances is not None: plt.figure(figsize=(size, 200)) plt.title('evolutionary distances') plt.imshow(1. / (1 + np.array(utils.phylo_distances))) plt.savefig("utils/templot/evolutionarydistances.pdf") plt.show() else: raise UnboundLocalError("compute the phylo distance matrix first (look at the doc)") # SPECIAL FUNCTION def _dictify(self, save_workspace, save_homo, add_homosets): """ Used by the saving function. transform the workspace object into a dictionary that can be json serializable adding some params because else the object may be too big Args: save_workspace: bool to save working_homoset save_homo: bool to save all_homoset add_homosets: PyCUB.homoset instances to add to this dict Return: A dict holding every element to be jsonized """ dictispecies = {} for key, val in self.species.iteritems(): dictispecies.update({key: val._dictify()}) di = {"species": dictispecies, "all_homoset": self.all_homoset._dictify(savehomos=True) if save_homo and (self.all_homoset is not None) else None, "working_homoset": self.working_homoset._dictify() if save_workspace and (self.working_homoset is not None) else None } for key, val in add_homosets: di.update({key: val}) return di def _undictify(self, data): """ same function but to retransform everything Here we don't use other classes undictify functions but we just recreate them by passing it to their init methods which is clearer. Args: data: dict to undictify into the workspace object Returns: Other PyCUB.homosets that would have been saved as add_homosets """ self.species = {} self._is_saved = False ret = {} if data["all_homoset"] is not None: self.all_homoset = hset.HomoSet(data=data["all_homoset"]) for key, val in data.iteritems(): if key == 'species': for ke, va in val.iteritems(): self.species.update({ke: spe.Espece(data=va)}) elif key == "working_homoset": if val is not None: self.working_homoset = hset.HomoSet(data=val) for v in self.working_homoset.homo_namelist: # as we don't save the homologies twice here self.working_homoset.update({v: self.all_homoset[v]}) elif key == "all_homoset": pass else: ret.update({key: val}) return ret def loadspeciestable(self): """ short function to retrieve the speciestable from Disk Raises: IOError: "no speciestable file" """ filename = "utils/meta/savings/speciestable.json" if not os.path.isfile(filename): raise IOError("no speciestable file") with open(filename, "r") as f: speciestable = json.loads(f.read()) print "it worked !" utils.speciestable = {} for key, val in speciestable.iteritems(): utils.speciestable.update({int(key): str(val)}) def savespeciestable(self): """ short function to put the speciestable on Disk This is done since there may be some memory leakage, probably due to some autoreloading behavior of the global data stored on utils. """ filename = "utils/meta/savings/speciestable.json" data = json.dumps(dict(utils.speciestable), indent=4, separators=(',', ': ')) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) with open(filename, 'w') as f: f.write(data) print "it worked !" # TODO: [in the end] check that everything is imported, create a req file, check everything is saved, # retry imports on a new machine, export doc in html and latex, redo the readme (the one for the data # as well), # create the file for loading in pip, put it in pip. Create a small medium article. create an html index page # referencing the project, the documentation, the html plots, the dissertation, the article. """ def offload(self, var='species'): "" offload when your file is too big (easier than using HDF or something).. for now save and "" print "offload when your file is too big (easier than using HDF or something).. for now" if var == 'species' dictispecies = {} for key, val in self.species.iteritems(): dictispecies.update({key: val._dictify()}) filename = "utils/save/" + self.session + '/' + species + ".json" print "writing in " + name dictify = self._dictify(save_workspace, save_homo) dirname = os.path.dirname(filename) if not os.path.exists(dirname): os.makedirs(dirname) with open(filename, 'w') as f: f.write(data) print "it worked !" self.species = 'off' self.all_homoset = 'off' else: print "offload only when you have saved your object and got a working homoset" """ ```
{ "source": "jkobject/common_variant_filter", "score": 2 }
#### File: jkobject/common_variant_filter/common_variant_filter.py ```python import argparse import pandas as pd import numpy as np GENE = 'Hugo_Symbol' PROTEIN = 'Protein_Change' CHROMOSOME = 'Chromosome' ALT = 'Alteration' START_POSITION = 'Start_position' END_POSITION = 'End_position' REF_ALLELE = 'Reference_Allele' ALT_ALLELE = 'Tumor_Seq_Allele2' REF_COUNT = 't_ref_count' ALT_COUNT = 't_alt_count' VAR_CLASS = 'Variant_Classification' sample_id = 'sample_id' maf_handle = 'maf_handle' exac_handle = 'exac_handle' whitelist_handle = 'whitelist_handle' filter_syn = 'filter_syn' min_exac_ac = 'min_exac_ac' min_depth = 'min_depth' boolean_filter_noncoding = 'boolean_filter_noncoding' boolean_whitelist = 'boolean_disable_whitelist' EXAC_CHR = 'CHROM' EXAC_POS = 'POS' EXAC_REF = 'REF' EXAC_ALT = 'ALT' EXAC_AF = 'AF' EXAC_AC = 'AC' EXAC_AC_AFR = 'AC_AFR' EXAC_AC_AMR = 'AC_AMR' EXAC_AC_EAS = 'AC_EAS' EXAC_AC_FIN = 'AC_FIN' EXAC_AC_NFE = 'AC_NFE' EXAC_AC_OTH = 'AC_OTH' EXAC_AC_SAS = 'AC_SAS' EXAC_AN = 'AN' EXAC_AN_AFR = 'AN_AFR' EXAC_AN_AMR = 'AN_AMR' EXAC_AN_EAS = 'AN_EAS' EXAC_AN_FIN = 'AN_FIN' EXAC_AN_NFE = 'AN_NFE' EXAC_AN_OTH = 'AN_OTH' EXAC_AN_SAS = 'AN_SAS' MAPPED_GENE = 'gene' MAPPED_CHR = 'chromosome' MAPPED_REF = 'ref_allele' MAPPED_ALT = 'alt_allele' MAPPED_POS = 'start_position' MAPPED_AA = 'protein_change' MAPPED_VAR_CLASS = 'variant_classification' MAPPED_REF_COUNT = 'ref_count' MAPPED_ALT_COUNT = 'alt_count' EXAC_COMMON = 'exac_common' WL = 'whitelist' DEPTH = 'read_depth' LOW_DEPTH = 'low_read_depth' CODING = 'coding' COMMON = 'common_variant' maf_column_map = { GENE: MAPPED_GENE, CHROMOSOME: MAPPED_CHR, PROTEIN: MAPPED_AA, START_POSITION: MAPPED_POS, REF_ALLELE: MAPPED_REF, ALT_ALLELE: MAPPED_ALT, VAR_CLASS: MAPPED_VAR_CLASS, REF_COUNT: MAPPED_REF_COUNT, ALT_COUNT: MAPPED_ALT_COUNT } output_column_map = {v: k for k, v in maf_column_map.items()} exac_column_map = { EXAC_CHR: MAPPED_CHR, EXAC_POS: MAPPED_POS, EXAC_REF: MAPPED_REF, EXAC_ALT: MAPPED_ALT, EXAC_AF: 'exac_af', EXAC_AC: 'exac_ac', EXAC_AC_AFR: 'exac_ac_afr', EXAC_AC_AMR: 'exac_ac_amr', EXAC_AC_EAS: 'exac_ac_eas', EXAC_AC_FIN: 'exac_ac_fin', EXAC_AC_NFE: 'exac_ac_nfe', EXAC_AC_OTH: 'exac_ac_oth', EXAC_AC_SAS: 'exac_ac_sas', EXAC_AN: 'exac_an', EXAC_AN_AFR: 'exac_an_afr', EXAC_AN_AMR: 'exac_an_amr', EXAC_AN_EAS: 'exac_an_eas', EXAC_AN_FIN: 'exac_an_fin', EXAC_AN_NFE: 'exac_an_nfe', EXAC_AN_OTH: 'exac_an_oth', EXAC_AN_SAS: 'exac_an_sas', } whitelist_column_map = {0: MAPPED_CHR, 1: MAPPED_POS, 2: END_POSITION, 3:ALT} population_keys = [EXAC_AC_AFR, EXAC_AC_AMR, EXAC_AC_EAS, EXAC_AC_FIN, EXAC_AC_NFE, EXAC_AC_OTH, EXAC_AC_SAS] populations = [exac_column_map[x] for x in population_keys] def check_column_names(df, map): for column_name in map.keys(): assert column_name in df.columns, \ 'Expected column %s not found among %s' % (column_name, df.columns) def read(handle, **kwargs): return pd.read_csv(handle, sep='\t', comment='#', dtype='object', **kwargs) def standard_read(handle, column_map, **kwargs): check_column_names(read(handle, nrows=3), column_map) return read(handle, encoding='latin-1', **kwargs).rename(columns=column_map) def apply_str(x): try: return x.astype(int).astype(str) except ValueError: return x.astype(str) def annotate_read_depth(series_alt_count, series_ref_count): return series_alt_count.astype(int).add(series_ref_count.astype(int)) def get_idx_low_depth(series_depth, min_depth): return series_depth[series_depth.astype(int).lt(int(min_depth))].index def get_idx_coding_classifications(series_classification): coding_classifications = [ 'Missense_Mutation', 'Nonsense_Mutation', 'Nonstop_Mutation', 'Splice_Site', 'Frame_Shift_Ins', 'Frame_Shift_Del', 'In_Frame_Ins', 'In_Frame_Del'] return series_classification[series_classification.isin(coding_classifications)].index def rename_exac_cols(df): colmap = {} old_columns = df.columns[df.columns.str.lower().str.contains('exac')] new_columns = ['_'.join([col, 'previous_annotation']) for col in old_columns] for old, new in zip(old_columns, new_columns): colmap[old] = new return df.rename(columns=colmap) def write_integer(number, filename): with open(filename, 'w') as f: f.write('%d' % number) def main(inputs): df = standard_read(inputs[maf_handle], maf_column_map, low_memory=False) df = rename_exac_cols(df) exac = standard_read(inputs[exac_handle], exac_column_map, low_memory=False) merge_cols = [MAPPED_CHR, MAPPED_POS, MAPPED_REF, MAPPED_ALT] df = df.merge(exac, on=merge_cols, how='left') df.loc[:, populations] = df.loc[:, populations].fillna(0.0) df.loc[:, LOW_DEPTH] = np.nan df.loc[:, CODING] = np.nan df.loc[:, WL] = np.nan df.loc[:, EXAC_COMMON] = 0.0 idx_original = df.index df[MAPPED_ALT_COUNT] = df[MAPPED_ALT_COUNT].fillna(0.0) df[MAPPED_REF_COUNT] = df[MAPPED_REF_COUNT].fillna(0.0) df[DEPTH] = annotate_read_depth(df[MAPPED_ALT_COUNT], df[MAPPED_REF_COUNT]) df.loc[:, LOW_DEPTH] = 0.0 idx_read_depth = get_idx_low_depth(df[DEPTH], inputs[min_depth]) df.loc[:, CODING] = 0.0 idx_coding = get_idx_coding_classifications(df[MAPPED_VAR_CLASS]) idx_noncoding = idx_original.difference(idx_coding) if not inputs[boolean_whitelist]: df.loc[:, WL] = 0.0 whitelist = read(inputs_dict[whitelist_handle], header=-1).rename(columns=whitelist_column_map) df[whitelist_column_map[3]] = df[MAPPED_GENE].astype(str) + ':' + \ df[MAPPED_AA].str.split('p.', expand=True).loc[:, 1].astype(str) df[whitelist_column_map[3]] = df[whitelist_column_map[3]].fillna('') idx_whitelist = df[df[whitelist_column_map[3]].isin(whitelist[whitelist_column_map[3]])].index else: idx_whitelist = pd.DataFrame().index idx_common_exac = df[(df.loc[:, populations].astype(float) > float(inputs[min_exac_ac])).sum(axis=1) != 0].index df.loc[idx_read_depth, LOW_DEPTH] = 1.0 df.loc[idx_coding, CODING] = 1.0 df.loc[idx_whitelist, WL] = 1.0 df.loc[idx_common_exac, EXAC_COMMON] = 1.0 df[COMMON] = 0 idx_common = idx_common_exac.difference(idx_whitelist) df.loc[idx_common, COMMON] = 1 idx_reject = idx_read_depth.union(idx_common).union(idx_common) if inputs[boolean_filter_noncoding]: idx_reject = idx_reject.union(idx_noncoding) idx_pass = idx_original.difference(idx_reject) df.drop(whitelist_column_map[3], axis=1, inplace=True) df = df.rename(columns=output_column_map) df_pass = df.loc[idx_pass, :] df_reject = df.loc[idx_reject, :] outname = ''.join([inputs[sample_id], '.common_variant_filter.pass.maf']) df_pass.to_csv(outname, sep='\t', index=False) outname = ''.join([inputs[sample_id], '.common_variant_filter.reject.maf']) df_reject.to_csv(outname, sep='\t', index=False) write_integer(np.int(df.shape[0]), 'considered.txt') write_integer(np.int(df_pass.shape[0]), 'passed.txt') write_integer(np.int(df_reject.shape[0]), 'rejected.txt') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--id', type=str, required=True, help='Sample ID') parser.add_argument('--maf', type=str, required=True, help='MAF to annotate and filter') parser.add_argument('--min_exac_ac', type=int, required=False, default=10, help='Minimum allele count across any population to filter') parser.add_argument('--min_filter_depth', type=int, required=False, default=0, help='Minimum coverage of variant to not be filtered') parser.add_argument('--filter_noncoding', action='store_true', required=False, default=False, help='Filters non-coding variants') parser.add_argument('--disable_wl', action='store_true', required=False, default=False, help='Will filter variants in whitelist if enabled') args = parser.parse_args() inputs_dict = { sample_id: args.id, maf_handle: args.maf, min_exac_ac: args.min_exac_ac, min_depth: args.min_filter_depth, boolean_filter_noncoding: args.filter_noncoding, boolean_whitelist: args.disable_wl, exac_handle: 'datasources/exac.expanded.r1.txt', whitelist_handle: 'datasources/known_somatic_sites.bed' } print('Common variant filter') print(inputs_dict) main(inputs_dict) ```
{ "source": "jkobject/JKBio", "score": 2 }
#### File: JKBio/utils/helper.py ```python from __future__ import print_function from matplotlib import pyplot as plt import json import os import sys import string import subprocess import pdb import ipdb import pandas as pd import numpy as np import itertools import random from taigapy import TaigaClient tc = TaigaClient() rename_mut = {'contig': 'chr', 'position': 'pos', 'Reference_Allele': 'ref', 'ref_allele': 'ref', 'alt_allele': 'alt', 'Chromosome': 'chr', 'End_postition': 'end', 'Start_position': 'pos', 'Tumor_Seq_Allele1': "alt"} def fileToList(filename): """ loads an input file with a\\n b\\n.. into a list [a,b,..] """ with open(filename) as f: return [val[:-1] for val in f.readlines()] def listToFile(l, filename): """ loads a list with [a,b,..] into an input file a\\n b\\n.. """ with open(filename, 'w') as f: for item in l: f.write("%s\n" % item) def dictToFile(d, filename): """ turn a dict into a json file """ with open(filename, 'w') as json_file: json.dump(d, json_file) def fileToDict(filename): """ loads a json file into a python dict """ with open(filename) as f: data = json.load(f) return data def batchMove(l, pattern=['*.', '.*'], folder='', add=''): """ moves a set of files l into a folder: Args: ----- l: file list pattern: if files are a set of patterns to match folder: folder to move file into add: some additional mv parameters """ for val in l: cmd = 'mv ' if add: cmd += add + ' ' if '*.' in pattern: cmd += '*' cmd += val if '.*' in pattern: cmd += '*' cmd += " " + folder res = os.system(cmd) if res != 0: raise Exception("Leave command pressed or command failed") def batchRename(dt, folder='', sudo=False, doAll=False, add='', dryrun=False): """ Given a dict renames corresponding files in a folder Args: ---- dt: dict(currentName:newName) renaming dictionnary folder: folder to look into add: some additional mv parameters """ cmd = 'ls -R ' + folder if doAll else 'ls ' + folder files = os.popen(cmd).read().split('\n') if doAll: prep='' f = [] for val in files: if len(val)==0: prep='' continue if val[0]=='.' and len(val)>3: prep=val[:-1] continue if "." in val: f.append(prep+"/"+val) files = f for k, val in dt.items(): for f in files: if k in f: cmd = 'sudo mv ' if sudo else 'mv ' if add: cmd += add + ' ' if not doAll: cmd += folder cmd += f cmd += ' ' if not doAll: cmd += folder cmd += f.replace(k, val) if dryrun: print(cmd) else: res = os.system(cmd) if res != 0: raise Exception("Leave command pressed or command failed") def grouped(iterable, n): """ iterate over element of list 2 at a time python s -> (s0,s1,s2,...sn-1), (sn,sn+1,sn+2,...s2n-1), (s2n,s2n+1,s2n+2,...s3n-1), ... """ it = iter(iterable) while True: chunk = tuple(itertools.islice(it, n)) if not chunk: return yield chunk def overlap(interval1, interval2): """ Given [0, 4] and [1, 10] returns [1, 4] Given [0, 4] and [8, 10] returns False """ if interval2[0] <= interval1[0] <= interval2[1]: start = interval1[0] elif interval1[0] <= interval2[0] <= interval1[1]: start = interval2[0] else: return False if interval2[0] <= interval1[1] <= interval2[1]: end = interval1[1] elif interval1[0] <= interval2[1] <= interval1[1]: end = interval2[1] else: return False return (start, end) def union(interval1, interval2): """ Given [0, 4] and [1, 10] returns [0, 10] Given [0, 4] and [8, 10] returns False """ if interval1[0] <= interval2[0] <= interval1[1]: start = interval1[0] end = interval1[1] if interval2[1] <= interval1[1] else interval2[1] elif interval1[0] <= interval2[1] <= interval1[1]: start = interval2[0] if interval2[0] <= interval1[0] else interval1[0] end = interval1[1] else: return False return (start, end) def nans(df): return df[df.isnull().any(axis=1)] def createFoldersFor(filepath): """ will recursively create folders if needed until having all the folders required to save the file in this filepath """ prevval = '' for val in filepath.split('/')[:-1]: prevval += val + '/' if not os.path.exists(prevval): os.mkdir(prevval) def randomString(stringLength=6, stype='all', withdigits=True): """ Generate a random string of letters and digits Args: ----- stringLength: the amount of char stype: one of lowercase, uppercase, all withdigits: digits allowed in the string? Returns: ------- the string """ if stype == 'lowercase': lettersAndDigits = ascii_lowercase elif stype == 'uppercase': lettersAndDigits = ascii_uppercase else: lettersAndDigits = string.ascii_letters if withdigits: lettersAndDigits += string.digits return ''.join(random.choice(lettersAndDigits) for i in range(stringLength)) def pdDo(df, op="mean", of="value1", over="value2"): """ apply a function to a panda dataframe WIP """ df = df.sort_values(by=over) index = [] data = df.iloc[0, of] ret = [] prev = df.iloc[0, over] j = 0 for k, val in df.iloc[1:].iterrows(): if val[over] == prev: data.append(val[of]) else: if of == "mean": ret[j] = np.mean(data) elif of == "sum": ret[j] = np.sum(data) elif of == "max": ret[j] = np.max(data) elif of == "min": ret[j] = np.min(data) index.append(k) j += 1 data = [val[of]] return index, ret def parrun(cmds, cores, add=[]): """ runs a set of commands in parallel using the "&" command Args: ----- cmds: the list of commands cores: number of parallel execution add: an additional list(len(cmds)) of command to run in parallel at the end of each parallel run """ count = 0 exe = '' if len(add) != 0 and len(add) != len(cmds): raise ValueError("we would want them to be the same size") else: addexe = '' for i, cmd in enumerate(cmds): count += 1 exe += cmd if len(add) != 0: addexe += add[i] if count < cores and i < len(cmds) - 1: exe += ' & ' if len(add) != 0: addexe += ' & ' else: count = 0 res = subprocess.run(exe, capture_output=True, shell=True) if res.returncode != 0: raise ValueError('issue with the command: ' + str(res.stderr)) exe = '' if len(add) != 0: res = subprocess.run(addexe, capture_output=True, shell=True) if res.returncode != 0: raise ValueError( 'issue with the command: ' + str(res.stderr)) addexe = '' def askif(quest): """ asks a y/n question to the user about something and returns true or false given his answer """ print(quest) inp = input() if inp in ['yes', 'y', 'Y', 'YES', 'oui', 'si']: return 1 elif inp in ['n', 'no', 'nope', 'non', 'N']: return 0 else: return askif('you need to answer by yes or no') def inttodate(i, lim=1965, unknown='U', sep='-', order="asc", startsatyear=0): """ transforms an int representing days into a date Args: ---- i: the int lim: the limited year below which we have a mistake unknown: what to return when unknown (date is bellow the limited year) sep: the sep between your date (e.g. /, -, ...) order: if 'asc', do d,m,y else do y,m,d startsatyear: when is the year to start counting for this int Returns: the date or unknown """ a = int(i // 365) if a > lim: a = str(a + startsatyear) r = i % 365 m = str(int(r // 32)) if int(r // 32) > 0 else str(1) r = r % 32 d = str(int(r)) if int(r) > 0 else str(1) else: return unknown return d + sep + m + sep + a if order == "asc" else a + sep + m + sep + d def datetoint(dt, split='-', unknown='U', order="des"): """ same as inttodate but in the opposite way; starts at 0y,0m,0d dt: the date string split: the splitter in the string (e.g. /,-,...) unknown: maybe the some dates are 'U' or 0 and the program will output 0 for unknown instead of crashing order: if 'asc', do d,m,y else do y,m,d Returns: the date """ arr = np.array(dt[0].split(split) if dt[0] != unknown else [0, 0, 0]).astype(int) if len(dt) > 1: for val in dt[1:]: arr = np.vstack( (arr, np.array(val.split(split) if val != unknown and val.count(split) == 2 else [0, 0, 0]).astype(int))) arr = arr.T res = arr[2] * 365 + arr[1] * 31 + \ arr[0] if order == "asc" else arr[0] * 365 + arr[1] * 31 + arr[2] return [res] if type(res) is np.int64 else res def showcount(i, size): """ pretty print of i/size%, to put in a for loop """ print(str(1 + int(100 * (i / size))) + '%', end='\r') def combin(n, k): """ Nombre de combinaisons de n objets pris k a k outputs the number of comabination of n object taken k at a time """ if k > n // 2: k = n - k x = 1 y = 1 i = n - k + 1 while i <= n: x = (x * i) // y y += 1 i += 1 return x def dups(lst): """ shows the duplicates in a list """ seen = set() # adds all elements it doesn't know yet to seen and all other to seen_twice seen_twice = set(x for x in lst if x in seen or seen.add(x)) # turn the set into a list (as requested) return list(seen_twice) def makeCombinations(size, proba): """ produces probability of X event happening at the same time pretty usefull for cobinding analysis. wil compute it given binomial probabilities of each event occuring and the number of trials Args: ----- size: int number of trials proba: list[float] probabilities of each event occuring """ sums = {i:0 for i in range(1,size)} for i in range(size-1,0,-1): print(i) if sums[i]> 0: continue print(combin(size+3,i)) v=0 for j in itertools.combinations(proba, i): v+=np.prod(j) sums[i] = v for i in range(size-1,0,-1): for j in range(i+1,size): icomb = combin(j,i) sums[i] -= icomb*sums[j] sums[0] = 1-sum(list(sums.values())) return sums def closest(lst, K): """ returns the index of the value closest to K in a lst """ return lst[min(range(len(lst)), key = lambda i: abs(lst[i]-K))] def compareDfs(df1, df2): """ compares df1 to df2 shows col difference, index difference, nans & 0s differences """ nmissmatchCols = set(df1.columns)-set(df2.columns) omissmatchCols = set(df2.columns)-set(df1.columns) nmissmatchInds = set(df1.index)-set(df2.index) omissmatchInds = set(df2.index)-set(df1.index) newNAs = df1.isna().sum().sum() - df2.isna().sum().sum() new0s = (df1 == 0).sum().sum() - (df2 == 0).sum().sum() print('FOUND missmatch Columns IN df1: ' + str(nmissmatchCols)) print('FOUND missmatch Columns NOT IN df1: ' + str(omissmatchCols)) print('FOUND missmatch Index IN df1: ' + str(nmissmatchInds)) print('FOUND missmatch Index NOT IN df1: ' + str(omissmatchInds)) print('FOUND new NAs in df1: ' + str(newNAs)) print('FOUND new 0s in df1: ' + str(new0s)) return nmissmatchCols, omissmatchCols, nmissmatchInds, omissmatchInds, newNAs, new0s def stringifydict(res): """ """ a = {} for k,v in res.items(): if type(v) is dict: a[k] = stringifydict(v) else: a[str(k)] = v return a def list_to_str(l): """ convert a list into a string in a better way than original python """ return str(l).replace("'","").replace(",","")[1:-1] ```
{ "source": "jkocherhans/maillib", "score": 3 }
#### File: maillib/tests/subclassing.py ```python from maillib import Message from StringIO import StringIO import unittest import email RAW_MESSAGE = """\ Date: Sun, 25 Oct 2009 20:27:58 -0500 Subject: Test From: <NAME> <<EMAIL>> To: <NAME> <<EMAIL>> Test. """ class TestMessage(Message): pass class ConstructorsTestCase(unittest.TestCase): """ Make sure the constructors work for subclasses. """ def test_from_file(self): msg = TestMessage.from_file(StringIO(RAW_MESSAGE)) self.assertTrue(isinstance(msg, TestMessage)) def test_from_string(self): msg = TestMessage.from_string(RAW_MESSAGE) self.assertTrue(isinstance(msg, TestMessage)) def test_from_message(self): msg = TestMessage.from_message(email.message_from_string(RAW_MESSAGE)) self.assertTrue(isinstance(msg, TestMessage)) ``` #### File: maillib/maillib/utils.py ```python import re def normalize_subject(subject): """ Strips any leading Re or Fwd from the subject, and returns it. This is sometimes useful for grouping messages. """ return re.sub(r'(?i)(re:|fw:|fwd:)\s+', '', subject) def extract_list_id(value): """ Extracts and returns the first things that looks like a list-id from a message header value. """ match = re.search(r'<([^>]*?)>', value) if match is None: return value return match.group(1) ```
{ "source": "jkochNU/scqubits", "score": 2 }
#### File: scqubits/tests/conftest.py ```python import os import matplotlib import matplotlib.pyplot as plt import numpy as np import pytest import scqubits import scqubits.settings import scqubits.utils.plotting as plot from scqubits.core.constants import FileType from scqubits.core.storage import SpectrumData from scqubits.settings import IN_IPYTHON if not IN_IPYTHON: matplotlib.use('Agg') scqubits.settings.FILE_FORMAT = FileType.h5 TESTDIR, _ = os.path.split(scqubits.tests.__file__) DATADIR = os.path.join(TESTDIR, 'data', '') class BaseTest: """Used as base class for pytests of qubit classes""" qbt = None @pytest.fixture(autouse=True) def set_tmpdir(self, request): """Pytest fixture that provides a temporary directory for writing test files""" setattr(self, 'tmpdir', request.getfixturevalue('tmpdir')) @classmethod def teardown_class(cls): plt.close('all') def set_params(self, h5file_root): """Read and store parameters from open h5 file Parameters ---------- h5file_root: h5py.Group handle to root group in open h5 file """ h5params = h5file_root.attrs for paramname in h5params.keys(): paramvalue = h5params[paramname] if isinstance(paramvalue, (int, float, np.number)): setattr(self.qbt, paramname, h5params[paramname]) def eigenvals(self, evals_reference): evals_count = len(evals_reference) evals_tst = self.qbt.eigenvals(evals_count=evals_count, filename=self.tmpdir + 'test') assert np.allclose(evals_reference, evals_tst) def eigenvecs(self, evecs_reference): evals_count = evecs_reference.shape[1] _, evecs_tst = self.qbt.eigensys(evals_count=evals_count, filename=self.tmpdir + 'test') assert np.allclose(np.abs(evecs_reference), np.abs(evecs_tst)) def plot_evals_vs_paramvals(self, param_name, param_list): self.qbt.plot_evals_vs_paramvals(param_name, param_list, evals_count=5, subtract_ground=True, filename=self.tmpdir + 'test') def get_spectrum_vs_paramvals(self, param_name, param_list, evals_reference, evecs_reference): evals_count = len(evals_reference[0]) calculated_spectrum = self.qbt.get_spectrum_vs_paramvals(param_name, param_list, evals_count=evals_count, subtract_ground=False, get_eigenstates=True) calculated_spectrum.filewrite(filename=self.tmpdir + 'test') assert np.allclose(evals_reference, calculated_spectrum.energy_table) assert np.allclose(np.abs(evecs_reference), np.abs(calculated_spectrum.state_table), atol=1e-07) def matrixelement_table(self, op, matelem_reference): evals_count = len(matelem_reference) calculated_matrix = self.qbt.matrixelement_table(op, evecs=None, evals_count=evals_count, filename=self.tmpdir + 'test') assert np.allclose(np.abs(matelem_reference), np.abs(calculated_matrix)) def plot_matrixelements(self, op, evals_count=7): self.qbt.plot_matrixelements(op, evecs=None, evals_count=evals_count) def print_matrixelements(self, op): mat_data = self.qbt.matrixelement_table(op) plot.print_matrix(abs(mat_data)) def plot_matelem_vs_paramvals(self, op, param_name, param_list, select_elems): self.qbt.plot_matelem_vs_paramvals(op, param_name, param_list, select_elems=select_elems, filename=self.tmpdir + 'test') class StandardTests(BaseTest): @classmethod def setup_class(cls): cls.qbt = None cls.qbt_type = None cls.file_str = '' cls.op1_str = '' cls.op2_str = '' cls.param_name = '' cls.param_list = None def test_eigenvals(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) evals_reference = specdata.energy_table return self.eigenvals(evals_reference) def test_eigenvecs(self): testname = self.file_str + '_2' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) evecs_reference = specdata.state_table return self.eigenvecs(evecs_reference) def test_plot_wavefunction(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) self.qbt.plot_wavefunction(esys=None, which=5, mode='real') self.qbt.plot_wavefunction(esys=None, which=9, mode='abs_sqr') def test_plot_evals_vs_paramvals(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) return self.plot_evals_vs_paramvals(self.param_name, self.param_list) def test_get_spectrum_vs_paramvals(self): testname = self.file_str + '_4' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) self.param_list = specdata.param_vals evecs_reference = specdata.state_table evals_reference = specdata.energy_table return self.get_spectrum_vs_paramvals(self.param_name, self.param_list, evals_reference, evecs_reference) def test_matrixelement_table(self): testname = self.file_str + '_5' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) matelem_reference = specdata.matrixelem_table return self.matrixelement_table(self.op1_str, matelem_reference) def test_plot_matrixelements(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) self.plot_matrixelements(self.op1_str, evals_count=10) def test_print_matrixelements(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) self.print_matrixelements(self.op2_str) def test_plot_matelem_vs_paramvals(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) self.plot_matelem_vs_paramvals(self.op1_str, self.param_name, self.param_list, select_elems=[(0, 0), (1, 4), (1, 0)]) def test_plot_potential(self): testname = self.file_str + '_1' specdata = SpectrumData.create_from_file(DATADIR + testname) self.qbt = self.qbt_type.create_from_dict(specdata._get_metadata_dict()) if 'plot_potential' not in dir(self.qbt): pytest.skip('This is expected, no reason for concern.') self.qbt.plot_potential() ``` #### File: scqubits/tests/test_explorer.py ```python import numpy as np import scqubits as qubit import scqubits.core.sweep_generators as swp from scqubits import InteractionTerm, ParameterSweep, Explorer def test_explorer(): qbt = qubit.Fluxonium( EJ=2.55, EC=0.72, EL=0.12, flux=0.0, cutoff=110, truncated_dim=9 ) osc = qubit.Oscillator( E_osc=4.0, truncated_dim=5 ) hilbertspace = qubit.HilbertSpace([qbt, osc]) interaction = InteractionTerm( g_strength=0.2, hilbertspace=hilbertspace, op1=qbt.n_operator(), subsys1=qbt, op2=osc.creation_operator() + osc.annihilation_operator(), subsys2=osc ) interaction_list = [interaction] hilbertspace.interaction_list = interaction_list param_name = r'$\Phi_{ext}/\Phi_0$' param_vals = np.linspace(-0.5, 0.5, 100) subsys_update_list = [qbt] def update_hilbertspace(param_val): qbt.flux = param_val sweep = ParameterSweep( param_name=param_name, param_vals=param_vals, evals_count=10, hilbertspace=hilbertspace, subsys_update_list=subsys_update_list, update_hilbertspace=update_hilbertspace, ) swp.generate_chi_sweep(sweep) swp.generate_charge_matrixelem_sweep(sweep) explorer = Explorer( sweep=sweep, evals_count=10 ) explorer.interact() ```
{ "source": "jkocontreras/drawbotscripts", "score": 3 }
#### File: drawbotscripts/sineWave_animations/sineWave_360.py ```python ph = 350 # pageheight pw = ph * 2 # pagewidth steps = 180 # how many pages / steps to draw dot_s = 8 # size of the dots at the end of the radius radius = ph/2 * .75 angle = 2*pi/steps gap = radius / (steps - 1) * 2 # used to draw the dots of the sine wave sin_vals = [sin(i*angle) for i in range(steps)] # calculate and store the sine values once def base_page(i): '''basic stuff that gets drawn and used on every page''' newPage(pw, ph) fill(1) rect(0, 0, pw, ph) fill(0) translate(0, ph/2) fontSize(8) for j in range(-10, 11, 2): text('%.1f' % (j/10), (pw/2, radius/10 * j), align = 'right') fill(.5) rect(ph/2 * .25, -ph/2, 1, ph) rect(ph/2 * .25 + 2 * radius, -ph/2, 1, ph) # drawing of the sine wave with savedState(): translate((ph - radius *2)/2, 0) for st in range(steps): sin_val = sin_vals[ (st+i+1) % steps] oval(st * gap - 2, sin_val * radius - 2, 4, 4) translate(ph + ph/2, 0) fill(None) stroke(.5) strokeWidth(1) oval(-radius, -radius, radius*2, radius*2) line((-ph/2 * 3, 0), (ph/2, 0)) line((0, -ph/2), (0, ph/2)) fontSize(14) for i in range(steps): base_page(i) cos_val = cos(i * angle) sin_val = sin(i * angle) x = cos_val * radius y = sin_val * radius stroke(.75) line((x, max(0, y)),(x, -radius)) line((max(x, 0), y),(- pw/2 + radius, y)) strokeWidth(2) # radius stroke(0, 0, 1) line((0, 0),(x, y)) # cosine distance stroke(1, 0, 0) line((0, 0),(x, 0)) # sine distance stroke(0, .5, 0) line((0, 0),(0, y)) stroke(None) fill(0, 0, 1, .2) pth = BezierPath() pth.moveTo((0, 0)) pth.lineTo((radius/4, 0)) pth.arc((0, 0), radius/4, 0, degrees(i * angle), clockwise = False) pth.closePath() drawPath(pth) fill(0) text('cos(θ)', (x/2, -18), align = 'center') text('sin(θ)', (8, y/2 + 4)) text('%d°' % (i * degrees(angle)), (radius/4 + 4, 8)) text('%.3f' % cos_val, (x, -radius - 16), align = 'center') text('%.3f' % sin_val, (- pw/2 + radius - 4, y), align = 'right') fill(.5) oval(-dot_s/2, -dot_s/2, dot_s, dot_s) oval(x-dot_s/2, y-dot_s/2, dot_s, dot_s) # saveImage('sine.gif') ``` #### File: drawbotscripts/vera molnar/lines_rotating.py ```python pw = ph = 500 amount = 24 st_w = 4 cell_s = pw / (amount + 2) line_cap = (st_w/2)/sqrt(2) possible_vectors = [ [(-1, -1), (1, 1)], [(-1, 1), (1, -1)], [( 0, 1), (0, -1)], [(-1, 0), (1, 0)] ] # -------------- # function(s) def rnd(x, val): return round(x, val) def rnd_p(p, val=3): return rnd(p[0], val), rnd(p[1], val) def a_line(pos, s): global visited x, y = pos selected = choice(possible_vectors) p1_, p2_ = [rnd_p((x + x_off * s/2, y + y_off * s/2)) for x_off, y_off in selected] p1, p2 = p1_, p2_ if p1_ in visited and 0 not in selected[0]: p1 = p1[0] + selected[0][0]*line_cap, p1[1] + selected[0][1]*line_cap if p2_ in visited and 0 not in selected[1]: p2 = p2[0] + selected[1][0]*line_cap, p2[1] + selected[1][1]*line_cap line(p1, p2) stroke(0) for p in [p1_, p2_]: visited[p] = visited.get(p, True) # -------------- # drawings newPage(pw, ph) translate(cell_s * 1.5, cell_s * 1.5) fill(None) stroke(0) strokeWidth(st_w) visited = {} for x in range(amount): for y in range(amount): a_line((x * cell_s, y * cell_s), cell_s) # saveImage('lines_rotating.jpg') ``` #### File: drawbotscripts/vera molnar/random_grids.py ```python import random # ---------------------- # settings pw = ph = 500 cell_a = 10 # amount of cells sbdvs = 3 # subdivisions gap = pw /(cell_a * sbdvs + cell_a + 1) cell_s = sbdvs * gap points = [(x * gap, y * gap) for x in range(sbdvs+1) for y in range(sbdvs+1) ] # ---------------------- # function(s) def a_grid_cell(pos, s, points, amount = len(points)): random.shuffle(points) points = random.sample( points, amount ) with savedState(): translate(x * (cell_s + gap), y * (cell_s + gap)) polygon(*points, close=False) # ---------------------- # drawing newPage(pw, ph) rect(0, 0, pw, ph) translate(gap, gap) fill(None) strokeWidth(1) stroke(1) lineCap('round') lineJoin('round') for x in range( cell_a ): for y in range( cell_a ): a_grid_cell((x * cell_s, y * cell_s), cell_s, points, y + 3) # saveImage('random_grids.jpg') ``` #### File: drawbotscripts/vera molnar/rotating_Y.py ```python pw = ph = 500 amount = 5 stroke_w = 20 margin = stroke_w * sqrt(2) y_size = (pw - 2*margin) / (amount) # ---------------------- # function(s) def y_shape(pos, s, rot ): x, y = pos with savedState(): translate(x + s/2, y + s/2) rotate(rot) for i in range(3): line( (0, 0), ( 0, -s/2) ) line( (0, 0), ( s/2, s/2) ) line( (0, 0), (-s/2, s/2) ) # ---------------------- # drawing newPage(pw, ph) translate(margin, margin) fill(None) strokeWidth( stroke_w ) stroke(0, 0.65, 0) for x in range( amount ): for y in range( amount ): # rot = choice([0, 90, 180, 270]) rot = 90 - x * 90 - y * 90 y_shape( (x * y_size, y * y_size), y_size, rot) # saveImage('rotating_Y.jpg') ```
{ "source": "jkodner05/LowResPOS", "score": 3 }
#### File: jkodner05/LowResPOS/readers.py ```python import re, unicodedata from collections import defaultdict START = "#START" STOP = "#STOP" WSJ_FINDWORD = re.compile(r"\(([\w\d\.,\?!]+)\s([A-Za-z\d'-\.,\?!]+?)\)") def tag_word(wordtup, keeptag): if keeptag: return unicodedata.normalize('NFC',(wordtup[0] + "_" + wordtup[1]).decode("utf-8")) else: return unicodedata.normalize('NFC',wordtup[1].decode("utf-8")) def check_tokenlimit(maxtokens, numtokens): if maxtokens and numtokens > maxtokens: print "REACHED TOKEN LIMIT" print "Num Tokens:\t", numtokens return True return False def read_turkishtsfile(filename, tags, freqs, contexts, numtokens, maxtokens): findword = re.compile(r"([^\s]+)_([^\s]+)") with open(filename, "r") as f: prevprev = START prev = START for line in f: if len(freqs) >= 50000: break words = findword.findall(line.lower()) for wordtup in words: if "//" in wordtup[0]: continue word = tag_word((wordtup[1],wordtup[0]),False).lower() numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens # if word == u"\u0130mparatorlu\u011fu'nu": # print "GOT IT" if word not in tags: tags[word] = {} if wordtup[1] not in tags[word]: tags[word][wordtup[1]] = 0 tags[word][wordtup[1]] += 1 freqs[word] += 1 contexts[prev].add((prevprev,word)) #print word, wordtup[1] #print prevprev, prev, word # print prevprev.encode("utf-8"), prev.encode("utf-8"), word.encode("utf-8"), "\t", prev.encode("utf-8"), contexts[prev] prevprev = prev prev = word contexts[prev].add((prevprev,STOP)) prevprev = START prev = START # print set([tag for tagdict in tags.values() for tag in tagdict]) print len(freqs), sum(freqs.values()) return tags, freqs, contexts, numtokens def read_ctbfile(filename, tags, freqs, contexts, numtokens, maxtokens): findword = re.compile(r"([^\s]+)_([^\s]+)") with open(filename, "r") as f: prevprev = START prev = START for line in f: if "</S>" in line or "<S ID" in line or "<P>" in line or "</P>" in line or "HEADER>" in line or "DATE>" in line or "BODY>" in line or "DOCID>" in line or "HEADLINE>" in line or "DOC>" in line or "TEXT>" in line: continue # print "\n", line.strip() words = findword.findall(line.lower()) for wordtup in words: if wordtup[1].lower() == "-none-": continue word = tag_word((wordtup[1],wordtup[0]),False).lower() numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens if word not in tags: tags[word] = {} if wordtup[1] not in tags[word]: tags[word][wordtup[1]] = 0 tags[word][wordtup[1]] += 1 freqs[word] += 1 contexts[prev].add((prevprev,word)) # print prevprev, prev, word # print prevprev.encode("utf-8"), prev.encode("utf-8"), word.encode("utf-8"), "\t", prev.encode("utf-8"), contexts[prev] prevprev = prev prev = word contexts[prev].add((prevprev,STOP)) prevprev = START prev = START # print set([tag for tagdict in tags.values() for tag in tagdict]) return tags, freqs, contexts, numtokens def read_ctbfile_eval(filename, numtokens, maxtokens): findword = re.compile(r"([^\s]+)_([^\s]+)") pospairs = [] with open(filename, "r") as f: for line in f: if "</S>" in line or "<S ID" in line or "<P>" in line or "</P>" in line or "HEADER>" in line or "DATE>" in line or "BODY>" in line or "DOCID>" in line or "HEADLINE>" in line or "DOC>" in line or "TEXT>" in line: continue words = findword.findall(line.lower()) if not words: continue pospairs.extend([(tag_word((wordtup[1],wordtup[0]),False),wordtup[1]) for wordtup in words if wordtup[1].lower() != "-none-"]) numtokens += len(words) #try: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),CHILDES_TAGMAP[wordtup[0]]) for wordtup in words]) #except KeyError: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),"SKIP") for wordtup in words]) return pospairs, numtokens def read_turkishtsfile_eval(filename, numtokens, maxtokens): findword = re.compile(r"([^\s]+)_([^\s]+)") pospairs = [] types = set([]) with open(filename, "r") as f: for line in f: words = findword.findall(line.lower()) if not words: continue if len(types) >= 50000: break for wordtup in words: types.add(wordtup[0]) pospairs.extend([(tag_word((wordtup[1],wordtup[0]),False).lower(),wordtup[1]) for wordtup in words if wordtup[1].lower() != "-none-"]) numtokens += len(words) #try: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),CHILDES_TAGMAP[wordtup[0]]) for wordtup in words]) #except KeyError: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),"SKIP") for wordtup in words]) return pospairs, numtokens def read_wsjfile(filename, tags, freqs, contexts, numtokens, maxtokens): # findword = re.compile(r"\((\w+)\s([a-z'-]+)\)") findword = WSJ_FINDWORD with open(filename, "r") as f: prevprev = START prev = START savedend = False for line in f: savedend = False if not line.strip(): savedend = True # if line.strip() == "(. .) ))": contexts[prev].add((prevprev,STOP)) # print prevprev, prev, STOP, "\t", prev, contexts[prev] prevprev = START prev = START words = findword.findall(line.lower()) for i, wordtup in enumerate(words): word = tag_word(wordtup,False).lower() if ")" in word: print word, line numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens if word not in tags: tags[word] = {} if wordtup[0] not in tags[word]: tags[word][wordtup[0]] = 0 tags[word][wordtup[0]] += 1 freqs[word] += 1 contexts[prev].add((prevprev,word)) # print prevprev, prev, word, "\t", prev, contexts[prev] prevprev = prev prev = word if not savedend: contexts[prev].add((prevprev,STOP)) prevprev = START prev = START # print set([tag for tagdict in tags.values() for tag in tagdict]) return tags, freqs, contexts, numtokens def read_wsjfile_eval(filename, numtokens, maxtokens): findword = WSJ_FINDWORD pospairs = [] with open(filename, "r") as f: for line in f: words = findword.findall(line.lower()) for wordtup in words: word = wordtup[1] if ")" in word: print word if not words: continue pospairs.extend([(tag_word(wordtup,False),wordtup[0]) for wordtup in words]) numtokens += len(words) #try: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),CHILDES_TAGMAP[wordtup[0]]) for wordtup in words]) #except KeyError: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),"SKIP") for wordtup in words]) return pospairs, numtokens def read_childesbrownfile_eval(filename, numtokens, maxtokens): findword = re.compile(r"([A-Za-z:]+)\|([^\s]+)") pospairs = [] with open(filename, "r") as f: for line in f: if line[0:5] != "%mor:": continue words = findword.findall(line.lower()) pospairs.extend([(tag_word(wordtup,False),wordtup[0]) for wordtup in words]) numtokens += len(words) #try: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),CHILDES_TAGMAP[wordtup[0]]) for wordtup in words]) #except KeyError: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),"SKIP") for wordtup in words]) return pospairs, numtokens def read_childesbrownfile(filename, tags, freqs, contexts, numtokens, maxtokens): findword = re.compile(r"([A-Za-z:]+)\|([^\s]+)") with open(filename, "r") as f: prevprev = START prev = START for line in f: if line[0:5] != "%mor:": continue words = findword.findall(line.lower()) for wordtup in words: word = tag_word(wordtup,False) numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens if word not in tags: tags[word] = {} if wordtup[0] not in tags[word]: tags[word][wordtup[0]] = 0 tags[word][wordtup[0]] += 1 #try: # if CHILDES_TAGMAP[wordtup[0]] == "SKIP": # prevprev = prev # prev = word # continue # tags[word][CHILDES_TAGMAP[wordtup[0]]] += 1 #except KeyError: # prevprev = prev # prev = word # continue # tags[word]["SKIP"] += 1 freqs[word] += 1 contexts[prev].add((prevprev,word)) # print prevprev, prev, word, "\t", prev, contexts[prev] prevprev = prev prev = word contexts[prev].add((prevprev,STOP)) return tags, freqs, contexts, numtokens def read_conlluniversalfile_eval(filename, numtokens, maxtokens): findword = re.compile(r"^\d+\t(.+?)\t.+?\t(\w+)") pospairs = [] with open(filename, "r") as f: for line in f: words = findword.findall(line.lower()) if not words: continue pospairs.extend([(tag_word((wordtup[1],wordtup[0]),False).lower(),wordtup[1]) for wordtup in words]) numtokens += len(words) #try: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),CHILDES_TAGMAP[wordtup[0]]) for wordtup in words]) #except KeyError: # pospairs.extend([(tag_word(wordtup,True).decode("utf-8"),"SKIP") for wordtup in words]) return pospairs, numtokens def read_conlluniversalfile(filename, tags, freqs, contexts, numtokens, maxtokens): findword = re.compile(r"^\d+\t(.+?)\t.+?\t(\w+)") # findword = re.compile(r"\d+\t(.+?)\t.+?\t(\w+)\t(\w+)") with open(filename, "r") as f: prevprev = START prev = START ended = False for line in f: if not line.strip(): ended = True contexts[prev].add((prevprev,STOP)) # print prevprev, prev, STOP, "\t", prev, contexts[prev] prevprev = START prev = START continue ended = False words = findword.findall(line.lower()) for wordtup in words: word = tag_word((wordtup[1],wordtup[0]),False).lower() numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens if word not in tags: tags[word] = defaultdict(int) tags[word][wordtup[1]] += 1 freqs[word] += 1 contexts[prev].add((prevprev,word)) # print prevprev, prev, word, "\t", prev, contexts[prev] prevprev = prev prev = word contexts[prev].add((prevprev,STOP)) prevprev = START prev = START return tags, freqs, contexts, numtokens def read_lctlfile(filename, tags, freqs, contexts, numtokens, maxtokens): findword = re.compile(r"""pos="(\w+)">(.+?)</""") with open(filename, "r") as f: prevprev = START prev = START for line in f: if "</SEG>" in line: contexts[prev].add((prevprev,STOP)) # print prevprev, prev, STOP, "\t", prev, contexts[prev] prevprev = START prev = START continue elif "<TOKEN id=" not in line: continue words = findword.findall(line.lower()) for wordtup in words: word = tag_word((wordtup[1],wordtup[0]),False) numtokens += 1 if check_tokenlimit(maxtokens, numtokens): return tags, freqs, contexts, numtokens freqs[word] += 1 if word not in tags: tags[word] = defaultdict(int) tags[word][wordtup[0]] += 1 contexts[prev].add((prevprev,word)) # print prevprev, prev, word, "\t", prev, contexts[prev] prevprev = prev prev = word return tags, freqs, contexts, numtokens def read_Xu_morphfile(filename): roots_by_word = {} suffixes_by_root = defaultdict(lambda : set([])) with open(filename, "r") as f: for line in f: components = unicodedata.normalize('NFC',line.decode("utf-8")).split("\t") word = components[0] segmentation = components[1].split(" ") root = segmentation[0] finalsuff = segmentation[-1] roots_by_word[word] = root suffixes_by_root[root].add(finalsuff) suffixes_by_root = dict(suffixes_by_root) return roots_by_word, suffixes_by_root ```
{ "source": "jkoelker/holland", "score": 2 }
#### File: holland-commvault/holland_commvault/commvault.py ```python import holland.core import sys, os import logging import resource from holland.core.util.bootstrap import bootstrap from holland.commands.backup import Backup from holland.core.command import run from holland.core.cmdshell import HOLLAND_VERSION from holland.core.util.fmt import format_loglevel from argparse import ArgumentParser, Action # The janky arguments Commvault throws at us # http://documentation.commvault.com/commvault/release_8_0_0/books_online_1/english_us/features/pre_post/prepost_process.htm # http://documentation.commvault.com/commvault/release_7_0_0/books_online_1/english_us/features/pre_post/prepost_process.htm #CV_ARGS = ("-bkplevel", # "-attempt", # "-status", # "-job", # "-vm" # "-cn") class ArgList(Action): def __call__(self, parser, namespace, value, option_string=None): arg_list = [x.strip() for x in value.split(',')] setattr(namespace, self.dest, arg_list) def main(): # For some reason (take a wild guess) Commvault has decided that # their long options will take the form of '-option' not the standard # '--option'. # Always set HOME to '/root', as the commvault environment is bare os.environ['HOME'] = '/root' os.environ['TMPDIR'] = '/tmp' # ensure we do not inherit commvault's LD_LIBRARY_PATH os.environ.pop('LD_LIBRARY_PATH', None) argv = sys.argv[1:] parser = ArgumentParser() parser.add_argument("--config-file", "-c", metavar="<file>", help="Read configuration from the given file") parser.add_argument("--log-level", "-l", type='choice', choices=['critical','error','warning','info', 'debug'], help="Specify the log level." ) parser.add_argument("--quiet", "-q", action="store_true", help="Don't log to console") parser.add_argument("--verbose", "-v", action="store_true", help="Verbose output") parser.add_argument("--bksets", "-b", metavar="<bkset>,<bkset>...", help="only run the specified backupset", default=[], action=ArgList) parser.add_argument("-bkplevel", type=int) parser.add_argument("-attempt", type=int) parser.add_argument("-status", type=int) parser.add_argument("-job", type=int) parser.add_argument("-vm") parser.add_argument("-cn") parser.set_defaults( config_file=os.getenv('HOLLAND_CONFIG') or '/etc/holland/holland.conf', verbose=False, ) args, largs = parser.parse_known_args(argv) bootstrap(args) logging.info("Holland (commvault agent) %s started with pid %d", HOLLAND_VERSION, os.getpid()) # Commvault usually runs with a very low default limit for nofile # so a best effort is taken to raise that here. try: resource.setrlimit(resource.RLIMIT_NOFILE, (262144, 262144)) logging.debug("(Adjusted ulimit -n (RLIMIT_NOFILE) to %d)", 262144) except (ValueError, resource.error), exc: logging.debug("Failed to raise RLIMIT_NOFILE: %s", exc) if args.log_level: args.log_level = format_loglevel(opts.log_level) if run(['backup'] + args.bksets): return 1 else: return 0 ``` #### File: core/backup/legacy.py ```python import os import sys import time import pprint import logging from holland.core.exceptions import BackupError from holland.core.util.path import disk_free, directory_size from holland.core.util.fmt import format_interval, format_bytes from holland.core.plugin import load_backup_plugin, PluginLoadError from holland.core.config import load_backupset_config from holland.core.spool import spool LOGGER = logging.getLogger(__name__) def load_plugin(cfg): provider = cfg.lookup('holland:backup.plugin') LOGGER.info("Loading Backup Plugin '%s'", provider) if not provider: raise IOError("No provider defined") try: plugincls = load_first_entrypoint("holland.backup", provider) except PluginLoadError, e: raise LookupError("Failed to load plugin %r: %s" % (provider, e)) if not plugincls: raise LookupError("Plugin %r not found" % ('holland.backup.' + provider)) return plugincls def _find_existing_parent(path): path = os.path.abspath(path) while not os.path.exists(path): path, _ = os.path.split(path) if _ == '': break return path def verify_space(required_space, target_directory): available_space = disk_free(_find_existing_parent(target_directory)) if required_space >= available_space: LOGGER.error("Insufficient Disk Space. Required: %s Available: %s", format_bytes(required_space), format_bytes(available_space)) raise BackupError("%s required but only %s available on %s" % \ (format_bytes(required_space), format_bytes(available_space), target_directory)) def purge_old_backups(backupset, backups_to_keep=1, exclude=()): assert backups_to_keep > 0 LOGGER.info("Purging old backups from backupset '%s'", backupset) backupset = spool.find_backupset(backupset) if not backupset: backups = [] else: backups = [bk for bk in backupset.list_backups(reverse=True) if bk not in exclude] # Make sure we keep holland:backup.backups-to-keep LOGGER.info("Found %d backups. Keeping %d", len(backups), backups_to_keep) purge_list = [] for backup in backups: if backup.config.get('holland:backup',{}).get('stop-time', 0) == 0: LOGGER.debug("Purging broken backup") purge_list.insert(0, backup) elif backups_to_keep == 0: LOGGER.debug("Purging old backup") purge_list.insert(0, backup) else: LOGGER.debug("Retaining backup %s", backup.name) backups_to_keep -= 1 if not purge_list: LOGGER.info("No backups to purge") else: for backup in purge_list: LOGGER.info("Purging %s", backup.name) backup.purge() def backup(backupset_name, dry_run=False, skip_purge=False): # May raise a ConfigError if not backupset is found LOGGER.info("Loading config for backupset %s", backupset_name) try: backupset_cfg = load_backupset_config(backupset_name) except IOError, e: LOGGER.error("Failed to load backupset %s: %s", backupset_name, e) raise BackupError("Aborting due to previous errors.") except SyntaxError, e: LOGGER.error("Failed to load backupset config %r [%s]. %s", backupset_name, e.config.filename, e ) LOGGER.error("Bad line appears to be '%s'", e.line) raise BackupError("Aborting due to previous errors.") # May raise a PluginError if the plugin could not be loaded LOGGER.info("Loading plugin %s", backupset_cfg.lookup('holland:backup.plugin')) try: plugincls = load_backup_plugin(backupset_cfg.lookup('holland:backup.plugin')) except PluginLoadError, e: LOGGER.error("Failed to load plugin %s: %s", backupset_cfg.lookup('holland:backup.plugin'), e) raise BackupError(e) # Possible IOError here if we cannot write to spool # Don't create the directory in dry-run mode backup_job = spool.add_backup(backupset_name) LOGGER.info("Prepared backup spool %s", backup_job.path) # Always merge in the backupset config to the backup-local config LOGGER.debug("Merging backupset config into local backup.conf config") backup_job.config.merge(backupset_cfg) backup_job.validate_config() # Plugin may fail to initialize due to programming error LOGGER.debug("Initializing backup plugin instance") try: plugin = plugincls(backupset_name, backup_job.config, backup_job.path, dry_run) except Exception, e: LOGGER.debug("Failed to instantiate backup plugin %s: %s", backupset_cfg.lookup('holland:backup.plugin'), e, exc_info=True) raise BackupError("Failed to initialize backup plugin %s: %s" % (backupset_cfg.lookup('holland:backup.plugin'), e)) # Plugin may raise exception due to programming error, be careful estimated_size = plugin.estimate_backup_size() estimate_factor = backup_job.config['holland:backup']['estimated-size-factor'] adjusted_estimate = estimate_factor*estimated_size LOGGER.info("Estimated Backup Size: %s", format_bytes(estimated_size) ) if adjusted_estimate != estimated_size: LOGGER.info("Using estimated-size-factor=%.2f and adjusting estimate to %s", estimate_factor, format_bytes(adjusted_estimate) ) # Save the estimated size in the backup.conf backup_job.config['holland:backup']['estimated-size'] = estimated_size try: verify_space(adjusted_estimate, backup_job.path) except BackupError, exc: if not dry_run: raise if not dry_run: LOGGER.info("Purging old backup jobs") purge_old_backups(backupset_name, backup_job.config.lookup('holland:backup.backups-to-keep'), exclude=[backup_job]) # Start backup backup_job.config['holland:backup']['start-time'] = time.time() # initialize spool directory if not dry_run: backup_job.prepare() exc = None try: LOGGER.info("Starting backup[%s] via plugin %s", backup_job.name, backupset_cfg.lookup('holland:backup.plugin')) plugin.backup() except KeyboardInterrupt: exc = BackupError("Interrupted") except Exception, exc: if not isinstance(exc, BackupError): LOGGER.debug("Unexpected exception when running backups.", exc_info=True) exc = BackupError(exc) backup_job.config['holland:backup']['stop-time'] = time.time() backup_interval = (backup_job.config['holland:backup']['stop-time'] - backup_job.config['holland:backup']['start-time']) if dry_run: LOGGER.info("Dry-run completed in %s", format_interval(backup_interval)) else: LOGGER.info("Backup completed in %s", format_interval(backup_interval)) if not dry_run and exc is None: final_size = directory_size(backup_job.path) LOGGER.info("Final on-disk backup size: %s %.2f%% of estimated size %s", format_bytes(final_size), estimated_size and 100*(float(final_size)/estimated_size) or 0.0, format_bytes(estimated_size)) backup_job.config['holland:backup']['on-disk-size'] = final_size LOGGER.debug("Flushing backup job") backup_job.flush() if exc is not None: if backup_job.config['holland:backup']['auto-purge-failures'] is True: LOGGER.warning("Purging this backup (%s) due to failure", backup_job.name) backup_job.purge() raise ``` #### File: core/command/command.py ```python import os import sys import re import optparse import textwrap import logging from types import StringTypes from inspect import getargspec, getdoc import logging from holland.core.util.template import Template LOGGER = logging.getLogger(__name__) def option(*args, **kwargs): return optparse.make_option(*args, **kwargs) class StopOptionProcessing(Exception): pass class _OptionParserEx(optparse.OptionParser): def __init__(self, **kwargs): optparse.OptionParser.__init__(self, **kwargs) #self.remove_option('--help') def error(self, msg): raise optparse.OptParseError(msg) def exit(self, status=0, msg=None): if not status: raise StopOptionProcessing(msg) else: # TODO: don't lose status info here raise optparse.OptParseError(msg) option = optparse.make_option class Command(object): """Base Command class for implementing pluggable commmands. User commands typically inherit this class and implement an appropriate run(self, cmdname, opts, [args...]) and this parent class will discover the acceptable arguments based on the run() method signature """ name = None aliases = [ ] options = [ ] description = '' def __init__(self): help_fmt = optparse.IndentedHelpFormatter() self.optparser = _OptionParserEx(prog=self.name, add_help_option=False, formatter=help_fmt) self.optparser.add_option('--help', '-h', action='store_true', help='show this help message and exit') self.optparser.add_options(self.options) def format_cmd_options(self): """ Format the options this command supports Default behavior is to delegate to format_option_help() of the associated OptionParser instance for this command """ return self.optparser.format_option_help() def format_arg(self, arg): """ Format an individual argument this command supports """ return arg.replace('_', '-') def format_varargs(self, arg): """ Format how variable arguments (\*args) are displayed """ return '[%s...]' % self.format_arg(arg) def _check_argspec(self, args, varargs, varkw, defaults): for arg in args: if not isinstance(arg, StringTypes): raise AssertionError('Tuple arguments are not supported') if varkw: raise AssertionError('Keyword arguments are not supported') def format_cmd_args(self): """ Format all the arguments accepted by this command Defers to self.format_arg and self.format_varargs """ args, varargs, varkw, defaults = getargspec(self.run) self._check_argspec(args, varargs, varkw, defaults) args = args[3:] specs = [] if defaults: firstdefault = len(args) - len(defaults) for i in range(len(args)): spec = self.format_arg(args[i]) if defaults and i >= firstdefault: spec = '[' + spec + ']' specs.append(spec) if varargs is not None: specs.append(self.format_varargs(varargs)) return ' '.join(specs) def usage(self): """ Format this command's usage string """ tpl = Template("Usage: ${cmd_name} ${options}${cmd_args}") return tpl.safe_substitute(cmd_name=self.name, options=self.options and "[options] " or "", cmd_args=self.format_cmd_args()) def reformat_paragraphs(self, str): from textwrap import wrap paragraphs = [] buffer = '' for line in str.splitlines(): if not line and buffer: paragraphs.append("\n".join(wrap(buffer, 65))) buffer = '' else: buffer += line if buffer: paragraphs.append(buffer) return "\n\n".join(paragraphs) def help(self): """ Format this command's help output Default is to use the class' docstring as a template and interpolate the name, options and arguments """ usage_str = getdoc(self) or '' usage_str = self.reformat_paragraphs(usage_str) cmd_name = self.name cmd_opts = self.format_cmd_options() cmd_args = self.format_cmd_args() help_str = Template(usage_str).safe_substitute(cmd_name=cmd_name, cmd_option_list=cmd_opts, cmd_args=cmd_args, cmd_usage=self.usage() ).rstrip() return re.sub(r'\n\n+', r'\n\n', help_str) def parse_args(self, argv): """ Parse the options for this command """ self.optparser.prog = argv.pop(0) opts, args = self.optparser.parse_args(argv) return opts, args def dispatch(self, argv): """ Dispatch arguments to this command Parses the arguments through this command's option parser and delegates to self.run(\*args) """ run_args, run_varargs, run_varkw, run_defaults = getargspec(self.run) try: opts, args = self.parse_args(argv) except StopOptionProcessing, e: return 1 except optparse.OptParseError, e: print >>sys.stderr, self.usage() print print >>sys.stderr, "%s: error: %s" % (self.name, e) return 1 if opts.help: print self.help() return os.EX_USAGE cmd_name = self.optparser.prog if len(args) > len(run_args[3:]) and not run_varargs: print >>sys.stderr, "Error: %s only accepts %d arguments but %d were provided" % ( (self.name, len(run_args[3:]), len(args))) print self.help() return os.EX_USAGE num_req = len(run_defaults or []) or 0 if len(args) < len(run_args[3:-num_req or None]): print >>sys.stderr, "Failed: %s requires %d arguments required, %d provided" % (cmd_name,len(run_args[3:-num_req or None]), len(args)) print self.help() return os.EX_USAGE try: return self.run(self.optparser.prog, opts, *args) except KeyboardInterrupt: raise except Exception, e: LOGGER.error("Uncaught exception while running command '%s': %r", cmd_name, e, exc_info=True) return os.EX_SOFTWARE def run(self, cmd, opts, *args): """ This should be overridden by subclasses """ pass def __cmp__(self, other): """ Sort this commmand alphabetically """ # Useful for sorting a list of commands alphabetically return cmp(self.name, other.name) ``` #### File: core/command/__init__.py ```python import os import sys import logging from command import Command, option, StopOptionProcessing from holland.core.plugin import get_commands __all__ = [ 'Command', 'option', 'StopOptionProcessing', 'run' ] LOGGER = logging.getLogger(__name__) def run(args=None): if args is None: args = sys.argv[1:] # Run the requested command commands = get_commands() if not args: args = ['help'] command_name = args[0] if command_name not in commands: print >>sys.stderr, "No such command: %r" % command_name return os.EX_UNAVAILABLE else: cmdobj = commands[command_name]() try: return cmdobj.dispatch(args) except KeyboardInterrupt: LOGGER.info("Interrupt") return os.EX_SOFTWARE except Exception, e: LOGGER.debug("Command %r failed: %r", exc_info=True) print >>sys.stderr, "Command %r failed: %r" % (command_name, e) return os.EX_SOFTWARE ``` #### File: core/util/path.py ```python import os import sys import stat import time import logging LOG = logging.getLogger(__name__) def ensure_dir(dir_path): """ Ensure a directory path exists (by creating it if it doesn't). """ if not os.path.exists(dir_path): try: os.makedirs(dir_path) LOG.debug("created directory %s" % dir_path) return True except OSError, e: # FIX ME: Need error codes/etc so this will exit(<code>) or raise # an appropriate holland exception LOG.error("os.makedirs(%s): %s" % (dir_path, e)) raise return False def protected_path(path): """ Take a path, and if the file/dir exist pass back a protected path (suffixed). Returns: string = new file path Example: >>> mypath = '/tmp' >>> new_path = helpers.protected_path(mypath) >>> new_path '/tmp.0' """ log = logging.getLogger(__name__) safety = 0 safe_path = path while True: if os.path.exists(safe_path): safe_path = "%s.%s" % (path, safety) else: break safety = safety + 1 return safe_path def format_bytes(bytes, precision=2): """ Format an integer number of bytes to a human readable string. If bytes is negative, this method raises ArithmeticError """ import math if bytes < 0: raise ArithmeticError("Only Positive Integers Allowed") if bytes != 0: exponent = math.floor(math.log(bytes, 1024)) else: exponent = 0 return "%.*f%s" % ( precision, bytes / (1024 ** exponent), ['B','KB','MB','GB','TB','PB','EB','ZB','YB'][int(exponent)] ) def normpath(path): from os.path import normpath, abspath return abspath(normpath(path)) def relpath(path, start=os.curdir): """Return a relative version of a path""" if not path: raise ValueError("no path specified") start_list = [x for x in os.path.abspath(start).split(os.sep) if x] path_list = [x for x in os.path.abspath(path).split(os.sep) if x] # Work out how much of the filepath is shared by start and path. i = len(os.path.commonprefix([start_list, path_list])) rel_list = [os.pardir] * (len(start_list)-i) + path_list[i:] if not rel_list: return os.curdir return os.path.join(*rel_list) def getmount(path): """Return the mount point of a path :param path: path to find the mountpoint for :returns: str mounpoint path """ path = os.path.realpath(path) while path != os.path.sep: if os.path.ismount(path): return path path = os.path.abspath(os.path.join(path, os.pardir)) return path def disk_capacity(target_path): """Find the total capacity of the filesystem that target_path is on :returns: integer number of bytes """ path = getmount(target_path) info = os.statvfs(path) return info.f_frsize*info.f_blocks def disk_free(target_path): """ Find the amount of space free on a given path Path must exist. This method does not take into account quotas returns the size in bytes potentially available to a non privileged user """ path = getmount(target_path) info = os.statvfs(path) return info.f_frsize*info.f_bavail def directory_size(path): """ Find the size of all files in a directory, recursively Returns the size in bytes on success """ from os.path import join, getsize result = 0 for root, dirs, files in os.walk(path): for name in files: try: sz = getsize(join(root,name)) result = result + sz except OSError, exc: pass return result ``` #### File: mysqldump/mock/popen.py ```python from mocker import * def _debug_wait(*args, **kwargs): print "Waiting(args=%r, kwargs=%r)" % (args, kwargs) return 0 def mock_subprocess(mocker): popen = mocker.replace('subprocess.Popen') pid = popen(ARGS, KWARGS) mocker.count(min=0,max=None) pid.poll() mocker.count(min=0,max=None) mocker.result(0) pid.wait() mocker.count(min=0,max=None) mocker.result(0) foo = pid.returncode mocker.count(min=0,max=None) mocker.result(0) mock_subprocess_stdin(mocker, pid) mock_subprocess_stdout(mocker, pid) mock_subprocess_stderr(mocker, pid) def mock_subprocess_stdin(mocker, pid): # mock stdin, stdout, stderr as iterate file-like objects pid.stdin.write(ANY) mocker.count(min=0,max=None) mocker.call(lambda s: len(s)) pid.stdin.close() mocker.count(min=0,max=None) def mock_subprocess_stdout(mocker, pid): pid.stdout.read(ANY) mocker.count(min=0, max=None) mocker.result('') iter(pid.stdout) mocker.count(min=0, max=None) mocker.generate('') pid.stdout.fileno() mocker.count(min=0,max=None) mocker.result(-1) pid.stdout.close() mocker.count(min=0,max=None) mocker.result(-1) def mock_subprocess_stderr(mocker, pid): pid.stderr.read(ANY) mocker.count(min=0, max=None) mocker.result('') iter(pid.stderr) mocker.count(min=0, max=None) mocker.generate('') pid.stderr.fileno() mocker.count(min=0,max=None) mocker.result(-1) ``` #### File: mysqldump/mysql/option.py ```python import os import re import codecs import logging from holland.backup.mysqldump.util import INIConfig, BasicConfig from holland.backup.mysqldump.util.config import update_config from holland.backup.mysqldump.util.ini import ParsingError LOG = logging.getLogger(__name__) def merge_options(path, *defaults_files, **kwargs): defaults_config = INIConfig() defaults_config._new_namespace('client') for config in defaults_files: _my_config = load_options(config) update_config(defaults_config, _my_config) for key in ('user', 'password', 'socket', 'host', 'port'): if kwargs.get(key) is not None: defaults_config['client'][key] = kwargs[key] write_options(defaults_config, path) def load_options(filename): """Load mysql option file from filename""" filename = os.path.abspath(os.path.expanduser(filename)) cfg = INIConfig() try: cfg._readfp(open(filename, 'r')) except ParsingError, exc: LOG.debug("Skipping unparsable lines") for lineno, line in exc.errors: LOG.debug("Ignored line %d: %s", lineno, line.rstrip()) return client_sections(cfg) def unquote(value): """Remove quotes from a string.""" if len(value) > 1 and value[0] == '"' and value[-1] == '"': value = value[1:-1] # substitute meta characters per: # http://dev.mysql.com/doc/refman/5.0/en/option-files.html MYSQL_META = { 'b' : "\b", 't' : "\t", 'n' : "\n", 'r' : "\r", '\\': "\\", 's' : " ", '"' : '"', } return re.sub(r'\\(["btnr\\s])', lambda m: MYSQL_META[m.group(1)], value) def quote(value): """Added quotes around a value""" return '"' + value.replace('"', '\\"') + '"' def client_sections(config): """Create a copy of config with only valid client auth sections This includes [client], [mysql] and [mysqldump] with only options related to mysql authentication. """ clean_cfg = INIConfig() clean_cfg._new_namespace('client') valid_sections = ['client', 'mysql', 'holland'] for section in valid_sections: if section in config: clean_section = client_keys(config[section]) update_config(clean_cfg.client, clean_section) return clean_cfg def client_keys(config): """Create a copy of option_section with non-authentication options stripped out. Authentication options supported are: user, password, host, port, and socket """ clean_namespace = BasicConfig() update_config(clean_namespace, config) valid_keys = ['user', 'password', 'host', 'port', 'socket'] for key in config: if key not in valid_keys: del clean_namespace[key] else: clean_namespace[key] = unquote(config[key]) return clean_namespace def write_options(config, filename): quoted_config = INIConfig() update_config(quoted_config, config) for section in config: for key in config[section]: if '"' in config[section][key]: config[section][key] = quote(config[section][key]) if isinstance(filename, basestring): filename = codecs.open(filename, 'w', 'utf8') data = unicode(config) print >>filename, data filename.close() ``` #### File: tests/util/__init__.py ```python import unittest, doctest import test_ini import test_misc import test_fuzz import test_compat import test_unicode from holland.backup.mysqldump.util import config from holland.backup.mysqldump.util import ini class suite(unittest.TestSuite): def __init__(self): unittest.TestSuite.__init__(self, [ doctest.DocTestSuite(config), doctest.DocTestSuite(ini), test_ini.suite(), test_misc.suite(), test_fuzz.suite(), test_compat.suite(), test_unicode.suite(), ]) ``` #### File: holland/lib/compression.py ```python import os import logging import errno import subprocess import which import shlex from tempfile import TemporaryFile LOG = logging.getLogger(__name__) #: This is a simple table of method_name : (command, extension) #: mappings. COMPRESSION_METHODS = { 'gzip' : ('gzip', '.gz'), 'gzip-rsyncable' : ('gzip --rsyncable', '.gz'), 'pigz' : ('pigz', '.gz'), 'bzip2' : ('bzip2', '.bz2'), 'pbzip2': ('pbzip2', '.bz2'), 'lzop' : ('lzop', '.lzo'), 'lzma' : ('xz', '.xz'), 'gpg' : ('gpg -e --batch --no-tty', '.gpg'), } def lookup_compression(method): """ Looks up the passed compression method in supported COMPRESSION_METHODS and returns a tuple in the form of ('command_name', 'file_extension'). Arguments: method -- A string identifier of the compression method (i.e. 'gzip'). """ try: cmd, ext = COMPRESSION_METHODS[method] argv = shlex.split(cmd) try: return [which.which(argv[0])] + argv[1:], ext except which.WhichError, e: raise OSError("No command found for compression method '%s'" % method) except KeyError: raise OSError("Unsupported compression method '%s'" % method) class CompressionInput(object): """ Class to create a compressed file descriptor for reading. Functions like a standard file descriptor such as from open(). """ def __init__(self, path, mode, argv, bufsize=1024*1024): self.fileobj = open(path, 'r') self.pid = subprocess.Popen(argv + ['--decompress'], stdin=self.fileobj.fileno(), stdout=subprocess.PIPE, bufsize=bufsize) self.fd = self.pid.stdout.fileno() self.name = path self.closed = False def fileno(self): return self.fd def read(self, size): return os.read(self.fd, size) def next(self): return self.pid.stdout.next() def __iter__(self): return iter(self.pid.stdout) def close(self): import signal os.kill(self.pid.pid, signal.SIGTERM) self.fileobj.close() self.pid.stdout.close() self.pid.wait() self.closed = True class CompressionOutput(object): """ Class to create a compressed file descriptor for writing. Functions like a standard file descriptor such as from open(). """ def __init__(self, path, mode, argv, level, inline): self.argv = argv self.level = level self.inline = inline if not inline: self.fileobj = open(os.path.splitext(path)[0], mode) self.fd = self.fileobj.fileno() else: self.fileobj = open(path, 'w') if level: if "gpg" in argv[0]: argv += ['-z%d' % level] else: argv += ['-%d' % level] LOG.debug("* Executing: %s", subprocess.list2cmdline(argv)) self.stderr = TemporaryFile() self.pid = subprocess.Popen(argv, stdin=subprocess.PIPE, stdout=self.fileobj.fileno(), stderr=self.stderr) self.fd = self.pid.stdin.fileno() self.name = path self.closed = False def fileno(self): return self.fd def write(self, data): return os.write(self.fd, data) def close(self): self.closed = True if not self.inline: argv = list(self.argv) if self.level: if "gpg" in argv[0]: argv += ['-z%d' % self.level, '-'] else: argv += ['-%d' % self.level, '-'] self.fileobj.close() self.fileobj = open(self.fileobj.name, 'r') cmp_f = open(self.name, 'w') LOG.debug("Running %r < %r[%d] > %r[%d]", argv, self.fileobj.name, self.fileobj.fileno(), cmp_f.name, cmp_f.fileno()) pid = subprocess.Popen(args, stdin=self.fileobj.fileno(), stdout=cmp_f.fileno()) status = pid.wait() os.unlink(self.fileobj.name) else: self.pid.stdin.close() status = self.pid.wait() stderr = self.stderr stderr.flush() stderr.seek(0) try: if status != 0: for line in stderr: if not line.strip(): continue LOG.error("%s: %s", self.argv[0], line.rstrip()) raise IOError(errno.EPIPE, "Compression program '%s' exited with status %d" % (self.argv[0], status)) else: for line in stderr: if not line.strip(): continue LOG.info("%s: %s", self.argv[0], line.rstrip()) finally: stderr.close() def stream_info(path, method=None, level=None): """ Determine compression command, and compressed path based on original path and compression method. If method is not passed, or level is 0 the original path is returned. Arguments: path -- Path to file to compress/decompress method -- Compression method (i.e. 'gzip', 'bzip2', 'pbzip2', 'lzop') level -- Compression level (0-9) """ if not method or level == 0: return path argv, ext = lookup_compression(method) if not argv: raise IOError("Unknown compression method '%s'" % argv[0]) if not path.endswith(ext): path += ext return argv, path def _parse_args(value): """Convert a cmdline string to a list""" if isinstance(value, unicode): value = value.encode('utf8') return shlex.split(value) def open_stream(path, mode, method=None, level=None, inline=True, extra_args=None): """ Opens a compressed data stream, and returns a file descriptor type object that acts much like os.open() does. If no method is passed, or the compression level is 0, simply returns a file descriptor from open(). Arguments: mode -- File access mode (i.e. 'r' or 'w') method -- Compression method (i.e. 'gzip', 'bzip2', 'pbzip2', 'lzop') level -- Compression level inline -- Boolean whether to compress inline, or after the file is written. """ if not method or method == 'none' or level == 0: return open(path, mode) else: argv, path = stream_info(path, method) if extra_args: argv += _parse_args(extra_args) if mode == 'r': return CompressionInput(path, mode, argv=argv) elif mode == 'w': return CompressionOutput(path, mode, argv=argv, level=level, inline=inline) else: raise IOError("invalid mode: %s" % mode) ``` #### File: holland.lib.common/tests/test_archive.py ```python import os import shutil import tempfile from nose.tools import * from holland.lib.archive import * def setup_func(): global tmpdir tmpdir = tempfile.mkdtemp() def teardown_func(): global tmpdir shutil.rmtree(tmpdir) @with_setup(setup_func, teardown_func) def test_dir_archive(): global tmpdir axv = DirArchive(os.path.join(tmpdir, 'dir')) name_list = [] for num in xrange(1, 16): fd, filename = tempfile.mkstemp(dir=tmpdir) os.close(fd) basename = os.path.basename(filename) axv.add_file(filename, basename) name_list.append(basename) for name in axv.list(): ok_(name in name_list) @with_setup(setup_func, teardown_func) def test_tar_archive(): global tmpdir axv = TarArchive(os.path.join(tmpdir, 'tar')) name_list = [] for num in xrange(1, 16): fd, filename = tempfile.mkstemp(dir=tmpdir) os.close(fd) basename = os.path.basename(filename) axv.add_file(filename, basename) name_list.append(basename) for name in axv.list(): ok_(name in name_list) @with_setup(setup_func, teardown_func) def test_zip_archive(): global tmpdir axv = ZipArchive(os.path.join(tmpdir, 'zip')) name_list = [] for num in xrange(1, 16): fd, filename = tempfile.mkstemp(dir=tmpdir) os.close(fd) basename = os.path.basename(filename) axv.add_file(filename, basename) name_list.append(basename) for name in axv.list(): ok_(name in name_list) ``` #### File: holland/tests/deprecrated_test_sysutils_helper.py ```python import sys, os import platform import unittest import tempfile import string import random import logging import logging.handlers as handlers import md5 from shutil import rmtree # FIXME: This used to test holland.helpers which was # a collection of utility methods. These have # since been forked off into various plugins # or merged into holland.core.util. This # should be updated to test holland.core.util # and any other tests added to the appropriate # plugin egg's test suite. #class TestSysUtilsHelper(unittest.TestCase): # hack: disabling test until I fix # many of these functions have been shuffled around # into individual plugins and need merged into those # test cases class Test(object): """ A test class for testing the sysutils helper """ def setUp(self): self.log = logging.getLogger('holland') file = logging.FileHandler(filename='/dev/null') self.log.addHandler(file) def test_ensure_dir(self): # No arguments self.assertRaises(TypeError, h.ensure_dir); # Directory that already exists self.assertEqual(h.ensure_dir('/tmp'), True) # File that already exists self.assertEqual(h.ensure_dir('/dev/null'), True) # Directory that does not exist self.assertEqual(h.ensure_dir('/tmp/testdir'), True) # Directory that cannot be created self.assertRaises(OSError, h.ensure_dir, '/dev/null/dir') # Cleanup os.rmdir('/tmp/testdir') def test_protected_path(self): # file fd,file_path = tempfile.mkstemp(prefix='holland-test-') safe_path = h.protected_path(file_path) expected_path = "%s.0" % file_path self.assertEquals(safe_path == expected_path, True) # dir dir_path = tempfile.mkdtemp(prefix='holland-test-') safe_path = h.protected_path(dir_path) expected_path = "%s.0" % dir_path self.assertEquals(safe_path == expected_path, True) # clean up os.remove(file_path) rmtree(dir_path) def test_get_compression_stream(self): for c_mode in ['gzip', 'bzip2']: fd,file_path = tempfile.mkstemp(prefix='holland-test-') dir_path = tempfile.mkdtemp(prefix='holland-test-dir') file_path = os.path.realpath(file_path) os.remove(file_path) dir_path = os.path.realpath(dir_path) data = '' for i in xrange(1024**2): data = data + random.choice(string.letters) stream = h.get_compression_stream(output_path=file_path, mode=c_mode) stream.write(data) stream.close() new_file_path = h.decompress_path( source_path=file_path, dest_dir=dir_path, mode=c_mode ) f = open(new_file_path, 'r') a = md5.new(f.read()).digest() b = md5.new(data).digest() self.assertEqual(a == b, True) f.close() # clean up os.remove(new_file_path) rmtree(dir_path) def test_compress_path(self): # Test to see if a file can be gzipped and ungzipped # (and it returns the same md5sum) fd,file_path = tempfile.mkstemp(prefix='holland-test-') dir_path = tempfile.mkdtemp(prefix='holland-test-dir') file_path = os.path.realpath(file_path) dir_path = os.path.realpath(dir_path) # Create and compress the file handle = os.fdopen(fd, 'w') for i in xrange(1024**2): handle.write(random.choice(string.letters)) handle.close() comp_path = h.compress_path( source_path = file_path, dest_dir = dir_path, remove_source = False, mode = 'gzip' ) self.assertEqual(comp_path != None, True) # Uncompress the file and compare to original uncomp_path = h.decompress_path( source_path = comp_path, dest_dir = dir_path, remove_source = False, mode = 'gzip' ) self.assertEqual(uncomp_path != None, True) original_file = file(file_path) uncompressed_file = file(uncomp_path) a = md5.new(original_file.read()).digest() b = md5.new(uncompressed_file.read()).digest() self.assertEqual(a == b, True) # Platform-specific tests # FIX ME: # Tests are incomplete and have not been tested on Linux platform def test_mount_info(self): self.assertRaises(TypeError, h.mount_info) if platform.system() != 'Linux': print "Skipping Test For This Platform (%s)" % platform.system() return False def test_which(self): # No arguments given self.assertRaises(TypeError, h.which) if platform.system() == 'Windows': print "Skipping Test For This Platform (%s)" % platform.system() return False # Common utility test self.assertEqual(h.which('ls'), '/bin/ls') # Not found test self.assertRaises(OSError, h.which, 'notacommand') # FIX ME: Incomplete Test def test_relpath(self): # No arguments given self.assertRaises(TypeError, h.relpath) if platform.system() == 'Windows': print "Skipping Test For This Platform (%s)" % platform.system() return False # Same Path self.assertEqual(h.relpath('test', 'test'), '') # Empty Path self.assertEqual(h.relpath('', ''), '') # Sub-Path self.assertEqual(h.relpath('/tmp/test', '/test'), None) # End of platform-specific tests def test_format_bytes(self): # No arguments given self.assertRaises(TypeError, h.format_bytes) # 0 bytes self.assertEqual(h.format_bytes(0), '0.00B') # 1b self.assertEqual(h.format_bytes(1), '1.00B') # 1KiB self.assertEqual(h.format_bytes(1024), '1.00KiB') # Remaing test for other units. # Note the + 2 since we ran the '1b' and '1KiB' tests above # and these were taken from the array in the original function units = ['MiB','GiB','TiB','PiB','EiB','ZiB','YiB'] for unit in units: power = units.index(unit) + 2 self.assertEqual(h.format_bytes(1024**power), '1.00' + unit) # Negative Bytes self.assertRaises(ArithmeticError, h.format_bytes, -1); def tearDown(self): pass def suite(): suite = unittest.TestSuite() suite.addTest(unittest.makeSuite(TestSysUtilsHelper)) return suite if __name__ == '__main__': unittest.main() unittest.TextTestRunner(verbosity=3).run(suite()) ```
{ "source": "jkoelker/investing", "score": 3 }
#### File: picloud/magicformula/predictng.py ```python import argparse import sys import eoddata import numpy as np import pandas as pd import twitter EXCLUDED_SECTORS = ('Finance - Savings and Loans', 'Closed-End Investment Bond Funds', 'Banks and Finance') EXCLUDED_INDUSTRIES = ('Power Generation', # Utilites 'Electric Utilities: Central', 'Savings Institutions', # Finantial 'Accident &Health Insurance', 'Finance Companies', 'Finance/Investors Services', 'Commercial Banks', 'Closed-End Fund - Foreign', 'Closed-End Fund - Equity', 'Water Supply', 'Finance: Consumer Services', 'Major Banks', 'Investment Bankers/Brokers/Service', 'Diversified Financial Services', 'Savings & Loans', 'Credit Services', 'Diversified Investments', 'Financial Services', 'Banks', 'Regional - Pacific Banks', 'Regional - Mid-Atlantic Banks', 'Real Estate Investment Trusts', 'Investment Managers', 'Life Insurance', 'Property-Casualty Insurers', 'Closed-End Fund - Debt', 'Specialty Insurers', 'Oil & Gas Production', # Oil and gass 'Integrated oil Companies', 'Oil Refining/Marketing', 'Oil/Gas Transmission', 'Oilfield Services/Equipment', 'Independent Oil & Gas', 'Natural Gas Distribution') def publish_to_twitter(df, prefix='MF', api=None, **kwargs): if api is None: api = twitter.Api(**kwargs) msg = ' '.join(['$%s' % s for s in df.T.index]) msg = '%s: %s' % (prefix, msg) if len(msg) > 140: return publish_to_twitter(df[:-1], prefix, api, **kwargs) return api.PostUpdate(msg) def rank_stocks(df): df['roc_rank'] = df['roc'].rank(method='max', ascending=0) df['yield_rank'] = df['yield'].rank(method='max', ascending=0) df['pe_rank'] = df['pe'].rank(method='min', ascending=1) return df.sort_index(by=['pe_rank', 'roc_rank'], ascending=[1, 1]) def get_stocks(eod_kwargs): client = eoddata.Client(**eod_kwargs) fundamentals = {} for exchange in ('NYSE', 'NASDAQ'): fundamentals.update(client.fundamentals(exchange)) df = pd.DataFrame(fundamentals).T for col in ('market_cap', 'pt_b', 'ebitda', 'pe', 'yield'): df[col] = df[col].astype(np.float64) df = df[df['market_cap'] >= 50000000] df = df[df['pe'] > 5] df = df[df['pe'] < 25] df = df[df['yield'] > 6] df = df[df['sector'].map(lambda x: x not in EXCLUDED_SECTORS)] df = df[df['industry'].map(lambda x: x not in EXCLUDED_INDUSTRIES)] df = df[df['description'].map(lambda x: 'energy' not in x.lower())] df = df[df['description'].map(lambda x: 'financ' not in x.lower())] df = df[df['description'].map(lambda x: 'invest' not in x.lower())] df = df[df['description'].map(lambda x: 'bank' not in x.lower())] df = df[df['description'].map(lambda x: 'banc' not in x.lower())] df = df[df['description'].map(lambda x: 'equity' not in x.lower())] df = df[df['description'].map(lambda x: not x.lower().endswith(' ads'))] df = df[df['description'].map(lambda x: not x.lower().endswith(' adr'))] df = df[df['description'].map(lambda x: not x.lower().endswith(' s.a.'))] df['assets'] = df['market_cap'] / df['pt_b'] df['roc'] = df['ebitda'] / df['assets'] df = df[df['roc'] > 0] return df def predict(num_stocks, eod_kwargs, twitter_kwargs): stocks = get_stocks(eod_kwargs) rank = rank_stocks(stocks) return publish_to_twitter(rank[:num_stocks].T, **twitter_kwargs) def main(): description = 'Run MagicFormula Prediction' parser = argparse.ArgumentParser(description=description) parser.add_argument('-k', '--consumer-key', required=True, help='Twitter application consumer key') parser.add_argument('-s', '--consumer-secret', required=True, help='Twitter application consumer secret') parser.add_argument('-K', '--access-token-key', required=True, help='Twitter User access token key') parser.add_argument('-S', '--access-token-secret', required=True, help='Twitter User access token secret') parser.add_argument('-n', '--num_stocks', default=15, type=int, help='Number of stocks to publish') parser.add_argument('-u', '--user', required=True, help='EOD Data User') parser.add_argument('-p', '--password', required=True, help='EOD Data password') args = parser.parse_args() eod_kwargs = {'username': args.user, 'password': args.password} twitter_kwargs = {'consumer_key': args.consumer_key, 'consumer_secret': args.consumer_secret, 'access_token_key': args.access_token_key, 'access_token_secret': args.access_token_secret} if predict(args.num_stocks, eod_kwargs, twitter_kwargs): return 0 return 1 if __name__ == '__main__': sys.exit(main()) ```
{ "source": "jkoelker/powerlinex-segment-weechat-remote", "score": 3 }
#### File: jkoelker/powerlinex-segment-weechat-remote/hotlist2jsonfile.py ```python import json import os import weechat SCRIPT_NAME = 'hotlist2jsonfile' SCRIPT_AUTHOR = '<NAME>' SCRIPT_VERSION = '0.0.1' SCRIPT_LICENSE = 'GPL' SCRIPT_DESC = 'hotlist2jsonfile: writeout the hotlist to a file as json' SETTINGS = {'output_file': '%h/hotlist.json'} def write_file(data): filename = weechat.config_get_plugin('output_file') if not filename: return weechat_dir = weechat.info_get('weechat_dir', '') filename = os.path.expanduser(filename.replace('%h', weechat_dir)) with open(filename, 'w') as f: f.write(json.dumps(data)) def hotlist_changed(data, signal, signal_data): hotlist = weechat.infolist_get('hotlist', '', '') data = [] while weechat.infolist_next(hotlist): priority = weechat.infolist_integer(hotlist, 'priority') plugin_name = weechat.infolist_string(hotlist, 'plugin_name') buffer_name = weechat.infolist_string(hotlist, 'buffer_name') buffer_number = weechat.infolist_integer(hotlist, 'buffer_number') low_messages = weechat.infolist_integer(hotlist, 'count_00') channel_messages = weechat.infolist_integer(hotlist, 'count_01') private_messages = weechat.infolist_integer(hotlist, 'count_02') highlight_messages = weechat.infolist_integer(hotlist, 'count_03') buffer_pointer = weechat.infolist_pointer(hotlist, 'buffer_pointer') short_name = weechat.buffer_get_string(buffer_pointer, 'short_name') data.append({'priority': priority, 'plugin_name': plugin_name, 'buffer_name': buffer_name, 'buffer_number': buffer_number, 'low_messages': low_messages, 'channel_messages': channel_messages, 'private_messages': private_messages, 'highlight_messages': highlight_messages, 0: low_messages, 1: channel_messages, 2: private_messages, 3: highlight_messages, 'short_name': short_name}) weechat.infolist_free(hotlist) write_file({'hotlist': data}) return weechat.WEECHAT_RC_OK if __name__ == '__main__': if weechat.register(SCRIPT_NAME, SCRIPT_AUTHOR, SCRIPT_VERSION, SCRIPT_LICENSE, SCRIPT_DESC, '', ''): for opt, val in SETTINGS.iteritems(): if not weechat.config_is_set_plugin(opt): weechat.config_set_plugin(opt, val) weechat.hook_signal('hotlist_changed', 'hotlist_changed', '') # vim:set shiftwidth=4 tabstop=4 softtabstop=4 expandtab textwidth=80: ```
{ "source": "jkoelker/python-tradeking", "score": 2 }
#### File: python-tradeking/tradeking/api.py ```python import urllib.parse import requests_oauthlib as roauth import pandas as pd from tradeking import utils BASE_URL = 'https://api.tradeking.com/v1' _DATE_KEYS = ('date', 'datetime', 'divexdate', 'divpaydt', 'timestamp', 'pr_date', 'wk52hidate', 'wk52lodate', 'xdate') _FLOAT_KEYS = ('ask', 'bid', 'chg', 'cl', 'div', 'dollar_value', 'eps', 'hi', 'iad', 'idelta', 'igamma', 'imp_volatility', 'irho', 'itheta', 'ivega', 'last', 'lo', 'opn', 'opt_val', 'pchg', 'pcls', 'pe', 'phi', 'plo', 'popn', 'pr_adp_100', 'pr_adp_200', 'pr_adp_50', 'prbook', 'prchg', 'strikeprice', 'volatility12', 'vwap', 'wk52hi', 'wk52lo', 'yield') _INT_KEYS = ('asksz', 'basis', 'bidsz', 'bidtick', 'days_to_expiration', 'incr_vl', 'openinterest', 'pr_openinterest', 'prem_mult', 'pvol', 'sho', 'tr_num', 'vl', 'xday', 'xmonth', 'xyear') def _quotes_to_df(quotes): if not isinstance(quotes, list): quotes = [quotes] df = pd.DataFrame.from_records(quotes, index='symbol') for col in df.keys().intersection(_DATE_KEYS): kwargs = {} if col == 'timestamp': kwargs['unit'] = 's' try: df[col] = pd.to_datetime(df[col], **kwargs) except ValueError: pass for col in df.keys().intersection(_INT_KEYS): cleaned = df[col].str.replace(r'[$,%]', '') df[col] = cleaned.astype('int', errors='ignore') for col in df.keys().intersection(_FLOAT_KEYS): cleaned = df[col].str.replace(r'[$,%]', '') df[col] = cleaned.astype('float', errors='ignore') return df # TODO(jkoelker) Would be nice to do a proper DSL class OptionQuery(object): FIELDS = ('strikeprice', 'xdate', 'xmonth', 'xyear', 'put_call', 'unique') OPS = {'<': 'lt', 'lt': 'lt', '>': 'gt', 'gt': 'gt', '>=': 'gte', 'gte': 'gte', '<=': 'lte', 'lte': 'lte', '=': 'eq', '==': 'eq', 'eq': 'eq'} def __init__(self, query): if isinstance(query, str): query = [query] self._query = [] for part in query: field, op, value = part.split() field = field.lower() if field not in self.FIELDS or op not in self.OPS: continue if field == 'xdate': value = pd.to_datetime(value).strftime('%Y%m%d') self._query.append((field, self.OPS[op], value)) def __str__(self): return ' AND '.join(['%s-%s:%s' % (field, op, value) for field, op, value in self._query]) class API(object): def __init__(self, consumer_key, consumer_secret, oauth_token, oauth_secret): self._api = roauth.OAuth1Session(client_key=consumer_key, client_secret=consumer_secret, resource_owner_key=oauth_token, resource_owner_secret=oauth_secret) def join(self, *paths, **kwargs): if len(paths) == 1: paths = paths[0] if kwargs.get('clean', True): paths = [p.rstrip('/') for p in paths] return '/'.join(paths) def request(self, method, url, format='json', decode=True, **kwargs): if format: url = '.'.join((url, format)) r = self._api.request(method, url, **kwargs) if decode: r = r.json() return r def get(self, url, format='json', decode=True, **kwargs): return self.request('GET', url=url, format=format, decode=decode, **kwargs) def post(self, url, format='json', decode=True, **kwargs): return self.request('POST', url=url, format=format, decode=decode, **kwargs) class Account(object): def __init__(self, api, account_id): self._api = api self.account_id = account_id def _get(self, what=None, **kwargs): params = [BASE_URL, 'accounts', self.account_id] if what is not None: params.append(what) path = self._api.join(params) return self._api.get(path, **kwargs) def _balances(self, **kwargs): return self._get('balances', **kwargs) def _history(self, date_range='all', transactions='all', **kwargs): params = {'range': date_range, 'transactions': transactions} return self._get('history', params=params, **kwargs) def _holdings(self, **kwargs): return self._get('holdings', **kwargs) def _orders(self, **kwargs): return self._get('orders', **kwargs) @property def balances(self): r = self._balances() return r['response']['accountbalance'] def history(self, date_range='all', transactions='all'): r = self._history(date_range=date_range, transactions=transactions) return r['response']['transactions']['transaction'] @property def holdings(self): r = self._holdings() return r['response']['accountholdings']['holding'] # TODO(jkoelker) def order(self, order, preview=True): pass @property def orders(self): r = self._orders() return r['response']['orderstatus'] class News(object): def __init__(self, api): self._api = api def _article(self, article_id, **kwargs): path = self._api.join(BASE_URL, 'market', 'news', article_id) return self._api.get(path, **kwargs) def _search(self, keywords=None, symbols=None, maxhits=None, startdate=None, enddate=None, **kwargs): if not keywords and not symbols: raise ValueError('Either keywords or symbols are required') data = {} if keywords: if isinstance(keywords, str): keywords = [keywords] data['keywords'] = ','.join(keywords) if symbols: if isinstance(symbols, str): symbols = [symbols] data['symbols'] = ','.join(symbols) if maxhits: data['maxhits'] = maxhits # TODO(jkoelker) calculate enddate to be now() if (not startdate and enddate) or (not enddate and startdate): raise ValueError('Both startdate and endate are required if one ' 'is specified') if startdate and enddate: data['startdate'] = startdate data['enddate'] = enddate path = self._api.join(BASE_URL, 'market', 'news', 'search') return self._api.post(path, data=data, **kwargs) def article(self, article_id): r = self._article(article_id=article_id) return r['response']['article'] def search(self, keywords=None, symbols=None, maxhits=None, startdate=None, enddate=None): r = self._search(keywords=keywords, symbols=symbols, maxhits=maxhits, startdate=startdate, enddate=enddate) return r['response']['articles']['article'] class Options(object): def __init__(self, api, market): self._api = api self._market = market symbol = staticmethod(utils.option_symbol) symbols = staticmethod(utils.option_symbols) decode = staticmethod(utils.parse_option_symbol) def _expirations(self, symbol, **kwargs): params = {'symbol': symbol} path = self._api.join(BASE_URL, 'market', 'options', 'expirations') return self._api.get(path, params=params, **kwargs) def _search(self, symbol, query, fields=None, query_is_prepared=False, **kwargs): if not isinstance(query, OptionQuery) and not query_is_prepared: query = OptionQuery(query) data = {'symbol': symbol, 'query': query} if fields is not None: data['fids'] = ','.join(fields) path = self._api.join(BASE_URL, 'market', 'options', 'search') return self._api.post(path, data=data, **kwargs) def _strikes(self, symbol, **kwargs): params = {'symbol': symbol} path = self._api.join(BASE_URL, 'market', 'options', 'strikes') return self._api.get(path, params=params, **kwargs) def expirations(self, symbol): r = self._expirations(symbol=symbol) expirations = r['response']['expirationdates']['date'] return pd.to_datetime(pd.Series(expirations)) def search(self, symbol, query, fields=None): r = self._search(symbol=symbol, query=query, fields=fields) return _quotes_to_df(r['response']['quotes']['quote']) def strikes(self, symbol): r = self._strikes(symbol=symbol) strikes = r['response']['prices']['price'] return pd.Series(strikes, dtype=float) def quote(self, symbol, strikes=None, expirations=None, calls=True, puts=True, fields=None): if strikes is None: strikes = self.strikes(symbol) if expirations is None: expirations = self.expirations(symbol) symbols = utils.option_symbols(symbol, expirations, strikes, calls, puts) return self._market.quotes(symbols=symbols, fields=fields) class Market(object): def __init__(self, api): self._api = api self.news = News(self._api) self.options = Options(self._api, self) def _clock(self, **kwargs): path = self._api.join(BASE_URL, 'market', 'clock') return self._api.get(path, **kwargs) def _quotes(self, symbols, fields=None, **kwargs): if isinstance(symbols, (list, tuple)): symbols = ','.join(symbols) params = {'symbols': symbols} if fields is not None: params['fids'] = ','.join(fields) path = self._api.join(BASE_URL, 'market', 'ext', 'quotes') return self._api.post(path, data=params, **kwargs) def _toplist(self, list_type='toppctgainers', **kwargs): path = self._api.join(BASE_URL, 'market', 'toplists', list_type) return self._api.get(path, **kwargs) @property def clock(self): r = self._clock() r = r['response'] del r['@id'] return r def quotes(self, symbols, fields=None): r = self._quotes(symbols=symbols, fields=fields) return _quotes_to_df(r['response']['quotes']['quote']) def toplist(self, list_type='toppctgainers'): r = self._toplist(list_type=list_type) return _quotes_to_df(r['response']['quotes']['quote']) # TODO(jkoelker) market/timesales # TODO(jkoelker) market/quotes (iterator) class TradeKing(object): def __init__(self, consumer_key, consumer_secret, oauth_token, oauth_secret): self._api = API(consumer_key=consumer_key, consumer_secret=consumer_secret, oauth_token=oauth_token, oauth_secret=oauth_secret) self.market = Market(self._api) def _accounts(self, **kwargs): path = urllib.parse.urljoin(BASE_URL, 'accounts') return self._api.get(path, **kwargs) def account(self, account_id): return Account(self._api, account_id) # TODO(jkoelker) member/profile # TODO(jkoelker) utility/status # TODO(jkoelker) utility/version # TODO(jkoelker) utility/version # TODO(jkoelker) watchlists ``` #### File: python-tradeking/tradeking/orders.py ```python import functools from lxml import etree BUY_TO_COVER = '5' OPTION_CALL = 'OC' OPTION_PUT = 'OP' OPEN = 'O' CLOSE = 'C' STOCK = 'CS' OPTION = 'OPT' BUY = '1' SELL = '2' SELL_SHORT = '5' DAY = '0' GTC = '1' MOC = '2' MARKET = '1' LIMIT = '2' STOP = '3' STOP_LIMIT = '4' TRAILING_STOP = 'P' PRICE = '0' BASIS = '1' def Order(account, security_type, security, quantity, time_in_force=GTC, order_type=MARKET, side=BUY, trailing_stop_offset=None, trailing_stop_offset_type=PRICE, trailing_stop_peg_type='1'): fixml = etree.Element("FIXML", xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2") order = etree.Element("Order", TmInForce=str(time_in_force), Typ=str(order_type), Side=str(side), Acct=str(account)) instrument = etree.Element("Instrmt", SecTyp=str(security_type), Sym=str(security)) order_quantity = etree.Element("OrdQty", Qty=str(quantity)) if trailing_stop_offset is not None: order.set('ExecInst' 'a') peg_instruction = etree.Element('PegInstr', OfstTyp=str(trailing_stop_offset_type), PegPxType=str(trailing_stop_peg_type), OfstVal=str(trailing_stop_offset)) order.append(peg_instruction) order.append(instrument) order.append(order_quantity) fixml.append(order) return fixml Buy = functools.partial(Order, side=BUY) Sell = functools.partial(Order, side=SELL) Short = functools.partial(Order, side=SELL_SHORT) #<FIXML xmlns="http://www.fixprotocol.org/FIXML-5-0-SP2"> # <Order TmInForce="0" Typ="1" Side="1" Acct="12345678"> # <Instrmt SecTyp="CS" Sym="F"/> # <OrdQty Qty="1"/> # </Order> #</FIXML> ``` #### File: python-tradeking/tradeking/utils.py ```python import itertools import time import pandas as pd CALL = 'C' PUT = 'P' LONG = 'L' SHORT = 'S' class Price(int): BASE = 1000.0 def __new__(cls, value=0): return int.__new__(cls, cls.encode(value)) def __str__(self): return self.__repr__() def __repr__(self): return self._decode().__repr__() @classmethod def encode(cls, value): return int(value * cls.BASE) @classmethod def decode(cls, value): return float(value) / cls.BASE def _decode(self): return self.decode(self.real) def option_symbol(underlying, expiration, call_put, strike): '''Format an option symbol from its component parts.''' call_put = call_put.upper() if call_put not in (CALL, PUT): raise ValueError("call_put value not one of ('%s', '%s'): %s" % (CALL, PUT, call_put)) expiration = pd.to_datetime(expiration).strftime('%y%m%d') strike = str(Price.encode(strike)).rstrip('L') strike = ('0' * (8 - len(strike))) + strike return '%s%s%s%s' % (underlying, expiration, call_put, strike) def option_symbols(underlying, expirations, strikes, calls=True, puts=True): '''Generate a list of option symbols for expirations and strikes.''' if not calls and not puts: raise ValueError('Either calls or puts must be true') call_put = '' if calls: call_put = call_put + CALL if puts: call_put = call_put + PUT return [option_symbol(*args) for args in itertools.product([underlying], expirations, call_put, strikes)] def parse_option_symbol(symbol): ''' Parse an option symbol into its component parts. returns (Underlying, Expiration, C/P, strike) ''' strike = Price.decode(symbol[-8:]) call_put = symbol[-9:-8].upper() expiration = pd.to_datetime(symbol[-15:-9]) underlying = symbol[:-15].upper() return underlying, expiration, call_put, strike # # © 2011 <NAME>, MIT License # class cached_property(object): ''' Decorator for read-only properties evaluated only once within TTL period. It can be used to created a cached property like this:: import random # the class containing the property must be a new-style class class MyClass(object): # create property whose value is cached for ten minutes @cached_property(ttl=600) def randint(self): # will only be evaluated every 10 min. at maximum. return random.randint(0, 100) The value is cached in the '_cache' attribute of the object instance that has the property getter method wrapped by this decorator. The '_cache' attribute value is a dictionary which has a key for every property of the object which is wrapped by this decorator. Each entry in the cache is created only when the property is accessed for the first time and is a two-element tuple with the last computed property value and the last time it was updated in seconds since the epoch. The default time-to-live (TTL) is 300 seconds (5 minutes). Set the TTL to zero for the cached value to never expire. To expire a cached property value manually just do:: del instance._cache[<property name>] ''' def __init__(self, ttl=300): self.ttl = ttl def __call__(self, fget, doc=None): self.fget = fget self.__doc__ = doc or fget.__doc__ self.__name__ = fget.__name__ self.__module__ = fget.__module__ return self def __get__(self, inst, owner): now = time.time() try: value, last_update = inst._cache[self.__name__] if self.ttl > 0 and now - last_update > self.ttl: raise AttributeError except (KeyError, AttributeError): value = self.fget(inst) try: cache = inst._cache except AttributeError: cache = inst._cache = {} cache[self.__name__] = (value, now) return value ```
{ "source": "jkoelker/quark", "score": 2 }
#### File: quark/api/auth.py ```python import webob.dec import webob.exc from neutron import context from neutron.openstack.common import log as logging from neutron import wsgi LOG = logging.getLogger(__name__) class NoAuthMiddleware(wsgi.Middleware): """Return a fake token if one isn't specified.""" @webob.dec.wsgify(RequestClass=wsgi.Request) def __call__(self, req): if 'X-Auth-Token' not in req.headers: user_id = req.headers.get('X-Auth-User', 'admin') project_id = req.headers.get('X-Auth-Project-Id', 'admin') res = webob.Response() res.headers['X-Auth-Token'] = '%s:%s' % (user_id, project_id) res.content_type = 'text/plain' res.status = '204' return res token = req.headers['X-Auth-Token'] user_id, _sep, project_id = token.partition(':') project_id = project_id or user_id ctx = context.Context(user_id, project_id, is_admin=True) req.environ['neutron.context'] = ctx return self.application ``` #### File: quark/db/api.py ```python import datetime import inspect from neutron.openstack.common import log as logging from neutron.openstack.common import timeutils from neutron.openstack.common import uuidutils from sqlalchemy import event from sqlalchemy import func as sql_func from sqlalchemy import and_, orm, or_ from quark.db import models from quark import network_strategy STRATEGY = network_strategy.STRATEGY LOG = logging.getLogger(__name__) ONE = "one" ALL = "all" # NOTE(jkoelker) init event listener that will ensure id is filled in # on object creation (prior to commit). def _perhaps_generate_id(target, args, kwargs): if hasattr(target, 'id') and target.id is None: target.id = uuidutils.generate_uuid() # NOTE(jkoelker) Register the event on all models that have ids for _name, klass in inspect.getmembers(models, inspect.isclass): if klass is models.HasId: continue if models.HasId in klass.mro(): event.listen(klass, "init", _perhaps_generate_id) def _listify(filters): for key in ["name", "network_id", "id", "device_id", "tenant_id", "mac_address", "shared", "version"]: if key in filters: if not filters[key]: continue listified = filters[key] if not isinstance(listified, list): listified = [listified] filters[key] = listified def _model_query(context, model, filters, fields=None): filters = filters or {} model_filters = [] if filters.get("name"): model_filters.append(model.name.in_(filters["name"])) if filters.get("network_id"): model_filters.append(model.network_id.in_(filters["network_id"])) if filters.get("mac_address"): model_filters.append(model.mac_address.in_(filters["mac_address"])) if filters.get("id"): model_filters.append(model.id.in_(filters["id"])) if filters.get("reuse_after"): reuse_after = filters["reuse_after"] reuse = (timeutils.utcnow() - datetime.timedelta(seconds=reuse_after)) model_filters.append(model.deallocated_at <= reuse) if filters.get("subnet_id"): model_filters.append(model.subnet_id == filters["subnet_id"]) if filters.get("deallocated"): model_filters.append(model.deallocated == filters["deallocated"]) if filters.get("_deallocated") is not None: if filters.get("_deallocated"): model_filters.append(model._deallocated == 1) else: model_filters.append(model._deallocated != 1) if filters.get("address"): model_filters.append(model.address == filters["address"]) if filters.get("version"): model_filters.append(model.version.in_(filters["version"])) if filters.get("ip_version"): model_filters.append(model.ip_version == filters["ip_version"]) if filters.get("ip_address"): model_filters.append(model.address == int(filters["ip_address"])) if filters.get("mac_address_range_id"): model_filters.append(model.mac_address_range_id == filters["mac_address_range_id"]) if filters.get("cidr"): model_filters.append(model.cidr == filters["cidr"]) # Inject the tenant id if none is set. We don't need unqualified queries. # This works even when a non-shared, other-tenant owned network is passed # in because the authZ checks that happen in Neutron above us yank it back # out of the result set. if not filters and not context.is_admin: filters["tenant_id"] = [context.tenant_id] if filters.get("tenant_id"): model_filters.append(model.tenant_id.in_(filters["tenant_id"])) return model_filters def scoped(f): def wrapped(*args, **kwargs): scope = None if "scope" in kwargs: scope = kwargs.pop("scope") if scope not in [None, ALL, ONE]: raise Exception("Invalid scope") _listify(kwargs) res = f(*args, **kwargs) if not res: return if "order_by" in kwargs: res = res.order_by(kwargs["order_by"]) if scope == ALL: if isinstance(res, list): return res return res.all() elif scope == ONE: if isinstance(res, list): return res[0] return res.first() return res return wrapped @scoped def port_find(context, **filters): query = context.session.query(models.Port).\ options(orm.joinedload(models.Port.ip_addresses)) model_filters = _model_query(context, models.Port, filters) if filters.get("ip_address_id"): model_filters.append(models.Port.ip_addresses.any( models.IPAddress.id.in_(filters["ip_address_id"]))) if filters.get("device_id"): model_filters.append(models.Port.device_id.in_(filters["device_id"])) return query.filter(*model_filters) def port_count_all(context, **filters): query = context.session.query(sql_func.count(models.Port.id)) model_filters = _model_query(context, models.Port, filters) return query.filter(*model_filters).scalar() def port_create(context, **port_dict): port = models.Port() port.update(port_dict) port["tenant_id"] = context.tenant_id if "addresses" in port_dict: port["ip_addresses"].extend(port_dict["addresses"]) context.session.add(port) return port def port_update(context, port, **kwargs): if "addresses" in kwargs: port["ip_addresses"] = kwargs.pop("addresses") port.update(kwargs) context.session.add(port) return port def port_delete(context, port): context.session.delete(port) def ip_address_update(context, address, **kwargs): address.update(kwargs) context.session.add(address) return address def ip_address_create(context, **address_dict): ip_address = models.IPAddress() address = address_dict.pop("address") ip_address.update(address_dict) ip_address["address"] = int(address) ip_address["address_readable"] = str(address) ip_address["tenant_id"] = context.tenant_id ip_address["_deallocated"] = 0 ip_address["allocated_at"] = timeutils.utcnow() context.session.add(ip_address) return ip_address @scoped def ip_address_find(context, lock_mode=False, **filters): query = context.session.query(models.IPAddress) ip_shared = filters.pop("shared", None) if ip_shared is not None: cnt = sql_func.count(models.port_ip_association_table.c.port_id) stmt = context.session.query(models.IPAddress, cnt.label("ports_count")) if lock_mode: stmt = stmt.with_lockmode("update") stmt = stmt.outerjoin(models.port_ip_association_table) stmt = stmt.group_by(models.IPAddress).subquery() query = query.outerjoin(stmt, stmt.c.id == models.IPAddress.id) #!@# HACK(amir): replace once attributes are configured in ip address # extension correctly if "True" in ip_shared: query = query.filter(stmt.c.ports_count > 1) else: query = query.filter(stmt.c.ports_count <= 1) model_filters = _model_query(context, models.IPAddress, filters) if filters.get("device_id"): model_filters.append(models.IPAddress.ports.any( models.Port.device_id.in_(filters["device_id"]))) return query.filter(*model_filters) @scoped def mac_address_find(context, lock_mode=False, **filters): query = context.session.query(models.MacAddress) if lock_mode: query.with_lockmode("update") model_filters = _model_query(context, models.MacAddress, filters) return query.filter(*model_filters) def mac_address_range_find_allocation_counts(context, address=None): query = context.session.query(models.MacAddressRange, sql_func.count(models.MacAddress.address). label("count")).with_lockmode("update") query = query.outerjoin(models.MacAddress) query = query.group_by(models.MacAddressRange) query = query.order_by("count DESC") if address: query = query.filter(models.MacAddressRange.last_address >= address) query = query.filter(models.MacAddressRange.first_address <= address) return query @scoped def mac_address_range_find(context, **filters): query = context.session.query(models.MacAddressRange) model_filters = _model_query(context, models.MacAddressRange, filters) return query.filter(*model_filters) def mac_address_range_create(context, **range_dict): new_range = models.MacAddressRange() new_range.update(range_dict) context.session.add(new_range) return new_range def mac_address_range_delete(context, mac_address_range): context.session.delete(mac_address_range) def mac_address_update(context, mac, **kwargs): mac.update(kwargs) context.session.add(mac) return mac def mac_address_create(context, **mac_dict): mac_address = models.MacAddress() mac_address.update(mac_dict) mac_address["tenant_id"] = context.tenant_id mac_address["deallocated"] = False mac_address["deallocated_at"] = None context.session.add(mac_address) return mac_address @scoped def network_find(context, fields=None, **filters): ids = [] defaults = [] if "id" in filters: ids, defaults = STRATEGY.split_network_ids(context, filters["id"]) if ids: filters["id"] = ids else: filters.pop("id") if "shared" in filters: if True in filters["shared"]: defaults = STRATEGY.get_assignable_networks(context) if ids: defaults = [net for net in ids if net in defaults] filters.pop("id") if not defaults: return [] filters.pop("shared") return _network_find(context, fields, defaults=defaults, **filters) def _network_find(context, fields, defaults=None, **filters): query = context.session.query(models.Network) model_filters = _model_query(context, models.Network, filters, query) if defaults: if filters: query = query.filter(or_(models.Network.id.in_(defaults), and_(*model_filters))) else: query = query.filter(models.Network.id.in_(defaults)) else: query = query.filter(*model_filters) return query def network_find_all(context, fields=None, **filters): return network_find(context, fields, **filters).all() def network_create(context, **network): new_net = models.Network() new_net.update(network) context.session.add(new_net) return new_net def network_update(context, network, **kwargs): network.update(kwargs) context.session.add(network) return network def network_count_all(context): query = context.session.query(sql_func.count(models.Network.id)) return query.filter(models.Network.tenant_id == context.tenant_id).\ scalar() def network_delete(context, network): context.session.delete(network) def subnet_find_allocation_counts(context, net_id, **filters): query = context.session.query(models.Subnet, sql_func.count(models.IPAddress.address). label("count")).with_lockmode('update') query = query.outerjoin(models.Subnet.allocated_ips) query = query.group_by(models.Subnet) query = query.order_by("count DESC") query = query.filter(models.Subnet.network_id == net_id) if "ip_version" in filters: query = query.filter(models.Subnet.ip_version == filters["ip_version"]) return query @scoped def subnet_find(context, **filters): if "shared" in filters and True in filters["shared"]: return [] query = context.session.query(models.Subnet).\ options(orm.joinedload(models.Subnet.routes)) model_filters = _model_query(context, models.Subnet, filters) return query.filter(*model_filters) def subnet_count_all(context, **filters): query = context.session.query(sql_func.count(models.Subnet.id)) if filters.get("network_id"): query = query.filter( models.Subnet.network_id == filters["network_id"]) query.filter(models.Subnet.tenant_id == context.tenant_id) return query.scalar() def subnet_delete(context, subnet): context.session.delete(subnet) def subnet_create(context, **subnet_dict): subnet = models.Subnet() subnet.update(subnet_dict) subnet["tenant_id"] = context.tenant_id context.session.add(subnet) return subnet def subnet_update(context, subnet, **kwargs): subnet.update(kwargs) context.session.add(subnet) return subnet @scoped def route_find(context, fields=None, **filters): query = context.session.query(models.Route) model_filters = _model_query(context, models.Route, filters) return query.filter(*model_filters) def route_create(context, **route_dict): new_route = models.Route() new_route.update(route_dict) new_route["tenant_id"] = context.tenant_id context.session.add(new_route) return new_route def route_update(context, route, **kwargs): route.update(kwargs) context.session.add(route) return route def route_delete(context, route): context.session.delete(route) def dns_create(context, **dns_dict): dns_nameserver = models.DNSNameserver() ip = dns_dict.pop("ip") dns_nameserver.update(dns_dict) dns_nameserver["ip"] = int(ip) dns_nameserver["tenant_id"] = context.tenant_id context.session.add(dns_nameserver) return dns_nameserver def dns_delete(context, dns): context.session.delete(dns) @scoped def security_group_find(context, **filters): query = context.session.query(models.SecurityGroup).\ options(orm.joinedload(models.SecurityGroup.rules)) model_filters = _model_query(context, models.SecurityGroup, filters) return query.filter(*model_filters) def security_group_create(context, **sec_group_dict): new_group = models.SecurityGroup() new_group.update(sec_group_dict) new_group["tenant_id"] = context.tenant_id context.session.add(new_group) return new_group def security_group_update(context, group, **kwargs): group.update(kwargs) context.session.add(group) return group def security_group_delete(context, group): context.session.delete(group) @scoped def security_group_rule_find(context, **filters): query = context.session.query(models.SecurityGroupRule) model_filters = _model_query(context, models.SecurityGroupRule, filters) return query.filter(*model_filters) def security_group_rule_create(context, **rule_dict): new_rule = models.SecurityGroupRule() new_rule.update(rule_dict) new_rule.group_id = rule_dict['security_group_id'] new_rule.tenant_id = rule_dict['tenant_id'] context.session.add(new_rule) return new_rule def security_group_rule_delete(context, rule): context.session.delete(rule) def ip_policy_create(context, **ip_policy_dict): new_policy = models.IPPolicy() ranges = ip_policy_dict.pop("exclude") for arange in ranges: new_policy["exclude"].append(models.IPPolicyRange( offset=arange["offset"], length=arange["length"])) new_policy.update(ip_policy_dict) new_policy["tenant_id"] = context.tenant_id context.session.add(new_policy) return new_policy @scoped def ip_policy_find(context, **filters): query = context.session.query(models.IPPolicy) model_filters = _model_query(context, models.IPPolicy, filters) return query.filter(*model_filters) def ip_policy_update(context, ip_policy, **ip_policy_dict): ranges = ip_policy_dict.pop("exclude", []) if ranges: ip_policy["exclude"] = [] for arange in ranges: ip_policy["exclude"].append(models.IPPolicyRange( offset=arange["offset"], length=arange["length"])) ip_policy.update(ip_policy_dict) context.session.add(ip_policy) return ip_policy def ip_policy_delete(context, ip_policy): context.session.delete(ip_policy) ``` #### File: quark/drivers/nvp_driver.py ```python from oslo.config import cfg import aiclib from neutron.extensions import securitygroup as sg_ext from neutron.openstack.common import log as logging from quark.drivers import base from quark import exceptions LOG = logging.getLogger(__name__) CONF = cfg.CONF nvp_opts = [ cfg.IntOpt('max_ports_per_switch', default=0, help=_('Maximum amount of NVP ports on an NVP lswitch')), cfg.StrOpt('default_tz', help=_('The default transport zone UUID')), cfg.MultiStrOpt('controller_connection', default=[], help=_('NVP Controller connection string')), cfg.IntOpt('max_rules_per_group', default=30, help=_('Maxiumum size of NVP SecurityRule list per group')), cfg.IntOpt('max_rules_per_port', default=30, help=_('Maximum rules per NVP lport across all groups')), ] physical_net_type_map = { "stt": "stt", "gre": "gre", "flat": "bridge", "bridge": "bridge", "vlan": "bridge", "local": "local" } CONF.register_opts(nvp_opts, "NVP") def _tag_roll(tags): return [{'scope': k, 'tag': v} for k, v in tags] def _tag_unroll(tags): return dict((t['scope'], t['tag']) for t in tags) class NVPDriver(base.BaseDriver): def __init__(self): self.nvp_connections = [] self.conn_index = 0 self.limits = {'max_ports_per_switch': 0, 'max_rules_per_group': 0, 'max_rules_per_port': 0} super(NVPDriver, self).__init__() @classmethod def get_name(klass): return "NVP" def load_config(self): #NOTE(mdietz): What does default_tz actually mean? # We don't have one default. default_tz = CONF.NVP.default_tz LOG.info("Loading NVP settings " + str(default_tz)) connections = CONF.NVP.controller_connection self.limits.update({ 'max_ports_per_switch': CONF.NVP.max_ports_per_switch, 'max_rules_per_group': CONF.NVP.max_rules_per_group, 'max_rules_per_port': CONF.NVP.max_rules_per_port}) LOG.info("Loading NVP settings " + str(connections)) for conn in connections: (ip, port, user, pw, req_timeout, http_timeout, retries, redirects) = conn.split(":") self.nvp_connections.append(dict(ip_address=ip, port=port, username=user, password=pw, req_timeout=req_timeout, http_timeout=http_timeout, retries=retries, redirects=redirects, default_tz=default_tz)) def get_connection(self): conn = self.nvp_connections[self.conn_index] if "connection" not in conn: scheme = conn["port"] == "443" and "https" or "http" uri = "%s://%s:%s" % (scheme, conn["ip_address"], conn["port"]) user = conn['username'] passwd = conn['password'] conn["connection"] = aiclib.nvp.Connection(uri, username=user, password=<PASSWORD>) return conn["connection"] def create_network(self, context, network_name, tags=None, network_id=None, **kwargs): return self._lswitch_create(context, network_name, tags, network_id, **kwargs) def delete_network(self, context, network_id): lswitches = self._lswitches_for_network(context, network_id).results() connection = self.get_connection() for switch in lswitches["results"]: LOG.debug("Deleting lswitch %s" % switch["uuid"]) connection.lswitch(switch["uuid"]).delete() def _collect_lswitch_info(self, lswitch, get_status): info = { 'port_isolation_enabled': lswitch['port_isolation_enabled'], 'display_name': lswitch['display_name'], 'uuid': lswitch['uuid'], 'transport_zones': lswitch['transport_zones'], } info.update(_tag_unroll(lswitch['tags'])) if get_status: status = lswitch.pop('_relations')['LogicalSwitchStatus'] info.update({ 'lport_stats': { 'fabric_up': status['lport_fabric_up_count'], 'admin_up': status['lport_admin_up_count'], 'link_up': status['lport_link_up_count'], 'count': status['lport_count'], }, 'fabric_status': status['fabric_status'], }) return info def diag_network(self, context, network_id, get_status): switches = self._lswitch_status_query(context, network_id)['results'] return {'logical_switches': [self._collect_lswitch_info(s, get_status) for s in switches]} def create_port(self, context, network_id, port_id, status=True, security_groups=[], allowed_pairs=[]): tenant_id = context.tenant_id lswitch = self._create_or_choose_lswitch(context, network_id) connection = self.get_connection() port = connection.lswitch_port(lswitch) port.admin_status_enabled(status) port.allowed_address_pairs(allowed_pairs) nvp_group_ids = self._get_security_groups_for_port(context, security_groups) port.security_profiles(nvp_group_ids) tags = [dict(tag=network_id, scope="neutron_net_id"), dict(tag=port_id, scope="neutron_port_id"), dict(tag=tenant_id, scope="os_tid")] LOG.debug("Creating port on switch %s" % lswitch) port.tags(tags) res = port.create() res["lswitch"] = lswitch return res def update_port(self, context, port_id, status=True, security_groups=[], allowed_pairs=[]): connection = self.get_connection() lswitch_id = self._lswitch_from_port(context, port_id) port = connection.lswitch_port(lswitch_id, port_id) nvp_group_ids = self._get_security_groups_for_port(context, security_groups) if nvp_group_ids: port.security_profiles(nvp_group_ids) if allowed_pairs: port.allowed_address_pairs(allowed_pairs) port.admin_status_enabled(status) return port.update() def delete_port(self, context, port_id, **kwargs): connection = self.get_connection() lswitch_uuid = kwargs.get('lswitch_uuid', None) if not lswitch_uuid: lswitch_uuid = self._lswitch_from_port(context, port_id) LOG.debug("Deleting port %s from lswitch %s" % (port_id, lswitch_uuid)) connection.lswitch_port(lswitch_uuid, port_id).delete() def _collect_lport_info(self, lport, get_status): info = { 'mirror_targets': lport['mirror_targets'], 'display_name': lport['display_name'], 'portno': lport['portno'], 'allowed_address_pairs': lport['allowed_address_pairs'], 'nvp_security_groups': lport['security_profiles'], 'uuid': lport['uuid'], 'admin_status_enabled': lport['admin_status_enabled'], 'queue_uuid': lport['queue_uuid'], } if get_status: stats = lport['statistics'] status = lport['status'] lswitch = { 'uuid': status['lswitch']['uuid'], 'display_name': status['lswitch']['display_name'], } lswitch.update(_tag_unroll(status['lswitch']['tags'])) info.update({ 'statistics': { 'recieved': { 'packets': stats['rx_packets'], 'bytes': stats['rx_bytes'], 'errors': stats['rx_errors'] }, 'transmitted': { 'packets': stats['tx_packets'], 'bytes': stats['tx_bytes'], 'errors': stats['tx_errors'] }, }, 'status': { 'link_status_up': status['link_status_up'], 'admin_status_up': status['admin_status_up'], 'fabric_status_up': status['fabric_status_up'], }, 'lswitch': lswitch, }) info.update(_tag_unroll(lport['tags'])) return info def diag_port(self, context, port_id, get_status=False): connection = self.get_connection() lswitch_uuid = self._lswitch_from_port(context, port_id) lswitch_port = connection.lswitch_port(lswitch_uuid, port_id) query = lswitch_port.query() query.relations("LogicalPortAttachment") results = query.results() if results['result_count'] == 0: return {'lport': "Logical port not found."} config = results['results'][0] relations = config.pop('_relations') config['attachment'] = relations['LogicalPortAttachment']['type'] if get_status: config['status'] = lswitch_port.status() config['statistics'] = lswitch_port.statistics() return {'lport': self._collect_lport_info(config, get_status)} def _get_network_details(self, context, network_id, switches): name, phys_net, phys_type, segment_id = None, None, None, None for res in switches["results"]: name = res["display_name"] for zone in res["transport_zones"]: phys_net = zone["zone_uuid"] phys_type = zone["transport_type"] if "binding_config" in zone: binding = zone["binding_config"] segment_id = binding["vlan_translation"][0]["transport"] break return dict(network_name=name, phys_net=phys_net, phys_type=phys_type, segment_id=segment_id) return {} def create_security_group(self, context, group_name, **group): tenant_id = context.tenant_id connection = self.get_connection() group_id = group.get('group_id') profile = connection.securityprofile() if group_name: profile.display_name(group_name) ingress_rules = group.get('port_ingress_rules', []) egress_rules = group.get('port_egress_rules', []) if (len(ingress_rules) + len(egress_rules) > self.limits['max_rules_per_group']): raise exceptions.DriverLimitReached(limit="rules per group") if egress_rules: profile.port_egress_rules(egress_rules) if ingress_rules: profile.port_ingress_rules(ingress_rules) tags = [dict(tag=group_id, scope="neutron_group_id"), dict(tag=tenant_id, scope="os_tid")] LOG.debug("Creating security profile %s" % group_name) profile.tags(tags) return profile.create() def delete_security_group(self, context, group_id): guuid = self._get_security_group_id(context, group_id) connection = self.get_connection() LOG.debug("Deleting security profile %s" % group_id) connection.securityprofile(guuid).delete() def update_security_group(self, context, group_id, **group): query = self._get_security_group(context, group_id) connection = self.get_connection() profile = connection.securityprofile(query.get('uuid')) ingress_rules = group.get('port_ingress_rules', query.get('logical_port_ingress_rules')) egress_rules = group.get('port_egress_rules', query.get('logical_port_egress_rules')) if (len(ingress_rules) + len(egress_rules) > self.limits['max_rules_per_group']): raise exceptions.DriverLimitReached(limit="rules per group") if group.get('name', None): profile.display_name(group['name']) if group.get('port_ingress_rules', None) is not None: profile.port_ingress_rules(ingress_rules) if group.get('port_egress_rules', None) is not None: profile.port_egress_rules(egress_rules) return profile.update() def _update_security_group_rules(self, context, group_id, rule, operation, checks): groupd = self._get_security_group(context, group_id) direction, secrule = self._get_security_group_rule_object(context, rule) rulelist = groupd['logical_port_%s_rules' % direction] for check in checks: if not check(secrule, rulelist): raise checks[check] getattr(rulelist, operation)(secrule) LOG.debug("%s rule on security group %s" % (operation, groupd['uuid'])) group = {'port_%s_rules' % direction: rulelist} return self.update_security_group(context, group_id, **group) def create_security_group_rule(self, context, group_id, rule): return self._update_security_group_rules( context, group_id, rule, 'append', {(lambda x, y: x not in y): sg_ext.SecurityGroupRuleExists(id=group_id), (lambda x, y: self._check_rule_count_per_port(context, group_id) < self.limits['max_rules_per_port']): exceptions.DriverLimitReached(limit="rules per port")}) def delete_security_group_rule(self, context, group_id, rule): return self._update_security_group_rules( context, group_id, rule, 'remove', {(lambda x, y: x in y): sg_ext.SecurityGroupRuleNotFound(id="with group_id %s" % group_id)}) def _create_or_choose_lswitch(self, context, network_id): switches = self._lswitch_status_query(context, network_id) switch = self._lswitch_select_open(context, network_id=network_id, switches=switches) if switch: LOG.debug("Found open switch %s" % switch) return switch switch_details = self._get_network_details(context, network_id, switches) if not switch_details: raise exceptions.BadNVPState(net_id=network_id) return self._lswitch_create(context, network_id=network_id, **switch_details) def _lswitch_status_query(self, context, network_id): query = self._lswitches_for_network(context, network_id) query.relations("LogicalSwitchStatus") results = query.results() LOG.debug("Query results: %s" % results) return results def _lswitch_select_open(self, context, switches=None, **kwargs): """Selects an open lswitch for a network. Note that it does not select the most full switch, but merely one with ports available. """ if switches is not None: for res in switches["results"]: count = res["_relations"]["LogicalSwitchStatus"]["lport_count"] if self.limits['max_ports_per_switch'] == 0 or \ count < self.limits['max_ports_per_switch']: return res["uuid"] return None def _lswitch_delete(self, context, lswitch_uuid): connection = self.get_connection() LOG.debug("Deleting lswitch %s" % lswitch_uuid) connection.lswitch(lswitch_uuid).delete() def _config_provider_attrs(self, connection, switch, phys_net, net_type, segment_id): if not (phys_net or net_type): return if not phys_net and net_type: raise exceptions.ProvidernetParamError( msg="provider:physical_network parameter required") if phys_net and not net_type: raise exceptions.ProvidernetParamError( msg="provider:network_type parameter required") if not net_type in ("bridge", "vlan") and segment_id: raise exceptions.SegmentIdUnsupported(net_type=net_type) if net_type == "vlan" and not segment_id: raise exceptions.SegmentIdRequired(net_type=net_type) phys_type = physical_net_type_map.get(net_type.lower()) if not phys_type: raise exceptions.InvalidPhysicalNetworkType(net_type=net_type) tz_query = connection.transportzone(phys_net).query() transport_zone = tz_query.results() if transport_zone["result_count"] == 0: raise exceptions.PhysicalNetworkNotFound(phys_net=phys_net) switch.transport_zone(zone_uuid=phys_net, transport_type=phys_type, vlan_id=segment_id) def _lswitch_create(self, context, network_name=None, tags=None, network_id=None, phys_net=None, phys_type=None, segment_id=None, **kwargs): # NOTE(mdietz): physical net uuid maps to the transport zone uuid # physical net type maps to the transport/connector type # if type maps to 'bridge', then segment_id, which maps # to vlan_id, is conditionally provided LOG.debug("Creating new lswitch for %s network %s" % (context.tenant_id, network_name)) tenant_id = context.tenant_id connection = self.get_connection() switch = connection.lswitch() if network_name is None: network_name = network_id switch.display_name(network_name) tags = tags or [] tags.append({"tag": tenant_id, "scope": "os_tid"}) if network_id: tags.append({"tag": network_id, "scope": "neutron_net_id"}) switch.tags(tags) LOG.debug("Creating lswitch for network %s" % network_id) # When connecting to public or snet, we need switches that are # connected to their respective public/private transport zones # using a "bridge" connector. Public uses no VLAN, whereas private # uses VLAN 122 in netdev. Probably need this to be configurable self._config_provider_attrs(connection, switch, phys_net, phys_type, segment_id) res = switch.create() return res["uuid"] def _lswitches_for_network(self, context, network_id): connection = self.get_connection() query = connection.lswitch().query() query.tagscopes(['os_tid', 'neutron_net_id']) query.tags([context.tenant_id, network_id]) return query def _lswitch_from_port(self, context, port_id): connection = self.get_connection() query = connection.lswitch_port("*").query() query.relations("LogicalSwitchConfig") query.uuid(port_id) port = query.results() if port['result_count'] > 1: raise Exception("Could not identify lswitch for port %s" % port_id) if port['result_count'] < 1: raise Exception("No lswitch found for port %s" % port_id) return port['results'][0]["_relations"]["LogicalSwitchConfig"]["uuid"] def _get_security_group(self, context, group_id): connection = self.get_connection() query = connection.securityprofile().query() query.tagscopes(['os_tid', 'neutron_group_id']) query.tags([context.tenant_id, group_id]) query = query.results() if query['result_count'] != 1: raise sg_ext.SecurityGroupNotFound(id=group_id) return query['results'][0] def _get_security_group_id(self, context, group_id): return self._get_security_group(context, group_id)['uuid'] def _get_security_group_rule_object(self, context, rule): ethertype = rule.get('ethertype', None) rule_clone = {} ip_prefix = rule.get('remote_ip_prefix', None) if ip_prefix: rule_clone['ip_prefix'] = ip_prefix profile_uuid = rule.get('remote_group_id', None) if profile_uuid: rule_clone['profile_uuid'] = profile_uuid for key in ['protocol', 'port_range_min', 'port_range_max']: if rule.get(key): rule_clone[key] = rule[key] connection = self.get_connection() secrule = connection.securityrule(ethertype, **rule_clone) direction = rule.get('direction', '') if direction not in ['ingress', 'egress']: raise AttributeError( "Direction not specified as 'ingress' or 'egress'.") return (direction, secrule) def _check_rule_count_per_port(self, context, group_id): connection = self.get_connection() ports = connection.lswitch_port("*").query().security_profile_uuid( '=', self._get_security_group_id( context, group_id)).results().get('results', []) groups = (port.get('security_profiles', []) for port in ports) return max([self._check_rule_count_for_groups( context, (connection.securityprofile(gp).read() for gp in group)) for group in groups] or [0]) def _check_rule_count_for_groups(self, context, groups): return sum(len(group['logical_port_ingress_rules']) + len(group['logical_port_egress_rules']) for group in groups) def _get_security_groups_for_port(self, context, groups): if (self._check_rule_count_for_groups( context, (self._get_security_group(context, g) for g in groups)) > self.limits['max_rules_per_port']): raise exceptions.DriverLimitReached(limit="rules per port") return [self._get_security_group(context, group)['uuid'] for group in groups] ``` #### File: quark/drivers/optimized_nvp_driver.py ```python from neutron.openstack.common import log as logging from quark.db import models from quark.drivers.nvp_driver import NVPDriver import sqlalchemy as sa from sqlalchemy import orm LOG = logging.getLogger(__name__) class OptimizedNVPDriver(NVPDriver): def delete_network(self, context, network_id): lswitches = self._lswitches_for_network(context, network_id) for switch in lswitches: self._lswitch_delete(context, switch.nvp_id) def create_port(self, context, network_id, port_id, status=True, security_groups=[], allowed_pairs=[]): nvp_port = super(OptimizedNVPDriver, self).\ create_port(context, network_id, port_id, status=status, security_groups=security_groups, allowed_pairs=allowed_pairs) switch_nvp_id = nvp_port["lswitch"] # slightly inefficient for the sake of brevity. Lets the # parent class do its thing then finds the switch that # the port was created on for creating the association. Switch should # be in the query cache so the subsequent lookup should be minimal, # but this could be an easy optimization later if we're looking. switch = self._lswitch_select_by_nvp_id(context, switch_nvp_id) new_port = LSwitchPort(port_id=nvp_port["uuid"], switch_id=switch.id) context.session.add(new_port) switch.port_count = switch.port_count + 1 return nvp_port def update_port(self, context, port_id, status=True, security_groups=[], allowed_pairs=[]): nvp_port = super(OptimizedNVPDriver, self).\ update_port(context, port_id, status=status, security_groups=security_groups, allowed_pairs=allowed_pairs) port = self._lport_select_by_id(context, port_id) port.update(nvp_port) def delete_port(self, context, port_id, lswitch_uuid=None): port = self._lport_select_by_id(context, port_id) switch = port.switch super(OptimizedNVPDriver, self).\ delete_port(context, port_id, lswitch_uuid=switch.nvp_id) context.session.delete(port) switch.port_count = switch.port_count - 1 if switch.port_count == 0: self._lswitch_delete(context, switch.nvp_id) def create_security_group(self, context, group_name, **group): nvp_group = super(OptimizedNVPDriver, self).create_security_group( context, group_name, **group) group_id = group.get('group_id') profile = SecurityProfile(id=group_id, nvp_id=nvp_group['uuid']) context.session.add(profile) def delete_security_group(self, context, group_id): super(OptimizedNVPDriver, self).\ delete_security_group(context, group_id) group = self._query_security_group(context, group_id) context.session.delete(group) def _lport_select_by_id(self, context, port_id): query = context.session.query(LSwitchPort) query = query.filter(LSwitchPort.port_id == port_id) return query.first() def _lswitch_delete(self, context, lswitch_uuid): switch = self._lswitch_select_by_nvp_id(context, lswitch_uuid) super(OptimizedNVPDriver, self).\ _lswitch_delete(context, lswitch_uuid) context.session.delete(switch) def _lswitch_select_by_nvp_id(self, context, nvp_id): switch = context.session.query(LSwitch).\ filter(LSwitch.nvp_id == nvp_id).\ first() return switch def _lswitch_select_first(self, context, network_id): query = context.session.query(LSwitch) query.filter(LSwitch.network_id == network_id) return query.first() def _lswitch_select_free(self, context, network_id): query = context.session.query(LSwitch) query = query.filter(LSwitch.port_count < self.limits['max_ports_per_switch']) query = query.filter(LSwitch.network_id == network_id) switch = query.order_by(LSwitch.port_count).first() return switch def _lswitch_status_query(self, context, network_id): """Child implementation of lswitch_status_query. Deliberately empty as we rely on _get_network_details to be more efficient than we can be here. """ pass def _lswitch_select_open(self, context, network_id=None, **kwargs): if self.limits['max_ports_per_switch'] == 0: switch = self._lswitch_select_first(context, network_id) else: switch = self._lswitch_select_free(context, network_id) if switch: return switch.nvp_id LOG.debug("Could not find optimized switch") def _get_network_details(self, context, network_id, switches): name, phys_net, phys_type, segment_id = None, None, None, None switch = self._lswitch_select_first(context, network_id) if switch: name = switch.display_name phys_net = switch.transport_zone phys_type = switch.transport_connector segment_id = switch.segment_id return dict(network_name=name, phys_net=phys_net, phys_type=phys_type, segment_id=segment_id) def _lswitch_create(self, context, network_name=None, tags=None, network_id=None, **kwargs): nvp_id = super(OptimizedNVPDriver, self).\ _lswitch_create(context, network_name, tags, network_id, **kwargs) return self._lswitch_create_optimized(context, network_name, nvp_id, network_id, **kwargs).nvp_id def _lswitch_create_optimized(self, context, network_name, nvp_id, network_id, phys_net=None, phys_type=None, segment_id=None): new_switch = LSwitch(nvp_id=nvp_id, network_id=network_id, port_count=0, transport_zone=phys_net, transport_connector=phys_type, display_name=network_name, segment_id=segment_id) context.session.add(new_switch) return new_switch def _lswitches_for_network(self, context, network_id): switches = context.session.query(LSwitch).\ filter(LSwitch.network_id == network_id).\ all() return switches def _lswitch_from_port(self, context, port_id): port = self._lport_select_by_id(context, port_id) return port.switch.nvp_id def _query_security_group(self, context, group_id): return context.session.query(SecurityProfile).\ filter(SecurityProfile.id == group_id).first() def _make_security_rule_dict(self, rule): res = {"port_range_min": rule.get("port_range_min"), "port_range_max": rule.get("port_range_max"), "protocol": rule.get("protocol"), "ip_prefix": rule.get("remote_ip_prefix"), "group_id": rule.get("remote_group_id"), "ethertype": rule.get("ethertype")} for key, value in res.items(): if value is None: res.pop(key) return res def _get_security_group(self, context, group_id): group = context.session.query(models.SecurityGroup).\ filter(models.SecurityGroup.id == group_id).first() rulelist = {'ingress': [], 'egress': []} for rule in group.rules: rulelist[rule.direction].append( self._make_security_rule_dict(rule)) return {'uuid': self._query_security_group(context, group_id).nvp_id, 'logical_port_ingress_rules': rulelist['ingress'], 'logical_port_egress_rules': rulelist['egress']} def _check_rule_count_per_port(self, context, group_id): ports = context.session.query(models.SecurityGroup).filter( models.SecurityGroup.id == group_id).first().get('ports', []) groups = (set(group.id for group in port.get('security_groups', [])) for port in ports) return max(self._check_rule_count_for_groups( context, (self._get_security_group(context, id) for id in g)) for g in groups) class LSwitchPort(models.BASEV2, models.HasId): __tablename__ = "quark_nvp_driver_lswitchport" port_id = sa.Column(sa.String(36), nullable=False) switch_id = sa.Column(sa.String(36), sa.ForeignKey("quark_nvp_driver_lswitch.id"), nullable=False) class LSwitch(models.BASEV2, models.HasId): __tablename__ = "quark_nvp_driver_lswitch" nvp_id = sa.Column(sa.String(36), nullable=False) network_id = sa.Column(sa.String(36), nullable=False) display_name = sa.Column(sa.String(255)) port_count = sa.Column(sa.Integer()) ports = orm.relationship(LSwitchPort, backref='switch') transport_zone = sa.Column(sa.String(36)) transport_connector = sa.Column(sa.String(20)) segment_id = sa.Column(sa.Integer()) class QOS(models.BASEV2, models.HasId): __tablename__ = "quark_nvp_driver_qos" display_name = sa.Column(sa.String(255), nullable=False) max_bandwidth_rate = sa.Column(sa.Integer(), nullable=False) min_bandwidth_rate = sa.Column(sa.Integer(), nullable=False) class SecurityProfile(models.BASEV2, models.HasId): __tablename__ = "quark_nvp_driver_security_profile" nvp_id = sa.Column(sa.String(36), nullable=False) ``` #### File: quark/quark/ipam.py ```python import netaddr from neutron.common import exceptions from neutron.openstack.common import log as logging from neutron.openstack.common.notifier import api as notifier_api from neutron.openstack.common import timeutils from oslo.config import cfg from quark.db import api as db_api from quark.db import models LOG = logging.getLogger(__name__) CONF = cfg.CONF class QuarkIpam(object): def allocate_mac_address(self, context, net_id, port_id, reuse_after, mac_address=None): if mac_address: mac_address = netaddr.EUI(mac_address).value with context.session.begin(subtransactions=True): deallocated_mac = db_api.mac_address_find( context, lock_mode=True, reuse_after=reuse_after, scope=db_api.ONE, address=mac_address) if deallocated_mac: return db_api.mac_address_update( context, deallocated_mac, deallocated=False, deallocated_at=None) with context.session.begin(subtransactions=True): ranges = db_api.mac_address_range_find_allocation_counts( context, address=mac_address) for result in ranges: rng, addr_count = result last = rng["last_address"] first = rng["first_address"] if last - first <= addr_count: continue next_address = None if mac_address: next_address = mac_address else: address = True while address: next_address = rng["next_auto_assign_mac"] rng["next_auto_assign_mac"] = next_address + 1 address = db_api.mac_address_find( context, tenant_id=context.tenant_id, scope=db_api.ONE, address=next_address) address = db_api.mac_address_create( context, address=next_address, mac_address_range_id=rng["id"]) return address raise exceptions.MacAddressGenerationFailure(net_id=net_id) def attempt_to_reallocate_ip(self, context, net_id, port_id, reuse_after, version=None, ip_address=None): version = version or [4, 6] elevated = context.elevated() # We never want to take the chance of an infinite loop here. Instead, # we'll clean up multiple bad IPs if we find them (assuming something # is really wrong) for times in xrange(3): with context.session.begin(subtransactions=True): address = db_api.ip_address_find( elevated, network_id=net_id, reuse_after=reuse_after, deallocated=True, scope=db_api.ONE, ip_address=ip_address, lock_mode=True, version=version, order_by="address") if address: #NOTE(mdietz): We should always be in the CIDR but we've # also said that before :-/ if address.get("subnet"): cidr = netaddr.IPNetwork(address["subnet"]["cidr"]) addr = netaddr.IPAddress(address["address"], version=cidr.version) if addr in cidr: updated_address = db_api.ip_address_update( elevated, address, deallocated=False, deallocated_at=None, allocated_at=timeutils.utcnow()) return [updated_address] else: # Make sure we never find it again context.session.delete(address) continue break return [] def is_strategy_satisfied(self, ip_addresses): return ip_addresses def _iterate_until_available_ip(self, context, subnet, network_id, ip_policy_rules): address = True while address: next_ip_int = int(subnet["next_auto_assign_ip"]) next_ip = netaddr.IPAddress(next_ip_int) if subnet["ip_version"] == 4: next_ip = next_ip.ipv4() subnet["next_auto_assign_ip"] = next_ip_int + 1 if ip_policy_rules and next_ip in ip_policy_rules: continue address = db_api.ip_address_find( context, network_id=network_id, ip_address=next_ip, tenant_id=context.tenant_id, scope=db_api.ONE) ipnet = netaddr.IPNetwork(subnet["cidr"]) next_addr = netaddr.IPAddress( subnet["next_auto_assign_ip"]) if ipnet.is_ipv4_mapped() or ipnet.version == 4: next_addr = next_addr.ipv4() return next_ip def allocate_ip_address(self, context, net_id, port_id, reuse_after, version=None, ip_address=None): elevated = context.elevated() if ip_address: ip_address = netaddr.IPAddress(ip_address) new_addresses = [] realloc_ips = self.attempt_to_reallocate_ip(context, net_id, port_id, reuse_after, version=None, ip_address=None) if self.is_strategy_satisfied(realloc_ips): return realloc_ips new_addresses.extend(realloc_ips) with context.session.begin(subtransactions=True): subnets = self._choose_available_subnet( elevated, net_id, version, ip_address=ip_address, reallocated_ips=realloc_ips) for subnet in subnets: ip_policy_rules = models.IPPolicy.get_ip_policy_rule_set( subnet) # Creating this IP for the first time next_ip = None if ip_address: next_ip = ip_address address = db_api.ip_address_find( elevated, network_id=net_id, ip_address=next_ip, tenant_id=elevated.tenant_id, scope=db_api.ONE) if address: raise exceptions.IpAddressGenerationFailure( net_id=net_id) else: next_ip = self._iterate_until_available_ip( elevated, subnet, net_id, ip_policy_rules) context.session.add(subnet) address = db_api.ip_address_create( elevated, address=next_ip, subnet_id=subnet["id"], version=subnet["ip_version"], network_id=net_id) address["deallocated"] = 0 new_addresses.append(address) for addr in new_addresses: payload = dict(tenant_id=addr["tenant_id"], ip_block_id=addr["subnet_id"], ip_address=addr["address_readable"], device_ids=[p["device_id"] for p in addr["ports"]], created_at=addr["created_at"]) notifier_api.notify(context, notifier_api.publisher_id("network"), "ip_block.address.create", notifier_api.CONF.default_notification_level, payload) return new_addresses def _deallocate_ip_address(self, context, address): address["deallocated"] = 1 payload = dict(tenant_id=address["tenant_id"], ip_block_id=address["subnet_id"], ip_address=address["address_readable"], device_ids=[p["device_id"] for p in address["ports"]], created_at=address["created_at"], deleted_at=timeutils.utcnow()) notifier_api.notify(context, notifier_api.publisher_id("network"), "ip_block.address.delete", notifier_api.CONF.default_notification_level, payload) def deallocate_ip_address(self, context, port, **kwargs): with context.session.begin(subtransactions=True): for addr in port["ip_addresses"]: # Note: only deallocate ip if this is the only port mapped if len(addr["ports"]) == 1: self._deallocate_ip_address(context, addr) port["ip_addresses"] = [] def deallocate_mac_address(self, context, address): with context.session.begin(subtransactions=True): mac = db_api.mac_address_find(context, address=address, scope=db_api.ONE) if not mac: raise exceptions.NotFound( message="No MAC address %s found" % netaddr.EUI(address)) db_api.mac_address_update(context, mac, deallocated=True, deallocated_at=timeutils.utcnow()) def select_subnet(self, context, net_id, ip_address, **filters): subnets = db_api.subnet_find_allocation_counts(context, net_id, scope=db_api.ALL, **filters) for subnet, ips_in_subnet in subnets: ipnet = netaddr.IPNetwork(subnet["cidr"]) if ip_address and ip_address not in ipnet: continue ip_policy_rules = None if not ip_address: ip_policy_rules = models.IPPolicy.get_ip_policy_rule_set( subnet) policy_size = ip_policy_rules.size if ip_policy_rules else 0 if ipnet.size > (ips_in_subnet + policy_size): return subnet class QuarkIpamANY(QuarkIpam): @classmethod def get_name(self): return "ANY" def _choose_available_subnet(self, context, net_id, version=None, ip_address=None, reallocated_ips=None): filters = {} if version: filters["ip_version"] = version subnet = self.select_subnet(context, net_id, ip_address, **filters) if subnet: return [subnet] raise exceptions.IpAddressGenerationFailure(net_id=net_id) class QuarkIpamBOTH(QuarkIpam): @classmethod def get_name(self): return "BOTH" def is_strategy_satisfied(self, reallocated_ips): req = [4, 6] for ip in reallocated_ips: if ip is not None: req.remove(ip["version"]) if len(req) == 0: return True return False def attempt_to_reallocate_ip(self, context, net_id, port_id, reuse_after, version=None, ip_address=None): both_versions = [] with context.session.begin(subtransactions=True): for ver in (4, 6): address = super(QuarkIpamBOTH, self).attempt_to_reallocate_ip( context, net_id, port_id, reuse_after, ver, ip_address) both_versions.extend(address) return both_versions def _choose_available_subnet(self, context, net_id, version=None, ip_address=None, reallocated_ips=None): both_subnet_versions = [] need_versions = [4, 6] for i in reallocated_ips: if i["version"] in need_versions: need_versions.remove(i["version"]) filters = {} for ver in need_versions: filters["ip_version"] = ver sub = self.select_subnet(context, net_id, ip_address, **filters) if sub: both_subnet_versions.append(sub) if not reallocated_ips and not both_subnet_versions: raise exceptions.IpAddressGenerationFailure(net_id=net_id) return both_subnet_versions class QuarkIpamBOTHREQ(QuarkIpamBOTH): @classmethod def get_name(self): return "BOTH_REQUIRED" def _choose_available_subnet(self, context, net_id, version=None, ip_address=None, reallocated_ips=None): subnets = super(QuarkIpamBOTHREQ, self)._choose_available_subnet( context, net_id, version, ip_address, reallocated_ips) if len(reallocated_ips) + len(subnets) < 2: raise exceptions.IpAddressGenerationFailure(net_id=net_id) return subnets class IpamRegistry(object): def __init__(self): self.strategies = { QuarkIpamANY.get_name(): QuarkIpamANY(), QuarkIpamBOTH.get_name(): QuarkIpamBOTH(), QuarkIpamBOTHREQ.get_name(): QuarkIpamBOTHREQ()} def is_valid_strategy(self, strategy_name): if strategy_name in self.strategies: return True return False def get_strategy(self, strategy_name): if self.is_valid_strategy(strategy_name): return self.strategies[strategy_name] fallback = CONF.QUARK.default_ipam_strategy LOG.warn("IPAM strategy %s not found, " "using default %s" % (strategy_name, fallback)) return self.strategies[fallback] IPAM_REGISTRY = IpamRegistry() ``` #### File: quark/plugin_modules/ports.py ```python import netaddr from neutron.common import exceptions from neutron.openstack.common import log as logging from neutron.openstack.common import uuidutils from neutron import quota from oslo.config import cfg from quark.db import api as db_api from quark.drivers import registry from quark import ipam from quark import plugin_views as v from quark import utils CONF = cfg.CONF LOG = logging.getLogger(__name__) def create_port(context, port): """Create a port Create a port which is a connection point of a device (e.g., a VM NIC) to attach to a L2 Neutron network. : param context: neutron api request context : param port: dictionary describing the port, with keys as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. All keys will be populated. """ LOG.info("create_port for tenant %s" % context.tenant_id) port_attrs = port["port"] mac_address = utils.pop_param(port_attrs, "mac_address", None) segment_id = utils.pop_param(port_attrs, "segment_id") fixed_ips = utils.pop_param(port_attrs, "fixed_ips") net_id = port_attrs["network_id"] addresses = [] with context.session.begin(): port_id = uuidutils.generate_uuid() net = db_api.network_find(context, id=net_id, segment_id=segment_id, scope=db_api.ONE) if not net: # Maybe it's a tenant network net = db_api.network_find(context, id=net_id, scope=db_api.ONE) if not net: raise exceptions.NetworkNotFound(net_id=net_id) quota.QUOTAS.limit_check( context, context.tenant_id, ports_per_network=len(net.get('ports', [])) + 1) ipam_driver = ipam.IPAM_REGISTRY.get_strategy(net["ipam_strategy"]) if fixed_ips: for fixed_ip in fixed_ips: subnet_id = fixed_ip.get("subnet_id") ip_address = fixed_ip.get("ip_address") if not (subnet_id and ip_address): raise exceptions.BadRequest( resource="fixed_ips", msg="subnet_id and ip_address required") addresses.extend(ipam_driver.allocate_ip_address( context, net["id"], port_id, CONF.QUARK.ipam_reuse_after, ip_address=ip_address)) else: addresses.extend(ipam_driver.allocate_ip_address( context, net["id"], port_id, CONF.QUARK.ipam_reuse_after)) group_ids, security_groups = v.make_security_group_list( context, port["port"].pop("security_groups", None)) mac = ipam_driver.allocate_mac_address(context, net["id"], port_id, CONF.QUARK.ipam_reuse_after, mac_address=mac_address) mac_address_string = str(netaddr.EUI(mac['address'], dialect=netaddr.mac_unix)) address_pairs = [{'mac_address': mac_address_string, 'ip_address': address.get('address_readable', '')} for address in addresses] net_driver = registry.DRIVER_REGISTRY.get_driver(net["network_plugin"]) backend_port = net_driver.create_port(context, net["id"], port_id=port_id, security_groups=group_ids, allowed_pairs=address_pairs) port_attrs["network_id"] = net["id"] port_attrs["id"] = port_id port_attrs["security_groups"] = security_groups LOG.info("Including extra plugin attrs: %s" % backend_port) port_attrs.update(backend_port) new_port = db_api.port_create( context, addresses=addresses, mac_address=mac["address"], backend_key=backend_port["uuid"], **port_attrs) # Include any driver specific bits return v._make_port_dict(new_port) def update_port(context, id, port): """Update values of a port. : param context: neutron api request context : param id: UUID representing the port to update. : param port: dictionary with keys indicating fields to update. valid keys are those that have a value of True for 'allow_put' as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. """ LOG.info("update_port %s for tenant %s" % (id, context.tenant_id)) with context.session.begin(): port_db = db_api.port_find(context, id=id, scope=db_api.ONE) if not port_db: raise exceptions.PortNotFound(port_id=id) address_pairs = [] fixed_ips = port["port"].pop("fixed_ips", None) if fixed_ips: ipam_driver = ipam.IPAM_REGISTRY.get_strategy( port_db["network"]["ipam_strategy"]) ipam_driver.deallocate_ip_address( context, port_db, ipam_reuse_after=CONF.QUARK.ipam_reuse_after) addresses = [] for fixed_ip in fixed_ips: subnet_id = fixed_ip.get("subnet_id") ip_address = fixed_ip.get("ip_address") if not (subnet_id and ip_address): raise exceptions.BadRequest( resource="fixed_ips", msg="subnet_id and ip_address required") # Note: we don't allow overlapping subnets, thus subnet_id is # ignored. addresses.append(ipam_driver.allocate_ip_address( context, port_db["network_id"], id, CONF.QUARK.ipam_reuse_after, ip_address=ip_address)) port["port"]["addresses"] = addresses mac_address_string = str(netaddr.EUI(port_db.mac_address, dialect=netaddr.mac_unix)) address_pairs = [{'mac_address': mac_address_string, 'ip_address': address.get('address_readable', '')} for address in addresses] group_ids, security_groups = v.make_security_group_list( context, port["port"].pop("security_groups", None)) net_driver = registry.DRIVER_REGISTRY.get_driver( port_db.network["network_plugin"]) net_driver.update_port(context, port_id=port_db.backend_key, security_groups=group_ids, allowed_pairs=address_pairs) port["port"]["security_groups"] = security_groups port = db_api.port_update(context, port_db, **port["port"]) return v._make_port_dict(port) def post_update_port(context, id, port): LOG.info("post_update_port %s for tenant %s" % (id, context.tenant_id)) if not port.get("port"): raise exceptions.BadRequest(resource="ports", msg="Port body required") with context.session.begin(): port_db = db_api.port_find(context, id=id, scope=db_api.ONE) if not port_db: raise exceptions.PortNotFound(port_id=id, net_id="") port = port["port"] if "fixed_ips" in port and port["fixed_ips"]: for ip in port["fixed_ips"]: address = None ipam_driver = ipam.IPAM_REGISTRY.get_strategy( port_db["network"]["ipam_strategy"]) if ip: if "ip_id" in ip: ip_id = ip["ip_id"] address = db_api.ip_address_find( context, id=ip_id, tenant_id=context.tenant_id, scope=db_api.ONE) elif "ip_address" in ip: ip_address = ip["ip_address"] net_address = netaddr.IPAddress(ip_address) address = db_api.ip_address_find( context, ip_address=net_address, network_id=port_db["network_id"], tenant_id=context.tenant_id, scope=db_api.ONE) if not address: address = ipam_driver.allocate_ip_address( context, port_db["network_id"], id, CONF.QUARK.ipam_reuse_after, ip_address=ip_address) else: address = ipam_driver.allocate_ip_address( context, port_db["network_id"], id, CONF.QUARK.ipam_reuse_after) address["deallocated"] = 0 already_contained = False for port_address in port_db["ip_addresses"]: if address["id"] == port_address["id"]: already_contained = True break if not already_contained: port_db["ip_addresses"].append(address) return v._make_port_dict(port_db) def get_port(context, id, fields=None): """Retrieve a port. : param context: neutron api request context : param id: UUID representing the port to fetch. : param fields: a list of strings that are valid keys in a port dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. """ LOG.info("get_port %s for tenant %s fields %s" % (id, context.tenant_id, fields)) results = db_api.port_find(context, id=id, fields=fields, scope=db_api.ONE) if not results: raise exceptions.PortNotFound(port_id=id, net_id='') return v._make_port_dict(results) def get_ports(context, filters=None, fields=None): """Retrieve a list of ports. The contents of the list depends on the identity of the user making the request (as indicated by the context) as well as any filters. : param context: neutron api request context : param filters: a dictionary with keys that are valid keys for a port as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Values in this dictiontary are an iterable containing values that will be used for an exact match comparison for that value. Each result returned by this function will have matched one of the values for each key in filters. : param fields: a list of strings that are valid keys in a port dictionary as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Only these fields will be returned. """ LOG.info("get_ports for tenant %s filters %s fields %s" % (context.tenant_id, filters, fields)) if filters is None: filters = {} query = db_api.port_find(context, fields=fields, **filters) return v._make_ports_list(query, fields) def get_ports_count(context, filters=None): """Return the number of ports. The result depends on the identity of the user making the request (as indicated by the context) as well as any filters. : param context: neutron api request context : param filters: a dictionary with keys that are valid keys for a network as listed in the RESOURCE_ATTRIBUTE_MAP object in neutron/api/v2/attributes.py. Values in this dictiontary are an iterable containing values that will be used for an exact match comparison for that value. Each result returned by this function will have matched one of the values for each key in filters. NOTE: this method is optional, as it was not part of the originally defined plugin API. """ LOG.info("get_ports_count for tenant %s filters %s" % (context.tenant_id, filters)) return db_api.port_count_all(context, **filters) def delete_port(context, id): """Delete a port. : param context: neutron api request context : param id: UUID representing the port to delete. """ LOG.info("delete_port %s for tenant %s" % (id, context.tenant_id)) port = db_api.port_find(context, id=id, scope=db_api.ONE) if not port: raise exceptions.PortNotFound(net_id=id) with context.session.begin(): backend_key = port["backend_key"] mac_address = netaddr.EUI(port["mac_address"]).value ipam_driver = ipam.IPAM_REGISTRY.get_strategy( port["network"]["ipam_strategy"]) ipam_driver.deallocate_mac_address(context, mac_address) ipam_driver.deallocate_ip_address( context, port, ipam_reuse_after=CONF.QUARK.ipam_reuse_after) db_api.port_delete(context, port) net_driver = registry.DRIVER_REGISTRY.get_driver( port.network["network_plugin"]) net_driver.delete_port(context, backend_key) def disassociate_port(context, id, ip_address_id): """Disassociates a port from an IP address. : param context: neutron api request context : param id: UUID representing the port to disassociate. : param ip_address_id: UUID representing the IP address to disassociate. """ LOG.info("disassociate_port %s for tenant %s ip_address_id %s" % (id, context.tenant_id, ip_address_id)) with context.session.begin(): port = db_api.port_find(context, id=id, ip_address_id=[ip_address_id], scope=db_api.ONE) if not port: raise exceptions.PortNotFound(port_id=id, net_id='') the_address = [address for address in port["ip_addresses"] if address["id"] == ip_address_id][0] port["ip_addresses"] = [address for address in port["ip_addresses"] if address.id != ip_address_id] if len(the_address["ports"]) == 0: the_address["deallocated"] = 1 return v._make_port_dict(port) def _diag_port(context, port, fields): p = v._make_port_dict(port) net_driver = registry.DRIVER_REGISTRY.get_driver( port.network["network_plugin"]) if 'config' in fields: p.update(net_driver.diag_port( context, port["backend_key"], get_status='status' in fields)) return p def diagnose_port(context, id, fields): if id == "*": return {'ports': [_diag_port(context, port, fields) for port in db_api.port_find(context).all()]} db_port = db_api.port_find(context, id=id, scope=db_api.ONE) if not db_port: raise exceptions.PortNotFound(port_id=id, net_id='') port = _diag_port(context, db_port, fields) return {'ports': port} ``` #### File: tests/plugin_modules/test_ip_policies.py ```python import contextlib import mock import netaddr from neutron.common import exceptions from quark import exceptions as quark_exceptions from quark.tests import test_quark_plugin class TestQuarkGetIpPolicies(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, ip_policy): db_mod = "quark.db.api" with mock.patch("%s.ip_policy_find" % db_mod) as ip_policy_find: ip_policy_find.return_value = ip_policy yield def test_get_ip_policy_not_found(self): with self._stubs(None): with self.assertRaises(quark_exceptions.IPPolicyNotFound): self.plugin.get_ip_policy(self.context, 1) def test_get_ip_policy(self): ip_policy = dict( id=1, tenant_id=1, name="foo", subnets=[dict(id=1)], networks=[dict(id=2)], exclude=[dict(offset=1, length=256)]) with self._stubs(ip_policy): resp = self.plugin.get_ip_policy(self.context, 1) self.assertEqual(len(resp.keys()), 6) self.assertEqual(resp["id"], 1) self.assertEqual(resp["name"], "foo") self.assertEqual(resp["subnet_ids"], [1]) self.assertEqual(resp["network_ids"], [2]) self.assertEqual(resp["exclude"], ip_policy["exclude"]) self.assertEqual(resp["tenant_id"], 1) def test_get_ip_policies(self): ip_policy = dict( id=1, tenant_id=1, name="foo", subnets=[dict(id=1)], networks=[dict(id=2)], exclude=[dict(offset=1, length=256)]) with self._stubs([ip_policy]): resp = self.plugin.get_ip_policies(self.context) self.assertEqual(len(resp), 1) resp = resp[0] self.assertEqual(len(resp.keys()), 6) self.assertEqual(resp["id"], 1) self.assertEqual(resp["subnet_ids"], [1]) self.assertEqual(resp["network_ids"], [2]) self.assertEqual(resp["exclude"], ip_policy["exclude"]) self.assertEqual(resp["name"], "foo") self.assertEqual(resp["tenant_id"], 1) class TestQuarkCreateIpPolicies(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, ip_policy, subnet=None, net=None): db_mod = "quark.db.api" with contextlib.nested( mock.patch("%s.subnet_find" % db_mod), mock.patch("%s.network_find" % db_mod), mock.patch("%s.ip_policy_create" % db_mod), ) as (subnet_find, net_find, ip_policy_create): subnet_find.return_value = [subnet] if subnet else None net_find.return_value = [net] if net else None ip_policy_create.return_value = ip_policy yield ip_policy_create def test_create_ip_policy_invalid_body_missing_exclude(self): with self._stubs(None): with self.assertRaises(exceptions.BadRequest): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict())) def test_create_ip_policy_invalid_body_missing_netsubnet(self): with self._stubs(None): with self.assertRaises(exceptions.BadRequest): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(exclude=["1.1.1.1/24"]))) def test_create_ip_policy_invalid_subnet(self): with self._stubs(None): with self.assertRaises(exceptions.SubnetNotFound): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(subnet_ids=[1], exclude=["1.1.1.1/24"]))) def test_create_ip_policy_invalid_network(self): with self._stubs(None): with self.assertRaises(exceptions.NetworkNotFound): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(network_ids=[1], exclude=["1.1.1.1/24"]))) def test_create_ip_policy_network_ip_policy_already_exists(self): with self._stubs(None, net=dict(id=1, ip_policy=dict(id=2))): with self.assertRaises(quark_exceptions.IPPolicyAlreadyExists): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(network_ids=[1], exclude=["1.1.1.1/24"]))) def test_create_ip_policy_subnet_ip_policy_already_exists(self): with self._stubs(None, subnet=dict(id=1, ip_policy=dict(id=2))): with self.assertRaises(quark_exceptions.IPPolicyAlreadyExists): self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(subnet_ids=[1], exclude=["1.1.1.1/24"]))) def test_create_ip_policy_network(self): ipp = dict(subnet_id=None, network_id=1, exclude=[dict(address=int(netaddr.IPAddress("1.1.1.1")), prefix=24)]) with self._stubs(ipp, net=dict(id=1, ip_policy=dict(id=2))): with self.assertRaises(quark_exceptions.IPPolicyAlreadyExists): resp = self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(network_ids=[1], exclude=["1.1.1.1/24"]))) self.assertEqual(len(resp.keys()), 3) self.assertIsNone(resp["subnet_ids"]) self.assertEqual(resp["network_ids"], 1) self.assertEqual(resp["exclude"], [dict()]) def test_create_ip_policy_subnet(self): ipp = dict(subnet_id=1, network_id=None, exclude=[dict(address=int(netaddr.IPAddress("1.1.1.1")), prefix=24)]) with self._stubs(ipp, subnet=dict(id=1, ip_policy=dict(id=2))): with self.assertRaises(quark_exceptions.IPPolicyAlreadyExists): resp = self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(subnet_ids=[1], exclude=["1.1.1.1/24"]))) self.assertEqual(len(resp.keys()), 3) self.assertEqual(resp["subnet_id"], 1) self.assertIsNone(resp["network_id"]) self.assertEqual(resp["exclude"], ["1.1.1.1/24"]) def test_create_ip_policy(self): ipp = dict( subnets=[dict(id=1)], networks=[], id=1, tenant_id=1, exclude=[dict(offset=0, length=256)], name="foo") with self._stubs(ipp, subnet=dict(id=1, ip_policy=None)): resp = self.plugin.create_ip_policy(self.context, dict( ip_policy=dict(subnet_ids=[1], exclude=[dict(offset=0, length=256)]))) self.assertEqual(len(resp.keys()), 6) self.assertEqual(resp["subnet_ids"], [1]) self.assertEqual(resp["network_ids"], []) self.assertEqual(resp["exclude"], [dict(offset=0, length=256)]) self.assertEqual(resp["name"], "foo") self.assertEqual(resp["tenant_id"], 1) class TestQuarkUpdateIpPolicies(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, ip_policy, subnets=None, networks=None): if not subnets: subnets = [] if not networks: networks = [] db_mod = "quark.db.api" with contextlib.nested( mock.patch("%s.ip_policy_find" % db_mod), mock.patch("%s.subnet_find" % db_mod), mock.patch("%s.network_find" % db_mod), mock.patch("%s.ip_policy_update" % db_mod), ) as (ip_policy_find, subnet_find, network_find, ip_policy_update): ip_policy_find.return_value = ip_policy subnet_find.return_value = subnets network_find.return_value = networks yield ip_policy_update def test_update_ip_policy_not_found(self): with self._stubs(None) as (ip_policy_update): with self.assertRaises(quark_exceptions.IPPolicyNotFound): self.plugin.update_ip_policy(self.context, 1, dict(ip_policy=None)) self.assertEqual(ip_policy_update.called, 0) def test_update_ip_policy_subnets_not_found(self): ipp = dict(id=1, subnets=[]) with self._stubs(ipp) as (ip_policy_update): with self.assertRaises(exceptions.SubnetNotFound): self.plugin.update_ip_policy( self.context, 1, dict(ip_policy=dict(subnet_ids=[100]))) self.assertEqual(ip_policy_update.called, 0) def test_update_ip_policy_subnets_already_exists(self): ipp = dict(id=1, subnets=[dict()]) with self._stubs( ipp, subnets=[dict(id=1, ip_policy=dict(id=1))] ) as (ip_policy_update): with self.assertRaises(quark_exceptions.IPPolicyAlreadyExists): self.plugin.update_ip_policy( self.context, 1, dict(ip_policy=dict(subnet_ids=[100]))) self.assertEqual(ip_policy_update.called, 0) def test_update_ip_policy_subnets(self): ipp = dict(id=1, subnets=[dict()], exclude=[dict(offset=0, length=256)], name="foo", tenant_id=1) with self._stubs( ipp, subnets=[dict(id=1, ip_policy=None)] ) as (ip_policy_update): self.plugin.update_ip_policy( self.context, 1, dict(ip_policy=dict(subnet_ids=[100]))) self.assertEqual(ip_policy_update.called, 1) def test_update_ip_policy_networks_not_found(self): ipp = dict(id=1, networks=[]) with self._stubs(ipp) as (ip_policy_update): with self.assertRaises(exceptions.NetworkNotFound): self.plugin.update_ip_policy( self.context, 1, dict(ip_policy=dict(network_ids=[100]))) self.assertEqual(ip_policy_update.called, 0) def test_update_ip_policy_networks(self): ipp = dict(id=1, networks=[dict()], exclude=[dict(offset=0, length=256)], name="foo", tenant_id=1) with self._stubs( ipp, networks=[dict(id=1, ip_policy=None)] ) as (ip_policy_update): self.plugin.update_ip_policy( self.context, 1, dict(ip_policy=dict(network_ids=[100]))) self.assertEqual(ip_policy_update.called, 1) class TestQuarkDeleteIpPolicies(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, ip_policy): db_mod = "quark.db.api" with contextlib.nested( mock.patch("%s.ip_policy_find" % db_mod), mock.patch("%s.ip_policy_delete" % db_mod), ) as (ip_policy_find, ip_policy_delete): ip_policy_find.return_value = ip_policy yield ip_policy_find, ip_policy_delete def test_delete_ip_policy_not_found(self): with self._stubs(None): with self.assertRaises(quark_exceptions.IPPolicyNotFound): self.plugin.delete_ip_policy(self.context, 1) def test_delete_ip_policy_in_use(self): with self._stubs(dict(networks=True)): with self.assertRaises(quark_exceptions.IPPolicyInUse): self.plugin.delete_ip_policy(self.context, 1) def test_delete_ip_policy(self): ip_policy = dict( id=1, networks=[], subnets=[]) with self._stubs(ip_policy) as (ip_policy_find, ip_policy_delete): self.plugin.delete_ip_policy(self.context, 1) self.assertEqual(ip_policy_find.call_count, 1) self.assertEqual(ip_policy_delete.call_count, 1) ``` #### File: tests/plugin_modules/test_routes.py ```python import contextlib import mock from neutron.common import exceptions from quark import exceptions as quark_exceptions from quark.tests import test_quark_plugin class TestQuarkGetRoutes(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, routes): with mock.patch("quark.db.api.route_find") as route_find: route_find.return_value = routes yield def test_get_routes(self): route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=2) with self._stubs(routes=[route]): res = self.plugin.get_routes(self.context) for key in route.keys(): self.assertEqual(res[0][key], route[key]) def test_get_route(self): route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=2) with self._stubs(routes=route): res = self.plugin.get_route(self.context, 1) for key in route.keys(): self.assertEqual(res[key], route[key]) def test_get_route_not_found_fails(self): with self._stubs(routes=None): with self.assertRaises(quark_exceptions.RouteNotFound): self.plugin.get_route(self.context, 1) class TestQuarkCreateRoutes(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, create_route, find_routes, subnet): db_mod = "quark.db.api" with contextlib.nested( mock.patch("%s.route_create" % db_mod), mock.patch("%s.route_find" % db_mod), mock.patch("%s.subnet_find" % db_mod) ) as (route_create, route_find, subnet_find): route_create.return_value = create_route route_find.return_value = find_routes subnet_find.return_value = subnet yield def test_create_route(self): subnet = dict(id=2) create_route = dict(id=1, cidr="172.16.0.0/24", gateway="172.16.0.1", subnet_id=subnet["id"]) route = dict(id=1, cidr="0.0.0.0/0", gateway="192.168.0.1", subnet_id=subnet["id"]) with self._stubs(create_route=create_route, find_routes=[route], subnet=subnet): res = self.plugin.create_route(self.context, dict(route=create_route)) for key in create_route.keys(): self.assertEqual(res[key], create_route[key]) def test_create_route_no_subnet_fails(self): subnet = dict(id=2) route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=subnet["id"]) with self._stubs(create_route=route, find_routes=[], subnet=None): with self.assertRaises(exceptions.SubnetNotFound): self.plugin.create_route(self.context, dict(route=route)) def test_create_no_other_routes(self): subnet = dict(id=2) create_route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=subnet["id"]) with self._stubs(create_route=create_route, find_routes=[], subnet=subnet): res = self.plugin.create_route(self.context, dict(route=create_route)) self.assertEqual(res["cidr"], create_route["cidr"]) def test_create_conflicting_route_raises(self): subnet = dict(id=2) create_route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=subnet["id"]) route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=subnet["id"]) with self._stubs(create_route=create_route, find_routes=[route], subnet=subnet): with self.assertRaises(quark_exceptions.RouteConflict): self.plugin.create_route(self.context, dict(route=create_route)) class TestQuarkDeleteRoutes(test_quark_plugin.TestQuarkPlugin): @contextlib.contextmanager def _stubs(self, route): db_mod = "quark.db.api" with contextlib.nested( mock.patch("%s.route_delete" % db_mod), mock.patch("%s.route_find" % db_mod), ) as (route_delete, route_find): route_find.return_value = route yield route_delete def test_delete_route(self): route = dict(id=1, cidr="192.168.0.0/24", gateway="192.168.0.1", subnet_id=2) with self._stubs(route=route) as route_delete: self.plugin.delete_route(self.context, 1) self.assertTrue(route_delete.called) def test_delete_route_not_found_fails(self): with self._stubs(route=None): with self.assertRaises(quark_exceptions.RouteNotFound): self.plugin.delete_route(self.context, 1) ```
{ "source": "jkoelker/slurry", "score": 2 }
#### File: slurry/tests/test_producers.py ```python import pytest import trio from slurry import Pipeline from slurry.sections import Repeat from .fixtures import produce_alphabet async def test_repeat_valid_args(): with pytest.raises(RuntimeError): async with Pipeline.create( Repeat(1) ) as pipeline, pipeline.tap() as aiter: async for item in aiter: assert False, 'No items should be emitted due to invalid arguments provided.' async def test_repeat_args(autojump_clock): results = [] async with Pipeline.create( Repeat(1, 'a') ) as pipeline, pipeline.tap() as aiter: start_time = trio.current_time() async for item in aiter: results.append((item, trio.current_time() - start_time)) if len(results) == 5: break assert results == [('a', 0), ('a', 1), ('a', 2), ('a', 3), ('a', 4)] async def test_repeat_kwargs(autojump_clock): results = [] async with Pipeline.create( Repeat(1, default='a') ) as pipeline, pipeline.tap() as aiter: start_time = trio.current_time() async for item in aiter: results.append((item, trio.current_time() - start_time)) if len(results) == 5: break assert results == [('a', 0), ('a', 1), ('a', 2), ('a', 3), ('a', 4)] async def test_repeat_input(autojump_clock): results = [] async with Pipeline.create( produce_alphabet(1.5, max=3, delay=1), Repeat(1) ) as pipeline, pipeline.tap() as aiter: start_time = trio.current_time() async for item in aiter: results.append((item, trio.current_time() - start_time)) if len(results) == 5: break assert results == [('a', 1), ('a', 2), ('b', 2.5), ('b', 3.5), ('c', 4)] ```
{ "source": "jkoelker/stonkers", "score": 3 }
#### File: src/stonkers/client.py ```python from . import convert class Client(object): def __init__(self, tda_client): self.tda = tda_client @staticmethod def _accounts(accounts, dataframe=True): accounts = {a["securitiesAccount"]["accountId"]: a for a in accounts} if dataframe: return convert.accounts(accounts) return accounts def account(self, account_id, fields=None, dataframe=True): accounts = self.tda.get_account(account_id, fields=fields).json() return self._accounts([accounts], dataframe=dataframe) def accounts(self, fields=None, dataframe=True): accounts = self.tda.get_accounts(fields=fields).json() return self._accounts(accounts, dataframe=dataframe) def options(self, symbol, dataframe=True, **kwargs): options = self.tda.get_option_chain(symbol, **kwargs).json() if dataframe: return convert.options(options) return options def quote(self, symbols, dataframe=True): quotes = self.tda.get_quotes(symbols).json() if dataframe: return convert.quote(quotes) return quotes def positions(self, account_id, dataframe=True): account = self.account( account_id, fields=self.tda.Account.Fields.POSITIONS ) positions = account["positions"][0] if dataframe: return convert.positions(positions) return positions ``` #### File: src/stonkers/convert.py ```python import pandas as pd def accounts(data): """accounts as dataframe""" return pd.concat( pd.json_normalize(v["securitiesAccount"]) for v in data.values() ).set_index("accountId") def transactions(data): """transaction information as Dataframe""" return pd.json_normalize(data) def search(data): """search for symbol as a dataframe""" ret = [] for symbol in data: ret.append(data[symbol]) return pd.DataFrame(ret) def instrument(data): """instrument info from cusip as dataframe""" return pd.DataFrame(data) def quote(data): """quote as dataframe""" return pd.DataFrame(data).T.set_index("symbol") def history(data): """get history as dataframe""" df = pd.DataFrame(data["candles"]) df["datetime"] = pd.to_datetime(df["datetime"], unit="ms") return df def options(data): """options chain as dataframe""" ret = [] for date in data["callExpDateMap"]: for strike in data["callExpDateMap"][date]: ret.extend(data["callExpDateMap"][date][strike]) for date in data["putExpDateMap"]: for strike in data["putExpDateMap"][date]: ret.extend(data["putExpDateMap"][date][strike]) df = pd.DataFrame(ret) for col in ( "tradeTimeInLong", "quoteTimeInLong", "expirationDate", "lastTradingDay", ): if col in df.columns: df[col] = pd.to_datetime(df[col], unit="ms") for col in ("delta", "gamma", "theta", "vega", "rho", "volatility"): if col in df.columns: df[col] = pd.to_numeric(df[col], errors="coerce") return df def positions(data): """positions list as a dataframe""" ret = [] for position in data: instrument = position.pop("instrument", {}) for col in ("assetType", "cusip", "symbol"): if col in instrument: position[col] = instrument[col] ret.append(position) return pd.DataFrame(ret).set_index("symbol") ```
{ "source": "jkoelker/syncthang", "score": 2 }
#### File: syncthang/syncthang/server.py ```python import functools import logging from eventlet.green.OpenSSL import crypto import eventlet from .bep import messages from .bep import protocol LOG = logging.getLogger(__name__) def cert_to_device_id(cert): cert_bytes = crypto.dump_certificate(crypto.FILETYPE_ASN1, cert) return messages.device_id_from_cert(cert_bytes) def start_remote(local_device_id, model, sock, addr): cert = sock.get_peer_certificate() device_id = cert_to_device_id(cert) if local_device_id == device_id: LOG.info('Connected to myself (%s) - should not happen', device_id) sock.shutdown() sock.close() if device_id in model.devices: LOG.info('Connected to already connected device (%s)', device_id) sock.shutdown() sock.close() remote_device = protocol.RemoteDevice(device_id, sock, model) model.devices[device_id] = remote_device remote_device.start() def serve(sock, device_id, model): eventlet.serve(sock, functools.partial(start_remote, device_id, model)) ```
{ "source": "jkoelmel/networking_in_python", "score": 3 }
#### File: networking_in_python/server/client_handler.py ```python import datetime import pickle import threading from random import Random from Crypto.PublicKey import RSA from Crypto.Cipher import AES, PKCS1_OAEP from Crypto.Random import get_random_bytes from menu import Menu class ClientHandler: """ The client handler class receives and process client requests and sends responses back to the client linked to this handler. """ def __init__(self, server_instance, clientsocket, addr): """ :param server_instance: passed as 'self' when the object of this class is created in the server object :param clientsocket: the accepted client on server side. this handler, by itself, can send and receive data from/to the client that is linked to. :param addr: addr[0] = server ip address, addr[1] = client id assigned buy the server """ self.server_ip = addr[0] self.client_id = addr[1] self.server = server_instance self.handler = clientsocket self.print_lock = threading.Lock() # creates the print lock self.menu = Menu() self.username = "" self.messages = {} self.user_public_key = None self.chat_private_key = None self.chat_public_key = None self.chat_channel = {'channel': None, 'users': '', 'admin': ''} self.mapping = [] self.mPrime = [] self.names = ["", "Nick", "Bobby", "Mike"] def process_requests(self): """ :return: VOID """ while True: data = self.handler.recv(1024) if not data: break deserialized_data = pickle.loads(data) self.process_request(deserialized_data) def process_request(self, request): """ :request: the request received from the client. Note that this must be already deserialized :return: VOID """ option = request['headers']['option'] response = {'payload': None, 'headers': {}, 'ack': -1} if option == 0: menu = self.menu.get() response = {'payload': menu, 'headers': {'clientid': self.client_id}, 'ack': 0} log = "Connected: \tUser: " + request['headers']['username'] + f"\tClient ID: {self.client_id}" self.username = request['headers']['username'] self.log(log) elif option == 1: userList = self.get_users_connected() response = {'payload': userList, 'ack': 1} elif option == 2: message = request['payload'] recipient = request['headers']['recipient'] response['ack'] = self.save_messages(message, recipient) elif option == 3: response = {'payload': self.messages, 'ack': 3} self.messages = {} # once read, clear messages list. elif option == 4: response = {'payload': None, 'ack': 4} elif option == 5: message = request['payload'] response['ack'] = self.save_messages(message) elif option == 6: self.user_public_key = request['headers']['public_key'] self.chat_channel['channel'] = request['headers']['channel'] self.chat_channel['users'] = self.username self.chat_channel['admin'] = self.username key = RSA.generate(2048) self.chat_private_key = key.export_key() self.chat_public_key = key.public_key().export_key() recvKey = RSA.importKey(self.user_public_key) session_key = get_random_bytes(16) cipher_rsa = PKCS1_OAEP.new(recvKey) enc_session_key = cipher_rsa.encrypt(session_key) cipher_aes = AES.new(session_key, AES.MODE_EAX) ciphertext, tag = cipher_aes.encrypt_and_digest(self.chat_private_key) keyTransfer = [] for item in (enc_session_key, cipher_aes.nonce, tag, ciphertext, self.chat_public_key): keyTransfer.append(item) response = {'payload': keyTransfer, 'ack': 6} elif option == 7: self.chat_channel['channel'] = request['headers']['channel'] self.chat_channel['users'] = self.username self.user_public_key = request['headers']['public_key'] key = RSA.generate(2048) self.chat_private_key = key.export_key() self.chat_public_key = key.public_key().export_key() recvKey = RSA.importKey(self.user_public_key) session_key = get_random_bytes(16) cipher_rsa = PKCS1_OAEP.new(recvKey) enc_session_key = cipher_rsa.encrypt(session_key) cipher_aes = AES.new(session_key, AES.MODE_EAX) ciphertext, tag = cipher_aes.encrypt_and_digest(self.chat_private_key) keyTransfer = [] for item in (enc_session_key, cipher_aes.nonce, tag, ciphertext, self.chat_public_key): keyTransfer.append(item) userList = [] for key, value in self.server.handlers.items(): if value.chat_channel['channel'] == self.chat_channel['channel']: userList.append(value.username) if value.chat_channel['admin'] != '': print("found admin!", value.chat_channel['admin']) self.chat_channel['admin'] = value.chat_channel['admin'] response = {'payload': keyTransfer, 'ack': 7, 'users': userList, 'admin': self.chat_channel['admin']} elif option == 8: response = {'payload': None, 'ack': 8, 'name': request['headers']['bot'], 'options': request['headers']['options']} elif option == 9: response = {'payload': self.mapping, 'ack': 9, 'names': self.names} elif option == 10: destination = [] routes = [] cost = [] for i in range(1, len(self.names)): destination.append(self.names[i]) routes.append([]) cost.append(0) response = {'payload': self.mapping, 'ack': 10, 'names': self.names, 'destination': destination, 'routes': routes, 'cost': cost} elif option == 11: self.mPrime = self.mapping row = 0 for j in range(1, len(self.names)): for k in range(j, len(self.names) - 1): if j != k: if (self.mapping[j][k] + self.mapping[0][k]) < self.mapping[0][k - 1]: self.mPrime[row][k - 1] = self.mapping[j][k] + self.mapping[0][k] self.mPrime[k - 1][row] = self.mPrime[row][k - 1] row += 1 response = {'payload': self.mPrime, 'ack': 11, 'names': self.names, 'map': self.mapping} elif option == 12: response = {'payload': None, 'ack': 12} elif option == 13: self.server.handlers.pop((self.server_ip, self.client_id)) self.log(f'{self.username} has disconnected.') response = {'payload': None, 'ack': 13} elif option == 100: # use user distances generated and populate rest of 2D matrix for 3 other users distances = request['payload'] self.names[0] = self.username rand = Random() user2 = [distances[1], 0, 0, 0] user3 = [distances[2], 0, 0, 0] user4 = [distances[3], 0, 0, 0] self.mapping.append(distances) self.mapping.append(user2) self.mapping.append(user3) self.mapping.append(user4) # populate the rest of the distance map for i in range(4): for j in range(i): self.mapping[i][j] = rand.randint(1, 20) self.mapping[j][i] = self.mapping[i][j] response = {'payload': None, 'ack': 100} self.send(response) # after response is sent, if option 11 was chosen, update the mapping if option == 11: self.mapping = self.mPrime def get_users_connected(self): users = {} for key, value in self.server.handlers.items(): users[value.username] = key[1] return users def save_messages(self, message, recipient=None): try: if not recipient: for key, value in self.server.handlers.items(): recipient_handler = self.server.handlers[key] messages_list = recipient_handler.messages if self.client_id not in messages_list.keys(): messages_list[self.client_id] = [] message_info = (datetime.datetime.now().replace(microsecond=0).isoformat(), message, f'broadcast message from {self.username}', self.client_id) messages_list[self.client_id].append(message_info) return 5 else: recipient_handler = None for key, value in self.server.handlers.items(): print(key, recipient) if key[1] == recipient[1]: recipient_handler = self.server.handlers[key] if recipient not in self.server.handlers.keys(): return -2 messages_list = recipient_handler.messages if self.client_id not in messages_list.keys(): messages_list[self.client_id] = [] message_info = (datetime.datetime.now().replace(microsecond=0).isoformat(), message, f'private message from {self.username}') messages_list[self.client_id].append(message_info) except Exception as err: self.log(err) return -1 return 2 def send(self, data): """ serializes and sends data to server on behalf of client """ serialized_data = pickle.dumps(data) self.handler.send(serialized_data) def receive(self, max_mem_alloc=4096): """ :max_mem_alloc: an integer representing the maximum allocation (in bytes) in memory allowed for the data that is about to be received. By default is set to 4096 bytes :return: the deserialized data """ deserialized_data = pickle.loads(self.handler.recv(1024)) return deserialized_data def sendID(self, clientid): """ sends clientID to client upon acceptance by server """ message = {'clientid': clientid} self.send(message) def log(self, message): """ log statement of connected persons to server console output """ self.print_lock.acquire() print(message) self.print_lock.release() def run(self): self.process_requests() ``` #### File: networking_in_python/server/menu.py ```python import json class Menu: @staticmethod def get(): menu = { 'titles': ['****** TCP/UDP Network ******', '------------------------------------', 'Options Available:'], 'options': {'1': 'Get Users List', '2': 'Send A Message', '3': 'Get My Messages', '4': 'Send A Direct Message via UDP', '5': 'Broadcast A Message With CDMA', '6': 'Create A Secure Channel To Chat Using PGP', '7': 'Join An Existing Channel', '8': 'Create A Bot To Manage A Future Channel', '9': 'Map The Network', '10': 'Get the Routing Table of This Client with LSP', '11': 'Get the Routing Table of This Network with DVP', '12': 'Turn Web Proxy Server On (WIP)', '13': 'Disconnect From Server' } } menu_json = json.dumps(menu) return menu_json @staticmethod def option(): """ :return: an integer representing the option chosen by the user from the menu """ option = int(input("\n\nOption <Enter a number>: ")) while option not in range(1, 14): option = int(input("\nInvalid entry, choose another option:")) return option ```
{ "source": "jkoelndorfer/aerisweather-python-sdk", "score": 3 }
#### File: aerisweather-python-sdk/aerisweather/aerisweather.py ```python from typing import Dict, List from aerisweather.requests.Endpoint import Endpoint, EndpointType from aerisweather.requests.ParameterType import ParameterType from aerisweather.requests.RequestAction import RequestAction from aerisweather.requests.RequestFilter import RequestFilter from aerisweather.requests.RequestLocation import RequestLocation from aerisweather.requests.RequestQuery import RequestQuery from aerisweather.requests.RequestSort import RequestSort from aerisweather.responses.AlertsResponse import AlertsResponse from aerisweather.responses.ConditionsResponse import ConditionsResponse from aerisweather.responses.CustomResponse import CustomResponse from aerisweather.responses.ForecastsResponse import ForecastsResponse from aerisweather.responses.ObservationsResponse import ObservationsResponse from aerisweather.responses.ObservationsSummaryResponse import ObservationsSummaryResponse from aerisweather.responses.PlacesResponse import PlacesResponse from aerisweather.utils.AerisError import AerisError from aerisweather.utils.AerisNetwork import AerisNetwork class AerisWeather: """ Defines the main object for the aerisweather python library. """ def __init__(self, client_id: str, client_secret: str, app_id: str=""): """ Constructor Params: - client_id: AerisWeather API account client id - client_secret: AerisWeather API account client secret - app_id: Optional - Namespace or application id of the application using this library """ self.app_id = app_id self.client_id = client_id self.client_secret = client_secret self.url_host = "https://api.aerisapi.com/" self.location = None self.action = None self.filter_ = None self.sort = None self.params = None self.query = None def request(self, endpoint): """ Makes the request to the Aeris API and returns the appropriate response array. Builds the API request URL, handles the response json, and raises an AerisError if the API returns an error. Params: - endpoint: An Endpoint object containing the EndpointType and any other optional parameters needed for for the API request. Returns: - a list of specific response objects, who's type is based on the request data - an empty list if there is no data - an AerisError object if there was an error condition reported by the api response - a URLError if there was an issue with sending the request - a generic Exception for all other issues """ url = self.url(endpoint_type=endpoint.endpoint_type, location=endpoint.location, action=endpoint.action, filter_=endpoint.filter_, sort=endpoint.sort, params=endpoint.params, query=endpoint.query) network = AerisNetwork() json_obj = network.get_json(url, self.app_id) responses = [] # Determine if we have a valid data response, or if there is an API error response_error = AerisError.api_error(json_obj) if response_error is None: # determine if we have one response or an array if type(json_obj["response"]) is list: for resp in json_obj["response"]: responses.append(self.response(endpoint.endpoint_type, resp)) else: responses.append(self.response(endpoint.endpoint_type, json_obj["response"])) else: # we have some kind of error or major warning from the API raise response_error return responses def url(self, endpoint_type: EndpointType, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str]=None) -> str: """ Generates the appropriate request url for a standard single API request. Generally called internally from the request method. Builds and returns a full API request URL based on the attributes passed in. Params: - endpoint_type: EndpointType - determines which Aeris API endpoint will be called - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - url string """ url = self.url_host if endpoint_type == EndpointType.CUSTOM: url += endpoint_type.custom + "/" else: url += endpoint_type.value + "/" if action is not None: url += action.value + "/" else: url += location.location_str() url += "?client_id=" + self.client_id url += "&client_secret=" + self.client_secret if params is not None: for param, value in params.items(): url += "&" + param.value + "=" + value if sort is not None: url += "&sort=" + sort.value if filter_ is not None: if len(filter_) > 0: url += "&filter=" + ",".join(filt.value for filt in filter_) out_query = self.query_str(query) if out_query is not None: url += "&query=" + out_query return url @staticmethod def response(endpoint_type: EndpointType, response_json): """ Determines the appropriate response object based on EndpointType and returns the completed response object. Given the endpoint type and the response json from the Aeris API, the method will return a fullfilled response object. Params: - endpoint_type: EndpointType - response_json - a single response portion of the json returned from the Aeris API such as: json_obj["response"] Returns: - a completed/fullfilled response object """ if endpoint_type == EndpointType.ALERTS: return AlertsResponse(response_json) elif endpoint_type == EndpointType.CONDITIONS: return ConditionsResponse(response_json) elif endpoint_type == EndpointType.FORECASTS: return ForecastsResponse(response_json) elif endpoint_type == EndpointType.OBSERVATIONS: return ObservationsResponse(response_json) elif endpoint_type == EndpointType.OBSERVATIONS_SUMMARY: return ObservationsSummaryResponse(response_json) elif endpoint_type == EndpointType.PLACES: return PlacesResponse(response_json) else: return CustomResponse(response_json) @staticmethod def query_str(query_dict): """ Takes a RequestQuery object and returns a proper Aeris API url query Params: - query_dict: A dictionary containing a single RequestQuery and its value Returns: - str: a correctly formatted query attribute ready to be inserted into an API request url """ out_query = "" if query_dict is not None: for q, value in query_dict.items(): out_query += "&" + q.value + "=" + value else: out_query = None return out_query def batch_request(self, endpoints: List[Endpoint], global_location: RequestLocation = None, global_filter_: [RequestFilter] = None, global_sort: RequestSort = None, global_params: Dict[ParameterType, str] = None, global_query: Dict[RequestQuery, str] = None): """ Makes the batch request to the Aeris API and returns the appropriate response array. If successful, the batch_request method will return a list of response objects. The list will contain the responses in the order they are requested. If a request results in multiple responses, those responses will be listed before continuing to the next request's response. Params: - endpoints: List[Endpoint] - a list of Endpoint objects, one for each request in the batch request - global_location: RequestLocation - a RequestLocation object that will be applied to each request, unless the request has a local RequestLocation - global_filter_: [RequestFilter] - a list of RequestFilters that will be applied to each request, unless the request has a local RequestFilter - global_sort: RequestSort - a RequestSort object that will be applied to each request, unless the request has a local RequestSort - global_params: Dict[ParameterType, str] - a dictionary of parameters that will be applied to each request, unless the request has a local parameter dict - global_query: Dict[RequestQuery, str] - a dictionary of queries that will be applied to each request, unless the request has a local query dict Returns: - a list of specific response objects, who's type is based on the request data, in the order of the requests - an empty list if there is no data - an AerisError object if there was an error condition reported by the api response - a URLError if there was an issue with sending the request - a generic Exception for all other issues """ url = self.batch_url(endpoints=endpoints, global_location=global_location, global_filter_=global_filter_, global_sort=global_sort, global_params=global_params, global_query=global_query) network = AerisNetwork() json_obj = network.get_json(url, self.app_id) responses = [] # Determine if we have a valid data response, or if there is an API error response_error = AerisError.api_error(json_obj) if response_error is None: endpoint_counter = 0 for resp in json_obj["response"]["responses"]: # Batch response json - check for an error response here, for things like the alerts endpoint's # "warn_no_data" response. batch_error = AerisError.api_error(json_obj) if batch_error is None: # get the appropriate response for r in resp["response"]: # check each response within the batch response for an error code response_error = AerisError.api_error(resp) if response_error is None: endpoint_type = endpoints[endpoint_counter].endpoint_type responses.append(self.response(endpoint_type, r)) else: raise response_error else: raise batch_error endpoint_counter += 1 else: # we have some kind of error or major warning from the API raise response_error return responses def batch_url(self, endpoints: List[Endpoint], global_location: RequestLocation = None, global_filter_: [RequestFilter] = None, global_sort: RequestSort = None, global_params: Dict[ParameterType, str] = None, global_query: Dict[RequestQuery, str] = None) -> str: """ Generate the appropriate batch request url. The batch request also supports all of the standard endpoint parameters, such as p, limit, and query, except that when used, these batch parameters are considered global and applied to each individual request provided with the request's parameters. Note, however, that any parameters included within an individual request (within the requests parameter) will override those same global options found in the main batch request. Parameters can be passed to each individual endpoint as well but must be URL-encoded, use "%3F" for "?" and "%26" for "&". Example: https://api.aerisapi.com/batch? p=truckee,nv&client_id=###########&client_secret=######################## &requests= /places/54660, /advisories%3Flimit=1%26radius=10mi, /observations%3Fp=54601 Params: - endpoints: List[Endpoint] - a list of Endpoint objects, one for each request in the batch request - global_location: RequestLocation - a RequestLocation object that will be applied to each request, unless the request has a local RequestLocation - global_filter_: [RequestFilter] - a list of RequestFilters that will be applied to each request, unless the request has a local RequestFilter - global_sort: RequestSort - a RequestSort object that will be applied to each request, unless the request has a local RequestSort - global_params: Dict[ParameterType, str] - a dictionary of parameters that will be applied to each request, unless the request has a local parameter dict - global_query: Dict[RequestQuery, str] - a dictionary of queries that will be applied to each request, unless the request has a local query dict Returns: - url string for the batch_request """ url = self.url_host + "batch?client_id=" + self.client_id + "&client_secret=" + self.client_secret # add the global request parameters - these apply to all endpoints in the batch request if global_location is not None: url += "&p=" + global_location.location_str() if global_filter_ is not None: if len(global_filter_) > 0: url += "&filter=" for filt in global_filter_: url += filt.value + "," if global_params is not None: for param, value in global_params.items(): url += "&" + param.value + "=" + value if global_sort is not None: url += "&sort=" + global_sort.value out_query = self.query_str(global_query) if out_query is not None: url += "&query=" + out_query # add the requests section url += "&requests=" # add the specifc endpoint requests and their parameters for endpoint in endpoints: has_param = False url += "/" + endpoint.endpoint_type.value if endpoint.action is not None: url += "/" + endpoint.action.value if endpoint.location is not None: url += "%3Fp=" + endpoint.location.location_str() has_param = True if endpoint.filter_ is not None and len(endpoint.filter_) > 0: if has_param: url += "%26filter=" else: url += "%3Ffilter=" for filt in endpoint.filter_: url += filt.value + "," has_param = True if endpoint.params is not None: for param, value in endpoint.params.items(): if has_param: url += "%26" else: url += "%3F" url += param.value + "=" + value + "," has_param = True if endpoint.sort is not None: if has_param: url += "%26sort=" else: url += "%3Fsort=" url += endpoint.sort.value has_param = True out_query = self.query_str(endpoint.query) if out_query is not None: if has_param: url += "%26query=" else: url += "%3Fquery=" url += out_query # has_param = True # add a trailing comma in case there are more endpoints if not url.endswith(","): url += "," # strip unused trailing commas while url.endswith(","): url = url[:-1] return url def alerts(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get alerts data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of AlertsResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.ALERTS, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def conditions(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get conditions data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of ConditionsResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.CONDITIONS, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def forecasts(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get forecast data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of ForecastsResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.FORECASTS, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def observations(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get observation data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of ObservationsResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.OBSERVATIONS, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def observations_summary(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get observations summary data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of ObservationsSummaryResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.OBSERVATIONS_SUMMARY, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def places(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get places data for a specified location. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of PlacesResponse objects if successful - an empty list if there is no data """ endpoint = Endpoint(endpoint_type=EndpointType.PLACES, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) def custom_endpoint(self, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Performs an API request to get custom endpoint data for a specified location. When calling custom_endpoint, in addition to setting the EndpointType of the Endpoint object to CUSTOM, the EndpointType.custom value must be set to the string value of the endpoint you are requesting. See the examples section to see hwo this is done. Params: - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries Returns: - a list of CustomResponse objects if successful - an empty list if there is no data Examples: # You can also use the custom endpoint type to request data from a known valid endpoint, for cases # where new API data fields have not yet been added to an endpoint's response class. EndpointType.custom = "forecasts" f_list = awx.request(endpoint=Endpoint(endpoint_type=EndpointType.CUSTOM, location=RequestLocation(postal_code="54660"))) forecast = f_list[0] period = forecast.periods[0] # type: ForecastPeriod # Valid endpoint, not in our Endpoint Enum - run this to test a beta or pre-release endpoint EndpointType.custom = "stormreports" endpt = Endpoint(EndpointType.CUSTOM, location=RequestLocation(postal_code="54660")) resp_list = awx.request(endpt) response = resp_list[0] """ endpoint = Endpoint(endpoint_type=EndpointType.CUSTOM, location=location, action=action, filter_=filter_, sort=sort, params=params, query=query) return self.request(endpoint=endpoint) ``` #### File: aerisweather/requests/Endpoint.py ```python from typing import Dict from aenum import Enum from aerisweather.requests.ParameterType import ParameterType from aerisweather.requests.RequestAction import RequestAction from aerisweather.requests.RequestFilter import RequestFilter from aerisweather.requests.RequestLocation import RequestLocation from aerisweather.requests.RequestQuery import RequestQuery from aerisweather.requests.RequestSort import RequestSort class EndpointType(Enum): """ Defines the available endpoints for Aeris API requests. When requesting data from an unimplemented endpoint, use the CUSTOM type and set the name of the endpoint using the "custom" property. Examples: # ObservationSummary endpoint = Endpoint(endpoint_type=EndpointType.OBSERVATIONS_SUMMARY) # Custom Endpoint EndpointType.custom = "stormreports" endpt = Endpoint(EndpointType.CUSTOM, location=RequestLocation(postal_code="54660")) """ ALERTS = "advisories" CONDITIONS = "conditions" CONVECTIVE_OUTLOOK = "convective/outlook" FORECASTS = "forecasts" OBSERVATIONS = "observations" OBSERVATIONS_SUMMARY = "observations/summary" PLACES = "places" CUSTOM = "custom" __custom_endpoint_type_name = "" @property def custom(self): """ Returns the string name of the custom/generic endpoint used when CUSTOM is the endpoint type """ return self.__custom_endpoint_type_name @custom.setter def custom(self, endpoint_type: str): """ Sets the string name of the custom/generic endpoint used when CUSTOM is the endpoint type """ self.__custom_endpoint_type_name = endpoint_type class Endpoint: """ Defines an object used to hold and transfer information regarding a specific Aeris API endpoint """ def __init__(self, endpoint_type: EndpointType = None, location: RequestLocation = None, action: RequestAction = None, filter_: [RequestFilter] = None, sort: RequestSort = None, params: Dict[ParameterType, str] = None, query: Dict[RequestQuery, str] = None): """ Constructor The Endpoint class can be instantiated with no parameters if configuration is handled later. EndpointTypes that have been implemented are defined in the EndpointType enum. Undefined EndpointTypes can be requested using the Custom EndpointType. Params: - endpoint_type: Optional - EndpointType - determines which Aeris API endpoint will be called - location: Optional - RequestLocation - the location for which the request is processed - action: Optional - RequestAction - the API request action option - filter_: Optional - [RequestFilter] - a list of API request filters - sort: Optional - RequestSort - the API request sort option - params: Optional - Dict[ParameterType, str] - a list of API request parameters - query: Optional - Dict[RequestQuery, str] - a list of API request quesries """ self.endpoint_type = endpoint_type self.location = location self.action = action self.filter_ = filter_ self.sort = sort self.params = params self.query = query ``` #### File: aerisweather/responses/AlertTimestamps.py ```python class AlertTimestamps: """ Defines an object that stores an individual alert's timestamp data returned within an Alerts/Advisories endpoint request. ... }, "timestamps": { "issued": 1522696200, "issuedISO": "2018-04-02T14:10:00-05:00", "begins": 1522696200, "beginsISO": "2018-04-02T14:10:00-05:00", "expires": 1522821600, "expiresISO": "2018-04-04T01:00:00-05:00", "added": 1522696239, "addedISO": "2018-04-02T14:10:39-05:00" }, ... """ def __init__(self, alert): self.alert_data = alert @property def issued(self) -> int: """ UNIX timestamp when the advisory was issued by the NWS. """ return self.alert_data["issued"] @property def issuedISO(self) -> str: """ ISO 8601 date of the time when the advisory was issued. """ return self.alert_data["issuedISO"] @property def begins(self) -> int: """ UNIX timestamp when the advisory goes into effect. """ return self.alert_data["begins"] @property def beginsISO(self) -> str: """ ISO 8601 date of the time when the advisory goes into effect. """ return self.alert_data["beginsISO"] @property def expires(self) -> int: """ UNIX timestamp when the advisory expires. """ return self.alert_data["expires"] @property def expiresISO(self) -> str: """ ISO 8601 date of the time when the advisory expires. """ return self.alert_data["expiresISO"] @property def added(self) -> int: """ UNIX timestamp when the advisory was stored. """ return self.alert_data["added"] @property def addedISO(self) -> str: """ ISO 8601 date of the time when the advisory was stored. """ return self.alert_data["addedISO"] ``` #### File: aerisweather/responses/ConditionsResponse.py ```python from typing import List from aerisweather.responses.AerisProfile import AerisProfileConditions from aerisweather.responses.ConditionsPeriod import ConditionsPeriod from aerisweather.responses.Response import Response class ConditionsResponse(Response): """ Defines the object that stores conditions for a location. """ # URL / response body for conditions follows: # # https://api.aerisapi.com/conditions?p=33.953,-84.55&client_id=$AERIS_CLIENT_ID&client_secret=$AERIS_CLIENT_SECRET # # # { # "success": true, # "error": null, # "response": [ # { # "loc": { # "lat": 33.953, # "long": -84.55 # }, # "place": { # "name": "marietta", # "state": "ga", # "country": "us" # }, # "periods": [ # { # "timestamp": 1612215840, # "dateTimeISO": "2021-02-01T16:44:00-05:00", # "tempC": 2.58, # "tempF": 36.64, # "feelslikeC": -1.26, # "feelslikeF": 29.74, # "dewpointC": -3.26, # "dewpointF": 26.13, # "humidity": 62, # "pressureMB": 1014.5, # "pressureIN": 29.96, # "windDir": "NW", # "windDirDEG": 320, # "windSpeedKTS": 17.95, # "windSpeedKPH": 33.24, # "windSpeedMPH": 20.66, # "windGustKTS": 26.9, # "windGustKPH": 49.82, # "windGustMPH": 30.96, # "precipMM": 0, # "precipIN": 0, # "snowCM": 0, # "snowIN": 0, # "visibilityKM": 19.911, # "visibilityMI": 12.372, # "sky": 95, # "cloudsCoded": "OV", # "weather": "Cloudy", # "weatherCoded": "::OV", # "weatherPrimary": "Cloudy", # "weatherPrimaryCoded": "::OV", # "icon": "cloudy.png", # "solradWM2": 83, # "uvi": 0, # "isDay": true # } # ], # "profile": { # "tz": "America/New_York", # "tzname": "EST", # "tzoffset": -18000, # "isDST": false, # "elevFT": null, # "elevM": null # } # } # ] # } def __init__(self, json_data): super().__init__(json_data=json_data) profile_data = self.data.get("profile", None) if profile_data is not None: self._profile = AerisProfileConditions(profile_data) period_data = self.data.get("periods", None) if period_data is not None: self._periods = [ConditionsPeriod(d) for d in period_data] @property def profile(self) -> AerisProfileConditions: return self._profile @property def periods(self) -> List[ConditionsPeriod]: return self._periods.copy() ``` #### File: aerisweather/responses/ObservationsData.py ```python class ObservationsData: """ Defines the object that stores the obs data returned within an Observation endpoint requests { "success": true, "error": null, "responses": { ... "ob": { "timestamp": 1520535180, "dateTimeISO": 2018-03-08T12:53:00-06:00", "tempC": -1.1 ... """ def __init__(self, ob): self.ob_data = ob @property def timestamp(self): return self.ob_data["timestamp"] @property def dateTimeISO(self): return self.ob_data["dateTimeISO"] @property def tempC(self): return self.ob_data["tempC"] @property def tempF(self): return self.ob_data["tempF"] @property def dewpointC(self): return self.ob_data["dewpointC"] @property def dewpointF(self): return self.ob_data["dewpointF"] @property def humidity(self): return self.ob_data["humidity"] @property def pressureMB(self): return self.ob_data["pressureMB"] @property def pressureIN(self): return self.ob_data["pressureIN"] @property def spressureMB(self): return self.ob_data["spressureMB"] @property def spressureIN(self): return self.ob_data["spressureIN"] @property def altimeterMB(self): return self.ob_data["altimeterMB"] @property def altimeterIN(self): return self.ob_data["altimeterIN"] @property def windKTS(self): return self.ob_data["windKTS"] @property def windKPH(self): return self.ob_data["windKPH"] @property def windMPH(self): return self.ob_data["windMPH"] @property def windSpeedKTS(self): return self.ob_data["windSpeedKTS"] @property def windSpeedKPH(self): return self.ob_data["windSpeedKPH"] @property def windSpeedMPH(self): return self.ob_data["windSpeedMPH"] @property def windDirDEG(self): return self.ob_data["windDirDEG"] @property def windDir(self): return self.ob_data["windDir"] @property def windGustKTS(self): return self.ob_data["windGustKTS"] @property def windGustKPH(self): return self.ob_data["windGustKPH"] @property def windGustMPH(self): return self.ob_data["windGustMPH"] @property def flightRule(self): return self.ob_data["flightRule"] @property def visibilityKM(self): return self.ob_data["visibilityKM"] @property def visibilityMI(self): return self.ob_data["visibilityMI"] @property def weather(self): return self.ob_data["weather"] @property def weatherShort(self): return self.ob_data["weatherShort"] @property def weatherCoded(self): return self.ob_data["weatherCoded"] @property def weatherPrimary(self): return self.ob_data["weatherPrimary"] @property def weatherPrimaryCoded(self): return self.ob_data["weatherPrimaryCoded"] @property def cloudsCoded(self): return self.ob_data["cloudsCoded"] @property def icon(self): return self.ob_data["icon"] @property def heatindexC(self): return self.ob_data["heatindexC"] @property def heatindexF(self): return self.ob_data["heatindexF"] @property def windchillC(self): return self.ob_data["windchillC"] @property def windchillF(self): return self.ob_data["windchillF"] @property def feelslikeC(self): return self.ob_data["feelslikeC"] @property def feelslikeF(self): return self.ob_data["feelslikeF"] @property def isDay(self): return self.ob_data["isDay"] @property def sunrise(self): return self.ob_data["sunrise"] @property def sunriseISO(self): return self.ob_data["sunriseISO"] @property def sunset(self): return self.ob_data["sunset"] @property def sunsetISO(self): return self.ob_data["sunsetISO"] @property def snowDepthCM(self): return self.ob_data["snowDepthCM"] @property def snowDepthIN(self): return self.ob_data["snowDepthIN"] @property def precipMM(self): return self.ob_data["precipMM"] @property def precipIN(self): return self.ob_data["precipIN"] @property def solradWM2(self): return self.ob_data["solradWM2"] @property def solradMethod(self): return self.ob_data["solradMethod"] @property def ceilingFT(self): return self.ob_data["ceilingFT"] @property def ceilingM(self): return self.ob_data["ceilingM"] @property def light(self): return self.ob_data["light"] @property def QC(self): return self.ob_data["QC"] @property def QCcode(self): return self.ob_data["QCcode"] @property def sky(self): return self.ob_data["sky"] ``` #### File: aerisweather/responses/ObservationsSummaryDewPt.py ```python class ObservationsSummaryDewPt: """ Defines an object for the observations summary period temp data. """ dewpt = {} def __init__(self, dewpt_json): """ Constructor - this takes an individual observations summary period's dewpoint json. { maxC": 5, "maxF": 41, "minC": -3, "minF": 26, "avgC": -0.6, "avgF": 30.9, "count": 23 }, """ self.dewpt = dewpt_json @property def maxC(self) -> float: """ The maximum dew point in Celsius. Null if unavailable. """ return self.dewpt["maxC"] @property def maxF(self) -> float: """ The maximum dew point in Fahrenheit. Null if unavailable. """ return self.dewpt["maxF"] @property def minC(self) -> float: """ The minimum dew point in Celsius. Null if unavailable. """ return self.dewpt["minC"] @property def minF(self) -> float: """ The minimum dew point in Fahrenheit. Null if unavailable. """ return self.dewpt["minF"] @property def avgC(self) -> float: """ The average dew point in Celsius. Null if unavailable. """ return self.dewpt["avgC"] @property def avgF(self) -> float: """ The average dew point in Fahrenheit. Null if unavailable. """ return self.dewpt["avgF"] @property def count(self) -> int: """ The total number of observations that included dew point information. """ return self.dewpt["count"] ``` #### File: aerisweather/responses/ObservationsSummaryResponse.py ```python from typing import List from aerisweather.responses.AerisLocation import AerisLocation from aerisweather.responses.AerisPlace import AerisPlace from aerisweather.responses.AerisProfile import AerisProfileObservationsSummary from aerisweather.responses.ObservationsSummaryPeriod import ObservationsSummaryPeriod from aerisweather.responses.Response import Response class ObservationsSummaryResponse(Response): """ Defines an object for the data returned in an Aeris API ObservationsSummary responses.""" data = {} def __init__(self, json_data=None): """Constructor Takes a single response json object from an Aeris API data response. Examples would be: either of the responses in the following response array: "response": [ { ... }, { ... } or the contents of a single response: "response": { "loc": { "lat": 43.80136, """ super().__init__(json_data=json_data) self.data = json_data @property def id(self) -> str: """Returns the id value of the observation station.""" return self.data["id"] @property def loc(self) -> AerisLocation: """Returns an AerisLocation object.""" return AerisLocation(self.data["loc"]) @property def place(self): """Returns an AerisPlace object.""" place = AerisPlace(self.data["place"]) return place @property def periods(self) -> List[ObservationsSummaryPeriod]: """ Returns an array of ObservationsSummaryPeriod objects """ periods = self.data["periods"] p_list = [] # type: [ObservationsSummaryPeriod] for per in periods: osp = ObservationsSummaryPeriod(per) p_list.append(osp) return p_list @property def profile(self): """Returns an AerisProfile object.""" profile = AerisProfileObservationsSummary(self.data["profile"]) return profile ``` #### File: aerisweather/responses/RiversCrestsHistoric.py ```python from aerisweather.utils import AerisDateTime class RiversCrestsHistoric: """ Defines an object for the Aeris API rivers historic crests data returned in an Aeris API responses """ data = {} def __init__(self, json_data): """Constructor""" self.data = json_data @property def timestamp(self): """Returns the unix timestamp of the date of the crest""" return self.data["timestamp"] @property def dateTimeISO(self): """Returns the a Python DateTime date of the crest""" return AerisDateTime.AerisDateTime().get_datetime_from_aeris_iso(self.data["dateTimeISO"]) @property def heightFT(self): """Returns the height in feet of the crest""" return self.data["heightFT"] @property def heightM(self): """Returns the height in meters of the crest""" return self.data["heightM"] ``` #### File: aerisweather/responses/RiversImpacts.py ```python class RiversImpacts: """Defines an object for the Aeris API rivers impacts data returned in an Aeris API responses""" data = {} def __init__(self, json_data): """ Constructor """ self.data = json_data @property def heightFT(self): """Returns the height in feet that the impact begins to occur.""" return self.data["heightFT"] @property def getHeightM(self): """Returns the height in meters that the impact begins to occur.""" return self.data["heightM"] @property def getText(self): """Returns the impact description""" return self.data["text"] ``` #### File: aerisweather-python-sdk/tests/test_alerts.py ```python import json import os import unittest from urllib.error import URLError from aerisweather.aerisweather import AerisWeather from aerisweather.requests.Endpoint import Endpoint, EndpointType from aerisweather.requests.RequestFilter import RequestFilter from aerisweather.requests.RequestLocation import RequestLocation from aerisweather.responses.AerisPlace import AerisPlace from aerisweather.responses.AerisProfile import AerisProfileAlerts from aerisweather.responses.AlertsResponse import AlertsResponse from aerisweather.responses.AlertDetails import AlertDetails from aerisweather.responses.AlertIncludes import AlertIncludes from aerisweather.responses.AlertTimestamps import AlertTimestamps from aerisweather.utils.AerisError import AerisError from tests.keys import client_id, client_secret, app_id script_dir = os.path.dirname(__file__) class TestAlerts(unittest.TestCase): """ Defines tests modules for the Aeris API Alerts/Advisories class """ def test_static_data(self): """ Test the code against a known source of data """ file = open(os.path.join(script_dir, "responses/alerts.txt"), "r") try: json_obj = json.loads(file.read()) alerts = AlertsResponse(json_obj["response"][0]) assert alerts is not None assert alerts.id == "2ac0f0296cf81497a20c826d36f50305" details = alerts.details assert type(details) == AlertDetails assert details.type == "BH.S" assert details.name == "STATEMENT" assert details.loc == "TXZ238" assert details.emergency is False assert details.color == "40E0D0" assert details.cat == "beach" assert details.body == "...HIGH RIP CURRENT RISK TODAY...\n\n.ELEVATED SURF AND A HIGH RISK OF RIP " + \ "CURRENTS WILL CONTINUE" assert details.bodyFull == "WHUS44 KHGX 290914\nCFWHGX\n\nCOASTAL HAZARD MESSAGE\nNATIONAL " + \ "WEATHER SERVICE HOUSTON/GALVESTON" timestamps = alerts.timestamps assert type(timestamps) == AlertTimestamps assert timestamps.issued == 1522314840 assert timestamps.issuedISO == "2018-03-29T04:14:00-05:00" assert timestamps.begins == 1522314840 assert timestamps.beginsISO == "2018-03-29T04:14:00-05:00" assert timestamps.expires == 1522357200 assert timestamps.expiresISO == "2018-03-29T16:00:00-05:00" assert timestamps.added == 1522318202 assert timestamps.addedISO == "2018-03-29T05:10:02-05:00" assert alerts.poly == "" assert alerts.geoPoly is None includes = alerts.includes assert type(includes) == AlertIncludes assert includes.counties == [] assert includes.fips == ["48039", "48071"] assert includes.wxzones == ["TXZ214", "TXZ236"] assert includes.zipcodes == [77404, 77414] place = alerts.place assert type(place) == AerisPlace assert place.name == "galveston" assert place.state == "tx" assert place.country == "us" profile = alerts.profile assert type(profile) == AerisProfileAlerts assert profile.tz == "America/Chicago" assert alerts.active is True except URLError as url_err: print("URL Error: " + url_err.reason) raise url_err except AerisError as aeris_err: print("AerisError: " + aeris_err.__str__()) raise aeris_err except Exception as ex: print(ex.args) raise ex finally: file.close() def test_api_response(self): """ Test the Alerts code against a live response from the API """ try: awx = AerisWeather(app_id=app_id, client_id=client_id, client_secret=client_secret) endpoint = Endpoint(endpoint_type=EndpointType.ALERTS, location=RequestLocation(postal_code="55124"), action=None, filter_=[RequestFilter.ALERTS.ALL], sort=None, params=None, query=None) alerts_list = awx.request(endpoint=endpoint) for alert in alerts_list: # type: AlertsResponse assert alert.place is not None timestamps = alert.timestamps assert type(timestamps) == AlertTimestamps assert timestamps.issued is not None includes = alert.includes assert type(includes) is AlertIncludes assert includes.wxzones is not None assert alert.active is True except URLError as url_err: print("URL Error: " + url_err.reason) raise url_err except AerisError as aeris_err: print("AerisError: " + str(aeris_err)) raise aeris_err except Exception as ex: print(ex.args) raise ex def test_alerts_method(self): """ Test the AerisWeather.alerts method """ try: awx = AerisWeather(app_id=app_id, client_id=client_id, client_secret=client_secret) alerts_list = awx.alerts(location=RequestLocation(postal_code="55124"), action=None, filter_=[RequestFilter.ALERTS.ALL], sort=None, params=None, query=None) for alert in alerts_list: # type: AlertsResponse assert alert.place is not None timestamps = alert.timestamps assert type(timestamps) == AlertTimestamps assert timestamps.issued is not None includes = alert.includes assert type(includes) is AlertIncludes assert includes.wxzones is not None assert alert.active is True except URLError as url_err: print("URL Error: " + url_err.reason) raise url_err except AerisError as aeris_err: print("AerisError: " + str(aeris_err)) raise aeris_err except Exception as ex: print(ex.args) raise ex suite = unittest.TestLoader().loadTestsFromTestCase(TestAlerts) unittest.TextTestRunner(verbosity=2).run(suite) ```
{ "source": "jkoeter/aws-mqtt-mirror", "score": 2 }
#### File: jkoeter/aws-mqtt-mirror/aws-mqtt-mirror.py ```python import json from time import sleep from AWSIoTPythonSDK.MQTTLib import AWSIoTMQTTClient CLIENT_ID = "MQTT-mirror" AWS_ENDPOINT = "XXXXX.iot.eu-west-1.amazonaws.com" AWS_ENDPOINT_PORT = 443 AWS_ACCESS_KEY = "XXXXX" AWS_ACCESS_SECRET = "XXXXX" ROOT_CA_PATH = "certificates\\AmazonRootCA1.pem" def mqtt_callback(_unused_client, _unused_userdata, message): mqtt_message = json.loads(message.payload) print('{} : {}'.format(int(message.timestamp), mqtt_message)) if __name__ == '__main__': print('AWS MQTT mirror') aws_iot_mqtt = AWSIoTMQTTClient(CLIENT_ID, useWebsocket=True) aws_iot_mqtt.configureEndpoint(AWS_ENDPOINT, AWS_ENDPOINT_PORT) aws_iot_mqtt.configureCredentials(ROOT_CA_PATH) aws_iot_mqtt.configureIAMCredentials(AWS_ACCESS_KEY, AWS_ACCESS_SECRET) result = aws_iot_mqtt.connect() result = aws_iot_mqtt.subscribe("#", 1, mqtt_callback) print("Press CTRL+C to abort") try: while True: sleep(60) except KeyboardInterrupt: print("Aborted by user") finally: aws_iot_mqtt.disconnect() ```
{ "source": "jkoeter/nexperia-guest-wifi", "score": 2 }
#### File: jkoeter/nexperia-guest-wifi/nexperia-guest-wifi.py ```python from datetime import datetime, timezone from hashlib import sha256 import re import xml.etree.ElementTree as ET import requests import argparse class Router(object): """This class executes commands on a Nexperia V10 router.""" def __init__(self, host, username, password): self.host = host self.username = username self.password = password self.session = None self.session_token = None self.session_token_ext = None def login(self): """Login the Nexperia router""" self.session = requests.Session() token_url = 'http://{}/function_module/login_module/login_page/logintoken_lua.lua'.format(self.host) login_url = 'http://{}'.format(self.host) # 1st stage login to get the required cookies; result can be ignored self.session.get(login_url) # 2nd stage login to get the password token result = self.session.get(token_url) self.session_token = re.findall(r'\d+', result.text)[0] data = { "Username": self.username, "Password": sha256((self.password + self.session_token).encode('utf-8')).hexdigest(), "action": "login" } # 3rd stage login; send the username plus hashed password result = self.session.post(login_url, data) def logout(self): logout_url = 'http://{}'.format(self.host) self.session.post(logout_url, data={ "IF_LogOff": 1, "IF_LanguageSwitch": "", "IF_ModeSwitch": "" }) self.session = None def get_guest_wifi_enabled(self): if not self.session: self.login() # Get the guest-wifi data # Generate a timestamp for the request ts = round(datetime.now(timezone.utc).timestamp() * 1000) # you need to get this page before getting the data otherwise it fails with page not found... # and you need the secret seesionTmpToken when writing guest_wifi_page = self.session.get('http://{}/getpage.lua?pid=123&nextpage=Localnet_Wlan_GuestWiFi_t.lp&Menu3Location=0&_={}'.format(self.host, ts)) # Get the extended session-key session_token_ext_string = re.findall('_sessionTmpToken = \"(.+)\"', guest_wifi_page.text)[0] # format the string-encoded byte-string in a real character-string self.session_token_ext = '' char_count = len(session_token_ext_string)//4 for count in range(char_count): self.session_token_ext = self.session_token_ext + chr(int(session_token_ext_string[(count*4)+2:(count*4)+4], 16)) # Update the timestamp and add a little delay as the returned time is in seconds and we use miliseconds ts = round(datetime.now(timezone.utc).timestamp() * 1000) + 48 # Get the page with the guest-wifi data data_page = self.session.get('http://{}/common_page/Localnet_Wlan_GuestWiFiOnOff_lua.lua?_={}'.format(self.host, ts+35)) # Parse the XML to get the current status result_root = ET.fromstring(data_page.text) guest_wifi_switch = result_root.find('OBJ_GUESTWIFISWITCH_ID') guest_wifi_settings = {} if guest_wifi_switch: param_list = guest_wifi_switch.findall('Instance/ParaName') value_list = guest_wifi_switch.findall('Instance/ParaValue') for count, parameter in enumerate(param_list): guest_wifi_settings[parameter.text] = int(value_list[count].text) return guest_wifi_settings['Enable'] == 1 def set_guest_wifi_enable(self, enable=True): if not self.session: self.login() current_state = self.get_guest_wifi_enabled() if current_state != enable: set_data_url = 'http://{}/common_page/Localnet_Wlan_GuestWiFiOnOff_lua.lua'.format(self.host) result = self.session.post(set_data_url, data={ "IF_ACTION": "Apply", "_InstID": "", "Enable": 1 if enable else 0, "Btn_cancel_GuestWiFiOnOff": "", "Btn_apply_GuestWiFiOnOff": "", "_sessionTOKEN": self.session_token_ext }) if __name__ == '__main__': parser = argparse.ArgumentParser('nexperia-guest-wifi') parser.add_argument('-i', '--host', help='the host-name/IP-address of the Nexperia router') parser.add_argument('-u', '--user', help='the user-name for login (Admin)') parser.add_argument('-p', '--pwd', help='the <PASSWORD>') parser.add_argument('state', nargs='?', help='set the state of the guest-wifi (on or off); \ if not specified the current state is obtained') args = parser.parse_args() if not args.host: print('error: no host specified') exit() if not args.user: print('error: no user-name specified') exit() if not args.pwd: print('error: no password specified') exit() my_router = Router(args.host, args.user, args.pwd) if not args.state: guest_wifi_on = my_router.get_guest_wifi_enabled() print('Guest-Wifi is: {}'.format('on' if guest_wifi_on else 'off')) else: if args.state.upper() == 'ON': my_router.set_guest_wifi_enable(True) elif args.state.upper() == 'OFF': my_router.set_guest_wifi_enable(False) else: print('Invalid state: \'{}\'. Use \'On\' or \'Off\''.format(args.state)) ```
{ "source": "jkogut/simple-python-rest-api-v1", "score": 3 }
#### File: simple-python-rest-api-v1/app/rest_server.py ```python __author__ = "<NAME>" __copyright__ = "<NAME>" __license__ = "MIT" __version__ = "0.0.1" __maintainer__ = "<NAME>" __status__ = "Beta" from flask import Flask, request, jsonify, abort from sqlalchemy import create_engine from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker ##################### app = Flask(__name__) engine = create_engine('sqlite:///chinook.db', echo=True) Base = declarative_base(engine) class Employees(Base): """ Class for declarative_base ORM db access """ __tablename__ = 'employees' __table_args__ = {'autoload':True} def loadSession(): """ ---> Create session <--- Return session object """ metadata = Base.metadata Session = sessionmaker(bind=engine) session = Session() return session ## API STATUS @app.route("/api/status", methods = ['GET']) def getStatus(): """ ---> Check API Status <--- Return JSON with API_status """ result = {'API_status':'OK'} return jsonify(result) ## GET employees @app.route("/api/v1/employees", methods = ['GET']) def getEmployees(): """ ---> Select all employees <--- Return JSON with employeeID """ result = { "employees": dict(session.query(Employees.EmployeeId,Employees.LastName).all()) } return jsonify(result) ## GET employeeId @app.route("/api/v1/employees/<int:employeeId>", methods = ['GET']) def getEmployeeIdData(employeeId): """ ---> Select employee depending on employeeId <--- Return JSON with employeeIds data """ filterQuery = session.query(Employees).filter(Employees.EmployeeId==employeeId).all() result = { x: getattr(filterQuery[0], x) for x in Employees.__table__.columns.keys() } return jsonify(result) ## POST create employee @app.route("/api/v1/employees/new", methods = ['POST']) def insertNewEmployee(): """ ---> Add (create) new employee from JSON payload <--- Return added JSON payload with response code """ payload = request.json if not payload or not 'LastName' in payload: abort(400) newEmp = Employees(**dateNormalizer(payload)) session.add(newEmp) session.flush() session.commit() return jsonify(payload),201 ## DELETE @app.route("/api/v1/employees/delete/<int:employeeId>", methods = ['DELETE']) def deleteEmployee(employeeId): """ ---> Delete existing employee <--- Return deleted response code """ if len(session.query(Employees).filter(Employees.EmployeeId==employeeId).all()) == 0: result = {employeeId:"NOT EXISTS"} return jsonify(result),400 delQuery = session.query(Employees).filter(Employees.EmployeeId==employeeId) delQuery.delete() delQuery.session.commit() result = {employeeId:"DELETED"} return jsonify(result),200 if __name__ == "__main__": session = loadSession() def dateNormalizer(payload): """ ---> SQLite DateTime type only accepts Python datetime <--- Return normalized JSON payload with Python datetime """ import timestring normalizedBirthDate = timestring.Date(payload['BirthDate']).date normalizedHireDate = timestring.Date(payload['HireDate']).date payload['BirthDate'] = normalizedBirthDate payload['HireDate'] = normalizedHireDate return payload app.run(host="0.0.0.0", port=int("5002"), debug=True) ```
{ "source": "jkohhokj/AutoCrack", "score": 3 }
#### File: jkohhokj/AutoCrack/BruteForceLetter.py ```python import string from datetime import datetime def bruteForceLetter(length, beg=""): oldBeg = beg.upper() if length != 1: for x in string.ascii_uppercase: yield from bruteForceLetter(length-1, beg=oldBeg+x) else: for x in string.ascii_uppercase: yield oldBeg+x ``` #### File: jkohhokj/AutoCrack/Vigenere.py ```python import string from datetime import datetime from BruteForceLetter import bruteForceLetter def vigenereEncode(message,key): #print("tried",key) message = message.upper() key = key.upper() numToLet = dict(zip([x for x in range(26)],list(string.ascii_uppercase))) letToNum = dict(zip(list(string.ascii_uppercase),[x for x in range(26)])) # set up the table encoded = [] for charIndex in range(len(message)): if message[charIndex] in string.ascii_uppercase: #human readable one is commented #firstLetNum = letToNum[str(message[charIndex])] #secondLetNum = letToNum[str(key[charIndex%len(key)])] #newNum = (firstLetNum + secondLetNum)%26 #newLet = numToLet[newNum] #encoded.append(newLet) encoded.append(numToLet[(letToNum[message[charIndex]]+letToNum[key[charIndex%len(key)]])%26]) else: encoded.append(message[charIndex]) return ''.join(encoded) def vigenereDecode(message,key): # literally change the plus to minus message = message.upper() key = key.upper() numToLet = dict(zip([x for x in range(26)],list(string.ascii_uppercase))) letToNum = dict(zip(list(string.ascii_uppercase),[x for x in range(26)])) # set up the table decoded = [] for charIndex in range(len(message)): if message[charIndex] in string.ascii_uppercase: # human readable one is commented #firstLetNum = letToNum[str(message[charIndex])] #secondLetNum = letToNum[str(key[charIndex%len(key)])] #newNum = (firstLetNum - secondLetNum)%26 #newLet = numToLet[newNum] #encoded.append(newLet) decoded.append(numToLet[(letToNum[message[charIndex]]-letToNum[key[charIndex%len(key)]])%26]) else: decoded.append(message[charIndex]) return ''.join(decoded) def autoVigenere(message,keyword,min=2,max=5,showTime=False): #3=.8;4=21;5=10:40;6=4:40:00 old = datetime.now() message = message.upper() max += 1 for length in range(min,max): for key in bruteForceLetter(length): if vigenereEncode(keyword,key) in message: print("decoded: ",vigenereDecode(message,key)," ","key: ",key) if showTime: print(datetime.now()-old) return vigenereDecode(message,key) ```
{ "source": "jkohhokj/Games", "score": 3 }
#### File: jkohhokj/Games/Tetrisbutitworks.py ```python import pygame import numpy as np import random as rand import time def reset_grid(dead_subpiece_place_list): grid = np.zeros((25,13),dtype='int32') grid[:,0] = True grid[:,-2] = True grid[-1,:] = True for i in range(25): if i < 4: grid[i,-1] = i else: grid[i,-1] = i-4 for dead_subpiece_place in dead_subpiece_place_list: grid[dead_subpiece_place[1]][dead_subpiece_place[0]] = 1 return grid def test_grid_maker(dead_subpiece_place_list): test_grid = np.zeros((25,12),dtype='int32') test_grid[:,0] = True test_grid[:,-1] = True test_grid[-1,:] = True for dead_subpiece_place in dead_subpiece_place_list: grid[dead_subpiece_place[1]][dead_subpiece_place[0]] = 1 return test_grid #already occupied = 5 class Subpiece(pygame.sprite.Sprite): # class with sprite attribute def __init__(self,x=0,y=0,color=(255,255,255)): super().__init__() self.image = pygame.Surface([20,20]) self.image.fill(color) self.rect = self.image.get_rect() self.rect.x = x self.rect.y = y def getxy(self): return (self.rect.x, self.rect.y) def getcenterxy(self): return (self.rect.x-10,self.rect.y-10) def setxy(self,x,y): self.rect.x = x self.rect.y = y def getcorners(self): return [[self.rect.x,self.rect.y],[self.rect.x+10,self.rect.y], [self.rect.x+10,self.rect.y+10],[self.rect.x,self.rect.y+10]] def setcenterxy(self,x,y): self.rect.x = x - 10 self.rect.y = y - 10 def getgridplace(self): return (int(self.rect.x/20)+1,int(self.rect.y/20)+4) class Piece(pygame.sprite.Sprite): # class with group attribute of 4 subpieces with a shape def __init__(self,a,b,c,d,pointofrotation,color=(255,255,255)): super().__init__() self.Apiece = Subpiece(a[0],a[1],color) self.Bpiece = Subpiece(b[0],b[1],color) self.Cpiece = Subpiece(c[0],c[1],color) self.Dpiece = Subpiece(d[0],d[1],color) self.group = pygame.sprite.Group(self.Apiece,self.Bpiece,self.Cpiece,self.Dpiece) self.por = pointofrotation self.rotation = 0 self.shape = '' def getgridplace(self): self.gridplace = [subpiece.getgridplace() for subpiece in self.group] return self.gridplace def set_shape(self,a,b,c,d): self.Apiece = Subpiece(a[0],a[1]) self.Bpiece = Subpiece(b[0],b[1]) self.Cpiece = Subpiece(c[0],c[1]) self.Dpiece = Subpiece(d[0],d[1]) def set_gravity(self): for subpiece in self.group: subpiece.rect.y += 20 self.por[1] += 20 def set_reverse_gravity(self): for subpiece in self.group: subpiece.rect.y -= 20 self.por[1] -= 20 def move_right(self): for subpiece in self.group: subpiece.rect.x += 20 self.por[0] += 20 def move_left(self): for subpiece in self.group: subpiece.rect.x -= 20 self.por[0] -= 20 def check_right(self): for subpiece in self.group: # print(grid[piece_place[i][1]+5][piece_place[i][0]+2]) if grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]+1] == 1: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]+1] = 3 # print(grid) return False return True def check_left(self): for subpiece in self.group: if grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]-1] == 1: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]-1] = 3 return False return True def check_bottom(self): for subpiece in self.group: if grid[subpiece.getgridplace()[1]+1][subpiece.getgridplace()[0]] == 1: grid[subpiece.getgridplace()[1]+1][subpiece.getgridplace()[0]] = 3 return False return True def check_ccw_rotation(self): self.rotateccw() for subpiece in self.group: if grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] == 1: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] = 3 self.rotatecw() return False self.rotatecw() return True def check_cw_rotation(self): self.rotatecw() for subpiece in self.group: if grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] == 1: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] = 3 self.rotateccw() return False self.rotateccw() return True def rotateccw(self): if self.shape == 'I' or self.shape == 'Z' or self.shape == 'S': # Z,S, and I piece only have 2 positions if self.rotation >= 0: for subpiece in self.group: #x,y -> y,-x subpiece.setxy(subpiece.rect.y - self.por[1] + self.por[0],-1*(subpiece.rect.x - self.por[0])+self.por[1]-20) self.rotation -= 1 else: self.rotatecw() else: for subpiece in self.group: #x,y -> y,-x subpiece.setxy(subpiece.rect.y - self.por[1] + self.por[0],-1*(subpiece.rect.x - self.por[0])+self.por[1]-20) def rotatecw(self): if self.shape == 'I' or self.shape == 'Z' or self.shape == 'S': # Z,S, and I piece only have 2 positions if self.rotation <= 0: for subpiece in self.group: #x,y -> -y,x subpiece.setxy(-1*(subpiece.rect.y - self.por[1]) + self.por[0]-20,subpiece.rect.x - self.por[0]+self.por[1]) self.rotation += 1 else: self.rotateccw() else: for subpiece in self.group: #x,y -> -y,x subpiece.setxy(-1*(subpiece.rect.y - self.por[1]) + self.por[0]-20,subpiece.rect.x - self.por[0]+self.por[1]) def random_shape_gen(por): #starting point letters_list = ['L','J','I','O','Z','S','T'] next_letter = rand.choice(letters_list) if next_letter == 'L': next_piece = Piece([por[0]-10, por[1]-30],[por[0]-10, por[1]-10],[por[0]-10, por[1]+10],[por[0]+10, por[1]+10],[por[0], por[1]],(3, 65, 174)) elif next_letter == 'O': por[0]+=10 por[1]+=10 next_piece = Piece([por[0]-20,por[1]-20],[por[0],por[1]-20],[por[0],por[1]],[por[0]-20,por[1]],[por[0],por[1]],(255, 151, 28)) elif next_letter == 'J': next_piece = Piece([por[0]-10, por[1]-30],[por[0]-10, por[1]-10],[por[0]-10, por[1]+10],[por[0]-30, por[1]+10],[por[0], por[1]],(255, 213, 0)) elif next_letter == 'I': next_piece = Piece([por[0]-10, por[1]-30],[por[0]-10, por[1]-10],[por[0]-10, por[1]+10],[por[0]-10, por[1]+30],[por[0], por[1]],(146, 211, 202)) elif next_letter == 'Z': por[0]+=10 por[1]+=10 next_piece = Piece([por[0]-20, por[1]-20],[por[0], por[1]-20],[por[0], por[1]],[por[0]+20, por[1]],[por[0]+10, por[1]+10],(255, 50, 19)) elif next_letter == 'S': por[0]+=10 por[1]+=10 next_piece = Piece([por[0], por[1]-20],[por[0]-20, por[1]-20],[por[0]-20, por[1]],[por[0]-40, por[1]],[por[0]-10, por[1]-10],(114, 203, 59)) elif next_letter == 'T': next_piece = Piece([por[0]-10, por[1]-30],[por[0]-10, por[1]-10],[por[0]-10, por[1]+10],[por[0]+10, por[1]-10],[por[0], por[1]],(255,0,255)) next_piece.shape = next_letter return next_piece def gravity(speed, speed_counter): #,moved_down if speed_counter >= speed: if current_piece.check_bottom() == False: return 999999999999999999999999999999 else: current_piece.set_gravity() speed_counter = 0 else: speed_counter += 1 return speed_counter def draw_it(): for i in range(1,11): pygame.draw.line(screen,(255,255,255),(i*20,0),(i*20,400),1) for i in range(1,20): pygame.draw.line(screen,(255,255,255),(0,i*20),(200,i*20),1) def kill_piece(current_dead_piece): dead_subpiece_group.add(current_dead_piece.Apiece,current_dead_piece.Bpiece,current_dead_piece.Cpiece,current_dead_piece.Dpiece) for subpiece_place in piece_place: dead_subpiece_place_list.append(subpiece_place) current_dead_piece.group = pygame.sprite.Group() next_piece = random_shape_gen([startingx+140,startingy+100]) return next_piece def check_line(grid): lines = [] for line in grid[4:-1]: this_line = True for char in line[1:-2]: if char != 1: this_line = False if this_line == True: lines.append(line[-1]) while len(lines) != 4: lines.append(False) return lines def move_down_line_list(dead_line,dead_subpiece_place_list): new_dead_subpiece_place_list = [] new_new_dead_subpiece_place_list = [] for dead_subpiece in dead_subpiece_place_list: if dead_subpiece[1] != dead_line + 4: # accomodate for extra 4 on top new_dead_subpiece_place_list.append(dead_subpiece) for dead_subpiece in new_dead_subpiece_place_list: if dead_subpiece[1] < dead_line + 4: new_new_dead_subpiece_place_list.append((dead_subpiece[0],dead_subpiece[1]+1)) else: new_new_dead_subpiece_place_list.append((dead_subpiece[0],dead_subpiece[1])) return new_new_dead_subpiece_place_list def move_down_line_group(dead_line,dead_subpiece_group): new_dead_subpiece_group = pygame.sprite.Group() new_new_dead_subpiece_group = pygame.sprite.Group() for dead_subpiece in dead_subpiece_group: if dead_subpiece.getgridplace()[1] != dead_line + 4: # accomodate for extra 4 on top new_dead_subpiece_group.add(dead_subpiece) for dead_subpiece in new_dead_subpiece_group: if dead_subpiece.getgridplace()[1] < dead_line + 4: dead_subpiece.setxy(dead_subpiece.getxy()[0],(dead_subpiece.getgridplace()[1]-3)*20) new_new_dead_subpiece_group.add(dead_subpiece) else: new_new_dead_subpiece_group.add(dead_subpiece) return new_new_dead_subpiece_group def check_line_grouping(lines): lines.sort(reverse=True) line_group = [] while lines != [False,False,False,False]: if lines[0] - 1 == lines[1]: if lines[1] - 1 == lines[2]: if lines[2] -1 == lines[3]: line_group = [[lines[0],lines[1],lines[2],lines[3]]] lines = [False,False,False,False] else: line_group = [[lines[0],lines[1],lines[2]],[lines[3]]] lines = [False,False,False,False] else: line_group.append([lines[0],lines[1]]) lines.pop(0) lines.pop(0) lines.append(False) lines.append(False) else: line_group.append([lines[0]]) lines.pop(0) lines.append(False) return line_group def scoring(current_score,level,line_grouping): base_score = 0 for line_set in line_grouping: if len(line_set) == 1: base_score += 40 elif len(line_set) == 2: base_score += 100 elif len(line_set) == 3: base_score += 300 elif len(line_set) == 4: base_score += 1200 return (level+1) * base_score + current_score def check_level_up(total_lines,level): if level * 10 <= total_lines: return level + 1 else: return level def speed_check(level,initial_speed): if level < 9: speed = initial_speed - level * 5 else: speed = initial_speed - 9 * 5 - 2 if level > 9: speed -= 1 if level > 12: speed -= 1 if level > 15: speed -= 1 if level > 18: speed -= 1 if level > 28: speed -= 1 return speed #YOU CAN CHANGE THESE pygame.init() screen = pygame.display.set_mode([300,400]) startingx = 90 startingy = -50 next_piece = random_shape_gen([startingx+140,startingy+100]) current_piece = random_shape_gen([startingx,startingy]) initial_speed = 60 drawings = True cool_down = 4 level = 0 #DONT CHANGE THESE score = 0 speed = initial_speed total_lines = 0 cool_down_counter = 0 speed_counter = 0 dead_subpiece_place_list = [] dead_subpiece_group = pygame.sprite.Group() clock = pygame.time.Clock() running = True while running: grid = reset_grid(dead_subpiece_place_list) #grid[y+4][x+1] #1 = border 2 = piece_place 3 = test piece_place = current_piece.getgridplace() for subpiece in current_piece.group: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] = 2 #kill tetris if pygame.event.get([pygame.QUIT]): running = False if pygame.key.get_pressed(): if pygame.key.get_pressed()[pygame.K_ESCAPE]: running = False if cool_down_counter == cool_down: if pygame.key.get_pressed()[pygame.K_SPACE]: if current_piece.check_bottom(): current_piece.set_gravity() else: next_piece_save = next_piece next_piece = kill_piece(current_piece) current_piece = next_piece_save for i in range(7): current_piece.move_left() for i in range(4): current_piece.set_reverse_gravity() if pygame.key.get_pressed()[pygame.K_RIGHT]: if current_piece.check_right(): current_piece.move_right() # np.where(grid == 1,grid+1,grid) elif pygame.key.get_pressed()[pygame.K_LEFT]: if current_piece.check_left(): current_piece.move_left() elif pygame.key.get_pressed()[pygame.K_UP]: if current_piece.check_cw_rotation(): current_piece.rotatecw() elif pygame.key.get_pressed()[pygame.K_DOWN]: if current_piece.check_ccw_rotation(): current_piece.rotateccw() elif pygame.key.get_pressed()[pygame.K_m]: print(grid) elif pygame.key.get_pressed()[pygame.K_k]: for x in dead_subpiece_group: print(x) elif pygame.key.get_pressed()[pygame.K_s]: drawings = True elif pygame.key.get_pressed()[pygame.K_r]: current_piece.set_reverse_gravity() elif pygame.key.get_pressed()[pygame.K_q]: pass elif pygame.key.get_pressed()[pygame.K_p]: print(current_piece.getgridplace()) cool_down_counter = 0 else: cool_down_counter += 1 grid = reset_grid(dead_subpiece_place_list) #grid[y+4][x+1] #1 = border 2 = piece_place 3 = test piece_place = current_piece.getgridplace() for subpiece in current_piece.group: grid[subpiece.getgridplace()[1]][subpiece.getgridplace()[0]] = 2 # setting gravity speed_counter = gravity(speed,speed_counter) #,moved_down if speed_counter == 999999999999999999999999999999: # and killed == False next_piece_save = next_piece next_piece = kill_piece(current_piece) current_piece = next_piece_save for i in range(7): current_piece.move_left() for i in range(5): current_piece.set_reverse_gravity() #update screen check = check_line(grid) if check != [False,False,False,False]: for dead_line in check: if dead_line != False: total_lines += 1 dead_subpiece_place_list = move_down_line_list(dead_line,dead_subpiece_place_list) dead_subpiece_group = move_down_line_group(dead_line,dead_subpiece_group) grouping = check_line_grouping(check) score = scoring(score,1,grouping) print('this is the score',score) print('this is the total lines',total_lines) level = check_level_up(total_lines,level) speed = speed_check(level,initial_speed) print('level',level) if 1 in grid[0:4,1:-2]: running = False screen.fill((0,0,0)) if drawings == True: draw_it() current_piece.group.draw(screen) next_piece.group.draw(screen) dead_subpiece_group.draw(screen) pygame.display.update() clock.tick(60) pygame.quit() ```
{ "source": "jkohrman/dnstwister", "score": 3 }
#### File: dnstwister/auth/__init__.py ```python from functools import wraps from flask import request, redirect, url_for, session from urllib2 import Request, urlopen, URLError import os import json from time import time from base64 import b64decode GOOGLE_AUTH = os.getenv('GOOGLE_AUTH') CLIENT_ID = os.getenv('GOOGLE_CLIENT_ID') EMAIL_DOMAIN = os.getenv('GOOGLE_EMAIL_DOMAIN') def login_required(view): @wraps(view) def is_authenticated(*args, **kwargs): if GOOGLE_AUTH == 'false': return view (*args, **kwargs) try: access_token = session.get('access_token')[0] id_token = session.get('id_token')[0] except: return redirect(url_for('login')) if True in {access_token is None, id_token is None}: return redirect(url_for('login')) try: token_body = id_token.split('.')[1] parsed_token = json.loads(b64decode(token_body + '===')) token_issuer = parsed_token['iss'] == 'accounts.google.com' token_audience = parsed_token['aud'] == CLIENT_ID token_domain = parsed_token['hd'] == EMAIL_DOMAIN token_expires = int(parsed_token['exp']) >= int(time()) except: session.pop('access_token', None) session.pop('id_token', None) return 'Unauthorized exception' if False in {token_issuer, token_audience, token_domain}: return 'Unauthorized!<br>issuer: ' + str(token_issuer) + '<br>audience: ' + str(token_audience) + '<br>domain: ' + str(token_domain) if token_expires is False: return redirect(url_for('login')) if access_token is None: return redirect(url_for('login')) headers = { 'Authorization': 'OAuth ' + access_token } req = Request('https://www.googleapis.com/oauth2/v1/userinfo', None, headers) try: res = urlopen(req) except URLError, e: if e.code == 401: session.pop('id_token', None) session.pop('access_token', None) return redirect(url_for('login', next=request.url)) return view(*args, **kwargs) return is_authenticated ``` #### File: views/www/login.py ```python import flask import os import json from time import time from base64 import urlsafe_b64encode, b64decode from urllib.parse import urlencode from urllib.request import Request, urlopen from flask import request, session, redirect, url_for from dnstwister import app import dnstwister.auth as auth GOOGLE_AUTH = os.getenv('GOOGLE_AUTH') CLIENT_ID = os.getenv('GOOGLE_CLIENT_ID') CLIENT_SECRET = os.getenv('GOOGLE_CLIENT_SECRET') REDIRECT_URI = os.getenv('GOOGLE_REDIRECT_URI') EMAIL_DOMAIN = os.getenv('GOOGLE_EMAIL_DOMAIN') SCOPE = os.getenv('GOOGLE_SCOPE') @app.route(r'/login') def login(): if GOOGLE_AUTH is 'false': return redirect(url_for('index')) state = urlsafe_b64encode(os.urandom(24)) session['google_state'] = state oauthurl = 'https://accounts.google.com/o/oauth2/auth?client_id=' + CLIENT_ID + '&redirect_uri=' + REDIRECT_URI + '&scope=' + SCOPE + '&response_type=code&state=' + state if EMAIL_DOMAIN is not None: oauthurl = oauthurl + '&hd=' + EMAIL_DOMAIN next_dest = request.args.get('next') if next_dest is not None: session['next'] = next_dest oauthurl = oauthurl + '&next=' + next_dest return redirect(oauthurl) @app.route(r'/login/callback') def authorized(): if GOOGLE_AUTH is 'false': return redirect(url_for('index')) if request.args.get('error') is not None: session.pop('next', None) session.pop('access_token', None) return request.args.get('error') return redirect(url_for('index')) google_state = request.args.get('state') session_state = session['google_state'] if google_state != session_state: session.pop('google_state', None) session.pop('next', None) session.pop('access_token', None) return 'CSRF Error: Token mismatch!<br>' + session_state + '<br>' + google_state next_dest = request.args.get('next') auth_code = request.args.get('code') data = { 'code': auth_code, 'client_id': CLIENT_ID, 'client_secret': CLIENT_SECRET, 'redirect_uri': REDIRECT_URI, 'grant_type': 'authorization_code' } url = 'https://accounts.google.com/o/oauth2/token' req = Request(url, urlencode(data).encode()) res = json.loads(urlopen(req).read().decode()) access_token = res['access_token'] id_token = res['id_token'] try: token_body = id_token.split('.')[1] parsed_token = json.loads(b64decode(token_body + '===')) token_issuer = parsed_token['iss'] == 'accounts.google.com' token_audience = parsed_token['aud'] == CLIENT_ID token_domain = parsed_token['hd'] == EMAIL_DOMAIN token_issued = int(time()) - 10 <= int(parsed_token['iat']) <= int(time()) + 10 token_expires = int(parsed_token['exp']) >= int(time()) except: session.pop('google_state', None) session.pop('next', None) session.pop('access_token', None) session.pop('id_token', None) return 'Unauthorized exception: ' if False in {token_issuer, token_audience, token_domain, token_issued, token_expires}: return 'Unauthorized:<br>issuer: ' + str(token_issuer) + '<br>audience: ' + str(token_audience) + '<br>domain: ' + str(token_domain) + '<br>issued: ' + str(token_issued) + '<br>expires: ' + str(token_expires) session['id_token'] = id_token, '' session['access_token'] = access_token, '' if 'next' in session: next_dest = session['next'] session.pop('next', None) try: dest = url_for(next_dest) except: dest = redirect(url_for('index')) else: dest = url_for('index') return redirect(dest) @app.route(r'/logout') def logout(): session.pop('access_token', None) session.pop('id_token', None) del session['access_token'] del session['id_token'] session.modified = True return redirect('/') ``` #### File: tests/api/test_api.py ```python import pytest import webtest.app from dnstwister import tools def test_api_root(webapp): """Test the API root.""" assert webapp.get('/api/').json == { 'domain_fuzzer_url': 'http://localhost:80/api/fuzz/{domain_as_hexadecimal}', 'domain_to_hexadecimal_url': 'http://localhost:80/api/to_hex/{domain}', 'ip_resolution_url': 'http://localhost:80/api/ip/{domain_as_hexadecimal}', 'parked_check_url': 'http://localhost:80/api/parked/{domain_as_hexadecimal}', 'google_safe_browsing_url': 'http://localhost:80/api/safebrowsing/{domain_as_hexadecimal}', 'whois_url': 'http://localhost:80/api/whois/{domain_as_hexadecimal}', 'url': 'http://localhost:80/api/', } def test_api_root_redirect(webapp): """Test the /api -> /api/ redirect.""" request = webapp.get('/api') assert request.status_code == 301 assert request.headers['location'] == 'http://localhost/api/' def test_api_domain_validation(webapp): """Test that domains are validated on all API endpoints.""" malformed_domain = 'example' endpoints = ('fuzz', 'to_hex', 'ip', 'parked', 'safebrowsing', 'whois') for endpoint in endpoints: with pytest.raises(webtest.app.AppError) as err: webapp.get('/api/{}/{}'.format( endpoint, tools.encode_domain(malformed_domain) )) assert '400 BAD REQUEST' in err.value.message def test_unicode_basics(webapp): """Test that Unicode domains work on all endpoints.""" unicode_domain = 'xn--sterreich-z7a.icom.museum'.decode('idna') endpoints = ('fuzz', 'ip', 'parked', 'safebrowsing', 'whois') for endpoint in endpoints: webapp.get('/api/{}/{}'.format( endpoint, tools.encode_domain(unicode_domain), )) webapp.get('/api/to_hex/{}'.format(unicode_domain.encode('idna'))) ``` #### File: dnstwister/tests/test_search_outliers.py ```python import binascii def test_no_domains_key(webapp): """Test a POST without 'domains' being set fails.""" response = webapp.post('/search') assert response.status_code == 302 assert response.headers['location'] == 'http://localhost:80/error/2' def test_empty_domains_key(webapp): """Test a POST with 'domains' being set to whitespace fails.""" response = webapp.post('/search', {'domains': ' '}) assert response.status_code == 302 assert response.headers['location'] == 'http://localhost:80/error/2' def test_suggestion(webapp): """Test that submitting no valid domains fails. Where a domain could be reasonably suggested, it is. """ response = webapp.post('/search', {'domains': 'example'}).follow() assert response.status_code == 302 domain = 'example.com' enc_domain = binascii.hexlify(domain) expected_redirect = 'http://localhost:80/error/0?suggestion=' + enc_domain assert response.headers['location'] == expected_redirect def test_no_valid_domains_only(webapp): """Test invalid domains not in suggestions.""" query = 'abc ?@<>.' response = webapp.post('/search', {'domains': query}).follow() assert response.status_code == 302 assert response.headers['location'].endswith('=6162632e636f6d') assert binascii.unhexlify('6162632e636f6d') == 'abc.com' def test_suggestion_rendered(webapp): """Test suggestion rendered on index.""" response = webapp.post('/search', {'domains': 'example'}).follow().follow() assert 'example.com' in response.body def test_get_errors(webapp): """Test funny URLs for a GET search.""" response = webapp.get('/search/__<<>') assert response.status_code == 302 assert response.headers['location'] == 'http://localhost:80/error/0' def test_no_suggestion_many_words(webapp): """Test many search terms are dropped in suggestions.""" query = 'j s d f i j s' response = webapp.post('/search', {'domains': query}).follow() assert response.status_code == 302 assert response.headers['location'] == 'http://localhost:80/error/0' def test_suggestion_bad_data(webapp): """Test that submitting invalid data in suggestion doesn't crash the page. """ response = webapp.get('/error/0?suggestion') assert response.status_code == 200 response = webapp.get('/error/0?suggestion=') assert response.status_code == 200 response = webapp.get('/error/0?suggestion=sdlkfjsdlfkjsdf') assert response.status_code == 200 response = webapp.get('/error/0?suggestion=<script>...<?') assert response.status_code == 200 response = webapp.get('/error/0?suggestion=a.com&cat=2') assert response.status_code == 200 def test_fix_comma_typo(webapp): """Test accidentally entering in a comma instead of period is corrected. """ malformed_domain = 'example,com' expected_suggestion = 'example.com' response = webapp.post('/search', {'domains': malformed_domain}).follow().follow() assert expected_suggestion in response.body def test_fix_slash_typo(webapp): """Test accidentally entering in a slash instead of period is corrected. """ malformed_domain = 'example/com' expected_suggestion = 'example.com' response = webapp.post('/search', {'domains': malformed_domain}).follow().follow() assert expected_suggestion in response.body def test_fix_space_typo(webapp): """Test accidentally entering in a space instead of period is corrected. """ malformed_domain = 'example com' expected_suggestion = 'example.com' response = webapp.post('/search', {'domains': malformed_domain}).follow().follow() assert expected_suggestion in response.body def test_post_unicode(webapp): """Test of end-to-end unicode.""" unicode_domain = 'höt.com' assert unicode_domain == 'h\xc3\xb6t.com' expected_punycode = 'xn--ht-fka.com' expected_hex = binascii.hexlify(expected_punycode) assert expected_hex == '786e2d2d68742d666b612e636f6d' response = webapp.post('/search', {'domains': unicode_domain}).follow() assert response.status_code == 200 assert response.request.url == 'http://localhost/search/{}'.format(expected_hex) assert unicode_domain in response.body assert 'höt.com (xn--ht-fka.com)' in response.body ```
{ "source": "jkokoruda/mt940", "score": 2 }
#### File: mt940/mt940_tests/test_tags.py ```python import pytest import mt940 from mt940 import tags from mt940 import models import pprint @pytest.fixture def long_statement_number(): with open('mt940_tests/self-provided/long_statement_number.sta') as fh: return fh.read() class MyStatementNumber(tags.Tag): '''Statement number / sequence number Pattern: 10n ''' id = 28 pattern = r''' (?P<statement_number>\d{1,10}) # 10n $''' def test_specify_different_tag_classes(long_statement_number): tag_parser = MyStatementNumber() transactions = mt940.models.Transactions(tags={ tag_parser.id: tag_parser }) transactions.parse(long_statement_number) assert transactions.data.get('statement_number') == '1810118101' @pytest.fixture def ASNB_mt940_data(): with open('mt940_tests/ASNB/0708271685_09022020_164516.940.txt') as fh: return fh.read() def test_ASNB_tags(ASNB_mt940_data): tag_parser = tags.StatementASNB() trs = mt940.models.Transactions(tags={ tag_parser.id: tag_parser }) trs.parse(ASNB_mt940_data) assert trs.data == { 'account_identification': 'NL81ASNB9999999999', 'transaction_reference': '0000000000', 'statement_number': '31', 'sequence_number': '1', 'final_opening_balance': models.Balance( status='C', amount=models.Amount('404.81', 'C', 'EUR'), date=models.Date(2020, 1, 31), ), 'final_closing_balance': models.Balance( status='C', amount=models.Amount('501.23', 'C', 'EUR'), date=models.Date(2020, 1, 31), ), } assert len(trs) == 8 # test first entry td = trs.transactions[0].data.pop('transaction_details') pprint.pprint(trs.data) pprint.pprint(trs.data['final_opening_balance']) pprint.pprint(type(trs.data['final_opening_balance'])) pprint.pprint(trs.data['final_opening_balance'].__dict__) assert trs.transactions[0].data == { 'status': 'D', 'funds_code': None, 'amount': models.Amount('65.00', 'D', 'EUR'), 'id': 'NOVB', 'customer_reference': 'NL47INGB9999999999', 'bank_reference': None, 'extra_details': 'hr gjlm paulissen', 'currency': 'EUR', 'date': models.Date(2020, 1, 1), 'entry_date': models.Date(2020, 1, 1), 'guessed_entry_date': models.Date(2020, 1, 1), } assert td == 'NL47INGB9999999999 hr gjlm paulissen\nBetaling sieraden' assert trs.transactions[1].data['amount'] == models.Amount( '1000.00', 'C', 'EUR') assert trs.transactions[2].data['amount'] == models.Amount( '801.55', 'D', 'EUR') assert trs.transactions[3].data['amount'] == models.Amount( '1.65', 'D', 'EUR') assert trs.transactions[4].data['amount'] == models.Amount( '828.72', 'C', 'EUR') assert trs.transactions[5].data['amount'] == models.Amount( '1000.00', 'D', 'EUR') assert trs.transactions[6].data['amount'] == models.Amount( '1000.18', 'C', 'EUR') td = trs.transactions[7].data.pop('transaction_details') assert trs.transactions[7].data == { 'status': 'D', 'funds_code': None, 'amount': models.Amount('903.76', 'D', 'EUR'), 'id': 'NIDB', 'customer_reference': 'NL08ABNA9999999999', 'bank_reference': None, 'extra_details': 'international card services', 'currency': 'EUR', 'date': models.Date(2020, 1, 31), 'entry_date': models.Date(2020, 1, 31), 'guessed_entry_date': models.Date(2020, 1, 31), } assert td[0:46] == 'NL08ABNA9999999999 international card services' assert td[47:112] == \ '000000000000000000000000000000000 0000000000000000 Betaling aan I' assert td[113:176] == \ 'CS 99999999999 ICS Referentie: 2020-01-31 21:27 000000000000000' ```
{ "source": "jkokosar/resolwe", "score": 2 }
#### File: resolwe/flow/finders.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os from django.apps import apps from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.module_loading import import_string class BaseProcessesFinder(object): """ A base processes loader to be used for custom staticfiles finder classes. """ def find_processes(self): raise NotImplementedError('subclasses of BaseProcessesLoader must provide a find_processes() method') def find_descriptors(self): raise NotImplementedError('subclasses of BaseProcessesLoader must provide a find_descriptors() method') class FileSystemProcessesFinder(BaseProcessesFinder): def find_processes(self): return getattr(settings, 'FLOW_PROCESSES_DIRS', ()) def find_descriptors(self): return getattr(settings, 'FLOW_DESCRIPTORS_DIRS', ()) class AppDirectoriesFinder(BaseProcessesFinder): def _find_folders(self, folder_name): found_folders = [] for app_config in apps.get_app_configs(): folder_path = os.path.join(app_config.path, folder_name) if os.path.isdir(folder_path): found_folders.append(folder_path) return found_folders def find_processes(self): return self._find_folders('processes') def find_descriptors(self): return self._find_folders('descriptors') def get_finders(): for finder_path in settings.FLOW_PROCESSES_FINDERS: yield get_finder(finder_path) def get_finder(import_path): Finder = import_string(import_path) if not issubclass(Finder, BaseProcessesFinder): raise ImproperlyConfigured( 'Finder "{}" is not a subclass of "{}"'.format(Finder, BaseProcessesFinder)) return Finder() ``` #### File: resolwe/flow/models.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import functools import json import jsonschema import os import re import six from django import template from django.db import models from django.conf import settings from django.core.exceptions import ValidationError from django.core.validators import RegexValidator from django.contrib.postgres.fields import ArrayField, JSONField from django.contrib.staticfiles import finders from versionfield import VersionField from autoslug import AutoSlugField VERSION_NUMBER_BITS = (8, 10, 14) class BaseModel(models.Model): """Abstract model that ncludes common fields for other models.""" class Meta: """BaseModel Meta options.""" abstract = True unique_together = ('slug', 'version') default_permissions = () #: URL slug slug = AutoSlugField(populate_from='name', unique_with='version', editable=True, max_length=100) #: process version version = VersionField(number_bits=VERSION_NUMBER_BITS, default=0) #: object name name = models.CharField(max_length=100) #: creation date and time created = models.DateTimeField(auto_now_add=True) #: modified date and time modified = models.DateTimeField(auto_now=True) #: user that created the entry contributor = models.ForeignKey(settings.AUTH_USER_MODEL, on_delete=models.PROTECT) def __str__(self): return self.name class Process(BaseModel): """Postgres model for storing processs.""" class Meta(BaseModel.Meta): """Process Meta options.""" permissions = ( ("view_process", "Can view process"), ("share_process", "Can share process"), ("owner_process", "Is owner of the process"), ) PERSISTENCE_RAW = 'RAW' PERSISTENCE_CACHED = 'CAC' PERSISTENCE_TEMP = 'TMP' PERSISTENCE_CHOICES = ( (PERSISTENCE_RAW, 'Raw'), (PERSISTENCE_CACHED, 'Cached'), (PERSISTENCE_TEMP, 'Temp'), ) PRIORITY_HIGH = 'HI' PRIORITY_NORMAL = 'NO' PRIORITY_CHOICES = ( (PRIORITY_NORMAL, 'Normal'), (PRIORITY_HIGH, 'High'), ) #: data type type = models.CharField(max_length=100, validators=[ RegexValidator( regex=r'^data:[a-z0-9:]+:$', message='Type may be alphanumerics separated by colon', code='invalid_type' ) ]) #: category category = models.CharField(max_length=200, default='other', validators=[ RegexValidator( regex=r'^([a-z0-9]+[:\-])*[a-z0-9]+:$', message='Category may be alphanumerics separated by colon', code='invalid_category' ) ]) persistence = models.CharField(max_length=3, choices=PERSISTENCE_CHOICES, default=PERSISTENCE_RAW) """ data PERSISTENCE, cached and temp must be idempotent - :attr:`Processor.PERSISTENCE_RAW` / ``'raw'`` - :attr:`Processor.PERSISTENCE_CACHED` / ``'cached'`` - :attr:`Processor.PERSISTENCE_TEMP` / ``'temp'`` """ priority = models.CharField(max_length=2, choices=PRIORITY_CHOICES, default=PRIORITY_NORMAL) """ data PRIORITY - :attr:`Processor.PRIORITY_NORMAL` / ``'normal'`` - :attr:`Processor.PRIORITY_HIGH` / ``'high'`` """ #: detailed description description = models.TextField(default='') #: template for name of Data object created with Process data_name = models.CharField(max_length=200, null=True, blank=True) input_schema = JSONField(blank=True, default=list) """ process input schema (describes input parameters, form layout **"Inputs"** for :attr:`Data.input`) Handling: - schema defined by: *dev* - default by: *user* - changable by: *none* """ output_schema = JSONField(blank=True, default=list) """ process output schema (describes output JSON, form layout **"Results"** for :attr:`Data.output`) Handling: - schema defined by: *dev* - default by: *dev* - changable by: *dev* Implicitly defined fields (by :meth:`server.management.commands.register` or :meth:`server.tasks.manager`): - ``progress`` of type ``basic:float`` (from 0.0 to 1.0) - ``proc`` of type ``basic:group`` containing: - ``stdout`` of type ``basic:text`` - ``rc`` of type ``basic:integer`` - ``task`` of type ``basic:string`` (celery task id) - ``worker`` of type ``basic:string`` (celery worker hostname) - ``runtime`` of type ``basic:string`` (runtime instance hostname) - ``pid`` of type ``basic:integer`` (process ID) """ flow_collection = models.CharField(max_length=100, null=True, blank=True) """ Automatically add Data object created with this processor to a special collection representing a data-flow. If all input Data objects belong to the same collection, add newly created Data object to it, otherwise create a new collection. If `DescriptorSchema` object with `type` matching this field exists, reference it in the collection's `descriptor_schema` field. """ run = JSONField(default=dict) """ process command and environment description for internal use Handling: - schema defined by: *dev* - default by: *dev* - changable by: *dev* Required definitions: - ``engine`` .. engine to run the processor with - ``script`` .. script with code to run """ def render_template(template_string, context): """Render template based on Dango template language.""" template_headers = [ '{% load resource_filters %}', '{% load process_fields %}', '{% load mathfilters %}', ] custom_template_tags = getattr(settings, 'RESOLWE_CUSTOM_TEMPLATE_TAGS', []) if not isinstance(custom_template_tags, list): raise KeyError("`RESOLWE_CUSTOM_TEMPLATE_TAGS` setting must be a list.") template_headers.extend( ['{{% load {} %}}'.format(template_tag) for template_tag in custom_template_tags] ) return template.Template(''.join(template_headers) + template_string).render(context) def render_descriptor(data): """Render data descriptor. The rendering is based on descriptor schema and input context. :param data: data instance :type data: :obj:`server.models.Data` or :obj:`dict` """ if not data.descriptor_schema or not data.process.input_schema: return inputs = data.input.copy() hydrate_input_references(inputs, data.process.input_schema, hydrate_values=False) template_context = template.Context(inputs) # Set default values for field_schema, _, path in iterate_schema(data.descriptor, data.descriptor_schema.schema, 'descriptor'): if 'default' in field_schema: tmpl = field_schema['default'] if field_schema['type'].startswith('list:'): tmpl = [render_template(tmp, template_context) if isinstance(tmp, six.string_types) else tmp for tmp in tmpl] elif isinstance(tmpl, six.string_types): tmpl = render_template(tmpl, template_context) dict_dot(data, path, tmpl) class Data(BaseModel): """Postgres model for storing data.""" class Meta(BaseModel.Meta): """Data Meta options.""" permissions = ( ("view_data", "Can view data"), ("edit_data", "Can edit data"), ("share_data", "Can share data"), ("download_data", "Can download files from data"), ("owner_data", "Is owner of the data"), ) STATUS_UPLOADING = 'UP' STATUS_RESOLVING = 'RE' STATUS_WAITING = 'WT' STATUS_PROCESSING = 'PR' STATUS_DONE = 'OK' STATUS_ERROR = 'ER' STATUS_DIRTY = 'DR' STATUS_CHOICES = ( (STATUS_UPLOADING, 'Uploading'), (STATUS_RESOLVING, 'Resolving'), (STATUS_WAITING, 'Waiting'), (STATUS_PROCESSING, 'Processing'), (STATUS_DONE, 'Done'), (STATUS_ERROR, 'Error'), (STATUS_DIRTY, 'Dirty') ) #: processor started date and time (set by :meth:`server.tasks.manager`) started = models.DateTimeField(blank=True, null=True) #: processor finished date date and time (set by :meth:`server.tasks.manager`) finished = models.DateTimeField(blank=True, null=True) #: checksum field calculated on inputs checksum = models.CharField(max_length=40, validators=[ RegexValidator( regex=r'^[0-9a-f]{40}$', message='Checksum is exactly 40 alphanumerics', code='invalid_checksum' ) ], blank=True, null=True) status = models.CharField(max_length=2, choices=STATUS_CHOICES, default=STATUS_RESOLVING) """ :class:`Data` status - :attr:`Data.STATUS_UPLOADING` / ``'uploading'`` - :attr:`Data.STATUS_RESOLVING` / ``'resolving'`` - :attr:`Data.STATUS_WAITING` / ``'waiting'`` - :attr:`Data.STATUS_PROCESSING` / ``'processing'`` - :attr:`Data.STATUS_DONE` / ``'done'`` - :attr:`Data.STATUS_ERROR` / ``'error'`` """ #: process used to compute the data object process = models.ForeignKey('Process', on_delete=models.PROTECT) #: process id process_pid = models.PositiveIntegerField(blank=True, null=True) #: progress process_progress = models.PositiveSmallIntegerField(default=0) #: return code process_rc = models.PositiveSmallIntegerField(blank=True, null=True) #: info log message process_info = ArrayField(models.CharField(max_length=255), default=[]) #: warning log message process_warning = ArrayField(models.CharField(max_length=255), default=[]) #: error log message process_error = ArrayField(models.CharField(max_length=255), default=[]) #: actual inputs used by the processor input = JSONField(default=dict) #: actual outputs of the processor output = JSONField(default=dict) #: data descriptor schema descriptor_schema = models.ForeignKey('DescriptorSchema', blank=True, null=True, on_delete=models.PROTECT) #: actual descriptor descriptor = JSONField(default=dict) # track if user set the data name explicitly named_by_user = models.BooleanField(default=False) def __init__(self, *args, **kwargs): super(Data, self).__init__(*args, **kwargs) self._original_name = self.name def save_storage(self, instance, schema): """Save basic:json values to a Storage collection.""" for field_schema, fields in iterate_fields(instance, schema): name = field_schema['name'] value = fields[name] if field_schema.get('type', '').startswith('basic:json:'): if value and not self.pk: raise ValidationError( 'Data object must be `created` before creating `basic:json:` fields') if isinstance(value, int): # already in Storage continue storage = Storage.objects.create( name='Storage for data id {}'.format(self.pk), contributor=self.contributor, data_id=self.pk, json=value, ) # `value` is copied by value, so `fields[name]` must be changed fields[name] = storage.pk def save(self, render_name=False, *args, **kwargs): # Generate the descriptor if one is not already set. if self.name != self._original_name: self.named_by_user = True create = self.pk is None if create: # Default values for INPUT input_schema = self.process.input_schema # pylint: disable=no-member for field_schema, fields, path in iterate_schema(self.input, input_schema): if 'default' in field_schema and field_schema['name'] not in fields: dict_dot(self.input, path, field_schema['default']) if not self.name: self._render_name() else: self.named_by_user = True elif render_name: self._render_name() if not self.descriptor: render_descriptor(self) self.save_storage(self.output, self.process.output_schema) # pylint: disable=no-member hydrate_size(self) if create: validate_schema(self.input, self.process.input_schema) # pylint: disable=no-member if self.descriptor_schema: validate_schema(self.descriptor, self.descriptor_schema.schema) # pylint: disable=no-member elif self.descriptor and self.descriptor != {}: raise ValueError("`descriptor_schema` must be defined if `descriptor` is given") path_prefix = os.path.join(settings.FLOW_EXECUTOR['DATA_DIR'], str(self.pk)) output_schema = self.process.output_schema # pylint: disable=no-member if self.status == Data.STATUS_DONE: validate_schema(self.output, output_schema, path_prefix=path_prefix) else: validate_schema(self.output, output_schema, path_prefix=path_prefix, test_required=False) super(Data, self).save(*args, **kwargs) def _render_name(self): """Render data name. The rendering is based on name template (`process.data_name`) and input context. """ if not self.process.data_name or self.named_by_user: # pylint: disable=no-member return inputs = self.input.copy() # pylint: disable=no-member hydrate_input_references(inputs, self.process.input_schema, hydrate_values=False) # pylint: disable=no-member template_context = template.Context(inputs) self.name = render_template(self.process.data_name, template_context) # pylint: disable=no-member class DescriptorSchema(BaseModel): """Postgres model for storing descriptors.""" class Meta(BaseModel.Meta): """DescriptorSchema Meta options.""" permissions = ( ("view_descriptorschema", "Can view descriptor schema"), ("edit_descriptorschema", "Can edit descriptor schema"), ("share_descriptorschema", "Can share descriptor schema"), ("owner_descriptorschema", "Is owner of the description schema"), ) #: detailed description description = models.TextField(blank=True) #: user descriptor schema represented as a JSON object schema = JSONField(default=dict) class Trigger(BaseModel): """Postgres model for storing triggers.""" class Meta(BaseModel.Meta): """Data Meta options.""" permissions = ( ("view_trigger", "Can view trigger"), ("edit_trigger", "Can edit trigger"), ("share_trigger", "Can share trigger"), ("owner_trigger", "Is owner of the trigger"), ) #: data type of triggering data objects type = models.CharField(max_length=100, validators=[ RegexValidator( regex=r'^data:[a-z0-9:]+:$', message='Type may be alphanumerics separated by colon', code='invalid_type' ) ]) #: trigger condition trigger = models.CharField(max_length=500) #: path to where the id is inserted trigger_input = models.CharField(max_length=100) #: process used process = models.ForeignKey('Process', blank=True, null=True, on_delete=models.SET_NULL) #: input settings of the processor input = JSONField(default=dict) #: corresponding collection collection = models.ForeignKey('Collection') #: does the trigger run on its own autorun = models.BooleanField(default=False) class Storage(BaseModel): """Postgres model for storing storages.""" #: corresponding data object data = models.ForeignKey('Data') #: actual JSON stored json = JSONField() class LazyStorageJSON(object): """Lazy load `json` attribute of `Storage` object.""" def __init__(self, **kwargs): self._kwargs = kwargs self._json = None def _get_storage(self): """Load `json` field from `Storage` object.""" if self._json is None: self._json = Storage.objects.get(**self._kwargs).json def __getitem__(self, key): self._get_storage() return self._json[key] def __repr__(self): self._get_storage() return self._json.__repr__() class BaseCollection(BaseModel): """Template for Postgres model for storing collection.""" class Meta(BaseModel.Meta): """Collection Meta options.""" abstract = True permissions = ( ("view_collection", "Can view collection"), ("edit_collection", "Can edit collection"), ("share_collection", "Can share collection"), ("download_collection", "Can download files from collection"), ("add_collection", "Can add data objects to collection"), ("owner_collection", "Is owner of the collection"), ) #: detailed description description = models.TextField(blank=True) settings = JSONField(default=dict) public_processes = models.ManyToManyField(Process) data = models.ManyToManyField(Data) #: collection descriptor schema descriptor_schema = models.ForeignKey(DescriptorSchema, blank=True, null=True, on_delete=models.PROTECT) #: collection descriptor descriptor = JSONField(default=dict) class Collection(BaseCollection): """Postgres model for storing collection.""" pass def iterate_fields(fields, schema, path_prefix=None): """Iterate over all field values sub-fields. This will iterate over all field values. Some fields defined in the schema might not be visited. :param fields: field values to iterate over :type fields: dict :param schema: schema to iterate over :type schema: dict :return: (field schema, field value) :rtype: tuple """ if path_prefix is not None and path_prefix != '' and path_prefix[-1] != '.': path_prefix += '.' schema_dict = {val['name']: val for val in schema} for field_id, properties in fields.items(): path = '{}{}'.format(path_prefix, field_id) if path_prefix is not None else None if field_id not in schema_dict: raise KeyError("Field definition ({}) missing in schema".format(field_id)) if 'group' in schema_dict[field_id]: for rvals in iterate_fields(properties, schema_dict[field_id]['group'], path): yield (rvals if path_prefix is not None else rvals[:2]) else: rvals = (schema_dict[field_id], fields, path) yield (rvals if path_prefix is not None else rvals[:2]) def iterate_schema(fields, schema, path_prefix=''): """Iterate over all schema sub-fields. This will iterate over all field definitions in the schema. Some field v alues might be None. :param fields: field values to iterate over :type fields: dict :param schema: schema to iterate over :type schema: dict :param path_prefix: dot separated path prefix :type path_prefix: str :return: (field schema, field value, field path) :rtype: tuple """ if path_prefix and path_prefix[-1] != '.': path_prefix += '.' for field_schema in schema: name = field_schema['name'] if 'group' in field_schema: for rvals in iterate_schema(fields[name] if name in fields else {}, field_schema['group'], '{}{}'.format(path_prefix, name)): yield rvals else: yield (field_schema, fields, '{}{}'.format(path_prefix, name)) def validation_schema(name): """Return json schema for json validation.""" schemas = { 'processor': 'processorSchema.json', 'descriptor': 'descriptorSchema.json', 'field': 'fieldSchema.json', 'type': 'typeSchema.json', } if name not in schemas: raise ValueError() field_schema_file = finders.find('flow/{}'.format(schemas['field']), all=True)[0] field_schema = open(field_schema_file, 'r').read() if name == 'field': return json.loads(field_schema.replace('{{PARENT}}', '')) schema_file = finders.find('flow/{}'.format(schemas[name]), all=True)[0] schema = open(schema_file, 'r').read() return json.loads(schema.replace('{{FIELD}}', field_schema).replace('{{PARENT}}', '/field')) TYPE_SCHEMA = validation_schema('type') def validate_schema(instance, schema, test_required=True, path_prefix=None): """Check if DictField values are consistent with our data types. Perform basic JSON schema validation and our custom validations: * check that required fields are given (if `test_required` is set to ``True``) * check if ``basic:file:`` and ``list:basic:file`` fields match regex given in schema (only if ``validate_regex`` is defined in schema for coresponding fields) and exists (only if ``path_prefix`` is given) * check if directories referenced in ``basic:dir:`` and ``list:basic:dir``fields exist (only if ``path_prefix`` is given) * check that referenced ``Data`` objects (in ``data:<data_type>`` and ``list:data:<data_type>`` fields) exists and are of type ``<data_type>`` * check that referenced ``Storage`` objects (in ``basic:json`` fields) exists :param list instance: Instance to be validated :param list schema: Schema for validation :param bool test_required: Flag for testing if all required fields are present. It is usefule if validation is run before ``Data`` object is finished and there are some field stil missing (default: ``False``) :param str path_prefix: path prefix used for checking if files and directories exist (default: ``None``) :rtype: None :raises ValidationError: if ``instance`` doesn't match schema defined in ``schema`` """ def validate_refs(field): if 'refs' in field: for refs_filename in field['refs']: refs_path = os.path.join(path_prefix, refs_filename) if not (os.path.isfile(refs_path) or os.path.isdir(refs_path)): raise ValidationError( "File referenced in `refs` ({}) does not exist".format(refs_path)) def validate_file(field, regex): """Validate file name (and check that it exists).""" filename = field['file'] if regex and not re.search(regex, filename): raise ValidationError( "File name {} does not match regex {}".format(filename, regex)) if path_prefix: path = os.path.join(path_prefix, filename) if not os.path.isfile(path): raise ValidationError("Referenced file ({}) does not exist".format(path)) validate_refs(field) def validate_dir(field): """Check that dirs and referenced files exists.""" dirname = field['dir'] if path_prefix: path = os.path.join(path_prefix, dirname) if not os.path.isdir(path): raise ValidationError("Referenced dir ({}) does not exist".format(path)) validate_refs(field) def validate_data(data_pk, type_): """"Check that `Data` objects exist and is of right type.""" data_qs = Data.objects.filter(pk=data_pk).values('process__type') if not data_qs.exists(): raise ValidationError( "Referenced `Data` object does not exist (id:{})".format(data_pk)) data = data_qs.first() if not data['process__type'].startswith(type_): raise ValidationError( "Data object of type `{}` is required, but type `{}` is given. " "(id:{})".format(type_, data['process__type'], data_pk)) for _schema, _fields, _ in iterate_schema(instance, schema): name = _schema['name'] if test_required and _schema.get('required', True) and name not in _fields: raise ValidationError("Required field \"{}\" not given.".format(name)) if name in _fields: field = _fields[name] type_ = _schema.get('type', "") try: jsonschema.validate([{"type": type_, "value": field}], TYPE_SCHEMA) except jsonschema.exceptions.ValidationError as ex: raise ValidationError(ex.message) if type_ == 'basic:file:': validate_file(field, _schema.get('validate_regex')) elif type_ == 'list:basic:file:': for obj in field: validate_file(obj, _schema.get('validate_regex')) elif type_ == 'basic:dir:': validate_dir(field) elif type_ == 'list:basic:dir:': for obj in field: validate_dir(obj) elif type_ == 'basic:json:' and not Storage.objects.filter(pk=field).exists(): raise ValidationError( "Referenced `Storage` object does not exist (id:{})".format(field)) elif type_.startswith('data:'): validate_data(field, type_) elif type_.startswith('list:data:'): for data_id in field: validate_data(data_id, type_[5:]) # remove `list:` from type for field_schema, fields in iterate_fields(instance, schema): pass # check that schema definitions exist for all fields def _hydrate_values(output, output_schema, data): """Hydrate basic:file and basic:json values. Find fields with basic:file type and assign a full path to the file. Find fields with basic:json type and assign a JSON object from storage. """ def hydrate_path(file_name): id_ = "{}/".format(data.id) # needs trailing slash if id_ in file_name: file_name = file_name[file_name.find(id_) + len(id_):] # remove id from filename return os.path.join(settings.FLOW_EXECUTOR['DATA_DIR'], id_, file_name) def hydrate_storage(storage_id): return LazyStorageJSON(pk=storage_id) for field_schema, fields in iterate_fields(output, output_schema): name = field_schema['name'] value = fields[name] if 'type' in field_schema: if field_schema['type'].startswith('basic:file:'): value['file'] = hydrate_path(value['file']) elif field_schema['type'].startswith('list:basic:file:'): for obj in value: obj['file'] = hydrate_path(obj['file']) if field_schema['type'].startswith('basic:dir:'): value['dir'] = hydrate_path(value['dir']) elif field_schema['type'].startswith('list:basic:dir:'): for obj in value: obj['dir'] = hydrate_path(obj['dir']) elif field_schema['type'].startswith('basic:json:'): fields[name] = hydrate_storage(value) elif field_schema['type'].startswith('list:basic:json:'): fields[name] = [hydrate_storage(storage_id) for storage_id in value] def hydrate_size(data): """"Add file and dir sizes. Add sizes to ``basic:file:``, ``list:basic:file``, ``basic:dir:`` and ``list:basic:dir:`` fields. """ def add_file_size(obj): if data.status in [Data.STATUS_DONE, Data.STATUS_ERROR] and 'size' in obj: return path = os.path.join(settings.FLOW_EXECUTOR['DATA_DIR'], str(data.pk), obj['file']) if not os.path.isfile(path): raise ValidationError("Referenced file does not exist ({})".format(path)) obj['size'] = os.path.getsize(path) def get_dir_size(path): total_size = 0 for dirpath, dirnames, filenames in os.walk(path): for f in filenames: fp = os.path.join(dirpath, f) total_size += os.path.getsize(fp) return total_size def add_dir_size(obj): if data.status in [Data.STATUS_DONE, Data.STATUS_ERROR] and 'size' in obj: return path = os.path.join(settings.FLOW_EXECUTOR['DATA_DIR'], str(data.pk), obj['dir']) if not os.path.isdir(path): raise ValidationError("Referenced dir does not exist ({})".format(path)) obj['size'] = get_dir_size(path) for field_schema, fields in iterate_fields(data.output, data.process.output_schema): name = field_schema['name'] value = fields[name] if 'type' in field_schema: if field_schema['type'].startswith('basic:file:'): add_file_size(value) elif field_schema['type'].startswith('list:basic:file:'): for obj in value: add_file_size(obj) elif field_schema['type'].startswith('basic:dir:'): add_dir_size(value) elif field_schema['type'].startswith('list:basic:dir:'): for obj in value: add_dir_size(obj) def hydrate_input_uploads(input_, input_schema, hydrate_values=True): """Hydrate input basic:upload types with upload location Find basic:upload fields in input. Add the upload location for relative paths. """ files = [] for field_schema, fields in iterate_fields(input_, input_schema): name = field_schema['name'] value = fields[name] if 'type' in field_schema: if field_schema['type'] == 'basic:file:': files.append(value) elif field_schema['type'] == 'list:basic:file:': files.extend(value) urlregex = re.compile(r'^(https?|ftp)://[-A-Za-z0-9\+&@#/%?=~_|!:,.;]*[-A-Za-z0-9\+&@#/%=~_|]') for value in files: if 'file_temp' in value: if isinstance(value['file_temp'], six.string_types): # If file_temp not url, nor absolute path: hydrate path if not os.path.isabs(value['file_temp']) and not urlregex.search(value['file_temp']): value['file_temp'] = os.path.join(settings.FLOW_EXECUTOR['UPLOAD_DIR'], value['file_temp']) else: # Something very strange happened value['file_temp'] = 'Invalid value for file_temp in DB' def hydrate_input_references(input_, input_schema, hydrate_values=True): """Hydrate ``input_`` with linked data. Find fields with complex data:<...> types in ``input_``. Assign an output of corresponding data object to those fields. """ for field_schema, fields in iterate_fields(input_, input_schema): name = field_schema['name'] value = fields[name] if 'type' in field_schema: if field_schema['type'].startswith('data:'): # if re.match('^[0-9a-fA-F]{24}$', str(value)) is None: # print "ERROR: data:<...> value in field \"{}\", type \"{}\" not ObjectId but {}.".format( # name, field_schema['type'], value) if value is None: continue data = Data.objects.get(id=value) output = data.output.copy() # static = Data.static.to_python(data.static) if hydrate_values: _hydrate_values(output, data.process.output_schema, data) # _hydrate_values(static, data.static_schema, data) output["__id"] = data.id output["__type"] = data.process.type fields[name] = output elif field_schema['type'].startswith('list:data:'): outputs = [] for val in value: # if re.match('^[0-9a-fA-F]{24}$', str(val)) is None: # print "ERROR: data:<...> value in {}, type \"{}\" not ObjectId but {}.".format( # name, field_schema['type'], val) if val is None: continue data = Data.objects.get(id=val) output = data.output.copy() # static = Data.static.to_python(data.static) if hydrate_values: _hydrate_values(output, data.process.output_schema, data) # _hydrate_values(static, data.static_schema, data) output["__id"] = data.id output["__type"] = data.process.type outputs.append(output) fields[name] = outputs def dict_dot(d, k, val=None, default=None): """Get or set value using a dot-notation key in a multilevel dict.""" if val is None and k == '': return d def set_default(dict_or_model, key, default_value): if isinstance(dict_or_model, models.Model): if not hasattr(dict_or_model, key): setattr(dict_or_model, key, default_value) return getattr(dict_or_model, key) else: return dict_or_model.setdefault(key, default_value) def get_item(dict_or_model, key): if isinstance(dict_or_model, models.Model): return getattr(dict_or_model, key) else: return dict_or_model[key] def set_item(dict_or_model, key, value): if isinstance(dict_or_model, models.Model): setattr(dict_or_model, key, value) else: dict_or_model[key] = value if val is None and callable(default): # Get value, default for missing return functools.reduce(lambda a, b: set_default(a, b, default()), k.split('.'), d) elif val is None: # Get value, error on missing return functools.reduce(lambda a, b: get_item(a, b), k.split('.'), d) else: # Set value try: k, k_last = k.rsplit('.', 1) set_item(dict_dot(d, k, default=dict), k_last, val) except ValueError: set_item(d, k, val) return val ``` #### File: flow/templatetags/test_tags.py ```python from django import template register = template.Library() @register.filter def increase(value): return value + 1 ``` #### File: flow/tests/test_backend.py ```python from __future__ import absolute_import, division, print_function, unicode_literals import os import shutil from django.conf import settings from django.contrib.auth import get_user_model from django.test import TestCase from resolwe.flow.managers import manager from resolwe.flow.models import Data, Process class BackendTest(TestCase): def setUp(self): u = get_user_model().objects.create_superuser('test', '<EMAIL>', 'test') self.p = Process(slug='test-processor', name='Test Process', contributor=u, type='data:test', version=1) self.p.save() self.d = Data(slug='test-data', name='Test Data', contributor=u, process=self.p) self.d.save() def tearDown(self): for data in Data.objects.all(): data_dir = os.path.join(settings.FLOW_EXECUTOR['DATA_DIR'], str(data.id)) shutil.rmtree(data_dir, ignore_errors=True) def test_manager(self): manager.communicate(verbosity=0) def test_dtlbash(self): self.p.slug = 'test-processor-dtlbash' self.p.run = {'script': """ gen-info \"Test processor info\" gen-warning \"Test processor warning\" echo '{"proc.info": "foo"}' """} self.p.save() self.d.slug = 'test-data-dtlbash' self.d.process = self.p self.d.save() self.d = Data(id=self.d.id) ``` #### File: resolwe/resolwe/utils.py ```python class BraceMessage(object): """Helper class that can be used to construct log messages with the new {}-string formatting syntax. NOTE: When using this helper class, one pays no signigicant performance penalty since the actual formatting only happens when (and if) the logged message is actually outputted to a log by a handler. Example usage: from genesis.utils.formatters import BraceMessage as __ logger.error(__("Message with {0} {name}", 2, name="placeholders")) Source: https://docs.python.org/3/howto/logging-cookbook.html#use-of-alternative-formatting-styles """ def __init__(self, fmt, *args, **kwargs): self.fmt = fmt self.args = args self.kwargs = kwargs def __str__(self): return self.fmt.format(*self.args, **self.kwargs) ```
{ "source": "jkolczasty/arduino_expander", "score": 3 }
#### File: arduino_expander/examples/linux-i2c-input-output.py ```python import smbus import time import random bus = smbus.SMBus(0) address = 0x29 # config as follows: # 7 as OUTPUT as 1 initial output # 8 as INPUT config = [1, 7, 1, 0, 2, 8, 0, 0] def print_gpio(data): print("GPIOs:", end="") for i in range(0, int(len(data)/4)): print(" | ", data[i*4+1], "=", data[i*4+2] + data[i*4+3]*256, end="") print("") bus.write_i2c_block_data(address, 7, config) v = 1 while 1: time.sleep(0.5) v = 0 if v else 1 data = [0, v, 0] # SET gpio item 0 to value bus.write_i2c_block_data(address, 8, data) # read values data = bus.read_i2c_block_data(address, 0) print_gpio(data) ```
{ "source": "JKolios/battlewhoosh", "score": 3 }
#### File: battlescribe_parser/bsdata/element.py ```python import os.path class Element: INTERNAL_ATTRS = {'id', 'characteristicTypeId', 'hidden', 'TypeId', 'profileTypeId'} DIR_TO_GAME_MAPPING = { 'wh40k-killteam': 'Warhammer 40K: Kill Team', } def __init__(self, xml_element, catalogue_file, profile_type=None): self.element = xml_element self.catalogue_file = catalogue_file self.profile_type = profile_type def attrib(self): returned_keys = set(self.element.attrib.keys()) - self.INTERNAL_ATTRS return {k: v for k, v in self.element.attrib.items() if k in returned_keys} def iterate_children(self): children_iterator = self.element.iter('*') return (Element(child, self.catalogue_file) for child in children_iterator) def has_child(self): return self.child() is not None def has_link(self): return self.link_target() is not None def link_target(self): return self.element.get('targetId') def child(self): return self.element.get('childId') def resolve_link(self): if not self.has_link(): return None return self._resolve_associated_element(self.link_target()) def resolve_child(self): if not self.has_child(): return None return self._resolve_associated_element(self.child()) def faction(self): file_name = os.path.split(self.catalogue_file.file_name())[1] return os.path.splitext(file_name)[0] def game(self): _, game_dir = os.path.split(os.path.dirname(self.catalogue_file.file_name())) return self.DIR_TO_GAME_MAPPING[game_dir] def _resolve_associated_element(self, element_id): associated_element = self.catalogue_file.get_element_by_id(element_id) return Element(associated_element, self.catalogue_file) ``` #### File: search_ui/catalogues/form.py ```python import npyscreen from search_ui.catalogues.term_text import TermText from search_ui.catalogues.result_text import ResultText class SearchForm(npyscreen.FormBaseNew): def create(self): self.add_handlers({ "^Q": self.exit, "^W": self.jump_to_term_text, "^E": self.jump_to_result_text, "^R": self.jump_to_detail_text }) self.term_text = self.add( TermText, name="Name:", height=1, scroll_exit=True) self.result_text = self.add( ResultText, name="Results:", values=[], height=10, scroll_exit=True) self.detail_text = self.add( npyscreen.TitlePager, name="Details:", scroll_exit=True, autowrap=True) def jump_to_term_text(self, _input): self.term_text.edit() def jump_to_result_text(self, _input): self.result_text.edit() def jump_to_detail_text(self, _input): self.detail_text.edit() def exit(self, _input): quit(0) ``` #### File: search_ui/catalogues/term_text.py ```python import npyscreen import curses class TermText(npyscreen.TitleText): def when_value_edited(self): search_results = self.parent.parentApp.run_search(self.value) self.parent.result_text.values = search_results self.parent.result_text.display() ```
{ "source": "JKolios/EPaperDashboard", "score": 3 }
#### File: JKolios/EPaperDashboard/display.py ```python from epd import EPD from text_render.text_render import draw_paragraph from PIL import Image, ImageFont, ImageDraw, ImageChops VERTICAL_MODE = 0 HORIZONTAL_MODE = 1 class Display: def __init__(self, mode=VERTICAL_MODE, line_width=20): self.mode = mode self.line_width = line_width self._epd = EPD() self._epd.init() self._init_images() def draw_paragraph(self, text): self.cursor_height = draw_paragraph(self._image_draw, self.cursor_height, text, line_width=self.line_width) def show(self): self._update() self._init_images() def sleep(self): self._sleep() def _update(self): if self.mode == HORIZONTAL_MODE: self._epd.smart_update(self._image.rotate(90, expand=True)) return self._epd.smart_update(self._image) def _init_images(self): self.cursor_height = 0 self._image = Image.new('1', (self._epd.width, self._epd.height), 255) self._image_draw = ImageDraw.Draw(self._image) def _sleep(self): self._epd.sleep() ```
{ "source": "jkolive/gerenciador-sybase-gui", "score": 3 }
#### File: jkolive/gerenciador-sybase-gui/trayIcon.py ```python import main import os import sys import gi gi.require_version('Gtk', '3.0') from gi.repository import Gtk from subprocess import run from time import time class TrayIcon(Gtk.Window): def __init__(self): Gtk.Window.__init__(self) self.APPIND = 1 try: gi.require_version('AppIndicator3', '0.1') from gi.repository import AppIndicator3 except ImportError: self.APPIND = 0 if self.APPIND == 1: timestamp = time() self.indicator = AppIndicator3.Indicator.new(f"_id_{timestamp}", sys.path[0] + '/images/trayicon/app-gerenciador.png', AppIndicator3.IndicatorCategory.APPLICATION_STATUS) self.active = AppIndicator3.IndicatorStatus.ACTIVE self.passive = AppIndicator3.IndicatorStatus.PASSIVE self.indicator.set_status(self.active) self.indicator.set_title('Gerenciador Sybase') self.indicator.set_menu(self.add_menu_indicator()) else: self.statusIcon = Gtk.StatusIcon() self.statusIcon.set_from_file(sys.path[0] + '/images/trayicon/app-gerenciador.png') self.statusIcon.set_tooltip_text('Gerenciador Sybase') self.statusIcon.connect('popup-menu', self.on_right_click) def add_menu_indicator(self): menu = Gtk.Menu() miApp = Gtk.MenuItem() miApp.set_label('Abrir Gerenciador') miApp.connect('activate', self.show_app) menu.append(miApp) miExit = Gtk.MenuItem() miExit.set_label('Sair') miExit.connect('activate', self.close_app) menu.append(miExit) menu.show_all() return menu def on_right_click(self, icon, button, time_active): menu = Gtk.Menu() miApp = Gtk.MenuItem() miApp.set_label('Abri Gerenciador') miApp.connect('activate', self.show_app) menu.append(miApp) miExit = Gtk.MenuItem() miExit.set_label('Sair') miExit.connect('activate', self.close_app) menu.append(miExit) menu.show_all() menu.popup(None, None, None, self.statusIcon, button, time_active) def show_app(self, *args): if self.APPIND == 1: self.indicator.set_status(self.passive) else: self.statusIcon.set_visible(False) main.Main() def close_app(self, *args): cmd = run('pidof -s dbsrv16', shell=True) if cmd.returncode == 0: dialog = Gtk.MessageDialog(parent=self, flags=0, message_type=Gtk.MessageType.QUESTION, buttons=Gtk.ButtonsType.YES_NO, text='ATENÇÃO!') dialog.format_secondary_text('Banco de Dados ainda em execução! Deseja parar o Banco de dados?') dialog.set_position(Gtk.WindowPosition.CENTER_ALWAYS) response = dialog.run() if response == Gtk.ResponseType.YES: run(f'echo {os.environ["ENTRY_PASS"]} | sudo -k -S killall -w -s 15 dbsrv16', shell=True) raise SystemExit() if response == Gtk.ResponseType.NO: dialog.destroy() raise SystemExit() ```
{ "source": "jkoloda/CarND-Capstone", "score": 3 }
#### File: tl_detector/light_classification/tl_classifier.py ```python from styx_msgs.msg import TrafficLight import tensorflow as tf import numpy as np import rospy import cv2 import os MAX_IMAGE_WIDTH = 300 MAX_IMAGE_HEIGHT = 300 class TLClassifier(object): """Traffic light classifier based on a tensorflow model.""" def __init__(self, is_site=True): """Build, load and prepare traffic light classifier object. Loads classifier trained on simulator or real data, depending on the is_site flag coming from the configuration file. """ self.session = None self.detection_graph = None self.classes = {1: TrafficLight.RED, 2: TrafficLight.YELLOW, 3: TrafficLight.GREEN, 4: TrafficLight.UNKNOWN} self.light_labels = ['RED', 'YELLOW', 'GREEN', 'UNKNOWN'] temp = os.path.dirname(os.path.realpath(__file__)) temp = temp.replace( 'ros/src/tl_detector/light_classification', 'models', ) if is_site is False: self.model_path = os.path.join(temp, 'frozen_inference_graph_sim.pb') else: self.model_path = os.path.join(temp, 'frozen_inference_graph_real.pb') self.load_model(model_path=self.model_path) def get_classification(self, image): """Determine the color of the traffic light in the image. Args ---- image (cv::Mat): image containing the traffic light Returns ------- int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ class_idx, confidence = self.predict(image) return class_idx def load_model(self, model_path): """Load classifier (graph and session).""" self.detection_graph = tf.Graph() with tf.Session(graph=self.detection_graph) as sess: self.session = sess od_graph_def = tf.GraphDef() with tf.gfile.GFile(model_path, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') def predict(self, image_np, min_score_thresh=0.5): """Predict traffic light state from image. Parameters ---------- image_np : ndarray Input image. min_score_threshold : float Confidence threshold for traffic light classification. Returns ------- light : TrafficLight Light color of traffic light detected on input image. score : float Classification confidence score. """ image_tensor = self.detection_graph.\ get_tensor_by_name('image_tensor:0') detection_boxes = self.detection_graph.\ get_tensor_by_name('detection_boxes:0') detection_scores = self.detection_graph.\ get_tensor_by_name('detection_scores:0') detection_classes = self.detection_graph.\ get_tensor_by_name('detection_classes:0') num_detections = self.detection_graph.\ get_tensor_by_name('num_detections:0') image_np = self.process_image(image_np) input = [detection_boxes, detection_scores, detection_classes] (boxes, scores, classes) = self.session.run( input, feed_dict={image_tensor: np.expand_dims(image_np, axis=0)}) scores = np.squeeze(scores) classes = np.squeeze(classes) boxes = np.squeeze(boxes) # Traffic light state decision # In case mutliple traffic lights are detected (as e.g. is the case of # the simulator) we select the light with the highest accumulated score accumulated_scores = np.zeros(len(self.classes)) accumulated_classes = np.zeros(len(self.classes)) for ii, score in enumerate(scores): if score > min_score_thresh: # light_class = self.classes[classes[ii]] # return light_class, score rospy.loginfo(self.light_labels[int(classes[ii] - 1)]) accumulated_scores[classes[ii] - 1] += score accumulated_classes[classes[ii] - 1] += 1 if np.sum(accumulated_scores) > 0: light_class_idx = np.argmax(accumulated_scores) + 1 confidence = accumulated_scores[light_class_idx - 1] / \ float(accumulated_classes[light_class_idx - 1]) return self.classes[light_class_idx], confidence else: return None, None def process_image(self, img): """Pre-process imae so it can be passed directly to classifier. Pre-processing consists of shrinkng the image to default maximum size and converting in to RGB format (assuming that input is BGR). Parameters ---------- img : ndarray Input image to be processed. Returns ------- img : ndarray Processed image. """ img = cv2.resize(img, (MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT)) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) return img def shrink_image(self, img): """Shrink image if bigger than default maximum dimensions. Aspect ratio is kept. If the image is smaller it is return as it is. Parameters ---------- img : ndarray Input image to be shrinked if necessary. Returns ------- img : ndarray Shrinked image. """ height, width = img.shape[:2] if MAX_IMAGE_HEIGHT < height or MAX_IMAGE_WIDTH < width: scaling_factor = np.min(MAX_IMAGE_HEIGHT / float(height), MAX_IMAGE_WIDTH / float(width)) img = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) return img ```
{ "source": "jkoloda/deivos", "score": 3 }
#### File: deivos/test/test_squeezenet.py ```python import unittest import numpy as np import tensorflow as tf from deivos.architectures.squeezenet import ( default_preprocessor, expand, fire_module, get_model_v10, get_model_v11, squeeze, ) class TestLayers(unittest.TestCase): """Tester for SqueezeNet architecture.""" # pylint: disable=too-many-instance-attributes def setUp(self): self.batch_size = 16 self.rows = 24 self.cols = 32 self.channels = 20 self.input_shape = (self.batch_size, self.rows, self.cols, self.channels) self.default_input_shape = (self.batch_size, 227, 227, 3) self.inputs = tf.random.normal(shape=self.input_shape) self.default_inputs = tf.random.normal(shape=self.default_input_shape) def test_squeeze(self): """Test squeeze module.""" for _ in range(0, 100): filters = np.random.randint(low=1, high=2*self.channels) output_shape = (self.batch_size, self.rows, self.cols, filters) # Check shape after squeezing if filters < self.channels: outputs = squeeze(self.inputs, name='', filters=filters) self.assertTrue(outputs.shape == tf.TensorShape(output_shape)) else: # Squeeze module cannot expand input with self.assertRaises(AssertionError): outputs = squeeze(self.inputs, name='', filters=filters) def test_expand(self): """Test expand module.""" for _ in range(0, 100): filters = np.random.randint(low=1, high=2*self.channels) output_shape = (self.batch_size, self.rows, self.cols, 2*filters) # Check shape after expanding if filters > self.channels: outputs = expand(self.inputs, name='', filters=filters) self.assertTrue(outputs.shape == tf.TensorShape(output_shape)) else: # Expand module cannot squeeze input with self.assertRaises(AssertionError): outputs = expand(self.inputs, name='', filters=filters) def test_fire_module(self): """Test fire module.""" # Only test for one number of filters # Filter variety is tested by expand and squeeze tests filters_in = 10 for squeeze_expand_ratio in [2, 3, 4]: # Expand squeezed dimension for both 1x1 and 3x3 filters filters_out = squeeze_expand_ratio * 2 * filters_in # No bypass output_shape = (self.batch_size, self.rows, self.cols, filters_out) outputs = fire_module(self.inputs, name='', squeeze_filters=filters_in, bypass=False, squeeze_expand_ratio=squeeze_expand_ratio) self.assertTrue(outputs.shape == tf.TensorShape(output_shape)) # Complex bypass outputs = fire_module(self.inputs, name='', squeeze_filters=filters_in, bypass=True, squeeze_expand_ratio=squeeze_expand_ratio) self.assertTrue(outputs.shape == tf.TensorShape(output_shape)) # Simple bypass for squeeze_expand_ratio in [2, 4, 5]: filters_in = self.channels//squeeze_expand_ratio # Expand squeezed dimension for both 1x1 and 3x3 filters filters_out = squeeze_expand_ratio * 2 * filters_in output_shape = (self.batch_size, self.rows, self.cols, filters_out) outputs = fire_module(self.inputs, name='', squeeze_filters=filters_in, bypass=True, squeeze_expand_ratio=squeeze_expand_ratio) self.assertTrue(outputs.shape == tf.TensorShape(output_shape)) def test_default_preprocessor(self): """Test deafult preprocessor.""" # Version 1.0, default input outputs = default_preprocessor(self.default_inputs, version='1.0') self.assertTrue(outputs.shape == (self.batch_size, 55, 55, 96)) # Not default input with self.assertRaises(AssertionError): outputs = default_preprocessor(self.inputs, '1.0') # Version 1.1, default input outputs = default_preprocessor(self.default_inputs, version='1.1') self.assertTrue(outputs.shape == (self.batch_size, 56, 56, 64)) # Not default input with self.assertRaises(AssertionError): outputs = default_preprocessor(self.inputs, version='1.1') def test_get_model_v10(self): """Test SqueezeNet v1.0.""" layers = {'fire2_concat': (None, 55, 55, 128), 'fire3_concat': (None, 55, 55, 128), 'fire4_concat': (None, 55, 55, 256), 'fire5_concat': (None, 27, 27, 256), 'fire6_concat': (None, 27, 27, 384), 'fire7_concat': (None, 27, 27, 384), 'fire8_concat': (None, 27, 27, 512), 'fire9_concat': (None, 13, 13, 512)} for num_classes in [10, 100, 100]: for bypass_type in [None, 'simple', 'complex']: model = get_model_v10(num_classes=num_classes, bypass_type=bypass_type) for name, shape in layers.items(): layer = model.get_layer(name) self.assertTrue(layer.output_shape == shape) self.assertTrue(model.output_shape == (None, num_classes)) del model def test_get_model_v11(self): """Test SqueezeNet v1.1.""" layers = {'fire2_concat': (None, 56, 56, 128), 'fire3_concat': (None, 56, 56, 128), 'fire4_concat': (None, 28, 28, 256), 'fire5_concat': (None, 28, 28, 256), 'fire6_concat': (None, 14, 14, 384), 'fire7_concat': (None, 14, 14, 384), 'fire8_concat': (None, 14, 14, 512), 'fire9_concat': (None, 14, 14, 512)} for num_classes in [10, 100, 100]: for bypass_type in [None, 'simple', 'complex']: model = get_model_v11(num_classes=num_classes, bypass_type=bypass_type) for name, shape in layers.items(): layer = model.get_layer(name) self.assertTrue(layer.output_shape == shape) self.assertTrue(model.output_shape == (None, num_classes)) del model def test_squeezenet(self): # TODO: Check that corresponding get models have been called pass if __name__ == '__main__': unittest.main() ```
{ "source": "jkolokotronis/ds_mod_tools", "score": 2 }
#### File: site-packages/chardet/sjisprober.py ```python from mbcharsetprober import MultiByteCharSetProber from codingstatemachine import CodingStateMachine from chardistribution import SJISDistributionAnalysis from jpcntx import SJISContextAnalysis from mbcssm import SJISSMModel import constants, sys from constants import eStart, eError, eItsMe class SJISProber(MultiByteCharSetProber): def __init__(self): MultiByteCharSetProber.__init__(self) self._mCodingSM = CodingStateMachine(SJISSMModel) self._mDistributionAnalyzer = SJISDistributionAnalysis() self._mContextAnalyzer = SJISContextAnalysis() self.reset() def reset(self): MultiByteCharSetProber.reset(self) self._mContextAnalyzer.reset() def get_charset_name(self): return "SHIFT_JIS" def feed(self, aBuf): aLen = len(aBuf) for i in range(0, aLen): codingState = self._mCodingSM.next_state(aBuf[i]) if codingState == eError: if constants._debug: sys.stderr.write(self.get_charset_name() + ' prober hit error at byte ' + str(i) + '\n') self._mState = constants.eNotMe break elif codingState == eItsMe: self._mState = constants.eFoundIt break elif codingState == eStart: charLen = self._mCodingSM.get_current_charlen() if i == 0: self._mLastChar[1] = aBuf[0] self._mContextAnalyzer.feed(self._mLastChar[2 - charLen :], charLen) self._mDistributionAnalyzer.feed(self._mLastChar, charLen) else: self._mContextAnalyzer.feed(aBuf[i + 1 - charLen : i + 3 - charLen], charLen) self._mDistributionAnalyzer.feed(aBuf[i - 1 : i + 1], charLen) self._mLastChar[0] = aBuf[aLen - 1] if self.get_state() == constants.eDetecting: if self._mContextAnalyzer.got_enough_data() and \ (self.get_confidence() > constants.SHORTCUT_THRESHOLD): self._mState = constants.eFoundIt return self.get_state() def get_confidence(self): contxtCf = self._mContextAnalyzer.get_confidence() distribCf = self._mDistributionAnalyzer.get_confidence() return max(contxtCf, distribCf) ``` #### File: Crypto/Hash/HMAC.py ```python __revision__ = "$Id$" __all__ = ['new', 'digest_size', 'HMAC' ] from Crypto.Util.strxor import strxor_c from Crypto.Util.py3compat import * #: The size of the authentication tag produced by the MAC. #: It matches the digest size on the underlying #: hashing module used. digest_size = None class HMAC: """Class that implements HMAC""" #: The size of the authentication tag produced by the MAC. #: It matches the digest size on the underlying #: hashing module used. digest_size = None def __init__(self, key, msg = None, digestmod = None): """Create a new HMAC object. :Parameters: key : byte string secret key for the MAC object. It must be long enough to match the expected security level of the MAC. However, there is no benefit in using keys longer than the `digest_size` of the underlying hash algorithm. msg : byte string The very first chunk of the message to authenticate. It is equivalent to an early call to `update()`. Optional. :Parameter digestmod: The hash algorithm the HMAC is based on. Default is `Crypto.Hash.MD5`. :Type digestmod: A hash module or object instantiated from `Crypto.Hash` """ if digestmod is None: import MD5 digestmod = MD5 self.digestmod = digestmod self.outer = digestmod.new() self.inner = digestmod.new() try: self.digest_size = digestmod.digest_size except AttributeError: self.digest_size = len(self.outer.digest()) try: # The block size is 128 bytes for SHA384 and SHA512 and 64 bytes # for the others hash function blocksize = digestmod.block_size except AttributeError: blocksize = 64 ipad = 0x36 opad = 0x5C if len(key) > blocksize: key = digestmod.new(key).digest() key = key + bchr(0) * (blocksize - len(key)) self.outer.update(strxor_c(key, opad)) self.inner.update(strxor_c(key, ipad)) if (msg): self.update(msg) def update(self, msg): """Continue authentication of a message by consuming the next chunk of data. Repeated calls are equivalent to a single call with the concatenation of all the arguments. In other words: >>> m.update(a); m.update(b) is equivalent to: >>> m.update(a+b) :Parameters: msg : byte string The next chunk of the message being authenticated """ self.inner.update(msg) def copy(self): """Return a copy ("clone") of the MAC object. The copy will have the same internal state as the original MAC object. This can be used to efficiently compute the MAC of strings that share a common initial substring. :Returns: An `HMAC` object """ other = HMAC(b("")) other.digestmod = self.digestmod other.inner = self.inner.copy() other.outer = self.outer.copy() return other def digest(self): """Return the **binary** (non-printable) MAC of the message that has been authenticated so far. This method does not change the state of the MAC object. You can continue updating the object after calling this function. :Return: A byte string of `digest_size` bytes. It may contain non-ASCII characters, including null bytes. """ h = self.outer.copy() h.update(self.inner.digest()) return h.digest() def hexdigest(self): """Return the **printable** MAC of the message that has been authenticated so far. This method does not change the state of the MAC object. :Return: A string of 2* `digest_size` bytes. It contains only hexadecimal ASCII digits. """ return "".join(["%02x" % bord(x) for x in tuple(self.digest())]) def new(key, msg = None, digestmod = None): """Create a new HMAC object. :Parameters: key : byte string key for the MAC object. It must be long enough to match the expected security level of the MAC. However, there is no benefit in using keys longer than the `digest_size` of the underlying hash algorithm. msg : byte string The very first chunk of the message to authenticate. It is equivalent to an early call to `HMAC.update()`. Optional. :Parameter digestmod: The hash to use to implement the HMAC. Default is `Crypto.Hash.MD5`. :Type digestmod: A hash module or instantiated object from `Crypto.Hash` :Returns: An `HMAC` object """ return HMAC(key, msg, digestmod) ``` #### File: Crypto/Protocol/Chaffing.py ```python __revision__ = "$Id$" from Crypto.Util.number import bytes_to_long class Chaff: """Class implementing the chaff adding algorithm. Methods for subclasses: _randnum(size): Returns a randomly generated number with a byte-length equal to size. Subclasses can use this to implement better random data and MAC generating algorithms. The default algorithm is probably not very cryptographically secure. It is most important that the chaff data does not contain any patterns that can be used to discern it from wheat data without running the MAC. """ def __init__(self, factor=1.0, blocksper=1): """Chaff(factor:float, blocksper:int) factor is the number of message blocks to add chaff to, expressed as a percentage between 0.0 and 1.0. blocksper is the number of chaff blocks to include for each block being chaffed. Thus the defaults add one chaff block to every message block. By changing the defaults, you can adjust how computationally difficult it could be for an adversary to brute-force crack the message. The difficulty is expressed as: pow(blocksper, int(factor * number-of-blocks)) For ease of implementation, when factor < 1.0, only the first int(factor*number-of-blocks) message blocks are chaffed. """ if not (0.0<=factor<=1.0): raise ValueError, "'factor' must be between 0.0 and 1.0" if blocksper < 0: raise ValueError, "'blocksper' must be zero or more" self.__factor = factor self.__blocksper = blocksper def chaff(self, blocks): """chaff( [(serial-number:int, data:string, MAC:string)] ) : [(int, string, string)] Add chaff to message blocks. blocks is a list of 3-tuples of the form (serial-number, data, MAC). Chaff is created by choosing a random number of the same byte-length as data, and another random number of the same byte-length as MAC. The message block's serial number is placed on the chaff block and all the packet's chaff blocks are randomly interspersed with the single wheat block. This method then returns a list of 3-tuples of the same form. Chaffed blocks will contain multiple instances of 3-tuples with the same serial number, but the only way to figure out which blocks are wheat and which are chaff is to perform the MAC hash and compare values. """ chaffedblocks = [] # count is the number of blocks to add chaff to. blocksper is the # number of chaff blocks to add per message block that is being # chaffed. count = len(blocks) * self.__factor blocksper = range(self.__blocksper) for i, wheat in zip(range(len(blocks)), blocks): # it shouldn't matter which of the n blocks we add chaff to, so for # ease of implementation, we'll just add them to the first count # blocks if i < count: serial, data, mac = wheat datasize = len(data) macsize = len(mac) addwheat = 1 # add chaff to this block for j in blocksper: import sys chaffdata = self._randnum(datasize) chaffmac = self._randnum(macsize) chaff = (serial, chaffdata, chaffmac) # mix up the order, if the 5th bit is on then put the # wheat on the list if addwheat and bytes_to_long(self._randnum(16)) & 0x40: chaffedblocks.append(wheat) addwheat = 0 chaffedblocks.append(chaff) if addwheat: chaffedblocks.append(wheat) else: # just add the wheat chaffedblocks.append(wheat) return chaffedblocks def _randnum(self, size): from Crypto import Random return Random.new().read(size) if __name__ == '__main__': text = """\ We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty, and the pursuit of Happiness. That to secure these rights, Governments are instituted among Men, deriving their just powers from the consent of the governed. That whenever any Form of Government becomes destructive of these ends, it is the Right of the People to alter or to abolish it, and to institute new Government, laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their Safety and Happiness. """ print 'Original text:\n==========' print text print '==========' # first transform the text into packets blocks = [] ; size = 40 for i in range(0, len(text), size): blocks.append( text[i:i+size] ) # now get MACs for all the text blocks. The key is obvious... print 'Calculating MACs...' from Crypto.Hash import HMAC, SHA key = 'Jefferson' macs = [HMAC.new(key, block, digestmod=SHA).digest() for block in blocks] assert len(blocks) == len(macs) # put these into a form acceptable as input to the chaffing procedure source = [] m = zip(range(len(blocks)), blocks, macs) print m for i, data, mac in m: source.append((i, data, mac)) # now chaff these print 'Adding chaff...' c = Chaff(factor=0.5, blocksper=2) chaffed = c.chaff(source) from base64 import encodestring # print the chaffed message blocks. meanwhile, separate the wheat from # the chaff wheat = [] print 'chaffed message blocks:' for i, data, mac in chaffed: # do the authentication h = HMAC.new(key, data, digestmod=SHA) pmac = h.digest() if pmac == mac: tag = '-->' wheat.append(data) else: tag = ' ' # base64 adds a trailing newline print tag, '%3d' % i, \ repr(data), encodestring(mac)[:-1] # now decode the message packets and check it against the original text print 'Undigesting wheat...' # PY3K: This is meant to be text, do not change to bytes (data) newtext = "".join(wheat) if newtext == text: print 'They match!' else: print 'They differ!' ``` #### File: Crypto/Protocol/KDF.py ```python __revision__ = "$Id$" import math import struct from Crypto.Util.py3compat import * from Crypto.Hash import SHA as SHA1, HMAC from Crypto.Util.strxor import strxor def PBKDF1(password, salt, dkLen, count=1000, hashAlgo=None): """Derive one key from a password (or passphrase). This function performs key derivation according an old version of the PKCS#5 standard (v1.5). This algorithm is called ``PBKDF1``. Even though it is still described in the latest version of the PKCS#5 standard (version 2, or RFC2898), newer applications should use the more secure and versatile `PBKDF2` instead. :Parameters: password : string The secret password or pass phrase to generate the key from. salt : byte string An 8 byte string to use for better protection from dictionary attacks. This value does not need to be kept secret, but it should be randomly chosen for each derivation. dkLen : integer The length of the desired key. Default is 16 bytes, suitable for instance for `Crypto.Cipher.AES`. count : integer The number of iterations to carry out. It's recommended to use at least 1000. hashAlgo : module The hash algorithm to use, as a module or an object from the `Crypto.Hash` package. The digest length must be no shorter than ``dkLen``. The default algorithm is `SHA1`. :Return: A byte string of length `dkLen` that can be used as key. """ if not hashAlgo: hashAlgo = SHA1 password = <PASSWORD>(password) pHash = hashAlgo.new(password+salt) digest = pHash.digest_size if dkLen>digest: raise ValueError("Selected hash algorithm has a too short digest (%d bytes)." % digest) if len(salt)!=8: raise ValueError("Salt is not 8 bytes long.") for i in xrange(count-1): pHash = pHash.new(pHash.digest()) return pHash.digest()[:dkLen] def PBKDF2(password, salt, dkLen=16, count=1000, prf=None): """Derive one or more keys from a password (or passphrase). This performs key derivation according to the PKCS#5 standard (v2.0), by means of the ``PBKDF2`` algorithm. :Parameters: password : string The secret password or pass phrase to generate the key from. salt : string A string to use for better protection from dictionary attacks. This value does not need to be kept secret, but it should be randomly chosen for each derivation. It is recommended to be at least 8 bytes long. dkLen : integer The cumulative length of the desired keys. Default is 16 bytes, suitable for instance for `Crypto.Cipher.AES`. count : integer The number of iterations to carry out. It's recommended to use at least 1000. prf : callable A pseudorandom function. It must be a function that returns a pseudorandom string from two parameters: a secret and a salt. If not specified, HMAC-SHA1 is used. :Return: A byte string of length `dkLen` that can be used as key material. If you wanted multiple keys, just break up this string into segments of the desired length. """ password = <PASSWORD>(password) if prf is None: prf = lambda p,s: HMAC.new(p,s,SHA1).digest() key = b('') i = 1 while len(key)<dkLen: U = previousU = prf(password,salt+struct.pack(">I", i)) for j in xrange(count-1): previousU = t = prf(password,previousU) U = strxor(U,t) key += U i = i + 1 return key[:dkLen] ``` #### File: Crypto/PublicKey/DSA.py ```python __revision__ = "$Id$" __all__ = ['generate', 'construct', 'error', 'DSAImplementation', '_DSAobj'] import sys if sys.version_info[0] == 2 and sys.version_info[1] == 1: from Crypto.Util.py21compat import * from Crypto.PublicKey import _DSA, _slowmath, pubkey from Crypto import Random try: from Crypto.PublicKey import _fastmath except ImportError: _fastmath = None class _DSAobj(pubkey.pubkey): """Class defining an actual DSA key. :undocumented: __getstate__, __setstate__, __repr__, __getattr__ """ #: Dictionary of DSA parameters. #: #: A public key will only have the following entries: #: #: - **y**, the public key. #: - **g**, the generator. #: - **p**, the modulus. #: - **q**, the order of the sub-group. #: #: A private key will also have: #: #: - **x**, the private key. keydata = ['y', 'g', 'p', 'q', 'x'] def __init__(self, implementation, key): self.implementation = implementation self.key = key def __getattr__(self, attrname): if attrname in self.keydata: # For backward compatibility, allow the user to get (not set) the # DSA key parameters directly from this object. return getattr(self.key, attrname) else: raise AttributeError("%s object has no %r attribute" % (self.__class__.__name__, attrname,)) def sign(self, M, K): """Sign a piece of data with DSA. :Parameter M: The piece of data to sign with DSA. It may not be longer in bit size than the sub-group order (*q*). :Type M: byte string or long :Parameter K: A secret number, chosen randomly in the closed range *[1,q-1]*. :Type K: long (recommended) or byte string (not recommended) :attention: selection of *K* is crucial for security. Generating a random number larger than *q* and taking the modulus by *q* is **not** secure, since smaller values will occur more frequently. Generating a random number systematically smaller than *q-1* (e.g. *floor((q-1)/8)* random bytes) is also **not** secure. In general, it shall not be possible for an attacker to know the value of `any bit of K`__. :attention: The number *K* shall not be reused for any other operation and shall be discarded immediately. :attention: M must be a digest cryptographic hash, otherwise an attacker may mount an existential forgery attack. :Return: A tuple with 2 longs. .. __: http://www.di.ens.fr/~pnguyen/pub_NgSh00.htm """ return pubkey.pubkey.sign(self, M, K) def verify(self, M, signature): """Verify the validity of a DSA signature. :Parameter M: The expected message. :Type M: byte string or long :Parameter signature: The DSA signature to verify. :Type signature: A tuple with 2 longs as return by `sign` :Return: True if the signature is correct, False otherwise. """ return pubkey.pubkey.verify(self, M, signature) def _encrypt(self, c, K): raise TypeError("DSA cannot encrypt") def _decrypt(self, c): raise TypeError("DSA cannot decrypt") def _blind(self, m, r): raise TypeError("DSA cannot blind") def _unblind(self, m, r): raise TypeError("DSA cannot unblind") def _sign(self, m, k): return self.key._sign(m, k) def _verify(self, m, sig): (r, s) = sig return self.key._verify(m, r, s) def has_private(self): return self.key.has_private() def size(self): return self.key.size() def can_blind(self): return False def can_encrypt(self): return False def can_sign(self): return True def publickey(self): return self.implementation.construct((self.key.y, self.key.g, self.key.p, self.key.q)) def __getstate__(self): d = {} for k in self.keydata: try: d[k] = getattr(self.key, k) except AttributeError: pass return d def __setstate__(self, d): if not hasattr(self, 'implementation'): self.implementation = DSAImplementation() t = [] for k in self.keydata: if not d.has_key(k): break t.append(d[k]) self.key = self.implementation._math.dsa_construct(*tuple(t)) def __repr__(self): attrs = [] for k in self.keydata: if k == 'p': attrs.append("p(%d)" % (self.size()+1,)) elif hasattr(self.key, k): attrs.append(k) if self.has_private(): attrs.append("private") # PY3K: This is meant to be text, do not change to bytes (data) return "<%s @0x%x %s>" % (self.__class__.__name__, id(self), ",".join(attrs)) class DSAImplementation(object): """ A DSA key factory. This class is only internally used to implement the methods of the `Crypto.PublicKey.DSA` module. """ def __init__(self, **kwargs): """Create a new DSA key factory. :Keywords: use_fast_math : bool Specify which mathematic library to use: - *None* (default). Use fastest math available. - *True* . Use fast math. - *False* . Use slow math. default_randfunc : callable Specify how to collect random data: - *None* (default). Use Random.new().read(). - not *None* . Use the specified function directly. :Raise RuntimeError: When **use_fast_math** =True but fast math is not available. """ use_fast_math = kwargs.get('use_fast_math', None) if use_fast_math is None: # Automatic if _fastmath is not None: self._math = _fastmath else: self._math = _slowmath elif use_fast_math: # Explicitly select fast math if _fastmath is not None: self._math = _fastmath else: raise RuntimeError("fast math module not available") else: # Explicitly select slow math self._math = _slowmath self.error = self._math.error # 'default_randfunc' parameter: # None (default) - use Random.new().read # not None - use the specified function self._default_randfunc = kwargs.get('default_randfunc', None) self._current_randfunc = None def _get_randfunc(self, randfunc): if randfunc is not None: return randfunc elif self._current_randfunc is None: self._current_randfunc = Random.new().read return self._current_randfunc def generate(self, bits, randfunc=None, progress_func=None): """Randomly generate a fresh, new DSA key. :Parameters: bits : int Key length, or size (in bits) of the DSA modulus *p*. It must be a multiple of 64, in the closed interval [512,1024]. randfunc : callable Random number generation function; it should accept a single integer N and return a string of random data N bytes long. If not specified, a new one will be instantiated from ``Crypto.Random``. progress_func : callable Optional function that will be called with a short string containing the key parameter currently being generated; it's useful for interactive applications where a user is waiting for a key to be generated. :attention: You should always use a cryptographically secure random number generator, such as the one defined in the ``Crypto.Random`` module; **don't** just use the current time and the ``random`` module. :Return: A DSA key object (`_DSAobj`). :Raise ValueError: When **bits** is too little, too big, or not a multiple of 64. """ # Check against FIPS 186-2, which says that the size of the prime p # must be a multiple of 64 bits between 512 and 1024 for i in (0, 1, 2, 3, 4, 5, 6, 7, 8): if bits == 512 + 64*i: return self._generate(bits, randfunc, progress_func) # The March 2006 draft of FIPS 186-3 also allows 2048 and 3072-bit # primes, but only with longer q values. Since the current DSA # implementation only supports a 160-bit q, we don't support larger # values. raise ValueError("Number of bits in p must be a multiple of 64 between 512 and 1024, not %d bits" % (bits,)) def _generate(self, bits, randfunc=None, progress_func=None): rf = self._get_randfunc(randfunc) obj = _DSA.generate_py(bits, rf, progress_func) # TODO: Don't use legacy _DSA module key = self._math.dsa_construct(obj.y, obj.g, obj.p, obj.q, obj.x) return _DSAobj(self, key) def construct(self, tup): """Construct a DSA key from a tuple of valid DSA components. The modulus *p* must be a prime. The following equations must apply: - p-1 = 0 mod q - g^x = y mod p - 0 < x < q - 1 < g < p :Parameters: tup : tuple A tuple of long integers, with 4 or 5 items in the following order: 1. Public key (*y*). 2. Sub-group generator (*g*). 3. Modulus, finite field order (*p*). 4. Sub-group order (*q*). 5. Private key (*x*). Optional. :Return: A DSA key object (`_DSAobj`). """ key = self._math.dsa_construct(*tup) return _DSAobj(self, key) _impl = DSAImplementation() generate = _impl.generate construct = _impl.construct error = _impl.error # vim:set ts=4 sw=4 sts=4 expandtab: ``` #### File: Random/OSRNG/posix.py ```python __revision__ = "$Id$" __all__ = ['DevURandomRNG'] import errno import os import stat from rng_base import BaseRNG from Crypto.Util.py3compat import b class DevURandomRNG(BaseRNG): def __init__(self, devname=None): if devname is None: self.name = "/dev/urandom" else: self.name = devname # Test that /dev/urandom is a character special device f = open(self.name, "rb", 0) fmode = os.fstat(f.fileno())[stat.ST_MODE] if not stat.S_ISCHR(fmode): f.close() raise TypeError("%r is not a character special device" % (self.name,)) self.__file = f BaseRNG.__init__(self) def _close(self): self.__file.close() def _read(self, N): # Starting with Python 3 open with buffering=0 returns a FileIO object. # FileIO.read behaves like read(2) and not like fread(3) and thus we # have to handle the case that read returns less data as requested here # more carefully. data = b("") while len(data) < N: try: d = self.__file.read(N - len(data)) except IOError, e: # read(2) has been interrupted by a signal; redo the read if e.errno == errno.EINTR: continue raise if d is None: # __file is in non-blocking mode and no data is available return data if len(d) == 0: # __file is in blocking mode and arrived at EOF return data data += d return data def new(*args, **kwargs): return DevURandomRNG(*args, **kwargs) # vim:set ts=4 sw=4 sts=4 expandtab: ``` #### File: site-packages/PIL/ImageFont.py ```python import Image import os, string, sys class _imagingft_not_installed: # module placeholder def __getattr__(self, id): raise ImportError("The _imagingft C module is not installed") try: import _imagingft core = _imagingft del _imagingft except ImportError: core = _imagingft_not_installed() # FIXME: add support for pilfont2 format (see FontFile.py) # -------------------------------------------------------------------- # Font metrics format: # "PILfont" LF # fontdescriptor LF # (optional) key=value... LF # "DATA" LF # binary data: 256*10*2 bytes (dx, dy, dstbox, srcbox) # # To place a character, cut out srcbox and paste at dstbox, # relative to the character position. Then move the character # position according to dx, dy. # -------------------------------------------------------------------- ## # The <b>ImageFont</b> module defines a class with the same name. # Instances of this class store bitmap fonts, and are used with the # <b>text</b> method of the <b>ImageDraw</b> class. # <p> # PIL uses it's own font file format to store bitmap fonts. You can # use the <b>pilfont</b> utility to convert BDF and PCF font # descriptors (X window font formats) to this format. # <p> # Starting with version 1.1.4, PIL can be configured to support # TrueType and OpenType fonts. For earlier version, TrueType # support is only available as part of the imToolkit package # # @see ImageDraw#ImageDraw.text # @see pilfont class ImageFont: "PIL font wrapper" def _load_pilfont(self, filename): file = open(filename, "rb") for ext in (".png", ".gif", ".pbm"): try: fullname = os.path.splitext(filename)[0] + ext image = Image.open(fullname) except: pass else: if image and image.mode in ("1", "L"): break else: raise IOError("cannot find glyph data file") self.file = fullname return self._load_pilfont_data(file, image) def _load_pilfont_data(self, file, image): # read PILfont header if file.readline() != "PILfont\n": raise SyntaxError("Not a PILfont file") d = string.split(file.readline(), ";") self.info = [] # FIXME: should be a dictionary while True: s = file.readline() if not s or s == "DATA\n": break self.info.append(s) # read PILfont metrics data = file.read(256*20) # check image if image.mode not in ("1", "L"): raise TypeError("invalid font image mode") image.load() self.font = Image.core.font(image.im, data) # delegate critical operations to internal type self.getsize = self.font.getsize self.getmask = self.font.getmask ## # Wrapper for FreeType fonts. Application code should use the # <b>truetype</b> factory function to create font objects. class FreeTypeFont: "FreeType font wrapper (requires _imagingft service)" def __init__(self, file, size, index=0, encoding=""): # FIXME: use service provider instead self.font = core.getfont(file, size, index, encoding) def getname(self): return self.font.family, self.font.style def getmetrics(self): return self.font.ascent, self.font.descent def getsize(self, text): return self.font.getsize(text)[0] def getmask(self, text, mode=""): return self.getmask2(text, mode)[0] def getmask2(self, text, mode="", fill=Image.core.fill): size, offset = self.font.getsize(text) im = fill("L", size, 0) self.font.render(text, im.id, mode=="1") return im, offset ## # Wrapper that creates a transposed font from any existing font # object. # # @param font A font object. # @param orientation An optional orientation. If given, this should # be one of Image.FLIP_LEFT_RIGHT, Image.FLIP_TOP_BOTTOM, # Image.ROTATE_90, Image.ROTATE_180, or Image.ROTATE_270. class TransposedFont: "Wrapper for writing rotated or mirrored text" def __init__(self, font, orientation=None): self.font = font self.orientation = orientation # any 'transpose' argument, or None def getsize(self, text): w, h = self.font.getsize(text) if self.orientation in (Image.ROTATE_90, Image.ROTATE_270): return h, w return w, h def getmask(self, text, mode=""): im = self.font.getmask(text, mode) if self.orientation is not None: return im.transpose(self.orientation) return im ## # Load font file. This function loads a font object from the given # bitmap font file, and returns the corresponding font object. # # @param filename Name of font file. # @return A font object. # @exception IOError If the file could not be read. def load(filename): "Load a font file." f = ImageFont() f._load_pilfont(filename) return f ## # Load a TrueType or OpenType font file, and create a font object. # This function loads a font object from the given file, and creates # a font object for a font of the given size. # <p> # This function requires the _imagingft service. # # @param filename A truetype font file. Under Windows, if the file # is not found in this filename, the loader also looks in Windows # <b>fonts</b> directory # @param size The requested size, in points. # @param index Which font face to load (default is first available face). # @param encoding Which font encoding to use (default is Unicode). Common # encodings are "unic" (Unicode), "symb" (Microsoft Symbol), "ADOB" # (Adobe Standard), "ADBE" (Adobe Expert), and "armn" (Apple Roman). # See the FreeType documentation for more information. # @return A font object. # @exception IOError If the file could not be read. def truetype(filename, size, index=0, encoding=""): "Load a truetype font file." try: return FreeTypeFont(filename, size, index, encoding) except IOError: if sys.platform == "win32": # check the windows font repository # NOTE: must use uppercase WINDIR, to work around bugs in # 1.5.2's os.environ.get() windir = os.environ.get("WINDIR") if windir: filename = os.path.join(windir, "fonts", filename) return FreeTypeFont(filename, size, index, encoding) raise ## # Load font file. Same as load, but searches for a bitmap font along # the Python path. # # @param filename Name of font file. # @return A font object. # @exception IOError If the file could not be read. # @see #load def load_path(filename): "Load a font file, searching along the Python path." for dir in sys.path: if Image.isDirectory(dir): try: return load(os.path.join(dir, filename)) except IOError: pass raise IOError("cannot find font file") ## # Load a (probably rather ugly) default font. # # @return A font object. def load_default(): "Load a default font." from StringIO import StringIO import base64 f = ImageFont() f._load_pilfont_data( # courB08 StringIO(base64.decodestring(''' UElMZm9udAo7Ozs7OzsxMDsKREFUQQoAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAA//8AAQAAAAAAAAABAAEA BgAAAAH/+gADAAAAAQAAAAMABgAGAAAAAf/6AAT//QADAAAABgADAAYAAAAA//kABQABAAYAAAAL AAgABgAAAAD/+AAFAAEACwAAABAACQAGAAAAAP/5AAUAAAAQAAAAFQAHAAYAAP////oABQAAABUA AAAbAAYABgAAAAH/+QAE//wAGwAAAB4AAwAGAAAAAf/5AAQAAQAeAAAAIQAIAAYAAAAB//kABAAB ACEAAAAkAAgABgAAAAD/+QAE//0AJAAAACgABAAGAAAAAP/6AAX//wAoAAAALQAFAAYAAAAB//8A BAACAC0AAAAwAAMABgAAAAD//AAF//0AMAAAADUAAQAGAAAAAf//AAMAAAA1AAAANwABAAYAAAAB //kABQABADcAAAA7AAgABgAAAAD/+QAFAAAAOwAAAEAABwAGAAAAAP/5AAYAAABAAAAARgAHAAYA AAAA//kABQAAAEYAAABLAAcABgAAAAD/+QAFAAAASwAAAFAABwAGAAAAAP/5AAYAAABQAAAAVgAH AAYAAAAA//kABQAAAFYAAABbAAcABgAAAAD/+QAFAAAAWwAAAGAABwAGAAAAAP/5AAUAAABgAAAA ZQAHAAYAAAAA//kABQAAAGUAAABqAAcABgAAAAD/+QAFAAAAagAAAG8ABwAGAAAAAf/8AAMAAABv AAAAcQAEAAYAAAAA//wAAwACAHEAAAB0AAYABgAAAAD/+gAE//8AdAAAAHgABQAGAAAAAP/7AAT/ /gB4AAAAfAADAAYAAAAB//oABf//AHwAAACAAAUABgAAAAD/+gAFAAAAgAAAAIUABgAGAAAAAP/5 AAYAAQCFAAAAiwAIAAYAAP////oABgAAAIsAAACSAAYABgAA////+gAFAAAAkgAAAJgABgAGAAAA AP/6AAUAAACYAAAAnQAGAAYAAP////oABQAAAJ0AAACjAAYABgAA////+gAFAAAAowAAAKkABgAG AAD////6AAUAAACpAAAArwAGAAYAAAAA//oABQAAAK8AAAC0AAYABgAA////+gAGAAAAtAAAALsA BgAGAAAAAP/6AAQAAAC7AAAAvwAGAAYAAP////oABQAAAL8AAADFAAYABgAA////+gAGAAAAxQAA AMwABgAGAAD////6AAUAAADMAAAA0gAGAAYAAP////oABQAAANIAAADYAAYABgAA////+gAGAAAA 2AAAAN8ABgAGAAAAAP/6AAUAAADfAAAA5AAGAAYAAP////oABQAAAOQAAADqAAYABgAAAAD/+gAF AAEA6gAAAO8ABwAGAAD////6AAYAAADvAAAA9gAGAAYAAAAA//oABQAAAPYAAAD7AAYABgAA//// +gAFAAAA+wAAAQEABgAGAAD////6AAYAAAEBAAABCAAGAAYAAP////oABgAAAQgAAAEPAAYABgAA ////+gAGAAABDwAAARYABgAGAAAAAP/6AAYAAAEWAAABHAAGAAYAAP////oABgAAARwAAAEjAAYA BgAAAAD/+gAFAAABIwAAASgABgAGAAAAAf/5AAQAAQEoAAABKwAIAAYAAAAA//kABAABASsAAAEv AAgABgAAAAH/+QAEAAEBLwAAATIACAAGAAAAAP/5AAX//AEyAAABNwADAAYAAAAAAAEABgACATcA AAE9AAEABgAAAAH/+QAE//wBPQAAAUAAAwAGAAAAAP/7AAYAAAFAAAABRgAFAAYAAP////kABQAA AUYAAAFMAAcABgAAAAD/+wAFAAABTAAAAVEABQAGAAAAAP/5AAYAAAFRAAABVwAHAAYAAAAA//sA BQAAAVcAAAFcAAUABgAAAAD/+QAFAAABXAAAAWEABwAGAAAAAP/7AAYAAgFhAAABZwAHAAYAAP// //kABQAAAWcAAAFtAAcABgAAAAD/+QAGAAABbQAAAXMABwAGAAAAAP/5AAQAAgFzAAABdwAJAAYA AP////kABgAAAXcAAAF+AAcABgAAAAD/+QAGAAABfgAAAYQABwAGAAD////7AAUAAAGEAAABigAF AAYAAP////sABQAAAYoAAAGQAAUABgAAAAD/+wAFAAABkAAAAZUABQAGAAD////7AAUAAgGVAAAB mwAHAAYAAAAA//sABgACAZsAAAGhAAcABgAAAAD/+wAGAAABoQAAAacABQAGAAAAAP/7AAYAAAGn AAABrQAFAAYAAAAA//kABgAAAa0AAAGzAAcABgAA////+wAGAAABswAAAboABQAGAAD////7AAUA AAG6AAABwAAFAAYAAP////sABgAAAcAAAAHHAAUABgAAAAD/+wAGAAABxwAAAc0ABQAGAAD////7 AAYAAgHNAAAB1AAHAAYAAAAA//sABQAAAdQAAAHZAAUABgAAAAH/+QAFAAEB2QAAAd0ACAAGAAAA Av/6AAMAAQHdAAAB3gAHAAYAAAAA//kABAABAd4AAAHiAAgABgAAAAD/+wAF//0B4gAAAecAAgAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAYAAAAB //sAAwACAecAAAHpAAcABgAAAAD/+QAFAAEB6QAAAe4ACAAGAAAAAP/5AAYAAAHuAAAB9AAHAAYA AAAA//oABf//AfQAAAH5AAUABgAAAAD/+QAGAAAB+QAAAf8ABwAGAAAAAv/5AAMAAgH/AAACAAAJ AAYAAAAA//kABQABAgAAAAIFAAgABgAAAAH/+gAE//sCBQAAAggAAQAGAAAAAP/5AAYAAAIIAAAC DgAHAAYAAAAB//kABf/+Ag4AAAISAAUABgAA////+wAGAAACEgAAAhkABQAGAAAAAP/7AAX//gIZ AAACHgADAAYAAAAA//wABf/9Ah4AAAIjAAEABgAAAAD/+QAHAAACIwAAAioABwAGAAAAAP/6AAT/ +wIqAAACLgABAAYAAAAA//kABP/8Ai4AAAIyAAMABgAAAAD/+gAFAAACMgAAAjcABgAGAAAAAf/5 AAT//QI3AAACOgAEAAYAAAAB//kABP/9AjoAAAI9AAQABgAAAAL/+QAE//sCPQAAAj8AAgAGAAD/ ///7AAYAAgI/AAACRgAHAAYAAAAA//kABgABAkYAAAJMAAgABgAAAAH//AAD//0CTAAAAk4AAQAG AAAAAf//AAQAAgJOAAACUQADAAYAAAAB//kABP/9AlEAAAJUAAQABgAAAAH/+QAF//4CVAAAAlgA BQAGAAD////7AAYAAAJYAAACXwAFAAYAAP////kABgAAAl8AAAJmAAcABgAA////+QAGAAACZgAA Am0ABwAGAAD////5AAYAAAJtAAACdAAHAAYAAAAA//sABQACAnQAAAJ5AAcABgAA////9wAGAAAC eQAAAoAACQAGAAD////3AAYAAAKAAAAChwAJAAYAAP////cABgAAAocAAAKOAAkABgAA////9wAG AAACjgAAApUACQAGAAD////4AAYAAAKVAAACnAAIAAYAAP////cABgAAApwAAAKjAAkABgAA//// +gAGAAACowAAAqoABgAGAAAAAP/6AAUAAgKqAAACrwAIAAYAAP////cABQAAAq8AAAK1AAkABgAA ////9wAFAAACtQAAArsACQAGAAD////3AAUAAAK7AAACwQAJAAYAAP////gABQAAAsEAAALHAAgA BgAAAAD/9wAEAAACxwAAAssACQAGAAAAAP/3AAQAAALLAAACzwAJAAYAAAAA//cABAAAAs8AAALT AAkABgAAAAD/+AAEAAAC0wAAAtcACAAGAAD////6AAUAAALXAAAC3QAGAAYAAP////cABgAAAt0A AALkAAkABgAAAAD/9wAFAAAC5AAAAukACQAGAAAAAP/3AAUAAALpAAAC7gAJAAYAAAAA//cABQAA Au4AAALzAAkABgAAAAD/9wAFAAAC8wAAAvgACQAGAAAAAP/4AAUAAAL4AAAC/QAIAAYAAAAA//oA Bf//Av0AAAMCAAUABgAA////+gAGAAADAgAAAwkABgAGAAD////3AAYAAAMJAAADEAAJAAYAAP// //cABgAAAxAAAAMXAAkABgAA////9wAGAAADFwAAAx4ACQAGAAD////4AAYAAAAAAAoABwASAAYA AP////cABgAAAAcACgAOABMABgAA////+gAFAAAADgAKABQAEAAGAAD////6AAYAAAAUAAoAGwAQ AAYAAAAA//gABgAAABsACgAhABIABgAAAAD/+AAGAAAAIQAKACcAEgAGAAAAAP/4AAYAAAAnAAoA LQASAAYAAAAA//gABgAAAC0ACgAzABIABgAAAAD/+QAGAAAAMwAKADkAEQAGAAAAAP/3AAYAAAA5 AAoAPwATAAYAAP////sABQAAAD8ACgBFAA8ABgAAAAD/+wAFAAIARQAKAEoAEQAGAAAAAP/4AAUA AABKAAoATwASAAYAAAAA//gABQAAAE8ACgBUABIABgAAAAD/+AAFAAAAVAAKAFkAEgAGAAAAAP/5 AAUAAABZAAoAXgARAAYAAAAA//gABgAAAF4ACgBkABIABgAAAAD/+AAGAAAAZAAKAGoAEgAGAAAA AP/4AAYAAABqAAoAcAASAAYAAAAA//kABgAAAHAACgB2ABEABgAAAAD/+AAFAAAAdgAKAHsAEgAG AAD////4AAYAAAB7AAoAggASAAYAAAAA//gABQAAAIIACgCHABIABgAAAAD/+AAFAAAAhwAKAIwA EgAGAAAAAP/4AAUAAACMAAoAkQASAAYAAAAA//gABQAAAJEACgCWABIABgAAAAD/+QAFAAAAlgAK AJsAEQAGAAAAAP/6AAX//wCbAAoAoAAPAAYAAAAA//oABQABAKAACgClABEABgAA////+AAGAAAA pQAKAKwAEgAGAAD////4AAYAAACsAAoAswASAAYAAP////gABgAAALMACgC6ABIABgAA////+QAG AAAAugAKAMEAEQAGAAD////4AAYAAgDBAAoAyAAUAAYAAP////kABQACAMgACgDOABMABgAA//// +QAGAAIAzgAKANUAEw== ''')), Image.open(StringIO(base64.decodestring(''' iVBORw0KGgoAAAANSUhEUgAAAx4AAAAUAQAAAAArMtZoAAAEwElEQVR4nABlAJr/AHVE4czCI/4u Mc4b7vuds/xzjz5/3/7u/n9vMe7vnfH/9++vPn/xyf5zhxzjt8GHw8+2d83u8x27199/nxuQ6Od9 M43/5z2I+9n9ZtmDBwMQECDRQw/eQIQohJXxpBCNVE6QCCAAAAD//wBlAJr/AgALyj1t/wINwq0g LeNZUworuN1cjTPIzrTX6ofHWeo3v336qPzfEwRmBnHTtf95/fglZK5N0PDgfRTslpGBvz7LFc4F IUXBWQGjQ5MGCx34EDFPwXiY4YbYxavpnhHFrk14CDAAAAD//wBlAJr/AgKqRooH2gAgPeggvUAA Bu2WfgPoAwzRAABAAAAAAACQgLz/3Uv4Gv+gX7BJgDeeGP6AAAD1NMDzKHD7ANWr3loYbxsAD791 NAADfcoIDyP44K/jv4Y63/Z+t98Ovt+ub4T48LAAAAD//wBlAJr/AuplMlADJAAAAGuAphWpqhMx in0A/fRvAYBABPgBwBUgABBQ/sYAyv9g0bCHgOLoGAAAAAAAREAAwI7nr0ArYpow7aX8//9LaP/9 SjdavWA8ePHeBIKB//81/83ndznOaXx379wAAAD//wBlAJr/AqDxW+D3AABAAbUh/QMnbQag/gAY AYDAAACgtgD/gOqAAAB5IA/8AAAk+n9w0AAA8AAAmFRJuPo27ciC0cD5oeW4E7KA/wD3ECMAn2tt y8PgwH8AfAxFzC0JzeAMtratAsC/ffwAAAD//wBlAJr/BGKAyCAA4AAAAvgeYTAwHd1kmQF5chkG ABoMIHcL5xVpTfQbUqzlAAAErwAQBgAAEOClA5D9il08AEh/tUzdCBsXkbgACED+woQg8Si9VeqY lODCn7lmF6NhnAEYgAAA/NMIAAAAAAD//2JgjLZgVGBg5Pv/Tvpc8hwGBjYGJADjHDrAwPzAjv/H /Wf3PzCwtzcwHmBgYGcwbZz8wHaCAQMDOwMDQ8MCBgYOC3W7mp+f0w+wHOYxO3OG+e376hsMZjk3 AAAAAP//YmCMY2A4wMAIN5e5gQETPD6AZisDAwMDgzSDAAPjByiHcQMDAwMDg1nOze1lByRu5/47 c4859311AYNZzg0AAAAA//9iYGDBYihOIIMuwIjGL39/fwffA8b//xv/P2BPtzzHwCBjUQAAAAD/ /yLFBrIBAAAA//9i1HhcwdhizX7u8NZNzyLbvT97bfrMf/QHI8evOwcSqGUJAAAA//9iYBB81iSw pEE170Qrg5MIYydHqwdDQRMrAwcVrQAAAAD//2J4x7j9AAMDn8Q/BgYLBoaiAwwMjPdvMDBYM1Tv oJodAAAAAP//Yqo/83+dxePWlxl3npsel9lvLfPcqlE9725C+acfVLMEAAAA//9i+s9gwCoaaGMR evta/58PTEWzr21hufPjA8N+qlnBwAAAAAD//2JiWLci5v1+HmFXDqcnULE/MxgYGBj+f6CaJQAA AAD//2Ji2FrkY3iYpYC5qDeGgeEMAwPDvwQBBoYvcTwOVLMEAAAA//9isDBgkP///0EOg9z35v// Gc/eeW7BwPj5+QGZhANUswMAAAD//2JgqGBgYGBgqEMXlvhMPUsAAAAA//8iYDd1AAAAAP//AwDR w7IkEbzhVQAAAABJRU5ErkJggg== ''')))) return f if __name__ == "__main__": # create font data chunk for embedding import base64, os, sys font = "../Images/courB08" print " f._load_pilfont_data(" print " # %s" % os.path.basename(font) print " StringIO(base64.decodestring('''" base64.encode(open(font + ".pil", "rb"), sys.stdout) print "''')), Image.open(StringIO(base64.decodestring('''" base64.encode(open(font + ".pbm", "rb"), sys.stdout) print "'''))))" ``` #### File: axscript/client/error.py ```python import sys, traceback from win32com.axscript import axscript import winerror import win32com.server.exception import win32com.server.util import pythoncom import re debugging = 0 def FormatForAX(text): """Format a string suitable for an AX Host """ # Replace all " with ', so it works OK in HTML (ie, ASP) return ExpandTabs(AddCR(text)) def ExpandTabs(text): return re.sub('\t',' ', text) def AddCR(text): return re.sub('\n','\r\n',text) class IActiveScriptError: """An implementation of IActiveScriptError The ActiveX Scripting host calls this client whenever we report an exception to it. This interface provides the exception details for the host to report to the user. """ _com_interfaces_ = [axscript.IID_IActiveScriptError] _public_methods_ = ["GetSourceLineText","GetSourcePosition","GetExceptionInfo"] def _query_interface_(self, iid): print "IActiveScriptError QI - unknown IID", iid return 0 def _SetExceptionInfo(self, exc): self.exception = exc def GetSourceLineText(self): return self.exception.linetext def GetSourcePosition(self): ctx = self.exception.sourceContext # Zero based in the debugger (but our columns are too!) return ctx, self.exception.lineno + self.exception.startLineNo-1, self.exception.colno def GetExceptionInfo(self): return self.exception class AXScriptException(win32com.server.exception.COMException): """A class used as a COM exception. Note this has attributes which conform to the standard attributes for COM exceptions, plus a few others specific to our IActiveScriptError object. """ def __init__(self, site, codeBlock, exc_type, exc_value, exc_traceback): # set properties base class shares via base ctor... win32com.server.exception.COMException.__init__( self, \ description = "Unknown Exception", \ scode = winerror.DISP_E_EXCEPTION, \ source = "Python ActiveX Scripting Engine", ) # And my other values... if codeBlock is None: self.sourceContext = 0 self.startLineNo = 0 else: self.sourceContext = codeBlock.sourceContextCookie self.startLineNo = codeBlock.startLineNumber self.linetext = "" self.__BuildFromException(site, exc_type, exc_value, exc_traceback) def __BuildFromException(self, site, type , value, tb): if debugging: import linecache linecache.clearcache() try: if issubclass(type, SyntaxError): self._BuildFromSyntaxError(site, value, tb) else: self._BuildFromOther(site, type, value, tb) except: # Error extracting traceback info!!! traceback.print_exc() # re-raise. raise def _BuildFromSyntaxError(self, site, exc, tb): value = exc.args # All syntax errors should have a message as element 0 try: msg = value[0] except: msg = "Unknown Error (%s)" % (value,) try: (filename, lineno, offset, line) = value[1] # Some of these may be None, which upsets us! if offset is None: offset = 0 if line is None: line = "" except: msg = "Unknown" lineno = 0 offset = 0 line = "Unknown" self.description=FormatForAX(msg) self.lineno = lineno self.colno = offset - 1 self.linetext = ExpandTabs(line.rstrip()) def _BuildFromOther(self, site, exc_type, value, tb): self.colno = -1 self.lineno = 0 if debugging: # Full traceback if debugging. list=traceback.format_exception(exc_type, value, tb) self.description = ExpandTabs(''.join(list)) return # Run down the traceback list, looking for the first "<Script..>" # Hide traceback above this. In addition, keep going down # looking for a "_*_" attribute, and below hide these also. hide_names = ["r_import","r_reload","r_open"] # hide from these functions down in the traceback. depth = None tb_top = tb while tb_top: filename, lineno, name, line = self.ExtractTracebackInfo(tb_top, site) if filename[:7]=="<Script": break tb_top = tb_top.tb_next format_items = [] if tb_top: # found one. depth = 0 tb_look = tb_top # Look down for our bottom while tb_look: filename, lineno, name, line = self.ExtractTracebackInfo(tb_look, site) if name in hide_names: break # We can report a line-number, but not a filename. Therefore, # we return the last line-number we find in one of our script # blocks. if filename.startswith("<Script"): self.lineno = lineno self.linetext = line format_items.append((filename, lineno, name, line)) depth = depth + 1 tb_look = tb_look.tb_next else: depth = None tb_top = tb bits = ['Traceback (most recent call last):\n'] bits.extend(traceback.format_list(format_items)) if exc_type==pythoncom.com_error: desc = "%s (0x%x)" % (value[1], value[0]) if value[0]==winerror.DISP_E_EXCEPTION and value[2] and value[2][2]: desc = value[2][2] bits.append("COM Error: "+desc) else: bits.extend(traceback.format_exception_only(exc_type, value)) # XXX - this utf8 encoding seems bogus. From well before py3k, # we had the comment: # > all items in the list are utf8 courtesy of Python magically # > converting unicode to utf8 before compilation. # but that is likely just confusion from early unicode days; # Python isn't doing it, pywin32 probably was, so 'mbcs' would # be the default encoding. We should never hit this these days # anyway, but on py3k, we *never* will, and str objects there # don't have a decode method... if sys.version_info < (3,): for i in xrange(len(bits)): if type(bits[i]) is str: #assert type(bits[i]) is str, type(bits[i]) bits[i] = bits[i].decode('utf8') self.description = ExpandTabs(u''.join(bits)) # Clear tracebacks etc. tb = tb_top = tb_look = None def ExtractTracebackInfo(self, tb, site): import linecache f = tb.tb_frame lineno = tb.tb_lineno co = f.f_code filename = co.co_filename name = co.co_name line = linecache.getline(filename, lineno) if not line: try: codeBlock = site.scriptCodeBlocks[filename] except KeyError: codeBlock = None if codeBlock: # Note: 'line' will now be unicode. line = codeBlock.GetLineNo(lineno) if line: line = line.strip() else: line = None return filename, lineno, name, line def __repr__(self): return "AXScriptException Object with description:" + self.description def ProcessAXScriptException(scriptingSite, debugManager, exceptionInstance): """General function to handle any exception in AX code This function creates an instance of our IActiveScriptError interface, and gives it to the host, along with out exception class. The host will likely call back on the IActiveScriptError interface to get the source text and other information not normally in COM exceptions. """ # traceback.print_exc() instance = IActiveScriptError() instance._SetExceptionInfo(exceptionInstance) gateway = win32com.server.util.wrap(instance, axscript.IID_IActiveScriptError) if debugManager: fCallOnError = debugManager.HandleRuntimeError() if not fCallOnError: return None try: result = scriptingSite.OnScriptError(gateway) except pythoncom.com_error, details: print "**OnScriptError failed:", details print "Exception description:'%s'" % (repr(exceptionInstance.description)) print "Exception text:'%s'" % (repr(exceptionInstance.linetext)) result = winerror.S_FALSE if result==winerror.S_OK: # If the above returns NOERROR, it is assumed the error has been # correctly registered and the value SCRIPT_E_REPORTED is returned. ret = win32com.server.exception.COMException(scode=axscript.SCRIPT_E_REPORTED) return ret else: # The error is taken to be unreported and is propagated up the call stack # via the IDispatch::Invoke's EXCEPINFO parameter (hr returned is DISP_E_EXCEPTION. return exceptionInstance ``` #### File: axscript/client/framework.py ```python import sys from win32com.axscript import axscript import win32com.server.util import win32com.client.connect # Need simple connection point support import win32api, winerror import pythoncom import types import re def RemoveCR(text): # No longer just "RemoveCR" - should be renamed to # FixNewlines, or something. Idea is to fix arbitary newlines into # something Python can compile... return re.sub('(\r\n)|\r|(\n\r)','\n',text) SCRIPTTEXT_FORCEEXECUTION = -2147483648 # 0x80000000 SCRIPTTEXT_ISEXPRESSION = 0x00000020 SCRIPTTEXT_ISPERSISTENT = 0x00000040 from win32com.server.exception import Exception, IsCOMServerException import error # ax.client.error state_map = { axscript.SCRIPTSTATE_UNINITIALIZED: "SCRIPTSTATE_UNINITIALIZED", axscript.SCRIPTSTATE_INITIALIZED: "SCRIPTSTATE_INITIALIZED", axscript.SCRIPTSTATE_STARTED: "SCRIPTSTATE_STARTED", axscript.SCRIPTSTATE_CONNECTED: "SCRIPTSTATE_CONNECTED", axscript.SCRIPTSTATE_DISCONNECTED: "SCRIPTSTATE_DISCONNECTED", axscript.SCRIPTSTATE_CLOSED: "SCRIPTSTATE_CLOSED", } def profile(fn, *args): import profile prof = profile.Profile() try: # roll on 1.6 :-) # return prof.runcall(fn, *args) return prof.runcall(*(fn,) + args) finally: import pstats # Damn - really want to send this to Excel! # width, list = pstats.Stats(prof).strip_dirs().get_print_list([]) pstats.Stats(prof).strip_dirs().sort_stats("time").print_stats() class SafeOutput: softspace=1 def __init__(self, redir=None): if redir is None: redir = sys.stdout self.redir=redir def write(self,message): try: self.redir.write(message) except: win32api.OutputDebugString(message.encode('mbcs')) def flush(self): pass def close(self): pass # Make sure we have a valid sys.stdout/stderr, otherwise out # print and trace statements may raise an exception def MakeValidSysOuts(): if not isinstance(sys.stdout, SafeOutput): sys.stdout = sys.stderr = SafeOutput() # and for the sake of working around something I can't understand... # prevent keyboard interrupts from killing IIS import signal def noOp(a,b): # it would be nice to get to the bottom of this, so a warning to # the debug console can't hurt. print "WARNING: Ignoring keyboard interrupt from ActiveScripting engine" # If someone else has already redirected, then assume they know what they are doing! if signal.getsignal(signal.SIGINT) == signal.default_int_handler: try: signal.signal(signal.SIGINT, noOp) except ValueError: # Not the main thread - can't do much. pass def trace(*args): """A function used instead of "print" for debugging output. """ for arg in args: print arg, print def RaiseAssert(scode, desc): """A debugging function that raises an exception considered an "Assertion". """ print "**************** ASSERTION FAILED *******************" print desc raise Exception(desc, scode) class AXScriptCodeBlock: """An object which represents a chunk of code in an AX Script """ def __init__(self, name, codeText, sourceContextCookie, startLineNumber, flags): self.name = name self.codeText = codeText self.codeObject = None self.sourceContextCookie = sourceContextCookie self.startLineNumber = startLineNumber self.flags = flags self.beenExecuted = 0 def GetFileName(self): # Gets the "file name" for Python - uses <...> so Python doesnt think # it is a real file. return "<%s>" % self.name def GetDisplayName(self): return self.name def GetLineNo(self, no): pos = -1 for i in range(no-1): pos = self.codeText.find('\n', pos+1) if pos==-1: pos=len(self.codeText) epos = self.codeText.find('\n', pos+1) if epos==-1: epos=len(self.codeText) return self.codeText[pos+1:epos].strip() class Event: """A single event for a ActiveX named object. """ def __init__(self): self.name = "<None>" def __repr__(self): return "<%s at %d: %s>" % (self.__class__.__name__, id(self), self.name) def Reset(self): pass def Close(self): pass def Build(self, typeinfo, funcdesc): self.dispid = funcdesc[0] self.name = typeinfo.GetNames(self.dispid)[0] # print "Event.Build() - Event Name is ", self.name class EventSink: """A set of events against an item. Note this is a COM client for connection points. """ _public_methods_ = [] def __init__(self, myItem, coDispatch): self.events = {} self.connection = None self.coDispatch = coDispatch self.myScriptItem = myItem self.myInvokeMethod = myItem.GetEngine().ProcessScriptItemEvent self.iid = None def Reset(self): self.Disconnect() def Close(self): self.iid = None self.myScriptItem = None self.myInvokeMethod = None self.coDispatch = None for event in self.events.itervalues(): event.Reset() self.events = {} self.Disconnect() # COM Connection point methods. def _query_interface_(self, iid): if iid==self.iid: return win32com.server.util.wrap(self) def _invoke_(self, dispid, lcid, wFlags, args): try: event = self.events[dispid] except: raise Exception(scode=winerror.DISP_E_MEMBERNOTFOUND) #print "Invoke for ", event, "on", self.myScriptItem, " - calling", self.myInvokeMethod return self.myInvokeMethod(self.myScriptItem, event, lcid, wFlags, args) def GetSourceTypeInfo(self, typeinfo): """Gets the typeinfo for the Source Events for the passed typeinfo""" attr = typeinfo.GetTypeAttr() cFuncs = attr[6] typeKind = attr[5] if typeKind not in [pythoncom.TKIND_COCLASS, pythoncom.TKIND_INTERFACE]: RaiseAssert(winerror.E_UNEXPECTED, "The typeKind of the object is unexpected") cImplType = attr[8] for i in xrange(cImplType): # Look for the [source, default] interface on the coclass # that isn't marked as restricted. flags = typeinfo.GetImplTypeFlags(i) flagsNeeded = pythoncom.IMPLTYPEFLAG_FDEFAULT | pythoncom.IMPLTYPEFLAG_FSOURCE if (flags & ( flagsNeeded | pythoncom.IMPLTYPEFLAG_FRESTRICTED))==(flagsNeeded): # Get the handle to the implemented interface. href = typeinfo.GetRefTypeOfImplType(i) return typeinfo.GetRefTypeInfo(href) def BuildEvents(self): # See if it is an extender object. try: mainTypeInfo = self.coDispatch.QueryInterface(axscript.IID_IProvideMultipleClassInfo) isMulti = 1 numTypeInfos = mainTypeInfo.GetMultiTypeInfoCount() except pythoncom.com_error: isMulti = 0 numTypeInfos = 1 try: mainTypeInfo = self.coDispatch.QueryInterface(pythoncom.IID_IProvideClassInfo) except pythoncom.com_error: numTypeInfos = 0 # Create an event handler for the item. for item in xrange(numTypeInfos): if isMulti: typeinfo, flags = mainTypeInfo.GetInfoOfIndex(item, axscript.MULTICLASSINFO_GETTYPEINFO) else: typeinfo = mainTypeInfo.GetClassInfo() sourceType = self.GetSourceTypeInfo(typeinfo) cFuncs = 0 if sourceType: attr = sourceType.GetTypeAttr() self.iid = attr[0] cFuncs = attr[6] for i in xrange(cFuncs): funcdesc = sourceType.GetFuncDesc(i) event = Event() event.Build(sourceType, funcdesc) self.events[event.dispid] = event def Connect(self): if self.connection is not None or self.iid is None: return # trace("Connect for sink item", self.myScriptItem.name, "with IID",str(self.iid)) self.connection = win32com.client.connect.SimpleConnection(self.coDispatch, self, self.iid) def Disconnect(self): if self.connection: try: self.connection.Disconnect() except pythoncom.com_error: pass # Ignore disconnection errors. self.connection = None class ScriptItem: """An item (or subitem) that is exposed to the ActiveX script """ def __init__(self, parentItem, name, dispatch, flags): self.parentItem = parentItem self.dispatch = dispatch self.name = name self.flags = flags self.eventSink = None self.subItems = {} self.createdConnections = 0 self.isRegistered = 0 # trace("Creating ScriptItem", name, "of parent", parentItem,"with dispatch", dispatch) def __repr__(self): flagsDesc="" if self.flags is not None and self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS: flagsDesc = "/Global" return "<%s at %d: %s%s>" % (self.__class__.__name__, id(self), self.name,flagsDesc) def _dump_(self, level): flagDescs = [] if self.flags is not None and self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS: flagDescs.append("GLOBAL!") if self.flags is None or self.flags & axscript.SCRIPTITEM_ISVISIBLE == 0: flagDescs.append("NOT VISIBLE") if self.flags is not None and self.flags & axscript.SCRIPTITEM_ISSOURCE: flagDescs.append("EVENT SINK") if self.flags is not None and self.flags & axscript.SCRIPTITEM_CODEONLY: flagDescs.append("CODE ONLY") print " " * level, "Name=", self.name, ", flags=", "/".join(flagDescs), self for subItem in self.subItems.itervalues(): subItem._dump_(level+1) def Reset(self): self.Disconnect() if self.eventSink: self.eventSink.Reset() self.isRegistered = 0 for subItem in self.subItems.itervalues(): subItem.Reset() def Close(self): self.Reset() self.dispatch = None self.parentItem = None if self.eventSink: self.eventSink.Close() self.eventSink = None for subItem in self.subItems.itervalues(): subItem.Close() self.subItems = [] self.createdConnections = 0 def Register(self): if self.isRegistered: return # Get the type info to use to build this item. # if not self.dispatch: # id = self.parentItem.dispatch.GetIDsOfNames(self.name) # print "DispID of me is", id # result = self.parentItem.dispatch.Invoke(id, 0, pythoncom.DISPATCH_PROPERTYGET,1) # if type(result)==pythoncom.TypeIIDs[pythoncom.IID_IDispatch]: # self.dispatch = result # else: # print "*** No dispatch" # return # print "**** Made dispatch" self.isRegistered = 1 # Register the sub-items. for item in self.subItems.itervalues(): if not item.isRegistered: item.Register() def IsGlobal(self): return self.flags & axscript.SCRIPTITEM_GLOBALMEMBERS def IsVisible(self): return (self.flags & (axscript.SCRIPTITEM_ISVISIBLE | axscript.SCRIPTITEM_ISSOURCE)) != 0 def GetEngine(self): item = self while item.parentItem.__class__==self.__class__: item = item.parentItem return item.parentItem def _GetFullItemName(self): ret = self.name if self.parentItem: try: ret = self.parentItem._GetFullItemName() + "." + ret except AttributeError: pass return ret def GetSubItemClass(self): return self.__class__ def GetSubItem(self, name): return self.subItems[name.lower()] def GetCreateSubItem(self, parentItem, name, dispatch, flags): keyName = name.lower() try: rc = self.subItems[keyName] # No changes allowed to existing flags. if not rc.flags is None and not flags is None and rc.flags != flags: raise Exception(scode=winerror.E_INVALIDARG) # Existing item must not have a dispatch. if not rc.dispatch is None and not dispatch is None: raise Exception(scode=winerror.E_INVALIDARG) rc.flags = flags # Setup the real flags. rc.dispatch = dispatch except KeyError: rc = self.subItems[keyName] = self.GetSubItemClass()(parentItem, name, dispatch, flags) return rc # if self.dispatch is None: # RaiseAssert(winerror.E_UNEXPECTED, "??") def CreateConnections(self): # Create (but do not connect to) the connection points. if self.createdConnections: return self.createdConnections = 1 # Nothing to do unless this is an event source # This flags means self, _and_ children, are connectable. if self.flags & axscript.SCRIPTITEM_ISSOURCE: self.BuildEvents() self.FindBuildSubItemEvents() def Connect(self): # Connect to the already created connection points. if self.eventSink: self.eventSink.Connect() for subItem in self.subItems.itervalues(): subItem.Connect() def Disconnect(self): # Disconnect from the connection points. if self.eventSink: self.eventSink.Disconnect() for subItem in self.subItems.itervalues(): subItem.Disconnect() def BuildEvents(self): if self.eventSink is not None or self.dispatch is None: RaiseAssert(winerror.E_UNEXPECTED, "Item already has built events, or no dispatch available?") # trace("BuildEvents for named item", self._GetFullItemName()) self.eventSink = EventSink(self, self.dispatch) self.eventSink.BuildEvents() def FindBuildSubItemEvents(self): # Called during connection to event source. Seeks out and connects to # all children. As per the AX spec, this is not recursive # (ie, children sub-items are not seeked) try: multiTypeInfo = self.dispatch.QueryInterface(axscript.IID_IProvideMultipleClassInfo) numTypeInfos = multiTypeInfo.GetMultiTypeInfoCount() except pythoncom.com_error: return for item in xrange(numTypeInfos): typeinfo, flags = multiTypeInfo.GetInfoOfIndex(item, axscript.MULTICLASSINFO_GETTYPEINFO) defaultType = self.GetDefaultSourceTypeInfo(typeinfo) index = 0 while 1: try: fdesc = defaultType.GetFuncDesc(index) except pythoncom.com_error: break # No more funcs index = index + 1 dispid = fdesc[0] funckind = fdesc[3] invkind = fdesc[4] elemdesc = fdesc[8] funcflags = fdesc[9] try: isSubObject = not (funcflags & pythoncom.FUNCFLAG_FRESTRICTED) and \ funckind == pythoncom.FUNC_DISPATCH and \ invkind == pythoncom.INVOKE_PROPERTYGET and \ elemdesc[0][0] == pythoncom.VT_PTR and \ elemdesc[0][1][0] == pythoncom.VT_USERDEFINED except: isSubObject = 0 if isSubObject: try: # We found a sub-object. names = typeinfo.GetNames(dispid); result = self.dispatch.Invoke(dispid, 0x0, pythoncom.DISPATCH_PROPERTYGET, 1) # IE has an interesting problem - there are lots of synonyms for the same object. Eg # in a simple form, "window.top", "window.window", "window.parent", "window.self" # all refer to the same object. Our event implementation code does not differentiate # eg, "window_onload" will fire for *all* objects named "window". Thus, # "window" and "window.window" will fire the same event handler :( # One option would be to check if the sub-object is indeed the # parent object - however, this would stop "top_onload" from firing, # as no event handler for "top" would work. # I think we simply need to connect to a *single* event handler. # As use in IE is deprecated, I am not solving this now. if type(result)==pythoncom.TypeIIDs[pythoncom.IID_IDispatch]: name = names[0] subObj = self.GetCreateSubItem(self, name, result, axscript.SCRIPTITEM_ISVISIBLE) #print "subobj", name, "flags are", subObj.flags, "mydisp=", self.dispatch, "result disp=", result, "compare=", self.dispatch==result subObj.BuildEvents() subObj.Register() except pythoncom.com_error: pass def GetDefaultSourceTypeInfo(self, typeinfo): """Gets the typeinfo for the Default Dispatch for the passed typeinfo""" attr = typeinfo.GetTypeAttr() cFuncs = attr[6] typeKind = attr[5] if typeKind not in [pythoncom.TKIND_COCLASS, pythoncom.TKIND_INTERFACE]: RaiseAssert(winerror.E_UNEXPECTED, "The typeKind of the object is unexpected") cImplType = attr[8] for i in xrange(cImplType): # Look for the [source, default] interface on the coclass # that isn't marked as restricted. flags = typeinfo.GetImplTypeFlags(i) if (flags & ( pythoncom.IMPLTYPEFLAG_FDEFAULT | pythoncom.IMPLTYPEFLAG_FSOURCE | pythoncom.IMPLTYPEFLAG_FRESTRICTED))==pythoncom.IMPLTYPEFLAG_FDEFAULT: # Get the handle to the implemented interface. href = typeinfo.GetRefTypeOfImplType(i) defTypeInfo = typeinfo.GetRefTypeInfo(href) attr = defTypeInfo.GetTypeAttr() typeKind = attr[5] typeFlags = attr[11] if typeKind == pythoncom.TKIND_INTERFACE and typeFlags & pythoncom.TYPEFLAG_FDUAL: # Get corresponding Disp interface # -1 is a special value which does this for us. href = typeinfo.GetRefTypeOfImplType(-1) return defTypeInfo.GetRefTypeInfo(href) else: return defTypeInfo IActiveScriptMethods = [ "SetScriptSite", "GetScriptSite", "SetScriptState", "GetScriptState", "Close", "AddNamedItem", "AddTypeLib", "GetScriptDispatch", "GetCurrentScriptThreadID", "GetScriptThreadID", "GetScriptThreadState", "InterruptScriptThread", "Clone" ] IActiveScriptParseMethods = [ "InitNew", "AddScriptlet", "ParseScriptText" ] IObjectSafetyMethods = [ "GetInterfaceSafetyOptions", "SetInterfaceSafetyOptions"] # ActiveScriptParseProcedure is a new interface with IIS4/IE4. IActiveScriptParseProcedureMethods = ['ParseProcedureText'] class COMScript: """An ActiveX Scripting engine base class. This class implements the required COM interfaces for ActiveX scripting. """ _public_methods_ = IActiveScriptMethods + IActiveScriptParseMethods + IObjectSafetyMethods + IActiveScriptParseProcedureMethods _com_interfaces_ = [axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse, axscript.IID_IObjectSafety] #, axscript.IID_IActiveScriptParseProcedure] def __init__(self): # Make sure we can print/trace wihout an exception! MakeValidSysOuts() # trace("AXScriptEngine object created", self) self.baseThreadId = -1 self.debugManager = None self.threadState = axscript.SCRIPTTHREADSTATE_NOTINSCRIPT self.scriptState = axscript.SCRIPTSTATE_UNINITIALIZED self.scriptSite = None self.safetyOptions = 0 self.lcid = 0 self.subItems = {} self.scriptCodeBlocks = {} def _query_interface_(self, iid): if self.debugManager: return self.debugManager._query_interface_for_debugger_(iid) # trace("ScriptEngine QI - unknown IID", iid) return 0 # IActiveScriptParse def InitNew(self): if self.scriptSite is not None: self.SetScriptState(axscript.SCRIPTSTATE_INITIALIZED) def AddScriptlet(self, defaultName, code, itemName, subItemName, eventName, delimiter, sourceContextCookie, startLineNumber): # trace ("AddScriptlet", defaultName, code, itemName, subItemName, eventName, delimiter, sourceContextCookie, startLineNumber) self.DoAddScriptlet(defaultName, code, itemName, subItemName, eventName, delimiter,sourceContextCookie, startLineNumber) def ParseScriptText(self, code, itemName, context, delimiter, sourceContextCookie, startLineNumber, flags, bWantResult): # trace ("ParseScriptText", code[:20],"...", itemName, context, delimiter, sourceContextCookie, startLineNumber, flags, bWantResult) if bWantResult or self.scriptState == axscript.SCRIPTSTATE_STARTED \ or self.scriptState == axscript.SCRIPTSTATE_CONNECTED \ or self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED : flags = flags | SCRIPTTEXT_FORCEEXECUTION else: flags = flags & (~SCRIPTTEXT_FORCEEXECUTION) if flags & SCRIPTTEXT_FORCEEXECUTION: # About to execute the code. self.RegisterNewNamedItems() return self.DoParseScriptText(code, sourceContextCookie, startLineNumber, bWantResult, flags) # # IActiveScriptParseProcedure def ParseProcedureText( self, code, formalParams, procName, itemName, unkContext, delimiter, contextCookie, startingLineNumber, flags): trace("ParseProcedureText", code, formalParams, procName, itemName, unkContext, delimiter, contextCookie, startingLineNumber, flags) # NOTE - this is never called, as we have disabled this interface. # Problem is, once enabled all even code comes via here, rather than AddScriptlet. # However, the "procName" is always an empty string - ie, itemName is the object whose event we are handling, # but no idea what the specific event is!? # Problem is disabling this block is that AddScriptlet is _not_ passed # <SCRIPT for="whatever" event="onClick" language="Python"> # (but even for those blocks, the "onClick" information is still missing!?!?!?) # self.DoAddScriptlet(None, code, itemName, subItemName, eventName, delimiter,sourceContextCookie, startLineNumber) return None # # IActiveScript def SetScriptSite(self, site): # We should still work with an existing site (or so MSXML believes :) self.scriptSite = site if self.debugManager is not None: self.debugManager.Close() import traceback try: import win32com.axdebug.axdebug # see if the core exists. import debug self.debugManager = debug.DebugManager(self) except pythoncom.com_error: # COM errors will occur if the debugger interface has never been # seen on the target system trace("Debugging interfaces not available - debugging is disabled..") self.debugManager = None except ImportError: trace("Debugging extensions (axdebug) module does not exist - debugging is disabled..") self.debugManager = None except: traceback.print_exc() trace("*** Debugger Manager could not initialize - %s: %s" % (sys.exc_info()[0],sys.exc_info()[1])) self.debugManager = None try: self.lcid = site.GetLCID() except pythoncom.com_error: self.lcid = win32api.GetUserDefaultLCID() self.Reset() def GetScriptSite(self, iid): if self.scriptSite is None: raise Exception(scode=winerror.S_FALSE) return self.scriptSite.QueryInterface(iid) def SetScriptState(self, state): #print "SetScriptState with %s - currentstate = %s" % (state_map.get(state),state_map.get(self.scriptState)) if state == self.scriptState: return # If closed, allow no other state transitions if self.scriptState==axscript.SCRIPTSTATE_CLOSED: raise Exception(scode=winerror.E_INVALIDARG) if state==axscript.SCRIPTSTATE_INITIALIZED: # Re-initialize - shutdown then reset. if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_STARTED]: self.Stop() elif state==axscript.SCRIPTSTATE_STARTED: if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() if self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED: self.Reset() self.Run() self.ChangeScriptState(axscript.SCRIPTSTATE_STARTED) elif state==axscript.SCRIPTSTATE_CONNECTED: if self.scriptState in [axscript.SCRIPTSTATE_UNINITIALIZED,axscript.SCRIPTSTATE_INITIALIZED]: self.ChangeScriptState(axscript.SCRIPTSTATE_STARTED) # report transition through started self.Run() if self.scriptState == axscript.SCRIPTSTATE_STARTED: self.Connect() self.ChangeScriptState(state) elif state==axscript.SCRIPTSTATE_DISCONNECTED: if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() elif state==axscript.SCRIPTSTATE_CLOSED: self.Close() elif state==axscript.SCRIPTSTATE_UNINITIALIZED: if self.scriptState == axscript.SCRIPTSTATE_STARTED: self.Stop() if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() if self.scriptState == axscript.SCRIPTSTATE_DISCONNECTED: self.Reset() self.ChangeScriptState(state) else: raise Exception(scode=winerror.E_INVALIDARG) def GetScriptState(self): return self.scriptState def Close(self): # trace("Close") if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED]: self.Stop() if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED, axscript.SCRIPTSTATE_INITIALIZED, axscript.SCRIPTSTATE_STARTED]: pass # engine.close?? if self.scriptState in [axscript.SCRIPTSTATE_UNINITIALIZED, axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED, axscript.SCRIPTSTATE_INITIALIZED, axscript.SCRIPTSTATE_STARTED]: self.ChangeScriptState(axscript.SCRIPTSTATE_CLOSED) # Completely reset all named items (including persistent) for item in self.subItems.itervalues(): item.Close() self.subItems = {} self.baseThreadId = -1 if self.debugManager: self.debugManager.Close() self.debugManager = None self.scriptSite = None self.scriptCodeBlocks = {} self.persistLoaded = 0 def AddNamedItem(self, name, flags): if self.scriptSite is None: raise Exception(scode=winerror.E_INVALIDARG) try: unknown = self.scriptSite.GetItemInfo(name, axscript.SCRIPTINFO_IUNKNOWN)[0] dispatch = unknown.QueryInterface(pythoncom.IID_IDispatch) except pythoncom.com_error: raise Exception(scode=winerror.E_NOINTERFACE, desc="Object has no dispatch interface available.") newItem = self.subItems[name] = self.GetNamedItemClass()(self, name, dispatch, flags) if newItem.IsGlobal(): newItem.CreateConnections() def GetScriptDispatch(self, name): # Base classes should override. raise Exception(scode=winerror.E_NOTIMPL) def GetCurrentScriptThreadID(self): return self.baseThreadId def GetScriptThreadID(self, win32ThreadId): if self.baseThreadId == -1: raise Exception(scode=winerror.E_UNEXPECTED) if self.baseThreadId != win32ThreadId: raise Exception(scode=winerror.E_INVALIDARG) return self.baseThreadId def GetScriptThreadState(self, scriptThreadId): if self.baseThreadId == -1: raise Exception(scode=winerror.E_UNEXPECTED) if scriptThreadId != self.baseThreadId: raise Exception(scode=winerror.E_INVALIDARG) return self.threadState def AddTypeLib(self, uuid, major, minor, flags): # Get the win32com gencache to register this library. from win32com.client import gencache gencache.EnsureModule(uuid, self.lcid, major, minor, bForDemand = 1) # This is never called by the C++ framework - it does magic. # See PyGActiveScript.cpp #def InterruptScriptThread(self, stidThread, exc_info, flags): # raise Exception("Not Implemented", scode=winerror.E_NOTIMPL) def Clone(self): raise Exception("Not Implemented", scode=winerror.E_NOTIMPL) # # IObjectSafety # Note that IE seems to insist we say we support all the flags, even tho # we dont accept them all. If unknown flags come in, they are ignored, and never # reflected in GetInterfaceSafetyOptions and the QIs obviously fail, but still IE # allows our engine to initialize. def SetInterfaceSafetyOptions(self, iid, optionsMask, enabledOptions): # trace ("SetInterfaceSafetyOptions", iid, optionsMask, enabledOptions) if optionsMask & enabledOptions == 0: return # See comments above. # if (optionsMask & enabledOptions & \ # ~(axscript.INTERFACESAFE_FOR_UNTRUSTED_DATA | axscript.INTERFACESAFE_FOR_UNTRUSTED_CALLER)): # # request for options we don't understand # RaiseAssert(scode=winerror.E_FAIL, desc="Unknown safety options") if iid in [pythoncom.IID_IPersist, pythoncom.IID_IPersistStream, pythoncom.IID_IPersistStreamInit, axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse]: supported = self._GetSupportedInterfaceSafetyOptions() self.safetyOptions = supported & optionsMask & enabledOptions else: raise Exception(scode=winerror.E_NOINTERFACE) def _GetSupportedInterfaceSafetyOptions(self): return 0 def GetInterfaceSafetyOptions(self, iid): if iid in [pythoncom.IID_IPersist, pythoncom.IID_IPersistStream, pythoncom.IID_IPersistStreamInit, axscript.IID_IActiveScript, axscript.IID_IActiveScriptParse]: supported = self._GetSupportedInterfaceSafetyOptions() return supported, self.safetyOptions else: raise Exception(scode=winerror.E_NOINTERFACE) # # Other helpers. def ExecutePendingScripts(self): self.RegisterNewNamedItems() self.DoExecutePendingScripts() def ProcessScriptItemEvent(self, item, event, lcid, wFlags, args): # trace("ProcessScriptItemEvent", item, event, lcid, wFlags, args) self.RegisterNewNamedItems() return self.DoProcessScriptItemEvent(item, event, lcid, wFlags, args) def _DumpNamedItems_(self): for item in self.subItems.itervalues(): item._dump_(0) def ResetNamedItems(self): # Due to the way we work, we re-create persistent ones. existing = self.subItems self.subItems = {} for name, item in existing.iteritems(): item.Close() if item.flags & axscript.SCRIPTITEM_ISPERSISTENT: self.AddNamedItem(item.name, item.flags) def GetCurrentSafetyOptions(self): return self.safetyOptions def ProcessNewNamedItemsConnections(self): # Process all sub-items. for item in self.subItems.itervalues(): if not item.createdConnections: # Fast-track! item.CreateConnections() def RegisterNewNamedItems(self): # Register all sub-items. for item in self.subItems.itervalues(): if not item.isRegistered: # Fast-track! self.RegisterNamedItem(item) def RegisterNamedItem(self, item): item.Register() def CheckConnectedOrDisconnected(self): if self.scriptState in [axscript.SCRIPTSTATE_CONNECTED, axscript.SCRIPTSTATE_DISCONNECTED]: return RaiseAssert(winerror.E_UNEXPECTED, "Not connected or disconnected - %d" % self.scriptState) def Connect(self): self.ProcessNewNamedItemsConnections() self.RegisterNewNamedItems() self.ConnectEventHandlers() def Run(self): # trace("AXScript running...") if self.scriptState != axscript.SCRIPTSTATE_INITIALIZED and self.scriptState != axscript.SCRIPTSTATE_STARTED: raise Exception(scode=winerror.E_UNEXPECTED) # self._DumpNamedItems_() self.ExecutePendingScripts() self.DoRun() def Stop(self): # Stop all executing scripts, and disconnect. if self.scriptState == axscript.SCRIPTSTATE_CONNECTED: self.Disconnect() # Reset back to initialized. self.Reset() def Disconnect(self): self.CheckConnectedOrDisconnected() try: self.DisconnectEventHandlers() except pythoncom.com_error: # Ignore errors when disconnecting. pass self.ChangeScriptState(axscript.SCRIPTSTATE_DISCONNECTED) def ConnectEventHandlers(self): # trace ("Connecting to event handlers") for item in self.subItems.itervalues(): item.Connect() self.ChangeScriptState(axscript.SCRIPTSTATE_CONNECTED); def DisconnectEventHandlers(self): # trace ("Disconnecting from event handlers") for item in self.subItems.itervalues(): item.Disconnect() def Reset(self): # Keeping persistent engine state, reset back an initialized state self.ResetNamedItems() self.ChangeScriptState(axscript.SCRIPTSTATE_INITIALIZED) def ChangeScriptState(self, state): #print " ChangeScriptState with %s - currentstate = %s" % (state_map.get(state),state_map.get(self.scriptState)) self.DisableInterrupts() try: self.scriptState = state try: if self.scriptSite: self.scriptSite.OnStateChange(state) except pythoncom.com_error, (hr, desc, exc, arg): pass # Ignore all errors here - E_NOTIMPL likely from scriptlets. finally: self.EnableInterrupts() # This stack frame is debugged - therefore we do as little as possible in it. def _ApplyInScriptedSection(self, fn, args): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.runcall(fn, *args) else: return fn(*args) else: return fn(*args) def ApplyInScriptedSection(self, codeBlock, fn, args): self.BeginScriptedSection() try: try: # print "ApplyInSS", codeBlock, fn, args return self._ApplyInScriptedSection(fn, args) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) # This stack frame is debugged - therefore we do as little as possible in it. def _CompileInScriptedSection(self, code, name, type): if self.debugManager: self.debugManager.OnEnterScript() return compile(code, name, type) def CompileInScriptedSection(self, codeBlock, type, realCode = None): if codeBlock.codeObject is not None: # already compiled return 1 if realCode is None: code = codeBlock.codeText else: code = realCode name = codeBlock.GetFileName() self.BeginScriptedSection() try: try: codeObject = self._CompileInScriptedSection(RemoveCR(code), name, type) codeBlock.codeObject = codeObject return 1 finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) # This stack frame is debugged - therefore we do as little as possible in it. def _ExecInScriptedSection(self, codeObject, globals, locals = None): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.run(codeObject, globals, locals) else: exec codeObject in globals, locals else: exec codeObject in globals, locals def ExecInScriptedSection(self, codeBlock, globals, locals = None): if locals is None: locals = globals assert not codeBlock.beenExecuted, "This code block should not have been executed" codeBlock.beenExecuted = 1 self.BeginScriptedSection() try: try: self._ExecInScriptedSection(codeBlock.codeObject, globals, locals) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) def _EvalInScriptedSection(self, codeBlock, globals, locals = None): if self.debugManager: self.debugManager.OnEnterScript() if self.debugManager.adb.appDebugger: return self.debugManager.adb.runeval(codeBlock, globals, locals) else: return eval(codeBlock, globals, locals) else: return eval(codeBlock, globals, locals) def EvalInScriptedSection(self, codeBlock, globals, locals = None): if locals is None: locals = globals assert not codeBlock.beenExecuted, "This code block should not have been executed" codeBlock.beenExecuted = 1 self.BeginScriptedSection() try: try: return self._EvalInScriptedSection(codeBlock.codeObject, globals, locals) finally: if self.debugManager: self.debugManager.OnLeaveScript() self.EndScriptedSection() except: self.HandleException(codeBlock) def HandleException(self, codeBlock): # NOTE - Never returns - raises a ComException exc_type, exc_value, exc_traceback = sys.exc_info() # If a SERVER exception, re-raise it. If a client side COM error, it is # likely to have originated from the script code itself, and therefore # needs to be reported like any other exception. if IsCOMServerException(exc_type): # Ensure the traceback doesnt cause a cycle. exc_traceback = None raise # It could be an error by another script. if issubclass(pythoncom.com_error, exc_type) and exc_value[0]==axscript.SCRIPT_E_REPORTED: # Ensure the traceback doesnt cause a cycle. exc_traceback = None raise Exception(scode=exc_value[0]) exception = error.AXScriptException(self, \ codeBlock, exc_type, exc_value, exc_traceback) # Ensure the traceback doesnt cause a cycle. exc_traceback = None result_exception = error.ProcessAXScriptException(self.scriptSite, self.debugManager, exception) if result_exception is not None: try: self.scriptSite.OnScriptTerminate(None, result_exception) except pythoncom.com_error: pass # Ignore errors telling engine we stopped. # reset ourselves to 'connected' so further events continue to fire. self.SetScriptState(axscript.SCRIPTSTATE_CONNECTED) raise result_exception # I think that in some cases this should just return - but the code # that could return None above is disabled, so it never happens. RaiseAssert(winerror.E_UNEXPECTED, "Don't have an exception to raise to the caller!") def BeginScriptedSection(self): if self.scriptSite is None: raise Exception(scode=winerror.E_UNEXPECTED) self.scriptSite.OnEnterScript() def EndScriptedSection(self): if self.scriptSite is None: raise Exception(scode=winerror.E_UNEXPECTED) self.scriptSite.OnLeaveScript() def DisableInterrupts(self): pass def EnableInterrupts(self): pass def GetNamedItem(self, name): try: return self.subItems[name] except KeyError: raise Exception(scode=winerror.E_INVALIDARG) def GetNamedItemClass(self): return ScriptItem def _AddScriptCodeBlock(self, codeBlock): self.scriptCodeBlocks[codeBlock.GetFileName()] = codeBlock if self.debugManager: self.debugManager.AddScriptBlock(codeBlock) if __name__=='__main__': print "This is a framework class - please use pyscript.py etc" def dumptypeinfo(typeinfo): return attr = typeinfo.GetTypeAttr() # Loop over all methods print "Methods" for j in xrange(attr[6]): fdesc = list(typeinfo.GetFuncDesc(j)) id = fdesc[0] try: names = typeinfo.GetNames(id) except pythoncom.ole_error: names = None doc = typeinfo.GetDocumentation(id) print " ", names, "has attr", fdesc # Loop over all variables (ie, properties) print "Variables" for j in xrange(attr[7]): fdesc = list(typeinfo.GetVarDesc(j)) names = typeinfo.GetNames(id) print " ", names, "has attr", fdesc ```
{ "source": "jkols99/Osy", "score": 3 }
#### File: Osy/tools/check_output.py ```python import sys PREFIX_BLOCK_EXPECTED = '[EXPECTED BLOCK]: ' PREFIX_EXPECTED = '[EXPECTED]: ' PREFIX_ACTUAL = '[ ACTUAL ]: ' def print_error(fmt, *args, **kwargs): print(fmt.format(*args, **kwargs), file=sys.stderr) def main(): expected_block = [] expected_block_line = 0 expected_block_frozen = False expected = None expected_line = 0 line_number = 0 exit_code = 0 for line in sys.stdin: line = line.rstrip() line_number = line_number + 1 if line.startswith(PREFIX_BLOCK_EXPECTED): if expected_block_frozen: print_error('Actual block on line {} ended too early on {} ("{}" not matched).', expected_block_line, line_number - 1, expected_block[0]) expected_block = [] exit_code = 1 if not expected_block: expected_block_line = line_number expected_block.append(line[len(PREFIX_BLOCK_EXPECTED):]) expected_block_frozen = False continue else: if expected_block: expected_block_frozen = True if expected_block: if line != expected_block[0]: print_error('Mismatch on lines {} and {} ("{}" != "{}")', expected_block_line, line_number, expected_block[0], line) exit_code = 1 expected_block = expected_block[1:] expected_block_line = expected_block_line + 1 if not expected_block: expected_block_frozen = False continue if line.startswith(PREFIX_EXPECTED): if not expected is None: print_error('Missing actual value for expected on line {} ({}).', expected_line, expected) exit_code = 1 expected = line[len(PREFIX_EXPECTED):] expected_line = line_number elif line.startswith(PREFIX_ACTUAL): actual = line[len(PREFIX_ACTUAL):] if expected is None: print_error('Missing expected value for actual on line {} ({}', line_number, actual) exit_code = 1 continue if actual != expected: print_error('Mismatch on lines {} and {} ("{}" != "{}")', expected_line, line_number, expected, actual) exit_code = 1 expected = None else: # Skip other lines pass if expected_block: print_error('Not enough actual lines for expected block at {} ("{}" not mached).', expected_block_line, expected_block[0]) return exit_code if __name__ == "__main__": sys.exit(main()) ```
{ "source": "jkom-cloud/heartbeat", "score": 2 }
#### File: heartbeat/heartbeat/__init__.py ```python import time import json import raven with open('./credentials.json') as f: credentials = json.load(f) dsn = 'https://99da3efb421b47a5ab6d0469327d2b7d:[email protected]/12' raven_client = raven.Client(dsn) def loop_executor(func, interval, run_event, **kwargs): """execute the given func in a ctrl-c interuptable loop :func: the function to be executed :interval: seconds between executions :run_event: the event that controls the loop to stop :kwargs: keyword args of func """ while run_event.is_set(): try: func(**kwargs) print('{} - {} - {} - OK'.format( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), func.__name__, kwargs, )) except Exception as err: # report every possible exception to Sentry msg = '{} - {} - {} - FAIL: {}'.format( time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()), func.__name__, kwargs, err, ) print(msg) raven_client.captureMessage(msg, level='error') finally: # elegantly stops the sleep function for i in range(interval): if run_event.is_set(): time.sleep(1) ```
{ "source": "jkomiyama/fairregresion", "score": 3 }
#### File: fairregresion/src/compasdata.py ```python import matplotlib.pyplot as plt import numpy as np import scipy.stats import time import datetime import sys import os import copy import itertools from sklearn import svm from sklearn import tree from sklearn import ensemble from sklearn import linear_model from sklearn import metrics from sklearn import model_selection from sklearn import preprocessing import pandas as pd #from statsmodels.discrete import discrete_model import math import random from io import open import conf def strip(text): try: return text.strip() except AttributeError: return text def read_compas(filename = os.path.join(conf.datadir, "compas-analysis/compas-scores-two-years.csv"), smlfeatures=False, return_all=False, single_S=False): #read compas dataset file (numeric ver) lines = [line for line in open(filename, "r").readlines() if line.find("?")==-1] fo = open(filename, "w") for line in lines: fo.write(line) fo.close() #pd.set_option("display.max_rows", 100) #pd.set_option("display.max_colwidth", 100) #print dir(pd) data = pd.read_csv(filename, sep=',') int_values = ["age","juv_fel_count","decile_score","juv_misd_count","juv_other_count","v_decile_score","priors_count"] #,"is_recid" #string_values = ["sex","race","two_year_recid","c_charge_degree","c_charge_desc"] string_values = ["sex","two_year_recid","type_of_assessment","v_type_of_assessment"]#,"r_charge_desc"] date_values=["c_jail_in","c_jail_out","c_offense_date","screening_date","in_custody","out_custody"] my_attrs = [] for int_val in int_values: my_attrs.append(data[int_val]) for string_val in string_values: my_attrs.append( pd.get_dummies(data[string_val], prefix=string_val, drop_first=True) ) for date_val in date_values: temp = pd.to_datetime(data[date_val]) t_min, t_max = min(temp), max(temp) my_attrs.append( (temp-t_min)/(t_max-t_min) ) new_data = pd.concat(my_attrs, axis=1) new_data["African-American"] = (data["race"] == "African-American") new_data = new_data.dropna() if return_all: return new_data new_data.insert(0, "intercept", 1) corr_akey = [] for akey in new_data.keys(): corr_akey.append((np.corrcoef(new_data[akey], new_data["two_year_recid_1"])[0,1], akey)) if single_S: S_keys = ["sex_Male"] else: S_keys = ["sex_Male", "African-American"] #race_Native American race_Asian race_Other race_Hispanic race_Caucasian S = np.transpose([list(new_data[i]) for i in S_keys]) #S = np.array(S, dtype=np.int_)*2-1 y = [v*2.0-1.0 for v in new_data["two_year_recid_1"]] X_keys = set(new_data.keys()).difference([]+S_keys) X_keys_nonrace = set() for akey in X_keys: if akey.find("race") != 0: X_keys_nonrace.add(akey) X_keys = X_keys_nonrace print("X_keys=",len(X_keys),X_keys) #print list(race.keys()) #X2_keys = set() X2_keys = set(["intercept"]).intersection(X_keys) print("X2 keys=",X2_keys) X2 = np.transpose([list(new_data[i]) for i in X2_keys]) #print("X2=",str(X2)) X2 = np.array(X2).reshape([len(new_data),len(X2_keys)]) #print "X2=",X2.shape #print "X2=",X2 X1_keys = X_keys.difference(X2_keys.union(set(["two_year_recid_1"]))) if smlfeatures: X1_keys = X1_keys.difference(set(["out_custody","decile_score","in_custody","c_jail_out","c_jail_in","screening_date","v_decile_score"])) X1 = np.transpose([list(new_data[i]) for i in X1_keys]) print("X1 keys=",X1_keys) #sys.exit() #print "S=",S[:10] return np.array(S), np.array(X1), np.array(X2), np.array(y) if __name__ == '__main__': read_compas() ```
{ "source": "jkomiyama/multiplaybanditlib", "score": 3 }
#### File: jkomiyama/multiplaybanditlib/simpleplot.py ```python import numpy as np import matplotlib.pyplot as plt from matplotlib import rc import matplotlib as mpl import sys, os, copy, math, re SHOW_THEORETICAL = True def thin(anarray): i = 1.0 retarray = [] while(i<=len(anarray)): retarray.append(anarray[int(i)-1]) i*=1.2 if int(i) != len(anarray): retarray.append(anarray[-1]) return retarray def readFile(afile): lines = [line.strip() for line in file(afile, "r").readlines()] algs = [] data = [] for line in lines: if line[0]=="#": if line.find("#policy") != -1: algs.append(line.split(" ")[2]) else: sps = line.split(" ") data.append(sps) data = map(list, zip(*data)) #transpose 2d array data = map(thin, data) #reduce data points to speed-up plotting return (algs, data) def getLabel(alg): if alg == "Random": return False elif alg == "UCB": return "CUCB" elif alg == "TS(basic)": return "MP-TS" elif alg == "TS(extended)": return "IMP-TS" elif alg == "KL-UCB(basic)": return "MP-KL-UCB" elif alg == "KL-UCB(extended)": return "IMP-KL-UCB" else: return alg def getMarker(alg): if alg == "theoretical1": return ":" elif alg == "Random": return "->" elif alg == "Exp3M": return "-s" elif alg == "UCB": return "-o" elif alg == "TS(basic)": return "-" elif alg == "TS(extended)": return "-d" elif alg == "KL-UCB(basic)": return "-v" elif alg == "KL-UCB(extended)": return "-" else: return "-" def getColor(alg): if alg == "theoretical1": return "0.25" elif alg == "Random": return "0.50" elif alg == "Exp3M": return "r" elif alg == "UCB": return "y" elif alg == "TS(basic)": return "k" elif alg == "TS(extended)": return "b" elif alg == "KL-UCB(basic)": return "g" elif alg == "KL-UCB(extended)": return "0.5" else: return "0.50" def getLineWidth(alg): if alg == "theoretical1": return 2 elif alg == "theoretical2": return 2 elif alg == "Random": return 1 elif alg == "Exp3M": return 1 elif alg == "UCB": return 1 elif alg == "TS(basic)": return 2 elif alg == "TS(extended)": return 1 elif alg == "KL-UCB(basic)": return 1 elif alg == "KL-UCB(extended)": return 1 else: return 2 def markers(i): print "i=",i markers = ("--", "-", "-.", ".", "+") return markers[i] def plotRegret((algs, data), mode=0): #plt.figure(figsize=(4,3)) #plt.subplots_adjust(left=0.2, right=0.9, top=0.9, bottom=0.2) plt.xlabel("t: round") plt.ylabel("R(t): regret") plt.xscale('log') count=0 if SHOW_THEORETICAL: plt.plot(data[0], data[1], ":", label="LB", color=getColor("theoretical1"), linewidth=getLineWidth("theoretical1")) print "lendata=",len(data) for l in range(4, len(data), 2): i=l/2-2 print i,l print algs[i] label = getLabel(algs[i]) if label: plt.plot(data[0], data[l], getMarker(algs[i]), color=getColor(algs[i]), label=label, linewidth=getLineWidth(algs[i])) count+=1 plt.legend(loc="upper left", fontsize=12) if mode==0: plt.savefig('regret.pdf') else: plt.savefig('regret'+str(mode)+'.pdf') plt.show() if __name__ == '__main__': if len(sys.argv)>=2: afile = sys.argv[1] result = readFile(afile) plotRegret(result) else: print "usage: this (filename)" ```
{ "source": "JKomskis/eva", "score": 3 }
#### File: JKomskis/eva/process_mnist_dataset.py ```python import numpy as np import gzip import struct from PIL import Image import os import cv2 import glob image_size = 28 # Based on code from https://gist.github.com/xkumiyu/c93222f2dce615f4b264a9e71f6d49e0 def create_img_files(input_path, image_path): images = None with gzip.open(input_path) as file: file.read(4) N, = struct.unpack('>i', file.read(4)) file.read(8) images = np.empty((N, 784), dtype=np.uint8) for i in range(N): for j in range(784): images[i, j] = ord(file.read(1)) os.makedirs(image_path, exist_ok=True) for (i, image) in enumerate(images): filepath = f'{image_path}/{i}.jpg' Image.fromarray(image.reshape(image_size, image_size)).save(filepath) def create_video_from_images(image_path, output_file): writer = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc(*'avc1'), 30, (image_size, image_size)) for filename in glob.glob(f'{image_path}/*'): img = cv2.imread(filename) for i in range(0, 6): writer.write(img) if __name__ == "__main__": input_path = 'data/MNIST/raw/train-images-idx3-ubyte.gz' image_path = 'data/MNIST/processed/train' create_img_files(input_path, image_path) create_video_from_images(image_path, 'data/MNIST/train_long.mp4') ``` #### File: src/udfs/mnist_digit_detector.py ```python from typing import List, Dict import pandas as pd import torchvision import numpy as np import os from random import Random from torch import Tensor import torch from src.models.catalog.frame_info import FrameInfo from src.models.catalog.properties import ColorSpace from src.udfs.pytorch_abstract_udf import PytorchAbstractUDF from src.configuration.dictionary import EVA_DIR from src.utils.logging_manager import LoggingManager, LoggingLevel class MNISTDigitDetector(PytorchAbstractUDF): """ Arguments: threshold (float): Threshold for classifier confidence score """ @property def name(self) -> str: return "mnistnn" def __init__(self, threshold=0.85): super().__init__() self.threshold = threshold custom_model_path = os.path.join(EVA_DIR, "data", "models", "mnist.pt") self.model = torch.load(custom_model_path) self.model.eval() @property def input_format(self) -> FrameInfo: return FrameInfo(-1, -1, 3, ColorSpace.RGB) @property def labels(self) -> List[str]: return [ '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' ] def _get_predictions(self, frames: Tensor) -> pd.DataFrame: """ Performs predictions on input frames Arguments: frames (np.ndarray): Frames on which predictions need to be performed Returns: tuple containing predicted_classes (List[List[str]]), predicted_scores (List[List[float]]) """ frames = torch.narrow(frames, 1, 0, 1) frames = frames.view(frames.shape[0], -1) predictions = self.model(frames) outcome_list = [] for prediction in predictions: ps = torch.exp(prediction) probab = list(ps.detach().numpy()) label = str(probab.index(max(probab))) outcome_list.append( { "labels": [label], "scores": [max(probab)], }) return pd.DataFrame.from_dict(outcome_list) ```
{ "source": "jkomyno/amplrestapi", "score": 2 }
#### File: amplrestapi/amplrestapi/http_validation_error.py ```python from aiohttp.web_exceptions import HTTPClientError class HTTPValidationError(HTTPClientError): status_code = 422 def __init__(self, reason: str): super().__init__(reason=reason) ``` #### File: amplrestapi/amplwrapper/ampl_error_handler.py ```python from amplpy import ErrorHandler import logging class AMPLErrorHandler(ErrorHandler): def error(self, exception): logging.log(logging.DEBUG, 'AMPL Error:', exception.getMessage()) def warning(self, exception): logging.log(logging.DEBUG, 'AMPL Warning:', exception.getMessage()) ```
{ "source": "jkomyno/bioalgo-QCluster-vs-isONclust", "score": 3 }
#### File: python/preprocess/preprocess.py ```python import random import heapq import numpy as np from Bio import SeqIO from itertools import groupby, tee from typing import List, Tuple, Dict from .functional import fst, snd def get_key_length_pairs(input_fasta_file) -> List[Tuple[str, int]]: """ Given a fasta file, it computes the (key, length) list of pairs for each sequence, where key is the sequence identifier and length is the length of the sequence. The file is accessed in a streaming fashion, to avoid memory issues. """ return [ (get_accessor(seq_record.description), len(seq_record)) for seq_record in SeqIO.parse(input_fasta_file, 'fasta') ] def cluster_by_std_dev(key_length_pairs: List[Tuple[str, int]], threshold: float) -> Dict[int, List[Tuple[str, int]]]: """ Group the lengths in `key_length_pairs` according to their standard deviation. Two pairs are in the same cluster if the distance between their lengths is no more than the given standard deviation threshold removed from the mean distances between the lengths in the entire group. The result of this function is a key-value map where the key indicates the cluster id, and the value is the list of (sequence key, sequence length) pairs whose lengths are not too different from each other, according to the standard deviation criterion. """ def compute_cluster_by_std_dev(key_length_pairs: List[Tuple[str, int]], threshold: float, key=snd): # sort the key length pairs according to their length data = sorted(key_length_pairs, key=key) # calculate the standard deviation of the gaps between two consecutive values # in the data std_dev = np.std([key(y) - key(x) for x, y in zip(data[:-1], data[1:])]) # the first element belongs to the first cluster id, 0 cluster_id = 0 prev = data[0] yield cluster_id, prev for x in data[1:]: # if the gap from the current value to the previous is more than the given # standard deviation threshold, then create a new cluster if (key(x) - key(prev)) / std_dev > threshold: cluster_id += 1 prev = x yield cluster_id, x # key-value map where the key `c` indicates the cluster id, and the value is the list of # (sequence key, sequence length) pairs whose lengths are not too different from each # other, according to the standard deviation criterion cluster_dict = { c: [snd(x) for x in v] for c, v in groupby(compute_cluster_by_std_dev(key_length_pairs, threshold=threshold), key=fst) } return cluster_dict def select_best_sequences_from_clusters(cluster_dict: Dict[int, List[Tuple[str, int]]]) -> List[Tuple[str, int]]: """ Retrieve the best sequences keys and lengths from a given cluster dictionary. "Best" means that the cluster with the third highest cardinality is preferred. This is because the cluster with the highest cardinality is composed of very short sequences, and the elements of the third cluster have a slightly inferior gap compared to the elements in the second cluster. """ def select_best_indexes(data): indexes = heapq.nlargest(4, range(len(data)), data.__getitem__) return indexes data = list(map(len, cluster_dict.values())) lst = list(map(lambda x: (len(x), x), cluster_dict.values())) best_indexes = select_best_indexes(data) first_best_idx, second_best_idx, third_best_idx, fourth_best_idx \ = best_indexes[0], best_indexes[1], best_indexes[2], best_indexes[3] first_best_len, first_best_list = lst[first_best_idx] print(f'1st best cluster: ({first_best_len} elements)') print(f' Min length: {min(first_best_list, key=snd)}') print(f' Max length: {max(first_best_list, key=snd)}') print('') second_best_len, second_best_cluster = lst[second_best_idx] print(f'2nd best cluster: ({second_best_len} elements)') print(f' Min length: {min(second_best_cluster, key=snd)}') print(f' Max length: {max(second_best_cluster, key=snd)}') print('') third_best_len, third_best_cluster = lst[third_best_idx] print(f'3rd best cluster: ({third_best_len} elements)') print(f' Min length: {min(third_best_cluster)}') print(f' Max length: {max(third_best_cluster)}') print('') fourth_best_len, fourth_best_cluster = lst[fourth_best_idx] print(f'4th best cluster: ({fourth_best_len} elements)') print(f' Min length: {min(fourth_best_cluster)}') print(f' Max length: {max(fourth_best_cluster)}') print('') return third_best_cluster def get_accessor(identifier: str) -> str: """ Given a SeqRecord identifier string, return the access number as a string. e.g. "ENSG00000004776|ENSG00000004776.13|ENST00000004982|ENST00000004982.6" -> "ENST00000004982.6" """ parts = identifier.split('|') assert len(parts) == 4 return parts[3] def save_best_sequences(best_sequences: List[Tuple[str, int]], n_sequences_to_keep: int, input_fasta_file: str, output_fasta_file: str): fasta_header_dict = SeqIO.index(input_fasta_file, 'fasta', key_function=get_accessor) # extract `n_sequences_to_keep` unique header keys from `best_sequences` keys_to_extract: List[str] = random.sample(list(map(fst, best_sequences)), n_sequences_to_keep) # write the selected sequences to `output_fasta_file` with open(output_fasta_file, 'wb') as f: for key in keys_to_extract: seq_record = fasta_header_dict[key] print(f'>{seq_record.description}') f.write(fasta_header_dict.get_raw(key)) def preprocess(input_fasta_file: str, output_fasta_file: str, n_sequences_to_keep: int, std_dev_threshold: float, seed: int): random.seed(seed) key_length_pairs = get_key_length_pairs(input_fasta_file) cluster_dict = cluster_by_std_dev(key_length_pairs, threshold=std_dev_threshold) best_sequences = select_best_sequences_from_clusters(cluster_dict) save_best_sequences(best_sequences, n_sequences_to_keep, \ input_fasta_file, output_fasta_file) ``` #### File: quality/metrics/external.py ```python import numpy as np from sklearn.metrics.cluster import homogeneity_completeness_v_measure from sklearn.metrics.cluster import adjusted_rand_score from sklearn.metrics.cluster import adjusted_mutual_info_score from sklearn.metrics.cluster import fowlkes_mallows_score from sklearn.metrics.cluster import contingency_matrix from typing import List from . import ExternalEvaluation def compute_external_metrics(labels_true: List[str], labels_pred: List[int]) -> ExternalEvaluation: if len(labels_true) == 0 and len(labels_pred) == 0: return None homogeneity, completeness, v_measure = homogeneity_completeness_v_measure(labels_true, labels_pred) adjusted_mutual_info = adjusted_mutual_info_score(labels_true, labels_pred) adjusted_rand_index = adjusted_rand_score(labels_true, labels_pred) fowlkes_mallows = fowlkes_mallows_score(labels_true, labels_pred) mat = contingency_matrix(labels_true, labels_pred) purity = purity_score(mat) inverse_purity = purity_score(mat, inverse=True) return ExternalEvaluation(homogeneity=homogeneity, completeness=completeness, v_measure=v_measure, adjusted_mutual_information=adjusted_mutual_info, adjusted_rand_index=adjusted_rand_index, fowlkes_mallows=fowlkes_mallows, purity=purity, inverse_purity=inverse_purity) def purity_score(mat, inverse=False): """ Compute purity or inverse purity score. """ axis = 0 if inverse else 1 return np.sum(np.amax(mat, axis=axis)) / np.sum(mat) ``` #### File: python/quality/quality.py ```python import pandas as pd from os import path from pathlib import Path from pysam import AlignmentFile from collections import defaultdict from typing import Dict, Set, Tuple, Iterator from . import isonclust from . import qcluster from . import random_cluster from . import metrics def parse_true_clusters(args) -> Tuple[Dict[str, str], Dict[str, Set[str]]]: ground_truth_filename = path.join(args.data, 'simulated', args.simulated, 'simulated.sam') # reference_filename = path.join(args.data, 'preprocess', 'preprocessed.fasta') ref_file = AlignmentFile(ground_truth_filename, mode='r', check_sq=True) # reference_filename=reference_filename) classes = defaultdict(dict) chromosome_to_read_ids_map = defaultdict(set) for read in ref_file.fetch(until_eof=True): header = read.query_name # e.g. 'm96770/100/CCS' read_id = header.split(' ')[0] # e.g. 'ENSG00000070061|ENSG00000070061.16|ENST00000674938|ENST00000674938.1' chromosome = header.split(';')[3].split('=')[1] classes[read_id] = chromosome chromosome_to_read_ids_map[chromosome].add(read_id) return classes, chromosome_to_read_ids_map def compute_trivial_classes(chromosome_to_read_ids_map: Dict[str, Set[str]], threshold: int) -> Iterator[str]: """ A class is considered trivial if a chromosome has been used to generate at most `threshold` sequences. """ for chromosome in chromosome_to_read_ids_map: read_ids = chromosome_to_read_ids_map[chromosome] l = len(read_ids) if l <= threshold: yield chromosome def compute_trivial_clusters(cluster_id_to_read_ids_map: Dict[int, Set[str]], threshold: int) -> Iterator[str]: """ A cluster is considered trivial if it contains at most `threshold` sequences. """ for cluster_id in cluster_id_to_read_ids_map: read_ids = cluster_id_to_read_ids_map[cluster_id] l = len(read_ids) if l <= threshold: yield cluster_id def quality(args): """ args.data: Location of the data folder args.simulated: Name of the simulated dataset args.result: Location of the cluster result args.threshold: Clusters which contain at most `threshold` sequences are considered trivial args.tool: 'isONclust' | 'qCluster' | 'random_cluster' """ """ { 'm99998/100/CCS': 'ENSG00000100150|ENSG00000100150.20|ENST00000646515|ENST00000646515.1', 'm99999/100/CCS': 'ENSG00000187866|ENSG00000187866.10|ENST00000394264|ENST00000394264.7' } """ classes, chromosome_to_read_ids_map = parse_true_clusters(args) # by simulation we know classes of all reads, they are therefore the same number tot_nr_reads = len(classes) tool = args.tool """ clusters = { 'm99998/100/CCS': 234, 'm99999/100/CCS': 102, ... } """ if tool == 'isONclust': clusters, cluster_id_to_read_ids_map, k = isonclust.read_inferred_clusters(args) elif tool == 'qCluster': clusters, cluster_id_to_read_ids_map, k = qcluster.read_inferred_clusters(args) elif tool == 'random_cluster': clusters, cluster_id_to_read_ids_map, k = random_cluster.read_inferred_clusters(args) cluster_stats = metrics.compute_cluster_stats(k, cluster_id_to_read_ids_map) print(f'cluster_stats:{cluster_stats}') trivial_class_chromosomes = set(compute_trivial_classes(chromosome_to_read_ids_map, threshold=args.threshold)) print(f'# trivial classes: {len(trivial_class_chromosomes)}') assert len(trivial_class_chromosomes) == 0 labels_true, labels_pred = metrics.compute_cluster_labels(clusters, classes) external_evaluation = metrics.compute_external_metrics(labels_true, labels_pred) print(f'External evaluation: {external_evaluation}\n') if external_evaluation is not None: df = create_quality_dataframe(external_evaluation=external_evaluation, cluster_stats=cluster_stats) write_quality_dataframe_to_csv(df, args) if tool == 'random_cluster': return # metrics for singleton clusters singleton_cluster_ids = set(compute_trivial_clusters(cluster_id_to_read_ids_map, threshold=1)) print(f'# singleton clusters: {len(singleton_cluster_ids)}') labels_true_no_singleton, labels_pred_no_singleton = metrics.compute_cluster_labels(clusters, classes, without=singleton_cluster_ids) external_evaluation_no_singleton = metrics.compute_external_metrics(labels_true_no_singleton, labels_pred_no_singleton) print(f'External evaluation (no singleton): {external_evaluation_no_singleton}\n') if external_evaluation_no_singleton is not None: df = create_quality_dataframe(external_evaluation=external_evaluation_no_singleton, cluster_stats=cluster_stats) write_quality_dataframe_to_csv(df, args, prefix='no_singleton_') # metrics for trivial clusters wrt `args.threshold` trivial_cluster_ids = set(compute_trivial_clusters(cluster_id_to_read_ids_map, threshold=args.threshold)) print(f'# trivial clusters: {len(trivial_cluster_ids)}') labels_true_no_trivial, labels_pred_no_trivial = metrics.compute_cluster_labels(clusters, classes, without=trivial_cluster_ids) external_evaluation_no_trivial = metrics.compute_external_metrics(labels_true_no_trivial, labels_pred_no_trivial) print(f'External evaluation (no trivial): {external_evaluation_no_trivial}\n') if external_evaluation_no_trivial is not None: df = create_quality_dataframe(external_evaluation=external_evaluation_no_trivial, cluster_stats=cluster_stats) write_quality_dataframe_to_csv(df, args, prefix='no_trivial_') # number of clusters by quality types n_clusters = k n_clusters_trivial = len(trivial_cluster_ids) n_clusters_singleton = len(singleton_cluster_ids) df = create_n_clusters_dataframe(n_clusters, n_clusters_trivial, n_clusters_singleton) write_n_clusters_dataframe_to_csv(df, args) def create_n_clusters_dataframe(n_clusters: int, n_clusters_trivial: int, n_clusters_singleton: int) -> pd.DataFrame: data = { 'k': [n_clusters], 'k_non_trivial': [n_clusters - n_clusters_trivial], 'k_trivial': [n_clusters_trivial], 'k_singleton': [n_clusters_singleton], } df = pd.DataFrame.from_dict(data) return df def write_n_clusters_dataframe_to_csv(df: pd.DataFrame, args): csv_filename = f'{args.result}_n_clusters.csv' csv_path = path.join(args.data, 'quality', args.tool, args.simulated) Path(csv_path).mkdir(parents=True, exist_ok=True) df.to_csv(path.join(csv_path, csv_filename), sep=',', index=False, encoding='utf-8', decimal='.') def write_quality_dataframe_to_csv(df: pd.DataFrame, args, prefix: str = ''): csv_prefix = f'{prefix}{args.result}' if len(csv_prefix) > 0: csv_prefix = f'{csv_prefix}_' csv_filename = f'{csv_prefix}quality.csv' csv_path = path.join(args.data, 'quality', args.tool, args.simulated) Path(csv_path).mkdir(parents=True, exist_ok=True) df.to_csv(path.join(csv_path, csv_filename), sep=',', index=False, encoding='utf-8', decimal='.') def create_quality_dataframe(external_evaluation: metrics.ExternalEvaluation, cluster_stats: metrics.ClusterStats) -> pd.DataFrame: metrics_data = { metric_name: [metric_value] for (metric_name, metric_value) in external_evaluation } cluster_stats_data = { stat_name: [stat_value] for (stat_name, stat_value) in cluster_stats } data = { **metrics_data, **cluster_stats_data, } df = pd.DataFrame.from_dict(data) return df ```
{ "source": "jkomyno/combinatorial-optimization-tsp", "score": 4 }
#### File: python/benchmark/ParameterGrid.py ```python from itertools import product class ParameterGrid: """ Grid of parameters with a discrete number of values for each. Can be used to iterate over parameter value combinations. """ def __init__(self, grid_params): # sort keys of a dictionary for reproducibility self.items = sorted(grid_params.items()) def __iter__(self): """ Iterate over the points in the grid. """ # sort keys of a dictionary for reproducibility if not self.items: yield {} else: keys, values = zip(*self.items) # for each entry v of the cartesian product for v in product(*values): params = dict(zip(keys, v)) yield params ``` #### File: python/calibrate/calibrate_final_tuning.py ```python from python.calibrate.HyperParameters import HyperParameters from . import utils import math import itertools import subprocess import pandas as pd import numpy as np from os import path from glob import iglob from pymoo.algorithms.nsga2 import NSGA2 from pymoo.operators.mixed_variable_operator import MixedVariableSampling from pymoo.operators.mixed_variable_operator import MixedVariableMutation from pymoo.operators.mixed_variable_operator import MixedVariableCrossover from pymoo.model.problem import Problem from pymoo.factory import get_sampling from pymoo.factory import get_crossover from pymoo.factory import get_mutation TIMEOUT_MS = 60000 ITERATIONS_TIME = '06:00:00' EXECUTIONS_FOR_ITERATION = 50 var2idx = { var: i for i, var in enumerate(['max_gen_no_improvement', 'max_gen']) } def get_var(x, var): return x[var2idx[var]] mask = [ 'int', # (0) max_gen_no_improvement 'int', # (1) max_gen ] bounds = [ (50, 200), # (0) max_gen_no_improvement (50, 500), # (1) max_gen ] lower_bounds, upper_bounds = utils.lower_upper_bounds(bounds) class MetaProblem(Problem): def __init__(self, args, hyperparameters: HyperParameters, **kwargs): super().__init__(n_var=len(mask), n_obj=2, n_constr=2, xl=lower_bounds, xu=upper_bounds, elementwise_evaluation=True, **kwargs) self.args = args self.hyperparameters = hyperparameters def _evaluate(self, x, out, *args, **kwargs): ########################## # minimization functions # ########################## # we want to minimize our average solutions and the probability of spikes in those solutions average, stddev = run_ex2_metaheuristic(self.args, x, self.hyperparameters) ############### # constraints # ############### max_gen_no_improvement = get_var(x, 'max_gen_no_improvement') max_gen = get_var(x, 'max_gen') # max_gen_no_improvement < max_gen max_gen_no_improvementt_lt_max_gen = max_gen_no_improvement - max_gen - 1 ########### # outputs # ########### # 'F' represents the problem objectives out['F'] = [average, stddev] # 'G' represents the problem constraints in the form g(x) <= 0 out['G'] = [max_gen_no_improvementt_lt_max_gen] def get_ex2_metaheuristic_result(args, dataset: str, hyperparameters: HyperParameters, max_gen_no_improvement: int, max_gen: int): timeout_ms = TIMEOUT_MS cmd = list(map(str, [ args.program, '--timeout-ms', timeout_ms, '--filename', dataset, '--mutation-probability', hyperparameters.mutation_probability, '--crossover-rate', hyperparameters.crossover_rate, '--mu', hyperparameters.mu, '--lambda', hyperparameters.lambda_, '-k', hyperparameters.k, '--max-gen-no-improvement', max_gen_no_improvement, '--max-gen', max_gen, ])) # execute program and capture its output with subprocess.Popen(cmd, stdout=subprocess.PIPE, bufsize=1, universal_newlines=True) as p: stdout = itertools.islice(p.stdout, 4, None) for line in stdout: if not line.lstrip().startswith('#'): break stdout = itertools.islice(stdout, 4, None) solution_raw = next(stdout).split(': ')[1] solution = int(float(solution_raw)) return solution def run_ex2_metaheuristic(args, x, hyperparameters: HyperParameters): max_gen_no_improvement = get_var(x, 'max_gen_no_improvement') max_gen = get_var(x, 'max_gen') if max_gen_no_improvement >= max_gen: return math.inf, math.inf solutions = [ get_ex2_metaheuristic_result(args, dataset, hyperparameters, max_gen_no_improvement, max_gen) for dataset in iglob(path.join(args.datasets, '*.tsp')) ] average = np.mean(solutions) stddev = np.std(solutions) return average, stddev def calibrate_final_tuning(args, pool, hyperparameters: HyperParameters): sampling = MixedVariableSampling(mask, { # Integer numbers are sampled via Uniform Random Sampling 'int': get_sampling('int_random') }) crossover = MixedVariableCrossover(mask, { 'int': get_crossover('real_sbx', prob=0.9, eta=3.0) }) mutation = MixedVariableMutation(mask, { # Integer numbers are mutated via polynomial mutation 'int': get_mutation('int_pm', eta=3.0) }) problem = MetaProblem(args, hyperparameters=hyperparameters, parallelization=None) algorithm = NSGA2( pop_size=EXECUTIONS_FOR_ITERATION, sampling=sampling, crossover=crossover, mutation=mutation, eliminate_duplicates=True, ) termination = utils.get_termination_for_final_tuning(time=ITERATIONS_TIME) res, \ best_solution, \ min_average, \ min_stddev = utils.get_minimizer(problem, algorithm, termination) save_csv(args, best_solution, min_average, min_stddev) def save_csv(args, best_solution, min_average, min_stddev): max_gen_no_improvement = get_var(best_solution, 'max_gen_no_improvement') max_gen = get_var(best_solution, 'max_gen') print(f'max_gen_no_improvement: {max_gen_no_improvement}') print(f'max_gen: {max_gen}') print(f'min_average: {min_average}') print(f'min_stddev: {min_stddev}') df = pd.DataFrame.from_records([{ 'max_gen_no_improvement': max_gen_no_improvement, 'max_gen': max_gen, 'min_average': min_average, 'min_stddev': min_stddev, }]) df.to_csv(path.join(args.output, f'calibration_final_tuning.csv'), sep=',', index=False, encoding='utf-8', decimal='.') ```
{ "source": "jkomyno/lattice-submodular-maximization", "score": 3 }
#### File: benchmark/algo/SGL_a.py ```python import numpy as np from nptyping import NDArray from typing import Tuple from ..objective import Objective from .. import utils def SGL_a(rng: np.random.Generator, f: Objective, r: int, eps: float) -> Tuple[NDArray[int], float]: """ Randomized algorithm for integer-lattice submodular maximization of monotone functions with cardinality constraints in linear time. This is a generalization of the StochasticGreedy algorithm for set-submodular monotone functions. :param rng: numpy random generator instance :param f: integer-lattice submodular function objective :param r: cardinality constraint :param eps: non-negative error threshold """ # compute s, the sample size s = utils.compute_sample_size(n=f.n, r=r, eps=eps) # the solution starts from the zero vector x = np.zeros((f.n, ), dtype=int) # prev_value keeps track of the value of f(x) prev_value = 0 # iteration counter t = 0 # norm keeps track of the L-1 norm of x norm = 0 d = max((f.value(utils.char_vector(f, e)) for e in f.V)) theta = d stop_theta = (eps / r) * d while norm < r: # random sub-sampling step sample_space = np.where(x < f.B)[0] s_actual = min(s, len(sample_space)) Q = rng.choice(sample_space, size=s_actual, replace=False) Q_one = list(map(lambda e: utils.char_vector(f, e), Q)) # potentially add multiple copies of every item in Q for i, e in enumerate(Q): one_e = Q_one[i] k_max = np.min([f.B[e] - x[e], r - norm]) k_range = list(range(1, k_max + 1)) # find k in k_interval maximal such that f(k * 1_e | x) >= k * theta best_t = utils.binary_search(f, k_range, one_e=one_e, x=x, prev_value=prev_value, theta=theta) if best_t is None: # no feasible k was found, nothing gets added to x this iteration. continue k, candidate_x, candidate_value = best_t # We add to x the element in the sample q that increases the value of f # the most, extracted k times. x = candidate_x norm += k prev_value = candidate_value # update theta theta = max(theta * (1 - eps), stop_theta) # increment iteration counter t += 1 print(f'SGL-a t={t}; n={f.n}; B={f.B_range}; r={r}; norm={norm}') assert norm == r return x, prev_value ``` #### File: benchmark/algo/SGL_II.py ```python import numpy as np from nptyping import NDArray from typing import Tuple from ..objective import Objective from .. import utils def SGL_II(rng: np.random.Generator, f: Objective, r: int, eps: float) -> Tuple[NDArray[int], float]: """ Randomized algorithm for DR-ubmodular maximization of monotone functions defined on the integer lattice with cardinality constraints. This is a generalization of the StochasticGreedy algorithm for set-submodular monotone functions. :param rng: numpy random generator instance :param f: integer-lattice submodular function objective :param r: cardinality constraint :param eps: non-negative error threshold """ # compute s, the sample size s = utils.compute_sample_size(n=f.n, r=r, eps=eps) # the solution starts from the zero vector x = np.zeros((f.n, ), dtype=int) # prev_value keeps track of the value of f(x) prev_value = 0 for _ in range(r): V = np.copy(np.where(x < f.B)[0]) rng.shuffle(V) # split list V in batches of size at most s batches = utils.split_list(V, s) for Q in batches: # lazy list of (e, k_max), where k_max is the highest k such that # f(x + k * 1_e) >= f(x) while making sure that the cardinality constraint # is respected e_k_max: Tuple[int, int] = [ (e, min(f.B[e] - x[e], r - np.sum(x))) for e in Q ] # lazy list of (one_e, max_k) # one_e_k_max = utils.map_fst(lambda e: utils.char_vector(f, e), e_k_max) one_e_k_max = map(lambda ek: (utils.char_vector(f, ek[0]) , ek[1]), e_k_max) # We add k copies of the element in the sample q that increases the value of f # the most to the solution x. x, prev_value, marginal_gain, k = max(( ( candidate_x := x + k * one_e, candidate_value := f.value(candidate_x), candidate_value - prev_value, k ) for one_e, k in one_e_k_max ), key=utils.trd) if np.sum(x) == r: break if np.sum(x) == r: break assert np.sum(x) <= r print(f'SGL-II n={f.n}; B={f.B_range}; r={r}; norm={np.sum(x)}') return x, prev_value ``` #### File: benchmark/conf_utils/get_objective.py ```python from typing import Iterator, Tuple, Dict, List import numpy as np from nptyping import NDArray from omegaconf import DictConfig from ..objective import Objective, DemoMonotone, DemoMonotoneSkewed, \ DemoNonMonotone, FacilityLocation, BudgetAllocation from .. import dataset_utils def compute_B(rng: np.random.Generator, n: int, B_range: Tuple[int, int]) -> NDArray[int]: """ Compute the upper-bound array B. :param rng: numpy random generator instance :param n: size of the ground set :param B_range: inclusive range for the values of each entry of B """ low, high = B_range return rng.integers(low=low, high=high, size=(n, ), endpoint=True) OBJ_MAP = { 'demo_monotone': lambda **kwargs: load_demo_monotone(**kwargs), 'demo_monotone_skewed': lambda **kwargs: load_demo_monotone_skewed(**kwargs), 'demo_non_monotone': lambda **kwargs: load_demo_non_monotone(**kwargs), 'facility_location': lambda **kwargs: load_facility_location(**kwargs), 'budget_allocation': lambda **kwargs: load_budget_allocation(**kwargs), } def load_demo_monotone(rng: np.random.Generator, params, **kwargs) -> List[Tuple[Objective, int]]: """ Generate a random modular, monotone function :param rng: numpy random generator instance :param params: 'params.demo_monotone' dictionary entry in conf/config.yaml """ nBr: List[Tuple[int, Tuple[int, int], int]] = params.benchmark.nBr fr: List[Tuple[Objective, int]] = [None] * len(nBr) for i, (n, B_range, r) in enumerate(nBr): B = compute_B(rng, n, B_range) fr[i] = (DemoMonotone(rng, n=n, B=B, B_range=B_range), r) return fr def load_demo_monotone_skewed(rng: np.random.Generator, params, **kwargs) -> List[Tuple[Objective, int]]: """ Generate a random skewed modular, monotone function :param rng: numpy random generator instance :param params: 'params.demo_monotone' dictionary entry in conf/config.yaml """ nBr: List[Tuple[int, Tuple[int, int], int]] = params.benchmark.nBr fr: List[Tuple[Objective, int]] = [None] * len(nBr) for i, (n, B_range, r) in enumerate(nBr): B = compute_B(rng, n, B_range) fr[i] = (DemoMonotoneSkewed(rng, n=n, B=B, B_range=B_range), r) return fr def load_demo_non_monotone(rng: np.random.Generator, params, **kwargs) -> List[Tuple[Objective, int]]: """ Generate a random modular, non_monotone function :param rng: numpy random generator instance :param params: 'params.demo_non_monotone' dictionary entry in conf/config.yaml """ nBr: List[Tuple[int, Tuple[int, int], int]] = params.benchmark.nBr fr: List[Tuple[Objective, int]] = [None] * len(nBr) for i, (n, B_range, r) in enumerate(nBr): B = compute_B(rng, n, B_range) fr[i] = (DemoNonMonotone(rng, n=n, B=B, B_range=B_range), r) return fr def load_facility_location(rng: np.random.Generator, dataset_dir: str, params, **kwargs) -> List[Tuple[Objective, int]]: """ Generate a random integer-lattice submodular, monotone function that models the Facility Location problem. :param rng: numpy random generator instance :param dataset_dir: datasets main directory :param params: 'params.demo_facility_location' dictionary entry in conf/config.yaml """ print(f'Loading Movielens 100k...') G = dataset_utils.import_movielens_100k(dataset_dir) print(f'...Movielens 100k successfully loaded') br: List[Tuple[int, int]] = params.benchmark.br fr: List[Tuple[Objective, int]] = [None] * len(br) for i, (b, r) in enumerate(br): fr[i] = (FacilityLocation(G=G, b=b), r) return fr def load_budget_allocation(rng: np.random.Generator, dataset_dir: str, params, **kwargs) -> Iterator[Tuple[Objective, int]]: """ Generate a random integer-lattice DR-submodular, monotone function that models the Budget Allocation problem. :param rng: numpy random generator instance :param dataset_dir: datasets main directory :param params: 'params.demo_facility_location' dictionary entry in conf/config.yaml """ # keep track of the vector B generated by the corresponding (n, b_low, b_high) n_B_range_to_B_map: Dict[Tuple[int, int, int], NDArray[int]] = dict() trim_graph = dataset_utils.import_wikilens_ratings(rng, dataset_dir) nBr: List[Tuple[int, Tuple[int, int], int]] = params.benchmark.nBr fr: List[Tuple[Objective, int]] = [None] * len(nBr) for i, (n, B_range, r) in enumerate(nBr): # make sure that all experiments with the same B_range have the same # random B vector B = n_B_range_to_B_map.setdefault((n, *B_range), compute_B(rng, n, B_range)) # trim the original bipartite graph G=(V \cup T, E) such that |V| = n G = trim_graph(n=n) fr[i] = (BudgetAllocation(G=G, B=B, B_range=B_range), r) return fr def get_objective(rng: np.random.Generator, dataset_dir: str, cfg: DictConfig) -> List[Tuple[Objective, int]]: """ Return an instance of the selected set-submodular objective :param rng: numpy random generator instance :param dataset_dir: datasets main directory :param cfg: Hydra configuration dictionary """ objective_name = cfg.obj.name print(f'Loading f: {objective_name}\n') return OBJ_MAP[objective_name](rng=rng, params=cfg.obj, dataset_dir=dataset_dir) ``` #### File: benchmark/objective/BudgetAllocation.py ```python import networkx as nx from nptyping import NDArray from typing import List, Tuple from .. import utils from .Objective import Objective class BudgetAllocation(Objective): def __init__(self, G: nx.Graph, B: NDArray[int], B_range: Tuple[int, int]): """ Optimal budget allocation is a special case of the influence maximization problem. It can be modeled as a bipartite graph (S, T; W), where S and T are collections of advertising channels and customers, respectively. The edge weight, p_st ∈ W, represents the influence probability of channel s to customer t. The goal is to distribute the budget (e.g., time for a TV advertisement, or space of an inline ad) among the source nodes, and to maximize the expected influence on the potential customers. The total influence of customer t from all channels can be modeled by a proper monotone DR-submodular function I_t(x), where x is the budget assignment among the advertising channels. A concrete application is for search marketing advertiser bidding, in which vendors bid for the right to appear alongside the results of different search keywords. https://arxiv.org/pdf/1606.05615.pdf (§6, Optimal budget allocation with continuous assignments) """ V: List[int] = [n for n in G.nodes if G.nodes[n]['bipartite'] == 0] T: List[int] = [m for m in G.nodes if G.nodes[m]['bipartite'] == 1] super().__init__(V, B, B_range) # W[s, t] is the influence probability of channel s to customer t. W = nx.adjacency_matrix(G) # collect the neighbors s \in S of each t \in T neighbors: List[List[int]] = [[s for s in G.neighbors(t)] for t in T] # keep track of (1 - p(s, t), s) for each neighbors s \in S of each t \in T self.probs_exp_list: List[List[Tuple[float, int]]] = [ [(1 - W[s, t], s) for s in s_neighbors] for s_neighbors, t in zip(neighbors, T) ] def value(self, x: NDArray[int]) -> float: """ Value oracle for the Budget Allocation problem. :param x: allotted budget. :return: expected number of influenced people """ super().value(x) return sum(( 1 - utils.prod( neg_p_st ** x[s] for neg_p_st, s in probs_exp ) for probs_exp in self.probs_exp_list )) ``` #### File: benchmark/set_algo/stochastic_greedy.py ```python import math import numpy as np from nptyping import NDArray from typing import Set, Tuple from ..set_objective import SetObjective from .. import utils def stochastic_greedy(rng: np.random.Generator, f: SetObjective, r: int, eps: float) -> Tuple[Set[int], float]: """ Computes a set A \subseteq V such that |A| \leq r. :param rng: numpy random generator instance :param f: set-submodular function to maximize :param r: cardinality constraint :param eps: error threshold """ # compute s, the sample size s = utils.compute_sample_size(n=f.n, r=r, eps=eps) # the solution starts from the empty set A: Set[int] = set() # prev_value keeps track of the value of f(A) prev_value = 0 while len(A) < r: # R is a random subset obtained by sampling s random elements # from V - A sample_space = list(f.V - A) R: NDArray[int] = rng.choice(sample_space, size=min(s, len(sample_space)), replace=False) prev_value, marginal_gain, a = max(( (candidate_value := f.value(A | {a}), candidate_value - prev_value, a) for a in R ), key=utils.snd) A.add(a) return A, prev_value ``` #### File: benchmark/utils/binary_search.py ```python from typing import List, Union, Tuple from nptyping import NDArray from ..objective import Objective def binary_search(f: Objective, k_range: List[int], one_e: NDArray[int], x: NDArray[int], prev_value: float, theta: float) -> Union[None, Tuple[int, NDArray[int], float]]: """ Iterative binary search for the maximum k in k_range such that f.marginal_gain(k * one_e, x) >= k * theta. :param f: monotone integer lattice submodular function :param k_range: sorted range of k to search :param one_e: n-dimensional characteristic vector of e :param x: previous iterate :param prev_value: value of f(x) :param theta: threshold :return: (k, x + k * one_e, f(x + k * one_e)) or None of no k such that f.marginal_gain(k * one_e, x) >= k * theta could be found. """ if len(k_range) == 0: return None k_max = k_range[-1] k_min = k_range[0] best_t = None while k_min <= k_max: candidate_k = k_max - (k_max - k_min) // 2 candidate_x = x + candidate_k * one_e candidate_value = f.value(candidate_x) marginal_gain = candidate_value - prev_value if marginal_gain >= candidate_k * theta: k_min = candidate_k + 1 if best_t is None or best_t[0] < candidate_k: best_t = (candidate_k, candidate_x, candidate_value) else: k_max = candidate_k - 1 return best_t ``` #### File: utils/bridge/to_set.py ```python from typing import Set from nptyping import NDArray from ...objective import Objective def to_set(f: Objective, x: NDArray[int]) -> Set[int]: """ Convert an integer lattice solution to a set submodular solution. :param f: integer lattice submodular function :param x: integer lattice solution """ S = set() for i, e in enumerate(x): for c in range(e): S.add(i + c * f.n) return S ``` #### File: benchmark/utils/fst.py ```python from typing import Tuple, TypeVar, Set, Any T = TypeVar('T', int, float, Set[int]) def fst(x: Tuple[T, Any]) -> T: return x[0] ``` #### File: benchmark/utils/prod.py ```python from functools import reduce # Required in Python 3 from typing import Iterable, TypeVar import operator T = TypeVar('T') def prod(iterable: Iterable[T]) -> T: """ Returns the product of the elements in the given iterable. """ return reduce(operator.mul, iterable, 1) ``` #### File: benchmark/utils/snd.py ```python from typing import Tuple, TypeVar, Set, Any T = TypeVar('T', int, float, Set[int]) def snd(x: Tuple[Any, T]) -> T: return x[1] ``` #### File: benchmark/utils/trd.py ```python from typing import Tuple, TypeVar, Set, Any T = TypeVar('T', int, float, Set[int]) def trd(x: Tuple[Any, Any, T]) -> T: return x[2] ``` #### File: plotter/utils/boxplot_by_algo.py ```python import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def boxplot_by_algo(data: pd.DataFrame, y: str, ylabel: str, title: str, plots_folder: str, filename: str, ax): PROPS = { 'boxprops': {'facecolor':'none', 'edgecolor':'black'}, 'medianprops': {'color':'black'}, 'whiskerprops': {'color':'black'}, 'capprops': {'color':'black'} } sns.boxplot(x='algo', y=y, data=data, ax=ax, **PROPS) # ax.set_title(title) ax.set_xlabel('Algorithm') ax.set_ylabel(ylabel, labelpad=10) output = f'{plots_folder}/{filename}.pdf' plt.savefig(output, dpi=300, bbox_inches='tight') print(f'Saved {output}') sns.despine() plt.cla() ```
{ "source": "jkondic/overcooked_ai", "score": 2 }
#### File: overcooked_ai_py/agents/benchmarking.py ```python import copy import numpy as np from overcooked_ai_py.utils import save_pickle, load_pickle, cumulative_rewards_from_rew_list, save_as_json, \ load_from_json, merge_dictionaries, rm_idx_from_dict, take_indexes_from_dict, is_iterable from overcooked_ai_py.planning.planners import NO_COUNTERS_PARAMS from overcooked_ai_py.agents.agent import AgentPair, RandomAgent, GreedyHumanModel from overcooked_ai_py.mdp.overcooked_mdp import OvercookedGridworld, Action, OvercookedState from overcooked_ai_py.mdp.overcooked_env import OvercookedEnv from overcooked_ai_py.mdp.layout_generator import LayoutGenerator from overcooked_ai_py.mdp.overcooked_trajectory import DEFAULT_TRAJ_KEYS class AgentEvaluator(object): """ Class used to get rollouts and evaluate performance of various types of agents. TODO: This class currently only fully supports fixed mdps, or variable mdps that can be created with the LayoutGenerator class, but might break with other types of variable mdps. Some methods currently assume that the AgentEvaluator can be reconstructed from loaded params (which must be pickleable). However, some custom start_state_fns or mdp_generating_fns will not be easily pickleable. We should think about possible improvements/what makes most sense to do here. """ def __init__(self, env_params, mdp_fn, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ env_params (dict): params for creation of an OvercookedEnv mdp_fn (callable function): a function that can be used to create mdp force_compute (bool): whether should re-compute MediumLevelActionManager although matching file is found mlam_params (dict): the parameters for mlam, the MediumLevelActionManager debug (bool): whether to display debugging information on init """ assert callable(mdp_fn), "mdp generating function must be a callable function" env_params["mlam_params"] = mlam_params self.mdp_fn = mdp_fn self.env = OvercookedEnv(self.mdp_fn, **env_params) self.force_compute = force_compute @staticmethod def from_mdp_params_infinite(mdp_params, env_params, outer_shape=None, mdp_params_schedule_fn=None, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ mdp_params (dict): params for creation of an OvercookedGridworld instance through the `from_layout_name` method outer_shape: the outer shape of environment mdp_params_schedule_fn: the schedule for varying mdp params Information for the rest of params please refer to the __init__ method above Infinitely generate mdp using the naive mdp_fn """ assert outer_shape is not None, "outer_shape needs to be defined for variable mdp" assert "num_mdp" in env_params and np.isinf(env_params["num_mdp"]), \ "num_mdp needs to be specified and infinite" mdp_fn_naive = LayoutGenerator.mdp_gen_fn_from_dict(mdp_params, outer_shape, mdp_params_schedule_fn) return AgentEvaluator(env_params, mdp_fn_naive, force_compute, mlam_params, debug) @staticmethod def from_mdp_params_finite(mdp_params, env_params, outer_shape=None, mdp_params_schedule_fn=None, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ mdp_params (dict): params for creation of an OvercookedGridworld instance through the `from_layout_name` method outer_shape: the outer shape of environment mdp_params_schedule_fn: the schedule for varying mdp params Information for the rest of params please refer to the __init__ method above Generate a finite list of mdp (mdp_lst) using the naive mdp_fn, and then use the from_mdp_lst to generate the AgentEvaluator """ assert outer_shape is not None, "outer_shape needs to be defined for variable mdp" assert "num_mdp" in env_params and not np.isinf(env_params["num_mdp"]), \ "num_mdp needs to be specified and finite" mdp_fn_naive = LayoutGenerator.mdp_gen_fn_from_dict(mdp_params, outer_shape, mdp_params_schedule_fn) # finite mdp, random choice num_mdp = env_params['num_mdp'] assert type(num_mdp) == int and num_mdp > 0, "invalid number of mdp: " + str(num_mdp) mdp_lst = [mdp_fn_naive() for _ in range(num_mdp)] return AgentEvaluator.from_mdp_lst(mdp_lst=mdp_lst, env_params=env_params, force_compute=force_compute, mlam_params=mlam_params, debug=debug) @staticmethod def from_mdp(mdp, env_params, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ mdp (OvercookedGridworld): the mdp that we want the AgentEvaluator to always generate Information for the rest of params please refer to the __init__ method above """ assert type(mdp) == OvercookedGridworld, "mdp must be a OvercookedGridworld object" mdp_fn = lambda _ignored: mdp return AgentEvaluator(env_params, mdp_fn, force_compute, mlam_params, debug) @staticmethod def from_layout_name(mdp_params, env_params, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ mdp_params (dict): params for creation of an OvercookedGridworld instance through the `from_layout_name` method Information for the rest of params please refer to the __init__ method above """ assert type(mdp_params) is dict and "layout_name" in mdp_params mdp = OvercookedGridworld.from_layout_name(**mdp_params) return AgentEvaluator.from_mdp(mdp, env_params, force_compute, mlam_params, debug) @staticmethod def from_mdp_lst(mdp_lst, env_params, sampling_freq=None, force_compute=False, mlam_params=NO_COUNTERS_PARAMS, debug=False): """ mdp_lst (list): a list of mdp (OvercookedGridworld) we would like to sampling_freq (list): a list of number that signify the sampling frequency of each mdp in the mdp_lst Information for the rest of params please refer to the __init__ method above """ assert is_iterable(mdp_lst), "mdp_lst must be a list" assert all([type(mdp) == OvercookedGridworld for mdp in mdp_lst]), "some mdps are not OvercookedGridworld objects" if sampling_freq is None: sampling_freq = np.ones(len(mdp_lst)) /len(mdp_lst) mdp_fn = lambda _ignored: np.random.choice(mdp_lst, p=sampling_freq) return AgentEvaluator(env_params, mdp_fn, force_compute, mlam_params, debug) def evaluate_random_pair(self, num_games=1, all_actions=True, display=False, native_eval=False): agent_pair = AgentPair(RandomAgent(all_actions=all_actions), RandomAgent(all_actions=all_actions)) return self.evaluate_agent_pair(agent_pair, num_games=num_games, display=display, native_eval=native_eval) def evaluate_human_model_pair(self, num_games=1, display=False, native_eval=False): a0 = GreedyHumanModel(self.env.mlam) a1 = GreedyHumanModel(self.env.mlam) agent_pair = AgentPair(a0, a1) return self.evaluate_agent_pair(agent_pair, num_games=num_games, display=display, native_eval=native_eval) def evaluate_agent_pair(self, agent_pair, num_games, game_length=None, start_state_fn=None, metadata_fn=None, metadata_info_fn=None, display=False, dir=None, display_phi=False, info=True, native_eval=False): # this index has to be 0 because the Agent_Evaluator only has 1 env initiated # if you would like to evaluate on a different env using rllib, please modifiy # rllib/ -> rllib.py -> get_rllib_eval_function -> _evaluate # native eval: using self.env in evaluation instead of creating a copy # this is particulally helpful with variable MDP, where we want to make sure # the mdp used in evaluation is the same as the native self.env.mdp if native_eval: return self.env.get_rollouts(agent_pair, num_games=num_games, display=display, dir=dir, display_phi=display_phi, info=info, metadata_fn=metadata_fn, metadata_info_fn=metadata_info_fn) else: horizon_env = self.env.copy() horizon_env.horizon = self.env.horizon if game_length is None else game_length horizon_env.start_state_fn = self.env.start_state_fn if start_state_fn is None else start_state_fn horizon_env.reset() return horizon_env.get_rollouts(agent_pair, num_games=num_games, display=display, dir=dir, display_phi=display_phi, info=info, metadata_fn=metadata_fn, metadata_info_fn=metadata_info_fn) def get_agent_pair_trajs(self, a0, a1=None, num_games=100, game_length=None, start_state_fn=None, display=False, info=True): """Evaluate agent pair on both indices, and return trajectories by index""" if a1 is None: ap = AgentPair(a0, a0, allow_duplicate_agents=True) trajs_0 = trajs_1 = self.evaluate_agent_pair(ap, num_games=num_games, game_length=game_length, start_state_fn=start_state_fn, display=display, info=info) else: trajs_0 = self.evaluate_agent_pair(AgentPair(a0, a1), num_games=num_games, game_length=game_length, start_state_fn=start_state_fn, display=display, info=info) trajs_1 = self.evaluate_agent_pair(AgentPair(a1, a0), num_games=num_games, game_length=game_length, start_state_fn=start_state_fn, display=display, info=info) return trajs_0, trajs_1 @staticmethod def check_trajectories(trajectories, from_json=False, **kwargs): """ Checks that of trajectories are in standard format and are consistent with dynamics of mdp. If the trajectories were saves as json, do not check that they have standard traj keys. """ if not from_json: AgentEvaluator._check_standard_traj_keys(set(trajectories.keys())) AgentEvaluator._check_right_types(trajectories) AgentEvaluator._check_trajectories_dynamics(trajectories, **kwargs) # TODO: Check shapes? @staticmethod def _check_standard_traj_keys(traj_keys_set): default_traj_keys = DEFAULT_TRAJ_KEYS assert traj_keys_set == set(default_traj_keys), "Keys of traj dict did not match standard form.\nMissing keys: {}\nAdditional keys: {}".format( [k for k in default_traj_keys if k not in traj_keys_set], [k for k in traj_keys_set if k not in default_traj_keys] ) @staticmethod def _check_right_types(trajectories): for idx in range(len(trajectories["ep_states"])): states, actions, rewards = trajectories["ep_states"][idx], trajectories["ep_actions"][idx], trajectories["ep_rewards"][idx] mdp_params, env_params = trajectories["mdp_params"][idx], trajectories["env_params"][idx] assert all(type(j_a) is tuple for j_a in actions) assert all(type(s) is OvercookedState for s in states) assert type(mdp_params) is dict assert type(env_params) is dict # TODO: check that are all lists @staticmethod def _check_trajectories_dynamics(trajectories, verbose=True): if any(env_params["_variable_mdp"] for env_params in trajectories["env_params"]): if verbose: print("Skipping trajectory consistency checking because MDP was recognized as variable. " "Trajectory consistency checking is not yet supported for variable MDPs.") return _, envs = AgentEvaluator.get_mdps_and_envs_from_trajectories(trajectories) for idx in range(len(trajectories["ep_states"])): states, actions, rewards = trajectories["ep_states"][idx], trajectories["ep_actions"][idx], trajectories["ep_rewards"][idx] simulation_env = envs[idx] assert len(states) == len(actions) == len(rewards), "# states {}\t# actions {}\t# rewards {}".format( len(states), len(actions), len(rewards) ) # Checking that actions would give rise to same behaviour in current MDP for i in range(len(states) - 1): curr_state = states[i] simulation_env.state = curr_state next_state, reward, done, info = simulation_env.step(actions[i]) assert states[i + 1] == next_state, "States differed (expected vs actual): {}\n\nexpected dict: \t{}\nactual dict: \t{}".format( simulation_env.display_states(states[i + 1], next_state), states[i+1].to_dict(), next_state.to_dict() ) assert rewards[i] == reward, "{} \t {}".format(rewards[i], reward) @staticmethod def get_mdps_and_envs_from_trajectories(trajectories): mdps, envs = [], [] for idx in range(len(trajectories["ep_lengths"])): mdp_params = copy.deepcopy(trajectories["mdp_params"][idx]) env_params = copy.deepcopy(trajectories["env_params"][idx]) mdp = OvercookedGridworld.from_layout_name(**mdp_params) env = OvercookedEnv.from_mdp(mdp, **env_params) mdps.append(mdp) envs.append(env) return mdps, envs ### I/O METHODS ### @staticmethod def save_trajectories(trajectories, filename): AgentEvaluator.check_trajectories(trajectories) if any(t["env_params"]["start_state_fn"] is not None for t in trajectories): print("Saving trajectories with a custom start state. This can currently " "cause things to break when loading in the trajectories.") save_pickle(trajectories, filename) @staticmethod def load_trajectories(filename): trajs = load_pickle(filename) AgentEvaluator.check_trajectories(trajs) return trajs @staticmethod def save_traj_as_json(trajectory, filename): """Saves the `idx`th trajectory as a list of state action pairs""" assert set(DEFAULT_TRAJ_KEYS) == set(trajectory.keys()), "{} vs\n{}".format(DEFAULT_TRAJ_KEYS, trajectory.keys()) AgentEvaluator.check_trajectories(trajectory) trajectory = AgentEvaluator.make_trajectories_json_serializable(trajectory) save_as_json(trajectory, filename) @staticmethod def make_trajectories_json_serializable(trajectories): """ Cannot convert np.arrays or special types of ints to JSON. This method converts all components of a trajectory to standard types. """ dict_traj = copy.deepcopy(trajectories) dict_traj["ep_states"] = [[ob.to_dict() for ob in one_ep_obs] for one_ep_obs in trajectories["ep_states"]] for k in dict_traj.keys(): dict_traj[k] = list(dict_traj[k]) dict_traj['ep_actions'] = [list(lst) for lst in dict_traj['ep_actions']] dict_traj['ep_rewards'] = [list(lst) for lst in dict_traj['ep_rewards']] dict_traj['ep_dones'] = [list(lst) for lst in dict_traj['ep_dones']] dict_traj['ep_returns'] = [int(val) for val in dict_traj['ep_returns']] dict_traj['ep_lengths'] = [int(val) for val in dict_traj['ep_lengths']] # NOTE: Currently saving to JSON does not support ep_infos (due to nested np.arrays) or metadata del dict_traj['ep_infos'] del dict_traj['metadatas'] return dict_traj @staticmethod def load_traj_from_json(filename): traj_dict = load_from_json(filename) traj_dict["ep_states"] = [[OvercookedState.from_dict(ob) for ob in curr_ep_obs] for curr_ep_obs in traj_dict["ep_states"]] traj_dict["ep_actions"] = [[tuple(tuple(a) if type(a) is list else a for a in j_a) for j_a in ep_acts] for ep_acts in traj_dict["ep_actions"]] return traj_dict ############################ # TRAJ MANINPULATION UTILS # ############################ # TODO: add more documentation! @staticmethod def merge_trajs(trajs_n): """ Takes in multiple trajectory objects and appends all the information into one trajectory object [trajs0, trajs1] -> trajs """ metadatas_merged = merge_dictionaries([trajs["metadatas"] for trajs in trajs_n]) merged_trajs = merge_dictionaries(trajs_n) merged_trajs["metadatas"] = metadatas_merged return merged_trajs @staticmethod def remove_traj_idx(trajs, idx): # NOTE: MUTATING METHOD for trajs, returns the POPPED IDX metadatas = trajs["metadatas"] del trajs["metadatas"] removed_idx_d = rm_idx_from_dict(trajs, idx) removed_idx_metas = rm_idx_from_dict(metadatas, idx) trajs["metadatas"] = metadatas removed_idx_d["metadatas"] = removed_idx_metas return removed_idx_d @staticmethod def take_traj_indices(trajs, indices): # NOTE: non mutating method subset_trajs = take_indexes_from_dict(trajs, indices, keys_to_ignore=["metadatas"]) # TODO: Make metadatas field into additional keys for trajs, rather than having a metadatas field? subset_trajs["metadatas"] = take_indexes_from_dict(trajs["metadatas"], indices) return subset_trajs @staticmethod def add_metadata_to_traj(trajs, metadata_fn, input_keys): """ Add an additional metadata entry to the trajectory, based on manipulating the trajectory `input_keys` values """ metadata_fn_input = [trajs[k] for k in input_keys] metadata_key, metadata_data = metadata_fn(metadata_fn_input) assert metadata_key not in trajs["metadatas"].keys() trajs["metadatas"][metadata_key] = metadata_data return trajs @staticmethod def add_observations_to_trajs_in_metadata(trajs, encoding_fn): """Adds processed observations (for both agent indices) in the metadatas""" def metadata_fn(data): traj_ep_states = data[0] obs_metadata = [] for one_traj_states in traj_ep_states: obs_metadata.append([encoding_fn(s) for s in one_traj_states]) return "ep_obs_for_both_agents", obs_metadata return AgentEvaluator.add_metadata_to_traj(trajs, metadata_fn, ["ep_states"]) # EVENTS VISUALIZATION METHODS # @staticmethod def events_visualization(trajs, traj_index): # TODO pass ``` #### File: overcooked_ai/testing/agent_test.py ```python import unittest import numpy as np from overcooked_ai_py.agents.agent import AgentPair, FixedPlanAgent, GreedyHumanModel, RandomAgent, SampleAgent from overcooked_ai_py.mdp.actions import Direction, Action from overcooked_ai_py.mdp.overcooked_mdp import OvercookedGridworld, OvercookedState, PlayerState, ObjectState from overcooked_ai_py.mdp.overcooked_env import OvercookedEnv from overcooked_ai_py.planning.planners import MediumLevelActionManager, NO_COUNTERS_PARAMS from overcooked_ai_py.agents.benchmarking import AgentEvaluator np.random.seed(42) n, s = Direction.NORTH, Direction.SOUTH e, w = Direction.EAST, Direction.WEST stay, interact = Action.STAY, Action.INTERACT P, Obj = PlayerState, ObjectState force_compute_large = False force_compute = True DISPLAY = False simple_mdp = OvercookedGridworld.from_layout_name('cramped_room') large_mdp = OvercookedGridworld.from_layout_name('corridor') class TestAgentEvaluator(unittest.TestCase): def setUp(self): self.agent_eval = AgentEvaluator.from_layout_name({"layout_name": "cramped_room"}, {"horizon": 100}) def test_human_model_pair(self): trajs = self.agent_eval.evaluate_human_model_pair() try: AgentEvaluator.check_trajectories(trajs, verbose=False) except AssertionError as e: self.fail("Trajectories were not returned in standard format:\n{}".format(e)) def test_rollouts(self): ap = AgentPair(RandomAgent(), RandomAgent()) trajs = self.agent_eval.evaluate_agent_pair(ap, num_games=5) try: AgentEvaluator.check_trajectories(trajs, verbose=False) except AssertionError as e: self.fail("Trajectories were not returned in standard format:\n{}".format(e)) def test_mlam_computation(self): try: self.agent_eval.env.mlam except Exception as e: self.fail("Failed to compute MediumLevelActionManager:\n{}".format(e)) class TestBasicAgents(unittest.TestCase): def setUp(self): self.mlam_large = MediumLevelActionManager.from_pickle_or_compute(large_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute_large) def test_fixed_plan_agents(self): a0 = FixedPlanAgent([s, e, n, w]) a1 = FixedPlanAgent([s, w, n, e]) agent_pair = AgentPair(a0, a1) env = OvercookedEnv.from_mdp(large_mdp, horizon=10) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) end_state = trajectory[-1][0] self.assertEqual(time_taken, 10) self.assertEqual(env.mdp.get_standard_start_state().player_positions, end_state.player_positions) def test_two_greedy_human_open_map(self): scenario_2_mdp = OvercookedGridworld.from_layout_name('scenario2') mlam = MediumLevelActionManager.from_pickle_or_compute(scenario_2_mdp, NO_COUNTERS_PARAMS, force_compute=force_compute) a0 = GreedyHumanModel(mlam) a1 = GreedyHumanModel(mlam) agent_pair = AgentPair(a0, a1) start_state = OvercookedState( [P((8, 1), s), P((1, 1), s)], {}, all_orders=scenario_2_mdp.start_all_orders ) env = OvercookedEnv.from_mdp(scenario_2_mdp, start_state_fn=lambda: start_state, horizon=100) trajectory, time_taken, _, _ = env.run_agents(agent_pair, include_final_state=True, display=DISPLAY) def test_sample_agent(self): agent = SampleAgent([RandomAgent(all_actions=False), RandomAgent(all_actions=True)]) probs = agent.action(None)[1]["action_probs"] expected_probs = np.array([0.18333333, 0.18333333, 0.18333333, 0.18333333, 0.18333333, 0.08333333]) self.assertTrue(np.allclose(probs, expected_probs)) class TestAgentEvaluatorStatic(unittest.TestCase): layout_name_lst = ["asymmetric_advantages", "asymmetric_advantages_tomato", "bonus_order_test", "bottleneck", "centre_objects", "centre_pots", "corridor", "forced_coordination_tomato", "unident", "marshmallow_experiment", "marshmallow_experiment_coordination", "you_shall_not_pass"] def test_from_mdp(self): for layout_name in self.layout_name_lst: orignal_mdp = OvercookedGridworld.from_layout_name(layout_name) ae = AgentEvaluator.from_mdp(mdp=orignal_mdp, env_params={"horizon": 400}) ae_mdp = ae.env.mdp self.assertEqual(orignal_mdp, ae_mdp, "mdp with name " + layout_name + " experienced an inconsistency") def test_from_mdp_params_layout(self): for layout_name in self.layout_name_lst: orignal_mdp = OvercookedGridworld.from_layout_name(layout_name) ae = AgentEvaluator.from_layout_name(mdp_params={"layout_name": layout_name}, env_params={"horizon": 400}) ae_mdp = ae.env.mdp self.assertEqual(orignal_mdp, ae_mdp, "mdp with name " + layout_name + " experienced an inconsistency") mdp_gen_params_1 = { "inner_shape": (10, 7), "prop_empty": 0.95, "prop_feats": 0.1, "start_all_orders": [ {"ingredients": ["onion", "onion", "onion"]} ], "display": False, } mdp_gen_params_2 = { "inner_shape": (10, 7), "prop_empty": 0.7, "prop_feats": 0.5, "start_all_orders": [ {"ingredients": ["onion", "onion", "onion"]} ], "display": False, } mdp_gen_params_3 = { "inner_shape": (10, 7), "prop_empty": 0.5, "prop_feats": 0.4, "start_all_orders": [ {"ingredients": ["onion", "onion", "onion"]} ], "display": False, } mdp_gen_params_lst = [mdp_gen_params_1, mdp_gen_params_2, mdp_gen_params_3] outer_shape = (10, 7) def test_from_mdp_params_variable_across(self): for mdp_gen_params in self.mdp_gen_params_lst: ae0 = AgentEvaluator.from_mdp_params_infinite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": np.inf}, outer_shape=self.outer_shape) ae1 = AgentEvaluator.from_mdp_params_infinite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": np.inf}, outer_shape=self.outer_shape) self.assertFalse(ae0.env.mdp == ae1.env.mdp, "2 randomly generated layouts across 2 evaluators are the same, which is wrong") def test_from_mdp_params_variable_infinite(self): for mdp_gen_params in self.mdp_gen_params_lst: ae = AgentEvaluator.from_mdp_params_infinite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": np.inf}, outer_shape=self.outer_shape) mdp_0 = ae.env.mdp.copy() for _ in range(5): ae.env.reset(regen_mdp=True) mdp_1 = ae.env.mdp self.assertFalse(mdp_0 == mdp_1, "with infinite layout generator and regen_mdp=True, the 2 layouts should not be the same") def test_from_mdp_params_variable_infinite_no_regen(self): for mdp_gen_params in self.mdp_gen_params_lst: ae = AgentEvaluator.from_mdp_params_infinite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": np.inf}, outer_shape=self.outer_shape) mdp_0 = ae.env.mdp.copy() for _ in range(5): ae.env.reset(regen_mdp=False) mdp_1 = ae.env.mdp self.assertTrue(mdp_0 == mdp_1, "with infinite layout generator and regen_mdp=False, the 2 layouts should be the same") def test_from_mdp_params_variable_infinite_specified(self): for mdp_gen_params in self.mdp_gen_params_lst: ae = AgentEvaluator.from_mdp_params_infinite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": np.inf}, outer_shape=self.outer_shape) mdp_0 = ae.env.mdp.copy() for _ in range(5): ae.env.reset(regen_mdp=True) mdp_1 = ae.env.mdp self.assertFalse(mdp_0 == mdp_1, "with infinite layout generator and regen_mdp=True, the 2 layouts should not be the same") def test_from_mdp_params_variable_finite(self): for mdp_gen_params in self.mdp_gen_params_lst: ae = AgentEvaluator.from_mdp_params_finite(mdp_params=mdp_gen_params, env_params={"horizon": 400, "num_mdp": 2}, outer_shape=self.outer_shape) mdp_0 = ae.env.mdp.copy() seen = [mdp_0] for _ in range(20): ae.env.reset(regen_mdp=True) mdp_i = ae.env.mdp if len(seen) == 1: if mdp_i != seen[0]: seen.append(mdp_i.copy()) elif len(seen) == 2: mdp_0, mdp_1 = seen self.assertTrue((mdp_i == mdp_0 or mdp_i == mdp_1), "more than 2 mdp was created, the function failed to perform") else: self.assertTrue(False, "theoretically unreachable statement") layout_name_short_lst = ["cramped_room", "cramped_room_tomato", "simple_o", "simple_tomato", "simple_o_t"] biased = [0.1, 0.15, 0.2, 0.25, 0.3] num_reset = 200000 def test_from_mdp_lst_default(self): mdp_lst = [OvercookedGridworld.from_layout_name(name) for name in self.layout_name_short_lst] ae = AgentEvaluator.from_mdp_lst(mdp_lst=mdp_lst, env_params={"horizon": 400}) counts = {} for _ in range(self.num_reset): ae.env.reset(regen_mdp=True) if ae.env.mdp.layout_name in counts: counts[ae.env.mdp.layout_name] += 1 else: counts[ae.env.mdp.layout_name] = 1 for k, v in counts.items(): self.assertAlmostEqual(0.2, v/self.num_reset, 2, "more than 2 places off for " + k) def test_from_mdp_lst_uniform(self): mdp_lst = [OvercookedGridworld.from_layout_name(name) for name in self.layout_name_short_lst] ae = AgentEvaluator.from_mdp_lst(mdp_lst=mdp_lst, env_params={"horizon": 400}, sampling_freq=[0.2, 0.2, 0.2, 0.2, 0.2]) counts = {} for _ in range(self.num_reset): ae.env.reset(regen_mdp=True) if ae.env.mdp.layout_name in counts: counts[ae.env.mdp.layout_name] += 1 else: counts[ae.env.mdp.layout_name] = 1 for k, v in counts.items(): self.assertAlmostEqual(0.2, v/self.num_reset, 2, "more than 2 places off for " + k) def test_from_mdp_lst_biased(self): mdp_lst = [OvercookedGridworld.from_layout_name(name) for name in self.layout_name_short_lst] ae = AgentEvaluator.from_mdp_lst(mdp_lst=mdp_lst, env_params={"horizon": 400}, sampling_freq=self.biased) counts = {} for _ in range(self.num_reset): ae.env.reset(regen_mdp=True) if ae.env.mdp.layout_name in counts: counts[ae.env.mdp.layout_name] += 1 else: counts[ae.env.mdp.layout_name] = 1 # construct the ground truth gt = {self.layout_name_short_lst[i]: self.biased[i] for i in range(len(self.layout_name_short_lst))} for k, v in counts.items(): self.assertAlmostEqual(gt[k], v/self.num_reset, 2, "more than 2 places off for " + k) if __name__ == '__main__': unittest.main() ``` #### File: overcooked_ai/testing/planners_test.py ```python import unittest from overcooked_ai_py.planning.planners import MediumLevelActionManager from overcooked_ai_py.mdp.actions import Direction, Action from overcooked_ai_py.mdp.overcooked_mdp import OvercookedGridworld, PlayerState, ObjectState, SoupState, OvercookedState from overcooked_ai_py.mdp.overcooked_env import OvercookedEnv from overcooked_ai_py.agents.benchmarking import AgentEvaluator from overcooked_ai_py.agents.agent import AgentPair, GreedyHumanModel large_mdp_tests = False force_compute = True force_compute_large = False n, s = Direction.NORTH, Direction.SOUTH e, w = Direction.EAST, Direction.WEST stay, interact = Action.STAY, Action.INTERACT P, Obj = PlayerState, ObjectState # Simple MDP Setup simple_mdp = OvercookedGridworld.from_layout_name('simple_o') base_params = { 'start_orientations': False, 'wait_allowed': False, 'counter_goals': simple_mdp.terrain_pos_dict['X'], 'counter_drop': simple_mdp.terrain_pos_dict['X'][1:2], 'counter_pickup': simple_mdp.terrain_pos_dict['X'], 'same_motion_goals': True } action_manger_filename = "simple_1_am.pkl" ml_action_manager_simple = MediumLevelActionManager.from_pickle_or_compute( simple_mdp, mlam_params=base_params, custom_filename=action_manger_filename, force_compute=force_compute) ml_action_manager_simple.env = OvercookedEnv.from_mdp(simple_mdp) base_params_start_or = { 'start_orientations': True, 'wait_allowed': False, 'counter_goals': simple_mdp.terrain_pos_dict['X'], 'counter_drop': [], 'counter_pickup': simple_mdp.terrain_pos_dict['X'], 'same_motion_goals': False } action_manger_filename = "simple_2_am.pkl" or_ml_action_manager_simple = MediumLevelActionManager.from_pickle_or_compute( simple_mdp, mlam_params=base_params_start_or, custom_filename=action_manger_filename, force_compute=force_compute) if large_mdp_tests: # Not testing by default # Large MDP Setup large_mdp = OvercookedGridworld.from_layout_name('corridor', cook_time=5) no_counters_params = { 'start_orientations': False, 'wait_allowed': False, 'counter_goals': [], 'counter_drop': [], 'counter_pickup': [], 'same_motion_goals': False } action_manger_filename = "corridor_no_shared_motion_goals_am.pkl" ml_planner_large_no_shared = MediumLevelActionManager.from_pickle_or_compute( large_mdp, no_counters_params, custom_filename=action_manger_filename, force_compute=force_compute_large) same_goals_params = { 'start_orientations': False, 'wait_allowed': False, 'counter_goals': [], 'counter_drop': [], 'counter_pickup': [], 'same_motion_goals': True } action_manger_filename = "corridor_am.pkl" ml_planner_large = MediumLevelActionManager.from_pickle_or_compute( large_mdp, same_goals_params, custom_filename=action_manger_filename, force_compute=force_compute_large) # Deprecated. # hlam = HighLevelActionManager(ml_planner_large) # hlp = HighLevelPlanner(hlam) def done_soup_obj(soup_loc, num_onion_inside=3): return soup_obj(soup_loc, num_onion_inside, 20) def idle_soup_obj(soup_loc, num_onion_inside): return soup_obj(soup_loc, num_onion_inside, -1) def cooking_soup_obj(soup_loc, num_onion_inside=3, cooking_tick=0): assert cooking_tick >= 0 assert num_onion_inside >= 0 return soup_obj(soup_loc, num_onion_inside, cooking_tick) def soup_obj(soup_loc, num_onion_inside, cooking_tick): ingredient_obj_lst = [Obj('onion', soup_loc)] * num_onion_inside return SoupState(soup_loc, ingredient_obj_lst, cooking_tick) class TestMotionPlanner(unittest.TestCase): def test_gridworld_distance(self): planner = ml_action_manager_simple.joint_motion_planner.motion_planner start = ((2, 1), e) end = ((1, 1), w) dist = planner.get_gridworld_distance(start, end) self.assertEqual(dist, 1) start = ((2, 1), e) end = ((1, 1), n) dist = planner.get_gridworld_distance(start, end) self.assertEqual(dist, 2) start = (2, 1) end = (1, 1) dist = planner.get_gridworld_pos_distance(start, end) self.assertEqual(dist, 1) start = (1, 1) end = (3, 2) dist = planner.get_gridworld_pos_distance(start, end) self.assertEqual(dist, 3) def test_simple_mdp(self): planner = ml_action_manager_simple.joint_motion_planner.motion_planner self.simple_mdp_already_at_goal(planner) self.simple_mdp_orientation_change(planner) self.simple_mdp_basic_plan(planner) self.simple_mdp_orientation_optimization_dependent_plans(planner) def simple_mdp_already_at_goal(self, planner): start_status = goal_status = ((1, 1), n) self.check_single_motion_plan(planner, start_status, goal_status, expected_length=1) def simple_mdp_orientation_change(self, planner): start_status = ((1, 1), n) goal_status = ((1, 1), w) self.check_single_motion_plan(planner, start_status, goal_status, expected_length=2) def simple_mdp_basic_plan(self, planner): start_status = ((1, 1), n) goal_status = ((3, 1), n) self.check_single_motion_plan(planner, start_status, goal_status, expected_length=4) def simple_mdp_orientation_optimization_dependent_plans(self, planner): start_status = ((2, 1), n) goal_status = ((1, 2), w) self.check_single_motion_plan(planner, start_status, goal_status, expected_length=3) goal_status = ((1, 2), s) self.check_single_motion_plan(planner, start_status, goal_status, expected_length=3) def test_larger_mdp(self): if large_mdp_tests: planner = ml_planner_large.ml_action_manager.joint_motion_planner.motion_planner self.large_mdp_basic_plan(planner) def large_mdp_basic_plan(self, planner): start_status = ((1, 2), n) goal_status = ((8, 1), n) self.check_single_motion_plan(planner, start_status, goal_status) def check_single_motion_plan(self, motion_planner, start_pos_and_or, goal_pos_and_or, expected_length=None): dummy_agent = P((3, 2), n) start_state = OvercookedState([P(*start_pos_and_or), dummy_agent], {}, all_orders=simple_mdp.start_all_orders) action_plan, pos_and_or_plan, plan_cost = motion_planner.get_plan(start_pos_and_or, goal_pos_and_or) # Checking that last state obtained matches goal position self.assertEqual(pos_and_or_plan[-1], goal_pos_and_or) # In single motion plans the graph cost should be equal to # the plan cost (= plan length) as agents should never STAY graph_plan_cost = sum([motion_planner._graph_action_cost(a) for a in action_plan]) self.assertEqual(plan_cost, graph_plan_cost) joint_action_plan = [(a, stay) for a in action_plan] env = OvercookedEnv.from_mdp(motion_planner.mdp, horizon=1000) resulting_state, _ = env.execute_plan(start_state, joint_action_plan) self.assertEqual(resulting_state.players_pos_and_or[0], goal_pos_and_or) if expected_length is not None: self.assertEqual(len(action_plan), expected_length) class TestJointMotionPlanner(unittest.TestCase): def test_same_start_and_end_pos_with_no_start_orientations(self): jm_planner = ml_action_manager_simple.joint_motion_planner start = (((1, 1), w), ((1, 2), s)) goal = (((1, 1), n), ((2, 1), n)) joint_action_plan, end_jm_state, finshing_times = jm_planner.get_low_level_action_plan(start, goal) optimal_plan = [(n, e), (interact, n)] self.assertEqual(joint_action_plan, optimal_plan) optimal_end_jm_state = (((1, 1), n), ((2, 1), n)) self.assertEqual(end_jm_state, optimal_end_jm_state) optimal_finshing_times = (2, 3) self.assertEqual(finshing_times, optimal_finshing_times) def test_with_start_orientations_simple_mdp(self): jm_planner = or_ml_action_manager_simple.joint_motion_planner self.simple_mdp_suite(jm_planner) def test_without_start_orientations_simple_mdp(self): jm_planner = ml_action_manager_simple.joint_motion_planner self.simple_mdp_suite(jm_planner) def simple_mdp_suite(self, jm_planner): self.simple_mdp_already_at_goal(jm_planner) self.simple_mdp_only_orientations_switch(jm_planner) self.simple_mdp_one_at_goal(jm_planner) self.simple_mdp_position_swap(jm_planner) self.simple_mdp_one_at_goal_other_conflicting_path(jm_planner) self.simple_mdp_test_final_orientation_optimization(jm_planner) def simple_mdp_already_at_goal(self, planner): a1_start = a1_goal = ((1, 1), n) a2_start = a2_goal = ((2, 1), n) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, times=(1, 1), min_t=1) a1_start = a1_goal = ((1, 1), w) a2_start = a2_goal = ((1, 2), s) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, times=(1, 1), min_t=1) def simple_mdp_only_orientations_switch(self, planner): a1_start = ((1, 1), s) a1_goal = ((1, 1), w) a2_start = ((1, 2), s) a2_goal = ((1, 2), w) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, times=(2, 2), min_t=2) def simple_mdp_one_at_goal(self, planner): a1_start = ((3, 2), s) a1_goal = ((3, 2), s) a2_start = ((2, 1), w) a2_goal = ((1, 1), w) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, times=(1, 2)) def simple_mdp_position_swap(self, planner): a1_start = ((1, 1), w) a2_start = ((3, 2), s) a1_goal = a2_start a2_goal = a1_start start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal) def simple_mdp_one_at_goal_other_conflicting_path(self, planner): a1_start = ((1, 1), w) a1_goal = ((3, 1), e) a2_start = a2_goal = ((2, 1), n) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, min_t=1) def simple_mdp_test_final_orientation_optimization(self, planner): a1_start = ((2, 1), n) a1_goal = ((1, 2), w) a2_start = a2_goal = ((3, 2), s) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) # NOTE: Not considering all plans with same cost yet, this won't work # check_joint_plan(planner, mdp, start, goal, times=(3, 1)) a1_goal = ((1, 2), s) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, times=(3, 1)) def test_large_mdp_suite_shared_motion_goals(self): if large_mdp_tests: jmp = ml_planner_large.ml_action_manager.joint_motion_planner self.large_mdp_test_basic_plan(jmp) self.large_mdp_test_shared_motion_goal(jmp) self.large_mdp_test_shared_motion_goal_with_conflict(jmp) self.large_mdp_test_shared_motion_goal_with_conflict_other(jmp) def large_mdp_test_basic_plan(self, planner): a1_start = ((5, 1), n) a2_start = ((8, 1), n) a1_goal = a2_start a2_goal = a1_start start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal) def large_mdp_test_shared_motion_goal(self, planner): a1_start = ((4, 1), n) a2_start = ((1, 1), n) a1_goal = ((5, 1), n) a2_goal = ((5, 1), n) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, min_t=3) def large_mdp_test_shared_motion_goal_with_conflict(self, planner): assert planner.same_motion_goals # When paths conflict for same goal, will resolve by making # one agent wait (the one that results in the shortest plan) a1_start = ((5, 2), n) a2_start = ((4, 1), n) a1_goal = ((5, 1), n) a2_goal = ((5, 1), n) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, min_t=2) def large_mdp_test_shared_motion_goal_with_conflict_other(self, planner): assert planner.same_motion_goals a1_start = ((4, 2), e) a2_start = ((4, 1), e) a1_goal = ((5, 1), n) a2_goal = ((5, 1), n) start = (a1_start, a2_start) goal = (a1_goal, a2_goal) self.check_joint_plan(planner, start, goal, min_t=3) def check_joint_plan(self, joint_motion_planner, start, goal, times=None, min_t=None, display=False): """Runs the plan in the environment and checks that the intended goals are achieved.""" debug = False action_plan, end_pos_and_orients, plan_lengths = joint_motion_planner.get_low_level_action_plan(start, goal) if debug: print("Start state: {}, Goal state: {}, Action plan: {}".format(start, goal, action_plan)) start_state = OvercookedState([P(*start[0]), P(*start[1])], {}, all_orders=simple_mdp.start_all_orders) env = OvercookedEnv.from_mdp(joint_motion_planner.mdp, horizon=1000) resulting_state, _ = env.execute_plan(start_state, action_plan, display=display) self.assertTrue(any([agent_goal in resulting_state.players_pos_and_or for agent_goal in goal])) self.assertEqual(resulting_state.players_pos_and_or, end_pos_and_orients) self.assertEqual(len(action_plan), min(plan_lengths)) if min_t is not None: self.assertEqual(len(action_plan), min_t) if times is not None: self.assertEqual(plan_lengths, times) # Rewritten because the previous test depended on Heuristic, and Heuristic has been deprecated class TestMediumLevelActionManagerSimple(unittest.TestCase): def test_simple_mdp_without_start_orientations(self): print("Simple - no start orientations (& shared motion goals)") mlam = ml_action_manager_simple self.simple_mpd_empty_hands(mlam) self.simple_mdp_deliver_soup(mlam) self.simple_mdp_pickup_counter_soup(mlam) self.simple_mdp_pickup_counter_dish(mlam) self.simple_mdp_pickup_counter_onion(mlam) self.simple_mdp_drop_useless_dish_with_soup_idle(mlam) self.simple_mdp_pickup_soup(mlam) self.simple_mdp_pickup_dish(mlam) self.simple_mdp_start_good_soup_cooking(mlam) self.simple_mdp_start_bad_soup_cooking(mlam) self.simple_mdp_start_1_onion_soup_cooking(mlam) self.simple_mdp_drop_useless_onion_good_soup(mlam) self.simple_mdp_drop_useless_onion_bad_soup(mlam) self.simple_mdp_add_3rd_onion(mlam) self.simple_mdp_add_2nd_onion(mlam) self.simple_mdp_drop_useless_dish(mlam) def test_simple_mdp_with_start_orientations(self): print("Simple - with start orientations (no shared motion goals)") mlam = or_ml_action_manager_simple self.simple_mpd_empty_hands(mlam, counter_drop_forbidden=True) self.simple_mdp_deliver_soup(mlam, counter_drop_forbidden=True) self.simple_mdp_pickup_counter_soup(mlam, counter_drop_forbidden=True) self.simple_mdp_pickup_counter_dish(mlam, counter_drop_forbidden=True) self.simple_mdp_pickup_counter_onion(mlam, counter_drop_forbidden=True) self.simple_mdp_drop_useless_dish_with_soup_idle(mlam, counter_drop_forbidden=True) self.simple_mdp_pickup_soup(mlam, counter_drop_forbidden=True) self.simple_mdp_pickup_dish(mlam, counter_drop_forbidden=True) self.simple_mdp_start_good_soup_cooking(mlam, counter_drop_forbidden=True) self.simple_mdp_start_bad_soup_cooking(mlam, counter_drop_forbidden=True) self.simple_mdp_start_1_onion_soup_cooking(mlam, counter_drop_forbidden=True) self.simple_mdp_drop_useless_onion_good_soup(mlam, counter_drop_forbidden=True) self.simple_mdp_drop_useless_onion_bad_soup(mlam, counter_drop_forbidden=True) self.simple_mdp_add_3rd_onion(mlam, counter_drop_forbidden=True) self.simple_mdp_add_2nd_onion(mlam, counter_drop_forbidden=True) self.simple_mdp_drop_useless_dish(mlam, counter_drop_forbidden=True) ONION_PICKUP = ((3, 2), (1, 0)) DISH_PICKUP = ((2, 2), (0, 1)) COUNTER_DROP = ((1, 1), (0, -1)) COUNTER_PICKUP = ((1, 2), (-1, 0)) POT_INTERACT = ((2, 1), (00, -1)) SOUP_DELIVER = ((3, 2), (0, 1)) def simple_mpd_empty_hands(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.ONION_PICKUP, self.DISH_PICKUP] ) def simple_mdp_deliver_soup(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, done_soup_obj((2, 1)))], {}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.SOUP_DELIVER] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.COUNTER_DROP, self.SOUP_DELIVER] ) def simple_mdp_pickup_counter_soup(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(0, 2): done_soup_obj((0, 2))}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP], [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP] ) def simple_mdp_pickup_counter_dish(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(0, 2): Obj('dish', (0, 2))}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP], [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP] ) def simple_mdp_pickup_counter_onion(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(0, 2): Obj('onion', (0, 2))}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP], [self.ONION_PICKUP, self.DISH_PICKUP, self.COUNTER_PICKUP] ) def simple_mdp_drop_useless_dish_with_soup_idle(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('dish', (2, 1)))], {(2, 0): idle_soup_obj((2, 0), 3)}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.COUNTER_DROP] ) def simple_mdp_pickup_soup(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('dish', (2, 1)))], {(2, 0): done_soup_obj((2, 0))}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.POT_INTERACT] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.COUNTER_DROP, self.POT_INTERACT] ) def simple_mdp_pickup_dish(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(2, 0): done_soup_obj((2, 0))}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.ONION_PICKUP, self.DISH_PICKUP] ) def simple_mdp_start_good_soup_cooking(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(2, 0): idle_soup_obj((2, 0), 3)}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT] ) def simple_mdp_start_bad_soup_cooking(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(2, 0): idle_soup_obj((2, 0), 2)}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT] ) def simple_mdp_start_1_onion_soup_cooking(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n)], {(2, 0): idle_soup_obj((2, 0), 1)}, all_orders=simple_mdp.start_all_orders) self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT] ) def simple_mdp_drop_useless_onion_good_soup(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('onion', (2, 1)))], {(2, 0): done_soup_obj((2, 0))}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.COUNTER_DROP] ) def simple_mdp_drop_useless_onion_bad_soup(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('onion', (2, 1)))], {(2, 0): done_soup_obj((2, 0), 2)}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP], [self.COUNTER_DROP] ) def simple_mdp_add_3rd_onion(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('onion', (2, 1)))], {(2, 0): idle_soup_obj((2, 0), 2)}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.POT_INTERACT] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.COUNTER_DROP, self.POT_INTERACT] ) def simple_mdp_add_2nd_onion(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('onion', (2, 1)))], {(2, 0): idle_soup_obj((2, 0), 1)}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.POT_INTERACT] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.COUNTER_DROP, self.POT_INTERACT] ) def simple_mdp_drop_useless_dish(self, planner, counter_drop_forbidden=False): s = OvercookedState( [P((2, 2), n), P((2, 1), n, Obj('dish', (2, 1)))], {(2, 0): idle_soup_obj((2, 0), 1)}, all_orders=simple_mdp.start_all_orders) if counter_drop_forbidden: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.POT_INTERACT] ) else: self.check_ml_action_manager(s, planner, [self.ONION_PICKUP, self.DISH_PICKUP, self.POT_INTERACT], [self.COUNTER_DROP, self.POT_INTERACT] ) def check_ml_action_manager(self, state, am, expected_mla_0, expected_mla_1, debug=False): """ args: state (OvercookedState): an overcooked state am (MediumLevelActionManager): the planer whose action manager will be tested This function checks if all the mid-level actions make sense for each player state inside STATE """ player_0, player_1 = state.players mla_0 = am.get_medium_level_actions(state, player_0) mla_1 = am.get_medium_level_actions(state, player_1) if debug: print("Player 0 mla", mla_0) print("Player 1 mla", mla_1) print(am.mdp.state_string(state)) self.assertEqual(set(mla_0), set(expected_mla_0), "player 0's ml_action should be " + str(expected_mla_0) + " but get " + str(mla_0)) self.assertEqual(set(mla_1), set(expected_mla_1), "player 0's ml_action should be " + str(expected_mla_1) + " but get " + str(mla_1)) class TestScenarios(unittest.TestCase): def repetative_runs(self, evaluator, num_games=10): trajectory_0 = evaluator.evaluate_human_model_pair(num_games=num_games, native_eval=True) trajectory_1 = evaluator.evaluate_human_model_pair(num_games=num_games, native_eval=True) h0 = GreedyHumanModel(evaluator.env.mlam) h1 = GreedyHumanModel(evaluator.env.mlam) ap_hh_2 = AgentPair(h0, h1) trajectory_2 = evaluator.evaluate_agent_pair(agent_pair=ap_hh_2, num_games=num_games, native_eval=True) h3 = GreedyHumanModel(evaluator.env.mlam) h4 = GreedyHumanModel(evaluator.env.mlam) ap_hh_3 = AgentPair(h3, h4) trajectory_3 = evaluator.evaluate_agent_pair(agent_pair=ap_hh_3, num_games=num_games, native_eval=True) def test_scenario_3_no_counter(self): # Asymmetric advantage scenario # # X X X X X O X X X X # S X X P X # X ↑H X # D X X X X!X X X # X →R O # X X X X X X X X X X # # This test does not allow counter by using the default NO_COUNTER_PARAMS when calling from_layout_name mdp_params = {"layout_name": "scenario3"} mdp = OvercookedGridworld.from_layout_name(**mdp_params) start_state = mdp.get_standard_start_state() env_params = {"start_state_fn": lambda: start_state, "horizon": 1000} eva = AgentEvaluator.from_layout_name(mdp_params, env_params, force_compute=force_compute) self.repetative_runs(eva) def test_scenario_3_yes_counter(self): # Asymmetric advantage scenario # # X X X X X O X X X X # S X X P X # X ↑H X # D X X X X!X X X # X →R O # X X X X X X X X X X # # This test does not allow only (5. 3) as the only counter mdp_params = {"layout_name": "scenario3"} mdp = OvercookedGridworld.from_layout_name(**mdp_params) start_state = mdp.get_standard_start_state() valid_counters = [(5, 3)] one_counter_params = { 'start_orientations': False, 'wait_allowed': False, 'counter_goals': valid_counters, 'counter_drop': valid_counters, 'counter_pickup': [], 'same_motion_goals': True } env_params = {"start_state_fn": lambda: start_state, "horizon": 1000} eva = AgentEvaluator.from_layout_name(mdp_params, env_params, mlam_params=one_counter_params, force_compute=force_compute) self.repetative_runs(eva) # # Deprecated. because of Heuristic # class TestHighLevelPlanner(unittest.TestCase): # """The HighLevelPlanner class has been mostly discontinued""" # # def test_basic_hl_planning(self): # if large_mdp_tests: # s = OvercookedState( # [P((2, 2), n), # P((2, 1), n)], # {}, order_list=[]) # h = Heuristic(hlp.mp) # hlp.get_hl_plan(s, h.simple_heuristic) # # s = OvercookedState( # [P((2, 2), n), # P((2, 1), n)], # {}, order_list=['any', 'any', 'any']) # # hlp.get_low_level_action_plan(s, h.simple_heuristic) # # hlp.get_low_level_action_plan(s, h.hard_heuristic) # # # heuristic = Heuristic(ml_planner_large.mp) # # ml_planner_large.get_low_level_action_plan(s, heuristic.simple_heuristic) # # ml_planner_large.get_low_level_action_plan(s, heuristic.hard_heuristic) if __name__ == '__main__': unittest.main() ```